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Kurzfassung

Diese Arbeit befasst sich mit der Einführung und der Analyse einer neuen Finite Elemente
Methode zur Berechnung von inkompressiblen Strömungen. Im Wesentlichen liegt hierbei
der Fokus auf den linearen inkompressiblen Stokesgleichungen, welche die physikalischen
Zusammenhänge – hergeleitet aus den grundlegenden Newtonschen Gesetzten – zwischen
der Geschwindigkeit des Fluids und dem vorherrschenden Druck(gradienten) wiedergibt.
Während die zugehörige Standard-Varitionsformulierung den Sobolevraum erster Ordnung
als Funktionenraum für die Geschwindigkeit in Betracht zieht, zeigen wir in dieser Arbeit,
dass es auch möglich ist, eine Variationsformulierung zu definieren, die weniger Regularität
an die Geschwindigkeit fordert.

Dazu wird eine formal äquivalente Formulierung der Stokesgleichungen in Betracht gezo-
gen und ein neuer Funktionenraum für den Gradienten der Geschwindigkeit definiert. Die
resultierende Variationsformulierung ist nun wohldefiniert für den Fall, dass die (schwache)
Divergenz der Geschwindigkeit quadratisch integrierbar ist, und nicht, wie es die Standard-
Formulierung verlangt, alle partielle Ableitungen. Wir präsentieren wichtige Eigenschaften
des neu definierten Funktionenraums, wie zum Beispiel die Definition eines stetigen Spur-
operators und die Dichtheit von glatten Funktionen.

Motiviert durch diese neue Formulierung befasst sich der Rest der Arbeit mit der Herlei-
tung und der Analyse einer neuen zugehörigen Finite Elemente Methode. Für die Appro-
ximation der Geschwindigkeit kann nun ein passender konformer Raum gewählt werden,
welcher zur exakten (physikalisch korrekten) Einhaltung der Inkompressibilitätsbedingung
führt. Für die Diskretisierung des Geschwindigkeitsgradienten definieren wir neue ma-
trixwertige Finite Elemente-Basisfunktionen, deren Normal-Tangentialkomponenten stetig
über Elementgrenzen hinweg ist. Wir präsentieren eine ausführliche Stabilitätsanalyse und
beweisen optimale Konvergenzraten des Diskretisierungsfehlers.



Abstract

This work deals with the introduction and the analysis of a new finite element method for
the discretization of incompressible flows. The main focus essentially lies on the discus-
sion of the linear incompressible Stokes equations. These equations describe the physical
behaviour and the relation – derived from the fundamental Newtonian laws – between the
fluid velocity and the pressure (-gradient). Where the standard variational formulation of
the Stokes equations demand a Sobolev regularity of order one for the velocity, we give
an answer to the question if it is possible to define a variational formulation demanding a
weaker regularity property of the velocity.

With respect to a formally equivalent representation of the Stokes equations, we answer
this question by the introduction of a new function space used for the definition of the
gradient of the velocity. The resulting variational formulation is well-posed if we assume
that the divergence of the velocity is square integrable. Thereby, with respect to the
standard formulation, where all partial derivatives have to be square integrable, this is a
reduced regularity property. We present certain properties of the new defined function
space and discuss a proper continuous trace operator and the density of smooth functions.

Motivated by this new variational formulation, we present and analyse a new finite
element method in the rest of this work. For the approximation of the velocity we can now
choose a conforming discrete space. This results in a (physically correct) incompressibility
of the velocity field, thus exact mass conservation is provided. For the approximation of
the gradient of the velocity we define new matrix-valued finite element shape functions,
which are normal-tangential continuous across element interfaces. We present a detailed
stability analysis and prove optimal convergence order of the discretization error.
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1 Introduction

Computational fluid dynamics (CFD) is an ongoing research topic and is widely used in
modern industry. Whereas the principles of fluid motion are well known – in the sense of
the governing equations – a numerical approximation of these equations is needed in order
to satisfy the demands of modern applications. The aim of this thesis is to contribute to
the CFD-community by presenting a new method for the descritization of flow fields. In
particular, the presented results not only provide a new numerical scheme but also allow a
new insight on the mathematical structure of the basic equations.

This thesis considers the unsteady incompressible Stokes equations given by the following
set of partial differential equations

−div(ν∇u) +∇p = f in Ω,

div(u) = 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where u and p are the velocity and the pressure respectively, Ω ⊂ Rd, d = 2 or 3, is
the computational domain, f is an external force and ν is the kinematic viscosity. Note
that we also discuss other types of boundary conditions in this thesis, but for the ease we
now only discuss the simplest case of homogeneous Dirichlet values for the velocity. The
question of solvability and well-posedness of the Stokes equations is well analyzed. In this
work we particularly aim to discuss the existence of solutions only in a weak sense, thus we
seek solutions of variational formulations. With respect to the standard velocity-pressure
setting of the Stokes equations as denoted above, a weak formulation now demands the
spaces as follows. Whereas the pressure only needs to be an element of the space of square
integrable functions with a zero meanvalue, denoted by L2

0(Ω,R), the appropriate velocity
space is given by the (vector-valued) Sobolev space H1

0 (Ω,Rd). Assuming f ∈ L2(Ω,Rd),
the resulting weak formulation is thus given by: find u ∈ H1

0 (Ω,Rd) and p ∈ L2
0(Ω,R) s.t.∫

Ω
ν∇u : ∇v dx−

∫
Ω

div(u)p dx =

∫
Ω
f · v dx ∀v ∈ H1

0 (Ω,Rd),

−
∫

Ω
div(v)q dx = 0 ∀q ∈ L2

0(Ω,R).

(1.2)

This formulation has – especially from the mathematical point of view – a very interesting
structure: it is a saddle point problem. In contrast to standard symmetric and coercive
variational formulations, this makes the solvability analysis very challenging. In particular,
one has to show that the inf-sup condition for the divergence constraint is fulfilled. This
was proven in the famous work of Nečas, see [88], and many subsequent works [18, 19, 15].
To be precise, in the work [88] the author presented a proof for the estimate

‖f‖L2(Ω) ≤ ‖f‖H−1(Ω) + ‖∇f‖H−1(Ω) for all f ∈ L2(Ω,R),

1



1 Introduction

which was later realized to be equivalent to the inf-sup condition of the divergence con-
straint.

Scientists of different fields developed various numerical schemes to approximate the exact
solutions of equations (1.1). The finite element method, which is based on the variational
formulation of the Stokes equations given by (1.2), has shown to be especially well suited for
this problem. Similarly as in the continuous setting, the saddle point structure makes things
complicated: the finite dimensional velocity and pressure spaces need to be compatible, by
means that the corresponding discrete inf-sup condition for the divergence constraint can
not be inherited from the continuous setting and needs to be proven for each method
separately. However, many different stable pairs were found, as for example the famous
Taylor-Hood element, see [116, 53, 85] and its high order extension [20], or the Scott-
Vogelius element, [119]. Beside these conforming methods, many other conforming and
also non-conforming (with respect to the velocity space H1

0 (Ω,Rd)) finite element pairs can
be found, for example in [11, 53, 72, 40].

Talking of non-conforming schemes, we shall particularly discuss discontinuous Galerkin
(DG) methods. Since their introduction by Reed and Hill in [100], DG schemes got popular
for parabolic and second-order elliptic equations, see for example [7, 67, 103], and particu-
larly also for the discretization of flow problems, see for example [113, 108, 54, 29, 31, 30,
35, 71, 8]. Where continuity with respect to H1(Ω,R) is only imposed in a weak sense, it
is this discontinuity that allows to use certain stabilization techniques, which are needed
to attain stable methods in the case of dominating convective forces. For flow fields this
is specifically of interest if we not only consider the Stokes setting, but the Navier-Stokes
case, as it includes the non-linear convection term (u ·∇)u. In recent years, there has been
a growing body of literature particularly discussing DG methods (and also their hybridized
versions), where the discrete velocity space Vh is chosen to be conforming with respect to
H(div,Ω), see for example in the works [30, 31, 29, 80, 81, 76, 77, 49, 51, 101, 109, 74, 73,
38]. In this case, weak conformity with respect to H1(Ω,Rd) only needs to be imposed for
the tangential component of the velocity field as the normal component is continuous. The
motivation of this choice is given by the incompressibility constraint div(u) = 0. Obviously,
H(div)-conformity is tailored to approximate this constraint in a proper sense. To be pre-
cise, using standard (well known) H(div)-conforming finite elements for the approximation
of the velocity, the discrete pressure space can be chosen as Qh = div(Vh). This implies
that weakly divergence free velocity fields are exactly divergence free:∫

Ω
div(vh)qh dx = 0 ∀qh ∈ Qh ⇔ div(vh) = 0. (1.3)

This exact mass conservation property of discrete velocity solutions was identified as a cru-
cial advantage compared to other methods, as it leads to energy stability of discretizations
of the Navier-Stokes equations (using for example an upwind-stabilization for the convec-
tion term), and to pressure robust error estimates in the Stokes setting. The latter property
was first discussed in the literature in [83] and lead to several subsequent works [79, 70, 16,
82, 75] and more. Standard finite element methods for the velocity pressure formulation of
the Stokes equations usually provide a priori estimates for the discrete velocity uh, which

2



1 Introduction

read as

‖u− uh‖H1(Ω) ≤ C
(

inf
vh∈Vh

‖u− vh‖H1(Ω) +
1

ν
inf

qh∈Qh
‖p− qh‖L2(Ω

)
,

where ph is the discrete pressure solution, and C > 0 is a constant independent of ν.
Thus, the velocity error is not only bounded by the best approximation of the velocity
space, but also depends on the approximation properties of the pressure space. Further,
the best approximation of the pressure includes the scaling 1/ν. Assuming that the exact
pressure is not included in the discrete pressure space (thus, the second term is not equal
to zero), this scaling can lead to a bad velocity approximation if the viscosity tends to get
small ν → 0. In the literature this phenomenon is also associated with a property called
poor mass conservation and is inherited from the weak treatment of the incompressibilty
constraint. In contrast to this, H(div)-conformity of the discrete velocity space leads to
exactly divergence free velocity fields, see equation (1.3). This then allows us to derive
error estimates that are independent of the pressure, and thus in particular do not show
the bad behavior as described above if the viscosity ν gets small.

It seems as if H(div)-conformity of the velocity space is the right, or at least a very good,
choice in the discrete setting, rising the question if this might also be an appropriate choice
in the continuous setting. We give an answer to this question by introducing a formally
equivalent formulation of the Stokes equations. Introducing a viscous stress variable σ =
ν∇u, elementary manipulations of the standard Stokes equations yield the mixed form

1

ν
σ −∇u = 0 in Ω,

div(σ)−∇p = −f in Ω,

div(u) = 0 in Ω,

u = 0 on ΓD.

Based on this set of equations it is then possible to derive a variational formulation, where
the proper velocity space is given by H0(div) (including zero normal boundary conditions).
The stability analysis of this new formulation is one of the main issues of this thesis, and
includes the introduction of a new function space for the viscous stress variable σ. As we
aim to require as little regularity as possible, we define this new space as

H(curl div) := {σ ∈ L2(Ω,Rd×d) : div(σ) ∈ H0(div)∗},

which reads as the set of matrix-valued square integrable functions, whose divergence can
continuously act (in the sense of a linear functional) on functions in H0(div). The definition
of this new function space allows a detailed analysis and leads to new findings of the
mathematical structure of the Stokes equations. Motivated by this new continuous setting,
we then aim to define a new discrete variational formulation. Where the approximation
spaces for the velocity space and the pressure space are based on (standard) conforming
finite elements, the approximation of functions in H(curl div) demands the introduction of
a new finite element. Using these elements we then define a discrete method, which we call
the mass conserving mixed stress method (MCS).

3



1 Introduction

Various publications have assessed the numerical treatment of the mixed formulation
above, see for example [47, 48, 45, 62]. In particular, we want to mention the work [46]
where the authors claim that their method locally conserves mass (and momentum). Their
velocity approximation is given by element-wise (with respect to a triangulation) constants
and additional (constant) Lagrange multipliers ûn, ût used for the approximation of the
velocity in normal and tangential direction at element interfaces, respectively. The resulting
velocity solution then provides the property∫

∂T
ûn ds = 0 for all T ∈ Th,

where T is an element of the triangulation Th. The equation above can therefore be
understood as a local conservation of mass as the “netto inflow equals the netto outflow” on
each element boundary. However, the resulting method is not pressure robust as it does not
provide exactly divergence free velocity test functions. In contrast, the schemes presented
in this work lead to exactly divergence free, hence pressure robust, velocity approximations
that have no computational overhead (in the sense of coupling degrees of freedom) and
further provide optimal convergence orders of the finite element error.

1.1 Structure of this thesis

In this thesis we first examine the continuous setting and derive new insights on the math-
ematical structure of the Stokes equations. The later chapters are dedicated to the intro-
duction of new finite element methods. More precisely, this thesis is structured as follows:

• In chapter 2 we derive the governing equations of fluid motion. We follow the standard
procedures known in the literature using the fundamental theorems of Newton given
by the conservation of mass and the conservation of momentum. We discuss the
special case of Newtonian fluids, and conclude with the derivation of the Stokes and
Navier-Stokes equations.

• Chapter 3 introduces the notation that shall be used within this work. We define
several well known function spaces and present the basic theorems proving well-
posedness of variational formulations in an abstract setting.

• Chapter 4 is dedicated to the derivation of a new variational formulation of the Stokes
equations including the definition of the function space H(curl div). In a first step
we provide an equivalent definition and prove that this new function space can be
approximated by smooth functions. Thereby, we can apply standard density argu-
ments to define an appropriate trace operator, which is continuous and surjective
with respect to a corresponding (newly defined) trace space. Based on these findings
we discuss well-posedness of the standard Stokes equations and their symmetric ver-
sion using the theory of saddle point problems. The analysis includes a Korn-type
inequality (for the deviator) that is proven in detail.

• Beside the definition of standard well known finite elements used for the approxima-
tion of the velocity and the pressure solution, chapter 5 is committed to the definition

4



1 Introduction

of new matrix-valued finite elements that shall be used for the approximation of func-
tions in H(curl div). By the definition of a distributional divergence (with respect
to a given triangulation), we motivate the incorporated normal-tangential continuity
of discrete stress functions. We define an appropriate finite element mapping and
present the construction of arbitrary high order basis functions.

• Using these new stress finite elements, we introduce a discrete variational formulation,
in the chapter 6. The analysis of this method is split into several parts. In a first step
we present some norm equivalences that are based on standard scaling arguments
and the structure of the considered finite elements. Based on these results we then
present an inf-sup condition proving discrete stability. We conclude the chapter
with the introduction of several interpolation operators and present an a priori error
analysis proving optimal convergence order of the finite element error. The stability
analysis as well as the error estimates are presented in two different versions: whereas
the first case uses discrete norms inspired by the original standard velocity-pressure
setting of the Stokes equations, the second version uses natural norms with respect
to the new continuous setting derived in chapter 3.

• Chapter 7 discusses the discretization of the symmetric case. As the discrete stress
space is not suited to approximate symmetric matrices, we introduce a new constraint
and impose symmetry only in a weak sense. In order to prove well-posedness, we
present an enrichment of the stress space that is motivated by the work of Stenberg,
see [111]. We present a detailed stability analysis and show optimal convergence of
the finite element errors.

• We conclude the work with chapter 8, in which we present several numerical examples
to validate the findings of the previous chapters.

Some of the presented results have been published in the works [69, 68]. However, in this
thesis we extend these results and add several additional comments.

5



2 The equations of fluid motion

This chapter is devoted to the basic principles of fluid mechanics and the derivation of the
governing equations. We follow the same ideas as provided in standard literature on fluid
dynamics, see [93, 10, 114, 3].

In the following we consider an Euclidean space with the independent three-dimensional
variable x = (x1, x2, x3) and assume that the time t proceeds independently. Using the
unit vectors e1, e2 and e3 along the x1, x2 and x3 axes, respectively, we define the vector
velocity field by

u := u1e1 + u2e2 + u3e3,

with the scalar-valued components u1 = u1(x1, x2, x3, t), u2 = u2(x1, x2, x3, t) and u3 =
u3(x1, x2, x3, t). Similarly, the scalar density field and the scalar pressure is given by ρ :=
ρ(x1, x2, x3, t) and p := p(x1, x2, x3, t). We speak of a two-dimensional flow field, when the
fluid motion is restricted to parallel planes. In this case the the velocity component, which
is perpendicular to the plane is equal to zero at each point. Further, the flow is independent
of deformations that are parallel to the flow. In this work a two dimensional flow is always
considered in the x1-x2 plane, thus the velocity field is given by u := u1e1 +u2e2. Note that
in order to speak of the above defined physical quantities we assumed that the continuum
assumption holds true. This means that the physical quantities of interest of the liquid
contained in a given small volume are imagined to be uniformly distributed over that
volume. We can then also talk about fluid particles at a specific point, when we keep
in mind that this particle is actually sufficiently large to contain enough molecules of the
liquid such that an averaging, for example of the velocity, makes sense.

For the derivation of the governing equations of fluid mechanics we are using the concept
of (finite) control volumes and their associated control surfaces. The main purpose of using
a control volume is to focus the attention on physical events and quantities only in a small
region and its boundary in order to be able to keep track of all effects. We can distinguish
between two different types. A fixed control volume is specified by a given (fixed) location
in space, thus the fluid passes into and out off the volume through the surface. The second
type is called a material control volume. The idea is that the control volume is moving with
the liquid such that the fluid particles stay inside and do not pass the surface. This leads to
two different aspects. A Lagrangian viewpoint focuses on the flow of fluid particles. Each
particle is identified by its initial position at a specific given (start) time. When time passes
all particles move and change their position. This position (trajectory) now is a function
that depends on the original location and the time. Similarly, all other physical quantities
only depend on the initial position and time, thus refer to one specific fluid particle. In
contrast to this, the Eulerian viewpoint deals with fixed points in space. At a given time
we can evaluate physical quantities at each point to retrieve local information on the fluid.

6



2 The equations of fluid motion

In this work we always use the Eulerian viewpoint. The close relation of the two different
viewpoints is given by the substantial derivative

D

Dt
:=

∂

∂t
+ (u · ∇), (2.1)

which can be interpreted as the time rate of change following a fluid particle. It consists of
the local time derivative at a fixed point ∂/∂t and the convective derivative (u · ∇), which
describes the time rate of change induced by the movement of the particle.

2.1 Fundamental laws

2.1.1 The continuity equation

The fundamental physical principle that is considered in this section is the conservation of
mass. To this end, let ω be an arbitrary fixed control volume, hence we assume that it is
not moving with the flow. The principle of mass conservation then reads as

Netto mass flow through the surface ∂ω = time rate of decrease of mass inside ω. (2.2)

In the following we translate (2.2) into an explicit equation including functions and vari-
ables. We first deal with the left hand side of this equation. The mass that is transported
through an infinitesimal small surface area is given by the density times the size of this area
times the velocity that is perpendicular to the surface. Thus, we have, using the Gaussian
theorem,

Netto mass flow through the surface ∂ω :=

∫
∂ω
ρu · n ds =

∫
ω

div(ρu) dx .

The right hand side of (2.2) is given by the negative derivation with respect to time of the
mass inside of ω, thus

time rate of decrease of mass inside ω := − ∂

∂t

∫
ω
ρdx .

Note that the control volume is fixed in time, allowing us to change the order of integration
and differentiation. Combining the last two results then leads to∫

ω

∂ρ

∂t
+ div(ρu) dx = 0.

Taking into account that the control volume ω was arbitrary, the equation inside the integral
has to be fulfilled at each point and so we finally derive the continuity equation given by

∂ρ

∂t
+ div(ρu) = 0. (2.3)

This means that the time rate of change at a specific point equals the negative netto flow
of the mass out of an infinitesimal small volume area (a fluid particle). Before we proceed
with the next chapter we try to give a physical interpretation of (2.3) following one specific
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2 The equations of fluid motion

fluid particle. For this we use the product rule for the second term and use the definition
of the substantial derivative (2.1) to get

Dρ

Dt
= −ρdiv(u).

The left hand side is the time rate of change of the density of one fluid particle as it follows
the flow, and the right hand side is equivalent to the mass per unit volume (the density
ρ) times the expansion rate of the fluid particle. Note that this version of the continuity
equation can also be derived by starting with a material control volume ω(t), which follows
the flow, and using the principle of mass conservation. In fact, there are four equivalent
versions of the continuity equation, which can all be converted into each other. For more
details we refer to [3, chapter 2.5].

2.1.2 The momentum equation

In the following chapter we derive the momentum equation, which is based on Newton’s
second law: The time rate of change of the momentum of a particle is proportional to the
force acting on it. For the derivation we choose a material control volume ω(t), which is
moving with the flow. Then we have, according to Newton’s second law applied on the
fluid seen as a continuum,

time rate of change of momentum of ω(t) = netto forces acting on ω(t). (2.4)

For the computation of the momentum we first focus on the physical effects in the x1-
direction. The product ρu1 is equivalent to the momentum in the direction of e1 per unit
volume,

time rate of change of momentum in x1-direction of ω(t) =
∂

∂t

∫
ω(t)

ρu1 dx .

Using Leibnitz’s theorem to change the order of integration and differentiation (the control
volume depends on time and is moving with velocity u), and using Gauss’s theorem on the
appearing surface integral, we can further write

∂

∂t

∫
ω(t)

ρu1 dx =

∫
ω(t)

∂

∂t
(ρu1) dx+

∫
∂ω(t)

(ρu1)u · n ds =

∫
ω(t)

∂

∂t
(ρu1) + div(ρu1u) dx .

For the right hand side of (2.4) we first consider an example. Imagine a bubble consisting
of oil that is surrounded by water and moves with the flow. There are two different forces
acting on this bubble. Firstly, the gravity acts on each oil particle inside the bubble, and
secondly, there is a force induced by the surrounding water that acts on the surface of the
bubble. Although this is an example of a two-phase flow and many different physical effects
are going to occur, we can apply the same ideas on our material control volume, where we
consider a volume force f and a surface force s. Thus, again restricting on the x1-direction,
we have

net forces in x1-direction acting on ω(t) =

∫
ω(t)

ρf1 dx+

∫
∂ω(t)

s1 ds .
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2 The equations of fluid motion

Note that there is no density included for the boundary forces as the infinitesimal small
areas contain no mass. The same arguments are now also applied to the x2-direction and
the x3-direction. Combining all results we have for f = (f1, f2, f3) and s = (s1, s2, s3) the
equation ∫

ω(t)

∂

∂t
(ρu) + div(ρu⊗ u) dx =

∫
ω(t)

ρf dx+

∫
∂ω(t)

sds . (2.5)

To proceed with our derivation we take a closer look on the idea of the surface force. Let us
go back to our example and assume that the considered material control volume ω(t) is the
oil bubble. Next, imagine that the surrounding water is removed. Then the surface force
s has to be equivalent to the forces that were induced by the surrounding water. Thus,
we could just consider the oil bubble and think of s to be a function depending on the
position and the orientation of the surface. This idea then leads to the introduction of a
stress tensor T such that s = Tn. The derivation of this stress tensor is complicated and
can be found for example in [93, chapter 5.4].

Putting back the surrounding water, we now assume that the bubble is not moving. In
this case the surrounding weight of the water creates a force that presses the oil bubble
together. This is the pressure force p. However, when the surrounding water is moving,
there will not only be a pressure but also some viscous effects. The velocity at the interface
of the bubble has to be continuous, thus the moving, surrounding water creates some
stresses at the surface. This leads to the introduction of the viscous stress tensor τ . These
two different forces are combined by the relation T = −Idp + τ . Using this relation and
the idea of introducing a stress tensor in equation (2.5) leads to∫

ω(t)

∂

∂t
(ρu) + div(ρu⊗ u) dx =

∫
ω(t)

ρf + div(−Idp+ τ) dx,

where we applied Gauss’s theorem for the boundary integral. Similar as in the previous
section this equation has to be fulfilled at each point as the material control volume ω(t)
was arbitrary, leading to

∂

∂t
(ρu) + div(ρu⊗ u) = ρf −∇p+ div(τ). (2.6)

This is not the final form of the momentum equation, however we can not proceed without
making some assumptions about the physical properties of the considered fluid.

2.2 Incompressible Newtonian fluids

Supposing a constant density ρ, the continuity equation (2.3) simplifies to

div(u) = 0. (2.7)

This divergence constraint plays a very important role, especially for numerical simulations.
If the divergence of the velocity is not approximated well enough, this may result in a poor
(numerical) mass conservation and can lead to big discretization errors.
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2 The equations of fluid motion

The second assumption concerns the definition of the stress tensor T and is called New-
ton’s viscosity law. It states that the stress tensor linearly depends on the rate of strain.
This relation, also called constitutive equation, has a big influence on the behaviour of the
fluid. We refer to chapter 6 in [93] for a detailed discussion on this topic. Newton’s viscosity
law – we then speak of a Newtonian fluid – leads to the relation

T = −Idp+ τ with τ = λId div(u) + 2µ ε(u), (2.8)

with the first and second viscosity coefficients λ and µ respectively, and the symmetric
gradient given by

ε(u) =
1

2

(
∇u+ (∇u)T

)
.

Another common assumption considering Newtonian fluids is that they further fulfill the
Stoke’s assumption, which reads as λ = −2/3µ.

2.2.1 The Navier-Stokes equations

Using relation (2.8) and the incompressibility constraint (2.7), we can simplify the diver-
gence of the viscous stress tensor

div(τ) = div

(
2

3
µId div(u) + 2µ ε(u)

)
= div(2µ ε(u)).

The set of partial differential equations given by the momentum equation (2.6) (using the
simplification of the previous step), and the incompressibility constraint (2.7) are called
the incompressible Navier-Stokes equations

∂

∂t
(ρu)− div(2µ ε(u)) + div(ρu⊗ u) +∇p = ρf,

div(u) = 0.

Making the further assumption that the second viscosity µ is constant in space and time
we can use the identity

div(2µ ε(u)) = 2µ div(ε(u)) = µ (∆u+∇ div(u)) = µ∆u.

Dividing by ρ then leads to

∂u

∂t
− ν∆u+ div(u⊗ u) +∇p = f, (2.9a)

div(u) = 0, (2.9b)

with the kinematic viscosity ν := µ/ρ and the scaled pressure (again denoted by p) p := p/ρ.
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2 The equations of fluid motion

2.2.2 Creeping flows - The steady Stokes equations

A import characteristic number in fluid dynamics is the Reynolds number. It is defined by

Re :=
UL

ν
, (2.10)

where U and L are characteristic length and velocity scales. The Reynolds number is
important as it can be interpreted as the ratio between inertia and viscous forces. For
example a very small viscosity (compared to U and L) leads to a high Reynols number.
The friction between fluid particles is then small and the acceleration initiated by inertia
forces dominates. However, in a flow characterized by a small Reynolds number, the viscous
effects are crucial. Such flows are often called creeping flows and are of practical importance.
This has a great impact on the governing equations of fluid motion. Using a dimension
analysis for the case when Re → 0 shows that the nonlinear term in (2.9a) vanishes, thus
div(u⊗u)→ 0. The resulting set of partial equations is called the unsteady Stokes equations.
If we make the further assumption that the flow is steady, thus does not change when time
passes, we get the steady Stokes equations given by

−ν∆u+∇p = f,

div(u) = 0.
(2.11)

These equations are of great interest as they fit in the mathematical concept of a saddle
point problem. Although the full nonlinear setting of the Navier-Stokes equations (2.9) is
generally applied, a proper (numerical) treatment of (2.11) is needed in order to under-
stand the principles and effects that appear. This thesis only focuses on the steady Stokes
equation and presents a new analysis of the mathematical structure of (2.11).

2.2.3 Boundary conditions

For the systems of partial differential equations introduced above we need suitable boundary
conditions. Note that we only consider the steady case. In this work deal with two different
types of boundary conditions. The first one is the case, where the fluid comes in contact
with a wall. Obviously, we require that no fluid is going to pass through the wall. Assuming
the wall moves with velocity uw we impose the condition

u · n = uw · n. (2.12)

This condition only influences the normal component of the velocity, but has no impact
on the tangential velocity. This is mainly due to the different physical effects that are
responsible for the boundary condition. If we think of a wall that comes in contact with
the fluid, a common approach is to consider the wall as a part of the fluid. In chapter 2.1.2
we used a control volume and its surface to determine the forces produced by the fluid from
the outside. Beside the pressure force viscous effects also occurred. Considering a wall,
similar observations can be made. The viscous effects close to the wall create a force that
holds the fluid particles and the wall together. They are, in other words, glued together

u× n = uw × n. (2.13)
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2 The equations of fluid motion

Today this no-slip condition is commonly accepted, although many different approaches
were considered in the past. For a detailed discussion we refer to [93, chapter 6.4]. These
two conditions together are called Dirichlet conditions.

The second type is called a Neumann boundary condition. At this point we do not want
to have a lengthy discussion on the physical interpretation of these conditions and refer to
the literature. A Neumann boundary condition is denoted by

(−Idp+ τ) · n = −P, (2.14)

with an given force P . For more details we refer to [59, chapter 1.2].
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3.1 Preliminaries, basic notations and functional spaces

In the following, we introduce the notation and establish properties of certain Sobolev
spaces that we use throughout this work. For a more detailed discussion on this topic
we refer to [2, 88, 11] and [53]. First, we introduce the notation A ∼ B to indicate that
there exists constants c, C > 0 independent of the mesh size (as defined in chapter 5) h
and the viscosity ν such that cA ≤ B ≤ CA. We also use A . B when there exists a
C > 0 independent of h and ν such that A ≤ CB. In a similar manner we also define the
symbol &.

For the rest of the work let Ω ⊂ Rd, d = 2 or 3, be an open bounded subset such that
the boundary Γ := ∂Ω is either

• smooth, i.e. Γ ∈ C∞,

• or piecewise smooth, i.e. we assume that there exists a (finite) decomposition of
Γ into smooth Lipschitz boundary parts Γi such that Γ =

⋃
i

Γi. Further, for each

component Γi there exists an open Lipschitz domain Ωi ⊂ Rd such that

Ωi ∩ Ω = Γi and Ωi ∩ Ω = ∅,

and Ωi and Ωj have a positive distance for i 6= j. Finally, we assume that the interior
of Ω∪Ω1 ∪ . . . is also a Lipschitz domain. Those are the same assumptions as in [65]
and fit into the setting of [56].

Let Ck(Ω,R) be the function space consisting of real-valued k-times continuously dif-
ferentiable functions on Ω. Then we define D(Ω,R) := C∞0 (Ω,R) as the set of infinitely
differentiable, compactly supported, real-valued functions on Ω and denote by D′(Ω) the
space of distributions. To inidicate vector and matrix-valued functions we include the range
in the notation, thus D(Ω,Rd) := {φ : Ω→ Rd with φi ∈ D(Ω,R)} and D(Ω,Rd×d) := {φ :
Ω → Rd×d with φij ∈ D(Ω,R)} indicate vector and matrix-valued infinitely differentiable,
compactly supported, real-valued functions, respectively. This notation is extended to
other functions spaces as needed. Whereas

L2(Ω,R) := {f :

∫
Ω
|f |2 dx <∞} (3.1)

denotes the space of square integrable functions with the inner product and the norm

(f, g)L2(Ω) :=

∫
Ω
fg dx, ‖f‖2L2(Ω) := (f, f)L2(Ω), ∀f, g ∈ L2(Ω), (3.2)
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3 Variational framework

the spaces L2(Ω,Rd) and L2(Ω,Rd×d) denote its vector and matrix-valued versions. We
also define the closed subspace

L2
0(Ω,R) := {f ∈ L2(Ω,R) :

∫
Ω
f dx = 0}.

At several points in the later chapters we make use of the local L2-norm defined on subsets
ω ⊂ Ω. For a better readability we introduce the following notation

‖ · ‖ω := ‖ · ‖L2(ω).

Certain differential operators have different definitions depending on the context. We
define the “curl” operator by

curl(φ) = (−∂2φ, ∂1φ)T, for φ ∈ D′(Ω,R) and d = 2,

curl(φ) = −∂2φ1 + ∂1φ2, for φ ∈ D′(Ω,R2) and d = 2,

curl(φ) = (∂2φ3 − ∂3φ2, ∂3φ1 − ∂1φ3, ∂1φ2 − ∂2φ1)T for φ ∈ D′(Ω,R3) and d = 3,

where (·)T denotes the transpose and ∂i abbreviates ∂/∂i. Similarly, ∇φ has different
meanings depending on the context and results either in a vector [∇φ]i = ∂iφ for φ ∈
D′(Ω,R) or in a matrix [∇φ]ij = ∂iφj for φ ∈ D′(Ω,Rd). Finally, we denote by div(φ) =∑3

i=1 ∂iφi the standard divergence operator for φ ∈ D′(Ω,Rd) and by [div(φ)]j =
∑3

i=1 ∂iφji
the vector-valued divergence operator applied to φ ∈ D′(Ω,Rd×d).

Let d̃ := d(d− 1)/2 (such that d̃ = 1 and d̃ = 3 for d = 2 and d = 3, respectively). The
standard Sobolev spaces are denoted by

H1(Ω,R) := {u ∈ L2(Ω,R) : ‖∇u‖L2(Ω) <∞},
H1(Ω,Rd) := {u ∈ L2(Ω,Rd) : ‖∇u‖L2(Ω) <∞},
H(div,Ω) := {u ∈ L2(Ω,Rd) : ‖ div(u)‖L2(Ω) <∞},
H(curl,Ω) := {u ∈ L2(Ω,Rd) : ‖ curl(u)‖L2(Ω) <∞},

with the associated norms given by ‖ · ‖H1(Ω), ‖ · ‖H(div,Ω) and ‖ · ‖H(curl,Ω), respectively.
Note that we will not distinguish between the dimension of the ordinary Sobolev space in
the definition of the norm, thus we use ‖ · ‖H1(Ω) as the symbol for the norm on H1(Ω,R)

and H1(Ω,Rd). In the same fashion we also denote the seminorms by | · |H1(Ω), | · |H(div,Ω)

and | · |H(curl,Ω). Sobolev spaces with higher regularity are similarly given by

Hm(Ω,R) := {u ∈ L2(Ω,R) : ‖∇mu‖L2(Ω) <∞},
Hm(Ω,Rd) := {u ∈ L2(Ω,Rd) : ‖∇mu‖L2(Ω) <∞},
Hm(div,Ω) := {u ∈ Hm(Ω,Rd) : ‖ div(u)‖L2(Ω) <∞},
Hm(curl,Ω) := {u ∈ Hm(Ω,Rd) : ‖ curl(u)‖L2(Ω) <∞},

and we use the notation ‖ · ‖Hm(Ω), ‖ · ‖Hm(div,Ω) and ‖ · ‖Hm(curl,Ω) for the corresponding

norms. Note that the Sobolev spaces above can also be defined as the closure of C∞(Ω, ·)
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(for sufficiently smooth boundaries) with the according norms, see for example in [64] for
spaces with more regularity and for the standard spaces [57, 58, 53]. The equivalence of
those definitions is not trivial and goes back to the famous theorem of N. Meyers and J.
Serrin, see [86]. A detailed proof can also be found in the book [44, 2].

We continue with the definition of appropriate Sobolev spaces on the boundary. As we
are also dealing with non-smooth boundaries, we follow the notations and definitions given
in [24] and [84]. In the case of a partially smooth domain and d = 3 we denote by eij the
open edges of Γ. When Γi and Γj are two adjacent faces then eij is the common edge. By
n we denote the piecewise smooth, outward unit normal on Ω. On the edge eij we define
the parallel unit tangential vector by tij . Note that on each Γi, the three vectors given by
ni := n|Γi , tij and ti = tij × ni form an orthonormal basis of R3 and the vectors ti and tij
are an orthonormal basis of the tangential plane. We denote by F(Γi) the set of indices j
such that Γi and Γj have a common edge eij . In two dimensions the tangential vector ti
is simply given by rotating the normal vector by 90 degrees. Further, eij is the common
vertex (and F(Γi) is defined correspondingly). Using the notations from above the space
of square integrable functions on the boundary Γ is denoted by L2(Γ,R). Next, on each
part of the boundary we define the space

H1/2(Γi,R) := C∞(Γi)
‖·‖

H1/2(Γi) ,

with

‖u‖H1/2(Γi)
2 :=

∫
Γi

∫
Γi

|u(x)− u(y)|2
|x− y|d ds(x) ds(y) +

∫
Γi

u2 ds .

Similarly, we define the space H1/2(Γ,R). Using the notation

ui
1/2
= uj at eij ⇔

∫
Γi

∫
Γj

|u(x)− u(y)|2
|x− y|d ds(x) ds(y) <∞,

for ui ∈ H1/2(Γi,R) and uj ∈ H1/2(Γj ,R), there holds

u ∈ H1/2(Γ,R)⇔
{
u ∈ H1/2(Γi,R) ∀i,
u|Γi

1/2
= u|Γj ∀i 6= j s.t. Γi ∩ Γj 6= ∅.

Beside the (equivalently defined) vector-valued functions spaces L2(Γ,Rd), H1/2(Γi,Rd),
H1/2(Γ,Rd), we now further have for d = 3:

L2
t (Γ,Rd) := {u ∈ L2(Γ,Rd) : u · n = 0},

H
1/2
− (Γ,Rd) := {u ∈ L2

t (Γ,Rd) : u|Γi ∈ H1/2(Γi,Rd)},

H
1/2

(Γ,Rd) := {u ∈ H1/2
− (Γ,Rd) : u|Γj · tij

1/2
= u|Γi · tij∀j,∀i ∈ F(Γj)},

H
1/2
⊥ (Γ,Rd) := {u ∈ H1/2

− (Γ,Rd) : u|Γj · tj
1/2
= u|Γi · ti∀i ∈ F(Γj),∀j}.

The compatibility equation u|Γj · tij
1/2
= u|Γi · tij assures “continuity” of the tangential

components across the edge of vector functions in the tangential planes on Γi and Γj .
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Similarly, the compatibility equation u|Γj · tj
1/2
= u|Γi · ti assures “continuity” of the (in

plane) normal component across the edge. The last two function spaces can also be defined

on each Γi separately by H
1/2

(Γi,Rd) := {u|Γi : u ∈ H1/2
(Γ,Rd)}. In two dimensions there

is no equivalent definition of the tangential vector tij , thus we simply set H
1/2

(Γ,Rd) =

H
1/2
− (Γ,Rd).
Next we introduce the following trace operators for smooth functions

γφ := φ|Γ for φ ∈ C1(Ω,R), γnφ := φ|Γ · n for φ ∈ C1(Ω,Rd),
γtφ := φ|Γ × n for φ ∈ C1(Ω,Rd), πtφ := (φ|Γ − (φ|Γ · n)n) for φ ∈ C1(Ω,Rd),

γnnφ := γn(φ|Γn)|Γ for φ ∈ C1(Ω,Rd×d), πntφ := πt(φ|Γn) for φ ∈ C1(Ω,Rd).

Note that in three dimensions there holds πtφ = n× (φ× n)|Γ and that in two dimensions
γt does not exist. In a similar manner we define the corresponding trace operators also on
a part of the boundary symbolizing it with further indices, e.g. the tangential projection
on the boundary Γi is denoted by πt,i. For the ease of notation we omit the symbols of the
corresponding trace operator if it is clear from the context, e.g. where φn, φt represent the
normal part and the tangential projection (with respect to πt) of a vector-valued function.
Similarly, φnn and φnt are the normal-normal and the normal-tangential projection of a
matrix-valued function.

In the following we introduce trace operators for Sobolev spaces. First, recall that γ can
be extended to the Sobolev space H1(Ω,R) such that

γ : H1(Ω,R)→ H1/2(Γ,R),

is a linear, continuous and surjective operator. Keeping this in mind, we omit the notation
including the symbol γ for a better readability. Note that the trace operator allows us to
define an equivalent norm by

‖u‖H1/2(Γ) ∼ inf
φ∈H1(Ω,R)
φ=u on Γ

‖φ‖H1(Ω).

Next, we define the closed subspaces with vanishing trace

H1
0 (Ω,R) := {u ∈ H1(Ω,R) : u = 0 on ∂Ω},

H1
0,Γi(Ω,R) := {u ∈ H1(Ω,R) : u = 0 on ∂Γi},

and similarly the vector-valued versions H1
0 (Ω,Rd) and H1

0,Γi
(Ω,Rd). Note that there holds

a similar density argument

H1
0 (Ω,R) = C∞c (Ω,R)

‖·‖H1(Ω) and H1
0,Γi(Ω,R) = C∞0,Γi(Ω,R)

‖·‖H1(Ω) ,

where C∞0,Γi(Ω, ·) denotes infinitely differentiable functions with compact support on Ω \Γi.
For the definition of further trace operators we first need some dual spaces. We use the
superscript ∗ in the case of a Hilbert space, whereas the dual spaces of the above defined
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Sobolev spaces are simply defined using the well known notation with negative indices.
Thus we have for example

H−1(Ω,R) := [H1
0 (Ω,R)]∗ and H−1

Γi
(Ω,R) := [H1

0,Γi(Ω,R)]∗,

and similarly on the boundary

H−1/2(Γ,R) := [H1/2(Γ,R)]∗.

Further we introduce the following notation: the action of a continuous linear functional
f on an element g belonging to a topological space X is denoted by 〈f, g〉X . We omit the
subscript in 〈·, ·〉 when it is obvious from the context. Then the corresponding dual norms
are defined in the common way, as for example

‖u‖H−1/2(Γ) := sup
v∈H1/2(Γ,R)

〈u, v〉
‖v‖H1/2(Γ)

.

For the Soblev space H(div,Ω) the appropriate trace operator is given by γn such that

γn : H(div,Ω)→ H−1/2(Γ,R),

is a linear, continuous and surjective operator. We define the closed subspaces with van-
ishing normal trace

H0(div,Ω) := {u ∈ H(div,Ω) : 〈u · n, φ〉 = 0 ∀φ ∈ H1(Ω,R)},
H0,Γi(div,Ω) := {u ∈ H(div,Ω) : 〈u · n, φ〉 = 0 ∀φ ∈ H1

0,Γ\Γi
(Ω,R)}.

For the trace operator of H(curl,Ω) we need further (dual) Sobolev spaces with even less
regularity. For this let ∇Γ, divΓ and curlΓ be the corresponding differential operators on
the boundary (see chapter 3.1 in [24]). Then we define

H
−1/2

(divΓ,Γ) := {u ∈ H−1/2
(Γ,Rd) : divΓ(u) ∈ H−1/2(Γ,R)},

H
−1/2
⊥ (curlΓ,Γ) := {u ∈ H−1/2

⊥ (Γ,Rd) : curlΓ(u) ∈ H−1/2(Γ,R)}.

