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Abstract Motivated by recent axiomatic developments, we study the risk- and ambi-
guity-averse investment problem where trading takes place in continuous time over a
fixed finite horizon and terminal payoffs are evaluated according to criteria defined in
terms of quasiconcave utility functionals. We extend to the present setting certain ex-
istence and duality results established for so-called variational preferences by Schied
(Finance Stoch. 11:107-129, 2007). The results are proved by building on existing re-
sults for the classical utility maximization problem, combined with a careful analysis
of the involved quasiconvex and semicontinuous functions.
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1 Introduction

The optimal investment problem of choosing the best way to allocate investors’ cap-
ital is often formulated as the problem of maximizing, over admissible investment
strategies, the expected utility of terminal wealth. The formulation relies on the ax-
iomatic foundation developed by von Neumann and Morgenstern [77] and Savage
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[70]. In continuous-time optimal portfolio selection, the study dates back to the sem-
inal contributions of Merton [60, 61]. In order to formulate the expected utility crite-
rion, the investor needs to specify her preferences via the investment horizon and the
utility function, but also her views about the future by providing the probability mea-
sure to compute the expectation. The specification of the latter may itself be subject
to uncertainty. This is referred to as ambiguity, or Knightian uncertainty in reference
to the original contribution of Knight [49]; it has been brought to prominence via the
Ellsberg paradox [25].

From a decision-theoretic point of view, the issue was addressed in the seminal
work of Gilboa and Schmeidler [35]. They formulated axioms on investors’ prefer-
ences that account for aversion against both ambiguity and risk. Specifically, within
the Anscombe—Aumann model, the axioms of von Neumann and Morgenstern were
relaxed in that the axiom of independence was replaced by that of certainty inde-
pendence. This led to numerical representations of preferences in terms of coherent
monetary utility functionals. The robust representation of the latter, see Delbaen [19],
then yields for preferences over random variables the representation

X —> inf EQU X)), (1.1
QeQ

where U is a von Neumann—Morgenstern utility function and Q is a set of probability
measures. The latter are referred to as priors and effectively represent potential market
models.

The decision-theoretic developments in [35] motivated the study of the risk- and
ambiguity-averse investor who trades in continuous time over a fixed finite horizon
and evaluates terminal wealth according to the criterion (1.1). The investment prob-
lem associated with such multiple-priors preferences has been extensively studied.
Stochastic control methods have successfully been applied to obtain explicit solutions
for certain utility functions and sets of priors. Specifically, restricting to stochastic
factor models, solutions have been obtained in terms of PDEs in [37, 65], and for
the non-Markovian case via the use of BSDEs in [63, 68] (see [31] for a full list of
references). For general market models and utility functions, we mention in particu-
lar the work by Quenez [68] and Schied and Wu [72]. Relying on the results for the
classical utility maximization problem by Kramkov and Schachermayer [50, 51], the
authors in [68] and [72] establish a dual formulation of the robust problem and prove
existence of an optimizer; see also [9, 79] for the case including consumption.

The axiomatic results of Gilboa and Schmeidler were later generalized in Mac-
cheroni et al. [57] where the independence axiom was further relaxed. This led to nu-
merical representations in terms of concave monetary utility functionals. Combined
with the generalization of the representation results from coherent utility functionals
to the concave case, obtained in Follmer and Schied [29] and Frittelli and Rosazza-
Gianin [34], it implied the numerical representation

X+—> inf (EYUCO1+7(@), (12)

for some penalty function y. While the multiple-priors setup in (1.1) is a worst-case
approach, the appearance of y enables the investor to weight the possible market
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models according to their plausibility, rendering the presentation intuitively appeal-
ing.

The investment problem associated with such so-called variational preferences
has also been studied. Particular attention has been paid to the case when the penalty
function is given by the relative entropy with respect to a reference measure. Such cri-
teria were introduced in the seminal work of Hansen and Sargent [36]; see also [2].
For this choice, the problem is naturally formulated in terms of utility from consump-
tion (or stochastic differential utilities) and the natural tool is the theory of BSDEs.
While a systematic study was initiated in [75], these results have been considerably
extended in a number of articles; see [8, 15, 26, 40, 56]. For the case of utility from
terminal wealth and general variational criteria, stochastic control methods have been
successfully applied for the choice of logarithmic utility, for stochastic factor models
as well as for the non-Markovian case; see, respectively, [38, 39] and [53]. General
existence and duality results have also been established for variational preferences.
Specifically, by the use of methods similar to the ones introduced in [68, 72], Schied
[71] generalized these results to the concave case; see also [42, 43].

The decision-theoretic results in [35] and [57] were recently yet further extended
by developments in Cerreia-Vioglio et al. [11]. Observing that all ambiguity-averse
preferences are obtained by weakening the independence axiom (the coordinate inde-
pendence axiom within the Savage setting), the authors in [11] take this to its extreme
by imposing independence only at the level of risk. This yields a numerical represen-
tation in terms of quasiconcave utility functionals. Recent advances also yield robust
representations of the latter; besides [11, 12], see Drapeau and Kupper [24] and Frit-
telli and Maggis [32, 33]. Combined, this leads to the numerical representation of
preferences as

X —> éngG(Q, EQ[U(X)1), (1.3)

for some function G which is jointly quasiconvex, lower semicontinuous in its first
argument and nondecreasing and right-continuous in its second.

Similarly to the multiple-priors and variational cases, the advances in [11] moti-
vate the study of the associated investment problem. The aim of the present paper is to
initiate such a study: within a dominated probabilistic setup, we consider an investor
who trades in continuous time over a fixed finite horizon, evaluates terminal wealth
according to (1.3), and maximizes this quantity over admissible trading strategies.
While the investor’s risk aversion is governed by a standard utility function, the am-
biguity preferences are thus represented by a quasiconcave utility functional. To the
best of our knowledge, this investment problem has not yet been addressed, although
we note that the advances in [11] recently motivated the use of quasiconvex risk mea-
sures for the Markowitz portfolio problem, see [58, 59], and that quasiconcave utility
functions have been previously studied.

The notion is unifying in that all ambiguity-averse preferences, in particular the
multiple-priors, entropic and variational ones, are included as special cases. Specif-
ically, while for the variational case, the weighting of potential market models is
determined by the penalty function y, the function G allows more flexibility. This
is of relevance since many interesting and financially significant weighting functions
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do not possess the additive structure characterizing variational preferences. In par-
ticular, this more general structure allows a certain dependence of the ambiguity
aversion on the investor’s wealth level, which is in accordance with the theory of
behavioural finance; see [41]. Significant examples also include preferences with a
homothetic structure and so-called smooth criteria; the latter were axiomatized in
[47] and amount to considering a distribution over possible market models rather
than a worst-case approach.

Our first main result establishes the existence of an optimal strategy; notably this
result does not require any particular compactness assumptions on the set of priors.
Second, we establish certain duality results. The advantages of studying the problem
within the dual domain are particularly evident for robust preferences, where the
dual problem amounts to the search for a pure infimum, whereas the primal problem
features a minimax structure. In particular, this link allows us to obtain a necessary
and sufficient condition for the primal problem to admit a saddle point, as well as
an alternative route to solving for the optimal strategy. Finally, we establish various
properties of the associated value function.

Our results extend those established for variational preferences in [71] to the case
of quasiconcave preferences; see [68, 72] for the multiple-priors case. Following this
previous literature, we prove our results by building on existing results for the clas-
sical utility maximization problem. The quasiconcavity as opposed to concavity of
the utility functional implies, however, the need for substantial extensions of the ar-
guments in [71]. First, we need throughout to work with quasiconvexity and semi-
continuity, as opposed to convexity and continuity, which requires a more elaborate
analysis and additional arguments. Moreover, our approach is based on a more careful
study of a certain auxiliary investment problem. In particular, the latter enables a fur-
ther financial interpretation of the resulting minimax measures, as well as alternative
proofs for some of the results in the variational case.

The rest of the paper is organized as follows. In Sect. 2, we provide the axiomatic
motivation for our choice of criterion and specify the market restrictions and our
investment problem. The main results are presented in Sect. 3. The proofs are given
in Sect. 4, where we also provide a discussion of how our methods compare to the
existing literature.

