
Integrated Code Motion and
Register Allocation

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Gergö Barany
Registration Number 0026139

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: ao. Univ. Prof. Dipl.-Ing. Dr. Andreas Krall

The dissertation has been reviewed by:

Andreas Krall Alain Darte

Vienna, 14th January, 2015
Gergö Barany

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Integrated Code Motion and
Register Allocation

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Gergö Barany
Matrikelnummer 0026139

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: ao. Univ. Prof. Dipl.-Ing. Dr. Andreas Krall

Diese Dissertation haben begutachtet:

Andreas Krall Alain Darte

Wien, 14. Jänner 2015
Gergö Barany

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Gergö Barany
Erlafstrasse 5/1, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Jänner 2015
Gergö Barany

v

Acknowledgements

Many people were very patient with me over the last few years. Thanks.

vii

Abstract

Code motion and register allocation are important but fundamentally conflicting program
transformations in optimizing compiler back-ends. Global code motion aims to place
instructions in less frequently executed basic blocks, while instruction scheduling within
blocks or regions (all subsumed here under ‘code motion’) arranges instructions such that
independent computations can be performed in parallel. These optimizations tend to
increase the distances between the definitions and uses of values, leading to more overlaps
of live ranges. In general, more overlaps lead to higher register pressure and insertion of
more expensive register spill and reload instructions in the program. Eager code motion
performed before register allocation can thus lead to an overall performance decrease.

On the other hand, register allocation before code motion will assign unrelated
values to the same physical register, introducing false dependences between computations.
These dependences block opportunities for code motion that may have been legal before
assignment of registers. This is an instance of the phase ordering problem: Neither
ordering of these phases of code generation provides optimal results. A common way to
sidestep this problem is by solving both problems at once in an integrated fashion.

This thesis develops a fully integrated approach to global code motion and register
allocation. The result is an algorithm that determines an arrangement of instructions that
leads to minimal spill code while performing as much global code motion and scheduling
for parallelism as possible. Based on an overlap analysis that determines all the possible
interferences between live ranges when taking all possible arrangements of instructions
into account, the algorithm constructs a register allocation problem such that the solution
encodes code motion information to ensure a legal allocation. A candidate selection pass
determines which live ranges should be considered for reuse of a processor register. The
selection process includes a tuning parameter to study the trade-off between global code
motion and spilling, and can be performed in a heuristic or an optimal way.

The results show that in general, global code motion should be careful to take register
pressure into account. Except for rare cases where register use is low, compilers should
focus on arranging code such that minimal spilling is required.

ix

Kurzfassung

Code Motion und Registerallokation sind wichtige, aber fundamental gegensätzliche
Programmtransformationen in optimierenden Übersetzern. Globale Code Motion platziert
Befehle in weniger oft ausgeführten Programmblöcken, während die Befehlsanordnung in
Blöcken oder Regionen (hier kollektiv ‘Code Motion’) Anweisungen so anordnet, dass
unabhängige Berechnungen parallel ausgeführt werden können. Diese Optimierungen
erhöhen oft den Abstand zwischen den Definitionen und Verwendungen von Werten, was
zu mehr Überlappungen zwischen den Live Ranges führt. Im Allgemeinen bewirken mehr
Überlappungen einen höheren Registerdruck und die Erzeugung von mehr Code für die
Auslagerung von Werten. Aggressive Code Motion vor der Registerallokation kann daher
zu einer insgesamt verringerten Performance führen.

Andererseits werden durch Registerallokation vor der Code Motion voneinander
unabhängige Werte an gemeinsame Prozessorregister zugewiesen, wodurch falsche Ab-
hängigkeiten zwischen Berechnungen entstehen. Diese Abhängigkeiten verhindern Code-
Motion-Transformationen, die vor der Zuweisung noch zulässig gewesen wären. Das ist
eine Instanz des Phase-Ordering-Problems: Keine der Reihenfolgen dieser Phasen der
Codeerzeugung garantiert optimale Ergebnisse. Eine Möglichkeit, dieses Problem zu
umgehen, ist die gleichzeitige Lösung beider Probleme mit einem integrierten Verfahren.

In dieser Arbeit wird ein integriertes Verfahren für globale Code Motion und Register-
allokation entwickelt. Das Ergebnis ist ein Algorithmus, der eine Anordnung von Befehlen
bestimmt, die zu minimaler Auslagerung von Werten führt, während gleichzeitig so viel
globale Code Motion und lokale Befehlsanordnung für Parallelität wie möglich angewandt
wird. Basierend auf einer Überlappungsanalyse, die alle möglichen Konflikte zwischen
Live Ranges in allen möglichen Anordnungen von Befehlen beachtet, konstruiert der Algo-
rithmus ein Registerallokationsproblem, dessen Lösung auch Code-Motion-Informationen
für die Sicherstellung der Zulässigkeit der Allokation beinhaltet. Eine Phase der Kandi-
datenauswahl entscheidet, welche Paare von Live Ranges für die Wiederverwendung von
Prozessorregistern in Frage kommen sollen. Das Auswahlverfahren hat einen Parameter,
über den die Balance zwischen Code Motion und Registerallokation gesteuert werden
kann, und wird entweder heuristisch oder optimal durchgeführt.

Die Ergebnisse zeigen, dass im Allgemeinen globale Code Motion den Registerdruck
genau beachten sollte. Außer in einigen seltenen Fällen mit geringem Registerdruck
sollten Übersetzer Code so anordnen, dass die Auslagerung von Werten in den Speicher
minimiert wird.

xi

Contents

Abstract ix

Kurzfassung xi

Contents xiii

List of Figures xiv

List of Tables xv

1 Introduction 1
1.1 Compiler back-end program representations 1
1.2 Static single assignment (SSA) form . 2
1.3 Register allocation and spilling . 3
1.4 Instruction scheduling . 4
1.5 Global code motion . 4
1.6 Phase ordering between code motion and spilling 6
1.7 Motivation: A simple example . 7
1.8 Global code motion with spilling . 9
1.9 Limits of ‘optimal’ code generation . 12

2 Related Work 15
2.1 Instruction scheduling . 15
2.2 Integrated scheduling and register allocation 16
2.3 Integrated code motion and register allocation 20
2.4 GCMS . 22

3 Live Range Overlap Analysis 25
3.1 Traditional overlap analysis . 25
3.2 Overlap analysis in the presence of code motion 26
3.3 Greedy overlap analysis . 34
3.4 Handling of two-address instructions . 37
3.5 Overlap analysis for preallocated registers 38

xiii

4 Reuse Candidate Selection 41
4.1 The candidate selection problem . 41
4.2 Heuristic reuse candidate selection . 43
4.3 Optimal reuse candidate selection . 44
4.4 Balanced reuse candidate selection . 46

5 Spilling and Global Code Motion 49
5.1 PBQP register allocation . 49
5.2 Spilling with reuse candidate information 51
5.3 Restricted global code motion . 53
5.4 Final instruction scheduling . 54

6 Experimental Evaluation 55
6.1 Implementation issues . 55
6.2 Experimental methodology . 58
6.3 Results . 59
6.4 Results of heuristic GCMS . 71

7 Conclusions 75

Bibliography 77

Curriculum Vitæ 85

List of Figures

1.1 Example program with global dependence graph and control flow graph . . . 6
1.2 Optimization using GCM and GCMS for a three-register processor 8
1.3 Conflict graphs for each of the program variants from Figure 1.2 9
1.4 Comparison of compiler phases using regular register allocation and GCMS . 11

3.1 Nontrivial live range overlap in a non-SSA program. 26
3.2 Illustration of the overlap criterion . 27
3.3 Exhaustive overlap analysis for virtual registers A and B 29
3.4 Greedy overlap analysis for live ranges R1 and R2 35
3.5 Some possible code motions to avoid overlap of v and w 36
3.6 Limited code motion in overlap analysis for preallocated registers 40

xiv

4.1 Dependence graph with with conflicting sequencing possibilities (dashed) . . 42

5.1 Sample cost vector and cost matrix for the nodes and edges of a PBQP register
allocation graph . 49

5.2 Sample ε edge cost matrix for modeling avoidable live range overlaps 51
5.3 Conflict graph for the example program from Figure 1.2, with dashed edges

representing ε edges in the PBQP graph . 52
5.4 The code motion impact of allocating the example program for processors

with various numbers of registers . 53

6.1 Time taken by the ILP solver for problems of various sizes (β = 0) 67
6.2 Time taken by the ILP solver for problems of various sizes, detail of Figure 6.1 67
6.3 Influence of solver time on the performance of selected benchmarks 68
6.4 Influence of the β parameter on the performance of selected benchmarks . . . 70

List of Tables

3.1 Blame terms computed for the example program, listing instruction placements
and missing dependence arcs that may cause overlaps. 31

6.1 Execution times of benchmark programs with various GCMS configurations,
inlining threshold 225 . 61

6.2 Execution times of benchmark programs with various GCMS configurations,
inlining threshold 450 . 63

6.3 Static properties of selected benchmark functions with various GCMS config-
urations . 65

6.4 Execution time speedups of benchmark programs compiled with various GCMS
configurations with heuristic candidate selection. 72

6.5 Execution time speedups of benchmark programs compiled with various GCMS
configurations with heuristic candidate selection and hoisting of uses disabled. 73

xv

CHAPTER 1
Introduction

This thesis deals with the phase ordering problem between register allocation and
global code motion. This chapter recalls the definitions of these problems, introduces a
motivating example of the phase ordering problem, and gives a high-level description of
the integrated solution developed as part of the thesis.

1.1 Compiler back-end program representations

The problems discussed in this thesis concern program transformations in compiler
back-ends. The back-end is the compiler stage invoked after the input program has been
parsed and statically analyzed, and high-level optimizations have been performed. The
back-end maps some machine-independent representation of the computations in the
program to the instruction set of some concrete target processor. The three main phases
involved here are instruction selection, instruction scheduling/global code motion, and
register allocation.

Instruction selection chooses the target instructions to implement the abstract com-
putations in the program. In the rest of this thesis, we assume that this has been done,
and the identities of instructions will remain unchanged. The scheduling/code motion
and register allocation phases are discussed below.

In what follows, it is assumed that programs consist of one or more functions, but
each function is processed by the compiler back-end in complete isolation from the
other functions. From the point of view of the back-end, it therefore looks as if the
function currently being compiled is identical to the input program. For simplicity, we
will therefore sometimes use the phrase ‘the (input) program’ to mean ‘the function in
the input program currently being processed by the back-end’.

Instructions in the program are arranged in basic blocks (or simply blocks), which
are single-entry single-exit regions in the program without transfers of control within
the region. That is, a transfer of control in the program may only ever jump to some

1

block’s beginning, and instructions that transfer control may only occur at the ends of
blocks. Hence, unless a CPU exception is triggered, a block’s first instruction is executed
whenever all the other non-branching instructions in the block are executed before a
branch is reached.

Within each block, instructions are arranged in some strict linear order. Processor
architectures that allow instructions to be arranged in an explicitly parallel fashion
(VLIWs) are not considered here.

A function’s blocks are arranged in a control flow graph (CFG). In this graph, there
is a directed edge from each basic block to each of the blocks that it may transfer control
to. There is a special entry block where execution enters the function from its caller.
The entry block has no predecessors in the CFG. It is assumed that every block in the
function is reachable via CFG edges from the entry block. Every block is assumed to
end in some instruction that jumps to another block in the same function or that returns
to the function’s caller.

An edge in the CFG is critical if it leads from a block with more than one successor
to a block with more than one predecessor. A critical edge can be split by inserting a
new, empty block on the edge. The rest of this thesis assumes a program representation
in which all critical edges have been split, as this creates convenient targets for global
code motion.

A central notion in what follows is that of dominance. A basic block a dominates
a basic block b, written a �dom b, if every path in the CFG from the entry block to b
must pass through a. Dominance is reflexive, transitive, and antisymmetric, and the
entry block dominates every block. Each block’s dominators are themselves ordered by
dominance: If a �dom c and b �dom c, then a �dom b or b �dom a.

A block a strictly dominates b, a �sdom b, if a �dom b and a 6= b. A block a
immediately dominates b, a �idom b, if a �sdom b and for all other dominators d of b,
d �dom a. Due to these properties, the basic blocks can be arranged in a dominator tree
in which a is a parent of b if and only if a �idom b. The entry block is necessarily at the
root of the dominator tree.

Dominance can be generalized from basic blocks to instructions: For a given arrange-
ment of instructions in the program, instruction i in block bi dominates an instruction j in
block bj if bi �sdom bj or bi = bj and i appears before j in that block. In Section 1.5, this
will be generalized further to a notion of dominance on the program’s global dependence
graph.

1.2 Static single assignment (SSA) form

As an extension of Global Code Motion (Click 1995), our algorithm is based on a
representation of the program in SSA (static single assignment) form (Cytron et al. 1991).
In SSA, every value in the program has exactly one point of definition. Definitions from
different program paths, such as updates of a value in a loop, are merged by inserting φ
pseudo-instructions. The φ instructions are always placed at the beginnings of basic
blocks and have one operand for each of the block’s predecessors, representing the flow of

2

a value from that predecessor. The value defined by the φ represents the merged value,
i. e., the value that actually reaches that program point during execution of the program.
The φ instructions are removed from the final program by allocating their operands to
identical physical registers or by introducing copy instructions (Sreedhar et al. 1999).

The particular form of SSA assumed in this thesis is strict SSA form. This is the
commonly used variant of SSA that requires every instruction that defines a value to
dominate all of the uses of that value. Where this condition is not already fulfilled by
the input program, i. e., where some values may be undefined along some program paths,
the program is assumed to have been transformed into a state where such cases are
resolved explicitly by insertion of special undef pseudo-instructions and appropriate φ
instructions.

For the purposes of dominance in strict SSA form, the φ instructions are treated as
if each use of a merged value appeared at the end of the appropriate predecessor block.
These uses are dominated by the definition even if, as is common in loops, the φ itself
appears before the definition of some value that it uses.

1.3 Register allocation and spilling

Register allocation is one of the classical optimizations in a compiler’s back-end. It
concerns the assignment of values (or virtual registers) used by a program to the processor’s
physical registers. Values that are not allocated to a register must be spilled (stored) to
main memory and reloaded before use. As main memory accesses are significantly slower
than register accesses, it is imperative for good performance to find an allocation that
incurs the lowest possible number of executed spill and reload instructions. Spillers are
typically guided by a model of spill costs: a static estimate of the numbers of executed
loads and stores due to a spill.

A fundamental notion in register allocation is that of liveness: A value is live at a
program point if it may be used at some later point without an intervening redefinition.
A value’s live range is the set of all program points where that value is live. Live
ranges conflict or overlap if they intersect at some program point. The register allocator
must ensure that at each program point, the set of all live values can be assigned to
registers without conflict. If there are too many live values, some of them must be
eliminated by spilling or other methods such as rematerialization, i. e., duplication of
computations (Briggs, Cooper, and Torczon 1992).

The above definition of conflict can be refined further: Overlapping live ranges can
be allocated to the same register if their values are provably equal. In particular, if an
SSA value is defined by a copy instruction, it can be allocated to the same register as the
source of the copy. This operation is known as coalescing. This thesis does not consider
coalescing for two reasons. First, naïve coalescing can increase the number of live range
conflicts, and it is not clear how to best integrate it with code motion. Second, many
of the copies in target programs cannot, in fact, be coalesced because they are vital for
establishing the correctness of SSA form in the presence of code motion and instructions
that modify some of their input operands (see Section 3.4).

3

A value’s live range depends crucially on the arrangement of instructions in the
program. Since in the context of global code motion this arrangement is not fixed,
traditional liveness analysis is not applicable to the work described in this thesis. Chapter 3
describes how overlaps between live ranges can be detected in the presence of global code
motion.

The actual allocation of values to registers can be performed in one of several ways.
While faster approaches exist (Poletto and Sarkar 1999), for the purposes of this work it is
convenient to perform allocation on a conflict graph. The nodes of this graph are the live
ranges in the program, and overlapping live ranges are connected by edges. Allocation is
successful if a physical register can be assigned to each node such that no neighboring
nodes are assigned the same register (or, more generally, overlapping registers). This
approach is known as graph coloring (Chaitin 1982). The PBQP approach actually
used in this work can be viewed as a generalization of graph coloring in which costs are
assigned to allocations, and the overall cost is to be minimized (Scholz and Eckstein 2002;
Hames and Scholz 2006).

1.4 Instruction scheduling
Instruction scheduling is the back-end phase that determines the ordering of instructions
in each basic block. The schedule must respect dependences: Instructions may not appear
before some condition is fulfilled. The most important case are data dependences between
the uses of values and their definitions, i. e., values may not be used before they are
defined. More general ordering dependences apply to instructions manipulating memory
locations or CPU registers, where it must be ensured that values are not overwritten
before the previous value is used for the last time. Dependences are usually captured in
a dependence graph, an acyclic directed graph.

Any topological ordering of the dependence graph is in principle a legal schedule.
However, not all schedules result in the same performance on modern processor archi-
tectures. On pipelined processors, instruction-level parallelism and thus performance
can be improved by scheduling long computations early and at some distance from their
uses, interleaving them with other computations. Scheduling can also take into account
the number of different kinds of functional units in the processor and attempt not to
schedule too many instructions that need the same functional unit at a time. Out-of-order
execution, multiple instruction issue on superscalar processors, and register renaming
performed by the CPU may to some extent alleviate bad scheduling decisions by the
compiler, but scheduling can still be important in practice.

1.5 Global code motion
The motion of instructions between basic blocks in this work is based on Global Code
Motion (GCM) (Click 1995), a generalization of loop-invariant code motion techniques.
It is global in considering an entire function at once. GCM is based on a representation
of the program in SSA form and includes φ instructions as normal nodes in the graph.

4

However, for the purposes of this work it is important that the dependence graph is
acyclic to ensure schedulability. If we had dependence cycles, we would not be able to
schedule instructions in a way that respects all dependences. In SSA form, cyclic data
dependences can only occur as arcs from an instruction to a φ earlier in a loop. We
therefore only add those dependence arcs for φ nodes that do not introduce such cycles.
It is safe to ignore the cyclic dependences as long as we ensure that such instructions will
not be sunk out of their loops.

In the graph, each instruction is associated with a list of basic blocks in which it
may be placed legally. Some instructions are pinned to the blocks in which they appear
originally: φ instructions and branches model control flow and may never be moved
to another block. We also forbid moving any instruction that may have a side effect
(function calls and stores), any load except from the constant pool or stack, and any
instruction that uses a physical register explicitly (copies to and from argument and
return registers, instructions that use condition code registers). We use arcs to fix the
order of those instructions within the block that may have side-effects on memory or
access physical registers. This is overly conservative, but it saves us from having to solve
NP-complete problems that come up when trying to schedule live ranges for pre-assigned
physical registers (Darte and Quinson 2007). We do allow reordering of loads between
instructions that may store. Instructions that are not pinned to their blocks may be
moved to other blocks within the constraints given by dependence arcs.

Code motion is guided by the notion of dominance: A legally placed instruction
dominates all of the instructions that depend on it and is dominated by all the instructions
it depends on. The earliest and latest possible blocks for all instructions can be computed
in two simple passes over the graph in topological order and reverse topological order.
For each instruction, the earliest block necessarily dominates the latest block, and any
intervening block on the path in the dominator tree from the earliest to the latest block
is also deemed valid.

Figure 1.1 shows the code, the dependence graph, and the control flow graph for
a program which will be used to illustrate concepts throughout this thesis. In the
dependence graph, instructions are represented as nodes, and arcs in the dependence
graph are labeled with the values that flow along them. Instructions are shown within
basic blocks (rectangles), but some instructions may be moved to other blocks. These
instructions are annotated with a list of the names of all the blocks in which they may
be placed legally.

In the CFG in Figure 1.1, the start block dominates loop, which dominates end.
The function calls, the φ, the branch, and the return are not movable; all other instructions
may in principle move as dependences allow. The branch depends on all arithmetic
instructions except the multiplication, which is therefore the only arithmetic instruction
legal for sinking out of the loop. The addition that computes b may be hoisted out of
the loop because it only depends on values computed before the loop. The operations
involving the j variables may not be hoisted due to the φ and may not be sunk due
to the dependence from the branch. The cyclic dependence due to the φ is shown as a
dashed arc, but is not present in the actual graph.

5

start:
j0 := 0
a := read()

loop:
j1 := φ(j0, j2)
b := a + 1
j2 := j1 + b
c := f(a)
compare j2 < c
d := j2 × 2
blt loop

end:
return d

start

loop

end

0: 0

2: ϕ

 j0

1: call read

3: + 1
[start, loop]

a

5: call f

 a

4: +

 j1 b

6: <

c

j2

7: × 2
[loop, end]

j2 j2

9: return

d8: blt

cc

start

loop

end

Figure 1.1: Example program with global dependence graph and control flow graph

The notion of dominance is lifted from fixed schedules of instructions to instructions in
the dependence graph: An instruction i dominates an instruction j if there is a (possibly
transitive) dependence from j to i, or if i’s last legal block strictly dominates j’s first
legal block.

1.6 Phase ordering between code motion and spilling
Performing global code motion before spilling and register allocation (prepass scheduling)
might lead to a program that requires many spills. Conversely, code motion and scheduling
after register assignment (postpass scheduling) can be hindered by false dependences
introduced by allocating unrelated values to the same physical register.

There are decomposed register allocators that separate spilling from allocation (Koes
and Goldstein 2009), with the spiller inserting enough spill code to guarantee that there

6

is some valid allocation of the resulting program. It is possible to insert a code motion
and scheduling pass after spilling but before allocation; however, care must be taken to
ensure that the guarantee of a valid allocation is not invalidated by rearranging code.

Scheduling and code motion transformations may therefore attempt to balance their
optimizations against the needs of register allocation, but they do not typically operate
with an exact model of register usage. In previous work (see Chapter 2), many authors
presented techniques to integrate local scheduling decisions within basic blocks with
register allocation. In this work, we generalize such scheduling decisions to global code
motion between blocks guided by the register allocator and based on its exact model of
register demands.

The results of Govindarajan et al. (2003) suggest that, at least on modern out-of-order
architectures, reducing the number of spills has more benefits than any other possible
local scheduling decision. We expect this result to carry over to global code motion as
well and provide experimental data that shows improvements due to our algorithm built
on this premise. On embedded processors without out-of-order execution, more careful
scheduling to make optimal use of the pipeline is more important. However, we believe
that our transformation, which reduces the number of executed loads, is an optimization
due to the removal of these expensive instructions. For this reason, our approach for
integrated code motion and register allocation attempts to minimize overall spill costs
while preserving as much freedom as possible for subsequent global code motion.

Our work attempts to strike a balance between the needs of register allocation
and global code motion transformations. It makes use of the same graph structure
to drive both spilling and code motion and can therefore handle these two important
program transformations in a unified way. In our approach, spilling is performed not on
a given schedule computed by a prepass scheduler, but rather a graph that represents all
possible schedules. Some spills can be avoided by adding arcs to the graph to serialize
computations. This can ensure that live ranges do not overlap, enabling the reuse of
processor registers for unrelated values. The register allocator attempts to find a solution
that incurs minimal spill costs but at the same time restricts the graph as little as possible.
The resulting program contains a minimum of spill code but still has some freedom for
aggressive code motion optimizations.

1.7 Motivation: A simple example

Figure 1.2 shows a few variants of the example program that was introduced above,
adapted from the original paper on GCM (Click 1995). Figure 1.2a shows the same code
as in Figure 1.1, repeated here for reference. It is easy to see that the computation of
variable b is loop-invariant and can be hoisted out of the loop; further, the computation
for d is not needed until after the loop. Since the value of its operand j2 is available
at the end of the loop, we can sink this multiplication to the end block. Figure 1.2b
illustrates both of these code motions, which are automatically performed by GCM. The
resulting program contains less code in the loop, which means it can be expected to run
faster than the original.

