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Zusammenfassung

Funktionelle Magnetresonanztomographie (fMRT) ist ein Bildgebungsver-
fahren, welches verwendet wird, um die Funktionsweise des menschlichen
Gehirns bei bestimmten Aufgabenstellungen zu untersuchen. Hierbei wird
unter experimentellen Bedingungen in festen Zeitabständen ein 3D-Bild des
Gehirns aufgenommen. Kleinste Änderungen im Hirnstoffwechsel erlauben
Rückschlüsse über die neuronale Aktivität während kognitiver Experimente.

Für die Analyse der so gewonnenen Daten existieren verschiedene Ansätze.
Üblicherweise wird ein lineares Modell (GLM) aufgestellt, in welchem ein lin-
earer Zusammenhang zwischen Stimulus und Hirnaktivität dargestellt wird.
Mit dieser robusten, sehr einfachen Methode können jedoch Zusammenhänge
zwischen verschiedenen Bereichen des Gehirns nicht berücksichtigt werden.
In dieser Arbeit liegt der Fokus deshalb auf Dynamic Causal Modelling
(DCM), einer Methode, die für die Untersuchung von (Hypothesen zu) funk-
tionellen Netzwerken im Gehirn verwendet wird.

Da kürzlich an verschiedenen Stellen Kritik an der Reproduzierbarkeit dieser
Methoden geäußert wurden, untersucht diese Arbeit Techniken und Ansätze
um die Wiederholbarkeit von Ergebnissen quantifizierbar zu machen. Dazu
wurden hochaufgelöste funktionelle MRT-Daten von vierzehn gesunden Pro-
banden mithilfe eines Ultra-Hochfeldtomographen erhoben, während die
Probanden eine Gesichts- bzw. Emotionserkennungsaufgabe erfüllen muss-
ten. Ziel der Studie war einerseits, Ergebnisse aus früheren Studien zu
reproduzieren, andererseits die Stabilität der Ergebnisse bei wiederholten
Messungen zu untersuchen.

Während die Resultate aus dem klassischen Ansatz des linearen Modells in
dieser Studie eine sehr hohe Reproduzierbarkeit aufwiesen und sich auch
mit den Ergebnissen anderer Untersuchungen deckten, konnten die DCM
Ergebnisse aus einer früheren Studie nicht reproduziert werden. Ebenso
waren die Ergebnisse über die wiederholten Durchläufe nicht konsistent
genug, um diesbezüglich Schlüsse ziehen zu können. Weitere Untersuchun-
gen sind nötig um herauszufinden, ob diese unschlüssigen Ergebnisse schlecht
gewählten Modellhypothesen, einer zu kleinen Stichprobe oder anderen Fak-
toren zuzuschreiben sind.

Keywords: funktionelle Magnetresonanztomographie (fMRT), Dynamic
Causal Modelling (DCM), Neuroimaging, Hirnnetzwerke, Stabilität, Repro-
duzierbarkeit
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Abstract

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique
used to investigate the inner mechanisms of the human brain when pre-
sented with certain tasks. A sequence of 3D-images of the brain is acquired
during certain experimental conditions to detect subtle changes in brain
metabolism, which allow for inferences on neuronal activity during cogni-
tive experiments.

In order to analyse the acquired data, numerous approaches can be used,
depending on the nature of the research question. Customarily, the rela-
tionship between stimulus and brain activity is assumed linear and is thus
modelled in the General Linear Model framework. However, this simple yet
robust approach does not allow for modelling interrelations between differ-
ent parts of the brain. In this work, we are focusing on a particular method
used for investigating dynamic functional connectivity of brain regions and
changes related to certain task conditions, namely Dynamic Causal Mod-
elling (DCM).

After recent criticism on this method, we have investigated the test-retest
reliability of Dynamic Causal Modelling. We acquired fMRI data on four-
teen healthy subjects at ultra-high field while the subjects were repeatedly
performing a facial emotion processing task. The task was repeated six times
within a measurement session, the whole session was repeated after 14 days.
With this study, we aimed to reproduce reported findings and assess the
reproducibility of our results after repeated measurements.

While the common approach using the General Linear Model yielded results
showing high reproducibility and also coinciding with the results of other
groups, the DCM results of a previous study could not be reproduced us-
ing this data set. Results over repeated measurements were also inconsistent.

Further investigations are necessary to unveil the reason for these inconclu-
sive results – whether the results may be attributed to poorly chosen model
hypotheses, an undersized sample or other factors.

Key words: functional magnetic resonance imaging (fMRI), Dynamic Cau-
sal Modelling (DCM), neuroimaging, brain networks, reproducibility, stabil-
ity, emotion discrimination task
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Chapter 1

Introduction

In this work, I will present a short introduction to functional magnetic res-
onance imaging and the analysis tools used to explore the inner workings
of the human brain, with the main focus on a framework for investigating
functional networks in the brain called Dynamic Causal Modelling.

1.1 Functional magnetic resonance imaging (fMRI)

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique
for detecting subtle changes in brain metabolism during neural activity. It
allows for non-invasive assessment of processes inside the living brain and
is therefore widely used in neuroscience. Applications of fMRI range from
brain mapping (i.e. functional localization of brain regions associated with
phenomena of interest) via research on brain connectivity to multimodal in-
tegration with other imaging (e.g. electroencephalography, EEG) and stim-
ulation tools (e.g. transcranial magnetic stimulation, TMS).

The principle of fMRI is based on changes in cerebral blood supply. Neu-
ronal activity causes an increase in local energy demand. This increase is
met with an increase in inflow of highly oxygenated arterial blood, over-
compensating the energy demand. Therefore, blood oxygenation increases
and subsequently, deoxygenated hemoglobin is reduced. Since deoxygenated
hemoglobin is more paramagnetic compared to oxygenated hemoglobin (oHb),
magnetic field variations around dHb show reduced MR signal amplitudes
(Ogawa et al., 1990).

This phenomenon is known as the blood oxygenation level dependent (BOLD)
effect. This was first discovered as signal dropouts occurred around vials
filled with venous blood (Ogawa et al., 1990). Logothetis et al. (2001) fur-
ther uncovered the relationship between the measured fMRI signal and un-
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8 CHAPTER 1. INTRODUCTION

derlying neural activity in monkeys, suggesting that BOLD signal changes
reflect the input and intracortical processing of a given area.

Although fMRI provides us with an indirect measure based on changes in
blood supply, differences in neuronal activation levels can be assessed via
fMRI. As more strongly activated areas consume more oxygen, the MR sig-
nal is altered. The characteristic shape of the signal change is referred to as
hemodynamic response and reaches its peak 3 to 6 seconds after neuronal
activation.

Usual task-based fMRI experiments consist of several trials. During these
trials, participants are usually exposed to visual or auditory stimuli. Changes
in BOLD signal are assessed for each trial and then generally averaged over
all trials of experimental conditions. The time span between the individual
stimuli is called inter-stimulus interval (ISI) and must be chosen carefully
to avoid overlapping of the hemodynamic response.

Most often, MR sequences using echo-planar imaging (EPI) are used to re-
peatedly acquire images of the same cortical structures at a certain time
interval, which is referred to as Repetition Time (TR) - this is the time that
passes between each 3D image acquisition. Using this sequence of images,
changes over time can be made visible.

The temporal resolution generally ranges from less than a second to several
seconds for whole-brain images with spatial resolution in millimetres, both
spatial and temporal resolution increasing with field strength (in Tesla) of
the MRI scanner.

1.2 Research question

Over the last years, functional MRI has become a widely applied method
for non-invasive research on brain function. However, reproducibility and
robustness of the activation maps obtained remain crucial issues.

Previous studies have targeted test-retest reliability of certain fMRI results,
however only few long-term studies on processing of emotional faces in the
amygdala exist. Plichta et al. (2012) has targeted test-retest reliability in
a number of cognitive and emotive tasks, showing e.g. high inter-session
reliability over all subjects, however low within-subject reliability using the
emotional faces task.

However, apart from thresholding considerations, the standard analysis ap-
proaches for fMRI have their limitations, especially in research on functional
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brain networks. One hypothesis-driven method for analyzing intermodula-
tions and co-dependencies between brain regions is Dynamic Causal Mod-
elling (DCM). For more details, see section 2.3 and 3.3.

Recent criticism on the validity of this framework per se (Lohmann et al.,
2012) has emphasized the necessity for further research on reproducibility
of the results obtained using this method.

Whereas Frässle et al. (2015) and Frässle et al. (2016) have investigated test-
retest reliability of DCM results using a motor task and a face processing
task, the networks investigated were limited to motor regions, face process-
ing and visual stimulus processing regions.

In this work, we aimed to investigate the test-retest reliability of the facial
emotion processing network in the human brain, including structures such as
the amygdalae in both hemispheres, fusiform face areas and prefrontal areas.
With the prerequisite of obtaining stable and repeatable neuronal activity
within the emotion processing network during this task, we expected to
reproduce DCM results from previous studies (Sladky et al., 2015).

1.3 Contents of this work

First, I will give a short overview of the models used for the analyses in
chapter 2.

In chapter 3, I will give an introduction on various processing steps after
acquiring fMRI data and go into more detail on these steps described. Be-
sides the classic data analysis approach, which is a method unrestrained
by prior knowledge and theories on brain networks (see section 3.2), I will
introduce a more complex hypothesis-driven method for analysing effective
connectivity between brain regions (Dynamic Causal Modelling, see section
3.3).

Although fMRI has provided valuable insights into a plethora of cognitive
phenomena, recent critique questioned the validity of various results ob-
tained. To address this issue, I have conducted an experiment on the stabil-
ity of the methods presented and have investigated this issue by acquiring
and analyzing data of 14 healthy volunteers performing a task involving the
processing of images of human faces showing different emotions. The results
of this study are presented in chapter 4.

Finally, I will discuss the results obtained and knowledge gained with the
experiment, as well as further research options beyond the scope of this work
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in chapter 5.



Chapter 2

Models and modelling
aspects

The term modelling can be used for various meanings. In the broadest sense,
scientific modelling refers to making a part of the real world accessible by
selecting features most relevant for a certain purpose. Models are essential
for our understanding of the world, as the world itself can not be appre-
hended in its whole complexity. Per definition, there are no “true” models,
as it is usually impossible to consider every detail and every influence there
might be, models being therefore reductionistic per se.

A reference frame for the classification of models was defined by Goldsmith
(1972), where he described several notions of models. Starting with the
conceptual model, which is the most commonplace model, being present
in practically any verbal description, but also in flow diagrams etc.

The next terms are in vivo and in vitro models. In vivo models describe
live organisms sufficiently similar in a certain scope, e.g. laboratory animals
for studying cancer growth, ultimately with the goal of (human) cancer re-
search. In vitro models are characterized by conditions outside of those of
direct interest. This can be, e.g., scale models of machines showing similar
behaviour, chemical reactions in isolated set-ups comparable to those within
living organisms, etc. In vivo and in vitro models are both physical models
that face certain limitations, not only by simplifications and differences, but
also by the materials available.

The last models described by Goldsmith are in silico models – mathemati-
cal models using mathematical concepts and language to describe a system,
expressed in equations, summarising relationships of quantifiable effects, i.e.
properties that can be put in numbers.

11



12 CHAPTER 2. MODELS AND MODELLING ASPECTS

As lies in the nature of models, there is no “true” model – a famous aphorism
quoted in this context is “all models are wrong” by Box (1976). Particularly,
it is important to assess the level of detail needed for a certain purpose.

Since all models are wrong the scientist cannot obtain a “correct”
one by excessive elaboration. On the contrary, following William
of Occam, he should seek an economical description of natural
phenomena. Just as the ability to devise simple but evocative
models is the signature of the great scientist, so overelaboration
and overparameterization is often the mark of mediocrity. (Box,
1976)

Avoiding overfitting and seeking a good trade-off between model accuracy
and generalizability are the hallmark of scientific modelling, parsimony in
model structure and parameters is discussed as one of the main aspects of
good scientific methods, alongside flexibility, practicability and worrying se-
lectively – i.e. focusing on most important aspects (Box, 1976).

For scientific and engineering applications, a model’s purpose is usually to
describe the behaviour of a highly complex system – with the goal to aid
in decision making processes. Models may be used to set up hypotheses
on the behaviour of a complex system; these hypotheses can be tested and
researched on, revised and, if necessary, discarded (Murray-Smith, 2012).

Mathematical modelling usually refers to creating a set of (differential) equa-
tions with certain well-defined input parameters, which describe the system
in a manner sufficiently accurate for the defined purpose. Being described
using mathematical concepts, these can thus be classified as in silico models.

In this work, however, pre-defined equations are used. The term “modelling”
refers to formulating hypotheses on the influencing variables and parameters.
Parameters are then estimated combining “classic” mathematical modelling
strategies with statistical methods.

In the following sections, I will introduce the different models used in the
methods chapter (chapter 3) for inference on functional MRI data.

On the one hand, as we do not measure neuronal activity directly, but
through the hemodynamic response, we need a model to set a stimulus and
the resulting neuronal activation in relation with the measured signal. For
this purpose, a hemodynamic model (the Balloon model) will be introduced
in the next chapter.

On the other hand, we need to model the magnitude of the signal change
during certain conditions – i.e. the brain activity – for each brain region, so
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we can identify which cortical areas are involved in certain tasks. This is
done by setting up a General Linear Model (GLM) for each volume element
(voxel) of the 3D image.

Additionally, we want to assess intermodulations and co-dependencies be-
tween certain brain regions. For this purpose, a framework for testing hy-
potheses on such connectivity – Dynamic Causal Modelling (DCM) – will
be introduced.

