

echnology

DIPLOMARBEIT

Synergetische Nutzung von fluktuierender Windenergie und gespeicherter Energie in Form von Biomasse

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs unter der Leitung von

> Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Hofbauer Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften

> eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Stefan Graf BSc Matrikelnummer: 0927634 Mortaraplatz 2/29 1200 Wien

Wien, im März 2015

Stefan Graf

DANKSAGUNG

Nach fünf Jahren an der TU Wien und insgesamt bereits fast zwanzig Jahren in Ausbildung ist nun der Zeitpunkt gekommen, um Danke zu sagen. Zu allererst möchte ich meinen Dank an meine Eltern richten, die mich von klein auf unterstützt haben und mir durch persönliche und finanzielle Förderung die Freiheit gaben, meinen Interessen nachzugehen. Danke Papa, danke Mama! Dem anschließend gilt mein Dank meinen Großeltern, die immer um mein Wohl besorgt waren und mich durch ihre herzliche Fürsorge und Großzügigkeit in diesen Jahren begleitet haben. Dankbar bin ich meiner ganzen Großfamilie, die sich durch meine Heirat um viele liebe Menschen erweitert hat, für den Rückhalt den sie mir gaben, für ihre Hilfe die sie stets liebend gerne zur Verfügung stellten, für die Dinge die ich von ihnen lernen durfte, für die Motivation die sie mir schenkten und für all die Erlebnisse die wir miteinander teilen durften.

Weiters gilt mein Dank meinen ehemaligen Lehrern bzw. Professoren, die mir als leuchtende Vorbilder dienten. Sie verstanden es, nicht nur Wissen zu vermittelten, sondern auch Leidenschaft für meine Begabungen zu entfachen und mich dadurch optimal für mein weiteres (Berufs-)Leben vorzubereiten. Herausheben möchte ich Prof. Hermann Hofbauer, der mir schon seit Studienbeginn ein wichtiger Förderer war. Vor allem durch seine Betreuung von sowohl Bachelor- als auch Diplomarbeit half er mir, meinen Horizont zu erweitern und leistete somit einen wertvollen Beitrag zu meiner wissenschaftlichen Weiterbildung. Auch Stefan Hemetsberger möchte ich besonderen Dank zukommen lassen, da er mich bei den Simulationen in IPSEpro unterstützt hat und mir mit Rat und Tat zur Seite gestanden ist.

Bedanken möchte ich mich auch bei Prof. Markus Haider und den Mitarbeitern am Institut für Energietechnik und Thermodynamik für die Möglichkeit bei ihnen als Studienassistent zu arbeiten. Durch das Vertrauen, welches mir entgegengebracht wurde, und den Verantwortungen, die mir übertragen wurden, lernte ich es an meinen Aufgaben zu wachsen und Herausforderungen wie das Vortragen von Übungen erfolgreich zu meistern.

Meine abschließenden Dankesworte gebühren meiner lieben Frau Patricia. Unsere Ehe leistete einen entscheidenden Beitrag dazu, dass ich diese Abschlussarbeit verfassen kann. Nicht nur gabst du mir stets Halt und Kraft, sondern halfst mir auch mich als Persönlichkeit weiterzuentwickeln und meine Gaben zu entfalten. Ohne dich wäre Vieles nicht möglich gewesen und deshalb ein riesengroßes Dankeschön für deine Unterstützung. Ich bin sehr dankbar, dich an meiner Seite zu haben.

KURZFASSUNG

Der immer höher werdende Anteil an erneuerbaren Energieformen, wie Strom aus Windoder Sonnenkraft, stellt das Energieversorgungssystem vor große Herausforderungen. Die Energieerzeugung geht nicht mit dem Verbrauch einher und demnach müssen geeignete Speichertechnologien zur Gewährleistung einer kontinuierlichen Versorgung entwickelt werden. Im Rahmen dieser Arbeit wird das unter "Power-to-Gas" bekanntgewordene Konzept der Speicherung von Überschussstrom (aus Windenergie) in Form von Methan betrachtet.

In Zeiten von hohem Windenergieangebot wird durch eine Elektrolyseeinheit Wasserstoff produziert. Zur Herstellung von Methan, einem Kohlenwasserstoff mit der chemischen Summenformel CH₄, ist ein Kohlenstoffatom erforderlich. Als Kohlenstoffquelle soll eine der größten Energieressourcen Österreichs, die Biomasse, dienen. Im ersten Schritt der entworfenen Prozesskette wird Biomasse die zuvor getrocknete mittels Wasserdampfvergasung von fester in die gasförmige Phase übergeführt. Anschließend durchläuft das Produktgas drei Reinigungsstufen (Produktgasfilter, Produktgaswäscher, Produktgasadsorber), um von unerwünschten Bestandteilen wie Staub, Teer und Katalysatorgiften befreit zu werden. Danach wird es gemeinsam mit Wasserstoff einem Methanisierungsreaktor zugeführt, in welchem unter katalytischen Bedingungen die Umsetzung des Gasgemisches zu Methan erfolgt. Nach Abkühlung und Entfernung des Wasserdampfes kann das fertige Produkt, SNG (Substitute Natural Gas), in das Erdgasnetz eingespeist und gespeichert werden.

Die entwickelte Prozesskette wurde im Prozess-Simulationsprogramm IPSEpro abgebildet und durch Simulationsrechnungen von unterschiedlichen Lastfällen optimiert. Der Wirkungsgrad für die Erzeugung von SNG konnte zu ca. 65% bestimmt werden. Durch Auskopplung von Fernwärme kann ein Gesamtwirkungsgrad der Anlage von rund 82% erreicht werden. Die Qualität des SNG entspricht den Erfordernissen des Erdgasnetzes und eine Einspeisung darf erfolgen.

Fluktuationen der Windenergie werden über einen Gasmotor abgefedert. Kann nicht genügend Wasserstoff für eine vollständige Methanisierung des Produktgases durch die Elektrolyse bereitgestellt werden, wird ein Teil des Produktgases über einen Gasmotor geleitet und dabei Strom produziert. Damit ergibt sich ein Synergieeffekt für die Stabilität des elektrischen Netzes. Fällt eine erneuerbare Energiequelle (Wind) aus, springt eine andere (Biomasse) für die Strombereitstellung ein.

ABSTRACT

The increasing share of renewable forms of energy such as electricity from wind or solar power leads to major challenges for the energy supply system. The energy production does not comply with the consumption and therefore it is necessary to develop appropriate storage technologies to ensure a continuous supply. Within the scope of this thesis the approach of storing excess electricity (from wind energy) as methane, also known as the "Power-to-Gas" concept, is going to be examined.

During the time of a high wind energy supply, hydrogen is produced by an electrolysis unit. For the production of methane, a hydrocarbon with the chemical formula CH_4 , a carbon atom is required. One of the largest energy resources in Austria, biomass, should serve as the carbon source. In the first step of the designed process chain, previously dried biomass is converted by steam gasification from solid to the gaseous phase. Subsequently, the producer gas passes three cleaning stages (producer gas filter, producer gas scrubber, producer gas adsorber) to remove undesired components such as dust, tar and catalytic poisons. Afterwards it is fed together with hydrogen to a methanisation reactor, where the conversion of the gas mixture to methane under catalytic conditions takes place. After cooling and removing of water vapour, the product, SNG (substitute natural gas), can be stored in the gas grid.

The developed process chain was integrated into the process simulation software IPSEpro and optimized through simulations of several different load cases. The efficiency for the production of SNG was determined to approximately 65%. Through decoupling district heating, an overall efficiency of the plant of around 82% can be achieved. The quality of the SNG complies with the requirements of the gas grid and as a result it can be used as a substitute of natural gas.

The fluctuations of the wind energy are absorbed by a gas engine. If not sufficient hydrogen can be provided by the electrolysis unit for a complete methanisation, parts of the producer gas are directed to a gas engine, where electrical power is produced. This causes a synergy effect for the grid stability. If one form of renewable energy (wind) falls out, another one (biomass) steps in and provides electricity.

INHALTSVERZEICHNIS

Nc	omenklati	ır	7
	Abkürzun	gen	7
	Symbole		8
1	Einleitu	ing	10
2	Stand o	ler Technik	13
	2.1 Bio	masse-Dampfvergasung	13
	2.1.1	Grundlagen der Vergasung	13
	2.1.2	Wärmebereitstellung	14
	2.1.3	Vergasungsmittel	14
	2.1.4	Produktgas	15
	2.1.5	Reaktordesign	15
	2.1.6	Allotherme Biomasse-Dampfvergasung (Zweibettwirbelschicht)	vs. autotherme
	Biomas	se-Dampfvergasung mit Sauerstoff (Einbettwirbelschicht)	16
	2.2 Pro	oduktgasreinigung	20
	2.2.1	Zyklon	20
	2.2.2	Gewebefilter	20
	2.2.3	Wäscher, Nassabscheider	20
	2.2.4	Elektroabscheider	20
	2.2.5	Heißgasfilter	20
	2.2.6	Katalysator	20
	2.2.7	Thermische Teerreduktion	21
	2.2.8	Entfernung von Chlor- und Schwefelsubstanzen	21
	2.2.9	Erforderliche Produktgasqualität für die Methanisierung	21
	2.2.10	Prozesskette zur Produktgasreinigung vor der Methanisierung	22
	2.3 Ele	ktrolyse	23
	2.3.1	Alkalische Elektrolyse	25
	2.3.2	PEM-Elektrolyse	25
	2.3.3	Hochtemperatur-Elektrolyse	25
	2.4 Me	thanisierung	26
	2.4.1	Reaktordesign	27
	2.5 Ne	zeinspeisung und Speicherung	29
	2.5.1	SNG-Aufbereitung	29

	2.5.2	Erdgasspeicherung	30				
3	Prozes	Prozessentwicklung					
4	Modellierung und Simulation						
	4.1 G	rundlagen der Prozess-Simulation	38				
	4.1.1	Erstellung von Bilanzen	40				
	4.1.2	Beispielhafte Berechnung von Reaktionsgleichgewichten	43				
	4.1.3	Entwicklung von Modulen im IPSEpro MDK	46				
	4.2 Au	ufbau der Simulation in IPSEpro	48				
5	Analys	se des zeitlichen Anfalles der Windenergie	55				
6	Fallbe	trachtungen	61				
	6.1 Fa	all 1: Windenergie im Überschuss vorhanden	61				
	6.1.1	Ausschließliche Erzeugung von SNG in der Biomassevergasung	61				
	6.2 Fa	all 2: 50% Verfügbarkeit der Windenergie	68				
	6.2.1 Bioma	Erzeugung von SNG und Strom/Wärme (Polygeneration) in ssevergasung	der 68				
	6.3 Fa	all 3: Ausfall der Windenergie	72				
	6.3.1	Ausschließliche Erzeugung von Strom/Wärme in der Biomassevergasung	J72				
7	Schlu	ssfolgerungen und Ausblick	75				
8	Anhar	ng	77				
	8.1 R	eaktionsgleichgewichte	77				
	8.1.1	Wasser-Elektrolyse	77				
	8.1.2	Boudouard-Reaktion	79				
	8.1.3	Methanisierungs-Reaktion	81				
	8.2 Er	rgebnisse der Prozess-Simulation für den Fall 1	84				
	8.3 Er	rgebnisse der Prozess-Simulation für den Fall 2	96				
	8.4 Er	rgebnisse der Prozess-Simulation für den Fall 3	105				
AI	obildung	sverzeichnis	110				
Та	Tabellenverzeichnis						
Li	teraturve	erzeichnis	112				

NOMENKLATUR

Abkürzungen

Abkürzung	Bedeutung
DLL	Dynamic link library
HDS	Hydrodesulphurisation
IPSEpro	Integrated Process Simulation Environment
MDK	Model Development Kit
ÖVGW	Österreichische Vereinigung für das Gas- und Wasserfach
PEM	Proton Exchange Membran
PSE	Process Simulation Environment
RME	Rapsmethylester
SNG	Substitute Natural Gas
SOEC	Solid Oxid Electrolysis Cell
SOFC	Solid Oxid Fuel Cell
TREMP	Topsoe's Recycle Methanation Process
YSZ	Yttrium-stabilisiertes Zirkonoxid

Symbole

Abkürzung	Einheit	Bedeutung	
a _i	-	Dimensionslose Koeffizienten der NASA-Polynome	
A_i	-	Reaktionsteilnehmer	
C_p	kJ/(mol K)	Molare spezifische isobare Wärmekapazität	
d	-	Relative Dichte	
f _{Stöch.}	-	Stöchiometrischer Faktor zur vollständigen Methanisierung	
F	C/mol	Faraday-Konstante (= 94.485 C/mol)	
h _{total}	kJ/kg	Konventionelle Enthalpie eines Stoffstromes	
H_i^*	kJ/mol	Konventionelle Enthalpie der Komponente i	
H _O	MJ/kg	Brennwert	
H_U	MJ/kg	Heizwert	
K	-	Gleichgewichtskonstante einer chemischen Reaktion	
K _p	-	Gleichgewichtskonstante auf Basis der Partialdrücke	
K_y	-	Gleichgewichtskonstante auf Basis der Stoffmengenanteile	
m _i	kg	Masse der Komponente i	
\dot{m}_i	kg/s	Massenstrom der Komponente i	
M _i	kg/mol	Molare Masse der Komponente i	
n	-	Anzahl ausgetauschter Elektronen	
\dot{n}_i	mol/s	Molarer Stoffstrom der Komponente i	
Ν	-	Anzahl der an der Reaktion teilnehmenden Komponenten	
p	bar	Absolutdruck	
p_0	bar	Absolutdruck im Standardzustand (= 1 bar)	
p_i	bar	Partialdruck der Komponente i	
Р	kW	Leistung	
$P_{Elektrolyse}$	kW	Zugeführte elektrische Leistung zur Elektrolyseeinheit	
P _{Gasmotor}	kW	In das Stromnetz eingespeiste elektrische Leistung	
P _{Motoren,el}	kW	Zugeführte elektrische Leistung zu sämtlichen Motoren	
P _{SNG}	kW	Brennstoffleistung des Power-to-Gas-SNG	
P _{therm}	kW	Dem Vergaser zugeführte thermische Leistung	
q _{loss,rel}	%	Relativer Wärmeverlust des Vergasers	
Q	kW	Wärmestrom	
$\dot{Q}_{Biomasse}$	kW	Zugeführte Brennstoffleistung durch Biomasse	
$\dot{Q}_{Fernwärme}$	kW	Abgegebener Wärmestrom an das Fernwärmenetz	
\dot{Q}_{loss}	kW	Absoluter Wärmeverlust des Vergasers	
\dot{Q}_{RME}	kW	Zugeführte Brennstoffleistung durch Biodiesel (RME)	
R	J/(mol K)	Universelle Gaskonstante (= 8,314 J/(mol · K))	
R _i	J/(mol K)	Spezifische Gaskonstante der Komponente i	
S_i^0	J/(mol K)	Entropie der Komponente i bei Standarddruck	
$S^{0}_{298,i}$	J/(mol K)	Entropie der Komponente i im thermochem. Standardzustand	

Abkürzung	Einheit	Bedeutung
Т	K	Thermodynamische Temperatur
T ₀	K	Thermodyn. Temperatur im Standardzustand (= 298,15 K)
t _{flaute}	h	Zeitdauer einer Windflaute
U _{rev}	V	Minimale elektrische Zellspannung zur Wasserelektrolyse
U _{th}	V	Thermoneutrale Spannung
V _i	m ³	Volumen der Komponente i
\dot{V}_i	m³/s	Volumenstrom der Komponente i
$V_{N,m}$	m³/mol	Molares Normvolumen (= $22,41 \cdot 10^{-3} \text{ m}^3/\text{mol}$)
$\dot{V}_{N,SNG}$	Nm³/h	Normvolumenstrom des Power-to-Gas-SNG
Wi	kg/kg	Massenanteil der Komponente i
Wo	kWh/Nm ³	Wobbe-Index
<i>y</i> _i	mol/mol	Stoffmengenanteil der Komponente i
$\eta_{Gasmotor}$	-	Wirkungsgrad für die Stromproduktion durch den Gasmotor
$\eta_{P,Elektrolyse}$	-	Verhältnis Elektrolyseleistung zu zugeführter elektr. Leistung
η_{SNG}	-	Wirkungsgrad für die Power-to-Gas-SNG-Produktion
η_{ges}	-	Gesamtnutzungsgrad der Anlage
ν	-	Molzahländerung einer chemischen Reaktion
ν _i	-	Stöchiometrischer Koeffizient eines Reaktionsteilnehmers
$ ho_i$	kg/m ³	Dichte der Komponente i
ΔG_R	kJ/mol	Freie Reaktionsenthalpie
ΔG_R^0	kJ/mol	Freie Reaktionsenthalpie bei Standarddruck
$\Delta G^{0}_{R,298}$	kJ/mol	Freie Reaktionsenthalpie im thermochem. Standardzustand
$\Delta H_{f,298}^0$	kJ/mol	Standardbildungsenthalpie
ΔH_R	kJ/mol	Reaktionsenthalpie
ΔH_R^0	kJ/mol	Reaktionsenthalpie bei Standarddruck
$\Delta H^0_{R,298}$	kJ/mol	Reaktionsenthalpie im thermochemischen Standardzustand
ΔQ_{max}	kJ/mol	Max. mögliche therm. Energiebereitstellung bei der Elektrolyse
ΔS_R	kJ/(mol K)	Reaktionsentropie
ΔS_R^0	kJ/(mol K)	Reaktionsentropie bei Standarddruck
$\Delta S^0_{R,298}$	kJ/(mol K)	Reaktionsentropie im thermochemischen Standardzustand
Δp	bar	Druckdifferenz

1 EINLEITUNG

Seit Beginn der industriellen Revolution in der zweiten Hälfte des 18. Jahrhunderts sieht sich die Welt mit einem kontinuierlichen Wachstum des Primärenergiebedarfs konfrontiert. Vor allem in den letzten 60 Jahren hat sich der Energiehunger der Menschheit immer weiter vergrößert. Seit den 1950er-Jahren kann man von einem exponentiellen Wachstum des Primärenergiebedarfs sprechen, wobei ein Ende dieses Anstieges nicht in Sicht ist. So hat sich innerhalb der letzten 40 Jahre der weltweite Primärenergieverbrauch auf über 500 EJ/a mehr als verdoppelt (Abbildung 1).^[1]

Die Folgen davon sind vielfältig. Die rasante technische Weiterentwicklung führte zur Bildung einer Wohlstandsgesellschaft in der westlichen Welt. Die damit immer größer werdende Kluft zwischen Arm und Reich führt zu globalen Spannungen und dem Streben der Entwicklungsund Schwellenländer nach westlichen Lebensstandards. Dies ist eine berechtigte Forderung, jedoch mit der Konsequenz eines weiter wachsenden weltweiten Energieverbrauchs.

Abbildung 1: Szenario einer erneuerbaren Energieversorgung bis 2050^[1]

Die Abdeckung des Primärenergiebedarfs durch hauptsächlich fossile Energieträger hat vor allem auf die Umwelt weitreichende Auswirkungen. Klimatologen sprechen vom anthropogenen, d.h. menschenverursachten, Klimawandel. Die Emissionen aus der Nutzung von Kohle, Erdöl und Erdgas tragen erheblich zum globalen Anstieg der Treibhausgaskonzentration und der Durchschnittstemperatur in der Atmosphäre bei. Luftverschmutzung, Stürme, Überschwemmungen und Dürren sind nur einige spürbare Konsequenzen der weltweiten Energiepolitik.

Seit einigen Jahren lässt sich jedoch eine Veränderung in der Energielandschaft beobachten. Wurden die Menschen ursprünglich zentral von konventionellen Kraftwerken mit Strom versorgt, kommt es durch die verstärkte Nutzung von Solar- und Windenergie zu einer Dezentralisierung mit vielen kleineren Kraftwerken anstatt wenigen großen. Günstige Förderbedingungen für Ökostromanlagen, der Wunsch nach Energieimportunabhängigkeit sowie die sich zu Ende neigenden fossilen Reserven begünstigen diesen Trend. Die

Auswirkungen davon sind erheblich. Konventionelle Kraftwerke sind dadurch charakterisiert, eine konstante Grundlast an Energie bereitzustellen und tragen damit zu einer Stabilisation des Stromnetzes bei. Aufgrund der starken zeitlich bedingten Schwankungen stellt der Strom aus erneuerbaren Quellen eine große Herausforderung für die Netzstabilität und der damit einhergehenden Versorgungssicherheit dar.

Zum Ausgleich der Volatilität in der Stromproduktion kommen Energiespeichern eine immer größere Bedeutung zu. In Abbildung 2 sind die zurzeit vorhandenen Speichertechnologien bzw. -konzepte in einem Ragone-Diagramm zusammengefasst. Dabei ist die Ausspeicherdauer über der Speicherkapazität aufgetragen.

Speicherkapazität

Abbildung 2: Vergleich von Energiespeichern^[2]

Die elektrischen bzw. elektromagnetischen Speicher, also Spulen und Kondensatoren, sind nur für geringe Energiemengen und Ausspeicherdauern höchstens im Minutenbereich geeignet. Daran schließen die Schwungräder an, die ähnliche Speicherkapazitäten aufweisen wie Batterien, jedoch ist die Ausspeicherdauer geringer. Bei Batterien, die als großtechnische Stromspeicher dienen, kann sie bis zu einem Tag andauern. Die im Ragone-Diagramm nächsthöher gelegenen Speichersysteme für elektrische Energie sind Pumpspeicherkraft bzw. Druckluftspeicherung in Kavernen mit Kapazitäten im GWh-Bereich und Ausspeicherdauern ähnlich der der Batterien. Die als Power-to-Gas bezeichnete Gruppe der Brennstoffspeicher ermöglicht eine Energiespeicherung über mehrere Monate hinweg. In den als Kavernen- bzw. Porenspeichern ausgeführten Systemen können Energiemengen im TWh-Bereich aufbewahrt werden.

Für die Transformation des Energiesystems auf erneuerbare Basis, dargestellt in Abbildung 1 mit einem vollständigen Übergang bis 2050, ist auch eine längerfristige Speicherung von Energie notwendig. Dafür kommen zurzeit lediglich Brennstoffspeicher in Frage, welche in

UNIVERSITÄT WIEN Vienna University of Technology

vorliegender Arbeit untersucht werden sollen. Laut dem Szenario in Abbildung 1 kommt diesem Speichersystem, in der Grafik als "Gas aus Wind und Solar" bezeichnet, bereits ab dem Jahr 2040 eine tragende Rolle im Energieversorgungssystem zu.

Der Begriff "Power-to-Gas" ist im Zuge der deutschen Energiewende populär geworden. Das in Abbildung 3 gezeigte Konzept besteht darin, unter Einsatz von Strom aus erneuerbaren Quellen über einen chemischen Prozess speicherfähiges Gas herzustellen.

Abbildung 3: Schema Power-to-Gas^[3]

Im Detail wird Überschussstrom im Netz zum Betrieb einer Elektrolyseeinheit verwendet. Dabei wird Wasser (H₂O) in die Elemente Wasserstoff (H₂) und Sauerstoff (O₂) zerlegt. Im Anschluss erfolgt die Methanisierung, bei der Wasserstoff mit Kohlenmonoxid (CO) bzw. Kohlendioxid (CO₂) zu Methan (CH₄) reagiert. Dieses Gas kann ins Erdgasnetz eingespeist und gespeichert werden. Bei Strombedarf kann das Methan in einem Gaskraftwerk bzw. Blockheizkraftwerk wieder verstromt und damit der Kreislauf geschlossen werden.^[3]

Als Kohlenstoffquelle kann beispielsweise Biogas aus einem biologischen Fermentationsprozess dienen, aber auch CO_2 aus der Luft bzw. aus dem Abgas von konventionellen Kraftwerken. Eine weitere Möglichkeit ist die in Abbildung 3 dargestellte Nutzung von fester Biomasse. Dabei wird die als Kohlenstoffträger fungierende Biomasse mit der Summenformel $CH_{1,66}O_{0,66}$ in einer Wasserdampfvergasung mithilfe des bei der Elektrolyse anfallenden O_2 in ein Produktgas übergeführt, welches anschließend für den Methanisierungsprozess gereinigt wird. Durch den, im Vergleich zu Methan, geringen Anteil an Wasserstoff in der Biomasse, ist das H₂-Potential für die Methanproduktion (CH₄) sehr hoch und dementsprechend viel Wasserstoff kann eingebunden werden.

Im Rahmen dieser Arbeit soll im Speziellen die synergetische Nutzung von Windenergie und Biomasse untersucht werden, da diese Kombination auf die in Österreich eingesetzten Technologien bzw. vorhandenen Ressourcen Bezug nimmt.

2 STAND DER TECHNIK

2.1 Biomasse-Dampfvergasung

2.1.1 Grundlagen der Vergasung

Die Biomasse-Vergasung stellt einen thermochemischen Prozess dar, mit dem Ziel, die in fester Form vorliegende Biomasse in ein brennbares Gas, in weiterer Folge als Produktgas bezeichnet, überzuführen. Im Gegensatz zur Biomasse-Verbrennung, einem exothermen Vorgang unter Sauerstoffüberschuss, ist die Vergasung insgesamt ein endothermer Prozess mit partieller Oxidation der brennbaren Bestandteile. Daraus ergeben sich zwei wesentliche Erfordernisse für den Prozess. Zum einen die Bereitstellung von Wärme, zum anderen die Zufuhr eines Vergasungsmittels.^[4]

Abbildung 4: Vorgänge bei der Vergasung^[4]

Die bei der Vergasung ablaufenden physikalisch-chemischen Prozesse sind in Abbildung 4 dargestellt. Durch Zufuhr von Wärme erfolgt im ersten Schritt die Aufheizung und Trocknung der Biomasse. In weiterer Folge findet die pyrolytische Zersetzung bzw. Entgasung bei Tempertaturen zwischen 200°C und 650°C statt. Während dieses Prozessschrittes gelangt aufgrund der starken Gasentwicklung kein Sauerstoff an das Partikel. Die eigentlichen Vergasungsreaktionen beginnen letztlich bei Temperaturen von ca. 700°C. Je nach Reaktordesign und Prozessführung laufen diese Schritte makroskopisch im Reaktor meist simultan ab. Obige Beschreibung soll den Werdegang eines Biomassepartikels demonstrieren.

In Abhängigkeit von Temperatur und Druck im Reaktor und den damit sich einstellenden Gleichgewichtslagen bzw. dem verwendeten Vergasungsmittel laufen bei der Vergasung die in Tabelle 1 und Tabelle 2 aufgeführten Reaktionen ab. Gesamt betrachtet ergibt sich ein endothermer Prozess, da hauptsächlich die heterogene Wassergas-Reaktion und die Boudouard-Reaktion stattfinden und diese stark endotherm sind. Dementsprechend muss kontinuierlich Wärme zugeführt werden, um die Vergasung aufrecht zu erhalten.^[4]

Der nach Trocknung und Entgasung der Biomasse zurückbleibende Restkohlenstoff (Pyrolysekoks) wird über die in Tabelle 1 angegebenen Gas-Feststoff-Reaktionen vergast. Anschließend kann es zu homogenen oder heterogen katalysierten Gas-Gas-Reaktionen (Tabelle 2) kommen.^[4]

Tabelle 1: Heterogene Vergasungsreaktionen^[4]

Vollständige Kohlenstoffoxidation:	$C + O_2 \rightarrow CO_2$	$\Delta H_{R,298}^0 = -393,5 \text{ kJ/mol}$
Partielle Kohlenstoffoxidation:	$C + \frac{1}{2}O_2 \leftrightarrow CO$	$\Delta H_{R,298}^0 = -110,5 \text{ kJ/mol}$
Heterogene Wassergas-Reaktion:	$C + H_2 O \leftrightarrow CO + H_2$	$\Delta H_{R,298}^0 = +118,5 \text{ kJ/mol}$
Boudouard-Reaktion:	$C + CO_2 \leftrightarrow 2 CO$	$\Delta H_{R,298}^0 = +159,9 \text{ kJ/mol}$
Hydrierende Vergasung:	$C + 2 H_2 \leftrightarrow CH_4$	$\Delta H_{R,298}^0 = -87,5 \text{ kJ/mol}$

Tabelle 2: Homogene Vergasungsreaktionen^[4]

Wassergas-Shift-Reaktion:	С	$0 + H_2 0 \leftrightarrow CO_2 + H_2$	$\Delta H_{R,298}^0 = -40.9 \text{ kJ/mol}$
Methanisierungs-Reaktion:	$CO + 3 H_2O \leftrightarrow CH_4 + H_2O$		$\Delta H_{R,298}^0 = -203,0 \text{ kJ/mol}$
Reformierung von Kohlenwasserstoffe	en:	$C_mH_n + m H_2O \leftrightarrow$	$m CO + (m + n/2) H_2$

2.1.2 Wärmebereitstellung

Die für die Vergasung benötigte Wärme kann auf zwei unterschiedliche Arten zugeführt werden. Erfolgt die Wärmezufuhr direkt, spricht man von der autothermen Vergasung, bei indirekter Wärmezufuhr von der allothermen Vergasung.^[4]

Die autotherme Vergasung ist ein Vorgang, bei dem ein Teil der eingesetzten Biomasse im Vergasungsreaktor verbrannt und dadurch die notwendige Wärme bereitgestellt wird. Bei der allothermen Vergasung erfolgt die Wärmezufuhr indirekt, d.h. etwa über einen Wärmeübertrager im Reaktor oder durch aufgeheizt umlaufendes Bettmaterial (siehe Abbildung 5).^[4]

Abbildung 5: Vergleich autotherme und allotherme Vergasung

2.1.3 Vergasungsmittel

Die Zufuhr eines Vergasungsmittels ist primär erforderlich, um den nach der pyrolytischen Zersetzung der Biomasse zurückbleibenden festen Kohlenstoff (C) in das brennbare Gas Kohlenmonoxid (CO) umzuwandeln. Als sauerstoffhaltige Vergasungsmittel kommen hauptsächlich Luft bzw. reiner Sauerstoff (O₂) und bei der Dampfvergasung Wasserdampf (H₂O) zum Einsatz.^[4]

2.1.4 Produktgas

Das bei der Vergasung entstehende Produktgas setzt sich aus den Hauptkomponenten Kohlenmonoxid (CO), Kohlendioxid (CO₂), Wasserstoff (H₂), Methan (CH₄) und Wasserdampf (H₂O) zusammen. Desweiteren sind zahlreiche unerwünschte Bestandteile wie Teere bzw. Kondensate, Staub und Asche im Produktgas enthalten, welche für eine weiterfolgende Gasnutzung entfernt werden müssen (siehe Kapitel 0 Produktgasreinigung). Wie aus Abbildung 6 zu entnehmen, liegt ein großer Vorteil der Dampfvergasung darin, dass das Produktgas im Gegensatz zur Luftvergasung frei von Stickstoff ist.^[4]

Abbildung 6: Überblick über Vergasungskonzepte^[4]

2.1.5 Reaktordesign

Grundsätzlich kann zwischen der Festbett-, der Wirbelschicht- und der Flugstromvergasung unterschieden werden. In den letzten Jahren haben sich Wirbelschichtanlagen als optimale Technologie für die Biomasse-Dampfvergasung etabliert und sollen in weiterer Folge näher betrachtet werden.^[4]

Die Realisierung einer Wirbelschichtanlage kann entweder als stationäre (blasenbildende) oder zirkulierende Wirbelschicht erfolgen. Der primäre Unterschied liegt dabei in der Durchströmgeschwindigkeit des Gases durch die Feststoffschicht. Diese beiden Varianten können darüber hinaus auch kombiniert werden, wie bei der in Abbildung 7 dargestellten Zweibett-Wirbelschicht.^[4]

Bei der stationären Wirbelschichtvergasung liegt die Strömungsgeschwindigkeit des Vergasungsmittels zwischen der Lockerungsgeschwindigkeit, also der minimalen Geschwindigkeit zur Erzeugung eines Wirbelschichtzustands im Reaktor, und der Schwebegeschwindigkeit eines einzelnen Partikels. Das Bettmaterial und die Brennstoffpartikel werden dabei in Schwebe gehalten und es kommt zur Ausbildung eines klar erkennbaren, meist 1 bis 2 m hohen Wirbelbettes. Die Strömungsgeschwindigkeit für das Vergasungsmittel wird meist beim 5- bis 15-Fachen der Lockerungsgeschwindigkeit gewählt. Oberhalb des Wirbelbetts befindet sich ein Freiraum (Freeboard), in dem die aus der Wirbelschicht austretenden Gase weiter reagieren und die homogenen und heterogenen Vergasungsreaktionen ablaufen können. Bei hoher Verweilzeit der Gase in dieser heißen

UNIVERSITÄT WIEN Vienna University of Technology

Zone vermindert sich der Teergehalt und die Gaszusammensetzung nähert sich dem chemischen Gleichgewicht an.^[4]

Zirkulierende Wirbelschichtanlagen grenzen sich von den stationären Wirbelschichten durch eine höhere Fluidisierungsgeschwindigkeit und den damit einhergehenden Partikelaustrag aus dem Wirbelschichtreaktor ab. Die Geschwindigkeit des Fluidisierungsgases liegt über der Schwebegeschwindigkeit der Einzelpartikel, was zu einer Ausdehnung der Wirbelschicht über die gesamte Reaktorhöhe führt. Im unteren Bereich ergibt sich eine dichtere Zone, im oberen Bereich eine dünnere. Aufgrund der hohen Gasgeschwindigkeiten wird kontinuierlich Bettmaterial (aber auch Brennstoffpartikel) ausgetragen. Dieses wird durch den Einsatz von Zyklonen vom Gasstrom abgetrennt und wieder in den Reaktor rückgeführt. Damit ergibt sich eine geschlossene Zirkulation des Bettmaterials.^[4]

Als Bettmaterial in Wirbelschichtanlagen kommt meist Quarzsand zum Einsatz, aber auch katalytisch aktives Material wie Kalzit, Dolomit oder Olivin. Die Partikeldurchmesser des Bettmaterials liegen bei stationären Wirbelschichten meist zwischen 0,5 und 1,0 mm, bei zirkulierenden in der Größenordnung von 0,2 bis 0,4 mm. Die Brennstoffpartikel werden hauptsächlich über Schnecken in den Reaktor befördert und weisen Größen von 1 bis 70 mm bei stationären bzw. 1 bis 50 mm bei zirkulierenden Wirbelschichten auf.^[4]

Der große Vorteil von Wirbelschichtvergasungsanlagen liegt in der gleichmäßigen, gut regelbaren und somit weitgehend konstanten Temperatur von ca. 700 bis 900°C im Reaktor. Es bilden sich keine ausgeprägten Temperatur- und Reaktionszonen aus und die einzelnen Teilreaktionen (Abbildung 4) laufen parallel im gesamten Reaktor ab. Von Nachteil ist der im Vergleich zu Festbettvergasern höhere anlagentechnische Aufwand.^[4]

Die Vergasung kann entweder unter atmosphärischem oder unter erhöhtem Druck erfolgen. Der Vorteil der sogenannten druckaufgeladenen Wirbelschicht (20 bis 30 bar) liegt darin, dass der Reaktor bei gleicher Vergaserleistung kleiner ausgeführt werden kann und bereits verdichtetes Gas produziert wird. Jedoch konnte sich diese Technologie u.a. aufgrund des nochmals höheren anlagentechnischen Aufwandes bisher nicht durchsetzen.^[4]

2.1.6 Allotherme Biomasse-Dampfvergasung (Zweibettwirbelschicht) vs. autotherme Biomasse-Dampfvergasung mit Sauerstoff (Einbettwirbelschicht)

In Abhängigkeit der Wärmebereitstellung sollen hier die Wirbelschichtanlagen für die Dampfvergasung in Einbett- und Zweibett-Wirbelschichten unterschieden werden (siehe Abbildung 7). Bei der autothermen Biomasse-Dampfvergasung mit Sauerstoff finden Vergasung und Wärmeerzeugung in einem Bett statt. Bei der allothermen Biomasse-Dampfvergasung wird in einem Verbrennungsreaktor die erforderliche Wärme bereitgestellt und durch das Bettmaterial in den Vergasungsreaktor transferiert.

Im Rahmen dieser Arbeit dient das Produktgas als Synthesegas zur Herstellung von Methan. Für eine erfolgreiche katalytische Synthese muss der Stickstoffgehalt des Produktgases minimal sein. Dementsprechend wird als Vergasungsmittel Dampf und bei der Einbett-Wirbelschicht zusätzlich der durch die Elektrolyse bereitgestellte Sauerstoff verwendet und auf Luft verzichtet.

