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Abstract

Provability logics constitute a well-studied branch of nonclassical logics and find inter-
pretations in systems formalizing elementary number theory. The polymodal provability
logic GLP, due to G.K. Japaridze, received considerable interest in the literature. GLP
is arithmetically complete for an arithmetical interpretation which is closely related to
the partial uniform reflection principles in formal arithmetic. Furthermore, the closed
fragment of GLP allows to develop an ordinal notation system up to ε0. Based on these
observations, L.D. Beklemishev provided an alternative proof of G. Gentzen’s consistency
proof for Peano Arithmetic (PA) by transfinite induction up to ε0. This ordinal analysis is
carried out in the framework of graded provability algebras, which enable one to capture
proof-theoretic information of the theory under consideration. The graded provability
algebra of a theory can—from a logical point of view—be considered as a many-sorted
variant of GLP.

In this thesis, we investigate this many-sorted variant of GLP which assigns sorts
α ≤ ω to propositional variables. Thereby, propositional variables of sort n < ω are
arithmetically interpreted as Πn+1-sentences. In response to a question posed by Beklem-
ishev, we show in the first part of this thesis that the resulting many-sorted modal logic
is arithmetically complete with respect to a class of arithmetical interpretations which
satisfies the aforementioned restriction.

Since these proof-theoretic applications can already be carried out in a positive frag-
ment of GLP, we follow in the second part of this thesis recent trends concerning the
investigation of such positive fragments of GLP. In the style of a work due to Beklemishev,
we define a many-sorted positive reflection calculus where we, from the point of view of
arithmetic, interpret the modal diamonds as different forms of reflection in formal arith-
metic. Thereby, the restriction to the positive fragment allows for a richer arithmetical
interpretation of propositional variables: these are not interpreted as single arithmetical
sentences but as primitive recursive numerations of possibly infinite arithmetical theories.
There, variables of sort n < ω are interpreted as Πn+1-axiomatized extensions of PA,
while variables of sort ω are interpreted as arbitrary extensions thereof. This interpre-
tation enables us to introduce an additional modal operator 〈ω〉 which is interpreted
as the full uniform reflection schema in arithmetic that knows no finite, yet a recursive
axiomatization. We prove that our reflection calculus is arithmetically complete with
respect to this interpretation.
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Kurzfassung

Beweisbarkeitslogiken stellen einen wohlstudierten Zweig nichtklassischer Logiken dar
und finden Interpretationen in Systemen, welche die elementare Zahlentheorie formalisie-
ren. Die polymodale Beweisbarkeitslogik GLP von G.K. Japaridze erfuhr reges Interesse
in der Literatur. GLP ist vollständig bezüglich einer arithmetischen Interpretation, welche
eng mit den partiellen uniformen Reflexionsprinzipien der formalen Arithmetik zusam-
menhängt. Weiters erlaubt das geschlossene Fragment von GLP die Entwicklung eines
Systems zur Notation von Ordinalzahlen bis ε0. Basierend auf diesen Beobachtungen
lieferte L.D. Beklemishev einen zum Gentzen’schen alternativen Beweis zur Konsistenz
der Peano Arithmetik (PA) per transfiniter Induktion bis ε0. Diese beweistheoretische
Analyse wird im Rahmen von sortierten Beweisbarkeitsalgebren durchgeführt, welche
einem erlauben beweistheoretische Informationen der betrachteten Theorie zu erfassen.
Die sortierte Beweisbarkeitsalgebra einer Theorie kann—von einem logischen Standpunkt
betrachtet—als mehrsortige Variante von GLP aufgefasst werden.

In dieser Arbeit untersuchen wir diese mehrsortige Variante von GLP, welche aussa-
genlogischen Variablen Sorten α ≤ ω zuweist. Dabei wird jede aussagenlogische Variable
der Sorte n < ω nur durch Πn+1-Sätze interpretiert. In Beantwortung einer von Bekle-
mishev gestellten Frage zeigen wir im ersten Teil dieser Arbeit, dass diese mehrsortige
Logik arithmetisch vollständig bezüglich einer geeigneten arithmetischen Interpretation
ist, welche der zuvor Einschränkung bezüglich der Sorten genügt.

Da die beweistheoretischen Anwendungen von GLP bereits in dem positiven Fragment
derselben erfolgen können, folgen wir im zweiten Teil dieser Arbeit jüngsten Untersuchun-
gen positiver Fragmente von GLP. In Anlehnung an eine Arbeit von Beklemishev definie-
ren wir einen mehrsortigen positiven Reflexionskalkül, wobei wir die modalen Diamanten
als verschiedene Formen der Reflexion in der formalen Arithmetik auffassen. Dabei er-
laubt uns die Beschränkung auf das positive Fragment eine reichhaltigere Interpretation
der aussagenlogischen Variablen: Diese werden nicht als arithmetische Sätze, sondern als
primitiv rekursive Aufzählungen von möglicherweise unendlichen arithmetischen Theori-
en interpretiert. Hierbei werden Variablen der Sorte n < ω durch Πn+1-axiomatisierbare
Erweiterungen von PA instanziert, während jene der Sorte ω durch beliebige Erweite-
rungen derselben interpretiert werden. Diese Interpretation gestattet die Einführung
eines modalen Operators 〈ω〉, welcher als das Schema der vollen uniformen Reflexion
der Arithmetik interpretiert wird, für welches es keine endliche, jedoch eine rekursive
Axiomatisierung gibt. Wir zeigen, dass unser Reflexionskalkül arithmetisch vollständig
bezüglich dieser Interpretation ist.
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CHAPTER 1
Introduction

In the course of proving his celebrated incompleteness theorems, Gödel, in his seminal
paper of 1931 [1919], demonstrated how a sufficiently strong theory can encode properties
talking about itself—most importantly, he showed how such a theory can talk about
its own theorems in terms of formal provability. Later on in 1933 [2020], Gödel chose the
language of propositional modal logic to provide an adequate semantics for intuition-
istic logic—according to Brouwer, intuitionistic truth means provability. Gödel briefly
mentions that provability in formal systems may be viewed as a modal operator.

It was then Löb [3030] who discovered a principle of provability which, together with
some elegant principles already known, constitutes the axiomatic basis of the well-known
provability logic GL. In particular, Löb’s principle allows one to establish (a formalized
version of) the second incompleteness theorem by purely modal reasoning. A landmark
result by Solovay [3939] reveals that this logic is adequate for provability in Peano Arithmetic
(PA) with the interpretation of the modality 2 as the standard Gödelian provability
predicate.

Provability logics have since then been vividly studied and ties have been established
between mathematical logic and the more isolated field of nonclassical logics. Most impor-
tantly for us, provability logics have found a manifold of interpretations in arithmetical
theories. In this context, provability logics are mostly modal logics which axiomatize
properties of certain provability predicates of arithmetical theories.

One of the logics which received considerable interest in the literature is the polymodal
provability logic GLP due to Japaridze [2525]. GLP is formulated over a modal language with
modalities [n] for every natural number n. Japaridze showed that GLP is arithmetically
complete for sound extensions of Peano Arithmetic when [n] is interpreted as being
“provable under n nested applications of the ω-rule” (see Section 3.33.3). Later, Ignatiev
[2424] simplified the work of Japaridze and showed that GLP is complete for an even
broader class of arithmetical interpretations. Most importantly, for a sound extension
T of PA, it turns out that GLP is arithmetically complete for T for the interpretation
of [n] as (formalized) provability in the theory T + ThΠn(N), where ThΠn(N) denotes
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the set of all true Πn-sentences. The arithmetical interpretation of the dual operator
〈n〉 := ¬[n]¬ is called n-consistency and is equivalent to the uniform reflection principle
for Πn+1-formulas over T (see Section 2.52.5). Ignatiev further showed that GLP exhibits
Craig interpolation, has a fixed-point property, and that there is a universal model for
the closed fragment of GLP (i.e., the set of theorems with no variables) based on the
ordinal ε0.

Beklemishev [22] brought the study of GLP into mainstream proof theory concerning
ordinal analysis. The background can be roughly sketched as follows (cf. also Rathjen
[3232] some background on ordinal analysis). Ever since the work of Gentzen [1717, 1818], it has
been a principal aim of proof theory to assign ordinals to theories which should somehow
measure the “proof-theoretic strength” of the theory under consideration. Gentzen showed
that Peano Arithmetic is consistent by transfinite induction up to ε0 and furthermore
that transfinite induction up to every ordinal less than ε0 is provable in PA. Hence, it
seems natural to define the proof-theoretic ordinal of a theory T as the least ordinal such
that the theory plus transfinite induction up to this ordinal proves the consistency of T .
Similarly, we could define the proof-theoretic ordinal to be the supremum of the order
types which T is able to prove to be well-founded (recall that ε0 is the supremum of
ω, ωω, ωω

ω
, . . .). The problem with these definitions is that the notions crucially depend

on the representation of the ordinal notation system within T . To wit, a well-known
example due to Kreisel shows that one can define a primitive recursive well-ordering of
order type ω such that a comparatively weak theory can prove the consistency of a strong
theory by transfinite induction on this ordering [2727]. The tentative conclusion we can
draw from the possibility of such pathological orderings is that in order to gain “natural”
representations of ordinals, the notion of proof-theoretic ordinal should disregard many
syntactical details of the theory under consideration.

Beklemishev [22] proposes an approach to the ordinal analysis of PA which addresses
these issues. A proof-theoretic analysis of PA based on the notion of graded provability
algebras is suggested which allows one to capture enough syntactic information in order
to canonically recover an ordinal notation system up to ε0. This permits one to obtain
Gentzen’s results in a rather abstract fashion. Furthermore, based on these notions,
Beklemishev [44] provided a combinatorial statement undecided by PA.

The notion of graded provability algebra proposed by Beklemishev bears the structure
of a Lindenbaum algebra of an arithmetical theory T enriched by additional operators
〈n〉T for every natural number n, denoting n-consistency. Given such a structure MT ,
one can associate a stratification P0 ⊂ P1 ⊂ · · · ⊆ MT with it, where the sets Pn
correspond to Πn+1-sentences. An algebra with such a stratification can be regarded as
a many-sorted algebra, where the operator 〈n〉T maps elements fromMT to Pn. It is the
modal logic of such many-sorted algebras we are going to investigate in this thesis.

More precisely, we consider the modal logic which contains variables of sort n for
every n < ω. The arithmetical interpretation of a variable of sort n ranges over Πn+1-
sentences. In addition to the postulates of GLP, our logic will contain the axiom of
Σn+1-completeness, that is,

¬p→ [n]¬p,
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where p is a variable of sort n. The notion of sort can be naturally extended to capture all
polymodal formulas (i.e., terms in the language of many-sorted algebras). Substitution
in the logic under consideration is then restricted to respect the sorts.

Since the proof-theoretic applications of GLP mentioned before can already take
place in a positive fragment of the same, positive fragments of provability logics have
received interest recently. Dashkov [1313] showed that the positive fragment of GLP can be
axiomatized by a positive calculus which is decidable in polynomial time. Furthermore,
he mentions that an arithmetical interpretation of the positive fragment of GLP can
be richer than the standard one: propositional variables can be interpreted as possibly
infinite arithmetical theories rather than single sentences. The arithmetical interpretation
of modal formulas is then not restricted to adhere to finitely axiomatizable concepts only.
In particular, the arithmetical interpretation of positive formulas can result in theories
of unbounded arithmetical complexity. Hence, this interpretation allows to introduce a
modality 〈ω〉 which is interpreted as the full uniform reflection principle in arithmetic.
Beklemishev [77] showed that a suitable reflection calculus capturing these notions is
arithmetically sound and complete with respect to the aforementioned arithmetical inter-
pretation, where propositional variables are formally interpreted as primitive recursive
numerations of theories extending PA. We follow these lines and investigate the positive
fragment of our many-sorted variant by defining a suitable many-sorted version of Bek-
lemishev’s reflection calculus and show that it is arithmetically complete with respect to
an arithmetical interpretation which treats variables of sort n < ω as Πn+1-axiomatized
extensions of PA. As in the work of Beklemishev, our calculus will also contain a modality
〈ω〉 which, from an arithmetical point of view, corresponds to the full uniform reflection
principle in arithmetic.

1.1 S t ru c t u r e o f t h e T h e s i s

After this introductory chapter, we continue in Chapter 22 with an exposition of some
background knowledge. We collect some basic facts on formal arithmetic in Section 2.22.2
and continue to review the famous limitative results of reasonably strong arithmetical
theories in Sections 2.32.3 and 2.42.4. Section 2.52.5 contains a brief treatment of the reflection
principles in arithmetic. In Section 2.62.6, we introduce the basic notions of provability
logics and recite Solovay’s famous theorems.

Chapter 33 is devoted to the study of our many-sorted variant of GLP, denoted by GLP∗.
It is well-known that GLP is not sound and complete for any class of Kripke frames [2424].
Therefore, Ignatiev [2424] identified a logic weaker than GLP which is already sound and
complete for a decent class of Kripke frames and allows one to prove properties about
GLP by reducing GLP to that logic. Beklemishev [55] isolates an even more convenient
subsystem of GLP, denoted by J, which he uses to simplify the arithmetical completeness
theorem for GLP [66]. We will analogously define a logic J∗ which is weaker than GLP∗
and prove in Section 3.43.4 that J∗ is complete with respect to a nice class of Kripke models.
In Section 3.53.5, we show that GLP∗ is arithmetically complete with respect to the broad
class of arithmetical interpretations identified by Ignatiev which in addition respect our
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conditions on the sorts of variables. Afterwards, we will discuss some corollaries and
extensions of this theorem.

In Chapter 44, we introduce many-sorted variants of the reflection calculi studied
by Beklemishev [77] and Dashkov [1313]. Here, the arithmetical interpretation of proposi-
tional variables of sort n is given by primitive recursive enumerations of Πn+1-axiomatized
extensions of PA, while the variables of sort ω can be assigned arbitrary extensions of
PA. Additionally, we introduce a modality 〈ω〉 which, as in the work of Beklemishev [77],
receives the full uniform reflection principle as its arithmetical semantics. For n < ω,
the modal operator 〈n〉 is interpreted as the uniform reflection schemata restricted to
Πn+1 formulas, that is, n-consistency. The arithmetical interpretation of our many-sorted
positive calculus is subject of Section 4.24.2. Kripke semantics is subsequently treated
in Section 4.34.3. Following Dashkov [1313], we show in Section 4.44.4 that our reflection calcu-
lus axiomatizes the positive fragment of GLP∗ω+1 which is the logic GLP∗ enriched by a
modality 〈ω〉 and suitable axioms. In the style of Beklemishev [77], we continue in Sec-
tion 4.54.5 to prove that this resulting system is arithmetically complete with respect to
the aforementioned interpretation.

4



CHAPTER 2
Preliminaries

We assume familiarity with the basics of classical first-order logic as well as the treatment
of metamathematics as a branch of number theory. In the sequel, we will briefly define
the basic logical concepts in order to fix notation and terminology. We will then introduce
the arithmetical theories of our interest in Section 2.22.2 and summarize some well-known
properties about them. For more details on the contents of the first two sections, we refer
the reader to standard textbooks on mathematical logic, e.g., Shoenfield [3535], Boolos
et al. [1212], as well as to text books on formal arithmetic like Hájek and Pudlák [2121]. Some
famous limitative results concerning the metamathematics of arithmetic are repeated
in Sections 2.32.3 and 2.42.4. We continue with a brief exposition of the so called reflection
principles in arithmetic in Section 2.52.5, which we will encounter later in Chapter 44. At
the end of this chapter, in Section 2.62.6, we briefly discuss existing provability logics which
are relevant for us.

2.1 B a s i c s

A first-order language L consists of logical, nonlogical, and auxiliary symbols. The nonlog-
ical symbols are specified by pairwise disjoint sets of predicate (relation), function, and
constant symbols, where each predicate and function symbol has an associated positive
arity. Throughout the text, we assume that every first-order language L implicitly con-
tains a binary predicate symbol = called equality (which we write in infix notation for
convenience). The logical symbols of L consist of equality, ∀,→, ¬, as well as a countably
infinite supply of (individual) variables. Furthermore, the symbols (, ), and , are called
auxiliary symbols. We assume that every language has the same logical and auxiliary sym-
bols. Hence, a first-order language is determined by the choice of its nonlogical symbols.
When exhibiting syntactic objects, we agree to let x, y, z, . . . (possibly with subscripts)
be metavariables for individual variables. We say that a language L′ extends a language
L (symbolically L ⊆ L′) if the nonlogical symbols of L are contained in L′. If L ⊆ L′
then L′ is an extension of L.

5



Given a language L, the set of L-terms is defined inductively in the usual manner:
(i) individual variables and constant symbols are L-terms, (ii) if f is a function symbol of
arity n and t1, . . . , tn are L-terms then f(t1, . . . , tn) is an L-term. If t1, . . . , tn are L-terms
and R is a predicate symbol of arity n then R(t1, . . . , tn) is an atomic L-formula. The
set of L-formulas (formulas over L) is defined inductively:

(i) Every atomic L-formula is an L-formula.

(ii) If ϕ and ψ are L-formulas then ¬ϕ and (ϕ→ ψ) are L-formulas.

(iii) If x is an individual variable and ϕ an L-formula then ∀xϕ is an L-formula.

We introduce the usual abbreviations for logical connectives different from → and ¬.
We set ϕ ∨ ψ := ¬ϕ → ψ, ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ), and
∃xϕ := ¬∀x¬ϕ. As we did here in these definitions, we omit parentheses whenever
possible and assign ¬, ∀x the highest and →, ↔ the least binding priority. Furthermore,
we sometimes also introduce additional parentheses for the sake of readability (possibly
parentheses of a different style). We usually omit “L” in the terms “L-term” and “L-
formula” whenever L is clear from context. Adhering to standard mathematical notation,
we write t1 6= t2 instead of ¬t1 = t2.

The notion of an expression (i.e., a term or formula) occurring in another expression
is defined the usual way. In particular, the notions of free and bound occurrence of a
variable in an L-formula are defined as usual. A variable x in a formula is called free
if x has a free occurrence in ϕ. An expression is called closed if no variable has a free
occurrence in it. A closed L-formula ϕ is also called L-sentence. If a formula ϕ is of
the form Qx1Qx2 · · ·Qxn ψ (Q ∈ {∀, ∃}), we abbreviate the sequence Qx1Qx2 · · ·Qxn
of quantifiers in ϕ by Qx1, x2, . . . , xn. When we denote a formula ϕ by ϕ(x1, . . . , xn),
we indicate that all free variables are among x1, . . . , xn. We may also abbreviate a
list x1, . . . , xn of variables by ~x. The notion of substitution of a term t for all free
occurrences of a variable x in a formula ϕ is defined as usual. We indicate substitution
by ϕ(x1/t1, . . . , xn/tn) and omit the x1, . . . , xn whenever they are clear from context.

Turning to semantics, an L-structure is a pair A = 〈M, ·A〉, where M is a non-empty
set (called universe of A) and ·A is a function which assigns

(i) to every n-ary (n ≥ 0) predicate symbol R from L a relation RA ⊆Mn;

(ii) to every n-ary (n ≥ 0) function symbol f from L a total function fA : Mn →M ;

(iii) to every constant symbol c from L an element cA ∈M .

An A-valuation is a function v which assigns every variable an element from M . For two
A-valuations v and v′ and all variables x, we define

v′ ∼x v ⇐⇒df v′(y) = v(y) for all variables y 6= x.

We define the value JtKA,v ∈M with respect to A and v for all L-terms t, as well as the
truth value JϕKA,v ∈ {0, 1} with respect to A and v for all L-formulas recursively:
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(i) JxKA,v = v(x), for every variable x;

(ii) JcKA,v = cA, for every constant symbol c from L;

(iii) Jf(t1, . . . , tn)KA,v = fA(Jt1KA,v, . . . , JtnKA,v), for every n-ary function symbol f
from L;

(iv) JR(t1, . . . , tn)KA,v = RA(Jt1KA,v, . . . , JtnKA,v), for every n-ary predicate symbol R
from L;

(v) J¬ϕKA,v = 1− JϕKA,v; Jϕ→ ψKA,v = 1, if JϕKA,v ≤ JψKA,v and 0 otherwise;

(vi) J∀xϕKA,v = inf{JϕKA,v′ | v′ ∼x v}.

For a formula ϕ, we write A, v |= ϕ whenever JϕKA,v = 1. A is a model of ϕ, if A, v |= ϕ
for all A-valuations v. We abbreviate this fact by A |= ϕ. Likewise, A is a model of a set
of formulas T , if A |= ϕ for every ϕ ∈ T . The theory of A is the set Th(A) := {ϕ | A |=
ϕ, ϕ is an L-sentence}.

An L-theory (simply theory if L is clear from context) is just a set of L-sentences.
For an L-theory T , L is called the language of T . For a formula ϕ, we write T |= ϕ and
say that T (logically) entails ϕ, if every model of T is also a model of ϕ. The notion of
L-proof in T is defined as usual. For a theory T , we write T ` ϕ if ϕ is provable in T . In
this case, we say that ϕ is a theorem of T . For a set of L-formulas Γ, we write T ` Γ if
T ` γ for all γ ∈ Γ. For the notion of theoremhood, we assume a set of logical axioms
present which together with the standard logical rules of inference suffices that our notion
of theoremhood is strongly sound and complete with respect to our notion of entailment,
i.e., for every ϕ, T ` ϕ iff T |= ϕ. Sentences from T are called (nonlogical) axioms of
T . It is clear that in order to specify a theory we only need to specify the nonlogical
symbols of its language plus its nonlogical axioms, i.e., the logical machinery necessary
to derive all and only the sentences which are entailed by the theory are assumed to be
implicitly given by the notion of proof.

Two theories are (deductively) equivalent if they have the same language and prove
the same theorems. Given two theories T , S in the same language, we write T + S to
denote the theory T ∪ S. For a sentence ϕ in the language of T , we also write T + ϕ
instead of T + {ϕ}. A theory T is axiomatizable if there is a decidable set of sentences
whose theorems coincide with the theorems of T . A theory S is an extension of T if the
language of S extends the language of T and every theorem of T is also a theorem of S.
S is a finite extension of T if there are sentences ϕ1, . . . , ϕn such that T + {ϕ1, . . . , ϕn}
and S are deductively equivalent.

During our discussion, we often implicitly make use of the following concepts, which
formally capture common mathematical practice (cf. Shoenfield [3535], Kunen [2929]).

Definition 2.1.1. Let L ⊆ L′ and Γ a set of sentences over L. If P ∈ L′ \ L is an n-ary
predicate symbol, we mean by a definition of P over L and Γ a sentence

∀~x (P (~x)↔ ϕ(~x)),
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where ϕ(~x) is a formula over L. Similarly, for an n-ary function symbol f ∈ L′ \ L, we
say that ∀~xϕ(~x, f(~x)) is a definition of f over L and Γ if ϕ(~x, y) is a formula over L and
additionally Γ ` ∀~x ∃!y ϕ(~x, y).

A set of sentences Γ′ ⊇ Γ over L′ is an extension by definitions of Γ if every sentence
from Γ′ \ Γ is a definition of some symbol in L′ \ L over L and Γ. a

Theorem 2.1.2. Let Γ′ ⊇ Γ be an extension by definitions of Γ, where Γ is a set of
sentences over L and Γ′ is a set of sentences over L′, respectively.

(i) If ϕ is a sentence over L then Γ ` ϕ iff Γ′ ` ϕ.

(ii) If ϕ(~x) is a formula over L′ then there is a ψ(~x) over L with exactly the same
free variables as ϕ(~x) such that Γ′ ` ∀~x (ϕ(~x)↔ ψ(~x)).

2.2 Fo r m a l A r i t h m e t i c

The language of arithmetic, L0, is the first-order language with (besides equality) the
binary predicate symbol ≤, the binary function symbols +, ·, the unary function symbol s
(successor), and the constant symbol 0. Henceforth, unless stated otherwise, all formulas
we consider will be formulas from a language extending L0. For terms t1, t2 in the
language of arithmetic, we introduce the abbreviations t1 < t2 := t1 ≤ t2 ∧ t1 6= t2,
t1 > t2 := ¬t1 ≤ t2, and t1 ≥ t2 := ¬t1 < t2. Furthermore, we recursively define

0 := 0 and n+ 1 := s(n).

For n ∈ ω,11 the term n is called numeral and is a natural representation of n in the
language of arithmetic.

The standard model of arithmetic N has as its universe ω = {0, 1, 2, . . .} and assigns
the previously mentioned nonlogical symbols their usual meaning. In particular, the
denotation of s is the successor function λx.x+ 1. We call the theory of the structure N
(i.e., the set of all sentences true in the standard model of arithmetic) true arithmetic.
In the following, by a true sentence we mean a sentence true in the standard model of
arithmetic.

Let t be a term which has no occurrence of x and ϕ a formula. We introduce the
abbreviations

∀x ≤ t ϕ := ∀x (x ≤ t→ ϕ),
∃x ≤ t ϕ := ∃x (x ≤ t ∧ ϕ),

and similarly for the symbols <, >, and ≥. Occurrences of quantifiers of form ∀x ≤ t
and ∃x ≤ t are called bounded. A formula is called bounded if every occurrence of a
quantifier in it is bounded. Obviously, a quantifier occurrence of the form ∀x < t (∃x < t,
respectively) can be rewritten into a logically equivalent bounded occurrence of the

1We consider ω to be the set of natural numbers and we often regard each natural number n ∈ ω to
be a set consisting of all and only its predecessors.
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respective form. Hence, we also call such occurrences bounded. Notice that the notion of
bounded formula heavily depends on the choice of our language. In our discussion, this
language will always be clear from context.

Arithmetical Theories

An arithmetical theory (henceforth simply theory) is just a theory whose formulas are in a
language extending L0. Most importantly, we will confine ourselves to Peano Arithmetic
(defined below), though many results of the present text extends to much weaker theories.

Let T be a theory. We say that a formula ϕ(x1, . . . , xk) having exactly k variables
free defines a relation R ⊆ ωk in T , if

(n1, . . . , nk) ∈ R ⇐⇒ T ` ϕ(n1, . . . , nk),
(n1, . . . , nk) 6∈ R ⇐⇒ T ` ¬ϕ(n1, . . . , nk),

for all (n1, . . . , nk) ∈ ωk. R is definable in T , if there exists such a formula defining R.
Similarly, a function f : ωk → ω is definable in T , if its graph f ⊆ ωk+1 is. We say that a
function f : ωk → ω is represented by ϕ(x1, . . . , xk+1) in T , if whenever f(n1, . . . , nk) = m
then

T ` ∀y (ϕ(n1, . . . , nk, y)↔ y = m).

Such an f is representable in T if there is such a ϕ(x1, . . . , xk+1) having exactly k + 1
variables free. A relation (function, respectively) is arithmetically definable if it is definable
in true arithmetic.

Remark. Note that in the case of true arithmetic, the notions of definability and repre-
sentability of a function coincide.

Definition 2.2.1. We define the classes of Σn and Πn-formulas for all n ∈ ω inductively:

(i) The classes of Σ0 and Π0-formulas are the class of all bounded L0-formulas (i.e.,
bounded formulas in the language of arithmetic). This class is commonly called
the class of ∆0-formulas.

(ii) The class of Σn+1-formulas are all formulas of the form ∃xϕ(x, ~y), where ϕ(x, ~y)
is a Πn-formula.

(iii) Similarly, the class of Πn+1-formulas are all formulas of the form ∀xϕ(x, ~y), where
ϕ(x, ~y) is a Σn-formula.

We say that a relation R ⊆ ωn is in Σn (Πn, respectively), if it is arithmetically definable
by a Σn-formula (Πn-formula, respectively). A relation is in ∆n iff it is both in Σn and
Πn. If a relation is in Σn (Πn, ∆n, respectively), we also say that it is a Σn-relation (Πn,
∆n-relation, respectively). The same terminology is used for functions. A Σn-sentence
(Πn-, ∆n-sentence, respectively) is just a Σn-formula (Πn-, ∆n-formula, respectively) with
no free occurrences of variables. a
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The classes of formulas defined above form the arithmetical hierarchy. A formula belonging
to one of the classes Γ is said to be of arithmetical complexity Γ.

A formula is in prenex form, if it is of the form

Q1x1Q2x2 · · ·Qnxn ϕ(x1, x2, . . . , xn, ~y), Qi ∈ {∀,∃} (i = 1, 2, . . . , n),

where ϕ(x1, x2, . . . , xn, ~y) has no quantifier occurrence. It is well-known that for every
formula, there exists a formula in prenex form logically equivalent to it. Since every
formula is equivalent to one in prenex form, it immediately follows that every formula is
logically equivalent to some Σn-formula and some Πk-formula for some n, k ≥ 0 (possibly
quantifying over dummy variables).

Proposition 2.2.2. For all n ≥ 0,

(i) Σn and Πn-relations are closed under unions and intersections;

(ii) the complement of a Σn-relation (Πn-relation) is a Πn-relation (Σn-relation);
∆n-relations are thus closed under complements;

(iii) if n > 0, Σn-relations are closed under existential projections and Πn-relations
are closed under universal projections, respectively.

