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Abstract

Particle therapy is an innovative and highly promising option to provide cancer treatments.
In particle therapy protons or carbon ions are accelerated and redirected to one of several
treatment rooms that all share the single accelerator. Each treatment starts with some
specific preparations such as immobilization and positioning of the patient. Then the
irradiation using the particle beam takes place. Afterwards, some additional imaging
needs to be done before the patient can leave and the treatment room becomes available for
a next patient. Ideally, one aims to find a schedule where the particle beam can be directly
switched from one treatment room to next without significant breaks. Accomplishing
this goal is far from trivial and requires elaborate scheduling techniques.

We study the midterm planning problem of such a particle therapy treatment center,
which consists of scheduling therapies over the next few months. Therapies involve 8 to
35 daily treatments (DTs) that need to be provided on subsequent days. There are various
constraints determining the succession of the therapies’ DTs including allowed starting
days and minimum and maximum numbers of days between subsequent DTs. Next to
assigning DTs to days also detailed schedules for each of these days have to be provided.
For their execution DTs require several resources for a specified duration. Among those
resources are the treatment rooms that are typically required for the whole DT and the
particle beam which is needed only during the irradiation. Resources are available for a
regular and an extended service time. The objective is to find a schedule for all DTs that
minimizes the use of extended service time as well as the therapies’ finishing days.

Since initial investigations soon showed that solving this problem with exact techniques
is clearly out of reach, we focus on heuristic and metaheuristic techniques. We propose a
constructive heuristic that first assigns DTs therapy-wise to days and afterwards creates
schedules for the individual days. Based on this constructive heuristic we provide an
iterated greedy (IG) metaheuristic that is able to substantially improve upon the already
reasonable results of our greedy heuristic. This initially simple metaheuristic is then
improved further in several steps. We first revise the IG’s main operators and incorporate a
new powerful local search method. Afterwards, an advanced surrogate model is developed
to further improve the assignment of DTs to days. In the last stage of extensions we
consider the important additional aspect that the DTs belonging to the same therapy
should be planned roughly at the same time. In the conducted computational study we
show that each of these extensions results in a significant improvement of the approach.
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Next we focus in more detail on the isolated scheduling of DTs at single days. In the
considered more abstract problem we are given a set of jobs with similar characteristics
as DTs. Due to time windows only a subset of the jobs can typically be feasibly scheduled.
The objective is to maximize the total prize associated with each of the scheduled jobs.
This prize-collecting aspect reflects the need of delaying less critical DTs to later days if
for the considered day the facility’s capacity is reached.

We study for this problem the application of decision diagrams (DDs). Relatively
compact relaxed and restricted DDs are employed that represent discrete relaxations for
the problem and encode heuristic solutions, respectively. The prize-collecting aspect of
the problem at hand has not been studied in this form before and provides new interesting
challenges. We investigate different methods for compiling relaxed and restricted DDs for
our sequencing problem. We start by adapting the two proposed compilation approaches
in the literature and are, to the best of our knowledge, the first who directly compare them
experimentally. These traditional compilation methods have, however, the disadvantage
that they can cause for our problem major redundancies in the DDs. For this reason, we
propose a novel construction scheme for relaxed DDs inspired by A∗ search that provides
more flexibility. In comparison to the two traditional approaches we can compile for our
problem in shorter time substantially smaller DDs that yield stronger bounds. We show
further how the information already contained in a previously compiled relaxed DD can
be exploited during the construction of restricted DDs. With our novel approaches we
are in many cases able to construct a higher quality relaxed DD and restricted DD in less
than half of the time than compiling both with conventional approaches. The general
approach applied here appears to be also promising for problems in other applications
domains.

We give further an overview of developed solution approaches for two additional opti-
mization problems. One is a strip packing variant that is solved using a logic-based
Benders decomposition. The other is a resource-constrained project scheduling problem
that requires scheduling in a high temporal resolution. A so-called time-bucket relaxation
of the problem is iteratively refined in the suggested solution approach.



Kurzfassung

Partikeltherapie ist eine innovative und höchst vielversprechende Option zur Krebsbe-
handlung. In der Partikeltherapie werden Protonen und Kohlenstoffionen beschleunigt
und in einen von mehreren Behandlungsräumen geleitet, die sich den Teilchenbeschleuni-
ger teilen. Jede Behandlung startet mit mehreren spezifischen Vorbereitungen, wie die
Immobilisierung und die Positionierung des Patienten. Danach findet die Bestrahlung
mithilfe des Partikelstrahles statt. Anschließend werden noch zusätzliche Bildgebungs-
verfahren durchgeführt bevor der Patient den Behandlungsraum verlässt und dieser für
den nächsten Patienten bereit ist. Idealerweise wird ein Zeitplan gesucht bei welchen der
Partikelstrahl direkt von einem Behandlungsraum zum nächsten geleitet werden kann
ohne das signifikante Stehzeiten entstehen. Dieses Ziel zu erreichen ist nicht trivial und
erfordert wohldurchdachte Planungstechniken.

Wir untersuchen das mittelfristige Planungsproblem von solch einem Zentrum für Par-
tikeltherapie, welches aus dem Planen von Therapien für die nächsten Monate besteht.
Therapien umfassen 8 bis 35 Behandlungen (Daily Treatments (DTs)), die an aufeinan-
der folgenden Tagen stattfinden müssen. Es gibt verschiedene Einschränkungen, welche
die Aufeinanderfolge der DTs von Therapien bestimmen. Zu diesen gehören erlaubte
Starttage und Minimal- und Maximalanzahlen von Tagen zwischen zwei DTs. Neben
der Zuweisung von DTs zu Tagen muss auch ein detaillierter Zeitplan für jeden dieser
Tage gefunden werden. Für die Ausführung eines DTs werden mehrere Ressourcen für
vorgegebene Zeitspannen benötigt. Zu diesen Ressourcen gehören die Behandlungsräume,
die üblicherweise während des gesamten DTs benötigt werden, und der Partikelstrahl,
welcher nur für die eigentliche Bestrahlung verwendet wird. Ressourcen sind während
regulärer und erweiterter Dienstzeiten verfügbar. Das Ziel ist es einen Zeitplan für alle
DTs zu finden, der die verwendete erweiterte Dienstzeit und das Ende aller Therapien
minimiert.

Unsere ersten Untersuchungen zeigten, dass das exakte Lösen dieses Problems in ak-
zeptabler Laufzeit in der Praxis nicht möglich ist. Wir setzen deshalb auf heuristische
und metaheuristische Techniken. Wir präsentieren eine konstruktive Heuristik, die zuerst
DTs therapieweise den Tagen zuweist und anschließend Zeitpläne für die einzelnen Tage
erstellt. Aufbauend auf dieser Konstruktionsheuristik erstellen wir eine erste Iterated
Greedy (IG) Metaheuristik, welcher es möglich ist die bereits plausiblen Lösungen der
Konstruktionsheuristik erheblich zu verbessern. Diese anfänglich einfache Metaheuristik
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wird in mehreren Schritten verbessert. Zuerst überarbeiten wir die zentralen Bestandteile
des IGs und führen eine neue leistungsstarke lokale Suchmethode ein. Anschließend
wird ein vertiefendes Ersatzmodell entwickelt, um die Zuteilung von DTs auf Tage zu
verbessern. In der letzten Ausbaustufe betrachten wir einen wichtigen zusätzlichen Aspekt
bei dem DTs derselben Therapie zu ähnlichen Zeiten stattfinden sollen. In den durch-
geführten Experimenten zeigte sich, dass jede dieser Erweiterungen zu einer signifikant
Leistungssteigerung des Ansatzes führt.

In weiterer Folge konzentrieren wir uns konkreter auf das isolierte planen von DTs an
einzelnen Tagen. In diesem allgemeiner gehaltenen Problem ist eine Menge von Aufträgen
mit Charakteristiken ähnlich zu jenen der DTs gegeben. Aufgrund von Zeitfenstern ist es
im Allgemeinen nur möglich eine Teilmenge der Aufträge zu planen. Das Optimierungsziel
ist es die Summe der Preise, die den geplanten Aufträgen zugeteilt sind, zu maximieren.
Dieser preissammelnde Optimierungsaspekt reflektiert die Notwendigkeit weniger kritische
DTs auf spätere Tage zu verschieben, falls an einem betrachtenden Tag die Kapazität
des Zentrums bereits erreicht ist.

Wir untersuchen für dieses Problem den Einsatz von Entscheidungsdiagrammen (Deci-
sion Diagrams (DDs)). Dabei werden relativ kompakte relaxierte und eingeschränkte
DDs eingesetzt. Diese stellen diskrete Relaxierungen für das Problem dar bzw. kodieren
heuristische Lösungen. Der preissammelnde Optimierungsaspekt unseres Problems wurde
in dieser Form noch nicht betrachtet und bietet neue interessante Herausforderungen. Wir
entwickeln mehrere Methoden zur Erstellung von relaxierten und eingeschränkten DDs
für unser Sequenzproblem. Zuerst adaptieren wir die zwei in der Literatur vorgeschlage-
nen Ansätze und sind, nach bestem Wissen, die Ersten die diese direkt experimentell
vergleichen. Diese herkömmlichen Erstellungsmethoden von DDs haben bei unserem
Problem den Nachteil, dass diese nicht zu vernachlässigende Redundanzen in den DDs
erzeugen können. Aus diesem Grund schlagen wir eine neuartige, von der A∗ Suche
inspirierte, Konstruktionsmethodik vor, die mehr Flexibilität bietet. Im Vergleich zu
den herkömmlichen Ansätzen kann diese Methode für unser Problem in kürzerer Zeit
wesentlich kleinere DDs erzeugen, die zudem stärkere Schranken liefern. Zusätzlich zeigen
wir wie die Information, welche bereits in zuvor erstellten relaxierten DDs steckt, in
der Konstruktion von eingeschränkten DDs ausgenutzt werden kann. Mit unseren neuen
Ansätzen können wir in vielen Fällen qualitativ höhere relaxierte und eingeschränkte
DDs in weniger als der Hälfte der Zeit erstellen, die für die Erzeugung beider DDs mit
den herkömmlichen Methoden benötigt wird.

Weiterführend geben wir einen Überblick über Lösungsmethoden für zwei zusätzliche
Optimierungsprobleme. Eines ist eine Variante des Streifenpackproblems, die mithilfe einer
Logik-basierten Benders-Zerlegung gelöst wird. Das andere ist ein Terminplanungsproblem,
das eine besonders feine Zeitauflösung benötigt. Eine Zeitintervallrelaxierung für das
Problem wird in dem vorgeschlagenen Lösungsansatz iterativ verfeinert.
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CHAPTER 1
Introduction

The number of new cancer cases in 2012 amounted to about 14.1 million worldwide (not
including skin cancer other than melanoma). In the same year cancer caused about 14.6%
of all human deaths [109], making it one of the ten most common causes of death [115].
Furthermore, these numbers are increasing rapidly. Already in 2018 estimations reckon
to be 18.1 million new cancer cases and 9.6 million cancer deaths [17]. According to
projections the number of new cancer cases will reach 22.2 million by 2030 [16]. Conse-
quently, a serious amount of research and investments has been contributed to provide
and develop treatments. A widely applied treatment option is radiotherapy. Usually
linear accelerators (LINACs) are used to provide treatment in conventional external beam
therapy (electron or photon therapy). More recently the option to treat tumors with
particle beams (like protons or carbon ions) has shown to be promising. Compared to
conventional radiotherapy, this modern approach allows to reduce the radiation exposure
to adjacent healthy tissue substantially. Nevertheless, also the investment costs to build
such centers are considerably higher than for traditional centers. It is therefore particu-
larly important to utilize available resources in particle therapy centers as efficiently as
possible in order to maximize the benefits patients receive over time.

In typical photon and electron radiotherapy it is common that a single LINAC serves a
dedicated room exclusively. In contrast to LINACs, particle beams are produced by either
cyclotrons or synchrotrons which serve two to five treatment rooms alternatingly. We
consider here more specifically the radiotherapy treatment center MedAustron1 located
in Wiener Neustadt, Austria. This emerging facility is currently one of the most modern
of its kind. In Wiener Neustadt proton and carbon ion beams are being produced by a
synchrotron serving three treatment rooms, each with different capabilities.

The treatment rooms are occupied for some time before and after an actual irradiation
of a patient. These surrounding tasks involve the immobilization and positioning of the

1http://www.medaustron.at/
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1. Introduction

patient, additional imaging and the time required for the patient to leave the treatment
room. To avoid undesirable idle times on the beam as far as possible the treatment
rooms are used in parallel. As the duration of the tasks executed in the context of the
performed irradiations vary, a carefully arranged schedule has to be found. Moreover,
several side-constraints and resource dependencies need to be respected. Accomplishing
this goal is far from trivial and requires elaborate scheduling techniques.

In the first part of this thesis we consider the midterm planning problem of such a particle
therapy treatment center, in which an effective plan has to be found for performing a
larger number of therapies over the next few months. Therapies will typically involve a
sequence of 8 to 35 daily treatments (DTs) provided on more or less subsequent days. One
DT corresponds to the above mentioned tasks surrounding and including an irradiation
of a patient. There are various constraints that determine possible starting days and
the frequency for the therapies’ DTs. Among others, the therapies’ first DT has to
be performed either on Mondays or Tuesdays and after that there should be provided
typically between four and five DTs per week. Next to assigning DTs to days also detailed
starting times on these days have to be determined in order to obtain a valid solution.
DTs require several resources during specified parts of their execution time. Typically,
one dedicated treatment room is needed for the whole duration of the DT, while the
beam is only necessary for the part that represents the irradiation. Other demanded
resources include patients, radio oncologists and an anesthetist. Moreover, resources
have restrictions in their availability. We consider regular and extended service time
windows, where the use of the latter produces additional cost. Furthermore, the resources’
service time windows can be interrupted by unavailability periods. Our primary goal
is to minimize the use of extended service time, while completing therapies as early as
possible.

We start with formalizing this midterm planning problem in terms of a mixed integer
linear program (MILP) model. Solving this model for problem instances of relevant size
is, however, in practice not possible. Therefore, we focus on heuristic and metaheuristic
techniques. We propose a therapy-wise construction heuristic, which first assigns all
DTs to days and then determines schedules for each day individually. Based on this
constructive heuristic we provide a first iterated greedy (IG) metaheuristic [107] that
clearly outperforms a greedy randomized adaptive search procedure (GRASP) [102] in
our experiments. We further identify several limitations in this first IG preventing the
approach of exhausting its full potential. In a first step we revise the IG’s destruction
and construction operators and replace the so far employed local improvement operator
by a more powerful local search method. Afterwards, we reconsider the first step of our
therapy-wise construction heuristic that assigns all DTs to days. The decisions made
during this step are based on an estimation whether the assigned DTs will result in a
schedule that uses extended service time. So far we employed a simple lower bound which
is replaced by an estimation based on a more advanced surrogate model. Our experiments
indicate that both of these modifications of our initial approach yield substantially better
results. We continue our efforts by considering an extended problem variant that covers
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the additional aspect that starting time variations of DTs belonging to the same therapy
should not exceed specified thresholds. A particular challenge of this new aspect is
that the scheduling of the DTs on each day is not independent anymore. We revise our
IG metaheuristic and adapt its components to the extended problem scenario. In the
computational study we assess the quality of each of our IG’s components by comparing
them to a reference approach. The metaheuristic is advantageous on all considered
benchmark instances.

In the second part of this thesis we study a problem which is motivated by the above
real-world problem but focuses on the scheduling of DTs within days. More specifically,
we are given a set of jobs (DTs) from which a subset needs to be selected and feasibly
scheduled. Each job requires a common resource which is shared among all jobs and one
of multiple secondary resources. While the secondary resource is occupied for the job’s
whole processing time, the common resource is used only for a specified part of the job’s
execution. Moreover, jobs can be performed only within one of their given time windows.
Due to these time windows, it is in general not possible to feasibly schedule all jobs.
Moreover, each job has an associated prize and our objective is to find a feasible schedule
for a subset of jobs that maximizes the total prize. The common resource naturally
corresponds to the particle beam and the secondary resources correlate with the treatment
rooms in our particle therapy scenario. The prize-collecting aspect is motivated in our
real-world setting by the fact that we consider only a single day of limited availability
and it is in general not possible to perform all available DTs. Consequently, we have to
find a schedule for a best subset of DTs. Unscheduled DTs have to be performed at other
days. The job prizes may reflect the urgencies of the respective DTs, or may correspond
to the duration of the treatments.

This job sequencing problem is approached with decision diagrams (DDs) [12]. Essentially,
DDs are rooted directed acyclic multigraphs that compactly represent a problem’s set of
feasible solutions. In about the last decade, DDs have been recognized to be powerful
tools for certain optimization problems. Relaxed DDs and restricted DDs are typically
employed to cope with the often exponential number of solutions. While the former
represent discrete relaxations of the problem and provide dual bounds, the latter encode
subsets of the solutions and allow deriving heuristic solutions and primal bounds. We
investigate different methods for creating relaxed and restricted DDs for our job sequencing
problem. We start by adapting the two main approaches that have been proposed in
the literature for compiling DDs. The first method starts with an empty DD and
constructs the DD layer by layer. The second approach takes a simplistic DD as input
and iteratively performs refinements. To the best of our knowledge, we are the first who
directly compare the two techniques experimentally. The results indicate that depending
on the instance class the second method produces DDs either with similar or stronger
bounds. These traditional compilation methods are strongly layer oriented, which may,
however, cause major redundancies in the DDs for our problem. Therefore, we propose
a novel construction scheme for relaxed DDs inspired by A∗ search that avoids explicit
layers and, thus, provides more flexibility. Our experiments show that compared to the
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traditional approaches DDs can be build faster, they are substantially smaller, and they
provide stronger bounds. Finally, we show how to exploit the information contained in a
previously compiled relaxed DD during the construction of restricted DDs. With our last
two approaches we are often able to construct a relaxed DD and a restricted DD in less
time than the traditional construction of restricted DDs. In doing so, we are not only
able to derive frequently stronger primal bounds, but also provide dual bounds which
represent quality guaranties.

Another considered problem is a resource-constrained project scheduling problem with
a high temporal resolution. The problem is again inspired by scheduling DTs within
days and consists of scheduling a set of activities. There are precedence constraints that
enforce minimum and maximum time lags between activities, which require a set of
resources during their execution. The objective is to minimize the completion time of
the last activity. An important aspect of the problem at hand is the assumption that a
fine-grained time resolution is required. This is motivated by the fact that in particle
therapy the irradiation times are precisely known and idle times on the beam resource
should be avoid as far as possible. In this thesis we give only an overview over the solution
method that is based on aggregating time to obtain a relaxation. The proposed approach
iteratively solves and refines the relaxation and aims at deriving strong heuristic solutions
together with dual bounds. The approach, however, is complete in the sense that it is
also guaranteed to converge to an optimal solution if enough time is given.

Finally, we also address a strip packing problem in which rectangles have to be placed
onto a strip of fixed width and unlimited height. The objective is to minimize the total
used height. We consider further the restriction that all rectangles have to be obtainable
by three stages of so-called guillotine cuts. Strip packing is not directly related with
patient scheduling in particle therapy, but there is still a strong relationship between
strip packing and certain scheduling problems. For the considered strip packing variant
a logic-based Benders decomposition (LBBD) approach is developed that outperforms a
corresponding compact MILP model.

1.1 Structure of the Thesis
We start in the following chapter with an overview of the most central concepts and
techniques applied within this thesis. To this end, we first define optimization problems
in a general way and give an overview of the solution methods that are most relevant
w.r.t. this thesis.

Chapter 3 is dedicated to the midterm planning part of the particle therapy treatment
center MedAustron. After giving the specifics of the treatment center and the scheduling
problem at hand, we review related literature. Then, we give a problem definition and
specify a MILP model for the basic and extended problem variant. To obtain first
solutions we present next a constructive heuristic that also serves as basis for an IG and
a GRASP. The IG is developed further. First we exchange components of the IG in order
to preserve more information between iterations. Afterwards, we describe a surrogate
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model to improve the assignment of DTs to days by the constructive heuristic. Later
we consider the extended problem variant and extend the IG accordingly. Finally, we
describe the generated benchmark instances and explain the results of the conducted
experiments.

Chapter 4 is devoted to the prize-collecting job sequencing problem. We study for this
problem the application of DDs. After revising related literature and giving a problem
definition we provide a recursive model on which the DDs are based. We investigate
in total four different compilation techniques for DDs. The first two are adaptions of
conventional compilation methods proposed in the literature. The next one is conceptually
new and provides more flexibility than the traditional methods. While this construction
approach provides relaxed DDs and dual bounds, the last construction technique produces
restricted DDs yielding heuristic solutions and primal bounds. In the computational study
we consider instances inspired by our therapy scenario as well as another application in
avionics and compare the proposed approaches.

In Chapter 5, the strip packing problem and the resource-constrained project scheduling
problem (RCPSP) are considered. For the strip packing problem the LBBD approach
with two kinds of Benders cuts is proposed and is experimentally compared with a
compact formulation. A matheuristic is provided for the studied RCPSP variant. The
matheuristic’s main building block is the so-called time-bucket relaxation which is
iteratively refined.

Finally, Chapter 6 concludes this thesis with a summary of the key findings and an
outlook on future research directions.

5





CHAPTER 2
Methodology

This chapter gives an overview on the most central concepts and techniques used through-
out this thesis. We start by defining in the next section the considered problems and
briefly discuss why some of them are hard to solve in theory and practice. In the following
three sections, we shift the focus on the methods to tackle these problems. Rather than
giving a overview over the research area’s most prominent approaches, our aim is to survey
the most relevant techniques w.r.t. the presented works. We will consider in Section 2.2
exact methods from which we highlight branch-and-bound, dynamic programming, mixed
integer linear programming, and its special case linear programming. Algorithms that can
be classified as heuristic and metaheuristic procedures are discussed in Section 2.3, from
which we will consider constructive heuristics, local searches, greedy randomized adap-
tive search procedures, iterated greedy algorithms, and variable neighborhood searches.
In Section 2.4 the concept of applying decision diagrams for optimization is motivated.
Moreover, we give an overview of the most promising approaches proposed in this research
area.

2.1 Combinatorial Optimization Problems

The problems considered in the course of this thesis are defined as combinatorial optimiza-
tion problems (COPs). Following the definitions from Papadimitriou and Steiglitz [92] a
COP specifies a set of instances. An instance consists of a pair (S , f) of a finite set of
feasible solutions S and an objective function f : S → R that maps a cost value to each
of the solutions. We search for a solution s∗ ∈ S with either minimal or maximal cost
value, i.e., with either f(s∗) ≤ f(s) or f(s∗) ≥ f(s) for all s ∈ S . Such a solution s∗ is
called globally optimal w.r.t. the given instance. Moreover, searching for a solution that
minimizes objective function f is equivalent to looking for a solution that maximizes −f .
Hence, we can reformulate each COP s.t. its objective function has to be maximized.
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The structure of the solutions in S is typically problem dependent. They range from
subsets or permutations of given elements to vectors of integral values. For most COPs
it is, however, not practicable to explicitly state instances due to their enormous number
of feasible solutions. Instead, problem instances are given implicitly by parameters that
allow to precisely construct every solution in S and their corresponding cost value. An
instance for the classic 0–1 knapsack problem is implicitly specified by a capacity b and
a set I of items each having a weight wi and a value vi. The set of feasible solutions
are all subsets of I with total sum of weights less than or equal to the capacity, i.e.,
S =

{
s ∈ 2I |

∑
i∈swi ≤ b

}
. The cost of a solution is the total value of the items in

the subset, i.e., f(s) =
∑
i∈s vi. The optimization goal is to find a feasible solution that

maximizes the total value of the items, or formally solving max {
∑
i∈s vi | s ∈ S }.

For many relevant COPs finding globally optimal solutions for a given instance is difficult
in practice. From the theoretical viewpoint this difficulty is often rooted in the NP-
hardness of the considered problems. Under the common assumption that NP6=P, correctly
solving an instance of an NP-hard problem requires in the worst case an exponential
number of steps [37]. Approaches to tackle such COPs can be categorized into exact
methods, approximation algorithms, and heuristics. Exact algorithms guarantee to find
a globally optimal solution but may require exponential computation time. In practice,
their applicability is strongly dependent on the specific COP and the size of the considered
instances. In contrast, approximation algorithms terminate after a polynomially bounded
computation time with solutions that are guaranteed to be close to optimal. Heuristic
algorithms run also in polynomial time but focus on finding high quality solutions without
guaranteeing their optimality.

2.2 Exact Methods

The main property of exact methods is that they guarantee to find optimal solutions. For
COPs belonging to the complexity class P exact algorithms can be found that complete
in polynomial time. In many cases optimal solutions can be directly constructed by
exploiting problem properties. The COPs considered in this thesis are, however, NP-hard
which entails that finding an optimal solution takes in the worst case exponentially many
steps. Such COPs are typically approached with enumeration schemes. As a naive
exhaustive enumeration is not viable in practice, the key idea is to exclude as many
solutions from explicit consideration while still ensuring that at least one of the optimal
solutions is found.

We start in the following sections with giving an overview of two basic enumeration
schemes: branch-and-bound and dynamic programming. Afterwards, in Section 2.2.3 the
more advanced mixed integer linear programming is discussed which has shown to be
effective for many NP-hard COPs. Worth mentioning is also constraint programming
that provides compared to mixed integer linear programming a rich set of constraint
types. As constraint programming has not been applied in the presented work we omit
an overview here and refer to the textbook by Rossi et al. [106].

8



2.2. Exact Methods

2.2.1 Branch-and-Bound

A classic exact method for approaching NP-hard COPs is branch-and-bound (see e.g.
[92]). We will discuss the technique here only on a high level, a more detailed example
will be presented in the context of mixed integer linear programming in Section 2.2.3.
The branch-and-bound method is based on recursively partitioning the considered COP’s
set of feasible solutions in two or more disjunct subsets. This process is called branching
and results in a search tree where the root node represents the whole problem and each of
the successor nodes is associated with a decreasingly smaller subproblem. Eventually, the
subproblems become small enough to solve them trivially. Each found solution is a primal
bound on the whole problem’s optimal objective value. The second major component of
a branch-and-bound approach is a bounding algorithm that provides a dual bound on a
considered subproblem’s optimal cost. Whenever such a dual bound is worse than the so
far best primal bound of any subproblem, then the respective subproblem cannot contain
a better solution. Consequently, we exclude the subset from further consideration and
continue with the next one.

For the 0–1 knapsack problem, which has been introduced in the previous section, a
suitable branching rule would partition a set of feasible solutions into a subset where an
item is part of all solutions and another subset consisting of the remaining solutions. An
example for a bounding algorithm is to pack first all items already fixed by the branching
rule and then the remaining items in decreasing value/weight-ratio order. The first item
that cannot be feasibly packed is assigned partially. The resulting total value is an upper
bound on the subproblems objective value [66].

2.2.2 Dynamic Programming

Another classic principle is dynamic programming (DP) [5] that solves a recursive
formulation of the problem and exploits recurring subproblems. The basic components
of such a recursive formulation are states, transitions between states, and transition
costs. The states are typically partitioned into n+ 1 subsets, called stages, where n is the
number of decisions we need to make for obtaining a solution of the COP. The first stage
consists of a single root state with no decisions yet made. A transition applies a decision
at a certain cost on a given state and yields a successor state located in a subsequent
stage. Sequences of feasible transitions starting with the root state ending at a so-called
terminal state located in the last stage describe solutions and the total occurred cost
corresponds to the objective value. For solving a considered COP, we are interested in a
transition sequence from the root state to a terminal state that with optimal cost. An
essential observation is that in the corresponding transition sequence all intermediate
states are reached by optimal cost as well. Consequently, we are not interested in all
feasible transition sequences starting from the root state, but only in those that reach a
state with optimal cost. Solving a DP formulation typically entails storing the optimal
cost for all possible states stage-by-stage in a table. The optimal solution value can then
be found in the last stage. For a more comprehensive introduction into DP we refer to
the textbooks [12, 92, 69].
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To showcase DP we consider again the 0–1 knapsack problem that has been introduced in
Section 2.1. We follow here loosely the corresponding example in [12]. Let {1, . . . , n} be
the set of n items in I. The decision to be made in each transition from stage i to stage
i+ 1 is whether the item i ∈ I is packed or not. The states represent the total weight
of all packed items. In particular, the root state has a total weight of 0. There are two
options for state transitions: one where the item corresponding to the stage is packed
and one where the item is skipped. The resulting state in the former case is obtained by
adding the weight of the packed item to the original state, while in the latter case the
state does not change. If a transition exceeds the available capacity b, then the special
infeasible state 0̂ is obtained. Any further transition from 0̂ yields 0̂ again. The state
transitions are formally defined by a function that takes as input a state s and a decision
xi ∈ {0, 1} whether item i is packed, i.e.,

τ(s, xi) =
{
s+ wixi if s+ wixi ≤ b
0̂ else.

(2.1)

The transition has a cost of vi when item i is packed and 0 otherwise. The 0–1 knapsack
problem can now be formulated by the recursion

Pi(s) = max
{

0, vixi + Pi+1(τ(s, xi)) | i ≤ n, xi ∈ {0, 1}, τ(s, xi) 6= 0̂
}
, (2.2)

where calculating P1(0) solves the considered problem instance.

2.2.3 Mixed Integer Linear Programming

Mixed integer linear programming is one of the most prominent techniques to solve COPs
exactly. In this section mixed integer linear programming and its most important special
cases are defined, and we briefly discuss how they can be solved. We follow here closely
the first and later the eighth chapter of the textbook by Conforti et al. [27].

A mixed integer linear program (MILP) [27, p.2] is of the form

max cTx + hTy
subject to Ax + Gy ≤ b

x ∈ Zn≥0

y ∈ Rp≥0,

(2.3)

where the vectors c ∈ Rn, h ∈ Rp, b ∈ Rm and the matrices A ∈ Rm×n, G ∈ Rm×p are
the given input, and we seek to optimize the variables in x and y. An MILP describes a
COP’s instance (S , f) by its set of feasible solutions

S =
{

(x,y) ∈ Zn≥0 × Rp≥0 | Ax + Gy ≤ b
}

(2.4)

and the objective function f = cTx + hTy.

10



2.2. Exact Methods

Instances for the 0–1 knapsack problem, which we already discussed in Section 2.1, can
be naturally modeled by the following MILP

max
|I|∑
i=1

vixi (2.5)

subject to
|I|∑
i=1

wixi ≤ b (2.6)

x ∈ {0, 1}|I|, (2.7)

where we search for an assignment for the binary variables in x that satisfies the
constraint (2.6) and maximizes the objective function (2.5).

There are two important special cases of MILPs. The first one are integer linear programs
(ILPs) that have only integer variables, i.e., p = 0. The above model for the 0–1 knapsack
problem is an example for an ILP, but since its variables can assume only the values
0 and 1 it is typically further categorized as a 0–1 linear program. The fact that the
0–1 knapsack problem is NP-hard [65, 92] allows us to conclude that ILPs are powerful
enough to express NP-hard problems. In fact, deciding whether an MILP’s set of feasible
solutions S is nonempty is NP-complete [28].

The other special case are linear programs (LPs) where all variables are assumed to be
rational, i.e., n = 0. In contrast to ILPs, LPs can be solved in polynomial time. The
first algorithm with polynomial-time worst-case complexity was the ellipsoid method [67],
which is, however, only of theoretical interest. Nowadays, LPs are typically solved
with the simplex method [30] or the interior point algorithm [64]. Both algorithms
provide an excellent performance in practice, however, only the interior point method is
a polynomial-time algorithm.

Although these algorithms cannot be directly applied for the more general case where
integer variables are present, they can be used to solve powerful relaxations of MILPs.
Given an MILP of the form (2.3) we obtain a linear programming relaxation by allowing
the variables x to assume nonnegative rational values instead of just nonnegative integer
values. The feasible solutions of the resulting LP are given by the set

P0 =
{

(x,y) ∈ Rn≥0 × Rp≥0 | Ax + Gy ≤ b
}
, (2.8)

where, clearly, every feasible solution for the MILP is also a feasible solution for its
linear programming relaxation, i.e., S ⊆ P0. Moreover, the objective value of an optimal
solution to the linear programming relaxation is an upper bound on the optimal objective
value of the MILP. In contrast to the original MILP, its linear programming relaxation
is an LP which in general can be solved much faster. Furthermore, if it turns out that all
x variables in an optimal solution of the linear programming relaxation are integral, then
this solution is also a feasible and optimal solution for the MILP.

The linear programming relaxation of an MILP cannot only be used to obtain an upper
bound, but it can serve as a starting point for a branch-and-bound method that guarantees
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to find optimal solutions. The central idea is to generate and solve a sequence of LPs that
represents an increasingly tighter approximation of the MILP’s set of feasible solutions.
We repeat until the optimal solution of the relaxation is contained in S and, thus, we
have found an optimal solution for the MILP. Basically, the refinement of the MILP’s
linear programming relaxation is performed as follows. Suppose that in an optimal
solution of the linear programming relaxation (x0,y0) ∈ P0 value x0

j , where 1 ≤ j ≤ n, is
fractional. As the corresponding variable in MILP has to be integer, either xj ≤ bxijc or
xj ≥ dxije has to hold. Hence, the union of the sets

P1 =
{

(x,y) ∈ P0 | xj ≤ bxijc
}
, P2 =

{
(x,y) ∈ P0 | xj ≥ dxije

}
, (2.9)

is still a valid relaxation of S in that S ⊆ P1 ∪ P2. If we solve the two LPs

max
{

cTx + hTy | (x,y) ∈ P1
}
, max

{
cTx + hTy | (x,y) ∈ P2

}
, (2.10)

then the best of both optimal objective values is a possibly tighter upper bound for the
MILP’s optimal solution value.

Algorithm 2.1: LP-based branch-and-bound [27, p.10]
Input: a MILP of the form max{cTx + hTy | (x,y) ∈ S }

1 P0 ← linear programming relaxation of S ;
2 L← {P0};
3 (x∗,y∗)← ∅;
4 zlb ← −∞;
5 while L 6= ∅ do
6 choose Pi from L and remove it;
7 solve max{cTx + hTy | (x,y) ∈ Pi};
8 if Pi = ∅ then
9 continue with next element in L;

10 let (xi,yi) ∈ Pi be an optimal solution and zi is objective value;
11 if zi ≤ zlb then
12 continue with next element in L;
13 if xi ∈ Zn≥0 then
14 zlb ← zi;
15 (x∗,y∗)← (xi,yi);
16 continue with next element in L;
17 choose an xij ∈ xi that is still fractional;
18 L← L ∪ {{(x,y) ∈ Pi | xj ≤ bxijc}, {(x,y) ∈ Pi | xj ≥ dxije}};

The branch-and-bound algorithm stated in Algorithm 2.1 uses this principle repeatedly
to find an optimal solution for the MILP given as input. To exclude the consideration
of some special cases, we assume here that the MILP’s optimal objective value is finite.
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The method starts by adding to list L the feasible solutions set of the MILP’s the linear
programming relaxation. Throughout the algorithm this list L contains the parts of this
initial relaxation P0 that still might contain the optimal solution of the given MILP. The
so far best found feasible MILP solution and its objective value is stored in (x∗,y∗) and
zlb, respectively.

In each iteration of the main loop a set of feasible LP solutions Pi is selected and removed
from L. Then, the corresponding LP is solved. If the problem is infeasible, i.e., Pi = ∅,
we can continue with the next element in L since Pi clearly does not contain a feasible
solution w.r.t. the given MILP. If on the other hand the considered LP admits solutions,
then we denote with (xi,yi) the obtained optimal solution and the respective optimal
solution value zi. We can prune the considered LP and continue with the next LP if
zi ≤ zlb because all contained MILP solutions in Pi ∩S have to be worse than current
incumbent solution (x∗,y∗). In case that zi > zlb and that the values for all variables in
x are integer, which means that (xi,yi) ∈ S , we have found a new incumbent solution.
Again, we do not have to consider the set Pi any further because we have already an
optimal MILP solution for it and continue with the next iteration of the algorithm.
Finally, if none of the above pruning conditions trigger the set Pi might still contain an
optimal solution. Therefore, we select a variable xij that is still fractional in our optimal
solution of the considered LP. As described above, we create two new LPs where one
has the additional constraint that xj ≤ bxijc and the other enforces that xj ≥ dxije. The
corresponding sets of feasible solutions are then added to list L and we continue with
the next iteration. The algorithm terminates if L becomes empty and, thus, the solution
stored in (x∗,y∗) has to be optimal.

Although modern MILP solver are nowadays very sophisticated, they frequently reach
their limits for large and complex problem instances. Sometimes, when the problem
exhibits a special structure, decomposition techniques might help to still successfully
solve the problem at hand. Instead of solving a straightforward model, a sequence of
smaller problems are solved and their results are combined appropriately. There are
three classical decomposition techniques in the context of MILP. If from the constraints a
subset of complicating constraints can be identified, then a Lagrangian decomposition [43]
might be applicable. It is based on the so-called Lagrangian relaxation [36] that replaces
these complicating constraints by terms in the objective function that penalize their
noncompliance. The dual bounds that can be obtained from the Lagrangian relaxation
are often stronger than those from classic LP relaxations which is for example of interest
in branch-and-bound methods. The Lagrangian relaxation’s quality is dependent by
external parameters called the Lagrangian multipliers. Finding suitable values for the
Lagrangian multipliers is a problem on its own and is often solved with iterative procedures
such as the subgradient algorithm. Another approach is based on the Dantzig-Wolfe
reformulation [31] of MILPs that usually requires a special block diagonal structure
in the constraint matrix and yields a large number of variables. It is typically solved
with the column generation method that considers a model restricted to a manageable
subset of the variables. Optimal solutions of this model allow either to conclude that the
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solution corresponds to an optimal one for the original problem or allows finding variables
that may result in an improvement. Last but not least, the Benders decomposition [6]
might be appropriate if a subset of complicating variables can be identified. The basic
idea is to iteratively solve a relaxation of the problem that excludes these complicating
variables, called the master problem, and induced Benders subproblems. These Benders
subproblems allow deriving strengthening inequalities for the master problem. The
Benders decomposition can be seen as a dual approach to the column generation because
instead of adding variables to the model (columns in the constraint matrix) constraints
are appended to the master problem (rows in the constraint matrix). We apply in
Chapter 5 the logic-based Benders decomposition (LBBD) [52], a generalization of the
Benders Decomposition that allows in particular the use of integral variables in the
subproblems.

2.3 Heuristic and Metaheuristic Methods

Heuristic methods aim at providing good solutions in short time. In contrast to exact
methods, the found solutions might not be optimal and often it is not possible to give
any performance guarantee. They are applied either for supplying an exact method with
a promising starting point or are the next best thing when the practical difficulty of the
considered COP’s problem instances prevents a successful application of exact methods.

We start with constructive heuristics in Section 2.3.1 which assemble a solution in general
in polynomial many steps w.r.t. the instance size. Afterwards in Section 2.3.2, we describe
local search, a technique that tries to improve a given solution. In addition, we discuss
the concept of locally optimal solutions which are in principle solutions that local search
cannot improve any further. In general, these locally optimal solutions are not globally
optimal which motivated the development of metaheuristics.

Essentially, metaheuristics are problem independent frameworks to tackle difficult COP
instances for which exact algorithms are not applicable. Metaheuristics cover a wide range
of ideas how to efficiently search in a COP’s set of feasible solutions for an optimal or
near-optimal solution. All metaheuristics have in common that they provide a mechanism
for intensification and diversification. Intensification is the exploration of similar solutions
to a considered solution with the aim to find improving ones and is typically achieved
with local search. Diversification is applied when the improvement possibilities of the
intensification are exhausted and intends to move the focus of the metaheuristic to a new
promising solution.

In the last 50 years a large variety of different metaheuristics have been proposed (for
an overview see [39]). In the course of this chapter we will discuss in Section 2.3.3 the
greedy randomized adaptive search procedure followed by the iterated greedy algorithm
in Section 2.3.4. Both of them use a constructive heuristic as diversification mechanism
and local search for intensification. In Section 2.3.5 a general variant of the variable
neighborhood search is explained. This metaheuristic is primarily based on local search
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and uses an alteration of it for diversification. The way these approaches are presented is
inspired by the textbook from Blum and Raidl [15].

Further prominent metaheuristics that we will refer to are genetic algorithms (GAs) [101],
ant colony optimization [33], simulated annealing [89], and tabu search [38]. GAs are
motivated by evolution and maintain a set of solutions called population. In each
iteration of the algorithm some solutions of the population are selected, recombined and
possibly mutated to hopefully obtain better solutions for the next iteration. Ant colony
optimization mimics the behavior of ants for finding shortest paths. Simulated annealing
and tabu search are both based on local search. While the former allows deteriorations
during local search with continually shrinking probability, the latter uses the search
history for diversification.

2.3.1 Constructive Heuristics

Constructive heuristics have an instance of a COPs as input and aim at obtaining a
solution in typically very short time. To this end, a constructive heuristic starts with
an empty partial solution that is iteratively extended until we either have obtained a
feasible solution or no feasible extension is possible.

Algorithm 2.2: Constructive Heuristic
Input: an instance of a COP

1 sP ← ();
2 while extension(sP ) 6= ∅ do
3 select element e from extension(sP );
4 extend sP by e;

Algorithm 2.2 shows the general concept of constructive heuristics in more detail. The
solution to be built is denoted by sP and is initially empty. We denote, with reference
to the COPs considered in this work, partial solutions by sequences. In the main loop
the partial solution is extended until we either obtain a complete solution or fail with
an incomplete solution that cannot be feasibly extended. The latter case is for many
problems excluded or highly unlikely. For a given partial solution sP the set extension(sP )
contains all elements with which the partial solution can be feasibly extended. In case
of the 0–1 knapsack problem extension(sP ) consists of all items that still fit within the
capacity. In each step of the constructive heuristic we first select an element from the
possible extensions and then extend the partial solution with it. The strategy for the
selection of the next element has a high impact on the performance of the heuristic. A
typical policy is to select the element that is most advantageous. Constructive heuristics
that follow this strategy are called greedy heuristics. For the 0–1 knapsack problem we
would choose for example an item having the largest value/weight ratio. Another option
is to select the next element randomized to obtain more diverse solutions. Finally, the
straightforward extension of the partial solution consists of appending the element at
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the end of the sequence. Alternatively, more advanced techniques consider inserting the
element within the sequence (e.g., the insertion heuristic by Nawaz et al. [87]).

2.3.2 Local Search and Variable Neighborhood Descent

Local search is a technique that aims at producing a series of improving solutions starting
from a given solution. We begin with introducing the concepts of neighborhoods and
local optimal solutions on which local search relies. As before, we follow the book by
Papadimitriou and Steiglitz [92].

Given a solution s of a considered COP instance (S , f), a neighborhood N (s) defines
a subset of feasible solutions from S that are close to s by some measure. Formally, a
neighborhood is a function N : S → 2S that maps the feasible solutions of every given
COP instance (S , f) to subsets of the feasible solutions. A natural neighborhood for the
0–1 knapsack problem is, for example, the k-change neighborhood that consists of all
feasible solutions that differ from the considered solution s by at most k items.

A solution s of an instance (S , f) is locally optimal w.r.t. a neighborhood N if the
solution’s cost is better than or equal to the cost of all solutions in N (s), i.e., depending on
whether we are minimizing or maximizing f(s) ≤ f(s′) or f(s) ≥ f(s′) for all s′ ∈ N (s),
respectively. Clearly, a globally optimal solution has to be also locally optimal w.r.t. any
neighborhood, while the other way around does not necessarily hold.

Algorithm 2.3: Local Search
Input: solution s of a COP instance, neighborhood N

1 while ∃s′ ∈ N (s) with f(s′) > f(s) do
2 s← choose s′ ∈ N (s) with f(s′) > f(s);

Local search for COPs where the objective function has to be maximized is shown in
Algorithm 2.3. The method assumes a solution and a neighborhood as input. In each step
of the local search, which is typically called a move, the incumbent solution is replaced
by a solution from its neighborhood with a better cost. The algorithm terminates if the
current solution is locally optimal w.r.t. the neighborhood.

There are two basic rules that determine which solution is selected for replacing the
incumbent solution if the neighborhood contains more than one solution with better
cost: the first improvement and the best improvement rule. During the search for an
improving solution we have to generate the solutions in the neighborhood and evaluate
their costs. If we follow the first improvement rule, we stop creating solutions as soon as
we have found a solution that has better costs than the incumbent solution and replace
it. In contrast, the best solution of the neighborhood is used when performing best
improvement. While the best solution might have better costs than the first obtained
solution, finding the best solution requires in general to enumerate all solutions of the
neighborhood. Hence, performing a best improvement step requires in expectation more
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computation time. Nevertheless, following the best improvement rule typically yields a
local optimal solution in fewer iterations of the local search.

A natural extension of the local search, as presented in Algorithm 2.3, is to consider more
than one neighborhood. This is especially motivated by the fact that a locally optimal
solution w.r.t. some neighborhood might still be improved by solutions from another
neighborhood. Variable neighborhood descent (VND) extends the classic local search by
systematically changing the neighborhoods and has been studied in the context of the
variable neighborhood search (VNS) [46, 47]. In contrast to [46, 47], we describe here a
slightly more general variant of the VND that is not restricted to the best improvement
strategy but also allows the application of the next improvement rule.

Algorithm 2.4: Variable Neighborhood Descent
Input: solution s of a COP instance, neighborhoods N1, . . . ,Nlmax

1 l← 1;
2 while l ≤ lmax do
3 if ∃s′ ∈ Nl(s) with f(s′) > f(s) then
4 s← choose s′ ∈ Nl(s) with f(s′) > f(s);
5 l← 1;
6 else
7 l← l + 1;

Algorithm 2.4 shows the VND for a COP where the objective function has to be maximized.
The input of the procedure consists of an initial solution s and a set {N1, . . . ,Nlmax} of
neighborhoods. The VND starts with the first neighborhood N1 and performs local search
as in Algorithm 2.3. After a locally optimal solution has been reached w.r.t. neighborhood
N1, the neighborhood index l is increased by one and the second neighborhood N2 is
considered next. If possible, we perform for neighborhood N2, or in general for Nl, a
single improving move and reset index l back to 1. If on the other hand the current
incumbent solution is already locally optimal w.r.t. Nl, we increase l by one. The
algorithm terminates after no improving solution could be found in neighborhood Nlmax ,
which implies that the incumbent solution is locally optimal w.r.t. all given neighborhoods.

2.3.3 Greedy Randomized Adaptive Search Procedure

The greedy randomized adaptive search procedure (GRASP) [34, 35, 102] is a simple
multistart metaheuristic shown in Algorithm 2.5. In each iteration a new solution is
created by a randomized greedy heuristic which is then improved by a local search
algorithm. The GRASP stops after reaching a termination criterion and returns the best
found solution over all completed iterations.

It is essential that the solutions constructed in each iteration is with a high probability
distinct from each other in order to provide diverse starting points for the typically
deterministic local search. To achieve this the employed constructive heuristic selects
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Algorithm 2.5: Greedy Randomized Adaptive Search Procedure
Input: a COP instance

1 while termination criterion not met do
2 s← construct a greedy randomized solution;
3 s← apply local search on s;

the next element to extend the currently constructed solution in a greedy randomized
way. For this purpose all feasible extensions of the current partial solution are ranked
according to a greedy evaluation function. The best ranked extensions are collected in a
so-called restricted candidate list. The element that is used to extend the current partial
solution is then randomly selected from this list.

