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Abstract

Mobile communications has become so successful today that conventional radio technologies, in tradi-
tional frequency bands below 6 GHz, are soon reaching their limits. To be able to develop massively
deployed, ubiquitous, data-hungry, mobile applications, this study explores the use of higher frequency
bands, or so-called millimeter waves in mobile communications. These radio bands above 30 GHz
are mostly unoccupied and have dozens of gigahertz of bandwidth available. Moreover, advances in
electronics have now made it possible to utilize these bands cost effectively.

This thesis studied the millimeter wave wireless channel through conducting the following experiments:
(1) two indoor millimeter wave measurement campaigns with directive horn antennas on both link ends,
(2) an outdoor vehicular millimeter wave measurement campaign employing a horn antenna and an
omni directional antenna, and (3) a railway communications ray-tracing study with directive antennas
on both sides.

In all the cases, the data obtained show that the millimeter wave wireless channel has very limited
multipath propagation. The main reason for the absence of a rich multipath propagation is because the
millimeter wave wireless channel requires high-gain directive antennas that compensate for the path
loss. These directive antennas act as spatial filters, thereby effectively reducing the number of significant
multipath components.

All the cases presented in this thesis are characterized by one or two dominant multipath components.
Small-scale fading is hence adequately modeled with a model named two-wave with diffuse power
(TWDP). This TWDP model captures the effect of interference of two non-fluctuating radio signals and of
many smaller so-called diffuse signals.

A delay-Doppler analysis is also performed in this research based on the data obtained from the
vehicular measurement campaign. The analysis reveals that the high maximum Doppler shift is not
reflected in the Doppler spread values. Again, the effects of the Doppler shift in this setup are suppressed
due to spatial filtering.

Lastly, this thesis briefly addresses the modeling of the TWDP model parameters for a simplified
railway communications scenario, and demonstrates the implications of TWDP fading through numerical
simulations.






Kurzfassung

Mobilkommunikation ist heute so erfolgreich, dass herkommliche Funktechnologien in traditionellen
Frequenzbindern bis 6 GHz bald an ihre Grenzen stofSen. Um die Vision der tiberall verftigbaren
hohen Bandbreite zu realisieren, untersucht diese Studie die Verwendung hoherer Frequenzbinder,
der sogenannten Millimeterwellen, in der Mobilkommunikation. Diese Frequenzbander tiber 30 GHz
sind meistens unbelegt und schon einzelne Bander verfiigen iiber weit mehr Bandbreite als alle bisher
genutzen Bander. Dartiiber hinaus haben Fortschritte in der Elektronik nun ermdoglicht, diese Bander
kostengtinstig zu nutzen.

In dieser Arbeit wurde der Millimeterwellen-Funkkanal mittels folgender Experimente untersucht: (1)
zweier Messkampagnen mit direktionalen Hornantennen in einer statischen Biiroumgebung, (2) einer
Millimeterwellen-Fahrzeugkommunikationsmesskampagne mit einer Hornantenne und einer omnidirek-
tionalen Antenne, sowie (3) einer Eisenbahnkommunikation-Raytracing-Studie mit Richtantennen auf
beiden Seiten.

In allen Fillen zeigen die erhaltenen Daten, dass der Millimeterwellen-Funkkanal eine sehr begrenzte
Mehrwegeausbreitung hat. Der Hauptgrund fiir das Fehlen von vielen Mehrwegen liegt darin, dass
fir Millimeterwellenkommunikation Antennen mit hohem Gewinn eingesetzt werden miissen, um den
hohen Pfadverlust zu kompensieren. Diese Richtantennen wirken als rdumliche Filter, wodurch die
Anzahl signifikanter Mehrwegekomponenten wirksam reduziert wird.

Alle in dieser Arbeit vorgestellten Fille sind durch einen oder zwei dominante Mehrwege geken-
nzeichnet. Daher kann der Funkkanal mittels eines Modells namens “two-wave with diffuse power”
(TWDP) angemessen modelliert werden. Dieses TWDP-Modell erfasst die Interferenz von zwei nicht
fluktuierenden Funksignalen und von vielen kleineren sogenannten diffusen Signalen.

Bei dieser Untersuchung wird auch eine Verzégerungs-Doppler-Analyse durchgefiihrt, die auf den
Daten der Fahrzeugmesskampagne basiert. Die Analyse zeigt, dass sich die hohe maximale Dopplerver-
schiebung nicht in der Dopplerspreizung widerspiegelt. Die Auswirkungen der Dopplerverschiebung
sind aufgrund der rdumlichen Filterung beschrankt.

In dieser Arbeit wird kurz auf die Modellierung der TWDP-Modellparameter fiir ein vereinfachtes Sze-
nario der Eisenbahnkommunikation eingegangen. Ebenso werden Auswirkungen des TWDP-Schwunds
durch numerische Simulationen demonstriert.
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1 Introduction

Since the advent of commercial mobile communications, the telecommunications industry has mainly
focused only on a small fraction of the radio spectrum. The current mobile communications standard,
4G-LTE, specifies frequency bands between 460 MHz (E-UTRA operating band 31) and 5.9 GHz (E-UTRA
operating band 47) [1]. This frequency range is considered as the “sweet spot”, as wavelengths are
short enough to allow compact antennas while still being long enough to avoid large diffraction and
penetration losses [2].

Researchers of the next-generation mobile communications standard 5G aim to achieve massive
throughput by exploring higher frequency bands, the so-called millimeter waves (mmWaves) [3]. These
radio bands above 30 GHz are mostly unoccupied and have dozens of gigahertz of bandwidth available.
These frequencies are so abundant primarily due to their oxygen and water vapor absorption lines (see
Fig. 1.1). An extra attenuation of approximately 15 dB/km at 60 GHz, in addition to the path loss, leads to
prohibitive power requirements, which consequently leads to an atmospheric opacity of almost 100%.
Hence, neither radar nor astronomy is performed at most mmWave bands. This is not a limiting factor
in indoor mmWave communications, in mobile communications with cell radii of less than 200m, or in
communication between vehicles. As a matter of fact, as early as 1895, the first wireless communication
experiments at 60 GHz had already been conducted by Jagadish Chandra Bose [2]. Today, advances in
electronics have made it possible to utilize these bands cost effectively [4].

Accurate modeling of wireless propagation effects is a fundamental prerequisite for a proper commu-
nication system design. After the double-directional radio channel model had been introduced to the
field [5], wireless propagation research (< 6 GHz) started to model the wireless channel agnostic to the
antennas used. More than a decade later, propagation research is now focused on the abovementioned
mmWave bands in order to unlock the large bandwidths available in this regime [6-9]. At mmWaves, an
omnidirectional antenna has a small effective antenna area, which results in a high path loss [10-14]. As
such, researchers have proposed to apply highly directive antennas on both link ends to overcome this
high path loss [15-18].

Most researchers aim to achieve high directivity by using antenna arrays [19-24] while a few researchers
have used dielectric lenses [25-27]. However, when the link quality depends so much on the achieved
beam-forming gain, antennas must again be considered as part of the wireless channel. The antenna then
influences small-scale fading. Figure 1.2 shows how the degrees of freedom of the antennas are used to
form a narrow beam. To achieve such beams, a common signal is applied to all antennas with different
time delays [28]. In case of narrowband systems, the time delays are approximated by phase changes.
However, this approximation leads to performance drops as the bandwidth increases [29].

Many researchers have already addressed the issue of static mmWave channels [30-48]. In 1996, [30]
showed that mmWave channels exhibit sparsity in the time domain, whereas [32, 33] have analyzed the
use of millimeter waves for mobile communications as early as 2001. Nevertheless, much of the early
work on this topic has focused on indoor WLAN [31, 34, 35]. A renaissance on mmWave propagation
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Figure 1.2: Directive communications through adaptive beamforming. mmWave arrays consisting of
dozens of antennas are still very compact. A beam formed by the antenna array must be
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research has also appeared since 2013 [36, 49]; since then, research on mmWave propagation has been a
very active field [37-48].

A research group from the TU Ilmenau carried out an indoor fading analysis. Likewise, this thesis
has set up a similar experiment. The study of [50] investigated a simple wall scattering scenario and
analyzed how fading scales with various antenna directivities and different bandwidths. Accordingly,
increasing the directivity [50] as well as the bandwidth [50, 51], increases the Rician K-factor. Using
the same measurement scenario, the study of [52] has shown that a sum-of-sinusoids fit achieves the
lowest MSE for two sinusoids. In [52], they concluded that cluster fading behavior can be effectively
modeled with two to six scattered multipath components (MPCs), without pointing towards two-wave
with diffuse power (TWDP) fading.

A research group at New York University also analyzed mmWave fading using high-gain horn antennas
on both link ends [53], and observed high Rician K-factors even at non-line-of-sight (NLOS). This effect
is explained by spatial filtering of directive antennas, as they suppress many multipath components [50].
Outdoor measurements of the same group [54, 55], are then fitted with Rician fading.

Although the overwhelming majority of researchers favor Rician fading, Durgin argued against it in
2003 [56, p. 137]: “The use of directive antennas or arrays at a receiver, for example, amplifies several of
the strongest multipath waves that arrive in one particular direction while attenuating the remaining
waves. This effectively increases the ratio of specular to non-specular received power, turning a Rayleigh
or Rician fading channel into a TWDP fading channel.”

The TWDP fading that Durgin was referring to can characterize this spatial filtering effect by two
non-fluctuating receive signals together with many smaller diffuse components. TWDP fading has
already been successfully applied to describe 60 GHz near body shadowing [57]. An extension of the
TWDP-fading model, the so-called fluctuating two-ray fading model, is described in [58-60]. This model
brings in another degree of freedom and allows for common shadowing of both specular waves. The
wireless channels in this present study are always unblocked; thus, this model is not considered here.

The theoretical work on TWDP fading is already at the advanced stages [58, 61-66]; however, experi-
mental evidence on the field, especially at mmWaves, is still limited. For enclosed structures (with lower
frequencies) such as aircraft cabins and buses, the applicability of the TWDP model has already been
demonstrated by Frolik [67-71]. Likewise, the predicted TWDP fading has already been noted as early as
2003, albeit this has not yet been experimentally proven for mmWaves.

The research team of this study conducted two measurement campaigns [40, 72] to directionally analyze
the receive power and small-scale fading parameters of mmWaves. This thesis shows that, through an
information-theoretic criterion [73] and null hypothesis testing [74], the TWDP hypothesis cannot be rejected
for mmWave indoor communications.