2.1 Hemodynamic model – the Balloon model

The basis of the fMRI signal is the BOLD effect (Ogawa et al., 1990), which
links changes in blood oxygenation to increased neuronal activity. The Bal-
loon model accounts for the non-linear behaviour of the stimulus-induced
hemodynamic response.
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Figure 2.1: Hemodynamic response function corresponding to task blocks
with duration of 20 seconds (above) or events (below). Data created using the
SPM software package.

We need to model the hemodynamic response using only one single input –
which is the stimulus. This is implemented in the so-called Balloon model,
which has been shown to provide a sufficient framework for accounting for
the non-linear changes of the BOLD signal following neuronal activity or
stimulation (see Friston et al. (2000)). This model is described using fol-
lowing four differential equations and is depicted schematically in Figure
2.2.

Definition 1. The Balloon model is made up of following 4 differential
equations describing the signal s, the inflow of blood fin, blood volume v
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Figure 2.2: Balloon model of hemodynamic response following neuronal ac-
tivity with single input (activity) and single output (BOLD signal). There
are 4 state variables: s, fin, v, q for the signal, inflow, volume and deoxyhe-
moglobin. Figure taken from Friston et al. (2000). Note that the biophysical
parameters are re-named in definition 1 for consistency with section 3.3.

and deoxyhemoglobin q. It is assumed that a certain flow inducing signal s
and the change in regional cerebral blood flow (rCBF) fin are linked linearly,

ḟin = s. (2.1)

The flow inducing signal is generated by neuronal responses to the stimulus
function u(t),

ṡ = εu(t)− κs− γ(fin − 1) , (2.2)

where ε is a parameter that represents the efficacy the stimulus leads to signal
increase; κ and γ are rate constants describing signal decay / elimination,
or autoregulatory feedback from blood flow, respectively.
The venous blood volume v is the difference between inflow fin and outflow
fout within a constant time interval (transit time) τ ,

v̇ =
fin − fout

τ
(2.3)

fout = v1/α. (2.4)

The outflow function reflects the balloon-like behaviour of the venous ves-
sels, exerting a higher outflow rate when distended. This behaviour is mod-
elled using a single biophysical parameter, namely the stiffness exponent
α which describes the dynamic flow-volume relationship, based on the so-
called Windkessel model (see Mandeville et al. (1999) for details).

Resulting from inflow and volume change, the deoxyhemoglobin (dHb) con-
tent of the vessels change as well, as is modelled in following equation,

q̇ =

(
fin
E(fin, ρ)

ρ
− fout(v)

q

v

)
1

τ
(2.5)

E(fin, ρ) = 1− (1− ρ)1/fin . (2.6)
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Here, E(fin, ρ) describes oxygen extraction from the inflowing arterial blood,
ρ is the constant oxygen extraction fraction. We can see that the change in
deoxyhemoglobin content in the venous compartment reflects the inflow of
deoxyhemoglobin (after oxygen extraction) minus what is removed by out-
flow.

Thus, the hemodynamic response following a stimulus is described using
these 4 equations and 6 biophysical parameters: the stimulus efficacy ε, the
rate constant for signal decay κ, the rate constant for blood flow autoregu-
lation γ, the stiffness parameter α, the resting oxygen extraction fraction ρ
and the mean transit time τ .

Assuming all biophysical parameters constant, this model can now be seen
as SISO (single input single output) model. For standard fMRI analyses,
these biophysical parameters have been estimated, for details see Friston
et al. (2000). This allows us to view the hemodynamic response to be de-
pendent only on the stimulus, with no other unknown variables.

We can thus write

x(t) = H(u(t)) (2.7)

with H being the hemodynamic response function, translating stimulus u(t)
into the measured signal change x(t). In practice, the observed data is
discrete and can be expressed as a vector x, as well as the stimulus time
course, so we also write

x = H(u). (2.8)

2.2 General Linear Model (GLM)

The General Linear Model (GLM) is one of the most versatile linear mod-
els in statistics. Many statistical approaches, such as analysis of variance
(ANOVA), t-tests, ordinary linear regression etc. can be seen as special cases
of this model (Sachs, 2013).

Definition 2. For a series of measurements y and a matrix of explanatory
variables X – the so-called design matrix, the General Linear Model is
expressed as

y = Xβ + ε (2.9)

where β contains the parameters to be estimated, and ε is the residual vec-
tor containing errors or noise.
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The GLM can be used when a linear relationship between the observed data
and the influencing variables is assumed, as well as independent and iden-
tically distributed residuals ε. For functional MRI data, the design matrix
typically consists of the time courses of the stimuli.

2.2.1 Combination of GLM and the Balloon model

In the case of functional MRI data, the stimulus does not happen at the
same time as the measured BOLD signal – thus we must consider the delay
of the hemodynamic response in our model. This is done by incorporating
the hemodynamic response function (HRF, see section 2.1) into the model,

X = H(U) (2.10)

y = Xβ + ε. (2.11)

Note that the design matrix usually incorporates (the time courses of) sev-
eral stimuli, thus we use the matrix notation (X, U) instead of vector
notation (x,u), as in Equation 2.8.

For simplicity, however, the hemodynamic response function is usually not
explicitly mentioned, as the hemodynamic parameters are assumed constant
and the transformation from stimulus function to corresponding hemody-
namic response is quickly calculated in existing tools, by convoluting the
stimulus function with the HRF.

Taken together, the GLM approach calculates a linear statistical model on
the input for each and every time course recorded – thus for each voxel, which
can be viewed separately. This gives us a robust and easy-to-use method for
fMRI analyses. However, when we are interested in more complex questions
involving interconnections and co-dependencies of brain regions, we must
resort to other methods, e.g. by modelling the observed behaviour using
graphs and/or differential equations. One such modelling strategy is applied
in Dynamic Causal Modelling.

2.3 Models in Dynamic Causal Modelling (DCM)

Dynamic causal modelling (DCM) is a framework used for investigating
hypotheses on effective brain connectivity, meaning activity changes in well-
defined brain regions by stimuli and activity in other brain regions. This is
done using a descriptive differential equation.

Definition 3. A Dynamic Causal Model is a model of structural hypotheses
on effective connectivity between well-defined brain regions, described in
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terms of a bilinear differential equation

ż = F (z, u, θc) = (A+
∑
j

ujB
j)z +Cu (2.12)

where z is a vector describing the activity in a number of neuronal popula-
tions, u is the (time-dependent) input, θc describes the (time-independent)
coupling parameters, consisting of following adjacency matrices:

A describes the condition-independent influence of activity in each neu-
ronal population on others (task/input-independent effective connectivity),
Bj describes the condition-dependent intermodulations for each condition
j, and C describes the direct influence of the conditions on activity in each
brain region.

This differential equation is, however, not solved in the classic sense, but
entered into a model-inversion framework for estimating the connectivity
parameters – i.e. the weights of the connections.

There exist further developments of DCM where the differential equation
may include non-linear or stochastic terms. However, in this work we will
refer to the bilinear form only.

Note that while typically, mathematical “modelling” refers to setting up de-
scriptive (differential) equations that describe the mechanism of a system,
in DCM the differential equations are fixed and the term “modelling” refers
to specifying the connections – i.e. defining the non-zero entries in the pa-
rameter matrices and estimating these parameters.

In the following pages, the term connectivity refers to the so-called ef-
fective connectivity, which describes intermodulations of activity between
brain regions.

Example 1. An example DCM with 3 neuronal populations:
We assume 3 neuronal populations R1, R2 and R3. Activation in population
1 leads to activation change in population 2, and vice versa (see blue connec-
tions); also, region 2 and 3 are connected in the same way. From region 1
to region 3 there are no fixed modulations in both directions (in red). There
are two stimulus functions (u1, u2), which each lead to activation change in
regions 1 and 3 respectively (green arrows). Input / stimulus 1 furthermore
also leads to a change in the connection from region 2 to 1.
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5

R1
R2

R3

u1

u2

Figure 2.3: Example of DCM structural assumptions.

This DCM is translated into following A, B and C matrices: ż1
ż2
ż3

 =

a1,1 a1,2 0
a2,1 a2,2 a2,3
0 a3,2 a3,3

+ u1

0 b1,2 0
0 0 0
0 0 0

 z1
z2
z3

+

c1,1 0
0 0
0 c3,2

[u1
u2

]

The indices of the matrix entries describe the direction of the modulations
– the column index specifies the source, and the row indices indicate the
target of the modulation.

2.3.1 Combination of DCM and the Balloon model

As in GLM, the hemodynamic response model in section 2.1 needs to be
incorporated in DCM as well, as we are still relying on the measured BOLD
signal for DCM analyses. However, whereas for the GLM, the biophysi-
cal parameters θh of the hemodynamic response function are assumed to
be constant, they are being estimated with the neuronal coupling param-
eters θc = (A,Bj ,C) – these are the matrices describing the influence of
stimuli and neuronal activity on activity in other brain regions – in the
model inversion framework applied for DCM. This has proven to produce
better outcomes, as vascularization and local magnetization properties tend
to vary across brain regions and subjects, see Stephan et al. (2007).

The hemodynamic states s, f, v and q (s being the vasodilatory signal, f
describing the inflow of blood in response to the vasodilatory signal, v being
the volume and q describing the deoxyhemoglobin content) can be modelled
as follows (as in section 2.1). For the i-th region, the hemodynamic states



2.3. MODELS IN DYNAMIC CAUSAL MODELLING (DCM) 19

are summarized by the following equations, taking into account the neuronal
state zi:

ṡi = zi − κisi − γi(fi − 1) (2.13)

ḟi = si (2.14)

τiv̇i = fi − v1/αi (2.15)

τiq̇i = fi
E(fi, ρi)

ρi
− v1/α qi

vi
(2.16)

The oxygen extraction E(fi, ρi) = 1− (1− ρi)1/fi is modelled as a function
of flow. The hemodynamic parameters θhi = {κi, γi, αi, τi, ρi} are composed
of signal decay, flow autoregulation, stiffness parameter, mean transit time,
resting oxygen extraction fraction for the i-th region (see section 2.1 for fur-
ther details).

The BOLD signal is subsequently modelled as a volume-weighted sum of
extra- and intravascular signals,

yi = λi(qi, vi)

= V0(k1(1− qi) + k2(1− qi/vi) + k3(1− vi)) (2.17)

with the constants

V0 = 0.02

k1 = 7ρi

k2 = 2

k3 = 2ρi − 0.2 .

where ρi is the resting oxygen extraction fraction. The resting blood volume
fraction V0 and the dimensionless parameters k1, k2 and k3 were identified
in Buxton et al. (1998) for a field strength of 1.5 Tesla. For higher field
strengths, as was used in this work, it may be necessary to identify different
constants.

Combining the neuronal state equation (3.13) (DCM) and hemodynamic
equations (2.13)-(2.17) (Balloon model), we now have a full forward model
describing the combined neuronal and hemodynamic states x = {z, s, f, v, q},

ẋ = f(x, u, θ)

y = λ(v, q) = λ(x) (2.18)

where θ = (θc, θh) are the combined neuronal (coupling) and hemodynamic
(biophysical) parameters to be estimated – details in the subsequent pages
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Figure 2.4: Schematic summary of the hemodynamic model, the so-called
Balloon model, combined with DCM. Reproduced from Stephan et al. (2007).
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(section 3.3). For simplicity, we rewrite our forward model into following
non-linear function for the measured signal, dependent on the input u and
the (combined) parameters θ,

y = h(u, θ) (2.19)

with Gaussian assumptions on the parameters θ. This (theoretical) forward
model can be extended into a so-called “observation model” by assuming
certain linear confounds to the signal, as well as noise - thus by introducing
a confounding term X and an error term e,

y = h(u, θ) +Xβ + e (2.20)

where β are the unknown linear coefficients of the confounds, and we assume
normally distributed errors e ∼ N(0, Ce).

This model can now be entered into the model inversion framework for
parameter estimation - details in the methods chapter, section 3.3.
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Chapter 3

Methods for fMRI data
processing

The previous sections gave a short introduction into functional MRI and the
BOLD effect, and an overview of the models used for fMRI analyses. To
evaluate the data acquired in terms of changes in brain activity/connectivity,
a number of processing steps are required. The following chapter describes
procedures for fMRI data analysis.

Before the statistical analysis of the data can be conducted, several pre-
processing steps should be performed, as fMRI data varies across subjects
and is often noisy and possibly affected by artefacts. Some steps are listed
in the following section.

The “classic” approach to fMRI data analysis is based on setting up a lin-
ear model for each volume element (voxel) acquired. This method allows
for functional localization of certain brain functions and can be performed
uninformed and without prior hypotheses.

For more sophisticated problems, such as connectivity analysis within the
brain, other methods are applied. One of such methods is Dynamic Causal
Modelling, which allows for testing hypotheses on intermodulations and de-
pendencies between certain brain regions. Facing certain limitations of this
method, very specific hypotheses must be set up beforehand.

An aspect relevant to all findings in science is the aspect of reliability of a
result – i.e. how certain we can be to find a similar result within a similar
setting. The last section of this chapter deals with this issue and discusses
quantification methods for reliability and stability of results.

23
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3.1 Pre-processing the data

Functional MRI data is acquired at high speed to be able to record changes
in brain function through changes in the BOLD signal. However, this makes
the data very sensitive to non-neural noise signals. Signal changes can occur
not only through changes in blood oxygenation, which is the desired signal
source, but also through movement of the subject, inhomogeneities of the
magnetic field due to enclosed air, differences of the magnetic field strength
over space, but also random measurement noise.

Therefore, several pre-processing steps are usually performed prior to the
actual statistical analysis of the data to enhance data quality and hence
yield improved results. These steps may include

• spatial re-alignment to correct for movement of the subject in 6 di-
mensions (3 each for translation and rotation),

• bias field correction to account for static differences in signal magni-
tude over the volume of interest, i.e. the brain,

• de-spiking to account for sudden, high motion artefacts,

• spatial normalization into a common coordinate system for all subjects
to allow for group comparisons,

• spatial smoothing,

• slice-timing correction, to account for timing differences between the
(2D-)slices of each 3D image.

