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Abstract

Recently, self-consistent continuum micromechanics formulations have turned out

as particularly efficient and reliable tools to predict (poro-)elasticity and brittle

strength of many natural and man-made materials characterized by textured mi-

crostructures. Thereby, materials are envisioned as porous polycrystals consisting

of an infinite number of non-spherical crystal phases, interacting with a spherical

pore phase.

In case of hydrated polycrystals, sliding events along very thin (liquid crystalline)

water layers forming interfaces between or within the single crystal phases entail

ideal plastic behavior of crystals (or clusters thereof). Its occurrence in the ex-

trafibrillar space of bone ultrastructure, together with brittle rupture of collagen,

could well explain the strength of different bone samples from different species,

ages, and anatomical locations. This explanation, however, required major mi-

cromechanical developments, which we refine and extend in the present contribu-

tion: The sliding-related elastic-perfectly plastic constitutive law is elaborated for

a non-associated Mohr-Coulomb plasticity. Upscaling this elastoplastic behavior

from the single crystal to the polycrystal scale is achieved through derivation of

concentration and influence tensors for eigenstressed microheterogeneous materi-

als, which itself is a generalization of the well-known transformation field analysis.

The resulting multiscale-multisurface elastoplasticity problema is solved through

a new variant of the algorithmic strategy of return-mapping.

Then, we consider fluids as a source of plastic sliding events of hydrated polycrys-

tals in (bio-)materials, comprising heterogeneous microstructures and fluid-filled

interfaces at small length scales. By bridging liquid crystal physics with continuum

micromechanics, homogenization schemes for eigenstressed heterogeneous materi-

als specialized for the limit case of flat interfaces are used to upscale this interface

behavior to the much larger composite comprising an isotropic, linear elastic solid

matrix of hydroxyapatite, as well as interacting parallel interfaces representing the

entity of all fluids in a so-called “liquid crystal” state.

Next, application examples underpin the relevance of continuum micromechan-

ics tools in medical practice. Herein, chemical information is extracted from

Computed Tomographic (CT) data, and converted, via micromechanics laws, into

object-specific, inhomogeneous and anisotropic material properties. Such CT-to-

micromechanics approaches provide a basis for Finite Element Models, and pave

the way to patient-specific, medical image-based bone fracture risk assessment.



Finally, motivated by the success in adapting the polycrystal morphology for 3D

(spatial) networks of solid crystal needles, the development of a similar theoretical

concept for planar wood fiber networks is tackled. The model is confirmed by var-

ious experimental data and deemed as a new support tool in the design of paper

production processes.



Kurzfassung

In der letzten Zeit haben sich selbstkonsistente Kontinuums-Mikromechanik-

Formulierungen als besonders effiziente und zuverlässige Werkzeuge erwiesen,

um die (Poro-)Elastizität und die spröde Festigkeit vieler natürlicher und

künstlicher Materialien, die durch strukturierte Mikrostrukturen gekennzeichnet

sind, vorherzusagen. Dabei stellt man sich Materialien als poröse Polykristalle vor,

die aus einer unendlichen Anzahl von nichtkugelförmigen Kristallphasen bestehen

und mit einer kugelförmigen Porenphase zusammenwirken.

Im Falle von hydratisierten Polykristallen führt das Gleiten entlang sehr dünner

(flüssigkristalliner) Wasserschichten, die Grenzflächen zwischen oder innerhalb

der Einkristallphasen bilden, zu einem ideal-plastischen Verhalten von Kristallen.

Diese Effekt im extrafibrillaren Raum der Knochen-Ultrastruktur, zusammen mit

dem spröden Bruch von Kollagen, könnte auch die Festigkeit der Knochen von

verschiedenen Arten, Altersgruppen und anatomischen Orten erklären. Dieser

Modellansatz erforderte jedoch gravierende mikromechanische Weiterentwicklun-

gen: das auf das Gleiten bezogene, elastisch-ideal-plastische Grundgesetz wird für

eine nicht assoziierte Mohr-Coulomb-Plastizität ausgearbeitet. Das Hochskalieren

dieses elastoplastischen Verhaltens vom Einkristall zum polykristallinen Maßstab

wird durch Ableitung von Konzentrations- und Einflusstensoren für die unter

Eigenspannungen stehenden mikroheterogenen Materialien erreicht, welches selbst

eine Verallgemeinerung der bekannten Transformationsfeldanalyse ist. Die resul-

tierende Mehrskalen-Mehrflächen-Elastoplastizität wird durch eine neue Variante

der algorithmischen Strategie des Return-Mappings gelöst.

Dann betrachten wir Flüssigkeiten als Quelle von plastischen Gleitungen von

hydratisierten Polykristallen in (Bio-)Materialien, die heterogene Mikrostruk-

turen und füßigkeitsgefüllte Grenzflächen in kleinen Längenskalen umfassen.

Durch die Überbrückung der Physik von Flüssigkristallen mit der Kontinuums-

mikromechanik werden Homogenisierungsschemen für die unter Eigenspannungen

stehenden heterogenen Materialien, die auf den Grenzfall von flachen Grenzflächen

spezialisiert sind, verwendet. Damit kann dieses Grenzflächenverhalten auf den

viel größeren Verbundwerkstoff mit einer isotropen, linearen elastischen festen Ma-

trix aus Hydroxyapatit und interagierender, paralleler, flüssigkeitsgefüllter Grenz-

flächen hochskaliert werden.

Als nächstes zeigen Anwendungsbeispiele die Relevanz von Kontinuums-

mikromechanik-Werkzeugen in der medizinischen Praxis. Hierbei werden



chemische Informationen aus Computertomographie-Daten extrahiert und über

mikromechanische Gesetze in objektspezifische, inhomogene und anisotrope

Materialeigenschaften umgewandelt. Solche CT-zu-Mikromechanik-Ansätze

bilden eine Basis für Finite-Element-Modelle und ebnen den Weg zur patienten-

spezifischen, medizinisch-bildbasierten Knochenbruchrisikobewertung.

Schließlich wird die Entwicklung eines ähnlichen theoretischen Konzepts für ebene

Holzfasernetze vorgestellt, die durch den Erfolg der Anpassung der polykristal-

linen Morphologie an 3D-Netzwerke von festen Kristallnadeln motiviert ist. Das

Modell wird durch verschiedene experimentelle Daten bestätigt und kann als neues

Unterstützungsinstrument bei der Gestaltung von Papierherstellungsprozessen be-

nutzt werden.
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Chapter 1

Introduction

Porous polycrystal-type microstructures built up by needle-like platelets or

sheets are characteristic for numerous natural and man-made materials such as

nacre, bone, metals, ceramics, polymers, rocks, and cement minerals [Wenk and

Van Houtte, 2004]. Mechanical modeling of porous polycrystals may pose consid-

erable challenges: classical two-phase self-consistent schemes [Hill, 1965a] can not

capture the mechanical behavior of high-porosity materials, while discretization

of each and every single crystal by finite elements may require disproportionate

efforts in terms of CPU, or may be even impossible due to restricted access to the

required microstructural details. As a recent remedy, continuum micromechanics

formulations were extended as to involve an infinite number of non-spherical crys-

tal phases, interacting with a spherical pore phase [Fritsch et al., 2006, 2009b],

see Figure 1.1. Such formulations allow for satisfactory predictions of the (poro-

)elasticity and brittle strength of vast classes of porous polycrystals, such as hy-

droxyapatite, bioactive glass-ceramics, gypsum, alumina, or zirconia (see Figure

1.2) [Fritsch et al., 2013b].

homogenized matrixspherical pore space

cylindrical (needle-like) inclusions

Figure 1.1: Representative volume element of porous polycrystals: uniform orien-
tation distribution of cylindrical (needle-like) inclusions and spherical pores

1
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Figure 1.2: Needle-based micromechanics predictions for normalized Young’s mod-
ulus Ehom/Es, as a function of porosity, for a wide range of Young’s modulus
and Poisson’s ratios of crystal solid phase; and comparison with experiments, see
[Fritsch et al., 2013b] for experimental sources.

The central aim of this work is (i) to extend and refine the present contribution

towards micro-elastoplasticity theory of porous polycrystals; (ii) to modify the

precedent work towards uniform orientation distribution of needle-like phases in

planar (2D) networks; and (iii) to strengthen the argument on the significant po-

tential of such micromechanics models by showing further application examples

relevant to medical practice.

1.1 Investigated materials

1.1.1 Bone

Bone has a hierarchical, highly complex structure characterized by a varied ar-

rangement of different microstructures built up by its elementary components over

a multitude of length scales. Understanding bone’s mechanical properties is an

ongoing research, in which, the key element is the profound understanding of the

mechanical behavior of its elementary building blocks, as well as the structural

relationships among them at various levels of the hierarchical organization:
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Figure 1.3: Hierarchical structure of bone: (a) photograph of a cross-section
through a whole long bone, showing the macrostructure made up by cortical and
trabecular bone [taken by Paul Crompton]; (b) scanning electron micrograph of
an osteon, being composed of alternating collagen-rich and collagen-poor lamellae,
and delineated by a collagen-free cement line [Ascenzi and Bonucci, 1972]; (c) tra-
becular struts making up trabecular bone; (d) bone ultrastructure [Prostak and
Lees, 1996]; (e) scanning electron micrograph of the isolated cement line [Davies,
2007]; (f) micromechanical representation of collagen-free compartment of bone
ultrastructure; (g) hydroxyapatite crystals, obtained by means of SEM [Weiner
and Wagner, 1998]; (h) wet collagen, electron density map of [Orgel et al., 2006].
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• Macroscopically, there are two types of bones: (i) the cortical or compact

bone making up 80% of the skeleton and found in the shafts of long bones,

and the outer surfaces of flat bones; and (ii) the trabecular or spongy bone,

characterized by an interconnected rod-like and plate-like structure, occuring

at the end of long bones, through the length of short bones, or in-between

the compact bone shells of flat bones [Dempster et al., 2006], see Figure

1.3(a).

• At the microstructural observation scale of several hundred micrometers to

millimeters, structural subunits called osteons build up the cortical bone, see

Figure 1.3(b); while closer inspection of the trabecular bone reveals the flat

planes of the spongy bone known as trabeculae, see Figure 1.3(c).

• At the ultrastructural level of few hundred nanometers, one can distinguish

collagen-rich domains referred to as the mineralized collagen fibrils, and

collagen-free domains, denoted as the extrafibrillar space, see Figure 1.3(d).

These collagen-free domains (the so-called mineral foam) are also character-

istic for the cement line (outer boundary of the osteons, see Figure 1.3(e)).

Cement lines contain hydroxyapatite and water with noncollageneous organ-

ics making up a polycrystalline material as seen in Figure 1.3(f).

• Finally, at an observation scale of several nanometers, the elementary build-

ing blocks of bone can be distinguished: plate-shaped crystals consisting of

impure hydroxyapatite (see Figure 1.3(g)); slender, helically round collagen

molecules (see Figure 1.3(h)); different non-collagenous organic molecules;

and water.

Theoretical modeling attempts have been mainly focused on macrostructural and

microstructural length scales, where concepts of cellular solid mechanics [Gibson

and Ashby, 1997] and of micro Finite Element models [Van Rietbergen et al.,

1995] are well established and have become an integral part of bone biomechanics.

Hereby, the reconstruction of bone microstructure entering such models is attained

by means of different medical imaging techniques, such as Computed Tomography.

The theoretical understanding of the ultrastructural scales of bone and be-

low required deeper interpretation of the material’s composition, morphology,

and mechanical properties. First of all, at this scale of observation, the exact

composition of a bone sample under the microscope can not be captured “by the
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naked eye”. A pioneering experimental campaign carried out by Lees and cowork-

ers [Lees, 1987, 2003, Lees and Heeley, 1981, Lees and Page, 1992, Lees et al.,

1979a, 1983, 1995] aimed at determining the chemical composition of bone tissues

by means of dehydration-demineralization tests, dehydration-deorganification

tests, and dehydration-ashing tests. Careful analysis of the data, so as to extract

chemical concentrations of hydroxyapatite, water, and organic matter in the

ultrastructural level of bone, revealed a unique bilinear relationship between

organic and mineral concentrations across different species, different organs, and

different age groups [Vuong and Hellmich, 2011].

As regards the contribution of the elementary constituents to the mechanical be-

havior of bone, Hellmich and Ulm [2002b] identified collagen and hydroxyapatite

as the governing elements of the ultrastructural elastic stiffness. However, the

organization of these elementary components within the ultrastructure of miner-

alized tissues had provoked some controversy concerning (i) the mineral-collagen

distribution, and (ii) the mineral-collagen interaction within the ultrastructure.

Hellmich and Ulm [2003] showed that the average mineral concentration in the

non-collageneous space of the ultrastructure is the same inside and outside the

fibrils (see Section 2.4 for further details). Concerning the mineral-collagen

interaction, Hellmich et al. [2004a] developed three different collagen-mineral

micromechanical representations, and validated these based on independent sets

of experiments. It turned out that both concepts of “mineral-reinforced collagen

matrix” [Currey, 1969] and “mineral matrix with collagen inclusions” [Cusack and

Miller, 1979, Lees and Heeley, 1981, Lees et al., 1979b, 1990] dividing the scientific

community are relevant, but at different observation scales. In line with the

“mineral-reinforced collagen matrix” concept, we consider at an observation scale

of some tens of nanometers, a “collagen matrix material”, called wet collagen,

built up by 1.2 nm thick collagen molecules and intermolecular water. At the

scale of several hundred nanometers, the mineralized collagen fibril is formed by

wet collagen and by mineralized crystal aggromerations, interpenetrating each

other. At a scale of 5-10 micrometers, however, the mineralized collagen fibrils are

embedded in an extrafibrillar mineral foam, in line with the concept of “mineral

matrix with (mineralized) collagen inclusions” [Fritsch and Hellmich, 2007].

In Chapter 3, we target the micro-elastoplasticity theory of porous poly-

crystals, and experimentally validate it on push-out tests on pieces of Haversian



Chapter 1. Introduction 6

lamellar bone [Bigley et al., 2006]. Such tests produce an almost pure shear

(micro-)stress state at the outer boundaries (cement lines) of the osteons. These

cement lines are collagen-free, so the RVE depicted on Figure 1.1 turns out as

relevant for the extrafibrillar mineral foam making up the cement line material.

1.1.2 Bone biomaterials

Tissue engineering have advanced dramatically in the past three decades with the

aim of restoring, replacing or regenerating defective tissues. Cells, scaffolds and

growth-stimulating signals are generally referred to as the tissue engineering triad,

the key components of engineered tissues [Chan and Leong, 2008]. Normal cells

in human tissues reside achorage-dependent in a solid matrix called extracellular

matrix (ECM), which provides the physical environment, biological signals, and

growth factors enabling cell ingrowth; gives the tissue its structural and mechanical

properties; and provides a degradable environment allowing for tissue remodeling.

Intrinsically, the best scaffold for engineered tissues should be the extracellular

matrix in its native state [Chan and Leong, 2008]. However, due the multitude of

its functions, and to the unique coupling of its physical and mechanical properties

making the exact reproduction of ECM difficult, the contemporary concept of tis-

sue engineering is to mimic the functions of native extracellular matrix, at least

partially [Chan and Leong, 2008]. Bone tissue engineering (BTE) has brought

b)

c)a)

PLGA inclusions

PHBV matrix

10 µm

TCP discs

TCP inclusions

30 µm

Figure 1.4: (a) Cross-section of a fiber making up the three-phase composite scaf-
fold; (b) TCP discs captured by means of SEM [Czenek et al., 2014]; (c) microme-
chanical representation of TCP crystals as disc-composed polycrystals

the advent of entirely new classes of hierarchically organized, multiporous mate-

rials [Bertrand and Hellmich, 2009] possessing features such as a suitable porous
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structure (pore size and pore interconnectivity); good bioactivity, biodegradabil-

ity, biocompatibility, and predictive rate of degradation; customized shape and

matching mechanical properties to adapt the damaged bone tissue. Conventional

materials often lack at least one of these features, which has emerged the blending

of synthetic and natural polymers or the usage of composite materials in order

to improve scaffold properties. Chapter 6 represents a three-phase composite ma-

terial made up by PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)), PLGA

(poly(lactic-co-glycolide)), as well as TCP (tricalcium phosphate hydrate) uniting

supreme characteristics: the high surface-to-volume ratio and the advantageous

mechanical properties of PHBV are complemented by the high bioactivity of TCP,

and the biodegradability of PLGA, see Figure 1.4. Herein, the elastic constants of

the scaffold components are taken from experiments. However, a recent microme-

chanics study [Fritsch et al., 2013b] based on self-consistent estimates for infinitely

many, spatially oriented crystal phases has revealed that the Young’s modulus of

disc-composed polycrystals (also characteristic for TCP) closely follow a power

law relation with the (nano)porosity. This turns out helpful when modeling pure

ceramic scaffolds.

1.1.3 Paper

Paper is an interesting engineering material most commonly utilised in every in-

dustry. Paper is formed by draining a suspension of fibers in a fluid through a

filter screen to form a sheet of pulp fibers [Xia et al., 2002]. The final paper is a

heterogeneous composition characterized by a hierarchical structure:

• At a scale of few hundred micrometers, paper consists of a network of non-

uniformly distributed fibers and interfibrious porosity, see Figure 1.5(a).

Here we are concerned with the arrangement of fibers, the properties of

individual fibers, and the nature and frequency of the fiber-to-fiber bonds.

The polycrystalline morphology for 3D (spacial) networks of solid fibers will

be adapted at this scale to the planar fiber network of paper (Figure 1.5(b)).

• Closer observation of the fibers reveals that the fibers are actually filament

wound composite systems [Baum, 1984]. The fiber wall is composed of dif-

ferent layers: the primary wall (P ) and the secondary walls (S1, S2 and S3),

see Figure 1.5(c). The cellulose fibrils building up these layers are arranged
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1µm

1µm

b)

c)

d)

e)

cellulose

hemicellulose

lignin

S1-layer

S3-layerMicrofibrils

200µm
a)

S2-layer

Figure 1.5: Hierarchical structure of paper: (a) paper fiber network, showing the
non-uniformly distributed fibers; (b) micromechanical representation of planar
fiber network; (c) cross-section across a single paper fiber, revealing its lamellar
structure made up by the secondary walls [Chinga-Carrasco, 2011]; (d) microfibrils
captured by means of FE-SEM [Chinga-Carrasco, 2011]; (e) elementary compo-
nents making up the fibrils: cellulose, hemicellulose, and lignin.

in a regular fashion which differs in the various layers within the fiber wall

(see Figure 1.5(d)), and are held together by a polymer matrix composed of

hemicellulose, lignin, and extractives, see 1.5(e).

Various mathematical models have been proposed relating stresses and strains

directly at the paper material level, neglecting the eminent role of the microstruc-

tural details (fiber arrangement, mechanical properties of fibers) governing the

mechanical behavior of the overall paper-like materials.

Herein, our strategy for relating the aforementioned multiscale organizations of

bone, bone biomaterials, and paper to effective elastic properties, relies on homog-

enization theory within the framework of continuum micromechanics [Hill, 1963,

Suquet, 1997b, Zaoui, 2002], as described next.
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1.2 Theoretical framework: continuum mi-

cromechanics

Bone, bone biomaterials and paper - just as the majority of biological and

engineering materials - are microscopically heterogeneous even if they appear

homogeneous at some natural scale of observation. Heterogeneous materials

consist of clearly distinguishable constituents (“phases”) that differ in mechanical

and physical properties; and may themselves be inhomogeneous at smaller length

scales. To describe such a material behavior, many researchers have embarked on

continuum micromechanics-based approaches, see examples for concrete [Bernard

et al., 2003, Constantinides and Ulm, 2004, Hellmich et al., 1999]; bone [Fritsch

and Hellmich, 2007, Hamed et al., 2010, Hellmich and Ulm, 2002a, Hellmich

et al., 2004a,b]; and wood [Hofstetter et al., 2005].

The central aim of continuum micromechanics is providing proper and reli-

able determination of macroscopic (or “large” scale) behavior of a medium which

exhibits microscopic (or “small” scale) heterogeneity on the basis of appropriate

and available microstructural information [Markov, 2000]. The basic idea is that

of homogenization, which consists in replacement of a piece of microheterogeneous

solid by a fictitious homogeneous one, which behaves globally in the same way

[Zaoui, 2002]. As the first step of the homogenization procedure, we define a

Representative Volume Element (RVE): a volume, which is sufficient in size to

contain all information necessary to describe the behavior of the material at

the macroscopic scale. On one hand, it is small enough from a macroscopic

point of view and could be thus treated as a typical “point” of the investigated

heterogeneous medium. On the other hand, it should be large enough in the

microscopic scale, in order to contain a large number of single inhomogeneities

and therefore to be indeed typical “representative” for the microstructure of the

solid [Markov, 2000]. The length scales typically covered in this concept range

from the low micrometer scale to macroscopic samples with sizes of millimeters

to meters.

Micromechanics models (as shown in more detail for bone in Chapter 2,

Section 2.7.1) are based on the assumption that these “microscopic” and

“macroscopic” scales are well separated. Therefore, the studied RVE has a

certain intermediate dimension `, which is two-to-threefold when compared to the
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dimension of inhomogeneities d within the RVE [Drugan and Willis, 1996], but is

5 to 50-times smaller than the macroscopic dimensions of the whole sample L,

or the fluctuation length λ of its prescribed mechanical loading [Kohlhauser and

Hellmich, 2013]. This condition is generally referred to as the separation of scales

principle, and mathematically reads as

d� `� L (1.1)

For a volume element VRV E of an inhomogeneous material that satisfies the separa-

tion of scales principle, homogenization relations take the form of volume averages

of some variable f(x)

〈f〉 =
1

VRV E

∫

VRV E

f(x) dV (1.2)

The homogenization relation for stress and strain tensors can be given as

Σ = 〈σ〉 =
1

VRV E

∫

VRV E

σ(x) dV (1.3)

E = 〈ε〉 =
1

VRV E

∫

VRV E

ε(x) dV (1.4)

Eqs. (1.3) and (1.4) are also known as average theorems, whereby Σ and E are fully

determined by surface displacements and tractions; with the local stress fields σ(x)

being self-equilibrated (in the absence of volume forces), and the local strain fields

ε(x) are geometrically compatible. If the displacements show discontinuities due

to interfaces between constituents (as e.g. investigated in Chapter 4), correction

terms involving the displacement jumps across the interfaces are introduced (see

Eq. (4.5)). Additionally, a field of equilibrated local stresses and an independent

field of compatible strains obey the following relation

Σ : E =
1

VRV E

∫

VRV E

σ(x) : ε(x)dV = 〈σ〉 : 〈ε〉 (1.5)

also known as Hill’s macrohomogeneity condition [Hill, 1967], which states that

the strain energy density of the microfields equals the strain energy density of the

macrofields, making the microscopic and macroscopic descriptions energetically

equivalent.

At the microscopic scale the stresses and strains are linearly related by the elastic

stiffness tensors c(x)

σ(x) = c(x) : ε(x) (1.6)
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In the above form Eq. (1.6) applies to linear elastic behavior, i.e. no eigenstrains

are present, but it can be extended into the nonlinear range to tackle elastoplastic

material behavior as described in detail in Chapter 3.

The microscopic stresses and strains are linked to corresponding macroscopic re-

sponses by the concentration relations

σ(x) = B(x) : Σ (1.7)

ε(x) = A(x) : E (1.8)

whereby B(x) and A(x) are the so-called stress and strain concentration tensors,

respectively. On the basis of the stress (or strain) concentration tensors, the

homogenized (“macroscopic”) stiffness (or compliance) tensor, C (or D = C−1),

can be derived by combination of Eqs. (1.3), (1.6) and (1.8)

C = 〈c(x) : A(x)〉 (1.9)

As exact expressions for concentration tensors A(x) are generally unknown, certain

approximations in terms of elasticity estimates are applied. Since the microstruc-

ture within the RVE is so complex that it can not be described in complete de-

tail, homogeneous subdomains, called material phases are introduced with known

quantitative- (such as volume fractions, elastic properties) and qualitative prop-

erties (e.g. phase shapes and interactions). The concentration problem in terms

of phases with index r leads to the following form of the elastic law

σr = cr : εr (1.10)

of the the average rules

Σ =
∑

r

frσr (1.11)

E =
∑

r

frεr (1.12)

of the concentration relations

σr = Bestr : Σ (1.13)

εr = Aestr : E (1.14)
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Homogenization∑
r frεr

Local constitutive law

Homogenized behavior
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∑
r frσr

Macroscopic scale
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in phase r, σr in phase r, εr

Σ = 〈σ〉RV E

Stress average rule
E = 〈ε〉RV E

Strain average rule

Microscopic scale

Figure 1.6: Basic steps of continuum micromechanics

and of the estimates for stiffnesses

Cest =
∑

r

frcr : Aestr (1.15)

with fr as the volume fraction of phase r. The phase-specific stress and strain

concentration tensors - which are key to solve both the macro-to-micro concen-

tration (1.13)-(1.14) and the micro-to-macro homogenization problems (1.15)

(see Figure 1.6) - can be derived from an Eshelby-type matrix-inclusion problem

[Eshelby, 1957].

Eshelby solution Eshelby [1957] showed that if a single ellipsoidal inclusion

(with uniform stiffness ci) in an infinite, linear matrix (with uniform stiffness C0)

is subjected to homogeneous strains E0 at infinity, the strain states in the inclusion

are uniform and related to macroscopic strains E0 by the expression [Eshelby, 1957]

εi =
[
I + P0

i :
(
ci − C0

)]−1
: E0 (1.16)

where I stands for the fourth-order identity tensor with components Iijkl =
1
2

(δikδjl + δilδjk), where δij is the Kronecker delta with δij = 1 if i = j and zero

otherwise; P0 denotes the fourth-order Hill tensor depending on the shape of in-

clusion and on the elastic properties of the matrix.

For the estimation of the strain concentration tensor of phase r, the strains εr

in each phase are considered equal to those of an ellipsoidal inhomogeneity with

phase stiffness cr, submitted to macroscopic strain E0 at infinity

εr =
[
I + P0

r :
(
cr − C0

)]−1
: E0 (1.17)
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Combination of Eq. (1.12) with (1.17) results in

E =
∑

r

frεr =

{∑

r

fr
[
I + P0

r :
(
cr − C0

)]−1

}
: E0 (1.18)

Elimination of E0 yields the sought estimate of the strain concentration tensor as

Aestr =
[
I + P0

r :
(
cr − C0

)]−1
:

{∑

s

fs
[
I + P0

s :
(
cs − C0

)]−1

}−1

(1.19)

which in combination with (1.15) results in the homogenized macroscopic stiffness

Cest =
∑

r

frcr :
[
I + P0

r :
(
cr − C0

)]−1
:

{∑

s

fs
[
I + P0

s :
(
cs − C0

)]−1

}−1

(1.20)

Auxiliary matrix stiffness As regards the choice of the auxiliary matrix stiff-

ness C0, it governs the interactions between the phases inside the RVE: C0 = Cest

relates to a dispersed arrangement of phases where all phases “feel” the overall ho-

mogenized material, and the corresponding homogenization scheme is standardly

called self-consistent [Hershey, 1954, Kröner, 1958], well-suited for polycrystalline

materials. On the other hand, the matrix may be identified as a phase r itself,

C0 = Cr , which relates to matrix-inclusion-type composite, and the correspond-

ing homogenization scheme is standardly referred to as Mori-Tanaka scheme [Ben-

veniste, 1987, Mori and Tanaka, 1973].

Morphology As regards the choice of morphology taken into account in the

Hill tensor P0
r, the real morphology of bone mineral crystals was for long an open

question, therefore different hyptheses were tested. First, Fritsch and Hellmich

[2007] envisioned hydroxyapatite biomaterials as porous polycrystals with non-

porous matrix consisting of spherical crystals with weak interfaces. This idea

was based on a precedent finding that up to 40% porosity, the self-consistent

stiffness estimates based on uniformly oriented cylindrical inclusions are quasi-

identical to those based on isotropic solid spheres [Fritsch et al., 2006]. As a second

approach, Fritsch and Hellmich [2007] developed a micromechanical model for

porous polycrystals by replacing the spherical solid inclusions by a set of infinitely

many uniformly oriented cylindrical inclusions (needles); being identical in shape
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and in material behavior. That implied the evaluation of the Hill tensors employing

the theory of rotational functions. Hence the Hill tensor is a function of the Euler

angles ϕ and θ, and the corresponding part of Eq. (1.20) reads as follows

[
I + P0

r :
(
cr − Cest

)]−1
=

∫ π

θ=0

∫ 2π

ϕ=0

[
I + P0

r(θ,ϕ) :
(
cr − Cest

)]−1 sin θ

4π
dθdϕ

(1.21)

This results in an isotropic (overall) effective stiffness estimate. The experimental

validation supported the latter model [Fritsch and Hellmich, 2007], which serves

as the basis of the present developments for bone tissue modeling.

In case of paper material, we envision each material phase of the paper fiber

network (i.e. the pore phase and the infinitely many solid fiber phases lying in the

paper plane) as ellipsoidal inclusions embedded into a matrix with the properties

of the RVE itself. As for the fiber phase, these inclusions are circular cylinders, i.e.

ellipsoids with a slenderness ratio going to infinity and an aspect ratio of one. The

pore phase is made up by circular oblate inclusions (ellipsoids with a slenderness

ratio of 1, and an aspect ratio going to zero).

Elastic properties Once the homogenized elastic stiffness is determined, the

components of the compliance tensor Dest = Cest,−1 give access to the engineering

constants, such as the Young’s moduli in transverse and in axial directions

E1 =
1

Dest
1111

E3 =
1

Dest
3333

(1.22)

the transverse and longitudinal Poisson’s ratios

ν12 = −Dest
1122 × E1 ν13 = −Dest

1133 × E3 (1.23)

as well as the in-plane shear modulus of the bone material at the scale of interest

G12 =
E12

2(1 + ν12)
(1.24)
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1.3 Beyond elasticity: Fundamentals of elasto-

plasticity

In line with the origin of the word “plastic”, derived from the Greek word

plastikós meaning shapeable, mouldable; plasticity describes the deformation of a

material undergoing non-reversible changes of shape in response to applied forces

[Lubliner, 2008]. In order to detect such material behavior, one need to define (i)

the elastic domain, i.e. the range of stresses within which the material behaves

purely elastically (i.e. the deformations remain reversible); (ii) the yield stress

(or critical stress value), beyond which the material undergoes plastic yielding

(plastic flow), i.e. the evolution of plastic strains takes place; (iii) the flow rule,

which provides a relation between the evolution of the plastic strains and the

stresses.

In this sense, the basic components of a general elastoplastic model are

• decomposition of the total strain εr into elastic (revesible) and plastic (irre-

versible) parts

εr = εer + εpr (1.25)

with εer as the elastic, εpr as the plastic strain, respectively;

• elastic law relating the stresses and strains

σr = Cr : (εr − εpr) (1.26)

• yield function F(σr) defining the elastic domain Eσ based on the yield stress

σY

Eσ = {σr ∈ R |F(σr) := |σr| − σY ≤ 0} (1.27)

• plastic flow rule defining the evolution of plastic strains

ε̇pr = λ̇
∂G

∂σr
(σr)

λ̇ ≥ 0, F≤ 0, λ̇F= 0

(1.28)

with G(σr) as the plastic potential, and λ̇ as the plastic multiplier.
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In contrast to the elastic case, the loading of the RVEs needs to be done in an

incremental manner, so as to represent the load level-dependent plastic processes

within the microstructure. Thus the loading path is decomposed into small incre-

ments labelled by n, such that the given increment in total strain ∆εn+1
r drives

the mechanical state to time tn+1 = tn + ∆tn+1. To relate these increments to the

evolution equations (1.28), we integrate the flow rule between time instant tn and

tn+1 employing a backward Euler integration scheme, yielding

∫ tn+1

tn
ε̇prdt = ∆εp,n+1

r = ∆λn+1
r

∂G

σr

(
σn+1
r

)
(1.29)

with the corresponding Melan-Kuhn-Tucker conditions reading as

∆λn+1
r ≥ 0

F(σn+1
r ) ≤ 0

∆λn+1
r ×F(σn+1

r ) = 0

(1.30)

The material phases being involved in plastic events need to be identified in each

load step. Therefore, the concept of elastic trial states and return map algorithms

is introduced into continuum micromechanics.

1.4 Return-mapping

Return mapping algorithms are probably the most popular means of numerically

solving conventional plasticity equations [Brannon, 2002]. The solution of the

constitutive problems by this procedure requires an iterative process: we assume

that all mechanical variables are completely defined at time step tn, and the general

task is to derive the full set of variables at time step tn+1 based on the applied load

increment ∆εn+1
r . The solution for each load increment is derived in two steps:

• First, we consider an auxiliary state, also known as trial stress state, which

is achieved by freezing the plastic flow. In other words, first we assume

the RVE to behave purely elastically and keep the plastic strain increment

constant,

σn+1,trial
r = Cr :

(
εn+1
r − εn+1,p

r

)
= σnr + Cr : ∆εnr

εn+1,p
r = εn,p

r

(1.31)
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This trial state is used to evaluate the yield criterion: a negative yield cri-

terion ensures that the response was effectively elastic, therefore the trial

stress state is in fact the real mechanical state. However, a positive yield cri-

terion highlights the violation of the constitutive law, so that εn+1,p
r 6= εn,p

r ,

thus the increments of the plastic strain have to be computed. In summary,

the conclusion that an incremenental process for given incremental strain is

elastic or plastic is drawn on the trial stress state according to the condition

[Simo and Hughes, 1998]

F
(
σn+1,trial
r

)



≤ 0 → elastic step ∆λn+1

r = 0,

> 0 → plastic step ∆λn+1
r > 0.

(1.32)

• Second, the return map step (also called corrector step) aims at determining

the increments of the plastic strains according to the Melan-Kuhn-Tucker

conditions to enforce the constitutive law. We express the final stress σn+1
r

in terms of the trial stress and of the plastic multiplier as follows

σn+1
r = Cr :

(
εn+1
r − εp,n+1

r

)

= σn+1,trial
r − Cr : ∆εp,n+1

r

= σn+1,trial
r − Cr : ∆λn+1

r :
∂G

∂σr
(σn+1

r )

(1.33)

The yield criterion evaluated at the final stress state can be written as

F(σn+1
r ) = 0

= F
(
σn+1,trial
r

)

− ∂F

∂σr

(
σn+1,trial
r

)
: Cr : ∆λn+1

r :
∂G

∂σr
(σn+1

r )

(1.34)

Solving Eq. (1.34) for the unknown plastic multipliers yields the desired

result as

∆λn+1
r =

F
(
σn+1,trial
r

)

∂F
∂σr

(σn+1,trial
r ) : Cr : ∂G

∂σr
(σn+1

r )
(1.35)

Relevance to bone Damage and failure of bone materials is initiated at the

scale of hydroxyapatite crystals and/or collagen molecules: it can be explained

by mutual ductule sliding of hydroxyapatite mineral crystals along layered water

films followed by the rupture of collagen crosslinks. Based on this vision, Fritsch
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et al. [2009c] predicted the uniaxial tensile and compressive strengths of various

cortical bones, based on “universal” strength properties of molecular collagen and

hydroxyapatite. The development of multiscale elastoplastic models capable of

multiaxial strength predictions is the key issue of the present work, whereby we

adapt the porous polycrystal representation of Fritsch et al. [2009c]: we introduce

the extrafibrillar space of bone as the host of crystal needles oriented in all space

directions, interacting with spherical, water-filled pores. We improve the approach

of Fritsch et al. [2009c] by introducing a multi-surface plasticity criterion in a form

F1(σ) = (σ1 − σ3) + (σ1 + σ3) sinφ− 2c cosφ ≤ 0

F2(σ) = (σ2 − σ3) + (σ2 + σ3) sinφ− 2c cosφ ≤ 0

F3(σ) = (σ1 − σ2) + (σ1 + σ2) sinφ− 2c cosφ ≤ 0

(1.36)

where σ1 ≤ σ2 ≤ σ3 are the (ordered) principal stresses, φ is the angle of internal

friction, and c is the cohesion. Since the crystal needles are sliding parallel to

the maximum shear stress direction, we employ a non-associated elastoplastic

constitutive law with the plastic flow rule reading as

G1(σ) = (σ1 − σ3)− 2c

G2(σ) = (σ2 − σ3)− 2c

G3(σ) = (σ1 − σ2)− 2c

(1.37)

where the conventions for the principle stresses have been preserved. Thus, the

needle-specific constitutive relations read as

σ = C : (ε− εp)

ε̇p = λ̇1
∂G1

∂σ
+ λ̇2

∂G2

∂σ
+ λ̇3

∂G3

∂σ

λ̇i ≥ 0, Fi ≤ 0, λ̇iFi = 0 i = 1...3

(1.38)

This results in a non-associative, multi-phase, multi-surface elastoplastic prob-

lema, which we solve through a new variant of the aforementioned algorithmic

strategy of return mapping, as described in Chapter 3.

The brittle failure of collagen crosslinks is considered through a Rankine-type cri-

terion [Fritsch et al., 2009c], i.e. the crosslinks first fail in the direction of the

largest absolute value of the principle stresses

Fcol = max (σ1,σ3)− σultcol ≤ 0 (1.39)
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with σultcol being the ultimate stress of collagen, amounting to 20.6 GPa [Fritsch

et al., 2009c]. The resulting nonlinear multiscale problem is solved in the gen-

eral framework of continuum micromechanics. To our best knowledge, this is

a true premiere in both multiscale elastoplasticity and bone mechanics, holding

the promise for significantly improved computer-aided fracture risk assessment in

orthopedics.

1.5 Outline of the thesis

The individual chapters of this thesis contain either already accepted or published

scientific papers, or mature paper drafts planned to be submitted for publication.

Chapter 2 gives an overview on the universal rules regulating bone tissue

composition, and shows how the elementary material constituents (hydroxyap-

atite mineral, collagen, water) govern the elastic properties of bone materials

across the entire vertebrate kingdom, from the nano- to the centimetre scale.

The mechanical behavior of the different micro- and nanostructures of bone are

revealed through the theoretical tool of continuum micromechanics, and validated

through a multitude of independent experimental data of bone across different

observation scales, ages, species, and anatomical locations.

Motivated by our success in multiscale elasticity, the highly challenging

task of upscaling strength of different bone materials is tackled in Chapter 3.

Damage and failure of bone materials is initiated at the scale of hydroxyapatite

crystals: ductile sliding along very-thin (liquid-crystalline) water layers forming

interfaces between or within single crystal phases entails an ideal plastic behavior

of the mineral crystals. Its occurence in the extrafibrillar space of bone ultra-

structure, together with brittle rupture of collagen, well explains the strength

of different bone samples. This explanation, however, required major microme-

chanical developments: the sliding-related elastic-perfectly plastic constitutive

law [Fritsch et al., 2009c] is elaborated for a non-associative Mohr-Coulomb

plasticity. Upscaling this elastoplastic behavior from the single crystal to the

polycrystal scale is achieved through derivation of concentration and influence

tensors for eigenstressed microheterogeneous materials [Pichler and Hellmich,

2010], which itself is a generalization of the well-known transformation field

analysis [Dvorak and Benveniste, 1992]. The resulting multiscale-multisurface
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elastoplasticity problema is solved through a new variant of algorithmic strategy

of return-mapping.

In Chapter 4, we consider fluids as a source of plastic sliding events of

hydrated polycrystals in (bio-)materials, comprising heterogeneous microstruc-

tures and fluid-filled porosity at small length scales. In this context, fluid-filled

interfaces are typically considered to act as a lubricant, once electrically charged

solid interfaces start to glide along fluid sheets, while the fluid is typically in

a liquid crystal state. The intimate bounding of fluid or water molecules to

electrically charged solid surfaces stabilizes the interaction between mineral

crystals: the hydrated crystals do not break or detach one from another once

a critical stress threshold is reached, but when the intra- and intercrystalline

loads accumulated up to the elastic limit, will be maintained through the crystals

starting to glide upon each other, along the ice-like features, which prevent the

sliding crystal surfaces from disintegration. This vision is consistent with an

elastoplastic interface behavior between hydrated polycrystals. Bridging liquid

crystals physics with continuum micromechanics of materials, we employ recently

proposed micromechanical formulations for influence and concentration tensors

valid for phases of arbitrary shapes and orientations [Pichler and Hellmich, 2010],

specific choises of which lead to the well-known transformation field analysis

[Dvorak and Benveniste, 1992, Pensée et al., 2002]. Then interfaces are regarded

as zero-thickness limit case of spheroidal phase inclusions translating the inclusion

plastic strains into displacement discontinuities (or jumps) across the interfaces,

and the inclusion stresses into traction vectors acting on the interface planes

[Shahidi et al., 2014]. Thereafter, we introduce an elastoplastic constitutive law

for these interfaces, which links the traction vectors acting in the interfaces to

corresponding plastic displacement discontinuities. The resulting homogenized

macroscopic behavior is of the kinematic hardening type, which is explicitly

confirmed by a dissipation analysis.

Chapter 5 and Chapter 6 show application examples of how chemical

information can be extracted from Computed Tomograpic (CT) data and

converted via micromechanics laws, into object-specific, inhomogeneous and

anisotropic material properties. The linear relationship between grey values

and the X-ray attenuation coefficients, combined with the volume average rule

for the latter allows for determination of voxel-specific composition, opening
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unprecedented avenues in bone disease therapies, including patient-specific bone

fracture risk assessment relying on micromechanics based Finite Element analyses.

Chapter 7 investigates the mechanical properties of micro-heterogenous

materials exhibiting planar fibrous microstructures. One example of such planar

fibrous material is paper, which consists of a network of pulp fibers connected

via fiber-fiber bonds. Hereby, paper fiber network is envisioned as a porous

polycrystal: infinitely many, cylindrical fiber phases interact with one pore phase

with vanishing stiffness. Specialization for a Dirac’s Delta distribution for fiber

orientation, shifted to the paper plane orientation, results in stress and strain

average rules restricted to a planar (2D) Euclidean space. Definition of elastic

properties, as well as of a strain concentration problem for the fiber and pore

phases yields the concentration tensor-based elasticity fo the homogenized RVE.

Validation of the proposed model relies on two independent sets of experiments.

Finally, the thesis is concluded and completed with a future outlook in

Chapter 8.
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Abstract

“Universal” organizational patterns in bone are reviewed and presented, in terms

of mathematically expressed rules concerning the composition and elasticity of a

large variety of tissues. Firstly, experimental data sets gained from dehydration-

demineralization tests, dehydration-deorganification tests, and dehydration-ashing

tests are thoroughly analyzed. On this basis, bilinear relations can be identified,

between the mass density of the extracellular bone matrix on the one hand, and

the apparent mass densities of its basic constituents (water, hydroxyapatite, and

organic matter), on the other hand. Secondly, the question as to how hydroxya-

patite is distributed in bone tissue is addressed. To that end, mass and volume

measurements gained from wet, dehydrated, and demineralized tissue samples, as

well as optical densities provided by transmission electron microscopy, are studied,

confirming a rule on how the mineral is partitioned between fibrillar and extrafib-

rillar spaces in the ultrastructure of bone. Thirdly, a swelling rule for hydrating

collagen is validated through processing of experimental data from X-ray diffrac-

tion, vacuum drying, and mass measurements, quantifying the change of the bone

tissue composition upon hydration. And fourthly, application of the mass con-

servation law to extracellular bone matrix considered as closed thermodynamic

system, allows for studying the change of bone tissue composition during miner-

alization. Finally, these compositional rules, which are shown to be “universally”

valid throughout the vertebrate kingdom, enter a micromechanical homogeniza-

tion scheme for upscaling the experimentally accessible elastic properties of the

elementary mechanical building blocks of bone (hydroxyapatite minerals, type I

collagen, and water with non-collageneous organics) to the macroscopic scale of

cortical and trabecular bone.

2.1 Introduction

Many tasks in the diverse field of biomedical engineering involve ensuring the me-

chanical integrity of structures made up by biological tissues. The mechanical

integrity of structures depends on the mechanical loading to which they are sub-

jected, on the specific shapes of the structures (i.e. of the organs), and last, but not

least on the mechanical properties of the materials (i.e. of the biological tissues)

making up the structures. The aforementioned tissue properties, changing in time



Chapter 2. Universal patterns 24

and space across the organs, depend on tissue composition and on the micro- and

nanostructures within a piece of tissue. The present contribution reviews rigor-

ously derived mathematical relations describing corresponding structure-property

relations.

This topic is closely linked to the question on whether there are any non-changing,

“universally” valid rules governing the composition and microstructure of biolog-

ical tissues. Inspired by Rupert Riedl (1925-2005), the eminent Austro-American

zoologist of the second half of the twentieth century, who stressed that “the living

world happens to be crowded by universal patterns of organizations, which, most

obviously, find no direct explanation through environmental conditions or adaptive

radiation” [Riedl, 1977], we here report on the successful finding of mathematical

rules reflecting the aforementioned patterns. Therefore, we apply an engineering

science approach to the structural biology of bone tissue, also assessing how such

rules or patterns affect the mechanical properties of bone tissue. For this purpose,

we take into account the well-known fact that bone tissue features a distinctive

hierarchical organization [Fritsch and Hellmich, 2007, Katz et al., 1984, Weiner

and Wagner, 1998], as seen in Figure 2.1 and described in greater detail in Sec-

tion 2.2. The involved organizational patterns (specific arrangements of water,

hydroxyapatite-type mineral, and organic matter) can be found throughout dif-

ferent anatomical locations, different organs, and different species. However, the

dosages of distinctive features within a specific material microstructure may well

differ. These dosages follow the aforementioned “universal” composition rules,

which arise from a vast amount of experimental data available in literature.

In particular, dehydration-demineralization tests, dehydration-deorganification

tests, and dehydration-ashing tests were analyzed in order to quantify the rela-

tions between the mass density of extracellular bone matrix and the apparent mass

densities of water, hydroxyapatite, and organic matter, see Section 2.3. Further-

more, mass and volume measurements on wet, dehydrated, and demineralized bone

tissue samples, as well as optical densities obtained from transmission electron mi-

croscopy (TEM) of similar tissues are employed for assessing the distribution of

hydroxyapatite within extracellular bone matrix, see Section 2.4. Thereafter, a

swelling rule for hydrating collageneous tissues derived from processing and com-

paring data collected from X-ray diffraction, vacuum drying, and mass measure-

ments, is presented in Section 2.5. Based on a mass conversation law formulated

for closed systems representing both the bone ultrastructure, as well as the fibrillar

and extrafibrillar spaces, the bone tissue evolution during mineralization can be
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predicted, see Section 2.6. Finally, we present how the hierarchical organization of

bone tissue can be “translated” into a corresponding multiscale homogenization

scheme, which allows for prediction of the macroscopic tissue stiffness. The corre-

sponding microelastic model also incorporates the aforementioned four composi-

tion rules, so that they eventually govern “universal” structure-property relations

in bone, as described in Section 2.7.

2.2 Morphological patterns of bone

Bone materials are characterized by an astonishing variability and diversity. Still,

the fundamental hierarchical organization, or “once-chosen” basic “construction

plans” of bone materials have remained largely unchanged during biological evo-

lution; this has been coined, by Gould and Lewontin [1979], as an “architecturally

constrained” situation. The aforementioned construction plans are reflected by

typical morphological features (or patterns) which can be discerned across most

bone organs and tissues occurring in the vertebrate kingdom. The corresponding

hierarchical organization of bone can be described by means of the following five

levels [Katz et al., 1984]:

• The macrostructure, with a characteristic length of several millimeters to cen-

timeters, features cortical (or compact) bone and trabecular (or spongy) bone,

see Figure 2.1(a).

• Zooming out pieces of cortical bone, see Figure 2.1(b), or trabecular bone, see

Figure 2.1(c), reveals that actually both materials are porous in nature: The

corresponding vascular porosity hosts various biological cells as well as blood ves-

sels; in cortical bone this porosity is organized in a tree-type branching structure

of canals (called Haversian canals if parallel to the main bone axis, and Volk-

mann canals at the branching junctions [Buckwalter et al., 1995, Cooper et al.,

2003]); and in trabecular bone, these canals are penetrating each other, yield-

ing eventually a microstructure made up by single plates or struts [Hahn et al.,

1992]. The vascular pore channels are connected, via much smaller channels

called canaliculi, to cave-like single pores called lacunae [Schneider et al., 2011],

populated by individual osteocytes, and seen as small black dots in Figure 2.1(d).

• The entire domain outside the vascular, lacunar, and canalicular porosities is

called extracellular space or matrix. It appears as a nanocomposite with a
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Figure 2.1: Hierarchical organization of bone: (a) photograph of a cross-section
through and across a whole long bone (copyright Ralph Hutchings/Visuals Un-
limited, Inc.), showing the macrostructure; microstructure featuring either (b)
osteonal cortical bone, acquired by SEM [Hang and Barber, 2010], or (c) tra-
becular struts making up trabecular bone, visualized based on micro-computed
tomography data [Metzger et al., 2015]; (d) osteocytic lacunae (brightfield light
microscopy image taken by Tim Arnett); (e) ultrastructure, [Prostak and Lees,
1996]; (f) hydroxyapatite crystals, obtained by means of SEM [Weiner and Wag-
ner, 1998]; (g) wet collagen, electron density map of [Orgel et al., 2006] [permission
for reproduction requested from publisher: (b) The Royal Society; (c) ASME; (d)
Annual Reviews; (e) Springer; (g) PNAS]
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characteristic size of several micrometers, see Figure 2.1(e). Within this extra-

cellular space, collagen-rich domains, see the light areas in Figure 2.1(e), and

collagen-free domains, see the dark areas in Figure 2.1(e), can be distinguished,

the characteristic length of both of which is several hundred nanometers. Com-

monly, these domains are referred to as fibrils and extrafibrillar space [Prostak

and Lees, 1996].

