
A System for Optical Music
Recognition and Audio Synthesis

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik

eingereicht von

Matthias Wallner
Matrikelnummer 0451221

an der
Fakultat für Informatik der Technischen Universität Wien

Betreuer: Prof. Dr. Horst Eidenberger

Wien, 15.09.2014
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A System for Optical Music
Recognition and Audio Synthesis

DIPLOMA THESIS

for acquiring the academic degree

Master of Science

in the study program

Media Informatics

submitted by

Matthias Wallner
matriculation number 0451221

at the
Faculty of Informatics, Vienna University of Technology

Supervisor: Prof. Dr. Horst Eidenberger

Vienna, 15.09.2014
(Signature of the Applicant) (Signature of the Supervisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Matthias Wallner
Grenzstraße 50a
8570 Voitsberg

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit, einschließlich Tabellen, Karten und Abbildungen, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Voitsberg, 29.06.2013
(Unterschrift Verfasser)

iii

Abstract

This paper addresses Optical Music Recognition (OMR), a way to convert music no-
tation into a digital representation, and its acoustic rendition. On the basis of a software
prototype designed for mobile devices, the necessary steps will be discussed and compared
to related work. The focus is on the fields of image processing and pattern recognition as
well as audio synthesis. Innovations and experiences that have emerged in the field of
OMR have been selected and used throughout the development process of the prototype.
There is a particular emphasis on projection-based methods, which have proven highly
successful as early as in the 1980s. Of all the works that were carried out, the research of I.
Fujinaga has to be named as the strongest influence of this thesis. Both its easy implemen-
tation and its efficiency are well suited for the task of OMR on mobile devices. Further-
more, similarities and differences between the techniques applied and other approaches in
the field of OMR will be presented. Symbol recognition is carried out by means of simple
algorithms of pattern recognition (template matching) while the results are translated into
an audible representation via MIDI synthesis. While there exist several performant OMR
systems, specially tuned for the use with personal computers and scanners, OMR on mo-
bile devices is still in its infancy. With the assistance of well-known and proven methods
in this very field, this thesis provides a playful contact with optical music recognition.

Die vorliegende Arbeit befasst sich mit Optical Music Recognition (OMR), einer Meth-
ode zur Überführung von Musiknoten in eine digitale Form, sowie deren akustischer Wieder-
gabe. Basierend auf einem Softwareprototyp, der für den Betrieb auf Mobiltelefonen
entwickelt wurde, wird das Verfahren im Detail präsentiert und verwandten Systemen
gegenüber gestellt. Im Mittelpunkt stehen im Wesentlichen die Bereiche Bildverarbeitung
und Mustererkennung sowie Audiosynthese, wobei Erfahrungen und Forschungsergebnisse
auf dem Gebiet der OMR selektiert für die Entwicklung des Prototypen herangezogen wur-
den. Im Besonderen stützt sich das Framework auf projektions-basierte Methoden, womit
bereits in den 1980er Jahren beachtliche Ergebnisse erzielt wurden. Stellvertretend dafür
ist die Arbeit von I. Fujinaga zu nennen, die einen wesentlichen Bezugspunkt für diese
Diplomarbeit darstellt. Die relative Einfachheit der Umsetzung und der für die Anwen-
dung auf mobilen Endgeräten ideale Tradeoff zwischen Erkennungsrate und rechnerischem
Aufwand stellen einen großen Vorteil gegenüber anderen Methoden dar, die ihrerseits in
dieser Arbeit anhand der ihnen zugrunde liegenden Techniken gegenüber gestellt werden
werden. Die Erkennung der Musiksymbole wird mittels einfacher Algorithmen der Muster-
erkennung, konkret Template Matching, bewerkstelligt, wobei das Ergebnis mittels MIDI-
Synthese in ein für Menschen hörbares Resultat umgewandelt wird. Während bereits leis-
tungsfähige OMR-Systeme für die Nutzung mit Personal Computer existieren, steckt die
Notenerkennung auf mobilen Geräten noch in ihren Kinderschuhen. Unter Zuhilfenahme
bekannter und einschlägig erprobter Verfahren bietet die Diplomarbeit einen spielerischen
Einstieg in das Gebiet der optischen Notenerkennung

Contents

1 Introduction 1
1.1 Goals and Motivation . 1
1.2 Thesis Outline . 2

2 Fundamentals 3
2.1 Music Notation . 3

2.1.1 History . 3
2.1.2 Terms and symbols . 3
2.1.3 Other elements . 6

2.2 Optical Music Recognition . 6
2.2.1 Pattern Recognition . 6
2.2.2 OMR vs. Optical Character Recognition 7

2.3 State of the Art . 10
2.3.1 Staff Line Identification and Removal 11
2.3.2 Musical Object Location, Classification and Semantics 14
2.3.3 Final Representation . 15
2.3.4 OMR Software . 17

3 Adapting the OMR Framework 19
3.1 Image Preprocessing . 19

3.1.1 Cropping . 19
3.1.2 Deskewing . 20
3.1.3 Binarisation . 22
3.1.4 Reference Lengths . 24

3.2 Staff Line Identification and Removal 25
3.2.1 Filtering . 25
3.2.2 Stave Extraction . 26

3.3 Feature Classification . 27
3.3.1 Overview . 27
3.3.2 Implementation . 27
3.3.3 Clefs . 29

iv

Contents v

3.3.4 Notes . 31
3.3.5 Key signatures . 33
3.3.6 Accidental detection . 34
3.3.7 Detection of other elements . 35

3.4 Musical Semantics and Transformation 37
3.4.1 Symbol Interpretation . 37
3.4.2 Audio Synthesis . 38

4 Implementation 43
4.1 Platform and tools . 43
4.2 Hardware . 43
4.3 perfOMR . 44

4.3.1 User Interface . 44
4.3.2 Symbol templates . 44
4.3.3 Helper Classes . 45
4.3.4 Audio Rendering . 47
4.3.5 Bugs and Limitations . 47
4.3.6 UML . 50

4.4 License . 51

5 Evaluation 53
5.1 Methodology and Metrics . 53
5.2 Template Dataset . 54

5.2.1 Image Deformation . 54
5.3 Results . 55

5.3.1 Staff line detection . 56
5.3.2 Symbol Recognition . 56
5.3.3 Other symbols . 58
5.3.4 Pitch Recognition . 60

6 Conclusion and Future Work 61

Bibliography 63

CHAPTER 1
Introduction

1.1 Goals and Motivation
For thousands of years, music has been a cultural companion of mankind, a way for
humans to express and evoke feelings, be it as active musicians or untrained listeners.
Throughout this period and particularly in the field of classical music, which is typi-
cally performed by larger groups of musicians, there has been a need to depict one’s
musical ideas in an understandable, graphical format, which led to the introduction of
music notation. Consisting of symbols of well-known meaning, sheets of music, albeit
different from how we know them today, became the method of choice to communicate
and record musical ideas for the ancient Greeks. Notation as a whole, despite having
evolved over centuries, helps its readers to globally share a common understanding, no
matter what type of music or the degree of musical education.

In every civilisation, music is considered a pivotal part of culture and commonly this
is also reflected in general education. As early as elementary school or sometimes even
before, children become acquainted with the syntax and semantics of notes. In order to
be able to convey the ideas of music, however, it is necessary to have some knowledge
of musical conventions.

Assuming there was a system that would translate a piece of music into an auditive
representation, not only would musicians greatly benefit from a way to get an idea of the
tune, as quite a few of them may be unable to properly read musical notation. But this
would also help in a more casual environment. Just consider parents or grandparents
who would like to sing a song for or together with their children, and cannot remember
the specific tune. In such a case, an application which supports the step of interpretation
would be very convenient indeed.

Having been a musician for more than twenty years myself and thus being familiar
with the difficulties of understanding music notation from personal experience, I quickly

1

2 Chapter 1. Introduction

warmed to the idea of creating a tool that can bridge the gulf described above.

It is the goal of this thesis to provide a prototype software which runs on the An-
droid mobile operating system and transforms musical notation - in the form of simple
children’s tunes - into acoustic renditions.

The application should incorporate features of both individual notes, such as key
or duration, and more complex inter-notational characteristics. While many algorithms
are based on the acquisition of images by means of a document scanner, the optical
sensor of a smartphone will be used for the same task in the present system. The idea
of the prototype is to provide a simple to use and playful means of music translation in
a typically casual environment, which can take advantage of the massive improvement
smartphone technology has seen in recent years.

1.2 Thesis Outline
The structure of the underlying thesis is as follows:
Chapter 2 sketches the fundamentals of Common Music Notation and the means of
automatic recognition of musical features by the use of Optical Music Recognition.
Chapter 3 gives an in-depth description of the underlying framework, while Chapter 4
provides information on the actual implementation and deployment of the prototype,
referring to limitations of operating system and hardware. The thesis concludes with an
evaluation of the framework on a test set of sample notations of simple children’s tunes.

CHAPTER 2
Fundamentals

This chapter provides a brief introduction into the field of music notation before we
delve into the more analytical area of Optical Music Recognition (OMR).

2.1 Music Notation

2.1.1 History
Throughout history, many different forms of musical notation have been used by the
respective cultures. One of the earliest known examples dates back to the Mesopotamia
of 2,000 B.C. [18], showing musical instructions using a diatonic scale, which is seen as
the foundation of western music as we know it. It is commonly believed, however, that
modern notation stems from the ancient Greeks, who assigned a group of three letters of
their alphabet to each tone in order to visualise tones as well as their respective semi- and
quarter-tones. Later, in the eleventh century A.D., a graphical means was introduced to
represent the degrees of the scale, which until then had been described by Latin letters.
These elements, which we refer to as staves today, will be extensively examined in the
following subsections, as they are a key element to OMR.

Not least the efforts of churchmen who tried to find an absolute system of indi-
cating both pitch and time values of sounds through several medieval centuries, have
extensively shaped western music notation, which is applied by musicians of all genres
throughout the world. [43]

2.1.2 Terms and symbols
The following section contains relevant information on the most important musical sym-
bols which combine into a modern score.

3

4 Chapter 2. Fundamentals

Staves

Staves are a regular element on a score sheet, usually occuring in sets of five parallel
lines of the same length. Between each of these lines, the space is fixed. While a
piece of music is used to be played in a strict top-down and left-to-right order, staves
may also be grouped, depending on the number of instruments. In this case, these
groups of staves are considered to have the same ’timestamp’, which means that they are
played simultaneously. As this thesis focuses on simple children’s tunes, only notations
depicting a single instrument or voice shall be considered subsequently. Please note that
stems may be enhanced with short ledger lines, which, if necessary, mimick another
stave line above or below the regular staves.

While staves as horizontal lines provide a means of organizing the tonal dimension,
the temporal dimension is delimited with vertical bars, connecting the topmost with the
lowermost line of the stave. Depending on the particular time signature, there is a fixed
number of counts within these bar lines while the interval on the x-axis is subject to
variation.

Notes

Individual tones are indicated by notes which are embedded into the staves as discussed
above. Notes convey a meaning both with their vertical position, determining the pitch
or tone height, and their shape. Usually, a note consists of a note head and a connected
stem. In certain cases, where two or more notes are played at the same time, all stems
but one are ommitted.

The appearance of the note head gives information on the duration of a particular
note, which is shown in Fig. 2.1. However, the time value can be increased by a half
of its value by a dot inside a small area to the right of the note head. In addition to
that, hooks or beams, which are connected to the other end of the stems, have a similar
meaning. While hooks reduce the time value of only the adjacent note head, beams have
an enlarged scope across two or more notes (Fig. 2.2).

Key signature and accidentals

Tonality of a music score as a whole is also defined by key signatures which are located
at the beginning of a stave or, in some cases, next to a double bar. Depending on the
vertical position on the stave lines and on their shape they affect different notes that will
be increased or decreased by a semitone.

The same applies to accidentals that are considered as key signatures which change
the pitch of the note that it immediately precedes and of any following notes that are
either on the same line or space in the measure, which, in turn, is delimited by a vertical
bar. Where applicable, previous assignments within a measure are cancelled by the
natural sign.

2.1. Music Notation 5

Figure 2.1: Example of a key signature designating the highlighted note to be played
one semitone higher.

Figure 2.2: G-clef, F-clef and C-clef.

Figure 2.3: Examples of time signatures.

There are other forms of accidentals such as e.g. double, courtesy or quarter-tone
accidentals which, due to their limited use, will not be referred to in the following.

Clefs

Also affecting the tonal value of the notes, the first element occuring on a stave is the
clef which comes in three main types (Fig. 2.2). In this paper only one of these, the G-
or treble clef will be of interest.