2 Ambiguity-averse investment criteria

We provide the axiomatic foundation for our criterion in Sect. 2.1 and discuss some
examples of particular interest in Sect. 2.2. The reader only interested in the main
results may pass directly to the problem formulation in Sect. 2.3.

2.1 Axiomatic motivation and numerical representation of preferences

The fundamental question of how to characterize and represent well-founded choices
is the focus of the decision-theoretic literature. The question is mostly formalized

via the study of so-called preference orders: we write x > y if x is preferred to y,
for x,y € X, where X denotes the set of available objects. Further, > is called a
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preorder on X if it is reflexive and transitive, and a total preorder if it is also com-
plete.1 Naturally, we write x > y for the negation of y > x, and x ~ y if x > y and
y = x. The use of preference orders is greatly facilitated if the order admits a so-
called numerical representation, i.e., a function F : X — R such that x > y if and
only if F(x) > F(y). In the seminal work of von Neumann and Morgenstern [77,
Sect. 1.3.6], natural axioms which (sensible) preorders should satisfy and which im-
ply the existence of such a numerical representation were formulated (see also Savage
[70, Chapters 1-5]). Specifically, denoting by M . the set of probability distribu-
tions on R with bounded support (referred to as lotteries) the two main axioms of von
Neumann and Morgenstern read as follows:

NMO (Archimedean axiom) For any triple & > A > v in M ., there are «r, § € (0, 1)
suchthatapu + (1 —a)v = A > Bu+ (1 — B)v.

NM1 (Independence axiom) For all u,v € M, the relation p > v implies that
apn+ 1 —a)k>av+ (1 —a)rforall A e M; . and o € (0, 1].

It was shown in [77] that these axioms are necessary and sufficient for a total pre-
order to admit a numerical representation F(u) = (u), for some affine functional
i My . — R. Further, given e.g. monotonicity with respect to first order stochastic
dominance (see [30, Chapter 2]), this affine representation admits the integral repre-
sentation

() = / U (6)p(dx) 2.1

for some function U : R — R. This result forms the axiomatic basis for the problem
of maximization of (subjective) expected utility,” which since the seminal contribu-
tions of [60] has played a prominent role within mathematical finance; see, among
others, [16, 45, 46, 67].

The question of model uncertainty was incorporated in the axiomatic approaches
starting with the work of Gilboa and Schmeidler [35], later followed by, among oth-
ers, Maccheroni et al. [S7] and Cerreia-Vioglio et al. [11]; see also [10, 13]. Axioms
are then placed on preferences over a set of so-called random lotteries, also referred
to as horse acts. To specify this, let (£2, ) be a measurable space and consider the
class X of Markov kernels X (w, dy) from (£2, F) to R for which there exists a com-
pact set K C R such that X (w, K) =1 for all w € §2. We recall the following axioms
from the literature:

Al (Monotonicity) If Y(w) = X(w) forall w € 2, then ¥ > X.

A2 (Uncertainty aversion) If X~Y, X, Ye /{’, then o X + (11— a)f’ > X for all
o e|0,1].

A3 (Archimedean axiom) If X, Y, Z € X are such that Z > Y > X, then there are
a,fe[0,1]suchthataZ+ (1 —a)X =Y > BZ+(1—B)X.

1A binary relation > on X is reflexive if x > x, for all x € A; transitive if y > x and z > y implies z > x,
for x,y,z € X;and complete if x > y or y > x, forall x, y € X.

2The additional requirements that §y > 8y, for x > y, and that the certain amount J xp(dx) is preferred
to the lottery u, are equivalent to the function U : R — R being a strictly increasing and concave utility
function. The expected utility criterion may also be derived by formulating the axioms directly on the set
of random variables; see e.g. [24].
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The axioms of monotonicity and uncertainty aversion are the most fundamental
axioms for decision making: while the former quantifies that more is better, the latter
is due to Schmeidler [73] and formalizes decision makers’ preference for random-
ization. Its interpretation in terms of a negative attitude towards uncertainty dates
back to Debreu [18]; see [11] for further discussion. The Archimedean axiom is a
continuity axiom. Notably, at the level of acts, we have not included any axiom of
independence. Indeed, in order to formulate axioms so as to allow model uncertainty
and obtain ambiguity-averse preferences, it is the axiom of independence that needs
to be relaxed. While Gilboa and Schmeidler [35] replaced it by so-called certainty
independence at the level of acts, this axiom was further weakened by Maccheroni
et al. [57] (see Sect. 2.2 below). In Cerreia-Vioglio et al. [11] (see also [24]), it was
yet further weakened in that independence was imposed only at the level of risk.
Such preferences therefore correspond to the most fundamental class of preferences
modelling decision making under model uncertainty.

In order to recall the representation result from [11], let A be an ordered linear
space of bounded functions containing the constants. We then define as follows:

Definition 2.1 A mapping ¢ : X — R is a quasiconcave utility functional® if it is
monotone and quasiconcave; that is, we have ¢ (X) > ¢ (Y) if X > Y, and we have
dAX + (1 —=A1)Y)>min{¢p(X),p((Y)}, for X,Y € X and A € [0, 1].

The next result is an immediate consequence of Theorem 3 in [11] (see also [24])
and follows by adopting the proof along the lines of Theorem 3.1 in [31].

Theorem 2.2 Consider a total preorder > on X satisfying axioms AI1-A3. Suppose
further that the restriction of > to M . satisfies the independence axiom NM1, and
that its affine numerical representation 3 : My . — R is of the form (2.1) for a utility
function U : R — R with unbounded range. Then there exists a unique extension of
3L to a numerical representation ;X — R with

UX) = p(U(X)) = ¢>< / U@x)X(, dx>>, 2.2

where ¢ is a quasiconcave utility functional defined on the space of bounded measur-
able functions on (2, F).*

In order to further specify the numerical representation (2.2), we next discuss ro-
bust representations of utility functionals. We do so for the case when & (in Defi-
nition 2.1) is the space of (essentially) bounded random variables; that is, X = L°°,
and the preorder is specified by a.s. dominance, for some given probability space
(£2, F,P). For the case of coherent and concave utility functionals, robust represen-
tation results were then established in [19] and [29, 34]; see Sect. 2.2 below. These
results were recently generalized to the quasiconcave case; we here give a result

3A (quasi)concave utility functional is the negative of a (quasi)convex risk measure, i.e., ¢ is a
(quasi)concave UF if and only if p = —¢ is a (quasi)convex RM.

4With the preorder specified by X > Y if X(w) > Y (w) forall w € £2.
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from [24], see, however, also [11, Theorem 7]. To this end, recall that a function
is quasiconvex if its lower level sets are convex.> With M, (P) denoting the set of
(o -additive) probability measures absolutely continuous with respect to P, we then
define as follows:

Definition 2.3 Let G be the set of functions G : M (P) x R — R satisfying the
following conditions:

(1) G(Q, ") is nondecreasing and right—continuous;6

(i) G is jointly quasiconvex;

(iii)) G~ (-, t) is weakly lower semicontinuous, where G~ (Q, t) := sup,_, G(Q, s),
for Q e M (P);

(iv) G has an asymptotic maximum in the sense that for all Q, Qe M (P),

AM(G) = lim G(@Q,1) = lim G(Q,1).

Theorem 2.4 ([24, Theorem 3.2]) Any o (L, LYY-upper semicontinuous’ quasicon-
cave utility functional ¢ : L°° — R admits the representation

- Q
¢(X)—erl\1jlf(P)G(Q,E [X]) (2.3)

1

for some function G € G. Conversely, for any G € G, the function ¢ defined in (2.3)
is an upper semicontinuous quasiconcave utility functional.

For our purposes, we are interested in comparing random variables; specifically,
terminal payoffs corresponding to different investment strategies. First, note that a
preorder on X' may be restricted to the set of bounded measurable functions X on
(£, F) by viewing the latter as elements of X via their identification with §x. Com-
bined with Theorem 2.4, (2.2) then motivates evaluating random variables according
to

X —> (5an G(Q,E?[U (X)) (2.4)
for some G € G, with
Q:={QeM(P): G(Q,1) < oo for some ¢ > 0}. 2.5)

This is in fact the representation we are interested in. The axioms need, however,
to be placed on the class of random lotteries. Due to the nature of those, axioms
are thus placed on two levels of uncertainty; similarly, the representation (2.4) admits
two levels of uncertainty. It is therefore natural to refer to the lower and upper level as

5Note that for a given function, say f : X — R, the lower level sets are convex if and only if
fOx+ (1 —=x)y) <max{f(x), f(y)} for x,y € X and X € [0, 1]. A function is quasiconcave if it is the
negative of a quasiconvex function; that is, if its upper level sets are convex.

