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Abstract

Unlike folded proteins, the dynamic structural ensembles of intrinsically disordered pro-
teins (IDPs) do not possess fixed tertiary structures. To date, NMR spectroscopy is the
most prevalent and versatile technique to address the analytical challenges involved in the
characterization of IDPs. Still, the amount of experimental observables is inherently in-
sufficient to capture the underlying ensembles in full detail. To characterize IDP backbone
dihedral angles, previous studies have proposed a Maximum Entropy (MaxEnt) approach,
which derives a representative solution from a convolution of specific prior assumptions
and supplementary experimental constraints. This work promotes a more modest im-
plementation of MaxEnt that attempts to distinguish more clearly between experimental
and assumptive information content. The procedure is illustrated by assessing the theo-
retical feasibility of cross-correlated relaxation (CCR) experiments; a method still mostly
unexplored in the study of IDPs. The proposed protocol can serve as a general framework
to evaluate and implement combinations of NMR experiments not limited to CCR inter-
actions. The particular set of CCR rates considered in this work prove highly proficient
in probing IDP dihedral angle populations, indicating the unharnessed potential CCR

experiments offer in the structural and dynamic characterization of IDPs.






Kurzfassung

Anders als gefaltete Proteine weisen die dynamischen Konformationsensembles von in-
trinsisch ungeordneten Proteinen (kurz: IDPs, englisch: intrinsically disordered proteins)
keine festen Tertidrstrukturen auf. Kernresonanzspektroskopie (kurz: NMR, englisch:
nuclear magnetic resonance) ist die aktuell géngigste und vielseitigste Methode, um den
analytischen Herausforderungen in der Charakterisierung von IDPs zu begegnen. Den-
noch ist die Zahl der experimentellen Parameter grundsétzlich nicht ausreichend, um die
zugrunde liegenden Ensembles eindeutig zu bestimmen. In fritheren Studien wurde zur
Charakterisierung dihedraler Winkel von IDP Backbones das Maximum Entropy (kurz:
MaxEnt, deutsch: Mazimale Entropie) Kalkiil vorgeschlagen. Dabei wird eine représen-
tative Losung aus a priori Annahmen und experimentellen Einschrankungen abgeleitet.
Diese Arbeit vertritt eine konservativere Implementation des MaxEnt Kalkiils, in der
deutlicher zwischen experimenteller und a priori Information unterschieden wird. Illus-
triert wird das Verfahren anhand einer theoretischen Evaluation von kreuzkorrelierten
Relaxations-Experimenten (kurz: CCR, englisch: cross-correlated relazation); eine Meth-
ode, die bis heute kaum Anwendung bei IDPs gefunden hat. Das hier vorgestellte Pro-
tokoll kann in seiner Grundstruktur zur Bewertung und Implementation von Kombinatio-
nen aus NMR-Experimenten herangezogen werden, die sich nicht auf CCR-Interaktionen
beschrianken miissen. Die in dieser Arbeit erwogenenen CCR-Raten zeigen sich zur Popu-
lationsbestimmung von dihedralen Winkeln in IDPs sehr gut geeignet; CCR-Experimente
besitzen demnach in der strukturellen und dynamischen Charakterisierung von IDPs noch

unausgeschopftes Potential.
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Chapter 1
Introduction

For considerable time biochemistry has been dominated by the "structure - function”
paradigm which assumes that protein function requires a well-defined 3D structure. While
still highly influential, this concept started to be challenged in the late 90s [1-4]. Nowa-
days, the functional importance of conformational plasticity in proteins is indisputable:
Intrinsically disordered regions of at least 30 residues in length are estimated to occur in
10-35 % of prokaryotic and 15-45 % of eukaryotic proteins [5, 6]. X-ray crystallography,
the workhorse of structural biology, is not fit to deal with the structural flexibility of in-
trinsically disordered proteins (IDPs). NMR spectroscopy, the most important alternative
in protein structure determination, does not require crystallization. Thus, it represents a

key technique for studying structural and dynamics properties of IDPs [7, 8].

Unlike globular proteins, IDPs cannot be described by mapping experimental data onto
a singular structure. Instead, the observables are averages of a dynamic conformational
ensemble. As a result, IDPs yield more convoluted experimental data and are more

challenging to analyze.

For lack of a singular tertiary structure, an evident approach is to instead characterize
IDPs in terms of local secondary structure propensities, which in return can be used to
derive ensemble representations. Different NMR parameters have been suggested and
used in this regard [7, 9], e.g. chemical shifts [10], scalar couplings [11], residual dipolar
couplings [12-14] and paramagnetic relaxation enhancement [15]. However, the number of
experimental parameters is inherently insufficient to uniquely characterize the underlying
ensemble; due to the large conformational freedom, the set of compatible ensembles is
highly degenerate. Still, sophisticated methods exist to construct representative ensembles
of IDPs from insufficient data, comprehensive overviews have been given in e.g. [7, 9, 16].
Bayesian statistics have also been suggested to tackle the underdetermined nature of this
problem [17].



A more modest approach considers only the local backbone which most NMR parameters
actually report on. Secondary structures can be characterized by their dihedral angles ¢
and ¢, a well-established, practical method applicable for both folded and disordered pro-
teins [7, sec. 4.2]. Instead of a singular angle pair, an IDP-residue samples a distribution
of dihedral angles in Ramachandran space. Still, even these backbone (¢,1)-populations
cannot be determined unambiguously. In an approach closely related to Bayesian statis-
tics, Massad et al. [18] and Mantsyzov et al. [19, 20] independently suggested different
implementations of the Maximum Entropy (MaxEnt) calculus to define a representative
solution for this underdetermined problem, using readily available NMR parameters like

chemical shifts, scalar couplings and short range nuclear Overhauser effects.

This work suggests an extension of the established protocols in two general directions:
The first one concerns the choice of NMR parameters. Scalar couplings in particular
are used for their angular dependencies according to the Karplus relationship [21]. The
need for parametrization [22] and the limited possibilities along the backbone lead to
the development of cross-correlated relaxation (CCR) experiments as a complementary
method in the late 90s [23, 24]. While arguably more complex, a multitude of possible
interactions along the protein backbone can be probed, elucidating both structural and
dynamic properties. Backbone dihedral angles of folded proteins have been shown to be
accessible using suitable combinations of CCR experiments [25]. While promising first
results do exist [26], a systematic inclusion of CCR rates in the characterization of IDPs

has not been attempted to date.

The second suggestion concerns the implementation of the Maximum Entropy framework
itself: A key characteristic of MaxEnt approaches is that experimental information needs
to be processed relative to some initial assumptions encoded in the so-called prior. In the
previous studies of Massad et al. [18] and Mantsyzov et al. [19, 20] only the convoluted
results based on a fixed set of experiments and a singular prior have been presented;
their individual contributions have not been assessed. Since no distinction is made be-
tween experimental and assumptive information content, it is not clear to what extent
the experiments would be capable to contradict the prior assumptions. Here, a MaxEnt
implementation is proposed which differentiates more intuitively between prior and exper-
imental information. It can be used as a general framework for assessing and designing
experimental protocols probing the protein backbone. The implementation is entirely

in-silico and based solely on CCR experiments.



Chapter 2

Cross-Correlated Relaxation (CCR)

2.1 Spin relaxation theory

Relaxation is the dynamic process by which spins return to their equilibrium state. It
is caused by fluctuating magnetic fields in the surroundings, the so-called lattice. In
liquids these fluctuations generally result from dynamic reorientation of spins relative to
the static magnetic field due to molecular motion. Thus, relaxation encodes structural
and dynamic properties of the investigated system. Naturally, the local magnetic fields
of spins can also be affected by spins in close proximity. Correlated motion of such spins

gives rise to cross-correlated relaxation (CCR) which can be experimentally investigated.

The CCR experiments considered in this work probe the protein backbone to extract
the dihedral angles ¢ and 1. The corresponding physical models are based on Redfield’s
theory of relaxation [27, 28], which will briefly be touched upon in this section. It mainly
follows the reviews of Kumar et al. [29] and Murali and Krishnan [30], supplemented by
the books of Kowalewski and Méler [31] and Cavanagh et al. [32].

Starting point is the Liouville-von Neumann equation (2.1). It describes the evolution of
a spin system over time ¢:

dpt)  a s

) _ifdty+ Fr(0). o) 1)
The spin system is represented by the density operator p. [Hy + Hi(t), p(t)] denotes the
commutator of p and the Hamiltonian, which is assumed to consist of a large, unperturbed
time-independent component H, and a small, time-dependent perturbation H, (t) causing

the relaxation.

The first step in solving this equation is the so-called interaction frame transformation,



which removes the time-dependent variations of j(t) with Hy.

where

p*(t) = exp(iHot)p(t) exp(—iHot)
Hi(t) = exp(iHot) Hy (t) exp(—iHyt)

The differential equation (2.2) is then solved approximatively. The corresponding integral
equation is:
t o
50 = 5 (0) =i [ L), "))t (23
Both sides contain the same, still unknown term p*(¢). By substituting p*(t') with equa-

tion (2.3) again, an iterative scheme is obtained. Only the first three terms are kept,

yielding a second order approximation:

P10 = 50— [ 1), e — [ [ U, T, o (24

By taking the time derivative, an expression for 42"(t)/at is recovered:

W)~ ity O) — [ U0, 10, (o)) (25)

In the next step the spin systems are treated as an ensemble. ﬁf(t) averaged over this
“ensemble of ensembles” is zero. If not, the non-zero average component can always be
incorporated into Hy. This argument reflects the very nature of relaxation: The random,

undirected fluctuating magnet fields are what equilibrates the sample.

The fluctuations are further assumed to occur on time scales much smaller than the
relaxation time of the spin system. This way, p*(0) and Hi(t) factorize and can be
averaged independently. Consequently, the first commutator [H#(t), 5*(0)] in equation
(2.5) vanishes.

In a similar argument, the slow variation of p*(t) compared to H:(t) and the short time
period ¢ justify the substitution of 5*(0) with p*(¢). In addition, the short correlation
time allows for the extension of the upper integration limit to infinity. After substituting
7 =t — 1’ and making a finite spin temperature correction p*(t) = p*(t) — po, where py is

the equilibrium density matrix, the master equation is obtained:

PO [0, i), 77(0) — ol (2.6

W



Equation (2.6) is now usually reformulated in one of two ways: The matrix formalism rep-
resents elements of ﬁTG) as eigenstates of the unperturbed Hamiltonian I:IO; the operator
representation employs nuclear spin angular momentum operators. Both depictions are
equivalent and require considerable algebraic effort. Which one is used usually depends
on the the intended application and preference. Here, the operator formalism will be used
to illustrate the essentials of CCR.