Bei der Einbett-Wirbelschicht erfolgt die Fluidisierung, d.h. die In-Bewegungs-Versetzung des Bettmaterials durch den Gasstrom, mit Dampf und Sauerstoff und dabei wird die Biomasse direkt vergast. Anhand der zugeführten Menge an Sauerstoff lässt sich die Vergasungstemperatur einstellen. Das aus dem Vergaser austretende Gemisch aus Produktgas, Bettmaterial und Biomassepartikel wird im Zyklon aufgetrennt. Das Produktgas wird am Kopf des Fliehkraftabscheiders abgezogen und die Feststoffe werden über einen Siphon in die Wirbelschicht rückgeführt. Der Siphon dient als Abdichtung, damit kein Sauerstoff in den Zyklonteil gelangen kann und ein Verbrennen der aus der Wirbelschicht ausgetragenen Partikel verhindert wird.

Abbildung 7: Arten von zirkulierenden Wirbelschichtanlagen, nach^[5]

Die Zweibett-Wirbelschicht besteht aus zwei räumlich getrennten Wirbelschichten, die jeweils stationär und/oder zirkulierend betrieben werden können. Dabei findet in einer Wirbelschicht die Vergasung der Biomasse statt, in der anderen wird die für die Vergasung benötigte Wärme durch Verbrennung des Kokses und meist eines zusätzlichen Brennstoffes erzeugt. Wie aus dem in Abbildung 8 dargestellten Grundprinzip zu entnehmen, wird die Wärme zwischen den beiden Reaktoren durch das umlaufende Bettmaterial ausgetauscht.^[4]

Die Biomasse wird in die Vergasungswirbelschicht eingebracht und mit Dampf bei einer Temperatur von ca. 850°C vergast, d.h. in ein brennbares Gas übergeführt. Die Temperatur in der Verbrennungswirbelschicht liegt mit ca. 930°C etwas höher. Aufgrund des Zweireaktor-Konzeptes wird das Produktgas mit dem Abgas der Verbrennung nicht vermischt und kann separat weiterverwendet werden.^[5]

Die Zweibettwirbelschicht bietet zwei große Vorteile. Zum Ersten können sowohl Vergasungs- als auch Verbrennungswirbelschicht unabhängig voneinander optimal gestaltet werden. Zum Zweiten wird weder eine Luftzerlegungsanlage noch ein Hochtemperatur-Wärmeübertrager benötigt, um mit Dampf vergasen zu können. Kann Sauerstoff jedoch anderweitig zur Verfügung gestellt werden, im Falle der vorliegenden Arbeit durch die Elektrolyse, so verliert der zweite Vorteil an Bedeutung. Weiters dient die Verbrennungswirbelschicht als Senke für die kohlenstoffreiche Asche, welche bei der Einbett-Wirbelschicht entweder entsorgt werden muss oder aber einer stofflichen Nutzung zugeführt werden kann. Nachteilig bei Zweibett-Wirbelschichtanlagen sind der höhere anlagentechnische Aufwand und die sich daraus ergebenden höheren Kosten aufgrund von zwei getrennten Wirbelschichten.^[4]

Abbildung 8: Grundkonzept der Zweibettwirbelschicht-Dampfvergasung, nach^[5]

Im Bezug auf das entstehende Produktgas liefert Tabelle 3 einen Vergleich zwischen der autothermen Dampf-Vergasung mit O_2 und der allothermen Dampf-Vergasung. Grundsätzlich ist die Produktgaszusammensetzung größenordnungsmäßig vergleichbar, die Unterschiede sind marginal.

Tabelle	3:	Produktgaszusammensetzung	für	trockenes	Gas	im	Normzustand
(Mittelwe	erte	fettgedruckt)					

		Autother Vergasung O₂/Damp	me 9 mit f ^[4]	Allotherme Vergasung mit Dampf ^[6]		
H ₂	in Vol%	26 - 55	38,1	35 - 45	40	
СО	in Vol%	20 - 40	28,1	22 - 25	23,5	
CO ₂	in Vol%	15 - 30	21,2	20 - 23	21,5	
CH ₄	in Vol%	4 - 14	8,6	9 - 11	10,0	
C _x H _y	in Vol%	1,5 - 5,5	3,0	2 - 3	2,5	
N ₂	in Vol%	0	0	< 1	< 1	
Heizwert	in MJ/m ³	12 - 16	13,2	12 - 14	13,0	

Aufgrund des Sauerstoffs im Vergasungsmittel ergibt sich für die autotherme Vergasung ein höherer Gehalt an den sauerstoffhaltigen Verbindungen CO und CO_2 . Bei beiden Verfahrenskonzepten ist der CO-Anteil höher als der CO_2 -Anteil im Produktgas. Dies ist auf die Lage des Gleichgewichts der Boudouard-Reaktion (Abbildung 16) weiter auf der Produktseite zurückzuführen. Bei der autothermen Vergasung wird dieser Sachverhalt noch durch die weit unterstöchiometrische Vergasung mit Luftzahlen von 0,3 bis 0,4 verdeutlicht.

Da bei der Zweibett-Wirbelschicht lediglich mit Dampf vergast wird, ist naturgemäß der H₂-Anteil mit ca. 40 Vol.-% höher als in der Einbett-Wirbelschicht. Der Sauerstoff für die Bildung von CO und CO₂ stammt aus dem Vergasungsmittel und dem im Brennstoff gebundenen Sauerstoff. Es muss beachtet werden, dass bei der allothermen Vergasung ein Abgas aus dem Verbrennungsreaktor (Riser) anfällt. Dieses stellt eine weitere Kohlenstoffquelle für die Methanisierung dar. Das Abgas besteht bei Verwendung von Sauerstoff als Oxidationsmittel hauptsächlich aus CO₂, H₂O, CO bzw. O₂, wobei sich der O₂-Anteil mit steigendem Sauerstoffüberschuss in der Verbrennung erhöht. Bei der Verwendung von Luft zur Verbrennung besteht das Abgas zu einem Großteil (ca. 60 Vol.-%) aus Stickstoff (N₂).^[4]

Das Produktgas ist weitgehend stickstofffrei, die einzigen Stickstoffquellen sind die Biomasse selbst und eventuelle Lufteinschlüsse bei der Brennstoffzufuhr in den Reaktor. Methan befindet sich bei der allothermen Vergasung mit ca. 10 Vol.-% im Produktgas, bei der autothermen ist der Anteil ein wenig geringer. Der Gehalt an höheren Kohlenwasserstoffen C_xH_y ist in entscheidendem Maße von der Vergasungstemperatur abhängig. Bei höheren Temperaturen kommt es zu Crackreaktionen und die langkettigen Moleküle werden in einzelne CH₄-Moleküle bzw. in C, CO und H₂ gespalten.^[4]

Der Heizwert setzt sich aus den einzelnen Heizwerten der sich im Produktgas befindlichen Gase zusammen (siehe Tabelle 4) und liegt für trockenes Gas bei ca. 13 MJ/m³.^[4]

Wasserstoff	in MJ/m ³	10,783
Kohlenmonoxid	in MJ/m ³	12,633
Methan	in MJ/m ³	35,883

Tabelle 4: Heizwerte gasförmiger Brennstoffe^[7]

2.2 Produktgasreinigung

Zum Schutz von nachgeschalteten Anlagenteilen, zur Vermeidung von umweltschädlichen Emissionen bzw. für die Verwendung des Produktgases für Methanisierung oder Gasmotor ist eine Reinigung des aus dem Vergasungsreaktor austretenden Gases notwendig. Dafür stehen die nachfolgend aufgelisteten Gasreinigungstechniken zur Verfügung.^[4]

2.2.1 Zyklon

Dieser Fliehkraftabscheider eignet sich zur Abscheidung von Staub und Teer mit Partikelgrößen über 5 µm. Zyklone verursachen einen niedrigen Druckverlust, können bei hohen Temperaturen betrieben werden und sind günstig in der Anschaffung. Von Nachteil ist die geringe Abscheideleistung für Partikel < 5 µm. Zyklone können jedoch hohe Partikelbeladungen abscheiden und werden deshalb meist für die Erstreinigung eingesetzt.^[4]

2.2.2 Gewebefilter

Sollen Partikel kleinerer Größe abgeschieden werden (< 0,5 µm), so eignen sich dafür Gewebefilter. Diese weisen eine hohe Abscheideleistung von Staub, Teer und Alkalien auf, der Druckverlust ist jedoch sehr hoch und diese Filter sind nur bei Gastemperaturen von weniger als 250°C verwendbar. Dementsprechend muss das Produktgas zuvor abgekühlt werden.^[4]

2.2.3 Wäscher, Nassabscheider

Zur Abscheidung von Teer, Staub, Alkalien, Stickstoff- und Schwefelverbindungen dienen sogenannte Wäscher. Diese sind universell einsetzbar und werden industriell häufig verwendet. Nachteilig sind der Abwasseranfall bei Wassereinsatz, die zuvor notwendige Abkühlung und der hohe Druckverlust.^[4]

2.2.4 Elektroabscheider

Mithilfe des elektrostatischen Abscheiders können wie bei Gewebefiltern Staub, Teer und Alkalien abgeschieden werden. Charakteristisch ist die hohe Abscheideleistung für Partikel größer 5 µm und der geringe Druckverlust. Elektroabscheider sind jedoch teuer in der Anschaffung und bei Nasselektroabscheidern ist der Abwasseranfall zu beachten. Ferner ist wie bei Gewebefiltern eine vorangestellte Abkühlung des Gases notwendig.^[4]

2.2.5 Heißgasfilter

Für die Abscheidung von Staub, Teer und Alkalien mit einem Partikeldurchmesser < 0,5 μm eignen sich Heißgasfilter, ausgeführt meist in Form von keramischen Filterkerzen. Diese können bei Temperaturen von bis zu 900°C betrieben werden und besitzen einen hohen Abscheidegrad. Die Nachteile sind zum einen ein hoher Druckverlust und Preis, zum anderen Probleme mit Teer (Verkleben) und Alkalien (Korrosion).^[4]

2.2.6 Katalysator

Zur Entfernung von Teer- und Stickstoffverbindungen aus dem Produktgas eignen sich die ohne Abwasser und Kühlung auskommenden Katalysatoren. Befinden sich Katalysatorgifte im Produktgas, führen diese jedoch zu einer Deaktivierung des Katalysators. Weiters sind solche Katalysatoren erst im Forschungs- und Entwicklungsstadium und deshalb von hohen Kosten gekennzeichnet. Außerdem sind Betriebstemperaturen von mehr als 850°C notwendig, was jedoch zu Wirkungsgradeinbußen des Gesamtprozesses führt.^[4]

2.2.7 Thermische Teerreduktion

Eine weitere Möglichkeit der Teerentfernung liegt im thermischen Cracken der höheren Kohlenwasserstoffe bei Temperaturen über 1000°C. Dies wird durch eine partielle Oxidation erreicht. Damit verbunden ist wie bei Katalysatoren eine Wirkungsgradminderung. Außerdem ist die Teerzerstörung meist unvollständig. Von Vorteil ist, dass kein Abwasser anfällt.^[4]

2.2.8 Entfernung von Chlor- und Schwefelsubstanzen

Schwefel- und Chlorverbindungen werden von Katalysatoren, so wie sie beispielsweise bei der Methanisierung verwendet werden, auch in geringen Konzentrationen hochgradig adsorbiert und vergiften diese somit. Deshalb ist eine Feinreinigung des Produktgases zwingend erforderlich. Als Technologie bietet sich eine kombinierte Hydrierung und Absorption an. Dieser zweistufige Prozess wird für die Schwefelentfernung als Hydrodesulphurisation (HDS) bezeichnet. Dabei werden zuerst die vorhandenen Schwefelverbindungen mit Wasserstoff in Anwesenheit eines HDS-Katalysators (Mischung aus Aluminium, Cobaltoxid und Molybdänoxid) bei Temperaturen von $350-400^{\circ}$ C und Drücken von über 15 bar zu H₂S hydriert. Im Anschluss erfolgt die Adsorption des H₂S an einem Zinkoxidbett (oder auch Eisenoxidbett).^[8]

$$H_2S + ZnO \rightarrow ZnS + H_2O$$

Für die Chlorentfernung wird dieselbe Vorgehensweise verwendet, eine Hydrierung mit anschließender Adsorption bei einer Temperatur von über 350°C bzw. einem Druck von mehr als 15 bar an metallischen Adsorbentien (z.B. Natriumaluminat).^[8]

$$HCl + NaAlO_2 \rightarrow NaCl + HAlO_2$$

Die technische Umsetzung der adsorptiven Entfernung von Chlor- und Schwefelverbindungen erfolgt meist in einem Reaktor, wo zunächst Hydrierung, danach Chlor- und zuletzt Schwefeladsorption erfolgt.^[8] Als Alternative dazu können auch Wäscher eingesetzt werden. Diese haben den Vorteil, dass keine Verdichtung des Gases auf ein hohes Druckniveau, wie beim HDS-Verfahren notwendig, erforderlich ist.

2.2.9 Erforderliche Produktgasqualität für die Methanisierung

Neben den in Tabelle 3 aufgeführten Hauptkomponenten sind im Produktgas noch weitere Bestandteile enthalten, welche für eine weiterführende Gasnutzung beachtet werden müssen (siehe Tabelle 5). Da im Methanisierungsreaktor empfindliche Katalysatoren zum Einsatz kommen, müssen die Gasverunreinigungen fast vollständig entfernt werden.

Staub	in g/Nm ³	20
Teer	in g/Nm ³	0,5 - 2
NH_3	in Volppm	310 - 900
HCN	in Volppm	5 - 30
H_2S	in Volppm	50 - 100
HCI	in Volppm	< 10

Tabelle 5: Gasverunreinigungen	n im Produktgas aus	der Biomassevergasung ^[4]
U U U	U	

In Tabelle 6 sind die Grenzwerte für die Verwendung des Produktgases zur Herstellung von Fischer-Tropsch-Diesel angegeben. Da auch in diesem Synthesereaktor empfindliche

UNIVERSITÄT WIEN Vienna University of Technology

Katalysatoren verwendet werden und somit eine hohe Gasqualität erforderlich ist, können diese Grenzwerte auch für die Methanisierung als geltend angesehen werden.

Tabelle 6: Erforderliche Gasqualität für die Methanisierung ⁹				
Verunreinigung	Entfernungsgrad			
Summe an Schwefelverbindungen ($H_2S + COS + CS_2$)	in Volppm	< 1		
Summe an Stickstoffverbindungen (NH ₃ + HCN)	in Volppm	< 1		
Summe an Halogenverbindungen (HCI + HBr + HF)	in Volppb	< 10		
Alkalimetalle	in Volppb	< 10		
Feststoffe (Ruß, Staub, Asche)	Grundsätzlich vollständig			
Organische Verbindungen (Kohlenwasserstoffe, Teere)	Unterhalb Taupunkt			

2.2.10 Prozesskette zur Produktgasreinigung vor der Methanisierung

In Abbildung 9 ist beispielhaft eine Prozesskette zur Reinigung des Produktgases dargestellt, wie sie großteils (mit Ausnahme der Hydrodesulphurisation) auch in modernen Biomassekraftwerken zum Einsatz kommt. Zuerst wird das Rohgas in einem Zyklon von der groben Staub- und Aschelast befreit. Anschließend muss das ca. 800°C heiße Produktgas gekühlt werden, da im nachfolgenden Gewebefilter die Temperatur höchstens 250°C betragen darf. Im Produktgasfilter werden feine Partikel < 0,5 µm abgeschieden. Danach erfolgt die Produktgaswäsche in einer Kolonne mit strukturierten Packungen zur Oberflächenvergrößerung und Verbesserung des Stoffüberganges. Das Produktgas strömt im Gegenstromverfahren von unten nach oben durch die Kolonne, die Waschflüssigkeit (z.B. RME – Rapsmethylester) wird am Kopf der Kolonne aufgegeben und fließt dann nach unten. Der Wäscher dient hautsächlich zur Entfernung der Teere, aber auch für Alkalien, Stickstoffund Schwefelverbindungen und zur Kondensation des Wasserdampfes. Nur bei nachfolgenden Synthesereaktionen erfolgt abschließend die notwendige Feinreinigung durch Adsorption der Schwefel- und Chlorverbindungen.

2.3 Elektrolyse

Die Wasserelektrolyse ist ein Verfahren zur Erzeugung von Wasserstoff (H_2) aus Wasser (H_2O). Dabei wird durch den Einsatz von elektrischem Strom Wasser elektrolytisch in seine Komponenten Wasserstoff und Sauerstoff (O_2) zerlegt.

$$H_2O_{(l)} \xrightarrow{\Delta H_R} H_{2(g)} + \frac{1}{2}O_{2(g)} \qquad \Delta H^0_{R,298} = 285,82 \text{ kJ/mol}^{[10]}$$

Die zur Spaltung von 1 Mol Wasser benötigte Energie unter Standardbedingungen (25°C und 1bar) entspricht genau der Bildungsenthalpie des flüssigen Wassers und beträgt $\Delta H_{R,298}^0 = 285,82 \text{ kJ/mol}$. Ein Teil dieser Reaktionsenthalpie lässt sich gemäß zweitem Hauptsatz der Thermodynamik als thermische Energie aufbringen. Entsprechend der Definition der Gibbs-Funktion liegt diese Energiemenge maximal beim Produkt aus thermodynamischer Temperatur *T* und Reaktionsentropie ΔS_R .^[10]

$$\Delta H_R = \Delta G_R + T \cdot \Delta S_R^{[11]}$$

Der minimale Anteil von ΔH_R der als elektrische Energie zur Verfügung gestellt werden muss, entspricht der freien Reaktionsenthalpie im Standardzustand.^[10]

$$\Delta G_{R,298}^{0} = \Delta H_{R,298}^{0} - T \cdot \Delta S_{R,298}^{0} = 285,82 \frac{\text{kJ}}{\text{mol}} - 298,15K \cdot 0,1633 \frac{\text{kJ}}{\text{mol} \cdot \text{K}} = \frac{237,12 \frac{\text{kJ}}{\text{mol}}}{237,12 \frac{\text{kJ}}{\text{mol}}}$$

Daraus kann die minimal erforderliche elektrische Zellspannung zur Wasserelektrolyse U_{rev} mithilfe der Anzahl der ausgetauschten Elektronen n und der Faraday-Konstante F berechnet werden.^[10]

$$U_{rev} = \frac{\Delta G_{R,298}^0}{n \cdot F} = \frac{237,12 \cdot 10^3 \text{ J/mol}}{2 \cdot 96.485 \text{ C/mol}} = \frac{1,23 \text{ V}}{2 \cdot 96.485 \text{ C/mol}}$$

Dies gilt jedoch nur, wenn die maximal mögliche thermische Energie in Form von Wärme in den Prozess eingebracht wird. Wird ΔH_R zur Gänze in Form von elektrischer Energie aufgebracht, lässt sich die thermo-neutrale Spannung U_{th} ermitteln.^[10]

Einhergehend dazu lässt sich auch der Heizwert H_U bzw. Brennwert H_O von Wasserstoff aus der Reaktionsenthalpie bzw. der freien Reaktionsenthalpie im Normzustand mittels des molaren Normvolumens $V_{N,m} = 22,41 \cdot 10^{-3} \text{ m}^3/\text{mol}^{[11]}$ ermitteln.

$$H_U = \frac{\Delta G_{R,298}^0}{V_{N,m}} = \frac{237,12 \text{ kJ/mol}}{22,41 \cdot 10^{-3} \text{ m}^3/\text{mol}} = 10581,25 \frac{\text{kJ}}{\text{Nm}^3} = \frac{2,94 \frac{\text{kWh}}{\text{Nm}^3}}{22,94 \frac{\text{kWh}}{\text{Nm}^3}}$$

$$H_{O} = \frac{\Delta H_{R,298}^{0}}{V_{N,m}} = \frac{285,82 \text{ kJ/mol}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{22,41 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{2,54 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = 12753,94 \frac{\text{kJ}}{\text{Nm}^{3}} = \frac{3,54 \frac{\text{kWh}}{\text{Nm}^{3}}}{2,54 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = \frac{3,54 \frac{\text{kWh}}{10^{-3} \text{ m}^{3}/\text{mol}}}{2,54 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = \frac{3,54 \frac{\text{kWh}}{10^{-3} \text{ m}^{3}/\text{mol}}}{2,54 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = \frac{3,54 \frac{\text{kWh}}{10^{-3} \text{ m}^{3}/\text{mol}}}{2,54 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = \frac{3,54 \frac{\text{kWh}}{10^{-3} \text{ m}^{3}/\text{mol}}}{2,54 \cdot 10^{-3} \text{ m}^{3}/\text{mol}} = \frac{3,54 \frac{\text{kWh}}{10^{-3} \text{ m}^{3}/\text{mol}}}{2,54 \cdot 10^{-3} \text{ m}^{3$$

Die Temperaturabhängigkeit des Energieverbrauchs für die Elektrolyse ist in Abbildung 10 zu sehen. Darin aufgetragen sind die notwendige Energie bzw. Spannung im Bereich von 0 bis

1000°C. Man kann erkennen, dass die minimal erforderliche elektrische Energie ΔG_R^0 , welche der reversiblen Zellspannung U_{rev} direkt proportional ist, mit steigender Temperatur sinkt. Im Vergleich mit den 237,12 kJ/mol im Standardzustand, liegt ΔG_R^0 bei 1000°C bei lediglich 177,26 kJ/mol. Die maximal mögliche thermische Energiebereitstellung zur Elektrolyse wird in der Grafik als ΔQ_{max} bezeichnet und entspricht der Differenz aus ΔH_R^0 und ΔG_R^0 . Mit höher werdender Elektrolysetemperatur kann ein immer größer werdender Anteil der aufzubringenden Reaktionsenthalpie thermisch bereitgestellt werden. Weiters ist in der Grafik bei 100°C ein Knick zu beobachten. Dieser resultiert aus der Änderung des Aggregatzustandes des Wassers und liegt betragsmäßig genau bei der Verdampfungsenthalpie des Wassers bei einem Druck von 1 bar von 40,88 kJ/mol bzw. 2268 kJ/kg.

Abbildung 10: Energieverbrauch der Wasserelektrolyse in Abhängigkeit der Temperatur, nach^[10]

Eine Elektrolysezelle besteht aus zwei Elektroden (Anode und Kathode), die durch einen ionenleitenden Elektrolyten getrennt sind. Auf Basis des verwendeten Elektrolyten werden, wie in Abbildung 11 dargestellt, drei relevante Arten der Wasserelektrolyse unterschieden.

Abbildung 11: Arten der Wasserelektrolyse^[10]

2.3.1 Alkalische Elektrolyse

Beim Einsatz eines flüssigen basischen Elektrolyten, in der Regel einer wässrigen Kaliumhydroxid-Lauge, spricht man von der alkalischen Elektrolyse. Diese ist die am weitesten entwickelte Elektrolyse-Technologie und seit mehreren Jahrzehnten in kommerzieller Verwendung. Übliche Betriebstemperaturen liegen bei ca. 80°C und die Modulleistungen reichen von 1-750 Nm³H₂/h bzw. Leistungsaufnahmen von 5 kW-3,4 MW. Durch Zusammenschaltung mehrerer Module zu sogenannten Stacks sind bereits Wasserstoffproduktionsraten bis 33.000 Nm³H₂/h (156 MW) bei atmosphärischen Elektrolysen und 4.700 Nm³H₂/h (22 MW) bei Druckelektrolysen realisiert worden.^[10]

Die Kosten für Elektrolyseure im MW-Bereich liegen bei ca. € 1.000 pro kW installierte elektrische Leistung mit einer erforderlichen Generalüberholung durch Tausch von Elektroden und Diaphragmen alle 7-12 Jahre.^[10]

2.3.2 PEM-Elektrolyse

Die auch als Membran-Elektrolyse bezeichnete PEM-Elektrolyse (Proton Exchange Membrane) verwendet einen protonenleitenden polymeren Festelektrolyten. Sie wird seit ca. 20 Jahren entwickelt und ist großtechnisch noch wenig erprobt. Im Gegensatz zur alkalischen Elektrolyse werden für die meist direkt auf der Membran angebrachten Elektroden Platingruppenmetalle verwendet. Diese Edelmetalle bzw. deren Oxide sind aufgrund des hohen Anodenpotentials und des sauren, protonenleitenden Ionomers erforderlich. Kathodenseitig kommt meist Platin zum Einsatz, als Anodenkatalysator für eine optimale Sauerstoffentwicklung hat sich IrO₂ etabliert.^[10]

Der Vorteil der PEM-Elektrolyse gegenüber der alkalischen Elektrolyse liegt vor allem im größeren Teillastbereich, der bei technischen Anlagen mit ca. 5% der nominalen Leistung abgeschätzt wird. Von Nachteil ist die mit lediglich 50.000 h angegebene Lebensdauer. Als Leistungsobergrenze kann aktuell das von der Firma HYDROGENICS entwickelte Modul mit einer Leistungsaufnahme von 1 MW angegeben werden.^[10]

2.3.3 Hochtemperatur-Elektrolyse

Aus thermodynamischer Sicht und auch aufgrund der schnelleren Kinetik ist die Hochtemperatur-Elektrolyse eine sehr vielversprechende Technologie. Sie befindet sich jedoch erst im Entwicklungsstadium. Wie aus Abbildung 10 zu entnehmen fällt der Gesamtelektrizitätsbedarf ΔG_R mit steigender Temperatur deutlich, da ein immer größer werdender Anteil des Energiebedarfs durch Hochtemperaturwärme ΔQ_{max} abgedeckt werden kann.^[10]

Als Elektrolyt für die Hochtemperatur-Elektrolysezelle, auch SOEC (Solid Oxid Electrolysis Cell), dient als Festoxid meist Yttrium-stabilisiertes Zirkonoxid (YSZ). Von den Forschungsarbeiten im Bereich der Hochtemperatur-Brennstoffzelle, SOFC (Solid Oxid Fuel Cell), profitierte die SOEC erheblich, da fast alle Festoxid-Zellen grundsätzlich umkehrbare Zellen sind und je nach Betriebsart als SOEC oder SOFC eingesetzt werden können. Dennoch besteht weiterer Entwicklungsbedarf in den Bereichen Elektrodenmaterial-optimierung, Langzeitstabilität und Heizwärmebereitstellung.^[10]

2.4 Methanisierung

Herzstück der SNG-Herstellung (Substitute Natural Gas) aus Überschussstrom und einer Kohlenstoffquelle ist die Methanisierung. Der chemische Prozess, auch nach seinem Entdecker Paul Sabatier als Sabatier-Prozess bezeichnet, besteht aus zwei reversiblen Gleichgewichtsreaktionen, der umgekehrten Wassergas-Shift-Reaktion und der CO-Methanisierung.^[2]

$$CO_{2} + H_{2} \rightarrow CO + H_{2}O \qquad \qquad \Delta H^{0}_{R,298} = +41,5 \text{ kJ/mol}^{[3]}$$

$$CO + 3 H_{2} \rightarrow CH_{4} + H_{2}O \qquad \qquad \Delta H^{0}_{R,298} = -206,4 \text{ kJ/mol}^{[3]}$$

Bei der umgekehrten Wassergas-Shift-Reaktion reagiert der Wasserstoff (H₂) in einer leicht endothermen Reaktion mit dem Kohlendioxid (CO₂) zu Kohlenmonoxid (CO) und Wasserdampf (H₂O). Dieser Schritt ist notwendig, um das schwach reaktive CO₂ in das weitaus reaktivere CO überzuführen, welches im nächsten Teilschritt hydriert werden kann. In dieser Hauptreaktion, der CO-Methanisierung, bildet das CO mit der dreifachen Menge an H₂ das gewünschte Endprodukt Methan und als Nebenprodukt H₂O.^[2]

Insgesamt ergibt sich für die stark exotherme CO₂-Methanisierung:

$$CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$$
 $\Delta H^0_{R,298} = -164.9 \text{ kJ/mol}^{[3]}$

Die Temperaturabhängigkeit dieser Gesamtreaktion unter Umgebungsdruck ist in Abbildung 12 dargestellt. Darin über der Temperatur aufgetragen sind die freie Reaktionsenthalpie ΔG_R^0 sowie die Gleichgewichtskonstante der Reaktion *K*. Diese stehen mit der thermodynamischen Temperatur *T* und der universellen Gaskonstante $R = 8,314 \text{ J/(mol} \cdot \text{K})^{[11]}$ in folgendem Zusammenhang:

$$K = \exp\left(\frac{-\Delta G_R^0}{R \cdot T}\right) [12]$$

Bis zu einer Temperatur von ca. 589°C liegt das Gleichgewicht der Methanisierungsreaktion auf der Produktseite, was aus der Gleichgewichtskonstante größer 1 bzw. der freien Reaktionsenthalpie von kleiner 0 vernommen werden kann. Bei K = 1 bzw. $\Delta G_R^0 = 0$ entspricht die im Gleichgewicht vorhandene Stoffmenge der Edukte genau der Stoffmenge der Produkte. Ist ΔG_R^0 kleiner als Null, wird die Reaktion als exergone Reaktion (thermodynamisch günstig) bezeichnet, bei größer Null als endergone Reaktion (thermodynamisch ungünstig).^[12]

Das Ziel der Methanisierungsreaktion ist es, Methan zu erzeugen und demnach soll das Gleichgewicht möglichst vollständig auf der Produktseite liegen. Die Gleichgewichtskonstante steigt mit sinkender Temperatur exponentiell an, weshalb bei lediglicher Betrachtung der Gleichgewichtsreaktion die Temperatur für die CO₂-Methanisierung so gering wie möglich gehalten werden soll.

Bei Miteinbeziehung der Reaktionskinetik stößt man auf das mit der Arrhenius-Gleichung^[12] beschreibbare Phänomen, dass die Reaktionsgeschwindigkeit mit steigender Temperatur zunimmt. Demnach verhalten sich Gleichgewicht und Reaktionskinetik konträr. Durch den Einsatz eines Katalysators, welcher die Geschwindigkeit der Reaktion erhöht ohne selbst dabei verbraucht zu werden, lässt sich der Umsatz auch bei niedrigeren Temperaturen beschleunigen, ohne dabei das Gleichgewicht der Reaktion zu beeinflussen.

Als Katalysatormaterial dient aufgrund von guter Verfügbarkeit und des relativ günstigen Preises Nickel mit Promotoren und Stabilisatoren wie Aluminiumoxid bzw. Zirconiumdioxid, aber auch die Verwendung von Ruthenium, Rhodium, Platin, Eisen und Kobalt ist möglich. Der Katalysator ist hochempfindlich gegenüber Gasverunreinigungen wie etwa Schwefelverbindungen H₂S, COS bzw. gegen Schwermetalle, Chlor oder organischen Schwefel. Eine Verunreinigung mit diesen Substanzen hätte eine Deaktivierung des Katalysators zur Folge. Demnach ist die Gasreinigung und -aufbereitung vor der Methanisierung von großer Bedeutung für einen störungsfreien Betrieb.^[2]

Da es bei der CO₂-Methanisierungsreaktion zu einer Molzahländerung von 5 Gasmolekülen auf der Eduktseite auf 3 Gasmoleküle auf der Produktseite kommt, ist die Reaktion nach Le Châtelier-Braun neben temperatur- auch druckabhängig.^[12] Eine Erhöhung des Drucks führt dazu, dass das System auf die volumenkleinere Seite, also der Seite mit einer geringeren Anzahl an Molekülen, ausweicht. Aufgrund dieses Prinzips des kleinsten Zwanges ist die Methanbildung bei Druckerhöhung begünstigt.

2.4.1 Reaktordesign

Methanisierungsreaktoren werden großtechnisch üblicherweise bei Temperaturen von 200-600°C und einem Druck von 20-80 bar betrieben. Temperaturen unter 200°C sind zu vermeiden, da es sonst zur Bildung des Katalysatorgifts Nickeltetracarbonyl kommt.^[2]

Den Stand der Technik im Reaktordesign bilden einerseits Festbettreaktoren (nach LURGI oder TREMP) bzw. auf der anderen Seite die auf dem COMFLUX-Verfahren basierenden Wirbelschichtreaktoren.

Festbett-Methanisierung

Die Firma Haldor Topsøe vertreibt das in Abbildung 13 dargestellte TREMP-Verfahren (Topsøe's Recycle Methanation Process) zur Methanisierung. Dieses setzt sich aus drei adiabaten Festbettreaktoren zusammen, in welchen jeweils nur ein Teil des Eduktgases Graf Stefan Wintersemester 2014/15 Seite 27 von 114

umgesetzt wird. Als Katalysator kommt der Typ Topsøe MCR zum Einsatz, welcher in Temperaturbereichen von 250°C bis 700°C stabil funktioniert.^[13]

Abbildung 13: Schema des TREMP-Prozesses zur Methanisierung^[2]

In Tabelle 7 aufgelistet ist eine typische Gaszusammensetzung nach dem TREMP-Verfahren. Durch Vergleich mit den Einspeisekriterien für Erdgas in Österreich (siehe Tabelle 8 und Tabelle 9) folgt, dass der Brennwert außerhalb des Toleranzbereiches liegt. Auch der CH₄-Anteil befindet sich nur zum Teil innerhalb des gesetzlichen Grenzwertes (> 96 Vol.-%). Demnach ist eine Einspeisung dieses Gases in das Erdgasnetz nicht unmittelbar möglich.

CH ₄	in Vol%	94 - 98
CO ₂	in Vol%	0,2 - 2
H ₂	in Vol%	0,05 - 2
CO	in Volppm	< 100
N ₂ + Ar	in Vol%	2 - 3
Brennwert	in kWh/Nm ³	10,4 - 10,7

Tabelle 7: SNG-Zusammensetzung bei Produktion nach dem TREMP-Prozess^[13]

Wirbelschicht-Methanisierung

Der Vorteil von Reaktionen in der Wirbelschicht gegenüber denen im Festbett besteht darin, dass aufgrund der guten Feststoffdurchmischung im gesamten Reaktor nahezu konstante Temperaturen vorliegen. Gerade bei Synthesereaktionen wie der Methanisierung ist diese isotherme Arbeitsweise für einen stabilen Betrieb und eine hohe Produktqualität notwendig. Desweiteren ist die Methanisierungsreaktion stark exotherm und die abzuführende Wärmemenge deshalb sehr groß. Durch den hervorragenden Wärmeübergang zwischen Bettmaterial und Wärmetauscherflächen lässt sich der Abtransport der Reaktionswärme optimal realisieren.^[14]

Ein solches Reaktorkonzept wurde auch bei der BioSNG-Demonstrationsanlage mit einer Leistung von 1MW am Biomassekraftwerk Güssing verwendet und erfolgreich erprobt.^[15]

2.5 Netzeinspeisung und Speicherung

Um das bestehende Erdgasnetz für die Einspeisung von Power-to-Gas-SNG nutzen zu können, sind die vom Gesetzgeber festgelegten Anforderungen an die Gasqualität zu erfüllen. In Österreich ist dazu die ÖVGW Richtlinie G 31 "Erdgas in Österreich – Gasbeschaffenheit"^[16] maßgebend. Sie definiert jene Qualitätsanforderungen, die für die Einspeisung und den Transport von Erdgas notwendig sind. Die in Tabelle 8 aufgelisteten Kriterien enthalten zum einen brenntechnische Kenndaten und zum anderen Grenzwerte von eventuell vorhandenen Gasbegleitstoffen.

Brenntechnische Kenndaten				
1)	Wobbe-Index	13,3 - 15,7 kWh/m ³		
2)	Brennwert	10,7 - 12,8 kWh/m ³		
3)	Relative Dichte	0,55 - 0,65		
	Gasbegleit	tstoffe		
4)	Kohlenwasserstoffe: Kondensationspunkt	maximal 0°C beim Betriebsdruck		
5)	Wasser: Kondensationspunkt	maximal -8°C bei einem Druck von 40 bar		
6)	Sauerstoff (O ₂)	< 0,5 Vol%		
7)	Kohlenstoffdioxid (CO ₂)	< 2 Vol%		
8)	Stickstoff (N ₂)	< 5 Vol%		
9)	Wasserstoff (H ₂)	< 4 Vol%		
		auf Dauer < 10 mg S/m ³		
10) Gesamtschwefel	im Jahresmittel < 30 mg S/m ³			
		in Störfällen kurzzeitig < 150 mg S/m ³		
11)	Mercaptanschwefel	< 6 mg S/m ³		
12)	Schwefelwasserstoff (H ₂ S)	< 5 mg/m ³		
13)	Kohlenstoffoxidsulfid (COS)	< 5 mg/m ³		
14)	Halogenverbindungen	0 mg/m ³		
15)	Ammoniak (NH ₃)	technisch frei		
16)	Fest- und Flüssigbestandteile	technisch frei		

 Tabelle 8: Erdgas-Qualitätskriterien nach ÖVGW Richtlinie G 31^[16]

Für die Einspeisung von SNG aus regenerativen Quellen sind die nach ÖVGW Richtlinie G B220 "Regenerative Gase – Biogas"^[17] in Tabelle 9 angegebenen Gasqualitätsanforderungen zusätzlich zur ÖVGW Richtlinie G 31 einzuhalten.