The above steps have proven to result in considerably improved data quality,
if not even absolutely necessary to enable comparison.

3.2 Statistical Parametric Mapping (SPM)

In fMRI, we aim to make effects of certain stimuli or other conditions over
time visible in the recorded data. The easiest way to do so is by modelling
a linear relationship between data and condition.

A state-of-the-art method for analysing task-based functional MRI data is
the Statistical Parametric Map based on the General Linear Model (GLM;
see section 2.2 and Friston et al. (1994)), which can be described using
following equation:

yv = Xβv + εv (3.1)
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Here, yv is the measured time course vector of one voxel v, the rows de-
scribing the values at each individual time point. X is the design matrix,
containing the time courses of the conditions/stimuli, modeled as hemody-
namic responses (see section 2.2.1 for details), and εv is the error term,
which is to be minimized. βv is the parameter to be estimated, describing
the linear signal change at the time of the stimulus. The error term is as-
sumed to be independent and identically distributed with εv ∼ N(0, σ2v).

In practice, the design matrix consists not only of the time courses of the
stimuli. Nuisance regressors from previous pre-processing steps, such as
movement parameters from data realignment in 3D (usually three for trans-
lation in x, y and z-direction, and three for rotations in each direction) might
also account for signal changes over time, so these effects are added into the
GLM. As the MRI signal will always be greater than 0 independent of neu-
ronal activity, the data also has to be mean-corrected, which is usually done
by adding a constant vector into the design matrix.

As there are usually far more time points than unknown variables, the system
is overdetermined, thus X is not invertible. In this case, the pseudoinverse
is used to find the least squares estimate minimizing the sum of squares of
the error term.

Theorem 1. Let bv be the least squares estimate of βv. bv satisfies the
normal equations (Scheffe, 1959),

X>Xbv = X>yv . (3.2)

Given that the columns of the Design Matrix X are linearly independent,
X>X is invertible and b can be uniquely calculated by

bv = (X>X)−1X>yv (3.3)

minimizing the error term εv in equation 3.1 in terms of the euclidean norm
||.||2 and yielding

E(bv) = βv and Cov(bv) = σ2v(X
>X)−1 . (3.4)

For normally distributed errors, the least squares estimates, being the maxi-
mum likelihood estimates, are themselves normally distributed (Scheffe, 1959).
Cov(bv) is the variance-covariance matrix of the parameter estimates at the
voxel v.

A major advantage of this analysis method for fMRI data is that no prior
knowledge of function or activation maps are required to do a standard GLM
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analysis, as for each voxel time course, a linear coefficient βv of the input
function can be estimated.

For better readability, we are going to refer to β, y and ε instead of βv, yv
and εv for the voxel-wise variables further on.

Note that β is a unitless parameter and can only be seen in relation to the
signals recorded. For reporting and comparison purposes, it is often trans-
lated to percent signal change (PSC) by putting it in relation with the mean
signal over time: βPSC = β

meant
.

There exist software packages with implementation of the described meth-
ods for functional neuroimaging data. The SPM package for MATLAB was
developed by the Wellcome Trust Centre for Neuroimaging, at the Uni-
versity College London – as described in Penny et al. (2011). The soft-
ware, as well as documentation and course files, is freely available at http:
//www.fil.ion.ucl.ac.uk/spm/software/.

3.2.1 Statistical inference

After calculating the parameter estimates for β of GLM equation 3.1, we do
not know about the statistical significance of the effects of interest - thus we
need to apply a statistical test on the parameter estimates.

Definition 4. In hypothesis testing, a result is statistically significant if it
is very unlikely to have occurred by chance given the null hypothesis (H0)
to be true. A significance threshold α is defined setting the probability
of rejecting the null hypothesis if it were true (type I error). The p-value
is the probability of obtaining the observed data given the null hypothesis.
The null hypothesis is rejected if p < α (Sachs, 2013).

For functional MRI, the null hypothesis usually states that the effects mod-
elled using the design matrix X are not significant. This hypothesis can
be tested using the t-statistic with linear compounds or contrasts of β. We
can define a row vector c which usually has a 1 as j-th component to test
for the significance of the j-th effect of interest (j-th entry in β), or contains
positive and negative values for the j1, . . . , jm-th component to compare for
contrast effects between m different effects of interest j1, . . . , jm. In that
case, the vector must sum up to zero. For simplicity, we refer to the vector
c as the so-called contrast vector.

For instance, to test for the 2nd condition of interest, the contrast vec-
tor would be [0, 1, 0, . . . ]. If our first condition is the effect to be tested, and
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the second is a control condition, we would model this contrast using the
vector [1,−1, 0, 0, . . . ].

The residual term r is the difference between the measured values and the
estimation,

r = y −X · b. (3.5)

The standard deviation σ of the error term is estimated by

σ̂ =
r> · r
ν

(3.6)

where ν is the degrees of freedom associated with r. For independently dis-
tributed residuals (elements of r), this would be the number of scans minus
the number of effects estimated (column rank of X).

However, in practice, the residuals are not distributed independently, as
the stimulus functions are convoluted with the hemodynamic response func-
tion - leading to effective temporal smoothing, inserting correlation into the
residual vector. This issue motivates the extension of the General Linear
Model and the use of the Effective Degrees of Freedom, taking into account
a smoothness parameter for the convolution. For further details see Friston
et al. (1995).

The significance of a linear compound of effects is now tested with

t =
c · b
e

where (3.7)

e2 = c · σ̂2(X>X)−1 · c>. (3.8)

The denominator e in equation (3.7) describes the standard error of the
parameter estimate. Being the standard deviation of the sampling distri-
bution of a statistic, the expression for the standard error estimate follows
from equation (3.4), Cov(c · b) = c · σ2v(X>X)−1 · c>.

Using the expressions above, we now obtain a t-score for each and every
voxel. These t-scores now form a so-called statistical parametric map (SPM)
and represent significance maps for parameter estimates in each voxel in 3D.
For visualization purposes, usually a certain t-threshold is set when plotting
an SPM, thus displaying only areas showing a significant effect size, i.e. when
t-values exceed the t-threshold (see figure 3.1 for an example of a thresh-
olded SPM).
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Figure 3.1: Statistical parametric map of a finger movement paradigm with
visual stimulation, t-threshold at 3.182 (equivalent of p < 0.001), axial slices.
Among others, areas in visual cortex as well as motor cortex show significant
activity during the task. Data recorded and analyzed within the reliability
study described in section 4. Plotted with the SPM software package.
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Using these t-scores and the degrees of freedom ν, a corresponding p-value
can be calculated, for example using the MATLAB function tcdf. In prac-
tice, usually for a given p-value, a t-threshold is calculated for retrieving the
thresholded activation map.

Theorem 2. Let Xi, i = 1, . . . n be independent samples of a population
X ∼ N(µ, σ). The arithmetic mean X is thus normally distributed as well,
X ∼ N(µ, σµ).

For unknown standard deviation, as is usually the case, it can be approxi-
mated using the empirical standard deviation,

S =

√∑n
i=1(Xi −X)2

n− 1
. (3.9)

Following term can now be used as a test statistic,

T =
√
n
X − µ0
S

. (3.10)

T follows a t-distribution with n−1 degrees of freedom under the null hypoth-
esis that the sample was drawn from the population described above. (Sachs,
2013)

Remark 1. For n sufficiently large, the prerequisite of a normal distribution
can be omitted; the random variables need only be independent and identi-
cally distributed (iid). Following the central limit theorem, their arithmetic
mean will tend towards a normal distribution for n→∞.

For hypothesis testing, we must now distinguish between one-sided and two-
sided tests. One-sided tests have null hypotheses of H0 : µ ≤ µ0 (right-tailed
test, H1 : µ > µ0) or H0 : µ ≥ µ0 (left-tailed test, H1 : µ < µ0) respectively.
The two-tailed variant tests for the null hypothesis of H0 : µ = µ0.

Lemma 1. Let α be a given significance level. When performing a right-
tailed test (H0 : µ ≤ µ0), null hypothesis is rejected if the test statistic t
lies within (t1−α;n−1,∞). Analogously, for the left-tailed test (H0 : µ ≥
µ0), the criterion for rejection of the null hypothesis is if t lies within
(−∞,−t1−α;n−1). In the two-tailed test, the null hypothesis will be rejected
if t lies outside of [−t1−α/2;n−1, t1−α/2;n−1].

3.2.2 Group inferences

For group inferences over a sample population, a statistical test can be per-
formed over the individual observed effects (compounds or contrasts, respec-
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tively). Analogously to section 3.2.1, a one-sample t-test is often performed.

We are testing if given linear compounds or contrasts are significantly dif-
ferent from zero, i.e. µ0 = 0, thus a two-tailed test must be performed.

Lemma 2. Let bi be the parameter estimates of β for n individual subjects;
b = 1

n

∑n
i=1 bi is the arithmetic mean of the individual parameter estimates.

For a given contrast vector c (see section 3.2.1), the t-statistic is now cal-
culated as

t =
√
n
c · b
s

(3.11)

and follows a tn−1-distribution according to Theorem 2. s is the empirical
standard deviation

s =

√∑n
i=1(c · bi)2
n− 1

. (3.12)

Analogously to section 3.2.1, we can now calculate a t-score for each voxel
and thus receive a SPM over the entire sample population, allowing infer-
ences about the whole group.

3.2.3 Criticism

GLM is a simple yet robust method for analyzing fMRI data without the
need of formulating a-priori hypotheses on regions of interest (see section 4.3
below). However, while brain mapping with the GLM approach has brought
insights in different brain phenomena, it is limited to taking just snapshots
of brain states, neglecting brain dynamics and interplay of different cortical
regions.

Therefore, various methods have been developed for analyzing dynamic con-
nectivity of brain regions, considering cross-correlations or, as in DCM (see
below), testing hypotheses on intermodulations across defined brain regions.

Critically, independent and identically (normally) distributed errors are re-
quired, in practice however independence is not given, as the error of each
time point is correlated to the error of the previous time point. In addi-
tion, cross-correlation with neighboring voxels is also introduced after spatial
smoothing in the pre-processing steps (see section 3.1).

3.3 Dynamic Causal Modelling

For calculating a statistical parametric map given a stimulus function, no
prior hypotheses about brain dynamics and connectivity are needed, which



3.3. DYNAMIC CAUSAL MODELLING 31

makes the procedure stable and very easy to perform. However, inferences
can only be made on localization of areas related to brain functions, not on
connections and interdependencies. For such tasks, other methods need to
be employed. One method for analyzing functional connectivity is Dynamic
Causal Modelling, which can be used to test hypotheses on brain networks
and the effects within, as well as effects from external stimuli.

Note that in contrast to classic GLM, where analysis is performed unin-
formed (no prior knowledge of local function of the brain is needed), it is
crucial for DCM to have one or several theory/theories on the brain con-
nectivity which should be tested. This is why although the procedures of
GLM and DCM are independent of each other, usually prior to performing
Dynamic Causal Modelling, a GLM is calculated to localize the regions of
interest in the brain.

For more details on the model assumptions, see section 2.3. In summary,
a hypothesis on connections between several well-chosen brain regions is
modeled using the differential equation

ż = (A+
∑
j

ujB
j)z +Cu (3.13)

where ż is a vector describing activity changes in a number of brain regions,
u describes the influencing factors (conditions) over time, and the adjacency
matrices A, B and C describe the effective connectivity - i.e. how certain
conditions or neuronal activity in brain regions influences the activity in
each other brain region.

The neuronal state equation is then combined with the hemodynamic re-
sponse model (see section 2.1), resulting in the model

y = h(u, θ) +Xβ + e (3.14)

where y describes each brain region , h stands for the combined neuronal
state and hemodynamic model, and X and e are used to model linear con-
founds of the signal as well as noise. Using this forward model, we can start
our parameter estimation procedure.

This is implemented within the latest SPM package, as described in Friston
et al. (2003); available at http://www.fil.ion.ucl.ac.uk/spm/software/.

3.3.1 Biophysical constraints

In Bayesian parameter estimation procedures, the goal is usually to find the
maximum posterior estimate (MAP) in an iterative algorithm. To form a
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parameter description mean (ηθ) variance (Cθ)

κ signal decay 0.65 per s 0.015
γ flow autoregulation 0.41 per s 0.002
α stiffness exponent 0.32 0.0015
τ mean transit time 0.98s 0.0568
ρ oxygen extraction fraction 0.34 0.0024

Table 3.1: Priors on hemodynamic parameters θh = {κ, γ, α, τ, ρ}, see Friston
et al. (2003).

valid posterior density estimation, we need a prior density on the parameters.

The parameters θ to be estimated in DCM comprise the biophysical hemody-
namic parameters θh, as well as the coupling parameters θc between neuronal
populations.

There exist empirically determined estimates of the biophysical parameters
for the hemodynamic model, which for other methods are often assumed
constant. These estimates of the mean and covariance can well be used as
a-priori estimates, see table 3.1.

For the coupling parameters, there are clear and necessary constraints due
to neuronal dynamics, which need to be considered and therefore can be
implemented in the prior estimates. For instance, without external stimu-
lus, neuronal activity can not diverge to infinite values. This translates into
the intrinsic coupling matrix such that the largest real eigenvalue must be
negative.

For u = 0, equation (3.13) reduces to

ż =

(A+
∑
j

ujB
j)z +Cu


u=0

= Az. (3.15)

Being a system of homogeneous differential equations,

z(t) = vie
λit (3.16)

is a solution to this system of ODEs for any i, where L = diag(λi) is
the diagonal matrix containing the eigenvalues λi of A as diagonal entries;
V = [v1,v2, ..,vn] is the matrix containing the eigenvectors vi correspond-
ing to λi.
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Obviously, we can see in equation 3.16 that for any eigenvalue λi > 0, neu-
ronal activity z will increase exponentially without external input u and
diverge for t → ∞. As this is biophysically impossible, all real eigenvalues
of A must be negative. For complex eigenvalues, the system will exhibit an
oscillatory behaviour.