A theory T is sound if all its theorems are true in N. Similarly, for a class of sentences
Γ, we say that T is Γ-sound if all sentences from Γ are true whenever they are theorems
of T .

The theory Q (called minimal arithmetic) is axiomatized by the following axioms
(the free variables are supposed to be bound by universal quantifiers):

s(x) 6= 0,
s(x) = s(y)→ x = y,

x 6= 0→ ∃y x = s(y),
x+ 0 = x,

x+ s(y) = s(x+ y),
x · 0 = 0,

x · s(y) = (x · y) + x,
x ≤ y ↔ ∃z z + x = y.

Peano Arithmetic (PA) is the theory obtained from Q by adding induction axioms

ϕ(0, ~y) ∧ ∀x (ϕ(x, ~y)→ ϕ(s(x), ~y))→ ∀xϕ(x, ~y),(Ind)

for all formulas ϕ(x, ~y).
Peano Arithmetic allows one to establish major theorems of number theory. In par-

ticular, PA allows to develop syntactical and metamathematical notions of itself.
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Example 2.2.3. Let us prove for purposes of illustration that PA ` ∀x, y (x+y = y+x).
To this end, we first prove some auxiliary results. Let ϕ(x) := 0 + x = x+ 0. We prove
PA ` ∀xϕ(x). An instance of the induction axiom is then

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(s(x)))→ ∀xϕ(x).

Hence, it suffices to prove ϕ(0) and ∀x (ϕ(x)→ ϕ(s(x))). The statement 0 + 0 = 0 + 0 is
valid by pure logic, hence provable in PA. We reason in PA and suppose 0 + x = x+ 0.
We infer

0 + s(x) = s(0 + x) = s(x+ 0) = s(x) = s(x) + 0,

which proves the first claim. We now show PA ` ∀x, y s(x) + y = x+ s(y) by induction
on y in PA (i.e., taking s(x) + y = x+ s(y) as the induction formula). We reason in PA
as follows. If y = 0, then s(x) + 0 = 0 + s(x) = s(0 + x) = s(x+ 0) = x+ s(0). Suppose
now s(x) + y = x+ s(y). We have

s(x) + s(y) = s(s(x) + y) = s(x+ s(y)) = x+ s(s(y)),

which proves the second auxiliary claim. Now ∀x, y x+ y = y + x is proved by induction
on x, taking x + y = y + x as induction formula. The case x = 0 has already been
established, so suppose x+ y = y + x; we prove s(x) + y = y + s(x). Observe

s(x) + y = x+ s(y) = s(x+ y) = s(y + x) = y + s(x),

so we are finished. a

Definition 2.2.4. Let T be a theory and ϕ(~x) be a formula having exactly the variables
among ~x free. We say that ϕ(~x) is Σn in T if there is a Σn-formula ψ(~x) with the same
free variables as ϕ(~x) such that T ` ∀~x (ϕ(~x)↔ ψ(~x)) (and similarly for the the classes
Πn). We say that ϕ(~x) is ∆n in T if it is both Σn and Πn in T . a

When T is clear from context, we often omit the phrase “in T” and identify the corre-
sponding classes of formulas modulo provable equivalence in T . In this context when we
talk about Σn-formulas (Πn-formula, respectively), we mean the class of formulas whose
every formula is provably equivalent to a Σn-formula (Πn-formula, respectively). By a
∆n-formula we then mean a formula which is ∆n in T . We have the following well-known
closure properties [2121, 1111].

Proposition 2.2.5. Let T be an extension of PA.

(i) For n ≥ 0, the class of formulas which are Σn (Πn, respectively) in T is closed
under conjunction, disjunction, bounded universal, and bounded existential projec-
tion.

(ii) For n ≥ 1, the class of formulas which are Σn in T is closed under existential
projection and the class of formulas which are Πn in T is closed under universal
projection, respectively.
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We now recall some basic facts about the concepts we have introduced so far [1212, 2121].

Theorem 2.2.6. A Σ1-sentence ϕ is true iff Q ` ϕ.

Note that it follows from the first incompleteness theorems (Theorems 2.4.42.4.4 and 2.4.52.4.5)
that no consistent axiomatizable extension of Q proves all true Π1-sentences (see Boolos
et al. [1212] as well as Hájek and Pudlák [2121]).

Theorem 2.2.7. A function is recursive iff it is in ∆1. Furthermore, a set is recursively
enumerable iff it is in Σ1.

Theorem 2.2.8. Every function in ∆1 is representable in Q.

Proof. Let f be a function (say, one-place) in ∆1 which is defined by the Σ1-formula
ϕ(x, y). Let

ψ(x, y) := ϕ(x, y) ∧ ∀z < y ¬ϕ(x, z).

We prove that ψ(x, y) represents f in Q. Assume f(n) = m. It is sufficient to prove that
Q ` ψ(n,m) and Q ` y 6= m → ¬ψ(n, y). The first claim is easily seen as Q ` ϕ(n,m)
and also Q ` ∀z < m¬ϕ(n, z) (since the corresponding sentences are true). It remains
to show

Q ` y 6= m→ ¬ψ(n, y),

that is,

Q ` y 6= m→ ¬ϕ(n, y) ∨ ∃z < y ϕ(n, z).

We reason in Q as follows. Suppose that y 6= m. It is well-known that, provably in Q,
either y = m, y > m, or y < m. Therefore, either y > m or y < m. Suppose first that
y < m. As we argued before, we have ∀z < m¬ϕ(n, z). Therefore also ¬ϕ(n, y). Suppose
now y > m. We have ϕ(n,m), therefore ϕ(n, z) for some z < y as desired. This completes
the proof. �

Remark. When we reason inside an arithmetical theory, we often ease notation and use
conventional mathematical notation instead if no confusion arises.

The following concepts will be useful (see Hájek and Pudlák [2121]).

Definition 2.2.9. We say that a formula ϕ(~x, y) defines a total function in T , if T `
∀~x ∃!y ϕ(~x, y). Suppose that ϕ(~x, y) is a formula which arithmetically defines a function
f : ωk → ω. Then f is called provably total in T , if ϕ(~x, y) defines a total function in T .
Likewise, f is a T -provably total Σn-function, if ϕ(~x, y) is Σn in T and provably total
in T . a

The following fact is well-known (cf. Hájek and Pudlák [2121]):

Theorem 2.2.10. Every primitive recursive function is a PA-provably total Σ1-function.
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It follows that we can safely introduce a function symbol for every primitive recursive
function into the language of arithmetic (cf. Definition 2.1.12.1.1 and Theorem 2.1.22.1.2). It will
be convenient to do so in the following.

2.3 A r i t h m e t i z at i o n o f M e ta m at h e m at i c s

Arithmetical theories formalize certain portions of elementary number theory, i.e., sen-
tences in the language of arithmetic are intended to express certain properties about
numbers. In this section we are interested in the development of the syntax of PA within
PA itself.22 It was a fundamental insight of Gödel [1919] that this is possible and that the
machinery provided by the arithmetization of metamathematics allows one to construct
true statements which are undecidable in PA.

The way we interpret statements which are proved by PA is determined by truth in the
standard model N, i.e., this model defines the standard meaning of the statements proved
by PA. Hence, given our standard model N, all objects PA can talk about are numbers—it
is the intended range of the quantified variables which determines the meaning of the
sentences inferred in PA. It should thus be clear that developing the syntax of PA in PA
will be different from the development of elementary number theory in PA (cf. Boolos [1111]).
This issue is addressed by the notion of Gödel numbering: objects of syntax are assigned
natural numbers in such a way that certain statements of our informal metatheory can
be expressed in the language of arithmetic. Furthermore, the goal of this assignment is
that certain true statements concerning the syntax of PA become provable in PA itself.
Hence, syntax is crafted into a branch of number theory.

We do not develop a particular Gödel numbering here and prove that this assignment
of numbers to expressions has all the desirable properties a decent Gödel numbering has.
We refer the reader interested in such an elaboration to (among many sources) Boolos [1111]
and Hájek and Pudlák [2121]. We assume a standard global assignment p·q of expressions
(terms, formulas, etc.) to natural numbers. Given any expression τ , we call pτq the code
or Gödel number of τ . Note that pτq, being a natural number, “lives” in our informal
metatheory and has a natural representation in L0 through the term pτq. However, when
presenting formulas in the arithmetical language, we usually write pτq instead of pτq.

Such a coding is assumed to allow us to arithmetically define many elementary notions
of our metatheory. Most importantly, our Gödel numbering is assumed to allow for a one-
to-one encoding of finite sequences of natural numbers. Among them are the following
[33, 1111, 2121, 1616]:

• Seq(x): “x is the code of a sequence”;

• Formula(x): “x is the code of a formula”;

• LogAx(x): “x is the code of a logical axiom”;

2One does not need the entire strength of PA to develop certain metamathematical notions. However,
we will restrict our discussion to PA. Interested readers may consult Hájek and Pudlák [2121] for an extensive
treatment of the development of metamathematics in first-order arithmetic.
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• MP(x, y, z): “z follows from an application of modus ponens from x and y”;

• Gen(x, y): “y follows from an application of generalization from x”;

• AxPA(x): “x is the code of a nonlogical axiom of PA”.

Many basic properties of these notions are then also verifiable in (extensions of) PA [1111,
2121, 1616]. Furthermore, the functions and predicates assumed for manipulating sequences
can be defined to be primitive recursive and we introduce function and predicate symbols
defining them. With this machinery at hand we can already define the most important
notion of our metatheory—the notion of proof:

PrfPA(y, x) := Seq(y) ∧ lh(y) > 0 ∧ end(y) = x ∧
∀i < lh(y)(

LogAx(yi) ∨
AxPA(yi) ∨
∃j, k < iMP(yj , yk, yi) ∨
∃j < iGen(yj , yi)).

(Here, end is a definition of the primitive recursive function end which assigns to every
finite sequence its last element. Furthermore, yi denotes the i-th element of the sequence
coded by y.) The predicate PrfPA arithmetically defines the set of (codes of) provable
theorems of PA. Its definition formalizes the (informal) definition of Hilbert’s notion of
proof.

We are now able to formally express provability in PA:

PrvPA(x) := ∃y PrfPA(y, x).

PrfPA can be defined to be ∆1 in PA. In particular, in the wording of Gödel, PrfPA is
entscheidungsdefinit, i.e.,

N |= PrfPA(n,m) =⇒ PA ` PrfPA(n,m),
N |= ¬PrfPA(n,m) =⇒ PA ` ¬PrfPA(n,m).

PrvPA is then Σ1 in PA. Let us for convenience introduce some additional notation as also
done in Beklemishev [33]. If T is an axiomatizable extension of PA, we introduce formulas
PrfT (y, x) and PrvT (x) as above, where (for constructing these) we assume an appropriate
bounded formula AxT (x) which arithmetically defines the axioms of T . We abbreviate
PrvT (x) by 2T (x) and often write 2Tϕ instead of 2T (pϕq) if no confusion arises. The
formula 2T (x) is called (standard) provability predicate for T and arithmetically defines
the set of Gödel numbers of all provable theorems of T .

2.4 L i m i tat i v e R e s u lt s

Let sub~x(a, b1, . . . , bn) (where ~x = x1, . . . , xn) be the primitive recursive function whose
value at a, b1, . . . , bn is the Gödel number of the result of respectively substituting the
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numerals b1, . . . , bn for the variables x1, . . . , xn in the formula with Gödel number a (see
also Boolos [1111]). Let sub~x be a function symbol for a definition of that function. Following
Beklemishev [33] and Smoryński [3636, 3838], for any formula ϕ(x1, . . . , xn), we abbreviate by
pϕ(ẏ1, . . . , ẏn)q the term

sub~x(pϕ(x1, . . . , xn)q, y1, . . . , yn).

Given a provability predicate 2T (x) of T , we also write 2Tϕ(ẋ1, . . . , ẋn) instead of
2T (pϕ(ẋ1, . . . , ẋn)q). Furthermore, we often consider primitive recursive families of for-
mulas ϕn which depend on a parameter n ∈ ω. In this case, pϕxq denotes a term for the
primitive recursive function whose value at any given n ∈ ω is the Gödel number of ϕn.
It will be convenient to introduce additional notational conventions for these cases. We
assume that our first-order language contains variables α, β, . . . of a second sort whose
values range over the codes of formulas. Every formula which contains occurrences of such
variables can be naturally translated into a formula in the original one-sorted first-order
language of the corresponding theory. We also make use of variables α, β, . . . when they
are not necessary from a formal point of view, but increase readability.

The following statements are central for the derivation of limitative results [33, 1111].

Lemma 2.4.1 (Generalized diagonal lemma). For any formula ϕ(x, x1, . . . , xn)
there exists a formula ψ(x1, . . . , xn), having exactly the variables of ϕ except x free,
such that

PA ` ψ(x1, . . . , xn)↔ ϕ(pψ(x1, . . . , xn)q, x1, . . . , xn).

Proof. Let k be the Gödel number of

ϕ(subx(x, x), x1, . . . , xn)

and ψ(x1, . . . , xn) the formula

ϕ(subx(k, k), x1, . . . , xn).

It suffices to show that

PA ` subx(k, k) = pψ(x1, . . . , xn)q.

The formula ϕ(subx(x, x), x1, . . . , xn) has Gödel number k. Hence,

subx(k, k) = pϕ(subx(k, k), x1, . . . , xn)q = pψ(x1, . . . , xn)q.

Therefore, subx(k, k) = pψ(x1, . . . , xn)q is true and hence provable in PA. �

Corollary 2.4.2 (Diagonal lemma). For any formula ϕ(x) there exists a sentence ψ
such that

PA ` ψ ↔ ϕ(pψq).
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Corollary 2.4.3. For any formula ϕ(v, x1, . . . , xn) there is a formula ψ(x1, . . . , xn) such
that

PA ` ψ(x1, . . . , xn)↔ ϕ(pψ(ẋ1, . . . , ẋn)q).

Proof. Apply Lemma 2.4.12.4.1 on ϕ(v/sub~x(x, x1, . . . , xn)) (for ~x = x1, . . . , xn). �

Let T be an extension of PA. We say that ϕ is a Gödel sentence for T if T ` ϕ↔ ¬2Tϕ.
By the previous results, it is clear that every such T has a Gödel sentence. Call T ω-
consistent if there is no formula ϕ(x) such that T ` ∃xϕ(x) but T ` ¬ϕ(n) for every
n ∈ ω. T is ω-inconsistent if it is not ω-consistent. A little thought shows that every
ω-consistent theory is also consistent. The converse is not true as we will see now. Call
a sentence ϕ undecidable in T if neither T ` ϕ nor T ` ¬ϕ. We are now able to derive
Gödel’s first incompleteness theorem. Let us briefly reconsider Gödel’s results [1919] which
are among the most celebrated ones in mathematical logic.

Theorem 2.4.4 (Gödel’s first incompleteness theorem). Let T be an ω-consistent
axiomatizable extension of PA. Then a Gödel sentence for T is undecidable in T .

Proof. Let ϕG be such that T ` ϕG ↔ ¬2TϕG. Suppose T ` ϕG. Then PrfT (n, pϕGq) is
true for some n ∈ ω and so is 2TϕG, whence T ` 2TϕG follows. But then T ` ¬ϕG and
T is inconsistent, a contradiction. Suppose now that T ` ¬ϕG. Then T ` 2TϕG. But
¬PrfT (n, pϕGq) is true for every n ∈ ω and so provable in T . Hence, T is ω-inconsistent,
a contradiction. �

Let us also briefly recite the strengthened version obtained by Rosser in 1936 [3333].

Theorem 2.4.5. Let T be a consistent axiomatizable extension of PA. Then there is a
sentence which is undecidable in T .

Proof. Let ϕR be a sentence such that

T ` ϕR ↔ ∃y (PrfT (y, p¬ϕRq) ∧ ∀z < y ¬PrfT (z, pϕRq)).

We show that ϕR is undecidable in T . Suppose that T ` ϕR. Then for some m ∈ ω,
PrfT (m, pϕRq) is true and hence provable in T . Since T ` ϕR, we also have

T ` ∃y (PrfT (y, p¬ϕRq) ∧ ∀z < y ¬PrfT (z, pϕRq)).

Consider such a y and reason in T . We either have y > m, y < m, or y = m. Clearly,
y > m is impossible, therefore y ≤ m. So

T ` ∃y ≤ mPrfT (y, p¬ϕRq).

Since T 0 ¬ϕR, the formula ∀y ≤ m¬PrfT (y, p¬ϕRq) is true and so provable in T .
Therefore, we arrive at contradiction to the consistency of T . Suppose now that T ` ¬ϕR.
Then, for some m ∈ ω the formula

PrfT (m, p¬ϕRq) ∧ ∀z < m¬PrfT (z, pϕRq)
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is true and so provable in T . But then also T ` ϕR, a contradiction to the consistency
of T . �

Note that the assumption of ω-consistency is only needed for proving that T does not
prove the negation of the Gödel sentence of interest. The theory T + ¬ϕ for a ϕ such
that T ` ϕ↔ 2Tϕ is an example of a consistent but ω-inconsistent theory. Observe that
in proving the previous theorem we used the fact that

T ` ϕ =⇒ T ` 2Tϕ.

This constitutes one of the well-known Löb’s conditions33 [1111, 2121, 3838, 33].

Theorem 2.4.6 (Löb’s conditions). Let T be an axiomatizable extension of PA. For
all sentences ϕ,ψ,

(L1) if T ` ϕ then PA ` 2Tϕ;

(L2) PA ` 2T (ϕ→ ψ)→ (2Tϕ→ 2Tψ);

(L3) PA ` 2Tϕ→ 2T2Tϕ.

Furthermore, for any ϕ(x), ψ(x),

(L4) if T ` ϕ(x) then PA ` 2Tϕ(ẋ);

(L5) PA ` 2T (ϕ(ẋ)→ ψ(ẋ))→ (2Tϕ(ẋ)→ 2Tψ(ẋ));

(L6) PA ` 2Tϕ(ẋ)→ 2T2Tϕ(ẋ).

Notice that by T ` ∀xϕ(x) → ϕ(x) we have PA ` 2T (∀xϕ(x) → ϕ(ẋ)), whence PA `
2T∀xϕ(x)→ 2Tϕ(ẋ) follows. Hence,

PA ` 2T∀xϕ(x)→ ∀x2Tϕ(ẋ).

Items (L3)(L3) and (L6)(L6) are special instances of the more general principle called provable
Σ1-completeness [2121, 33, 3838]:

Proposition 2.4.7. Let T be an axiomatizable extension of PA.

(i) For every Σ1-sentence ϕ, PA ` ϕ→ 2Tϕ.

(ii) For every Σ1-formula ϕ(x1, . . . , xn) having exactly the variables x1, . . . , xn free,
PA ` ϕ(x1, . . . , xn)→ 2Tϕ(ẋ1, . . . , ẋn).

Let T be an axiomatizable extension of PA with the formula AxT (α) arithmetically
defining the axioms of T . For any finite extension of T of the form T + ϕ, we assume
that AxT+ϕ(α) is naturally given by

AxT (α) ∨ α = pϕq.
3Sufficient properties of 2T to derive the second incompleteness theorem were first offered by Hilbert

and Bernays (see Hilbert and Bernays [2323]). However, the present formulation is due to Löb [3030] and is
more convenient for many purposes (cf. also Smoryński [3838] for a discussion).
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We then have the following formalization of the deduction theorem (see Feferman [1616]).

Proposition 2.4.8. Let T be an axiomatizable extension of PA and ϕ be a sentence.
Then for all ψ,

PA ` 2T+ϕ ψ ↔ 2T (ϕ→ ψ).

Similarly, for all ψ(x1, . . . , xn),

PA ` 2T+ϕ ψ(ẋ1, . . . , ẋn)↔ 2T (ϕ→ ψ(ẋ1, . . . , ẋn)).

Now let ⊥ abbreviate a statement in the language of arithmetic which is contradictory
(e.g., 0 6= 0). We abbreviate by Con(T ) (called consistency assertion for T ) the sen-
tence ¬2T⊥. Löb’s conditions permit us to easily prove Gödel’s second incompleteness
theorem [1919].

Theorem 2.4.9 (Gödel’s second incompleteness theorem). Let T be an axioma-
tizable extension of PA. Then, T ` Con(T ) iff T is inconsistent.

Proof. If T is inconsistent then certainly T ` Con(T ). We show the other direction by
proving that T ` Con(T )→ ϕG, where ϕG is a Gödel sentence for T . So let ϕG be such that
T ` ϕG ↔ ¬2TϕG. Then T ` ϕG → (2TϕG → ⊥) and so T ` 2TϕG → 2T (2TϕG → ⊥).
We know that

T ` 2T (2TϕG → ⊥)→ (2T2TϕG → 2T⊥)

and so T ` 2TϕG → (2T2TϕG → 2T⊥). Since T ` 2TϕG → 2T2TϕG, we obtain
T ` 2TϕG → 2T⊥ and thus, using its contrapositive form, T ` Con(T ) → ϕG as
desired. �

The incompleteness theorems are proved considering fixed points of ¬2T (α). These fixed
points which can be understood to express a sentences own unprovability turn out to be
undecidable. In 1952, Henkin [2222] asked the question whether fixed points of 2T (α) are
always provable. A well-known theorem of Löb [3030] answers this question. The following
theorem is a formalized version of Löb’s theorem.

Theorem 2.4.10. Let T be an axiomatizable extension of PA. For any sentence ϕ,

PA ` 2T (2Tϕ→ ϕ)→ 2Tϕ.

Proof. We follow the proof of Smoryński [3737]. Let ψ be such that

PA ` ψ ↔ 2T (ψ → ϕ), (2.1)

which exists by the diagonal lemma (Corollary 2.4.22.4.2). It follows that

PA ` 2Tψ ↔ 2T2T (ψ → ϕ),
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whence by PA ` 2T (ψ → ϕ)→ 2T2T (ψ → ϕ) we obtain

PA ` ψ → 2Tψ.

Therefore also PA ` ψ → 2Tϕ. The tautology ϕ→ (ψ → ϕ) allows us to infer

PA ` 2Tϕ→ 2T (ψ → ϕ),

whence it follows that

PA ` 2Tϕ→ ψ.

Hence, PA ` ψ ↔ 2Tϕ. Note that substitution of provably equivalent sentences in
the scope of 2T is legitimate by (L1)(L1) and (L2)(L2) (a proof of this is similar to the proof
of Proposition 3.2.43.2.4). Thus we obtain

PA ` 2T (2Tϕ→ ϕ)↔ 2Tϕ,

by performing a substitution of 2Tϕ for ψ in (2.1)(2.1). �

From that we easily obtain Löb’s theorem:

Corollary 2.4.11 (Löb’s theorem). Let T be an axiomatizable extension of PA. For
any sentence ϕ, T ` 2Tϕ→ ϕ iff T ` ϕ.

Proof. The direction from right to left is immediate. For the other direction, suppose
T ` 2Tϕ → ϕ. Then T ` 2T (2Tϕ → ϕ). We invoke Theorem 2.4.102.4.10 and obtain
T ` 2T (2Tϕ→ ϕ)→ 2Tϕ and so T ` 2Tϕ. Hence, T ` ϕ as required. �

Therefore, Löb’s theorem settles Henkin’s question. As a concluding remark of this section,
note that (as often remarked by Kreisel) the second incompleteness theorem easily follows
from Löb’s theorem when we take ⊥ for ϕ (cf. Smoryński [3737]). Conversely, we may prove
Löb’s theorem using the second incompleteness theorem as follows [3636]. Suppose that
T 0 ϕ. Then T + ¬ϕ is consistent. By the second incompleteness theorem, we have that
T + ¬ϕ 0 Con(T + ¬ϕ). Therefore, T + ¬ϕ 0 ¬2T (¬ϕ → ⊥) and so T + ¬ϕ 0 ¬2Tϕ,
whence T 0 2Tϕ→ ϕ follows.

2.5 R e f l e c t i o n P r i n c i p l e s

Given a theory T , the reflection principles over T are certain schemata of formulas
expressing the soundness of T [33, 2828]. We have to rely on schemata since, as a well-known
result of Tarski [4040] shows us, there is no truth definition for T inside T [3636]. Therefore,
no formula in the language of arithmetic exists which asserts that everything provably
in T is true. We will encounter reflection principles in Chapter 44, where modalities of a
positive polymodal calculus receive an arithmetical interpretation via reflection principles.
In this section, we introduce reflection principles and summarize properties about them
which are relevant for us. The material contained in this section is mainly taken from
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the references Beklemishev [33], Kreisel and Lévy [2828], and Smoryński [3636], where the
interested reader may also find many additional results on reflection principles.

Let T be an axiomatizable extension of PA. The two forms of reflection we are
interested in are the following schemata:

• Local reflection schema for T , Rfn(T ):

2Tϕ→ ϕ,

for all sentences ϕ.

• Uniform reflection schema for T , RFN(T ):

∀x1, . . . , xn (2Tϕ(ẋ1, . . . , ẋn)→ ϕ(x1, . . . , xn)),

for all formulas ϕ(x1, . . . , xn).

Note that Gödel’s first incompleteness theorem (Theorem 2.4.42.4.4) tells us that if T is consis-
tent, there is an instance of Rfn(T ) which is not provable in T . For there is a sentence ϕG
such that T ` ϕG ↔ ¬2TϕG, so in particular T ` ¬2TϕG → ϕG, whence the provability
of 2TϕG → ϕG would imply T ` ϕG, contradicting Gödel’s first incompleteness theorem.
Furthermore, Löb’s theorem (Corollary 2.4.112.4.11) tells us that no nontrivial instance of
Rfn(T ) is provable provided T is consistent.

Clearly, PA + RFN(T ) ` Rfn(T ) and PA + Rfn(T ) ` Con(T ). Therefore, RFN(T ) is
stronger than Rfn(T ) and certainly, T does neither prove RFN(T ) nor Rfn(T ). Let Γ be
a class of formulas. We denote by RfnΓ(T ) (RFNΓ(T ), respectively) the local reflection
principle for T (uniform reflection principle for T , respectively) instantiated over formulas
from Γ. (The classes of formulas we are interested in are the Σn and Πn classes; the
corresponding reflection principle are called partial reflection principles.) Furthermore,
we may restrict the uniform reflection schema for T to range over formulas with one free
variable, since the general case is reducible to this one by a coding of finite sequences
(cf. Kreisel and Lévy [2828]).

Theorem 2.5.1. Let T be an axiomatizable extension of PA. Over PA, the following are
deductively equivalent:

(i) Con(T );

(ii) RfnΠ1(T );

(iii) RFNΠ1(T ).

Proof. The directions from (ii)(ii) to (i)(i) and (iii)(iii) to (ii)(ii) are clear from our previous discussion.
Let ϕ(x) be a Π1-formula. We prove that PA + Con(T ) ` ∀x (2Tϕ(ẋ)→ ϕ(x)). Indeed,
by provable Σ1-completeness,

PA ` ¬ϕ(x)→ 2T¬ϕ(ẋ),
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but also

PA + Con(T ) ` 2T¬ϕ(ẋ)→ ¬2Tϕ(ẋ),

whence propositional logic gives us PA + Con(T ) ` 2Tϕ(ẋ)→ ϕ(x) as required. �

Corollary 2.5.2. Let T be an axiomatizable extension of PA and suppose T ` ϕ, where
ϕ is a Π1-sentence. Then PA + Con(T ) ` ϕ.

Proof. By T ` ϕ we have PA ` 2Tϕ, whence PA + Con(T ) ` 2Tϕ → ϕ gives us
PA + Con(T ) ` ϕ as desired. �

Corollary 2.5.22.5.2 has an interesting interpretation concerning the philosophy of mathe-
matics and Hilbert’s program.44 If we consider a part of Hilbert’s program which asks
for conservation: whenever a statement about real objects (i.e., the objects having an
intuitive meaning, see Kleene [2626]) is provable by means of ideal objects (those objects
opposed to the real ones), then it should also be provable by referring to real objects
only. However, by the previous corollary, we can make the following observation. Assume
that T is a comparatively strong theory which contains portions of ideal mathematics,
while suppose we declare PA to be a system formalizing real mathematics. If ϕ is a real
universal statement and ϕ is provable in T , then the assumption of T being consistent
establishes the provability of ϕ in real mathematics. Hence, in a certain sense, this reduces
Hilbert’s conservation program to the consistency program.

Theorem 2.5.3. Let T be an axiomatizable extension of PA. For n ≥ 1, the schemata
RFNΣn(T ) and RFNΠn+1(T ) are deductively equivalent over PA.

Proof. Let ∀y ϕ(y, x) be a Πn+1-formula, where ϕ(y, x) is a Σn-formula. Then,

PA + RFNΣn(T ) ` 2T∀y ϕ(y, ẋ)→ ∀y2Tϕ(ẏ, ẋ).