Tabelle 9: Zusätzliche Gasqualitätsanforderungen nach ÖVGW Richtlinie G B220^[17]

17)	Methan (CH ₄)	> 96 Vol%
18)	Gesamtsilizium (Siloxane, Silane)	< 5 mg/m ³

2.5.1 SNG-Aufbereitung

Um den Kriterien zur Einspeisung von SNG in das Erdgasnetz Genüge zu leisten, sind nach der Methanisierung in der Regel noch weitere Aufbereitungsstufen notwendig. Ziel davon ist eine CH₄-Anreicherung des Gases durch Abtrennung von meist H₂O-, CO₂- und H₂. Aufgrund des hohen Aufwandes für jede zusätzliche Stufe, wurde für diese Arbeit ein Minimum an Aufbereitungsprozessen gefordert. Deshalb wird in weiterer Folge nur ein Kondensator mit anschließender Glykol-Trocknung zur Entfernung von H₂O vorgesehen. Um die SNG-

Einspeisekriterien zu erfüllen, sind demnach die Anforderungen an Gasqualität nach der Methanisierung höher, da anschließend nur mehr eine Wasserabtrennung erfolgt.

Der letzte Prozessschritt vor der SNG-Einspeisung ins Netz ist eine nach ÖVGW-Richtlinie G79^[18] notwendige Odorierung des Gases. Dabei wird dem Gas eine intensiv riechende, organische Chemikalie zugesetzt. Dies dient als Sicherheitsmaßnahme für Gaskunden, um mögliche Gasaustritte frühzeitig durch den charakteristischen Geruch zu erkennen.

2.5.2 Erdgasspeicherung

Bei der unterirdischen Erdgasspeicherung kann zwischen Poren-, Kavernen oder Aquiferspeichern unterschieden werden. Porenspeicher, wie in Abbildung 14 dargestellt, sind ausgeförderte Erdgaslagerstätten, bei denen das Erdgas in porösem Gestein, vergleichbar mit einem steinernen Schwamm, gelagert wird. Kavernenspeicher sind künstlich erzeugte, unterirdische Hohlräume. Zur Herstellung dieser wird durch Bohrungen Wasser in Steinsalzschichten gepumpt, das Salz darin gelöst, die Sole nach oben befördert und somit ein als Speicher dienender Hohlraum geschaffen. Aquiferspeicher sind ebenfalls Porenspeicher, bei denen sich jedoch statt Gas Wasser in den Poren befindet und durch das zu speichernde Erdgas verdrängt wird.^[19]

Der gesamte Gasinhalt eines Speichers setzt sich aus Arbeitsgas- und Kissengasvolumen zusammen. Als Arbeitsgas wird der für Speicherung und Entnahme nutzbare Erdgasanteil im Speicher bezeichnet. Das Kissengas dient zur Aufrechterhaltung des Druckniveaus im Erdgasspeicher und gewährleistet die gewünschten Entnahmeraten aus dem Speicher.^[20]

Abbildung 14: Schema Erdgasspeicher^[19]

In Österreich erfolgt die Erdgasspeicherung zur Gänze in Porenspeichern in Tiefen von ca. 500 bis 2300 m. Im Zuge der Erdgasgewinnung wurden diese Erdgaslagerstätten umfassend untersucht und können somit als verlässliche Speicher angesehen werden.^[21]

In Tabelle 10 sind die Speicherkapazitäten für Österreich zusammengefasst. Demnach verfügt das Land über ca. 7,4 Mrd. m³ nutzbares Erdgasspeichervolumen. Der Jahresverbrauch an Erdgas in Österreich betrug It. E-Control^[22] 8,6 Mrd. m³ im Jahr 2012 und 8,1 Mrd. m³ im Jahr 2013. Demnach könnte Österreich für einen Großteil des Jahres mit Erdgas versorgt werden, wären die Speicher zu 100% gefüllt und lediglich für die österreichische Gasnutzung vorgesehen.

Mit einem Brennwert von ca. 40 MJ/m³ ergibt sich aus dem Speichervolumen eine gesamt speicherbare Energiemenge von ca. 296 PJ, was in etwa einem Fünftel des österreichischen Gesamtprimärenergieverbrauchs von 1.420 PJ (Daten von 2012)^[23] entspricht.

Speicherunter- nehmen/Speicher	Einspeicher- rate in m ³ /h	Anteil an gesamter Einspeicher- rate	Entnahme- rate in m ³ /h	Anteil an gesamter Entnahme- rate	Arbeitsgas volumen in Mio. m ³	Anteil an gesamtem Arbeitsgas- volumen
OMV-Schönkirchen	650.000		960.000		1.780	
OMV-Tallesbrunn	125.000		160.000		400	
OMV-Thann	115.000		130.000		250	
OMV Speicher gesamt	890.000	30,8%	1.250.000	35,2%	2.430	32,9%
RAG-Puchkirchen	520.000		520.000		1.080	
RAG-Haidach 5	20.000		20.000		16	
RAG-Aigelsbrunn	50.000		50.000		100	
RAG Speicher gesamt	590.000	20,5%	590.000	16,6%	1.196	16,2%
Astoria-Haidach	333.333	11,6%	366.667	10,3%	867	11,7%
Gazprom-Haidach	666.667	23,1%	733.333	20,7%	1.733	23,5%
Eon-Gas-Storage- 7fields	405.000	14,0%	607.000	17,1%	1.165	15,8%
Summe	2.885.000	100,0%	3.547.000	100,0%	7.391	100,0%

Tabelle 10: Gasspeicherkapazitäten in Österreich^[24]

Laut einer Studie der deutschen Rohstoffagentur über Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen^[25] verfügt Österreich über Erdgasreserven, also nachgewiesenen und mit heutiger Technik wirtschaftlich gewinnbaren Rohstoffen, von 16 Mrd. m³ und Erdgasressourcen, bei denen zurzeit noch keine wirtschaftliche Förderung möglich ist, von 820 Mrd. m³.

Da diese Erdgaslagerstätten potentielle zukünftige Erdgasspeicher darstellen und ein weiterer Ausbau der österreichischen Speicherkapazitäten von offizieller Seite zugesichert wird^[21], stellt die Verfügbarkeit von Speichern für das Power-to-Gas-SNG letztlich keine Limitierung dar. Lediglich durch die zusätzliche Nutzung der jetzigen Erdgasreserven Österreichs als Speicher ergibt sich eine speicherbare Energiemenge von ca. 976 PJ.

3 PROZESSENTWICKLUNG

Der Kern dieser Arbeit besteht darin, einen optimalen Prozess zu entwickeln, der durch intelligente Kopplung von Biomasse und Windenergie einspeisefähiges SNG liefert. Dazu sollen die in Kapitel 2 vorgestellten Technologien so verknüpft werden, um die bestmögliche Performance, respektive den größtmöglichen Wirkungsgrad für die Methanproduktion, zu erreichen.

Biomassevergasung

Ausgehend von der im Lieferzustand relativ feuchten Biomasse (Wassergehalt ca. 40%) ist zuerst eine Biomassetrocknung zur Wirkungsgradsteigerung vorgesehen. Je höher der Wassergehalt im Brennstoff ist, desto mehr Wasser muss im Vergasungsprozess verdampft werden. Durch diesen endothermen Prozess sinkt der Kaltgaswirkungsgrad, also das Verhältnis der chemischen Energie in Produktgas und Brennstoff. Dies ist in Abbildung 15 für eine Zweibett-Wirbelschichtanlage dargestellt, wobei der Kaltgaswirkungsgrad bei einem Brennstoffwassergehalt von ca. 68% gleich Null wird. Zur Aufrechterhaltung des Vergasungsprozesses muss dabei das gesamte Produktgas in den Verbrennungsreaktor rückgeführt werden und es kann Netto kein Produktgas bereitgestellt werden.^[26]

Abbildung 15: Einfluss Wassergehalt im Brennstoff auf Kaltgaswirkungsgrad^[26]

Anschließend erfolgt die Biomassevergasung in zwei verschiedenen Prozessvarianten. In der ersten Prozesskette (Abbildung 17) wird eine autotherme Dampf-Vergasung mit Sauerstoff in einer Einbett-Wirbelschichtanlage durchgeführt. In der zweiten Prozesskette (Abbildung 18) wird anstelle der autothermen Vergasung eine allotherme Vergasung in der Zweibett-Wirbelschichtanlage, wie sie beispielsweise auch beim Biomassekraftwerk Oberwart eingesetzt wird, verwendet. Dabei erfolgen die Dampf-Vergasung der Biomasse im Vergasungsreaktor und die Wärmebereitstellung durch das umlaufende Bettmaterial. Im Verbrennungsreaktor wird Koks aus dem Vergasungsreaktor mit Sauerstoff und einem Produktgaszuschuss verbrannt.

Produktgasreinigung

Das aus der Vergasung stammende Rohgas muss für eine weitere Verwendung gereinigt werden. Dafür soll die in Kapitel 2.2 vorgestellte Prozesskette verwendet werden. Der in Abbildung 9 dargestellte Zyklon kann je nach Wirbelschichtdesign (zirkulierend bzw. blasenbildend) bereits Teil der Vergasungseinheit sein. Für die anschließende Staubabscheidung im Gewebefilter ist zuerst eine Produktgaskühlung auf eine Temperatur von ca. 150°C notwendig. Anschließend erfolgt die Abscheidung von Flugasche und Koks im Produktgasfilter. Der Produktgaswäscher dient primär der Entfernung von Teeren, also einem Gemisch von höheren Kohlenwasserstoffen, aber auch der Kondensation von Wasserdampf durch Betriebstemperaturen des Wäschers von ca. 40°C. Auch das bei der Vergasung aus dem Brennstoffstickstoff entstehende NH₃ wird teilweise entfernt. Die anschließende Feinreinigung des Produktgases von den HCI- und H₂S-Verunreinigungen erfolgt nach dem Hydrodesulphurisationsverfahren.^[27]

Polygeneration

Wird ein Polygenerationprozess angestrebt, d.h. neben der Methanproduktion ebenfalls eine Bereitstellung von Strom und Wärme, kann anschließend Reingas entnommen und einem Gasmotor mit zugehörigem Generator zugeführt werden. Eine Stromproduktion soll dann erfolgen, wenn Windflaute herrscht, die Elektrolyseeinheit nicht betrieben werden kann und demnach kein Wasserstoff für die Methanisierung zur Verfügung steht. Daraus resultiert ein Synergieeffekt für das Stromnetz, da in Zeiten geringer Stromproduktion durch Windenergie der mit Produktgas aus der Biomassevergasung betriebene Gasmotor einspringt und gerade bei Strombedarf Energie ins Netz liefert.

Durch die Elektrolyse wird ein Überschuss an Sauerstoff produziert. Demnach muss im Prozess ein O_2 -Speicher vorgesehen werden. Beim Betrieb des Gasmotors kann aus diesem Speicher Sauerstoff für die Verbrennung entnommen werden. Dadurch bleibt das Abgas des Motors frei von Stickstoff und besteht hauptsächlich aus CO_2 und H_2O . Der Wasserdampf kann in einem Kondensator abgetrennt und nahezu reines CO_2 als Kohlenstoffquelle für die Methanisierung gespeichert werden. Beim Betrieb des Gasmotors muss beachtet werden, dass eine Verbrennung mit reinem Sauerstoff mit hohen Verbrennungstemperaturen verbunden ist. Die maximal zulässigen Temperaturen sind jedoch durch die im Gasmotor verwendeten Materialien beschränkt. Deshalb wird ein Teil des Abgases aus dem Gasmotor rezykliert und als Inertgas für den Verbrennungsvorgang, ähnlich der Funktion von Stickstoff bei Oxidationsvorgängen mit Umgebungsluft, verwendet. Das Verbrennungsgas wird so eingestellt, dass sich darin ein Sauerstoffanteil von ca. 21 Vol.-% ergibt. Es muss jedoch beachtet werden, dass CO_2 und N_2 unterschiedliche thermodynamische Eigenschaften besitzen und die Substitution letztlich nur nach näherer Untersuchung erfolgen kann.

Dadurch, dass das CO₂ gespeichert und im Bedarfsfall für die Methanisierung verwendet wird, fällt im gesamten Prozess kein Abgas an und Biomasse könnte somit ohne Anfall von Schadstoffemissionen verstromt werden. Dies ist ein äußerst positiver Nebeneffekt und wird dem stärker werdenden gesellschaftlichen Wunsch nach "sauberen" Kraftwerken gerecht.

<u>Elektrolyse</u>

Als Elektrolysetechnologie für die Wasserstoffbereitstellung soll die zurzeit intensiv weiterentwickelte PEM-Elektrolyse^[28] verwendet werden. Die Firma HYDROGENICS bietet Elektrolyseure an, die durch Zusammenschluss von mehreren Modulen im MW-Bereich zur

erforderlichen Leistungsklasse erweitert werden können.^[29] Der Betrieb eines Elektrolyseurs erfordert zur Wasserspaltung demineralisiertes Wasser. Demnach ist vor dem Elektrolyseur eine Entsalzungsanlage zur vollständigen Entfernung der im Leitungswasser vorhandenen Mineralien anzuordnen. Es werden aber auch bereits Elektrolyseure mit integrierter Entsalzungsanlage angeboten.^[29]

Für den Betrieb des Elektrolyseurs ist ein Kühlwasserkreislauf mit Kühlwassereintrittstemperaturen kleiner 40°C erforderlich. Der Elektrolyseur liefert Wasserstoff und Sauerstoff bei einem Druck von ca. 30 bar und einer Temperatur von ca. 80°C.^[29]

Aufgrund der Reaktionsstöchiometrie der Wasserelektrolyse entsteht bei der Spaltung von 9 kg Wasser 1 kg Wasserstoff und 8 kg Sauerstoff. Der Sauerstoff findet im Prozess Verwendung als Oxidationsmittel im Vergasungs- bzw. Verbrennungsreaktor und im Gasmotor. Aufgrund der großteils zeitlich versetzten Verbrennung im Gasmotor, ist ein O₂-Speicher vorzusehen. Da die in der Elektrolyse produzierte Sauerstoff-Menge die im Prozess benötigte übersteigt, ist ein Sauerstoff-Export möglich.

Der aus der Elektrolyse kommende Wasserstoff wird mit dem von Verunreinigungen befreiten Produktgas dem Methanisierungsreaktor zugeführt.

<u>Methanisierung</u>

Wie in Kapitel 2.4 beschrieben, sind die optimalen Reaktionsbedingungen für die Methanisierung eine möglichst geringe Temperatur und hoher Druck. Aufgrund von Kinetik und Vermeidung von Katalysatorvergiftung liegt die Minimaltemperatur bei 200°C. Bei solch geringen Temperaturen ist der Einfluss des Boudouard-Gleichgewichts auf den Methanisierungsvorgang zu beachten.^[30]

Abbildung 16 zeigt, dass bei Temperaturen unter 350°C das Gleichgewicht der stark endothermen Boudouard-Reaktion vollständig auf der Eduktseite liegt. Die Folgen davon sind Ablagerungen von festem Kohlenstoff im Reaktor und am Katalysator. Durch die bei Anwesenheit von ungesättigten Kohlenwasserstoffen im Gasstrom. der Biomassevergasung bis zu 3 Vol.-%, tritt dieser Effekt verstärkt auf. Die Feststoffbildung ist vor allem bei Festbettreaktoren sehr problematisch und kann zu Betriebsproblemen führen. Durch den Einsatz eines auf dem COMFLUX-Verfahren aufbauenden Wirbelschichtreaktors, entwickelt vom Schweizer Paul-Scherrer Institut, kann diese Problematik vermieden werden.^[31]

Weiters ist eine optimale Temperatureinstellung für die Methanisierung bei Wirbelschichtreaktoren sehr gut möglich. Es kommt zu keiner Ausbildung von heißen Stellen im Reaktor, welche Sintervorgänge hervorrufen könnten. Desweiteren ist für die Wassergas-Shift-Reaktion kein separater Reaktor erforderlich, da sämtliche Reaktionen in einem Reaktor ablaufen.^[15]

Ein hoher Druck im Reaktor wirkt sich äußerst negativ auf den Wirkungsgrad der gesamten Prozesskette aus. Der Konsens besteht darin, bei möglichst niedrigem Druck eine hohe Methanausbeute zu erzielen. Wie von Rehling^[15] beschrieben, wurden Versuche bei 2,9 bar erfolgreich durchgeführt.

Zusammengefasst soll für die Methanisierung ein Wirbelschichtreaktor bei einem Druck von 2,9 bar und einer Temperatur von 200°C betrieben werden.

Gasaufbereitung zur Erdgasqualität

Um das Produkt der Methanisierung in das Erdgasnetz einspeisen zu können, ist eine Entfernung des Wasserdampfes notwendig. In einem Kondensator soll zuerst der Großteil des Wasserdampfes niedergeschlagen und im Anschluss mittels Glykol-Trocknung die noch vorhandene Restfeuchtigkeit entfernt werden. Abschließend erfolgt die Odorierung des SNG-Produktes.

In Abbildung 17 und Abbildung 18 sind die Grundfließbilder der beschriebenen zwei Prozessketten dargestellt. Diese dienen als Grundlage für den Aufbau der Prozess-Simulation.

4 MODELLIERUNG UND SIMULATION

Die in Kapitel 3 entwickelte Prozesskette mit der Einbett-Wirbelschicht-Dampfvergasung soll nachfolgend in einem Fließbildsimulationsprogramm abgebildet werden, um Massen- und Energiebilanzen erstellen und den Prozess durch Simulationsrechnungen optimieren zu können. Aus der Prozess-Simulation sollen in weiterer Folge Performancekennzahlen berechnet werden. Die Prozesskette mit Zweibett-Wirbelschicht ist Gegenstand von anderen Forschungsarbeiten am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften und soll demnach in weiterer Folge nicht näher untersucht werden.

4.1 Grundlagen der Prozess-Simulation

Bei der Prozess-Simulation wird ein neuer oder schon bestehender Prozess in einem Modell nachgebildet, um durch die Simulation dessen Verhalten vorausberechnen oder optimieren zu können. Dadurch sind rasche Untersuchungen kostengünstig möglich, welche ansonsten nur unter erheblich höherem Arbeits-, Kosten- und Zeitaufwand realisiert werden könnten.^[32]

Als Software für die Prozess-Simulation wurde für diese Arbeit das kommerziell erhältliche IPSEpro (Integrated Process Simulation Environment) der Grazer Firma SimTech (Simulation Technology) ausgewählt. Die Kernfunktion dieses Softwarepakets ist die numerische Berechnung von Massen- und Energiebilanzen. Verwendung findet es vor allem bei der thermodynamischen Simulation von stationären Kraftwerksprozessen. Die Simulationsergebnisse beinhalten neben den Massen- und Energieströmen im gesamten Prozess, die chemische Zusammensetzung sämtlicher Stoffströme.

Abbildung 19: IPSEpro PSE (Process Simulation Environment)

IPSEpro besteht aus zwei Hauptkomponenten, der Simulationsumgebung PSE und der Modellentwicklungsumgebung MDK. Im PSE (Process Simulation Environment, siehe Abbildung 19) können Fließbilder erstellt und Simulationsrechnungen durchgeführt werden. Das MDK (Model Development Kit, siehe Abbildung 20) dient zur Entwicklung von eigenen,

nicht in der Standard-Softwarebibliothek vorhandenen Modellen. Darüber hinaus verfügt die Software über umfangreiche Stoffdatenbanken, welche über DLLs (dynamic link libraries) aufgerufen werden können.^[33]

PSEpro-MDK - PGP_Lib_G.mdk - [PG_gasif_	0.0 (Jnit)	
Eile Edit View Build Class Mod	nt Rem Kon Options Window Help	- 8×
: 🗋 📴 🖨 🕼 🕼 🕲 🖨 🖴 오리		
AOD \K JAOA 4	原傳創希學一旦世紀	
Model Explorer # ×	PG_get#_c.o	Icon Explorer 🛛 🕸 🗙
PGP_Lib_G.mdk A	do nas kV Erdes Journal of Frides Best financial Picture Best Annual Picture Best Annu	B. R. G. G. G. G. S.
🖽 — 🧰 Globals		₹ 🕅 MOTOR
Units Original Contention	d diain ain gar M1 E Bdo> g loss rel M1 E Bdo> Calo a COthir Si>> E Bdo>	👗 GENERATOR
motor	Table fixed fuel (M Edge) Q loss (M Edge) ad ex COshift (M Edge)	
+ + O+ PG_chemeq_g	lambda M1 Edito> E loos M1 Edito> Ko C0 H20 C02 H2 (F) Edito>	(AND) PG_monitor_ambient
P	water_comv (V) Edito> PG_natio_NH3_N2_(V) Edito>	Die PG_source_ambient1 =
E +D+ Pla_comb_o E +D+ Pla_comb_o	freet_che_exh (V) Edio> P6_exit_0HON_NH3 (V) Edio>	PG_sink_ambient1
P O PG_compr_w	freet_char_pg (V) Edb> PG_natio_C0_C02 (V) Edb>	PG_sink_ambient_sta
	hed_lec_pg (M) Edito> P6_C2H4_dy (M) Edito>	Bab PG source al
E • PG_dum_w	ungstd_C_(V) Edb> PG_C2H6_dy_(V) Edb>	
+ O PG electropem	New. Delete.	tale PO_sink_gi
P		PG_monitor_g
e − +D+PG_gast_dtb Fi− +D+PG_gast_dtb	<pre>@# model Pt_gasir_0-Pt_gasir_0, wodification 21.12.2007, latest wodification 19.01.2015 (5.6781)</pre>	PG_monitor_g_M
PG_gasif_o	7 ************************************	PG_pipe_g1
□ BE PG_gast_o_gbbs □	# Model PG qasif o solves the wass and energy balances of a qasifier	A PG heat source o
	# The respective compositions of producer gas and bed material exiting the gasifier must be set.	19
PG heat sink g	# The following assumptions apply: # durat chards on cottonal Ly is fluidingtion areat (fand can)	()) PO_nest_sink_g
P P6_heat_sink_w	a data statistical principal and the function of the statistical and the statistical a	-< PG_loop_g1
 D+ PG_hest_source_g D- PG_hest_source_w 		-P- PG_splitter_g1
E PG_htex_gg	7 Energy balance	+ PG_splitter_g2
	fBmrgy: drain_gas_massilow=drain_gas_h_total + drain_ash_massilow=drain_ash_total + Q_loss=3500.0 = feed_org.massilow=feed_org.h_total + feed_org2.massilow=feed_org2.h_total + feed_gas_massilow=feed_gas.h_total;	-D- PG solitter o3
E PG_htex_co		the second second
	# Thernal power / fuel power	-L3- PG_mixer_g1
P P6_Nex_ww	fP_therm: P_therm*3600.0 = feed_org.massflow*feed_org.hbv + feed_org2.massflow*feed_org2.hbv;	-IP PG_mixer_g2
 +D+P6_n_tg +D+P6 inito 		-Q- PG_mixer_g3
B D PG_ini_wg		PG_compr_g
H PG_NOP_G	N_loss: V_loss = P_thera+q_loss_rei/100.0;	A PG compr a stage
E O- PG_loop_o	# Exergy loss	A no
E PG_mixer_g	fE loss: drain gas Exergy + drain ash Exergy + E loss = feed org Exergy + feed org? Exergy + feed gas Exergy:	H PO_turbine_g1
E PG_mixer_o		PG_htex_gg1
O PG_most_s	# Pressure drops	O PG_htex_gg2
PG_monitor_ambient	fdp_feed_gas: feed_gas.p = drain_gas.p + dp_gas;	PG_steam_ref1
E +D+ PG_monitor_o	fdp_fuel: feed_org.p = drain_gas.p + dp_fuel;	PG oxid react1
B O- PG_monitor_s		
E - O PG_oc_bbox	I encerature difference between drain ash and drain gas	PG_comp_gt +
Build Results		a x
T		*
		*

Abbildung 20: IPSEpro MDK (Model Development Kit)

Im Rahmen dieser Arbeit wurde mit der IPSEpro-Version 6.0 und der Modellbibliothek PGP_Lib (Pyrolysis and Gasification Process Library) gearbeitet. Diese ist speziell auf Vergasungsprozesse abgestimmt und ermöglicht eine Simulation moderner Biomassekraftwerke ohne der Erstellung von zusätzlichen Modellen von Apparaten oder Equipment. Für die Einbindung von Elektrolyse und Methanisierung in den Prozess ist jedoch eine Entwicklung dieser Modelle, in IPSEpro als Units bezeichnet, notwendig.

Auf Basis von Massen- und Energiebilanz sowie der Druckerhaltung, können im MDK zusätzliche Units erstellt werden. Als Erstes wird ein grafisches Symbol für die spätere Darstellung im Fließbild skizziert. Dieses Symbol wird mit den gewünschten Ein- und Ausgängen versehen. Eingänge werden als *feed* bezeichnet und als voll ausgefärbtes Quadrat dargestellt, Ausgänge als *drain* mit färbigem Rahmen und weißer Füllung. Die Farbe richtet sich nach der gewählten Stoffklasse. Im IPSEpro stehen vier Stoffkategorien zur Verfügung. Wasser/Dampf wird blau gekennzeichnet, Gemische aus idealen Gasen grün, organische Stoffe (z.B. Biomasse) violett und anorganische Feststoffe (z.B. Asche) dunkelblau.

Verschiedene Units werden im PSE über *Connections* verbunden und diese repräsentieren reale Stoff- oder Energieströme mit bestimmten Zustandsgrößen (Druck, Temperatur, Enthalpie,...). Handelt es sich bei den *Connections* um Stoffströme, so muss diesen eine chemische Zusammensetzung zugeordnet werden. Diese Zusammensetzung wird in den *Globals* für den gesamten Prozess global festgelegt und kann von mehreren Stoffströmen verwendet werden. Auch kann ein Stoffstrom mit *Globals* verschiedener Kategorien hinterlegt sein. Zum Beispiel können einem Produktgasstrom *Globals* für ein Gas und für einen Feststoff (Staub) zugewiesen werden.

Demnach ist durch die Definition von *feed* und *drain* in der Unit genau festgelegt, welche Art von *Connections* verwendet werden dürfen. Das Modell in Abbildung 20 besitzt zwei Eingänge für organische Stoffströme, einen Ein- und Ausgang für einen Gasstrom und einen Ausgang für einen anorganischen Feststoffstrom.

Als Nächstes werden im Fenster rechts neben der Unit-Skizze die zu berechnenden oder festzulegenden Variablen und extern aus der DLL-Bibliothek aufzurufende Funktionen definiert. Das Herzstück des MDK ist die *Equation Section*, wo sämtliche Gleichungen und Bilanzen für die Unit aufgestellt werden.

4.1.1 Erstellung von Bilanzen

In der Druckbilanz wird eine in der Unit auftretende Druckdifferenz Δp zwischen dem Druck des eintretenden Stoffstromes p_{ein} und des austretenden p_{aus} berücksichtigt.

$$p_{ein} = p_{aus} + \Delta p$$

Die Formulierung der Massenbilanz ist abhängig von der in der Unit vorkommenden Stoffumwandlung. Findet eine chemische Reaktion statt, so muss die Massenbilanz für jedes chemische Element aufgestellt werden. Kommt es zu einem Mischen oder Teilen von Strömen ohne chemische Reaktion, so ist die Massenbilanz für sämtliche Komponenten zu erfüllen. Finden in der Unit keine Änderungen in der Zusammensetzung statt, so ist die Bilanz für den gesamten Massenstrom zu erfüllen.^[34]

$$\sum_{ein} \dot{m} = \sum_{aus} \dot{m}$$

Die Energiebilanz kann für die vorliegenden Problemstellungen unter Vernachlässigung von potentieller und kinetischer Energie mit dem ersten Hauptsatz der Thermodynamik für ein offenes, stationäres System mit N-Stoffströmen formuliert werden.^[11]

$$\dot{Q} + P = \sum_{j}^{N} [\dot{n}_{j,aus} \cdot H_{j,aus}^{*} (p_{j,aus}, T_{j,aus})] - \sum_{i}^{N} [\dot{n}_{i,ein} \cdot H_{i,ein}^{*} (p_{i,ein}, T_{i,ein})]$$

Durch die Einführung der konventionellen Enthalpie^[11] oder molaren Gesamtenthalpie^[35] H_i^* kann der 1. Hauptsatz der Thermodynamik auch für Energiebilanzen von Systemen mit chemischen Reaktionen verwendet werden. In der konventionellen Enthalpie sind sowohl die druck- und temperaturabhängige Enthalpie H_i als auch die Standardbildungsenthalpie $\Delta H_{f,298}^0$ enthalten.^[35]

$$H_i^*(p,T) = \Delta H_{f,298}^0 + [H_i(p,T) - H_i(p_0,T_0)]$$

Die Indizes 0 und 298 beziehen sich auf den thermochemischen Standardzustand, der bei einer Temperatur T_0 von 298,15 K und einem Druck p_0 von 1 bar festgelegt ist. Die Standardbildungsenthalpie reiner Elemente wird in diesem Zustand gleich Null gesetzt.^[11]

Die molare Reaktionsenthalpie für den Standardzustand $\Delta H^0_{R,298}$ lässt sich direkt aus den Standard-Bildungsenthalpien $\Delta H^0_{f,298}$ und den stöchiometrischen Koeffizienten v_i der Reaktionsteilnehmer berechnen.

$$\Delta H^0_{R,298} = \sum_i^N \nu_i \cdot \Delta H^0_{f,298,i}$$

Für die stöchiometrischen Koeffizienten gilt ein Wert > 0 für Produkte und ein Wert < 0 für die Edukte. Eine Reaktionsgleichung ist allgemein für Reaktionspartner bzw. –produkte A_i folgendermaßen definiert:

$$0 = \sum_{i}^{N} v_i \cdot A_i$$

Beispielhaft gilt für die umgekehrte Wassergas-Shift-Reaktion:

$$\mathrm{CO}_2 + \mathrm{H}_2 \to \mathrm{CO} + \mathrm{H}_2\mathrm{O}$$

$$\Delta H_{R,298,WGS}^{0} = \nu_{CO} \cdot \Delta H_{f,298,CO}^{0} + \nu_{H2O} \cdot \Delta H_{f,298,H2O}^{0} + \nu_{CO2} \cdot \Delta H_{f,298,CO2}^{0} + \nu_{H2} \cdot \Delta H_{f,298,H2}^{0}$$

$$= 1 \cdot (-110,53) \frac{\text{kJ}}{\text{mol}} + 1 \cdot (-241,83) \frac{\text{kJ}}{\text{mol}} + (-1) \cdot (-393,51) \frac{\text{kJ}}{\text{mol}} + (-1) \cdot 0 \frac{\text{kJ}}{\text{mol}}$$

$$= \frac{+41,15 \frac{\text{kJ}}{\text{mol}}}{\frac{\text{kJ}}{\text{mol}}}$$

Die Reaktionsenthalpie beträgt +41,15 kJ/mol, d.h. es handelt sich um eine endotherme Reaktion. Wie oben erwähnt ist die Standardbildungsenthalpie für reine Elemente, in diesem Fall für H_2 gleich Null. Sämtliche Stoffdaten wurden aus Baehr/Kabelac^[11] entnommen.

Auch der Heizwert H_U eines Stoffes lässt sich aus den Standardbildungsenthalpien bzw. aus der Reaktionsenthalpie bestimmen. Mit der molaren Masse des Brennstoffes M_B gilt:

$$H_U = \frac{-\Delta H_{R,298}^0}{M_B}$$

Die in der Formulierung der Energiebilanz vorkommende konventionelle Enthalpie lässt sich über Polynomfunktionen mit stoffspezifischen Koeffizienten berechnen. Mithilfe der oft auch als NASA-Polynome bezeichneten Gleichungen wird die Temperaturabhängigkeit der molaren spezifischen isobaren Wärmekapazität C_p mit einem dimensionslosen 5-Koeffizienten Ansatz beschrieben.^[34]

$$\frac{C_p(T)}{R} = a_1 + a_2 \cdot T + a_3 \cdot T^2 + a_4 \cdot T^3 + a_5 \cdot T^4$$

Durch Einsetzen dieses Zusammenhanges in die Definitionen von konventioneller Enthalpie H_i^* und Entropie bei Standarddruck S_i^0 lassen sich diese beiden Größen bei beliebigen Temperaturen berechnen.

$$H_i^*(T) = \Delta H_{f,298,i}^0 + \int_{298,15K}^T C_{p,i}(T) \cdot dT$$

$$\frac{H^*(T)}{R \cdot T} = a_1 + \frac{a_2}{2} \cdot T + \frac{a_3}{3} \cdot T^2 + \frac{a_4}{4} \cdot T^3 + \frac{a_5}{5} \cdot T^4 + \frac{a_6}{6}$$

$$S_i^0(T) = S_{298,i}^0 + \int_{298,15K}^T \frac{C_{p,i}(T)}{T} \cdot dT$$

Graf Stefan

$$\frac{S^{0}(T)}{R} = a_{1} \cdot \ln T + a_{2} \cdot T + \frac{a_{3}}{2} \cdot T^{2} + \frac{a_{4}}{3} \cdot T^{3} + \frac{a_{5}}{4} \cdot T^{4} + a_{7}$$

Die Koeffizienten a_1 bis a_7 sind entsprechenden Tabellenwerken wie Burcat und McBride, die auf den JANAF-Tabellen basieren, zu entnehmen.^[34]

Die Kenntnis der Entropie spielt bei der Betrachtung von Reaktionsgleichgewichten eine entscheidende Rolle. So lässt sich die freie Reaktionsenthalpie bei Standarddruck ΔG_R^0 aus der konventionellen Enthalpie und der Entropie der teilnehmenden Spezies berechnen.^[34]

$$\Delta G_R^0(T) = \sum_{i}^{N} [\nu_i \cdot H_i^*(p_0, T)] - T \cdot \sum_{i}^{N} [\nu_i \cdot S_i(p_0, T)]$$

Bei idealen Gasen ist die Gleichgewichtskonstante einer Reaktion *K* lediglich eine Funktion der Temperatur und kann direkt aus der freien Reaktionsenthalpie bei Standarddruck berechnet werden.

$$\ln(K_p(T)) = -\frac{\Delta G_R^0(T)}{R \cdot T}$$

Demnach kann das Reaktionsgleichgewicht unmittelbar aus den thermodynamischen Daten berechnet werden. Die Gleichgewichtskonstante für Partialdrücke K_p ist definiert als das dimensionslose Produkt der Partialdrücke p_i bezogen auf den Standarddruck p_0 .

$$K_p = \prod_i^N \left(\frac{p_i^*}{p_0}\right)^{\nu_i}$$

Der hochgestellte Stern zeigt an, dass die Partialdrücke im Gleichgewichtszustand verwendet werden. Durch die Verwendung des Gesetzes von Dalton für ideale Gase lässt sich die Gleichgewichtskonstante auch für Stoffmengenanteile y_i darstellen.

$$p_i = p \cdot y_i$$
$$K_y = \left(\frac{p^*}{p_0}\right)^{\nu} \cdot \prod_i^N (y_i)^{\nu_i}$$

Wobei für ideale Gase $K_p = K_y$ gilt und v für die Molzahländerung der Reaktion steht und folgendermaßen berechnet wird:

$$\nu = \sum_{i}^{N} \nu_{i}$$

Somit kann neben dem Temperatureinfluss auch der Druckeinfluss für das Gleichwicht einer Reaktion eindeutig beschrieben werden. Nehmen auch Feststoffe an der Reaktion teil, wie zum Beispiel elementarer Kohlenstoff bei der Vergasung, so scheinen diese zwar nicht in der Formulierung der Gleichgewichtskonstanten *K* mit Molen- bzw. Partialdrücken auf, sie beeinflussen aber die Gleichgewichtskonstante durch deren Bestimmung über die freie Reaktionsenthalpie ΔG_R^0 .^[34]

4.1.2 Beispielhafte Berechnung von Reaktionsgleichgewichten

Die Berechnung von Reaktionsgleichgewichten soll nun anhand der nachfolgenden Methanisierungsreaktion bei einer Temperatur von 200°C und einem Druck von 2,9 bar demonstriert werden.

$$\mathrm{CO}_2 + 4 \mathrm{H}_2 \rightarrow \mathrm{CH}_4 + 2 \mathrm{H}_2\mathrm{O}$$

Für die stöchiometrischen Koeffizienten der Reaktion gilt:

$$v_{CO2} = -1$$

 $v_{H2} = -4$
 $v_{CH4} = 1$
 $v_{H2O} = 2$.