6In particular, G(Q, -) is therefore both quasiconvex and quasiconcave as well as upper semicontinuous.

TThis holds whenever the utility functional satisfies the Fatou property; see [24].
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risk and model uncertainty, respectively. While the axioms at the lower level, and thus
the attitude towards risk, render the utility function U, it is the axioms at the upper
level, and thus the attitude towards ambiguity, that give the function G. In effect,
the criterion (2.4) evaluates random variables X according to their expected utility
under different measures QQ, weighted according to their plausibility, with U and G,
respectively, modelling the risk- and ambiguity-aversion. For a detailed exposition of
numerical representations of preferences, we refer to [31, Sect. [.3].

2.2 Further axioms and significant examples

Multiple-priors and variational preferences We recall the certainty indepen-
dence axioms introduced in Gilboa and Schmeidler [35] and Maccheroni et al. [57]:

(Full certainty independence) If X, Y € X and X > Y, then for all « € (0, 1] and
neMip (R),aX +(1—a)yu>a¥ + (1 —a)u.

(Weak certainty independence) If X,Y e X and for some « € (0,1] and
v e M (R), aX + (1 —a)v > a¥ + (1 — a)v, then for all ue M (R),
aX + (1 —a),u>od7—|—(1 — o).

The results in [35, 57] state that if in addition to the axioms listed above, weak
(resp. full) certainty independence holds, then the preorder admits the representa-
tion (2.2) for a concave (resp. coherent) monetary utility functional; see [31, The-
orem 3.1]. Recall that a concave monetary utility functional is a quasiconcave util-
ity functional which is also translation invariant;3 if it is further positively homo-
geneous,’ it is coherent. For the concave case, representation results akin to Theo-
rem 2.4 were established in [29, 34] (see [19] for the coherent case). Specifically, the
function G € G then takes the form G(Q, ) =t + Y (Q), where y is the associated
penalty function (for the coherent case y € {0, oo}), and (2.4) reduces to the varia-
tional criterion (1.2). Those preferences therefore correspond to the class of criteria
for which the weighting function G € G is additive,!? and have to date received most
attention in the literature on risk- and ambiguity-averse portfolio optimization.

Homothetic preferences It is shown in [57] that a preorder satisfies full certainty
independence if and only if it satisfies weak certainty independence along with the
following axiom of homotheticity:

(H0m0thet1c1ty) For all X Y € X ne M C(R) and o, B € (0 1], it holds that
aX+(U—a)pu=a¥ +(1—a)u implies ,3X+(1 —,3)M>,3Y+(1 — Bu.

8Translation invariance is also referred to as cash additivity and means that for m € R,
¢(X +m)=¢(X)+m. Any translation invariant quasiconcave utility functional is concave, i.e.,
dAX + (1 —=2Y)=>rp(X)+ (1 —=2)p(Y), 1 €0, 1]; see e.g. [24, Proposition 1.18]. In particular, for
risk measures, while diversification is in general (e.g. when only cash subadditivity holds) characterized
by quasiconvexity, it is under cash additivity equivalent to convexity.

9That is, d(AX) =rp(X), A > 0; see [3].

10Indeed, also the converse holds true: any quasiconcave utility functional with the property that
G(Q,t+m)=G(Q,t)+m for t,m € R is translation invariant and thus also concave; see [24, Propo-
sition 2.11].
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Those two axioms can therefore be seen as symmetric weakenings of the full certainty
independence. In particular, preferences satisfying homotheticity (but not necessarily
independence) provide an interesting class of preferences: under certain continuity
assumptions, a preorder of the form (2.2) satisfies the homotheticity axiom if and
only if the corresponding G takes the form

g1(@h@), t=0,
& (Qh(), <0,

for functions g1, g> and h with certain properties; we refer to Theorem 26 in [11].
In consequence, the class of preferences satisfying the axiom of homotheticity cor-
responds to the class of preferences for which G has a multiplicative structure. Pref-
erences of this type have been studied in [14]. We also note that quasiconcave utility
functionals corresponding to so-called certainty equivalents and the economic index
of riskiness have this multiplicative structure; see [24, Examples 3.3 and 3.4].

GQ.n= {

Smooth preferences In [47] (see also [76]), so-called smooth criteria are consid-
ered. Specifically, by adding to the above list of axioms, they obtain a class of pref-
erences for which the numerical representation (2.4) takes the form

Xr— w‘*’( / w(E@[wX)])u(d@)),
Mi(P)

where U models the risk aversion, ¥ is an increasing and concave function modelling
the ambiguity aversion, and w is a distribution over M (P); we refer to [47] for
the precise axioms, and to [11] for the specific form of the corresponding G € G.
Rather than taking the (weighted) infimum over possible market models, the decision
maker thus considers an average over all models, weighted according to a distribution
representing her modelling beliefs. Such criteria formalize an intuitively appealing
behaviour. For exponential v, the smooth criteria are actually of variational form; in
general, this is, however, not the case.

2.3 The risk- and ambiguity-averse investment problem

We consider a fixed finite horizon 7 > 0 and a given filtered probability space
(82, F,F,P), where F = (F;):¢[0,7] satisfies the usual conditions and [P is referred
to as the reference measure. The market consists of one riskless and d risky assets,
denoted by S%and S =(S,..., 8. Welet S°=1 and suppose that (S;)c(0,7] 1S a
d-dimensional semimartingale.

A trading strategy is a d-dimensional F-predictable process, @ = (1):e[0.7],
which is S-integrable on [0, T']. Given an initial capital x > 0, the associated wealth
process (X7 ):e[o,] is given by

t
Xf:x—i—/ m,dsS,.
0

We restrict to trading strategies such that X7 > 0 P-a.s. for t € [0, T]. The set of
such admissible strategies is denoted by A(x), while X'(x) denotes the associated set
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of wealth processes. We suppose that the market is arbitrage-free with respect to the
reference measure P in the sense that M # (), where M denotes the set of probability
measures equivalent to P under which each X € X' (1) is a local martingale; see [21,
22] for the financial significance of this assumption.

We assume the investor to assess utility of terminal wealth according to the risk-
and ambiguity-averse criterion (2.4). In accordance with the existing literature, we
impose the following assumptions on the risk preferences; we denote the set of ad-
missible utility functions by /.

Definition 2.5 U : (0, 00) — R is an admissible utility function if it is strictly in-
creasing, strictly concave, satisfies the Inada conditions

limU'(x) =co and lim U'(x)=0, (2.6)
x—0 X—00
and AE(U) < 1, with the asymptotic elasticity AE(U) := limsup,._, o, Xg (/S) .

In order to ensure that (2.4) is well defined, we define EQ[F] := co whenever
EQ[F*] AEQ[F~] = oo. Further, we extend the domain of G(Q, -) to R by defining
G(Q, —00) := —o0 and G(Q, 00) := AM(G).

Our main problem of study is then the following investment problem:

Problem 2.6 Given G € G and U € U, we consider the risk- and ambiguity-averse
investment problem of maximizing the functional (2.4) over admissible terminal pay-
offs X7 with = € A(x).

The associated value function is given by

u(x):= sup inf G(Q,EQUXT)]), x>0, 2.7)
neA(x)QeQ

where we recall that Q is given in (2.5). As argued above, when G corresponds to
a coherent or concave utility functional, the criterion reduces to the multiple-priors
and variational preferences studied in, among others, [68, 71, 72]. In the same way
as the study of such preferences was motivated by the axiomatic results in [35, 57],
the study of the more general quasiconcave case relies on the axiomatic extensions in
[11]. This evaluation of terminal payoffs is however also highly plausible as it stands,
for it provides a natural robust criterion which takes various potential market models
into consideration; while the weighting of the models is determined by the penalty
function y for the variational case, the function G allows more flexibility. The set of
admissible strategies is here defined with respect to the reference measure P, the role
of which is to specify the nullsets rather than representing the most likely model. In
particular, we consider a dominated setting in which all measures Q € Q are abso-
lutely continuous with respect to IP; for ambiguity-averse portfolio optimization with
mutually singular measures, see [23, 64].