7

start:
j0 := 0
a := read()

loop:
j1 := φ(j0, j2)
b := a + 1
j2 := j1 + b
c := f(a)
compare j2 < c
d := j2 × 2
blt loop

end:
return d

(a) Original function

start:
j0 := 0
a := read()
b := a + 1

loop:
j1 := φ(j0, j2)
j2 := j1 + b
c := f(a)
compare j2 < c
blt loop

end:
d := j2 × 2
return d

(b) After GCM

start:
j0 := 0
a := read()

loop:
j1 := φ(j0, j2)
b := a + 1
j2 := j1 + b
c := f(a)
compare j2 < c
blt loop

end:
d := j2 × 2
return d

(c) GCMS for 3 registers

Figure 1.2: Optimization using GCM and GCMS for a three-register processor

This expectation fails, however, if there are not enough registers available in the
target processor. Consider the conflict graphs of the original program in Figure 1.3a
and the program after GCM in Figure 1.3b. For simplicity, in the conflict graphs the
φ-related variables j0, j1, and j2 are merged into a single variable j. This merging is
not possible in general and not needed for the GCMS algorithm, but it simplifies the
presentation in this case.

Since after GCM the variable b is live through the loop, it conflicts with a, c, and j.
Both a and c conflict with each other and with at least one of the j variables, so after
GCM we need four CPU registers for a spill-free allocation. If the target only has three
registers available for allocation of this program fragment, costly spill code must be
inserted into the loop. As memory accesses are considerably more expensive than simple
arithmetic, GCM would trade off a small gain through loop invariant code motion against
a larger loss due to spilling.

Compare this to Figure 1.2c, which shows the result of applying our GCMS algorithm
for a three-register CPU. To avoid the overlap of b with all the variables in the loop,
GCMS leaves its definition inside the loop. This ensures that a register limit of 3 can
be met. However, GCMS is not fully conservative: Sinking d out of the loop can be
done without adversely affecting the register needs, so this code motion is performed
by GCMS. Note that this particular code motion does lengthen j’s live range, but the
algorithm determines that this does not lead to unwanted live range overlaps in this case.
The conflict graph for this variant of the program is shown in Figure 1.3c. Observe also
that this result is specific to the limit of three registers: If four or more registers were

8

a b

c

d

j

(a) Original function

a b

c

d

j

(b) After GCM

a b

c

d

j

(c) GCMS for 3 registers

Figure 1.3: Conflict graphs for each of the program variants from Figure 1.2

available, GCMS would detect that unrestricted code motion is possible, and it would
produce the same results as GCM in Figure 1.2b.

The idea of GCMS is thus to perform GCM in a way that is more sensitive to the
needs of the spiller. As illustrated in the example, code motion is restricted by the
choices of the register allocator, but only where this is necessary. In functions (or parts
of functions) where there are enough registers available, GCMS performs unrestricted
GCM. Where there is higher register need, GCMS serializes live ranges to avoid overlaps
and spill fewer values.

In contrast to most other work in this area, GCMS does not attempt to estimate the
register needs of the program before or during scheduling. Such models cannot predict
which spilling and allocation decisions will be made by the register allocator. This means
that such algorithms can be overly conservative. For example, the IPS algorithm (see
Section 2.2.1) schedules basic blocks before register allocation based on a precomputed
register limit. If the register allocator spills a value that is live across a basic block but not
used in that block, this amounts to increasing the register limit for that block. However,
as a purely prepass approach, IPS cannot take advantage of this change introduced by
the spiller.

In contrast, GCMS computes a set of promising code motions that could reduce
register needs if necessary. An appropriately encoded register allocation problem ensures
that the spiller chooses which code motions are actually performed. Thus GCMS’s code
motion model is always fully synchronized with the actual spilling and allocation decisions
make by the register allocator. Code motion and scheduling restrictions that are not
needed to avoid spilling are not applied.

1.8 Global code motion with spilling

Given the dependence graph and legal blocks for each instruction, GCMS proceeds in
the following steps:

9

Overlap analysis determines for every pair of values whether their live ranges might
overlap. The goal of this analysis is similar to traditional liveness analysis for
register allocation, but with the crucial difference that in GCMS, instructions may
move. Our overlap analysis must therefore take every legal placement and every
legal ordering of instructions within blocks into account.
For every pair, the analysis determines whether the ranges definitely overlap in all
schedules, never overlap in any schedule, or whether they might overlap for some
arrangements of instructions. In the latter case, GCMS computes a set of code
placement restrictions and extra arcs that can be added to the global dependence
graph. Such restrictions ensure that the live ranges do not overlap in any schedule
of the new graph, i. e., they enable reuse of the same processor register for both
values.

Candidate selection chooses a subset of the avoidable overlaps identified in the pre-
vious phase. Not all avoidable overlaps identified by the analysis are avoidable
at the same time: If avoiding overlaps for two register pairs leads to conflicting
code motion restrictions, such as moving an instruction to two different blocks,
or adding arcs that would cause a cycle in the dependence graph, at least one of
the pairs cannot be chosen for reuse. GCMS must therefore choose a promising
set of candidates among all avoidable overlaps. Only these candidate pairs will be
considered for actual overlap avoidance by code motion and instruction scheduling.
Since our goal is to avoid expensive spilling as far as possible, we try to find a
candidate set that maximizes the sum of the spill costs of every pair of values
selected for reuse.

Spilling and code motion use the results of the candidate selection phase by building
a register allocation problem in which the live ranges of reuse candidates are treated
as non-conflicting. The solution computed by the register allocator is then used to
guide code motion: For any selected candidate whose live ranges were allocated to
the same CPU register, we apply its code motion restrictions to the dependence
graph. The result of this phase is a restricted graph on which we can perform
standard GCM, with the guarantee that code motion will not introduce excessive
overlaps between live ranges.

Figure 1.4 shows an abstract comparison of compiler back-end phases for regular
register allocation and GCMS. In a typical case (as implemented in the LLVM compiler
framework, for instance), instruction scheduling and loop-invariant code motion (LICM)
are performed before the liveness analysis that feeds the spiller and register allocator. In
our case, code motion and scheduling before spilling are not necessary; we only place
instructions after spilling. Instead we build a dependence graph which is used both for
code motion and for overlap analysis. Liveness analysis is replaced by two phases: overlap
analysis to determine all the possibly overlapping live ranges, and selection of the set of
pairs of possibly overlapping live ranges that will be presented to the register allocation
phases. Spilling and register allocation proceed identically in GCMS and regular register
allocation. Finally, GCMS uses the allocator’s results to perform restricted global code

10

regular register allocation global code motion with spilling

instruction
selection

instruction
scheduling

LICM

liveness
analysis

register
spilling

 overlaps

register
assignment

LICM

instruction
scheduling

instruction
selection

dependence graph
construction

overlap analysis

 dependence
graph

reuse candidate
selection

 possible
reuses

register
spilling

 overlaps

register
assignment

global code motion

reuses +
 dependence

graph

instruction
scheduling

Figure 1.4: Comparison of phases in a compiler back-end using regular register allocation
(left) and a back-end using integrated code motion and register allocation with GCMS
(right)

11

motion and scheduling to determine the final arrangement of instructions in each block.
A regular back-end can also follow register allocation with another round of LICM and
scheduling to exploit remaining possibilities for optimization.

Each of the three main phases of GCMS is the topic of one of the following chapters.

1.9 Limits of ‘optimal’ code generation

The GCMS algorithm presented in this thesis formulates a specific model of integrated
code generation and solves this model optimally. However, there can be cases where the
generated code is not actually as fast as some other, equivalent code generated in some
other way. This is due to several reasons.

First, not all data that would be needed for the generation of optimal code is available.
In part, this is unavoidable due to the complexity of modern computer architectures:
The execution time of a piece of code is not fixed but depends on the states of the
processor pipeline and on the caches. For simple platforms, safe approximations of the
hardware’s worst-case behavior exist and can be exploited in code generation (Falk 2009;
Lokuciejewski et al. 2010), but the exact behavior of an out-of-order processor is typically
undocumented and essentially unpredictable at compile time.

Other performance-relevant data concerns the program itself. In particular, detailed
basic block profiling information would allow a much more precise formulation of spill
costs and the benefits of global code motion operations. However, the LLVM compiler
framework does not provide this data at the required granularity: Basic block profiling
data is available on the LLVM intermediate code level, but the lowering to target-specific
code introduces new blocks and complex new control flow that makes it impossible in
general to propagate profiling information to all points in the program. The cost model
used by GCMS therefore relies on static estimates of block frequencies, which may not
agree with actual dynamic frequencies.

Second, the cost model used by GCMS does not capture all aspects of spilling and
code motion directly. While global code motion is guided by a cost model, the impact of
artificial instruction ordering constraints on local schedule lengths is not modeled. This
is based on the expectation that out-of-order execution will hide most of the associated
costs (Govindarajan et al. 2003), but that is not always the case in practice. The spill
cost model for candidate selection itself does not perform or predict the concrete spilling
choices made by the decoupled spiller; it only minimizes the total sum of spill weights of
overlapping live ranges. This is a simple and useful model, but there is no guarantee that
it will always lead to the set of reuse candidates and associated schedules that absolutely
minimize spilling.

Finally, some parts of GCMS rely on pre-existing, heuristic building blocks for
simplicity. In particular, spilling is performed using the heuristic PBQP register allocator,
and register assignment is not performed to avoid having to deal with out-of-SSA
transformation. As the results in Chapter 6 show, both of these choices can sometimes
cause paradoxical behavior in practice. Using an optimal formulation of spilling and
register assignment with GCMS may be possible in theory. This would, however, lead to

12

much longer solver times. Additionally, the spilling problem itself is not fully solved yet:
Even the careful optimal formulation of spilling in SSA form by Colombet, Brandner,
and Darte (2011) leaves open the problem of optimal coalescing of the operands and
results of φ instructions.

13

CHAPTER 2
Related Work

This chapter summarizes the most relevant existing research into instruction scheduling
and its relation to register allocation. General overviews of both topics are standard
material in compiler textbooks (Aho, Lam, et al. 2006; Cooper and Torczon 2004;
Muchnick 1997). These textbooks traditionally present scheduling and register allocation
as separate topics without considering integrated approaches.

2.1 Instruction scheduling

In the absence of instruction pipelining, the ordering of instructions within basic blocks
does not matter as long as all dependences are satisfied and the register use is not so
large that it would cause spilling. Very early work in code generation thus focused on
minimizing the number of instructions emitted and the number of registers needed. Under
the unrealistic assumption of only evaluating expression trees, not DAGs, the simple
Sethi-Ullman numbering algorithm produces code that is minimal in both register use
and total number of instructions (Sethi and Ullman 1970). Solving the same problem for
DAGs is NP-complete, but the Sethi-Ullman algorithm can be generalized to a heuristic
for DAGs (Aho, S. C. Johnson, and Ullman 1977).

With the advent of pipelined architectures, scheduling became more important in
order to exploit instruction-level parallelism1. Rymarczyk (1982) gives an early tutorial
on programming for pipelined systems.

Finding a minimal-length schedule for a pipelined processor is NP-complete in general
and is typically solved using heuristic list scheduling (Hennessy and Gross 1982; Gibbons
and Muchnick 1986). List scheduling is an iterative algorithm that traverses a basic
block DAG and emits instructions one by one, respecting dependences and various other

1Instruction-level parallelism is often abbreviated ILP. In this thesis, the acronym ILP is used for
integer linear programming, and instruction-level parallelism is spelled out in full or abbreviated as
‘parallelism’ when needed.

15

constraints. At each point, there are typically several instructions that are ready to
be scheduled. The next instruction is selected heuristically based on considerations
of latency, the length of the path to the end of the block, or availability of processor
resources. In processors without pipeline interlocks, no instruction may be ready at a
given time because all unscheduled instructions must wait for some data or resource to
become available. In such cases, the scheduler must emit a no-op instruction. The criteria
for selecting the next instruction to be scheduled may be captured formally in a rank
function that assigns an integer-valued rank to each instruction in the DAG (Palem and
Simons 1990). Ranks are usually precomputed immediately prior to scheduling. The list
scheduler always selects an instruction of maximal rank among the ready instructions to
be scheduled next, possibly using additional properties to break ties. For processors with
complex pipelines, it can make sense to adapt the rank function on-the-fly depending on
the amount of parallelism present in the code (Ertl and Krall 1992).

Besides heuristic list scheduling, there is also a body of work on optimal approaches.
These can be based on formulations such as constraint logic programming (Ertl and Krall
1991), integer programming (Wilken, Liu, and Heffernan 2000), or enumeration with
pruning (Shobaki and Wilken 2004). As with list scheduling, the goal of such models is
usually to optimize for minimal total schedule length only.

2.2 Integrated scheduling and register allocation

Arranging instructions for minimal schedule length on a pipelined processor tends to
lengthen live ranges and thus increase the number of live range overlaps. For example,
the typical examples for list scheduling in the classic papers are based on hiding the
latencies of load instructions by scheduling loads next to each other. However, this means
that the loaded values take up registers earlier than they might be needed. Integrated
approaches to scheduling and register allocation try to ensure that this kind of operation
to exploit parallelism is only performed as long as it does not lead to excessive spilling.

The following sections mostly describe notable heuristic approaches to the prob-
lem. A recent survey article (Castañeda Lozano and Schulte 2014) discusses integrated
combinatorial approaches.

2.2.1 Integrated prepass scheduling

Integrated prepass scheduling (IPS) was the first attempt to perform scheduling while
considering register use (Goodman and Hsu 1988). IPS is a modified list scheduler that
integrates a standard latency-oriented list scheduler with another scheduler based on the
Sethi-Ullman algorithm that aims at minimizing register usage. IPS runs before register
allocation.

IPS keeps track of the number of available registers at each program point; this value
is initialized before scheduling each block based on the results of a global liveness analysis.
For each value that is used within the block, the number of uses is also computed. IPS
assumes a basic block in single-assignment form. Instructions are initially scheduled as in

16

regular list scheduling. Each value’s use count is decreased for each scheduled instruction
that uses it. The number of available registers is decreased for each value defined by
the last scheduled instruction, and increased for each value for which the last scheduled
instruction was the last use.

Whenever the number of available registers is below a threshold (such as 1), IPS
chooses the next instruction based on the second selection function. If possible, it chooses
an instruction that frees a maximal number of registers. If no such instruction is available,
IPS prefers an instruction that continues evaluating an expression that has been partially
evaluated already. Otherwise, it chooses arbitrarily. IPS can thus sometimes exceed the
given register limit, which may cause spilling later on.

IPS is run before a final register allocator which may insert spill code where IPS did
not succeed in finding a schedule that keeps within the available register limit. Simulations
show that IPS outperforms both prepass and postpass scheduling in terms of the number
of processor cycles executed in the final program.

2.2.2 DAG-driven register allocation

DAG-driven register allocation was introduced together with IPS (Goodman and Hsu
1988). It approaches the problem from the other direction first: Rather than scheduling
the DAG while keeping register allocation in mind, DAG-driven register allocation
performs allocation first and tries to minimize the false dependences introduced in the
process.

DAG-driven register allocation is based on measuring the width of the DAG, which
is the number of registers that would be needed if all parallelism were exploited by
scheduling, and the height of the DAG, which is the length of the longest path. While
the width of the DAG exceeds the number of available registers, false dependences are
introduced to reduce parallelism. Each such operation may increase the DAG’s height by
making the critical path longer.

The allocator visits nodes in the DAG in topological order and assigns registers. For
each instruction it prefers reusing a register that was used by one of its predecessors in
the DAG since this does not add an extra dependence. If dependences must be added, the
choice is guided by instructions’ earliest issue times and earliest finish times, computed
from the DAG. The allocator tries to limit the growth in the DAG’s height by ensuring
that the instructions with the highest earliest finish times reuse registers from instructions
with the lowest earliest issue times.

Simulation results show that DAG-driven register allocation performs similarly to
IPS, possibly slightly worse on highly pipelined machines and slightly better on others.
The differences disappear with larger numbers of CPU registers.

The idea of DAG-driven register allocation was later generalized to global register
allocation (Ambrosch et al. 1994). In dependence-conscious coloring, a graph-coloring
global register allocator is informed by a collection of DAGs for the program’s basic blocks.
Whenever a live range is to be assigned to a CPU register, the allocator computes the
impact of each possible assignment on the schedules. The allocator chooses a register that
minimizes the increase in schedule lengths due to false dependences. Preliminary results

17

for this approach showed that it appeared effective at exploiting scheduling freedom if
register pressure was not excessive.

2.2.3 RASE

The RASE (Register Allocation with Schedule Estimates) algorithm (Bradlee, Eggers,
and Henry 1991) decomposes register allocation into local and global allocation for live
ranges that are only live within one block or across block boundaries, respectively. Global
live ranges are allocated by a standard register allocator based on graph coloring. Local
live ranges are allocated during a basic block scheduling pass that must meet a given
register limit.

The register limits for basic blocks are computed by the global allocator as well, based
on scheduling information computed beforehand. Based on two trial scheduling passes,
one without a register limit and one with a very low register limit, RASE estimates a
function that quantifies how each block’s schedule length would increase for any possible
register limit. Nodes representing these changes in costs, weighted by estimated block
frequencies, are added to the global register allocation problem. The register limit for
each block is the number of nodes representing that block in the allocation problem that
have been assigned a color.

The final scheduler within each block is similar to IPS except that it may never exceed
its register limit; spill code is inserted by the scheduler if necessary. Overall, RASE is
found to generate code that is very similar to IPS, with a possible slight advantage on
very large basic blocks.

2.2.4 Parallel interference graph algorithm

Pinter (Pinter 1993) describes an algorithm based on the coloring of a parallel interference
graph. This coloring gives a register allocation that does not introduce false dependences,
so a simple postpass scheduling pass can exploit maximal parallelism. The basic algorithm
considers one block at a time.

The parallel interference graph is constructed as follows. A node is created for each
instruction, and any two instructions connected by a path in the dependence graph
are connected by an edge. This graph is further enhanced with an edge between any
two instructions that may not execute at the same time on a superscalar machine
due to resource conflicts. For example, if there is only a single floating-point unit, all
floating-point computations are connected by edges. The resulting graph captures all
the pairs of instructions that may not execute in parallel. Its complement is then the
graph connecting all pairs of instructions which may be scheduled in parallel; no false
dependences should be introduced between these pairs. The union of this parallelism
graph (in which instructions are represented by the live ranges they define) with the
live range interference graph is the parallel interference graph that is to be colored. By
construction, if a valid coloring exists, it does not introduce false dependences between
instructions that may execute in parallel.

18

If no coloring can be found, some live ranges are spilled. Pinter does not present an
experimental evaluation of this algorithm.

The parallel interference graph shares interesting similarities with the conflict graph
that GCMS uses for integrated register allocation and code motion (see Section 5.2).
However, the trade-offs are completely opposite: GCMS attempts to avoid spilling even
if that means introducing false dependences, while Pinter’s algorithm would rather spill
than accept a false dependence, even if it might not disturb the schedule much.

2.2.5 Norris and Pollock’s algorithm

The BMW algorithm of Norris and Pollock (Norris and Pollock 1993) is also similar
to the local scheduling part of GCMS. It starts out with constructing a global register
interference graph that captures all the possible live range overlaps if all possible schedules
are considered. The number of interferences is then reduced by removing those that
correspond to the ‘least likely’ scheduling decisions. The appropriate arcs are added to
the dependence graph to ensure that these scheduling decisions cannot be taken. These
arcs that are not likely to change the final schedule are determined by examining the
scheduler’s rank function on the DAG: Nodes are considered unlikely to be scheduled after
nodes of lower rank. During register allocation, additional arcs are added if necessary to
further reduce the need for registers.

Several variants of the basic algorithm are evaluated on a simulator. The results show
that the best variant always outperforms IPS. The reasons for this are not discussed, but
it appears that this algorithm might lead to less spilling than IPS.

2.2.6 URSA

The URSA (unified resource allocation) algorithm (Berson, Gupta, and Soffa 1993;
Berson, Gupta, and Soffa 1999) treats registers and functional units in VLIW processors
in a unified way and computes schedules with the intention of reducing excess resource
requirements. The demand for resources (registers or functional units) is computed on
a dependence DAG by decomposing it into allocation chains, which are sequences of
instructions that can reuse some resource. Where the demand is too high, it is reduced
by inserting dependence arcs or by spilling.

Crucially, the spilling performed by URSA and ILS, a variant of IPS developed for
purposes of comparison with URSA (Berson, Gupta, and Soffa 1999), spills only parts
of live ranges. (The authors refer to this as live range splitting.) This is compared to a
variant of IPS that uses the simpler ‘spill everywhere’ approach in which entire live ranges
are spilled to memory and reloaded before each use. The comparison of IPS, ILS, and
URSA shows that both URSA and ILS vastly outperform IPS in simulations, especially
for small numbers of registers. However, the improvement of URSA over ILS is much
more modest. Thus it seems that a large part of the improvement due to URSA is not
due to its complex resource allocation technique but rather due to sophisticated spilling.

19

2.2.7 Register saturation

The URSA approach was studied further from the point of view of register satura-
tion (Touati 2001), which is the maximal register need over all schedules of a given DAG.
The register saturation can be computed exactly by finding the maximal antichain of a
special dependence graph associated with a killing function that maps each live range to
one instruction which is its last use. However, finding a maximizing killing function is
NP-complete.

The study of register saturation uncovered cases where URSA’s approach to computing
the register demand from the dependence graph appears to underestimate the actual
needs over all schedules. Heuristics for computing and reducing the register saturation by
adding dependences are given and found near optimal through comparison with optimal
solutions obtained by integer linear programming. However, the relationship to global
register allocation is not studied. Later work in register saturation improves the heuristics
by serializing not just individual live ranges, but entire sets of live ranges at a time (Xu
and Tessier 2007).

2.2.8 CRISP

The CRISP (combined register allocation and instruction scheduling) algorithm (Motwani
et al. 1995) makes an interesting generalization to the integrated approaches discussed
above. While older approaches tended to try to balance instruction-level parallelism
against spilling and accept some spills, over time newer algorithms aimed more and more
at eliminating spilling as far as possible (Govindarajan et al. 2003). In CRISP, this
trade-off is captured in two model parameters that can be varied to study the problem
space.

The heuristic CRISP scheduler is based on a standard list scheduler with a rank
function. Using a standard rank function γS and a special register rank function γR that
is meant to capture live range lengths, scheduling is performed with the new combined
rank function γ = αγS + β γR with the parameters α, β ∈ [0, 1] and α+ β = 1. Simple
experiments on random DAGs show that setting β = 1 (i. e., focusing on reducing live
range lengths) is effective in reducing the number of spills versus aggressive list scheduling.

In the context of this thesis, this work is mostly notable because GCMS uses a broadly
similar model to balance global code motion and spilling (see Section 4.4.2).

2.3 Integrated code motion and register allocation

All of the work mentioned above considers only local instruction scheduling within
basic blocks, but no global code motion. At an intermediate level between local and
global approaches, software pipelining (Lam 1988) schedules small loop kernels for
optimal execution on explicitly parallel processors. Here, too, careful integration of
register allocation has proved important over time (Codina, Sánchez, and González 2001;
Eriksson and Kessler 2012).

20

The following sections discuss the more notable (partly) global integrated allocators
in more detail.

2.3.1 RASER

RASER (Norris and Pollock 1995b) performs register allocation sensitive region schedul-
ing. It is based on a region scheduling algorithm which uses a program dependence
graph of hierarchically nested program regions. The algorithm estimates the amount
of parallelizable computations in each node and tries to move code from regions with
too many parallel computations to regions where the parallelism is not as high as the
machine can accommodate.

RASER extends this by also computing the register demands of regions after applying
IPS to schedule them. In regions with excess register pressure, RASER attempts to
reduce the number of live values by duplication of computations. If possible and profitable
(because it would not increase register pressure), the definition of each value used in such
a region is duplicated before each use. The number of live values is updated on the fly.

After reducing register pressure below the limit wherever possible, RASER still
allows normal code motion between regions, but only if they will not raise the register
pressure above the register limit. Like many other approaches, RASER gives impressive
improvements on machines with artificially few registers; later results on a machine with 16
registers are much more limited and more similar to ours, up to 3% at most (Norris and
Pollock 1995a).