Damit ergibt sich für die Molzahländerung der Reaktion:

$$\nu = \sum_{i}^{N} \nu_{i} = \nu_{CO2} + \nu_{H2} + \nu_{CH4} + \nu_{H2O} = (-1) + (-4) + 1 + 2 = -2$$

Aus Datenbanken können die thermodynamischen Daten, also konventionelle Enthalpie und Entropie, bei 200°C entnommen werden.^[34]

Tabelle 11: Thermodynamische Daten für die Methanisierungsreaktion bei 200°C^[34]

	H_i^*	S_i^0
	in kJ/mol	in J∕(mol · K)
CO ₂	-386,38	232,43
H ₂	5,1084	144,15
CH_4	-67,882	204,48
$H_2O_{(g)}$	-235,83	204,58

Damit lassen sich die Reaktionsenthalpie ΔH_R^0 und die freie Reaktionsenthalpie ΔG_R^0 bei Standarddruck und 200°C ermitteln.

$$\Delta H_R^0 = \sum_i^N [\nu_i \cdot H_i^*(p_0, T)]$$

$$\Delta H_R^0 = \nu_{CH4} \cdot H_{CH4}^* + \nu_{H20} \cdot H_{H20}^* + \nu_{C02} \cdot H_{C02}^* + \nu_{H2} \cdot H_{H2}^*$$

$$= 1 \cdot (-67,882) \frac{\text{kJ}}{\text{mol}} + 2 \cdot (-235,83) \frac{\text{kJ}}{\text{mol}} + (-1) \cdot (-386,38) \frac{\text{kJ}}{\text{mol}} + (-4)$$

$$\cdot 5,1084 \frac{\text{kJ}}{\text{mol}} = \underbrace{-173,60 \frac{\text{kJ}}{\text{mol}}}$$

$$\Delta G_R^0(T) = \sum_{i}^{N} [v_i \cdot H_i^*(p_0, T)] - T \cdot \sum_{i}^{N} [v_i \cdot S_i(p_0, T)]$$

$$\Delta G_R^0 = \Delta H_R^0 - T \cdot \left(\nu_{CH4} \cdot S_{CH4}^0 + \nu_{H2O} \cdot S_{H2O}^0 + \nu_{CO2} \cdot S_{CO2}^0 + \nu_{H2} \cdot S_{H2}^0 \right)$$

= -173,60 $\frac{\text{kJ}}{\text{mol}} - 473,15 \text{ K}$
 $\cdot \left(1 \cdot 204,48 \frac{\text{J}}{\text{mol} \cdot \text{K}} + 2 \cdot 204,58 \frac{\text{J}}{\text{mol} \cdot \text{K}} + (-1) \cdot 232,43 \frac{\text{J}}{\text{mol} \cdot \text{K}} + (-4) \right)$
 $\cdot 144,15 \frac{\text{J}}{\text{mol} \cdot \text{K}} \right) \cdot \frac{1 \text{ kJ}}{1000 \text{ J}} = -81,151 \frac{\text{kJ}}{\text{mol}}$

Mit diesem Ergebnis kann die Gleichgewichtskonstante bezogen auf Molenbruch bzw. Partialdruck berechnet werden.

Abschließend kann die Gleichgewichtszusammensetzung für die Methanisierungsreaktion bestimmt werden.

$$K_{y} = K_{p} = \left(\frac{p^{*}}{p_{0}}\right)^{\nu} \cdot \prod_{i}^{N} (y_{i})^{\nu_{i}} = \left(\frac{2,9 \text{ bar}}{1 \text{ bar}}\right)^{-2} \cdot \frac{y_{CH4} \cdot y_{H20}^{2}}{y_{CO2} \cdot y_{H2}^{4}}$$
$$K_{p} \cdot (2,9)^{2} = \frac{y_{CH4} \cdot y_{H20}^{2}}{y_{CO2} \cdot y_{H2}^{4}}$$

Um nun den Stoffmengenanteil y_i jeder Komponente zu erhalten sind noch weitere drei Gleichungen notwendig. Aus der chemischen Reaktionsgleichung erhält man den Zusammenhang zwischen den Molenbrüchen der Edukte und ebenso eine Beziehung für die Produkte. Desweiteren muss die Summe aller Stoffmengenanteile gleich eins ergeben.

$$y_{H2} = 4 \cdot y_{CO2}$$
$$y_{H2O} = 2 \cdot y_{CH4}$$
$$\sum_{i}^{N} y_{i} = 1 = y_{CO2} + y_{H2} + y_{CH4} + y_{H2O}$$

Das nichtlineare Gleichungssystem kann mit geeigneter Software (z.B.: Mathcad, Excel,...) numerisch gelöst werden. Dies führt zu folgendem Ergebnis.

 Tabelle 12: Zusammensetzung im Gleichgewicht der Methanisierungsreaktion bei 200°C

 und 2,9 bar

Усо2	y_{H2}	Усн4	Ун20
in Vol%	in Vol%	in Vol%	in Vol%
0,37	1,49	32,71	65,43

Wie bereits aus dem großen Wert der Gleichgewichtskonstante K_p zu erkennen war, liegen im chemischen Gleichgewicht der CO₂-Methanisierung überwiegend Produkte vor. Dies ist für den im Rahmen dieser Arbeit betrachteten Prozess der Idealzustand, da möglichst alle Reaktanten zu Produkten reagieren sollen.

Unter Benützung eines Tabellenkalkulationsprogrammes ist eine Berechnung von Gleichgewichtszuständen für verschiedenste Temperaturen und Drücke rasch durchführbar und kann wie in Abbildung 21 sehr anschaulich dargestellt werden. Aus dieser Grafik lässt sich ableiten, dass der Stoffmengenanteil der Produkte mit höherer Temperatur sinkt. Desweiteren wurden auch die Gleichgewichtszustände für verschiedene Reaktionsdrücke eingezeichnet. Aus der Molzahländerung von v = -2 folgt bereits, dass die Reaktion druckabhängig ist. Durch den negativen Wert von v lässt sich mithilfe des Prinzips vom kleinsten Zwang ableiten, dass die Reaktion sich mit steigendem Druck zu den Produkten verlagert. Dies ist auf die geringere Anzahl an Molekülen der Produkte im Vergleich mit den Edukten zurückzuführen und konnte durch die Berechnung (siehe Abbildung 21) bestätigt werden.

Abbildung 21: Gleichgewichtszustand der CO_2 -Methanisierung in Abhängigkeit von Druck und Temperatur (Gepunktete Linien für p = 1 bar, durchgezogene Linien für p = 2,9 bar und gestrichelte Linien für p = 10 bar)

Damit konnte mithilfe der thermodynamischen Daten die Zusammensetzung einer einfachen Reaktion vorausberechnet werden, natürlich unter dem Vorbehalt, dass sich das Gleichgewicht auch tatsächlich einstellt. Kinetische Überlegungen wurden hier nicht berücksichtigt.

Diese Ausführungen sollen dem Verständnis der Vorgänge, die im Hintergrund der IPSEpro-Simulationen ablaufen, dienen. Ebensolche Stoffdaten wie die Standardbildungsenthalpie, die Molmassen, spezifische Wärmekapazitäten zur Berechnung der Enthalpie sind explizit oder implizit anhand der Koeffizienten der Polynomfunktionen in der DLL-Bibliothek hinterlegt und werden bei Bedarf in die Simulation geladen.

4.1.3 Entwicklung von Modulen im IPSEpro MDK

Wie bereits eingangs erwähnt, sind in der verwendeten Bibliothek PGP_Lib die Standardunits für Biomassekraftwerke hinterlegt und müssen nicht selbst erstellt werden. Im Rahmen dieser Arbeit sollen jedoch zusätzlich eine Methanisierung und eine Elektrolyse in die Prozesssimulation integriert werden. Diese Module sind in der Standardbibliothek nicht vorhanden und müssen eigenständig entwickelt werden.

Forschungsarbeiten am Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften der TU Wien hatten bereits die Erstellung solcher Units zum Inhalt und konnten für diese Arbeit übernommen werden. Es wurden jedoch die Massen- und die Energiebilanz für die Elektrolyseeinheit erneuert.

Massenbilanz Elektrolyseur:

 $feed_{water}.massflow = drain_{H_2}.massflow + drain_{O_2}.massflow$

Energiebilanz Elektrolyseur:

$$\eta_{P,Elektrolyse} * P_{Elektrolyse} + feed_{water} . massflow * feed_{water} . h_{total}$$

= drain_{H2}. massflow * drain_{H2}. h_{total} + drain_{D2}. massflow * drain_{D2}. h_{total}

Im Zuge der Prozesssimulation wurde festgestellt, dass der autotherme Vergaser lediglich einen Eingang für organische Stoffströme hat. Da jedoch neben der Biomasse auch das beladene RME des Wäschers in den Vergasungsreaktor geführt werden soll, wurde eine Modifikation des Standardmoduls für die autotherme Vergasung PG_gasif_o notwendig.

Abbildung 22: Ursprüngliche (links) und modifizierte (rechts) Vergaser-Unit

Wie in Abbildung 22 dargestellt, wurde der Standardunit ein zusätzlicher Eingang für organische Stoffströme hinzugefügt. Dieser Verbinder soll ermöglichen, dass der beladene Biodiesel, der beim Produktgaswäscher anfällt, durch Einspeisung in den Vergaser im Prozess gehalten werden kann. Neben der grafischen Modifikation mussten anschließend die Energiebilanz und sämtliche Massenbilanzen der chemischen Elemente erweitert werden.

Die Energiebilanz für die modifizierte Vergaserunit sieht folgendermaßen aus:

 $\begin{aligned} drain_{gas}.\,massflow*drain_{gas}.\,h_{total}+drain_{ash}.\,massflow*drain_{ash}.\,h_{total}+\dot{Q}_{loss} = \\ feed_{org}.\,massflow*feed_{org}.\,h_{total}+feed_{org2}.\,massflow*feed_{org2}.\,h_{total}+\\ feed_{gas}.\,massflow*feed_{gas}.\,h_{total} \end{aligned}$

Der Index org steht für den Biomassestrom, der Index org2 für den RME-Strom. Der absolute Wärmeverlust des Vergasers \dot{Q}_{loss} hängt über den relativen Wärmeverlust $q_{loss,rel}$ mit der zugeführten thermischen Leistung P_{therm} zusammen.

$$\dot{Q}_{loss} = P_{therm} * \frac{q_{loss,rel}}{100}$$

Die thermische Leistung wird aus den Brennstoffleistungen, die dem Vergaser zugeführt werden, bestimmt.

$$P_{therm} = feed_{org}.massflow * feed_{org}.lhv + feed_{org2}.massflow * feed_{org2}.lhv$$

Als Beispiel für die zu modifizierenden Massenbilanzen soll hier die Massenbilanz für das Element Kohlenstoff dargestellt werden.

$$\begin{aligned} drain_{gas}. massflow & 12,011 & \left(2 & \frac{drain_{gas}.Gas.w_{C_2H_4}}{28,0536} + 2 & \frac{drain_{gas}.Gas.w_{C_2H_6}}{30,0694} + 3 & \frac{drain_{gas}.Gas.w_{C_3H_8}}{44,0962} + \frac{drain_{gas}.Gas.w_{CH_4}}{16,0428} + \frac{drain_{gas}.Gas.w_{CO}}{28,0104} + \frac{drain_{gas}.Gas.w_{CO_2}}{44,0098} + \frac{drain_{gas}.Gas.w_{HCN}}{27,02568}\right) \\ & + drain_{gas}. nvolflow & \left(\left(\frac{drain_{gas}.char_{content}}{1000}\right) & drain_{gas}. Char.w_{C} + \left(\frac{drain_{gas}.tar_{content}}{1000}\right) & drain_{gas}.Tar.w_{C}\right) \end{aligned}$$

+ drain_{ash}.massflow * drain_{ash}.char_{content} * drain_{ash}.Char.w_C -

 $feed_{org}.massflow * (1 - feed_{org}.water_{content} - feed_{org}.ash_{content}) * feed_{org}.Organic.w_{C}$

+ $feed_{org2}$. massflow * (1 - $feed_{org2}$. water_{content} - $feed_{org2}$. ash_{content}) * $feed_{org2}$. Organic. w_C

$$+ feed_{gas}.massflow * 12,011 * \left(2 * \frac{feed_{gas}.Gas.w_{C_2H_4}}{28,0536} + 2 * \frac{feed_{gas}.Gas.w_{C_2H_6}}{30,0694} + 3 * \frac{feed_{gas}.w_{C_3H_8}}{44,0962} + \frac{feed_{gas}.Gas.w_{CH_4}}{16,0428} + \frac{feed_{gas}.Gas.w_{CO}}{28,0104} + \frac{feed_{gas}.Gas.w_{CO_2}}{44,0098} + \frac{feed_{gas}.Gas.w_{CO_2}}{27,0256} + \frac{feed_{gas}}{28,0104} + \frac{feed_{gas}}{44,0098} + \frac{feed_{gas}}{27,0256} + \frac{feed_{gas}}{28,0104} + \frac{feed_{gas}}{44,0098} + \frac{feed_{gas}}{28,0104} + \frac{feed_{gas}}{28,0104} + \frac{feed_{gas}}{44,0098} + \frac{feed_{gas}}{28,0104} + \frac{feed_{gas}}{44,0098} + \frac{feed_{gas}}{28,0104} + \frac{feed_{gas}}{28,0104} + \frac{feed_{gas}}{28,0104} + \frac{feed_{gas}}{44,0098} + \frac{feed_{gas}}{28,0104} + \frac{feed$$

Diese Massenbilanz gilt, wenn kein Staub, Koks bzw. Teer im Feedgas vorhanden ist. In ähnlicher Art und Weise muss weiters die Massenbilanz für die Elemente Ar, H, O, N, S und Cl aufgestellt werden. Letztlich müssen die Bilanzen für Beladungen vom Feed mit Staub, Koks bzw. Teer eingegeben werden, um auch diese Fälle im Modell zu berücksichtigen.

Nach Änderung im MDK muss die Bibliothek kompiliert werden und anschließend sind die Units im Process Simulation Environment verfügbar.

WHCN

FECHNISCHE

4.2 Aufbau der Simulation in IPSEpro

Die Simulation im PSE von IPSEpro erfolgt auf Basis des Lösens von impliziten Gleichungen, d.h. für eine erfolgreiche Simulation muss ein vollständiges Gleichungssystem vorliegen. Es muss für jede Variable genau eine linear unabhängige Gleichung vorhanden sein. Die im MDK gespeicherten Units stehen im PSE zur Verfügung und können auf der graphischen Benutzeroberfläche, dem Fließbild, platziert werden. Der Aufbau des Fließbildes soll stufenweise erfolgen, d.h. es sollte eine Zwischensimulation für jede neu hinzugefügte Unit durchgeführt werden. Der Grund dafür ist, dass für die Lösung des Gleichungssystems geeignete Anfangswerte für die Variablen vorhanden sein sollten. Dies ist vor allem bei nichtlinearen Gleichungen, wie sie zum Beispiel bei chemischen Reaktionen vorkommen, unbedingt erforderlich, da die Simulationsergebnisse ansonsten nicht konvergieren. Sehr nützlich ist die Funktion Import Estimates, bei der alle zuvor berechneten Werte als neue Anfangswerte gesetzt werden. Dies sollte vor jeder Prozesserweiterung durchgeführt werden, damit die korrekten Werte an die neuen Units weitergegeben werden. Die Units werden durch die entsprechenden Ströme (Wasser/Dampf, ideales Gas, organische Stoffe, anorganische Feststoffe) miteinander verbunden. In die Eigenschaften der einzelnen Units, Ströme bzw. Globals (z.B. chemische Zusammensetzung) sind die erforderlichen Setzwerte einzugeben, um eine Berechnung der zu bestimmenden Größen zu ermöglichen.

Als Standort für das Kraftwerk wurde Wien mit einer Seehöhe von 171 m festgelegt. Damit ergibt sich ein Luftdruck von 992,88 mbar. Die Umgebungstemperatur betrage 15°C und die relative Luftfeuchte 60%. Diese Parameter sollen für alle dem Prozess zugeführten Stoffströme verwendet werden, lediglich das aus der Entsalzungsanlage kommende Prozesswasser soll eine Temperatur von 25°C aufweisen.

Als Auslegungswert für die Simulation wurde eine Brennstoffleistung von 10 MW bezogen auf die zugeführte Biomasse gefordert. Als Biomasse sollen Holzhackschnitzel zum Einsatz kommen. Aus der Datenbank für Biokraftstoffe des Instituts für Verfahrenstechnik an der TU Wien, der BioBib, konnte die Elementarzusammensetzung für den Brennstoff wood/chips im trockenen Zustand, also wasserfrei, entnommen werden (siehe Tabelle 13). Es wurde angenommen, dass die angelieferten Hackschnitzel einen Wassergehalt von 40 Gew.-% aufweisen.

		Wasserfrei (Wf)	Roh
Kohlenstoffgehalt c	in Gew%	50,63	30,38
Wasserstoffgehalt h	in Gew%	6,02	3,61
Sauerstoffgehalt o	in Gew%	41,52	24,91
Stickstoffgehalt n	in Gew%	0,35	0,21
Schwefelgehalt s	in Gew%	0,03	0,02
Chlorgehalt cl	in Gew%	0,02	0,01
Aschegehalt a	in Gew%	1,43	0,86
Wassergehalt w	in Gew%	0,00	40,00

Tabelle 13: Elementarzusammensetzung	der	Biomasse ^[36]
--------------------------------------	-----	--------------------------

Desweiteren wurde auch die chemische Aschezusammensetzung für Holz aus einschlägiger Literatur (Vassilev et al.)^[37] entnommen und wie in Tabelle 14 dargestellt auf die in IPSEpro vorhandenen Verbindungen normiert.

Damit konnten Biomasse- und Aschezusammensetzung in IPSEpro implementiert werden. Dafür wurde jeweils ein organischer PG_monitor (Abbildung 23) in den Biomassestrom eingesetzt und die Werte aus Tabelle 13 und Tabelle 14 eingetragen.

		Literatur	Normiert auf 100%
CaO	in Gew%	37,35	47,07
SiO ₂	in Gew%	23,15	29,17
K ₂ O	in Gew%	11,59	14,61
MgO	in Gew%	7,26	9,15
Andere	in Gew%	20,65	0

Tabelle 14: Aschezusammensetzung der Biomasse^[37]

Es ist zu beachten, dass jeweils ein Wert (möglichst der größte) der einzugebenden Zusammensetzung auf *Estimate* zu setzen ist, da dieser aus den anderen Setzwerten berechnet werden kann und ansonsten ein überbestimmtes Gleichungssystem vorliegt.

PG_monitor_o			×		PG_monitor_o		1 11	
Name: PG_monitor_o	o_BMroh1_o	Load Defaults	OK Cancel		Name: PG_monitor_o	BMroh2_ash	Load Defaults	OK Cancel
Model:	PG_monitor_o	•	🖂 update		<u>M</u> odel:	PG_monitor_o_ash		update
water_content	40 wt%	🕫 set 🔿 estimate	limit >> 🔽 update		K20	14.61	C C	Final and the
ash_content_wf	1.43 wt%	🖲 set 🔿 estimate	limit >> 🔽 update	111	<u>K</u> 20	14.01 W(&	ve set v estimate	iiiiiii >> ∣♥ update
<u>C_</u> wf	50.63 wt%	ፍ set 🔿 estimate 🗌	limit >> 🔽 update	Ш	<u>M</u> gO	9.15 wt%	∙ set ⊂ estimate _	limit >> 🔽 update
H_wf	6.02 wt%	🕫 set 🔿 estimate	limit >> 🔽 update		<u>C</u> aO	47.07 wt%	C set 📀 estimate	limit >> 🔽 update
<u>0_</u> wf	41.52 wt%	C set 📀 estimate	limit >> 🔽 update		<u>S</u> i02	29.17 wt%		limit >> 🔽 update
<u>N_</u> wf	0.35 wt%	🕫 set 🔿 estimate	limit >> 🔽 update		Mg2SiD4	0.0 wt%	⊙ set ⊂ estimate	limit >> 🔽 update
<u>S_</u> wf	0.03 wt%	In the set ⊂ estimate	limit >> 🔽 update		Ee2SiO4	0.0 wt%	I set ⊂ estimate	limit >> 🔽 update
<u>CL</u> wf	0.02 wt%	🕫 set 🤇 estimate 🔤	limit >> 🔽 update		MgCO3	0.0 wt%	I set ⊂ estimate	limit >> 🔽 update
Jhv_wf	18829 kJ/kg	⊂ set ເ estimate	limit >> 🔽 update	Ш	C=C03	0.0 wt%	A set C setimate	
hhv_wf	20143 kJ/kg	⊂ set . estimate	limit >> 🔽 update	Ш	<u>_</u>	0.0	· set · estimate	iiiiik >>]▼ update
Jhv_waf	19102 kJ/kg	⊂ set ເ€ estimate	limit >> 🔽 update		CaSU4	U.U wt%	(● set ⊂ estimate	limit>> ✓ update
hhv_waf	20435 kJ/kg	⊂ set ເ€ estimate	limit >> 🔽 update		<u>C</u> a0H2	0.0 wt%	⊙ set ⊂ estimate	limit >> 🔽 update

Abbildung 23: Eingabe der Zusammensetzung von Biomasse (Bild links) und Asche (Bild rechts) in IPSEpro

Wie in Abbildung 23 zu sehen, kann aus der Zusammensetzung mithilfe der Näherungsformel von Boie^[38], welche in IPSEpro implementiert ist, der Heizwert bzw. Brennwert berechnet werden. Exemplarisch soll die Bestimmung für die Hackschnitzel mit 40% Wassergehalt auch hier durchgeführt werden.

$$H_{U} = 34,8 \cdot c + 93,9 \cdot h + 6,3 \cdot n + 10,5 \cdot s - 10,8 \cdot o - 2,5 \cdot w$$

= 34,8 \cdot 0,3038 + 93,9 \cdot 0,0361 + 6,3 \cdot 0,0021 + 10,5 \cdot 0,0002 - 10,8 \cdot 0,2491
- 2,5 \cdot 0,4 = 10,287 MJ
kg

Es ergibt sich ein Heizwert von 10,287 MJ/kg, welcher sehr gut mit dem Ergebnis aus IPSEpro von 10,320 MJ/kg für die feuchte Biomasse übereinstimmt.

Durch die Kenntnis des Energieinhaltes des Brennstoffes kann somit der zuzuführende Brennstoffmassenstrom berechnet werden, um die geforderten 10 MW Leistung zu erreichen. Es ergibt sich ein Massenstrom von 3.588,25 kg an feuchten Holzhackschnitzel, die dem Prozess pro Stunde zugeführt werden müssen.

In IPSEpro wurde die Unit PG_source_o als Brennstoffquelle ins Fließbild gesetzt und die in Abbildung 24 dargestellten Werte eingegeben. Rho bezeichnet dabei die Schüttdichte der Hackschnitzel und liegt bei ca. 300 kg/m³.^[38]

PG_source_o		100				X
<u>N</u> ame: PG_source_o0	001	Loa	d Default	s	ОК	Cancel
<u>M</u> odel:	PG_source_o			-	П ч	odate
<u>m</u> assflow	3488.25	kg/h	🖲 set	O estimate	limit >>	🔽 update
volflow	8.7206	m3/h	⊖ set	 estimate 	limit >>	🔽 update
īpo	300	kg/m3	🖲 set	⊂ estimate	limit >>	🔽 update
water_content	0.4	kg/kg_total	⊖ set	 estimate 	limit >>	🔽 update
Þ	2	bar	🖲 set	⊖ estimate	limit >>	🔽 update
<u>t</u>	15	°C	🖲 set	⊖ estimate	limit >>	🔽 update

Appliculity 24. Lillyabe del Diolilassequelle ill'IF SEPIC
--

i_stream_o				-		
Name: PG_stream_of	001	Loa	ad Default	s	OK	Cancel
Organic		Wood			•	Edit >
Ash		Ash			•	E dit >
p	2.	bar	C set	 estimate 	limit >>	🔽 update
ţ	15.	°C	⊖ set	 estimate 	limit >>	🔽 update
īþo	400.	kg/m3	⊖ set	 estimate 	limit >>	🔽 update
<u>h_</u> waf	17.264	kJ/kg	⊖ set	 estimate 	limit >>	🔽 update
<u>s_</u> waf	3.7787	kJ/kgK	⊖ set	 estimate 	limit >>	🔽 update
<u>e_</u> waf	20435	kJ/kg	O set	 estimate 	limit >>	🔽 update
water_content	0.4	kg/kg_total	⊖ set	 estimate 	limit >>	🔽 update
<u>a</u> sh_content	8.58e-003	kg/kg_total	O set	 estimate 	limit >>	🔽 update
<u>h_</u> total	-9460.4	kJ/kg	O set	 estimate 	limit >>	🔽 update
<u>l</u> hv	10320	kJ/kg	⊖ set	 estimate 	limit >>	🔽 update
<u>h</u> hv	12086	kJ/kg	⊖ set	 estimate 	limit >>	🔽 update
<u>m</u> assflow	3488.3	kg_total/h	⊖ set	 estimate 	limit >>	🔽 update
⊻olflow	8.7206	m3/h	⊖ set	 estimate 	limit >>	🔽 update
<u>E</u> xergy	11734	kW	O set	 estimate 	limit >>	🔽 update

Abbildung 25: Festlegung der Globals in IPSEpro

Nun müssen nur noch die *Globals* für den Biomassestrom festgelegt werden. Für den Anteil *Organic* wird die Bezeichnung Wood festgelegt, für den Anteil *Ash* die Bezeichnung Ash und sämtliche Werte werden auf *Estimate* gesetzt. Die Zusammensetzung von Wood und Ash wird über die Eingaben am PG_Monitor bestimmt und sind nun global für die gesamte Simulation festgelegt. Bestehen weitere Ströme aus Wood und Ash, dann können diese beiden Bezeichnungen aus den *Globals* ausgewählt werden.

Diese Vorgehensweise ist für sämtliche Units und Ströme nach demselben Schema durchzuführen. Wie bereits erwähnt, sollte nach jeder Erweiterung eine Zwischensimulation mit anschließendem Import der *Estimates* erfolgen, um eine mögliche Fehlersuche zu vereinfachen und ggf. andere Variable als Setzwerte festzulegen.

Der Wassergehalt des Biomassestroms soll durch Trocknung mit auf 70°C vorgewärmter Umgebungsluft von 40% auf 20% reduziert werden. Es wird angenommen, dass die relative Feuchte der Luft, also das Verhältnis von Partialdruck zu Sättigungspartialdruck des Wasserdampfes, durch die Wasseraufnahme auf 80% steigt.^[35]

Die autotherme Vergasung der getrockneten Biomasse erfolgt bei einer Temperatur von 870°C und einem Druck von 1,03 bar. Der Wärmeverlust des Vergasers wurde mit 0,5% der zugeführten Brennstoffwärmeleistung berücksichtigt. Das Verhältnis von Vergasungsmittel zu Brennstoff wird mit 0,6 kg_{Vergasungsmittel}/kg_{Brennstoff,trocken} festgelegt.^[5] Als Vergasungsmittel dient ein Gemisch aus Wasserdampf und Sauerstoff. Der Massenstrom an O₂ ist durch die Vergasungstemperatur festgelegt und wird über die Energiebilanz des Vergasers berechnet. Es ergibt sich eine Luftzahl λ von ca. 0,25. D.h. der dem Vergaser zugeführte Sauerstoffs notwendigen Massenstroms an O₂. Damit ist auch der Massenstrom an Dampf berechenbar, welcher mit einer Temperatur von 500°C in den Vergaser einströmen soll.

Für das Produktgas wird laut Tabelle 3 der Gehalt für CH₄ auf 8,6 Vol.-% festgelegt und C_2H_4 , C_2H_6 und C_3H_8 auf jeweils 1 Vol.-%. Außerdem wird das Verhältnis von CO zu CO₂ auf 1,3255 gesetzt. Der Gehalt an NH₃ wird nach Tabelle 5 auf 500 Vol.-ppm vorgegeben. Es wird angenommen, dass 30 Gew.-% der Gesamtasche als Flugasche in das Produktgas ausgetragen werden und der Rest als Feststoff aus dem Reaktor abgeführt werden kann. Für den Teer- und Koksgehalt im Produktgas am Vergaseraustritt wurden 2,5 g/Nm³ gewählt. Der Anteil an unvergastem Kohlenstoff wurde mit 2%, bezogen auf den Kohlenstoffgehalt in der Biomasse, festgelegt.

Das 870°C heiße Produktgas muss zur Benützung des Produktgasfilters auf 150°C abgekühlt werden. Dazu wird im ersten Abkühlschritt der zur Vergasung benötigte Dampf erzeugt. Der Dampferzeuger ist in IPSEpro vereinfachend als Wärmetauscher dargestellt. Durch einen zweiten Wärmetauscher erfolgt die erforderliche Abkühlung des Produktgases auf 150°C. Für sämtliche im Prozess eingesetzten Wärmetauscher wird ein gasseitiger Druckabfall von 0,01 bar bzw. für organische Ströme und Wasser ein Druckabfall von 0,1 bar festgelegt.^[35]

Die Abscheidegrade von Asche und Koks im Produktgasfilter sollen bei jeweils 99,5% liegen. Weiters sollen 15% des im Produktgas vorhandenen Teers abgeschieden werden. Der im gefilterten Produktgas verbleibende Rest an Staub und Koks soll zur Gänze im Produktgaswäscher separiert und über die organische Phase in den Vergaser rückgeführt werden.

Der Produktgaswäscher wird mit Biodiesel (Rapsmethylester RME) bei einer Temperatur von 40°C betrieben, wobei die Wärmeverluste mit 5 kW festgesetzt wurden. Die Teere werden zu 99% durch die RME-Wäsche abgeschieden und im Biodiesel gelöst. Deshalb muss kontinuierlich frisches RME zugeführt werden. Pro Kilogramm Teer werden 4 kg Biodiesel benötigt. Desweiteren wird durch die Abkühlung des Produktgases Wasserdampf bis zum Sättigungszustand auskondensiert. Neben Staub-, Koks-, Teer- und Wasserseparation wird angenommen, dass NH₃ und HCN vollständig im Wäscher abgeschieden werden.^[35]

Für den nach dem Wäscher angeordneten Produktgasadsorber wird für die Modellierung angenommen, dass H₂S und HCl zu 100% vom Produktgas abgetrennt werden.

Laut Herstellerangabe des PEM-Elektrolyseurs^[27] liegt der Strombedarf der Elektrolyseeinheit zwischen 3,80 und 4,86 kWh pro Nm³ produziertem Wasserstoff. Für die Simulation wird ein Wert von 4 kWh pro Nm³ angenommen. Der Elektrolyseur wird mit demineralisiertem Wasser betrieben, wobei die Wasseraufbereitung nicht Teil der Simulation ist, und liefert H₂ und O₂ bei 80°C und 30 bar.

Das gereinigte Produktgas wird mit dem Wasserstoff gemischt, wobei der Druckverlust sämtlicher Mischventile vernachlässigt werden soll. Die Mischung hat dabei so zu erfolgen, dass sich ein stöchiometrischer Faktor $f_{Stöch.}$ von ca. 3 einstellt und damit eine vollständige Reaktion der in den Methanisierungsreaktor zugeführten Edukte erreicht wird. Der Stöchiometriefaktor ist folgendermaßen definiert:^[35]

$$f_{St\"och.} = \frac{y_{H_2} - y_{CO_2}}{y_{CO} + y_{CO_2}} = 3$$

Daraus lässt sich die Wasserstoffmenge ermitteln, die dem Produktgas zuzumischen ist, um am Ende möglichst reines CH₄ zu erhalten.

Danach wird das Gas auf den Betriebsdruck der Methanisierungseinheit von 2,9 bar 200°C gekühlt. verdichtet und auf Die Methanisierung ist aufgrund von Konvergenzproblematik der nichtlinearen Gleichungen, die die chemischen Reaktionen mit sich bringen, in zwei Reaktorunits aufgeteilt worden. Im ersten Reaktor werden die umgekehrte Wassergas-Shift-Reaktion und die CO-Methanisierung simuliert, im zweiten die CO₂-Methanisierung. Der Wärmeverlust soll für die beiden Reaktormodelle jeweils 15 kW betragen. Druckverluste auf der Gasseite werden vernachlässigt. Im Thermoölkreislauf zur Reaktorkühlung betrage der gesamte Druckverlust 1 bar. Für das Thermoöl wird Therminol 66 mit einem Kohlenstoffanteil von 90,7 Gew.-% und einem Wasserstoffanteil von 9,3 Gew.-% verwendet.

Für die Reaktionen im Methanisierungsreaktor wird angenommen, dass sich diese im thermodynamischen Gleichgewicht befinden. Anschließend wird das Gas auf 25°C abgekühlt, der Wasserdampf niedergeschlagen und die verbleibende Feuchte durch eine Glykol-Trocknung entfernt.

Für die im Prozess verwendeten Pumpen und Verdichter wurden isentrope und mechanische Wirkungsgrade zu 60% und 98% festgelegt. Für die elektrischen Motoren und den Generator wurden als Wirkungsgrade 96% elektrisch und 98% mechanisch verwendet. Der mechanische Wirkungsgrad des Gasmotors wurde mit 38% festgesetzt, die relativen Wärmeverluste mit 4% beziffert. Das Abgas aus dem Gasmotor wird mittels Kondensator auf 50°C abgekühlt und der Wasserdampf dabei auskondensiert. Dabei muss beachtet werden,

dass der CO₂-Speicher eine niedrigere Temperatur aufweist und deshalb weiteres Kondensat anfallen wird. Demnach muss ein entsprechender Kondensatablauf im Speicher vorgesehen werden, oder aber das Abgas wird bereits im Kondensator auf die Speichertemperatur abgekühlt.

Der Kühlkreislauf soll auf einem Druckniveau von 5 bar betrieben werden. Das Temperaturniveau der Fernwärmeauskopplung liegt bei 90°C Vorlauf- und 60°C Rücklauftemperatur. Die Kühlwassertemperatur für die Elektrolyse und Methanisierung wurde auf 25°C festgesetzt. Deshalb muss die Temperatur des durch den Fernwärmekreislauf auf 65°C gekühlten Kühlwassers durch Wärmeabgabe an die Umgebung auf die erforderlichen 25°C gesenkt werden. Für die Fernwärmeauskopplung wurde auf der Kühlwasser- und der Fernwärmeseite jeweils ein Druckverlust von 1 bar gewählt. Dazu wurde ein Druckverlust im Fernwärmenetz von 1 bar vorgegeben.

Das vollständige Verfahrensfließbild des Prozesses ist nachfolgend in Abbildung 26 abgebildet. Auf der linken Seite des Schemas sind sämtliche in den Prozess eintretenden Stoffströme dargestellt, auf der rechten Seite alle Stoffströme die den Prozess verlassen. Nicht im Fließbild eingezeichnet sind die Energieströme zur elektrischen Versorgung von Elektrolyseur und den Motoren der Pumpen und Verdichter.

5 ANALYSE DES ZEITLICHEN ANFALLES DER WINDENERGIE

Durch die Nutzung der kinetischen Energie der bewegten Luftmassen in der Atmosphäre, also der Bewegungsenergie des Windes, lässt sich mithilfe sogenannter Windkraftanlagen Strom produzieren. Dabei wird die strömende Luft durch die Rotorblätter abgebremst und die kinetische Energie des Windes in Rotationsenergie umgewandelt. Mithilfe eines Generators lässt sich aus der mechanischen Energie des Triebstranges elektrische Energie gewinnen.^[39]

Die technischen Weiterentwicklungen mit der nunmehr gegebenen Konkurrenzfähigkeit mit anderen Kraftwerken auf der einen Seite und der Wind als erneuerbare Energiequelle auf der anderen Seite verhalfen der Windenergie zu einer technischen Renaissance der altertümlichen Windmühlen. Vor allem seit der Jahrtausendwende erfolgt weltweit ein massiver Ausbau der Windkraftanlagen, für Österreich dargestellt in Abbildung 27.

Abbildung 27: Installierte Leistung der Windkraftanlagen in Österreich 1994-2014, nach^[40]

Die in Österreich installierte Gesamtleistung an Windenergie betrug im Jahr 2014 erstmals über 2 GW. Innerhalb der letzten 4 Jahre wurde verstärkt in Windparks investiert und dies führte zu einer Leistungsverdoppelung seit 2011.