Remark 2.7 While U(X7) € L° for X € X(x), the utility functionals defined with
respect to G € G are defined only on L°°. That is, although the theory of quasiconvex
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risk measures has been extended to more general spaces, we do not restrict the set G
to account for this, but only impose assumptions in order to ensure that (2.7) is well
defined. In this aspect, we follow [71]; see, however, [1] for an alternative approach.

We next introduce the auxiliary investment problem, which plays a crucial role in
the upcoming analysis. Specifically, given U € U, let

ug(x):= sup EQUXT)], QeM;(P). (2.8)
reA(x)

While the objective function in (2.8) is defined with respect to the measure Q, the set
of admissible strategies is restricted to those admissible with respect to the reference
measure P. Hence, while it holds for Q ~ P that the auxiliary problem is identical to
the classical utility maximization problem under the physical measure Q, this need
not be the case for Q <« P. In particular, it is a priori not clear whether the market
model is arbitrage-free under Q; see Sect. 4.1 for further discussion.

The following standing assumption is imposed throughout to ensure that the
investment problem is well posed and non-trivial.

Assumption 2.8 The functions G € G and U € U are such that there exists Q € Q
with

uq(xp) < oo forsome xo > 0. 2.9)

Further, for r € R, G (-, t) is bounded from below on Q, and for all x > 0, there exists
Q € Q such that G(Q, ug(x)) < oo.

Lemma 2.9 For G € G and U € U satisfying Assumption 2.8, u(x) is finite for all
x>0, and u : (0,00) — R is nondecreasing and quasiconcave.

3 The main results
3.1 Existence of an optimal strategy

First we establish the existence of a solution to Problem 2.6. The question of unique-
ness is discussed below.

Theorem 3.1 Let G € G and U € U be given and suppose that Assumption 2.8 holds.
Further, suppose either that (2.9) holds for each Q € Q; or that G(-,t), t € R, is
convex, G is finite on Q X R, there exists Q € Q with Q ~ P, and (2.9) holds for
each Q € Q with Q ~ IP. Then there exists an optimal investment strategy w* € A(x)
attaining the supremum in (2.7). Furthermore, the value function u(x), x > 0, is
upper semicontinuous.

The above result does not impose any compactness assumptions on Q. Under such

general assumptions, it is not clear though whether the ambiguity-averse problem
admits a saddle point; we discuss this further in Sect. 3.3.
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We now argue that the finiteness assumptions placed on ug(x), Q € Q, are natural.
To this end, note that the assumption implies that the auxiliary investment problem
itself is solvable for each individual model Q € Q; see Lemma 4.2 below. Although
the auxiliary problem is not the standard one, this might be understood as an absence-
of-arbitrage condition'! put on each individual model. Recall that the criterion (2.4)
emerges due to axioms posed on the preferences, via the robust representation of qua-
siconcave utility functionals. This motivation per se does not imply that the measures
Q € Q satisfy any market related conditions. However, effectively, the ambiguity-
averse criterion amounts to taking expected utility with respect to various potential
market models, where the contribution from each individual model is weighted ac-
cording to its plausibility via the function G € G. It is therefore natural to restrict to
functions which only take into consideration measures which constitute sensible mar-
ket models in that they exclude arbitrage; this is how the assumptions of Theorem 3.1
should be understood. We note that there are stability results in the literature which
ensure that if (2.9) holds for some Q € M (P), then it also holds in a neighbourhood
around that Q; see e.g. [54, 78]. For the case when the infimum and supremum can be
interchanged, the set Q can be restricted to measures for which (2.9) holds without
affecting the indirect utility; cf. Remark 4.7.

The assumption that G(-, t), t € R, is convex is a necessary, but not a sufficient,
condition for the associated utility functional to be concave and monetary. The corre-
sponding class of preferences therefore includes, but is not limited to, the variational
ones; see Sect. 4 for further comments on the weaker assumptions imposed in this
case.

3.2 The dual problem formulation

We now turn to the study of the dual version of the risk- and ambiguity-averse in-
vestment problem. Specifically, we establish relations between the primal and dual
problems and their respective solutions. This yields an alternative approach to solve
the problem and a further understanding of the optimal strategy.

For the duality results, we impose the following additional assumption.

Assumption 3.2 The function G € G is jointly lower semicontinuous, and the level
sets Q:(c) ' ={Qe Q:G(Q,1) <c},t € R, ¢ >0, are relatively weakly compact.

Remark 3.3 For G € G, properties (i) and (iii) in Definition 2.3 give that joint lower
semicontinuity of G is equivalent to continuity of G(Q, -), Q € M (IP). Preorders
satisfying certain additional continuity axioms admit the representation (2.3) for such
G € G; the corresponding utility functional is then continuous, see [11, Theorem 7].
For concave utility functionals, continuity from below implies weak compactness of
the level sets; see [30, Lemma 4.22]. As for homothetic preferences, any G € G of the
form G(Q, ) = g(Q)A(t), with h : R — R continuous and g : M (P) — R assigning
finite penalty only to measures within some compact set, satisfies Assumption 3.2.

1Tgee e.g. [44], where it is shown that the classical utility maximization problem admits a solution if and
only if the market satisfies the no-arbitrage condition NA;.
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Note also that weak lower semicontinuity of G implies that Q;(c) is weakly closed,
and thus Assumption 3.2 yields in fact weak compactness of Q,(c). For multiple-
priors preferences, certain minimax results were established without compactness
assumptions in [4].

To define the dual problem, let J(y) be the set of all positive P-supermartingales
such that Yp = y and XY is a P-supermartingale for all X € &X' (1). Further, let
V :R4 — R be given by

V(y)=sup(U(x) —xy), y=>D0.

x>0

Identifying each measure Q € Q with its Radon-Nikodym derivative Z@ = %, and

employing the convention that ZV(Y/Z):=0on {Z =0}, Z,Y € L(_)H we define the
dual value function v(-; x), x > 0, by
Yr

v(y;x):= inf inf G( X +E[z@v< )]) > 0. (3.1
Y QeQYed(y) Q.xy zQ Y

We first show that the dual problem admits a solution.

Proposition 3.4 Let G € G and U € U be given and suppose that Assumptions 2.8
and 3.2 hold. va(/y;ﬁ) < 00, then the infimum in (3.1) is attained. Moreover, there
exists a solution (Q, Y) that is maximal in the sense that any other solution (Q,Y),
satisfies Q < @ and Y7 )Z9 = ?T/ZQ Q-a.s.

The next result relates the primal and dual value functions; for a discussion of the
weaker sufficient conditions in the variational case, see Remark 4.7 below.

Theorem 3.5 Let G € G and U € U be given and suppose that Assumptions 2.8
and 3.2 hold and that (2.9) holds for all Q € Q. Then we have the relations

u(x)= inf sup G(Q,E%[UX7)]) (3.2)
QeQ xex(x)
and
u(x) = inf v(y; x). (3.3)
y>0

The study of the dual problem is in fact not needed to obtain existence of a solu-
tion to the primal problem. Indeed, the proof of Theorem 3.1 relies on properties of
the auxiliary problem (2.8) and thus rather on the study of the dual version thereof
(cf. (4.1) below). Nevertheless, the dual counterpart is of interest, for it gives a further
understanding of the optimal strategy; see Sect. 3.3. Moreover, the dual problem is
more tractable. This is in fact particularly evident for ambiguity-averse preferences
where the dual problem amounts to the search for a pure infimum, whereas the pri-
mal problem features a saddle structure. Notably, most articles providing explicit
solutions for specific utility and penalty functions consider the dual rather than the
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primal problem. One would therefore expect the dual formulation to be helpful in
obtaining explicit results also for quasiconcave preferences.

3.3 The relation between the primal and dual solution

The next result establishes the relation between the primal and dual solution and the
existence of a saddle point.'? This is of particular interest since it yields the exis-
tence of an equivalent auxiliary problem and results on the uniqueness of the optimal
strategy.