For implementation of this constraint on A, we need to define the prior
densities of the coupling matrices accordingly. For simplicity, all priors are
assumed Gaussian. The self-connections aii have a prior expectation of 0,
intrinsic coupling parameters aij have a prior expectation of 2−7; both with
a prior variance of 2−6.

For all other connection strengths (existing connections in B and C matri-
ces), we assume a prior distribution of N(0, 1).

3.3.2 Maximizing model evidence

As in DCM, the model in mathematical terms, i.e. the differential equation
is fixed, model selection refers to

1. defining non-zero entries to connectivity matrices of DCM (i.e. finding
existing modulatory connections),

2. finding values for those non-zero entries (describing the connectivity
strength and direction – i.e. excitatory or inhibitory effects).

Here the first point defines the structure of the model, whereas the second
point is solely parameter estimation. However, both are realized based on
the same optimization problem.

The goal is to maximize the model evidence: find arg maxm p(y|m) with

p(y|m) =

∫
p(y|θ,m)p(θ|m)dθ (3.17)

where y is the measured data and m is the model.

As the model evidence can not be evaluated analytically, it is approxi-
mated. For numerical reasons, calculations are usually made based on the
log-likelihood, due to numerical advantages when reaching very low values
(p(y|m)� 1).

To reduce the risk of overfitting, so to find the best balance between model
fit and complexity, an approximation of the model evidence is generally
described using an accuracy and a complexity term.
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log p(y|m) ≈ accuracy(m)− complexity(m). (3.18)

For this approximation, the Bayesian Information Criterion (BIC) or the
Akaike Information Criterion (AIC) are often used, as relative quality mea-
sures for models – aiming to maximize model accuracy while punishing
model complexity. For model selection, AIC or BIC are minimized respec-
tively.

These criteria are defined as follows:

−AIC = log p(y|θ,m)− n (3.19)

−BIC(y, θ,m) = log p(y|θ,m)− n

2
log(N) (3.20)

where y is the data, m is the model with parameters θ, n is the number
of parameters, and N is the number of data points. Please note that for
penalization of complexity, the number of parameters is considered here, but
not necessarily their information content. Thus, the so-called negative free
energy was introduced,

F = 〈log p(y|θ,m)〉q −KL[q(θ), p(θ|m)] (3.21)

where q is the assumed conditional distribution, thus the left term is the ex-
pected log-likelihood under this posterior. KL denotes the Kullberg-Leibler
divergence, which as complexity term also accounts for parameter interde-
pendencies, thus taking into consideration their “information gain” instead
of the sole number of parameters,

KL[q(θ), p(θ|m)] =
1

2

(
log |Cθ| − log |Cθ|y|+ (µθ|y − µθ)TC−1θ (µθ|y − µθ)

)
(3.22)

where Cθ is the (empirical) prior covariance, Cθ|y is the posterior covariance,
µθ and µθ|y are the prior and posterior expectation. The negative free energy
is a lower bound for the log-likelihood and thus is used as its approximation.

In the further sections, this (negative) free energy is used for parameter es-
timation, as well as for making single subject and group inferences on model
structure. See Neal and Hinton (1998) for further details on the (negative)
free energy function as used in statistical physics.

Remark 2. Please note that AIC, BIC as well as negative free energy are only
relative measures for comparing different models – they can not be used for
testing overall model quality, in the sense of null hypothesis testing. Thus,
they can not indicate poor model quality on an absolute level.
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3.3.3 Parameter estimation

Using the Dynamic Causal Modelling framework, both biophysical and con-
nectivity parameters [θ = (θh, θc)] have to be estimated. Being a non-linear
optimization problem (equations (2.19) and (2.20)), current implementa-
tions of DCM use a Gauss-Newton algorithm in an Expectation Maximiza-
tion scheme (Friston et al., 2003) to calculate the maximum a-posteriori
(MAP) estimates, using a fully Bayesian approach based on the conditional
probability of the parameters given the data, p(θ|y).

According to Bayes’ theorem, following proportionality is given:

p(θ|y) ∝ p(y|θ)p(θ) (3.23)

Under Gaussian assumptions for the posterior density, estimating the prob-
ability density of the posterior p(θ|y) is reduced to finding its first two mo-
ments – the conditional mean ηθ|y and covariance Cθ|y of θ|y. Analogously,
their priors are estimated in terms of their expectation ηθ and Cθ.

Expanding the forward model in equation (2.19) with a working estimate of

the conditional mean η
(i)
θ|y gives us

y = h(θ, u) + e

y ≈ h(η
(i)
θ|y) +

∂h(η
(i)
θ|y)

∂θ
(θ − η(i)θ|y) + e. (3.24)

for the i-th step of the iteration.
For better readability, we denote

J :=
∂h(η

(i)
θ|y)

∂θ
. (3.25)

We now have for the residual and error term

r = y − h(η
(i)
θ|y) and (3.26)

e ≈ r − J(θ − η(i)θ|y). (3.27)

Given Gaussian assumptions, we can write for the likelihood and prior prob-
abilities:

p(y|θ) ∝ exp

[
−1

2
(r − J(θ − η(i)θ|y)

> × C−1e (r − J(θ − η(i)θ|y)
]

(3.28)

p(θ) ∝ exp

[
−1

2
(θ − ηθ)>C−1θ (θ − ηθ)

]
(3.29)
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Combining these results with equation (3.23) gives us

p(θ|y) ∝ exp

[
−1

2
(θ − η(i+1)

θ|y )>C−1θ|y (θ − η(i+1)
θ|y )

]
(3.30)

(3.31)

with

Cθ|y = (J̄>C̄−1e J̄)−1 , (3.32)

η
(i+1)
θ|y = η

(i)
θ|y + Cθ|y(J̄

>C̄−1e J̄) (3.33)

(3.34)

where

ȳ =

[
y − h(η

(i)
θ|y)

ηθ − η
(i)
θ|y

]
, J̄ =

[
J
1

]
, C̄e =

[
Ce 0
0 Cθ

]
. (3.35)

Iterating equation (3.30) when no priors are given can be seen as the Gauss-
Newton method for parameter estimation (see Friston (2002) for further
details).

Although we have so far assumed the error covariance Ce to be known,
usually it is not, e.g. for temporal correlations in fMRI. However, it can be
estimated using some hyperparameters λj , so that

Ce =
∑
j

λjQj and (3.36)

Qj =
∂Ce
∂λj

. (3.37)

Qj represents a covariance basis set that embody variant components, which
can model different variances for different data blocks, or even temporal cor-
relations within blocks. To model the error covariance using this basis set,
we must now estimate its coefficients λj .

The posterior mean ηθ|y and covariance Cθ|y as well as error covariance Ce
are now estimated iteratively in an expectation maximization (EM) scheme
(see below), such that the model evidence – i.e. the negative free energy F
– is maximized. Note that estimation and maximization of model evidence
as well as parameter estimation are performed simultaneously.

The expectation maximization (EM) algorithm

The log evidence log p(y|λ) = F (λ) is maximized using Restricted Maximum
likelihood (ReML) estimators, as described in Neal and Hinton (1998). Us-
ing a Fisher Scoring scheme (see below), we have following iterative proce-
dure.
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λ(i+1) = λ(i) −
[
∂2F

∂λ2

]−1
∂F

∂λ
with (3.38)

∂F

∂λi
= −1

2tr(PQi) + 1
2 ȳ

TPTQiP ȳ (3.39)

∂2F

∂λ2j,k
= −1

2tr(PQjPQk) (3.40)

P = C̄−1e − C̄−1e J̄Cθ|yJ̄
>C̄−1e (3.41)

The covariance basis set Qi has a sparse structure; in fact, if chosing the
identity matrix, representing i.i.d. assumptions about the errors, the above
iteration is equivalent to the sum of squared residual estimator.

The equations above can now be implemented recursively, resulting in an
expectation maximization (EM) algorithm.

The EM algorithm can be split up into the E-step, estimating the condi-
tional expectation of the parameters, holding the hyperparameters for the
error covariance fixed (see equation 3.30 and following), and the M-step
(maximum likelihood step), where the maximum likelihood estimates of the
hyperparameters are updated, whereas the parameters are held fixed (equa-
tions 3.38 and following).

Below is a short schematic description of the Expectation Maximization
(EM) algorithm, based on above equations, additionally considering the con-
founds X described in the observation model in Equation (2.20).
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Data: priors ηθ, Cθ, λ
(0); observations y; function h; confounds X

Result: MAP estimates ηθ|y, Cθ|y; neg. free energy F

/* Initializations */

F = −∞; ηθ|y = ηθ; λ
(1) = λ(0), Cθ|y = Cθ;

repeat

/* E-step: update η and C */

J =
∂h(u,ηθ|y)

∂θ ;

ȳ =

[
y − h(η

(i)
θ|y)

ηθ − η
(i)
θ|y

]
, J̄ =

[
J X

1 0

]
, C̄e =

[∑
λ
(i)
j Qj 0

0 Cθ

]
;

Cθ|y =
(
J̄>C̄−1e J̄

)−1
;

η
(i+1)
θ|y = η

(i)
θ|y + Cθ|y

(
J̄>C̄−1e J̄

)
;

/* M-step: update λ */

P = C̄−1e − C̄−1e J̄Cθ|yJ̄
>C̄−1e ;

∂F
∂λi

= −1
2tr (PQi) + 1

2 ȳ
TPTQiP ȳ ;

∂2F
∂λ2j,k

= −1
2tr (PQjPQk) ;

λ(i+1) = λ(i) −
[
∂2F
∂λ2

]−1
∂F
∂λ ;

/* check convergence */

estimate F from (3.21) ;

if F increased then
accept current estimates

else

reset current estimates to priors;

decrease log ascent rate;

end

until convergence, i.e.
∣∣∣η(i+1)
θ|y − η(i)θ|y

∣∣∣ < 10−6;

Algorithm 1: Expectation Maximization Algorithm, as currently im-

plemented in spm nlsi GN.m within the SPM package, available at

http://www.fil.ion.ucl.ac.uk/spm/software.

The EM algorithm above basically describes a Gauss-Newton scheme, giving
us the MAP estimates of the parameters θ maximizing the model evidence
F . For more details on maximum likelihood approaches, see Harville (1977)
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and Neal and Hinton (1998).

Fisher Scoring Algorithm

The Fisher Scoring algorithm is an algorithm based on the so-called score
of a Likelihood function.

The score or score function V (θ,X) with respect to a likelihood function
L(θ;X) indicates the sensitivity of the likelihood function to its parameters
θ. It can be viewed as the gradient of the log-likelihood with respect to θ.

Definition 5. Let X be an observation, and θ are the parameters of the
likelihood function L(θ;X). Then the score V is defined as

V = V (θ,X)

=
∂

∂θ
logL(θ;X)

=
1

L(θ;X)

∂L(θ;X)

∂θ
(3.42)

where the last equality results from the chain rule.

The following lemmata summarize some useful properties of score functions.

Lemma 3. Let V be the score function of a likelihood function L(θ;X). Let
θ∗ be the true parameter. The likelihood function L can be rewritten as a
probability density function: L(θ;x) = f(x; θ). Then for the expectation of
the score function, we have

E(V |θ) =

∫ +∞

−∞
f(x; θ)

∂

∂θ
logL(θ;X)dx

=

∫ +∞

−∞

∂

∂θ
logL(θ;X)f(x; θ)dx

=

∫ +∞

−∞

1

f(x; θ)

∂f(x; θ)

∂θ
f(x; θ)dx

=

∫ +∞

−∞

∂

∂θ
f(x; θ)dx

=
∂

∂θ

∫ +∞

−∞
f(x; θ)dx

=
∂

∂θ
1 = 0 (3.43)

This follows from (3.42) and the Leibnitz integral rule.
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Lemma 4. Let V be the score function of a likelihood function L(θ;X),
which can be rewritten as probability density function: L(θ;x) = f(x; θ).
The variance of the score function – the so-called Fisher Information –
is defined as

I(θ) = var(L(θ;X)) = E(L2(θ;X))

= E

[(
∂

∂θ
logL(θ;X)

)2 ∣∣∣θ]

=

∫ (
∂

∂θ
log f(x; θ)

)2

f(x; θ)dx (3.44)

as the expectation of the score is 0. If the log likelihood is twice differentiable
and under some regularity conditions, the Fisher information may also be
written as

I(θ) = −E
[
∂2

∂θ2
logL(θ;X)

∣∣∣θ] . (3.45)

As a score, especially its variance – the Fisher Information – can tell us
about the quality of a parameter estimate, therefore it is often utilized as
a measure for parameter estimation. A scoring algorithm is a form of
Newton’s method for finding maximum likelihood estimates for (non-linear)
equations, based on the score function.

Lemma 5. Let Y1, ..., Yn be random i.i.d. variables with probability distribu-
tion function f(y; θ) which is twice differentiable. The maximum likelihood
estimate θ∗ needs to be estimated. Let L(θ) be the score function; θ0 is given
as a starting point for our algorithm. Then the Taylor approximation of our
score function is given as

V (θ) ≈ V (θ0)− J(θ0)(θ − θ0) (3.46)

where J(θ0) is the observed information matrix at θ0:

J(θ0) = −
n∑
i=1

∇∇T|θ=θ0 log f(Yi; θ) (3.47)

with J(θ0)j,k = − ∂2

∂θj∂θk
log f(θ)|θ=θ0.