Die einzelnen Windkraftanlagen nehmen Jahr für Jahr sowohl an Größe als auch an Leistung zu. Neueste Anlagen besitzen Nennleistungen von 7,5 MW, 127 m Rotordurchmesser, 135 m Nabenhöhe und damit eine Gesamthöhe von 198,5 m. Die überstrichene Rotorfläche liegt bei über 12.500 m².^[41]

Die in Österreich begünstigten Gebiete zur Windenergienutzung liegen, wie in Abbildung 28 ersichtlich, im Nordburgenland und in Niederösterreich. In diesen Regionen findet man auch die höchste Dichte an Windkraftanlagen vor. Durch gezielte Investitionen konnte im Burgenland erreicht werden, dass das Bundesland seit September 2013 rein rechnerisch stromautark ist.^[42]

Abbildung 28: Windenergiepotential in Österreich^[43]

Diese Stromautarkie ist jedoch von theoretischer Natur, da die Stromproduktion aus der Windkraft nicht mit dem zu deckenden Strombedarf (Abbildung 29) einhergeht. Die Windgeschwindigkeit unterliegt starken Variationen und da sie der Leistung der Anlage proportional der dritten Potenz ist, fluktuiert die erzeugte Windenergie über das Jahr gesehen erheblich (Abbildung 31, Abbildung 33). Dementsprechend sind geeignete Speichermöglichkeiten bzw. Redundanzen im Energieversorgungssystem notwendig, um eine kontinuierliche Energieversorgung sicherstellen zu können.

Für das Jahr 2014 ist in Abbildung 29 der Lastgang des Stromverbrauchs in Österreich abgebildet. Die abzudeckende Leistung schwankt über den Tag bzw. im Jahr gesehen zwischen ca. 4 GW und 10 GW. Durchschnittlich liegt der Strombedarf in Österreich bei 6.822 MW. Tendenziell wird in den Wintermonaten eine höhere elektrische Leistung als in den Sommermonaten benötigt. Dieser Sachverhalt spiegelt sich auch in Abbildung 30 wider. Dort dargestellt ist der Stromverbrauch im Tagesverlauf für einen Wochentag im Winter und einen Tag am Wochenende im Sommer. Neben dem unterschiedlichen Leistungsniveau lässt sich die für Arbeitstage charakteristische Leistungspitze morgens und abends erkennen. Am Wochenende kommt es zur Ausbildung einer Mittagsspitze und einem kontinuierlichen, aber im Vergleich zu einem Wochentag deutlich flacheren Leistungsanstieg dorthin.

TECHNISCHE UNIVERSITÄT

Abbildung 30: Tageslastganglinie Stromverbrauch^[44]

Abbildung 31: Ist-Werte der Windenergieeinspeisung in Österreich für 2014^[45]

Abbildung 32: Windenergieeinspeisung im Tagesverlauf^[45]

Im Vergleich dazu sind in Abbildung 31 und Abbildung 32 die entsprechenden Diagramme für die Windenergieeinspeisung dargestellt. Auf den ersten Blick kann eine extreme Differenz Windenergieangebot und Stromnachfrage festgestellt werden. zwischen lst der Stromverbrauch größenordnungsmäßig einigermaßen konstant. schwankt die SO Windenergieleistung sowohl im Tages- als auch im Jahresgang erheblich. Im Tagesverlauf (Abbildung 32) wird deutlich, dass die Windkraft nahezu keine Regelmäßigkeiten aufweist und somit nicht unmittelbar und kontinuierlich für eine Abdeckung des Strombedarfs sorgen kann.

Aus dem Jahresverlauf (Abbildung 31) lässt sich eine mittlere Leistung für die ins Netz eingespeiste Windenergie für das Jahr 2014 zu ca. 410 MW berechnen. Der Ausbau von Windkraftanlagen führte zu einem Anstieg der mittleren Leistung um ca. 70 MW im Vergleich zum Voriahr (2013). Weiters zeiat der Jahresverlauf auch tendenzielle Leistungsunterschiede bei der Windenergieeinspeisung. Ähnlich dem Verlauf vom Strombedarf liegt auch bei der Windkraft in den Wintermonaten eine höhere Leistung vor. Dies kann durch Betrachtung des Jahres 2013 in Abbildung 33 bestätigt werden. Vor allem die Monate Juli 2013 und Juni 2014 sind von einem niedrigen Windenergieertrag gekennzeichnet.

Abbildung 33: Ist-Werte der Windenergieeinspeisung in Österreich für 2013^[45]

Mit Ende des Jahres 2014 betrug die in Österreich installierte Gesamtleistung an Windenergie 2.095 MW. Davon wurden in diesem Jahr 411 MW neu installiert, womit sich für 2014 eine mittlere installierte Gesamtleistung von 1.889.5 MW ergibt. Die Herausforderungen an ein Speichersystem werden bei Betrachtung der Einspeiseextrema deutlich. Der Minimalwert der produzierten Windenergie im Jahr 2014 betrug 0,29 MW (= 29 kW), der Maximalwert 1.905,8 MW. Zwischen beiden Werten liegt ein Faktor von ca. 6.600, den ein Speichersystem theoretisch ausgleichen können muss. Jedoch wird auch kontinuierlich Strom verbraucht, womit dieser Faktor reduziert werden kann.

Diplomarbeit

Die im Jahr 2014 produzierte Menge an Windenergie betrug 3.593 GWh, was 12,94 PJ entspricht. Bezieht man die tatsächliche auf die theoretisch mögliche Produktion bei kontinuierlicher Windverfügbarkeit, ergibt sich ein Wert von 22%, d.h. die installierte Leistung wird lediglich zu etwa knapp einem Viertel genutzt. Damit ergeben sich ca. 2.000 Volllaststunden bzw. eine durchschnittliche Leistung der Windkraftanlagen von 410 MW für 2014.

Abbildung 34: Häufigkeitsverteilung der eingespeisten Leistung für 2013

In Abbildung 34 ist die Häufigkeitsverteilung der eingespeisten Leistung für das Jahr 2013 angegeben. Auf der Abszisse ist das Verhältnis von eingespeister zu installierter Leistung aufgetragen, auf der Ordinate die absolute Häufigkeit des Auftretens dieser auf der Abszisse aufgetragenen Werte für eine Stunde im Jahr 2013. So steht die erste Säule ganz links im Diagramm dafür, dass in 621 Stunden im Jahr die eingespeiste Leistung zwischen 0% und 1% der Nennleistung betrug. Die maximal eingespeiste Leistung der Windkraftanlagen liegt bei 89% der installierten Gesamtleistung und wurde viermal (d.h. 4 Stunden) im Jahr 2013 erreicht.

6 FALLBETRACHTUNGEN

In weiterer Folge sollen Simulationsrechnungen für verschiedene Lastfälle betrachtet und die Auswirkungen auf die in Abbildung 26 dargestellte Prozesskette untersucht werden.

6.1 Fall 1: Windenergie im Überschuss vorhanden

6.1.1 Ausschließliche Erzeugung von SNG in der Biomassevergasung

Das erste Szenario steht für einen Zustand, bei dem im Stromnetz ein Windenergieüberschuss vorhanden ist. Die Elektrolyseeinheit soll bei maximal möglicher Wasserstoffproduktion betrieben werden, um somit das Netz zu entlasten und gleichzeitig eine möglichst große Menge an Power-to-Gas-SNG in das Erdgasnetz einzuspeisen.

Die Biomassevergasung wird bei konstanter maximaler Vergasungsleistung betrieben und dementsprechend ist Produktgas für die Methanisierung in Menge und Qualität gleichmäßig vorhanden. Durch den Stöchiometriefaktor von ca. 3 ergibt sich die von der Elektrolyseeinheit zu liefernde Menge an Wasserstoff für eine optimale SNG-Produktion. Aus der Wasserstoffmenge kann die erforderliche Leistung des Elektrolyseurs berechnet werden. Das gesamte Produktgas wird zur Methanisierung verwendet und der Gasmotor ist dementsprechend nicht in Betrieb.

		Produktgas Roh	Produktgas Rein	Eintritt Methani- sierung	SNG- Produkt	Grenz- werte
H ₂	in Vol%	18,13	25,32	72,27	2,18	< 4
CO	in Vol%	22,57	31,52	11,70	0,00	-
CO ₂	in Vol%	17,03	23,78	8,83	0,41	< 2
CH ₄	in Vol%	5,63	7,87	2,92	97,12	> 96
C_xH_y	in Vol%	1,96	2,74	1,02	0,00	-
H ₂ O	in Vol%	34,50	8,56	3,18	0,00	0
N ₂	in Vol%	0,15	0,21	0,08	0,29	< 5
O ₂	in Vol%	0,00	0,00	0,00	0,00	< 0,5
Heizwert	in MJ/Nm ³	8,23	11,48	11,05	35,00	-
Brennwert	in kWh/Nm ³	2,67	3,51	3,53	10,79	10,7-12,8
Wobbe- Index	in kWh/Nm ³	3,06	3,89	6,00	14,57	13,3-15,7

Tabelle 15: Gaszusammensetzungen im Prozess

In Tabelle 15 zusammengefasst Simulationsergebnisse sind die für die Gaszusammensetzungen bei verschiedenen Umwandlungsstufen. Das Produktgas Roh bezeichnet die Zusammensetzung des Produktgases direkt nach der Vergasung, Produktgas Rein das Produktgas nach Durchlaufen sämtlicher Reinigungsstufen. Zu diesem Gas wird in Abhängigkeit des Stöchiometriefaktors Elektrolyse-Wasserstoff dazu dosiert, um die optimale Zusammensetzung des Gases für die Methanisierung bereitzustellen. Nach Kondensation des Wasserdampfes und anschließender Trocknung erhält man letztlich das SNG-Produkt, welches in das Erdgasnetz eingespeist werden kann.

Ein wichtiges Qualitätskriterium für die Austauschbarkeit vom Erdgas ist der Wobbe-Index. Die Ermittlung dieser Kennzahl erfolgt über die relative Dichte, also dem Verhältnis der Dichte des SNG-Gases zur Dichte der Luft unter gleichen Zustandsbedingungen, und den Brennwert.^[16]

Die Dichte des Gases kann mithilfe der Simulationsergebnisse aus dem Quotienten von Massenstrom und Volumenstrom des SNG unter Normbedingungen (1,01325 bar und 0° C)^[11] bestimmt werden.

Die Dichte der trockenen Luft kann über die thermische Zustandsgleichung für ideale Gase im Normzustand ermittelt werden. Dazu wird die spezifische Gaskonstante für Luft mit $R_{Luft} = 287,05 \text{ J}/(\text{kg} \cdot \text{K})$ verwendet.^[11]

Ferner kann die relative Dichte bestimmt werden, welche laut ÖVGW-Vorgabe zwischen 0,55 und 0,65 liegen muss.

$$d = \frac{\rho_G}{\rho_L} = \frac{0.709 \,\frac{\text{kg}}{\text{Nm}^3}}{1.292 \,\frac{\text{kg}}{\text{Nm}^3}} = \underline{0.55}$$

Letztlich erfolgt für das einzuspeisende SNG die Ermittlung des Wobbe-Index, welcher Werte von 13,3 bis 15,7 kWh/Nm³ einnehmen darf.

$$W_o = \frac{H_o}{\sqrt{d}} = \frac{10,79 \frac{\text{kWh}}{\text{Nm}^3}}{\sqrt{0,55}} = \frac{14,57 \frac{\text{kWh}}{\text{Nm}^3}}{14,57 \frac{\text{kWh}}{\text{Nm}^3}}$$

Anhand der Simulationsergebnisse und dem Vergleich mit den von der ÖVGW vorgegebenen Grenzwerten^[16,17] (siehe Tabelle 8 und Tabelle 9) erkennt man, dass sämtliche Kriterien erfüllt werden und die entwickelte Prozesskette einspeisefähiges, auf erneuerbaren Energiequellen basierendes Erdgas liefert.

Tabelle 16: Massenbilanz (Fall 1)

Input			Output		
Biomasse	3.488,25	kg/h	Trocknungsbrüde	58.406,70	kg/h
Trocknungsluft	57.534,70	kg/h	Asche	54,55	kg/h
RME	33,54	kg/h	H ₂ S, HCI	1,10	kg/h
Demineralisiertes Wasser	3.845,48	kg/h	SNG-Methan	1.428,58	kg/h
Summe	64.901,97	kg/h	Kondensationswasser	2.326,18	kg/h
			Sauerstoff	2.684,79	kg/h
			Summe	64.901,90	kg/h
			Differenz Output-Input	-0,07	kg/h

In Tabelle 16 ist die Massenbilanz für den gesamten Prozess angeschrieben, in Tabelle 17 folgt die Energiebilanz. Angeführt hierbei sind jeweils sämtliche in den Prozess eintretenden Stoff- bzw. Energieströme, sowie die den Prozess verlassenden. Bei der Energiebilanz müssen zusätzlich die bei den einzelnen Anlagenkomponenten auftretenden Wärmeverluste und weiters die mechanischen und elektrischen Verluste der Apparate berücksichtigt werden.

Zur Formulierung der Energiebilanz wurde die in Kapitel 4.1.1 vorgestellte konventionelle Enthalpie verwendet. Diese setzt sich aus der Standardbildungsenthalpie und der fühlbaren Wärme zusammen. Aufgrund der für einen Großteil der chemischen Verbindungen stark negativen Werte der Standardbildungsenthalpie folgen die negativen Energieinputs und -outputs in Tabelle 17.

Als Beispiel soll die konventionelle Enthalpie für das SNG-Methan ermittelt werden. Vereinfachend wird für diese Berechnung angenommen, dass das SNG nur aus CH₄ besteht. Der SNG-Stoffstrom weist die Standardtemperatur von 25°C auf, weshalb der Anteil der fühlbaren Wärme gleich Null wird. Somit ist nur die Standardbildungsenthalpie maßgebend. Sämtliche Stoffwerte wurden aus Baehr/Kabelac entnommen.^[11]

$$P_{CH_4} = \frac{\Delta H_{f,298,CH_4}^0}{M_{CH_4}} \cdot \dot{m}_{SNG} = \frac{-74,87 \frac{kJ}{mol}}{16,042 \cdot 10^{-3} \frac{kg}{mol}} \cdot 1.428,58 \frac{kg}{h} \cdot \frac{1h}{3600s} = \underline{-1.852,04 \text{ kW}}$$

Der ermittelte Wert stimmt sehr gut mit dem Simulationsergebnis für den SNG-Methanstrom überein (vgl. Tabelle 17).

Durch Differenzbildung der Summen von Inputs und Outputs konnte die erforderliche Massen- und Energieerhaltung im Prozess erfolgreich verifiziert werden. Die auftretenden Differenzen sind allesamt sehr gering und können als Summe an Rundungsfehlern betrachtet werden.

Input		Output			
Biomasse	-9.166,70	kW	Trocknungsbrüde	-4.649,01	kW
Trocknungsluft	-1.619,52	kW	Asche	-79,77	kW
RME	-49,22	kW	H ₂ S, HCI	-0,41	kW
Demineralisiertes Wasser	-16.947,67	kW	SNG-Methan	-1.856,95	kW
Strom zur Elektrolyse	19.137,70	kW	Kondensationswasser	-10.238,29	kW
Elektr. Motorenleistung	687,09	kW	Sauerstoff	37,87	kW
Summe Input	-7.958,33	kW	Fernwärme	4.949,08	kW
		Umgebung	3.707,98	kW	
Verluste			Summe Output	-8.129,50	kW
Wärmeverluste Apparate	114,48	kW			
Wärmeverluste Pumpen und Verdichter	12,93	kW			
Verluste Generator	0	kW			
Verluste El. Motoren	43,24	kW			
Summe Verluste	170,64	kW			
Differenz Output + Verluste Input				0.54	L/\//

Tabelle 17: Energiebilanz auf Basis der konventionellen Enthalpie (Fall 1)

Die aus der Biomassetrocknung stammende Trocknungsbrüde, ein Gemisch aus Trocknungsluft und Wasserdampf aus der Biomasse, wird, wie bei derartigen Trocknungsverfahren üblich, an die Umgebung abgegeben. Eine Brüdenkondensation und Verwendung des Wassers für den Prozess wäre denkbar, müsste jedoch einer Wirtschaftlichkeitsbetrachtung unterzogen werden.

Aufgrund des hohen organischen Anteils in der Asche von ca. 45 Gew.-% ist eine Verwendung der Asche als Düngemittel nicht möglich, die Grenze liegt bereits bei 5 Gew.-%.^[46] Die poröse Struktur und die große innere Oberfläche könnten aber einen Einsatz als Katalysatormaterial, Adsorptionsmittel oder Aktivkohle möglich machen. Die im Produktgasadsorber abgeschiedene H_2S - und HCI-Fraktionen müssen einer ordnungsgemäßen Entsorgungseinrichtung zugeführt werden.

Das SNG muss nach Prozessaustritt lediglich odoriert werden und kann anschließend in das Erdgasnetz eingespeist werden. Je nachdem, ob die Einspeisung in das Hoch-, Mittel- oder Niederdrucknetz erfolgen soll, ist gegebenenfalls noch eine Druckanpassung erforderlich.

Das im Prozess anfallende Kondensationswasser soll einer Entsalzungsanlage zugeführt und dort für den späteren Einsatz als Elektrolysewasser gereinigt werden. Der bei der Elektrolyse produzierte Sauerstoff, welcher nicht für die Vergasung benötigt wird, kann entweder in einem geeigneten Speicher für Änderungen im Lastfall aufbewahrt und/oder verkauft werden.

Die Prozesswärme kann zu einem Teil in das Fernwärmenetz ausgekoppelt werden. Um den Kühlkreislauf zu schließen ist jedoch eine weitere Wärmeabgabe an die Umgebung, etwa durch einen Luftkühler, erforderlich.

Weiters wurden von den wesentlichen Anlagenteilen, Vergasung, Elektrolyse und Methanisierung, Massen- und Energieerhaltung überprüft. Diese sind in den Tabellen 18 bis 23 dargestellt.

Tabelle 18: Massenbilanz Vergasung

Input			Output		
Biomasse	2.616,19	kg/h	Produktgas	3.904,85	kg/h
Sauerstoff	730,39	kg/h	Asche	34,31	kg/h
Dampf	550,55	kg/h	Summe	3.939,16	kg/h
Beladenes RME	42,04	kg/h			
Summe	3.939,17	kg/h			

Differenz Output – Input

-0,01 kg/h

Tabelle 19: Energiebilanz Vergasung

Input		Output			
Biomasse	-5.273,14	kW	Produktgas	-7.219,22	kW
Sauerstoff	10,30	kW	Asche	-54,32	kW
Dampf	-1.908,81	kW	Summe	-7.273,54	kW
Beladenes RME	-47,65	kW			
Summe	-7.219,29	kW	Verluste		
Wärmeverluste			Wärmeverluste	54,26	kW
Differenz Output + Verluste – Input					kW

Tabelle 20: Massenbilanz Elektrolyse (Fall 1)

Input		Output			
Demineralisiertes Wasser	3.845,48	kg/h	Wasserstoff	430,31	kg/h
Kühlwasser Ein	16.723,20	kg/h	Sauerstoff	3.415,17	kg/h
Summe	20.568,68	kg/h	Kühlwasser Aus	16.723,20	kg/h
		Summe	20.568,68	kg/h	
			Differenz Output – Input	0,00	kg/h

Tabelle 21: Energiebilanz Elektrolyse (Fall 1)

Input		Output			
Demineralisiertes Wasser	-16.947,67	kW	Wasserstoff	94,62	kW
Kühlwasser Ein	-73.701,47	kW	Sauerstoff	48,18	kW
Elektrischer Strom	19.137,70	kW	Kühlwasser Aus	-71.654,27	kW
Summe	-71.511,44	kW	Summe	-71.511,47	kW
			Differenz Output – Input	-0.03	kW

Tabelle 22: Massenbilanz Methanisierung (Fall 1)						
Input		Output				
Gas vor Methanisierung	3.405,51	kg/h	Gas nach Methanisierung	3.405,51	kg/h	
Thermoöl Ein	55.893,70	kg/h	Thermoöl Aus	55.893,70	kg/h	
Summe	59.299,21	kg/h	Summe	59.299,21	kg/h	
			Difference Output langet	0.00	Le ou / lo	

Differenz Output – Input 0,00 kg/h

Tabelle 23: Energiebilanz Methanisierung (Fall 1)

Input			Output		
Gas vor Methanisierung	-4.957,32	kW	Gas nach Methanisierung	-8.872,15	kW
Thermoöl Ein	-6.556,42	kW	Thermoöl Aus	-2.671,61	kW
Summe	-11.513,74	kW	Summe	-11.543,76	kW
Verluste					
Wärmeverluste	30,00	kW			
	Differenz Output + Verluste – Input			-0,02	kW

Anschließend wurden die wichtigsten Leistungszahlen für den Prozess berechnet und in Tabelle 24 aufgelistet. Insbesondere für den Vergleich mit anderen Prozessen interessant sind der Wirkungsgrad für die Power-to-Gas-Methanproduktion η_{SNG} und der Gesamtnutzungsgrad der Anlage η_{qes} . Diese beiden Kenngrößen wurden folgendermaßen ermittelt:

 $\eta_{SNG} = \frac{P_{SNG}}{\dot{Q}_{Biomasse} + \dot{Q}_{RME} + P_{Elektrolyse} + P_{Motoren,el}}$

 $\eta_{ges} = \frac{P_{SNG} + \dot{Q}_{Fernwärme}}{\dot{Q}_{Biomasse} + \dot{Q}_{RME} + P_{Elektrolyse} + P_{Motoren,el}}$

Tabelle 24: Zusammenfassung der Leistungskennzahlen für Fall 1

$\dot{Q}_{Biomasse}$	10.000	kW
$P_{Elektrolyse}$	19.138	kW
$P_{Elektrolyse}/P_{Elektrolyse,max}$	100	%
P _{SNG}	19.595	kW
<i>V</i> _{N,SNG}	2.016	Nm ³ /h
$\dot{Q}_{Fernwärme}$	4.949	kW
P _{Gasmotor}	0	kW
P _{Motoren,el}	687	kW
$\eta_{Gasmotor}$	0	%
η_{SNG}	65,33	%
η_{ges}	81,83	%

In Abbildung 35 ist ein Sankey-Diagramm zur Veranschaulichung der wichtigsten Energieströme des Prozesses dargestellt. Energieinputs in den Prozess sind der Biomasseund Biodieselstrom und die elektrische Energie für die Elektrolyse und die Elektromotoren von Pumpen und Verdichter. Die energetischen Outputs aus dem Prozess sind zum einen das ins Gasnetz einspeisbare SNG und zum anderen die auskoppelbare Energie in die Fernwärmeversorgung. Sämtliche im Prozess auftretenden Verluste wurden in einem Pfeil fusioniert.

Abbildung 35: Sankey-Diagramm für den Fall 1

Zusammengefasst ist durch den Einsatz von 10 MW Biomassebrennstoffleistung und ca. 19 MW Elektrolyseleistung möglich, 2.016 Nm³/h SNG mit einer Brennstoffleistung von ca. 19,6 MW in das Erdgasnetz zu liefern. Es ergibt sich ein Wirkungsgrad von ca. 65,3% für die SNG-Produktion und unter Einbeziehung einer Fernwärmeauskopplung von rund 5 MW ein Gesamtnutzungsgrad von 81,8%. Die Prozess-Simulation mit den erzielten Ergebnissen für den betrachteten Fall ist im Anhang (Kapitel 8.2) beigefügt.

6.2 Fall 2: 50% Verfügbarkeit der Windenergie

6.2.1 Erzeugung von SNG und Strom/Wärme (Polygeneration) in der Biomassevergasung

In einer weiteren Prozess-Simulation (Ergebnisse siehe Anhang Kapitel 8.3) wurde eine geringere Verfügbarkeit der Windenergie zum Betreiben der Elektrolyseanlage angenommen. Folgende Ausführungen beziehen sich auf einen Betrieb bei 50% der Maximalleistung der Elektrolyseeinheit.

Die Biomassevergasung wird weiterhin mit 10 MW betrieben. Da jedoch nur die Hälfte an Wasserstoff zur Mischung mit dem Produktgas zur Verfügung steht, der Stöchiometriefaktor jedoch eingehalten werden muss, wird die Hälfte des Produktgasstromes über den Gasmotor geleitet und dabei Strom produziert. Die Gaszusammensetzungen im Prozess bleiben unverändert zu Fall 1 (siehe Tabelle 15).

In den Tabellen 25 und 26 sind Massen- und Energiebilanz für den vorliegenden Fall aufgelistet. Im Unterschied zu Fall 1 wird zum Betrieb des Gasmotors ein Verbrennungsmittel benötigt und es fällt in weiterer Folge auch ein Abgas an. Wie in Kapitel 3 beschrieben, soll als Verbrennungsmittel der aus der Elektrolyse anfallende Sauerstoff zum Einsatz kommen. Aus der Massenbilanz ist ersichtlich, dass für diesen Lastfall der Sauerstoffoutput geringer als der Sauerstoffbedarf des Gasmotors ist. Demnach müssen hier 126,23 kg/h Sauerstoff aus einem Sauerstoffspeicher entnommen werden.

Input		Output			
Biomasse	3.488,25	kg/h	Trocknungsbrüde	58.406,70	kg/h
Trocknungsluft	57.534,70	kg/h	Asche	54,55	kg/h
RME	33,54	kg/h	H ₂ S, HCI	1,10	kg/h
Demineralisiertes Wasser	1.922,74	kg/h	Abgas-Gasmotor	1.969,34	kg/h
Sauerstoff für Gasmotor	1.103,43	kg/h	SNG-Methan	714,29	kg/h
Summe	64.082,66	kg/h	Kondensationswasser	1.959,41	kg/h
			Sauerstoff	977,20	kg/h
			Summe	64.082,59	kg/h
Differenz Output – Input				-0,07	kg/h

Tabelle 25: Massenbilanz (Fall 2)

Alternativ dazu könnte auch Umgebungsluft für die Verbrennung im Gasmotor verwendet werden und das Abgas CO₂-Neutral an die Umgebung abgeführt werden. Für eine stöchiometrische Verbrennung im Gasmotor, wie sie auch bei der Verwendung von Sauerstoff simuliert wurde, müssten ca. 5.000 kg/h Umgebungsluft zugeführt werden.

Aus der Energiebilanz geht hervor, dass durch den Betrieb des Gasmotors ca. 1,7 MW Strom produziert werden können. Dieser kann entweder ins Netz geliefert werden, oder aber zur Abdeckung des Strombedarfs im Prozess für Elektrolyse und Elektromotoren verwendet werden. Dadurch würde sich der Nettostrombedarf aus dem Netz von 9.951,13 kW auf 8.223,88 kW verringern.

Input		Output			
Biomasse	-9.166,70	kW	Trocknungsbrüde	-4.649,01	kW
Trocknungsluft	-1.619,52	kW	Asche	-79,77	kW
RME	-49,22	kW	H ₂ S, HCI	-0,41	kW
Demineralisiertes Wasser	-8.473,84	kW	Abgas-Gasmotor	-4.790,55	kW
Sauerstoff für Gasmotor	-2,81	kW	SNG-Methan	-928,48	kW
Strom zur Elektrolyse	9.568,86	kW	Kondensationswasser	-8.603,01	kW
Elektr. Motorenleistung	382,27	kW	Sauerstoff	13,79	kW
Summe Input	-9.360,97	kW	Generator Gasmotor	1.727,25	kW
			Fernwärme	4.230,54	kW
Verluste			Umgebung	3.270,99	kW
Wärmeverluste Apparate	307,73	kW	Summe Output	-9.808,66	kW
Wärmeverluste Pumpen und Verdichter	7,19	kW			
Verluste Generator	108,69	kW			
Verluste El. Motoren	24,05	kW			
Summe Verluste	447,67	kW			
		_			

 Tabelle 26: Energiebilanz auf Basis der konventionellen Enthalpie (Fall 2)

Differenz Output + Verluste – Input -0,03 kW

Wie für den Fall 1 wurde auch für dieses Szenario ein Sankey-Diagramm angefertigt (Abbildung 36). Im Unterschied zur zuerst vollständigen Elektrolyseleistung beträgt diese hier lediglich die Hälfte, was durch einen nur halb so breiten Pfeil zu erkennen ist. Bei den Outputs befindet sich nun auch ein Energiestrom für die Stromproduktion durch den Gasmotor wieder.

Abbildung 36: Sankey-Diagramm für den Fall 2

In Tabelle 27 ist die Zusammensetzung des Abgases aus dem Gasmotor dargestellt. Aufgrund des sehr hohen Kohlenstoffanteils und der geringen Konzentration an Begleitkomponenten scheint dieses Gas für einen Einsatz in der Methanisierung prädestiniert zu sein. Dazu wäre jedoch ein Speicher notwendig, da die Verwendung des Abgases zeitversetzt zu dessen Anfall stattfinden würde. Damit könnte zur 10 MW Biomassevergasung eine Elektrolyseeinheit mit einer Leistung größer als der in Fall 1 betrachteten kombiniert werden, da sich der Wasserstoffbedarf für Produktgas und Abgas aus dem Gasmotor weiter erhöht. Limitierend für die Beimischung von Abgas zum Produktgas ist der O₂-Anteil im Abgas, da der Grenzwert von Sauerstoff im SNG bei

0,5 Vol.-% liegt. Jedoch könnte der O_2 -Anteil durch leicht unterstöchiometrische Verbrennung im Gasmotor deutlich reduziert werden. Dadurch würde es auch zu einem Anstieg von CO im Abgas kommen, was auf eine nachfolgende Methanisierung sehr positive Auswirkungen hätte (vgl. Kapitel 2.4).

Desweiteren müssen die Kosten für die Anschaffung und den Betrieb des Abgasspeichers in die Wirtschaftlichkeitsbetrachtungen miteinbezogen werden. Erst dann kann entschieden werden, ob die Verwendung von Sauerstoff zur Verbrennung im Gasmotor und nachfolgende Methanisierung des Abgases sinnvoll ist oder aber das Abgas besser einer anderen Verwendung zugeführt werden soll.

H ₂	in Vol%	0,00
CO	in Vol%	3,17
CO ₂	in Vol%	90,69
CH ₄	in Vol%	0,03
C _x H _y	in Vol%	0,01
H_2O	in Vol%	4,08
N ₂	in Vol%	0,28
O ₂	in Vol%	1,73

Tabelle 27: Abgaszusammensetzung Gasmotor

Für den Betrieb der autothermen Biomassevergasung sind 730,39 kg/h Sauerstoff notwendig. Die Vergasungsleistung soll in allen Szenarien konstant bleiben, somit ist die Bereitstellung des Sauerstoffs oberste Priorität. Wird O₂ lediglich für die Vergasung verwendet, also nicht für den Gasmotor, so liefert der Elektrolyseur bei 21,4% seiner Maximalleistung gerade noch so viel Sauerstoff, um die Vergasung aufrecht zu erhalten. Somit kann die Leistung des Elektrolyseurs zwischen 100% und 21,4% variiert werden, ohne die Biomassevergasung zu beeinflussen. Fällt der Elektrolyseur aus bzw. liegt dessen Leistung unter 21,4% der Maximalleistung, so muss der Sauerstoff anderweitig zur Verfügung gestellt werden. Es ist ein Sauerstoffspeicher vorzusehen, der die Leistungsabfälle des Elektrolyseurs kompensieren kann.

Die Dimensionierung des Sauerstoffspeichers ergibt sich aus der längsten Zeitdauer, bei der die Elektrolyseleistung unter 21,4% der Nennleistung liegt. Für das Jahr 2014 lag die Windenergieleistung vom 1. Juni bis 11. Juni, einer Zeitdauer von 242 Stunden, unter den erforderlichen 21,4% der maximalen Windenergieleistung. Durch Verwendung der thermischen Zustandsgleichung für ideale Gase lässt sich für eine Temperatur von 15°C und einem Speicherdruck von 100 bar die Speichergröße bestimmen.

$$W_{O_2-Speicher} = \frac{t_{Flaute} \cdot \dot{m}_{O_2,Verbrauch} * R * T}{p * M_{O_2}} = \frac{242 \text{ h} \cdot 730,39 \frac{\text{kg}}{\text{h}} \cdot 8,314 \frac{\text{J}}{\text{mol} \cdot \text{K}} \cdot 288,15 \text{ K}}{100 \cdot 10^5 \text{ Pa} \cdot 31,9988 \cdot 10^{-3} \frac{\text{kg}}{\text{mol}}}$$
$$= \underline{1.323 \text{ m}^3}$$

Die sich ergebende Größe des Sauerstoffspeichers von 1.323 m³ lässt folgern, dass der Elektrolyseur im Bezug auf die Biomassevergasung tendenziell unterdimensioniert werden sollte, um die notwendigen Speichervolumina gering halten zu können.

Wie in Kapitel 5 erläutert, liegt die durchschnittlich verfügbare Windenergieleistung im Jahr bei 22%. Somit können mit dem im Prozess gewählten Elektrolyseur, welcher bei Maximalleistung 3.415,17 kg Sauerstoff pro Stunde liefert, über das Jahr gesehen im Durchschnitt 754,75 kg/h bereitgestellt werden. Dieser Wert liegt nur knapp über den für die Vergasung notwendigen 730,39 kg/h und demnach sind einer Unterdimensionierung des Elektrolyseurs prozesstechnische Grenzen gesetzt.

Aus diesen Überlegungen heraus, scheint eine Verwendung des Sauerstoffs für die Verbrennung im Gasmotor als nicht sinnvoll. Der Sauerstoff wird bereits für die Vergasung über das Jahr gesehen nahezu vollständig verbraucht.

Ferner sollen auch für den Fall 2 die entsprechenden Leistungskennzahlen berechnet werden. Der Wirkungsgrad für die SNG-Herstellung erfolgt wie im Fall 1, für den Gesamtnutzungsgrad wird nachstehende Beziehung verwendet.

 $\eta_{ges} = \frac{P_{SNG} + \dot{Q}_{Fernwärme} + P_{Gasmotor}}{\dot{Q}_{Biomasse} + \dot{Q}_{RME} + P_{Elektrolyse} + P_{Motoren,el}}$

Bei einer Elektrolyseleistung von ca. 9,5 MW und einer Biomasseleistung von 10 MW ergibt sich eine SNG-Leistung von ca. 9,8 MW und einem Normvolumenstrom von 1.008 Nm³/h. Im Vergleich zum Fall 1 sinken der Wirkungsgrad für die SNG-Produktion auf 48,7% und der Gesamtnutzungsgrad von 81,8% auf 78,3%.

Tabelle 28: Zusammenfassung der Leistungskennzahlen für Fall 2

$\dot{Q}_{Biomasse}$	10.000	kW
$P_{Elektrolyse}$	9.569	kW
$P_{Elektrolyse}/P_{Elektrolyse,max}$	50	%
P _{SNG}	9.798	kW
$\dot{V}_{N,SNG}$	1.008	Nm ³ /h
$\dot{Q}_{Fernwärme}$	4.231	kW
P _{Gasmotor}	1.727	kW
P _{Motoren,el}	382	kW
η_{SNG}	48,69	%
η_{ges}	78,30	%

6.3 Fall 3: Ausfall der Windenergie

6.3.1 Ausschließliche Erzeugung von Strom/Wärme in der Biomassevergasung

In diesem Szenario soll das Verhalten der Prozesskette bei einem Ausfall der Windenergie betrachtet werden. Wie in der Massenbilanz in Tabelle 29 zu sehen, wird in diesem Fall kein Power-to-Gas-SNG in das Erdgasnetz gespeist. Das Produktgas wird zu 100% über den Gasmotor geleitet und damit Strom produziert. Die Elektrolyseeinheit steht still, es wird somit auch kein demineralisiertes Wasser benötigt und kein Sauerstoff und Wasserstoff produziert.

Input			Output		
Biomasse	3.488,25	kg/h	Trocknungsbrüde	58.406,70	kg/h
Trocknungsluft	57.534,70	kg/h	Asche	54,55	kg/h
RME	33,54	kg/h	H ₂ S, HCI	1,10	kg/h
Demineralisiertes Wasser	0,00	kg/h	Abgas-Gasmotor	3.938,68	kg/h
Sauerstoff für Gasmotor	2.206,87	kg/h	SNG-Methan	0,00	kg/h
Summe	63.263,36	kg/h	Kondensationswasser	1.592,64	kg/h
			Sauerstoff	-730,39	kg/h
			Summe	63.263,28	kg/h
			Differenz Output-Input	-0,07	kg/h

Tabelle 29: Massenbilanz (Fall 3)

Für die Vergasung werden jedoch weiterhin die 730,39 kg/h O_2 benötigt, weshalb ein negativer Output, also ein Bedarf, von genau diesem Wert erforderlich ist. Dieser Sauerstoff soll, wie bereits im Fall 2 erläutert, aus einem Sauerstoffspeicher, der bei hoher Elektrolyseleistung gefüllt wurde, kommen.

Abbildung 37: Sankey-Diagramm für den Fall 3

Das Sankey-Diagramm für diesen Fall (Abbildung 37) ist im Vergleich zu den ersten beiden Fällen aufgrund der fehlenden Elektrolyseleistung weiter reduziert. Es kann keine Methanisierung des Produktgases erfolgen, es gibt demnach auch keine SNG-Produktion und somit ist der Stromoutput für die entwickelte Prozesskette in diesem Sankey-Diagramm maximal.