Theorem 3.6 Let G € G and U € U be given and suppose that the assumptions of
Theorem 3.5 hold. Then the primal problem admits a saddle point if and only if the

infimum in (3.3) is attained for some y* > 0. Specifically, for any solution (@, ?) to

the dual problem at the level y* and any primal solution X, the pair (Xt, @) isa
saddle point for the primal problem. If in addition G(Q, -) is strictly increasing, then

=V (;@ B-as. (3.4

We note that a saddle point always exists for the variational case; see [71]. We also
have the following result; notably, much of the literature on ambiguity-averse portfo-
lio optimization focuses on positive utility functions, see among others [37, 68].

Proposition 3.7 Let G € G and U € U be given and suppose that the assumptions
of Theorem 3.5 hold. Suppose further that U : Ry — R_.. Then the primal problem
admits a saddle point.

We now discuss the implications of the above results. To this end, let @ be the first
component in the maximal solution to the dual problem at level y* > 0. Relation (3.4)
then implies that the solution X7 is Q a.s. unique. Consequently, if Q ~ P, the solu-
tion is [P-a.s. unique and can be recovered from the dual solution. In general, Q need
not be equivalent to IP; nevertheless, an optimal strategy can still be constructed from
a given dual solution by superreplication of an appropriate claim (see Corollary 2.6
in [71]). The existence of a saddle point also implies that there is an auxiliary in-
vestment problem producing the same optimal behaviour as the original criterion: the
auxiliary problem (2.8) defined with respect to @ admits a solution which @-aﬁ. co-
incides with the solution to the original problem. In particular, the uniqueness Q-a.s.
of the optimal strategy is thus natural since this equivalent problem has a concave
objective. Since the measure QQ is part of the solution to the original problem, it is
not a priori known. In particular, it depends on both G and U. Nevertheless, the fact
that the investor’s behaviour is equivalent to that of an investor with market views

12We say that (X7, Q), with X € X(x) and Q € Q, is a saddle point if

uy = sip GQ.EQUXp)) = inf G(QEQU X)) = G(Q EQU (X))
XeX(x) QeQ
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specified by @ is informative. For example, it implies that the market equilibrium
formed by ambiguity-averse investors coincides with that formed by expected utility
maximizers with different market views; we refer to [55] for a study of the effects of
diverging market views on the endogenously defined price process. For preferences
only satisfying the weaker properties of Theorem 3.1, there need not exist an auxil-
iary investment problem. The question to which extent the optimal strategy is then
unique is left for future study.

We conclude with some remarks on the (lack of) fime consistency. For general
G € G, Problem 2.6 is not a time-consistent investment problem. This is in line with
Remark 3.5 in [71], where it was argued that for investment under model uncertainty,
time consistency is not always a natural prerequisite. In effect, however, the optimal
strategy is only optimal in a precommitment sense, which leads to a number of inter-
esting questions. First, there are results providing tractable solutions to multi-period
and continuous-time formulations of the (time-inconsistent) mean-variance criterion
(see, among others, [7, 17]). It would be interesting to see whether these methods
could be applied to more general quasiconcave preferences. Second, one may fur-
ther study the subclass of time-consistent quasiconcave preferences. While time con-
sistency is of interest in its own right, it also enables the use of stochastic control
methods and is necessary for extending to the quasiconcave case the explicit results
obtained in terms of PDEs and BSDEs for variational preferences. Time consistency
of quasiconcave utility functionals remains, however, an open problem and feasible
explicit examples are few. Indeed, while necessary and sufficient conditions for tem-
poral consistency of convex risk measures were established in [20], see also e.g. [6,
28], such results are yet lacking for the quasiconvex case.'? Finally, recall that the
risk preferences of the investor are modelled via a standard continuous and concave
utility function in (2.7). While this is a natural assumption, the value function u(x)
satisfies only weaker properties. Hence, an application of dynamic programming ar-
guments would also require a study of Problem 2.6 under weaker assumptions on the
utility function.

4 Proofs

The results herein extend results established for variational preferences in [71] (see
[68, 72] for the coherent case). Our proofs are therefore inspired by those in the for-
mer articles. Specifically, also here the idea is to establish results for the risk- and
ambiguity-averse problem by relying on results for the auxiliary problem (2.8). The
differences induced by the more general criteria we consider are mainly of two types.
First, we need throughout to work with quasiconvexity and semicontinuity, as op-
posed to convexity and continuity, which requires a more elaborate analysis. Second,
the present case calls for a more detailed study of the auxiliary problem. For Q ~ P,
this is the classical utility maximization problem studied in [50, 51]; for Q < P, this
is no longer the case. In [71], this is dealt with by use of certain limiting arguments

13However, we note that [32, 33], see also [5], initiated such a programme via the study of conditional
quasiconvex risk measures, and that questions of temporal consistency and its relation to g-expectations
were addressed within the framework of nonlinear expectations in [66].
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which imply that only equivalent measures need to be taken into consideration. This
approach is closely related to the following property of a monetary utility functional:
if there exists an equivalent measure for which the penalty is finite, then the set of ab-
solutely continuous measures appearing in the robust representation can be replaced
by the equivalent ones; see [48]. As it turns out, convexity of G(-,1), t € R, is suffi-
cient for this property to hold, and for this case we may proceed along similar lines.
For our general case, the weaker properties of G imply, however, that this approach
does not apply. We therefore proceed by first establishing the relevant properties for
a general auxiliary problem. In particular, we thus obtain alternative proofs of some
of the duality results in [71]; see Remark 4.7.

The rest of this section is organized as follows. We first establish the properties
of the auxiliary investment problem in Sect. 4.1. In Sect. 4.2, we prove the existence
of an optimizer and the upper semicontinuity of the value function. In Sect. 4.3, we
proceed with the various duality results.

Throughout, we identify each measure Q € Q with its Radon—Nikodym derivative

= %, and without further notice we index functions by Z rather than Q. Further,
for V : Ry — R given in Sect. 3.2, we employ the convention:

ZV(Y/Z):=0on{Z=0}, forZ,YelL.
4.1 The auxiliary investment problem and its significance

We first introduce the dual auxiliary value function by

vo(y):= inf E[ZV(YT/Z)], y>0, Qe M |(P), “.1)
YeY(y)

where )(y) is as defined in Sect. 3.2. The dual value function introduced in (3.1)
then admits the representation v(y; x) = inf{G(Q, vg(y) + xy) : Q € Q}.

Remark 4.1 The dual value function also admits the alternative representation

vo(y) = inf EQV(¥p)l,
o(y) ) Yr

where Vg (y) denotes the set of all positive Q-supermartingales such that Yo = y and
XY is a Q-supermartingale for all X € X'(1); see [71, Lemma 4.2].

For Q ~ P, the auxiliary investment problem (2.8) is the classical utility maxi-
mization problem which was solved in full generality in [50, 51]. We recall that their
results require the market to be arbitrage-free in the sense that the set of local martin-
gale measures is non-empty, M # (J, and that this assumption is used to establish the
duality between the primal and dual optimization objects. Specifically, the sets X' (x)
and )Y(y) in the primal and dual problems may, respectively, be replaced by the sets
C(x) and D(y), where the latter are given by

Cx):={ge LY : g < X7 P-as. for some X € X(x)}
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and
D(y):={h e LY :h < Y7 P-as. for some ¥ € Y(y)}.

Under the assumption that M # @, the following assertion was then proved in [50]:

ge€lC(x) <= g=>0and sup E[gh]=<xy,
heD(y)
4.2)
heD(y) <= h>0and sup E[gh]<xy.
geC(x)

For Q « P, the auxiliary problem differs from the classical one; while the objec-
tive function uses the market measure Q, the set of admissible trading strategies are
still required to be feasible P-a.s., and it is also not clear in what sense the market
model is arbitrage-free under Q. Crucially, however, by viewing the auxiliary prob-
lem as a classical utility maximization problem under the measure P, with respect
to the stochastic utility function ZU (-) where Z is the associated Radon—Nikodym
derivative, it turns out that the problem may be addressed in a similar manner as the
classical one. We emphasize that the following result follows by minor modifications
of the proofs in [50, 51] (see also [27, 62]); we demonstrate the altered steps in the
Appendix.

Lemma 4.2 Let U : Ry — R be strictly increasing, strictly concave and satisfy the
Inada conditions (2.6). Suppose that uz (xg) < oo for some xo > 0. Then the functions
uz(x) and vz (y) satisfy the relations

vz(y)=sup (uz(x) —xy) and uz(y)= ;ng (vz(x) +xy), 4.3)
x>0 >
and

uy(0)=00 and v',(c0)=0. 4.4)

Under the additional assumption that AE(U) < 1, it also holds that
uy(00)=0 and v,(0)=—o0, 4.5)

the set {ZU(g) : g € C(x)} is P-uniformly integrable, and the primal problem ad-
mits a solution.

