
Algebraische Methoden in der
statistischen Versuchsplanung

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Mathematik

eingereicht von

Bernhard Garn, BSc
Matrikelnummer 0625793

an der Fakultät für Mathematik und Geoinformation

der Technischen Universität Wien

Betreuung: Dr. Dimitrios E. Simos

Wien, 13. Februar 2019

Bernhard Garn Dimitrios E. Simos

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Algebraic Methods for
Experimental Design Theory

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Technical Mathematics

by

Bernhard Garn, BSc
Registration Number 0625793

to the Faculty of Mathematics and Geoinformation

at the Vienna University of Technology

Advisor: Dr. Dimitrios E. Simos

Vienna, 13th February, 2019

Bernhard Garn Dimitrios E. Simos

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Bernhard Garn, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 13. Februar 2019

Bernhard Garn

v

Acknowledgements

I gratefully acknowledge and deeply thank my advisor Dr. Simos. I gratefully acknowledge
and deeply thank my parents for their support. I gratefully acknowledge and deeply thank
my colleagues from university, friends and my girlfriend. I gratefully acknowledge and
deeply thank all those scientific researchers (including, but not limited to, mathematicians)
that came before me and I wish the best of luck to all of those who will come after me.
αιὲν α̇ριστεύειν.

vii

Kurzfassung

Die Integration von algebraischen Methoden in die Statistik in den frühen und mittleren
1990er Jahren [33, 105] hat beide Forschungsgebiete von den entstandenen Synergien
profitieren lassen [4, 104]. Diese Arbeit beschäftigt sich mit kombinatorischen Designs,
welche im relativ neuen Bereich des kombinatorischen Testen (KT) für Software als
Teilgebiet der statistischen Versuchsplanung verwendet werden [81]. Der Begriff der
“Abdeckung”, der als eine Verallgemeinerung des bekannten λ-fachen Auftretens von
t-Tupeln in orthogonalen Arrays angesehen werden kann, steht an zentraler Stelle in
dem KT und findet sich auch in den definierenden Eigenschaften der in diesem Bereich
betrachteten Strukturen wieder. Zu den betrachteten Strukturen zählen abdeckende
Arrays, welche man als spezielle Klasse von kombinatorischen Designs ansehen kann,
sowie auch gewisse Klassen von endlichen Sequenzen [28]. Das Ziel dieser Arbeit ist zu
analysieren und darstellen, wie algebraische Methoden in der Spezifikation, Erzeugung
und der Charakterisierung von Eigenschaften dieser Strukturen verwendet werden können
[40]. Die zugrundeliegenden algebraischen Methoden basieren auf Polynomen [16].

ix

Abstract

Since the introduction of algebraic techniques into the field of statistics in the start and
middle of the 1990s [33, 105], both fields have immensely benefited from the resulting
synergies [4, 104]. This Thesis is concerned with classes of combinatorial designs, that
appear in a relatively new subfield called Combinatorial Testing (CT) for Software of
Design of Experiments [81]. The notion of “coverage requirement”, which represents a
generalization of the well established notion of exactly λ-way appearance of t-tuples in
orthogonal arrays, is fundamental to the field of CT and is also a fundamental property
in the discrete structures that are considered in CT. These structures include covering
arrays, which can be regarded as a special class of combinatorial designs, and certain
classes of finite sequences [28]. The aim of this Thesis is to analyse and depict how
algebraic techniques can help in the specification, generation and property assessment of
these structures [40]. Polynomial algebraic techniques are the basic methodologies which
are to be applied in this domain [16].

xi

Publications arisen from this
Thesis

[40] Bernhard Garn und Dimitris E. Simos. “Algebraic Modelling of Covering Arrays”.
In: Applications of Computer Algebra. Hrsg. von Ilias S. Kotsireas und Edgar
Martínez-Moro. Cham: Springer International Publishing, 2017, S. 149–170. isbn:
978-3-319-56932-1.

[41] Bernhard Garn und Dimitris E. Simos. “Algebraic Techniques for Covering Ar-
rays and related Structures”. In: Electronic Notes in Discrete Mathematics 70
(2018). TCDM 2018 – 2nd IMA Conference on Theoretical and Computatio-
nal Discrete Mathematics, University of Derby, S. 49–54. issn: 1571-0653. doi:
https://doi.org/10.1016/j.endm.2018.11.008. url: http://www.
sciencedirect.com/science/article/pii/S1571065318302038.

[42] Bernhard Garn und Dimitris E. Simos. “Weighted t-way Sequences”. In: Electronic
Notes in Discrete Mathematics 70 (2018). TCDM 2018 – 2nd IMA Conference
on Theoretical and Computational Discrete Mathematics, University of Derby,
S. 43–48. issn: 1571-0653. doi: https://doi.org/10.1016/j.endm.2018.
11.007. url: http://www.sciencedirect.com/science/article/
pii/S1571065318302026.

xiii

https://doi.org/https://doi.org/10.1016/j.endm.2018.11.008
http://www.sciencedirect.com/science/article/pii/S1571065318302038
http://www.sciencedirect.com/science/article/pii/S1571065318302038
https://doi.org/https://doi.org/10.1016/j.endm.2018.11.007
https://doi.org/https://doi.org/10.1016/j.endm.2018.11.007
http://www.sciencedirect.com/science/article/pii/S1571065318302026
http://www.sciencedirect.com/science/article/pii/S1571065318302026

Contents

Acknowledgements vii

Kurzfassung ix

Abstract xi

Publications arisen from this Thesis xiii

List of Figures xix

List of Algorithms xxi

1 Introduction 1
1.1 Motivation and Challenges . 2
1.2 Structure of this Thesis . 3

2 Discrete Structures 5
2.1 Primary Structures . 5
2.2 Alternative Formulations and Auxiliary Structures 8

2.2.1 Alternative Definitions . 9
2.2.2 Auxiliary Structures . 10

2.3 Construction Approaches . 12
2.3.1 Mathematical Construction Methods 12
2.3.2 One-Test-at-a-Time . 13
2.3.3 In Parameter Order Family . 13
2.3.4 Evolutionary Computation and Metaheuristics 13
2.3.5 Approaches based on Formal Logic 14

Approaches based on SAT and Constraint Programming 14

xv

Approaches based on Integer Programming and Set Cover Solvers 14
2.3.6 Post-Optimization of Covering Arrays 14

3 Polynomial System Solving and Gröbner Bases 17
3.1 Reduction Relations . 18
3.2 Polynomial Reduction . 25
3.3 Computation of Gröbner Bases . 29
3.4 Polynomial System Solving . 34

4 Applications of Computer Algebra to Design Theory 37
4.1 Algebraic Distinguishers for multiple existentially-quantified Combinatorial

Designs . 38
Algebraic Tuple Modelling with Coverage Equations 38
Membership Equations for covering Tuples in CAs 42
Combined Models . 43

4.2 Algebraic Characterizations for specific Design Structures 43
Partial Coverage Systems . 43
Covering Arrays . 44
Membership Constraints . 45
Combined Models . 45

4.3 Constructive Design Theory with Polynomial System Solving 45
4.3.1 Candidate Matrices . 46
4.3.2 Types of Equations . 46

Binary Conditions . 47
Coverage-equations . 47
Membership-equations . 47

4.3.3 Solving the Systems: Treating the Parameters 47
4.3.4 Constructing Combinatorial Designs with Algebraic Methods . . . 48

Partial Coverage Systems . 48
Covering Arrays . 49
Membership Constraints . 49
Combined Models . 50

5 Algebraic Algorithms for Problems of Covering Arrays 51
5.1 Problems for Covering Arrays . 52
5.2 Algorithmic Approaches using Algebraic Methods 54

5.2.1 An Algorithmic Approach to the Vertical Extension Problem . . . 54
5.2.2 An Algorithmic Approach to the Parameter Extension Problem . . 56
5.2.3 An Algorithmic Approach to the Computational Existence of Cov-

ering Arrays . 59
5.3 Comparison with Greedy Algorithms . 61

6 Experimental Design Theory Applications 65
6.1 Combinatorial Testing . 65
6.2 Enumerative Combinatorics for Combinatorial Sequence Testing 67

6.2.1 Enumerative Combinatorics . 67
6.2.2 Partitions of positive Integers . 70
6.2.3 Combinatorial Sequence Testing and Sequence Covering Arrays . . 71
6.2.4 Weighted t-way Sequences . 71

7 Conclusion 75

Glossary and Notation 79

Bibliography 81

List of Figures

2.1 Covering array examples for different configurations given in matrix notation. 7

3.1 Graphical illustration related to the confluence property of a reduction relation. 20
3.2 Graphical illustration related to the confluence property of a reduction relation. 20
3.3 Graphical illustration corresponding to case (3.6a). 21
3.4 Graphical illustration corresponding to case (3.6b). 21
3.5 Graphical illustration of existence of u, corresponding to case (3.6a). 21
3.6 Graphical illustration of existence of u, v, corresponding to case (3.6b). 21
3.7 Graphical illustration of existence of u, v, w, corresponding to (3.9). 22
3.8 Graphical illustration of existence of common successor v to u1 and un+1

corresponding to case in (3.18). 24
3.9 Graphical illustration of existence of common successor v to u1 and un+1

corresponding to case in (3.19b) and (3.19b). 24
3.10 Graphical illustration for final steps in the proof. 25
3.11 Critical pairs of elements of F describe exactly the essential branchings of the

polynomial reduction relation →F . 29

xix

List of Algorithms

1 Buchberger’s algorithm. 31
2 Vertical Extension . 57
3 Parameter Extension . 59
4 Guess . 62

xxi

CHAPTER 1
Introduction

This Thesis deals primarily with algebraic methods for combinatorial mathematics.
Indeed, the usage of transformation of structures and problems from one domain of
mathematics (in particular, combinatorial design theory) into an algebraic setting is the
means to be able to employ algebraic techniques and methods to reason and (hopefully)
solve the transformed problems. The goal is that an algebraic solution – if it exists and
if it was constructible – will be transformed back, constituting a solution to the initially
posed problem within the initial branch of mathematics.

This work further deals with the field of combinatorial design theory. We focus
on special classes of combinatorial designs – in particular, covering arrays – and are
concerned with their existence, construction and manipulation.

The methods and structures considered have real-world applications in their usage
to construct or constitute configurations for “experiments”. This might be taken to
indicate a connection of this Thesis with a field of mathematics called statistical design of
experiments. This is very much not the case, although the design structures considered
do have applications in “experimentations/tests”, but (at the time of writing) strictly
within a deterministic context. It is possible, in this deterministic, discrete context, given
“results” of experiments/tests, to define a notion analogous to that of “statistical inference”
with properties that one would expect and want for an instantiation of the concept of
“inference” to have, but all strictly within a finite, discrete and deterministic context. We
briefly comment on this rather recent real-world application of these design structures (in

1

1. Introduction

the form of matrices) in a branch of software testing called combinatorial testing. It is
important to highlight the notion and applications of such strictly discrete models, since
the term mathematical modelling is usually understood as referring to a model consisting
of (partial) differential equations. However, in this work, the term modelling is to be
understood within a discrete context meaning as are dealing with a discrete, finite model
over a finite domain.

We briefly indicate how all these different domains now come together. The treatment
of notions and problems originating from combinatorial design theory within an algebraic
framework is the core theme. Certain design structures are used in their matrix (array)
formulation, paving the way for an application of linear methods. These methods result in
multivariate polynomial expressions, upon which the semantic equivalence between design
structure characteristics and zeros of polynomials is established. Here, computational
algebra – in particular Gröbner bases – can be used to solve the resulting systems.
Assuming that a corresponding variety is nonempty, the immediate next step is the
transformation of a point in the variety into a design interpretation as solution to a
problem. Then, one can use the generated matrix within computer science where its
rows are interpreted as individual test cases to be used in software testing. This requires
that the matrix is compatible with some discrete model of a piece of software. Based
on this brief description of the approach followed, it should be clear that not only does
this Thesis span multiple branches of mathematics, but its results and techniques have
a direct impact in applied computer science, specifically, in the domain of test design
and test creation. From this purely applied point of view, there is an interest to expand
the presented algebraic models with additional structure corresponding to requirements
needed in practice.

The primary goal of this work is to show how combinatorial properties can be
translated into semantically equivalent algebraic statements. Once this has been achieved,
the further development of an algebraic framework for certain classes of combinatorial
designs, in particular of covering arrays, follows mechanistically since this step is simply
the application of known techniques from computer algebra.

1.1 Motivation and Challenges

The algebraic methods discussed offer (at least) two advantages, which makes them
appealing as a way to develop a framework for the treatment of certain design structures

2

1.2. Structure of this Thesis

(in particular, covering arrays). Recall that, design structures are usually collections
of subsets of finite sets with certain intersection properties. First, with the methods
presented, it is possible to algebraically enforce certain properties of interest. Second,
“some work” can be given to an “algebraic solver”, which will take some choices during its
execution (by comparison, in heuristic construction approaches, e.g. in one-test-at-a-time
extension strategies, there arises the problem of which test to choose next). Although
the scope of this work does not include any stochastic considerations, it should not be
overlooked that since the introduction of algebraic techniques into the field of statistics
in the start and middle of the 1990s [33, 105], both fields have immensely benefited from
the resulting synergies [4, 104].

The three main scientific domains of this Thesis are: combinatorial design theory,
commutative and computer algebra and experimental design theory applications (DoE).
The focus of this work lies in the presentation of the mathematical treatment of connections
between combinatorial design theory and algebra. Nevertheless, we mention that some of
the abstract artifacts considered are motivated by their interpretation from the application
domain of combinatorial testing.

The algebraic framework presented offers “strong and nuanced modelling capabili-
ties”, at the price of shifting some “complexity inside” algebraic structures, and, as a
consequence, to algebraic solvers. Notwithstanding the existence of sophisticated solvers,
the problem remains on the resources needed to complete some computations.

1.2 Structure of this Thesis

This Thesis is structured as follows. In Chapter 2, we introduce the combinatorial
designs, some of their properties and constructions that are of interest. In Chapter 3, we
review and collect the necessary definitions and techniques from computational algebra.
Subsequently, in Chapter 4, we introduce an algebraic framework for the first time
and establish some connections between combinatorial design theory and computational
algebra. Chapter 5 expands these connections by discussing algebraic means to solve
specific design problems. In Chapter 6, we present applications of experimental design
theory to combinatorial testing and combinatorial sequence testing. We conclude this
Thesis in Chapter 7.

3

CHAPTER 2
Discrete Structures

In this chapter, we give the definitions and some background properties of the main
discrete structures, in which we are interested in this thesis. All considered structures
are finite and have in common, that their defining properties require the appearance of
certain pre-determined elements from a finite set. Relaxing or strengthening of some
conditions has an immediate impact on whether these structures exist or not for some
configurations (i.e., the defining parameters of the design structure). If a structure for
some configuration exists, we are particularly interested in determining its optimal size in
terms of a minimization problem, where size in the case of arrays is usually understood
as the number of rows or columns. The resulting combinatorial optimization problems
can be treated with different techniques, and also – as in shown in this Thesis – with
algebraic techniques.

We state the primary definitions of the considered structures in Section 2.1 and give
alternative formulations and auxiliary structures in Section 2.2. Different approaches for
the actual construction for the considered structures that have appeared in the literature
are stated in Section 2.3.

2.1 Primary Structures

The following definition is paramount for this Thesis.

2.1.1 Definition ([28, 10.1]). A covering array CAλ (N ; t, k, v) is an N × k array. In
every N × t subarray, each t-tuple occurs at least λ times. Then t is the strength of the

5

2. Discrete Structures

coverage of interactions, k is the number of components (degree), and v is the number of
symbols for each component (order). Only the case when λ = 1 is treated; the subscript is
then omitted in the notation. The size N is omitted when inessential in the context. /

2.1.2 Definition ([28, 10.7]). A mixed level covering array MCAλ (N ; t, k, (v1, v2, . . . , vk))
is an N × k array. Let {i1, . . . , it} ⊆ {1, . . . , k}, and consider the subarray of size
N × t obtained by selecting columns i1, . . . , it of the MCA. There are

∏t
i=1 vi distinct

t-tuples that could appear as rows, and an MCA requires that each appear at least once.
CAN (t, k, (v1, v2, . . . , vk)) denotes the smallest N for which such a mixed covering array
exists. /

2.1.3 Terminology. We call the requirements regarding the appearance of tuples in
column selections in Definition 2.1.1 coverage-conditions. /

2.1.4 Definition ([40, Definition 3]). A configuration C for a mixed level covering array
is a tuple (t, k, (v1, v2, . . . , vk)). When v1 = v2 = . . . = vk = v, then the specified MCA is
in fact a covering array and we denote its configuration simply by (t, k, v). /

In the scope of this work, we focus on the case of strength two covering arrays over
the binary alphabet, i.e., t = v = 2.

2.1.5 Notation. We will, however, denote and use (mixed-level) covering arrays M
as their transpose1 M> in their matrix notation, following the terminology used in
[54]. The later used statement “a matrix M is compatible with an MCA configuration
C = (t, k, (v1, . . . , vk))” is to be understood as implying that the matrix M has k columns
and that its elements in the i-th column arise either from the set {0, . . . , vi − 1} or
constitute variables which take values exactly in {0, . . . , vi − 1}. /

2.1.6 Example. We give some examples2 for covering arrays in the sense of Definition
2.1.1 in Figure 2.1. Note that the dashes (i.e., “-”) in Figure 2.1c are a result of the
method used to construct this array and denote entries in the matrix that are irrelevant
from the standpoint of ensuring the required coverage properties and thus can be filled
arbitrarily from the underlying binary alphabet in case a fully instantiated matrix is
desired. /

1We denote the transpose of a matrix M by M>.
2The covering array in Figure 2.1a, was constructed manually.

6

2.1. Primary Structures

0 0
1 0
0 1
1 1

(a) (2, 2, 2)

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0
1 0 1 1

(b) (3, 4, 2)[63]

0 0 0 1 0 1 1
0 0 1 0 1 0 0
0 1 0 0 0 1 1
0 1 1 1 0 0 1
1 0 0 0 1 1 0
1 0 1 0 0 0 1
1 1 0 1 1 0 1
1 1 1 0 1 1 0
1 0 1 1 1 1 1
1 1 0 1 0 1 0
0 1 0 1 1 1 1
0 0 0 1 0 0 0
0 1 1 1 0 1 0
1 1 0 0 0 0 0
− − − 1 1 − 0
− − − 0 1 − 1

(c) (3, 7, 2)[64]

Figure 2.1: Covering array examples for different configurations given in matrix notation.

2.1.7 Remark. A branch of software testing called combinatorial testing uses covering
arrays as underlying mathematical artifacts to create test sets for software. Assume that
a covering array in the sense of Definition 2.1.1 with N ∈ N rows is given, which is
compatible with a configuration (t, k, v), then in the context of combinatorial testing the
k columns are interpreted as k parameters of a system under test (SUT), each taking
values in a finite set of cardinality v. The rows of the covering array are then used as
tests, where the entries in the individual rows correspond to the parameter values which
in their unison constitute a specific “configuration” of the SUT under which it is “run”.
We elaborate on this topic in Section 6.1. /

The next theorem (Theorem 2.1.8) establishes the universal existence of MCAs and,
in particular, the universal existence of covering arrays.

2.1.8 Theorem. For all MCA configurations C, there exists a MCA, which is compatible
with C. /

Proof. Consider the array those rows are exactly the elements of3
∏k
i=1[vi], in any

3For n ∈ N, let [n] = {0, 1, . . . , n− 1}.

7

2. Discrete Structures

enumeration.

2.1.9 Definition ([83, Problem 1]). Let C be a CA configuration. The least value of
N ∈ N×, such that there exists a CA compatible with C with N rows, is called the covering
array number (CAN) of C. /

2.1.10 Remark. Definition 2.1.9 is well defined by Theorem 2.1.8. /

2.1.11 Remark. A similar minimality problem as given in Definition 2.1.9 can – mutatis
mutandis – be formulated for MCAs. /

2.1.12 Lemma. Let M be a matrix with N ∈ N rows compatible with a CA configuration
C = (t, k, v). Then, the following statements hold.

1. Let ρ be an element of the symmetric group on N symbols and Ξ a coverage-
condition. Then, the matrix M fulfills Ξ iff the matrix obtained by applying ρ to
the rows of M fulfills Ξ.

2. Let π be an element of the symmetric group on k symbols. Then, a coverage-
condition holds for M iff the by π transformed coverage-condition4 holds for the
matrix obtained by applying π to the columns of M .

In other words, coverage-conditions are invariant under row-permutations and are
semantically-equivalently transformed for a permutation of the columns of M . /

Proof. The claims follow directly from Definition 2.1.1.

2.1.13 Corollary. Let M be a covering array for a configuration C. The result of the
application of finitely many row- or column permutations to the array M is again a
covering array for the similarly transformed configuration C. /

Proof. Follows by induction and Lemma 2.1.12.

2.2 Alternative Formulations and Auxiliary Structures

We make some comments to the definition of covering arrays in Section 2.2.1 and then look
at auxiliary structures which are related to covering arrays or represent generalizations
in Section 2.2.2.

4The result of which is simply a relabeling according to the permutation.

8

2.2. Alternative Formulations and Auxiliary Structures

2.2.1 Alternative Definitions

We would like to put emphasis on the fact that the existential quantifier (i.e.,, the
quantifier inside the scope of the two universal quantifiers) given in Definition 2.1.1 is
to be strictly-formally interpreted as an existential quantifier and that the enumeration
of the rows in the array is (at this point for this abstract view) irrelevant and that a
pair appears as part of (at least one) specific row (e.g., in the “first/last/third row”)
determined by the enumeration of the rows of the matrix is possibly even misleading the
essential focus and intention. To put it differently, where exactly a certain binary pair
appears in some sub-selection of columns of the matrix is irrelevant, the crucial point
is that this tuple appears at all, which is semantically also captured by the phrase “at
least once”. These purely existential criteria are put more into focus in the set cover
formulation of covering array problems given below.

2.2.1 Definition ([69, Definition 2.2]). A set cover (SC) of a finite set U , is a set S of
nonempty subsets of U whose union is U . In this context, we call U the universe, and
refer to the elements of S as blocks. A set cover consisting of pairwise disjoint blocks is
called an exact cover. A set cover consisting only of blocks of cardinality d is called a
d-set cover. /

2.2.2 Definition ([69, Problem 2.4]). (Minimal Set Cover (MSC)) Given a finite set
U and a set cover S of U , i.e.

⋃
S = U , find one subset C of S, of minimal cardinality,

such that
⋃
C = U . /

2.2.3 Definition ([69, Definition 3.1]). For positive integers t, k and v with t ≤ k,
we define a v-ary (k, t)-tuple as a pair ((x1 . . . , xt), (p1, . . . , pt)) with the property that
xi ∈ {0, . . . , v − 1}, ∀i ∈ {1, . . . , t} and 1 ≤ p1 < . . . < pt ≤ k. /

2.2.4 Definition ([69, Definition 3.2]). For positive integers t, k and v with t ≤ k, we say
that a vector r ∈ {0, . . . , v − 1}k covers a v-ary (k, t)-tuple ((x1 . . . , xt), (p1, . . . , pt)), if
the entries of r in positions pi equal xi for all i = 1, . . . , t. Further we denote with ϕ(v,k,t)

the function, which maps each r ∈ {0, . . . , v − 1}k, to the set of
(k
t

)
v-ary (k, t)-tuples

that are covered by r. /

Via Definition 2.2.4 the authors of [69] give a construction how to map problems
pertaining covering arrays to specialized set cover problems. We note that set-cover
formulations for covering arrays have also appeared (in various degree of detail) in [125,
115, 54].