The operators γt and πt can be extended such that

γt :H(curl,Ω)→ H
−1/2

(divΓ,Γ),

πt :H(curl,Ω)→ H
−1/2
⊥ (curlΓ,Γ),

are linear, continuous and surjective operators. Notem that γt and πt can also be applied

to functions in H1(Ω,Rd) such that γt : H1(Ω,Rd) → H
1/2
⊥ (Γ,Rd) and πt : H1(Ω,Rd) →

H
1/2

(Γ,Rd) are linear, continuous and surjective.
Trace operators for Sobolev spaces with higher regularity were also analyzed in the

literature. In the case of Hm(Ω,R) we refer for example to [57, 58]. However, in this work
a special interest lies on the traces of functions in H1(curl,Ω), which were, to the best
knowledge of the author, so far not analyzed in detail. Obviously, as this is a subspace
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3 Variational framework

of H1(Ω,Rd), the above trace operators γ and πt (and γt for d = 3) are all linear and
continuous. Next we proceed similar to chapter 3.1 in [24] to define another trace. To
this end let curlπt,j := πt,j(curl(u)) for all u ∈ H1(curl,Ω), where πt,ju := u − (u · nj)nj
with the unit normal vector nj of the domain Ω on Γj . This yields curlπt,j : H1(curl,Ω)→
H1/2(Γj ,R3). Next we define the operator curlπt as

curlπt : H1(curl,Ω)→ H
1/2
− (Γ,Rd), curlπt(x) = curlπt,j (x) a.e. x ∈ Γj . (3.3)

Then there holds the following identity

curlπt u = πt(curl(u)).

In the case of a smooth boundary the tangential projections πt maps functions from

H1(Ω,Rd) onto H
1/2

(Γ,R3). This also assures the continuity (but not surjectivity!)

curlπt : H1(curl,Ω)→ H
1/2

(Γ,Rd).

In the case of a piecewise smooth boundary we only have that the operator curlπt maps

functions from H1(curl,Ω) onto H
1/2
− (Γi,Rd).

Finally, similarly to the differential operators above, we define the operator skw(·) de-
pending on the context. To this end let φ ∈ D′(Ω,R) and ψ ∈ D′(Ω,R3) then we have

skw(φ) =

(
0 −φ
φ 0

)
, and skw(ψ) =

 0 ψ3 −ψ2

−ψ3 0 ψ1

ψ2 −ψ1 0

 .

For matrix valued functions φ ∈ D′(Ω,Rd×d) we simply skw(φ) = 1
2φ− φT.

Next we introduce an important regular decomposition result for the space H(div,Ω)
including different boundary conditions. The result is well known and can be found for
example in [56]. Note that in the two-dimensional case the result follows from the corre-
sponding decomposition of H(curl,Ω) functions and by the equivalence curl(φ) = ∇⊥φ for
φ ∈ D′(Ω,R).

Theorem 1 (Regular decomposition of H(div)-functions). Let Γi ⊂ Γ be a part of the
boundary Γ defined at the beginning of this chapter. For u ∈ H0,Γi(div,Ω) there exist

functions φ ∈ H1
0,Γi

(Ω,Rd̃) and z ∈ H1
0,Γi

(Ω,Rd) such that

u = curl(φ) + z,

with the stability estimates

‖φ‖H1(Ω) ≤ c‖u‖H(div,Ω) and ‖z‖H1(Ω) ≤ c‖ div(u)‖L2(Ω).

We conclude this section by introducing some important inequalities.

Theorem 2 (Poincaré inequality). Let Ω ⊂ Rd, d = 2 or 3, be an arbitrary bounded and
connected Lipschitz domain with diam(Ω) = 1. For a function u ∈ H1(Ω) there holds

‖u‖2H1(Ω) ≤ cP
(
|u|2H1(Ω) +

(∫
Ω
udx

)2
)
,

where cp only depends on the shape of Ω.
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3 Variational framework

Theorem 3 (Friedrichs inequality). Let Ω ⊂ Rd, d = 2 or 3, be an arbitrary bounded
and connected Lipschitz domain with diam(Ω) = 1. Let ΓD ⊂ ∂Ω be of positive measure
|ΓD| > 0. For functions u ∈ H1

0,ΓD
(Ω) and v ∈ H2

0,ΓD
(Ω) there holds

‖u‖H1(Ω) ≤ cF |u|H1(Ω) and ‖v‖H2(Ω) ≤ cF |v|H2(Ω),

where cF only depends on the shape of Ω.

Theorem 4 (Korn inequality). Let Ω ⊂ Rd, d = 2 or 3, be an arbitrary bounded and
connected Lipschitz domain. For u ∈ H1(Ω,Rd) there holds

‖ε(u)‖2L2(Ω) + ‖u‖2L2(Ω) ≥ ck‖u‖2H1(Ω),

where the constant ck depends on the domain Ω. Now let ΓD ⊂ ∂Ω be of positive measure
|ΓD| > 0, and let u ∈ H1

0,ΓD
(Ω,Rd), then

‖ε(u)‖2L2(Ω) ≥ ck‖∇u‖2L2(Ω).

Proof. For a detailed proof for a smooth boundary we refer to chapter 3.3 in [39], and for
non-smooth boundaries see [15].

3.2 Abstract theory

In this section we discuss the abstract theory of coercive and saddle point problems. We
derive necessary and sufficient conditions yielding existence and uniqueness. For coercive
problems this leads to the theorem of Lax-Milgram. For saddle point problems, often
encountered when applying the method of Lagrangian multipliers, we quote the well known
LBB-condition (named after Olga Alexandrowna Ladyschenskaja, Ivo Babuška and Franco
Brezzi), and Brezzi’s theorem.

Let V be a Hilbert space with the inner product and norm given by (·, ·)V and || · ||V ,
respectively. On the space V we define the bilinear form a : V × V → R and the linear
form F : V → R. We want to solve the problem: Find u ∈ V such that

a(u, v) = F (v) ∀v ∈ V. (3.4)

Theorem 5 (Lax-Milgram). Let V be a Hilbert space and let a : V ×V → R be a symmetric,
continuous and coercive bilinear form, thus there exist constants α and β such that

a(u, v) ≤ β||u||V ||v||V ∀u, v ∈ V,
a(u, u) ≥ α||u||2V ∀u ∈ V.

Then, for every F ∈ V ∗ there exists a unique solution fulfilling (3.4), and there holds the
stability estimate

||u||V ≤
1

α
||F ||V ∗ .
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3 Variational framework

Next, we present the conditions needed to guarantee existence and uniqueness of saddle
point problems. These problems often appear if we deal with mixed finite element methods
and can also be interpreted as a minimization problem with certain constraints. One of
the most famous examples is given by the variational formulation of the steady Stokes
equations (2.11). Again, we focus on a more general setting. Beside the Hilbert space V
we further define the Hilbert space Q with the scalar product (·, ·)Q and the norm || · ||Q.
Further set X := V ×Q and ‖(u, p)‖2X := ‖u‖2V + ‖p‖2Q for all (u, p) ∈ X. Next, we define
the bilinear form b : V ×Q→ R and the bilinear form

B : X ×X → R, B((u, p), (v, q)) := a(u, v) + b(v, p) + b(u, q).

Finally, let G : Q → R be a linear form on Q. Then we have the abstract problem: Find
(u, p) ∈ X such that

B((u, p), (v, q)) = F (v) +G(q) ∀(v, q) ∈ X. (3.5)

Of course, an equivalent formulation is given by: Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v) ∀v ∈ V,
b(u, q) = G(v) ∀q ∈ Q.

There are several different conditions (depending on the structure and the properties of
the system), which lead to existence and uniqueness of solutions of equation 3.5 and equa-
tion 3.6. For a detailed discussion on this topic we refer to chapter 4.2 in [11].

In this work we only consider the case where the bilinear form B (respectively a) is
symmetric. In the famous paper [19], F. Brezzi gives sharp conditions on the bilinear forms
a(·, ·) and b(·, ·) that lead to existence and uniqueness. For this we define the kernel Kb

with respect to the bilinear form b by Kb := {u ∈ V : b(u, q) = 0 ∀q ∈ Q}.
Theorem 6 (Brezzi). Let V and Q be two Hilbert spaces. Let a : V × V → R be a
symmetric and continuous bilinear form, and let b : V × Q → R be a continuous bilinear
form, thus

a(u, v) ≤ c1‖u‖V ‖v‖V ∀u, v ∈ V,
b(u, q) ≤ c2‖u‖V ‖q‖Q ∀u ∈ V,∀q ∈ Q.

Further assume that a(·, ·) is coercive on the kernel Kb

a(u, u) ≥ α‖u‖2V ∀u ∈ Kb,

and that the LBB-condition is fulfilled, thus for all q ∈ Q with q 6= 0 there holds

sup
u∈V
u6=0

b(u, q)

‖u‖V ‖q‖Q
≥ β > 0. (3.6)

Then equation 3.6 has a unique solution and there holds

‖u‖V ≤
1

α
‖F‖V ∗ +

2c1

αβ
‖G‖Q∗ and ‖q‖Q ≤

2c1

αβ
‖F‖V ∗ +

2c2
1

αβ2
‖G‖Q∗ .
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4 A new variational formulation of the Stokes
equations

In the first chapter we introduced a variational formulation of the steady Stokes equations
(2.11) in a velocity pressure setting. This is the most common formulation and was analyzed
in detail over the last decades. The velocity pressure formulation includes the Sobolev
space H1

0 (Ω,Rd) as the corresponding space for the velocity and the space L2
0(Ω,R) for

the pressure (in the case of homogeneous Dirichlet boundary conditions). The goal of this
chapter is to derive a new formulation, which demands less regularity for the velocity space.
For this we introduce a new function space, the H(curl div), and present a detailed analysis.
The derivation of the new method and the introduction of the new function space is based
on the work [55].

Before we start with the derivation of a formally equivalent definition of the Stokes
system we present the problem we consider for the rest of this work, including all different
types of boundary conditions. To keep the problem as generic as possible, we assume that
the boundary Γ can be split into four parts. To this end let ΓD,n,ΓD,t,ΓN,n,ΓN,t ⊂ Γ such
that

ΓD,n ∪ ΓN,n = Γ and ΓD,t ∪ ΓN,t = Γ,

and further assume that either ΓD,n = Γ or ΓD,n ∩ΓD,t 6= ∅. Then, the four different parts
are given by

Γ = (ΓD,n ∩ ΓD,t) ∪ (ΓD,n ∩ ΓN,t) ∪ (ΓD,t ∩ ΓN,n) ∪ (ΓN,n ∩ ΓN,t). (4.1)

For a better understanding we illustrated an example in Figure 4.1. Note however, that we
do not assume that the parts ΓD,n,ΓD,t,ΓN,n and ΓN,t are connected.

+ =
Ω

ΓD,n

ΓN,n

Ω

ΓD,t

ΓN,t

Ω

ΓD,t ∩ ΓD,n

ΓD,t ∩ ΓN,n

Γ
N,t ∩ Γ

N,n

ΓD
,n
∩ ΓN

,t

Figure 4.1: Illustration of the assumed boundary splitting.
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4 A new variational formulation of the Stokes equations

Similar to the natural splitting of the Dirichlet boundary conditions into a normal and a
tangential part as described in section 2.2.3, we can also split the Neumann-like boundary
conditions. To this end note that there holds the identity

Idnt = πt(Idn) = πt(n) = n− (n · n)n = n− n = 0, (4.2)

thus equation (2.14) allows the splitting

−ν(∇u)nn + p = Pn, and − ν(∇u)nt = Pt.

Based on this findings, let f be a given volume force, let gD,n and gD,t be given Dirichlet
boundary values on ΓD,n and ΓD,t, respectively, and similarly let gN,n and gN,t be given
Neumann boundary values on ΓD,n and ΓD,t. Then, we seek for a solution u and p of the
problem

−ν∆u+∇p = f in Ω, (4.3a)

div(u) = 0 in Ω, (4.3b)

un = gD,n on ΓD,n, (4.3c)

ut = gD,t on ΓD,t, (4.3d)

−ν(∇u)nn + p = gN,n on ΓN,n, (4.3e)

−ν(∇u)nt = gN,t on ΓN,t. (4.3f)

Defining the spaces

XD := {u ∈ H1(Ω,Rd) : un = gD,n on ΓD,n, ut = gD,t on ΓD,t},
X0 := {u ∈ H1(Ω,Rd) : un = 0 on ΓD,n, ut = 0 on ΓD,t},

and assuming f ∈ L2(Ω,Rd) and enough regularity of boundary data, the classical varia-
tional formulation of (4.3) then reads as: Find (u, p) in XD × L2(Ω) such that
∫

Ω
ν∇u : ∇v dx−

∫
Ω

div(v)p dx =

∫
Ω
f · v ds−

∫
ΓN,n

gN,nvn ds−
∫

ΓN,t

gN,t · vt ds, ∀v ∈ X0,∫
Ω

div(u)q dx = 0, ∀q ∈ L2(Ω).

(4.4)

Note, that in the case ΓD,n = Γ, the pressure space is exchanged with L2
0(Ω). For existence

and uniqueness of solutions of (4.4) we refer to [18, 19, 15, 88, 43, 53].

4.1 A stress formulation for the Stokes equations

In the following we apply several modifications to the equations (4.3). In a first step we
proceed similarly as in chapter 2 and introduce a new variable for the viscous fluid stress
by σ := ν∇u. Then, equation (4.3a) reformulates to (including a scaling by −1)

div(νσ)−∇p = −f in Ω.
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4 A new variational formulation of the Stokes equations

Next, we use the trace of a matrix tr(τ) :=
∑d

i+1 τii to define the deviatoric part by

dev(τ) := τ − tr(τ)

d
Id.

We observe that due to equation (4.3b) we have the identity

dev(σ) = dev(ν∇u) = ν∇u− ν

d
tr(∇u)Id = ν(∇u− 1

d
div(u)Id) = ν∇u, (4.5)

thus σ actually only represents the deviatoric part of the velocity gradient. Hence, we can
reformulate (4.3) to define the mixed stress formulation of the Stokes equations given by

1

ν
dev(σ)−∇u = 0 in Ω, (4.6a)

div(σ)−∇p = −f in Ω, (4.6b)

div(u) = 0 in Ω, (4.6c)

un = gD,n on ΓD,n, (4.6d)

ut = gD,t on ΓD,t, (4.6e)

−σnn + p = gN,n on ΓN,n, (4.6f)

−σnt = gN,t on ΓN,t. (4.6g)

There are several observations we can make studying the structure of this set of equations.
Whereas formulations (4.6) and (4.3) are formally equivalent, the respective variational
formulations demand a different regularity of the velocity. For the ease of notation we
assume in the following discussion that ΓD,n = ΓD,t = Γ and gD,n = gD,t = 0. Testing
equation (4.3a) with a velocity test function v, integrating over the domain and integrating
by parts leads to the well known bilinear form∫

Ω
ν∇u : ∇v dx,

which also appears in the variational formulation (4.4). As it is well known, the adequate
space for the velocity, such that the above integral is well defined, is given by H1

0 (Ω,Rd). In
a similar manner we proceed with formulation (4.6). To this end we test the first equation
(4.6a) with a stress function τ , integrate over the domain and integrate by parts in the
second integral. As all boundary terms vanish, the second integral then reads as∫

Ω
div(τ) · udx . (4.7)

Including the weak formulation of the divergence constraint (4.6c)∫
Ω

div(u)q dx,

where q is an appropriate pressure test function, we conclude that an appropriate space for
the velocity is given by H0(div,Ω). However, proceeding this way, the reduced regularity
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4 A new variational formulation of the Stokes equations

property of the velocity space was only shifted to the stress space, as well-posedness of the
integral (4.7) demands that the divergence applied to each row of τ has to be in L2(Ω).
This is the motivation to define a new function space that interprets (4.7) in a less regular
setting. The construction of this space is the topic of the next section.

We desire less regularity for the velocity space, because the space H0(div,Ω) seems
to naturally fit the incompressibility constraint, especially in a discrete setting. This is
discussed in more detail in chapter 5. There we see, that it is possible to define the
discrete velocity space conformingly with respect to H0(div,Ω). This then leads to exactly
divergence free velocity approximations eliminating an effect in the literature known as
“poor mass conservation”.

For the rest of this chapter we always assume that ΓD,n = Γ, but we allow the case ΓD,t 6=
Γ, see equation (4.1). This assumption is needed in order to present a rigorous stability
analysis of the variational formulation introduced in section 4.3. The solvability (and
precise definition) in the continuous setting in the case ΓD,n 6= Γ is an open question and is
discussed in the outlook chapter 9. Note however, that above assumption is not applied for
the discrete methods introduced in chapter 6 and 7. In chapter 8 we further present several
numerical examples providing optimal convergence rates including all different types of
boundary conditions as discussed above.

Remark 1. We want to give another motivation why the regularity assumptions div(τ) ∈
L2(Ω,Rd) and u ∈ H(div,Ω) are not optimal. An appropriate discrete conforming ap-
proximation would demand normal continuity of each row of the discrete approximations
τh and of uh. Thus, in the lowest order case and in two dimensions the resulting number
of coupling degrees of freedoms equals 3, and not 2 as it is demanded for example by the
(optimal) method in [81, 76]. Note, that the discrete method introduced in chapter 6 is
optimal with respect to the number of coupling degrees of freedoms.

4.2 The stress space H(curl div)

This section is dedicated to the derivation of a new function space, which is needed to
formulate an appropriate variational formulation of (4.6) as discussed in section 4.1. Our
aim is to reduce the increased regularity of a stress function as it would be needed such
that (4.7) is well-posed. We reduce this regularity by demanding that div(σ) can only
continuously act – in the sense of a linear functional – on functions in H0(div,Ω). Thus,
for given functions σ and v ∈ H0(div,Ω) the term 〈σ, v〉H0(div,Ω) should be well defined. To
this end we introduce the new function space

H(curl div,Ω) := {σ ∈ L2(Ω,Rd×d) : div(σ) ∈ H0(div,Ω)∗}. (4.8)

Obviously, this definition allows us to define a natural norm on H(curl div,Ω) by

‖σ‖2cd : = ‖σ‖2L2(Ω) + ‖ div(σ)‖2H0(div)∗

= ‖σ‖2L2(Ω) +

(
sup

v∈H0(div)

〈div(σ), v〉H0(div)

‖v‖H0(div)

)2

.
(4.9)
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4 A new variational formulation of the Stokes equations

In the following three sections, 4.2.1, 4.2.2 and 4.2.3, we discuss certain properties of the
H(curl div,Ω) space. Based on these findings we then finally introduce a new variational
formulation in section 4.3.

4.2.1 An equivalent definition

In this section we discuss an equivalent definition of the H(curl div,Ω) space. The equiva-
lence is based on proving that the dual space of H0(div) is topologically and algebraically
equivalent to the space

H−1(curl,Ω) := {φ ∈ H−1(Ω,Rd) : curl(φ) ∈ H−1(Ω,Rd̃)}. (4.10)

The proof was first given in [69] and is strongly related to the decomposition of functions
in H0(div), see theorem 1. We start by showing the following lemma.

Lemma 1. Let F ∈ H0(div,Ω)∗ be an arbitrary functional. Then F is also an element of

H−1(curl,Ω) and for all v ∈ H1
0 (Ω,Rd̃) there holds the equivalence

〈curl(F ), v〉
H1

0 (Ω,Rd̃)
= 〈F, curl(v)〉H0(div,Ω).

Proof. For any F ∈ H0(div,Ω)∗, by the Riesz representation theorem, there exists a func-
tion qF ∈ H0(div,Ω) such that for all v ∈ H0(div,Ω) we have

〈F, v〉H0(div,Ω) = (qF , v)L2(Ω) + (div(qF ), div(v))L2(Ω). (4.11)

If we replace v by a function in D(Ω,Rd), we conclude that F is actually the distribution

F = qF − ∇ div(qF ) ∈ H−1(Ω,Rd). This implies that curl(F ) = curl(qF ) ∈ H−1(Ω,Rd̃),
and thus F ∈ H−1(curl,Ω). Now let φ ∈ D(Ω,Rd̃), then we have

〈curl(F ), φ〉
H1

0 (Ω,Rd̃)
= 〈curl(qF ), φ〉

H1
0 (Ω,Rd̃)

= 〈curl(qF ), φ〉D(Ω,Rd̃)
= (qF , curl(φ))L2(Ω).

As smooth functions D(Ω,Rd̃) are dense in H1
0 (Ω,Rd̃) we obtain

〈curl(F ), v〉
H1

0 (Ω,Rd̃)
= (qF , curl(v))L2(Ω)

for all v ∈ H1
0 (Ω,Rd̃). As curl(v) ∈ H0(div,Ω) for v ∈ H1

0 (Ω,Rd̃), we conclude by (4.11).

Using this lemma we can now show the desired equivalence.

Theorem 7. The equality

H0(div,Ω)∗ = H−1(curl,Ω) (4.12)

holds algebraically and topologically.

25
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Proof. In lemma 1 we have already proven that H0(div,Ω)∗ ⊆ H−1(curl,Ω). To show
that H−1(curl,Ω) ⊆ H0(div,Ω)∗, let g ∈ H−1(curl,Ω). Using the regular decomposition,

see theorem 1, we find for each function v ∈ H0(div,Ω) functions φv ∈ H1
0 (Ω,Rd̃) and

zw ∈ H1
0 (Ω,Rd) such that v = curl(φv) + zv and

‖φv‖H1(Ω) . ‖u‖H(div,Ω) and ‖zv‖H1(Ω) . ‖ div(u)‖L2(Ω).

By this stability result we can define the functional G ∈ H0(div,Ω)∗ by

〈G, v〉H0(div,Ω) := 〈curl(g), φv〉H1
0 (Ω,Rd̃)

+ 〈g, zv〉H1
0 (Ω,Rd). (4.13)

Note that by lemma 1 it follows that G is also an element of H−1(curl,Ω). It suffices to
show that G coincides with g as an element of H−1(Ω,Rd) as this then trivially also implies
that they coincide in H−1(curl,Ω). To this end, let w ∈ H1

0 (Ω,Rd). Since H1
0 (Ω,Rd) is con-

tinuously embedded in H0(div,Ω), we have the equality 〈G,w〉H1
0 (Ω,Rd) = 〈G,w〉H0(div,Ω).

Next, as w ∈ H1
0 (Ω,Rd) ⊂ H0(div,Ω), we can also use the regular decomposition for

w. Since both w and zw are in H1
0 (Ω,Rd) the equality w = curl(φw) + zw implies that

curl(φw) ∈ H1
0 (Ω,Rd), thus there is a C > 0 independent of w such that

‖ curl(φw)‖H1(Ω) ≤ C‖w‖H1(Ω). (4.14)

Using this decomposition we have

〈G,w〉H1
0 (Ω,Rd) = 〈curl(g), φw〉H1

0 (Ω,Rd̃)
+ 〈g, zw〉H1

0 (Ω,Rd).

Now let wn ∈ D(Ω,Rd) converge to w in H1
0 (Ω,Rd) as n→∞, and further define the regular

decomposition wn = curl(φwn) + zwn . By the construction of the regular decomposition

components (see e.g., [36]), φwn is an element ofD(Ω,Rd̃).Moreover we have the equivalence

〈curl(g), φwn〉H1
0 (Ω,Rd̃)

= 〈curl(g), φwn〉D(Ω,Rd̃)

= 〈g, curl(φwn)〉D(Ω,Rd) = 〈g, curl(φwn)〉H1
0 (Ω,Rd).

Since curl(g) is in H−1(Ω,Rd), the left-most term converges to 〈curl(g), φw〉H1
0 (Ω,Rd̃)

. The

right-most term must converge to 〈g, curl(φw)〉
H1

0 (Ω,Rd̃)
because equation (4.14) implies

that ‖ curl(φwn − φw)‖H1(Ω) → 0. Thus 〈curl(g), φw〉H1
0 (Ω,Rd̃)

= 〈g, curl(φw)〉H1
0 (Ω,Rd) and

consequently,

〈G,w〉H1
0 (Ω,Rd) = 〈g, curl(φw) + zw〉H1

0 (Ω,Rd) = 〈g, w〉H1
0 (Ω,Rd).

This proves that G = g in H−1(Ω,Rd) and so g ∈ H0(div,Ω)∗.
Finally, we prove that ‖f‖H0(div,Ω)∗ ∼ ‖f‖H−1(curl,Ω), implying equivalence of the result-

ing topologies. Note that by the stability of the regular decomposition and the triangle
inequality we have ‖φv‖H1(Ω) + ‖zv‖H1(Ω) ∼ ‖v‖H(div,Ω). For any f ∈ H0(div,Ω)∗ we then
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have, using the equivalence proven in lemma 1, that

‖f‖H0(div,Ω)∗ = sup
v∈H0(div,Ω)

〈f, v〉H0(div,Ω)

‖v‖H(div,Ω)

∼ sup
φ∈H1

0 (Ω,Rd̃), z∈H1
0 (Ω,Rd)

〈f, curl(φ) + z〉H0(div,Ω)

‖φ‖H1(Ω) + ‖z‖H1(Ω)

= sup
φ∈H1

0 (Ω,Rd̃), z∈H1
0 (Ω,Rd)

〈curl(f), φ〉
H1

0 (Ω,Rd̃)
+ 〈f, z〉H1

0 (Ω,Rd)

‖φ‖H1(Ω) + ‖z‖H1(Ω)

∼ ‖f‖H−1(Ω) + ‖ curl(f)‖H−1(Ω).

Thus, the H0(div,Ω)∗-norm and the H−1(curl,Ω)-norm are equivalent.

By theorem 7 it follows that the requirement div(σ) ∈ H0(div,Ω)∗ is equivalent to
div(σ) ∈ H−1(curl,Ω). As σ is a square integrable matrix-valued function, σ ∈ L2(Ω,Rd×d),
we immediately have that div(σ) ∈ H−1(Ω,Rd). Therefore, the only non-redundant require-

ment emerging from div(σ) ∈ H−1(curl,Ω) is that curl(div(σ)) ∈ H−1(Ω,Rd̃). By this we
have the equivalences

H(curl div,Ω) = {σ ∈ L2(Ω,Rd×d) : curl(div(σ)) ∈ H−1(Ω,Rd̃)}, (4.15)

and

‖σ‖2cd ' ‖σ‖2L2(Ω) +

 sup
v∈H1

0 (Ω,Rd̃)

〈curl(div(σ)), v〉
‖v‖H1(Ω)

2

. (4.16)

Obviously, this equivalent definition was also the motivation for the name of the new
function space H(curl div,Ω).

At this point we want to mention that similar spaces, in the sense of the definition, were
introduced in the works [97, 96, 95, 110]. Therein the authors introduced a function space
for the analysis of the elasticity problem given by symmetric square integrable matrix-
valued functions whose div div is in H−1(Ω,R), thus

H(div div,Ω) := {σ ∈ L2(Ω,Rd×d) : σ = σT,div(div(σ)) ∈ H−1(Ω,R)}.

4.2.2 Density of smooth functions

Density results are well known for standard Sobolev spaces and are used for example
in the definition of appropriate trace operators. One of the first works considering an
approximation by smooth functions is the famous paper of Meyers and Serrin [86].

The main idea is the following: In a first step one constructs a series of smooth functions
with simple mollification techniques. Whereas this idea can be applied without any con-
straints in the interior of the domain, we have to add a shift (mapping) from the boundary
into the interior of the domain, if we want to apply a similar technique at ∂Ω. In order to
prove convergence in the appropriate Sobolev norm one then shows that the convolution
commutes with the according differential operator and that the series converges in L2.
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4 A new variational formulation of the Stokes equations

A classical pullback (at the boundary) works in the case of H1(Ω), but one has to
use appropriate mappings in the case of H(div,Ω) and H(curl,Ω). This was for example
proven in [106] and [42]. In this section we show that smooth functions can also be used to
approximate functions in H(curl div,Ω) by proving that the space C∞(Ω,Rd×d) is dense.
Similar as for standard spaces the proof is based on a convolution, but this time convergence
has to be proven with respect to the norm ‖ · ‖cd.

We start with the introduction of a smooth mapping as it is defined in [42], which is
based on several results from [66]. Due to the assumptions on ∂Ω, see section 3.1, there
exists a vector field j ∈ C∞(Rd,Rd), whose restriction to ∂Ω is globally transversal (has a
zero tangential component) and has an Euclidian norm equal to one, thus (j(x))t = 0 and
||j(x)||l2 = 1 for all x ∈ ∂Ω. Using this smooth function we define the mapping

φε : Rd → Rd, x 7→ x− εj(x).

Applying the function φε on Ω shrinks the domain and each point on the boundary is
moved into the interior by the length ε. Note that one can show (using the uniform cone
property, see pp. 599-600 [66]) that there exists a r > 0 such that φε(Ω) +B(0, εr) ⊂ Ω for
all ε ∈ [0, 1]. Further we have the following properties:

Lemma 2. There holds:

• φε ∈ C∞ for all ε ∈ [0, 1].

• For all l ∈ N there exists a constant c such that ‖Dlφε(x) − Dlx‖∞ ≤ cε for all
ε ∈ [0, 1], where Dl denotes the Fréchet derivative of order l.

• The Jacobian determinant Jε := det(φε)′ converges ‖Jε‖∞ → 1 for ε→ 0.

Proof. For (i) and (ii) we refer to [42]. Point (iii) follows from (ii).

The inverse of the shrinking function φε will enlarge the domain. For this let ε∗ > 0 such
that φε is invertible for all ε ∈ [0, ε∗] and define the inverse φ−ε := (φε)−1 : Rd → Rd.

Lemma 3. There holds:

• φ−ε ∈ C∞.

• For all l ∈ N there exists a constant c such that ‖Dlφ−ε(x) − Dlx‖∞ ≤ cε for all
ε ∈ [0, ε∗].

• J−ε := det(φ−ε)′ converges ‖J−ε‖∞ → 1 for ε→ 0.

Proof. Follows from lemma 2 and the implicit function theorem.

Next, we define the standard mollifier by

ψ(y) :=

{
c exp

(
−1/(1− ‖y‖2l2)

)
for ‖y‖l2 < 1,

0 for ‖y‖l2 ≥ 1,
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4 A new variational formulation of the Stokes equations

with a constant c ∈ R chosen such that
∫
B ψ = 1, and the ball in zero with radius 1 denoted

B := B(0, 1). Using the shrinking function φε and setting F (x) = (φε)′(x), we define for
all ε ∈ [0, 1] the smoothing operator

(Sεσ)(x) :=

∫
B

Ψ(y)J(x)FT(x)σ(φε(x) + (εr)y)F−T(x) dy ∀σ ∈ L2(Ω,Rd×d),

where r > 0 is fixed and chosen as stated above. The function Sεσ reads as the convolution
of σ with the smooth function Ψ(y) including the mapping φε. This allows us to evaluate
the function Sεσ also on the boundary ∂Ω, because φε(x) + (εr)y ∈ Ω for all y ∈ B and all
x ∈ ∂Ω. There holds the following approximation result.

Lemma 4. Let σ ∈ L2(Ω,Rd×d). There holds Sεσ ∈ C∞(Ω,Rd×d) and the approximation
result ‖Sεσ − σ‖L2(Ω) → 0 for ε→ 0.

Proof. The proof follows the same step as the proof of lemma 3.1 in [42]. Let x and z be
two arbitrary points in Ω. Using the transformation rule for integrals we have

(Sεσ)(x)− (Sεσ)(z) .
1

(εr)d

∫
Ω

Ψ(
y − φε(x)

εr
)−Ψ(

y − φε(z)
εr

)σ(y) dy,

where we used that J and F are uniformly bounded and that Ψ is zero outside of B(0, 1).
As Ψ and φε are uniformly Lipschitz continuous, we can bound

Ψ(
y − φε(x)

εr
)−Ψ(

y − φε(z)
εr

) .
1

εr
‖x− z‖l2 ,

and thus |(Sεσ)(x) − (Sεσ)(z)| . 1/(εr)d+1‖σ‖L2(Ω)‖x − z‖l2 from which we conclude
continuity of Sεσ in Ω and the existence of a continuous extension up to the boundary.
Continuing with a partial derivative we have, using the product rule,

∂i(S
εσ)(x) =

∫
B

Ψ(y)J(x)∂iF
T(x)σ(φε(x) + (εr)y)F−T(x) dy

+

∫
B

Ψ(y)J(x)FT(x)∂iσ(φε(x) + (εr)y)F−T(x) dy

+

∫
B

Ψ(y)J(x)FT(x)σ(φε(x) + (εr)y)∂iF
−T(x) dy .

As φε is smooth, the first and the third integral are continuous with respect to x with the
same arguments as above. Using the chain rule we observe that for each component σlm
with 0 ≤ l,m ≤ d we have∫

B
Ψ(y)∂iσlm(φε(x) + (εr)y) dy .

∫
B

Ψ(y)(∇σlm)(φε(x) + (εr)y)∂iφ
ε dy

.
1

εr
∂iφ

ε(x)

∫
B
−∇Ψ(y)σlm(φε(x) + (εr)y) dy .

Because −(εr)−1∂iφ
ε(x)∇Ψ(y) is also a mollifier, we have, using that J and F are uniformly

bounded and the same arguments as above, that ∂i(S
εσ)(x) is continuous. By induction

we conclude that Sεσ ∈ C∞(Ω,Rd×d) and the first statement is proven.
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4 A new variational formulation of the Stokes equations

Similarly, continuity with respect to the L2 norm follows by applying the transformation
and using that J, J−1 and F are uniformly bounded. Let σs ∈ C0,1(Ω,Rd×d) with Liptschitz-
constant L. As

∫
B ψ = 1, we can write

(Sεσs)(x)− σs(x) .
∫
B

Ψ(y)σs(φ
ε(x) + (εr)y) dy−σs(x)

=

∫
B

Ψ(y)σs(φ
ε(x) + (εr)y)− σs(x) dy . εL,

as |σs(φε(x) + (εr)y) − σs(x)| ≤ L|φε(x) + (εr)y − x| . εL. By the density of Lipschitz
functions C0,1(Ω,Rd×d) in L2 we can find for a given σ ∈ L2(Ω,Rd×d) such a smooth
function σs ∈ C0,1(Ω,Rd×d) with ‖σ− σs‖L2(Ω) ≤ δ and ‖σs‖C0,1 ≤ L. Then by the triangle
inequality and the continuity of Sε with respect to the L2 norm we have

‖σ − Sεσ‖L2(Ω) ≤ ‖σ − σs‖L2(Ω) + ‖σs − Sεσs‖L2(Ω) + ‖Sε(σ − σs)‖L2(Ω)

. (1 + ‖Sε‖)δ + εL.

The term on the right side can be made arbitrarily small: first, one chooses δ small enough
resulting in a corresponding function σs with a (potentially great) Lipschitz-constant L,
and then one chooses ε small enough. This concludes the proof.

In the last lemma we have proven that the operator Sε can be used to approximate well
with respect to the L2-norm. This is important as the L2-norm is one part of the introduced
norm ‖·‖cd. The second term is given by the dual norm of div(σ) in H0(div,Ω)∗. Although
we do not generally assume that div(σ) ∈ L2(Ω,Rd) for a σ ∈ H(curl div,Ω), the next
lemma deals with the case where we have this enhanced regularity and shows that in this
case the operator Sε is also suitable to approximate the divergence.

Lemma 5. Let σ ∈ H(curl div,Ω) and assume that div(σ) ∈ L2(Ω,Rd). Then

‖div(Sεσ)− div(σ)‖L2(Ω) → 0 for ε→ 0.

Proof. We present the proof only in the three-dimensional case as the two-dimensional
case follows similarly. For the ease of notation we define for all y ∈ B the mapping
η(x) := φε(x) + (εr)y. Note that there holds η′ = (φε)′ = F . Defining further F̃ := [η−1]′,
we have with x̂ = η(x) the following identities

F (x)−1 = F̃ (η(x)) = F̃ (x̂),

F̃−1(x̂) = F (η−1(x̂)),

J̃(x̂) = 1/J(x),

[F (η−1(x̂))]−T(∇w)(η−1(x̂)) = F̃ (x̂)T(∇w)(η−1(x̂)) = ∇[w(η−1(x̂))].

(4.17)

We use the following notation: For a matrix A(x) let Ai· be the i− th row. Then we define

∇Ai· :=

∂x1Ai1 ∂x2Ai1 ∂x3Ai1
∂x1Ai2 ∂x2Ai2 ∂x3Ai2
∂x1Ai3 ∂x2Ai3 ∂x3Ai3

 ,
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4 A new variational formulation of the Stokes equations

thus we use the same notation of the gradient as for column vectors. Let ϕ ∈ C∞0 (Ω,Rd),
then the weak divergence of σ is given by

〈div(Sεσ), ϕ〉H0(div,Ω) = −
∫

Ω

∫
B

Ψ(y)J(x)F T (x)σ(φε(x) + (εr)y)F−T(x) dy : (∇ϕ)(x) dx .

Next we apply Fubinis theorem to change the order of integration and then apply the
transformation theorem. Together with the identities (4.17) this yields

〈div(Sεσ), ϕ〉H0(div,Ω) = −
∫
B

Ψ(y)

∫
Ω
J(x)F T (x)σ(φε(x) + (εr)y)F−T(x) : (∇ϕ)(x) dx dy

= −
∫
B

Ψ(y)

∫
η(Ω)
F T (η−1(x̂))σ(x̂)F−T(η−1(x̂)) : (∇ϕ)(η−1(x̂)) dx̂ dy

= −
∫
B

Ψ(y)

∫
η(Ω)
F̃−T (x̂)σ(x̂)F̃T(x̂) : (∇ϕ)(η−1(x̂)) dx̂ dy

= −
∫
B

Ψ(y)

∫
η(Ω)
F̃−T (x̂)σ(x̂) : (∇ϕ)(η−1(x̂))F̃ (x̂) dx̂ dy

= −
∫
B

Ψ(y)

∫
η(Ω)
F̃−T (x̂)σ(x̂) : ∇[ϕ(η−1(x̂))] dx̂ dy .

As div(σ) ∈ L2(Ω,Rd), we can integrate by parts. The product rule then yields

〈div(Sεσ), ϕ〉H0(div,Ω) =

∫
B

Ψ(y)

∫
η(Ω)

div(F̃−T (x̂)σ(x̂)) · ϕ(η−1(x̂)) dx̂ dy

=

∫
B

Ψ(y)

∫
η(Ω)

F̃−T (x̂) div(σ(x̂)) · ϕ(η−1(x̂)) dx̂ dy

+

∫
B

Ψ(y)

∫
η(Ω)

∇(F̃−T1· (x̂)) : σ(x̂))

∇(F̃−T2· (x̂)) : σ(x̂))

∇(F̃−T3· (x̂)) : σ(x̂))

 · ϕ(η−1(x̂)) dx̂ dy .

Using (4.17) we can write∇(F̃−T1· (x̂)) : σ(x̂))

∇(F̃−T2· (x̂)) : σ(x̂))

∇(F̃−T3· (x̂)) : σ(x̂))

 =

∇(F T1· (x)) : σ(η(x))
∇(F T2· (x)) : σ(η(x))
∇(F T3· (x)) : σ(η(x))

 .

Thus, again by the transformation rule and Fubinis theorem we have

〈div(Sεσ), ϕ〉H0(div,Ω) =

∫
B

Ψ(y)

∫
Ω
F T (x) div(σ(η(x))) · ϕ(x) dx dy

+

∫
B

Ψ(y)

∫
Ω

∇(F T1· (x)) : σ(η(x))
∇(F T2· (x)) : σ(η(x))
∇(F T3· (x)) : σ(η(x))

 · ϕ(x) dx dy

=

∫
Ω
Sεd1 div(σ) · ϕ(x) dx+

∫
Ω
Sεd2σ · ϕ(x) dx,
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4 A new variational formulation of the Stokes equations

with the new smoothing operators defined by

Sεd1 div(σ) :=

∫
B

Ψ(y)F T (x)(div(σ))(φε(x) + (rε)y) dy,

Sεd2σ :=

∫
B

Ψ(y)

∇(F T1· (x)) : σ(φε(x) + (rε)y)
∇(F T2· (x)) : σ(φε(x) + (rε)y)
∇(F T3· (x)) : σ(φε(x) + (rε)y)

 dy .

Following the same steps as in the proof of lemma 4 one shows that these operators are
continuous and that ‖f −Sεd1f‖L2 → 0 for functions f ∈ L2(Ω,Rd). As div(σ) ∈ L2(Ω,Rd)
and ‖∇(F T (x))‖∞ → 0 (see lemma 2), we conclude

‖ div(Sεσ)− div(σ)‖L2(Ω) = ‖Sεd1 div(σ) + Sεd2σ − div(σ)‖L2(Ω)

≤ ‖Sεd1 div(σ)− div(σ)‖L2(Ω) + ‖Sεd2σ‖L2(Ω)

≤ ‖Sεd1 div(σ)− div(σ)‖L2(Ω) + ‖∇(F T (x))‖∞‖σ‖L2(Ω) → 0.

In contrast to lemma 5, the next lemma considers the case where we do not assume
enhanced regularity of div(σ) but that curl(div(σ)) is the null functional.

Lemma 6. Assume σ ∈ H(curl div,Ω) with curl(div(σ)) = 0 ∈ H−1(Ω,Rd̃) . There holds

‖ curl(div(Sεσ))‖H−1(Ω) → 0.

Proof. We only present the proof in the three-dimensional case, as the two-dimensional
case follows similarly. Note that in two dimensions the curl operator maps slightly different
but yields the same results. With the same steps as in the proof of lemma 5 we have for a
ϕ ∈ C∞0 (Ω,Rd̃)

〈 curl(div(Sεσ)), ϕ〉
H−1(Ω,Rd̃)

= −
∫

Ω

∫
B

Ψ(y)J(x)F T (x)σ(φε(x) + (εr)y)F−T(x) dy : (∇ curl(ϕ))(x) dx

= −
∫
B

Ψ(y)

∫
η(Ω)

F T (η−1(x̂))σ(x̂)F−T(η−1(x̂)) : (∇ curl(ϕ))(η−1(x̂)) dx̂ dy

= −
∫
B

Ψ(y)

∫
η(Ω)

F̃−T (x̂)σ(x̂)F̃T(x̂) : (∇ curl(ϕ))(η−1(x̂)) dx̂ dy .

We continue with estimating the inner integral. Using the chain rule for the curl operator
and the transformation properties (4.17) we get∫

η(Ω)
F̃−T (x̂)σ(x̂)F̃T(x̂) : (∇ curl(ϕ))(η−1(x̂)) dx̂

=

∫
η(Ω)

σ(x̂) : F̃−1(x̂)(∇ curl(ϕ))(η−1(x̂))F̃ (x̂) dx̂

=

∫
η(Ω)

σ(x̂) : F̃−1(x̂)∇[(curl(ϕ))(η−1(x̂))] dx̂
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Using the product rule for the gradient, the integral on the right side can be split into two
integrals which yields∫

η(Ω)
F̃−T (x̂)σ(x̂)F̃T(x̂) : (∇ curl(ϕ))(η−1(x̂)) dx̂

=

∫
η(Ω)

σ(x̂) : ∇[F̃−1(x̂)(curl(ϕ))(η−1(x̂))] dx̂

−
∫
η(Ω)

σ(x̂) :

∇[F̃−1
1· (x̂)]T(curl(ϕ))(η−1(x̂))

∇[F̃−1
2· (x̂)]T(curl(ϕ))(η−1(x̂))

∇[F̃−1
2· (x̂)]T(curl(ϕ))(η−1(x̂))

dx̂.