The size of the restricted candidate list controls the randomness of the construction and
is next to termination criterion the main parameter of the GRASP. When the size is
limited to one, then the construction corresponds to a pure greedy heuristic. In the other
extreme, if the size of the restricted candidate list is not limiting, then a completely
random solution is generated. To reach the COP’s most valuable solutions frequently
diverse but promising solutions have to be constructed for the subsequent local search.
There are two common ways to limit the size of the restricted candidate list. Either the
list’s size is restricted by a quality threshold or by a fixed maximum number of elements.

2.3.4 Iterated Greedy

Iterated greedy (IG) metaheuristics [60, 107] are based on the observation that greedy
constructive heuristics frequently select better extensions when already larger parts of
the partial solution are fixed. Therefore, IGs repeatedly destroy random parts of the
incumbent solution which are then repaired using a greedy constructive heuristic. The
intention is that in the course of reapplying the destruction and reconstruction operations
increasingly larger parts of an optimal or nearly optimal solution survive in the incumbent
solution.

Algorithm 2.6: Iterated Greedy
Input: solution s of a COP instance

1 while termination criterion not met do
2 sP ← destruct parts of s;
3 s′ ← construct complete solution from sP ;
4 s′ ← apply local search on s′; // optional
5 if s′ is accepted then
6 s← s′;

Algorithm 2.6 outlines the procedure. The IG starts with an initial solution which is
often obtained by the same greedy heuristic which is also employed in the construction
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phase. This initial solution serves as a first incumbent solution. Each iteration begins
with a destruction phase annulling parts of the incumbent solution. The result is a partial
solution. The destruction phase is typically randomized and is the main diversification
mechanism of the metaheuristic. In the following construction phase the partial solution
is completed by a greedy constructive heuristic. Frequently, a local search algorithm is
applied after the construction phase to further boost the IG’s intensification. Afterwards,
an acceptance criterion is evaluated to determine whether the newly generated solution
replaces the incumbent solution. A trivial acceptance criterion is to replace the incumbent
solution only if the newly obtained solution is better. If early convergence is an issue,
then frequently a simulated annealing-like acceptance criterion is employed as a second
source of diversification [107, 91]. Such an acceptance criterion allows with a certain
probability that also a worse solution replaces the incumbent solution. The IG repeats
the above steps until a given termination criterion has been reached and returns the best
found solution.

2.3.5 Variable Neighborhood Search

The general variable neighborhood search (GVNS) [46, 47] is a metaheuristic that uses
neighborhoods for its intensification and diversification phase. The employed key mecha-
nism is the systematic change of neighborhoods which has been already discussed for the
VND (see Section 2.3.2). As the name suggests, the GVNS is a generalized variant of the
basic VNS [86].

Algorithm 2.7: General Variable Neighborhood Search
Input: solution s of a COP instance,

neighborhoods N vns
1 , . . . ,N vns

kmax
and N vnd

1 , . . . ,N vnd
lmax

1 while termination criterion not met do
2 k ← 1;
3 while k ≤ kmax do
4 s′ ← random element from N vns

k (s);
5 s′ ← apply VND on s′ using N vnd

1 , . . . ,N vnd
lmax

;
6 if f(s′) > f(s) then
7 s← s′;
8 k ← 1;
9 else

10 k ← k + 1;

The GVNS is sketched in Algorithm 2.7. The method takes as input an initial solution s
which is frequently provided either by a constructive heuristic or a more involved approach.
Moreover, a set of shaking neighborhoods {N vns

1 , . . . ,N vns
kmax
} for the diversification and

a set of local search neighborhoods {N vnd
1 , . . . ,N vnd

lmax
} for the intensification is required.

19



2. Methodology

Each major iteration starts by picking a random solution s′ from the first shaking
neighborhood N vns

1 of the so far best solution s. Afterwards, we apply a VND using
the neighborhoods N vnd

1 , . . . ,N vnd
lmax

on this randomly chosen solution and replace s′ by
the resulting solution. This step differs for the basic VNS where we would perform a
local search that considers a single neighborhood instead of a VND. If this new solution
s′ is better than s, then we have found a new incumbent solution and replace s by s′
and repeat the above steps with the first shaking neighborhood. Otherwise, we perform
the above steps using the next shaking neighborhood. A major iteration ends when the
randomly picked solution of the shaking neighborhood N vns

kmax
yields not a new incumbent

solution after the application of the VND. The whole approach terminates when a given
termination criterion has been reached.

The efficiency of the GVNS is mainly influenced by the number and order of the neighbor-
hoods. Typically, the shaking and local search neighborhoods are different from each other
and ordered by their cardinality. Moreover, the cardinality of the shaking neighborhoods
is usually larger than the cardinality of the local search neighborhoods. The intention
behind this is that randomly sampled solutions of the shaking neighborhoods should
steer the algorithm to unexplored parts of S . In addition, picking a random solution in
a neighborhood can be implemented very efficiently.

2.4 Decision Diagrams for Optimization
Decision diagrams (DDs) have been originally introduced in the field of electrical circuits
and their formal verification [71, 58, 1, 20]. In about the last decade DDs have been
recognized as a valuable tool in combinatorial optimization [3, 10, 23]. In particular,
relaxed DDs provide new possibilities for modeling and solving parameterized discrete
relaxations, enable new branching schemes, and allow advanced constraint propagation
methods. For a comprehensive reading on DDs, their variants, applications and successes
in optimization, we refer to the textbook by Bergman et al. [12].

DDs are strongly related to state graphs of a DP formulation. We formally define a DD
as a rooted acyclic directed multi-graph G = (V,A) with node set V and arc set A. The
node set V is typically partitioned into layers V = V1 ∪ . . .∪ Vn+1, where n is, in general,
the number of decision variables of the underlying DP formulation. Each node u ∈ V
is associated with a state σ(u) of the DP formulation. Arcs represent state transitions
by assigning feasible values to decision variables of the problem. More specifically, an
arc a = (u, v) ∈ A is typically directed from a source node u in some layer Vi to a target
node v in the subsequent layer Vi+1, i ∈ {1, . . . , n}, and it is associated with the value
val(a) assigned to the i-th decision variable. Hence, the arc represents the transition from
state σ(u) to state σ(v) = τ(σ(u), val(a)), where τ refers to the state transition function
of the DP formulation. We assume that only arcs corresponding to feasible transitions
are represented in the DD.

The first layer V1 only contains a root node r corresponding to the initial state σ(r) of
the DP formulation with no decisions yet made. A single target node t at layer Vn+1
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items weight value

1 3 40
2 4 30
3 2 10
4 5 20

capacity: 7

Table 2.1: Description of a 0–1 knapsack instance.

V1

V2

V3

V4

V5

r

u1 u2

u3 u4 u5

u6 u7

t

0 40

0 30 0 30

0

10

0

10

0

0

20

0

(a) Exact DD

r

u1 u2

u3 u4

u6 u7

t

0 40

0 30 0

0

10

0

10

0

20

0

(b) Restricted DD
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(c) Relaxed DD

Figure 2.1: Exact, relaxed, and restricted DDs for the 0–1 knapsack instance described in
Table 2.1. Arcs directed from a node in layer Vi, i ∈ {1, 2, 3, 4} specify whether item i is
part of the solution. A solid arc indicates that the corresponding item is included in the
solution, while a dashed arc represents that the respective item is not part of the solution.
The numbers next to the arcs denote their length. Longest paths are highlighted in gray.

typically represents a final feasible state σ(t) without any remaining decisions. Each
path p from r to t consisting of n arcs represents a feasible solution.

Each arc a ∈ A is associated with a length (or prize, cost etc.) z(a) ≥ 0 that corresponds
to the state transition’s contribution to the objective function. The total path length
is the objective value of the corresponding solution, and we are thus either looking for
a longest or shortest path from r to t within the DD depending on whether we have
maximization or minimization objective. We assume in the following a maximization
objective.

A DD is shown in Figure 2.1(a) for the 0–1 knapsack instance described in Table 2.1.
The underlying DP formulation is presented in Section 2.2.2 and consists of a binary
variable for each item deciding whether an item is part of the solution or not. Each path
in Figure 2.1(a) from node r to node t represents a feasible assignment of these variables.
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The outgoing arcs of the root node r, for instance, assign the variable corresponding
to the first item either to 0 or to 1 indicated by dashed and solid arcs, respectively.
Consequently, if we follow the solid arc we include the first item in the solution and the
total value up to this point is 40. If we select in addition the second item, we reach node
u5 and obtain a total value of 70. Since both of the items have a total weight seven which
is equal to the capacity, no of the remaining items can be further added to the selected
subset of jobs. Therefore, the path in the DD leading from u5 to the target node t uses
dashed arcs. This rightmost path is moreover the longest path of the DD and, hence, the
subset consisting of the first two jobs is an optimal solution.

If the decision variables of the underlying DP formulation are as above all binary, the
corresponding DD is frequently called a binary decision diagram (BDD). A consequence
of the binary decision variables is that nodes of BDDs have at most two outgoing arcs. In
contrast to BDDs, multivalued decision diagram (MDD) which we will use in Chapter 4
refer to DDs with more general finite domains.

An exact DD encodes by its paths exactly the set of all feasible solutions of the considered
problem and it typically has an exponential size for hard problems. The literature
describes two variants of more compact and, thus, practically more meaningful DDs that
approximate exact DDs.

One possibility is to omit some arcs and nodes from an exact DD [11]. This implies that
the resulting DD encodes only a subset of all feasible solutions and it is therefore called
restricted DD. A longest path from r to t then corresponds to a feasible heuristic solution
and its length is a lower (primal) bound on the optimal objective value. See for example
Figure 2.1(b) that shows a restricted DD obtained from the exact DD of Figure 2.1(a)
by removing node u5 together with its incoming and outgoing arcs. Observe that the
former longest path that selects the first two items is not anymore encoded. The longest
path of the restricted DD is again the rightmost path representing the feasible but not
optimal solution {1, 3} with the total value of 50.

Restricted DDs are typically constructed in a top-down layer-by-layer fashion using some
greedy criterion to select the states that are kept at each layer. Typically, the number of
states at each layer is limited in order to obtain a restricted DD of bounded width. Note
that this approach for obtaining a feasible heuristic solution closely corresponds to the
well-known beam search metaheuristic [90].

Another possibility, is to construct a relaxed DD [3] that encodes a superset of all feasible
solutions and represents a discrete relaxation of the original problem. A relaxed DD is in
general obtained by superimposing states of the underlying DP state graph by merging
nodes of an exact DD such that all original r–t paths are kept, but new ones can and
typically do emerge. These new paths correspond to infeasible solutions. Consequently,
the length of a longest r–t path in a relaxed DD is an upper (dual) bound on the
underlying problem’s optimal solution value. A relaxed DD for the 0–1 knapsack instance
given in Table 2.1 is depicted in Figure 2.1(c). It is obtained from the exact DD by
merging the nodes u4 and u5. In contrast to the exact DD, we are here able to select
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also the third item after following twice a solid arc starting from r. The length of this
path is 80 and, thus, higher as the optimal solution value of 70. It can be easily seen
that this rightmost path does not correspond to a feasible solution as the total weight of
nine exceeds our capacity of seven.

Two main approaches for compiling relaxed DDs of limited size have been proposed and
these principles are to the best of our knowledge used in almost all so far published
works where relaxed DDs are used to address COPs. The top-down construction (TDC)
traverses the state graph layer-by-layer in a breadth-first manner starting from the root
node r. The size of the DD is controlled by imposing an upper bound β, called width, on
the number of nodes at each layer. For each state at a current layer, all successor states
are obtained by considering each feasible state transition. For each such successor state,
a corresponding node is created and inserted in the subsequent layer. If the size of the
subsequent layer exceeds β, nodes of this layer are selected and merged until the size of
the layer is reduced to β. The algorithm terminates when the last layer, and thus the
target node t, is reached. Typically, some greedy criterion, e.g., based on the length of
the longest paths from r to each node at the current layer, is used to select the nodes
to be merged. The intention is to primarily merge nodes that are not likely part of a
finally longest r–t path, in order to keep the obtained upper bound as low as possible.
The merging itself must be done such that the new state associated with the merged
node does not make any so far feasible extension of an original node towards a complete
solution infeasible.

The second frequently used approach for constructing a relaxed DD is incremental
refinement (IR). It starts with a trivial relaxed DD, e.g., a DD of width one, that has
just one node in each layer. Then two major steps are repeatedly applied until some
termination condition is fulfilled, e.g., a maximum number of nodes is reached. In the
filtering step the relaxation represented by the DD is strengthened by removing infeasible
arcs that cannot be part of any path corresponding to a feasible solution. Such arcs
are determined by problem-specific calculations and deduction rules. Further, nodes
that remain without any incoming arcs except r as well as non-terminal nodes without
any outgoing arcs can be removed together with their remaining incident arcs. In the
refinement step, nodes are split into pairs of new replacement nodes at the same layer
in order to remove some of the paths that correspond to infeasible solutions. Again,
the strategies for selecting meaningful nodes for splitting are problem-specific, but a
frequent goal is to consider especially nodes at current longest paths that are involved in
constraint violations.

Besides TDC and IR, Bergman and Cire [7] provide three algorithmic techniques, inspired
by the concept of cutting planes from MILP, to improve the bounds of relaxed DDs. The
first trims in each iteration a longest path until a considered longest path corresponds
to a optimal solution. The second technique strengthens a relaxed DD by intersecting
it with another relaxed DD. Lastly, the value extraction algorithm is presented that
iteratively decreases the length of longest paths in the relaxed DD. In another work,
Bergman and Cire [8] proposed to consider the compilation of a relaxed DD as an
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optimization problem itself and investigated a MILP formulation. While this approach is
useful for benchmarking different compilation methods on small problem instances, it is
computationally too expensive for any practical application. Römer et al. [105] suggested
a local search framework that serves as a more general scheme to obtain relaxed DDs.
It is based on a set of local operations for manipulating and iteratively improving a
DD, including the node splitting and merging from IR and TDC, respectively, and arc
redirection as a new operator.
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CHAPTER 3
Particle Therapy Patient

Scheduling

This chapter addresses the midterm planning problem arising at the particle therapy
treatment center MedAustron1 located in Wiener Neustadt, Austria. The problem
specification has been developed in several workshops together with the practitioners
and stakeholders of MedAustron and colleagues from the University of Vienna. We
then formalized the problem in terms of a mathematical model and created artificial
benchmark instances that should represent the expected situation at the treatment center.
Real world test data has not been available, as the facility was still under construction at
the beginning of our project and by the end first patients have been treated, however,
not yet yielding more detailed and representative information for scheduling.

In the course of our cooperation with MedAustron we published four scientific papers,
an extended abstract, and a master’s thesis [44] directly concerning this real word
optimization problem. Moreover, another master’s thesis [59] considered the problem of
reacting on changes during the execution of a day’s schedule. This chapter summarizes
the mentioned four scientific papers which document the developments of our approach
to tackle the midterm planning problem at MedAustron.

Our initial results have been presented at the 11th International Conference on the
Practice and Theory of Automated Timetabling (PATAT’16) and is published in the
conference’s proceedings:

J. Maschler, M. Riedler, M. Stock, and G. R. Raidl. Particle therapy patient
scheduling: First heuristic approaches. In Proceedings of the 11th International
Conference on the Practice and Theory of Automated Timetabling, pages 223–244,
Udine, Italy, 2016.

1http://www.medaustron.at/
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This paper presents the mathematical model, a constructive heuristic, and two first
metaheuristics, namely a GRASP and an IG. In the later publications, we made some
minor modifications in the problem definition regarding the structure of the treatments.
The problem definition and all approaches presented in this chapter have been adapted
to this new notation.

At the 12th Metaheuristics International Conference (MIC’17) we presented and published
in its proceedings a revised version of our IG metaheuristic:

J. Maschler, T. Hackl, M. Riedler, and G. R. Raidl. An enhanced iterated greedy
metaheuristic for the particle therapy patient scheduling problem. In Proceedings of
the 12th Metaheuristics International Conference, pages 465–474, Barcelona, Spain,
2017.

For the 16th International Conference on Computer Aided Systems Theory (EURO-
CAST’17) we first submitted an extended abstract and were invited after the presentation
to submit a full paper:

J. Maschler, M. Riedler, and G. R. Raidl. Particle therapy patient scheduling:
Time estimation to schedule sets of treatments. In Extended Abstracts of the 16th
International Conference on Computer Aided Systems Theory (EUROCAST 2017),
pages 106–107, Gran Canaria, Spain, 2017,

J. Maschler, M. Riedler, and G. R. Raidl. Particle therapy patient scheduling: Time
estimation for scheduling sets of treatments. In Computer Aided Systems Theory
– EUROCAST 2017, volume 10671 of Lecture Notes in Computer Science, pages
364–372. Springer International Publishing, 2018.

We studied in this work a surrogate objective function that quickly predicts with reasonable
precision the behavior of the sequencing part of our problem, allowing an improved
distribution of the workload on the days.

Our final paper deals with an extended version of our problem and has been accepted for
publication in the journal International Transactions in Operational Research (ITOR):

J. Maschler and G. R. Raidl. Particle Therapy Patient Scheduling with Limited
Starting Time Variations of Daily Treatments. International Transactions in
Operational Research, 2018.

3.1 Introduction
Particle therapy is a relatively novel and highly promising option to provide cancer
treatments. To this end, protons or carbon ions are produced by an ion source and are
first accelerated by a linear accelerator (LINAC) and subsequently by either a cyclotron
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Figure 3.1: Layout of the particle therapy treatment center MedAustron.

or a synchrotron to around two-thirds of the speed of light. The resulting particle beam
is then directed into one of up to five treatment rooms, where patients are irradiated.
Since several tasks have to be completed in a treatment room before and after an actual
irradiation, the usually single available beam is switched between the available treatment
rooms in order to maximize the throughput of the facility. Consequently, the main
challenge is to arrange the individual treatments in such a way that idle times on the
particle beam are minimized. We consider here specifically the particle therapy treatment
center MedAustron in Wiener Neustadt, Austria, which offers three treatment rooms.
Figure 3.1 shows the layout of the facility. The different components of the layout are
depicted in Figure 3.2. Each of the treatment rooms has individual capabilities regarding
the flexibility of the particle beam. While the first room provides a fixed horizontal beam
with protons and carbon ions, the second treatment room provides in addition irradiation
with a fixed vertical beam. In the last of the three treatment rooms a gantry allows
the most flexibility regarding the angle of the particle beam, but has the restriction
that only proton beams are supported. A consequence of these different capabilities
is that treatments are preassigned to the treatment rooms depending on the therapies’
requirements.

The particle therapy patient scheduling problem (PTPSP) addresses the midterm planning
part of such a particle therapy treatment center. In PTPSP an effective plan has to be
found for performing numerous therapies, each consisting of so-called daily treatments
(DTs) provided on 8 to 35 succeeding days. Therapies have to start on Mondays or
Tuesdays between an earliest and a latest allowed starting day. After a therapy is started,
the number of DTs that are provided each week has to stay between a lower and an upper
bound. Moreover, there is a minimal and a maximal number of days that are allowed to
pass between two subsequent DTs, and there has to be a break from the treatment of at
least two consecutive days each week. The DTs themselves model several consecutively
performed tasks including the immobilization and the positioning of the patient, the
actual irradiation, imaging, and the patient’s exit from the treatment room. Therefore,
DTs have resource requirements that vary with time according to the underlying tasks.
A particularity is that each specific resource is required at most once for a consecutive
time period. Moreover, each resource can only be used by one DT at a time. Every DT
requires a patient resource, one of the three treatment rooms, and the particle beam.
Certain DTs further involve special resources like a radio oncologist or an anesthetist.
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(a) Synchrotron

(b) Ion source (c) LINAC (d) Treatment room

Figure 3.2: Photos of the components from MedAustron’s layout shown in Figure 3.1.
Source: press photos from www.medaustron.at. Copyright: Ettl / Thomas Kästenbauer.

Figure 3.3 depicts an example DT. In terms of the resource-constrained project scheduling
literature (see for example [49]) DTs would be called activities with resource requests
varying with time. The facility is usually open from Mondays to Fridays, but after
holidays or maintenance tasks DTs are also performed on Saturdays. Whenever the
treatment center is open, resources can have a regular availability period followed by
an extended availability period in which they can be used, where the use of the latter
induces (additional) costs. Furthermore, the availability of resources can be interrupted
by so-called unavailability periods.

The aim of the PTPSP is to schedule a given set of therapies by determining days
and times for all corresponding DTs while considering all operational constraints. The
objective is to minimize the use of extended availability periods, while the therapies have
to be completed as early as possible. Later in an extended problem variant, we consider
that the DTs belonging to the same therapy should be planned roughly at the same time,
in order to provide a consistent schedule for the patients. Ideally, the starting times of a
therapy’s DTs should not differ more than a half hour within each week. Between two
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Figure 3.3: Exemplary DT that requires the patient and anesthetist resource for the
whole processing time, while the resources representing the assigned treatment room and
the particle beam are needed only for a specified part of the execution time.

weeks the starting times are allowed to differ by two hours. However, consistent starting
times for DTs are not of direct medical relevance and, consequently, should not induce
additional use of extended service periods or delay therapies.

We formalize PTPSP via an MILP model. However, even solving a strongly simplified
version of the model turned out to be practically intractable. Therefore, we propose a
therapy-wise construction heuristic, which acts in two phases by assigning first all DTs
to days (day assignment) and then scheduling the DTs on each day (time assignment).
Moreover, a GRASP and a first IG metaheuristic that are based on this construction
heuristic are developed. Experiments indicate that this first IG yields superior results
in comparison to the GRASP. This is mainly due to the fact that the IG preserves
substantial parts of the solution from one iteration to the next, and consequently, poor
decisions made especially in the first phase of the constructive heuristic can be corrected
in the course of the iterations.

Nevertheless, this first IG does not exhaust its full potential: Moving DTs between days
might require to reevaluate the start times of all DTs, and this is done by simply dropping
all start times of the considered days. In addition, the IG’s local improvement operator
is based on applying a randomized version of the time assignment phase of constructive
heuristic repeatedly for many times. Even though this local improvement operator is
able to enhance solutions rather quickly this approach has the drawback that partly
redundant work is repeatedly done, still yielding relatively similar solutions for the time
assignments. Therefore, we revise this first IG and develop an improved metaheuristic.
We propose novel destruction and construction methods that are able to keep relative
timing characteristics of untouched DTs to a larger extent. Furthermore, we replace the
so far rather simple local improvement operator by a local search method that considers
a restricted DT exchange neighborhood. The new IG is compared to our previous IG
and a variant of IG that uses the old destruction and construction phase combined with
the new local search method. Our experiments clearly indicate that the IG with the new
destruction and construction methods as well as the new local search yields substantially
better results than the other two variants.

Afterwards, we focus on the decomposition of the PTPSP into a day assignment part
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and a sequencing part. This decomposition makes the problem computationally more
manageable as it allows us to separate the allocation of DTs to days with determining the
DTs’ starting times. However, both levels are dependent on a large degree. Especially,
on the day assignment level we have to be aware of the behavior of the time assignment
part. Hence, we provide a surrogate model that predicts the use of extended service
windows given a set of DTs and a specific day. Experiments showed that the application
within our IG metaheuristic allowed us to improve our previous results significantly.

Up to this point we considered PTPSP in its basic form, where the use of extended time
and the therapies’ finishing day has to be minimized. We shift our focus to the extended
problem variant that covers the aspect that also the variation among the times at which
therapies’ DTs are provided has to be minimized. To this end, we reconsider our best
performing IG approach and revise its components to be appropriate for the extended
problem variant. The destruction and construction operator is further improved and also
an enhanced construction heuristic for the initial solution is provided. The local search
method is adapted to the extended problem formulation in that it alternately considers
a DT exchange neighborhood and solves a LP model for determining updated nominal
starting times. To investigate the performance of this final IG metaheuristic we adapt our
first IG to the extended problem formulation. We assess the qualities of the individual
components of the metaheuristic by gradually transforming our initial approach into
the proposed one. Our revised metaheuristic shows considerable improvements on all
considered benchmark instances.

The remainder of this work is structured as follows: After giving an overview of related
literature in the next section, Section 3.3 provides a formal problem definition. Section 3.4
proposes a therapy-wise construction heuristic based on greedy principles and featuring
a forward-looking mechanism to avoid too naive decisions. In Section 3.5 we further
build upon this construction heuristic, proposing a GRASP and a first IG metaheuristic.
This first IG is then revised in Section 3.6 and replacements for the employed local
improvement, destruction, and construction operator are presented. Section 3.7 discusses
a surrogate model that further improves our construction techniques. The extended
problem formulation is considered in Section 3.8. To this end, we examine and make
corrections to our previously developed IG metaheuristics. The conducted experiments
are then discussed in Section 3.9. Finally, Section 3.10 concludes this chapter with an
outlook on future work.

3.2 Related Work

Midterm planning for classical radiotherapy has attracted the focus of the scheduling
community. A first attempt at automating this task has been made in 1993 by Larsson [70].
Then, for more than a decade no further contributions appeared. In 2006 interest in the
topic grew again starting with the works of Kapamara et al. [63] and Petrovic et al. [97].
Afterwards, several heuristic as well as exact approaches followed. Heuristic techniques
reach from GRASP [95, 96] and steepest hill climbing methods [62] to more advanced
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techniques using GAs [93, 94]. Exact approaches consider different levels of granularity
and rely on MILP models [24, 25, 26, 21]. Additionally, there are two PhD theses available
dealing with the topic [85, 73].

The latest contributions focus on dynamic scenarios. Sauré et al. [108] consider a
discounted infinite-horizon Markov decision process and solve it via linear programming
with column generation to identify good policies for allocating available treatment capacity
to incoming demand. Legrain et al. [72] introduce a hybrid method combining stochastic
optimization and online optimization to determine better planning strategies. They also
consider information on the future arrivals of patients to better estimate the expected
resource utilization. Gocgun [41] additionally allows the cancellation of treatments and
apply a simulation-based approximate dynamic programming algorithm to heuristically
solve the problem. A literature review covering and categorizing works from 2000 to 2015
has been recently written by Vieira et al. [111].

All the references mentioned above consider a coarse scheduling scenario, i.e., they only
assign treatments to days, but do not deal with sequencing within a day. This is due
to the fact that the addressed practical applications feature radiotherapy with photons
or electrons2. In these scenarios multiple LINACs are available, but for each of them
only sequential processing is possible. Thus, the main issue is to assign treatments to
appropriate machines. Therefore, there is no immediate need for fine-grained scheduling
in these scenarios. The application we consider substantially differs in this respect since
the availability of just a single accelerator whose beam can be directed to only one room at
a time demands much more detailed planning to reach maximum throughput. Moreover,
in the more widely applied photon and electron radiotherapy it is common to have long
waiting lists associated with priorities determined by oncologists and algorithms need to
select from that list when inserting new patients. In our scenario this is not required
since the accepted patients must always be determined by physicians.

A scheduling problem concerning particle therapy is considered in Vogl et al. [112].
Although their problem is from the setting similar to ours, it differs in many details.
While our emphasis is mainly on the throughput of the facility, i.e., on the scheduling of
DTs under limited resource availabilities, the authors shift the subject more to the aspect
of planning therapies including activities surrounding the core therapy. In particular, they
have additional appointments that need to be provided either before or after a DT once
a week. These appointments distinguish themselves from DTs as they can be supplied by
different resources. In comparison to the PTPSP as described here, Vogl et al. assume
that the resources are available on all days without any further restrictions. Moreover,
their objective function differs substantially from ours: the aim is on minimizing the total
idle time of the beam resource and the violations of time windows. Vogl et al. propose a
multi-encoded GA and compare two solution decoding approaches.

2Men [85] considers proton therapy with a single particle beam and several rooms but also schedules
only on the coarse level.
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In a subsequent work Vogl et al. [113] extend their GA by a more complex crossover
operator. In addition, Vogl et al. [113] present an iterated local search (ILS) metaheuristic
which repeatedly first perturbates the so far best found solution followed by an application
of local search. Perturbation is performed using two strategies alternatingly and as local
search serves a VND using six neighborhoods. Their computational results showed that
applying first the GA followed by the ILS starting from the best of the GA’s solutions
outperforms both individual metaheuristics.

The work by Riedler et al. [104] deals with strongly simplified variant of the time
assignment part for a single day. Motivated by the fact that irradiation times are known
exactly beforehand Riedler et al. [104] consider a resource-constrained project scheduling
problem (RCPSP) for high time resolutions. Their solution approach is to relax the
problem by partitioning time into so-called time-buckets, which are then iteratively
refined until an optimal solution is found. We will present an overview over this approach
in Chapter 5.

The problem considered by Horn et al. [55] is also inspired by the time assignment part
for a single day. Each of their jobs requires one common resource during a part of its
processing time and one of several secondary resources for the entire processing time.
Such jobs model the essential aspect of our DTs, where the common resource corresponds
to the beam and the secondary resources correlate with the rooms. They consider the
minimization of the makespan as objective and provide an exact A∗ algorithm, a heuristic
beam search, and a hybrid thereof. A price-collecting variant of this problem will be
discussed in Chapter 4.

In principle the PTPSP can be viewed as highly specialized case of an RCPSP, which is
a vast research area with many variants [49]. To consider all our requirements we need —
in project scheduling terminology — disjunctive resources which have time-dependent
capacities and overflow periods as well as multiple projects consisting of activities with
resource requests varying with time, minimal and maximal time lags, release times, and
deadlines; for an explanation of these aspects see [18]. Although each of these facets have
been addressed in the literature, to our best knowledge no work exists considering all
of them together. Of course, our objective also differs significantly due to the different
domain. Research on the RCPSP can provide ideas for dealing with certain aspects in
radiotherapy patient scheduling, but unfortunately none of the existing RCPSP variants
is close enough to directly build upon it.

3.3 Problem Formalization

In the PTPSP a set of therapies T = {1, . . . , nT } needs to be scheduled on consecutive
days D = {1, . . . , nD} considering a set of renewable resources R = {1, . . . , nR}.

Each therapy t ∈ T consists of a set of DTs Ut = {1, . . . , τt}. For each therapy t ∈ T we
are given a minimal number ntwmin

t and a maximal number ntwmax
t of DTs that need to

be performed per week, as well as a minimal number δmin
t ≥ 1 and a maximal number
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δmax
t ≥ δmin

t of days that must separate two consecutive DTs. Between two weeks there
have to be at least two days where no DT is performed. In addition, the maximum
intended time difference of the starting times of the DTs within the same week and
between two consecutive weeks is denoted with δintraw and δinterw, respectively. The set of
possible start days for each DT u ∈ Ut is given by the subset {dmin

t,u , . . . , d
max
t,u } ⊆ D of days.

For each DT u ∈ Ut we are given a processing time pt,u ≥ 0 and a set of required resources
Qt,u ⊆ R. During the execution of a DT each resource r ∈ Qt,u is required for a part of
the whole processing time specified by the time interval Pt,u,r = [P start

t,u,r , P
end
t,u,r) ⊆ [0, pt,u).

We frequently write P dur
t,u,r as a shorthand for P end

t,u,r − P start
t,u,r , i.e., the duration resource r

is required by DT u of therapy t.

The planning horizon is structured into a subset D′ ⊆ D of working days on which the
treatment center is actually open and DTs can be scheduled on. The weeks covered
by D are denoted by V = {1, . . . , nV }. Furthermore, let

⋃
v∈V D

′
v be the partitioning

of D′ into nV subsets corresponding to the weeks. For each working day d ∈ D′ we
have a fundamental opening time W̃d = [W̃ start

d , W̃ end
d ) that limits the availability of all

resources on the considered day.

Each resource r ∈ R is available on a subset Dres
r ⊆ D′ of the working days. On

such days the availability of each resource is defined by a regular service time window
Wr,d = [W start

r,d ,W end
r,d ) ⊆ W̃d that is immediately followed by an extended service time

window Ŵr,d = [W end
r,d , W̃

end
d ) ⊆ W̃d. Moreover, for each resource r ∈ R and each day

d ∈ Dres
r , the availability of resource r may be interrupted by a set of unavailability

intervals W r,d =
⋃
w=1,...,ωr,d

W r,d,w with W r,d,w = [W start
r,d,w,W

end
r,d,w] ⊂ Wr,d ∪ Ŵr,d. All

these periods are assumed to be non-overlapping, and sorted according to increasing
time.

We represent a solution for the PTPSP as a tuple (Z, S), where Z = {Zt,u ∈ D′ | t ∈
T, u ∈ Ut} denotes the days at which the DTs are planned and S = {St,u ∈ W̃d | t ∈
T, u ∈ Ut, d = Zt,u} is the set of start times for all the DTs on the respective days. A
solution is feasible if all resource availabilities, precedence relations, and the remaining
operational constraints are respected.

A fundamental assumption is that it is in practice not difficult to find any feasible solution
— we expect “enough” extended time of all the resources to be available. The background
here is that once a patient is accepted for treatment it is ensured by all possible means
that their treatment will take place according to all the defined requirements. What we
aim for is to minimize the required extended time over all resources R while finishing
each treatment as early as possible. These goals are considered in a single objective
function by linearly combining the corresponding terms using the scalar weights γext and
γfinish. More formally, we aim at minimizing

γext ∑
r∈R

∑
d∈Dres

r

ηr,d + γfinish∑
t∈T

(
Zt,τt − Zearliest

t,τt

)
. (3.1)
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The first term of the objective function gives the total time used of the extended service
time windows, where ηr,d = max({St,u + P end

t,u,r −W end
r,d | t ∈ T, u ∈ Ut, r ∈ Qt,u, Zt,u =

d} ∪ {0}) for resource r and day d. The second term computes for each therapy t the
deviation of the last treatment day from a lower bound Zearliest

t,τt
, that represents a lower

bound on the earliest possible day treatment t can be finished and is defined as

Zearliest
t,τt

=

d
min
t,1 +

(⌈
τt

ntwmax
t

⌉
− 1

)
(7− ntwmax

t ) + (τt − 1) if δmin
t = 1

dmin
t,1 + (τt − 1)δmin

t otherwise.
(3.2)

Note that the definition of DTs stated here differs from the one given in our first paper
[81], where DTs are composed of consecutively executed activities that are related with
minimum and maximum time lags. The simplification here is motivated by the fact that
in practice the possibility to have different minimum and maximum time lags between
two activities is not expected to be exploited in midterm planning. Consequently, time
lags may either be replaced by “dummy” activities of fixed length or, as we do here, the
subdivision of DTs into activities can be replaced by the time intervals Pt,u,r specifying
at what times which resources are needed.

In our last work concerning the PTPSP [78], described in Section 3.8, we additionally
aim at limiting the variations between the starting times of the DTs within each therapy.
To this end, solutions are represented as a triple (Z, S, S̃), where Z again denotes the
assignments of DTs to days, S specifies once more the DTs’ starting times on the respective
days, and S̃ = {S̃t,v ∈ R≥0 | ∀t ∈ T, v ∈ V } corresponds to the set of nominal starting
times of the therapies’ DTs within the weeks. Next to minimizing the required extended
time and the therapies’ finishing days, the goal is to minimize the deviation of the
DTs’ starting times from the corresponding nominal starting times and to minimize the
difference of the nominal starting times between weeks. The extended objective function
is stated as

γext ∑
r∈R

∑
d∈Dres

r

ηr,d + γfinish∑
t∈T

(
Zt,τt − Zearliest

t,τt

)
+

γintraw ∑
t∈T

∑
u∈Ut\{1}

σintraw
t,u + γinterw ∑

t∈T

∑
v∈V \{1}

σinterw
t,v , (3.3)

where γext, γfinish, γintraw and γinterw are scalar weights. The first two terms are defined
as before. The third objective term gives the total excess of the allowed deviation
of the DTs’ starting times to their respective nominal starting times, where σintraw

t,u =
max(|St,u − S̃t,v| − δintraw, 0) with v ∈ V : Zt,u ∈ D′v. Each therapy’s first DT is
excluded from the above calculation since those are regarded in the specific situation
at MedAustron as special. Finally, the last term computes the excess of the maximum
intended time difference of the nominal starting times between two weeks and is calculated
by σinterw

t,v = max(|S̃t,v − S̃t,v−1| − δinterw, 0).

In the following we give a formal definition of the PTPSP by providing a MILP model.
We start with the basic problem formulation that considers objective function (3.1). We
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first focus on the upper level of assigning DTs to days. Afterwards, we give the additional
constraints for assigning starting times to the individual DTs. Note, that these two levels
are not independent. Nevertheless, the decomposition into a day assignment part and
a scheduling part within days will be used within our approaches as it makes PTPSP
more manageable in practice. Objective function (3.3) is considered next by a further
extension of the model. To this end, we exchange the MILP’s objective function and
provide the additional variables and constraints for determining the nominal starting
times and deviations from them.

3.3.1 Day Assignment

The MILP model for the day assignment uses the following variables. Binary variables
zt,u,d that are one if DT u of therapy t is to be performed on day d, i.e., Zt,u = d, and
zero otherwise. Moreover, we have binary variables yt,v that are one if at least one of
the DTs of therapy t is provided in week v and zero otherwise. In addition, variables
ηr,d ∈ R≥0 give the amount of extended time used from resource r on day d. The latter
variables clearly depend on the solution of the timing subproblem and their values are
here estimated.

At the day assignment level, we relax the detailed timing structure of the DTs and
consider only total resource availabilities on each day. Let W av

r,d denote the aggregated
regular service time of resource r on day d and Ŵ av

r,d the available extended service time,
i.e., the total time resource r is available on that day is W av

r,d + Ŵ av
r,d. Moreover, for better

readability we denote by D′′t,u for DT u associated with therapy t the set of working days
between the DT’s earliest and latest day, i.e., D′′t,u = D′ ∩ {dmin

t,u , . . . , d
max
t,u }. The model

reads as follows:

min γext ∑
r∈R̂

∑
d∈Dres

r

ηr,d +

γfinish∑
t∈T

∑
d∈D′

dzt,τt,d − Zearliest
t,τt


(3.4)

s.t.
∑
d∈D′

d zt,u+1,d −
∑
d∈D′

d zt,u,d ≥ δmin
t ∀t ∈ T, ∀u ∈ Ut \ {τt}, (3.5)

∑
d∈D′

d zt,u+1,d −
∑
d∈D′

d zt,u,d ≤ δmax
t ∀t ∈ T, ∀u ∈ Ut \ {τt}, (3.6)

∑
d∈D′

v

∑
u∈Ut

zt,u,d ≥ min(ntwmin
t , |D′v|) ·

(yt,v + yt,v+1 − 1)

∀t ∈ T, ∀v ∈ V \ {nV }, (3.7)

∑
d∈D′

v

∑
u∈Ut

zt,u,d ≤ ntwmax
t yt,v ∀t ∈ T, ∀v ∈ V, (3.8)
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zt,u,d + zt,u,d′ ≤ 1 ∀t ∈ T, ∀v ∈ V \ {nV },
∀d, d′ ∈ D′ : d ∈ max{D′v},
d′ ∈ min{D′v+1}, d′ − d = 2,

(3.9)

∑
t∈T

∑
u∈Ut

P dur
t,u,r zt,u,d ≤W av

r,d + ηr,d ∀r ∈ R̂, d ∈ Dres
r , (3.10)

∑
t∈T

∑
u∈Ut

P dur
t,u,r zt,u,d ≤W av

r,d ∀r ∈ R \ R̂, d ∈ Dres
r , (3.11)

∑
d∈D′

zt,u,d = 1 ∀t ∈ T, ∀u ∈ Ut, (3.12)

zt,u,d ≤ yt,v ∀t ∈ T, ∀u ∈ Ut,
∀v ∈ V, ∀d ∈ D′v,

(3.13)

0 ≤ ηr,d ≤ Ŵ av
r,d ∀r ∈ R̂, ∀d ∈ Dres

r , (3.14)
zt,u,d ∈ {0, 1} ∀t ∈ T, ∀u ∈ Ut, ∀d ∈ D′′t,u, (3.15)
yt,v ∈ {0, 1} ∀t ∈ T, ∀v ∈ V. (3.16)

Objective function (3.4) minimizes the use of extended time and prioritizes early finishing
days. Inequalities (3.5) enforce that all the DTs of a therapy t are scheduled in the correct
order and that the minimal number of required days δmin

t between two consecutive DTs
is adhered. Similarly, inequalities (3.6) take care that the consecutive DTs of a therapy
are scheduled no more than δmax

t days apart. The following two sets of constraints ensure
for each therapy that the number of planned DTs stays within ntwmin

t and ntwmax
t per

week. There are two special cases where the number of provided DTs might be lower
than ntwmin

t . The first one is in the last week of therapies and the second one is if due to
maintenance or public holidays the number working days within a considered week is
less than ntwmin

t . Inequalities (3.9) require that if DTs can be scheduled on a Saturday
and on the following Monday then treatments belonging to the same therapy may be
scheduled on at most one of these days. This guarantees the required break of at least
two days between weeks3. Subsequent inequalities (3.10) and (3.11) enforce that the
amount of consumed resources does not exceed the amount of available resources on any
day. Equations (3.12) assure that each DT is performed exactly once. Inequalities (3.13)
link the x variables with the y variables. Inequalities (3.14) restrict the extended time
that might be used. The domains of the z and y variables are specified by (3.15) and
(3.16), respectively.

Again, be reminded that we relaxed timing aspects in the above model and so far only
considered aggregated resource consumptions and availabilities. Consequently, this model
on its own only provides a lower bound on the optimal solution value for the whole
PTPSP.

3The facility is assumed to be always closed on Sundays.
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3.3.2 Time Assignment

Let us now extend the above model by exactly modeling also the time assignments for
the DTs. This allows us to calculate the correct values for the η variables. To ease the
notation, let S′t,u,d be the set of all integral feasible starting times on day d allowing
the corresponding DT u ∈ Ut, t ∈ T to be performed without overlapping with one of
the unavailability periods within its required resources’ regular or extended service time.
Moreover, we define W ′r,d to be the set of integral time points at which resource r can be
used on day d, i.e., W ′r,d = (Wr,d ∪ Ŵr,d \W r,d) ∩ Z≥0.

The extension of the model is stated in terms of binary variables xt,u,d,k ∈ S′t,u,d that are
one if DT u of therapy t starts on day d at time point k, i.e., Zt,u = d and St,u,a = k,
and zero otherwise. The extension of the model (3.4)–(3.16) reads as follows:

∑
k∈S′

t,u,d

xt,u,d,k = zt,u,d ∀t ∈ T, ∀u ∈ Ut, ∀d ∈ D′′t,u, (3.17)

∑
t∈T, u∈Ut:

r∈Qt,u, d∈D′′
t,u

∑
k∈[b−P end

t,u,r,b−P start
t,u,r ]

∩S′
t,u,d

xt,u,d,k ≤ 1 ∀r ∈ R, ∀d ∈ Dres
r , ∀b ∈W ′r,d, (3.18)

∑
k∈S′

t,u,d

(
k xt,u,d,k + P end

t,u,r

)
−W end

r,d ≤ ηr,d ∀r ∈ R̂, ∀d ∈ Dres
r , ∀t ∈ T,

∀u ∈ Ut : r ∈ Qt,u, d ∈ D′′t,u,
(3.19)

xt,u,d,k ∈ {0, 1} ∀t ∈ T, ∀u ∈ Ut, ∀d ∈ D′′t,u,
∀k ∈ S′t,u,d.

(3.20)

Equations (3.17) ensure that each DT gets assigned exactly one starting time at the DT’s
assigned day. For all other days all xt,u,d,k variables are forced to zero. Constraints (3.18)
guarantee that each resource is used by at most one DT at a time. Inequalities (3.19) are
used to calculate ηr,d, the required extended times of each resource r ∈ R, from the latest
time it is in use by any DT. Remember that the sum over all ηr,d variables appears in
the objective function (3.4) and is to be minimized. The domains of the variables xt,u,d,k
representing the starting times of the DTs are given in (3.20).

While we will see practical results for the MILP model of the day assignment relaxation
(3.4)–(3.16), the time assignment extension was provided here only to specify the PTPSP
in an exact way. Experiments very soon indicated that already solving the day assignment
relaxation is computationally challenging. Solving the whole MILP model including the
time assignments is clearly out of reach for the instances of practically relevant size. This
would even hold already for a very crude time discretization. We will therefore focus on
heuristic methods in this chapter.
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3.3.3 Limiting Starting Time Variations

We provide here a further supplement to the model (3.4)–(3.20) in order to consider the
extended problem formulation of PTPSP. We require the additional variables S̃t,v ∈ R≥0
that represent for therapy t the nominal starting time in week v. The excess of a starting
time’s allowed deviation to their respective nominal starting time from DT u belonging to
therapies t is given by σintraw

t,u ∈ R≥0 variables. Moreover, variables σinterw
t,v ∈ R≥0 describe

the excess of the maximum intended time difference between the nominal starting times
of two successive weeks v − 1 and v of therapy t.

In order to minimize the fluctuation of the times at which the therapies’ DTs are scheduled
we replace in our MILP the objective function (3.4) by

min γext ∑
r∈R̂

∑
d∈Dres

r

ηr,d +

γfinish∑
t∈T

∑
d∈D′

dzt,τt,d − Zearliest
t,τt

+

γintraw ∑
t∈T

∑
u∈Ut\{1}

σintraw
t,u +

γinterw ∑
t∈T

∑
v∈V \{1}

σinterw
t,v .

(3.21)

In addition to the constraints (3.5)–(3.20) we consider the following constraints:

∣∣∣∣∣∣∣
∑

k∈S′
t,u,d

k xt,u,d,k − S̃t,v

∣∣∣∣∣∣∣− δintraw −

(1− zt,u,d)W̃ end
d ≤ σintraw

t,u

∀t ∈ T, ∀u ∈ Ut \ {1},
∀d ∈ D′′t,u, ∀v ∈ V : d ∈ D′v,

(3.22)

|S̃t,v − S̃t,v−1| − δinterw ≤ σinterw
t,v ∀t ∈ T, ∀v ∈ V \ {1}, (3.23)

S̃t,v ≥ 0 ∀t ∈ T, ∀v ∈ V, (3.24)
σintraw
t,u ≥ 0 ∀t ∈ T, ∀u ∈ Ut, (3.25)
σinterw
t,v ≥ 0 ∀t ∈ T, ∀v ∈ V. (3.26)

Inequalities (3.22) provide that the σintraw
t,u variables are set to the excess of the allowed

deviation from the respective DTs’ starting time to their nominal starting time. Since
nominal starting time are defined per therapy and week, we have to explicitly take
care that the excess is computed with the nominal starting time of the week the DT is
performed. To this end, we provide a constraint for each possible day and subtract a
large constant (in this case W̃ end

d ) whenever a DT is not performed on the considered day
making the left-hand side negative. Consequently, the constraint is only active for the
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day the DT is planed. Inequalities (3.23) enforce that the σinterw
t,v variables represent the

excess of the maximum intended time difference of the nominal starting times between
two subsequent weeks. The domains of the S̃t,v, σintraw, and σinterw variables are specified
by (3.24), (3.25), and (3.26), respectively.

Taking into account that we minimize over the σintraw and the σinterw variables all
constraints involving absolute values can be linearized by replacing equations of the
form |x| − y ≤ z by x− y ≤ z and −x− y ≤ z. For instance, the constraints (3.23) are
linearized to

S̃t,v − S̃t,v−1 − δinterw ≤ σinterw
t,v ∀t ∈ T, ∀v ∈ V \ {1} and

S̃t,v−1 − S̃t,v − δinterw ≤ σinterw
t,v ∀t ∈ T, ∀v ∈ V \ {1}.

The other constraints can be converted analogously.

3.4 A Therapy-Wise Constructive Heuristic
As a first, rather fast method to obtain heuristic solutions for the PTPSP, we propose
the therapy-wise construction heuristic (TWCH) in the following. It acts in two phases,
first assigning all DTs to days and afterwards scheduling the DTs on each day. The
heuristic follows simple greedy principles but also uses a forward-looking mechanism to
avoid getting trapped by making obviously poor decisions.