• Finally, the so-called elementary components of mineralized tissues can be dis-

tinguished, with a characteristic lengths in the range of nanometers:

– plate-shaped mineral crystals consisting of impure hydroxyapatite (HA,

Ca10[PO4]6[OH]2) with typical 1-5 nm thickness, and 25-50 nm length

[Weiner and Wagner, 1998], see Figure 2.1(f);

– slender, helically round collagen molecules with a diameter of about 1.2 nm

and a length of about 300 nm [Bozec and Horton, 2005, Orgel et al., 2006,

Pradhan et al., 2011], which are self-assembled in staggered organizational

schemes (fibrils) with characteristic diameters of 50-500 nm [Cusack and

Miller, 1979, Lees et al., 1990, 1994a, Miller and Parker, 1984, Prostak and

Lees, 1996, Rho et al., 1998, Weiner and Wagner, 1998, Weiner et al., 1997],

see Figure 2.1(g) – several covalently bonded fibrils are sometimes referred

to as fibers;

– different non-collagenous organic molecules, predominantly lipids, protegly-

cans, and proteins [Hunter et al., 1996, Urist et al., 1983]; and

– water.

Both the amount of these components, as well as their distribtution across the

hierarchical levels described above, are the focus of the subsequent sections.

2.3 Mineral and collagen dosages in extracellular

bone matrix

Data from bone drying, demineralization, and deorganification tests, collected

over a time span of more than 80 years [Biltz and Pellegrino, 1969, Burns, 1929,

Gong et al., 1964, Hammet, 1925, Lees, 2003, Lees and Page, 1992, Lees et al.,
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1979a, 1983, 1995], evidence a myriad of different chemical compositions of dif-

ferent bone materials. However, careful analysis of the data, as to extract the

chemical concentrations of hydroxyapatite, water, and organic matter1 in the ex-

tracellular bone matrix, reveals an astonishing fact [Vuong and Hellmich, 2011]:

it appears that there exists a unique bilinear relationship between organic concen-

tration and mineral concentration, across different species, different organs, and

different age groups, from early childhood to old age.

Corresponding experimental endeavors typically started with the determination

of the “macroscopic” mass density, i.e. that associated to millimeter-sized bone

samples, by means of Archimedes’ principle. Therefore, the mass of the (wet)

bone sample is first measured in air, delivering the quantity Mµ
air. Thereafter, the

weight of the bone sample when submerged in a liquid, is quantified as W µ
sub. Both

quantities then give access to the volume of the millimeter-sized sample, through

V µ =
1

ρliquid

(
Mµ

air −
W µ

sub

g

)
, (2.1)

with ρliquid as the mass density of the employed liquid, and g as the gravitational

acceleration, g = 9.81 m/s2. Finally, the macroscopic mass density of the investi-

gated samples follows from

ρµ =
Mµ

air

V µ
. (2.2)

After having determined their samples’ mass density, the experimenters typically

turned towards determination of the samples’ chemical composition; by one of

three different experimental modalities, as described next.

2.3.1 Dehydration-demineralization tests

In a series of seminal experimental campaigns [Lees, 2003, Lees and Page, 1992,

Lees et al., 1979a, 1995], see Tables 2.1 to 2.3, numerous millimeter-sized bone

samples were first dried in a vacuum desiccator at room temperature, until a con-

stant mass was observed, namely the mass of the dehydrated bone sample, Mµ
dry.

The difference between the mass of wet sample in air and the mass of dehydrated

sample obviously equals the mass of water which was originally contained in the

sample, Mµ
H2O = Mµ

air − Mµ
dry. This water had filled all the bone pore spaces,

from the vascular pore space seen in Figures 2.1(b) and 2.1(c), via the lacunar and

190% of which is collagen [Urist et al., 1983]
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Table 2.1: Bone composition from dehydration-demineralization experiments of
Lees et al. (1979)a and Lees et al. (1995)b

Tissue ρµ WFµHA WFµorg WFµH2O

(g/cm3) (-) (-) (-)

Bovine tibiaa 2.06 0.658 0.219 0.123
Bovine tibiaa 2.05 0.656 0.219 0.126
Bovine tibiaa 2.02 0.621 0.239 0.140
Bovine tibiaa 2.02 0.627 0.232 0.140
Bovine tibiaa 2.00 0.643 0.227 0.129
Bovine tibiaa 2.05 0.643 0.230 0.127
Bovine tibiaa 2.10 0.671 0.211 0.118
Bovine tibiaa 2.08 0.664 0.216 0.120
Bovine tibiaa 2.12 0.661 0.215 0.123
Bovine tibiaa 2.08 0.663 0.221 0.116
Bovine tibiaa 2.10 0.647 0.224 0.129
Bovine tibiaa 1.98 0.654 0.217 0.128
Bovine tibiaa 2.05 0.644 0.227 0.129
Bovine tibiaa 2.11 0.649 0.229 0.122
Bovine tibiaa 2.03 0.638 0.213 0.123
Bovine tibiaa 2.06 0.699 0.184 0.117
Bovine tibiaa 2.02 0.658 0.219 0.123
Bovine tibiaa 1.99 0.656 0.219 0.126
Bovine tibiaa 1.95 0.640 0.228 0.131
Bovine tibiaa 2.01 0.659 0.218 0.123
Bovine tibiaa 2.04 0.638 0.242 0.121
Bovine tibiaa 2.05 0.674 0.210 0.116
Whale malleusb 2.49 0.860 0.100 0.040
Whale malleusb 2.45 0.800 0.130 0.070
Whale incusb 2.50 0.860 0.090 0.050
Whale stapesb 2.42 0.810 0.130 0.060
Whale stapesb 2.36 0.800 0.140 0.060
Whale perioticb 2.40 0.810 0.130 0.070
Whale perioticb 2.48 0.830 0.110 0.060
Whale perioticb 2.52 0.850 0.100 0.050
Whale perioticb 2.52 0.850 0.100 0.050
Whale perioticb 2.58 0.870 0.090 0.040
Whale t. bullab 2.48 0.850 0.100 0.050
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Table 2.2: Mineralized tendon composition from dehydration-demineralization ex-
periments of Lees et al. (1992)

Tissue ρµ WFµHA WFµorg WFµH2O

(g/cm3) (-) (-) (-)

Mineralized turkey leg tendon 1.33 0.286 0.250 0.465
Mineralized turkey leg tendon 1.50 0.445 0.239 0.316
Mineralized turkey leg tendon 1.50 0.410 0.217 0.374
Mineralized turkey leg tendon 1.51 0.437 0.217 0.346
Mineralized turkey leg tendon 1.52 0.454 0.239 0.308
Mineralized turkey leg tendon 1.52 0.437 0.219 0.343
Mineralized turkey leg tendon 1.52 0.396 0.244 0.360
Mineralized turkey leg tendon 1.53 0.443 0.222 0.335
Mineralized turkey leg tendon 1.54 0.459 0.244 0.297
Mineralized turkey leg tendon 1.58 0.473 0.228 0.299
Mineralized turkey leg tendon 1.58 0.462 0.217 0.321
Mineralized turkey leg tendon 1.59 0.476 0.228 0.297
Mineralized turkey leg tendon 1.60 0.487 0.230 0.283
Mineralized turkey leg tendon 1.61 0.459 0.230 0.310
Mineralized turkey leg tendon 1.61 0.495 0.244 0.261
Mineralized turkey leg tendon 1.62 0.500 0.228 0.272
Mineralized turkey leg tendon 1.64 0.506 0.228 0.266

canalicular pore spaces seen in Figure 2.1(d), down to the inter-crystalline and in-

termolecular pore spaces, as seen in Figures 2.1(e), (f), and (g). Next, the samples

were rehydrated and then demineralized in a 0.5 M ethylenediaminetetraacetic acid

(EDTA) solution at pH 7.5, until no calcium was detected anymore by an atomic

absorption spectrometer. After drying such a demineralized sample in vacuum, one

is left with the organic mass which had been contained in the originally mineralized

and wet bone sample, Mµ
org. Finally, knowledge of the masses of organic matter

and water gives access to the hydroxyapatite mass, Mµ
HA = Mµ

air −Mµ
org −Mµ

H2O.

Thereafter, the constituent masses can be readily converted into weight fractions,

through

WFµi =
Mµ

i

Mµ
air

, i = org, HA, H2O , (2.3)

see Tables 2.1 to 2.3. The weight fractions obviously fulfill

WFµH2O + WFµHA + WFµorg = 1 . (2.4)
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Table 2.3: Bone composition from dehydration-demineralization experiments of
Lees et al. (2003)

Tissue WFµHA WFµorg WFµH2O ρµ

(-) (-) (-) (g/cm3)

Horse metacarpal 0.55 0.25 0.2 1.79
Horse metacarpal 0.57 0.26 0.17 1.84
Horse metacarpal 0.55 0.26 0.19 1.80
Horse metacarpal 0.54 0.28 0.18 1.79
Horse metacarpal 0.62 0.26 0.12 1.96
Horse metacarpal 0.62 0.27 0.11 1.97
Horse metacarpal 0.62 0.26 0.12 1.96
Horse metacarpal 0.61 0.26 0.13 1.94
Horse metacarpal 0.62 0.25 0.13 1.95
Horse metacarpal 0.54 0.23 0.23 1.75
Horse metacarpal 0.53 0.24 0.23 1.74
Horse metacarpal 0.54 0.27 0.19 1.79
Horse metacarpal 0.63 0.22 0.15 1.94
Horse metacarpal 0.62 0.25 0.13 1.95
Horse metacarpal 0.62 0.26 0.12 1.96
Horse metacarpal 0.64 0.23 0.13 1.98
Horse metacarpal 0.62 0.26 0.12 1.96
Horse metacarpal 0.66 0.23 0.12 1.99
Horse metacarpal 0.63 0.24 0.13 1.96

2.3.2 Dehydration-deorganification tests

Gong et al. [1964] weighed several (macroscopic) bone samples in the wet state, as

well as after drying at 80◦C for 72 hours - thereby getting access to their wet and

dry masses, Mµ
air and Mµ

dry. As before, their difference is equal to the mass of water

in the investigated bone sample, Mµ
H2O = Mµ

air −Mµ
dry. Next, the samples were

freed from fat and other organic material, using, in a soxhlet apparatus, a mixture

of 80% ethyl ether and 20% ethanol, as well as an 80% aqueous solution of ethylene

diamine. After drying such a deorganified sample at 80◦C (until constant weight

is attained), one is left with the hydroxyapatite mass contained in the investigated

bone sample, Mµ
HA. Finally, when knowing the mass of hydroxyapatite and water

contained in the originally wet bone sample, as well as its original mass, the mass of

the organic matter can be readily determined through Mµ
org = Mµ

air−Mµ
HA−Mµ

H2O,

together with the corresponding weight fractions according to Eq. (2.3), see Table

2.4.
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Table 2.4: Bone composition from dehydration-deorganification experiments of
Gong et al. (1964)

Tissue ρµ WFµHA WFµorg WFµH2O

(g/cm3) (-) (-) (-)

Steer tibial shaft 2.00 0.630 0.244 0.126
Dog femoral shaft 2.00 0.630 0.259 0.111
Humar femur and tibia 1.99 0.642 0.239 0.119
Monkey femur 2.04 0.643 0.239 0.117
Steer atlas bone 1.93 0.588 0.266 0.146
Dog lumbar vertebrae 1.91 0.582 0.265 0.153
Human thoracic and lumbar vertebrae 1.92 0.601 0.258 0.140
Monkey lumbar vertebrae 1.88 0.582 0.274 0.144

2.3.3 Dehydration-ashing tests

In an interesting experimental campaign of Biltz and Pellegrino [1969], cortical

bone samples were dried until a constant mass, i.e. the dry bone mass, Mµ
dry,

was attained, which, together with the original mass of the sample in air, Mµ
air,

gives access to the mass of water in the investigated bone sample, Mµ
H2O. Next,

the dried bones were gently incinerated until all organic matter was burned off.

Subsequent weighing evidenced the ash mass, Mµ
ash. As also some inorganic matter,

namely 6.6% of the ash weight, is burned at an ashing temperature of 600◦C

[Gong et al., 1964], the ash mass provides access to the mineral mass, according

to Mµ
HA = 1.066 ×Mµ

ash. The mass of organic matter follows from Mµ
org = Mµ

air −
Mµ

HA − Mµ
H2O. The corresponding weight fractions can be determined through

Eqs. (2.3) and (2.4), which, in turn, provide access to ρµ, through

ρµ =

(
WFµorg

ρorg

+
WFµHA

ρHA

+
WFµH2O

ρH2O

)−1

, (2.5)

where ρorg = 1.42 g/cm3, ρHA = 3 g/cm3, and ρH2O = 1 g/cm3 are the constituents’

real mass densities [Gong et al., 1964, Hellmich and Ulm, 2005a, Lees, 1987]. For a

compilation of data derived from Biltz and Pellegrino [1969], see Table 2.5. For the

sake of completeness, it should be noted that Biltz and Pellegrino [1969] actually

reported the volume fraction of water

fµH2O =
Mµ

air −Mµ
dry

V µ
, (2.6)
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Table 2.5: Bone composition from dehydration-ashing experiments of Biltz and
Pellegrino (1969)

Femoral and tibial ρµ WFµHA WFµorg WFµH2O

samples of (g/cm3) (-) (-) (-)

Fish 1.80 0.507 0.273 0.220
Turtle 1.81 0.529 0.266 0.204
Frog 1.93 0.572 0.246 0.182
Polar bear 1.92 0.583 0.245 0.172
Man 1.94 0.657 0.263 0.080
Elephant 2.00 0.658 0.242 0.100
Monkey 2.09 0.653 0.237 0.110
Cat 2.05 0.652 0.233 0.115
Horse 2.02 0.648 0.228 0.124
Chicken 2.04 0.653 0.227 0.120
Dog 1.94 0.637 0.219 0.144
Goose 2.04 0.669 0.218 0.113
Cow 2.05 0.660 0.212 0.128
Guinea Pig 2.10 0.669 0.212 0.119
Rabbit 2.12 0.685 0.199 0.116
Rat 2.24 0.713 0.197 0.090

and the weight fraction of ash per mass of dried bone

WFdry
ash =

Mµ
ash

Mµ
air −Mµ

H2O

. (2.7)

Similar test campaigns were performed by Burns [1929] and Hammet [1925], see

Table 2.6 for a compilation of test results.

2.3.4 Determination of tissue-specific volume fractions

Determination of the extracellular volume fractions of mineral and collagen, f excel
HA

and f excel
col , rests on the aforementioned volume and weighing measurements on

wet, dehydrated, and demineralized bone specimens, and on techniques revealing

the bone microstructure, such as light microscopy, confocal microscopy, or micro-

computed tomography. These imaging techniques give access to the so-called

microporosity fµpor, the sum of the vascular, lacunar, and canalicular porosities,

fµpor = fvas + flac + fcan . (2.8)

Vascular porosity in cortical bone, also called Haversian porosity in that con-

text, ranges from 2 % to typically 8 % [Bousson et al., 2000, 2001, Cooper et al.,
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Table 2.6: Bone composition from dehydration-ashing experiments of Burns
(1929)a and Hammett (1925)b

Tissue WFµHA WFµorg WFµH2O ρµ

(-) (-) (-) (g/cm3)

Rabbit limb bonesa 0.267 0.202 0.392 1.38
Rabbit limb bonesa 0.210 0.194 0.581 1.25
Rat leg bonesa 0.389 0.231 0.313 1.54
Rat leg bonesa 0.345 0.224 0.375 1.46
Rat leg bonesa 0.398 0.232 0.318 1.54
Rat leg bonesa 0.378 0.218 0.334 1.52
Rat leg bonesa 0.376 0.230 0.344 1.51
Humerus of ratb 0.171 0.180 0.650 1.20
Humerus of ratb 0.176 0.191 0.633 1.21
Humerus of ratb 0.235 0.199 0.567 1.27
Humerus of ratb 0.315 0.210 0.475 1.37
Humerus of ratb 0.337 0.208 0.456 1.40
Humerus of ratb 0.378 0.215 0.407 1.46
Humerus of ratb 0.434 0.222 0.344 1.55
Humerus of ratb 0.175 0.194 0.631 1.21
Humerus of ratb 0.180 0.193 0.627 1.21
Humerus of ratb 0.264 0.205 0.532 1.31
Humerus of ratb 0.315 0.209 0.476 1.37
Humerus of ratb 0.362 0.209 0.429 1.44
Humerus of ratb 0.420 0.219 0.361 1.53
Humerus of ratb 0.451 0.229 0.320 1.58
Femur of ratb 0.133 0.182 0.685 1.17
Femur of ratb 0.144 0.191 0.665 1.18
Femur of ratb 0.201 0.204 0.595 1.24
Femur of ratb 0.283 0.217 0.500 1.34
Femur of ratb 0.315 0.210 0.475 1.37
Femur of ratb 0.356 0.217 0.427 1.43
Femur of ratb 0.413 0.230 0.357 1.52
Femur of ratb 0.143 0.197 0.660 1.18
Femur of ratb 0.150 0.195 0.655 1.19
Femur of ratb 0.235 0.208 0.557 1.28
Femur of ratb 0.288 0.213 0.499 1.34
Femur of ratb 0.338 0.214 0.448 1.41
Femur of ratb 0.401 0.222 0.377 1.50
Femur of ratb 0.430 0.235 0.336 1.55
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2007, Dong et al., 2014, Sietsema, 1995]. Under severe conditions such as bone

disease like osteoporosis, overtraining, or drug treatment, it may increase up to

20 % [Sietsema, 1995]. In trabecular bone, the vascular porosity ranges from 30 to

90 % [Carter and Hayes, 1977]. On the other hand, the much smaller lacunar and

canalicular porosities lie within a much narrower range of values; in recent years,

they were quantitifed by micro-computed tomography. In this context, Schneider

et al. [2007, 2011] reported 1.3% and 0.7% lacunar and canalicular porosity values,

respectively. These values are close to those reported by Palacio-Mancheno et al.

[2012], Tommasini et al. [2012], and Hesse et al. [2015]. Considering 3 % vascular

porosity as relevant for mammalian bone of medium-to-large-sized animals (see

e.g. evaluation of microscopic images of Lees et al. [1979a] as reported in Fritsch

and Hellmich [2007]), we account for 5 % microporosity fµpor when assessing the

extracellular (ultrastructural) characteristics of the bones tested by Biltz and Pel-

legrino [1969], Burns [1929], Gong et al. [1964], Hammet [1925], Lees [2003], Lees

et al. [1979a]. Accordingly, the extracellular mass density reads as

ρexcel =
ρµ − ρH2O × fµpor

1− fµpor

, (2.9)

and the weight fraction of water-filled micropores (i.e vascular, lacunar, and

canalicular pores) in (wet) bone specimens reads as

WFµµpor =
ρH2O × fµpor

ρµ
. (2.10)

WFµµpor allows for scale transition from the macroscopic (microstructural) to the

extracellular (ultrastructural) scale,

WFexcel
HA =

WFµHA

1−WFµµpor

, (2.11)

WFexcel
org =

WFµorg

1−WFµµpor

, (2.12)

WFexcel
H2O = 1−WFexcel

HA −WFexcel
org . (2.13)

From Eqs. (2.5), (2.11)-(2.13), one can determine the apparent mass densities of

organics, water, and hydroxyapatite through

ρexcel
i = WFexcel

i ρexcel, i = org, HA, H2O . (2.14)
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The microporosity is negligible in size as regards the mineralized turkey leg tendon

[Currey, 1988] and otic bones [Zylberberg et al., 1998]. Thus, weight fractions and

mass densities are not to be differentiated between the microstructural and the

ultrastructural scale, as concerns the tissue samples of Lees and Page [1992] and

Lees et al. [1995].

2.3.5 “Universal” rules in bone fibrillogenesis and miner-

alization

Applying the presented evaluation procedures to the collected experimental data,

see Tables 2.1-2.6, results in a remarkable finding concerning the apparent mass

densities of hydroxyapatite mineral, organic, and water; i.e. the masses of these

constituents found in a millimeter-sized sample divided by the volume of the ex-

tracellular portion within this millimeter-sized sample; across a great variety of

species, organs, and ages. The aforementioned apparent mass densities (or con-

centrations) strongly correlate with each other, see Figure 2.2, as well as with the

bone tissue mass density, see Figure 2.3. Interestingly, all these correlations can

be represented by bilinear functions, whereby the increasing branch depicted in

Figure 2.2(a) relates to tissues taken from growing organisms (being in the states

of childhood and adolescence), while the descending branch relates to tissues taken

from adult organisms. The apparent mass densities can be translated into volume

fractions through

f excel
i =

ρexcel
i

ρi

, i = org, HA, H2O . (2.15)

so that the constituents’ volume fractions can be expressed by the following re-

gression functions depending on the extracellular mass density,

if ρexcel ≤ 1.978 g/cm3





f excel
HA = 1

ρHA

(
1.3275ρexcel − 1.3938

)
,

f excel
org = 1

ρorg

(
0.3888ρexcel − 0.2393

)
,

f excel
H2O = 1− f excel

HA − f excel
org ,

(2.16)
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Figure 2.2: Relations between apparent mass densities in extracellular bone ma-
trix in the line of Vuong and Hellmich [2011]: (a) hydroxyapatite versus organic
matter, (b) water versus organic matter, and (c) water versus hydroxyapatite;
across different species, organs, and ages
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Figure 2.3: Apparent mass densities of water, hydroxyapatite, and organic matter,
versus overall mass density of extracellular bone matrix, ρexcel, across different
species, organs, and ages

relating to growing organisms, and

if ρexcel ≥ 1.978 g/cm3





f excel
HA = 1

ρHA

(
1.7298ρexcel − 2.1895

)
,

f excel
org = 1

ρorg

(
−0.5180ρexcel + 1.5541

)
,

f excel
H2O = 1− f excel

HA − f excel
org ,

(2.17)

relating to aging organisms. As 90% of the organic matter in bone is collagen

[Urist et al., 1983], the extracellular volume fraction of collagen follows as

f excel
col = 0.9× f excel

org . (2.18)
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2.3.6 Cell biology aspects

It is interesting to discuss the mineral-versus-organics concentration relation of

Figure 2.2(a) from the viewpoint of cell biology: during growth, the mineral-

to-organic mass apposition ratio in extracellular bone tissue is a constant,

dρexcel
HA /dρexcel

org = 3.4, “universally” valid throughout different tissues of different

growing species at different ages. This constant reflects the working mode of os-

teoblasts (cuboidal or polygonal bone cells with several tens of micrometers charac-

teristic length [Aaron, 1971, Bonewald and Johnson, 2008, Jilka et al., 1998, Noble,

2008, Parfitt, 1983, Roholl et al., 1994, Zhu et al., 2001]. Pre-osteoblasts [Engler

et al., 2006, Lemaire et al., 2004, Parfitt, 1983] deposit new osteoid, in the form of

seams of some 8 to 10µm thickness, made of proteoglycan gel reinforced by fairly

randomly oriented collagen fibrils [Buxboim et al., 2010, Engler et al., 2006, Zajac

and Discher, 2008], see Figure 2.4(a). Thereafter, osteoblasts order the collagen

fibrils through stretching [Engler et al., 2006], and mediate, through budding of

matrix vesicles from cell processes [Anderson, 2005], the precipitation of hydrox-

yapatite, see Figure 2.4(b). This results in the so-called primary mineralization

[Parfitt, 1983], with a characteristic time of hours to days [Wergedal and Baylink,

1974]. From a chemical viewpoint, specially synthesized matrix molecules, such

as bone sialoprotein, osteopontin, or osteocalcin [Wiesmann et al., 2005], induce

mineral formation, and such non-collagenous organic molecules typically make up

10% of the overall organic volume fraction [Buckwalter et al., 1995, Lees, 1987,

Urist et al., 1983], regardless of the magnitude of the latter. Accordingly, one

would expect the more mineral precipitation, the more non-collagenous organics

to be present, the amount of the latter being proportional to that of the over-

all organic matter. This is perfectly consistent with the aforementioned tissue-

and species-independent, “universal” mineral-per-organics apposition ratio of 3.4,

suggesting primary mineralization as the dominant mineralization mechanism in

growing organisms.

In such organisms, the mineral is hindered from further precipitation in the highly

ionic fluids, through the action of the most abundant biological bone cells, namely

the osteocytes [Aaron, 1971, Baylink and Wergedal, 1971, Bell et al., 2008, Bonucci,

2009, Noble, 2008, Parfitt, 1983, Teitelbaum, 2000], residing in the lacunar porosity

of extravascular bone matrix. Originating from osteoblasts which were buried in

the course of ongoing osteoid formation and mineralization, osteocytes maintain a

widely spread network, through channels called canaliculi, among themselves and
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with the osteoblasts located at the bone tissue surface. This network is thought

to effectively transfer mechanical stimuli related to tissue deformation, to the os-

teoblasts [Bonewald and Johnson, 2008, Cowin, 2007], so as to trigger their bone

formation activity, as described before. In addition to mechanosensing, osteocytes

(a) (b)

(c)

Pre-Osteoblast

Pre-OsteoblastOsteoid seam

Collagen fibril

Collagen
fibril

Osteoblast

Hydroxyapatite

Hydroxyapatite

crystals

crystals

precipitating from
matrix vesicles

Extracellular

Extracellular

Bone Tissue

Bone Tissue

8 − 10µm

Figure 2.4: Working mode of pre-osteoblasts and osteoblasts: primary and sec-
ondary mineralization of an unmineralized osteoid; (a) pre-osteoblasts lay down
an osteoid seam, reinforced by randomly oriented collagen fibrils; (b) primary min-
eralization: osteoblasts order the collagen fibrils through cell-driven stretch, and
mediate, through budding of matrix vesicles from cell processes, the precipitation
of hydroxyapatite; (c) secondary mineralization: crystals grow without control of
local biological cells

may inhibit mineralization around their lacunae [Bonucci, 2009], and therefore set

an upper limit to the asymptotic mineral concentration which may be attained

during the process called secondary mineralization. This process exhibits a char-

acteristic time of weeks to months [Bala et al., 2010], see Figure 2.4(c), and before

reaching its asymptote, secondary mineralization is not controlled by the local

biological cells, but by the diffusion and composition properties of the fluids sat-

urating the extracellular bone tissue [Parfitt, 1983]. However, at higher ages, the

aforementioned inhibitive activity of osteocytes steadily decreases, so that, in the

end, even the lacunae themselves may be filled with mineral, as evidenced in Bell

et al. [2008], Frost [1960], Jowsey [1960]. As a consequence, the organic-to-mineral

concentration ratio decreases and the mineral-to-organic mass apposition ratio is

not equal to 3.4 anymore. At the same time, osteoblastic activity also decreases

at more advanced ages [Aaron, 1971], leading to a reduction of the (absolute) or-

ganic concentration in extraxcellular bone matrix. This combined effect of both
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osteoblastic and osteocytic activity reduction is expressed by a (negative) mineral-

growth-to-organic-removal ratio, see Figure 2.2(a), which reveals secondary min-

eralization as the dominant mineralization mechanism in adult, aging organisms.

We also remark that the results presented here refer to physiologically normal con-

ditions, while drug treatments may lead to considerable deviations from these rules

for fibrillogenesis and mineralization, see [Vuong and Hellmich, 2011] for further

details.

2.4 Mineral distribution in extracellular bone

matrix

At the ultrastructural observation scale (1 to 10µm) of fully mineralized tissues,

transmission electron micrographs (TEM) reveal that hydroxyapatite is situated

both within and outside of the collagen fibrils, and that the majority of hydrox-

yapatite lies outside the fibrils [Alexander et al., 2012, Lees and Prostak, 1988,

McNally et al., 2012, Prostak and Lees, 1996, Schwarcz et al., 2014, Zylberberg

et al., 1998]. The question arises whether the distribution of mineral between the

fibrillar and extrafibrillar spaces follows a general rule. And indeed, Hellmich and

Ulm [2003] found out that the average mineral concentration in the extrafibril-

lar space equals that in the extracollageneous space. The underlined arguments

are as follows: The ultrastructural volume element with a characteristic size of

some micrometers, consists of fibrillar and extrafibrillar space; see Figure 2.5(a),

with corresponding volumes V excel
fib and V excel

exfib . The fibrils are made up by collagen

molecules exhibiting a triple helix structure arranged more or less cylindrically,

with diameters ranging from 50 to 500 nm [Cusack and Miller, 1979, Lees et al.,

1990, 1994a, Miller and Parker, 1984, Prostak and Lees, 1996, Rho et al., 1998,

Weiner and Wagner, 1998, Weiner et al., 1997]. The fibrillar volume V excel
fib com-

prises all fibrils within the ultrastructural (or extracellular) volume V excel. V fib
col ,

the volume of collagen within the fibrils, is a subspace of V excel
fib , as is (V excel

fib −V fib
col ),

see Figure 2.5c. The latter is the volume within the fibrils which is not occupied by

collagen molecules, subsequently referred to as extracollagenous fibrillar volume,

V fib
excol. The space within the ultrastructure (or extracellular bone matrix) that is

not occupied by fibrils is called extrafibrillar space, V excel
exfib = V excel − V excel

fib . The

union of the spaces V excel
exfib and V fib

excol, V
excel

exfib +V fib
excol = V excel−V excel

col = V excel
excol , is the

total extracollagenous space within the extracellular bone, see Figure 2.5b.
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Figure 2.5: Schematical sketch of spaces in the extracellular bone matrix or ultra-
structure, (a) section through the ultrastructural representative volume element
perpendicular to the direction of the fibrils, (b) and (c) close-ups

Based on these notions, the aforementioned rule would imply that the ratio of the

mass of the extrafibrillarly located mineral
(
M exfib

HA

)
, over the volume of the ex-

trafibrillar space needs to be equal to the ratio of the entire mineral mass (MHA),

over the extracollageneous volume

ρexfib
HA =

M exfib
HA

V excel
exfib

≡ MHA

V excel
excol

= ρexcol
HA , (2.19)

with ρexfib
HA and ρexcol

HA being the apparent mineral densities relating to the extrafib-

rillar and the extracollagenous volumes, respectively. Eq. (2.19) can be rearranged

as follows

φexfib
HA =

M exfib
HA

MHA

≡ V excel
exfib

V excel
excol

=
f excel

exfib

1− f excel
col

, (2.20)

where f excel
exfib = V excel

exfib /V
excel is the extrafibrillar volume fraction, f excel

col =

V excel
col /V excel is the collagen volume fraction, both quantified within the volume

of extracellular bone, and φexfib
HA is the relative amount of extrafibrillar mineral.

Two independent sets of experimental observations covering a large range of tissue

mass densities were considered for checking the relevance of Eq. (2.20), as discussed

next.
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Experimental set I: Mass and volume measurements

First, f excel
exfib /(1 − f excel

col ) is determined from weighing experiments and diffraction

spacing measurements. In order to determine the apparent mass density of colla-

gen, we adopt a value of ρorg = 1.42 g/cm3 [Katz and Li, 1973, Lees, 1987], and

consider the fact that collagen constitutes approximately 90% by weight of the

organic matter in mineralized tissues [Biltz and Pellegrino, 1969, Lees, 1987, Urist

et al., 1983, Weiner and Wagner, 1998]. The mass of organic matter can be de-

termined from weighing experiments on demineralized and dehydrated specimens

[Biltz and Pellegrino, 1969, Lees, 1987, Lees and Page, 1992, Lees et al., 1979a],

harvested from different anatomical locations of different vertebrates at different

ages, see Section 2, in particular Tables 2.1-2.3 and 2.5. On the other hand, the

determination of the extrafibrillar volume fraction f excel
exfib = 1−f excel

fib requires quan-

tification of the fibrillar space within the mineralized tissue. This can be achieved

by application of a model for the organization of collagen: we use Lees’ generalized

packing model [Bonar et al., 1985, Lees, 1987], as the simplest model to quantify

the average crosslink length between collagen molecules, see also [Hellmich and

Ulm, 2003].

(a) (b)

(c)
200 nm200 nm

500 nm

Figure 2.6: Transmission electron micrographs of cross sections through: (a) min-
eralized turkey leg tendon [Prostak and Lees, 1996]; (b) human tibia [Prostak and
Lees, 1996] and (c) whale rostrum [Zylberberg et al., 1998]
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Figure 2.7: Relative amount of extrafibrillar mineral, φexfib
HA , as a function of extra-

cellular mass density ρexcel, according to Hellmich and Ulm [2003]

2.4.1 Experimental set II: Transmission electron mi-

croscopy

As a second, independent set of observations, we consider optical density measure-

ments from TEMs, in order to determine φexfib
HA . Figure 2.6 displays three TEMs

of cross sections of mineralized tissues, covering a wide range of extracellular mass

densities; from ρexcel = 1.5 g/cm3 for mineralized turkey leg tendon, see Figure

2.6(a), to ρexcel = 2.6 g/cm3 for the rostrum of whale, see Figure 2.6(c). These mi-

crographs reflect the electron density of material phases. The higher the electron

density, the darker the respective area of the TEM images. Since hydroxyap-

atite exhibits by far the largest electron density of all elementary components, the

TEM images displayed in Figure 2.6 highlight that hydroxyapatite is mainly lo-

cated outside the fibrils. First, the relative optical density is determined using the

protocol of Lees et al. [1994a]: the TEM images are scanned and then captured by

a frame grabber [Bradley, 1994]. The optical density is considered to be linearly

proportional to the number of electrons transmitted through the particular area

[Lees et al., 1994a], the number of electrons to be linearly proportional to the local

hydroxyapatite mass density in the fibrillar or extrafibrillar space. The average
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densities are then related to the apparent mineral densities, allowing for the de-

termination of the extrafibrillar volume fraction of tissues, f excel
exfib , shown in TEM

images. f excel
exfib turns out to be 60% for the mineralized turkey leg tendon micrograph

of Figure 2.6(a) (ρexcel = 1.5 g/cm3), 53% for the human tibia (ρexcel = 2.0 g/cm3),

see Figure 2.6(b), and 85% for the whale rostrum (ρexcel = 2.6 g/cm3), see Figure

2.6(c).

2.4.2 Comparison of independently derived values of the

relative amount of extrafibrillar mineral

Next, the sample-specific relative amount of extrafibrillar mineral, φexfib
HA , of very

different bone tissues, derived from the independent methods related to the ex-

periment sets I and II, respectively, are compared, as shown in Figure 2.7. It can

be seen that the values derived from both experimental data sets are in perfect

agreement when comparing similar tissues. This surprisingly good agreement of

values obtained from two independent assessment methods provides the sought

after evidence that the average mineral concentration in the extrafibrillar and the

extracollageneous spaces are indeed equal; see Hellmich and Ulm [2003] for further

details.

2.5 Hydration-dependent evolution of unminer-

alized collagenous tissues

Hydration of collagenous tissues, consisting of fibrillar and extrafibrillar con-

stituents, causes swelling, as well as mechanical softening (i.e. reduction of stiff-

ness). The underlying mechanism can be quantified in terms of the following math-

ematical rule [Morin et al., 2013]: After drying the tissue in air, water remains

only in the gap zones between the triple-helical collagen molecules making up 12 %

of the total volume [Lees and Heeley, 1981]. Upon rehydration, the extrafibrillar

space is established at volumes directly proportional to the hydration-induced

swelling of the (micro) fibrils, until the maximum equatorial distance between the

long collagen molecules is reached. Thereafter, the volume of the fibrils stays con-

stant, and only the extrafibrillar volume continues to grow. Mathematically, the

proportionality between the extrafibrillar space growth and the swelling of fibrils
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(in case the fibrils still swell, which occurs if they are not fully hydrated) can be

expressed as follows

V excel
exfib = β(V excel

fib − V col
dry), V col

dry ≤ V excel
fib ≤ V excel

fib,max, (2.21)

with β as proportionality constant, with V excel
exfib as the volume of extrafibrillar space

within the collageneous tissue, V excel
fib as fibrillar volume within the collageneous

tissue, which is smaller than or equal to the maximum attainable value V excel
fib,max,

and larger than a minimum value V col
dry corresponding to the dry volume of the

collageneous tissue, V excel. The fibrillar and extrafibrillar volumes, V excel
fib and

V excel
exfib , fill the entire tissue volume V excel, V excel

fib +V excel
exfib = V excel, yielding, together

with (2.21), a tissue swelling rule in the following form

V excel

V col
dry

= β

(
V excel

fib

V col
dry

− 1

)
+
V excel

fib

V col
dry

, V col
dry ≤ V excel

fib ≤ V excel
fib,max . (2.22)

We regard the fibrils as continua with one to several hundreds of nanometers char-

acteristic size, these continua being built up by representative volume elements

of several to several tens of nanometers characteristic size, see Figure 2.8. Micro-

(a) (b)

E1

E2
E3

dw

1-10 µm
100 nm 10 nm

fibril

extrafibrillar
space

crosslinked
collagen molecules

water

Figure 2.8: Scheme concerning hierarchical structure of collagen: (a) collagenous
tissue, (b) wet collagen

scopic images [Chung et al., 2010] show that hydration affects volume changes in

a fibril in a homogeneous fashion. Therefore, following the deformation laws of

continuum mechanics [Salençon, 2001], the current fibrillar volume V excel
fib is related

to the initial volume V col
dry by the Jacobian J , which is standardly expressed by the

product of the principal stretches λ1, λ2, and λ3 of the volume elements, thus

V excel
fib

V col
dry

= J = λ1 × λ2 × λ3 . (2.23)
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The principal stretches are defined as the ratio of the current length to the initial

length of the line elements dx1, dx2, and dx3 attached to the fibrils and oriented in

the principle deformation directions e1, e2, and e3 (see Figure 2.8). These principle

stretches are related to the ratios of diffraction spacings in the current and initial

elementary volumes, in the line of standard stretch measurements in lattice-like

microstructures [Warren, 1941, Warren and Averbach, 1950]. As regards λ1 and

λ2, the aforementioned diffraction spacings are related to the (on-average) lateral

(transversal, equatorial) distances between collagen molecules,

λ1 = λ2 = λtr =
dw

ddry

, (2.24)

with dw as the lateral diffraction spacing related to some more or less hydrated

state of the fibril, and ddry = 1.09 nm as the lateral diffraction spacing in dry tissues

[Lees et al., 1984]. As regards λ3, diffraction peaks relate to the axial macroperiod

Dw of collagen, comprising repeating units of one gap zone and one overlap zone

each, as discovered by Hodge and Petruska [1963]; this axial macroperiod increases,

albeit only slightly, upon hydration (up to a value of 67 nm). Since this increase

is clearly less than 5 % when compared to the axial macroperiod measured by dry

tissues, Ddry = 64 nm, we consider Dw as a constant, and hence

λ3 = λax =
Dw

Ddry

= 1. (2.25)

Finally, the variation of the current fibrillar volume with respect to the initial one

reads as
V excel

fib

V col
dry

= λ1 · λ2 · λ3 =

(
dw

ddry

)2

. (2.26)

However, the diffraction spacings are limited, and cannot exceed a maximum value

of 1.38 nm in the equatorial direction [Meek et al., 1991]. Therefore, the amount

of water which can be accommodated in the fibrils is also limited. Upon fur-

ther hydration, namely beyond the so-called fibrillar saturation limit, only the

extrafibrillar volume continues to grow. The mathematically expressed swelling

rule (2.21), together with volume relations (2.22) to (2.26), was experimentally

validated by means of the measurement results of Meek et al. [1991], Robinson

[1960], Rougvie and Bear [1953]. Therefore, the water-to-organic ratios R given
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Figure 2.9: Water-to-organic mass ratio: diffraction- and swelling rule-based pre-
dictions Rpred versus direct experiments Rexp

in these papers, were converted into volumes according to

V excel

V col
dry

= 0.88
Rρcol + ρH2O

ρH2O

, (2.27)

where ρcol = 1.42 g/cm3 [Lees and Heeley, 1981] and ρH2O = 1 g/cm3 are the mass

densities of molecular collagen and water, respectively; obviously, this equation

accounts for the existence of 12 % gap zones in the collagenous dry matrix [Hodge

and Petruska, 1963, Lees and Heeley, 1981], relating to an intermolecular pore

saturation limit amounting to Rimsat = 0.096. Based on relations (2.22) and

(2.27), combined with the observations of Meek et al. [1991], that the fibrillar

swelling stops at a water-to-organic mass ratio of Rfibsat = 0.82, one can translate

the swelling rule (2.22) into a mathematical relation between water-to-organic

mass ratios and corresponding diffraction spacings,

Rpred =
1

ρcol

(
ρH2O

0.88

[
(β + 1)

(
dw

ddry

)2

− β
]
− ρH2O

)
. (2.28)

It is directly tested against respective experimental values provided by Katz and Li

[1973], Meek et al. [1991], Rougvie and Bear [1953], see Figure 2.9, with a relative

error as low as 0.98 %±12.56 % (mean value plus standard deviation), see [Morin

et al., 2013] for further details. Given the excellent confirmation of the swelling

rule, it allows for quantifying the evolution of subvolumes and volume fractions

in hydrating tissues: during hydration, the fibrillar volume fraction decreases by
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more than 50 %, see Figure 2.10(b). At the same time, the tissue is swelling to its

triple size, as seen in Figure 2.10(a). Also during hydration, the volume fraction

of molecular collagen within a fibril decreases from 88% to 54.7 %, while that of

water increases from 0 % to 45.3 %, see Figure 2.11(b). At the same time, the

fibrils grow by about 60 % in volume, see Figure 2.11(a).
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2.6 Bone tissue evolution during mineralization

Inspired by an interesting idea of Lees [2003], Morin and Hellmich [2013] showed

that the volume and structure changes in mineralizing bone tissues can be math-

ematically predicted when considering the extracellular bone tissue and its sub-

volumes (both the fibrils and the extrafibrillar space) as closed thermodynamic

systems: i.e. if no fluid mass leaves or enters these volumes during the mineraliza-

tion process, then the precipitation of hydroxyapatite crystals entails that the mass

of lost ionic fluid equals the mass of formed solid hydroxyapatite crystal in the

fibrillar and extrafibrillar subvolumes, as well as in the entire tissue volume, while

the collagen mass remains unaltered. The precipitation of dissolved ions into solid

mineral crystals is accompanied by an increase in mass density, which, upon overall

conservation under closed conditions, leads to a volume decrease (or shrinkage) of

the tissues during the biomineralization process. This shrinkage affects both the

fibrillar and the extrafibrillar tissue compartments. Thereby, the fibrillar shrink-

age can be experimentally accessed through equatorial neutron diffraction spacings

dw,∞, measured on fully mineralized tissues [Miles and Ghelashvili, 1999, Morin

et al., 2013] (
dw,∞

dw,0

)2

=
V excel

fib,∞

V excel
fib,0

, (2.29)

with dw,0 as the neutron diffraction spacing at the time of osteoid deposition (i.e.

the beginning of the mineralization process), and V excel
fib,0 and V excel

fib,∞ as the fibrillar

volume in unmineralized and fully mineralized tissues, respectively.

The mass density-diffraction relation (ρexcel
∞ -dw,∞-relation) is derived in three

consecutive steps: First, the mineralization-induced tissue shrinkage is evaluated

at the tissue level, based on the “universal” composition rules described in Section

3, yielding [Morin and Hellmich, 2013]

V excel
∞
V excel

0

=
1

1 + (ρHA/ρfl − 1)× f excel
HA,∞(ρexcel

∞ )
, (2.30)

with V excel
0 and V excel

∞ as the extracellular tissue volumes at the beginning and the

end of the mineralization process, ρHA and ρfl as the mass densities of hydroxyap-

atite and ionic fluid, f excel
HA,∞ as the mineral volume fraction in the fully mineralized

tissue, which depends on the tissue mass density, ρexcel
∞ .

Secondly, this relation is downscaled to the extrafibrillar space, by considering the
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equality of mineral concentrations in the extracollagenous and the extrafibrillar

spaces [Hellmich and Ulm, 2003], see Section 2.4, and the hydration swelling rule

for unmineralized tissues [Morin et al., 2013], as described in Section 2.5. The

corresponding volume change reads as [Morin and Hellmich, 2013]

V excel
exfib,∞

V excel
exfib,0

= 1 +
(1− ρHA/ρfl)

1− f excel
col,0

V excel
∞
V excel

0

× f excel
HA,∞(ρexcel

∞ ) , (2.31)

where V excel
∞ /V excel

0 obeys Eq. (2.30), f excel
HA,∞(ρexcel

∞ ) follows from the universal com-

position rules (see Section 2.3), and f excel
col,0 is the collagen volume fraction in un-

mineralized tissue, which can be quantified from the hydration-dependent swelling

rules described in Section 2.5, see [Morin et al., 2013] for details.

Thirdly, the fibrillar shrinkage is analogously derived,

V excel
fib,∞

V excel
fib,0

=
f excel

fib,∞

f excel
fib,0

V excel
∞
V excel

0

, (2.32)

and this ratio is related to the change in diffraction spacing, as given in Eq. (2.29),

with dw,0 = dmax = 1.52 nm as the diffraction spacing of fully saturated unmin-

eralized collageneous tissues [Brodsky et al., 1982, Eanes and Lundy, 1970, Katz

and Li, 1973, Lees et al., 1984]. Finally, these relations are translated into the

sought mass density-diffraction spacing relations, according to continuum geom-

etry and considering negligible length changes in the meridional direction of the

tissue [Morin et al., 2013]. In case of fully-hydrated tissues, this relation reads as

dw,∞ = dmax

√√√√√1− f excel
exfib,0 ×

[
1− (ρHA/ρfl − 1)× f excel

HA,∞ ×
fexcel
col,∞

ρHAf
excel
HA,∞/ρfl+fexcel

fl,∞

]

(1− f excel
exfib,0)×

[
1 + (ρHA/ρfl − 1)× f excel

HA,∞
] ,

(2.33)

with

f excel
exfib,0 = 1− 1

0.88

(
dmax

ddry

)2 f excel
col,∞

ρHAf excel
HA,∞/ρfl + f excel

fl,∞ + f excel
col,∞

, (2.34)

where dmax = 1.52 nm and ddry = 1.09 nm, and with dependencies f excel
HA,∞, f excel

col,∞,

and f excel
fl,∞ on tissue mass density as given in Section 2.3 (see Eqs. (2.16) and

(2.17)).

In case of partially dehydrated tissues, some fluid mass (and corresponding volume)
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will be lost during dehydration,

∆fµ,dh
fl,∞ = fµfl,∞ − fµ,dh

fl,∞ = fµfl,∞ −R∞,dhfµcol,∞ρcol/ρfl , (2.35)

with R∞,dh as the experimentally measured water-to-organic mass ratio of par-

tially dehydrated tissues at the macroscopic scale, as e.g. given by Lees and Mook

[1986]. The volume fraction of the remaining fluid after dehydration per extracel-

lular bone matrix reads as

f excel,dh
fl,∞ =

fµfl,∞ −min(∆fµ,dh
fl,∞ , fµpor)

1− fµpor

. (2.36)

The lost fluid volume fraction in the extracellular scale amounts to

∆f excel,dh
fl,∞ = f excel

fl,∞ − f excel,dh
fl,∞ . (2.37)

The mass density-diffraction spacing relation for partially dehydrated tissues reads

as

ddhw,∞ = dw,∞

√√√√1−
∆f excel,dh

fl,∞ − f excel
exfib,0∆f excel,dh

fl,∞ /(1− f excel
col,0 )

f excel
fib,∞

, (2.38)

with

f excel
fib,∞ = 1−





f excel
exfib,0

1
1+(ρHA/ρfl−1)×fexcel

HA,∞

+
f excel

exfib,0

1− f excel
col,0

× (1− ρHA/ρfl)× f excel
HA,∞



 , (2.39)

and

f excel
col,0 =

f excel
col,∞

ρHAf excel
HA,∞/ρfl + f excel

fl,∞ + f excel
col,∞

. (2.40)

Identification of ∆f excel,dh
fl,∞ = f excel

fl,∞ delivers model predictions for the diffraction

spacings in fully dried tissues. These mass density-diffraction spacing relations are

fed with experimental data for tissue mass density and the corresponding predic-

tions for diffraction spacing are validated through comparison with experimental

results [Lees, 2003, Lees and Mook, 1986, Lees et al., 1984]. Very low prediction er-

rors of 1.8 ± 3.1 % underline the relevance of the model-predicted evolutions of the

tissue compartment volumes, and of the model-predicted volume fractions during

the mineralization process in different bone tissues (see Figure 2.12); and hence,

the idea of hydroxyapatite precipitating under closed thermodynamic conditions



Chapter 2. Universal patterns 53

1 1.1 1.2 1.3 1.4 1.5
0

0.5

1

1.5

Experimental diffraction spacing - dexp (nm)P
re

d
ic

te
d

d
iff

ra
ct

io
n

sp
ac

in
g

-
d

p
re

d
(n

m
)

Wet tissues
Dehydrated tissues
Dry tissues

Figure 2.12: Predicted vs. experimental diffraction spacing for wet, dry, and
partially dehydrated, mineralized tissues

from an ionic solution in the fibrillar and extrafibrillar spaces of bone tissue. Ac-

cordingly, the structural (volumetric) evolution of mineralizing bone tissue can be

quantified as follows: during mineralization, the volume of the overall collagenous

tissue is shrinking because the mass density of hydroxyapatite is around three

times larger than that of liquid ionic solution. In general, the more mineral is

present in the tissue, the higher the shrinkage of the volumes of the different com-

partments (see Figure 2.13). More specifically, this volume loss is minimal for

low-mineralized tissues at the beginning of the mineralization process (see the left

lower corner of Figure 2.13), whereas highly mineralized bone tissue has lost up

to 60 % of its initial (osteoid) volume (see the right upper corner of Figure 2.13).