But also

PA + RFNΣn(T ) ` ∀y2Tϕ(ẏ, ẋ)→ ∀y ϕ(y, x),

whence PA + RFNΣn(T ) ` 2T∀y ϕ(y, ẋ)→ ∀y ϕ(y, x) follows. �

Although we do not have a truth definition for all formulas in the language of arithmetic,
we have the following result (cf. Hájek and Pudlák [2121]).

Theorem 2.5.4. For each n ≥ 0 there is a Πn-formula TrueΠn(x) such that for every
Πn-formula ϕ(x1, . . . , xn),

PA ` ϕ(x1, . . . , xn)↔ TrueΠn(pϕ(ẋ1, . . . , ẋn)q).

An analogous statement holds for the classes Σn, for n ≥ 0.
4Private communications with Matthias Baaz. See also Zach [4141] for an excellent overview on Hilbert’s

program.
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Due to these partial truth definitions, the partial uniform reflection principles are subject
to finite axiomatization.

Lemma 2.5.5. Let T be an axiomatizable extension of PA. For each n ≥ 0, the schema
RFNΠn(T ) is deductively equivalent over PA to the instance

∀x (2TTrueΠn(ẋ)→ TrueΠn(x)). (2.2)

An analogous statement holds for the classes Σn, for n ≥ 0.

Proof. By the previous theorem we easily infer

PA ` ∀x1, . . . , xn 2T (ϕ(ẋ1, . . . , ẋn)↔ TrueΠn(pϕ(ẋ1, . . . , ẋn)q)).

Let ϕ(x) be a Πn-formula. We have

PA ` 2Tϕ(ẋ)→ 2TTrueΠn(pϕ(ẋ)q),

whence it follows by (2.2)(2.2) that

PA ` 2Tϕ(ẋ)→ TrueΠn(pϕ(ẋ)q).

Hence, by Theorem 2.5.42.5.4 we conclude PA ` 2Tϕ(ẋ)→ ϕ(x). �

Corollary 2.5.6. For n ≥ 0, the schemata RFNΣn(T ) and RFNΠn(T ) are finitely axiom-
atizable over PA.

Let Γ be a class of formulas. We say that an extension S of T is of complexity Γ if there
is a theory S′ which is deductively equivalent to S such that all sentences from S′ \ T
are from Γ.

Theorem 2.5.7. Let T be an axiomatizable extension of PA.

(i) RfnΠn(T ) is not contained in any consistent finite extension of T of complexity
Σn.

(ii) RFNΠn(T ) is not contained in any consistent extension of T of complexity Σn.

Dual statements respectively hold for RfnΣn(T ) and RFNΣn(T ).

Proof. For (i)(i), suppose that T + ϕ ` RfnΠn(T ) for some Σn-sentence ϕ. Then,

T + ϕ ` 2T¬ϕ→ ¬ϕ,

whence it follows that

T ` ϕ→ (2T¬ϕ→ ¬ϕ).

By pure logic, we have T ` ¬ϕ → (2T¬ϕ → ¬ϕ) and thus T ` 2T¬ϕ → ¬ϕ, whence
the formalized version of Löb’s theorem (Theorem 2.4.102.4.10) gives us T ` ¬ϕ, i.e., T + ϕ is
inconsistent.
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For (ii)(ii), suppose that U is an extension of T of complexity Σn and assume that
U ` RFNΠn(T ). Since RFNΠn(T ) is finitely axiomatizable over T , we have U0 ` RFNΠn(T )
for some finite U0 ⊆ U . But then also U0 ` RfnΠn(T ), whence by (i)(i) it follows that U0 is
inconsistent and so U is inconsistent too. �

Remark. It can even be shown that RfnΠn(T ) is not contained in any consistent axioma-
tizable extension of T by Σn-sentences [33] (dually for RfnΣn(T )).

Corollary 2.5.8. Let T be an axiomatizable extension of PA.

(i) Rfn(T ) is not contained in any consistent finite extension of T .

(ii) RFN(T ) is not contained in any consistent extension of T of bounded arithmetical
complexity.

For more results on reflection principles, we refer the reader to Kreisel and Lévy [2828],
Smoryński [3636], Beklemishev [33], as well as Artemov and Beklemishev [11].

Let us now turn to notions of consistency and provability which we will encounter
several times in this thesis. For n ≥ 1, let ThΠn(N) denote the set of all true Πn-sentences.
We say that a theory T is n-consistent if T + ThΠn(N) is consistent [33]. So T is n-
consistent if there is no true Πn-sentence whose negation is provable in T . Formally, this
is expressible by

Conn(T ) := ∀α (TrueΠn(α)→ ¬2T¬TrueΠn(α̇)).

Note that Conn(T ) is a Πn+1-sentence. Dually to n-consistency, we say that ϕ is n-
provable in T if T +¬ϕ is not n-consistent, that is, iff ϕ is provable in T + ThΠn(N). We
use the abbreviation

[n]Tϕ := ¬Conn(T + ¬ϕ)

to formally express the notion of n-provability in T . Furthermore, we stipulate that [0]T
and Con0(T ) correspond to 2T and Con(T ), respectively. The formula [n]T (x) which
obeys the above definition is then a Σn+1-formula. Following the conventions of modal
languages, we abbreviate Conn(T + ϕ) by 〈n〉Tϕ. If T is axiomatizable then clearly

PA ` 〈n〉Tϕ↔ ¬[n]T¬ϕ,

for every sentence ϕ. Note that from

PA ` [n]Tϕ↔ ∃α (TrueΠn(α) ∧2T+¬ϕ¬TrueΠn(α̇))

we easily obtain that

PA ` [n]Tϕ↔ ∃α (TrueΠn(α) ∧2T (TrueΠn(α̇)→ ϕ)),

by an application of the formalized deduction theorem (Proposition 2.4.82.4.8).
We use the same notational conventions for [n]T as for 2T . The following conditions

are natural liftings of Löb’s conditions (Theorem 2.4.62.4.6) to the more general case of
n-provability (cf. Beklemishev [33]).
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Theorem 2.5.9. Let T be an axiomatizable extension of PA. For all n ≥ 0 and all
sentences ϕ,ψ,

(i) if T ` ϕ then PA ` [n]Tϕ;

(ii) PA ` [n]T (ϕ→ ψ)→ ([n]Tϕ→ [n]Tψ);

(iii) PA ` [n]Tϕ→ [n]T [n]Tϕ.

Similar statements hold for formulas with free variables.

Note that a consequence of these conditions is that a generalization of the formalized
version of Löb’s theorem is provable, i.e., for all n ≥ 0,

PA ` [n]T ([n]Tϕ→ ϕ)→ [n]Tϕ.

The last of these conditions follows from the more general property of provable Σn+1-
completeness.

Proposition 2.5.10. Let T be an axiomatizable extension of PA. For every Σn+1-
sentence ϕ, PA ` ϕ→ [n]Tϕ. Furthermore, for every Σn+1-formula ϕ(x1, . . . , xk) which
has exactly the variables x1, . . . , xk free, we have

PA ` ϕ(x1, . . . , xk)→ [n]Tϕ(ẋ1, . . . , ẋk).

Lemma 2.5.11. For n ≥ 0, the schema RFNΠn+1(T ) is equivalent to Conn(T ) over PA.

Proof. The case of n = 0 is just Theorem 2.5.12.5.1. For n > 0 it is sufficient to show that
Conn(T ) is equivalent to RFNΣn(T ) over PA by virtue of Theorem 2.5.32.5.3. We note that
¬TrueΠn(x) is a Σn-formula, so

PA + RFNΣn(T ) ` ∀α (2T¬TrueΠn(α̇)→ ¬TrueΠn(α)),

i.e., PA + RFNΣn(T ) ` Conn(T ).
Conversely, let ϕ(x) be a Σn-formula. We know that

PA ` ϕ(x)↔ TrueΣn(pϕ(ẋ)q)
↔ ¬TrueΠn(p¬ϕ(ẋ)q).

Furthermore, PA + Conn(T ) ` 2T¬TrueΠn(p¬ϕ(ẋ)q) → ¬TrueΠn(p¬ϕ(ẋ)q), whence it
follows that PA + Conn(T ) ` 2Tϕ(ẋ)→ ϕ(x). �

2.6 P rova b i l i t y L o g i c s

According to Artemov and Beklemishev [11], the origins of provability logics may be traced
back to a paper by Gödel [2020], where he attempted to formalize the notion of provability
for the intuitionistic propositional calculus in order to cope with the Brouwer’s interpre-
tation of intuitionistic truth as provability. Gödel’s approach consists of an embedding
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of intuitionistic propositional logic into the modal system S4. The logic S4 is formulated
over a modal language which contains a countably infinite supply of propositional vari-
ables, the usual propositional connectives (including the constant ⊥ denoting falsity),
and the modal operator 2. The intended meaning of 2ϕ is then “ϕ is provable”. The
dual operator to 2 is denoted by 3 and is defined by 3 := ¬2¬. S4 is axiomatized by
the following axiom schemes and rules of inference:

(i) all propositional tautologies;

(ii) 2ϕ→ ϕ;

(iii) 2(ϕ→ ψ)→ (2ϕ→ 2ψ);

(iv) 2ϕ→ 22ϕ;

(v) if ϕ then infer 2ϕ (necessitation);

(vi) if ϕ→ ψ and ϕ then infer ψ (modus ponens).

However, this system can be easily seen to be inadequate for the interpretation of 2ϕ
as formal provability in theories extending PA. For by 2⊥ → ⊥ (which is equivalent to
¬2⊥), we would obtain that the theory under consideration proves its own consistency,
contradicting the incompleteness theorems. Therefore, a natural question which is to be
answered is the question which asks to find the modal logic which characterizes provability
in theories extending PA.

A first step towards a solution of this problem was found by Löb [3030] who offered
sufficient conditions to prove (a formalized version of) the second incompleteness theorem.
In terms of modal logic, we may formulate principles in reminiscence to Löb’s conditions
as follows:

(i) all propositional tautologies;

(ii) modus ponens and necessitation;

(iii) 2(ϕ→ ψ)→ (2ϕ→ 2ψ);

(iv) 2ϕ→ 22ϕ.

Furthermore, the formalized version of Löb’s theorem offers another propositional prin-
ciple which can be shown to be independent of the above ones:

(v) 2(2ϕ→ ϕ)→ 2ϕ.

With the corresponding principles formulated in the language of arithmetic, one can
prove a formalized version of the second incompleteness theorem by substituting ⊥ for
ϕ in (v)(v). The logic consisting of the axioms and rules above is nowadays called GL (for
Gödel and Löb). It is well-known that the axiom scheme 2ϕ→ 22ϕ is derivable from
the others [1111]. A landmark result of Solovay [3939] reveals that GL axiomatizes the notion
of provability in sufficiently strong and sound theories. In this narrower sense, the study
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of provability logics is concerned with the investigation of modal logics which axiomatize
properties of provability predicates of an arithmetical theory T . We have a degree of
freedom in this characterization in the sense that the question which theory is capable
of proving these properties of T is left open. Most importantly, we might be concerned
which modal properties T can prove about its own provability predicate(s).

Returning to the case of GL, let us state Solovay’s celebrated results more precisely.
Let T be an axiomatizable theory extending PA. An arithmetical realization is a function
which assigns sentences to propositional variables. Let f be an arithmetical realization.
A T -interpretation fT under f is defined for all modal formulas inductively as follows:

(i) fT (⊥) = ⊥;

(ii) fT (p) = f(p), where p is a propositional variable;

(iii) fT (ϕ → ψ) = fT (ϕ) → fT (ψ) and fT (¬ϕ) = ¬fT (ϕ) i.e., fT (·) commutes with
the propositional connectives;

(iv) fT (2ϕ) = 2T fT (ϕ).

We may state Solovay’s first arithmetical completeness result as follows.

Theorem 2.6.1. Let T be an axiomatizable extension of PA which is Σ1-sound. Then,

GL ` ϕ ⇐⇒ T ` fT (ϕ), for all arithmetical realizations f .

The logic GL enjoys many desirable properties like Craig interpolation, a fixed point
property, the existence of a sequent calculus formulation where the cut rule is admissible,
and a well-studied Kripke semantics admitting the finite model property [1111, 11, 1414].

Solovay also showed that the modal logic which axiomatizes the universally true
principles concerning provability in PA is a decidable extension of GL. This extension,
denoted by S, consists of all theorems of GL, the additional axiom scheme

(vi) 2ϕ→ ϕ,

while dropping the necessitation rule, i.e., the sole rules of inference are modus ponens
and substitution. This is necessary, for otherwise we could derive S ` 2⊥ → ⊥ and so
S ` 2(2⊥ → ⊥), whence S ` 2⊥ and S ` ⊥. Solovay’s second theorem may then be
stated as follows.

Theorem 2.6.2. Let T be an axiomatizable extension of PA which is sound. Then,

S ` ϕ ⇐⇒ N |= fT (ϕ), for all arithmetical realizations f .

Japaridze’s GLP
Ever since the landmark results of Solovay, researchers have sought for investigating modal
principles of other forms of provability. Boolos [1010] investigated the logic of ω-provability
in PA and showed that this logic coincides with GL for sound theories extending PA.
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Recall that a theory T is called ω-consistent if there is no sentence ∃xϕ(x) such that
T ` ¬ϕ(n) for all n ∈ ω, but T ` ∃xϕ(x). A sentence ϕ is ω-provable in T if T + ¬ϕ is
ω-inconsistent.

It is well-known that the notion of ω-provability in PA coincides with the notion of
being provable in PA by one application of the ω-rule [1111, 1010], i.e., provability in the
theory

PA′ := PA + {∀xϕ(x) | ∀n ∈ ω : PA ` ϕ(n)}.

(See also Artemov and Beklemishev [11].) For suppose that ϕ is ω-provable in PA. Then,
by the deduction theorem, there is a formula ψ(x) such that PA ` ¬ϕ → ¬ψ(n) for all
n ∈ ω, but PA ` ¬ϕ → ∃xψ(x). It follows that PA ` (ϕ ∨ ∀x¬ψ(x)) → ϕ and thus
PA ` ∀x (¬ϕ→ ¬ψ(x))→ ϕ and so ϕ is provable in PA by one application of the ω-rule.
Conversely, suppose that ϕ is provable in PA. Then there are formulas ψ1(x), . . . , ψk(x)
such that

PA + {∀xψ1(x), . . . ,∀xψk(x)} ` ϕ,

and PA ` ψi(n) for i = 1, . . . , k and all n ∈ ω. Therefore,

PA ` ∀x (ψ1(x) ∧ · · · ∧ ψk(x))→ ϕ.

Now it is easy to see that PA + ¬ϕ is ω-inconsistent.
Interest arises in the modal logic which contains operators for both formalized ω-

provability and standard provability in the Hilbertian sense. Let [0] and [1] be modal
operators which are interpreted as provability and ω-provability in PA, respectively and
let [0]ω(α) and [1]ω(α) be their according formalizations in the language of arithmetic
(i.e., we set [0]ω := 2PA). These notions of provability can be formalized such that both
modalities [0] and [1] satisfy the postulates of GL. Moreover, one can show that

PA ` [0]ωϕ→ [1]ωϕ,

for all arithmetical sentences ϕ. Furthermore,

PA ` ¬[0]ωϕ→ [1]ω¬[0]ωϕ

can also be established for every arithmetical sentence ϕ. This bimodal logic of provabil-
ity and ω-provability is thus axiomatized by the following axiom schemes and rules of
inference:

(i) all propositional tautologies;

(ii) axioms of GL for [0] and [1];

(iii) [0]ϕ→ [1]ϕ;

(iv) 〈0〉ϕ→ [1]〈0〉ϕ;
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(v) modus ponens, [0]-, and [1]-necessitation.55

(Here, for n = 0, 1, 〈n〉 := ¬[n]¬ is the dual of [n].) The question whether this logic is
arithmetically sound and complete in PA for the interpretation in arithmetic as discussed
above was answered positively by Japaridze [2525]. Japaridze showed even more: he intro-
duced modalities [n] for every natural number n and assigned to [n] the arithmetical
interpretation

“provable under n nested applications of the ω-rule.”

That is, the modalities [0], [1], [2], etc. receive the interpretation as (formalized) provability
in PA, PA′, PA′′, and so on [11]. The resulting polymodal logic is called GLP and is
axiomatized by the following axiom schemes and rules of inference:

(i) all propositional tautologies;

(ii) axioms of GL for [n] (n ≥ 0);

(iii) [m]ϕ→ [n]ϕ, for m < n (monotonicity);

(iv) 〈m〉ϕ→ [n]〈m〉ϕ, for m < n;

(v) modus ponens and [n]-necessitation, for n ≥ 0.

Formulas in the language of GLP are called polymodal formulas. Let [n]ω be a formalization
of provability in PA under n nested applications of the ω-rule (cf. also Section 3.33.3). For
all polymodal formulas, define a PA-interpretation fPA under an arithmetical realization
f as usual, except that

fPA([n]ϕ) = [n]ωfPA(ϕ).

Japaridze’s results then reads as follows:

Theorem 2.6.3. Let ϕ be a polymodal formula. Then,

GLP ` ϕ ⇐⇒ PA ` fPA(ϕ), for all arithmetical realizations f .

Ignatiev [2424] extended the results of Japaridze and showed that GLP is arithmetically
complete with respect to a very general class of arithmetical interpretations. We have
already encountered one such admissible interpretation for GLP in Section 2.62.6. Let T be
a sound theory. Again, define a T -interpretation fT for all polymodal formulas under an
arithmetical realization f as usual, except that we stipulate

fT ([n]ϕ) = [n]T fT (ϕ).

That is, the modalities [n] are interpreted as n-provability in T . (The broader class will
be examined during our treatment of the arithmetical completeness of our many-sorted

5By [n]-necessitation we just mean the rule ϕ/[n]ϕ.
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variant of GLP in Chapter 33.) It follows from Ignatiev’s results that, for T being sound,
GLP is also arithmetically sound and complete for T under this interpretation.

Ignatiev also obtained many other results. He showed that GLP enjoys nice properties
like Craig interpolation, a fixed point property, and that the closed fragment of GLP (i.e.,
the class of formulas with no occurrences of propositional variables) has a universal model
based on the ordinal ε0. It is easy to show that GLP is not sound and complete for any
class of Kripke frames. To cope with that, Ignatiev identified a weaker logic than GLP
which is sound and complete with respect to a decent class of Kripke frames. It it then
a corollary of the Ignatiev’s arithmetical completeness theorem for GLP that GLP has a
natural translation into that weaker logic. Beklemishev [55] also isolated a subsystem J of
GLP which arises from GLP if we drop monotonicity and add the axiom schemes

(vii) [m]ϕ→ [n][m]ϕ, if m ≤ n;

(viii) [m]ϕ→ [m][n]ϕ, if m ≤ n.

In contrast to GLP, the logic J is sound and complete with respect to a nice class of Kripke
frames and Beklemishev [66] provided a proof of the arithmetical completeness theorem
for GLP which is based on the logic J and is closer to the arithmetical completeness proof
for GL.
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CHAPTER 3
The Logics GLP∗ and J∗

In this section we introduce our logics GLP∗ and J∗ which are many-sorted variants of
Japaridze’s GLP and Beklemishev’s J. Section 3.23.2 contains basic definitions of GLP∗ and
J∗. We continue in Section 3.33.3 with an exposition of the arithmetical interpretation of
GLP∗. Section 3.43.4 treats Kripke semantics for J∗. In particular, we show that J∗ is sound
and complete with respect to a nice class of Kripke models. In Section 3.53.5 we show that
GLP∗ is arithmetically complete with respect to our arithmetical interpretation. The
proof is an extension of the one provided by Beklemishev [66]. Afterwards, we discuss
some extensions and corollaries of this theorem.

3.1 M o t i vat i o n

As pointed out in the introduction, Beklemishev [22] proposed an approach to ordinal
analysis based on the notion of graded provability algebra. Consider a theory T and let
LT be the set of sentences factorized by provable equivalence in T , i.e., by the relation
defined by

ϕ ∼ ψ ⇐⇒df T ` ϕ↔ ψ.

Let {ϕ} denote the equivalence class of ϕ under this equivalence relation. We can equip
the set of all equivalence classes with the usual operations ∧, ∨, ¬, and the ordering

{ϕ} ≤ {ψ} ⇐⇒df T ` ϕ→ ψ.

From an algebraic point of view, this makes the structure LT to a Boolean algebra (called
the Lindenbaum algebra of T ) whose minimal element ⊥ denotes the class of refutable
sentences of T , while > denotes the class of provable sentences of T [11, 33]. A Boolean
algebra B is called atomless if

∀x, y (x < y ⇒ ∃z ∈ B : x < z < y).
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It can be shown that if T is a consistent axiomatizable extension of a very weak fragment
of PA, then LT is a countable atomless Boolean algebra [33]. Furthermore, it is known that
all countable atomless Boolean algebras are pairwise isomorphic. Therefore, we can draw
the conclusion that the structure LT is expressively too weak to gain any meaningful
proof-theoretic information for T by investigating LT .

Let T be an axiomatizable extension of PA. For each n ≥ 0, the formula [n]T defines
an operator on the equivalence classes of LT :

[n]T : {ϕ} 7−→ {[n]Tϕ}.

Note that [n]T is well-defined on the equivalence classes since T ` ϕ ↔ ψ implies
T ` [n]Tϕ↔ [n]Tψ. Call the structure LT enriched by [n]T the n-provability algebra of T
and denote it byMn

T . The structureM0
T = 〈LT ,2T 〉 was first considered by Magari [3131]

and is therefore called Magari algebra of T . Terms in the language ofM0
T correspond to

modal formulas and identities in T can be understood to be the provability logic of T .
Note that an arbitrary algebraic identity ψ(~p) = χ(~p) reduces to ψ(~p) ↔ χ(~p) = >. In
algebraic terms, Solovay’s first theorem reads as

GL ` ϕ(~p) ⇐⇒ M0
T |= ∀~p (ϕ(~p) = >),

for any ϕ(~p) and any Σ1-sound axiomatizable extension T of PA.
In order to study proof-theoretic properties of PA, Beklemishev [22] introduces the

algebraM∞T = 〈LT , [0]T , [1]T , . . .〉. Identities ofM∞T correspond to polymodal formulas.
Japaridze’s result (together with the generalization by Ignatiev) establishes that

GLP ` ϕ(~p) ⇐⇒ M∞T |= ∀~p (ϕ(~p) = >),

for all ϕ(~p) and any sound axiomatizable extension T of PA.
M∞T provides a rather abstract view on T and its extension. For example, consider

the theory EA11 which contains a function symbol for exponentiation and, apart from that,
differs from PA in the fact that the induction axiom is restricted to bounded formulas.
By a theorem of Kreisel and Lévy [2828], PA is embeddable intoM∞EA as a filter generated
by {〈n〉EA> | n < ω} [22].
M∞T implicitly contains an additional structure, namely it can be divided into sub-

sets P0 ⊂ P1 ⊂ · · · ⊆ M∞T , which respectively correspond to Π1,Π2, . . . sentences, i.e.,
sentences are classified according to their natural quantifier complexity. We know that⋃
i≥0 Pi =M∞T . Beklemishev calls this family of subsets stratification ofM∞T . The alge-

braM∞T together with its stratification gives rise to a many-sorted algebra (called graded
provability algebra of T ) which is formulated over a language with sorted variables pni ,
where the index n indicates that the variable pni ranges over elements from Pn, that is,
Πn+1-sentences [11]. It is the logic induced by this very many-sorted algebra we will study
in the sequel by modal logical means of investigation. For more details on provability
algebras, we refer the reader to Artemov and Beklemishev [11], Beklemishev [33, 22], and
their many references.

1For Elementary Arithmetic, see Beklemishev [33].
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3.2 B a s i c s

From now on, we assume that every propositional variable p is assigned a sort α such that
0 ≤ α ≤ ω. We use p, q, . . . as metavariables which range over propositional variables. A
signature is a set Λ ⊆ ω + 1.

Definition 3.2.1. Let Φ be a set of propositional variables and Λ a signature. We define
L∗(Φ,Λ), the (many-sorted) formulas (over Φ and Λ) and their corresponding sorts,
inductively as follows:

(i) ⊥ and > are formulas of sort 0.

(ii) If p ∈ Φ is a propositional variable of sort α, then p is a formula of sort α.

(iii) If ϕ and ψ are formulas of sorts α and β, then (ϕ ∨ ψ) and (ϕ ∧ ψ) are formulas
of sort max{α, β}.

(iv) If ϕ is a formula of sort α, then ¬ϕ is a formula of sort α+ 1.

(v) If ϕ is a formula (of any sort) and α ∈ Λ, then 〈α〉ϕ is a formula of sort α.

We denote the sort of any formula ϕ by |ϕ|. a

Furthermore, it will be notationally convenient for us to write pα to designate that p is a
variable of sort α. We call 〈α〉, for α ∈ Λ, modal operator or modality. Overloading this
notion, we will sometimes also call α in 〈α〉 modal operator or modality. We define V :=⋃
α≤ω{Varα}, where for α ≤ ω we set Varα := {pα0 , pα1 , . . .}, i.e., V contains a countably

infinite supply of variables of each sort α such that α 6= β implies Varα ∩ Varβ = ∅.
Unless stated otherwise, we use p, q, . . . as metavariables which range over elements from
{p0, p1, . . .}. Hence, in this notation, pα denotes a variable of sort α. We denote by L∗Λ
the set L∗(V,Λ). We abbreviate L∗ω by L∗.

As usual, we introduce abbreviations ϕ→ ψ := ¬ϕ∨ψ, ϕ↔ ψ := (ϕ→ ψ)∧(ψ → ϕ),
and [α]ϕ := ¬〈α〉¬ϕ. We omit parentheses whenever possible and assign 〈α〉, [α], and ¬
the highest, while → and ↔ the least binding priority.

Definition 3.2.2. A general substitution is a map τ : V→ L∗Λ. Given any substitution
τ , we extend τ inductively to a function ·τ : L∗Λ → L∗Λ in the following way:

>τ = >, ⊥τ = ⊥
pτ = τ(p), for p ∈ V,

(¬ϕ)τ = ¬ϕτ ,
(ϕ ∧ ψ)τ = ϕτ ∧ ψτ ,
(ϕ ∨ ψ)τ = ϕτ ∨ ψτ ,
(〈α〉ϕ)τ = 〈α〉ϕτ , for α ∈ Λ.

We call τ simply substitution if for every variable pα we have that τ(pα) = ϕ implies
|ϕ| ≤ α. We say that ψ is a (general) substitution instance of ϕ if there is a (general)
substitution τ such that ψ = ϕτ . a
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We denote by (p1/χ1, . . . , pn/χn) the general substitution τ where τ(pi) = χi for i =
1, . . . , n and τ(q) = q for q 6= p1, . . . , pn. We write ϕ(p1/χ1, . . . , pn/χn) for ϕτ and often
omit the propositional variables if they are clear from context. In this notation, we also
often denote a formula ϕ which contains propositional variables among p1, . . . , pn by
ϕ(p1, . . . , pn).

An axiom scheme is a formula Φ(p1, . . . , pn) which is a representative for all its substi-
tution instances Φ(ϕ1, . . . , ϕn). We usually write axiom schemes as formulas Φ(ϕ1, . . . , ϕn),
where each ϕi (i = 1, . . . , n) is intended to range over all formulas (or over a specific class
of formulas).

We exhibit each logic L as a list of axiom schemes and certain rules of inference. An
L-proof is then defined as usual, i.e., an L-proof is a finite sequence ϕ1, . . . , ϕn of formulas
such that for every ϕi (1 ≤ i ≤ n) we have that ϕi is either an axiom or ϕi results from
an application of some rule of inference from some ϕj1 , . . . , ϕjk , where j1, . . . , jk < i. We
say that ϕ is provable in L, L-provable, or a theorem of L (notation: L ` ϕ) if there is an
L-proof ϕ1, . . . , ϕn such that ϕn = ϕ. We say that a logic L′ extends L if every theorem
of L is also a theorem of L′.

When we consider many-sorted modal logics over Λ in the sequel, we mean any set of
formulas LΛ over a signature Λ which (i) at least contains all propositional tautologies,
(ii) is closed under substitutions as defined above, (iii) is closed under modus ponens,
(iv) is closed under the rule ϕ → ψ/〈α〉ϕ → 〈α〉ψ for each α ∈ Λ, and (v) contains the
axioms ¬〈α〉¬> and 〈α〉(ϕ∨ψ)→ (〈α〉ϕ∨ 〈α〉ψ) for each α ∈ Λ. When we denote logics,
the subscript “Λ” in LΛ indicates that LΛ is a logic over Λ.

GLP∗ and J∗

Definition 3.2.3. Let Λ be a signature. The logic GLP∗Λ is given by the following axiom
schemes (the modalities range over Λ):

(i) all propositional tautologies;

(ii) 〈α〉(ϕ ∨ ψ)→ (〈α〉ϕ ∨ 〈α〉ψ); ¬〈α〉¬>;

(iii) 〈α〉ϕ→ 〈α〉(ϕ ∧ ¬〈α〉ϕ) (Löb’s axiom);

(iv) 〈α〉ϕ→ 〈β〉ϕ, for β < α (monotonicity);

(v) 〈α〉ϕ→ ϕ, if |ϕ| ≤ α (Σα+1-completeness).