3.4.1 Day Assignment Phase

In the day assignment phase the heuristic iteratively selects one still unconsidered therapy
and assigns days to its DTs sequentially, starting with the first DT. For each DT all feasible
days between the earliest and latest starting day are evaluated w.r.t. the aggregated
resource demands, the still available capacities, and the constraints imposed by the DT’s
predecessors. The DT is then assigned to the candidate day minimizing on the one hand
the day at which the therapy is completed and on the other hand the expected additional
use of extended service time windows for the current DT and all subsequent DTs.

Algorithm 3.1 shows this procedure in detail. It starts with a set of therapies T ′ to be
scheduled, which initially corresponds to T , and an empty set Gd which is used to store
the DTs assigned to each working day d ∈ D′. In each iteration of the while-loop a
therapy t is selected and removed from T ′ according to a priority value determined by
function therapy_priority(·). We will consider the calculation of this priority value later.
The DTs u ∈ Ut of the selected therapy t are then processed sequentially in the for-loop
from Line 6 on.

For each DT a range of feasible days {dearliest, . . . , dlatest} is determined first. This range
is for all DTs at most {dmin

t,u , . . . , d
max
t,u }. For all DTs for which the predecessor has been

already assigned, i.e., all DTs except the first, the range of possible days can be restricted
further. Line 10 and Line 16 exclude days from the range that are either to close or
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Algorithm 3.1: TWCH’s day assignment
Input: Set T ′ of therapies to consider

1 Gd ← ∅ ∀d ∈ D′;
2 while T ′ 6= ∅ do
3 t← arg maxt∈T ′ therapy_priority(t); // ties are broken randomly
4 T ′ ← T ′\{t};
5 dlast ← −1; vlast ← −1; ntw ← 0;
6 for u← 1 to τt do
7 dbest ← −1; bestCost←∞;
8 dearliest ← dmin

t,u ; dlatest ← dmax
t,u ;

9 if u > 0 then
10 dearliest ← max(dearliest, dlast + δmin

t );
11 if ntw = ntwmax

t then
12 dearliest ← max(dearliest,max{D′

vlast}+ 1);
13 v ← v ∈ V : dearliest ∈ D′v;
14 if vlast 6= v then
15 dearliest ← max(dearliest, dlast + 3);
16 dlatest ← min(dlatest, dlast + δmax

t );
17 if ntw < min(ntwmin

t , |D′
vlast |) then

18 dlatest ← min(dlatest,max{D′
vlast});

19 foreach d ∈ {dearliest, . . . , dlatest} ∩D′ do
20 if ∃r ∈ R : P dur

t,u,r +
∑

(t′,u′)∈Gd
P end
t′,u′,r > W av

r,d + Ŵ av
r,d then continue;

21 if lookahead is feasible then obtain lookaheadCost else continue;
22 extCost←

∑
r∈Qt,u

(γext · (max(P dur
t,u,r +

∑
(t′,u′)∈Gd

P dur
t′,u′,r −W av

r,d, 0))−
max(

∑
(t′,u′)∈Gd

P dur
t′,u′,r −W av

r,d, 0)));
23 finishCost← γfinish · (d− dearliest);
24 if lookaheadCost + extCost + finishCost < bestCost then
25 dbest ← d;
26 bestCost← lookaheadCost + extCost + finishCost;

27 if dbest = −1 then infeasible;
28 v ← v ∈ V : d ∈ D′v;
29 if vlast = v then
30 ntw ← ntw + 1;
31 else
32 vlast ← v; ntw ← 1;
33 dlast ← dbest;
34 Gdbest ← Gdbest ∪ {(t, u)};
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too far from the predecessor. Lines 12 and 18 exclude days staying in conflict with
the requirement that at least ntwmin

t and at most ntwmax
t DTs need to be provided per

week. Moreover, Line 15 ensures that DTs are not performed on both Saturday and
Monday. This guarantees in combination with the assumption that the treatment facility
is generally closed on Sundays that between two weeks each therapy is paused for at least
two consecutive days. Each working day in the obtained range is then further evaluated
in the inner for-loop from Line 19 on. Days at which at least one resource required by the
DT is not available in enough quantity are skipped by Line 20. Variables W av

r,d and Ŵ av
r,d

denote here again the total available regular and extended time of resource r on day d.

For each remaining day the cost of assigning DT u ∈ Ut to d are estimated by calculating
the sum of the costs arising from using extended service time windows, a penalty cost for
using later days and an estimation of the costs for assigning all successive DTs u+1, . . . , τt.
The cost that originates from a single DT w.r.t. resource availabilities is the time the DT
uses from extended service windows as calculated at Line 22. This simplistic estimation
has been refined in Maschler et al. [84] and is described in Section 3.7. Line 23 computes
how much selecting a specific day delays the whole therapy in relation to the second
term of objective function (3.1). Line 34 finally assigns DTs u to the day with the lowest
estimated cost, which is recorded in dbest.

To estimate the costs for assigning the successive DTs u + 1, . . . , τt we use a forward-
looking mechanism that works almost analogously to the main algorithm’s part from
Line 6 to Line 33. The essential difference to Algorithm 3.1 is that in the lookahead we
use for u+ 1, . . . , τt the costs only from the first feasible day instead of considering the
costs of all feasible days. This can be accomplished by omitting Line 21 and terminating
the for-loop from Line 19 if line 26 is reached. The lookahead returns either the cost
of assigning the DTs u+ 1, . . . , τt to their first possible days, respectively, or the result
that for at least one of the DTs no feasible day could be found. In the latter case we can
remove the considered day from further consideration.

The performance of Algorithm 3.1 depends to a large extent on the therapy_priority(·)
function. In preliminary tests we considered as this priority (a) the number of DTs
τt, (b) the latest starting day for the first DT −dmax

t,1 (with negative sign to give a DT
with an earlier day higher priority), and (c) the first DT’s total time required over
all resources

∑
r∈Qt,1 P

dur
t,u,r, breaking ties randomly. With respect to our benchmark

instances, see Section 3.9.1, our experiments clearly show that (b), the latest starting
day for the first DT −dmax

t,1 , provides the best guidance for the heuristic. It appears
reasonable that therapies having less flexibility w.r.t. their start should be given higher
priority. Consequently, we will use this function in all our further investigations.

3.4.2 Time Assignment Phase

In the time assignment phase the scheduling of the DTs is done for each working day
independently. For a considered day d ∈ D′, the heuristic selects a not yet scheduled DT
from Gd and sets its start time as early as possible respecting the availabilities of all
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required resources. Note that the time assignment presented here differs substantially
from the original version proposed in [81] due to the simplifications in the structure of
the DTs.

Algorithm 3.2: TWCH’s time assignment
Input: day d and set Gd consisting of all assigned DTs

1 Cr ←W start
r,d ∀r ∈ R : d ∈ Dres

r ;
2 while Gd 6= ∅ do
3 (t, u)← arg max(t,u)∈Gd

DT_priority(t, u); // ties are broken randomly
4 Gd ← Gd \ {(t, u)};
5 St,u ← maxr∈Qt,u(Cr − P start

t,u,r );
6 while ∃r ∈ Qt,u∃w ∈ {1, . . . , ωr,d} [St,u + P start

t,u,r , St,u + P end
t,u,r) ∩W r,d,w 6= ∅ do

7 St,u ←W
end
r,d,w − P start

t,u,r ;
8 Cr ← St,u + P end

t,u,r ∀r ∈ Qt,u;

Algorithm 3.2 shows the procedure in detail. The input is the considered day and the set
Gd of assigned DTs as computed by Algorithm 3.1. For each resource r available on day
d, a time marker Cr is initialized with the start of the regular service time window. This
variable in general refers to the most recent point in time resource r has been used. All
not yet scheduled DTs requiring resource r will be assigned a start time of at least Cr.

In each iteration of the main while-loop that starts at line 2 a DT u ∈ Ut is selected and
removed from Gd according to a priority function DT_priority(·). The tested realizations
of this function are discussed later. We set first the DT’s starting time St,u to the earliest
time s.t. every resource r ∈ Qt,u is not required earlier than Cr. At this point the starting
time of the considered DT might still overlap with unavailability periods. Therefore,
in the while-loop from line 6 we delay the starting time St,u as long as there exists an
overlapping unavailability period for a required resource. Afterwards, we have obtained
either a feasible starting time or surpassed the end of the fundamental opening time.
The latter case can be disregarded since we assume that there always exists sufficient
extended time for scheduling any DT and, hence, satisfiability is not a practical issue.
The last line of Algorithm 3.2 updates the corresponding time markers to include the
last DT.

The solution quality of Algorithm 3.2 is influenced to a high degree by the greedy
DT_priority(·) used for selecting the next DT to be considered. To this end we consider
three different criteria where smaller values always indicating higher priorities:

(a) The idle time that emerges on the beam resource if DT (t, u) ∈ Gd is considered
next, i.e., the value C ′′B − C ′B − P dur

t,u,B for the beam resource B ∈ R, where C ′B and
C ′′B are the values of the corresponding CB variable before and after scheduling
u ∈ Ut.
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(b) The minimum time a resource required by the considered DT (t, u) ∈ Gd leaves its
regular service window, i.e., minr∈Qt,u W

end
r,d .

(c) The ratio between the duration the beam required and the DT’s total processing
time, i.e., P dur

t,u,B/pt,u, where B ∈ R denotes the beam resource.

Preliminary tests indicated that all the above criteria provide reasonable guidance with
criterion (a) tending to yield on average better solutions than (b) and (c), but no single
criterion dominates the others clearly. A problem, at least with respect to our benchmark
instances, is that ties frequently happen, i.e., different DTs sometimes evaluate to the
same priority criterion value. To counteract these ties, we define our actual DT_priority
function via a lexicographic combination of all three above criteria: First, the value of
criterion (a) is considered as priority. In case of a tie, criterion (b) is used, and if a tie
happens again, the last criterion (c) is considered. Remaining ties are broken randomly.
Note that the sign of all criteria values are inverted in order to obtain large priority
values for DTs that should be preferred.

TWCH can be implemented in time O(nT · τ2
max · dmax ·Qmax + |D′| · nT ·Qmax · ωmax),

where τmax = maxt∈T τt denotes the maximum number of DTs of any therapy, dmax =
maxt∈T,u∈Ut(dmax

t,u − dmin
t,u ) is the maximum number of days within which any DT must

start, Qmax = maxt∈T,u∈Ut(|Qt,u|) represents the largest number of required resources by
any DT, and ωmax = maxr∈R,d∈Dres

r
(ωr,d) specifies the maximum number of unavailability

periods of all resources on a single day.

3.5 First Metaheuristic Approaches
As will be seen in the experimental results TWCH is relatively fast also on instances of
practically relevant size. However, it obviously leaves room for improvements regarding
solution quality, as some greedy decisions will in general not lead to an overall optimal
solution. We therefore consider here two metaheuristic approaches that build upon
TWCH: a GRASP and an IG metaheuristic.

3.5.1 GRASP

GRASP is a prominent metaheuristic building upon a construction heuristic and usually
a local search component [102]. The basic idea is to apply a randomized variant of
the construction heuristic independently many times, to locally improve each obtained
solution, and to select an overall best solution as final one.

In our context, we randomize TWCH’s day assignment by changing the way the next
therapy to be scheduled is selected at line 3 of Algorithm 3.1 in a GRASP-typical
fashion. Let ptmin and ptmax be the minimal and maximal priority value received from
therapy_priority(t), ∀t ∈ T ′, respectively. The next considered DT is chosen uniformly at
random from the subset of T ′ with therapy_priority(t) ≥ ptmax−βgr-rand · (ptmax−ptmin).
Parameter βgr-rand ∈ (0, 1) determines the allowed deviation from the highest priority
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and thus controls the strength of the randomization. TWCH’s original time assignment
algorithm is then applied to all days to which DTs are assigned to, determining starting
times S.

Afterwards, we apply as local improvement the following randomized multi-start heuristic
individually to each day: TWCH’s time assignment procedure is randomized by modifying
line 3 to choose from the krta-rand best DTs uniformly at random, with parameter krta-rand

controlling the strength of the randomization. This randomized construction is repeatedly
applied until a schedule, not requiring extended times at the respective day, is found or
no improvement has been achieved over the last nrta-noimp iterations. A starting time
configuration inducing the smallest cost is finally kept.

3.5.2 Iterated Greedy

An IG [60] algorithm starts with an initial solution and then repeatedly applies a
destruction phase annulling part of the solution, followed by a construction phase that
completes the solution again, until a termination criterion is reached. The initial solution
is usually obtained by applying a construction heuristic. The destruction phase removes
randomly selected components from the incumbent solution, that are then reinserted by
a greedy reconstruction method in the construction phase. Afterwards, an acceptance
criterion is evaluated to determine whether the newly generated solution replaces the
incumbent solution. Frequently, a local search algorithm is applied to the initial solution
and after the construction phase to further boost the performance. The IG metaheuristic
has many successful applications, in particular also in the domain of scheduling. See
for example [107] where one of the first applications of IG to a permutation flowshop
scheduling problem is described.

Our IG works as follows. TWCH as described in Section 3.4 is again used to create
an initial solution. The destruction operator drops for βig-dest · nT randomly selected
therapies the assignment of all their DTs, i.e., invalidating their assigned days Zt,u and
removing them from the sets Gd. Hereby, βig-dest ∈ (0, 1) is an exogenous parameter, the
destruction rate. The construction step is then performed in a straight-forward way by
reapplying TWCH’s day assignment for the set of removed therapies, warm-starting with
the current sets Gd. Finally, TWCH’s time assignment is applied from scratch to all
working days for which Gd has changed in comparison to the original solution.

In addition, we also try to locally improve the obtained solution at each iteration by
performing the day-wise multi-start randomized time assignment as described above for
the GRASP. Our IG always accepts a new solution as new incumbent if it improves upon
the previously best solution.

3.6 An Enhanced Iterated Greedy Metaheuristic
Experiments on our first two metaheuristic approaches, documented in Section 3.9.3,
indicate that the IG yields superior results in comparison to the GRASP. This is mainly
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due to the fact that the IG preserves substantial parts of the solution from one iteration
to the next, and consequently, poor decisions made especially in the first phase of TWCH
can be corrected in the course of the iterations. However, the IG from Section 3.5.2 does
not exhaust its full potential: Moving DTs between days might require to reevaluate the
start times of all DTs, and this is done by simply dropping all start times of the considered
days. In addition, we used a local improvement operator within the IG that is based on
applying a randomized version of the time assignment phase of TWCH repeatedly for
many times. Even though this local improvement operator is able to enhance solutions
rather quickly this approach has the drawback that partly redundant work is repeatedly
done, still yielding relatively similar solutions for the time assignments.

We aim here at improving on the IG metaheuristic from Section 3.5.2. To this end, we
propose a novel destruction and construction method that is able to keep relative timing
characteristics of untouched DTs to a larger extent. Furthermore, we replace the so far
rather simple local improvement operator by a local search method that considers a
restricted DT exchange neighborhood. The initial solution is again provided by TWCH.
This new IG outperforms the IG from Section 3.5.2 and a variant of the IG using the
new local search method but still the originally proposed destruction and construction
phase. In the following sections we discuss the new components of this enhanced IG
metaheuristic.

3.6.1 Local Search

The design of the neighborhood used within the IG’s local search component depends on
several factors. As real world instances are expected to be quite large, the main challenge
is to find neighborhoods that can be searched rather fast, still allowing to complete a
reasonable number of iterations of the IG, while improving the solution significantly in
most cases. To achieve this, we restrict ourselves to a local search method that is only
able to modify the starting times of DTs, i.e., the day assignment is considered to be
fixed. Hence, w.r.t. objective function (3.1) we are only able to improve on the objective
function term that considers the use of extended service windows. A further consequence
of this restriction is that the working days become independent, which allows us to define
the neighborhood and perform the local search for each day separately.

In our scenario the DTs are heterogeneous regarding their time and resource requirements.
Thus, moving DTs or exchanging the starting times of two DTs in a tightly scheduled
day will lead in most cases to an infeasible solution. However, we can exploit the fact
that each DT requires the beam resource exactly once to define a unique sequence of the
DTs scheduled on a particular day. A solution is encoded by the sequence (π1, . . . , πn)
resulting from sorting the DTs assigned to the currently considered day d (given by the
set {(t, u) | t ∈ T, u ∈ Ut, Zt,u = d}) in ascending order of the times from which on
they use the beam resource B, i.e., according to St,u + P start

t,u,B. On the encoded days we
can then define classical neighborhoods for sequencing problems. To evaluate neighbors
we have to decode the corresponding sequences of DTs to obtain actual starting times.
Algorithm 3.3 shows this decoding for a given sequence (π1, . . . , πn) of DTs and a working
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day d ∈ D′. The procedure starts by initializing each time marker Cr to the time the
corresponding resource r becomes available. In the main loop each DT is assigned in the
order of the given sequence to the earliest possible start time at which all resources are
available. First, at Line 3 the DT’s start time St,u is set to the earliest possible time s.t.
all required resources are used after their corresponding time marker. At this time, the
considered DT might still overlap with unavailability periods. If this is the case, the DT
is delayed in the inner while loop until all required resources become available. At Line 6
the time markers Cr are set to the times when the corresponding resources become free
after the just scheduled DT. As for the TWCH’s time assignment phase we omit here an
explicit check that controls whether all DTs are performed before W̃ end

d since we assume
that feasibility is not a practical issue.

Algorithm 3.3: Computation of starting times for a given sequence of DTs.
Input: A day d and a sequence of DTs (π1, . . . , πn)

1 Cr ←W start
r,d ∀r ∈ R : d ∈ Dres

r ;
2 for (t, u)← π1 to πn do
3 St,u ← maxr∈Qt,u(Cr − P start

t,u,r );
4 while ∃r ∈ Qt,u∃w ∈ {1, . . . , ωr,d}[St,u + P start

t,u,r , St,u + P end
t,u,r) ∩W r,d,w 6= ∅ do

5 St,u ←W
end
r,d,w − P start

t,u,r ;
6 Cr ← St,u + P end

t,u,r ∀r ∈ Qt,u;

To obtain an effective neighborhood we have to take the problem structure into account.
A fundamental property is that all DTs require the beam and one of the room resources.
Moreover, the beam resource is used only during a part of the time the respective room
resources are required. In a tight schedule the beam usually cycles between the three
treatment rooms as in this way the emerging idle time on the beam resource is minimal
and the throughput of the facility is maximized. If we interrupt this interleaved execution
of DTs by removing a single DT from the sequence, then in general the resulting gap
on beam resource cannot be fully closed by decoding the remaining DTs. Consequently,
classic insertion moves in which a single DTs is removed and reinserted in another position
of the encoded sequence will rarely improve already tight schedules. Exchanging the
position of two DTs, however, circumvents this situation. Therefore, we consider a
neighborhood structure based on such exchanges.

The DT exchange neighborhood is defined for a day d on a sequence (π1, . . . , πn) of
DTs by considering all pairs of DTs πi and πj , where 1 ≤ i < j ≤ n. A move in this
neighborhood results in a new sequence (π1, . . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . . , πn)
and is accepted if the decoded time assignment has a better objective value. The size of
the neighborhood is n(n− 1)/2.

To accelerate the local search procedure we restrict the DT exchange neighborhood to
the most promising moves. That is, a move is only evaluated if both considered DTs
are either adjacent in sequence π or it is likely that an exchange produces a tighter
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Algorithm 3.4: Destruction and construction phases.
Input: A solution (Z, S)

1 T ′ ← subset of T containing βig-dest · nT randomly selected therapies;
2 remove day and time assignments for each therapy T ′;
3 apply TWCH’s day assignment for T ′;
4 foreach d ∈ D′ do
5 Gd ← {(t, u) | t ∈ T \ T ′, u ∈ Ut, Zt,u = d};
6 G′d ← {(t, u) | t ∈ T ′, u ∈ Ut, Zt,u = d};
7 foreach (t, u) ∈ G′d do
8 (π1, . . . , πn)← sequence obtained by sorting Gd according to St,u + P start

t,u,B;
9 best_obj←∞; best_MS←∞; π′best ← ();

10 for i← 1 to n+ 1 do
11 π′ ← (π1, . . . , πi−1, (t, u), πi, . . . , πn);
12 schedule π′ with Algorithm 3.3;
13 obj← objective value of the current partial solution;
14 MS← makespan of current day d;
15 if obj < best_obj ∨ (obj = best_obj ∧MS < best_MS) then
16 best_obj← obj; best_MS← MS; π′best ← π′;

17 schedule π′best with Algorithm 3.3;
18 Gd ← Gd ∪ {(t, u)};

scheduled day. The latter criterion is based on the observation that scheduling two DTs
requiring the same treatment room consecutively induces substantial idle time on the
beam resource. Hence, we count how many adjacent DTs of π(i) and π(j) are requiring
the same room as π(i) and π(j), respectively. A move is only considered further if this
number does not increase with the exchange.

3.6.2 Destruction and Construction

The destruction and construction phase of the IG from Section 3.5.2 consists of removing
the DTs of randomly selected therapies from the schedule, followed by applying TWCH’s
day assignment for the removed therapies and solving TWCH’s time assignment from
scratch. However, w.r.t. the local search algorithm from Section 3.6.1 discarding the
whole time assignment during destruction and construction is disadvantageous since no
parts of the old time assignment of an affected day are transferred to the new one. We
overcome this drawback by replacing TWCH’s day assignment with an insertion heuristic
which preserves the sequence of unchanged DTs and inserts the removed ones in a greedy
fashion. Note that this insertion heuristic is conceptually similar to the NEH algorithm
of Nawaz et al. [87].

Algorithm 3.4 shows the used destruction and construction phase in detail. It starts by
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invalidating the day and time assignment of βig-dest · nT randomly selected therapies,
where βig-dest ∈ (0, 1] is the destruction rate. Afterwards, TWCH’s day assignment is
applied to reassign the DTs from the removed therapies to potentially new days. The
insertion heuristic for the time assignment is defined in the foreach loop at Line 4 and is
applied for each working day. The heuristic starts by initializing Gd to the set of DTs
that have been assigned to day d and which have not been removed by the destruction
phase. Analogously, G′d is defined as the set containing all DTs assigned to day d that
have been removed and for which a new starting time has to be found. Since all DTs
in Gd have valid start times, we can define a unique sequence (π1, . . . , πn) by sorting
the DTs according to the time they first require the beam resource. In each step a not
yet considered random DT from G′d is inserted at all possible positions of the sequence
and scheduled using Algorithm 3.3. All of these |Gd|+ 1 partial time assignments are
compared and finally the best one is kept. To this end a partial solution is considered
better if the objective value is smaller (i.e., the decoded sequence uses less extended
time). In case of a tie we prefer the option with the smaller makespan. The rationale
behind the latter criterion is that in particular after destruction many insertion points
allow scheduling the sequence without use of extended service windows. Preferring a
smaller makespan typically results in a tighter packed schedule and hopefully retains
better options for the still to be inserted DTs.

3.7 Time Estimation for Scheduling Sets of Treatments

As already demonstrated in the problem formalization in Section 3.3, PTPSP naturally
decomposes into the day assignment level in which DTs are assigned to days and the time
assignment level that consists of finding starting times for the DTs. In other words, Z
are the first level and S are the second level decision variables. Clearly, those two levels
are dependent on a large degree. Nevertheless, this problem decomposition is beneficial
because we can separate the detailed resource model from the remaining operational
constraints. Moreover, if objective function (3.1) is considered in the time assignment
level each day becomes independent and can be solved separately.

A central aspect of the day assignment is to find a well-paired allocation of DTs to days
that allows a high throughput of the facility but causes as little use of extended availability
periods as possible. Since determining ηr,d, the consumed extended time of resource r on
day d, requires the precise knowledge of the starting times, the usage of the resource’s
service time windows for a given candidate set of DTs has to be estimated. For this
reason, we use in the day assignment phase a modified version of our objective function
(3.1) that replaces ηr,d with the surrogate η̂r,d = max(0, λ̂r,d−W av

r,d), where λ̂r,d estimates
the required time and W av

r,d again denotes the aggregated regular availability of resource
r on day d. So far we used for λ̂r,d the trivial lower bound given by aggregated resource
demands

∑
(t,u):t∈T, u∈Ut,r∈Qt,u, Zt,u=d(P end

t,u,r − P start
t,u,r ). Consequently, the day assignment

frequently underestimated the resource consumption, which resulted in avoidable use of
extended availability periods in the time assignment.
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P̄B

P̄1

P orb P irb P ira P ora

Figure 3.4: Durations P orb, P irb, P ira, P ora, and P̄r depicted on an explanatory DT
performed in treatment room 1. The gray area of the DT represents the part of the
processing time that requires the room resource. The time for which the beam resource
B is needed is illustrated by a hatched pattern. The remaining time of the DT when
neither the beam nor room resource is required is shown in white. Note that P orb, P irb,
P ira, P ora, and P̄r are actually minimum and average durations over all considered DTs.

Here we focus on further improving the day assignment level by using a fast to compute,
more accurate surrogate model for estimating λ̂r,d for the main bottleneck resources,
the beam and the rooms. To this end, we study surrogate functions that consider more
aspects of the problem at hand. The main goal is to predict the overall objective function
contribution of the sequencing part with reasonable precision while being computationally
fast enough to be used in our existing approaches.

3.7.1 Estimating the Makespan under Complete Resource Availability

In the following we first concentrate on estimating the makespan required for a given
non-empty set G of DTs under the assumption that all required resources are available
without any further restrictions. We start by determining estimations of the makespan
for three special cases. Afterwards, an estimation for the general case is derived that is
based on the estimation for these special cases. Let nr = |{(t, u) ∈ G | r ∈ Qt,u}| be the
number of DTs requiring resource r ∈ {1, 2, 3,B}, where 1, 2, 3 represent the treatment
rooms and B the beam, respectively. Furthermore, let

P̄r =


∑

(t,u)∈G
(P end

t,u,r−P start
t,u,r )

nr
if nr > 0

0 else,
(3.27)

be the average time resource r ∈ {1, 2, 3,B} is required by DTs in G. Moreover, let
P irb and P ira be the minimum durations a room is required before and after the beam
resource, respectively, and let P orb and P ora be the minimum times required by any DT
before and after the usage of the room resource, respectively. Figure 3.4 illustrates these
durations on a schematic representation of a DT.

In the first special case we assume that all DTs in G require the same room. Figure 3.5(a)
shows an example with three DTs. Hence, w.r.t. the room resource all DTs have to be
scheduled in a strictly sequential way. In addition, the beam will have substantial breaks.
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In this case the makespan can be estimated using the total time the respective room
resource is required and some constant offset for the tasks outside of the room, i.e., by

max{P̄1n1, P̄2n2, P̄3n3}+ P orb + P ora. (3.28)

Observe that because only one room is used exactly one term of the maximum function
in (3.28) is greater than zero.

The second special case supposes that the DTs are provided in two rooms. An example
is provided Figure 3.5(b). DTs will be scheduled alternatingly between the two rooms.
It can be assumed that the tasks apart the irradiation take in general longer than the
irradiation itself. Consequently, there will be frequently breaks on the beam resource.
In most cases, the makespan will be determined by the utilization of the room that is
required the most. An estimation of the makespan for this special case is given by (3.28)
again. In contrast to the previous scenario two terms of the maximum function are
greater than zero.

The third special case assumes that the DTs are distributed evenly among the three
treatment rooms. See Figure 3.5(c) for an example consisting again of three DTs. In such
situations the rooms will be used in an interleaved way s.t. the beam cycles between
all three rooms. In this way, the beam will typically be used most efficiently and it can
be expected that the beam is used without idle time. The makespan can be estimated
by the total time the beam resource is used plus a constant offset for the first and last
scheduled DTs:

P̄BnB + P irb + P ira + P orb + P ora. (3.29)

In practice we will mostly have a mixture of the three discussed cases. A lower bound
for the makespan can be derived by combining (3.28) and (3.29):

MSLB = max{P̄1n1, P̄2n2, P̄3n3, P̄BnB + P irb + P ira}+ P orb + P ora. (3.30)

Equation (3.30) is a lower bound for the makespan since P orb, P ora, P irb, and P ira

are the minimum durations that have to precede and follow the first and last use of
the respective resources and the fact that the total resource requirement is a trivial
lower bound. Basically, MSLB assumes that there is a schedule without idle time on the
resource that is used the most. Let nmax = maxr∈{1,2,3} nr and nmin = minr∈{1,2,3} nr.
We can expect MSLB to be a tight estimate if either nmax ≥ nB − nmax − 1, i.e., one
room clearly dominates, or nmax ≤ nmin + 1, i.e., the DTs are evenly distributed among
the three rooms.

To strengthen the estimation also for cases in-between, we consider the simplified scenario
in which all DTs have exactly the same timing and resource requirements, except that
they are distributed among the three rooms. A good schedule would certainly cycle
between all three rooms, but not to an extent that remaining DTs have to be scheduled
sequentially in a single room.
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(a) special case 1: all DTs require the same treatment room

(b) special case 2: the DTs are performed in two treatment rooms

(c) special case 3: the DTs are distributed evenly between all three rooms

Figure 3.5: Examples for the three special cases of the makespan estimation. In each
example three DTs having the same timing characteristics are scheduled as densely as
possible. DTs that require the same treatment room are depicted in the same row, while
DTs performed in different treatment rooms are vertically shifted.

Let N123 be the maximal number of cycles between the three treatment rooms, such that
all remaining DTs can be scheduled alternatingly between two rooms. In such a scenario,
the following condition must hold:

nmax −N123 − 1 = (nmin −N123) + (|G| − nmax − nmin −N123). (3.31)

The intuition of the formula above is to compare the number of DTs that remain in each
room after cycling between all three rooms for N123 times. Note that the minus one
represents the fact that the schedule might start and end with the room that is required
the most. Equation (3.31) yields N123 = |G| − 2nmax + 1. After excluding the corner
cases where N123 becomes negative or larger than nmin we obtain

N123 = min(nmin,max(0, |G| − 2nmax + 1)). (3.32)

We can now strengthen the estimation of the makespan by using for N123 cycles between
the rooms the estimation for the third special case and for the remaining DTs the
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estimation for the second special case as follows:

MSES = max{P̄BnB + P irb + P ira,

P̄1n1, P̄2n2, P̄3n3,

3P̄BN123 + P̄1(n1 −N123),
3P̄BN123 + P̄2(n2 −N123),
3P̄BN123 + P̄3(n3 −N123)}+ P orb + P ora. (3.33)

Notice that MSES is in contrast to MSLB not a lower bound anymore.

3.7.2 Application of the Time Estimation

In this section the ideas developed in Section 3.7.1 will be used to obtain enhanced
estimations for the total times the beam and each room is required. To this end, for a
considered day d ∈ D′ let G be the set of all DTs assigned to day d. Since the beam and
the rooms are normally available the whole day, we can assume that they have in general
the same regular availability periods.

The total time the beam resource is required can be estimated almost analogously to
(3.33) with the only difference that we have to disregard the time after the last DT has
stopped using the beam. Thus, in the estimation, given by

λ̂B,d = max{P̄BnB + P irb,

P̄1n1 − P ira, P̄2n2 − P ira, P̄3n3 − P ira,

3P̄BN123 + max(P irb, P̄1 · (n1 −N123)− P ira),
3P̄BN123 + max(P irb, P̄2 · (n2 −N123)− P ira),
3P̄BN123 + max(P irb, P̄3 · (n3 −N123)− P ira)}+ P orb, (3.34)

we have to subtract P ira whenever the room resources are used for the estimation.

The total time the rooms are needed is estimated by

λ̂r∈{1,2,3},d = max{Trnr,
3P̄BN123 + max(Tr(nr −N123), P irb + P ira)}+ P orb. (3.35)

In contrast to the beam resource we can only use the considered room for the prediction.
We can strengthen the estimation for the room resource that is used the most, i.e., for
rmax = arg maxr∈{1,2,3} nr. This room is most likely the last one used and, hence, it
is used at least as much as the beam resource. The strengthened estimation for room
resource rmax is then given by

λ̂∗rmax,d = max{λ̂rmax,d, P̄BnB + P irb + P ira}. (3.36)
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3.8 An Iterated Greedy Metaheuristic for Limiting
Starting Time Variations

Up to now all presented heuristic approaches considered the basic formulation of the
PTPSP where solutions assign the therapies’ DTs to days and to times at these days.
Our approaches exploited the fact that once the allocation of DTs to days has been
determined the time assignment decomposes to independent problems for each day. Here
we shift our focus to the extension of PTPSP that covers in addition the aspect that the
variation among the times at which therapies’ DTs are provided has to be minimized.
Besides starting days and starting times for every DT, solutions for this extension consist
of a nominal starting time for each therapy and week. In contrast to before, the time
assignment for the individual days cannot be regarded as independent but is coupled
through the nominal starting times. Consequently, computing the nominal starting times
simply as a third step, i.e., after all starting days and starting times have been fixed, will
most likely result in poor solutions.

The aim of this section is to revise the IG metaheuristic from Section 3.6 in order to
deal with this extended problem formulation effectively. To this end, we examine and
make alterations to the most central components of the IG. For the initial solution as
well as for the IG’s construction phase we reuse TWCH’s day assignment but replace the
part for determining starting times with one that is more appropriate for the extended
problem variant. Furthermore, the adapted local search method alternately considers
the DT exchange neighborhood introduced in Section 3.6.1 and solves a LP model for
determining updated nominal starting times. In the following sections we discuss the
components in detail.

3.8.1 Initial Solution

TWCH is presented in Section 3.4 without the extension that the starting times should be
close to their weekly nominal starting times and that the nominal starting times belonging
to the same therapy should not differ too much. Basically, this construction heuristic acts
in two phases, first assigning all DTs to days (day assignment) and afterwards determining
the actual starting times of the DTs (time assignment). While the day assignment phase
can be adopted unchanged, the time assignment phase has to be altered s.t. also the two
new objective terms regarding the variation of the starting times are considered.

During the time assignment phase we have to find for all DTs starting times with as
little use of extended service windows as possible that allow in addition nominal starting
times that minimize the respective intra-week and inter-week objective terms. A changed
property resulting from the extension of the PTPSP is that scheduling DTs in close
succession might be suboptimal w.r.t. the two new objective terms. In fact, it might be
necessary to have breaks between two consecutive DTs. In principle, our approach to
consider the DTs in a certain order and schedule each DT as early as possible has to
change to the one where we have to decide in addition the duration of an optional gap
between each pair of successive DTs. However, in practice the facility should be used at
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full capacity and, thus, it can be assumed that in general adding significant gaps between
DTs immediately yields additional use of extended service time windows which results in
a worse objective value. Therefore, we restrict the construction heuristic and our overall
approach to solutions without gaps that are not induced by resource availabilities.

Our approach for the time assignment part consists of two components executed in an
interleaved way, one for scheduling the DTs on a considered day and one for setting and
adapting the nominal starting times. To this end, the working days are processed in
chronological order, starting with scheduling the DTs assigned to the first working day.
After all starting times for a day have been determined the nominal starting times of
every considered therapy t in the current week v are updated as follows. Therapies’ first
DTs are ignored as they are excluded in the intra-week objective term. For each therapy’s
second DT we set S̃t,v to St,2. For subsequent DTs u′ assigned to the therapy’s first week,
the nominal starting time is set to the value that minimizes

∑u′
u=2 σ

intraw
t,u . Determining

this value corresponds to finding the minimal value of a continuous piecewise linear
function where the slope of the segments are multiples of γintraw. For DTs u′ belonging
to a therapy’s second week and onward the nominal starting time S̃t,v of the current
week v is set to the value that minimizes σinterw

t,v +
∑
u∈Ut|u≤u′,Zt,u∈D′

v
σintraw
t,u . To this end,

the nominal starting time of the previous week is considered as fixed. Note that for this
reason the determined nominal starting times might not be optimal.

TWCH’s component for scheduling DTs within a day as presented in Section 3.4.2
repeatedly places a not yet scheduled DT, selected using a priority function, as early
as possible in the schedule until all DTs have been planned. The priority of the DTs is
determined by a lexicographic combination of three criteria that consider the idle time
that emerges on the beam resource, the earliest end of a regular service window from
a required resource, and the ratio between the time the beam is required and the total
processing time of the respective DT. These greedy criteria provide in practice reasonable
performance w.r.t. minimizing the use of extended service windows, while yielding short
processing times. Extending this lexicographic combination of criteria to respect also
the intra-week and inter-week objective terms is, however, not promising. The main
difficulty is to balance between generating a tight schedule and prioritizing DTs that are
close to their nominal starting time. While concentrating too much on the former aspect
causes many deviations to the respective nominal starting times, focusing too much on
the latter results often in extensive use of extended service windows.

To obtain a heuristic for scheduling DTs within a day that performs well on the extended
problem formulation we shift the focus from which DT to schedule next to inserting DTs
within the order of already scheduled DTs. A straightforward way to this would be to
process the DTs assigned to a day in a particular order and test for each DT all positions
of the already scheduled DTs. Finally, the DT is inserted in the position yielding the
smallest objective value. This technique is analogous to the classic NEH algorithm by
Nawaz et al. [87] for the permutation flow shop problem (PFSP). However, preliminary
experiments have shown that the performance of this simple insertion heuristic is worse
compared to our original approach. The main reason is that the insertion of DTs
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postpones already inserted DTs which might end up at a quite different time they have
been originally inserted. Hence, it makes sense to reevaluate the positions of already
inserted DTs. In the PFSP literature several heuristics have been proposed that extend
NEH with reinsertions. We adapt here the FRB3 heuristic from Rad et al. [99], that
reevaluates and possibly reinserts after each insertion all already scheduled jobs.

Algorithm 3.5: FRB3 for the PTPSP
Input: day d

1 π ← ();
2 let (β1, . . . , βn) be the DTs to schedule in decreasing order of pt,u with

βi ∈ {(t, u) | t ∈ T, u ∈ Ut, Zt,u = d} for all i = 1, . . . , n;
3 for i← 1 to n do
4 insert DT βi in π resulting in the smallest objective value and in case of ties

the smallest makespan;
5 for j ← 1 to i do
6 extract and reinsert DT πj at the position that results in the smallest

objective value and in case of ties in the smallest makespan;

Algorithm 3.5 shows FRB3 adapted for scheduling DTs on a considered day d. It starts
with an empty sequence π and considers then the DTs assigned to day d in the order of
the largest processing times. We use here the same ordering as Rad et al. [99] applied
for FRB3 on the PFSP with the Cmax (makespan) objective. Although our objective is
quite different, preliminary experiments have shown that sorting according to the largest
processing times is indeed effective. At Line 4, we test scheduling the current DT before
each already scheduled DT and after the last one. The current DT is then inserted in
the most promising position. In general, inserting a DT at position l < i delays the
starting times of the DTs πl+1, . . . , πi, while the starting times of the DTs π1, . . . , πl−1
remain unchanged. Afterwards, the position of all already scheduled DTs within π are
reevaluated and possibly reinserted to accommodate the newly inserted DT in a better
way.

DTs are inserted at the best position w.r.t. our objective function. However, as func-
tion (3.3) assumes a complete solution, we evaluate an objective function tailored for the
time assignment part, which is

γext ∑
r∈R

max
(
{St,u + P end

t,u,r −W end
r,d | i ∈ {1, . . . , n}, (t, u) = πi, r ∈ Qt,u, } ∪ {0}

)
+

∑
i∈{1,...,n},

(t,u)=πi, u>2

γintraw · σintraw
t,u . (3.37)

This function determines for the current sequence π the use of extended service windows
and the excess of the allowed deviation from the nominal starting times. While the
former term is analogous to (3.3), the latter term requires further considerations. As
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mentioned earlier, the nominal starting times are updated after all starting times have
been determined for a considered day. Consequently, for a therapy’s second DT (i.e., the
first for which the time difference to the nominal starting time is relevant) and every
therapy’s subsequent first DT of a week we have not yet determined the corresponding
nominal starting time. In the case where a DT is a therapy’s second we can set σintraw

t,u

to 0, as the respective nominal starting time can be set to the same value as the starting
time of the current DT without inducing any cost. For a therapy’s first DT within a week,
we suppose that the nominal starting time will not differ more than δinterw compared
with the nominal starting time of the previous week. Hence, we regard in such cases
starting times that differ more as δinterw + δintraw to their respective nominal starting
time of the previous week as excess. For all other cases, σintraw

t,u is computed as in the
problem definition. To summarize, we calculate σintraw

t,u by

σintraw
t,u =


0 if u = 2
max(|St,u − S̃t,v−1| − δinterw − δintraw, 0) if Zt,u ∈ D′v ∧ Zt,u−1 ∈ D′v−1
max(|St,u − S̃t,v| − δintraw, 0) otherwise.

(3.38)

In case more than one position evaluate to the same value by (3.37), we insert the DT
that has the smaller makespan. The rationale behind the latter criterion is again that
in particular at the beginning of the algorithm many insertion points allow scheduling
the sequence without use of extended service windows. Preferring a smaller makespan
typically results in a tighter packed schedule and hopefully retains better options for the
still to be inserted DTs.

3.8.2 Local Search

As already argued in Section 3.6.1, the main challenge is to obtain a local search method
that is fast enough in order to complete a sufficient number of iterations of the IG, while
still improving the solution significantly in most cases. Due to typically small flexibility
within the therapy process, assigning one DT to another day usually entails that also the
therapy’s preceding and succeeding DTs have to be reassigned to new days. Consequently,
changing the day assignment of DTs affects the time assignment of several days, which
results in a local search operator that is computationally too expensive to be applied
within an iterated approach. Therefore, we restrict ourselves to a local search method
that focuses on the time assignment part, i.e., the allocation of the therapies’ DTs on
days is assumed to be fixed. In the basic problem formulation without nominal starting
times and the corresponding extensions this restriction allowed us to apply the local
search for each day independently. The much smaller neighborhoods have shown to
be crucial to receive adequate computation times for the local search component to be
integrated within the IG. The presence of the therapies’ nominal starting times and the
extended objective function, however, links the starting times of the therapies’ DTs: If
we find a better starting time for a DT on a certain day, then we might also find a better
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nominal starting time, which again induces improvements on days that have been at a
local optimum. To obtain a fast local search component we consider first the nominal
starting times as fixed and optimize the DTs’ starting times until a local optimum w.r.t.
a neighborhood for each individual day is reached. Afterwards, we update the nominal
starting times and again repeat the first step until no further improvements are achieved.
These two steps are alternated until no improvement can be achieved. In the following
we explain both components in more detail.

We again encode solutions by the sequence (π1, . . . , πn) resulting from sorting the DTs
assigned to the currently considered day d, given by the set {(t, u) | t ∈ T, u ∈ Ut, Zt,u =
d}, in ascending order of the times from which on they use the beam resource B, i.e.,
according to St,u +P start

t,u,B. As in Section 3.6.1, we employ the DT exchange neighborhood
that considers swapping the positions of a pair of DTs πi and πj , where 1 ≤ i < j ≤ n.
In other words, given a sequence (π1, . . . , πn) of DTs the neighborhood is defined of
all sequences of the form (π1, . . . , πi−1, πj , πi+1, . . . , πj−1, πi, πj+1, . . . , πn) . In order to
evaluate a neighboring solution’s objective value the corresponding sequence is decoded
using Algorithm 3.3 to obtain actual starting times.

The examination of the neighborhood is computationally costly due to the fact that
decoding sequences of DTs as well as evaluating the objective function are both expensive
operations. Hence, we exploit several aspects in order to accelerate the search for
improvements. The first speed-up is based on the observation that the starting times
of the DTs (π1, . . . , πi−1) are not affected from the move w.r.t. the original sequence.
Consequently, Algorithm 3.3 is modified to consider for each move only the DTs following
πi−1. This requires, however, to store all possible states of the time markers Cr for
each position of the original sequence. The next acceleration aborts the decoding of a
neighbor within Algorithm 3.3 if the considered move yields no improvement with a high
probability. In particular, this is the case if a move worsens the interleaving of the DTs
or forces a DT to be placed after an unavailability period. The resulting delay produces
as a consequence usually an additional use of extended service periods and in general
an increased objective value. Therefore, we prematurely terminate the main loop at
Line 10 after processing DT πj+k if its newly determined starting time is larger than in
the original sequence. To this end, offset k is chosen s.t. the corresponding DT is the
first that requires the same room resources as πi, thus, k ∈ {1, 2, 3}. We use this offset to
assess whether DT πi interleaves well with its successors. As in the FRB3 algorithm for
the initial solution, it suffices also here to consider an objective function tailored to the
considered day. Thus, we evaluate equation (3.37), where σintraw

t,u can now be calculated
as described in Section 3.3. Computing equation (3.37) from scratch can be done in
O(nR +n ·nQ +n) time, where nQ is the maximal number of required resources by a DT.
However, if we reuse the time markers Cr from Algorithm 3.3 the number of required
steps decreases to O(nR + n).

After we reached a local optimum w.r.t. the considered neighborhood on each day, it
might be that better suiting nominal starting times exist. Therefore, we assume now
the set of all starting times S to be fixed and solve the following LP model to obtain
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new optimal nominal starting times. In the model, we use S̃t,v variables for the nominal
starting times in S̃ and nonnegative variables σintraw

t,u and σinterw
t,v to state the intra-week

and inter-week objective terms.

min γintraw ∑
t∈T

∑
u∈Ut\{1}

σintraw
t,u +

γinterw ∑
t∈T

∑
v∈V \{1}

σinterw
t,v

(3.39)

s.t. |St,u − S̃t,v| − δintraw ≤ σintraw
t,u ∀t ∈ T, ∀u ∈ Ut \ {1},

∀v ∈ V : Zt,u ∈ D′v,
(3.40)

|S̃t,v − S̃t,v−1| − δinterw ≤ σinterw
t,v ∀t ∈ T, ∀v ∈ V \ {1} :

∃u ∈ Ut(Zt,u ∈ D′v),
(3.41)

σintraw
t,u ≥ 0 ∀t ∈ T, ∀u ∈ Ut, (3.42)
σinterw
t,v ≥ 0 ∀t ∈ T, ∀v ∈ V, (3.43)
S̃t,v ∈ R ∀t ∈ T, ∀v ∈ V. (3.44)

The model’s objective function (3.39) corresponds to the objective function of the overall
problem (3.3) restricted to the terms directly affected by the nominal starting times.
Inequalities (3.40) enforce that the σintraw

t,u variables are set to the excess of the maximum
intended difference of the DTs’ starting times to their respective nominal starting times.
Finally, constraints (3.41) ensure that the σinterw

t,v variables attain the time difference that
exceed the maximum intended time difference of the nominal starting times between
consecutive weeks.

3.8.3 Destruction and Construction

In the destruction phase the DTs of randomly selected therapies are removed from the
schedule. In the subsequent construction phase the DTs of the removed therapies are
first assigned to days and afterwards suitable starting times are determined. To this end,
we used in our first IG approach from Section 3.5.2 the proposed TWCH, which involved
the time assignment part to be applied from scratch, completely ignoring the existing
starting times of the kept DTs. In particular, w.r.t. the local search algorithm from
Section 3.8.2 discarding the whole time assignment during destruction and construction is
disadvantageous since much previous effort is wasted. Instead, we should try to transfer
meaningful starting times as far as possible. To overcome this drawback we adopt in our
improved IG, described in Section 3.6, the NEH insertion heuristic of Nawaz et al. [87]
which preserves the sequence of unchanged DTs and inserts the removed ones greedily.
Here we incorporate the extensions for NEH presented by Rad et al. [99].