The compositional evolution can be also quantified in terms of volume fractions:

the mineralization process leads to a slight increase of the fibrillar volume fractions,

since the fibrils, thanks to the presence of chemically inert collagen, are less af-

fected by the fluid-to-crystal transformation-induced volume loss, as compared to

the extrafibrillar space. Within the fibrils, the fluid volume fraction, starting from

around 50% in the unmineralized osteoid, is reduced by one third in the case of low-

mineralized tissues (see Figure 2.14(a)), while it is almost completely consumed

in the case of very highly mineralized tissues (see Figure 2.14(d)). Thereby, “lost”

fluid volume fractions are replaced by collagen and mineral volume fractions, at

about the same shares (see Figure 2.14(a)-(d)). In the extrafibrillar space, mineral

volume fractions increase overlinearly with the mineralization degree, the more so
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the more highly the tissue is mineralized.
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Figure 2.14: Normalized tissue volume as function of the mineralization degree,
for different final tissue mass densities

2.7 Nano- and microstructural patterns govern-

ing anisotropic tissue elasticity

Throughout the last two decades, hierarchical material models for bone [Aoubiza

et al., 1996, Crolet et al., 1993, Grimal et al., 2011, Hamed et al., 2010, 2015,

Hellmich and Ulm, 2002a, 2005a,b, Hellmich et al., 2004a,b, Mart́ınez-Reina et al.,

2011, Morin and Hellmich, 2014, Nikolov and Raabe, 2008, Parnell and Grimal,

2009, Pidaparti and Burr, 1992, Pidaparti et al., 1996, Reisinger et al., 2010,

Sansalone et al., 2010, Yoon and Cowin, 2008], developed within the frameworks

of homogenization theory and continuum micromechanics [Auriault et al., 2009,

Dormieux et al., 2006a, Zaoui, 2002] and validated through a multitude of bio-

chemical, biophysical, and biomechanical experiments [Biltz and Pellegrino, 1969,

Bonar et al., 1985, Burns, 1929, Gong et al., 1964, Hammet, 1925, Keaveny et al.,

1994, Lees, 1987, 2003, Lees and Page, 1992, Lees et al., 1979a, 1983, 1994b, 1995,
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McCarthy et al., 1990, Rho et al., 1995, Turner et al., 1990], have opened the way to

translate the chemical composition of extracellular bone material (i.e. the volume

fractions of organics, water, and hydroxyapatite) into the tissue’s anisotropic elas-

ticity. This section is devoted to briefly introducing the fundamentals of continuum

micromechanics, and to presenting how this theoretical framework has elucidated

the “construction plans” providing the most fascinating mechanical properties of

bone.

2.7.1 Micromechanical representation of bone tissue by

means of representative volume elements (RVEs)

In continuum micromechanics [Dormieux et al., 2006a, Hill, 1963, Zaoui, 1997,

2002], a material is understood as a macro-homogeneous, but micro-heterogeneous

body filling a representative volume element (RVE) with characteristic length `,

which must be both considerably larger than the dimensions of heterogeneities

within the RVE, d, and significantly smaller than the characteristic lengths of

geometry or loading of a structure built up by the material defined on the RVE,

L. The characteristic length of structural loading typically coincides with wave

lengths of signals traveling through the structure, or relates to macroscopic stress

gradients according to L ≈ ||Σ||/||GRADΣ|| [Auriault et al., 2009], with the

“macroscopic” stress tensor Σ. In mathematical terms, the aforementioned sepa-

ration of scales requirement reads as

d� `� L. (2.41)

Hereby, the first inequality sign typically relates to a factor of 2 to 3 [Drugan

and Willis, 1996]; while the second one typically relates to a factor of 5 to 50

[Kohlhauser and Hellmich, 2013].

In general, the microstructure within one RVE is so complex that it cannot be

described in complete detail. Therefore, quasi-homogeneous subdomains, called

material phases, with known physical quantities are reasonably chosen. Quanti-

tative phase properties are volume fractions fr of phases r = 1, . . . ,Nr, (average)

elastic properties, as well as the morphological description, as, e.g. the isotropy

or the symmetries of anisotropy of the spatial distribution of the phases, the exis-

tence of one connected “matrix phase” in which one or several “inclusion phases”

with different shapes are embedded (as in reinforced composite material), or the
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disordered arrangement of all phases (as in a polycrystal).

The central goal of continuum micromechanics is to estimate the mechanical prop-

erties (such as elasticity or strength) of the material defined on the RVE from the

aforementioned phase properties. This procedure is referred to as homogenization

or one homogenization step. If a single phase exhibits a heterogeneous microstruc-

ture itself, its mechanical behavior can be estimated by introduction of an RVE

within this phase [Fritsch and Hellmich, 2007], with dimensions `2 ≤ d, compris-

ing again smaller phases with characteristic length d2 � `2, and so on, leading to

a multistep homogenization scheme, as in case of bone (see Figure 2.15). In this

context, the following “universal” microstructural patterns are considered across

the hierarchical organization of bone materials:

• an RVE of wet collagen, with a characteristic length of several nanometers [see

Figure 2.15(a)], represents the staggered organization of cylindrical collagen

molecules [see Figure 2.1(h)], which are attached to each other by ∼ 1.5 nm

long crosslinks [Bailey et al., 1998, Lees et al., 1984, Orgel et al., 2006]. These

crosslinks imply the existence of a contiguous matrix built up by molecular

collagen, hosting fluid-filled intermolecular spaces, which are represented by

cylindrical inclusions;

• an RVE of mineralized collagen fibril, with a characteristic length of several

hundred nanometers [see Figure 2.15(b)], hosts hydroxyapatite crystal clusters

filling the gap zones in and spreading through the cylindrical microfibrils of wet

collagen;

• an RVE of extrafibrillar space (hydroxyapatite foam), with a characteristic

length of several hundred nanometers [see Figure 2.15(c)], hosts crystal needles

(represented through infinitely many uniformly oriented cylindrical hydroxya-

patite inclusions) oriented in all space directions; in mutual interaction with

spherical, water-filled pores in-between;

• an RVE of extracellular bone matrix or ultrastructure, with a characteristic

length of several micrometers [see Figure 2.15(d)], hosts cylindrical, mineralized

fibrils being embedded into a contiguous matrix built up by hydroxyapatite foam

material;
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• an RVE of extravascular bone material, with a characteristic length of several

hundred micrometers [see Figure 2.15(e)], hosts spherical, osteocyte-filled cav-

ities called lacunae being embedded into a contiguous matrix built up by the

extracellular bone material; and

• an RVE of cortical bone material, with a characteristic length of several mil-

limeters [see Figure 2.15(f)], hosts cylindrical vascular pores being embedded

into a matrix of extravascular bone material.

2.7.2 Elasticity homogenization

As concerns the homogenization (or upscaling) of the elastic properties of bone,

starting from the level of its basic building blocks, up to the level of the bone

microstructure, see Figure 2.15, we start with focusing on a single RVE built up

by phases enumerated by r. The second-order strain tensor, εr, is related to the

(average “microscopic”) second-order stress tensor in phase r, σr, by the phase

elasticity tensor cr

σr = cr : εr . (2.42)

The RVE is subjected to homogeneous (macroscopic) strains E at its boundary

[Hashin, 1983], prescribed in terms of displacements

∀x ∈ ∂VRV E : ξ(x) = E · x , (2.43)

whereby x is the position vector for locations within or at the boundary of the

RVE. As a consequence, the resulting kinematically compatible microstrains ε(x)

throughout the RVE fulfill the average condition,

E =
1

VRV E

∫

VRV E

εdV = 〈ε〉 =
∑

r

frεr , (2.44)

providing a link between the (average) microscopic and macroscopic strains. Fur-

thermore, the aforementioned deformations provoke traction forces T(x) on the

boundary of the RVE, and microstresses σ(x) throughout the RVE, fulfilling the

equilibrium conditions

∀x ∈ VRV E divσ(x) = 0 ,

∀x ∈ ∂VRV E T (x) = σ (x) · n (x) ,
(2.45)
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with n (x) as the normal to the boundary at position x. The external work done

by these traction forces reads as

Wext =

∫

∂VRV E

T (x) · ξ (x) dS =

∫

∂VRV E

(E · x) · [σ (x) · n (x)] dS

= E :

∫

VRV E

σ (x) dV ,

(2.46)

whereby we made use of boundary condition (2.43) and of the divergence theo-

rem. Hence, the force quantity doing work on the macroscopic strains E is the

volume integral over the microscopic stress, which is independent of microscopic

position and of dimension “stress times volume”. This induces the existence of

the macroscopic stress Σ in the form

ΣVRV E =

∫

VRV E

σ (x) dV ⇔ Σ =
1

VRV E

∫

VRV E

σ (x) dV = 〈σ〉 =
∑

r

frσr,

(2.47)

i.e. the well-known stress average rule. Insertion of (2.47) into the principle of

virtual power [Germain, 1973, Maugin, 2013, Salençon, 2001], which in the case of

linearized strains, can be expressed in terms of an expression with the dimension

“work”,

Wext = −Wint =

∫

VRV E

σ (x) : ε (x) dV , (2.48)

yields the so-called Hill’s lemma

Σ : E =
1

VRV E

∫

VRV E

σ (x) : ε (x) dV = 〈σ : ε〉 . (2.49)

Linearity of elastic law (2.42) and of partial differential equation (2.45)1 imply a

multi-linear relation between the homogenized (macroscopic) strain E and the av-

erage (microscopic) strain εr, expressed by the fourth-order concentration tensors

Ar of each of the phases r,

εr = Ar : E . (2.50)

Insertion of Eq. (2.50) into Eq. (2.42) and averaging over all phases according to

Eq. (2.47) leads to

Σ =
∑

r

frcr : Ar : E . (2.51)
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Eq. (2.51) implies the existence of a macroscopic “homogenized” stiffness tensor

linking macroscopic stresses to macroscopic strains in the format

Σ = Chom : E , (2.52)

yielding Chom as

Chom =
∑

r

frcr : Ar . (2.53)

The concentration tensors Ar are estimated from matrix-inclusion problems, pi-

oneered by Eshelby [1957]. On a mathematical level, this is achieved by setting

the phase strains equal to those in ellipsoidal inclusions in infinitely extending

matrices of stiffness C0 subjected to remote strains, and by combining respective

semi-analytical relationships [Eshelby, 1957, Laws, 1977b] with stress and strain

average rules [Hashin, 1983, Zaoui, 2002], yielding

Ar =
[
I + P0

r :
(
cr − C0

)]−1
:

{∑

s

fs
[
I + P0

s :
(
cs − C0

)]−1

}−1

. (2.54)

Insertion of Eq. (2.54) into (2.51) yields an expression for the macroscopic homog-

enized stiffness tensor as function of their volume fractions, shapes and interactions

Chom =
∑

r

frcr :
[
I + P0

r : (cr − C0)
]−1

:

{∑

s

fs
[
I + P0

s : (cs − C0)
]−1

}−1

,

(2.55)

where fr and cr are the volume fraction and the elastic stiffness of phase r, I is

the fourth-order unity tensor, P0
r the fourth-order Hill tensor accounting for the

characteristic shape of phase r, which, in case of ellipsoidal inclusions in anisotropic

media [Laws, 1977b, 1985], reads as

P 0
r,ijkl =

1

16πα1/2

∫

Ω

1

t3
{ĝilwjwk + ĝikwjwl + ĝjlwiwk + ĝjkwiwl} dS(w) . (2.56)

In Eq. (2.56), the shape of the ellipsoid is considered by α = detαij, being related

to the equation of the ellipsoid, αijxixj = 1, dS(w) is a surface element of the

unit sphere (with surface Ω); w1, w2 and w3 are the components of the unit length

vector w pointing from the origin of the sphere to the surface element dS(w), and

t2 = α−1
ij wiwj. Finally, ĝik are the components of the inverse of the second-order

tensor C0
ijklwjwl, with C0

ijkl denoting the stiffness of anisotropic matrix.

As regards the matrix stiffness, C0, its choice governs the interactions between the
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phases inside the RVE: C0 = Chom relates to a dispersed arrangement of phases

where all phases “feel” the overall homogenized material, and the corresponding

homogenization scheme is standardly called self-consistent [Hershey, 1954, Kröner,

1958], well-suited for polycrystalline materials [applied for RVEs depicted in Fig-

ure 2.15(b) and (c)]. On the other hand, the matrix may be identified as a phase

m itself, C0 = cm, which relates to matrix-inclusion-type composite, and the corre-

sponding homogenization scheme is standardly referred to as Mori-Tanaka scheme

[Benveniste, 1987, Mori and Tanaka, 1973] [applied for RVEs depicted in Figure

2.15(a), (d), (e), and (f)].

Strictly speaking, the RVE of extrafibrillar space [see Figure 2.15(c)] requires a

slight (but important) modification of the aforementioned developments: it con-

sists of one pore space and infinitely many cylindrical solid phases which are ori-

ented in all space directions. This requires modification of Eqs. (2.44), (2.47),

(2.53), and (2.55) in terms of integrals over the unit sphere [Fritsch et al., 2006].

Accordingly, the homogenized stiffness of the extrafibrillar RVE of Figure 2.15(c)

reads as

Chom
exfib =

{
f exfib

HA cHA :

∫ 2π

ϕ=0

∫ π

θ=0

[
I + Pexfib

cyl (θ,ϕ) : (cHA − Chom
exfib)

]−1 sin θdθdϕ

4π
+

(
1− f exfib

HA

)
cH2O :

[
I + Pexfib

sph : (cH2O − Chom
exfib)

]−1
}

:

{
f exfib

HA

∫ 2π

ϕ=0

∫ π

θ=0

[
I + Pexfib

cyl (θ,ϕ) : (cHA − Chom
exfib)

]−1 sin θdθdϕ

4π
+

(
1− f exfib

HA

) [
I + Pexfib

sph : (cH2O − Chom
exfib)

]−1
}−1

,

(2.57)

with Pexfib
cyl and Pexfib

sph standing for the Hill tensor of a cylindrical or a spherical

inclusion embedded in a matrix with a stiffness of Chom
exfib, respectively.

2.7.3 Elasticity of elementary components

The micromechanical representation of Figure 2.15 is validated at different obser-

vation scales, namely at the extracellular, the extravascular, and the cortical/tra-

becular scales. All corresponding computations are based on the same elasticity



Chapter 2. Universal patterns 63

properties assigned to bone’s elementary constituents: hydroxyapatite, (molecu-

lar) collagen, and water (with some non-collagenous organics). The elastic prop-

erties of hydroxyapatite are obtained from tests with an ultrasonic interferometer

coupled with a solid media pressure apparatus [Katz and Ukraincik, 1971], which

reveal the isotropic elastic properties of hydroxyapatite powder,

cHA = 3kHAIvol + 2µHAIdev , (2.58)

with Ivol and Idev as the volumetric and deviatoric part of the fourth-order identity

tensor I, and with kHA = 82.6 GPa and µHA = 44.9 GPa, as the bulk and shear

moduli of hydroxyapatite. In view of the largely disordered arrangement of poorly

crystalline minerals [Epple, 2001, Fratzl et al., 1996, Hellmich and Ulm, 2002b,

2003, Hellmich et al., 2004a, Lees et al., 1994a, Peters et al., 2000], this isotropic

characterization is sufficient for successful bone elasticity upscaling [Crolet et al.,

1993, Fritsch et al., 2006, Hellmich and Ulm, 2002a, Hellmich et al., 2004b, Yoon

and Cowin, 2008], as is also confirmed by the validation diagrams of Figures 2.16

to 2.21. Sasaki and Odajima [1996] determined the Young’s modulus of molecular

collagen by a hybrid mechanical–X-ray technique, considering Lees’ 1987 packing

model [Lees, 1987] for the cross-sectional arrangement of collagen molecules. This

resulted in an elastic Young’s modulus of 2.9 GPa. As they did not account for the

additional 12 % microporosity which is still present in “fully dehydrated” collagen

[Lees and Heeley, 1981], the aforementioned values relate to the RVE of Figure

2.15(a) with 12 % intermolecular space. Adopting a Poisson’s ratio of 0.34 for

such an RVE [Cusack and Miller, 1979], the corresponding homogenization relation

allows for back-analysis of an isotropic estimate of the stiffness tensor of molecular

collagen, which reads in Kelvin-Mandel notation (see e.g. Eq. (44) of Helnwein

[2001] or Eq. (2a) of Cowin [2003]) as

ccol =





4.86 2.39 2.39 0 0 0

2.39 4.86 2.39 0 0 0

2.39 2.39 4.86 0 0 0

0 0 0 1.23 0 0

0 0 0 0 1.23 0

0 0 0 0 0 1.23





GPa , (2.59)

with a Young’s modulus of 3.28 GPa and a Poisson’s ratio of 0.33. We assign the

standard bulk modulus of water, kH2O = 2.3 GPa, to phases comprising water with
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mechanically insignificant amounts of non-collagenous organic matter.

Model validation at the extracellular scale

At the extracellular level, we compare the micromechanical elasticity predictions

to ultrasonic tests with 10 MHz frequency, performed on cortical bone samples

of bovine, human, elephant, deer, cod, and dugong tissues [Lees et al., 1979a,

1983]. Given the measured wave velocities ranging from 2.38 to 4.18 km/s, the

wave exhibited wave lengths between 238 and 418µm, being by a factor of 23.8

to 41.8 larger than the RVE of Figure 2.15(d), hence they characterize the latter

according to Eq. (2.41). As tissue-specific input values for the micromechanical

model, the volume fractions entering the RVE descriptions of wet collagen [Figure

2.15(a)], of the fibrillar and extrafibrillar spaces [Figure 2.15(b) and (c)], and of

the extracellular matrix [Figure 2.15(d)] are needed.

As regards the cortical bone samples from bovine tibia [Lees et al., 1979a], the

macroscopic mass densities and weight fractions are given, see Table 2.1. Based

on a typical microporosity of fµpor = 5 %, see our discussion around Eq. (2.9),

the aforementioned quantities are transformed into ultrastructural (extracellular)

weight fractions and apparent mass densities according to Eqs. (2.10)-(2.13), and

into extracellular (ultrastructural) volume fractions according to Eqs. (2.16) and

(2.17). Then, the mineral distribution rules of Section 2.4, and the swelling and

shrinkage rules of Section 2.5 and 2.6 allow for quantification of the extrafibrillar

and fibrillar volume fractions per volume of extracellular matrix as

f excel
exfib =

f excel
exfib,0

1
1+(ρHA/ρfl−1)×fexcel

HA

+
f excel

exfib,0

1− f excel
col,0

× (1− ρHA/ρfl)× f excel
HA ,

f excel
fib = 1− f excel

exfib ,

(2.60)

whereby f excel
exfib,0 and f excel

col,0 are determined from Eqs. (2.34) and (2.40), with

f excel
col,∞ = f excel

col according to Eq. (2.18), with f excel
HA,∞ = f excel

HA according to Eqs.

(2.16)2 and (2.17)2. They are the basis for the determination of the phase volume

fractions within the lower scale RVEs: In this context, the fact that the aver-

age hydroxyapatite concentration in the extracollagenous space is the same inside

and outside the fibrils [Hellmich and Ulm, 2003], see also Section 2.4, allows for

quantification of the mineral and collagen volume fractions within the fibrillar and

extrafibrillar compartments. Accordingly, in the extrafibrillar space, the volume
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Table 2.7: Experimental characterization of various cortical bone samples by Lees
et al. [1979a]a, Lees et al. [1983]b, and Lees et al. [1995]c; Macroscopic and ex-
tracellular bone mass densities, ρµ and ρexcel, longitudinal ultrasonic velocities in
radial material directions, v1, experimental and model-predicted normal stiffness
values in radial direction, Cexp

1111 and Cpred
1111, respectively

Tissue ρµ ρexcel v1 Cexp
1111 Cpred

1111

(g/cm3) (g/cm3) (km/s) (GPa) (GPa)

Bovine tibiaa 2.02 2.07 3.18 21.0 24.1
Bovine tibiaa 1.99 2.04 3.18 20.7 22.1
Bovine tibiaa 1.95 2.00 3.18 20.2 19.7
Bovine tibiaa 2.01 2.06 3.16 20.6 22.3
Bovine tibiaa 2.04 2.09 3.27 22.4 21.7
Bovine tibiaa 2.05 2.11 3.26 22.4 24.4
Bovine tibiab 2.07 2.13 3.32 23.4 25.7
Dugong ribb 2.02 2.07 3.00 18.7 22.5
Elephant radiusb 1.94 1.99 3.05 18.5 18.1
Human femurb 1.93 1.98 3.13 19.4 17.6
Deer antlerb 1.78 1.82 2.38 10.3 12.5
Deer antlerb 1.74 1.78 2.40 10.2 11.5
Whale malleusc 2.49 2.49 4.85 58.6 57.2
Whale malleusc 2.53 2.53 4.89 60.5 61.8
Whale malleusc 2.51 2.51 4.55 52.0 59.4
Whale malleusc 2.45 2.45 4.61 52.1 52.8
Whale incusc 2.50 2.50 4.79 57.4 58.3
Whale incusc 2.46 2.46 4.70 54.3 53.9
Whale perioticc 2.40 2.40 4.15 41.3 47.7
Whale perioticc 2.48 2.48 4.60 52.5 56.0
Whale perioticc 2.50 2.50 4.53 51.3 58.3
Whale perioticc 2.52 2.52 4.65 54.5 60.6
Whale perioticc 2.58 2.58 4.84 60.4 67.9
Whale typamic bullac 2.54 2.54 4.60 53.7 63.0
Whale typamic bullac 2.50 2.50 4.53 51.3 58.3
Whale typamic bullac 2.53 2.53 4.53 51.9 61.8
Whale typamic bullac 2.54 2.54 4.54 52.4 63.0
Whale typamic bullac 2.49 2.49 4.48 50.0 57.2

fractions of mineral, f exfib
HA , and of the intercrystalline fluid, f exfib

ic , read as [Morin

and Hellmich, 2014]

f exfib
HA =

f excel
HA φexfib

HA

f excel
exfib

with φexfib
HA =

1− f excel
fib

1− f excel
col

,

f exfib
ic = 1− f exfib

HA .

(2.61)
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Table 2.8: Experimental characterization of various cortical bone samples by Lees
et al. [1979a]a and Lees et al. [1983]b; Macroscopic and extracellular bone mass den-
sities, ρµ and ρexcel, longitudinal ultrasonic velocities in axial material directions,
v3, experimental and model-predicted normal stiffness values in axial direction,
Cexp

3333 and Cpred
3333, respectively

Tissue ρµ ρexcel v3 Cexp
3333 Cpred

3333

(g/cm3) (g/cm3) (km/s) (GPa) (GPa)

Bovine tibiaa 2.06 2.12 3.92 32.5 32.3
Bovine tibiaa 2.05 2.11 3.92 32.4 31.6
Bovine tibiaa 2.02 2.07 3.81 30.1 27.3
Bovine tibiaa 2.02 2.07 3.86 30.9 27.6
Bovine tibiaa 2.00 2.05 3.90 31.2 28.3
Bovine tibiaa 2.05 2.11 3.88 31.7 30.7
Bovine tibiaa 2.10 2.16 3.88 32.5 35.4
Bovine tibiaa 2.08 2.14 3.92 32.8 33.8
Bovine tibiab 2.06 2.12 4.18 37.0 34.3
Elephant radiusb 1.93 1.98 3.89 29.9 23.5
Human femurb 1.96 2.01 3.76 28.4 25.8
Deer antlerb 1.74 1.78 3.08 16.9 13.1
Deer antlerb 1.73 1.77 3.15 17.5 12.8

Within the fibrillar space, the volume fractions of mineral, ffib
HA, and of wet collagen,

ffib
wetcol read as [Morin and Hellmich, 2014]

ffib
HA =

f excel
HA

(
1− φexfib

HA

)

f excel
fib

,

ffib
wetcol = 1− ffib

HA .

(2.62)

Finally, the volume fractions of molecular collagen and the intermolecular space at

the wet collagen level, fwetcol
col and fwetcol

im , can be calculated from the extracellular

volume fractions of collagen as [Morin and Hellmich, 2014]

fwetcol
col =

f excel
col

f excel
fib ffib

wetcol

,

fwetcol
im = 1− fwetcol

col .

(2.63)

The corresponding micromechanical elasticity predictions of the bovine tibial

bone samples of Lees et al. [1979a] agree well with the actual experimental data.

This is underlined by relative errors of 5.47±7.01 % for the radial normal stiffness,

and of -2.84±6.70 % for the axial normal stiffness components, see also Figures

2.16 and 2.17.

As regards the wet cortical bone samples from deer antler, human femur, elephant

radius, and dugong rib of Lees et al. [1983], and the various whale bones of Lees
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Figure 2.16: Comparison between model predictions and experiments of radial
normal stiffness values at the extracellular scale (10 MHz experiments: Lees et al.
[1979a, 1983, 1995], see also Table 2.7)
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Figure 2.17: Comparison between model predictions and experiments of axial
normal stiffness values at the extracellular scale (10 MHz experiments: Lees et al.
[1979a, 1983], see also Table 2.8)
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et al. [1995], the macroscopic mass densities are given, see Table 2.7. Based on a

typical microstructural porosity of fµpor = 5 %, these macroscopic mass densities

are transformed into ultrastructural (extracellular) mass densities, by means of

Eq. (2.9). The latter mass densities then enter the bilinear relation of Figure

2.2(a), so as to deliver the extracellular volume fractions of mineral, organic and

water according to Eqs. (2.16) and (2.17). These volume fractions are then used

to quantify the composition of the lower scale RVEs of Figure 2.1(d) and (e). The

corresponding micromechanical elasticity predictions of the bone samples of Lees

et al. [1983] and of Lees et al. [1995] agree well with the actual experimental data.

This is underlined by relative errors of 7.18±12.13 % for the radial normal stiffness,

and of -15.61±6.17 % for the axial normal stiffness components for the different

bone tissues reported by Lees et al. [1983], and by a relative error of 9.71±7.21 %

for the radial normal stiffness of whale bones reported by Lees et al. [1995], see

Figures 2.16 and 2.17.

2.7.4 Model validation at the extravascular scale

At the extravascular level, we compare the micromechanical elasticity predictions

to ultrasonic tests carried out by McCarthy et al. [1990] on equine bones; at a

frequency of 2.25 MHz. The measured velocities range from 3.13 to 4.4 km/s, re-

sulting in a wave length ranging from 1.4 to 2.0 mm. The characteristic length

of experimentally characterized RVE of Figure 2.15(e) is by a factor of 14 to 20

smaller, hence they characterize the latter according to Eq. (2.41). As tissue-

specific input values for the micromechanical model, the volume fractions entering

the RVE descriptions of wet collagen [Figure 2.15(a)], of the fibrillar and extrafib-

rillar spaces [Figure 2.15(b) and (c)], of the extracellular matrix [Figure 2.15(d)],

and of the extravascular matrix [Figure 2.15(e)] are needed.

McCarthy et al. [1990] reported the macroscopic mass densities, ρµ, and the vas-

cular porosities fvas, which give access, based on the typical lacunar and canalicular

porosities of 1.3 % and 0.7 %, respectively, to the extravascular and extracellular

mass densities, ρexvas and ρexcel. The latter enters the bilinear relations given by

Eqs. (2.16) and (2.17), delivering the extracellular volume fractions of hydroxyap-

atite, collagen and water. The volume fractions of the lower scale RVEs of Figure

2.15 follow from Eqs. (2.60)-(2.63). The corresponding micromechanical elasticity

prediction of the equine metacarpal bone samples of McCarthy et al. [1990] agree

well with the actual experimental data. This is underlined by relative errors of
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Table 2.9: Experimental characterization of equine cortical bone samples by Mc-
Carthy et al. [1990]; Macroscopic and extravascular bone mass densities, ρµ and
ρexvas, longitudinal ultrasonic velocities in radial and axial material directions, v1

and v3, experimental and model-predicted normal stiffness values in radial and
axial direction, Cexp

1111, Cexp
3333, Cpred

1111, Cpred
3333, respectively

ρµ ρexvas v1 v3 Cexp
1111 Cexp

3333 Cpred
1111 Cpred

3333

(g/cm3) (g/cm3) (km/s) (km/s) (GPa) (GPa) (GPa) (GPa)

2.03 2.14 3.60 4.30 27.8 39.7 27.4 37.5
2.02 2.11 3.55 4.20 26.6 37.2 25.1 34.3
2.01 2.13 3.45 4.10 25.4 35.9 26.8 36.6
2.01 2.09 3.65 4.40 27.8 40.4 23.7 32.4
2.00 2.10 3.55 4.20 26.5 37.0 24.5 33.5
2.00 2.08 3.40 4.20 24.0 36.6 23.1 31.5
2.00 2.06 3.58 4.30 26.5 38.2 22.4 30.5
1.98 2.11 3.42 4.10 24.7 35.5 25.4 34.8
1.98 2.11 3.35 4.15 23.7 36.4 25.4 34.8
1.98 2.09 3.50 4.15 25.6 36.0 23.9 32.6
1.98 2.09 3.60 4.30 27.1 38.6 23.9 32.6
1.97 2.08 3.50 4.03 25.5 33.7 23.2 31.7
1.97 2.10 3.35 4.20 23.6 37.1 24.7 33.8
1.96 2.08 3.50 4.03 25.5 33.8 23.3 31.8
1.96 2.07 3.60 4.20 26.8 36.5 22.6 30.8
1.95 2.10 3.52 3.95 26.1 32.8 24.9 34.0
1.95 2.04 3.40 4.03 23.6 33.2 21.3 28.9
1.95 2.08 3.35 4.10 23.3 35.0 23.3 31.8
1.95 2.16 3.42 4.10 25.2 36.3 28.4 38.8
1.95 2.07 3.45 4.15 24.6 35.6 22.6 30.8
1.95 2.10 3.55 4.15 26.5 36.2 24.9 34.0
1.93 2.06 3.35 4.03 23.1 33.4 22.0 30.0
1.93 2.02 3.30 4.10 22.0 34.0 20.1 27.2
1.93 2.07 3.48 4.25 25.1 37.4 22.7 31.0
1.92 2.05 3.35 4.00 23.0 32.7 21.4 29.1
1.92 2.02 3.40 4.03 23.4 32.8 20.1 27.2
1.92 2.05 3.35 4.20 23.0 36.1 21.4 29.1
1.92 2.03 3.40 4.20 23.5 35.9 20.7 28.1
1.91 2.03 3.35 4.13 22.8 34.7 20.7 28.2
1.91 2.17 3.48 4.17 26.2 37.7 29.0 39.5
1.91 2.11 3.45 4.35 25.1 39.9 25.2 34.4
1.90 2.20 3.13 3.95 21.6 34.3 31.3 42.7
1.90 2.02 3.40 4.00 23.4 32.4 20.1 27.3
1.82 1.90 3.30 4.00 20.7 30.4 14.9 18.9
1.76 2.09 3.20 3.85 21.4 30.9 23.7 32.4
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-4.23±11.33 % for the radial normal stiffness, and of -9.78±10.52 % for the axial

normal stiffness components, see Figure 2.18.

In order to check the predictive capabilities of the micromechanical model con-

cerning the off-diagonal and shear stiffness components of the elasticity tensor, we

consider the stiffness tensor given by Ashman et al. [1984] on the basis of 2.25 MHz

ultrasonic tests on human femoral samples, reading in Kelvin-Mandel notation (see

e.g. Eq. (44) of Helnwein [2001] or Eq. (20) of Cowin [2003]) as

Cexp =





18.0 9.98 10.1 0 0 0

9.98 20.2 10.7 0 0 0

10.1 10.7 27.6 0 0 0

0 0 0 12.46 0 0

0 0 0 0 11.22 0

0 0 0 0 0 9.04





GPa. (2.64)

It should be noted that Ashman et al. [1984] use macroscopic mass density val-

ues for the evaluation of the ultrasonic velocity measurements, while 2.25 MHz,

as stated previously, actually refer to the extravascular RVE of Figure 2.1(d).

Accordingly, the values given in (2.64) need to be corrected by a factor of

ρexvas

ρµ
=
ρµ − ρH2Ofvas

(1− fvas)ρµ
= 1.04 (2.65)

taking ρµ = 1.90 g/cm3 from the tests of Ashman et al. [1984]. Considering a

typical vascular porosity of 8 % in human femoral bone [Bousson et al., 2000,

2001, Cooper et al., 2007, Dong et al., 2014, Sietsema, 1995], yields

Cexp
exvas =





18.74 10.39 10.52 0 0 0

10.39 21.03 11.14 0 0 0

10.52 11.14 28.74 0 0 0

0 0 0 12.97 0 0

0 0 0 0 11.68 0

0 0 0 0 0 9.41





GPa. (2.66)

Applying the mass-density based volume fraction evaluation procedure to the

same human femur sample provided by Ashman et al. [1984] delivers the volume

fractions entering the RVEs at all scales of Figure 2.15. Based on a microporosity

of fµpor = 10 % in consistency with the vascular porosity value given further above
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Figure 2.18: Comparison between model predictions and experiments of radial
and axial normal stiffness values at the extravascular scale (2.25 MHz experiments:
McCarthy et al. [1990], see also Table 2.9)

and the lacunar and canalicular porosities given below Eq. (2.8), the macroscopic

mass density ρµ = 1.90 g/cm3 is translated into an extracellular mass density

entering Eq. (2.16). The volume fractions of the lower scale RVEs then follow

from Eqs. (2.61) - (2.63). The corresponding micromechanical model prediction

reads as

Cpred
exvas =





17.71 6.88 6.76 0 0 0

6.88 17.71 6.76 0 0 0

6.76 6.76 23.92 0 0 0

0 0 0 11.09 0 0

0 0 0 0 11.09 0

0 0 0 0 0 9.68





GPa. (2.67)

The satisfactory agreement between model prediction and experimental data is

underlined by an absolute error of -9.13±7.8 % for the diagonal stiffness com-

ponents. The off-diagonal stiffness components are less well predicted; however,

these components are particularly prone to experimental errors, see e.g. [Every

and Sachse, 1992, Kohlhauser and Hellmich, 2012, Kriz and Stinchcomb, 1979,

Papadakis et al., 1991].



Chapter 2. Universal patterns 72

Model validation at the macroscopic scale

At the trabecular level, we compare the micromechanical elasticity predictions

to ultrasonic tests [Rho et al., 1995, Turner et al., 1990] on bovine femoral and

human tibial tissues; at a frequency of 50 kHz, as well as to mechanical tests of

Keaveny et al. [1994] on bovine tibial tissue samples. Given a typical wave prop-

agation velocity of 3 km/s in the tested bone specimens, the characteristic wave

length was of the order of 6 cm, being by a factor of 60 larger than the RVE of

Figure 2.15(f), hence they characterize the latter according to Eq. (2.41). As

tissue-specific input values for the micromechanical model, the volume fractions

entering the RVE descriptions of wet collagen [Figure 2.15(a)], of the fibrillar and

extrafibrillar spaces [Figure 2.15(b) and (c)], of the extracellular matrix [Figure

2.15(d)], of the extravascular matrix [Figure 2.15(e)], and of the bone microstruc-

ture [Figure 2.15(f)] are needed.

For marrow-cleared trabecular bone, as tested by Keaveny et al. [1994], Rho

et al. [1995], Turner et al. [1990], the corresponding volume fractions can be

derived from the measured macroscopic mass density, ρµ, see Figure 2.19. For

the extravascular mass density of bone, we take ρexvas = 1.74 g/cm3 for bovine,

and ρexvas = 1.76 g/cm3 for human bone specimens [Ashman and Rho, 1988].

Assuming that the lacunar-canalicular volume fraction per extravascular bone,

f exvas
lac+can = 0.021, is the same in cortical and trabecular bone, the extracellular

mass density follows from

ρexcel =
ρexvas − ρH2O × f exvas

lac+can

1− f exvas
lac+can

. (2.68)

The sought volume fractions can be computed from Eqs. (2.16)-(2.17) and (2.60)-

(2.63). The relative errors of the corresponding micromechanical elasticity pre-

dictions amount to 23.62±16.75 % in radial, and 23.39±30.83 % in axial direc-

tion for the bovine samples of Turner et al. [1990]; 24.67±20.72 % in radial, and

31.45±25.45 % in axial direction for the human samples of Turner et al. [1990];

12.72±21.40 % in radial direction for the bovine samples of Keaveny et al. [1994];

and 0.09±28.44 % in radial, and 28.26±17.03 % in axial direction for the human

samples of Rho et al. [1995], see Figures 2.20 and 2.21.
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Figure 2.19: Experimental data used for model validation: Macroscopic elastic
stiffness constants of trabecular bone as a function of macroscopic mass density
ρµ; T90...[Turner et al., 1990], K94... [Keaveny et al., 1994], R95... [Rho et al.,
1995]

2.7.5 Concluding remarks

Multiscale homogenization schemes similar to the one of Figure 2.15 can also

be employed for successful upscaling of mechanical properties of bone beyond

the realm of elasticity. This was reported for poroelasticity [Hellmich and Ulm,

2005a,b, Hellmich et al., 2009, Morin and Hellmich, 2014], for strength [Fritsch

et al., 2009c], and for viscoelasticity [Eberhardsteiner et al., 2014]. While we refer

to the aforementioned references concerning experimental data bases used for mi-

cromechanics model validation, we note in passing that a satisfactory performance

of the strength and viscoelastic upscaling schemes stems from the consideration

of sliding processes between the nanoscaled mineral crystals. This is in line with

ongoing discussions in the bone materials science at large, be it in the context

of Mohr-Coulomb-type, nano-granular behavior eluciated by nanoindentation and

atomic force microscopy [Tai et al., 2006]; or in the context of interface nanome-

chanics cast in the framework of molecular dynamics simulations [Qu et al., 2015b].

The aforementioned poromechanics approaches are particularly valuable for quan-

tifying the mechanical state in the vascular and lacunar pore spaces when the
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Figure 2.20: Comparison between model predicted and experimental macroscopic
elastic stiffness constants of trabecular bone in transversal direction (50 kHz ultra-
sonic and mechanical experiments); T90...[Turner et al., 1990], K94... [Keaveny
et al., 1994], R95... [Rho et al., 1995]

biological cells reside, i.e. the oscillating hydrostatic pressure to which they re-

spond in a chemical fashion, see [Scheiner et al., 2016] and references therein. They

also provide a natural link between micromechanics on the one hand, and system

biology and cell population models on the other hand [Scheiner et al., 2013, 2014].

This results in a rather “rigorously” derived “mechano-biology of bone”. Finally,

multiscale micromechanics models can be readily combined with physics results,

then allowing for the in-depth use and evaluation of clinical X-ray data from Com-

puted Tomography yielding micromechanics-based Finite Element models at the

organ scale. The latter elucidates the fascinating load carrying behavior of these

organs, and also pave the way to patient-specific bone fracture risk assessment

[Blanchard et al., 2013, 2016].
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Figure 2.21: Comparison between model predicted and experimental macroscopic
elastic stiffness constants of trabecular bone in longitudinal direction (50 kHz ul-
trasonic and mechanical experiments); T90...[Turner et al., 1990], K94... [Keaveny
et al., 1994], R95... [Rho et al., 1995]
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Nomenclature

A fourth-order strain concentration tensor
c, C fourth-order elasticity tensor at the “microscopic ” and “macro-

scopic” scale, respectively
d lateral/equatorial diffraction spacing
d characteristic length of the heterogeneities inside the RVE
div divergence (mathematical operator)
D fourth-order compliance tensor
Dijkl component ijkl of tensor D
D axial diffraction spacing / axial macroperiod
dxi line element along the principal direction i
E Young’s modulus
E macroscopic strain tensor
f volume fraction
g gravitational acceleration
GRAD gradient operator at the structure scale
I fourth-order identity tensor
J Jacobian, quantifying volume change during hydration process
k elastic bulk modulus
` characteristic length of the RVE
L characteristic length of the structure built up by RVEs, or of its

loading
M mass concerning a millimeter-sized bone sample
min minimum value (mathematical operator)
Nr number of phases
n outwardly pointing vector normal to a surface element of an RVE
Psr fourth-order Hill tensor of inclusion with shape r (or phase r)

embedded in matrix with stiffness Cr (or C0 if s = 0), or with
symmetry property s otherwise

R water-to-organic mass ratio
RV E Representative Volume Element
T traction vector
v velocity
V volume quantity concerning a millimeter-sized bone sample
W weight quantity concerning a millimeter-sized bone sample
W work
WF weight fraction
x location vector
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β proportionality constant between extrafibrillar space and fibrillar
space increase during hydration

∂V boundary of volume V
ε microscopic strain field
εr average (micro-)strain in phase r
λi principal stretch in direction i
µ elastic shear modulus
φ relative mineral portion in extrafibrillar space
ρ mass density
σ microscopic stress field
σr average (micro-)stress in phase r
Σ macroscopic stress tensor
ξ displacement field

Operators
〈(.)〉 average of quantity (.) over the volume of the RVE
: double contraction
. simple contraction (dot product)

Subscripts
air measured in air
ash ...of ash
ax ...in axial direction
can ...of canalicular porosity
col ...of collagen
dev deviatoric part
dry in dry state
excol ...of extracollageneous space
exfib ...of extrafibrillar space
fib ...of fibril
fl ...of ionic fluid
HA ...of hydroxyapatite
H2O ...of water
i ...of constituent i
lac ...of lacunar porosity
liquid ...of liquid used for the Archimedes’ tests
m ...of the matrix phase
max maximum value (typically related to full saturation)
org ...of organic matter
r ...of phase r
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RV E ...of the Representative Volume Element
sub measured when submerged in water
tr ...in transverse direction
vas ...of vascular porosity
vol volumetric part
w ...in wet (hydrated) state
wetcol ...of wet collagen
0 at the time of osteoid deposition
1, 2 ...in transverse direction
3 ...in axial direction
∞ ...in fully mineralized state
µpor ...of microporosity

Superscripts
col ...per volume of molecular collagen
cort ...per volume of cortical space
dry ...per volume of dry bone tissue
dh ...of partially dehydrated tissue
excel ...per volume of extracellular space
excol ...per volume of extracollageneous space
exfib ...per volume of extrafibrillar space
exp experimental value
ext ...of external forces acting on the RVE
exvas ...per volume of extravascular space
fib ...per volume of fibrillar space
fibsat at fibrillar saturation limit
hom homogenized
int ...of internal forces acting within the RVE
imsat at intermolecular pore saturation limit
pred model-predicted value
µ ...of a millimeter-sized bone sample
0 related to the matrix phase in the auxiliary Eshelby problem
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Abstract

Since its advent in the 1960s, elastoplastic micromechanics has been confronted

by continuous challenges, as the classical incremental elastoplastic tangents are

known to deliver unrealistically stiff material responses. As a complement to the

various “secant” approximations targeting this challenge, we here develop a theo-

retical framework based on an extension of Dvorak’s transformation field analysis,

comprising the derivation of concentration and influence tensors. We thereby

overcome the problem of actually non-homogeneous stress distributions across fi-

nite (often spherical) material phases, through consideration of infinitely many

(non-spherical) solid phases oriented in all space directions, arriving at a micro-

elastoplasticity theory of porous polycrystals. The resulting governing equations

are discretized in time and space, and then solved in the framework of a new

return mapping algorithm, the realization of which we exemplify by means of

Mohr-Coulomb plasticity at the solid phase level. The corresponding homogenized

material law is finally shown to satisfactorily represent the behavior of the porous

hydroxyapatite polycrystals making up the so-called cement lines in osteonal bone.

This is experimentally validated through strength and ultrasonic tests on hydrox-

yapatite, as well as through mass density, light microscopy, chemical composition,

and osteon pushout tests on bone.

3.1 Introduction

Homogenization theories for elastic properties, whose high maturity has been re-

viewed in many textbooks and review papers [Dormieux et al., 2006a, Nemat-

Nasser and Hori, 1999, Zaoui, 2002], have fundamentally shaped the under-

standing and design of microheterogeneous materials, such as metals [Mori and

Tanaka, 1973], ceramics [Constantinides and Ulm, 2004], or hard biological ma-

terials [Fritsch and Hellmich, 2007]. By comparison, the field of micro-elastic-

plasticity, although emerging almost as early as the elasticity homogenization the-

ories, namely in the 1960s, seems to remain remarkably less influential on materials

research and design. It appears that elastoplastic homogenization is much more

tricky than its purely elastic counterpart. This becomes already obvious from a

very compact historical review: Already in 1965, Hill proposed an incremental
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method [Hill, 1965a] for elastoplastic upscaling: The microscopic elastoplastic be-

havior is represented by a (time-dependent) phase-specific elastoplastic tangent

tensor which multilinearly relates microstresses to microstrains; and this formally

“elastic” relation is then simply inserted into classical homogenization schemes for

the realm of elasticity, such as the self-consistent method [Hershey, 1954, Kröner,

1958] or the Mori-Tanaka method [Benveniste, 1987, Mori and Tanaka, 1973].

However, the results obtained by this approach appeared as consistently too stiff

when compared to full elastoplastic Finite Element simulations of the microstruc-

ture - and this has, up to the present day, motivated a series of interesting correc-

tion schemes, such as “isotropization” of the (originally anisotropic) elastoplastic

tangent (or secant) operators, see e.g. [Berveiller and Zaoui, 1978, Cayzac et al.,

2013, Chaboche et al., 2005, Doghri and Ouaar, 2003, Rousselier and Luo, 2014,

Shen and Shao, 2016, Shen et al., 2012] and the various references cited there.

It took until the early 1990s that Dvorak and coworkers proposed a more fun-

damental approach to the topic. Considering that plastic microstrains are, as

of their nature, kinematically incompatible, and therefore qualify as free strains

or eigenstrains, Dvorak and co-workers developed a new type of homogenization

theory, called “transformation field analysis - TFA” [Dvorak, 1992, Dvorak and

Benveniste, 1992, Dvorak et al., 1994]. Corresponding homogenization schemes

(which will be more deeply reviewed and described in Section 3.3) provide access

to the so-called concentration tensors Ai and influence tensors Dij, which relate

the microscopic strains in the i-th material phase, εi, to the macroscopic strains

E prescribed at the boundary of the Representative Volume Element (RVE) and

to all the free (here plastic) strains εpj occurring in all the other material phases,

εi = Ai : E +
∑

j

Dij : εpj (3.1)

Derivation of (3.1) with respect to time readily delivers

ε̇i = Ai : Ė +
∑

j

Dij : ε̇pj (3.2)

It is instructive to note that relation (3.2) is fundamentally different from the

standard concentration relation in elastic homogenization, which for the case of

elastoplastic tangent upscaling according to Hill’s incremental method would read
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as [Hill, 1965b, Zaoui, 2002]

ε̇i = Ai (Ci = Ceps
i ) : Ė (3.3)

Comparison of (3.3) and (3.2) highlights that the use of the elastic concentration

(or localization) problem for upscaling elastoplastic tangent tensors Ceps
i (rather

than elasticity tensors Ci) obviously neglects several sources for microscopic de-

formations. This is consistent with the repeatedly made statement that the incre-

mental homogenization method delivers results which are too stiff. Accordingly,

very promising examples for the use of (3.1) and (3.2), with properties derived

from unit cell methods, could be given for periodic microstructures by Cavalcante

and Pindera [2016], Dvorak et al. [1994], Kruch and Chaboche [2011]. However, in

case of more complex and more random micromorphologies, the proper choice and

number of phases (with uniform plastic strains), which would actually allow for

appropriately covering the complex plastic flow patterns across the microstruc-

tures, often appears as the real (and hard-to-master) challenge when applying

the “classical” TFA. While the introduction of “plastic modes” across material

phases [in the course of non-uniform TFA - NTFA [Fritzen and Böhlke, 2011,

Michel and Suquet, 2003, 2004, Roussette et al., 2009]] showed interesting ways to

overcome the aforementioned problem for various applications, we here follow yet

another approach, which proved recently very successful in the context of elastic,

of poroelastic, and of brittle strength upscaling; across various material classes

such as hydroxyapatite, bioactive glass ceramics, gypsum, cementitious materi-

als, and piezoelectric ceramics [Fritsch et al., 2006, 2009b,c, 2013b, Pichler and

Hellmich, 2011, Pichler et al., 2009, 2013]. In this approach, the representative

volume element is divided into infinitely many non-spherical solid phases oriented

in all space directions, and spherical pores in-between. It is for this micromechan-

ical representation, that we here develop an elastoplastic homogenization theory

based on a recent extension and generalization of the transformation field analysis

[Dvorak et al., 1994]. This is described in the remainder of the present paper:

In Section 3.2, the concept of the representative volume element is reviewed in

the framework of the principle of virtual power [Germain, 1973, Salençon, 2001],

and then specified for a porous polycrystalline material system built up by elasto-

plastic needle-shaped solid elements and pores in-between. Thereafter, upscaling

of elastoplastic behavior from the level of the solid needles to that of the overall

polycrystalline material is covered in Section 3.3, by introducing phase-specific

concentration, influence, as well as homogenized stiffness tensors. Semi-analytical
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expressions for the latter are derived in Section 3.4, based on eigenstressed matrix-

inclusion problems of the Eshelby-Laws type. The resulting governing equations

are then discretized in time and space, and solved in the framework of a return

mapping algorithm described in Section 3.5; the realization of which we exemplify

by means of Mohr-Coulomb plasticity at the solid phase level in Section 3.6. Fi-

nally, the new theory and computational model is applied to osteoneal bone, in

Section 3.7; followed by Conclusions in Section 3.8.

3.2 Representative volume element (RVE) - mo-

mentum balance and kinematic compati-

bility - microstructural characteristics of

porous polycrystals

The investigated material is considered as a macro-homogeneous but micro-

heterogeneous matter filling a Representative Volume Element (RVE) [Hill, 1963,

Zaoui, 2002]. Such RVEs fulfill the separation of scales requirement:

d� l� L (3.4)

with d as the characteristic length of the inhomogeneities within the RVE, l as

the characteristic length of the RVE, and L as the characteristic size of the body

or structure made up by the material, or of loads acting on this body, such as

wavelengths in case of dynamic loading. We consider an RVE subjected to homo-

geneous linearized macroscopic strains prescribed in terms of displacements

on ∂VRV E ξ (x) = E · x (3.5)

with x as the location vector labeling points within the RVE and at its boundary.