Aside from the indoor communication aspect, mmWaves are also foreseen for broadband connection
of vehicles. The idea of automated cars represents a tremendous attraction to both the industry and
the research community. Reliable mmWave communication systems that support vehicle-to-vehicle
information exchange are anticipated to be among the key enablers for automated vehicles [75]. Due
to the large available bandwidth of mmWave bands, even raw sensor data exchange between vehicles
is possible [75]. Today, mmWave equipment is almost on board in any modern vehicles, as the first
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mmWave automotive radars have already been commercialized 10 years ago [76]. Today, even joint
vehicular communication and radar [77] systems are within reach.

Interestingly, mmWaves have already been candidates for vehicular communications for several deca-
des now [78, 79]. mmWave train-to-infrastructure narrowband path loss has been measured in [78], whe-
reas narrowband vehicle-to-vehicle (V2V) communication performance is studied in [79]. In [80] and [81],
the focus was on inter-vehicle path loss results, whereas V2V channel measurements at 38 GHz and
60 GHz, using a channel sounder with 1 GHz bandwidth were conducted in [82]. The antennas in [82]
were put into the bumpers, thereby the dominating MPCs were the line-of-sight (LOS) component, a
road reflection, and a delayed component reflected on the guard rails. In [83], 73 GHz V2V large-scale
fading and small-scale fading analysis were provided for approaching vehicles. The appearance of
intra-vehicular Doppler spectra of vibrations while the vehicle operating have been shown in [84, 85].
The study of [86] investigated signal-to-noise ratio (SNR) fluctuations for 60 GHz transmissions with
5MHz bandwidth in a vehicle-to-infrastructure scenario.

Meanwhile, time-varying receive power and time-varying small-scale fading for vehicular channels
at 5.6 GHz were carefully addressed in [87]. However, mmWave vehicular communications has two
main distinctive features as compared to sub-6-GHz vehicular communications: first, the use of directive
antennas (at least on one link end) and second, the much higher maximum Doppler shift. This high
maximum Doppler shift is directly proportional to the carrier frequency; thus, it is also viewed as a
possible stumbling stone for vehicular mmWave communications. It was, however, shown theoretically
in [88] and [89] that directional antennas, anticipated for mmWaves, act as spatial filters. Beamforming
drastically decreases the Doppler effect, and hence the time-selectivity likewise decreases. Accordingly,
this is shown experimentally in this thesis.

This study, contributes to the dynamic mmWave vehicle-to-vehicle channel research as it analyzes
the effect of an overtaking vehicle on the mmWave V2V wideband (510 MHz) channel. It demonstrates
that the size and the relative position of the overtaking vehicle greatly influence the large-scale and
small-scale fading parameters. Again, the TWDP channel model is suitable for describing small-scale
fading. Furthermore, Doppler dispersion is strongly suppressed by the transmit horn antenna. The data
analyzed in this research consist of channel impulse responses while 30 different vehicles overtake. The
statistical analysis in this study also differentiates the results between cars, sport utility vehicles, and
trucks.

Another situation that is dominated by a limited multipath propagation occurs in mmWave railway
communications. This thesis demonstrates that railway communication scenarios employing directive antennas
can be effectively modeled via a two-ray model. The two-ray (ground reflection) model has been historically
used to explain the multi-slope behavior of observed path loss. Accordingly, [90, 91] explained the multi-
slope behavior of the observed path loss through a two-ray (ground reflection) model. The applicability
of the two-ray model for the current dedicated short range communication standard around 5.9 GHz has
been shown in [92-94]. Evidence for the two-ray model can also be found in [95], where the deviations
from the two-ray model were explained by the road undulations. These road undulations (or in the
train context, the heterogeneous ground and the hardly predictable reflection coefficient) motivated the
author to transform the deterministic two-ray model into the statistical TWDP model. The study of [96]
demonstrated on ray-tracing data that the two-ray model is a suitable deterministic small-scale fading
model for line-of-sight (LOS) mmWave scenarios. Fading envelopes (depending on antenna alignments,
geometry, and bandwidth) are derived in this study.



Next, it is argued that the two-ray model is a specific, deterministic variant of the TWDP model. The
TWDP model is flexible enough to accommodate additionally smaller multipath components as the
so-called diffuse components. Furthermore, through statistical modeling, uncertainties, for example,
about reflection phases, road undulations, or path lengths, are automatically included. The derived
quantities of the two-ray model will serve to parametrize the TWDP model.

The following paragraphs provide a short overview of the thesis structure. At the beginning of each
chapter, the author’s novel contributions and published papers (as first author) are explicitly stated.

Chapter 2 Methodology: Two-Wave with Diffuse Power Fading and Measurement Setups: This
chapter introduces the TWDP model and its parameter estimation, and discusses the validation of
measurement data. The chapter also details the smooth transistion from TWDP fading to Rician fading.
The relatively small non-fluctuating wave can be absorbed into the diffuse components, and an acceptable
fit with the simpler Rician fading model is then achieved. Accordingly, this makes the decision with
regard to the occurrence of TWDP fading conservative. Lastly, Chapter 2 provides an overview of the
built-up channel sounders, and shows the measurement setups together with brief discussions on their
capabilities.

Chapter 3 Indoor Measurement Campaigns: This part describes the two measurement campaigns
conducted in the laboratory and then discusses their outcomes. The first measurement campaign studies
the TWDP fading of directional wireless communications in the frequency domain by using wideband
scalar-valued data. TWDP fading is already observed; but due to the limited evaluation possibility with
scalar measurement data, the setup is changed to a vectorial channel sounding concept with reduced
measurement bandwidth. In the second measurement campaign, the mechanical beam steering is
improved; with these improvements, TWDP fading is also analyzed in the space and time domain.

Chapter 4 Outdoor Vehicular Measurement Campaign: In this chapter, the dynamic millimeter-
wave wireless channels are analyzed. The Doppler effect scales linearly with the carrier frequency, which
is a challenge to channel sounding. Thus, the snapshot rate must be very high to capture properly the
temporal evolution of the channel. The time-domain channel sounder, which is already used in the
(second) vector-valued indoor measurement campaign, is capable of capturing the data sufficiently fast.
This chapter then presents a scenario that emulates a communicating car platoon that is being overtaken.
The scenario is carefully designed such that it allows different overtaking vehicle types to be measured
repeatedly. Through statistical statements, this research is able to present a simplistic model of the
small-scale fading during the overtaking process. The observed small-scale fading is again adequately
modeled via TWDP fading. Additionally, the vehicular channel is studied within the delay-Doppler
domain, which allows the author to make statements about the delay and the Doppler spread.

Chapter 5 Simulation Studies: In this chapter, the measurement data is no longer studied. Instead,
data from an independent third source are used. The methodology presented in Chapter 2 is then applied
to a ray-tracing data set. The published ray-tracing study dealt with railway communications, and
beamforming was essentially limited to the elevation domain. As such, it is fairly easy to construct a
model for this study that is solely based on the geometry and the antenna patterns. It is then presented in
this chapter that the mobile channel can be described by using only a few propagation paths. The TWDP
fit shows a good agreement with the observed ray-tracing data. Furthermore, this chapter provides
link-level simulations that assesses the impact of TWDP fading on the link quality.
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Chapter 6 Conclusions and Possible Future Directions: The summary of the results and their im-
plications are presented in this chapter. As seen from the thesis title, this study seeks to point out the
occasions when TWDP fading has been found; the results of which are thus discussed in this part of the
thesis. Finally, this chapter provides the limitations of the research and discusses the recommended future
actions. For example, the parameters of TWDP fading in this study are modeled very rudimentarily in
some places. Thus, a large area of accurate channel modeling of TWDP fading is still open for discussion,

which accordingly needs to be addressed in the future.



2 Methodology: Two-Wave with Diffuse Power
Fading and Measurement Setups

The methodology introduced in Section 2.1 is first introduced in

o Erich Zochmann et al. “Better than Rician: Modelling Millimetre Wave Channels as Two-
Wave with Diffuse Power”. In: EURASIP Journal on Wireless Communications and Networking
2019.1-17 (2019), p. 21

It is later slightly adapted for

e Erich Zochmann et al. “Position-Specific Statistics of 60 GHz Vehicular Channels During
Overtaking”. In: IEEE Access 7 (2019), pp. 14216-14232

o Erich Zéchmann et al. “Parsimonious Channel Models for Millimeter Wave Railway Com-
munications”. In: Proc. of IEEE Wireless Communications and Networking Conference. 2019

The measurement setups discussed in Section 2.2 are first introduced in

e Erich Zochmann et al. “Directional Evaluation of Receive Power, Rician K-factor and RMS
Delay Spread Obtained from Power Measurements of 60 GHz Indoor Channels”. In: Proc.
of IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications (APWC).
2016

e Erich Zochmann et al. “Associating Spatial Information to Directional Millimeter Wave
Channel Measurements”. In: Proc. of IEEE 86th Vehicular Technology Conference (VIC-Fall).
2017

e Erich Zochmann et al. “Measured Delay and Doppler Profiles of Overtaking Vehicles at 60
GHz”. In: Proc. of the 12th European Conference on Antennas and Propagation (EuCAP). 2018

2.1 Two-Wave with Diffuse Power Fading

TWDP fading captures the effect of interference of two non-fluctuating radio signals and many smaller so-
called diffuse signals [101]. The TWDP distribution degenerates to the Rice distribution, if one of the two
non-fluctuating radio signals vanishes. This condition is analogous to the well-known Rice degeneration
to the Rayleigh distribution with decreasing K -factor. Hence, in a model selection framework, TWDP
fading, Rician fading, and Rayleigh fading are nested hypotheses [73]. Accordingly, it is obvious that
among these alternatives, TWDP fading would always allow the best possible fit of measurement data.
Occam’s razor [102] suggests that the hypothesis that makes the fewest possible assumptions should be
selected among all the other competing hypothetical distributions (see the leading citations). Different
distribution functions are often compared via a goodness-of-fit test [103]. Nevertheless, [104] argued that
Akaike’s information criterion (AIC) [73, 105-107] is a better suited method for choosing among fading
distributions. Later on, AIC was also used in [108-112]. AIC can be seen as a form of Occam’s razor as
it penalizes the number of estimable parameters in the approximation model [73], and hence aims for
parsimony.