For the first integral we have by the product rule of the curl operator,∫
η(Ω)

σ(x̂) : ∇[F̃−1(x̂)(curl(ϕ))(η−1(x̂))] dx̂

=

∫
η(Ω)

σ(x̂) : ∇
[
J̃(x̂)

J̃(x̂)
F̃−1(x̂)(curl(ϕ))(η−1(x̂))

]
dx̂

=

∫
η(Ω)

σ(x̂) : ∇
[

1

J̃(x̂)
curl[F̃T(x̂)ϕ(η−1(x̂))]

]
dx̂

=

∫
η(Ω)

σ(x̂) : ∇
[
curl

[
1

J̃(x̂)
F̃T(x̂)ϕ(η−1(x̂))

]]
dx̂

−
∫
η(Ω)

σ(x̂) : ∇
[
∇
(

1

J̃(x̂)

)
× F̃T(x̂)ϕ(η−1(x̂))

]
dx̂ .

Summing up all terms, this yields

〈curl(div(Sεσ)), ϕ〉
H−1(Ω,Rd̃)

= −
∫
B

Ψ(y)(A+B + C) dy,

with

A :=

∫
η(Ω)

σ(x̂) : ∇
[
curl

[
1

J̃(x̂)
F̃T(x̂)ϕ(η−1(x̂))

]]
dx̂,

B := −
∫
η(Ω)

σ(x̂) :

∇[F̃−1
1· (x̂)]T(curl(ϕ))(η−1(x̂))

∇[F̃−1
2· (x̂)]T(curl(ϕ))(η−1(x̂))

∇[F̃−1
2· (x̂)]T(curl(ϕ))(η−1(x̂))

 dx̂,

C := −
∫
η(Ω)

σ(x̂) : ∇
[
∇
(

1

J̃(x̂)

)
× F̃T(x̂)ϕ(η−1(x̂))

]
dx̂ .

As ϕ ∈ C∞0 (Ω) it can be trivially extended by zero on Rd. Further, as η and the boundary
∂Ω is smooth (Lipschitz) it can also be extended such that F̃ (x̂) can be evaluated for
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4 A new variational formulation of the Stokes equations

x̂ ∈ Ω \ η(Ω). By this we have for the first term

−
∫
B

Ψ(y)Ady = −
∫
B

Ψ(y)

∫
η(Ω)

σ(x̂) : ∇
[
curl

[
1

J̃(x̂)
F̃T(x̂)ϕ(η−1(x̂))

]]
dx̂ dy

= −
∫

Ω
σ(x̂) : ∇

[
curl

[∫
B

Ψ(y)
1

J̃(x̂)
F̃T(x̂)ϕ(η−1(x̂)) dy

]]
dx̂ = 0,

where we used that curl(div(σ)) = 0 in H−1(Ω,Rd̃). Using the Cauchy Schwarz inequal-
ity we get with similar arguments and using that ∇F̃ (x̂) = ∇F (η−1(x)) and 1/J̃(x̂) =
J(η−1(x)) the estimates

−
∫
B

Ψ(y)B dy −
∫
B

Ψ(y)C dy

≤ ‖σ‖L2(Ω)‖∇F̃−1‖∞‖ curl(ϕ)‖L2(Ω) + ‖σ‖L2(Ω)‖∇2 1

J̃(x̂)
‖∞‖F̃T‖∞‖ϕ‖L2(Ω)

≤ ‖σ‖L2(Ω)‖∇F‖∞‖ curl(ϕ)‖L2(Ω) + ‖σ‖L2(Ω)‖∇2J(x)‖∞‖ϕ‖L2(Ω).

By the definition of the dual norm this yields

‖ curl(div(Sεσ))‖
H−1(Ω,Rd̃)

= sup
ϕ∈C∞0 (Ω)

〈curl(div(Sεσ)), ϕ〉
‖ϕ‖H1(Ω)

≤ sup
ϕ∈C∞0 (Ω)

‖σ‖L2(Ω)‖∇F‖∞‖ curl(ϕ)‖L2(Ω) + ‖σ‖L2(Ω)‖∇2J(x)‖∞‖ϕ‖L2(Ω)

‖ϕ‖H1(Ω)

≤ ‖σ‖L2(Ω)‖∇F‖∞ + ‖σ‖L2(Ω)‖∇2J‖∞ → 0,

where we used the properties given in lemma 2 in the last step. Using the denisty C∞0 (Ω,Rd̃)
in H1

0 (Ω,Rd̃) we conclude the proof.

The last lemma needed for the final result is a decomposition result for functions in
H(curl div,Ω). The idea is to split a given function into a part with enhanced regularity
and a part whose curl div vanishes.

Lemma 7 (Decomposition). Let σ ∈ H(curl div,Ω) arbitrary. There exist functions σ̃ ∈
H(curl div,Ω) and θ, with θ ∈ H0(curl,Ω) for d = 3 and θ ∈ H1

0 (Ω) for d = 2, such that

σ = skw(θ)− σ̃, and curl(div(σ)) = curl(div(skw(θ))).

Proof. By the definition of the space H(curl div,Ω) we have curl(div(σ)) ∈ H−1(Ω,Rd̃).
We start with the three-dimensional case. In a first step we show that

‖ curl(div(σ))‖H−1(Ω,R3) ' ‖ curl(div(σ))‖H(curl,Ω)∗ .
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4 A new variational formulation of the Stokes equations

For this note that by density of C∞0 (Ω,R3) in H1
0 (Ω,R3) we have

‖ curl(div(σ))‖H−1(Ω,R3) = sup
u∈H1

0 (Ω,R3)

〈curl(div(σ)), u〉
‖u‖H1(Ω)

= sup
ϕ∈C∞0 (Ω,R3)

〈curl(div(σ)), ϕ〉
‖ϕ‖H1(Ω)

≤ sup
ϕ∈C∞0 (Ω,R3)

〈curl(div(σ)), ϕ〉
‖ϕ‖H(curl,Ω)

= ‖ curl(div(σ))‖H(curl,Ω)∗ .

Next, we use for each u ∈ H0(curl,Ω) a regular decomposition, see for example in [63, 94],
thus there exist a ψ ∈ H1

0 (Ω,R) and z ∈ H1
0 (Ω,Rd) such that u = ∇ψ + z and

‖ψ‖H1(Ω) ≤ ‖u‖H(curl,Ω) and ‖z‖H1(Ω) ≤ ‖u‖H(curl,Ω).

By a density argument and integration by parts for the duality pair including ∇ψ this then
yields

‖ curl(div(σ))‖H(curl)∗ = sup
u∈H(curl,Ω)

〈curl(div(σ)), u〉
‖u‖H(curl,Ω)

= sup
ψ∈H1

0 (Ω,R)

z∈H1
0 (Ω,R3)

〈curl(div(σ)),∇ψ + z〉
‖ψ‖H1(Ω) + ‖z‖H1(Ω)

≈ sup
z∈H1

0 (Ω,R3)

〈curl(div(σ)), z〉
‖z‖H1(Ω)

.

Due to the proven norm equivalence curl(div(σ)) is an admissible functional for H0(curl,Ω),
and we can solve the problem: Find θ ∈ H0(curl,Ω)/∇H1

0 (Ω) such that∫
Ω

curl(θ) · curl(ξ) dx = 〈curl(div(σ)), ξ〉 ∀ξ ∈ H0(curl,Ω)/∇H1
0 (Ω).

This problem is solvable applying the Lax-Milgram theorem 5, and a Friedrich-type in-
equality (see [87]). In two-dimensions we similarly solve the problem: Find H1

0 (Ω) such
that ∫

Ω
curl(θ) · curl(ξ) dx = 〈curl(div(σ)), ξ〉 ∀ξ ∈ H1

0 (Ω).

As the curl is just the rotated gradient, solvability is agaim guaranteed by the Lax-Milgram
theorem 5 and the standard Friedrich inequality, theorem 3. In both dimensions we have
that div(skw(θ)) = curl(θ), thus curl(div(σ)) = curl(div(skw(θ))). Defining σ̃ = σ−skw(θ)
concludes the proof.

Theorem 8. The space C∞(Ω,Rd×d) is dense in H(curl div,Ω).

Proof. Choose an arbitrary σ ∈ H(curl div,Ω). For ε → 0, the functions Sεσ define a
sequenc of smooth functions in C∞(Ω,Rd×d), and by lemma 4 we have ‖Sεσ−σ‖L2(Ω) → 0.

Next, we use the decomposition lemma 7 to get a θ̃ := skw(θ) with θ ∈ H0(curl,Ω)
for d = 3 and θ ∈ H1

0 (Ω) for d = 2 and a σ̃ ∈ H(curl div,Ω) such that σ = θ̃ + σ̃ and
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4 A new variational formulation of the Stokes equations

curl(div(σ̃)) = 0. Density arguments then yield

sup
v∈H1

0 (Ω,Rd̃)

〈curl(div(σ))− curl(div(Sεσ)), v〉
‖v‖H1(Ω)

= sup
ϕ∈C∞0 (Ω,Rd̃)

〈curl(div(σ))− curl(div(Sεσ)), ϕ〉
‖ϕ‖H1(Ω)

= sup
ϕ∈C∞0 (Ω,Rd̃)

〈curl(div(θ̃))− curl(div(Sεθ̃)), ϕ〉
‖ϕ‖H1(Ω)

− sup
ϕ∈C∞0 (Ω,Rd̃)

〈curl(div(Sεσ̃)), ϕ〉
‖ϕ‖H1(Ω)

.

As θ̃ is also an element of H(curl div,Ω), lemma 5 yields

sup
ϕ∈C∞0 (Ω,Rd̃)

〈curl(div(θ̃))− curl(div(Sεθ̃)), ϕ〉
‖ϕ‖H1(Ω)

= sup
ϕ∈C∞0 (Ω,Rd̃)

∫
Ω(div(θ̃)− div(Sεθ̃)) · curl(ϕ)

‖ϕ‖H1(Ω)

≤ sup
ϕ∈C∞0 (Ω,Rd̃)

‖ div(θ̃)− div(Sεθ̃)‖L2(Ω)‖ curl(ϕ)‖L2(Ω)

‖ϕ‖H1(Ω)

≤ ‖div(θ̃)− div(Sεθ̃)‖L2(Ω) → 0.

By lemma 6 we further have

sup
ϕ∈C∞0 (Ω,Rd̃)

〈curl(div(Sεσ̃)), ϕ〉
‖ϕ‖H1(Ω)

→ 0.

Using the norm equivalence (4.16) concludes the proof.

The denisty allows us to give another equivalent definition of the H(curl div,Ω) space by

H(curl div,Ω) = C∞(Ω,Rd×d)
‖·‖cd

. (4.18)

4.2.3 A trace space for H(curl div,Ω)

The proven density of smooth functions in the last section is the key ingredient needed for
the definition of an appropriate trace operator for functions in H(curl div,Ω). This is done
in the usual way. First, we define the trace operator for smooth functions, and then we use
a density argument. To this end let Γi ⊆ Γ be an arbitrary subset of the boundary. Then
we define the following spaces

W (Γi) := {w ∈ H1(curl,Ω) : w = 0 on Γ, curlπt w = 0 on Γ \ Γi} for d = 3,

W (Γi) := {w ∈ H2(Ω,R) : w = 0 on Γ, curlπt w = 0 on Γ \ Γi} for d = 2,

where in three dimensions the operator curlπt is defined according to equation (3.3) and in
two dimensions by

curlπt w = πt ◦ (curl(w)) = πt((−∂2w, ∂1w)T).
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4 A new variational formulation of the Stokes equations

Based on this space we then further define the space

TW (Γi) := {curlπtw : w ∈W (Γi)}, with ‖µ‖TW (Γi) := inf
w∈W (Γi)
curlπtw=µ

‖w‖H1(curl,Ω).

As we see in the following, the “normal-tangential” trace of functions in H(curl div,Ω) on Γi
lies in the dual space of TW (Γi). To see this, we choose a smooth function φ ∈ C∞(Ω,Rd×d)
and a function w ∈W (Γi). As curlπt w = 0 on Γ \ Γi, we first have the identity

〈(φ)nt, curlπtw〉TW (Γi) =

∫
Γi

φnt · curlπtw ds =

∫
Γ
φnt · curlπtw ds .

Then, using integration by parts, we can write

〈φnt, curlπtw〉TW (Γi) =

∫
Ω

div(φ) · curl(w) dx+

∫
Ω
φ : ∇ curl(w) dx−

∫
Γ
φnn · (curl(w))n ds

=

∫
Ω

div(φ) · curl(w) dx+

∫
Ω
φ : ∇ curl(w) dx,

(4.19)

where we used the identity (see for example [11])

(curl(w))n = curlt(γtw) = 0,

as all functions w ∈ W (Γi) have a vanishing trace w = 0 on the boundary. Here, curlt is
the curl-operator applied on the tangential plane. Note that this identity and the trivial
property div(curl(w)) = 0 further shows that the function curl(w) belongs to H0(div,Ω).
As smooth functions are dense in H(curl div,Ω) (see section 4.2.2), this allows us to define
the normal-tangential trace operator by

γnt : H(curl div,Ω)→ TW (Γi)
∗,

γnt(σ) := 〈div(σ), curl(w)〉H0(div,Ω) + (σ,∇ curl(w))Ω.
(4.20)

Similarly as for the other trace operators we omit the operator γnt whenever it is clear from
the context. Integrating the first term of the second line of equation (4.19) by parts, we
further see∫

Ω
div(φ) · curl(w) dx+

∫
Ω
φ : ∇ curl(w) dx =

∫
Ω

curl(div(φ)) · w dx+

∫
Ω
φ : ∇ curl(w) dx,

where we used that w vanishes on the boundary. Thus, equivalence (4.15) yields the
integration by parts formula

〈(σ)nt, curlπtw〉TW (Γi) =

∫
Ω
σ : ∇ curl(w) dx+〈curl(div(σ)), w〉H−1(Ω) ∀w ∈W (Γi).

(4.21)

Theorem 9 (Normal-tangential trace). The normal-tangential operator defined by equation
(4.20) is linear, continuous and surjective.
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4 A new variational formulation of the Stokes equations

Proof. The linearity is clear due to the definition. Now let σ ∈ H(curl div,Ω). Then we
have by the definition of the normal-tangential trace

‖σnt‖TW (Γi)∗ = sup
µ∈TW (Γi)

〈σnt, µ〉TW (Γi)

‖µ‖TW (Γi)
≤ sup

w∈W (Γi)

〈σnt, curlπtw〉TW (Γi)

‖w‖H1(curl,Ω)

= sup
w∈W (Γi)

〈div(σ), curl(w)〉H0(div,Ω)

‖w‖H1(curl,Ω)
+ sup
w∈W (Γi)

(σ,∇ curl(w))Ω

‖w‖H1(curl,Ω)
.

Using the Cauchy Schwarz inequality and the definition of the H1(curl)-norm, we can
bound the second term by

sup
w∈W (Γi)

(σ,∇ curl(w))L2(Ω)

‖w‖H1(curl,Ω)
≤ sup

w∈W (Γi)

‖σ‖L2(Ω)‖∇ curl(w)‖L2(Ω)

‖w‖H1(curl,Ω)
≤ ‖σ‖L2(Ω).

Similarly, we have for the first term

sup
w∈W (Γi)

〈div(σ), curl(w)〉H0(div,Ω)

‖w‖H1(curl,Ω)
≤ sup

w∈W (Γi)

‖ div(σ)‖H0(div,Ω)∗‖ curl(w)‖H(div,Ω)

‖w‖H1(curl,Ω)
.

As ‖ curl(w)‖H(div,Ω) = ‖ curl(w)‖L2(Ω) ≤ ‖w‖H1(curl,Ω), we conclude

‖σnt‖TW (Γi)∗ ≤ ‖div(σ)‖H0(div,Ω)∗ + ‖σ‖L2(Ω) ≤ ‖σ‖cd.

Now let g ∈ TW (Γi)
∗. We solve the following problem:

− curl(div(∇ curl(w̃)))−∆w̃ + w̃ = 0 in Ω,

w̃ = 0 on Γ,

curlπtw̃ = 0 on Γ \ Γi,

(∇ curl(w̃))nt = g on Γi.

The variational formulation of this problem reads as: Find w̃ ∈W (Γi) such that∫
Ω
∇ curl(w̃) : ∇ curl(ṽ) +∇w̃ : ∇ṽ + w̃ · ṽ dx = 〈g, curlπt ṽ〉TW (Γi), ∀ṽ ∈W (Γi).

Due to the theory provided by Lax-Milgram, see theorem 5, this problem is solvable as the
right hand side is an admissible functional and the bilinearform on the left is (trivially)
coercive with respect to the H1(curl)-norm. Further, the solution fulfills the stability
estimate

‖w̃‖H1(curl,Ω) ≤ ‖g‖TW (Γi).

Now set σ = ∇ curl(w̃). In the following we show that σ ∈ H(curl div) and σnt = g in
TW (Γi)

∗. By the above stability estimate, we first have

‖σ‖L2(Ω) = ‖∇ curl(w̃)‖L2(Ω) ≤ ‖w̃‖H1(curl,Ω) ≤ ‖g‖TW (Γ),
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4 A new variational formulation of the Stokes equations

thus σ ∈ L2(Ω,Rd×d). Next, let φ ∈ C∞0 (Ω,Rd̃). By the definition of the distributional
curl div, and as φ is an admissible test function of the variational formulation above we
have

〈curl(div(σ)), φ〉
H1

0 (Ω,Rd̃)
= −

∫
Ω
σ : ∇ curl(φ) dx =

∫
Ω
∇w̃ : ∇φ dx+

∫
Ω
w̃ · φ dx

. ‖w̃‖H1(curl,Ω)‖φ‖H1(Ω),

(4.22)

thus by a density argument

‖ curl(div(σ))‖
H−1(Ω,Rd̃)

= sup
u∈H1

0 (Ω,Rd̃)

〈curl(div(σ)), u〉
H1

0 (Ω,Rd̃)

‖u‖H1(Ω)

. sup
u∈H1

0 (Ω,Rd̃)

‖w̃‖H1(curl,Ω)‖u‖H1(Ω)

‖u‖H1(Ω)
≤ ‖g‖TW (Γi).

By equation (4.16), we conclude that σ ∈ H(curl div,Ω). This allows us to apply the
normal tangential trace. Then, the integration by parts formula (4.21) and the equality
given by the first line of (4.22) shows that we have for all w̃ ∈W (Γi) the identity

〈(σ)nt, curlπt ṽ〉TW (Γi) =

∫
Ω
σ : ∇ curl(w) dx+〈curl(div(σ)), w〉H−1(Ω)

=

∫
Ω
σ : ∇ curl(w) dx+

∫
Ω
∇w̃ : ∇ṽ dx+

∫
Ω
w̃ · ṽ dx

= 〈g, curlπt ṽ〉TW (Γi).

By the above results we conclude that the normal-tangential trace operator is surjective
and continuous.

Using these trace operators it is now possible to define subspaces of H(curl div,Ω) in-
cluding certain boundary conditions. This is needed in the definition of the variational
formulation in the next section.

4.3 The MCS formulation

By the definition of the new function space we are now able to derive a new variational
formulation of the system (4.6). We start by the introduction of the velocity space. As
denoted at the beginning of this chapter our aim is to define a variational formulation
demanding less regularity. To this end we define the space

V := H0(div,Ω),

thus in contrast to the standard velocity-pressure formulation we do not aim for the velocity
space H1

0 (Ω,Rd), but only demand that the divergence is square integrable. Note that this
(reduced) regularity property still allows us to consider normal traces of velocities in V . By
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4 A new variational formulation of the Stokes equations

this we can incorporate the Dirichlet boundary conditions (4.6d) as an essential boundary
condition in the space V , so we further define

VD := {v ∈ H(div,Ω) : vn = gD,n on Γ}.

The tangential velocity gD,t on ΓD,t will be given as a natural boundary condition. Finally,
we further define the subset of divergence free velocities by

V 0 := {v ∈ H(div,Ω) : div(v) = 0}.

The appropriate space for the pressure is given by the set of square integrable functions.
Note that we have to assume a zero mean value (for the uniqueness of the pressure) as we
assumed that ΓD,n = Γ, thus we set

Q := L2
0(Ω).

Finally, we define the stress space with a homogeneous normal-tangential trace on ΓN,t as

Σ := {σ ∈ H(curl div,Ω) : tr(σ) = 0, σnt = 0 on ΓN,t}. (4.23)

By the findings of section 4.2.3, the normal-tangential trace is continuous, thus Σ is a
closed subspace of H(curl div,Ω). The property tr(σ) = 0 is motivated by the equivalence
(4.5), hence as σ only approximates the deviatoric part of ∇u it can be chosen such that
the matrix trace equals zero. Similarly as for the velocity space, one part of the Neumann
boundary conditions can be incorporated as an essential boundary condition. To this end
we define the space

ΣN := {σ ∈ H(curl div,Ω) : tr(σ) = 0, σnt = gN,t on ΓN,t}.

Based on these function spaces we can now derive a new variational formulation using
the standard approach. Multiplying (4.6c) with a test function q ∈ Q and integrating over
the domain Ω, we obtain the familiar weak incompressibility constraint∫

Ω
div(u)q dx = 0. (4.24)

Next, we test equation (4.6a) with a test function τ ∈ Σ and integrate over the domain Ω.
Assuming enhanced regularity of the exact solution u, a density argument shows that we
can write ∫

Ω
τ : ∇udx = 〈div(τ), u〉V − 〈τnt, gD,t〉TW (ΓD,t),

where we used that un = 0 on ΓD,n and τnt = 0 on ΓN,t. Thus, we get the equation∫
Ω

1

ν
σ : τ dx+〈div(τ), u〉V = 〈τnt, gD,t〉TW (ΓD,t). (4.25)
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4 A new variational formulation of the Stokes equations

Finally, we also test equation (4.6b) with a test function v ∈ V , and integrate over the
domain and by parts in the term including the pressure. This yields

〈div(σ), u〉V +

∫
Ω

div(v)p dx = −
∫

Ω
f · v dx .

Now assume a given f ∈ V ∗ and gD,t ∈ TW (ΓD,t). Further assume the increased regularity
of the essential boundary data gD,n ∈ [H1/2(ΓD)]n and gN,t ∈ [H−1/2(ΓN ,Rd)]t. The mass
conserving mixed stress formulation (MCS) now reads as: Find (σ, u, p) ∈ ΣN × VD × Q
such that

∫
Ω

1

ν
σ : τ dx+〈div(τ), u〉V = 〈τnt, gD,t〉TW (ΓD,t) for all τ ∈ Σ,

〈div(σ), v〉V +

∫
Ω

div(v)p dx = −〈f, v〉V for all v ∈ V,∫
Ω

div(u)q dx = 0 for all q ∈ Q.

(4.26)

In the following we check if the exact solution (σ, u, p) of the system (4.26), assuming
enough regularity, fulfills the boundary conditions (4.3c),(4.3d) and (4.3f). Incorporated as
essential boundary conditions into the spaces VD and ΣN , we already have

un = gD,n and σnt = gN,t,

on Γ and ΓN,t, respectively. In the following we assume enough regularity of the given right
hand side. The second line of (4.26) then reads as∫

Ω
div(σ) · v dx+

∫
Ω

div(v)p dx = −
∫

Ω
f · v dx .

Using integration by parts for the third term we have, as vn = 0 on Γ,∫
Ω

div(σ) · v dx−
∫

Ω
v · ∇p dx+

∫
ΓN

pvn = −
∫

Ω
f · v dx .

Choosing test functions with a compact support in Ω we conclude that in the volume we
have div(σ)−∇p = −f . In the same manner we proceed with the first equation of (4.26).
Using integration by parts for the volume integral we have∫

Ω

1

ν
σ : τ dx−

∫
Ω
τ : ∇udx+

∫
Γ
τn · uds =

∫
ΓD

τnt · gD,t ds .

Splitting the third integral into a normal-normal part and a normal-tangential part, thus∫
Γ
τn · uds =

∫
Γ
τnnun ds+

∫
Γ
τnt · ut ds,

and using u ∈ VD and τ ∈ Σ we have∫
Ω

1

ν
σ : τ dx−

∫
Ω
τ : ∇udx+

∫
ΓD

τnt · ut ds =

∫
ΓD

τnt · gD,t ds .
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4 A new variational formulation of the Stokes equations

With the same arguments as above we conclude σ = ν∇u in the volume and ut = gD,t on
the boundary.

We want to make a final comment on the increased regularity of the essential boundary
data. As usual, in the case of non-homogeneous essential boundary conditions, one solves
equations (4.26) using a homogenization step, thus one splits the solutions into two parts

u = u0 + ug with u0 ∈ V, ug ∈ VD,
σ = σ0 + σg with σ0 ∈ Σ, σg ∈ ΣN ,

where ug and σg are found using the surjectivity of the trace operators. In particular, due to
the increased regularity of the essential boundary data, one finds functions ug ∈ H1(Ω,Rd)
and σg ∈ [H(div,Ω)]d such that

(ug)n = gD,n on ΓD,n and (σg)nt = gN,t on ΓN,t.

To find the homogeneous solutions we then solve the problem: Find (σ0, u0, p) ∈ Σ×V ×Q
such that

∫
Ω

1

ν
σ : τ dx+〈div(τ), u〉V = 〈τnt, gD,t〉TW (ΓD) − 〈div(τ), ug〉V ∀τ ∈ Σ,

〈div(σ), v〉V +

∫
Ω

div(v)p dx = −〈f, v〉V − 〈div(σg), v〉V ∀v ∈ V,∫
Ω

div(u)q dx = 0 ∀q ∈ Q.

Note that the terms 〈div(τ), ug〉V and 〈div(σg), v〉V are well defined, as the increased reg-
ularity of ug and σg yields that the duality pairs can be written as

〈div(τ), ug〉V = −
∫

Ω
τ : ∇ug dx, and 〈div(σg), v〉V =

∫
Ω

div(σg) · v dx .

If we would only assume gD,n ∈ H−1/2(ΓD) and gN,t ∈ [TW (ΓN )]∗, the surjectivity of the
trace operators would imply ug ∈ H(div,Ω) and σg ∈ H(curl div,Ω), thus the duality pairs
above would not be well defined, and a homogenization process would not be possible.

4.3.1 Stability analysis

In this section we present a detailed stability analysis of the mass conserving mixed stress
formulation given by the set of equations (4.26). Analyzing the structure of the left hand
side, we realize that the resulting system is a saddle point problem where σ and p are
the primal variable, and u is the dual variable. Similarly as in the mixed formulation of
a Poisson problem, the role of the variables switched, as in the classical velocity-pressure
formulation of the Stokes equations the velocity u is the primal variable and the pressure
p is the dual variable. In order to show stability we aim to use the theory of saddle point
problems as discussed in section 3.2. As usual, we only consider the case of homogeneous
essential boundary values of the normal component un and the normal-tangential trace σnt
on Γ and ΓN,t, respectively. The case of non-homogeneous essential values follows again by
homogenization.
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4 A new variational formulation of the Stokes equations

In the set of equations (4.26) we identify the following bilinear forms. In the top left we
have the L2-inner product of the primal variable σ with a test function τ , thus we define

a : L2(Ω,Rd×d)× L2(Ω,Rd×d)→ R,

a(σ, τ) :=

∫
Ω

1

ν
σ : τ dx .

(4.27)

Note, that although the bilinear form a is continuous with respect to the L2-norm on
L2(Ω,Rd×d), for functions σ, τ ∈ Σ it is equivalent to

a(σ, τ) =

∫
Ω

1

ν
dev(σ) : dev(τ) dx .

The next bilinear form is given by the incompressibility constraint (4.24)
b1 : H(div,Ω)× L2(Ω,R)→ R,

b1(u, q) :=

∫
Ω

div(u)q dx .
(4.28)

Finally, we have the divergence constraint for the stress variable σ. As discussed above,
the velocity u is now a dual variable, and can be interpreted as a Lagrange multiplier to
enforce the constraint on σ. We define{

b2 : H(curl div,Ω)×H0(div,Ω)→ R,
b2(σ, u) := 〈div(σ), u〉H0(div,Ω).

(4.29)

Adding up both constraints we further define the bilinear form{
b : H(curl div,Ω)× L2(Ω,R)×H0(div,Ω)→ R,
b(σ, q;u) := b1(u, q) + b2(σ, q),

(4.30)

and the corresponding kernel

Kb := {(σ, p) ∈ Σ×Q : b(σ, q;u) = 0 for all u ∈ V }. (4.31)

Beside the bilinear forms we define for all σ ∈ Σ, u ∈ V and q ∈ Q the following norms

‖σ‖Σ := ‖σ‖cd, ‖u‖V := ‖u‖H(div,Ω), ‖q‖Q := ‖q‖L2(Ω).

The first result shows that the introduced bilinear forms are all continuous.

Lemma 8 (Continuity). The bilinear forms a, b1 and b2 are continuous:

a(σ, τ) .
1√
ν
‖σ‖Σ

1√
ν
‖τ‖Σ ∀σ, τ ∈ Σ,

b1(u, q) . ‖u‖V ‖q‖Q ∀u ∈ Q, q ∈ Q,
b2(σ, u) . ‖σ‖Σ‖u‖V ∀σ ∈ Σ, u ∈ V.
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Proof. The continuity of a and b1 follows with a Cauchy Schwarz argument for the appear-
ing integrals. For b2 it follows by the continuity of the duality pair with the corresponding
norms and ‖ div(σ)‖V ∗ ≤ ‖σ‖Σ.

We continue with proving that the bilinear form a is coercive on the kernel.

Lemma 9 (Coercivity on the kernel). The bilinearform a is coercive on the kernel Kb

1

ν
(‖σ‖Σ + ‖p‖Q)2 . a(σ, σ) for all (σ, p) ∈ Kb.

Proof. Let (σ, p) ∈ Kb be arbitrary. Using the Stokes-LBB, lemma 4.9 in [43], we find a
function u ∈ H1

0 (Ω,Rd) ⊂ V such that div(u) = p and ‖u‖H1(Ω) ≤ ‖p‖Q. Thus, we can
bound

‖p‖Q ≤
(div(u), p)Ω

‖u‖H1(Ω)
≤ sup

v∈H1
0 (Ω,Rd)

(div(v), p)Ω

‖v‖H1(Ω)

= sup
v∈H1

0 (Ω,Rd)

〈div(σ), v〉V
‖v‖H1(Ω)

= sup
v∈H1

0 (Ω,Rd)

(σ,∇u)

‖v‖H1(Ω)
≤ ‖σ‖L2(Ω).

Similarly, we further have

sup
v∈V

〈div(σ), v〉V
‖v‖V

= sup
v∈V

(div(v), p)Ω

‖v‖V
≤ ‖p‖Q ≤ ‖σ‖L2(Ω).

This yields for all (σ, p) ∈ Kb that (‖σ‖Σ + ‖p‖Q) ≤ νa(σ, σ). A division by ν gives the
desired result.

Lemma 10. For all u ∈ V there exists a function q ∈ Q such that

b1(u, q) & ‖ div(u)‖2L2(Ω) and ‖q‖Q . ‖u‖V .

Proof. This follows immediately by choosing q := div(u). This is an admissible choice as∫
Ω

div(u) dx =

∫
Γ
un ds = 0,

thus q ∈ Q. Now we have

b1(u, q) =

∫
Ω

div(u)q dx = ‖ div(u)‖2L2(Ω),

and trivially ‖q‖Q = ‖ div(u)‖L2(Ω) ≤ ‖u‖V .

To prove a similar inf-sup stability result for the bilinear form b2, we are going to solve
a symmetric auxiliary problem on the subspace H1(Ω,Rd) ∩ V . In order to solve this
auxiliary problem we need to show that it is well-posed and solvable. The next two results
are dedicated to this question. The first theorem shows a very similar estimate as given
by Korn’s first inequality, see theorem 4. The second result then handles the case with
(partly) homogeneous boundary conditions.
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Theorem 10 (A Korn-like inequality for the deviator). Let Ω ⊂ Rd, d = 2 or 3, be an
arbitrary bounded and connected Lipschitz domain. For u ∈ H1(Ω,Rd) there holds

‖dev(∇u)‖2L2(Ω) + ‖u‖2L2(Ω) ≥ cd‖u‖2H1(Ω),

where cd only depends on Ω.

Proof. The proof follows similar steps as the proof of Korn’s inequality, theorem 3.1 in [39].
For the ease of notation let D(u) := dev(∇u), then we define the subspace

D := {u ∈ L2(Ω,Rd) : D(u) ∈ L2(Ω,Rd×d)}. (4.32)

Note that D is a Hilbert space with the norm ‖u‖2D := ‖D(u)‖2L2(Ω) + ‖u‖2L2(Ω). Let
u ∈ D, then elementary calculations show that in three dimensions we can write for all
i, j, k ∈ {1, 2, 3}

∂2ui
∂xj∂xk

=


∂
∂xj

D(u)i,k for i 6= k,
∂
∂xk

D(u)i,j for i 6= j,

3 ∂
∂xi

D(u)i,i + ∂
∂xi+1

D(u)i+1,i + ∂
∂xi+2

D(u)i+2,i for i = j = k,

where the indices i + 1 and i + 2 are taken modulo 3. Similarly, we can write in two
dimensions for all i, j, k ∈ {1, 2}

∂2ui
∂xj∂xk

=


∂
∂xi

D(u)i,k for i 6= k,
∂
∂xk

D(u)i,j for i 6= j,

2 ∂
∂xi

D(u)i,i + ∂
∂xi+1

D(u)i+1,i for i = j = k,

,

where the index i+ 1 is taken modulo 2. Therefore, we have, as u ∈ D, that

∂2ui
∂xj∂xk

∈ H−1(Ω) for all i, j, k ∈ {1, . . . , d}. (4.33)

Applying the famous result from Nečas (see [88], and for non-smooth boundaries, see [15])
which reads as

‖f‖L2(Ω) ≤ ‖f‖H−1(Ω) + ‖∇f‖H−1(Ω) for all f ∈ L2(Ω,R),

to the partial derivatives ∂ui/∂xk, equation (4.33) implies that ∂ui/∂xk is an element of
L2(Ω) for all i, k, and therefore u ∈ H1(Ω,Rd). This shows the algebraic equivalence
D = H1(Ω,Rd) (as each element of the right side is also in D), and that the injection of
H1(Ω,Rd) → D is continuous, and – as just proven – also surjective. Applying the closed
graph theorem, we conclude that this injection is an isomorphism, thus we have proven
norm equivalence.

Lemma 11. Let Γi ⊆ ∂Ω and Γj ⊂ ∂Ω. Assume that either Γi = ∂Ω or Γj ∩ Γi 6= ∅. Let
u ∈ {v ∈ H1(Ω,Rd), vn = 0 on Γi}. There holds∫

Ω
dev(∇ũ) : dev(∇ṽ) dx+

∫
Γj

ũt · ṽt ds ≥ ‖u‖21.
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Proof. By theorem 10 it suffices to show that ‖u‖L2(Ω) ≤ ‖D(u)‖2L2(Ω) + ‖ut‖2L2(Γj)
, where

again D(u) = dev(∇u). We prove this by contradiction. To this end we assume that there
exists no α > 0 such that

‖D(u)‖2L2(Ω) + ‖ut‖2L2(Γj)
≥ α‖u‖L2(Ω).

Then for all l ∈ N∗ there exists a function vl ∈ {v ∈ H1(Ω,Rd), vn = 0 on Γi} such that

‖D(vl)‖2L2(Ω) + ‖(vl)t‖2L2(Γj)
≤ 1

l
‖vl‖L2(Ω). (4.34)

Further, without loss of generality, we can choose ‖vl‖L2(Ω) = 1. By theorem 10 and
estimate (4.34), we further have

‖vl‖H1(Ω) ≤ ‖vl‖L2(Ω) + ‖D(vl)‖L2(Ω) ≤ ‖vl‖L2(Ω),

thus vl is bounded in H1(Ω,Rd). Applying the theorem of Rellich, see chapter VI in [2],
this yields that vl is also relatively compact in L2(Ω,Rd), hence there exists a sub sequence
(again denoted by vl) such that vl → v with v ∈ L2(Ω,Rd). Further, estimate (4.34) yields
‖D(vl)‖L2(Ω) → 0, thus D(v) = 0 and by theorem 10

‖v − vl‖H1(Ω) ≤ ‖v − vl‖L2(Ω) + ‖D(vl)‖L2(Ω) → 0, (4.35)

thus v ∈ H1(Ω,Rd). By the continuity of the trace operator we conclude that vn = 0 on
Γi as vl ∈ {v ∈ H1(Ω,Rd), vn = 0 on Γi} for all l ∈ N∗. Equation (4.34) further shows that
also vt = 0 on Γj . As D(v) = 0, it is either zero or has the form v = a + bx with a ∈ Rd
and b ∈ R. Assuming Γj ∩ Γi 6= ∅ implies that v = 0 on Γj ∩ Γi, which yields v = 0. For
the other case, Γi = ∂Ω, the identity div(u) = db first shows the equivalence

b|Ω|d =

∫
Ω

div(ũ) dx =

∫
Ω

div(ũ) dx =

∫
∂Ω
ũ · n ds = 0,

implying b = 0. As vn = 0 on Γ, we similarly as before conclude that a = 0. In both cases
equation (4.35) then further shows ‖vl‖L2(Ω) → 0, which is a contradiction, thus the lemma
is proven.

Using the two previous results we are finally ready to show an inf-sup result for b2.

Lemma 12. For all u ∈ V there exists a σ ∈ Σ such that

b2(σ, u) & ‖u‖2V and ‖σ‖Σ . ‖u‖V .

Proof. Let u ∈ V be arbitrary. We solve the following auxiliary problem: Find ũ ∈ Ṽ with
Ṽ := H1(Ω,Rd) ∩ V , such that∫

Ω
dev(∇ũ) : dev(∇ṽ) dx =

∫
Ω
u · ṽ dx+

∫
Ω

div(u) div(ṽ) dx ∀ṽ ∈ Ṽ . (4.36)

Applying lemma 11, we immediately see that the bilinear form on the left hand side is coer-
cive with respect to the H1-norm. A simple Cauchy Schwarz argument then further shows
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4 A new variational formulation of the Stokes equations

the continuity, thus theorem 5 (Lax-Milgram) yields that there exists a unique solution,
which is continuously bounded by the right hand side:

‖ũ‖H1(Ω) . ‖u‖V . (4.37)

Now set σ := −dev(∇ũ). In the following we show that σ ∈ Σ. The above continuity of
the solution ũ, proves that σ is square integrable as

‖σ‖L2(Ω) = ‖dev(∇ũ)‖L2(Ω) ≤ ‖ũ‖H1(Ω) . ‖u‖V .

Next, let φ ∈ C∞0 (Ω,Rd). Using the definition of the distributional divergence we see that

〈div(σ), φ〉V = −
∫

Ω
σ : ∇φ dx =

∫
Ω

dev(∇ũ) : ∇φ dx =

∫
Ω

dev(∇ũ) : dev(∇φ) dx .

As φ is an admissible test function for the weak formulation (4.36), we observe

〈div(σ), φ〉V =

∫
Ω
u · φ dx+

∫
Ω

div(u) div(φ) dx . ‖u‖V ‖φ‖V .

The density of C∞0 (Ω,Rd) in V then yields

sup
v∈V

〈div(σ), v〉V
‖v‖V

. ‖u‖V ,

thus summing up both bounds proves ‖σ‖Σ . ‖u‖V . Further note that the above arguments
show the identity

b2(σ, u) = ‖u‖2L2(Ω) + ‖ div(u)‖2L2(Ω) ∼ ‖u‖2V . (4.38)

Finally, as tr(σ) = 0, we conclude that σ ∈ H(curl div,Ω), which allows us to apply the
normal-tangential trace operator. Now let tw ∈ TW (ΓN,t) be arbitrary. By definition of
the trace space TW (ΓN,t), there exists a w ∈ W (ΓN,t) such that (curl(w))t = tw on ΓN,t.
The definition of the trace operator then gives

〈γnt(σ), tw〉TW (ΓN,t) = 〈div(σ), curl(w)〉H0(div,Ω) + (σ,∇ curl(w))Ω.

Next, as w ∈ W (ΓN,t) we have (curl(w))n = curlt(γt(w)) = 0 on Γ, thus curl(w) is an
admissible test function for the weak formulation (4.36). Using the same density arguments
as above yields

〈γnt(σ), tw〉TW (ΓN,t) = 〈div(σ), curl(w)〉H0(div,Ω) + (−dev(∇ũ),∇ curl(w))Ω

= 〈div(σ), curl(w)〉H0(div,Ω) − (u, curl(w))Ω − (div(u), div(curl(w)))Ω = 0,

thus σ ∈ Σ and the lemma is proven.

In the next theorem we combine both result to prove the inf-sup estimate of the bilinear
form b.
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Theorem 11 (Inf-sup estimate of b). For all u ∈ V there exists a (σ, p) ∈ Σ×Q such that

sup
(τ,q)∈Σ×Q

b(τ, q;u)

‖τ‖Σ + ‖q‖Q
& ‖u‖V . (4.39)

Proof. Let σ ∈ Σ and p ∈ Q be the variables given by lemma 10 and lemma 12, respectively.
Then there holds

sup
(τ,q)∈Σ×Q

b(τ, q;u)

‖τ‖Σ + ‖q‖Q
≥ b1(u, p) + b2(σ, u)

‖p‖Q + ‖σ‖Σ
=
‖div(u)‖2L2(Ω) + ‖u‖2V
‖p‖Q + ‖σ‖Σ

& ‖u‖V ,

where we used that ‖div(u)‖2L2(Ω) + ‖u‖2V ∼ ‖u‖2V and ‖p‖Q + ‖σ‖Σ . ‖u‖V .

Corollary 1. Assume a given f ∈ V ∗ and gD,t ∈ TW (ΓD). Further assume the increased
regularity of the essential boundary data gD,n ∈ H1/2(ΓD) and gN,t ∈ H−1/2(ΓN ,Rd). There
exists a unique solution (σ, u, p) ∈ ΣN × VD ×Q of equations (4.26) such that

1√
ν

(
‖σ‖Σ + ‖p‖Q

)
+
√
ν‖u‖V .

1√
ν

(
‖f‖V ∗ + ‖gN,t‖H−1/2(ΓN )

)
+
√
ν
(
‖gD,t‖TW (ΓD) + ‖gD,n‖H1/2(ΓD)

)
.

Proof. This is a direct consequence of theorem 6, and the results of lemma 8, lemma 9
and theorem 11. In the case of non-homogeneous essential boundary conditions a standard
homogenization method is used as discussed at the end of section 4.3.

4.4 The symmetric version of Stokes equations

A different version of the Stokes equations is given if we replace the gradient of the velocity
u by its symmetric version ε(u), hence equation (4.3a) then reads as

−div(νε(u)) +∇p = f in Ω.