First, the relaxation Hamiltonian in the laboratory frame is written as a product of

irreducible tensors:

(1) = Y (~ 1A, Fy() (2.7)

q
A, are time-independent operators acting only on the spin system, F,,(¢) are time-dependent,
stochastic functions of the lattice variables and ¢ denotes the rank of the tensors. Note

that all dynamic relaxation contributions are attributed to the lattice.

The spin operators are then expanded in terms of basis operators, which exhibit trans-

formation properties similar to equation (2.2).

exp(iHot) Aq exp(—iHgt) = > Ay qexpliwygt)
)
exp(iHot)A_, exp(—iHgt) = > Ay —gexpliwy,_qt)

ﬁf (t) = Z Z(_Uqu(t)Ap,fq exp(iwp,—qt)

H(t) is then substituted into the master equation (2.6). Due to the double commutator,
components of the obtained sum are modulated by an exp(i(w, —q + wy,—q)t)-term. The
secular approximation considered here neglects rapidly oscillating contributions for which
Wp—q + Wy —q # 0. Omitting the ensemble average overbars, the master equation reads:

dﬁ;t(t) = =3 D Ay [(=1)"Ap g, p*(t) — fo]] /Ooo G, (7) exp(—iw, ,7)dT (2.8)

The integral is called the spectral density function. It is the Fourier transform of the

correlation function G(T):

Gy(7) = Fy()(=1)7F_4(t — 7) (2.9)

The imaginary components of the spectral density functions cause the so-called dynamic
frequency shifts, which are often small enough to be neglected. To further generalize, the

Hamiltonian is now considered as a sum of n relaxation contributions:

Hi(t) =Y Hi.) (2.10)



This leads to the appearance of cross-terms in the correlation function:

ZF, DIF_ o (t—7)+ Y Fyn(t)(=1)9F g (t — 7) (2.11)
n<n

n;én’

The second term on the right-hand side of (2.11) vanishes, if the random motions facili-

tating n and n’ are uncorrelated. If they are not, cross-correlated relaxation occurs.

The most common interferences are due to dipolar and anisotropic chemical shift interac-
tions. Relaxation rates I' can be predicted by plugging the corresponding Hamiltonians
and tensors into the newly obtained master equation (2.8) [24, 29]. Skipping the extensive

case-specific calculations, the obtained expressions exhibit a common general form:

1
TOLDE Gapop) = kbp—a B0 — 5(3cos” banop — 1) x J(w) (2.12)

“1asico)’
DP,CSA

1
Dupx’ (Oapx:) = kDPkCSATBo’YX/(AUX/) X 5(3 cos®Oapx — 1) x J(w) (2.13)
|AB|
1
Fg(A/S‘é/CSA(QXI,y/) = k%SABgfyX/’yyr(AO'X/>(AO'y/> X 5(3 COS2 9X17yl — 1) X J(w) (214)

o A,B, C and D are arbitrary nuclei subject to dipolar (DP) coupling.

o X’ and Y’ are nuclei exhibiting chemical shift anisotropy (C'SA).

e kpp and kcga are interaction-specific prefactors and physical constants.
e 7 is the gyromagnetic ratio.

e By is the field strength of the static magnetic field.

e Ag is the CSA tensor.

e 0 is the projection angle.

o J(w) is the frequency-dependent spectral density function.

J(w) modulates I' at tensor-specific frequencies w [24]. Thus, it encodes the motions
inducing the relaxation process. However, the dynamic information it provides requires
careful consideration. In most cases the correlations functions, i.e. the underlying stochas-
tic lattice functions F'(t), are not trivial to model. The commonly used "model-free” ap-
proach of Lipari and Szabo [33] even refrains from describing the dynamics in too much
detail. At its heart, it assumes global and local motions to be factorized, which is a
reasonable concept for globular proteins but inapplicable for IDPs. Since a generally ac-
cepted dynamic model for IDPs has not been devised to date, predicting and interpreting

J(w) is not a straightforward task. Spin relaxation experiments will certainly play a key



role in addressing this challenge, see e.g. [8, 34-36].

This work, however, focuses on the projection angle #. It reflects the local molecular
structure surrounding the probed spins, which allows for the intended extraction of the

backbone dihedral angles ¢ and .

2.2 CCR determination of backbone dihedral angles

Using CCR experiments to measure backbone dihedral angles was first proposed and
implemented by Reif et al. [23], who probed I'yace, HY N, to determine ¢;. In the
following years a multitude of additional experiments were devised to characterize the
protein backbone in a similar fashion, see the review of Schwalbe et al. for a structured

overview [24].

The general scheme is straightforward: The relaxation rate I' is modulated by the angular-
dependent second order Legendre polynomial 1/2(3cos?# — 1). By relating 6 to the back-
bone geometry, I' can be expressed as a function of ¢ and/or ¥ depending on the particular

interaction.

N

N
Hp

0.5 1

$(3cos? — 1)

-0.5 1
-180° -120° -60° 0° 60° 120° 180°

Figure 2.1: The angular modulation 1/2(3 cos? § — 1) of the CCR, rate Lyvn pece(9) [37] with

cosf = 0.163 — 0.819cos(¢ — 60°). 6 denotes the projection angle between the HZ-N—NZ- and
the HP*-C{* bonds, Newman projections of the corresponding backbone geometries are indicated
above for selected ¢-angles.



In many cases these functions bear a close resemblance to the Karplus relationship ob-
served for scalar couplings [21]. However, CCR rates involve dynamic contributions,
require no empirical parametrization [22], exhibit more combinatorial possibilities and

can depend on more than one dihedral angle.

Figure 2.1 depicts the simple to illustrate relationship between the H*-C® and the H-N;
internuclear spin vectors, first investigated by Pelupessy et al. [37]. Newman projections
of the bond geometry are sketched for ¢ = —180°, —60° and 60°. Evidently, the function
relating 6 and ¢ is not bijective due to the ambiguous cos? # term. Except for the maximum
at ¢ = —120°, multiple dihedral angles could lead to the same relaxation rate. Thus, if
a given set of angles was to be characterized unambiguously, a suitable combination of

CCR rates must be measured.

To address this shortcoming, Kloiber et al. [25] proposed a protocol employing five CCR
rates and one scalar coupling constant: TI'ye ce o (¥ic1) [38], Ter | mece(d) [39],

FH;VNi,chg(¢i) 37], FHleCZ‘{l,HZNNi(@Di—l) 23], The e mece(di i) [40] and
SJeror (i) [41].

These experiments were shown to resolve the ambiguities in (¢;, ¥;_1)-space for most of the
accessible residues in Ubiquitin. Prolines, lacking the HV-N bond, glycines, featuring two
H-C* bonds, and residues following glycines were excluded from the analysis. The spectral
density functions were fitted using the model-free approach of Lipari and Szabo [33].
Omitting the details, the fitting procedure was found to be quite resilient: If not too
extreme, singular deviations from predicted rates did not drastically affect the obtained
results, indicating an inherent error correction resulting from the combination of multiple
experiments. This effect is noteworthy as it might apply for other systems as well, possibly

reducing the effect oversimplified dynamics might introduce.

2.3 Applicability of CCR experiments in IDPs

In the previous section CCR experiments were established as a tool to probe consecutive
pairs of ¢- and 1-angles in the protein backbone. While characterizing globular proteins
has proven successful, the dynamic and structural properties of IDPs are considerably
more complex. The clear distinction between dynamics and structure is further challenged
by the fact that the "structure” of an IDP should rather be thought of as a dynamic

ensemble of interchanging conformations.

But not all complications can be addressed at once. Here, an initial simplification is
made by assuming that all conformations are, at least locally, modulated by the same

averaged spectral density function, effectively factoring out the dynamic contributions.



Clearly, dynamic modulations might differ for distinct regions in (¢,%)-space and even
for coinciding (¢,1)-pairs; spatial, angular-dependent tensorial components could require
time-dependent treatment. However, as first experiments suggest [8, 26|, the results
could also be dominated by the geometrical contributions as well as the afore mentioned
cumulative error correction. The ignorance of the underlying dynamics could also be

compensated by experimentally determined spectral densities.

Still, even when considering the CCR rates as dynamically unaffected, an important

question remains: Could diverse structural ensembles even realistically be characterized?

Consider a given (¢,1))-pair rather as a discretized! probability distribution p(¢,) with

the normalization condition given as:

S Yol w) =1 (2.15)
¢ Y

A globular protein can essentially be treated as a singular structure; p(¢, ) resembles
a narrow, localized distribution in (¢,1))-space. As shown by Kloiber et al. [25], such
distributions can be determined unambiguously by measuring a suitable combination of

(mostly) CCR rates I', which are in fact ensemble averages of p(¢,):

(L(g, ) =D T(d¥)p(, ) (2.16)
¢ P

For an IDP this becomes more complicated. p(¢, 1) corresponding to a heterogeneous
structural ensemble populates many different regions in (¢,1)-space. If not a highly lo-
calized distribution is considered, the same set of experimental parameters cannot resolve
the resulting ambiguities to uniquely characterize p(¢,1)). There are too few observables

for too many possible conformer populations: The problem is underdetermined.

This leads to the key question this work is trying to answer: To what extent are arbitrary

distributions in (¢,1)-space accessible using cross-correlated relazation experiments?

Put more abstractly: To what extent can arbitrary probability distributions be reproduced

given only a set of probability-weighted average function values?

This raises a conceptual problem: We already established that an unambiguous relation-
ship between a probability distribution and its corresponding set of mean function values
does not exist for every case. But if we try to reproduce some sample distribution with
its derived values, we already know it to be our "best” possible solution in advance. How

do we prevent this knowledge from biasing our predictions?

1A continuous notation would be equally applicable. The discrete representation simply retains a higher
consistency with the following notes and the subsequent numerical implementation.



Clearly, our target function should not include the sample distribution in any way. While
we can assess the quality of a method by comparing it with the original distribution,
we should employ only the derived constraints, not the distribution itself. Furthermore,
introducing any kind of empirical parameters into the target function might bias our
results towards the chosen set of sample distributions. We want the method to only

reflect the information present in the set of experimentally accessible parameters.