An early form of TWDP was analyzed in [61], while the study of [101] introduced a random phase
superposition formalism. Later, [64] achieved a major breakthrough, and found a description of TWDP
fading that is the same as conditional Rician fading. For the benefit of the reader, this section briefly
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repeats some important steps of [64]. The TWDP fading model in the complex-valued baseband is given
as

3
Tcomplex = Viel®t + Voel?2 + X +jy = Viel?t + Voel?? + V3el?s = Z V;el?i, (2.1)
i=1

where V; > 0 and V, > 0 are the deterministic amplitudes of the non-fluctuating specular components.
The phases ¢1, ¢2 and ¢3 are independent and uniformly distributed in (0, 27). The diffuse components
are modeled via the law of large numbers as X + jY, where X,Y ~ N(0,0?). The amplitude V3 is
hence Rayleigh distributed. The formulation, as a superposition of three amplitudes, is very elegant but
uncommon in the literature. The second moment of the envelope r = |rcomplex| of TWDP fading is given
as

E{r’} =Q=V?+V; +25°. 2.2)

Expectation is denoted by E{-}. By enforcing

Q

1, (2.3)

all distributions are parametrized solely by the tuple (K, A), in which the K-factor is the power ratio of
the specular components to the diffuse components

B V12 +‘/22

K
202

(2.4)

The parameter A describes the amplitude relationship among the specular (non-fluctuating) components

2
A ViVs

= 25
VE+ V5 @3)

The A-parameter is bounded between 0 and 1, and equals 1 if, and only if, both amplitudes are equal. By
combining Eq. (2.2), (2.3), and (2.4) the second moment of the diffuse components equals to

9 1

T TR+ K)

(2.6)

Given the K and A parameter, the authors of [113] provide a formula for the amplitudes of both specular
components, which is given as

1

K
VLQ:Q,/M(\/HAi\A—A). 2.7)

The well-known Rice cumulative distribution function (CDF) is solely described by the Marcum
Q-function Q1 (-, ), and is expressed as

r

Friee(r; K) = 1= Qs (V2K, 2 . 28)

It has been mentioned earlier that [64] found a description of the envelope of Eq. (2.1) as a conditional
Rician distribution

2
Prwop(r; K, A) =1 — %/Q1 (\/21((1 + Acos (@), g) da, (2.9)
0

where K of (2.8) is replaced by K (1 + A cos(«)), and the auxiliary variable « is uniformily distributed in
(0,2m). Fig. 2.1 shows a number of example distributions. Although it might sound tempting to have
a second strong radio signal present, two waves can either superpose constructively or destructively,
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Figure 2.1: Comparison of Rayleigh, Rician, and TWDP fading. The top panels show PDFs while the
bottom panels show CDFs. The probability of TWDP in deep fades is higher than that in a
Rayleigh distribution. The right panels show distributions with higher K -factor.
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which can eventually lead to fading that is more severe than Rayleigh [67-71]. The highest probability for
deep fades occurs in TWDP fading (see again Fig. 2.1).

2.1.1 Data Preprocessing

Real-world measurement data do not follow Eq. (2.3), that is, they have © # 1. To work with the
equations introduced above, the measurement data is normalized by an estimate of {2 obtained through
the method of moments. The second moments (2 of Rician fading and TWDP fading are merely a scale
factor [114, 115]. Notably, this research focuses more on the proper fit of K and A. Generally, estimation
errors on {2 propagate in K and A estimates. However, [114] achieved an almost asymptotically efficient
estimator with a moment-based estimation of ). The observed data is to accomplish the following three
independent tasks:

(T1) Data normalizationto Q =1,
(T2) Parameter estimation and model selection (Section 2.1.2), and
(T3) Model validation (Section 2.1.5)

Ideally, one would partition the data samples into three distinct sets, and each task is then performed
within its own set. However, the observed data in this study are limited; thus, for (T2) and (T3) the
same data is used in Chapter 3. Accordingly, the data is divided into only two sets. The first set
(r1,...,7n,...ry) is taken for the parameter estimation of the tuple (X, A) described in Section 2.1.2,
and for the hypothesis testing described in Section 2.1.5. The first set is carefully chosen to obtain
envelope samples that are approximately independent and identically distributed. The second set

(r1,...,"m,...7Tar) is the complement of the first set. The elements of the second set are used to estimate
the second moment via
M
A 1
Q=+ r[m]?, (2.10)
m=1

where m is the sample index and M is the size of the second set. Partitioning is necessary to avoid the
biases caused by the noise correlations Q) and (K , A) [116]. The estimated quantities are marked with (A)
in the sequel.

The data in Chapters 4 and 5 are very limited; thus, this study uses the suboptimal approach of moving
average, similar to that applied by [87] to address the problem of data limitation. For data normalization,
the window size L is bigger than that for parameter estimation. Thus, the data used in (T2) parameter
estimation and model selection comes from a subset of the data used in (T1) normalization. The estimate

of the time-varying second moment 2[mn] is calculated as

Iu[m]
R 1 112
Q[m] = SA (rim], L;) = RCESACES| m/%m] [r(m']|”, (2.11)
where the lower and the upper sum index are
I [m] = max(0, [m — Lt/2]) , (2.12)
Iy[m] = min([m + Li/2], M — 1) . (2.13)

Due to limited data, physical arguments are used in Sections 4 and 5 instead of model validation.

2.1.2 Parameter Estimation and Model Selection

Note that the TWDP fading model in Eq. (2.1) does not contain noise; over the wide frequency range,
the receive noise power spectral density of the measurement equipment is not equal. A valid statistical
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2.1 Two-Wave with Diffuse Power Fading

noise description over the wide frequency range is frequency-dependent. Thus, to avoid the burden of
frequency-dependent noise modeling, measurement samples that are weaker than ten times the noise
power are discarded, and noise is ignored in the estimation.

Having the envelope measurement data set (rq,...,ry,...7y) at hand, a distribution in which the
observed realization r,, is most likely to appear is needed. As such, the parameter tuple (/,A) is estimated
via the maximum likelihood procedure

OFrwpp(rn; K, A)
or

N N
(K,A) = argmax Z In frwpp(r,; K, A) = argmax Z In . (2.14)

K,A KA

n=1 n=1

The symbol f(-) denotes probability density functions (PDFs) , n denotes the sample index, and N is
the size of the set. To solve Eq. (2.14), K and A are discretized. Next, W is calculated for
all parameters via numerical differentiation. Within this family of distributions, the parameter vector
that maximizes the log-likelihood function in Eq. (2.14) is the ML estimate. Thus, the maximization is
implemented as an exhaustive search in the (K, A) grid. To obtain the optimal Rice fit, the maximum
log-likelihood value is investigated within the parameter slice (K, A = 0). Fig. 2.2 shows an exemplary
fit of Rician and TWDP fading. As a reference, Rayleigh fading (K = 0, A = 0) is shown as well.

Akaike’s information criterion is used to be able to select between Rician fading and TWDP fading.
AIC is a rigorous method for estimating the Kullback-Leibler divergence, that is, the relative entropy
based on the maximum-likelihood estimate [73]. Given the maximum-likelihood fitted parameter tuple
(K, A) of TWDP fading and Rician fading, the sample size-corrected AIC [73, p. 66] is calculated for
Rician fading (AICR) and TWDP fading (AICt). The expression is given as

2V (U + 1)

N
AIC:—QZlnfTWDP(T7L§K7A)+2U+ N_U_1"

n=1

(2.15)

where U is the model order. For Rician fading the model order is U = 1, since just K is estimated.
For TWDP fading U = 2, as A is estimated additionally. Due to the model order penalization in AIC,
over-fitting is avoided. The second moment 2 (already estimated using a different data set before the
parameter estimation) is not part of the ML estimation (Eq. 2.14), and is therefore not considered in the
model order U. Accordingly, the lower AIC value decides between Rician fading and TWDP fading.

2.1.3 The Transition of TWDP Fading to Rician Fading

If, and only if, A = 0, will TWDP fading degenerate mathematically to Rician fading. The actual transition
from TWDP fading to Rician fading is smooth. If the second specular component becomes very small,
then it can be absorbed equally well in the diffuse components. To study how the TWDP transitions to
Rice distribution, the A-parameter, defined in Eq. (2.5) through amplitudes, is reexpressed as the power

ratio 9
5p:%, V<V = oP<1. (2.16)
i
As such, Eq. (2.5) now becomes
2VoP
A= T3P (2.17)

The expression (2.17) is plotted in Fig. 2.3 (left-hand side) with P expressed in decibels. At JP < —20dB,
even an exponential power decrease would barely translate to different A values. At A — 0, depending
on the K-factor, the second much weaker component might no longer be large enough to sufficiently
change the distribution from the Rician distribution. Mathematically, this is expressed through the
variance of the diffuse components. Remember, given that 2 = 1, o solely depends on the K-factor, see
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Figure 2.2: CDF: Distribution fitting for exemplary frequency domain measurement data. The figure
illustrates the maximum likelihood fitted Rice distribution and the maximum likelihood fitted
TWDP fading distribution. The Rician K-factor and the TWDP K-factor deviate significantly.
Rayleigh fading is plotted as reference.
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Figure 2.3: Transition to Rician Fading. (Left) The figure shows the A-parameter as a function of the
power ratio ¢ P of both specular non-fluctuating waves. (Right) This shows the success rate of
selecting TWDP fading for all parameter tuples (K, A) of the grid search space. Whenever the
second specular component is in the order of the diffuse components, the AIC model selection
fails. The red dashed line replaces § P of Eq. (2.17) with 1/x to show this border. The marked
regions show the found values in the following chapters.
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2.1 Two-Wave with Diffuse Power Fading

Eq. (2.6). At K > 0, the power of the diffuse components (in decibels) is expressed as
10log,o 0% ~ —10log;y K — 3dB. (2.18)

Hence, TWDP fading would only differ from Rician fading if 10log;, §P > 10log;, 0% ~ —10log,, K —
3 dB. Otherwise, the second specular component would appear as strong as the diffuse components.
This behavior directly translates to the model selection algorithm. To demonstrate this, in this study
Monte Carlo simulations are run with synthetic data. In the test data, the K-factor is linearly spaced in
{0,1,...,100} and logarithmically spaced with 150 points for each decade above, and the A-parameter is
linearly spaced in {0,0.1,...,1}. A total of 300 realizations of each pair (K, A) are generated; thereafter,
the fitting and selection approach in Subsection 2.1.2 is performed. The simulation is considered successful
whenever AIC decides correctly for the TWDP model. The success rate of TWDP selection is plotted in
Fig. 2.3 (right-hand side).

On the right-hand side of Fig. 2.3, Eq. (2.17) is plotted on top as a red dashed line. From the
considerations discussed above, it is already known that the K-factor must be at least above 3dB.
Observe that the transition region matches fairly well with those values, in which the power of the second
specular component becomes as strong as that in the diffuse components. With increasing K-factor, the
probability of selecting TWDP fading also increases rapidly. However, there is a minimum A ~ 0.1,
where TWDP fading selection fails even for K — oco. This value corresponds to a power difference of
approximately 25 dB in the LOS component and in the reflected component. With this proposed approach,
it will not be possible to select the appropriate fading distribution, if the second specular component is
much weaker.