For Q ~ P, it was proved in [51] that for utility functions which do not necessarily
satisfy AE(U) < 1, anecessary and sufficient condition for Lemma 4.2 to hold is that
vg(y) < 0o, y > 0. This is true also for Q@ « IP. In consequence, the results herein
hold without the asymptotic elasticity condition if we impose directly the assumption
that vg < oo, forall Q € Q.

4.2 Proof of the existence of an optimal investment strategy

We first provide the following proof:
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Proof of Lemma 2.9. Note that the finiteness is immediate. Next, take x < y and let
X eX(x). Then X < X +y — x € X(y). Since infgeg G(Q, -) is nondecreasing, it
follows that

~ Q : Q _
dngG(Q,E [U(X)])SélelfQG(Q,E [UX +y—x)]) <u(y).

Since X € X' (x) was chosen arbitrarily, we obtain u(x) < u(y). Finally, for some
A €[0,1], let z:=Xxx + (1 —X)y and take X* € X(x) and XY € X' (y). Then we
obtain that X := AX* + (1 — 1) X” € X(z). Since U is concave and infgeg G(Q, 1)
is nondecreasing, it follows that

u(z) > min{éngG(Q,E@[U(XX)]),&fQG(Q, EQ[U(Xy)])].

Taking the supremum over X* € X(x) and XY € X(y) gives
u(z) = minfu(x), u(y)}. O

Next, we define the function @ : Lg_ — R by

(9):= inf G(QE*(U(9)]). (4.6)

The existence of an optimizer is now proved by first establishing upper semicontinu-
ity and quasiconcavity of this objective function. Similarly to the classical case, the
result can then be argued using a Komlos-type result.

Lemma 4.3 Let G € G and U € U be given and suppose that Assumption 2.8 holds,
that G(-,t), t € R, is convex, that G is finite on Q X R, and that (2.9) holds for some
Qe Q. with Q,:={Q e Q:Q~P}. Then

— i Q
¢(g)—Q1€n£eG(Q,E [U(9)]) forgeCx).

Proof Let g € C(x) be fixed. Since G has an asymptotic maximum in the sense of
Definition 2.3 and there exists some Q € Q for which ug(x) < 0o, the set Q in (4.6)
may without loss of generality be replaced by

Q(g) ={Q e Q:EYU(g)] < o0}

For Qg € Q(g) \ Q., take Q; € Q, such that (2.9) holds and define for ¢ € [0, 1]
the measure Q; via the Radon—Nikodym derivative Z; := (1 — t)Zy 4 tZ, where
Zo and Z; correspond, respectively, to Qg and Q;. Then Q; € Q, for ¢ € (0, 1].
Note that r — E[Z,;U(g)] is affine and finite, and thus continuous for ¢ € [0, 1].
Further, t — G(Z;,s) is convex and therefore continuous since it is finite for
(t,s) € [0, 1] x R. Using that G(Z;, -) is nondecreasing as well as upper semicon-
tinuous, we thus obtain that (¢, s) > G(Z;, s) is jointly upper semicontinuous. In
consequence,

t — G(Z;,E[Z,;U(9)])
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is upper semicontinuous, and it follows that

G(Zo,E[ZoU(9)]) = limsup G(Z;, E[Z, U (g)]).

t—0

The minimization over Q(g) in (4.6) can therefore be further replaced by minimiza-
tion over Q,, and we conclude. O

Lemma 4.4 Let G € G and U € U and suppose that the assumptions of Theorem 3.1
hold. Then the function ® given in (4.6) is quasiconcave and upper semicontinuous
with respect to convergence in probability on C(x).

Proof Suppose first that ug(x) < oo for all Q € Q. Let (g,) € C(x) be a se-
quence converging in probability to some g € C(x). According to Lemma 4.2,
the set {UT(gy) : n € N} is then Q-uniformly integrable, for Q € Q. On the
other hand, an application of Fatou’s lemma (to a suitable subsequence) gives
that lim supn_)ooEQ[U’(gn)] < EQ[U’(g)]. Hence, for each Q € Q, the mapping
g~ EQ[U (g)] is upper semicontinuous for convergence in probability on C(x). Re-
calling that g — EQU (g)] is also concave, and that G(Q, -) is right-continuous and
nondecreasing, it follows that for each Q € Q, the mapping g — G(Q, EQ[U(g))) is
also quasiconcave and upper semicontinuous on C(x). In turn, since

[geC):d(@)=m}= () {geCx):G(QEU(9)]) =m]
QeQ

and quasiconcavity and upper semicontinuity are characterized by convexity and
closedness of the upper level sets, these properties are preserved also by the func-
tion @.

When G (-, t) is convex, the result follows by use of the same arguments, applying
then Lemma 4.2 only to measures Q € Q, by use of Lemma 4.3. O

Proof of Theorem 3.1 First note that we may without loss of generality replace the
set X'(x) in (2.7) by the set C(x) defined above (4.2) and consider the associated
problem. Indeed,

u(x)= sup @(g), 4.7
geC(x)
and if (4.7) is attained for some g € C(x), then there exists X € X'(x) such that
X7 > g, and thus that X solves the original problem.

Let (g,) € C(x) be a sequence such that @(g,) /" u(x). Since g, >0, n € N,
there exists a further sequence g, € conv(gn, gx+1, - - . ) converging P-a.s. to some g;
see e.g. [21, Lemma A1.1]. Since C(x) is convex, (g,) € C(x). By Fatou’s lemma, it
then follows from (4.2) that g € C(x). Due to the quasiconcavity of @ and the fact
that @ (g,) increases to u(x), we have that

P (8n) = Inf @ (gx) = P (gn)-

In consequence, also (g;,) is an optimizing sequence. The optimality of g now follows
from the upper semicontinuity via @ (g) > limsup,,_, ., @ (g,) = u(x).
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It remains to argue the upper semicontinuity of u. To this end, recall from
Lemma 2.9 that u is nondecreasing and finite. Let xg € Ry and x,, = xo + l, neN.

n
Then

lim u(x,) =limsupu(x).
n—00 x{xo
For each n € N, let g, € C(x,) be such that u(x,) = ®(g,). Applying once again
Lemma Al.1 in [21], we obtain a sequence g, € conv(g,, g,+1,.-.) such that
gn — g P-a.s. for some g. Due to the quasiconcavity of @ and the fact that @ (g,,) is
decreasing in n, we have that

(p(gn) > inf D(gi) = lim u(xy).
i - n—00

=n,n+1

Further, note that g, gn+1,... € C(x,). Since C(x,) is convex, it follows that
&n € C(xn), n € N. Hence, according to (4.2), g € C(xp). Moreover, for any n € N,
we have g € C(xp,) and g, &€n+1, - - - € C(xy,); use of the upper semicontinuity of @
then yields

P(g) = limsup @(g,) = Lim u(x,),
n—oo

n—oo

which allows us to conclude. O
4.3 Proof of the duality results

In preparation for the proof of Theorem 3.5, note that since G(Z, -) is nondecreasing,
it follows immediately that

w() < inf G(Q,ug() = inf G(Q, inf (vg(y) + 7)) = inf v(y: ).

We argue that the inequalities hold as equalities, using, respectively, the minimax
theorem by Sion [74] and Lemma 4.2. To this end, we first establish two lemmas.