GLP∗Λ is closed under the rules of inference (i) modus ponens and (ii) for each α ≤ ω, if
ϕ→ ψ then infer 〈α〉ϕ→ 〈α〉ψ. We denote the logic GLP∗ω by GLP∗. a

Remark. Note that GLP is usually axiomatized using the connective [n] as a primitive.
However, regarding the sorts of formulas using 〈n〉 instead seems to be more natural due
to our intended arithmetical interpretation which focuses on Πn-axiomatized concepts.

Furthermore, note that the results of this section concerning GLP∗ also make sense if
we disregard variables of sort ω, i.e., if we consider the many-sorted polymodal logic which
strictly captures the notion of graded provability algebra as described in the introductory
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section of this chapter. However, introducing variables of sort ω is convenient with
foresight of Chapter 44.

Note that GLP∗Λ is indeed a logic as defined in the above sense. In particular, if GLP∗Λ ` ϕ
for ϕ ∈ L∗Λ, then there is a proof χ1, . . . , χn in GLP∗Λ such that χn = ϕ. Clearly, for any
substitution τ , we have that χτ1 , . . . , χτn is a proof of ϕτ , since substitutions (according
to our definition) respect the sorts of variables. The following basic properties will be
used without any explicit mention.

Proposition 3.2.4. Suppose LΛ ` ϕ↔ ψ. Then, LΛ ` χ(p/ϕ)↔ χ(p/ψ) for any χ.

Proof. By induction on χ. If χ = p then clearly LΛ ` ϕ↔ ψ by assumption. If χ = q for
some q 6= p, then LΛ ` q ↔ q by propositional logic. The same holds for the case where
χ = > or χ = ⊥.

Assume χ = χ1∧χ2 for some χ1, χ2. By inductive hypothesis we have LΛ ` χi(p/ϕ)↔
χi(p/ψ) for i = 1, 2, whence LΛ ` χ(p/ϕ) ↔ χ(p/ψ) follows by purely propositional
reasoning and the definition of substitution. The other propositional connectives are
treated similarly.

Suppose χ = 〈α〉ξ for some ξ. By inductive hypothesis, we have LΛ ` ξ(p/ϕ) ↔
ξ(p/ψ), whence LΛ ` 〈α〉ξ(p/ϕ)↔ 〈α〉ξ(p/ψ) follows. �

Lemma 3.2.5. Every logic LΛ is closed under [α]-necessitation, for each α ∈ Λ.

Proof. Suppose LΛ ` ϕ. Then LΛ ` ¬ϕ → ¬>, whence LΛ ` 〈α〉¬ϕ → 〈α〉¬>. Thus,
LΛ ` ¬〈α〉¬> → ¬〈α〉¬ϕ and so LΛ ` [α]ϕ. �

Lemma 3.2.6. Let ϕ1, . . . , ϕk be formulas and LΛ a logic. For all α ∈ Λ we have

LΛ ` [α](ϕ1 ∧ · · · ∧ ϕk)→ ([α]ϕ1 ∧ · · · ∧ [α]ϕk).

Proof. For i = 1, . . . , k, we obtain by LΛ ` ϕ1 ∧ · · · ∧ ϕk → ϕi

LΛ ` 〈α〉¬ϕi → 〈α〉¬(ϕ1 ∧ · · · ∧ ϕk),

whence LΛ ` [α](ϕ1 ∧ · · · ∧ ϕk)→ ([α]ϕ1 ∧ · · · ∧ [α]ϕk) by propositional logic. �

Lemma 3.2.7. Let ϕ1, . . . , ϕk be formulas and LΛ a logic. For all α ∈ Λ we have

LΛ ` 〈α〉(ϕ1 ∨ · · · ∨ ϕk)→ (〈α〉ϕ1 ∨ · · · ∨ 〈α〉ϕk).

Proof. By repeated application of the axiom 〈α〉(ϕ∨ψ)→ (〈α〉ϕ∨〈α〉ψ) and propositional
logic. �

Note that GLP∗Λ ` 〈α〉〈α〉ϕ → 〈α〉ϕ. Furthermore, if β < α then GLP∗ ` 〈α〉¬[β]ϕ →
¬[β]ϕ, whence

GLP∗Λ ` [β]ϕ→ [α][β]ϕ,
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by propositional logic. Similarly, GLP∗Λ ` 〈α〉¬〈β〉ϕ→ ¬〈β〉ϕ and thus

GLP∗Λ ` 〈β〉ϕ→ [α]〈β〉ϕ,

again by propositional logic.

Definition 3.2.8. The logic J∗Λ is obtained from GLP∗Λ by dropping the monotonicity
axioms and adding the following additional scheme:

(vi) 〈β〉〈α〉ϕ→ 〈β〉ϕ, for β < α.

J∗Λ has the same rules of inference as GLP∗Λ. We denote by J∗ the logic J∗ω. a

For β < α, we note that

GLP∗Λ ` 〈β〉〈α〉ϕ→ 〈β〉〈β〉ϕ (by monotonicity)
→ 〈β〉ϕ.

We thus have the following:

Lemma 3.2.9. The logic GLP∗Λ extends J∗Λ, i.e., J∗Λ ` ϕ implies GLP∗Λ ` ϕ.

3.3 A r i t h m e t i c a l I n t e r p r e tat i o n

The following notion was originally suggested by Ignatiev [2424].

Definition 3.3.1. Let T be an extension of PA. A provability predicate of level n over
T is a formula Prv(x) with one free variable which satisfies the following conditions, for
all sentences ϕ,ψ,

(i) Prv is Σn+1 in T ;

(ii) if T ` ϕ then T ` Prv(pϕq);

(iii) T ` Prv(pϕ→ ψq)→ (Prv(pϕq)→ Prv(pψq));

(iv) if ϕ is a Σn+1-sentence, then T ` ϕ→ Prv(pϕq).

We say that a provability predicate Prv is sound if, for all ϕ, N |= Prv(pϕq) implies that
N |= ϕ.

A sequence π of formulas Prv0,Prv1, . . . is called a strong sequence of provability
predicates over T if there is a sequence of natural numbers r0 < r1 < r2 < · · · such that
for all n ≥ 0,

(i) Prvn is a provability predicate of level rn over T ;

(ii) T ` Prvn(pϕq)→ Prvn+1(pϕq), for every sentence ϕ.

We denote by |πn| the level of Prvn. a
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Given a strong sequence of provability predicates over T , we write [n]π for the n-th
provability predicate of π and use the abbreviation [n]πϕ for [n]π(pϕq) if no confusion
arises. As usual, 〈n〉π is defined to be the dual of [n]π.

As Ignatiev [2424] and Beklemishev [66], we want to mention two important examples
of strong sequences of provability predicates over T , for T extending PA.

In Section 2.52.5 we introduced the notion of n-provability, i.e., formalized provability
in the theory T + ThΠn(N). In fact, every predicate of the sequence [0]T , [1]T , . . . satisfies
the conditions of Definition 3.3.13.3.1 by virtue of our treatment of [n]T in Chapter 22. Note
that, for each n ≥ 0, [n]T is of level n. Furthermore, this sequence is easily seen to be
a strong sequence of provability predicates over T , since every Πn-sentence is provably
equivalent to a Πn+1-sentence by introducing dummy quantifiers.

The second strong sequence of provability predicates we want to mention is that
which arises from the closure under the n-fold application of the ω-rule in PA [2424, 66].
Formally, define [0]ω := 2PA and

[n+ 1]ω(α) := ∃β (∀x [n]ωβ(ẋ) ∧ [n]ω(∀xβ(x)→ α)), for n ≥ 0.

For n ≥ 0, the predicate [n]ω is a Σ2n+1-formula. It can be shown that the sequence
[0]ω, [1]ω, . . . defines a strong sequence of provability predicates over PA, where [n]ω has
level 2n (cf. also Boolos [1010] for more details on ω-provability).

Definition 3.3.2. Let π be a sequence of strong provability predicates over T . An
(arithmetical) realization (over π) is a function fπ which maps formulas from L∗ to
sentences in the language of arithmetic such that the following conditions are satisfied:

(i) fπ(>) = >;22 fπ(⊥) = ⊥;

(ii) for every propositional variable pα, fπ(pα) is a Π|πn|+1-sentence in case n = α < ω;

(iii) fπ commutes with the propositional connectives;

(iv) fπ(〈n〉ϕ) = 〈n〉πfπ(ϕ), for n < ω.

We say that fπ(ϕ) is the translation of ϕ under fπ. a

Clearly, a realization over π only depends on the assignment of sentences to propositional
variables. Note that, for any ϕ and any realization fπ, we have

T ` fπ([n]ϕ)↔ [n]πfπ(ϕ).

Lemma 3.3.3. Let π be a strong sequence of provability predicates over T and let fπ be
a realization. For all many-sorted formulas ϕ we have that fπ(ϕ) is provably equivalent
to an arithmetical Π|πk|+1-sentence, where k = |ϕ|.

Proof. By an easy induction on ϕ. The base case holds by definition. Furthermore, for
k ≥ 0, [k]π is a Σ|πk|+1-sentence. The induction step then follows by simple closure
properties of Πn-sentences (see Proposition 2.2.52.2.5). �

2As usual, we use > to denote a valid statement in the language of arithmetic, e.g., > := ¬⊥.
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Since provability predicate [n]π from π is a Σk-sentence for some k > 0, we can associate
(in analogy to the standard Gödelian provability predicate) a predicate Prfn(α, y) which
expresses the statement “y codes a proof of α” and

T ` Prvn(α)↔ ∃y Prfn(α, y).

We say that Prfn is the proof relation of Prvn and stress that Prfn is chosen in such a way,
such that every number y codes a proof of at most one formula and that every provable
formula has arbitrarily long proofs. Intuitively, since a proof is coded as a finite sequence
in the Hilbertian sense, given any proof of ϕ, any proof containing redundant axioms will
also witness the provability of ϕ. These properties can be achieved in such a way as to
hold provably in T , i.e.,

T ` Prfn(α, y) ∧ Prfn(β, y)→ α = β,
T ` Prfn(α, y)→ ∃z > y Prfn(α, z).

We can already conclude that GLP∗ is arithmetically sound.

Proposition 3.3.4. If GLP∗ ` ϕ, then T ` fπ(ϕ) for all realizations fπ.

Proof. By induction the length of a derivation of ϕ. For the base case, the propositional
tautologies and axioms (ii)(ii) of Definition 3.2.33.2.3 are clear. Note that T ` fπ(〈n〉ϕ)→ fπ(ϕ)
follows by Σ|πn|+1-completeness and Lemma 3.3.33.3.3: since fπ(ϕ) is provably equivalent to
a Π|πn|+1-sentence, we know that ¬fπ(ϕ) is provably equivalent to a Σ|πn|+1-sentence,
whence

T ` ¬fπ(ϕ)→ [n]π¬fπ(ϕ), (by Σ|πn|+1-completeness)
T ` ¬[n]π¬fπ(ϕ)→ fπ(ϕ).

The soundness of Löb’s axioms can be proved similarly to the formalized version of Löb’s
theorem (Theorem 2.4.102.4.10) and propositional logic. (Note that in our case Löb’s axiom is
formulated with 〈n〉 rather than [n].) For the induction step, the soundness of the rules
of inference is clear by the definition of strong provability predicates. �

3.4 K r i p k e S e m a n t i c s

In this section, we are going to develop Kripke semantics for J∗. We show that J∗ is
complete for a decent class of Kripke models which will be exploited in the proof of the
arithmetical completeness theorem for GLP∗ in Section 3.53.5. In our elaboration, we closely
follow the work of Beklemishev [55] and the standard methods known from the area of
modal logics. For background information concerning Kripke semantics of modal logics
in general, we refer the reader to Blackburn et al. [99].

Definition 3.4.1. A (Kripke) frame F (over Λ) is a tuple F = 〈W, {Rα}α∈Λ〉, where W
is a non-empty set of worlds and Rα is a binary relation on W for all α ∈ Λ (called the
accessibility relations). We say that F is finite if W is finite and all but finitely many
relations of {Rα}α∈Λ are empty. a
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Definition 3.4.2. A (Kripke) model K (over Λ) is a tuple of the form K = 〈F, J·K〉, where
F = 〈W, {Rα}α∈Λ〉 is a frame over Λ and J·K : L∗Λ → P(W ) is a function called valuation
which maps many-sorted formulas to subsets of W such that the following conditions are
satisfied:

(i) J⊥K = ∅; J>K = W ;

(ii) J¬ϕK = W \ JϕK;

(iii) Jϕ ∧ ψK = JϕK ∩ JψK;

(iv) Jϕ ∨ ψK = JϕK ∪ JψK;

(v) J〈α〉ϕK = {x | ∃y : xRαy & y ∈ JϕK}, for α ∈ Λ.

We say that K is based on F. a

Note that, by definition of [α]ϕ, we have

J[α]ϕK = {x | ∀y : xRαy ⇒ y ∈ JϕK}.

Furthermore, note that J·K only depends on the assignment of subsets of W to proposi-
tional variables. Given any model K = 〈W, {Rα}α∈Λ, J·K〉, it will be convenient to define
a relation 
K between worlds of K and formulas by

x 
K ϕ ⇐⇒df x ∈ JϕK.

We often omit the subscript of 
K when K is clear from context. Furthermore, we often
write K, x 
 ϕ instead of x 
K ϕ and say that x forces ϕ (in K). The relation 
K is called
forcing relation of K.

Definition 3.4.3. Let K = 〈F, J·K〉 be a model and ϕ a formula. We say that ϕ is true
at a world x of K if x ∈ JϕK. The formula ϕ is (globally) true in K (notation: K |= ϕ) if
it is true at every world of K. Similarly, ϕ is valid in F (notation: F |= ϕ) if it is true in
every model based on F. a

A relation R ⊆W×W is said to be conversely well-founded if there is no infinite sequence
x1, x2, . . . such that x1Rx2R · · · , i.e., if every R-increasing chain is finite.

Lemma 3.4.4. Let W be finite and R ⊆ W × W transitive. Then, R is conversely
well-founded iff it is irreflexive.

Proof. If xRx for some x ∈ W , then the set {x} has no R-greatest element, whence it
follows that R is not conversely well-founded. On the other hand, suppose that R is not
conversely well-founded. Then there is an infinite R-increasing chain x1Rx2R · · · . Since
W is finite, there are i, j ≥ 1 such that i ≥ j and xi = xj . By transitivity and induction
we obtain xjRxi, so R is not irreflexive. �

Definition 3.4.5. A frame F = 〈W, {Rα}α∈Λ〉 is called J∗Λ-frame if the following condi-
tions are satisfied:
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Figure 3.1: Frame conditions of a J∗Λ-frame, where α, β ∈ Λ such that β < α. Dashed
arrows represent relations which must exist provided the solid ones do.

(J1) Rα is transitive and conversely well-founded for α ∈ Λ;

(J2) ∀x, y, z (xRβy & yRαz ⇒ xRβz) for β < α;

(J3) ∀x, y (xRαy ⇒ ∀z (xRβz ⇔ yRβz)) for β < α.

A root of a J∗Λ-frame F = 〈W, {Rα}α∈Λ〉 is a world r ∈ W such that ∀x ∈ W ∃λ ∈
Λ: rRλx or r = x. A frame which has a root is called rooted. a

For a visualization of the conditions (J2)(J2) and (J3)(J3) see Figure 3.13.1. Note that item (J3)(J3) is
equivalent to the conjunction of

∀x, y, z (xRαy & yRβz ⇒ xRβz) and ∀x, y, z (xRαy & xRβz ⇒ yRβz), for β < α.

F is called irreflexive (transitive, conversely well-founded) if its accessibility relations
have the corresponding property.

Definition 3.4.6. A J∗Λ-model is a Kripke model based on a J∗Λ-frame. Given a J∗Λ-model
K = 〈W, {Rα}α∈Λ, J·K〉, we call K

(i) persistent if for all α ∈ Λ, all propositional variables pβ with β ≤ α, and all
x, y ∈W we have

xRαy and y ∈ JpβK imply x ∈ JpβK;

(ii) strongly persistent if K is persistent and for all α ∈ Λ, all propositional variables
pβ with β < α, and all x, y ∈W we have
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xRαy and y 6∈ JpβK imply x 6∈ JpβK.

We say that K is finite if its underlying frame is finite and JpK 6= ∅ only for finitely
many variables p. Furthermore, K is rooted if the frame it is based on is rooted. Like-
wise, K is irreflexive (transitive, conversely well-founded) if its underlying frame has the
corresponding property. a

In case Λ = ω, we drop the subscript “Λ” in the terms J∗Λ-frame and J∗Λ-model. Let C
be a class of models. Recall that a logic L is sound for C if L ` ϕ implies K |= ϕ for all
K ∈ C. L is complete for C if whenever K |= ϕ for all K ∈ C, then also L ` ϕ. Soundness
and completeness with respect to a class of frames is defined mutatis mutandis.

The remainder of this section will be devoted to the proof that J∗Λ is sound and
complete with respect to the class of finite and strongly persistent J∗Λ-models.

Lemma 3.4.7. Let K = 〈W, {Rα}α∈Λ, J·K〉 be a J∗Λ-model. Then, K is strongly persistent
iff for all formulas ϕ ∈ L∗Λ and all α ∈ Λ we have

(i) if |ϕ| ≤ α then xRαy and y ∈ JϕK imply x ∈ JϕK;

(ii) if |ϕ| < α then xRαy and y 6∈ JϕK imply x 6∈ JϕK.

Proof. The direction from right to left is clear. For the other direction, we proceed by
induction on the number of propositional connectives which are not in the scope of any
〈α〉. Let K be strongly persistent. For the base case we distinguish two cases. Firstly, if
ϕ = pβ or ϕ = > or ϕ = ⊥ is just the definition of K being strongly persistent—note that
J>K = W and J⊥K = ∅. Secondly, suppose ϕ = 〈α〉ψ for some ψ. Then |ϕ| = α. So let
λ ≥ α for some λ ∈ Λ and assume xRλy and y ∈ J〈α〉ψK. Then z ∈ JψK for some z ∈W
such that yRαz. Since λ ≥ α and K is J∗Λ-model, we have xRαz, whence x ∈ J〈α〉ψK
follows. Suppose now λ > α and xRλy such that y 6∈ J〈α〉ψK. Then for all z ∈ W such
that yRαz we have z 6∈ JψK. Now if x ∈ J〈α〉ψK then z ∈ JψK for some z such that xRαz,
whence we infer yRαz (since K is a J∗Λ-model) and arrive at contradiction.

Assume ϕ = ϕ1 ∧ ϕ2 where |ϕ| ≤ α and let xRαy and y ∈ JϕK, i.e., y ∈ Jϕ1K and
y ∈ Jϕ2K. By inductive hypothesis we know, as |ϕ1|, |ϕ2| ≤ α, that x ∈ Jϕ1K and x ∈ Jϕ2K.
Furthermore, if |ϕ| < α and y 6∈ JϕK, then either y 6∈ Jϕ1K or y 6∈ Jϕ2K. Since |ϕ1|, |ϕ2| < α,
we infer by inductive hypothesis that x 6∈ Jϕ1K or x 6∈ Jϕ2K as required. The case where
ϕ = ϕ1 ∨ ϕ2 is treated similarly.

Finally, suppose ϕ = ¬ψ for some ψ and suppose |ϕ| ≤ α. Let xRαy and y ∈ JϕK.
Then |ψ| < α and y 6∈ JψK, whence by inductive hypothesis we obtain x 6∈ JψK, i.e.,
x ∈ JϕK as desired. If |ϕ| < α and y 6∈ JϕK, then |ψ| < α and y ∈ JψK. By inductive
hypothesis we then obtain x ∈ JψK and so x 6∈ JϕK which finishes this case. �

Lemma 3.4.8. For all α ∈ Λ, the axiom scheme 〈α〉ϕ → ϕ (where ϕ ∈ L∗Λ such that
|ϕ| ≤ α) is true in a J∗Λ-model K, iff K is strongly persistent.

Proof. For the direction from left to right, suppose that K = 〈W, {Rα}α∈Λ, J·K〉 is not
strongly persistent. Suppose first that there are x, y ∈W such that xRαy and y ∈ JpλK,
but x 6∈ JpλK for some λ ≤ α and λ, α ∈ Λ. Then clearly K, x 1 〈α〉pλ → pλ. For the case
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where xRαy and y 6∈ JpλK but x ∈ JpλK for some λ < α (λ, α ∈ Λ), we similarly have
K, x 1 〈α〉¬pλ → ¬pλ.

For the other direction, suppose that there is a ψ with |ψ| ≤ α (α ∈ Λ) such that
K, x 1 〈α〉ψ → ψ. Then K, x 
 〈α〉ψ and K, x 1 ψ, and so there is a y ∈ W such that
xRαy and K, y 
 ψ. Hence, x 6∈ JψK but y ∈ JψK and |ψ| ≤ α, whence Lemma 3.4.73.4.7 yields
that K is not strongly persistent. �

Notice that our notion of substitution is substantial here. Indeed, consider the formula
ϕ := 〈0〉p0 → p0. It is clear that ϕ is true in every strongly persistent J∗Λ-model (for
an appropriate Λ), but the formula ϕ′ := 〈0〉p1 → p1 is not. However, it is easy to see
that ϕ′ is not a substitution instance of ϕ in the sense of Definition 3.2.23.2.2. Hence, our
notion of substitution is geared in order to retain truth in the class of strongly persistent
J∗Λ-models.

Proposition 3.4.9. J∗Λ is sound for the class of all strongly persistent J∗Λ-models.

Proof. The proof is a routine induction on proof length. Most of the axioms were handled
by the previous statements. The axiom 〈α〉(ϕ∨ ψ)→ 〈α〉ϕ∨ 〈α〉ψ and the propositional
ones are obvious. The fact that instances of Löb’s axiom are true in all such models follows
from the well-known fact that these schemes are valid in all frames which are transitive and
conversely well-founded. For the induction step, modus ponens and ϕ→ ψ/〈α〉ϕ→ 〈α〉ψ
are easy to check. We leave the details to the reader. �

Definition 3.4.10. Let Γ be a set of formulas from L∗Λ. We say that Γ is LΛ-consistent
if there are no ϕ1, . . . , ϕn ∈ Γ such that LΛ ` ϕ1 ∧ · · · ∧ ϕn → ⊥. Otherwise, Γ is called
LΛ-inconsistent. Let Σ be a set of formulas. Then Γ ⊆ Σ is a maximal LΛ-consistent
subset of Σ, if every Γ′ such that Σ ⊇ Γ′ ⊃ Γ is LΛ-inconsistent. a

We define an operator ∼, called modified negation, for all formulas ϕ as follows:

∼ϕ =
{
ψ, if ϕ = ¬ψ for some ψ,
¬ϕ, otherwise.

For a set of formulas ∆ from L∗Λ, we set `(∆) := {α ∈ Λ | 〈α〉ϕ ∈ ∆ for some ϕ}. We say
that a set of formulas ∆ is adequate if > ∈ ∆, it is closed under subformulas, modified
negations, and the operations

〈α〉ϕ, 〈β〉ψ ∈ ∆ ⇒ 〈β〉ϕ ∈ ∆,
pλ ∈ ∆, α ∈ `(∆) ⇒ 〈α〉pλ ∈ ∆, for all variables pλ and α ≥ λ,
¬pλ ∈ ∆, α ∈ `(∆) ⇒ 〈α〉¬pλ ∈ ∆, for all variables pλ and α > λ.

We can easily convince ourselves that any finite set Γ can be extended to a finite adequate
Γ′ such that `(Γ) = `(Γ′). We denote the smallest such set by Cl(Γ) and note that Cl(Γ)
is finite. Furthermore, it is easy to see that if ∆ is adequate, then for every maximal
consistent subset Γ of ∆ we have (i) ϕ ∈ Γ or ∼ϕ ∈ Γ for every ϕ ∈ ∆, (ii) ϕ→ ψ,ϕ ∈ Γ
implies ψ ∈ Γ, and (iii) ϕ ∨ ψ ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ. The following fact is well-known.
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Lemma 3.4.11. Let LΛ be a logic and Γ, ∆ finite sets of formulas such that Γ ⊆ Cl(∆),
where Γ is LΛ-consistent. Then, there is a maximal LΛ-consistent Γ′ ⊆ Cl(∆) such that
Γ ⊆ Γ′.

Proof. Let ϕ1, ϕ2, . . . , ϕn be an enumeration of Cl(∆). Define Σ0 := Γ and, for k < n,
construct sets Σk+1 in the following way:

Σk+1 :=
{

Σk ∪ {ϕk+1}, if Σk ∪ {ϕk+1} is LΛ-consistent,
Σk ∪ {∼ϕk+1}, otherwise.

Let Σ+ = Σn. By induction on k, we easily see that Σk is LΛ-consistent for every k ≥ 0.
Hence, Σ+ is LΛ-consistent as Σk ⊆ Σk+1, for k = 1, . . . , n− 1. Furthermore, for every
ϕ ∈ Cl(∆) we either have ϕ ∈ Σ+ or ∼ϕ ∈ Σ+. It follows that Σ+ ⊆ Cl(∆) is a maximal
LΛ-consistent set containing Γ. �

Let us now fix a finite adequate set ∆ and assume that all modalities range within `(∆).
Let Λ := `(∆) and define a Kripke frame F∆ = 〈W, {Rα}α∈Λ〉, where

W := {x | x is a maximal J∗Λ-consistent subset of ∆},

for α ∈ Λ and x, y ∈W , define xRαy if the following conditions are satisfied:

(i) For any ϕ ∈ y, if 〈α〉ϕ ∈ ∆ then 〈α〉ϕ ∈ x.

(ii) For any 〈α〉ϕ ∈ ∆, we have that 〈α〉ϕ ∈ y implies 〈α〉ϕ ∈ x.

(iii) For any 〈β〉ϕ ∈ ∆ such that β < α, we have 〈β〉ϕ ∈ x ⇐⇒ 〈β〉ϕ ∈ y.

(iv) There exists a formula 〈α〉ϕ ∈ ∆ such that 〈α〉ϕ ∈ x \ y.

Lemma 3.4.12. F∆ is a finite J∗Λ-frame.

Proof. We first check the conditions of a J∗Λ-frame. Obviously, F∆ is finite. Hence, to
establish well-foundedness of each Rα, it suffices to check irreflexivity. But this is guaran-
teed by item (iii)(iii). We first prove simultaneously that Rα is transitive and condition (J2)(J2)
is satisfied, so suppose xRβy and yRαz for β ≤ α. We show xRβz by checking the four
conditions above. Suppose ϕ ∈ z such that 〈β〉ϕ ∈ ∆. By yRαz and items (i)(i) and (ii)(ii) we
know that 〈β〉ϕ ∈ y, whence 〈β〉ϕ ∈ x follows by xRβy. Hence, item (i)(i) is established.
Let 〈β〉ϕ ∈ ∆ such that 〈β〉ϕ ∈ z. Again, items (i)(i) and (ii)(ii) and yRαz yield 〈β〉ϕ ∈ y,
whence 〈β〉ϕ ∈ x follows by xRβy. So item (ii)(ii) is verified. Let λ < β and consider any
〈λ〉ϕ ∈ ∆. We know

〈λ〉ϕ ∈ x ⇐⇒ 〈λ〉ϕ ∈ y ⇐⇒ 〈λ〉ϕ ∈ z,

whence item (iii)(iii) follows. For item (iv)(iv), we know that there is an 〈α〉ψ ∈ y \ z. But then
〈β〉ψ ∈ x by item (i)(i) and xRβy. Hence, item (iv)(iv) is also verified, i.e., xRβz holds.

It remains to establish condition (J3)(J3). So first suppose xRαy and xRβz for β < α. We
prove yRβz. Indeed, if ϕ ∈ z and 〈β〉ϕ ∈ ∆, then 〈β〉ϕ ∈ x by xRβz, whence 〈β〉ϕ ∈ y
follows since β < α and xRαy. So item (i)(i) holds. If 〈β〉ϕ ∈ ∆ such that 〈β〉ϕ ∈ z,
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then 〈β〉ϕ ∈ x since xRβz, whence 〈β〉ϕ ∈ y follows since β < α and xRαy. This
proves item (ii)(ii). Let λ < β and 〈λ〉ϕ ∈ ∆. We have

〈λ〉ϕ ∈ y ⇐⇒ 〈λ〉ϕ ∈ x ⇐⇒ 〈λ〉ϕ ∈ z.

Hence, item (iii)(iii) follows. For item (iv)(iv), we know that there is a 〈β〉ψ ∈ ∆ such that
〈β〉ψ ∈ x \ z. Now, 〈β〉ψ ∈ y by xRαy and β < α. Thus, yRβz follows.