9

2. Discrete Structures

2.2.2 Auxiliary Structures

In the literature, there have appeared many combinatorial design structures that can
be related to the defining property of covering certain tuples. Some of these structures
arise as special cases of covering arrays, other emerge as the result of relaxing some
requirements in the definition of covering arrays. We also observe that the literature is
combinatorial designs, their connection between them and their connections with closely
related branches of mathematics like graph theory or the theory of error correcting codes
is quite intensive and is explored in detail in various specialized scientific literature.

2.2.5 Definition ([56, Definition 1.1]). Let S be a set of s symbols. An N × k array A
with entries from S is said to be an orthogonal array with s levels, strength t and index λ
(for some t in the range 0 ≤ t ≤ k) if every N × t subarray of A contains each t-tuple
based on S exactly λ times as a row. /

2.2.6 Definition ([93, Definition 1]). A set of vectors with entries from Zg are t-
qualitatively independent if for any t-subset, {vi}, of vectors and any ordered t-tuple
of elements (g1, g2, . . . , gt) ∈ Ztg there exists a j such that for each vector vi the jth
coordinate vij = gi. /

2.2.7 Definition ([93, Definition 3]). A covering array on a graph G with alphabet size
g, k = |V (G)| is a k × n array on Zg. Each row in the array corresponds to a vertex in
the graph G. The covering array has the property that pairs of rows which correspond to
adjacent vertices in the graph are qualitatively independent.

A covering array on a graph G will be denoted as CA (n,G, g). The smallest possible
covering array on a graph G will be written

CAN (G, g) = min
ł∈N
{l : ∃CA (l, G, g)}. (2.1)

We call CAN (G, g) either the g-qualitative independence number of G or g-ary covering
array number of G depending on the point of view. /

2.2.8 Definition ([32, pp.5405-5406 and Definition 2]). Let G = G(g1,...,gk) denote a
graph with k parts of sizes g1, . . . , gk that is k-partite except for the possible existence
of loops. The vertices of G are vi,ai, indexed by i, ai where i ∈ [1, k] and ai ∈ [k] and
ai ∈ [gi]. If g1 = · · · = gk = g, then we simplify the notation to G = Gk,p. We define a
graph G| on the same vertex set as G and include the edges from E(G) but also containing
all the edges {vi,a, vi,b} for a 6= b ∈ [gi].

10

2.2. Alternative Formulations and Auxiliary Structures

• A graph G is said to be factor connected if G| is connected; factor-connected
components of G correspond to components of G|.

• A k-tuple T = (T1, . . . , Tk) ∈ [g1]× · · · × [gk] is said to avoid G = G(g1,...,gk) if for
all i, j ∈ [1, k], we have {vi,Ti , vj,Tj} /∈ E(G).

• We say that an interaction {(i, a) , (j, b)}, with i 6= j if a 6= b, such that {vi,a, vj,b} /∈
E(G) is consistent with G if there exists a k-tuple T with Ti = a and Tj = b that
avoids G.

• A graph is consistent if all interactions {(i, a) , (j, b)}, with i 6= j if a 6= b, where
{vi,a, vj,b} /∈ E(G) are consistent.

A covering array with forbidden edges for a graph G = G(g1,...,gk) is an n× k array A
with each column i having symbols from the alphabet [gi], and denoted by CAFE (n,G),
such that

1. each row of A forms a k-tuple avoiding G;

2. for all vi,a, vj,b ∈ V (G) with i 6= j, if {vi,a, vj,b} /∈ E(G), then there exists a row r

such that Ar,i = a and Ar,j = b.

We denote by CAFEN (G) the minimum n for which there exists a CAFE (n,G), if such
an object exists, or +∞ otherwise. /

2.2.9 Definition ([111, p. 1474]). When 1 ≤ m ≤ vt, a partial m-covering array,
PCA (N ; t, k, v,m), is an N × k array A with each entry from [v] so that for each t-set
of columns C ∈

([k]
t

)
, at least m distinct tuples x ∈ [v]t appear as rows in AC . /

2.2.10 Definition ([96, Definition 1.1]). Let H = (V,E) be a hypergraph and let k = |V |.
A variable-strength covering array, denoted VCA (n;H, v), is an n × k array M filled
from Zv such that for e = {v0, . . . , vt−1} ∈ E, the n× t subarray of columns indexed by e
is covered, that is it has every possible t-tuple in Zv as a row at least once. The variable-
strength covering array, written VCA (H, v), is the smallest n such that a VCA (n;H, v)
exists. /

2.2.11 Definition. In the situation of Definition 2.2.10, additionally assume that the
hypergraph is in fact a labeled hypergraph, where the labels are nonempty elements in the

11

2. Discrete Structures

power set of the following Cartesian product
∏t
i=1 vi. We refer to such a structure as

a partial coverage system. Compatibility of a matrix with a partial coverage system is
defined similarly to the case of covering arrays. /

When working with concrete given matrices, it is (sometimes) necessary to extend
Definition 2.2.11 to consider each row of the matrix separately; which will be accomplished
in Definition 2.2.12.

2.2.12 Definition ([41, Definition 2.3]). For k,N ∈ N with 2 ≤ k, let C = (2, k, 2) be a
configuration andM a compatible N×k matrix. We call the function Γ: [N]×Ik −→ P (T)
an interaction-membership function. This function is interpreted as assigning, to each
unordered selection of two different columns per row, a set of binary 2-tuples that are
allowed to appear at this position. Such a function may specify contradicting conditions. /

2.3 Construction Approaches

Although for Theorem 2.1.8 we gave a constructive proof for the universal existence of
MCAs, the focus lies on the construction of near-optimal or optimal arrays in terms of
their size. There exists considerable literature for attacking this problem with techniques
from various fields of mathematics. For more details we refer to [133, 98, 78, 82, 70, 117,
83].

Moreover, there are many software implementations available for the construction of
covering arrays [67].

2.3.1 Mathematical Construction Methods

Observing that orthogonal arrays are in fact also covering arrays, we refer to [56] for
constructions of orthogonal arrays and mentioned references there in.

Group constructions of covering arrays are given in [94, 18, 88].

A recursive construction for covering arrays, which uses existing covering arrays to
create a covering array for the concatenation of the respective configurations was given
in [68].

A construction for covering arrays from linear-feedback-shift-register sequences over
finite fields was given in [121].

12

2.3. Construction Approaches

Approaches using augmentation, which is an operation to increase the number of
symbols in a covering array, without unnecessarily increasing the number of rows, were
given in [25, 27].

2.3.2 One-Test-at-a-Time

The idea behind greedy algorithms following a one-test5-at-a-time strategy is simple:
start with an empty array and add rows to the array, until all coverage-conditions are
fulfilled. During this process, in each step a (local) optimum in terms of newly added
coverage for a candidate row is determined6 and is added to the array. One-test-at-a-time
strategies have been proposed in [20, 31, 134, 13, 9]. A framework for the evaluation of a
large class of greedy methods that follow a one-test-at-a-time strategy was given in [14].

2.3.3 In Parameter Order Family

The in-parameter7-order (IPO) strategy builds first a covering array for only a part of a
given configuration and then add more columns to the array (i.e., the already constructed
array is horizontally concatenated with a greedy generated column of compatible size
such that if the resulting matrix does not exhibit full coverage, then for all yet-unsatisfied
coverage-conditions a row is added to the array (i.e., horizontally concatenated) which
fulfills the coverage-condition. Once all parameters have been added, a covering array
for the initially given configuration has been constructed. The following works deal with
algorithms using an IPO strategy [84, 85, 38, 86, 73].

2.3.4 Evolutionary Computation and Metaheuristics

Metaheuristic search and evolutionary algorithms have been used successfully to construct
covering arrays. Methods of swarm intelligence have been applied for the generation of
covering arrays in [1, 2, 19, 92, 114]. Heuristic search techniques were followed in [10,
44, 99]. Simulated annealing has been applied to various problems of covering arrays

5For covering arrays in the sense of Definition 2.1.1 these algorithms could also be described as
“one-row-at-a-time”. However, the usually employed terminology is “one-test-at-a-time”, because the
rows of covering arrays in the sense of Definition 2.1.1 can be used to encode configurations for software
testing. Each such configuration is colloquially referred to as a test. See Remark 2.1.7 and Section 6.1.

6The exact notion of locality and the exact instance of objective function used for in these optimization
problems depend on the considered strategy and implementation decisions.

7For covering arrays in the sense of Definition 2.1.1, the columns of an array are interpreted as
parameters of a piece of software in a real-world application of designs in a branch of software testing.
See Remark 2.1.7 and we elaborate on this application in Section 6.1

13

2. Discrete Structures

[21, 108, 119]. In [46, 90, 91, 114], genetic algorithms were used for the construction of
covering arrays. Approaches using tabu search were considered in [48, 47, 100, 122].

2.3.5 Approaches based on Formal Logic

Similar to the translation of coverage-conditions into an algebraic setting there have
been works performing an analogous translation, but to a different domain. These target
domains include SAT formulations, constraint programming, integer programming and
set cover formulations with respective construction methods.

Approaches based on SAT and Constraint Programming

Constraint programming models of the problem of finding an optimal covering array were
developed in [57]. SAT solving for the generation of covering arrays was employed in
[72, 132]. In [89], the authors presented an enhanced backtrack search algorithms for
orthogonal arrays using a SAT or pseudo-Boolean constraint solver. In [128], incremental
SAT solving was considered. In [127], a correspondence between forbidden tuples and
unsatisfiable cores is illustrated and integrated into a greedy test case generation approach.

Approaches based on Integer Programming and Set Cover Solvers

Coverage-conditions can be formulated in terms of integer programming problems or in
terms of set cover problems, as has been done in [115, 125, 69].

2.3.6 Post-Optimization of Covering Arrays

In the case where for given covering array configuration the corresponding CAN is not
known8, instead of creating a new covering array for that configuration with the hope
that it will be smaller, one can try to permute/change the existing array entries in such
a way that full coverage will already be achieved with less than the total number rows.
In other words, the goal is that by changing/switching9 of some array entries at least
the last row of the array will contain entries which do not contribute any more to the
fulfillment of the coverage requirements meaning that all tuples determined by the last
row will have already appeared as part of another row somewhere else. This process can
be iterated until some stopping criteria is met.

8In general, the values for CAN are not known [83].
9Depending on the used strategy.

14

2.3. Construction Approaches

In [50], a strategy was that reduces the number of rows of a covering array. Ran-
domized post-optimization approaches were considered in [97, 87, 29]. In [118], the
authors performed metaheuristic post-optimization of the NIST repository of covering
array. A branch and bound strategy that maximizes the number of wild cards in the
profile of an already constructed covering array was presented in [49]. A graph-based
post-optimization approach was given in [102]. In [71], some criteria were proposed for
identifying the best choices for the wild card positions to create covering arrays with
highly desirable properties.

15

CHAPTER 3
Polynomial System Solving and

Gröbner Bases

In this chapter, we give the necessary definitions and develop the techniques from
commutative and computational algebra, that will be used throughout this Thesis. The
algebraic translation of constructive problems arising in design theory discussed in this
Thesis are multivariate polynomial systems of equations. Gröbner bases are the means
by which such systems can be computationally solved. If such a system has a solution,
meaning that the corresponding variety is nonempty, then each point in the variety
encodes a complete or part of a design matrix and, in particular, this point (i.e., solution)
can be transformed into a design matrix representation, since its coordinates correspond
to entries in a (pre-determined) matrix. As a result, algebraic solutions (if they exist) to
the algebraic formulation of a constructive design problem give rise to design matrices,
which constitute affirmative existential solutions to the constructive problem.

For a general treatment of Gröbner bases theory we refer to the extensive materials
provided in [5, 30, 126].

We discuss general reduction relations in Section 3.1 and then turn to polynomial
reductions in Section 3.2. We study the computation of Gröbner bases in Section 3.3
and apply them to the problem of polynomial system solving in Section 3.4.

17

3. Polynomial System Solving and Gröbner Bases

3.1 Reduction Relations

A treatment of the theory of reduction relations was given in [58]. We develop some
of their important properties to be able to define the notion of a Gröbner basis using
properties for a certain reduction relation on multivariate polynomials.

3.1.1 Definition ([126, Definition 8.1.1]). Let M be a set and → a binary relation on
M , i.e. →⊆M ×M . We call → a reduction relation on M . For (a, b) ∈M ×M , the
usual notation a→ b will be used instead of (a, b) ∈→ and we say that a reduces to b.

Let → and →′ be reduction relations on M , then we define the following operations
on M ×M for constructing new reduction relations.

1. → ◦ →′ (or just →→′), the composition of → and →′, is the reduction relation as
a→→′ b iff ∃c ∈M : a→ c→′ b;

2. →−1 (or just ←), the inverse relation of →, is the reduction relation defined as
a ← b iff b→ a;

3. →sym (or just ←→), the symmetric closure of →, is the reduction relation defined
as → ∪ ←, i.e., a→sym b iff (a→ b ∨ a ← b).

4. →i, the i-th power of →, is the reduction relation defined inductively for i ∈ N as

→0= id, where id is the identity relation on M ; i.e., a→0 b iff a = b, and

→→i−1 for i ≥ 1.

This means that a→i b iff there exist c0, . . . , ci such that

a = c0 → c1 → · · · → ci = b. (3.1)

In this case we say that a reduces to b in i steps;

5. →+= ∪∞i=1, the transitive closure of →;

6. →+= ∪∞i=1, the reflexive-transitive closure of →;

7. →∗= ∪∞i=1, the reflexive-transitive-symmetric closure of →.

/

18

3.1. Reduction Relations

3.1.2 Proposition ([126, Section 8.1]). The binary relation→∗ is an equivalence relation
on M and we denote with M�→∗ the corresponding partition consisting of equivalence
classes modulo →∗. /

We continue with more definitions.

3.1.3 Definition ([126, Definition 8.1.2]). 1. x → means that x is reducible, i.e.,
x→ y for some y ∈M ;

2. x→ means x is irreducible or in normal form with regard to →;

3. x ↓ y means that x and y have a common successor, i.e., ∃z ∈M : x→ z ← x;

4. x ↑ y means that x and y have a common predecessor, i.e., ∃z ∈M : x ← z → x;

5. x is a →-normal form of y iff y →∗ x→.

/

3.1.4 Definition ([126, Definition 8.1.3]). 1. → is Noetherian or has the termina-
tion property iff every reduction sequence terminates, i.e., there is no infinite
sequence x1, x2, . . . in M such that x1 → x2 → · · · .

2. → is Church-Rosser or has the Church-Rosser property iff a←→∗ b implies a ↓∗ b.

/

3.1.5 Remark ([126, Section 8.1]). Let M be a set and → a Noetherian relation. The
property of being Noetherian for a relation can be used to define the principle of Noetherian
induction that can be used to prove that a predicate P holds for all x ∈M in the following
sense ([23]):
If for all x ∈M :

[∀y ∈M : (x→ y) =⇒ P (y)] =⇒ P (x), (3.2)

then
∀x ∈M : P (x). (3.3)

/

3.1.6 Definition ([126, Definition 8.1.4]). 1. → is confluent iff

x ↑∗ y =⇒ x ↓∗ y. (3.4)

The implication stated in equation (3.4) is represented graphically in Figure 3.1.

19

3. Polynomial System Solving and Gröbner Bases

u

x y

v

* *

* *

Figure 3.1: Graphical illustration related to the confluence property of a reduction
relation.

u

x y

v* *

Figure 3.2: Graphical illustration related to the confluence property of a reduction
relation.

2. → is locally confluent iff
x ↑ y =⇒ x ↓∗ y. (3.5)

The implication stated in equation (3.5) is represented graphically in Figure 3.2.

/

3.1.7 Theorem ([126, Theorem 8.1.2]). 1. → is Church-Rosser iff → is confluent.

2. (Newman lemma) Let → be Noetherian. Then → is confluent iff → is locally
confluent.

/

Proof. 1: If → is Church-Rosser, then it is obviously confluent. For the other direction,
assume that → is confluent. Suppose that x →∗ y in n steps, i.e., x →n y. We use
induction on n. The case n = 0 is immediate. For n > 0, we distinguish two cases
(graphically depicted in Figures 3.3 and 3.4):

x→ z →n−1 y, (3.6a)

x ← z →n−1 y. (3.6b)

20

3.1. Reduction Relations

x

z yn− 1

Figure 3.3: Graphical illustration corresponding to case (3.6a).

z y

x

n− 1

Figure 3.4: Graphical illustration corresponding to case (3.6b).

x

z y

u

n− 1

* *

Figure 3.5: Graphical illustration of existence of u, corresponding to case (3.6a).

In case (3.6a), by the induction hypothesis there is a u such that (graphically depicted
in Figure 3.5)

z →∗ u∗ ← y. (3.7)

In case (3.6b), by the induction hypothesis and by confluence there are u, v such that
(graphically depicted in Figure 3.6)

z y

x u

v

n− 1

* *

* *

Figure 3.6: Graphical illustration of existence of u, v, corresponding to case (3.6b).

21

3. Polynomial System Solving and Gröbner Bases

z0

x1 y1

x u y

v

w

* * * *

* *

* *

Figure 3.7: Graphical illustration of existence of u, v, w, corresponding to (3.9).

(z →∗ u∗ ← y) ∧ (x→∗ v∗ ← u) . (3.8)

In either case, we have x ↓∗ y.

2: Confluence implies local confluence. For the other direction, assume that → is
locally confluent. To prove the claim, we use Noetherian induction on the Noetherian
relation →. Suppose that x∗ ← z0 →∗ y. The cases x = z0 and y = z0 are immediate.
Therefore, consider

x∗ ← x1
∗ ← z0 →∗ y1 →∗ y. (3.9)

By local confluence ((3.10a)) and the induction hypothesis ((3.10b),(3.10c)) there are
u, v, w such that

x1 →∗ u∗ ← y1 (3.10a)

x→∗ v∗ ← u (3.10b)

v →∗ w∗ ← y (3.10c)

(3.10d)

The situation is graphically depicted in Figure 3.7. Therefore, x ↓∗ y.

3.1.8 Definition ([126, Definition 8.1.5]). Let → be a reduction relation on the set M
and > a partial ordering on M . Suppose that x, y, z ∈M . x and y are connected (with
regard to →) below (with regard to >) z iff

∃w1, . . . , wn ∈M
(

(x = w1 ←→ · · · ←→ wn = y) ∧
n∧
i=1

(wi < z)
)
. (3.11)

22

3.1. Reduction Relations

This property is denoted by x←→∗(<z) y. /

3.1.9 Theorem ([126, Theorem 8.1.3]). (Refined Newman lemma) Let → be a reduction
relation on M and > a partial Noetherian ordering on M such that →⊆>. Then, → is
confluent iff

∀x, y, z ∈M
(
(x ← z → y) =⇒ x←→∗(<z) y

)
. (3.12)

/

Proof. Confluence implies connectedness. For the other direction, assume that the
connectedness property holds. We use Noetherian induction on > with the (first)
induction hypothesis

∀x̃, ỹ, z̃ : if z̃ < z ∧ x̃∗ ← z̃ →∗ ỹ then x̃ ↓∗ ỹ. (3.13)

Consider the situation x→∗ z →∗ y. If x = z or y = z, then we are done. Otherwise, we
have

x∗ ← x1 ← z → y1 →∗ y. (3.14)

By the assumption of connectedness, there are u1, . . . , un < z, such that

x1 = u←→ · · · ←→ un = y1. (3.15)

We use induction on n to show that for all n and all u1, . . . , un ∈M :(
u1 ←→ · · · ←→ un ∧

n∧
i=1

(ui < z)
)

=⇒ u1 ↓∗ un. (3.16)

The case n = 1 is clear. Next, we assume that

(3.16) holds for some n ≥ 2, (3.17)

and this is the second induction hypothesis. For the induction step, assume u1, · · · , un+1 ∈
M with u1 ←→ · · · ←→ un+1 with ui < z, for 1 ≤ i ≤ n+ 1. We distinguish two cases,
where both show the existence of a common successor v to u1 and un+1:

un ← un+1 By (3.17), we have

∃v ∈M (u1 →∗ v∗ ← un) (3.18)

This v has the required property and the corresponding situation is depicted in
Figure 3.8.

23

3. Polynomial System Solving and Gröbner Bases

u1 · · · un

un+1

v
* *

Figure 3.8: Graphical illustration of existence of common successor v to u1 and un+1
corresponding to case in (3.18).

u1 · · · un

un+1v1

v

* *

* *

Figure 3.9: Graphical illustration of existence of common successor v to u1 and un+1
corresponding to case in (3.19b) and (3.19b).

un → un+1 By (3.17) and (3.13), it holds that

v1 ∈M (u1 →∗ v1
∗ ← un) , (3.19a)

v ∈M (v1 →∗ v∗ ← un+1) . (3.19b)

This v has the required property and the corresponding situation is depicted in
Figure 3.9).

The results of the case distinction together yield that (3.16) is established. Finally, the
following three steps complete the proof of the theorem (which are illustrated in Figure
3.10):

∃w1 ∈M (u1 →∗ w1
∗ ← un) , by (3.16); (3.20a)

∃v ∈M (x→∗ v∗ ← w1) , by (3.13); (3.20b)

∃w ∈M (v →∗ w∗ ← y) , by (3.13). (3.20c)

24

3.2. Polynomial Reduction

z

x1 = u1 · · · · · · un = y1

x w1 y

v

w

* * * *

* *

* *

Figure 3.10: Graphical illustration for final steps in the proof.

3.2 Polynomial Reduction

For n ∈ N× and a commutative unary ring R, consider the polynomial ring in n

indeterminates over R, denoted as K [X] = K [x1, . . . , xn] . For any subset F ⊆ K [X] ,
we denote the generated ideal by 〈F 〉. The monoid under multiplication of the power
products xi11 · · ·xinn in x1, . . . , xn with unit element 1 = x0

1 · · ·x0
n is denoted by [X] ; and

lcm (s, t) denotes the least common multiple of the power products s, t ∈ [X] .

3.2.1 Definition ([126, Section 8.2]). The basis condition for a commutative unary ring
states that every ideal has a finite basis. /

3.2.2 Definition ([126, Section 8.2]). Commutative unary rings, in which the basis
condition holds, are called Noetherian ring. /

3.2.3 Lemma ([126, Lemma 8.2.1]). In a Noetherian ring, there are no infinitely
ascending chains of ideals. /

3.2.4 Theorem ([126, Theorem 8.2.2]). (Hilbert’s basis theorem) If R is a Noetherian
ring, then also the univariate polynomial ring R [x] is Noetherian. /

From Hilbert’s basis theorem, Theorem 3.2.4, it follows that the multivariate polyno-
mial ring K [X] is Noetherian, if K is a field [126, Section 8.2].

3.2.5 Definition ([126, Definition 8.2.1]). Let < be a total ordering on [X] that is
compatible with the monoid structure in the following sense:

1. ∀t ∈ [X] \ {(1} : 1 < t), and

25

3. Polynomial System Solving and Gröbner Bases

2. ∀s, t, u ∈ [X] (s < t =⇒ su < tu).