This formulation is considered for example in [11], and is particulary of interest in two-phase
flows, see for example in [59]. There it is important that the matching conditions between
the two phases is formulated with the symmetric gradient. Assuming f ∈ L2(Ω,Rd) and
enough regularity of boundary data, the classical variational formulation then reads as:
Find (u, p) in XD × L2(Ω) such that
∫

Ω
νε(u) : ε(v) dx−

∫
Ω

div(v)p dx =

∫
Ω
f · v ds−

∫
ΓN,n

gN,nvn ds−
∫

ΓN,t

gN,tvt ds, ∀v ∈ X0,∫
Ω

div(u)q dx = 0, ∀q ∈ L2(Ω).

(4.40)

Note that in the case ΓD,n = Γ the pressure space is exchanged to L2
0(Ω). In the following

we want to derive a similar stress formulation as it is given by equation (4.6) using the

48
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symmetric gradient. Introducing σ = νε(u) and using the same manipulation as in the
beginning of section 4.1 we derive the equations

1

ν
dev(σ)− ε(u) = 0 in Ω, (4.41a)

div(σ)−∇p = −f in Ω, (4.41b)

div(u) = 0 in Ω, (4.41c)

un = gD,n on ΓD,n, (4.41d)

ut = gD,t on ΓD,t, (4.41e)

−σnn + p = gN,n on ΓN,n, (4.41f)

−σnt = gN,t on ΓN,t. (4.41g)

Although formulated in an arbitrary setting (used for the discrete method introduced in
chapter 7), we assume again that ΓD,n = Γ.

Based on (4.41) we now want to derive a new variational formulation where we include
the findings from above. Thus, again we aim for a formulation where the velocity space
is given by V = H0(div,Ω) and the pressure space by Q = L2

0(Ω). Note however that
we have to change the stress space. Equation (4.41a) shows that the stress variable now
approximates the deviatoric part of the symmetric gradient. To this end we define the
closed subspaces of functions in H(curl div,Ω) that are trace free and symmetric:

Σsym := {σ ∈ H(curl div,Ω) : tr(σ) = 0, σ + σT = 0, σnt = 0 on ΓN,t},
Σsym
N := {σ ∈ H(curl div,Ω) : tr(σ) = 0, σ + σT = 0, σnt = gN,t on ΓN,t}.

Following the same steps as before we test equation (4.41a) with a test function τ ∈ Σsym

and integrate over the domain Ω. Due to the symmetry of τ there holds the identity∫
Ω
ε(u) : τ dx =

1

2

∫
Ω
∇u : τ dx+

1

2

∫
Ω

(∇u)T : τ dx

=
1

2

∫
Ω
∇u : τ dx+

1

2

∫
Ω
∇u : τ dx =

∫
Ω
∇u : τ dx,

(4.42)

thus again using the enhanced regularity of the velocity field we have the equation∫
Ω

1

ν
σ : τ dx+〈div(τ), u〉V = 〈τnt, gD,t〉TW (ΓD).

Note that the second term on the left is the bilinearform b2 that was introduced in the
standard formulation. For the rest we follow the same steps as in section 4.3. Now let
f ∈ V ∗ and gD,t ∈ TW (ΓD). Further assume the increased regularity of the essential
boundary data gD,n ∈ [H1/2(ΓD)]n and gN,t ∈ [H−1/2(ΓN ,Rd)]t. The symmetric MCS
formulation now reads as: Find (σ, u, p) ∈ Σsym

N × VD ×Q such that
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∫
Ω

1

ν
σ : τ dx+〈div(τ), u〉V = 〈τnt, gD,t〉TW (ΓD) for all τ ∈ Σsym,

〈div(σ), v〉V +

∫
Ω

div(v)p dx = −〈f, v〉V + 〈vn, gN,n〉H1/2(ΓN ) for all v ∈ V,∫
Ω

div(u)q dx = 0 for all q ∈ Q.

(4.43)

4.4.1 Stability analysis

Again we only consider the case of homogeneous essential boundary conditions as the non-
homogeneous case follows with the techniques discussed at the end of section 4.3. Further,
comparing the symmetric weak formulation (4.43) with the standard formulation (4.26)
we realize that we have only exchanged the stress space, thus we aim to derive a sta-
bility analysis using the same norms and the same bilinear forms as we have defined in
section 4.3.1.

By the definition of the symmetric stress space we immediately see that Σsym ⊂ Σ, hence
continuity of the bilinear forms follows from lemma 8. Similarly, also coercivity is a direct
consequence of lemma 9 due the property Ksym

b ⊂ Kb where

Ksym
b := {(σ, p) ∈ Σsym ×Q : b(σ, q;u) = 0 for all u ∈ V }.

In order to prove existence and uniqueness of a solution of equation 4.43 it is sufficient to
show inf-sup stability given by the following theorem.

Theorem 12 (Inf-sup of b). For all u ∈ V there exists a (σ, p) ∈ Σsym ×Q such that

sup
(τ,q)∈Σsym×Q

b(τ, q;u)

‖τ‖Σ + ‖q‖Q
& ‖u‖V . (4.44)

Proof. The proof follows with similar steps as in the proof of lemma 12 and lemma 10.
Let u ∈ V be fixed, then we define the auxiliary problem: Find (ũ, p̃) ∈ Ṽ × Q with
Ṽ := H1(Ω,Rd) ∩ V such that∫

Ω
ε(ũ) : ε(ṽ) dx+

∫
Ω

div(ṽ)p̃dx =

∫
Ω
u · ṽ dx+

∫
Ω

div(u) div(ṽ) dx ∀ṽ ∈ Ṽ ,∫
Ω

div(ũ)q̃ dx = 0 ∀q̃ ∈ Q.

This problem is solvable due to the LBB-condition of the standard Stokes problem, as seen
in lemma 4.9 in [43], and a similar result as given by lemma 11, including Korn’s inequality,
see theorem 4. Brezzi’s theorem then further yields the continuity estimate

‖ũ‖H1(Ω) + ‖p̃‖L2(Ω) . ‖u‖V . (4.45)

For σ := −ε(ũ) we immediately observe that σ + σT = 0 and tr(σ) = div(ũ) = 0 and due
to the stability estimate (4.45) also ‖σ‖L2(Ω) . ‖u‖V . Following the same arguments as in
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lemma 12 we have for a smooth function φ ∈ C∞0 (Ω,Rd) the identity

〈div(σ), φ〉V =

∫
Ω
u · φ dx+

∫
Ω

div(u) div(φ) dx−
∫

Ω
div(φ)p̃ dx . (4.46)

Using estimate (4.45) we conclude by a density argument that

sup
v∈V

〈div(σ), v〉V
‖v‖V

. sup
v∈V

‖u‖V ‖v‖V + ‖p̃‖L2(Ω)‖v‖V
‖v‖V

. ‖u‖V ,

and further

〈div(σ), u〉V & ‖u‖2V − ‖ div(u)‖L2(Ω)‖p̃‖L2(Ω) & ‖u‖2V − ‖ div(u)‖L2(Ω)‖u‖V . (4.47)

By the above estimates we observe that σ ∈ H(curl div,Ω), which allows us to apply the
normal-tangential trace operator. Then, with the same steps as in the proof of lemma 12,
we also have σnt = 0 on ΓN,t, thus with the findings from above we conclude σ ∈ Σsym.

Now choose p := α div(u), with α > 2. This is an admissible choice with the same
argument as in the proof of lemma 10. We observe that there holds the equivalence

b1(u, p) = α‖ div(u)‖2L2(Ω),

and hence by (4.47)

sup
(τ,q)∈Σsym×Q

b(τ, q;u)

‖τ‖Σ + ‖q‖Q
≥ b(σ, p;u)

‖σ‖Σ + ‖p‖Q

≥
‖u‖2V − ‖ div(u)‖L2(Ω)‖u‖V + α‖ div(u)‖2L2(Ω)

‖σ‖Σ + ‖p‖Q
.

Using Young’s inequality with a scaling factor 1/2 we get

‖u‖2V − ‖ div(u)‖L2(Ω)‖u‖V + α‖ div(u)‖2L2(Ω) ≥
1

2
‖u‖2V + (α− 2)‖ div(u)‖2L2(Ω) ∼ ‖u‖2V .

By (4.45) we further have

‖σ‖Σ + ‖p‖Q . ‖u‖V + α‖ div(u)‖L2(Ω) ∼ ‖u‖V ,

and the statement is proven.

Corollary 2. Assume a given f ∈ V ∗ and gD,t ∈ TW (ΓD). Further assume the increased
regularity of the essential boundary data gD,n ∈ H1/2(ΓD) and gN,t ∈ H−1/2(ΓN ,Rd). There
exists a unique solution (σ, u, p) ∈ Σsym

N × VD ×Q of equation (4.43) such that

1√
ν

(
‖σ‖Σ + ‖p‖Q

)
+
√
ν‖u‖V .

1√
ν

(
‖f‖V ∗ + ‖gN,t‖H−1/2(ΓN )

)
+
√
ν
(
‖gD,t‖TW (ΓD) + ‖gD,n‖H1/2(ΓD)

)
.

Proof. This is a direct consequence of theorem 6, and the results of lemma 8, lemma 9
and theorem 12. In the case of non-homogeneous essential boundary conditions a standard
homogenization method is used.
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5 Finite Elements - a discrete stress space

5.1 Triangulation and preliminaries

We start with the introduction of several preliminaries that we shall use within this work.
Given a domain Ω ⊂ Rd with d = 2 or 3 with a Lipschitz boundary as described in
chapter 3, let Th be a partition of Ω into triangles and tetrahedrons in two and three
dimensions, respectively. Throughout this work we assume that the triangulation Th is

• shape regular: There exists a constant cs > 0 such that

max
T∈Th

diam(T )d

|T | ≤ cs for all T ∈ Th,

and

• quasi-uniform: There exists a constant cq > 0 such that

diam(T ) ≥ cqh for all T ∈ Th,

where h := max
T∈Th

diam(T ).

For a given element T ∈ Th we denote by Vh(T ) the set of vertices of the element T ,
and by Fh(T ) the set of faces, so the d − 1 subsimplices, of the element T . In a similar
manner we then denote by Fh the set of all element interfaces and boundaries of the
given triangulation Th. This set can further be split into two parts. The first part is
denoted by Fext

h and is given by all facets that lie on the boundary of the domain, thus
Fext
h := {F ∈ Fh : F ∩ Γ 6= ∅}. The second part, denoted by F int

h , contains all facets that
are in the interior of the domain, thus F int

h = Fh \ Fext
h .

With a slight abuse of notation, we use the same symbol n for the outward unit normal
vector on each element boundary ∂T and for the normal vector defined on the boundary Γ.
Then, the corresponding normal and tangential traces of smooth vector-valued functions,
and the normal-normal and normal-tangential traces of smooth matrix-valued functions on
element boundaries and facets are equivalently defined as in section 3.1.

At several points in the definition of the finite elements and also in the numerical analysis
we make use of a mapping from a physical element T ∈ Th to a so called reference element
denoted by T̂ . To this end we define

T̂ := {(x1, x2) ∈ R2 : 0 ≤ x1, x2 and x1 + x2 ≤ 1} for d = 2,

T̂ := {(x1, x2, x3) ∈ R3 : 0 ≤ x1, x2, x3 and x1 + x2 + x3 ≤ 1} for d = 3.
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5 Finite Elements - a discrete stress space

Although one could define a different reference element, it is important that the diameter
is approximately one, thus diam(T̂ ) = O(1). On these reference elements we denote the
vertices by

V0 := (0, 0), V1 := (1, 0), V2 := (0, 1),

and

V0 := (0, 0, 0), V1 := (1, 0, 0), V2 := (0, 1, 0), V3 := (0, 0, 1),

for two and three dimensions, respectively. Next, we further define the follwoing reference
faces and the associated normal and tangential vectors. In two dimensions we have

F̂0 := {(x1, x2) ∈ R2 : 0 ≤ x1, x2 ≤ 1, x1 + x2 = 1},
F̂1 := {(0, x2) ∈ R2 : 0 ≤ x2 ≤ 1},
F̂2 := {(x1, 0) ∈ R2 : 0 ≤ x1 ≤ 1},

with

n̂0 :=
1√
2

(1, 1)T, n̂1 := (−1, 0)T, n̂2 := (0,−1)T,

t̂0 :=
1√
2

(−1, 1)T, t̂1 := (0,−1)T, t̂2 := (1, 0)T.

For the three dimensional case we have

F̂0 := {(x1, x2, x3) ∈ R3 : 0 ≤ x1, x2, x3 ≤ 1, x1 + x2 + x3 = 1},
F̂1 := {(0, x2, x3) ∈ R3 : 0 ≤ x2, x3 ≤ 1, 0 ≤ x2 + x3 ≤ 1},
F̂2 := {(x1, 0, x3) ∈ R2 : 0 ≤ x1, x3 ≤ 1, 0 ≤ x1 + x3 ≤ 1},
F̂3 := {(x1, x2, 0) ∈ R2 : 0 ≤ x1, x2 ≤ 1, 0 ≤ x1 + x2 ≤ 1},

with

n̂0 :=
1√
3

(1, 1, 1)T, t̂01 :=
1√
2

(−1, 1, 0)T, t̂02 :=
1√
2

(0, 1,−1)T,

n̂1 := (−1, 0, 0)T, t̂11 := (0,−1, 0)T, t̂12 := (0, 0,−1)T,

n̂2 := (0,−1, 0)T, t̂21 := (1, 0, 0)T, t̂22 := (0, 0,−1)T,

n̂3 := (0, 0,−1)T, t̂31 := (1, 0, 0)T, t̂32 := (0,−1, 0)T.

In figure 5.1 we illustrated the reference elements in both dimensions.
By the definition of the reference element we are now able to define the associated element

mappings. For an arbitrary element T ∈ Th let φT : T̂ → T be an affine homeomorphism,
with the Jacobi matrix denoted by FT := φ′T . As we assumed that the triangulation Th is
shape regular and quasi-uniform we have

||FT ||∞ ≈ h and ||F−1
T ||∞ ≈ h−1 and |det(FT )| ≈ hd. (5.1)
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Figure 5.1: The reference element T̂ and the corresponding normal and tangential vectors
in two dimensions (left) and in three dimensions (right).

Similarly, we can restrict the mapping φT to a reference face F̂ ∈ Fh(T̂ ) and reference
edge Ê ⊂ ∂F̂ (in three dimensions) whose gradients are then denoted by FFT := (φT |F̂ )′

and FET := (φT |Ê)′. Using these quantities the unit normals and tangents of the reference
element and its mapped configurations on the physical element T are related by

n =
det(FT )

det(FFT )
F−T
T n̂ and t =

1

det(FET )
FT t̂, (5.2)

where in two dimensions we have to replace FET by FFT .
On each face F ∈ F int

h we make use of the standard notations for the jump and the
average of a functions. To this end let T1, T2 ∈ Th and let F = T1 ∩ T2 be its common
element interface. Further let n1 and n2 be the corresponding outward normal vectors. For
a function φ ∈ C0(T1,R) ∪ C0(T1,R) we define the mean value and the jump on F as

{φ} :=
1

2
(φ|T1 + φ|T2) and [[φ]] := φ|T1 − φ|T2 .

For a facet F ∈ Fext
h the average and the jump is just defined as the identity.

We continue with the definition of polynomial spaces. For a given element T ∈ Th
we denote by Pk(T ) the space of polynomials defined on T whose total order is less or
equal k. Again, we use the same notation as for function spaces for non scalar-valued
polynomial spaces, e.g. where Pk(T,Rd) denotes the space of vector-valued polynomials,
we use Pk(T,Rd×d) for the space of matrix-valued polynomials. Using these notations we
further define polynomials on the triangulation by

Pk(Th,R) :=
∏
T∈Th

Pk(T,R),
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5 Finite Elements - a discrete stress space

and similarly Pk(Th,Rd) and Pk(Th,Rd×d). Beside this we make use of homogeneous polyno-
mials denoted by Pkhom(Th,R) and the space of matrix-valued skew symmetric polynomials
defined by

Pkskw(Th,Rd×d) := {η ∈ Pk(Th,Rd×d) : (η + ηT)|T = 0 on all T ∈ Th}.

Finally, we introduce the space of rigid displacements by

RM(Th) := {a+Bx : a ∈ P0(T,Rd), B ∈ P0
skw(T,Rd×d)}. (5.3)

At several points in the analysis we make use of polynomials defined in the tangent
plane of a face of a given element T . To this end let F ∈ Fh(T ), then with a slight abuse
of notation we do not distinguish between the tangent plane parallel to the facet F and
the isomorphic Rd−1 and write instead Pk(F,Rd−1). Note that for example the tangential
projection of a polynomial µ ∈ Pk(T,Rd) is in this space, thus µt ∈ Pk(F,Rd−1).

With respect to a triangulation we introduce for each element T ∈ Th the local element-
wise L2-projection on polynomials of order k by Πk

T . Note that we do not distinguish
between scalar-, vector- or matrix-valued functions, but always use the same symbol. Fol-
lowing the notations from above the corresponding global L2-projection onto the space
Pk(Th) is given by Πk

Th . Similarly, on each facet F ∈ Fh, let Πk
F denote the L2-projection

onto the space of polynomials of order k on F . Again, we use the same symbols for pro-
jections with different ranges. For example, the projection into the tangent plane of F is
also given by Πk

F , i.e., with the notation from above we have for any vector-valued function
v ∈ L2(F,Rd−1) that the projection Πk

F v ∈ Pk(F,Rd−1) satisfies (Πk
F v, q)F = (v, q)F for all

q ∈ Pk(F,Rd−1). Finally, the local projection onto the space of rigid displacements is given
by ∣∣∣ ∫

T
ΠRMv − v dx

∣∣∣ = 0,∣∣∣ ∫
T

curl
(
ΠRMv − v

)
dx
∣∣∣ = 0,

for all functions v ∈ H1(Th,Rd) (see definition below). This projection fulfills the following
properties (see [18])

‖∇(vh −ΠRMvh)‖T . ‖ε(vh)‖T ∀T ∈ Th, (5.4)

‖[[vh −ΠRMvh]]‖2F .
∑

T :T∩F 6=∅

h‖ε(vh)‖2T ∀F ∈ Fh. (5.5)

Similarly, we also define function spaces with respect to the triangulation Th, e.g.

Hm(Th,R) := {u ∈ L2(Ω,R) : u|T ∈ Hm(T,R) for all T ∈ Th},

denotes the broken Sobolev space of order m. Note that we use the same symbols for a
broken differential operator applied on each element for functions in a broken Sobolev space
and the continuous operator applied on functions in the corresponding standard Sobolev
space, e.g. we write (∇u)|T = ∇(u|T ) for functions u ∈ H1(Th,R).

55



5 Finite Elements - a discrete stress space

We conclude this section with the definition of several local polynomial basis functions.
For a detailed discussion we refer to [1, 4]. To this end let IVh(T ) be the index set of the
vertices Vh(T ), then we use the standard notation for the barycentric coordinate functions
given by λi, thus we have

λi ∈ P1(T,R) such that λi(Vj) = δij ∀i, j ∈ IVh(T ),

where δij is the Kronecker delta. Next, let li(x1) be the Legendre polynomial of order i
and let lSi (x1, x2) := xi2li(x1/x2) be the scaled Legendre polynomial of order i. Further

let pji (x1) be the Jacobi polynomial of order i with coefficients α = j, β = 0. Using these
one-dimensional polynomials, we define in two dimensions

r̂ij(λα, λβ, λγ) := lSi (λβ − λα, λα + λβ)p2i+1
j (λγ − λα − λβ). (5.6)

The set

{r̂ij(λα, λβ, λγ) : 0 ≤ i+ j ≤ k and (α, β, γ) permutation of {0, 1, 2}}

form a basis of the polynomial space Pk(T̂ ,R). Next note, as p2i+1
0 is constant, there holds

the equality r̂ij(λα, λβ, λγ) = r̂i0(λα, λβ). Then the set

{r̂i0(λj+1, λj+2)|F̂j : 0 ≤ i ≤ k},

where the indices j + 1 and j + 2 of the barycentric coordinate functions are taken modulo
3, form a basis of the polynomial space Pk(F̂j ,R) (see chapter 3.2 in [72], or in [37] and
[107]). In three dimensions a similar results holds true. We define

r̂ijl(λα,λβ, λγ , λδ)

:= lSi (λβ − λα, λα + λβ)

p2i+1,S
j (λγ − λα − λβ, λγ + λα + λβ)p2i+2j+2,S

l (λδ − λα − λβ − λγ),

(5.7)

where pj,Si (x1, x2) := xi2p
j
i (x1/x2) is the scaled Jacobi polynomial. Again, we have that

the set r̂ijl(λα, λβ, λγ , λδ) with 0 ≤ i + j + l ≤ k and an arbitrary permutation (α, β, γ, δ)

of (0, 1, 2, 3), defines a basis for Pk(T̂ ,R) and that for 0 ≤ i + l ≤ k the restriction on a
facet F̂j given by r̂il0(λj+1, λj+2, λj+3)|F̂j is a basis of Pk(F̂j ,R), where the indices of the

barycentric coordinate functions are now taken modulo 4.

5.2 A discrete space for the approximation of H(div)

In the previous chapter we derived the MCS formulation, equation (4.26), where the velocity
solution u is an element of the Sobolev space H(div,Ω). An appropriate discretization, in
the sense of conformity, of the space H(div,Ω) is well known in the literature. In the
following we introduce two spaces with several properties that shall be used in this work.
For a detailed discussion on this topic we refer for example to the book [11].
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5 Finite Elements - a discrete stress space

The first space we introduce is based on the work [99] and [89] and is called the Raviart-
Thomas space. To this end let T ∈ Th, then we define

RT k(T ) := {u = a+ bx : a ∈ Pk(T,Rd), b ∈ Pkhom(T,R)},

and the global space

RT k(Th) := {u ∈ H(div,Ω) : u|T ∈ RT k(T ) for all T ∈ Th}. (5.8)

The space RT k(Th) contains, locally on each element, the full polynomial space Pk(T,Rd)
and certain polynomials of order k + 1. Due to this enrichment the (global) divergence
is equivalent to Pk(Th,R). The space is constructed such that we have for all functions
u ∈ RT k(Th) and on each facet F ∈ Fh that the normal component un ∈ Pk(T,R),
thus the high order polynomials, have a zero normal trace. Further, due to the H(div)-
conformity, the normal jump is zero [[un]] = 0 on all element interfaces F ∈ F int

h . Note that
in the original work [99] the space was defined on the reference element and was mapped
appropriately, given by equation (5.10) (the Piola transformation) below.

In contrast to the Raviart-Thomas space the corresponding discrete space that contains,
locally on each element, all polynomials up to a certain total order is given by the Brezzi-
Douglas-Marini space (see [23, 21, 22]), denoted by

BDMk(Th) :={u ∈ H(div,Ω) : u|T ∈ Pk(T,Rd) for all T ∈ Th}
={u ∈ Pk(Th,Rd) : [[un]] = 0 on all F ∈ Fh}.

(5.9)

Again, due to the H(div)-conformity, we can apply the (global) divergence to all functions
in BDMk(Th) to get a polynomial of order k−1. To be precise, the divergence is surjective,
and we have the following relation between the two spaces

div(RT k(Th)) = div(BDMk+1(Th)) ⊂ Pk(Th,R),

and

. . . ⊂ RT k−1(Th) ⊂ BDMk(Th) ⊂ RT k(Th) ⊂ BDMk+1(Th) ⊂ . . .

Whereas the standard pullback preserves continuity for standard H1-conforming finite
elements, the proper mapping for H(div)-conforming finite elements is given by the Piola
mapping. To this end let û ∈ L2(T̂ ,Rd), then we define on a physical element T ∈ Th the
function

P(û) :=
1

detFT
FT û ◦ φ−1. (5.10)

The Piola mapping preserves the normal component and maps the divergence one-to-one,
thus if û ∈ H(div, T̂ ), then

div(P(û)) =
1

detFT
d̂iv(û) ◦ φ−1,
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5 Finite Elements - a discrete stress space

where d̂iv is the divergence operator with respect to the reference coordinates on T̂ . At
several points in the analysis we use scaling arguments for the gradient of a Piola mapped
function. Then, by the chain rule we have for a function û ∈ H1(Ω,Rd) on each element
T ∈ Th the identity

∇(P(û)) =
1

detFT
FT ∇̂ûF−1

T . (5.11)

We conclude this section with the introduction of appropriate degrees of freedoms for
the Raviart-Thomas space RT k(T ). Note that similar results can be found for BDMk(T )
in [11, section 2.3.1].

Lemma 13. For any k ≥ 0, T ∈ Th and for any u ∈ RT k(T ) the following equations,∫
F
unq ds = 0 for all q ∈ Pk(F,R), for all F ∈ Fh(T ),∫

T
u · r ds = 0 for all r ∈ Pk−1(F,Rd),

imply that u = 0.

Proof. See proof of Proposition 2.3.4 in [11].

5.3 A discrete space for the approximation of H(curl div,Ω)

In this section we introduce a new finite element and a corresponding new finite dimensional
discrete space in which we can approximate the solution σ of the system (4.26). As σ is
an element of the (matrix) trace-free subspace Σ ⊂ H(curl div,Ω) we proceed as follows:
First, we discuss the definition of a discrete space to approximate arbitrary functions in
H(curl div,Ω). Then, we show that the introduced construction of this space further allows
a simple splitting such that we can also only approximate functions in the subspace Σ.

The discrete space that approximates the space H(curl div,Ω) should fulfill several prop-
erties: First of all, the discrete space should provide approximations with optimal conver-
gence results (with respect to the mesh size h). To this end we demand that the finite
element space should include matrix-valued polynomials up to a fixed, but arbitrary, given
total order k. Secondly, we demand a certain continuity of the finite element basis functions
across element interfaces such that the divergence can be continuously applied to discrete
stress functions in a proper sense.

We first tackle the second question. As we have already seen in section 4.2.3, the normal-
tangnetial trace operator is continuous for functions in H(curl div,Ω). Similarly as for the
Sobolev spaceH1(Ω), where the trace operator γ is continuous and results in a C0-continuity
of the discrete basis functions across element interfaces, the continuity of γnt already gives
us a hint how the new stress finite element basis functions should be constructed. The
following theorem should further motivate this insight.
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5 Finite Elements - a discrete stress space

Theorem 13. Suppose σ is in H1(Th,Rd×d) and σnn|∂T ∈ H1/2(∂T ) for all elements T ∈
Th. Assume that the normal-tangential trace σnt is continuous across element interfaces.
Then σ is in H(curl div,Ω) and moreover

〈div(σ), v〉H0(div,Ω) =
∑
T∈Th

[∫
T

div(σ) · v dx−〈vn, σnn〉H1/2(∂T )

]
(5.12)

for all v ∈ H0(div,Ω).

Proof. Let φ ∈ D(Ω,Rd). By the definition of the distributional divergence and using
integration by parts on each element T separately, we have

〈div(σ), φ〉 = −
∫

Ω
σ : ∇φ dx =

∑
T∈Th

∫
T

div(σ) · φ dx−
∫
∂T
σn · φ ds .

Next, we split the boundary integral into two parts given by the normal and tangential
direction, and we obtain∑

T∈Th

−
∫
∂T
σn · φ ds =

∑
T∈Th

−
∫
∂T
σnnφn ds−

∫
∂T
σnt · φt ds

=
∑
T∈Th

−
∫
∂T
σnnφn ds−

∑
F∈F int

h

∫
F

[[σnt]] · φt ds,

where we used that φ vanishes at the boundary Γ. By the continuity of the normal-
tangential trace of σ we get [[σnt]] = 0 on all facets F ∈ F int

h , and the second sum vanishes.
This yields

〈div(σ), φ〉 =
∑
T∈Th

∫
T

div(σ) · φ dx−
∫
∂T
σnnφn ds (5.13)

≤
∑
T∈Th

‖ div(σ)‖L2(T )‖φ‖L2(T ) + ‖σnn‖H1/2(∂T )‖φn‖H−1/2(∂T )

≤ c(σ)‖φ‖H(div,Ω), (5.14)

where c(σ) is a constant depending on σ. Since D(Ω,Rd) is dense in H0(div,Ω), we conclude
that div(σ) is in H0(div,Ω)∗, hence by definition, σ ∈ H(curl div,Ω). The identity (5.12)
also follows from (5.13) and a density argument.

Theorem 13 shows that normal-tangential continuity, assuming enough regularity of σ
on each element T , is enough to guarantee that the divergence of σ lies in the dual space
of H0(div,Ω), thus σ ∈ H(curl div,Ω). However, the regularity assumption σnn|∂T ∈
H1/2(∂T ) makes the construction of finite element basis functions much more complicated.
Although it is possible to show that it would be enough to assume only an increased
regularity property at the vertices of each element (as the normal-normal component jumps
there), this would still make the construction much more complex. In contrast to this, we
define a finite element basis that is slightly non-conforming with respect to the space
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H(curl div,Ω), but is much easier to construct. Note that this non-conformity is taken into
account in the stability analysis of the next chapters.

With the findings from above we define a discrete finite dimensional space that shall be
used for the approximation for functions in H(curl div,Ω)

Ξk(Th) := {σh ∈ Pk(Th,Rd×d) : [[(σh)nt]] = 0 on all F ∈ F int
h }.

The rest of this chapter focuses on the definition of a finite element and the construction
of proper shape functions for Ξk(Th). First note that the definition of trace free matrices,

D := {M ∈ Rd×d : (M, Id) = 0},

allows us to decompose

Ξk(Th) = ΞkD(Th)⊕ ΞkId(Th).

Here ΞkD(Th) and ΞkId(Th) are defined by an orthogonal decomposition with respect to D,

ΞkD(Th) : = {σh ∈ Pk(Th,D) : [[(σh)nt]] = 0 on all F ∈ F int
h },

ΞkId(Th) : = {σh ∈ Pk(Th, Id) : [[(σh)nt]] = 0 on all F ∈ F int
h }

= Pk(Th, Id),

(5.15)

where we used that the normal-tangential trace of a polynomial in Pk(Th, Id) trivially
vanishes on each facet F ∈ F int

h due to (4.2).

5.3.1 Lowest order basis functions and normal-tangential bubbles

In a first step we are going to define lowest order constant matrix-valued basis functions for
the space Rd×d, which are suited to study normal-tangential components on facets F ∈ Fh.
In the latter sections these basis functions are then used to define a stress finite element
and to give an explicit representation of (high order) shape functions for the space Ξk(Th).

Now let T ∈ Th be an arbitrary element with the vertices V(T ) := {Vi}di=0 with the index
set IV(T ) := {0, . . . , |V(T )|}. Then, as defined in section 5.1, the corresponding barycentric

coordinate functions on T are given by {λi}di=0. Further let Fi ∈ Fh(T ) denote the face
opposite to the vertex Vi, with the associated normal vector ni. In two dimensions we
define the tangential vector on Fi as the rotated normal vector ti = (ni)

⊥, and in three
dimensions we denote by tij = (Vi− Vj)/|vi− Vj | the unit tangential vector along the edge
between the vertices Vi and Vj .

For d = 2 we define for all i ∈ IV(T ) the constant matrix functions

Si := dev(∇λi+1 ⊗ curl(λi+2)), (5.16)

where the indices i+1 and i+2 are taken modulo 3. In three dimensions we define similarly
on each face Fi ∈ Fh(T ) two constant matrix functions by

Si0 := dev
(
∇λi+1 ⊗ (∇λi+2 ×∇λi+3)

)
, Si1 := dev

(
∇λi+2 ⊗ (∇λi+3 ×∇λi+1)

)
, (5.17)

where the indices i+ 1, i+ 2 and i+ 3 are now taken modulo 4.
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Lemma 14. The sets {Si : i ∈ IV(T )} and {Siq : i ∈ IV(T ) and q = 0, 1} form a basis of
D for d = 2 and 3, respectively. Moreover, the normal-tangential component of Si and Siq
vanishes everywhere on the element boundary except on Fi,

Sint|Fj = 0, (Siq)nt|Fj = 0, for i 6= j, Fj ∈ Fh(T ), i, j ∈ IV(T ),

When i = j ∈ IV(T ) and d = 3,

tTi+2,i+3S
i
0ni = 0, tTi+1,i+2S

i
0ni 6= 0, tTi+3,i+1S

i
0ni 6= 0, (5.18a)

tTi+2,i+3S
i
1ni 6= 0, tTi+1,i+2S

i
1ni 6= 0, tTi+3,i+1S

i
1ni = 0. (5.18b)

Proof. By construction, all functions in the sets {Si : i ∈ IV(T )} and {Siq : i ∈ IV(T ) and q =
0, 1} are trace free and constant. Thus, in order to show that they are a basis of D it is
sufficient to show that they are linearly independent and that the dimension matches. To
prove linear independence we provide a proof for the second statement of the lemma.

We start with the two-dimensional case. First note that by equation (4.2) the normal-
tangential trace of a function Si is equivalent to

Sint = (dev(∇λi+1 ⊗ curl(λi+2)))nt = (∇λi+1 ⊗ curl(λi+2))nt .

Using the abbreviation sij := ∇λi+1⊗ curl(λi+2), thus si+1,i+2 = Si, the normal-tangential
trace on the facet Fl with l ∈ IV(T ) is given by

tTl si,jnl = tTl
[
∇λi ⊗ curl(λj)

]
nl = (∇λi · tl)(∇λj · tl).

As ni ∼ ∇λi we further have

(∇λi · tl)(∇λj · tl) ∼ (ni · tl)(nj · tl).

In the case l 6= i, j this leads to Sint|Fi ∼ (ni · ti+1)(ni+2 · tl) 6= 0 as the triangle T is
not degenerated. Similarly, for l = i or l = q the normal-tangential trace is zero as
(ni · tl) = (ni · ti) = 0 or (nj · tl) = (nj · tj) = 0, respectively.

In three dimensions we define as above the quantity si,j,k = dev
(
∇λi⊗ (∇λj ×∇λk)

)
. If

i, j, k, l is any permutation of IV(T ), we see that for any p ∈ IV(T ) and any tp ∈ n⊥p , where

n⊥p is the tangent plane of Fp, we have

tTp si,j,knp ∼ (ni · tp)(til · np). (5.19)

This can be derived with elementary manipulations. An example is given in figure 5.2,
where we can easily see ∇λj ×∇λk ∼ nj × nk ∼ til. Due to this we have on any facet Fp

tTp (Si0)np = tTp (si+1,i+2,i+3)np ∼ (ni+1 · tp)(ti+1,i · np),

which vanishes for all p 6= i since ni+1 ·ti+1 = 0 and ti+1,i ·ni+2 = ti+1,i ·ni+3 = 0. Similarly,
we conclude that (Si1)nt = 0 on all facets except Fi. By equation (5.19) we further have

tTjksi,j,knl = 0, tTkisi,j,knl 6= 0, tTjisi,j,knl 6= 0,

hence the statements in (5.18) also follow. This proves that the sets {Si : i ∈ IV(T )} and
{Siq : i ∈ IV(T ) and q = 0, 1} are linearly independent, and we conclude the proof with a
simple counting argument.
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j

i

l

k

til

nk

nj

Figure 5.2: An example of an element configuration.

Corollary 3. The sets {Si : i ∈ IV(T )}∪{Id} and {Siq : i ∈ IV(T ) and q = 0, 1}∪{Id} form

a basis of Rd×d for d = 2 and 3, respectively.

Proof. As the functions defined by (5.16) and (5.17) are all trace free, and as (Id)nt|Fj = 0
for all Fj ∈ Fh(T ), the sets {Si : i ∈ IV(T )} ∪ {Id} and {Siq : i ∈ IV(T ) and q = 0, 1} ∪ {Id}
are linearly independent. We conclude the proof with a simple counting argument and
lemma 14.

Beside the trivial normal-tangential bubble given by the identity matrix we can further
define other higher order bubbles. To this end we define the local space

Bknt(T ) :=
{
b ∈ Pk(T,D) : bnt = 0

}
.

Using the above defined low order functions, we can give a representation to these bubbles
in the following lemma.

Lemma 15. Any normal-tangential bubble b ∈ Bknt(T ) can be represented as either

b =
∑

i∈IV (T )

µiλiS
i or b =

1∑
q=0

∑
i∈IV (T )

µqi λiS
i
q, (5.20)

for d = 2 or 3, respectively, where µi, µ
0
i , µ

1
i ∈ Pk−1(T ). Consequently,

dimBknt(T ) =


3

2
k(k + 1), if d = 2,

8

6
k(k + 1)(k + 2), if d = 3.

Proof. We start with the proof in two dimensions. By lemma 14 we know that the set
{Si : i ∈ IV(T )} is a basis for D. Therefore, the matrix b(x) can be represented as

b(x) =
∑

i∈IV (T )

ai(x)Si, (5.21)
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with polynomials ai ∈ Pk(T,R). Again, by lemma 14 there exists a nonzero constant ci
that equals the value of Sint|Fi . Then we have

bnt(x) = tTi b(x)ni = ciai(x) = 0,

for all x ∈ Fi as b ∈ Bknt(T ). As ci is a constant, this implies that ai(x) vanishes on Fi, and
we can use a factorization with respect to λi (which is a linear polynomial and zero on Fi),
thus ai can be equivalently written as

ai(x) = µi(x)λi(x) with µi ∈ Pk−1(T ),

which proves equation (5.20). In three dimensions we have equivalently

b(x) =
1∑
q=0

∑
i∈IV (T )

aqi (x)Siq,

with aqi (x) ∈ Pk(T,R), and with lemma 14 we find constants c0
i and c1

i such that

tTi+2,i+3b(x)ni = c1
i a

1
i (x) = 0 and tTi+3,i+1b(x)ni = c0

i a
0
i (x) = 0,

which also proves equation (5.20) with the same steps as above.
The dimension follows from the representation (5.20): In two dimensions lemma 14

yields that the basis functions {Si : i ∈ IV(T )} are linearly independent, and thus represen-

tation (5.20) shows that dimBk(T ) equals 3 times the dimensions dimPk−1(T ). The same
argument can be applied in three dimensions.

5.3.2 The covariant Piola mapping

For the definition of a finite element for the discrete stress space we need to define an
appropriate transformation that preserves normal-tangential continuity. In section 5.2 we
presented the Piola transformation that preserves the normal components on facets, thus
it is a suitable transformation for functions in H(div,Ω). The transformation that pre-
serves tangential continuity is known in the literature (see [11] and [87]) as the covariant
transformation, and is given by

C(ûh) := F−T
T ûh ◦ φ−1.

This mapping is particularly of interest for discretizations of the space H(curl,Ω). The idea
now is to combine those two transformations to define a mapping that preserves normal-
tangential continuity. To motivate this let Si be an arbitrary constant matrix function in
the two dimensional case defined by equation (5.16), thus we have the representation

Si = dev(∇λi+1 ⊗ curl(λi+2)).

As analyzed in the last chapter, this constant matrix is designed to study normal-tangential
traces and may help to understand how to define a suitable mapping. The barycentric
coordinate function λi+1 is an element of H1(Ω,R), thus ∇λi+1 is an element of H(curl,Ω)

63



5 Finite Elements - a discrete stress space

(although – or exactly because – ∇λi+1 is equivalent to a normal vector). With a similar
argument, curl(λi+2) is an element of H(div,Ω). Ignoring the deviator, the definition of Si

suggests that the proper transformation is given by a Piola mapping from the right and a
covariant mapping from the left. We define the covariant Piola mapping by

M(σ̂h) :=
1

det(FT )
F−T
T σ̂h ◦ φ−1FT

T , (5.22)

where σ̂h ∈ Pk(T̂ ,Rd×d).

Lemma 16. For an arbitrary τ̂ ∈ Pk(T̂ ,Rd×d), let τ =M(τ̂). We have

c tTτn = t̂Tτ̂ n̂, where c =

{
det(FFT )2 if d = 2,

det(FFT ) det(FET ) if d = 3.

Moreover, there holds the relation tr(τ̂) = 0⇔ tr(τ) = 0, thus the covariant Piola mapping
and the deviator commute

dev(M(τ̂)) =M(dev(τ̂)).

Proof. Using the relation between the physical and the reference unit normal and tangential
vectors, see equation (5.2), we immediately see

tTτn =
1

det(FET )
t̂TFT

T

1

det(FT )
F−T
T τ̂FT

T

det(FT )

det(FFT )
F−T
T n̂ =

1

det(FET )det(FFT )
t̂Tτ̂ n̂.

Next, note that for arbitrary matrices A,B ∈ Rd×d we have the relation tr(A−1BA) =
tr(B), and thus tr(F−T

T τ̂FT
T ) = tr(τ̂). Then we see

dev(M(τ̂)) =
1

det(FT )

(
F−T
T τ̂FT

T −
1

d
tr(F−T

T τ̂FT
T )Id

)
=

1

det(FT )

(
F−T
T τ̂FT

T −
1

d
tr(τ̂)Id

)
=

1

det(FT )

(
F−T
T τ̂FT

T −
1

d
tr(τ̂)F−T

T IdFT
T

)
=

1

det(FT )
F−T
T

(
τ̂ − 1

d
tr(τ̂)Id

)
FT
T =M(dev(τ̂)).

5.3.3 A stress finite element

With the findings from above we can finally define a local stress finite element in the formal
style of [25] (also adopted in other texts, e.g., [43, 13]) as a triple (T,Ξk(T ),Φ(T )), where
the element T is a simplex, thus either a triangle or a tetrahedron, the space Ξk(T ) =
Pk(T,Rd×d), and Φ(T ) is a set of linear functionals representing the degrees of freedom
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defined in the following. The first group of degrees of freedom is associated to the set of
element facets Fh(T ). We define for each F ∈ Fh(T ),

ΦF (τ) :=

{∫
F
τnt · r ds : r ∈ Pk(F,Rd−1)

}
. (5.23)

The next group is associated to the interior of the element T and given by

ΦT
D(τ) :=

{∫
T
τ : FT η̂F

−1
T dx : η̂ ∈ Bknt(T̂ )

}
. (5.24)

As tr(FT η̂F
−1
T ) = 0, for η ∈ Bknt(T̂ ), every functional in ΦT

D tests a function τ only with a
trace free bubble. Thus, in order to also test the matrix trace we further define the degrees
of freedom

ΦT
Id(τ) :=

{∫
T

tr(τ) : µ̂ dx : µ̂ ∈ Pk(T̂ ,R)

}
. (5.25)

All together, we define the set

Φ(T ) := ΦT
D ∪ ΦT

Id ∪ {ΦF : F ∈ Fh(T )}, (5.26)

and proceed to prove that this set of degrees of freedom is unisolvent and that the number
of degrees of freedom matches the dimension of Ξk(T ).

Theorem 14. The triple (T,Ξk(T ),Φ(T )) defines a finite element.