Suppose now xRαy and yRβz. We show xRβz. Let ϕ ∈ z such that 〈β〉ϕ ∈ ∆. By
yRβz, we know 〈β〉ϕ ∈ y, whence β < α and xRαy give us 〈β〉ϕ ∈ x. Hence, item (i)(i) is
established. Consider any 〈β〉ϕ ∈ ∆ such that 〈β〉ϕ ∈ z. Since yRβz, we have 〈β〉ϕ ∈ y,
whence α < β gives us again 〈β〉ϕ ∈ x, i.e., item (ii)(ii) holds. Now let λ < β and consider
a 〈λ〉ϕ ∈ ∆ such that 〈λ〉ϕ ∈ x. We know

〈λ〉ϕ ∈ x ⇐⇒ 〈λ〉ϕ ∈ y ⇐⇒ 〈λ〉ϕ ∈ z,

which entails item (iii)(iii). For item (iv)(iv), we know that there is a 〈β〉ψ ∈ y \ z. But then
〈β〉ψ ∈ x as α < β and xRαy. This proves xRβz. �

Lemma 3.4.13. Let 〈α〉ϕ ∈ ∆ and x be a maximal J∗Λ-consistent subset from ∆. Then
〈α〉ϕ ∈ x iff there exists a maximal J∗Λ-consistent subset y ⊆ ∆ such that xRαy and
ϕ ∈ y.

Proof. For the direction from right to left, suppose 〈n〉ϕ 6∈ x. If y ⊆ ∆ is a maximal
J∗-consistent set such that xRαy, we clearly have ϕ 6∈ y by definition of Rα.

For the other direction, assume 〈α〉ϕ ∈ x. We will construct a maximal J∗Λ-consistent
y ⊆ ∆ such that ϕ ∈ y and xRαy. In the following, given any finite set Γ of formulas, we
write Γ∧ (Γ∨, respectively) for the conjunction (disjunction, respectively) of all formulas
in Γ. Similarly, we write ∼Γ for {∼γ | γ ∈ Γ} and 〈β〉Γ for {〈β〉γ | γ ∈ Γ}. Now let Σ be
the union of the following sets of formulas (modalities range over Λ):

Σ1 = {¬〈λ〉ψ,∼ψ | ¬〈α〉ψ ∈ x, λ ≥ α}, Σ2 = {〈β〉ψ | 〈β〉ψ ∈ x, β < α},
Σ3 = {¬〈β〉ψ | ¬〈β〉ψ ∈ x, β < α}, Σ4 = {¬〈α〉ϕ,ϕ}.

We claim that Σ is J∗Λ-consistent. For if not then

J∗Λ ` (Σ∧1 ∧ Σ∧2 ∧ Σ∧3 )→ (ϕ→ 〈α〉ϕ)

and so by propositional logic

J∗Λ ` (ϕ ∧ ¬〈α〉ϕ)→ (∼Σ∨1 ∨ ∼Σ∨2 ∨ ∼Σ∨3 ) (3.1)

and furthermore

〈α〉(ϕ ∧ ¬〈α〉ϕ)→ 〈α〉(∼Σ∨1 ∨ ∼Σ∨2 ∨ ∼Σ∨3 ).

By Löb’s axiom, we know that

J∗Λ ` 〈α〉ϕ→ 〈α〉(ϕ ∧ ¬〈α〉ϕ).
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For i = 1, 2, 3, let Πi = 〈α〉∼Σi. We have by propositional logic, (3.13.1), and Lemma 3.2.73.2.7

J∗Λ ` 〈α〉ϕ→ Π∨1 ∨Π∨2 ∨Π∨3 .

Now since x is maximal J∗Λ-consistent and 〈α〉ϕ ∈ x, we infer that χ ∈ x for some
χ ∈ Π1 ∪Π2 ∪Π3. We distinguish three cases.

Case 1: χ ∈ Π1, i.e., χ = 〈α〉〈λ〉ψ for some λ ≥ α or χ = 〈α〉ψ. In both cases
¬〈α〉ψ ∈ x by construction. We have by axiom (vi)(vi) and J∗Λ ` 〈α〉〈α〉δ → δ for all δ, that

J∗Λ ` 〈α〉〈λ〉ψ → 〈α〉ψ,

whence 〈α〉ψ ∈ x follows in both cases, contradicting ¬〈α〉ψ ∈ x.
Case 2: χ ∈ Π2, i.e., χ = 〈α〉¬〈β〉ψ for some ψ and β < α such that 〈β〉ψ ∈ x. Since

β < α, we know by axiom (v)(v) that

J∗Λ ` 〈α〉¬〈β〉ψ → ¬〈β〉ψ,

whence ¬〈β〉ψ ∈ x, contradicting the consistency of x.
Case 3: Finally, suppose χ ∈ Π3, i.e., σ = 〈α〉〈β〉ψ for some β < α such that

¬〈β〉ψ ∈ x. By an easy application of axiom (v)(v) we know that

J∗Λ ` 〈α〉〈β〉ψ → 〈β〉ψ,

whence we immediately obtain 〈β〉ψ ∈ x, contradiction.
We see that Σ is J∗Λ-consistent. Hence, by Lemma 3.4.113.4.11, there exists a maximal

J∗Λ-consistent y ⊇ Σ. Furthermore, xRαy and ϕ ∈ y by construction of Σ. �

Now define a Kripke model K∆ = 〈F∆, J·K〉, where

K∆, x 
 p
α ⇐⇒df pα ∈ x,

for all variables pα ∈ ∆ and x ∈W .

Lemma 3.4.14. K∆ is a strongly persistent, finite J∗Λ-model.

Proof. Again, finiteness is immediate. Let α ∈ `(∆) and consider a propositional variable
pλ ∈ ∆ such that λ ≤ α. Suppose xRαy and y ∈ JpλK. We show x ∈ JpλK by checking
the conditions of Definition 3.4.63.4.6. Indeed, since pλ ∈ ∆ we have 〈α〉pλ ∈ ∆. Furthermore,
since x is maximal J∗Λ-consistent and xRαy, it follows by Lemma 3.4.133.4.13 that 〈α〉pλ ∈ x,
whence pλ ∈ x follows since J∗Λ ` 〈α〉pλ → pλ and x is maximal J∗Λ-consistent. Hence, K∆
is persistent.

Now let λ < α and suppose xRαy but y 6∈ JpλK. If pλ 6∈ ∆ then x 6∈ JpλK by definition,
so suppose pλ ∈ ∆. From ¬pλ ∈ ∆, we obtain 〈α〉¬pλ ∈ ∆, whence xRαy gives us
〈α〉¬pλ ∈ x by Lemma 3.4.133.4.13. Since J∗Λ ` 〈α〉¬pλ → ¬pλ and x is maximal J∗Λ-consistent,
we obtain ¬pλ ∈ x, i.e., x 6∈ JpλK and thus strong persistence as desired. �

Lemma 3.4.15. For all ϕ ∈ ∆ we have K∆, x 
 ϕ iff ϕ ∈ x.
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Proof. We proceed by induction on ϕ. The base cases hold by definition—note that > ∈ x
and ⊥ 6∈ x for all maximal J∗Λ-consistent x ∈ W . Suppose ϕ = ψ1 ∧ ψ2. Then x 
 ϕ iff
x 
 ψ1 and x 
 ψ2, which by inductive hypothesis is equivalent to ψ1, ψ2 ∈ x and, since
x is maximal J∗Λ-consistent, holds iff ψ1 ∧ ψ2 ∈ x. The other propositional connectives
are treated similarly. Finally, suppose ϕ = 〈α〉ψ for some α ∈ `(∆) and some ψ. Then if
x 
 〈α〉ψ, there is a y ∈W such that y 
 ψ, whence by inductive hypothesis we obtain
ψ ∈ y and Lemma 3.4.133.4.13 gives us 〈α〉ψ ∈ x. Conversely, if 〈α〉ψ ∈ x by Lemma 3.4.133.4.13
there exists a y ∈W such that xRαy and ψ ∈ y, whence by inductive hypothesis y 
 ψ
and so x 
 〈α〉ψ follows. �

We can now conclude completeness of J∗Λ in a standard way.

Theorem 3.4.16. J∗Λ is complete for the class of finite strongly persistent J∗Λ-models.

Proof. Consider a formula ϕ ∈ L∗Λ and suppose J∗Λ 0 ϕ. Then {∼ϕ} is J∗Λ-consistent.
Consider the finite adequate ∆ := Cl({ϕ}) and let Σ := `(∆). Let K∆ be the corresponding
finite and strongly persistent J∗Σ-model. Then, making use of Lemma 3.4.113.4.11, there is a
maximal J∗Σ-consistent x ⊆ ∆ such that∼ϕ ∈ x, whence Lemma 3.4.153.4.15 gives us K∆, x 1 ϕ.
Notice that Σ ⊆ Λ. Expand K∆ to a J∗Λ-model K by setting Rα = ∅ for all α ∈ Λ\Σ. Then
it is immediate that K is a finite and strongly persistent J∗Λ-model such that K, x 1 ϕ. �

Corollary 3.4.17. J∗Λ is decidable for every Λ ⊆ ω + 1.

Furthermore, we can already conclude that J∗ is conservative over its fragments.

Corollary 3.4.18. Let Λ ⊆ ω. For all ϕ ∈ L∗Λ,

J∗ ` ϕ ⇐⇒ J∗Λ ` ϕ.

Proof. The direction from right to left is clear. For the other direction, suppose J∗Λ 0 ϕ.
Then {∼ϕ} is J∗Λ-consistent and a similar argument as in the proof of Theorem 3.4.163.4.16
yields a J∗-model K and a world x such that K, x 1 ϕ. �

3.5 A r i t h m e t i c a l C o m p l e t e n e s s o f GLP∗

This section is devoted to a proof of the arithmetical completeness theorem for GLP∗.
We closely follow the construction provided by Beklemishev [66] which is close to the
original construction of Solovay for GL. We have no Kripke semantics for GLP∗ at hand.
Therefore, we aim at reducing GLP∗ to J∗, which is reminiscent of Solovay’s reduction
of S to GL for the proof of the arithmetical completeness theorem for S [11, 1111, 3939]. To
this end, for any many-sorted formula from L∗, we define formulas M(ϕ) and M+(ϕ) as
follows [66]. Let 〈m1〉ϕ1, 〈m2〉ϕ2, . . . , 〈ms〉ϕs be an enumeration of all subformulas of ϕ of
the form 〈k〉ψ and let n := maxi≤smi. Define

M(ϕ) :=
∧

1≤i≤s
mi<j≤n

(〈j〉ϕi → 〈mi〉ϕi),
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and, furthermore,

M+(ϕ) := M(ϕ) ∧
∧
i≤n

[i]M(ϕ).

By the monotonicity axioms, it is clear that GLP∗ `M+(ϕ).
Before turning our attention to the arithmetical completeness proof, let us first re-

strict the class of models we have to consider for an unprovable formula in J∗ (see
also Beklemishev [66]).

Lemma 3.5.1. For any ϕ ∈ L∗, if J∗ 0 ϕ then there is a finite and strongly persistent
J∗-model K with root r such that K, r 1 ϕ.

Proof. Assume that J∗ 0 ϕ and let K0 = 〈W0, {Rn}n<ω, J·K〉 be a finite and strongly
persistent Kripke model such that K0, x0 1 ϕ. Define K = 〈W, {Rn}n<ω, J·K〉, where we
set y ∈ W iff y = x0 or there is a sequence of elements x1, x2, . . . , xk+1 such that for
some n0, n1, . . . , nk we have

x0Rn0x1Rn1x2Rn2 · · ·Rnk
xk+1 = y.

Furthermore, let the valuation of K agree with that of K0 (on the corresponding nodes).
We can easily convince ourselves that K is a finite and strongly persistent J∗-model.
Furthermore, we can easily prove by induction on ψ that

∀x ∈W : K, x 
 ψ ⇐⇒ K0, x 
 ψ.

Finally, we stipulate that x0 is a root of K. Indeed, consider any y ∈W \{x0} and suppose

x0Rn0x1Rn1x2Rn2 · · ·Rnk
xk+1 = y.

By induction on k, by the property

uRnvRmw =⇒ uRmin{n,m}w,

it follows that x0Rsy, where s = min{n0, n1, . . . , nk}. �

Theorem 3.5.2. Let T be a sound axiomatizable extension of PA and π a strong sequence
of provability predicates over T of which every provability predicate is sound. Then, for
all many-sorted formulas ϕ, the following statements are equivalent:

(i) GLP∗ ` ϕ;

(ii) J∗ `M+(ϕ)→ ϕ;

(iii) T ` fπ(ϕ), for all realizations fπ.

Proof. The direction from (ii)(ii) to (i)(i) is immediate since GLP∗ extends J∗ and GLP∗ `
M+(ϕ). Furthermore, the direction from (i)(i) to (iii)(iii) is the arithmetical soundness of GLP∗
(Proposition 3.3.43.3.4). We show that (iii)(iii) implies (ii)(ii) by assuming the contrapositive, i.e.,
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assume that J∗ 0 M+(ϕ) → ϕ. Then there is a finite and strongly persistent J∗-model
K = 〈W, {R′n}n<ω, J·K〉 with root r such that K, r 
M+(ϕ) and K, r 1 ϕ. Without loss of
generality, assume that W = {1, 2, . . . , N} for some N ≥ 1 and r = 1. We define a new
model K0 = 〈W0, {Rn}n<ω, J·K〉, where

(i) W0 = {0} ∪W ;

(ii) R0 = {(0, x) | x ∈W} ∪R′0;

(iii) Rk = R′k, for k > 0;

(iv) K0, 0 
 p ⇐⇒df K, 1 
 p, for all variables p.

Notice that K0 is still a finite and strongly persistent J∗-model such that K0, r 1M+(ϕ)→
ϕ. Define the following auxiliary notions:

Rk(x) := {y | xRky},
R∗k(x) := {y | y ∈ Ri(x), for some i ≥ k},
R◦k(x) := R∗k(x) ∪

⋃
{R∗k(z) | x ∈ R∗k+1(z)}.

We are now going to construct an arithmetical realization fπ such that T 0 fπ(ϕ). Let
m be the least number such that Rm 6= ∅ and Rk = ∅ for all k > m. We define Solovay
functions hn : ω → W0 for all n ≤ m and use their properties to construct such an fπ
which witnesses T 0 fπ(ϕ). In the following, let Prf0,Prf1, . . . ,Prfn, . . . be the sequence
of proof relations of the respective provability predicates [0]π, [1]π, . . . , [n]π, . . . over T .

Definition 3.5.3. For all n ≤ m, define a function hn : ω →W0 as follows:

h0(0) = 0 and hn(0) = `n−1, for n > 0;

hn(x+ 1) =
{
y, if hn(x)Rnz and Prfn(p¬Szq, x),
hn(x), otherwise.

Let `k = x be a formalization of the statement that the function hk (defined by Hk) has
as its limit at x, i.e.,

`k = x ⇐⇒df ∃N0 ∀n ≥ N0Hk(n, x).

For x ∈W0, Sx denotes the sentence `m = x. a

We now show that the concepts defined in the previous definition are well-defined in formal
arithmetic. First of all, we need to construct formulas Hk(x, y) for k = 0, 1, . . . ,m which
define the corresponding functions hk and provably satisfy the clauses of their definitions.
Notice that pSzq is a primitive recursive function of pHmq and z. Let notlim(y, x) be a
term for the function which, given the Gödel number of a formula F (a, b) and an x, returns
the Gödel number of the sentence which asserts that the function defined by F (a, b) has
no limit at x. Hence, if F (a, b) defines a function and has Gödel number n, then the
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value of notlim(n, k) will be the Gödel number of ¬∃N0 ∀n ≥ N0 F (n, k), asserting that
the function defined by F (a, b) has no limit at k (cf. Boolos [1111]). Now let A0(w, x, y) be
the arithmetical formula which naturally formalizes the following statement:

There is a finite sequence s of length a+ 1 such that s0 = 0 and sx = y and
the following conditions hold for all a < x:

(i) Whenever sa = i for an i ≤ N and Prf0(notlim(w, j), a) for some j
such that iR0j, we have that sa+1 = j.

(ii) Whenever ¬Prf0(notlim(w, j), a) for all j such that iR0j, we have that
sa+1 = sa.

For k > 0, let Ak(w, l, x, y) be an arithmetical formula which expresses the following
statement:

There is a finite sequence s of length a+ 1 such that s0 = l and sa = y and
the following conditions hold for all a < x:

(i) Whenever sa = i for an i ≤ N and Prfk(notlim(w, j), a) for some j
such that iRkj, we have that sa+1 = j.

(ii) Whenever ¬Prfk(notlim(w, j), a) for all j such that iRkj, we have that
sa+1 = sa.

By our assumptions on the predicates Prfn(α, y) (identical proof sequences cannot code
proofs of different formulas), we can prove that ∃!y A0(w, x, y) by induction on x. The
statement `0 = z is expressible via A0(w, x, y) and `0 can then be shown to be unique.
Suppose now that we have shown that `0 exists (which we will do below). Then we
can use the formula A0(w, x, y) to express the statement A1(w, `0, x, y). Similarly, we
successively continue to obtain Ak+1(w, `k, x, y). In the end, we will obtain a formula
A′m(w, x, y) from which we can infer by diagonalization that there is a formula Hm(x, y)
such that

T ` Hm(x, y)↔ A′m(pHm(x, y)q, x, y).

Performing converse substitutions then yields definitions of the formulas Hk for all k < m.
For a set A ⊆W0, we denote by `k ∈ A the sentence

∨
x∈A `k = x. Furthermore, given

such an A ⊆W0, we use quantifiers to naturally abbreviate statements of the form∧
a∈A

ψ(a),
∨
a∈A

ψ(a)

by ∀a ∈ A : ψ(a) and ∃a ∈ A : ψ(a) (or stylistic variations thereof), respectively.

Lemma 3.5.4. For all k ≥ 0,

(i) T ` ∀x ∃!w ∈W0 : Hk(x,w);

(ii) T ` ∃!w ∈W0 : `k = w;
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(iii) T ` ∀i, j ∀z ∈W0 (i < j ∧ hk(i) = z → hk(j) ∈ Rk(z) ∪ {z});

(iv) T ` ∀z ∈W0 (∃xhk(x) = z → `m ∈ R∗k(z) ∪ {z}).

Proof. Item (i)(i) follows from our previous discussion. For (ii)(ii), note that uniqueness easily
follows from (i)(i). For existence, we prove that

T ` Hk(a, b)→ `k = b ∨ `k ∈ Rk(b),

by induction on the converse of Rk. So suppose that for each c ∈ Rk(b), we have

T ` Hk(a, c)→ `k = c ∨ `k ∈ Rk(c).

By definition of Hk, we know that

T ` Hk(a, b)→ ∀x ≥ a (Hk(x, b) ∨ ∃w ∈ Rk(b) : Hk(x,w)).

By inductive hypothesis, we obtain

T ` Hk(a, b)→ ∀x ≥ a (Hk(x, b) ∨ ∃w ∈ Rk(b) : `k = w ∨ `k ∈ Rk(w)).

Hence,

T ` Hk(a, b)→ `k = b ∨ ∃w ∈ Rk(b) : `k = w ∨ `k ∈ Rk(w).

Since Rk is transitive, we obtain

T ` Hk(a, b)→ `k = b ∨ `k ∈ Rk(b),

as required. We know that T ` H0(0, 0) and so (ii)(ii) follows for k = 0. Hence, `0 exists.
By induction, we infer that T ` Hk(0, `k−1) for all k > 0 and so (ii)(ii) is proved. Items (iii)(iii)
and (iv)(iv) are immediate consequences of the definitions of the formulas Hk. �

Lemma 3.5.5. The following conditions hold for the sentences Sx:

(i) T `
∨
x∈W0 Sx and T ` ¬(Sx ∧ Sy) for all x 6= y;

(ii) T ` Sx → 〈k〉πSy, for all y such that xRky;

(iii) T ` Sx → [k]π(`m ∈ R◦k(x)), for all x 6= 0;

(iv) N |= S0.

Proof. Item (i)(i) is just a special case of item (ii)(ii) of Lemma 3.5.43.5.4. Item (ii)(ii) is proved by
formalizing the following argument in T . Assume Sx. Then we either have `k = x or
`k ∈ R∗k+1(x). By the properties of a J∗-model, in both cases it holds that Rk(`k) = Rk(x).
Let n0 be such that ∀n ≥ n0 : hk(n) = `k. Now consider a y such that xRky. Suppose
[k]π¬Sy. Then there is an n1 ≥ n0 such that Prfk(p¬Syq, n1), whence hk(n1) = y follows
by definition of hk, a contradiction.

50



For (iii)(iii), we formalize the following argument in T . Assume Sx, where x 6= 0 and
let z ∈ W0 be such that `k = z. By definition, we have x ∈ R∗k+1(z) or x = z. Hence,
R∗k(z) ⊆ R◦k(x) and, since this property is definable by a ∆0-formula, [k](R∗k(z) ⊆ R◦k(x)).
So,

[k]π(`m ∈ R∗k(z))→ [k]π(`m ∈ R◦k(x)).

We know that ∃nhk(n) = z and, being a Σ|πk|+1-formula, we have

[k]π(∃nhk(n) = z).

But for any w ∈W0, we have

T ` ∃nhk(n) = w → `m ∈ R∗k(w) ∪ {w}.

Therefore,

T ` [k]π(∃nhk(n) = w)→ [k]π(`m ∈ R∗k(w) ∪ {w}).

Reasoning in T , we obtain that [k]π(`m ∈ R∗k(z) ∪ {z}). It remains to notice that z 6= 0
since, by assumption, x 6= 0. But then ∃nhk(n) = z implies that [k]π¬Sz which means
that [k]π(`m 6= z). It follows that [k]π(`m ∈ R∗k(z)) and therefore [k]π(`m ∈ R◦k(x)) as
required.

To establish (iv)(iv), we prove by induction on k that N |= `k = 0 for all k ≤ m. For
k = 0, if N |= `0 = z for some z 6= 0, then [0]π¬Sz which by the soundness of [k]π yields
`0 6= z in the standard model, a contradiction. The induction step is then based on
a similar argument, taking into account that hk+1(0) = `k = 0 holds in the standard
model. �

Lemma 3.5.6. For all k < m, provably in T ,

(i) either `k = `k+1 or `kRk+1`k+1;

(ii) if k < n ≤ m then either `k = `n or `kRj`n for some j ∈ (k, n].

Proof. Item (i)(i) is clear from our previous considerations. Item (ii)(ii) is proved by an external
induction on n from (i)(i). �

Now we define a realization fπ as follows:

fπ : p 7−→
∨
x
 p

Sx.

In the following, we assume that we are given a natural arithmetization of the forcing
relation for the model K0 by bounded formulas.

Lemma 3.5.7. For any variable p of sort k ≤ m, provably in T ,

fπ(p) ⇐⇒ ∀w ∈W0 \ JpK : ∀x¬Hk(x,w).
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Proof. For the direction from left to right, we reason in T as follows. Suppose fπ(p) and,
towards a contradiction, suppose that ∃xhk(x) = w for some w ∈ W0 such that w 1 p.
By item (iv)(iv) of Lemma 3.5.43.5.4, we know that, provably in T ,

∃xhk(x) = u =⇒ Su ∨
∨

z∈R∗k(u)
Sz,

for any z ∈W0. In particular, we infer that

Sw ∨
∨

u∈R∗k(w)
Su.

Since K0 is strongly persistent and w 1 p, we know that u 1 p for all u ∈ R∗k(w). This
contradicts fπ(p) by item (i)(i) of Lemma 3.5.53.5.5.

For the other direction, we reason in T as follows. Suppose the right-hand side of the
equivalence. We certainly know that ¬Su for all u ∈W0 such that u 1 p. Now if `k = `m,
then, by item (i)(i) of Lemma 3.5.53.5.5, Sx for some x ∈W0 such that x 
 p and we are thus
finished. So suppose that `k 6= `m. We know that `k ∈ JpK, since ∀xhk(x) 6= w for all
w ∈ J¬pK. Assume now that `m ∈ J¬pK. By Lemma 3.5.63.5.6, there must be a j ∈ (k,m]
such that `kRj`m. By strong persistence, for any x, y ∈W0 such that xRjy, it holds that

y 1 p =⇒ x 1 p.

Thus, `m ∈ J¬pK is impossible and therefore `m ∈ JpK by item (i)(i) of Lemma 3.5.53.5.5. �

Lemma 3.5.8. For every variable pk, where k < ω, fπ(pk) is Π|πk|+1 in T .

Proof. Notice that Hk(x, y) is ∆|πk|+1 in T , since Prfk is Π|πk| in T and, moreover,
T ` ∀x∃y!Hk(x, y). Now if k > m then the sentence fπ(pk) is a disjunction of sentences
which are Σ|πk|+2 in T . Since T ` ∃!w ∈W0 : `m = w (item (i)(i) of Lemma 3.5.53.5.5), we know
that, provably in T ,

fπ(pk) ⇐⇒
∨
x
 p

Sx ⇐⇒
∧
x1 p
¬Sx,

i.e., fπ(pk) is Π|πk|+2 in T as required, since it is provably equivalent to a conjunction of
sentences which are Π|πk|+2 in T .

If k ≤ m, then by Lemma 3.5.73.5.7 we know that, provably in T ,

fπ(p) ⇐⇒ ∀w ∈W0 \ JpK : ∀x¬Hk(x,w),

which is visibly Π|πk|+1 in T . �

Therefore, fπ defines an arithmetical realization in the sense of Definition 3.3.23.3.2.

Lemma 3.5.9. For each subformula χ of ϕ and each x 6= 0,

(i) if K0, x 
 χ then T ` Sx → fπ(χ);
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(ii) if K0, x 1 χ then T ` Sx → ¬fπ(χ).

Proof. We prove both statements simultaneously by induction on χ. If χ is a propositional
variable, >, or ⊥, the claims follow by the definition of fπ and item (i)(i) of Lemma 3.5.53.5.5.

Suppose that χ = τ1 ∧ τ2, then K0, x 
 τ1 ∧ τ2 implies that K0, x 
 τi for i = 1, 2,
whence by inductive hypothesis we infer T ` Sx → fπ(τ1) and T ` Sx → fπ(τ2) and thus
T ` Sx → fπ(τ1 ∧ τ2) follows. If K0, x 1 τ1 ∧ τ2, then either K0, x 1 τ1 or K0, x 1 τ2. By
inductive hypothesis, we either have T ` Sx → ¬fπ(τ1) or T ` Sx → ¬fπ(τ2). Therefore,
T ` Sx → ¬fπ(τ1) ∨ ¬fπ(τ2) and so T ` Sx → ¬fπ(τ1 ∧ τ2). The other propositional
connectives are treated similarly.

Suppose χ = 〈k〉τ and assume K0, x 
 〈k〉τ . Then there is a y ∈ W0 \ {0} such that
xRky and K0, y 
 τ . By inductive hypothesis, we have T ` Sy → fπ(τ), whence

T ` 〈k〉πSy → 〈k〉πfπ(τ).

By item (ii)(ii) of Lemma 3.5.53.5.5, we obtain that T ` Sx → 〈k〉πSy and so T ` Sx → 〈k〉πfπ(τ)
as desired.

Suppose now that K0, x 1 〈k〉τ . We prove that K0, y 1 τ for all y ∈ R◦k(x). If
y ∈ R◦k(x), then for some z we have x ∈ R∗k+1(z) ∪ {z} and y ∈ R∗k(z). Clearly, for all
w ∈ Rk(x), we have K0, w 1 τ . Notice that Rk(x) = Rk(z) and, therefore, K0, z 1 〈k〉τ .
Furthermore, K0, z 
 〈j〉τ → 〈k〉τ for all j such that k < j ≤ m. Hence, K0, z 1 〈j〉τ for
every such j. It follows that K0, y 1 τ as desired. By inductive hypothesis, we know that
T ` Sy → ¬fπ(τ) for all y ∈ R◦k(x) and thus,

T ` `m ∈ R◦k(x)→ ¬fπ(τ),

whence,

T ` [k]π(`m ∈ R◦k(x))→ [k]π¬fπ(τ),

which, using item (iii)(iii) of Lemma 3.5.53.5.5, implies

T ` Sx → [k]π¬fπ(τ).

That is, T ` Sx → ¬〈k〉πfπ(τ). �

In particular, T ` Sr → ¬fπ(ϕ). Furthermore, T ` S0 → ¬[0]π¬Sr. Now if T ` fπ(ϕ)
then T ` ¬Sr, whence T ` [0]π¬Sr and so T ` ¬S0, whence by the soundness of T , we
get N 6|= S0 which contradicts item (iv)(iv) of Lemma 3.5.53.5.5. Therefore, T 0 fπ(ϕ). �

As in the work of Beklemishev [66], one can obtain an arithmetical completeness theorem
for a many-sorted truth provability logic. More precisely, let GLPS∗ denote the logic which
consists of the set of theorems of GLP∗ extended by the schema ϕ→ 〈n〉ϕ (n ≥ 0) and
with modus ponens as its sole rule of inference. Let 〈n1〉ϕ1, . . . , 〈ns〉ϕs be an enumeration
of all subformulas from ϕ of the form 〈k〉ψ. Let

H(ϕ) :=
s∧
i=1

(ϕi → 〈ni〉ϕi).