A total ordering on [X] , that satisfies both above conditions, is called an admissible
ordering. /

3.2.6 Example ([126, Example 8.2.1]). 1. For a a permutation π of [n], the lexico-
graphic ordering with xπ(1) > xπ(2) > · · · > xπ(n), is defined as follows:

xi11 x
i2
2 · · ·x

in
n <lex,π x

j1
1 x

j2
2 · · ·x

jn
n ⇔ ∃k ∈ [n]

((
∀l < k : iπ(l) = jπ(l)

)
∧ iπ(k) < jπ(k)

)
.

(3.21)
In the case that π = id, then the lexicographic ordering <lex,π is the usual lexico-
graphic ordering <lex.

2. The graduated lexicographic ordering with regard to the permutation π and the
weight function w : {1, . . . , n} −→ R+: for s = xi11 · · ·xinn , t = xj11 · · ·xjnn we define
s <glex,π,w t iff(

n∑
k=1

w(k)ik <
n∑
k=1

w(k)jk

)
∨
(

n∑
k=1

w(k)ik =
n∑
k=1

w(k)jk ∧ s <lex,π t

)
. (3.22)

In the case that π = id and w is constant and equal to one, then one obtains the
usual graduated lexicographic ordering <glex.

3. The graduated reverse lexicographic ordering is defined as follows: s <grlex t iff

(deg(s) < deg(t)) ∨ (deg(s) = deg(t) ∧ t <lex,π s, π(j) = n− j + 1) . (3.23)

4. The product ordering with regard to i ∈ {1, . . . , n− 1} and the admissible orderings
<1 on X1 = [x1, . . . , xi] and <2 on X2 = [xi+1, . . . , xn]: for s = s1s2, t = t1t2,
where s1, t1 ∈ X1, s2, t2 ∈ X2, we define s <prod,i,<1,<2 t iff

(s1 <1 t1) ∨ (s1 = t1 ∧ s2 <2 t2) . (3.24)

/

For an in-depth treatment of admissible orderings, we refer to [107, 106].

3.2.7 Lemma ([126, Lemma 8.2.3]). Let < be an admissible ordering on [X] .

1. If s, t ∈ [X] and s divides t, then s ≤ t.

26

3.2. Polynomial Reduction

2. > is Noetherian, and consequently every subset of [X] has a smallest element.

/

Proof. 1: For some u we have su = t. By the admissibility of <, s = 1s ≤ us = t.
2: Let s1 > s2 > · · · be a sequence of decreasing elements in [X] . Let K be any field.
So the sequence of ideals 〈s1〉 ⊂ 〈s1, s2〉 ⊂ · · · in K [X] is increasing. But K [X] is
Noetherian, thus the sequence has to be finite.

3.2.8 Definition ([126, Definition 8.2.2]). The following list contains, for s ∈ [X] , f ∈
K [X] \ {0} and F ⊆ K [X] , both definitions and terminology in unison.

1. coeff (f, s) denotes the coefficient of s in f ;

2. lpp (f) = max<{t ∈ [X] : coeff (f, t) 6= 0}, the leading power product of f ;

3. lc (f) = coeff (f, lpp (f)), the leading coefficient of f ;

4. in (f) = lc (f) lpp (f), the initial of f ;

5. red (f) = f − in (f), the reductum of f ;

6. lpp (F) = {lpp (f) : f ∈ F \ {0}};

7. lc (F) = {lc (f) : f ∈ F \ {0}};

8. in (F) = {in (f) : f ∈ F \ {0}};

9. red (F) = {red (f) : f ∈ F \ {0}}.

/

3.2.9 Definition ([126, Definition 8.2.3]). Any admissible ordering < on [X] induces a
partial ordering � on K [X] , the induced ordering, in the following way:

f � g ⇔ (f = 0 ∧ g 6= 0)∨ (3.25a)

(f 6= 0 ∧ g 6= 0 ∧ lpp (f) < lpp (g))∨ (3.25b)

(f 6= 0 ∧ g 6= 0 ∧ lpp (f) = lpp (g) ∧ red (f)� red (g)) . (3.25c)

/

27

3. Polynomial System Solving and Gröbner Bases

3.2.10 Lemma ([126, Lemma 8.2.4]). � is a Noetherian partial ordering on K [X] . /

A pivotal notion in the theory of Gröbner bases is the concept of polynomial reduction
(see Definition 3.2.11).

3.2.11 Definition ([126, Definition 8.2.4]). Let f, g, h ∈ K [X] and F ⊆ K [X] . We
say that g reduces to h with regard to f (denoted as g −→f h) iff ∃s, t ∈ [X] such that s
has a non-vanishing coefficient c in g (i.e. coeff (g, s) = c 6= 0), s = lpp (f) · t, and

h = g − c

lc (f) · t · f. (3.26)

To be precise in notation and indicate which power product and coefficient are used in the
reduction, we write

g −→f,b,t h, where b = c

lc (f) . (3.27)

We say that g reduces to h with regard to F (denoted as g −→F h) iff ∃f ∈ F : g −→f

h. /

3.2.12 Lemma ([126, Lemma 8.2.5]). Let ∈ K×, s ∈ [X] , F ⊆ [X] , g1, g2, h ∈ K [X] .

1. −→F⊆�,

2. −→F is Noetherian,

3. if g1 −→F g2, then a · s · g1 −→F a · s · g2,

4. if g1 −→F g2, then g1 + h ↓∗F g2 + h.

/

3.2.13 Theorem ([126, Theorem 8.2.6]). Let F ⊆ K [X] . The ideal congruence modulo
〈F 〉 equals the reflexive-transitive-symmetric closure of →F , i.e., ≡〈F 〉=←→∗F . /

3.2.14 Definition ([126, Definition 8.2.5]). A subset F of K [X] is a Gröbner basis (for
〈F 〉) iff −→F is Church-Rosser. /

It should be noted that many generating sets of an ideal can have the property stated
in Definition 3.2.14 and, as a result, are a Gröbner basis of the ideal.

28

3.3. Computation of Gröbner Bases

lcm (lpp (f) , lpp (g))

h1 h2
f g

Figure 3.11: Critical pairs of elements of F describe exactly the essential branchings of
the polynomial reduction relation →F .

3.3 Computation of Gröbner Bases

3.3.1 Definition ([126, Definition 8.3.3]). Let f, g ∈ K [X] and t = lcm (lpp (f) , lpp (g)).
Then,

cp (f, g) =
(
t− 1

lc (f) ·
t

lpp (f) · f, t−
1

lc (g) ·
t

lpp (g) · g
)

(3.28)

is the critical pair of f and g. The difference of the elements of cp (f, g) is called the
S-polynomial of f and g. /

3.3.2 Remark ([126, Section 8.3]). Figure 3.11 illustrates the situation graphically in
the of cp (f, g) = (h1, h2). /

3.3.3 Theorem ([126, Theorem 8.3.1]). Let F ⊆ K [X] .

1. (Buchberger’s Theorem) F is a Gröbner basis iff g1 ↓∗F g2 for all critical pairs
(g1, g2) of elements of F .

2. F is a Gröbner basis iff ∀f, g ∈ F : spol (f, g)→∗F 0.

/

Proof. 1: If F is a Gröbner basis, then g1 ↓∗F g2 for all critical pairs (g1, g2) of F . For
the other direction, assume that g1 ↓∗F g2 for all critical pairs (g1, g2) of F . By Theorem
3.1.9, it suffices to show that h1 ←→∗F (�h) h2 for all h, h1, h2 such that h1F ← h→F h2.

Let s1, s2 be the power products that are eliminated in the reduction of h to h1

and h2, respectively. That means, there are polynomials f1, f2 ∈ F , coefficients c1 =
coeff (h, s1) 6= 0, c2 = coeff (h, s2) 6= 0, and power product t1, t2 such that

s1 = t1lpp (f1) , h1 = h− c1
lc (f1) t1f1 ∧ s2 = t2lpp (f2) , h2 = h− c2

lc (f2) t2f2. (3.29)

We continue with a case distinction, depending on whether s1 = s2 holds.

29

3. Polynomial System Solving and Gröbner Bases

s1 6= s2: We can assume that s1 > s2, w.l.o.g.. Let a = coeff (−(c1/lc (f1) t1f1, s2), then
coeff (h1, s2) = c2 + a, leading to

h1 →F h1 −
c2 + a

lc (f2) t2f2 = h− c1
lc (f1) t1f1 −

c2 + a

lc (f2) t2f2. (3.30)

We also have

h2 →F h2 −
c1

lc (f1) t1f1 →F h2 −
c1

lc (f1) t1f1 −
a

lc (f2) t2f2 = (3.31a)

h− c1
lc (f1) t1f1 −

c2 + a

lc (f2) t2f2. (3.31b)

It follows that h1 ←→∗F (�h) h2, and in fact h1 ↓∗F h2.

s1 = s2: Let s = s1 = s2, c = coeff (h, s) and h′ = h− cs. There exists a power product
t, such that

s = t lcm (lpp (f1) , lpp (f2)) ∧ h1 = h′ + ctg1, h2 = h′ + ctg2, (3.32)

where (g1, g2) = cp (f1, f2). By assumption g1 ↓∗F g2, i.e.,, there exist p1, . . . , pk, q1, . . . , ql

such that
g1 = p1 →F · · · →F pk = qlF ← · · · F ← q1 = g2. (3.33)

By Lemma 3.2.12, 3, it follows that

ctg1 = ctp1 →F · · · →F ctpk = ctqlF ← · · · F ← ctq1 = ctg2. (3.34)

By Lemma 3.2.12, 4, it follows that

h1 = h′ + ctp1 ↓∗F · · · ↓∗F h′ + ctpk = h′ + ctql ↓∗F · · · ↓∗F h′ + ctq1 = h2. (3.35)

All the intermediate polynomials in these reductions are less than h with regard to
�. Thus, h1 ←→∗F (�) h2.

2: All S-polynomial are congruent to zero modulo 〈F 〉 and Theorem 3.2.13 yields
spol (f, g)→∗F 0. If F is a Gröbner basis, then spol (f, g)→∗F 0. For the other direction,
assume that spol (f, g)→∗F 0, ∀f, g ∈ F . We not only continue with the same notation as
in 1, but also observe that the whole proof is analogous, except for the case s1 = s2 = s.
Therefore, for h1 = h′ + ctg1F ← h→F h

′ + ctg2 = h2, we have to show h1 ←→∗F (�h) h2.
g1 − g2 is the S-polynomial of f1, f2 ∈ F , so by our assumption g1 − g2 →∗F 0. An

30

3.3. Computation of Gröbner Bases

application of Lemma 3.2.12 yields h1 − h2 = ct (g1 − g2) →∗F 0, meaning there exist
p1, . . . , pk such that

h1 − h2 = p1 →F · · · →F pk = 0. (3.36)

Another application of Lemma 3.2.12 yields

h1 = p1 + h2 →∗F · · · →∗F pk + h2 = h2, (3.37)

which implies h1 ←→∗F (�h) h2.

An algorithm1 for computing Gröbner bases based on Buchberger’s theorem (Theorem
3.3.3, 1) is given in Algorithm 1.

Algorithm 1 Buchberger’s algorithm.
procedure GB-BB: (returns a finite generator G of I, which is a Gröbner basis for
I.)

Require: Finite generator F of an ideal I.
G← F
C ← {{g1, g2} : g1, g2 ∈ G, g1 6= g2}
while not all pairs {g1, g2} are marked do

Choose an unmarked pair {g1, g2}
Mark {g1, g2}
h← normal form of spol (g1, g2) w.r.t. →G

if h 6= 0 then
C ← C ∪ {{g, h} : g ∈ G}
G← G ∪ {h}

end if
end while
return G

end procedure

3.3.4 Theorem ([126, Theorem 8.3.2]). (Dickson’s lemma) Every A ⊆ [X] contains a
finite subset B, such that every t ∈ A is a multiple of some s ∈ B. /

Proof. The proof uses induction on the number of variables in [X] . The case n = 1
trivially holds. Therefore, assume that n ≥ 2. Choose

A 3 t0 = xe1
1 · · ·x

en
n . (3.38)

1At this point, we already call the computational steps given in Algorithm 1 in their unity an
algorithm, although this terminology will only be justified by Proposition 3.3.5.

31

3. Polynomial System Solving and Gröbner Bases

For i ∈ {1, . . . , n} and j ∈ {0, · · · , ei}, consider the set of power products

Ai,j = {t ∈ [X] : t ∈ A ∧ deg
xi

(t) = j}, (3.39)

and
A′i,j = {t/xji : t ∈ Ai,j}. (3.40)

The variable xi does not occur – by construction of the set A′i,j – in the elements of A′i,j
any more. By the induction hypothesis, there exist finite subsets B′i,j ⊆ A′i,j such that
every power product in A′i,j is a multiple of some power product in B′i,j . Let

Bi,j = {t · xji : t ∈ B′i,j}. (3.41)

It follows that every element of A is a multiple of some element of the finite set

B = {t0} ∪
⋃
i,j

Bi,j ⊆ A. (3.42)

3.3.5 Proposition. The computational steps given in Algorithm 1 indeed form an
algorithm, in particular it terminates for any valid input with a Gröbner basis. /

Proof. The polynomials h constructed in Algorithm2 1 in line 7 are all elements of
〈F 〉, therefore all throughout the execution of the steps in Algorithm3 1 it holds that
〈G〉 = 〈F 〉.

Regarding the termination of the computational steps given in Algorithm4 1, we note
that Theorem 3.3.4 implies that in [X] there is no infinite chain of elements s1, s2, . . .

such that si - sj , for all 1 ≤ i < j. The leading power product of the polynomials added
to the basis form such a sequence in [X] , hence this sequence must be finite.

It is now established that the computational steps given in Algorithm5 1 form indeed
a proper algorithm6 and it follows by Buchberger’s Theorem, Theorem 3.1.5, 1, that the
output of Algorithm 1 is indeed a Gröbner basis for 〈F 〉.

3.3.6 Theorem ([126, Theorem 8.3.3]). Every ideal I in K [X] has a Gröbner basis. /

2For the used terminology in this reference, see Footnote 1 on page 31.
3For the used terminology in this reference, see Footnote 1 on page 31.
4For the used terminology in this reference, see Footnote 1 on page 31.
5For the used terminology in this reference, see Footnote 1 on page 31.
6From this point onwards, the terminology used – the word algorithm – is justified.

32

3.3. Computation of Gröbner Bases

Proof. A constructive proof is given by Algorithm 1.

There are many characterizations of Gröbner bases, however, we only list a few of
them in Theorem 3.3.7.

3.3.7 Theorem ([126, Theorem 8.3.4]). Let I be an ideal in K [X] , F ⊆ K [X] and
〈F 〉 = I. Then, the following statements are equivalent.

1. F is a Gröbner basis for I;

2. f →∗F 0, ∀f ∈ I;

3. f →F ,∀f ∈ I \ {0};

4. ∀g ∈ I, h ∈ K [X] (g →∗F h =⇒ h = 0);

5. ∀g, h1, h2 ∈ K [X] ((g →∗F h1 ∧ g →∗F h2) =⇒ h1 = h2);

6. 〈in (F)〉 = 〈in (I)〉.

/

3.3.8 Theorem ([126, Definition 8.3.5]). Let G be a Gröbner basis for an ideal I in
K [X] , g, h ∈ G, g 6= h and h′ ∈ K [X] .

1. If lpp (g) | lpp (h), then G′ = G \ {h} is also a Gröbner basis for I.

2. If h→g h
′, then G′ = (G \ {h}) ∪ {h′} is also a Gröbner basis for I.

/

Proof. 1: Clearly, we have 〈G′〉 ⊆ I. For f ∈ I, we have f →∗G 0, but in fact we have
f →∗G′ 0, because whenever we could reduce by h we can instead also reduce by g.
2: 〈G′〉 = 〈G〉. If lpp (h) is reduced, then the result follows from 1. Otherwise, 〈in (G′)〉 =
〈G〉 = 〈in (I)〉.

3.3.9 Definition. • G is minimal iff lpp (g) - lpp (h) ,∀g, h ∈ G, g 6= h.

• G is reduced iff for all g, h ∈ G with g 6= h we cannot reduce h by g.

33

3. Polynomial System Solving and Gröbner Bases

• G is normed iff ∀g ∈ G : lc (g) = 1.

/

3.3.10 Theorem ([126, Theorem 8.3.6]). Every ideal in K [X] has a unique finite
normed reduced Gröbner basis. /

Proof. The existence of such a basis follows from Theorem 3.3.8. Assume that

G = {g1, . . . , gm}, G′ = {g′1, . . . , g′m′} (3.43)

are two normed reduced Gröbner basis for the ideal I. By the assumptions on G′, it holds
that g1 →∗G′ 0, in particular lpp (g1) can be reduced by some polynomial in G′, w.l.o.g.
let g′1 be this polynomial, i.e., lpp (g′1) | lpp (g1). Also, by assumption on G, it holds
that g′1 →0

G 0 and therefore there exists k with 1 ≤ k ≤ m such that lpp (gk) | lpp (g′1).
By assumption G is reduced, yielding k = 1, i.e., lpp (g1) = lpp (g′1). Continuing in
this way and possibly after a reordering of the elements of G′ we obtain m = m′ and
lpp (gi) = lpp (g′i) for all 1 ≤ i ≤ m.
Let i ∈ {1, . . . ,m}, then gi →∗G′ 0. Assume, towards a contradiction, that gi 6= g′i.
The only way to eliminate lpp (gi) is to use g′i. We have gi − g′i 6= 0, however, none
of the power products in gi − g′i can be reduced modulo G′, contradiction. Hence,
∀1 ≤ i ≤ m : gi = g′i.

3.3.11 Remark ([126, Section 8.3]). We note that the unique finite normed reduced
Gröbner basis of an ideal given in Theorem 3.3.10 depends on the chosen admissible
ordering. Different orderings can result in different Gröbner bases. This lead to the
consideration of universal Gröbner bases [124, 95]. /

3.4 Polynomial System Solving

Polynomial system solving includes the problems and ways to solve systems of multivariate
polynomial equations. The problem of polynomial system solving is defined as follows for
some field K:

f1 (x1, . . . , xn) = 0, (3.44a)

f2 (x1, . . . , xn) = 0, (3.44b)
... (3.44c)

fm (x1, . . . , xn) = 0, (3.44d)

34

3.4. Polynomial System Solving

where f1, f2, . . . , fm ∈ K[X] and we seek – if any exist – common solutions (i.e, zeros) of
the system given in (3.44a) - (3.44d). Let I = 〈f1, . . . , fm〉.

3.4.1 Theorem ([126, Theorem 8.4.2]). (Hilbert’s Nullstellensatz) Let I be an ideal in
K [X] , where K is an algebraically closed field. Then, the radical of I consists of exactly
those polynomials in K [X] , which vanish on all common roots of I. /

In [15], the following result was given:

3.4.2 Theorem ([126, Theorem 8.4.3]). Let G be a normed Gröbner basis of I. The
system given in (3.44),(3.44a) - (3.44d) is unsolvable in K̄ if and only if 1 ∈ G. /

Proof. If 1 ∈ G, then 1 ∈ 〈G〉 = I, so every solution of the system given in (3.44) is also
a solution of 1 = 0, yielding that no solutions exist.
For the other direction, assume that the system given in (3.44) is unsolvable. Then,
the polynomial 1 vanishes on every common root of (3.44). So, by Theorem 3.4.1,
1 ∈ radical (I) and therefore also 1 ∈ I. Since G is a normed Gröbner basis of I, it holds
that 1→G 0, but this is only possible if 1 ∈ G.

Although we are only interested in solutions over the binary field – necessarily
resulting in only finitely many solutions – we also mention an important result, namely
that a Gröbner basis can be used to determine whether or not the corresponding ideal is
zero-dimensional.

3.4.3 Theorem ([126, Theorem 8.4.4]). Let G be a Gröbner basis of I. Then, (3.44) has
finitely many solutions (i.e., I is zero-dimensional) if and only if for every i, 1 ≤ i ≤ n,
there is a polynomial gi ∈ G such that lpp(gi) is a pure power of xi. Moreover, if I is
zero-dimensional then the number of zeros of I (counted with multiplicities) is equal to
dim(K[X]/I). /

The part that triangulation plays in solving systems of linear equations is in the
case of multivariate polynomial system solving the role of the Gröbner basis algorithm.
Gröbner bases with the lexicographic ordering provide the means to derive the solutions
of such systems, a fact that was first stated in [120]. Some of the necessary conditions
have been collected jointly and can be found in the literature under the name “elimination
orderings”, however, we restrict ourselves to the case of the lexicographic ordering given

35

3. Polynomial System Solving and Gröbner Bases

in the next theorem (Theorem 3.4.4), which states the elimination property of Gröbner
bases.

3.4.4 Theorem ([126, Theorem 8.4.5]). Get G be a Gröbner basis of I w.r.t. the
lexicographic ordering x1 < · · · < xn. Then

I ∩K [x1, . . . , xi] = 〈G ∩K [x1, . . . , xi] 〉, (3.45)

where the ideal on the right-hand side is generated over the ring K [x1, . . . , xi] . /

Proof. The right hand side is obviously contained in the left-hand side.
For the other inclusion, let f ∈ K [x1, . . . , xn] and obviously f →∗G 0. All polynomials
occurring in this reduction depend only on variables in the set {x1, . . . , xi}, resulting in
a representation of f as a linear combination

∑
j hjgj , where gj ∈ G ∩K [x1, . . . , xi] and

hj ∈ K [x1, . . . , xi] .

The elimination property, in the form given in Theorem 3.4.4, yields that a Gröbner
basis with regard to the lexicographic ordering of a zero-dimensional ideal has always the
following structure:

g1(x1) = 0,

g2(x1, x2) = 0,
...

(3.46)

Once a Gröbner basis with regard to the lexicographic ordering has been computed
for a polynomial system and if we assume that we can compute the solutions of all
univariate polynomials over the algebraic closure of the underlying field, then we can
successively eliminate variables by computing the solutions for the resulting univariate
polynomials and back-substituting, propagating partial solutions until we have solved
the entire system.

36

CHAPTER 4
Applications of Computer
Algebra to Design Theory

We apply algebraic techniques with the goal to reason about combinatorial designs in an
algebraic context. The algebraic approach presented is built upon commutative algebra
and the corresponding methodologies are developed within a linear algebra setting and
also employ symbolic computation techniques for constructive problems. We translate
combinatorial properties of tuples into an algebraic formulation and this will serve as the
building block to derive an algebraic framework for the study of certain combinatorial
structures, most importantly, covering arrays. In particular, in this chapter, we show
how to model, characterize and construct binary strength two covering arrays within an
algebraic framework.

A brief, informal description of our approach for constructing covering arrays can
be given as follows: for given covering array configuration C = (2, k, 2), and depending
on the covering array problem considered, we construct a matrix, where some entries
are variables xı from a suitable multivariate polynomial ring over the field of rational
numbers Q. The concept of row-selectors with specific entries and transformations of
coverage conditions into an algebraic formulation are the means to arrive at a multivariate
polynomial system of equations over a specific multivariate polynomial ring. Subsequently,
we rely on the theory of Gröbner bases to compute the corresponding variety. In the case
that there are solutions, each point in the computed variety corresponds to a matrix,
which constitutes a covering array for the given configuration C.

37

4. Applications of Computer Algebra to Design Theory

We develop fundamental algebraic distinguishers for binary pairs in Section 4.1, which
are used in different contexts to derive characterizations of combinatorial designs in
Section 4.2. In Section 4.3 we turn to constructive design problems and show how they
can be tackled using a computational algebra formalism.