Time signature

Positioned near the clef sign in most cases, a time signature affects neither the time nor
the pitch value of notes. While the numerator specifies the number of beats per bar, the
denominator indicates the note value of one beat. A bar is referred to as space between
two neighbouring bar lines that are drawn perpendicular to the staff lines. The letter C
(see Fig. 2.3) indicates the common time which would otherwise be represented by the
4/4 meter. Common children’s tunes, which are subject to this work, have been written

6 Chapter 2. Fundamentals

Figure 2.4: Pause symbols of varying length.

in a 3/4 or 4/4 time signature while other musical genres like Jazz or classical music
show a higher variability in this particular property.

2.1.3 Other elements

In addition to the metrum desribed above, pauses play a role in defining the temporal
layer of a musical piece. Fig. 2.4 shows a selection of common rests of different lengths,
corresponding with the length of note values (measure given in beats): Semibreve (1),
Minim (1/2), Crotchet (1/4), Quaver (1/8), Semiquaver (1/16).

2.2 Optical Music Recognition
After presenting the key elements of musical notation, we now approach the problem of
Optical Music Recognition (OMR), a set of different methods for recognizing musical
symbols and their translation into a machine-readable format.

In the following, pattern recognition will be discussed, which is a basic technique in
any character recognition framework. Here, I am also going to point out similarities and
dissimilarities between the fields of OMR and Optical Character Recognition (OCR)
before giving a brief overview of common OMR techniques and applications.

2.2.1 Pattern Recognition

Generally speaking, pattern recognition seeks to analyze and categorize signals, assign-
ing labels to given input data. Independent of the respective approach, the process can
be divided into a total of four main stages that, in our application, directly follow the
capturing stage (see Fig. 2.5):

Preprocessing is undertaken in order to restrict input data to a minimum, which often
involves a normalization of the input. We will refer to the image preprocessing in the
following chapter. When performing pattern recognition on images, segmentation then
separates components, providing a basis for higher-level recognition processes. Based
on the segments, feature extraction derives properties of the respective signals (e.g.
width or height) which then are differentiated into classes by means of classification.

2.2. Optical Music Recognition 7

Preprocessing Segmentation

Classification Feature Extraction

Figure 2.5: Overview over a typical pattern recognition system.

Figure 2.6: Pitch is conveyed through position on y-axis. The figure shows a major triad
consisting of f’, a’ and c”.

2.2.2 OMR vs. Optical Character Recognition
Both the field of OMR and Optical Character Recognition belong to the domain of
Pattern Recognition. While the inherent problems may look similar at first glance, they
are, however, substantially different. Moreover, OMR can be described as a superset of
OCR for the following reasons:

According to [5], textual information is usually aligned in a one-dimensional way
in which a page is divided by regular spaces between singular text lines. By constrast,
musical notation makes extensive use of the vertical dimension by using the y-axis to
convey information on pitch. Notes are not restricted to be displayed in a one-linear
fashion from left to right. In case of chords, stems may be ommitted, resulting in in-
dividual notes that are placed on top of each other or with a minor variation along the
x-axis. Fig. 2.6 shows three singular, graphically identical crotchets or quarter notes
that have been translated to different positions and next to them a chord consisting of
the very same notes. This phenomenon, which is known as (selective) translation, leads
to a high number of variations, rendering impossible a template matching with finite
templates.

While the horizontal distance between two elements in musical notation is mostly
uniform, it needs to be stretched or narrowed in order to facilitate readability in certain
cases. This possibly results in the same event having more than one graphical repre-
sentation. At the same time, minor graphical differences in music convey important
information while there is a substantial difference in shape between most glyphs in text.

8 Chapter 2. Fundamentals

Another property which is common to musical symbols is that many of them consist
of multiple components. In western text, most glyphs are made of one region which
in some cases is complemented by smaller supporting dots or diacrytical marks. What
makes the task of OMR even more complicated is that the above cited properties do
not only occur isolated but also simultaneously [5]. Furthermore, there is no uniform
appearance of musical symbols. They are not only variable in size and shape if one
compares handwritten scores to printed scores but also among different printed publish-
ings [34]. As mentioned in [42], the superimposition of syntactically unrelated symbols
often occuring on music scores with a high density is another problem that OMR has to
cope with. Strictly speaking, authors are responsible for making their work as clear as
possible but readability is heavily affected by the inherent complexity of the score.

In 2.7, we see a musical piece that, despite all measures of diligence taken, suffers
from the issues cited above. The area marked with a red frame shows a diagonal line
from the upper left to the lower right corner, denoting a glissando, which is an effect
where the performer glides from one pitch to another. Obviously, this symbol stretches
not only across several staff lines, but it also touches the flat accidental as well as a
double beam and a crescendo mark. In the blue bordered area, there is a typical example
of accidentals, which, due to obvious reasons of space, are touching each other. While
bounding box based approaches are regarded as fast and accurate means for musical
object classification, they often fail in cases of superimposed objects [4].

In addition to the musical symbols described earlier, musical scores contain textual
information that affects the way music is interpreted, often affecting dynamics (e.g.
mf : mezzoforte = moderately loud), or tempo (e.g. rall.: rallentando = gradual, slow
decrease of tempo) of certain areas of the score. Thereby, the position of these tokens is
vital in order to identify their scope.

2.2. Optical Music Recognition 9

Figure 2.7: Superimposition of musical symbols using the example of an excerpt of
“Hill Song I” by P. A. Grainger.

10 Chapter 2. Fundamentals

2.3 State of the Art

The difficult task of Optical Music Recognition has been extensively studied in the
past few decades and provided a wealth of publications that belong to the fields of
image processing, graph theory, pattern recognition or probabilistic coding, to name a
few. Efforts have resulted in numerous OMR systems (commercial and non-commercial
ones), particularly since the 1980s, when hardware costs fell to a reasonable level. Yet,
OMR applications are still considered to be inferior in performance compared to their
OCR counterparts [42].

Due to its complexity, the problem of OMR is generally subdivided into a number
of subtasks, which are typically processed in a uni-directional fashion. In this pipeline,
decisions made in a later stage have no implication on any previous stage. According to
Bainbridge [5] the problem of OMR comprises four major steps as depicted in Fig. 2.8.

Staff Line Identification and Removal

Musical Object Location

Musical Feature Classification

Musical Semantics

Figure 2.8: Control flow for a typical OMR application.

Related work suggests an alternative terminology which is mainly due to a different
approach in decomposition [34]. The framework is not necessarily traversed in a top-
down fashion as there are (but few) systems that try to improve recognition results by
incorporating knowledge obtained in later steps into earlier stages. Moreover, each of
the above stages is, to a greater or lesser extent, subject to variation in terms of used
methods – these will be discussed in detail in the following.

2.3. State of the Art 11

2.3.1 Staff Line Identification and Removal
Staff line identification is not only considered as a preliminary step for the later removal
of staff lines. It also provides an ideal starting point for segmentation-free approaches
that do not rely on this potentially problematic task which is prone to fragmentations of
symbols [26], [31].

Figure 2.10: Excerpt of “Pictures at an exhibition” (M. Mussorgsky). From Bainbridge
and Bell, 2001 [5].

Figure 2.11: Corresponding horizontal projection of the example above. Spikes on the
x-axis suggest the occurrence of staff lines for particular y-values. [5].

A variety of OMR work has focused on projections and runlengths in order to ap-
proach the task of staffline recognition. Being widely used outside the scope of OMR
(e.g. medical applications), projections provide a decent tradeoff between ease of imple-
mentation and reliability. Introduced in OMR by Fujinaga [14], the projection method
(see Fig. 2.10 and 2.11) has proven successful both for cases when good source ma-
terial is provided and when other, computationally more expensive, methods are ruled
out due to hardware limitations and/or realtime requirements. Working on pixel level,
projection profiles are created along each line on the y-axis simply by summing up the
number of pixels of the respective line before the most frequent black and white run-
lengths are used to locate the position of staff lines. In order to remove staff lines, black
runlengths larger than a certain height are excluded so that only sufficiently wide con-
nected components are considered later on. The remainder, a set of horizontal segments,

12 Chapter 2. Fundamentals

Staff
L

ine
Identification

and
R

em
oval

N
eural

N
etw

orks

M
artin,P.and
B

ellissant,
C

.1991
[20]

Skeletonization

D
alitz

et
al

2008
[11]

H
ough

Transform

M
iyao,H

.
2002

[23]

L
ine

Tracking

R
andriam

ahefa
et

al
1993

[32]
R

oach,J.W
.

and
Tatem

,
J.E

.1988
[36]

L
ine

A
djacency

G
raphs

(L
A

G
)

Pavlidis,T.
1982

[29]
C

arter,N
.P.

and
B

acon,
R

.A
.1992

[9]

Projection
m

ethods

Fujinaga,I.
1988

[14]
Toyam

a
et

al
2006

[42]
B

ainbridge,
D

.and
B

ell,
T.C

.1997
[42]

Figure
2.9:O

verview
ofavailable

m
ethods

on
discrim

inating
betw

een
stafflines

and
otherobjects

in
a

notation.

2.3. State of the Art 13

is then subtracted from the original image. [42] has presented an alternative approach
which relies on the vertical projection profiles by finding staff candidates in a run length
histogram of equally spaced vertical scan lines. As the present work makes extensive
use of projection methods, deeper insight will be given in Chapter 3 ff..

Line Adjacency Graphs (LAG) [29], a well-known principle in graph theory, are
key to another method for removing staff lines. In the fashion of the concept described
above it is based on runlengths. Similarly, it does not consider chords in arbitrary di-
rections. Due to feasibility issues, it makes only use of the horizontal and the vertical
directions [11] to search for potential sections of lines. In [9], the LAG is obtained by
computing vertical runlengths for each column, whereas encodings of adjacent columns
are compared. After the transformation, the LAG is filtered by aspect ratio, angle and
connectedness [16], yielding a set of staffline sections which are referred to as filaments.
The advantage of this method is that it does not contain parts of symbols that intersect
staff lines, leaving intact as many elements as possible for the process of Musical Object
Location. However, this comes at the expense of a high computational effort since every
pixel has to be searched. The system is known to be robust, mastering skew up to ten
degrees.

As proposed in [32], Line Tracking provides another hands-on approach to the prob-
lem of identifying staff lines. After the staff skeleton has been detected using estimates
of both staff line thickness and the spacing between two staff lines of one stave, lines
are tracked and vertical black runs around each point of the staff skeleton are removed
if they match a certain criterion. As an advantage over other methods, staff lines are
found irrespective of degradations of the image (e.g. warp, tilt). Various methods that
provide intelligent means to deal with superimposed objects have been presented, only
differing in the approach of how pixels are extracted.

In [20], the problem of discriminating between staff line and symbol parts is resolved
with a multi-layered neural network using gradient back propagation. An approxima-
tion of the image skeleton containing endpoints, junction points and bending points is
obtained by thinning. The estimated height of the staff line can be obtained from the
histogram of the number of pixels that have been removed during each iteration of the
thinning process [26]. Furthermore, the original image can be reconstructed using the
skeleton information.

Originally tuned to handwritten scores, the Vector Field method described by [36]
seeks to remove all shapes that are known to be perfectly horizontal. This information is
gained by computing a function that incorporates both chord length and angle for each
foreground pixel thus resulting in a vector field. Staff line pixels are then identified using
a labelling scheme, trying to leave intact pixels that possibly belong to music symbols
by integrating information of neighbouring pixels into the labelling process.

Feature extraction techniques like Hough transform are widely used in such fields
as computer vision or image analysis, and there have been attempts to exploit their ad-

14 Chapter 2. Fundamentals

vantages in optical music recognition. Above all, this method is capable of delivering
acceptable results in the task of staff line detection, even when there are large inclina-
tions or discontinuities. Results degrade, of course, when staff lines are curvated, e.g.
due to properties of the camera lens. [23] have proposed an improvement of their ear-
lier method which comprises the extraction of certain candidate points on a staff line
and their connection - hereby, the optimisation technique of matching by dynamic pro-
gramming is taken advantage of. Subsequently, groups of staves are composed and, in a
concluding step, edges are extracted. This method delivers satisfactory results even on
imperfect scans in terms of the characteristics mentioned above.

2.3.2 Musical Object Location, Classification and Semantics

Being logically placed after the step of staff line detection, Musical Object Location
deals with the segmentation and classification process of musical primitives. Due to
the bidimensional structure of notation, poor printing, degradations caused by previous
stages and/or due to the complexity of symbols, musical feature classification is a del-
icate task that has been addressed by numerous works. The usual strategy is to extract
primitives, meaning basic music symbols such as note heads, stems, dots that are as-
sembled and classified in turn. While these two steps are mostly processed together,
few research works, including the underlying work, seperate between these tasks [33].

Projection profiles play a major role not only in the process of staff line identification
but also during the recognition of musical objects [30]. While we already described its
ability to detect staff lines using horizontal projections, the same method can be applied
to the vertical dimension in order to detect note stems, bar lines in subsequent stages.
In [15], the k-nearest neighbour algorithm (k-NN) is used for classifying symbols based
on the features extracted from the projection profiles.