53



Theorem 3.5.10. Let T be a sound axiomatizable extension of PA and π a strong
sequence of provability predicates over T of which every provability predicate is sound.
Then, for all many-sorted formulas ϕ, the following statements are equivalent:

(i) GLPS∗ ` ϕ;

(ii) GLP∗ ` H(ϕ)→ ϕ;

(iii) N |= fπ(ϕ), for all realizations fπ.

Proof. The direction from (ii)(ii) to (i)(i) is clear since GLPS∗ ` H(ϕ). The direction from (i)(i)
to (iii)(iii) is easy to see since T is sound. We prove that (iii)(iii) implies (ii)(ii) again by assuming the
contrapositive, i.e., suppose GLP∗ 0 H(ϕ)→ ϕ. Then J∗ 0M+(H(ϕ)→ ϕ)→ (H(ϕ)→
ϕ) and so there is a J∗-model K = 〈W, {Rn}n<ω, J·K〉 which is strongly persistent and
K, r 
 M+(ϕ) ∧H(ϕ) but K, r 1 ϕ for a root r. As before, identify W = {1, 2, . . . , N}
for some N ≥ 1 and let r = 1. Construct a model K0 which is defined as in the proof
of Theorem 3.5.23.5.2.

All the lemmas in the proof of Theorem 3.5.23.5.2 hold without change except that
we need to supplement Lemma 3.5.93.5.9 by the following statement. The proof is as that
of Beklemishev [66].

Lemma 3.5.11. For each subformula χ of ϕ we have

(i) if K0, 0 
 χ then T ` Sx → fπ(χ);

(ii) if K0, 0 1 χ then T ` Sx → ¬fπ(χ);

Proof. By induction on χ. We prove both statements simultaneously. The only difference
to the proof of Lemma 3.5.93.5.9 is the proof of item (ii)(ii) in the case where χ = 〈k〉τ .

Suppose K0, 0 1 〈k〉τ . We know that K0, 0 1 ϕ since K0, 0 
 H(ϕ). Furthermore,
since K0, 0 
 M(ϕ), it holds that K0, 0 1 〈j〉τ for all j ≥ k. Therefore, K0, x 1 τ for all
x ∈ R∗k(0) ∪ {0}. By induction hypothesis and Lemma 3.5.93.5.9, we have

T ` `m ∈ R∗k(0) ∪ {0} → ¬fπ(τ),

whence it follows that

T ` [k]π(`m ∈ R∗k(0) ∪ {0})→ [k]π¬fπ(τ).

Furthermore,

T ` S0 → ∃nhk(n) = 0
→ [k]π(∃nhk(n) = 0).

Thus, T ` S0 → [k]π(`m ∈ Rk(0) ∪ {0}) by Lemma 3.5.43.5.4 and so T ` S0 → [k]π¬fπ(τ),
i.e., T ` S0 → ¬〈k〉πfπ(τ) as required. �

Now K0, 0 1 ϕ yields T ` S0 → ¬fπ(ϕ) which by N |= S0 and soundness gives us
N 6|= fπ(ϕ) as desired. �
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Corollary 3.5.12. GLPS∗ is decidable.

Notice that Theorem 3.5.23.5.2 yields a reduction from GLP∗ to J∗. However, the formula
M+(ϕ) is, in a sense, inconvenient since its size does not depend on the size of ϕ and, addi-
tionally,M+(ϕ) is not necessarily in the language of ϕ. We borrow a result from Beklem-
ishev et al. [88] to improve upon that. Let 〈m1〉ϕ1, 〈m2〉ϕ2, . . . , 〈ms〉ϕs be an enumeration
of all subformuals of ϕ of the form 〈k〉ψ such that i < j implies mi ≤ mj . Define

N(ϕ) :=
∧

1≤i≤s
i<j≤s

(〈mj〉ϕj → 〈mi〉ϕi).

Furthermore, let

N+(ϕ) := N(ϕ) ∧
∧

1≤i≤s
[mi]ϕ.

Lemma 3.5.13. Let ϕ ∈ L∗Λ, where Λ ⊆ ω. Then,

GLP∗Λ ` ϕ ⇐⇒ J∗Λ ` N+(ϕ)→ ϕ.

Proof. The direction from right to left is immediate, since N+(ϕ) is in L∗Λ and GLP∗Λ `
N+(ϕ). For the other direction, suppose that J∗Λ 0 N+(ϕ)→ ϕ. Then there is a finite and
strongly persistent J∗Λ-model K = 〈W, {Rα}α∈Λ, J·K〉 with root r such that K, r 
 N+(ϕ)
and K, r 1 ϕ. Expand K to a J∗-model, call it K′, by setting Rα = ∅ for all α ∈ ω \ Λ.
Notice that K′ forces the same formulas from L∗Λ at every of its point as K. In particular,
K′, r 1 ϕ. We show that K′, r 
 M+(ϕ). Let i ∈ {1, . . . , s} and consider any j such
that mi < j ≤ n. Now K′, r 
 〈j〉ϕi only if j = mk for some k = 1, . . . , s. In this
case, K′, r 
 〈mi〉ϕ since K′, r 
 N+(ϕ). Otherwise, if j 6= mk for all k = 1, . . . , s, then
trivially K′, r 
 〈j〉ϕi → 〈mi〉ϕi, since K′, r 1 〈j〉ϕi due to the fact that Rj = ∅. Let
n := maxi≤smi and consider any i ≤ n. Similarly as before, K′, r 
 [i]M(ϕ) if i = mk

for some k = 1, . . . , s. If not then trivially K′, r 
 [i]M(ϕ). Hence, K′, r 
M+(ϕ) and so
J∗ 0M+(ϕ)→ ϕ, whence GLP∗ 0 ϕ and thus GLP∗Λ 0 ϕ follows. �

Let ϕ be a formula from L∗ and let p1, . . . , pk exhaust all variables from ϕ and let
α1, . . . , αk be their respective sorts. Furthermore, let Θ ⊆ ω be a set of modalities. Define

RΘ(ϕ) :=
k∧
i=1

∧
({〈j〉pi → pi | j ∈ Θ, j ≥ αi} ∪ {〈j〉¬pi → ¬pi | j ∈ Θ, j > αi})

and

R+
Θ(ϕ) := RΘ(ϕ) ∧

∧
j∈Θ

[j]RΘ(ϕ).

Lemma 3.5.14. Let ϕ ∈ L∗ω and let Θ be the set of all modalities occurring in ϕ. Then,

GLP∗ ` ϕ ⇐⇒ GLP ` R+
Θ(ϕ)→ ϕ.
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Proof. The direction from right to left is immediate since GLP∗ ` R+
Θ(ϕ) and GLP∗

extends GLP. For the other direction, suppose GLP 0 R+
Θ(ϕ)→ ϕ. It follows from results

of Beklemishev [66] together with a result by Beklemishev et al. [88] that this implies

J 0 N+(R+
Θ(ϕ)→ ϕ)→ (R+

Θ(ϕ)→ ϕ). (3.2)

Beklemishev [55] showed that J is complete with respect to the class of all J∗-models (there
called J-models). So let K = 〈W, {Rα}α<ω, J·K〉 be a J∗-model with root r such that

K, r 1 N+(R+
Θ(ϕ)→ ϕ)→ (R+

Θ(ϕ)→ ϕ).

Therefore, K, r 
 N+(R+
Θ(ϕ)→ ϕ) and K, r 
 R+

Θ(ϕ). Now it follows that K, r 
 N+(ϕ).
Since K, r 
 R+

Θ(ϕ) and K is rooted, it is easy to see that K is strongly persistent by the
construction of R+

Θ(ϕ). (Notice that K can be chosen such that Rα = ∅ for all α 6∈ Θ,
since the formula depicted in (3.2)(3.2) is in the language of ϕ.) Therefore, J∗ 0 N+(ϕ)→ ϕ
and so GLP∗ 0 ϕ follows. �

We say that a logic L has the Craig interpolation property if, whenever L ` ϕ→ ψ, then
there is an η containing only variables which are present in ϕ and ψ such that both
L ` ϕ→ η and L ` η → ψ.

Corollary 3.5.15. GLP∗ has the Craig interpolation property.

Proof. Suppose GLP∗ ` ϕ → ψ. Let Θ be the set of all modalities from ϕ → ψ. By
Lemma 3.5.143.5.14, we have

GLP ` R+
Θ(ϕ→ ψ)→ (ϕ→ ψ).

Note that R+
Θ(ϕ→ ψ) is equivalent in GLP to R+

Θ(ϕ) ∧R+
Θ(ψ). Hence,

GLP ` R+
Θ(ϕ) ∧R+

Θ(ψ)→ (ϕ→ ψ),

whence by propositional logic

GLP ` R+
Θ(ϕ) ∧ ϕ→ (R+

Θ(ψ)→ ψ).

Ignatiev [2424] showed that GLP has the Craig interpolation property. Hence, there is an η
containing only variables which occur in R+

Θ(ϕ) ∧ ϕ and R+
Θ(ψ)→ ψ such that

GLP ` R+
Θ(ϕ) ∧ ϕ→ η and GLP ` η → (R+

Θ(ψ)→ ψ).

But GLP∗ ` R+
Θ(ϕ) and GLP∗ ` R+

Θ(ψ). Therefore, GLP∗ ` ϕ → η and GLP∗ ` η → ψ.
Note that η only contains variables which occur in ϕ and ψ, since R+

Θ(τ) contains exactly
the variables from τ , for any formula τ . �

Corollary 3.5.16. Deciding whether GLP∗ ` ϕ is PSpace-complete.

Proof. Shapirovsky [3434] showed that deciding whether GLP ` ϕ is complete for PSpace.
Thus, the claim follows by Lemma 3.5.143.5.14 and the fact that the size of R+

Θ(ϕ) (where Θ
is the set of modalities from ϕ) is polynomially bounded by the size of ϕ. �
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CHAPTER 4
Many-Sorted Reflection Calculi

In this chapter we continue to study positive calculi which allow for a richer arithmetical
interpretation than the full language of GLP∗. After defining our basic formalism in Sec-
tion 4.14.1 we continue to define our arithmetical interpretation in Section 4.24.2. Section 4.34.3
treats Kripke semantics and Section 4.44.4 establishes the relationship between our many-
sorted calculi and the positive fragment11 of GLP∗. The arithmetical completeness of our
positive calculus is proved in Section 4.54.5.

4.1 M o t i vat i o n a n d B a s i c s

Positive fragments of modal logics were first studied by Dunn [1515].22 Dashkov [1313] brought
the study of positive modal logics into the realm of provability logics which is motivated
by the fact that an ordinal analysis proposed by Beklemishev [22] makes only use of the
positive fragment of GLP. In particular, Dashkov showed that the positive fragment of GLP
can be axiomatized by a purely positive calculus and that the question of theoremhood
in this calculus can be decided in polynomial time. As pointed out by Dashkov, the
restriction of GLP to the positive fragment allows one to interpret propositional variables
as theories instead of single sentences. Furthermore, these theories need neither be finitely
axiomatizable nor of bounded arithmetical complexity. This permits the introduction of
new modal operators which axiomatize stronger properties than n-consistency for every
n < ω. More precisely, in the positive setting it is well-defined to define an operator 〈ω〉
on which maps any theory T to the full uniform reflection scheme for T .

Recently, Beklemishev [77] investigated such positive calculi (which he calls reflection
calculi) with an additional modality 〈ω〉. He showed that the calculi he introduced are
decidable in polynomial time and that they are arithmetically complete with respect

1If L is a modal logic, then its positive fragment is defined to be its theorems of the form ϕ → ψ,
where ϕ and ψ are positive formulas in the sense of Definition 4.1.14.1.1.

2Dunn actually identifies positive fragments of modal logics to also contain the connectives 2 and ∨
besides those in Definition 4.1.14.1.1.
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to the interpretation of 〈ω〉 as the full uniform reflection schema in arithmetic. Propo-
sitional variables are there interpreted as primitive recursive enumerations of theories
extending PA. We will continue this line of research and define a family of positive many-
sorted reflection calculi in the sequel. In our elaboration, we mainly follow the papers of
Beklemishev [77] and Dashkov [1313].

Definition 4.1.1. Let Λ ⊆ ω+ 1 be a signature. (Positive) formulas (over Λ) and their
associated sorts are defined inductively as follows:

(i) > is a positive formula of sort 0.

(ii) Every propositional variable pα is a positive formula of sort α.

(iii) If A and B are positive formulas of sorts α and β then (A ∧ B) is a positive
formula of sort max{α, β}.

(iv) If A is a positive formula (of any sort) and α ∈ Λ, then 〈α〉A is a positive formula
of sort α.

For any positive formula A, we denote its sort by |A|. When considering positive formulas,
we write αA instead of 〈α〉A. a

Definition 4.1.2. Let Λ be a signature. A sequent (over Λ) is an expression of the form
A⇒ B, where A and B are positive formulas over Λ. a

Given any Λ ⊆ ω+1, we denote by L+
Λ the set of all positive formulas over Λ. Furthermore,

we denote by L+ the set of all positive formulas over ω+1. The notion of (general) substi-
tution is defined as in the case of unrestricted modal languages (cf. Definition 3.2.23.2.2). The
notation we agreed upon directly carries over into the positive setting. Note in particular
that substitution is defined as to respect the corresponding sorts. For a substitution τ
and a sequent γ = A⇒ B, we define γτ := Aτ ⇒ Bτ .

The following axiom schemes and rules of inference are called propositional axioms
and propositional rules, respectively.

(i) A⇒ A; A⇒ >;

(ii) A ∧B ⇒ A; A ∧B ⇒ B;

(iii) if A⇒ B and A⇒ C then infer A⇒ B ∧ C;

(iv) if A⇒ B and B ⇒ C then infer A⇒ C.

In this chapter, a (positive) logic over Λ will be a set of sequents over Λ which is closed
under substitutions, is closed under all propositional rules, and under the rule

(v) if A⇒ B then infer αA⇒ αB, for any α ∈ Λ.

We again use the standard notation that the subscript “Λ” in LΛ indicates that LΛ is a
positive logic over Λ.
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Definition 4.1.3. The logic RC∗Λ is given by the postulates (i)(i) to (v)(v) as well as the
following axiom schemes and rules of inference (modalities range over Λ):

(vi) αA⇒ A, where |A| ≤ α (α-persistence);

(vii) αA⇒ βA, for β < α (monotonicity);

(viii) αA ∧B ⇒ α(A ∧B), where |B| < α.

The logic RJ∗Λ is obtained from RC∗Λ by dropping monotonicity but adding the axiom
scheme

(ix) βαA⇒ βA, for β ≤ α.

We set RC∗ := RC∗ω+1 and RJ∗ := RJ∗ω+1. a

Let LΛ be any logic. As usual, given a sequent γ, a proof of γ in LΛ is a finite sequence
of sequents γ1, . . . , γn such that γn = γ and for i = 1, . . . , n, γi is either an axiom or
follows from previous elements of the sequence by an application of a rule. In this case,
γ is called provable (in LΛ), which we denote by LΛ ` γ. When exhibiting proofs in
a logic LΛ, we often write LΛ ` A1 ⇒ A2 ⇒ · · · ⇒ An to express that the sequence
A1 ⇒ A2, A2 ⇒ A3, . . . , An−1 ⇒ An is (part of) a proof in LΛ. In this notation, we
usually refer to some previously derived results which will then be clear from context.
Given any logic LΛ and a set of formulas Γ ⊆ L+

Λ , we write LΛ ` Γ ⇒ B if there exist
A1, . . . , An ∈ Γ such that LΛ ` A1 ∧ · · · ∧An ⇒ B.33 For logics as defined above, we have
a statement related to Proposition 3.2.43.2.4.

Proposition 4.1.4. Suppose LΛ ` A ⇒ B and |A|, |B| ≤ α. Then, LΛ ` C(pα/A) ⇒
C(pα/B) for any C ∈ L+

Λ .

Proof. As in the case of Proposition 3.2.43.2.4, by induction on C. �

Note that if β < α, then RJ∗Λ ` αA∧ βB ⇒ α(A∧ βB), for any formula B. Furthermore,
note that RC∗Λ ` αβA⇒ βA, for α ≤ β. Furthermore, if α ≥ β then RC∗Λ ` αA⇒ βA by
monotonicity (and A ⇒ A), whence RC∗Λ ` βαA ⇒ ββA ⇒ βA. We thus immediately
obtain:

Lemma 4.1.5. RC∗Λ extends RJ∗Λ.

Example 4.1.6. Let A and B be a formulas such that |B| < α. We know that RC∗ `
αA ∧ B ⇒ α(A ∧ B). But also RC∗ ` αB ⇒ B. Hence, RC∗ ` αA ∧ αB ⇒ α(A ∧ B).
Now if |A| < α and B is an arbitrary formula then

RC∗ ` αB ∧ αA⇒ αA ∧ αB ⇒ α(A ∧B).

Hence, whenever |A| < α or |B| < α then RC∗ ` αA ∧ αB ⇒ α(A ∧B). a

3The empty conjunction is defined to be >.
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4.2 A r i t h m e t i c a l I n t e r p r e tat i o n

As in Beklemishev [77], propositional variables will be realized via primitive recursive
numerations of theories extending PA. Recall that AxPA(α) denotes a bounded formula
which arithmetically defines (the set of Gödel numbers of) the axioms of PA. Furthermore,
recall that we assume that we let PA contain function symbols and predicate symbols for
all primitive recursive functions and predicates, respectively.

Definition 4.2.1. A (primitive recursive) numeration is a bounded formula which arith-
metically defines the Gödel numbers of the axioms of an extension of PA. We say that σ
numerates S. A numeration σ numerates a Πn+1-axiomatized extension of PA if

PA ` ∀α (σ(α)→ AxPA(α) ∨ α ∈ Πn+1),

where the expression “α ∈ Πn+1” denotes a natural bounded formula (possibly with an
additional parameter n) which expresses that α is the Gödel number of a Πn+1-sentence
(see Hájek and Pudlák [2121]). a

The notion of a numeration strongly coincides with the concepts from Chapter 22 where
for a theory T , we considered a formula AxT (α) which arithmetically defines the axioms
of T . The formalized notion of theoremhood in T was then naturally formulated by a
predicate 2T (α). Analogously, for a numeration σ we denote by 2σ(α) the standard
formula (the provability predicate of σ) which arithmetically defines the theorems of the
theory numerated by σ. For numerations σ and τ , we write σ ⇒PA τ if

PA ` ∀α (2τ (α)→ 2σ(α)),

and σ ⇒ τ if

N |= ∀α (2τ (α)→ 2σ(α)),

i.e., if the theory numerated by τ proves every theorem of the theory numerated by σ.
We assume that every numeration provably in PA numerates an extension of PA, i.e.,
τ ⇒PA AxPA for any τ , i.e., that every theory numerated by some numeration provably
extends PA. As usual, we write 2σϕ instead of 2σ(pϕq) if no confusion arises.

We denote by Con(σ) the sentence ¬2σ⊥. Furthermore, as we did in Section 2.52.5,
we denote by Conn(σ) the formula which expresses that the theory numerated by σ is
n-consistent. (Recall that n-consistency is equivalent over PA to the uniform reflection
principle for Πn+1-formulas; see Section 2.52.5.) We stress that Con0(σ) is provably equiva-
lent in PA to Con(σ). Furthermore, Conn(σ) can be formalized to be a formula depending
on n. Hence, we often regard pConn(σ)q as a definable term which depends on n. We use
these facts without adhering to any special notation.

Given any arithmetical sentence ϕ, we denote by ϕ the numeration

AxPA(α) ∨ α = pϕq,
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which numerates the theory PA + ϕ. In this setting, for any numeration σ, Conn(σ)
numerates the theory PA + Conn(σ). Let σ numerate S. The scheme

Conω(σ) : {Conn(σ) | n ∈ ω}

is equivalent over PA to the uniform reflection principle for S. Overloading notation, we
denote by Conω(σ) a numeration which numerates the theory PA + Conω(σ).

Suppose that σ numerates a finite extension of PA of the form PA + ψ for a sentence
ψ. Suppose ψ ⇒PA ϕ. Then, since PA is sound, we obtain ψ ⇒ ϕ and so PA + ψ ` ϕ.
Conversely, if PA + ψ ` ϕ then PA ` 2PA(ψ → ϕ), whence by the formalized deduction
theorem PA ` 2ψ ϕ. Therefore, by an argument formalizable in PA, we also have ψ ⇒PA ϕ
and so ψ ⇒ ϕ. Hence,

PA + ψ ` ϕ ⇐⇒ ψ ⇒PA ϕ ⇐⇒ ψ ⇒ ϕ.

In particular, if σ numerates a finite extension of PA of the form PA + {ϕ1, . . . , ϕn} then
in order to establish σ ⇒PA ψ, it is sufficient to establish PA + {ϕ1, . . . , ϕn} ` ψ.

Definition 4.2.2. An arithmetical realization is a function ·∗ from positive formulas to
numerations such that the following conditions are satisfied:

(i) >∗ = AxPA;

(ii) for every propositional variable p of sort α, p∗ is a numeration which numerates
(1) a Πα+1-axiomatized extension of PA in case α < ω and (2) an arbitrary
extension of PA in case α = ω;

(iii) (A ∧B)∗ = A∗ ∨B∗;

(iv) (αA)∗ = Conα(A∗), for α ≤ ω.

We say that A∗ is the translation of A under ·∗. a

Lemma 4.2.3. Let ·∗ be an arithmetical realization and A a formula such that |A| < ω.
Then A∗ numerates a Π|A|+1-axiomatized extension of PA.

Proof. By an easy induction on A. The cases for propositional variables and > are clear.
For the induction step, notice that for n < ω, Conn(σ) provably belongs to Πn+1 for any
numeration σ. Furthermore, provably in PA, if ϕ belongs to Πm, then also to Πn for
n > m. Using these facts, the claim easily follows. �

Recall that TrueΠn+1(x) denotes a truth-definition for Πn+1-formulas. In particular, PA `
ϕ ↔ TrueΠn+1(pϕq) for all Πn+1-sentences ϕ. This fact can be formalized uniformly in
n [77], i.e.,

PA ` ∀n ∀α ∈ Πn+1 2PA(α↔ TrueΠn+1(α̇)). (4.1)

Lemma 4.2.4. For n ∈ ω, Conn(σ) is provably equivalent in PA to

∀α ∈ Πn+1 (2σ(α)→ TrueΠn+1(α)).
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Proof. Let σ numerate S. We show that the formula presented above is equivalent to
RFNΠn+1(S) over PA. Let ϕ(x) be a Πn+1-formula. Then,

PA + ∀α ∈ Πn+1 (2σ(α)→ TrueΠn+1(α)) ` 2σϕ(ẋ)→ TrueΠn+1(pϕ(ẋ)q)
→ ϕ(x).

Conversely,

PA + RFNΠn+1(S) ` α ∈ Πn+1 ∧2σ(α)→ 2σTrueΠn+1(α̇)
→ TrueΠn+1(α),

since TrueΠn+1(x) is a Πn+1-formula. This proves the claim. �

The following lemma generalizes Corollary 2.5.22.5.2.

Lemma 4.2.5. Let σ numerate S and ϕ be a Πn+1-sentence. If S ` ϕ then PA +
Conn(σ) ` ϕ. Moreover, this statement is formalizable in PA uniformly in n, i.e.,

PA ` ∀n ∀α ∈ Πn+1 (2σ(α)→ 2Conn(σ)(α)).

Proof. The informal version is an easy consequence of Lemma 2.5.112.5.11. Indeed, PA +
Conn(σ) ` 2σϕ→ ϕ, whence by PA ` 2σϕ we obtain PA + Conn(σ) ` ϕ as desired.

For the formalized version, reason in PA as follows. Let α ∈ Πn+1 and suppose 2σ(α).
We know 2PA(α̇ ∈ Πn+1 ∧2σ(α̇)). By the previous lemma, we know that

2Conn(σ)∀β ∈ Πn+1 (2σ(β)→ TrueΠn+1(β)).

In particular,

2Conn(σ)(α̇ ∈ Πn+1 ∧2σ(α̇)→ TrueΠn+1(α̇)),

whence 2Conn(σ)TrueΠn+1(α̇) and thus 2Conn(σ)(α) follows by (4.1)(4.1). �

Corollary 4.2.6. Let σ be a numeration and n < ω. Then Conn(σ)⇒PA σ, whenever σ
numerates a Πn+1-axiomatized extension of PA.

Proof. We reason in PA as follows. Suppose 2σ(ϕ) and reason by induction on proof
length of ϕ. The only interesting case is the case when ϕ ∈ Πn+1. By the previous lemma,
we obtain 2Conn(σ)(ϕ). Hence, Conn(σ)⇒PA σ as required. �

Corollary 4.2.7. For any numeration σ, Conω(σ)⇒PA σ.

Proof. Note that

PA ` 2σ(α)→ ∃n (α ∈ Πn+1 ∧2σ(α))
→ ∃n2Conn(σ)(α)
→ 2Conω(σ)(α).

Further notice that we used formalizations of the facts that every sentence is PA-provably
equivalent to a Πn+1-sentence for some n and that pConn(σ)q can be constructed primitive
recursively from the parameter n. �
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Lemma 4.2.8. Let ϕ be a Πm+1-sentence and σ a numeration. For m < n < ω it holds
that

PA ` Conn(σ) ∧ ϕ→ Conn(σ ∨ ϕ).

Proof. We reason in PA as follows. Suppose 2σ∨ϕ(ψ) for ψ ∈ Πn+1. Then 2σ(ϕ→ ψ) by
the formalized deduction theorem. We know that ϕ→ ψ is a Πn+1-sentence since m < n.
Thus, if Conn(σ) then also TrueΠn+1(ϕ → ψ) and so TrueΠn+1(ϕ) → TrueΠn+1(ψ). But
also ϕ ∈ Πn+1 and so TrueΠn+1(ϕ), whence TrueΠn+1(ψ) follows as required. �

Corollary 4.2.9. Let τ numerate a Πm+1-axiomatized extension of PA. Then for any
numeration σ,

Conω(σ) ∨ τ ⇒PA Conω(σ ∨ τ).

Proof. We show an informal version of this statement by an argument formalizable in
PA. That is, we must show that for each n,

PA + Conω(σ) + τ ` Conn(σ ∨ τ).

We may assume n > m and use the previous lemma. A formalization of the corresponding
argument yields the proof. �

Proposition 4.2.10. RC∗ is arithmetically sound, i.e., if RC∗ ` A⇒ B then A∗ ⇒PA B
∗

for every arithmetical realization ·∗.

Proof. By induction on the length of a derivation of A ⇒ B. Most of the axioms have
been handled by the previous lemmas and corollaries. The soundness of the propositional
axioms and rules is also obvious. For monotonicity, it is clear that Conα(σ)⇒PA Conβ(σ)
for α > β, since the strength of Conα(σ) increases with α. Suppose A∗ ⇒PA B

∗ and let
n < ω. We can easily see that PA + Conn(A∗) ` Conn(B∗), since

PA + Conn(A∗) ` α ∈ Πn+1 ∧2B∗(α)→ 2A∗(α)
→ TrueΠn+1(α).

Hence, Conn(A∗) ⇒PA Conn(B∗) follows. Formalizing this fact also establishes that if
A∗ ⇒PA B

∗ then Conω(A∗)⇒PA Conω(B∗). �

4.3 K r i p k e S e m a n t i c s

Since L+
Λ ⊆ L

∗
Λ (i.e., the set of positive formulas is contained in the set of many-sorted

formulas) for any signature Λ, the notion of Kripke model over Λ directly carries over
into the positive setting.

Definition 4.3.1. Let Λ be a signature and K = 〈F, J·K〉 a Kripke model, where F =
〈W, {Rα}α∈Λ〉, and x ∈ W a world. A sequent A ⇒ B over Λ is true at x (notation:
K, x 
 A ⇒ B) if K, x 
 A implies K, x 
 B. A ⇒ B is (globally) true in K (notation:
K |= A ⇒ B) if K, x 
 A ⇒ B for all x ∈ W . Similarly, A ⇒ B is valid in F (notation:
F |= A⇒ B) if it is globally true in every model based on F. a
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Definition 4.3.2. We say that a Kripke frame F = 〈W, {Rα}α∈Λ〉 is an RJ∗Λ-frame if it
satisfies the following conditions for all α, β ∈ Λ:

(i) ∀x, y, z (xRαy & yRβz ⇒ xRγz), for γ = min{α, β};

(ii) ∀x, y, z (xRαy & xRβz ⇒ yRβz), for α > β.

An RJ∗Λ-model is a Kripke model based an an RJ∗Λ-frame. a

Definition 4.3.3. An RC∗Λ-frame is an RJ∗Λ-frame F = 〈W, {Rα}α∈Λ〉 which is monotone,
i.e, where Rα ⊆ Rβ for all α, β ∈ Λ such that α > β. An RC∗Λ-model is a Kripke model
based on an RC∗Λ-frame. a

In case Λ = ω + 1, we drop the subscript “Λ” in the terms RJ∗Λ-frame and RJ∗Λ-model
(similarly for RC∗). Recall that a Kripke model K = 〈W, {Rα}α∈Λ, J·K〉 is

(i) persistent if for all α ∈ Λ, all propositional variables pβ with β ≤ α, and all
x, y ∈W we have

xRαy and y ∈ JpβK imply x ∈ JpβK;

(ii) strongly persistent if K is persistent and for all α ∈ Λ, all propositional variables
pβ with β < α, and all x, y ∈W we have

xRαy and y 6∈ JpβK imply x 6∈ JpβK.