This is a fundamental limitation; with small K-factor, there is a clear bias towards selecting Rician
fading. Note that this approach is automatically conservative in declaring that the observed data are considered
TWDP fading. Fig. 2.3 accordingly marks the regions where TWDP fading has been found in this thesis.

2.1.4 A Closer Look on the Transition Border

This subsection carefully distinguishes between the K -factor obtained as Rician fit (KRic.) and the K-factor
obtained as TWDP fit (Ktwpp). To study the transition boarder, Eq. (2.17) is first inverted to

> (1-VI-A?)°
0P = V—22 = % . (2.19)
Vi A
The KRrice-factor is now calculated such that the power of the diffuse components exactly matches that of
the second non-fluctuating amplitude, that is,

1 202,V (1-VI-AY?

= e S S —— A 2.20
KRice V12 V12 AQ ’ ( )

Hence, the maximum Rician K-factor, where a decision based on the AIC fails, is given as a function of A

Jmax A? ~ i = AMax < 2

e 1o yIo Az A2 KRice

, .21)

and the maximum possible A-parameter that could have been overlooked is thus also stated. Next, the
strength of KRice as a function of the TWDP parameters needs to be addressed. To give better distinction,
the TWDP K-factor is now denoted by

VE+VE

5 (2.22)

Ktwpp =
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Figure 2.4: Relationship of the Rician and TWDP K -factor. The Rician fit and the TWDP fit will provide
similar /-value estimates only at very small A values. Generally, a Rician fit underestimates
the power of the specular components.

Note that V5 is absorbed into the diffuse components in case of a Rician fit. At Q2 = 1, the voltages V; and
Vs are given in Eq. (2.7) and o2 is given in (2.6). After some algebra, the following result is obtained

% Krwop (V1+ A2+ 1 - AQ)Q

- - . 2.23)
V' + 207 KTWDP(\/1+A2*\/1*A2)2+22

There are obviously two extreme cases of Eq. (2.23). First, if A = 0 and hence V5 = 0, then the Rician

K-factor will be the same as the TWDP K-factor, that is, Krijce = Ktwpp. Second, if A =1 and V, =V},
Krwpp>2

then the Rician K-factor is close to 1, since Kgjee = muee ~ 1. This means that an ML estimate

Krwpp+2
of TWDP data would almost provide a Rayleigh fit, thereby totally underestimating the power of the

specular components (see Fig. 2.2 for an example). All points in between these extremes are shown in
Fig.24.

2.1.5 Validation of the Chosen Model

One of the two distributions (i.e., Rice or TWDP), will always yield a lower AIC value. To validate
whether or not the chosen distributions explains the data, the following statistical hypothesis testing
problem is stated:

H IRice (7"; K), if AICr < AICT
0 - N
FTWDP(T; K, A), else
—Frice(r; K), if AICg < AIC
#y - | FRice(ri ) k= AT (2.24)

_‘FTWDP (7“; [A( A), else
The Boolean negation is denoted by —. This study used the g-test as statistical tool [117, 118]. Meanwhile,

the well-known chi-squared test approximates the g-test via a local linearization [119]. At a significance
level «, a null hypothesis is rejected if

i 2\ 7
G=2) O;ln 9 >xZ o (2.25)
E; (1—a,m—e)
i=1
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Figure 2.5: RF setup of the frequency-domain channel sounder. =~ The combination of different PLL
scaling factors allows for a measurement bandwidth of 7GHz. The up-converter and the
down-converter share a reference clock, and the power splitter has an isolation of 30 dB. To
avoid possible leakage on the clock distribution network, attenuators are added to decouple
both converters. The transfer function is then measured by applying the conversion gain
(mixer) measurement option of the R&S ZVA24 VNA.

where O; is the observed bin count in cell ¢, and E; is the expected bin count in cell ¢ under the null
hypothesis H,. The cell edges are illustrated with vertical lines in Fig. 2.2. The cell edges are chosen, such
that 10 observed bin counts fall into one cell. The estimated parameters of the model are denoted by e.
For Rician fading e = 2 and for TWDP fading e = 3 (2, K, A). The (1 — a) —quantile of the chi-square
distribution with m — e degrees of freedom is denoted by X?l—aﬂn—e)' The prescribed confidence level is
1-a=0.01.

2.2 Measurement Setups

In this dissertation, three different channel sounders have been designed and then built. The first
channel sounder is a frequency-domain channel sounder with high dynamic range and high bandwidth.
The snapshot rate of this channel sounder is very slow; thus, it is only used for indoor measurements.
Furthermore, this channel sounder only provides scalar measurement data.

On the other hand, the second (and third) channel sounder operate in the time-domain and provide
vector-valued measurement data. The sounder was initially set up indoors to enable the author to
cross-compare the results with those previously obtained and thereby expand the obtained knowledge.
Afterward, vehicular channels were also measured using the time-domain channel sounder. Both channel
sounder types were calibrated “back-to-back” to remove the influence of the measurement equipment.

2.2.1 Scalar-Valued Wideband Measurements

At the heart of the frequency-domain channel sounder is an R&S ZVA24 network analyzer. The vector
network analyzer (VNA) directly measures up to 24 GHz. For mmWave up-conversion and down-
conversion, modules from Pasternack [120] are employed. These modules are based on the radio
frequency integrated circuits described in [121]. The up-converter module and the down-converter mo-
dule operate built-in synthesizer phase-locked loops (PLLs), in which the local oscillator (LO) frequency
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Table 2.1: Frequency-Domain Channel Sounder Parameters Used in Chapter 3

Parameter

Value

transmit antenna

20 dBi conical horn

transmit antenna heights 180 cm
receive antenna 20 dBi conical horn
receive antenna height 70cm
dynamic range 58dB
frequency sample spacing Af = 2.5MHz
bandwidth BW = 7GHz
center frequency fo = 60 GHz

Table 2.2: Time-Domain Channel Sounder Parameters Used in Chapter 3

Parameter

Value

transmit antenna
transmit antenna height

receive antenna

20 dBi conical horn
170 cm
20 dBi conical horn

receive antenna height 90cm
transmit power Prx = 7dBm
receiver sensitivity = Prx min = —63dBm
sub-carrier spacing Af =5MHz
number of sub-carriers K = 401
center frequency fy = 60 GHz
maximum alias free delay = 7max = 100ns
delay resolution A7 = 0.5ns
recording time Tiec = 0.4ms
is calculated as
fLo = 7/4- spLL - 285.714MHz ~ spy1. - 500 MHz . (2.26)

The scaling factor of the synthesizer PLL counters is denoted by spi1. For example, at fio ~ 60 GHz, the
scaling factor is spr 1, = 120. To achieve a measurement bandwidth of 7 GHz, the scaling factors of the PLL
are swept over. This approach is similiar to the variable intermediate frequency (IF) concept proposed
in [122]. The transfer function is then measured via the conversion gain (mixer) measurement option of
the VNA to prevent cross talk, and the transmitter and receiver operate at different baseband frequencies,
namely, 601 to 1100 MHz and 101 to 600 MHz. Note that changing the PLL scaling factors and sweeping
the VNA over 500 MHz takes seconds. Hence, this setup is not suitable for dynamic measurements.
However, this channel sounder is characterized by its high dynamic range of approximately 60 dB [40].
The setup is shown in Fig. 2.5.

An overview of the channel sounder parameters of the scalar-valued frequency domain setup is given
in Table 2.1.

2.2.2 Vector-Valued Measurements

To avoid changing the PLL scaling factor, the bandwidth has to be limited up to the maximum bandwidth
that the up-converter could support. As such, this limits the bandwidth to approximately 2 GHz [120,
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Figure 2.6: RF setup for the time-domain channel sounder. The VNA from Fig. 2.5 is replaced with an
AWG and an SA. This setup allows to retrieve phase information as well. An option of the SA
gives us direct access to the baseband IQ samples.

121]. Meanwhile, to avoid frequency sweeps, an arbitrary waveform generator (AWG) that operates
at a sample rate of 30000 MSamples/s is set up to be able to produce a 2 GHz wide waveform on the
transmitter side. The transmitter (TX) sequence is repeated (for example, 2000 times for the indoor
measurements) to obtain a coherent processing gain of 33 dB for i.i.d. noise. The Pasternack up-converter
(the same one previously used) shifts the baseband sequence to 60 GHz. A signal analyzer (SA) (R&S
FSW67), with 2 GHz analysis bandwidth and with sensitivity Psa min = —150 dBm/Hz at 60 GHz, is used
as a receiver. The received in-phase and quadrature-phase (IQ) baseband samples are obtained with an
oversampling factor of 5. Hence, the receiver samples at a rate of 10000 MSamples/s.

Meanwhile, the time-variant channel transfer function H'[m/, ¢] is calculated from the obtained IQ
samples by using a discrete Fourier transform. This accordingly transforms the channel convolution
into a multiplication within the frequency domain. Here, m’ denotes the symbol time index, whereas
g =0, ...,400 denotes the frequency index. After applying coherent averaging over N = 2000 baseband
symbols, the resulting channel transfer function is then divided by the calibration function obtained from
back-to-back measurements (this is done to equalize the frequency characteristics of the equipment). The
obtained time-varying channel transfer function is accordingly denoted by H|[m, q].

Similar to the testbeds of [123-126], in which the authors analyzed LTE performance, proper triggering
between the AWG and the SA ensures that the present setup has a stable phase between subsequent
measurements. Frequency synchronization is achieved with a 10 MHz reference. The whole system is
sketched in Fig. 2.6.

The excitation signal generated by the AWG is a multitone waveform. Using multitone waveforms has
several advantages:

1. The frequency spectrum will be flat if all tone amplitudes are chosen equal. Hence, the SNR is
constant across the bandwidth.

2. The individual tone phases offer design flexibility, and choosing them quadratically increasing
reduces the peak-to-average power ratio [127-129]. This is necessary to maximize the average
transmitted power while ensuring that all radio frequency (RF) components encountered by the
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Figure 2.7: Extended time-domain channel sounder with synchronization unit. In addition to Fig. 2.6, a
hardware trigger (a light barrier) triggers the AWG.

excitation signals operate in their linear regimes. Thus, the excitation signal reads

K/2

2[m] = Re ( 3 el’”’feﬂ“%) , (2.27)
k=1

where m =0,...,Q — 1is the time index and k = 1,. .., K/2 is the tone index.

3. The tone spacing provides a trade-off between immunity against phase noise and aliasing in the
delay domain. To make the symbols shorter and less susceptible to inter-carrier interference caused
by phase noise and Doppler, the largest possible sub-carrier spacing A f is chosen. Consequently,
the chosen tone spacing is 5 MHz; this large spacing assures that the phase noise does not limit the
system [130]. However, the sampling theorem in the frequency domain needs to be obeyed; thus,
Af < =L~ = 5MHz must be fulfilled, where Ty, is the maximum excess delay. The maximum

(27max)
excess delay is then 100 ns.