Setting θ = θ∗, as V (θ∗) = 0, we receive

θ∗ ≈ J−1(θ0)V (θ0). (3.48)

Thus, we have an iterative scheme, where

θm+1 = θm + J−1(θm)V (θm). (3.49)
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In practice however, J(θ) is usually replaced by the Fisher Information I(θ)
– thus resulting in the Fisher Scoring Algorithm

θm+1 = θm + I−1(θm)V (θm). (3.50)

For more details on scoring algorithms, see Longford (1987).

The Fisher Scoring algorithm is e.g. used within the Expectation Maximiza-
tion scheme to update the hyperpriors λ(i+1) in the M-step.

3.3.4 Inference strategies

After specification and estimation of a DCM, we obtain the mean and co-
variance for each connectivity parameter in θc, as well as an estimate of the
model evidence through the negative free energy F .

Regarding statistical analyses on the parameter level, significance of each
connection can be tested using a one-sided t-test on the mean and covari-
ance – analogously to section 3.2.1 and 3.2.2.

However, as the negative free energy is only a relative measure of model qual-
ity, we can not infer on the model itself, but only compare different models
(different model structures) on the same data – which gives us following
options for inferences on the model structural level:

• Select the model maximizing the model evidence for each subject.

• Average over models showing high posterior probability.

The first option is also referred to as Bayesian Model Selection (BMS).
As there are often several models showing non-neglectable posterior proba-
bility, it has become fairly common to perform Bayesian Model Averaging
(BMA) (second option), performing a weighted average over models within
an Occam’s window – i.e. showing a posterior probability above a certain
threshold, see Penny et al. (2004) and Penny et al. (2010).

3.3.5 Criticism

Compared to classic GLM approaches, DCM inherently takes the dynamic
nature of brain activity into account by implementing interconnections be-
tween brain regions. However, “effective connectivity” in the DCM does not
imply direct physical connection of certain brain regions.

While in the GLM analysis no prior assumptions have to be made on spatial
extend and location of activation changes, DCM depends strongly on a-
priori hypotheses regarding neuronal populations and mechanisms. Within
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the current DCM framework it is only possible to estimate the most plau-
sible parameters for pre-defined modulatory connections in DCMs. There
is no possibility for validating the prior assumptions (i.e. presumed connec-
tions) per se, and thus the resulting model.

Also, when defining a set of models (in the sense of presence or absence of
certain connections between the pre-defined brain regions), they can only
be compared against each other in a relative manner; there is no absolute
measure for model fit. In other words, one model will always win, but we
never know through DCM alone if it reflects the mechanism of the system.
Thus, conclusions can only be as good as the prior assumptions.

For true model validation, other methods need to be used complementarily,
however such evidence is rare due to practical and ethical reasons, as usually
invasive methods are used (Daunizeau et al., 2011). Transcranial magnetic
stimulation (TMS) may be an alternative or helpful addition for investi-
gating functional connections between brain regions in certain settings (Tik
et al., 2017).

Exploratory, i.e. non-hypothesis-driven, analysis could theoretically be con-
ducted by setting each measurement point – i.e. voxel time course – in
relation to each other, and variating the existing connections respectively.
However, this is not only numerically impossible (depending on the resolu-
tion resulting in billions of models and not feasible calculation times), but
also the winning model may not be the optimal (Lohmann et al., 2012).

Lohmann et al. (2012) have sparked a lively debate after their critical review
on the DCM framework, stating that

DCM currently lacks convincing model validation methods, as
well as a reliable model selection procedure, so that DCM models
are based on insufficient evidence.

This has evoked several responses, see Friston et al. (2013); Breakspear
(2013); Lohmann et al. (2013).

Although in Friston et al. (2013), most of the aspects criticized were ad-
dressed, it was emphasised that DCM can only be regarded as a model
selection framework, not for defining models per se. Model validation is
thus not possible within DCM.

Therefore, reliability research in terms of reproducibility of DCM results is
highly needed. This provides the motivation for our reproducibility study
(see section 4), which was conducted to investigate the variation of DCM
results when repeating a task several times.
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3.4 Reliability and repeatability

As repeatability is one of the most important quality criteria for scientific
studies, it is important to assess the relationship of results within and be-
tween subjects, as well as possible influences of other factors.

A common concept for quantifying relationships between two or more ran-
dom variables is the correlation coefficient. Several different correlation
measures exist for different purposes. The most commonly used correlation
measure is Pearson’s correlation coefficient, which describes linear relations
between two variables or samples.

Definition 6. Let X and Y be quadratically integrable stochastic variables
with positive standard deviation σ(X) = E[(X − E(X))2] and covariance
cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]. Pearson’s correlation coefficient
ρX,Y is defined as

ρX,Y =
covX,Y
σXσY

. (3.51)

X and Y are uncorrelated if covX,Y = 0.

For random samples, the empirical correlation coefficient (also called sample
correlation coefficient or sample Pearson correlation coefficient) is defined
analogously, by substituting the variance and covariance by their empirical
estimates.

Definition 7. For two random samplesX = {x1, ..., xn} and Y = {y1, ..., yn},
the empirical correlation coefficient r(X,Y ) is defined as

r(X,Y ) =
cov(X,Y )

σ(X)σ(Y )
(3.52)

where the empirical covariance cov(X,Y ), the empirical standard deviation
σ(X) and the sample mean x̄ are defined as

cov(X,Y ) =

n∑
i=1

(xi − x̄)(yi − ȳ) (3.53)

σ(X) =

√√√√ n∑
i=1

(xi − x̄)2 (3.54)

x̄ =
1

n

n∑
i=1

xi. (3.55)

Besides connections between two different variables (samples from two differ-
ent populations), in many practical cases, repeated measures within certain
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groups (intra-class samples) should be assessed. Since Pearson’s correlation
coefficient proves to be unsuitable, the Intraclass Correlation Coeffi-
cient was introduced. In contrast to Pearson’s correlation coefficient, intr-
aclass correlation considers variation over subjects, as is common in clinical
follow-up studies. In Shrout and Fleiss (1979) and Fleiss (2011), guidelines
for applying the intraclass correlation as a reliability index for different fields
of application are provided.

Depending on the nature of the data compared, there are different types of
intraclass correlation coefficients. The objects of measurements (here: the
subjects) are the factor representing a source of variance. If they are the
only source of variance, one-way measures are used, which are denoted as
ICC(1,1) or ICC(1,k) depending if single measures or average measures are
being considered. If both rows and columns are seen as sources of variance,
two-way measures are used: ICC(2, ·) if all targets are measured by the
same raters, which are sampled from a population of raters; or ICC(3, ·)
if each target is measured by the same raters, which are the only raters of
interest. This describes a mixed effects model, where the sum of the column
effects are assumed to be zero (unbiased raters). Subsequently we will only
refer to ICC(3, ·).

Definition 8. Let M be a data matrix with (mi,j) = M ∈ Rk×n, contain-
ing ratings of k raters (observers) for n targets (classes).

For analyzing single measurements, the ICC(3,1) is used, which is defined
as

ICC(3, 1) =
MSB −MSE

MSB + (k − 1)MSE
(3.56)

where MSB describes the variance between the targets (between targets
mean squares, with degrees of freedom df = n− 1)

MSB =
k

n− 1

n∑
i=1

(µtarget,i − µtotal)2, (3.57)

MSE describing the residual variance (residual mean squares, df = (n −
1)(k − 1)), and µtarget,i = 1

k

∑k
j=1mi,j is the mean per target (for target i),

µtotal is the total mean.
The residual variance MSE is defined as

MSE =
1

(k − 1)(n− 1)
(SSW − SSR) (3.58)
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where SSW is the within-target sum square

SSW =
k∑
j=1

n∑
i=1

(mi,j − µtarget,i)2 (3.59)

and SSR is the between rater sum square

SSR =
k∑
j=1

(µrater,j − µtotal)2 (3.60)

with µrater,j = 1
n

∑n
i=1mi,j being the mean per rater (for rater j).

For analyzing a mean of several measurements over different raters, the
ICC(3,k) is used, described as

ICC(3, k) =
MSB −MSE

MSB
. (3.61)

The above formulas will result in values ≤ 1, where values close to 1 show
high intraclass correlation. In Fleiss (2011), ICC values below 0.4 are de-
scribed as poor, values between 0.4 and 0.6 as fair, between 0.6 and 0.75 as
good, and values > 0.75 are regarded as excellent.

Please note that the ICC gets higher if the targets differ more (higher vari-
ance between targets) and if the residual variance is lower. Thus, if the
ratings for different targets are very similar, this will result in low ICCs.

Analyses of ICC are typically performed to assess data stability and repro-
ducibility of results (see next chapter for an example).
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Chapter 4

Reliability study

Reliability and reproducibility of fMRI study results are the key factors for
assessing the validity of fMRI methods for measuring brain activity. There-
fore, an fMRI study was performed, aimed at analyzing reproducibility and
reliability of brain activation maps in the face and emotion processing net-
work in the human brain, including brain structures such as the fusiform
gyrus, amygdalae as well as superior temporal areas. In the subsequent
pages, the experimental setup, hypotheses and results will be presented. All
the presented work was performed by the author and is being prepared for
publication (Geissberger et al. (2017), in preparation).

4.1 Motivation

As the amygdala has proven to play an important role for affective process-
ing, more and more interest is placed on its function and dysfunction in
health and disorder. In order to investigate amygdalar function with func-
tional MRI, following prerequisites have to be satisfied: reproducible data
quality and a reliable stimulus. During MRI data acquisition, the amyg-
dala lies in a region where the magnetic field is very inhomogeneous and
thus is suspected to rapid signal decay. However, it was shown that reduc-
ing/decreasing the voxel size leads to a significantly better signal and reduces
the effects of this rapid intra-voxel dephasing (Robinson et al., 2008). Using
ultra-high field fMRI at 7 Tesla, higher resolution images can be acquired
and high-SNR quality images of the amygdala can be obtained (Sladky et al.,
2013).

The amygdala has been shown to be involved in processing of emotional
stimuli, especially emotional faces. A well-established task to stimulate and
activate the amygdala is the emotion discrimination task (EDT), which has
been introduced by Hariri et al. (2002). In this task, the subjects are pre-

47
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sented with a probe face on the top and have to select one of two faces
shown on the bottom which matches the emotion expressed in the face on
top. This task has been used in numerous studies in healthy subjects and
patients to reveal the neural underpinnings of emotion processing (Wang
et al., 2017) and maladaptive changes in psychiatric disorders (Stein et al.,
2007), (Sladky et al., 2012), (Paulus et al., 2005).

However, studies on the reproducibility of the EDT task are rare. Only
few longitudinal studies on facial emotion processing in the amygdala exist.
Plichta et al. (2012) analyzed the test-retest reliability of different cognitive
and emotive tests, including an emotional face paradigm showing low inter-
session reproducibility of amygdalar activation. However it remains unclear
if this is due to habituation of amygdalar activity or if other factors might
contribute to the parameter estimate fluctuations.

Investigations on the re-test reliability of Dynamic Causal Models have been
performed so far using motor tasks (Frässle et al., 2015) and a face percep-
tion task (Frässle et al., 2016), including bilateral areas in the visual cortex
as well as fusiform face area, however not yet aiming for the emotion pro-
cessing network.

In this study, we have investigated the intra- and intersession variability
of the emotion discrimination task responses by repeatedly measuring the
task responses and comparing them over runs and measurement dates. Fur-
thermore, we have determined if modifications of the task instructions lead
to different responses in the emotion processing network, and analyzed the
impact of measuring at lower signal-to-noise ratio (SNR) (resulting from in-
creasing the temporal resolution) on the effect size.

Furthermore, the data was used to perform tests on the intra- and interses-
sion variability of Dynamic Causal Models.

4.2 Experimental setup

Fourteen right-handed, healthy volunteers with no history of neurological or
psychiatric disorders were recruited (7f/7m, mean age: 25.3 ± 3.0 years).
Participants were asked to refrain from caffeine, alcohol and nicotine 6 hours
prior to the examination. All subjects gave written informed consent to par-
ticipate in the study and were financially reimbursed. The study protocol
was approved by the institutional review board of the Medical University of
Vienna.

Subjects were examined using an extended version of the emotion discrimi-
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Figure 4.1: Flow chart of emotion, person and object matching trials. During
the task, participants were presented with three images with the instruction to
match the top image to one of the bottom images. They were asked to match
emotions during the explicit emotion discrimination task (eEDT), persons dur-
ing the implicit emotion discrimination task (iEDT), and objects during the
control task (ODT). Each task block had a duration of 20 seconds and was fol-
lowed by 11 seconds of rest, where a fixation cross was shown to the subjects for
8 seconds, and they were faced with the instruction for the next task block for
3 seconds (“match EMOTIONS”, “match PERSONS”, “match OBJECTS”).
Each of the three task blocks was repeated three times per run, each run was
repeated three times per measurement session, and the session repeated after
two weeks. The order of the task blocks was randomized for each subject and
session, and fixed for all runs within each session.

nation task (EDT, Hariri et al. (2002)), a paradigm known to activate brain
regions associated with face recognition and processing (Sabatinelli et al.,
2005). Subjects were presented with three pictures simultaneously (one on
top and two on the bottom) and were instructed to match the corresponding
picture on the bottom to the one on top.

In the standard EDT task (further referred to as explicit emotion discrim-
ination task – eEDT), subjects are presented with three images showing
faces, and are asked to match the facial emotional expressions, while an
object discrimination task (ODT) is used as control condition – here the
subjects are presented with shapes of polygons on a skin-toned background
and asked to match the number of corners of the polygons. In this study,
we have added another faces-stimulus based on the instructions to match
persons instead of emotions – further referred to as implicit emotion dis-
crimination task (iEDT).