Lemma 4.3.4. Let K = 〈W, {Rα}α∈Λ, J·K〉 be an RJ∗Λ-model. Then, K is strongly persis-
tent iff for all formulas A ∈ L+

Λ and all α ∈ Λ we have

(i) if |A| ≤ α then xRαy and y ∈ JAK imply x ∈ JAK;

(ii) if |A| < α then xRαy and y 6∈ JAK imply x 6∈ JAK.

Proof. The direction from right to left is immediate. The other direction is provedmutatis
mutandis as Lemma 3.4.73.4.7. �

Lemma 4.3.5. Let Λ ⊆ ω + 1 and α ∈ Λ. The axiom schemes

(i) αA⇒ A, where |A| ≤ α, and

(ii) αA ∧B ⇒ α(A ∧B), where |B| < α,

are true in every strongly persistent RJ∗Λ-model.

Proof. Item (i)(i) is clear by virtue of Lemma 4.3.44.3.4. For (ii)(ii), let |B| < α and consider an
RJ∗Λ-model K = 〈W, {Rα}α∈Λ, J·K〉. Let x ∈W and suppose x 
 αA ∧B. Then there is a
y ∈ W such that xRαy and y 
 A. Now if y 1 B, then x 1 B by Lemma 4.3.44.3.4. Hence,
y 
 α(A ∧B). �

Proposition 4.3.6. Let Λ ⊆ ω + 1.

(i) RJ∗Λ is sound for the class of all strongly persistent RJ∗Λ-models;
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(ii) RC∗Λ is sound for the class of all strongly persistent RC∗Λ-models.

Proof. In both cases by induction on the length of a derivation of a sequent. Most of the
axioms are clear from our previous discussion. In particular, the previous lemmas handle
the cases of the axioms where we express conditions on the sorts of formulas. We leave
the details to the reader. �

Example 4.3.7. Let p and q be variables of sort α. We easily see that RC∗ 0 αp∧αq ⇒
α(p ∧ q). Indeed, consider the model K = 〈{a, b, c}, {Rα}α≤ω, J·K〉, where

(i) Rα = {(a, b), (a, c)} and Rγ = ∅, for all γ > α;

(ii) Rβ = Rα ∪ ({b, c} × {b, c}), for β < α;

(iii) JpK = {a, b}, JqK = {a, c};

We see that K is a strongly persistent RC∗-model which falsifies αp ∧ αq ⇒ α(p ∧
q). By Proposition 4.3.64.3.6, we know that RC∗ 0 αp ∧ αq ⇒ α(p ∧ q). Combining this
with Example 4.1.64.1.6, we obtain

RC∗ ` αp ∧ αq ⇒ α(p ∧ q) ⇐⇒ |p| < α or |q| < α.

In particular, RC∗ ` ωp ∧ ωq ⇒ ω(p ∧ q) iff |p| < ω or |q| < ω. a

We continue now to prove that our calculi are complete with respect to certain classes
of Kripke models. For a set of formulas ∆, we set `(∆) := {α | αA ∈ ∆ for some A}. We
say that a set of formulas ∆ is adequate if the following conditions are satisfied:

(i) > ∈ ∆;

(ii) ∆ is closed under subformulas;

(iii) if βA ∈ ∆ and β < α for some α ∈ `(∆), then αA ∈ ∆;

(iv) for any variable pβ, if pβ ∈ ∆ and α ≥ β for some α ∈ `(∆) then αpβ ∈ ∆.

It is clear that every finite set Γ can be extended to a finite adequate Γ′ such that
`(Γ) = `(Γ′).

Definition 4.3.8. Let ∆ be an adequate set and Λ := `(∆). An LΛ-theory in ∆ is a set
Γ ⊆ ∆ such that if LΛ ` Γ⇒ B and B ∈ ∆, then B ∈ Γ. a

Now fix a finite adequate ∆ and let Λ := `(∆). Consider an arbitrary logic LΛ. We define
a Kripke frame F∆ = 〈W, {Rα}α∈Λ〉, where

W := {x | x is an LΛ-theory in ∆},

and for α ∈ `(∆), we define xRαy iff

(i) if A ∈ y and αA ∈ ∆ then αA ∈ x;

(ii) if βA ∈ y and αA ∈ ∆ then min{α, β}A ∈ x;
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(iii) if β < α and βA ∈ x then βA ∈ y;

(iv) for all variables pβ, if β < α and pβ 6∈ y, then pβ 6∈ x;

Lemma 4.3.9. If LΛ extends RJ∗Λ then F∆ is an RJ∗Λ-frame.

Proof. Suppose xRαy and yRβz. We prove xRγz for γ = min{α, β}. Indeed, if A ∈ z
and γA ∈ ∆, then γA ∈ y, whence γA ∈ x since xRαy, i.e., item (i)(i) is proved. Suppose
δA ∈ z and γA ∈ ∆. By adequacy, we know δA ∈ ∆, whence min{β, δ}A ∈ y follows
since yRβz. By xRαy we know min{α,min{β, δ}}A ∈ x and thus min{γ, δ}A ∈ x, since
min{γ, δ} = min{α,min{β, δ}}. Hence, item (ii)(ii) is proved. Let δ < γ and δA ∈ x. Then
δA ∈ y as δ < α and xRαy and thus δA ∈ z since yRβz and δ < β. Thus, item (iii)(iii) is
proved. For item (iv)(iv), if δ < γ and pδ 6∈ z then pδ 6∈ y as yRβz and δ < β, whence pδ 6∈ x
by xRαy and δ < α.

Suppose xRαy and xRβz for β < α. We show yRβz. If A ∈ z and βA ∈ ∆, then
βA ∈ x since xRβz, whence βA ∈ y as β < α and xRαy, i.e., item (i)(i) follows. Let γA ∈ z
and βA ∈ ∆. We show min{γ, β}A ∈ y. Since xRβz, we know min{γ, β}A ∈ x. Now
min{γ, β} < α, whence from xRαy we obtain min{γ, β}A ∈ y which establishes item (ii)(ii).
Suppose now γ < β and γA ∈ y. By xRαy we get γA ∈ x, since αA ∈ ∆ and γ =
min{α, γ}. Since xRβz and γ < β we infer γA ∈ z as required. Thus, item (iii)(iii) is proved.
For item (iv)(iv), suppose γ < β and let pγ 6∈ z. Since xRβz by assumption, we know pγ 6∈ x.

Now if pγ ∈ y then, by adequacy, we obtain αpγ ∈ ∆, whence xRαy gives us αpγ ∈ x.
But since LΛ ` x ⇒ αpγ ⇒ pγ , we infer pγ ∈ x, a contradiction. Therefore pγ 6∈ y
and item (iv)(iv) is established. �

Now define a model K∆ = 〈F∆, J·K〉, where

K∆, x 
 p
α ⇐⇒df pα ∈ x,

for all variables pα and all x ∈W .

Lemma 4.3.10. Let LΛ extend RJ∗Λ. For all A ∈ ∆ we have K∆, x 
 A iff A ∈ x.

Proof. By induction on A. If A is a propositional variable or >, the claim is immediate.
Suppose A = B ∧ C. Then x 
 B ∧ C iff x 
 B and x 
 C which holds by inductive
hypothesis iff B ∈ x and C ∈ x.

Suppose A = αB for some B and suppose x 
 A. Then y 
 B for some y ∈ W
such that xRαy. By inductive hypothesis, we know B ∈ y, whence αB ∈ x follows by
definition of Rα as αB ∈ ∆. Conversely, suppose A ∈ x. We show K∆, x 
 A. Let

Σ1 := {βC | βC ∈ x, β < α},
Σ2 := {pβ | pβ ∈ x, β < α},

and let y := {C ∈ ∆ | LΛ ` Σ1,Σ2, B ⇒ C}. By inductive hypothesis, we know y 
 B
as B ∈ y. We prove xRαy. Let D ∈ y and αD ∈ ∆. Then LΛ ` Γ1,Γ2, B ⇒ D for some
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finite Γ1 ⊆ Σ1, Γ2 ⊆ Σ2. We know

LΛ ` x⇒ αB ∧
∧

Γ1 ∧
∧

Γ2

⇒ α(B ∧
∧

Γ1 ∧
∧

Γ2) (since |
∧

Γ2| < α)
⇒ αD.

Thus, αD ∈ x as required. Let βD ∈ y and αD ∈ ∆. Again, LΛ ` Γ1,Γ2, B ⇒ γD for
some finite Γ1 ⊆ Σ1, Γ2 ⊆ Σ2. Now

LΛ ` x⇒ αB ∧
∧

Γ1 ∧
∧

Γ2

⇒ α(B ∧
∧

Γ1 ∧
∧

Γ2) (since |
∧

Γ2| < α)
⇒ αβD

⇒ min{α, β}D.

By adequacy, we have αD ∈ ∆ which together with β ∈ `(∆) implies min{α, β}D ∈ ∆,
whence min{α, β}D ∈ x follows. Let β < α and βD ∈ x. Then, by definition of ∆, we
have βD ∈ ∆ and hence βD ∈ y. Clearly, if pβ 6∈ y for β < α, then pβ 6∈ x. �

Lemma 4.3.11. If LΛ extends RJ∗Λ then K∆ is strongly persistent.

Proof. Let y 
 pβ and consider some x ∈W such that xRαy for β ≤ α. We know pβ ∈ y,
whence by adequacy αpβ ∈ ∆ and so αpβ ∈ x. This yields LΛ ` x ⇒ αpβ ⇒ pβ by
α-persistence, whence pβ ∈ x and therefore x 
 pβ.

Now let y 1 pβ and consider some x ∈W such that xRαy for β < α. We have pβ 6∈ y,
whence by definition of Rα we get pβ 6∈ x and thus x 1 pβ. �

Lemma 4.3.12. If LΛ extends RC∗Λ then F∆ is monotone, i.e., F∆ is an RC∗Λ-frame.

Proof. Suppose xRαy and let β ∈ Λ be such that β < α. We show that xRβy. Let A ∈ y
and βA ∈ ∆. By adequacy, we know that αA ∈ ∆ and xRαy implies αA ∈ x. Now
β = min{α, β} and so xRαy implies in turn βA ∈ x as required. This proves item (i)(i).
Let γA ∈ y and βA ∈ ∆. We show min{β, γ}A ∈ x. Indeed, by adequacy we know
that αA ∈ ∆, whence min{γ, α}A ∈ x. In case β < γ, by the monotonicity axioms, we
obtain LΛ ` min{γ, α}A ⇒ βA and so βA ∈ x as required. Thus, item (ii)(ii) is shown.
For item (iii)(iii), Let γ < β and γA ∈ x. Then γ < α, whence γA ∈ y follows by xRαy as
required. Finally, let pγ 6∈ y where γ < β. Obviously, pγ 6∈ x by xRαy. Hence, item (iv)(iv)
holds. �

Theorem 4.3.13. RJ∗Λ is complete with respect to the class of all finite and strongly
persistent RJ∗Λ-models.

Proof. Suppose RJ∗Λ 0 A ⇒ B. Consider an adequate ∆ containing A and B and let
x := {C | RJ∗Λ ` A⇒ C,C ∈ ∆} and Σ := `(∆). Consider the corresponding RJ∗Σ-model
K∆ as before. By Lemma 4.3.104.3.10, we know K∆, x 
 A, but K∆, x 1 B. Now K∆ is a finite
RJ∗Σ-model and Σ ⊆ Λ. We can expand K∆ to a finite, strongly persistent RJ∗Λ-model
(call it K) by setting Rα := ∅ for all α ∈ Λ \ Σ. Then obviously K, x 1 A⇒ B. �
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Theorem 4.3.14. RC∗ is complete with respect to the class of all strongly persistent
RC∗-models.

Proof. Suppose RC∗ 0 A ⇒ B. Consider an adequate ∆ containing A and B and let
x := {C | RC∗ ` A⇒ C,C ∈ ∆}. Let Σ := `(∆) and K∆ be the corresponding RC∗Σ-model.
By Lemma 4.3.104.3.10, we have K∆, x 1 A⇒ B. We can expand K∆ to a (possibly infinite)
RC∗-model K for which we then have K, x 1 A⇒ B. �

Note that we cannot prove completeness of RC∗ with respect to the class of finite and
strongly persistent RC∗-models as we did for RJ∗, since we cannot simply declare infinitely
many relations to be empty due to monotonicity. However, for a finite Λ, the finite
model property immediately follows by an argument analogous to that of the proof
of Theorem 4.3.134.3.13.

Theorem 4.3.15. Let Λ ⊆ ω + 1 be finite. Then, RC∗Λ is complete with respect to the
class of all finite and strongly persistent RC∗Λ-models.

4.4 P o s i t i v e F r ag m e n t s o f GLP∗ a n d J∗

Let Λ be a signature. Recall that L∗Λ denotes the set of all many-sorted formulas over V
and Λ. By a positive formula (over Λ) we mean any formula from L∗Λ which is built using
only propositional variables, >, ∧, and 〈α〉 (α ∈ Λ). It is clear that the set of positive
formulas from L∗Λ equals L+

Λ as defined before.
In Chapter 33 we showed that J∗Λ is sound and complete for the class of all finite,

irreflexive, and strongly persistent J∗Λ-models. We have not treated irreflexive models of
our positive calculi so far due to the absence of Löb’s axioms in the positive setting. This
will be done now in order to establish a correspondence between the positive fragments
of J∗Λ and GLP∗Λ to the corresponding reflection calculi RJ∗Λ and RC∗Λ, respectively.

Let ∆ be an adequate set and consider a positive logic LΛ, where Λ = `(∆). As before,
we canonically define a frame F∆ = 〈W, {Rα}α∈Λ〉, where W and the Rα (α ∈ Λ) are
defined as before, except that we additionally stipulate in the definition of xRαy that

(v) there is an αA ∈ x such that αA 6∈ y.

The proofs of Lemmas 4.3.94.3.9 and 4.3.104.3.10 only need to be extended to this new condition.

Lemma 4.4.1. If LΛ extends RJ∗Λ then F∆ is an RJ∗Λ-frame.

Proof. Suppose xRαy and yRβz. We prove that xRγz for γ = min{α, β} by show-
ing item (v)(v). Suppose first that γ = α. There is a γA ∈ x such that γA 6∈ y. Now
if γA ∈ z, then by yRβz we obtain γA ∈ y which is not the case. Therefore, γA 6∈ z as
required. Suppose now γ = β. There is a γA ∈ y such that γA 6∈ z. By xRαy we obtain
γA ∈ x as desired, i.e., item (v)(v) is established.

Suppose xRαy and xRβz for β < α. We prove yRβz. There is a βA ∈ x such that
βA 6∈ z. Since β < α and xRαy, we obtain βA ∈ y as required. This gives us item (v)(v). �
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We define a model K∆ = 〈F∆, J·K〉 as before by setting

K∆, x 
 p
α ⇐⇒df pα ∈ x,

for all variables pα ∈ ∆ and all x ∈W .

Lemma 4.4.2. There is no α ≤ ω and no positive formula A such that RJ∗ ` A⇒ αA.

Proof. Suppose there were such an A and an α ≤ ω. Let ·∗ be an arithmetical realization
mapping all variables to the standard numeration AxPA. We then obtain PA ` A∗ ⇒
Conα(A∗). Since A is a positive formula and PA is sound, A∗ numerates a sound theory.
But this means that A∗ proves its own consistency, in contradiction to Gödel’s second
incompleteness theorem (cf. the formulation of Gödel’s theorems by Feferman [1616]). �

Lemma 4.4.3. Let LΛ extend RJ∗Λ. For all A ∈ ∆ we have K∆, x 
 A iff A ∈ x.

Proof. The proof is by induction on A. The cases can be proved as in the proof of
Lemma 4.3.104.3.10. We only need to consider the case where A = αB for some B ∈ ∆.
Suppose x 
 A. then y 
 B for some y ∈ W such that xRαy. By inductive hypothesis,
we know B ∈ y, whence αB ∈ x follows by definition of Rα as αB ∈ ∆. For the other
direction, suppose A ∈ x. We prove K∆, x 
 A. As before, let

Σ1 := {βC | βC ∈ x, β < α},
Σ2 := {pβ | pβ ∈ x, β < α},

and let y := {C ∈ ∆ | LΛ ` Σ1,Σ2, B ⇒ C}. By inductive hypothesis, we know y 
 B
as B ∈ y. We prove xRαy. This works exactly as in the proof of Lemma 4.3.104.3.10, except
that we additionally need to take item (v)(v) into account. We show that αB 6∈ y. Indeed,
if αB ∈ y then LΛ ` Γ1,Γ2, B ⇒ αB for some finite Γ1 ⊆ Σ2, Γ2 ⊆ Σ2, whence

LΛ ` y ⇒ B ∧
∧

Γ1 ∧
∧

Γ2

⇒ αB ∧
∧

Γ1 ∧
∧

Γ2

⇒ α(B ∧
∧

Γ1 ∧
∧

Γ2) (since |
∧

Γ2| < α),

which contradicts Lemma 4.4.24.4.2. �

Theorem 4.4.4. RJ∗Λ is complete with respect to the class of all irreflexive, finite, and
strongly persistent RJ∗Λ-models.

Proof. Suppose RJ∗Λ 0 A ⇒ B. Consider an adequate ∆ containing A and B and let
x := {C | RJ∗Λ ` A⇒ C,C ∈ ∆}. Let Σ := `(∆). Consider the corresponding RJ∗Σ-model
K∆ with the appropriate properties as before. By Lemma 4.4.34.4.3, we know K∆, x 
 A,
but K∆, x 1 B. Now K∆ is a finite RJ∗Σ-model and Σ ⊆ Λ. We can expand K∆ to an
irreflexive, finite, and strongly persistent RJ∗Λ-model (call it K) by setting Rα := ∅ for
all α ∈ Λ \ Σ. Then obviously K, x 1 A⇒ B. �
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Notice that irreflexivity is incompatible with our notion of RC∗Λ-model. Indeed, if xRαy
for some α > 0, then xR0y, whence yR0y follows. However, irreflexive models are vital
for Solovay constructions. We say that a model K is ∆-monotone if for any βA ∈ ∆ and
any α ∈ `(∆) such that β < α it holds that, for all worlds x of K,

K, x 
 αA =⇒ K, x 
 βA.

Lemma 4.4.5. If LΛ extends RC∗Λ, then K∆ is ∆-monotone.

Proof. Let βA ∈ ∆ and let α ∈ `(∆) be such that β < α. Suppose that K∆, x 
 αA.
Then αA ∈ x and βA ∈ ∆ by the adequacy of ∆. Thus, LΛ ` x⇒ αA⇒ βA and since
βA ∈ ∆, we infer βA ∈ x and so K∆, x 
 βA as desired. �

Theorem 4.4.6. Let ∆ be an adequate set, and Λ = `(∆). Then there is a model
K = 〈W, {Rα}α∈Λ, J·K〉 such that

(i) K is an RJ∗-model and Rα = ∅, for every α 6∈ Λ;

(ii) K is finite, strongly persistent, irreflexive, and ∆-monotone;

(iii) for any RC∗Λ-theory Γ in ∆, there exists a node x ∈W such that for any A ∈ ∆,

A ∈ Γ ⇐⇒ K, x 
 A.

We now investigate the relationships between RC∗Λ (RJ∗Λ, respectively) and GLP∗Λ (J∗Λ,
respectively) as done by Dashkov [1313] in the single-sorted setting. GLP∗Λ differs from J∗Λ
with respect to the monotonicity axioms. This is also the only difference between RJ∗Λ
and RC∗Λ. Hence, we immediately obtain:

Lemma 4.4.7. Let ϕ,ψ ∈ L+
Λ , where Λ ⊆ ω + 1. If RC∗Λ ` ϕ⇒ ψ then GLP∗Λ ` ϕ→ ψ.

Proposition 4.4.8. Let ϕ,ψ ∈ L+
Λ . Then, RJ∗Λ ` ϕ⇒ ψ iff J∗Λ ` ϕ→ ψ.

Proof. The direction from left to right is shown by induction on the length of the proof
of ϕ ⇒ ψ. Most of the axioms are clear. For axiom (vi)(vi), notice that if |ψ| < α, then
J∗Λ ` 〈α〉¬ψ → ¬ψ, whence J∗Λ ` ψ → [α]ψ and so

J∗Λ ` 〈α〉ϕ ∧ ψ → [α]ψ
→ 〈α〉(ϕ ∧ ψ).

The translations of the rules of inference are immediate.
For the other direction, suppose RJ∗Λ 0 ϕ ⇒ ψ. By Theorem 4.4.44.4.4, there is an

irreflexive, finite, and strongly persistent RJ∗Λ-model K such that K, x 1 ϕ⇒ ψ for some
world x of K. Obviously, since K is also a J∗Λ-model, we obtain J∗Λ 0 ϕ→ ψ. �

Lemma 4.4.9. Let ϕ ∈ L∗Λ, where Λ ⊆ ω. Then, GLP∗ ` ϕ iff GLP∗Λ ` ϕ.

Proof. The direction from right to left is clear. We prove the other direction. Suppose
GLP∗ ` ϕ. Then J∗ ` N+(ϕ) → ϕ by Lemma 3.5.133.5.13 and, as N+(ϕ) is in L∗Λ, we know
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by Corollary 3.4.183.4.18 that J∗Λ ` N+(ϕ) → ϕ, whence GLP∗Λ ` N+(ϕ) → ϕ follows since
GLP∗Λ extends J∗Λ. But GLP∗Λ ` N+(ϕ), so the claim follows by an application of modus
ponens. �

Lemma 4.4.10. Let Λ ⊆ ω and ϕ,ψ ∈ L+
Λ . Then GLP∗Λ ` ϕ→ ψ implies RC∗Λ ` ϕ⇒ ψ.

Proof. Suppose RC∗Λ 0 ϕ ⇒ ψ. Let a finite adequate ∆ containing ϕ and ψ be given.
Let Σ := `(∆) and consider the corresponding model K∆ = 〈W, {Rα}α∈Σ, J·K〉 with
the properties of Theorem 4.4.64.4.6 such that K∆, x 1 ϕ ⇒ ψ for some x ∈ W . Now let
η := ϕ→ ψ. Since K∆ is ∆-monotone and N+(η) is in L∗Λ, we know that K∆, x 
 N+(η).
Hence, K∆, x 1 N+(η)→ η and so J∗Λ 0 N+(η)→ η, whence GLP∗Λ 0 ϕ→ ψ follows. �

In the following, we borrow some ideas from Beklemishev et al. [88]. Any signature Λ can
be ordered according to the standard ordering of the ordinals α ∈ ω + 1. Hence, RC∗Λ is
in some sense a notational variant of the logic RC∗λ, where λ denotes the order type of Λ.
For any signature Λ, we denote by Λα the α-th element of Λ according to that ordering.
Let f : Λ→ λ be the (unique) order isomorphism from Λ into λ. Given any U ⊆ Λ, we
denote by λU the order f(U).

In the sequel, It will be convenient to assume that the set V properly contains a set
V such that for each sort α ≤ ω, V contains a countable infinite supply of variables of
sort α. Hence, there is a bijection between V \ V and V such that exactly the variables
of sort α from V \ V are mapped to variables of sort α from V. Now if pα ∈ V \ V, we
denote the corresponding variable of V by pα. Conversely, if qα ∈ V such that pα = qα

for pα ∈ V \ V, we set qα = pα. Now, for any signature Λ of order type λ, we define a
bijection πΛ : V→ V as follows:

πΛ : pα 7−→
{
pκ, where κ = Λα, if α < λ,
pα, otherwise.

Definition 4.4.11. Let Λ be a signature of order type λ. We define ξΛ(ϕ) for all ϕ ∈ L∗λ
recursively as follows:

(i) ξΛ(⊥) = ⊥; ξΛ(>) = >;

(ii) ξΛ(pα) = πΛ(pα) for all propositional variables pα;

(iii) ξΛ(·) commutes with the propositional connectives;

(iv) ξΛ(〈α〉ϕ) = 〈Λα〉ξΛ(ϕ).

Furthermore, we define ξ−1
Λ (·) to be the inverse operation of ξΛ(·) such that (i) for all

ϕ ∈ L∗λ we have ϕ = ξ−1
Λ (ξΛ(ϕ)) and (ii) for all ψ ∈ L∗Λ we have ψ = ξΛ(ξ−1

Λ (ψ)). a

Note that if U ⊆ Λ then for ϕ ∈ L∗λ and ψ ∈ L∗Λ,

ϕ ∈ L∗λU
=⇒ ξ−1

Λ (ϕ) ∈ L∗U ,
ξΛ(ψ) ∈ L∗U =⇒ ψ ∈ L∗λU

.
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Lemma 4.4.12. Let λ be the order type of Λ and U ⊆ Λ. Let ϕ ∈ L∗λU
be a formula and

α ∈ λU . Then, |ϕ| ≤ α iff |ξΛ(ϕ)| ≤ Λα.

Proof. We first prove the direction from left to right. We proceed by induction on the
number of propositional connectives of ϕ which are not in the scope of any 〈γ〉. For the
base case, if ϕ = pβ for some β ≤ α, we have that β < λ, whence πΛ(pβ) = pκ follows for
κ = Λβ. Therefore, |ξΛ(pκ)| = Λβ ≤ Λα since β ≤ α. Suppose ϕ = 〈β〉ψ for some β ≤ α.
Then |〈β〉ψ| = β and |ξΛ(〈β〉ψ)| = |〈Λβ〉ξΛ(ψ)| = Λβ ≤ Λα. The induction step for the
propositional connectives is immediate as ξΛ(·) commutes with those connectives.

The direction from right to left is proved by induction on the number of propositional
connectives of ψ := ξΛ(ϕ) which are not in the scope of any 〈γ〉. We know ϕ = ξ−1

Λ (ψ).
Suppose ψ = pβ for some β ≤ Λα. Suppose first that β ∈ Λ. Then π−1

Λ (pβ) = pγ for some
γ < λ such that β = Λγ . Therefore, Λγ ≤ Λα, whence γ ≤ α follows. Suppose now that
β 6∈ Λ. Then, π−1

Λ (pβ) = pβ and thus |pβ| ≤ Λα by assumption. Suppose ψ = 〈β〉χ for
some χ and β ≤ Λα. Certainly ψ ∈ L∗U and therefore β ∈ U . It follows that β = Λγ , for
some γ < λ. We have ϕ = ξ−1

Λ (ψ) = 〈γ〉ξ−1
Λ (χ) and so |ϕ| ≤ α as γ ≤ α. The induction

step is again immediate. �

Lemma 4.4.13. Let λ be the order type of Λ and U ⊆ Λ.

(i) GLP∗λU
` ϕ iff GLP∗U ` ξΛ(ϕ), for all ϕ ∈ L∗λU

;

(ii) GLP∗U ` ϕ iff GLP∗λU
` ξ−1

Λ (ϕ), for all ϕ ∈ L∗U .

Proof. For item (i)(i), we prove the direction from left to right by induction on proof
length. The case when ϕ is a propositional axiom is clear, as ξΛ(·) commutes with the
propositional connectives. Most of the other axioms are also clear. Consider the case where
ϕ is of form 〈α〉ψ → ψ and |ψ| ≤ α, where α ∈ λU . By Lemma 4.4.124.4.12 we know |ξΛ(ψ)| ≤
Λα, i.e., 〈Λα〉ξΛ(ψ)→ ξΛ(ψ) is also an axiom. Since Λα ∈ U , GLP∗U ` 〈Λα〉ξΛ(ψ)→ ξΛ(ψ)
follows. For the induction step, consider the case where GLP∗λU

` [α]ψ for α ∈ λU and
[α]ψ results from an application of [α]-necessitation from ψ. By inductive hypothesis,
we have GLP∗U ` ξΛ(ψ) and, since Λα ∈ U , we obtain GLP∗U ` [Λα]ξΛ(ψ). The case of
modus ponens is immediate. The other direction and item (ii)(ii) are proved in an analogous
way. �

We have a similar result for RC∗Λ:

Lemma 4.4.14. Let λ be the order type of Λ and U ⊆ Λ.

(i) RC∗λU
` A⇒ B iff RC∗U ` ξΛ(A)⇒ ξΛ(B);

(ii) RC∗U ` A⇒ B iff RC∗λU
` ξ−1

Λ (A)⇒ ξ−1
Λ (B).

Theorem 4.4.15. Let ϕ ∈ L∗Λ, where Λ ⊆ ω + 1. Then, GLP∗ω+1 ` ϕ iff GLP∗Λ ` ϕ.