4.1 Algebraic Distinguishers for multiple
existentially-quantified Combinatorial Designs

The kind of equations, which will be derived, model the logical or operator (in the “not
exclusively” sense) applied to existential conditions. The main theoretical focus of this
Thesis is on the translation of these logical statements into an algebraic context.

Algebraic Tuple Modelling with Coverage Equations

We will derive algebraic means to decide about the appearance of binary pairs for certain
submatrix selections of a given matrix. In particular, we establish a connection between
existential conditions in combinatorial design theory to zeros of multivariate polynomials
in specific rings.

4.1.1 Definition ([40, Definition 4]). Let P be a ring and a, b ∈ P . We say that the
triple (P, a, b) has the pairwise binary tuple distinguishing property, if and only if,

1. P is a unary ring;

2. P is an integral domain;

3. The elements 0, a, b and a+ b are pairwise different.

/

4.1.2 Terminology. A distinguisher for a set A is an injective function with domain A.
The image of this function is chosen according to individual requirements of the problem
of interest. /

We begin with the inference of an “algebraic distinguisher” for binary pairs. The first
observation is a (trivial) computation.

38

4.1. Algebraic Distinguishers for multiple existentially-quantified Combinatorial Designs

4.1.3 Proposition. [40, Remark 1] Assume that P is a ring, a, b ∈ P , (P, a, b) has the
pairwise binary tuple distinguishing property, and T = {

(
0, 0

)
,
(
1, 0

)
,
(
0, 1

)
,
(
1, 1

)
}.

Then, the function ϕ : T −→ {0, 1, a, b}, given by

ϕ(
(
0, 0

)
) = 0, ϕ(

(
1, 0

)
) = a, ϕ(

(
0, 1

)
) = b, ϕ(

(
1, 1

)
) = a+ b, (4.1)

is a bijection. Furthermore, it can be expressed as a matrix matrix multiplication1 as
follows:

(
a, b

)
·
(
0, 0

)ᵀ
= 0 = ϕ(

(
0, 0

)
), (4.2a)(

a, b
)
·
(
1, 0

)ᵀ
= a = ϕ(

(
1, 0

)
), (4.2b)(

a, b
)
·
(
0, 1

)ᵀ
= b = ϕ(

(
0, 1

)
), (4.2c)(

a, b
)
·
(
1, 1

)ᵀ
= a+ b = ϕ(

(
1, 1

)
). (4.2d)

/

Proof. From the assumption that (P, a, b) has the pairwise binary tuple distinguishing
property follows that ϕ is a bijection. The claimed representation of ϕ as a matrix matrix
multiplication follows from the computations in equations (4.2a) – (4.2d).

4.1.4 Remark. [40, Remark 1] From Corollary 4.1.3 it follows that we can use the
evaluation of a matrix matrix multiplication of a tuple having only zero and one as
elements with the “symbolic” vector

(
a, b

)
to determine a tuple from the set T uniquely.

We state this result explicitly in the following Lemma 4.1.5. /

4.1.5 Lemma. [40, Lemma 1] Assume that P is a ring, a, b ∈ P , (P, a, b) has the pairwise
binary tuple distinguishing property, let T = {

(
0, 0

)
,
(
1, 0

)
,
(
0, 1

)
,
(
1, 1

)
} and(

t1, t2
)
∈ T . Then, the equivalences in equations (4.3a), (4.3b), (4.3c) and (4.3d) hold.

(
t1, t2

)
=
(
0, 0

)
⇐⇒

(
a, b

)
·
(
t1, t2

)ᵀ
= 0, (4.3a)(

t1, t2
)

=
(
1, 0

)
⇐⇒

(
a, b

)
·
(
t1, t2

)ᵀ
− a = 0, (4.3b)(

t1, t2
)

=
(
0, 1

)
⇐⇒

(
a, b

)
·
(
t1, t2

)ᵀ
− b = 0, (4.3c)(

t1, t2
)

=
(
1, 1

)
⇐⇒

(
a, b

)
·
(
t1, t2

)ᵀ
− a− b = 0. (4.3d)

1We regard pairs as 2× 1 matrices.

39

4. Applications of Computer Algebra to Design Theory

/

Proof. For all four cases, the direction “⇒” follows from the computations in Proposition
4.1.3 and the direction “⇐” from the fact that the function ϕ is by Proposition 4.1.3 a
bijection.

It is well known, that given a nonempty finite product of elements of an integral
domain, the product is zero if and only if at least one factor is zero[30, Appendix A,
Definition 3]. This paves the way for making a connection between the requirement of
“appearance at least once” in the coverage conditions in the theory of covering arrays and
zeros of nonempty finite products of elements in certain integral domains (multivariate
polynomial rings).

To extend the technique presented so far to being capable to reason about matrices,
it is necessary to introduce “row selectors” as a means to transform the statement “for
any selection of t distinct rows” into our algebraic approach of linear operations.

4.1.6 Remark. [40, Remark 2] The definition of covering arrays, Definition 2.1.1,
requires coverage of all t-tuples for all N × t subarrays. In the sequel, we will (sometimes)
work with transposed matrices and will therefore be interested in coverage properties of
selections of t distinct rows, i.e., t×N subarrays of the transposed matrix. /

4.1.7 Definition. [40, Definition 5] For k, i, j ∈ N, i, j ≥ 1, k ≥ 2, let the function

ek,i,j : R×R −→ R1×k (4.4)

map a pair of elements from a ring R to a row vector of length k, where the first component
is mapped to the i-th position, the second component to the j-th position in the vector,
and all other entries in the vector are zero. /

4.1.8 Example. [40, Example 1] We will be particular interested in ek,i,j(a, b), for
example,

e6,2,5(a, b) = (0, a, 0, 0, b, 0). (4.5)

/

4.1.9 Remark. [40, Remark 3] Let P be a ring and εi, εj ∈ P . For any matrix M
defined over P with k rows and given 1 ≤ i < j ≤ k, let the matrix M̃ consist of the
vertical concatenation of the i-th and j-th row in this order of the matrix M . Then,

ek,i,j(εi, εj)M =
(
εi, εj

)
M̃. (4.6)

40

4.1. Algebraic Distinguishers for multiple existentially-quantified Combinatorial Designs

In equation (4.6), both sides of the equality result from matrix matrix multiplications. /

4.1.10 Theorem ([40, Theorem 1]). Assume that P is a ring and that (P, a, b) has the
pairwise binary tuple distinguishing property. For any given k ×N matrix M defined
over P containing only zero and one as entries, and any 1 ≤ i < j ≤ k, let M̃ denote
the vertical concatenation of the i-th and j-th row in this order of the matrix M . Let sa
denote the 1×N row vector with all components equal to a, and let

h = (h`)1≤`≤N = ek,i,j(a, b)M − sa. (4.7)

Then, the following statements are equivalent:

(i) The tuple
(
1, 0
)ᵀ

appears at least once as a column in the matrix M̃ .

(ii) The vector h contains at least one component equal to zero.

(iii)
∏N
`=1 h` = 0.

A similar statement holds for the tuples
(
0, 0
)ᵀ
,
(
0, 1
)ᵀ
,
(
1, 1
)ᵀ
. /

Proof. The equivalence of (i) and (ii) follows from Lemma 4.1.5. The equivalence of (ii)
and (iii) follows from the defining property of an integral domain.

4.1.11 Notation ([40, Definition 6]). We call the equations appearing in Theorem 4.1.10,
(iii), coverage equations and using the notation from Theorem 4.1.10, define the following
notation for 1 ≤ i < j ≤ k, τ ∈ {

(
0, 0

)>
,
(
1, 0

)>
,
(
0, 1

)>
,
(
1, 1

)>
}:

coveq(i,j)
τ (M) =

N∏
`=1

h`. (4.8)

/

4.1.12 Remark. [40, Remark 4] The coverage equations are modelled after the coverage
conditions appearing in the definition of covering arrays. The coverage equations are
formulated in such a way that they are semantically equivalent to the pairwise coverage
conditions for binary covering arrays. This statement is the main result of [40] and will
be formulated in Theorem 4.2.3. /

41

4. Applications of Computer Algebra to Design Theory

Membership Equations for covering Tuples in CAs

We will derive algebraic means to enforce the appearance of some value pair out of a list
of pre-determined choices for two selected positions of a matrix. Note that this makes
it possible to impose more structure on the array than what can be achieved with only
modelling of existential quantifiers (cf. Section 2.2.1).

4.1.13 Theorem ([40, Theorem 2.1]). Assume that P is a ring, a, b ∈ P , and that
(P, a, b) has the pairwise binary tuple distinguishing property,

(
t1, t2

)
is a tuple with

ti ∈ {0, 1}, i = 1, 2, T = {
(
0, 0

)
,
(
1, 0

)
,
(
0, 1

)
,
(
1, 1

)
}, and let S be a subset of

T , i.e. S ⊆ T .

Then, the following statements (1), (2) and (3) are equivalent.

1. (
t1, t2

)
∈ S; (4.9)

2.
0 ∈ {

(
a, b

) (
t1, t2

)>
− ϕ(τ) | τ ∈ S}; (4.10)

3. ∏
τ∈S

((
a, b

) (
t1, t2

)>
− ϕ(τ)

)
= 0. (4.11)

/

Proof. First, assume that S 6= ∅. The equivalence of (1) and (2) follows from the fact
that the function ϕ is a bijection. The equivalence of (2) and (3) follows from the defining
property of an integral domain. Second, assume that S is empty. Then, the claimed
equivalences trivially hold.

4.1.14 Remark ([40, Remark 2.2]). An algebraic distinguisher for 1-tuples; i.e., for
individual elements, under the same conditions and with similar properties as given in
Theorem 4.1.13 for pairs, can be constructed . /

4.1.15 Definition ([40, Definition 2.3]). For k,N ∈ N with 2 ≤ k, let C = (2, k, 2) be a
configuration and M a compatible N × k matrix. We call2,3 the function Γ: [N]×Ik −→
P (T) an interaction-membership function. /

2For k ∈ N, let Ik = {(i, j) | 1 ≤ i < j ≤ k} ⊆ [k]× [k].
3For a set S, we denote with P (S) its power set.

42

4.2. Algebraic Characterizations for specific Design Structures

4.1.16 Remark ([40, Definition 2.3 and Remark 2.4]). An interaction-membership
function is interpreted as assigning, to each unordered selection of two different columns
per row, a set of binary pairs that are allowed to appear at this position. Note that such
a function may specify contradicting conditions. Note that the non-appearance of certain
value pairs at a position can be specified by considering their complement with respect to
the set T and encoding this condition within an interaction-membership function. /

Combined Models

So far, we have seen two different approaches, which demand certain structural properties
of arrays, namely:

1. Existence of pairs in subarrays in the sense of coverage conditions (see Definition
2.2.11),

2. Constraints on the appearance of pairs of elements from an array in the sense of an
interaction-membership function (see Definition 4.1.15).

It is, of course, possible to combine these two requirements and consider them together.
The resulting structures – if they exist – will satisfy both requirements. The joint
consideration of these two structural properties has been motivated by and continues to
have an impact in real-world applications of combinatorial designs in software testing
(see Chapter 6).

4.2 Algebraic Characterizations for specific Design
Structures

Using Theorem 4.1.10, it is now possible to translate coverage-conditions and membership
requirements into an algebraic setting.

Partial Coverage Systems

The next corollary (Corollary 4.2.1) establishes this connection in a very general setting
for the notion of partial coverage systems.

4.2.1 Corollary. For given partial coverage system and compatible matrix M containing
only zero and one as entries, there exists a system of multivariate polynomial equations S,

43

4. Applications of Computer Algebra to Design Theory

such that M fulfills the conditions specified by the partial coverage system iff its elements
satisfy S. /

Proof. Analogously to the proof of Corollary 4.2.3.

4.2.2 Remark. Observe that Corollary 4.2.1 holds, for example, for the special case of
covering arrays on graphs. /

Covering Arrays

We highlight an important special instance of Corollary 4.2.1 for the specific case of
covering arrays in Corollary 4.2.3 explicitly.

4.2.3 Corollary ([40, Corollary 1]). Assume that P is a ring, a, b ∈ P , and that (P, a, b)
has the pairwise binary tuple distinguishing property. Let M be a k × N matrix with
2 ≤ k defined over P , containing only zero and one as entries.

Then, the statements 1, 2 and 3 are equivalent.

1. For every selection of two different rows of M , each possible binary tuple appears
at least once as a column of the selected 2×N submatrix of M .

2. M> is a covering array for the configuration (2, k, 2) in the sense of Definition
2.1.1, i.e., the strength two coverage conditions of covering arrays hold for M>.

3. For every i and j with the property 1 ≤ i < j ≤ k and for all τ ∈ {
(
0, 0

)>
,(

1, 0
)>

,
(
0, 1

)>
,
(
1, 1

)>
} :

coveq(i,j)
τ (M) = 0. (4.12)

/

Proof. The equivalence of 1 and 2 follows from Definition 2.1.1. The equivalence of 1
and 3 follows from Theorem 4.1.10.

44

4.3. Constructive Design Theory with Polynomial System Solving

Membership Constraints

4.2.4 Corollary ([40, Corollary 2.5]). For k,N ∈ N with 2 ≤ k, let C = (2, k, 2) be a
configuration, M a compatible N × k matrix and Γ an interaction-membership function.
Then, there exists a system of multivariate polynomial equations E, such that M fulfills
the conditions given by Γ if and only if its elements satisfy E. We call these equations
membership-equations. /

Proof. By Theorem 4.1.13, the condition expressed by every element in ran (Γ) holds if
and only if the respective values satisfy the corresponding equation (4.11). Denote by E
the set of all these equations, and the statement follows.

Combined Models

4.2.5 Corollary. Let combined requirements in the sense of Section 4.1 and a compatible
matrixM containing only zero and one as entries be given. Then, the following statements
are equivalent.

1. M fulfills all combined conditions (i.e., coverage-conditions and all requirements of
the interaction-membership function).

2. M fulfills the system consisting of the respective coverage-equations and membership-
equations.

/

Proof. Follows from Corollary 4.2.3 and Corollary 4.3.4.

4.3 Constructive Design Theory with Polynomial System
Solving

Based on the algebraic modelling presented in Sections 4.1 and 4.2, we are now in
a position to investigate existential and constructive problems pertaining the design
structures of interest in an algebraic setting using methods from symbolic computation.
In particular, through the presented algebraic modelling the problems of constructing and
computing covering arrays will be formulated as instances of algebraic systems, where
each solution of them corresponds to a design matrix [40].

45

4. Applications of Computer Algebra to Design Theory

4.3.1 Candidate Matrices

We turn now to matrices defined over some appropriate multivariate polynomial ring.
Specifically for constructive problems, the goal is to derive a semantically equivalent
system of multivariate polynomial equations in the sense that any solution – if it exists –
will have all the properties required in the initial constructive design problem. To this end,
we consider matrices where at least one element is equal to an indeterminate from the
underlying polynomial ring. When the corresponding systems of multivariate polynomial
equations has a solution, any solution can be used to instantiate the original matrix, when
the values of the solution are substituted into the matrix in the corresponding positions
resulting in a design structure, which exhibits all the initially required properties [40].

Depending on the problem under consideration, we obtain a matrix in which in some
entries variables xi appear. Assume that there are exactly γ ∈ N variables appearing
in the matrix. In order to apply our distinguisher-based approach, we will regard this
matrix as being defined over the multivariate polynomial ring Q [x1, x2, . . . , xγ , a, b] of
rank γ+ 2. A detailed description of the used polynomial ring is given in the next section.
In the next lemma (Lemma 4.3.1), we prove that the results of the previous section do
hold for the case of candidate matrices:

4.3.1 Lemma. [40, Lemma 2] Let P be a multivariate polynomial ring in at least
two variables defined over the rational field and assume that a and b are two different
indeterminates, then (P, a, b) has the pairwise binary tuple distinguishing property. /

Proof. The requirements for the pairwise binary tuple distinguishing property hold due
to the properties of P .

4.3.2 Types of Equations

We discuss three types of equations, which model/enforce different kinds of properties
that we are interested in. First, we consider binary conditions, which are used to restrict
the values that a variable can take. Second, we consider coverage equations, which are
used to enforce the appearance of tuples and third, we consider membership-equations
as a means to restrict what kind of tuples may appear at certain pairwise selections of
matrix positions.

46

4.3. Constructive Design Theory with Polynomial System Solving

Binary Conditions

We are interested in binary covering arrays, therefore we have to ensure that all entries
in the considered matrices are either zero or one. For all variables xi in a matrix, we
enforce the binary condition via an equation of the form ([40, Section 3.1]):

xi (xi − 1) . (4.13)

Necessary binary conditions will be added to all considered systems of multivariate
polynomial equations.

Coverage-equations

By Theorem 4.1.10, coverage-equations can be used to enforce coverage-conditions.
Depending on the considered structure (partial coverage system or covering array), the
corresponding coverage-equations are added to the system (cf. Corollary 4.2.3).

Membership-equations

By Corollary 4.2.4, the fulfillness of the requirements specified by an interaction-
membership function is equivalent to being a solution of a polynomial system. Therefore,
for given interaction-membership function, the corresponding membership-equations are
added to the system.

4.3.3 Solving the Systems: Treating the Parameters

We speak of those variables appearing in a matrix as X-variables (x1, . . . , xγ), whereas
we think of a and b as A-variables. So far, all matrices are defined over

Q [x1, x2, . . . , xγ , a, b]

of rank γ + 2. Concerning the A-variables, they do not appear in the solutions of the
modelled matrices. Note that all X-variables take values in {0, 1}. Since we are only
interested in the solutions w.r.t. X-components, we want to project the variety in the
subspace spanned by X [40, Section 3.4].

Gathering all the polynomials mentioned, we obtain an algebraic description. This
algebraic description is an ideal in Q [x1, x2, . . . , xγ , a, b], which is called the coverage
ideal of the candidate matrix. From the theory of Gröbner bases we know that the

47

4. Applications of Computer Algebra to Design Theory

Gröbner basis is a full description of an ideal, but has a better form than a random set
of generators (as the ones we obtained by our analysis of the problem) [40, Section 3.4].

Given a constructive design problem, we consider the corresponding candidate ma-
trix and compute the multivariate polynomial system consisting of equations obtained
according to the explanations in Section 4.3.2. By Lemma 4.3.1, we can use this system
to reason about coverage statements concerning the matrix. We would like to explicitly
point out that there are no binary conditions computed for a and b [40, Section 3.3].

For solving the resulting system of multivariate polynomial equations, we rely on the
theory of Gröbner bases (cf. Chapter 3). There exist efficient algorithms for computing
Gröbner bases, such as the F4 [36] and F5 algorithms [35] and we refer to [34] for a
survey on signature-based algorithms.

Given a set of equations forming a coverage ideal I inQ [x1, x2, . . . , xγ , a, b], to solve the
system, we first choose random values for a and b. We evaluate the polynomials in this set
with the chosen values for a and b and interpret them as elements of R = Q [x1, x2, . . . , xγ].
These equations define an ideal IR restricted to R, whereas we compute a Gröbner basis
(GB) of this ideal in the MAGMA computer algebra system [8]. When GB(IR) 6= {1}
then the resulting variety will entail all points (solutions of the algebraic system) that
correspond to actual covering arrays upon replacing the values of X-variables into the
entries of the candidate matrices. Otherwise, when GB(IR) = {1} there is no solution to
the specific algebraic system. We would like to note that whenever a nontrivial variety is
obtained, the corresponding matrices are covering arrays by Corollary 4.2.3 [40, Section
3.5].

4.3.4 Constructing Combinatorial Designs with Algebraic Methods

We formulate candidate matrices for the various combinatorial structures discussed
previously. Again, we start with partial coverage systems, continue with covering arrays,
followed by properties corresponding to an interaction-membership function and lastly
consider the case of combined models.

Partial Coverage Systems

4.3.2 Corollary. Let a partial coverage system and compatible matrix M containing
X-variables be given. Then, the following statements are equivalent.

48

4.3. Constructive Design Theory with Polynomial System Solving

1. The existence of a matrix, obtained from M by replacing all X-variables in M with
a binary value, fulfilling all the conditions given by the partial coverage system.

2. The non-emptiness of a variety corresponding to a system of multivariate polynomial
equations derived from M , consisting of the resulting binary conditions and coverage-
equations determined by the partial coverage system.

/

Proof. The equivalence follows from Corollary 4.2.1.

Covering Arrays

4.3.3 Corollary. For 2 ≤ k ∈ N, let C = (2, k, 2) be a configuration, M a compatible
candidate matrix containing X-variables. Then, the following statements are equivalent.

1. The existence of a matrix, obtained from M by replacing all X-variables in M with
a binary value, such that it constitutes a covering array for the configuration C.

2. The non-emptiness of a variety corresponding to a system of multivariate polynomial
equations derived from M , consisting of the resulting binary conditions and all
coverage-equations.

/

Proof. Follows from 4.2.3.

Membership Constraints

4.3.4 Corollary ([40, Corollary 2.6]). For 2 ≤ k ∈ N, let C = (2, k, 2) be a configuration,
M a compatible candidate matrix containing X-variables and Γ an interaction-membership
function. Then, the following statements are equivalent.

1. The existence of a matrix, obtained from M by replacing all X-variables in M with
a binary value, fulfilling all the conditions given by Γ.

49

4. Applications of Computer Algebra to Design Theory

2. The non-emptiness of a variety corresponding to a system of multivariate polynomial
equations derived from M consisting of the resulting binary conditions and equations
from the set E of membership-equations.

/

Proof. Follows from Corollary 4.2.4.

Combined Models

We also look at the case, where we require full coverage and have to fulfill the requirements
of an interaction-membership function. It is clear that we can consider all these require-
ments jointly, however, we note that coverage-conditions and membership requirements
may contradict each other.

4.3.5 Corollary. For 2 ≤ k ∈ N, let C = (2, k, 2) be a configuration, M a compatible
candidate matrix containing X-variables and Γ an interaction-membership function. Then,
the following statements are equivalent.

1. The existence of a matrix, obtained from M by replacing all X-variables in M with
a binary value, fulfilling all the conditions given by Γ.

2. The non-emptiness of a variety corresponding to a system of multivariate polynomial
equations derived from M consisting of the resulting binary conditions, all coverage-
equations and equations from the set E of membership-equations.

/

Proof. Follows from Corollary 4.3.3 and Corollary 4.3.4.

50

CHAPTER 5
Algebraic Algorithms for

Problems of Covering Arrays

In this chapter, we present different problems that arise in the generation and computation
of covering arrays. Since, by Theorem 2.1.8, there exists for any given MCA configuration
at least one mixed level covering array compatible with that configuration – the respective
Cartesian product – the most important challenge lies in the construction of optimal or
near optimal mixed level covering arrays in terms of their size1. In particular, considerable
effort has been put into developing theoretical upper and lower bounds for the covering
array numbers CAN (t, k, (v1, v2, . . . , vk)) [109, 26, 131, 116, 119].

This chapter follows [40].

In Section 5.1, we reformulate some of the problems found in [26, 55, 85, 84] to a
proper computational or decisional version (in terms of computational complexity) and
introduce some more that will be needed in the course of this Thesis. In Section 5.2, we
formulate algorithmic approaches and exemplify how they can be used to obtain covering
arrays for some of the considered problems.