2.3.2 VSDG algorithm

N. Johnson and Mycroft (2003) describe an elegant combined global code motion and
register allocation method based on the Value State Dependence Graph (VSDG). The
VSDG is similar to the acyclic global dependence graph used by GCMS, but it represents
control flow by using special nodes for conditionals and reducible loops (their approach
does not handle irreducible loops) rather than our lists of legal blocks for each instruction.
The graph is traversed bottom-up in a greedy manner, measuring ‘liveness width’, the
number of registers needed at each level. Excessive register pressure is reduced by adding
dependence arcs, by spilling values, or by duplicating computations. Unfortunately, we
are not aware of any data on the performance of this allocator, nor the quality of the
generated code.

The concept of liveness width is similar to Touati’s ‘register saturation’, which is only
formulated for basic blocks and pipelined loops. It is natural to try to adapt this concept
to general control flow graphs, but this is difficult to do if instructions may move between
blocks and into and out of loops. It appears that to compute saturation, we would need
to build a detailed model of where each value may be live, and this might quickly lead to
combinatorial explosion. GCMS is simpler because it tries to minimize overlaps without
having to take a concrete number of available registers into account.

21

2.3.3 Machine learning

Lokuciejewski et al. (2010) use machine learning to derive heuristics for loop-invariant
code motion. Based on 73 different features such as instruction type, number of values live
into, live out of, defined, and used in basic blocks, and loop nesting level, various models
for moving code are trained on a benchmark set. The quantity to be optimized is the
programs’ worst-case execution time (WCET), which is estimated using standard tools.
The authors find that their best model can sometimes substantially reduce WCET when
compared to naïve loop-invariant code motion, with an average improvement of 4.6% on
a processor with 16 general-purpose registers.

Unfortunately, the authors do not give any indication which program features appear
most relevant for deciding whether to move any particular loop-invariant computations.

2.3.4 Partly global approaches

Many authors have worked on what they usually refer to as global instruction scheduling
problems, but their solutions are almost invariably confined to acyclic program regions,
i. e., they do not perform loop invariant code motion (Bernstein and Rodeh 1991; Zhou,
Jennings, and Conte 2003). The notable exception is work by Winkel (Winkel 2007) on
‘real’ global scheduling including moving code into and out of loops, as our algorithm
does. Crucially, Winkel’s optimal scheduler runs in two phases, the second of which
has the explicit goal of limiting code motion to avoid lengthening live ranges too much.
Besides considerable improvements in schedule length, Winkel reports reducing spills
by 75% relative to a heuristic global scheduler. In contrast to our work, Winkel compiled
for the explicitly parallel Itanium processor, so his reported speedups of 10% cannot
be meaningfully compared to our results on our out-of-order target architecture (ARM
Cortex-A9).

2.4 GCMS
The GCMS algorithm presented in this thesis evolved in several steps. The initial phase
was register reuse scheduling (Barany 2011). This algorithm was already based on the
idea of computing all possible schedules and their impact on live range overlaps, and
letting the PBQP register allocator’s results determine how to modify the dependence
graph to ensure that the final schedule is valid for the chosen allocation. Register reuse
scheduling was a purely local approach. Candidate selection was performed using the
greedy heuristics also used by GCMS. Simulator results showed that this algorithm was
successful at reducing spills versus LLVM’s baseline heuristics, which also try to schedule
for minimal register pressure.

GCMS (Barany and Krall 2013) then arose as the generalization of register reuse
scheduling to global code motion. Based on the same principles as register reuse scheduling,
the overlap analysis was lifted to the global dependence graph. GCMS allows both
optimal and heuristics candidate selection and fully global code motion along paths in
the dominance tree. The results for GCMS showed very slight speedups over LLVM. In

22

retrospect, this was at least in part due to inaccuracies in the overlap analyses implemented
at the time. Additionally, the optimal solver was ony applied to relatively small functions
(up to 1000 instructions) and with a low time limit (60 seconds per instance). This thesis
reports better results because these shortcomings have been resolved.

23

CHAPTER 3
Live Range Overlap Analysis

This chapter discusses one of the two major challenges in integrating global code motion
with register allocation: the problem of analyzing which live ranges might overlap in
the program if the final arrangement of instructions is not known. After a discussion of
traditional overlap analysis on a fixed program, a novel way of analyzing overlaps in the
presence of code motion is presented.

3.1 Traditional overlap analysis

The live ranges of two values v and w overlap at a program point if they are both live at
that point. Compilers traditionally compute the sets of all program points where each
value is live; these sets are variously called live ranges or live intervals.

Since values are live at all points where their current value might be used in the future,
live ranges can be computed using a simple data flow analysis that proceeds backwards
(i. e., against the direction of control flow). In this analysis values become live at each
use, and liveness is propagated up towards the point of definition, computing fixed points
for loops (F. Nielson, H. R. Nielson, and Hankin 1999). The analysis is applicable to all
programs; faster liveness analysis algorithms are also available specifically for programs
in SSA form (Boissinot et al. 2011).

Live ranges overlap if and only if their intersection is non-empty. For a function
containing n values, an interference-graph based register allocation algorithm such as
PBQP must check O(n2) pairs of live ranges for overlap. These checks should therefore
be very fast in practice. Common representations for live ranges include bit vectors with
one bit per program point where the value is live, or sets of intervals of such program
points. Alternatively, the liveness analysis only retains information on which basic blocks
each value is live out of. An interference graph can then be reconstructed in an additional
backward pass over each block (Cooper and Torczon 2004, section 13.5).

25

if p

v := . . . w := . . .

if ¬p

. . .:= v. . .:= w

Figure 3.1: Nontrivial live range overlap in a non-SSA program.

3.2 Overlap analysis in the presence of code motion

The traditional methods described above all work on program representations in which the
arrangement of instructions is fixed. They are therefore not directly suitable for integrating
register allocation and code motion: The information computed by traditional liveness
analysis would be invalidated by changes to the ordering or placement of instructions.

We must therefore develop an alternative formulation for the analysis of overlaps
between live ranges in SSA form that does not refer to explicit live-out sets or sets of live
program points.

3.2.1 Characterization of overlaps in SSA form

Recall that one of the defining characteristics of (strict) SSA form is that a value v’s
definition always dominates all of its uses. Dominance means that any path from the
function’s start to a use of v must pass through the definition. Every point of v’s live
range is on some path that leads to a use of v, after the path has passed the definition.
In other words, an SSA value’s definition dominates all points of its live range.

As a consequence, in SSA form, the live ranges of values v and w overlap only if v’s
definition dominates w’s definition or vice versa: Assume the live ranges intersect at
some program point p. By the above, vdef �dom p and wdef �dom p, but since any point’s
dominators are strictly ordered by dominance, either vdef �dom wdef or wdef �dom vdef
must hold.

Assume that the live ranges overlap and that without loss of generality vdef �dom wdef .
Then w’s definition is part of v’s live range since there is a program path that leads
from vdef to wdef and further via p to some use of v. Cooper and Torczon (2004) give this
latter property (‘[v and w] interfere if one is live at the definition of the other’) as the
definition of live range interference in a setting that implicitly assumes that the program
is in SSA form, without further justifying this definition as was done here.

This property considerably simplifies the overlap analysis for programs in SSA form
because cases as illustrated in Figure 3.1 cannot occur in SSA form. In this example,

26

x := . . .

. . .:= x

y := . . .
. . .:= y

z := . . .
. . .:= z

. . .:= x

Figure 3.2: Illustration of the overlap criterion for SSA programs. The live ranges x
and z overlap, but neither overlaps with y.

the live ranges of v and w overlap although neither live range contains an instruction
mentioning the other one. In SSA form, the block merging the execution paths would
have to contain φ instructions defining new variants of v and w, which would therefore
overlap. Based on these observations we can give the following lemma that characterizes
when values overlap without referring to liveness analysis.

Lemma (Overlap criterion for SSA form under code motion). Let v, w be SSA values
in a program represented as a global acyclic dependence graph with GCM placement
information. The live ranges of v and w overlap in exactly those legal arrangements of
instructions where vdef �dom wdef and there is a path from wdef to some use of v that
does not pass through vdef (or vice versa).

Proof. Assume first that the live ranges of v and w do overlap. By the arguments above,
in SSA form this means that without loss of generality vdef �dom wdef and v is live
at wdef . But this means that there is a program path from wdef to some use of v without
an intervening redefinition of v.

For the other direction, assume again without loss of generality that vdef �dom wdef
and there is a path from wdef to vuse without a redefinition of v. Then v is live at wdef
since that point is on a path from v’s definition to a use without an intervening redefinition.
Furthermore, every value is live at its point of definition. Thus v and w are both live
at wdef , i. e., their live ranges overlap.

Figure 3.2 illustrates some aspects of this criterion. There are three live ranges x, y,
and z, and thus pairs of live ranges to check for overlaps. Consider first the case of x
and y. The definition of x dominates the definition of y, so part of the overlap criterion

27

is satisfied. However, all paths from y’s definition to any use of x must first pass through
the loop’s back edge and thus through the definition of x. Thus there is no overlap
between the live ranges x and y.

There is an overlap between x and z because the entire overlap criterion is satisfied:
The definition of x dominates the definition of z. Further, any program path continuing
from z’s definition must pass through the use of x in the following block. Finally, it is
easy to see using the overlap criterion that the live ranges y and z do not overlap since
neither live range’s definition dominates the other’s definition.

The overlap criterion allows us to talk about overlapping live ranges in terms of the
relative arrangements of just a few important instructions. The conditions for the overlap
of live ranges can be checked using just a few reachability queries on the control flow
graph and the global acyclic dependence graph. Thus the analysis of live range overlaps
can be performed even in the presence of code motion, which precludes general liveness
analysis.

3.2.2 Exhaustive overlap analysis

An optimal solution to GCMS requires us to consider all possible ways in which a pair of
values might overlap. That is, we must consider all possible placements and orderings
of all of the instructions defining or using either value. To keep this code simple, we
implemented this part of the analysis in Prolog. This allows us to give simple declarative
specifications of when values overlap, and Prolog’s built-in backtracking takes care of
actually enumerating all configurations.

The core of the overlap analysis, simplified from our actual implementation, is sketched
in Figure 3.3 on page 29. The Figure shows the two most important cases in the analysis:
The first clause deals with the case where values (‘virtual registers’) A and B might
overlap because A’s use is in the same block as B’s definition, but there is no dependence
ensuring that A’s live range ends before B’s definition. The second clause applies when A
is defined and used in different blocks, and B’s definition might be placed in an intervening
block between A’s definition and use.

The code uses a few important auxiliary predicates for its checks:

cfg_dominates(A, B) succeeds if basic block A dominates block B in the control flow
graph.

cfg_path_notvia(A, B, C) succeeds if there is a path, possibly including loops,
from A to B, but not including C. We use this to check for paths lacking a
redefinition of values.

no_dependence(A, B) succeeds if there is no arc in the dependence graph from
instruction A to B (which would cause A to be scheduled after B), but it could be
added without causing a cycle in the graph.

If all of the conditions in the clause bodies are satisfied, a possible overlap between
the values is recorded. Such overlaps are associated with ‘blame terms’, data structures

28

overlapping_virtreg_pair(virtreg(A), virtreg (B)) :−
% B is defined by instruction BDef in BDefBlock, A has a use in the same
% block.
virtreg_def_in(B, BDef, BDefBlock),
virtreg_use_in(A, AUse, BDefBlock),
% A’s use is not identical to B’s def , and there is no existing
% dependence from B’s def to A’s use. That is, B’s def might be between
% A’s def and use.
AUse \= BDef,
no_dependence(BDef, AUse),
% There is an overlap that might be avoided if B’s def were scheduled
% after A’s use by adding an arc.
Placement = [AUse−BDefBlock, BDef−BDefBlock],
record_blame(A, B, blame(placement(Placement), no_arc([BDef−AUse]))).

overlapping_virtreg_pair(virtreg(A), virtreg (B)) :−
% A and B have defs ADef and BDef in blocks ADefBlock and BDefBlock,
% respectively .
virtreg_def_in(A, ADef, ADefBlock),
virtreg_def_in(B, BDef, BDefBlock),
% A has a use in a block different from its def .
virtreg_use_in(A, AUse, AUseBlock),
ADefBlock \= AUseBlock,
% A’s def dominates B’s def...
cfg_dominates(ADefBlock, BDefBlock),
% ... and there is a path from B’s def to A’s use that does not pass
% through a redefinition of A. That is, B’s def is on a path from A’s
% def to its use.
cfg_path_notvia(BDefBlock, AUseBlock, ADefBlock),
% There is an overlap that might be avoided if at least one of these
% instructions were in a different block .
Placement = [ADef−ADefBlock, BDef−BDefBlock, AUse−AUseBlock],
record_blame(A, B, blame(placement(Placement))).

Figure 3.3: Exhaustive overlap analysis for virtual registers A and B

29

that capture the reason for the overlap. For any given pair of values, there might be
several different causes for overlap, each associated with its own blame. An overlap can
be avoided if all of the circumstances captured by the blame terms can be avoided.

There are two kinds of blame. First, there are those blames that record arcs missing
from the dependence graph, computed as in the first clause in Figure 3.3. If this arc
can be added to the dependence graph, B’s definition will be after A’s use, avoiding
this overlap. Alternatively, if these two instructions are not placed in the same block,
the overlap is also avoided. The second kind of blame concerns only the placement of
instructions in basic blocks, as in the second clause in Figure 3.3. If all of the instructions
are placed in the blocks listed in the blame term, there is an overlap between the live
ranges. If at least one of them is placed in another block, there is no overlap—at least,
not due to this particular placement.

As mentioned before, we use Prolog’s backtracking to enumerate all invalid placements
and missing dependence arcs. We collect the associated blame terms and check them for
validity: If any of the collected arcs to put a value v before w can not be added to the
dependence graph because it would introduce a cycle, then the other arcs for putting v
before w are useless, so all of these blames are deleted. Blames for the reversed ordering,
scheduling w before v, are retained because they might still be valid.

Even after this cleanup we might end up with an overlap that cannot be avoided.
For example, for the pair a and b in the example program, the analysis computes that
instruction 3 defining b may not be placed in the start block because it would then be live
out of that block and overlap with a’s live-out definition; but neither may instruction 3
be placed in the loop block because it would be on a path from a’s definition to its
repeated use in the loop. As these two blocks are the only ones where instruction 3 may
be placed, the analysis of all blames for this pair determines that an overlap between a
and b cannot be avoided.

Blame terms can be expressed as simple formulas of propositional logic over variables
of the form placei,b, meaning that some instruction i is placed in basic block b, and arci,j ,
meaning that instruction j occurs before instruction i in the same block because there is
an arc i→ j in the dependence graph.

Expressed in this logical formalism, we have the following overlap condition for the
pair 〈b, c〉:

overlapb,c = placedef b,start ∨
(
placedef b,loop ∧ ¬arcdef c,useb

)
The first disjunct states that these two live ranges overlap if b’s definition is placed
in the start block, since it is then live through the loop where c is defined. The
second conjunct states that even if b’s definition is in the loop block, an extra ordering
constraint is needed. Note that in Figure 1.1 there is no dependence path between
instructions 4 (the use of b) and 5 (the definition of c). If the overlap is to be avoided,
an arc must be added to ensure that in any legal schedule for this basic block, the use
killing b precedes c’s definition.

As another example, the overlap between j and d was removed by ensuring that d
may not be defined inside the loop. Otherwise d’s definition would be on a path from

30

Table 3.1: Blame terms computed for the example program, listing instruction placements
and missing dependence arcs that may cause overlaps.

Pair Invalid placements Missing arcs Overlap formula

a, d i7 in loop placei7,loop
b, c i3 in start placei3,start
b, c i3 in loop 5→ 4 placei3,loop ∧ ¬arci5,i4
b, d i3 in start, i7 in loop placei3,start ∧ placei7,loop
b, j0 i3 in start placei3,start
b, j2 i3 in start placei3,start
c, d i7 in loop 7→ 6 placei7,loop ∧ ¬arci7,i6
c, j1 5→ 4 ¬arci5,i4
d, j2 i7 in loop placei7,loop

the definition of j2 across the loop block’s end back up along the loop edge to the φ
use of j2. The corresponding formula is:

overlapj,d = placedef d,loop

Table 3.1 shows all the blame formulas for the avoidable live range overlaps in the
running example after some cleanup (removal of unmovable instructions from placement
blames). Instructions (in) are numbered as in the dependence graph in Figure 1.1. Pairs
not listed here are found to be either non-overlapping or definitely overlapping. Note
that there are two entries in the table for the pair 〈b, c〉 because, as discussed above,
there are two different placements of instructions that lead to an overlap between these
two live ranges.

3.2.3 Correctness of exhaustive overlap analysis

The intention of exhaustive overlap analysis is to enumerate, given a global dependence
graph with legal code motion information, all the possible arrangements of instructions
under which a pair of live ranges may overlap. The following lemmas establish that the
analysis as described above achieves this goal.

The statements and proofs of these lemmas make some simplifying assumptions about
the program. These do not necessarily hold in real programs, but these corner cases are
handled in the actual implementation of the analysis. The assumptions are that each
instruction defines at most one virtual register and that every virtual register has at least
one use. The analysis as presented here also does not mention φ instructions. It assumes
a program representation in which each operand of a φ is represented by a pseudo-use at
the end of the appropriate predecessor block. This allows a simple, uniform presentation
of the algorithm.

Note that the analysis is asymmetric. An overlap between two live ranges v and w
may sometimes be avoidable in two ways, by scheduling all of v before w’s definition or all

31

of w before v’s definition. It is useful to keep the blame sets for these two options separate.
The analysis therefore applies to ordered pairs 〈v, w〉 of live ranges and computes blames
under the assumption that v’s definition may dominate w’s definition in some final
schedule.

For any two live ranges v and w, the analysis is potentially run twice: Once for the
ordered pair 〈v, w〉 if an arc from w’s definition to v’s definition may be added to the
dependence graph (ensuring that v’s definition dominates w’s definition), and once for
the pair 〈w, v〉 if an arc from v’s definition to w’s definition can be added.

Lemma (Soundness of exhaustive overlap analysis). If exhaustive overlap analysis
produces a blame term for virtual registers A and B, then that blame term describes
a legal arrangement of instructions in the given program in which the live ranges of A
and B overlap if A’s definition is forced to dominate B’s definition.

Proof. There are two cases to consider, one for each of the clauses of the analysis. The
first clause applies if some use of A is in the same basic block BDefBlock as B’s definition
(and these are not the same instruction). The blame describes a schedule in which there is
no dependence from B’s definition to the use of A, i. e., a schedule in which B’s definition
precedes A’s use. If A’s definition is forced to dominate B’s definition, B is thus defined
at a point where A is live, so the live ranges overlap.

The second clause produces a blame describing a case where A’s definition is in a
block which dominates the block containing B’s definition, and there is a (possibly empty)
path from that block to some block containing a use of A that does not pass through A’s
definition. This directly establishes the overlap criterion.

Lemma (Completeness of exhaustive overlap analysis). If there is a legal arrangement
of instructions in the given program in which the live ranges of A and B overlap, then
exhaustive overlap analysis applied to both of the ordered pairs 〈A,B〉 and 〈B,A〉 produces
a blame term for virtual registers A and B that describes this arrangement.

Proof. Assume that A and B overlap according to the overlap criterion and (without
loss of generality) Adef �dom Bdef .

Consider the case where A’s definition and a use that fulfills the overlap criterion
are in the same basic block. Then B’s definition must be in the same block between
these two instructions: There are no dependence arcs forcing B’s definition before A’s
definition or after A’s use. The first clause of the analysis applies and produces a blame
term that captures this arrangement of instructions.

Otherwise, A’s definition is in a different block from a use that fulfills the overlap
criterion. The second clause of the analysis applies. The checks for dominance and a
path without a redefinition of A are guaranteed to succeed due to the overlap condition,
so a blame term describing this arrangement of instructions is produced.

3.2.4 Complexity of exhaustive overlap analysis

Using the overlap criterion allows the exhaustive overlap analysis algorithm to only
enumerate those features of program schedules that make a relevant difference to the

32

live ranges it is currently analyzing. Therefore, while the total number of possible
arrangements is exponential in the size of the program, the algorithm can still analyze
all possible overlaps in polynomial time.

In particular, the complexity of the algorithm on a function containing n instructions
can be bounded as follows:

Algorithm step Complexity

for each pair 〈a, b〉: O(n2)
for each legal block for a’s def: O(lb(n))
for each legal block for b’s def: O(lb(n))
for each use u of a: C (average case)
for each legal block for u: O(lb(n))
check overlap criterion O(n2)

total O(n4 lb(n)3C)

The individual parts of the analysis can be explained as follows. First, the number of
live ranges in the function is O(n), so any register allocator based on a conflict graph
representation, such as graph coloring and PBQP, has a base complexity of at least O(n2)
because it has to consider each pair of live ranges. This is the cause for the corresponding
entry in the first line of the table.

In the following lines, lb(n) denotes the number of legal blocks for some instruction
in the program. Since in GCM instructions can only move to blocks that dominate, or
are dominated by, their original block, this means that each instruction is constrained
to a single path in the dominator tree. Thus lb(n) is bounded by the depth of the
dominator tree. It is possible to construct programs with a linear dominator tree of
depth O(n), although in practice, due to branching in real programs, it typically appears
to be O(logn). Furthermore, almost all instructions in real programs are considerably
constrained in their actual code motion freedom. The only instructions that can actually
move freely are ones without dependences on any other instruction; these are only those
instructions that load constants into registers. For all other instructions, the number of
legal blocks appears to depend only very weakly on n. On average in real programs, we
observed lb(n) ≤ 3 for almost all instructions.

The constant bound C on the average number of uses of each value is a property of
the instruction set (the maximum number of register operands of any instruction) and
is independent of program size. If the program consists of n instructions, each defining
a value and using at most C operands, the total number of uses is at most nC, and
the average number of uses per value is C. In practical instruction sets, C ≤ 3 typically
holds.

Finally, checking the overlap criterion for a given placement of instructions amounts
to checking a dominance query, which can be done in (amortized) constant time, and
performing one depth-first search in the control flow graph or up to two depth-first
searches in the dependence graph. This step is clearly O(n2). However, the intermediate
and final results of each search can be cached and reused in future searches, which means

33

that the full quadratic cost does not have to be paid every time the overlap criterion is
checked.

Overall, applying the observations above allows us to conclude that the average case
complexity of the algorithm is between O(n2) (with a larger constant than traditional
conflict graph construction) and O(n4).

In practice, the Prolog implementation of the analysis is able to analyze functions
containing hundreds of instructions within seconds and thousands of instructions within
a few minutes. Caching in the Prolog implementation could be improved further by more
engineering, which should result in some speedup of the analysis.

3.3 Greedy overlap analysis

Sometimes the exhaustive overlap analysis does more work than necessary; rather than
finding all possible ways of avoiding an overlap between live ranges, one might only be
interested in a single way. This is the case for the heuristic selection procedure to be
discussed in Section 4.2.

A greedy analysis can search the program for a way to avoid overlaps between live
ranges and commit to each such avoided overlap by immediately modifying the program,
thus restricting future code motion possibilities. The core of this analysis, sketched as
Python-like pseudocode in Figure 3.4, achieves this by identifying ‘bad paths’ in the
program and eliminating them, if possible, by sinking definitions, hoisting uses, and
adding dependence arcs. The bad paths are just those identified in the overlap criterion
above: Paths from one live range’s definition to one of its uses that contain the other
live range’s definition. Whether hoisting of R1 ’s uses is allowed is controlled by the
externally specified allowUseHoisting parameter. This operation is conditional because it
may lengthen other live ranges too much.

The schedulableBefore function is called for each ordered pair of live ranges that might
be allocated to the same physical register. It determines whether it is possible to arrange
the program such that live range R1 cannot include, nor be preceded by, R2 ’s definition.
In the code, the firstBlock and lastBlock functions return, respectively, the first and last
legal basic blocks for the given instruction, while the sink function eliminates the current
first legal block and returns the next one.