4. Using multitone waveforms allows the setup to be flexible such that the bandwidth can be adapted
via the number of “active” tones. For example, the system in the indoor measurement campaign
operates with 401 tones. On the other hand, a reduced bandwidth is achieved in the vehicular
outdoor measurements by using K = 103 tones. The receiver sensitivity can be adjusted as
PrX min = Psamin + 101log,o(Af) + 101log,, K.

Table 2.2 gives an overview of the channel sounder parameters for the time-domain channel sounding.

2.2.3 Triggered Vector-Valued Measurements

For this setup, a synchronization unit and light barriers extend the abovementioned time-domain channel
sounder in order to capture dynamic events such as vehicle-to-everything communications. When a
vehicle passes the first light barrier, the synchronization unit triggers the AWG that then plays back the
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Table 2.3: Time-Domain Channel Sounder Parameters Used in Chapter 4

Parameter

Value

transmit antenna
transmit antenna heights

receive antenna

20 dBi conical horn
70,110, 146,156 cm
A/4 monopole

receive antenna height 156 cm
transmit power Prx = 7dBm
receiver sensitivity  Prx min = —63dBm
sub-carrier spacing Af = 5MHz
number of sub-carriers K = 103
center frequency fp = 60 GHz
maximum alias free delay = 7max = 100ns
delay resolution AT = 2ns
recording time 7. = 720ms
129.1us, if N = 640
snapshot rate  Tgnap = { 112.9 s, if N = 560
96.8 us, if N =480
9.7m/s, if N =640
maximum car speed  vear = { 11.1m/s, if N = 560
12.9m/s. if N = 480

maximum recording distance dmax = 9.3m

baseband sequence and a sample synchronous marker signal. The marker signal then starts recording the
receive samples at the SA. A second light barrier is used to estimate the average speed of the vehicle.
This hardware setup is illustrated in Fig. 2.7.

The link budget is more critical for outdoor measurements; thus, the bandwidth has been reduced to
510 MHz. To save memory space (and thereby enabling the setup to record longer sequences) the IQ
samples are accessed at a rate of 600 MSamples/s. The setup is designed for a propagation loss (including
antenna gains) of up to /i, = 85dB.

Next, an SNR of 10dB is required at each subcarrier. These requirements directly translate to the
|K=103 + P. + SNR = 32dBm. The maximum power
of the TX module is 7dBm. Thus, an additional processing gain of 25dB is needed. The processing

necessary transmit power of Prxmin = PRXmin

gain is realized by coherently averaging over N = {480, 560, 640} multitone symbols. The number of
averaging symbols is selected such that the averaged channel is still aliasing free. The least processing
gain for fast vehicles (N = 480) is then 27 dB. Remember, the multitone system has a subcarrier spacing
of approximately A f = 5 MHz and has a sounding sequence length of 75y, = 1/af = 200 ns. The overall
pulse length (including 480 repetitions) then totals to Tsnap = 96 pus. As such, by applying the sampling
theorem for the Doppler support, a maximum alias-free Doppler frequency of vmax = 1/(2Tny) = 5.2 kHz
is obtained. This consequently limits the speed of overtaking cars to vear = (Avma)/2 = 12.9m/s = 46.5km/p
This value is sufficient for the measurements in this study as the street where the measurements took
place has a speed limit of 30 km/n.

The receiver is limited to a memory depth of approximately 420 MSamples. With a sampling rate of
600 MSamples/s, Tr.. = 720ms of the channel evolution are recorded. At 12.9 m/s, this equals to a driving
distance of 9.29 m. Table 2.3 gives an overview of the channel sounder parameters for the dynamic setup.
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The initial results of the scalar-valued wideband measurements are discussed in

e Erich Zochmann et al. “Directional Evaluation of Receive Power, Rician K-factor and RMS
Delay Spread Obtained from Power Measurements of 60 GHz Indoor Channels”. In: Proc.
of IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications (APWC).
2016

Likewise, the initial results of the vector-valued measurements are in

e Erich Z6chmann et al. “Associating Spatial Information to Directional Millimeter Wave
Channel Measurements”. In: Proc. of IEEE 86th Vehicular Technology Conference (VIC-Fall).
2017

The evaluation results of both measurement campaigns using the methodology discussed in
Chapter 2 are in

e Erich Z6chmann et al. “Better than Rician: Modelling Millimetre Wave Channels as Two-
Wave with Diffuse Power”. In: EURASIP Journal on Wireless Communications and Networking
2019.1-17 (2019), p. 21

In this thesis, two indoor measurement campaigns under the same conditions are conducted using
two different channel sounding concepts. The measured environment is an office/laboratory with office
desks in the middle of the room and laboratory desks located by the window (see Fig. 3.1). The main
interacting objects in the channel are office desks, a metallic refrigerator, a wall, and the surface of the
laboratory desk. These objects are all marked in Fig. 3.1. Both measurement campaigns use 20 dBi horn
antennas at the transmitter and at the receiver. The first indoor measurement campaign samples the
channel in azimuth (¢) and elevation (¢) at the antenna in the middle of the laboratory. The sweeping
antenna’s (apparent) phase center [131, pp. 799] is fixed at a specific (x,y) —coordinate. Another static
horn antenna is mounted in a corner of the laboratory (see again Fig. 3.1). The mechanical setups are
explained in Sections 3.1 and 3.2.

Initially, the channel was sounded in the frequency-domain using the scalar network analysis described
in Section 2.2.1. These channel measurements span over 7 GHz of bandwidth, which enables the fading
in the frequency domain to be analyzed.

The setup in the second indoor measurement campaign described in Section 3.2 had to be improved
mechanically and RF-wise. Now, the antenna’s phase center is constant in the (z,y, z) —coordinate
regardless of the antenna’s elevation. Furthermore, the sounding concept is changed to time domain
channel sounding to be able to analyze the time domain and to demonstrate channel impulse responses
in Section 3.2.3. Moreover, by adjusting (z,y, z, ¢, #), the channel is sampled in the spatial domain in all
directions (¢, #). In Section 3.2.2, spatial correlations are obtained from the spatial, directional samples.
As such, this study is able to demonstrate TWDP fading for directional mmWave indoor channels in the
frequency-domain, in the spatial-domain, and in the time-domain.

3.1 Scalar-Valued Wideband Measurements

Directional measurements have been carried out in this study using the traditional approach of me-
chanically steered directional antennas [132, 133]. As already mentioned, the directional antennas are
composed of 20 dBi conical horn antennas with an 18° 3 dB opening angle. The polarization is determined
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Figure 3.1: Floor plan of the measured environment. The floor plan indicates the multipath components
that are visible in the measurement results. TX and RX switch roles in the second measurement.
The TX/RX on the right upper corner of the room is always static. The RX/TX in the middle
of the room is steerable, and is indicated by the spider’s web.

by the LOS polarization. When TX and RX are facing each other at LOS, the polarization is co-polarized
and the E-field is orthogonal to the floor. The essential mechanical adaptation in this study to the
state-of-the-art directional channel sounding setup [39, 44] is that the elevation-over-azimuth positioner
is mounted on an xy-positioning stage. Thus, the setup is capable of compensating for all the linear
translations caused by the rotations and of keeping the phase center of the horn antenna always in the
same (z,y) coordinate (see Fig. 3.2). The z coordinate is roughly 70 cm above ground but varies 13 cm for
different elevation angles.

A wireless channel is said to be small-scale fading if the receiver (RX) cannot distinguish between the
different MPCs. Depending on the positions of the TX, RX, and the interacting components, the MPCs
can interfere either constructively or destructively [134, pp. 27]. The fading concept requires only a single
frequency, in which its MPCs arrive at different phases to the RX. A statistical description of the fading
process can then be found through spatial sampling. For now, the spatial (z, y) — coordinate (of TX and
RX) is kept constant. Different phases of the impinging MPCs are realized by changing the TX frequency
over a bandwidth of 7 GHz. Therefore, the parameter estimation relies on frequency translations. Fig. 3.3,
shows the estimated received mean power of 7 GHz bandwidth, normalized to the maximum RX power,
that is

PRX,norm‘(SQ 9) = Q((ple) . (31)
maxr o ($2(¢,0"))

As already mentioned in Section 2.1.1, the frequency measurements are partitioned into two sets.

The normalized receive power is calculated according to Eq. (2.10), with frequency samples spaced by
2.5MHz. Every tenth sample is left out as these samples are used for fitting of (X, A) and for hypothesis
testing. The directional results are then displayed via a stereographic projection from the south pole
while using tan(9/2) as the azimuthal projection. All samplings points that lay at least 10 dB above the
noise level are the subjects of this study. They are displayed with red, white, or black markers in Fig. 3.3.
The sampling points, where TWDP fading is determined by AIC following the procedure described in
Section 2.1, are marked with red diamonds. The white circles mark the points where AIC favors Rician
fading. Accordingly, four points are marked black. These points failed the null hypothesis test, and
this study neither argues for Rician fading nor for TWDP fading. TWDP fading occurs whenever the
LOS-link is not perfectly aligned or if the interacting object cannot be described by a single reflection.
This is illustrated on the right-hand side in Fig. 3.3.
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3.1 Scalar-Valued Wideband Measurements
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Figure 3.2: Photograph of the mechanical setup for the scalar-valued wideband measurements from the
receiver’s point of view. The receive antenna, a conical 20 dBi horn, is mounted on a multi-
axis positioning and rotating system. The azimuthal and elevation angle are controlled to scan
the whole upper hemisphere. The multi-axis system moves and rotates the horn antenna such
that its phase center stays in the same (z, y) — coordinate during the directional scan.
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Figure 3.3: Estimated directional receive power of the scalar-valued wideband measurements. (Left)
There are four main interacting objects leading to stronger receive power (marked in the
figure). TWDP fading occurs whenever the LOS-link is not perfectly aligned or the reflecting
structure is not perfectly plain. The red diamonds mark TWDP fading, while the white circles
mark Rician fading. The black markers show the points where the hypothesis test rejects both
distributions. Directions less than 10 dB above the noise level are not evaluated. (Right) This

figure shows a simplified representation of the interfering waves that potentially lead to the
TWDP model.

Fig. 3.4 illustrates the K-parameter of the selected hypothesis. It thereby shows either the Rician
K-factor or the TWDP K-factor, depending on the selected hypothesis. Note that their definitions are
fully equivalent. For Rician fading, the amplitude V5 in (2.1) is zero by definition. Whenever the RX
power is high, the K-factor is likewise high. Right of the K-estimate, the A estimate is shown. Here again,
by definition, A = 0 whenever AIC decides for Rician fading. For interacting objects, the parameter
A tends to be close to one. Note that decisions based on AIC choose TWDP fading mostly when A is
relatively high (see the discussion in Section 2.1.3). Smaller A values do not sufficiently change the
distribution function to justify a higher model order. Thus, the unsteady behavior in the model selection
is explained. This is treated in more detail in the following section.