The Maximum Entropy principle is a calculus that aims to provide a mathematical foun-
dation for problems of this kind. While Maximum Entropy (MaxEnt) approaches have
been used in IDP characterization before [18-20], CCR rates have not been considered
until now. Furthermore, the particular MaxEnt implementation in this work differs from

previous studies on a very fundamental level, as will be elaborated later on.

10



Chapter 3
The Maximum Entropy Framework

The Mazimum Entropy principle was pioneered by E.T. Jaynes in 1957 [42] and builds on
the foundations of Shannon’s entropy measure introduced in 1948 [43]. In the previous
chapter we asked: To what extent can arbitrary probability distributions be reproduced
given only a set of probability-weighted average function values? Jaynes answer is: "In
making inferences on the basis of partial information we must use that probability distri-
bution which has maximum entropy subject to whatever is known.” [42, p. 623] Naturally,
the generality of this statement allows for a vast range of applications: Web of Science

lists 21,687 results with the topic 'maximum entropy’ between 1957 and 2016.

This chapter will explore the foundations that lead to the Maximum Entropy (MaxEnt)
principle. It should be mentioned that derivations, axioms and interpretations of MaxEnt
and entropy itself are topics in their own rights. This work is not meant to provide
an exhaustive review or rigorous proofs. It will mostly follow Shannon and Jaynes in
an information theory inspired narrative in discrete notation, because it provides a well
established and intuitive notion of entropy as a numerical measure of uncertainty or

missing information.

This notion, however, is not necessary to justify MaxEnt, in fact its applicability ranges
beyond Jaynes’ original intents and different, more abstract axiomatizations have been
proposed. Entropy and MaxEnt are still an active field of research, but most improvements
on Jaynes’ original work do not offer particular advantages in a practical application, so
only the necessary fundamentals will be covered. Noteworthy remarks and implications of

later developments and controversies will be addressed in the last section of this chapter.

11



3.1 Maximum Shannon entropy

In "A Mathematical Theory of Communication” [43] Shannon considered the following:
Given a set of n events occurring with probabilities py, ..., p,, can we define a measure

H(p1, ..., pn) of how uncertain we are of the outcome?

Shannon argued that if such a measure H existed, it should satisfy a set of axiomatic
continuity, monotonicity and consistency requirements. He could show that the resulting
H is uniquely defined. Referring to its formal relationship with Boltzmann’s H-theorem

he called it entropy:
H(py,....pn) = —KZPi log p; (3.1)

i=1
K is any positive constant and can be considered as a choice of base for log. Consistent

with lin(l)plogp = 0, the convention 0log 0 = 0 is used.
p—

While Shannon’s axioms were the first ones used to derive equation (3.1), they are not
unique. Later derivations with weaker hypothesis include prominent formulations by
Khinchin [44, 45] and Faddeev [46] as well as generalizations by Rényi [47] and Tsallis [48],
see e.g. [49, 50] for further reading. Faddeev’s theorem does not contain Shannon’s original
monotonicity requirements and is often considered more intuitive in its characterization

of H; slightly adapted from Conrad [51], Faddeev’s axioms read:

Forn >2, let A, = {(p1,...,pn) : 0 <p; < 1,5 p; = 1}. Suppose on each A, a function
H, : A, — R is given with the following properties:

1. Continuity: Each H, is continuous.
2. Symmetry: Fach H, is a symmetric function of its arguments.

3. Consistency: For n > 2 and all (p1,...,pn) € H, with p, >0, and t € [0,1],
Hn—l—l(pla «ovy Pn—1, tp'rw (1 - t)pn) - Hn(plu "'7pn—1)pn) +an2(t7 1 - t)

While the continuity and symmetry requirements seem intuitive, the consistency condition
might need some interpretation: If we can describe the probability p; of one event as two
separate events with probabilities £ and 1 — ¢, then the total entropy equals the entropy
of the combined events plus a p;-weighted entropy for the separate events. Qualitatively
speaking: No matter in what ways a given probability distribution can be dissected, its

entropy has to be the same for every way possible.

These requirements suffice to derive the entropy expression (3.1) (e.g. [52]), the choice of

constants is a matter of convention.

Following Shannon’s original narrative again, we now examine the simple case of only two

12



possible events H(p, (1 — p)) in Figure 3.1 to illustrate a few properties of H which hold

true for the general case:

o H(p1,...,pn) >0, ifforien:0<p;, <1

If we are uncertain about the outcome, the entropy is always bigger than 0.

e H(p1,...,pn) =0, if forany i € n: p; = 1.

If there is no uncertainty about the outcome, the entropy is 0.
e H(pi,...,pn) is concave.

e H(pi,...,pn) is maximal, if for all i € n : p; = 1/n.

If all outcomes are equally likely, the entropy is maximal.

1 -

H(p,(1-=p)) 0.5

50% 100%

p

0%
Figure 3.1: The binary entropy function of two possibilities p and (1 — p) for log base 2.

Figure 3.1 can be seen as the representation of a coin toss: If it is a perfectly fair coin, our
uncertainty about the outcome is highest. If it is biased in some way, our uncertainty is

lower. If we know it always comes up one way, there is no uncertainty about the outcome.

It is not unexpected that out of all possible distributions over p1, ..., p,, the uniform distri-
bution (Vi € n : p; = 1/n) has maximum entropy. Shannon treated the uniform distribution
as a special case and Khinchin even used this property as an axiom. Jaynes argued that
this can be seen as a deeper foundation of Laplace’s principle of insufficient reason: If
there is no reason to think otherwise, we should assign equal possibilities to all events.
But the notion of entropy as a numerical uncertainty measure allows us to extend this
principle to cases where we do have reason to think otherwise. According to Jaynes, the
probability distribution that uniquely reflects our limited information is the one which

retains the highest uncertainty while reproducing the imposed constraints; any other dis-
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tribution with lower entropy contains more information than originally supplied. This is

the Maximum Entropy principle.

While Shannon acknowledged the formal relationship between his and Gibbs’ entropy
measure, Jaynes argued that they are in fact the same concept. According to Jaynes,
Gibbs was the first one to apply MaxEnt for the special case of statistical mechanics [42,
53] when he chose "the distribution in phase which without violating this condition gives
the least value of the average index of probability of phase” [54, p. 143]; "the average
index of probability with its sign reversed corresponds to entropy” [54, p. 44].

However, this work does not focus on the relationship between statistical mechanics and
information theory, but on MaxEnt as a general tool for probabilistic inference. So what

are the features of a MaxEnt solution based on the concepts introduced up to this point?

Using the coin toss (Figure 3.1) as an example again, we have seen that without addi-
tional constraints MaxEnt predicts equal probabilities for heads and tails. This does not
necessarily mean that the coin has to be fair of course. MaxEnt does not return the "true”
but rather the most ”ignorant” or "noncommittal” distribution based on the information
supplied. If the experimental observations contradict the MaxEnt solution, it implies that

we don’t know enough about the coin: There might be unknown missing constraints.

What does a constrained prediction look like? Setting formalisms aside for now, we can
qualitatively state the following: The general MaxEnt prediction is characterized as the
"most uniform” distribution consistent with the imposed constraints; the unconstrained

MaxEnt solution acts as a pressure towards uniformity.

Speaking in terms of Bayesian probability theory, this is of course based on the implicit
assumption of equal a priori probabilities. While this choice might seem plausible in
many cases, like a coin toss, we would not argue that this holds true for the general case.
If we allow for the outcome of the coin landing on its edge, MaxEnt would predict a
highly unintuitive posterior probability of /3 for all three events. While we might not be
able to quantify our prior "state of ignorance”, the uniform distribution does not seem

representative.

This notion was not anticipated by Jaynes in his original adoption of MaxEnt in 1957, but
five years later [55]. While still insisting on the generality of MaxEnt, he identified the
uniform distribution as a special prior contained in the definition of Shannon entropy; but
by acknowledging that our measure of uncertainty is not absolute but relative, the ques-
tion of how prior knowledge should be defined complicates Jaynes’ simple and seemingly

intuitive principle.

While MaxEnt and its derivatives are nowadays well established procedures in practice,
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the points mentioned involve many epistemological implications. The resulting contro-
versies surrounding MaxEnt will be addressed in the last section, for now we focus on

establishing the necessary concepts: How can we formalize this generalization of Max-
Ent?

Shannon entropy was derived under the key assumption that H is a function of py, ..., p,
only, with no explicit mentioning of a prior distribution. The uniform prior is implicitly
contained in the Shannon entropy by definition. Hence, in order to generalize our infer-
ence method, we need an entropy measure which explicitly incorporates arbitrary prior

distributions without violating the established MaxEnt principle.

3.2 Minimum relative entropy

In 1951 Kullback and Leibler introduced a generalized expression of Shannon entropy [56].
Its first appearance can again be traced back to Gibbs [54, p. 136]. Following the discrete

notation established in the previous section, it is defined by equation (3.2):

Dl(p1, -, ) (@1, -+ Gn)] szlC)g* (3.2)

D is short for Kullback-Leibler-Divergence, {p1, ..., p,} and {¢i, ..., ¢, } denote probability
distributions over the same set of n events. In the case of ¢; = 0, D is only defined if
p; = 0 and the convention 0log 0 = 0 applies. For our purposes we identify {qi, ..., ¢, } as
the prior and {p, ..., p,} as the posterior distribution.

First, with regard to the concepts introduced in the last section, the relationship with

Shannon entropy is established. For this we set {q,...,¢,} as the uniform distribution:

D((p1y ooy D) || (Mg oy L) Zpllog 1/

= sz‘ log p; + sz‘ logn

=1 =1

The Kullback-Leibler-Divergence with respect to the uniform prior equates to the negative

Shannon entropy plus a constant; D contains H as a special case.

Due to this relationship, D is also called relative entropy. It is often illustrated as the
information gain when updating from a prior to a posterior, Kullback referred to it as the
information divergence of {py, ..., p,} with respect to {q1, ..., qn}. It serves as a measure of

difference (or similarity) between probability distributions. However, it is not a distance
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metric since it does not satisfy the symmetry condition and triangle inequality.