Proof. The direction from right to left is again obvious. For the other direction, suppose
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GLP∗ω+1 ` ϕ. Then there is a proof χ = χ1, . . . , χk in GLP∗ω+1 such that χk = ϕ. Let

S := {α | 〈α〉 occurs in χi, for some i = 1, . . . , k},
U := {α | 〈α〉 occurs in ϕ}.

Obviously, U ⊆ S and U ⊆ Λ. We know that U and S are finite and GLP∗S ` χi for
i = 1, . . . , k. Let n ∈ ω be the order type of S. By Lemma 4.4.134.4.13 (taking U = S), we
know that

GLP∗S ` χi ⇐⇒ GLP∗n ` ξ−1
S (χi),

for i = 1, . . . , k. Let ψ := ξ−1
S (ϕ). From GLP∗n ` ψ we immediately infer GLP∗ ` ψ. Now

consider the set of modalities F := nU . We have that ψ ∈ L∗F and so by Lemma 4.4.94.4.9,
GLP∗F ` ψ as F ⊆ ω. By Lemma 4.4.134.4.13, we obtain GLP∗U ` ϕ and thus GLP∗Λ ` ϕ follows
since U ⊆ Λ. �

Corollary 4.4.16. Let A,B ∈ L+
Λ , where Λ ⊆ ω + 1. Then, RC∗ ` A ⇒ B iff RC∗Λ `

A⇒ B.

Proof. The direction from right to left is immediate. So suppose RC∗ ` A ⇒ B. Let
Σ := `({A,B}) and n ∈ ω be the order type of Σ. Obviously, Σ ⊆ Λ and since GLP∗ `
A → B, we infer GLP∗Σ ` A → B by Theorem 4.4.154.4.15. By Lemma 4.4.134.4.13, we obtain
GLP∗n ` ξ−1

Σ (A) → ξ−1
Σ (B), whence RC∗n ` ξ−1

Σ (A) ⇒ ξ−1
Σ (B) follows by Lemma 4.4.104.4.10.

Therefore, RC∗Σ ` A⇒ B and thus RC∗Λ ` A⇒ B as desired. �

Thus, although we cannot prove that RC∗ is complete with respect to the class of finite,
strongly persistent, and irreflexive RC∗-models, we can always find an appropriate model
of a finite fragment of RC∗. Furthermore, we can already conclude that RC∗Λ axiomatizes
the positive fragment of GLP∗Λ.

Corollary 4.4.17. Let ϕ,ψ ∈ L+
Λ , where Λ ⊆ ω + 1. Then, GLP∗Λ ` ϕ → ψ iff RC∗Λ `

ϕ⇒ ψ.

Proof. The direction from right to left is just Lemma 4.4.74.4.7. Suppose GLP∗Λ ` ϕ→ ψ and
let Σ := `({ϕ,ψ}) and let n ∈ ω be the order type of Σ. It is clear that Σ ⊆ Λ. We have
GLP∗Σ ` ϕ → ψ by Theorem 4.4.154.4.15 and so GLP∗n ` ξ−1

Σ (ϕ) → ξ−1
Σ (ψ). Therefore, RC∗n `

ξ−1
Σ (ϕ)⇒ ξ−1

Σ (ψ) by Lemma 4.4.104.4.10, whence RC∗Σ ` ϕ⇒ ψ follows. Thus, RC∗Λ ` ϕ⇒ ψ
as required. �

In particular, GLP∗ω+1 ` ϕ→ ψ iff RC∗ ` ϕ⇒ ψ for positive ϕ,ψ.

4.5 A r i t h m e t i c a l C o m p l e t e n e s s o f RC∗

In this section, we prove that RC∗ is arithmetically complete with respect to the inter-
pretation we defined in Section 4.24.2. Many of the results necessary for its proof were first
obtained by Beklemishev [77] for a single-sorted variant of RC∗.
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Theorem 4.5.1. For every sequent A ⇒ B over ω + 1, the following statements are
equivalent:

(i) RC∗ ` A⇒ B;

(ii) A∗ ⇒PA B
∗ for every arithmetical realization ·∗;

(iii) A∗ ⇒ B∗ for every arithmetical realization ·∗.

Proof. For the direction from (iii)(iii) to (i)(i) we proceed indirectly. Suppose RC∗ 0 A ⇒ B.
Let ∆ be a finite adequate set containing A and B and let Λ := `(∆). Similarly as in the
proof of Lemma 3.5.13.5.1, one can show that there is an RJ∗-model K = 〈W, {Rα}α≤ω, J·K〉
with root r which satisfies the conditions of Theorem 4.4.64.4.6 such that K, r 
 A and
K, r 1 B. Without loss of generality, suppose W = {1, 2, . . . , N} for some N ∈ ω and
r = 1. Extend K to an RJ∗-model K′ = 〈W ′, {R′α}α≤ω, J·K′〉, where

(i) W ′ := W ∪ {0};

(ii) R′0 := R0 ∪ {(0, x) | x ∈W};

(iii) R′α := Rα, for α 6= 0;

(iv) K′, 0 
 p ⇐⇒df K, 1 
 p, for all variables p ∈ ∆;

(v) K′, x 
 p ⇐⇒df K, x 
 p, for all x ∈W and all variables p ∈ ∆.

Note that K′ is finite, strongly persistent, and irreflexive. Moreover, it is clear that K′, 1 1
A⇒ B. For notational convenience, we denote K′ from now on by K = 〈W, {Rα}α≤ω, J·K〉.

Recall that [n]PA(α) denotes a formula which formalizes that α is provable in PA from
all true Πn+1-sentences. For n ≥ 0, let Prfn(α, y) be the proof relation of [n]PA(α). As
in the proof of Theorem 3.5.23.5.2, we assume that information concerning the model K is
naturally encoded in arithmetic.

Definition 4.5.2. Let M be the maximal modality m < ω from Λ, provided there is
such an m, and 0 otherwise. For all n < ω, define a Solovay function hn : ω → W as
follows:

hn(0) = 0, and

hn(x+ 1) =


y, if ∃i < n : hi(x) 6= hi(x+ 1) = y; otherwise
z, if ∃k ≥ max{M,n}Prfn(p`k 6= zq, x)

and either hn(x)Rnz or hn(x)Rωz;
hn(x), otherwise.

Here we retain our convention that `k = x denotes that the limit of the function hk
equals x (see Definition 3.5.33.5.3). a

Beklemishev [77] shows that there are formulas H0, H1, . . . ,Hn such that, for k = 1, . . . , n,

74



(i) Hk defines the graph of hk in PA and PA ` ∀x∃!y Hk(x, y). Thus, hk is provably
total in PA.

(ii) Hk is ∆k+1 in PA.

(iii) The function ϕ : k 7−→ pHkq is primitive recursive.

(iv) Each Hk provably satisfies the definition of hk in Definition 4.5.24.5.2.

Note that, in particular, p`n = xq can be constructed primitive recursively from n and x.

Lemma 4.5.3. For each n,m ∈ ω, provably in PA,

(i) ∃!x ∈W : `n = x;

(ii) `nRn+1`n+1 or `nRω`n+1 or `n = `n+1;

(iii) If m < n then `n = `m or `mRα`n, for some α ∈ (m,n] ∪ {ω}.

Proof. For (i)(i), firstly notice that for all n ∈ ω, hn (provably) only moves along Rn ∪Rω.
Secondly, Rn ∪Rω is finite, transitive, and irreflexive for all n ∈ ω. Uniqueness is clear,
as PA proves ∀x∃!y Hn(x, y). For existence, we proceed by (external) induction on n. Let
S := R0 ∪Rω and b ∈W . For the base case, we prove

PA ` H0(a, b)→ `0 = b ∨ ∃z ∈ S(b) : `0 = z,

by induction on the converse of S. So suppose that for each c ∈ S(b) we have

PA ` H0(a, c)→ `0 = c ∨ ∃z ∈ S(c) : `0 = z.

By definition of h0, we know that

PA ` H0(a, b)→ ∀x ≥ a (H0(x, b) ∨ ∃z ∈ S(b) : H0(x, z)),

whence by inductive hypothesis we obtain

PA ` H0(a, b)→ ∀x ≥ a (H0(x, b) ∨ ∃z ∈ S(b) : `0 = z ∨ ∃w ∈ S(z) : `0 = w).

This is equivalent to

PA ` H0(a, b)→ `0 = b ∨ ∃z ∈ S(b) : `0 = z ∨ ∃w ∈ S(z) : `0 = w,

which by the transitivity of S is equivalent to

PA ` H0(a, b)→ `0 = b ∨ ∃z ∈ S(b) : `0 = z.

This proves the base case, since PA ` H0(0, 0). For the induction step, suppose that `n−1
exists (n > 0). Then, from `n−1 onward, hn provably can only move along the relation
Rn ∪ Rω. A similar argument to that of the base case then shows that the limit of hn
exists. For (ii)(ii), notice that, provably, ∃xhn+1(x) = `n, i.e., hn+1 has to visit `n on its way
to `n+1. Using this and the previously mentioned facts, we can prove (ii)(ii) by induction
on n. Item (iii)(iii) is then obtained from (ii)(ii) by induction on n. �
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For all n < ω, we define a formula Ln(a, b) in our arithmetical language as follows:

Ln(a, b) :=
{
hn(a) = b, if n = 0;
hn(a) = b ∧ ∀z ≥ a (hn−1(z) = hn−1(a)), otherwise.

Lemma 4.5.4. For every n ∈ ω, PA proves that

Ln(a, b) =⇒ ∀i < n∀x ≥ a : hi(x) = hi(x+ 1).

Proof. For n = 0, the statement is clear. For n > 0, reason in PA as follows. Suppose
Ln(a, b) and assume to the contrary that there is an i < n and an x ≥ a such that
hi(x) 6= hi(x + 1). Since Ln(a, b), we clearly have i < n − 1. By definition of hn−1, we
infer hn−1(x+1) = hi(x+1), whence hn−1(x) 6= hi(x) follows. Let x0 be the smallest x ≥ a
such that hn−1(x) 6= hi(x). We know x0 > 0 and by Ln(a, b) that hi(x0 − 1) 6= hi(x0).
But then hn−1(x0) = hi(x0) by the definition of hn−1, contradiction. �

Let n < ω and suppose (in PA) that ∃xLn(x, b) for some b ∈W . It follows that for k ≥ n,
`k ∈ R∗n(b) ∪ {b}, since no function hm for m < n makes a move beyond x. Hence, from
b on, the function hk must move along R∗n.

For any positive formula A and any n ≥ 0, we abbreviate by `n 
 A the statement∨
{`n = x | x 
 A}, while `n 1 A abbreviates

∧
{`n 6= x | x 
 A}. Note that Lemma 4.5.34.5.3

implies that for all positive formulas A, provably in PA either `n 
 A or `n 1 A. Fur-
thermore, these statements provably obey the usual forcing conditions which are already
fulfilled in K:

Lemma 4.5.5. Provably in PA,

(i) `n 
 >;

(ii) `n 
 A ∧B iff `n 
 A and `n 
 B.

Furthermore,

(iii) if |A| ≤ α then PA proves that `mRα`n and `n 
 A imply `m 
 A;

(iv) if |A| < α then PA proves that `mRα`n and `n 1 A imply `m 1 A.

Proof. Most of the items are clear. We only prove item (iv)(iv). Note that `n 1 A is, by
virtue of Lemma 4.5.34.5.3, provably equivalent in PA to∨

{`n = x | x 1 A}.

Now if `mRα`n and |A| < α, then by strong persistence of K we see that this immediately
implies `m 1 A. �

Lemma 4.5.6. Let n ≥ m and A be a formula such that |A| ≤ m or m ≥M . Then,

PA ` (`n 
 A)→ (`m 
 A).
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Proof. Assume n > m ≥ M . Since Rn = ∅, we must have `mRω`n by Lemma 4.5.34.5.3,
whence the claim follows at once from Lemma 4.5.54.5.5. If |A| ≤ m and n > m, we have
by Lemma 4.5.34.5.3 either `m = `n or `mRα`n for some α ∈ (m,n] ∪ {ω}. The first case
is clear, so suppose `mRα`n. The claim follows immediately from Lemma 4.5.54.5.5 since
|A| ≤ m < α. �

We now again use the property of strong persistence in order to ensure that we are able to
construct an arithmetical counter interpretation of the desired arithmetical complexity.

Lemma 4.5.7. For all n < ω and all variables p ∈ ∆ of sort k ≤ n, provably in PA,

`n 
 p ⇐⇒ ∀w ∈W \ JpK : ∀x¬Lk(x,w).

Proof. We reason in PA as follows. For the direction from left to right, suppose `n 
 p and
suppose to the contrary that there is a w ∈ W and an x such that w 1 p and Lk(x,w).
By strong persistence, we know that v 1 p for all v ∈ R∗k(w). Since k ≤ n, we know that
`n ∈ R∗k(w) ∪ {w}, whence `n ∈ W \ JpK follows. This contradicts the uniqueness of `n
(cf. Lemma 4.5.34.5.3).

For the other direction, suppose ∀w ∈ W \ JpK : ∀x¬Lk(x,w) and suppose further
that `n 6= x for all x ∈ JpK. It follows that `n ∈W \JpK. Let w ∈W \JpK; we prove `k 6= w.
Consider an arbitrary x. If k = 0 then since ¬Lk(x,w), we infer hk(x) 6= w and we are
done. Otherwise, we have hk(x) 6= w or ∃z ≥ x : hk−1(z) 6= hk−1(x). In the former case we
are finished, so suppose hk(x) = w. Since there is a z such that hk−1(z) 6= hk−1(x) = w,
we obtain by definition of hk that hk(y) 6= hk(y + 1) for some y ≥ x, whence `k 6= w
follows. Hence, `k 
 p and certainly `k 6= `n. It follows that n > k and by Lemma 4.5.34.5.3
that `kRα`n for some α ∈ (k, n] ∪ {ω}. But this is in contradiction to the property of K
being strongly persistent, as `k ∈ JpK and `n ∈W \ JpK. �

If {ϕi | i ∈ I} is a primitive recursive set of formulas, we denote by [ϕi | i ∈ I] a
numeration which numerates the theory PA + {ϕi | i ∈ I}. We stipulate that, for a
formula ϕ, the numeration [ϕ] is the same as ϕ. Furthermore, we write Conn[ϕi | i ∈ I]
instead of Conn([ϕi | i ∈ I]).

For any variable p ∈ ∆ we set

p∗ := [`n 
 p | n ≥M ].

Lemma 4.5.8. For every variable p ∈ ∆ of sort k < ω, p∗ numerates a Πk+1-axiomatized
extension of PA.

Proof. Let p be a variable of sort k < ω. Let n ≥M and consider the sentence `n 
 p. If
k ≤ n then by Lemma 4.5.74.5.7, provably in PA,

`n 
 p ⇐⇒ ∀w ∈W \ JpK : ∀x¬Lk(x,w).

Notice that Lk(a, b) is Σk+1 in PA and so `n 
 p is provably equivalent to a Πk+1-sentence.
If k > n then notice that for any x ∈W , by definition provably in PA,

`n = x ⇐⇒ ∃N0 ∀z > N0Hn(z, x).
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Hn is ∆n+1 in PA. It follows that `n = x is Σn+2 in PA and thus `n 6= x is Πn+2 in PA.
Since PA ` ∃!x ∈W : `n = x (cf. Lemma 4.5.34.5.3), provably in PA,

`n 
 p ⇐⇒
∧
{`n 6= x | x ∈W \ JpK}.

This proves the claim since k = |p| ≥ n+ 1. �

Therefore, ·∗ defines an arithmetical realization in the sense of Definition 4.2.24.2.2.

Lemma 4.5.9. For all n ∈ ω, `n = 0 is true in the standard model of arithmetic.

Proof. By Lemma 4.5.34.5.3, for every n > M we either have `nRω`n+1 or `n+1 = `n. Since K
is finite and Rω is transitive and irreflexive, there is a z ∈W and a k such that `m = z
is true for all m ≥ k. Suppose z 6= 0 and consider the minimal m such that N |= `m = z.
The function hm has to arrive at z via the second clause of the definition of hm. So there
is an n ≥ max{M,m} such that [m]PA(`n 6= z) is true. Since PA is sound this means that
`n 6= z is true which contradicts our assumption. So there is a k such that `m = 0 for all
m ≥ k. If `n 6= 0 for some n < k then by Lemma 4.5.34.5.3 we know that `nRα`k for some
α ∈ (n, k] ∪ {ω}. But this is impossible since the node 0 has no incoming arcs. �

The following two main lemmas are from Beklemishev [77].

Lemma 4.5.10. For any formula A ∈ ∆,

[`n 
 A | n ≥M ]⇒PA A
∗.

Proof. By induction on A. The base cases where A = > or A = p for some p ∈ ∆ are
trivial. Suppose A = B ∧ C. By inductive hypothesis we know

[`n 
 B | n ≥M ]⇒PA B
∗,

[`n 
 C | n ≥M ]⇒PA C
∗,

whence

[`n 
 A | n ≥M ]⇒PA B
∗,

[`n 
 A | n ≥M ]⇒PA C
∗,

and thus PA ` [`n 
 A | n ≥M ]⇒ A∗ follows.
Suppose A = mB for some m < ω. Then A∗ = Conm(B∗) and so A∗ numerates a

finite extension of PA. Therefore it is sufficient to establish

PA + `M 
 A ` Conm(B∗).

We know by the inductive hypothesis that

[`n 
 B | n ≥M ]⇒PA B
∗,
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and so

PA + Conm[`n 
 B | n ≥M ] ` Conm(B∗).

By a formalized version of the compactness theorem, the formula Conm[`n 
 B | n ≥M ]
is equivalent to

∀n ≥M Conm[
n∧

k=M
`k 
 B],

which is by Lemma 4.5.64.5.6 equivalent to

∀n ≥M Conm[`n 
 B].

To infer this sentence from `M 
 mB, we reason in PA as follows. Suppose `M 
 mB.
Then there is a w ∈ W such that `MRmw and w 
 B. We know that m ≤ M and
by Lemma 4.5.34.5.3, we either have `mRα`M for some α ∈ (m,M ]∪{ω} or `m = `M . Since K
is an RJ∗-model, we certainly have `mRmw. Suppose to the contrary that ¬Conm[`n 
 B]
for some n ≥M . Then [m]PA(`n 1 B) and also [m]PA(`n 6= w). Consider an N0 such that
∀x ≥ N0 : hm(x) = `m. There exists a y > x0 such that Prfm(p`n 6= wq, y), since there
are arbitrarily long proofs. But then hm(y + 1) is different from `m due to irreflexivity
of K, a contradiction. This proves this case.

Suppose now that A = ωB. We know that

[Conn(B∗) | n ≥M ]⇒PA (ωB)∗,

since the strength of Conn(B∗) increases with n. Furthermore,

[∀k ≥ nConn[`k 
 B] | n ≥M ]⇒PA [∀k ≥M Conn[`k 
 B] | n ≥M ]
⇒PA [Conn(B∗) | n ≥M ],

by the inductive hypothesis and Lemma 4.5.64.5.6. We prove

[`n 
 ωB | n ≥M ]⇒PA [∀k ≥ n Conn[`k 
 B] | n ≥M ],

by proving by an argument formalizable in PA that, for all n ≥M ,

PA + `n 
 ωB ` ∀k ≥ n Conn[`k 
 B].

Let n ≥M and suppose `n 
 ωB. Then z 
 B for some z ∈ W such that `nRωz and z
being different from `n. Now if ∃k ≥ n [n]PA(`k 1 B) then since n ≥M , we obtain that
∃k ≥ max{n,M} [n]PA(`k 6= z). But then hn has to obtain a value different from `n by
the second clause of the definition of hn, a contradiction. �

Lemma 4.5.11. For any formula A ∈ ∆,

`0 6= 0 ∨A∗ ⇒PA [`n 
 A | n ≥M ].
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Proof. By induction on A. The cases A = > and A = p for a variables p are immediate.
The case of conjunction can be easily derived too. Suppose that A = mB for m < ω.
Notice that `0 6= 0 is a Σ1-sentence. Hence,

PA + `0 6= 0 ∧ Conm(B∗) ` 2PA(`0 6= 0) ∧ Conm(B∗)
` Conm(`0 6= 0 ∨B∗)
` Conm[`k 
 B | k ≥M ]
` ∀k ≥M Conm[`k 
 B].

We prove that for all n ≥M ,

PA ` `0 6= 0 ∧ `n 1 mB → ∃k ≥M [m]PA(`k 1 B).

We reason in PA as follows. Suppose `0 6= 0 and `n 1 mB. We know by Lemma 4.5.34.5.3
that `mRk`n for some k > m, `m = `n, or `mRω`n. In each case, since K is an RJ∗Λ-model,
it holds that `m 1 mB. Let b := `m. We know that ∃xLm(x, b), whence `k ∈ R∗m(b)∪{b}
follows for all k ≥ m. Furthermore, ∃xLm(x, b) is easily seen to be a Σm+1-formula.
Hence, [m]PA∃xLm(x, ḃ) and so

∀k ≥ m [m]PA(`k ∈ Rm(ḃ) ∪ {ḃ}). (4.2)

We now claim that ∀z ∈ Rm(b) : z 1 B. For suppose otherwise, i.e., z 
 B for some z
such that bRαz and α ≥ m. Then b 
 αB, whence by ∆-monotonicity we have b 
 mB,
contradicting `m 1 mB. The formula ∀z ∈ Rm(b) : z 1 B is bounded, hence

[m]PA(∀z ∈ Rm(ḃ) : z 1 B). (4.3)

We now prove that ∃k ≥ M [m]PA(`k 6= ḃ) which finishes this case by (4.2)(4.2) and (4.3)(4.3).
Consider the minimal i ≤ m such that `i = `m = b. By `0 6= 0, we also have that
`m = b 6= 0. It follows that hi can move to b only by virtue of the second clause of the
definition of hi. Therefore,

∃k ≥ max{M, i} [i]PA(`k 6= ḃ).

By i ≤ m ≤M , it follows that

∃k ≥M [m]PA(`k 6= ḃ),

as required.
Suppose A = ωB. It holds that

(ωB)∗ = [Conn(B∗) | n ∈ ω].

By inductive hypothesis, we have

`0 6= 0 ∨B∗ ⇒PA [`k 
 B | k ≥M ],
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whence

Conn(`0 6= 0 ∨B∗)⇒PA Conn[`k 
 B | k ≥M ],

follows for every n ∈ ω. Therefore, for every n ∈ ω,

PA + `0 6= 0 + Conn(B∗) ` ∀k ≥M Conn[`k 
 B].

Being formalizable uniformly in n, we obtain

`0 6= 0 ∨ (ωB)∗ ⇒PA [∀k ≥M Conn[`k 
 B] | n ≥M ].

It remains to prove that

`0 6= 0 ∨ [∀k ≥M Conn[`k 
 B] | n ≥M ]⇒PA [`n 
 ωB | n > M ],

since [`n 
 ωB | n > M ] ⇒PA [`n 
 ωB | n ≥ M ]. We show by an argument uniformly
formalizable in n in PA that, for each n > M ,

PA + `0 6= 0 ∧ `n 1 ωB ` ∃k ≥M [n]PA(`k 1 B).

We reason in PA as follows. Suppose that n > M and `n 1 ωD. Let b := `n and consider
the minimal m ≤ n such that `m = `n = b. We know by `0 6= 0 that `n = b 6= 0. We first
prove that

∀k ≥ max{m,M} [n]PA(`k ∈ Rω(ḃ) ∪ {ḃ}). (4.4)

We distinguish two cases. If m > M then we infer ∃xLm(x, b) and [m]PA∃xLm(x, b). As
before, for k ≥ m > M , it holds that `k ∈ Rω(b) ∪ {b}, whence [m]PA(Rω(ḃ) ∪ {ḃ}) and
so ∀k ≥ m [n]PA(`k ∈ Rω(ḃ) ∪ {ḃ}) as desired.

Suppose now m ≤M < n. By the definition of hn, it is easy to convince oneself that
`M = b. Thus [n]PA(`M = ḃ) since M < n. Furthermore, for k > M , `M = b also entails
that `k ∈ Rω(b) ∪ {b}, since R∗k(b) = Rω(b) and so hk has to move on Rω from b onward.
Therefore, ∀k ≥M [n]PA(`k ∈ Rω(ḃ) ∪ {ḃ}) as before.

Notice that ∀z ∈ Rω(b) : z 1 B. As in the case before, from `k ∈ Rω(b), we thus easily
infer that `k 1 B. Hence by (4.4)(4.4) we have

∀k ≥ max{m,M} [n]PA(`k 1 B ∨ `k = ḃ). (4.5)

By `n = `m = b 6= 0 and the definition of hm, we know that ∃k ≥ max{m,M} [m]PA(`k 6=
ḃ). Combining this with (4.5)(4.5), we obtain ∃k ≥ max{m,M} [n]PA(`k 1 B) and so ∃k ≥
M [n]PA(`k 1 B) as required. �

Now at the root r = 1 we have K, r 
 A and K, r 1 B. Let σ be the numeration
[`n = 1 | n ≥ M ] and let S be the theory numerated by σ. By Lemma 4.5.104.5.10, we know
that

σ ⇒PA [`n 
 A | n ≥M ]
⇒PA A

∗.
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By Lemma 4.5.114.5.11 we also have

`0 6= 0 ∨B∗ ⇒PA [`n 
 B | n ≥M ]
⇒PA [`n 6= 1 | n ≥M ].

Now if A∗ ⇒ B∗ then S ` `M 6= 1 and so S is inconsistent. Since PA ` `n = 1→ `m = 1
for all m ≤ n, we know that there is a PA-proof of `n 6= 1 for some n ≥M . (For otherwise,
PA ` S and so PA would be inconsistent too.) Therefore, the function h0 has to take on a
value different from 0 which is impossible since `0 = 0 is true in the standard model. �

Example 4.5.12. Recall from Example 4.3.74.3.7 that RC∗ ` ωp∧ ωq ⇒ ω(p∧ q) iff |p| < ω
or |q| < ω. By Theorem 4.5.14.5.1 we infer that there are theories S, T extending PA such
that

PA + RFN(S) + RFN(T ) 0 RFN(S + T ).

As also remarked by Beklemishev [77], note that both S and T must be both of un-
bounded arithmetical complexity, for suppose without loss of generality that S is a Πn+1-
axiomatized extension of PA. By Example 4.3.74.3.7 we know that RC∗ ` ωp∧ωq ⇒ ω(p∧ q),
whenever |p| < ω. In particular, if |p| = n, we infer by Proposition 4.2.104.2.10 that

PA + RFN(S) + RFN(T ) ` RFN(S + T ).

Therefore, as remarked by Beklemishev [77], the use of infinite theories is necessary in the
proof of Theorem 4.5.14.5.1. a

For a strengthening of the insights due to the previous examples, we augment the proof
of Theorem 4.5.14.5.1 by the following lemma which strengthens Lemma 4.5.64.5.6.

Lemma 4.5.13. Let n ≥ m and A be a formula such that |A| ≤ m. Then,

PA ` (`m 
 A)→ (`n 
 A).

Proof. Assume n > m ≥ |A| and, reasoning in PA, suppose `n 1 A. By Lemma 4.5.34.5.3 we
know that `m = `n or `mRα`n for some α ∈ (m,n] ∪ {ω}. The case of `m = `n is clear,
so suppose `mRα`n. By Lemma 4.5.54.5.5 we then also have `m 1 A as |A| ≤ m < α. �

Although we know that the use of infinite theories is necessary by the previous example,
we readily see that the following corollary can be read of the proof of Theorem 4.5.14.5.1.

Corollary 4.5.14. Let A and B be formulas such that RC∗ 0 A⇒ B. Then there exists
an arithmetical realization ·∗ such that

(i) for any variable p occurring in A or B, p∗ numerates a finite extension of PA in
case |p| < ω;

(ii) A∗ ⇒ B∗ does not hold.
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Proof. Consider the arithmetical interpretation ·∗ constructed in the proof of Theo-
rem 4.5.14.5.1. Let p be a variable of sort n occurring in A or B. By definition,

p∗ = [`n 
 p | n ≥M ].

We claim that p∗ is provably equivalent in PA to `k 
 p, where k = max{M,n}. The
fact that `k 
 p is implied by p∗ in PA is immediate by the definition of p∗. We thus
show that p∗ follows from `k 
 p in PA. Suppose first that n < M . Let m > M and,
reasoning in PA, suppose `M 
 p. We know that either `m 
 p or `m 1 p. Now if `m 1 p
then Lemma 4.5.134.5.13 yields `M 1 p which is impossible. Suppose now that n ≥M . For all j
such thatM ≤ j ≤ n we know that PA proves that `n 
 p implies `j 
 p by Lemma 4.5.64.5.6.
So suppose m > n and assume `n 
 p. Then either `m 
 p or `m 1 p, where we see that
the latter is impossible by Lemma 4.5.134.5.13 and considering the fact that |p| = n < m.

Hence, we can let

p∗ := `k 
 p.

Notice that, as in the proof of Lemma 4.5.84.5.8, we can directly find a Πn+1-sentence which
is equivalent in PA to the sentence `k 
 p. �
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