3.2 Vector-Valued Spatial Measurements

Another linear guide along the z-axis is added in the setup in order to compensate for all the introduced
linear translations caused by the rotations. The phase center of the horn antenna is thereby lifted upwards
by 1 m, and it is now fixed at a specific (z,y, z) coordinate in space. The whole mechanical setup and
the fixed phase center are illustrated in Fig. 3.5. The 20dBi conical horn antenna, together with the
up-converter, is mounted on a five-axes positioner to be able to steer them directionally. Due to feasibility
reasons, TX and RX now switch places. The RX in the form of the SA (see Section 2.2.2) is placed onto the
laboratory desk. The RX 20 dBi conical horn antenna is directly mounted on the RF input of the SA; the
RX antenna is not steered.

In contrast to the previous measurement campaign, this second setup no longer relies on frequency
translations, and channel sampling is indeed done in space. Section 3.2.1 presents the fading results
evaluated at a single frequency. Fading is hence exclusively determined by the obtained spatial samples.
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Figure 3.4: Estimated K-factor and A-parameter obtained through scalar wideband data.  The K-
factor estimate of the selected hypothesis is plotted. The K-factor behaves analogously to
the RX power. At LOS, the K-factor is far above 20 dB. The desk reflection has a surprisingly
high K-factor of about 15 dB. Other reflections have K-factors of approximately 10 dB. The
A-parameter for reflections tends to be close to 1. The markers in this figure have the same
meaning as those in Fig. 3.3.

3.2.1 Receive Power and Fading Distributions

To estimate the RX power, a sweep through the azimuth and elevation is performed at a single coordinate
using the whole bandwidth of 2 GHz. The LOS and wall reflection from the scalar-valued wideband
measurements are still visible in Fig. 3.6. Fading is then evaluated at a single frequency as discussed in
the subsection below. Nevertheless, Fig. 3.6 already marks the fading distributions to help gain better
orientation for the succeeding discussions.

The steerable horn antenna is above the office desks and above the refrigerator, thus, these interacting
objects do not become apparent. In case the steerable TX does not accurately hit the RX at LOS, the desk
surface acts as a reflector; a TWDP model then explains the data. For wall reflections, TWDP also best
explains the data.

To obtain different spatial realizations, with the horn antenna pointing toward the same direction,
the coordinate of the apparent phase center is moved to (z, y, z) — positions and is uniformly distributed
within a cube of side length 2.8, see Fig. 3.7. The cube is regularly sampled by 9 x 9 x 9 = 729 directional
measurements, which consequently results in spacing between spatial samples of 0.35\ in every direction.
Although */2 sampling is quite common [50, 53], the sampling frequency is co-prime with the wavelength
to circumvent periodic effects [135]. Spatial samples are drawn only in those directions with strong
reception levels as it would take more than three days to draw them in all directions.

The measurements are partitioned into two sets similar to that done in the previous section. The
partitioning is made according to a 3D checkerboard pattern. The second moment 2 is estimated from
the first set and the parameter tuple (K, A) is estimated from the second.

The best-fitting K -factors in both regions with strong reception are illustrated on the left-hand side in
Fig. 3.8, while the right-hand side illustrates the A-parameters. Similar to Fig. 3.4 the interaction with
the wall has regions that are best modeled via TWDP fading. Remember, the RX in the form of an SA is
now on the laboratory desk. In case the TX is not perfectly aligned, a reflection from the desk surface
yields a fading statistic that is captured by the TWDP model. However, it seems akward that in the
marked angle (“table surface”), TWDP fading occurs at A = 0.6 and with a relatively high K-factor; but
only at 10° shifted azimuth, Rician fading with weak K-factor takes place. Fig. 3.9 shows the emperical
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Figure 3.5: Photograph of the improved mechanical setup for the vector-valued measurements from the
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receiver’s point of view. The mechanical setup now consists of five independent axes such
that it is able to fully compensate for all the offsets introduced by the rotation. A schematic
sketch is superimposed. All five axes are necessary to rotate the horn antenna around the
phase center at a fixed (x, y, z) coordinate. Notice that TX and RX switch positions unlike in
Fig. 3.2.



3.2 Vector-Valued Spatial Measurements
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Figure 3.6: Estimated directional receive power of vector-valued measurements. Due to the elevated
position of the steerable horn antenna, two interacting objects from Fig. 3.3 (i.e., the desk
and the refrigerator) are no longer visible. LOS and the wall reflection are still present.These

regions are the only ones that are spatially sampled. The markers have the same meaning as
those in Fig. 3.3.

2.8\

Yy

Figure 3.7: Spatial sampling grid. In one specific direction, 9 x 9 x 9 = 729 samples are drawn uniformly
from a cube of side length 2.8. The distance between samples is 0.35\ with a repeat accuracy

of £0.004\. The orientation of the horn antenna is indicated via the cone shape in the sampling
points.
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Laboratory desk surface reflection. (Left) At ¢ = 0°, the surface reflection is relatively strong,
and the A parameter is large enough to let AIC decide in favor of TWDP fading. (Right) At
p = —10° = 350°, the relative strength of the surface reflection is not enough to decide in
favor of TWDP fading.
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Figure 3.10: Estimated (K, A) parameter tuple of the TWDP fading model. The black crosses illustrate
the marker position from Fig. 3.8. Taking only the TWDP model into account, the K and A
values look much smoother, and clear regions are now visible.

(measurement) CDFs and the ML fits of the discussed angles. At an azimuth angle of ¢ = 0° and an
elevation angle of § = 90°, the surface reflection is stronger than the LOS component while the A = 0.6
parameter is large enough to let the AIC decide in favor of TWDP fading with K = 66. In Fig. 2.3, one
would read that A = 0.6 would correspond to a power difference of approximately 10 dB between the
stronger LOS component and the surface reflection. At an azimuth angle of ¢ = —10° = 350° and again at
6 = 90°, the estimated TWDP K-factor is close to the K-factor previously obtained, which is now K = 68.
However, the A-parameter is reduced to A = 0.3, which corresponds to a power difference between LOS
and the surface reflection of approximately 16 dB. By turning the antenna by 10°, the LOS component
becomes better aligned and stronger than before. Furthermore, the table surface is now illuminated with
a lower gain value. Fig. 3.10 now shows all parameter tuples (taking only TWDP fading into account)
instead of just focusing on two neigboring points. The “jumpy” behavior between neighbors is now gone,
and clear regions of high K-factors or high A-parameters are now visible.

3.2.2 Efficient Computation of the Spatial Correlation

This part further analyzes the wall reflection. In particular, the spatial correlations among the drawn
samples are evaluated, and the three-dimensional cube sampling problem (see again Fig. 3.7) is now
treated via two-dimensional slicing. The Wiener—Khintchine-Einstein theorem, which relates the autocor-
relation function of a wide-sense-stationary random process to its power spectrum [136], is then applied
to calculate the spatial (2D) autocorrelation function. In two dimensions, this theorem reads [137, 138]

Fap {C(x,y)} = S(x/’y,) ’ (3.2)

where C'is the 2D-autocorrelation and S is the power spectral density of a 2D signal. The operator F2p
denotes the 2D Fourier transform. All 2D autocorrelation functions C**¥) of one z — y slice are calculated
at height z in a single frequency f through

ng{C(z’f)(x,y)} = F2p{Re {H(Z’f) («,y')}} ® conj {Fop{ Re {H(z’f) («,y)}}} - (3.3)
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Figure 3.11: Spatial correlation plot at ¢ = 160°,340° and at § = 110°.  For the wall reflection at
¢ = 160°, the pattern shows an interference of two plane waves, and thus supports the
TWDP fading assumption. For LOS at ¢ = 340°, a spatial correlation pattern is observed to
be dominated by one wave. The white dashed lines illustrate the plane wave phase fronts.
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3.2 Vector-Valued Spatial Measurements

All channel samples are collected in the matrix H. The symbol ® denotes the Hadamard multiplication
while the operator conj{-} denotes complex conjugation. To ensure a real-valued autocorrelation matrix
(instead of a generally complex representation [138]) from the complex-valued channel samples, only the
real parts Re{-} are taken. The spatial autocorrelation of the imaginary parts are identical, and one could
also analyze the magnitude and phase individually. Although the correlation of the magnitude stays
almost at 1, the phase correlation patterns are similar to those of the real part, see [139] for the phase
correlation pattern.

The 2D Fourier transform F5p is realized via a 2D discrete Fourier transform (DFT), which is calculated
by multiplying the DFT matrix D from the left and the right. To mimic a linear convolution using the

DFT, zero padding is necessary. The studied matrix et is hence given as

. (=.f)
FOH _ < Re{H®} 0 ) . 64
0 0

Furthermore, the finite spatial extend of the samples acts as rectangular window, which consequently
leads to a triangular envelope of the autocorrelation function. This windowed spatial correlation is
denoted by
(2.f) H = G )) o
Cindowed = D (DH D) ® conj {DH D} D" . (3.5
The spatial correlation of the rectangular window, which is constructed in accordance with Eq. (3.4), is
then calculated to compensate for the windowing effect. This is expressed as

S:DH(<D< (1; g >D> @conj{D( ﬁ g )D})DH. (3.6)

The matrix 1 denotes the all-ones matrix. Matrix S compensates the truncation effect of the autocorrelation
through element-wise (Hadamard) division, which is denoted by @. Finally, the efficient computation of
the spatial correlation (3.3) reads as

C(ny) = CE\Z;{(i)owed ©8. (37)

Eq. (3.7) is then applied to all (parallel) 2D slices and to all frequencies. All realizations in z and f are

averaged as
9 401

C = %ﬁ Yy e, (3.8)

At a distance of 0.35), the measurement data is still correlated?, and thus the correlation results can
be viewed on the finer, interpolated grid. The chosen interpolation factor is 20, which means that the
spatial correlations are plotted on a grid of 0-35%/20 = 0.0175 distance. Additionally, the one-dimensional
autocorrelation functions, evaluated along « and y, are plotted together with their two-dimensional
representations. Fig. 3.11 illustrates the two spatial correlation plots, which are evaluated at an azimuth
angle of ¢ = 340° and ¢ = 160°. Both plots have an elevation angle of § = 110°. The top part of Fig. 3.11
shows a spatial correlation pattern that is dominated by a single wave. The spatial correlation below
shows an interference pattern, which is intuitively explained by a superposition of two plane waves. The
one-dimensional correlations, which are evaluated either on the z-axis or on the y-axis, also show this
oscillatory behavior.