In principle there are many options for the destruction phase. Since we keep the
assignment of DTs to days fixed within the local search, it is especially important to
allow such modifications during the destruction and construction phase. Due to the
in general tight constraints on the day assignment level it can be expected that the
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therapies’ DTs are planned in close succession. Consequently, removing the assignments
of single DTs within a therapy will have in general only limited effect as their assignments
are usually determined by the remaining ones. In contrast, removing all assignments of
some therapy allows much more flexibility like moving the therapy’s start to another
week. A further aspect is the greedy behavior of the TWCH’s day assignment phase
that acts like a first fit heuristic until it detects that another first fit assignment will
induce use of extended service windows. At this point TWCH starts to actively delay
and stretch the day assignments of the whole therapy as long it is beneficial w.r.t. the
objective function. Thus, the destruction of the assignments of entire therapies allows
TWCH revising poor decisions. Although one could think of different goal-driven selection
strategies for therapies to remove, we choose to select random ones, since the destruction
phase is our main source of diversification. To summarize, the deconstruction phase
invalidates the day and time assignments of nig-dest randomly selected therapies. To
increase the robustness of the algorithm we do not keep nig-dest fixed for all iterations,
but sample a new value for nig-dest from a discrete uniform distribution U ig-dest at the
beginning of every destruction phase.

The construction phase starts with an application of TWCH’s day assignment on the
destroyed therapies. Afterwards the respective DTs are inserted in a randomized order
into the schedule. In the time assignment phase for the initial solution we use FRB3 for
scheduling the DTs. After each insertion, all already scheduled DTs are reevaluated and
possibly reinserted. In contrast to the initial solution the construction phase is executed
for many times. Hence, the IG’s construction phase is much more time critical and
compared to FRB3 a less exhaustive approach is needed. Rad et al. [99] proposed among
others the FRB4k algorithm which is conceptually between NEH and FRB3 in that it
reconsiders only the k DTs around each inserted DT. FRB4k is based on the assumption
that reevaluating the immediate neighbors has the largest effect. To be precise, we receive
FRB4k if we modify the inner loop of Algorithm 3.5 s.t. it reevaluates the DTs at the
positions max(1, l− k) to min(n, l + k), where l is the position of the previously inserted
DT at Line 4. Moreover, unlike Algorithm 3.5 we start FRB4k within the construction
phase not with an empty sequence π, but with the sequence resulting from sorting the not
removed DTs according to the first time they use the beam resource (see Section 3.8.2).
The nominal starting times are set as described in Section 3.8.1, followed by solving the
model (3.39)–(3.44) after all starting times have been determined.

3.9 Computational Study
We start this section by describing the used benchmark instances and the used generation
method. Then, the applied preprocessing techniques are discussed that aim at tighten
the DTs’ windows of possible starting days and to detect time periods during which
resources cannot be used. Afterwards, we give details on the computational experiments
of the proposed algorithms. In Section 3.9.3, we first assess the quality of TWCH’s day
assignment phase in comparison with an MILP approach. Moreover, we examine the
final solutions of TWCH and of our first metaheuristic approaches. In the next section
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we show the performance improvements of the enhancements introduced for the IG in
Section 3.6. Later, in Section 3.9.5 the impact of employing the time estimation for
scheduling sets of DTs within the IG’s day assignment phase is analyzed. Finally, in
Section 3.9.6 we consider the extended problem formulation and the corresponding IG
metaheuristics that encompasses the improvements of all previous IG approaches.

3.9.1 Benchmark Instances

We created artificial benchmark instances related to real particle treatments and to
the expected situation at MedAustron. These instances are available at http://www.
ac.tuwien.ac.at/research/problem-instances. The main characteristic of an instance is
its number of therapies nT . We consider 5 instances for 50, 70, 100, 150, 200, and 300
therapies. In the used naming schema we encode first the number of therapies followed by
a consecutive number. The modeled scenario considers a ramp-up phase of a few weeks
at the beginning of a schedule after which the facility is used at full capacity followed by
a wind-down phase near the end of the planning horizon. At full capacity the facility is
able to perform around 60 DTs on each working day.

We use for all benchmark instances a time resolution of minutes, meaning that all
specified times are multiples of a minute. The fundamental opening time W̃d which
encompasses all regular and extended service times is set for each working day to the
interval [0, 24 · 60). Depending on the number of therapies considered by the instance,
we determine in addition a regular opening time at the beginning of the fundamental
opening time. Instances with less than 100 therapies have a regular opening time of
the first 7 hours per day and for larger instances the regular opening time stretches
over the first 14 hours of each working day. All resources’ regular service windows are
contained within this regular opening time. Consequently, smaller instances consider
reduced regular availabilities which helps to keep them challenging.

We determine next the length of the time horizon nD which is derived from the number
of considered therapies. To this end, we assume that the first five days of each week are
working days (i.e., Mondays to Fridays). The length of the time horizon nD is based
on an estimation of the total time required from the beam resource divided by a rough
estimation on how much the beam resource can be used on each day and is computed by

nD :=
⌈
nT · E[τ ] · E[pB]
Hopen · 0.7 · 5

⌉
· 7 + dbuffer. (3.45)

We denote with E[τ ] the expected number of DTs per therapy and with E[pB] the
expected beam time per DT. The divisor consists of the regular opening time Hopen

which is in our case as mentioned above either 7 · 60 or 14 · 60. The next term in the
divisor, 0.7, is a load factor to account the not yet considered unavailability periods and
the fact that the beam resource cannot be used without breaks. The last value in the
divisor and the subsequent multiplication 7 covers the fact that there are only 5 working
days each week. Moreover, additional buffer days dbuffer are appended to ensure that
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Figure 3.6: Activity structure modeled by DTs.

the length of the time horizon is not restrictive, i.e., delaying a therapy should never be
prevented by the time horizon itself.

For each of the therapies the number of DTs is chosen uniformly at random from the
interval {8, . . . , 35}, reflecting the duration of real particle therapies. The period in
which a therapy might start is assumed to have a fixed length of two weeks. We set
for all therapies ntwmin

t = 4, ntwmax
t = 5, δmin

t = 1 and δmax
t = 5. Based on these values

we calculate dbuffer = 13 that serves as an upper bound on the difference (in days)
between the fastest and the slowest completion time of a therapy. Using this bound
we determine the latest day by which the first DT of a therapy t might be provided:
dlatest
t,1 := nD − dbuffer − dτt/ntwmax

t e · 7 + 1. The earliest day by which a therapy t can
start, i.e., dmin

t,1 , is sampled uniformly from {1, . . . , dlatest
t,1 − 14}. Therapies are expected

to have a window of two weeks during which they have to start. Therefore, we set dmax
t,1

to dmin
t,1 + 14. Earliest and latest starting days of the subsequent DTs are not explicitly

restricted, but are obviously implicitly limited by the remaining constraints.

As already mentioned in problem formalization, DTs model a sequence of consecutively
executed activities. Most DTs capture five activities consisting of the immobilization,
the positioning, the irradiation, the imaging, and the release of the patient. With a
probability of 5% a therapy requires sedation and in that case its DTs consist of two
additional activities. Figure 3.6 shows the two types of daily treatments together with
the associated processing times in minutes. The processing times of the irradiation
activities are drawn uniformly at random from {5, . . . , 20} as shown in the figure. For
the processing times of the other activities we consider a spread of ±20%, i.e., we choose
from {b0.8pc, . . . , b1.2pc} uniformly at random. These choices are made per therapy and
kept the same for all its DTs.

In the following we describe the resources associated with the activities. The main
bottleneck in the considered application scenario is the beam resource which is required
during the irradiation activity of each DTs. Its regular availability corresponds to
the regular opening time on each working day. The availability of the three resources
corresponding to the treatment rooms is set equivalently. A therapy’s treatment room
is chosen uniformly at random and is required for the positioning, irradiation, imaging,
and patient exit activities. As mentioned above, some treatments require sedation which
entails that an anesthetist is needed during all seven activities. The corresponding
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resource has a regular service window spanning the first seven hours of each working day.
Positioning activities of each therapy’s first DT require the attendance of the oncologist
responsible for the associated patient. Radio oncologists work in two shifts, the first shift
spans the first two-thirds of the regular opening time and the second shift spans the last
two-thirds of the regular opening time. In each shift five oncologists are available. For
each therapy the associated oncologist is selected uniformly at random from both shifts.
Moreover, the first treatment of each therapy needs to be provided either on Mondays or
Tuesdays before noon. To model this we introduce an additional resource that spans the
first seven of the regular opening time on these days. On each working day and resource
there is unavailability period of 30 minutes in the middle of the regular opening time.
For the instances featuring only seven operating hours these unavailability periods are
placed at the end of the regular opening time. These 30 minutes serve for compensating
delays that may arise.

When objective function (3.1) is considered, we use the weights γext = 1/60 and γfinish =
1/100. The intuition behind these values is as follows. Recall that the time resolution
of the instances is in minutes. Weight γext is set s.t. the use of one hour from an
extended service time window corresponds to one unit in the objective function (3.1).
The weight for the second objective term γfinish reflects the fact that the completion
of a therapy should usually be delayed if performing a DT entirely within extended
time can be avoided. For the extended objective function (3.1) we apply the weights
γext = 1/60, γfinish = 1/100, γintraw = 1/600, and γinterw = 1/600. As already mentioned,
providing the therapies’ DTs within the allowed variance is not of medical relevance and
is consequently a subordinate goal. Therefore, we set both γintraw and γinterw to a tenth
of γext. A used hour of extended service windows is defined to be equally bad as ten
hours of excess from the allowed variance between the starting times of the therapies.

3.9.2 Preprocessing

This section discusses three preprocessing techniques that are consecutively applied. The
first aims at tightening the earliest and the latest starting day of DTs. This allows us
to use the DTs’ earliest and latest starting days to obtain a more accurate set of DTs
that might get scheduled on a considered day. The two following methods regard the
pruning of resource availabilities within working days. The basic idea is to identify time
intervals during which resources are available but cannot be used by any DT. We then
add or extend corresponding unavailability periods. Note that of the latter two methods
no one dominates the other and, therefore, both are performed.

Preprocessing of Start Days

Each DT u ∈ Ut, t ∈ T has a window of starting days specified by the earliest starting
day dmin

t,u and the latest starting day dmax
t,u . This preprocessing technique aims at tighten

the bounds of these windows by taking into account the earliest and the latest starting
day from previous DTs in combination with the minimal and the maximal number of
allowed days between two consecutive DTs and the minimal and the maximal number
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of DTs allowed per week. We explain the preprocessing of the earliest and the latest
starting day of DTs by two separate algorithms.

Algorithm 3.6: Preprocessing of the earliest starting days
1 for t ∈ T do
2 dmin

t,1 ← min{d ∈ D′ | d ≥ dmin
t,0 };

3 v ← v ∈ V : dmin
t,1 ∈ D′v;

4 if |{d ∈ D′v | d ≥ dmin
t,1 }| ≤ ntwmin

t then
5 dmin

t,1 ← min{D′v+1};
6 for u← 2 to τt do
7 dmin

t,u ← max(dmin
t,u , d

min
t,u−1 + δmin

t );
8 dmin

t,u ← min{d ∈ D′ | d ≥ dmin
t,u };

9 v ← v ∈ V : dmin
t,u−1 ∈ D′v;

10 if |{dmin
t,u′ ∈ Dv | u′ < u}| ≥ ntwmax

t then
11 dmin

t,u ← max(dmin
t,u ,min{Dv+1});

Algorithm 3.6 considers each therapy t ∈ T individually and starts by setting dmin
t,1 to

the next working day if dmin
t,1 /∈ D′. Furthermore, dmin

t,1 is advanced to the first working
day in the next week if starting the therapy at day dmin

t,1 would not allow the minimal
number of DTs per week. For each subsequent DT u the earliest starting day is set to
the maximum of the following three values: dmin

t,u as specified by the benchmark instance,
dmin
t,u−1 + δmin

t , and the first day in the next week if already ntwmax
t predecessors of the

DT have the earliest starting day in the same week. Moreover, we ensure that the DT’s
earliest starting day is a working day by advancing dmin

t,u if it is not.

Algorithm 3.7: Preprocessing of the latest starting days
1 for t ∈ T do
2 v ← v ∈ V : dmin

t,1 ∈ D′v;
3 dmax

t,1 ← min(dmax
t,1 ,max{D′v} − ntwmin

t · δmin
t );

4 dmax
t,1 ← max{d ∈ D′ | d ≤ dmax

t,1 };
5 for u← 2 to τt do
6 dmax

t,u ← min(dmax
t,u , dmax

t,u−1 + δmax
t );

7 v ← v ∈ V : dmin
t,u−1 ∈ D′v;

8 if |{dmax
t,u′ ∈ D′v | u′ < u}| ≥ ntwmin

t then
9 dmax

t,u ← min(dmax
t,u ,max{D′v+1} − ntwmin

t · δmin
t );

10 else
11 dmax

t,u ← min(dmax
t,u ,max{D′v}− (ntwmin

t − |{dmax
t,u′ ∈ D′v | u′ < u}|) · δmin

t );
12 dmax

t,u ← max{d ∈ D′ | d ≤ dmax
t,u };
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Algorithm 3.7 attempts to tighten the latest starting days of DTs. Again each therapy
t ∈ T is processed independently. The method starts by setting the latest starting day of
a therapy’s first DT dmax

t,1 to the closest working day smaller than or equal to the given
dmax
t,1 that allows at least ntwmin

t consecutive DTs in the current week. For each subsequent
DT we set first the corresponding dmax

t,u to the minimum of dmax
t,u and dmax

t,u−1 + δmax
t . Next

we check if we can decrease dmax
t,u further by considering the minimal number of DTs per

week. Finally, we set dmax
t,u to the closest working day smaller than or equal to dmax

t,u .

Note that this preprocessing could be strengthened by explicitly considering the resource
availabilities. However, it can be expected that w.r.t. our benchmark instances such an
extension has only limited effect.

Preprocessing of Global Resource Availability Changes

The next preprocessing technique is based on the observation that due to the structure of
the DTs some resources cannot be used close to global changes of resource availabilities.
In such cases we are allowed to prune the availability of the resources.

More specifically, we consider here unavailability periods that are present at the same
time and day over all resources. We denote such global unavailability periods by Wd =⋃
w=1,...,ωd

Wd,w with Wd,w = [Wstart
d,w ,Wend

d,w) ⊂ W̃d, w = 1, . . . , ωd during which the
availability of all resources is interrupted. In addition, let prampup

r,d be a lower bound on
the earliest time a resource r ∈ R can be used on day d ∈ D′ if all resources become
available at the same time calculated as

prampup
r,d = min

t∈T, u∈Ut:r∈Qt,u, dmin
t,u ≤d≤dmax

t,u

P start
t,u,r . (3.46)

Analogously, let pwinddown
r,d be the minimum offset between the latest use of resource r and

the end of the DT considering all DTs that might be scheduled on day d computed as

pwinddown
r,d = min

t∈T, u∈Ut:r∈Qt,u, dmin
t,u ≤d≤dmax

t,u

(pt,u − P end
t,u,r). (3.47)

We derive the following unavailability periods from the global unavailability periods:

[Wstart
d,w − pwinddown

r,d ,Wend
d,w + prampup

r,d ) ∀r ∈ R,∀d ∈ Dres
r , w = 1, . . . , ωd. (3.48)

Arc Consistency for Resource Availabilities

The preprocessing from above has only an effect in situations when all resources change
their availability at the same time. Here, we consider a more widely applicable technique
that is able to derive new unavailability periods from existing unavailability periods on
other resources. This method is repeatedly applied, using the classic AC3 algorithm [76],
until no new unavailability periods can be deduced.

On a given day d ∈ D′, an unavailability period for resource r′ is derived from an existing
unavailability period of resource r if all DTs requiring resource r′ also need resource r. As
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a first step, we have to determine the pairs of resources r and r′ that allow a generation
of such unavailability periods. To this end, we define for a considered working day d ∈ D′
the set Rav

d of resources that are available on that day and the set Gpos
d of DTs that

might get scheduled, i.e.,

Rav
d = {r ∈ R | d ∈ Dres

r }, (3.49)
Gpos
d = {(t, u) | t ∈ T, u ∈ Ut, dmin

t,u ≤ d ≤ dmax
t,u }. (3.50)

The pairs of resources r and r′ that allow a generation of unavailability periods on day d
are given by

Rgen
d = {(r, r′) | r, r′ ∈ Rav

d , 6 ∃(t, u) ∈ Gpos
d (r′ ∈ Qt,u ∧ r /∈ Qt,u)}. (3.51)

The length of a derived unavailability period obviously depends on the DTs requiring
both considered resources. For working day d and any pair (r, r′) ∈ Rgen

d let P startdiff
r,r′,d be

the maximum offset between the first use of resource r and the first use of resource r′ of
all DTs in Gpos

d defined as

P startdiff
r,r′,d = max

(t,u)∈Gpos
d
|r,r′∈Qt,u

(P start
t,u,r − P start

t,u,r′). (3.52)

Analogously, for working day d and any pair (r, r′) ∈ Rgen
d let P enddiff

r,r′,d be the maximum
offset between the last use of resource r and the last use resource r′ of all DTs in Gpos

d

specified as

P enddiff
r,r′,d = max

(t,u)∈Gpos
d
|r,r′∈Qt,u

(P end
t,u,r′ − P end

t,u,r).

Finally, we derive for each pair (r, r′) ∈ Rgen
d and each unavailability period W r,d,w in

W r,d the following unavailability period for r′:

[W start
r,d,w + P enddiff

r,r′,d ,W
end
r,d,w − P startdiff

r,r′,d ). (3.53)

The unavailability period is then included into W r′,d if it is nonempty. Adjacent or
overlapping unavailability periods are merged.

3.9.3 First Approaches

In this section we focus first on the day assignment part. To this end, we compare
TWCH’s day assignment phase, presented in Section 3.4.1, with an MILP approach.
Afterwards, we consider also the time assignment level and evaluate next to TWCH
the GRASP and the IG metaheuristic from Section 3.5. Note that we present here the
results from Maschler et al. [81] where we considered DTs to be composed of activities
associated with minimum and maximum time lags. As already mentioned this feature is
not regarded to be relevant in our real world midterm planning application. Moreover,
we used in Maschler et al. [81] another benchmark set compared to the later works
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which mainly differs in that it had rather unrealistically strict constraints concerning
the starting days of therapies, which made an extensive use of extended service time
windows unavoidable. Despite these differences, the conclusions from the experiments
are transferable to the problem definition presented in this chapter and to the improved
benchmark instances used in the remaining chapter. However, be aware that the absolute
objective values presented in this section are not comparable with the ones shown in the
subsequent sections.

All algorithms used for the experiments discussed in this section were implemented in
C++11 and compiled with G++ 4.8.4. GUROBI 6.5 was used for solving the MILP
models. All experiments were carried out on a single core of an Intel Xeon E5-2630v2
processor with 2.6GHz and about 4GB RAM per core.

In the first series of conducted experiments we focus on the day assignment level only
and assess the performance of TWCH’s day assignment phase in comparison to the
corresponding MILP model (3.4) to (3.16) from Section 3.3.1. Thus, resource consumption
is only considered at the aggregated level and no detailed time planning is done. For
each of our benchmark instances, the MILP was solved using a CPU-time limit of 2
hours, while TWCH’s day assignment was applied 30 times because of its stochastic
nature. Table 3.1 shows the obtained results for each instance. For TWCH average
objective values da-obj are listed together with the corresponding standard deviations
σ(da-obj) and the median computation times time. For the MILP approach, da-obj
indicates the objective value of the best feasible solution, lb the final lower bound, and
time the CPU-time when the algorithm terminated, either with proven optimality or
when the time limit had been reached.

TWCH yielded reasonable solutions for each test instance quickly, but improvement
potential can also clearly be seen. The MILP approach could not find a provably optimal
solution for any instance with nT ≥ 50. Only instances that allowed solutions with
none or very little extended time could be reasonably solved via the MILP. A reason
for the rather poor performance of the MILP seem to be substantial symmetries in the
model. Due to the poor performance of the MILP for the day assignment only, we can
conclude that solving the full MILP including the detailed time planning unfortunately
is in practice impossible for any instance of realistic size.

In the next series of experiments we consider the complete TWCH as well as the GRASP
and the IG from Section 3.5. We call the latter from here on IG-LI, where LI stands
for the applied local improvement method. In a preliminary study we determined 20
CPU-minutes to be a reasonable time limit for the metaheuristics after which only minor
further improvements can be expected also on the largest instances with 300 therapies.
We therefore used this time limit as termination criterion in all following metaheuristic
runs. The automatic parameter configuration tool irace [75] was applied for tuning
IG-LI’s and GRASP’s strategy parameters on three instance sets with a budget of 2000
runs. The instance sets used for tuning consisted of six new training instances with 50
and 70, 100 and 150, 200 and 300 therapies. The tuned parameter settings are depicted
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TWCH’s day assignment Relaxed MILP

Instance da-obj σ(da-obj) time[s] da-obj lb time[s]

010-01 0.220 0.000 0.001 0.220 0.220 3.4
010-02 0.160 0.000 0.001 0.160 0.160 4.6
010-03 0.160 0.000 0.000 0.160 0.160 3.0
010-04 0.180 0.000 0.001 0.180 0.180 4.0
010-05 0.180 0.000 0.001 0.180 0.180 4.2
020-01 0.400 0.000 0.001 0.400 0.400 6.9
020-02 0.450 0.000 0.001 0.450 0.450 7.8
020-03 0.460 0.000 0.001 0.460 0.460 10.4
020-04 0.320 0.000 0.001 0.320 0.320 9.2
020-05 0.320 0.000 0.001 0.320 0.320 7.9
050-01 7.532 0.037 0.003 1.770 1.601 7200.0
050-02 4.005 0.007 0.002 1.480 1.443 7200.0
050-03 11.679 0.582 0.003 2.390 2.258 7200.0
050-04 2.597 0.000 0.003 1.470 1.376 7200.0
050-05 7.325 0.434 0.003 2.317 2.142 7200.0
070-01 37.256 1.804 0.005 10.073 8.362 7200.0
070-02 43.895 0.258 0.004 14.283 13.933 7200.0
070-03 3.665 0.029 0.004 4.963 2.257 7200.0
070-04 12.187 0.481 0.004 NA 3.934 7200.0
070-05 5.165 0.068 0.004 2.780 2.657 7200.0
100-01 5.110 0.000 0.005 3.953 3.117 7200.0
100-02 4.719 0.066 0.005 2.970 2.900 7200.0
100-03 8.083 0.626 0.006 3.710 3.592 7200.0
100-04 9.966 0.190 0.006 4.340 4.189 7200.0
100-05 5.713 0.162 0.006 2.860 2.825 7200.0
150-01 46.317 0.733 0.010 NA 11.528 7200.0
150-02 30.367 0.233 0.010 NA 7.639 7200.0
150-03 13.787 0.171 0.008 NA 7.176 7200.0
150-04 10.541 0.347 0.008 5.950 5.811 7200.0
150-05 26.764 0.499 0.009 9.067 8.858 7200.0
200-01 17.611 0.711 0.012 12.167 7.500 7200.0
200-02 53.440 0.649 0.012 NA 11.068 7200.0
200-03 70.021 1.166 0.013 13.940 13.640 7200.0
200-04 89.349 2.343 0.014 NA 13.035 7200.0
200-05 27.785 0.166 0.013 11.253 10.883 7200.0
300-01 56.725 1.122 0.020 NA 0.000 7200.0
300-02 68.653 1.221 0.020 NA 17.455 7200.0
300-03 60.787 0.646 0.019 NA 19.660 7200.0
300-04 10.645 0.127 0.018 8.717 7.631 7200.0
300-05 69.533 0.606 0.020 NA 16.850 7200.0

Table 3.1: Results of TWCH’s day assignment and the relaxed MILP that considers only
day assignments.
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Instance size GRASP IG-LI

nT βgr-rand nrta-noimp krta-rand βig-dest nrta-noimp krta-rand

10, 20, 50, 70 0.310 b1.25 · |Gd|c 2 0.095 b1.85 · |Gd|c 2
100, 150 0.155 b1.19 · |Gd|c 2 0.090 b1.50 · |Gd|c 2
200, 300 0.090 b1.28 · |Gd|c 2 0.110 b1.60 · |Gd|c 2

Table 3.2: Parameter settings for GRASP and IG-LI.

in Table 3.2. Note that we apply the settings for instances with 50 and 70 therapies also
on the instances with 10 and 20 therapies.

Table 3.3 shows for each of the approaches and each of the benchmark instances the
average final objective values obj and corresponding standard deviations σ(obj) over 30
runs. For TWCH median computation times are also listed. For the benchmark instances
with 10 and 20 therapies all three approaches always yielded the same objective values,
which also coincide with the objective values from Table 3.1. This implies that in these
cases the time assignment can be done without additional extended time, the instances
are thus relatively easy. Since the MILP has shown that these objectives are optimal
for the day assignment, it allows to conclude that these instances could also be solved
optimally when additionally considering the time assignment. For all other instances, this
observation does not hold anymore. It can clearly be seen that the detailed consideration
of scheduling the DTs within the working days imposed significant additional costs. Both,
GRASP as well as IG-LI, could find substantially better solutions than TWCH in all those
cases. The clear winner, however, is IG-LI, which performed best on most instances. The
major reason for its superiority seems to be the fact that on the one hand its iterations
are less costly as only parts of a solution are affected by destruction and construction,
and on the other hand information is in this way also kept over the iterations and further
fine-tuned.

3.9.4 Enhanced Iterated Greedy

We perform in this section an experimental evaluation and comparison of the proposed
enhancements of the IG introduced in Section 3.6, which we call from here on IG-DCLS,
with the original IG approach from Section 3.5.2, denoted as IG-LI, and IG-LS, the
variant that uses the destruction and construction phase from IG-LI combined with
the local search method from Section 3.6.1. Note that there is an additional variant in
which the used local search method of IG-DCLS is replaced with the local improvement
operator from Section 3.5. We exclude this variant from further considerations because
the local improvement operator ignores the time assignment provided by the construction
phase and, hence, it is in practice equivalent to IG-LI.

For this section all algorithms have been implemented in C++11 and have been compiled
with G++ 4.8.4. The experiments were performed using a single core of an Intel Xeon
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TWCH GRASP IG-LI

Instance obj σ(obj) time[s] obj σ(obj) obj σ(obj)

010-01 0.220 0.000 0.001 0.220 0.000 0.220 0.000
010-02 0.160 0.000 0.001 0.160 0.000 0.160 0.000
010-03 0.160 0.000 0.001 0.160 0.000 0.160 0.000
010-04 0.180 0.000 0.001 0.180 0.000 0.180 0.000
010-05 0.180 0.000 0.001 0.180 0.000 0.180 0.000
020-01 0.400 0.000 0.002 0.400 0.000 0.400 0.000
020-02 0.450 0.000 0.002 0.450 0.000 0.450 0.000
020-03 0.460 0.000 0.003 0.460 0.000 0.460 0.000
020-04 0.320 0.000 0.002 0.320 0.000 0.320 0.000
020-05 0.320 0.000 0.002 0.320 0.000 0.320 0.000
050-01 159.842 0.248 0.009 120.234 0.966 105.837 4.452
050-02 128.793 0.320 0.007 88.034 0.921 80.724 1.908
050-03 161.722 2.831 0.010 117.866 1.380 93.362 3.907
050-04 161.795 0.221 0.008 114.689 1.421 122.618 2.596
050-05 177.635 0.748 0.009 131.223 0.874 113.455 6.263
070-01 304.241 4.370 0.012 232.000 2.282 192.295 3.092
070-02 278.451 2.322 0.012 211.597 2.993 169.409 5.157
070-03 165.936 3.618 0.011 118.942 1.941 121.089 4.439
070-04 194.032 3.012 0.011 148.013 1.470 116.831 3.644
070-05 162.713 4.288 0.010 118.022 1.985 107.238 4.433
100-01 183.740 1.799 0.025 138.086 2.319 149.066 3.388
100-02 136.303 3.488 0.028 105.593 0.910 106.684 2.306
100-03 245.927 4.125 0.030 185.778 1.452 185.629 4.320
100-04 162.602 1.583 0.030 133.788 1.505 122.859 2.448
100-05 247.242 4.015 0.028 179.523 2.051 177.468 3.556
150-01 320.521 5.625 0.049 265.495 1.779 186.702 3.610
150-02 372.983 4.612 0.047 300.542 2.412 252.423 5.615
150-03 273.096 6.973 0.041 207.086 2.536 195.565 4.880
150-04 182.204 4.230 0.040 131.184 2.602 126.098 4.576
150-05 263.687 5.103 0.045 210.231 2.104 168.895 3.903
200-01 340.069 7.659 0.057 255.235 2.926 233.247 5.986
200-02 439.731 5.956 0.058 350.984 3.355 292.811 6.179
200-03 487.131 4.096 0.066 409.564 1.389 335.429 4.576
200-04 548.790 6.364 0.066 457.902 3.994 352.461 8.034
200-05 317.170 2.407 0.060 263.558 1.708 230.248 3.667
300-01 708.705 11.009 0.098 565.907 3.573 512.875 4.269
300-02 727.669 13.390 0.099 579.483 3.602 519.220 6.955
300-03 706.027 10.762 0.098 539.983 3.464 521.847 6.672
300-04 527.563 7.071 0.096 370.891 2.556 375.673 4.558
300-05 689.882 10.095 0.099 566.615 5.095 509.551 4.808

Table 3.3: Average results of TWCH, GRASP and IG-LI over 30 runs.
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Instance size IG-LI IG-LS IG-DCLS

nT βig-dest nrta-noimp krta-rand βig-dest βig-dest

50 0.2 b2.25 · |Gd|c 2 0.092 0.068
70 0.08 b1.50 · |Gd|c 2 0.15 0.05
100 0.055 b1.86 · |Gd|c 2 0.06 0.039
150 0.08 b1.70 · |Gd|c 2 0.106 0.026
200 0.069 b1.34 · |Gd|c 2 0.056 0.022
300 0.149 b2.43 · |Gd|c 2 0.189 0.023

Table 3.4: Parameter settings for IG-LI, IG-LS, and IG-DCLS determined by irace.

E5540 processor with 2.53GHz. In a preliminary study we observed for the local search
method that a next improvement strategy converges, in general, significantly faster than
a best improvement strategy, while yielding similarly good solutions. Moreover, we tested
the impact of randomizing the order in which the local search examines the neighboring
solutions. It turned out that this randomization yields small improvements on almost
all instances that are, however, still in the magnitude of the standard deviation. From
a theoretical point of view, the randomization of the order of the considered moves
removes a bias towards exchanges at the beginning of days. Therefore, we applied this
randomization in the following experiments. Moreover, empirical investigations have
shown that the restrictions of the neighborhood exclude promising moves only in rare
cases. We adopt the acceptance criterion and the termination condition from IG-LI:
The incumbent solution is replaced by a current new solution if the latter has a smaller
objective value, and the total CPU-time is limited to 20 CPU-minutes, respectively.

The metaheuristics’ strategy parameters were tuned using the automatic parameter
configuration tool irace [75] in version 2.1. In detail, irace was applied separately on
each instance size to tune βig-dest for IG-DCLS and IG-LS and the parameters βig-dest,
nrta-noimp, and krta-rand for IG-LI. On this account, we generated for each instance size five
independent instances for tuning. Moreover, each irace run had a computational budget
of 1000 experiments. The resulting parameter configurations are shown in Table 3.4.

Table 3.5 depicts for IG-LI, IG-LS, and IG-DCLS averages of the final objective values
obj and the corresponding standard deviation σ(obj) over 30 runs for each of the 30
benchmark instances. We start by comparing IG-LI with IG-LS. The average objective
values of IG-LI are on 17 benchmark instances smaller compared to IG-LS. On most
instances the absolute differences between the objective values are still in the range of
the standard deviation. For this reason we applied a Wilcoxon rank sum test with a
significance level of 95% for each instance. It turned out that IG-LI performed significantly
better compared to IG-LS on all instances with 70 and 300 therapies and on two instances
with 50 and 150 therapies, respectively. IG-LS has significantly better results on all
instances with 100 therapies, on one with 50 and 150 therapies, respectively, and on two
instances with 200 therapies. Thus, although IG-LI shows better results than IG-LS on
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Instance IG-LI IG-LS IG-DCLS

obj σ(obj) obj σ(obj) obj σ(obj)

050-01 7.512 1.179 8.945 1.953 4.432 1.338
050-02 43.618 2.297 50.768 4.082 40.609 4.003
050-03 47.355 3.373 49.522 6.438 40.100 4.523
050-04 22.263 1.520 21.224 1.828 22.536 3.136
050-05 46.567 2.978 45.528 2.631 50.105 5.589
070-01 26.563 3.814 33.289 2.998 19.442 3.187
070-02 38.545 3.958 40.184 3.390 36.304 5.476
070-03 58.569 3.720 63.721 2.517 66.849 3.316
070-04 10.615 2.566 12.764 2.655 9.144 2.042
070-05 44.101 2.815 46.606 2.236 42.100 4.075
100-01 20.210 1.477 17.861 1.328 10.840 0.858
100-02 36.819 3.368 30.992 3.035 14.282 1.993
100-03 12.045 1.321 10.363 1.039 8.143 0.376
100-04 21.236 2.374 19.848 2.308 12.512 1.333
100-05 33.870 2.126 27.253 1.924 11.746 1.610
150-01 25.287 2.038 27.731 2.306 18.188 1.662
150-02 102.486 3.085 77.613 4.166 46.879 3.156
150-03 36.246 2.972 41.840 3.398 29.723 2.955
150-04 25.392 2.803 26.329 2.994 17.656 1.864
150-05 34.176 2.026 34.139 2.752 22.096 3.504
200-01 62.931 4.031 54.072 5.134 46.174 4.046
200-02 62.335 4.685 60.310 3.283 34.189 2.393
200-03 35.798 3.109 36.137 3.163 28.734 2.829
200-04 51.805 3.876 49.700 3.302 28.990 2.581
200-05 40.434 2.669 40.231 3.207 28.621 2.161
300-01 23.368 1.905 26.646 2.240 23.312 2.965
300-02 93.680 3.613 99.561 4.988 56.730 4.381
300-03 36.127 3.920 40.530 3.472 39.223 4.111
300-04 106.270 4.870 114.920 5.685 103.399 6.813
300-05 20.208 1.460 21.607 1.319 17.484 1.750

Table 3.5: Average objective values obj of 30 runs and corresponding standard deviations
σ(obj) for IG-LI, IG-LS, and IG-DCLS.
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slightly more instances, no significant overall performance difference can be observed
among these two approaches. This indicates that exchanging just the local improvement
operator of the IG-LI with the local search component described in Section 3.6.1 does
not yield a substantial improvement.

Most importantly, however, Table 3.5 clearly shows that IG-DCLS dominates the two
other metaheuristics, and provides the best average objective values on 26 out of 30
benchmark instances. According to a Wilcoxon rank sum tests with a significance level
of 95%, IG-DCLS is better than IG-LI on 25 instances and better than IG-LS on 26
instances. Moreover, on 16 instances the average objective values of IG-DCLS are 25%
smaller compared to those of IG-LI, and on three instances the average objective values
are halved compared to the ones from IG-LI. The main reason for this performance
improvement is the interplay between IG-DCLS’s construction phase and local search
procedure. On the one hand, the local search operator is, in general, able to provide
better results than IG-LI’s local improvement operator. However, encoding, decoding,
and evaluating the solution is computationally demanding and, hence, converging to a
local optimum is time consuming, especially on strongly perturbed solutions. On the
other hand, IG-DCLS’s construction phase is designed in such a way that large parts of
the sequence of the DTs are preserved while introducing the removed DTs in a sensible
but randomized way. Starting with a solution close to a local optimum w.r.t. the DT
exchange neighborhood allows to reduce the time spent in the local search procedure
and, consequently, increases the total number of iterations.

The impact of IG-DCLS’s construction phase is also implicitly reflected in the parameter
configurations determined by irace. IG-LS’ local search starts each iteration with a new
time assignment produced by TWCH’s time assignment from scratch. Due to the many
steps required to reach a locally optimal solution it makes sense to use a rater high
destruction rate to cover a larger part of the search space within the time limit. With
the new destruction and construction phase, however, the situation changes, because now
there is an immediate correspondence between the destruction rate and the time required
to reach a locally optimal solution and with it the number of total iterations. Here, the
destruction is able to either focus or broaden the exploration of the search space.

3.9.5 Time Estimation for Scheduling Sets of Treatments

In this section we study the performance impact of applying the presented time estimation
within our improved IG metaheuristic, the IG-DCLS described in Section 3.6. Moreover,
we determine the accuracy of the surrogate functions on a final solution. We use the
same experimental setup as in the previous section.

Table 3.6 compares the performance between the IG-DCLS, as presented in Section 3.6,
with the variant of the IG-DCLS where in the day assignment the time required from
the beam and room resources phase is estimated by (3.34), (3.35), and (3.36). Both
algorithms use as termination criterion a time limit of 20 CPU-minutes and are executed
on each of the benchmark instances for 30 times. Table 3.6 shows the mean objective
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IG-DCLS IG-DCLS with time estimation

Instance obj σ(obj) ext[h] σ(ext) obj σ(obj) ext[h] σ(ext)

050-01 5.139 1.526 2.533 1.526 2.468 0.085 0.000 0.085
050-02 43.525 4.096 38.158 4.096 33.233 2.071 27.950 2.071
050-03 36.069 5.439 30.458 5.439 30.364 4.479 25.183 4.479
050-04 24.076 2.613 19.758 2.613 20.261 1.860 15.275 1.860
050-05 51.128 4.351 47.167 4.351 42.625 3.055 37.233 3.055
070-01 19.612 4.385 15.183 4.385 10.823 1.700 5.558 1.700
070-02 40.407 6.780 33.800 6.780 33.192 3.990 27.850 3.990
070-03 69.194 3.983 62.742 3.983 60.801 4.285 53.042 4.285
070-04 9.784 2.485 4.050 2.485 5.662 0.385 0.000 0.385
070-05 46.702 5.195 40.917 5.195 43.069 2.994 36.250 2.994
100-01 11.558 0.976 5.483 0.976 9.046 0.468 2.633 0.468
100-02 15.508 2.372 8.158 2.372 9.737 0.774 1.933 0.774
100-03 8.488 0.497 3.192 0.497 6.435 0.161 0.883 0.161
100-04 14.257 1.566 7.117 1.566 8.884 0.473 1.125 0.473
100-05 13.826 1.755 7.817 1.755 6.823 0.235 0.000 0.235
150-01 18.916 1.760 7.417 1.760 14.068 0.387 1.733 0.387
150-02 52.166 4.722 39.500 4.722 43.950 3.475 30.092 3.475
150-03 32.886 3.757 20.233 3.757 32.740 3.390 20.142 3.390
150-04 18.620 1.659 6.875 1.659 12.395 0.466 0.033 0.466
150-05 24.286 3.833 15.483 3.833 10.628 0.631 0.917 0.631
200-01 48.102 3.935 34.000 3.935 35.945 5.275 17.225 5.275
200-02 38.085 2.824 21.533 2.824 35.206 3.855 16.442 3.855
200-03 31.158 3.574 13.075 3.574 20.454 0.895 1.108 0.895
200-04 30.913 2.576 16.800 2.576 18.860 1.324 2.075 1.324
200-05 29.846 2.384 17.092 2.384 19.876 2.550 5.600 2.550
300-01 23.654 2.739 12.067 2.739 16.429 1.459 4.000 1.459
300-02 61.320 5.063 41.200 5.063 52.510 5.979 27.608 5.979
300-03 41.415 4.254 25.392 4.254 23.707 2.900 6.350 2.900
300-04 108.118 7.221 85.608 7.221 77.244 4.501 50.367 4.501
300-05 18.684 1.634 6.800 1.634 13.219 0.586 0.833 0.586

Table 3.6: Average objective values obj and average use of extended service periods in
hours ext[h] of 30 runs with a time limit of 20 CPU-minutes and corresponding standard
deviations σ(obj) and σ(ext) for IG-DCLS and IG-DCLS with time estimation.
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Figure 3.7: Prediction quality of the improved time estimation for the beam resource
and the most used room resource in comparison with the trivial lower bound given by
aggregated resource demands.

values obj and the median use of extended service periods ext[h] in hours with the
corresponding standard deviations σ(obj) and σ(ext) of finally obtained solutions. The
results indicate that the application of the presented estimation considerably reduces the
used extended service periods over all benchmark instances. The surrogate functions are,
however, not necessarily a lower bound. Thus, we might occasionally overestimate the
required time for the bottleneck resources yielding underutilized days. The consequence
in general is that the finishing day of therapies are delayed, which is penalized with the
second term of our objective function. This raises the question whether the trade-off is
indeed beneficial w.r.t. objective function (3.1) using the usual weights. This is indeed the
case, since the IG-DCLS with the presented time estimation performs on all benchmark
instances significantly better than the one without according to a Wilcoxon rank sum
test with a significance level of 95%.

The performance improvements can be explained by the increased accuracy of λ̂r,d. To
this end, we consider the final solution of a randomly selected run for a benchmark
instance with 300 therapies. Figure 3.7 compares for all used working days our improved
time estimation and the trivial lower bound given by aggregated resource demands with
the actual required time. Using the trivial lower bound underestimates on average the
required time from the beam and the most used room by 27.7 and 101.6 minutes (i.e., by
6.5% and 15.3%) with a standard deviation of 20.2 and 57.2, respectively. The presented
estimation is on average off by 9.17 minutes for the beam and by 10.9 minutes for the most
used room (i.e., by 2% and 2.4%) with a standard deviation of 8.6 and 9.6, respectively.
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3.9.6 Iterated Greedy for Limiting Starting Time Variations

In this section we perform an experimental evaluation of the proposed IG approach from
Section 3.8 for the extended problem formulation, which we call from here on IG2. As
reference method we use a variant of the IG from Section 3.5.2, denoted as IG-LI, that is
revised for considering the extended objective function (3.3). In the experiments we start
with IG-LI and replace its components step-by-step with the ones from IG2. The aim is
to investigate on the properties and impacts of the individual proposed enhancements
and to demonstrate that their combination yields indeed an improved metaheuristic.

The algorithms for the following experiments have been implemented in C++14 and
compiled with G++ 6.3.0, and all experiments were carried out using a single core of an
Intel Xeon E5-2640 v4 CPU with 2.40GHz. The LP models for determining the nominal
starting times have been solved with Gurobi 7.5. We again adopt the acceptance criterion
and the termination condition from IG-LI: The incumbent solution is replaced by a
current new solution iff the latter has a smaller objective value, and the total CPU-time
is limited to 20 minutes, respectively.

To use IG-LI as reference algorithm we have to provide an extension that determines in
addition the nominal starting times. This can be done by solving the LP model presented
in Section 3.8.2 for the initial solution provided by TWCH and at the end of each
construction phase. Moreover, like in the local search procedure presented in Section 3.8.2
we repeatedly apply the local improvement method followed by a recalculation of the
nominal starting times until no improvements can be found. As already stated in
Section 3.8.1, it is not straightforward how to extend the time assignment part of TWCH
s.t. it explicitly respects the additional objective terms. However, due to the behavior
of the time assignment to prioritize DTs with certain properties we can observe quite
frequently that DTs belonging to the same therapy are scheduled roughly at the same
time anyway.

To show that the IG approach presented in this work indeed enhances IG-LI we will
gradually exchange components of IG-LI with the ones presented here. In this way we
assess the properties of the individual components and their interplay. We start by
exchanging in IG-LI the local improvement component with the local search procedure
from Section 3.8.2. We call the resulting algorithm IG-LS. Afterwards we interchange in
addition the destruction and construction phase, which is named IG-DCLS. Finally, we
swap in IG-DCLS the construction heuristic for the initial solution and obtain the final
IG2. Note that we receive all meaningful variants between IG-LI and IG2 by exchanging
the metaheuristic’s components in this order. Starting with applying the proposed local
search method instead of the local improvement makes sense since it is performed last
within each iteration. In contrast, starting with replacing the destruction and construction
component with the one from Section 3.8.3 yields a conceptually flawed variant. While
the construction phase aims at keeping relative timing characteristics of not removed DTs,
the local improvement operator ignores the time assignment provided by the construction
phase. Hence, either the construction phase or the local improvement becomes dominant
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and ignores the influence of the other. Exchanging the construction heuristic for the
initial solution after the construction phase is also reasonable for the same argument:
In an IG variant using the newly assembled construction heuristic combined with the
construction phase of IG-LI the first successful iteration would completely revoke the
time assignment of the initial solution.

In a preliminary study we experimented with several neighborhoods in place of the
exchange neighborhood within the IG2. We considered two variants of insertion neighbor-
hoods. The moves of the first consist of removing and reinserting a DT in another position
in the sequence obtained by decoding a considered day. Besides of being larger than the
exchange neighborhood, insertion moves are less likely to improve the solution due to
the interleaving of DTs w.r.t. the used rooms in good solutions. The second considered
insertion neighborhood removes and reinserts DTs but changes only the positions of the
DTs requiring the same room resource. The exchange neighborhood performs better
for two reasons. One the one hand, DTs have in general different timing characteristics
and resource requirements. Thus, keeping the positions of the DTs requiring other room
resources fixed can cause disruptions in the schedule as well. On the other hand, if we
only modify the positions of the DTs requiring the same room, then the starting times of
the affected DTs change typically to larger degree. This may cause frequently an increase
on the objective terms regarding the nominal starting times. Moreover, we also tried
a neighborhood based on inversions of parts of the DT sequence on a considered day.
Clearly, inversions of sequences of two or three subsequent DTs are already covered by
exchanges. Inversion of very long sequences of DTs are very likely to accumulate large
costs from the deviations of nominal starting times. Therefore, we considered inverting
sequences up to a given maximal length. Although being smaller than the exchange
neighborhood and, hence, allowing more iterations of the IG, it turned out that the
overall performance is weaker compared to the presented approach. Most likely many
improving exchanges of more distant DTs w.r.t. the job sequence cannot be replicated
by inversions. Finally, we observed for the presented local search method that a next
improvement strategy converges, in general, significantly faster than a best improvement
strategy, while yielding similarly good solutions.

The enhancements of our original IG from Section 3.6 focused on exchanging the local
search and the construction operator. The experiments conducted in Section 3.9.4 indicate
that exchanging just the local improvement operator of the IG-LI with the local search
component does not yield a substantial improvement. If, however, both the local search
and the new construction phase are used together then the resulting approach clearly
dominates IG-LI. The main reason for this performance improvement is the interplay
between the construction phase and the local search procedure. On the one hand, the
local search operator is, in general, able to provide better results than IG-LI’s local
improvement operator. However, encoding, decoding, and evaluating the solution is
computationally demanding and, hence, converging to a local optimum is time-consuming,
especially on strongly perturbed solutions. On the other hand, the construction phase is
designed in such a way that large parts of the sequence of the DTs are preserved while
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Instance size IG-LI IG-DCLS IG2

nT U ig-dest nrta-noimp krta-rand U ig-dest kfrb4 U ig-dest kfrb4

50 U{2, 18} 1.881 2 U{2, 2} 67 U{2, 4} 24
70 U{6, 7} 2.300 2 U{2, 3} 46 U{2, 9} 16
100 U{6, 10} 0.513 7 U{3, 3} 2 U{3, 3} 1
150 U{3, 8} 0.660 9 U{2, 2} 12 U{2, 2} 12
200 U{6, 9} 0.598 6 U{2, 3} 17 U{2, 2} 14
300 U{29, 45} 2.420 2 U{2, 5} 25 U{2, 2} 44

Table 3.7: Parameter settings for IG-LI, IG-DCLS, and IG2 determined by irace.

introducing the removed DTs in a sensible but randomized way. Starting with a solution
close to a local optimum w.r.t. the DT exchange neighborhood allows to reduce the
time spent in the local search procedure and, consequently, increases the total number
of iterations. Although these experiments have been conducted on the original version
of the PTPSP and with a slightly simplified algorithm, these results can be replicated
also for the extended problem formulation. Therefore, we consider here only IG-DCLS
further.