Lemma 4.5 Let G € G and U € U be given and suppose that the assumptions of
Theorem 3.5 hold. Then for any ¢ > 0,

sup inf G(Z,E[ZU(s +g)]) = inf sup G(Z,E[ZU(s + &)]).
geClx) 269 Z€QgeCx)

Proof Let W, (Z,g) :=G(Z,E[ZU (¢ + g)]) for Z € Q, g € C(x), and note that for
each g € C(x),

inf ¥,(Z,g) < sup inf ¥, (Z,g) <u(x+e¢).
yA9) 2€C(x) Ze

According to Lemma 2.9, u(x) < oo, x > 0. In consequence, introducing the
set Q8 :={Z € Q:V¥.(Z,g) <c} with c =u(x +¢) v 0+ 1, it follows that
infzeg We(Z, g) =infzc0e e (Z, g). Further, since E[ZU (¢ + g)] > U(e) A 0 for
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Z € Q, it holds for any Z € Q8 that G(Z,t) < ¢ with 1 := U(g) A 0; that is, for all
g €C(x), Q% C Q;(c). Hence we obtain

sup inf W(Z,¢g)= sup inf W, (Z,g). (4.8)
geClx) 2€Q geC(x) Z€Q:(0)

Next, since U (¢ + -) is bounded from below, we may apply Fatou’s lemma to ob-
tain lower semicontinuity, with respect to convergence in probability, of the mapping
Z+— E[ZU (e + g)], g € C(x). Since Q;(c) is uniformly integrable according to As-
sumption 3.2, this is equivalent to lower semicontinuity with respect to convergence
in L. Since the mapping is affine, it is therefore weakly lower semicontinuous on
Q;(c). Recalling that G is quasiconvex and jointly lower semicontinuous, we thus
obtain that the mapping

Z—VY.(Z,g), gel), 4.9)

is quasiconvex and weakly lower semicontinuous on Q;(c). On the other hand, as
established in the proof of Lemma 4.4, the mapping

g ¥:(Z,8), ZeQ,

is quasiconcave and upper semicontinuous for convergence in probability on C(x).

Indeed, since U is concave, the fact that {U(g) : g € C(x)} is uniformly integrable

implies that so is {U™ (¢ + g) : g € C(x)}, and the same argument goes through.
Recall that C(x) is convex. Moreover, for Z, Z € Q,(c),

G(AZ+(1-NZ,t) <max{G(Z.,1),G(Z,1)} <c.

Hence, also Q;(c) is convex. It is also weakly compact; cf. Remark 3.3.
The assumptions of Theorem 3.4 in Sion [74] are thus satisfied, and we may apply
this result (specifically Corollary 3.3 therein) to obtain

su inf ¥, (Z,g)= inf sup Y. (Z,g). (4.10)
gec?xﬂeg,(c) o8 Zth@gEcg) o8

Combining (4.8) and (4.10), we have

inf sup Y.(Z,g) < sup inf ¥.(Z,g),
ZeQgeC(x) geC(x) Z€

and since the reverse inequality is immediate, this allows us to conclude. g

Lemma 4.6 Let G € G and U € U be given and suppose that Assumption 2.8 holds.
Then

inf sup G(Z,E[ZU(g)]) = inf v(y; x).

ZngeCEr) ( & ) y>0 Y

Proof According to Assumption 2.8, Qf7é® with sz{Q € Q:ugx) <oo,x >0}
Combining this with the fact that G is nondecreasing in its second argument and
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has an asymptotic maximum in the sense of Definition 2.3, and using the conjugacy
relation (4.3) between ug(x) and vg(y) for Q € Qf, we obtain

erelfQG(Z, uz(x)) = Zleanf G(Z,uz(x))

= Zleanf G(Z inf (vz(y) +xy))

= inf inf G(Z vz(y)+xy)
y>0Z7eQf

Recall that v(y; x) = inf{G(Z, vz(y) + xy) : Z € Q}. It therefore only remains to
argue that

inf G(Z vz(y)+xy)= inf G(Z, vz(y)—l—xy), y > 0. “4.11)
ZeQ/f ZeQ

The inequality “>" is immediate since 0/ € Q. Hence, for y > 0 fixed, using again
that G is nondecreasing in its second argument and has an asymptotic maximum,
we note that without loss of generality, Q:= {Z € Q:vz(y) < oo} # ¢ and the set
Q on the right-hand side of (4.11) can then be replaced by Q On the other hand,
vz(y) < oo implies that uz(x) < oo, x > 0 (cf. Lemma 3.5 in [72] along with the
proof of Lemma 4.2). Hence, Q c 9/ which yields the reverse inequality. O

Proof of Theorem 3.5 Applying Lemma 4.5, we obtain

u(x) < inf sup G(Z,E[ZU(g)]
7€QgeC) ( )

< sup inf G(Z,E[ZU(e + g)]) <u(x +¢).
geC(x) 2€Q

Recalling from Theorem 3.1 that u(x) is upper semicontinuous, sending ¢ to zero,
we obtain

u(x)= inf sup G(Z,E[ZU(g)]),
ZeQgeC(x) ( )

which combined with Lemma 4.6 yields the result. |

Remark 4.7 For variational preferences, the convexity and concavity in the first and
second argument, respectively, of the mapping (Z, g) — ¥.(Z, g) implies that no
continuity properties of ¥, (Z, -) are required for obtaining (4.10); cf. [71]. Since the
continuity of u(x) for this case is an immediate consequence of its concavity and
finiteness, Theorem 3.5 therefore holds if we impose only Assumptions 2.8 and 3.2
(the asymptotic elasticity assumption on U may also be dropped). In particular, the
additional assumptions imposed in [71] for this result, namely that ug(x) < oo for
some Q € Q, and that v(y; x) < oo implies vg(y) < oo for some Q € Q,, are in fact
not needed. We note, however, that although Theorem 3.5 implies that

u(x)= sup inf G(QEQUX7)])
XeX(x)QeQ/f
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and the supremum on the right-hand side is always attained, unless the assumptions
of Theorem 3.1 hold, it is still not clear whether the original problem admits a so-
lution. Finally, we note that for functions that are only quasi-convex-concave, lower
and upper semicontinuity, respectively, in both arguments is in fact necessary for the
minimax identity to hold; see [74, Remark 3.6] and [52, Example 2] for counterex-
amples.

We next prove the existence of a dual optimizer. The argument ultimately relies
on the quasiconvexity and lower semicontinuity of the dual objective function.

Proof of Proposition 3.4 Note first that we may replace without loss of generality
the set Y(y) in (3.1) by the set D(y) defined above (4.2) and consider the associated
problem. Let

H(Z,h):=G(Z,xy +E[ZV(h/2)]), Ze€Q,heD(y).

Recall that v(x; y) is finite by assumption and let ((Z,, h,)) € Q x D(y) be an opti-
mizing sequence such that

H(Zn, hn)  v(y;x). (4.12)

n— oo

We now argue that there exist ¢ > 0 and ¢t € R such that we may assume without loss
of generality that (Z,) € Q;(c). To this end, recall that ZV (h/Z) =0 on {Z = 0} and
that E[h] <y, h € D(y). Since V is decreasing and convex, use of Jensen’s inequality
yields for all Z € Q, h € D(y) that

E[ZV (h/Z)] = V(E%[h/Z)) =V (Elh1Liz-0)])) = V (3).

In consequence, E[ZV (h/Z)] + xy > U(x) for Z € Q, h € D(y). Since G(Z, ) is
nondecreasing, it therefore follows from (4.12) that

limsqu(Zn, U(x)) < 00.

n—o0

In consequence, without loss of generality, (Z,) € Q,(c) ={Z € Q:G(Z,t) <c}
with r :=U(x) and ¢ := 1 +limsup,,_, . G(Z,, U(x)) v 0.

Next, since Q;(c) is uniformly integrable, we obtain from the proof of [72,
Lemma 3.7] that the mapping (Z, h) — E[ZV (h/Z)] is jointly lower semicontinuous
with respect to convergence in probability on Q,(c) x D(y). Recall that G is jointly
lower semicontinuous if we use the weak topology in the first coordinate. Using again
the uniform integrability of Q;(c), we thus obtain that (Z, h) — H(Z, h) is jointly
lower semicontinuous with respect to convergence in probability on Q;(c) x D(y).