The forwardPath function returns True if and only if there is a path using only
forward edges in the control flow graph between the given nodes. The path may be
empty, i. e., forwardPath(b, b) is True for all b. The loopyPath(a, b, not_via) function
returns True if and only if there is a path using any (forward or back) edges from a
to b that does not pass through the not_via block. This function only returns True for
non-empty paths, and returns True for the case b = not_via if there is a path from a to b.
It is used to determine the overlap condition established above: Does R2 ’s definition lie
on a path from R1 ’s definition to a use without an intervening redefinition?

Finally, the okBefore(a, b) function checks whether the dependence graph allows to
schedule a before b, i. e., there is not already a dependence path from a to b, and add-

34

def schedulableBefore(R1, R2):
Check if an overlap between R1 and R2 can be avoided. If the live ranges may interfere, make a
greedy attempt to put R2’s live range after R1’s live range. First , check if R2 must be before R1.
R1DefBlock = firstBlock(R1.Def)
R2LastDefBlock = lastBlock(R2.Def)
if ((R2LastDefBlock != R1DefBlock and forwardPath(R2LastDefBlock, R1DefBlock)) or

(R2LastDefBlock == R1DefBlock and not okBefore(R1.Def, R2.Def))):
R2 is defined before R1 in the control flow graph or dependence graph.
return False

Constrain placement of R2’s definition so that it cannot be before R1’s definition .
R2DefBlock = firstBlock(R2.Def)
while R2DefBlock != R1DefBlock and forwardPath(R2DefBlock, R1DefBlock):

R2DefBlock = sink(R2.Def)
if allowUseHoisting:

Try to hoist uses of R1 before the definition of R2.
for (R1Use, R1FirstUseBlock) in R1.FirstUsesAndBlocks:

if not badPath(R1DefBlock, R1FirstUseBlock, R2DefBlock):
R1UseBlock = lastBlock(R1Use)
while badPath(R1DefBlock, R1UseBlock, R2DefBlock):

R1UseBlock = hoist(R1Use)
R1LastDefBlock = lastBlock(R1.Def)
For each use of R1, scheduled as late as possible , identify bad paths according to the overlap
criterion and try to fix them by sinking R1’s or R2’s definition .
for R1UseBlock in R1.LastUseBlocks:

Sink R1’s definition if that could avoid the overlap.
if not badPath(R1LastDefBlock, R1UseBlock, R2DefBlock)):

while badPath(R1DefBlock, R1UseBlock, R2DefBlock)):
R1DefBlock = sink(R1.Def)

Similarly, sink R2’s definition if possible and necessary.
if not badPath(R1DefBlock, R1UseBlock, R2LastDefBlock):

while badPath(R1DefBlock, R1UseBlock, R2DefBlock):
R2DefBlock = sink(R2.Def)

else:
R2 cannot be sunk to any block that avoids this path.
return False

If R2’s definition and some use of R1 might be placed in the same block, add a
dependence graph arc that ensures that the use is before the definition .
for R1Use in R1.Uses:

if forwardPath(firstBlock(R1Use), R2DefBlock) and not addDependence(R2.Def, R1Use):
dependence arc cannot be added
return False

If we got here, we succeeded in placing R2 after R1’s live range (or
on an independent path).
return True

def badPath(R1DefBlock, R1UseBlock, R2DefBlock):
Determine whether the given blocks for R1’s definition, a use of R1, and R2’s
definition are on a ‘bad’ path as defined by the overlap criterion .
if (R2DefBlock != R1DefBlock and forwardPath(R2DefBlock, R1DefBlock)):

R2’s definition is before R1’s definition .
return True

if (R2DefBlock != R1UseBlock and forwardPath(R2DefBlock, R1UseBlock)):
R2’s definition is on a straight path between R1’s definition and the use.
return True

if (R1DefBlock != R1UseBlock and loopyPath(R2DefBlock, R1UseBlock, not_via = R1DefBlock)):
R2’s definition is on a path that reaches R1’s use without an intervening redefinition of R1.
return True

Otherwise, R2’s definition does not interfere with R1’s live range.
return False

Figure 3.4: Greedy overlap analysis for live ranges R1 and R2

35

v := ...

... := v

w := ...
... := w

(a) Live ranges overlap

v := ...
... := v

w := ...
... := w

(b) Hoist v out of loop

v := ...
... := v

w := ...
... := w

(c) Sink v into loop

v := ...

... := v

w := ...
... := w

(d) Sink w out of loop

Figure 3.5: Some possible code motions to avoid overlap of v and w

Dependence(a, b) adds a new dependence arc from a to b if possible and returns False
otherwise.

These auxiliaries are used by schedulableBefore to first sink R2 ’s definition to a point
that is not before R1 ’s definition if possible, starting from their earliest possible placements.
This is followed by iterating code motion steps corresponding to the operations illustrated
in Figure 3.5. First, uses may be hoisted to earlier blocks as in Figure 3.5b. In the

36

algorithm in Figure 3.4, this is the operation that is guarded by the allowUseHoisting
parameter. Then, for each use of R1 (placed as late as still possible), the algorithm tries
in turn to sink R1 ’s and R2 ’s definitions as in Figures 3.5c and 3.5d if these code motions
can eliminate a ‘bad path’ for the use. Finally, if all of these control flow restrictions
could be enforced, R2 ’s definition might still end up in the same block as one of R1 ’s uses.
In this case, we add dependence arcs between the instructions to ensure that the use
ends R1 ’s live range before R2 is defined. The correctness of the algorithm is essentially
due to the fact that the repeated checks for bad paths encode exactly the overlap criterion.
If the algorithm finds no arrangement of instructions without bad paths, it returns False,
meaning that it cannot rule out an overlap of the live ranges.

The analysis is greedy in the sense that if schedulableBefore succeeds for a pair of live
ranges, that result is committed, and no alternative code motions are tried. If schedu-
lableBefore(R1, R2) fails, the analysis retries by calling schedulableBefore(R2, R1).
Whenever schedulableBefore returns False, its code motion decisions (sinking or hoisting
instructions, adding dependence arcs) are undone before moving on the the next pair of
live ranges to analyze.

Revisiting the running example of Figure 1.1 for values b and c in terms of the
pseudocode algorithm, we see that b’s definition has to be sunk into the loop to avoid an
overlap. The path from its earliest definition in the start block to its use in loop is
‘bad’ with respect to c’s definition in loop: Execution can go around the loop without a
redefinition of b between a definition of c and another use of b. Sinking the definition into
the loop removes this bad path. Afterwards, a dependence arc from the call instruction
has to be added to ensure that c is defined strictly after b’s use. The overlap between j
and d can be removed by ensuring that d may not be defined inside the loop.

3.4 Handling of two-address instructions

Some machine language instructions are not directly suitable for an SSA-based program
representation. This is the case for instructions that use the same register operand as
both a source and a destination operand; i. e., they modify one of their inputs. Many
arithmetic instructions in the x86 instruction set have this property. For example, the x86
instruction ADD EAX, EDX will add the values in the input registers EAX and EDX and
store the new value in EAX, overwriting the input value. Other instruction sets have fewer
such two-address instructions, although ARM’s conditional move instruction MOVCC is
an important exception: Depending on the value of the condition code register, it will
either overwrite its destination register with the value in the source register or leave it
unchanged.

A naïve representation of such instructions with virtual registers would not be in SSA
form. Consider the following program fragment:

ADD v, ... // define v
CMP ... // set condition code register
MOVCC v, #0 // conditionally move 0 into v

37

This program is not in SSA form since it has two definitions for the same virtual
register v. One solution (implemented in LLVM) is to add an extra virtual operand to
two-address instructions to separate the use of the operand from its redefinition. For the
purposes of register allocation, an extra constraint is recorded that the virtual use and
the virtual definition operand must be allocated to the same CPU register. The example
thus becomes:

ADD v, ... // define v
CMP ... // set condition code register
MOVCC w, v, #0 // conditionally move v or 0 into w

This fragment is now in SSA form, and the instruction is annotated with metadata
instructing the register allocator to assign both v and w to the same CPU register. Further
complications arise, however, if v has several uses: Since the two-address instruction
kills v’s live range, it must be the last one of the uses. This puts a constraint on code
motion. We could handle this either by restricting code motion to enforce this constraint,
or by making sure that such instructions always refer to operands that have no other uses.
We choose to do the latter by always introducing a copy of the operand to be modified
before a two-address instruction:

ADD v, ... // define v
CMP ... // set condition code register
MOV u, v // copy v to new virtual register u
MOVCC w, u, #0 // conditionally move u or 0 into w

Other uses of v are now unaffected by any changes the MOVCC instruction makes to
its operand u/w. The downside is that for code using a large number of two-address
instructions, the added copies will cause a large increase in code size and thus also in the
complexity of GCMS overlap analysis. Thus this choice is probably not the best option
for an architecture such as x86, but it works well for ARM, where these instructions do
not appear too frequently.

3.5 Overlap analysis for preallocated registers

The discussion so far has only considered virtual registers. In real programs, some
instruction operands are preallocated to certain CPU registers. In particular, function
call instructions implicitly use argument registers and define return registers. They are
usually surrounded by instructions that define these arguments by copying values into
them, or that copy the return registers to virtual registers. Similarly, at the start of each
function its own arguments are copied from predetermined registers, and at each return
predetermined registers may be written to.

Some architectures have other kinds of preallocated registers as well. A prominent
example is the x86 integer division instruction DIV which (in the 32-bit case) always

38

reads the dividend from the concatenation of the registers EDX and EAX and always
produces the quotient in EAX and the remainder in EDX.

A live range overlap between a preallocated register p and a virtual register v means
that the register allocator may not assign v to p. We must therefore analyze such overlaps
in order to be able to build a precise and correct register allocation problem.

Since instructions using or defining preallocated registers can occur multiple times in
a single function or even a single basic block, these registers have multiple definitions
and are thus not in SSA form. Recall, however, that we assume an input program
representation in which a definition of a preallocated register is always in the same basic
block as all of its uses. This allows us to treat each preallocated register p as a collection
of short individual live ranges. A virtual register v overlaps with p if it overlaps with any
of its individual live ranges.

We can therefore use the same analysis that is used to analyze overlaps between the
live ranges of two virtual registers. In practice, however, many preallocated registers have
so many individual live ranges that the number of possible ways of avoiding an overlap
would lead to combinatorial explosion. In our implementation we therefore restrict the
analysis of virtual-preallocated overlaps based on the input program’s prepass schedule.
The algorithm proceeds as follows. Let B be the original basic block containing the
virtual register v’s definition vdef . Let C be a candidate basic block into which vdef might
be moved by global code motion. There are three cases to consider:

• C �dom B and C 6= B: only consider blames that would schedule vdef after all live
ranges of p in C

• C = B: if in the prepass schedule p’s definitions p1, . . . , pi precede vdef and vdef
precedes p’s definitions pj , . . . , pn, only consider blames that schedule vdef after pi

and before pj

• B �dom C and C 6= B: only consider blames that would schedule vdef before all
live ranges of p in C

In other words, preserve the prepass schedule’s relative ordering of vdef to p’s live
ranges in vdef ’s original block or whichever other blocks it may be moved to. Figure 3.6
illustrates these restrictions, with all legal positions for v’s definition shaded in gray. In
the prepass schedule, v’s definition is placed in the third block between two live ranges
of the preallocated register p. In the two blocks preceding the original location of the
definition, v’s definition may only occur after all of p’s live ranges; in the block after the
original definition, v may only be defined before p’s live ranges.

This restriction has the property that if there is no overlap between v and p in the
prepass schedule, a blame is produced that allows us to avoid an overlap ‘in the same
way’ even when code motion is enabled. However, this analysis is not complete, i. e.,
other ways of avoiding the overlap might not be recognized. For some final schedules
of the program, the analysis might conclude conservatively that v and p overlap even if
that is not actually the case. We have not observed this to be a problem in practice.

39

p := . . .
. . .:= p

p := . . .
. . .:= p

p := . . .
. . .:= p

v := . . .

p := . . .
. . .:= p

p := . . .
. . .:= p

Figure 3.6: Limited code motion in overlap analysis for preallocated registers. To avoid
combinatorial explosion, the definition of the virtual register v may only be placed in the
shaded areas relative to the live ranges of the preallocated register p.

40

CHAPTER 4
Reuse Candidate Selection

The second major challenge in combining global code motion with register allocation is
the problem of avoiding the generation of invalid programs. This chapter explains how
the register reuse opportunities identified by the live range analysis may conflict with
each other, making it necessary to select a subset of all possible reuses. Both a heuristic
and an optimal combinatorial solution for this problem are given. These solutions are
then extended to include a factor for balancing the freedom of code motion against the
amount of spilling.

4.1 The candidate selection problem
The overlap analysis described in the previous chapter identifies pairs of values with
avoidable live range overlaps. Applying the appropriate code motion operations, GCMS
can ensure that both values can be assigned to the same processor register. That is, one
value can reuse the register previously used by the other value; for this reason, such a
pair of values is called a possible reuse.

Out of all the pairs identified as possible reuses due to avoidable overlaps, we need
to select a maximal non-conflicting set of candidates. Not all of these reuse pairs are
compatible.

4.1.1 Conflicting reuses within basic blocks

Consider the dependence graph fragment in Figure 4.1, adapted from the first paper on
integrated scheduling and spilling (Goodman and Hsu 1988). Some subcomputations
are independent and could be scheduled in either order: The register for the value v
computed by instruction 2 could be reused for the value w defined by instruction 4
by adding an ordering arc from instruction 4 to instruction 3, the use of v. However,
the opposite direction would also be legal, sequencing w strictly before v by adding an
arc 2→ 6.

41

1

3 8

4

10

2

v

6

w

9

5 7

11

Figure 4.1: Dependence graph with with conflicting sequencing possibilities (dashed)

Both of these possibilities for reusing a register, illustrated as dashed arcs to be
added to the dependence graph, would be found by GCMS’s exhaustive overlap analysis.
However, the two scheduling decisions cannot be taken at the same time as they would
introduce a cycle. Real programs also generate cycles that are more general, i. e., that
involve two pairs of different values, not just the two permutations of a single pair of
values as in this example. Potential cycles can also be larger, i. e., involve more than two
arcs that might be added to the dependence graph.

GCMS must ensure that the register allocator never selects reuses (by allocating
certain pairs of values to the same registers) that would require the introduction of such
a cycle in the dependence graph.

4.1.2 Conflicting reuses through global code motion

Another possible way for reuses to conflict is by global code motion. We have seen that
live range overlaps can be avoided by sinking or hoisting instructions. However, GCMS
cannot apply both hoisting as in Figure 3.5b and sinking as in Figure 3.5d to the same
instructions for some live range.

Again, GCMS must be able to ensure somehow that reuses selected by the register
allocator never cause conflicting, unsatisfiable constraints on global code motion.

4.1.3 Candidate selection to prevent candidate conflicts

GCMS is designed to use a regular PBQP register allocator which has no knowledge
of code motion, the associated constraints, and the possible conflicts between these
constraints. Therefore, in order to use such an allocator, the register allocation problem

42

itself must be posed in such a way that no valid solution would lead to a conflict between
selected reuses.

We must therefore select a subset of all avoidable overlaps as the set of reuse candidates.
Candidates should be selected to maximize the total weight of reused pairs (that is, the
sum of their associated spill costs) in order to minimize the total weight of the overlaps
that remain and might lead to spills.

Each candidate is associated with a set of dependence arcs and code motion restrictions.
In what follows, let S denote the set of all of these restrictions from all candidates. Some
subsets C ⊆ S are conflicting sets: They impose incompatible instruction placement
restrictions or introduce cycles in the dependence graph.

We say that a conflicting set C is minimal if there is no subset C ′ ⊂ C that is also a
conflicting set. Let E = {C ⊆ S | C is a minimal conflicting set}. Then the problem of
selecting a maximal set of reuse candidates without conflicts amounts to identifying a
maximal independent set in the hypergraph H = (S,E), i. e., a maximal set M ⊆ S that
does not include any conflict set C ∈ E. It is open whether the maximal independent set
problem for hypergraphs can be solved in polynomial time; the best known algorithms
for the general case run in quasi-polynomial time (Eiter, Makino, and Gottlob 2008).

In practice, as the number of register pairs is so large and the identification of minimal
conflicting sets is not trivial, we do not explicitly construct the hypergraph and apply
a specialized algorithm. We instead solve the entire selection problem directly using
either a simple greedy heuristic or by modeling it as an integer linear programming (ILP)
problem.

4.2 Heuristic reuse candidate selection

The heuristic reuse candidate selection algorithm was already sketched in Section 3.3,
which introduced the greedy variant of the overlap analysis.

In heuristic selection, we simply apply the greedy analysis to each pair of live ranges.
This selection algorithm inspects reuse candidates one by one and commits to any
candidate that it determines to be an avoidable overlap. Committing to a candidate
means immediately applying its instruction placement constraints and dependence arcs;
this ensures that the candidate will definitely remain avoidable, but it restricts freedom
of code motion for subsequent candidates.

Due to this greedy behavior, it is important to process candidates in an order that
maximizes the chance to pick useful candidates early on. Since a live range’s spill weight
is a measure of how beneficial it is to keep the live range in a register, we want to avoid
as many overlaps between live ranges with large weights as possible. We therefore order
our candidates by decreasing weight before applying the greedy solver. Thus for the most
critical pairs of live ranges we have comparatively larger freedom to apply hoisting or
sinking to avoid overlaps. Due to the greedy destructive changes the analysis makes to
the global dependence graph and the legal placements of instructions, the possibilities to
avoid overlaps between later, cheaper pairs are restricted more and more.

43

4.3 Optimal reuse candidate selection
The optimization problem we must solve is finding a non-conflicting set of reuse candidates
with maximal weight, where the weight is the sum of the spill costs of the two values.
That is, of all possible overlaps, we want to avoid those that would lead to the largest
total spill costs. We model this as an integer linear program and use an off-the-shelf
solver (CPLEX) to compute an optimum.

The optimization problem is built based on the blame formulas computed by the live
range overlap analysis.

4.3.1 Problem variables

The variables in the problem are:

• a binary variable selectc for each reuse candidate c; this is 1 if and only if the
candidate is selected

• a binary variable placei,b for each legal block b for any instruction i occurring in a
placement constraint in any blame; this is 1 if and only if it is legal to place i in b
in the optimal solution

• a binary variable arci,j for any dependence arc i→ j occurring in any blame; this
is 1 if and only if the arc must be present in the optimal solution

• a variable instr i for each instruction in the program, constrained to the range
0 ≤ instr i < N where N is the total number of instructions; these are used to
ensure that the dependence graph for the optimal solution does not contain cycles

4.3.2 Objective function

We want to maximize the weight of the selected candidates; as a secondary optimization
goal, we want to preserve as much freedom of code motion as possible for a given candidate
selection. The objective function is therefore

maximize
∑

c

wc selectc +
∑

i

∑
b

placei,b

where the first sum ranges over all candidates c, wc is the weight of candidate c, and
the second sum ranges over all placement variables for instructions i and their legal
blocks b. In our problem instances, there are typically considerably more candidate
selection variables than placement variables, and the candidate weights are larger than 1.
Thus the first sum dominates the second, and this objective function really treats freedom
of code motion as secondary to the avoidance of overlaps.

4.3.3 Constraints

The constraints in equations (4.1)–(4.7) ensure a valid selection.

44

Legality constraints

First, we give the constraints that model the structure of the existing dependence graph.
We need this to detect possible cycles that would arise from selecting an invalid set of arcs.
Therefore, we give a partial ordering of instructions that corresponds to dependences in
the graph. For each instruction i with a direct predecessor p, the following must hold:

instr i > instrp (4.1)

Next, we require that all instructions must be placed in some legal block. For each
such instruction i: ∑

placei,b ≥ 1 (4.2)

where the sum ranges over all valid blocks b for instruction i. The inequality ensures that
if an instruction may appear in several different blocks without affecting the live range
overlap weight, the solver preserves code motion freedom by not committing to just a
single one of the blocks.

Selection constraints

We can now proceed to give the constraints related to selecting a reuse candidate. For a
candidate c and each of the arcs i→ j associated with it, require

selectc + placei,b + placej,b ≤ 2 + arci,j (4.3)

to model that if c is selected and both i and j are placed in some common block b, the arc
must be selected as well. For each overlap formula of the form placei1,b1 ∧ · · · ∧ placein,bn

,
require:

selectc +
∑

placei,b ≤ n (4.4)

This ensures that if c is selected, at least one of these placements is not selected.
If an arc is to be selected due to one of the candidates that requires it, ensure that

it can be added to the dependence graph without causing a cycle. That is, we want to
formulate the condition arci,j ⇒ instr i > instr j . If N is the total number of instructions,
this constraint can be written as:

instr i − instr j > N · arci,j −N (4.5)

If arci,j is selected, this reduces to instr i − instr j > 0, i. e., instr i > instr j . Otherwise,
it is instr i − instr j > −N , which is always true for 0 ≤ instr i, instr j < N . These
constraints ensure that the instructions along every path in the dependence graph are
always topologically ordered, i. e., there is no cycle in the graph.

Arc placement constraints

Finally, we must take interactions between dependence arcs and instruction placement
into account. An arc instr i → instr j means that instr j may not be executed after instr i

45

along a program path, so it is not valid to place instr j into a later block than instr i.
Therefore, for all arcs instr i → instr j in the original dependence graph where instr i may
be placed in some block bi, instr j may be placed in block bj , and there is a non-empty
forward path from bj to bi, require

placei,bi
+ placej,bj

≤ 1 (4.6)

to ensure that such a placement is not selected.
Similarly, for every selectable arc arci,j and an analogous invalid path:

arci,j + placei,bi
+ placej,bj

≤ 2 (4.7)

That is, selecting an arc means that we also ensure that the placement of instructions
respects the intended ordering.

4.4 Balanced reuse candidate selection

The heuristic and optimal candidate selection methods above both assumed that the
main objective of integrated global code motion and register allocation should be to
minimize register pressure in order to avoid spills. It is possible, however, that this is
not always the best choice. In particular, there may be cases where some spilling can be
tolerated in exchange for more aggressive code motion. For example, global code motion
out of a loop might increase register pressure and force the spilling of some values, but
those might only be values that are never used in the loop and thus only cause spill code
outside of it. In other cases, increased register pressure due to aggressive code motion
might cause only cheap rematerializations rather than more costly spills.

We therefore introduce a parameter β to capture the trade-off between global code
motion and spilling as follows: For β = 0, we want GCMS to behave as described above,
i. e., to avoid as many overlaps as possible, possibly restricting code motion. For β = 1,
we want GCMS to perform global code motion as aggressively as possible (as in Click’s
GCM algorithm) and only avoid overlaps by scheduling instructions within basic blocks.
For any other β value between 0 and 1 we want GCMS to behave in a mixed mode,
avoiding some expensive spills by restricting global code motion, but not restricting
it for cheap spills. Regardless of the value of β and the influence it has on the global
code motion part of GCMS, within each basic block GCMS still schedules to minimize
overlaps.

The following sections describe how the β parameter can be embedded in the heuristic
and optimal selection methods.

4.4.1 Heuristic balanced candidate selection

Extending the heuristic selection algorithm is simple: We apply the algorithm as before,
but only for part of all the possible reuses. After considering a certain fraction of the
possible reuses, the heuristic is interrupted, and normal GCM is applied to the current

46

state of the program. GCM will move all instructions that are still available for code
motion to the latest legal block in the shallowest loop nest. We then constrain all
instructions to remain in these blocks, i. e., we disable further global code motion, and
then resume execution of the heuristic GCMS algorithm. For the remaining pairs, only
local instruction scheduling is applied to minimize live range overlaps.

The β parameter is used to specify at which point in the process the intervening
GCM step should be applied: At β = 0, we never apply GCM and allow GCMS to avoid
overlaps as far as possible; this is identical to the unmodified GCMS algorithm. At β = 1,
GCM is applied before considering any possible register reuse pairs. This is equivalent
to simply applying aggressive GCM before register allocation and scheduling and then
forbidding further global code motions.

In general, in the balanced heuristic approach GCM is applied after considering a
fraction of 1 − β of all possible reuses. For example, for β = 0.25, we apply GCMS
to the first 75% of possible reuses and then perform GCM before proceeding to the
remaining 25%. That is, as in the original heuristic, we prefer avoiding overlaps between
pairs of high spill weights, but at some point we trade this off against freedom of global
code motion.