[9] and [35] have both resorted to LAGs with the latter work introducing a three-
step process. During segmentation, each connected component is represented by a com-
pressed LAG whereas textual information is discarded. While lines and curves can be
found by simply traversing the graph and merging adjacent lines, accidentals, rests and
clefs are detected using character profiles that measure the perpendicular distance of
their contour. For note heads, Template Matching is applied as they cannot be isolated
by connected component analysis.

Generally, Template Matching, has seen widespread use in the field of OMR in
order to detect primitives. In [42], the author introduces a coherence check for primitive
candidates which refers to music writing rules. Furthermore, pixel tracking is applied in
order to detect shapes such as stems, beams and hooks. [22] adopt a multi-layer neural
network that identifies heads and flags from the candidates that have been extracted
based on stem positions. Thus, the introduction of a rule-based system is ommitted.
The system delivers satisfying results on high quality scans.

2.3. State of the Art 15

While other techniques can be applied during several steps of the OMR pipeline,
Hidden Markov Models are, for the most part, restricted to the step of object recognition.
In his work on early typographic musical prints, Pugin seeks to bypass the sensitive step
of removing staff lines. Instead, accurate recognition was achieved by treating staves as
a sequence of symbols which in turn was converted into a probabilistic, one-dimensional
model. This technique provided good recognition rates on simple scores [31]. Earlier,
Kopec and Chou were among the first to integrate all steps of the framework described
above into a single optimization process. Using only a subset of printed music nota-
tion for pedagogical purpose they successfully applied their document image decoding
(DID) approach to music scores [37]. Inherent problems of this approach, which in-
cluded a fast growth of the underlying Markov models, were addressed by Stückelberg
and Doermann who moved from a generative to a descriptive recognition model [38].

An interesting approach is taken by Bainbridge and Bell who have integrated several
of the aforementioned techniques into their CANTOR system which can be highly cus-
tomised through a Primitive Expression Language (PRIMELA). Instead of working on
a hard-coded string-based [10] or attributed programmed graph grammar [12], the user
is entitled to specify the appearance of musical symbols which allows the framework to
adapt to a variety of notations [3].

2.3.3 Final Representation
A number of systems that translate musical notation into a machine-readable format
have been deployed in recent years. Likewise, there has been an increase in efforts to
build up large collections of digital music.

As more and more music sheets are digitized, there has emerged the need for an auto-
mated extraction of semantics in order to make them eligible for content-based retrieval
and browsing. [13] have introduced an automated procedure for mapping and synchro-
nizing sheet music to audio recordings which has been implemented in the PROBADO
music repository. For the mapping procedure, the two domains of notation and audio
recordings are translated into the same chroma representation as proposed in [19] where
chroma refers to the twelve traditional pitch classes of a scale.

Figure 2.13: A middle C whole note, depicted in standard western notation.

The authors of [2] have presented a system that captures images through a handheld
scan device, playing sounds according to the notation data in realtime. Additionally,
this tangible device enables the user to further interact by means of velocity, pitch or

16 Chapter 2. Fundamentals

Final
R

epresentation

G
estural

M
usical

Instru-
m

ent
D

igital
Interface

(M
ID

I)

Score-based

G
U

ID
O

M
usicX

M
L

L
ilyPond

N
otation

In-
terchange

File
Form

at
(N

IFF)

Figure
2.12:M

usic
form

ats
serving

asm
eans

ofstoring
orprocessing

m
usicaldata.T

his
listisnotintended

to
be

exhaustive.

2.3. State of the Art 17

instrument changes. In general, there exists a wealth of commercial OMR systems
that provide means to export the results of OMR into multi-purpose formats (see Fig.
2.12). For recording previously recognised musical data, this thesis focuses on Musical
Instrument Digital Interface (MIDI), which, being a gestural format, is an exception
among the numerous representations of music. Among the score-based formats are
Notation Interchange File Format (NIFF, obsolete), GUIDO (complete OMR system)
and MusicXML with has drawn attention recently with the latter having gained status
of a de facto standard. MusicXML allows for musical information exchange across a
wide range of applications that are concerned with composition, recognition or playback
of music [40]. Another example is GNU LilyPond, which serves both as a file format
and a computer program. See Figure 2.13 and Listings 2.1 and 2.2 for a brief example.

Listing 2.1: Example of the MusicXML format.

<note>
<pitch>
<step>C</step>
<octave>4</octave>
</pitch>
<duration>4</duration>
<type>whole</type>

</note>

Listing 2.2: Example of the LilyPond format.

\begin{lilypond}
c’4

\end{lilypond}

2.3.4 OMR Software
Among the well-known proprietary representatives of fully-functional OMR software
are Capella Scan, VivaldiScan or ForteScan but moreover, efforts have been made to
provide software under the GNU General Public License [1].

In the field of mobile computing, Neuratron’s NotateMe [25] is a prominent example
for shifting the location of music editing and capturing to the actual workplace of the
musician. This system not only allows for recognition of handwritten music through
the display touchpad but recently, full-featured OMR capability has been integrated,
allowing for functions that have been limited to personal computers in the past. These
comprise of editing and exporting of previously captured sheet music while for the latter,
MusicXML is used as the format for import and export.

CHAPTER 3
Adapting the OMR Framework

Similar to other implementations, the framework used in the prototype follows the same
unidirectional pipeline that has been presented in the previous chapter. In the following,
the various stages will be discussed and the adopted techniques will be explained in
detail. For illustrational purposes, the classic children’s tune “Im Märzen der Bauer”
will be used (see Fig.3.1).

3.1 Image Preprocessing
It is important to consider that the system is designed to cope with mobile photographs
which are of a lower quality than typical high-resolution scans of notations. Research
has shown that minor degradations of image quality have already an enormous effect on
the recognition rate. Therefore, exhaustive measures have to be taken to ensure a decent
input even in a difficult environment.

3.1.1 Cropping
In the beginning, all portions of the image that are not part of the music sheet are re-
moved. The idea is to detect the largest white element in the photograph, which is
assumed to be the notation. As a preparatory step, the image needs to be downscaled
in order to remove noise. In addition to that, the morphological operation of erosion is
applied to the image which joins disparate elements by replacing the pixel in the anchor
point of a kernel K with the minimal pixel value of image I in the region covered by
K. Iteratively, a contour detection algorithm based on the algorithm [39] is performed
alongside the morphological operation, providing a list of rectangular shapes. Process-
ing stops once a rectangular shape of sufficient size has been detected. For the actual

19

20 Chapter 3. Adapting the OMR Framework

Figure 3.1: Scanned notation prior to preprocessing.

implementation of the process described, I have employed the OpenCV library. Results
can be observed in Fig.3.2.

3.1.2 Deskewing
It is an unfavourable property of photographs or even some image scans, that their main
objects are often skewed at an arbitrary angle, which provides a suboptimal starting
point for the following steps in the underlying framework. It has been mentioned earlier
that this work heavily relies on using information from projections which means it is
elementary to properly align the image in order to obtain satisfactory results. In order to

3.1. Image Preprocessing 21

Figure 3.2: The input image after the cropping process.

automatically compensate for the rotation of the mobile phone relative to the notation
sheet, it seems logical to determine the angle of rotation by means of projection profile
analysis, which takes into account local pixel information [27].

A narrow strip located centrally in the image provides the starting point to the al-
gorithm, on which a horizontal projection is applied. The resulting profile, depicting
the corresponding image rows with a high number of information (foreground pixels)
as peaks, is then used as reference projection to measure the skew between two adjacent
strips. Correlation coeffients between a y-projection of the reference strip and a scan-
line of the adjacent vertical strip are then computed by shifting the neighbouring strip
up and down. The projections are then summed up at the offset providing the highest
coefficient, thus forming the new reference projection. Computation continues until we
have reached the right bottom corner of the page, before the same procedure is applied
to the area to the left of the reference strip.

The sum of offsets, which have been temporarily stored, provides the basis for the
actual shearing process in the fashion of Bresenham’s Line Drawing Algorithm [8].
Each column of the image is then shifted to the nearest pixel based on a slope value
deducting the average deviation per column.

22 Chapter 3. Adapting the OMR Framework

Listing 3.1: Deskewing process of the input image.

binarise(input)
set margins of centre window
idx = 0

while rightborder < width
horizontalProjection(window)

for y = 0 : height;
coeff = projection1[y]*projection2[y2];

end

if (coeff > max_coeff)
save max_pos and max_coeff;

end

for y = 0 : height;
new_projection[y] = projection1[y] + projection2[y + max_pos];

end

offset += max_pos - max_pos[idx-1]
idx++

end

while leftborder > 0
...

end

for x = 0 : width;
for y = 0 : height;

idx_new = idx + shift;
temp_image[idx] = image[idx_new];

end
shift += offset_per_pixel

end
shift = 0
for y = 0 : height;

for x = width-1 : x >= 0;
idx_new = idx - shift
image[idx] = temp_image[idx_new]

end
shift += offset_per_pixel

end
return image[]

3.1.3 Binarisation
Since musical notations are monochromatic “by nature”, it is reasonable to introduce an
early binarization step in order to ease further processing and to eliminate background
or noise. There is no consensus, however, on how to handle the conversion of the
multivalued image to the according binary representation.

Otsu’s method [28], a variety of global thresholding, is one of the highest-rated

3.1. Image Preprocessing 23

T=122
Tglobal(g) =

{
0. . . g < t

1. . . g ≥ t

Figure 3.3: Global thresholding.

T=155

T=104T=123

T=88 Tlocal(x,y) =

{
0. . . g(x, y) < t

1. . . g(x, y) ≥ t
∈ Region Ri

Figure 3.4: Local thresholding.

T=120

T=116

T=115

T=144

T=78 Tadaptive(x,y) =

{
0. . . g(x, y) < t(N(x, y))

1. . . g(x, y) ≥ t(N(x, y))

Figure 3.5: Adaptive thresholding.

procedures and has been implemented by many OMR applications. Here, image pixels
are divided into two classes, fore- and background, respectively. The parameter T, by
which pixels are discriminated, is computed by maximizing the variance between the
two classes (see Fig. 3.3) Its advantage is that there is a low computational effort as
only zero- and first order cumulative moments are utilized. Unfortunately, early tests
have shown that the approach is not sufficient for the field of mobile photographs due to
uneven illumination of the music sheet in certain environments and its inability to deal
with strong illumination gradients.

As opposed to the global method, adaptive binarization [27] is capable of delivering
satisfactory results even with poor images, as it uses local information from the image

24 Chapter 3. Adapting the OMR Framework

itself. This procedure suggests using the mean and the standard deviation of a pixel’s
neighbourhood as local information (see Fig. 3.5).

For this prototype, I have opted for a hybrid model called local thresholding (see
Fig. 3.4). Here, the image is first divided into chunks whereby the number of eight rows
and columns has proven best for the image dataset. Iterating through the pixels of each
image partition, the number of foreground and background pixels are counted, based on
a threshold value T which has the initial value of 0. Then, the mean value both of all
foreground and background pixels is computed. After each iteration, T is assigned the
average of the two means, resulting in a maximization of variance of the two classes
once the algorithm has reached its end. Finally, the threshold T is applied to every pixel
within the current window. This procedure is a fair compromise, overcoming deficits of
the global thresholding but remaining computationally efficient.

3.1.4 Reference Lengths
Similar to other OMR alrorithms, perfOMR heavily relies on a small set of precom-
puted numbers, which are referred to as reference lengths. This term seems appropriate
as consecutive steps of the recognition process are performed based on these values.
Given the nature of the algorithms chosen for symbol segmentation and identification,
wrong reference values will negatively affect the final result considerably or even render
impossible further computations.

staff space height

staff line height

Figure 3.6: Definition of the two reference lengths relative to the model of a staff.

The two parameters which have proven to provide a robust foundation are staff space
height and staff line height. While the first measure describes the distance in pixels
between each of the four staff lines per stave, the latter stands for the thickness of staff
lines (see Fig. 3.6). The importance of these values becomes self-evident once having
delved deeper into the perfOMR system.

Run-Length Encoding (RLE), a simple form of lossless coding, is useful for depict-
ing sequences and has been applied in numerous OMR algorithms over the years. In
order to derive the values for the reference lengths mentioned above, it is necessary to
encode each column of the notation with RLE, resulting in a run-length matrix. Travers-
ing through the elements, black and white runs are counted and the most-common ones

3.2. Staff Line Identification and Removal 25

RLE = (2,2,4,1,4,1,3,2,4,1,1)

white runs = (2,4,4,3,4,1)
black runs = (2,1,1,2,1)

staff space height = 4
staff line height = 1

Figure 3.7: Reference lengths are obtained employing Run-Length Encoding.

are stored as staff space height and staff line height, respectively. For our data set of sim-
ple children’s tunes, it was sufficient to take one centrally located column as a reference
for computing the values. One could imagine, however, to integrate several randomly
chosen columns into the encoding process, which would further improve results by pro-
viding a greater robustness. The algorithm is illustrated in Fig. 3.7

3.2 Staff Line Identification and Removal
Given a valid result (staff height > 0 AND staff space > staff height) from the measuring
process, we are now in the position to detect staff lines, a critical task in music recogni-
tion, when it comes to isolating musical symbols. The position of staff lines can easily
be derived from the maxima of the y-projection. I have mentioned earlier that systems
have been designed that bypass staff removal. The underlying work seeks to reduce the
amount of data in order to keep the computational cost for following stages low. There-
fore, the strategy is to duplicate the image and to remove every item except for the staff
lines. Eventually, the computed image A’ can be XORed with the original image A.