The metaheuristics’ strategy parameters were tuned using the automatic parameter
configuration tool irace [75] in version 2.4. In detail, irace was applied in two rounds
for each instance size separately. To this end, we used an independent set of instances
designated for tuning and a computational budget of 2000 experiments for each application
of irace. In the first round we used irace with a larger amount of parameters for
determining an effective design of the algorithm. During this configuration phase we
employed FRB4k instead of FRB3 within the construction heuristic for the initial solution.
The values obtained for parameter k for the initial solution corresponded with the number
of DTs assigned to a fully utilized day, i.e., k ≈ n, and thus FRB4k degenerates to
FRB3. This suggests that the comprehensiveness and the implied computational costs of
FRB3 are justified and beneficial for the overall approach. For the local search method
we tested randomizing the order in which the local search examines the neighboring
solutions. It turned out that this randomization is favorable over considering moves in
the order of the starting times of respective DTs. From a theoretical point of view, the
randomization of the order of the considered moves removes a bias towards exchanges at
the beginning of days. Moreover, we raced whether to activate the accelerations in the
local search that prematurely terminate the evaluation of a neighbor. While the technique
described in Section 3.8.2 has been activated on all instance sizes, a complementary
method considering increased variations to the nominal starting times has been rejected.
In the second round of the algorithm configuration we kept the assessed design choices
fixed to focus on the central parameters: U ig-dest, nrta-noimp, krta-rand for IG-LI and
U ig-dest, kfrb4 for IG-DCLS and IG2. As described in Section 3.8.3, U ig-dest specifies a
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discrete uniform distribution U(a, a+ b) from which in each iteration a random number
of therapies to destroy is sampled. The parameter configuration determined values for a
and b, where a ∈ {1, . . . , 40} and b ∈ {0, . . . , 40}. For nrta-noimp and krta-rand we used the
value ranges [0.5, 2.5] and {1, . . . , 10}, respectively. We denote with kfrb4 the parameter
k of the FRB4k algorithm used in the construction phase and consider values from
{0, . . . , 70}. The resulting parameter configurations are shown in Table 3.7.

Table 3.8 depicts for IG-LI, IG-DCLS, and IG2 averages of the final objective values
obj and the corresponding standard deviation σ(obj) over 30 runs for each of the 30
benchmark instances. Moreover, Table 3.8 gives the probability values obtained by
an application of an one-tailed Wilcoxon rank sum test on the objective values of two
methods at a time. We start by comparing IG-LI with IG-DCLS. The average objective
values of IG-DCLS are on 29 out of 30 benchmark instances smaller than those obtained
by IG-LI. The Wilcoxon rank sum test indicated with a confidence level of 95% that
IG-DCLS yields significantly better solutions than IG-LI on 29 benchmark instances,
the only exception is instance 050-05. In fact, on 21 instances the average objective
values are halved compared with the ones from IG-LI, and on eight instances the average
objective values of IG-DCLS are even 75% smaller compared with those of IG-LI. These
results confirm the outcome of the experiments conducted for the original variant of the
PTPSP in Section 3.9.4, which showed the advantage of applying the new construction
and local search components. In fact, the superiority of IG-DCLS over IG-LS is here
even more predominant. This can be explained by the fact that we use here FRB4k
instead of NEH (i.e., FRB40). Moreover, the new construction operator as well as the
local search operator are able to handle the more complicated objective much better than
their counterparts within IG-LI.

We continue by taking our main approach into consideration. Table 3.8 clearly shows that
IG2 outperforms the two other metaheuristics, and provides the best average objective
values on 26 out of 30 benchmark instances. As before we applied a Wilcoxon rank
sum test on the objective values with a confidence level of 95% for each instance to
compare IG2 with IG-LI and IG2 with IG-DCLS. The former tests showed that IG2
performs significantly better on all benchmark instances. The latter series of statistical
tests evinced that the IG2 outperforms IG-DCLS on 18 benchmark instances significantly,
while the observed better average objective values of IG-DCLS have been two times
significant. Furthermore, there is clear tendency that IG2 significantly performs better
than IG-DCLS on larger benchmark instances. This indicates that exchanging the
construction heuristic for the initial solution with the one described in Section 3.8.1
becomes of greater importance with the increasing size of the instances. The reason for
this is that with larger instance sizes also the computational cost for each iteration of
the IG increases and, consequently, the number of executed iterations decreases. Hence,
quality of the initial solution becomes with larger instance sizes more and more important.
This argument is further supported by the fact that the construction heuristic presented
here requires substantially more of the total time budget of 20 CPU minutes than the
application of TWCH: The average computation time for the construction heuristic based
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IG-LI (1) IG-DCLS (2) IG2 (3) Wilcoxon rank sum test

Instance obj σ(obj) obj σ(obj) obj σ(obj) p1≤2 p1≤3 p2≤3

050-01 8.570 1.323 2.784 0.562 2.608 0.215 0.000 0.000 0.027
050-02 52.830 2.228 40.005 3.006 39.812 2.398 0.000 0.000 0.339
050-03 47.600 2.022 37.281 3.821 37.660 3.252 0.000 0.000 0.733
050-04 29.561 1.564 26.419 3.743 25.795 3.152 0.000 0.000 0.261
050-05 53.363 1.996 54.089 2.761 49.848 2.725 0.893 0.000 0.000
070-01 28.600 2.826 13.242 1.742 14.015 1.787 0.000 0.000 0.945
070-02 48.346 2.861 44.871 5.588 41.540 4.556 0.003 0.000 0.007
070-03 74.141 3.957 70.376 4.897 70.227 5.833 0.000 0.001 0.524
070-04 13.826 1.794 7.710 1.907 7.313 1.556 0.000 0.000 0.282
070-05 56.838 4.016 49.328 4.593 49.316 3.518 0.000 0.000 0.371
100-01 81.405 5.025 18.383 2.296 17.840 2.524 0.000 0.000 0.075
100-02 108.194 5.006 24.366 2.041 23.552 2.179 0.000 0.000 0.099
100-03 53.978 3.251 15.564 1.592 15.306 1.457 0.000 0.000 0.275
100-04 88.931 5.892 19.703 1.478 20.865 1.694 0.000 0.000 0.992
100-05 77.063 3.895 14.762 1.256 16.089 1.235 0.000 0.000 1.000
150-01 128.564 7.308 40.590 5.421 35.605 5.399 0.000 0.000 0.001
150-02 273.450 10.896 80.328 4.877 72.008 5.785 0.000 0.000 0.000
150-03 127.236 5.736 72.212 6.622 62.368 5.999 0.000 0.000 0.000
150-04 116.294 5.290 32.255 2.126 27.787 1.744 0.000 0.000 0.000
150-05 96.049 6.785 22.889 2.019 20.093 1.619 0.000 0.000 0.000
200-01 194.440 9.204 76.943 5.658 61.244 5.783 0.000 0.000 0.000
200-02 223.821 7.241 88.747 5.988 78.073 6.780 0.000 0.000 0.000
200-03 165.977 8.092 57.843 4.214 49.197 3.277 0.000 0.000 0.000
200-04 212.980 9.355 63.085 7.408 51.859 6.435 0.000 0.000 0.000
200-05 188.749 7.701 44.143 3.253 33.294 2.572 0.000 0.000 0.000
300-01 239.586 5.072 52.349 4.503 35.082 3.149 0.000 0.000 0.000
300-02 344.637 9.689 133.092 7.858 128.118 10.560 0.000 0.000 0.028
300-03 249.621 10.444 64.612 5.839 48.084 3.599 0.000 0.000 0.000
300-04 370.461 9.514 162.315 8.896 115.586 8.354 0.000 0.000 0.000
300-05 251.234 7.381 48.194 2.936 35.885 2.312 0.000 0.000 0.000

Table 3.8: Comparison of IG-LI, IG-DCLS, and IG2. We consider for each instance
and every approach average objective values obj of 30 runs and corresponding standard
deviations σ(obj). Moreover, the p-values originating from an application of the Wilcoxon
rank sum test on pairs of algorithms are given. To this end, we denote with pA≤B the
p-values under the null hypothesis that approach A performs better than or equal to
method B. We mark for each instance the best average objective value and p-values
smaller than 0.05.
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IG-LI IG-DCLS IG2

Instance ext+fin iaw+iew ext+fin iaw+iew ext+fin iaw+iew

050-01 2.834 5.735 2.770 0.014 2.602 0.006
050-02 37.729 15.100 37.613 2.392 36.908 2.903
050-03 33.642 13.958 34.373 2.908 34.533 3.127
050-04 20.834 8.726 24.393 2.026 23.694 2.100
050-05 40.899 12.464 50.447 3.642 46.279 3.569
070-01 16.812 11.788 12.934 0.308 13.615 0.400
070-02 32.592 15.754 42.868 2.003 38.572 2.968
070-03 55.566 18.574 67.096 3.280 65.863 4.364
070-04 6.325 7.501 7.461 0.249 6.769 0.544
070-05 41.663 15.175 47.482 1.846 46.451 2.866
100-01 23.018 58.387 13.869 4.514 13.422 4.418
100-02 31.548 76.646 17.166 7.199 16.142 7.410
100-03 10.263 43.715 10.894 4.670 10.413 4.893
100-04 26.416 62.514 13.340 6.364 14.018 6.847
100-05 24.704 52.359 9.398 5.364 11.085 5.004
150-01 34.650 93.914 28.387 12.203 26.102 9.504
150-02 134.003 139.447 59.588 20.740 52.431 19.577
150-03 51.618 75.619 59.815 12.396 48.742 13.626
150-04 24.568 91.727 20.950 11.305 17.758 10.028
150-05 24.652 71.396 14.471 8.417 13.901 6.192
200-01 66.198 128.243 52.634 24.309 39.416 21.828
200-02 86.416 137.405 67.024 21.723 56.513 21.561
200-03 36.428 129.549 35.604 22.239 29.719 19.478
200-04 67.216 145.764 45.907 17.178 34.686 17.174
200-05 46.356 142.393 28.765 15.378 20.421 12.873
300-01 34.580 205.006 29.479 22.870 20.496 14.586
300-02 131.749 212.888 96.046 37.046 90.977 37.141
300-03 42.013 207.609 39.849 24.764 30.603 17.481
300-04 120.678 249.783 115.095 47.220 76.253 39.334
300-05 32.446 218.789 24.558 23.636 21.373 14.512

Table 3.9: The breakdown of the average objective values of 30 runs for IG-LI, IG-DCLS,
and IG2 presented in Table 3.8 into the first two and the last two terms of our objective
function (3.3) denoted as ext+fin and iaw+iew, respectively.

80



3.10. Conclusions

on FRB3 is on the largest instances 29.8 seconds, while the computation of the initial
solution for IG-LI and IG-DCLS takes on average only 0.25 seconds. On this account it
becomes more evident that the combination of TWCH with FRB3 is indeed advantageous
and that the large processing time is well spent.

Table 3.9 gives a more detailed breakdown of the average objective values presented
in Table 3.8. To this end, we denote with ext+fin the part of the average objective
values originating from the use of extended service time windows and from the delayed
completion of therapies. The sum of these two objective terms correspond to the objective
function used in the original variant of the PTPSP. Moreover, iaw+iew stands for the part
of the average objective values that arise from the intra-week and inter-week objective
terms. For a well-performing method it is clearly not sufficient to focus on only one
part of the objective function while neglecting the other aspects of the problem. This
is especially visible for the smaller benchmark instances. On the instances with 50 and
70 therapies IG-LI frequently provides solutions with the smallest costs w.r.t. the first
two terms of objective function (3.3). This comes, however, with a much higher cost on
the intra-week and inter-week objective terms compared with the other two approaches.
Furthermore, IG-DCLS is on several occasions able to provide solutions with less excess
on the allowed variations of the DTs’ starting times. Nevertheless, IG2 outperforms the
other two approaches on almost all cases due to the better balance between the objective
parts. On the larger benchmark instances the superiority of IG2 over IG-LI and IG-DCLS
becomes more evident. For most benchmark instances with more than 100 therapies
the IG2 metaheuristic is able to provide the best results on both parts of the objective
function.

3.10 Conclusions

We have seen that the midterm patient scheduling problem arising in modern cancer
treatment centers applying particle therapy is particularly challenging. It involves
planning on day level as well as a dependent detailed scheduling of DTs at each day.
We presented a MILP model for the whole problem, but it became clear that already
solving just the day planning part is practically intractable for most instances of realistic
size. Therefore, we considered a therapy-wise construction heuristic based on greedy
principles featuring a forward-looking mechanism to avoid too naive decisions. This
heuristic is fast and provides already reasonable solutions. We further built upon this
construction heuristic, proposing a first GRASP and IG metaheuristic. In our experiments
on newly created benchmark instances based on properties of realistic scenarios, the IG
approach yielded the best results. Its superiority over GRASP can be explained by the
computationally more efficient destruction and construction: Only parts of each solution
are reconsidered from scratch, and substantial information survives from one iteration to
the next and is further fine-tuned. All proposed metaheuristics scale well to instances of
practically relevant size.
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Nevertheless, this first IG metaheuristic did not exhaust its full potential. Consequently,
we focused in the following on improving the IG further. In contrast to this first IG,
the proposed enhanced approach aims at preserving the order of the not removed DTs
on the individual days. The resulting advantage is that more information from the
incumbent solution is maintained. Compared to our previous IG and a variant of the
previous IG that uses the local search procedure of our new IG metaheuristic provides
significantly better results on 25 and 26 out of 30 benchmark instances, respectively. The
superiority of the enhanced approach over the other two can be explained by the interplay
between its construction phase and the newly applied local search technique: The local
search method yields, in general, better results than applying TWCH’s time assignment
randomized for many times. However, due to the required encoding and decoding steps,
evaluating neighbors is time-consuming. Hence, to ensure that the metaheuristic is able
to perform sufficiently many iterations it is required that the neighborhood requires on
average only a few steps until it reaches a local optimum. To this end, we apply in the
construction phase an insertion heuristic that iteratively places the removed DTs into
the permutation resulting from sorting the DTs according to the times at which they use
the beam.

Afterwards, we presented a surrogate model for estimating the total times the bottleneck
resources are required to optimally schedule sets of DTs. This surrogate model is applied
to quickly estimate the use of extended service times at the day assignment level of the
PTPSP. We evaluated the effects of the presented surrogate model within the improved IG
algorithm. Results show that on all considered benchmark instances the use of extended
service periods as well as the whole objective value can be significantly decreased. This
can be explained by the substantial gain in accuracy of the new surrogate model and
with it the better adjustment of the two levels.

The basic problem formulation allowed considering each day individually after the day
assignment has been determined. In the extended version of the PTPSP starting time
variations of DTs belonging to the same therapy should not exceed specified thresholds.
To this end we introduced nominal starting times that serve as reference point for
computing the variation within and between weeks. From a practical viewpoint this
extension increases the difficulty of the problem substantially since on the one hand
the calculation of the nominal starting times requires the DTs’ starting times while on
the other hand finding good starting times involves knowing the nominal starting times.
Moreover, minimizing the variation of starting times is frequently contrary to our main
objective which is to minimize the use of extended service time windows. Consequently,
also the design of an effective metaheuristic is more involved as it requires to balance the
different aspects of the objective function.

To tackle this extended problem formulation we build on our previously developed IG
metaheuristics. The approach features a construction heuristic that combines parts of
TWCH and the FRB heuristics from Rad et al. [99]. Moreover, a local search technique is
applied that alternately examines an exchange neighborhood to improve the DTs starting
times and solves an LP model that computes nominal starting times. Like our enhanced
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IG for the basic problem formulation, the presented approach is able to preserve the
order of the not removed DTs on the individual days which allows maintaining timing
information sensibly.

To evaluate the performance of the proposed IG for the extended problem formulation
we revised our first IG to cover the extended PTPSP variant. Afterwards, we replaced
components of this reference algorithm step-by-step with the newly described ones
to assess their properties. We again observed the beneficial interplay between the
construction phase and the applied local search method: The local search yields, in
general, good solutions but is due to the encoding and decoding steps time critical. The
insertion heuristic based on FRB4k applied in the construction phase on the other hand
is able to provide starting solutions for the local search s.t. on average only a few moves
suffice to reach a local optimum. Moreover, although being computationally expensive,
the newly presented construction heuristic for the initial solution, based on TWCH and
FRB3, gives the IG a superior starting point. The resulting approach outperforms our
reference method on all benchmark instances significantly.

A remaining challenge is to determine suitable parameter configurations for real world
instances. Although the considered benchmark instances aim at modeling the expected
situation at MedAustron, they contain assumptions and simplifications which might differ
in the future practice. The main characteristic of the used benchmark instances is the
number of therapies which have to be scheduled. Our experiments showed that the values
of some parameters are highly dependent on the instance size. For real world instances it
is likely that also other aspects which have to be considered for obtaining good parameter
configurations. Hence, a next step to improve the applicability of the presented approach
is to define a parameter model which determines values for the IG’s strategy parameters
on the basis of the observed instance characteristics.

PTPSP, as defined here, still simplifies the midterm planning part arising in practice.
We consider therapies to consist only of DTs. In the general case, however, there is a
treatment planning phase preceding all DTs. In this stage personalized equipment needed
for irradiation is produced. Moreover, a substantial amount of planning has to be done
to determine the detailed treatment strategy. Since other constraints have to be enforced
for these tasks, they cannot be modeled as DTs. There are further activities (e.g., control
examinations) complementing the core therapies that have to be provided once a week
before or after one of the DTs. However, from a practical viewpoint these additional
activities should never influence the throughput of the facility and can be sufficiently
well handled in a post-processing step.

We formulated PTPSPs as a single-objective optimization problem by using a linear
combination of the objective goals. A further natural next step would be to consider
PTPSP as a multi-objective optimization problem. Moreover, for the staff it is preferable
to avoid gaps within the workday. To address this minimizing the time a resource stays
idle between subsequent activities should be considered as an additional objective goal.
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The presented IG metaheuristics use an acceptance criterion that accepts a current
solution if it has a better objective value. To improve our IG further it makes sense
to also consider acceptance criteria that allow selecting suboptimal solutions, e.g., in
a simulated annealing like fashion (see [107]). Moreover, the proposed local search
procedure exchanges the DTs only within days. Neighborhoods that can alter the days
on which a therapy is applied seem promising. The main challenge here is to design and
restrict the neighborhoods s.t. the resulting local search method is still fast enough to
allow a sufficiently large number of IG iterations.
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CHAPTER 4
Prize-Collecting Job Sequencing

In the course of our investigation into the real-world patient scheduling problem discussed
in Chapter 3 it became apparent that the scheduling of daily treatments (DTs) within
individual days is an challenging problem on its own, which deserves further attention. In
this chapter we, thus, concentrate on the most central aspects of the time assignment part
for a single day. The introduced problem considers only two kinds of resources: a single
resource shared among all jobs and several secondary resources where each is required by
a subset of the jobs. These resources correspond to the beam and the treatment rooms
in our particle therapy scenario. Similar to the DTs from Chapter 3, the jobs need one
of the secondary resources for their entire execution while the resource required by all
jobs is only used for a part of the processing time. Instead of resource availabilities, we
consider here the slightly more general variant of having individual time windows for the
jobs. New is the prize-collecting aspect, where we aim at finding a subset of jobs that
can be feasible scheduled and maximizes the total prize associated with each of the jobs.
This objective can be motivated by the fact that we have to frequently delay the days on
which DTs are performed to avoid excessive use of extended time. Accordingly, the prizes
associated with the jobs might reflect the urgency of performing a DT on the considered
day.

We approach the problem by the means of decision diagrams (DDs) (see Section 2.4).
They have been recognized to be a powerful tool for certain COPs. Relatively compact
relaxed and restricted DDs allow to obtain dual bounds and heuristic solutions. The prize-
collecting aspect has, to the best of our knowledge, not been studied before and provides
new challenges and opportunities. Our first work on this topic has been presented at
the 12th International Conference on the Practice and Theory of Automated Timetabling
(PATAT’18) and is published in the conference’s proceedings:

J. Maschler and G. R. Raidl. Multivalued decision diagrams for a prize-collecting
sequencing problem. In Proceedings of the 12th International Conference of the
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Practice and Theory of Automated Timetabling, pages 375–397, Vienna, Austria,
2018.

The primary aim of this paper is to study different methods found in the literature for
creating relaxed DDs for our prize-collecting job sequencing problem. To this end, we
adopt and extend the two main DD compilation approaches found in the literature: top
down construction and incremental refinement. In a series of computational experiments
these methods are compared.

A substantially extended version of this work has been submitted to the special issue
The Practice and Theory of Automated Timetabling of the journal Annals of Operations
Research:

J. Maschler and G. R. Raidl. Multivalued decision diagrams for prize-collecting
job sequencing with one common and multiple secondary resources. Annals of
Operations Research, submitted.

New is in particular a technique that detects and removes redundancies during the incre-
mental refinement of DDs. This redundancy detection and removal yields substantially
smaller DDs.

The DDs studied in the literature and their compilation methods are intrinsically layer
oriented. For problems like our prize-collecting job sequencing this layered structure is
not natural and prevent to a certain degree compact DDs representing strong relaxations.
Therefore, we propose a new compilation approach for relaxed DDs that avoids an explicit
consideration of layers. Moreover, we describe a novel construction method for restricted
DDs that exploits already gained information from a previously compiled relaxed DD.
This work has been submitted to the INFORMS Journal on Computing:

M. Horn, J. Maschler, G. R. Raidl, and E. Rönnberg. A*-based construction of
decision diagrams for a prize-collecting scheduling problem. INFORMS Journal on
Computing, submitted.

It is necessary to mention that the development of layer-free compilation of DDs has been
primarily conducted by my coauthors. My contributions focused on the construction
technique that exploits information from the relaxed DDs. Moreover, as both approaches
have been executed in sequence, the author of this thesis was also involved in the testing
of the various configurations of both methods.

This chapter is based on the extended version of our initial work and on the advanced
approaches proposed in our recently submitted paper.
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4.1 Introduction

We consider a new prize-collecting variant of the job sequencing with one common and
multiple secondary resources (JSOCMSR) problem [55] which we call PC-JSOCMSR.
Given a set of jobs, each associated with a prize, the task is to find a subset of jobs
with maximal total prize that is feasibly schedulable. Each job requires one of several
secondary resources during its whole processing time and a common resource which is
shared among all jobs for a part of its execution. Moreover, each job has to be performed
within given time windows. Due to these time windows, it is in general not possible to
feasibly schedule all jobs.

PC-JSOCMSR originates from the context of particle therapy for cancer treatment (see
Chapter 3). In this scenario the common resource corresponds to a particle beam that can
be directed into one of multiple treatment rooms which are represented by the secondary
resources. Jobs describe treatments that consist of several tasks within a treatment room
from which only one is the actual irradiation using the beam. Another application of
PC-JSOCMSR is in the pre-runtime scheduling of avionic systems. In this setting we
consider a single communication module and multiple applications modules corresponding
to the common and secondary resources, respectively. Jobs are performed on one of
several applications modules and have to exchange information at their beginning or end
using a shared communication module.

In this chapter we explore the potential of applying the concept of decision diagrams
(DDs) to PC-JSOCMSR. In particular investigate different methods for creating them.
Essentially, DDs are rooted directed acyclic multigraphs used to compactly represent a
COP’s set of feasible solutions. To this end, the nodes of DDs are typically partitioned
into layers. The first of the layers contains the root node and each subsequent layer of
the DD is associated with one of the decision variables of the COP. Every arc in the DD
describes an assignment of the variable represented by the corresponding layer. Thus, a
path starting from the root node represents a variable assignment. The lengths of the arcs
are assigned in such a way that the length of a path corresponds to the objective value
of the corresponding variable assignment. Depending on whether the COP’s objective
is to maximize or to minimize a given objective function, we are seeking a longest or a
shortest inclusion maximal path to a valid terminal node within the DD. The out-degrees
of the DD’s nodes directly corresponds with the domain sizes of the respective decision
variables. If the COP is modeled with binary variables, then all nodes have at most two
outgoing arcs and the DD is called binary decision diagram (BDD). In the more general
case with finite variable domains, the number of arcs leaving nodes is not restricted. In
this case, DDs are called multivalued decision diagrams (MDDs).

DDs resemble in many aspects a dynamic programming’s state graph [54]. Likewise, the
size of exact DDs grows in general exponentially with the problem size. To overcome
the resulting limitations, Andersen et al. [3] proposed the concept of relaxed DDs. The
basic idea is to merge nodes on the same layer and to redirect the affected arcs. This
might introduce new paths in the DD that, however, do not represent feasible solutions.
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Consequently, relaxed DDs encode a superset of the feasible solutions and represent a
discrete relaxation of the problem that provides dual bounds. Another way to cope with
the in general exponential number of nodes are restricted DDs [11]. A restricted DD
is obtained from an exact DD by removing nodes and all incident arcs. Clearly, this
also removes all paths from the DD that included at least one of the removed nodes.
Therefore, a restricted DD represents only a subset of all feasible solutions, and it is used
to obtain a feasible heuristic solution and a respective primal bound.

The concept of DDs has been successfully applied to a variety of problems, ranging
from binary optimization problems to sequencing problems. The former include set
covering [9, 11], maximum independent set [10, 13], maximum cut [13], and maximum
2-satisfiability [13] problems and are approached using BDDs. Sequencing problems as
our PC-JSOCMSR on the other hand typically suggest the use of MDDs. For this reason,
from here on we primarily consider MDDs. Nevertheless, all discussed techniques can be
easily adapted to the binary case. Sequencing problems studied in the literature include
the time dependent traveling salesman problem with and without time windows and the
time-dependent sequential ordering problem [23, 68]. For a comprehensive overview on
DDs see [12].

Two main approaches have been proposed for compiling MDDs. The first starts at the
root node and constructs the MDD from top down layer by layer [9, 11]. If the number
of nodes within a layer exceeds a given limit, then either nodes are merged or removed to
obtain a relaxed or a restricted MDD, respectively. The second approach, starts with a
simplistic relaxed MDD and applies incremental refinements by splitting nodes in order
to iteratively strengthen the relaxation [23, 68]. We start by adapting both approaches
for PC-JSOCMSR and are, to our knowledge, the first who directly compare the two
techniques experimentally. Our computational experiments show that the relaxed MDDs
obtained by the incremental refinement (IR) approach provide on most of our benchmark
instances better dual bounds than the top-down construction (TDC). While the TDC for
restricted MDDs outperforms a GVNS metaheuristic on small to medium-sized instances,
the GVNS is mostly superior on larger instances.

These two standard approaches to compile relaxed or restricted MDDs are strongly layer
oriented, i.e., MDDs are compiled in such a way that nodes can be partitioned into
layers and arcs exist only between subsequent layers. However, this strict layer-structure
is for problems like the PC-JSOCMSR a major restriction. In PC-JSOCMSR closely
related or identical states may frequently be reached from the root node via paths with
different numbers of arcs. Such states are in layer-oriented relaxed MDDs represented by
multiple nodes located in different layers. This may introduce substantial redundancies
and considerably increase the necessary size of a relaxed MDD to achieve a certain quality
of the dual bound.

We propose to compile relaxed MDDs in a way that is not restricted to a layered structure
and, therefore, offers more flexibility. This is achieved by following the principles of A∗
search but limiting the number of not expanded nodes. In case the list of unexpanded
nodes gets too large, suitable less promising open nodes are merged. To this end, a data
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structure of so-called collector nodes is used that allows to efficiently detect promising
nodes for merging. Another feature of our MDD construction is that it is guided by a
fast-to-calculate, problem-specific upper bound for partial solutions. Compared to the
two conventional methods our new A∗-based approach allows obtaining smaller relaxed
MDDs with stronger bounds in shorter time. Finally, we show how a restricted MDD can
be constructed efficiently by exploiting knowledge already contained in the relaxed MDD,
in order to return promising heuristic solutions for PC-JSOCMSR instances with up to
500 jobs. Both of the proposed methods contain novel aspects that are also applicable to
a broader class of COPs.

The remainder of this chapter is organized as follows. We start in the next section by
giving an overview over related literature. Afterwards, we give a formal definition of the
considered problem in Section 4.3 and discuss its applications. Section 4.4 provides a
recursive model for PC-JSOCMSR which serves as basis for deriving MDDs in Section 4.5.
The next five sections are dedicated to the presented compilation methods for either
relaxed or restricted MDDs. The first two are adaptions for PC-JSOCMSR of the
layer-oriented compilation techniques known from the literature: Section 4.6 describes
the TDC of relaxed and restricted MDDs. The IR algorithm for compiling relaxed MDDs
is explained in Section 4.7. Afterwards, our A∗-based construction method for relaxed
MDDs is presented in Section 4.8. To this end, we first describe the novel compilation
approach in a problem-independent way and give the aspects specific to PC-JSOCMSR
in a second step. In Section 4.9 and Section 4.10 we explain how to further strengthen
an obtained relaxed MDD by filtering and how to boost the construction of a restricted
MDD by exploiting an existing relaxed MDD. Section 4.11 sketches the standalone GVNS
which is used as a reference approach. We further compare our approaches to the MILP
and the constraint programming (CP) models from Horn et al. [56] which are provided for
sake of completeness in Appendix A. Results of the conducted computational experiments
are reported in Section 4.12. Finally, Section 4.13 concludes with an outlook on future
research directions.

4.2 Related Work
In a complementary work to our initial paper [79], Horn et al. [56] focus on solving
the PC-JSOCMSR exactly by means of A∗ search. They studied different variants of
upper bound calculations for partial solutions. These calculations are based on solving
different LP relaxations of 0–1 knapsack subproblems and combining results. The A∗
algorithm was compared to a compact MILP model solved by Gurobi and a MiniZinc
CP model solved by three different backends. All approaches were tested on artificially
created instances based on real properties from the particle therapy scenario. The A∗
algorithm outperforms the other approaches clearly and solves instances with up to
40 jobs consistently to optimality. In cases where A∗ is not able to reach optimality,
obtained upper bounds are typically stronger than those from the MILP approach.
Nevertheless, the applicability of these methods is strongly limited to rather small or
medium sized-problem instances.
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More generally, PC-JSOCMSR is an extension of the job sequencing with one common
and multiple secondary resources (JSOCMSR) problem from Horn et al. [55]. There, no
time windows and job prizes are given, all jobs need to be scheduled and the makespan
is to be minimized. Horn et al. [55] proposed a strong lower bound calculation for the
makespan and utilized this bound in a greedy constructive heuristic and an exact anytime
variant of an A∗ algorithm, which is able to solve instances with up to 1000 jobs to
proven optimality.

Van der Veen et al. [110] considered a scheduling problem with a similar scenario as
the PC-JSOCMSR. Here jobs also require a common resource as well as an individual
secondary resource, but the post-processing times are negligible compared to the total
processing times of the jobs. This simplifies the problem substantially since it implies
that the start time of each job only depends on its immediate predecessor: If a job j
requires a different resource than its predecessor j′ then j can always be started so that
it takes over using the common resource immediately after job j′, and if j requires the
same resource as job j′ then j can always be started after job j′ has finished with its
post-processing. Due to these properties, the problem can be modeled as a traveling
salesman problem with a special cost structure that allows to solve the problem efficiently
in time O(n logn).

Loosely related to the JSOCMSR are no-wait flowshop problem variants. For a survey,
see [2]. In such problems, there are m machines and each job needs to be executed
on each of these machines in the same order such that the execution of the job on a
successive machine always has to start immediately after the execution ends on the
preceding machine. Gilmore and Gomory [40] showed that for two machines this problem
can be transformed into a specially structured traveling salesman problem such that the
problem can be solved in time O(n logn). For three or more machines, this problem is
NP-hard.

Another possibility is to model the PC-JSOCMSR problem as a more general resource-
constrained project scheduling problem (RCPSP) (for a survey see Hartmann and Briskorn
[49]) with maximal time lags by splitting each job according to the resource usage into
three sub-jobs. These three sub-jobs must be executed sequentially without any time
lags. However, since we need for each job of the PC-JSOCMSR problem three jobs of the
RCPSP and the RCPSP also is known to be difficult to solve in practice, this approach
does not seem to be promising to yield good results in practice.

Although the PC-JSOCMSR is an improvement over the simpler JSOCMSR model
concerning the practical relevance in the two explained applications, it still is a strongly
simplified formulation addressing only certain aspects of the sketched real-world scenarios.
Concerning the particle therapy application, Chapter 3 considers more practically relevant
aspects including in particular also the planning over many days. Moreover, in contrast
to the jobs considered here, DTs can require an arbitrary set of resources. This restriction
is motivated by the fact that the beam and the treatment rooms are expected to be the
main bottlenecks and correspond here to the common and the secondary resources.
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4.3 Problem Description

The prize-collecting job sequencing with one common and multiple secondary resources
(PC-JSOCMSR) problem is formally defined as follows. Given is a set of n jobs J =
{1, . . . , n}, a special common resource 0, and a set of m secondary resources R =
{1, . . . ,m}. We denote by R0 = {0} ∪R the complete set of resources. To be processed,
each job j ∈ J requires a resource qj ∈ R for its entire processing time pj > 0 and
additionally resource 0 for a duration of p0

j after time ppre
j from the job’s start, with

0 < p0
j ≤ pj − ppre

j . Hence, the common resource 0 is shared by all jobs whereas
each secondary resource is shared by only some jobs. For convenience, we denote with
ppost
j the duration after the common resource is used until the job j is completed, i.e.,
ppost
j = pj − ppre

j − p0
j .

We associate with each job j a set of time windows Wj =
⋃
w=0,...,ωj

[W start
j,w ,W end

j,w ], where
W end
j,w −W start

j,w ≥ pj . Jobs can only be performed within these time windows and are
assumed to be non-preemptive, i.e., may not be interrupted. We denote the whole relevant
time horizon, encompassing all time windows of all jobs, with [Tmin, Tmax].

Finally, each job j has a prize (utility value, priority) zj > 0. We assume that there
exists, in general, no feasible schedule that considers all jobs in J . Instead, we aim for
a subset of jobs S ⊆ J that can be feasibly scheduled and maximizes the total prize of
these jobs, i.e.,

Z(S) =
∑
j∈S

zj . (4.1)

A feasible schedule assigns each job in S a starting time in such a way that each resource
is used by at most one job at the same time and that each job is completely performed
within one of its time windows in a non-preemptive way. We denote with Z∗ the maximum
total prize over all feasible solutions, i.e., the optimal solution value.

Figure 4.1 illustrates a possible schedule for a PC-JSCOCMSR instance with n = 10 jobs
and m = 3 secondary resources in which jobs S = {1, 4, 7, 8, 10} ⊆ J are scheduled. The
horizontal axis shows the time, whereas all resources are represented by the vertical axis.
We assume that the remaining jobs cannot be additionally scheduled due to their time
windows.

A schedule of S implies a total ordering of the scheduled jobs because all jobs require
resource 0 and this resource can be used by only one job at a time. Vice versa, such
an ordering π = (πi)i=1,...,|S| of S can be decoded by scheduling each job from S in the
order given by π at the earliest feasible time after the preceding job. If at least one of
the jobs cannot be feasibly scheduled in this way, then ordering π does not represent a
feasible solution. We call the schedule obtained from ordering π by the above decoding a
normalized schedule. Clearly, for every feasible solution there exists a normalized schedule
with the same objective value. Hence, we write Z(π) for the total prize of the normalized
solution given by the ordering π of jobs. The job ordering of the schedule depicted in
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Figure 4.1: Example of a feasible schedule of jobs S = {1, 4, 7, 8, 10} of a PC-JSOCMSR
instance with n = 10 jobs and m = 3 secondary resources. The job sequence on the
common resource is (8, 1, 7, 10, 4).

Figure 4.1 is (8, 1, 7, 10, 4). Moreover, the schedule shows such a normalized schedule
since no single job can start earlier without raising a resource conflict.

As already mentioned PC-JSOCMSR extends the JSOCMSR problem from Horn et al.
[55] by time windows and by the aspect that not all the jobs have to be scheduled. In
Horn et al.’s JSOCMSR, the objective is to minimize the makespan. They showed that
the decision variant of JSOCMSR is NP-hard for m ≥ 2. PC-JSOCMSR is NP-hard as
well, which can be shown by a simple reduction. To this end, we construct an instance
for PC-JSOCMSR by associating each job with a single time window [0,M ], where M
is the given constant for the makespan. There exists a solution for the decision variant
of JSOCMSR if and only if there exists a solution for the constructed PC-JSOCMSR
instance in which all jobs can be scheduled.

4.3.1 Application in Particle Therapy

One application of the PC-JSOCMSR can be found in the detailed daily scheduling of
particle therapies for cancer treatments (see Chapter 3). Here the common resource
corresponds to a synchrotron (i.e., a particle accelerator) in which proton or carbon
particles get accelerated to almost light speed and are redirected to one of several treatment
rooms in which one patient gets irradiated at a time. The treatment rooms are the
secondary resources, since each treatment takes place in one room for the whole treatment
duration. Each treatment starts with some specific preparations such as positioning
and possibly sedating the patient, then the irradiation with the synchrotron—i.e., the
usage of the common resource—takes place. Afterwards, some medical examinations
need to be done before the patient can leave and the room becomes available for a next
patient. Due to the huge costs, there is only a single synchrotron available in a therapy
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treatment center and it usually serves two or three treatment rooms1. The treatment
rooms are usually individually equipped to handle different kinds of treatments, and
therefore, patients are pre-assigned to specific rooms. Furthermore, the treatments are
constrained by time windows due to the availability of the underlying resources. Ideally,
one aims to find a schedule where the synchrotron is directly switched from one treatment
room to another so that significant breaks between treatments are avoided. Since only
a daily schedule is considered and due to the time windows, it is typically not possible
to schedule all treatments. Therefore, a best subset of treatments that can be feasibly
scheduled must be selected, and unscheduled patients are treated at other days. The job
prizes may correspond to the duration of the irradiations and/or reflect urgencies of the
treatments.

4.3.2 Application in Pre-Runtime Scheduling of Avionic Systems

Another context in which the PC-JSOCMSR appears as a sub-structure is in pre-runtime
scheduling of electronics within an aircraft, called avionics. In Blikstad et al. [14], the
scheduling of an industrially relevant avionic system is addressed. There, the system
under consideration consists of a set of nodes and each of these contains a set of modules
(processors) with jobs to be scheduled. We address here how partial schedules for the
modules in a node can be constructed by solving a PC-JSOCMSR. Compared to Blikstad
et al. [14], some simplifications are made with respect to the types of jobs included and
by omitting precedence relations between jobs. Also, we do here not explicitly and fully
consider the scheduling of the communication network used for communication between
the nodes.

In each node, there is a single module called the communication module, which corresponds
to the common resource in PC-JSOCMSR. In addition to this module, each node has a
set of application modules, which correspond to the secondary resources. Jobs on the
application modules are referred to as partition jobs, and they run the system’s software
applications. We study the case where these jobs use the common resource either at their
beginning or at their end. The processing time of a partition job is long compared to
that of the other jobs and its use of the common resource is short compared to the total
processing time of the job.

There are two types of jobs that use the common resource only, the communication jobs
and the regular jobs, and these have short processing times. Both of these types of jobs
are involved in handling communication of different kinds (system external, inter- and
intranode) but the communication jobs have the specific purpose of representing the jobs
used for sending the communication messages, c.f. Blikstad et al. [14]. To represent jobs
that use the common resource only, an artificial secondary resource is introduced. Each
regular and communication job gets this artificial resource as secondary resource assigned
and uses both, the common and the artificial secondary resource, for its whole processing
time.

1Sometimes four or five treatment rooms are available, but the additional rooms are used as a backup
or for special other purposes only.
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A characteristic of the communication jobs, and the reason for treating them separately
from the regular jobs, is that their time windows originate from time slots where
communication messages can be sent. For this reason, there are many time windows for
each job and each such time window has a length equal to the processing time of the job.
Also, the time windows for the communication jobs can only start at certain points in
time, corresponding to the location of the time slots.

To mimic the situation of creating a partial schedule for a node in the system, only a
part of the total length of a schedule is considered and the tasks available exceed what
is possible to include in the partial schedule. The prize of a job reflects the individual
importance of including this job in the partial schedule.

4.4 Recursive Model

We provide a dynamic-programming-like recursive model for PC-JSOCMSR. The induced
state graph will then serve as a basis for deriving MDDs. The main components of the
recursive model are the states, the control variables that conduct transitions between
states, and finally the prizes associated with the transitions. In our recursive formulation
a state is a tuple (P, t) consisting of the set P ⊆ J of jobs that are still available for
scheduling and a vector t = (tr)r∈R0 of the earliest times from which on each resource
r is available. The initial state corresponding to the original PC-JSOCMSR instance
without any jobs scheduled yet is r = (J, (Tmin, . . . , Tmin)).

The control variables are π1, . . . , πn ∈ J . Starting from the root node they select the jobs
to be scheduled. Variable π1 selects the first job j to be scheduled, and we transition from
state r to a successor state (P ′, t′), where π2 decides with which next job to continue.
This is repeated for all control variables. If a job selected by a control variable cannot be
feasibly scheduled as next job, then we obtain the special infeasible state 0̂. Any further
transition from 0̂ yields 0̂ again.

The formal specification of the state transitions makes use of the two following definitions.
To simplify the handling of time windows let us define the function earliest feasible time
eft(j, t) that computes for a given job j and time point t the earliest time not smaller
than t at which job j can be performed according to the time windows, i.e.,

eft(j, t) = min{Tmax, t′ ≥ t | [t′, t′ + pj ] ⊆Wj}. (4.2)

The value eft(j, t) = Tmax indicates that job j cannot be feasibly included in the schedule
at time t or later.

Moreover, let the starting time of a next job j ∈ J w.r.t. a state (P, t) be

s ((P (u), t(u)), j) = eft
(
j,max

(
t0 − ppre

j , tqj

))
. (4.3)
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The transition function to obtain the successor (P ′, t′) of state (P, t) when scheduling
job j ∈ J next is

τ((P, t), j) =
{

(P \ {j}, t′) if s((P, t), j) < Tmax

0̂ else,
(4.4)

with

t′0 = s((P, t), j) + ppre
j + p0

j , (4.5)
t′r = s((P, t), j) + pj for r = qj , (4.6)
t′r = tr for r ∈ R \ {qj}. (4.7)

All states except the infeasible state 0̂ are possible final states. The prize associated with
a state transition is job j’s prize zj . Any sequence of state transitions τ(. . . τ(r, π1) . . . , πi)
yielding a feasible state (P, t) from the initial state r represents a solution. In fact, the
respective states map directly to the normalized schedule obtained by decoding the jobs
π1, . . . , πi as stated in Section 4.3. Moreover, the sum of the prizes of all these transitions
corresponds to Z(π1, . . . , πi), the total prize of the solution.

Note that a feasible state does not have to describe a single solution, because the same
state might be reached by multiple transition sequences. These different transition
sequences yielding the same state might also have distinct total prizes. Since we are
maximizing the total prize, we are primarily interested in sequences with maximum
total prize. To this end, let Z lp(P, t) be this maximum total prize for any sequence
τ(. . . τ(r, π1) . . . , πi) resulting in state (P, t). Ultimately, we are looking for a feasible
state with maximum Z lp(P, t).

Looking at these relationships from a dynamic programming perspective, we can express
the maximum total prize for jobs that can still be scheduled from any feasible state (P, t)
onward by

Z∗(P, t) = max
{

0, zj + Z∗(τ((P, t), j)) | j ∈ P, τ((P, t), j) 6= 0̂
}
, (4.8)

and Z∗(r) then denotes the overall maximum achievable prize, i.e., the optimal solution
value.

Strengthening of States. The individual states obtained by the transitions can
be safely strengthened in many cases in order to reduce the number of states to be
considered and to avoid infeasible transitions. To this end, let us define the following
dominance relation. A state (P ′(u), t′(u)) dominates a state (P (u), t(u)), denoted by
(P ′(u), t′(u)) B (P (u), t(u)), when P ′(u) ⊆ P (u), t′r(u) ≥ tr(u) for all r ∈ R0, and
(P ′(u), t′(u)) 6= (P (u), t(u)).

When constructing the MDD, we can replace a state by a dominating state if it is
ensured that the latter still allows for the same feasible solutions. We achieve this
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u4 {} (8, 8, 8)
u5 {} (8, 8, 8)
u6 {4} (6, 8, 5)
u7 {} (8, 8, 8)time

res.

0 1 2 3 4 5 6 7 8

1

0

2
3(2)

1(2)

4(3)

Instance:

States:

Optimal solution π: Z(π) = 7

Figure 4.2: A MDD for an example instance with four jobs and two secondary resources.

strengthening as follows. First we consider the earliest starting times s((P, t), j) for all
jobs j ∈ P . Jobs that cannot be feasibly scheduled next can be safely removed from P ,
i.e., P ′ = {j ∈ P | s((P, t), j) < Tmax}. Afterwards, we set the times t′r, ∀r ∈ R0, to the
earliest time resource r is actually used by the jobs in P ′. If a resource is not required by
any of the remaining jobs then we set the corresponding time t′r to Tmax. More formally,

t′0 = min
j∈P ′

(
s((P, t), j) + ppre

j

)
, (4.9)

t′r =
{

minj∈Jr∩P ′ s((P, t), j) if Jr ∩ P ′ 6= ∅
Tmax else

∀r ∈ R, (4.10)

where Jr denotes the subset of all jobs in J which require secondary resource r ∈ R.
Note that the above state strengthening also ensures that any state for which no feasible
extension exists anymore is mapped to the single target state (∅, (Tmax, . . . , Tmax)).

4.5 Multivalued Decision Diagrams

This section explains the relationships between the state graph of a PC-JSOCMSR
problem instance and our exact, relaxed, and restricted MDDs. An exact MDD is a
layered directed acyclic multigraph G = (V,A) with node set V and arc set A. The node
set V is partitioned into layers V = V1 ∪ . . . ∪ Vn+1. Each node u ∈ V is associated with
a state σ(u) of the recursive formulation from Section 4.4. In particular, the first layer
V1 consists only of a single node associated with the initial state r. Each subsequent
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layer Vi contains nodes for all states obtained from feasible state transitions from states
associated with nodes in layer Vi−1. Moreover, the MDD has arcs for all feasible state
transitions in the state graph connecting the corresponding nodes. The length of these
arcs are the state transition prizes zj . The infeasible state 0̂ and all transitions to it are
omitted.

In the literature, a terminal node t at layer Vn+1 is defined that corresponds to the end
state where no further job can be feasibly scheduled anymore. Since in our case any node
represents a valid end state, we deviate here from the literature and do not make explicit
use of this target state.

Let us denote by j(a) ∈ J the job that is considered in the state transition associated
with arc a ∈ A. Moreover, let A+(u) and A−(u) indicate the set of all incoming and
outgoing arcs of a node u ∈ V , respectively. For a node u we write P (u) and t(u) as
a shorthand for the set P and vector t of the node’s state. In particular, we denote
with tr(u) for a node u the time from which on each resource r ∈ R0 is available for
performing a next job.

An optimal solution is obtained from an exact MDD by determining a longest path from
r to some end node v and scheduling the jobs associated with each arc in the respective
order and at the starting times s((P, t), j). The length of this path, i.e., the sum of the
respective arcs’ transition prizes, corresponds to the optimal solution value Z∗(r).

Figure 4.2 shows an exact MDD for an instance with four jobs and two secondary
resources. Details of the PC-JSOCMSR instance are given on the top right, while the
MDD is depicted on the top left. Each arc’s label indicates the job that is scheduled
by the respective state transition and in parentheses the arc’s length. We indicate
with gray-highlighted arcs the in our case unique longest path of length seven. The
corresponding optimal solution, scheduling the jobs π = (3, 1, 4) with a total prize of
Z(π) = 7, is shown on the bottom left. Moreover, states of all nodes are given on the
bottom right.