Proof. To prove the unisolvency of the degrees of freedom, consider a τh ∈ Ξk(T ) satisfying
φ(τh) = 0 for all φ ∈ Φ(T ). In the following we show that this implies that τh = 0 proving
unisolvency. As (τh)nt ∈ Pk(F,Rd−1) , the facet degrees of freedom φ(τh) = 0 imply that
τh ∈ {σ ∈ Pk(T,Rd×d) : σnt = 0 on ∂T}. Next, as tr(τh) ∈ Pk(T,R) the second group ΦT

Id

of the interior degrees of freedom φ(τh) = 0, implies that τh is trace free, thus τh ∈ Bknt(T ).
Finally, the first group of the interior degrees of freedom then yields

0 =

∫
T
τh : FT η̂F

−1
T =

∫
T
FT
T τhF

−T
T : η̂ =

∫
T

(detFT )−1M−1(τh) : η̂ =

∫
T̂
M−1(τh) : η̂

for all η̂ ∈ Bknt(T̂ ). By lemma 16 we have thatM−1(τh) is in Bknt(T̂ ), yieldingM−1(τh) = 0
and τh = 0.

It only remains to prove that the dimensions match. The dimension of Ξk(T ) is given
by dimPk(T,Rd×d) (which equals dd dimPk(T,R)). Using lemma 15 to count the number
of degrees of freedom in Φ(T ), we see in two dimensions

#Φ(T ) = #ΦT
D + #ΦT

Id + #{ΦF : F ∈ Fh(T )}

=
3

2
k(k + 1) +

1

2
(k + 1)(k + 2) + 3(k + 1)

=
3

2
(k + 1)(k + 2) +

1

2
(k + 1)(k + 2) = 4 dimPk(T,R).

With the same argument in three dimensions we conclude the proof.
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As mentioned in the beginning of this chapter, the space Ξk(Th) and similarly also the
space Ξk(T ) allow a natural splitting into two parts, see equation (5.15). To this end we
define the spaces ΞkD(T ) = Pk(T,D) and ΞkId(T ) = Pk(T, Id). The construction of the above
degrees of freedoms allows us to define finite elements for each of the subsets separately.

Lemma 17. The triple (T,ΞkD(T ),ΦD(T ) ∪ {ΦF : F ∈ Fh(T )}) and (T,ΞkId(T ),ΦId(T ))
define a finite element, and

dim ΞkD(T ) = (dd − 1) dimPk(T,R). (5.27)

Proof. The proofs follow the same steps as the proof of Theorem 14.

We conclude this section by defining another set of unisolvent linear functionals for the
space Ξk(T ), used to define an interpolation operator for the stress space in section 6.3.1.
To this end we define the degrees of freedom associated to the interior of T by

Φ̃T
D(τ) :=

{∫
T
τ : FT η̂F

−1
T dx : η̂ ∈ Pk−1(T̂ ,D)

}
. (5.28)

In contrast to ΦT
D, the functionals in Φ̃T

D do not test with normal-tangential bubbles but
with trace free polynomials of order k − 1. Now we similarly define the sets

Φ̃(T ) := Φ̃T
D ∪ ΦT

Id ∪ {ΦF : F ∈ Fh(T )}, (5.29)

Φ̃D(T ) := Φ̃T
D ∪ {ΦF : F ∈ Fh(T )}. (5.30)

Theorem 15. The set Φ̃(T ) is unisolvent for the space Ξk(T ). The set Φ̃D(T ) is unisolvent
for ΞkD(T ).

Proof. To prove the unisolvency of the degrees of freedom we again consider a τh ∈ Ξk(T )
satisfying φ(τh) = 0 for all φ ∈ Φ̃T

D ∪ ΦT
Id ∪ {ΦF : F ∈ Fh(T )}. Similar as in the proof

of theorem 14, the facet and the second group of interior degrees of freedoms show that
τh ∈ Bknt(T ). Now, lemma 15 yields that τh can be written as

τh =
∑

i∈IV (T )

µiλiS
i, for d = 2, and τh =

1∑
q=0

∑
i∈IV (T )

µqiλiS
i
q, for d = 3,

with polynomials µi, µ
0
i , µ

1
i ∈ Pk−1(T ). According to the definition of the element degress

of freedom Φ̃T
D we can choose F η̂F−1 =

∑
i∈IV (T ) µiS

i and F η̂F−1 =
∑1

q=0

∑
i∈IV (T ) µ

q
iS

i
q

for d = 2 and 3, respectively. As we assume that the degrees of freedom applied on τh
vanish, we have in two dimensions∫

T

∑
ı∈V

µiλiS
i :
∑
ı∈V

µiS
i dx =

∫
T
λi

∣∣∣∑
ı∈V

µiS
i
∣∣∣2 dx = 0,

yielding µi = 0, and thus τh = 0. In three dimensions the argument is the same. We
conclude the proof with a simple counting argument similar as in the proof of theorem 14.
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5.3.4 Arbitrary order shape basis functions

Using the lowest order basis functions defined in section 5.3.1 we can write down shape
functions on an element T using barycentric coordinates. In two dimensions we immediately
see that the set

λα1
i+1λ

α2
i+2S

i, λβ0
i λ

β1
i+1λ

β2
i+2(λiS

i), λγ0
i λ

γ1
i+1λ

γ2
i+2Id, (5.31)

for all i ∈ V, and all multi-indices (α1, α2), (β0, β1, β2) and (γ0, γ1, γ2), with αi ≥ 0, βi ≥
0, γi ≥ 0 having length α1 + α2 = γ0 + γ1 + γ2 = k and β0 + β1 + β2 = k − 1, form a basis
for Ξk(T ). Similarly, when T is a tetrahedron, the following set is a basis for Ξk(T ):

λα1
i+1λ

α2
i+2λ

α3
i+3S

i
q, λβ0

i λ
β1
i+1λ

β2
i+2λ

β3
i+3(λiS

i
q), λγ0

i λ
γ1
i+1λ

γ2
i+2λ

γ3
i+3Id, (5.32)

for all i ∈ V, q = 0, 1, and all multi-indices (α1, α2, α3), (β0, β1, β2, β3) and (γ0, γ1, γ2, γ3),
with αi ≥ 0, βi ≥ 0 γi ≥ 0 having length α1 + α2 + α3 = γ0 + γ1 + γ2 + γ3 = k, and
β1 + β2 + β3 = k − 1. Note that if the last set of basis functions is removed, then the
resulting set of functions forms a basis for ΞkD(T ).

Although it is easy to prove that the functions defined by equation (5.31) or (5.32) are
linearly independent, we opt to do so for another set of reference element shape functions.
Using a Dubiner basis instead of barycentric monomials, the ensuing construction produces
better conditioned matrices. For a better understanding of this topic we refer the reader
for example to the works [52, 115].

In the following we are going to define arbitrary high order shape basis functions on the
reference element. In section 5.3.1 we gave an explicit construction of the lowest order basis
functions by equations (5.16) and (5.17). Using these definitions on the reference element
(including a scaling with a proper constant) we derive for d = 2 the matrices given by

Ŝ0 :=
√

2

(
−1 0
0 1

)
and Ŝ1 :=

(
0.5 0
1 −0.5

)
and Ŝ2 :=

(
0.5 −1
0 −0.5

)
, (5.33)

and for d = 3 the matrices

Ŝ0
0 =
√

6

−2
3 0 0
0 1

3 0
0 0 1

3

 , Ŝ1
0 =

1
3 0 0
1 −2

3 0
0 0 1

3

 , Ŝ2
0 =

−2
3 1 0
0 1

3 0
0 0 1

3

 , Ŝ3
0 =

−2
3 0 1
0 1

3 0
0 0 1

3

 ,

Ŝ0
1 =
√

6

1
3 0 0
0 1

3 0
0 0 −2

3

 , Ŝ1
1 =

1
3 0 0
0 1

3 0
1 0 −2

3

 , Ŝ2
1 =

1
3 0 0
0 1

3 0
0 1 −2

3

 , Ŝ3
1 =

1
3 0 0
0 −2

3 1
0 0 1

3

 .

(5.34)

Note that we made the particular choice of the numbering of the vertices of T̂ and the
corresponding tangential vectors as it is given in section 5.1. With the same techniques as
in lemma 14, one easily sees that

t̂Tj Ŝ
in̂j = δij and t̂Tj λiŜ

in̂j = 0 for i, j = 0, 1, 2,

t̂TjlŜ
i
qn̂j = δijδql and t̂TjlλiŜ

i
qn̂j = 0 for i, j = 0, 1, 2, 3 and q, l = 0, 1,

(5.35)
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and that {Ŝi : i = 0, 1, 2} and {Ŝiq : i = 0, 1, 2, 3; q = 0, 1} are basis for D in two and three
dimensions, respectively. Based on these constant matrices and the identity matrix we now
construct shape functions for the local stress space Ξk(T̂ ).

Using the definition of the Dubiner basis in two dimensions, see equation (5.6), we define
a local basis by

Ψ̂k
F := {Ŝj r̂i0(λj+1, λj+2) : j = 0, 1, 2 and 0 ≤ i ≤ k},

Ψ̂k
D := {λjŜj r̂il(λ0, λ1, λ2) : j = 0, 1, 2 and 0 ≤ i+ l ≤ k − 1},

Ψ̂k
Id := {Idr̂il(λ0, λ1, λ2) : 0 ≤ i+ l ≤ k},

and similar in three dimensions, using the definition (5.7), we define

Ψ̂k
F := {Ŝjq r̂il0(λj+1, λj+2, λj+3) : j = 0, 1, 2, 3 and q = 0, 1 and 0 ≤ i+ l ≤ k},

Ψ̂k
D := {λjŜjq r̂ilg(λ0, λ1, λ2, λ3) : j = 0, 1, 2, 3 and q = 0, 1 and 0 ≤ i+ l + g ≤ k − 1},

Ψ̂k
Id := {Idr̂ilg(λ0, λ1, λ2, λ3) : 0 ≤ i+ l + g ≤ k}.

Theorem 16. The set of functions {Ψ̂k
F ∪ Ψ̂k

D ∪ Ψ̂k
Id} is a basis for Ξk(T̂ ), and {Ψ̂k

F ∪ Ψ̂k
D}

is a basis for ΞkD(T̂ ).

Proof. We start with the two-dimensional case. First note that the functions λiŜ
i with

i = 0, 1, 2 are linearly independent. This follows with elementary calculations and using
the property that (Ŝi)nt vanishes also on lines parallel to Fj with j 6= i. Now let αji ∈
R,βjil ∈ R, and γil ∈ R be arbitrary coefficients and define Ŝji := Ŝj r̂i0(λj+1, λj+2), B̂j

il :=

λjŜ
j r̂il(λ0, λ1, λ2), and D̂il := Idr̂il(λ0, λ1, λ2). We assume that

2∑
j=0

k∑
i=0

αji Ŝ
j
i +

2∑
j=0

k−1∑
i=0

k−1∑
l=i

βjilB̂
j
il +

k∑
i=0

k∑
l=i

γilD̂il =

(
0 0
0 0

)
,

and show that this induces that all coefficients are equal to zero proving linear independency
of the basis functions. Let F̂g with g = 0, 1, 2 be an arbitrary reference face. Due to (5.35)
and (4.2) there holds

t̂Tg
( 2∑
j=0

k∑
i=0

αji Ŝ
j
i +

2∑
j=0

k−1∑
i=0

k−1∑
l=i

βjilB̂
j
il +

k∑
i=0

k∑
l=i

γilD̂il

)
n̂g

= t̂Tg

(
k∑
i=0

αgi Ŝ
g
i

)
n̂g = t̂Tg

(
k∑
i=0

αgi Ŝ
g r̂i0(λg+1, λg+2)

)
n̂g = 0.

As r̂i0(λg+1, λg+2) is a polynomial basis on F̂g, and as Ŝg, n̂g and t̂g are constant, it follows

that all coefficients αgi have to be zero. As g was arbitrary we conclude αji = 0 for j = 0, 1, 2
and 0 ≤ i ≤ k.

Next, as tr(λiŜ
i = 0), we have

tr(
2∑
j=0

k−1∑
i=0

k−1∑
l=i

βjilB̂
j
il +

k∑
i=0

k∑
l=i

γilD̂il) = tr(
k∑
i=0

k∑
l=i

γilD̂il) =
k∑
i=0

k∑
l=i

γilr̂il(λ0, λ1, λ2),
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and thus with the same arguments as before also γil = 0 for 0 ≤ i+ l ≤ k.
Finally, as the functions λiŜ

i are linearly independent, we have for each g = 0, 1, 2 (due
to the assumption at the beginning)

k−1∑
i=0

k−1∑
l=i

βgilB̂
g
il =

k−1∑
i=0

k−1∑
l=i

βgilr̂ilλgŜ
g =

(
0 0
0 0

)
.

As r̂ilλg is a basis for λgPk−1(T̂ ), and the last equation holds true for all points in T̂ , we
conclude βgil = 0 for 0 ≤ i + l ≤ k − 1. As g was arbitrary, this yields that all coefficients
are equal to zero. With a simple counting argument similar as in the proof of theorem 14,
and with the same steps in the three dimensional case the first statement of the theorem
is proven.

For the second statement note that due to tr(Si) = 0 all shape functions in {Ψ̂k
D ∪ Ψ̂k

F }
are trace free and are further matrix-valued polynomials up to order k. Then the proof
follows the same lines as above.

Remark 2. In the work [69] a slightly different space with respect to the polynomial orders
was defined. Due to the construction of the shape functions and the degrees of freedom in
theorem 14 it is possible to combine different orders for the different groups such that same
spaces as in [69] can be constructed. To this end we define

Ξk,r,s(T ) := {σ ∈ Pk(T,Rd×d) : tr(σ) ∈ Pr(T,R), σnt ∈ Ps(F,Rd−1) for all F ∈ Fh(T )}.
(5.36)

With the same arguments as above one shows that in two dimensions

Ψ̂k
F := {Ŝj r̂i0(λj+1, λj+2) : j = 0, 1, 2 and 0 ≤ i ≤ s},

Ψ̂k
D := {λjŜj r̂il(λ0, λ1, λ2) : j = 0, 1, 2 and 0 ≤ i+ l ≤ k − 1},

Ψ̂k
Id := {Idr̂il(λ0, λ1, λ2) : 0 ≤ i+ l ≤ r},

is a basis for Ξk,r,s(T̂ ), and that the set of functionals

ΦF,s(τ) :=

{∫
F
τnt · r ds : r ∈ Ps(F,Rd−1)

}
,

ΦT,k
D (τ) :=

{∫
T
τ : FT η̂F

−1
T dx : η̂ ∈ Bknt(T̂ )

}
,

ΦT,r
Id (τ) :=

{∫
T

tr(τ) : µ̂dx : µ̂ ∈ Pr(T̂ ,R)

}
,

is unisolvent for Ξk,r,s(T ). A similar observation can be made in three dimensions.

5.3.5 A global basis

Using the local basis on the reference triangle T̂ we can now simply define a global basis
for the stress space Ξk(Th). This is done in the usual way. Using the mapping M and a
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basis function Ŝ ∈ {Ψ̂k
D ∪ Ψ̂k

Id ∪ Ψ̂k
F } we define the restriction of a global shape function S

(with support on a patch) on an arbitrary physical element T ∈ Th by

S :=M(Ŝ).

Next, we identify all topological entities, vertices and faces of the physical element T
with the corresponding entities of the global mesh. This identification is needed as faces
and vertices coincide for adjacent physical elements. Note that the global orientation of the
faces (and edges) plays an important role in order to assure (normal-tangential) continuity.
This is a well known difficulty, and we refer for example to the work [118] for a detailed
discussion regarding this topic. By this, we construct global basis functions which are,
restricted on a physical element T ∈ Th, always a mapped basis function of the basis
defined on the reference element T̂ .

Further note that due to lemma 16 the resulting basis functions are normal-tangential
continuous, thus [[Snt]] = 0. To see this, let φ1 be the mapping of an arbitrary element T1,
and let φ2 be the mapping of an element T2 such that F = T1∩T2. There exists a reference
face F̂ ⊂ ∂T̂ such that F = φ1(F̂ ) = φ1(F̂ ) (in the sense of a set) and φ1|F̂ = φ2|F̂ (in the

sense of equivalent functions). By this, and the same ideas for a reference edge Ê in the
three-dimensional case, the constant c in lemma 16 is the same for both mappings. In two
dimensions we have the identity Snt = (tTSn)t, thus lemma 16 implies normal-tangential
continuity of S because S was a mapped basis function of the reference element. In three
dimensions Snt is a tangent vector in F . Each tangent vector can be represented as a linear
combination of two arbitrary edge tangent vectors ti ⊂ ∂F . By lemma 16, we deduce that
the scalar values ti

TSn are preserved, thus again, we have normal-tangential continuity.
Taking all functions in {Ψ̂k

D ∪ Ψ̂k
Id ∪ Ψ̂k

F } and mapping them to each element separately

results in a basis for Ξk(Th). In the same manner one also maps functions Ŝ ∈ {Ψ̂k
D∪Ψ̂k

F } to
each physical element separately and identifies them with the restriction of a global shape
function S to define a basis for ΞkD(Th).
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6 The MCS method

This chapter is dedicated to the numerical approximation of the solution of the sys-
tem (4.26), and is structured as follows: At the beginning we focus on the derivation of a
new variational formulation, which is based on discrete finite dimensional spaces. These
spaces are chosen such that they fit to the formulation (4.26). Afterwards, we present
two different versions of a stability analysis. In a first setting we show solvability using a
discrete DG-like H1-norm for the velocity space and a L2-norm for the stress space. Ob-
viously, this choice is motivated by the primal velocity-pressure formulation of the Stokes
equations, where the velocity is an element of H1(Ω,Rd). The second version then discusses
well-posedness in natural norms. In this case, the velocity is measured in the H(div)-norm,
which fits to the continuous setting given by (4.26). Similarly, we then also choose a dis-
crete stress norm that fits to the space H(curl div,Ω). We conclude the chapter with several
error estimates proving optimal convergence of the finite element error.

For the discrete setting we allow all different kinds of boundary conditions as it is given
in equation (4.6). To this end we assume that the boundary is divided according to (4.1).

6.1 A new variational formulation

We begin with the definition of the discrete spaces. For the ease of representation we
assume that the essential boundary conditions gN,t and gD,n lie in the trace spaces of the
corresponding polynomial spaces as defined below. Now, let k ≥ 1, and define

Σh := ΞkD(Th) = {τh ∈ Pk(Th,D) : [[(τh)nt]] = 0 for all F ∈ F int
h ∪ ΓN,t}, (6.1)

Vh := RT k(Th) ∩ V, (6.2)

and for given boundary conditions gD,n and gN,t the spaces

Σh,N := {τh ∈ Pk(Th,D) : [[(τh)nt]] = 0 for all F ∈ F int
h , (τh)nt = gN,t on ΓN,t},

Vh,D := {vh ∈ RT k(Th) : vn = gD,n on ΓD,n}.

The pressure space is given by

Qh :=

{
Pk(Th,R) ∩ L2

0(Ω,R) if ΓD,n = Γ,

Pk(Th,R) else .
(6.3)

Note that the discrete stress space only uses the subset of trace free polynomials, see
equation (5.15). As discussed in chapter 5, the velocity and the pressure spaces are chosen
to be conforming, but the stress space is slightly non-conforming σh 6⊂ H(curl div,Ω). Still,
all elements in the discrete stress space are square integrable functions, thus we have the
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6 The MCS method

conformity Σh ⊂ L2(Ω,Rd×d). With these findings we realize that the bilinear forms
defined in the continuous setting by equations (4.27) and (4.28) can also be used in the
discrete setting. We have

a(σh, τh) =

∫
Ω

1

ν
σh : τh dx and b1(uh, qh) =

∫
Ω

div(uh)qh dx,

for all functions σh, τh ∈ Σh and uh ∈ Vh, qh ∈ Qh.
Handling the terms with the divergence of stress variables we can not proceed in the

same way. To this end we define the discrete bilinear form

b2h : {τ ∈ H1(Th,Rd×d) : [[τnt]] = 0} × {v ∈ H1(Th,Rd) : [[vn]] = 0} → R,

b2h(τ, v) :=
∑
T∈Th

∫
T

div(τ) · v dx−
∑
F∈Fh

∫
F

[[τnn]]vn ds .
(6.4)

This definition is motivated by identity (5.12) of theorem 13. Moreover, using an integration
by parts argument, we find the equivalent representation

b2h(τ, v) = −
∑
T∈Th

∫
T
τ : ∇v dx+

∑
F∈Fh

∫
F
τnt · [[vt]] ds, (6.5)

since [[τnt]] = 0 and [[vn]] = 0. Using above definitions, and assuming enough regularity of
the right hand side, the discrete counterpart of the weak form (4.26) is given by the (MCS)
method that reads as: Find (σh, uh, ph) ∈ Σh,N × Vh,D ×Qh such that

a(σh, τh) + b2h(τh, uh) = (gD,t, (τh)nt)ΓD,t for all τh ∈ Σh,

b2h(σh, vh) + b1(vh, ph) = −(f, vh)Ω + (gN,n, (vh)n)ΓN,n for all vh ∈ Vh,
b1(uh, qh) = 0 for all qh ∈ Qh.

(6.6)

As discussed in section 5.2, the velocity and the pressure space fulfill the property
div(Vh) = Qh. Therefore, any weakly divergence-free velocity field is also strongly di-
vergence free: ∫

Ω
div(uh)qh dx = 0, ∀qh ∈ Qh ⇔ div(uh) = 0 in Ω. (6.7)

Thus, the velocity solution uh of the system (6.6) is exactly divergence free.

Remark 3. Similarly as in the infinite dimensional setting, system (6.6) is solved using a
homogenization process.

6.2 Discrete inf-sup stability

In this section we discuss discrete inf-sup stability of the MCS method (6.6). Although we
only consider the case of homogeneous boundary conditions,

gD,n = gD,t = gN,t = gN,n = 0, (6.8)
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6 The MCS method

we want to mention that with the usual techniques all results can be extended also to the
non-homogeneous case. The stability analysis that we present in this section is based on
norms that might seem unnatural with respect to the continuous setting of problem (4.26).
To this end we define

||τh||2Σh := ||τh||2L2(Ω) = ||dev(τh)||2L2(Ω), τh ∈ Σh,

||vh||2Vh := ||vh||21,h :=
∑
T∈Th

||∇vh||2T +
∑
F∈Fh

1

h
‖[[(vh)t]]‖2F , vh ∈ Vh,

||qh||2Qh := ||qh||2L2(Ω), qh ∈ Qh.

This choice is motivated by the primal velocity-pressure formulation of the Stokes system,
hence with respect to the variational formulation given by (4.4). Note that the L2-like
norm for the space Σh is also related to an H1-like norm of the velocity since we expect σh
to be an approximation of ν∇u. The norm for the velocity space is the same as it occurs
in discontinuos Galerkin settings, see for example in [7, 67, 102], and for flow problems in
[113, 108, 54, 29, 31, 30] and [78, 76, 77].

Although the analysis that we present in this section follows very similar lines as the
results given in [69], there are some crucial differences. In [69] the velocity space was
chosen as the conforming polynomial space BDMk+1(Th). In order to show discrete inf-sup
stability, the authors used a stress space that was locally enriched with normal-tangential
bubbles, thus using the notation of this thesis given by equation (5.36), the authors used the
space Ξk+1,0,k(Th). Note that a similar choice of the velocity space as in this thesis was also
made in the work [49]. Therein, the authors presented a hybrid DG method for solving the
Brinkman problem, which is based on the work of Cockburn et al. [32]. Their discretization
results in a stress approximation with a similar normal-tangential continuity and can be
seen as a hybridized version of the MCS method. Note that the choice RT k(Th) leads to a
less accurate velocity approximation (compared to an approximation with BDMk+1), thus
in order to retain the optimal convergence order of the velocity (measured in a discrete H1-
norm) a local element-wise post processing has to be introduced. With the reconstruction
operators introduced in [76, 77], this post processing can be done retaining the exact
divergence-free property.

Before we start, we show several norm equivalences that we shall use within this thesis.

6.2.1 Norm equivalences

For the discrete analysis we are going to use several norm equivalences proven in the
following. Due to quasi-uniformity of the triangulation Th these results are all based on
standard scaling arguments.

Lemma 18. For any τ̂ ∈ ΞkD(T̂ ), letting τ =M(τ̂), we have

hd‖τh‖2T ∼ ‖τ̂h‖2T̂ , (6.9)

and on any F ∈ Fh(T )

hd+1
∥∥tTτhn∥∥2

F
∼
∥∥t̂Tτ̂hn̂∥∥2

F̂
. (6.10)
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6 The MCS method

Proof. This follows with a scaling argument, lemma 16, and equations (5.1) and (5.2). Note
that a similar scaling result is presented in the work [112].

Lemma 19. For all τh ∈ Σh,

||τh||2Σh ∼
∑
T∈Th

||dev(τh)||2T +
∑
F∈Fh

h
∥∥(τh)nt

∥∥2

F
.

Proof. Using norm equivalence for finite dimensional spaces on the reference element T̂ , we
have for any face F̂ ∈ FT̂ and for all functions and τ̂ ∈ ΞkD(T̂ )

‖t̂Tτ̂hn̂‖2F̂ . ‖τ̂h‖2T̂ .

Due to (6.10) and lemma 18, this yields∑
F∈Fh

h
∥∥(τh)nt

∥∥2

F
.
∑
T∈Th

‖τh‖2T , for all τh ∈ ΞkD(T ).

This proves one side of the stated equivalence. The other side is obvious.

Lemma 20. For all vh ∈ Vh there holds

||vh||2Vh ∼
∑
T∈Th

||∇vh||2T +
∑
F∈Fh

1

h

∥∥Π0
F [[(vh)t]]

∥∥2

F
.

Proof. One side of the equivalence is obvious from the continuity of Π0
F . For the other

direction first note that

||vh||2Vh ≤
∑
T∈Th

||∇vh||2T +
∑
F∈Fh

2

h

∥∥Π0
F [[(vh)t]]

∥∥2

F
+

2

h

∥∥[[(vh)t]]−Π0
F [[(vh)t]]

∥∥2

F
. (6.11)

Now, on each facet F ∈ Fh(T ), using a Poincaré type inequality on the boundary and an
inverse inequality for polynomials, see [117], we get the standard estimate∥∥(vh)t −Π0

F (vh)t
∥∥
F
. h‖∇tvh‖F . h1/2‖∇vh‖T ,

and the estimate is proven.

Lemma 21. Let vh ∈ RT k(Th), and div(vh) = 0. Then vh is in BDMk(Th) and has the
local representation

vh|T = aT with aT ∈ Pk(T,Rd).

Proof. By the definition of the Raviart-Thomas space RT k(Th) there exist for each vh
and for each element T ∈ Th a function aT ∈ Pk(T,Rd) and bT ∈ Pkhom(T,R) such that
the restriction on T is given by vh|T = aT + xbT . Now assume bT 6= 0, then we have as
div(vh) = 0 the identity

div(bTx) = dbT +∇bTx = div(aT ).

As div(aT ) ∈ Pk−1(T,R) and bT ∈ Pkhom(T,R), this leads to a contradiction, and thus
bT = 0, and vh|T = aT . As we further have vh ∈ H(div,Ω), this yields vh ∈ BDMk(Th).
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6 The MCS method

Lemma 22. For all T ∈ Th and vh ∈ RT k(T ) there holds the equivalence

‖∇vh‖2T ∼ ‖Πk−1
T [dev(∇vh)]‖2T + ‖div(vh)‖2T ,

and the estimate

‖(Id−Πk−1
T )∇vh‖T +

1√
h
‖(Id−Πk

F )(vh)t‖∂T . ‖ div(vh)‖T .

Proof. One side of the equivalence is obvious by the continuity of the Πk−1
T . For the other

direction let T ∈ Th be arbitrary and define v̂h = P−1(vh|T ). We solve the following
problem: Find b̂ ∈ Pk(T̂ ,R) such that∫

T̂
d̂iv(x̂b̂)d̂iv(x̂q̂) dx =

∫
T̂

d̂iv(v̂h)d̂iv(x̂q̂) dx ∀q̂ ∈ Pk(T̂ ,R).

Note that this problem is solvable by the Lax-Milgram theorem 5, as there holds the norm
equivalence

‖∇̂(q̂x̂)‖ ∼ ‖d̂iv(q̂x̂)‖,

see for example in the appendix of the work [79] (also known as Euler identity). Since
d̂iv(x̂Pk(T̂ ,R)) = Pk(T̂ ,R), the solution fulfills the property d̂iv(x̂b̂) = d̂iv(v̂h). Now set
wh := P(x̂b̂). Due to the properties of the Piola mapping, the function wh is in RT k(T )
and div(wh) = div(vh). Further a standard scaling argument shows that

‖∇wh‖T ∼ ‖div(wh)‖T . (6.12)

Using lemma 21, the function vh can now be written as vh = a + wh, with a ∈ Pk(T,Rd)
(as div(wh − vh) = 0). This then yields

‖∇vh‖T = ‖∇(a+ wh)‖T ≤ ‖dev(∇a)‖T + ‖dev(∇wh)‖T + ‖ div(vh)‖T
≤ ‖dev(∇a)‖T + ‖∇wh‖T + ‖ div(vh)‖T
. ‖dev(∇a)‖T + ‖ div(vh)‖T
= ‖Πk−1

T dev(∇a)‖T + ‖div(vh)‖T .

As a = vh − wh we conclude

‖∇vh‖T . ‖Πk−1
T dev(∇vh)‖T + ‖Πk−1

T dev(∇wh)‖T + ‖ div(vh)‖T
. ‖Πk−1

T dev(∇vh)‖T + ‖∇wh‖T + ‖div(vh)‖T
. ‖Πk−1

T dev(∇vh)‖T + ‖div(vh)‖T .

It remains to show the second statement. Using the local representation of vh the triangle
inequality yields

‖(Id−Πk−1
T )∇vh‖T ≤ ‖(Id−Πk−1

T )∇a‖T + ‖(Id−Πk−1
T )∇wh‖T .
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6 The MCS method

As a ∈ Pk(T,Rd), the first term vanishes, and thus by the findings above and the continuity
of Πk−1

T we have

‖(Id−Πk−1
T )∇vh‖T ≤ ‖∇wh‖T ∼ ‖div(wh)‖T = ‖ div(vh)‖T .

On each facet F ∈ Fh(T ) with the same steps as above we also see that

1√
h
‖(Id−Πk

F )(vh)t‖F ≤
1√
h
‖(Id−Πk

F )(wh)t‖F ,

and similar as in the proof of lemma 20, an inverse inequality for polynomials, see [117],
yields

1√
h
‖(Id−Πk

F )(vh)t‖F .
√
h‖∇twh‖F . ‖∇wh‖T ∼ ‖div(wh)‖T = ‖ div(vh)‖T .

6.2.2 Stability analysis in a discrete H1-norm

To prove discrete inf-sup stability we are aiming to use Brezzi’s theorem 6. To this end we
prove all the conditions needed in the following.

Lemma 23 (Continuity of a, b1 and b2h). The bilinear forms a, b1 and b2h are continuous:

a(σh, τh) .
1√
ν
||σh||Σh

1√
ν
||τh||Σh for all σh, τh ∈ Σh,

b1(vh, ph) . ||vh||Vh ||ph||Qh for all vh ∈ Vh, ph ∈ Qh,
b2h(σh, vh) . ||σh||Σh ||vh||Vh for all σh ∈ Σh, vh ∈ Vh.

Proof. The continuity for the bilinear forms a and b1 follows with the Cauchy-Schwarz
inequality. For b2h we have, using representation (6.5), that

b2h(σh, vh) = −
∑
T∈Th

∫
T
σh : ∇vh dx+

∑
F∈Fh

∫
F

(σh)nt · [[(vh)t]] ds .

Since (σh)nt = (dev(σh))nt, we conclude the proof by the Cauchy-Schwarz inequality in-
cluding a scaling with

√
h/
√
h for the facet integral and lemma 19.

Lemma 24 (Coercivity of a on the kernel). Let Kbh := {(τh, qh) ∈ Σh ×Qh : b1(vh, qh) +
b2h(σh, vh) = 0 for all vh ∈ Vh}. For all (σh, ph) ∈ Kbh there holds the estimate

1

ν

(
||σh||Σh + ||ph||Qh

)2
. a(σh, σh).

Proof. Let (σh, ph) ∈ Kbh be arbitrary. As ν−1||σh||2Σh = a(σh, σh), it is sufficient to bound
only the norm of ph by ||σh||Σh . Using the discrete Stokes-LBB of a velocity-pressure
formulation with Vh and Qh, we find for any ph ∈ Qh a discrete velocity vh ∈ Vh such that

div(vh) = ph, and ||vh||Vh . ||ph||Qh . (6.13)
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In the case of ΓD,n = Γ this can be found e.g. in [11] and [78]. For the other case one
uses the infinite dimensional Stokes-LBB, see lemma 4.9 in [41], and the Fortin interpolator
constructed in [78]. As (σh, ph) ∈ Kbh , this yields

2||ph||2Qh =
∑
T∈Th

∫
T
phph dx =

∑
T∈Th

∫
T

div(vh)ph dx = b1(vh, ph). = −b2h(σh, vh).

Using representation (6.5), norm equivalence lemma 19 and a Cauchy-Schwarz argument
then further yields

2||ph||2Qh =
∑
T∈Th

∫
T
σh : ∇vh dx−

∑
F∈Fh

∫
F

(σh)nt · [[(vh)t]] ds ≤ ‖σ‖Σh‖vh‖Vh ,

thus by (6.13) we conclude the proof.

Next, we proceed to verify the discrete LBB-condition (see theorem 17 below). To this
end we define the subspace of divergence free velocities V 0

h := {wh ∈ Vh : div(wh) = 0},
and the norm

‖vh‖1,Π,h :=

∑
K∈Th

‖Πk−1
T dev(∇vh)‖2T +

∑
F∈Fh

1

h

∥∥Π0
F [[(vh)t]]

∥∥2

F

1/2

.

As ‖∇vh‖2T ∼ ‖Πk−1
T dev(∇vh)‖2T + ‖ div(vh)‖2T on any T ∈ Th (see lemma 22), we have

together with lemma 20

‖vh‖1,Π,h ∼ ‖vh‖Vh for all vh ∈ V 0
h . (6.14)

A first step towards proving the LBB-condition is the construction of a specific stress
function τh, which only depends on Πk−1

T dev(∇vh) for any vh ∈ V 0
h . Using this τh we prove

an LBB-condition for b2h on V 0
h , which is the content of the next lemma. As τh ∈ Σh has

a zero trace, we cannot in general control the divergence of a general vh ∈ Vh solely using
such a τh. Therefore, to complete the proof of the full inf-sup condition (in the proof of
theorem 17 below) we utilize an appropriate pressure test function as well.

Lemma 25. For any nonzero vh ∈ Vh there exists a nonzero stress function τh ∈ Σh

satisfying b2h(τh, vh) & ‖vh‖21,Π,h and ‖τh‖Σh . ‖vh‖1,Π,h. Equation (6.14) implies discrete

inf-sup stability of b2h on V 0
h ,

‖vh‖Vh . sup
τh∈Σh

b2h(τh, vh)

‖τh‖Σh
for all vh ∈ V 0

h .

Proof. Since the ideas are the same for d = 2 and 3, for ease of exposition, we give the
details of the proof only in the two-dimensional case. Because of the decomposition of the
degrees of freedom into face and interior degrees of freedom given by equation (5.23) and
(5.24) (note that the set (5.25) is not used as Σh = ΞkD(Th)), we can decompose the stress
space as

Σh = Σ0
h ⊕ Σ1

h,
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where Σ0
h = ⊕T∈ThBknt(T ) and Σ1

h is the span of facet shape functions. In particular, Σ1
h

contains the lowest order shape functions SF with the property that SFnt ∈ n⊥ (thus in the
tangent plane of F ) and ||SFnt||l2 = 1 on the facet F and equals (0, 0) on all other facets in
Fh. SF can be explicity written down by mapping (5.33) or by appropriately scaling (5.16).
Given any vh ∈ Vh, define

τ0
h :=

∑
T∈Th

∑
F∈Fh(T )

−(SF : Πk−1
T dev(∇vh))λFT S

F ,

τ1
h :=

∑
F∈Fh

1√
h

(Π0
F [[(vh)t]])S

F ,
(6.15)

where λFT is the barycentric coordinate of T that vanishes on F . Note that τ0
h and τ1

h

can also be defined using a projection that is based on the degrees of freedoms (5.24) and
(5.23), respectively. By lemma 18 and (6.10), a scaling argument (like in lemma 19) shows
that there is a mesh-independent C1 such that∥∥τ1

h

∥∥2

Σh
≤ C1

∑
F∈Fh

1

h

∥∥Π0
F [[(vh)t]]

∥∥2

F
. (6.16)

A similar scaling argument also shows that

||τ0
h ||2Σh .

∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T . (6.17)

By construction we have (τ0
h)nt = (0, 0), which yields

b2h(τ0
h , vh) =

∑
T∈Th

−
∫
T
τ0
h : ∇vh dx

=
∑
T∈Th

∫
T

∑
F∈Fh(T )

(SF : Πk−1
T dev(∇vh))λFT S

F : ∇vh dx

=
∑
T∈Th

∫
T

∑
F∈Fh(T )

(SF : Πk−1
T dev(∇vh))2λFT dx .

Since the functions SF form a basis for D, see lemma 14, and as the barycentric coordinate
functions are greater than or equal to, λFT ≥ 0 on T , a scaling argument shows that

b2h(τ0
h , vh) &

∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T . (6.18)

We continue to define a linear combination to prove the results. To this end set τh =
γ0τ

0
h + γ1τ

1
h , where γ0 > 0 and γ1 > 0 are constants to be chosen. Stability (6.18) yields

b2h(τh, vh) & γ0

∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T + γ1b2(τ1

h , vh).
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By definition (6.15) we then further have

b2h(τh, vh)

& γ0

∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T + γ1

∑
T∈Th

−
∫
T
τ1
h : ∇vh dx+

∑
F∈Fh

∫
F

(τ1
h)nt · [[(vh)t]] ds


= γ0

∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T − γ1

∑
T∈Th

∫
T
τ1
h : Πk−1

T dev(∇vh) dx+γ1

∑
F∈Fh

1

h

∥∥Π0
F [[(vh)t]]

∥∥2

F
.

Applying the Cauchy-Schwarz inequality for the second sum and using (6.16), we obtain

−γ1

∑
T∈Th

∫
T
τ1
h : Πk−1

T dev(∇vh) dx

≥ −γ1‖τ1
h‖Σh

√∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T

& −γ1

√
C1

∑
F∈Fh

1

h

∥∥Π0
F [[(vh)t]]

∥∥2

F

√∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T ,

and thus by Young’s inequality with δ > 0 we get

b2h(τh, vh) &

(
γ0 −

γ1δ

2

) ∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T +

(
1− C1

2δ

)
γ1

h

∑
F∈Fh

∥∥Π0
F [[(vh)t]]

∥∥2

F
.

Choosing δ = C1, γ1 = 1/δ = 1/C1, and γ0 = 1 yields

b2h(τh, vh) &
∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T +

∑
F∈Fh

1

h

∥∥Π0
F [[(vh)t]]

∥∥2

F
. (6.19a)

By (6.16) and (6.17) we further obtain

‖τh‖Σh .
∑
T∈Th

‖Πk−1
T dev(∇vh)‖2T +

∑
F∈Fh

1

h

∥∥Π0
F [[(vh)t]]

∥∥2

F
. (6.19b)

The estimates (6.19) and the norm equivalences of (6.14) complete the proof.

Theorem 17 (Discrete LBB-condition). For all vh ∈ Vh there holds

sup
(τh,qh)∈Σh×Qh

b1(vh, qh) + b2h(τh, vh)

||τh||Σh + ||qh||Qh
& ||vh||Vh . (6.20)

Proof. By lemma 25 for any vh ∈ Vh there exists a τh ∈ Σh satisfying b1(τh, vh) & ‖vh‖21,Π,h
and ‖τh‖Σh . ‖vh‖1,Π,h. Next, we choose the pressure variable qh = div(vh), which is an
admissible choice as div(Vh) = Qh, yielding b1(vh, qh) = ‖ div(vh)‖2Qh . With these choices
of τh and qh we have

b1(vh, qh) + b2h(τh, vh)

||τh||Σh + ||qh||Qh
≥
‖vh‖21,Π,h + ‖ div(vh)‖2Qh
||τh||Σh + ||qh||Qh

& ‖vh‖Vh .
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For the ease of notation we now define the norm on the product space Vh × Σh ×Qh,

‖(uh, σh, ph)‖∗ :=
√
ν||uh||Vh +

1√
ν

(||σh||Σh + ||ph||Qh),

and the bilinear form

B(uh, σh, ph; vh, τh, qh) := a(σh, τh) + b1(uh, qh) + b1(vh, ph) + b2h(σh, vh) + b2h(τh, uh).

Corollary 4. The bilinearform B is inf-sup stable with respect to ‖ · ‖∗, thus there exists
a constant β > 0 such that for all nonzero functions (uh, σh, ph) ∈ Vh × Σh ×Qh it holds

sup
(vh,τh,qh)∈Vh×Σh×Qh

B(uh, σh, ph; vh, τh, qh)

||(vh, τh, qh)||∗
≥ β||(uh, σh, ph)||∗.

Let f ∈ L2(Ω,Rd) and assume homogeneous boundary conditions (6.8). There exists a
unique solution (uh, σh, ph) ∈ Vh × Σh × Qh of the MCS method (6.6) with the stability
estimate

‖uh, σh, ph‖∗ .
1√
ν
‖f‖L2(Ω).

Proof. This is a direct consequence from lemma 23, lemma 24, theorem 17 and Brezzi’s
theorem 6.

Remark 4. To avoid technical details the stability analysis was based on the assumption
of homogeneous boundary conditions (6.8). With the usual techniques one can extend the
results also to the case where we have the regularity properties

gD,n ∈ [H1/2(ΓD,n,Rd)]n, gD,t ∈ [H1/2(ΓD,t,Rd)]t,

gN,n ∈ H−1/2(ΓD,n,R), gN,t ∈ H−1/2(ΓD,t,Rd−1).

We conclude this section with two consistency results that shall be needed in the next
section.

Theorem 18 (Consistency). The MCS method (6.6) is consistent in the following sense.
If the exact solution of the mixed Stokes problem (4.6) fulfills the regularity property u ∈
H1(Ω,Rd), σ ∈ H1(Ω,Rd×d) and p ∈ L2(Ω,R), then

B(u, σ, p; vh, τh, qh) = (−f, vh)Ω + (gD,t, (τh)nt)ΓD,t + (gN,n, vn)ΓN,n ,

for all vh ∈ Vh, qh ∈ Qh, and τh ∈ Σh.

Proof. As the exact solutions σ and u are continuous, we have [[σnn]] = 0 and [[ut]] = 0 on
all faces F ∈ F int

h , and thus using representations (6.4) and (6.5) we have

b2h(σ, vh) =
∑
T∈Th

∫
T

div(σ) · vh dx−
∑
F∈Fh

∫
F

[[σnn]](vh)n ds

=
∑
T∈Th

∫
T

div(σ) · vh dx−
∫

ΓN,n

σnn(vh)n ds,
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and

b2h(τh, u) = −
∑
T∈Th

∫
T
τh : ∇udx+

∑
F∈Fh

∫
F

(τh)nt · [[ut]] ds

= −
∑
T∈Th

∫
T
τh : ∇udx+

∫
ΓD,t

(τn)ntut ds .