4.4.2 Optimal balanced candidate selection

Optimal balanced selection is based on the same ILP model as was used before. The
objective function is changed to include the β parameter. The constraints describing the
conditions under which live ranges overlap do not need to change.

The new objective function is

maximize (1− β)S + β P

where
S = WS

∑
c

wc selectc

is the term that models benefits in spill cost due to avoided live range overlaps, and

P = WP

∑
i

∑
b

wb placei,b

captures freedom of code motion.
The new weights wb denote the benefit of placing an instruction in block b, computed

from the block’s loop nesting depth. To compute it, first set fb to the block’s statically
estimated execution frequency based on an exponential function of the nesting depth. For
more deeply nested blocks, this means that fb is a higher cost of placing an instruction
in that block, and conversely we want wb to be a lower benefit. This can be achieved
by defining F = maxb fb and setting wb = F − fb for each block b. Apart from adding
these wb weights, the new objective function is the same as the old one, weighting the
first sum by (1− β)WS and the second by βWP .

In order to make it meaningful to talk about intermediate values of β, we must ensure
that the impacts of terms S and P are equal if they are weighted equally. That is, the

47

weights WS and WP are chosen such that the two subproblems are weighted equally
at β = 1

2 , i. e., we choose a nontrivial solution to the equation

1
2WS

∑
c

wc = 1
2WP

∑
i

∑
b

wb.

In practice we do this by setting WP = 1, which yields

WS =
∑

i

∑
bwb∑

cwc
.

The uses of β in the formulation ensure that at β = 0 the algorithm only attempts to
minimize spilling, while at β = 1 spilling is of no concern and the solution maximizes
the freedom of moving code to the cheapest possible blocks. In practice, either of
these extreme values is undesirable because it would mean that part of the problem is
completely ignored: At β = 0 we still want to allow any code motions that do not cause
additional spills, and at β = 1 we still want to allow local scheduling to avoid some spills,
but without impacting the freedom of code motion among blocks. We therefore choose a
small ε and replace β values of 0 and 1 by ε and 1− ε, respectively.

48

CHAPTER 5
Spilling and Global Code Motion

This chapter describes how the results of the overlap analysis and candidate selection
are used during spilling and for performing restricted global code motion based on the
results produced by the register allocator.

5.1 PBQP register allocation
Register allocation based on the PBQP (partitioned boolean quadratic programming)
problem was introduced by Scholz and Eckstein (2002). It is based on a graph represen-
tation similar to the one used in graph coloring register allocators, but with cost vectors
and matrices associated with nodes and edges, respectively.

5.1.1 The PBQP model

Figure 5.1a shows an example of a cost vector for a node. Nodes represent live ranges,
and the cost vector has entries representing all the possible allocation options for a live
range. In this example, the live range may be spilled (sp option) or allocated to one of

sp R1 R2 R3
c 0 0 0

(a) Sample cost vector for
a live range

sp R1 R2 R3
sp 0 0 0 0
R1 0 ∞ 0 0
R2 0 0 ∞ 0
R3 0 0 0 ∞

(b) Sample cost matrix for a con-
flict edge

Figure 5.1: Sample cost vector and cost matrix for the nodes and edges of a PBQP
register allocation graph

49

the three processor registers R1 to R3. Each entry in the vector holds the costs for the
given allocation option. The spill option has some spill cost c associated with it, while
allocation to CPU registers is typically treated as free. (On modern x86 processors, some
instructions require special prefix bytes in order to be able to address some registers.
Since this means that allocation to some registers causes larger code, these registers could
theoretically be penalized in the cost vector.)

Cost matrices on edges connecting nodes can model various kinds of allocation
constraints, but the most important case is that of conflicts between overlapping live
ranges. Figure 5.1b shows such a conflict matrix. The allocation options for the two
adjacent nodes are listed along the two dimensions of the matrix, and a cost is given for
each pair of options. In the case of overlapping live ranges, allocating both to the same
register is forbidden, which is modeled by infinite costs in the matrix. Allocating the live
ranges to different registers, or spilling one or both, does not incur additional costs due
to the conflict matrix.

Given a PBQP graph of n nodes with cost vectors ci and a cost matrix Cij for each
edge, the goal of register allocation is to select exactly one option for each node such
that overall costs are minimized. Each node is associated with a selection vector xi ∈
{0, 1}Di , where Di is the number of allocation options for that node. Subject to the
constraint x>i · 1 = 1 for all 1 ≤ i ≤ n, i. e., exactly one of the entries must be selected
for each node, the objective function to be minimized is (Hames and Scholz 2006):∑

1≤i≤n

x>i · ci +
∑

1≤i≤j≤n

x>i · Cij · xj

Solving PBQP optimally is an NP-complete problem in general. Various good-
quality heuristic solvers are available (Scholz and Eckstein 2002; Hames and Scholz 2006;
Buchwald, Zwinkau, and Bersch 2011).

5.1.2 Spilling in the PBQP model

If the PBQP solver does not find a valid allocation of all values to registers, the spill
option will be selected for some of the nodes. The corresponding values are then spilled
and the register allocation process is repeated for the new version of the program. In
practice, almost all functions can finally be allocated after a few rounds of spilling.

Unfortunately, our experiments show that the use of multiple rounds of spilling can
sometimes lead to paradoxical results. As will be discussed in in Chapter 6, there are
cases where a schedule with lower overall overlap weight ends up spilling more. This can
happen because each round of spilling works in isolation and cannot predict whether
every choice it makes actually lowers register pressure at critical points in the program.
Spilling a value that is defined or used at a program point with excess register pressure
does not reduce register pressure at that particular point since a register is still needed to
hold the value at that point. Thus in affected cases, the first round of spilling typically
spills several values which later turn out to have been spilled uselessly, without having
made progress towards a feasible allocation. This appears to be an inherent limitation of
multi-round PBQP spilling that is present in all implementations.

50

sp R1 R2 R3
sp 0 0 0 0
R1 0 ε 0 0
R2 0 0 ε 0
R3 0 0 0 ε

Figure 5.2: Sample ε edge cost matrix for modeling avoidable live range overlaps

For spilling, the current implementation of GCMS uses the simple ‘spill everywhere’
model. In this approach, a store instruction is inserted immediately after the spilled
value’s definition, and a load is generated before each use. As a slight improvement over
the completely naïve method, adjacent uses share a single reload instruction, and a use
adjacent to the definition does not need a reload. It is well known that more sophisticated
spilling models generate better code (Colombet, Brandner, and Darte 2011). In absolute
numbers, GCMS would therefore benefit from a more complex spiller. However, the
evaluation in Chapter 6 always uses this same spiller and only changes the arrangements
of instructions in the underlying programs. Thus the comparison of different GCMS
configurations is valid, even if the absolute performance of the benchmarks is not optimal.

In our implementation, rematerialization is chosen instead of spilling for live ranges
whose definitions are identified as rematerializable by the underlying LLVM compiler
framework. These are only those instructions that load constants into registers, either
from a constant pool or from an immediate operand. As with spilling, a more sophisticated
model would improve the absolute performance of code generated by GCMS, but for the
purposes of this thesis, it suffices that all the tested configurations use the same spilling
and rematerialization approach.

5.2 Spilling with reuse candidate information
Spilling in GCMS builds on the PBQP formalism by including special edges for reuse
candidates that were chosen by one of the selection processes detailed in Chapter 4. Such
candidates are represented as edges in the PBQP graph with ε cost matrices as shown
in Figure 5.2. The ε parameter is some very small positive value (orders of magnitude
below the spill costs appearing in cost vectors). The intention of these edges is to ensure
that code motion restrictions are minimized: If the two values that make up a reuse
candidate are allocated to the same register, it must be ensured that their live ranges do
not overlap in the final arrangement of instructions in the program. Hence, if enough
registers are available, it is better if such pairs of values are allocated to different registers
to retain full freedom of code motion. The PBQP solver will choose an allocation that
minimizes the number of ε entries and thus the number of code motion restrictions.

Pairs of values that the overlap analysis has identified as definitely overlapping are
represented in the PBQP problem by normal conflict edges. Conservatively, avoidable
overlaps that were not selected by candidate selection must also be represented as
conflicts. Figure 5.3 shows the conflict graph for the example program used before.

51

a b

c

d

j

Figure 5.3: Conflict graph for the example program from Figure 1.2, with dashed edges
representing ε edges in the PBQP graph

Solid edges are definite conflicts, while dashed edges represent avoidable overlaps. This
high-level structure of the graph is machine independent and depends only on the results
of overlap analysis and candidate selection. Refining the conflict graph into a PBQP
register allocation graph integrates information on the target machine’s register file: The
cost vectors on nodes and cost matrices on edges refer to allocation options to concrete
processor registers. The solid edges of the abstract conflict graph are instantiated to
conflict matrices as shown in Figure 5.1b, while the dashed edges are instantiated to ε
matrices as in Figure 5.2.

Note that since this GCMS conflict graph integrates all the possible live range overlaps
over a large number of schedules, node degrees tend to be considerably larger than in the
conflict graph for any one concrete schedule. This increase in node degrees is entirely due
to ε edges. While the larger degree is not a problem in theory, it does pose a problem for
the heuristic PBQP solvers that are used in practice. These heuristics are able to apply
provably optimal reduction rules to iteratively remove nodes of degree 1 and 2 from the
graph, thus decreasing other nodes’ degrees; heuristic steps are only needed for nodes of
higher degree. This means that the PBQP register allocation problem for the original
allocation problem in Figure 1.3a can be solved provably optimally by a heuristic solver
while the GCMS variant in 5.3 cannot. Thus a heuristic solver must somehow be made
aware of the special meaning of ε edges.

The current implementation of GCMS handles this issue as follows. Since ε edges
are only needed for code motion purposes, spilling can actually proceed without them.
Thus the initial PBQP problem does not contain these edges at all. When spilling is
complete, the ε edges are added to the problem and the solver is applied again to find a
valid assignment that also respects as many ε edges as possible. In order to make it easier
to find an assignment, the heuristic solver is modified to ignore ε edges when calculating
the node degree for the purpose of selecting the next node to apply a reduction to. At
this point, some spill-free assignment should theoretically always exist, but occasionally
the heuristic solver determines that more spilling would be needed. In this case, ε edges
for the affected live ranges are removed from the problem and the process is repeated.

Spilling and allocation with reuse candidate information otherwise proceed in one
or more rounds exactly as in PBQP register allocation without code motion. However,

52

a b

c

d

j

(a) Allocation for 5 registers

a b

c

d

j

(b) Allocation for 4 registers: an ε
edge is violated

a b

c

d

j

(c) Allocation for 3 registers:
two ε edges are violated

Figure 5.4: The code motion impact of allocating the example program for processors
with various numbers of registers

where regular allocation only needs to repeat simple liveness analysis after spilling, the
GCMS variant must run the entire overlap analysis and candidate selection process to
rebuild the PBQP problem for the next round.

For simplicity, the current GCMS implementation performs only spilling but not
register assignment; that is, after a spill-free solution has been found, virtual registers
are not rewritten to CPU registers although the PBQP solution gives a valid assignment.
The reason for this is to avoid tricky corner cases in out-of-SSA transformation. The
actual assignment of registers is left to one of LLVM’s existing register allocators. In
some rare cases, this allocator does not find a valid allocation for the program and has
to insert some more spill code.

5.3 Restricted global code motion

After the last round of spilling, the result returned by the PBQP solver is an assignment
of values to processor registers. As explained above, this assignment is not used to rewrite
the instructions. Nevertheless, it must still be ensured that it is, in principle, a valid
allocation for the program after code motion. That is, live ranges selected for reusing a
register may not overlap.

We therefore inspect all selected candidate pairs to see if they were allocated to the
same CPU register. If so, we must restrict code motion and add ordering arcs to the
dependence graph as specified by the pair’s blame term. Otherwise, such restrictions
need not be added, and code motion freedom is retained.

Figure 5.4 illustrates this process for the example program. Three different allocations
represented as colorings of the conflict graph in Figure 5.3 are shown, for 5, 4, and 3
registers, respectively. For 5 registers (Figure 5.4a), an allocation assigning each live range
to a different register is trivial to find. No restrictions of code motion and scheduling are
needed in this case.

53

For 4 registers (Figure 5.4b), an allocation without spilling can be found, but the
value d must be allocated to the same register as one of the other values. In the example,
this was chosen to be the same register as for a. The ε edge connecting these two
nodes is violated, so some code motion restriction must be applied. Consulting Table 3.1
(page 31) for the corresponding information computed by the overlap analysis, we see that
these values overlap if and only if the instruction defining d is placed in the loop block.
Forbidding this placement ensures that no matter what other code motion operations are
performed, this register assignment remains valid for the final program. This is the only
restriction that is needed, all other code motion operations are allowed. In particular, it
is legal to hoist the definition of b out of the loop.

In the case of only 3 registers in Figure 5.4c, more severe restrictions on code motion
are needed. As before, the results of the overlap analysis tell us that the instruction
defining d may not be placed in the loop block. Since b must be allocated to the same
register as c, hoisting of b’s definition must be forbidden, thus the instruction defining b
may not be placed in the start block. Additionally, Table 3.1 requires a dependence
arc from c’s definition to b’s use to ensure a legal schedule.

These examples show how GCMS adapts to the number of available processor registers:
A single model of live range overlaps is translated by the register allocator into both a
register assignment and a set of code motion restrictions. If enough registers are available,
no restrictions on code motion are needed. This is in contrast to pessimistic prepass
approaches that attempt to minimize register pressure without knowing the program’s
exact register need. In the case of GCMS, the register need is determined by the register
allocator. If the register need is too high in some schedules but not others, this is reflected
in the model’s ε edges, which in turn identify the code motion and scheduling restrictions
that are needed to produce a valid allocation and a corresponding valid schedule.

After applying all the needed constraints, we simply perform unmodified GCM on
the resulting restricted dependence graph: Instructions are placed in their latest possible
blocks in the shallowest loop nest. This keeps instructions out of loops as far as possible,
but prefers to shift them into conditionally executed blocks.

5.4 Final instruction scheduling
After instructions have been placed in blocks and scheduling arcs have been added to
the dependence graph, the final schedule for each block must be determined. At this
point, the restrictions in the graph ensure that no scheduling decision can cause any more
spilling. Scheduling can therefore fully focus on maximizing instruction-level parallelism
in the program.

The scheduler used by GCMS is based on a simple model of instruction latencies
extracted from processor manuals. The dependence graph is then scheduled using a
standard list scheduler with a rank function based on the critical path, the longest path
through the dependence graph (Cooper and Torczon 2004): Instructions are scheduled
by always choosing one with maximal remaining path length.

54

CHAPTER 6
Experimental Evaluation

This chapter describes how the algorithms described earlier were implemented in the
LLVM compiler framework. The algorithms are then evaluated by applying the compiler
to a standard benchmark suite in various configurations.

6.1 Implementation issues
This section describes some details of the implementation that were left unspecified up
to this point.

6.1.1 Implementation setting

Optimal and heuristic GCMS with and without balancing is implemented in the LLVM
compiler framework’s back-end. Since LLVM’s native frontend, Clang, only handles C
and C++, we use GCC as our front-end and the Dragonegg GCC plugin to generate
LLVM intermediate code from GCC’s internal representation. This allows us to apply
our optimization to Fortran programs from the SPEC CPU 2000 benchmark suite as
well. Unfortunately, our version of Dragonegg miscompiles six of the SPEC benchmarks,
but this still leaves us with 20 benchmarks to evaluate. We generate code for the ARM
Cortex-A9 architecture with VFP3 hardware floating point support. Programs are
compiled for Linux and statically linked against the GNU C library. We use the -O3
optimization flag to apply aggressive optimizations both at the intermediate code level
and in the back-end. All of a benchmark’s modules are linked before this optimization to
enable interprocedural optimizations on the whole program, and in particular to enable
inlining between functions that appear in different source files.

The exhaustive overlap analysis was implemented using SWI-Prolog, and we use
CPLEX as our ILP solver. For GCMS without balancing or with β = 0, whenever
CPLEX times out on a problem, we inspect the best solution it has found up to that
point; if its overlap weight is lower than the weight in the prepass schedule, we use this

55

approximation, and otherwise fall back to the prepass schedule. For GCMS with β > 0,
this decision cannot be guided by spill costs since in the β > 0 case higher spill costs than
in the prepass schedule may be tolerable. In this case, any approximate solution found by
CPLEX is acceptable if it times out. In either case, if CPLEX times out without having
found a feasible solution, the prepass schedule is used. The default timeout of 211 = 2048
seconds is sufficient to ensure that CPLEX finds some feasible solution for every instance
in the benchmark set.

The greedy heuristic solver could in principle be based on the Prolog analysis, but in
practice an older implementation in C++ is used. Comparing the two implementations
of essentially the same analysis was very useful for identifying bugs in both.

6.1.2 Spill cost model

The spill costs for live ranges are based on the model of statically estimated block
frequencies fb mentioned in Section 4.4.2. For a block b of loop nesting depth db, LLVM
estimates the frequency as:

fb :=
(

1 + 100
db + 10

)db

According to a comment in the LLVM source code, this formulation was chosen over
a simpler variant like 10db to avoid overflowing single-precision floating point numbers
when computing frequencies for blocks in deeply nested loops.

Traditionally, the spill cost for a virtual register is computed by summing the estimated
frequencies of the basic block each use appears in (because in general a reload may have
to be inserted before each use). When using GCMS, this is not directly applicable since
in the presence of global code motion, it is not clear in which basic block a use will finally
be placed. Thus GCMS computes the largest possible spill cost by summing the maxima
of the estimated frequencies of the blocks each use may appear in:

cv :=
∑

u

max {fb | use u of v may appear in block b}

6.1.3 Spill costs in candidate weight computation

Another adjustment is needed for the spill costs of live ranges that are preallocated to
CPU registers, and for live ranges that reload and immediately use a previously spilled
value. Such live ranges are typically assigned infinite spill cost since it is impossible to
shorten their live ranges by spilling. This cost model is sufficient for register allocation,
but it must be adjusted for use in GCMS.

Candidate selection defines the weight of a candidate (v, w) as the sum of the costs
of the two live ranges: cv + cw. However, infinite costs are too restrictive for code motion:
Such pairs have infinite weight if one of the members has infinite spill costs, regardless of
the other member’s costs. Such pairs would completely dominate all other candidates
even if the finite-weight member of the pair were cheap to spill.

56

It is therefore more useful to define a more general function for computing combined
candidate weight:

weight(cv, cw) =

∞ if cv =∞ and cw =∞
S cv if cw =∞
S cw if cv =∞
cv + cw otherwise

For the ARM target, the experimentally determined value for the scaling constant
of S = 15 seems to work well. For less regular architectures, it may make sense to choose
relatively larger values of S if the live ranges v and w belong to a register class with a
relatively small number of processor registers.

Since infinite numbers cannot be represented in CPLEX, any remaining infinities (for
candidates where both live ranges have infinite spill weight) are replaced by a number
that is orders of magnitude larger than the largest finite candidate weight.

6.1.4 Restriction of speculation

When asked to minimize spilling, GCMS has a tendency to speculate code, i. e., to move
instructions out of conditionally guarded blocks. This can happen if a value is defined
before a branch but only used if one of the paths is taken. GCMS may determine that it
would be useful to avoid the overlap of this live range with intervening code, in particular
with the computations involved in evaluating the branch condition. However, placing the
use before the branch condition means speculating that instruction.

Speculation can sometimes be useful, but preliminary experiments showed that in
most cases this transformation is bad for overall performance. The avoided overlap
usually does not make up for the cost of having to compute the speculated instruction
more often than necessary.

Therefore all the experiments reported below constrain global code motion by GCMS
to forbid speculation. Where according to GCM instructions may (in principle) move
along a contiguous segment of the dominator tree, GCMS forbids certain intermediate
blocks. Only hoisting or sinking out of or into loops is allowed, but not more general
motion into our out of conditionals within loops. Formally, for each loop in which an
instruction may appear, GCMS only allows the latest block in the loop which would be
legal according to GCM. Additionally, the block in which LLVM placed the instruction is
always allowed.

6.1.5 Baseline compiler

The execution time measurements below compare programs compiled with GCMS against
the LLVM baseline. In principle, this baseline is the program computed by LLVM’s
heuristics for code motion and for instruction scheduling to reduce register pressure.
However, GCMS uses a different scheduler after spilling, and in blocks where no spills are
needed, we might therefore observe spurious effects that are entirely due to differences in
how the pipeline is utilized. In practice, GCMS’s scheduler is better than LLVM’s in

57

some such cases and vice versa, so using different schedulers adds a random disturbance
to the measurements.

This disturbance can be avoided by redefining the baseline in a careful manner that
uses GCMS’s scheduler without affecting the spills that would be inserted for LLVM’s
heuristic schedule. This is done by identifying all the pairs of live ranges (that may be
allocated to the same register) that do not overlap in the prepass schedule. Then GCMS’s
scheduler is run with the constraint that all such non-overlapping registers must remain
non-overlapping. This is a strong restriction of scheduling freedom, but it still allows
GCMS to rearrange some instructions without affecting spilling at all. The baseline
programs in the experiments reported below are the ones produced by this scheduling
pass based on LLVM’s prepass schedule.

6.2 Experimental methodology

As mentioned above, 20 of the SPEC CPU 2000 benchmarks are compiled correctly
by the baseline compiler. However, some of these benchmarks show large statistical
variations in their execution times, varying by 2 % or more around the mean. Such
variations make reliable comparisons difficult or impossible, so a further four benchmarks
had to be excluded. This leaves 16 benchmark programs involved in the final evaluation.

The SPEC CPU suite offers various sizes of input instances for its benchmarks. Since
a very large number of different configurations must be tested, all runs reported below
were performed using the medium-sized test inputs rather than the largest possible input
sets, which would have taken considerably longer.

Since we want to study the trade-off between spilling and global code motion, and
there is no reason to assume that this trade-off is the same for every function in every
program, we study individual functions in isolation. We used profiling to identify the
three hottest functions for each of our benchmark programs. Where a hot function did
not offer any possibilities for global code motion, we moved on to the next hottest one.
Each of the benchmarks is then compiled with GCMS applied to only one such candidate
function, for various values of the β parameter.

Each program configuration is executed 18 times and the CPU times collected. The
three longest runs of each configuration are excluded since they may occasionally be
tainted by statistical outliers. Of the remaining 15 data points for each program, the
mean and standard deviation are shown in the tables below.

Some programs are entirely or almost entirely unaffected by GCMS because their
hot functions contain no loops at all, or no relevant amounts of code that can be moved
into our out of loops. The tables omit programs where all configurations of GCMS are
within 1% of the baseline’s execution time.

For the remaining programs, the tables show speedups in percent of the baseline’s
execution time (slowdowns are shown as negative percentages). The statistical significance
of the difference of each configuration to the baseline was tested using a two-tailed
unpaired t-test at a significance level of p < 0.05. For statistically significant differences,
the speedup percentage is shown in bold type in the tables.

58

6.3 Results

The following sections investigate the effect of GCMS on benchmark execution time and
code size, looking at local scheduling vs. global code motion, the heuristic vs. the optimal
solver, and various values of the β parameter ranging from 0 to 1.

6.3.1 Benchmark execution times

Tables 6.1 and 6.2 show comparisons of GCMS against the baseline versions of benchmarks.
The difference between the tables is in the inlining threshold: Table 6.1 uses LLVM’s
default inlining threshold of 225 (a unitless number), while the data in Table 6.2 was
collected after doubling the threshold to 450. The reason for more aggressive inlining
was to expose larger functions containing more loops and possibly more code that can be
moved between loops.

Description of the data

Each benchmark in the tables is identified by its name and the name of the function that
GCMS was applied to in the first two columns. The third column (% time) shows the
fraction of the total execution time of the benchmark spent in that particular function,
as determined by profiling. The following columns give execution times as the mean,
standard deviation, and speedup versus the baseline configuration. All times refer to the
entire benchmark, not just the time spent in the particular function (which would be
impossible to measure precisely). For example, Table 6.1 shows that GCMS with β = 0
applied to the resid_ function in 172.mgrid is able to speed up the entire benchmark
by about 4.2%. However, as the benchmark spends only about 53% of its time in
this function, this means that the function itself was sped up about twice as much, or
about 8%. Such computations cannot be assumed to be very precise, however, since the
precision of the profiling data is not known.