Expressed in these terms the Shannon entropy H(ps,...,p,) can be seen as a difference
measure between {pi,...,p,} and the uniform distribution {1/n,...,1/n}. With regard to

MaxEnt we can therefore conclude:

The probability distribution {p},...,pL} that maximizes H(pi,...,pn) also minimizes

D[(pl, ---apn)”(l/”a s 1/”)]'

D and H share other similarities as well, some noteworthy properties are stated without

proof:

1. The Gibbs inequality: D[(p1, ..., pn)|l(q1, .-, qn)] > 0.

2. D[(p1s--s0n)ll(q1, -y ¢n)] = 0 if and only if {p1,....,pn} = {@1, .-, ¢u }-
3. D[(p1; s pa)ll(q1, - qn)] is convex.

Extending Maximum Shannon entropy to Minimum relative entropy was first proposed
by Kullback in 1959 [57]. Jaynes adopted its formalism in 1963 to avoid the invariance

problems of Shannon entropy in continuous notation [58].

As indicated in the previous section, the general process of minimizing D is straight-
forward: We infer a posterior distribution {pi,...,p,} by constrained minimization of

D((p1, ..., pn)|l(q1, -+, ¢n)] Where {q1,...,¢,} is the prior distribution.

As mentioned before, the complicated matter is the choice of the prior. Jaynes argued
that "prior probabilities should be those with the maximum entropy consistent with our
prior knowledge” [55, p. 185]. By this logic the MaxEnt principle can still define an
objective prior state of knowledge which allows for the inference of a posterior based on
additional constraints. In terms of Bayesian probability theory the prior encodes degrees

of beliefs; an inherently subjective notion of prior knowledge.

This work will not indulge in these debates. MaxEnt solutions occur in various contexts
and scenarios with different interpretations, some of which have already been presented
above. In some cases the notion of entropy as an uncertainty measure does not even

occur.

Whether we consider the prior as subjective, objective or something different, the general
mathematical framework is equivalent. Setting the epistemological implications aside for
now, the general solution of constrained MaxFknt optimization will be derived in the next

section.
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3.3 Maximum Entropy distributions

The following derivations have been described by many other authors before. In particular,
the depictions here are based on illustrations of Jaynes [53], Bricogne [59, 60] and the
thorough write-up of Wu et al. [61].

The random variable X takes the values zq,...,x, with probabilities pq,....,p,. As
shown in (3.3), D and H are connected via opposite signs. To stay consistent with
the MaxEnt terminology and conventions established by Jaynes, instead of minimiz-
ing D[(p1, ., pn)|l(q1, -, qn)] We choose to maximize —D|(p1,...,pn)ll(q1, -, ¢n)], Where
{q1, .., qn} is the fixed prior distribution over the same set of events. Thus, we can

write —D as a function of py, ..., p, alone and define —D := S.

max S(pi1, ..., Pn) (3.4)

P1;--5Pn

A general constraint of the maximization is given by the normalization condition:
Fy = Zpi =1 (3.5)
i=1

Additional m expectation values of arbitrary functions f;(X) are denoted as equality

constraints I with j =1, ...,m:

F = ilpifj () = (,(X)) (3.6)

By introducing m + 1 Lagrange multipliers, we can write the constrained optimization

problem as a Lagrangian:

n

i=1 j=1 =1

( i=1

For a particular distribution {p},...,p5} to be a maximizer of S(pi,...,p,) it must be a

stationary point of £, so its partial derivatives with respect to p; (i = 1,...,n) are zero.

This is of course only a necessary but not a sufficient condition for an absolute minimum.
The uniqueness of this minimum will not be shown here, see e.g. [53, sec. 11.6] or [62] for

a proof.
The partial derivative with respect to p; is:

oL
Op;

= —logp; — 1 +1logqi + > Nifj(z:) + Ao (3.8)

=1
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On the stationary point this equates to zero and by rearranging we get:

logp; =logq; — 14 Ao+ Y Ajf(a) (3.9)
=

Taking the exponential of both sides yields:

pi = qrexp(—1+ Xo) exp(D_ A, fi(x:))
=1
qi

B exp(l — Ao) P z_: Aifilw) (310

Ao can be written as a function of the other multipliers by employing the normalization

condition (using k as an alternative index):

S S o S
exp(l — \g) = qu exp Z)\ fi(zk)) (3.12)

Z is called the partition function. Substituting it into equation (3.10) we get:

qi
She1 e exp(X7y A fj(wr)

m
pi = exp(Y_ A, fi(wi) (3.13)
j=1
Equation (3.13) is the general form of a MaxEnt distribution or rather a "minimum
relative entropy distribution”. The main achievement of this derivation can already be
seen: By expressing p; as a function of Ay, ..., \,,, the number of dimensions of the original
optimization can be drastically decreased; in fact only the number of constraints influences

the dimensionality of the problem, not the number of possible events.

The resemblance of (3.13) with Gibbs’ canonical ensemble is part of Jaynes’ orginal nar-
rative. In more general terms the MaxEnt distribution is part of the exponential family
of probability distributions. Other noteworthy distributions in this family include the
binomial, multinomial, exponential, chi-squared and normal distribution. In fact some
members of the exponential family are MaxEnt distribution under specific constraints,

the normal distribution is probably the most prominent example, see e.g. [51].

At the stationary point the partial derivative of the Lagrangian (3.7) with respect to \;

equates by definition to the constraint Fj:

8£
8)\ szfj (3.14)
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Substituting p; with the MaxEnt distribution in (3.13) we obtain the constraints F} as

functions of A, ..., \,.:

B =3 i) & exp(3 Au;0) .15

Equations (3.12),(3.13) and (3.15) are the so-called entropy equations. These m equations
with m unknowns could already be used to determine the Lagrange multipliers Ay, ..., A\,
and p;(A1, ..., \n). However, the entropy equations exhibit additional properties worth

investigating.

First we examine the corresponding maximized Sy,.. = [— Y1, Pi 08P /g;)mas. As seen in
(3.13), the probabilities p; are a function of Ay, ..., A, alone, so S, is a function of the
constraints F; only and not p;. By substituting p; with the MaxEnt distribution (3.13)

and employing the normalization condition (3.5) we get:

Smax<F17 7Fm> = - sz log&

. J exp(zgnzl Aifi(xi)

i—1 4
:logZZpZ Z)\ szf] l'z
i=1 1=
—log Z — Z)\ij (3.16)
j=1

In an equal manner the MaxEnt distribution (3.13) can be used to simplify the original

Lagrangian stated in (3.7):

L(D1s s Prs A0y s Am) = — >_Di logf + ZA szfj ) + ol Zp@ —1)
i=1 i i=

=1

Using the normalization condition (3.5) we can simplify and rearrange:

m

£(p17‘ 7pn7)\07"'7 szlog*—i‘ZA szf] xl ZAJ‘F}

In analogy to (3.16) we substitute p; with the MaxEnt distribution (3.13) which yields:

m

L1, Am) =log Z Y pi — Zpi Z M) + 20X 2 opifi(wi) = 3N
' j j=1 =1 j

i=1 —

=log Z(A1,...s Am Z)\ F; (3.17)

This is the same expression we derived for S,,,, in (3.16). This is no coincidence. The



connection becomes clearer by again investigating the partial derivative of L(Ay, ..., A\p):

oL dlog Z
= 0= _F
A O\ !

(3.18)

We can calculate the derivative of log Z explicitly and compare with (3.15) to verify the

equality above:

dlogZ 10z
mjfzm-
EZ ‘rl qzeXpZAfj xz)
i=1 j=1
—F, (3.19)

This is an alternative way of writing the entropy equation in (3.15). Substituting the

connection found in (3.19) into the expression for S, in (3.16) we get:

9log Z(A1, .o, Am)
O\

Smam(Flqum) ZIOgZ(Al,,)\m) _Z)\J (320)
j=1

Smaz as a function of Fi, ..., F,, equates to a function dependent only on A, ..., \,.

The partial derivatives establishing the connection between Sp,a.(F1, ..., Fy,) and

log Z(A1, ..., Am) indicate an important duality: Sy, and log Z are Legendre transforms

of each other, either function gives a full description of the system.

The Lagrange multipliers Ay, ..., A\,, can therefore be expressed in an equal manner using
the derivative of S, with respect to F;. Under consideration of (3.19) the partial
derivative of (3.16) is

8Smax(F1a---7Fm) . GlogZ 6)\]

= Y \Redd Y
OF, oF;,  ioF, Y
810gZ 8)\] 8)\]
= — F. -\
o\, oF;, oF, 7
= -\ (3.21)

By substituting (3.21) into (3.16) and rearranging we obtain log Z(A4, ..., A,,) as a function
of Spaz(F1, ..., i), the analogue expression to (3.20):

10g Z(/\17 ceny )\m) = Smax(Fla 7Fm) - Z}FJ

J=1

(3.22)

This duality allows for a very convenient alternative to the constrained maximization of
S(p1,...,pn). The potential represented by L(A, ..., A,,) in (3.17) can be shown to be

strictly convex (e.g. [61]). If a stationary point exists, it is the unique absolute mini-
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mum of L£(Aq,...,A\p,). For a given a set of constraints {F}, ..., F);} the unique minimiz-
ing set {A],..., A5} equally solves the entropy equations in (3.15) and (3.19). In fact:
Smaz (AT, s ML) = L(AT, ..., AF)), as the direct comparison of (3.16) and (3.17) shows.

The above transformation of a constrained into an unconstrained optimization problem
follows a common procedure in convex optimization theory. By expressing the primal
variables p; as a function of the dual variables )\; and substituting back into the Primal
Lagrangian, the corresponding Dual is obtained. Whether the Dual represents a solution
or only a higher/lower bound to the original problem depends above all on the convexity

properties of the investigated function.

In the case of Minimum Kullback-Leibler-Divergence and Maximum Entropy respectively
the Lagrange Dual was first described by Charnes and Cooper in 1975 [63] and extended
in 1977-78 [64, 65]. More often cited is the independent report of Alhassid et al. in
1978 [62] who derived the connection from the Gibbs inequality alone without any notion

of Lagrange or Legendre duality.