3.2.1 Filtering
Since staves and staff lines are supposed to be horizontally aligned after the deskew-
ing process, we want to remove components that exceed the height of staff lines. In
this implementation, vertical black runs that are greater than twice the staff height are
removed by a pixel tracking algorithm, while the vertical position of these segments
being candidates for stems and bar lines is saved for later use.

After applying a horizontal projection we are now in the position to analyse con-
nected components which is done by a labelling algorithm, encompassing two passes.
Only columns with a projection value exceeding 0 are computed. Beginning with the

26 Chapter 3. Adapting the OMR Framework

forward pass, traversing through the pixels of the image, for each black pixel, a search
for neighbouring positives in a predefined area of preceding pixels is performed. In case
there is no adjacent positive pixel, simply a new label L is assigned. In any other case,
all black pixels in the neighbourhood, possibly containing different labels after the first
assignment, are assigned the minimal label of this particular area.

After the backward pass which, in general, follows the same principle, connected
components are uniquely identified by the according label L. Concurrently, for each
connected component, the margins on both the x- and the y-axis are tracked in order to
compute width and height of the respective labels. This allows us to remove all short
components from the temporary image array whose vertical or horizontal span is below
a predefined threshold T (see eq. 3.1). Let xspan be the margin on the x-axis and yspan be
the computed margin on the y-axis. Furthermore, ss denotes the staff space.

T =

{
0. . .xspan >= ss || yspan <= 2 ∗ ss
1. . .xspan < ss || yspan > 2 ∗ ss

(3.1)

In order to improve our preparatory parameters of staff width and staff space, two
further runs of our run-length algorithm are applied. These are only separated by another
filtering step that is introduced to remove remaining components taller than staff height.
Given the exact positions of the five staff lines, which are basically the local maxima of
a newly computed vertical projection profile, any fragments in-between these lines can
be removed.

The final result of the process described is an image that should contain staff lines
exclusively. As referred to earlier, an exclusive disjunction will remove the staff lines
from the original image A by an XOR (see Fig.3.9). Pixels of the staff line matrix A’ are
subsequently removed from A if they are black. While the staffs have been filtered out
of the notation, their position is preserved as this information is crucial for the following
tasks.

3.2.2 Stave Extraction
Having determined the position and number of staffs, the staves which constitute the
notation are separated. As for the feature classification, each stave is computed indi-
vidually. In the introduction we have described a stave as a set of typically five parallel
staff lines. Thus, the following extraction procedure has been adopted:

Iterating through all rows of the image, each y-position is checked for a staff flag.
For each group of five staff lines, however, it is not sufficient to extract the area within
the upper most and the lower most staff. Considering western music notation, notes
and other symbols are not restricted to this area but they can appear, to some extent, in
regions below or above the relevant stave. Therefore, the exact vertical centre points
between two stave systems provide the intersection points between the strips that are to

3.3. Feature Classification 27

be extracted. Any staff system counting less than five staff lines will be discarded while
the other staves are forwarded to the classification process.

3.3 Feature Classification
Symbols are detected and classified based on template matching which works directly
on image data. While there exist different styles of notations, let alone the variations
in handwritten scores, western music notation follows a very similar scheme. For this
work, the following subset of the Unicode Standard 6.2 [41] was chosen to represent
the templates (see Fig. 3.8) These elements provide the basis of our symbol recognition
step while further properties (most notably pitch) are derived from spatial data of the
respective symbols in the image.

It has to be stated that in order to come up for a proportional mismatch between
template and the object that is to be recognised (e.g. due to the resolution of the camera
used), all templates need to be scaled. Let th be the height of the template provided.
Both the values of staff space ss and staff height sh, which we already explained earlier,
are used to compute the scale factor as follows:

sf =
2 ∗ ss + 2 ∗ sh

th
(3.2)

3.3.1 Overview
Having been featured in many works of Optical Music Recognition, (non-deformable)
template matching was chosen as key technique for this work. As opposed to a feature-
based approach, the template-based approach operates directly on local image data.
Instead of determining the best matching location in the image for each of the given
templates, the prototype makes use of the information which has been aggregated so
far. As template matching is known to be a rather costly method as opposed to the
efficient feature-based approach, it is necessary to provide the smallest possible search
window. The Sum of absolute differences (SAD) has proven to be a reliable metric for
measuring the similarity between the image blocks. Given a search window W and
the template T, the origin of T is shifted through the search image. Now, the absolute
difference of intensity is computed for a pair of pixels w(x,y) and t(i,j) which is defined
as:

3.3.2 Implementation
Rather than computing the best matching position of the pattern, a matching coefficient
C is computed based on the SAD and template size s (see Eq. 3.3). If this error measure

28 Chapter 3. Adapting the OMR Framework

Code Character Description

1D11E G treble clef

1D15D ¯ semibreve

1D15E ˘ “ minim

1D15F ˇ “ crotchet

1D13C < minim rest

1D13D > crotchet rest

266D [flat

266E \ natural

266F] sharp

Figure 3.8: Templates chosen for feature classification

is lower than the predefined threshold, a match has been detected for the appropriate
symbol. In order to reduce the computational effort, the matching of a template on the
respective position is stopped as soon as the error measure becomes too high and a match
is not possible anymore. Remaining pixels are skipped and similarity measurement
continues after template T has been shifted to the next position. For each of the different
symbols detected, an individual procedure is started after a match has been detected.

3.3. Feature Classification 29

Figure 3.9: First staff of our sample tune after staff line removal.

Figure 3.10: Vertical projection of Fig.3.9 with spikes indicating possible locations of
bar lines or note stems.

SAD(x, y) =
Trows∑
i=0

Tcols∑
j=0

∣∣∣w(x + i, y + j)− t(i, j)
∣∣∣ (3.3)

As stated earlier, the feature classification process is based on isolated strips of the
image, comprising a single stave and its symbols that are subject to the recognition step.
For each of these image subsets, a run of the method identifySymbols is performed.
Also, it is characteristic to the system that it relies heavily upon the reference lengths
of Staff space Height and Staff line Height that were computed at the end of the image
preprocessing step.

In order to be able to identify individual symbols, it is necessary to locate candi-
dates which is why a projection onto the x-axis is performed. The resulting spikes (see
Fig.3.10) give a good indication on the possible location of symbols which helps to
rule out regions with a low profile value for the subsequent matching process. Thereby,
feasibility of the system is ensured.

3.3.3 Clefs
We have already learned that clefs, which indicate the pitch and thus the name of written
notes, come in different fashions. Since this work focuses on the recognition of chil-
dren’s tunes, it is freely assumed that a treble or G-clef is present at the beginning of a
stave. Furthermore, since staves are perfectly aligned vertically and the type of clef is
not subject to change at some point in the musical score, a computation only of the very
first stave is sufficient.

Compared to other symbols, the complex appearance of a clef provides a high de-
gree of difficulty for our template matching approach since only minor dissimilarities in
shape severely affect the outcome of the matching procedure significantly. Since clefs

30 Chapter 3. Adapting the OMR Framework

commonly have the property of being the first large symbol on a stave, matching with
a dedicated template has not been found a viable solution. Instead, the projection pro-
file is used to determine the position of the clef. For that matter, a lookup algorithm
is performed within a predefined area, looking for a sequence of positions where the
projection value exceeds a threshold.

In case of no clef symbol being detected by the algorithm, the note detection process,
which is referred to below, is started at the leftmost position of the extracted stave.

3.3. Feature Classification 31

Listing 3.2: Note matching

for each note type
find note stems on projection peaks
apply template matching algorithm to lookup areas (between/on staff lines,on
supplementary lines)
scale template according to the template_height : staff_space ratio
while (error < abort_threshold && not_finished)
accumulate matching error (Math.abs(value(Image)-value(Template)))

end
if error_coefficient < matching_threshold
note candidate found, save coordinates to notes[][]
track and remove note stem from image
hook/beam detection by line tracking:

if vertical_travel > 1.5*staff_space
hook detected

else if (horizontal_travel > 3*staff_space
beam detected

end
end
find prolongation dots
derive midi symbol from pitch and duration of note
save to symbols list

end

3.3.4 Notes
As indicated earlier, notes, in most cases, consist of both note heads and stems which
they are connected to. Let us assume that our notation sheet is perfectly aligned in a
way that stems stand perpendicular to the x-axis of the ground image. In that case, the
x-projection shows a significant peak in the area of the note stem. This very position is
taken as a basis for the note lookup algorithm (see Lst. 3.2)

Among the different types of note heads, those of quarter, eight or sixteenth notes
are the easiest to match. Due to their property of being filled as opposed to half or full
notes which have a hollow shape, their recognition is relatively robust against rotation or
deformation of the input image. Furthermore, mismatches between the template chosen
and the actual appearance of the symbols used in the notation have no greater impact.
In our algorithm, however, we differentiate between three types of note heads. While
there are only two forms of appearance, namely full and hollow, in first place, half and
full notes differ from each other by the thickness of the border. Thus, the algorithm is
run exactly three times per staff.

Throughout this work, it has been the main strategy to minimize the lookup regions
as much as possible in order to maintain computational efficiency. At the expense of
accuracy, an approach was chosen which decreases the number of note candidates in
every iteration.

As an input, a previously extracted strip consisting of a set of staff lines, a fixed
threshold, note templates and the result of the x-projection are used among other vari-

32 Chapter 3. Adapting the OMR Framework

ables. First, note candidates are derived out of local peaks in our projection if the prede-
fined threshold is exceeded. A number of 3*staffspace has proven to be a good value to
locate note stems. Since a note head is necessarily attached to a stem, we are now in the
position to perform a template matching for which an area spanning to the left and to
the right of the stem by 2*staffspace has to be matched with the template T. For classi-
fication, the Sum of absolute differences (SAD) metric, which we have already referred
to, is used. If the sum of errors exceeds a predefined value, the matching is aborted
prematurely and the search window is shifted to another position.

Let us now assume that our template matching algorithm was allowed to finish on a
given search window. In that case, a correlation coefficient is computed by dividing the
SAD by the template size. If this coefficient is low enough, a match has been obtained
and the location is saved along with the value (e.g. full, half) and the dimensions of the
note head. Concludingly, both the note head and the adjacent stem are removed from
the original image. From the dimensions of the search window that has led to the match,
the centre of the note head can be derived which is needed as an input for the operations
that are described below.

Stem, beam and hook detection

We have already learned that the properties of a given note are not affected by the note
head alone. While adjacent features like accidentals lead to a change in pitch, beams
and hooks attribute to the temporal properties. Since hooks or beams extend from the
upper or the lower end of a stem (depending on the location of the note head), the stem
needs to be traversed starting from the position where it is connected to the note head.
In our case, a stem is detected if the number of black pixels tracked vertically equals or
extends 2*staffspace.

The endpoint features as a seed point for a tracking algorithm similar to the one that
was introduced by [42] for detecting beams and hooks. Hereby, the middle points of
the vertical runlength measure is tracked by computing both the “north” and “south”
offset and dividing the difference by two. In order to compensate for imperfections of
the input image or for gaps caused by the earlier process of stave extraction, runlength
measuring ignores areas without foreground pixels < 2*staffspace. Hence, the tracking
is resumed at a position that is shifted up or down by this resulting value (see Fig. 3.11).
For children’s tunes, a differentiation by the extent of their horizontal (beam) or vertical
(hook) travel was sufficient. A vertical travel > 1.5*staffspace indicates a hook while a
horizontal travel > 3*staffspace identifies the element as a beam.

It is a property of both beam and hook that the duration of the attached note is
divided by 2n where n stands for the number of detected elements per note. If a beam
is present, this effect is propagated to the following note, reducing its duration value to
the same extent.

3.3. Feature Classification 33

Figure 3.11: Detection of beams through a line tracking algorithm with the seed point
coloured in orange. For each position x, the new adjustment parameter is computed. On
the left, a segment of a note stem can be seen to where the beam candidate is connected
to.

With simple children’s tunes being the scope of this thesis, recognition of notes
shorter than sixteenth notes was not implemented. Only hooks or beams up to a number
of two per single note are detected.