Observe that arcs exist only between directly successive layers and there might be nodes
for identical states on different layers. Later in Section 4.8 we consider the compilation of
MDDs that are not explicitly partitioned into layer. This allows avoiding these redundant
states on different layers.

Nevertheless, exact MDDs grow in general exponentially with the problem size as they
basically represent the complete state graph. We are more interested in more compact
MDDs that represent the state graph only in an approximate way. This is usually done
by limiting the number of nodes allowed in each layer to a fixed maximum β ≥ 1. The
number of nodes in a layer is called the layer’s width, and the maximum width over
all layers is the width of an MDD. To receive MDDs of limited width, there have been
proposed two concepts with contrary effects: relaxed MDDs [3] and restricted MDDs [11].

Relaxed MDDs cover all feasible solutions as a subset plus possibly a set of solutions
that are invalid for the original problem. Thus, they represent a discrete relaxation of

97



4. Prize-Collecting Job Sequencing

r

u1 u2 u′

u5 u6

u7

1(2) 2(1)

3(2)

4(3)

4(3) 4(3)

4(3)

1(2) 1(2)

4(3)

(a) Relaxed MDD

r

u1 u2 u4

u5 u6

u7

1(2)
2(1)

4(3)

4(3)
4(3)

1(2)

4(3)

(b) Restricted MDD

Figure 4.3: A relaxed and a restricted MDD for the example instance in Fig. 4.2.

the original problem, and the length of a longest path of a relaxed MDD is a dual bound
to the original problem’s optimal solution value Z∗(r). To have limited width, a relaxed
MDD in general superimposes states of the original state graph: Sets of nodes of an
exact MDD are combined into so-called merged nodes; all affected arcs are redirected to
the respective merged node. To ensure that a valid relaxation is obtained, the state of a
merged node must be set so that it is in no dimension stricter than each original state.
In case of our PC-JSOCMSR, if a set M of original states is merged, the state of the
respective merged node is

⊕ (M) =

 ⋃
(P,t)∈M

P,

(
min

(P,t)∈M
tr

)
r∈R0

 . (4.11)

If possible, the obtained state is then strengthened as described in Section 4.4. The
merged state allows all feasible extensions that the original states did. It is therefore
valid in the sense that no feasible solutions are lost. Additional extensions and originally
infeasible solutions may, however, become feasible due to the merge, as is usually the
case for relaxed MDDs.

Figure 4.3(a) shows for the exact MDD in Figure 4.2 a relaxed MDD where nodes u3 and
u4 are merged resulting in node u′. The width of the relaxed MDD decreases from four
to three. Recall that the optimal solution of the considered instance has a total prize of
seven. The longest path within the relaxed MDD, indicated by the gray-highlighted arcs,
has a total length of eight. This is achieved by scheduling job 4 twice, which clearly does
not correspond to a feasible solution of the original problem. Moreover, notice that the
relaxed MDD contains all paths from the exact MDD. The original optimal solution is
still represented by a respective path, however, it is not a longest anymore. The state of
the merged node is given by ({1, 4}, (4, 3, 4)), while the states of all remaining nodes do
not change.
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Restricted MDDs are the second option for approximate MDDs with limited width.
They are obtained by removing nodes from an exact MDD with all incoming and outgoing
arcs. Whenever a node is removed, also all paths containing the node are not anymore
encoded in the MDD. Consequently, a restricted MDD represents only a subset of all
feasible solutions, and the length of a longest path in a restricted MDD might be shorter
than one in an exact MDD. For this reason the length of a longest path in a restricted
MDD is a primal bound to the original problem’s optimal solution value Z∗(r).

A restricted MDD for the exact MDD from Figure 4.2 is depicted in Figure 4.3(b). The
node u3 and all its incoming and outgoing arcs are removed. All other nodes, arcs, and
states remain unchanged. The longest path in the restricted MDD, again indicated by
arcs highlighted in gray, has a total length of six. This longest path encodes a feasible
solution to the original problem, however, not an optimal one.

4.6 Top-Down Construction of Decision Diagrams
The top-down construction (TDC) [13, 11, 10] compiles exact MDDs, as well as relaxed
and restricted MDDs by traversing the state graph in a breadth-first fashion. The method
starts with an empty first layer V1 and adds a node for the initial state r. Then, one
layer after the other is filled with nodes. For a subsequent layer Vi, this is done by adding
nodes for all feasible states that can be obtained by a transition from any node u ∈ Vi−1,
i.e., we add a node to Vi for each state in

{τ(σ(u), j) | u ∈ Vi−1, j ∈ P (u)}. (4.12)

Note that identical states produced by different transitions are represented by a single
common node within a layer. In addition to the nodes, we also add corresponding arcs
for each of the conducted transitions.

When we are compiling relaxed or restricted MDDs, we have to check at this point the
width of the current layer Vi. If it exceeds a given maximum β, nodes have either to be
merged or dropped, respectively. The quality of the obtained primal and dual bounds
from the produced relaxed and restricted MDDs is predominantly influenced by the
strategy to select the nodes for merging or removal. The basic idea is to prefer nodes
for merging or removal that are unlikely part of any optimal solution. Bergman et al.
[10] considered three different merging heuristics: random nodes, nodes with the shortest
longest path Z lp(u), and nodes with the most elements in P (u). In their experiments
the second strategy achieved the best results. Moreover, [11] suggest the same node
selection heuristic for the compilation of restricted MDDs. We observed that merging or
removing nodes with the smallest Z lp(u) values is disadvantageous for PC-JSOCMSR.
This can be explained by the fact that this strategy focuses just on the longest path, but
does not respect how well the jobs fit next to each other. Therefore, we set the longest
path to a node into perspective with the time the common resource is occupied by the
corresponding jobs. The nodes within the currently considered layer Vi, i > 0, are sorted
according to the ratio Z lp(u)/t0(u) in increasing order. We then merge respectively
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remove the first nodes until the width of Vi becomes β. Afterwards, we continue with
the next layer. The algorithm terminates when either no further state transitions are
possible or we completed layer Vn+1.

4.7 Incremental Refinement of Relaxed Decision
Diagrams

The basic idea of an IR approach is to apply filtering and refinement steps iteratively on
an initial simple relaxed MDD in order to improve it and approximate an exact MDD.
Filtering steps remove arcs that are only contained in root to sink paths that represent
infeasible solutions. The refinement steps consist of splitting nodes to represent so far
merged states in more detail and as a consequence to trigger further filtering of arcs. The
main goal of IR is to decrease the length of longest paths in the MDD, i.e., the obtained
upper bound on an instance’s solution value.

IR has been initially proposed by Hadzic et al. [45] and Hoda et al. [51] for constraint
satisfaction systems. The central aspect of this approach is the division of filtering and
refinement into independent operations. As a consequence, the overall algorithm can
apply and combine these operations however it is appropriate. A relaxed MDD for the
PC-JSOCMSR problem contains in general paths that do not represent feasible solutions,
either because jobs occur more than once or not all jobs can be scheduled within their
time windows. Therefore, we have to find refinement and filtering operations that allow
us to exclude job repetitions and time window violations.

Due to the fact that exact MDDs have in general an exponential number of nodes w.r.t. the
problem size, we cannot hope to apply refinement and filtering until all invalid paths are
sorted out for problem instances of practically relevant size. Hence, a key aspect of an IR
approach is the order in which the refinement steps are applied on the nodes. The works
from [23] and [68] provide an IR method for sequencing problems in which a permutation
of jobs has to be found. Essentially, they order the jobs according to the processing times
and with it to a certain extent according to the length of the corresponding arcs within
the MDD. Their approach removes repetitions of jobs according to that order until the
maximal allowed width of the MDD is reached. The rationale behind this strategy is
that repetitions of jobs represented by long arcs are more frequently contained within
longest paths. For PC-JSOCMSR this method is, however, not suitable because we have
to assume that only a fraction of the jobs can be actually scheduled. Hence, it is not
clear in advance which jobs play a key role for deriving a good approximation of an exact
MDD.

Our IR for PC-JSOCMSR uses a current longest path as guidance. We follow the arcs
on such a longest path, starting from the root node, and check for each arc whether the
associated job can be feasibly scheduled. In case that a job occurs more than once, we
refine the MDD s.t. repetitions of this job are not possible anymore. If a job cannot be
feasibly scheduled within its time windows, we split nodes to allow excluding this path.
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Algorithm 4.1: Incremental refinement guided by longest paths (IRLP)
Input: initial relaxed MDD G = (V,A) with V = V1 ∪ · · · ∪ Vn+1

1 while termination criterion not met do
2 Let p be a longest path in G;
3 if p admits a feasible schedule then
4 return; // optimal solution has been found
5 if p contains a job repetition then
6 for i← 2 to n+ 1 do
7 foreach node u ∈ Vi do
8 update node u and filter incoming and outgoing arcs;
9 split node u into two if it allows to avoid the node repetition;

10 merge nodes with identical states in Vi;
11 else // p contains a time window violation
12 Split nodes on p to avoid the identified time window violation;
13 for i← 2 to n+ 1 do
14 foreach node u ∈ Vi reachable from the split nodes do
15 update node u and filter incoming and outgoing arcs;
16 merge nodes with identical states in Vi;

Algorithm 4.1 shows an outline of the proposed incremental refinement guided by longest
paths (IRLP). It acts on a given relaxed MDD, which is obtained in our case by the top
down construction from Section 4.6 with a small initial width. In each iteration of the
main while loop we obtain a longest path. If the sequence of jobs represented by the
path can be feasibly scheduled, then we have found an optimal solution and terminate.

Otherwise, depending on whether we detected a job repetition or a time window violation
on the currently considered longest path the following steps differ. In the former case
we traverse the MDD starting from the root node r layer by layer. For each considered
node we try to filter arcs and update the node’s state if necessary. We check next if the
node has to be refined and perform a node split if it allows to remove the considered job
repetition. After all nodes of a layer have been considered, we might encounter that nodes
are associated with an identical state. Such nodes are merged to avoid redundancies
in the MDD. In the latter case of a time window violation we perform a much more
local refinement operation in which only nodes along the considered path are split. In
the subsequent filtering we consider all nodes reachable from the previously split nodes.
We enforce also here that all nodes within each layer represent a distinct state. Notice
that the refinement of job repetitions is preferred over the refinement of time window
violations if both are contained in the longest path. This has shown to provide better
bounds if a binding time limit is given as termination criterion. The applied filtering
techniques and the updating of the nodes’ state are described in Section 4.7.1. The
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two types of refinement operations are presented in more detail in Section 4.7.2 and
Section 4.7.3. Finally, Section 4.7.4 explains how we avoid producing nodes representing
identical states within layers.

4.7.1 Node Updates and Filtering

Filtering applied in an IR method aims at identifying and removing arcs that are only
contained in paths corresponding to infeasible solutions. The filtering techniques generally
rely on the Markovian property of the MDD’s states, which means that a state is defined
by its predecessors and the transitions. This allows specifying tests that use information
local to a considered node to decide whether incoming or outgoing arcs can be removed.

An intrinsic part of the presented filtering method is to keep the node’s states always up
to date, which is necessary because the removal of a node’s incoming arcs may change its
associated state. Moreover, an adjustment of a node’s state may imply further changes
on the nodes reachable from the currently considered node. Therefore, we traverse the
MDD s.t. we reach a node after we have processed all its predecessors. Consequently, we
end up in each iteration of the IRLP with an MDD where all states fulfill the Markovian
property. For each considered node we first update the node’s state and then check
whether incoming or outgoing arcs can be removed. In case incoming arcs are removed
the node’s state has to be reevaluated again. An update of a state consists of reassessing
and merging the transitions from all predecessors, which means for a node u to compute

⊕
(
{τ(σ(v), j(a)) | a = (v, u) ∈ A+(u)}

)
. (4.13)

Such a state update is a computational expensive operation and should only be performed
if a node’s state may actually change. For this reason, we recompute a node’s state only
if either a predecessors state has changed or if an incoming arc has been removed.

Let (P, t) and (P ′, t′) be node u’s state before and after a reevaluation, respectively. Due
to the definition of the relaxation scheme (4.11) and the fact that we are only removing
arcs during filtering, it holds that t′r ≥ tr for all r ∈ R0 and P ′ ⊆ P . In case P ′ ⊂ P ,
we remove all outgoing arcs a ∈ A−(u) with j(a) 6∈ P ′ since they cannot be part of any
feasible solution represented by a path reaching u from r. If any node except r ends up
without any incoming arc, it is removed together with all its outgoing arcs.

4.7.2 Refinement of Job Repetitions

We discuss in this section a technique that modifies an MDD in such a way that a
considered job j occurs on each path at most once. This method is conceptually an
adaptation from the one proposed by Cire and Hoeve [23], but takes into account that
in PC-JSOCMSR usually only a subset of the jobs can be scheduled. The refinement is
based on the observation that a job repetition occurs if a job j is contained on a path
starting from node r to a node u and job j is still included in P (u). Consequently, node
u has an outgoing arc associated with job j which represents a repetition. Before we
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can derive a splitting strategy, we first have to verify if the above condition is sufficient
to detect all job repetitions. To this end we denote with Some↓u ⊆ J the subset of jobs
appearing in some path from r to a node u ∈ V . For a node u ∈ V the set Some↓u can be
calculated recursively by

Some↓u =
⋃

a=(v,u)∈A+(u)

(
Some↓v ∪ {j(a)}

)
. (4.14)

We show next that we can determine repetitions of a considered job j occuring on some
path in a MDD by using P (u) and Some↓u of the nodes u in the MDD.

Lemma 1. A job j is assigned on each path starting from r at most once if and only if
j 6∈ Some↓u ∩ P (u) holds for all nodes u ∈ V .

Proof. Assume first that a job j is associated with at most one arc in every path starting
from r of a given MDD G and consider an arbitrary node u ∈ V . If no path from r
to u has an arc labeled j then it holds by definition that j 6∈ Some↓u and consequently
j 6∈ Some↓u ∩ P (u). If on the other hand there exists a path from r to u with an arc
associated with j then no path starting from u can contain an arc labeled j. Moreover,
it holds by definition that a node v ∈ V can only have an outgoing arc a with j(a) = j if
j ∈ P (u). Therefore, j 6∈ P (u) and j 6∈ Some↓u ∩ P (u).

Conversely, suppose that j 6∈ Some↓u ∩ P (u) for all nodes u ∈ V . In case j 6∈ Some↓u we
cannot have a repetition of node j on any path from r to u. If a node u is reached by
an arc associated with job j then j ∈ Some↓u and thus, j 6∈ P (u). Since node u can have
only outgoing arcs for the jobs in P (u), node u cannot have an outgoing arc labeled j.
Moreover, since j ∈ Some↓v for all nodes v reachable from node u we can conclude by
the same argument that also for these nodes j 6∈ P (u) and hence there are no respective
outgoing arcs. Thus, job j is assigned on each path starting from r at most once.

Whenever we detect a node repetition, i.e., j ∈ Some↓u∩P (u) for some node u, we perform
a node split to obtain a node u1 with j 6∈ P (u) and a node u2 with j 6∈ Some↓u as follows.

Theorem 2. Given job j and a MDD, we replace all nodes u ∈ V with j ∈ Some↓u∩P (u)
by two nodes u1 and u2, s.t. all incoming arcs a = (v, u) are redirected to u1 if j 6∈
P (τ(σ(v), j(a))) and to u2 otherwise. All outgoing arcs are replicated for both nodes.
The resulting MDD satisfies j 6∈ Some↓u ∩ P (u) for all nodes u ∈ V .

Proof. For the root node r we have by definition that Some↓r = ∅ and, thus, j 6∈
Some↓u∩P (u). Assume as induction hypothesis that the desired condition j 6∈ Some↓u∩P (u)
holds for all predecessors of a node u. In addition, consider that we have replaced node u
by the nodes u1 and u2 as described above. From the relaxation scheme (4.11) we know
that set P of node u1 cannot contain j. For all of u2’s incoming arcs a = (v, u2) it holds
that j 6∈ Some↓v since otherwise P (τ(σ(v), j(a))) could not contain j. Consequently, u1
as well as u2 satisfy the stated condition.
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The actual refinement is done by enforcing Lemma 1 in a single top down pass. To
this end, we start with the root node and process all nodes layer by layer. For each
considered node u we first update its state if needed and apply the filtering as described
in Section 4.7.1. Afterwards, we determine the set Some↓u and split node u as described
in Theorem 2 if necessary. Whenever a node is split, new states are calculated for the two
new nodes. Furthermore, we perform filtering on the new nodes’ incoming and outgoing
arcs.

4.7.3 Refinement of Time Window Violations

Let sequence (u1, a1, u2, . . . , uk, ak, uk+1) of alternating nodes and arcs denote a path in
our MDD starting at the root node r (i.e., u1 = r) where (u1, a1, u2, . . . , uk−1, ak−1, uk)
corresponds to a feasible solution but the job represented by arc ak cannot be additionally
scheduled within its time windows. For the considered path we denote with (u↓1, . . . , u

↓
k)

the not relaxed states along the considered path. That is, u↓1 = r and u↓i = τ(u↓i−1, j(ai−1))
for 1 < i ≤ k. Due to the state relaxations of the nodes in the MDD we observe that
j(ak) ∈ P (uk) but j(ak) 6∈ P (u↓k). The basic idea is to split the nodes on the path in
such way that job j(k) can be removed from P (uk) and with it also the arc ak.

In general, it is not sufficient to just split node uk but a subset of the path’s nodes
ul, . . . , uk, with 1 < l ≤ k, has to be refined. Ideally, the number of nodes to be refined
should be small and the refinement should exclude other time window violations as
well. We compute the subset of nodes to be refined as follows: We first check whether
s(τ(σ(uk−1), j(ak−1)), j(ak)) evaluates to Tmax. If it does, then job j(ak) cannot be
feasibly scheduled on the state resulting from the transition from state uk−1. Consequently,
it suffices to refine node uk. If it does not, then we consider one predecessor more, i.e.,
we check whether s(τ(τ(σ(uk−2), j(ak−2)), j(ak−1)), j(ak)) results in Tmax. This step is
repeated until we find a node ul−1 on the considered path which allows excluding job
j(ak) if we follow exact transitions from it.

The actual refinement works as follows: We replace each node ui with i = l, . . . , k by
nodes ui,1 and ui,2. The incoming arcs a = (v, ui) ∈ A+(ui) are redirected to ui,1 if
tr(τ(σ(v), j(a))) ≥ tr(τ(σ(ui−1), j(ai−1))) for all r ∈ R0, otherwise, they are redirected to
ui,2. Outgoing arcs of ui are replicated for ui,1 and ui,2. After a node split we determine
for the two resulting nodes the corresponding states and perform a filtering of their
incoming and outgoing arcs as described in Section 4.7.1. Last but not least, we have to
possibly reevaluate the states and filter all incident arcs of all nodes reachable from each
node ui.

4.7.4 Duplicate State Elimination

A side effect of the node updates and the refinement methods is that we might end up
with multiple nodes within one layer that represent an identical state. For example,
assume that a considered layer already contains a node u without any outgoing arcs that
represents state (∅, (Tmax, . . . , Tmax)). Moreover, suppose that due to updating another
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node u′ we encounter that its state cannot be feasibly extended and remove all outgoing
arcs. Both, u and u′, then represent the same identical state, but are reached by different
paths. We can avoid this redundancy in the MDD by redirecting all incoming arcs from
u′ to u and removing u′ from V .

In the more general case, where u and u′ have outgoing arcs merging nodes with duplicate
states is more involved. First of all, we have to ensure that our MDD still remains a valid
relaxation. The Markovian property implies that for all feasible extensions of u there
exist an equivalent extension of u′ and vice versa [23]. This allows us to remove node u′
including its outgoing arcs after redirecting all incoming arcs to u. Obviously, the state
of node u remains valid. However, if not done carefully, this operation may reintroduce
paths encoding infeasible solutions which have been already excluded. Furthermore, we
have to make sure that the duplicate state elimination does not produce cycles with the
refinement operations in order to guarantee that IRLP terminates. After performing
the refinements of job repetitions for a job j on a considered layer it holds that if a job
j ∈ P (u) then j /∈ Some↓u′ whenever the states of u and u′ are identical. Splitting nodes
for refining time window violations aims at increasing the tr values to trigger filtering.
Since our duplicate state elimination does not change the nodes’ states, we will from a
theoretical point of view always converge to an exact MDD.

Our duplicate state elimination works as follows: After we have performed all refinement,
updating, and filtering operations within a layer, we consider all nodes with duplicate
states pairwise and remove one of them until all nodes’ states are distinct. To this end,
we redirect all incoming arcs to the node u having the larger Z lp(u) value and remove
the other node including outgoing arcs. The intention for selecting the node with the
larger Z lp(u) value is that we do not increase the longest path to any node. Moreover,
the nodes reachable from u are more likely to be already refined, as IRLP focuses on
longest paths.

4.8 A∗-Based Construction of Relaxed Decision Diagrams
This section is dedicated to a novel construction scheme for relaxed DDs inspired by A∗
search where a list of nodes that still need to be processed is maintained. In each iteration
a node is selected according to a priority function, removed from the list, and expanded.
Merging is performed only with nodes considered similar w.r.t. a labeling function. The
key characteristics of this scheme are that it allows merging across layers and that it
exploits a problem-specific upper bound function. The aim is to obtain compact relaxed
DDs that provide tight upper bounds and that are promising for the further application
of primal heuristics, DD-based branch-and-bound, or advanced constraint propagation in
CP. We motivate the design of the construction scheme as follows.

The concepts of the TDC and the IR for compiling relaxed DDs have the implicit
assumption that node merges are only meaningful on the same layer. However, especially
for problems with subset selection scenarios where the cardinality of complete/final
solutions is not fixed, merging nodes only within the same layer represents a severe
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limitation. In such problems strongly related or even identical states may be reached
after different numbers of transitions from the root node, while states reached with the
same number of transitions may be more different. PC-JSOCMSR is an example for these
properties: Feasible solutions may consider different numbers of jobs and the similarity
of states is more related to the times from which on further jobs can be scheduled than
the number of so far scheduled jobs. Moreover, in PC-JSOCMSR’s setting it is possible
that multiple nodes belonging to different layers have the same possibilities for further
extensions, and thus, the same sets of paths leading from these nodes further to the
target node. This implies that the strict use of layers causes a redundancy in the DD,
and that it would be better to represent the respective nodes just by a single node. The
possibility of node merges across different layers may open a new dimension of flexibility,
possibly allowing to derive much more compact relaxed DDs yielding stronger bounds.
Therefore, our approach avoids the explicit consideration of layers.

Another motivation to develop a new construction principle is that for many problems
there already exist—or it may not be difficult to come up with—some fast-to-calculate
problem-specific upper (dual) bound calculations for partial solutions. It appears natural
and promising to also make use of such a function to construct a possibly stronger
relaxed DD. In case of PC-JSOCMSR Horn et al. [56] investigated different fast-to-
compute upper bounds on the still achievable total prize for scheduling jobs from P (u),
given state (P (u), t(u)). We adopt here the strongest of these upper bound functions,
denoted by Zub(u), which is based on solving a set of linear programming relaxations of
knapsack problems. For the sake of completeness Appendix A.1 repeats details on how
this bound is calculated.

The concept of an A∗-based compilation method for relaxed DDs is highly promising
also for other problems. Therefore, we present our approach in the next subsection in a
problem-independent way and provide the problem-related details afterwards. Although
we finally construct MDDs, the approach is also applicable for the compilation of BDDs.
To highlight this broader applicability we intentionally refer in the problem-independent
part to DDs and omit the distinction between MDDs and BDDs. As PC-JSOCMSR
is a maximization problem, we assume maximization. However, a generalization to
minimization problems is straightforward. Later, in Section 4.8.2 we discuss the problem-
specific details for applying the novel construction scheme to PC-JSOCMSR.

4.8.1 General Scheme

The core construction idea is to apply the principles of classical A∗ search [48] but to
limit the set of open nodes (i.e., not yet expanded nodes) by occasionally merging nodes,
selected according to some criterion. We maintain a so-called open list Q that is a priority
queue containing all open nodes. Each node in the open list u ∈ Q has assigned a priority

f(u) = Z lp(u) + Zub(u), (4.15)

where Z lp(u) denotes the length of a longest so far known path from the root node r
to node u, while Zub(u) refers to a problem-specific upper bound for the length of any
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feasible path from u to the target node t. Classical A∗ search always selects a node with
the highest priority from the open list Q and expands it until the target node t gets
selected. If Zub(u) is indeed a valid upper bound function (which is also called admissible
heuristic), A∗ is guaranteed to have found a longest path from the root node r to the
target node t, which corresponds to an optimal solution of the underlying problem.

If we continue the execution of the A∗ algorithm until the open list Q is empty and store
all nodes and arcs for feasible transitions, the algorithm yields a complete exact DD. To
obtain a relaxed DD, we restrict the size of the open list to a maximum allowed number
of nodes φ and merge less promising nodes from Q if necessary. Clearly, this merging of
nodes will, in general, prevent the method from reaching proven optimality, but the size
of the obtained relaxed DD and the time for compilation will be smaller.

While a complete relaxed DD is obtained only when the algorithm is performed until
the open list gets empty, the best upper bound, denoted by Zub

min, will be obtained when
the target node is selected for expansion for the first time. The validity of the upper
bound Zub

min follows directly from the A∗ search’s optimality property. When continuing
the expansion of open nodes, the length of the longest path in the relaxed DD may only
become larger due to further merges. Thus, if one only aims at using the DD compilation
to obtain an upper bound, the approach can be terminated at this point.

Since the open list Q in general contains nodes of different layers, the A∗-based con-
struction algorithm is able to merge nodes across different layers. In particular, if a
state can be reached via multiple paths with different numbers of arcs, this is naturally
recognized and the state is only represented by a single node. In contrast, a classical TDC
or IR would represent the same state in each layer where it occurs by individual nodes.
Moreover, in case that the algorithm only expands nodes that have not been obtained
through merging until the target node t is selected, then the longest path corresponds to
the classical A∗ result, and a feasible and proven optimal solution is obtained. Thus, for
easier or simpler problems, our approach can behave similarly efficient and optimal as a
conventional A∗ search.

Algorithm 4.2 shows the proposed A∗-based construction of a relaxed DD in pseudo-code.
First, the open list Q is initialized with the root node r, and Zub

min is set to the value
obtained from the problem-specific upper bound function Zub applied to the root node.
In each major iteration, a node u with maximum priority f(u) is taken from the open
list Q. This node’s f value provides a valid upper bound until the target node t is chosen
for expansion. Consequently, Zub

min is updated in Line 9 when an improved bound is found.
If node u is the target node t, the algorithm may optionally terminate early, returning
an incomplete relaxed DD and the upper bound Zub

min at Line 12.

The next step differs if node u is already expanded (i.e., has outgoing arcs) or not. If
not, the expansion is performed by considering each feasible transition from state σ(u)
yielding a respective successor state Σ. For each such state Σ a node v is created, if no
corresponding node with σ(v) = Σ exists in V yet. Then, a new arc (u, v) is inserted into
A to represent this transition. In case that the new path to v via this arc (u, v) increases
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Algorithm 4.2: A∗-based construction of a relaxed DD
Input: open list size limit φ
Output: relaxed DD G = (V,A) and upper bound to the optimal solution value

1 r← node corresponding to initial state;
2 Q← {(r, f(r) = Zub(r))};
3 Zub

min ← Zub(r);
4 t-expanded← false;
5 while Q 6= ∅ do
6 u← arg maxu∈Q f(u);
7 Q← Q \ {u};
8 if not t-expanded then
9 Zub

min ← min(Zub
min, f(u)) ;

10 if u = t then
11 t-expanded← true;
12 return incomplete DD G and Zub

min; // optional, if only Zub
min is needed

13 if u not yet expanded then // expand node u
14 foreach feasible successor state Σ of σ(u) do
15 if 6 ∃v ∈ V | σ(v) = Σ then
16 add new node v to V with σ(v) = Σ, Z lp(v) = 0;
17 add new arc a = (u, v) to A;
18 if Z lp(u) + z(a) > Z lp(v) then
19 Z lp(v)← Z lp(u) + z(a);
20 Q← Q ∪ {(v, f(v) = Z lp(v) + Zub(v))};

21 else // re-expand node u
22 foreach arc a = (u, v) ∈ A do
23 if Z lp(u) + z(a) > Z lp(v) then
24 Z lp(v)← Z lp(u) + z(a);
25 Q← Q ∪ {(v, f(v) = Z lp(v) + Zub(v))};

26 if |Q| > φ then // reduce size of Q
27 try to merge nodes in Q until |Q| ≤ φ according to Algorithm 4.3;

28 return relaxed DD G and upper bound Zub
min;
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Z lp(v), then node v is inserted into Q. If node u was already expanded, a re-expansion
has to take place because a longer path to u, yielding a larger Z lp(u), has been found in
an iteration after the node’s original expansion. Note that in general we cannot avoid
such re-expansions even when the upper bound function is consistent since node merges
may lead to new longer paths. The re-expansion is done by propagating the updated
Z lp(v) to all its successor nodes and if their Z lp value increases as well then they are
added to the open list for re-expansion. After each node expansion, the algorithm checks
if the size of the open list |Q| exceeds the limit φ. If this is the case, then the algorithm
tries to reduce Q by merging nodes as shown in Algorithm 4.3 and explained in the next
paragraphs. Algorithm 4.2 terminates when the open list gets empty by returning the
relaxed DD together with the best obtained upper bound Zub

min. Note that Zub
min may

be smaller than the length of a longest path in the final DD (i.e., Z lp(t)), due to node
merges after selecting the target node for expansion.

Algorithm 4.3: Reduce size of open list
Input: open list Q, global set of collector nodes V c (initially empty)
Output: possibly reduced open list Q

1 for u ∈ Q in increasing order of Z lp(·) values do
2 if |Q| ≤ φ then
3 break;
4 while u not expanded ∧ ∃v ∈ V c | L(v) = L(u) ∧ u 6= v ∧ v not expanded do
5 create node v′ with merged state σ(v′) = ⊕({σ(u), σ(v)});
6 Q← Q \ {u, v};
7 V c ← V c \ {v};
8 if ∃v′′ ∈ V | σ(v′′) = σ(v′) then
9 f ′′old ← f(v′′);

10 redirect all incoming arcs from v′ to v′′;
11 if f(v′′) > f ′′old then
12 Q← Q ∪ {(v′′, f(v′′) = Z lp(v′′) + Zub(v′′))};
13 u← v′′;
14 else
15 V ← V ∪ {v′};
16 Q← Q ∪ {(v′, f(v′) = Z lp(v′) + Zub(v′))};
17 u← v′;

18 if u not expanded then
19 V c ← V c ∪ {u};

20 return Q;

Algorithm 4.3 shows our approach for reducing the size of the open list. Concerning the
overall efficiency, it is essential to be able to quickly identify valid and promising nodes
for merging. The algorithm has a four-fold aim: (1) to preferably merge nodes that are
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less likely part of a final longest path, (2) to only merge nodes associated with similar
states, since this is likely to yield a strong relaxation, (3) to avoid merges of nodes that
may lead to cycles in the DD, and (4) to ensure that the open list gets empty after a finite
number of expansions. The last two aspects are crucial conditions to ensure a proper
termination of the approach, and they are not trivially fulfilled due to the possibility to
merge across different layers. The ways in which we handle these aspects require some
problem-specific tailoring.

Aspect (1) is considered by iterating over the nodes in the open list in an increasing Z lp

order and trying to merge each node with a suitably selected other node in a pairwise
fashion until the size of the open list does not exceed φ anymore. The motivation for the
increasing Z lp order is that A∗ search has so far postponed the expansion of these nodes
while other nodes with comparable Z lp values have already been expanded. Therefore,
the nodes with small Z lp values can be argued to appear less likely in a final longest path.
We considered in preliminary experiments also an increasing f order, thus processing the
priority queue essentially in reverse order. While we obtained mostly DDs of roughly
comparable quality, they were sometimes significantly larger and more computation
time was needed. The selection of the second node for merging is done considering
aspects (2) to (4) by utilizing a global set of so-called collector nodes V c. To this end,
we define a problem-specific labeling function L(u) that maps the data associated with
a node u—in particular its state σ(u)—to a simpler label of a restricted finite domain
DL. Consequently, the nodes are partitioned into subsets of similar nodes. For example,
our labeling function may drop, aggregate, or relax parts of the states considered less
important and condense the information in this way. Similar principles as in state-space
relaxation [22] can be applied. The labeling function, however, may additionally also
consider the upper bound Zub(u) as criterion for similarity; experimental results in
Section 4.12 will show the particular usefulness of this. The global set of collector nodes
V c is initially empty and is realized as a dictionary (e.g., hash table) indexed by the
labels so that for each label in DL there is at most one collector node in V c, and thus
|V c| ≤ |DL|. In this way, we can efficiently determine for any node u if a related collector
node with the same label L(u) already exists and, in this case, directly access it.

Algorithm 4.3 does this check for a current not yet expanded node u in Line 4. If the
respective collector node v exists, is different from u, and also is not yet expanded, nodes
u and v are merged, yielding the new node v′ with state σ(v′) = ⊕({σ(u), σ(v)}). All
incoming arcs from u and v will be redirected to the new node v′. Consequently, u is
removed from Q and v from Q as well as V c. Since we only merge unexpanded nodes,
we do not have to consider any outgoing arcs. Next, we have to integrate the new node
v′ into the node set V . If there exists already a node v′′ where the corresponding state
σ(v′′) is equal to the merged state σ(v′) then we redirect all arcs from v′ to v′′ in order
to avoid multiple nodes in set V associated with the same state. If the f value of node
v′′ got increased due to this arc redirecting, we insert node v′′ into the open list Q to
subsequently re-expand it with its successor states as needed. Otherwise, if such node v′′
does not exist, we directly add node v′ to set V and to the open list Q. In each case the
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newly created node v′ or the already existing node v′′—if it is not yet expanded—shall
become a collector node in V c, essentially replacing the former collector node v. Node v′
or v′′ may, however, have a different label than the former v, and some other collector
node with the same label as v′ or v′′ may already exist in V c. In this case, we iterate
the merging with these nodes by continuing the while-loop in Line 4. Algorithm 4.3
terminates when the open list has been reduced enough or—in the extreme case—after
having unsuccessfully considered all nodes in Q for merging. The latter may happen only
when all open nodes are either contained in V c or are just scheduled for re-expansion.
Note that the pseudo-code in Algorithm 4.3 shows only the main idea abstractly to point
out the important steps. In a concrete implementation, a few additional corner cases
need to be considered. In particular when collector nodes get changed (e.g., expanded)
between two calls of Algorithm 4.3.

4.8.2 Problem-Specific Aspects

We now consider all further details to apply the general concept of the A∗-based con-
struction of relaxed DDs to PC-JSOCMSR. The most crucial problem-specific aspect
is the labeling function which is employed for identifying nodes to merge. The labeling
function not only has to avoid merges that may lead to cycles in the DD, but has also
has a severe impact on the DDs’s quality and size. We propose four labeling functions
that combine different features of the state. Moreover, we discuss a merging strategy
for dominated nodes that allows us in general obtaining substantial smaller DDs with
only marginal impact on the DDs’s longest paths. Finally, we elaborate the tie breaking
criteria used in the open list’s priority function.

Labeling Function for Collector Nodes

Here we define the labeling function L(u) used for indexing the collector nodes V c.
Remember that this function shall partition the set of nodes into subsets. Nodes within a
subset should preferably be considered similar enough to be promising to merge. Hence,
similar nodes should receive the same label.

In case of PC-JSOCMSR, we use for a node u the triple L(u) = (t0(u), r(u), Zub(u)) as
label, where t0(u) is again the time from which on the common resource is available,
r(u) refers to the secondary resource of the job scheduled last in the so far longest path
to node u (ties are resolved by using the resource identified first), and Zub(u) is an
upper bound for the still achievable path length from node u onward. Note that by this
definition, we ignore the set of jobs that might still be scheduled P (u). Moreover, we
do not explicitly consider the individual availability times of the secondary resources
tr(u), r ∈ R. Instead r(u) is used as a rough substitute. The upper bound Zub(u) is an
important additional indicator that summarize important information about the state of
node u. In summary, two nodes may only be merged if (1) the common resource 0 is
used to the same extent, (2) the last used secondary resource is the same, and (3) the
values of the problem-specific upper bounds coincide.
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When using this labeling function, two nodes u, v ∈ V are only merged if t0(u) = t0(v).
Hence, the merged node will have the same t0 value according to Equation (4.11). Since
each job requires the common resource 0 for a positive time, scheduling a job increases
the corresponding t0 value. Consequently, each transition from a node to a successor
node yields a state with a larger value for t0. Furthermore, the compiled relaxed MDDs
have the important property that the t0 values strictly increase along any path in our
MDD. Due to this property it holds that cycles cannot occur, the open list gets empty
in a finite number of iterations, and Algorithm 4.2 terminates with a complete relaxed
MDD. This is because the t0 values strictly increase along any path and, thus, the set of
jobs in P has to decrease due to the job’s limited time windows.

In addition, we investigate in Section 4.12.3 further labeling functions which consist of
different combinations of t0(u), r(u) and Zub(u): L1(u) = t0(u), L2(u) = (t0(u), r(u)),
and L3(u) = (t0(u), Zub(u)).

Besides the theoretical convergence, it might be the case that the practical running time
of the algorithm is still too large due to the not strongly limited domain size of the
labels: Values t0(u) as well as Zub(u) are continuous and in the worst case exponentially
many different values may emerge in the course of our algorithm, leading to a potentially
exponential number of collector nodes. In our experiments in Section 4.12, this situation
did not occur. In case that it does, it can be overcome by discretizing these values by
dividing them with appropriate constants αt0 and αZub and rounding down, yielding the
discretized labeling function

Ladv(u) =
(
bt0(u)/αt0c, r(u), bZub(u)/αZubc

)
. (4.16)

To guarantee that cycles are avoided and finite convergence is achieved, it has to be
ensured that αt0 ≤ minj∈J p0 holds in order that t0 strictly increases on all paths in the
MDD. Clearly, stronger discretizations, i.e., larger values for αt0 and αZub , will typically
reduce the number of collector nodes maintained and thus lead to more merges and one
can expect less overall nodes in the final relaxed MDD. However, the quality of the MDD
and the upper bound obtained will in general also be weakened.

Dominated Merging

Algorithm 4.3 does not merge already expanded nodes since, in general, the operations
of re-evaluating and updating the expanded sub-graphs would be too computationally
expensive. However, under certain circumstances it is possible to merge nodes with
already expanded collector nodes without further evaluations and updates. Let v ∈ Q
be a not yet expanded node and u ∈ V be an already expanded node. If t0(v) = t0(u),
Z lp(v) ≤ Z lp(u), and ⊕({σ(v), σ(u)}) = σ(u) holds, then it is possible to merge v into u
without changing the state of u or increasing the length of the MDDs’s longest path. The
first two conditions are used to safely omit the re-expansion of node u and to efficiently
identify such possible merges by additionally indexing all so far encountered nodes u ∈ V
by their t0(u) values.

112



4.9. Filtering of Relaxed Decision Diagrams

Each new or changed node in Q after a node expansion is considered for this type of
merge. To this end, we check the condition with all other nodes in V that have the same
t0 value. If a pair of nodes v ∈ Q and u ∈ V that fulfills this condition is found, we
remove v from the open list and merge v into u by redirecting all incoming arcs from v
to u. Since this kind of merge does not introduce any relaxation loss, we perform this
procedure after every node expansion even if |Q| ≤ φ.

Tie Breaking in the Priority Function

The nodes in the open list Q are sorted according to the value of the priority function
f , given in Equality (4.15). It is typically the case that several nodes have the same
f -values, and we therefore use the following two-stage tie breaking in order to further
guide the algorithm promisingly. First, if two nodes have the same f -value, we always
prefer exact nodes over non-exact nodes. We call a node exact when it has a longest
path from the root node that does not contain any merged node where the merging gave
rise to a relaxation loss. In other words, an exact node is guaranteed to have a feasible
solution that corresponds to this longest path. Such nodes are considered more promising
to expand than non-exact nodes with the same f -value. In case of a remaining tie, we
prefer nodes where the corresponding state has fewer jobs that may still be scheduled,
i.e., we prefer nodes u having a smaller cardinality of P (u).

4.9 Filtering of Relaxed Decision Diagrams
Relaxed MDDs not only provide an upper bound on the optimal objective value of the
original problem, but can be also exploited further. If we utilize a relaxed MDD to derive
heuristic solutions as we will do in Section 4.10, it can make sense to further process it
by filtering in order to reduce its size and to further strengthen it. In the following, we
describe our approach to filter a relaxed MDD for the PC-JSOCMSR. The technique is
related to the filtering in IRLP, described in Section 4.7.1.

The algorithm tries to remove arcs and nodes that cannot be part of a path representing
an optimal solution. The purpose is to obtain a MDD with fewer arcs and nodes and
at the same time strengthen the states of the remaining nodes, which frequently allows
further reductions in turn. Because this filtering also removes arcs from paths that encode
feasible but sub-optimal solutions, the resulting MDD is not a relaxation of the original
exact MDD. It is, however, guaranteed that optimal solutions of the original problem are
retained.

Our filtering is performed in a single top-down pass, i.e., by traversing the MDD with a
breadth-first-search. For each considered node we remove incoming arcs that are only
used by paths encoding sub-optimal solutions and outgoing arcs if all traversing paths
correspond to infeasible solutions. Since the removal of an arc might enable the filtering
of an already earlier processed arc, we reconsider the node’s incident arcs until no further
changes are achieved. Nodes that become unreachable from the root node r, as they
remain without any incoming arcs, are also removed together with all their outgoing arcs.
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In more detail, an arc is removed if all r–t paths containing the arc are shorter than
a given lower bound on the optimal objective value. This lower bound, denoted by
Z lb, can be either obtained from the longest path from r to an exact node in the given
relaxed MDD or by a primal heuristic. A longest path traversing an arc a = (u, v)
is composed of the longest path from r to u, arc a, and the longest path from v to
t and has length Z lp(u) + z(a) + Z lp↑(v), where Z lp↑(v) is the longest path starting
from node v. While Z lp(u) can be calculated and stored for each node u ∈ V during
the construction of the MDD, Z lp↑(u) has to be still determined. This is done by an
bottom-up breadth-first-search of the MDD, starting from t with Z lp↑(t) = 0 and setting
Z lp↑(u) = max {z(a) + Z lp↑(v) | a = (u, v) ∈ A} for any further encountered node u.

Remember that our A∗-based compilation of relaxed MDDs also associates an upper
bound Zub(v) with each node v ∈ V . Sometimes this upper bound is tighter than the
length of the longest v–t path in the current MDD, i.e., Z lp↑(v), and thus, we should
consider the smaller value. Furthermore, also the maximum Zub value of all predecessor
nodes increased by the arc costs z(a) as well as the maximum Zub value of all successor
nodes decreased by z(a) are respective bounds which might be stronger especially after
some incident arcs have already been removed. Overall, we calculate the strongest bound

Ẑ lp↑(v) = min
{
Z lp↑(v), Zub(v), max

a=(v,w)∈A
(Zub(w) + z(a)), max

a=(u,v)∈A
(Zub(u)− z(a))

}

and remove arc a = (u, v) iff Z lp(u) + z(a) + Ẑ lp↑(v) < Z lb during the top-down traversal
of the MDD.

The state associated with a node should always be the result of merging the states
obtained by the respective transitions from the immediate predecessor nodes, followed by
the strengthening described in Section 4.4. Consequently, whenever a node’s incoming arc
is removed, we also re-compute its associated state as well as the bound Zub(v). In case
of a change of the state we further check all outgoing arcs for their validity. Any arc that
does not represent a feasible extension anymore is removed. Moreover, an updated state
might induce changes in the successor states. Consequently, a node’s state is re-evaluated
if one of its predecessor states has been updated.

4.10 Accelerated Top-Down Construction of Restricted
Decision Diagrams

A restricted MDDs represents only a subset of all feasible solutions, but no infeasible
solutions. They are primarily used to obtain feasible heuristic solutions and corresponding
lower bounds. The construction usually follows a layer-by-layer top-down approach [11, 13].
As for relaxed MDDs, the size of the obtained restricted MDDs is limited by a maximum
allowed width β for each layer. Whenever the allowed width would be exceeded, nodes
are selected from the current layer according to a greedy criterion and removed together
with their incoming arcs. See Section 4.6 for further details on the TDC of restricted
MDDs for PC-JSOCMSR.
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So far, we are only aware of previous approaches that construct restricted MDDs inde-
pendently of relaxed MDDs. However, an earlier construction of a relaxed MDD will, in
general, have collected useful information about an instance of the problem and this is
encoded in the relaxed MDD. Our proposed strategy for constructing a restricted MDD
based on a relaxed one will exploit this information to potentially either speed up the
construction of a restricted MDD and/or obtain a stronger restricted MDD representing
better solutions. Our approach also applies the top-down compilation principle. The
novel aspect is that we, during the construction, follow paths in the given relaxed MDD.
We denote here all elements belonging to the restricted MDD with primed symbols, while
the corresponding symbols of the relaxed MDD are not primed.

A node u′ ∈ V ′ in our restricted MDD always has a corresponding node u ∈ V in the
relaxed MDD M . More specifically, a path from r′ to u′ represents a feasible partial
solution that is also represented in M by a path from r to u. In other words, the node
u′ ∈ V ′ that corresponds to a node u ∈ V is the node that can be reached by the same
sequence of scheduled jobs. Considering this corresponding node u in the relaxed MDD
allows us to skip certain transitions in the construction of the restricted MDD that
otherwise would appear promising and for which arcs and new successor nodes would be
created. In this way a vast amount of arcs and nodes for states that cannot lead to an
optimal solution may be avoided.

Algorithm 4.4 shows our compilation of a restricted MDD in detail. The procedure takes
the relaxed MDD G and a maximum allowed width β as input and returns the compiled
restricted MDD G′. The compilation starts with the first layer that consists of the root
node r′, which is by definition the same as in the relaxed MDD. Then, each successive
layer V ′l+1 is built from the preceding layer V ′l by creating nodes and arcs for feasible
transitions from the states associated with the nodes in V ′l . Here comes one of the novel
aspects: For each node u′ in layer V ′l we consider only state transitions corresponding to
outgoing arcs of the respective node u in the relaxed MDD G. Other potentially feasible
state transitions do not need to be considered since we know from the relaxed MDD
that they cannot lead to an optimal feasible solution. Thus, we prevent the creation of
arcs that have been filtered in the relaxed MDD by the filtering from Section 4.9. Note,
however, that the relaxed node u might have outgoing arcs representing transitions that
are actually infeasible for node u′ in the restricted MDD. This may happen since the
states of u′ and u do not need to be the same but u′ may also dominate u because some
nodes have been merged in the path from r to u in the relaxed MDD. In Line 9, the
algorithm therefore checks the feasibility of the respective transition (remember that
0̂ represents the infeasible state) and skips infeasible ones. For PC-JSOCMSR, this
feasibility check simply corresponds to testing if j(a) ∈ P (u). Moreover, when we have
already reached the maximum allowed width at the current layer, we make an efficient
pre-check if the node v′ to be created next would be removed later when the set V ′l+1
is greedily reduced to β nodes. To this end, we evaluate the criterion that is used to
decide which nodes are removed from the current layer for the corresponding node v
in the relaxed MDD in conjunction with the so far obtained set V ′l+1. If this criterion
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Algorithm 4.4: Construction of a Restricted MDD Based on a Relaxed MDD
Input: relaxed MDD G = (V,A), maximum width β
Output: restricted MDD G′ = (V ′, A′)

1 V ′1 ← {r′};
2 A′ ← ∅;
3 l← 1;
4 while V ′l 6= ∅ do
5 V ′l+1 ← {};
6 foreach node u′ ∈ V ′l do
7 let u ∈ V be the node corresponding to u′ w.r.t. the path from the root;
8 foreach outgoing arc a = (u, v) of node u do
9 if τ(σ(u′), j(a)) = 0̂ then

10 continue with next arc;
11 if |V ′l+1| = β ∧ node v would be removed from V ′l+1 ∪ {v} then
12 continue with next arc;
13 Σ← τ(σ(u′), j(a)); strengthen Σ;
14 if 6 ∃v′ ∈ V ′l+1 | σ(v′) = Σ then
15 add new node v′ to V ′l+1 and set σ(v′) = Σ;
16 add new arc a′ = (u′, v′) to A′;
17 if |V ′l+1| > β then
18 select and remove a node from V ′l+1 with its incoming arcs

according to a greedy criterion;

19 l← l + 1;
20 return G′ = (V ′, A′) with V ′ = V ′1 ∪ . . . ∪ V ′l−1;

is chosen in a sensible way, the evaluation for v will never indicate a removal of node
v when v′ would not be removed, since either the associated states are identical or the
state of v′ dominates the state of v. In our algorithm, Line 11 realizes this pre-check and
correspondingly skips the respective transitions. For the remaining transitions, Line 13
calculates the obtained new state Σ and creates the corresponding node v′ if no node
in V ′ exists yet for Σ. Then, an arc (u′, v′) representing the transition in the restricted
MDD is created and added to A′. Finally, if V ′l+1 has grown to β + 1 nodes, a node is
removed according to the used greedy criterion.