The task was set up in a block design, where a fixation cross was shown
for 8 seconds as a baseline condition, followed by a screen explaining the
following task block (“EMOTION discrimination”, “PERSON discrimina-
tion”, “OBJECT discrimination”) for 3 seconds and the corresponding task
block with a duration of 20 seconds. The task setup is shown schematically
in figure 4.1. During the task, stimuli were displayed using a video pro-
jector on a screen at the head end of the MRI scanner. Face triplets were
randomly combined and presented using a script programmed in python,
using the pygame library. Subjects were able to react via button press using
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Figure 4.2: Placement of Field of View. Example of measurement area
for one subject. FOV (192×192×58.5mm3) for TR = 0.7s is shown in yellow,
overlaying field of view for TR = 1.4s (green+yellow, 192 × 192 × 97.5mm3).
For TR = 0.7s, the number of slices was reduced in z direction from 78 to 39
slices, and spacing between slices was increased from 1.25mm to 1.5mm.

a MRI-compatible response box. After responding (button-press) or if the
subject failed to respond within 5 seconds, subjects were presented with a
new triplet of images in each task block.

The images were taken from the Radboud Faces Database (Langner et al.,
2010) and showed faces of caucasian males and females; the faces expressed
either anger, disgust, fear, happiness, sadness, surprise or calmness (see fig-
ure 4.1).

Data acquisition was performed on a SIEMENS Magnetom 7 Tesla whole-
body MR scanner, using a 32-channel head coil with the CMRR (Cen-
ter for Magnetic Resonance Research, University of Minnesota, https:

//www.cmrr.umn.edu) multiband echoplanar imaging (EPI) sequence, and
two different repetition times (TR). For TR = 1.4s, echo time (TE) was
23ms, 78 slices with a spatial resolution of 1.5×1.5×1mm3 (field of view
(FOV) = 192×192×97.5mm3) were acquired at a flip angle of α = 62◦ and
bandwidth of f = 1447 Hz/px. For TR = 0.7s, spacing between slices was
increased from 1.25mm to 1.5mm, and the number of slices was reduced to
39 (FOV = 192×192×58.5mm3). An example of the recorded fields of view
for one subject is depicted in figure 4.2.

In order to analyze the stability of the results, the task order was randomized
for each subject; for each repetition time (TR), the task set was repeated
three times per run, each run was conducted three times per measurement
session, and for each subject the session was repeated once after two weeks.
The order of the two acquisition protocols used was randomized as well
(TR = 1.4s or TR = 0.7s first), alternating both TRs to aquire the respec-
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tive first, second and third run.

Functional data pre-processing was performed using existing software pack-
ages and included de-spiking (AFNI1), slice-timing correction (FSL2), dis-
tortion correction (FSL), bias field correction (ANTs3), realignment (FSL),
normalization to MNI space (ANTs), and smoothing with a 6mm FWHM
Gaussian kernel (FSL), see section 3.1 for details on pre-processing steps.
For optimal normalization results, to ensure comparability over runs, for
each subject all runs were co-registered to a mean of all runs with whole-
brain coverage (TR = 1.4s); the normalization parameters were calculated
for all runs simultaneously using this mean image.

4.3 Reliability of GLM results in emotion process-
ing

Analyses were conducted in SPM124. Data was analysed using a block-
design GLM (see section 3.2), where the task blocks of 20s each were used
as regressors against the non-task blocks; realignment parameters, as well
as white matter and cerebrospinal fluid (CSF) parameters, obtained from
the previous preprocessing steps, were also included as nuisance regressors
to minimize effects of movement and artifacts arising from non-grey mat-
ter. Statistical parametric maps (SPM) were calculated contrasting the ex-
plicit/implicit emotion discrimination task (eEDT/iEDT) versus the object
discrimination task (ODT). Significance thresholds were set to p < 0.05,
corrected for multiple comparisons on whole-brain level.

Parameter estimates were extracted from single-subject statistical paramet-
ric maps, coordinates taken from maxima of clusters in eEDT > ODT con-
trast in the first run and session, TR = 1.4s (see SPM in figure 4.3); mean
parameters of sphere with radius of 2 voxels and the respective coordinates
as center. These values were used for further stability analyses and to cal-
culate means and standard errors (see figures 4.7 and 4.8).

To examine the intra- and intersession reliability of the GLM results, intr-
aclass correlations were calculated based on the formula defined by Shrout
and Fleiss (1979).

1Analysis of Functional NeuroImages, available at https://afni.nimh.nih.gov/
2fMRI Software Library, available at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
3Advanced Normalization Tools, available at http://stnava.github.io/ANTs/
4Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/software/
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As described in section 3.4, we have used

ICC(3, 1) =
MSB −MSE

MSB + (k − 1)MSE
(4.1)

for analysing single measurements, and

ICC(3, k) =
MSB −MSE

MSB
(4.2)

for analysing means of measurements over different raters (i.e. measurement
sessions).

Here, MSB is the variance between the subjects, and MSE is the rest vari-
ance. We have used the ICC(3,1) to analyse intrasession stability (all 6 runs
per TR, not taking into account session effects) (n = 14, k = 6) and ICC(3,k)
on the session means for each subject to analyse intersession reliability of
the parameter estimates (n = 14, k = 2). As the SNR differs between the
sequences using different TRs, thus possibly resulting in different effect sizes,
we have analysed the ICCs separately for each TR (see table 4.2).

Habituation effects were assessed by performing 2-sample t-tests on the sin-
gle subject contrasts (difference of parameter estimates for eEDT and ODT)
for the first and last run of each measurement session.

4.3.1 Results

Calculating the statistical parametric map (SPM) of the emotion discrimi-
nation task, contrasting the (explicit) EDT with the control task (see figure
4.3), reveals the well-established emotion processing network including bi-
lateral amygdala, fusiform gyrus, dorsolateral prefrontal cortex (DLPFC),
superior and middle temporal gyrus. The implicit EDT task (person match-
ing) shows that activation of amygdala, fusiform gyrus, middle and superior
temporal gyrus are equally present in both face paradigms independent of
the task instruction (see figures 4.4 and 4.7).

DLPFC, as well as parts of cingulate gyrus and right superior and middle
temporal gyrus show higher activation during the explicit emotion discrim-
ination task compared to the implicit task (see figure 4.5), figure 4.7 shows
a significant difference in activation level of the left DLPFC comparing the
explicit and implicit emotion discrimination task.

For assessing stability over runs and sessions, the data was visualized by
plotting results of each session against each other and inspecting the sim-
ilarity of the plot to the x = y graph. In figure 4.6 these plots are shown
for bilateral amygdalae, fusiform gyri and DLPFC for the contrast eEDT >
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b) eEDT > ODT c) iEDT > ODT

MTS

FFA

STS

MTS

amy

a) Task scheme

Figure 1a. Explicit (eEDT) and implicit (iEDT) emotion discrimination and object discrimination tasks (ODT).
During the task, participants were presented with three images with the instruction to match the top image to
one of the bottom images, either based on emotions during the explicit emotion discrimination task (eEDT), based
on the depicted person during the implicit emotion discrimination task (iEDT), or based on objects (geometrical
shapes) during the control task (ODT). Each task block had a duration of 20 seconds and was followed by 11
seconds of rest, where a fixation cross was shown to the subjects. Each of the three task blocks was repeated
three times per run, each run was repeated three times per measurement. The order of the task blocks was
randomized.
b. SPM of explicit emotion processing > object processing (eEDT > ODT). p<0.05, FWE whole-brain corrected.
c. SPM of implicit emotion processing > object processing (iEDT > ODT). p<0.05, FWE whole-brain corrected.

Figure 4.3: Brain activation during Emotion Discrimination (eEDT > ODT),
first run of first session, TR = 1.4s. Matching emotion of faces revealed height-
ened activation in cortical and subcortical regions associated with face recogni-
tion and affective processing, i.e. fusiform gyrus, amygdala, DLPFC, superior
temporal sulcus, middle temporal sulcus, cingulate cortex. The threshold of
the t-statistics was set to p < 0.05, FWE whole-brain correction for multiple
comparison (T ≥ 4.9220). Axial slices plotted with the SPM software package.
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b) eEDT > ODT c) iEDT > ODT

MTS

FFA

STS

MTS

amy

a) Task scheme

Figure 1a. Explicit (eEDT) and implicit (iEDT) emotion discrimination and object discrimination tasks (ODT).
During the task, participants were presented with three images with the instruction to match the top image to
one of the bottom images, either based on emotions during the explicit emotion discrimination task (eEDT), based
on the depicted person during the implicit emotion discrimination task (iEDT), or based on objects (geometrical
shapes) during the control task (ODT). Each task block had a duration of 20 seconds and was followed by 11
seconds of rest, where a fixation cross was shown to the subjects. Each of the three task blocks was repeated
three times per run, each run was repeated three times per measurement. The order of the task blocks was
randomized.
b. SPM of explicit emotion processing > object processing (eEDT > ODT). p<0.05, FWE whole-brain corrected.
c. SPM of implicit emotion processing > object processing (iEDT > ODT). p<0.05, FWE whole-brain corrected.

Figure 4.4: Brain activation during implicit Emotion Discrimination (iEDT
> ODT), first run of first session, TR = 1.4s. Matching faces of individuals
showing expressing emotions revealed comparable results to emotion matching
– i.e. increased activation in fusiform gyrus, amygdala, superior temporal gyrus,
middle temporal gyrus; however significantly lower activation in dorsolateral
prefrontal cortex (DLPFC). The threshold of the t-statistics was set to p <
0.05, FWE whole-brain correction for multiple comparison (T ≥ 4.9220). Axial
slices plotted with the SPM software package.
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Figure 2. Differences in brain activation for explicit vs. implicit emotional face processing (eEDT > iEDT).
Statistic parametric map showing increased activation in ventro­ and dorsolateral prefrontal cortex (VLPFC,
DLPFC) as well as parts of cingulate gyrus when performing explicit emotion discrimination in contrast to
implicit emotion discrimination (p<0.05 FWE corrected).
Bar charts show parameter estimates for explicit emotion (blue colour), implicit emotion (green colour) and
object discrimination (grey colour). Red lines indicate standard errors. Activity in amygdala and fusiform face
area is independent of explicit/implicit task instruction. Ventro­ and dorsolateral prefrontal cortex show
significantly higher activation when paying attention to emotions (explicit emotion discrimination)
compared to individuals.

Figure 4.5: Brain activation at explicit emotion discrimination (eEDT >
iEDT), first run of first session, TR = 1.4s. Matching emotion of faces instead
of persons revealed higher activation in dorso- and ventrolateral prefrontal
cortex, as well as cingulate cortex. The threshold of the t-statistics was set to
p < 0.05, FWE whole-brain correction for multiple comparison (T ≥ 4.9220).
Axial slices plotted with the SPM software package.



56 CHAPTER 4. RELIABILITY STUDY

S
essio

n
1

S
essio

n
2

R
eg

io
n

R
u
n
1

R
u
n
2

R
u
n
3

R
u
n
1

R
u
n
2

R
u
n
3

co
o
rd

in
a
tes

[1
8
,
-7
,
-1
8
]

[1
8
,
-6
,
-1
8
]

[2
0
,
-4
,
-1
9
]

[1
8
,
-6
,
-1
9
]

[2
0
,
-6
,
-1
8
]

[2
0
,
-6
,
-1
9
]

rA
m
y

t-v
a
lu
e

1
1
.0
9

9
.1
7

7
.7
7

9
.9
5

7
.9
2

7
.0
7

clu
ster

size
1
2
9
3

6
4
6

1
4
3

8
0
7

1
5
7

1
5
7

co
o
rd

in
a
tes

[-2
0
,
-6
,
-1
8
]

[-2
0
,
-6
,
-1
8
]

[-2
0
,
-6
,
-1
8
]

[-2
0
,
-6
,
-1
8
]

[-2
0
,
-4
,
-1
9
]

[-2
0
,
-4
,
-1
9
]

lA
m
y

t-v
a
lu
e

1
0
.6

7
.7
9

7
.6
1

8
.6
7

6
.4
8

5
.6
1

clu
ster

size
7
5
5

1
8
8

1
2
8

6
0
6

6
9

3
4

co
o
rd

in
a
tes

[4
4
,
-5
2
,
-2
2
]

[4
4
,
-5
2
,
-2
2
]

[4
4
,
-5
2
,
-2
2
]

[4
4
,
-5
4
,
-2
2
]

[4
2
,
-5
4
,
-2
0
]

[4
2
,
-5
4
,
-2
0
]

rF
u
sG

y
r

t-v
a
lu
e

1
1
,2
3

1
1
,2
5

1
1
,0
5

1
2
,1
7

1
1
,7
3

1
1
,1
4

clu
ster

size
9
9
7

9
4
9

1
0
1
0

1
1
7
5

1
1
0
1

1
0
0
3

co
o
rd

in
a
tes

[-4
4
,
-4
6
,
-2
2
]

[-4
4
,
-4
8
,
-2
2
]

[-4
4
,
-4
6
,
-2
4
]

[-4
4
,
-4
8
,
-2
2
]

[-4
5
,
-4
8
,
-2
4
]

[-4
5
,
-4
8
,
-2
4
]

lF
u
sG

y
r

t-v
a
lu
e

9
.0
7

8
.8

9
.5
1

1
0
.2
1

9
.8
9

8
.8
2

clu
ster

size
5
4
2

5
4
6

7
0
6

7
6
7

6
9
0

5
7
7

co
o
rd

in
a
tes

[5
1
,
3
2
,
1
6
]

[3
6
,
4
,
3
5
]

[5
1
,
2
8
,
2
0
]

[5
6
,
3
4
,
1
6
]

[5
1
,
2
9
,
1
8
]

[5
4
,
3
2
,
1
7
]

rD
L
P
F
C

t-v
a
lu
e

7
.8
1

7
.0
2

7
.1
1

6
.9

7
.9
7

6
.8
8

clu
ster

size
2
0
7
8

1
6
4
4

2
2
3
0

1
6
5
3

1
9
2
7

1
0
4
9

co
o
rd

in
a
tes

[-5
2
,
4
1
,
1
0
]