3.3.5 Key signatures

Commonly, a key signature—if present at all—is the very first item following a clef
viewing the notation from left to right. Occuring either as a series of up to a total of
seven sharp and/or flat accidentals, their vertical locations affect the tonal properties of
many notes due to their scope. For this reason, the identification of key signatures is
an essential task for preserving the musical sensation intended by the author of a tune.
While the key of a song can be subject to change in certain musical pieces, e.g. from
G major to D minor, this special case is disregarded in the present work. Furthermore,
much like during the location of the clef, only the first stave of a page is computed.

In contrast to accidentals, which might occur at any location in the score, the match-
ing of key signatures is restricted to a narrow area near the clef, bound by the first
occurance of a note on its right side. Therefore, this step is logically placed after note
detection but for reasons of clarity and comprehensibility, I am providing deeper insight
into the algorithm here. In order to differentiate between sharp and flat accidentals, an
approach based on template-matching, similar to [15] was chosen. As pointed out early,
there is some degree of variance even in western music notation. Therefore, an accu-
rate detection of certain symbols cannot be guaranteed by matching of one template per
symbol alone. For this difficult task, this work employs the familiar concept of pro-

34 Chapter 3. Adapting the OMR Framework

(a) sharp (b) flat

Figure 3.12: Flat (one peak) and sharp (two peaks) accidentals can be derived from the
number of peaks in their vertical projection.

jections which allows for distinguishing between the two prominent accidentals by the
number of vertical peaks.

In [42], the authors made use of template matching to detect key signatures or acci-
dentals. To account for different shapes of primitives among scores of different heritage,
templates are made from primitives in the score. This work, however, makes use of the
relatively convenient and fast projection-based approach. For the main purpose of this
thesis, this technique has provided good results.

Except for a time signature, accidentals are the only symbols located in the space
between clefs and notes. We perform a search at each horizontal position i on the in-
terval given by the specified boundaries. If the local value on the x-projection exceeds
a threshold, zero-crossing detection is run in order to determine both the local minima
and maxima. Based on these values, the number of peaks in this area can be derived,
from which we can deduct whether a flat (one peak) or a sharp (two peaks) is present.

Since changes of tonality occur at a much lesser extent in children’s tunes com-
pared to other musical pieces, the algorithm was not developed to provide means of
distinguishing a sharp from a natural symbol. The detection algorithm resumes until a
vertical blank space > 1.5*staffspace has been processed. The result of this operation is
forwarded to the semantics stage.

3.3.6 Accidental detection
While both key signatures and accidentals share the very same appearance, they are
distinguished by their position. The occurrence of accidentals (for reasons of simplicity,
only sharp, flat and natural are considered) is coupled with note heads.

Basically, an accidental is located within a certain area next to a note head. There-

3.3. Feature Classification 35

fore, it is reasonable to restrict the lookup algorithm to relatively small fields. As we
have already determined the positions of the note heads, they provide us with a good
starting point for the matching process. For each note, a window slightly larger in both
height and width denotes the matching area. A height of 2.5*staffspace and a width of
staffspace has delivered accurate results. Considering that the appearance of all acciden-
tals shows a distinct height of around two times the staff height, knowing the projection
profile helps us minimizing the computational effort. Consequently, we only need to
perform the lookup algorithm if the projection of any x-coordinate within the defined
region equals or exceedes the pre-defined threshold. The core of the matching algorithm
follows the scheme for key signatures, which was presented earlier.

3.3.7 Detection of other elements

While we have already referred to the main musical characters above, a musical sheet
written in modern staff notation is made up of many other elements. Symbols affecting
matters such as dynamics, expression and tempo are very common in more elaborate
musical pieces but as they rarely play a role in children’s tunes, their detection was not
taken care of in the development process.

Prolongation dots

Aside from accidentals, there are other elements that are not directly attached to a stem
or note head but which affect the properties of the note next to it. Dots are very common
symbols in musical notation, increasing the duration of the note to its left by one half of
its original value. For every note that was recognized in an earlier stage, an algorithm
is run to identify prolongation dots. Since these elements regularly occur in a certain
region beneath the note head, the search window is allowed to remain relatively small.
Its horizontal extent measures 1.5*staffspace with the window starting at a distance of
0.5*staffspace from the right edge of the previously located note head. Likewise, upper
and lower border are directly affected by the value of the aforementioned reference
lengths. We are now taking into consideration that ideally, the center prolongation dot is
placed at the same y-coordinate as the center of the note head. This allows us to shorten
the vertical extent of the search window on the upper and on the lower boundary by
exactly 0.5*staff height compared to the area that is spanned by the note head.

The template matching process either returns a positive result—in case there is a
sufficiently high vote for a dot candidate—or a negative one if no match has been found.
A prolongation dot extends the duration of a note by half of its original value.

36 Chapter 3. Adapting the OMR Framework

Rests

Musical pieces of a higher complexity than those covered by this thesis may or may not
show a multitude of different manifestations of symbols given a certain class. As we
have already learned, this applies to notes and accidentals but also to the class of rests.
This module is carried out at the end of the symbol recognition framework with staff
lines, notes and accidentals having already been eliminated from the scoresheet. By
the updated projection profile we obtain the positions of candidates which, in turn, are
tested for occurrences of rests. For each of the different types, a seperate recognition
process is run with the appropriate template. The actual matching follows the same
scheme as presented earlier when matching note heads.

As opposed to notes, where the difference in shape is minimal, the three most com-
mon types of rests (minim, crotchet, quaver) are of a distinct appearance. Therefore,
good recognition results have been obtained by the framework.

Bar lines

Bar lines are vertical segments that seperate a staff into short blocks. As a key property,
the number of beats within each pair of two bar lines matches the top number of the
time signature that is denoted at the beginning of the musical piece. The special case
of a time change at some point in the musical piece was not taken care of in this thesis
but future work could see optimizations in this area. There are different types of bar
lines of which the standard and double line are of lesser interest to us. Thicker vertical
lines, however, not only indicate the start or the end of a piece of music. Coupled with a
repeat sign, which is made up of two dots that stand on top of each other, a bar indicates
that a certain section has to be repeated. The boundaries of this section are denoted by
the repeat sign both at the end and at the start.

Listing 3.3: Bar line extraction

for each staff
compute projection profile (vertical)
for x = 0 : width;
if profile(x) > 4*staffspace
bar line candidate found
remove bar line from image
save position to boundaries[]

end
end

end
return boundaries[]

Locating bars as such is a straight-forward process that only involves computing
the vertical projection of a staff (see Listing 3.3) If, at some point in the notation, the
threshold is surpassed in consecutive x-coordinates (0.5*staff space would be a suitable
value), one can safely assume that a bar line has occured. A disambiguation between

3.4. Musical Semantics and Transformation 37

note stems and bar lines due to their similar vertical extent is prevented by removing
notes and their adjacent stems from the music sheet after each iteration of the note
matching algorithm.

In some cases, bar lines span across several staves which is typical to music scores
with at least two voices or instruments. Assuming that a bar line of this size was detected
in a music sheet, the two or more staves involved are grouped by the bar, meaning that
the music that is contained herein will not be played consecutively but simultaneously.

3.4 Musical Semantics and Transformation

3.4.1 Symbol Interpretation
As a final step in our music recognition environment, musical semantics are extracted
from the symbols that were detected in the previous stage. We have made it clear earlier
that the position of symbols is important in order to correctly interpret a given music
score. Moreover, symbols must not be seen isolated but meaning is affected by the re-
lationship between individual shapes. Many works are based on grammars that synthe-
size symbols into more complex forms. While works like [35] referred to a graph-based
grammar, this thesis is based on a low-level structure.

The simplicity and the resulting low density of childrens’ tunes allow for breaking
down the complexity of music recognition and interpretation into a one-dimensional
scheme: Every symbol detected is stored in an array, using their horizontal position as
an index. As illustrated above, vital contextual information (vertical position, pitch and
duration) is part of each data record which we refer to as Symbol in the following. Since
music will be interpreted serially, elements in the database are initially sorted by their
position on the x-axis. In order to derive the pitch of a certain note, its vertical position
relative to the staff lines needs to be analyzed. This will be discussed in detail in the
following subsection.

Key

While not needed in the process of converting optical sources of music into their audible
representations, the key of a given song can be derived from the previous process of
symbol recognition. As described earlier, each piece of music is written in a particular
key. While more elaborate music like classical music quite often has different sections
with contrasting keys, children’s tunes commonly are based on exactly one key. In
the process, we need to distinguish between major and minor keys, that are commonly
referred to as “happy” or “sad” keys as the structure of the scale affects the emotion of
a musical piece.

Having obtained the key signature of our song in a previous step, we can easily
determine the key, applying a rule-based system, which is described in Fig.3.13

38 Chapter 3. Adapting the OMR Framework

Figure 3.13: Obtaining the key from the number of sharps and flats in the key signature.

Number of] Number of [Key (major / minor)

- - C / a

1 - G / e

2 - D / b

3 - A / f]

4 - E / c]

5 - B / g]

6 - F] / d]

7 - C] / a]

- 1 F / d

- 2 B[/ g

- 3 E[/ c

- 4 A[/ f

- 5 D[/ b[

- 6 G[/ e[

- 7 C[/ a[

3.4.2 Audio Synthesis

The MIDI Protocol

Being widely used on various platforms and applications, the multi-purpose Musical
Instrument Digital Interface (MIDI) protocol has proven to be a viable route for storing
and interpreting musical information for this prototype. As opposed to a plain audio
format, MIDI enables the developer/user to edit notational information at a later point.
Moreover, the amount of data is a magnitude lower than even a compressed audio file.
Several operating systems for mobile phones provide means of interpreting MIDI com-

3.4. Musical Semantics and Transformation 39

Command ∆ Velocity

note on 0 127

note off 16 127

note on 32 127

Figure 3.14: Example of two quarter notes, seperated by a quarter rest in Western Music
Notation (left) and its pseudo-MIDI representation (right)

mands and of course, Android OS is no exception. The task of audio synthesis from
MIDI, however, was complicated by the developers’ choice to remove the appropriate
javax.sound.midi library from the android platform, making “live” synthesis of MIDI
commands impossible. There was an attempt to solve this issue by android-midi-lib, a
Java implementation of the MIDI file format, which unfortunately was not available to
programmers during the time of development of this prototype.

Above we have already referred to the Symbol class as means of temporarily stor-
ing music information and this construct was chosen with regards to the structure and
functionality of MIDI. This protocol is roughly built around events for the playback of
individual notes. For this prototype, the two commands of note-on and note-off have
been of particular interest. Contrary to the Symbol class, however, a 3-byte MIDI dataset
does not include duration as a property. Non-intuitively, MIDI is based on the on-time
and off-time values instead of duration that might be more familiar through the dif-
ferent note types. While musicians refer to tempo as number of quarter notes played
every minute or beats per minute (BPM), MIDI features the opposite approach. Tempo,
as understood by MIDI, is defined as amount of microseconds per quarter note and is
processed in commands of three bytes. Consequently, a “natural” tempo of 120 BPM
translates to a MIDI tempo of 500,000 ms per quarter note.

Another value to be aware of when dealing with MIDI commands is ∆ which is
referred to as time between two individual events measured in timebase ticks. While
a rest symbol is an explicit way of describing a pause between two notes in musical
notation, this information is conveyed in an implicit way in MIDI commands. A ∆=0
means that a note is played at the next possible time after the previous MIDI event. If,
after a note off command with ∆=16, the following note on command is accompanied
by ∆=32, it implicitly mimicks a quarter rest between these two notes (see Fig. 3.14).

40 Chapter 3. Adapting the OMR Framework

Figure 3.15: Determining pitch from the vertical position relative to the staff lines by
pseudo-binary search.

OMR-to-MIDI Mapping

Present thesis incorporates a two-tiered method of audio synthesis. First, each of the
above mentioned symbols has to be translated into MIDI commands. The staff extrac-
tion algorithm has provided us with the positions of the staff lines which play a crucial
role in determining the pitch of a note. For each of the notes detected, the y-coordinate
is available through the Symbol class.

In order to determine the pitch from the positional values, a pseudo-binary search
algorithm was invented (see Fig. 3.15). In the first step (I), we check whether or not the
note lies in between the top-most and the lower-most staff line. If that applies, the search
window is further divided and the algorithm is resumed in the respective subframe (II-
IV). If in (I) a negative response was obtained, the area above the first and below the
lowest staff line needs to be processed. Depending on the region of the staff the center
of a note is located in, a distinct MIDI note value is returned by the method. Likewise,
the duration of a singular note needs to be translated. In the previous section we have
already learned that, according to the note type that was detected (quarter, half, whole,
quaver or semiquaver) and considering the occurence of symbols that have an effect on
the duration of a note (hooks, beams, prolongation dots), a distinct duration value is
saved.