After having compiled the restricted MDD, a best feasible solution is given by a longest
path in it, which can be directly obtained through the Z lp values again calculated for all
nodes. The quality and the time required to build the restricted MDDs with Algorithm 4.4
is mainly influenced by the maximum allowed width β, the given relaxed MDD G, and
the criterion to select nodes for removal. As usual, restricted MDDs of larger width
require more time to be compiled but encode more feasible solutions and can thus be
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expected to get closer to an optimum. The benefits of exploiting a relaxed MDD in the
compilation of a restricted MDD depends on how closely the exact states in the restricted
MDD are approximated by the corresponding states in the relaxed MDD as well as on
the effectiveness of the relaxed MDD’s filtering.

A typical way to select the nodes for removal at each layer is to take the nodes with
the smallest lengths of the longest paths to reach them from the root node r′, i.e., the
nodes with the smallest Z lp(v′), v′ ∈ V ′l+1 [11, 13]. As already pointed out in Section 4.6
this strategy is not beneficial for PC-JSOCMSR since it disregards the advances in
the time line. Instead, we remove nodes with the smallest Z lp(v′)/t0(v′) ratios in our
implementation for the PC-JSOCMSR as it was already done in Section 4.6.

When applying this removal criterion to the corresponding node v of the relaxed MDD in
Line 11, it holds that Z lp(v)/t0(v) ≥ Z lp(v′)/t0(v′) as Z lp(v) ≥ Z lp(v′) and t0(v) ≤ t0(v′)
as state σ(v′) is equal to or dominates state σ(v). We can even sharpen this estimation
by using (Z lp(u′) + z(a))/t0(v) and thus take advantage of our knowledge of Z lp(u′) and
the respective transition costs z(a) to reach node v.

Another reasonable option would be to select the nodes for removal with the smallest
Z lp(v′) + Ẑ lp↑(v) values. Observe, that we reuse here the upper bounds Ẑ lp↑(v) computed
during the filtering of the relaxed MDD. Similarly, we can use as before the possibly
stronger bound Z lp(u′) + z(a) + Ẑ lp↑(v) in Line 11 to pre-check a transition before it
is exactly calculated. Preliminary tests, however, have shown that this node removal
strategy is rather sensitive to effects caused by merged nodes in the relaxed MDD and,
thus, is not effective. We therefore did not pursue it further.

4.11 General Variable Neighborhood Search

In this section the GVNS is presented which serves us as a reference approach for obtaining
heuristic solutions. The GVNS metaheuristic [47] is a prominent local search based
metaheuristic which operates on multiple neighborhoods. To recapitulate Section 2.3.5
the central idea is to systematically change local search neighborhood structures until
a local optimum in respect to all these neighborhood structures is found. This part is
called variable neighborhood descent (VND). To further diversify the search, the GVNS
performs so-called shaking for local optimal solutions by applying random moves in larger
neighborhoods. These perturbed solutions then undergo VND again, and the whole
process is repeated until a termination condition is met at which point the best solution
encountered is returned.

In the context of this metaheuristic we represent a solution by a permutation π =
(πi)i=1,...,|J | of the entire set of jobs J . Starting times and the subset of jobs S ⊆ J that
actually is scheduled is obtained by considering all jobs in the order of π and determining
each job’s earliest feasible time; jobs that cannot be feasibly scheduled w.r.t. their time
windows anymore are skipped. This solution representation allows us to use rather simple
neighborhood structures.
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Our GVNS for PC-JSOCMSR starts with a random permutation of the jobs J as initial
solution. In a preliminary study, we also used initial solutions computed by a FRB4k [99]
construction heuristic (see also Section 3.8.1). Although this constructive heuristic
provided much better starting solutions, we could not observe significant differences in
the quality of final solutions returned by the GVNS.

We employ in our GVNS two local search neighborhood structures. The first one
considers all exchanges of pairs of jobs within the permutation, while the second considers
the removal of any single job and its re-insertion at another position. To avoid the
consideration of moves that do not change the actual schedule, we require that each move
changes either S or the order of the jobs within S.

In the VND, we apply any possible improving exchange move before considering the moves
that remove and reinsert jobs. Each neighborhood is searched in a first improvement
fashion. As shaking operation, we perform a sequence of k random remove-and-insert
moves. Whenever a new incumbent local optimal solution is found, the following shaking
starts with k = 1. Parameter k is increased by one up to a maximum value kmax after
every unsuccessful shaking followed by the VND. After reaching kmax, k is reset to one
again.

4.12 Computational Study
In this section we report results from the experimental evaluation of the approaches
proposed in this chapter. The algorithms are implemented in C++ and have been
compiled by GNU G++ 7.3.1. All experiments are performed on a single core of an Intel
Xeon E5-2640 v4 CPU with 2.40GHz and 16GB of memory. Throughout this section
we denote by TDC the classic top-down construction for relaxed and reduced MDDs as
described in Section 4.6. We refer by IRLP to our incremental refinement compilation
of relaxed MDDs for PC-JSOCMSR from Section 4.7. The A∗-based construction of
relaxed MDDs is abbreviated in the following by A∗C. If we derive restricted MDDs
by the construction method presented in Section 4.10 from relaxed MDDs provided by
A∗C, we write A∗C+TDC. As we will argue later, we always perform the filtering from
Section 4.9 within A∗C+TDC. Finally, we denote the metaheuristic from Section 4.11
that serves us as a reference approach simply by GVNS.

We start in the following section with a description of the used benchmark instances.
In Section 4.12.2 our initial layer-based compilation methods are highlighted. To this
end, we first compare the relaxed MDDs build by the TDC and the IRLP followed by
assessing the quality of the restricted MDDs compiled by TDC in comparison to the
solutions obtained by the GVNS. Then, we shift our focus towards A∗C. Section 4.12.3
presents results from studying the impact of different values for the open list size limit
φ and of different choices for the labeling function L(u) in the compilation of relaxed
MDDs with A∗C. Afterwards, in Section 4.12.4, we compare the quality of upper bounds
obtained from A∗C to those from other approaches. The impact of filtering relaxed
MDDs is addressed in Section 4.12.5, and later Section 4.12.4 compares primal bounds
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obtained by A∗C+TDC to those from the other presented approaches and a reference
MILP and CP model.

4.12.1 Benchmark Instances

We have generated three non-trivial sets of benchmark instances that are available at https:
//www.ac.tuwien.ac.at/research/problem-instances. In the first series of experiments,
discussed in Section 4.12.2, we use two sets of benchmark instances based on characteristics
from the particle therapy application. Each of these two sets contain in total 840 instances
with 30 instances for each combination of n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150,
200, 300} jobs and m ∈ {2, 3} secondary resources. The instances allow that roughly
30% of all the jobs can be scheduled. These benchmark sets, called PB and PS, differ
in the usage of the secondary resources. While the instances of set PB have a balanced
workload w.r.t. the secondary resources, the instances of set PS have a skewed workload,
meaning that one secondary resource is required substantially more often than the other
secondary resources. This workload balance played in Horn et al. [55] an important
role for the algorithms to solve the JSOCMSR problem in which all jobs have to be
scheduled. It turned out that the impact in the PC-JSOCMSR problem variant, however,
is typically less relevant. This follows from the fact that in PC-JSOCMSR only a subset
of all jobs needs to be selected and scheduled, which mitigates a resource imbalance.
Therefore, we consider in the later experiments concerning the A∗C just the balanced
instance set PB and extend it by instances with up to 500 jobs. Furthermore, we
introduce an additional instance set A for the avionic system scheduling scenario, which
has substantially different characteristics than instance set PB. To summarize, from
Section 4.12.3 on, we consider instance set PB and A that contain 30 instances for
each combination of n ∈ {50, 100, . . . , 500} jobs and m ∈ {2, 3} secondary resources for
instance set PB and m ∈ {3, 4} secondary resources for instance set A.

In the benchmark instances of type PB the secondary resources are equally distributed
among the jobs and each job requires in expectation the common resource for the second
third of its processing time. To this end a job’s secondary resource is uniformly sampled
from R. The processing time of a job j is determined by sampling values for ppre

j , ppost
j from

U{0, 8} and for p0
j from U{1, 8}. In the set of instances PS one of the secondary resources

is required predominantly. Moreover, in expectation the common resource is required
more than the half the job’s processing time. In detail, a job’s secondary resource is set to
m with a probability of 0.5 while the other resources in R are selected with a probability of
1/(2m− 2). The duration p0

j of the jobs j ∈ J are chosen uniformly from {1, . . . , 13} and
the pre-processing and post-processing times ppre

j and ppost
j are both uniformly selected

from {0, . . . , 5}. The remaining characteristics of the two benchmark sets are obtained
in the same way: The prize zj associated with each job is sampled uniformly from
{p0
j , . . . , 2p0

j} in order to correlate with the time the common resource is used. For the
jobs we generate between one and three time windows in such a way that approximately
30% of the jobs fit into a schedule. To this end, we sample for each job the number of time
windows ωj from {1, 2, 3}. Moreover, let E(p0) be the expected duration a job requires
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the common resource and let T = b0.3nE(p0)c be the total expected time required from
the common resource to schedule 30% of all jobs. The ωj time windows Wj for job j are
generated as follows: We choose a start time W start

jw uniformly from {0, . . . , T − pj} and
an end time W end

jw from {W start
jw + max(pj , b0.1T/ωjc), . . . ,W start

jw + max(pj , b0.4T/ωjc)}.
If we obtain overlapping time windows, they are merged and ωj is adjusted accordingly.

Instance set A is based on the avionics scenario (see Section 4.3.2). The instances have a
fixed time horizon T = 1000 and the set of all considered jobs is partitioned into 20%
communication jobs, 40% partition jobs and 40% regular jobs. Time p0

j is sampled for
partition jobs and regular jobs from the discrete uniform distribution U{36, 44}. For
communication jobs the time the common resource is needed is set to the fixed value 40.
Each partition job is assigned a secondary resource uniformly selected from {1, . . . ,m−1}.
The total processing time pj is sampled for partition jobs from U{5p0

j , 8p0
j} and then,

with equal probability, ppre
j or ppost

j is set to 0 and the respective other value is set to
pj − p0

j . Since the communication jobs and regular jobs do not use a secondary resource
in the real scenario, an artificial secondary resource is introduced and assigned to all of
these jobs. More specifically, both the communication jobs and the regular jobs require
resource m ∈ R for pj = p0

j . In addition, this artificial secondary resource means that the
number of secondary resources for an instance is always one more than the number of
application modules in the system. The prize zj is for five of the partition jobs and ten of
the communication jobs set to the value 70 to give these jobs a higher priority, while for
the remaining partition jobs and communication jobs the prize is sampled from U{10, 50}.
For all regular jobs, the prize is sampled from U{10, 25}. For partition jobs and regular
jobs, the number of time windows and the length of the time windows are computed
as for the instance sets PB and PS, but for the communication jobs the structure is
rather different. Communication jobs can only be scheduled at certain points in time
when the communication can be performed, and in our case these time points are at
0, 80, 160, . . . , 880. Each time window of a communication job starts at one of such time
points and has a length equal to the job’s processing time. Moreover, the communication
job’s time windows always start at a consecutive sequence of these time points. The
number of time windows for a communication job is obtained by sampling a value from
the uniform distribution U{1, 3} and multiply it by three.

Note that the instances of sets PB and A differ substantially in their structure. For
instances of set PB, the number of jobs that may be feasible scheduled grows linearly with
the instance size, i.e., the number of jobs. Moreover, the prize for each job is correlated
to the time the job needs the common resource. In contrast, for instances of set A the
number of jobs that may be feasible scheduled stays in the same order of magnitude
due to the fixed time horizon of T = 1000. Furthermore, the prize structure is very
different since the prize does not depend on the jobs’ processing time but instead on a
priority. As we will see in the results, this structural differences also impact the obtained
relaxed MDDs. In particular, the height of relaxed MDDs compiled for instances of set
PB grows with the problem size, whereas the relaxed MDDs obtained for instances of set
A typically have a comparable height.
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4.12.2 Top Down Construction and Incremental Refinement

This section first compares the relaxed MDDs compiled by the TDC and the IRLP for
PC-JSOCMSR. Afterwards, the restricted MDDs constructed by the TDC are set into
perspective to the results obtained from the GVNS. We start by giving details of the
experimental setting.

The initial relaxed MDD used by incremental refinement methods in the literature [23, 68]
are typically trivial ones of width one and can be obtained by calling TDC with β = 1.
For PC-JSOCMSR there is a more meaningful initial relaxed MDD of maximum width
m, where on each layer all states are merged that are obtained by jobs requiring the
same secondary resource. This initial relaxed MDD has in general already significantly
stronger states than the relaxed MDD of width one, because in the latter the advances
on the times tr for the secondary resources r ∈ R cancel each other out. Preliminary
experiments showed that small instances can be optimally solved with fewer iterations
and on larger instances stronger bounds can be obtained when providing the initial
relaxed MDD of width m. Hence, we do this in all our further IRLP runs.

In other preliminary experiments we investigated different configurations of the GVNS.
We tried changing the order of the neighborhood structures within the VND and also
shaking operators based on exchanging the positions of randomly selected jobs. The
configuration described in Section 4.11 was found to work best. Moreover, we tuned the
maximum shaking size parameter kmax. Relatively small values for kmax turned out to
typically yield better results, and we decided to use kmax = 4 for all further experiments.

In the first series of experiments we compare the quality of relaxed MDDs compiled by
TDC and IRLP, respectively. IRLP was performed with a CPU-time limit of 900 seconds
per run, while for TDC we used different values for the maximum width β in dependence
of the number of jobs so that the required CPU-time was in a similar order of magnitude.
Table 4.1 and Table 4.2 shows average results for PB and PS instances, respectively. The
first three columns describe the instance properties. For both approaches mean dual
bounds Z lp are listed together with the corresponding standard deviations σ(Z lp), the
median numbers of nodes of the relaxed MDD |V | and median completion times t in
seconds. In addition, the employed maximum width β in the TDC are given. Moreover,
for the IRLP we state in column ∆[%] the percentage of nodes saved due to the elimination
of duplicate states. In other words, we compute 100− 100 · (|V |/|V ′|), where |V ′| is the
size of the MDDs of separate runs of the IRLP without elimination of duplicate nodes,
as it was presented in our preliminary work [79].

On the smallest instances both algorithms produce relaxed MDDs with the same dual
bounds. In these cases the obtained bounds correspond to the optimal objective values,
which we verified by checking that the longest paths indeed correspond to feasible
schedules. In fact, TDC could solve several instances with up to 60 jobs, while IRLP
found optimal solution for some instances with up to 50 jobs. While on the medium to
large instances with balanced jobs we cannot observe a clear tendency which method
provides tighter bounds, IRLP outperforms TDC by a rather large margin on almost all
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TDC (relaxed MDDs) IRLP

type m n β |V | t[s] Z lp σ(Z lp) |V | ∆[%] t[s] Z lp σ(Z lp)

PB 2 010 750000 42 <1 30.93 6.91 20 11 <1 30.93 6.91
PB 2 020 750000 526 <1 50.37 5.71 182 14 <1 50.37 5.71
PB 2 030 750000 5365 <1 75.33 6.41 1258 17 <1 75.33 6.41
PB 2 040 750000 78336 <1 98.93 7.05 12618 18 2 98.93 7.05
PB 2 050 750000 850366 18 123.83 9.86 210294 34 374 125.80 10.93
PB 2 060 750000 6192518 214 181.07 26.79 1502938 36 900 175.13 14.89
PB 2 070 100000 1821669 136 314.30 30.97 4160276 33 900 253.23 31.06
PB 2 080 100000 2291714 243 400.57 35.81 4449456 26 900 342.70 48.38
PB 2 090 100000 3109741 439 497.17 51.51 3722248 27 900 454.70 66.55
PB 2 100 100000 3885520 683 605.10 47.07 3143184 29 900 593.33 100.04
PB 2 120 20000 1096548 279 868.50 85.35 2581056 19 900 872.83 148.05
PB 2 150 20000 1678748 690 1245.50 99.96 1867372 14 900 1409.60 148.46
PB 2 200 2000 289016 232 2176.47 206.23 1300659 8 900 2283.80 117.48
PB 2 300 2000 512774 974 3830.17 291.98 619908 5 900 3865.90 99.82

PB 3 010 750000 52 <1 36.17 6.22 30 5 <1 36.17 6.22
PB 3 020 750000 978 <1 59.27 7.85 336 12 <1 59.27 7.85
PB 3 030 750000 13766 <1 86.30 7.08 4046 23 <1 86.30 7.08
PB 3 040 750000 215763 3 112.00 7.79 68336 25 55 112.97 9.82
PB 3 050 750000 3893395 84 154.43 24.57 718030 32 900 160.80 17.61
PB 3 060 750000 10316441 474 241.53 16.68 3910070 21 900 221.60 15.19
PB 3 070 100000 2441857 193 405.50 51.30 4870403 22 900 334.90 47.25
PB 3 080 100000 3282533 355 527.47 56.95 3808838 24 900 477.07 60.86
PB 3 090 100000 4259832 664 655.80 68.22 3207024 27 900 672.37 79.23
PB 3 100 100000 5214238 981 783.30 76.89 3394374 19 900 840.93 67.22
PB 3 120 20000 1552652 402 1176.57 91.67 2249186 23 900 1186.10 73.63
PB 3 150 20000 2290835 1000 1687.27 137.87 1750716 11 900 1619.23 96.31
PB 3 200 2000 381135 294 2827.77 161.11 1192373 2 900 2364.27 131.87
PB 3 300 2000 598301 1318 4562.17 122.92 536464 14 900 3914.33 127.36

Table 4.1: Comparison of the relaxed MDDs obtained from TDC and IRLP on instance
set PB.

skewed instances. Notice that the size of the relaxed MDDs produced by both algorithms
peaks by instances with 60 or 70 jobs and declines for larger benchmark instances. This
can be explained for the TDC by the increasing number of state transitions that have
to be performed for each layer and by the increasing number of nodes that have to be
merged as a result. For IRLP the reason is similar. IRLP has to reevaluate for larger
instances more frequently nodes with many incoming arcs.

IRLP has been extended w.r.t. our preliminary work [79] by the elimination of duplicate
states within layers. While the effects on the obtained dual bounds have been negligible,
the size of the produced MDDs has been reduced between by 10% to 30% on average.
Smaller MDDs of similar quality become especially important if the MDDs are further
exploited within a larger algorithmic framework such as in the DD-based branch-and-
bound [13] or for constraint propagation in CP [23, 68].

In a second series of experiments the heuristic solutions obtained by the TDC for restricted
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TDC (relaxed MDDs) IRLP

type m n β |V | t[s] Z lp σ(Z lp) |V | ∆[%] t[s] Z lp σ(Z lp)

PS 2 010 450000 40 <1 50.93 8.36 21 11 <1 50.93 8.36
PS 2 020 450000 1039 <1 89.93 8.23 446 9 <1 89.93 8.23
PS 2 030 450000 21220 <1 131.37 10.37 9478 26 1 131.37 10.37
PS 2 040 450000 430093 7 180.07 12.40 167558 25 598 186.27 16.49
PS 2 050 450000 4394388 128 300.13 50.61 2079225 25 900 297.37 30.72
PS 2 060 450000 8549486 530 535.90 77.47 6311374 26 900 463.60 44.08
PS 2 070 100000 3230809 321 835.43 119.97 5264954 29 900 717.07 74.14
PS 2 080 100000 4362590 546 1091.63 124.31 4373746 25 900 931.40 94.35
PS 2 090 100000 5475532 893 1315.33 120.45 4196128 27 900 1154.03 100.01
PS 2 100 20000 1439179 287 1754.63 163.18 3287628 19 900 1461.50 102.69
PS 2 120 20000 1840614 537 2276.60 236.54 2713622 15 900 1891.17 132.51
PS 2 150 20000 2756871 1218 3315.60 209.25 1929511 13 900 2598.47 152.95
PS 2 200 1000 199201 180 4853.90 171.69 1203598 9 900 3770.27 181.75
PS 2 300 1000 299301 791 7483.10 187.80 669654 6 900 6249.60 213.77

PS 3 010 450000 46 <1 51.97 9.76 34 7 <1 51.97 9.76
PS 3 020 450000 1216 <1 96.47 9.13 470 20 <1 96.47 9.13
PS 3 030 450000 23358 <1 135.90 9.42 9650 25 1 135.90 9.42
PS 3 040 450000 1099240 15 191.20 17.19 377388 31 900 206.27 20.87
PS 3 050 450000 5968862 211 357.60 57.78 5591745 31 900 341.23 36.53
PS 3 060 450000 11241455 663 610.37 70.78 6410652 29 900 548.23 74.03
PS 3 070 100000 4134692 401 956.73 114.00 5087212 29 900 779.00 73.10
PS 3 080 100000 4676286 624 1219.10 166.32 4280442 24 900 1012.07 70.41
PS 3 090 100000 6803302 1145 1623.87 162.81 3768948 23 900 1249.00 100.66
PS 3 100 20000 1691990 313 2013.37 239.78 3123381 22 900 1489.03 128.71
PS 3 120 20000 2298596 648 2696.10 208.48 2441742 15 900 1926.13 153.86
PS 3 150 20000 2973857 1456 3510.93 225.37 1806430 12 900 2669.80 99.54
PS 3 200 1000 199201 208 4904.30 165.27 1132778 9 900 3901.67 194.42
PS 3 300 1000 299301 800 7508.93 188.07 528610 2 900 6393.83 250.52

Table 4.2: Comparison of the relaxed MDDs obtained from TDC and IRLP on instance
set PS.

MDDs are compared with the ones computed by the GVNS. We employ for the GVNS a
time limit of 900 CPU-seconds as termination criterion. For TDC, different maximum
widths β were used again so that the running times are in a similar order of magnitude.
Table 4.3 and Table 4.4 shows the obtained results. The first three columns describe the
instance properties and each row shows average results of 30 corresponding instances.
The means and the corresponding standard deviations of the final objective values for
TDC and GVNS are shown in the columns Z lp, σ(Z lp), obj and σ(obj), respectively. In
addition, for TDC the maximum width β, median number of nodes in the restricted
MDD |V |, and median computation times t in seconds are listed. Moreover, column tbest

shows for the GVNS median times in seconds when the best solution has been found.

The TDC for restricted MDDs is able to outperform the GVNS on most of our benchmark
instances. Only for the largest instances with three secondary resources or skewed jobs,
GVNS is able to provide better results. The main reason for the superior performance
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TDC (restricted MDDs) GVNS

type m n β |V | t[s] Z lp σ(Z lp) obj σ(obj) tbest[s]

PB 2 010 750000 42 <1 30.93 6.91 30.93 6.91 <1
PB 2 020 750000 526 <1 50.37 5.71 50.37 5.71 <1
PB 2 030 750000 5365 <1 75.33 6.41 75.33 6.41 <1
PB 2 040 750000 78336 1 98.93 7.05 98.90 7.01 <1
PB 2 050 750000 850366 23 123.27 10.33 123.20 10.34 <1
PB 2 060 750000 6149522 212 146.80 10.39 146.53 10.38 <1
PB 2 070 750000 10039410 697 172.23 11.17 171.93 11.41 8
PB 2 080 150000 2678998 259 199.97 13.36 199.47 13.13 8
PB 2 090 150000 3275627 424 231.83 13.36 230.70 13.73 31
PB 2 100 150000 3756246 610 260.40 11.52 258.83 11.71 67
PB 2 120 50000 1592216 371 315.90 13.05 312.80 12.44 186
PB 2 150 50000 2132142 799 402.43 18.65 396.50 17.47 551
PB 2 200 6000 353180 226 528.17 18.96 526.83 18.73 459
PB 2 300 6000 524990 766 796.17 16.68 791.67 17.26 751

PB 3 010 750000 52 <1 36.17 6.22 36.17 6.22 <1
PB 3 020 750000 978 <1 59.27 7.85 59.27 7.85 <1
PB 3 030 750000 13766 <1 86.30 7.08 86.30 7.08 <1
PB 3 040 750000 215763 8 112.00 7.79 111.93 7.85 <1
PB 3 050 750000 3891532 105 140.33 10.40 140.27 10.40 1
PB 3 060 750000 9554024 414 165.13 8.83 164.80 8.80 7
PB 3 070 750000 13161224 1045 194.83 11.13 194.17 11.26 44
PB 3 080 150000 3626754 354 227.87 13.54 226.70 13.34 72
PB 3 090 150000 4210254 585 257.53 8.67 255.27 9.14 55
PB 3 100 150000 4902283 822 290.53 14.30 288.03 14.60 274
PB 3 120 50000 1996235 459 352.27 15.12 348.63 14.12 255
PB 3 150 50000 2489353 936 439.87 15.88 436.30 16.68 358
PB 3 200 6000 408372 245 579.97 18.74 583.80 16.31 507
PB 3 300 6000 606960 830 847.67 16.25 865.20 19.25 707

Table 4.3: Comparison of heuristic solutions for PB instances obtained from restriced
MDDs compiled by TDC and the GVNS.

of the TDC on instances with balanced jobs and two secondary resources is that the
corresponding exact MDDs are much smaller compared with the other instances. This
can be seen on the smallest instances where the imposed maximum width is not yet
restrictive. On the instances with 30 jobs, for example, the resulting MDDs for balanced
jobs with two secondary resources have on average 5365 nodes, with three secondary
resources 13766 nodes, and for the instances with skewed jobs there are 21220 and 23358
nodes. It is safe to assume that this difference in size becomes even larger with more
jobs. To stay within the memory and time limits, the maximum allowed width has to be
decreased with the increasing number of jobs, which becomes more and more restrictive
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TDC (restricted MDDs) GVNS

type m n β |V | t[s] Z lp σ(Z lp) obj σ(obj) tbest[s]

PS 2 010 750000 40 <1 50.93 8.36 50.93 8.36 <1
PS 2 020 750000 1039 <1 89.93 8.23 89.93 8.23 <1
PS 2 030 750000 21220 <1 131.37 10.37 131.37 10.37 <1
PS 2 040 750000 430093 10 180.07 12.40 180.00 12.38 <1
PS 2 050 750000 6335677 175 225.67 12.77 225.40 12.80 1
PS 2 060 750000 10873978 679 277.53 11.67 276.87 11.97 10
PS 2 070 150000 3233630 293 326.20 14.24 325.20 14.51 42
PS 2 080 150000 3959832 452 375.80 16.50 374.23 16.66 70
PS 2 090 150000 4495445 655 421.50 17.43 419.27 17.37 159
PS 2 100 150000 5105289 962 479.13 20.91 476.03 20.84 259
PS 2 120 50000 2072133 525 574.37 21.79 570.70 22.32 239
PS 2 150 50000 2741184 1062 715.93 14.22 716.37 16.28 401
PS 2 200 6000 432746 270 931.57 21.90 948.87 22.25 632
PS 2 300 6000 668570 938 1382.70 30.42 1424.07 38.56 784

PS 3 010 750000 46 <1 51.97 9.76 51.97 9.76 <1
PS 3 020 750000 1216 <1 96.47 9.13 96.47 9.13 <1
PS 3 030 750000 23358 <1 135.90 9.42 135.90 9.42 <1
PS 3 040 750000 1099240 31 185.43 10.92 185.43 10.92 <1
PS 3 050 750000 8572086 298 234.40 10.92 234.17 11.10 9
PS 3 060 750000 13723665 842 286.97 13.00 286.10 13.13 9
PS 3 070 150000 3656983 326 331.30 17.37 330.20 17.71 51
PS 3 080 150000 4253940 475 384.77 17.27 383.33 17.38 37
PS 3 090 150000 5157731 754 429.60 16.92 427.97 16.93 119
PS 3 100 150000 5794926 1035 487.30 19.41 486.00 18.28 163
PS 3 120 50000 2308306 575 565.13 17.12 568.63 16.74 448
PS 3 150 50000 2904060 1060 708.07 21.61 716.00 20.42 442
PS 3 200 6000 460541 267 928.80 24.19 961.70 24.27 519
PS 3 300 6000 715920 926 1378.53 38.42 1428.57 39.68 747

Table 4.4: Comparison of heuristic solutions for PS instances obtained from restriced
MDDs compiled by TDC and the GVNS.

for the largest instances. Note that this relation can also be observed in Table 4.1 and
Table 4.2 for relaxed MDDs. The GVNS approach, on the other hand, seems to be less
affected by the instance type or by the number of secondary resources. This can be seen
by the times the GVNS finds the final solution, which increases with the instance size
but does not change substantially with the instance properties.

Concerning the gaps between the upper bounds obtained from the relaxed MDDs and the
lower bounds from the heuristic solutions (compare Tables 4.1 and 4.3 or Tables 4.2 and
4.4), we can observe that they are only small for the small and medium-sized instances
but become rather large for our largest instances. For example for the skewed instances
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with 300 jobs, this gap even exceeds 340%. This also somewhat illustrates the difficulty of
the considered problem and the limits of MDDs – or at least the limits of the considered
construction methods.

4.12.3 Effects of Open List Size Limit and Labeling Functions

We tested A∗C with different open list size limits φ and four different variants of the
labeling function L(u) used for mapping nodes to collector nodes. The considered labeling
function variants, developed in Section 4.8.2, are L1(u) = t0(u), L2(u) = (t0(u), r(u)),
L3(u) = (t0(u), Zub(u)) and L4(u) = L(u) = (t0(u), r(u), Zub(u)). Figure 4.4 and
Figure 4.5 document the effects of different values for φ and the choice of the labeling
function on the instances with 250 jobs of set PB with m ∈ {2, 3} and of set A with
m ∈ {3, 4}, respectively.

For each combination of a value for φ and a labeling function, a box plot summarizes the
obtained results over all 30 instances with the same instance properties. The diagrams
in the first row show the lengths of the longest paths from the obtained relaxed MDDs.
The diagrams in the second row depict the measured CPU-times needed for compiling
the MDDs. Moreover, in the last row the diagrams state the total number of nodes in
the final relaxed MDDs.

In Figure 4.4 that considers the PB instances, results are shown for φ ∈ {1000, 2000, 3000,
5000}. As one could expect, we see that with increasing φ the lengths of the longest paths
of the obtained relaxed MDDs get in general smaller, i.e., the obtained upper bounds
become stronger. The MDD sizes and computation times on the other hand increase.
Thus, parameter φ indeed allows to control the MDD’s size, although not in such a direct
linear way as the width-limit in a classical TDC. Furthermore, this effect can be observed
for all labeling functions. Concerning the different labeling functions, L1(u) = t0(u)
yields relaxed MDDs with typically the smallest size, but also the weakest upper bounds.
Additionally, this is achieved within the shortest computation times. The reason for
this behavior is that labeling function L1 does only consider the time from which on
the common resource is available and has therefore the smallest domain DL1 among
the four considered labeling functions. Hence, the use of labeling function L1 causes in
general more node merges compared to the other more complex labeling functions which
have larger domains and consequently also provide a finer differentiation of nodes. The
additional consideration of r(u) or Zub(u) in the labeling function improves the obtained
upper bounds in general substantially. Furthermore, the combination of all these aspects
in L4 provides the best results, this, however, at the costs of larger MDDs and higher
running times. The smallest median longest path lengths of 783 and 808 for instances
with two and three secondary resources, respectively, were obtained when limiting the
size of the open list to φ = 5000 nodes and using L4. Notice further that parameter φ
has more impact when using labeling function L1 and less influence when using labeling
function L4. This can again be explained by the domain sizes of the labeling functions,
but also the fact that the bounds obtained with L4 can be expected to be closer to the
optimal solution values and, hence, it becomes increasingly more difficult to find better
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Figure 4.4: A∗C results obtained for type PB instances with 250 jobs and m ∈ {2, 3}
secondary resources in dependence of the open list size limit φ and the used labeling
function L1, L2, L3, or L4.
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Figure 4.5: A∗C results obtained for type A instances with 250 jobs and m ∈ {3, 4}
secondary resources in dependence of the open list size limit φ and the used labeling
function L1, L2, L3, or L4.
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bounds. When comparing the results of L2 and L3, we can see that L2 usually yields
marginal better results, but this again at the cost of longer running times.

Figure 4.5 considers instances of type A and shows results for φ ∈ {10000, 20000, 30000,
50000}. Note that we used here larger values for φ than in the previous experiments for
instance set PB. This is due to fixed time horizon of T = 1000 in type A instances which
implies that the MDDs’ heights are restricted correspondingly. Consequently, larger
values for φ can be used to utilize roughly comparable computation times. Again, we
can see that parameter φ allows to control the quality of the obtained relaxed MDDs.
With larger values for φ the lengths of the longest paths of the obtained relaxed MDDs
are in general smaller, while the computation times and MDD sizes increase.

For all further experiments, we made a compromise between expected quality of the
relaxed MDD and compilation time. We use the following settings. Instance set PB:
labeling function L3(u) and φ = 1000; instance set A: labeling function L4(u) and
φ = 20000.

4.12.4 Upper Bound Comparison

In this section the upper bounds obtained by A∗C are compared with the upper bounds
from TDC and IRLP. Regarding A∗C we will consider the length of the longest paths in
the final MDDs as well as the frequently stronger upper bound Zub

min, which is obtained
at the first time the target node is chosen the for expansion. In addition, we compare
with the upper bounds obtained by an MILP approach.

The MILP approach relies on the compact order-based formulation from Horn et al.
[56] (see Appendix A.2) and has been solved by the Gurobi Optimizer Version 7.5.12

in single-threaded mode with a CPU time limit of 900 seconds. The IRLP compilation
is performed with a CPU time limit of 900 seconds and the TDC approach is executed
with two different width limits β which are chosen s.t. the average running times are
in the same order of magnitude and are usually not smaller than those of A∗C: We use
β ∈ {300, 500} for set PB and β ∈ {3000, 5000} for set A.

Figures 4.6 and 4.7 show the results of this comparative study for instance sets PB and A,
respectively. The diagrams in the first row show the obtained upper bounds, the second
row’s diagrams the computation times, and the diagrams in the third row depict the
obtained relaxed MDDs’ total number of nodes. Each group of bars on the horizontal
axes corresponds to a specific instance class with the stated number of jobs. Each bar
indicates the average value over all 30 instances of the corresponding instance class and
the respective approach.

Concerning the depicted computation times, each first bar shows A∗C’s average time
to obtain Zub

min, i.e., the time when the construction would be stopped according the
classical A∗ termination criterion. The second bar shows the average time required for
the construction of the complete relaxed MDD. Since the MILP approach as well as

2http://www.gurobi.com
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Figure 4.6: Average values for upper bounds, computation times, and MDDs-sizes
obtained from A∗C, TDC, IRLP, and the order-based MILP approach on instance set
PB.
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Figure 4.7: Average values for upper bounds, computation times, and MDDs-sizes
obtained from A∗C, TDC, IRLP, and the order-based MILP approach on instance set A.
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IRLP exhausted the time limit of 900 seconds in almost all runs, we omit corresponding
bars as they would not give more insight. More specifically, the MILP solver could only
prove optimality for the following percentages of the smallest instances with n = 50 jobs:
30% and 10% of set PB for m ∈ {2, 3}, respectively, and 3.33% of set A for m = 3. For
m = 4 the MILP solver was not able to solve any instance to proven optimality.

The results for instance set PB, shown in Figure 4.6, give a rather clear picture. The
average upper bounds Zub

min obtained by the A∗C algorithm are always the strongest.
They are in particular substantially better than those obtained from the TDC variants
and the IRLP approach. The difference is more than a factor of four for the largest
instances. Even more major are the differences in the sizes of the respectively obtained
MDDs. A∗C’s MDDs are usually more than an order of magnitude smaller than those
compiled with TDC and IRLP. The A∗C algorithm takes here clear advantage from the
feature that a node may be reached from the root node via multiple paths consisting
also of different numbers of transitions. This flexibility obviously is further exploited by
the careful selection of nodes that are merged. Remember that in contrast, TDC and
IRLP are strongly layer-oriented and no merges across layers are possible. Moreover,
multiple nodes at different layers are frequently required for the same state. The bounds
obtained from the MILP approach are clearly better than those of TDC and IRLP, but
also significantly worse than those of A∗C. Differences between Zub

min and the length
of longest paths in the final MDDs are in comparison to the bounds from the other
approaches not that large, but still notable. Thus, completing the construction of the
relaxed MDD clearly only pays off if the relaxed MDD is utilized in some further way,
like our successive derivation of a restricted MDD from Section 4.10.

For instance set A, Figure 4.7 shows remarkable differences. The upper bounds obtained
from the MILP approach are far worse than those obtained from A∗C as well as TDC and
IRLP. Differences between A∗C, TDC, and IR are not that large anymore, nevertheless,
in every case the strongest average upper bounds could be obtained by A∗C. The better
performance of the classical approaches TDC and IRLP on these instances in comparison
to set PB can be explained by the constant time horizon and the special prize structure,
due to which the height of the MDDs is limited in a stronger way. Concerning the size of
the obtained MDDs, A∗C exhibits again substantial advantages over TDC: A∗C’s MDDs
only have about half the size of TDC’s MDDs, and those of IRLP are even more than
three times larger than those of A∗C for the smaller instances.

4.12.5 Impact of Filtering

In the next series of experiments we aim at assessing the effectiveness of the proposed
filtering from Section 4.9 on the relaxed MDDs obtained by A∗C. We investigate first
how much a given relaxed MDD can be reduced. Afterwards, we consider the impact of
the filtering on the subsequent construction of a restricted MDD.

Next to a relaxed MDD, a lower bound Z lb is required for our filtering. Such a lower
bound can be obtained efficiently during the A∗-based compilation of the relaxed MDD by
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storing the length of an longest path from r to an exact node. However, especially for large
instances, this lower bound is typically weak, since nodes have to be extensively merged
during the compilation. Clearly, a stronger lower bound has the potential that more arcs
and nodes can be pruned. For this reason, it makes sense to invest more computation
time for obtaining a stronger lower bound in order to enhance the effectiveness of the
filtering. A way to obtain a frequently stronger bound for the filtering in reasonable
time is a preliminary application of our construction of a restricted MDD according to
Algorithm 4.4, with a maximum width that is only a small fraction compared to the
maximum width used for the final main construction after the filtering.

Figure 4.8 shows the average percentage of arcs that are removed by filtering over all of
our benchmark instances. We consider relaxed MDDs constructed by A∗C using labeling
function L3 with φ = 1000 for instance set PB and labeling function L4 with φ = 45000
for instance set A. Different lower bounds are obtained from (1) the longest path to an
exact node in the relaxed MDD and (2) by constructing a preliminary restricted MDD
of maximum width β ∈ {1, 100, 500} and β ∈ {1, 15000, 20000} for instance sets PB and
A, respectively. We included the maximum width one as this case resembles a classical
greedy construction heuristic. The larger values for the maximum width have been
determined in preliminary experiments and are set in such a way that the performance
boost due to the stronger bound outweighs the required computation time for providing
them.

When using the longest path to an exact node as lower bound, the filtering performs
poorly. For benchmark set PB, filtering only has an effect for instances with 50 and 100
jobs. For instance set A, the percentage of removed arcs is for most instance sizes rather
low. When lower bounds obtained by constructing a restricted MDD are used, filtering
becomes considerably more effective. Already with a maximum allowed width of one,
on most instance sizes between 30% and 50% of all arcs can be removed. Increasing the
maximum width for the restricted MDD construction allows filtering to a larger extent.
Lower bounds obtained with the next higher considered maximum width (i.e., 100 for set
PB and 15000 for set A) allows pruning on average 12% and 43% more arcs for instance
sets PB and A, respectively. If the maximum allowed width is further increased to 500
and 20000, respectively, on average additional 1.4% and 0.5% of the arcs from the given
MDDs are removed. This indicates that increasing the maximum allowed width for
preliminary compiled restricted MDDs further will have a decreasingly noticeable effect.

Our main motivation for filtering a relaxed MDD is to provide a stronger starting point
for the main compilation of a restricted MDD. To assess the impact of filtering using the
different lower bounds we perform the successive compilation of restricted MDDs with
fixed maximum widths of 12000 and 450000 for benchmark sets A and PB, respectively.
The motivation for these choices is that the whole approach requires on the largest
benchmark instances about 900 seconds to complete.

Figure 4.9 shows median total computing times for the heuristic exploitation of the
produced relaxed MDDs. These processing times include the times for obtaining a
preliminary lower bound by the different strategies, the application of the filtering, and
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Figure 4.8: Percentage of arcs pruned depending on the used lower bound. The lower
bounds are either obtained from the longest path to some exact node or by restricted
MDDs of maximum width β.
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Figure 4.9: Median total computation times for obtaining different primal bounds used
for filtering and the subsequent compilation of restricted MDDs.
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the compilation of the final restricted MDD. Although the differences among the times
for the different lower bound methods during the filtering are small on instance set PB,
there is a clear trend observable. If the lower bound obtained from the longest path to an
exact node is used, we get in almost all cases the longest computation times. Since these
bounds are too weak to allow a significant pruning of arcs, especially on medium to large
instances, the shown times essentially match the times if we would not apply filtering
at all. If we obtain a lower bound for the filtering from a small restricted MDD, then
the computation times are typically shorter. However, with a larger maximum width β
also the computational effort for providing the lower bounds increases, which at some
point outweighs the advantage of a better filtered relaxed MDD. For benchmark set PB,
this is frequently the case with β = 500. The performance improvements due to the
filtering of the relaxed MDDs are more pronounced on the instances of type A. Again,
there is already a small performance improvement observable if we use the lower bound
from restricted MDDs of width one. In contrast to benchmark set PB, there is a later
break-even point for when the time spent to obtain a better lower bound for the filtering
outweighs the performance gains. This allows to use a larger maximum width in order
to likely obtain a stronger lower bound, which in turn enables to prune more arcs, and
ultimately perform the final compilation of the restricted MDD in considerably shorter
time.

From the processing times shown in Figure 4.9, only a small part is required for the
filtering procedure itself. For instance set PB and A up to 3% and 6%, respectively, of the
depicted computation times are used for the filtering. The quality of the final solutions
obtained from the main restricted MDD have shown to be largely independent of the
filtering. We interpret this as a sign for the robustness of the chosen greedy criterion for
selecting nodes to remove during the construction of the restricted MDD and not as a
weakness of the filtering procedure.

4.12.6 Lower Bound Comparison

We finally want to compare the A∗C approach to construct a relaxed MDD plus the
followup construction of a restricted MDD to obtain a heuristic solution to other solution
methods for larger PC-JSOCMSR instances. Now, our focus is primarily on the quality
of obtained heuristic solutions, i.e., on lower bounds, but clearly our approach also yields
upper bounds from the relaxed MDD and we will study resulting gaps. We compare to
TDC for restricted MDDs, the GVNS metaheuristic, an MILP approach, and a basic CP
formulation.

As in Section 4.12.5 we apply A∗C using the labeling function L3 with φ = 1000 and
labeling function L4 with φ = 20000 for the instance sets PB and A, respectively.
Preliminary lower bounds for the filtering are obtained by compiling restricted MDDs of
maximum width 100 for type PB instances and 15000 for type A instances. Afterwards,
filtering is performed. Finally, the main restricted MDDs are compiled with β = 12000
and β = 450000 for benchmark sets PB and A, respectively.
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TDC’s maximum allowed width is set to 2000 and 12000 for instance sets PB and A,
respectively. These values have been selected in such a way that the TDC terminates
for the largest instances in about 900 CPU-seconds. For the GVNS we use again the
same configuration as described in Section 4.11 and compare to the best found solution
after 900 seconds. Moreover, we compare to the objective values of the best feasible
solutions provided by the order-based MILP formulation from Horn et al. [56], see
Appendix A.2, solved again by Gurobi Optimizer 7.5.13 using a single thread with a CPU
time limit of 900 seconds. Last but not least, we also consider the CP model from [56],
see Appendix A.3. The model was implemented with MiniZinc 2.1.74 and we apply the
backbone solver Chuffed with a time limit of 900 seconds.

The results of all approaches are presented in Table 4.5. Each row shows the aggregated
results over the 30 benchmark instances with the characteristics given in the first three
columns. For all approaches, columns labeled obj and σ(obj) state the mean objective
values of obtained heuristic solutions and corresponding standard deviations. For the
MDD-based approaches these values correspond to the lengths of the longest paths in
the restricted MDDs. Moreover, we list for the MDD-based approaches median total
computation times in seconds in the t[s] columns. For A∗C+TDC median computation
times are also given for its individual steps. Column tf [s] states median times just for
filtering the relaxed MDDs including the times for determining the required lower bound.
Furthermore, in column tc[s] median times for compiling the final restricted MDDs are
shown. For GVNS, MILP, and CP timing information is omitted as they were always
terminated with the time limit of 900 seconds. The only exceptions are MILP and CP
runs for the smallest instances with 50 jobs, which finished in some cases earlier with
proven optimality. In addition, we list for our A∗C+TDC average optimality gaps in
%-gap which are calculated by 100% · (Zub

min − obj)/Zub
min.

If we disregard the results from the benchmark instances of type PB with three secondary
resources for now, Table 4.5 shows a clear picture. A∗C+TDC provides in general the
best solutions, followed by the GVNS and the TDC. While the TDC performs on the PB

instances with two secondary resources in most cases better than the GVNS, the GVNS
is superior to the TDC on the other instances. The weakest solutions have on average
been obtained by the MILP and CP approaches, which are only competitive for type
PB instances with 50 jobs. Especially, for the medium to large instances theA∗C+TDC
typically requires less time than TDC. The superiority of our method compared to the
conventional TDC in two ways. Not only are we able to construct much larger restricted
MDDs, usually yielding better solutions in less time, but since we first also determine
the relaxed MDDs, our approach has the additional bonus of providing upper bounds.
Average gaps never exceed 15% and are in particular for instance set A usually not larger
than 8%.