"More specifially, at 0.35)\ one is left of the first zero of the autocorrelation function
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Figure 3.12: Scatter-plot of the CIRs. The CIRs are plotted as a function of spatial distance, where
As = 0 corresponds to the LOS distance. The spatial resolution (a channel tap) is 15 cm. The
spatial extend of the sampled cube (729 samples) is 2.8\ = 1.4 cm, which is a magnitude
smaller than the spatial resolution. The scatter-plot is evaluated at a wall reflection (¢ = 160°)
and at LOS (¢ = 340°). The mean power is plotted with a continous red line. It can be
observed that the arrival cluster centered at 2.5 m fades very deeply. The gray highlighted
region around 2.5 m is further analyzed in Fig. 3.13.

3.2.3 Time-Gated Fading Results

It needs to be confirmed that the observations are not just mere artifacts of the measurement setup (e.g.,
back-lobes of the horn antenna); thus, the wireless channel is now studied in the time domain. The 2 GHz
wide vector-valued measurements allow for a time resolution of approximately 0.5 ns, which corresponds
to a spatial resolution of 15 cm. The channel impulse response (CIR) is plotted as a function of distance,
namely, the LOS excess length As, that is

h(As) = h((T - TLOS)CO) ) (3.9)

Figure 3.12 displays the scatter-plot (of all sample positions) of the LOS CIRs at ¢ = 340° and the wall
CIRs for ¢ = 160°. The steerable TX is positioned more than 1 m apart from the wall, which translates to
an excess distance of approximately 2-3 m. At this excess distance, a cluster of multipath components is
present. Note that if the horn antenna points toward the wall, the wave emitted by the back-lobe of the
horn antenna is received at zero excess distance. Still, the receive power of the back-lobe is far below the
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Figure 3.13: Violin-plot of the CIR time-gated for the wall reflection. This figure shows a zoom-in view
of the gray highlighted region in Fig. 3.12. In contrast with Fig. 3.12, the y-axis is in linear
scale; thus, the violin plot indicates the distribution at each tap. The marker shows the mean
value. The marker style codes the best-fitting distribution.

components arriving from the wall reflection. Fading is hence determined by the wall scattering behavior.
The gray highlighted region in Fig. 3.12 (bottom part) shows a reflection cluster that corresponds to
the excess distance of the wall reflection. The distributions of each channel tap are represented by a
violin plot in Fig. 3.13. A violin plot illustrates the distribution estimated via Gaussian kernels [140]. As
such, Fig. 3.13 clearly demonstrates that the TWDP-decided distributions have multiple modes. The AIC
decisions are plotted as markers at the mean power levels.
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4 Outdoor Vehicular Measurement Campaign

The initial results of the outdoor measurement campaign have been presented at and subsequently
published in

e Erich Zochmann et al. “Measured Delay and Doppler Profiles of Overtaking Vehicles at 60
GHz”. In: Proc. of the 12th European Conference on Antennas and Propagation (EuCAP). 2018

The results of the preliminary evaluation based on the local scattering function (LSF) has been
presented at and subsequently published in

e Erich Zochmann et al. “Statistical Evaluation of Delay and Doppler Spread in 60 GHz
Vehicle-to-Vehicle Channels During Overtaking”. In: Proc. of IEEE-APS Topical Conference on
Antennas and Propagation in Wireless Communications (APWC). 2018

The simplified model of the parameter evolution has been submitted to

e Erich Zo6chmann, Herbert Groll, and Stefan Pratschner. “A Small-Scale Fading Model for
Overtaking Vehicles in a Millimeter Wave Communication Link”. In: Proc. of IEEE 20th
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).
submitted. 2019

An evaluation based on the proposed methodology in Chapter 2 is published in

e Erich Zochmann et al. “Position-Specific Statistics of 60 GHz Vehicular Channels During
Overtaking”. In: IEEE Access 7 (2019), pp. 14216-14232

In this thesis, a set of 60 GHz V2V channel realizations have been measured to capture the effect of
an overtaking vehicle. The scenario is as follows: two cars are driving along a road, with one behind
the other. Both are keeping a constant distance, and are communicating with each other via a 60 GHz
mmMWave link. A third vehicle overtakes this communicating car platoon, and thus influences the wireless
channel. The extent of the effect depends on the relative position of the overtaking car. Similar results
will be obtained if the car platoon overtakes a vehicle. This experiment in a real-world street environment
is designed to make the experiment as controllable as possible. The wireless link is always in LOS and
unblocked. The vehicular channel data evaluated consists of 30 different measurement runs. The effect of
overtaking cars is observed at excess speeds of up to 13m/s.

At the TX site, a horn antenna with an 18° half-power beam width is used and aligned toward the RX
car. The directive horn antenna filters out reflected MPCs from the surrounding buildings. On the other
hand, a custom-built omnidirectional »/4 monopole antenna is used at the RX site. The RX antenna has
an omnidirectional pattern; thus, the scattered waves from the passing vehicle are not filtered out. This
situation occurs, for example, in directional neighbor discovery [143], in which only one link end applies
beamforming. The RX equipment is put into a static (parked) car, with the RX antenna fixed on the left
rear car window. The TX is approximately 15 m behind the RX car. Single reflections on the TX car do not
occur because of the directivity of the horn antenna, while double reflections involving the TX car are
below the receiver sensitivity. Hence, the TX car is omitted and replaced by a simple tripod mounting.
The TX and RX placement is shown in Fig. 4.1 and Fig. 4.2.

To simplify the measurements, neither the TX nor the RX moves; both are instead kept static, and the
overtaking car is emulated by urban street traffic passing by. As previously indicated, this approach is
valid because the reflections of the houses and other static objects are negligible due to the directivity
of the TX horn antenna. The relative velocity of the overtaking vehicle determines the Doppler shift.
The studied case corresponds to a “moving frame of reference”. Keeping the TX and RX static makes
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Figure 4.1: Bird’s-eye view of the measurement site as scaled sketch. The TX and RX are static. The
overtaking car (green car) is moving relative to the static vehicles at excess speed v. This
models a moving car platoon being overtaken by a single vehicle. The overtaking vehicle is
sketched at a bumper-to-bumper distance of d = 0 m.

Figure 4.2: Measurement site. The TX and RX are static while urban street traffic is passing by. In
this snapshot, the overtaking vehicle (white van) is at a bumper-to-bumper distance of
approximately d = 6 m.
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4.1 Receive Power Fluctuation during Overtaking

the most accurate time and frequency synchronization possible, and it allows for the setup presented
in Sec. 2.2.3 to work. Remember that the frequency synchronization is achieved via a 10 MHz reference
signal distribution to all clocks. Time synchronization is achieved using a marker signal that triggers
the receiver when the sounding signal is transmitted, and a measurement is then triggered once the
overtaking vehicle drives through the first light barrier, which is positioned at dtart.

The results are then evaluated against the relative position of the overtaking car, short the “distance”.
The distance dstart is measured from the rear bumper of the parked receiver car. Meanwhile, the mean
velocity of the overtaking vehicle is estimated through a second light barrier, which is positioned 3m
after the first one. The time At it took for the vehicle to arrive at the second light barrier is measured. By
means of the mean velocity estimate © and the starting point drt, the position of the overtaking vehicle
can be estimated at all time points m to

. 3m
d[m] =v-m Tsnap + dstart = At stnap + dstart (4.1)

where Tynap is the snapshot rate provided in Sec. 2.2.3.

The front bumper of the overtaking vehicle and the rear bumper of the parked receiver car are hence
the reference planes, whereas the distance d is referred to as the “bumper-to-bumper distance”. The range
of interest is marked via meter labels (see the bottom of Fig 4.1).

The memory space at the receiver limits the record time of the 510 MHz broad signal to 720 ms; as such,
the recorded measurements do not necessarily cover all the distances of interest. To cover the distances
shown in Fig. 4.1, the light barriers that trigger the measurements are placed in three different positions.
In other words, dgart is varied. Fig. 4.1 illustrates an exemplary light barrier position for covering larger
distances.

4.1 Receive Power Fluctuation during Overtaking

The channel sounder provides estimates of the time-variant transfer function H[m, g]. The time index is
denoted by m € {0,...,S — 1} and the frequency index is denoted by ¢ € {0,..., K — 1}, where K = 103.
One record of length Tiec = 720 ms consists of S = 5579 snapshots in time. The time-variant CIR h[m, n]
with delay index 7 is obtained via an inverse DFT. Window functions are not applied so that the temporal
resolution will not degrade. This will be important for the data evaluation in Section 4.2.

The CIR h exhibits a sparse structure. Therefore, the median of all samples of 4 is used as the estimator
of the noise floor [144]. All values of the CIR below a threshold that is 6 dB above this noise floor are set
to zero.

Similar to the approach in [87], the large-scale fading is estimated by applying a moving average filter
of length L;. Likewise, it is assumed that the fading process is stationary for a length of L. £ 50\ =
50 - 5mm = 0.25m. “Corresponds to” is symbolized with £. The filter length L; depends on the velocity
of the overtaking vehicles and is always chosen to cover L. and to extend it to the earlier and later time
point by AL = 10 samples [87]. Hence, it calculates to

50

U+ Lsnap

Lf:LC+2AL:{ J+2-10. 4.2)

The floor function is indicated via |-|, and the scenario is dominated by the LOS component. As TX and
RX separation is static, this component will always appear at the same delay tap called nos. Through Eq.
(2.11), the second moment of the LOS tap is estimated, which then enables the strength of the LOS delay
tap to be analyzed relative to all taps. This is expressed as

QM%[m] = SA (h[nros, m], L) - (4.3)
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Figure 4.3: Statistical evaluation of the LOS power variations. (Top) The illustration shows the box
plot of the LOS tap gain relative to the gain of all taps. When cars and SUVs are close to the
RX antenna (d = 1 m), additional MPCs are created, thus decreasing the relative LOS gain. For
trucks, the reverse is true because strong reflections add to the LOS tap. (Middle) The LOS
tap gains increases when trucks overtake unlike in “no vehicle present”. The side walls of
the trucks strongly reflect the impinging waves. When cars and SUVs pass by, the LOS tap is
hardly affected. (Bottom) This denotes the number of samples used for the evaluation above.
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4.2 Small-Scale Fading of the LOS Tap during Overtaking

The delay index ny os is calculated based on the TX - RX distance. The estimate of the time-varying second
moment 2] (of all channel taps) is likewise calculated as

Q[m] = i SA (h[n,m], L) . (4.4)

Both estimates Q"°%[m] and Q[m] are parametrized by the time index m. All time-dependent quantities
are equally well parametrized by the relative position estimate (4.1). With an abuse of notation, for
example, (2 is denoted by

Qld] = Q[d1[d]] - (4.5)

The experiment was conducted for 30 different vehicles, and the results of which became the basis for
the ensemble statistics. The first quantity of interest is the position-specific relative LOS tap gain, that is
QMO5[d] /Qd]. This quantity is evaluated as a box plot on the top panel of Fig. 4.3.