1The size of a covering array in the sense of Definition 2.1.1 is its number of rows.

51

5. Algebraic Algorithms for Problems of Covering Arrays

5.1 Problems for Covering Arrays

Most of the problems listed below can also be formulated for general partial coverage
systems or for a combined model with an interaction-membership function, however, we
follow the general focus of this work on covering arrays and only state them for covering
arrays.

5.1.1 Problem ([40, Problem 1]). (Decisional Existence) For given MCA configuration
C and given N ∈ N, decide whether a MCA for the configuration C with N rows exists. /

5.1.2 Problem ([40, Problem 2]). (Computational Existence (one solution), version 1)
For given MCA configuration C and given N ∈ N, construct one MCA for the configuration
C with exactly N rows or terminate with an error. /

5.1.3 Problem ([40, Problem 3]). (Computational Existence (one solution), version 2)
For given MCA configuration C and given N ∈ N with CAN(C) ≤ N , construct one MCA
for the configuration C with exactly N rows. /

5.1.4 Problem ([40, Problem 4]). (Computational Existence (all solutions), version 1)
For given MCA configuration C and given N ∈ N, construct all MCAs for the configuration
C with exactly N rows or terminate with an error. /

5.1.5 Problem ([40, Problem 5]). (Computational Existence (all solutions), version 2)
For given MCA configuration C and given N ∈ N with CAN(C) ≤ N , construct all MCAs
for the configuration C with exactly N rows. /

5.1.6 Problem ([40, Problem 6]). (Decisional Parameter Extension) Given a MCA M

of strength t and given an alphabet size v, decide whether it is possible to extend the given
matrix M with one additional column corresponding to a new parameter taking v values
such that the extended matrix constitutes a MCA of strength t without adding additional
rows. /

5.1.7 Problem ([40, Problem 7]). (Computational Parameter Extension (one solution),
version 1) Given a MCA of strength t, given an alphabet size v, construct one new
additional column such that the extended matrix constitutes a MCA of strength t with
the additional parameter taking v values without adding new rows or terminate with an
error. /

5.1.8 Problem ([40, Problem 8]). (Computational Parameter Extension (one solution),
version 2) Given a MCA of strength t, given an alphabet size v and assume an affirmative

52

5.1. Problems for Covering Arrays

parameter extension decision, construct one new additional column such that the extended
matrix constitutes a MCA of strength t with the additional parameter taking v values
without adding new rows. /

5.1.9 Problem ([40, Problem 9]). (Computational Parameter Extension (all solutions),
version 1) Given a MCA of strength t, given an alphabet size v, construct all possible new
additional columns such that the extended matrices constitute MCAs of strength t with
the additional parameter taking v values without adding new rows or terminate with an
error. /

5.1.10 Problem ([40, Problem 10]). (Computational Parameter Extension (all solu-
tions), version 2) Given a MCA of strength t, given an alphabet size v and assume an
affirmative parameter extension decision, construct all possible new additional columns
such that the extended matrices constitute MCAs of strength t with the additional parameter
taking v values without adding new rows. /

5.1.11 Problem ([40, Problem 11]). (Decisional Vertical Extension) Given a MCA
configuration C, a compatible matrix M and an integer r, decide whether it is possible
to extend the given matrix M with exactly r rows, such that after the extension the new
matrix constitutes a MCA for the given configuration C. /

5.1.12 Problem ([40, Problem 12]). (Computational Vertical Extension (one solution),
version 1) Given a MCA configuration C, a compatible matrix M and an integer r,
construct one vertical extension for M of exactly r rows such that the extended matrix
constitutes a MCA for the given configuration C or terminate with an error. /

5.1.13 Problem ([40, Problem 13]). (Computational Vertical Extension (one solution),
version 2) Given a MCA configuration C, a compatible matrix M , an integer r and
assume an affirmative vertical extension decision for r, construct one vertical extension of
exactly r rows such that the extended matrix constitutes a MCA for the given configuration
C. /

5.1.14 Problem ([40, Problem 14]). (Computational Vertical Extension (all solutions),
version 1) Given a MCA configuration C, a compatible matrix M and an integer r,
construct all possible vertical extensions for M of exactly r rows such that the extended
matrices constitute MCAs for the given configuration C or terminate with an error. /

5.1.15 Problem ([40, Problem 15]). (Computational Vertical Extension (all solutions),
version 2) Given a MCA configuration C, a compatible matrix M , an integer r and

53

5. Algebraic Algorithms for Problems of Covering Arrays

assume an affirmative vertical extension decision for r, construct all possible vertical
extensions of exactly r rows such that the extended matrices constitute MCAs for the
given configuration C. /

5.1.16 Problem ([40, Problem 16]). (Decisional Minimal Vertical Extension) Given a
MCA configuration C, compatible matrix M and integer r, decide whether r is the least
positive integer such that an r vertical extension of M for C is possible. /

5.1.17 Problem ([40, Problem 17]). (Computational Minimal Vertical Extension) Given
a MCA configuration C and compatible matrix M , construct the least positive integer r
such that there is an affirmative minimal vertical extension decision for r. /

5.1.18 Problem ([40, Problem 18]). (Decisional Coverage Verification) Given a MCA
configuration C and a compatible matrix M , decide whether it constitutes a MCA for the
given configuration C. /

5.2 Algorithmic Approaches using Algebraic Methods

We would like to point out that most constructions operate on the transpose of a covering
array, i.e., meaning that rows are corresponding to parameters.

5.2.1 An Algorithmic Approach to the Vertical Extension Problem

In the first example we present how to extend a given matrix, which is compatible with,
but not a covering array for, a covering array configuration C, with one additional column
such that all missing tuples will appear in the extended matrix (relates to Problem 5.1.11,
Problem 5.1.12, Problem 5.1.13, Problem 5.1.16).

Specifically, we consider the configuration C = (2, 2, 2), i.e., two binary parameters
for strength two, and the following matrix

M =

0 1 0
0 0 1

 . (5.1)

We extend with one additional column, therefore we will be working in P =
Q [x1, x2, a, b], i.e., in the multivariate polynomial ring in four variables over the ra-
tional field. The extension column consists of the first two indeterminates,

(
x1, x2

)>
,

54

5.2. Algorithmic Approaches using Algebraic Methods

and is added at the end of the given matrix M :

Mext =

0 1 0 x1

0 0 1 x2

 . (5.2)

We select the first and second row of the matrix Mext and create the coverage
equations. We start with deriving the coverage equation for the

(
0, 0

)>
tuple.

v00 =
(
a, b

)0 1 0 x1

0 0 1 x2

 = (5.3a)

(
0, a, b, x1a+ x2b

)
(5.3b)

Taking the product of the elements of the vector v00 leads to the first coverage equation
coveq(1,2)

(0,0)> (Mext) = 0. As the tuple
(
0, 0

)>
appears in the matrix M , we expect the

respective coverage equation to hold which it does as can derived from equation (5.3b).
Similarly, the coverage equations for the tuples

(
1, 0

)>
and

(
0, 1

)>
hold as well. The

only nontrivial coverage equation arises for the
(
1, 1

)>
tuple:

− x1a
3b− x1a

2b2 − x2a
2b2 − x2ab

3 + a3b+ 2a2b2 + ab3. (5.4)

Next, we add the binary conditions for the variables x1 and x2:

x2
1 − x1, x

2
2 − x2. (5.5)

We now substitute random values for the A-variables

a = −13400/112, (5.6a)

b = 290349/125, (5.6b)

and denote by alleqnoab the set consisting of the polynomials occurring in the only
nontrivial coverage equation (cf. equation (5.4)) and in the binary conditions (cf. equation
(5.5)). All further computations take place in R = Q [x1, x2]. We compute the Gröbner
basis of the following ideal in MAGMA:

I_R = ideal < R | alleqnoab >,

where I_R denotes the restricted ideal IR as defined in Section 4.3.3. The following
computation returns the Gröbner basis polynomials (where rank refers to the number of

55

5. Algebraic Algorithms for Problems of Covering Arrays

variables in a multivariate polynomial ring) in MAGMA:

Ideal of Polynomial ring of rank 2 over Rational Field, Lexicographical Order, Variables
x1, x2, Dimension 0, Groebner basis:

(x1 − 1, x2 − 1) (5.7)

The variety consists of only one point, corresponding to the tuple
(
1, 1

)>
. Substi-

tuting this solution into the extended matrix Mext leads to the transpose of a covering
array in the sense of Definition 2.1.1 for the configuration (2, 2, 2):0 1 0 1

0 0 1 1

 . (5.8)

The pseudo-code for the Vertical Extension procedure, that has been used in this
example, is given in Algorithm 2.

5.2.2 An Algorithmic Approach to the Parameter Extension Problem

In this example, we are given a covering array with k parameters and we want to extend
it to a covering array with one additional parameter by extending the given matrix with
a new row and in particular without adding more columns (relates to Problem 5.1.6,
Problem 5.1.7, Problem 5.1.8). Consider the following matrix M , which is a covering
array for the configuration C = (2, 2, 2):

M> =

0 1 0 1
0 0 1 1

 . (5.9)

We will add a row vector of length four to the matrix, whose entries are the first four
indeterminates of the multivariate polynomial ring P = Q [x1, x2, x3, x4, a, b], leading to
the matrix

Mext =

0 1 0 1
0 0 1 1
x1 x2 x3 x4

 . (5.10)

The next step is to derive the coverage equations. We begin by selecting the first and
second row of the matrixMext, the respective row-selector vector is e3,1,2(a, b) =

(
a, b, 0

)
.

All resulting coverage equations for this pair of selected rows hold, since by choice we

56

5.2. Algorithmic Approaches using Algebraic Methods

Algorithm 2 Vertical Extension
procedure Vert-ext(M)

Require: matrix M . rows corresponding to parameters
k ← NumberOfRows(M)
P ← Q [x1, . . . , xk, a, b]
E ← (x1, . . . , xk)>
Mext← HorizontalConcatenation(M,E)
eqall← ∅
for i = 1, 2, . . . , k do

for j = i+ 1, . . . , k do
for τ ∈ {

(
0, 0

)>
,
(
1, 0

)>
,
(
0, 1

)>
,
(
1, 1

)>
} do

eqall← eqall ∪ {coveq(i,j)
τ (Mext)}

end for
end for

end for

SetOfBinaryConditions← Compute binary equations
eqall← eqall ∪ SetOfBinaryConditions
Randomly replace a and b in eqall
Regard polynomials in eqall as elements of a set s over R = Q [x1, . . . , xk]
IR ← ideal < R|s >
GB ← GröbnerBasis(IR)
if GB 6= {1} then

V ← Variety(GB)
Print "Non-empty set of solutions (CAs) found."
return V

else
Print "No solutions found."
return ∅

end if
end procedure

57

5. Algebraic Algorithms for Problems of Covering Arrays

started with a matrix that is already a covering array of strength two for two parameters.
Therefore, we only have to consider row-selection pairs which include the newly added
row. The four coverage equations for the selection of the first and third row are:

x1x2x3x4b
4 + x1x2x3ab

3 + x1x3x4ab
3 + x1x3a

2b2 (5.11a)

x1x2x3x4b
4 + x1x2x3ab

3 − x1x2x3b
4 − x1x2x4b

4 − x1x2ab
3 + x1x2b

4+ (5.11b)

x1x3x4ab
3 − x1x3x4b

4 + x1x3a
2b2 − 2x1x3ab

3 + x1x3b
4 − x1x4ab

3+

x1x4b
4 − x1a

2b2 + 2x1ab
3 − x1b

4 − x2x3x4b
4 − x2x3ab

3 + x2x3b
4+

x2x4b
4 + x2ab

3 − x2b
4 − x3x4ab

3 + x3x4b
4 − x3a

2b2+

2x3ab
3 − x3b

4 + x4ab
3 − x4b

4 + a2b2 − 2ab3 + b4

x1x2x3x4b
4 − x1x2x4ab

3 − x2x3x4ab
3 + x2x4a

2b2 (5.11c)

x1x2x3x4b
4 − x1x2x3b

4 − x1x2x4ab
3 − x1x2x4b

4 + x1x2ab
3 + x1x2b

4− (5.11d)

x1x3x4b
4 + x1x3b

4 + x1x4ab
3 + x1x4b

4 − x1ab
3 − x1b

4−

x2x3x4ab
3 − x2x3x4b

4 + x2x3ab
3 + x2x3b

4 + x2x4a
2b2+

2x2x4ab
3 + x2x4b

4 − x2a
2b2 − 2x2ab

3 − x2b
4 + x3x4ab

3 + x3x4b
4−

x3ab
3 − x3b

4 − x4a
2b2 − 2x4ab

3 − x4b
4 + a2b2 + 2ab3 + b4.

We follow again the random replacement approach for the indeterminates a and b
and substitute the random values into the equations and interpret them as members
of R = Q [x1, x2, x3, x4]. In MAGMA, we compute a Gröbner basis of the respective
ideal and the following computation is returned (where rank refers to the number of
indeterminates in a multivariate polynomial ring):

Ideal of Polynomial ring of rank 4 over Rational Field,Lexicographical Order, Variables:
x1, x2, x3, x4, Dimension 0, Groebner basis:

(x1 − x4, x2 + x4 − 1, x3 + x4 − 1, x2
4 − x4). (5.12)

The variety consists of the following two points,

(<0, 1, 1, 0> , <1, 0, 0, 1>),

meaning that there are two possible ways two extend to a covering array with three
binary parameters of strength two while using the given matrix M as a ’seed’.

58

5.2. Algorithmic Approaches using Algebraic Methods

The pseudo-code for the Parameter Extension procedure, that has been used in this
example, is given in Algorithm 3.

Algorithm 3 Parameter Extension
procedure para-ext(M)

Require: covering array M . rows corresponding to parameters
N ← NumberOfColumns(M)
k ← NumberOfRows(M)
P ← Q [x1, . . . , xN , a, b]
E ← (x1, . . . , xN)
Mext← VerticalConcatenation(M,E)
j ← k + 1
eqall← ∅
for i = 1, 2, . . . , k do

for τ ∈ {
(
0, 0

)>
,
(
1, 0

)>
,
(
0, 1

)>
,
(
1, 1

)>
} do

eqall← eqall ∪ {coveq(i,j)
τ (Mext)}

end for
end for

SetOfBinaryConditions← Compute binary equations
eqall← eqall ∪ SetOfBinaryConditions
Randomly replace a and b in eqall
Regard polynomials in eqall as elements of a set s over R = Q [x1, . . . , xN]
IR ← ideal < R|s >
GB ← GröbnerBasis(IR)
if GB 6= {1} then

V ← Variety(GB)
Print "Parameter extension successful."
return V

else
Print "Parameter extension not possible."
return ∅

end if
end procedure

5.2.3 An Algorithmic Approach to the Computational Existence of
Covering Arrays

Given a configuration C = (t, k, v) of a covering array with a chosen value of k (i.e.,
number of parameters), one may “guess” the number of rows N required for a covering

59

5. Algebraic Algorithms for Problems of Covering Arrays

array in the sense of Definition 2.1.1 for C (relates to Problem 5.1.1, Problem 5.1.2,
Problem 5.1.3, Problem 5.1.18). Clearly, in the case CAN(C) ≤ N there is at least one
solution, whereas in the case CAN(C) > N there are no solutions. In the first case, our
algebraic modelling provides the means to actually construct such a matrix. The idea
is detailed in an approach called Guess. There exists a 4 × 2 covering array for the
configuration (2, 2, 2), and assume that we “guess” that there exists a 4× 3 matrix which
forms a covering array for the configuration (2, 3, 2). In contrast to Section 5.2.2, the
Guess approach constructs the complete matrix. While in this example an exhaustive
search based approach is still feasible, this might no longer be the case for a greater
number of parameters or rows. Continuing the example, we will work in

P = Q [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, a, b] ,

while the initialization of the candidate matrix is described in the following MAGMA
code:

1 S:=Rat i ona lF i e ld () ;
P:=PolynomialRing (S , k∗N+2) ;

3 R:=PolynomialRing (S , k∗N) ;
M := ZeroMatrix (P, k ,N) ;

5 f o r i in [1 . . k] do
f o r j in [1 . .N] do

7 M[i] [j] := P . ((i −1)∗N+j) ; // Pi variable is P. i in MAGMA
end f o r ;

9 end f o r ;

MAGMA code for Guess candidate matrix generation.

In the next step, we create all coverage equations and all binary conditions. It follows,
that in the Guess approach, there arise(

k

2

)
· 22 + kN (5.13)

equations in total. In our example, we have 12 coverage equations and 12 binary
conditions, yielding a total of 24 equations. So far, these equations are defined over the
polynomial ring P in 14 variables.

Again, we choose random values for a and b, evaluate the polynomials, and interpret
the resulting polynomials as elements of

R = Q [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12] .

60

5.3. Comparison with Greedy Algorithms

We compute a Gröbner Basis of the respective ideal comprised of the new 24 equations
in MAGMA and the computation returns that the basis consists in 17 polynomials.

The corresponding variety has 48 points, which means we have computed 48 different
3× 4 matrices, those transposes constitute covering arrays in the sense of Definition 2.1.1
of strength two for three binary parameters. With an independent exhaustive search and
simple tuple counting approach, we have verified that the transposes of these 48 matrices
are in fact all 4× 3 matrices, which constitute covering arrays in the sense of Definition
2.1.1 of strength two for three binary parameters.

The pseudo-code for the Guess procedure, that has been used in this example, is
given in Algorithm 4.

5.3 Comparison with Greedy Algorithms

We give some cases where the presented algebraic methodology compares favorably to
the IPOG algorithm, one of the most known greedy algorithms. These cases are merely
used for illustration of the algebraic method’s potential rather than a benchmark.

The NIST tables of covering arrays [65] are a publicly accessible source of covering
arrays for various covering array configurations that have been constructed using the
IPOG-F algorithm.

At [62], a covering array with 6 rows for 9 binary parameters is available. It is possible
to take this covering array and apply the Parameter Extension procedure. A successful
extension of the initially chosen matrix is possible in two ways to a covering array for 10
binary parameters of strength two, while keeping 6 rows. The best covering array for the
configuration (2, 10, 2) provided at the NIST tables is a matrix with 8 rows at [59]. The
two new matrices (in the sense of Definition 2.1.1) are given below:

0 0 1 0 0 0 1 1 1 0
0 1 0 1 1 0 0 0 1 0
1 0 0 1 0 1 0 1 0 0
1 1 1 0 1 1 0 1 1 1
1 1 0 0 0 0 1 0 0 1
0 0 1 1 1 1 1 0 0 1

61

5. Algebraic Algorithms for Problems of Covering Arrays

Algorithm 4 Guess
procedure Guess(k,N)

Require: k ∈ N . k is the number of parameters
Require: N ∈ N . N is the number of columns

A← k ×N matrix over Q [x1, . . . , xkN , a, b] with entries xı
eqall← ∅
for i = 1, 2, . . . , k do

for j = i+ 1, . . . , k do
for τ ∈ {

(
0, 0

)>
,
(
1, 0

)>
,
(
0, 1

)>
,
(
1, 1

)>
} do

eqall← eqall ∪ {coveq(i,j)
τ (A)}

end for
end for

end for

SetOfBinaryConditions← Compute binary equations
eqall← eqall ∪ SetOfBinaryConditions
Randomly replace a and b in eqall
Regard polynomials in eqall as elements of a set s over R = Q [x1, . . . , xkN]
IR ← ideal < R|s >
GB ← GröbnerBasis(IR)
if GB 6= {1} then

V ← Variety(GB)
Print "Non-empty set of solutions (CAs) found."
return V

else
Print "No solutions found."
return ∅

end if
end procedure

0 0 1 0 0 0 1 1 1 1
0 1 0 1 1 0 0 0 1 1
1 0 0 1 0 1 0 1 0 1
1 1 1 0 1 1 0 1 1 0
1 1 0 0 0 0 1 0 0 0
0 0 1 1 1 1 1 0 0 0

Continuing in this direction, we started with a covering array for 16 binary parameters

of strength two and 8 rows available at [60]. This covering array is given in a specialized

62

5.3. Comparison with Greedy Algorithms

format, where the described matrix contains entries which are undefined so as to indicate
that the algorithm determined during its construction that these entries in the matrix
are irrelevant from the standpoint of ensuring the pairwise coverage properties. In a
preprocessing step, we replaced these entries with zeros and denote the resulting matrix
as M̂ . Again, when applying the Parameter Extension procedure to the matrix M̂ ,
yielded twelve possible extensions while keeping 8 rows. The best covering array for the
configuration (2, 17, 2) provided at the NIST tables is a matrix with 10 rows available at
[61].

A table listing the best known sizes of binary covering arrays of strength two is
available at [24].

63

CHAPTER 6
Experimental Design Theory

Applications

In this chapter, we move to the application of combinatorial design structures in applied
computer science, specifically, to a branch of software testing called combinatorial testing.
This rather novel application of these structures fits perfectly into the well-established
understanding that not only do combinatorial design structures have lots of applications
in real-world scenarios, but also that problems in real-world application domains have
given rise to the definition of new combinatorial structures. For a treatment of this rich
and fascinating interplay and exchange we refer to [66].

In Section 6.1, we introduce combinatorial testing and accentuate how covering arrays
and their properties are leveraged to design efficient test sets for software. In Section
6.2, we briefly review some concepts from enumerative combinatorics and use them to
present combinatorial structures, which can be interpreted for event sequence testing as
part of combinatorial event sequence testing.

6.1 Combinatorial Testing

Combinatorial testing is a specialized branch of software testing using abstract models
and providing combinatorial test case generation strategies. Input models for software are
based covering array configurations, where the range of values which in the mathematical

65

6. Experimental Design Theory Applications

formulation are assumed to be in the set1 [v] for some v ∈ N are replaced2 by actual
values specific to the SUT. Dedicated modelling methodologies have been reported in the
literature [112, 7, 113, 52]. For a general treatment of and a list of software which have
successfully been tested with combinatorial testing we refer to [79, 78].

Modern software operates in a complex environment making exhaustive testing
attempts infeasible due to the combinatorial explosion of possible inputs3.

Results from empirical studies investigating what degree of interaction occurs in real
failures in real systems [74, 75, 76, 77, 123, 6, 53] have led to the formulation of the
following hypothesis [78]:

Interaction Rule: Most failures are induced by single factor faults or by the
joint combinatorial effect (interaction) of two factors, with progressively fewer
failures induced by interactions between three or more factors.

The implications for software testing are now immediate [78]:

Failures appear to be caused by interactions of only a few variables, so tests
that cover all such few-variable interactions can be very effective.

Covering arrays provide exactly this mentioned “interactions of only a few variables” and
state-of-the-art covering array generation algorithms and tools have the capabilities to
produce covering arrays that are significantly smaller than the full Cartesian product
space and provide the means to generate such combinatorial test sets.

Given an input model of an SUT, then some parameter value combinations might not
be valid or executable. As a result, constraints are imposed on what kind of parameter
value combinations are valid. Such constraints can either be given in the form of logical
expressions or as a list of forbidden tuples. The notion of constraints given in the form of
a list of forbidden tuples can be algebraically semantically-equivalently captured with the
notion of an interaction-membership function. The notion of constraints is indispensable
for practical applications of combinatorial testing [130, 51, 129, 39, 17, 103].