Using div(u) = 0 we further get that b1(u, qh) = 0, so all together this yields

a(σ, τh) + b2h(τh, u) + b2h(σ, vh) + b1(vh, p) + b1(u, qh)

=

∫
Ω

1

ν
dev(σ) : dev(τh) dx−

∑
T∈Th

∫
T
τh : ∇udx+

∑
T∈Th

∫
T

div(σ) · vh dx

+

∫
Ω

div(vh)pdx+

∫
ΓD,t

(τn)ntut ds−
∫

ΓN,n

σnn(vh)n ds .

For the exact solution we have dev(σ) = ν∇u. Further, as div(u) = 0, a simple calculation
shows that τh : ∇u = τh : dev(∇u) = dev(τh) : ∇u, thus the first two volume integrals
vanish. Using integration by parts for the last volume integral we observe∫

Ω
div(vh)p dx = −

∫
Ω
vh∇pdx+

∫
ΓN,n

(vh)np ds .

For the exact solutions we have ut = gD,t on ΓD,t, −σnn + p = gN,n on ΓN,n. Adding up
all results from above yields

a(σ, τh) + b2h(τh, u) + b2h(σ, vh) + b1(vh, p) + b1(u, qh)

=

∫
Ω

[
div(σ)−∇p

]
· vh dx+

∫
ΓD,t

(τn)ntut ds−
∫

ΓN,n

σnn(vh)n ds+

∫
ΓN,n

(vh)np ds

=

∫
Ω
−fvh dx+

∫
ΓD,t

(τn)nt · gD,t ds+

∫
ΓN,n

gN,n(vh)n ds .

Theorem 19 (Consistency on V 0
h ). The MCS method (6.6) is consistent on the subspace

of divergence free velocity fields, thus if the exact solution of the mixed Stokes problem (4.6)
is such that u ∈ H1(Ω,Rd), σ ∈ H1(Ω,Rd×d) and p ∈ L2(Ω,R), then there holds

B(u, σ, 0; vh, τh, 0) = (−f, vh)Ω + (gD,t, (τh)nt)ΓD,t + (gN,n, vn)ΓN,n ,

for all vh ∈ V 0
h and τh ∈ Σh.

Proof. With the same steps as above we end up with the equation

a(σ, τh) + b2h(τh, u) + b2h(σ, vh)

=

∫
Ω

div(σ) · vh dx+

∫
ΓD,t

(τn)ntut ds−
∫

Γ,nN
σnn(vh)n ds

=

∫
Ω

[
− f +∇p

]
vh dx+

∫
ΓD,t

(τn)nt · gD,t ds+

∫
ΓN,n

[
gN,n − p

]
(vh)n ds .
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As vh ∈ V 0
h , we conclude the proof by∫

Ω
∇p · vh dx = −

∫
Ω
p div(vh) dx+

∫
ΓN,n

p(vh)n.

6.2.3 Stability analysis in natural norms

This section is dedicated to prove discrete inf-sup stability using norms that fit to the
continuous formulation given by (4.26). As mentioned at the beginning of this chapter,
the velocity space and the pressure space are chosen conformingly with respect to V and
Q, thus natural norms are simply given by ‖ · ‖H(div,Ω) and ‖ · ‖L2(Ω), respectively. The
stress space, however, is slightly non-conforming. To this end we define the discrete stress
H(curl div,Ω)-norm by

‖σh‖2cd,h := ‖σh‖2L2(Ω) +
(

sup
vh∈RT k(Th)

b2h(σh, vh)

‖vh‖H(div,Ω)

)2
. (6.21)

This definition is again motivated by the identity (5.12) of theorem 13, thus the above
definition can be seen as a discrete version of the stress norm ‖ ·‖cd. Note, however, that in
contrast to ‖ · ‖cd the supremum in (6.21) is taken with respect to the smaller set Vh ⊂ V ,
hence even in the case of enough regularity of a given τ we do not have norm equivalence

‖τh‖cd,h 6∼ ‖τh‖cd.

We follow the same steps as in the last chapter proving the results needed to apply Brezzi’s
theorem 6.

Lemma 26. The bilinear forms a, b1 and b2h are continuous:

a(σh, τh) .
1√
ν
‖σh‖cd,h

1√
ν
‖τh‖cd,h for all σh, τh ∈ Σh,

b1(vh, ph) . ‖vh‖H(div,Ω)||ph||L2(Ω) for all vh ∈ Vh, ph ∈ Qh,
b2h(σh, vh) . ‖σh‖cd,h‖vh‖H(div,Ω) for all σh ∈ Σh, vh ∈ Vh.

Proof. The continuity of a and b1 follow using the Cauchy-Schwarz inequality. The conti-
nuity of b2h follows by

b2h(σh, vh) =
b2h(σh, vh)

‖vh‖H(div,Ω)
‖vh‖H(div,Ω) ≤ ‖σh‖cd,h‖vh‖H(div,Ω).

Lemma 27 (Coercivity of a on the kernel). For all (σh, ph) ∈ Kbh there holds

1

ν

(
‖σh‖cd,h + ‖ph‖L2(Ω)

)2
. a(σh, σh).
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6 The MCS method

Proof. Let (σh, ph) ∈ Kbh be arbitrary. With the same steps as in the in the proof of the
discrete coercivity with non-natural norms, see lemma 24, we find a velocity field uh ∈ Vh
such that

div(uh) = qh and ‖uh‖Vh ≤ ‖ph‖L2(Ω),

and there holds the estimate ‖ph‖L2(Ω) ≤ ‖σh‖L2(Ω). Next we observe

sup
vh∈RT k(Th)

b2h(σh, vh)

‖vh‖H(div,Ω)
= sup

vh∈RT k(Th)

(div(vh), ph)Ω

‖vh‖H(div,Ω)
≤ ‖ph‖L2(Ω).

This yields for all (σh, ph) ∈ Kbh the estimate (‖σh‖cd,h + ‖ph‖L2(Ω))
2 . νa(σh, σh). We

conclude the proof with a division by ν.

Theorem 20 (LBB). For all vh ∈ Vh there holds

sup
(τh,qh)∈Σh×Qh

b1(vh, qh) + b2h(τh, vh)

‖τh‖cd,h + ‖qh‖L2(Ω)
& ‖vh‖H(div,Ω). (6.22)

Proof. Let wh ∈ Vh be arbitrary. Due to the solvability of the discrete system in non-
natural norms, see corollary 4, there exists a unique solution (uh, σh, ph) of the following
problem

a(σh, τh) + b2h(τh, uh) = 0 for all τh ∈ Σh,

b2h(σh, vh) + b1(vh, ph) = (wh, vh)L2(Ω) + (div(wh),div(vh))L2(Ω) for all vh ∈ Vh,
b1(uh, qh) = 0 for all qh ∈ Qh,

(6.23)

and the solution fulfills

√
ν||uh||Vh +

1√
ν

(||σh||Σh + ||ph||Qh) .
1√
ν
‖wh‖H(div,Ω). (6.24)

By the second equation of the system (6.23), the equation ‖σh‖Σh = ‖σh‖L2 and esti-
mate (6.24), we get

‖σh‖2cd,h + ‖ph‖2L2(Ω) = ‖σh‖2L2(Ω) + ‖ph‖2L2(Ω) +
(

sup
vh∈Vh

b2h(σh, vh)

‖vh‖H(div,Ω)

)2

. ‖wh‖2H(div,Ω) +
(

sup
vh∈Vh

b2h(σh, vh) + b1(vh, ph)

‖vh‖H(div,Ω)

)2

= ‖wh‖2H(div,Ω) +
(

sup
vh∈Vh

(wh, vh)L2(Ω) + (div(wh), div(vh))L2(Ω)

‖vh‖H(div,Ω)

)2

≤ ‖wh‖2H(div,Ω),
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and thus

sup
(τh,qh)∈Σh×Qh

b1(wh, qh) + b2h(τh, wh)

‖τh‖cd,h + ‖qh‖L2(Ω)
≥ b1(wh, ph) + b2h(σh, wh)

‖σh‖cd,h + ‖ph‖L2(Ω)

&
(wh, wh)L2(Ω) + (div(wh),div(wh))L2(Ω)

‖wh‖H(div,Ω)

= ‖wh‖H(div,Ω).

Similarly as before we define the norm on the product space Vh × Σh ×Qh,

‖(uh, σh, ph)‖∗∗ :=
√
ν‖uh‖H(div,Ω) +

1√
ν

(‖σh‖cd,h + ‖ph‖L2(Ω)),

and have the following result:

Corollary 5. The bilinear form B is inf-sup stable with respect to ‖ · ‖∗∗, thus there exists
a constant β > 0 such that for all nonzero functions (uh, σh, ph) ∈ Vh×Σh×Qh there holds

sup
(vh,τh,qh)∈Vh×Σh×Qh

B(uh, σh, ph; vh, τh, qh)

||(vh, τh, qh)||∗∗
≥ β||(uh, σh, ph)||∗∗.

Let f ∈ L2(Ω,Rd) and assume homogeneous boundary conditions (6.8). There exists a
unique solution (uh, σh, ph) ∈ Vh,D ×Σh,N ×Qh of the MCS method (6.6) with the stability
estimate

√
ν‖uh‖div +

1√
ν

(‖σh‖cd,h + ‖ph‖Ω) .
1√
ν
‖f‖L2(Ω).

Proof. This follows with lemma 26, lemma 27, theorem 20 and Brezzi’s theorem 6.

6.3 Error estimates

In this section we discuss several error estimates of the MCS method. First, we define
proper interpolation operators for the discrete velocity, stress and pressure spaces and
provide approximation results in different norms. Using these interpolation operators we
are then going to discuss the following error estimates: First we focus on a standard error
estimate in section 6.3.2. We start with the analysis using the norms defined in section
6.2.2, and prove that the errors of the stress and the pressure converge with optimal order.
Note, however, that we could only expect a lower convergence order of the velocity error
measured in a discrete H1-norm. This is mainly due to the bad approximation properties
of the Raviart-Thomas interpolator, see lemma 28 below. It will be crucial in the analysis
that this degenerated convergence order of the velocity error does not effect the results of
the stress and the pressure variable. This is achieved by showing that the velocity error
measured in a discrete sense is still of optimal order. After this we provide also an error
estimate in the case of natural norms, i.e. with the norms defined in section 6.2.3. In this
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case we can also provide optimal convergence of the velocity error as the Raviart-Thomas
interpolator has good approximation poperties with respect to the natural velocity H(div)-
norm.

Section 6.3.3 deals with an error estimate that is known in the literature as pressure
robustness: In the original work [83], the author showed that the proper scaling of irrota-
tional and rotational forces with respect to the viscosity ν – as it appears in the continuous
setting – might be disturbed in the discrete case. As a consequence, the velocity error scales
with the factor 1/ν, which gets big in the case of vanishing viscosity. We show that the
MCS method does not only provide optimal convergence errors, but is also pressure robust,
hence we provide error estimates that are independent of ν and the pressure approximation.

We conclude with section 6.3.4, where we provide a local post processing procedure.
Thereby, we retrieve optimal convergence of the error of a lifted velocity approximation
(measured in a discrete H1-norm). Using the results of [76, 77] it is possible that this post
processing can be defined in such a way that the lifted velocity is still exactly divergence
free.

6.3.1 Interpolation operators

We start with the definition of interpolation operators for the velocity and the pressure
space. To this end we denote by IRT k the Raviart-Thomas interpolator of order k that
is locally based on the degrees of freedoms given by lemma 13. There holds the following
approximation results:

Lemma 28. For any m ≥ 1 and any smooth u ∈ H1(Ω,Rd)∩Hm(Th,Rd) the interpolation
operator IRT k is well defined and there holds the interpolation result

‖u− IRT ku‖1,h . hs−1‖u‖Hs(Th),

for all s ≤ min(k + 1,m). Similarly, if u ∈ Hm(div,Ω), we have the approximation result

‖u− IRT ku‖H(div,Ω) . hs‖u‖Hs(div,Ω),

for all s ≤ min(k + 1,m).

Proof. We first show the continuity of IRT k in the norm ‖ · ‖1,h. By definition, we have

‖IRT ku‖21,h =
∑
T∈Th

‖∇IRT ku‖2T +
∑
F∈Fh

1

h
‖[[(IRT ku)t]]‖2F .

First, we bound the element terms by a triangle inequality,

‖∇IRT ku‖T = ‖∇IRT ku+∇u−∇u‖T ≤ ‖∇(u− IRT ku)‖T + ‖u‖H1(T ).

As proposition 2.5.3 from [11] gives the estimates

‖(u− IRT ku)‖T ≤ h‖u‖H1(T ) and ‖∇(u− IRT ku)‖T ≤ ‖u‖H1(T ), (6.25)
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the stability of the element terms is proven. Similarly, we add and subtract the function u
on the facets to split the jump into two terms, thus∑

F∈Fh

1

h
‖[[(IRT ku)t]]‖2F ≤

∑
T∈Th

1

h
‖(u− IRT ku)t‖2∂T .

Next, using standard scaling arguments and a multiplicative trace inequality, see theroem
1.6.6 in [17], we get

‖(u− IRT ku)t‖2∂T . hd−1‖(u− IRT ku)t‖2∂T̂
. (hd/2‖u− IRT ku‖T̂ )(h(d−2)/2‖u− IRT ku‖H1(T̂ )

)

. ‖(u− IRT ku)‖T
(1

h
‖(u− IRT ku)‖T + ‖∇(u− IRT ku)‖T

)
.

Again using (6.25) we get 1/h‖(u− IRT ku)t‖2∂T ≤ ‖u‖H1(T ) implying continuity,

‖IRT ku‖21,h .
∑
T∈Th

‖u‖2H1(T ) ≤ ‖u‖2H1(Ω).

The rest follows with a standard Bramble-Hilbert argument (see lemma 4.3.8 in [17] or in
the original work [14]) using that (Id − IRT k)q = 0 for q ∈ Pk(Th,Rd). The proof for the
second statement follows from proposition 2.5.3 and 2.5.1 in [11].

Similarly, we define the standard BDMk-interpolator by IBDMk and there holds the
following approximation result.

Lemma 29. For any m ≥ 1 and any smooth u ∈ H1(Ω,Rd)∩Hm(Th,Rd) the interpolation
operator IBDMk is well defined and there holds the interpolation result

‖u− IBDMku‖1,h . hs−1‖u‖Hs(Th),

for all s ≤ min(k + 1,m). Similarly, if u ∈ Hm(div,Ω) we have

‖u− IBDMku‖H(div,Ω) . hs‖u‖Hs(div,Ω),

for all s ≤ min(k,m).

Proof. Follows with the same steps as the proof of lemma 28.

For the pressure space we use the standard element-wise L2-projection given by Πk
Th .

Lemma 30. For any m ≥ 1 and any smooth u ∈ Hm(Th,Rd) the operator Πk
Th is well

defined, and there holds the interpolation result

‖u−Πk
Thu‖Ω . hs‖u‖Hs(Th),

for all s ≤ min(k + 1,m).

Proof. See for example in [17], [11] or [43].
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We conclude this section with the definition of an interpolation operator for the discrete
stress space. Using the global degrees of freedom of Ξk(Th), a canonical interpolation oper-
ator IΞk can be defined as usual. On each T ∈ Th, the interpolant (IΞkσ)|T coincides with
the canonical local interpolant IΞk(T )(σ|T ) defined using the local degrees of freedom given

by the set Φ̃(T ), see equation (5.29). Note that these degrees of freedoms are unisolvent,
see theorem 15, thus are appropriate for the definition of an interpolation operator. Then
we have

φ(σ − IΞk(T )σ) = 0 for all φ ∈ Φ̃(T ). (6.26)

Recalling the map M from (5.22), note that M−1(σ) = det(FFT )FT
F σF

−T
T . In a first step

we show that interpolation and mapping with respect to M commutes.

Lemma 31. For any σ ∈ H1(T,Rd×d) there holds

M−1(ITσ) = IT̂ (M−1(σ)).

Proof. Since both the left and right hand sides are in the local space Ξk(T̂ ), it suffices to
prove that

φ̂(M−1(ITσ)− IT̂ (M−1σ)) = 0 for all φ̂ ∈ Φ̃(T̂ ). (6.27)

For the first type of interior degrees of freedom on T̂ , given by definition (5.28), we have
for all η̂ ∈ Pk−1(T̂ ,D) (due to definition (6.26)) the identity∫

T̂
I

Ξk(T̂ )
(M−1σ) : FT̂ η̂F

−1

T̂
dx̂ =

∫
T̂
M−1σ : FT̂ η̂F

−1

T̂
dx̂ .

As FT̂ = Id, this yields∫
T̂

[
M−1(IΞk(T )σ)− I

Ξk(T̂ )
(M−1σ)

]
: FT̂ η̂F

−1

T̂
dx̂ =

∫
T̂

[
M−1(IΞk(T )σ)−M−1σ

]
: η̂ dx̂

=

∫
T

(IΞk(T )σ − σ) : FT η̂F
−1
T dx = 0,

where we used the equality of interior degrees of freedom on T in (6.26). With the same
argument we see for all polynomials µ̂ ∈ Pk(T̂ ,R) that the second type of interior degrees
of freedom, see definition (5.25), vanishes, as∫

T̂
tr(M−1(IΞk(T )σ)− I

Ξk(T̂ )
(M−1σ)) : µ̂dx̂ =

∫
T̂

tr(M−1(IΞk(T )σ)−M−1σ) : µ̂ dx̂

=

∫
T

tr(IΞk(T )σ − σ) : µ dx = 0,

where we used a standard pullback µ ◦ φT = µ̂ and the properties of the mapping M, see
lemma 16 and (6.26).

We continue with the facet degrees of freedom. We only consider the three-dimensional
case as the two-dimensional case is simpler and follows then with very similar steps. On any
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arbitrary facet F̂ ∈ Fh(T̂ ) choose two arbitrary edges Ê1, Ê2 with unit tangential vectors
t̂1 and t̂2. Using a dual tangential basis ŝ1 and ŝ2 such that ŝi · t̂i = δij , we expand

[M−1(IΞk(T )(T )σ − σ)]nt = [t̂T1M−1(IΞk(T )σ − σ)n̂]ŝ1 + [t̂T2M−1(IΞk(T )σ − σ)n̂]ŝ2.

Next, we choose arbitrary r̂1, r̂2 ∈ Pk(F̂ ,R) and define

r̂ :=
r̂1

det(FE1)
t̂1 +

r̂2

det(FE2)
t̂2.

Let ri = r̂i ◦ φT . Using again a biorthogonal basis s1, s2 with respect to unit tangents t1
and t2 of the mapped edges E1 and E2, we have r := r1t1 +r2t2. Thus, the proper mapping
of the normal-tangential trace, see lemma 16, yields

[M−1(IΞk(T )σ − σ)]nt = det(FFT )det(FE1)[tT1 (IΞk(T )σ − σ)n]ŝ1

+ det(FFT )det(FE2)[tT2 (IΞk(T )σ − σ)n]ŝ2.

Then, this identity shows with similar steps as above∫
F̂

[M−1(IΞk(T )σ)− I
Ξk(T̂ )

M−1σ)]nt · r̂ dŝ

=

∫
F̂

[M−1(IΞk(T )σ − σ)]nt · r̂ dŝ

=

∫
F

[tT1 (IΞk(T )σ − σ)n]r1s1 · t1 dx+

∫
F

[tT2 (ITσ − σ)n]r2s2 · t2 ds

=

∫
F

[(tT1 (ITσ − σ)n)s1 + (tT2 (ITσ − σ)n)s2] · [r1t1 + r2t2] ds

=

∫
F

(ITσ − σ)nt · r ds = 0,

where the last step is due to the equality of the facet degrees of freedom in (6.26).

Next, we show that the interpolation operator on the reference element is continuous.

Lemma 32. For any σ ∈ Hs(T̂ ,Rd×d) with s ≥ 1 there holds

‖I
Ξk(T̂ )

σ||
T̂

+
√ ∑
F̂∈Fh(T̂ )

||(I
Ξk(T̂ )

σ)nt||2F̂ . ‖σ‖
Hs(T̂ )

.

Proof. As I
Ξk(T̂ )

σ is an element of Ξk(T̂ ), lemma 19 shows that it is sufficient to estimate

only the volume term. The estimate then follows directly using a nodal basis with respect
to the degrees of freedom given by Φ̃T

D,ΦT
Id and {ΦF : F ∈ Fh(T )} and that the L2-norms

on elements and facets of those polynomial basis functions are uniformly bounded. One
then derives an estimate

‖I
Ξk(T̂ )

σ||
T̂
. ‖σ‖

T̂
+

∑
F̂∈Fh(T̂ )

‖σnt‖F̂ .

By the continuity of the trace we conclude the proof.
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We can now finally show the following approximation result.

Theorem 21. For any m ≥ 1 and any σ ∈ {τ ∈ Hm(Th,Rd×d) : [[τnt]] = 0} the interpolant
IΞkσ is well defined and there holds the approximation result

||σ − IΞkσ||L2(Ω) +

√∑
F∈Fh

h||(σ − IΞkσ)nt||2F . hs||σ||Hs(Th), (6.28)

for all s ≤ min(k,m).

Proof. Let σ̂ =M−1(σ|T ). By lemma 31,M−1(σ− IΞk(T )σ) = σ̂− I
Ξk(T̂ )

σ̂. Thus, for each

element T ∈ Th we have, using lemma 16, that

‖σ − IΞk(T )σ||2T + h‖(σ − IΞk(T )σ)nt||2∂T ∼
1

hd

(
‖σ̂ − I

Ξk(T̂ )
σ̂||2

T̂
+ ‖(σ̂ − I

Ξk(T̂ )
σ̂)nt||2∂T̂

)
.

Next, note that the unisolvency of the reference element degrees of freedom, see theorem 15,
shows that

σ̂ − I
Ξk(T̂ )

σ̂ = 0 for all σ̂ ∈ Pk(T̂ ,Rd×d).

Lemma 32 further shows continuity of the operator Id−I
Ξk(T̂ )

, thus we apply the Bramble-

Hilbert lemma (lemma 4.3.8 in [17]), and we get

1

hd

(
‖σ̂ − I

Ξk(T̂ )
σ̂||2

T̂
+ ‖(σ̂ − I

Ξk(T̂ )
σ̂)nt||2∂T̂

)
≤ 1

hd
|σ̂|2

Hs(T̂ )
.

A standard scaling argument shows that

|σ̂|2
Hs(T̂ )

∼ h2s+d|σ|2Hs(T ).

We conclude this section with an approximation result of the stress interpolator IΞk in
natural norms.

Theorem 22. For any m ≥ 1 and any σ ∈ {τ ∈ Hm(Th,Rd×d) : [[τnt]] = 0}, the interpolant
IΞkσ is well defined and there holds the approximation result

||σ − IΞkσ||cd,h . hs||σ||Hs(Th), (6.29)

for all s ≤ min(k,m).

Proof. Theorem 21 yields that the term including the L2-norm of ‖ · ‖cd,h converges with
optimal order. It remains to estimate the term including the bilinear form b2h. To this end
let vh ∈ RT k(Th) be arbitrary. Adding and subtracting Πk−1

T ∇vh and Πk[[(vh)t]] on the
element and facet terms, respectively, we have

b2h(σ − IΞkσ, vh) =

−
∑
T∈Th

∫
T

(σ − IΞkσ) : (Id−Πk−1
T )∇vh dx−

∑
T∈Th

∫
T

(σ − IΞkσ) : Πk−1
T ∇vh dx

+
∑
F∈Fh

∫
F

(σ − IΞkσ)nt · (Id−Πk
F )[[(vh)t]] ds+

∑
F∈Fh

∫
F

(σ − IΞkσ)nt ·Πk
F [[(vh)t]] ds .
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6 The MCS method

By the local definition of the interpolator IΞk , see equation 6.26, the second and the fourth
sum vanish. By the Cauchy-Schwarz inequality and rewriting the jump with its contribution
from both element sides we then get

b2h(σ − IΞkσ, vh) .

||σ − IΞkσ||L2(Ω) +

√∑
F∈Fh

h||(σ − IΞkσ)nt||2F


√∑

T∈Th

‖(Id−Πk−1
T )∇vh‖2T +

√∑
T∈Th

1

h
‖(Id−Πk

F )(vh)t‖2∂T

 .

Using lemma 22, we obtain

b2h(σ − IΞkσ, vh) .

||σ − IΞkσ||L2(Ω) +

√∑
F∈Fh

h||(σ − IΞkσ)nt||2F

 ‖vh‖H(div,Ω),

and thus, again by theorem 21,

sup
vh∈RT k(Th)

b2h(σ − IΞkσ, vh)

‖vh‖H(div,Ω)
. hs||σ||Hs(Th).

6.3.2 A standard error estimate

With the interpolation operators defined in the last section we can now show optimal
convergence of the finite element errors. For the ease of notation we define

IVh := IRT k , IΣh := IΞk , IQh := Πk
Th . (6.30)

Theorem 23 below shows that the solutions of the system (6.6) provide optimal convergence
of the stress and the pressure errors. Further, as mentioned at the beginning of this section,
we have optimal convergence of a discrete velocity error given by the difference of the
solution and the corresponding velocity interpolation of the exact solution. Note that the
standard velocity error ‖u−uu‖ is only of order O(hk) (assuming a smooth exact solution).
This can be easily seen, as the according velocity interpolation operator IVh only provides
approximation results in a discrete H1-norm of order k, see lemma 28.

Theorem 23 (Optimal convergence). Assuming homogeneous boundary conditions (6.8),
let u ∈ H1(Ω,Rd) ∩ Hm(Th,Rd), σ ∈ H1(Ω,D) ∩ Hm−1(Th,D) and p ∈ Q ∩ Hm−1(Th,R)
be the exact solution of the mixed Stokes problem (4.6). Further let uh, σh and ph be the
solutions of the MCS method (6.6). For s = min(m− 1, k + 1) there holds

1

ν
(||σ − σh||Σh + ‖p− ph‖Qh) + ‖uh − IVhu‖Vh . hs(

1

ν
‖σ‖Hs(Th) +

1

ν
‖p‖Hs(Th)).
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6 The MCS method

Proof. In a first step we use the triangle inequality to divide the error into an interpolation
error and a discrete measure of error

1

ν
(||σ − σh||Σh + ‖p− ph‖Qh) + ‖uh − IVhu‖Vh

.
1

ν
(||σ − IΣhσ||Σh‖p− IQhp‖Qh)

+
1

ν
(||IΣhσ − σh||Σh + ‖IQhp− ph‖Qh) + ‖uh − IVhu‖Vh .

By the approximation properties of the L2-projection, see lemma 30, and the interpolation
operator IΣh , see theorem 21, we already have for s = min(m− 1, k + 1),

1

ν
(||σ − IΣhσ||Σh + ‖p− IQhp‖Qh) . hs

(
1

ν
‖σ‖Hs(Th) +

1

ν
‖p‖Hs(Th)

)
.

Next, corollary 4 and theorem 18 yield

1√
ν
‖(IVhu− uh, IΣhσ − σh, IQhp− ph)‖∗

. sup
vh∈Vh

τh∈Σh,qh∈Qh

B(IVhu− uh, IΣhσ − σh, IQhp− ph; vh, τh, qh)√
ν‖(vh, τh, qh)‖∗

. sup
vh∈Vh

τh∈Σh,qh∈Qh

B(IVhu− u, IΣhσ − σ, IQhp− p; vh, τh, qh)√
ν‖(vh, τh, qh)‖∗

.

We continue estimating each term of B separately. First note that due to the polynomial
order of the space Σh we have that locally div(τh) ∈ Pk−1(T,Rd) and τnn ∈ Pk(F,R) for
all T ∈ Th, F ∈ Fh. By the definition of the Raviart-Thomas interpolator, based on the
degrees of freedom given in lemma 13, and the element wise L2-projection we then have

b2h(τh, IVhu− u) =
∑
T∈Th

∫
T

div(τh) · (IVhu− u)−
∑
F∈Fh

∫
F

[[(τh)nn]](IVhu− u)n ds = 0.

Similarly, we have

b2h(IΣhσ − σ, vh) = −
∑
T∈Th

∫
T

(IΣhσ − σ) : ∇vh dx+
∑
F∈Fh

∫
F

(IΣhσ − σ)nt · [[(vh)t]] ds .

Applying the Cauchy-Schwarz inequality then yields

b2h(IΣhσ − σ, vh) .
1√
ν

‖IΣhσ − σ‖Σh +

√∑
F∈Fh

h‖(IΣhσ − σ)nt‖2F

√ν‖vh‖Vh .
For the terms including the bilinear form b1 we observe with the same arguments as above

b1(IVhu− u, qh) =
∑
T∈Th

∫
T

div(IVhu− u)qh = 0,

b1(vh, IQhp− p) .
√
ν‖vh‖Vh

1√
ν
‖IQhp− p‖Qh .
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Together with the continuity of a these findings yield

B(IVhu− u, IΣhσ − σ, IQhp− p; vh, τh, qh)

.

‖(0, IΣhσ − σ, IQhp− p)‖∗ +
1√
ν

√∑
F∈Fh

h‖(IΣhσ − σ)nt‖2F

 ‖(vh, τh, 0)‖∗.

Thereby, theorem 21 and the approximation properties of the L2-projection (30), conclude

1√
ν
‖(IVhu− uh, IΣhσ − σh, IQhp− ph)‖∗ . hs

(1

ν
‖σ‖Hs(Th) +

1

ν
‖p‖Hs(Th)

)
.

We also aim for a similar result in natural norms. The proof follows very similar steps
including some slightly different estimates. As the natural norm on the velocity space is
given by the H(div)-norm, lemma 28 shows that we now have optimal rates also for the
velocity error.

Theorem 24 (Optimal convergence in natural norms). Assuming homogeneous boundary
conditions (6.8), let u ∈ H1(Ω,Rd) ∩ Hm(Th,Rd), σ ∈ H1(Ω,D) ∩ Hm−1(Th,D) and p ∈
Q ∩Hm−1(Th,R) be the exact solution of the mixed Stokes problem (4.6). Further let uh,
σh and ph be the solution of the MCS method (6.6). For s = min(m− 1, k+ 1) there holds

1

ν
(‖σ − σh‖cd,h + ‖p− ph‖Qh) + ‖u− uh‖H(div,Ω) . hs(

1

ν
‖σ‖Hs(Th) +

1

ν
‖p‖Hs(Th)).

Proof. We use the triangle inequality to divide the error into an interpolation error and a
discrete measure of the error. By lemma 30, lemma 28 and theorem 22, the interpolation
error already converges with optimal order

1

ν
(‖σ − IΣhσ‖cd,h + ‖p− IQhp‖L2(Ω)) + ‖u− IVh‖H(div,Ω)

. hs
(

1

ν
‖σ‖Hs(Th) +

1

ν
‖p‖Hs(Th)

)
.

Next, we use discrete inf-sup stability, see corollary 5, to get

1√
ν
‖(IVhu− uh, IΣhσ − σh, IQhp− ph)‖∗∗

. sup
vh∈Vh

τh∈Σh,qh∈Qh

B(IVhu− uh, IΣhσ − σh, IQhp− ph; vh, τh, qh)√
ν‖(vh, τh, qh)‖∗∗

. sup
vh∈Vh

τh∈Σh,qh∈Qh

B(IVhu− u, IΣhσ − σ, IQhp− p; vh, τh, qh)√
ν‖(vh, τh, qh)‖∗∗

.
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We estimate each term separately. In contrast to the proof of theorem 23, the Cauchy-
Schwarz inequality and the same steps as in the proof of theorem 22 now yields

b2h(IΣhσ − σ, vh) .
1√
ν

‖IΣhσ − σ‖Σh +

√∑
F∈Fh

h‖(IΣhσ − σ)nt‖2F

√ν‖vh‖H(div,Ω),

b1(vh, IQhp− p) .
√
ν‖vh‖H(div,Ω)

1√
ν
‖IQhp− p‖L2(Ω).

Adding up all terms we conclude with the same steps as in the proof of the previous
theorem.

We conclude this section by proving that the L2-norm error of the velocity uh, again
measured in a proper sense, has an improved convergence rate. This results is in particular
needed in section 6.3.4. The proof of the enhanced convergence rate is based on the standard
Aubin-Nitsche technique. To this end let z ∈ H1(Ω,Rd) and µ ∈ L2(Ω,R) be the solution
of a standard variational formulation in a velocity-pressure setting (4.4). Then we need the
following regularity assumption (shift theorem)

ν‖z‖H2(Ω,Rd) + ‖p‖H1(Ω,R) . ‖f‖L2 . (6.31)

Theorem 25 (Optimal order of the L2-norm error). Assuming homogeneous boundary
conditions (6.8), let u ∈ H1(Ω,Rd) ∩ Hm(Th,Rd), σ ∈ H1(Ω,D) ∩ Hm−1(Th,D) and p ∈
Q ∩Hm−1(Th,R) be the exact solution of the mixed Stokes problem (4.6). Further let uh,
σh and ph be the solution of the MCS method (6.6). Further assume that the solutions z
and µ of the problem (4.4) fulfill the regularity estimate (6.31). For s = min(m− 1, k + 1)
there holds

‖IVhu− uh‖L2(Ω) . hs+1 1

ν
‖σ‖Hs(Th).

Proof. The proof follows along the same lines as for example in [111] and is based on a
standard Aubin-Nitsche technique. To this end let z and µ be the solutions of problem
(4.4) with the right hand side f = −(IVhu − uh), and define π := ν∇z. With standard
techniques (testing with smooth functions with compact support), the solution fulfills the
equivalence

−div(νπ) +∇µ = −(IVhu− uh) in L2(Ω,Rd).

Testing this equation with −(IVhu−uh) and integrating by parts in the pressure term (note
that uh ∈ H(div)) we have

‖IVhu− uh‖2L2(Ω) =

∫
Ω

div(π) · (IVhu− uh) dx+

∫
Ω

div(IVhu− uh)µdx .

As the Raviart-Thomas interpolator IVh preserves the divergence, and the discrete solution
uh is exactly divergence free, the second term vanishes. Next, due to assumption (6.31),
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6 The MCS method

the viscous stress function π is continuous across element interfaces, thus there holds on
all facets F ∈ Fh that [[(π)nn]] = 0, and above equation can be written as

‖IVhu− uh‖2L2(Ω)

=

∫
Ω

div(π) · (IVhu− uh) dx

=
∑
T∈Th

∫
T

div(π) · (IVhu− uh) dx−
∑
F∈Fh

∫
F

[[(π)nn]](IVhu− uh)n ds

=b2h(π, IVhu− uh).

(6.32)

Similarly, as π = ν∇z in L2(Ω,Rd×d), we can test this equation with σ − σh, and get∫
Ω

1

ν
π : (σ − σh) dx−

∫
Ω

(σ − σh) : ∇z = 0.

As z is continuous, we have that [[zt]] = 0 on all facets F ∈ Fh, yielding∫
Ω

1

ν
π : (σ − σh) dx+b2h(σ − σh, z) = 0. (6.33)

Now, let π̃ := IΣhπ and z̃ = IVhz. The regularity assumption of the solutions σ and u and
the consistency theorem 18 shows that we have the Galerkin like orthogonality

a(σ − σh, π̃) + b2h(π̃, u− uh) + b2h(σ − σh, z̃) + b1(z̃, p− ph) + b1(u− uh, qh) = 0, (6.34)

where qh can be chosen arbitrarily. Next, note that by the definition of the interpolator
IVh we have that

b2h(π̃, IVhu− u) =
∑
T∈Th

∫
T

div(π̃) · (IVhu− u) dx−
∑
F∈Fh

∫
F

[[(π̃)nn]](IVhu− u)n ds = 0,

and thus

b2h(π̃, u− uh) = b2h(π̃, u− IVhu+ IVhu− uh) = b2h(π̃, IVhu− uh). (6.35)

As div(z) = div(z̃) = div(u) = div(uh) = 0, summing up equations (6.32), (6.33), (6.34)
and (6.35), a Cauchy-Schwarz estimate including a scaling for the facet terms similarly as
in the proof of theorem (23), yields

‖IVhu−uh‖2L2(Ω)

.
(
‖π − π̃‖L2(Ω) +

√∑
F∈Fh

h‖(π − π̃)nt‖2F + ν‖z − z̃‖Vh
)

(1

ν
‖σ − σh‖L2(Ω) +

√∑
F∈Fh

h‖(σ − σh)nt‖2F + ‖IVhu− uh‖Vh
)
.
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Thereby, equation (6.31) and the properties of the interpolation operators show that

‖π − π̃‖L2(Ω) +

√∑
F∈Fh

h‖(π − π̃)nt‖2F . h‖π‖H1(Ω) . h‖IVhu− uh‖,

and similarly also ν‖z − z̃‖Vh . hν‖z‖H2(Ω) . h‖IVhu− uh‖. Lemma 19 then yields√∑
F∈Fh

h‖(σ − σh)nt‖2F .
√∑
F∈Fh

h‖(σ − IΣhσ)nt‖2F +

√∑
F∈Fh

h‖(IΣhσ − σh)nt‖2F

. hk+1‖σ‖Hs(Th) + ‖IΣhσ − σ‖L2(Ω) + ‖σ − σh‖L2(Ω),

thus, we conclude the proof by theorem 24 and theorem 23.

6.3.3 A pressure robust error estimate

We define the continuous Helmholtz projector H as the rotational part of a Helmholtz
decomposition (see [53]) of a given load f ∈ L2(Ω,Rd)

f = ∇θ + ξ =: ∇θ + H(f),

with θ ∈ H1(Ω)/R and ξ =: H(f) ∈ {v ∈ H0(div,Ω) : div(v) = 0}. For the following
abstract we assume that ΓD,n = Γ. Testing the second line of (4.26) with an arbitrary
divergence free test function v ∈ {v ∈ H0(div,Ω) : div(v) = 0}, we see that

〈div(σ), v〉H0(div,Ω) = −〈H(f), v〉H0(div,Ω),

hence σ = ν∇u is steered only by a part of f , namely H(f). If the right hand side is
perturbed by a gradient field ∇α, then σ and u should not change because H(f +∇α) =
H(f). In the work [83] this relation was discussed in a discrete setting. If a discrete method
fulfills this property, it is called pressure robust because one can then deduce an H1-velocity
error that is independent of the pressure. In particular, standard inf-sup stable methods
of a velocity-pressure formulation – as for example the Taylor-Hood method, see [11, 85] –
show error estimates that read as

‖∇(u− uh)‖L2(Ω) . inf
vh∈Vh

‖∇(u− vh)‖L2(Ω) +
1

ν
inf

qh∈Qh
‖p− qh‖L2(Ω). (6.36)

Here we see that the velocity error might get big if the viscosity tends to get very small
ν → 0, as the scaled term including the best approximation of the pressure might blow up.

In recent works, as for example in [16, 82, 79, 70], it was shown that a modification of
the right hand side allows to obtain pressure robust error estimates, which read as

‖∇(u− uh)‖L2(Ω) . inf
vh∈Vh

‖∇(u− vh)‖L2(Ω) + hk+1|u|Hk+1(Ω).

The second term on the right hand side is induced by a consistency error due to the
modified right hand side. As we can see, the velocity error does not depend on the pressure
discretization and the viscosity ν anymore.
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The convergence results of theorem 23 and theorem 24 also include the scaled term
1/ν||p||Hs(Th). However, in recent works it was proven that H(div)-conforming methods
are pressure robust, see for example [30, 81], and a similar result also holds true for the
MCS method (6.6). To this end we provide optimal error estimates of the stress and the
velocity error that are independent of the pressure, thus we show pressure robustness.

Theorem 26 (Pressure robustness). Assuming homogeneous boundary conditions (6.8),
let u ∈ H1(Ω,Rd) ∩ Hm(Th,Rd), σ ∈ H1(Ω,D) ∩ Hm−1(Th,D) and p ∈ Q ∩ Hm−1(Th,R)
be the exact solution of the mixed Stokes problem (4.6). Further let uh, σh and ph be the
solution of MCS method (6.6). For s = min(m− 1, k + 1) there holds

1

ν
||σ − σh||Σh + ‖uh − IVhu‖Vh . hs

1

ν
‖σ‖Hs(Th),

and

1

ν
‖σ − σh‖cd,h + ‖u− u‖H(div,Ω) . hs

1

ν
‖σ‖Hs(Th).

Proof. The proof follows the same steps as the proof of theorem 23 and theorem 24. Again,
one first splits the error using a triangle inequality into an interpolation error and a discrete
measure of the error. The first part can be bounded with the corresponding interpolation
operators. Next, note that due to lemma 25 we can similarly as in corollary 5 derive inf-sup
stability of B(uh, σh, 0; vh, τh, 0) with respect to the norm ‖(·, ·, 0)‖∗ on the product space
V 0
h × ΣH × {0}. Together with the consistency theorem 19, this yields

1√
ν
‖(IVhu− uh, IΣhσ − σh, 0)‖∗ . sup

vh∈V 0
h

τh∈Σh

B(IVhu− uh, IΣhσ − σh, 0; vh, τh, 0)√
ν‖(vh, τh, 0)‖∗

. sup
vh∈V 0

h
τh∈Σh

B(IVhu− u, IΣhσ − σ, 0; vh, τh, 0)√
ν‖(vh, τh, 0)‖∗

.

The rest follows with the same arguments as before. For the estimate in natural norms
one also show inf-sup stability of B(uh, σh, 0; vh, τh, 0) with respect to the norm ‖(·, ·, 0)‖∗∗
using similar steps as in theorem 20.

6.3.4 An exactly divergence free post processing

We conclude this section with the definition of a local post processing. As we have dis-
cussed in section 6.3.2, the velocity error ‖u−uh‖Vh does not converge with optimal order.
However, in the following we show that it is possible to define a new velocity field u∗h with
an enhanced accuracy. Note that u∗h is given by solving local element-wise minimization
problems, thus no global problem has to be solved. The goal is to obtain an improved
convergence order O(hk+1) of the velocity error measured in a discrete H1-norm. Our post
processing is motivated by the ideas of the work [111, 112], thus we use the accurate solu-
tion σh and the optimal order of ‖uh − IVhu‖ for the definition of a velocity lifting. Note
that such post processing schemes are particularly known for hybridized DG methods, see
for example [9, 33, 26, 90, 28, 34, 98].
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In this thesis a crucial ingredient is that the solution of the post processing scheme
satisfies the property div(u∗h) = 0 exactly. To this end we use a reconstruction operator
that was introduced in the works [76, 77]. Let V ∗h := BDMk+1(Th) be the standard BDM-
space as defined by equation (5.9). Then we define the relaxed Brezzi-Douglas-Marini space
of order k + 1 as

V ∗,−h := {u ∈ Pk+1(Th,Rd) : Πk
F [[un]] = 0 on all F ∈ Fh}. (6.37)

Functions in the space V ∗,−h are “almost normal continuous”. Only the highest order
modes can be discontinuous. The BDM-space and its relaxed counterpart are connected
by a reconstruction operator with the following properties.