The actual OMR-to-MIDI translation used in this prototype was developed with-
out the aid of the Java Sound API [7]. It does, however, provide a more intuitive
way of inserting notes in MIDI files through which the complicated use of delta val-
ues is bypassed (see Lst.3.4 and 3.5). Eventually, the recorded MIDI commands are
written to a MIDI file, which in turn is played back by the Android Media Player.

3.4. Musical Semantics and Transformation 41

Listing 3.4: Sample MIDI command with the Midifile.class

mf.noteOnOffNow ((int)(sym.getDuration()*0.66), pitch+12, 127);

Listing 3.5: Sample MIDI command with rest - velocity is set to zero

mf.noteOnOffNow ((int)(sym.getDuration()*0.66), 60, 0);

CHAPTER 4
Implementation

4.1 Platform and tools
The prototype described in this thesis was developed for the Android operating sys-
tem. Not only the total number of handheld devices being based on Android has seen a
continuous rise since its introduction in 2007, but also low-end devices have more and
more become equipped with the open source operating system. This becomes important
considering that the software presented mainly addresses non-professionals. Providing
comprehensive tools for developers, Android OS was found suitable to serve as a basis
for our OMR system.

During development of the prototype, the Eclipse IDE was used as the main envi-
ronment while the necessary API libraries and developer tools were provided by the
Android SDK (22.3 at the time of development). Complete testing and evaluation was
carried out on Android 4.4.2 (API 19). Throughout the development process, runs of
the program were performed on a mobile phone (see below).

4.2 Hardware
The handset used during the later part of development and testing is a Sony Xperia ZL
(C6503) smartphone that features a Quad-core (1.5 GHz) processor and 2GB of RAM.
The prototype has been targeted for Android version 4.0 and later and likewise, testing
was carried out on several other handsets that revert to recent versions (API levels 15-
19).

In order to obtain satisfactory results, pictures need to be taken at a minimum res-
olution of 300 dpi [15]. Given the size of a common notation sheet (DIN A4, 8.27
x 11.69”), we would need a camera with a capability to work at about 9 megapixels.

43

44 Chapter 4. Implementation

However, at the time of writing, this was not feasible in the assumed environment due
to hardware - most of all, memory - limitations.

4.3 perfOMR
In the following, perfOMR denotes the software prototype that was developed over the
period of the thesis. Focusing on providing a quick and logical means of sheet music
detection and audio synthesis, the author came up with the idea of naming the prototype
perfOMR, a composition of the word perfect and the acronym for optical music recogni-
tion, OMR. perfOMR onomatopoetically resembles the noun performer, which, in turn,
is a reference to the feature of music playback.

4.3.1 User Interface
Targeted at a non-professional audience, user interface development presented a couple
of challenges. Generally speaking, focus was on a functional interface that does not
provide for means of altering settings (these are hard-coded), leaving the end user with
the options presented in Fig. 4.1.

Regarding the origin of the music sheet that is to be processed, we need to distin-
guish between two main sources: a) a file that is already stored in the local file system
or b) capturing an image through the built-in camera. Eventually, information on the
musical piece that was obtained during the processing of the notation is displayed (see
Fig.4.2). Above the playback controls, a stave is displayed for debugging purposes. A
more elaborate (graphical) user interface is outside of the scope of this thesis.

4.3.2 Symbol templates
As proposed earlier, perfOMR reverts to pre-defined symbol templates during template
matching. While logically, performance of the system suffers in case of slightly diverse
appearances of the respective symbols, this approach provides a decent tradeoff between
implementational and computational effort on the one hand, and performance on the
other hand. Present work uses characters contained in the Unicode Standard, Version
6.3. Symbols were extracted from the template, then cropped and resized (e.g. 26x22
for the quarter note head, 36x22 for the full note head, 22x22 for the dot symbol). For a
comprehensive list of symbols see Figure 3.8.

4.3. perfOMR 45

Image Source Selection

Staff Line Identification and Removal

Musical Object Location

Musical Feature Classification

Musical Semantics

Playback Interface

Figure 4.1: Control flow in perfOMR - only first and last stage are accessible through
the user interface.

4.3.3 Helper Classes

While the core of algorithms used by the software was invented and implemented by
the author, the prototype makes use of helper classes and external libraries, which will
be explained in the following.

Android

The routine for providing the input image makes use of methods inherent to the Android
Framework. As described earlier, we need to distinguish two cases: capturing photos
through the in-built camera or selecting a locally stored image. In order to allow our
prototype to take a photo with the in-built camera, it is required to set the corresponding
permission tag in Android’s manifest file (see Lst. 4.1).

46 Chapter 4. Implementation

Figure 4.2: Output of the recognition process (simplified): The user is provided with
information on the notation processed and the playback interface.

Listing 4.1: Setting Camera permissions in AndroidManifest.xml

<manifest ...>
<uses-sdk android:minSdkVersion="9" android:targetSdkVersion="19"/>
<uses-permission android:name="android.permission.CAMERA"/>
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

</manifest>

In the following, a new Android.Provider.MediaStore.ACTION_IMAGE_CAPTURE intent
is created which calls the appropriate Android activity. As a result, the requested image
is returned and then forwarded to the recognition routine by invoking a new intent that
encapsulates the appropriate class. Likewise, the same intent is launched in case of the
user choosing an image stored in the file system of the device. It needs, however, to
be stated that only a reference to the respective image by means of a Uniform Resource
Identifier (URI) is used within the new intent call. Another prominent call involving the
Android.Media.MediaPlayer class is described in the following subsection.

4.3. perfOMR 47

OpenCV

OpenCV (Open Source Computer Vision Library) has proven beneficial during the de-
velopment process due to its emphasis on image processing and computer vision. The
version of the library used during the development of the prototype (2.3.1) enables de-
velopment of applications on most major platforms including Windows, Linux, MacOS
and iOS. Use on the Android OS is facilitated by a customised OpenCV4Android SDK.

During the image preprocessing stage, as described in Section 3.1, methods for im-
age conversion, binarisation and contour finding as well as methods carrying out mor-
phological operations represent the main part of the image cropping algorithm.

MidiFile

As we have laid out in detail earlier, Android currently does not provide support for
dynamically generating and playing MIDI commands at the same time. Although there
are stand-alone libraries (e.g. android-midi-lib), actual audio playback or device inter-
facing has not been implemented. This issue has been tackled by dynamically writing
commands to a MIDI file that is then written to the device storage.

The MidiFile class [7] was used for setting up a new MIDI file, including file header,
footer and a Vector of play events where the previously detected notes are stored into
(see Listings 3.4 and 3.5).

4.3.4 Audio Rendering
Having a MIDI file at disposal, we are left with the task of playing back the result of
the aforementioned stages of the OMR framework. In detail, the file now serves as
FileInputStream for our MediaPlayer object. Audio feedback is then provided using a
familiar layout, allowing the user to pause and resume play at any moment or at any
position. Apart from the purpose described, the file may be used as an input for digital
audio workstations or music notation programs, taking advantage of the communication
interfaces provided by the Android OS.

4.3.5 Bugs and Limitations
Firstly, we shall refer to errors of the software by a strictly technical means - shortcom-
ings that are related to choice of algorithms will be discussed subsequently.

a) Android Gallery

As per Android version 4.4.1 (API Level 19), Google introduced several new fea-
tures, which not only comprise camera enhancement for several devices but which
also affect handling of photos and images. As we have already learned, already

48 Chapter 4. Implementation

taken images as well as the built-in camera feature as sources for the OMR pro-
cess. While aforementioned changes in Android OS left the workflow of taking
photographs of notation sheets and forwarding them to the recognition engine un-
touched, we encounter a difficulty when choosing a locally stored notation sheet
as input. Currently, Android 4.4.1 provides a coexistence of the newly integrated
Google Photos application and the long-known Gallery application. When choos-
ing a local file as image source in perfOMR via Photos, perfOMR crashes unex-
pectedly when operated on 4.4.1 or above. As a workaround, the user must enter
the Gallery from the drop-down menu in the top left corner, selecting the notation
sheet in the following step.

While this thesis is concerned with how to make use of existent techniques in order
to develop performant OMR systems under various conditions, abstraction was chosen
for the process of prototype development. The sample notations as shown in 5.2 do
not only serve as a test set but also as a reference throughout the process of develop-
ment. Functions necessary for processing sample notations were implemented while
other, more complex features are subject to future work. As a consequence, the fol-
lowing issues arise when providing material with different properties to the recognition
algorithm:

b) Region of interest

Section 3.1 has given insight in the approach used for extracting a region of in-
terest (ROI) from a given image. The cropping algorithm used fails on complex
images, defining only a subregion of the notation sheet as region of interest. A
possible step to overcome this deficiency is to introduce a degree of interactiv-
ity. An adapted interface could allow the user to point at the region showing the
notation sheet or even to define the boundaries of the ROI.

c) Notation

Even though there is an understanding that Western Standard Notation is the com-
mon form of graphically depicting music, there are minor differences as we have
already mentioned in Section 2.1. This presents challenges to the way that tem-
plates are matched with the ground data. Focusing on SAD metrics and given
templates, means are not provided to accomodate the algorithm in order to work
with considerable changes in appearance of music symbols, let alone handwritten
notes. See [34] for an extensive analysis of elaborate algorithms.

4.3. perfOMR 49

d) Polyphony

Due to the specialisation on simple children’s tunes, it was obvious to have the
software recognise each sequence of staves as one line of a song. Given a notation
sheet that not only provides for one but for two or more voices/instruments, the
algorithm will recognise each subsystem as subsequent lines. Hence, the melody,
which is intended to be polyphonic, will be played as a sequence instead of si-
multaneously. In order to deal with this issue, we could introduce an algorithm
that measures the gap between each set of staves in order to derive related sets
of different voices. Another feature of related staves is the property of having
barlines reaching from the top of the first stave to the lowest staff line of the stave
that depicts the last voice.

Another way of representing a polyphonic musical piece where the respective
voices are identical in phrasing is to attach more than one note head to a stem.
That particular case sees the detection algorithm recognising the leftmost note
that is connected to the stem while skipping recognition on the other side of the
stem. Consequently, the algorithm design would need to be adjusted in order to
satisfy the needs of such types of notation.

e) Clefs

Children’s tunes, or more generally speaking, notation for vocal music, commonly
has a G- or treble clef indicating the pitch of the notes placed on the staff lines.
Yet, the prototype, which we refer to herein, does not accomodate for special
cases (e.g. B- or bass clef). Consequently, this results in a wrong interpretation of
pitch whereas temporal attributes of the sheet music are not adversely affected.

f) Measure length

Similar to the issue quoted above, the problem of note and pause lengths within a
given measure and thus, the correct number of beats per interval, can be tackled
by incorporating additional semantics. Since time signature is not derived through
template matching but only intrinsically, the majority of measures could be used to
determine the number of ticks per measure. Yet, current implementation does not
provide for intelligent means for automatic correction of note lengths or likewise,
an introduction of pauses in cases when the total length of notes and pauses within
a measure does not match the time signature. Consequently, as only notes or
pauses that have distinctively been recognised by the algorithm are written to the
MIDI file and played back, variations in measure length are effectively ignored.

50 Chapter 4. Implementation

4.3.6 UML
Using Unified Modeling Language (UML) as a tool for visually mapping the software
design, the project can be roughly divided up into the three main classes described
below. For a detailed illustration of classes present by means of a UML diagram see
Fig. 4.3. Attributes have been omitted in order to ensure readability.

a) HelloAndroid

Providing for an entry point to the software prototype, this class bears similarities
to the tutorial published on the Android developers’ page. The main layout is
created with reference to a previously specified layout resource that defines the
architecture for the user interface in an Android Activity. Generally, user action is
coupled with the buttons available. Here, listener methods launch the respective
Views on the respective user command.

Logically, the user is allowed to either load an image from memory, take a photo-
graph using the in-built camera or, as the final option, exit the program. If the user
chooses to take a picture himself, MediaStore.ACTION_IMAGE_CAPTURE is launched,
leading the user to the standard Android camera interface. After the image has
been taken, the appropriate Intent is created and the Uniform Resource Identi-
fier (URI) of the image chosen is stored inside the Intent through its putExtra()

method. Subsequently, a new Activity is started by passing the Intent described
above.

b) Precomp

After an instance of Precomp has been created the extra data are queried by the
new Activity and used to load the image into a Bitmap. As a final preparatory
step, the correct rotation value is retrieved from the EXIF orientation tag, thus
leading to an optional rotation of the input image. If locally stored images serve
as foundation for the music recognition algorithm, Intent.ACTION_GET_CONTENT is
called through a new Activity. This enables the user to select a particular image,
which, in turn, is retrieved via the getBitmap method, using the resource identifier
that was returned by the activity.