Besides the baseline, timings are given for six different configurations: The ‘pin’
column shows the special case of GCMS where each instruction is pinned to the basic
block in which LLVM placed it. In other words, in this configuration, global code motion
is disabled and only local instruction scheduling (aimed at minimizing spilling) is used.
The remaining columns show the timings for GCMS with the β parameter ranging from 0
to 1 in increments of 1

4 .
Occasionally the ‘pin’ configuration results in the exact same program as the baseline,

or one or more of the GCMS variants are identical to each other. In such cases, the table
contains ‘=’ signs to signal that the value in that place is identical to the one in the
previous column.

Discussion

Examining the data in Table 6.1, we can make the following general observations:

59

• For the most part, the ‘pin’ configuration is very close to the baseline; in three
cases, it is considerably better. These results are to be expected since the LLVM
baseline heuristics already aim at scheduling for minimal register pressure. As
the results of Section 6.3.2 will confirm further, the number and weight of spilled
values is identical or very close in most of these cases. In other words, LLVM’s
local scheduling heuristics are already very good, and often produce schedules that
minimize overall live range overlap cost.

• Similarly, the GCMS results at β = 0.0 are mostly close to or better than the
baseline. In two cases, marked by ‘=’ signs, the generated programs are even
completely identical. Again, this means that LLVM’s heuristics for global code
motion, which try to avoid excessive register pressure, work quite well in practice.

• In general, performance decreases as the value of the β parameter increases. In
almost all cases, the performance at β = 0.0 is greater than the performance at
β = 0.25, which in turn is almost always greater than the performance at larger
values of β. In general terms, this agrees with the expectation that spills are
expensive and that avoiding them by appropriate code motion is more beneficial
than hoisting simple computations to less frequently executed program points at
the expense of increasing register pressure.

A few benchmarks deviate from these general patterns to some extent. First, the
zgemm_ function in 168.wupwise shows a very small but statistically significant slowdown
of 0.1% due to purely local scheduling. Inspection of the static data recorded by the
compiler shows that while the GCMS overlap analysis and optimal solver reduce the
overall live range overlap cost by about 10%, the heuristic PBQP spiller spills one more
value in the ‘pin’ configuration than the baseline (32 spilled values rather than 31), at a
marginally higher total spill cost. This appears to be a side effect of using a heuristic
spiller after optimal candidate selection rather than the considerably more complicated
option of integrating spilling in the ILP model. However, the effect is very small.

The dctdxf_ function in 301.apsi also shows a slowdown with purely local scheduling
in the ‘pin’ configuration. The effect appears large, but it is not statistically significant
due to the relatively large variation in the measurements as can be seen from the standard
deviation. In this case the GCMS variant spills the same number of values as the baseline,
but at a slightly lower total spill cost. This means that a schedule was found that
minimized the spill costs at the expense of adding false dependences. In this particular
case the false dependence appears to lead to a schedule that is much worse at exploiting
the CPU pipeline. With global code motion enabled and β = 1, the slowdown disappears.
In this configuration, some limited code motion is performed, but the number of spilled
values remains the same as in the baseline, at a slightly higher total spill cost. This
variant does not suffer from the false dependence problem.

Finally, the resid_ function in 172.mgrid also shows a large upswing in performance
at β = 1 after a steady decline for growing values of β. This is a particular case in which
an additional spill actually leads to a speedup; it is discussed in detail in Section 6.3.5.

60

Ta
bl
e
6.
1:

E
xe
cu

tio
n
tim

es
of

be
nc
hm

ar
k
pr
og

ra
m
s
w
ith

se
le
ct
ed

fu
nc

tio
ns

co
m
pi
le
d
w
ith

va
rio

us
G
C
M
S
co
nfi

gu
ra
tio

ns
.

T
im

es
ar
e
sh
ow

n
w
ith

m
ea
ns

an
d
st
an

da
rd

de
vi
at
io
ns

in
se
co
nd

sa
nd

sp
ee
du

ps
as

pe
rc
en
ta
ge
s.

St
at
ist

ic
al
ly

sig
ni
fic
an

tc
ha

ng
es

vs
.t
he

ba
se
lin

e
(p
<

0.
05
)
ar
e
sh
ow

n
in

bo
ld
.
En

tr
ie
s
m
ar
ke
d
‘=

’a
re

id
en
tic

al
to

th
e
pr
ev
io
us

co
lu
m
n.

In
lin

in
g
th
re
sh
ol
d
22
5.

β

B
en

ch
m
ar
k

Fu
nc

tio
n

%
tim

e
ba

se
lin

e
pi
n

0.
0

0.
25

0.
5

0.
75

1.
0

16
4.
gz
ip

l
o
n
g
e
s
t
_
m
a
t
c
h

49
%

56
.1

0
±

0.
07

56
.0

4
±

0.
04

56
.1

3
±

0.
05

56
.2

9
±

0.
05

61
.0

0
±

0.
03

62
.0

0
±

0.
04

63
.3

0
±

0.
06

0.
1
%

−
0.

1%
−

0.
4
%

−
8.

7
%

−
10

.5
%

−
12

.8
%

16
4.
gz
ip

d
e
f
l
a
t
e

17
%

55
.3

5
±

0.
04

55
.3

4
±

0.
03

56
.1

6
±

0.
03

56
.0

4
±

0.
03

56
.0

5
±

0.
04

=
1.

3
%

1.
4
%

−
0.

1
%

0.
1
%

0.
1
%

0.
1
%

16
8.
w
up

w
ise

z
g
e
m
m
_

54
%

59
.6

0
±

0.
08

59
.6

7
±

0.
06

59
.7

9
±

0.
09

60
.3

5
±

0.
69

61
.1

0
±

0.
09

61
.3

1
±

0.
10

61
.3

9
±

0.
10

−
0.

1
%

−
0.

2
%

−
1.

3
%

−
2.

5
%

−
2.

9
%

−
3.

0
%

17
2.
m
gr
id

r
e
s
i
d
_

53
%

55
.9

9
±

0.
28

53
.7

1
±

0.
79

53
.6

4
±

0.
77

54
.3

5
±

0.
73

54
.3

6
±

0.
71

54
.5

8
±

0.
77

52
.4

4
±

0.
74

4.
1
%

4.
2
%

2.
9
%

2.
9
%

2.
5
%

6.
3
%

17
2.
m
gr
id

p
s
i
n
v
_

28
%

53
.7

6
±

0.
69

53
.9

7
±

0.
71

54
.6

0
±

0.
70

=
=

55
.0

4
±

0.
67

4.
0
%

3.
6
%

2.
5
%

2.
5
%

2.
5
%

1.
7
%

17
3.
ap

pl
u

b
u
t
s
_

27
%

28
.0

8
±

0.
05

28
.0

5
±

0.
18

28
.0

3
±

0.
18

28
.4

3
±

0.
16

28
.3

5
±

0.
14

28
.3

3
±

0.
16

28
.4

8
±

0.
15

0.
1%

0.
2%

−
1.

2
%

−
1.

0
%

−
0.

9
%

−
1.

4
%

17
3.
ap

pl
u

b
l
t
s
_

21
%

28
.1

3
±

0.
16

28
.1

4
±

0.
16

28
.4

3
±

0.
16

28
.4

0
±

0.
15

28
.4

1
±

0.
16

28
.3

8
±

0.
15

−
0.

2%
−

0.
2%

−
1.

2
%

−
1.

1
%

−
1.

2
%

−
1.

1
%

17
5.
vp

r
t
r
y
_
r
o
u
t
e

39
%

23
.8

1
±

0.
09

23
.8

7
±

0.
17

23
.9

6
±

0.
18

23
.9

0
±

0.
18

24
.1

6
±

0.
16

24
.1

5
±

0.
13

=
−

0.
2%

−
0.

6
%

−
0.

4%
−

1.
4
%

−
1.

4
%

−
1.

4
%

17
9.
ar
t

t
r
a
i
n
_
m
a
t
c
h

80
%

9.
73
±

0.
07

=
=

10
.1

0
±

0.
28

10
.3

5
±

0.
29

10
.2

5
±

0.
30

=
0.

0%
0.

0%
−

3.
8%

−
6.

4
%

−
5.

4
%

−
5.

4
%

18
3.
eq
ua

ke
m
a
i
n

38
%

48
.3

2
±

0.
31

48
.3

2
±

0.
74

48
.3

6
±

0.
75

52
.3

0
±

0.
77

52
.2

8
±

0.
77

51
.4

5
±

0.
83

52
.8

2
±

0.
80

0.
0%

0.
1%

−
8.

2
%

−
8.

2
%

−
6.

5
%

−
9.

3
%

25
6.
bz

ip
2

f
u
l
l
G
t
U

48
%

57
.0

8
±

0.
14

=
=

=
60
.4

4
±

0.
17

=
=

0.
0%

0.
0%

0.
0%

−
5.

9
%

−
5.

9
%

−
5.

9
%

30
1.
ap

si
d
c
t
d
x
f
_

8%
20
.9

8
±

0.
12

21
.2

4
±

0.
63

21
.1

3
±

0.
47

21
.1

8
±

0.
53

21
.2

1
±

0.
56

21
.2

4
±

0.
59

21
.0

3
±

0.
38

−
1.

3%
−

0.
7%

−
1.

0%
−

1.
1%

−
1.

2%
−

0.
2%

61

The discussion above was based on static program properties computed by the
compiler, namely the number and total cost of spilled values. These data (for an inlining
threshold of 450) are presented in Section 6.3.2 below.

Impact of more aggressive inlining

Table 6.2 for GCMS with the inlining threshold doubled to 450 is broadly similar to
Table 6.1 and for the most part shows the same interesting functions. Changing the
inlining threshold has an impact on some functions, especially some smaller ones, by
inlining code into them and increasing their share of total execution time. This is the
case, for instance, for deflate in 164.gzip and main in 183.equake. Other functions
appear to be mostly unchanged. It is interesting to note, comparing the baseline times,
that this much inlining slows several programs down.

The general trends are similar in both tables, although several are more pronounced
in Table 6.2. For example, the try_route function in Table 6.1 shows a relatively
gently sloping slowdown as β increases. In Table 6.2, the function is similarly close to
the baseline at β = 0, but considerably slower at larger values of β.

The Perl_sv_setsv function from 253.perlbmk is new in Table 6.2. After showing
a downwards performance trend for increasing β values, it displays a sudden upswing at
β = 1. This case is also explored in more detail in Section 6.3.5.

The 301.apsi benchmark disappears in Table 6.2: Inlining changes the program
sufficiently to make the scheduling anomaly disappear that led to the slowdowns shown
in Table 6.1. However, the train_match function in the 179.art benchmark now shows
a similar problem. The amount of spilling is the same in the β = 0 configuration as in the
baseline and the ‘pin’ configurations, but the optimal model’s results cause conservative
code motion which results in a program that is slightly worse overall.

The following sections list more data and describe additional experiments. Unless
noted otherwise, all of these refer to runs with the larger inlining threshold of 450.

6.3.2 Static spill statistics

Table 6.3 shows data collected by the compiler on the amount of spilling generated by the
different variants of GCMS. This data is useful for cross-referencing with the performance
data presented above. It allows us to check that increasing the β parameter to make
global code motion more aggressive tends to lead to more spilling. The comparison with
performance numbers can show whether increased spilling seems to correspond to lower
performance.

A number of the entries in the table are marked with asterisks (*). These mark the
cases where the final register allocator that follows GCMS’s spilling and code motion
passes did not find a valid allocation and had to insert additional spill code. Recall
from Section 5.2 that the current implementation of GCMS performs spilling but not
out-of-SSA transformation, and that therefore it cannot apply the register assignment that
the allocator found. After GCMS is done, LLVM’s standard passes perform out-of-SSA

62

Ta
bl
e
6.
2:

E
xe
cu

tio
n
tim

es
of

be
nc
hm

ar
k
pr
og

ra
m
s
w
ith

se
le
ct
ed

fu
nc

tio
ns

co
m
pi
le
d
w
ith

va
rio

us
G
C
M
S
co
nfi

gu
ra
tio

ns
.

T
im

es
ar
e
sh
ow

n
w
ith

m
ea
ns

an
d
st
an

da
rd

de
vi
at
io
ns

in
se
co
nd

sa
nd

sp
ee
du

ps
as

pe
rc
en
ta
ge
s.

St
at
ist

ic
al
ly

sig
ni
fic
an

tc
ha

ng
es

vs
.t
he

ba
se
lin

e
(p
<

0.
05
)
ar
e
sh
ow

n
in

bo
ld
.
En

tr
ie
s
m
ar
ke
d
‘=

’a
re

id
en
tic

al
to

th
e
pr
ev
io
us

co
lu
m
n.

In
lin

in
g
th
re
sh
ol
d
45
0.

β

B
en

ch
m
ar
k

Fu
nc

tio
n

%
tim

e
ba

se
lin

e
pi
n

0.
0

0.
25

0.
5

0.
75

1.
0

16
4.
gz
ip

l
o
n
g
e
s
t
_
m
a
t
c
h

49
%

55
.9

0
±

0.
05

55
.9

0
±

0.
06

55
.9

5
±

0.
05

55
.9

1
±

0.
06

60
.9

7
±

0.
06

60
.7

1
±

0.
07

63
.3

6
±

0.
06

0.
0%

−
0.

1
%

−
0.

1%
−

9.
1
%

−
8.

6
%

−
13

.4
%

16
4.
gz
ip

d
e
f
l
a
t
e

28
%

55
.9

2
±

0.
06

56
.0

1
±

0.
09

55
.9

2
±

0.
05

56
.8

2
±

0.
06

57
.7

6
±

0.
09

57
.3

5
±

0.
04

−
0.

1%
−

0.
2
%

−
0.

1%
−

1.
7
%

−
3.

4
%

−
2.

6
%

16
8.
w
up

w
ise

z
g
e
m
m
_

53
%

60
.1

1
±

0.
06

60
.2

8
±

0.
07

60
.2

6
±

0.
07

60
.7

5
±

0.
05

61
.9

1
±

0.
05

61
.9

5
±

0.
06

61
.9

3
±

0.
06

−
0.

3
%

−
0.

3
%

−
1.

1
%

−
3.

0
%

−
3.

1
%

−
3.

0
%

17
2.
m
gr
id

r
e
s
i
d
_

53
%

56
.2

8
±

0.
14

53
.1

1
±

0.
39

53
.0

5
±

0.
37

53
.7

9
±

0.
33

53
.8

0
±

0.
33

53
.8

4
±

0.
29

51
.8

2
±

0.
29

5.
6
%

5.
7
%

4.
4
%

4.
4
%

4.
3
%

7.
9
%

17
2.
m
gr
id

p
s
i
n
v
_

28
%

53
.1

4
±

0.
69

53
.3

5
±

0.
26

54
.0

0
±

0.
21

53
.2

6
±

0.
14

53
.2

7
±

0.
19

54
.4

2
±

0.
28

5.
6
%

5.
2
%

4.
1
%

5.
4
%

5.
3
%

3.
3
%

17
3.
ap

pl
u

b
u
t
s
_

27
%

28
.0

2
±

0.
07

27
.9

3
±

0.
07

27
.9

4
±

0.
06

28
.3

3
±

0.
06

28
.2

7
±

0.
07

28
.2

6
±

0.
07

28
.3

9
±

0.
07

0.
3
%

0.
3
%

−
1.

1
%

−
0.

9
%

−
0.

8
%

−
1.

3
%

17
3.
ap

pl
u

b
l
t
s
_

20
%

28
.0

5
±

0.
07

28
.0

6
±

0.
07

28
.3

5
±

0.
06

28
.3

0
±

0.
04

28
.3

1
±

0.
06

28
.3

0
±

0.
05

−
0.

1%
−

0.
1%

−
1.

2
%

−
1.

0
%

−
1.

0
%

−
1.

0
%

17
5.
vp

r
t
r
y
_
r
o
u
t
e

74
%

23
.6

4
±

0.
05

23
.6

7
±

0.
08

23
.6

7
±

0.
08

24
.3
±

0.
06

24
.4
±

0.
07

24
.6

8
±

0.
07

=
−

0.
1%

−
0.

1%
−

2.
8
%

−
3.

2
%

−
4.

4
%

−
4.

4
%

17
9.
ar
t

t
r
a
i
n
_
m
a
t
c
h

82
%

9.
56
±

0.
08

=
9.

74
±

0.
19

9.
78
±

0.
07

10
.0

3
±

0.
07

9.
92
±

0.
06

9.
98
±

0.
19

0.
0%

−
1.

8
%

−
2.

3
%

−
4.

9
%

−
3.

7
%

−
4.

4
%

18
3.
eq
ua

ke
m
a
i
n

40
%

50
.3

7
±

0.
24

48
.4

1
±

0.
56

49
.3

7
±

0.
60

51
.7

6
±

0.
60

52
.8

4
±

0.
57

53
.3

8
±

0.
56

52
.3

5
±

0.
57

3.
9
%

2.
0
%

−
2.

8
%

−
4.

9
%

−
6.

0
%

−
3.

9
%

25
3.
pe

rlb
m
k

P
e
r
l
_
s
v
_
s
e
t
s
v

8%
23
.6

2
±

0.
06

23
.6

4
±

0.
04

23
.6

2
±

0.
04

23
.8

7
±

0.
03

24
.9

8
±

0.
03

24
.9

6
±

0.
02

23
.6

2
±

0.
04

−
0.

1%
0.

0%
−

1.
1
%

−
5.

7
%

−
5.

7
%

0.
0%

25
6.
bz

ip
2

f
u
l
l
G
t
U

48
%

59
.1

5
±

0.
10

=
=

=
62
.9

0
±

0.
11

=
=

0.
0%

0.
0%

0.
0%

−
6.

3
%

−
6.

3
%

−
6.

3
%

63

transformation, some coalescing, and final register allocation using the default PBQP
allocator.

As the table shows, this final allocation usually succeeds without any additional
spilling. However, in some cases and for various reasons (too optimistic coalescing or
the inherent limitations of a heuristic allocator), no valid assignment can be found, and
LLVM must insert more spill code. The number and weights of extra spills are not shown
in the table. Due to the out-of-SSA transformation and coalescing performed by LLVM,
these numbers refer to live ranges that may have more than one point of definition,
which makes them uncomparable to our numbers based on SSA values. However, for the
most part, the additional spills are a few cheap ones that only modify small details of
the program. Nevertheless, the numbers suggest that an implementation of GCMS for
production use should include full out-of-SSA transformation and register assignment to
avoid this kind of problem.

As expected, increasing the value of the β parameter tends to gradually increase
the number of spills as well as the total spill weight. There are some exceptions to
this general trend, such as the case of deflate in 164.gzip: Here the β = 1 variant
spills less than β = 0.75. This is caused by the fact that PBQP spilling and register
allocation proceeds in multiple rounds with imperfect communication between them. In
this particular example, the first round at β = 1 does, in fact, spill more than the first
round at β = 0.75. Some more spills follow in subsequent rounds. However, at some
point in the process, the β = 0.75 variant spills values that are not helpful in reducing
the register pressure; as discussed in Section 5.1.2, this can always happen in multi-round
PBQP allocation because the PBQP solver cannot predict the impact of its decisions on
future rounds. The move from ‘pin’ to β = 0 for blts_ in 173.applu is similar: This
should not generate more spilling, but again, an early round of spilling makes suboptimal
decisions and generates some unnecessary spills.

The third major example is the step from β = 0.75 to β = 1 on the Perl_sv_setsv
function in 253.perlbmk. Here, again, the first rounds of spilling operate as expected,
with β = 1 causing more expensive spilling (although the total number of spilled values is
lower). In later rounds it turns out that some of the spills at β = 0.75 did not contribute
to reducing register pressure. In the case of this benchmark, the performance penalty
due to this problem, which is inherent in multi-round PBQP spilling, is especially large.
In almost all other cases this situation does not occur.

The table also sheds light on some unexpected properties of the experimental data
from Table 6.2. For example, despite the general trend of decreasing performance
with increasing values of β, on the longest_match function in 164.gzip the β = 0.75
configuration performs better than β = 0.5. The static numbers show that both of these
generate the same amount of spill code. However, the β = 0.75 variant performs more
aggressive global code motion and can thus achieve slightly better performance. A similar
pattern is visible for the psinv function in 172.mgrid. However, in most cases there is a
monotonous increase in spilling that corresponds to mostly monotonous slowdowns in
Table 6.2 for increasing values of β. Finally, the fullGtU function in 256.bzip2 shows a
peculiar pattern: Neither the baseline nor any of the GCMS configurations generate any

64

Ta
bl
e
6.
3:

St
at
ic

pr
op

er
tie

s
of

se
le
ct
ed

be
nc
hm

ar
k
fu
nc

tio
ns

w
ith

va
rio

us
G
C
M
S
co
nfi

gu
ra
tio

ns
.
T
he

va
lu
es

sh
ow

n
ar
e
th
e

nu
m
be

ra
nd

to
ta
ls
pi
ll
we

ig
ht

of
sp
ill
ed

va
lu
es
.
A
st
er
isk

si
nd

ic
at
e
ca
se
sw

he
re

LL
V
M

in
se
rt
ed

ad
di
tio

na
ls
pi
lls

af
te
ro

ut
-o
f-S

SA
tr
an

sf
or
m
at
io
n.

β

B
en

ch
m
ar
k

Fu
nc

tio
n

ba
se
lin

e
pi
n

0.
0

0.
25

0.
5

0.
75

1.
0

16
4.
gz
ip

l
o
n
g
e
s
t
_
m
a
t
c
h

25
25

25
30

31
31

35
13

07
3.
8

13
07

3.
8

13
07

3.
8

18
78

4.
4

22
00

3.
3

22
00

3.
3

46
54

8.
7

16
4.
gz
ip

d
e
f
l
a
t
e

43
43

40
*

48
65

71
68

43
10

.1
43

10
.1

26
78

.5
*

51
49

.2
16

65
1.
8

31
56

9.
8

29
19

4.
4

16
8.
w
up

w
ise

z
g
e
m
m
_

31
32

29
*

49
*

58
*

61
*

61
*

44
82

0.
0

45
67

0.
0

39
85

0.
0*

23
96

0.
0*

47
53

0.
0*

50
14

0.
0*

50
14

0.
0*

17
2.
m
gr
id

r
e
s
i
d
_

51
43

41
*

47
47

47
48

19
68

31
.1

14
41

38
.5

14
16

52
.8
*

16
48

89
.2

16
48

89
.2

16
48

89
.2

17
14

37
.8

17
2.
m
gr
id

p
s
i
n
v
_

50
43

41
*

47
47

47
55

19
02

63
.3

14
41

57
.4

14
16

71
.7
*

16
49

08
.2

16
49

08
.2

16
49

08
.2

23
80

11
.0

17
3.
ap

pl
u

b
u
t
s
_

44
44

48
67

67
67

68
11

63
61

2.
0

11
63

61
2.
0

12
60

66
1.
0

69
39

02
7.
0

72
30

59
9.
0

72
30

59
9.
0

72
74

56
4.
0

17
3.
ap

pl
u

b
l
t
s
_

48
48

54
76

75
76

76
10

77
34

1.
8

10
77

34
1.
8

11
98

10
9.
8

61
73

27
4.
8

61
03

35
9.
8

61
15

63
0.
8

61
15

63
0.
8

17
5.
vp

r
t
r
y
_
r
o
u
t
e

55
55

53
*

69
99

11
0

11
0

22
91

99
6.
0

22
91

99
6.
0

22
71

04
4.
0*

74
19

62
2.
0

15
45

34
93

.0
14

98
39

23
.0

14
98

39
23

.0
17

9.
ar
t

t
r
a
i
n
_
m
a
t
c
h

18
18

18
33

52
53

53
21

38
39

.9
21

38
39

.9
21

38
39

.9
70

23
76

5.
2

25
39

38
69

.2
25

21
67

19
.2

25
21

67
19

.2
18

3.
eq
ua

ke
m
a
i
n

13
9

14
0

14
1*

21
1

16
9*

18
1*

18
2*

48
14

65
.6

48
33

77
.8

48
27

10
.0
*

34
63

83
0.
0

13
74

41
0.
0*

13
93

48
7.
0*

13
95

10
2.
0*

25
3.
pe

rlb
m
k

P
e
r
l
_
s
v
_
s
e
t
s
v

5
5

5
37

43
43

32
20

.0
20

.0
20

.0
12

40
0.
0

18
12

0.
0

18
12

0.
0

16
74

0.
0

25
6.
bz

ip
2

f
u
l
l
G
t
U

0
0

0
0

0
0

0
0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

65

spill code, but Table 6.2 shows a large slowdown at β ≥ 0.5. The reasons for this are
discussed in Section 6.3.5.