Homogeneous boundary conditions (3.5) and compatibility of microstrains within

the RVE

∀x ∈ VRV E ε (x) = ∇Sξ (x) (3.6)

directly imply the so-called strain average rule [Hashin, 1983]

1

VRV E

∫

VRV E

ε (x) dV = 〈ε〉 = E, (3.7)
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Furthermore, the aforementioned deformations provoke traction forces T(x) on

the boundary of the RVE, and microstresses σ(x) throughout the RVE, fulfilling

the equilibrium conditions

∀x ∈ VRV E divσ(x) = 0

∀x ∈ ∂VRV E T (x) = σ (x) · n (x)
(3.8)

with n (x) as the normal to the boundary at position x. The external work done

by these traction forces reads as

W ext =

∫

∂VRV E

T (x) · ξ (x) dS =

∫

∂VRV E

(E · x) · [σ (x) · n (x)] dS

= E :

∫

VRV E

σ (x) dV

(3.9)

Hence, the force quantity doing work on the macroscopic strains E is the volume

integral over the microscopic stress, which is independent of microscopic position

and dimension “stress times volume”. This induces the existence of the macro-

scopic stress Σ in the form

ΣVRV E =

∫

VRV E

σ (x) dV ⇔ Σ =
1

VRV E

∫

VRV E

σ (x) dV = 〈σ〉, (3.10)

i.e. the well-known stress average rule. Insertion of (3.10) into the principle of

virtual power [Germain, 1973, Salençon, 2001], which in the case of linearized

strains, can be expressed in terms of an expression with the dimension “work”,

W ext = −W int =
1

VRV E

∫

VRV E

σ (x) : ε (x) dV = 〈σ : ε〉 (3.11)

yields the so-called Hill’s lemma

Σ : E =
1

VRV E

∫

VRV E

σ (x) : ε (x) dV . (3.12)

As the microstructure cannot be described in complete detail, the morphological

description is restricted to mechanically relevant features, through introduction of

subdomains within the RVE, called phases. The latter exhibit homogeneous me-

chanical properties as described in further detail in Section 3.3. The mechanical

state of these phases is characterized by stress and strain averages. For the present

case of a porous polycrystal as depicted in Figure 3.1, a “pore phase” fills sub-

volume Vpore within the RVE, with respective stress and strain averages following
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solid needles

homogenized matrix

fluid-filled pore space

Figure 3.1: Representative Volume Element of the porous polycrystal

from

σpore =
1

Vpore

∫

Vpore

σ (x) dx

εpore =
1

Vpore

∫

Vpore

ε (x) dx

(3.13)

The rest of the RVE is filled by elongated solid crystal phases which are fully

characterized by the orientation in space, through orientation vector er (see Fig-

ure 3.2): The latter can be given as a function of an orthonormal base frame e1,

e2, and e3, and of longitudinal and co-latitudinal angles φ and θ,

er = sin θ (cosφ e1 + sinφ e2) + cos θ e3 (3.14)

The corresponding stress and strain averages depend on the aforementioned angles,

and read as

σθφ =
1

lθφ

∫

lθφ

σ (s) ds

εθφ =
1

lθφ

∫

lθφ

ε (s) ds

(3.15)

with lθφ as the length of all needle-shaped crystals oriented in (θ,φ)-direction. As

a result, the strain average rules can be given in the following form, respectively

Σ = fporeσpore + (1− fpore)
∫ π

θ=0

∫ 2π

φ=0

σθφ
sin θ

4π
dθdφ (3.16)

E = fporeεpore + (1− fpore)
∫ π

θ=0

∫ 2π

φ=0

εθφ
sin θ

4π
dθdφ (3.17)

whereby fpore = Vpore/VRV E is the volume fraction of the pore space (i.e. the

porosity).



Chapter 3. Elastoplasticity of porous polycrystals 86

3.3 Elastoplasticity of solid phases - upscaling to

porous polycrystal scale

The following constitutive laws are assigned to the material phases depicted in

Figure 3.1: In order to keep the mathematical descriptions of our developments

as concise as possible, the spherical pore phase is simply characterized by a linear

elastic material behavior

θ

er

e1

eφ

eθ
e3

e2

φ

Figure 3.2: Orientation of solid needle by means of spherical coordinates θ and φ,
and definition of corresponding spherical base frame

σpore = Cpore : εpore (3.18)

with Cpore as the fourth-order isotropic stiffness tensor of the pore space. In case of

drained conditions, Cpore may be typically set to zero; and the extension to a full

poromechanical formulation [Dormieux et al., 2006a] may be realized through the

introduction of additional eigenstresses representing pore pressures [Fritsch et al.,

2013b, Pichler and Hellmich, 2010]. The needle-shaped solid phases exhibit an

elastic-perfectly plastic behavior

σθφ = Csolid :
[
εθφ − εpθφ

]
(3.19)

with Csolid as their (isotropic) fourth-order stiffness tensor and εpθφ as the average

plastic strain in the solid needle phase oriented in (θ,φ)-direction. These plastic

strains follow the multisurface plasticity flow rule according to Koiter [1953]

ε̇pθφ =

NFact,max∑

α=1

λ̇
(α)
θφ

∂G(α) (σθφ)

∂σθφ
(3.20)
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and occurrence of these strains is governed by the Melan-Kuhn-Tucker conditions

∀α ∈ {1, . . . ,NFact,max}
λ̇

(α)
θφ ≥ 0

F(α) (σθφ) ≤ 0

λ̇
(α)
θφ ×F(α) (σθφ) = 0

(3.21)

with NFact,max as the total number of yield surfaces F(α) and of plastic potentials

G(α) defining the multisurface yield criteria and flow rules; with associated plastic

multipliers λ
(α)
θφ , governing the magnitude of the plastic strain rate.

For a linear elastic medium with eigenstrains, the latter (in our case, the

plastic strains εpθφ) are related to the macroscopic strains through the so-

called concentration-influence relations [Dvorak and Benveniste, 1992, Pichler and

Hellmich, 2010]; reading in the present case for the solid needle phases as

εθφ = Aθφ : E +

∫ π

Θ=0

∫ 2π

Φ=0

Dθφ;ΘΦ : εpΘΦ

sin Θ

4π
dΘdΦ (3.22)

and for the pores

εpore = Apore : E +

∫ π

Θ=0

∫ 2π

Φ=0

Dpore;ΘΦ : εpΘΦ

sin Θ

4π
dΘdΦ (3.23)

In these relations, Aθφ and Apore are the strain concentration tensors in the needle-

shaped particles with orientation (θ,φ) and in the spherical pore phase respec-

tively; Dθφ;ΘΦ is the influence tensor expressing the effect of the plastic strain in

the solid needles with orientation (Θ, Φ) on the overall strain in the solid needles

with orientation (θ,φ); Dpore;ΘΦ is the influence tensor expressing the effect of the

plastic strain in the solid needles with orientation (Θ, Φ) on the overall strain in the

pore phase. The stress and strain average rules allow for upscaling the microscopic

constitutive law to the macroscopic scale. In the presence of eigenstrains inside

the RVE, the homogenized constitutive law is accessed through Levin’s theorem

[Laws, 1973, Levin, 1967]

Σ = Chom : (E −Ep) (3.24)

with Chom as the homogenized stiffness tensor [Zaoui, 2002], defined by

Chom = 〈C : A〉VRV E = fporeCpore : Apore

+ (1− fpore) Csolid :

∫ π

θ=0

∫ 2π

φ=0

Aθφ
sin θ

4π
dθdφ

(3.25)
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at ∞: E0

cylindrical (needle-shaped) inclusion

elasticity: Csolid

infinite 3D matrix

eigenstress: Π0

spherical inclusion

elasticity: Cpore

elasticity: C0 = Chom

at ∞: E0

RVE

eigenstress: πθφ

Figure 3.3: Quantifying RVE behavior through generalized Eshelby matrix-
inclusion problems with eigenstresses

and with Ep as the macroscopic “plastic” strain, reading as [Laws, 1973, Levin,

1967, Zaoui, 2002]

Ep = 〈εp : C : A : C−1
hom〉

= (1− fpore) C−1
hom :

∫ π

θ=0

∫ 2π

φ=0

ATθφ : Csolid : εpθφ
sin θ

4π
dθdφ

(3.26)

3.4 Self-consistent estimation of concentration

and influence tensors from eigenstressed Es-

helby problems

Self-consistent estimates for the strain concentration and influence tensors ap-

pearing in (3.22) and (3.23) are obtained by means of generalized Eshelby matrix-

inclusion-type problems [Pichler and Hellmich, 2010, Zaoui, 2002]. The pore phase

is represented as a spherical inclusion embedded in a matrix with stiffness Chom

and eigenstress Π0, subjected to homogeneous strains E0 acting at the infinite

boundary of the aforementioned matrix, see Figure 3.3. The needle-shaped solid

phases are represented each as a cylindrical inclusion with stiffness Csolid and eigen-

stresses πθφ = −Csolid : εpθφ, embedded into the very same matrix, and subjected

to the very same strains E0, see Figure 3.3. This results to inclusion/phase strains
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reading as [Zaoui, 2002]

εθφ = A∞θφ :
[
E0 − Pcyl(θ,φ) :

(
πθφ −Π0

)]
(3.27)

εpore = A∞pore :
[
E0 − Psph :

(
−Π0

)]
(3.28)

with the abbreviations A∞θφ and A∞pore standing for

A∞θφ = [I + Pcyl(θ,φ) : (Csolid − Chom)]−1 (3.29)

and

A∞pore = [I + Psph : (Cpore − Chom)]−1 (3.30)

whereby I is the fourth-order identity tensor, with components Iijkl = 1
2
(δikδjl +

δilδjk), δij is the Kronecker delta: δij = 1 if i = j and zero otherwise; Pcyl and Psph,

respectively, are the Hill tensors of cylindrical and spherical inclusions embedded

into a matrix with stiffness Chom. Insertion of (3.27) and (3.28) into the strain

average rule (3.17) delivers

E =

{
fporeA

∞
pore :

[
E0 − Psph :

(
−Π0

)]

+ (1− fpore)
∫ π

θ=0

∫ 2π

φ=0

A∞θφ :
[
E0 − Pcyl(θ,φ) :

(
πθφ −Π0

)] sin θ

4π
dθdφ

} (3.31)

Solving (3.31) for E0 yields

E0 =

{
fporeA

∞
pore

+ (1− fpore)
∫ π

θ=0

∫ 2π

φ=0

A∞θφ
sin θ

4π
dθdφ

}−1

:
{
E +Eπ

0

} (3.32)

with

Eπ
0 = fporeA

∞
pore : Psph :

(
−Π0

)

+ (1− fpore)
∫ π

θ=0

∫ 2π

φ=0

A∞θφ : Pcyl(θ,φ) :
(
πθφ −Π0

) sin θ

4π
dθdφ

(3.33)

Insertion of (3.32) into (3.27) and (3.28) yields

εθφ = Aθφ :
{
E +Eπ

0

}
− A∞θφ : Pcyl(θ,φ) :

(
πθφ −Π0

)
(3.34)

εpore = Apore :
{
E +Eπ

0

}
− A∞pore : Psph :

(
−Π0

)
(3.35)
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with

Aθφ = A∞θφ :

{
fporeA

∞
pore + (1− fpore)

∫ π

Θ=0

∫ 2π

Φ=0

A∞ΘΦ

sin Θ

4π
dΘdΦ

}−1

(3.36)

Apore = A∞pore :

{
fporeA

∞
pore + (1− fpore)

∫ π

θ=0

∫ 2π

φ=0

A∞θφ
sin θ

4π
dθdφ

}−1

(3.37)

Comparison of (3.34) and (3.35) with (3.22) and (3.23) makes readily evident that

Aθφ and Apore are the sought expressions for the concentration tensors appearing

in (3.22) and (3.23). As a second step, the stress average rule, combined with the

Levin’s theorem, allows for estimating the influence tensors. Therefore, (3.24) and

(3.26) can be rewritten in the form,

Σ = Chom : E

+ (1− fpore)
∫ π

θ=0

∫ 2π

φ=0

πθφ : Aθφ
sin θ

4π
dθdφ

(3.38)

On the other hand, the combination of the stress average rule (3.16) with constitu-

tive equations (3.18) and (3.19), as well as with the scale transition relations (3.34)

and (3.35), while considering the expression (3.25) for the homogenized stiffness,

results in

Σ = fporeCpore :

{
Apore :

{
E +Eπ

0

}
− A∞pore : Psph :

(
−Π0

)}

+ (1− fpore)
∫ π

θ=0

∫ 2π

φ=0

{
Csolid :

{
Aθφ :

(
E +Eπ

0

)

− A∞θφ : Pcyl(θ,φ) :
(
πθφ −Π0

) }
+ πθφ

}
sin θ

4π
dθdφ

(3.39)

Setting the macroscopic stress relations (3.38) and (3.39) equal and solving the

resulting expression for Π0 delivers

Π0 =

{
(Chom − Cpore) : fporeA

∞
pore : Psph

+ (Chom − Csolid) : (1− fpore)
∫ π

θ=0

∫ 2π

φ=0

A∞θφ : Pcyl(θ,φ)
sin θ

4π
dθdφ

}−1

:

{
(1− fpore)

∫ π

θ=0

∫ 2π

φ=0

[
πθφ : [I− Aθφ]

+ (Chom − Csolid) : A∞θφ : Pcyl(θ,φ) : πθφ

]
sin θ

4π
dθdφ

}

(3.40)



Chapter 3. Elastoplasticity of porous polycrystals 91

Finally, inserting (3.40) into (3.34) and (3.35) and comparing the resulting expres-

sions to (3.22) and (3.23) yield the eigenstress influence tensors Dpore,ΘΦ, Dθφ,ΘΦ,

and Dθφ,θφ. They read as

Dpore,ΘΦ =

{
− Apore(1− fpore) : A∞ΘΦ : Pcyl(Θ, Φ)

+

[
Aporefpore : A∞pore : Psph

+ Apore(1− fpore) :

∫ π

χ=0

∫ 2π

ψ=0

A∞χψ : Pcyl(χ,ψ)
sinχ

4π
dχdψ

− A∞pore : Psph

]
:

[
(1− fpore)(Chom − Csolid) :

∫ π

χ=0

∫ 2π

ψ=0

A∞χψ : Pcyl(χ,ψ)
sinχ

4π
dχdψ

+ fpore(Chom − Cpore) : A∞pore : Psph

]−1

:

(1− fpore)
[

[I− AΘΦ]T

+ (Chom − Csolid) : A∞ΘΦ : Pcyl(Θ, Φ)

}
: Csolid

(3.41)

Dθφ,ΘΦ =

{
− Aθφ : (1− fpore)A∞ΘΦ : Pcyl(Θ, Φ)

+

[
Aθφ : (1− fpore)

∫ π

χ=0

∫ 2π

ψ=0

A∞χψ : Pcyl(χ,ψ)
sinχ

4π
dχdψ

+ Aθφ : fpore : A∞pore : Psph − A∞θφ : Pcyl(θ,φ)

]
:

[
(1− fpore) (Chom − Csolid) :

∫ π

χ=0

∫ 2π

ψ=0

A∞χψ : Pcyl(χ,ψ)
sinχ

4π
dχdψ

+ fpore (Chom − Cpore) : A∞pore : Psph

]−1

:

(1− fpore)
[

[I− AΘΦ]T

+ (Chom − Csolid) : A∞ΘΦ : Pcyl(Θ, Φ)
]}

: Csolid

(3.42)
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Dθφ,θφ =

{
[I− (1− fpore)Aθφ] : A∞θφ : Pcyl(θ,φ)

+

[
Aθφ : (1− fpore)

∫ π

χ=0

∫ 2π

ψ=0

A∞χψ : Pcyl(χ,ψ)
sinχ

4π
dχdψ

+ Aθφ : fporeA
∞
pore : Psph − A∞θφ : Pcyl(θ,φ)

]
:

[
(1− fpore) (Chom − Csolid) :

∫ π

χ=0

∫ 2π

ψ=0

A∞χψ : Pcyl(χ,ψ)
sinχ

4π
dχdψ

+ fpore (Chom − Cpore) : A∞pore : Psph

]−1

:

(1− fpore)
[

[I− Aθφ]T

+ (Chom − Csolid) : A∞θφ : Pcyl(θ,φ)
]}

: Csolid

(3.43)

3.5 Algorithmic treatment of multiscale elasto-

plasticity

Numerical computations of plastic evolutions within the solid phases of the RVE

depicted in Figure 3.1, as a function of arbitrary macroscopic loading in terms of

macroscopic stresses Σ or macroscopic strainsE, requires temporal and spatial dis-

cretization of the elastoplastic relations (3.22)-(3.26), together with (3.41)-(3.43),

and with average rules (3.16)-(3.17); as well as solution of the resulting algebraic

equations. This will be dealt with in the following subsection.

3.5.1 Spatial discretization of governing equations

As regards spatial discretization, all integrals over the unit sphere are approxi-

mated through weighted sums of the integrands being evaluated at a particular

set S of Gaussian points on the unit sphere (labelled by the two Euler angles

{θi,φi}i∈S) with the associated Gaussian weights ωi|i∈S. Accordingly, the integral

over an arbitrary function a(Θ, Φ) is approximated by the weighted sum over this

function evaluated at particular Gaussian points labelled by index i; i.e. by the

following discrete expression

∫∫

Θ,Φ

a (Θ, Φ)
sin Θ

4π
dΘdΦ =

∑

i∈S

ωia(Θi, Φi) =
∑

i∈S

ωi ai (3.44)
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This leads to the following discretized versions of the governing equations:

• the (spatially discretized) stress and strain average rules

Σ = fporeσpore +
∑

i∈S

(1− fpore)ωiσi (3.45)

E = fporeεpore +
∑

i∈S

(1− fpore)ωiεi (3.46)

• the (spatially discretized) concentration-influence relations

∀i ∈ S
εi = Ai : E +

∑

j∈S

ωjDij : εpj (3.47)

εpore = Apore : E +
∑

j∈S

ωjDpore,j : εpj (3.48)

whereby the discretized influence tensors Dpore,j, Dij, and Dii read as

Dpore,j =

{
− Apore : (1− fpore)A∞j : Pcyl,j +

[
fporeApore : A∞pore : Psph

+ (1− fpore)Apore :
∑

k∈S

ωkA
∞
k : Pcyl,k − A∞pore : Psph

]

:
[
fpore (Chom − Cpore) : A∞pore : Psph

+ (1− fpore) (Chom − Csolid) :
∑

k∈S

ωkA
∞
k : Pcyl,k

]−1

: (1− fpore)
[
(I− Aj)

T + (Chom − Csolid) : A∞j : Pcyl,j
]}

: Csolid

(3.49)

Dij =

{
− Ai : (1− fpore)A∞j : Pcyl,j

+

[
fporeAi : A∞pore : Psph + (1− fpore)Ai :

∑

k∈S

ωkA
∞
k : Pcyl,k − A∞i : Pcyl,i

]

:
[
fpore (Chom − Cpore) : A∞pore : Psph

+ (1− fpore) (Chom − Csolid) :
∑

k∈S

ωkA
∞
k : Pcyl,k

]−1

: (1− fpore)
[
(I− Aj)

T + (Chom − Csolid) : A∞j : Pcyl,j
]}

: Csolid

(3.50)
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Dii =

{
[I− (1− fpore)Ai] : A∞i : Pcyl,i

+

[
fporeAi : A∞pore : Psph + (1− fpore)Ai :

∑

k∈S

ωkA
∞
k : Pcyl,k − A∞i : Pcyl,i

]

:
[
fpore (Chom − Cpore) : A∞pore : Psph

+ (1− fpore) (Chom − Csolid) :
∑

k∈S

ωkA
∞
k : Pcyl,k

]−1

: (1− fpore)
[
(I− Ai)

T + (Chom − Csolid) : A∞i : Pcyl,i
]}

: Csolid

(3.51)

• the microscopic state equation for the solid needle phases

∀i ∈ S σi = Csolid : (εi − εpi ) (3.52)

• the flow rule

∀i ∈ S ε̇pi =

NFact,max∑

α=1

λ̇
(α)
i

∂G(α)

∂σi
(σi) (3.53)

associated to the Melan-Kuhn-Tucker conditions

∀α ∈ {1, 2, . . . ,NFact,max}
λ̇

(α)
i ≥ 0

F(α) (σi) ≤ 0

λ̇
(α)
i ×F(α) (σi) = 0

(3.54)

• the macroscopic (homogenized) stiffness tensor

Chom = fporeCpore : Apore + (1− fpore)
∑

i∈S

ωiCsolid : Ai (3.55)

• and the macroscopic plastic strains

Ep = (1− fpore)C−1
hom :

∑

i∈S

ωiA
T
i : Csolid : εpi (3.56)

More precisely, we here employ two different sets S of Gaussian points:

• the Stroud’s integration formulas [Stroud, 1971], comprising 15 or 28 points

(see Tables 3.1 and 3.2)
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Table 3.1: 15 different needle orientations according to integration formulas of
Stroud [1971]
j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sin(θj) cos(φj) = +r +r −r −r +t +t −t −t +s +s −s −s 1 0 0
sin(θj) sin(φj) = +s −s +s −s +r −r +r −r +t −t +t −t 0 1 0
cos(θj) = +t +t +t +t +s +s +s +s +r +r +r +r 0 0 1
ω(θj,φj) = 1

15
1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

1
15

with r = 1/2, s =
(√

5 + 1
)
/4, and t =

(√
5− 1

)
/4

• the centroids and areas of triangles meshing the unit sphere, as described in

[Badel and Leblond, 2004]. The triangular mesh of the unit sphere is ob-

tained from the refinement of a semi-dodecahedron, splitting each pentagon

into five triangles; further refinement can then be achieved by dividing each

triangle into four smaller triangles. The centroids of the triangles are chosen

as Gaussian points, while the ratio between the areas of the triangle and of

the unit sphere is chosen as Gaussian weight. We use 120 integration points.

3.5.2 Temporal discretization of governing equations

As the spatially discretized temporal differential equations (3.45)-(3.56) cannot

be solved analytically, approximative solutions will be obtained in an iterative

process, which is described in greater detail in Sections 6 and 7. This process

relates to discrete time instants tn and corresponding stresses and strains, such as

E(tn) = En. Respective evaluations of (3.45)-(3.52) and (3.56) yield

Σn = fporeσ
n
pore +

∑

i∈S

(1− fpore)ωiσni (3.57)

En = fporeε
n
pore +

∑

i∈S

(1− fpore)ωiεni (3.58)

εni = Ai : En +
∑

j∈S

ωjDij : εp,nj (3.59)

εnpore = Apore : En +
∑

i∈S

ωiDpore;i : εp,ni (3.60)

Ep,n = (1− fpore)C−1
hom :

∑

i∈S

ωiA
T
i : Csolid : εp,ni (3.61)

σni = Csolid : [εni − εp,ni ] (3.62)

σnpore = Cpore : εnpore (3.63)
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Table 3.2: 28 different needle orientations according to integration formulas of
Stroud [1971]
j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sin(θj) cos(φj) = +t +t −t −t +s +s −s −s +r +r −r −r +r +r
sin(θj) sin(φj) = +t −t +t −t +r −r +r −r +s −s +s −s +r −r
cos(θj) = +t +t +t +t +r +r +r +r +r +r +r +r +s +s
ω(θj,φj) = a a a a b b b b b b b b b b
j = 15 16 17 18 19 20 21 22 23 24 25 26 27 28
sin(θj) cos(φj) = −u +v +v −v −v +v +v −v −v −r −r +u +u −u
sin(θj) sin(φj) = −v +u −u +u −u +v −v +v −v +r −r +v −v +v
cos(θj) = +v +v +v +v +v +u +u +u +u +s +s +v +v +v
ω(θj,φj) = c c c c c c c c c b b c c c

with r =
√(

9− 4
√

3
)
/33, s =

√(
15 + 8

√
3
)
/33, t =

√
1/3,

u =
√(

15− 8
√

3
)
/33, v =

√(
9 + 4

√
3
)
/33,

and a = 9/280, b =
(
122 + 9

√
3
)
/3360, c =

(
122− 9

√
3
)
/3360

Changes of stresses and strains during time interval ∆tn+1 = tn+1−tn are quantified

in terms of increments

∆En+1 = En+1 − En (3.64)

∆Σn+1 = Σn+1 −Σn (3.65)

∆σn+1
i = σn+1

i − σni (3.66)

∆εp,n+1
i = εp,n+1

i − εp,ni (3.67)

The latter increments, relating to microscopic plastic strains, need to be related to

the temporal derivatives in the evolution equations (3.53). Therefore, we employ

a backward Euler integration scheme: Except for time derivatives, we hold all

functional values fixed at time tn+1, and we then integrate the flow rule (3.53)

between time instant tn and tn+1, yielding

∀i ∈ S

∫ tn+1

tn
ε̇pi dt =

NFact,max∑

α=1

∫ tn+1

tn
λ̇(α)dt

∂G(α)

∂σi

(
σn+1
i

)

= ∆εp,n+1
i =

NFact,max∑

α=1

∆λ
(α),n+1
i

∂G(α)

∂σi

(
σn+1
i

)

(3.68)
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with the corresponding Melan-Kuhn-Tucker conditions reading as

∀α ∈ {1, 2, . . . ,NFact,max}
∆λ

(α),n+1
i ≥ 0

F(α)
(
σn+1
i

)
≤ 0

∆λ
(α),n+1
i ×F(α)

(
σn+1
i

)
= 0

(3.69)

3.5.3 Iterative solution process I: macro-to-micro scale

transitions

Inspired by the standard procedure in computational elastoplasticity [Hellmich

et al., 1999, Morin et al., 2011a,b, Simo and Hughes, 1998, Simo and Taylor,

1985], a macroscopic strain history is presented in terms of finite strain increments

∆En+1, with corresponding totally attained strains reading as

En+1 = En + ∆En+1 (3.70)

These strains can be prescribed directly (displacement-driven situation), or be the

result of equilibrium considerations at the RVE or structural level (force-driven

situation). Given the full set of state variables at the end of the n-th load step, Σn,

En, Ep,n; we are left with computing the same full set of variables for the end of the

(n+ 1)-st step, based on the prescribed strain increment ∆En+1. Therefore, these

macroscopic strains are first downscaled from the macro to the microlevel, under

the assumption of the absence of any additional plastic events (“trial state”), on

the basis of (3.59) and (3.62)

σn+1,trial
i = Csolid :

{
Ai : En+1 +

∑

j∈S

[Dij − δijI] : εp,nj

}
(3.71)

Thereafter, it is checked whether this assumption of purely elastic behavior of all

solid phases is actually valid, by inserting the trial state of the microscopic solid

microstresses, σn+1,trial
i , into the yield criterion (3.69)2, yielding respective trial

values

∀i ∈ S,∀α ∈ {1, 2, . . . ,NFact,max} F
(α),n+1,trial
i = F(α)

(
σn+1,trial
i

)
(3.72)

withNFact,max as the maximum number of potentially active yield surfaces per solid

phase. These values allow for discrimination between plasticizing and purely elastic
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phases; as well as between active and non-active yield surfaces associated to these

plasticizing phases: all solid phases with F
(α),n+1,trial
i ≤ 0 holding for all NFact,max

yield surfaces associated to these solid phases, behave purely elastically during

time step ∆tn+1. On the other hand, those with F
(α),n+1,trial
i > 0, for at least

one of the NFact,max yield surfaces defining the multisurface criterion of each solid

phase, define the set of plasticizing needle-shaped solid phases, Scyl,plast. This set

has Ncyl,plast elements, i = 1, ..,Ncyl,plast. Each element of this set is associated to

a number of active yield surfaces, NFact,i; always fulfilling F
(α),n+1,trial
i > 0. These

plasticizing phases exhibit non-zero plastic strain increments ∆εp,n+1
i according to

flow rule (3.68), which are determined from fulfillment of the Melan-Kuhn-Tucker

conditions (3.69), while considering state equation (3.62) evaluated at load step

(n+ 1) and the definition of the trial state according to (3.71),

∀i ∈ Scyl,plast,∀α ∈ {1, 2, . . . ,NFact,i}

F(α)


σn+1,trial

i + Csolid :





∑

j∈Scyl,plast

NFact,j∑

β=1

[Dij − δijI] ∆λ
(β),n+1
j

∂G(β)

∂σj
(σn+1

j )






 = 0

(3.73)

Due to the nonlinear dependence of the phase-specific plastic flow directions ∂G(β)

∂σj

on the phase stresses σj, a solution for ∆λ
(β),n+1
j cannot be directly gained from

(3.73). Therefore, we solve (3.73) in an iterative manner, with iteration steps

labelled by k. Thereby, the approximations of the first iteration step (k = 1)

relate to the trial state and therefore read as

∆εp,n+1,1
i = 0 (3.74)

∆λ
(α),n+1,1
i = 0 (3.75)

σn+1,1
i = σn+1,trial

i (3.76)

They are used for approximating the plastic flow direction, as the basis for obtain-

ing an improved estimate for the plastic multiplier ∆λ
(α),n+1,k+1
j , according to the

approximation scheme

∀i ∈ Scyl,plast,∀α ∈ {1, 2, . . . ,NFact,i}

F(α)
(
σn+1,trial
i

+ Csolid :





∑

j∈Scyl,plast

NFact,j∑

β=1

[Dij − δijI] ∆λ
(β),n+1,k+1
j

∂G(β)

∂σj
(σn+1,k

j )






 = 0

(3.77)
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Solution of this non-linear equation (3.77) requires yet another iteration scheme

(described in the next section), providing new (improved) approximative solu-

tions ∆λ
(β),n+1,k+1
i , i = 1, . . . ,Ncyl,plast, β = 1, . . . ,NFact,i with corresponding (im-

proved) plastic strains

∀i ∈ {1, . . . ,Ncyl,plast}

∆εp,n+1,k+1
i =

NFact,i∑

α=1

∆λ
(α),n+1,k+1
i

∂G(α)

∂σi
(σn+1,k

i )
(3.78)

Update of the corresponding microscopic stresses requires another downscaling

process from the macro to the microlevel, according to

∀i ∈ {1, . . . ,Ncyl,plast}
σn+1,k+1
i = σn+1,trial

i

+ Csolid :





∑

j∈Scyl,plast

NFact,j∑

α=1

[Dij − δijI] ∆λ
(α),n+1,k+1
j

∂G(α)

∂σj
(σn+1,k

j )





(3.79)

Thereafter, iteration step (k+1) is completed by checking whether the alterations

in the plastic flow stemming from the update of σn+1
i from iteration step k to

iteration step (k + 1) become negligible, i.e. lower than a prescribed tolerance

value TOL,

∀i ∈ {1, . . . ,Ncyl,plast} ,∀α ∈ {1, 2, . . . ,NFact,i}∥∥∥∥∥
∂G(α)

∂σi

(
σn+1,k+1
i

)
− ∂G(α)

∂σi

(
σn+1,k
i

)∥∥∥∥∥ ≤ TOL
(3.80)

If this is not the case yet, the (k + 1)-st approximations are used as input for

the next (i.e. (k + 2)-nd) iteration, which is characterized by replacement of k by

(k + 1), and of (k + 1) by (k + 2), in (3.77), (3.78), (3.79) and (3.80).
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3.5.4 Iterative process II: plastic flow - “return map”

In each iteration step k described in the preceding section, the non-linear equation

∀i ∈ Scyl,plast, ∀α ∈ {1, 2, . . . ,NFact,i}

F(α)

(
σ̃n+1
i = σn+1,trial

i +

+ Csolid :





∑

j∈Scyl,plast

NFact,j∑

β=1

[Dij − δijI] ∆λ
(β),n+1,k+1
j

∂G(β)

∂σj

(
σn+1,k
j

)




)
= 0

(3.81)

needs to be solved. This is done by a Newton iteration scheme, with iteration

steps labelled by l, reading as

Rn+1,k+1,l +
dRn+1,k+1,l

d(∆λn+1,k+1)
·∆ (∆λ)n+1,k+1,l+1 = 0 (3.82)

Thereby, the vectorial terms in (3.82) are defined as follows: The plastic multiplier

vector reads as

∆λn+1,k+1 =





∆λ
(1),n+1,k+1
1

∆λ
(2),n+1,k+1
1

...

∆λ
(NFact,1),n+1,k+1
1

∆λ
(1),n+1,k+1
2

...

∆λ
(NFact,2),n+1,k+1
2

...

∆λ
(NFact,Ncyl,plast ),n+1,k+1

Ncyl,plast





(3.83)
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The residual vector reads as

Rn+1,k+1,l =





R
(1),n+1,k+1,l
1 = F(1)

[
σ̃1

(
∆λn+1,k+1,l

)]

R
(2),n+1,k+1,l
1 = F(2)

[
σ̃1

(
∆λn+1,k+1,l

)]

...

R
(NFact,1),n+1,k+1,l
1 = F(NFact,1)

[
σ̃1

(
∆λn+1,k+1,l

)]

R
(1),n+1,k+1,l
2 = F(1)

[
σ̃2

(
∆λn+1,k+1,l

)]

R
(2),n+1,k+1,l
2 = F(2)

[
σ̃2

(
∆λn+1,k+1,l

)]

...

R
(NFact,2),n+1,k+1,l
2 = F(NFact,2)

[
σ̃2

(
∆λn+1,k+1,l

)]

...

R
(1),n+1,k+1,l
Ncyl,plast

= F(1)
[
σ̃Ncyl,plast

(
∆λn+1,k+1,l

)]

R
(2),n+1,k+1,l
Ncyl,plast

= F(2)
[
σ̃Ncyl,plast

(
∆λn+1,k+1,l

)]

...

R
(NFact,Ncyl,plast ),n+1,k+1,l

Ncyl,plast
= F

(NFact,Ncyl,plast )
[
σ̃Ncyl,plast

(
∆λn+1,k+1,l

)]





(3.84)

with NFact,i as the number of active surfaces of phase i; and its derivatives

dRn+1,k+1,l

d(λn+1,k+1)
=





∂R
(1)
1

∂(∆λ)
(1),n+1,k+1
1

, · · · ,
∂R

(1)
1

∂(∆λ)
(1),n+1,k+1
Ncyl,plast

, · · · ,
∂R

(1)
1

∂(∆λ)
(NFact,1),n+1,k+1

1

, · · · ,
∂R

(1)
1

∂(∆λ)
(NFact,1),n+1,k+1

Ncyl,plast

∂R
(1)
2

∂(∆λ)
(1),n+1,k+1
1

, · · · ,
∂R

(1)
2

∂(∆λ)
(1),n+1,k+1
Ncyl,plast

, · · · ,
∂R

(1)
2

∂(∆λ)
(NFact,2),n+1,k+1

1

, · · · ,
∂R

(1)
2

∂(∆λ)
(NFact,2),n+1,k+1

Ncyl,plast

...

∂R
(1)
Ncyl,plast

∂(∆λ)
(1),n+1,k+1
1

, · · · ,
∂R

(1)
Ncyl,plast

∂(∆λ)
(1),n+1,k+1
Ncyl,plast

, · · · ,
∂R

(1)
Ncyl,plast

∂(∆λ)
(NFact,1),n+1,k+1

1

, · · · ,
∂R

(1)
Ncyl,plast

∂(∆λ)
(NFact,Ncyl,plast

),n+1,k+1

Ncyl,plast

∂R
(2)
1

∂(∆λ)
(1),n+1,k+1
1

, · · · ,
∂R

(2)
1

∂(∆λ)
(1),n+1,k+1
Ncyl,plast

, · · · ,
∂R

(2)
1

∂(∆λ)
(NFact,1),n+1,k+1

1

, · · · ,
∂R

(2)
1

∂(∆λ)
(NFact,Ncyl,plast

),n+1,k+1

Ncyl,plast

...

∂R
(NFact,Ncyl,plast

)

Ncyl,plast

∂(∆λ)
(1),n+1,k+1
1

, · · · ,
∂R

(NFact,Ncyl,plast
)

Ncyl,plast

∂(∆λ)
(1),n+1,k+1
Ncyl,plast

, · · · ,
∂R

(NFact,Ncyl,plast
)

Ncyl,plast

∂(∆λ)
(NFact,1),n+1,k+1

1

, · · · ,
∂R

(NFact,Ncyl,plast
)

Ncyl,plast

∂(∆λ)
(NFact,Ncyl,plast

),n+1,k+1

Ncyl,plast





(3.85)
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whereby

∂R
(β)
1

∂(∆λ
(α),n+1,k+1
i )

=
∂F(β)

∂σ̃n+1
1

(σ̃n+1
1 ) :

∂σ̃1

∂(∆λ)
(α),n+1,k+1
i

=
∂F(β)

∂σ̃n+1
1

(σ̃n+1
1 ) : Csolid : [D1i − δ1iI] :

∂G(α)

∂σ̃i
(σn+1,k

i )

(3.86)

The solution vector of iteration (l + 1) reads as

∆
(
∆λn+1,k+1,l+1

)
=





∆ (∆λ)(1)
1

...

∆ (∆λ)
(NFact,1)
1

∆ (∆λ)(1)
2

...

∆ (∆λ)
(NFact,2)
2
...

∆ (∆λ)
(1)
Ncyl,plast
...

∆ (∆λ)
(NFact,Ncyl,plast )

Ncyl,plast





(3.87)

and the updated plastic multiplier vector as

∆λn+1,k+1,l+1 = ∆λn+1,k+1,l + ∆ (∆λ)n+1,k+1,l+1 (3.88)

If the converged solutions ∆(∆λ)
(α),n+1
i are all positive, the original guess of active

phases and surfaces according to the trial state definition (3.71) and (3.72) was

correct. If any ∆(∆λ)
(α),n+1
i are negative, the corresponding yield surfaces are

discarded from the sets Scyl,plast and {1, 2, . . . ,NFact,i} and the process (3.73) to

(3.88) is repeated as long as all plastic multipliers are non-negative.
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3.6 Exemplification of multiscale elastoplasticity

through upscaling of Mohr-Coulomb crite-

rion

We here exemplify the developments of Section 3.5 by assigning, to all needle-

shaped solid phases of Figure 3.1, a Mohr-Coulomb criterion in the form

F(σ) = τ − (csolid − σ tanϕsolid) ≤ 0 (3.89)

with τ = σnt and σ = σnn as the components of the traction vector T = σ · n in

the so-called Mohr plane, which is spanned by the vectors n and t. t is in this

Mohr plane as well, arising from rotating n by (π/2); i.e. orthogonal to n. Upon

fulfillment of (3.89), plastic strains may occur only in terms of shear components

εpnt, i.e. only such strain components which are energetically conjugated to τ = σnt.

According to the general flow rule of (3.53), this may be expressed by a plastic

potential Gwhich does not depend on the normal stress component σ, hence being

of the form

G(σ) = τ (3.90)

so that ∂G/∂σ = 0 and ∂G/∂τ = 1. In the principle stress state, (3.89) represents

a pyramid with six faces, six edges and an apex; while (3.90) represents a prism

with six faces and edges, being oriented parallel to the hydrostatic axis. Back-

projection of trial stress states on these edges and faces of the pyramid, along

directions orthogonal to the edges and faces of the prism can be conveniently

performed on the basis of the following multisurface representation of (3.89) and

(3.90) in the principal stress space; comprising three yield functions

F(1) = βσi,I − σi,III − σy
F(2) = βσi,I − σi,II − σy (3.91)

F(3) = βσi,II − σi,III − σy

with the friction parameter β and the compressive yield stress σy being related to

the cohesion csolid and the angle of internal friction ϕsolid through

σy =
2csolid cosϕsolid
1− sinϕsolid

(3.92)
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and

β =
1 + sinϕsolid
1− sinϕsolid

(3.93)

and the plastic potential functions

G(1) = σi,I − σi,III
G(2) = σi,I − σi,II (3.94)

G(3) = σi,II − σi,III

whereby σi,I ≥ σi,II ≥ σi,III are the principal stresses of stress tensor σi. (3.91)

and (3.94) can be readily inserted into the general form of the algorithm (3.70)-

(3.88).

We explicitly note that the yield and potential functions (3.91) and (3.94) appear

as linear in the principal stress state, but that the corresponding principal direc-

tions do change during the loading and back-projection steps, which renders the

problem as fully non-linear. Depending on the degree of nonlinearity, the accu-

racy of the trial state in correctly targeting the actually plastically active solid

phases and yield surfaces may reduce, which then prolongs the computation time.

In this context, the introduction of plastic stress regions according to Clausen

et al. [2007] turns out as helpful: These regions are defined on the basis of two

expressions, which relate to the delimiting lines of semi-infinite triangular plane

(to which the Mohr-Coulomb criterion degenerates in the principical stress space,

once the principal stresses are ordered according to σI ≥ σII ≥ σIII). They are

pI−II(σ) =
1

β + 1

(
σI −

σy
β − 1

)
−
(
σII −

σy
β − 1

)

+
1

β + 1

(
σIII −

σy
β − 1

) (3.95)

pI−III(σ) =
β

β + 1

(
σI −

σy
β − 1

)
−
(
σII −

σy
β − 1

)

+
β

β + 1

(
σIII −

σy
β − 1

) (3.96)

The aforementioned stress regions for categorization of the trial stress states are:

• Stress region I relates to pI−II

(
σn+1,trial
i

)
≥ 0 and pI−III

(
σn+1,trial
i

)
≤ 0: if

the trial stress resides in this region, then we choose F(1) according to (3.91)

as active yield surface.
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• Stress region II relates to pI−II

(
σn+1,trial
i

)
< 0 and pI−III

(
σn+1,trial
i

)
< 0:

if the trial stress resides in this region, then we choose F(1) and F(2) according

to (3.91) as active yield surfaces.

• Stress region III relates to pI−II

(
σn+1,trial
i

)
> 0 and pI−III

(
σn+1,trial
i

)
> 0:

if the trial stress resides in this region, then we choose F(1) and F(3) according

to (3.91) as active yield surfaces.

• Stress region IV relates to all other cases, where we choose all three yield

surfaces as active.

Finally, the actually active yield surfaces are idenfitied as described at the end

of Section 3.5.3. Next, we show the application of the algorithm described in
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Figure 3.4: (a) Macroscopic stress-strain relation under pure shear, for different
discretizations according to Stroud [1971] and Badel and Leblond [2004], IP...
integration point; (b) distribution of the norm of the plastic microstrains over the
solid needle phase orientations, at selected macroscopic stress levels

Section 3.5 and applied to Mohr-Coulomb plasticity earlier in the present chap-

ter, for computing the behavior of the RVE shown in Figure 3.1 with material

properties collected in Table 3.3, under pure shear, Σ = Σ23 (e2 ⊗ e3 + e3 ⊗ e2),

under uniaxial tension, Σ = Σ33 e3⊗e3, Σ33 > 0, and under uniaxial compression,
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Figure 3.5: (a) Macroscopic stress-strain relation under uniaxial tension (depicted
from the onset of plastic events), for different discretizations according to Stroud
[1971] and Badel and Leblond [2004], IP... integration point; (b) distribution of
the norm of the plastic microstrains over the solid needle phase orientations, at
selected macroscopic stress levels

Σ = Σ33 e3 ⊗ e3, Σ33 < 0.

Table 3.3: Properties of solid and pore material phases, for the case of porous
hydroxyapatite polycrystals, see Section 3.7 for experimental details

Property Solid phases Pore phase

Bulk modulus ksolid = 82.6 GPa kpore = 2.3 GPa
Shear modulus µsolid = 44.9 GPa µpore = 0 GPa
Cohesion csolid = 82.3 MPa
Friction angle ϕ = 57.8◦

Volume fraction fHA = 0.68 fpore = 0.32

First of all, it is interesting to study the effect of different discretization schemes

on the model predictions, see Figures 3.4(a), 3.5(a), and 3.6(a). Two realizations

of the integration scheme of Stroud [1971], with 15 and 28 integration points, re-

spectively, as well as the method of Badel and Leblond [2004] with 120 integration

points, deliver very similar results - indicating the converged nature of the reported

computational results (see also Table 3.4). For all investigated load cases, plasticity
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tion of the norm of the plastic microstrains over the solid needle phase orientations,
at selected macroscopic stress levels

Table 3.4: Yield and ultimate macroscopic stresses [in MPa] computed for uniaxial
tension, uniaxial compression, and pure shear: based on different discretization
schemes and different numbers of integration points (#IP)

Discretization Load case Yield stress Ultimate stress

Stroud #IP=15
uniaxial tension Σ33 = 21.61 34.04

uniaxial compression Σ33 = -131.50 -314.50
pure shear Σ23 = 20.87 31.05

Stroud #IP=28
uniaxial tension Σ33 = 23.77 34.20

uniaxial compression Σ33 = -151.77 -319.16
pure shear Σ23 = 20.01 31.10

Leblond #IP=120
uniaxial tension Σ33 = 22.46 34.23

uniaxial compression Σ33 = -140.36 -314.85
pure shear Σ23 = 19.14 31.09

leads to non-linear macroscopic stress-strain curves, and this non-linearity is asso-

ciated with the propagation of plasticity throughout the solid needle phases. As

all solid needle phases exhibit ideal plastic behavior, they cannot undergo any un-

loading processes under macroscopic loading states. With increasing macroscopic

stress, an increasing fraction of the solid needle phases plasticize, as illustrated in
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Figures 3.4(b), 3.5(b), and 3.6(b). The orientation of these increasing number of

plasticizing phases, quantified in terms of the angles θ and φ given in Figure 3.2,

can be illustrated on the stereographic projection of a unit sphere onto a plane

parallel to the base vectors e1 and e2, see Figures 3.4(b), 3.5(b), and 3.6(b) for

three such projections each, relating to characteristic macroscopic stress states be-

yond the yield point. In the aforementioned circular projections, different values

for the co-latitudinal coordinate θ are associated with different concentric circles,

the outermost circle being related to θ = π/2; and different values for the longitu-

dinal coordinate φ are associated with different straight lines oriented orthogonal

to the aforementioned circles. The plastic strains occuring in differently oriented

needle-shaped phases are indicated in terms of their norm, ||εp|| =
√∑

i

∑
j ε

p
ijε

p
ij

given as colored circles relating to the 120 integration point orientations employed

in the context of the Badel-Leblond discretization scheme, as described in Section

3.5.1. Out of these 120 orientations, only those relating to plasticized phases are

indicated. Hence, once all 120 orientations are marked by a colored circle, all solid

phases plasticize, and the RVE would fail under a macroscopic stress-driven test.

Naturally, the evolution of the aforementioned plastic regions in Figures 3.4(b),

3.5(b), and 3.6(b) give interesting insights into the microstructural events arising

under macroscopic loading of the types pure shear, uniaxial tension, and uniaxial

compression: In pure shear (see Figure 3.4(b)), plasticity starts in needles belong-

ing to the shear plane and inclined by π/4 to the e2-e3-axes, respectively, and

propagates towards needles oriented off-plane, but also less inclined from the axes

e2 and e3. Under macroscopic uniaxial tensile loading in e3-direction (θ = 0),

the needle-shaped phases oriented in loading directions are the first to plastify,

and the subsequent plastification process spreads axisymmetrically around e3, see

Figure 3.5(b). In uniaxial compression (see Figure 3.6(b)), plasticity starts in

needles orthogonal to the load direction, and while this plastic region on the unit

sphere projection area spreads, a second, independent non-contiguous plastic re-

gion emerges around θ = 0, i.e. needles oriented in the loading direction start

to plasticize as well. Finally, plastification events affect also the needle-shaped

phases inclined by π/4 from the loading direction, see Figure 3.6(b).
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3.7 Application: Push-out test on osteonal bone

Bone tissue is a hierarchically organized material composed of three elementary

components governing its mechanical behavior: mineral, collagen, and water with

non-collageneous organics. These elementary components are arranged in differ-

ent microstructures, from the nanometer scale up to that of milimeters [Katz

et al., 1984, Weiner and Wagner, 1998], see Figure 3.7. The seemingly “compact”,

so-called cortical shell surrounding the macroscopic organ [see Figure 3.7(a)] ap-

pears, under greater magnification, as a porous material itself, with cylindrical

pores (called Haversian canals) being surrounded by concentric layers of lamellar

bone matrix (see Figure 3.7(b) for the corresponding microstructural unit called

“osteon”). Each osteon consists of one Haversian canal surrounded by alternating

collagen-rich and collagen-poor layers of extravascular bone matrix [Marotti et al.,

1994, 2013], and such an osteon is bounded by a so-called cement line with up to

5 microns thickness [Skedros et al., 2005]. This cement line is collagen-free, as was

experimentally evidenced by staining tests [Skedros et al., 2005, Sokoloff, 1973,

Weidenreich, 1930, Weinmann and Sicher, 1955]. Conclusively, cement lines con-

tain hydroxyapatite and water with noncollageneous organics, these components

making up a polycrystalline material as seen in Figure 3.7(c). This material can

be suitably represented by the RVE of Figure 3.1, see Figure 3.7(d). Such an RVE

has been extensively used for the micromechanical modeling of the extrafibrillar

spaces within the bone ultrastructure [Fritsch et al., 2009b, Morin and Hellmich,

2014, Vuong and Hellmich, 2011].

The microscopic strength properties of the osteon can be determined through

push-out tests, first carried out by Ascenzi and Bonucci [1972] on bone from

human femoral shafts, and later by Bigley et al. [2006] on bone from the third

metapcarpal of a racehorse. During such tests, a punch with a diameter of about

150 µm applies a compressive load on the osteon until its complete debonding.

The absence of collagen in the cement lines makes them comparatively weak, and

renders them as preferred locations of osteon debonding in the course of push-out

tests.