At this point, the input bitmap is forwarded to the preprocessing stage as described
in Section 3.1. In case of a positive result (i.e. if staves have been detected by the
engine), staves are then forwarded to the recognition engine via the computeStaves

and identifySymbols methods. The latter can be described as the core of the
framework, retrieving possible locations of symbols through projections and de-
tecting notes by the means of the matchNotes method, which is called indepen-
dently for each of the different note lengths. Templates t are loaded by instancing

4.4. License 51

the Templates class. The result of the template matching algorithm is stored into
ArrayList<Symbol> after the correct MIDI note values have been retrieved through
getNoteMIDIVal. Here, location values (position on the y-axis relative to the stave)
are matched with the according MIDI note value. After the MIDI file has been
compiled (see below), an instance of android.media.MediaPlayer provides for the
playback routine.

During all of the aforementioned processes, a Handler provides the user with
feedback regarding the current stage, with error messages describing the issue,
and, eventually, the result in terms of information on the notation processed.

c) MidiFile

In order to provide for auditive feedback, the symbols recognised during the
recognition stages are sequentially used in a MidiFile.noteOnOffNow method, which
results in a collection of MIDI commands that finally is written to a MIDI file in
MidiFile.writeToFile.

4.4 License
The program perfOMR is free software. Redistribution and/or modification is there-
fore allowed under the terms of the GNU General Public License, Version 3 (GPLv3),
as published by the Free Software Foundation. Source code can be obtained from:
git@github.com:hiace/performr.git. A copy of the GNU General Public License is
available under http://www.gnu.org/licenses.

52 Chapter 4. Implementation

Figure 4.3: UML structure diagram of the software prototype.

CHAPTER 5
Evaluation

5.1 Methodology and Metrics
As stated in [11], the lack of a standard in measuring makes it difficult to compare
different OMR systems with regard to their performance. Observing that the appearance
of the very same music symbol can be subject to change when dealing with different
music sheets underlines the aforementioned thesis. This chapter deals with a description
of the methods used to evaluate perfOMR and it will provide an in-depth view on overall
performance and accuracy of the prototype.

Testing the results of OMR against ground-truth data can be a highly time-consuming
task, let alone the difficulty of finding a proper means of comparing this data. An in-
teresting approach was presented in [40] who addresses the problem by measuring dif-
ferences between the reference score and the tested score, while both objects are stored
in the MusicXML format (see Sec.2.3.3). Since this project primarily serves scientific
purposes, this section does not comprise a benchmark test of perfOMR against other
systems, be they scientific or commercial. Instead, we will focus on how variations of
the input material affect the output.

In the field of pattern recognition and classification, the following metrics are com-
monly defined:

• true positives (TP)

• false positives (FP)

• false negatives (FN)

• true negatives (TN)

We define TP as symbols that were correctly classified as belonging to a particular
class (e.g. note heads, hooks, rests) while FP denote elements where the recognition

53

54 Chapter 5. Evaluation

process has resulted in a misclassification (e.g. quaver note detected as half note). In
our testing environment, FN could be symbols that were possibly removed during pre-
processing. Bellini et al. have observed that the number of true negatives can not be
quantisised since it includes data that the OMR system has chosen not to consider as
valid symbols [6]. Furthermore, the authors have acknowledged that the relevance of
symbols is different across the different classes. As an example, the scope of a key
signature is considerably broader than that of an accidental, despite having the same
appearance (disregarding their position within the framework of staves). For that rea-
son, a more elaborate metric was introduced, providing categories for different classes
of symbols where the number of expected symbols per class i is defined as follows:

NEBSi = NTBSi + NFBSi + NMBSi (5.1)

For a class, the number of symbols expected is denoted by NEBSi. This value is
obtained by adding up the number of correctly identified and categorised symbols of
this class NTBSi, the number of incorrectly recognised symbols NFBSi and symbols
that were not detected at all by the algorithm NMBSi.

5.2 Template Dataset
Evaluation of the system does not include actual photographs taken with the internal
camera in order to provide for an environment that is as controlled as possible. Instead,
the underlying test set of images consists of 15 synthetic scores of (monophonic) chil-
dren’s tunes that have been scanned at a resolution of 2480 x 3507 pixels. An example
is given in Fig. 5.1. As opposed to the captured images of the mobile’s camera, this test
set solely contains images that are already binarised. This, however, does not affect the
approach described in Chapter 3, with regard to the binarisation process.

As a further important property, standard music notation is used for which the pro-
totype has been tuned accordingly. Ranging from three to five staffs each, the notation
covers all elements that are common to simple tunes. A higher degree of difficulty is
introduced by textual (e.g. title, lyrics) as well as non-textual artefacts. The latter are
either part of the musical sheet itself or they might have emerged during the capturing
process.

5.2.1 Image Deformation
For the prototype it is vital to come up for several deficiencies that occur when capturing
images of notation through the mobile phone’s camera. Along with the aforementioned
obsolete data, the system needs to be robust against rotation of the camera relative to
the music sheet. As outlined earlier, the template data set consists of 15 scanned images
that have not been normalised ahead of computation. Thus, scans show a natural skew,

5.3. Results 55

Figure 5.1: Binary images of two children’s tunes as used in the dataset. Errors intro-
duced by the scan as well as ornaments can be seen near the edges.

typically in the range between -1◦ to +1◦. Further tests have shown that the system
successfully recognises rotation for notation sheets that have been cropped to show only
the staves. Due to preprocessing that has been introduced to remove excess data (e.g.
ornaments, shadows) near the borders of the image, positive results are only achieved in
cases of minor rotations of up to 5 degrees. A more robust preprocessing method would
be desirable for these cases as we will learn in the following.

For results listed in the following sections, no preprocessing was run prior to the
algorithm proposed in this thesis. The introduction of random defects or curvature as
suggested by [11] was omitted.

5.3 Results
The underlying framework has performed satisfactory on the test images on subjective
tests. A brief overview over its performance will be given in the following. Broadly,

56 Chapter 5. Evaluation

True False Sum Rate

Staves 52 1 53 0.981

Table 5.1: Recognition of Staves

testing was based on the following objectives: as a basic benchmark, the number of
staves detected will be measured. Then, for the larger scope of vertical objects, per-
formance of note and note length detection will be tested. Concludingly, classification
rates of other symbols present in the staff system will be computed, while another focus
will be on calculating the classification rate of pitch. For all of the above mentioned
cases, numbers will be measured against ground truth data, which was manually com-
puted. While it has been outlined earlier that the data set comprises 15 notation sheets,
one particular piece has been found unsuitable, as unlike the vast majority of children’s
tunes, this particular score was written for two voices.

5.3.1 Staff line detection
We have already learned that the detection of staff lines is an important concept to any
OMR system, as in music notation the meaning of symbols is highly dependent on their
position relative to the staff lines. Furthermore, the fact that staff detection (and re-
moval) is embedded in a very early stage of the OMR algorithm, makes this process
critical. A system that does not incorporate any means of dealing with undetected lines
(e.g. with information retrieved in later stages [21]) will inevitably bring about poor re-
sults, independent of how staff lines are dealt with afterwards by the respective systems.
Consequently, performance of the line detection algorithm applied is of critical interest.

The approach chosen, namely focusing on projection profiles, has proved very ro-
bust, as it shows a detection rate of 0.981 on the test set (see Table 5.1). Considering
stave detection at a larger scale (i.e. including preprocessing), the prototype has failed
to detect staves in one single case. This failure is due to the edge detection algorithm,
which classified the lowermost staff as background. Here, improvement could be made
by applying a different rule to the preprocessing scheme. Ignoring potentially mislead-
ing areas near the border of the scanned image, one could try to introduce morphology
transformations directly to the binarised image, trying to detect long horizontal and par-
allel lines. An opening transformation is expected to yield the appropriate areas where
staves are likely to be located.

5.3.2 Symbol Recognition
Having obtained a horizontal strip consisting of a set of five staff lines and a range of
symbols, vertical objects are located via projection profiles. One of the many difficulties

5.3. Results 57

Prediction True
[] Other Symbols Sum

[5 0 0 5
] 0 14 0 14

Omitted 0 0 0 0

Sum 5 14 0 19
Rate 1.000 1.000 - 1.000

Table 5.2: Confusion matrix listing the classification rate of accidentals before the in-
clusion of musical rules.

that arise processing this data is to discriminate between objects that are worth examin-
ing and those that can be easily omitted without losing information. Generally speaking,
finding and classifying clefs, accidentals and notes is fundamental.

Clefs

During early benchmarking, template matching for clefs yielded subpar results. Low-
ering the threshold for recognising a clef, however, had an even more adverse effect,
as it lead to false positives (e.g. note heads found at the horizontal position of the tre-
ble clef). Moreover, this threshold lowering had a follow-up effect on key signatures,
which, being commonly positioned as first symbol(s) beneath the clef symbol, were not
recognised as such anymore.

Instead of the template-based approach, a projection-based recognition scheme was
found suitable for providing a solution to this problem. While a clef symbol occurs in
different shapes conveying different meanings, this prototype was tuned specifically for
the treble clef. For our test set, clefs were found with a success rate of 1.000.

Key signature and accidentals

Aside from accidentals accompanying individual notes, this evaluation considers recog-
nition quality for the tonality of the musical piece, which is derived from the key signa-
ture. As Table 5.2 shows, evaluation of accidentals for given input images have yielded
perfect results due to a good set of rules that distinguish between flats and sharps.

It needs to be clarified that broadening the scope to more general notation sheets
will obviously lead to imperfections due to the similar shape of sharps and naturals,
which might occur in less simple scores than children’s tunes. Here, musical rules
could provide for means of fixing the problem of a potential misclassification between
the respective types of accidentals.

58 Chapter 5. Evaluation

Prediction True
1 2 3 4 5 6 Other Sum

(1) Quarter 214 0 0 0 0 0 0 214
(2) Half 0 12 1 0 0 0 0 13
(3) Full 0 0 2 0 0 0 0 2
(4) Eighth 0 0 0 283 0 0 0 283
(5) Sixteenth 0 0 0 0 2 0 0 2
(6) Dotted note 0 0 0 0 0 4 0 4
Omitted 1 1 0 4 2 2 0 10

Sum 215 13 3 287 4 6 0 528
Rate 0.995 0.923 0.667 0.986 0.500 0.667 - 0.979

Table 5.3: Confusion matrix listing the classification rate for note lengths.

Notes

A thorough preprocessing stage combined with a delimiting of the search window by
detecting clefs and key signatures prior to notes ensures a straight-forward detection
of vertical objects. This is performed in the fashion of a thresholding on the vertical
projection profile. For the total of 52 staves (recognition rate: 0.981) detected in our
sample set, detection rate for filled notes (i.e. quarter, eighth, sixteenth notes or dotted
notes) was 0.998. From Table 5.3 we observe, however, that percentage for note lengths
is considerably lower at 0.979, which is primarily caused by deficiencies in half or full
note detection. Even though statistics regarding full notes being misclassified are not
significant, the high error rate of 0.333 corresponds well with other works that outline
this particular problem.

Whereas properties regarding note length are indicated by different shapes of note
heads in many cases, note length is often affected (i.e. reduced) by hooks or, connecting
individual notes, by beams. The line tracking algorithm introduced by the author has
not only proved capable of cleanly discriminating between beams and hooks, but it also
provides for a decent overall detection rate of 0.986. As for hooks, half of the number
filed under omitted is due to double hooks not being recognised (see Table 5.3).

5.3.3 Other symbols
After successfully eliminating bar lines, notes, clefs and accidentals, which all are char-
acterised by peaks in the vertical projection profile, only few classes of symbols remain
to be dealt with, among the likeliest of which are rests. These have in common a vertical
position central to the set of staff lines, between second and fourth stave. Taking advan-

5.3. Results 59

Prediction True
1 2 Other Sum

(1) Beams 9 0 0 9
(2) Hooks 0 264 0 264
Omitted 0 4 0 4

Sum 9 268 0 277
Rate 1.000 0.985 - 0.986

Table 5.4: Confusion matrix listing the classification rate of beams and hooks.

Prediction True
1 2 3 4 5 Other Sum

(1) Notes 518 0 0 0 0 0 518
(2) Accidentals 0 19 0 0 0 0 19
(3) Clefs 0 0 14 0 0 0 14
(4) Crotchet Rests 0 0 0 26 0 0 26
(5) Quaver Rests 0 0 0 0 5 0 5
Omitted 3 0 0 0 4 0 7

Sum 521 19 14 26 9 0 0
Rate 0.994 1.000 1.000 1.000 0.556 - 0.988

Table 5.5: Confusion matrix listing the classification rate of rests compared with other
vertical objects (without bar lines).

tage of this property, template matching can be restricted to this very class. Here, the
appearance of the crotchet rest is very different to that of the whole or half rest, which,
in turn, are very similar. For our test set of notation sheets, a discrimination between
crotchet and quaver rests was sufficient.