Lemma 33. There exists an operator R : V ∗,−h → V ∗h such that

‖Rvh‖1,h . ‖vh‖1,h,

and Rv∗h = v∗h for all v∗h ∈ V ∗h . Further, if the element wise property div(vh|T ) = 0 is
fulfilled for all T ∈ Th, then div(Rvh) = 0 globally.

Proof. Follows by lemma 3.3 and lemma 4.8 in [76]. Further, one simply sets the hybrid
variable on the skeleton as the mean value of the two neighbouring elements to replace the
corresponding HDG-norm with the DG-norm. The projection property follows from the
definition of R in [76].

Remark 5. A simple choice of R is given by a (DG) generalization of the classical BDMk-
interpolator as it has been used in [61]. As this interpolation operator might produce a big
computational overhead, a different version of R was introduced in [76] that is based on an
averaging of coefficients. This is possible due to a special basis for BDMk+1(Th), whose
normal components form a hierarchical L2-orthogonal basis on faces.

On V ∗,−h we now define the following minimization problem:

u∗,−h := argmin v∗,−h ∈V ∗,−h

IVh (v∗,−h −uh)=0

‖ν∇(v∗,−h )− σh‖2T . (6.38)

Note that there exists a solution of this minimization problem as for example uh fulfills the
constraints (thus the admissible set is not empty) and the functional is convex. The final
solution of the post processing step is now given by u∗h := R(u∗,−h ), and there holds the
following pressure robust error estimate.

Theorem 27. Assuming homogeneous boundary conditions (6.8), let u ∈ H1(Ω,Rd) ∩
Hm(Th,Rd) and σ ∈ H1(Ω,D) ∩ Hm−1(Th,D) be the exact solution of the mixed Stokes
problem (4.6). Further let uh be the solution of the MCS method (6.6) and let u∗h be the
post processed solution defined as above. There holds u∗h ∈ V ∗h and div(u∗h) = 0. Further,
for s = min(m− 1, k + 1) there holds

‖u− u∗h‖1,h . hs
1

ν
‖σ‖Hs(Th).
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6 The MCS method

If we further assume that the solution of the dual problem (6.6) fulfills the regularity as-
sumption 6.31, we have

‖u− u∗h‖L2(Ω) . hs+1 1

ν
‖σ‖Hs(Th).

Proof. As IVh(u∗,−h − uh) = 0, we have by the definition of IVh (based on the degrees of
freedom given in lemma 13), that for all qh ∈ Pk(T,R) and T ∈ Th∫

T
div(u∗,−h )qh dx = −

∫
T
u∗,−h · ∇qh dx+

∫
∂T
u∗,−h · nqh ds =

= −
∫
T
uh · ∇qh dx+

∫
∂T
uh · nqh ds =

∫
T

div(uh)qh dx = 0.

Here we used that div(uh) = 0. Thus, the first two statements follow from lemma 33. Now
let IV ∗h be the standard BDMk+1-interpolator, then we have by the continuity of R and
the identity RIV ∗h u = IV ∗h u that

‖u− u∗h‖1,h ≤ ‖u− IV ∗h u‖1,h + ‖R(IV ∗h u− u
∗,−
h )‖1,h ≤ ‖u− IV ∗h u‖1,h + ‖u− u∗,−h ‖1,h.

Thereby, the approximation properties of the interpolation operator IV ∗h , see lemma 29,
show that the first term already converges with the proper order. A triangle inequality
(where we add and subtract different functions in the element and facet terms) yields

‖u− u∗,−h ‖21,h ≤
1

ν2

∑
T∈Th

‖ν∇u− σh‖2T +
∑
T∈Th

‖σh − ν∇u∗,−h ‖2T

 (6.39)

+
∑
F∈Fh

1

h
‖[[(u− IV ∗h u)t]]‖2F +

∑
F∈Fh

1

h
‖[[(IV ∗h u− u

∗,−
h )t]]‖2F .

In the following we bound each element term and facet term separately. We start with
the element terms and define wh := IV ∗h u + uh − IVhu ∈ V ∗h . Due to the properties of the
interpolation operators, we have on each element T ∈ Th that div(wh|T ) = 0, and

Πk
F (wh − uh) · n =

(
Πk
F IV ∗h u+ Πk

Fuh −Πk
F IVhu−Πk

Fuh

)
· n

=
(

Πk
F IV ∗h u−Πk

F IVhu
)
· n =

(
Πk
Fu−Πk

Fu
)
· n = 0.

This shows that wh is an admissible function for the minimization problem (6.38), and so
we have for the solution u∗,−h by a triangle inequality,

‖σh − ν∇u∗,−h ‖T ≤ ‖σh − ν∇wh‖2T ≤ ‖σh − ν∇IV ∗h u‖
2
T + ‖ν∇uh − ν∇IVhu‖2T

≤ ‖σh − σ‖2T + ‖σ − ν∇IV ∗h u‖
2
T + ‖ν∇uh − ν∇IVhu‖2T .
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6 The MCS method

As σ = ν∇u, this yields for the element terms of (6.39) the estimate

1

ν2

( ∑
T∈Th

‖ν∇u− σh‖2T +
∑
T∈Th

‖σh − ν∇u∗,−h ‖2T
)

≤ 1

ν2

∑
T∈Th

‖σ − σh‖2T + ‖ν∇u− ν∇IV ∗h u‖
2
T + ‖ν∇uh − ν∇IVhu‖2T


≤ 1

ν2
‖σ − σh‖2Σh + ‖u− IV ∗h u‖

2
1,h + ‖uh − IVhu‖21,h.

We continue with the facet terms of (6.39). The first sum can be bounded by ‖u−IV ∗h u‖1,h
and converges with the proper order. For the second sum we have∑

F∈Fh

1

h
‖[[(IV ∗h u− u

∗,−
h )t]]‖2F

≤
∑
F∈Fh

1

h
‖[[(IVh(IV ∗h u− u

∗,−
h ))t]]‖2F +

∑
F∈Fh

1

h
‖[[((Id− IVh)(IV ∗h u− u

∗,−
h ))t]]‖2F

≤
∑
F∈Fh

1

h
(‖[[(IVhu− uh)t]]‖2F +

∑
F∈Fh

1

h
‖[[((Id− IVh)(IV ∗h u− u

∗,−
h ))t]]‖2F .

Here we used that IVhIV ∗h u = IVhu (as Vh ⊂ V ∗h ) and IVhu
∗,−
h = IVhuh = uh (as u∗,−h is the

solution of (6.38)) in the last step. Thereby, theorem 26 shows that the first sum again
has the proper convergence rate. Next, as IVh preserves element wise constant functions,
we have for each F ∈ Fh

1

h
‖[[((Id− IVh)(IV ∗h u− u

∗,−
h ))t]]‖2F =

1

h
‖[[((Id− IVh)(Id−Π0

T )(IV ∗h u− u
∗,−
h ))t]]‖2F .

The jump can be estimated by the contributions from each side, thus a trace inequality
(with a scaling argument) yields for a := (Id− IVh)(Id−Π0

T )(IV ∗h u− u
∗,−
h ) the estimate

1

h
‖[[(a)t]]‖2F ≤

∑
T∈Th

F∩∂T 6=∅

1

h
‖(a)t‖2∂T ≤

∑
T∈Th

F∩∂T 6=∅

‖∇a‖2T +
1

h2
‖a‖2T .

As IVh is continuous, we have

‖∇a‖2T +
1

h2
‖a‖2T ≤ ‖∇(Id−Π0

T )(IV ∗h u− u
∗,−
h )‖2T +

1

h2
‖(Id−Π0

T )(IV ∗h u− u
∗,−
h )‖2T

≤ ‖∇(IV ∗h u− u
∗,−
h )‖2T ,

where we used a Poincaré inequality for the L2-norm on T . As

‖∇(IV ∗h u− u
∗,−
h )‖2T ≤ ‖∇IV ∗h u− σh‖

2
T + ‖σh − u∗,−h ‖2T

≤ ‖∇IV ∗h u− σ‖
2
T + ‖σ − σh‖2T + ‖σh − u∗,−h ‖2T ,
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6 The MCS method

we can bound the facet terms with the same estimates as for the element contributions.
Finally, we conclude the proof by the approximation properties of IV ∗h and theorem 26.

For the estimate of the L2-norm error first note that we have, similarly as before,

‖u− u∗h‖L2(Ω) ≤ ‖u− IV ∗h u‖L2(Ω) + ‖R(IV ∗h u− u
∗,−
h )‖L2(Ω)

≤ ‖u− IV ∗h u‖L2(Ω) + ‖IV ∗h u− u
∗,−
h ‖L2(Ω).

The first term already has the proper convergence order. Next, we have

‖IV ∗h u− u
∗,−
h ‖L2(Ω) . ‖IVh(IV ∗h u− u

∗,−
h )‖L2(Ω) + ‖(Id− IVh)(IV ∗h u− u

∗,−
h )‖L2(Ω)

= ‖IVhu− uh‖L2(Ω) + ‖(Id− IVh)(IV ∗h u− u
∗,−
h )‖L2(Ω).

For the second term we get by the properties of IVh the local estimate

‖(Id− IVh)(IV ∗h u−u
∗,−
h )‖L2(Ω)

.
∑
T

h‖∇IV ∗h u−∇u
∗,−
h ‖T

.
∑
T

h
(
‖∇IV ∗h u−

1

ν
σ‖T +

1

ν
‖σ − σh‖T + ‖1

ν
σh −∇u∗,−h ‖T

)
.

Now, using the same steps as above to bound ‖σh −∇u∗,−h ‖T , we get

‖(Id− IVh)(IV ∗h u− u
∗,−
h )‖L2(Ω) . hs+1(

1

ν
‖σ‖Hs(Th) + ‖u‖Hs+1(Th)).

We conclude the proof by using theorem 25 for the term ‖IVhu− uh‖L2(Ω).

We want to make a short comment on the implementation: In order to solve the mini-
mization problem (6.38) we solve local problems defined as follows. Let

V ∗h (T ) = Pk+1(T,Rd), M∗h(T ) := Pk−1(T,R2), Λ∗h(T ) := Pk(Fh(T ),R),

then we solve on each element T ∈ Th the problem: Find u∗T , p
∗
h, λ
∗
h ∈ V ∗h (T )×M∗h(T )×Λ∗h

such that∫
T
ν∇(u∗T ) : ∇(v∗h) dx+

∫
T
p∗h · v∗h dx+

∫
∂T
λ∗h(v∗h)n ds =

∫
T
σh : ∇(v∗h) dx,∫

T
u∗T · q∗h dx =

∫
T
uh · q∗h dx,∫

∂T
(u∗T )nµ

∗
h ds =

∫
∂T

(uh)nµ
∗
h ds,

holds true for all v∗h ∈ V ∗h (T ), q∗h ∈ M∗h(T ) and µ∗h ∈ Λ∗h(T ). Then, we define the global
function u∗,−h such that its restriction is given by the local solutions u∗T , thus u∗,−h |T := u∗T
for all T ∈ Th. Note that the constraints are given by the functionals of the Raviart-Thomas
interpolator IVh . By the definition of the jump it is then easy to see that Πk[[(u∗,−h )n]] =

0, hence u∗,−h ∈ V ∗,−h . A simple integration by parts argument and the local element-

wise orthogonality on Pk−1(T,R2) further shows div(u∗,−h |T ) = 0, leading to a point-wise

divergence free function R(u∗,−h ).
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7 The MCS method with weakly imposed
symmetry

This chapter is dedicated to defining a discrete formulation for the symmetric Stokes for-
mulation given by equation (4.41). As we have seen in section 4.4, there exists a weak
formulation of this set of equations that is based on the new function space H(curl div,Ω).
In particular, we used the subspace of trace free, symmetric and matrix-valued functions
denoted by Σsym, and showed stability with respect to the corresponding norms.

The discrete method that we present in this chapter is based on similar findings as in
the previous chapter, thus our goal is to use again an H(div)-conforming discrete velocity
space and the new developed stress space Ξk(Th). The definition of the stress space (see
section 5.3) is based on the construction of low order constant basis functions, designed to
study normal-tangential traces, and the definition of the covariant Piola mapping, given
by equation (5.22). Although the mapping M is designed to preserve normal-tangential
continuity, it does not retain symmetry. Thus, assuming a given matrix σ̂ is symmetric, the
mapped functionM(σ̂) might not be symmetric. By these observations we realize that the
finite element space Ξk(Th) is not well suited to discretize the symmetric stress space Σsym.
This motivates us to incorporate symmetry of a discrete stress variable σh ∈ Ξk(Th) only
in a weak sense.

Imposing symmetry in a weak sense is a well known technique and is especially known
for the discretization of the elasticity problem, see for example [5, 6, 12, 48]. In particular,
we want to mention the work of Stenberg [111], as the analysis is based on similar norms
that we aim to use in this thesis. To provide solvability, Stenberg enriched the stress space
by curls of local element bubbles. By construction, these enrichment functions lie in the
kernel of the divergence operator and are only “seen” by the weak-symmetry constraint
allowing to prove discrete inf-sup stability. For the definition of the MCS method with
weakly imposed symmetry we also use a local element-wise enrichment of the stress space
as it is discussed in the next section.

Before we introduce the method we define a new formulation of the equations (4.41). To
this end we introduce the vorticity function by

ω(u) :=
1

2

(
0 − curl(u)

curl(u) 0

)
for d = 2, and

ω(u) :=
1

2

 0 −(curl(u))3 (curl(u))2

(curl(u))3 0 −(curl(u))1

−(curl(u))2 (curl(u))1 0

 for d = 3,

and derive the following identity

∇u =
1

2
(∇u+ (∇u)T) +

1

2
(∇u− (∇u)T) = ε(u) + ω(u).
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7 The MCS method with weakly imposed symmetry

As tr(ω(u)) = 0 and tr(∇u) = 0 , this leads to the relation dev(σ) := ν∇u − νω(u).
Note that in the continuous setting this relation is equivalent to (4.41a). Finally, due to
skw(σ) = skw(ε(u)) = 0, we get the following set of equations

1

ν
dev(σ)−∇u+ ω(u) = 0 in Ω, (7.1a)

div(σ)−∇p = −f in Ω, (7.1b)

div(u) = 0 in Ω, (7.1c)

skw(σ) = 0 in Ω, (7.1d)

un = gD,n on ΓD,n, (7.1e)

ut = gD,t on ΓD,t, (7.1f)

−σnn + p = gN,n on ΓN,n, (7.1g)

−σnt = gN,t on ΓN,t. (7.1h)

7.1 An enrichment for the stress space - the symmetric bubble matrix

As a motivation of the local enrichment, we first discuss the techniques Stenberg introduced
in [111]. To this end we define the local bubble function

bT :=
∏

i∈IVh(T )

λi for all T ∈ Th. (7.2)

Then, the matrix-valued enrichment space of Stenberg was given by

{σ ∈ Pk+(d−1)(Th,Rd×d) : (σi1, . . . , σid) = curl(bT q) for i = 0, . . . , d},

with q ∈ Pk−1(Th,Rd(d−1)/2). As div(curl(bT q)) = 0, the additional basis functions lie in
the kernel of the momentum equation, thus are only seen by the constraint imposing weak
symmetry. Note, however, that the polynomial orders of the resulting enrichment functions
are k + 1 and k + 2 in two and three space dimensions, respectively, thus with respect to
computational costs, the three-dimensional case is less efficient.

The enrichment we use is motivated by the additional functions that were first intro-
duced by Cockburn, Gopalakrishnan and Guzmán in [27]. Therein, the authors tackled the
question if it is possible to retain the good convergence properties of Stenbergs method in
[111], but to reduce the number of additional basis functions and the polynomial order in
three dimensions. Introducing the so called symmetric bubble matrix the authors of [27]
were able to define certain curl-bubbles and achieved the desired properties.

It turns out that a slight modification of the bubbles defined in [27] can also be used to
enrich the discrete stress space Ξk(Th). This is astonishing as these additional functions
need to fulfill the following properties: First, they need to lie in the kernel of the distri-
butional divergence given by equation (5.12) of theorem 13, and second, we use a different
mapping for the discrete stress space as in the original work [27]. Using these bubbles it
is possible to prove discrete inf-sup stability with the classical approach based on scaling
arguments with respect to a given reference element. This is done with the same norms
used in Stenbergs work [111] and is the key result of section 7.3.
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7 The MCS method with weakly imposed symmetry

Following the lines of [27] we define for d = 3 the symmetric bubble matrix by

B :=
∑

i∈IVh(T )

(λi−3λi−2λi−1)∇λi ⊗∇λi ∈ P3(T,Rd×d), (7.3)

where the indices on the barycentric coordinate functions are always calculated modulo 4.
In two dimensions the bubble function is simply given by B := bT , see equation (7.2). Next,
we denote by Pkskw,⊥(T,Rd×d) the L2-orthogonal complement of the set Pk−1

skw (T,Rd×d) in

Pkskw(T,Rd×d), thus

Pkskw,⊥(T,Rd×d) := {rh ∈ Pkskw(T,Rd×d) : (rh, sh)T = 0 for all sh ∈ Pk−1
skw (T,Rd×d)}.

This leads to the enrichment space

δΣh := {dev(curl(curl(rh)B)) : rh ∈
∏
T∈Th

Pkskw,⊥(T,Rd×d)}.

In contrast to the original work [27], we defined our enrichment bubbles including the
deviator, which is motivated by the equivalence (7.1a). Further, note that in two dimensions
the inner curl is applied on each row of rh, and the outer curl is applied on each scalar
component of the vector curl(rh)B. Thus, if we have for example

rh =

(
0 −α
α 0,

)
, this gives curl(curl(rh)B) =

(
− ∂
∂x2

( ∂
∂x1

αB) ∂
∂x1

( ∂
∂x1

αB)

− ∂
∂x2

( ∂
∂x2

αB) ∂
∂x1

( ∂
∂x2

αB)

)
.

The definition of the symmetric bubble matrix motivates to define a transformation by

CC(B̂) := F−T
T B̂ ◦ φ−1

T F−1
T , (7.4)

which reads as a covariant transformation (see section 5.3.2) from the left and from the
right. The definition is motivated by the following findings. First, note that the barycentric
coordinate functions λi are mapped by the standard pullback, thus the gradient can be
written in terms of the gradient of a barycentric coordinate function on the reference
element:

∇λl = ∇̂λ̂lF−1
T .

Hence, by the definition of the symmetric bubble matrix (7.3) we have

B =
∑

i∈IVh(T )

(λi−3λi−2λi−1)∇λi ⊗∇λi =
∑

i∈IVh(T )

(λ̂i−3λ̂i−2λ̂i−1)F−T
T ∇̂λ̂i ⊗ ∇̂λ̂iF−1

T = CC(B̂).

For two dimensions the bubble B is simply mapped by a pullback. Using the above mapping
we can preserve the proper trace of the matrix bubble as stated in the following lemma.

Lemma 34. Let B̂ be the symmetric bubble matrix on the reference element and let q
be an arbitrary matrix. The products qB̂ and B̂q have vanishing tangential trace on ∂T̂ .
Similarly, for any T ∈ Th let B = CC(B̂). Then the products qB and Bq have vanishing
tangential trace on the boundary ∂T . By these findings we further observe that the function
curl(qB) has a vanishing normal trace on ∂T .
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7 The MCS method with weakly imposed symmetry

Proof. For the result on the reference element we refer to lemma 2.3 in [27]. The proof on
∂T follows the same lines using ∇λl = ∇λ̂lF−1

T . Now note that on the surface ∂T we have
the identity curl(qB) · n = curlt((qB)t), where curlt is the surface curl (see e.g. [11]). By
this we conclude that (curl(qB))n = 0.

Corollary 6. Let σ ∈ δΣh, there holds

[[(σ)nt]] = 0 on all F ∈ Fh.

Proof. This is a direct consequence of lemma 34 and equation (4.2).

7.2 A discrete variational formulation

Using the enrichment space δΣh we can now derive a discrete variational formulation of
equation (7.1). To this end let k ≥ 1, then we define the stress space by

Σ†h := Σh ⊕ δΣh,

and similarly Σ†h,N := Σh,N ⊕ δΣh. Note that due to corollary 6, all functions in Σ†h are
normal-tangential continuous and are polynomials up to order k + 1, thus we have

Σ†h ⊂ Ξk+1
D . (7.5)

Whereas the pressure in equation (7.1) can be interpreted as a Lagrange multiplier for
the incompressibility constraint div(u) = 0, the function γ := ω(u) is responsible for the
symmetry constraint (7.1d). In order to discretize γ we introduce the space

Wh := Pkskw(Th,Rd×d). (7.6)

Functions in Wh can be mapped from the reference element such that skew symmetry is
retained, thus for a given γh ∈Wh there exists a function γ̂h ∈ Pkskw(T̂ ,Rd×d) such that

γh = F−T
T γ̂h ◦ φ−1

T F−1
T . (7.7)

Again, we use the Raviart-Thomas space of order k as the velocity space, Vh = RT k(Th),
and define the product space Uh := Vh ×Wh. Further, we use the same pressure space Qh
as it was chosen for the standard MCS method, see equation (6.3).

We follow the same steps as in section 6.1 to derive a new discrete variational formulation.
The discrete velocity and pressure space are chosen conformingly with respect to V and
Q, thus we can use the bilinear forms defined in section 4.3, see equations (4.27) and
(4.28). Motivated by identity (5.12) of theorem 13 we further realize that we can use the
bilinear form b2h defined by equation (6.4) to use it as an approximation of the bilinear
form b2 as it appears in the continuous setting (4.43). It remains to define a bilinear form
for the symmetry constraint. As the discrete velocity and the discrete vorticity can both
be interpreted as a dual variable, thus they act as a Lagrange multiplier to fulfill certain
constraints on the discrete stress, we define the bilinear form

bε2h : {τ ∈ H1(Th,Rd×d) : [[τnt]] = 0} ×
(
{v ∈ H1(Th,Rd) : [[vn]] = 0} × L2(Ω,Rd×d)

)
→ R
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by

bε2h(τ, (v, η)) :=
∑
T∈Th

∫
T

div(τ) · v dx+
∑
T∈Th

∫
T
τ : η dx−

∑
F∈Fh

∫
F

[[τnn]]vn ds . (7.8)

Thus, bε2h is a combination of b2h and the symmetry constraint. Using these bilinear
forms the discrete MCS method with weakly imposed symmetry now finds: σh, uh, γh, ph ∈
Σ†h,N × Vh,D ×Wh ×Qh such that

a(σh, τh) + bε2h(τh, (uh, γh)) = (gD,t, (τh)nt)ΓD,t for all τh ∈ Σ†h,

bε2h(σh, (vh, ηh)) + b1(vh, ph) = −(f, vh)Ω + (gN,n, vn)ΓN,n for all (vh, ηh) ∈ Vh ×Wh,

b1(uh, qh) = 0 for all qh ∈ Qh.
(7.9)

7.3 Discrete inf-sup stability

As in section 6.2 we only consider the case of homogeneous boundary conditions (6.8) for
the stability analysis. The analysis we discuss in this section is based on the same norms
used in the work [111]. To this end let vh ∈ Vh and ηh ∈Wh, then we define

‖vh‖21,h,sym :=
∑
T∈Th

‖ε(vh)‖2T +
∑
F∈Fh

1

h
‖[[(vh)t]]‖2F ,

‖(vh, ηh)‖2Uh := ‖vh‖21,h,sym +
∑
T∈Th

‖ω(vh)− ηh‖2T .

Whereas the first norm reads as a symmetric H1-like DG norm, the second norm further
measures the differences between the discrete vorticity of a velocity vh and a given field ηh.
In lemma 40 below it is shown how the product-space norm ‖(·, ·)‖Uh is related to norms
defined on the parts Vh and Wh separately. Beside that we choose the norms

‖τh‖2Σ†h := ‖τh‖2Σh = ‖τh‖2L2(Ω) ∀τh ∈ Σ†h, and ||qh||2Qh := ‖qh‖2L2(Ω) ∀qh ∈ Qh.

Before we prove discrete inf-sup stability of the system (7.9) we provide some norm equiv-
alences in the next section.

7.3.1 Norm equivalences

The first equivalence is similar to the result of lemma 20. Note that the projection on the
facets is of one order higher.

Lemma 35. For all vh ∈ Vh,

‖(vh, ηh)‖2Uh ∼
∑
T∈Th

(
‖ε(vh)‖2T + ‖ω(vh)− ηh‖2T

)
+
∑
F∈Fh

1

h

∥∥Π1
F [[(vh)t]]

∥∥2

F
.
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7 The MCS method with weakly imposed symmetry

Proof. One side of the equivalence is obvious by the continuity of the Π1
F . For the other

direction first note that

1

h
‖[[(vh)t]]‖2F ≤

2

h
‖Π1

F [[(vh)t]]‖2F +
2

h
‖[[(vh −Π1

F vh)t]]‖2F .

As ΠRMvh ∈ P1(T,Rd), we have again by the continuity of Π1
F

‖[[(vh −Π1
F vh)t]]‖2F = ‖(Id−Π1

F )[[(vh −ΠRMvh)t]]‖2F ≤ ‖[[(vh −ΠRMvh)t]]‖2F .
We conclude the proof using the estimate (5.5).

Lemma 36. For all T ∈ Th and vh ∈ RT k(T ) there holds the equivalence

‖ε(vh)‖2T ∼ ‖Πk−1[dev(ε(vh))]‖2T + ‖ div(vh)‖2T
= ‖Πk−1[dev(∇vh − ω(vh))]‖2T + ‖ div(vh)‖2T ,

and the estimate

‖(Id−Πk−1)ω(vh)‖2T . ‖ div(vh)‖2T , and ‖(Id−Πk−1)∇vh‖2T . ‖ div(vh)‖2T .
Proof. The proof follows along the same lines as the proof of lemma 22. Let vh ∈ Vh be
arbitrary. In a first step we solve the same problem (6.12) to find a function wh ∈ RT k(T )
such that div(wh) = div(vh). Further vh, can locally be written as vh = a + wh with
a ∈ Pk(T,Rd) and the estimate

‖∇wh‖T ∼ ‖div(wh)‖T .
This yields

‖ε(vh)‖T = ‖ε(a+ wh)‖T ≤ ‖dev(ε(a))‖T + ‖dev(ε(wh))‖T + ‖ div(vh)‖T
≤ ‖dev(ε(a))‖T + ‖∇wh‖T + ‖ div(vh)‖T
. ‖dev(ε(a))‖T + ‖ div(vh)‖T
= ‖Πk−1dev(ε(a))‖T + ‖ div(vh)‖T .

As a = vh − wh, we conclude

‖ε(vh)‖T . ‖Πk−1dev(ε(vh))‖T + ‖Πk−1dev(ε(wh))‖T + ‖div(vh)‖T
. ‖Πk−1dev(ε(vh))‖T + ‖∇wh‖T + ‖ div(vh)‖T
. ‖Πk−1dev(ε(vh))‖T + ‖ div(vh)‖T .

It remains to show the second statement. First, note that due to the definition of the
function ω(·) we have ‖ω(vh)‖T ∼ ‖ curl(vh)‖T . Thus, using the representation from above,
we see

‖(Id−Πk−1)ω(vh)‖2T . ‖(Id−Πk−1) curl(a)‖2T + ‖(Id−Πk−1) curl(wh)‖2T .

As a ∈ Pk(T,Rd), the first term vanishes, thus with the arguments from above

‖(Id−Πk−1) curl(wh)‖2T ≤ ‖∇wh‖2T . ‖ div(vh)‖T .
The estimate for the gradient also follows with the same steps and the local representation
of vh, see also in the proof of lemma 22.
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7 The MCS method with weakly imposed symmetry

Lemma 37. Let µh ∈ Pkskw(T̂ ,Rd×d) and set and τh = dev(ĉurl(ĉurl(µh)B̂)). Then there
holds the norm equivalence

‖τh‖T̂ ∼ ‖ĉurl(µh)‖T̂ .

Proof. If ĉurl(µh) = 0, then obviously also the left side is zero. We claim that the converse

is also true. Indeed, if τh = 0, then putting s = d−1 tr(ĉurl(ĉurl(µh)B̂)), we have

ĉurl(ĉurl(µh)B̂) = s Id. (7.10)

Taking the divergence on both sides, we find that ∇s = 0, so s must be a constant on T .
Then, applying the normal trace operator on both sides of (7.10) and on each facet, we

realize that sn = 0, which yields s = 0. Hence, we have the equation ĉurl(ĉurl(µh)B̂) =

0, which in turn implies that 0 = (ĉurl(ĉurl(µh)B̂, µh)T = (curl(µh)B̂, ĉurl(µh))T = 0.

Therefore, lemma 2.2 in [27] proves ĉurl(µh) = 0.

Lemma 38. For all T ∈ Th and ηh ∈Wh there holds

‖∇ηh‖T ∼ ‖ curl(ηh)‖T .
Proof. The proof is based on a scaling argument and norm equivalence on finite dimen-
sional spaces on the reference element. To this end let η̂h = FT

T ηhFT . We start with the

three-dimensional case. As FT
T is constant, a simple calculation shows that ĉurl(η̂h) =

ĉurl(FT
T ηhF ) = FT

T ĉurl(ηhF ). Using the well known formula of the curl of a covariant
mapped function (ηhF reads as a function where each row is mapped with the covariant
transformation) we conclude for d = 3

ĉurl(FT
T ηhF ) = FT

T ĉurl(ηihF ) = FT
T curl(ηh)F−T

T detFT .

In two dimensions a simple calculation first shows that

ĉurl(FT
T γ

i
hFT ) = FT

T (ĉurl(γihFT )).

Next, again γihFT results in a matrix where each row of γih is mapped with the covariant
mapping. In two dimensions this then yields the identity

FT
T ĉurl(γihFT ) = detFTF

T
T curl(γih).

A scaling argument then gives in both dimensions

‖∇ηh‖2T ∼ hd−6‖∇̂η̂h‖2T̂ and ‖ curl(ηh)‖2T ∼ hd−6‖ĉurl(η̂h)‖2
T̂
.

In the following we show the norm equivalence ‖ĉurl(η̂h)‖T̂ ∼ ‖∇̂η̂h‖T̂ by proving that both
sides only contain constant functions in the kernel. This obviously holds true for the right
side. In three dimensions the curl of a skew symmetric matrix reads as

ĉurl(η̂h) = ĉurl

 0 −(η̂h)3 (η̂h)2

(η̂h)3 0 −(η̂h)1

−(η̂h)2 (η̂h)1 0


=

∂x̂2(η̂h)2 + ∂x̂3(η̂h)3 −∂x̂1(η̂h)2 −∂x̂1(η̂h)3

−∂x̂2(η̂h)1 ∂x̂1(η̂h)1 + ∂x̂3(η̂h)3 −∂x̂2(η̂h)3

−∂x̂3(η̂h)1 −∂x̂3(η̂h)2 ∂x̂1(η̂h)1 + ∂x̂2(η̂h)2

 .
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Thus, if we assume ‖ĉurl(η̂h)‖T̂ = 0, the off-diagonal entries above show that

(η̂h)1(x̂1, x̂2, x̂3) = (η̂h)1(x̂1),

(η̂h)2(x̂1, x̂2, x̂3) = (η̂h)2(x̂2),

(η̂h)2(x̂1, x̂2, x̂3) = (η̂h)3(x̂3),

and the entries on the diagonal yield

∂x̂2(η̂h)2 + ∂x̂3(η̂h)3 = 0, ∂x̂1(η̂h)1 + ∂x̂3(η̂h)3 = 0, ∂x̂1(η̂h)1 + ∂x̂2(η̂h)2 = 0.

From the above equations we see that the entries (η̂h)i, i = 1, 2, 3, have to be constant.
In two dimensions the equivalence is obvious as the curl operator is simply given by the
rotated gradient.

Lemma 39. For all T ∈ Th and (vh, ηh) ∈ Uh there holds

‖ε(vh)‖2T + ‖ω(vh)− ηh‖2T
∼ ‖Πk−1[dev(∇vh − ηh)]‖2T + h2‖ curl(ηh)‖2T + ‖ div(vh)‖2T .

Proof. We start by showing a Pythagoras-Theorem like equivalence. Adding and subtract-
ing ω(vh) we have the identity∫

T
|Πk−1[dev(∇vh − ηh)]|2 dx =

∫
T
|Πk−1[dev(∇vh − ω(vh) + ω(vh)− ηh)]|2 dx

=

∫
T
|Πk−1(dev(∇vh − ω(vh)))|2

+ 2(Πk−1[dev(∇vh − ω(vh))] : Πk−1[ω(vh)− ηh]

+ |Πk−1[ω(vh)− ηh]|2 dx .

Due to the orthogonality of symmetric and skew symmetric matrices the mixed term van-
ishes, yielding

‖Πk−1[dev(∇vh − ηh)]‖2T = ‖Πk−1[dev(∇vh − ω(vh))]‖2T + ‖Πk−1[ω(vh)− ηh]‖2T . (7.11)

For the proof of the lemma we first show that the left side can be bounded by the right
side. Using lemma 36 and equation (7.11) we have

‖ε(vh)‖2T ≤ ‖Πk−1[dev(∇vh − ηh)]‖2T + ‖ div(vh)‖2T .

Next, note that

‖ω(vh)− ηh‖2T ≤ ‖Πk−1(ω(vh)− ηh)‖2T + ‖(Id−Πk−1)(ω(vh)− ηh)‖2T .

Using identity (7.11), the first term can trivially be bounded by ‖Πk−1[dev(∇vh − ηh)]‖2T .
For the second term we have with lemma 36 and lemma 38

‖(Id−Πk−1)(ω(vh)− ηh)‖2T ≤ ‖(Id−Πk−1)ω(vh)‖2T + ‖(Id−Πk−1)ηh‖2T
≤ ‖div(vh)‖2T + h2‖∇ηh‖2T
≤ ‖div(vh)‖2T + h2‖ curl(ηh)‖2T .
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To bound the right side we use (7.11), lemma 36 and the continuity of the projection,

‖Πk−1[dev(∇vh − ηh)]‖2T + ‖ div(vh)‖2T ≤ ‖ε(vh)‖2T + ‖ω(u)− ηh‖2T .

As curl(ω(ΠRMvh)) = 0, we obtain, using an inverse inequality for polynomials (see [117])
and estimate (5.4),

h2‖ curl(ηh)‖2T = h2‖ curl(ηh − ω(ΠRMvh))‖2T . ‖ηh − ω(ΠRMvh)‖2T
≤ ‖ηh − ω(vh)‖2T + ‖ω(vh)− ω(ΠRMvh)‖2T
∼ ‖ηh − ω(vh)‖2T + ‖ curl(vh −ΠRMvh)‖2T
. ‖ηh − ω(vh)‖2T + ‖ε(vh)‖2T ,

which concludes the proof.

Lemma 40. For all T ∈ Th and (uh, γh) ∈ Uh with γh ⊥ P0(T,Rd×d) there holds

‖γh‖L2(Ω) ∼ inf
vh∈Vh

‖(vh, γh)‖Uh ,

‖uh‖1,h,sym ∼ inf
ηh∈Wh

‖(uh, ηh)‖Uh .

Proof. We start with the first equivalence. It is easy to see that the right side can be
bounded by the left side by choosing vh = 0. For the other direction we have, using
lemma 39 and lemma 38,

inf
vh∈Vh

‖(vh, γh)‖Uh & h‖ curl(γh)‖L2(Ω) ∼ h‖∇γh‖L2(Ω) ∼ ‖γh‖L2(Ω),

where we used γh ⊥ P0(T,Rd×d) in the last step. For the other equivalence, again the right
side can be bounded by the left side by choosing ηh = ω(uh). For the other direction note
that

inf
ηh∈Wh

‖(uh, ηh)‖2Uh = ‖uh‖21,h,sym +
∑
T∈Th

‖ω(uh)− ηh‖2T ≥ ‖vh‖21,h,sym,

thus the other direction follows trivially.

7.3.2 Stability analysis

Similarly as in section 6.2.2 we are aiming to use Brezzi’s theorem 6 to show discrete inf-sup
stability. To this end we prove all the conditions needed in the following.

Lemma 41 (Continuity of a and b1 and bε2h). The bilinear forms a, b1 and bε2h are contin-
uous:

a(σh, τh) . ν−1‖σh‖Σ†hν
−1‖τh‖Σ†h , for all σh, τh ∈ Σ†h,

bε2h(τh, (vh, ηh)) . ‖τh‖Σ†h‖(vh, ηh)‖Uh , for all τh ∈ Σ†h, (vh, ηh) ∈ Uh,
b1(vh, qh) . ‖(vh, 0)‖Uh‖qh‖Qh , for all (vh, 0) ∈ Uh, qh ∈ Qh.
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Proof. The continuity of a and b1 follow by the Cauchy-Schwarz inequality. For bε2h we
have

bε2h(τh, (vh, ηh)) = −
∑
T∈Th

∫
T
τ : (∇vh − ηh) dx+

∑
F∈Fh

∫
F
τnt · [[(vh)t]] ds .

Using the estimate

‖∇vh − ηh‖2T ≤ ‖∇vh − ω(vh)‖2T + ‖ω(vh)− η‖2T ,

we conclude the proof by the Cauchy-Schwarz inequality and lemma 19.

With respect to the bilinear forms b1 and bε2h we define the kernel as

Kbεh
:= {(τh, qh) ∈ Σh ×Qh : b1(vh, qh) + bε2h(σh, (vh, ηh)) = 0 for all (vh, ηh) ∈ Uh}.

Lemma 42 (Coercivity of a on the kernel). For all (σh, ph) ∈ Kbεh
there holds

1

ν

(
‖σh‖Σ†h + ||ph||Qh

)2
. a(σh, σh).

Proof. The proof follows with the same steps as the proof of lemma 24. Again, bounding
the symmetric norm trivially by the full norm, we find for all ph ∈ Qh a vh ∈ Vh with

div(vh) = ph, and ‖vh‖21,h,sym . ‖ph‖Qh .

For ηh := ω(vh) ∈Wh we then immediately also have the estimate

‖(vh, ηh)‖Uh . ‖ph‖Qh ,

thus

2||ph||2Qh = b1(vh, ph) = −bε2h(σh, vh) . ‖σ‖
Σ†h
‖(vh, ηh)‖Uh . ‖σ‖

Σ†h
||ph||Qh .

The rest of the proof follows similarly as in the proof of lemma 24.

We continue with the proof of the discrete LBB-condition. For this we proceed similarly
as in section 6.2.2 and first show two lemmas needed for the final result. Whereas the first
lemma proves a LBB-condition for the symmetry constraint, the second lemma discusses
inf-sup stability of the discrete divergence of stress variables.

Lemma 43. Let γh ∈Wh be arbitrary. There exists a τh ∈ Σ†h such that∫
Ω
τh : γh & h‖ curl(γh)‖L2(Ω)‖τh‖Σ†h .

Further let uh ∈ Vh be arbitrary, then additionally we have

bε2h(τh, (uh, γh)) &
(
h‖ curl(γ)‖L2(Ω) − ‖ div(uh)‖L2(Ω)

)
‖τh‖Σ†h .
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7 The MCS method with weakly imposed symmetry

Proof. Let γh ∈ Wh be arbitrary. Using the proper transformation for skew symmetric
matrices we define for each T ∈ Th the function

τ̂Th := dev(ĉurl(ĉurl(FT
T γhF )B̂)),

where ĉurl is the curl operator with respect to the coordinates on the reference element.
Using these locally defined functions we set

τh :=
∑
T∈Th

M(τ̂Th ).

In the following we show that this is an admissible choice, thus that τh is an element of
Σ†h. We start with the three-dimensional case. By the definition of the covariant Piola
transformationM, see equation (5.22), and the proper mapping for the bubble matrix, see
equation (7.4), we observe on a fixed element T ∈ Th that

M
(

ĉurl(ĉurl(FT
T γhF )B̂)

)
=

1

det(FT )
F−T
T ĉurl(ĉurl(FT

T γhF )FT
T BFT )FT

T .

With the same argument as in the proof of lemma 38 we can write the curl on the reference
element T̂ in terms of the curl on the physical element T . Using this identity twice we
deduce

F−T
T ĉurl(ĉurl(FT

T γhF )FT
T BFT )FT

T = F−T
T ĉurl(FT

T curl(γh)F−T
T detFTF

T
T BFT )FT

T

= detFTF
−T
T ĉurl(FT

T curl(γh)BFT )FT
T

= (detFT )2F−T
T FT

T curl(curl(γh)B)F−T
T FT

T

= (detFT )2 curl(curl(γh)B).

As the mapping M and the deviator commutes, see lemma 16, this shows

τh|T = (detFT )dev(curl(curl(γh)B)).

Further, we have that Πk(τh|T ) ∈ Σ and (Id − Πk)(τh|T ) ∈ δΣ, thus by corollary 6 and

lemma 34 we conclude that τh ∈ Σ†h.
Next, note that due to the skew symmetry of γh we have on each element T ∈ Th∫

T
τh : γh dx =

∫
T

detFTdev(curl(curl(γh)B)) : γh dx

=

∫
T

detFT curl(curl(γh)B) : γh dx .

Integrating by parts and using lemma 34 this yields∫
T
τh : γh dx =

∫
T

detFT curl(γh)B : curl(γh) dx .

As |detFT | ∼ hd and ‖B‖∞ ∼ ‖
∑

l∈V ∇λl ⊗∇λl‖∞ ∼ h−2, we conclude∫
T
τh : γh dx & h‖ curl(γh)‖2T .
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Next, lemma 37, lemma 18 and a standard scaling argument further show that

‖τh‖Σ†h ∼ ‖ curl(γh)‖L2(Ω),

which proves the first part of the lemma for d = 3.
In two dimensions we first have with similar steps as in the proof of lemma 38 that

ĉurl(ĉurl(FT
T γhFT )B̂) = FT

T ĉurl(ĉurl(γhFT )B̂) = (detFT )FT
T ĉurl(curl(γh)B̂).

According to the definition of the enrichment space, the outer curl operator is applied on
each scalar component of the vector curl(γh)B̂. By the properties of the discrete de Rham
complex (in two dimension), the resulting field is mapped with the (inverse) Piola mapping,
which yields

(detFT )FT
T ĉurl(curl(γh)B̂) = (detF )2FT

T curl(curl(γh)B̂)F−T
T .

Summing up the above results and using the classical pullback for the bubble we have
similarly as in three dimensions that

M
(
ĉurl(ĉurl(FTγhF )B̂)

)
= (detF ) curl(curl(γh)B).

With the same arguments as in the three-dimensional case this shows that τh ∈ Σ†h, and
an integration by parts argument yields∫

T
τh : γh dx & h2‖ curl(γh)‖2T .

A scaling argument as above (using ‖B‖∞ ∼ O(1)) further shows ‖τh‖Σ†h ∼ h‖ curl(γh)‖L2(Ω),

from which we conclude the first statement of the lemma.
Now let uh ∈ Vh be arbitrary. For d = 3 we observe as [[(τh)nt]] = 0 (see lemma 34) that

bε2h(τh, (uh, γh)) = −
∑
T∈Th

∫
T
τh : ∇uh dx+

∑
T∈Th

∫
T
τh : γh dx .