Such a push-out test produces a pure shear stress in the cement line, which we

prescribe in the form Σ = Σ23(e2 ⊗ e3 + e3 ⊗ e2) on the RVE of Figure 3.1 with

solid phases following a Mohr-Coulomb criterion; by using the algorithm described

in Section 3.5. As model input parameters, we need (i) the elastic properties of

of the needle-shaped phases and of the pores, (ii) the strength properties of the
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(b)

(c)

(d)(a)

1 cm

10 µm

0.5 µm

Figure 3.7: Hierarchical organization of bone: (a) photograph of a whole bone; (b)
scanning electron micrograph of an osteon, being composed of alternating thick
(dense, collagen-rich) and thin (loose, collagen-poor) lamellae, and delineated by a
collagen-free cement line [Marotti, 1993], (c) scanning electron micrograph of the
isolated cement line [Davies, 2007], (d) micromechanical representation of collagen-
free compartment of bone ultrastructure, also referred to as “extrafibrillar space”
[Prostak and Lees, 1996]; permission for image reproduction requested (a) from
Paul Crompton, University of Wales College of Medicine, (b) from Springer-Verlag
New York Inc. for Figures 1 of [Marotti, 1993], and (c) from Elsevier for Figure
2B of [Davies, 2007]

plastic solid phases, and (iii) the volume fractions of pores (filled by water and

non-collageneous organic matter) and solid phases (made of hydroxyapatite, ab-

breviated as HA).

The elastic properties of the constituents were determined by experiments per-

formed on pure constituents: ultrasonic measurements on hydroxyapatite allowed

to identify the following isotropic properties [Gilmore and Katz, 1982, Katz and

Ukraincik, 1971]

CHA = 3kHAIvol + 2µHAIdev (3.97)

with kHA = 82.6 GPa and µHA = 44.9 GPa, Ivol as the volumetric part of the

identity tensor I with components

Ivolijkl =
1

3
δijδkl (3.98)

and Idev as the deviatoric part of the identity tensor defined by Idev = I− Ivol. The

elastic properties of the (undrained) pore fluid are approximated by that of the

water: Cpore = 3kH2OIvol, with kH2O = 2.3 GPa.

The strength properties of hydroxyapatite, as defined through the two parameters
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of the Mohr-Coulomb criterion, are gained from tension and compression experi-

ments on different HA biomaterials [Akao et al., 1981, Peelen et al., 1978, Shareef

et al., 1993], as given in greater detail in [Fritsch et al., 2009b]. The Mohr-Coulomb

parameters are chosen so as to minimize the mean square error between model pre-

dictions (as functions of porosity) and corresponding experimental results. They

amount to: β = 12 and σy = 570 MPa, or, according to Eq. (3.92) and (3.93),

csolid = 82.3 MPa and ϕsolid = 57.8◦.

Finally, the volume fractions are determined from mass, volume, and light mi-

croscopy measurements performed by McCarthy et al. [1990] on bone samples

from the third equine metacarpus. McCarthy et al. [1990] report 35 values each

for the macroscopic mass densities ρmacro, and for the vascular porosities fvas,

giving access to the extravascular mass densities as

ρexvas =
ρmacro − ρH2O × fvas

1− fvas
(3.99)

see Table 3.5 for corresponding numerical results. Then, recent microCT in-

vestigations revealing a lacunar-canalicular porosity per extravascular space of

f exvaslac+can = 2.06 % are considered [Schneider et al., 2007, 2011], so as to transform

these extravascular mass densities to the extracellular level, yielding the extracel-

lular mass densities according to

ρexcel =
ρexvas − ρH2O × f exvaslac+can

1− f exvaslac+can

(3.100)

see Table 3.5 for corresponding numerical results. These ultrastructural mass den-

sities then enter the “universal” composition rules of Vuong and Hellmich [2011],

who showed that the composition of the extracellular bone matrix, in terms of

mineral, organics and fluid, follows bilinear laws, as became evident from a wide

variety of bone tissues tested in over 80 years of research [Biltz and Pellegrino,

1969, Burns, 1929, Gong et al., 1964, Hammet, 1925, Lees, 1987, 2003, Lees and

Page, 1992, Lees et al., 1979a, 1983, 1995]. These rules are depicted in Figure

3.8, where the macroscopic-to-ultrastructural mass density transition was based

on vascular porosities of 3 % [Lees et al., 1979a], and lacunar-canalicular porosi-

ties of 2 % [Schneider et al., 2007, 2011] in the case of mammalian bone tissues,

while the absence of such pores in the case of tendons and otic bone tissues does

not require discrimination between macroscopic and ultrastructural density and

concentration properties. The extracellular bone matrix is made up by an arrange-

ment of collageneous fibrils and collagen-deficient extrafibrillar space, these two
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compartments being characterized by the same extracollageneous mineral concen-

tration [Hellmich and Ulm, 2003]. This distribution rule, together with the rules

identified by Morin et al. [2013] and Morin and Hellmich [2013] for fibrillar swelling

and shrinkage due to hydration and mineralization, finally allows for quantifica-

tion of the intercrystalline porosity and the mineral volume fractions inside an

RVE of extrafibrillar space, the one depicted in Figure 3.7(d); see Table 3.5 for

corresponding results.

Use of these volume fractions for such an RVE subjected to pure shear until full

plastification, yields the shear strength values given in the last column of Table

3.5. Their mean value of 31 MPa virtually perfectly agrees with the mean experi-

mental value of 30.7 MPa given by Bigley et al. [2006] for debond shear strength

of cement lines.
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Figure 3.8: Apparent mass densities (per volume of extracellular space) of water,
hydroxyapatite, and organic matter, versus overall mass density of extracellular
bone matrix, across different species, organs, and ages; in the line of Vuong and
Hellmich [2011]
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While this impressively confirms our modeling approach, we wish to also base the

experimental validation of the model-predicted values of Table 3.5 on a more pro-

found statistical argument. Therefore, we consider the aforementioned strength

predictions as validated if and only if the following statistical question is anwered

with “yes”. The question is: Does the statistical sample of 35 model-predicted

shear strength values belong to the same statistical population of shear strength

values as the statistical sample of 66 strength values which were experimentally

obtained by Bigley et al. [2006]? If we reconstruct the latter statistical sample of

Bigley et al. [2006] through log-normally distributed random variables with a mean

value of 30.7 MPa and a standard deviation of 3.9 MPa, i.e. with the characteristics

given explicitly by Bigley et al. [2006], then an ANOVA test clearly provides a clear

“yes” to the aforementioned question (for 5 randomly reconstructed experimental

samples, the corresponding F -values, with a mean of 0.49, stays very clearly below

the critical F -value of 3.94). Consequently, we regard our micromechanical model

of plastic porous polycrystals as validated for cement lines in osteonal bone.

3.8 Summary and conclusions

While multiscale elastoplasticity remains a veritable challenge in the mechanics

and physics of solids, the present paper contains several original contributions

providing a computationally efficient way to compute plastic phenomena in porous

hydrated polycrystals:

• The influence tensor concept pioneered by Dvorak and colleagues [Dvorak,

1992, Dvorak and Benveniste, 1992, Dvorak et al., 1994] has been extended

to infinitely many, mutually interacting, needle-shaped phases oriented in

all space directions. This appears as a valuable solution for elastoplastic

upscaling in polycrystals; which overcomes the elastoplastic stiffness overes-

timation associated with traditional micromechanics approaches comprising

typically only a few (such as two) phases with (assumedly) uniform plastic

strains; see e.g. the discussions in [Chaboche et al., 2001, 2005, Shojaei and

Li, 2013]. Similarly effective solutions have been already proposed in the

context of the so-called NTFA - non-uniform transformation field analysis

[Fritzen and Böhlke, 2011, Jiang et al., 2013, Michel and Suquet, 2003, 2004,

Roussette et al., 2009]; however, the latter approaches have all been related
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Table 3.5: Characterization of equine cortical bone samples of McCarthy et al.
[1990]: experimentally determined macroscopic mass densities and vascular porosi-
ties; extravascular and extracellular mass densities according to Eq. (3.99) and
(3.100); volume fractions of hydroxyapatite crystal needle phase and of pore phase
according to ”universal” composition rules reported in [Hellmich and Ulm, 2003,
Morin and Hellmich, 2013, Morin et al., 2013, Vuong and Hellmich, 2011]; and
shear strength values predicted by the micromechanics model from Section 3.6,
based on the material properties of Table 3.3.

ρmacro fvas ρexvas ρexcel fHA fpore Σult
23

[g/cm3] [-] [g/cm3] [g/cm3] [-] [-] [MPa]
2.03 0.10 2.14 2.17 0.74 0.26 32.5
2.02 0.08 2.11 2.13 0.72 0.28 31.7
2.01 0.11 2.13 2.16 0.74 0.26 32.2
2.01 0.07 2.09 2.11 0.71 0.29 31.2
2.00 0.09 2.10 2.12 0.72 0.28 31.5
2.00 0.07 2.08 2.10 0.71 0.29 31.0
2.00 0.06 2.06 2.09 0.70 0.30 30.7
1.98 0.12 2.11 2.14 0.73 0.27 31.8
1.98 0.12 2.11 2.14 0.73 0.27 31.8
1.98 0.10 2.09 2.11 0.71 0.29 31.3
1.98 0.10 2.09 2.11 0.71 0.29 31.3
1.97 0.10 2.08 2.10 0.71 0.29 31.0
1.97 0.12 2.10 2.13 0.72 0.28 31.6
1.96 0.11 2.08 2.10 0.71 0.29 31.0
1.96 0.10 2.07 2.09 0.70 0.30 30.8
1.95 0.14 2.10 2.13 0.72 0.28 31.6
1.95 0.09 2.04 2.07 0.69 0.31 30.3
1.95 0.12 2.08 2.10 0.71 0.29 31.1
1.95 0.18 2.16 2.18 0.75 0.25 32.7
1.95 0.11 2.07 2.09 0.70 0.30 30.8
1.95 0.14 2.10 2.13 0.72 0.28 31.6
1.93 0.12 2.06 2.08 0.70 0.30 30.6
1.93 0.09 2.02 2.04 0.67 0.33 29.5
1.93 0.13 2.07 2.09 0.70 0.30 30.9
1.92 0.12 2.05 2.07 0.69 0.31 30.4
1.92 0.10 2.02 2.04 0.67 0.33 29.6
1.92 0.12 2.05 2.07 0.69 0.31 30.4
1.92 0.11 2.03 2.06 0.69 0.31 30.0
1.91 0.12 2.03 2.06 0.69 0.31 30.0
1.91 0.22 2.17 2.19 0.75 0.25 32.9
1.91 0.18 2.11 2.13 0.72 0.28 31.7
1.90 0.25 2.20 2.23 0.77 0.23 33.5
1.90 0.12 2.02 2.04 0.68 0.32 29.6
1.82 0.09 1.90 1.92 0.57 0.43 24.9
1.76 0.30 2.09 2.11 0.71 0.29 31.2
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to periodic (rather than polycrystalline) microstructures, and the determi-

nation of associated plastic modes (replacing uniform plastic strain fields)

typically requires the introduction of coupled plastic flow rules and auxil-

iary numerical simulations, based on the Finite Element, or the Fast Fourier

Transform Method. As with the Finite Element Method, also our present

approach needs consideration of discretization issues (related, however, to

the proper evaluation of integrals over the unit sphere), while it is based on

classical multisurface plasticity (with no need to introduce additional “plas-

tic couplings”).
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Figure 3.9: Comparison of spherical and cylindrical pore shape representation in
micromechanical model for porous polycrystal; and comparison with experiments,
see [Fritsch et al., 2013b] for experimental sources.

• The morphology depicted in Figure 3.1 is particularly well suited for a wide

class of porous polycrystals. This was shown by Fritsch et al. [2009c, 2013b],

Sanahuja et al. [2009]; reporting that the homogenized Young’s modulus

normalized by the Young’s modulus of the solid needle phases turned out

to exclusively depend on the porosity, and that this dependence was very

well confirmed by experimental data on hydroxyapatite [Charrière et al.,

2001, de With et al., 1981, Gilmore and Katz, 1982, Liu, 1998], gypsum

[Ali and Singh, 1975, Colak, 2006, Meille, 2001, Phani, 1986, Tazawa, 1998],

piezoelectric ceramics [Craciun et al., 1998], alumina [Coble and Kingery,
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1956, Pabst et al., 2004], zirconia [Pabst et al., 2004], silicon carbide [Rey-

naud et al., 2005], and silicon nitride [Dı́az and Hampshire, 2004]. In addi-

tion, such homogenized elasticity predictions were shown to be in excellent

agreement with Finite Element simulations of “real” gypsum microstruc-

tures [Sanahuja et al., 2009]. By comparison, approaches which may seem

similarly adequate on the first sight, such as the use of uniformly oriented

acircular pore phases instead of one spherical pore phase, yield remarkably

worse predictions, namely a significant overestimation of experimental data,

see Figure 3.9. Further confirming the choice of one spherical pore phase,

the micromechanical representation of Figure 3.1 also turned out as very

relevant for quasi-brittle strength predictions [Fritsch et al., 2009c, Sanahuja

et al., 2009]; and the present paper shows an equally sound capacity of this

micromechanical representation when it comes to the realm of elastoplastic

property upscaling. Extension of the method from uniformly oriented needle-

shaped phases to preference of certain orientations, as encountered e.g. in

the case of clay [Wenk et al., 2008] is quite straightforward. As was shown for

axisymmetrically oriented needle phases in the context of elasticity [Fritsch

et al., 2006], and would be reflected by adding probability density functions

inside the spherical integrals appearing in Eqs. (3.16), (3.17), (3.22), (3.23),

(3.25), (3.26), (3.31), (3.32), (3.33), (3.34), (3.35), (3.38), (3.39), (3.40),

(3.41), (3.42), (3.43) as well as in their discretized counterparts. This is

beyond the scope of the present manuscript.

• Involving infinitely many phases as part of the basic concept, our approach

requires discretization down to an approriate number of phases, for which we

employ two different concepts, namely Stroud’s integration [Stroud, 1971] as

well as the discretization method described in [Badel and Leblond, 2004].

The results related to all three choices of discretization are in satisfactory

agreement. In this context, we reiterate that the consideration of different

orientations is one of the keys to the succcess of our new method, a feature

which this method shares with the so-called microplane models, as developed

extensively by Bažant and colleagues [Bažant and Oh, 1985, Bažant and

Prat, 1988, Bažant et al., 2000]. The latter models are also based on the

principle of virtual work, however, they restrict corresponding energetical

considerations to tangential planes on a unit hemisphere; rather than to a

3D RVE as is typically done in continuum micromechanics and described in

Section 3.2.
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• Upscaling of the elastoplastic constitutive relations from the solid phase to

the porous polycrystal scale is performed by adaptation of the well-known

return map algorithm originating from the nonlinear elastoplastic Finite El-

ement analysis [Simo and Hughes, 1998, Simo and Taylor, 1985], based on an

incremental load apposition. What is adopted from the original algorithm

is the trial state computed from a fictitiously purely elastic deformation in

the load step under investigation; this trial step giving a first indication on

which solid phases might actually undergo plastic deformations. Whether

this is actually the case, is checked via implicit solution of the elastic consti-

tutive equation in combination with fulfillment of the active yield criteria.

In contrast to the case encountered in the nonlinear Finite Element anal-

ysis, computation of elastoplastic (consistent) tangent is not required, as

the concentration-influence relations are explicitly known. We regard this

adoption of classical plasticity algorithms for micromechanics approaches as

original in the context of polycrystalline materials, while we are aware of

similar approaches for metal-ceramic composites with periodic microstruc-

tures [Vena et al., 2007]; but also for self-consistent homogenization based

on spherical phase representations [Zeng et al., 2014]. The latter reference,

however, rests on the use of suitably chosen elastoplastic tangents, while

our concept explicitly accounts for the effects of geometrically incompatible

non-elastic strains at the microscale, on the overall homogenized material

behavior. This new concept extends the transformation field analysis [Dvo-

rak and Benveniste, 1992, Dvorak et al., 1994], based on more recent work of

Pichler and Hellmich [2010], towards infinitely many, needle-shaped eigen-

stressed phases. Realization of a return map algorithm for Mohr-Coulomb

plasticity is a quite peculiar undertaking. Our corresponding developments

described in Section 3.6 are somewhat inspired by the work of Clausen et al.

[2007]. However, the latter work considers cases where the principal stress

directions stay unaltered during the back projection of the trial stress state

(which is related to one point of the simulated structure), onto the cor-

responding yield surface. Hence, this return mapping algorithm, which is

performed stress state per stress state, is associated with the solution of a

linear system of equations. With respect to this situation, our solution de-

scribed in Section 3.5.4 is original with respect to two features: (i) all trial

stress states in all (active) needle phases are back projected simultaneously,
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(c) under uniaxial compression

(b) under uniaxial tension(a) under pure shear
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Figure 3.10: Convergence behavior during return map of trial states onto Mohr-
Coulomb surfaces related to 120 solid needle phases arising from Badel-Leblond
discretization; residual vector R is defined through Eq. (3.84)

leading finally to a much larger system of equations involving all plastic mul-

tipliers from all yield surfaces related to all (active) needle phases; and (ii)

the principal stress directions change upon back projection of the trial stress

states onto the plastic yield surfaces; accordingly the aforementioned system

of equations becomes nonlinear, and it is hence solved according to the itera-

tion scheme given by Eq. (3.82) - (3.88). Depending on macroscopic loading

type and loading level, i.e. on the number of active needle-shaped solid

phases, between one and ten iteration steps are typically needed in order to

back-project all trial stress states onto the phase-specific yield surfaces, see

Figures 3.10(a)-(c).
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• As a rule the microstructural plastic events start in crystal phases oriented

in the direction of the dominant macroscopic tensile stress; in the case of the

latter being absent, the plasticity affects solid phases being oriented perpen-

dicular to the dominant macroscopic compressive direction. Thereafter, the

micro-plasticity spreads over all solid phase needle directions. Ultimate loads

refer to all solid needle plasticizing, and when applied to the collagen-poor

lamellae of osteonal bone, the presented micromechanical concept predicts

well the ultimate loads attained in osteon push-out tests. Corresponding

Mohr-Coulomb plasticity of the hydroxypatite crystal phases thereby may

represent either sliding of hydrated interfaces situated within these phases

as repeatedly discussed in material mechanics [Bhowmik et al., 2007, 2009,

Qu et al., 2015a,b, Shahidi et al., 2014] or intrinsic dislocation phenomena

in hydroxyapatite [Ievlev et al., 2013, Saka et al., 2008, Viswanath et al.,

2007].

• As regards model validation, there are two principal options: comparison

of micromechanics model results with Finite Element simulations resolving

the material microstructures down to minute detail; or with experimental

results. Generation of trustworthy Finite Element models requires very de-

tailed knowledge on the geometrical characteristics of the object to be simu-

lated. As regards the extrafibrillar space of bone, the material system inves-

tigated in Section 3.7, transmission electron micrographs [Lees and Prostak,

1988, Lees et al., 1994b, McNally et al., 2012, Prostak and Lees, 1996, Su

et al., 2003, Zylberberg et al., 1998] have revealed microstructural details

down to the several nanometer scale, over ranges spanning several hundreds

of nanometers. However, full 3D quantification of structural features, e.g. by

means of X-ray-based Computed Tomography techniques which have proved

as particularly useful for the generation of trustworthy Finite Element mod-

els [Dejaco et al., 2012], is still out of reach. This is why we here compare

our homogenization results of Table 3.5 directly to the experimental results

of Bigley et al. [2006] for debonding shear strength of cement lines: Model

predictions and experiments agree virtually perfectly, as reported in the last

paragraph of Section 3.7. From a more qualitative viewpoint, it is interest-

ing that the seamless transition from elastic to elastoplastic regimes in the

stress-strain curves of bone at the single micron scale, where polycrystals as

the one depicted in Figure 3.1 largely affect the material behavior, is indeed

observed experimentally, as recent compressive tests on single micron-sized
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pillars have impressively shown [Luczynski et al., 2015, Schwiedrzik et al.,

2014].

• For the sake of completeness, we may state that our approach targets at

capturing the development of micro-plastic strains stemming from non-

associated plasticity, and their macroscopic effects. This may be seen as an

interesting complement to the popular plastic homogenization approaches

based on limit analysis and variational methods; considering, as a rule, mi-

croscopic strength criteria, equilibrium at the micro and macro-scale, maxi-

mization of dissipation, and sometimes associated plasticity. Corresponding

recent developments are reported in [Bignonnet et al., 2016, Cheng et al.,

2014, Shen et al., 2015]. Other approaches [Qi et al., 2016] use the additive

nature of the macroscopic strains resulting from particular microstructures,

such as frictional cracks embedded in an elastic matrix. The macroscopic

strains arising from the frictional cracks are directly introduced as macro-

scopic plastic strains, without any explicit micro-to-macro upscaling.

• Potential future work may aim at going beyond the constraints of ideal plas-

ticity at the solid needle phase level, so as to extend the modeling approach

towards catastrophic failure, such as it is eventually seen, for example, in

the osteon push-out tests of Bigley et al. [2006]. This would imply care-

ful study of so-called softening plasticity formulations, considering valuable

knowledge from nonlocal and gradient plasticity theory [de Sciarra, 2004,

2008a,b, 2009].
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3.9 Nomenclature

Ai fourth-order strain concentration tensor of phase i
Apore fourth-order strain concentration tensor of pore phase
A∞pore matrix-inclusion problem-related strain concentration ten-

sor of the pore phase
Aθφ fourth-order strain concentration tensor of solid needle

phase with orientation (θ,φ)
A∞θφ matrix-inclusion problem-related strain concentration ten-

sor of the solid needle phase oriented in direction (θ,φ)
csolid cohesion of solid phases
C0 stiffness tensor of matrix in matrix-inclusion problem
CHA stiffness tensor of hydroxyapatite
Chom homogenized stiffness tensor (of porous polycrystal)
Cpore stiffness tensor of pore phase
Csolid stiffness tensor of solid needle phases
d characteristic length of the inhomogeneities within the

RVE
Dij fourth-order influence tensor linking eigenstrains in inte-

gration point j to total strains in integration point i
Dpore,ΘΦ fourth-order influence tensor linking eigenstrains in (Θ, Φ)-

oriented solid needle phase to total strains in the pore phase
Dθφ,ΘΦ fourth-order influence tensor linking eigenstrains in (Θ, Φ)-

oriented solid needle phase to total strains in (θ,φ)-oriented
solid needle phase

Dpore,j fourth-order influence tensor linking eigenstrains in phase
j to total strains in pore phase

E macroscopic strain tensor
En, En+1 macroscopic strain tensor at load steps n and (n + 1), re-

spectively
∆En+1 (n+ 1)-st macroscopic strain increment
E0 homogeneous strains at the infinite boundary of the matrix-

inclusion problem
Eπ

0 strain-like quantity according to (3.33)
Ep macroscopic plastic strain tensor
Ep,n, Ep,n+1 macroscopic plastic strains at load steps n and (n + 1),

respectively
e1, e2, e3 unit base vectors of Cartesian reference base frame
eθ, eφ, er unit base vectors of spherical base frame attached to the

solid needle phase
fHA volume fraction of hydroxyapatite
fpore volume fraction of (intercrystalline) pore space; i.e. (inter-

crystalline) porosity
fvas volume fraction of vascular pores; i.e. vascular porosity



Chapter 3. Elastoplasticity of porous polycrystals 122

F(α) α-th yield function of the multisurface yield criterion

F
(α),n+1,trial
i trial state in phase i at load step (n+ 1), of yield function

F(α)

G(α) plastic flow potential related to activity of the α-th yield
function in multisurface yield criterion

i, j indices numbering integration points chosen for evaluation
of integrals over the unit sphere (the latter representing the
set of all spatial orientations of solid needle-shaped phases)

I fourth-order identity tensor
Idev deviatoric part of I
Ivol volumetric part of I
kHA bulk modulus of hydroxyapatite
kH2O bulk modulus of water
l characteristic length of the RVE
lθφ length of all needle-shaped crystals oriented in (θ,φ)-

direction
L characteristic structural length
n unit normal vector at microscopic scale
Ncyl,plast number of plasticizing needle-shaped (cylindrical) solid

phases
NFact,i number of active yield surfaces in (plasticizing) solid needle

phase i
NFact,max maximum number of potentially active yield surfaces per

solid needle phase
pI−II , pI−III planes defining regions in stress space representations of

Mohr-Coulomb criterion
Pcyl Hill (or morphology) tensor of cylindrical inclusion embed-

ded in matrix with stiffness Chom

Psph Hill (or morphology) tensor of spherical inclusion embed-
ded in matrix with stiffness Chom

RVE Representative Volume Element
Rn+1,k+1,l residual vector in Newton iteration scheme, related to load

step (n+ 1), to the (k + 1)-st macro-micro transition, and
to return mapping iteration l
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S set of Gaussian points over the unit sphere
Scyl,plast set of plasticizing needle-shaped (cylindrical) solid phases
tn, tn+1 time instants at load steps n and (n+ 1), respectively
t vector orthogonal to n, within the Mohr plane spanned by

n and T
T (microscopic) traction vector
Vpore volume of pore phase
VRV E volume of the RVE
∂VRV E surface of the RVE
W ext work of external forces acting on the RVE
W int work of internal forces acting within the RVE
x position vector inside the RVE
β ratio between uniaxial tensile strength and shear strength

of hydroxyapatite
δ Kronecker delta
ε microscopic strain
εi average microscopic strain in phase i
εni , εn+1

i average microscopic strains in phase i, at load steps n and
(n+ 1), respectively

εpi average microscopic plastic strains in phase i

∆εp,n+1
i (n+ 1)-st increment of microscopic plastic strain tensor of

phase i
εpore average pore strains
εnpore, ε

n+1
pore average pore strains at load steps n and (n+1), respectively

εθφ average microscopic strains in solid needle phase with ori-
entation (θ,φ)

εpθφ average plastic strains in solid needle phase with orienta-
tion (θ,φ)

θ spherical (co-latitudinal) coordinate

λ̇
(α)
θφ plastic multiplier related to the α-th yield surface associ-

ated to the solid needle phase oriented in (θ,φ)-direction

∆λn+1,k+1,l plastic multiplier vector in Newton iteration scheme, re-
lated to load step (n + 1), to the (k + 1)-st macro-micro
transition, and to return mapping iteration l

∆(∆λ)n+1,k+1,l plastic multiplier vector update in Newton iteration
scheme, related to load step (n+1), to the (k+1)-st macro-
micro transition, and to return mapping iteration l

∆λ
(α),n+1
i (n+1)-st increment of plastic multiplier related to the α-th

yield surface associated to phase i
µHA shear modulus of hydroxyapatite
ξ microscopic displacement field
πθφ eigenstress of solid needle phase oriented in (θ,φ)-direction
Π0 eigenstress acting in the infinite matrix of the matrix-

inclusion problem
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ρexcel extracellular bone tissue mass density
ρexvas extravascular bone tissue mass density
ρmacro macroscopic mass density
φ spherical (longitudinal) coordinate
ϕsolid angle of internal friction
σi,j ordered principal stresses of phase i, j = I, II, III
σy,HA compressive yield strength of hydroxyapatite
σ microscopic stress
σi average stress in phase i
σni ,σn+1

i average stress in phase i at load steps n and (n + 1), re-
spectively

∆σn+1
i (n+ 1)-st microscopic stress increment of phase i

σn+1,trial
i trial stress in phase i, at load step (n+ 1)
σ̃n+1
i average stress in phase i, at load step (n+ 1), as defined in

(3.81)
σnn = σ normal component of traction vector
σnt = τ shear component of traction vector
σpore average pore stress
σθφ average stress in solid needle phase with orientation (θ,φ)
Σ macroscopic stress tensor
Σn, Σn+1 macroscopic stress tensor at load steps n and (n + 1), re-

spectively
∆Σn+1 (n+ 1)-st macroscopic stress increment
ωi Gaussian weight

∇s symmetric gradient operator
〈(.)〉 spatial average of quantity (.), over the RVE
div divergence operator
(.)T transpose of tensorial quantity (.)
(.)−1 inverse of tensorial quantity (.)
⊗ dyadic product
˙(.) rate (temporal derivative) of quantity (.)
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Abstract

Plasticity is standardly considered to arise from dislocation processes at the mi-

croscale. We here propose a corresponding continuum micromechanics model,

where 2D frictional interfaces which slide as soon as a traction threshold is reached,

are embedded in a 3D purely elastic matrix. Therefore, we combine concentration-

influence relations linking the macroscopic strains to the interface tractions and the

interface dislocations, with flow rule-type evolution laws for the latter quantities.

In combination with the classical stress average rule and Hill’s lemma (principle

of virtual power), this results in a macroscopic material behavior showing features

of kinematic hardening plasticity. However, a thermodynamic analysis shows that

the strain and the hardening variables (i.e. the interface dislocations) are energeti-

cally coupled so that the classical decoupling hypothesis for the frozen energy does

not hold. The ideal frictional behavior assigned to the interfaces can be motivated

from recent molecular dynamics simulations.

4.1 Introduction

Some ten years ago, a new variant of the self-consistent method [Fritsch et al.,

2006], namely one involving one spherical pore phase and infinitely many

non-spherical solid phases oriented in all space directions, allowed for gaining new

grounds concerning the application range of continuum micromechanics. These

applications concern poroelasticity and strength upscaling of porous polycrystals,

such as hydroxyapatite [Fritsch et al., 2009b, 2010b], gypsum [Sanahuja et al.,

2010], or a variety of alumina, circonia, and silica-based ceramics [Fritsch et al.,

2010b]. Based on concepts which are often referred to as transformation field

analysis [Dvorak and Benveniste, 1992, Pichler and Hellmich, 2010], these formu-

lations have been recently extended to full elastoplasticity. With a Mohr-Coulomb

criterion applied to the solid phases, the corresponding return map algorithms

allowed for predicting the sliding failure of the cement line in push-out tests

performed on osteonal bone [Morin et al., 2017]. Such a Mohr-Coulomb criterion

somehow naturally accounts for sliding process within the solid phases (a modeling

approach which repeatedly turned out as valuable concerning hydroxyapatite

strength in bone [Fritsch et al., 2009c, Tai et al., 2008]). On the other hand, the

Mohr-Coulomb criterion does not further resolve the internal sliding processes.
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The latter have probably to do with “ice-like-fluid”-filled interfaces, as studied in

the framework of molecular dynamics studies of bone mineral [Bhowmik et al.,

2007, 2009, Devendra and Tomar, 2009, Qu et al., 2015a, Zahn and Hochrein,

2003], and also in terms of continuum creep deformations they may cause [Qu

et al., 2015b, Shahidi et al., 2014, 2016a,b,c]. Deepening this discussion on

interface-to-bulk upscaling of inelastic properties, the present contribution focuses

on the transition of frictional sliding at the interface scale, to elastoplasticity at

the scale of a representative volume element consisting of an elastic solid phase

and fluid-filled interfaces (with comparatively negligible volume fractions).

The paper is organized as follows: first, the continuum micromechanics of

materials with a matrix-interface type morphology is introduced within a

Representative Volume Element (RVE), and material phases are defined: (i) a

solid elastic matrix, with (ii) parallel interfaces as 2D objects hosting eventually

the “ice-like” fluid layers embedded into the elastic solid matrix. Homogeneous

macroscopic strains are prescribed at the boundary of the RVE, and eigentractions

are prescribed “inside” the interfaces. These tractions enter the frictional laws,

which, thanks to the knowledge of concentration and influence tensors derived

from the limit cases of infinitely thin oblate spheroids [Eshelby, 1957, Pichler

and Hellmich, 2010, Shahidi et al., 2014], are then upscaled to the homogenized

behavior of the RVE. The latter is of the kinematic hardening type, which is

explicitly confirmed by a dissipation analysis.

4.2 Separation of scales, stress and strain aver-

age rules

In continuum micromechanics [Hashin, 1983, Hill, 1963, Zaoui, 1997, 2002], the

material is considered as the macro homogeneous, but micro heterogeneous matter

filling a Representative Volume Element (RVE) with volume VRV E, which satisfies

the standard separation-of-scales requirement [Drugan and Willis, 1996, Huet,

1990]: the material volume (with characteristic size `) needs to be much smaller

than the structure built up by this material (with characteristic size L), and much

larger than the inhomogeneities within the material (with characteristic size d)

d� `� L (4.1)
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Thereby, the first inequality sign in Eq. (4.1) refers to a factor of 2-3 [Drugan

and Willis, 1996], while the second one refers to a factor of 5-50 [Kohlhauser and

Hellmich, 2013]. Due to the complexity of the microstructure within one RVE,

we do not resolve each and every detail within the material volume, but intro-

duce quasi-homogeneous subdomains, called material phases, with known physical

quantities.

We here consider a homogeneous material containing frictional interfaces: the

RVE, as depicted on Figure 4.1, consists of one solid matrix phase labelled by

index m, and one interface phase representing N interfaces of identical size and

shape; i.e. with a circular cross section of radius a, aligned normal to ez. The inter-

x

ξ= E · x

interface phase

y

z

solid phase

ℓ ≫ 2a

= 2a

Figure 4.1: RVE of an isotropic solid matrix hosting N flat, parallel interfaces of
identical shape and size, represented as one interface phase

face phase is charaterized by an interface density d, which according to Budiansky

and O’Connell [1976] reads as

d =
Na

VRV E
(4.2)

At its boundary SRV E, the RVE is subjected to homogeneous linearized macro-

scopic strains [Hashin, 1983], prescribed in terms of displacements

ξ (x) = E · x ∀x ∈ SRV E (4.3)

with x as the location vector labeling points within the RVE and on its boundary;

and to internal dislocations, quantified in terms of displacement jumps

ξ+ (x)− ξ− (x) = [ξ] (x) x ∈ Aδ (4.4)

which are recorded whenever crossing points belonging to the interface phase,

the entity of these points making up the total interface domain, which is of two-

dimensional nature, with area Aδ = N× a2π. The two-dimensional nature of the

interface phase implies vanishing of its volume, so that the solid matrix fills the
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entire volume of the composite, hence VRV E = Vm. Boundary conditions of the

format (4.3) together with a displacement field comprising discontinuities, imply

a strain average rule of the following format [Dormieux et al., 2007, Fritsch and

Hellmich, 2007, Hashin, 1983, Shahidi et al., 2016a]

E =
1

VRV E

∫

VRV E

ε(x)dV +

∫

Aδ

[ξ](x)
s
⊗ n(x)dS (4.5)

where n(x) stands for the unit normal vector at position x. The RVE is subjected

to traction forces at its boundary

T (x) = σ(x) · n(x) ∀x ∈ SRV E, x ∈ Aδ

div σ(x) = 0 ∀x ∈ VRV E (4.6)

The external power performed by these traction forces is

P ext =

∫

SRV E

T (x) · ξ̇(x) dS

=

∫

SRV E

(
Ė · x

)
·
(
σ(x) · n(x)

)
dS

= Ė :

∫

VRV E

σ(x) dV

(4.7)

Hence, the force quantity performing power on the macroscopic strain rates Ė is

the volume integral over the microscopic stress. This integral is independent of

microscopic position, and of dimension “stress times volume”. This induces the

existence of the macroscopic stress in the form

Σ =
1

VRV E

∫

VRV E

σ(x) dV , (4.8)

On the other hand, the power of external forces acting on the elastic matrix

only comprises an additional term which considers the interface traction forces

performing power on the internal surfaces of the RVE,

P ext,m = Σ : Ė −
∫

Aδ

T (x) · ξ̇(x) dS (4.9)

The power expression for the interface phase in Eq. (4.9) can be derived from

considering the interface phase as the limit case of an infinitely thin eigenstressed
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inclusion phase [Pichler and Hellmich, 2010, Shahidi et al., 2014, 2016b]

∫

Aδ

T (x) · ξ̇(x) dS =
2πd

a
T δ [ξ]δ (4.10)

with T δ as the traction vector related to the inclusion stresses

T δ = σ
inc
· ez (4.11)

and interface phase-specific dislocation [ξ]δ stemming from averaging over each of

the spherical interfaces

[ξ]δ =
1

aπ

∫ a

0

[ξ](r) 2π r dr (4.12)

with the radial coordinate r measuring the radial distance from the center of each

of the interfaces which altogether make up the interface phase.

Finally, the mechanical state of the matrix phase is characterized by its averages

of microstress and microstrain, in the following form:

σ
m

=
1

VRV E

∫

VRV E

σ (x) dx (4.13)

ε
m

=
1

VRV E

∫

VRV E

ε (x) dV (4.14)

From Eqs. (4.13) and (4.8), it follows that

σ
m

= Σ (4.15)

4.3 Behavior of material phases: linear elastic

matrix and frictionally sliding interfaces

We consider a linear elastic matrix fulfilling

σ
m

= C
m

: ε
m

(4.16)

with C
m

as the isotropic fourth-order stiffness tensor of the matrix phase

C
m

= 3kmI
vol

+ 2µmI
dev

(4.17)
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where I
vol

= 1
3
1 ⊗ 1 and I

dev

= I − I
vol

, respectively, denote the volumetric and

deviatoric part of the symmetric fourth-order identity tensor I, with components

Iijkl = 1/2 (δikδjl + δilδkj), and with δij denoting the Kronecker delta being equal

to 1 if i = j and 0 otherwise, and 1 as a second-order identity tensor. In (4.17),

km and µm denote the bulk modulus and the shear modulus of the matrix phase,

respectively.

The open literature on the continuum micromechanics of so-called frictional

cracks [Barthélémy et al., 2003, Zhu et al., 2008], and molecular dynamics

simulations of lubricating fluid-filled interfaces [Tao et al., 2015], see Appendix for

further details, motivate us to characterize the interfaces by a perfectly frictional

behavior, which is mathematically described through relations between the com-

ponents of the interfacial displacement jumps [ξ]δ quantifying the displacement

jumps across the interfaces, and the interfacial traction vectors T δ acting on the

interface planes; as follows:

• The interfaces do not “open”; this is also referred to as “glueing condition”,

and implies

[ξ]δ,z = 0 (4.18)

• As for the in-plane behavior, the tangential components of the displacement

jumps are of exclusively frictional nature; which can be expressed by a for-

mulation resembling a plastic flow rule;

[ξ̇]δ,α =





0, if F(T δ) ≤ 0,

λ̇δ
∂F
∂Tδ,α

, if F(T δ) = 0 and Ḟ(T δ) ≥ 0; with α ∈ {x, y}
(4.19)

with a frictional (plastic) multiplier λ̇δ, and with F(T δ) as Mohr-Coulomb-

type yield criterion, governing the initiation and the propagation of plasticity

F(T δ) =|τδ|+ σδ tanφ− c ≤ 0 (4.20)

with τδ = T δ · t and σδ = T δ · n as the norm of the shear and normal com-

ponents of the traction vector, respectively, φ as the friction angle, and c as

the cohesion.

The sliding activity is then governed by the so-called Melan-Kuhn-Tucker
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conditions [Melan, 1938, Ortiz and Popov, 1985], and the consistency con-

dition restricted to the interface plane; altogether reading as

λ̇δ ≥ 0 , F(T δ) ≤ 0 , λ̇δ ×F(T δ) = 0 , and λ̇δ × Ḟ(T δ) = 0 (4.21)

4.4 Scale transition: concentration-influence re-

lations

For an RVE with kinematics and equilibrium conditions as given in Section 4.2,

and with a linear elastic matrix according to Eq. (4.16) and (4.17), the mean

displacement jumps across interfaces, defined through Eq. (4.12), are related

to the macroscopic strains and the interface tractions according to the so-called

concentration-influence relations [Dvorak and Benveniste, 1992]. The latter read

for the investigated material system as [Shahidi et al., 2014]

[ξ]δ = A
δ

: E +D
δδ
· T δ (4.22)

whereby A
δ

denotes the third-order strain concentration tensor describing the in-

fluence of macroscopic strain on the average displacement jump encountered when

crossing any portion of the interface phase; and D
δδ

stands for the second-order

influence tensor describing the influence of interfacial eigentraction on the average

displacement jump of the interface phase, see the Appendix for the components

of these tensors. In addition, the strains in solid matrix can be related to the

macroscopic strains and the traction forces, by adapting the case of pore pressures

as described in Fritsch et al. [2013b], to that of interface tractions,

ε
m

= A
m

: E +D
mδ
· T δ (4.23)

Combination of (4.23) with elasticity law (4.16) and stress average (4.13) yields

Σ = C
hom

: E +B
δ
· T δ (4.24)

with

C
hom

= C
m

: A
m

= C
m

:

[
I +

4πd

3
T
δ

]
(4.25)
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as the homogenized stiffness tensor, d as the interface density, and B
δ

= C
m

: D
mδ

as the Biot-type tensor relating interface tractions to overall macroscopic stresses,

see the Appendix for the components of T
δ

(4-th order tensor) and B
δ
.

4.5 Analytical solution of the problem

4.5.1 Elastic domain

In the elastic domain, interface displacement jumps have not yet occurred,

[ξ]δ,α = 0 with α = (x, y) (4.26)

and also their rate remains zero. Traction forces T δ are fully transmitted over the

not yet recognizable interfaces, and accordingly, only the elastic matrix intervenes

in the overall material behavior; a macroscopic stress provokes a macroscopic strain

via

E = C−1

m

: Σ (4.27)

As the interfacial traction forces T δ are the governing factors for eventual sliding

processes under increasing macroscopic stress, it is convenient to express the former

as functions of the latter. For this purpose, influence relation (4.22) is specified for

vanishing displacement jumps, and is then used in order to express the interface

traction vector as a function of the macroscopic strains, which, in combination

with (4.27), yields

T δ = D−1

δδ
: A

δ
: C−1

m

: Σ (4.28)

According to Eq. (4.28), the non-zero components of interface tractions T δ in a

base frame ex, ey, ez, which is aligned with the interface phase, see Figure 4.1,

read as

Tδ,x = D−1
xxAxxz(C

−1
m )xzxzΣxz

Tδ,y = D−1
yy Ayyz(C

−1
m )yzyzΣyz

Tδ,z = D−1
zz

∑

j

∑

k

Azjj
(
C−1
m

)
jjkk

Σkk with j, k = {x, y, z}
(4.29)
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Insertion of (4.29) into the yield criterion (4.20) gives access to the elastic domain

in terms of the macroscopic stress components

√∑

j

(
D−1
jj Ajjz (C−1

m )jzjz Σjz

)2
+ tanφD−1

zz

∑

k

∑

l

Azkk
(
C−1
m

)
kkll

Σll − c ≤ 0

(4.30)

Re-formulation of (4.30) towards

Σ2
xz(

c−tanφD−1
zz

∑
k

∑
l Azkk(C

−1
m )

kkll
Σll

D−1
xxAxxz(C−1

m )xzxz

)2 +
Σ2
yz(

c−tanφD−1
zz

∑
k

∑
l Azkk(C

−1
m )

kkll
Σll

D−1
yy Ayyz(C−1

m )yzyz

)2 = 1

with j = {x, y}, k, l = {x, y, z}
(4.31)

evidences that the elastic domain exhibits the shape of an ellipse in the Σxz- Σyz

plane, with its center at the point (Σxz = 0; Σyz = 0) and with semi-axes measuring

(
c− tanφD−1

zz

∑

k

∑

l

Azkk
(
C−1
m

)
kkll

Σll

)
/

(
D−1
jj Ajjz (C−1

m )jzjz Σjz

)
(4.32)

whereby j is a semi-axis-specific index, j = {x, y}. Specification of the elastic

domain in the format (4.30) for pure shear loading in the interface plane yields

√∑

j

(
D−1
jj Ajjz (C−1

m )jzjz Σjz

)2 − c ≤ 0 with j = {x, y} (4.33)

The re-formulation

Σ2
xz(
c

D−1
xxAxxz(C−1

m )xzxz

)2 +
Σ2
yz(
c

D−1
yy Ayyz(C−1

m )yzyz

)2 = 1 (4.34)

indicates an ellipse in the Σxz- Σyz plane, with semi-axes measuring

(c) /
(
D−1
jj Ajjz (C−1

m )jzjz Σjz

)
(4.35)

whereby j is a semi-axis-specific index, j = {x, y}.
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4.5.2 Elasto-plastic domain

Beyond the yield limit, dissipative interfacial sliding events occur according to Eq.

(4.19)-(4.21), quantified in terms of non-zero dislocation vector components [ξ]δ,α,

α = {x, y}, i.e. in terms of dislocation vectors of the form

[ξ]δ = [ξ]δ,xex + [ξ]δ,yey (4.36)

The latter call for an extension of macro-to-micro relation (4.28); namely through

solving Eq. (4.24) for the macroscopic strains E, and inserting the result into

concentration-influence relation Eq. (4.22), finally yielding

T δ = ∆−1

δδ
·
{
A
δ

: C−1

hom

: Σ− [ξ]δ

}
= Γ

δ
: Σ−∆−1

δδ
· [ξ]δ (4.37)

with ∆
δδ

as a stress influence-like second order diagonal tensor defined as

∆
δδ

= A
δ

: C−1

hom

: B
δ
−D

δδ
(4.38)

and Γ
δ

being a stress concentration-like third-order tensor defined as

Γ
δ

= ∆−1

δδ
· A

δ
: C−1

hom

(4.39)

with Γjkz 6= 0 if j = k; j, k = {x, y, z}.

Due to the non-zero components of the tensors Γ
δ

and ∆
δδ

, it follows from

Eq. (4.37) that the in-plane components of the traction vector depend on the

corresponding shear components of the macroscopic stress tensor and those of

the displacement jump, while the out-of-plane component of the traction vector

is a function of all three normal components of the macroscopic stress tensor;

mathematically, this reads as

Tδ,x =∆−1
xxAxxz(C

−1
hom)xzxzΣxz −∆−1

xx [ξ]δ,x

Tδ,y =∆−1
yy Ayyz(C

−1
hom)yzyzΣyz −∆−1

yy [ξ]δ,y

Tδ,z =∆−1
zz

∑

j

∑

k

Azjj
(
C−1
hom

)
jjkk

Σkk with j, k = {x, y, z}
(4.40)
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In the plastic regime, the traction forces as given in (4.40) also need to fulfill the

yield criterion (4.20), reading for t = ey as

F(T δ) = 0 → |Tδ,y| = c− Tδ,z tanφ (4.41)

In case of pure shear loading in the y-z-plane, the load dependency relation (4.40)

implies that only the corresponding in-plane component of the traction vector

differs from zero, Tδ,y 6= 0, while Tδ,x = Tδ,z = 0. As a consequence, the Mohr-

Coulomb-type criterion (4.41) degenerates into a Tresca-type yield criterion giving

access to the unknown in-plane component Tδ,y as

|Tδ,y| = c (4.42)

Eq. (4.42) implies that once the plastic zone is reached, additional load increments

have no further effect on the in-plane component of the traction vector: it remains

constant, Ṫ δ = 0, i.e. ∂T δ/∂E = 0 in case of strain-driven loading.

However, in case of combined loading, the changes in the traction vector com-

ponents are directly related to each other, as seen in Eq. (4.41): in order to

fulfill the yield condition, an increase in the normal component has to be compen-

sated by a decrease in the in-plane component, requiring the following restriction

c − Tδ,z tanφ ≥ 0. Having the traction vector in hand, allows for computing the

corresponding displacement jump

[ξ]δ = A
δ

: C−1

hom

: Σ−∆
δδ
· T δ (4.43)

which in pure shear evolves in the following fashion

∆[ξ]δ = A
δ

: C−1

hom

: ∆Σ (4.44)

see Figure 4.2.

Plastic slope in pure shear Considering that the traction vector remains

constant in the plastic range, i.e. ∆T δ = 0, together with the homogenized con-

stitutive relation (4.24), the relation between the macroscopic stress and strain

increments reads as follows

∆Σij = Chom,ijij ∆Eij (4.45)
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Figure 4.2: Macroscopic stress-interface displacement relation under pure shear, in
dependency of the interface density d; for an elastic matrix with Young’s modulus
of Em = 114 GPa and Poisson’s ratio of νm = 0.27; relating to hydroxyapatite
[Gilmore and Katz, 1982, Katz and Ukraincik, 1971]
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Figure 4.3: Macroscopic stress-strain relation under pure shear, in dependency
of the interface density d; for an elastic matrix with Young’s modulus of Em =
114 GPa and Poisson’s ratio of νm = 0.27; relating to hydroxyapatite [Gilmore and
Katz, 1982, Katz and Ukraincik, 1971]

for {ij} = {yz, xz, xy} so that the homogenized stiffness components play the

role of an “elastoplastic” modulus H appearing in the macroscopic stress-strain

relations, see Figures 4.3 and 4.4. It should be noted that this modulus is different

from the hardening modulus, which will be introduced in Section 4.6.