The difficult shape of the quaver rest and the shape variations between the music
sheets makes this symbol prone to non-classification. On the test set, recognition of
these quaver rests shows a relatively low success rate of 0.556 (see Fig. 5.5), which
provides for an overall recognition rate of 0.988 regarding vertical objects. Possible
workarounds would be lowering the threshold for this particular symbol or the inclusion
of musical knowledge. For the latter, the duration of symbols detected within a measure
(made up by the space that is delimited by two bar lines) could be summed up and
compared to the most common duration of other measures.

In an earlier stage, the notation sheet was divided up into horizontal strips, which

60 Chapter 5. Evaluation

Prediction True
C D E F G A B Sum

C 58 0 0 0 0 0 0 58
D 0 66 0 0 0 0 0 67
E 0 0 28 0 0 0 0 28
F 0 0 0 71 0 0 0 72
G 0 0 0 0 87 0 0 87
A 0 0 0 0 0 117 0 117
B 0 0 0 0 0 0 92 92

Omitted 0 1 0 1 0 0 0 0

Sum 58 67 28 72 87 117 92 521
Rate 1.000 0.985 1.000 0.986 1.000 1.000 1.000 0.996

Table 5.6: Confusion matrix listing the true pitch horizontally, and the predictions ver-
tically.

were then cropped as a preparatory step for vertical projection. For this reason, objects
between these strips are not processed. Thus, in order to detect chords (identified by
a set of individual letters and optional elements such as accidentals or numbers), the
algorithm would need to be altered.

5.3.4 Pitch Recognition
We have laid out earlier that one out of 8 notes are typically assigned to a musical
pitch. Notes, on the other hand, can appear in different octaves with double or half their
frequencies. The recognition scheme of the prototype is designed to work with notes
between E2 and B4. As confusions between the same notes of different octaves are very
unlikely due to their vertical distance, it is sufficient only to discriminate between the
following 7 distinct notes: C, D, E, F, G, A, B. Under good to perfect conditions, the
pitch recognition rate is satisfactory and the algorithm applied succeeded in classifying
the pitch at a rate of 0.996. As depicted in Table 5.6, errors stem exclusively from note
heads that could not be recognised at all.

As pitch height is highly dependent on the previously computed location of staff
lines, confusions between two neighbouring pitches are possible and such effects are
more likely in cases of warped staff lines, for which the algorithm would need to be
strongly tuned. As a workaround, vertical positions of staff lines could be computed for
each note head candidate.

CHAPTER 6
Conclusion and Future Work

The author has presented a framework for music recognition through an optical source,
based on projection methods and template matching. The prototype has proved suitable
for processing simple children’s tunes and it provides a basis for further research in the
field of OMR on handheld devices.

During preprocessing, a range of image manipulation methods deal with deficiencies
that may or may not occur in the input notation. As a basis for further computation, a
set of two reference length parameters is calculated from a horizontal projection profile.
As staff lines are already eliminated after the first preprocessing, detection of objects
resident in these vertical positions is simplified. For means of feature classification, a
scheme based on template matching working with a fixed set of templates for individual
notes and rests has been chosen. On the other hand, symbols of a more difficult shape
are dealt with either by means of the aforementioned projection methods or by line
tracking algorithms. The problem of determining the pitch of individual notes and the
scope of accidentals is solved by comparing the vertical position of the center of note
heads to the previously computed location of staff lines. Finally, the set of notes along
with their parameters are sent to a translation engine, which, in turn, yields a MIDI file
that can be played back by the user.

In order to raise quality of the recognition algorithm, two prominent issues could be
targeted by follow-up research: first of all, instead of considering the vertical positions
of staff lines as absolute numbers, which are detected in a preliminary step, one could
track and store line positions during the task of staff line removal. This could help
reducing the effect of image warping, which occurs particularly during the capturing
process on mobile devices.

Another great challenge in OMR, which has already been laid out in this thesis, is
the choice of templates. Working on a fixed set of templates, which were extracted
from the Unicode database, the proposed prototype obviously deals well with uniform

61

62 Chapter 6. Conclusion and Future Work

scaling. This is done by means of resizing the template according to the previously
discovered staff line spacing. As, despite all efforts made in the history of written music,
publishers still use different layouts and musical symbols, a wise choice of (universal)
features would greatly help dealing with different appearances. These could be derived
by taking into account individual symbols of different shapes, leading to a set of features
for each symbol class.

By the time of finishing this thesis, great progress has been made in offering OMR
software to a broader audience, both as a practical tool for work and educational pur-
poses. Applications available to end users have added capability for optical music recog-
nition that has led to a shift in workplace. Now, musicians and composers alike are
allowed to write or capture music notation independent of their current location. The
challenge posed by non-perfect sources has been highlighted in this thesis, making a
wise choice of methods necessary for obtaining good results. At the same time, this
problem is still one of the open questions left, as the algorithms chosen by the author
have found to be limited in their capabilities. Moreover, results could be further im-
proved by adopting an interactive approach, where both user and recognition framework
benefit from each other.

Bibliography

[1] Audiveris - Open Music Scanner. January 2013. Website.
http://audiveris.kenai.com.

[2] Baba, T.; Kikukawa, Y.; Yoshiike, T.; Suzuku, T.; Shoji, R.; Kushiyama, K.; Aoki,
M. 2012. Gosen: A Handwritten Notational Interface for Musical Performance
and Learning Music. ACM SIGGRAPH 2012 Emerging Technologies

[3] Bainbridge, D.; and Bell, T.C. 1996. An Extensible Optical Music Recognition
System. Nineteenth Australasian Computer Science Conf. pp. 308-317.

[4] Bainbridge, D.; and Bell, T.C. 1997. Dealing with Superimposed Objects in
Optical Music Recognition. Proc. Sixth Int’l Conf. Image Processing and Its Ap-
plications pp. 756-760.

[5] Bainbridge, D.; and Bell, T. 2001. The Challenge of Optical Music Recognition.
Computers and the Humanities 35. pp. 97-98.

[6] Bellini, P; Bruno, I.; Nesi, P. 2007. Assessing Optical Music Recognition Tools.
Computer Music Journal, 31:1 pp. 68-93.

[7] Boone, K. Generating simple MIDI files using Java, without using the Java Sound
API. January 2013. Website. http://kevinboone.net/javamidi.html.

[8] Bresenham, J.E. 1965. Algorithm for Computer Control of a Digital Plotter. IBM
Systems Journal 4 (1) pp. 25-30.

[9] Carter, N.P.; and Bacon, R.A. 1992. Automatic Recognition of Printed Music.
Structured Document Image Analysis, Baird, H.S.; Bunke, H.; Yamamoto, K., eds.
pp. 454-465.

[10] Coüasnon, B. 1997. Segmentation and Recognition of Documents Guided by a
priori Knowledge: Application to Musical Scores. PhD Thesis, IRISA.

[11] Dalitz, C; Droettboom, M.; Pranzas, B.; Fujinaga, I. 2008. A Comparative Study
of Staff Removal Algorithms. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 30, no. 5. 755.

63

64 Bibliography

[12] Fahmy, H.; Blostein, D. 1991. A Graph Grammar for High-Level Recognition of
Music Notation. Proc. First Int’l Conf. Document Analysis and Recognition pp.
70-78.

[13] Fremerey, C.; Müller, M.; Kurth, F.; Clausen, M. 2008. Automatic Mapping
of Scanned Sheet Music To Audio Recordings. Proc. Ninth Int’l Conf. Music
Information Retrieval pp. 413-418.

[14] Fujinaga, I. 1988. Optical Music Recognition using Projections. Master Thesis,
Faculty of Music, McGill University, Montreal.

[15] Fujinaga, I. 2004. Staff Detection and Removal. Visual Perception of Music
Notation: On-Line and Off-Line Recognition, George, S., ed.. Idea Group Inc,
Hershey pp. 1-39.

[16] George, S.E. 2004. Visual Perception of Music Notation: On-Line and Off-Line
Recognition. IRM Press 112.

[17] Goecke, R. 2003. Building a System for Writer Identification on Handwritten
Music Scores. Proc. Int’l Conf. Signal Processing, Pattern Recognition and Ap-
plications pp. 250-255.

[18] Kilmer, A. D.; and Civil, M. 1986. Old Babylonian Musical Instructions Relating
to Hymnody. JCS 38. pp. 94-48.

[19] Kurth, F.; Müller, M.; Fremerey, C.; Chang, Y.-H.; Clausen, M. 2008. Automated
Synchronization of Scanned Sheet Music with Audio Recordings. Proc. Eighth
Int’l Conf. Music Information Retrieval pp. 413-418.

[20] Martin, P.; and Bellissant, C. 1991. Low-Level Analysis of Music Drawing Im-
ages. Proc. First Int’l Conf. Document Analysis and Recognition pp. 417-425.

[21] McPherson, J.R. 2002. Introducing Feedback into an Optical Music Recognition
System. Proc. Third Int’l Conf. Music Information Retrieval pp. 259-260.

[22] Miyao, H. 1996. Note Symbol Extraction for Printed Piano Scores using Neural
Networks. IEICE Trans. Inf. Syst. E79-D pp. 548-554.

[23] Miyao, H. 2002. Stave Extraction for Printed Music Scores. IDEAL 2002, LNCS
2412, Yin, H. et al. eds. pp. 562-568.

[24] MusicXML - Tutorial: Hello World January 2014. Website.
http://www.musicxml.com/tutorial/hello-world/.

[25] Neuratron NotateMe - Music Handwriting App for Phones and Tablets October
2014. Website. http://www.neuratron.com/notateme.html.

Bibliography 65

[26] Ng, K.; Cooper, D.; Stefani, E.; Boyle, R.; Bailey, N. 1999. Embracing the Com-
poser: Optical Recognition of Handwritten Manuscripts. Proc. Int’l Computer
Music Conf. pp. 500-503.

[27] Niblack, W. 1986. An Introductino to Digital Image Processing. Prentice Hall pp.
115-116.

[28] Otsu, N. 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE
Trans. Systems, Man and Cybernetics pp. 62-66.

[29] Pavlidis, T. 1982. Algorithms for Graphics and Image Processing. Computer
Science Press.

[30] Prerau, D. 1988. Optical Recognition of Music Symbols. A Critical Survey
of Music Image Analysis, Blostein, D.; and Baird, H.S., eds., Springer-Verlag,
Heidelberg, 1992 pp. 405-434.

[31] Pugin, L. 2006. Optical Music Recognition of Early Typographic Prints using
Hidden Markov Models. 7th Int. Conference on Music Information Retrieval. 1.

[32] Randriamahefa, R.; Cocquerez, J.P.; Pepin, F.; Philipp, S. 1993. Printed Music
Recognition. Proc. Second Int’l Conf. Document Analysis and Recognition pp.
898-901.

[33] Rebelo, A.; Capela, G.; Cardoso, J.S. 2010. Optical Recognition of Music Sym-
bols. A Comparative Study. Int’l Journal Document Analysis and Recognition,
vol. 13, 1 pp. 19-31.

[34] Rebelo, A.; Fujinaga, I.; Paszkiewicz, F.; Marcal, A. R. S.; Guedes, C.; Cardoso,
J. S. 2012. Optical Music Recognition - State-of-the-Art and Open Issues for
Handwritten Music Scores. Int’l Journal of Multimedia Information Retrieval,
1-18. 3.

[35] Reed, K.T.; Parker, J.R. 1996. Automatic Computer Recognition of Printed Music.
Proc. Int’l Conf. Pattern Recognition pp. 803-807.

[36] Roach, J.W.; and Tatem, J.E. 1988. Using Domain Knowledge in Low-Level Vi-
sual Processing to Interpret Handwritten Music: An Experiment. Pattern Recog-
nition, vol. 21 pp. 33-44.

[37] Stückelberg, M. V.; and Doermann, D. 1999. Markov Source Model for Printed
Music Decoding. Journal of Electronic Imaging, vol. 5, no. 1. 1.

[38] Stückelberg, M. V.; and Doermann, D. 1999. On Musical Score Recognition using
Probabilistic Reasoning. Proc. Fifth Int’l Conf. Document Analysis and Recogni-
tion. 1.

66 Bibliography

[39] Suzuki, S.; Abe, K. 1985. Topological Structural Analysis of Digitized Binary
Images by Border Following. Computer Vision, Graphics and Image Processing
30 pp. 32-46.

[40] Szwoch, M. 2008. Using MusicXML to Evaluate Accuracy of OMR Systems.
Proc. Fifth Int’l Conf. Diagrammatic Representation and Inference pp. 419-422.

[41] The Unicode Standard, Version 6.2.0. January 2013. Website.
http://www.unicode.org/versions/Unicode6.2.0/.

[42] Toyama, F.; Shoji, K.; and Miyamichi, J. 2006. Symbol Recognition of Printed
Piano Scores with Touching Symbols. Proc. 18th Int’l Conf. Pattern Recognition
(2). 1.

[43] Williams, C. F. A. 1903. The Story Of Notation. Charles Scribner’s Sons, New
York. 1:1–2.