1Often times MCAs are used instead of covering arrays.
2This replacement results in a relabeling of array entries.
3The word input is to be understood in a generic sense referring to either configuration options of

software, inputs in the literal sense or any other modelled property for the software testing problem at
hand.

66

6.2. Enumerative Combinatorics for Combinatorial Sequence Testing

For certain applications in practice, even more conditions are imposed upon the
structure of the underlying covering arrays [11, 12, 110, 22] and a combinatorial fault-
localization tool has been developed [45].

6.2 Enumerative Combinatorics for Combinatorial
Sequence Testing

In this section, we switch to design structures where the defining notion is based on
nonempty finite sequences over a fixed nonempty finite alphabet those elements are
called events. The constructed combinatorial objects also exhibit characterizing coverage
criteria, but of a different kind: coverage is understood in terms of appearances of all
permutations of t-selections of events, but not necessarily adjacent to each other. A
meta-model is created by following a weight-based selection strategy for the selection of
events. The underlying formalism for the weight-based approach is given by partitions
of positive integers. This way, the modelling methodology is very general and can be
instantiated not only specific to each application, but can be tuned or updates within
one application via an iterative process. The meta-model for event selection is built upon
enumerative combinatorics. Once events have been selected, we impose combinatorial
sequence coverage and the resulting artifacts will be collected in a set of sequences4

We briefly review essential definitions for enumerative combinatorics and partitions
of positive integers in Section 6.2.1. In Section 6.2.3, we consider coverage properties
of sequences, including the notion of a sequence covering array. A meta-model called
weighted t-way sequences is presented in Section 6.2.4.

6.2.1 Enumerative Combinatorics

One of the main problems of enumerative combinatorics is that of enumeration, i.e.,
determining the number of combinatorial configurations described by a finite number of
rules for all possible sizes. The astonishing connection between set theoretic operations on
objects and operations on formal power series has put the notion of generating functions
at the core of enumerative combinatorics.

4One of the capabilities of the meta-model is that the constructed sequences might not have uniform
length, which makes a uniform array/matrix representation impossible.

67

6. Experimental Design Theory Applications

6.2.1 Definition ([37, Definition I.1]). A combinatorial class (abbrv., simply class) is
a finite or denumerable set on which a size function is defined, satisfying the following
conditions:

1. the size of an element is a non-negative integer;

2. the number of elements of any given size is finite.

For a class A, the size of an element α ∈ A is denoted by |α|A (or simply |α| if the
underlying class is clear from the context) and the set of objects in A of size n by An. /

6.2.2 Definition ([37, Definition I.2.]). The counting sequence of a combinatorial class
is the sequence of integers (An)n≥0, where An = |An| is the number of objects in class A
that have size n. /

6.2.3 Definition ([37, Definition I.3.]). Two combinatorial classes A and B are said
to be combinatorially isomorphic, denoted by A ∼= B, iff their counting sequences are
identical. /

6.2.4 Definition ([37, Definition I.4.]). The ordinary generating function (OGF) of a
sequence (An) is the formal power series

A(z) =
∞∑
n=0

Anz
n. (6.1)

The ordinary generating function of a combinatorial class A is the generating function of
the numbers An = |An|. Equivalently, the OGF of class A admits the combinatorial form

A(z) =
∑
α∈A

z|α|. (6.2)

/

6.2.5 Notation ([37, I.1. Symbolic enumeration methods]). For given OGF f(z) =∑
fnz

n, we denote the operation of extracting the coefficient of zn in the formal power
series f(z) with [zn]f(z), i.e.,

[zn]

∑
n≥0

fnz
n

 = fn. (6.3)

/

68

6.2. Enumerative Combinatorics for Combinatorial Sequence Testing

6.2.6 Definition ([37, Definition I.5.]). Let Φ be an m-ary construction that associates
to any collection of classes B(1), . . . ,B(m) a new class

A = Φ
(
B(1), . . . ,B(m)

)
. (6.4)

The construction Φ is admissible iff the counting sequence (An) of A only depends on the
counting sequences (B(1)

n), . . . , (B(m)
n) of B(1), . . . ,B(m). /

6.2.7 Remark ([37, I.1. Symbolic enumeration methods]). For an admissible con-
struction, there exists a well-defined operator Ψ acting on the corresponding ordinary
generating function:

A(z) = Ψ
(
B(1)(z), . . . , B(m)(z)

)
. (6.5)

/

6.2.8 Proposition ([37, I.2. Admissible constructions and specifications]). The classes
of combinatorial sum (disjoint union), Cartesian product, sequence construction (denoted
by SEQ ()) and multiset construction (denoted by MSET ()) are basic constructions in the
specification language for combinatorial structures. /

6.2.9 Theorem ([37, Theorem I.1.]). (Basic admissibility, unlabelled universe) Assume
that B0 = ∅, then the constructions of Cartesian product, sequence and multiset are
admissible. For the associated operators, the following holds:

A = B × C =⇒ A(z) = B(z) · C(z); (6.6a)

A = SEQ (B) =⇒ A(z) = 1
1−B(z) ; (6.6b)

A = MSET (B) =⇒ A(z) =
∏
n≥1

(1− zn)−Bn = exp
(∞∑
k=1

1
k
B(zk)

)
. (6.6c)

/

Proof. We only prove the case of the multiset operator in the only to this Thesis relevant
case of a finite set B (with B0 = ∅ by assumption). The multiset class A = MSET (B) is
definable by

MSET (B) ∼=
∏
β∈B

SEQ ({β}) . (6.7)

Equation (6.7) holds, since any multiset can sorted and subsequently interpreted as a
sequence of repeated elements of B. This relation translates into generating functions

69

6. Experimental Design Theory Applications

via the product and sequence rules and an application of the exp− log transformation,
resulting in:

A(z) =
∏
β∈B

(
1− z|β|

)−1
=
∞∏
n=1

(1− zn)−Bn = exp
(∞∑
k=1

1
k
B(zk)

)
. (6.8)

6.2.10 Proposition ([37, I.3. Integer compositions and partitions]). (Integers, as a
combinatorial class) Let I = N× denote the combinatorial class of all integers at least
one (the summands), and let the size of each integer be its value. Then, the OGF of I is

I(z) =
∑
n≥1

zn = z

1− z , (6.9)

since In = 1, for n ≥ 1, corresponding to the fact that there is exactly one object in I for
each size n ≥ 1. /

6.2.11 Proposition ([37, I.3. Integer compositions and partitions]). For partitions
specified as multisets, the general translation mechanism of Theorem 6.2.9 leads to

P = MSET (I) =⇒ P (z) = exp
(
I(z) + 1

2I(z2) + 1
3I(z3) + · · ·

)
, (6.10)

and we obtain the expression

P (z) =
∞∏
m=1

1
1− zm . (6.11)

The corresponding counting sequence is EIS A000041 [101]. /

The case where the partition itself has to fulfill some properties (e.g., number of parts,
bounds on summands, etc.) can also be dealt with via OGF.

6.2.2 Partitions of positive Integers

We state the definition of a partition of a positive integer and also reuse some notation
from [3]:

6.2.12 Definition ([3]). A partition of a positive integer n is a finite nonincreasing
sequence of positive integers λ1, λ2, . . . , λr such that

∑r
i=1 λi = n. The λi are called the

parts of the partition. The partition function p (n) is the number of partitions of n. The
function plistall (n) returns all possible partitions of n. As the order in which the parts

70

6.2. Enumerative Combinatorics for Combinatorial Sequence Testing

of a partition appear is not relevant, we denote a partition as λ = (λ1, λ2, . . . , λr) =(
λf1
i1
, λf2

i2
, . . . , λ

fρ
iρ

)
. The exponential notation uses pairwise different λij , 1 ≤ j ≤ ρ,

making explicit the number of times a particular integer occurs as a part. The number of
parts occurring in a partition including multiplicities is denoted as |λ| = r =

∑ρ
i=1 fi. /

6.2.13 Example. The sequence (4, 2, 2, 1) is a partition of the positive integer 9. /

6.2.14 Remark ([3]). It follows from Definition 6.2.12 that the order in which the
parts of a partition appear is not relevant. As a result, instead of using the notation
for partitions given in Definition 6.2.12 as λ = (λ1, λ2, . . . , λr), one can employ the
following exponential notation λ =

(
λf1
i1
, λf2

i2
, . . . , λ

fρ
iρ

)
for pairwise different λi. Using the

exponential notation, we have that n =
∑ρ
i=1 fiλi.

/

6.2.3 Combinatorial Sequence Testing and Sequence Covering Arrays

The definition of sequence covering arrays was motivated by an applied testing scenario
where a list of peripherals had to be connected to a computing device, and it was
suspected that the order in which they are connected may give rise to errors when these
peripherals then (try to) cooperate with each other. Since all peripherals had to be
connected for full operational functionality (note that it only makes sense to connect
them once), it follows naturally that in this case permutations were employed for the
abstract modelling. In particular, this implies that in each test sequence, each event
appears exactly once and that the length of each test sequence is constant, and equal to
the total number of events [42, Section 2].

6.2.15 Definition ([80]). A sequence covering array, SCA (N,S, t), is a N × s matrix,
where the entries are from a finite set S of s symbols, such that every t-way permutation of
symbols from S occurs in at least one row and each row is a permutation of the s symbols.
The t symbols in the permutation are not required to be adjacent. That is, for every
t-way arrangement of symbols x1, x2, · · · , xt, the regular expression . ∗ x1. ∗ x2 · · · . ∗ xt.∗
matches at least one row in the array. /

6.2.4 Weighted t-way Sequences

The concept of combinatorial weighted t-way sequences can be seen as an extension of the
notion of sequence covering arrays. This more general definition is motivated both from

71

6. Experimental Design Theory Applications

the theory and application sides. Combinatorial methods based on permutations have
been applied to develop methodologies for event sequence testing in a branch of software
testing called combinatorial testing [78], leading to the notion of SCAs. In general event
models for the real world, neither the appearance of all events nor the total lengths of the
considered sequences can be fixed a priori in general, making a permutation model not
universally applicable. For example, if a sequence codifies occurring weather phenomena
per day, the multiple appearance of an event (e.g., rain) interleaved with another event
(e.g., sunshine) is a correct sequence. Also, in modelling team sport movement strategies,
only a subset of all possible moves will appear in a single attack (sequence). Furthermore,
in the modern pervasive computing landscape, the appearance, disappearance, and re-
appearance of devices – not only in a classical client-server model, but also in the growing
IoT landscape – is of utmost importance with regard to functionality and is also at the
core of the computing services provided today regarding security and security testing [42,
Section 1].

To address these issues, the notion of weighted t-way sequences was developed. The
integration of a weight-based modelling (based on partitions of positive integers) increases
the expressiveness of the generated sequences considerably, while on the application
side gives the power to incorporate current knowledge into the weights and therefore
to tune or optimize generated test sequences for the application at hand. Moreover,
the weight-based approach immediately gives reasons why certain sequences will be
considered and provides a genuine justification of resulting sequence lengths as well as
possible multiple occurrences of the same event[42, Section 1].

6.2.16 Definition ([42, Definition 4.1]). We denote the positive integers with N. Let
E be a nonempty finite set those elements are called events, and let ω be a positive
integer-valued weight function defined on the set of events; i.e. ω : E −→ N. Let S be the
set of all nonempty finite sequences over the alphabet E. Based on the weight function
ω defined on the set of events E, we define a weight function for elements in S, which
will, par abus de notation, also be denoted with ω. For µ ∈ N and given nonempty finite
sequence s = (s1, s2, . . . , sµ) = (si)i=1,...,µ ∈ S of length µ, we define the weight of s as

ω(s) =
µ∑
i=1

w(si). (6.12)

/

72

6.2. Enumerative Combinatorics for Combinatorial Sequence Testing

For given R ∈ N, let ∅ 6= B ⊆ {1, 2, . . . , R}, and for β ∈ B consider the set plistall (β).
Let λ =

(
λf1
i1
, λf2

i2
, . . . , λ

fρ
iρ

)
∈ plistall (β) and ζ ∈ {1, . . . , ρ}. The part λiζ now encodes a

specific weight, and we consider all events which get assigned this weight; i.e., we consider
the set5

ω−1[{λiζ}] ⊆ E . (6.13)

Starting from the partition λ, we now build a Cartesian product of sets of events that
correspond to the appearing parts in λ via their weight as shown in (6.13):

Cλ = ω−1[{λi1}]× · · · × ω−1[{λi1}]︸ ︷︷ ︸
f1 times

× · · · × ω−1[{λiρ}]× · · · × ω−1[{λiρ}]︸ ︷︷ ︸
fρ times

. (6.14)

For t ∈ N and C ∈ Cλ, artificially consider all of the elements appearing in the coordinates
of C as pairwise different and forming a set T (C); then it is possible to generate6 a SCA
S(T (C), t) of strength t for the alphabet T (C) in the sense of Definition 6.2.15. Let t ∈ N
be the desired t-way coverage, then the complete weighted t-way sequences test set is
defined as7:

T =
⋃
β∈B

⋃
λ∈plistall(β)

⋃
C∈Cλ

S(T (C), t) ⊆ S. (6.15)

6.2.17 Remark ([42, Remark 4.2]). Instead of considering all possible partitions of a
positive integer, one might only consider a proper nonempty subset. For example, one
could restrict the parts that are allowed to appear in the partitions to make sure that
the set defined in relation (6.13) is nonempty; or allow only parts which are greater or
smaller than a given threshold, or restrict the number of appearing summands. Any such
condition can be interpreted as a condition on the events that are allowed to appear in
the sequence (via their weight) or on the length of the sequence. /

6.2.18 Proposition ([42, Proposition 4.3]). We list below some observations about the
generated test set T in relation (6.15), which immediately follow from the construction
process described above:

5Let A,B be sets and f : A −→ B a function. For C ⊆ B, we denote the preimage of the subset C of
B under the function f by f−1 [C] = {a ∈ A : f(a) ∈ C}.

6In this Thesis, we regard the problem of practical generation of a SCA for given parameters t ∈ N
and alphabet size µ ∈ N as solved and are not concerned with its efficiency.

7In relation (6.15) the appearing SCAs are interpreted as sets of sequences derived from the rows of
the SCAs, where the respective matrices are regarded as sets of rows.

73

6. Experimental Design Theory Applications

• The set B determines those cumulative weights of sequences, which will be considered
in the test sequence generation process, and thus makes it possible to limit the testing
to exactly those cumulative weights of interest.

• Individual test sequence lengths might be nonuniform across all partitions. This is
due to the fact that various partitions may have a differing number of parts.

• Events may appear multiple times in test sequences, or not at all. Multiple appear-
ances happen, when a partition contains a part multiple times. However, from the
point of generated t-SCAs, these events are regarded as different.

• The determination of the weight function ω and the set B is application domain
specific and can be adapted in an iterative testing setting.

• The construction given above also works if the value t for the t-way coverage is
nonuniform and depends on β, λ and Cλ.

/

6.2.19 Remark ([42, Remark 4.4]). It is possible to extend this approach, mutatis
mutandis, to a setting where the weight of an event e ∈ E depends on the considered
partition and cumulative weight, and where the weight of a finite nonempty sequence
s ∈ S is a positive-valued function of the elements of the sequence and not necessarily
their sum. These extensions might make it easier to tune the weights in an application
domain, however, the connection to partitions of positive integers is then lost. /

The concept of weighted t-way sequences has been used to derive test cases for security
testing of the TLS protocol [43].

74

CHAPTER 7
Conclusion

In this Thesis, we used algebraic techniques to reason about certain design structures, in
particular covering arrays. This was possible due to a connection between the statement
of appearance “at least once” and zeros of multivariate polynomials. An algebraic
enforcement of coverage conditions means the expression of the existence of a certain
tuple as a zero of a multivariate polynomial.

Based on this building block, algebraic descriptions of designs and design problems
concerning their characterization were successfully treated.

A routine application of symbolic computation techniques, including the theory of
Gröbner bases, resulted in the formulation of algorithmic approaches for the algebraic
treatment of certain constructive design problems. Points in corresponding nonempty
varieties were used to instantiate matrices, which when interpreted as designs structures
exhibited all required coverage properties.

We discussed applications of experimental design theory to the field of software testing.
The defining notion of coverage regarding tuples in covering arrays and permutations
of events in sequence covering arrays can be leveraged with great success in these real-
world domains. Furthermore, a weight-based modelling approach called weighted t-way
sequences built upon integer partitions and sequence covering arrays was presented, which
offers additional meta-modelling capabilities.

Finally, the presented results in this Thesis confirm and extend the versatility of
combinatorial structures inside and outside of discrete mathematics.

75

77

Glossary and Notation

M> denotes, for a matrix M , its transpose.

N denotes the natural numbers, including zero.

N× denotes the natural numbers excluding zero. This notation applies in this sense to
any set.

K̄ denotes, for a field K, the algebraic closure of K.

|S| denotes, for a set S, its cardinality.

[n] is for n ∈ N by definition equal to the set {0, 1, . . . , n− 1}.

P (S) denotes, for a set S, its power set.

Ik is for k ∈ N by definition equal to the set {(i, j) | 1 ≤ i < j ≤ k} ⊆ [k]× [k].

radical (I) denotes, for an ideal I, its radical.

79

Bibliography

[1] Bestoun S. Ahmed and Kamal Z. Zamli. “A variable strength interaction test suites
generation strategy using Particle Swarm Optimization”. In: Journal of Systems
and Software 84.12 (2011), pp. 2171–2185. issn: 0164-1212. doi: https://doi.
org/10.1016/j.jss.2011.06.004. url: http://www.sciencedirect.
com/science/article/pii/S0164121211001464.

[2] Bestoun S. Ahmed, Kamal Z. Zamli, and Chee Peng Lim. “Application of Particle
Swarm Optimization to uniform and variable strength covering array construction”.
In: Applied Soft Computing 12.4 (2012), pp. 1330–1347. issn: 1568-4946. doi:
https://doi.org/10.1016/j.asoc.2011.11.029. url: http://www.
sciencedirect.com/science/article/pii/S1568494611004716.

[3] George E Andrews. The theory of partitions. 2. Cambridge university press, 1998.

[4] Satoshi Aoki and Akimichi Takemura. “Design and analysis of fractional factorial
experiments from the viewpoint of computational algebraic statistics”. In: Journal
of Statistical Theory and Practice 6.1 (2012), pp. 147–161.

[5] T. Becker and V. Weispfenning. Gröbner bases. A Computational Approach to
Commutative Algebra. Vol. 141. Graduate Studies in Mathematics. New York:
Springer-Verlag, 1993.

[6] K. Z. Bell and M. A. Vouk. “On effectiveness of pairwise methodology for testing
network-centric software”. In: 2005 International Conference on Information and
Communication Technology. Dec. 2005, pp. 221–235. doi: 10.1109/ITICT.
2005.1609626.

[7] M. N. Borazjany et al. “An Input Space Modeling Methodology for Combinatorial
Testing”. In: 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation Workshops. Mar. 2013, pp. 372–381. doi: 10.1109/
ICSTW.2013.48.

81

https://doi.org/https://doi.org/10.1016/j.jss.2011.06.004
https://doi.org/https://doi.org/10.1016/j.jss.2011.06.004
http://www.sciencedirect.com/science/article/pii/S0164121211001464
http://www.sciencedirect.com/science/article/pii/S0164121211001464
https://doi.org/https://doi.org/10.1016/j.asoc.2011.11.029
http://www.sciencedirect.com/science/article/pii/S1568494611004716
http://www.sciencedirect.com/science/article/pii/S1568494611004716
https://doi.org/10.1109/ITICT.2005.1609626
https://doi.org/10.1109/ITICT.2005.1609626
https://doi.org/10.1109/ICSTW.2013.48
https://doi.org/10.1109/ICSTW.2013.48

[8] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma algebra system.
I. The user language”. In: J. Symbolic Comput. 24.3-4 (1997). Computational
algebra and number theory (London, 1993), pp. 235–265.

[9] Renée C. Bryce and Charles J. Colbourn. “A density-based greedy algorithm
for higher strength covering arrays”. In: Software Testing, Verification and Re-
liability 19.1 (2009), pp. 37–53. doi: 10.1002/stvr.393. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.393. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.393.

[10] Renée C Bryce and Charles J Colbourn. “One-test-at-a-time heuristic search for
interaction test suites”. In: Proceedings of the 9th annual conference on Genetic
and evolutionary computation. ACM. 2007, pp. 1082–1089.

[11] Renée C. Bryce and Charles J. Colbourn. “Prioritized interaction testing for
pair-wise coverage with seeding and constraints”. In: Information and Software
Technology 48.10 (2006). Advances in Model-based Testing, pp. 960–970. issn:
0950-5849. doi: https://doi.org/10.1016/j.infsof.2006.03.
004. url: http://www.sciencedirect.com/science/article/pii/
S0950584906000401.

[12] Renée C. Bryce and Charles J. Colbourn. “Test Prioritization for Pairwise In-
teraction Coverage”. In: Proceedings of the 1st International Workshop on Ad-
vances in Model-based Testing. A-MOST ’05. St. Louis, Missouri: ACM, 2005,
pp. 1–7. isbn: 1-59593-115-5. doi: 10.1145/1082983.1083275. url: http:
//doi.acm.org/10.1145/1082983.1083275.

[13] Renée C. Bryce and Charles J. Colbourn. “The density algorithm for pairwise
interaction testing”. In: Software Testing, Verification and Reliability 17.3 (2007),
pp. 159–182. doi: 10.1002/stvr.365. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/stvr.365. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/stvr.365.

[14] Renée C. Bryce, Charles J. Colbourn, and Myra B. Cohen. “A Framework of
Greedy Methods for Constructing Interaction Test Suites”. In: Proceedings of the
27th International Conference on Software Engineering. ICSE ’05. St. Louis, MO,
USA: ACM, 2005, pp. 146–155. isbn: 1-58113-963-2. doi: 10.1145/1062455.
1062495. url: http://doi.acm.org/10.1145/1062455.1062495.

82

https://doi.org/10.1002/stvr.393
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.393
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.393
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.393
https://doi.org/https://doi.org/10.1016/j.infsof.2006.03.004
https://doi.org/https://doi.org/10.1016/j.infsof.2006.03.004
http://www.sciencedirect.com/science/article/pii/S0950584906000401
http://www.sciencedirect.com/science/article/pii/S0950584906000401
https://doi.org/10.1145/1082983.1083275
http://doi.acm.org/10.1145/1082983.1083275
http://doi.acm.org/10.1145/1082983.1083275
https://doi.org/10.1002/stvr.365
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.365
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.365
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.365
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.365
https://doi.org/10.1145/1062455.1062495
https://doi.org/10.1145/1062455.1062495
http://doi.acm.org/10.1145/1062455.1062495

[15] B. Buchberger. “Ein algorithmisches Kriterium für die Lösbarkeit eines alge-
braischen Gleichungssystems”. German. In: Aequationes mathematicae 4.3 (1970),
pp. 374–383.

[16] Bruno Buchberger. “Bruno Buchberger’s PhD thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal”.
In: J. Symb. Comput. 41 (3-4 Mar. 2006), pp. 475–511. issn: 0747-7171. doi:
http://dx.doi.org/10.1016/j.jsc.2005.09.007. url: http:
//dx.doi.org/10.1016/j.jsc.2005.09.007.

[17] Andrea Calvagna and Angelo Gargantini. “A Logic-Based Approach to Combinato-
rial Testing with Constraints”. In: Tests and Proofs. Ed. by Bernhard Beckert and
Reiner Hähnle. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 66–83.
isbn: 978-3-540-79124-9.