Plastic slope in case of combined loading Given interfaces with normals

pointing in ez-direction, the RVE is susceptible to plastic behavior when subjected

to shear aligned with the interface orientation, i.e. if shear is applied in the ex-ez
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Figure 4.4: Macroscopic stress-strain relation under pure shear showing kinematic
hardening, for an interface density of d = 0.5, and an elastic matrix with Young’s
modulus of Em = 114 GPa and Poisson’s ratio of νm = 0.27; relating to hydroxya-
patite [Gilmore and Katz, 1982, Katz and Ukraincik, 1971]

and/or in the ey-ez-plane; arbitrarily combined with tension and/or compression

in any direction. For the sake of simplicity here we restrict the macroscopic loading

to one of the shear components, Σyz, but with all normal components. Glueing

condition (4.18), combined with solving the general concentration-influence rela-

tion Eq. (4.22) with respect to the macroscopic strain, yields the normal interface

traction vector component as

Tδ,z = −D−1
zz

∑

j

AzjjEjj with j = {x, y, z} (4.46)

Insertion of (4.46) into (4.41) yields, for t = ey

|Tδ,y| = c+ tanφD−1
zz

∑

j

AzjjEjj with j = {x, y, z} (4.47)

while Tδ,x = 0 due to the load dependency relation (4.40). Insertion of the trac-

tion vector components into Eq. (4.24) yields the following relationship for the

components of the macroscopic stress, as functions of the macroscopic strain com-

ponents, with Tδ,x = 0, Tδ,y according to (4.47), Tδ,z according to (4.46); reading
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in Kelvin-Mandel notation as





Σxx

Σyy

Σzz√
2Σyz

0

0





= M ·





Exx

Eyy

Ezz√
2Eyz

0

0





+





0

0

0√
2c ·Byzy

0

0





(4.48)

whereby the 6× 6 matrix representation of M read as



Chom,xxxx −BxxzD−1
zz Azxx Chom,xxyy −BxxzD−1

zz Azyy Chom,xxzz −BxxzD−1
zz Azzz 0 0 0

Chom,yyxx −ByyzD−1
zz Azxx Chom,yyyy −ByyzD−1

zz Azyy Chom,yyzz −ByyzD−1
zz Azzz 0 0 0

Chom,zzxx −BzzzD−1
zz Azxx Chom,zzyy −BzzzD−1

zz Azyy Chom,zzzz −BzzzD−1
zz Azzz 0 0 0

√
2Byzy tanφD−1

zz Azxx
√

2Byzy tanφD−1
zz Azyy

√
2Byzy tanφD−1

zz Azzz
√

2Chom,yzyz 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.49)

Yield surface Due to the non-zero components of the third-order tensor Γ
δ

and

the second-order tensor ∆
δδ

, the components of the traction vector read as

Tδ,x = ΓxxzΣxz −∆−1
xx [ξ]δ,x

Tδ,y = ΓyyzΣyz −∆−1
yy [ξ]δ,y

Tδ,z =
∑

j

ΓzjjΣjj with j = {x, y, z}
(4.50)

Having that in hand, the yield surface can be given as

√{
ΓxxzΣxz −∆−1

xx [ξ]δ,x

}2

+
{

ΓyyzΣyz −∆−1
yy [ξ]δ,y

}2

= c− tanφ
∑

j

ΓzjjΣjj

(4.51)

(4.51) has the format of a yield criterion with linear kinematic hardening, i.e. in

the (Σxz, Σyz)-plane an ellipse with half-axes measuring

(
c− tanφ

∑

j

ΓzjjΣjj

)
/ (Γkkz) with j = {x, y, z}, k = {x, y} (4.52)

is moving as the components of its center point
(

∆−1
xx [ξ]δ,x; ∆−1

yy [ξ]δ,y

)
, evolve with

the sliding dislocation vector.
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In case of pure shear loading, the out-of-plane traction vector component

vanishes, such that the yield surface is given by

√{
ΓxxzΣxz −∆−1

xx [ξ]δ,x

}2

+
{

ΓyyzΣyz −∆−1
yy [ξ]δ,y

}2

= c (4.53)

4.6 Discussion, from a thermodynamics view-

point

As the developments of the last subsection evidenced similarities of the upscaled

macroscopic yield surfaces with the notion of kinematic hardening plasticity, it is

interesting to check whether the upscaled macroscopic equations fall into the re-

spective thermodynamic framework [Coleman and Noll, 1963, Coussy, 1995, 2004,

Halphen and Nguyen, 1975, Mandel, 1973]. This check comprises the derivation

of a free energy function related to our frictional sliding system: In fact, the entire

work done on the elastic matrix is converted into free energy, as this matrix is

purely elastic. Mathematically, this reads as

ψ̇ = P ext,m = Σ : Ė − 2πd

a
T δ · [ξ̇]δ (4.54)

Insertion of this expression into the Clausius-Duhem equation yields the dissipa-

tion as

D = Σ : Ė − ψ̇ =
2πd

a
T δ · [ξ̇]δ ≥ 0 (4.55)

From (4.55), it follows that the elastic energy depends on the macroscopic strains

and on the interface dislocation vector,

ψ = ψ
(
E, [ξ]δ

)
(4.56)

Use of (4.56) in (4.55) yield the state equations

Σ =
∂ψ

∂E
and T δ = − ∂ψ

∂[ξ]δ
(4.57)

Corresponding explicit expressions follow from solving Eq. (4.22) for T δ, yielding

T δ = −D−1

δδ
· A

δ
: E +D−1

δδ
· [ξ]δ (4.58)
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and from inserting (4.58) into Eq. (4.24) yielding

Σ =

(
C
hom

−B
δ
·D−1

δδ
· A

δ

)
: E +B

δ
·D−1

δδ
· [ξ]δ (4.59)

Hence, at complete macroscopic unloading after the occurrence of plastic events,

E = 0, we observe a so-called frozen energy of the form

ψ
(
E = 0, [ξ]

)
= U

(
[ξ]
)

=
1

2
[ξ]δ ·D−1

δδ
· [ξ]δ (4.60)

However, this frozen energy is not fully decoupled from the rest of the free energy

(as often assumed in hardening plasticity), as the effects of E and [ξ], on ψ, are

coupled, see Eq. (4.57), (4.58), and (4.59)

ψ 6= ψ̂(E) + U
(
[ξ]
)

(4.61)

4.7 Appendix A: Extension to multiple interface

families

4.7.1 Elastic domain

When dealing with N interface phases, differing in size and in interface density,

i.e. characterized by interface radii ai and interface densities di, the concentration-

influence relation (4.22) and the homogenized macroscopic relation (4.24) take the

following format

[ξ]i = Ai : E +
N∑

j=1

Dij · T j (4.62)

Σ = C
hom

: E +
N∑

i=1

Bi · T i (4.63)

In the elastic case, the solution is derived based on Eq. (4.28), with T is now

an assembly of N , 3 × 1 traction vectors belonging to the interface families i, B

becomes a 6×3N matrix, and D takes the form of a 3N ×3N matrix; i = 1 . . . N .
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The components of the traction vector for interface family i read as

T ix =

(
N∑

j=1

D−1,ij
xx Ajxxz

)
(C−1

m )xzxzΣxz

T iy =

(
N∑

j=1

D−1,ij
yy Ajyyz

)
(C−1

m )yzyzΣyz

T iz =
∑

l

{∑

k

[
N∑

j=1

D−1,ij
zz Ajzkk

]
(C−1

m )kkll

}
Σll

with l, k = {x, y, z}

(4.64)

Insertion of (4.64) into the yield criterion (4.20) gives access to the elastic domain

in terms of the macroscopic stress components

√√√√√





N∑

j=1

D−1,ij
xx Ajxxz


 (C−1

m )xzxzΣxz




2

+






N∑

j=1

D−1,ij
yy Ajyyz


 (C−1

m )yzyzΣyz




2

+

+ tanφ
∑

l




∑

k




N∑

j=1

D−1,ij
zz Ajzkk


 (C−1

m )kkll



Σll − c ≤ 0

(4.65)

Re-formulation of (4.65) towards

Σ2
xz

c−tanφ
∑
l{∑k[

∑N
j=1D

−1,ij
zz Ajzkk](C

−1
m )kkll}Σll

(
∑N
j=1 D

−1,ij
xx Ajxxz)(C−1

m )xzxz

+

+
Σ2
yz

c−tanφ
∑
l{∑k[

∑N
j=1D

−1,ij
zz Ajzkk](C

−1
m )kkll}Σll

(
∑N
j=1 D

−1,ij
yy Ajyyz)(C−1

m )yzyz

= 1

(4.66)

evidences that the elastic domain exhibits the shape of an ellipse in the Σxz-Σyz

plane, with its center at the point (Σxz = 0; Σyz = 0) and with semi-axes measuring

c− tanφ
∑

l

{∑
k

[∑N
j=1D

−1,ij
zz Ajzkk

]
(C−1

m )kkll

}
Σll

(∑N
j=1 D

−1,ij
xx Ajxxz

)
(C−1

m )xzxz
(4.67)

and
c− tanφ

∑
l

{∑
k

[∑N
j=1D

−1,ij
zz Ajzkk

]
(C−1

m )kkll

}
Σll

(∑N
j=1D

−1,ij
yy Ajyyz

)
(C−1

m )yzyz
(4.68)



Chapter 4. Frictionally sliding micro-interfaces 143

Specification of the elastic domain in the format (4.65) for pure shear loading in

the interface plane yields

√√√√√





N∑

j=1

D−1,ij
xx Ajxxz


 (C−1

m )xzxzΣxz




2

+






N∑

j=1

D−1,ij
yy Ajyyz


 (C−1

m )yzyzΣyz




2

− c ≤ 0

(4.69)

The re-formulation

Σ2
xz
c

(
∑N
j=1 D

−1,ij
xx Ajxxz)(C−1

m )xzxz

+
Σ2
yz
c

(
∑N
j=1D

−1,ij
yy Ajyyz)(C−1

m )yzyz

= 1 (4.70)

indicates an ellipse in the Σxz-Σyz plane, with semi-axes measuring

c(∑N
j=1 D

−1,ij
xx Ajxxz

)
(C−1

m )xzxz
(4.71)

and
c(∑N

j=1D
−1,ij
yy Ajyyz

)
(C−1

m )yzyz
(4.72)

4.7.2 Elasto-plastic domain

In the elasto-plastic domain, the out-of-plane component of the traction vector

of interface family i can be determined from the glueing condition (4.18), and

mathematically reads as

T iz =
∑

l

{∑

k

[
N∑

j=1

∆−1,ij
zz Ajzkk

]
(C−1

hom)kkll

}
Σll

with l, k = {x, y, z}
(4.73)

which gives access to the non-zero in-plane traction vector component when in-

serted into the yield condition (4.20)

T iy = c− tanφ
∑

l

{∑

k

[
N∑

j=1

∆−1,ij
zz Ajzkk

]
(C−1

hom)kkll

}
Σll (4.74)
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whereby the ∆ tensor, as defined in (4.38), has now the format of a 3N × 3N

matrix made up of 3× 3 diagonal submatrices ∆ij with components

∆ij
xx = Aixxz(C

−1
hom)xzxzB

j
xzx −Dij

xx

∆ij
yy = Aiyyz(C

−1
hom)yzyzB

j
yzy −Dij

yy

∆ij
zz =

∑

l

(∑

k

Aizkk(C
−1
hom)kkll

)
Bj
llz −Dij

zz

with i, j = 1 . . . N ; l, k = {x, y, z}

(4.75)

Extension of Eq. (4.43) for multiple interface families yields the displacement

jump of interface family i as

[ξ]i = Ai : C−1

hom

: Σ−
N∑

j=1

∆ij · T j (4.76)

and its evolution in pure shear as follows

∆[ξ]i = Ai : C−1

hom

: ∆Σ (4.77)

Yield surface In analogy with Eq. (4.50), the components of the traction vector

for family i read as

T ix = ΓixxzΣxz −
N∑

j=1

∆−1,ij
xx [ξ]jx

T iy = ΓiyyzΣyz −
N∑

j=1

∆−1,ij
yy [ξ]jy

T iz =
∑

k

ΓizkkΣkk

with k = {x, y, z}

(4.78)

Insertion of (4.78) into the yield criterion (4.20) yields the yield surface as

√√√√
{

ΓixxzΣxz −
N∑

j=1

∆−1,ij
xx [ξ]jx

}2

+

{
ΓiyyzΣyz −

N∑

j=1

∆−1,ij
yy [ξ]jy

}2

= ...

... = c− tanφ
∑

k

ΓzkkΣkk

(4.79)
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Figure 4.5: Macroscopic stress-strain relation in dependency of the number of
interfaces N , under pure shear loading (LC1), and under combined shear and
tension (LC2), for interface densities d1 = 0.25, d2 = 0.5, d3 = 0.75, d4 = 1,
d5 = 1.25

(4.79) has the format of a yield criterion with linear kinematic hardening, i.e. in

the (Σxz, Σyz)-plane an ellipse with half-axes measuring

(
c− tanφ

∑

k

ΓzkkΣkk

)
/
(
Γillz
)

with k = {x, y, z}, l = {x, y} (4.80)

is moving as the components of its center point
(∑N

j=1 ∆−1,ij
xx [ξ]jx;

∑N
j=1 ∆−1,ij

yy [ξ]jy

)
,

evolve with the sliding dislocation vector. In case of pure shear loading, the out-

of-plane traction vector component vanishes, such that the yield surface is given

by

√√√√
{

ΓixxzΣxz −
N∑

j=1

∆−1,ij
xx [ξ]jx

}2

+

{
ΓiyyzΣyz −

N∑

j=1

∆−1,ij
yy [ξ]jy

}2

= c (4.81)

Concluding remarks As evidenced in Figure 4.5, the number of interface

phases plays a significant role in the macroscopic material behavior. With in-

creasing amount of interface phases the overall material behavior tends towards

perfect plasticity.
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4.8 Appendix B: Molecular dynamics simula-

tions

Qu et. al quantified the interface stress in hydroxyapatite-water-hydroxyapatite

(HAP-WT-HAP) supercells using a combination of classical non-equilibrium

molecular dynamics (NEMD) simulations with steered molecular dynamics (SMD)

simulations. NEMD is used to reveal interface stress as a function of applied strain

based on the virial stress formulation, while SMD is used to understand interface

separation mechanism and to calculate interfacial shear stress based on a viscoplas-

tic interfacial sliding model.

Crystal geometry The crystallographic form of HAP is hexagonal with space

group P21/b. The unit cell dimensions are a = 9, 4214 Å, b = 2a, c = 6, 8814 Å,

α = 90◦, β = 90◦, γ = 120◦ with 88 atoms. One HAP supercell consists of 40 unit

cells.

Methods A NAMD package is used to perform both NEMD and SMD sim-

ulations. Water molecules are added to the interface region using ’SOLVATE’

module in the visual molecular dynamics (VMD) software. An inorganic force

field for HAP is used to model atomistic interactions. The particle mesh Ewald

method is used to calculate electrostatic interactions with a cut off of 12 Å. The

simulations are performed with periodic boundary conditions.

In SMD simulations, external force is applied to selected atom or atoms. SMD

simulations were performed in constant speed mode: the upper HAP crystals were

pulled with velocity 0.4 Å/ps from the substrate HAP crystals. The force was

applied to the center of mass of the upper HAP crystals in two loading direc-

tions: (i) along the molecule length, (ii) transverse to the molecule length. Water

molecules in the interface region remained unconstraint, i.e. free to move. The

force in constant velocity SMD is calculated as

F = k(vt− x) (4.82)

where k is the virtual spring constant taken as 100 kcal/mol/Å2 acting between

pulled atoms and the virtual point, t is the time and x is the displacement. The

interfacial sliding process can be described in four stages (see Figure 4.6)
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Figure 4.6: SMD force as a function of displacement

• During t < tsliding, there is no sliding, the interfacial shear stress is

monotonously increasing,

• At t = tsliding, the yield stress τY is reached initiating slipping,

• During tsliding < t < ttransition, the shear stress converges to a constant value,

• During t > ttransition, a steady state sliding process is obtained.

It is remarkable that the initial “elastic” region in Figure 4.6 reflects a “Young’s

modulus” of around 100 GPa, which is close to the elastic modulus of hydroxyap-

atite alone, i.e. 120 GPa [Ching et al., 2009]. This is a strong motivation to study

systems where the elasticity is fully ascribed to an extended solid phase, while

the dissipative processes are fully ascribed to liquid-crystal-type interfaces. This

is exactly the focus of the present paper.
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4.9 Appendix: Derivation of homogenized stiff-

ness tensor, of interface morphology tensor,

as well as of the concentration and influence

tensors

The quantification of concentration and influence tensors requires an additional

mathematical step for the case of flat interfaces [Shahidi et al., 2014]; inspired by

the strategy for “sharp cracks” presented by Pensée et al. [2002]: In order to derive

the aforementioned concentration and influence tensors, we consider the slits as

limit cases of oblate spheroids with aspect ratio ω, for which analytical solutions

are available. The tensors are derived from their generally defined fourth-order

counterparts [Zaoui, 2002] through the transition from oblate spheroids to flat

interfaces (limω → 0), and by taking the non-vanishing tensor components into

account [Shahidi et al., 2014]. The third-order concentration tensor, describing

the influence of macroscopic strain E on the average displacement jumps [ξ]δ, is

defined as

A
δ

= lim
ω→0

ωA
δ

= lim
ω→0

ω

{
A∞

δ

:

[
fmI + fδA

∞

δ

]}
(4.83)

with components

Aδ,xxz = Aδ,yyz =
8(1− νm)a

π[3(2− νm) + 16d(1− νm)]

Aδ,zxx = Aδ,zyy =
16νm(1− νm)a

π[3(1− 2νm) + 16d(1− νm)2]

Aδ,zzz =
16νm(1− νm)2a

πνm[3(1− 2νm) + 16d(1− νm)2]

(4.84)

Analogously, the second-order influence tensor is defined as

D
δδ

= lim
ω→0

ωD
δδ

= lim
ω→0

ω

{
fmA

m

: A∞

δ

: P
δ

}
(4.85)

with its components reading as

Dδδ,xx = Dδδ,yy = − 16(1− ν2
m)a

Emπ[3(2− νm) + 16d(1− νm)]

Dδδ,zz = − 16νm(1− νm)2(1− 2νm)a

Emπ[3(1− 2νm) + 16d(1− νm)2]

(4.86)
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with P
i

as the fourth-order Hill-tensor of an oblate spheroid [Hill, 1963], and A∞

δ

as

the fourth-order strain concentration of oblate inclusion phase in an Eshelby-type

matrix-inclusion problem [Eshelby, 1957]

A∞

δ

=

[
I − P

δ

: C
m

]−1

(4.87)

In the macroscopic state equation (4.24), B
δ

denotes the third-order influence

tensor describing the influence of interfacial eigentractions on the macroscopic

stress,

B
δ

= lim
ω→0

[
4πd

3
ωAt

δ

]
(4.88)

with its components reading as

Bδ,zxx = Bδ,zyy =
16d(1− νm)

3(2− νm) + 16d(1− νm)

Bδ,xxz = Bδ,yyz =
16dνm(1− νm)

3(1− 2νm) + 16d(1− νm)2

Bδ,zzz =
16d(1− νm)2

3(1− 2νm) + 16d(1− νm)2

(4.89)

and C
hom

denotes the homogenized stiffness tensor in a form

C
hom

= C
m

:

[
I +

4πd

3
T
δ

]−1

(4.90)

with d as the interface density parameter, and T
δ

as the fourth-order morphology

tensor for interfaces

T
δ

= lim
ω→0

ωA∞

δ

(4.91)

with its components reading as

Tδ,xzxz = Tδ,zxxz = Tδ,xzzx = Tδ,zxzx =
2(1− νm)

π(2− νm)

Tδ,yzyz = Tδ,zyyz = Tδ,yzzy = Tδ,zyzy =
2(1− νm)

π(2− νm)

Tδ,zzxx = Tδ,zzyy =
4νm(1− νm)

π(1− 2νm)

Tδ,zzzz =
4(1− νm)2

π(1− 2νm)

(4.92)
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4.10 Nomenclature

Aδ union of all interface surface domains
A
δ

third-order strain concentration tensor of interface phase i
describing the influence of macroscopic strain on the average
displacement jump of flat interfaces

A∞

δ

dilute strain concentration tensor in the matrix-inclusion
problem

a interface radius
ai interface radius of interfaces making up interface phase i
B
δ

third-order strain Biot tensor of interface phase δ describing
the influence of interfacial eigentractions of flat interfaces on
the macroscopic stress

C
hom

homogenized fourth-order stiffness tensor

C
m

fourth-order stiffness tensor of solid matrix phase

c cohesion factor
D
δδ

second-order influence tensor of phase δ

D dissipation
d characteristic size of the inhomogeneities within the RVE
d interface density parameter
di interface density of interface phase i
div divergence operator
E second-order macroscopic strain tensor

Ė rate of the second-order macroscopic strain tensor

E elastic slope tensor
ex, ey, ez unit base vectors of Cartesian reference base frame
F Mohr-Coulomb yield criterion
fδ volume fraction of interface phase δ
fm volume fraction of solid matrix phase
H elastoplastic modulus
I fourth-order identity tensor

I
dev

deviatoric part of the fourth-order identity tensor

I
vol

volumetric part of the fourth-order identity tensor

km bulk modulus of solid matrix phase
L characteristic length of the structure or the loading of the

structure
` characteristic length of the RVE
M matrix relating the macroscopic stresses to macroscopic

strains as given in Eq. (48)
m matrix phase
N number of interfaces in interface phase
N number of interface phases within the RVE
n unit normal vector
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P
δ

Hill tensor of phase δ

P ext external power
P ext,m external power performed on interal surfaces
SRV E boundary of the RVE
T surface traction vector
T δ eigentraction vector of interface phase δ
T
δ

fourth-order morphology tensor for flat inclusions

U energy term accounting for hardening
Vm volume of solid matrix phase
VRV E volume of the RVE
x position vector inside the RVE

Γ
δ

third order tensor as given in Eq. (39)

∆
δδ

second-order tensor as given in Eq. (38)

∆E increment of macroscopic strain tensor

∆Σ increment of macroscopic stress tensor

∆[ξ]δ increment of average displacement jump of interface phase δ
δ interface phase
ε microscopic strain field

ε
m

average microscopic strain field in solid matrix phase

λ̇δ plastic multiplier of interface phase δ
µm shear modulus of solid matrix phase
ξ microscopic displacement field
[ξ] interface dislocation vector
[ξ]δ average displacement jump of interface phase δ

[ξ̇]δ rate of average displacement jump of interface phase δ
Σ second-order macroscopic stress tensor

σ microscopic stress field

σ
inc

microscopic inclusion stress

σ
m

average microscopic stress in solid matrix phase

σδ normal component of the traction vector acting on interface
phase δ

τδ shear component of the traction vector acting on interface
phase δ

φ friction angle
ψ free Helmholtz energy

ψ̇ rate of free Helmholtz energy
ω aspect ratio
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Abstract

Due to its high resolution, micro-CT scanning is the key to assess bone quality of

sham and OVX (ovariectomized) rats. Combination of basic X-ray physics, such as

the energy- and chemistry-dependence of attenuation coefficients, with results from

ashing tests on rat bones, delivers mineral, organic, and water volume fractions

within the voxels. Additional use of a micro-elastic model for bone provides voxel-

specific elastic properties. The new method delivers realistic bone mass densities,

and reveals that OVX protocols may indeed induce some bone mass loss, while

the average composition of the bone tissue remains largely unaltered.

5.1 Introduction

Micro-CT imaging has become a key tool in biomedical studies, as they allow

for high-resolution, non-destructive investigation of the inner structure of organs,

and it has been particularly embraced for studying bone in health, disease, and

tissue-engineering-supported regeneration [Buie et al., 2007, Cancedda et al., 2007,

Jones et al., 2007, Laib et al., 2000]. Standardly, such images are evaluated on the

basis of morphometric measures such as bone volume over total volume (BV/TV),

trabecular spacing (Tr.Sp.), trabecular number (Trab.N.), or cortical thickness

(Ct.Th.) [Buie et al., 2007]. Alternatively, micro-CT images provide a basis for

finite element models (FEM) [Jaecques et al., 2004, Kornhuber et al., 2008]. In

this context, the question about the material properties to be assigned to the

bone elements arises. The most straightforward approach consists of assigning

constant properties to all bone elements [Van Rietbergen et al., 1995, 1999]. On

the other hand, more sophisticated approaches account for the dependence of elas-

tic properties on the local material density [Couteau et al., 1998, Rho et al., 1995],
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Renders2008, [Baca et al., 2008]; the latter being approximated by the X-ray

attenuation-related grey values of the voxels making up the three dimensional im-

age stack. Corresponding “CT-density”-versus-elasticity relations, however, stay

empirical in nature, depending strongly on the settings of the used instruments.

Therefore, numerous formulations rather than a generally agreed-on concept, are

discussed in the open literature [Cong et al., 2011, Wirtz et al., 2000]. Dur-

ing the last seven years, a new strategy for deriving CT-elasticity relations has

been proposed and continuously refined [Blanchard et al., 2013, Czenek et al.,

2014, Dejaco et al., 2012, Hellmich et al., 2008, Scheiner et al., 2009, Vuong and

Hellmich, 2011, Yosibash et al., 2008]. Thereby, such relations are not guessed

any more, but derived from fundamental laws of X-ray physics and continuum

micromechanics, in combination with additional knowledge on the chemistry of

the scanned objects. As a common feature of all the aforementioned approaches,

the spatial average rule for X-ray attenuation coefficients [Crawley et al., 1988,

Jackson and Hawkes, 1981] is employed to retrieve, from the attenuation-related,

voxel-specific grey values, voxel-specific compositional information on the matter

filling the voxels. Thereafter, this compositional information is used as input for

micromechanical models [Fritsch and Hellmich, 2007, Fritsch et al., 2006, 2009c,

Hellmich et al., 2004a] which translate material composition into elastic properties.

Naturally, these methods appear the more powerful the fewer input informations

are needed beyond the standard clinical or micro-CT images themselves. A partic-

ularly delicate issue in this context is the normally undisclosed X-ray energy used

for scanning, which however, does effect the measurement of X-ray intensities, the

basis of the entire suite of processing steps leading in the end to 3D CT images.

It is the focus of the present paper, extending a recent contribution in the field of

ceramic bone materials to natural bone tissue [Czenek et al., 2014], by example of

micro-CT images of femoral bones of OVX (ovariectomized) and sham rats. With

the chemically determined OVX- as well as sham-specific mineral-to-organic ratios

determined through ashing experiments by Kim et al. [2009], as the only additional

input needed, we derive, in the following, from stacks of OVX and sham rat femur

micro-CT images, spatial distributions of mineral, organic, and water contents at

micrometer-resolution, together with corresponding elastic properties – with the

X-ray energy used for these images. The paper is completed by discussing the

results with respect to earlier findings, including the potentials and limitations of

OVX-treatment for osteoporosis simulation in rat models.
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5.2 Materials and Methods

5.2.1 Animal model and sample preparation

The micro-CT images used in the present study visualize femurs of 10 ovariec-

tomized (OVX) female Sprague-Dawley rats, and 10 sham-operated rats serving

as controls. At the age of six months, the rats were anaesthetized through an

injection of 0.2 ml per 100 g body weight, of Hypnorm and Dormicum diluted in

water at volume ratios of 1:1:2. Afterwards, they were subject to a “single midline

dorsal skin incision” [Hoegh-Andersen et al., 2004], followed by muscle cutting

in order to provide access to the ovaries. Thereafter, both ovaries were removed

from the rats belonging to the OVX group, while the ovaries were left within the

rats of the control group. Then, the muscles were closed by means of one to two

stitches on each side, and the skin was sutured through three to four stitches. Six

weeks post surgery, the rats were asphyxiated by carbon dioxide, and sacrificed

by exsanguination after at least 14 hours of fasting. In order to check the success

of the OVX procedure, the absence of ovaries was checked at necropsy. We antic-

ipate that the operations have been always successful, in each of the investigated

rats which underwent OVX treatment. The femurs were then excised, freed from

flesh, and wrapped in saline soaked gauze. They were stored in plastic tubes at

−20◦C for the time period until CT scanning. For the latter, the bones were first

thawed in a refrigerator, and then embedded in a watery solution with 0.9 g NaCl

and 0.1 g NaN3 per 100 ml water, enclosed in a plastic cylinder. Thereafter, the

samples were X-ray scanned in a Phoenix Nanotom S (General Electric Measure-

ment and Control), at a source voltage of 110 kV and a source current of 150µA,

without employing any X-ray filter. Thereby, the scanning modalities were as

follows: magnification: 6.25, voxel size: 8.00µm, rotation step: 0.36◦, exposure

time: 2000 ms, tube mode: 0, frame averaging number: 3, 1 frame skipped. The

obtained projection images underwent translational motion compensation, guar-

anteeing perfect matching of the 0◦ and the 360◦ shadow images. Thereafter, they

were used to reconstruct the investigated three-dimensional objects, by means of

the Radon transform as algorithmized in the software datos|x-reconstruction by

phoenix|x-ray [Beyerer and Puente León, 2002, Radon, 1917]. VGStudio Max 2.0

from Volume Graphics allowed for extraction of stacks of 800 images slices with

identical pixel number, visualizing the space from the distal end of the femur to

the knee joint.
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Figure 5.1: Probability density function of attenuation-related grey values of a
sham rat femur

5.2.2 Conversion of CT grey values to energy-dependent

attenuation coefficients

The X-ray attenuation coefficients µ describe the decrease of X-ray beam intensity

per length of pervaded matter. Standardly, they are not directly provided by a CT

machine, which rather would give access to X-ray attenuation-related grey values

(GV) assigned to the 8 micron sized voxels making up an image stack. Here such

attenuation-related grey values visualizing a portion of a femur of one rat, are

binned into histograms, which are then normalized, so as to provide probability

density functions, as exemplarily shown in Figure 5.1. As a rule, these functions ex-

hibit three maxima or peaks, being related to the voxels which are most frequently

occurring in the image stack compartments visualizing air (containing voxels with

grey values denoted by GVair), the aforementioned watery (fluid) solution (con-

taining voxels with grey values denoted by GVfl), and bone tissue (containing

voxels with grey values denoted by GVBT ). Correspondingly, the aforementioned

peak values follow as Mo(GVair), Mo(GVfl), and Mo(GVBT ), with the function

Mo(.) – standing for “mode” – extracting the most probable (resp. the most fre-

quently occurring) values out from a probability density distribution (resp. from a

normalized frequency plot). The increasing density of the matter filling the afore-

mentioned compartments implies Mo(GVair) < Mo(GVfl) < Mo(GVBT ). The

minimum value between Mo(GVfl) and Mo(GVBT ), denoted as threshold value

(GVthr), is used to distinguish the voxels comprising bone tissue from all other
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voxels (see Figure 5.1). These bone tissue voxels, fulfilling GV > GVthr, will be

subject to an “intravoxel” evaluation procedure, which will be described in Sec-

tion 5.2.3. Before entering the aforementioned “intravoxel” evaluation procedure,

we need to specify the linear relation [Blanchard et al., 2013, Fritsch et al., 2011,

MITA, 2013] between the voxel-specific grey values and the voxel-specific X-ray at-

tenuation coefficients µ. Since the X-ray attenuation coefficients not only depend

on the chemical composition of the matter filling the voxel, but also on the used

photon energy ε, the slope a and the intersection b defining the aforementioned

linear relation, depend on the photon energy as well [Czenek et al., 2014]

µ(ε) = a(ε)×GV + b(ε) (5.1)

In order to identify a(ε) and b(ε), (5.1) is specified for the voxels characterized

by Mo(GVair) and Mo(GVfl), respectively. This leads to the following system of

equations for the unknowns a(ε) and b(ε)

µair(ε) = a(ε)×Mo(GVair) + b(ε)

µfl(ε) = a(ε)×Mo(GVfl) + b(ε)
(5.2)

whereby the attenuation coefficients for air and fluid, µair(ε) and µfl(ε) (the lat-

ter is approximated by that of water H2O), follow from the respective mass at-

tenuation coefficients µ/ρ available in the database of the National Institute of

Standards and Technology (NIST) [Hubbell and Seltzer, 1996] upon input of their

chemical compositions (see [Bolz and Tuve, 1973] for air), and from the mass

densities ρair=0.0012 g/cm3 [Searle, 1934] and ρfl=1 g/cm3 (approximated by the

mass density ρH2O of water), see Figure 5.2. Solving the system of (5.2) for the

unknowns a(ε) and b(ε) delivers

a(ε) =
µfl(ε)− µair(ε)

Mo(GVfl)−Mo(GVair)

b(ε) =
Mo(GVfl)× µair(ε)−Mo(GVair)× µfl(ε)

Mo(GVfl)−Mo(GVair)

(5.3)

The coefficient functions a(ε) and b(ε) allow for translation of any grey value found

in the micro-computer tomographs of the investigated rat femurs into correspond-

ing X-ray attenuation coefficients – provided the photon energy is known. Its

identification will be dealt with next.
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Figure 5.2: X-ray attenuation coefficients of hydroxyapatite, organics, water,
and air as functions of the photon energy, according to NIST-database on
http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html [Bolz and Tuve,
1973, Eastoe, 1955, Hubbell and Seltzer, 1996, Lees, 1987, Searle, 1934]

5.2.3 Identification of applied X-ray energy and of extra-

cellular bone mass density

Following the strategy outlined in [Czenek et al., 2014], the photon energy de-

termination rests on an equation which follows from equalizing two independent

mathematical expressions for the most frequently occurring X-ray attenuation co-

efficient in the bone tissue compartments of the investigated images stacks, denoted

as µBT . The first expression for µBT stems straightforwardly from specification of

(5.1) for Mo(GVBT ) (see Figure 5.1), resulting in

µBT (ε) = a(ε)×Mo(GVBT ) + b(ε) (5.4)

The second expression is derived from the average rule for the attenuation coeffi-

cient µ [Crawley et al., 1988, Hellmich et al., 2008, Jackson and Hawkes, 1981]

µ(ε) =
Nc∑

i

µi(ε)× fi (5.5)

whereas µi represents the X-ray attenuation coefficient of material constituent i,

and fi stands for the corresponding volume; index i runs from 1 through NC ,

the total number of constituents within the voxel characterized by attenuation

coefficient µ. The 8x8x8 µm3-sized bone tissue voxels contain the three elementary
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components of bone tissue [Buckwalter et al., 1995]: hydroxyapatite (HA), organics

(denoted by suffix “org” – mainly collagen), and water. Specification of (5.5) for

these particular constituents yields [Blanchard et al., 2013]

∀ GVBT (> GVthr) :

µvoxelBT (ε) = µHA(ε)× f voxelHA + µorg(ε)× f voxelorg + µH2O(ε)× f voxelH2O

with f voxelHA + f voxelorg + f voxelH2O
= 1

(5.6)

where the superscript “voxel” indicates voxel-specificity. Similar to what we did

for air and the fluid solution in Section 5.2.2, the attenuation coefficients µi(ε) of

the elementary constituents of the bone tissue are retrieved from the NIST data

base [Hubbell and Seltzer, 1996]. To begin with, using the chemical formulae of

hydroxyapatite and water, Ca5(PO4)3(OH) [Clarke, 2008, Fritsch and Hellmich,

2007, Landis, 1995] and H2O, as input to this NIST data base delivers, as out-

put, the mass attenuation coefficients (µ(ε)/ρ)i, i = HA, H2O. Combination

of these mass attenuation coefficients with the corresponding mass densities of

ρHA=3 g/cm3 [Gong et al., 1964, Lees, 1987] and of ρH2O=1 g/cm3 yields the func-

tions depicted in Figure 5.2. Next, we approximate the mass density of the complex

organic matter in the extracellular bone matrix by that of collagen which amounts

to ρorg=1.43 g/cm3 [Harley et al., 1977]. The latter, in turn, makes up 90 % of

the organic matter in bone [Buckwalter et al., 1995, Lees, 1987, Urist et al., 1983].

Furthermore, we approximate the attenuation coefficient of the organics by that

of the amino acid glycine, C2H5NO2, which is representative for collagen [Eastoe,

1955, Lodish et al., 2000] (see Figure 5.2).

The aforementioned volume fractions f voxelHA , f voxelorg , and f voxelH2O
are expected to vary

from voxel to voxel within the bone tissue compartments of the investigated rats,

and except for (5.6)2, no further relation among them can be given. The picture

changes, however, if we consider spatial average values over the entire bone tissue

compartments rather than local voxel-specific values. In fact, Kim et al. [2009]

performed drying experiments on rat femoral bones, giving access to their respec-

tive (overall) organic and mineral weight, in combination with ashing experiments

at 550 degrees Celsius. According to Gong et al. [1964] ashing at such a high tem-

perature leads to volatilizing of not only the entire organic portion of the bones,

but also of a certain portion of the mineral, amounting to 1.8 % of the mineral left

after the burning process as ash. Accordingly, the experiments of Kim et al. [2009]

yield mineral-to-organic mass ratios R amounting to 1.680 for sham rats, and to

1.578 for OVX rats. Hence, the mineral and organic volume fractions averaged
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over all voxels filled by bone tissue, which we denote by fBTHA and fBTorg , fulfill

fBTHA = R× ρorg
ρHA

× fBTorg (5.7)

From a statistical viewpoint, the values averaged over the image domains filled by

the bone tissue voxels are equal to the expected values of the statistical distribu-

tions of f voxelHA and f voxelorg , hence,

fBTHA = E(f voxelHA )

fBTorg = E(f voxelorg )
(5.8)

with E(.) extracting the most probable (the most frequently occurring) value from

all argument values (here all voxel-specific values) for f voxelHA and f voxelorg within a

scanned CT image stack. In the following, we approximate the spatial averages

over all bone tissue voxels by quantities occurring in the most frequent bone tissue

voxels, in mathematical terms,

E(f voxeli ) ≈Mo(f voxeli ) , i = HA, org,H2O (5.9)

(5.9) would be an identity rather than an approximation for the case of a Gaussian

distribution of bone tissue voxels around the peak Mo(GVBT ) seen in Figure 5.1,

so that (5.7) would also characterize this most frequently occurring bone tissue

voxel. (5.7) and (5.9) imply constant volume fractions within the subvolume of

the most frequently occurring bone tissue voxel, which is filled by organics and

mineral (HA+org),

fHA+org
HA =

fBTHA
fBTHA + fBTorg

= R× ρorg
ρHA

× 1

R× ρorg
ρHA

+ 1

fHA+org
org = 1− fBTHA =

1

R× ρorg
ρHA

+ 1

(5.10)

These volume fractions give access to an only energy-dependent attenuation coeffi-

cient µHA+org(ε) of the non-H2O subvolume found in the most frequently occurring

bone tissue voxel, by means of specification of the average rule (5.5) for two con-

stituents, i = HA, org

µHA+org(ε) = fHA+org
HA × µHA(ε) +

[
1− fHA+org

HA

]
× µorg(ε) (5.11)
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HA + org

H2O

HA
org

Figure 5.3: Averaging (a-b-c) or splitting up (c-b-a) X-ray attenuation coefficients
or volume fractions within a bone tissue voxel: (a) elementary components with
voxel-specific volume fractions (subvolumes), and with voxel-invariant attenuation
coefficients and corresponding grey values, (b) water and “solid - (HA + org)
compound” with voxel-specific volume fractions (subvolumes), and with voxel-
invariant attenuation coefficients and corresponding grey values, (c) overall bone
tissue with voxel-specific attenuation coefficient and corresponding grey value

Applying now the attenuation rule again to the entire voxel considered as a mixture

of the aforementioned “mineral-plus-organic compound” (HA+org) and of water

(see Figure 5.3), we arrive at

µBT (ε) = fBTH2O
× µH2O(ε) +

[
1− fBTH2O

]
× µHA+org(ε) (5.12)

Identification of the latter expression with (5.4) yields a relation giving access to

the X-ray energy ε

a(ε)×Mo(GVBT ) + b(ε) = fBTH2O
× µH2O(ε) +

[
1− fBTH2O

]
× µHA+org(ε)

→ fBTH2O
=
a(ε)×Mo(GVBT ) + b(ε)− µHA+org(ε)

µH2O(ε)− µHA+org(ε)

(5.13)

Given the concave nature of this function fBTH2O
= fBTH2O

(ε) (see Figure 5.4), the

inverse relation ε(fBTH2O
) assigns, as a rule, to each value of fBTH2O

, none or two values

for ε, and there exists only one single value for fBTH2O
, which is assigned to precisely

one value of ε. As the same photon source and the same photon detector under the

same conditions have been used for the production of all micro-CT image stacks,

they all refer to only one (average) X-ray energy. Hence, there needs to exist only

one value for the average photon energy ε. This implies that the maximum in

the function (5.13)2 defines the water volume fraction which actually occurs on

average (or most frequently) throughout all voxels representing bone tissue. The

value for ε related to this maximum is the sought, actually used X-ray energy,

denoted as ε.

This value gives access to the constituent volume fractions occurring in the “av-

erage” bone tissue voxel: the “average” volume fraction of water follows from
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Figure 5.4: Identification of the applied X-ray energy and of its role as argument
in the concave function for the water volume fraction in the “average” bone tissue
voxel, as given in (5.13)

evaluation of (5.13)2 for ε = ε; the remaining voxel volume is filled by mineral and

organics, see (5.6)2, so that simultaneous use of (5.10)2 yields

fBTorg (ε) = fHA+org
org ×

[
1− fBTH2O

(ε)
]

fBTHA(ε) = 1− fBTorg (ε)− fBTH2O
(ε)

(5.14)

These compositional characteristics of the “average” bone tissue voxel holds the

key to determination of the properties of any voxel belonging to the bone tissue

of the investigated micro-CT image stack: In this context, we follow earlier con-

tributions [Roschger et al., 2008] considering that variations in the attenuation

coefficients from one voxel to its neighbors reflect changes in mineralization de-

gree; and that mineral precipitation consumes the ions from the watery solution

while not affecting the organic matter within the voxels [Lees, 2003, Morin et al.,

2013]. Accordingly, we set the organic volume fraction equal to the average organic

volume fraction throughout all bone tissue voxels (forg = fBTorg ), and determine the

voxel-specific mineral and water volume fractions from specialization of (5.1) for

bone tissue (GV = GVBT ), and of (5.6)1 for the identified photon energy (ε = ε),
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yielding

f voxelHA (ε) =
a(ε)×GVBT + b(ε)− fBTorg (ε)× µorg(ε)−

[
1− fBTorg (ε)

]
× µH2O(ε)

µHA(ε)− µH2O(ε)

f voxelH2O
(ε) =

a(ε)×GVBT + b(ε)− fBTorg (ε)× µorg(ε)−
[
1− fBTorg (ε)

]
× µHA(ε)

µH2O(ε)− µHA(ε)

f voxelorg (ε) = fBTorg (ε)

(5.15)

see also Appendix A. These voxel-specific volume fractions then also allow for

voxel-specific determination of the bone tissue mass density, according to

ρvoxelBT (ε) = ρHA × f voxelHA (ε) + ρorg × f voxelorg (ε) + ρH2O × f voxelH2O
(ε) (5.16)

5.2.4 Translation of voxel-specific composition into voxel-

specific elastic properties

Next, the voxel-specific volume fractions (5.15) serve as input for an experi-

mentally validated poro-micro-elastic model for extracellular bone matrix [Morin

and Hellmich, 2013], cast within the framework of continuum micromechanics

[Dormieux et al., 2006b, Zaoui, 2002] (see Appendix B for derivation). According

to this framework, the elasticity of a piece of matter, located in a material volume

called representative volume element (RVE), depends on the elasticity of more

or less homogeneous subvolumes within the RVE, called material phases, as well

as on their shapes, interactions, and volume fractions. In this line, every voxel

is regarded as RVE, with mechanically relevant microstructural characteristics as

depicted in Figure 5.5. In more detail, each bone tissue voxel hosts two material

phases with elongated cylindrical shape: “mineralized collagen fibrils” and “porous

polycrystal in extrafibrillar space”. According to the separation-of-scales principle

[Drugan and Willis, 1996, Zaoui, 2002], the lineal dimensions of these phases, i.e.

their diameters amounting to some hundred nanometers, need to be much smaller

then those of the RVE, namely 8 µm, as described in Section 5.2.1. These phases

are entangled and intertwined so that the mathematical relations between phase

volume fractions, phase stiffnesses; and the (voxel-specific) elastic properties of the

overall (voxel-specific) RVEs follow from a self-consistent homogenization scheme
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[see Eq. (B.7)1]

fwetcol
col = fwetcol

col (f fib
wetcol)
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im = 1 − fwetcol

col

8µ
m

ℓ e
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=

10
0-
50
0
n
m

f fib
wetcol = 1 − f fib

HA f ef
ic = 1 − f ef

HA

[see Morin and Hellmich, 2014; Eq. (A.3)][see Morin and Hellmich, 2014; Eq. (A.4)]

[see Morin and Hellmich, 2014; Eq. (A.5)]
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[see Eq. (B.7)2]
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Figure 5.5: Mechanical characterization of a bone tissue voxel by means of a four-
step micromechanics model [Morin and Hellmich, 2014]: (a) bone tissue voxel with
indication of volume fractions of mineral, organics, and water; (b) RVE of extra-
cellular bone matrix – bone ultrastructure; (c) RVE of mineralized fibril; (d) RVE
of extrafibrillar space; (e) RVE of wet collagen; (x1, x2: transverse material direc-
tions; x3: axial material direction)

[Hershey, 1954, Morin and Hellmich, 2013]

Cvoxel =

{
f voxelfib Cfib

[
I + Peccyl : (Cfib − Cvoxel)

]−1

+

f voxelef Cef

[
I + Peccyl : (Cef − Cvoxel)

]−1
}

:

{
f voxelfib

[
I + Peccyl : (Cfib − Cvoxel)

]−1

+

f voxelef

[
I + Peccyl : (Cef − Cvoxel)

]−1
}−1

(5.17)

where f voxelfib and f voxelef denote the voxel-specific volume fractions of the fibrils and

the extrafibrillar space (they can be determined from the voxel-specific volume

fractions of mineral, organics, and water, as detailed further below), I denotes the
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fourth-order identity tensor, with components Iijkl = 1/2×(δikδjl+δilδjk), whereas

the Kronecker delta δij is 1 for i = j and zero otherwise, and P ec
cyl is the morphol-

ogy or Hill tensor, accounting for the cylindrical shape of the phases embedded in

a fictitious matrix with the elastic properties of the extracellular (voxel-specific)

RVE; and Cfib and Cef are the elasticity tensors of the fibrillar and the extrafib-

rillar space, respectively. They follow from yet additional homogenization steps

related to RVEs at lower scales, as depicted in Figure 5.5. At these lower scales,

“universal”, i.e. tissue-independent, phase properties [Fritsch and Hellmich, 2007,

Hellmich et al., 2004a,b, Morin and Hellmich, 2014, Morin et al., 2013] are en-

countered at the level of the mechanical elementary constituents: hydroxyapatite,

collagen, and water with non-collageneous organics. The elasticity of the hydrox-

yapatite phase follows from ultrasonic tests of Katz and Ukraincik [1971] and of

Gilmore and Katz [1982]; that of molecular collagen can be retrieved from Bril-

louin light scattering tests of Cusack and Miller [1979]; while the elasticity of water

is known from acoustic tests, such as the ones of Del Grosso and Mader [1972].

The phase volume fractions within all these RVEs can be retrieved, on the basis

of general bone composition rules described elsewhere [Hellmich and Ulm, 2002b,

Morin and Hellmich, 2013, Morin et al., 2013, Vuong and Hellmich, 2011] from the

extracellular volume fractions of collagen, mineral, and bone fluid. Thereby, the

mineral volume fraction follows (5.15)1, the volume fraction of collagen amounts to

90 % of the organic volume fraction of ((5.15)3 [Urist et al., 1983], and the rest of

the voxel is filled by bone fluid - water with non-collageneous organic components

(see Appendix B). In this contribution, we present the voxel-specific stiffness ten-

sors in terms of the engineering components called Young’s and shear moduli, and

Possion’s ratios [Vuong and Hellmich, 2011]. They are based on the compliance

tensor, which is the inverse of the stiffness tensor,

Dvoxel = Cvoxel,−1 (5.18)

The compliance tensor components then give access to the Young’s moduli in

transverse and longitudinal directions according to

Evoxel
1 = Dvoxel,−1

1111 and Evoxel
3 = Dvoxel,−1

3333 (5.19)

to the Poisson’s ratios according to

νvoxel12 = −Dvoxel
1122 × Evoxel

1 and νvoxel13 = −Dvoxel
1133 × Evoxel

3 (5.20)
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and to the shear modulus according to

Gvoxel
12 =

Evoxel
1

2× (1 + νvoxel12 )
(5.21)

5.2.5 Statistical Analysis

The results in Section 5.3 are given in a rat-specific manner, together with

the mean values and standard deviations (SD) across all rats of either the

sham or the OVX group. Potential differences between OVX and sham rat-

specific quantities were investigated by means of a one-way ANOVA (analysis

of variance). The corresponding null hypothesis was: Quantity X does not dif-

fer between the OVX and the sham population, and the investigated quanti-

ties were: GVthr, Mo(GVBT ), µBT , fBTHA, Evoxel
1

[
Mo(GVBT )

]
, Evoxel

3

[
Mo(GVBT )

]
,

Gvoxel
12

[
Mo(GVBT )

]
, νvoxel12

[
Mo(GVBT )

]
, νvoxel13

[
Mo(GVBT )

]
. The homoscedasticity

and normality requirements for ANOVA were checked by means of the Brown-

Forsythe test [Brown and Forsythe, 1974] and the D’Agostino-Pearson omnibus

test [D’Agostino, 1986]; we here anticipate that these requirements are met for the

data sets documented in the Results section.

5.3 Results

All histograms derived from the 20 investigated micro-CT stacks exhibit clearly

three peaks, related to air, fluid, and “average” bone tissue, respectively, see Fig-

ure 5.6. The histogram-based evaluation of the 10 sham rat micro-CT image stacks

delivered air-related grey values between 29 and 33, water-related values between

66 and 71, and “average” bone-related values between 185 and 193, see Table 5.1.

The histogram-based evaluation of the 10 OVX rat micro-CT image stacks deliv-

ered air-related grey values between 29 and 33, water-related values between 65

and 72, and “average” bone-related values between 183 and 193, see Table 5.2.

Obviously, there are some variations between the most frequently occurring grey

values Mo(.) from one image stack to another within the respective group, but

those are relatively small as indicated through the standard deviation (SD). In ad-

dition, we investigated the potential difference between OVX- and sham rat-related

images, through testing the null hypothesis that the statistical populations, built

up by the image-stack-specific values for GVthr and Mo(GVBT ) would not differ
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Table 5.1: Most frequently occurring grey values of air, fluid and bone tissue, and
threshold grey values of the sham rats

Samples 1 2 3 4 5 6 7 8 9 10 mean SD

Mo(GVair) 29 32 29 33 30 32 29 33 31 30 31 1.62
Mo(GVfl) 68 69 69 67 70 66 68 70 69 71 69 1.49
Mo(GVthr) 134 139 136 134 135 133 128 134 135 138 135 2.99
Mo(GVBT ) 191 188 192 185 186 190 188 187 193 190 189 2.62

Table 5.2: Most frequently occurring grey values of air, fluid and bone tissue, and
threshold grey values of the OVX rats

Samples 1 2 3 4 5 6 7 8 9 10 mean SD

Mo(GVair) 33 30 31 29 31 30 32 29 31 32 31 1.32
Mo(GVfl) 71 68 72 65 72 66 68 69 72 72 70 2.68
Mo(GVthr) 140 132 136 134 137 128 132 133 134 139 135 3.60
Mo(GVBT ) 193 184 187 183 190 188 186 186 185 193 188 3.50

between the OVX and the sham group. According to a corresponding ANOVA,

this null hypothesis can indeed be maintained with probabilities being as high as

p=94.7 % (for GVthr) and p=29.3 % (for Mo(GVBT )).