6.3.3 Solver time

Figures 6.1 and 6.2 show the time taken by CPLEX when solving the integer linear
programming problems involved in compiling the benchmark programs’ hot functions.
Figure 6.2 is an enlargement of the area highlighted by the dotted box near the origin of
Figure 6.1 (the aspect ratio is not preserved).

The data shown are for an inlining threshold of 450 and for β = 0. For larger values
of β, solver times tend to be shorter because in these cases the optimal solution selects
fewer candidates and the solver does not have to explore as many scheduling decisions.
Each line in the plots corresponds to the successive rounds of spilling for a particular
function. That is, the first point of a line plots solver time against the function’s size in
instructions before spilling, the second point shows solver time after one round of spilling,
and so on. The solver timeout for these experiments was set to 2048 seconds of wall time.

The plots show that while in very general terms solver time tends to increase with
program size, there is very high variance. In the extreme case near the upper-left corner
of Figure 6.1, the solver times out on a function of only 387 instructions (buts_ in
173.applu), while near the lower-right corner it solves instances optimally for a function
more than ten times that size (Perl_sv_getsv in 253.perlbmk) within less than a
tenth of the time limit. Instances for functions up to several hundred instructions in size
are solved within less than a second. A large function of initially 2105 instructions, main
in 183.equake, takes a total of 5 rounds of which 3 time out, but the results in Table 6.2
show that nonetheless this results in a good solution.

Each round of spilling increases the number of instructions in the function monotonously.
This can be expected to increase the solver time in general, and it is indeed reflected
in the plots for several instances. However, in many cases, the solver time decreases
dramatically despite the increase in code size: Although there are more live ranges and
more instructions to schedule, the individual scheduling decisions often become simpler
since spill reload live ranges have fewer uses than the original live ranges.

6.3.4 Impact of solver time on benchmarks

Nontrivial solver times raise the question how useful it is to let the solver run to completion
until a provably optimal solution is found. CPLEX and similar solvers are based on
the branch and bound method and typically find a sequence of intermediate solutions
of increasing quality before some solution is finally proved optimal. It is interesting to
investigate the quality of these intermediate solutions, which can in theory be found very
quickly.

In practice, intermediate solutions are often not found immediately because CPLEX
applies a pre-solving step before starting the branch and bound phase. The pre-solver
simplifies the problem, which speeds up the subsequent search. However, it can sometimes

66

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,5000

500

1,000

1,500

2,000

Function size (number of instructions)

So
lv
er

tim
e
(s
ec
on

ds
,w

al
lt

im
e)

Figure 6.1: Time taken by the ILP solver for problems of various sizes (β = 0)

0 100 200 300 400 500 600 700 800 9000

50

100

150

200

Function size (number of instructions)

So
lv
er

tim
e
(s
ec
on

ds
,w

al
lt

im
e)

Figure 6.2: Time taken by the ILP solver for problems of various sizes, detail of Figure 6.1

67

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

2

4

6

Solver time exponent (time limit 2n sec)

Sp
ee
du

p
ve
rs
us

ba
se
lin

e
(%

)
172.mgrid resid_
183.equake main

Figure 6.3: Influence of solver time on the performance of selected benchmarks, for solver
times from 20 = 1 sec to 214 = 16384 sec

take a very long time and lead to a timeout without having found any intermediate
solution at all.

Varying the solver’s time limit allows us to inspect intermediate results that increase
in quality as the time limit increases. If the basic assumption of GCMS holds, namely that
a better solution of the optimization problem leads to less spilling and better performance,
then the performance of the benchmark problems should also increase accordingly.

Figure 6.3 displays the results of varying the solver’s time limit and observing the
resulting changes in execution time. For meaningful results, this experiment was applied
only to functions that needed nontrivial solver times and that produced measurable
improvements in benchmark execution speed at β = 0.0. The selected functions were
therefore resid_ from 172.mgrid and main from 183.equake. The solver timeout was
varied exponentially, using the powers of 2 from 20 = 1 sec to 214 = 16384 sec.

The first solutions for resid_ from 172.mgrid are found at a time limit of 24 = 16
seconds. At this limit, a solution is found for the first round of GCMS and PBQP
allocation, but not for the subsequent rounds. This results in a very slight improvement
over the baseline. All three rounds are solved optimally starting at a limit of 26 = 64
seconds, leading to a significant speedup.

The case of the main function in 183.equake is more complicated as it does not show
the expected monotonous improvement in execution time for increasing time limits. At
a time limit of 28 = 256 seconds, an intermediate solution is found for the first round
but for not subsequent rounds. At 29 = 512 and 210 = 1024 seconds, intermediate

68

solutions for more rounds are found, and less spilling is generated than in the previous
case. However, in these two cases, the heuristic PBQP register assignment with ε edges
fails (see Section 5.2). GCMS must therefore remove some of the ε edges from the
assignment problem, which means introducing false dependences that lead to a schedule
that is worse than necessary. This is simply an artifact of the imperfect heuristic PBQP
solver. Scaling the time limit further, GCMS spills less and does not run into the ε edge
assignment problem again. Provably optimal solutions for all rounds are found at a time
limit of 214 = 16384.

This data set is very limited, but it supports the underlying assumptions of GCMS,
namely that increasingly good solutions of the optimization problem lead to less and less
spilling, and that this in turn can improve program performance. However, the heuristic
PBQP register allocator is a potential weak point in the overall process of code motion,
spilling, and register allocation.

6.3.5 Detailed impact of β parameter

The data shown in Tables 6.1 and 6.2 is somewhat coarse-grained. A number of bench-
marks show seemingly abrupt changes from one β value to the next, but it is not visible
in the tables whether these are gradual changes over intervening β values or sudden
jumps from one β setting to a very slightly larger one. Building and measuring variants
of all the benchmarks with very fine-grained scaling of β would take a very long time,
but in Figure 6.4 this has been done for three of the benchmarks that exhibit interesting
patterns. These three functions were selected because they show interesting patterns in
Table 6.2, i. e., not simply a linear trend. In this plot, β is scaled in steps of 0.05. Where
preliminary results showed large changes around certain points, even more fine-grained
scaling in steps of 0.01 was used.

The resid function in 172.mgrid shows an upwards performance trend from β = 0.75
to β = 1 in 6.2. In Figure 6.4 we can see that this is in fact a single large step at the
very end of the scale, from β = 0.99 to β = 1. Inspection of the generated code that
this change introduces an additional value to be spilled (47 spilled values rather than
46). The two variants do not differ in terms of global code motion, but the extra spill
changes the register pressure in a large, hot basic block in a loop. The spilled value has
only one use in this block, so a single reload must be inserted. This incurs some costs on
every loop iteration. However, the reload and use occur quite early in the block, and
after the use an additional CPU register is freed for use in the rest of the block. This
allows the PBQP register allocator to find a register assignment that causes fewer false
dependences due to register reuse, and the GCMS scheduler can find a more aggressive
schedule with higher instruction-level parallelism. Thus this is a case where an extra spill,
even accompanied by a reload instruction inside a hot loop, turns out to be beneficial.
This is an exception to the general trend observed in most of the other benchmarks (and
even in this function, with β ∈ [0, 0.99]) that more spilling leads to lower performance.

The Perl_sv_setsv function in 253.perlbmk shows several interesting changes.
First, there is a relatively large step from the β = 0 configuration, which performs
identically to the baseline, to β = 0.01, which shows a slowdown of about 1.6%. In this

69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

β

Sp
ee
du

p
ve
rs
us

ba
se
lin

e
(%

)
172.mgrid resid_

253.perlbmk Perl_sv_setsv
256.bzip2 fullGtU

Figure 6.4: Influence of the β parameter on the performance of selected benchmarks

particular function, the very small change in β is enough to cause a large change in the
number of spilled values, from 5 to 33. While each of the additional spills is relatively
cheap in itself, this does cause a large number of reload instructions to be inserted in
the program. Taken together, these have a measurable negative impact on program
performance.

This is counteracted later with a large improvement in performance when moving
from β = 0.83 to β = 0.84. This step corresponds to a large difference in the programs
that are generated. Analyzing the generated code showed that this is the point at which
the problem of multi-round spilling discussed in Section 6.3.2 disappears: At β ≥ 0.84,
the first round spills slightly more, but the overall choice of values to spill is more useful.

Finally, Figure 6.4 shows that the abrupt change in the performance of fullGtU
in 256.bzip2 is due to a single slight change in β from 0.29 to 0.3. At this point, GCMS
decides to hoist a loop invariant move-immediate instruction out of its loop. This increases
register pressure. While no spilling in the narrow sense is needed (see the 0 entries for
this function in Table 6.3), the increased register need causes the allocator to use one
more callee-saved register. LLVM’s prologue/epilogue insertion pass must therefore make
sure that this extra register is saved on function entry and restored at function exit. As
this particular function is both called very frequently and has a large number of early
return sites, the associated costs add up and cause a large slowdown. Additionally, the
slightly different allocation causes an extra register-to-register copy instruction to be
inserted in the function’s entry block. This may lead to issues with code alignment and

70

instruction cache misses, although this cannot be verified as the target platform does not
provide performance counters.

6.4 Results of heuristic GCMS
The following sections discuss the heuristic candidate selection method from Section 4.2,
with the extension to the use of the β balancing parameter as discussed in Section 4.4.1.

6.4.1 Compile times

The compile time impact of heuristic GCMS is negligible. The largest of the functions
of interest is Perl_sv_setsv with 4227 instructions before the first round of spilling;
on this function, the two rounds of spilling using GCMS’s PBQP spiller, but using
only a standard liveness analysis without code motion, complete in 1.9 seconds. Using
heuristic GCMS with β = 0, this grows to 5.0 seconds, which is tolerable when attempting
aggressive optimization of a very large function.

On all other hot functions under test, total allocation time including GCMS was
within 2 seconds, and less than 1 second in almost all cases.

6.4.2 Benchmark execution times

Table 6.4 shows an evaluation of the heuristic candidate selection method. The format
is similar to Tables 6.1 and 6.2, but is simplified in that only the changes versus the
baseline are shown, not absolute times. As before, a function is included in the table
if some configuration differs from the baseline by at least 1%. Statistically significant
differences (t-test, p < 0.05) are shown in bold. As before, a ‘=’ entry means that the
value is identical to the previous column because the generated benchmark executables
are identical.

The table contains a ‘pin’ configuration, as before: GCMS restricted such that
instructions may not move from the block where LLVM placed them, only local instruction
scheduling is allowed. Further, there are two different sets of GCMS configurations with
the β parameter varying from 0 to 1. This table follows the algorithm laid out in
Figure 3.4 with the allowUseHoisting parameter set to True.

Examining the ‘pin’ column, we can see that, as with the optimal solver, heuris-
tic GCMS is mostly close to the baseline performance. On the two functions from
the 172.mgrid benchmarks where the optimal solver performs particularly well, the
heuristic also improves performance, although by a smaller amount. Unsurprisingly, the
heuristic can also sometimes make bad choices, but the resulting slowdowns are quite
small.

Moving on to the β columns, the large number of ‘=’ entries is conspicuous. Recall
that the balancing heuristic works by first applying heuristic GCMS to a fraction 1− β
of the possible reuse pairs, then performs GCM and from that point on does not allow
any further global code motion, only local scheduling. For most benchmarks the variants
generated for all β values from 0 to 0.75 are identical. This means that the available

71

Table 6.4: Execution time speedups of benchmark programs compiled with various GCMS
configurations with heuristic candidate selection.

β

Benchmark Function pin 0.0 0.25 0.5 0.75 1.0
164.gzip longest_match 0.7% 0.7% = = = −0.2%
164.gzip deflate −0.1% −0.2% = = = −1.6%
172.mgrid resid_ 1.7% 1.9% = = = 1.7%
172.mgrid psinv_ 1.0% 0.9% = = = 1.1%
173.applu buts_ −0.3% −1.0% = = −1.0% −1.1%
175.vpr try_route −0.3% 0.1% = 0.2% = −4.1%
179.art train_match 0.0% 0.0% = = = −1.4%
183.equake main 0.2% 4.0% = = = 4.6%
256.bzip2 fullGtU 0.0% 0.0% = = = −6.5%

amount of global code motion is usually exhausted very quickly, after analyzing a relatively
small fraction of all possible reuse pairs. After analyzing the first few pairs, the greedy
heuristic has chosen a single legal basic block for almost all instructions, so a parameter
value β < 1 has almost no effect. This is only different for two benchmark functions
(buts_ in 173.applu and try_route in 175.vpr) which have more freely movable code
and can therefore exploit intermediate β values.

At β = 1, the available code motion freedom is exploited by applying aggressive GCM
before considering the possible reuses. In all benchmarks, this places some instructions
in different blocks than the β = 0 heuristic that avoids expensive live range overlaps by
moving code. In many, but not all cases, the code generated with β = 0 and the code
generated with purely local scheduling after LLVM’s placement of code both perform
better than with β = 1. Again, this shows that in general, avoiding spills is a better
code generation strategy than aggressive global code motion, even if followed by a local
scheduling step that tries to reduce spilling.

6.4.3 Benchmark execution times without hoisting of uses

Since most of the global code motion potential is used up by the first few possible reuse
pairs, the heuristic GCMS approach is sensitive to bad choices made early on that destroy
later potential to generate good code. This can be especially critical if the hoisting of
uses is enabled. This operation, illustrated in Figure 3.5b, may or may not be beneficial
overall: Hoisting a use of v out of a loop avoids the one particular live range overlap
illustrated in that example, but it might lengthen the live range of a value defined by
the instruction using v. This can lead to a larger total amount of spill code. Table 6.5
therefore evaluates a variant of heuristic GCMS where this operation is disabled. That
is, the allowUseHoisting parameter in the algorithm from Figure 3.4 is set to False for
these runs. This variant may only sink, but not hoist, code to avoid live range overlaps.

72

Table 6.5: Execution time speedups of benchmark programs compiled with various GCMS
configurations with heuristic candidate selection and hoisting of uses disabled.

β

Benchmark Function 0.0 0.25 0.5 0.75 1.0
164.gzip deflate −0.3% = = = −1.6%
173.applu buts_ −0.1% = = −0.2% −1.1%
183.equake main 5.4% = = = 4.6%

This change only rarely makes a difference. In the majority of cases, the exact same
code is generated whether or not hoisting of uses is enabled. Table 6.5 only shows the
three benchmark functions where disabling hoisting does generate different code. The
effect on deflate from 164.gzip is negligible, but the other two benchmarks improve
markedly compared to the results in Table 6.4. On buts_ in 173.applu, a significant 1%
slowdown turns into an insignificant 0.1%, while on main from 183.equake, an impressive
speedup of 4% is improved further to 5.4%.

Note that at β = 1, GCM is applied and further code motion is forbidden. Thus at
this setting it makes no difference whether hoisting of uses is allowed. The executables are
identical, and the measurements of a single set of runs are shown in the β = 1 columns
of both Table 6.4 and Table 6.5.

Overall, it appears that disabling code hoisting is the better choice. This again
supports the thesis that reducing spilling is a good general objective for code generation.
Further, the results show that heuristic GCMS can achieve significant speedups on
suitable programs. Since the greedy heuristic’s compile time costs are negligible, this
algorithm could be a practical choice for a realistic compiler.

73

CHAPTER 7
Conclusions

This thesis presented GCMS (global code motion with spilling), an algorithmic framework
for combining the disjoint code generation phases of global code motion (including local
instruction scheduling) and register allocation.

This integration is interesting because these compilation phases pursue different goals.
Global code motion and scheduling tend to move a value’s definition and its uses apart,
in order to minimize the number of executions of some of these instructions, or in order
to exploit the processor’s pipeline parallelism. Register allocation attempts to assign
the values of unrelated, non-overlapping computations to processor registers without
exceeding a predefined limit of available registers. Register allocation can thus introduce
false dependences which limit the applicability of code motion and scheduling; code
motion and scheduling, on the other hand, cause overlaps between values’ live ranges,
making allocation more difficult.

GCMS is based on a novel analysis that computes all the possible ways in which
live ranges in a function can overlap, taking all the possible global code motions and
local schedules into account. By exploiting the properties of strict SSA form, all possible
live range overlaps and the code motion constraints under which they can be avoided
can be enumerated efficiently. Given this data, GCMS builds a special kind of register
allocation problem based on the PBQP formalism in which definitely overlapping live
ranges are represented differently from avoidable live range overlaps. Avoidable overlaps
are associated with code motion constraints describing how to ensure that live ranges are
non-overlapping. With this formulation, a solution of the problem without spills yields
both a valid register allocation and a set of code motion constraints that must be applied
to the program to ensure the legality of the allocation.

Before the register allocation problem can actually be built, another problem has to
be overcome: Not all of the code motion constraints identified by the analysis can be
applied at the same time. Certain sets of constraints would introduce cyclic dependences
or contradictory placements of instructions in basic blocks. Identifying a legal subset of
constraints is the candidate selection problem. Various approaches to candidate selection

75

were discussed in this thesis: heuristic vs. optimal; local vs. global; and including a
parameter β that captures the trade-off between minimizing spilling and preserving
maximal freedom of code motion.

GCMS was implemented in the LLVM compiler framework and compared against
LLVM’s standard heuristics, which attempt to shorten live ranges in order to minimize the
amount of spill code inserted in the program. The target platform was ARM Cortex-A9,
a modern out of order processor. The evaluation led to the following general observations:

• In general, global code motion operations that attempt to reduce live range over-
laps (β = 0 in parameterized GCMS) lead to less spill code and higher program
performance than aggressive global code motion operations that attempt to reduce
the number of times instructions are executed (β = 1).

• Nevertheless, in certain individual cases, spilling a value can result in much better
performance. This can happen if a spill is relatively cheap but it lowers the
register pressure enough to allow an instruction schedule that is better at exploiting
instruction level parallelism. GCMS is able to produce such schedules because
its formulation and solution minimize false dependences if enough registers are
available. Other commonly used heuristics aimed at minimizing spilling, such as
the ones used by LLVM, do not have this property.

• The results of the heuristics used by LLVM to minimize spilling are of high quality
and often close or even identical to the optimal solution computed by local or global
GCMS. However, in some cases both the optimal and the heuristic solutions to
GCMS outperform LLVM by a wide margin, suggesting areas where improvement
might be possible.

• Optimal GCMS sometimes shows behavior that appears paradoxical, but such cases
can be explained as artifacts of the underlying heuristic PBQP register allocator
or the lack of out-of-SSA transformation in the current implementation. A fully
optimal implementation of integrated GCMS candidate selection, spilling, and
register assignment is a goal for future work.

In light of these findings, GCMS appears to be an interesting, principled approach
to code generation. While optimal GCMS suffers from compile times that make it
impractical for general use, heuristic GCMS is fast and offers a unified, tunable algorithm
for global code motion, instruction scheduling, and register allocation.

76

Bibliography

Aho, Alfred V., S. C. Johnson, and J. D. Ullman (1977). “Code Generation for Expressions
with Common Subexpressions”. In: J. ACM 24.1, pages 146–160. issn: 0004-5411. doi:
10.1145/321992.322001. url: http://doi.acm.org/10.1145/321992.
322001 (cited on page 15).

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman (2006). Compilers:
Principles, Techniques, and Tools (2nd Edition). Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc. isbn: 0321486811 (cited on page 15).

Ambrosch, Wolfgang, M. Anton Ertl, Felix Beer, and Andreas Krall (1994). “Dependence-
Conscious Global Register Allocation”. In: Proceedings of the International Conference
on Programming Languages and System Architectures. Lecture Notes in Computer
Science 782. London, UK: Springer-Verlag, pages 125–136. isbn: 3-540-57840-4 (cited
on page 17).

Barany, Gergö (2011). “Register Reuse Scheduling”. In: 9th Workshop on Optimizations
for DSP and Embedded Systems (ODES-9). Available from http://www.imec.be/odes/.
Chamonix, France (cited on page 22).

Barany, Gergö and Andreas Krall (2013). “Optimal and Heuristic Global Code Motion for
Minimal Spilling”. In: CC 2013 - International Conference on Compiler Construction.
LNCS 7791. Springer (cited on page 22).

Bernstein, David and Michael Rodeh (1991). “Global instruction scheduling for superscalar
machines”. In: Proceedings of the ACM SIGPLAN 1991 conference on Programming
language design and implementation. PLDI ’91. Toronto, Ontario, Canada: ACM,
pages 241–255. isbn: 0-89791-428-7. doi: 10.1145/113445.113466. url: http:
//doi.acm.org/10.1145/113445.113466 (cited on page 22).

Berson, David A., Rajiv Gupta, and Mary Lou Soffa (1993). “URSA: A Unified ReSource
Allocator for Registers and Functional Units in VLIW Architectures”. In: PACT
’93: Proceedings of the IFIP WG10.3. Working Conference on Architectures and
Compilation Techniques for Fine and Medium Grain Parallelism. Amsterdam, The
Netherlands, The Netherlands: North-Holland Publishing Co., pages 243–254. isbn:
0-444-88464-5 (cited on page 19).

Berson, David A., Rajiv Gupta, and Mary Lou Soffa (1999). “Integrated Instruction
Scheduling and Register Allocation Techniques”. In: LCPC ’98: Proceedings of the

77

http://dx.doi.org/10.1145/321992.322001
http://doi.acm.org/10.1145/321992.322001
http://doi.acm.org/10.1145/321992.322001
http://dx.doi.org/10.1145/113445.113466
http://doi.acm.org/10.1145/113445.113466
http://doi.acm.org/10.1145/113445.113466

11th International Workshop on Languages and Compilers for Parallel Computing,
pages 247–262. isbn: 3-540-66426-2 (cited on page 19).

Boissinot, Benoit, Florian Brandner, Alain Darte, Benoît Dupont de Dinechin, and Fabrice
Rastello (2011). “A Non-iterative Data-flow Algorithm for Computing Liveness Sets in
Strict SSA Programs”. In: Proceedings of the 9th Asian Conference on Programming
Languages and Systems. APLAS’11. Kenting, Taiwan: Springer-Verlag, pages 137–
154. isbn: 978-3-642-25317-1. doi: 10.1007/978-3-642-25318-8_13. url:
http://dx.doi.org/10.1007/978-3-642-25318-8_13 (cited on page 25).

Bradlee, David G., Susan J. Eggers, and Robert R. Henry (1991). “Integrating register
allocation and instruction scheduling for RISCs”. In: ASPLOS-IV: Proceedings of the
fourth international conference on Architectural support for programming languages
and operating systems. Santa Clara, California, United States: ACM, pages 122–131.
isbn: 0-89791-380-9. doi: http://doi.acm.org/10.1145/106972.106986
(cited on page 18).

Briggs, Preston, Keith D. Cooper, and Linda Torczon (1992). “Rematerialization”.
In: Proceedings of the ACM SIGPLAN 1992 conference on Programming language
design and implementation. PLDI ’92. San Francisco, California, United States: ACM,
pages 311–321. isbn: 0-89791-475-9. doi: http://doi.acm.org/10.1145/
143095.143143. url: http://doi.acm.org/10.1145/143095.143143
(cited on page 3).

Buchwald, Sebastian, Andreas Zwinkau, and Thomas Bersch (2011). “SSA-Based Reg-
ister Allocation with PBQP”. English. In: Compiler Construction. Edited by Jens
Knoop. Volume 6601. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pages 42–61. isbn: 978-3-642-19860-1. doi: 10.1007/978-3-642-19861-8_4.
url: http://dx.doi.org/10.1007/978-3-642-19861-8_4 (cited on
page 50).