In Tabelle 30 befindet sich die Energiebilanz für den hier betrachteten Fall. Dadurch, dass das gesamte Produktgas im Gasmotor verbrannt und im Generator verstromt wird, ergibt sich eine elektrische Leistung von ca. 3,5 MW, die dem Stromnetz bereit gestellt werden können. Dies erfolgt gerade bei einem Strombedarf im Netz und liefert dadurch einen positiven Beitrag für die Netzstabilisation.

Input			Output						
Biomasse	-9.166,70	kW	Trocknungsbrüde	-4.649,01	kW				
Trocknungsluft	-1.619,52	kW	Asche	-79,77	kW				
RME	-49,22	kW	H ₂ S, HCI	-0,41	kW				
Demineralisiertes Wasser	0,00	kW	Abgas-Gasmotor	-9.581,10	kW				
Sauerstoff für Gasmotor	-5,62	kW	SNG-Methan	0,00	kW				
Strom zur Elektrolyse	0,00	kW	Kondensationswasser	-6.967,71	kW				
Elektr. Motorenleistung	77,45	kW	Sauerstoff	-10,30	kW				
Summe Input	-10.763,63	kW	Generator Gasmotor	3.454,50	kW				
			Fernwärme	3.512,00	kW				
Verluste			Umgebung	2.833,99	kW				
Wärmeverluste Apparate	500,99	kW	Summe Output	-11.487,82	kW				
Wärmeverluste Pumpen und Verdichter	1,46	kW							
Verluste Generator	217,38	kW							
Verluste El. Motoren	4,87	kW							
Summe Verluste	724,70	kW							
Differenz Output + Verluste – Input 0.50 kW									

 Tabelle 30: Energiebilanz auf Basis der konventionellen Enthalpie (Fall 3)

Alternativ dazu könnte der generierte Strom zum Betrieb der Elektrolyseeinheit verwendet werden, um zumindest einen Teil des Sauerstoffs für die Vergasung bereitstellen zu können. Werden die ganzen 3,5 MW Strom dem Elektrolyseur zugeführt, können 616,46 kg Sauerstoff pro Stunde produziert und als Vergasungsmittel verwendet werden. Demnach müssen lediglich 113,93 kg/h aus dem O₂-Speicher entnommen werden. Gleichzeitig wird bei der Elektrolyse auch Wasserstoff erzeugt und zwar 77,67 kg/h. Da die Methanisierung in diesem Szenario nicht betrieben werden kann, muss ein H₂-Speicher vorgesehen werden. Dieser Wasserstoff wäre neben der Fernwärme der einzige Output aus dem Prozess. Deshalb sollte der Betrieb des Elektrolyseurs mit Strom aus der Gasmotor-/Generatoreinheit nur bei sich abzeichnender Knappheit im Sauerstoffspeicher erfolgen.

Aufgrund der geringen molaren Masse des Wasserstoffs sind für eine Speicherung im Vergleich zu anderen Gasen große Volumina erforderlich. Um das Speichervolumen zu verringern, erfolgt eine Wasserstoffspeicherung meist unter hohem Druck (ca. 700 bar). Eine derartige Kompression ist jedoch mit einem hohen Energieaufwand verbunden. Beispielhaft soll eine Wasserstoff-Speichergröße für eine Speicherdauer von 242 Stunden berechnet werden. Die Berechnung erfolgt wiederum unter Verwendung der thermischen Zustandsgleichung für ideale Gase bei 15°C und 700 bar.

$$V_{H_2-Speicher} = \frac{t_{Flaute} \cdot \dot{m}_{H_2,Produktion} * R * T}{p * M_{H2}} = \frac{242 \text{ h} \cdot 77,67 \frac{\text{kg}}{\text{h}} \cdot 8,314 \frac{\text{J}}{\text{mol} \cdot \text{K}} \cdot 288,15 \text{ K}}{700 \cdot 10^5 \text{ Pa} \cdot 2,01588 \cdot 10^{-3} \frac{\text{kg}}{\text{mol}}}$$
$$= \frac{319 \text{ m}^3}{2}$$

Es ergibt sich eine notwendige Größe des Wasserstoffspeichers von 319 m³.

Bei vollständiger Prozessführung über den Gasmotor anstatt über die Methanisierungseinheit kann der Wirkungsgrad bei Prozessführung über den Gasmotor zu 33,2% mit nachfolgender Beziehung berechnet werden:

$\eta_{Gasmotor} =$	$P_{Gasmotor}$						
	$\dot{Q}_{Biomasse} + \dot{Q}_{RME} + P_{Elektrolyse} + P_{Motoren,el}$						

Tabelle 31: Zusammenfassung der Leistungskennzahlen für Fall 3

$\dot{Q}_{Biomasse}$	10.000	kW
$P_{Elektrolyse}$	0	kW
$P_{Elektrolyse}/P_{Elektrolyse,max}$	0	%
P _{SNG}	0	kW
<i>V</i> _{N,SNG}	0	Nm ³ /h
$\dot{Q}_{Fernwärme}$	3.512	kW
P _{Gasmotor}	3.455	kW
P _{Motoren,el}	77	kW
$\eta_{Gasmotor}$	33,20	%
η_{SNG}	0,00	%
η_{ges}	67,98	%

Abschließend ist in Abbildung 38 die Veränderung des Gesamtnutzungsgrades über den gesamten Leistungsbereich des Elektrolyseurs aufgetragen. Es lässt sich erkennen, dass der Nutzungsgrad von der maximalen Elektrolyseleistung am Anfang annähernd linear abnimmt, bis dann bei Leistungen kleiner 50% der Rückgang etwas steiler vonstattengeht. Grund dafür ist der im Vergleich mit dem SNG-Wirkungsgrad kleinere Wirkungsgrad bei der Stromproduktion durch den Gasmotor.

7 SCHLUSSFOLGERUNGEN UND AUSBLICK

Wie die Ergebnisse der Prozess-Simulation in Kapitel 6 bestätigen, ist die entwickelte Prozesskette für eine Produktion von Power-to-Gas-SNG aus Biomasse und Windenergie sehr geeignet. Bei Stromüberschuss im Netz ist eine kontinuierliche Methanproduktion in einer Qualität, die den Einspeisekriterien des Gasnetzbetreibers entspricht, möglich. Die Fluktuationen der Windenergie können durch den zusätzlichen Betrieb eines Gasmotors abgefedert werden. Die Vergasung kann demnach konstant betrieben werden und bei einer Leistungssenkung des Elektrolyseurs wird ein Teil des gereinigten Produktgasstroms über den Gasmotor geleitet und Strom produziert. Ein Betrieb des Gasmotors mit Sauerstoff, wie in der ursprünglich entwickelten Prozesskette geplant, ist nicht sinnvoll. Der mittels Elektrolyse produzierte Sauerstoff wird über das Jahr gesehen nahezu vollständig für die Vergasung benötigt.

Mit einer 10 MW Biomasse-Dampfvergasungsanlage und einem Elektrolyseur mit ca. 19 MW Leistung können 2.016 Nm³/h SNG bzw. eine Brennstoffleistung von rund 19,6 MW in das Erdgasnetz eingespeist werden. Der Wirkungsgrad für die SNG-Produktion liegt dabei bei ca. 65,3%. Außerdem ist eine Fernwärmeauskopplung von ca. 5 MW Wärmeleistung möglich, womit sich ein Gesamtnutzungsgrad von 81,8% für den Prozess ergibt. Beim Rückgang der Elektrolyseleistung infolge von Leistungsschwankungen in der Windenergieproduktion, nimmt auch die produzierte SNG-Menge proportional dazu ab. Kommt es zum Totalausfall des Elektrolyseurs, wird das komplette Produktgas zur Stromproduktion durch den vom Gasmotor angetriebenen Generator verwendet. Der Wirkungsgrad für dieses Szenario liegt bei rund 33,2% und der Gesamtnutzungsgrad sinkt damit auf ca. 68% ab.

Der Leistungsbereich des Elektrolyseurs zur Wasserstoffbereitstellung lässt sich bei der simulierten Einbett-Wirbelschichtprozesskette zwischen 100% und 21,4% ohne Auswirkungen auf den Betrieb der gesamten Anlage variieren. Da die autotherme Vergasung mit Sauerstoff aus der Elektrolyse betrieben wird, ist für Zeiten mit geringerer Elektrolyseleistung ein Sauerstoffspeicher mit einer Größe von ca. 1.323 m³ vorzusehen.

Im Rahmen dieser Arbeit wurden die Simulationsrechnungen lediglich für die autotherme Vergasung in der Einbett-Wirbelschicht durchgeführt. Prozessketten, die eine allotherme Zweitbett-Wirbelschicht Vergasung (Prozesskette 2, Abbildung 18) verwenden, werden im Zuge von Forschungsarbeiten am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften simuliert und können zu Vergleichszwecken herangezogen werden. Der Wirkungsgrad für die SNG-Produktion mit einer Zweitbett-Wirbelschichtanlage wurde in den Instituts-Simulationen zu rund 62% bestimmt. Die Prozess-Simulation für die autotherme Vergasung in dieser Arbeit lieferte ca. 65,3% und liegt damit in vergleichbarer Größenordnung. Für den Vergleich muss beachtet werden, dass der anlagentechnische Aufwand bei der allothermen Vergasung aufgrund von zwei getrennten Wirbelschichten höher ist und außerdem das Produktgas mit dem Abgas aus der Verbrennungswirbelschicht gemischt wird. Dadurch ist der CO₂-Gehalt im zu methanisierenden Gas höher, jedoch ist für die Kinetik der Methanisierungsreaktionen ein höherer CO-Anteil im Gas von Vorteil.

Die Zweitbett-Wirbelschicht hätte aber im Teillastbetrieb des Elektrolyseurs Vorzüge. Sollte bei längeren Unterbrechungen in der Wasserstoff- und Sauerstoffproduktion der Sauerstofftank zur Neige gehen, könnte die Verbrennungswirbelschicht auch mit Umgebungsluft betrieben werden. Damit könnte die Vergasung ungestört weiter betrieben

und das Abgas der Verbrennung durch einen Kamin an die Umgebung abgegeben werden. Sollte der Sauerstoffvorrat bei der autothermen Vergasung aufgebraucht sein, so muss die Vergasung und damit der gesamte Prozess heruntergefahren werden. Eine Wiederinbetriebnahme der Anlage ist nur langsam möglich, da eine zu rasche Aufheizung zu unzulässigen Thermospannungen in den dickwandigen Bauteilen führen könnte.

Die Vergasung in der Zweibett-Wirbelschicht ist bereits eine intensiv beforschte und optimierte Technologie, dies kann von der autothermen Dampfvergasung mit Sauerstoff nicht behauptet werden. In weiterfolgenden Forschungsarbeiten sollte demnach diese Art der Vergasung experimentell untersucht werden, um zum Beispiel die in der Literatur vorhandenen Gaszusammensetzungen, auf denen die Simulationsrechnungen beruhen, verifizieren zu können. Auch Versuchsreihen über die Auswirkungen einer Änderung der Menge des zugeführten Vergasungsmittels, sowie der Anteil von H₂O und O₂ darin, wären für eine Anpassung der Simulationswerte wichtig.

Im Rahmen von nachfolgenden Simulationsrechnungen sollte auch eine detailliertere Betrachtung der Entfernung der Chlor-, Schwefel- und Stickstoffkomponenten aus dem Produktgas durchgeführt werden. Für den Betrieb der Hydrodesulphurisationsanlage zur Entfernung von Schwefel- und Chlorbestandteilen ist auch eine gewisse Menge an Wasserstoff für Hydrierungsvorgänge erforderlich, dies fand in den Simulationsrechnungen der vorliegenden Arbeit keine Berücksichtigung. Weiters sollte durch experimentelle Versuche am Produktgaswäscher kontrolliert werden, ob die Annahme einer vollständigen NH₃- und HCN-Entfernung im Wäscher tatsächlich korrekt ist.

Eine der Schlüsselkomponenten für den Wirkungsgrad der SNG-Produktion ist der Elektrolyseur. Für die den Simulationsrechnungen zu Grunde liegende PEM-Anlage liegen aktuell noch keine Ergebnisse über die tatsächlich realisierten Wirkungsgrade bzw. Leistungskennzahlen vor. Es sollte vor allem geprüft werden, ob die für die Simulation verwendeten 4 kWh pro Normkubikmeter Wasserstoff auch wirklich erreicht werden können.

Längerfristig sollte angedacht werden, die PEM-Elektrolyse durch eine Hochtemperatur-Elektrolyse zu ersetzen. Dies hätte den Vorteil, dass die bei der Methanisierung anfallende Wärme für die Elektrolyse verwendet und damit die erforderliche elektrische Energie reduziert werden könnte. Zurzeit befindet sich die Hochtemperatur-Elektrolyse jedoch noch im Forschungsstadium und die Ergebnisse der Arbeiten bleiben abzuwarten.

Zuletzt sollte auch eine experimentelle Überprüfung der Methanisierungseinheit erfolgen. Im Speziellen ist die Qualität des SNG im Bezug auf das in der Simulation verwendete Temperatur- und Druckniveau zu untersuchen. Aufgrund der Forderung eines möglichst geringen anlagentechnischen Aufwandes, weißt die entwickelte Prozesskette nach der Methanisierung keine weitere Gasreinigung auf. Demnach muss das SNG bereits dort den Anforderungen des Erdgasnetzes entsprechen.

Abschließend kann festgehalten werden, dass sich die fluktuierende Windenergie und die Biomasse als gespeicherte Energie hervorragend synergetisch nutzen lassen. Basierend auf den Ergebnissen dieser Arbeit, scheint ein Einsatz des entwickelten Prozesses im Energiesystem der Zukunft sehr vielversprechend zu sein.

8 ANHANG

8.1 Reaktionsgleichgewichte

8.1.1 Wasser-Elektrolyse

Tem	peratur	ŀ	H₂O		H ₂		0 ₂
in °C	in K	H* in kJ/mol	S ⁰ in J/(mol K)	H* in kJ/mol	S ⁰ in J/(mol K)	H* in kJ/mol	S ⁰ in J/(mol K)
0	273,15	-287,717	63,274	-0,718	128,158	-0,733	202,572
25	298,15	-285,816	69,936	0,000	130,673	0,000	205,139
50	323,15	-283,938	75,985	0,723	133,002	0,736	207,510
75	348,15	-282,055	81,597	1,450	135,168	1,476	209,717
85	358,15	-281,297	83,742	1,742	135,994	1,774	210,559
90	363,15	-280,917	84,796	1,887	136,399	1,923	210,972
95	368,15	-280,537	85,837	2,033	136,798	2,072	211,380
97	370,15	-280,384	86,250	2,092	136,956	2,132	211,541
99	372,15	-280,231	86,662	2,150	137,113	2,191	211,702
100	373,15	-239,279	196,403	2,179	137,192	2,221	211,783
101	374,15	-239,245	196,494	2,209	137,270	2,251	211,863
125	398,15	-238,425	198,617	2,911	139,089	2,971	213,728
150	423,15	-237,566	200,709	3,643	140,872	3,727	215,568
175	448,15	-236,702	202,694	4,376	142,554	4,488	217,315
200	473,15	-235,831	204,584	5,108	144,146	5,255	218,981
225	498,15	-234,955	206,389	5,841	145,654	6,028	220,574
250	523,15	-234,072	208,119	6,573	147,089	6,808	222,102
275	548,15	-233,182	209,781	7,305	148,455	7,594	223,569
300	573,15	-232,285	211,380	8,037	149,760	8,387	224,983
325	598,15	-231,381	212,924	8,768	151,009	9,185	226,346
350	623,15	-230,470	214,416	9,499	152,207	9,990	227,664
375	648,15	-229,552	215,861	10,231	153,358	10,800	228,939
400	673,15	-228,626	217,263	10,963	154,467	11,616	230,175
425	698,15	-227,692	218,624	11,696	155,536	12,438	231,373
450	723,15	-226,752	219,948	12,430	156,569	13,265	232,537
475	748,15	-225,803	221,237	13,166	157,569	14,097	233,668
500	773,15	-224,847	222,495	13,903	158,538	14,934	234,768
525	798,15	-223,883	223,722	14,642	159,479	15,775	235,839
550	823,15	-222,911	224,920	15,383	160,393	16,620	236,882
575	848,15	-221,932	226,092	16,127	161,283	17,470	237,899
600	873,15	-220,945	227,239	16,873	162,150	18,323	238,890
625	898,15	-219,950	228,363	17,621	162,994	19,180	239,858
650	923,15	-218,947	229,464	18,371	163,818	20,041	240,803
675	948,15	-217,936	230,545	19,123	164,622	20,904	241,726
700	973,15	-216,917	231,606	19,876	165,406	21,771	242,628
725	998,15	-215,889	232,648	20,630	166,171	22,641	243,511
750	1023,15	-214,853	233,674	21,385	166,918	23,514	244,375
775	1048,15	-213,808	234,682	22,143	167,650	24,389	245,220
800	1073,15	-212,755	235,675	22,904	168,368	25,267	246,047
825	1098,15	-211,693	236,653	23,669	169,072	26,146	246,858
850	1123,15	-210,623	237,617	24,436	169,763	27,028	247,652
875	1148,15	-209,545	238,566	25,206	170,440	27,912	248,430
900	1173,15	-208,459	239,502	25,978	171,106	28,798	249,193
925	1198,15	-207,365	240,425	26,754	171,760	29,686	249,942
950	1223,15	-206,263	241,335	27,532	172,403	30,576	250,677
975	1248,15	-205,154	242,233	28,313	173,036	31,468	251,399
1000	1273,15	-204,037	243,119	29,097	173,657	32,362	252,109

Tem	peratur	∆ G _R ⁰ (T)	ΔH_R^0 (T)	T∆S _R (T)	U _{rev}	U _{th}
in °C	in K	in kJ/mol	in kJ/mol	in kJ/mol	in V	in V
0	273,15	241,243	286,63	45,389	1,250	1,485
25	298,15	237,126	285,82	48,690	1,229	1,481
50	323,15	233,075	285,03	51,953	1,208	1,477
75	348,15	229,086	284,24	55,157	1,187	1,473
85	358,15	227,506	283,93	56,420	1,179	1,471
90	363,15	226,719	283,77	57,047	1,175	1,471
95	368,15	225,935	283,61	57,671	1,171	1,470
97	370,15	225,622	283,54	57,920	1,169	1,469
99	372,15	225,309	283,48	58,168	1,168	1,469
100	373,15	225,150	242,57	17,419	1,167	1,257
101	374,15	225,103	242,58	17,476	1,167	1,257
125	398,15	223,975	242,82	18,847	1,161	1,258
150	423,15	222,784	243,07	20,289	1,154	1,260
175	448,15	221,578	243,32	21,743	1,148	1,261
200	473,15	220,358	243,57	23,209	1,142	1,262
225	498,15	219,125	243,81	24,684	1,136	1,263
250	523,15	217,881	244,05	26,168	1,129	1,265
275	548,15	216,625	244,28	27,659	1,123	1,266
300	573,15	215,358	244,51	29,157	1,116	1,267
325	598,15	214,081	244,74	30,660	1,109	1,268
350	623,15	212,795	244,96	32,169	1,103	1,269
375	648,15	211,500	245,18	33,682	1,096	1,271
400	673,15	210,197	245,40	35,200	1,089	1,272
425	698,15	208,886	245,61	36,722	1,082	1,273
450	723,15	207,567	245,81	38,247	1,076	1,274
475	748,15	206,242	246,02	39,776	1,069	1,275
500	773,15	204,909	246,22	41,307	1,062	1,276
525	798,15	203,570	246,41	42,842	1,055	1,277
550	823,15	202,225	246,61	44,380	1,048	1,278
575	848,15	200,875	246,79	45,919	1,041	1,279
600	873,15	199,519	246,98	47,461	1,034	1,280
625	898,15	198,157	247,16	49,004	1,027	1,281
650	923,15	196,791	247,34	50,547	1,020	1,282
675	948,15	195,419	247,51	52,091	1,013	1,283
700	973,15	194,044	247,68	53,634	1,006	1,284
725	998,15	192,664	247,84	55,176	0,998	1,284
750	1023,15	191,280	248,00	56,715	0,991	1,285
775	1048,15	189,892	248,15	58,254	0,984	1,286
800	1073,15	188,501	248,29	59,792	0,977	1,287
825	1098,15	187,106	248,44	61,329	0,970	1,287
850	1123,15	185,709	248,57	62,864	0,962	1,288
875	1148,15	184,308	248,71	64,399	0,955	1,289
900	11/3,15	182,904	248,84	65,932	0,948	1,290
925	1198,15	181,498	248,96	67,464	0,941	1,290
950	1223,15	180,089	249,08	68,995	0,933	1,291
975	1248,15	1/8,6/8	249,20	70,524	0,926	1,291
1000	12/3,15	177,264	249,32	72,052	0,919	1,292

8.1.2 Boudouard-Reaktion

Tem	peratur	CC	D ₂	C ₍	C _(S) CO		С
in °C	in K	H* in kJ/mol	S ⁰ in J/(mol K)	H* in kJ/mol	S ⁰ in J/(mol K)	H* in kJ/mol	S ⁰ in J/(mol K)
1	274,15	-394,369	210,707	-0,195	5,054	-111,224	195,203
25	298,15	-393,491	213,777	0,000	5,734	-110,525	197,648
50	323,15	-392,549	216,811	0,224	6,454	-109,796	199,995
75	348,15	-391,580	219,698	0,469	7,184	-109,066	202,171
100	373,15	-390,586	222,455	0,734	7,919	-108,334	204,200
125	398,15	-389,567	225,096	1,018	8,657	-107,601	206,102
150	423,15	-388,526	227,633	1,322	9,396	-106,866	207,893
175	448,15	-387,462	230,075	1,644	10,135	-106,128	209,587
200	473,15	-386,377	232,430	1,983	10,871	-105,388	211,194
225	498,15	-385,273	234,704	2,338	11,603	-104,644	212,725
250	523,15	-384,150	236,904	2,710	12,330	-103,898	214,188
275	548,15	-383,008	239,035	3,096	13,051	-103,147	215,589
300	573,15	-381,850	241,102	3,496	13,765	-102,393	216,934
325	598,15	-380,675	243,108	3,910	14,472	-101,635	218,228
350	623,15	-379,485	245,058	4,336	15,169	-100,873	219,476
375	648,15	-378,280	246,954	4,774	15,858	-100,107	220,682
400	673,15	-377,061	248,799	5,222	16,536	-99,336	221,850
425	698,15	-375,828	250,597	5,680	17,205	-98,560	222,981
450	723,15	-374,583	252,349	6,148	17,864	-97,780	224,079
475	748,15	-373,326	254,058	6,625	18,511	-96,995	225,146
500	773,15	-372,057	255,726	7,109	19,148	-96,205	226,185
525	798,15	-370,778	257,354	7,601	19,774	-95,410	227,196
550	823,15	-369,488	258,946	8,100	20,390	-94,611	228,182
575	848,15	-368,188	260,502	8,605	20,994	-93,807	229,144
589	862,15	-367,455	261,358	8,891	21,328	-93,355	229,673
600	873,15	-366,878	262,024	9,116	21,588	-92,999	230,084
625	898,15	-365,559	263,513	9,633	22,172	-92,186	231,001
650	923,15	-364,231	264,972	10,155	22,745	-91,369	231,898
675	948,15	-362,894	266,400	10,683	23,309	-90,548	232,776
700	973,15	-361,549	267,801	11,215	23,863	-89,724	233,634
725	998,15	-360,195	269,174	11,753	24,409	-88,897	234,473
750	1023,15	-358,835	270,520	12,295	24,946	-88,067	235,295
775	1048,15	-357,468	271,840	12,844	25,475	-87,233	236,099
800	1073,15	-356,096	273,134	13,398	25,997	-86,397	236,888
825	1098,15	-354,717	274,404	13,958	26,513	-85,558	237,661
850	1123,15	-353,333	275,650	14,525	27,024	-84,715	238,419
875	1148,15	-351,944	276,873	15,099	27,530	-83,871	239,163
900	1173,15	-350,549	278,075	15,682	28,032	-83,023	239,893
925	1198,15	-349,149	279,256	16,275	28,532	-82,173	240,611
950	1223,15	-347,744	280,417	16,877	29,029	-81,320	241,315
975	1248,15	-346,333	281,558	17,492	29,527	-80,465	242,007
1000	1273,15	-344,918	282,681	18,119	30,024	-79,607	242,688

Temperatur		$\Delta \mathbf{G}_{R}^{0}(T)$	∆H _R ⁰ (T)	K (T)	y co2	Усо
in °C	in K	in kJ/mol	in kJ/mol	-	in Vol%	in Vol%
1	274,15	124,237	172,116	2,128E-24	100,00	0,00
25	298,15	120,031	172,442	9,338E-22	100,00	0,00
50	323,15	115,624	172,733	2,040E-19	100,00	0,00
75	348,15	111,197	172,980	2,070E-17	100,00	0,00
100	373,15	106,753	173,183	1,137E-15	100,00	0,00
125	398,15	102,297	173,347	3,792E-14	100,00	0,00
150	423,15	97,831	173,472	8,376E-13	100,00	0,00
175	448,15	93,360	173,562	1,312E-11	100,00	0,00
200	473,15	88,884	173,619	1,538E-10	100,00	0,00
225	498,15	84,406	173,646	1,410E-09	100,00	0,00
250	523,15	79,927	173,645	1,045E-08	99,99	0,01
275	548,15	75,449	173,617	6,457E-08	99,97	0,03
300	573,15	70,973	173,567	3,401E-07	99,94	0,06
325	598,15	66,499	173,494	1,558E-06	99,88	0,12
350	623,15	62,029	173,402	6,314E-06	99,75	0,25
375	648,15	57,563	173,293	2,295E-05	99,52	0,48
400	673,15	53,102	173,167	7,574E-05	99,13	0,87
425	698,15	48,645	173,027	2,292E-04	98,50	1,50
450	723,15	44,194	172,875	6,422E-04	97,50	2,50
475	748,15	39,748	172,712	1,678E-03	95,99	4,01
500	773,15	35,308	172,538	4,116E-03	93,79	6,21
525	798,15	30,873	172,356	9,538E-03	90,70	9,30
550	823,15	26,445	172,166	2,098E-02	86,53	13,47
575	848,15	22,022	171,968	4,403E-02	81,10	18,90
589	862,15	19,548	171,855	6,541E-02	77,49	22,51
600	873,15	17,605	171,764	8,847E-02	74,35	25,65
625	898,15	13,194	171,554	1,709E-01	66,33	33,67
650	923,15	8,789	171,337	3,182E-01	57,30	42,70
675	948,15	4,390	171,114	5,730E-01	47,71	52,29
700	973,15	-0,003	170,885	1,000E+00	38,19	61,81
725	998,15	-4,390	170,649	1,697E+00	29,38	70,62
750	1023,15	-8,771	170,406	2,804E+00	21,80	78,20
775	1048,15	-13,146	170,158	4,520E+00	15,72	84,28
800	1073,15	-17,515	169,904	7,122E+00	11,10	88,90
825	1098,15	-21,879	169,644	1,098E+01	7,75	92,25
850	1123,15	-26,236	169,378	1,660E+01	5,39	94,61
875	1148,15	-30,587	169,103	2,464E+01	3,76	96,24
900	1173,15	-34,932	168,821	3,593E+01	2,64	97,36
925	1198,15	-39,271	168,529	5,154E+01	1,87	98,13
950	1223,15	-43,603	168,226	7,280E+01	1,34	98,66
975	1248,15	-47,930	167,912	1,014E+02	0,97	99,03
1000	1273,15	-52,250	167,585	1,392E+02	0,71	99,29

8.1.3 Methanisierungs-Reaktion

Tem	peratur		H ₂	C	D ₂	CH4		H ₂ O	
in °C	in K	H* in kJ/mol	S ⁰ in J/(mol K)	H* in kJ/mol	S ⁰ in J/(mol K)	H* in kJ/mol	S ⁰ in J/(mol K)	H* in kJ/mol	S ⁰ in J/(mol K)
1	274,15	-0,690	128,262	-394,369	210,707	-75,723	183,234	-242,619	186,006
25	298,15	0,000	130,673	-393,491	213,777	-74,887	186,158	-241,814	188,820
50	323,15	0,723	133,002	-392,549	216,811	-73,985	189,062	-240,973	191,529
75	348,15	1,450	135,168	-391,580	219,698	-73,051	191,844	-240,128	194,047
100	373,15	2,179	137,192	-390,586	222,455	-72,085	194,523	-239,279	196,403
125	398,15	2,911	139,089	-389,567	225,096	-71,086	197,116	-238,425	198,617
150	423,15	3,643	140,872	-388,526	227,633	-70,052	199,633	-237,566	200,709
175	448,15	4,376	142,554	-387,462	230,075	-68,984	202,084	-236,702	202,694
200	473,15	5,108	144,146	-386,377	232,430	-67,882	204,478	-235,831	204,584
225	498,15	5,841	145,654	-385,273	234,704	-66,744	206,822	-234,955	206,389
250	523,15	6,573	147,089	-384,150	236,904	-65,570	209,120	-234,072	208,119
275	548,15	7,305	148,455	-383,008	239,035	-64,361	211,377	-233,182	209,781
300	573,15	8,037	149,760	-381,850	241,102	-63,116	213,598	-232,285	211,380
325	598,15	8,768	151,009	-380,675	243,108	-61,836	215,785	-231,381	212,924
350	623,15	9,499	152,207	-379,485	245,058	-60,519	217,940	-230,470	214,416
375	648,15	10,231	153,358	-378,280	246,954	-59,168	220,067	-229,552	215,861
400	673,15	10,963	154,467	-377,061	248,799	-57,781	222,166	-228,626	217,263
425	698,15	11,696	155,536	-375,828	250,597	-56,359	224,239	-227,692	218,624
450	723,15	12,430	156,569	-374,583	252,349	-54,903	226,288	-226,752	219,948
475	748,15	13,166	157,569	-373,326	254,058	-53,414	228,313	-225,803	221,237
500	773,15	13,903	158,538	-372,057	255,726	-51,890	230,316	-224,847	222,495
525	798,15	14,642	159,479	-370,778	257,354	-50,335	232,296	-223,883	223,722
550	823,15	15,383	160,393	-369,488	258,946	-48,747	234,254	-222,911	224,920
575	848,15	16,127	161,283	-368,188	260,502	-47,129	236,191	-221,932	226,092
589	862,15	16,544	161,771	-367,455	261,358	-46,209	237,266	-221,380	226,737
600	873,15	16,873	162,150	-366,878	262,024	-45,480	238,107	-220,945	227,239
625	898,15	17,621	162,994	-365,559	263,513	-43,803	240,001	-219,950	228,363
650	923,15	18,371	163,818	-364,231	264,972	-42,098	241,873	-218,947	229,464
675	948,15	19,123	164,622	-362,894	266,400	-40,366	243,724	-217,936	230,545
700	973,15	19,876	165,406	-361,549	267,801	-38,608	245,554	-216,917	231,606
725	998,15	20,630	166,171	-360,195	269,174	-36,827	247,361	-215,889	232,648
750	1023,15	21,385	166,918	-358,835	270,520	-35,023	249,146	-214,853	233,674
775	1048,15	22,143	167,650	-357,468	271,840	-33,198	250,909	-213,808	234,682
800	1073,15	22,904	168,368	-356,096	273,134	-31,351	252,649	-212,755	235,675
825	1098,15	23,669	169,072	-354,717	274,404	-29,485	254,369	-211,693	236,653
850	1123,15	24,436	169,763	-353,333	275,650	-27,598	256,067	-210,623	237,617
875	1148,15	25,206	170,440	-351,944	276,873	-25,692	257,746	-209,545	238,566
900	1173,15	25,978	171,106	-350,549	278,075	-23,767	259,405	-208,459	239,502
925	1198,15	26,754	171,760	-349,149	279,256	-21,823	261,044	-207,365	240,425
950	1223,15	27,532	172,403	-347,744	280,417	-19,860	262,665	-206,263	241,335
975	1248,15	28,313	173,036	-346,333	281,558	-17,880	264,268	-205,154	242,233
1000	1273,15	29,097	173,657	-344,918	282,681	-15,882	265,853	-204,037	243,119

Tem	peratur	$\Delta \mathbf{G_R}^0$ (T)	ΔH _R ⁰ (T)	K (T)	
in °C	in K	in kJ/mol	in kJ/mol	-	
1	274,15	-117,637	-163,834	2,598E+22	
25	298,15	-113,542	-165,024	7,814E+19	
50	323,15	-109,175	-166,275	4,445E+17	
75	348,15	-104,710	-167,527	5,137E+15	
100	373,15	-100,155	-168,775	1,048E+14	
125	398,15	-95,517	-170,011	3,402E+12	
150	423,15	-90,802	-171,231	1,619E+11	
175	448,15	-86,016	-172,428	1,062E+10	
200	473,15	-81,163	-173,600	9,131E+08	
225	498,15	-76,249	-174,744	9,898E+07	
250	523,15	-71,278	-175,856	1,310E+07	
275	548,15	-66,255	-176,936	2,060E+06	
300	573,15	-61,184	-177,983	3,769E+05	
325	598,15	-56,067	-178,995	7,877E+04	
350	623,15	-50,909	-179,972	1,852E+04	
375	648,15	-45,713	-180,915	4,832E+03	
400	673,15	-40,480	-181,824	1,384E+03	
425	698,15	-35,215	-182,700	4,313E+02	
450	723,15	-29,918	-183,544	1,449E+02	
475	748,15	-24,593	-184,356	5,214E+01	
500	773,15	-19,242	-185,138	1,995E+01	
525	798,15	-13,865	-185,891	8,081E+00	
550	823,15	-8,466	-186,616	3,445E+00	
575	848,15	-3,045	-187,313	1,540E+00	
589	862,15	0,000	-187,691	1,000E+00	
600	873,15	2,397	-187,983	7,188E-01	
625	898,15	7,857	-188,627	3,492E-01	
650	923,15	13,335	-189,244	1,760E-01	
675	948,15	18,829	-189,833	9,176E-02	
700	973,15	24,338	-190,395	4,939E-02	
725	998,15	29,861	-190,928	2,737E-02	
750	1023,15	35,397	-191,434	1,559E-02	
775	1048,15	40,946	-191,919	9,107E-03	
800	1073,15	46,505	-192,384	5,449E-03	
825	1098,15	52,076	-192,829	3,333E-03	
850	1123,15	57,656	-193,254	2,082E-03	
875	1148,15	63,246	-193,661	1,326E-03	
900	1173,15	68,844	-194,050	8,602E-04	
925	1198,15	74,450	-194,420	5,678E-04	
950	1223,15	80,064	-194,773	3,809E-04	
975	1248,15	85,685	-195,108	2,594E-04	
1000	1273,15	91,312	-195,427	1,793E-04	

-

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Tem	peratur		p = 1	bar			p = 2,9 bar				p = 10 bar		
in °C	in K	y co2	У н2	У СН4	У н20	y co2	У н2	У сн4	У н2О	y co2	У н2	У сн4	У н2О
1	274,15	0,000	0,000	0,333	0,667	0,000	-0,002	0,334	0,668	0,000	0,000	0,333	0,667
25	298,15	0,000	0,000	0,333	0,667	0,000	0,000	0,333	0,666	0,000	0,000	0,333	0,667
50	323,15	0,000	-0,002	0,334	0,668	0,000	0,001	0,333	0,665	0,000	-0,001	0,334	0,668
75	348,15	0,000	0,001	0,333	0,666	0,000	0,001	0,333	0,666	0,000	0,000	0,333	0,666
100	373,15	0,001	0,004	0,332	0,664	0,000	0,002	0,333	0,665	0,000	0,001	0,333	0,666
125	398,15	0,001	0,004	0,332	0,663	0,001	0,002	0,332	0,665	0,000	0,001	0,333	0,666
150	423,15	0,002	0,008	0,330	0,660	0,001	0,005	0,331	0,662	0,001	0,002	0,332	0,665
175	448,15	0,004	0,014	0,327	0,655	0,002	0,009	0,329	0,659	0,001	0,005	0,331	0,662
200	473,15	0,006	0,023	0,324	0,648	0,004	0,015	0,327	0,654	0,002	0,009	0,330	0,659
225	498,15	0,008	0,033	0,320	0,639	0,006	0,024	0,323	0,647	0,003	0,014	0,328	0,655
250	523,15	0,013	0,054	0,311	0,622	0,008	0,034	0,319	0,639	0,005	0,020	0,325	0,650
275	548,15	0,019	0,075	0,302	0,604	0,013	0,051	0,312	0,624	0,008	0,030	0,321	0,642
300	573,15	0,026	0,105	0,289	0,579	0,017	0,069	0,305	0,609	0,011	0,042	0,316	0,632
325	598,15	0,035	0,141	0,275	0,549	0,024	0,094	0,294	0,588	0,014	0,057	0,309	0,619
350	623,15	0,046	0,184	0,257	0,513	0,031	0,124	0,282	0,563	0,019	0,076	0,302	0,603
375	648,15	0,060	0,239	0,234	0,468	0,040	0,160	0,266	0,533	0,025	0,098	0,292	0,585
400	673,15	0,075	0,299	0,209	0,417	0,051	0,202	0,249	0,498	0,032	0,126	0,281	0,561
425	698,15	0,092	0,367	0,180	0,361	0,063	0,253	0,228	0,456	0,040	0,158	0,267	0,535
450	723,15	0,110	0,442	0,149	0,298	0,077	0,307	0,205	0,411	0,049	0,194	0,252	0,505
475	748,15	0,129	0,516	0,118	0,237	0,092	0,367	0,181	0,361	0,059	0,235	0,235	0,471
500	773,15	0,147	0,589	0,088	0,176	0,108	0,430	0,154	0,308	0,070	0,280	0,217	0,433
525	798,15	0,164	0,654	0,061	0,121	0,124	0,496	0,127	0,253	0,082	0,328	0,196	0,393
550	823,15	0,177	0,709	0,038	0,076	0,140	0,560	0,100	0,200	0,095	0,381	0,175	0,349
575	848,15	0,186	0,746	0,023	0,045	0,155	0,621	0,075	0,149	0,109	0,436	0,152	0,303
589	862,15	0,190	0,762	0,016	0,032	0,163	0,653	0,061	0,123	0,117	0,467	0,139	0,278
600	873,15	0,193	0,771	0,012	0,024	0,168	0,674	0,053	0,105	0,123	0,491	0,129	0,257
625	898,15	0,196	0,784	0,006	0,013	0,179	0,717	0,035	0,069	0,136	0,546	0,106	0,212
650	923,15	0,198	0,792	0,003	0,007	0,187	0,748	0,021	0,043	0,149	0,598	0,084	0,168
675	948,15	0,199	0,796	0,002	0,004	0,192	0,769	0,013	0,026	0,161	0,646	0,064	0,129
700	973,15	0,199	0,798	0,001	0,002	0,195	0,782	0,008	0,015	0,172	0,687	0,047	0,094
725	998,15	0,200	0,799	0,001	0,001	0,197	0,789	0,004	0,009	0,180	0,720	0,033	0,067
750	1023,15	0,200	0,799	0,000	0,001	0,198	0,794	0,003	0,005	0,186	0,746	0,023	0,045
775	1048,15	0,200	0,800	0,000	0,000	0,199	0,796	0,002	0,003	0,191	0,764	0,015	0,030
800	1073,15	0,200	0,800	0,000	0,000	0,199	0,798	0,001	0,002	0,194	0,777	0,010	0,019
825	1098,15	0,200	0,800	0,000	0,000	0,200	0,799	0,001	0,001	0,196	0,785	0,006	0,012
850	1123,15	0,200	0,800	0,000	0,000	0,200	0,799	0,000	0,001	0,198	0,790	0,004	0,008
875	1148,15	0,200	0,800	0,000	0,000	0,200	0,799	0,000	0,000	0,198	0,794	0,003	0,005
900	1173,15	0,200	0,800	0,000	0,000	0,200	0,800	0,000	0,000	0,199	0,796	0,002	0,003
925	1198,15	0,200	0,800	0,000	0,000	0,200	0,800	0,000	0,000	0,199	0,797	0,001	0,002
950	1223,15	0,200	0,800	0,000	0,000	0,200	0,800	0,000	0,000	0,200	0,798	0,001	0,002
975	1248,15	0,200	0,800	0,000	0,000	0,200	0,800	0,000	0,000	0,200	0,799	0,001	0,001
1000	1273,15	0,200	0,800	0,000	0,000	0,200	0,800	0,000	0,000	0,200	0,799	0,000	0,001

TECHNISCHE UNIVERSITÄT

Vienna University of Technology

WIEN

wι ΕN

Folgende Abkürzungen finden nachfolgend Verwendung: BM=Biomasse, BT=Biomassetrocknung, DE=Dampferzeuger, DM=Demineralisiert, EL=Elektrolyseur, FW=Fernwärme, GLT=Glykol-Trocknung, GM=Gasmotor, KO=Kondensator, LV=Luftvorwärmer, ME=Methanisierung, PG=Produktgas, THÖ=Thermoöl, UMG=Umgebung, VG=Vergaser, VGM=Vergasungsmittel, WA=Wasserabscheider, waf=wasser- und aschefrei.