Corresponding reconstructions of X-ray energy-dependent slope and intersect pa-

rameter functions a and b according to (5.3) deliver quite similar, yet not identical

functions, see Figures 5.7(a) and (b). Similarly small changes are seen in the image-

specific functions (5.13), based on (5.12), (5.11), and (5.10), see Figure 5.7(c). The

maxima of these functions, identifying the used X-ray energy, however, are even

identical: ε=14 keV. Hence, virtually no variations in the photon spectrum emit-

ted in the scanner are detectable. This energy value, when used in the functions

depicted in Figure 5.7(a,b), allows for identification of image-specific slope and

intersect parameters a and b, see Table 5.3 for sham rats, and Table 5.4 for OVX

rats.
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Figure 5.6: Probability density functions of attenuation-related grey values: (a)
sham rats, (b) OVX rats



Chapter 5. CT-to-micromechanics 169

5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

Photon energy [keV]

fB
T

H
2O

 [−
]

 

 
sham 1
sham 2
sham 3
sham 4
sham 5
sham 6
sham 7
sham 8
sham 9
sham 10
OVX 1
OVX 2
OVX 3
OVX 4
OVX 5
OVX 6
OVX 7
OVX 8
OVX 9
OVX 10

Figure 5.7: (a), (b) Line constants a and b relating grey values to attenuation
coefficients, as functions of the photon energy, (c) Water volume fractions in the
“average” bone voxel, as functions of the photon energy



Chapter 5. CT-to-micromechanics 170

T
ab

le
5.

3:
L

in
e

co
n
st

an
ts
a

an
d
b,

vo
lu

m
e

fr
ac

ti
on

s,
as

w
el

l
as

at
te

n
u
at

io
n

co
effi

ci
en

ts
an

d
d
en

si
ti

es
of

th
e

av
er

ag
e

b
on

e
ti

ss
u
e

at
ε

=
14

ke
V

of
th

e
sh

am
ra

ts

S
a
m

p
le

s
1

2
3

4
5

6
7

8
9

1
0

m
e
a
n

S
D

a
0.

04
8

0.
05

1
0.

04
7

0.
05

5
0.

04
7

0.
05

5
0.

04
8

0.
05

1
0.

04
9

0.
04

6
0.

05
0

0.
00

3
−
b

1.
39

0
1.

61
7

1.
35

5
1.

81
5

1.
40

2
1.

76
0

1.
39

0
1.

66
7

1.
52

5
1.

36
8

1.
52

9
0.

17
4

µ
B
T

7.
77

8
7.

89
4

7.
63

0
8.

37
0

7.
30

2
8.

70
1

7.
63

4
7.

79
3

7.
98

2
7.

30
7

7.
83

9
0.

43
6

ρ
B
T

1.
28

8
1.

29
3

1.
28

1
1.

31
7

1.
26

5
1.

33
3

1.
28

1
1.

28
8

1.
29

8
1.

26
5

1.
29

1
0.

02
1

f
B
T

H
A

0.
11

4
0.

11
6

0.
11

1
0.

12
6

0.
10

5
0.

13
2

0.
11

1
0.

11
5

0.
11

8
0.

10
5

0.
11

5
0.

00
8

f
B
T

o
r
g

0.
14

5
0.

14
8

0.
14

1
0.

15
9

0.
13

3
0.

16
7

0.
14

1
0.

14
5

0.
15

0
0.

13
3

0.
14

6
0.

01
1

f
B
T

H
2
O

0.
74

1
0.

73
6

0.
74

8
0.

71
5

0.
76

2
0.

70
1

0.
74

8
0.

74
1

0.
73

2
0.

76
2

0.
73

9
0.

01
9

T
ab

le
5.

4:
L

in
e

co
n
st

an
ts
a

an
d
b,

vo
lu

m
e

fr
ac

ti
on

s,
as

w
el

l
as

at
te

n
u
at

io
n

co
effi

ci
en

ts
an

d
d
en

si
ti

es
of

th
e

av
er

ag
e

b
on

e
ti

ss
u
e

at
ε

=
14

ke
V

of
th

e
O

V
X

ra
ts

S
a
m

p
le

s
1

2
3

4
5

6
7

8
9

1
0

m
e
a
n

S
D

a
0.

04
9

0.
04

9
0.

04
6

0.
05

2
0.

04
6

0.
05

2
0.

05
2

0.
04

7
0.

04
6

0.
04

7
0.

04
9

0.
00

3
−
b

1.
62

3
1.

47
6

1.
41

3
1.

50
6

1.
41

3
1.

55
8

1.
66

2
1.

35
5

1.
41

3
1.

49
5

1.
49

2
0.

09
9

µ
B
T

7.
88

4
7.

58
8

7.
12

4
8.

01
0

7.
26

1
8.

21
7

8.
01

0
7.

34
9

7.
03

3
7.

53
6

7.
60

1
0.

41
2

ρ
B
T

1.
29

7
1.

28
2

1.
25

9
1.

30
3

1.
26

6
1.

31
3

1.
30

3
1.

27
0

1.
25

5
1.

28
0

1.
28

3
0.

02
0

f
B
T

H
A

0.
11

6
0.

11
1

0.
10

2
0.

11
9

0.
10

4
0.

12
3

0.
11

9
0.

10
6

0.
10

0
0.

11
0

0.
11

1
0.

00
8

f
B
T

o
r
g

0.
15

7
0.

14
9

0.
13

7
0.

16
0

0.
14

1
0.

16
5

0.
16

0
0.

14
3

0.
13

5
0.

14
8

0.
14

9
0.

01
1

f
B
T

H
2
O

0.
72

7
0.

74
1

0.
76

2
0.

72
1

0.
75

5
0.

71
2

0.
72

1
0.

75
1

0.
76

6
0.

74
3

0.
74

0
0.

01
9



Chapter 5. CT-to-micromechanics 171

Use of these parameters in (5.1) allows for determination of voxel-specific atten-

uation coefficients, as depicted in the form of histograms in Figure 5.8 for the

ten respective sham and OVX rats. The corresponding most frequently occur-

ring attenuation coefficients in the bone tissue compartments of each of the 20

investigated image stacks vary between 7.3 cm−1 and 8.7 cm−1 in sham rats (see

Table 5.3) and between 7.0 cm−1 and 8.2 cm−1 in OVX rats (see Table 5.4). Ac-

cording to a one-way ANOVA, the null hypothesis that the average bone tissue

attenuation of OVX and sham rat femora do not differ, can be maintained with

a probability of p=22.6 %. Hence, there are not only image stack-related varia-

tions in user-specific parameters a and b, but also in the actual, user-independent

attenuation behavior of the “average” voxels representing different rats, be they

within one of the groups (OVX or sham), or across these groups. The same holds

true for the “average” volume fractions of mineral, organics, and water, as well

as for “average” mass densities found in the bone tissue voxels, as is evident from

Tables 5.3 and 5.4 as well.

The grey value dependencies of composition and elasticity are exemplarily shown

for a sham rat in Figure 5.9 and for an OVX rat in Figure 5.10. The correspond-

ing elastic properties according to (5.19), (5.20) and (5.21), as well as the volume

fractions of the mineral are illustrated as maps in Figures 5.11 and 5.12, while

respective average values are given in Tables 5.5 and 5.6. According to respective

one-way ANOVA analyses, the null hypotheses that OVX and sham rat femora

do not vary can be maintained for the average bone tissue for the mineral volume

fraction at p=22.4 %, for the transverse Young’s modulus at p=29.7 %, for the

axial Young’s modulus at p=53.4 %, for the shear modulus at p=32.6 %, and for

the axial and transverse Poisson’s ratios at p=24.1 %.
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Figure 5.8: Probability density functions of X-ray attenuation coefficients: (a)
sham rats, (b) OVX rats
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Figure 5.9: Grey value dependencies of composition and elasticity of bone tissue
in sham rat #6: (a) volume fractions, (b) stiffness tensor components, (c) Young’s
and shear moduli, (d) Poisson’s ratios
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Figure 5.10: Grey value dependencies of composition and elasticity of bone tissue
in OVX rat #6: (a) volume fractions, (b) stiffness tensor components, (c) Young’s
and shear moduli, (d) Poisson’s ratios
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5.4 Discussion

While traditional approaches of micro-CT evaluation target at morphometric anal-

ysis of the entire image stacks based on a variety of different quantities such as

bone mineral density (BMD), bone mineral content (BMC), bone volume over total

volume (BV/TV), trabecular separation (Tb.Sp), trabecular number (Tb.N), tra-

becular thickness (Tb.Th), structure model index (SMI) and connectivity density

(ConnD) [Böcker et al., 2014, Borah et al., 2001, Campbell et al., 2008, Donnelly,

2011, Fanti et al., 1998, Francisco et al., 2011, Govindarajan et al., 2014, Laib et al.,

2000, Lesclous et al., 2004, Saito et al., 2009, Wang et al., 2001, Yang et al., 2014],

the present contribution focussed on the information contained in each and every

voxel, beyond a producer- and user-dependent grey value representing a mixture

of physical properties and tunable regression parameters. Therefore, the linear

relation between grey values and attenuation coefficients, the energy-dependence

of the latter, and the average rule they obey to, were appropriately combined with

drying and ashing tests on bones similar to those scanned – namely femurs from

sham and OVX rats. As results, the average photon energy of the light source

was quantified, as were the voxel-dependent mineral, organic and water volume

fractions, i.e. the composition of each and every voxel. In this context, the vol-

ume fraction of hydroxyapatite increases with increasing X-ray attenuation-related

grey value, while the water volume fraction decreases with increasing grey value,

and the one of organics remains constant. This is consistent with the view that

hydroxyapatite precipitates from a fluid solution, with negligibly little affect of

the organic matter [Lees, 2003, Morin and Hellmich, 2013]. Feeding the afore-

mentioned compositional information into a validated micro-elastic model yielded

maps of elastic properties across the organ, as valuable source for potential struc-

tural analyses (see Figures 5.11 and 5.12).

The corresponding CT-elasticity relationships, as depicted in Figures 5.9(c) and

5.10(c), propose a quasi-linear relation between elastic modulus and attenuation-

related grey values, and therefore confirm an earlier postulate of [Shefelbine et al.,

2005] for a similar type of images depicting similar bones. We also note that our

stiffness values compare very well with stiffness values which were obtained by

testing mouse bone samples in three point-bending, four-point bending, and tor-

sion mode [Battaglia et al., 2003, Lowe et al., 2014, Silva et al., 2004]; as well as

by testing rat femurs in three-point bending mode [Hogan et al., 2000].
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Figure 5.11: Distribution of the mineral volume fraction, f voxelHA , and of the en-
gineering constants – Evoxel

1 , Evoxel
3 , Gvoxel

12 , νvoxel12 , νvoxel13 – throughout the bone
tissue compartment of the distal femur of sham rat #6; the color bars are labelled
by extreme values, as well as by the most frequently occurring one
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Figure 5.12: Distribution of the mineral volume fraction, f voxelHA , and of the en-
gineering constants – Evoxel

1 , Evoxel
3 , Gvoxel

12 , νvoxel12 , νvoxel13 – throughout the bone
tissue compartment of the distal femur of OVX rat #6; the color bars are labelled
by extreme values, as well as by the most frequently occurring one
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The question may arise whether the value ε, determined for the mean photon en-

ergy encountered in the investigated bone femur samples, could have been checked

by means of a more direct measurement technique. However, it is the unaltered

policy of most micro-CT producers to not disclose this information. Their standard

market model builds on providing images allowing for appropriate morphometrical

image analysis, while leaving aside any quantitative information on the actually

retrieved X-ray attenuation coefficients. However, the linear relation (5.1) is con-

firmed by the producers of the employed CT equipment [MITA, 2013].

Whenever, working with CT data, concerns about ring and beam hardening arti-

facts may arise: The ring artifact is caused by a misaligned or defective detector,

see e.g. Boas and Fleischmann [2012]. As careful observation of our scans (see

Figure 5.13 for a representative example) did not suggest the existence of rings

centered on the center of rotation, we may conclude the used detector was neither

misaligned nor defective. Beam hardening expresses itself in dark streaks between

two high attenuation objects, such as metal and bone [Boas and Fleischmann,

2012, Duerinckx and Macovski, 1978]; and/or through cupping artifacts where the

inner regions of a uniform cylinder undergo artificial “density reduction” [Barrett

and Keat, 2004, Joseph and Spital, 1978]. As the vast majority of our scans nei-

ther exhibit such streaks nor significant cupping artifacts, we conclude that beam

hardening did not essentially reduce the quality of the used scans. The overall

satisfactory quality of our scans may be due to the following precautions: The

samples were put into fluid-filled plastic tubes, and the scan optimization com-

pensating translational motion was applied before reconstruction. Furthermore,

all samples were treated in exactly the same fashion. At the same time, we wish to

clarify that the focus of our approach is the improved exploitation of satisfactorily

reconstructed attenuation values, rather than reconstruction issues per se. In this

sense, successful application of our method is always the more probable the more

reliable the used CT device and the a priori chosen and employed reconstruction

algorithms are. In the present case, the producer calls the used device “closest to

synchrotron CT” [GE Measurement and Control, 2014].

The micromechanics approach rests on experimental investigations which give ac-

cess to the elastic properties of the elementary components of bone: hydroxyapatite

mineral, collagen, and water. In the micromechanical context, these elementary

components play the role of phases, as illustrated in Figure 5.5. Accordingly, the

most straightforward access to these phase properties is the consideration of RVEs
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Figure 5.13: Example of a reconstructed micro-CT scan showing a cross section
through the distal femur of sham rat #9

which (almost) exclusively consist of one single phase representing one of the afore-

mentioned elementary components, and to corresponding experiments performed

on samples which actually represent such RVEs. As regards the mineral phase,

the used micromechanics model rests on the ultrasonic tests reported by Katz and

Ukraincik [1971] and Gilmore and Katz [1982]; these tests were performed on dense

apatite solids. The resulting isotropic elastic constants, namely a bulk modulus of

83 GPa and shear modulus of 45 GPa [Morin and Hellmich, 2014], agree remark-

ably well with totally independent ab initio calculations [Ching et al., 2009] based

on the Vienna ab initio simulation package (VASP) [Kresse and Hafner, 1993].

The latter simulations deliver a bulk modulus of 84 GPa and a shear modulus of

48 GPa. Accordingly, we conclude that totally different and independent sources

lead to key material properties used as input for the herein employed microme-

chanical model, which do not differ by more than 5 %. Similar arguments hold for

the collagen properties derived from Brillouin light scattering tests performed on

stretched dehydrated samples consisting almost exclusively of type I collagen [Cu-

sack and Miller, 1979, Morin and Hellmich, 2014]. First, the interest in stretched

samples is due to the fact that bone cells stretch the still unmineralized collagen

fibrils before impregnating them with mineral [Engler et al., 2006]; and expanding

on the aforementioned argument, we note that the Brillouin scattering-derived

stiffness properties as given in Eq. (34) of Morin and Hellmich [2014] compare well
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to properties obtained either from atomistic simulations of crosslinked collagen

[Buehler, 2008], or from microelectromechanical tests [Eppell et al., 2006, Shen

et al., 2008]. It is instructive to consider these facts in view of recent stochastic

homogenization approaches to estimate bone elastic properties [Sansalone et al.,

2014], which came to the main conclusion that ”the statistical fluctuations of the

(homogenized) elastic coefficients are smaller than those of its elementary con-

stituents.” This would imply that the homogenized elastic properties used herein

for voxel characterization, are precise up to an error of typically less than 5 %,

due to potential variations in the material properties which were assigned to the

elementary constituents of bone.

A further independent check of our homogenized, voxel-specific tissue properties

might still be desirable. We are not aware of nanoindendation tests on OVX

and sham rat femora; however, the nanoindendation campaign of Guo and Gold-

stein [2000] on vertebral trabecular bone showed that the tissue properties remain

unchanged upon ovariectomy, being therefore fully consistent with the results of

our present study. As regards absolute numbers, the stiffnesses reported by Guo

and Goldstein [2000] are comparable to those of Silva et al. [2004] obtained from

dried femoral bone tissue of senescence accelerated mice. On the other hand,

corresponding wet mouse tissue properties were determined by Silva et al. [2004]

from four-point bending tests: Respective Young’s moduli range between 2.8 and

7.4 GPa; and this range largely overlaps with that of Tables 5.5 and 5.6.

The key goal of the present work was to derive, from micro-CT data, voxel-specific

composition and elasticity information which is to the largest extend possible,

based on tissue- and species-invariant quantities and relations. The latter com-

prise mass densities and attenuation coefficients of organics, mineral, and water;

the linear relation between grey values and attenuation coefficients; as well the av-

erage rule for X-ray attenuation coefficients. The only species-specific input to our

method is the mineral-to-organic mass ratio provided by [Kim et al., 2009]. The

latter researchers tested animals undergoing surgery at 10 weeks age and being

sacrificed at 16 weeks age, while the rats investigated here underwent surgery at 24

weeks age and were sacrificed at 30 weeks age. It has been repeatedly stated that

the age at ovariectomy and the post OVX time span may affect the outcome of

the treatment [Francisco et al., 2011, Liu et al., 2015, Thompson et al., 1995]. On

the other hand, it is known that tissue property changes are typically restricted

to young age, and are ceasing with adulthood [Akkus et al., 2003, Boivin and

Meunier, 2002, Hellmich et al., 2008, Roschger et al., 2003]. Hence, the question
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arises, whether the 16 weeks old rats of [Kim et al., 2009] may be regarded as

equally “adult” as the 30 weeks old rats investigated in the present study. For

a rough answer to this question, we consider the chemical tests on rat bones re-

ported by Hammet [1925] from which evolutions of tissue mass density with age

can be determined, see Table 5 of Vuong and Hellmich [2011] for corresponding

data. Fitting these data by a decaying exponential curve delivers characteristic

“growing times” of rats of about 10 weeks. As the age at sacrifice of both the rats

reported by Kim et al. [2009] and the presently investigated rats is clearly beyond

this “growing time”, we may, in a first approximation, consider both as “adult”,

and therefore, as exhibiting largely age-independent tissue properties.

Our CT-derived compositional data, in combination with the mass densities of

mineral, organics, and water, give access to the voxel-specific mass density of bone

tissue voxels, and the average value of the latter, amounting to about 1.3 g/cm3

according to our analysis based on CT images and ashing/drying tests, agrees very

well with independent, direct mass density measurements on rat femurs [Hammet,

1925], delivering an average value of 1.3 g/cm3. This good agreement gives ad-

ditional confidence in our new method. Secondly, it becomes evident that the

intra-group variations (within the OVX and sham rat groups), of all studied vari-

ables, such as grey values, attenuation coefficients, volume fractions, and elastic

properties, are much larger than the differences between the OVX and the sham

group, in particular when considering the corresponding ANOVA results given in

the Results Section. Accordingly, only the macroscopic level is left for potential

identification of differences between OVX and sham rats. Given roughly the same

sizes of femora OVX and sham rats, the overall bone tissue volume emerges as in-

teresting quantity to quantify “OVX-induced osteoporosis”. The null hypothesis

that also this bone tissue volume would not differ between the OVX and the sham

group can be maintained with a probability amounting to only p=11.7 %. Hence,

OVX-induced changes at the overall bone organ level are more probable than at

the tissue level. Still, the value of 11.7 % exceeds the standard 5 % threshold

which is customary for calling a difference “really significant”. This reflects cer-

tain doubts on the OVX procedure as a means to mimick osteoporosis, as they are

expressed in the literature: Reasons for that the lost function of the ovaries in rats

does not always provoke similar effects as in humans were reviewed by Kalu [1991]:

(i) rats exhibit a stable bone mass, or even gain bone, throughout most of their

lifetime (in contrast to humans), and (ii) bone remodeling patterns in rats differ

from those in humans, e.g. the former do not exhibit Haversian cortical bone. The
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remodeling activities can also be traced in terms of mineralization states at the

bone tissue scale [Roschger et al., 2008], where higher attenuation would be related

to lower remodeling activities (indicating osteoporosis). However, the OVX rats

exhibit lower bone attenuation properties (and smaller mineral volume fractions)

when compared to the sham rats – and the latter properties can even be more eas-

ily distinguished between the OVX and the sham rat groups, relative to Young’s

modulus and grey values.

These somehow doubtful results on the actual efficiency of OVX-treatment are

fully consistent with reports on OVX studies measured through dual X-ray ab-

sorptiometry (DXA): Some researchers report no significant difference in BMD

between OVX and sham rats [Campbell et al., 2008, Saito et al., 2009], while oth-

ers observe a decrease of BMD due to oestrogen deprivation [Fanti et al., 1998,

Govindarajan et al., 2014, Wang et al., 2001].



Chapter 5. CT-to-micromechanics 185

5.5 Appendix A. Derivation of the mineral vol-

ume fraction of Eq. (5.15)1

Specialization of (5.1) adapted for the bone tissue (BT ) and for ε = ε reads as

µvoxelBT (ε) = a(ε)×GVBT + b(ε) (5.22)

whereas specialization of (5.6) for forg(ε) = fBTorg (ε) and ε = ε reads as

µvoxelBT (ε) = µHA(ε)×f voxelHA (ε)+µorg(ε)×fBTorg (ε)+µH2O(ε)×
[
1−f voxelHA (ε)−fBTorg (ε)

]

(5.23)

Setting (5.22) and (5.23) equal to each other, yields

a(ε)×GVBT + b(ε)− µorg(ε)× fBTorg (ε)− µH2O(ε)×
[
1− fBTorg (ε)

]
= ...

...f voxelHA (ε)×
[
µHA(ε)− µH2O(ε)

] (5.24)

and solving (5.24) for f voxelHA finally results in

f voxelHA (ε) =
a(ε)×GVBT + b(ε)− fBTorg (ε)× µorg(ε)−

[
1− fBTorg (ε)

]
× µH2O(ε)

µHA(ε)− µH2O(ε)
(5.25)
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5.6 Appendix B. Derivation of fibrillar and ex-

trafibrillar volume fractions, f voxelfib and f voxelef ,

in the line of Morin and Hellmich [2013]

From the voxel-specific volume fractions of mineral, organics, and water, f voxelHA ,

f voxelorg , and f voxelH2O
, the volume fractions entering the multiscale micromechanical

model of [Morin and Hellmich, 2014] are determined, according to the general bone

composition and evolution rules identified by Morin and Hellmich [2013] for precip-

itation of solid hydroxyapatite from a fluid ionic solution under closed thermody-

namic conditions, and by Hellmich and Ulm [2003] for the distribution of mineral

between fibrillar and extrafibrillar spaces, while considering the hydration-induced

swelling properties of unmineralized collageneous tissues according to Morin et al.

[2013]. In more detail, the voxel-specific volume fraction of collagen per (extracel-

lular) bone tissue volume reads as

f voxelcol = 0.9× f voxelorg (5.26)

as 90 % of the organic matter in bone is known to be type I collagen [Urist et al.,

1983]. This implies the volume fracton of the bone fluid phase (consisting mainly

of water, but also containing some non-collageneous organics) to read as

f voxelfl = 1− f voxelHA − f voxelcol (5.27)

During mineralization the density difference between low-density ionic fluid

(ρH2O=ρfl=1 g/cm3) out of which the mineral precipitates and high-density solid

hydroxyapatite (ρHA=3 g/cm3), implies shrinkage of the tissue, due to ”contrac-

tion” of the fluid spaces inside and outside the collagen fibrils. This motivates

to first determine the fibrillar and extrafibrillar volume fractions in a piece of yet

unmineralized (and fully saturated) bone tissue (called osteoid). In such a tissue,

the collagen volume fraction within the fibrils is a constant and amounts to (see

Eq. (B.1) of [Morin and Hellmich, 2013])

f fib,0col = 0.45 (5.28)
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It gives access to the fibrillar and extrafibrillar volume fractions in unmineralized

osteoid, according to Eq. (B.3) of [Morin and Hellmich, 2013]

f 0
fib =f fib,0col ×

ρH2O

R0 × ρcol + ρH2O

f 0
ef =1− f 0

fib

(5.29)

with R0 as the fluid-to-collagen mass ratio of the unmineralized tissue, which can

readily be expressed as

R0 =
f 0
fl

f 0
col

× ρH2O

ρcol

with f 0
fl + f 0

col = 1

(5.30)

with f 0
fl and f 0

col as the fluid and collagen volume fractions of the unmineralized

(osteoid) tissue. The latter follows from Eq. (B.5) of [Morin and Hellmich, 2013],

and reads as

f 0
col =

f voxelcol
ρHA
ρH2O

× f voxelHA + f voxelfl + f voxelcol

(5.31)

Quantities (5.26) to (5.31) give access to the extrafibrillar and fibrillar volume

fractions in mineralized tissue, according to Eqs. (C.13) and (10) of [Morin and

Hellmich, 2013]

f voxelef =
f 0
ef

1 +
(
ρHA
ρH2O

− 1
)
× f voxelHA

+
f 0
ef

1− f 0
col

×
(

1− ρHA
ρH2O

)
× f voxelHA

f voxelfib =1− f voxelef

(5.32)
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5.7 Nomenclature

a slope of the linear relation between X-ray attenuation coeffi-
cient and grey value of a micro-Computed Tomograph

b intersection of the linear relation between X-ray attenuation
coefficient and grey value of a micro-Computed Tomograph

Cef stiffness tensor of the extrafibrillar space (residing in the re-
spective subvolume of the considered voxel)

Cfib stiffness tensor of the fibrillar space (residing in the respective
subvolume of the considered voxel)

Cvoxel (voxel-specific) micromechanics-derived stiffness tensor of the
extracellular bone tissue

Cvoxel
ijkl (voxel-specific) micromechanics-derived stiffness tensor com-

ponent of the extracellular bone tissue
Dvoxel (voxel-specific) micromechanics-derived compliance tensor of

the extracellular bone tissue
Dvoxel
ijkl (voxel-specific) micromechanics-derived compliance tensor

component of the extracellular bone tissue
E(.) expected value of random variable (.)
Evoxel

1 (voxel-specific) micromechanics-derived Young’s modulus of
the extracellular bone matrix in transverse direction

Evoxel
3 (voxel-specific) micromechanics-derived Young’s modulus of

the extracellular bone matrix in axial direction
fBTHA volume fraction of hydroxyapatite related to the most fre-

quently occurring bone tissue voxel (approximating the “av-
erage” bone tissue voxel)

fBTH2O
volume fraction of water related to the most frequently oc-
curring bone tissue voxel (approximating the “average” bone
tissue voxel)

fBTorg volume fraction of organics related to the most frequently oc-
curring bone tissue voxel (approximating the “average” bone
tissue voxel)

f efHA volume fraction of hydroxyapatite in the extrafibrillar space

f efic volume fraction of the intercrystalline pore space in the ex-
trafibrillar space

f fib,0col collagen volume fraction in the fibrils of the unmineralized
osteoid

f fibHA volume fraction of hydroxyapatite in the fibrillar space

f fibwetcol volume fraction of wet collagen in the fibrillar space
fwetcolcol volume fraction of collagen in the wet collagen space
fwetcolim volume fraction of the intermolecular pore space in the wet

collagen

fHA+org
HA volume fraction of hydroxyapatite per organics- and mineral-

filled subvolume of the most frequently occurring bone voxel
fHA+org
org volume fraction of organics per organics- and mineral-filled

subvolume of the most frequently occurring bone voxel
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f voxelcol (voxel-specific) volume fraction of collagen
f voxelef (voxel-specific) volume fraction of the extrafibrillar space
f voxelfib (voxel-specific) volume fraction of the fibrillar space
f voxelfl (voxel-specific) volume fraction of bone fluid in intercrys-

talline and intermolecular pore spaces
f voxelHA (voxel-specific) volume fraction of hydroxyapatite
f voxelH2O

(voxel-specific) volume fraction of water
f voxelorg (voxel-specific) volume fraction of organics
f 0
col volume fraction of collagen in the unmineralized osteoid
f 0
ef extrafibrillar volume fraction in the unmineralized osteoid
f 0
fib fibrillar volume fraction in the unmineralized osteoid
f 0
fl fluid volume fraction in the unmineralized osteoid
GV (voxel-specific) X-ray attenuation-related grey value
GVair (voxel-specific) grey values occurring in air compartment of a

CT image stack
GVBT (voxel-specific) grey values occurring in bone tissue compart-

ment of a CT image stack
GVfl (voxel-specific) grey values occurring in fluid compartment of

a CT image stack
GVthr threshold grey value between bone tissue-related voxels and

fluid-filled voxels
GVthr2 threshold grey value between fluid-filled voxels and air-filled

voxels
Gvoxel

12 (voxel-specific) micromechanics-derived shear modulus in
transverse (isotropic) plane

I fourth-order identity tensor
Mo(.) mode of random variable (.)
P ec
cyl fourth-order Hill or morphology tensor, accounting for the

cylindrical phase shape in a matrix with the elastic properties
of extracellular (ec) bone tissue

R mass ratio between mineral and organics in bony organ, ac-
cording to [Kim et al., 2009]

R0 mass ratio between fluid and collagen in the unmineralized
(osteoid) tissue, according to [Morin and Hellmich, 2013]

ε average photon energy related to a CT image stack
ε identified average photon energy (constant)
µ X-ray attenuation coefficient
µair X-ray attenuation coefficient which most frequently occurs

within the air compartment of a CT image stack of a rat
femur

µBT X-ray attenuation coefficient which most frequently occurs
within the bone tissue compartment of a CT image stack of
a rat femur

µfl X-ray attenuation coefficient which most frequently occurs
within the fluid compartment of a CT image stack of a rat
femur
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µHA X-ray attenuation coefficient of hydroxapatite
µHA+org X-ray attenuation coefficient of the organics- and mineral-

filled subvolume of the most frequently occurring bone tissue
voxel

µH2O X-ray attenuation coefficient of water
µorg X-ray attenuation coefficient of organics
µvoxelBT (voxel-specific) X-ray attenuation coefficient within the bone

tissue compartment of a CT image stack of a rat femur
νvoxel12 (voxel-specific) micromechanics-derived Poisson’s ratio in

transverse (isotropic) plane
νvoxel13 (voxel-specific) micromechanics-derived Poisson’s ratio in

(any) axial plane
ρair mass density of air
ρHA mass density of hydroxyapatite
ρH2O mass density of water
ρorg mass density of organics
ρvoxelBT (voxel-specific) bone tissue mass density
ρBT mass density related to the most frequently occurring bone

tissue voxel
BT bone tissue
cyl cylindrical
ec extracellular bone matrix
ef extrafibrillar space
fib fibrillar space
fl fluid
HA hydroxyapatite
HA+ org organics and mineral within the bone tissue
H2O water
ic intercrystalline pore space
im intermolecular pore space
org organic matter
OVX ovariectomized
RVE respective volume element
voxel voxel-specific
wetcol wet collagen
thr threshold between bone tissue-related voxels and fluid-filled

voxels
thr2 threshold between fluid-filled voxels and air-filled voxels
0 unmineralized (osteoid) tissue
1 transverse direction
2 axial direction
12 transverse (isotropic) plane
13 (any) axial plane
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Abstract

Nowadays, the assessment of the mechanical competence of tissue engineering scaf-

folds based on computer simulations is a well-accepted technology. Typically, such

simulations are performed by means of the Finite Element (FE) method, with the

underlying structural model being created based on micro-computed tomography

(microCT). Here, this analysis modality is applied to a new, ternary composite,

consisting of PHBV, i.e. poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PLGA,

i.e. poly(lactic-co-glycolide), as well as of TCP, i.e. tricalcium phosphate hydrate.

The here studied scaffold structure is made up by fibers of this new composite

material, manufactured by means of the rapid prototyping method. The data

collected from microCT will be additionally utilized for adequately defining the

mechanical properties of the FE model. In particular, the three-dimensional field

of grey values is interpreted in terms of the underlying field of attenuation coeffi-

cients, taking into account the photon energy employed in microCT imaging, even-

tually allowing for calculation of the three-dimensionally distributed, voxel-specific

composition of the studied material. For the sake of keeping the FE simulations as

efficient as possible, groups of voxels are combined into one finite element; the grey

value of the latter is obtained by averaging. Employing a two-step micromechan-

ical homogenization scheme, the experimentally accessible stiffness of the three

constituents (PHBV, PLGA, and TCP) is then, finite element by finite element,

upscaled to the composition-dependent stiffness of the composite material. The

plausibility and adequacy of the FE model is demonstrated by simulating the ef-

fects of uniaxial compression on scaffold structure, in terms of resulting stress and

strain fields, highlighting the importance of the fiber junctions (as they are the

mechanically most stressed regions), and that neglecting the material heterogene-

ity would lead to potentially significant underestimation of stresses and strains.

Finally, a comparison is made of the employed analysis modality of microCT data

with a previously pursued, simplified analysis strategy, highlighting the conceptual

superiority of the former, and pointing out the application limits of the latter.
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6.1 Introduction

Bone tissue engineering scaffolds must fulfil diverse requirements [Hollister, 2005,

Hutmacher, 2000, Rezwan et al., 2006, Williams, 2008]. Firstly, they must be

biocompatible, that is they must not cause any harm to the targeted physiological

environment. Then, such scaffolds must also stimulate the regeneration of bone

tissue, by being suitable hosts of bone growth-promoting cells and growth factors,

and by being porous enough in order to provide enough space for substantial

ingrowth of bone tissue. Ideally, once new bone tissue has accumulated to a

sufficient extent, the scaffold structure degrades and eventually disappears, as it

has fulfilled the purpose of providing temporary support and is no longer needed.

And, finally, since bone is often concerned with bearing mechanical loads, bone

tissue engineering scaffolds must feature suitable mechanical properties.

The range of materials that have been developed to meet the aforementioned

requirements is extremely widespread, including materials that are particularly

biodegradable [Castilla Bolaños et al., 2017, Di Luca et al., 2016, Gupta et al.,

2017, Szlazak et al., 2016] or metallic alloys [Wang et al., 2017, Wysocki et al.,

2016, Yazdimamaghani et al., 2017]. However, conventional materials often lack

at least one of the aforementioned features, therefore exhibiting limited applica-

bility in bone tissue engineering. In this paper, we present a new ternary com-

posite material, consisting of two types of polymers, namely PHBV, i.e. poly(3-

hydroxybutyrate-co-3-hydroxyvalerate), PLGA, i.e. poly(lactic-co-glycolide), as

well as of TCP, i.e. tricalcium phosphate hydrate. PHBV, a thermoplastic

polyester produced by many bacteria as an intracellular reservoir of carbon and

energy [Zinn et al., 2001], is biodegradable, biocompatible, piezoelectric, and ex-

hibits mechanical properties which render PHBV as suitable for application as

scaffold material in bone tissue engineering [Fukada and Ando, 1986]. However,

PHBV is not bioactive, thus it does not promote bone regeneration [Li and Chang,

2004] and may instead lead to fibrous encapsulation [James et al., 1999, Kokubo

et al., 1990]. Furthermore, PHBV degrades rather slowly [Idaszek et al., 2013],

and is difficult to process by means of extrusion, owing to a comparably low vis-

cosity [Kublik et al., 2012] (leading to a correspondingly high mass flow rate).

Merging organic particles, such as TCP, into PHBV improves the bioactivity of

the resulting composite, as compared to PHBV alone [Chen and Wang, 2002]. The

viscosity of the compound consisting of PHBV and TCP is also higher than the

one of PHBV, and is further reduced by including PLGA, a polymer with high
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molecular weight, as third constituent [Kublik et al., 2012]. Additionally, PLGA

leads to an increased degradation rate of the polymer matrix [Idaszek et al., 2013,

2015a,b, 2016]. Thus, the presented three-phase composite material made up by

PHBV, PLGA, and TCP unites supreme characteristics in terms of processability,

bioactivity, and biodegradability, and therefore promises to be a very interesting

complement to the range of already existing materials.

The aforementioned requirement concerning the mechanical behavior of the bone

tissue engineering scaffold has to be fulfilled on two different levels, that is both on

the material level, ensured by an appropriate composite mixture, and on the struc-

tural level. As for the latter, collecting as many insights into the exact mechanical

behavior of the scaffold structure as possible, before implantation, is certainly

preferable over the often-pursued trial-and-error strategy (which is potentially

ineffective and patient-unfriendly). In this paper, we present a computational

method, combining X-ray physics, averaging rules, continuum micromechanics,

and large-scale Finite Element (FE) simulations, for studying the structural me-

chanical behavior. In particular, after defining the constituents of the scaffold

material, and describing how it is manufactured (in Section 6.2), acquiring the

material’s microstructure by means of micro-computed tomography (microCT)

will be dealt with in Section 6.3.1. Over the past decade, substantial progress has

been made in terms of “translating” the spatial arrangement of grey values result-

ing from CT scanning, into corresponding volume fraction maps quantifying the

material’s composition [Czenek et al., 2014, Hasslinger et al., 2016, Hellmich et al.,

2008, Luczynski et al., 2012, Scheiner et al., 2009]. Here, we will tie in with these

works, by back-analyzing the photon energy applied in the CT studies performed

on the aforementioned ternary composite material (i.e. an information which is

standardly not provided by manufacturers of tomographs), based on which the

volume fractions of the polymers (PHBV and PLGA) and of the TCP inclusions

can be calculated (see Section 6.3.2). These volume fractions serve as input for

Finite Element simulations of the structural behavior of the scaffold, with the

underlyling constants resulting from continuum micromechanical homogenization

(see Section 6.4). After clarifying the required accuracy of the Finite Element

mesh, numerical simulations of uniaxial compressive loading demonstrate how im-

portant thorough consideration of the heterogeneous distribution of the composite

material’s composition is (see Section 6.5). The paper is concluded with a brief

discussion (see Section 6.6).
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6.2 Material characterization and processing

The ingredients of the composite material presented in this paper are PHBV,

i.e. poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PLGA, i.e. poly(L-lactide-

co-glycolide), and TCP, i.e. tricalcium phosphate hydrate. PHBV (with a 3-

hydroxyvalerate content of 12 wt%) was purchased from Sigma-Aldrich, USA.

PLGA (in particular Resomer LG 855S, with a GA content of 15 mol%, and an

inherent viscosity of 2.5 to 3.5 dl/g) was ordered from Boehringer Ingelheim, Ger-

many. TCP nanopowder (with a particle size of less than 200 nm, according to

BET) was bought from Aldrich, USA. Furthermore, methylene chloride was ob-

tained from Chempur, Poland.

The composites were prepared utilizing the solvent casting technique. PHBV

and PLGA (with a mass ratio of 7:3) were dissolved in methylene chloride

(c = 20 w/v%). Subsequently, 5 wt% of TCP powder was added and mixed by

means of a magnetic stirrer, in order to ensure a homogenous particle distribu-

tion. The resulting slurry, with volume fractions fPHBV = 0.7127, fPLGA = 0.2657,

and fTCP = 0.0216, was then cast into a Petri dish and dried, first overnight in

a fume hood, and then, for several days, in a vacuum dryer at a temperature of

45◦C and a pressure of 50 mbar. The resulting film was cut into small pieces and

used to fabricate composite scaffolds using the rapid prototyping device BioScaf-

folder (Syseng, Germany). The composite was extruded through a G23-nozzle

(with an inner diameter of 330µm), at a temperature of 165◦C and a pressure of

approximately 2 bar. The movement of the printing head was set to 100 mm/min,

while the screw was set to approximately 200 rpm. The samples were produced

in form of cylinders with a diameter of 6 mm, a height of 2 mm and a lay-down

pattern of 0/90◦, see Figure 6.1. The spacing between fibers in each layer was

set to 0.657 mm, ensuring a pore size in the xy-plane larger than 300µm, and to

0.24 mm in neighboring layers, ensuring sufficient adhesion between the fibers in

z-direction. Furthermore, for the sake of comparison (see Sections 6.3.1 and 6.3.2),

a sample of pure PHBV was also scanned by microCT.
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(a)

(b)

(c)

Figure 6.1: (a) Photograph of one of the produced scaffolds, obtained by means
of stereomicroscopy; (b) cross section of one fiber, acquired by means of scanning
electron microscopy, showing the distribution of PLGA and TCP inclusions, as
well as large TCP agglomerations, within the PHBV matrix; and (c) one layer
of the image stack obtained by means of microCT, relating to cross-section A-A
indicated in (a)
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6.3 Acquisition of the scaffold microstructure by

means of micro-computed tomography

6.3.1 Definition of imaging modality

After production, micro-computed tomography (microCT) was performed on the

scaffold structure by means of a Zeiss Xradia MicroXCT-400, in order to ascertain

its exact (macroscopic) geometry, and to investigate the microstructural distribu-

tion of material constituents. For this purpose, source voltage and source current

were set to 40 kV and 250µA. The obtained resolution was 6µm. The scanning

procedure was carried out by performing a rotation of the emitted X-ray by 180◦,

with a step size of 0.15◦, and an exposure time of 15 s per projection.

From a conceptual point of view, CT imaging is based on sending X-rays through

the studied object, and measuring the resulting attenuation of the X-ray intensity.

This procedure is repeated many times, varying the position of the X-ray source

and the direction of the X-ray. Making use of the Radon transform [Radon, 1917],

the collected information is then processed such that a three-dimensional distri-

bution of attenuation coefficients emerges. In order to illustrate this distribution,

the attenuation coefficients are usually translated into corresponding grey values.

In particular, the studied object is compartmentalized into so-called voxels, which

are essentially cubic domains whose side length corresponds to the CT resolution;

thus, in the present study the size of the voxels is 6×6×6µm. To each voxel i, one

constant grey value GVi is assigned, being proportional to attenuation coefficient

µi, i.e. the attenuation coefficient of the material contained in this voxel. Figure

6.1(c) shows the thereby obtained field of grey values (on an 8 bit-scale) across

one specific cross-section of the microCT-scanned domain. Furthermore, for the

sake of comparison, a so-called phantom, i.e. a pure PHBV granule (provided by

the manufacturer), was also placed in the scanned domain.

6.3.2 Analysis of microCT data for determination of the

voxel-specific scaffold composition

The aforementioned proportionality between GVi and µi can be mathematically

expressed by means of a linear relation [Blanchard et al., 2013, Czenek et al., 2014,
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Fritsch et al., 2011, Hasslinger et al., 2016],

µi(ε) = a(ε)×GVi + b(ε) . (6.1)

Thus, the voxel-specific attenuation coefficient, as well as constants a and b are

functions of the photon energy ε used for the CT imaging. Finding eventually

a relation between the voxel-specific grey values provided by a CT scan and the

corresponding, voxel-specific constituent volume fractions is described next.

We start with considering the frequency distributions of the grey values resulting

from the microCT scans of both the scaffold structure and the PHBV phantom,

see Figure 6.2. In this plot, several peaks can be identified, two of which are

particularly useful. On the one hand, the leftmost peak unambiguously relates

to air, i.e. to the voxels not containing any composite material, occurring at

GVpeak
air = 3.29. On the other hand, right of the peak relating to air, the second-

highest peak relates to the PHBV phantom, at GVpeak
PHBV = 23.97. Specifying

Eq. (6.1) for the air and PHBV phases yields the following two equations:

µair(ε) = a(ε)×GVpeak
air + b(ε) (6.2)

and

µPHBV(ε) = a(ε)×GVpeak
PHBV + b(ε) . (6.3)

Knowing the chemical compositions of air and PHBV, the National Institute of

Standards and Technology (NIST) of the United States of America readily provides

the photon energy-dependent attenuation coefficients µair(ε) and µPHBV(ε) [Hubbel

and Seitzer, 2004], allowing to solve Eqs. (6.2) and (6.3) for a(ε) and b(ε), yielding

a(ε) =
µair(ε)− µPHBV(ε)

GVpeak
air −GVpeak

PHBV

(6.4)

and

b(ε) =
µair(ε)GVpeak

PHBV − µPHBV(ε)GVpeak
air

GVpeak
PHBV −GVpeak

air

. (6.5)

Next, the photon energy used for the particular CT data studied here is considered.

For this purpose, we consider the third peak visible in Figure 6.2, representing the

scaffold material, at GVpeak
scaff = 28.99. Again, Eq. (6.1) is accordingly specified:

µpeak
scaff (ε) = a(ε)×GVpeak

scaff + b(ε) . (6.6)
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Figure 6.2: Relative frequency distribution of the grey values obtained from mi-
croCT scanning of the scaffold depicted in Figure 6.1, together with the PHBV
phantom; (b) relates to a zoom-out from (a)

Additionally, we take into account that the attenuation coefficient of a composite

material follows from volume averaging, thus

µpeak
scaff (ε) =

∑

j

µj(ε)fj , (6.7)

where index j represents PHBV, PLGA, and TCP, and where fj are the volume

fractions of the constituents (related here to the composition which is most fre-

quently occurring in the voxels making up the scaffold material domain of the

microCT image). Then, we plot µpeak
scaff (ε) based on Eq. (6.6), on the one hand, by

inserting the coefficients according to Eqs. (6.4) and (6.5), and based on Eq. (6.7),

on the other hand, by considering the attenuation coefficients following from the

NIST-database as well as the constituent volume fractions following from the
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Figure 6.3: (a) X-ray attenuation coefficients of PHBV, PLGA, TCP, and air,
as functions of the photon energy, according to the NIST-database [Hubbel and
Seitzer, 2004]; (b) µpeak

scaff (ε) according to both Eqs. (6.6) and (6.7), exhibiting an
intersection at ε = 35.55 keV

mixture of the composite material, see Section 6.2, and consider the intersec-

tion of the two graphs, see Figure 6.3. This intersection gives then access to

the photon energy that is required in order to reach equality between Eqs. (6.6)

and (6.7), ε = 35.55 keV, and, via Eqs. (6.4) and (6.5) to a = 0.0145 cm−1 and

b = −0.0330 cm−1.

Finally, for calculating the voxel-specific material composition from the CT-data,

we consider the simplification that in the CT data, due the very similar attenuation

behavior of PHBV and PLGA, the polymers can be hardly distinguished. Thus,

Eq. (6.7) is accordingly reformulated, for quantifying the attenuation coefficient of
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a composite material in voxel i, yielding

µi = µpoly

(
1− f iTCP

)
+ µTCPf

i
TCP , (6.8)

where µpoly is the attenuation coefficient of the polymer, µpoly = (µPHBVfPHBV +

µPLGAfPLGA)/(fPHBV + fPLGA), with the attenuation coefficients of PHBV and

PLGA quantified for a photon energy of 35.55 keV, and respective volume fractions

according to the composite mixture, and f iTCP is the volume fraction of TCP within

voxel i. Specifying then again Eq. (6.1) for such a voxel, considering the voxel-

specific grey value GVi, and setting the resulting equation equal to Eq. (6.8) allows

us to eventually derive the sought-after relation which gives access to the voxel-

specific volume fraction of TCP:

f iTCP =
µpoly − a×GVi − b

µpoly − µTCP

. (6.9)

6.4 Computation of strain and stress fields

across the scaffold when subjected to uni-

axial compression

6.4.1 Finite Element model of scaffold structure

In order to study the structural behavior of the scaffold made up by the ternary

composite consisting of PHBV, PLGA, and TCP, see Section 6.2, large-scale nu-

merical computations, by means of the Finite Element (FE) method are performed.

For this purpose, a FE model is built from the three-dimensional distribution of

grey values obtained from CT scanning, see Figure 6.4. In order to minimize

computation time, one finite element actually represents a group of voxels; in this

work, we have considered grouping of 8×8×8, 7×7×7, 6×6×6, 5×5×5, 4×4×4,

3×3×3, and 2×2×2 voxels into one finite element, yielding FE meshes consisting

of 39757, 59443, 98898, 166058, 318306, 761631 and 2575100 elements (i.e. cubic

elements with tri-linear shape functions, each element consisting of eight nodes).
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(a)

(b) (c)

Figure 6.4: (a) Three-dimensional reconstruction of the scaffold structure based
on the data obtained from microCT imaging, with indication of the rectangular
prism cut out of the reconstructed scaffold structure serving as basis for the FE
models; FE models with varying accuracy, i.e. consisting of (b) 59443 elements
(with 7 × 7 × 7 voxels combined into one element), and of (c) 2575100 elements
(with 2× 2× 2 voxels combined into one element)

Notably, the grey values of all voxels making up one finite element are averaged,

GVk =
1

Nk

Nk∑

i

GVi , (6.10)

and the resulting three-dimensional field of finite element-specific grey values is

translated into a corresponding distribution of TCP and polymer matrix volume

fractions, as described in detail in Section 6.3.2.
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6.4.2 Microstructure-based elastic constants by means of

micromechanical homogenization

Elastic constants have to be assigned to each finite element, in order to mechan-

ically characterize the simulated material. In the present case, this task is not

straightforward since each finite element potentially contains more than one con-

stituent. Provided that the so-called “separation of scales”-requirement is fulfilled,

continuum micromechanical homogenization can be employed for that purpose

[Hill, 1965a,b, Zaoui, 2002]. In particular, the aforementioned requirement relates

to the characteristic lengths of a representative volume element (RVE), denoted

as `RVE – in our case this is the side length of a finite element – and of the het-

erogeneities found within the RVE, denoted as dRVE, dRVE � `RVE. It could be

shown that the condition� is already adequately fulfilled if `RVE is approximately

twice as large as dRVE [Drugan and Willis, 1996]. In general, the microstructure

within one RVE is so complicated that it cannot be described in complete de-

tail. Therefore, quasi-homogeneous subdomains with known physical properties

are reasonably chosen. They are called material phases, typically comprising solid

and pore phases. The homogenized (upscaled) elastic behavior of the material on

the observation scale of the RVE, i.e. the relation between homogeneous deforma-

tions acting on the boundary of the RVE and the resulting macroscopic (average)

stresses can then be estimated from the elastic behavior of the material phases,

their volume fractions within the RVE, their characteristic shapes, and their in-

teractions. If a single phase exhibits a heterogeneous microstructure itself, its me-

chanical behavior can be estimated by introduction of an RVE within this phase,

with dimensions `RVE,2 ≤ dRVE, comprising again smaller phases with characteris-

tic length dRVE,2 � `RVE,2, and so on. This leads to a multistep homogenization

scheme. In the present context, we perform a two-step homogenization scheme.