[18] M. A. Chateauneuf, Charles J. Colbourn, and D. L. Kreher. “Covering Arrays of
Strength Three”. In: Designs, Codes and Cryptography 16.3 (May 1999), pp. 235–
242. issn: 1573-7586. doi: 10.1023/A:1008379710317. url: https://doi.
org/10.1023/A:1008379710317.

[19] X. Chen et al. “Variable Strength Interaction Testing with an Ant Colony System
Approach”. In: 2009 16th Asia-Pacific Software Engineering Conference. Dec.
2009, pp. 160–167. doi: 10.1109/APSEC.2009.18.

[20] D. M. Cohen et al. “The AETG system: an approach to testing based on combina-
torial design”. In: IEEE Transactions on Software Engineering 23.7 (July 1997),
pp. 437–444. issn: 0098-5589. doi: 10.1109/32.605761.

[21] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. “Augmenting simulated annealing
to build interaction test suites”. In: 14th International Symposium on Software
Reliability Engineering, 2003. ISSRE 2003. Nov. 2003, pp. 394–405. doi: 10.
1109/ISSRE.2003.1251061.

[22] Myra B Cohen, Aduri Pavan, and NV Vinodchandran. “Budgeted testing through
an algorithmic lens”. In: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM. 2016, pp. 948–951.

[23] P.M. Cohn. Algebra. Algebra Bd. 1. Wiley, 1974. isbn: 9780471164319. url:
https://books.google.at/books?id=RH0dAQAAMAAJ.

83

https://doi.org/http://dx.doi.org/10.1016/j.jsc.2005.09.007
http://dx.doi.org/10.1016/j.jsc.2005.09.007
http://dx.doi.org/10.1016/j.jsc.2005.09.007
https://doi.org/10.1023/A:1008379710317
https://doi.org/10.1023/A:1008379710317
https://doi.org/10.1023/A:1008379710317
https://doi.org/10.1109/APSEC.2009.18
https://doi.org/10.1109/32.605761
https://doi.org/10.1109/ISSRE.2003.1251061
https://doi.org/10.1109/ISSRE.2003.1251061
https://books.google.at/books?id=RH0dAQAAMAAJ

[24] Charles Colbourn. Table for CAN(2,k,2) for k up to 20000. http://www.
public.asu.edu/~ccolbou/src/tabby/2-2-ca.html. [Online; accessed
December 31, 2015].

[25] Charles J. Colbourn. “Augmentation of Covering Arrays of Strength Two”. In:
Graphs and Combinatorics 31.6 (Nov. 2015), pp. 2137–2147. issn: 1435-5914.
doi: 10.1007/s00373-014-1519-9. url: https://doi.org/10.1007/
s00373-014-1519-9.

[26] Charles J. Colbourn. “Combinatorial Aspects of Covering Arrays”. In: Le Mathe-
matiche LIX.I-II (2004), pp. 125–172.

[27] Charles J. Colbourn. “Covering arrays, augmentation, and quilting arrays”. In:
Discrete Mathematics, Algorithms and Applications 06.03 (2014), p. 1450034.
doi: 10.1142/S1793830914500347. eprint: https://doi.org/10.1142/
S1793830914500347. url: https://doi.org/10.1142/S1793830914500347.

[28] Charles J. Colbourn and Jeffrey H. Dinitz. Handbook of Combinatorial Designs,
Second Edition (Discrete Mathematics and Its Applications). Chapman & Hal-
l/CRC, 2006. isbn: 1584885068.

[29] Charles J. Colbourn and Peyman Nayeri. “Randomized Post-optimization for
t-Restrictions”. In: Information Theory, Combinatorics, and Search Theory: In
Memory of Rudolf Ahlswede. Ed. by Harout Aydinian, Ferdinando Cicalese, and
Christian Deppe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 597–
608. isbn: 978-3-642-36899-8. doi: 10.1007/978-3-642-36899-8_30. url:
https://doi.org/10.1007/978-3-642-36899-8_30.

[30] David A Cox, John B Little, and Donal O’Shea. Ideals, varieties, and algorithms
: an introduction to computational algebraic geometry and commutative algebra.
eng. 2. ed. Undergraduate texts in mathematics. New York, NY [u.a.]: Springer,
1997. isbn: 0387946802.

[31] Jacek Czerwonka. “Pairwise testing in the real world: Practical extensions to
test-case scenarios”. In: (2008).

[32] Peter Danziger et al. “Covering arrays avoiding forbidden edges”. In: Theoreti-
cal Computer Science 410.52 (2009). Combinatorial Optimization and Applica-
tions, pp. 5403–5414. issn: 0304-3975. doi: https://doi.org/10.1016/j.
tcs.2009.07.057. url: http://www.sciencedirect.com/science/
article/pii/S030439750900454X.

84

http://www.public.asu.edu/~ccolbou/src/tabby/2-2-ca.html
http://www.public.asu.edu/~ccolbou/src/tabby/2-2-ca.html
https://doi.org/10.1007/s00373-014-1519-9
https://doi.org/10.1007/s00373-014-1519-9
https://doi.org/10.1007/s00373-014-1519-9
https://doi.org/10.1142/S1793830914500347
https://doi.org/10.1142/S1793830914500347
https://doi.org/10.1142/S1793830914500347
https://doi.org/10.1142/S1793830914500347
https://doi.org/10.1007/978-3-642-36899-8_30
https://doi.org/10.1007/978-3-642-36899-8_30
https://doi.org/https://doi.org/10.1016/j.tcs.2009.07.057
https://doi.org/https://doi.org/10.1016/j.tcs.2009.07.057
http://www.sciencedirect.com/science/article/pii/S030439750900454X
http://www.sciencedirect.com/science/article/pii/S030439750900454X

[33] Persi Diaconis, Bernd Sturmfels, et al. “Algebraic algorithms for sampling from
conditional distributions”. In: The Annals of statistics 26.1 (1998), pp. 363–397.

[34] Christian Eder and Jean-Charles Faugère. “A survey on signature-based Gröbner
basis computations”. Anglais. Apr. 2014. url: http://hal.inria.fr/hal-
00974810.

[35] Jean Charles Faugère. “A New Efficient Algorithm for Computing GrÖBner
Bases Without Reduction to Zero (F5)”. In: Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation. ISSAC ’02. Lille, France:
ACM, 2002, pp. 75–83. isbn: 1-58113-484-3. doi: 10.1145/780506.780516.
url: http://doi.acm.org/10.1145/780506.780516.

[36] Jean-Charles Faugere. “A new efficient algorithm for computing Gröbner bases (F
4)”. In: Journal of pure and applied algebra 139.1 (1999), pp. 61–88.

[37] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge
University Press, 2009. doi: 10.1017/CBO9780511801655.

[38] Michael Forbes et al. “Refining the in-parameter-order strategy for constructing
covering arrays”. In: Journal of Research of the National Institute of Standards
and Technology 113.5 (2008), p. 287.

[39] Angelo Gargantini et al. “Validation of Constraints Among Configuration Param-
eters Using Search-Based Combinatorial Interaction Testing”. In: Search Based
Software Engineering. Ed. by Federica Sarro and Kalyanmoy Deb. Cham: Springer
International Publishing, 2016, pp. 49–63. isbn: 978-3-319-47106-8.

[43] B. Garn et al. “Weighted Combinatorial Sequence Testing for the TLS Protocol”.
In: 2019 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). to appear. 2019.

[44] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. “Evaluating im-
provements to a meta-heuristic search for constrained interaction testing”. In:
Empirical Software Engineering 16.1 (Feb. 2011), pp. 61–102. issn: 1573-7616.
doi: 10.1007/s10664-010-9135-7. url: https://doi.org/10.1007/
s10664-010-9135-7.

[45] L. S. Ghandehari et al. “BEN: A combinatorial testing-based fault localization tool”.
In: 2015 IEEE Eighth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). Apr. 2015, pp. 1–4. doi: 10.1109/ICSTW.
2015.7107446.

85

http://hal.inria.fr/hal-00974810
http://hal.inria.fr/hal-00974810
https://doi.org/10.1145/780506.780516
http://doi.acm.org/10.1145/780506.780516
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1007/s10664-010-9135-7
https://doi.org/10.1007/s10664-010-9135-7
https://doi.org/10.1007/s10664-010-9135-7
https://doi.org/10.1109/ICSTW.2015.7107446
https://doi.org/10.1109/ICSTW.2015.7107446

[46] S. A. Ghazi and M. A. Ahmed. “Pair-wise test coverage using genetic algorithms”.
In: The 2003 Congress on Evolutionary Computation, 2003. CEC ’03. Vol. 2. Dec.
2003, 1420–1424 Vol.2. doi: 10.1109/CEC.2003.1299837.

[47] Loreto Gonzalez-Hernandez, Nelson Rangel-Valdez, and Jose Torres-Jimenez.
“Construction of Mixed Covering Arrays of Variable Strength Using a Tabu Search
Approach”. In: Combinatorial Optimization and Applications. Ed. by Weili Wu and
Ovidiu Daescu. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 51–64.
isbn: 978-3-642-17458-2.

[48] Loreto Gonzalez-Hernandez and Jose Torres-Jimenez. “MiTS: A New Approach
of Tabu Search for Constructing Mixed Covering Arrays”. In: Advances in Soft
Computing. Ed. by Grigori Sidorov, Arturo Hernández Aguirre, and Carlos Alberto
Reyes García. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 382–393.
isbn: 978-3-642-16773-7.

[49] Loreto Gonzalez-Hernandez, José Torres-Jiménez, and Nelson Rangel-Valdez. “An
Exact Approach to Maximize the Number of Wild Cards in a Covering Array”.
In: Advances in Artificial Intelligence. Ed. by Ildar Batyrshin and Grigori Sidorov.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 210–221. isbn: 978-3-
642-25324-9.

[50] Loreto Gonzalez-Hernandez et al. “A Post-optimization Strategy for Combinatorial
Testing: Test Suite Reduction through the Identification of Wild Cards and Merge
of Rows”. In: Advances in Computational Intelligence. Ed. by Ildar Batyrshin and
Miguel González Mendoza. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 127–138. isbn: 978-3-642-37798-3.

[51] M. Grindal, J. Offutt, and J. Mellin. “Managing Conflicts When Using Combination
Strategies to Test Software”. In: 2007 Australian Software Engineering Conference
(ASWEC’07). Apr. 2007, pp. 255–264. doi: 10.1109/ASWEC.2007.27.

[52] Mats Grindal and Jeff Offutt. “Input Parameter Modeling for Combination Strate-
gies”. In: Proceedings of the 25th Conference on IASTED International Multi-
Conference: Software Engineering. SE’07. Innsbruck, Austria: ACTA Press, 2007,
pp. 255–260. url: http://dl.acm.org/citation.cfm?id=1332044.
1332085.

86

https://doi.org/10.1109/CEC.2003.1299837
https://doi.org/10.1109/ASWEC.2007.27
http://dl.acm.org/citation.cfm?id=1332044.1332085
http://dl.acm.org/citation.cfm?id=1332044.1332085

[53] Mats Grindal, Jeff Offutt, and Sten F. Andler. “Combination testing strategies: a
survey”. In: Software Testing, Verification and Reliability 15.3 (2005), pp. 167–199.
doi: 10.1002/stvr.319. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/stvr.319. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/stvr.319.

[54] Alan Hartman and Leonid Raskin. “Problems and algorithms for covering arrays”.
In: Discrete Mathematics 284.1 (2004). Special Issue in Honour of Curt Lindner on
His 65th Birthday, pp. 149–156. issn: 0012-365X. doi: https://doi.org/10.
1016/j.disc.2003.11.029. url: http://www.sciencedirect.com/
science/article/pii/S0012365X0400130X.

[55] Alan Hartman and Leonid Raskin. “Problems and algorithms for covering arrays”.
In: Discrete Mathematics 284.1 (2004), pp. 149–156.

[56] A.S. Hedayat, N.J.A. Sloane, and J. Stufken. Orthogonal Arrays: Theory and Appli-
cations. Springer Series in Statistics. Springer New York, 2012. isbn: 9781461214786.
url: https://books.google.at/books?id=lQfpBwAAQBAJ.

[57] Brahim Hnich et al. “Constraint Models for the Covering Test Problem”. In:
Constraints 11.2 (July 2006), pp. 199–219. issn: 1572-9354. doi: 10.1007/
s10601-006-7094-9. url: https://doi.org/10.1007/s10601-006-
7094-9.

[58] Gérard Huet. “Confluent Reductions: Abstract Properties and Applications to
Term Rewriting Systems: Abstract Properties and Applications to Term Rewriting
Systems”. In: J. ACM 27.4 (Oct. 1980), pp. 797–821. issn: 0004-5411. doi:
10.1145/322217.322230. url: http://doi.acm.org/10.1145/
322217.322230.

[59] IPOG-F. CA(2,10,2). http://math.nist.gov/coveringarrays/ipof/
cas/t=2/v=2/ca.2.2^10.txt.zip. [Online; accessed December 31, 2015].

[60] IPOG-F. CA(2,16,2). http://math.nist.gov/coveringarrays/ipof/
cas/t=2/v=2/ca.2.2^16.txt.zip. [Online; accessed December 31, 2015].

[61] IPOG-F. CA(2,17,2). http://math.nist.gov/coveringarrays/ipof/
cas/t=2/v=2/ca.2.2^17.txt.zip. [Online; accessed 31-December-2015].

[62] IPOG-F. CA(2,9,2). http://math.nist.gov/coveringarrays/ipof/
cas/t=2/v=2/ca.2.2^9.txt.zip. [Online; accessed December 31, 2015].

87

https://doi.org/10.1002/stvr.319
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.319
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.319
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.319
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.319
https://doi.org/https://doi.org/10.1016/j.disc.2003.11.029
https://doi.org/https://doi.org/10.1016/j.disc.2003.11.029
http://www.sciencedirect.com/science/article/pii/S0012365X0400130X
http://www.sciencedirect.com/science/article/pii/S0012365X0400130X
https://books.google.at/books?id=lQfpBwAAQBAJ
https://doi.org/10.1007/s10601-006-7094-9
https://doi.org/10.1007/s10601-006-7094-9
https://doi.org/10.1007/s10601-006-7094-9
https://doi.org/10.1007/s10601-006-7094-9
https://doi.org/10.1145/322217.322230
http://doi.acm.org/10.1145/322217.322230
http://doi.acm.org/10.1145/322217.322230
http://math.nist.gov/coveringarrays/ipof/cas/t=2/v=2/ca.2.2^10.txt.zip
http://math.nist.gov/coveringarrays/ipof/cas/t=2/v=2/ca.2.2^10.txt.zip
http://math.nist.gov/coveringarrays/ipof/cas/t=2/v=2/ca.2.2^16.txt.zip
http://math.nist.gov/coveringarrays/ipof/cas/t=2/v=2/ca.2.2^16.txt.zip
http://math.nist.gov/coveringarrays/ipof/cas/t=2/v=2/ca.2.2^17.txt.zip
http://math.nist.gov/coveringarrays/ipof/cas/t=2/v=2/ca.2.2^17.txt.zip
http://math.nist.gov/coveringarrays/ipof/cas/t=2/v=2/ca.2.2^9.txt.zip
http://math.nist.gov/coveringarrays/ipof/cas/t=2/v=2/ca.2.2^9.txt.zip

[63] IPOG-F. CA(3,4,2). https://math.nist.gov/coveringarrays/ipof/
cas/t=3/v=2/ca.3.2^4.txt.zip. [Online; accessed February 11, 2019].

[64] IPOG-F. CA(3,7,2). https://math.nist.gov/coveringarrays/ipof/
cas/t=3/v=2/ca.3.2^7.txt.zip. [Online; accessed February 11, 2019].

[65] NIST ITL. Covering Array Tables. http://math.nist.gov/coveringarrays/.
[Online; accessed December 31, 2015].

[66] C J. Colbourn, J H. Dinitz, and D R. Stinson. “Applications of Combinatorial
Designs to Communications, Cryptography, and Networking”. In: Lond Math Soc
Lecture Note Ser 267 (Feb. 1999). doi: 10.1017/CBO9780511721335.004.

[67] Jacek Czerwonka. Available Tools. 2019. url: http://www.pairwise.org/
tools.asp (visited on 02/10/2019).

[68] L. Kampel, B. Garn, and D. E. Simos. “Combinatorial Methods for Modelling
Composed Software Systems”. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). Mar. 2017, pp. 229–238.
doi: 10.1109/ICSTW.2017.43.

[69] Ludwig Kampel, Bernhard Garn, and Dimitris E. Simos. “Covering Arrays via Set
Covers”. In: Electronic Notes in Discrete Mathematics 65 (2018). 7th International
Conference on Algebraic Informatics (CAI 2017): Design Theory Track, pp. 11–16.
issn: 1571-0653. doi: https://doi.org/10.1016/j.endm.2018.02.
014. url: http://www.sciencedirect.com/science/article/pii/
S1571065318300416.

[70] S. K. Khalsa and Y. Labiche. “An Orchestrated Survey of Available Algorithms and
Tools for Combinatorial Testing”. In: 2014 IEEE 25th International Symposium
on Software Reliability Engineering (ISSRE). Vol. 00. Nov. 2014, pp. 323–334.
doi: 10.1109/ISSRE.2014.15. url: doi.ieeecomputersociety.org/
10.1109/ISSRE.2014.15.

[71] Youngil Kim, Dae-Heung Jang, and Christine M. Anderson-Cook. “Selecting
the Best Wild Card Entries in a Covering Array”. In: Quality and Reliability
Engineering International 33.7 (2017), pp. 1615–1627. doi: 10.1002/qre.2129.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.
2129. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
qre.2129.

88

https://math.nist.gov/coveringarrays/ipof/cas/t=3/v=2/ca.3.2^4.txt.zip
https://math.nist.gov/coveringarrays/ipof/cas/t=3/v=2/ca.3.2^4.txt.zip
https://math.nist.gov/coveringarrays/ipof/cas/t=3/v=2/ca.3.2^7.txt.zip
https://math.nist.gov/coveringarrays/ipof/cas/t=3/v=2/ca.3.2^7.txt.zip
http://math.nist.gov/coveringarrays/
https://doi.org/10.1017/CBO9780511721335.004
http://www.pairwise.org/tools.asp
http://www.pairwise.org/tools.asp
https://doi.org/10.1109/ICSTW.2017.43
https://doi.org/https://doi.org/10.1016/j.endm.2018.02.014
https://doi.org/https://doi.org/10.1016/j.endm.2018.02.014
http://www.sciencedirect.com/science/article/pii/S1571065318300416
http://www.sciencedirect.com/science/article/pii/S1571065318300416
https://doi.org/10.1109/ISSRE.2014.15
doi.ieeecomputersociety.org/10.1109/ISSRE.2014.15
doi.ieeecomputersociety.org/10.1109/ISSRE.2014.15
https://doi.org/10.1002/qre.2129
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.2129
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.2129
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.2129
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.2129

[72] Takashi Kitamura et al. “Optimal Test Suite Generation for Modified Condition
Decision Coverage Using SAT Solving”. In: Computer Safety, Reliability, and
Security. Ed. by Barbara Gallina, Amund Skavhaug, and Friedemann Bitsch. Cham:
Springer International Publishing, 2018, pp. 123–138. isbn: 978-3-319-99130-6.

[73] Kristoffer Kleine, Ilias Kotsireas, and Dimitris E. Simos. “Evaluation of Tie-
Breaking and Parameter Ordering for the IPO Family of Algorithms Used in
Covering Array Generation”. In: Combinatorial Algorithms. Ed. by Costas Il-
iopoulos, Hon Wai Leong, and Wing-Kin Sung. Cham: Springer International
Publishing, 2018, pp. 189–200. isbn: 978-3-319-94667-2.

[74] D. R. Kuhn, R. N. Kacker, and Y. Lei. “Estimating t-Way Fault Profile Evo-
lution During Testing”. In: 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC). Vol. 2. June 2016, pp. 596–597. doi:
10.1109/COMPSAC.2016.110.

[75] D. R. Kuhn and V. Okum. “Pseudo-Exhaustive Testing for Software”. In: 2006
30th Annual IEEE/NASA Software Engineering Workshop. Apr. 2006, pp. 153–158.
doi: 10.1109/SEW.2006.26.

[76] D. R. Kuhn and M. J. Reilly. “An investigation of the applicability of design of
experiments to software testing”. In: 27th Annual NASA Goddard/IEEE Software
Engineering Workshop, 2002. Proceedings. Dec. 2002, pp. 91–95. doi: 10.1109/
SEW.2002.1199454.

[77] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. “Software fault interactions and
implications for software testing”. In: IEEE Transactions on Software Engineering
30.6 (June 2004), pp. 418–421. issn: 0098-5589. doi: 10.1109/TSE.2004.24.

[78] D Richard Kuhn, Raghu N Kacker, and Yu Lei. Introduction to combinatorial
testing. CRC press, 2013.

[79] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei. SP 800-142. Practical Combina-
torial Testing. Tech. rep. Gaithersburg, MD, United States, 2010.

[80] D Richard Kuhn et al. “Combinatorial methods for event sequence testing”. In:
Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth Interna-
tional Conference on. IEEE. 2012, pp. 601–609.

89

https://doi.org/10.1109/COMPSAC.2016.110
https://doi.org/10.1109/SEW.2006.26
https://doi.org/10.1109/SEW.2002.1199454
https://doi.org/10.1109/SEW.2002.1199454
https://doi.org/10.1109/TSE.2004.24

[81] D.R. Kuhn and M.J. Reilly. “An investigation of the applicability of design
of experiments to software testing”. In: Software Engineering Workshop, 2002.
Proceedings. 27th Annual NASA Goddard/IEEE. Dec. 2002, pp. 91–95. doi: 10.
1109/SEW.2002.1199454.

[82] Victor Kuliamin and Alexander Petukhov. “Covering Arrays Generation Methods
Survey”. In: Leveraging Applications of Formal Methods, Verification, and Valida-
tion. Ed. by Tiziana Margaria and Bernhard Steffen. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 382–396. isbn: 978-3-642-16561-0.

[83] Jim Lawrence et al. “A survey of binary covering arrays”. In: the electronic journal
of combinatorics 18.1 (2011), p. 84.

[84] Yu Lei and K-C Tai. “In-parameter-order: A test generation strategy for pairwise
testing”. In: High-Assurance Systems Engineering Symposium, 1998. Proceedings.
Third IEEE International. IEEE. 1998, pp. 254–261.

[85] Yu Lei et al. “IPOG: A general strategy for t-way software testing”. In: Engineering
of Computer-Based Systems, 2007. ECBS’07. 14th Annual IEEE International
Conference and Workshops on the. IEEE. 2007, pp. 549–556.

[86] Yu Lei et al. “IPOG/IPOG-D: efficient test generation for multi-way combinatorial
testing”. In: Software Testing, Verification and Reliability 18.3 (2008), pp. 125–148.
doi: 10.1002/stvr.381. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/stvr.381. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/stvr.381.

[87] X. Li et al. “Refining a Randomized Post-optimization Method for Covering
Arrays”. In: 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation Workshops. Mar. 2014, pp. 143–152. doi: 10.1109/
ICSTW.2014.16.