To summarize: The negative Kullback-Leibler-Divergence was introduced as a suitable
measure for constrained optimization. Since we are investigating probability distributions,
the normalization condition (zeroth moment) was identified as a general constraint. Addi-
tional equality constraints were introduced in the form of expectation values of arbitrary
functions. This constrained maximization problem was then expressed as a Lagrangian.
Holding the Langrange multipliers, i.e. the dual variables, fixed and examining the par-
tial derivative with respect to the probability distribution, i.e. the primal variables, a
general expression for the distribution was obtained: The Maximum Entropy distribution
was found to be a function of the Lagrange multipliers alone, the dimensionality of the
optimization problem does not depend on the number of possible events. As a conse-
quence the maximized negative Kullback-Leibler-Divergence was identified as a function
of the constraints only. Substituting the general Maximum Entropy distribution into
both the negative Kullback-Leibler-divergence and the Lagrangian revealed an instance
of duality: Following a general scheme in convex optimization, the problem of solving a
system of linear equations posed by the Primal can be transformed into an unconstrained

minimization of its corresponding Dual.

The minimization of the Dual is straightforward and can readily be implemented using

Newton’s method or other root-finding algorithms.
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3.4 Why Maximum Entropy?

This work attempts to find a solution to an underdetermined inverse problem: Inferring
a probability distribution from insufficient information. Naturally this raises the question
of how we justify the selection of one out of many possible solutions. Why Maximum

Entropy?

It turns out this cannot be answered unambiguously. In order to contextualize the specific

use of MaxEnt in this work, a brief overview of MaxEnt rationales is given in this section.

While entropy functionals turned out to be very robust both in a mathematical and
historical sense, it still depends on what justifications are considered plausible. In the
first application of MaxEnt in 1957 Jaynes justified his choice of Shannon entropy based
on its axioms, its interpretation as an uncertainty measure and analogies to statistical

mechanics.

We followed this well established and somewhat intuitive narrative to introduce the Max-
Ent method, but of course this reasoning is debatable; the Gibbs paradox or Maxwell’s

demon might come to mind.

Consequently, MaxEnt rationales and their extensions have become more and more so-
phisticated. Indicative of this debate’s persistence, in 1991 Csiszar still addresses "the
question of what selection rules are ’good’” [66, p. 2032] and concludes: ”"Unfortunately,
it is hard to give a mathematical meaning to this question. It does not seem possible to
define a general criterion by which the goodness of selection rules could be compared.” [66,
p. 2032-2033]

Csiszar chooses to "adopt an axiomatic approach and consider those selection rules as
‘good’ that lead to a logically consistent method of inference, in the sense of satisfying
some natural postulates” [66, p. 2033]. Rather than basing the method on the axioms of
the information measure, Csiszar opts for an axiomatization of the method itself. This
follows an approach first devised by Shore and Johnson in 1980 [67], notable later alterna-
tives include works by Skilling [68], Paris and Vencovska [69] and more recently Caticha
and Giffin, who derived the compatibility of the "Maximum Relative Entropy” method
and Bayesian Updating as a consequence [70-73]. Knuth and Skilling’s "Foundations of
Inference” [74] has an even wider scope, nonetheless it offers an axiomatic characteriza-
tion MaxEnt and entropy measures in general. Both Caticha and Skilling comment on

the unique role of the Kullback-Leibler-Divergence in this context, see e.g. [71, 75-77].

What unites these approaches is that entropy and its maximization are derived from re-
quirements of consistent reasoning. As Caticha puts it: ” Entropy needs no interpretation.

We do not need to know what ‘entropy’ means, we only need to know how to use it.” [70,
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p. 77]. While these approaches do not rely on a particular concept of entropy, their

respective axioms can and have been objected [78-80].

Other justifications rely on relationships with other established principles in statistics. As
Jaynes puts it, in a frequentistic view ”"the probability distribution which maximizes the
entropy is numerically identical with the frequency distribution which can be realized in
the greatest number of ways” [81, p. 8]; an observation dating back to Boltzmann and
generalized in Sanov’s theorem [82, 83]. Closely related is the finding of Van Campenhout
and Cover [84] who showed the asymptotic equality between conditional and MaxEnt
distributions. This was later extended by Csiszar in his conditional limit theorem [85]:
Csiszar argues that the asymptotic agreement between MaxEnt and Bayesian Updating
allows for a mutual justification of both methods [86]. Caticha points out that large
ensemble scenarios might not be applicable to the general case, but the law of large

numbers could still be used as a consistency argument [75].

However, the compatibility of Bayesian Updating and MaxEnt has already been indicated
in 1980 by Williams [87] without referring to asymptotic behaviors. In 1973 Akaike linked
Fisher’s maximum likelihood method [88] with information theory and MaxEnt [89], which
he related to Bayesian statistics in later works [90, 91]. In their ”Alternative approach
to maximum-entropy inference” [92] Tikochinsky et al. relate the MaxEnt distribution to
Fisher’s concept of sufficient statistics [88] and other more physical considerations without
invoking any particular concept of entropy or information. A game theoretic viewpoint

was given by Topsge [93].

Recommendable background literature includes Caticha’s lecture notes on Bayesian prob-
ability theory, entropy and inference [75], "Probability Theory: The Logic of Science” by
Jaynes and Bretthorst [53], Csiszars overview on MaxEnt [94] and entropy axiomatiza-
tions [50], Uffink’s comment on the MaxEnt constraint rule and its relation to Bayesian

updating [95] as well as the short write-up on entropy by Georgii [96].

To simplify the arguably complex epistemological debates, we now consider MaxEnt in the
context of this work. We asked: To what extent can arbitrary probability distributions

be reproduced given only a set of probability-weighted average function values?

We want to assess the cumulative information content provided by a set of ensemble
averaged experimental observables. The problem is inherently underdetermined, but to
what extent can we still draw conclusions about the underlying system? What answers

can MaxEnt provide?

Jaynes argued as follows: "The principle of maximum entropy is not an oracle telling
which predictions must be right; it is a rule for inductive reasoning that tells us which

predictions are most strongly indicated by our present information.” [53, p. 370]
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MaxEnt is used as a tool to assess information content. As Caticha puts it: "It is not
just what you happen to know; you have to know the right thing. The constraints
that should be imposed are those that codify the information that is relevant to the
problem under consideration.” [75, p. 88] If we don’t know "the right thing”, MaxEnt can
guide us towards the design and implementation of experiments providing the missing
information. This is the interpretation of MaxEnt we follow in this work. It is also
the key difference to previous MaxEnt studies concerned with IDPs [18-20], which did
not survey the amount nor the specific combination of experiments. Missing information
was instead introduced by constructing a singular, highly sophisticated prior; its overall

influence was not assessed.

However, the prior is arguably the most controversial parameter in the MaxFEnt framework.
Whatever we choose to "best” represent our prior knowledge, it is inherently subjective.
Moreover, the use of only one prior makes it difficult to asses its dominance in the resulting
predictions. This work opts for a different approach: The goal is to design and validate
an experimental procedure. While the use of different priors arguably highlights the
underdetermined nature of the underlying problem and the relativity of the resulting
predictions, it allows for a better evaluation of the information content supplied by the
experiments. The more the possibility space is restrained by experimental observables, the
less pronounced the influence of the prior should become: If a prediction is dominated by
the prior, it indicates a lack of experimentally supplied information. After all, experiments

should be able to contradict possibly unjustified assumptions.

As indicated above, other interpretations of MaxEnt are equally justified; the mathemat-
ical framework is ultimately the same: To assess the validity of a specific combination of
experiments the distribution with the lowest relative entropy with respect to a prior is cho-
sen. While subjectivity cannot be eliminated, its culmination in form of the prior is clearly
defined. The corresponding formalisms are well-established, simple, low-dimensional and

can be computed highly efficiently.
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Chapter 4

Methods and Implementation

4.1 Geometrical modulation of CCR rates

Not all CCR experiments and their angular dependencies investigated in this work have
been described in full detail. They were either not thoroughly parametrized in previous
studies or have not been devised yet. To investigate still unexplored CCR rates and
to stay internally consistent, the geometrical dependencies were generated from scratch
with a common protein geometry. Since there is no documented geometry to reuse, a
backbone was constructed with Avogadro [97]. Bond lengths and angles were adapted
from Momany et al. [98], slight angle deviations necessary to construct the backbone were
kept to a minimum. The bond lengths can be found in Table 4.1. The protein with
¢ = 1 = w = —180° is depicted in Figure 4.1, its corresponding x,y,z-coordinates are
documented in Table 4.2.

Figure 4.1: 3D representation of the model protein backbone with ¢ = ¥ = w = —180° used to
generate the geometrical modulations of arbitrary CCR rates.
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Table 4.1: Bond lengths according to [98] used to construct the model protein backbone (Fig-
ure 4.1).

bond type length [A]

N-H 1.00
C-H 1.00
C-0O 1.23
C-N 1.45
C-C 1.53

Table 4.2: The model protein backbone (Figure 4.1) in x,y,z-coordinates with ¢ = ¢ = w =
—180°.

atom  x [A] y [A] z [A]

C§  3.65662 0.00927 -0.98006
C{  2.13500 0.01123 -1.13998
Op  1.62493 0.02254 -2.25917
Ny 1.45000 0.00000  0.00000
HY  1.87262 -0.08271 0.90253
Y 0.00000  0.00000  0.00000
Hy -0.33381 0.81771 -0.46895
C’f -0.42991 -1.25812 -0.75711
C7 -0.52182 -0.01279 1.43821
O;  0.26150 -0.02925 2.38639
Ny  -1.84661 -0.00472 1.55557
HY  -2.47453 0.06788  0.78069
Cg  -2.48090 -0.01517 2.85943

With the protein backbone in Figure 4.1 as a template, different CCR rates were generated
using Python scripts.

First the principal components of the carbonyl CSA were set in accordance with Teng et
al. [99): C", (0.. = 90 ppm) was defined as the cross product of the ¢’-O and the C’-C*
bond unit vectors, C’, (04, = 244 ppm) and 5’y (0, = 178 ppm) as clockwise rotations
of the C’-O bond unit vector around é’z by 82° and -8° respectively, approximating the

O-C'"-N angle with 120°.