Note that the mapping (Z,h) — E[ZV (h/Z)] is convex due to the convexity
of (z,y) = zV(y/z). Since G(Z,-) is nondecreasing and G is jointly quasicon-
vex, we therefore have that (Z,h) — H(Z, h) is jointly quasiconvex. Indeed, for
Zi=tZo+ (1 —1t)Zyand hy =tho+ (1 — t)hy,
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H(Z:, he) = G(Zz, xy+ E[ZtV(ht/Zr)])
< G(Z:,xy +1E[ZoV (ho/Zo)] + (1 — DE[Z1V (h1/Z1)])
< H(Zy,ho) vV H(Zy, hy). (4.13)

We now apply Lemma Al.1 in [21] twice to obtain a sequence (Z,,#h,) in
conv{(Zy, hy), (Zn+1, hnt1), - - - } converging P-a.s. to some (Z, hg). Since Q,(c)
and D(y) are both convex, (Z,, h,) is in Q,(c) x D(y). Hence from (4.2), we have
ho € D(y), and since Q;(c) is weakly compact due to Assumption 3.2, we also have
Zo € Q;(c). Further, use of the joint quasiconvexity of H and (4.12) yields

H(Zy, hy) <sup H(Zg, hy) = H(Zy, hy),

k>n

and in consequence also ((Z,, h,)) is an optimizing sequence. Use of the lower semi-
continuity of H then yields

H(Zo, ho) <liminf H(Zy, hy) = v(y).
n—oo

In consequence, the optimum is attained for (Zy, ko).

Finally, suppose that (Z1, k1) is another optimal pair. Then for ¢ € [0, 1], let
Z;=tZ1+ (A —1t)Zop and h; = thy + (1 — t)hg. According to (4.13), we have
H(Z;:, h;) <v(y). Hence also (Z;, h;) is optimal. In consequence, a maximal so-
lution may be constructed along the same lines as in [71, Lemma 4.3]. g

Next, we prove Theorem 3.6 and Proposition 3.7 which establish the existence of
a saddle point and the link between the primal and dual solutions.

Proof of Theorem 3.6 Given a saddle point (X7, @) for the primal problem, take
y* > 0 to be the value attaining the infimum in (4.3) for Q. Existence is ensured due
to the properties of the auxiliary value functions, see Lemma 4.2; indeed, by using
Assumption 2.8 and the properties (i) and (iv) of Definition 2.3, we deduce that,
without loss of generality, ug(x) < o0, x > 0. Then

u(x) = G(Z,uz(x)) = G(Z,vz(y") + xy%),

and it follows that the infimum in (3.3) is attained for y*. Conversely, suppose that
(3.3) is attained for some y* > 0. According to Lemma 2.9 and Proposition 3.4, the
dual problem at level y* then admits a solution (Q, Y). Recall that according to The-
orem 3.1, there exists a primal optimizer X 7. Now, since G(Z, ) is nondecreasing,

u(@®) =v(y*; ) = G(Z, vz + xy*) 2 G(Z,uz(x) = u(x),
which thus must hold as equality. In consequence,
u(x) = G(’Z\, ug(x)) > G(Z E[/Z\U(}_(T)])

> inf G(2,ELZU (X)) = u(x),

which shows that (X7, @) is a saddle point for the primal problem.
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Next, from the definition of ) (y), we have E[X7Y7r] < xy, for X € X (x) and
Y € Y(y). Hence, given a minimizer y* > 0 to (3.3), a corresponding dual solution
(Q Y ) and a solution X7 to the primal problem, it follows that

G(Z,E(ZV(Y1/Z) + X1 Yr]) — G(Z,E[ZU (X1)])
< G(Z,EIZV(Yr/Z)] +xy*) — u(x)
=v(y*;x) —ux)=0
In consequence, if G(Z, -) is strictly increasing,
EQV (Yr/Z) + XrYr/Z] < EYU(X7)].

Since V(y) +xy > U(x) for x, y > 0, this inequality implies that Q a.s., we must
have V(YT/Z)+XTYT/Z U (X7), which implies (3.4). O

Proof of Proposition 3.7 Recall that (3.2) holds. Hence, in order to verify the exis-
tence of a saddle point, it suffices to show that the infimum in (3.2) is attained. Let
(Z,) € Q be an optimizing sequence such that

G(Zn 1z, () N u(x).
Since uz, (x) > U(x), n € N, and G(Z, -) is increasing, it follows that

limsup G(Z,, U(x)) < 0.
n—o00
Hence without loss of generality, we may assume that (Z,) € OQ;(c), where we
choose ¢ :=U(x) and ¢ := 1 + limsup,_, ., G(Z,, U(x)) V 0. Recall that Q,(c) is
weakly compact. Since the pointwise supremum preserves lower semicontinuity and
quasiconvexity, it follows by use of the same arguments as used to derive the quasi-
convexity and lower semicontinuity of the mapping (4.9) that

Z+— G(Z, uz(x)) = sup G(Z,E[ZU(g)]) (4.14)
geC(x)

is quasiconvex and lower semicontinuous on Q;(c) for convergence in probability.
We now pick a sequence Zn e conv(Z,, Zy+1, -..) converging P-a.s. to some Zo;
cf. [21, Lemma Al.1]. Since Q;(c) is convex, we have (Z,) C Q,(c). Moreover,
9, (c) is weakly compact due to Assumption 3.2. Hence, Zy € 9, (c). By use of the
same arguments as used in the proof of Proposition 3.4, the quasiconvexity and lower
semicontinuity of the mapping (4.14) then yields that also (Zn)neN is an optimizing
sequence, and in turn that Z attains the infimum in (3.2). U
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Appendix

Proof of Lemma 4.2 The assumption uz(x) < oo implies that the expectation oper-
ator is defined in the standard way (cf. before Problem 2.6). Further, without loss of
generality, the set of optimization objects in uz(x) and vz(y) may, respectively, be
replaced by the sets C(x) and D(y) defined above (4.2).

Let F,(z,y) = supy_,<,(@U(x) — xy) for z > 0, y > 0. Further, define the
set B, :={g e Lg :0<g<n}. Then ZU(g) — gh < F,(Z, h) as. for all g € B,,
h € D(y), with the convention 0 - co = 0. Moreover, for each i € D(y), we may pick
a sequence (gx)keN in B, such that ZU (gx) — gxh /" F,(Z, h) a.s. By the monotone
convergence theorem, we therefore obtain

Sug E[ZU(g) —ghl= klim E[ZU(gx) — gkhl = E[Fu(Z, h)],
geB, —>00

which thus must hold as equality. Further, with V,(y) = sup,_,, (U (x) — xy), we
have

Foey) = 0, forz =0,
n(z,y) = 2F(1,2) =2V, (%), forz>0.

With the usual convention ZV,,(h/Z) :=0 on {Z =0}, h € D(y), we thus obtain

inf sup E[ZU(g) —ghl= inf E[ZV,(h/Z)]. (A.1)
heD(y)gEgn &8 heD(y) n(f

The first conjugacy relation in (4.3) now follows if it can be shown that as n
tends to oo, the left- and right-hand sides of (A.1) converge to sup,. o(uz(x) —xy)
and vz(y), respectively. As for the left-hand side, this follows exactly as in [50,
Lemma 3.4]. Specifically, the argument consists in applying a minimax theorem and
exploiting the duality between the sets C(x) and D(y) (cf. (4.2)), which remains un-
altered by the modification of the utility function. As for the right-hand side, the
argument of Lemma 3.4 in [50] goes through as long as we can ensure the uniform
integrability of the set {ZV, (h,/Z) : n € N} for (h,) € D(y). To this end, we now
argue as follows. Note that for /(y) < n, it holds that V,(y) = V(y). As V, is in-
creasing in y and decreasing in #, it follows that

ZV, (ha/Z) < ZV = (ha/Z) + ZV (U'(D)). (A.2)

Recall that Z is integrable. In consequence, according to [72, Lemma 3.6], the family
{ZV~=(h/Z) : h € D(y)} is uniformly integrable. Hence, it follows from (A.2) that so
is{ZV, (h,/Z) :n e N}.

The second conjugacy relation in (4.3) follows directly from the first since ug(x)
is finite and concave (cf. e.g. [69, Theorem 12.2]).

Next, since AE (U (-)) < 1, we may apply Lemma 6.3 in [50] to obtain «, 8,y >0
such that zV (%) <azV (%) +By+yzforall y, z > 0. Combined with the finiteness
of uz(x), x > 0, and the conjugacy relations (4.3), this yields the finiteness of vz (y),
y > 0; cf. Note 2 in [51]. In turn, as argued in Note 1 in [51], again due to the
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conjugacy relations between uz and vz, the finiteness of vz(y), y > 0, is equivalent
to

. uz(x)
lim =
x/00 X

0.

The Q-uniform integrability of {U ™ (g,) : n € N} may therefore be established fol-
lowing the proof of Lemma 1 in [51]. Properties (4.4) and (4.5) then follow by use of
the same arguments as in [50]. O
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