On benchmark instances of set PB with three secondary resources, GVNS typically
provides the best solutions when more than 150 jobs are considered. The relative

3http://www.gurobi.com
4https://www.minizinc.org
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Table 4.5: Comparison of the subsequent application of A∗C, filtering, and the construction
of restricted MDDs to the TDC for restricted MDDs, the GVNS, the MILP, and the CP
approach.
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4.13. Conclusions

differences between the obtained objective values from GVNS and our A∗C-based approach
are typically about one to two percent. We believe that in these cases, the GVNS’s local
search is particularly effective. Clearly, an option would be to try to finally “polish” the
MDD-based methods’ solutions by applying a local search. Another particularity of the
results for this instance set are the required times tc[s] for constructing the main restricted
MDD based on the relaxed MDD. Although the same maximum width is used as for the
instances with two secondary resources, these median times are considerably shorter for
the case with three secondary resources. This indicates that the removal criterion rates
many nodes the same. However, it also showcases the performance improvements of the
compilation technique when the information contained in the relaxed MDD is utilized.

The optimality gaps increase with the problem size on both instance sets, as one might
expect for a compilation of relaxed and restricted MDDs with fixed parameter values. In
comparison to instance set A, we obtain smaller optimality gaps on type PB instances
with few jobs but get larger optimality gaps for the instances with many jobs. This can
be explained by the problem size independent time horizon of set A instances, which
implies a certain maximal number of jobs that can be scheduled independently of the
number of available jobs. Consequently, the relative difference between the lower and
upper bound is bounded to some degree by this maximal number of jobs. Moreover, for
some instances the optimality gap has been closed, i.e., they could be solved to proven
optimality. This was the case for nine of the type PB instances with two secondary
resources and 50 jobs. For type PB instances with three secondary resources we could
optimally solve ten instances that consider 50 jobs. Furthermore, for a single benchmark
instance with 50 jobs and four secondary resources of type A, the lower and upper bound
coincided.

4.13 Conclusions
In this chapter we studied the application of multivalued decision diagrams (MDDs) for
the prize-collecting job sequencing with one common and multiple secondary resources
(PC-JSOCMSR) problem. PC-JSOCMSR is strongly related with scheduling treatments
within individual days in the context of the particle therapy treatment center considered
in Chapter 3. However, unlike PTPSP the here studied PC-JSOCMSR is a much more
general problem which is demonstrated by showing that PC-JSOCMSR also appears as
a sub-structure in the pre-runtime scheduling of electronics within an aircraft.

We started by providing a recursive model for PC-JSOCMSR and showed how MDDs
can be obtained from the problem’s state graph. Whenever, the size of MDDs become to
large relaxed and restricted MDDs are employed to obtain dual bounds and heuristic
solutions, respectively. We adapted the two main compilation techniques for relaxed
MDDs proposed in the literature to PC-JSOCMSR: top-down construction (TDC) and
incremental refinement (IRLP). To obtain restricted MDDs we use a variant of the TDC.

Furthermore, we present a novel way of compiling relaxed MDDs that applies the
principles of A∗ search. To this end, an upper bound on the remaining partial solution
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plays an important role to estimate if a node is likely to be part of a longest path or not.
Nodes that are not considered promising are merged with its corresponding collector
node. Such a collector node is labeled in a state-space-relaxation fashion and nodes
can only be merged if they have the same label. Choosing a proper labeling is not
only important to obtain a strong relaxation but also to prevent cycling during the
construction of the relaxed MDD. The use of collector nodes with a label to define similar
states deviates from classical construction principles, which are all strongly layer-oriented.
This extension is especially relevant for problems where the cardinality of the solution
is not known. Nevertheless, layer-oriented merging can easily be achieved within our
framework by including the layer as a part of the label. The constructed relaxed MDD
provides an upper bound on the optimal solution value of PC-JSOCMSR, but it also
contains important information about promising feasible solutions of the problem. For
this reason, we propose constructing a restricted MDD based on the relaxed one, instead
of creating a restricted MDD independently, which in the literature so far is the common
way of doing it.

For our computational study, we generated in total three benchmark instance sets with
different characteristics adopted from the real-world application scenarios. We first
compared the relaxed MDDs obtained by TDC and IRLP. While both methods perform
rather similar on balanced instances, IRLP is clearly superior on the benchmark instances
with skewed workload. We assessed next the quality of the restricted MDDs compiled
with the TDC by comparing the obtained heuristic solutions with the ones from an
independent general variable neighborhood search (GVNS). While the TDC performs
better than the GVNS on small to medium-sized instances, the GVNS is mostly superior
on the largest instances of our benchmark sets.

Afterwards, we considered the A∗-based approach. We observed that the size of the
obtained relaxed MDDs can be controlled by the open list size limit φ as well as the used
labeling function. The constructed relaxed MDDs are frequently an order of magnitude
smaller than those compiled with the TDC and provide upper bounds that are usually
better by a substantial factor. The successive compilation of a restricted MDD based
on a relaxed MDD in order to obtain heuristic solutions and lower bounds also turned
out to be effective. The main benefit is a substantial speedup in the construction of the
restricted MDD. We even showed that the total time for constructing the relaxed MDD,
filtering it, and deriving a restricted MDD of a certain size based on the relaxed MDD
can take less time than the classical independent construction of a restricted MDD of the
same size.

We further compared our MDD-based methods to an order-based MILP model solved
by Gurobi, to the GVNS, and to a CP approach solved by MiniZinc with Chuffed as
backend. For most cases, our A∗-based approach of deriving a relaxed MDD followed by
the construction of a restricted MDD yielded the best solutions. An exception are the
larger instances of the particle therapy benchmark set with three secondary resources,
where the GVNS clearly outperformed the other approaches. The MILP and the CP
model produced rather weak lower bounds for all instances except the smallest.
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The idea to compile relaxed MDDs with principles of A∗-search that avoids an explicit
consideration of layers originates from the fact that the cardinality of solutions for a
PC-JSOCMSR instance varies. In future work it would be of interest to investigate if
the A∗-based approach is also effective for problems where the cardinality solutions is
fixed and the layer is included in the label. Another topic to investigate in more detail is
how the choice of the open list size limit φ and the labeling function relates to the actual
size of the constructed MDDs. The selection of suitable values for φ is unfortunately not
that obvious and so far we relied on preliminary tests. Although our approach could
solve several instances to proven optimality, it is not primarily designed to converge to
proven optimal solutions. A further step would be to use the new MDD compilation
methods within algorithmic frameworks that iteratively try to get closer to a proven
optimal solution. For example highly promising are novel branching schemes on the basis
of relaxed MDDs as described in Bergman et al. [13] or the utilization of MDDs in new
inference techniques in constraint programming, see e.g. Cire and Hoeve [23]. Last but
not least, it should be promising to explore also other possibilities for deriving restricted
MDDs from relaxed ones.

141





CHAPTER 5
Strip Packing and

Resource-Constrained Project
Scheduling

This chapter is devoted to two works that both propose a decomposition approach. The
first considers a strip packing problem and provides a logic-based Benders decomposition.
The approach has been presented at the International Conference on Operations Research
(OR’15) and has been published in the proceedings of the conference:

J. Maschler and G. R. Raidl. A logic-based Benders decomposition approach for
the 3-staged strip packing problem. In Operations Research Proceedings 2015, pages
393–399. Springer, 2017.

As this work predates our project with MedAustron it is not directly related to patient
scheduling in particle therapy. Nevertheless, strip packing has many relationships to the
scheduling problems considered in this thesis from a structural point of view. In strip
packing rectangles have to be placed onto a strip of fixed width and unlimited height.
There is a correspondence between the strip packing’s rectangles and the jobs of the
scheduling problems: While rectangles have a width and a height, jobs have resource
requirements and a processing time. Moreover, the strip’s width translates to some degree
to the number of available resources in our scheduling problems.

The second presented work in this chapter proposes a time-bucket relaxation for a
resource-constrained project scheduling variant. The considered variant is in some way
the predecessor of PC-JSOCMSR in that it addresses the PTPSP’s time assignment of a
single day. In contrast to PC-JSOCMSR, however, we adapt here the original definition
of DTs in which they have been composed of activities. The suggested approach starts
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with a relaxation in which time is aggregated into so-called buckets which are then
iteratively refined. Next to an extended abstract for the 6th International Workshop
on Model-based Metaheuristics (Matheuristics 2016) there is a co-authored publication
accepted in International Transactions in Operational Research:

G. R. Raidl, T. Jatschka, M. Riedler, and J. Maschler. Time-bucket relaxation based
mixed integer programming models for scheduling problems: A promising starting
point for matheuristics. In Proceedings of Matheuristics 2016: 6th International
Workshop on Model-Based Metaheuristics, pages 104–107, Brussels, Belgium, 2016,

M. Riedler, T. Jatschka, J. Maschler, and G. R. Raidl. An iterative time-bucket
refinement algorithm for a high-resolution resource-constrained project scheduling
problem. International Transactions in Operational Research, 2017.

Moreover, a master’s thesis [61] has been completed on this subject. We give here only
an overview of the method’s most central aspects and the key results, as the contribution
of the author of this thesis was considerably smaller than the ones of the other authors.
To this end, Section 5.2 is a revised and updated version of the extended abstract. For
details, we refer to [104, 61, 103].

5.1 3-Staged Strip Packing
We consider the 3-staged strip packing problem (3SPP), in which rectangular items have
to be arranged onto a rectangular strip of fixed width, such that the items can be obtained
by three stages of guillotine cuts while the required strip height is to be minimized. We
propose a new logic-based Benders decomposition (LBBD) with two kinds of Benders
cuts and compare it with a compact ILP formulation.

5.1.1 Introduction

In the 3-staged strip packing problem (3SPP) we are given n rectangular items and a
rectangular strip of width WS and unlimited height. The aim is to pack the items into
the strip using minimal height, s.t. all items can be received by at most three stages
of guillotine cuts. In the first stage the strip is cut horizontally from one border to the
opposite one and yields up to n levels. In the second stage the levels are cut vertically
and at most n stacks are received. In the third stage the stacks are cut again horizontally
and the resulting rectangles of the three consecutive stages of guillotine cuts correspond
to the n items and the waste.

The general strip packing problem (SPP) was proposed by Baker et al. [4] and has received
a large amount of attention: on the one hand many real-world applications, such as glass,
paper and steel cutting, can be modeled as SPPs; on the other hand it is strongly-NP
hard and has turned out to be a demanding combinatorial problem. We study the special
case of the SPP, where only guillotine cuts are allowed as already considered by Hifi [50]
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and Lodi et al. [74]. We restrict ourselves to three stages of guillotine cuts. This can be
motivated from glass cutting [98].

One of the leading exact approaches for the SPP proposed by Côté et al. [29] is based
on a Benders decomposition using combinatorial Benders cuts, which can be seen as an
implementation of the LBBD introduced by Hooker and Ottosson [52]. Their master
problem cuts items into unit-width slices and solves a parallel processor problem that
requires all slices belonging to the same item have to be packed next to each other. The
subproblem consists of transforming a solution of the master problem into a solution of
the SPP. However, this algorithm cannot be trivially extended to solve the 3SPP.

In this work we suggest a different form of LBBD specifically for the 3SPP, compare
it to a compact ILP formulation and show that its performance is competitive. The
proposed master problem assigns items to levels and defines the number of stacks in
which the items can appear. The resulting subproblems pack items of the same width
assigned to the same level into the given number of stacks. Two kinds of Benders cuts
are provided, from which the first one are rather straightforward, while the second one
are more general.

5.1.2 A Logic-based Benders Decomposition for 3SPP

The proposed LBBD consists of a master problem which is a relaxation of the 3SPP.
From an optimal solution of the master problem subproblems are derived that yield a
complete solution for the 3SPP. If this solution is not yet optimal we improve the master
problem with Benders optimality cuts and resolve the master problem.

Master Problem

The master problem considers n levels and aims to pack the items into these levels. For
symmetry breaking item i is only allowed to be packed into level j if i ≥ j and only
if item j is also packed into level j. This way of symmetry breaking has been already
used by Puchinger and Raidl [98]. To better exploit scenarios where many items have
the same widths and/or lengths, let us more precisely define the set of all appearing
widths as W = {w1, . . . , wp}, the set of all appearing heights as H = {h1, . . . , hq}, and
the dimensions of item i ∈ I = {1, . . . , n} as wωi and hλi

with ω ∈ {1, . . . , p}n and
λ ∈ {1, . . . , q}n. We further assume w.l.o.g. that the items and the widths in W are given
in a non-decreasing order.

We consider in the master problem different variants of each item, in which depending on
a parameter e ∈ {1, 2, . . .} its width is increased by wωi ∗ e while its height is decreased
by hλi

/e. We denote the modified width of an item i by the parameter e with wωie, and
analogously, the modified height with hλie. We require that for each level all packed
items of the same width have to be reshaped by the same factor e. The variant of the
items models on how many stacks the items are meant to be placed. The total height
of the packed variant of items with the same width represents the height if the items
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can be partitioned between the stacks ideally. Therefore, the master problem is indeed a
relaxation of the original problem since it models the first two stages but not the third.

The next consideration concerns the maximal number of variants that has to be provided
for each item. For a given item, the parameter e can be restricted on the one hand by
the width of the strip and on the other hand by the total number of items of that width
that can be packed into the considered level. The maximal number of different variants
for a level j and a width wg is

emax(j, g) = min
(⌊

WS − wωj

wg

⌋
+
{

1 ωj = g
0 otherwise , |{i = j, . . . , n |ωi = g}|

)
.

The first term of the minimum calculates the maximum number of items of width wg
that can be placed next to each other without exceeding WS. The second term yields the
number of items of width wg that can be packed into level j.

The master problem is modeled by using three sets of variables: Binary variables xjie
which are 1 if item i in variant e is assigned to level j and 0 otherwise. Binary variables
yjge which are set to 1 iff an item in variant e with original width wg is assigned to level
j. Integral variables zj which are set to the height of the corresponding level j. To ease
the upcoming notation we denote with [i, n] the set {i, . . . , n} and with E(j, g) the set
{1, . . . , emax(j, g)}. The master problem is defined as follows:

min
∑

j∈[1,n]
zj (5.1)

s.t.
∑
j∈[1,i]

∑
e∈E(j,ωi)

xjie = 1 ∀i ∈ [1, n], (5.2)

xjie ≤ yjωie ∀j ∈ [1, n], ∀i ∈ [j, n], ∀e ∈ E(j, ωi), (5.3)∑
e∈E(j,g)

yjge ≤ 1 ∀j ∈ [1, n], ∀g ∈ [ωj , p], (5.4)

∑
i∈[j,n] |ωi=g

xjie ≥ e yjge ∀j ∈ [1, n], ∀g ∈ [ωj , p], ∀e ∈ E(j, g), (5.5)

∑
e1∈E(j,ωj)

xjje1 ≥ xjie2 ∀j ∈ [1, n− 1], ∀i ∈ [j + 1, n], ∀e2 ∈ E(j, ωi), (5.6)

∑
g∈[ωj ,p]

∑
e∈E(j,g)

wge yjge ≤WS ∀j ∈ [1, n], (5.7)

hλi
xjie ≤ zj ∀j ∈ [1, n], ∀i ∈ [j, n], ∀e ∈ E(j, ωi), (5.8)∑

i∈[j,n] |ωi=g
hλie xjie ≤ zj ∀j ∈ [1, n], ∀g ∈ [ωj , p], ∀e ∈ E(j, g). (5.9)

Inequalities (5.2) force that each item has to be packed in a single variant exactly once.
Equations (5.3) link the variables xjie and yjωie. The restriction that items of the same
width have to be packed in the same variant is guaranteed by (5.4). Inequalities (5.5)
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ensure that items are not meant to be placed on more stacks than the number of items.
Constraints (5.6) impose that items can only be packed into a level j iff also item j is
packed into level j. Constraints (5.7) disallows that the total width of the packed item
variants exceed the strip width WS. Constraints (5.8) and (5.9) ensure that the level is
at least as high as every single item in it and at least as high as the total height of all
packed items of the same width in their corresponding variant.

Subproblem

The master problem is a relaxation of the 3SPP, since it assumes that items of the same
width can be partitioned, s.t. the resulting stacks are of equal height. The subproblems
determine the actual packing of the items and with it the exact level height. Thus, the
resulting subproblems consist of assigning items, of the same width packed by the master
into the same level, into the number of stacks determined by their item variant. The
objective is to minimize the height of the highest stack. This problem corresponds to
the P ||Cmax problem [42]. We use for the subproblem a straightforward ILP formulation
which was solved in less than a second in all considered instances.

Benders Cuts

The aim of Benders cuts is to incorporate the knowledge obtained in the subproblems
back into the master problem. In the simple case a Benders cut states that if a set of
items is packed in a certain variant, then the height of the level is at least as high as the
result of the corresponding subproblem.

Let Ī and ē be the set of items and their variant that have defined a subproblem and let z̄
be the objective value of a corresponding optimal solution. Moreover, the set J ′ contains
those levels that allow an assignment of items, s.t. the Benders cut can get activated.
The simple version of our Benders cuts is∑

i∈Ī

xjiē − |Ī|+ 1

 z̄ ≤ zj ∀j ∈ J ′. (5.10)

These Benders cuts have the disadvantage that they do not affect item assignments
differing from I ′ only in that items are exchanged by congruent items, i.e., items having
the same width and height. The extended Benders cuts aim to overcome this drawback.
Let H̄ ⊆ H be the set of heights of the items from a subproblem defined by Ī and ē.
We introduce for each height h ∈ H̄ a binary variable uh which is set to true iff at least
as many items of the same width, height and variant are packed into a level as it has
been packed in the considered subproblem. The set I ′ ⊆ I contains all items having the
corresponding width and height. The constraints that set the uh variables are given by∑

i∈I′

xjiē − |Ī|+ 1 ≤ uh(|I ′| − |Ī|+ 1) ∀h ∈ H̄, ∀j ∈ J ′. (5.11)
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The extended Benders cuts impose that the height of a level is at least as high as in the
subproblem if all corresponding uh variables are set to 1 and is defined as( ∑

h∈H̄

uh − |H̄|+ 1
)
z̄ ≤ zj ∀j ∈ J ′. (5.12)

Moreover, we iteratively exclude the smallest item of Ī and resolve the subproblem as
long as the objective of the optimal solution does not change. The resulting Benders cuts
are in general stronger and reduce the number of master iterations.

5.1.3 Compact Formulation

The used compact formulation is straightforward, hence we omit an exact specification.
The main idea is to pack items first into stacks and then pack stacks into levels. To
model this, we use binary variables vki that are set to one if item i is packed into strip k
and binary variables ujk to express that stack k resides in level j. Each item has to be
packed exactly once and each stack containing items is allowed to appear in exactly one
level. Moreover, we have to ensure that the total width of all stacks belonging to the
same level does not exceed WS. For each of the potentially n levels an integer variable
is used which has to be at least as high as the highest residing stack. Furthermore, we
applied the symmetry breaking described in Section 5.1.2.

5.1.4 Computational Results

The algorithms have been implemented in C++11 and tested on an Intel Xeon E5-2630
v2, 2.60 GHz using Ubuntu 14.04. The ILP formulations have been solved with IBM
ILOG CPLEX 12.6.2 using the same parameter setting as in [29]. All algorithms had
a time limit of 7200 seconds. For the benchmark we use the instance sets beng, cgcut,
gcut, ht and ngcut from [29].

We compare the compact formulation against our LBBD with simple Benders cuts and
with extended Benders cuts. The compact model could solve 31 out of 47 test instances to
optimality, which is only marginally outperformed with 32 optimally solved test instances
by the LBBD using either simple or extended Benders cuts. However, the LBBD can solve
some instances considerably faster as Figure 5.1 shows. For instance, after 10 seconds
the LBBD with simple and with extended Benders cuts could solve 22 test instances to
optimality, while the compact model could optimally solve 17 test instances.

5.1.5 Conclusions

We proposed a novel LBBD for the 3SPP and compared it with a compact formulation.
The master problem relaxes the 3SPP s.t. only the first two stages of guillotine cuts
are determined. The resulting subproblems are iteratively resolved to strengthen the
generated Benders cuts. In addition, we proposed two kinds of Benders cuts. The
experimental results have shown that the presented LBBD can solve substantially more

148



5.2. High Resolution Resource-Constrained Project Scheduling

20

30

40

50

60

runtime in seconds

%
 In

st
an

ce
s 

so
lv

ed

0 10 20 30 40 50 60 70 80 90 10
0

CM
SBC
EBC

Figure 5.1: Performance profile of the first 100 seconds for the compact formulation (CM)
and for the presented LBBD with simple Benders cuts (SBC) and extended Benders cuts
(EBC) on the instance sets beng, cgcut, gcut, ht and ngcut from [29].

test instances in the first 100 seconds. The LBBD can solve one test instance more than
the compact model within the time limit. More testing is necessary to see under which
conditions the proposed approach works especially well.

5.2 High Resolution Resource-Constrained Project
Scheduling

We consider a resource-constrained project scheduling problem that requires scheduling
in a high temporal resolution. Traditional MILP techniques such as time-indexed
formulations or discrete-event formulations are known to have severe limitations in such
cases, i.e., growing too fast or having weak linear programming relaxations. We suggest
a relaxation based on partitioning time into so-called time-buckets. This relaxation is
iteratively solved and serves as basis for deriving feasible solutions using heuristics. The
approach shows excellent performance in comparison to the traditional formulations and
a metaheuristic.
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5.2.1 Introduction

In job shop and project scheduling problems, generally speaking, a set of activities needs
to be scheduled. The execution of the activities typically depends on certain resources of
limited availability and diverse other restrictions like precedence constraints. A feasible
schedule is sought that minimizes some objective function like the makespan. For such
problems, MILP techniques are frequently considered, but also known to have severe
limitations.

Basically, there are few general MILP modeling strategies for approaching such scheduling
problems: Firstly, it is sometimes possible to come up with a compact model where the
starting times of activities are directly expressed by means of corresponding variables.
Resource constraints, however, impose a particular challenge in this respect. While they
can be often treated in principle, e.g., by discrete-event models [53], these models are
typically rather weak. A second, frequently applied option are so-called time-indexed
formulations. They are based on a discretization of time, i.e., the activities may only start
on a limited set of possible starting times. Binary variables are used that are additionally
indexed by these possible starting times. The success of such time-indexed models strongly
depends on the resolution of the time discretization. While such models can have strong
LP relaxations, the number of variables and constraints increases dramatically with the
number of possible starting times. Frequently, a rather crude discretization can therefore
only be applied to obtain any result in reasonable computation time. Further MILP
techniques for approaching the considered scheduling problems make use of exponentially
sized models and apply advanced techniques such as column generation, Lagrangian
decomposition, or Benders decomposition, see, e.g., [53]. While they are frequently very
successful, they are also substantially more complex to develop and implement.

Here, we consider a relaxation of a potentially very fine-grained time-indexed model in
which the set of possible starting times is partitioned into so-called time-buckets. This
time-bucket relaxation is typically much smaller than the original time-indexed model
and can be solved relatively quickly. An obtained solution provides a lower bound for
the time-indexed model’s solution value but in general does not directly represent a
feasible schedule as activity starting times are only restricted to certain time-intervals.
Such solutions, however, provide a promising starting point for matheuristics. On the
one hand, we may try to derive a feasible schedule by heuristically fixing the starting
times to specific values, trying to fulfill all constraints. On the other hand, we can
further subdivide some time-buckets and re-solve the resulting refined model to obtain
an improved bound and a model that comes closer to the time-indexed model. Doing
this refinement iteratively yields a matheuristic that in principle converges to a provably
optimal solution. In practice, it is crucial to subdivide the time-buckets sensibly in order
to increase the model’s size only slowly while hopefully obtaining significantly stronger
bounds.

The basic idea of the time-bucket relaxation originates in work from Wang and Regan
[114] on the traveling salesman problem with time windows. Dash et al. [32] build upon
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this work and suggest an iterative refinement based on the solution to the LP relaxation.
We are not aware of any work that applies this principle already in the scheduling domain.
There is just other work where the time-indexed model is applied with different resolutions
for the time discretization, but such approaches do in general not yield lower bounds and
introduce imprecisions and are therefore conceptually different.

5.2.2 Problem Definition

The above sketched general approach is more specifically investigated on a resource con-
strained scheduling problem with precedence constraints, which we call simplified intraday
particle therapy patient scheduling problem (SI-PTPSP). This problem is motivated from
PTPSP’s time assignment subproblem of determining schedules for individual days (see
Chapter 3). Following PTPSP’s original definition, DTs are here modeled as a set of
activities that need to be scheduled in such a way that given precedence constraints with
minimum and maximum time lags are respected. Our experimental evaluation considers
benchmark instances motivated by the particle therapy application.

We are given a set of resources R = {1, . . . , ρ}, a set of activities A = {1, . . . , α}, and
for each activity a ∈ A a processing time pa, a release time tra, a deadline tda, and a
subset of required resources Qa ⊆ R. Let the overall (very large) set of discrete times be
T = {Tmin, . . . , Tmax}. Each resource r ∈ R is only available at certain time intervals
specified by set Wr ⊆ T . Last but not least, precedence constraints among the activities
are stated by a directed acyclic graph G = (A,P ) with P ⊂ A×A and for each precedence
relation expressed by an arc (a, a′) ∈ P minimum and maximum end-to-start time lags
Lmin
a,a′ , Lmax

a,a′ ∈ N≥0 with Lmin
a,a′ ≤ Lmax

a,a′ need to be obeyed.

A solution S = (S1, . . . , Sα) ∈ Tα assigns to each activity a ∈ A a starting time
Sa ∈ T , from which on the activity is performed without preemption. We are looking
for a feasible solution that minimizes the makespan. SI-PTPSP can be classified as
PSm, ·, 1|rj , dj , temp|Cmax following the notation by Brucker et al. [19].

5.2.3 Time-Bucket Relaxation and Matheuristic

Let B = {B1, . . . , Bβ} be a partitioning of T into subsequent time-buckets with Bb =
{Bstart

b , . . . , Bend
b },∀b = 1, . . . , β, and Bend

b + 1 = Bstart
b+1 , ∀b = 1, . . . , β − 1. We write

I(B) for the index set referring to all buckets in B, i.e., I(B) = {1, . . . , β}. Moreover,
we denote by WB

r (b) = |Bb ∩Wr| the aggregated availability of resource r ∈ R over the
whole bucket b ∈ I(B). We refer by Ca = {Ca,1, . . . , Ca,γa} ⊆ 2I(B) to all subsets of
consecutive buckets in B to which an activity a ∈ A can be jointly assigned so that some
part of activity a is performed in each of the buckets. These sets can be determined by
“sliding” the activity over all time-slots and taking the covered buckets. Furthermore, let
Smin
a,c be the earliest time-slots from T at which activity a can start when it is assigned to

bucket sequence Ca,c, and Smax
a,c the latest. For each bucket sequence Ca,c ∈ Ca and each

contained bucket b ∈ Ca,c we further determine a lower bound zmin
a,b,c and an upper bound
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zmax
a,b,c for the number of time-slots at which activity a can take place in bucket b when
activity a is assigned to Ca,c. The time-bucket relaxation can now be stated as follows:

min MS (5.13)
γa∑
c=1

ya,c = 1 ∀a ∈ A, (5.14)

γa∑
c=1

Smin
a,c · ya,c + pa ≤ MS ∀a ∈ A, (5.15)∑

a∈A:r∈Qa

∑
Ca,c∈Ca:b∈Ca,c

zmin
a,b,c · ya,c ≤WB

r (b) ∀r ∈ R, b ∈ I(B), (5.16)

γa′∑
c′=1

Smax
a′,c′ · ya′,c′ −

γa∑
c=1

Smin
a,c · ya,c ≥ pa + Lmin

a,a′ ∀(a, a′) ∈ P, (5.17)

γa′∑
c′=1

Smin
a′,c′ · ya′,c′ −

γa∑
c=1

Smax
a,c · ya,c ≤ pa + Lmax

a,a′ ∀(a, a′) ∈ P, (5.18)

ya,c ∈ {0, 1} ∀a ∈ A, c = 1, . . . , γa, (5.19)
MS ≥ 0. (5.20)

Variable MS represents the makespan to be minimized (5.13). Binary variables ya,c indi-
cate if activity a ∈ A is completely performed in bucket sequence Ca,c. Equations (5.14)
ensure that for each activity exactly one bucket sequence is chosen from Ca. Inequali-
ties (5.15) are used for determining the makespan MS. Inequalities (5.16) consider for
each time bucket the aggregated resource availabilities and resource consumptions for
performing the respective activities. Finally, inequalities (5.17) and (5.18) represent the
precedence constraints with the minimum and maximum time lags, respectively.

Our matheuristic works as follows. We initially solve the time-bucket relaxation for
a rather crude partitioning of T into buckets. From the solution of the time-bucket
relaxation we try to derive a feasible schedule, i.e., we try to choose valid activity starting
times as far as possible in correspondence to the selected bucket sequences. This is
done by an embedded GRASP metaheuristic that features two constructive heuristics
and an exchange neighborhood, similar to the one used in Chapter 3. The first greedy
constructive heuristic considers activities in chronological order of their latest possible
finishing time within their assigned bucket, taking care of the precedence constraints
and resource constraints as far as possible. Should we be able to find a feasible schedule
whose makespan corresponds to the solution value of the time-bucket relaxation, then this
schedule is optimal, and we can terminate. Otherwise, some activities remain unscheduled,
and we apply a second heuristic to augment and repair the partial solution, possibly
obtaining a feasible approximate solution and a primal bound. Here it can again be the
case that we are able to close the optimality gap.

If so far no optimal solution has been found, the bucket partitioning is further refined by
splitting buckets related to violated constraints. The refined model is solved again and
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the whole process iterated. We investigate and compare several strategies for the bucket
splitting.

5.2.4 Results and Conclusions

An experimental comparison with a compact discrete-event model and a classical time-
indexed formulation clearly shows the advantages of the time-bucket relaxation: While
the discrete-event model is only applicable to tiny instances due to its poor LP relaxation,
the time-indexed formulation suffers from its huge size when considering practically
reasonable time discretizations. The matheuristic based on the iterative refinement of
the time-buckets model, however, soon yields reasonable lower bounds as well as feasible
heuristic solutions, and both are improved over time. For detailed computational results
see [104].

The described approach is relatively generic and can rather easily be adapted to related
scheduling problems. The focus of this work was on MILP-based approaches. A promising
next step would be to consider CP techniques within our matheuristic to further improve
its performance. Moreover, the field of hybrid metaheuristics and matheuristics provides
plenty of opportunities to further exploit the proposed time-bucket relaxation.
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CHAPTER 6
Conclusions

In this thesis we considered computational methods for patient scheduling in particle
therapy. In contrast to classical radiotherapy where each treatment room is equipped
with an individual LINAC, in particle therapy a single synchrotron is shared between
several treatment rooms. A direct consequence is that the scheduling for each treatment
room cannot be done independently. Another important aspect is that the treatment
rooms are occupied for some time before and after an actual irradiation of a patient.
These times as well as the duration of the irradiation are strongly dependent on the
applied treatment. To avoid significant breaks in the usage of the particle beam the
available treatments need to be carefully arranged. Hence, the most central goal of
patient scheduling in particle therapy is to maximize the throughput of such treatment
centers. In an ideal schedule, the particle beam is directly switched from one treatment
room to the next.

In Chapter 3 we studied the midterm planning problem arising at MedAustron, a particle
therapy treatment center. We developed the PTPSP that considers a planning horizon
of several months and a set of therapies each consisting of a sequence of treatments
called DTs. The problem involves planning on day level as well as a dependent detailed
scheduling of DTs at each day. We started by formalizing PTPSP in terms of a MILP
model. However, even solving only the substructure that considers the assignment of DTs
to days has shown to be computationally to difficult. Therefore, we approached PTPSP
with heuristic and metaheuristic techniques. We presented a constructive heuristic that
first assigns DTs therapy-wise to days and afterwards creates schedules for the individual
days. This heuristic has proven to be fast and provides already reasonable results. It
serves us as main building block for an initially simple IG metaheuristic. This IG has
been revised and improved for several times. A main property of IG metaheuristics is
that only a fraction of the incumbent solutions are destroyed and substantial information
survives from one iteration to the next. In the first series of improvements we revised
the destruction and construction operators with the aim to preserve the order of the
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not removed DTs within the days. Compared to before more characteristics from the
incumbent solution can be maintained. Moreover, a local search operator is incorporated
at the end of the IG’s iterations. Here, the main challenge was to find a powerful
neighborhood that still can be searched fast enough to be applicable in an iterative
approach. This was achieved by defining a neighborhood for each day separately and to
restrict the neighborhood only to the most promising moves. The next revision considers
the planning on the day level. An essential aspect in this regard is the estimation of
additional used extended time resulting from assigning a considered DT to some day.
To this end, we presented a surrogate model to improve this estimation for the main
bottleneck resources. The finally presented revision of our IG approach addresses an
extended problem statement in which the starting times for DTs belonging to the same
therapy should not vary more than specified thresholds. The extension requires to
additionally determine so-called nominal starting times that serve as reference point
for the therapies’ DTs. As the DT’s starting times and the nominal starting times are
strongly-dependent, our approach is to determine and update them alternatingly. For our
computational study we generated a set of benchmark instances related to the expected
situation at MedAustron. Our first experiments indicated that our initial IG is superior
to a GRASP. We concluded that for instances of practically relevant size it is of utmost
importance to reuse information from an already optimized incumbent solution in order
to obtain a well performing approach. For the proposed changes of our IG we showed
that each of them provide a substantial improvement on our instances.

Our experiments also acted as a proof of concept, but there still remain challenges. It
can be expected that our artificial benchmark instances do not entirely reflect all aspects
of the future practice. Our algorithm configurations are, however, based to some degree
on the made assumptions. A promising way to improve the applicability of our approach
is to define a parameter model that determines a suitable algorithm configuration on
basis of the observed instance characteristics. In this thesis we focused on the treatment
appointments of the therapies directly involving the particle beam. There are, however,
also other activities which should preferably be included in the optimization as well.
These include a treatment planning phase preceding all DTs. In this stage personalized
equipment needed for irradiation is produced. Moreover, a substantial amount of planning
has to be done to determine the detailed treatment strategy. These activities underlie
other constraints and cannot be modeled as DTs. For accompanying these surrounding
activities we suggest customized post-processing techniques.

In Chapter 4 the PC-JSOCMSR problem is considered that has the characteristics of
particle therapy scenario but also appears in other contexts. We studied the application
of DDs for this problem. Our DDs are based on a recursive model for PC-JSOCMSR.
In contrast to the problems already considered with DDs in the literature, solutions
for PC-JSOCMSR do not consist of a fixed number of elements. First, we adapted
TDC and IR, the two traditional compilation techniques for DDs, to PC-JSOCMSR.
To the best of our knowledge, we were the first to directly compare both methods
experimentally. The strict layer orientation of these traditional methods represents,
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however, a substantial limitation and yields redundancies in the obtained DDs. For this
reason, we propose a novel compilation method for relaxed DDs based on principles of
A∗ search. The construction is driven by a quickly obtainable upper bound and merges
similar states across layers. The latter is accomplished by labeling the corresponding
nodes in state-space-relaxation fashion. Nevertheless, layer-oriented merging can easily
be achieved for problems where it is natural. Furthermore, we propose a construction
method for restricted DDs that exploits information on promising feasible solutions
encoded in a relaxed DDs. We conducted our experiments on benchmark instances
based on the particle therapy scenario as well as on an avionics setting. Our results
for the two conventional, layer-oriented compilations methods indicated that depending
on the instance class the IR provides either similar or stronger bounds. For the small
to medium-sized instances the restricted DDs constructed by the TDC yielded better
bounds than a DD-independent GRASP. The constructed relaxed DDs by our A∗-based
approach are frequently an order of magnitude smaller than those compiled with the TDC
and the derived upper bounds are most of the times substantially better. The successive
compilation of a restricted MDD based on a relaxed MDD resulted in a substantial
speedup. With our proposed compilation methods we are usually able to construct a
relaxed DD and a restricted DD in less time than the conventional TDC requires for
a restricted DD of the same quality and size. In doing so, we are not only able to
derive frequently stronger primal bounds, but at the same time also provide dual bounds.
Finally, we showed that our novel approaches are also advantageous in comparison to a
GRASP, an MILP, and a CP approach for instances up to 500 jobs. Both of the newly
proposed compilation approaches appear highly promising also for other problems.

With PC-JSOCMSR, we studied a problem where the typically layered structure of DD is
not natural and leads to redundancies. The flexibility of our A∗-based approach has been
the key to clearly outperform existing compilation techniques. In future work it would
be of interest to study whether the A∗-search principles are also beneficial for problems
where the cardinality solutions is fixed and the layer is included in the label. In this case,
merging based on a label that also includes a fast-to-calculate upper bound seems in
particular interesting. Although our approach yields a primal and a dual bound it is not
per se a complete approach, meaning that it is not guaranteed to reach a proven optimal
solution as soon as nodes are merged. A further next step would be to embed our DD
into an algorithmic framework that converges to an optimal solution. We demonstrated
that the information encoded in DDs can be successfully exploited. Another interesting
topic is to explore whether metaheuristic methods can benefit from a given relaxed DD
and might further offer new possibilities for DD compilation techniques.

In Chapter 5, we considered SI-PTPSP, a RCPSP with precedence constraints that
requires scheduling in a high temporal resolution. The problem is again motivated by our
patient scheduling application. Instead of modeling DTs by jobs with varying resource
requirements, sequences of activities linked by minimum and maximum time lags are
used. Our proposed matheuristic repeatedly solves and refines a so-called time-bucket
relaxation. The approach is relatively generic and should be promising also for related
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scheduling problems. Especially the proposed time-bucket relaxation provides many
opportunities for further successful exploitation.

Last but not least, we studied in Chapter 5 also the 3SPP, a strip-packing variant
restricted to three stages of guillotine cuts. The presented LBBD considers in its master
problem only the first two stages, while the third stage is solved in the subproblems. The
experimental results have shown that the LBBD outperforms a corresponding compact
MILP model. A promising next step is to hybridize the approach with heuristic or
metaheuristic techniques.

In this thesis, we demonstrated that patient scheduling in particle therapy is not only
practically relevant but is also algorithmically an interesting and challenging problem.
While the consideration of the whole planning horizon and all problem-specific details
are already demanding for heuristic and metaheuristic techniques, substructures of the
problem are more general and suitable for advanced approaches. Therefore, we did not
only develop a solution method for a single problem appearing in the real world but
gained insights that are applicable also for other problems.
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APPENDIX A
Prize-Collecting Job Sequencing:

Referred Methods

For the sake of completeness we describe here the upper bound calculation and reference
approaches used in Chapter 4 that have been developed by my coauthors and are published
in [56]. We start in Section A.1 with details regarding the used upper bound calculation
for PC-JSOCMSR. Afterwards, in Section A.2 and Section A.3 we summarize the MILP
and CP approaches that are referred in the computational study of Chapter 4.

A.1 Calculation of Upper Bound Zub(u)

We adopt in the A∗-based construction of relaxed DDs the upper bound calculation from
Horn et al. [56]. For a given node u with state (P (u), t(u)), an upper bound for the still
achievable total prize by the remaining jobs in P (u) can be calculated by solving the
following LP relaxation of a multi-constrained 0–1 knapsack problem.

Zub
KP(u) = max

∑
j∈P (u)

zjxj (A.1)

s.t.
∑

j∈P (u)
p0
jxj ≤W0(P (u), t(u)), (A.2)

∑
j∈P (u)∩Jr

pjxj ≤Wr(P (u), t(u)) r ∈ R, (A.3)

0 ≤ xj ≤ 1 j ∈ P (u). (A.4)
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Here, xj is a continuous relaxation of a binary variable that indicates if job j ∈ P (u) is
scheduled or not. The right-hand-sides of the knapsack constraints are

W0(P (u), t(u)) =

∣∣∣∣∣∣∣∣∣
⋃

j∈P (u)

⋃
w=1,...,ωj :

W end
jw −ppost

j
≥t0(u)+p0

j

[
max(t0(u),W start

jw + ppre
j ),W end

jw − p
post
j

]
∣∣∣∣∣∣∣∣∣ (A.5)

and

Wr(P (u), t(u)) =

∣∣∣∣∣∣∣
⋃

j∈P (u)∩Jr

⋃
w=1,...,ωj :W end

jw
≥tr(u)+pj

[
max(tr(u),W start

jw ),W end
jw

]∣∣∣∣∣∣∣ . (A.6)

They represent the total amount of still available time for resource 0 and resource r ∈ R,
respectively, considering the current state and the time windows.

Solving this LP model exactly within our A∗-based construction is, however, compu-
tationally too expensive. Instead, we compute upper bounds by solving two types of
relaxations. The first one is obtained by relaxing inequalities (A.3):

Zub
0 (u) = max

∑
j∈P (u)

zjxj (A.7)

s.t.
∑

j∈P (u)
p0
jxj ≤W0(P (u), t(u)), (A.8)

0 ≤ xj ≤ 1 j ∈ P (u). (A.9)

The second relaxation is obtained by performing a Lagrangian relaxation of inequal-
ity (A.2), where λ ≥ 0 is the Lagrangian dual multiplier associated with inequality (A.2):

hub(u, λ) = max
∑

j∈P (u)
zjxj + λ

W0(P (u), t(u))−
∑
j∈P

p0
jxj

 (A.10)

s.t.
∑

j∈P (u)∩Jr

pjxj ≤Wr(P (u), t(u)) r ∈ R, (A.11)

0 ≤ xj ≤ 1 j ∈ P (u). (A.12)

Here, Jr denotes again the subset of all jobs in J which require secondary resource
r ∈ R. Both, Zub

0 (u) and hub(u, λ), are computed by solving LP relaxations of simple
knapsack problems. In the latter case, this is possible since the problem separates over the
resources and for each resource, the resulting problem is an LP relaxation of a knapsack
problem. An LP relaxation of a knapsack problem can be efficiently solved by a greedy
algorithm that packs items in decreasing prize/time-ratio order. The first item that does
not completely fit is packed partially so that the capacity is exploited as far as possible,
see [66].
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It follows from weak duality (see e.g. [88], Prop. 6.1) that hub(u, λ) yields an upper bound
on Zub

KP(u) for all λ ≥ 0, but the quality of this upper bound depends on the choice of λ.
We consider hub(u, λ) for the values λ = 0 and λ = zj̄/p

0
j̄
, where j̄ denotes the last, and

typically partially, packed item in an optimal solution to the problem solved to obtain
Zub

0 (u). The value λ = zj̄/p
0
j̄
is chosen since it is an optimal LP dual solution associated

with inequality (A.8) and therefore has a chance to be a good estimate of a value for λ
that gives a strong upper bound.

For our A∗-based construction of relaxed DDs we use the strongest bound on Zub
KP(u)

that we can obtain by solving the relaxations introduced above:

Zub(u) = min
{
Zub

0 (u), hub(u, 0), hub(u, zj̄/p0
j̄ )
}
. (A.13)

A.2 Order-Based Mixed Integer Linear Programming
Model

Horn et al. [56] proposed the following order-based MILP model for PC-JSOCMSR. It
uses binary variable tj to indicate if job j ∈ J , is included in the schedule or not and
binary variable tjw to indicate if job j ∈ J is assigned to time window w = 1, . . . , ωj or
not. Let the continuous variable sj be the start time of job j. Binary variable yjj′ is
further used to indicate if job j is scheduled before j′ w.r.t. the common resource or not,
if both jobs are scheduled, j, j′ ∈ J, j 6= j′. For each job j ∈ J , let the release time be
T rel
j = minω=1,...,ωjW

start
jω , and let the deadline be T dead

j = maxω=1,...,ωj W
end
jω , j ∈ J .

max
∑
j∈J

zjtj (A.14)

s.t. tj =
∑

w=1,...,ωj

tjw j ∈ J, (A.15)

yjj′ + yj′j ≥ tj + tj′ − 1 j, j′ ∈ J, j 6= j′, (A.16)
sj′ ≥ sj + δjj′ − (T dead

j − pj − T rel
j′ + δjj′)(1− yjj′) j, j′ ∈ J, j 6= j′, (A.17)

sj ≥ T rel
j +

∑
w=1,...,ωj

(
W start
jw − T rel

j

)
tjw j ∈ J, (A.18)

sj ≤ T dead
j − pj +

∑
w=1,...,ωj

(W end
jw − T dead

j )tjw j ∈ J, (A.19)

tj ∈ {0, 1} j ∈ J, (A.20)
tjw ∈ {0, 1} w = 1, . . . , ωj , j ∈ J, (A.21)
T rel
j ≤ sj ≤ T dead

j − pj j ∈ J, (A.22)
yjj′ ∈ {0, 1} j, j′ ∈ J, j 6= j′. (A.23)

Equations (A.15) state that each scheduled job must be assigned to a time window and
inequalities (A.16) ensure that if two jobs j and j′ are scheduled, either yjj′ or yj′j must
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be set to one, i.e., one of them needs to precede the other. If a job is to precede another
one, inequalities (A.17) ensure this w.r.t. the jobs’ start times. Here, δjj′ is the minimum
time between the start of job j and the start of job j′ if job j is scheduled before job j′,
which depends on whether both jobs use the same resource or not, i.e.,

δjj′ =
{
pj , if qj = qj′ ,

ppre
j + p0

j − p
pre
j′ , if qj 6= qj′ .

(A.24)

If a job is assigned to a time window, inequalities (A.18) and (A.19) make its start time
comply with this time window. Otherwise, the job only has to comply with its release
time and deadline.

A.3 Constraint Programming Model
Horn et al. [56] also proposed the following CP model for PC-JSOCMSR, which makes
use of so-called option type variables. Such a variable may either have a value of a certain
domain assigned or set to the special value > that indicates the absence of a value. For
job j ∈ J we use the option type variable sj for the job’s start time. An absent start
time, i.e., sj = >, indicates that the job is not scheduled.

max
∑

j∈J |occurs(sj)
zj (A.25)

disjunctive_strict({(sj + ppre
j , p0

j ) | j ∈ J}) (A.26)
disjunctive_strict({(sj , pj) | j ∈ J ∧ qj = r}) r ∈ R (A.27)

occurs(sj) =⇒

sj ∈ ⋃
ω=1,...,ωj

[
W start
jω ,W end

jω − pj
] j ∈ J (A.28)

sj ∈ [T rel
j , . . . , T dead

j − pj ] ∪ {>} j ∈ J (A.29)

For job j ∈ J the predicate occurs(sj) yields true if the option type variable sj is not
absent, i.e., job j is scheduled. The strict disjunctive constraints (A.26) and (A.27)
ensure that all scheduled jobs do not overlap w.r.t. their usage of the common resource
and the secondary resource r ∈ R, respectively. Absent jobs are hereby ignored. Con-
straints (A.28) state that if job j ∈ J is scheduled, it must be performed within one of
the job’s time windows.
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Acronyms

3SPP 3-staged strip packing problem.

BDD binary decision diagram.

COP combinatorial optimization problem.

CP constraint programming.

DD decision diagram.

DP dynamic programming.

DT daily treatment.

GA genetic algorithm.

GRASP greedy randomized adaptive search procedure.

GVNS general variable neighborhood search.

IG iterated greedy.

ILP integer linear program.

ILS iterated local search.

IR incremental refinement.

IRLP incremental refinement guided by longest paths.

JSOCMSR job sequencing with one common and multiple secondary resources.

LBBD logic-based Benders decomposition.

LINAC linear accelerator.

LP linear program.

163



MDD multivalued decision diagram.

MILP mixed integer linear program.

PC-JSOCMSR prize-collecting job sequencing with one common and multiple sec-
ondary resources.

PFSP permutation flow shop problem.

PTPSP particle therapy patient scheduling problem.

RCPSP resource-constrained project scheduling problem.

SI-PTPSP simplified intraday particle therapy patient scheduling problem.

SPP strip packing problem.

TDC top-down construction.

TWCH therapy-wise construction heuristic.

VND variable neighborhood descent.

VNS variable neighborhood search.
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