First, PHBV and PLGA are homogenized into one polymer material. Thereafter,

the latter and TCP are homogenized into the scaffold material appearing in a

voxel-specific manner in the microCT image.

In homogenization step I, we consider the two polymer phases, PHBV and PLGA,

as one polymer matrix, with quasi-spherical PLGA inclusions distributed uni-

formly throughout the PHBV matrix. This calls for a Mori-Tanaka-type scheme

for homogenizing the stiffness of the polymer matrix [Benveniste, 1987, Mori and
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Tanaka, 1973], reading as

cpoly =

{
fPHBVcPHBV + fPLGAcPLGA ×

[
I + PPHBV

sph : (cPLGA − cPHBV)
]−1
}

:

{
fPHBVI + fPLGA

[
I + PPHBV

sph : (cPLGA − cPHBV)
]−1
}−1

(6.11)

where cPHBV and cPLGA are the stiffness tensors of the PHBV matrix and of the

PLGA inclusions, I is the fourth-order unit tensor, and PPHBV
sph is the fourth-order

Hill tensor relating to spherical inclusions embedded in a matrix of isotropic stiff-

ness cPHBV. As both polymer phases are isotropic, their stiffness tensors are each

fully defined by two elastic constants, through

cPHBV = 3kPHBVK + 2GPHBVJ =
EPHBV

1− 2νPHBV

K +
EPHBV

1 + νPHBV

J (6.12)

and

cPLGA = 3kPLGAK + 2GPLGAJ =
EPLGA

1− 2νPLGA

K +
EPLGA

1 + νPLGA

J . (6.13)

In Eqs. (6.12) and (6.13), kj, Gj, Ej, and νj are the bulk modulus, the shear mod-

ulus, the Young’s modulus, and the Poisson’s ratio of phase j, j = PHBV, PLGA;

accessible from experiments, see Table 6.1. Furthermore, K is the volumetric

part of the fourth-order unit tensor, with components Kijkl + 1/3δij, δij being

the Kronecker-delta, and J is the deviatoric part of the fourth-order unit tensor,

J = I− K. PPHBV
sph is defined via the fourth-order Eshelby-tensor, SPHBV

sph [Eshelby,

1957], through

PPHBV
sph = SPHBV

sph : (cPHBV)−1 , (6.14)

while for spherical inclusions embedded in an isotropic matrix made up by PHBV

SPHBV
sph reads as

SPHBV
sph =

3kPHBV

3kPHBV + 4GPHBV

K +
6(kPHBV + 2GPHBV)

5(3kPHBV + 4GPHBV)
J . (6.15)

In homogenization step II, we deal with the scaffold materialcontained in finite

element k, which is also considered to exhibit a matrix-inclusion morphology, with

TCP inclusions of approximately spherical shape embedded in the polymer matrix.
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Table 6.1: Young’s moduli and Poisson’s ratios of the constituents of the composite
material studied in this paper

Material Young’s modulus [GPa] Poisson’s ratio [–]

PHBV 4.70 [Luczynski et al., 2012] 0.35 [Simbara et al., 2015]
PLGA 2.00 [Gentile et al., 2014] 0.25 [Brady et al., 2015]
TCP 114.04 [Kublik et al., 2012] 0.27 [Kublik et al., 2012]

Accordingly, the homogenized stiffness Ci
scaff follows as well from a Mori-Tanaka-

type scheme, of the format

Ck
scaff =

{
(1− fkTCP)cpoly + fkTCPcTCP ×

[
I + Ppoly

sph : (cTCP − cpoly)
]−1
}

:

{
1− fkTCP)I + fkTCP

[
I + Ppoly

sph : (cTCP − cpoly)
]−1
}−1

,

(6.16)

where cpoly is the stiffness tensor of the polymer matrix following from Eq. (6.11),

Ppoly
sph is the Hill tensor relating to spherical inclusions embedded in an isotropic

matrix of stiffness cpoly, and cTCP is the stiffness tensor of TCP. While Ppoly
sph is

defined analogously to PPHBV
sph , see Eqs. (6.14) and (6.15), cTCP is again defined via

the respective elastic constants,

cTCP = 3kTCPK + 2GTCPJ =
ETCP

1− 2νTCP

K +
ETCP

1 + νTCP

J (6.17)

see Table 6.1 for experimentally obtained Young’s modulus ETCP and Poisson’s

ration νTCP. The finite element-specific, grey value-dependent isotropic stiffness

tensor of the scaffold material, following from evaluation of Eq. (6.16), is again

fully defined by two elastic constants, e.g. by Young’s modulus Ek
scaff,

Ek
scaff =

1

Dk
scaff,1111

, (6.18)

and Poisson’s ratio νkscaff,

νkscaff = −
Dk

scaff,1122

Dk
scaff,1111

, (6.19)

where Dk
scaff,1111 and Dk

scaff,1122 are components of compliance tensor Dk
scaff, Dk

scaff =

(Ck
scaff)−1, see Figures 6.5(b) and (c) for the heterogeneous distribution of Young’s

modulus and Poisson’s ratio across the scaffold, following from the described anal-

ysis modality.
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Figure 6.5: Distribution of elastic Young’s modulus and Poisson’s ratio across the
scaffold; (a) underlying CT-derived distribution of grey values in specific cross-
section, and (b) corresponding distribution of Young’s modulus and Poisson’s ratio;
(c) three-dimensional distribution of these elastic constants; one finite element
follows from merging of 3 × 3 × 3 voxels, with grey value averaging according to
Eq. (6.10)

6.4.3 Boundary and loading conditions

The FE simulations were implemented by means of the commercial FE software

Abaqus, version 6.14. The bottom surface of FE models, see Figure 6.4(c), were

fixed in z-direction, allowing there displacements only in x- and y-direction. The

lateral surfaces were allowed to deform without any constraints, and thus stress-

free. The top surfaces were subjected to a displacement of 5 % of the scaffold

height, implying uniaxial compressive loading in z-direction.
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6.5 Numerical results

First, it was made sure that a sufficiently fine FE mesh was considered. For this

purpose, FE meshes with varying fineness, see Section 6.4.1, were subjected to

uniaxial compression (as described in Section 6.4.3). The simulation results were

evaluated in terms of elastic strain energy, and it turned out that a merging factor

of 3 – i.e., one finite element consists of 3× 3× 3 = 27 voxels – is adequate; thus,

the change in total elastic strain energy due to further refinement of the FE mesh

is negligible.

Next, the effect of the scaffold heterogeneity on the strain and stress distributions

during elastic deformations was studied, see Figure 6.6 for the distributions of min-

imum principal strains and minimum principal stresses, for both heterogeneously

distributed polymer and TCP volume fractions, and an (average) homogeneous

scaffold composition. The simulations have revealed that neglecting the hetero-

geneities in the scaffold material that become apparent from microCT scanning

would lead to underestimation of strains and stresses, at least at specific loca-

tions. Moreover, the simulations confirm that the fiber junctions are the parts of

the scaffold which must sustain the highest mechanical loads.

6.6 Discussion

In this paper, a previously developed analysis modality for microCT scans of

polymer-based scaffold materials [Luczynski et al., 2012] has been successfully

extended from a two-phase to a three-phase composite, thereby considering an

improved physical foundation. In particular, in the aforementioned work [Luczyn-

ski et al., 2012] translation of grey values into corresponding constituent volume

fractions relied on an educated guess concerning the grey value relating to the

TCP inclusions. On this conceptual basis, the following relation between grey

value and TCP volume fraction could be derived:

f iTCP =
GVi −GVpoly

GVest
TCP −GVpoly

, (6.20)

where GVest
TCP is an estimate for the grey value relating to pure TCP. Here, we

have instead taken into account the linear, photon energy-dependent relation be-

tween grey values and attenuation coefficients, see Eq. (6.1), eventually leading to



Chapter 6. CT-to-Finite Elements 208

(a) (b)

-0.196
-0.070
-0.063
-0.057
-0.050
-0.043
-0.037
-0.030
-0.023
-0.017
-0.010
-0.006
0.018
(-)

(c) (d)

-795
-320
-289
-258
-227
-196
-165
-134
-103
-75
-40
-10
60
(MPa)

Figure 6.6: Distributions of minimum principal strains (a) and (b), as well as min-
imum principal stresses (c) and (d) across the scaffold when subjected to uniaxial
compression; based on a heterogeneously distributed scaffold composition (a) and
(c), as well as on a homogeneous scaffold composition (b) and (d); the FE model
has been built by merging 3×3×3 voxels into one finite element, leading to 761631
elements
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Eq. (6.9). It is now instructive to compare the two approaches. Eq. (6.9) gives

access to the true grey value representing pure TCP, namely GVtrue
TCP = 261.8. In

the work of Luczynski et al. [2012], on the other hand, GVest
TCP was simply assumed

to be the brightest voxel in the CT data, thus GVest
TCP = 255. The small difference

between GVtrue
TCP and GVest

TCP implies that the difference between f iTCP according to

Eq. (6.9) and f iTCP according to Eq. (6.20) is negligibly small as well, amounting

at most to only a few percent. This finding confirms the assumption concerning

GVest
TCP that was made in [Luczynski et al., 2012], but at the same time clarifies

that this assumption would fail dramatically for a larger CT resolution; namely,

in the latter case, the brightest voxel would most likely not adequately represent

pure TCP.

In summary, the here presented results confirm the adequacy of the proposed anal-

ysis modality applicable to CT scans of composite materials, providing adequate

input data for simulation of the structural behavior of such materials, e.g. by

means of the Finite Element method. In the future, in order to provide even

more insights, the present approach may be extended towards micromechanical

estimation of the material’s strength, thereby paving the way for a computational

fracture risk assessment tool.
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6.7 Nomenclature

a, b coefficients for determination of the attenuation coefficients
cj stiffness tensor of material phase j, j representing PHBV,

PLGA, the polymer matrix, or TCP
Ck

scaff stiffness tensor of scaffold material in finite element k
dRVE characteristic length of heterogeneities within in RVE
Dk

scaff compliance tensor of scaffold material in finite element k
Dk

scaff,ijkl ijkl-th component of Dk
scaff

Ek
scaff Young’s modulus of the scaffold material in finite element

k
Ej Young’s modulus of material phase j, j representing

PHBV, PLGA, or TCP
fj volume fraction of material phase j, j representing PHBV

or PLGA
f iTCP volume fraction of TCP in voxel i
fkTCP volume fraction of TCP in finite element k
FE Finite Element
Gj shear modulus of material phase j, j representing PHBV,

PLGA, or TCP
GVi grey value in voxel i
GVk grey value in finite element k

GVpeak
air grey value peak relating to air

GVpeak
PHBV grey value peak relating to PHBV

GVpoly grey value peak relating to polymer matrix
GVest

TCP estimate of the grey value relating to pure TCP
GVtrue

TCP true grey value relating to pure TCP
I fourth-order unit tensor
J deviatoric part of I
K volumetric part of I
kj bulk modulus of material phase j, j representing PHBV,

PLGA, or TCP
`RVE characteristic length of RVE
Nk number of voxels which are combined into one finite ele-

ment
PPHBV

sph Hill-tensor relating to spherical inclusions embedded in ma-
trix with stiffness cPHBV

Ppoly
sph Hill-tensor relating to spherical inclusions embedded in ma-

trix with stiffness cpoly

PHBV poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
PLGA poly(lactic-co-glycolide)
RVE representative volume element
SPHBV

sph Eshelby-tensor relating to spherical inclusions embedded in
matrix with stiffness cPHBV

TCP tricalcium phosphate hydrate
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δij Kronecker-delta, δij = 1 if i = j, and δij = 0 if i 6= j
ε photon energy
µi attenuation coefficient of voxel i
µj attenuation coefficient of material phase j, j representing

air, PHBV, PLGA, the polymer matrix, or TCP

µpeak
scaff attenuation coefficient of scaffold material at the respective

grey value peak
νkscaff Poisson’s ratio of the scaffold material in finite element k
νj Poisson’s ration of material phase j, j representing PHBV,

PLGA, or TCP
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Abstract

Given the eminent role of structure-property relations in paper production, it is

not surprising that various mathematical models for the mechanical interaction

of pulp fibers within the overall material “paper” have been proposed. However,

all these approaches did not explicitly account for the scale difference between

the loads applied to the overall material and those acting on the level of the

individual fiber. We here fill this essential conceptual gap by the development of

a new micromechanics model: We first recall the fundamental micromechanical

concept of the representative volume element (RVE) and the corresponding stress

and strain average rules, before we specify these rules for planar networks such as

paper material. Then we introduce elastic material behavior at the fiber level, and

derive so-called concentration relations for upscaling this behavior to the planar

network level. Combination of these relations with matrix-inclusion problems of

the Eshelby-Laws type yields closed-form semianalytical expressions for the paper

stiffness tensor, as function of fiber stiffness and porosity. The model, which is

confirmed by various experimental data and which highlights the importance of

the fiber’s anisotropy for the overall elastic behavior, is deemed as a new support

tool in the design of paper production processes.

7.1 Introduction

The elastic properties of any micro-heterogeneous material depend on its inherent

microstructure. One class of micro-heterogeneous materials are so-called fibrous

materials. Their microstructure is made up of fiber networks where the individual

fibers are connected via fiber-fiber bonds. In the majority of cases, the fibers are

more or less parallel to one plane; then one speaks of planar fibrous materials.

Planar fibrous materials find numerous applications, which range from thermal

and sound insulators, tissue templates, as well as gas and fluid fillers, to various

paper product applications, including healthcare applications [Wu and Dzenis,

2005]. One particularly widespread planar fibrous material is paper, a network

of mechanically and/ or chemically treated wood fibers, so-called pulp fibers (see

Figure 7.1). In all the aforementioned applications, as well as in paper production,

the mechanical properties, such as elasticity and strength of the planar networks,
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are of crucial importance. Therefore, it is not surprising that numerous mathe-

matical models for the mechanical behavior ofpaper and paper-like materials have

been proposed. Various researchers [Harrysson and Ristinmaa, 2008, Mäkelä and

Östlund, 2003] have developed anisotropic elasto-plastic models relating stresses

and strains directly at the paper material level. In such approaches, heuristic

“anisotropy factors” need to be introduced, and to be tuned according to data

from experiments on the fiber networks, such as homogeneously loaded paper

sheets. However, it is the arrangement of the fibers and their mechanical prop-

erties, which actually govern the mechanical properties of the overall paper-like

material, both in terms of magnitude and of (transversely isotropic or orthotropic)

symmetry [Mann et al., 1980, Mark et al., 2002, Uesaka et al., 1980]. This has mo-

tivated more profound modeling approaches, which explicitly refer to microstruc-

tural details: A straightforward approach was given by Cox [1952], who first of all

proposed that the fibers are deformed primarily in tension (so that shear and bend-

ing deformations can be neglected). Then, he partitioned, on a purely geometrical

basis, the strains acting on a planar mat of fibers, i.e. on the paper-like material,

into components relating to the orientation of individual fibers; and assumed that

these new strain components would satisfactorily describe the deformation state

at the microstructural level of the fiber. From a strict physical viewpoint, this

would mean that all fibers would span throughout the entire mat, which is not

necessarily the case. Hence, the Cox model has been modified, in order to account

for more realistic “stress transfer mechanisms” [Åström et al., 1994]. Other re-

searchers [Schulgasser, 1981, Wu and Dzenis, 2005] extended the Cox model from

the case of tensile deformations of the fibers, to that of tension, shear, and/ or

bending. What counts in the end, is whether such models predict reasonably well

the experimentally tested material at the paper sheet level; and in this context, the

Cox model and its extension to fiber shear deformations [Cox, 1952] do quite well,

while - to the knowledge of the authors - no remarkable improvement of model

predictions related to fiber bending deformations could be shown so far. This moti-

vates us to focus on tensile/ shear fiber deformation characteristics, and to invest

into a rigorous theoretical formulation which explicitly differentiates between a

micro-scale (where micro-strains and micro-stresses relate to fiber characteristics)

and a macro-scale (where macro-strains and macro-stresses relate to the behavior

of the fibrous material, which is e.g. tested by deforming paper sheets). Our

formulation is cast within the framework of continuum micromechanics [Suquet,

1997a, Zaoui, 2002], which has been recently adapted for 3D (spatial) networks of
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solid fibers (or needles) [Fritsch et al., 2006, 2009a, 2010a, 2013a, Pichler et al.,

2009, Sanahuja et al., 2009]. Given the excellent experimental validation of the

aforementioned mathematical models, we here tackle the development of a similar

theoretical concept for planar networks. The remainder of the present paper is

ℓ

d

Figure 7.1: SEM micrograph of paper exhibiting a porous pulp fiber network pre-
dominantly oriented within the paper plane, permission for reproduction granted
by Tryding [1996].

organized as follows: We first recall the fundamental micromechanical concept of

the representative volume element (RVE) and the corresponding stress and strain

average rules (Section 2.1), before we specify these rules for planar networks such

as paper material (Section 7.2.2). Then we introduce elastic material behavior at

the fiber level, and derive so-called concentration relations for upscaling this be-

havior to the planar network level (Sections 7.2.3). Combination of these relations

with matrix-inclusion problems of the Eshelby-Laws type yield closed-form semi-

analytical expressions for the paper stiffness tensor, as function of fiber stiffness

and porosity (Section 7.2.4). Characteristics of these expressions are presented in

the Results and Discussion section (Section 7.3), as is the experimental validation

of our new micromechanics model.
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7.2 Micromechanics model

7.2.1 Representative volume element - stress and strain

average rules

The starting point for any continuum micromechanics model is the consideration

of a representative volume element (hereafter: RVE) with characteristic length

` fulfilling the separation of scale conditions [Zaoui, 2002], i.e. L � ` � d,

whereby L stands for the characteristic lengths of the geometry or loading of a

structure built up by the solid material defined on the RVE, and d stands for the

characteristic length of inhomogeneities within the RVE, respectively (see Figures

7.1 and 7.2). In the case of paper, the approximate sizes of ` and d are 100µm and

20µm, respectively (see Figure 7.1). For the subsequent mathematical derivations,

of RVE itself

pore (por)

matrix with properties

with aspect ratio oblate spheroid
with aspect ratio 

(b)

(a)

paper fiber (fib)
prolate spheroid

homogeneous boundary condition

→ ∞ → 0

e1

e3
e2

d

ℓ

e2

e1

xL

e3

ξ = E · x

Σ(x)
E(x)

Figure 7.2: (a) Planar sheet of length L, made of fibrous material (e.g. paper);
x stands for the position vector labelling “material points”, and Σ and E for
(position-dependent, “macroscopic”) stress and strain tensors prevailing at these
material points; (e1, e2, e3) is an orthonormal base frame aligned with the sheet
plane; (b) zooming out one material point, appearing as “representative volume
element - RVE” at a length scale `� L; the latter is made up of cylindrical fibers
oriented in all planar directions, and of oblate spheroidal pores, which are aligned
with the paper plane as well

the RVE is considered as a continuum itself, and any location within this RVE

is quantified through the position vector x. Furthermore, the RVE is loaded by
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traction forces, T(x), on its boundary, where homogeneous linearized macroscopic

strains, E, are prescribed in terms of compatible displacements (see Figure 7.2):

∀x ∈ ∂VRV E : ξ(x) = E · x (7.1)

Compatibility of microscopic strains defined within the RVE imply the so-called

strain average rule [Hashin, 1983]:

E = 〈ε(x)〉 =
1

VRV E

∫

VRV E

ε(x)dV (7.2)

Moreover, we apply the Principle of Virtual Power [Salençon, 2001], which consid-

ers simultaneously kinematic compatibility and equilibrium, to the aforementioned

RVE material system, which yields the so-called stress average rule [Germain,

1973]:

Σ = 〈σ(x)〉 =
1

VRV E

∫

VRV E

σ(x)dV (7.3)

7.2.2 Morphological representation of planar fiber net-

works: material phases

The microstructure within an RVE of typical size ` as seen in Figure 7.1 is so com-

plex that it cannot be described in full detail. Accordingly, the description of the

RVE needs to be reduced to mechanically relevant details. This is standardly done

by partitioning the RVE into sub-volumes with more or less homogeneous mechan-

ical properties; these sub-volumes being called material phases. The mechanical

state of these phases is then characterized by micro-stresses and micro-strains av-

eraged over the aforementioned sub-volumes. In the case of paper, we choose an

RVE which consists of a pore space, while the remaining space is filled by (one-

dimensional) solid fibers which are characterized by orientation angles ϑ and ϕ,

i.e. by the classical spherical coordinates. Then, pore strains and pore stresses,

i.e. the strains and stresses averaged over the pore space, read as

σpor =
1

Vpor

∫

Vpor

σ(x)dV (7.4)

εpor =
1

Vpor

∫

Vpor

ε(x)dV (7.5)
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while the stresses and strains characterizing the mechanical state in the solid (one-

dimensional) fiber phase oriented in (ϑ,ϕ)-direction are given by the averages,

σfib (ϑ,ϕ) =
1

Lfib (ϑ,ϕ)

∫

Lfib(ϑ,ϕ)

σ(x)dV (7.6)

εfib (ϑ,ϕ) =
1

Lfib (ϑ,ϕ)

∫

Lfib(ϑ,ϕ)

ε(x)dV (7.7)

with Lfib (ϑ,ϕ) being the overall length of the fiber phase oriented in (ϑ,ϕ)-

direction. Specification of the stress and strain average rules (7.2) and (7.3) for

the phase stresses and phase strains according to (7.4)-(7.7) yields

Σ =
1− φ

4π

∫ ∫ 2π,π

ϕ=0;ϑ=0

σfib (ϑ,ϕ) sin (ϑ) p (ϑ,ϕ) dϑdϕ+ φσpor (7.8)

E =
1− φ

4π

∫ ∫ 2π,π

ϕ=0;ϑ=0

εfib (ϑ,ϕ) sin (ϑ) p (ϑ,ϕ) dϑdϕ+ φεpor (7.9)

with p (ϑ,ϕ) as the probability distribution function representing the three-

dimensional arrangement of fibers. As all fibers are oriented parallel to the e1-e2

plane, where ϑ = π/2, the probability distribution function relevant to our case

reads as

p (ϑ,ϕ) = 2δ
(
ϑ− π

2

)
(7.10)

with δ denoting the Dirac distribution, so that (7.10) obviously fulfils the normal-

ization condition:

1

4π

∫ ∫ 2π,π

ϕ=0;ϑ=0

sin (ϑ) p (ϑ,ϕ) dϑdϕ = 1 (7.11)

Specification of the stress and strain average rules (7.8) and (7.9) for the fiber

distribution (7.10) yields:

Σ =
1− φ

2π

∫ 2π

ϕ=0

σfib (ϕ) dϕ+ φσpor (7.12)

E =
1− φ

2π

∫ 2π

ϕ=0

εfib (ϕ) dϕ+ φεpor (7.13)

We conclude that in the context of continuum micromechanics, the forms (7.12)

and (7.13) of the stress and strain average rules are relevant for planar fibrous

materials such as paper.
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7.2.3 Elastic concentration problem - Micro-macro transi-

tion - Homogenized stiffness tensor

The present analysis is restricted to elasticity. Accordingly, the fiber stresses and

strains are linked by a fiber elasticity tensor, cfib, reading as

σfib (ϕ) = cfib (ϕ) : εfib (ϕ) (7.14)

and an analogous relation is employed for the pore phase,

σpor = cpor : εpor (7.15)

Linearity of the constitutive relations (7.14) and (7.15), together with the kine-

matical and equilibrium conditions described in Section 7.2.1, implies applicability

of the superposition principle when solving the underlying differential equations,

and hence the existence of strain concentration relations between macroscopic and

phase-specific microscopic strains

εfib (ϕ) = Afib (ϕ) : E (7.16)

εpor = Apor : E (7.17)

with Afib (ϕ) and Apor, as the so-called pore and fiber strain concentration tensors.

Insertion of concentration relations (7.16) and (7.17) into the microelastic laws

(7.14) and (7.15) yields:

σfib (ϕ) = cfib (ϕ) : Afib (ϕ) : E (7.18)

σpor = cpor : Apor : E (7.19)

Averaging stress expressions (7.18) and (7.19) over all phases according to Eq.

(7.12), yields the following concentration tensor-based relation between the macro-

scopic stresses and strains, Σ and E, respectively:

Σ =

[
1− φ

2π

∫ 2π

ϕ=0

cfib (ϕ) : Afib (ϕ) dϕ+ φcpor : Apor

]
: E (7.20)
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This gives access to the homogenized macroscopic stiffness tensor Chom, which

standardly links Σ and E, through:

Σ = Chom : E (7.21)

Comparison of Eqs. (7.20) and (7.21), yields the following expression for Chom:

Chom =
1− φ

2π

∫ 2π

ϕ=0

cfib (ϕ) : Afib (ϕ) dϕ+ φcpor : Apor (7.22)

Expression (7.22), however, depends on the concentration tensors Afib (ϕ) and Apor,

which are unknown so far. In the next step, they will be estimated on the basis

of matrix-inclusion problems proposed by Eshelby [1957] and Laws [1977a]; in the

context of a so-called self-consistent scheme.

7.2.4 Matrix inclusion problem based self consistent esti-

mate for the strain concentration tensors

Each material phase (i.e. the pore phase and the infinitely many solid fiber phases

lying in the paper plane) is represented by an ellipsoidal inclusion embedded into

a fictitious infinite elastic matrix. The latter is loaded by fictitious strains E∞ at

its infinite boundary, and exhibits the stiffness of the homogenized material, Chom

(see Figure 7.3). This choice of matrix stiffness is a way to model mutual contact

at

at

(b)

(a)

∞ : E∞

∞ : E∞

cfib(ϕ)

εfib(ϕ)

cpor
εpor

C
hom

C
hom

Figure 7.3: Eshelby-Laws inclusion problem representation for (a) infinitely many
fiber phases, and (b) one pore phase

of all phases; i.e. a polycrystalline arrangement of theses phases. This will finally
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lead to a so-called self-consistent homogenization scheme [Zaoui, 2002]. In the

case of the fiber phases, the aforementioned inclusion is a circular cylinder, i.e. an

ellipsoid with a slenderness ratio going to infinity and an aspect ratio of one. The

homogeneous strains in such an inclusion follow as

εfib (ϕ) =
[
I + Phomcyl (ϕ) :

(
cfib (ϕ)− Chom

)]−1
: E∞ (7.23)

with the fourth-order Hill tensor Phomcyl depending on the shape of the inclusion

and on the stiffness Chom of the fictitious matrix: its components are given in

Laws [1977a]. As regards the pore phase, we consider a circular oblate inclusion

(ellipsoid with slenderness ratio equal to one and an aspect ratio going to zero).

Thereby, the oblate plane coincides with the overall paper plane, i.e. with the

plane e1-e2 in Figure 7.2, which is the plane of isotropy of the (yet unknown)

homogenized stiffness tensor Chom. The homogeneous strains in such an inclusion

follow as

εpor =
[
I + Phomoblsph :

(
cpor − Chom

)]−1
: E∞ (7.24)

whereby the components of the fourth-order Hill tensor for an oblate spheroid in

a transversely isotropic matrix follow from specification of the expressions given

by Sevostianov et al. [2005]. They read as:

Poblsph3333 =
1

C3333

Poblsph2323 = Poblsph3232 = Poblsph2332 = Poblsph3223 =

...Poblsph1313 = Poblsph3131 = Poblsph1331 = Poblsph3113 =
1

4C1313

(7.25)

Being representative for the strains arising in the RVE of paper, the phase strain

expressions (7.23) and (7.24) need to fulfill the strain average rule (7.13). Inser-

tion of matrix-inclusion-related expressions (7.23) and (7.24) into (7.13) yields the

following expression for the fictitious strains E∞

E∞ =

[
1− φ

2π

∫ 2π

ϕ=0

[
I + Phomcyl (ϕ) :

(
cfib (ϕ)− Chom

)]−1
dϕ+

...φ
[
I + Phomoblsph :

(
cpor − Chom

)]−1
]−1

: E

(7.26)

and insertion of the fictitious-to-RVE strain relation (7.26) into the matrix-

inclusion-related expressions (7.23) and (7.24) yields estimates for the fiber and
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pore strain concentration tensors in the form:

Afib (ϕ) =
[
I + Phomcyl (ϕ) :

(
cfib (ϕ)− Chom

)]−1
: ...

...

[
1− φ

2π

∫ 2π

ϕ=0

[
I + Phomcyl (ϕ) :

(
cfib (ϕ)− Chom

)]−1
dϕ+

...φ
[
I + Phomoblsph :

(
cpor − Chom

)]−1
]−1

(7.27)

Apor =
[
I + Phomoblsph :

(
cpor − Chom

)]−1
: ...

...

[
1− φ

2π

∫ 2π

ϕ=0

[
I + Phomcyl (ϕ) :

(
cfib (ϕ)− Chom

)]−1
dϕ+

...φ
[
I + Phomoblsph :

(
cpor − Chom

)]−1
]−1

(7.28)

Finally, insertion of (7.27) and (7.28) into (7.22) provides an implicit expression

for the desired homogenized stiffness of the planar network material, reading as:

Chom =

[
1− φ

2π

∫ 2π

ϕ=0

cfib (ϕ) :
[
I + Phomcyl (ϕ) :

(
cfib (ϕ)− Chom

)]−1
dϕ+ ...

...φcpor :
[
I + Phomoblsph :

(
cpor − Chom

)]−1
]

: ...

...

[
1− φ

2π

∫ 2π

ϕ=0

[
I + Phomcyl (ϕ) :

(
cfib (ϕ)− Chom

)]−1
dϕ+

...φ
[
I + Phomoblsph :

(
cpor − Chom

)]−1
]−1

(7.29)

This expression provides a tool also in the case of very high stiffness contrast; so

that the case of empty pores with stiffness going to zero can be effectively tackled,

without losing the benefits from the particularly simple form of the P tensor given

in Eq. (7.25).

7.3 Results and discussion

Here we investigate fundamental properties of the homogenized stiffness expression

(7.29), relating to two fundamental questions:

• Which stiffness contrast between realistically chosen values for the fiber

phases and those chosen for the virtually vanishing pore stiffness needs to

be chosen, so as to arrive at sufficiently converged homogenized results?
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• How does fiber stiffness affect the overall stiffness of the homogenized mate-

rial?

For investigations related to both questions, we start with a typical Young’s mod-

ulus in pulp fiber direction of 21.54 GPa, which appears as the expected value

of a log-normally distributed large number of experimental results collected from

references [Adusumalli et al., 2010, Duncker and Nordman, 1965, Ehrnrooth and

Kolseth, 1984, Page et al., 1977] (see Figure 7.4). In order to account for the trans-
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Figure 7.4: Histogram of logarithmic sample of mean softwood pulp fiber Young’s
moduli in longitudinal direction

versely isotropic nature of pulp fiber, which - to the best knowledge of the authors

- has not been explicitly tested yet, we resort to the experimentally validated mi-

cromechanics model for wood proposed by Bader et al. [2011], which we evaluate

for typical volume fractions of spruce, up to the level of the cell wall material.

The corresponding transversely isotropic stiffness tensor is then linearly re-scaled,

so as to exhibit the aforementioned Young’s modulus of 21.54 GPa. This leads to

the following elasticity tensor of softwood pulp fibers, reading in Kelvin-Mandel

notation [Cowin and Mehrabadi, 1992, Helbig, 1994, Helnwein, 2001] as

cexpfib =

=



C1111,fib C1122,fib C1133,fib

√
2C1123,fib

√
2C1113,fib

√
2C1112,fib

C2211,fib C2222,fib C2233,fib

√
2C2223,fib

√
2C2213,fib

√
2C2212,fib

C3311,fib C3322,fib C3333,fib

√
2C3323,fib

√
2C3313,fib

√
2C3312,fib√

2C2311,fib

√
2C2322,fib

√
2C2333,fib 2C2323,fib 2C2313,fib 2C2312,fib√

2C1311,fib

√
2C1322,fib

√
2C1333,fib 2C1323,fib 2C1313,fib 2C1312,fib√

2C1211,fib

√
2C1222,fib

√
2C1233,fib 2C1223,fib 2C1213,fib 2C1212,fib


e1,e2,e3
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Figure 7.5: Relative approximation error concerning the pore stiffness approaching
zero; according to Eq. (7.31), for selected values of the porosity

=





2.9228 1.0329 1.2588 0 0 0

1.0329 2.9228 1.2588 0 0 0

1.2588 1.2588 22.3402 0 0 0

0 0 0 2.9143 0 0

0 0 0 0 2.9143 0

0 0 0 0 0 1.88991





e1,e2,e3

(7.30)

For testing the influence of the phase stiffness contrast on the homogenized net-

work stiffness results (fundamental question #1 posed above), we start with the

solution for a zero-porosity network, i.e. with Eq. (7.29) evaluated for Cexp
fib ac-

cording to Eq. (7.30) and for φ = 0. The corresponding homogenized stiffness

tensor reads in Kelvin-Mandel notation as

Chom (φ = 0) =





7.9942 2.2475 1.1034 0 0 0

2.2475 7.9942 1.1034 0 0 0

1.1034 1.1034 2.9218 0 0 0

0 0 0 2.3463 0 0

0 0 0 0 2.3463 0

0 0 0 0 0 5.7467





e1,e2,e3

(7.31)

We use these values to construct a pore stiffness tensor of the format cpor =

ψ×Chom (φ = 0), whereby ψ is a contrast factor, which takes values of decreasing

magnitude, approaching zero down to the value of 10−6. For each of these factors,

we compute the corresponding stiffness tensors, and we estimate their quality with

respect to reliably representing the zero-stiffness limit, by means of a convergence

analysis known from the Finite Element Method [Zienkiewicz and Taylor, 1994].

Accordingly, we compute the relative approximation error for the in-plane elastic
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moduli, Ehom
in−plane, according to

λE(ψ) =
Ehom
in−plane(ψ)− Ehom

in−plane(ψmin)

Ehom
in−plane(ψmin)

(7.32)

with a minimum value for ψ denoted as ψmin. Then we plot the aforementioned

relative errors as function of the contrast factor ψ (see Figure 7.5 for ψmin = 10−6,

and in dependence of selected values for the porosity, φ). We observe that ψ = 10−5

is sufficient for arriving at homogenized values with a numerical error of less than

1 %, and that this error can be reduced down to one per mille as well. We also

note that the Young’s modulus in the out-of-plane direction tends to zero upon

ψ going to zero, so that the homogenized elastic behaviour of paper is essentially

two-dimensional, i.e. planar, in nature. For the in-plane Young’s modulus and

Poisson’s ratio of the homogenized material, we refer to Figures 7.6 and 7.7.
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Figure 7.6: Micromechanically predicted in-plane Young’s modulus of the planar
network, as a function of the porosity of the latter
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Figure 7.7: Micromechanically predicted in-plane Poisson’s ratio of the planar
network, as a function of the porosity of the latter
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For testing the influence of the fiber stiffness on the overall homogenized network

stiffness (fundamental question #2 posed above), we consider fiber stiffness tensors

of different magnitude, in the format

cfib =
Efib
Eexp
fib

× cexpfib (7.33)

with a variable fiber modulus Efib, and with Eexp
fib being the experimentally derived

fiber modulus of 21.4 GPa. A dimensional analysis of Eq. (7.29) for fiber stiffnesses

according to Eq. (7.30) yields the following relation for the homogenized Young’s

modulus
Ehom

Efib
= f(φ) (7.34)

and this result can actually be tested by evaluating Eq. (7.29) for a large range

of different values of according to (7.33); the dimensionless relation (7.34) is illus-

trated in Figure 7.8. It is interesting to compare this result with that arising from
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Figure 7.8: Homogenized in-plane Young’s modulus of paper normalized with re-
spect to fiber elastic modulus, for isotropic and transversely isotropic fiber phases;
as function of porosity

assuming an isotropic fiber stiffness with Young’s modulus Efib and a Poisson’s

ratio ν = 0.31, which corresponds to the axial Poisson’s ratio ν31 of cexpfib . The

latter assumption yields a gross overestimation of the transversely isotropic case

(see Figure 7.6): hence, the transverse isotropy of the pulp fibers is of eminent

importance for the overall elastic behavior of paper and paper-like materials.

For experimental validation of the presented model, we adapt the statistical

method presented by [Pichler et al., 2005] to our present case. From the ex-

perimental data base represented in Figure 7.4, we derive 5 % and 95 % percentiles



Chapter 7. Planar fiber networks 227

of the fiber Young’s modulus. They amount to:

Efib5 %
= 6.35 GPa

Efib95 %
= 73.07 GPa

and we plot micromechanical predictions corresponding to these upper and lower

bounds for the pulp fiber stiffness found in softwood-based paper materials (see

Figure 7.9). These predictions turn out to satisfactorily frame various experimental

data concerning softwood paper stiffness, as collected from the open literature

[Alexander and Marton, 1968]. Hence, the presented micromechanical model turns
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Figure 7.9: Experimental validation of micromechanics model described in Section
2: prediction based on 5 % and 95 % quantiles of the pulp fiber stiffness satisfac-
torily frame experimental data on the paper level

out as reliable and efficient means for predicting paper elasticity from fiber stiffness

and porosity. Its extension to brittle strength in the line of Fritsch et al. [2013a] is

quite straightforward; and this will open the way to theory-based design of paper

production processes where the estimation of sudden material failure is essential.
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7.4 Nomenclature

Afib fourth-order strain concentration tensor of fiber phase
Apor fourth-order strain concentration tensor of pore phase
cfib stiffness tensor of fiber phase
cpor stiffness tensor of pore phase
cexpfib experimentally validated elasticity tensor of softwood fibers

Chom homogenized stiffness tensor (of porous polycrystal)
d characteristic length of the inhomogeneities within the

RVE
E macroscopic strain tensor
E∞ homogeneous strains at the infinite boundary of the matrix-

inclusion problem
Efib5 %

5 % percentile of fiber Young’s modulus
Efib95 %

95 % percentile of fiber Young’s modulus
Efib fiber Young’s modulus
Eexp
fib experimentally derived Youngs’s modulus of paper fibers

Ehom homogenized Young’s modulus of fibers
Ehom
in−plane model-predicted in-plane elastic moduli of paper fibers

e1, e2, e3 unit base vectors of Cartesian reference base frame
` characteristic length of the RVE
Lfib(ϑ,ϕ) overall length of the fiber phase oriented in (ϑ,φ)-direction
L characteristic structural length
p(ϑ,ϕ) probability distribution function representing the three-

dimensional arrangement of fibers
Phomcyl Hill (or morphology) tensor of cylindrical inclusion embed-

ded in matrix with stiffness Chom

Phomoblsph Hill (or morphology) tensor of oblate spherical inclusion
embedded in matrix with stiffness Chom

RVE Representative Volume Element
T (microscopic) traction vector
Vpor volume of pore phase
VRV E volume of the RVE
∂VRV E surface of the RVE
x position vector inside the RVE
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δ Kronecker delta
ε microscopic strain
εfib average microscopic strain in fiber phase
εpore average microscopic strain in pore phase
λ relative approximation error
ν Poisson’s ratio
ϑ spherical (co-latitudinal) coordinate
ξ microscopic displacement field
φ porosity
ϕ spherical (longitudinal) coordinate
ψ contrast factor
σ microscopic stress
σfib average stress in fiber phase
σpor average stress in pore phase
Σ macroscopic stress tensor

〈(.)〉 spatial average of quantity (.), over the RVE
(.)−1 inverse of tensorial quantity (.)



Chapter 8

Conclusions and outlook

The key objective of the present work is to explain the highly diverse

(poro)mechanical properties (in particular strength) of bone materials at different

observation scales from the mechanical properties of their elementary constituents,

and from the nano- and microstructures thereof. The mechanical behavior of the

aforementioned nano- and microstructures has been revealed through the theo-

retical tool of continuum micromechanics, an approach that is well established

for engineering materials, as well as for biomaterials [Fritsch and Hellmich, 2007,

Fritsch et al., 2009c, 2013b, Hellmich, 2005, Hellmich and Ulm, 2002a, 2005a,

Hellmich et al., 2004a,b, 2009]. Consideration of ductile sliding of hydrated porous

polycrystals allowed to predict uniaxial tensile and compressive strengths of var-

ious different cortical bones [Fritsch et al., 2009c], and served as a starting point

for the present contribution; namely to predict the multiaxial strength of bone

(bio)materials. This required major micromechanical developments, in which the

realization of the following micromechanical concepts has been encountered:

• In addition to the concentration tensors relating the macroscopic strains at

the boundary of the RVE to the strains in all the materials phases within

the RVE, the so-called influence tensors relating plastic strains of one ma-

terial phase inside the considered RVE to the total (micro-)strains in all

other material phases of that RVE, were derived and estimated by means of

“extended” eigenstressed matrix-inclusion problems [Pichler and Hellmich,

2010].
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• In contrast to the elastic case, the loading of the RVEs was done in

an incremental manner, representing the load level-dependent plastic pro-

cesses within the microstructure. Accordingly, the evolution equations of

elastoplasticity were discretized by means of an Euler backward integration

scheme.

• Involving infinitely many phases required also a spatial discretization down

to an appropriate number of phases, which was realized by two different

discretization schemes, comprising 15 or 28 points [Stroud, 1971]; or 120

integration points [Badel and Leblond, 2004].

• Efficient and robust algorithms for upscaling the elastoplastic constitutive

relations from the solid phase to the porous polycrystal scale were estab-

lished by means of the well-known return mapping strategy, adapted for

non-associated, multi-surface Mohr-Coulomb plasticity.

We proposed a fully multiaxial and multiscale return-mapping procedure to

account for the inelastic behavior of mineral crystal. Combination of this

non-linear constitutive law at the extrafibrillar scale with a strength criterion

(1.39) for molecular collagen at the subfibrillar scale allows for prediction of the

strength of bone tissue in any multiaxial load case.

Interfaces were then considered as the origin of plastic sliding events. The

mechanical behavior of rigid-plastic interfaces was revealed through the theoreti-

cal tool of continuum micromechanics. Here, we aimed at translating the interface

behavior into plastic sliding mechanics at the continuum scale of materials. To

this end, we considered, at the interface scale, a linear relationship between (i) the

rate of relative displacements of neighboring fluid layers and (ii) corresponding

interface eigentractions. Recent explicit micromechanical homogenization schemes

are used to upscale the liquid crystal behavior confined to 2D interfaces up to the

larger observation scale of a matrix-inclusion-type composite material consisting

of a homogeneous, isotropic, and linear elastic solid matrix and of interacting,

circular, flat interfaces oriented in a parallel fashion. These schemes are based

on limit cases of Eshelby-type solution for eigenstressed ellipsoidal inclusions in

infinite matrices together with the compatibility requirements fulfilled in so-called

Mori-Tanaka schemes. We developed a model describing how the macroscopic

loading, the elastic properties of the solid, as well as the size, and the density of
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the interfaces influence the macroscopic plastic behavior of the composite, which

is of kinematic hardening type.

Future work involves the use of the newly developed method in the light

of real materials exhibiting polycrystals, such as bone, clay or concrete. A

carefully experimentally validated hierarchical micromechanics model for bone is

to be complemented by an additional homogenization step: downscaling from the

hydroxyapatite mineral crystals found in the extrafibrillar space to the interfaces

present in these clusters. Once the developed micromechanical models will have

been validated by experiments, they will be implemented into standard Finite

Element Software in order to analyze whole bones and skeletal (sub)systems.

Thereby, Computer Tomographic (CT) images of whole organs will be translated

into fields of dosages of elementary components serving as model input. The

micromechanics models will allow for transformation of these fields into fields of

inhomogeneous and anisotropic material properties. The FE models would be

set in the framework of elastoplasticity, combining, probably for the first time

ever, multiscale continuum micro-elastoplasticity with computational plasticity

algorithms at the structural scale of the Finite Element discretization. Besides

their clinical relevance, such model approaches have the potential to open a new

chapter in the scientific communities of computational mechanics and numerical

mathematics.

Regarding paper, in contrary to previous mathematical models, we pro-

posed a new approach which accounts for the scale difference between the loads

applied to the overall material and those acting on the level of the individual

paper fiber. By introducing new concentration- and influence relations specified

for planar fiber networks, and its combination with common matrix-inclusion

problems we can now predict the paper stiffness tensor as a function of fiber

stiffness and porosity. The experimentally validated micromechanical model

strongly indicates that the elasticity of planar fibrous materials can be accurately

predicted from the elasticity of the fibers leading to its formations. This

highlights the potential of micromechanical modeling in improving design of such

materials, through optimization of key microscopic parameters such as porosity

or mechanical and geometrical properties of fibers and pores, in order to achieve

the desired macroscopic elastic properties.
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Age-dependent change in the 3d structure of cortical porosity at the human

femoral midshaft. Bone, 40:957–965, 2007.



Bibliography 241

O. Coussy. Mechanics of porous continua. Wiley, 1995.

O. Coussy. Poromechanics. John Wiley & Sons, 2004.

B. Couteau, M.-C. Hobatho, R. Darmana, J.-C. Brignola, and J.-Y. Arlaud. Fi-

nite element modelling of the vibrational behaviour of the human femur using

CT-based individualized geometrical and material properties. Journal of Biome-

chanics, 31(4):383–386, 1998.

S. Cowin. A recasting of anisotropic poroelasticity in matrices of tensor compo-

nents. Transportation in Porous Media, 50:35–56, 2003.

S. Cowin. The significance of bone microstructure in mechanotransduction. Jour-

nal of Biomechanics, 40:105–109, 2007.

S. C. Cowin and M. M. Mehrabadi. The structure of the linear anisotropic elastic

symmetries. Journal of the Mechanics of Physics and Solids, 40(7):1459–1471,

1992.

H. L. Cox. The elasticity and strength of paper and other fibrous materials. British

Journal of Applied Physics, 3(3):72–79, 1952.

F. Craciun, C. Galassi, E. Roncari, A. Filippi, and G. Guidarelli. Electro-elastic

properties of porous piezoelectric ceramics obtained by tape casting. Ferro-

electrics, 205:49–67, 1998.

E. Crawley, W. Evans, and G. Owen. A theoretical analysis of the accuracy of

single-energy CT bone-mineral measurements. Physics in Medicine and Biology,

33(10):1113–1127, 1988.

J. Crolet, B. Aoubiza, and A. Meunier. Compact bone: Numerical simulation of

mechanical characteristics. Journal of Biomechanics, 26(6):677–687, 1993.

J. Currey. The relationship between the stiffness and the mineral content of bone.

Journal of Biomechanics, 2:477–480, 1969.

J. Currey. The effect of porosity and mineral content on the young’s modulus of

elasticity of compact bone. Journal of Biomechanics, 21(2):131–139, 1988.

S. Cusack and A. Miller. Determination of the elastic constants of collagen by

brillouin light scattering. Journal of Molecular Biology, 135(1):39–51, 1979.



Bibliography 242

A. Czenek, R. Blanchard, A. Dejaco, O. Sigurjónsson, G. Örlygsson, P. Gargiulo,
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erties. Comptes Rendus Mécanique, 334(3):151–157, 2006.

A. Fritsch, L. Dormieux, C. Hellmich, and J. Sanahuja. Mechanical behavior

of hydroxyapatite biomaterials: an experimentally validated micromechanical

model for elasticity and strength. Journal of Biomedical Materials Research

Part A, 88(1):149–161, 2009a.

A. Fritsch, L. Dormieux, C. Hellmich, and J. Sanahuja. Mechanical behavior

of hydroxyapatite biomaterials: An experimentally validated micromechanical

model for elasticity and strength. Journal of Biomedical Materials Research,

Part A, 88A(1):149–161, 2009b.



Bibliography 246

A. Fritsch, C. Hellmich, and L. Dormieux. Ductile sliding between mineral crystals

followed by rupture of collagen crosslinks: Experimentally supported microme-

chanical explanation of bone strength. Journal of Theoretical Biology, 260(2):

230–252, 2009c.

A. Fritsch, C. Hellmich, and L. Dormieux. The role of disc-type crystal shape for

micromechanical predictions of elasticity and strength of hydroxyapatite bio-

materials. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 368(1917):1913–1935, 2010a.

A. Fritsch, C. Hellmich, and L. Dormieux. The role of disc-type crystal shape for

micromechanical predictions of elasticity and strength of hydroxyapatite bioma-

terials. Philosophical Transactions of the Royal Society of London A: Mathe-

matical, Physical and Engineering Sciences, 368(1917):1913–1935, 2010b.

A. Fritsch, A. Dejaco, V. Komlev, W. Swieszkowski, J. Jaroszewicz, E. Bongaers,

and C. Hellmich. Translation of CT data into voxel-specific micromechanics-

based elasticity tensors. Micro-CT User Meeting, Abstract Book, SkyScan, 2011:

108–112, 2011.

A. Fritsch, C. Hellmich, and P. Young. Micromechanics-derived scaling relations

for poroelasticity and strength of brittle porous polycrystals. Journal of Applied

Mechanics, 80(2):020905, 2013a.

A. Fritsch, C. Hellmich, and P. Young. Micromechanics-derived scaling relations

for poroelasticity and strength of brittle porous polycrystals. Journal of Applied

Mechanics, 80(2):020905–1–12, 2013b.
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