[-5
2
,
2
4
,
2
6
]

[-4
6
,
1
4
,
2
6
]

[-4
6
,
1
6
,
2
4
]

[-4
4
,
1
4
,
2
6
]

[-4
4
,
1
4
,
2
6
]

lD
L
P
F
C

t-v
a
lu
e

6
.2
3

6
.3
8

7
.0
8

7
.2
4

7
.1
9

7
.4
8

clu
ster

size
1
7
3
1

4
4
3

1
0
6
0

5
8
6

1
1
5
5

9
0
9

co
o
rd

in
a
tes

[4
8
,
-4
7
,
1
2
]

[4
8
,
-4
6
,
1
4
]

[5
0
,
-4
6
,
1
2
]

[4
6
,
-4
6
,
1
4
]

[5
0
,
-4
6
,
1
2
]

[5
8
,
-4
4
,
6
]

rS
u
p
T
em

p
G
y
r

t-v
a
lu
e

8
.5
2

8
.6
4

8
.6
1

8
.4
8

7
.9
3

6
.5
4

clu
ster

size
3
1
0
2
∗

2
5
0
2
∗

2
2
0
7
∗

2
9
6
1
∗

1
4
6
2
∗

5
7
4
∗

co
o
rd

in
a
tes

[-6
2
,
-5
5
,
1
0
]

[-5
8
,
-4
6
,
1
4
]

[-6
0
,
-4
8
,
1
4
]

[-6
0
,
-4
6
,
1
2
]

[-6
2
,
-5
5
,
8
]

[-6
0
,
-5
6
,
6
]

lS
u
p
T
em

p
G
y
r

t-v
a
lu
e

7
.8
6

6
.4
7

6
.2
7

6
.4
7

5
.9

5
.4
8

clu
ster

size
1
6
8
1
∗

7
3
9
∗

6
7
9
∗

1
5
0
9
∗

1
7
2

3
1

co
o
rd

in
a
tes

[5
8
,
-6
4
,
8
]

[5
1
,
-7
4
,
1
2
]

[5
8
,
-6
4
,
8
]

[5
8
,
-6
4
,
8
]

[5
8
,
-4
6
,
6
]

[6
2
,
-6
7
,
6
]

rM
id
T
em

p
G
y
r

t-v
a
lu
e

8
.1
1

7
.2
5

7
.6
4

8
.2
6

7
.0
4

6
.5
1

clu
ster

size
3
1
0
2
∗

2
5
0
2
∗

2
2
0
7
∗

2
9
6
1
∗

1
4
6
2
∗

5
7
4
∗

co
o
rd

in
a
tes

[-5
0
,
-6
1
,
8
]

[-4
0
,
-6
8
,
1
7
]

[-3
8
,
-6
7
,
1
7
]

[-5
8
,
-5
8
,
6
]

[-4
5
,
-6
1
,
1
0
]

[-5
0
,
-5
9
.5
,
6
.5
]

lM
id
T
em

p
G
y
r

t-v
a
lu
e

7
.2
6

6
.7
6

7
.0
9

7
.1
5

5
.6
6

4
.8
9

clu
ster

size
1
6
8
1
∗

7
3
9
∗

6
7
9
∗

1
5
0
9
∗

8
0

-

T
a
b

le
4
.1

:
R

e
su

lts
fo

r
a
ll

sig
n

ifi
c
a
n
t

re
g
io

n
s

in
th

e
fi

rst
ru

n
o
f
th

e
fi

rst
sessio

n
o
f
th

e
eE

D
T
>

O
D

T
con

trast,
T

R
=

1
.4s,

p
<

0
.05

F
W

E
co

rrected
(T
≥

4
.9

2
20),

clu
ster

size
k
≥

1
0

vox
els;

in
clu

d
in

g
b

ila
tera

l
a
m

y
g
d

a
la

e,
fu

siform
gy

ru
s,

d
orsolateral

p
refron

tal
cortex

(D
L

P
F

C
),

su
p

erio
r

an
d

m
id

d
le

tem
p

o
ra

l
g
y
ru

s.
T

h
e

t-va
lu

e
is

th
e

sta
tistic

in
d

ica
tin

g
sign

ifi
can

t
activation

ov
er

all
su

b
jects;

th
e

m
ax

im
u

m
o
f

th
e

t-va
lu

e
p

er
reg

io
n

of
in

terest
is

lo
ca

ted
a
t

th
e

co
o
rd

in
a
tes

in
th

e
co

m
m

on
referen

ce
sp

ace
(M

N
I

sp
ace);

th
e

clu
ster

size
is

given
b
y

th
e

n
u

m
b

er
o
f

vox
els

sh
ow

in
g

sig
n

ifi
ca

n
t

a
ctiva

tio
n

(t-va
lu

e
a
b

ove
th

resh
old

).
∗)

S
u

p
erior

T
em

p
oral

G
y
ru

s
an

d
M

id
d

le
T

em
p

o
ra

l
G

y
ru

s
sh

ow
u

p
a
s

o
n

e
co

n
n

ected
clu

ster,
clu

ster
size

is
th

e
su

m
of

b
oth

com
b

in
ed

.



4.3. RELIABILITY OF GLM RESULTS 57

T
R

=
1.

4
s

T
R

=
0.

7s
IC

C
(3

,1
)

IC
C

(3
,k

)
IC

C
(3

,1
)

IC
C

(3
,1

)
IC

C
(3

,k
)

IC
C

(3
,1

)
ov

er
ru

n
s

ov
er

se
ss

io
n

m
ea

n
s

fi
rs

t
ru

n
p

er
se

ss
io

n
ov

er
ru

n
s

ov
er

se
ss

io
n

m
ea

n
s

fi
rs

t
ru

n
p

er
se

ss
io

n

rA
m

y
0.

43
3
7

0
.9

18
6

0.
58

1
0.

39
99

0.
75

19
0.

49
55

lA
m

y
0.

44
1
8

0
.8

59
1

0.
48

43
0.

39
3

0.
71

4
0.

35
13

rF
u

sG
y
r

0.
78

0
2

0
.9

47
7

0.
73

22
0.

71
83

0.
90

88
0.

82
99

lF
u

sG
y
r

0.
81

1
5

0
.9

52
7

0.
78

91
0.

68
43

0.
81

46
0.

83
5

rD
L

P
F

C
0.

22
0
1

0
.8

01
1

0.
13

55
n

.a
.

n
.a

.
n

.a
.

lD
L

P
F

C
0.

61
1

0
.9

1
28

0.
59

37
n

.a
.

n
.a

.
n

.a
.

rS
u

p
T

em
p

G
y
r

0.
66

9
7

0
.8

73
6

0.
62

93
0.

54
55

0.
85

53
0.

51
99

lS
u

p
T

em
p

G
y
r

0.
73

8
3

0
.8

75
5

0.
78

43
0.

69
31

0.
93

74
0.

75
18

rM
id

T
em

p
G

y
r

0.
75

7
4

0
.9

52
4

0.
80

26
0.

57
88

0.
86

54
0.

74
89

lM
id

T
em

p
G

y
r

0.
77

7
0
.9

0
97

0.
79

93
0.

72
46

0.
87

72
0.

82
14

T
a
b

le
4
.2

:
C

o
rr

e
la

ti
o
n

c
o
e
ffi

c
ie

n
ts

b
e
tw

e
e
n

p
a
ra

m
e
te

r
e
st

im
a
te

c
o
n
tr

a
st

s
(e

E
D

T
>

O
D

T
)

o
f

se
ss

io
n

1
a
n

d
se

ss
io

n
2

o
n

si
n

g
le

su
b

je
c
t

d
a
ta

fo
r

T
R

=
1
.4

s
a
n

d
T

R
=

0
.7

s.
C

o
o
rd

in
a
te

s
ta

ke
n

fr
o
m

cl
u

st
er

m
a
x
im

a
o
f

fi
rs

t
ru

n
/
fi

rs
t

se
ss

io
n

,
T

R
=

1.
4s

.
A

s
b

il
at

er
al

D
L

P
F

C
li

e
ou

ts
id

e
of

th
e

T
R

=
0
.7

s
fi

el
d

o
f

v
ie

w
,

th
er

e
a
re

n
o

va
lu

es
to

co
m

p
a
re

.



58 CHAPTER 4. RELIABILITY STUDY

H
a
b

itu
a
tio

n
T

R
=

1.4s
T

R
=

0.7s
P

-valu
e

over
ru

n
s

s1
over

ru
n

s
s2

over
session

s
over

ru
n

s
s1

over
ru

n
s

s2
over

session
s

rA
m

y
0.04

2
3

0.0090
0.18292457

0.3259
0.9793

0.2602
lA

m
y

0.05
3
7

0.0205
0.01949925

0.2789
0.5250

0.3289
rF

u
sG

y
r

0.84
5
6

0.0501
0.55056918

0.8242
0.3108

0.5119
lF

u
sG

y
r

0.60
2
4

0.0996
0.35556927

0.2471
0.9852

0.2863
rD

L
P

F
C

0.41
0
4

0.9231
0.89633682

n
.a.

n
.a.

n
.a.

lD
L

P
F

C
0.30

2
0

0.7757
0.22008288

n
.a.

n
.a.

n
.a.

rS
u

p
T

em
p

G
y
r

0.82
3
4

0.0371
0.06121936

0.3970
0.3639

0.7278
lS

u
p

T
em

p
G

y
r

0.04
0
7

0.0228
0.22642355

0.7072
0.2771

0.5398
rM

id
T

em
p

G
y
r

0.59
6
4

0.0801
0.25943028

0.1458
0.0138

0.2997
lM

id
T

em
p

G
y
r

0.05
3
3

0.2012
0.0224687

0.0203
0.1137

0.2407

T
a
b

le
4
.3

:
p

-v
a
lu

e
s

o
f

t-te
sts

o
n

c
o
n
tra

sts
to

in
v
e
stig

a
te

h
a
b

itu
a
tio

n
e
ff

e
c
ts

fo
r

e
E

D
T

>
O

D
T

.
F

or
w

ith
in

-session
h

a
b

itu
atio

n
eff

ects,
w

e
com

p
ared

th
e

co
n
tra

sts
o
f

th
e

fi
rst

v
s.

th
e

th
ird

ru
n

;
fo

r
in

tersession
d

iff
eren

ces,
con

trasts
of

all
ru

n
s

w
ere

com
p

ared
b

etw
een

th
e

tw
o

session
s.

T
ests

w
ere

p
erfo

rm
ed

fo
r

ea
ch

T
R

sep
a
ra

tely.
B

o
n

ferron
i-corrected

p
<

0
.0
5

1
0

=
0
.005.

N
on

e
of

th
e

p
-va

lu
es

a
re

low
er

th
a
n

th
e

corrected
sig

n
ifi

ca
n

ce
th

resh
o
ld

,
th

u
s

n
o

sig
n

ifi
ca

n
t

h
a
b

itu
ation

eff
ects

can
b

e
rep

orted
.



4.3. RELIABILITY OF GLM RESULTS 59

Figure 4.6: Scatter plots comparing both sessions for activation in
bilateral amygdala, fusiform gyri and DLPFC, TR =1.4s. Plot of single
subject contrast estimates of each run in session 1 against session 2 (contrast
eEDT > ODT), as well as mean over runs; dotted line indicates perfect match
x = y.
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Figure 4.7: Parameter estimates and standard error bars for bi-
lateral amygdala, fusiform gyrus and dorsolateral prefrontal cortex
(DLPFC), TR =1.4s. This graph shows high stability over runs and ses-
sions for all regions depicted. Activation does not differ for explicit and implicit
task in amygdalae and fusiform gyrus, however in the DLPFC the explicit task
(emotion matching) evokes much higher activation.



4.3. RELIABILITY OF GLM RESULTS 61
rA

m
y

TR =1.4s

-1

-0.5

0

0.5

1

1.5

TR =0.7s

-1

-0.5

0

0.5

1

1.5

explicit EDT
implicit EDT
ODT
standard error

lF
u

sG
y
r

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

run1 run2 run3 run1 run2 run3
session 1 session 2

run1 run2 run3 run1 run2 run3
session 1 session 2
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ODT, showing visible consensus. For quantification of reliability however,
other methods need to be used, e.g. ICC.

As can be seen in table 4.1, when using the (explicit) emotion discrimina-
tion task, activity in the emotion processing network remains significant for
all runs and sessions, for almost all reported brain regions (only activation
in left middle temporal gyrus stays below the significance threshold in the
last run of the 2nd session). Activation in amygdala and fusiform gyrus, as
well as DLPFC shows high stability, i.e. significant activation throughout
all runs and sessions, as can be seen in figure 4.7.

In order to test for habituation effects, we have contrasted the first run
against the third run of eEDT > ODT. Whole-brain comparison at stan-
dard significance level (p < 0.05, FWE) revealed no significant differences
over time. For an explorative analysis based on pre-defined regions of in-
terest (ROI), we additionally performed paired t-tests on contrasts between
first and third run. Tests were computed for each session, TR and 10 ROIs
(see table 4.3) respectively. Some uncorrected p-values fall below set signifi-
cance level, i.e. when comparison is restricted to this small volumes of inter-
est, activation differences over runs were evident (see table 4.3). However,
none of these tests survive multiple comparison correction of the significance
threshold (e.g. Bonferroni-adjusted p < 0.005). Thus, while small changes
in activation levels are evident when comparing within ROIs, no activation
differences were found when considering changes across the whole-brain.
Therefore no conclusive habituation effect can be reported.