[88] Jason R. Lobb et al. “Cover starters for covering arrays of strength two”. In: Dis-
crete Mathematics 312.5 (2012), pp. 943–956. issn: 0012-365X. doi: https:
//doi.org/10.1016/j.disc.2011.10.026. url: http://www.
sciencedirect.com/science/article/pii/S0012365X11004833.

[89] Feifei Ma and Jian Zhang. “Finding Orthogonal Arrays Using Satisfiability Check-
ers and Symmetry Breaking Constraints”. In: PRICAI 2008: Trends in Artificial
Intelligence. Ed. by Tu-Bao Ho and Zhi-Hua Zhou. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 247–259. isbn: 978-3-540-89197-0.

90

https://doi.org/10.1109/SEW.2002.1199454
https://doi.org/10.1109/SEW.2002.1199454
https://doi.org/10.1002/stvr.381
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.381
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.381
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.381
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.381
https://doi.org/10.1109/ICSTW.2014.16
https://doi.org/10.1109/ICSTW.2014.16
https://doi.org/https://doi.org/10.1016/j.disc.2011.10.026
https://doi.org/https://doi.org/10.1016/j.disc.2011.10.026
http://www.sciencedirect.com/science/article/pii/S0012365X11004833
http://www.sciencedirect.com/science/article/pii/S0012365X11004833

[90] J. D. McCaffrey. “An Empirical Study of Pairwise Test Set Generation Using a
Genetic Algorithm”. In: Information Technology: New Generations, Third Inter-
national Conference on(ITNG). Vol. 00. Apr. 2010, pp. 992–997. doi: 10.1109/
ITNG.2010.93. url: doi.ieeecomputersociety.org/10.1109/ITNG.
2010.93.

[91] J. D. McCaffrey. “Generation of Pairwise Test Sets Using a Genetic Algorithm”.
In: 2009 33rd Annual IEEE International Computer Software and Applications
Conference. Vol. 1. July 2009, pp. 626–631. doi: 10.1109/COMPSAC.2009.91.

[92] J. D. McCaffrey. “Generation of pairwise test sets using a simulated bee colony algo-
rithm”. In: 2009 IEEE International Conference on Information Reuse Integration.
Aug. 2009, pp. 115–119. doi: 10.1109/IRI.2009.5211598.

[93] Karen Meagher and Brett Stevens. “Covering arrays on graphs”. In: Journal of
Combinatorial Theory, Series B 95.1 (2005), pp. 134–151. issn: 0095-8956. doi:
https://doi.org/10.1016/j.jctb.2005.03.005. url: http://www.
sciencedirect.com/science/article/pii/S0095895605000419.

[94] Karen Meagher and Brett Stevens. “Group construction of covering arrays”.
In: Journal of Combinatorial Designs 13.1 (2005), pp. 70–77. doi: 10.1002/
jcd.20035. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/jcd.20035. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/jcd.20035.

[95] Teo Mora and Lorenzo Robbiano. “The Gröbner fan of an ideal”. In: Journal
of Symbolic Computation 6.2 (1988), pp. 183–208. issn: 0747-7171. doi: https:
//doi.org/10.1016/S0747-7171(88)80042-7. url: http://www.
sciencedirect.com/science/article/pii/S0747717188800427.

[96] Lucia Moura, Sebastian Raaphorst, and Brett Stevens. “The Lovász Local Lemma
and Variable Strength Covering Arrays”. In: Electronic Notes in Discrete Math-
ematics 65 (2018). 7th International Conference on Algebraic Informatics (CAI
2017): Design Theory Track, pp. 43–49. issn: 1571-0653. doi: https://doi.
org/10.1016/j.endm.2018.02.019. url: http://www.sciencedirect.
com/science/article/pii/S1571065318300465.

[97] Peyman Nayeri, Charles J. Colbourn, and Goran Konjevod. “Randomized post-
optimization of covering arrays”. In: European Journal of Combinatorics 34.1
(2013). Combinatorics and Stringology, pp. 91–103. issn: 0195-6698. doi: https:

91

https://doi.org/10.1109/ITNG.2010.93
https://doi.org/10.1109/ITNG.2010.93
doi.ieeecomputersociety.org/10.1109/ITNG.2010.93
doi.ieeecomputersociety.org/10.1109/ITNG.2010.93
https://doi.org/10.1109/COMPSAC.2009.91
https://doi.org/10.1109/IRI.2009.5211598
https://doi.org/https://doi.org/10.1016/j.jctb.2005.03.005
http://www.sciencedirect.com/science/article/pii/S0095895605000419
http://www.sciencedirect.com/science/article/pii/S0095895605000419
https://doi.org/10.1002/jcd.20035
https://doi.org/10.1002/jcd.20035
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcd.20035
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcd.20035
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcd.20035
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcd.20035
https://doi.org/https://doi.org/10.1016/S0747-7171(88)80042-7
https://doi.org/https://doi.org/10.1016/S0747-7171(88)80042-7
http://www.sciencedirect.com/science/article/pii/S0747717188800427
http://www.sciencedirect.com/science/article/pii/S0747717188800427
https://doi.org/https://doi.org/10.1016/j.endm.2018.02.019
https://doi.org/https://doi.org/10.1016/j.endm.2018.02.019
http://www.sciencedirect.com/science/article/pii/S1571065318300465
http://www.sciencedirect.com/science/article/pii/S1571065318300465
https://doi.org/https://doi.org/10.1016/j.ejc.2012.07.017
https://doi.org/https://doi.org/10.1016/j.ejc.2012.07.017

/ / doi . org / 10 . 1016 / j . ejc . 2012 . 07 . 017. url: http : / / www .
sciencedirect.com/science/article/pii/S0195669812001345.

[98] Changhai Nie and Hareton Leung. “A survey of combinatorial testing”. In: ACM
Computing Surveys (CSUR) 43.2 (2011), p. 11.

[99] C. Nie et al. “Search Based Combinatorial Testing”. In: 2012 19th Asia-Pacific
Software Engineering Conference. Vol. 1. Dec. 2012, pp. 778–783. doi: 10.1109/
APSEC.2012.16.

[100] Kari J. Nurmela. “Upper bounds for covering arrays by tabu search”. In: Discrete
Applied Mathematics 138.1 (2004). Optimal Discrete Structures and Algorithms,
pp. 143–152. issn: 0166-218X. doi: https://doi.org/10.1016/S0166-
218X(03)00291-9. url: http://www.sciencedirect.com/science/
article/pii/S0166218X03002919.

[101] OEIS Foundation Inc. (2019). The On-Line Encyclopedia of Integer Sequences.
https://oeis.org/A000041. [Online; accessed February 9, 2019].

[102] Jose Carlos Perez-Torres and Jose Torres-Jimenez. “A graph-based postoptimiza-
tion approach for covering arrays”. In: Quality and Reliability Engineering Inter-
national 33.8 (2017), pp. 2171–2180. doi: 10.1002/qre.2176. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/qre.2176. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.2176.

[103] J. Petke. “Constraints: The Future of Combinatorial Interaction Testing”. In: 2015
IEEE/ACM 8th International Workshop on Search-Based Software Testing. May
2015, pp. 17–18. doi: 10.1109/SBST.2015.11.

[104] Giovanni Pistone, Eva Riccomagno, and Henry P Wynn. Algebraic statistics:
Computational commutative algebra in statistics. CRC Press, 2000.

[105] Giovanni Pistone and Henry P Wynn. “Generalised confounding with Gröbner
bases”. In: Biometrika 83.3 (1996), pp. 653–666.

[106] Lorenzo Robbiano. “On the theory of graded structures”. In: Journal of Symbolic
Computation 2.2 (1986), pp. 139–170. issn: 0747-7171. doi: https://doi.org/
10.1016/S0747-7171(86)80019-0. url: http://www.sciencedirect.
com/science/article/pii/S0747717186800190.

[107] Lorenzo Robbiano. “Term orderings on the polynomial ring”. In: EUROCAL ’85.
Ed. by Bob F. Caviness. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985,
pp. 513–517. isbn: 978-3-540-39685-7.

92

https://doi.org/https://doi.org/10.1016/j.ejc.2012.07.017
https://doi.org/https://doi.org/10.1016/j.ejc.2012.07.017
http://www.sciencedirect.com/science/article/pii/S0195669812001345
http://www.sciencedirect.com/science/article/pii/S0195669812001345
https://doi.org/10.1109/APSEC.2012.16
https://doi.org/10.1109/APSEC.2012.16
https://doi.org/https://doi.org/10.1016/S0166-218X(03)00291-9
https://doi.org/https://doi.org/10.1016/S0166-218X(03)00291-9
http://www.sciencedirect.com/science/article/pii/S0166218X03002919
http://www.sciencedirect.com/science/article/pii/S0166218X03002919
https://oeis.org/A000041
https://doi.org/10.1002/qre.2176
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.2176
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qre.2176
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.2176
https://doi.org/10.1109/SBST.2015.11
https://doi.org/https://doi.org/10.1016/S0747-7171(86)80019-0
https://doi.org/https://doi.org/10.1016/S0747-7171(86)80019-0
http://www.sciencedirect.com/science/article/pii/S0747717186800190
http://www.sciencedirect.com/science/article/pii/S0747717186800190

[108] Arturo Rodriguez-Cristerna and Jose Torres-Jimenez. “A Simulated Annealing
with Variable Neighborhood Search Approach to Construct Mixed Covering
Arrays”. In: Electronic Notes in Discrete Mathematics 39 (2012). EURO Mini
Conference, pp. 249–256. issn: 1571-0653. doi: https://doi.org/10.1016/j.
endm.2012.10.033. url: http://www.sciencedirect.com/science/
article/pii/S1571065312000340.

[109] K. Sarkar and C. Colbourn. “Upper Bounds on the Size of Covering Arrays”.
In: SIAM Journal on Discrete Mathematics 31.2 (2017), pp. 1277–1293. doi:
10.1137/16M1067767. eprint: https://doi.org/10.1137/16M1067767.
url: https://doi.org/10.1137/16M1067767.

[110] Kaushik Sarkar et al. “Partial Covering Arrays: Algorithms and Asymptotics”.
In: Combinatorial Algorithms. Ed. by Veli Mäkinen, Simon J. Puglisi, and Leena
Salmela. Cham: Springer International Publishing, 2016, pp. 437–448. isbn: 978-
3-319-44543-4.

[111] Kaushik Sarkar et al. “Partial Covering Arrays: Algorithms and Asymptotics”. In:
Theory of Computing Systems 62.6 (Aug. 2018), pp. 1470–1489. issn: 1433-0490.
doi: 10.1007/s00224-017-9782-9. url: https://doi.org/10.1007/
s00224-017-9782-9.

[112] I. Segall, R. Tzoref-Brill, and A. Zlotnick. “Common Patterns in Combinatorial
Models”. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation. Apr. 2012, pp. 624–629. doi: 10.1109/ICST.2012.
150.

[113] I. Segall, A. Zlotnick, and R. Tzoref-Brill. “Simplified Modeling of Combinatorial
Test Spaces”. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation(ICST). Vol. 00. Apr. 2012, pp. 573–579. doi: 10.
1109/ICST.2012.143. url: doi.ieeecomputersociety.org/10.1109/
ICST.2012.143.

[114] Toshiaki Shiba, Tatsuhiro Tsuchiya, and Tohru Kikuno. “Using artificial life
techniques to generate test cases for combinatorial testing”. In: IEEE. 2004,
pp. 72–77.

[115] N. J. A. Sloane. “Covering arrays and intersecting codes”. In: Journal of Com-
binatorial Designs 1.1 (1993), pp. 51–63. doi: 10.1002/jcd.3180010106.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcd.

93

https://doi.org/https://doi.org/10.1016/j.endm.2012.10.033
https://doi.org/https://doi.org/10.1016/j.endm.2012.10.033
http://www.sciencedirect.com/science/article/pii/S1571065312000340
http://www.sciencedirect.com/science/article/pii/S1571065312000340
https://doi.org/10.1137/16M1067767
https://doi.org/10.1137/16M1067767
https://doi.org/10.1137/16M1067767
https://doi.org/10.1007/s00224-017-9782-9
https://doi.org/10.1007/s00224-017-9782-9
https://doi.org/10.1007/s00224-017-9782-9
https://doi.org/10.1109/ICST.2012.150
https://doi.org/10.1109/ICST.2012.150
https://doi.org/10.1109/ICST.2012.143
https://doi.org/10.1109/ICST.2012.143
doi.ieeecomputersociety.org/10.1109/ICST.2012.143
doi.ieeecomputersociety.org/10.1109/ICST.2012.143
https://doi.org/10.1002/jcd.3180010106
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcd.3180010106
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcd.3180010106

3180010106. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/jcd.3180010106.

[116] Brett Stevens, Lucia Moura, and Eric Mendelsohn. “Lower Bounds for Transversal
Covers”. In: Designs, Codes and Cryptography 15.3 (Dec. 1998), pp. 279–299. issn:
1573-7586. doi: 10.1023/A:1008329410829. url: https://doi.org/10.
1023/A:1008329410829.

[117] J. Torres-Jimenez and I. Izquierdo-Marquez. “Survey of Covering Arrays”. In:
2013 15th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing. Sept. 2013, pp. 20–27. doi: 10.1109/SYNASC.2013.10.

[118] Jose Torres-Jimenez and Arturo Rodriguez-Cristerna. “Metaheuristic post-optimization
of the NIST repository of covering arrays”. In: CAAI Transactions on Intelligence
Technology 2.1 (2017), pp. 31–38. issn: 2468-2322. doi: https://doi.org/10.
1016/j.trit.2016.12.006. url: http://www.sciencedirect.com/
science/article/pii/S2468232216300312.

[119] Jose Torres-Jimenez and Eduardo Rodriguez-Tello. “New bounds for binary cov-
ering arrays using simulated annealing”. In: Information Sciences 185.1 (2012),
pp. 137–152. issn: 0020-0255. doi: https://doi.org/10.1016/j.ins.
2011 . 09 . 020. url: http : / / www . sciencedirect . com / science /
article/pii/S0020025511004774.

[120] Wolfgang Trinks. “Über B. Buchbergers verfahren, systeme algebraischer gleichun-
gen zu lösen”. In: Journal of Number Theory 10.4 (1978), pp. 475–488. issn:
0022-314X. doi: https://doi.org/10.1016/0022-314X(78)90019-
7. url: http://www.sciencedirect.com/science/article/pii/
0022314X78900197.

[121] Georgios Tzanakis et al. “Constructing new covering arrays from LFSR se-
quences over finite fields”. In: Discrete Mathematics 339.3 (2016), pp. 1158–
1171. issn: 0012-365X. doi: https://doi.org/10.1016/j.disc.2015.10.
040. url: http://www.sciencedirect.com/science/article/pii/
S0012365X15003945.

[122] Robert A. Walker and Charles J. Colbourn. “Tabu search for covering arrays
using permutation vectors”. In: Journal of Statistical Planning and Inference 139.1
(2009). Special Issue on Metaheuristics, Combinatorial Optimization and Design of
Experiments, pp. 69–80. issn: 0378-3758. doi: https://doi.org/10.1016/j.

94

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcd.3180010106
https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcd.3180010106
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcd.3180010106
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcd.3180010106
https://doi.org/10.1023/A:1008329410829
https://doi.org/10.1023/A:1008329410829
https://doi.org/10.1023/A:1008329410829
https://doi.org/10.1109/SYNASC.2013.10
https://doi.org/https://doi.org/10.1016/j.trit.2016.12.006
https://doi.org/https://doi.org/10.1016/j.trit.2016.12.006
http://www.sciencedirect.com/science/article/pii/S2468232216300312
http://www.sciencedirect.com/science/article/pii/S2468232216300312
https://doi.org/https://doi.org/10.1016/j.ins.2011.09.020
https://doi.org/https://doi.org/10.1016/j.ins.2011.09.020
http://www.sciencedirect.com/science/article/pii/S0020025511004774
http://www.sciencedirect.com/science/article/pii/S0020025511004774
https://doi.org/https://doi.org/10.1016/0022-314X(78)90019-7
https://doi.org/https://doi.org/10.1016/0022-314X(78)90019-7
http://www.sciencedirect.com/science/article/pii/0022314X78900197
http://www.sciencedirect.com/science/article/pii/0022314X78900197
https://doi.org/https://doi.org/10.1016/j.disc.2015.10.040
https://doi.org/https://doi.org/10.1016/j.disc.2015.10.040
http://www.sciencedirect.com/science/article/pii/S0012365X15003945
http://www.sciencedirect.com/science/article/pii/S0012365X15003945
https://doi.org/https://doi.org/10.1016/j.jspi.2008.05.020
https://doi.org/https://doi.org/10.1016/j.jspi.2008.05.020

jspi.2008.05.020. url: http://www.sciencedirect.com/science/
article/pii/S0378375808002310.

[123] DOLORES R. WALLACE and D. RICHARD KUHN. “FAILURE MODES IN
MEDICAL DEVICE SOFTWARE: AN ANALYSIS OF 15 YEARS OF RECALL
DATA”. In: International Journal of Reliability, Quality and Safety Engineering
08.04 (2001), pp. 351–371. doi: 10.1142/S021853930100058X. eprint: https:
//doi.org/10.1142/S021853930100058X. url: https://doi.org/10.
1142/S021853930100058X.

[124] Volker Weispfennig. “Constructing Universal Groebner Bases”. In: Proceedings
of the 5th International Conference on Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes. AAECC-5. London, UK, UK: Springer-Verlag, 1989,
pp. 408–417. isbn: 3-540-51082-6. url: http://dl.acm.org/citation.
cfm?id=646024.676396.

[125] Alan W. Williams and Robert L. Probert. “Formulation of the Interaction Test
Coverage Problem as an Integer Program”. In: Testing of Communicating Systems
XIV: Application to Internet Technologies and Services. Ed. by Ina Schieferdecker,
Hartmut König, and Adam Wolisz. Boston, MA: Springer US, 2002, pp. 283–298.
isbn: 978-0-387-35497-2. doi: 10.1007/978-0-387-35497-2_21. url:
https://doi.org/10.1007/978-0-387-35497-2_21.

[126] F. Winkler. Polynomial Algorithms in Computer Algebra. 1996.

[127] A. Yamada et al. “Greedy combinatorial test case generation using unsatisfiable
cores”. In: 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). Sept. 2016, pp. 614–624.

[128] A. Yamada et al. “Optimization of Combinatorial Testing by Incremental SAT
Solving”. In: 2015 IEEE 8th International Conference on Software Testing, Verifi-
cation and Validation (ICST). Apr. 2015, pp. 1–10. doi: 10.1109/ICST.2015.
7102599.

[129] L. Yu et al. “An Efficient Algorithm for Constraint Handling in Combinatorial
Test Generation”. In: 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation. Mar. 2013, pp. 242–251. doi: 10.1109/
ICST.2013.35.

95

https://doi.org/https://doi.org/10.1016/j.jspi.2008.05.020
https://doi.org/https://doi.org/10.1016/j.jspi.2008.05.020
http://www.sciencedirect.com/science/article/pii/S0378375808002310
http://www.sciencedirect.com/science/article/pii/S0378375808002310
https://doi.org/10.1142/S021853930100058X
https://doi.org/10.1142/S021853930100058X
https://doi.org/10.1142/S021853930100058X
https://doi.org/10.1142/S021853930100058X
https://doi.org/10.1142/S021853930100058X
http://dl.acm.org/citation.cfm?id=646024.676396
http://dl.acm.org/citation.cfm?id=646024.676396
https://doi.org/10.1007/978-0-387-35497-2_21
https://doi.org/10.1007/978-0-387-35497-2_21
https://doi.org/10.1109/ICST.2015.7102599
https://doi.org/10.1109/ICST.2015.7102599
https://doi.org/10.1109/ICST.2013.35
https://doi.org/10.1109/ICST.2013.35

[130] L. Yu et al. “Constraint handling in combinatorial test generation using forbidden
tuples”. In: 2015 IEEE Eighth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). Apr. 2015, pp. 1–9. doi: 10.
1109/ICSTW.2015.7107441.

[131] Ruyue Yuan, Zoe Koch, and Anant Godbole. “Covering array bounds using
analytical techniques”. In: arXiv preprint arXiv:1405.2844 (2014).

[132] Jian Zhang. “Automatic Symmetry Breaking Method Combined with SAT”. In:
Proceedings of the 2001 ACM Symposium on Applied Computing. SAC ’01. Las
Vegas, Nevada, USA: ACM, 2001, pp. 17–21. isbn: 1-58113-287-5. doi: 10.1145/
372202.372206. url: http://doi.acm.org/10.1145/372202.372206.

[133] Jian Zhang, Zhiqiang Zhang, and Feifei Ma. Automatic generation of combinatorial
test data. Springer, 2014.

[134] Y. Zhao et al. “Cascade: A Test Generation Tool for Combinatorial Testing”. In:
2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation Workshops. Mar. 2013, pp. 267–270. doi: 10.1109/ICSTW.2013.37.

96

https://doi.org/10.1109/ICSTW.2015.7107441
https://doi.org/10.1109/ICSTW.2015.7107441
https://doi.org/10.1145/372202.372206
https://doi.org/10.1145/372202.372206
http://doi.acm.org/10.1145/372202.372206
https://doi.org/10.1109/ICSTW.2013.37

	Acknowledgements
	Kurzfassung
	Abstract
	Publications arisen from this Thesis
	List of Figures
	List of Algorithms
	Introduction
	Motivation and Challenges
	Structure of this Thesis

	Discrete Structures
	Primary Structures
	Alternative Formulations and Auxiliary Structures
	Alternative Definitions
	Auxiliary Structures

	Construction Approaches
	Mathematical Construction Methods
	One-Test-at-a-Time
	In Parameter Order Family
	Evolutionary Computation and Metaheuristics
	Approaches based on Formal Logic
	Approaches based on SAT and Constraint Programming
	Approaches based on Integer Programming and Set Cover Solvers

	Post-Optimization of Covering Arrays

	Polynomial System Solving and Gröbner Bases
	Reduction Relations
	Polynomial Reduction
	Computation of Gröbner Bases
	Polynomial System Solving

	Applications of Computer Algebra to Design Theory
	Algebraic Distinguishers for multiple existentially-quantified Combinatorial Designs
	Algebraic Tuple Modelling with Coverage Equations
	Membership Equations for covering Tuples in CAs
	Combined Models

	Algebraic Characterizations for specific Design Structures
	Partial Coverage Systems
	Covering Arrays
	Membership Constraints
	Combined Models

	Constructive Design Theory with Polynomial System Solving
	Candidate Matrices
	Types of Equations
	Binary Conditions
	Coverage-equations
	Membership-equations

	Solving the Systems: Treating the Parameters
	Constructing Combinatorial Designs with Algebraic Methods
	Partial Coverage Systems
	Covering Arrays
	Membership Constraints
	Combined Models

	Algebraic Algorithms for Problems of Covering Arrays
	Problems for Covering Arrays
	Algorithmic Approaches using Algebraic Methods
	An Algorithmic Approach to the Vertical Extension Problem
	An Algorithmic Approach to the Parameter Extension Problem
	An Algorithmic Approach to the Computational Existence of Covering Arrays

	Comparison with Greedy Algorithms

	Experimental Design Theory Applications
	Combinatorial Testing
	Enumerative Combinatorics for Combinatorial Sequence Testing
	Enumerative Combinatorics
	Partitions of positive Integers
	Combinatorial Sequence Testing and Sequence Covering Arrays
	Weighted t-way Sequences

	Conclusion
	Glossary and Notation
	Bibliography