Organische Ströme		BM Roh	BM Trocken	RME (Frisch)	RME Zufuhr Wäscher	RME aus Wäscher
Druck	bar	2	2	1	1,96	1
Temperatur	°C	15	45	15	40	69,88
Dichte	kg/m ³	300	225	900	898,204	900
Spez. Enthalpie (waf)	kJ/kg	17,26	55,07	30	80	139,76
Spez. Entropie (waf)	kJ/kgK	3,779	3,903	3,432	3,598	3,780
Spez. Exergie (waf)	kJ/kg	20435	20436	19625	23616	23624
Wassergehalt	kg/kg_total	0,4	0,2	0	0,002221	0,021794
Aschegehalt	kg/kg_total	0,00858	0,01144	0	0,001069	0,001048
Totale Enthalpie	kJ/kg	-9460,37	-7256,09	-5283,84	-4140,78	-4307,58
Heizwert	kJ/kg	10320,3	14574,6	18315,2	22226,6	21745,6
Brennwert	kJ/kg	12085,8	16114,4	19624,9	23537,2	23078,4
Massenstrom	kg_total/h	3488,25	2616,19	33,54	44967,00	45875,30
Volumenstrom	m³/h	11,628	11,628	0,037	50,063	50,973
Exergie	kW	11733,7	11733,8	182,8	294044,0	294207,0

STRÖME

Organische Ströme	RME nach WA	RME zur VG	RME nach Kühlung	THÖ zur ME	THÖ aus ME	
Druck	bar	1	2,06	1,96	5,9	4,9
Temperatur	°C	69,88	69,98	40,02	86,9	195
Dichte	kg/m ³	898,203	898,203	898,203	870	870
Spez. Enthalpie (waf)	kJ/kg	139,76	139,96	80,04	170,66	420,87
Spez. Entropie (waf)	kJ/kgK	3,780	3,781	3,598	0,378	0,984
Spez. Exergie (waf)	kJ/kg	23624	23624	23619	42367	42437
Wassergehalt	kg/kg_total	0,002223	0,002223	0,002223	0	0
Aschegehalt	kg/kg_total	0,001069	0,001069	0,001069	0	0
Totale Enthalpie	kJ/kg	-4080,09	-4079,90	-4139,92	-422,29	-172,07
Heizwert	kJ/kg	22229,5	22229,5	22229,5	40325,3	40325,3
Brennwert	kJ/kg	23540,1	23540,1	23540,1	42355,3	42355,3
Massenstrom	kg_total/h	44975,50	42,04	44933,40	55893,70	55893,70
Volumenstrom	m³/h	50,073	0,047	50,026	64,246	64,246
Exergie	kW	294203,0	275,0	293861,0	657789,0	658871,0

Gasströme		PG Roh	PG nach Kühler	PG nach Filter	PG nach Wäsch- er	PG nach Adsor- ber	PG + H ₂	Gas vor ME
Druck	bar	1,03	1,01	1	0,96	0,96	0,96	2,9
Temperatur	°C	870	150	150	42	42	64,72	200
Spez. Enthalpie	kJ/kg	1542,12	229,49	229,49	57,82	57,83	195,58	617,54
Spez. Entropie	kJ/kgK	11,320	9,552	9,556	8,453	8,453	16,225	16,358
Spez. Exergie	kJ/kg	9197,7	8412,1	8411,0	10828,4	10827,7	24076,3	24458,6
Spez. Volumen	m³/kg	4,1909	1,5820	1,5978	1,1563	1,1565	2,9174	1,3524
Massenstrom (Gas)	kg/h	3876,13	3876,13	3876,13	2976,21	2975,11	3405,42	3405,42
Normvolumenstrom (Gas)	Nm³/h	3945,69	3945,69	3945,69	2826,03	2825,33	7609,77	7609,77
Betriebsvolumenstrom (Gas)	m³/h	16244,4	6132,12	6193,44	3441,43	3440,57	9935,00	4605,61
Staub-Gehalt	g/Nm ³	2,279	2,279	0,011	0	0	0	0
Koks-Gehalt	g/Nm ³	2,500	2,500	0,013	0	0	0	0
Teer-Gehalt	g/Nm ³	2,500	2,500	2,125	0,030	0,030	0,011	0,011
Totale Enthalpie	kJ/kg	-6704,9	-8026,5	-8003,1	-6594,1	-6596,0	-5662,5	-5240,6
Gesamtmassenstrom	kg/h	3904,85	3904,85	3884,61	2976,30	2975,20	3405,51	3405,51
Exergie	kW	10118,8	9267,1	9150,6	8953,1	8949,2	22775,9	23137,6
Spez. Enthalpie (Staub)	kJ/kg	850,45	122,45	122,45	-	-	-	-
Spez. Entropie (Staub)	kJ/kgK	2,02	1,03	1,03	-	-	-	-
Spez. Exergie (Staub)	kJ/kg	3094,08	2661,61	2661,61	-	-	-	-
Spez. Enthalpie (Koks)	kJ/kg	1413,10	145,29	145,29	-	-	-	-
Spez. Entropie (Koks)	kJ/kgK	2,72	1,05	1,05	-	-	-	-
Spez. Exergie (Koks)	kJ/kg	34556,3	33787,8	33787,8	-	-	-	-
Spez. Enthalpie (Teer)	kJ/kg	1763,53	180,72	180,72	42,47	42,47	68,16	257,77
Spez. Entropie (Teer)	kJ/kgK	4,89	2,80	2,80	2,42	2,42	2,50	2,97
Spez. Exergie (Teer)	kJ/kg	41318,5	40358,6	40358,6	40332,0	40332,0	40334,2	40384,4
Heizwert (Gesamt)	kJ/kg	8556,23	8556,23	8456,91	10906,3	10906,9	24686,7	24686,7
Brennwert (Gesamt)	kJ/kg	9955,43	9955,43	9854,78	11984,7	11985,4	28387,1	28387,1
Fühlbare Wärme (Gesamt)	kJ/kg	1514,94	193,37	192,75	23,60	23,60	120,66	542,63

TECHNISCHE
WIEN
Vienna University of Technology

Gasströme		SNG nach ME	SNG nach KO	SNG nach GLT	H ₂ aus EL	O₂ aus EL	O ₂ in Export	O₂ in VG
Druck	bar	2,9	2,89	2,89	30	30	30	30
Temperatur	°C	200	25	25	80	80	80	80
Spez. Enthalpie	kJ/kg	426,47	54,57	54,59	1147,84	73,69	73,69	73,69
Spez. Entropie	kJ/kgK	11,811	11,182	11,175	53,233	5,684	5,684	5,684
Spez. Exergie	kJ/kg	21676,3	50678,6	50853,5	120664	422,9	422,9	422,9
Spez. Volumen	m³/kg	0,7954	0,5398	0,5400	0,4855	0,0306	0,0306	0,0306
Massenstrom (Gas)	kg/h	3405,51	1433,48	1428,58	430,31	3415,17	2684,79	730,39
Normvolumenstrom (Gas)	Nm ³ /h	4475,33	2021,79	2015,69	4784,43	2392,22	1880,60	511,61
Betriebsvolumenstrom (Gas)	m³/h	2708,58	773,73	771,39	208,92	104,46	82,12	22,34
Staub-Gehalt	g/Nm ³	0	0	0	0	0	0	0
Koks-Gehalt	g/Nm ³	0	0	0	0	0	0	0
Teer-Gehalt	g/Nm ³	0	0	0	0	0	0	0
Totale Enthalpie	kJ/kg	-9378,84	-4709,38	-4679,49	791,59	50,78	50,78	50,78
Gesamtmassenstrom	kg/h	3405,51	1433,48	1428,58	430,31	3415,17	2684,79	730,39
Exergie	kW	20505,2	20179,7	20180,1	14422,9	401,2	315,4	85,8
Spez. Enthalpie (Staub)	kJ/kg	-	-	-	-	-	-	-
Spez. Entropie (Staub)	kJ/kgK	-	-	-	-	-	-	-
Spez. Exergie (Staub)	kJ/kg	-	-	-	-	-	-	-
Spez. Enthalpie (Koks)	kJ/kg	-	-	-	-	-	-	-
Spez. Entropie (Koks)	kJ/kgK	-	-	-	-	-	-	-
Spez. Exergie (Koks)	kJ/kg	-	-	-	-	-	-	-
Spez. Enthalpie (Teer)	kJ/kg	-	-	-	-	-	-	-
Spez. Entropie (Teer)	kJ/kgK	-	-	-	-	-	-	-
Spez. Exergie (Teer)	kJ/kg	-	-	-	-	-	-	-
Heizwert (Gesamt)	kJ/kg	20714,1	49210,3	49379,1	119959	0,00	0,00	0,00
Brennwert (Gesamt)	kJ/kg	24414,4	54640,8	54819,9	141787	0,00	0,00	0,00
Fühlbare Wärme (Gesamt)	kJ/kg	376,56	0,00	0,00	791,59	50,79	50,79	50,79

TECHNISCHE	
UNIVERSITÄT	e
WIEN	4
Vienna University of Technolog	y

Gasströme		Dampf in VG	VGM (O ₂ +H ₂ O)	Luft zur BT	Luft vor BT	Brüde aus BT	H₂S-, HCI- Strom
Druck	bar	1,6	1,6	0,99288	1	0,99	0,96
Temperatur	°C	500	339,70	15	70	28,66	42
Spez. Enthalpie	kJ/kg	988,40	466,84	15,14	70,77	29,30	38,79
Spez. Entropie	kJ/kgK	12,134	9,222	6,872	7,046	6,999	5,899
Spez. Exergie	kJ/kg	925,8	410,6	9,0	12,6	7,6	13499,1
Spez. Volumen	m³/kg	2,2302	1,3273	0,8363	0,9889	0,8864	0,7804
Massenstrom (Gas)	kg/h	550,55	1280,94	57534,70	57534,70	58406,70	1,10
Normvolumenstrom (Gas)	Nm³/h	684,98	1196,59	44695,80	44695,80	45780,60	0,70
Betriebsvolumenstrom (Gas)	m³/h	1227,83	1700,18	48117,60	56893,90	51772,20	0,86
Staub-Gehalt	g/Nm ³	0	0	0	0	0	0
Koks-Gehalt	g/Nm ³	0	0	0	0	0	0
Teer-Gehalt	g/Nm ³	0	0	0	0	0	0,030
Totale Enthalpie	kJ/kg	-12481,5	-5335,63	-101,34	-45,70	-286,55	-1344,04
Gesamtmassenstrom	kg/h	550,55	1280,94	57534,70	57534,70	58406,70	1,10
Exergie	kW	141,6	146,1	143,9	200,9	123,9	4,1
Spez. Enthalpie (Staub)	kJ/kg	-	-	-	-	-	-
Spez. Entropie (Staub)	kJ/kgK	-	-	-	-	-	-
Spez. Exergie (Staub)	kJ/kg	-	-	-	-	-	-
Spez. Enthalpie (Koks)	kJ/kg	-	-	-	-	-	-
Spez. Entropie (Koks)	kJ/kgK	-	-	-	-	-	-
Spez. Exergie (Koks)	kJ/kg	-	-	-	-	-	-
Spez. Enthalpie (Teer)	kJ/kg	-	-	-	-	-	42,47
Spez. Entropie (Teer)	kJ/kgK	-	-	-	-	-	2,42
Spez. Exergie (Teer)	kJ/kg	-	-	-	-	-	40332,00
Heizwert (Gesamt)	kJ/kg	0,00	0,00	0,00	0,00	0,00	9243,77
Brennwert (Gesamt)	kJ/kg	2442,56	1049,82	15,72	15,72	51,95	10028,90
Fühlbare Wärme (Gesamt)	kJ/kg	941,87	433,78	-10,10	45,53	3,75	15,74

Zusammensetzung Gasströme		PG Roh	PG nach Wäscher	PG nach Ad- sorber	Gas vor ME	SNG nach ME	SNG nach KO	SNG nach GLT
Ar	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
C_2H_4	Vol%	0,655	0,914	0,915	0,340	0,000	0,000	0,000
C_2H_6	Vol%	0,655	0,914	0,915	0,340	0,000	0,000	0,000
C ₃ H ₈	Vol%	0,655	0,914	0,915	0,340	0,000	0,000	0,000
CH ₄	Vol%	5,633	7,864	7,866	2,921	43,741	96,823	97,116
CO	Vol%	22,571	31,514	31,522	11,703	0,000	0,000	0,000
CO ₂	Vol%	17,028	23,775	23,781	8,829	0,184	0,407	0,408
H ₂	Vol%	18,133	25,317	25,323	72,274	0,984	2,177	2,184
H ₂ O	Vol%	34,502	8,553	8,555	3,176	54,960	0,302	0,000
H ₂ S	Vol%	0,011	0,016	0,000	0,000	0,000	0,000	0,000
HCI	Vol%	0,007	0,009	0,000	0,000	0,000	0,000	0,000
HCN	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
N ₂	Vol%	0,149	0,208	0,208	0,077	0,132	0,291	0,292
N ₂ O	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
NH_3	Vol%	0,001	0,000	0,000	0,000	0,000	0,000	0,000
NO	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
O ₂	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
SO ₂	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Molare Masse	kg/kmol	22,019	23,605	23,602	10,031	17,056	15,892	15,886
Fühlbare Wärme	kJ/mol	-180,506	-156,21	-156,24	-58,009	-166,388	-74,841	-74,336
Heizwert	MJ/Nm ³	8,226	11,485	11,484	11,047	15,763	34,891	34,997
Brennwert	MJ/Nm ³	9,596	12,620	12,620	12,703	18,578	38,741	38,853

Zusammensetzung Gasströme		H₂ aus EL	O₂ aus EL	Dampf in VG	VGM (O ₂ +H ₂ O)	Luft zur BT	Brüde aus BT	H₂S-, HCI- Strom
Ar	Vol%	0,000	0,000	0,000	0,000	0,924	0,902	0,000
C_2H_4	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
C_2H_6	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
C ₃ H ₈	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
CH ₄	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
CO	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
CO ₂	Vol%	0,000	0,000	0,000	0,000	0,036	0,035	0,000
H ₂	Vol%	100,000	0,000	0,000	0,000	0,000	0,000	0,000
H ₂ O	Vol%	0,000	0,000	100,00	57,244	1,031	3,376	0,000
H ₂ S	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	62,403
HCI	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	37,597
HCN	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
N ₂	Vol%	0,000	0,000	0,000	0,000	77,278	75,447	0,000
N ₂ O	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
NH ₃	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
NO	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
O ₂	Vol%	0,000	100,000	0,000	42,756	20,731	20,240	0,000
SO ₂	Vol%	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Molare Masse	kg/kmol	2,016	31,999	18,015	23,994	28,853	28,596	34,976
Fühlbare Wärme	kJ/mol	0,000	0,000	-241,83	-138,43	-2,632	-8,301	-47,561
Heizwert	MJ/Nm ³	10,789	0,000	0,000	0,000	0,000	0,000	14,423
Brennwert	MJ/Nm ³	12,752	0,000	1,963	1,124	0,020	0,066	15,649

Feststoffströme		Aschestrom aus Vergaser	Aschestrom aus PG-Filter	Gesamter Aschestrom
Temperatur	°C	870	150	607,09
Spez. Enthalpie	kJ/kg	850,45	122,45	574,44
Spez. Entropie	kJ/kgK	2,0236	1,0323	1,7493
Spez. Exergie	kJ/kg	3094,1	2661,6	2899,8
Massenstrom	kg_inorg/h	20,982	8,947	29,929
Koks-Gehalt	kg/kg_inorg	0,63526	1,26234	0,82273
Totale Enthalpie	kJ/kg	-9320,79	-10238,70	-9595,18
Gesamtmassenstrom	kg/h	34,311	20,242	54,553
Exergie	kW	145,98	115,06	260,42
Spez. Enthalpie (Koks)	kJ/kg	1413,10	153,62	906,35
Spez. Entropie (Koks)	kJ/kgK	2,7219	1,0671	2,2372
Spez. Exergie (Koks)	kJ/kg	34556	34565	34549

Wasserströme		DM Wasser	WA Wäscher	Wasser zu DE	Wasser aus KO von ME	Wasser aus GLT	Wasser zu DM
Druck	bar	3	1	1,7	2,8	2,89	0,95
Temperatur	°C	25	69,88	69,90	23	25	30
Spez. Enthalpie	kJ/kg	105,113	292,568	292,69	96,731	105,103	126,152
Spez. Entropie	kJ/kgK	3,88215	4,46814	4,46828	3,854	3,88215	3,95278
Spez. Exergie	kJ/kg	1,82207	14,5646	14,643	1,83216	1,81096	1,80237
Spez. Volumen	m³/kg	0,001012	0,0010235	0,0010228	0,0010104	0,0010029	0,0010025
Dampfziffer	kg/kg	0	0	0	0	0	0
Totale Enthalpie	kJ/kg	-15865,8	-15678,3	-15678,2	-15874,2	-15865,8	-15844,8
Massenstrom	kg/h	3845,48	899,807	550,551	1972,03	4,9009	2326,18
Betriebsvolumen- strom	m³/h	3,8916	0,9209	0,5631	1,9925	0,0049	2,3320
Exergie	kW	1,946	3,640	2,239	1,004	0,002	1,165

Wasserströme		FW Vorlauf	FW Rücklauf	Kühlstrom UMG Vorlauf	Kühlstrom UMG Rücklauf	Kühlung KO-ME Vorlauf	Kühlung KO-ME Rücklauf
Druck	bar	4	3	4	4	4	5
Temperatur	°C	90	60	65	25	25	130
Spez. Enthalpie	kJ/kg	377,41	251,39	272,39	105,206	105,206	546,543
Spez. Entropie	kJ/kgK	4,70757	4,34577	4,408	3,88212	3,88212	5,1492
Spez. Exergie	kJ/kg	28,0187	9,86918	12,3159	1,92305	1,92305	65,4805
Spez. Volumen	m³/kg	0,001036	0,001017	0,001026	0,001007	0,001017	0,001069
Dampfziffer	kg/kg	0	0	0	0	0	0
Totale Enthalpie	kJ/kg	-15593,5	-15719,5	-15698,5	-15865,7	-15865,7	-15424,4
Massenstrom	kg/h	141379	141379	79844,5	79844,5	13862,7	13862,7
Betriebsvolumen- strom	m³/h	146,441	143,783	81,984	80,467	14,098	14,826
Exergie	kW	1100,350	387,583	273,155	42,651	7,405	252,149

Wasserströme		Kühlung THÖ Vorlauf	Kühlung THÖ Rücklauf	Kühlung PG-Kühler Vorlauf	Kühlung PG-Kühler Rücklauf	LV Rücklauf
Druck	bar	4	5	3,9	3,8	5
Temperatur	°C	25	130	65	437,47	130
Spez. Enthalpie	kJ/kg	105,206	546,543	272,382	3352,76	546,543
Spez. Entropie	kJ/kgK	3,88212	5,1492	4,408	11,5524	5,1492
Spez. Exergie	kJ/kg	1,92305	65,4805	12,3076	962,59	65,4805
Spez. Volumen	m³/kg	0,0010169	0,0010695	0,001012	0,8596	0,0010695
Dampfziffer	kg/kg	0	0	0	1	0
Totale Enthalpie	kJ/kg	-15865,7	-15424,4	-15698,5	-12618,1	-15424,4
Massenstrom	kg/h	31729,4	31729,4	1091,87	1091,87	1091,87
Betriebsvolumen- strom	m³/h	32,2656	33,9346	1,1050	938,57	1,1678
Exergie	kW	16,949	577,126	3,733	291,950	19,860

APPARATE UND EQUIPMENT

Trockner			
Druckabfall Trocknungsluft		bar	0,01
Temperaturanstieg organischer Strom	°C	30	
Temperaturdifferenz Gaszufuhr / org. Ausgang		°C	25
Absoluter Wärmeverlust		kW	25
Relative Feuchte Abluft		%	85
Exergieverlust		kW	77,0106
Vergaser			
Druckabfall Vergasungsmittel / Produktgas	bar		0,57
Druckabfall Biomasse / Produktgas	bar	•	0,97
Temperaturdifferenz Asche / Produktgas	°C		0
Verhältnis Vergasungsmittel / Biomasse, trocken	kg/k	g	0,6
Luftzahl	kg/k	g	0,241418
Anteil Koks in Asche	kg/k	g	0,00633225
Anteil Koks in Produktgas	kg/k	g	0,00468626
Anteil Teer im Produktgas	kg/k	g	0,00468626
Unvergaster Kohlenstoff (Koks)	%		2
Anteil Flugasche	kg/k	g	0,3
Thermische Biomasseleistung	kW	'	10851,3
Relativer Wärmeverlust	%		0,5
Absoluter Wärmeverlust	kW	'	54,2563
Exergieverlust	kW	1	1890,09
Verhältnis NH ₃ / N ₂	-		0,00001
Verhältnis HCN / NH ₃	-		0,1
Verhältnis CO / CO ₂	-		1,3255
Anteil C ₂ H ₄ im Produktgas	Vol	%	1
Anteil C ₂ H ₆ im Produktgas	Vol	%	1
Anteil C ₃ H ₈ im trockenen Produktgas	Vol	%	1
Anteil CH ₄ im trockenen Produktgas	Vol	%	8,6

Wärmetauscher		LV	DE	PG- Kühler	Wäscher	ME	THÖ	FW
Druckverlust Wasserstrom	bar	0,1	0,1	0,1	0,1	0,1	0,1	1
Druckverlust Gasstrom	bar	0,01	0,01	0,01	0,1	0,01	0,1	1
Temperaturdifferenz Eingang	°C	367,466	571,628	84,998	4,9779	174,978	65,0138	27,8719
Temperaturdifferenz Ausgang	°C	112,633	370	204,057	14,9961	126,744	61,7781	5
Wärmeübertragungs- koeffizient mal Übertragungsfläche	kW/K	3,94975	1,05424	6,87227	82,4714	1,1434	61,3302	370,778
Übertragene Wärmeleistung	kW	851,187	488,672	934,269	749,21	171,013	3888,09	4935,68
Exergieverlust	kW	237,426	208,642	215,672	21,5668	45,4694	523,713	190,558

Produktgasfilter							
Druckabfall Gasstrom	bar	0,01					
Temperaturdifferenz Gas / Feststoff	°C	0					
Abscheideeffizienz Staub	%	99,5					
Abscheideeffizienz Koks	%	99,5					
Abscheideeffizienz Teer	%	15					
Relativer Wärmeverlust	%	0,0891599					
Absoluter Wärmeverlust	kW	0,221377					
Exergieverlust	kW	1,46603					

Produktgaswäscher							
Druckdifferenz RME / PG Kolonnenkopf	bar	1					
Druckdifferenz RME / PG Kolonnensumpf	bar	0					
Druckverlust PG	bar	0,04					
Druckverlust RME	bar	0,96					
Temperaturdifferenz PG-Austritt / RME-Eintritt	°C	2					
Abscheideeffizienz Teer	%	99					
Dichte RME Austritt	kg/m ³	900					
Übertragener Wärmestrom RME	kW	821,235					
Relativer Wärmeverlust	%	2,02006					
Absoluter Wärmeverlust	kW	5					
Exergieverlust	kW	33,9316					
Verhältnis RME- / PG-Strom		11,601					

Wasserabscheider des Wäschers						
Druckabfall RME	bar	0				
Druckabfall Wasserstrom	bar	0				
Abscheideeffizienz (Entferntes Wasser / Wasser in Zufuhr)	%	90				
Exergieverlust	kW	0,01954				

Elektrolyseur								
Druckabfall Kühlwasser	bar	1,7						
Energieaufwand zur Wasserstoffproduktion	$kWh/Nm^{3}H_{2}$	4						
Elektrolyseleistung / zugeführte elektrische Leistung	%	89,3025						
Zugeführte elektrische Leistung	kW	19137,7						
Übertragene Wärmeleistung an Kühlwasser	kW	2047,27						
Normvolumenstrom H ₂	Nm³/h	4784,43						
Temperatur H ₂	°C	80						
Druck H ₂	bar	30						
Temperatur O ₂	°C	80						
Druck O ₂	bar	30						
Exergieverlust	kW	4022,39						

Methanisierung	Reaktor 1	Reaktor 2	
Druckverlust Gas	bar	0	0
Temperaturdifferenz Gas	°C	0	0
Temperaturdifferenz Thermoöl	bar	0,5	0,5
Sensible Wärme Eintritt	kW	3233,78	6924,78
Wärmeübertragung Thermoöl	kW	-3870,06	-14,7576
Relativer Wärmeverlust	%	0,463854	0,216613
Absoluter Wärmeverlust	kW	15	15
Exergieverlust	kW	1543,59	6,677
Reaktionsenthalpie	kW	2813,66	6506,35
Umsatz C ₂ H ₄	%	100	0
Umsatz C ₂ H ₆	%	100	0
Umsatz C ₃ H ₈	%	100	0
Umsatz CO	%	99,9996	100
Umsatz CO ₂	%	96,7179	62,6988

Kondensator Methanisierung							
Druckabfall Gas	bar	0,01					
Druckabfall Wasser	bar	0,1					
Druckabfall Kühlwasser	bar	0,1					
Temperaturdifferenz Gasaustritt / Kondensat	°C	2					
Taupunktstemperatur Gasaustritt	°C	5					
Temperaturdifferenz zu Taupunkt in Gasstrom	°C	20					
Übertragene Wärmeleistung zur Kühlung/Kondensation	kW	1698,72					
Exergieverlust	kW	80,3667					

Wärmesenken		Fernwärme	Umgebung
Druckverlust Wasserstrom	bar	1	0
Temperaturniveau Wärmesenke	°C	50	15
Übertragene Wärmeleistung	kW	4949,08	3707,98
Exergieverlust	kW	329,89	359,186

Motoren		BT	THÖ	RME Frisch	RME Kreislauf	ME	DE	FW
Elektrische Leistung (Input)	kW	41,1035	3,54862	0,0018	2,6652	618,412	0,020237	14,5297
Elektrischer Wirkungsgrad	-	0,96	0,96	0,96	0,96	0,96	0,96	0,96
Mechanischer Wirkungsgrad	-	0,98	0,98	0,98	0,98	0,98	0,98	0,98

Verdichter		Trocknung	ME
Mechanischer Wirkungsgrad	-	0,98	0,98
Isentroper Wirkungsgrad	-	0,6	0,6
Druckverhältnis	-	1,01724	3,03125
Wärmeverlust Umgebung	kW	0,7734	11,636
Exergieverlust	kW	16,3516	150,091
Temperatur bei isentroper Verdichtung	°C	16,409	180,93

Pumpen		Thermoöl	RME Frisch	RME Kreislauf	DE	Fernwärme
Isentroper Wirkungsgrad	-	0,6	0,6	0,6	0,6	0,6
Mechanischer Wirkungsgrad	-	0,98	0,98	0,98	0,98	0,98
Druckverhältnis	-	1,22917	1,96	2,06	1,7	2
Reibungswärmeverluste	kW	0,066771	0,0000252	0,050148	0,0003766	0,27339
Exergieverlust	kW	2,75164	0,0017867	2,1341	0,0070367	4,6285

Motoren Kühlkreislauf		BT	Wäscher	EL	ME	THÖ	KO-ME
Elektrische Leistung (Input)	kW	0,07655	0,8086	3,14004	0,082796	1,88243	0,82244
Elektrischer Wirkungsgrad	-	0,96	0,96	0,96	0,96	0,96	0,96
Mechanischer Wirkungsgrad	-	0,98	0,98	0,98	0,98	0,98	0,98

Pumpen Kühlkreis	lauf	BT	Wäscher	EL	ME	THÖ	KO-ME
lsentroper Wirkungsgrad	-	0,6	0,6	0,6	0,6	0,6	0,6
Mechanischer Wirkungsgrad	-	0,98	0,98	0,98	0,98	0,98	0,98
Druckverhältnis	-	1,35135	1,28205	2,17391	1,28205	1,28205	1,28205
Reibungswärme- verluste	kW	0,0014404	0,015215	0,059083	0,0015579	0,03542	0,015475
Exergieverlust	kW	0,021022	0,26436	0,89009	0,02248	0,51111	0,2233

TECHNISCHE UNIVERSITÄT

Vienna University of Technology

WIEN

ΕN

Hinweis: Sämtliche Ströme, Zusammensetzungen bzw. Kenngrößen von Apparaten und Equipment, die sich zu Fall 1 nicht verändert haben, werden nachfolgend nicht nochmals dargestellt.