The rotations were implemented using the Euler-Rodrigues formula, describing a coun-

terclockwise rotation by an angle 6 around a unit vector (e, e,,e,) as a matrix R:

a? +b* — * — d 2(bc + ad) 2(bd — ac)
R:= 2(bc — ad) a’+c* =0 —d? 2(cd + ab) (4.1)
2(bd + ac) 2(cd — ab) a?+d>—b -
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where

0
a = cos —
2
0
b= —sin —e,
2
c:—sin§ey
0
d = —sin —e,
2

Rotations around the C7-N; and the C¢-C] bonds were performed in 1° steps, modifying
the coordinates corresponding to changes in ¢ and v and calculating CCR rates for 3602
angle pairs: {(¢,v) € Z* | —180° < ¢,1 < 180°}. The geometry-dependent components

were calculated according to equations (4.2), (4.3) and (4.4):

Thpeh = o) (4.2)
Mﬁn ||073||
resay’ = 2> 0uYa(05 1) (4.3)
||ﬂ§|| e :
CSA,CSA
ooy, = =22 0ii03; Y201, c1,,) (4.4)
1€Q jEQ

with

Q) = {z,y, z} containing the Cartesian coordinate indices,

« Y5(0;5) = 1/2(3 cos? 0. - 25 — 1) as the second order Legendre polynomial,
e cosl,; = defining the projection angle and

lla H Hbll
o A, B, C and D denoting arbitrary nuclei subject to dipolar (DP) coupling.

Since only geometrical modulations will be surveyed in this work, the spectral density
functions were not factored in. Corresponding with the [—0.5,1.0] interval of Ys, the
functions were instead normalized to their biggest positive value to ensure a stable nu-
merical minimization later on; consequently, the carbonyl CSA components enter the

evaluation not in absolute but relative terms.

4.2 Probability distributions generation

Different kinds of distributions in (¢,1)-space were employed in this work. The sample

distributions used to generate constraints and to assess the quality of the MaxEnt solutions
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are based on elliptical two-dimensional Gaussians:

G(¢,¥) = Aexp(—(a(d — ¢o)* 4 2b(¢ — ¢o) (¢ — 1ho) + (1 — 10)?)) (4.5)

where
sin?6  cos?#
=92 T2
oy o5
B sin20  sin 20
4ai 4035
cos’f  sin?0
T o T2
oy o

with

the center at (¢o, o),

the standard deviations o4 and oy,

the amplitude A and

a rotation by € around the center, counterclockwise in the Ramachandran plot.

Different Gaussians were used to represent regions of interest. The study of Hollingsworth
and Karplus [100] served as a useful reference in constructing the list of motives: right- and
left-handed o-helical regions o, and «y, the canonical right-handed a.. helix, a polyproline-
IT region PP-I1 as well as [ and extended (., regions at lower v values. Like the
geometrical functions, the Gaussians were generated on 360 by 360 grids, the parameters
are documented in Table 4.3. A graphical sketch of the motives can be found in the
following chapter (Figure 5.1). To construct a sample distribution the Gaussians were

generated with the desired amplitudes, summed up and normalized.

Table 4.3: Motive parameters employed for the generation of arbitrary sample distributions
according to equation (4.5).

motive ¢y [°] Yo [7] oy [7] oy [7] O[]
o 65 35 10 25 30
o, 85  -20 13 40 40
Qre 63 -43 5 7 45
3 130 145 17 32 40
Bewt  -130 75 10 18 0

PP-IT -75 155 13 22 40

Besides the sample Gaussians, two priors were used for the subsequent analyses, which

are depicted in the next chapter (Figure 5.2).
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The uniform prior simply assigns equal probabilities to all angle pairs: p(¢, 1) = 1/3602,
o, € Z:—180° < ¢, < 180°.

The knowledge-based prior is adapted from the library of Mantsyzov et al. [20]. It uses
high resolution X-ray structures from the PDB (< 2.0 A, R factor lower than 23 %,
maximum pairwise sequence identity of 50 %) from which all fragments were extracted
that are at least three residues long and feature no backbone-backbone H-bonding (cut-off
energy < —0.7 kcal/mol). While derived from structured proteins, this filter is an attempt
to construct a prior representative for IDPs by capturing the "more unstructured” parts
of the PDB.

The Mantsyzov library was downloaded from the MERA webpage [101]. Ill-defined angle-
pairs of terminal residues were excluded as well as glycine and proline residues to reflect
the experimental limitations of this work’s setup, reducing the original 195859 entries to
147091. The angles were rounded to integers, transferred onto a 360 by 360 grid and

normalized, yielding the knowledge-based prior employed in the following analyses.

4.3 Entropy optimization routine

The MaxEnt solutions were calculated in accordance with Section 3.3. The ensemble

averages are given as

Ty = 22D Th(6,¥)ps(9,9) (4.6)
¢
with
e 9, EZ:—180° < ¢, < 180°,
o ps(¢,1) as a given sample distribution and
o I'v(¢,v) as the k-th CCR rate, k = 1,...,m.

The Lagrange potential is
L1,y M) =log Z( A1, .oy Am) _gAk<F’“> (4.7)
where
Z2=3 2 Ao¥) (48)

26, 9) = 4(d,9) expé MT4(6,9) (4.9)

29



with

q(¢,1) as the prior distribution and

e )\, as the k-th Lagrange multiplier, £ =1, ..., m

For the Newton minimization of (4.7) the analytical first and second derivatives are used.

The first derivative with respect to \; (i = 1,...,m) is:

oL

N

Using product and chain rule, the second derivative with respect to A; (7 =1, ...,

be calculated as:

dlog Z

ONi — (1)

107

=z, ()

= L ST )2(6,8) — (1)
¢ Y

oL 0PlogZ
ONiOA; )Y O\
Loz aozoz
Z&)\Z@)\j 72 O\, O,
1
=5 Li(,¥)z(¢, )

B
ib ¥
Z?

Y Tile, )2(0, ) D0 D Ty, ) 2(9,90)
P o Y

(4.10)

m) can

(4.11)

It can easily be seen that the order in which the partial derivatives are taken is inter-

changeable, thus, the corresponding Hessian matrix is symmetric. With the Jacobian and

the Hessian constructed from (4.10) and (4.11), the Lagrange potential £(Aq, ...

is minimized using the SciPy [102] implementation of the Newton method.

The minimizing Lagrange multipliers Aj, ..., A}

Pue(d, ) as:

AGKD mpZ&n¢w»

621 (¢, 9) exp(5iy NiLw(9, %))
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Chapter 5

Results

This work aims to explore experimental possibilities in a synthetic setting. MaxEnt was
introduced as a general method with broad applicability and many degrees of freedom:
We can vary the amount and combination of function constraints and use any number of
prior and sample distributions. A systematic exploration of all possibilities is neither re-
alistic nor desirable, the particular choices in the subsequent evaluations follow pragmatic

considerations:

What sample probability distributions do we want to reproduce? Clearly, the narrow
and localized distributions of globular proteins are not of primary interest. While steric
exclusion is an evident restraint, it is not clear what probabilities we should assign within
the allowed regions. The sample distributions to be reproduced can be anything considered
interesting to characterize, which is of course subjective. In this work a set of differently
weighted Gaussians in (¢,1))-space are used covering the regions of interest as illustrated in
Figure 5.1. Details regarding their generation are described in Section 4.2. Of course other
distributions with different features or alternative origins like MD simulations would be
equally applicable. However, only the corresponding set of ensemble averaged constraints
enter the subsequent mathematical treatment, the features of the sample distributions are

not conserved.

The prior, on the other hand, is not just one out of many distributions we might want
to reproduce. It is a singular distribution which should somehow represent the plurality
of possible distributions. It strongly affects the predictions of the MaxEnt formalism, it
is the standard by which we asses the predictive quality. The prior assumptions act as
an additional source of information; any prediction without sufficient experimental con-
straints will be dominated by the prior. As will be illustrated later, the uniform prior
offers particular advantages in this regard because it lacks any variation in density. Thus,

any deviation from uniformity directly results from the introduced constraints; every fea-
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Figure 5.1: Illustration of the motives used to assess the MaxEnt formalism: right-handed o,
left-handed «;, canonical right-handed «.., polyproline-II PP-11, $ and extended (... Details
are given in Section 4.2.

ture in the predictions represents the cumulative information content of the experiments.
In a way the uniform prior is the most ”ignorant” or "noncommittal” extreme to which

other priors can be compared to.

What other priors could be used as comparisons? Again, both simple and sophisticated
possibilities exist to derive what might be considered the most accurate representation of
prior knowledge, even a MaxEnt prior could be used [18, 103]; but be it a prior either
derived from first principles or a database, one could always debate whether the underlying
assumptions are too specific, general or unrealistic in some way. The prior debate cannot
be resolved here and this work does not attempt to do so. We are not concerned with
inferring "true” distributions: An underdetermined problem cannot have a unambiguous
solution. The ambiguities cannot be resolved, they can only be restrained. The MaxEnt
distribution is first and foremost interpreted as a representation of information, which
is always relative to its respective prior. Ideally a robust experimental setting should
introduce enough restraint to yield comparable results even for different priors. Since we
are attempting to asses the restraints introduced by CCR experiments and their potential
in IDP characterization, prior assumptions will be treated as variables and evaluated as

an additional degree of freedom.

The PDB-derived prior of Mantsyzov et al. [20] offers a convenient way to relate this
work to previous studies. Again, whether it is the "best” available prior is not considered

important at this point, it is merely a plausible option. Here, an adapted version excluding
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Figure 5.2: The two priors employed in the MaxFEnt calculations: The uniform prior on the left-
hand side, the knowledge-based prior on the right hand side. Details are given in Section 4.2.

glycine and proline residues will represent the knowledge-based prior. It is depicted in

Figure 5.2 together with the uniform prior. Details are covered in Section 4.2.

With the prior and sample distributions defined, the essential question of this work can
be addressed: What experimental constraints should be used to characterize the sample
distributions? The protein backbone allows for a multitude of possible combinations
of dipolar and/or CSA interactions, many of which have already been described in the
literature. Employing already established experiments appears to be a sensible choice.
Whether these suffice to characterize the chosen sample distributions remains to be seen
of course: The MaxEnt formalism provides the guideline for possible deviations from

established protocols.

5.1 Experimental procedure assessment

This section showcases the evolution of MaxEnt solutions with increasing amount of con-
straints. A simple sample distribution with equal ratios of oy, .., 8 and PP-II (Fig-

ure 5.3) is chosen for this purpose.

This procedure corresponds to the design of an experimental protocol similar to Kloiber
et al. [25]: Possible interactions along the protein backbone are successively chosen to

further improve the resulting prediction.
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Figure 5.3: The sample distribution used to assess the quality of the MaxEnt predictions. It
consists of equal ratios of oy, «,., § and PP-11, see Figure 5.1 and Section 4.2 for details.