Remember that the evaluation is based on a window size of 50 A = 0.25m length. For the sake of
illustration, the graphs are plotted on a meter-based grid by rounding d to the nearest integer meter value.
In all of the box plots, the bottom and top edges of the box indicate the 25" and 75 percentiles, while
the whiskers show the 5" and 95™ percentiles. All observations outside the whiskers are marked with
crosses. The bottom panel of Fig. 4.3 shows the number of samples obtained for each meter bin.

Observe that the LOS tap captures most of the channel gain and never drops below —4 dB. Cars (in
red) and sport utility vehicles (SUVs) (in green) in Fig. 4.3 show a similar trend. The relative gains of the
LOS tap in both vehicle types increase when the overtaking car is at larger distances d. The additional
MPC due to the overtaking vehicle fades out and the limiting value is reached after d > 5m.

Trucks show a different trend. If a truck is close to the RX, then the relative gain of the LOS tap
increases; but in larger distances, it approaches a lower limiting value. This is intuitively explained by
strong MPCs that are generated on the side wall of trucks. Whenever a truck is “close enough”, these
MPCs are not resolved in the time domain and are binned in the LOS tap.

To further study the abovementioned sidewall reflection effect, the gain increase of the LOS tap against
the distance needs to be analyzed. The gain increase relative to “no-vehicle presence” (indicated as
d — o0) is plotted in the middle panel of Fig. 4.3. Cars and SUVs show no effect. In contrast, overtaking
trucks can potentially boost the LOS gain by more than 10 dB. The median result shows an increase of
approximately 2 dB.

4.2 Small-Scale Fading of the LOS Tap during Overtaking

The section above has discussed that the LOS tap is the dominating factor in the channel gain. Here, the
small-scale fading behavior of the LOS tap is analyzed. To suppress large-scale fading effects, the channel
is normalized by the square root of the estimated second moment, that is

iz[m, nLos] = M. (4.6)

QLOS[m]

CIRs and estimates of the second moment for an overtaking truck are provided; see Fig. 4.4 for a
photograph of the truck and Fig. 4.5 for the LOS channel estimates. Before the small-scale fading
statistics can be studied, note that an oscillation with evolving instantaneous frequency is visible in
Fig. 4.5. These oscillations of the orange curve with time-varying beating frequency are explained by
the change in the Doppler shift as d changes (see Fig. 4.5 for the spectrogram of |h[m,nrog]| — 1). The
Doppler effect of the LOS delay tap proves that this tap consists of at least two contributions, namely, the
static unblocked link from TX to RX and at least one reflection from the moving, overtaking vehicle. In
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Figure 4.4: Webcam snapshot of the exemplary overtaking truck. The truck is at approximately d ~ 5m
at the time of the snapshot.
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Figure 4.5: Result of the post-processing of the LOS tap for the exemplary truck shown in Fig. 4.4. (Top)
The blue curve shows the LOS channel tap h[nios] including large-scale fading. The green,

smooth curve shows the estimated large-scale fading v/ QLOS. The black dashed line is the
estimate of the channel gain without a vehicle present. The orange curve shows the normalized
LOS channel tap h[nyos), that is, the small-scale fading only. The oscillatory behavior stops at
approximately 5 m. (Bottom) Spectrogram of the normalized LOS channel tap (|/A[n10s]| — 1).
The oscillatory behavior is best explained by the two strong, yellow traces in the spectrogram.
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6m5m4m 3m 2m Im Om-Im-2m-3m-4m-5m d=—14m

Figure 4.6: Scaled sketch of the bandwidth ellipse. The LOS tap fades if another object is within the
pink-filled ellipse (semi-minor axis equals 2.1 m). The green car in this figure is sketched such
that it just produces TWDP fading. If the car goes further on, then its reflection will be at the
next channel tap.

the spectrogram, there are many other smaller traces visible in light blue. These traces are approximately
40 dB weaker than the dominiating MPCs. Based on the results in Sec. 2.1.3, these MPCs are considered
as diffuse components. The spectrogram uses a Kaiser window with 256 samples length and shape
parameter o« = 5. The Kaiser window approximates the discrete prolate spheroidal (DPS) sequence
window [145, p. 232 ff.], which will be later extensively used for the Doppler analysis in Section 4.3.
Remember that the TWDP small-scale fading model assumes fading due to the interference of two
strong radio signals and numerous smaller, so-called diffuse signals. In the studied case, the two strong
radio signals are the unblocked LOS and the reflection from an overtaking vehicle, which arrive at the
same delay tap. The measurement bandwidth of BW = 510 MHz allows resolving the MPCs that are
separated by a delay of AT ~ 1/Bw &~ 2ns or a travel distance of As =~ co/sw =~ 60 cm. Every MPC that
is separated at less than these values is not resolved, and are thus interpreted as fading. The Fresnel
ellipsoids for the MPCs arriving at the same time tap (bin) as the component corresponding to LOS is
given by .
BW"
In Fig. 4.6, this ellipse is shown in pink. The green car in Fig. 4.6 shows the maximum distance values

|TLOS — Trent] < 4.7)

(= 4.5m) that an overtaking car produces TWDP fading. Figure 4.6 also shows the half-power beamwidth
of the TX horn. This illustrates that the distance region —4...4 m leads to a reflection that is not much
weaker than the LOS component. Hence, two specular MPCs at the same order of magnitude are expected.
In the region from, —14... — 5m the ellipsoid condition to experience TWDP fading is fulfilled, but
spatial filtering by the horn antenna suppresses the reflected component. By inspecting Fig. 4.5 again, one
can observe that the oscillatory behavior fades out after 5m, as the overtaking truck is a rather short one.

4.2.1 Statistical Analysis Based on AIC

The approach presented in Sec. 2.1.2 is applied to the filtered envelope measurement data of the LOS
delay, that is, r[m] = |iz[m, nros)|- The maximum likelihood estimation (MLE) of the parameter tuple
(K'[m],A[m]) takes all samples within the assumed stationary length of L. £ 50\. MLE is also performed
for the Rician K-factor (A = 0). Taking the data of the exemplary truck (Fig. 4.4 and Fig. 4.5), the
estimated CDFs and their evolution is shown in Fig. 4.7.

The three smallest distances (in Fig. 4.7) show the CDFs where the truck is near the receive antenna.
The fading that occurs is not well explained by a Rician fit, while the proposed TWDP fading model
shows a superior fit. Only in the last example at a distance of 6 m does it clearly fade according to a
Rice distribution. It has been mentioned earlier that TWDP fits must always be better than Rician fits
since the Rician model is a special case of TWDP. However, the TWDP model introduces an additional
parameter, which is generally not desirable. Thus, to select between Rician fading and TWDP fading,
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Figure 4.7: CDF evolution over distance. Again, the data used in this figure is from the example given
in Fig. 4.4 and Fig. 4.5. For distances smaller than 5 m, TWDP fading leads to a superior fit. At
first glance, the Rician model also seems to achieve a good fit, however, the K -factors of both
models are not in the same order of magnitude. Rician fading underestimates the power in
the specular components.
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Figure 4.8: MLE fitted parameter tuple (K, D) for the exemplary truck channel from Fig. 4.5 The Rician
K-factor (blue dashed line) underestimates the power within the specular components. If the
AIC selects TWDP fading, then a red diamond would mark the parameter tuple. If Rician
fading is selected, then a blue circle would be used. The black vertical lines illustrate the
positions evaluated in Fig. 4.7.
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AIC is employed (see Sec. 2.1.2). For the exemplary truck, the fitted parameters and the selected model
are shown in Fig. 4.8. Now, the ensemble statistics of small-scale fading is shown Fig. 4.9. Depending on
the selected model, either the TWDP K -factor or the Rician K -factor is taken for the statistics. For Rician
fits, A is set to zero (A = 0). However, note that meaningful results are obtained only when the model
selection algorithm succeeds. In particular, at very small A-parameters, the AIC would very likely decide
in favor of Rician fading, and hence would bias the resulting A-parameters toward smaller values as
previously discussed in Sec. 2.1.3. The K-factor is smaller if the vehicle is closer to the RX antenna (closer
to the rear bumper of the car). If the vehicle passes the static RX car, the K-factor saturates at higher
values. This means that the LOS tap does not fade any longer. As mentioned above, the vehicle size is
translated to the distance d. In case of longer vehicles such as trucks, it takes longer for the K-factor to
start increasing. SUVs place in between cars and trucks. Next, the A-parameter is in focus. The length of
the vehicle also affects this parameter. TWDP fading occurs, thatis, A > 0, whenever a part of the vehicle
is still close to the RX antenna. The longer the vehicle, the longer this effect is visible. Remember that the
median A value has a slightly negative bias; it is set to zero if the AIC decides in favor of Rician fading.
This explains why the SUV median is zero at 2m, although the A values are spread out; in case of SUVs,
AIC decides for Rician fading more than half of the time.

The AIC model selection decisions are color-coded in the histogram in the bottom panel of Fig. 4.9.
The histogram in lighter shades is identical to the histogram of Figure 4.3. The darker shades show the
number of samples where AIC decided for TWDP fading. Again, looking at the maximum distances
where TWDP fading occurs, the correlation with the vehicle length is visible.

4.2.2 A Simplified Model for the Parameter Evolution

The previous subsection has already established that the length of the vehicle affects the tuple parameters
(K, A). In order to quantify this influence, and the show how the (K, A) tuple evolves, a simple model is
now presented. First of all, note that the data consist only of the TWDP fits now, and model selection
is not applied here. Furthermore, this subsection also uses data at negative distances. These were not
considered initially because there are no data at these distances for trucks. However, the measured data
show a symmetry around d = 0.

A passing vehicle has an effect such that the parameter tuple changes and saturates as the distance
increases; and due to the spatial extend of the vehicle, a smooth transition can be expected. Analogous
to the previous section, the K-factor that appears without a vehicle present is denoted as Ky_,~. This
constant is chosen to be K., = 46 dB since these were the highest observed values. The K-factor
change is modeled through the first-order linear differential equation

OK(d) (Kimoo — K(d))

5 = 5 , K0)=(1—r)Kieo - (4.8)

The parameter ¢ acts as effective length of the overtaking vehicle. The larger ¢ is, the slower the change
of K would be. Furthermore, if there is a large deviation from K4_, ., a vehicle is very close to the RX
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