With the above results the second sum can be bounded from below by h‖ curl(γh)‖2L2(Ω).
By the definition of τh, we can split the first sum into two parts

−
∑
T∈Th

∫
T
τh : ∇uh dx =−

∑
T∈Th

detFT

∫
T

curl(curl(γh)B) : ∇uh dx

+
detFT
d

∑
T∈Th

∫
T

Id tr(curl(curl(γh)B)) : ∇uh dx .

For the first sum we observe by an integration by parts argument on each element T ∈ Th
separately that∫

T
curl(curl(γh)B) : ∇uh dx

=

∫
T

(curl(γh)B) : curl(∇uh) dx−
∫
∂T

(curl(γh)B)× n : (∇uh)t ds = 0,
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where lemma 34 was used to prove that the boundary terms vanish. Thus, all together this
yields

bε2h(τh, (uh, γh)) ≥
∑
T∈Th

detFT
d

∫
T

Id tr(curl(curl(γh)B)) : ∇uh dx+h‖ curl(γh)‖2L2(Ω)

=
∑
T∈Th

detFT
d

∫
T

tr(curl(curl(γh)B)) div(uh) dx+h‖ curl(γh)‖2L2(Ω)

& −‖ curl(γh)‖L2(Ω)‖ div(uh)‖L2(Ω) + h‖ curl(γh)‖2L2(Ω),

where we used an inverse inequality for polynomials in the last step. Using ‖τh‖Σ†h ∼
‖ curl(γh)‖L2(Ω) we conclude the proof (the two dimensional case follows similarly).

Lemma 43 states that it is possible to choose a stress function τh, which lies almost in the
kernel of the distributional divergence operator. The facet contributions vanish completely,
and the (low order) element contributions are bounded from below (with a minus) only by
the divergence of the velocity uh. This is one of the key results needed to show stability of
the global system.

Next, we define the following norm on the product space Uh

‖(vh, ηh)‖2Uh,Π :=
∑
T∈Th

‖Πk−1
T dev(∇vh − ηh)‖2T +

∑
F∈Fh

1

h
‖Π1

F [[(vh)t]]‖2F .

For the discrete solution uh ∈ Vh and γh ∈ Wh of (7.9) we have that ω(uh) ≈ γh and
div(uh) = 0, and thus the first term in this norm is approximately Πk−1ε(u). Therefore, for
divergence free velocity functions and a proper ηh the norm ‖(vh, ηh)‖Uh,∗ can be interpreted
as a (projected) symmetric discrete H1-norm of the velocity similarly as the norm ‖ · ‖1,h,Π
defined it in section 6.2.2.

Lemma 44. Let (uh, γh) ∈ Uh be arbitrary. There exists a τh ∈ Σ†h such that

bε2h(τh, (uh, γh)) & ‖(uh, γh)‖2Uh,Π,

and ‖τh‖Σ†h . ‖(uh, γh)‖Uh,Π.

Proof. The proof follows along the same lines as the proof of lemma 25, and is based on
a decomposition of the space Σh = ΣF

h ⊕ ΣT
h , where ΣT

h contains element-wise normal-
tangential bubbles, and ΣF

h contains basis functions associated with the facets given by SF

with the property that SFnt ∈ P0(F, n⊥T ) and ‖SFnt‖2 = 1 on the facet F and equal (0, 0) on
all other facets. Given any (uh, γh) ∈ Uh, we now define similarly to equation (6.15), the
function

τ0
h :=

∑
T∈Th

∑
F∈Fh

−(SF : Πk−1dev(∇uh − γh))λFT S
F ,

τ1
h :=

∑
F∈Fh

1√
h

(Π1[[(uh)t]])S
F .
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Note that the choice of τ0
h in terms of (SF : Πk−1dev(∇uh − γh))λFT S

F is admissible as

Πk−1dev(∇uh − γh)) is a polynomial of degree k − 1, and Σ†h = Σh ⊕ δΣh contains poly-
nomials up to order k. Using the norm equivalences stated in lemma 19 and the proper
mapping for uh and γh, we easily see that

‖τ0
h‖2Σ†h .

∑
T∈Th

‖Πk−1dev(∇uh − γh))‖2T , and ‖τ1
h‖2Σ†h .

∑
F∈Fh

1

h
‖Π1[[(uh)t]]‖2F .

We conclude the proof by a proper linear combination of τ0
h and τ1

h , and the same lines as
in the proof of lemma 25.

Theorem 28 (Discrete LBB-condition). Let (uh, γh) ∈Wh be arbitrary. There holds

sup
(τh,qh)∈Σ†h×Qh

b1(uh, qh) + bε2h(τh, (uh, γh))

‖τh‖Σ†h + ‖qh‖Qh
& ‖(uh, ηh)‖Uh .

Proof. We choose τ1
h , τ

2
h ∈ Σ†h according to lemma 43 and lemma 44, respectively, and scale

them such that

‖τ1
h‖Σ†h = h‖ curl(γh)‖L2(Ω) and ‖τ2

h‖Σ†h = ‖(uh, γh)‖Uh,Π.

Next, we further choose qh = div(uh), which is possible due to the choice of the velocity
space Vh and the pressure space Qh. This yields that b1(uh, qh) = ‖ div(uh)‖2Qh . For

τh := ατ1
h + τ2

h and βqh, where α, β ∈ R are constants to be chosen later, it follows

b1(uh, qh) + bε2h(τh, (uh, γh)) =β‖div(uh)‖2Qh + αbε2h(τ1
h , (uh, γh)) + bε2h(τ2

h , (uh, γh))

&β‖div(uh)‖2Qh + αh2‖ curl(γh)‖2L2(Ω)

− αh‖ curl(γh)‖L2(Ω)‖ div(uh)‖Qh + ‖(uh, γh)‖2Uh,Π.

Using Young’s inequality for the mixed terms and choosing α > 1 and β > α2/2 we get

b1(uh, qh) + bε2h(τh, (uh, γh)) & ‖ div(uh)‖2Qh + h2‖ curl(γh)‖2L2(Ω) + ‖(uh, γh)‖2Uh,Π,

and ‖τh‖Σ†h + ‖qh‖Qh . ‖ div(uh)‖Qh +h‖ curl(γh)‖L2(Ω) + ‖(uh, γh)‖Uh,Π. We conclude the

proof by using lemma 39 (separately on each element) and lemma 35, which yields

‖ div(uh)‖2Qh + h2‖ curl(γh)‖2L2 + ‖(uh, γh)‖2Uh,Π
=
∑
T∈Th

‖Πk−1
T dev(∇vh − γh)‖2T + h2‖ curl(γh)‖2T + ‖ div(uh)‖2T +

∑
F∈Fh

1

h
‖Π1

F [[(vh)t]]‖2F

∼
∑
T∈Th

‖ε(uh)‖2T + ‖ω(uh)− γh‖2T +
∑
F∈Fh

1

h
‖Π1

F [[(vh)t]]‖2F ∼ ‖(uh, γh)‖2Uh .
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7 The MCS method with weakly imposed symmetry

We are now able to show existence and uniqueness of the discrete solution. To this end
we define the bilinear form

Bε(uh, γh,σh, ph; vh, ηh, τh, qh)

:= a(σh, τh) + b1(uh, qh) + b1(vh, ph) + bε2h(σh, (vh, ηh)) + bε2h(τh, (uh, γh)),

and the norm ‖(uh, γh, σh, ph)‖∗,ε :=
√
ν‖(uh, γh)‖Uh + 1√

ν
(‖σh‖Σ†h + ||ph||Qh).

Corollary 7. The bilinearform Bε is inf-sup stable with respect to ‖ · ‖∗,ε, thus there exists

a constant β > 0 such that for all nonzero functions (σh, uh, γh, ph) ∈ Σ†h × Vh ×Wh ×Qh
there holds

‖(uh, γh, σh, ph)‖∗,ε . sup
(vh,ηh)∈Vh×Wh

τh∈Σ†h,qh∈Qh

Bε(uh, γh, σh, ph; vh, ηh, τh, qh)

‖(vh, ηh, τh, qh)‖∗,ε
.

Let f ∈ L2(Ω,Rd) and assume homogeneous boundary conditions (6.8). There exists a

unique solution (σh, uh, γh, ph) ∈ Σ†h,N × Vh,D ×Wh ×Qh of the MCS method with weakly
imposed symmetry (7.9) with the stability estimate

‖uh, γh, σh, ph‖∗,ε .
1√
ν
‖f‖L2(Ω).

Proof. This follows along the same lines as the proof of corollary 4 using lemma 41, lemma
42, theorem 28 and Brezzi’s theorem 6.

Theorem 29 (Consistency). The mass conserving mixed stress formulation with weakly
imposed symmetry (7.9) is consistent in the following sense. If the exact solution of the
mixed Stokes problem (7.1) fulfills the regularity property u ∈ H1(Ω,Rd), σ ∈ H1(Ω,Rd×d),
γ = ω(u) ∈ L2(Ω,Rd) and p ∈ L2(Ω,R), then

Bε(u, γ, σ, p; vh, ηh, τh, qh) = (−f, vh)Ω + (gD,t, (τh)nt)ΓD,t + (gN,n, vn)ΓN,n ,

for all (vh, ηh) ∈ Vh ×Wh, qh ∈ Qh, and τh ∈ Σh. Further, there holds consistency on the
subspace of divergence free velocity fields

B(u, γ, σ, 0; vh, ηh, τh, 0) = (−f, vh)Ω + (gD,t, (τh)nt)ΓD,t + (gN,n, vn)ΓN,n ,

for all (vh, ηh) ∈ V 0
h ×Wh and τh ∈ Σh.

Proof. Follows with the same steps as in the proof of theorem 18 and theorem 19.

7.4 Error estimates and post processing

Beside the operators defined by equation (6.30) we further set IWh
:= Πk

Th . As we also

aim to prove an enhanced convergence rate of the L2-norm error measured in a proper
sense, we again assume that the solution z ∈ H1(Ω,Rd) and µ ∈ L2(Ω,R) of a symmetric
version of the standard variational formulation in a velocity-pressure setting (4.40) fulfills
the regularity property equation (6.31).

There holds the following error estimate.
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7 The MCS method with weakly imposed symmetry

Theorem 30 (Optimal convergence). Assuming homogeneous boundary conditions (6.8),
let u ∈ H1(Ω,Rd) ∩Hm(Th,Rd), σ ∈ H1(Ω,D) ∩Hm−1(Th,D), p ∈ Q ∩Hm−1(Th,R) and
γ = ω(u) ∈ L2(Ω,R) ∩Hm−1(Th,R) be the exact solutions of the symmetric mixed Stokes
equations (7.1). Further, let uh, σh, γh and ph be the solution of the MCS method with
weakly imposed symmetry (7.9). For s = min(m− 1, k + 1) there holds

1

ν
(‖σ − σh‖Σ†h + ‖p− ph‖Qh) + ‖uh − IVhu, γ − γh‖Uh

. hs(
1

ν
‖σ‖Hs(Th) +

1

ν
‖p‖Hs(Th) + ‖γ‖Hs(Th)).

Assume that the solution (z, µ) of problem (4.40) fulfills the regularity estimate (6.31).
Then, for s = min(m− 1, k + 1), there holds

‖IVhu− uh‖L2(Ω) . hs+1(
1

ν
‖σ‖Hs(Th) +

1

ν
‖p‖Hs(Th) + ‖γ‖Hs(Th)).

Proof. This follows with the same steps as the proof of theorem 23. First, we split the
error into an interpolation error and a discrete measure of the error

1

ν
(||σ − σh||Σh + ‖p− ph‖Qh) + ‖uh − IVhu, γ − γh‖Uh

.
1

ν
(||σ − IΣhσ||Σh + ‖p−Πkp‖Qh) + ‖γ − IWh

γ‖L2(Ω)

+
1

ν
(||IΣhσ − σh||Σh + ‖Πkp− ph‖Qh) + ‖uh − IVhu, IWh

γ − γh‖Uh .

By the approximation results of the interpolation operators, the first three terms already
converge with optimal order. Next, we use discrete inf-sup stability theorem 7 and consis-
tency, see corollary 29, to get

1√
ν
‖(IVhu− uh, IWh

γ − γh, IΣhσ − σh,Πkp− ph)‖∗

. sup
vh,ηh∈Vh×Wh

τh∈Σ†h,qh∈Qh

Bε(IVhu− uh, IWh
γ − γh, IΣhσ − σh,Πkp− ph; vh, ηh, τh, qh)√

ν‖(vh, ηh, τh, qh)‖∗

. sup
vh,ηh∈Vh×Wh

τh∈Σ†h,qh∈Qh

Bε(IVhu− u, IWh
γ − γ, IΣhσ − σ,Πkp− p; vh, ηh, τh, qh)√
ν‖(vh, ηh, τh, qh)‖∗

.

Next, each term of the bilinear form Bε is estimated separately. For the terms including
the bilinear form bε2h we have by the properties of IVh

bε2h(τh, (IVhu− u, IWh
γ − γ))

=
∑
T∈Th

∫
T

div(τh) · (IVhu− u) + τh : (IWh
γ − γ) dx−

∑
F∈Fh

∫
F

[[(τh)nn]](IVhu− u)n ds

. ‖τh‖Σh‖IWh
γ − γ‖L2(Ω) .

1√
ν
‖τh‖Σ†h

√
ν‖(0, IWh

γ − γ)‖Uh ,
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7 The MCS method with weakly imposed symmetry

and for the other term, adding and subtracting Πk−1
Th ∇vh,

bε2h(IΣhσ − σ, (vh, ηh))

=−
∑
T∈Th

∫
T
IΣhσ − σ : (Id−Πk−1

T )∇vh dx−
∑
T∈Th

∫
T
IΣhσ − σ : (Id−Πk−1

T )∇vh dx

+
∑
F∈Fh

∫
F

(IΣhσ − σ)nt · [[(vh)t]] ds+
∑
T∈Th

∫
T

(IΣhσ − σ) : ηh dx .

By the definition of the interpolator IΣh the second sum vanishes. Further, as IΣhσ − σ is
orthogonal on constants, we have the equality∑

T∈Th

∫
T

(IΣhσ − σ) : ηh dx =
∑
T∈Th

∫
T

(IΣhσ − σ) : (Id−Π0
T )ηh dx .

Next, lemma 40 shows that ‖(Id−Π0
T )ηh‖ . ‖vh, ηh‖Uh , thus by lemma 36 and the Cauchy-

Schwarz inequality this yields

bε2h(IΣhσ − σ, (vh, ηh)) .
1√
ν

‖IΣhσ − σ‖Σh +

√∑
F∈Fh

h‖(IΣhσ − σ)nt‖2F

√ν‖vh, ηh‖Uh .
For the terms including the bilinear forms a and b1 we proceed as in the proof of theorem 23.
Adding up all results from above yields

Bε(IVhu− u, IWh
γ − γ, IΣhσ − σ,Πkp− p; vh, ηh, τh, qh)

.
(
‖(0, IWh

γ − γ, IΣhσ − σ,Πkp− p)‖∗ + 1/
√
ν‖IΣhσ − σ‖Σ†h,nt

)
‖(vh, ηh, τh, 0)‖∗.

We conclude with the interpolation properties given by lemma 28, theorem 21 and the
optimal approximation properties of the L2-projection, see lemma 30. The improved con-
vergence order of the L2-norm error follows with an Aubin-Nitsche technique similarly as
in the proof of theorem 25.

Theorem 31 (Pressure robustness). Assuming homogeneous boundary conditions (6.8),
let u ∈ H1(Ω,Rd) ∩Hm(Th,Rd), σ ∈ H1(Ω,D) ∩Hm−1(Th,D) and γ = ω(u) ∈ L2(Ω,R) ∩
Hm−1(Th,R) be the exact solutions of the symmetric mixed Stokes equations (7.1). Further,
let uh, σh and γh be the solutions of the MCS method with weakly imposed symmetry (7.9).
For s = min(m− 1, k + 1) there holds

1

ν
‖σ − σh‖Σ†h + ‖uh − IVhu, γ − γh‖Uh . hs(

1

ν
‖σ‖Hs(Th) + ‖γ‖Hs(Th)).

Proof. The proof follows along the lines of the proof of theorem 26. Note that discrete
inf-sup stability with respect to the subspace of divergence free velocity functions V 0

h is
given by lemma 43, lemma 44 and lemma 39.
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7 The MCS method with weakly imposed symmetry

Remark 6. Using a Korn inequality as given by lemma 1 in [50] there exists a constant
cK such that

‖vh‖1,h ≤ cK‖vh‖1,h,sym for all vh ∈ Vh.

This yields for all (vh, γh) ∈ Uh the estimate

‖γh‖2L2(Ω) =
∑
T∈Th

‖γh‖2T ≤
∑
T∈Th

‖ω(vh)− γh‖2T +
∑
T∈Th

‖ω(vh)‖2T ≤ cK‖uh − IVhu, γ − γh‖2Uh .

Thus, the results of theorem 30 and theorem 31 can be extended to prove optimal convergence
of ‖γ − γh‖L2(Ω). However, in contrast to the results given by theorem 30 and theorem 31,
the constant then depends on the Korn constant cK .

We conclude this section with the definition of a local element-wise post processing as it
is defined in section 6.3.4. To this end let V ∗h = BDMk+1(Th) and V ∗,−h as in (6.37). We
define the minimization problem

u∗,−h := argmin v∗,−h ∈V ∗,−h

IVh (v∗,−h −uh)=0

‖νε(v∗,−h )− σh‖2T , (7.12)

and set u∗h := R(u∗,−h ). There holds the following result.

Theorem 32. Assuming homogeneous boundary conditions (6.8), let u ∈ H1(Ω,Rd) ∩
Hm(Th,Rd) and σ ∈ H1(Ω,D) ∩ Hm−1(Th,D) be the exact solutions of the symmetric
mixed Stokes equations (7.1). Further, let uh be the solutions of the MCS method with
weakly imposed symmetry (7.9) and let u∗h be the post processed solution defined as above.
There holds u∗h ∈ V ∗h and div(u∗h) = 0. Further, for s = min(m− 1, k + 1) there holds

‖u− u∗h‖1,h,sym . hs
1

ν
‖σ‖Hs(Th).

If we further assume that the solution of the dual problem (7.9) fulfills the regularity as-
sumption 6.31, we have

‖u− u∗h‖L2(Ω) . hs+1 1

ν
‖σ‖Hs(Th).

Proof. Follows with the same steps as in theorem 27. Note that this includes stability of
the reconstruction operator R in the norm ‖ · ‖1,h,sym. This follows with the same steps as
the proof of lemma 3.3 in [76] changing the gradient to the symmetric gradient.
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8 Numerical examples

In this chapter we present three numerical examples to verify our methods and to validate
the findings of section 6.3 and section 7.4. All numerical examples were implemented within
the finite element library NGSolve/Netgen, see [105, 104] and www.ngsolve.org. We added
the finite element basis of Ξk(Th) to the library and used the Python interface NGS-Py for
the implementation of several examples.

To this end we define the computational domain by Ω = [0, 1]d. We want to explore the
velocity field driven by the volume force determined by f = −div(σ) +∇p with the exact
solutions

u = (curl(ψ2)), and p := x5 + y5 − 1

3
for d = 2, (8.1)

u = (curl(ψ3, ψ3, ψ3)), and p := x5 + y5 + z5 − 1

2
for d = 3. (8.2)

Here, ψ2 := x2(x − 1)2y2(y − 1)2 and ψ3 := x2(x − 1)2y2(y − 1)2z2(z − 1)2 define a given
potentials in two and three dimensions, respectively. Further, we choose the viscosity
ν = 10−3. In both space dimensions the velocity solution fulfills homogeneous Dirichlet
boundary conditions u = 0 on ∂Ω. Depending on the choice of σ we either solve the
standard Stokes problem, see equation (4.6), or the symmetric version, see equation (4.41).

8.1 Optimal convergence rates

The first example is dedicated to the analysis of the convergence rates. In table 8.1 and
table 8.2 we listed several errors for varying polynomial orders k = 1, 2, 3, 4 in the two-
dimensional case for the choices σ = ν∇u and σ = νε(u), respectively. For the symmetric
version we have further added the error of the vorticity approximation. Beside the errors
the experimentally determined orders of convergence are given in brackets. As predicted
by theorem 23 and theorem 30, the L2-norm error of the stress variable σh, the pressure
ph and the vorticity ωh (in the symmetric case, see also remark 6) converge with optimal
order. In contrast to this, the L2-norm error and the discrete H1-seminorm error of the
velocity solution uh show a reduced order as the velocity was only approximated in the
Raviart-Thomas space of order k. Note, however, that the post processed velocity solution
u∗h shows the expected improved accuracy as proven in theorem 27 and theorem 32. The
same observation can be made for the three-dimensional case for varying polynomial orders
k = 1, 2, 3 in table 8.3 and table 8.4. Note that all calculations were done with respect to
the choice ΓD,n = Γ and ΓN,t = ∅. Thus, whereas the normal part of the homogeneous
boundary conditions of the velocity is incorporated as an essential boundary condition
in the discrete velocity space, the homogeneous tangential velocity is given as a natural
boundary condition.
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8.2 Pressure robustness

The second example is dedicated to the analysis of pressure robustness. To this end we
choose the same example as before, thus the exact solution is given by equation (8.1). Due
to the construction of this example the right hand side naturally splits into two different
parts given by

f = −div(σ) +∇p.

Using the Helmholtz projector (see section 6.3.3) we immediately see that

H(f) = −div(σ) = −div(ν∇u),

thus the discrete velocity solution should only be steered by −div(ν∇u) and the discrete
pressure should (obviously) only depend on ∇p. In the following we study the behaviour
of the presented methods in the case of varying viscosities. In particular, we are interested
in what happens in the limit ν → 0. Then, the two parts of the force f scale differently
as it was discussed in section 6.3.3. To validate our findings we compare the H1-seminorm
error of the velocity solution of our methods with the errors of the velocity solution of the
standard Taylor-Hood method, see e.g., [20] and [53]. In order to compare the results we
choose the polynomial orders such that the post processed solution u∗h, which is defined ac-
cording to section 6.3.4, and the solution of the Taylor-Hood method, denoted by uTH

h , have
the same convergence order. Further, we only present the results for the non-symmetric
case σ = ν∇u, as the symmetric case behaves similarly. In figure 8.1 we can observe that
the error of the Taylor-Hood method increases as ν → 0 and behaves as if it was scaled by
a factor 1/ν for small values of ν. This is the phenomenon we discussed in section 6.3.3:
Clearly, the Taylor-Hood method is not pressure robust (and does not provide exactly
divergence-free numerical velocity). This results in a velocity error estimate as it is given
by equation (6.36). In contrast, the velocity errors of the MCS method (see equation (6.6))
appear not to be influenced by varying values of ν. This behaviour is observed for several
polynomial orders and matches the predictions of theorem 26.

8.3 Mixed boundary conditions

In the last example we want to show that the MCS method is well suited for all different
kinds of boundary conditions as given in (4.6). To this end we again solve the Stokes
equations with the exact solutions denoted by (8.1), but with a different choice of the
boundaries. In particular, we set in two dimensions

ΓD,n =
(
(0, 1)× {0}

)
∪
(
{1} × (0, 1)

)
and ΓD,t =

(
(0, 1)× {1}

)
∪
(
{1} × (0, 1)

)
, (8.3)

and in three dimensions

ΓD,n =
(
(0, 1)× (0, 1)× {0}

)
∪
(
{1} × (0, 1)× (0, 1)

)
∪
(
(0, 1)× {0} × (0, 1)

)
∪
(
(0, 1)× {1} × (0, 1)

)
ΓD,t = ∪

(
{1} × (0, 1)× (0, 1)

)
∪
(
(0, 1)× (0, 1)× {1}

)
.

(8.4)
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The Neumann boundaries are then given by

ΓN,n = Γ \ ΓD,n and ΓN,t = Γ \ ΓD,t.

According to (4.1) this results in all four different types of boundary conditions. As dis-
cussed in chapter 5, our finite element spaces are suited to incorporate the essential bound-
ary conditions (4.6d) and (4.6g) into the finite element spaces Vh and Σh, respectively. On
ΓN,n we add the right hand side term∫

ΓN,n

(−σnn + p)vn ds,

where σ and p are the exact solutions given by (8.1). In table 8.5 we present the finite
element error for the symmetric case in two dimensions for the polynomial orders k = 2, 3, 4.
Similarly as in the first example the L2-norm error of the discrete stress, the pressure and
the vorticity converge with optimal order. Further, the H1-seminorm error of the post
processed velocity solution u∗h shows the enhanced accuracy. This matches the predictions
of theorem 27. The same observation can be made also for the non-symmetric case in
three dimensions for the polynomial orders k = 2, 3, see table 8.6. Note, however that in
both cases the L2-norm error of the post processed solution does not show the increased
convergence rate O(hk+2). It seems that the regularity assumption (6.31) is not fulfilled. In
the work [60] the authors discuss the regularity of Stokes flows on polygonal domains in two
dimensions. In particular, they quote the works [91, 92], saying that the velocity solution
of the Stokes problem shows a reduced regularity Hr(Ω,Rd), with r = 2 for pure Dirichlet
boundary conditions and r < 2 with other boundary conditions. Hence, we can not apply
the Aubin-Nitsche techniques used to prove the increased convergence rate of ‖u − u∗h‖0.
Nevertheless, by the findings from above, we conclude that the presented methods are
capable of handling all different kinds of boundary conditions.

10−8 10−6 10−4 10−2 100 102

10−6

10−4

10−2

100

102

104

ν

||∇u−∇u∗h||0
||∇u−∇uTH

h ||0
k = 1, kTH = 2
k = 2, kTH = 3
k = 3, kTH = 4

Figure 8.1: The H1-seminorm error for the MCS method and a Taylor-Hood approximation
for k = 2, 3, 4 and varying viscosity ν.
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Table 8.1: Finite element errors for the solutions of the MCS method (6.6) (non-symmetric
case) for the the problem (8.1) in the two-dimensional case with ν = 1e−3 and
polynomial orders k = 1, 2, 3, 4.
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8 Numerical examples
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Table 8.2: Finite element errors for the solutions of the MCS method (7.1) (symmetric case)
for the problem (8.1) in the two-dimensional case with ν = 1e−3 and polynomial
orders k = 1, 2, 3, 4.
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8 Numerical examples

|T | ‖∇(u− u∗h)‖0 (eoc) ‖u− u∗h‖0 (eoc) ‖σ − σh‖0 (eoc) ‖p− ph‖0 (eoc)

k = 1
28 2.46· 10−3 ( – ) 1.49· 10−4 ( – ) 2.23· 10−3 ( – ) 7.45· 10−2 ( – )
224 2.03· 10−3 (0.3) 9.38· 10−5 (0.7) 1.31· 10−3 (0.8) 3.11· 10−2 (1.3)
1792 9.19· 10−4 (1.1) 2.21· 10−5 (2.1) 4.57· 10−4 (1.5) 9.52· 10−3 (1.7)
14336 2.61· 10−4 (1.8) 3.20· 10−6 (2.8) 1.27· 10−4 (1.8) 2.53· 10−3 (1.9)
114688 6.71· 10−5 (2.0) 4.10· 10−7 (3.0) 3.26· 10−5 (2.0) 6.44· 10−4 (2.0)

k = 2
28 1.46· 10−3 ( – ) 6.10· 10−5 ( – ) 1.20· 10−3 ( – ) 6.75· 10−3 ( – )
224 5.38· 10−4 (1.4) 1.14· 10−5 (2.4) 2.49· 10−4 (2.3) 1.55· 10−3 (2.1)
1792 1.75· 10−4 (1.6) 1.90· 10−6 (2.6) 4.91· 10−5 (2.3) 2.62· 10−4 (2.6)
14336 2.46· 10−5 (2.8) 1.33· 10−7 (3.8) 6.75· 10−6 (2.9) 3.53· 10−5 (2.9)
114688 3.24· 10−6 (2.9) 8.84· 10−9 (3.9) 8.85· 10−7 (2.9) 4.50· 10−6 (3.0)

k = 3
28 3.26· 10−4 ( – ) 1.16· 10−5 ( – ) 2.34· 10−4 ( – ) 2.37· 10−3 ( – )
224 1.39· 10−4 (1.2) 2.24· 10−6 (2.4) 5.61· 10−5 (2.1) 2.51· 10−4 (3.2)
1792 2.10· 10−5 (2.7) 1.56· 10−7 (3.8) 6.39· 10−6 (3.1) 2.98· 10−5 (3.1)
14336 1.83· 10−6 (3.5) 6.65· 10−9 (4.6) 5.33· 10−7 (3.6) 2.05· 10−6 (3.9)
114688 1.24· 10−7 (3.9) 2.21· 10−10 (4.9) 3.54· 10−8 (3.9) 1.31· 10−7 (4.0)

Table 8.3: Finite element errors for the solutions of the MCS method (6.6) (non-symmetric
case) for the problem (8.1) in the three-dimensional case with ν = 1e−3 and
polynomial orders k = 1, 2, 3.

|T | ‖ε(u− u∗h)‖0 (eoc) ‖u− u∗h‖0 (eoc) ‖σ − σh‖0 (eoc) ‖p− ph‖0 (eoc) ‖ω − ωh‖0 (eoc)

k = 1
28 1.53· 10−3 ( – ) 1.36· 10−4 ( – ) 1.46· 10−3 ( – ) 7.45· 10−2 ( – ) 1.06· 10−3 ( – )
224 8.11· 10−4 (0.9) 5.42· 10−5 (1.3) 8.15· 10−4 (0.8) 3.11· 10−2 (1.3) 6.70· 10−4 (0.7)
1792 3.17· 10−4 (1.4) 1.32· 10−5 (2.0) 3.16· 10−4 (1.4) 9.52· 10−3 (1.7) 3.17· 10−4 (1.1)
14336 9.20· 10−5 (1.8) 1.93· 10−6 (2.8) 8.98· 10−5 (1.8) 2.53· 10−3 (1.9) 9.05· 10−5 (1.8)
114688 2.38· 10−5 (1.9) 2.48· 10−7 (3.0) 2.31· 10−5 (2.0) 6.44· 10−4 (2.0) 2.34· 10−5 (1.9)

k = 2
28 5.01· 10−4 ( – ) 4.30· 10−5 ( – ) 5.76· 10−4 ( – ) 6.75· 10−3 ( – ) 4.88· 10−4 ( – )
224 2.08· 10−4 (1.3) 9.65· 10−6 (2.2) 1.58· 10−4 (1.9) 1.55· 10−3 (2.1) 1.35· 10−4 (1.9)
1792 5.70· 10−5 (1.9) 1.51· 10−6 (2.7) 3.87· 10−5 (2.0) 2.62· 10−4 (2.6) 3.57· 10−5 (1.9)
14336 7.87· 10−6 (2.9) 1.06· 10−7 (3.8) 5.42· 10−6 (2.8) 3.53· 10−5 (2.9) 5.24· 10−6 (2.8)
114688 1.04· 10−6 (2.9) 7.00· 10−9 (3.9) 7.15· 10−7 (2.9) 4.50· 10−6 (3.0) 7.02· 10−7 (2.9)

k = 3
28 1.76· 10−4 ( – ) 1.28· 10−5 ( – ) 1.67· 10−4 ( – ) 2.37· 10−3 ( – ) 1.27· 10−4 ( – )
224 5.75· 10−5 (1.6) 2.42· 10−6 (2.4) 4.43· 10−5 (1.9) 2.51· 10−4 (3.2) 2.98· 10−5 (2.1)
1792 6.81· 10−6 (3.1) 1.68· 10−7 (3.8) 4.95· 10−6 (3.2) 2.98· 10−5 (3.1) 3.62· 10−6 (3.0)
14336 5.74· 10−7 (3.6) 7.31· 10−9 (4.5) 4.11· 10−7 (3.6) 2.05· 10−6 (3.9) 3.02· 10−7 (3.6)
114688 3.98· 10−8 (3.9) 2.46· 10−10 (4.9) 2.76· 10−8 (3.9) 1.31· 10−7 (4.0) 2.03· 10−8 (3.9)

Table 8.4: Finite element errors for the solutions of the MCS method (7.1) (symmetric
case) for the problem (8.1) in the three-dimensional case with ν = 1e−3 and
polynomial orders k = 1, 2, 3.
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8 Numerical examples

|T | ‖ε(u− u∗h)‖0 (eoc) ‖u− u∗h‖0 (eoc) ‖σ − σh‖0 (eoc) ‖p− ph‖0 (eoc) ‖ω − ωh‖0 (eoc)

k = 2
28 7.62· 10−2 ( – ) 5.16· 10−3 ( – ) 6.44· 10−2 ( – ) 3.72· 10−3 ( – ) 5.02· 10−2 ( – )
224 3.67· 10−3 (4.4) 1.23· 10−4 (5.4) 3.00· 10−3 (4.4) 5.31· 10−4 (2.8) 2.43· 10−3 (4.4)
1792 1.73· 10−4 (4.4) 2.82· 10−6 (5.4) 1.43· 10−4 (4.4) 6.75· 10−5 (3.0) 1.15· 10−4 (4.4)
14336 1.09· 10−5 (4.0) 7.75· 10−8 (5.2) 8.92· 10−6 (4.0) 8.47· 10−6 (3.0) 6.88· 10−6 (4.1)
114688 1.07· 10−6 (3.3) 3.30· 10−9 (4.6) 8.63· 10−7 (3.4) 1.06· 10−6 (3.0) 6.32· 10−7 (3.4)

k = 3
28 1.97· 10−3 ( – ) 9.90· 10−5 ( – ) 1.46· 10−3 ( – ) 7.19· 10−5 ( – ) 1.01· 10−3 ( – )
224 5.83· 10−5 (5.1) 1.35· 10−6 (6.2) 4.17· 10−5 (5.1) 5.70· 10−6 (3.7) 3.65· 10−5 (4.8)
1792 2.97· 10−6 (4.3) 2.83· 10−8 (5.6) 1.91· 10−6 (4.4) 3.65· 10−7 (4.0) 1.77· 10−6 (4.4)
14336 1.82· 10−7 (4.0) 8.25· 10−10 (5.1) 1.15· 10−7 (4.1) 2.29· 10−8 (4.0) 1.08· 10−7 (4.0)
114688 1.15· 10−8 (4.0) 2.73· 10−11 (4.9) 7.19· 10−9 (4.0) 1.44· 10−9 (4.0) 6.85· 10−9 (4.0)

k = 4
28 2.49· 10−5 ( – ) 1.07· 10−6 ( – ) 2.46· 10−5 ( – ) 8.79· 10−6 ( – ) 9.69· 10−6 ( – )
224 3.04· 10−6 (3.0) 4.74· 10−8 (4.5) 2.16· 10−6 (3.5) 4.36· 10−7 (4.3) 1.11· 10−6 (3.1)
1792 9.08· 10−8 (5.1) 7.46· 10−10 (6.0) 6.54· 10−8 (5.0) 1.36· 10−8 (5.0) 3.33· 10−8 (5.1)
14336 2.78· 10−9 (5.0) 2.57· 10−11 (4.9) 2.00· 10−9 (5.0) 4.26· 10−10 (5.0) 1.01· 10−9 (5.0)
114688 9.67· 10−11 (4.8) 2.37· 10−11 (0.1) 6.76· 10−11 (4.9) 1.33· 10−11 (5.0) 4.38· 10−11 (4.5)

Table 8.5: Finite element errors for the solutions of the MCS method (7.1) (symmetric case)
for the problem (8.1) in the two-dimensional case with ν = 1e−3 and polynomial
orders k = 2, 3, 4, with boundary conditions according to the splitting (8.3).

|T | ‖∇(u− u∗h)‖0 (eoc) ‖u− u∗h‖0 (eoc) ‖σ − σh‖0 (eoc) ‖p− ph‖0 (eoc)

k = 2
20 1.53· 10−3 ( – ) 7.77· 10−5 ( – ) 1.26· 10−3 ( – ) 6.75· 10−3 ( – )
80 5.59· 10−4 (1.5) 1.28· 10−5 (2.6) 2.57· 10−4 (2.3) 1.55· 10−3 (2.1)
320 1.78· 10−4 (1.6) 2.02· 10−6 (2.7) 5.03· 10−5 (2.4) 2.62· 10−4 (2.6)
1280 2.48· 10−5 (2.8) 1.59· 10−7 (3.7) 6.88· 10−6 (2.9) 3.53· 10−5 (2.9)
5120 3.26· 10−6 (2.9) 1.47· 10−8 (3.4) 8.98· 10−7 (2.9) 4.50· 10−6 (3.0)

k = 3
28 3.30· 10−4 ( – ) 1.55· 10−5 ( – ) 2.38· 10−4 ( – ) 2.37· 10−3 ( – )
224 1.49· 10−4 (1.1) 3.21· 10−6 (2.3) 5.87· 10−5 (2.0) 2.51· 10−4 (3.2)
1792 2.14· 10−5 (2.8) 2.44· 10−7 (3.7) 6.53· 10−6 (3.2) 2.98· 10−5 (3.1)
14336 1.85· 10−6 (3.5) 1.50· 10−8 (4.0) 5.40· 10−7 (3.6) 2.05· 10−6 (3.9)
114688 1.23· 10−7 (3.9) 9.25· 10−10 (4.0) 3.57· 10−8 (3.9) 1.31· 10−7 (4.0)

Table 8.6: Finite element errors for the solutions of the MCS method (6.6) (non-symmetric
case) for the problem (8.1) in the three-dimensional case with ν = 1e−3 and
polynomial orders k = 2, 3, with boundary conditions according to the split-
ting (8.4).
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9 Open questions

In this thesis we tried to establish a new understanding of the mathematical structure of
the incompressible Stokes equations. Based on the new results in the continuous setting we
introduced two finite element methods and presented a detailed a priori analysis. Neverthe-
less, the variational formulation and the stability analysis (in the continuous setting) that
we presented in chapter 4 are based on the assumption that we impose Dirichlet boundary
conditions for the velocity in normal direction on the whole boundary, thus ΓD,n = Γ.
However, as illustrated by the numerical examples in section 8, the corresponding finite el-
ement methods are suitable to deal with all different kinds of boundary conditions. As the
discrete methods were motivated by the continuous setting, this suggests that the stability
analysis for the continuous formulation can also be extended to the case ΓD,n 6= Γ. In the
following we try to motivate this setting and lead the reader to the point where, to the best
knowledge of the authors, the (standard) theory can not be applied.

In order to incorporate partial boundary conditions the obvious choice of the velocity
space is now given by V = H0,ΓD,n(div,Ω). With similar findings as in chapter 4 we want
that the divergence of stress variables can continuously act on velocity functions. Thus,
the appropriate stress space is given by

H(curl div,Ω)(ΓD,n) := {σ ∈ L2(Ω,Rd×d) : div(σ) ∈ H0,ΓD,n(div,Ω)∗},
with the norm

‖σ‖2cd := ‖σ‖2L2(Ω) +

 sup
v∈H0,ΓD,n

(div)

〈σ, v〉H0,ΓD,n
(div)

‖v‖H0,ΓD,n
(div)

2

.

Then, similarly as before we define the stress space as the matrix trace-free subspace

Σ := {σ ∈ H(curl div,Ω)(ΓD,n) : tr(σ) = 0, σnt = 0 on ΓN,t}.
Next, we aim to follow along the same steps as in section 4.3 to define a variational formu-
lation. To this end we test equation (4.6a) with a test function τ ∈ Σ. Assuming that τ can
be approximated by a series of smooth functions τl with l ∈ N this then leads (assuming
enough regularity of the exact solution u) to∫

Ω

1

ν
σ : τl dx+

∫
Ω

div(τl) · udx−
∫

ΓNn

(τl)nnun ds = 0 ∀l ∈ N.

The crucial question now is how the resulting equation looks like if we pass to the limit
l → ∞. In contrast to the derivation as in section 4.3, where the limit was given by
equation (4.25), it is not obvious if we get a similar result, which would read as∫

Ω

1

ν
σ : τl dx+

∫
Ω

div(τl) · u dx−
∫

ΓNn

(τl)nnvn ds
?→
∫

Ω

1

ν
σ : τ dx+〈div(τ), u〉H0,ΓD,n

(div).
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9 Open questions

In particular, this is not trivial as there exists no continuous normal-normal trace operator
that can be applied for functions in H(curl div,Ω)(ΓD,n). In fact, this question is related
to the definition of the distributional divergence. To this end let φ ∈ {ψ ∈ C∞(Ω,Rd) :
ψn = 0 on ΓD,n}, then we would like to define

〈div(τ), φ〉H0,ΓD,n
(div)

!
:= −

∫
τ : ∇φ dx+

∫
Γ\ΓD,n

τnt · φt ds, (9.1)

where the last integral has to be understood as a duality pair. Then, assuming enough
regularity, an integration by parts argument yields the identity that is needed to pass to
the limit above. Although it seems feasible that the functional div(τ) ∈ H0,ΓD,n(div)∗ can
be decomposed into a part which continuously acts on u on the domain Ω, and a part that
continuously acts on un on the boundary Γ \ ΓD,n, we are not aware of any decomposition
results such that the above results can be defined rigorously.

Such a result would be the key ingredient that is needed to define a well-posed varia-
tional formulation and to give a precise stability analysis. If we assume that functions in
H(curl div,Ω)(ΓD,n) can be approximated by smooth functions and that the distributional
divergence div(τ) is given according to definition (9.1), the stability analysis would follow
with very similar steps as in section 4.3.1. Continuity of the bilinear forms and kernel
coercivity of a(·, ·) follow as in the proofs of lemma 8 and lemma 9, respectively. An inf-sup
result for the term 〈div(τ), u〉H0,ΓD,n

(div) can be proven as in the proof of lemma 12 and

would include to solve the auxiliary problem: Find ũ ∈ Ṽ := H1(Ω,Rd)∩H0,ΓD,n(div) such
that∫

Ω
dev(∇ũ) : dev(∇ṽ) dx+

∫
ΓD,t

ũt · ṽt ds =

∫
Ω
u · ṽ dx+

∫
Ω

div(u) div(ṽ) dx ∀ṽ ∈ Ṽ .

According to lemma 11 this problem is solvable if ΓD,n ∩ ΓD,t 6= ∅, which was one of the
assumptions at the beginning of chapter 6. The Robin-type boundary conditions on the
boundary ΓD,t are needed to show that the choice σ = dev(∇ũ) is admissible, thus to prove
〈σ, tw〉TW (ΓN,t) = 0 for all tw ∈ TW (ΓN,t) and σ ∈ Σ. We hope that future contributions
will tackle the analysis of dual spaces for Sobolev spaces with vanishing traces only on a
part of the boundary such that a stability analysis in the case ΓD,n 6= Γ can be presented.
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formulation for Stokes flow with weakly imposed stress symmetry, (arXiv:1901.04648)

• J. Gopalakrishnan, P. L. Lederer, and J. Schöberl: A mass conserving mixed stress
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• P. L. Lederer, C. Merdon, and J. Schöberl: Refined a posteriori error estimation for
classical and pressure-robust Stokes finite element methods, Numerische Mathematik
(to appear), (arXiv:1712.01625)

• P. L. Lederer, C. Lehrenfeld, and J. Schöberl: Hybrid Discontinuous Galerkin methods
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