Castañeda Lozano, Roberto and Christian Schulte (2014). “Survey on Combinatorial
Register Allocation and Instruction Scheduling”. In: CoRR abs/1409.7628. url:
http://arxiv.org/abs/1409.7628 (cited on page 16).

Chaitin, G. J. (1982). “Register allocation & spilling via graph coloring”. In: Proceedings
of the 1982 SIGPLAN symposium on Compiler construction. SIGPLAN ’82. Boston,
Massachusetts, United States: ACM, pages 98–105. isbn: 0-89791-074-5. doi: http:
//doi.acm.org/10.1145/800230.806984. url: http://doi.acm.org/10.
1145/800230.806984 (cited on page 4).

Click, Cliff (1995). “Global code motion/global value numbering”. In: Proceedings of the
ACM SIGPLAN 1995 conference on Programming language design and implementa-
tion. PLDI ’95, pages 246–257. isbn: 0-89791-697-2. doi: http://doi.acm.org/
10.1145/207110.207154. url: http://doi.acm.org/10.1145/207110.
207154 (cited on pages 2, 4, 7).

78

http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/10.1007/978-3-642-25318-8_13
http://dx.doi.org/http://doi.acm.org/10.1145/106972.106986
http://dx.doi.org/http://doi.acm.org/10.1145/143095.143143
http://dx.doi.org/http://doi.acm.org/10.1145/143095.143143
http://doi.acm.org/10.1145/143095.143143
http://dx.doi.org/10.1007/978-3-642-19861-8_4
http://dx.doi.org/10.1007/978-3-642-19861-8_4
http://arxiv.org/abs/1409.7628
http://dx.doi.org/http://doi.acm.org/10.1145/800230.806984
http://dx.doi.org/http://doi.acm.org/10.1145/800230.806984
http://doi.acm.org/10.1145/800230.806984
http://doi.acm.org/10.1145/800230.806984
http://dx.doi.org/http://doi.acm.org/10.1145/207110.207154
http://dx.doi.org/http://doi.acm.org/10.1145/207110.207154
http://doi.acm.org/10.1145/207110.207154
http://doi.acm.org/10.1145/207110.207154

Codina, Josep M., Jesús Sánchez, and Antonio González (2001). “A Unified Modulo
Scheduling and Register Allocation Technique for Clustered Processors”. In: Proceed-
ings of the 2001 International Conference on Parallel Architectures and Compilation
Techniques. PACT ’01. Washington, DC, USA: IEEE Computer Society, pages 175–184.
isbn: 0-7695-1363-8. url: http://dl.acm.org/citation.cfm?id=645988.
674300 (cited on page 20).

Colombet, Quentin, Florian Brandner, and Alain Darte (2011). “Studying optimal spilling
in the light of SSA”. In: Proceedings of the 14th international conference on Compilers,
architectures and synthesis for embedded systems. CASES ’11. Taipei, Taiwan: ACM,
pages 25–34. isbn: 978-1-4503-0713-0. doi: 10.1145/2038698.2038706. url:
http://doi.acm.org/10.1145/2038698.2038706 (cited on pages 13, 51).

Cooper, Keith D. and Linda Torczon (2004). Engineering a Compiler. Morgan Kaufmann
Publishers. isbn: 978-1-55860-699-9 (cited on pages 15, 25, 26, 54).

Cytron, Ron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck (1991). “Efficiently computing static single assignment form and the control
dependence graph”. In: ACM Trans. Program. Lang. Syst. 13.4, pages 451–490. issn:
0164-0925. doi: http://doi.acm.org/10.1145/115372.115320 (cited on
page 2).

Darte, Alain and C. Quinson (2007). “Scheduling Register-Allocated Codes in User-
Guided High-Level Synthesis”. In: Application-specific Systems, Architectures and
Processors, 2007. ASAP. IEEE International Conf. on, pages 140–147. doi: 10.
1109/ASAP.2007.4429971 (cited on page 5).

Eiter, Thomas, Kazuhisa Makino, and Georg Gottlob (2008). “Computational aspects of
monotone dualization: A brief survey”. In: Discrete Appl. Math. 156.11, pages 2035–
2049. issn: 0166-218X. doi: 10.1016/j.dam.2007.04.017. url: http://dx.
doi.org/10.1016/j.dam.2007.04.017 (cited on page 43).

Eriksson, Mattias and Christoph Kessler (2012). “Integrated Code Generation for Loops”.
In: ACM Trans. Embed. Comput. Syst. 11S.1, 19:1–19:24. issn: 1539-9087. doi: 10.
1145/2180887.2180896. url: http://doi.acm.org/10.1145/2180887.
2180896 (cited on page 20).

Ertl, M. Anton and Andreas Krall (1991). “Optimal instruction scheduling using con-
straint logic programming”. In: Programming Language Implementation and Logic
Programming. Volume 528. Lecture Notes in Computer Science (cited on page 16).

Ertl, M. Anton and Andreas Krall (1992). “Instruction Scheduling for Complex Pipelines”.
In: Proceedings of the 4th International Conference on Compiler Construction. CC
’92. London, UK, UK: Springer-Verlag, pages 207–218. isbn: 3-540-55984-1. url:
http://dl.acm.org/citation.cfm?id=647471.727284 (cited on page 16).

Falk, Heiko (2009). “WCET-aware Register Allocation Based on Graph Coloring”. In: Pro-
ceedings of the 46th Annual Design Automation Conference. DAC ’09. San Francisco,
California: ACM, pages 726–731. isbn: 978-1-60558-497-3. doi: 10.1145/1629911.

79

http://dl.acm.org/citation.cfm?id=645988.674300
http://dl.acm.org/citation.cfm?id=645988.674300
http://dx.doi.org/10.1145/2038698.2038706
http://doi.acm.org/10.1145/2038698.2038706
http://dx.doi.org/http://doi.acm.org/10.1145/115372.115320
http://dx.doi.org/10.1109/ASAP.2007.4429971
http://dx.doi.org/10.1109/ASAP.2007.4429971
http://dx.doi.org/10.1016/j.dam.2007.04.017
http://dx.doi.org/10.1016/j.dam.2007.04.017
http://dx.doi.org/10.1016/j.dam.2007.04.017
http://dx.doi.org/10.1145/2180887.2180896
http://dx.doi.org/10.1145/2180887.2180896
http://doi.acm.org/10.1145/2180887.2180896
http://doi.acm.org/10.1145/2180887.2180896
http://dl.acm.org/citation.cfm?id=647471.727284
http://dx.doi.org/10.1145/1629911.1630100
http://dx.doi.org/10.1145/1629911.1630100
http://dx.doi.org/10.1145/1629911.1630100

1630100. url: http://doi.acm.org/10.1145/1629911.1630100 (cited on
page 12).

Gibbons, Philip B. and Steven S. Muchnick (1986). “Efficient Instruction Scheduling
for a Pipelined Architecture”. In: Proceedings of the 1986 SIGPLAN Symposium on
Compiler Construction. SIGPLAN ’86. Palo Alto, California, USA: ACM, pages 11–16.
isbn: 0-89791-197-0. doi: 10.1145/12276.13312. url: http://doi.acm.org/
10.1145/12276.13312 (cited on page 15).

Goodman, J. R. and W.-C. Hsu (1988). “Code scheduling and register allocation in
large basic blocks”. In: ICS ’88: Proceedings of the 2nd international conference on
Supercomputing. St. Malo, France: ACM, pages 442–452. isbn: 0-89791-272-1. doi:
http://doi.acm.org/10.1145/55364.55407 (cited on pages 16, 17, 41).

Govindarajan, R., Hongbo Yang, J.N. Amaral, Chihong Zhang, and G.R. Gao (2003).
“Minimum register instruction sequencing to reduce register spills in out-of-order issue
superscalar architectures”. In: IEEE Transactions on Computers 52.1, pages 4–20.
issn: 0018-9340. doi: 10.1109/TC.2003.1159750 (cited on pages 7, 12, 20).

Hames, Lang and Bernhard Scholz (2006). “Nearly Optimal Register Allocation with
PBQP”. In:Modular Programming Languages. Edited by David Lightfoot and Clemens
Szyperski. Lecture Notes in Computer Science 4228. Springer Berlin / Heidelberg,
pages 346–361. url: http://dx.doi.org/10.1007/11860990%5C_21 (cited
on pages 4, 50).

Hennessy, John L. and Thomas R. Gross (1982). “Code Generation and Reorganization
in the Presence of Pipeline Constraints”. In: Proceedings of the 9th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’82. Albu-
querque, New Mexico: ACM, pages 120–127. isbn: 0-89791-065-6. doi: 10.1145/
582153.582166. url: http://doi.acm.org/10.1145/582153.582166
(cited on page 15).

Johnson, Neil and Alan Mycroft (2003). “Combined code motion and register allocation
using the value state dependence graph”. In: Proceedings of the 12th international con-
ference on Compiler construction. CC’03. Warsaw, Poland: Springer-Verlag, pages 1–
16. isbn: 3-540-00904-3. url: http://dl.acm.org/citation.cfm?id=
1765931.1765933 (cited on page 21).

Koes, David Ryan and Seth Copen Goldstein (2009). “Register Allocation Deconstructed”.
In: Proceedings of th 12th International Workshop on Software and Compilers for
Embedded Systems. SCOPES ’09. Nice, France: ACM, pages 21–30. isbn: 978-1-60558-
696-0. url: http://dl.acm.org/citation.cfm?id=1543820.1543824
(cited on page 6).

Lam, Monica S. (1988). “Software pipelining: an effective scheduling technique for VLIW
machines”. In: Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation. PLDI ’88. Atlanta, Georgia, United States:

80

http://dx.doi.org/10.1145/1629911.1630100
http://dx.doi.org/10.1145/1629911.1630100
http://dx.doi.org/10.1145/1629911.1630100
http://doi.acm.org/10.1145/1629911.1630100
http://dx.doi.org/10.1145/12276.13312
http://doi.acm.org/10.1145/12276.13312
http://doi.acm.org/10.1145/12276.13312
http://dx.doi.org/http://doi.acm.org/10.1145/55364.55407
http://dx.doi.org/10.1109/TC.2003.1159750
http://dx.doi.org/10.1007/11860990%5C_21
http://dx.doi.org/10.1145/582153.582166
http://dx.doi.org/10.1145/582153.582166
http://doi.acm.org/10.1145/582153.582166
http://dl.acm.org/citation.cfm?id=1765931.1765933
http://dl.acm.org/citation.cfm?id=1765931.1765933
http://dl.acm.org/citation.cfm?id=1543820.1543824

ACM, pages 318–328. isbn: 0-89791-269-1. doi: 10.1145/53990.54022. url:
http://doi.acm.org/10.1145/53990.54022 (cited on page 20).

Lokuciejewski, Paul, Marco Stolpe, Katharina Morik, and Peter Marwedel (2010). “Auto-
matic Selection of Machine Learning Models for WCET-aware Compiler Heuristic
Generation”. In: 4th Workshop on Statistical and Machine learning approaches to
ARchitecture and compilaTion (SMART’10) (cited on pages 12, 22).

Motwani, Rajeev, Krishna V. Palem, Vivek Sarkar, and Salem Reyen (1995). Combining
Register Allocation and Instruction Scheduling. Technical report. Stanford University.
url: http://infolab.stanford.edu/pub/cstr/reports/cs/tn/95/22/
CS-TN-95-22.pdf (cited on page 20).

Muchnick, Steven S. (1997). Advanced Compiler Design and Implementation. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc. isbn: 1-55860-320-4 (cited on
page 15).

Nielson, Flemming, Hanne Riis Nielson, and Chris Hankin (1999). Principles of Program
Analysis. Secaucus, NJ, USA: Springer-Verlag New York, Inc. isbn: 3540654100 (cited
on page 25).

Norris, Cindy and Lori L. Pollock (1993). “A scheduler-sensitive global register allocator”.
In: Supercomputing ’93: Proceedings of the 1993 ACM/IEEE conference on Super-
computing, pages 804–813. isbn: 0-8186-4340-4. doi: http://doi.acm.org/10.
1145/169627.169839 (cited on page 19).

Norris, Cindy and Lori L. Pollock (1995a). “An experimental study of several cooperative
register allocation and instruction scheduling strategies”. In: Proceedings of the
28th annual international symposium on Microarchitecture. MICRO 28. Ann Arbor,
Michigan, United States: IEEE Computer Society Press, pages 169–179. isbn: 0-8186-
7349-4. url: http://dl.acm.org/citation.cfm?id=225160.225190 (cited
on page 21).

Norris, Cindy and Lori L. Pollock (1995b). “Register allocation sensitive region scheduling”.
In: Proceedings of the IFIP WG10.3 working conference on Parallel architectures and
compilation techniques. PACT ’95. Limassol, Cyprus: IFIP Working Group on Algol,
pages 1–10. isbn: 0-89791-745-6. url: http://dl.acm.org/citation.cfm?
id=224659.224668 (cited on page 21).

Palem, Krishna and Barbara Simons (1990). “Scheduling Time-critical Instructions on
RISC Machines”. In: Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’90. San Francisco, California, USA:
ACM, pages 270–280. isbn: 0-89791-343-4. doi: 10.1145/96709.96737. url:
http://doi.acm.org/10.1145/96709.96737 (cited on page 16).

Pinter, Shlomit S. (1993). “Register allocation with instruction scheduling”. In: PLDI ’93:
Proceedings of the ACM SIGPLAN 1993 conference on Programming language design
and implementation. Albuquerque, New Mexico, United States: ACM, pages 248–257.

81

http://dx.doi.org/10.1145/53990.54022
http://doi.acm.org/10.1145/53990.54022
http://infolab.stanford.edu/pub/cstr/reports/cs/tn/95/22/CS-TN-95-22.pdf
http://infolab.stanford.edu/pub/cstr/reports/cs/tn/95/22/CS-TN-95-22.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/169627.169839
http://dx.doi.org/http://doi.acm.org/10.1145/169627.169839
http://dl.acm.org/citation.cfm?id=225160.225190
http://dl.acm.org/citation.cfm?id=224659.224668
http://dl.acm.org/citation.cfm?id=224659.224668
http://dx.doi.org/10.1145/96709.96737
http://doi.acm.org/10.1145/96709.96737

isbn: 0-89791-598-4. doi: http://doi.acm.org/10.1145/155090.155114
(cited on page 18).

Poletto, Massimiliano and Vivek Sarkar (1999). “Linear scan register allocation”. In:
ACM Trans. Program. Lang. Syst. 21 (5), pages 895–913. issn: 0164-0925. doi:
10.1145/330249.330250. url: http://portal.acm.org/citation.cfm?
id=330249.330250 (cited on page 4).

Rymarczyk, James W. (1982). “Coding Guidelines for Pipelined Processors”. In: Proceed-
ings of the First International Symposium on Architectural Support for Programming
Languages and Operating Systems. ASPLOS I. Palo Alto, California, USA: ACM,
pages 12–19. isbn: 0-89791-066-4. doi: 10.1145/800050.801821. url: http:
//doi.acm.org/10.1145/800050.801821 (cited on page 15).

Scholz, Bernhard and Erik Eckstein (2002). “Register allocation for irregular architec-
tures”. In: Proceedings of the joint conference on Languages, compilers and tools
for embedded systems: software and compilers for embedded systems. LCTES/S-
COPES ’02. Berlin, Germany: ACM, pages 139–148. isbn: 1-58113-527-0. doi: http:
//doi.acm.org/10.1145/513829.513854. url: http://doi.acm.org/10.
1145/513829.513854 (cited on pages 4, 49, 50).

Sethi, Ravi and J. D. Ullman (1970). “The Generation of Optimal Code for Arithmetic
Expressions”. In: J. ACM 17.4, pages 715–728. issn: 0004-5411. doi: 10.1145/
321607.321620. url: http://doi.acm.org/10.1145/321607.321620
(cited on page 15).

Shobaki, Ghassan and Kent Wilken (2004). “Optimal Superblock Scheduling Using Enu-
meration”. In: 2012 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 283–293. issn: 1072-4451. doi: http://doi.ieeecomputersociety.
org/10.1109/MICRO.2004.27 (cited on page 16).

Sreedhar, Vugranam C., Roy Dz-ching Ju, David M. Gillies, and Vatsa Santhanam (1999).
“Translating out of static single assignment form”. In: Static Analysis Symposium.
Lecture Notes in Computer Science 1694. Springer Verlag, page 849 (cited on page 3).

Touati, Sid Ahmed Ali (2001). “Register Saturation in Superscalar and VLIW Codes”. In:
CC ’01: Proceedings of the 10th International Conference on Compiler Construction,
pages 213–228. isbn: 3-540-41861-X. url: http://www.springerlink.com/
content/t8gk0y1fwkmd457w/ (cited on page 20).

Wilken, Kent, Jack Liu, and Mark Heffernan (2000). “Optimal instruction scheduling
using integer programming”. In: Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation. PLDI ’00. Vancouver, British
Columbia, Canada: ACM, pages 121–133. isbn: 1-58113-199-2. doi: 10.1145/
349299.349318. url: http://doi.acm.org/10.1145/349299.349318
(cited on page 16).

Winkel, Sebastian (2007). “Optimal versus Heuristic Global Code Scheduling”. In: Proceed-
ings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture.

82

http://dx.doi.org/http://doi.acm.org/10.1145/155090.155114
http://dx.doi.org/10.1145/330249.330250
http://portal.acm.org/citation.cfm?id=330249.330250
http://portal.acm.org/citation.cfm?id=330249.330250
http://dx.doi.org/10.1145/800050.801821
http://doi.acm.org/10.1145/800050.801821
http://doi.acm.org/10.1145/800050.801821
http://dx.doi.org/http://doi.acm.org/10.1145/513829.513854
http://dx.doi.org/http://doi.acm.org/10.1145/513829.513854
http://doi.acm.org/10.1145/513829.513854
http://doi.acm.org/10.1145/513829.513854
http://dx.doi.org/10.1145/321607.321620
http://dx.doi.org/10.1145/321607.321620
http://doi.acm.org/10.1145/321607.321620
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MICRO.2004.27
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MICRO.2004.27
http://www.springerlink.com/content/t8gk0y1fwkmd457w/
http://www.springerlink.com/content/t8gk0y1fwkmd457w/
http://dx.doi.org/10.1145/349299.349318
http://dx.doi.org/10.1145/349299.349318
http://doi.acm.org/10.1145/349299.349318

MICRO 40. Washington, DC, USA: IEEE Computer Society, pages 43–55. isbn:
0-7695-3047-8. doi: 10.1109/MICRO.2007.10. url: http://dx.doi.org/10.
1109/MICRO.2007.10 (cited on page 22).

Xu, Weifeng and Russell Tessier (2007). “Tetris: a new register pressure control tech-
nique for VLIW processors”. In: LCTES ’07: Proceedings of the 2007 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tools for embedded systems.
San Diego, California, USA: ACM, pages 113–122. isbn: 978-1-59593-632-5. doi:
http://doi.acm.org/10.1145/1254766.1254783 (cited on page 20).

Zhou, Huiyang, Matthew D. Jennings, and Thomas M. Conte (2003). “Tree Traversal
Scheduling: A Global Instruction Scheduling Technique for VLIW/EPIC Processors”.
In: Languages and Compilers for Parallel Computing (LCPC). Volume 2624. Lecture
Notes in Computer Science (cited on page 22).

83

http://dx.doi.org/10.1109/MICRO.2007.10
http://dx.doi.org/10.1109/MICRO.2007.10
http://dx.doi.org/10.1109/MICRO.2007.10
http://dx.doi.org/http://doi.acm.org/10.1145/1254766.1254783

Gergö Barany B gergo@complang.tuwien.ac.at
Í www.complang.tuwien.ac.at/gergo/

Education
2015 PhD in Computer Science, Vienna University of Technology, Vienna, Austria.

Thesis: Integrated Code Motion and Register Allocation on the design and implemen-
tation of a novel algorithm for global code motion that takes register pressure into
account.

2008 MSc in Computer Science, Vienna University of Technology, Vienna, Austria.
Thesis: Semantics-Based Code Optimization with SATIrE on the implementation of a
semantic partial redundancy elimination algorithm.

Work Experience
2008–2014 Research Assistant, Institute of Computer Languages, Vienna University of

Technology, Vienna, Austria.
Worked in three different research projects:
2012–2014 Spyculative

Worked on analysis and optimization of the Python interpreter, experi-
menting with several optimizations and developing a compilation-based
approach to studying the interpreter’s dynamic behavior.

2009–2012 Optimal Code Generation for Explicitly Parallel Processors
Designed and implemented a global code motion algorithm that takes
register pressure into account.

2008–2009 Integrating European Timing Analysis Technology
Worked on the SATIrE static analysis framework, designed and imple-
mented a context-sensitive points-to analysis and other static program
analyses.

2007 Student Intern, Lawrence Livermore National Laboratory, Livermore, CA, USA.
Worked on the ROSE C++ source-to-source transformation framework.

2005–2008 Teaching Assistant, Vienna University of Technology, Vienna, Austria.
Assisted in teaching courses on logic programming, functional programming, theoretical
computer science and logic, program verification.

Software
pylibjit Python compiler library

https://github.com/gergo-/pylibjit
SATIrE Framework for integration of static analysis tools

http://www.complang.tuwien.ac.at/satire/

1/2

Interests
{ static analysis
{ compilers
{ interpreters
{ program verification

Skills
Programming

languages
C, C++, Java, Python, Haskell, Prolog

Development
experience

{ LLVM backend: wrote register allocation, instruction scheduling, global code
motion, and various analyses on the target-independent machine code level

{ Python interpreter: interpreter-level optimizations, new bytecode instructions,
interfacing of internal interpreter API with compiled code

{ ROSE C++ source-based analysis framework: analyses on abstract syntax
tree, parallelization of analyses

Languages
Hungarian native speaker

English fluent
German fluent

Selected Publications
2014 G. Barany. Python interpreter performance deconstructed. In Dyla’14, Edin-

burgh, UK.
2013 R. Lezuo, G. Barany, and A. Krall. Casm: Implementing an abstract state ma-

chine based programming language. In 6. Arbeitstagung Programmiersprachen
(ATPS 2013), Aachen, Germany.
G. Barany and A. Krall. Optimal and heuristic global code motion for minimal
spilling. In 22nd International Conference on Compiler Construction (CC 2013),
Rome, Italy.
G. Barany. Static and dynamic method unboxing for Python. In 6. Arbeitsta-
gung Programmiersprachen (ATPS 2013), Aachen, Germany.
G. Barany. pylibjit: A JIT compiler library for Python. In KPS13, Wittenberg,
Germany.

2011 G. Barany. Register reuse scheduling. In 9th Workshop on Optimizations for
DSP and Embedded Systems (ODES-9), Chamonix, France.

2010 G. Barany and A. Prantl. Source-level support for timing analysis. In ISoLA
2010, Heraklion, Crete.

2/2

	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Compiler back-end program representations
	Static single assignment (SSA) form
	Register allocation and spilling
	Instruction scheduling
	Global code motion
	Phase ordering between code motion and spilling
	Motivation: A simple example
	Global code motion with spilling
	Limits of `optimal' code generation

	Related Work
	Instruction scheduling
	Integrated scheduling and register allocation
	Integrated code motion and register allocation
	GCMS

	Live Range Overlap Analysis
	Traditional overlap analysis
	Overlap analysis in the presence of code motion
	Greedy overlap analysis
	Handling of two-address instructions
	Overlap analysis for preallocated registers

	Reuse Candidate Selection
	The candidate selection problem
	Heuristic reuse candidate selection
	Optimal reuse candidate selection
	Balanced reuse candidate selection

	Spilling and Global Code Motion
	PBQP register allocation
	Spilling with reuse candidate information
	Restricted global code motion
	Final instruction scheduling

	Experimental Evaluation
	Implementation issues
	Experimental methodology
	Results
	Results of heuristic GCMS

	Conclusions
	Bibliography
	Curriculum Vitæ