Organische Ströme		THÖ zur ME	THÖ von ME
Druck	bar	5,9	4,9
Temperatur	°C	86,9	195
Dichte	kg/m ³	870	870
Spez. Enthalpie (waf)	kJ/kg	170,66	420,87
Spez. Entropie (waf)	kJ/kgK	0,378	0,984
Spez. Exergie (waf)	kJ/kg	42367	42437
Wassergehalt	kg/kg_total	0	0
Aschegehalt	kg/kg_total	0	0
Totale Enthalpie	kJ/kg	-422,29	-172,07
Heizwert	kJ/kg	40325,3	40325,3
Brennwert	kJ/kg	42355,3	42355,3
Massenstrom	kg_total/h	27731,00	27731,00
Volumenstrom	m³/h	31,875	31,875
Exergie	kW	326355,0	326892,0

STRÖME

Gasströme		PG + H ₂	Gas vor ME	SNG nach ME	SNG nach KO	SNG nach GLT	H₂ aus EL	O₂ aus EL
Druck	bar	0,96	2,9	2,9	2,89	2,89	30	30
Temperatur	°C	64,72	200	200	25	25	80	80
Spez. Enthalpie	kJ/kg	195,58	617,54	426,47	54,57	54,59	1147,84	73,69
Spez. Entropie	kJ/kgK	16,225	16,358	11,811	11,182	11,175	53,233	5,684
Spez. Exergie	kJ/kg	24076,3	24458,6	21676,3	50678,6	50853,5	120664	422,9
Spez. Volumen	m³/kg	2,9174	1,3524	0,7954	0,5398	0,5400	0,4855	0,0306
Massenstrom (Gas)	kg/h	1702,71	1702,71	1702,75	716,74	714,29	215,15	1707,59
Normvolumenstrom (Gas)	Nm³/h	3804,88	3804,88	2237,66	1010,89	1007,85	2392,22	1196,11
Betriebsvolumenstrom (Gas)	m³/h	4967,50	2302,81	1354,29	386,86	385,70	104,46	52,23
Staub-Gehalt	g/Nm ³	0	0	0	0	0	0	0
Koks-Gehalt	g/Nm ³	0	0	0	0	0	0	0
Teer-Gehalt	g/Nm ³	0,011	0,011	0	0	0	0	0
Totale Enthalpie	kJ/kg	-5662,54	-5240,57	-9378,84	-4709,38	-4679,49	791,59	50,78
Gesamtmassenstrom	kg/h	1702,75	1702,75	1702,75	716,74	714,29	215,15	1707,59
Exergie	kW	11388,0	11568,8	10252,6	10089,8	10090,1	7211,4	200,6
Spez. Enthalpie (Staub)	kJ/kg	-	-	-	-	-	-	-
Spez. Entropie (Staub)	kJ/kgK	-	-	-	-	-	-	-
Spez. Exergie (Staub)	kJ/kg	-	-	-	-	-	-	-
Spez. Enthalpie (Koks)	kJ/kg	-	-	-	-	-	-	-
Spez. Entropie (Koks)	kJ/kgK	-	-	-	-	-	-	-
Spez. Exergie (Koks)	kJ/kg	-	-	-	-	-	-	-
Spez. Enthalpie (Teer)	kJ/kg	68,16	257,77	-	-	-	-	-
Spez. Entropie (Teer)	kJ/kgK	2,50	2,97	-	-	-	-	-
Spez. Exergie (Teer)	kJ/kg	40334,2	40384,4	-	-	-	-	-
Heizwert (Gesamt)	kJ/kg	24686,7	24686,7	20714,1	49210,3	49379,1	119959	0,00
Brennwert (Gesamt)	kJ/kg	28387,1	28387,1	24414,4	54640,8	54819,9	141787	0,00
Fühlbare Wärme (Gesamt)	kJ/kg	120,66	542,63	376,56	0,00	0,00	791,59	50,79

Gasströme		O ₂ in Export	PG mit O ₂ für GM	Gas vor GM	Abgas aus GM	Abgas Rezirku- lation	Abgas in CO ₂ - Speicher
Druck	bar	30	1,05	1,04	1,05	1,04	1,04
Temperatur	°C	80	43,7868	47,5272	400	50	50
Spez. Enthalpie	kJ/kg	73,69	51,7467	46,1307	431,439	43,3563	43,3563
Spez. Entropie	kJ/kgK	5,684	7,7917	6,12283	6,47542	5,1728	5,1728
Spez. Exergie	kJ/kg	422,9	6229,29	2400,01	668,754	549,662	549,662
Spez. Volumen	m³/kg	0,0306	0,944497	0,725731	1,39809	0,612517	0,612517
Massenstrom (Gas)	kg/h	977,20	2590,99	7845,43	7845,48	5254,44	1969,34
Normvolumenstrom (Gas)	Nm³/h	684,50	2185,58	4977,86	4612,3	2792,28	1046,53
Betriebsvolumenstrom (Gas)	m³/h	29,89	2447,18	5693,68	10968,7	3218,43	1206,25
Staub-Gehalt	g/Nm ³	0	0	0	0	0	0
Koks-Gehalt	g/Nm ³	0	0	0	0	0	0
Teer-Gehalt	g/Nm ³	0	0,019177	0,00842	0	0	0
Totale Enthalpie	kJ/kg	50,78	-3778,17	-7112,88	-8739,17	-8757,24	-8757,24
Gesamtmassenstrom	kg/h	977,20	2591,03	7845,48	7845,48	5254,44	1969,34
Exergie	kW	114,8	4483,81	5230,78	1457,42	802,268	300,687
Spez. Enthalpie (Staub)	kJ/kg	-	-	-	-	-	-
Spez. Entropie (Staub)	kJ/kgK	-	-	-	-	-	-
Spez. Exergie (Staub)	kJ/kg	-	-	-	-	-	-
Spez. Enthalpie (Koks)	kJ/kg	-	-	-	-	-	-
Spez. Entropie (Koks)	kJ/kgK	-	-	-	-	-	-
Spez. Exergie (Koks)	kJ/kg	-	-	-	-	-	-
Spez. Enthalpie (Teer)	kJ/kg	-	44,4179	48,5419	-	-	-
Spez. Entropie (Teer)	kJ/kgK	-	2,42882	2,44176	-	-	-
Spez. Exergie (Teer)	kJ/kg	-	40332,1	40332,4	-	-	-
Heizwert (Gesamt)	kJ/kg	0,00	6261,97	2216,97	204,74	222,364	222,364
Brennwert (Gesamt)	kJ/kg	0,00	6881,14	2450,62	438,386	265,903	265,903
Fühlbare Wärme (Gesamt)	kJ/kg	50,79	22,3413	22,1036	408,07	21,9812	21,9812

Wasserströme		DM Wasser	Wasser aus KO von GM	Wasser aus KO von ME	Wasser aus GLT	Wasser zu DM
Druck	bar	3	0,95	2,8	2,89	0,95
Temperatur	°C	25	48	23	25	30
Spez. Enthalpie	kJ/kg	105,113	201,049	96,731	105,103	126,152
Spez. Entropie	kJ/kgK	3,88215	4,1926	3,854	3,88215	3,95278
Spez. Exergie	kJ/kg	1,82207	5,1963	1,83216	1,81096	1,80237
Spez. Volumen	m³/kg	0,001012	0,0010112	0,0010104	0,0010029	0,0010025
Dampfziffer	kg/kg	0	0	0	0	0
Totale Enthalpie	kJ/kg	-15865,8	-15769,9	-15874,2	-15865,8	-15844,8
Massenstrom	kg/h	1922,74	0,0002	1972,03	4,9009	2326,18
Betriebsvolumenstrom	m³/h	1,9458	0,000	1,9925	0,0049	2,3320
Exergie	kW	0,973	0,000	1,004	0,002	1,165

Wasserströme		FW Vorlauf	FW Rücklauf	Kühlstrom UMG Vorlauf	Kühlstrom UMG Rücklauf	Kühlung KO-ME Vorlauf	Kühlung KO-ME Rücklauf
Druck	bar	4	3	4	4	4	5
Temperatur	°C	90	60	65	25	25	130
Spez. Enthalpie	kJ/kg	377,41	251,39	272,39	105,206	105,206	546,543
Spez. Entropie	kJ/kgK	4,70757	4,34577	4,408	3,88212	3,88212	5,1492
Spez. Exergie	kJ/kg	28,0187	9,86918	12,3159	1,92305	1,92305	65,4805
Spez. Volumen	m³/kg	0,001036	0,001017	0,001026	0,001007	0,001017	0,001069
Dampfziffer	kg/kg	0	0	0	0	0	0
Totale Enthalpie	kJ/kg	-15593,5	-15719,5	-15698,5	-15865,7	-15865,7	-15424,4
Massenstrom	kg/h	141379	141379	79844,5	79844,5	13862,7	13862,7
Betriebsvolumen- strom	m³/h	146,441	143,783	81,984	80,467	14,098	14,826
Exergie	kW	1100,35	387,583	273,155	42,651	7,405	252,149

Wasserströme		Kühlung KO-GM Vorlauf	Kühlung KO-GM Rücklauf	Kühlung GM Vorlauf	Kühlung GM Rücklauf	Kühlung THÖ Vorlauf	Kühlung THÖ Rücklauf
Druck	bar	4	5	4	5	4	5
Temperatur	°C	25	130	25	130	25	130
Spez. Enthalpie	kJ/kg	105,206	546,543	105,206	546,543	105,206	546,543
Spez. Entropie	kJ/kgK	3,88212	5,1492	3,88212	5,1492	3,88212	5,1492
Spez. Exergie	kJ/kg	1,92305	65,4805	1,92305	65,4805	1,92305	65,4805
Spez. Volumen	m³/kg	0,0010009	0,001069	0,001000	0,0010695	0,0010169	0,0010695
Dampfziffer	kg/kg	0	0	0	0	0	0
Totale Enthalpie	kJ/kg	-15865,7	-15424,4	-15865,7	-15424,4	-15865,7	-15424,4
Massenstrom	kg/h	0,0025187	0,0025106	0,003051	0,0030517	31729,4	31729,4
Betriebsvolumen- strom	m³/h	0,000	0,000	0,000	0,000	32,266	33,935
Exergie	kW	0,000	0,000	0,000	0,000	16,949	577,126

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Zusammensetzung Gasströme		Produktgas mit O ₂ für Gasmotor	Gasgemisch vor dem Gasmotor	Abgas Gasmotor	Abgas in den CO ₂ -Speicher
Ar	Vol%	0,000	0,000	0,000	0,000
C_2H_4	Vol%	0,261	0,000	0,000	0,000
C_2H_6	Vol%	0,261	0,000	0,000	0,000
C ₃ H ₈	Vol%	0,261	0,000	0,000	0,000
CH ₄	Vol%	2,249	0,000	0,000	97,116
CO	Vol%	10,726	0,026	0,032	0,000
CO ₂	Vol%	57,621	0,755	0,907	0,408
H ₂	Vol%	7,186	0,000	0,000	2,184
H ₂ O	Vol%	4,719	0,202	0,041	0,000
H ₂ S	Vol%	0,000	0,000	0,000	0,000
HCI	Vol%	0,000	0,000	0,000	0,000
HCN	Vol%	0,000	0,000	0,000	0,000
N ₂	Vol%	0,217	0,002	0,003	0,292
N ₂ O	Vol%	0,000	0,000	0,000	0,000
NH ₃	Vol%	0,000	0,000	0,000	0,000
NO	Vol%	0,000	0,000	0,000	0,000
O ₂	Vol%	16,497	0,014	0,017	0,000
SO ₂	Vol%	0,000	0,000	0,000	0,000
Molare Masse	kg/kmol	35,326	38,126	42,178	15,886
Fühlbare Wärme	kJ/mol	-252,051	-348,749	-370,293	-74,336
Heizwert	MJ/Nm ³	3,494	0,348	0,418	34,997
Brennwert	MJ/Nm ³	3,862	0,746	0,500	38,853

APPARATE UND EQUIPMENT

Wärmetauscher		ME	THÖ	FW
Druckverlust Wasserstrom	bar	0,1	0,1	1
Druckverlust Gasstrom	bar	0,01	0,1	1
Temperaturdifferenz Eingang	°C	174,978	65,0138	26,245
Temperaturdifferenz Ausgang	°C	126,744	61,7781	5
Wärmeübertragungskoeffizient mal Übertragungsfläche	kW/K	0,571694	30,4283	329,273
Übertragene Wärmeleistung	kW	85,5066	1929,03	4219,09
Exergieverlust	kW	22,7347	259,834	155,558

Elektrolyseur		
Druckabfall Kühlwasser	bar	1,7
Energieaufwand zur Wasserstoffproduktion	kWh/Nm ³ H ₂	4
Elektrolyseleistung / zugeführte elektrische Leistung	%	89,30
Zugeführte elektrische Leistung	kW	9568,9
Übertragene Wärmeleistung an Kühlwasser	kW	1023,6
Normvolumenstrom H ₂	Nm³/h	2392,2
Temperatur H ₂	°C	80
Druck H ₂	bar	30
Temperatur O ₂	°C	80
Druck O ₂	bar	30
Exergieverlust	kW	2011,2

Methanisierung		Reaktor 1	Reaktor 2
Druckverlust Gas	bar	0	0
Temperaturdifferenz Gas	°C	0	0
Temperaturdifferenz Thermoöl	bar	0,5	0,5
Sensible Wärme Eintritt	kW	1606,66	3444,66
Wärmeübertragung Thermoöl	kW	-1927,53	0,121182
Relativer Wärmeverlust	%	0,933615	0,435457
Absoluter Wärmeverlust	kW	15	15
Exergieverlust	kW	773,252	6,06167
Reaktionsenthalpie	kW	1389,1	3227,94
Umsatz C ₂ H ₄	%	100	0
Umsatz C ₂ H ₆	%	100	0
Umsatz C ₃ H ₈	%	100	0
Umsatz CO	%	99,9996	100
Umsatz CO ₂	%	96,7179	62,6988

Gasmotor								
Druckabfall Kühlwasser	bar	0,1						
Luftzahl	kg/kg	1						
CO-Schlupf	-	0,035						
Kohlenwasserstoff-Schlupf	%	1						
Mechanischer Wirkungsgrad	%	38						
Wirkungsgrad für Fernwärme und Umgebungskühler	%	31,3584						
Relativer Wärmeverlust	%	4						
Zugeführte Brennstoffleistung	kW	4831,42						
Übertragene Wärmeleistung Kühlwasser	kW	1515,06						
Absoluter Wärmeverlust	kW	193,257						
Exergieverlust	kW	1719,63						
Generator des Gasmotors								
Elektrische Leistung (Output)	kW	1727,25						
Elektrischer Wirkungsgrad	-	0,96						
Mechanischer Wirkungsgrad	-	0,98						

Kondensatoren		Gasmotor	Methanisierung
Druckabfall Gas	bar	0,01	0,01
Druckabfall Wasser	bar	0,1	0,1
Druckabfall Kühlwasser	bar	0,1	0,1
Temperaturdifferenz Gasaustritt / Kondensat	°C	2	2
Taupunktstemperatur Gasaustritt	°C	30	5
Temperaturdifferenz zu Taupunkt in Gasstrom	°C	20	20
Übertragene Wärmeleistung zur Kühlung/Kondensation	kW	1250,42	849,36
Exergieverlust	kW	173,814	40,1833

Wärmesenken	Fernwärme	Umgebung	
Druckverlust Wasserstrom	bar	1	0
Temperaturniveau Wärmesenke	°C	50	15
Übertragene Wärmeleistung	kW	4230,54	3270,99
Exergieverlust	kW	281,994	316,855

Motoren		Thermoöl	Methanisierung	Fernwärme	Gasmotor
Elektrische Leistung (Input)	kW	1,76061	309,206	9,91283	12,4202
Elektrischer Wirkungsgrad	-	0,96	0,96	0,96	0,96
Mechanischer Wirkungsgrad	-	0,98	0,98	0,98	0,98

Verdichter		Gasmotor	ME
Mechanischer Wirkungsgrad	-	0,98	0,98
Isentroper Wirkungsgrad	-	0,6	0,6
Druckverhältnis	-	1,125	3,03125
Wärmeverlust Umgebung	kW	0,18652	5,81802
Exergieverlust	kW	3,51154	75,0456
Temperatur bei isentroper Verdichtung	°C	51,479	180,93

Pumpen		Thermoöl	Fernwärme
Isentroper Wirkungsgrad	-	0,6	0,6
Mechanischer Wirkungsgrad	-	0,98	0,98
Druckverhältnis	-	1,22917	2
Reibungswärmeverluste	kW	0,0331276	0,233699
Exergieverlust	kW	1,3652	3,9565

Motoren Kühlkreislauf		EL	ME	THÖ	GM	KO-GM	KO-ME
Elektrische Leistung (Input)	kW	1,57002	0,041398	0,933945	0,605393	0,41122	0,733518
Elektrischer Wirkungsgrad	-	0,96	0,96	0,96	0,96	0,96	0,96
Mechanischer Wirkungsgrad	-	0,98	0,98	0,98	0,98	0,98	0,98

Pumpen Kühlkreislauf		EL	ME	THÖ	GM	KO-GM	KO-ME
lsentroper Wirkungsgrad	-	0,6	0,6	0,6	0,6	0,6	0,6
Mechanischer Wirkungsgrad	-	0,98	0,98	0,98	0,98	0,98	0,98
Druckverhältnis	-	2,17391	1,28205	1,28205	1,28205	1,28205	1,28205
Reibungswärme- verluste	kW	0,0295415	0,000778949	0,0138019	0,0113911	0,00773751	0,0175731
Exergieverlust	kW	0,445044	0,0112402	0,199161	0,164373	0,111652	0,25358

TECHNISCHE UNIVERSITÄT

Vienna University of Technology

WIEN

WIEN

Hinweis: Sämtliche Ströme, Zusammensetzungen bzw. Kenngrößen von Apparaten und Equipment, die sich zu Fall 1 nicht verändert haben, werden nachfolgend nicht nochmals dargestellt. Auch soll hier nochmals festgehalten werden, dass im Fall 3 nur der Gasmotor bedient wird, die Elektrolyse und Methanisierung stehen still und werden somit auch nachfolgend nicht berücksichtigt.

Gasströme		O ₂ in Export	PG mit O₂ für GM	Gas vor GM	Abgas aus GM	Abgas Rezirku- lation	Abgas in den CO ₂ - Speicher
Druck	bar	30	1,05	1,04	1,05	1,04	1,04
Temperatur	°C	80	43,7868	47,5272	400	50	50
Spez. Enthalpie	kJ/kg	73,69	51,7467	46,1307	431,439	43,3563	43,3563
Spez. Entropie	kJ/kgK	5,684	7,7917	6,12283	6,47542	5,1728	5,1728
Spez. Exergie	kJ/kg	422,9	6229,29	2400,01	668,754	549,662	549,662
Spez. Volumen	m³/kg	0,0306	0,944497	0,725731	1,39809	0,612517	0,612517
Massenstrom (Gas)	kg/h	-730,39	5181,98	15690,9	15691	10508,9	3938,68
Normvolumenstrom (Gas)	Nm ³ /h	-511,61	4371,17	9955,72	9224,6	5584,55	2093,06
Betriebsvolumenstrom (Gas)	m³/h	-22,34	4894,36	11387,3	21937,4	6436,87	2412,51
Staub-Gehalt	g/Nm ³	0	0	0	0	0	0
Koks-Gehalt	g/Nm ³	0	0	0	0	0	0
Teer-Gehalt	g/Nm ³	0	0,019176	0,008420	0	0	0
Totale Enthalpie	kJ/kg	50,78	-3778,17	-7112,88	-8739,17	-8757,24	-8757,24
Gesamtmassenstrom	kg/h	-730,39	5182,06	15690,9	15691	10508,9	3938,68
Exergie	kW	-85,8	8967,63	10461,6	2914,83	1604,54	601,373
Spez. Enthalpie (Staub)	kJ/kg	-	-	-	-	-	-
Spez. Entropie (Staub)	kJ/kgK	-	-	-	-	-	-
Spez. Exergie (Staub)	kJ/kg	-	-	-	-	-	-
Spez. Enthalpie (Koks)	kJ/kg	-	-	-	-	-	-
Spez. Entropie (Koks)	kJ/kgK	-	-	-	-	-	-
Spez. Exergie (Koks)	kJ/kg	-	-	-	-	-	-
Spez. Enthalpie (Teer)	kJ/kg	-	44,4179	48,5419	-	-	-
Spez. Entropie (Teer)	kJ/kgK	-	2,42882	2,44176	-	-	-
Spez. Exergie (Teer)	kJ/kg	-	40332,1	40332,4	-	-	-
Heizwert (Gesamt)	kJ/kg	0,00	6261,97	2216,97	204,74	222,364	222,364
Brennwert (Gesamt)	kJ/kg	0,00	6881,14	2450,62	438,386	265,903	265,903
Fühlbare Wärme (Gesamt)	kJ/kg	50,79	22,3413	22,1036	408,07	21,9812	21,9812

STRÖME

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Wasserströme		Wasser aus KO-GM	Wasser zu DM	FW Vorlauf	FW Rücklauf	Kühlstrom UMG Vorlauf
Druck	bar	0,95	0,95	4	3	4
Temperatur	°C	48	53	90	60	65
Spez. Enthalpie	kJ/kg	201,049	221,118	377,41	251,39	272,39
Spez. Entropie	kJ/kgK	4,1926	4,2546	4,70757	4,34577	4,408
Spez. Exergie	kJ/kg	5,1963	6,78204	28,0187	9,86918	12,3159
Spez. Volumen	m³/kg	0,0010112	0,0010025	0,0010358	0,001017	0,0010268
Dampfziffer	kg/kg	0	0	0	0	0
Totale Enthalpie	kJ/kg	-15769,9	-15749,8	-15593,5	-15719,5	-15698,5
Massenstrom	kg/h	1243,39	1592,64	100327	100327	61024,8
Betriebsvolumen- strom	m³/h	1,2573	1,5966	103,918	102,032	62,660
Exergie	kW	1,795	3,000	780,838	275,039	208,771

Wasserströme		Kühlstrom UMG Rücklauf	Kühlung KO-GM Vorlauf	Kühlung KO-GM Rücklauf	Kühlung GM Vorlauf	Kühlung GM Rücklauf
Druck	bar	4	4	5	4	5
Temperatur	°C	25	25	130	25	130
Spez. Enthalpie	kJ/kg	105,206	105,206	546,543	105,206	546,543
Spez. Entropie	kJ/kgK	3,88212	3,88212	5,1492	3,88212	5,1492
Spez. Exergie	kJ/kg	1,92305	1,92305	65,4805	1,92305	65,4805
Spez. Volumen	m³/kg	0,0010078	0,0010009	0,0010695	0,0010007	0,0010695
Dampfziffer	kg/kg	0	0	0	0	0
Totale Enthalpie	kJ/kg	-15865,7	-15865,7	-15424,4	-15865,7	-15424,4
Massenstrom	kg/h	61024,8	20408,5	20408,5	24727,7	24727,7
Betriebsvolumen- strom	m³/h	61,501	20,427	21,827	24,745	26,446
Exergie	kW	32,598	10,902	371,210	13,209	449,773

APPARATE UND EQUIPMENT

Wärmetauscher Fernwärme		
Druckverlust Wasserstrom	bar	1
Druckverlust Gasstrom	bar	1
Temperaturdifferenz Eingang	°C	24,1149
Temperaturdifferenz Ausgang	°C	5
Wärmeübertragungskoeffizient mal Übertragungsfläche	kW/K	288,298
Übertragene Wärmeleistung	kW	3502,49
Exergieverlust	kW	121,122

Gasmotor						
Druckabfall Kühlwasser	bar	0,1				
Luftzahl	kg/kg	1				
CO-Schlupf	-	0,035				
Kohlenwasserstoff-Schlupf	%	1				
Mechanischer Wirkungsgrad	%	38				
Wirkungsgrad für Fernwärme und Umgebungskühler	%	31,3584				
Relativer Wärmeverlust	%	4				
Zugeführte Brennstoffleistung	kW	9662,83				
Übertragene Wärmeleistung Kühlwasser	kW	3030,11				
Absoluter Wärmeverlust	kW	386,513				
Exergieverlust	kW	3439,27				
Generator des Gasmotors						
Elektrische Leistung (Output)	kW	3454,5				
Elektrischer Wirkungsgrad	-	0,96				
Mechanischer Wirkungsgrad	-	0,98				

Kondensator Gasmotor							
Druckabfall Gas	bar	0,01					
Druckabfall Wasser	bar	0,1					
Druckabfall Kühlwasser	bar	0,1					
Temperaturdifferenz Gasaustritt / Kondensat	°C	2					
Taupunktstemperatur Gasaustritt	°C	30					
Temperaturdifferenz zu Taupunkt in Gasstrom	°C	20					
Übertragene Wärmeleistung zur Kühlung/Kondensation	kW	2500,83					
Exergieverlust	kW	347,627					

Wärmesenken	Fernwärme	Umgebung	
Druckverlust Wasserstrom	bar	1	0
Temperaturniveau Wärmesenke	°C	50	15
Übertragene Wärmeleistung	kW	3512	2833,99
Exergieverlust	kW	234,098	274,524

Motoren		Fernwärme	Gasmotor	Kühlkreislauf GM	Kühlkreislauf KO-GM
Elektrische Leistung (Input)	kW	10,3107	1,46704	1,21079	19,8257
Elektrischer Wirkungsgrad	-	0,96	0,96	0,96	0,96
Mechanischer Wirkungsgrad	-	0,98	0,98	0,98	0,98

Verdichter Gasmoto	or	
Mechanischer Wirkungsgrad	-	0,98
Isentroper Wirkungsgrad	-	0,6
Druckverhältnis	-	1,125
Wärmeverlust Umgebung	kW	0,373039
Exergieverlust	kW	7,02307
Temperatur bei isentroper Verdichtung	°C	51,479

Pumpen		Fernwärme	Kühlkreislauf Gasmotor	Kühlkreislauf KO-GM
Isentroper Wirkungsgrad	-	0,6	0,6	0,6
Mechanischer Wirkungsgrad	-	0,98	0,98	0,98
Druckverhältnis	-	1,28205	1,28205	2
Reibungswärmeverluste	kW	0,0276037	0,0227821	0,194006
Exergieverlust	kW	0,398322	0,328746	3,2845

ABBILDUNGSVERZEICHNIS

	40
Abbildung 1: Szenario einer erneuerbaren Energieversorgung bis 2050 ^{1/1}	
Abbildung 2: Vergleich von Energiespeichern ¹⁻¹	
Abbildung 3: Schema Power-to-Gas ¹⁰	12
Abbildung 4: Vorgänge bei der Vergasung ^[4]	13
Abbildung 5: Vergleich autotherme und allotherme Vergasung	14
Abbildung 6: Überblick über Vergasungskonzepte ^[4]	15
Abbildung 7: Arten von zirkulierenden Wirbelschichtanlagen, nach ^[5]	17
Abbildung 8: Grundkonzept der Zweibettwirbelschicht-Dampfvergasung, nach ^[5]	18
Abbildung 9: Produktgasreinigung	22
Abbildung 10: Energieverbrauch der Wasserelektrolyse in Abhängigkeit der Tei	mperatur.
nach ^[10]	
Abbildung 11: Arten der Wasserelektrolyse ^[10]	24
Abbildung 12: Temperaturabhängigkeit der Methanisierungsreaktion	
Abbildung 13: Schema des TREMP-Prozesses zur Methanisierung ^[2]	
Abbildung 14 ⁻ Schema Erdgasspeicher ^[19]	30
Abbildung 15: Einfluss Wassergehalt im Brennstoff auf Kaltgaswirkungsgrad ^[26]	
Abbildung 16: Temperaturabhängigkeit der Boudouard-Reaktion	
Abbildung 17 ⁻ Prozesskette 1 – Finbett-Wirbelschicht-Dampfvergasung	36
Abbildung 18: Prozesskette 2 – Zweibett-Wirbelschicht-Dampfvergasung	
Abbildung 19: IPSEnro PSE (Process Simulation Environment)	38
Abbildung 20: IPSEnro MDK (Model Development Kit)	30
Abbildung 21: Cloichgowichterustand der CO. Mothanisierung in Abhängigkeit v	on Druck
Abbildung 21. Gleichgewichtszustahl der CO_2 -wethanisierung in Abhangigkeit villung Tomporatur (Gopunktoto Linion für n = 1 har durchgezogopo Linion für	
bar und gostricholto Linion für $n = 10$ bar)	p = 2,9
Abbildung 22: Uraprüngliche (linke) und medifizierte (reabte) Vergeger Unit	
Abbildung 22. Displungliche (IIIKS) und Modifizierte (Techts) vergaset-Officiation (IIIKS) und As	
Abbildung 23. Eingabe der Zusämmensetzung von Biomasse (Bild links) und As	
Abbildung 24: Eingabe der Biomassequelle in IPSEpro	
Abbildung 25: Festlegung der Globals in IPSEpro	
Abbildung 26: Verfahrensfließbild des modellierten Prozesses	
Abbildung 27: Installierte Leistung der Windkraftanlagen in Osterreich 1994-2014, na	ach ^[40] .55
Abbildung 28: Windenergiepotential in Österreich ^[43]	56
Abbildung 29: Stromverbrauch in Österreich 2014 ^[44]	57
Abbildung 30: Tageslastganglinie Stromverbrauch ^[44]	57
Abbildung 31: Ist-Werte der Windenergieeinspeisung in Österreich für 2014 ^[45]	58
Abbildung 32: Windenergieeinspeisung im Tagesverlauf ^[45]	58
Abbildung 33: Ist-Werte der Windenergieeinspeisung in Österreich für 2013 ^[45]	59
Abbildung 34: Häufigkeitsverteilung der eingespeisten Leistung für 2013	60
Abbildung 35: Sankey-Diagramm für den Fall 1	67
Abbildung 36: Sankey-Diagramm für den Fall 2	69
Abbildung 37: Sankey-Diagramm für den Fall 3	72
Abbildung 38: Gesamtnutzungsgrad in Abbängigkeit der Elektrolyseleistung	74

TABELLENVERZEICHNIS

Tabelle 1: Helerogene Vergasungsreaktionen ^[4] 14 Tabelle 2: Homogene Vergasungsreaktionen ^[4] 14
Tapelle 2. Homodene Verdastindsreaktionen ^{, 1}
Tabelle 3: Produktgaszusammensetzung für trockenes Gas im Normzustand (Mittelwerte
18 18 18 18 18 18 18 18 18 18 18 18 18 1
Tabelle 4: Heizwerte gasförmiger Brennstoffe ^[/] 19
Tabelle 5: Gasverunreinigungen im Produktgas aus der Biomassevergasung ^[4]
Tabelle 6: Erforderliche Gasqualität für die Methanisierung ^[9] 22
Tabelle 7: SNG-Zusammensetzung bei Produktion nach dem TREMP-Prozess ^[13] 28
Tabelle 8: Erdgas-Qualitätskriterien nach ÖVGW Richtlinie G 31 ^[16] 29
Tabelle 9: Zusätzliche Gasqualitätsanforderungen nach ÖVGW Richtlinie G B220 ^[17] 29
Tabelle 10: Gasspeicherkapazitäten in Österreich ^[24]
Tabelle 11: Thermodynamische Daten für die Methanisierungsreaktion bei 200°C ^[34] 43
Tabelle 12: Zusammensetzung im Gleichgewicht der Methanisierungsreaktion bei 200°C und
2,9 bar
Tabelle 13: Elementarzusammensetzung der Biomasse ^[36] 48
Tabelle 14: Aschezusammensetzung der Biomasse ^[37] 49
Tabelle 15: Gaszusammensetzungen im Prozess61
Tabelle 16: Massenbilanz (Fall 1)
Tabelle 17: Energiebilanz auf Basis der konventionellen Enthalpie (Fall 1)64
Tabelle 18: Massenbilanz Vergasung 65
Tabelle 19: Energiebilanz Vergasung
Tabelle 20: Massenbilanz Elektrolyse (Fall 1)
Tabelle 21: Energiebilanz Elektrolyse (Fall 1)
Tabelle 22: Massenbilanz Methanisierung (Fall 1)
Tabelle 23: Energiebilanz Methanisierung (Fall 1)
Tabelle 24: Zusammenfassung der Leistungskennzahlen für Fall 1
Tabelle 25: Massenbilanz (Fall 2)
Tabelle 26: Energiebilanz auf Basis der konventionellen Enthalpie (Fall 2)
Tabelle 27: Abgaszusammensetzung Gasmotor
Tabelle 28: Zusammenfassung der Leistungskennzahlen für Fall 2
Tabelle 29: Massenbilanz (Fall 3)
Tabelle 30: Energiebilanz auf Basis der konventionellen Enthalpie (Fall 3)73
Tabelle 31: Zusammenfassung der Leistungskennzahlen für Fall 3

LITERATURVERZEICHNIS

- [1] Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderung: *Welt im Wandel Gesellschaftsvertrag für eine große Transformation.* WBGU, 2011.
- [2] Sterner M., Stadler I.: *Energiespeicher Bedarf, Technologien, Integration.* Springer-Verlag, 2014.
- [3] Sterner M.: Bioenergy and renewable power methane in integrated 100 % renewable energy systems. Limiting global warming by transforming energy systems. Renewable energies and energy efficiency, Bd. 14, Kassel University Press, 2009.
- [4] Kaltschmitt M., Hartmann H., Hofbauer H.: *Energie aus Biomasse. Grundlagen, Techniken und Verfahren.* Springer-Verlag, 2009.
- [5] Rauch R., Pfeifer C: Unterlagen zur Vorlesung Thermische Biomassenutzung. Technische Universität Wien, Institut f
 ür Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, 2014.
- [6] Hofbauer H.: Biomass Gasification for Synthesis Gas Overview. Proceedings of the 17th European Biomass Conference and Exhibition, pp. 14-19, Hamburg, Germany, 2009.
- [7] Cerbe G.: *Grundlagen der Gastechnik: Gasbeschaffung Gasverteilung Gasverwendung.* Hanser, 2008.
- [8] Miltner A.: Techno-ökonomische Analyse der regenerativen Produktion von Wasserstoff für den Einsatz in Fahrzeugen. Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, 2010.
- [9] Bridgwater, A., Hofbauer, H., van Loo, S.: Thermal Biomass Conversion. CPL Scientific Publishing Services Ltd, Newbury, 2009.
- [10] Töpler J., Lehmann J.: Wasserstoff und Brennstoffzelle. Technologien und Marktperspektiven. Springer-Verlag, 2014.
- [11] Baehr H.D., Kabelac S.: *Thermodynamik Grundlagen und technische Anwendungen.* 15. Auflage, Springer-Verlag, 2012.
- [12] Kurzweil P., Scheipers P.: Chemie Grundlagen, Aufbauwissen, Anwendungen und Experimente. 9. Auflage, Vieweg+Teubner Verlag, 2012.
- [13] Halder Topsøe: From solid fuels to substitute natural gas (SNG) using TREMP[™]. Research, Technology, Catalysts. Informationsmaterial, 2009. <u>http://topsoe.ru/business_areas/gasification_based/Processes/Substitute_Natural_Ga_s.aspx</u> am 13.01.2015.
- [14] Hofbauer H.: Unterlagen zur Vorlesung Wirbelschichttechnik. 7. Auflage, Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, 2014.

- [16] ÖVGW-Richtlinie G 31: Erdgas in Österreich Gasbeschaffenheit. Mai 2001.
- [17] ÖVGW-Richtlinie G B220: Regenerative Gase Biogas. November 2011.
- [18] ÖVGW-Richtlinie G 79: Gasodorierung. März 2005.

TECHNISCHE UNIVERSITÄT WIEN

Vienna University of Technology

- [19] OMG Gas GmbH: *Skizze Erdgasspeicher*, 2005. http://www.omv.com/portal/01/com/omv/OMV_Group/Products/Natural_Gas/Gas_Sto rage/Info_for_newcomers_am 05.01.2015.
- [20] Buja H.O.: Ingenieurhandbuch Bergbautechnik. Lagerstätten und Gewinnungstechnik. 1. Auflage, Beuth-Verlag, 2013.
- [21] <u>http://www.bmwfw.gv.at/EnergieUndBergbau/MineralischeRohstoffe/Seiten/Erdgassp</u> <u>eicher.aspx</u> am 05.01.2015.
- [22] <u>http://www.e-control.at/de/statistik/gas/betriebsstatistik/betriebsstatistik2013</u> am 22.10.2014.
- [23] Bundesministerium für Wissenschaft, Forschung und Wirtschaft: *Energiestatus* Österreich 2014 - Entwicklung bis 2012. 2014.
- [24] Energie-Control Austria: *Marktbericht* 2013 *Nationaler Bericht an die europäische Kommision.* 2013.
- [25] Bundesanstalt für Geowissenschaften und Rohstoffe: Kurzstudie Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen 2011. Deutsche Rohstoffagentur (DERA), Hannover, 2011.
- [26] Schuster G., Weigl K., Kaiser S., Friedl A., Hofbauer H.: Der Dampfvergasungsprozess – eine umfangreiche Parameterstudie, Technische Universität Wien, Institut für Verfahrens-, Brennstoff- und Umwelttechnik, 2000.
- [27] De Toni A., Modl N., Anfang G.: Simultane Entfernung/Umwandlung von teerartigen und schwefelhaltigen Kohlenwasserstoffen. Patent EP2723678A1, 2012.
- [28] Frauenhofer ISE, E.ON Gas Storage GmbH, Hydrogenics GmbH, Solvicore GmbH & Co. KG, DLR: Kompaktes 1 MW-PEM-Wasserelektrolyse-System – Regenerativer Wasserstoff für Mobilität und Energiespeicherung. NIO Vollversammlung, 2013.
- [29] http://www.hydrogenics.com/technology-resources am 13.01.2015.
- [30] Energieinstitut an der Johannes Kepler Universität Linz et al.: *Power to Gas eine Systemanalyse. Markt- und Technologiescouting und –analyse.* Endbericht, 2014.
- [31] Kopyscinski J., Schildhauer T. J., Biollaz Serge M. A.: Production of synthetic natural gas (SNG) from coal and dry biomass - A technology review from 1950 to 2009. Fuel Vol. 89, pp. 1763-1783, 2010.

- [32] Friedl A., Harasek M., Wukovits W.: *Unterlagen zur Vorlesung Prozesssimulation.* Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften, 2014.
- [33] SimTech GmbH: IPSEpro Process Simulator User Manual. 2003.
- [34] Pröll T.: Unterlagen zur Vorlesung Applied modelling in process engineering and energy technology. Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften, 2014.
- [35] Brellochs J.: Experimentelle Untersuchung und Prozess-Simulation der AER-Biomassevergasung zur Erzeugung eines regenerativen Erdgassubstitutes. Cuvillier Verlag, 2014.
- [36] BIOBIB Database for biofuels, Vienna University of Technology, Institute of Chemical Engineering, Fuel an Environmental Technology, Fuel: wood/chips. <u>http://cdmaster2.vt.tuwien.ac.at/biobib/fuel309.html</u> am 01.12.2014.
- [37] Vassilev S.V, Baxter D., Andersen L.K. Vassileva C.G., An overview of the chemical composition of biomass, Fuel. Vol. 89, pp. 913-933, 2010.
- [38] Hofbauer H.: Unterlagen zur Vorlesung Basic Engineering. Auslegung verfahrenstechnischer Prozesse und Anlagen IV – Verbrennungsanlagen. Technische Universität Wien, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, 2013/14.
- [39] Hofbauer H.: Unterlagen zur Vorlesung Brennstoff- und Energietechnologie. Technische Universität Wien, Institut f
 ür Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, 2014.
- [40] IG Windkraft: Windkraft in Österreich, Jahresanfangspressekonferenz, Jänner 2015.
- [41] Energcon E-126: <u>http://www.enercon.de/de-de/66.htm</u> am 09.01.2015.
- [42] <u>http://www.energieburgenland.at/oekoenergie/windkraft/unternehmen/kurzportraet.ht</u> <u>ml</u> am 05.02.2015.
- [43] Zentralanstalt für Meteorologie und Geodynamik: *Endbericht für das Budgetjahr* 2009, April 2010.
- [44] http://www.apg.at/de/markt/last am 05.02.2015.
- [45] http://www.apg.at/de/markt/erzeugung/windenergie am 29.01.2015.
- [46] Sedy K.: Eignung von Aschen zur Herstellung von Erden. Umweltbundesamt, 2010.