For bilateral amygdalae, the intraclass correlation coefficients show limited
stability over runs (ICC(3,1) = 0.4337 and 0.4418 for right and left amygdala
respectively), only the first run per session shows higher, but still fair intra-
class correlation (ICC(3,1) = 0.5810 and 0.4843). However, the means over
runs per session show excellent intersession reliability (ICC(3,k) = 0.9186
and 0.8591) (see table 2). For TR = 0.7s the results are very similar. ICCs
of the fusiform gyrus show excellent reliability over runs and sessions (see
table 4.2). Right DLPFC shows very poor reliability over runs, in contrast
to left DLPFC, which showed good to excellent reliability over runs and
sessions, as well as middle and superior temporal gyri. ICC results were
classified as excellent, good, fair and limited following Fleiss (2011).

Despite the lower signal to noise ratio of measurements with lower TR, this
effect apparently does not influence the GLM results. Parameter estimates
for amygdala and fusiform gyrus over two different TRs do not show signif-
icant differences in effect size (see figure 4.8).

As the GLM results are fairly stable (see figure 4.7), we may hypothesize the
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same for the DCM analysis. Furthermore, as the results for the data with
higher temporal sampling (TR = 0.7s) are comparable in quality (see figure
4.8), we assume DCM results to benefit from the higher temporal resolution.

Remark 3. For simplicity and exemplarily, most plots and calculations in-
serted concern the “classic” (explicit) emotion discrimination task (eEDT)
with the acquisition protocol showing full-brain coverage (TR = 1.4s), if not
mentioned otherwise. Results from other task condition (implicit emotion
discrimination task) and contrast constellations, as well as the second ac-
quisition protocol (TR = 0.7s) not showing remarkable differences are not
included explicitly, as they go beyond the scope of this work.

4.4 Reliability of DCM of emotion processing

For testing the reliability of an established DCM on the emotion processing
network, we have aimed to reproduce the results from Sladky et al. (2015)
in repeated measurements, where a simple network for processing emotional
face stimuli comprising only two brain regions, namely the orbitofrontal
cortex (OFC) and amygdala, was modeled, showing differences in emotional
face processing for healthy subjects and patients suffering from social anxi-
ety disorder. See figure 4.9 for a schematic view of the network.

In contrast to Sladky et al. (2015), we could not replicate significant activa-
tion in the OFC in the GLM results of present study (see above). However,
significant activation in the SPM is not a prerequisite for DCM analyses. For
the DCM analysis, all possible constellation for connectivity modulation (B
matrix) by the three conditions eEDT, iEDT and task (sum of input func-
tions of eEDT, iEDT and ODT) were varied, resulting in 26 = 64 models:

ż =

A+
∑
j

ujB
j

 z +Cu (4.3)

ż =

[· ·
· ·

]
+

3∑
j=1

uj

[
0 ?
? 0

] z +

[
· · ·
0 0 0

]
u (4.4)

for the three conditions eEDT, iEDT and task (sum of eEDT, iEDT and
ODT time courses). “·” stands for a non-zero entry (i.e. an existing connec-
tion) which needs to be estimated; “?” stands for a connection subject to
variation (for existence or zero-entry), see figure 4.10. Bayesian model aver-
aging was performed on all 64 models to obtain one single model per subject.
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Figure 4.9: Example of specified and estimated DCM, modelling
the interaction between the right amygdala (rAmy) and medial or-
bitofrontal cortex (OFC). The droplets indicate the influence of the condi-
tions (explicit) emotion discrimination (edt) and object discrimination (obj).
Color of connections (task-independent connectivity) as well as inside the
droplets indicate direction of modulation – from blue (negative) to red (posi-
tive); grey color indicates non-significance.
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Figure 4.10: Example of specified and estimated DCM, modeling
the interaction between the right amygdala (rAmy) and medial or-
bitofrontal cortex (OFC). The droplets indicate the influence of the condi-
tions explicit and implicit emotion discrimination (eedt, iedt) and the image
assignment task regardless of the stimulus (task). Color of connections (task-
independent connectivity) as well as colors inside the droplets (task-induced
connectivity changes) indicate direction of modulation – from blue (negative)
to red (positive); grey color indicates non-significance.
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4.4.1 Results

Our DCM analysis did not replicate the results from Sladky et al. (2015)
showing down-regulation of amygdalar activity by the orbitofrontal cor-
tex; no consistent model (consistency in modulation direction and strength)
could be found over subjects and runs. Therefore this DCM analysis was
not pursued further.

Due to consistent and stable activation in fusiform gyrus and amygdala, as
well as visual cortex, a model was constructed including these areas – for
simplicity involving only the respective brain regions from the right hemi-
sphere. The stimulus was modeled to enter through the visual cortex (task
independent of stimulus condition), and from there to be propagated to the
fusiform face area, fusiform object area and amygdala; cross-modulation was
assumed between amygdala and both fusiform areas. The stimulus enters
only via the visual cortex, regardless of the task instruction and stimu-
lus. This is modeled by following connectivity matrices (see figure 2.3 for a
schematic view):

ż =



· 0 0 0
· · 0 ·
· 0 · ·
· · · ·

+
3∑
j=1

uj


0 0 0 0
· 0 0 ·
· 0 0 ·
· · · 0


 z +


0 0 0 ·
0 0 0 0
0 0 0 0
0 0 0 0

u (4.5)

Here one single model was estimated per subject, run and acquisition pro-
tocol for limiting computational resources. See figure 4.12 for results (over
all subjects) for each run and measurement session, TR = 1.4s.

With stable activation patterns in all involved brain regions, we expected
stable modulation in strength and direction for all connections. As is evi-
dent, the effective connectivity between visual cortex and fusiform face area
is reliably increased by both face-processing conditions (explicit and implicit
emotion processing), whereas the control condition involving object discrim-
ination modulates the connection to the fusiform object area in all runs.

However, despite stable activation in the amygdala over all runs and sessions
for face stimuli, our DCM results in no consistent significant modulation of
effective connectivity towards the amygdala (see figure 4.12).

For further assessment of DCM stability, we have calculated the intraclass
correlation values for each connection strength modelled in our DCM. As the
ICC can only work in 2 dimensions – the target and the rater dimension – we
have assessed the intraclass correlation of type ICC(3,1) (see section 3.4 for
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Figure 4.11: Example of specified and estimated DCM, modeling the inter-
action between the visual cortex (V1), right amygdala (rAmy), right fusiform
face area (rFusFace), right fusiform object area (rFusObj). All conditions were
modeled to enter the visual cortex with the same strength; modulation to other
areas was separated for each of the three conditions (explicit, implicit emotion
matching and object matching; indicated by the outer color of the droplets.
Color of connections (task-independent connectivity) as well as colors inside the
droplets (task-induced connectivity changes) indicate direction of modulation
– from blue (negative) to red (positive); grey color indicates non-significance.
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Figure 4.12: DCM of 1st, 2nd and 3rd run of each session respec-
tively, TR =1.4s as described in figure 4.11.
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TR 1.4 TR 0.7

Session 1 / Run 1 0.1822 0.0398
Session 1 / Run 2 0.1366 0.1948
Session 1 / Run 3 0.1038 0.0771
Session 2 / Run 1 0.2158 0.0559
Session 2 / Run 2 0.2949 0.1547
Session 2 / Run 3 0.2332 0.1583

mean ± std 0.1944 ± 0.069 0.1134 ± 0.0639
median ± std 0.199 ± 0.069 0.1159 ± 0.0639

Table 4.4: ICC(3,1) over subjects (raters) and connectivity parameters (tar-
gets), for each run and TR.

TR 1.4 TR 0.7

Sub 1 0.0816 0.0316
Sub 2 -0.0172 -0.0188
Sub 3 -0.0187 -0.0092
Sub 4 0.0166 0.0194
Sub 5 0.0157 0.0237
Sub 6 -0.0146 -0.0118
Sub 7 0.0241 0.0006
Sub 8 0.0115 0.0536
Sub 9 0.0144 -0.0047
Sub 10 0.0136 0.0306
Sub 11 0.0367 0.0234
Sub 12 0.0353 0.0191
Sub 13 0.0043 0.0185
Sub 14 0.035 0.0235

mean ± std 0.017 ± 0.0262 0.0142 ± 0.0202
median ± std 0.015 ± 0.0262 0.0193 ± 0.0202

Table 4.5: ICC(3,1) over all runs of both sessions (raters) and connectivity
parameters (targets), for each subject and TR.
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TR 1.4 TR 0.7

Sub 1 0.7835 0.1871
Sub 2 0.6532 0.7662
Sub 3 -0.0484 0.5986
Sub 4 0.5839 0.3467
Sub 5 0.428 0.2285
Sub 6 0.5723 0.9287
Sub 7 0.698 -0.0371
Sub 8 0.7335 0.7267
Sub 9 0.9088 0.7859
Sub 10 0.5567 0.0433
Sub 11 -2.1974 -0.235
Sub 12 0.4485 0.6373
Sub 13 0.6835 0.793
Sub 14 0.9102 0.7159

mean ± std 0.4082 ± 0.7868 0.4633 ± 0.3682
median ± std 0.6185 ± 0.7868 0.618 ± 0.3682

Table 4.6: ICCs(3,k) over means of all runs of each sessions (raters) and
connectivity parameters (targets), for each subject and TR.

details on the ICC) for each subject over runs, for each run over subjects, for
each TR respectively (see tables 4.4 and 4.5); as well as the intraclass corre-
lation of type ICC(3,k) for means of all 3 runs for each session (see table 4.6).

We can see that despite the higher temporal resolution of TR = 0.7s,
the intersubject ICC in each run (table 4.4) is remarkably lower than for
TR = 1.4s, however it is relatively stable over runs with no apparent outliers.

The intrasession ICCs for each subject vary very little, although they range
very close to 0 – describing close to no correlation between runs. On the
other hand, intersession ICCs over session means deliver fair to good intra-
class correlation, according to the scale defined in Fleiss (2011) – depending
on consideration of mean or median of the ICCs.
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Discussion / further work

The conclusion of the experiments performed can be split in 2 parts – for
once, I have obtained valuable observations on stability of activation when
performing an emotion discrimination task during functional MRI; on the
other hand the DCM results have brought valuable insights.

5.1 On the GLM results

I have shown that for multiple sessions, the (explicit) emotion discrimina-
tion task reliably provides robust and reproducible activation patterns in the
bilateral amygdalae, fusiform gyrus and the left DLPFC. Using the implicit
EDT, comparable activation patterns can be obtained for the amygdalae
and fusiform gyrus. Both tasks thus seem perfectly suited for large-scale
and longitudinal studies and repeated measurements.

Although observing a slight decrease in parameter estimates after the first
run of the emotion discrimination task, the values and significance in the
subsequent runs and sessions are very similar. Taking into account that each
run was performed in total 6 times per session (each 3 per time of repeti-
tion), and no further decline of the parameter estimates from the second to
the third run could be observed, this indicates very good repeatability of
the task without significant loss in effect magnitude.

Our findings are in line with a previous study performed on a 3 Tesla system,
where amygdala habituation was observed only in social anxiety disorder pa-
tients, but not in healthy subjects (Sladky et al., 2012).

For both repetition times 1.4s and 0.7s I have found highly comparable ac-
tivation magnitude, thus very similar results (see figure 4.8), despite of the
lower SNR at a lower TR. This indicates that also with a lower TR, it is pos-

71



72 CHAPTER 5. DISCUSSION / FURTHER WORK

sible to obtain data on activation in the emotion processing network without
significant effect loss, thus good suitability of this method for analysis tools
relying on high temporal resolution, such as Dynamic Causal Modelling.

However, from the performed study, one important question remains unan-
swered – i.e. whether amygdalar activation occurs when seeing human faces
alone or if there it is a reaction towards the emotions shown on the faces.

5.2 On the DCM results

We can see that our DCM results somehow reflect the GLM results in terms
of the fusiform gyrus – where activity in the visual cortex (V1) leads to
activity in the fusiform face area (FFA) for face stimuli, and in the fusiform
object area (FOA) for the object stimuli. However, despite stable activation
in the amygdala, our DCM does not result in a consistent modulatory in-
fluence on the amygdala. I assume that is because the source for amygdalar
modulation is not unique here, as modulatory connections were modelled
from both the visual cortex and the fusiform gyrus.

Intraclass correlation (ICC) evaluation did not reveal high stability of DCMs
over subjects or runs. However, due to the nature of the ICC, this might
occur because of too little intraclass variance or too high interclass variance,
as these play a crucial part in the calculation. Also, using ICCs only 2 di-
mensions can be evaluated at once – i.e. the target and the rater.
It might be useful to turn to a measure taking into account multiple sources
of variance, such as the so-called analysis of variance (ANOVA). However,
this is a method for measuring significant differences instead of consistency,
therefore only inferences of non-equality (or non-stability) could be made.

Further work on this topic could include

• Amygdalar modulation from FFA and V1 could be modelled sepa-
rately; inferences can then be made based on Bayesian Model Selec-
tion.

• Another strategy would be concatenating several runs into one single
time course and estimating a whole-session DCM on this data, for
intersession comparison.

• As there are several more brain regions in the GLM results, other
model hypotheses could be formulated.

• Stability can be analysed by performing tests on the approximation
on the model evidence, i.e. the negative free energy.
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• Last but not least, one possibility for obtaining more significant results
might be the inclusion of more subjects in the study.

Also, when performing further analyses, the limitations of DCM must be
understood: The major point of criticism concerning DCM is the absence
of a model validation tool. Inferences are only possible in terms of deciding
between several hypotheses and based on these, the most probable effective
connectivity parameters can be estimated. Still, it is not possible to de-
termine whether the winning model of this procedure is roughly right. For
finding a better fitting model, one would need exhaustive hypotheses includ-
ing all possibilities – which is next to impossible due to the complex nature
and perhaps lack of understanding of the human brain; let alone the com-
putational limitations. Therefore, DCM is a tool to be used with caution;
users must have excellent knowledge on possible mechanisms to be modelled
and understand the limitations that come with this method.
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