5.1.1 MaxEnt solutions of existing experiments

Following the sequence of Kloiber et al. [25], we first examine four basic CCR experiments
which relate the H®-C® bond with either a carbonyl CSA tensor or an H"-N dipolar

vector to probe ¢ or ¢ (assuming w = 180°). Figure 5.4 shows the angular dependencies
of Pyaceci(¥) 38, Ter | mpce(0) [39], FHgVNi,chg(¢) [37] and Lyoce nx NMW) 23],

i+l
details regarding their generation are covered in Section 4.1. Using these functions to

generate constraints, their respective MaxEnt solutions can be calculated.

Figure 5.5 illustrates this process: The rows are labeled with I for "input”, U for the
“uniform prior” and K for the "knowledge-based prior”. Referring to the plots by their
row and column, /0 shows the sample distribution (Figure 5.3). The arrows point at
particular MaxEnt solutions in rows K and U. KO0 and U0 are the solutions with no
constraints applied, which equates to the respective priors: U0 is the uniform, K0 the
knowledge-based prior (Figure 5.2). Starting with /1, each + sign along row [ introduces a
new constraint function from Figure 5.4. The corresponding expectation values calculated
from 10 enter the MaxEnt solutions. Thus, the column number indicates the number and

type of constraints entering the predictions.

A first important observation is the distinct influence of the prior on the predictions. This
is a general feature of MaxEnt solutions: Since we are minimizing a distance measure,
the prediction is in a way the distribution ”closest” to the initial guess. If there is not
much additional information supplied, the solution mostly reflects its prior. The uniform
prior best illustrates this property: U1l adopts the shape of the constraint function I1. A
single Lagrange parameter exponentially weighs /1, the assigned probabilities are highest

or lowest at the corresponding extrema of I1. The result is highly unintuitive: The strong
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Figure 5.4: Geometrical modulations of different CCR rates according to Section 4.1. Upper
left-hand side: I'grace o/ (v). Upper right-hand side: T' HoCo HY N, (v). Lower left-hand side:

41" "i+1
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Figure 5.5: Illustration of the MaxEnt assessment: 10 is the constraint generating sample distri-
bution (Figure 5.3), I1 to I4 indicates the consecutive inclusion of CCR ensemble averages (see
Figure 5.4). Rows K and U are the corresponding knowledge-based and uniform prior MaxEnt
predictions.
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negative relaxation contribution of only 25 % «; dominates the ensemble average to an

extent that deems other motives unlikely.

The fine-grained shape of K1 might look more realistic, but this persuasive appearance
is only due to the prior assumptions in K0. A single experiment yields no noteworthy
restraints, the predictions are dominated by the prior. Additional constraints do lead to
more distinct predictions, best seen in the evolution from U1 to U4. However, the highest
densities still coincide with the extrema of the constraint functions, indicating that not

enough conflicting information has been introduced up to this point.

This is not unexpected of course, Kloiber et al. used two additional experiments to

investigate far less ambiguous distributions.

5.1.2 Extending established protocols

The above experiments (Figure 5.4) probe either ¢ or ¢, because the position of the H*-C*
bond vector does not vary upon changes of the neighboring dihedral angles. While featur-
ing an easy to interpret Karplus-like shape, this does of course mean that there is no pair-
wise distinction of regions in (¢,1))-space; functions of both ¢ and 1 arguably contain more
information. To resolve this Kloiber et al. chose to probe I'ge ce | goce(¢i,¥i-1) [40], an
interaction extending to neighboring residues. This has two disadvantages, the first being
an effective decrease of accessible residues due to the exclusion of glycine and proline.
The second drawback lies again in the fact that H*-C'* does not change upon variation
of ¢ or 1, limiting overall combinatorial possibilities: To yield a function of two dihe-
dral angles H*-C'® must be related to a H*-C® bond of a neighboring residue. C’ and
HN-N, however, can be varied in three pairwise interactions as functions of ¢ and .
Thus, forgoing I'ye co | gece (¢, Y1) allows for the inclusion of three alternative exper-

v v, (603) [104], Tor_ or(65, ) [105] and Ty . or (61, 4,) [106], which

i+17Y% i—17

are depicted in Figure 5.6.

iments: FHZ_NNZ_’H

Figure 5.7 shows the addition of the relaxation rates in Figure 5.6 to the MaxEnt evolution
from above (Figure 5.5). Again the improvements are most apparent in row U as «; and
«,. are captured with higher accuracy, albeit with shifted positions due to the extrema of
15 and 16. Note that the maximum of I5 shifts 5 into the upper left corner. 16, however,
proves incompatible within this region, correcting towards lower ¢ angles. Changes in
row K are again more subtle: The prior shifts the increase in a; to the correct position,
also a slight pronunciation of the p-region can be seen. This is due to the similarity
between 10 and K0: As most of the prediction is already present in the prior, no strong
changes are caused by the constraints. The uniform prior on the contrary is shaped

considerably by the constraints, allowing for a better assessment of the experimental
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Figure 5.6: Geometrical modulations of different CCR rates according to Section 4.1. Left-hand
side: FH,NN.,H.’LN.H(‘Z% ¢). Middle: Icy cr(¢, 1) Right-hand side: I'yn . o0 (6, 9).
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“»

¢ ¢ ¢ ¢

Figure 5.7: Extension of the MaxEnt assessment in Figure 5.5: 10 is the constraint generating
sample distribution (Figure 5.3), I5 to I7 extends the consecutive inclusion of CCR ensemble
averages (see Figure 5.6). Rows K and U are the corresponding knowledge-based and uniform
prior MaxFEnt predictions.

information content: At this stage the procedure still needs more restraints to allow for
meaningful deviations from the prior. Similarities between an investigated distribution
and its MaxEnt approximation might still be an artifact; additional experiments are
necessary. However, all possible combinations of routinely used dipolar vectors and CSAs
have been exhausted. The nitrogen CSA might come to mind as an additional possibility,

but since it is virtually axial symmetric and its principal axis is quasi collinear with the
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HY-N bond [107] it offers no relevant additional information. The predictions can only

be improved if more uncommon interactions are considered.

5.1.3 Suggesting new experiments

Options for CCR experiments are of course limited by the protein backbone, but there
are dipolar vectors which are still mostly unexplored. H*H?¥ is an example which has
proven its viability in a first application by Crowley et al. [108] probing I'yxy, g pa(¢).
Unlike the dipolar vectors surveyed up to this point, H*H" is not parallel to a chemical
bond. As a consequence, it exhibits an angular-dependent distance modulation and does
not show the same symmetric properties of the previous relaxation interactions. This
symmetry breaking property can act as an additional source of information which has not

been utilized up to this point.

Which additional relaxation rates should be probed? Generally speaking, both H*H¥ and
H¥H}Y, are valid options and many different interactions could be considered. However,
an exhaustive combination of all available vectors and /or CSAs as above is not practically
feasible: Due to spin relaxation, pulse sequences cannot be arbitrarily long and complex.
Furthermore, their design and implementation takes considerable effort and measuring
time is not an unlimited resource. Thus, a selection of few but informative experiments

should be preferred.

Exhaustive sampling of all available combinations is of course difficult even with other
possible dipolar vectors neglected. Possible interactions were instead assessed by their
practical feasibility and their general effect on the MaxEnt predictions above (Figure 5.7).
An optimum was found in two interactions which can be probed in a single experiment:

FC;’H'?HZ']YFI (77ZJ) and FCZ/’H;IHZN<¢7 ¢), ShOWIl ln Figure 58

The dominant maximum in the important 5 and PP-II region is the most noteworthy
property of I'c/ ya HY (¥). Since the relative positions of Cj and H}Y, do not change
with 1, no negative relaxation can be observed. The shape is therefore defined by the

angle-dependent distance modulation of HFH}Y,.

As a function of ¢ and ¥, ' yayn~(¢,1) exhibits a more diverse pattern. Due to the
higher distance between H® and HY with negative ¢, the highly populated regions around
a,., § and PP-I1 show weak relaxation contributions. Both positive and negative extrema

are found at positive ¢ angles, which are populated only by the a; motive.

In Figure 5.9 the addition of the two experiments to the MaxEnt protocol from above
(Figure 5.7) is shown. Lermony, (1) (I8) proves to be highly specific, as can be seen in U8:
The prediction of U7 proves incompatible with the additional constraint of I8, splitting
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Figure 5.8: Geometrical modulations of different CCR rates according to Section 4.1. Left-hand
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Figure 5.9: Extension of the MaxEnt assessment in Figures 5.5 and 5.7: 10 is the constraint
generating sample distribution (Figure 5.3), I7 to 19 extends the consecutive inclusion of CCR
ensemble averages (see Figures 5.6 and 5.8). Rows K and U are the corresponding knowledge-
based and uniform prior MaxEnt predictions.

the single peak in the 8-PP-I1 region of U7 in two. With the addition of I'c/ ya HiN(¢, V)
(19) the split is blurred and densities are shifted. Most notably the position of a; moves
towards more realistic ¢ angles. In this case, not the extrema but their absence act as the
source of information. An interaction without notable relaxation in the regions of interest
might not be useful on its own, but can be relevant in conjunction with other experiments.

While not considered crucial, the lacking resolution in the 5 and PP-I1 region definitely
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leaves room for improvement. A selective relaxation pattern might possibly resolve this
convoluted region. The emergent density in the lower right edge of U9 is caused by 19
and can safely be treated as an artifact, which could be suppressed by adequate prior

assumptions as in K9.

The general effect of these assumptions, however, cannot be understated: The evolution of
rows U and K differ substantially in shape and fine structure. Only if different priors are
compared, meaningful conclusions can be derived. While certainly not the most realistic,

the uniform prior proves useful as an "unbiased” internal standard.

Still, here we argue that based on the achieved similarity between the sample distribution
10 and its MaxEnt reproductions U9 and K9 it is safe to conclude: CCR experiments can
yield enough geometrical information to characterize the backbone dihedral angle popula-

tions of IDPs.

To derive this general statement we relied on a particular set of prior assumptions and
experiments as well as physical simplifications. Generalizing, implementing and optimiz-
ing this approach is arguably a complex goal and would go beyond the scope of this work.
The suggested protocol is first and foremost a proof of concept, its characteristics and

deficiencies are elaborated in the following section.

5.2 Protocol evaluation

This section showcases MaxEnt predictions of selected sample distributions based on the
approach above: The uniform and the knowledge-based prior (Figure 5.2) are employed
with all nine constraints from Figures 5.4, 5.6 and 5.8, namely I'yoce o/ (¥), T'or | moca(9),

(w>7 FH@'NNz‘7HN Ni+1(¢7w>7 FC{_I,C';((b’w)u FHiNNi’Cz{((b’w)’

FHgVNi,chg(@y Uhece uy w, i+

i+1" i1

FC;,H;IHﬂl(@D) and FC{,H;ka(Q V).

5.2.1 Resolving localized distributions

While designed to characterize broad (¢,)-distributions, one might ask how the suggested
procedure handles narrow ones? With three additional experiments it should at least
match the results of Kloiber et al. Assuming a single ;.. peak in the canonical « region,
Figure 5.10 shows the corresponding MaxEnt solutions. Again I indicates the "input”, U

and K stand for the "uniform” and the "knowledge-based” prior respectively.

Both U and K are very good approximations of /. The knowledge-based prior causes the

fine grained structure of K, while the uniform prior determines the smooth appearance
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Figure 5.10: MaxEnt predictions U and K based on the input I (100 % ) employing all 9 CCR
rates from Figures 5.4, 5.6 and 5.8. U and K stand for the uniform and the knowledge-based
prior.

of U (Figure 5.2). Still, both solutions are mere representations of the same constraints.

For localized distributions, such as this one, the procedure yields very good agreements.

5.2.2 Characterizing diverse distributions

As illustrated in Figure 5.11, more diverse distributions are clearly more challenging. The

sample distribution I consists of equally weighted motives highly different in shape: «y,

Ay Qe 57 ﬁemt and PP-11.

Unlike before (Figure 5.10), U can no longer resolve the sharp peak of «,.. By including
broader motives, the MaxFEnt solution can better conform to the pressure towards unifor-
mity: Without any motive preference, o, and ... become blurred, much like g and PP-11
which are too similar to be resolved. The region [..; extended towards lower i) angles
is properly captured, the previously observed mirrored density of «; at negative v is an
artifact introduced from I'cs yayn(¢,¢) (Figure 5.8). K on the other hand looks more
accurate. This is of course related to the regions emphasized in the prior (Figure 5.2),
which again highlights the relative nature of MaxEnt solutions. Still, diverse distributions
such as I appear qualitatively accessible. A detailed, possibly quantitative characteriza-
tion, however, will require sound assessments of the prior assumptions. Designing a more

capable experimental protocol might prove worthwhile to circumvent this complication.
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Figure 5.11: MaxEnt predictions U and K based on the input I (equal ratios of aq, oy, aye, 5,
Bext and PP-IT) employing all 9 CCR rates from Figures 5.4, 5.6 and 5.8. U and K stand for
the uniform and the knowledge-based prior.

5.2.3 Distinguishing 3 and PP-II regions

As seen before, the MaxEnt solutions do not resolve the distinct § and PP-II regions
of the sample distributions, instead the densities become blurred. This lack in resolution
is an obvious shortcoming of the proposed protocol. In Figure 5.12 a compilation of

predictions with different ratios of 5 and PP-II is shown.

At 0 and 100 % PP-II the predicted densities are highly accurate, the  region of the
knowledge-based predictions K is slightly more spread out. For ratios in between the
extrema, the distinct § and PP-II densities of I tend to merge. Still, the position of
the merged densities in both U and K could be used as an indicator for the underlying
ratios; while the representation might not be resolved in detail, it still offers a convoluted
measure to draw conclusions from. Better resolution might be achieved with additional,

ideally highly selective experiments.

5.2.4 Quantitative assessment

To asses the quality of the suggested protocol, sample and MaxEnt distributions were only
compared by general appearance up to this point. Here, a simple quantification is shown
for sample distributions with different ratios of o, and 5. Both are important secondary

structure elements which can be clearly distinguished. Since one ratio determines the
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Figure 5.12: MaxkEnt predictions in row K and U based on the inputs in row I with different
ratios of PP-I1 and 8 employing all 9 CCR rates from Figures 5.4, 5.6 and 5.8. U and K stand
for the uniform and the knowledge-based prior.

other, the results can be intuitively illustrated as a function of e.g. 3 [%].

Figure 5.13 shows the predicted densities for sample distributions from 0 to 100 % £ in
10 % steps, the case of perfect agreement is indicated by the dashed x = y line. Both
the uniform- and knowledge-based solutions are very accurate. A general trend to be
observed is the over-representation of the minority motive: Low ratios of 8 tend to be
overestimated, high ratios are underestimated. This might likely be due to a preference
for broader, higher entropy distributions. This trend is superimposed by the fact that
all predicted ratios of § are lower for the knowledge-based prior than the uniform one.
Again, without certainty, the uniform prior might favor the broader, higher entropy [
region, while the a, region occurs more dominantly in the knowledge-based prior. Still,

these trends are of rather negligible influence.

Other important, albeit less intuitive, results are the Lagrange parameters. They are
uniquely determined by the combination of relaxation rates, their ensemble averages and

the prior define the shape of the MaxEnt solutions (equation 4.12).

Figure 5.14 depicts the variations of the Lagrange parameters with different ratios of
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Figure 5.13: Comparison of § and «, = 100% — /8 ratios in sample distributions and their
corresponding MaxEnt predictions employing all 9 CCR rates from Figures 5.4, 5.6 and 5.8.

for all employed relaxation rates. On the secondary ordinate the corresponding ensemble
average is depicted, illustrating the linear dependency between the average rates and the

changes in 3 ratio.

The first row of Figure 5.14 shows the rates dependent on v only. These are of course
functions with high distinctive potential, as a, and S lie in very different 1-regions.
For both the uniform and the knowledge-based prior the Lagrange parameters behave
similarly, 0 and 100 % mark notable discontinuities. I'cs ya HY (¥) (Figure 5.8), which is
highly sensitive for /3, shows this effect the strongest. Between 10 and 90 % the graphs
are linear: When both motives are present, even with different ratios, the relaxation rates
are weighted with comparable Lagrange multipliers. If only one motive is present, the
Lagrange multipliers are evaluated differently. Since they are the partial derivatives of
the entropy with respect to their constraints (equation 3.21), this indicates a significant

change in entropy.

At first glance the second row of Figure 5.14 paints a less clear picture. The Lagrange pa-
rameters are considerably different for the two priors, still the rates appear to be weighted
comparably, if not stronger, than the ones in the first row. However, these functions ex-
hibit a far lower distinctive potential: I'cr | gece(¢) and I'yny gaca(9) (Figure 5.4) are
functions of ¢ only. Since o, and 8 do not differ strongly in ¢, the cusps at 0 and 100%
are also less pronounced. While the rates cannot distinguish between the two motives,
they can still be incorporated to build up density in the relevant regions, best seen for

Lyny gece(9). This effect is generally stronger for the uniform prior, as the knowledge-
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Figure 5.14: Evolution of the Lagrange parameters A and ensemble averages (I') of all 9 CCR
rates (Figures 5.4, 5.6 and 5.8) with different ratios of 8 and a, = 100% — § corresponding to
Figure 5.13.

based one does not weigh all angle pairs equally. While I'cr 7o HZN(gﬁ, 1) (Figure 5.8) is in
principle a function of i as well, its extrema lie in positive ¢-regions and «, and [ relax
with similar rates. The knowledge-based solutions do not utilize this function strongly. In
contrast, the uniform prior predictions weigh the on average negative rates with a positive

multiplier to shift the density towards the less pronounced regions at negative ¢.

The third row, featuring functions of both ¢ and v, exhibits the same properties as the
first one, albeit less distinct due to their overall more complex shape. The uniform-
based predictions again feature larger absolute multipliers to better distinguish between
regions with positive and negative relaxation contributions. This substantiates the general
observation that the uniform prior tends to incorporate more experimental input; an

important property certainly worth exploiting.

As demonstrated, the assessment of the Lagrange multipliers is a useful tool for charac-
terizing MaxEnt solutions. However, more complex distributions will inevitably lead to
more convoluted and less intuitive parameters; interpreting them in practical applications

might prove a nontrivial but worthwhile task.

45






Chapter 6
Summary

An experimental protocol for the investigation of IDP backbone dihedral angle distri-
butions was derived from theory. The use of cross-correlated relaxation (CCR) for IDP
characterization has been mostly unexplored to date, the proposed combination of ex-
periments therefore serves as a general proof of concept. A real-life implementation still
requires a sound assessment of the simplified dynamic models, pulse sequences adapted

for IDPs and a practical routine to account for experimental uncertainties.

The inherent underdetermination of IDP dihedral angle populations, resulting from their
high conformational freedom, was addressed using a Maximum Entropy (MaxEnt) ap-
proach, which identifies the highest entropy distribution as the most representative for
the experimental constraints at hand. The particular implementation in this work differs
from previous studies not only in its inclusion of CCR rates: It is argued that the ini-
tial assumptions encoded in the so-called prior should be treated with more care. The
common use of a singular, highly sophisticated prior and a fixed set of NMR parame-
ters hinders the distinction between experimental and assumptive information content.
Instead, a step-by-step extension is proposed, evaluating combinations of experiments
relative to different priors. This way, the viability and potency of the protocol can be
assessed with more modesty. The classical uniform prior was highlighted in this regard:
While neither epistemologically nor physically representative, its unbiased nature allows

for a particularly simple and intuitive illustration of experimentally supplied information.

This framework was used not only to evaluate the applicability of existing CCR protocols
but also to extend them. The addition of experiments not considered in previous proto-
cols was found to improve the quality of the predictions considerably. The subsequent
introduction of two entirely novel interactions lead to predictions with satisfactory accu-
racy. The MaxEnt framework was shown to offer a simple guideline in the design and

assessment of such combinational experimental protocols. While derived exclusively for
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CCR rates in this study, this observation applies universally.

The proposed combination of nine CCR rates is highly potent but of course still leaves
room for improvement: While the theoretical capabilities are promising both qualitatively
and quantitatively, there are obvious shortcomings regarding the distinction of highly di-
verse distributions as well as overall resolution; first and foremost the protocol is intended
as a proof of concept. While presented in an exclusive framework here, CCR experiments

can of course be used in combination with other NMR parameters as well.

Naturally, the next step involves a practical implementation of this approach. Not only
experimental uncertainties need to be addressed but also the dynamic contributions which
were omitted in this study. While dynamics of IDPs might pose additional challenges
to overcome, the possibility of probing both structural and dynamic properties further

highlights the unharnessed potential of CCR rates in the characterization of IDPs.
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