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Kurzfassung

Der Flugverkehr nimmt kontinuierlich zu, was dazu fithrt, dass das Airway-Netwerk wachst
und die Anzahl der Restriktionen steigt. Dadurch wird die Berechnung der effizientesten
Flugbahn, einer Teilaufgabe der Flugplanung immer schwieriger. Die Fluggesellschaften
versuchen unter Konkurrenzdruck stdndig mehr Variablen in die Optimierungen einflieen
zu lassen. Wir prasentieren deshalb eine heuristische Methode die von Beginn an die
Notwendigkeit von zukiinftigen Erweiterungen beriicksichtigt.

Wir présentieren eine detalierte Problemdefinition, welche, unseres Wissens nach, néher
am realen Szenario liegt als frithere in der Literatur. Wir erweitern eine in der Industrie
verbreitete Methode basierend auf Dijkstra’s Algorithmus, welcher von uns in einen
Prozess eingebettet wurde der es erlaubt komplexe Restriktionen der Luftfahrtbehoérden
zu beriicksichtigen. Moglichst viele Restriktionen beriicksichtigen wir bereits durch adap-
tierungen im Graphen, alle weiteren werden durch Lazy Evaluierung in einem iterativen
Prozess berticksichtigt. Dieser Ansatz liefert, unter unseren Annahmen, garantiert die
beste Losung, Jedoch ist er durch den zugrundeliegenden Algorithmus nur schwer zu
erweitern und die wachsende Anzahl an Restriktionen hat einen starken Einfluss auf
die Laufzeit. Deshalb entwickelten wir einen heuristischen Ansatz, mit dem Ziel diese
Probleme zu beseitigen. Wir machen uns die Tatsache zu nutze das die Flugbahn iiber den
Lebensyklus eines Fluges viele male neu berechnet werden muss und somit eine Vielzahl
an bereits berechneten Flugbahnen zur Verfiigung steht. Diese werden von uns iterativ
adaptiert um sich der neuen Situation bestmoglich anzupassen. Sofern eine Losung eine
Restriktionen verletzt, fliefit dies negativ in deren Giite ein. Eine weitere Heuristik die die
Gltigkeit einer gegebenen Route (unabhaengig vom Hohenprofil) beztiglich Restriktionen
ausschlie3t, erlaubt es ganze Routen von der Suche auszuschlieflen.

Fiir unsere Tests haben wir Optimierungen zwischen européischen Stadten durchgefiihrt,
da dieser Luftraum die grofite Anzahl an Restriktionen aufweist. In diesen Tests hat
der heuristische Ansatz innerhalb weniger Iterationen stets die gleichen Ergebnisse wie
der exakte geliefert, dies aber in deutlich kiirzerer Rechenzeit. Wir erreichten einen
Speedup von bis zu 10x, und erwarten durch die steigende Anzahl von Restriktionen das
dieser Abstand wachsen wird. Weiters wurde bei dem Entwurf unserer Heuristik bereits
Riicksicht auf notwendige Erweiterungen genommen die im Zuge des Flightplannings
notwendig sind. Diese Erweiterungen lassen sich dadurch auf natiiliche Art und Weise
integrieren.
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Abstract

Air traffic is continuously increasing, and so is the airway network and the restrictions
controlling the flow. As a result computing the most efficient trajectory, which is
a subproblem of flight planning, gets harder. Airlines constantly need to consider
more parameters in the optimization to stay competitive. This brings currently used
algorithms to their limit. Therefore we present a heuristic method that keeps the necessary
extensibility from the start in mind.

We present a detailed problem definition which comes, to our knowledge, closer to
actual real-life scenario than any other in the literature. We extend an in the industry
widespread approach based on Dijkstra’s algorithm, which we embedded in a process
to cope with Air traffic control restrictions. For all restrictions whose application can
be decided based on the instance, we are adapting the graph s.t. those restrictions are
already respected. All other restrictions are evaluated lazily and subsequently avoided,
resulting in an iterated process. For our assumptions, this method guarantees to return
the optimum result. However, because of the underlying algorithm, it is hard to extend,
and the number of restrictions has a significant influence on the runtime. Therefore, we
propose a heuristic method, with the goal to overcome those shortcomings. We make
use of the fact that during the lifetime of a flight, the trajectory needs to be calculated
several times. We use those trajectories and iteratively adapt them, to fit the changed
situation best. If a solution violates a restriction, it will reflect negatively in its quality.
An additional heuristic allows to preliminary determine that for a given path exists an
altitude profile that does not violate any restrictions, which allows us to exclude this
path from the search.

We performed tests for city pairs within Europa, which is tightly packed with restrictions.
In our tests, the heuristic approach reached within a few iterations the same result as the
optimal method, but within significantly less computation time. We reached speedups
up to 10x and expect the margin to grow further with a growing number of restrictions.
Additionally, we already considered necessary extensions in the choice of our algorithm
which are necessary during the course of flight planning.
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CHAPTER

Introduction

Air traffic is continuously increasing, and so is the stress on the airway system, see Figure
1.1/ [1]. As a result, the airway network gets more complicated, the degree of freedom
for planning flights increases, and finding the most efficient routes gets harder. Finding
those is not just beneficial to airlines because it allows them to reduce costs, this also
has an environmental impact since it reduces aircraft emissions [2].

For calculating a flight path there is much information and many steps required. First
and foremost one needs to know the departure and destination airport. To fly from one
airport to another, it is not simply allowed to take off and take whatever route one wants
to take. Like roads spanning the ground of the earth, there is a given network in the sky
as well.

This network is managed by Air Traffic Control (ATC) which is publishing waypoints
that are connected by segments. Going from one waypoint to another is only allowed
if both waypoints share a common segment. To manage the flow of the traffic, [ATC
is also putting limitations on the usability of points and segments. This means that
certain points or segments are only allowed to use if the route of the aircraft fulfills
specific criteria. Simple examples would be that a segment is only usable if the aircraft
is departing from a particular airport, or a point is only allowed to be used if another
point was not used. Without going into more detail here, there are many rules that limit
the use of the airway system which will be explained later.

A path of waypoints going from the departure to the destination airport is known as a
lateral route. In Figure 1.2/ we can see the lateral route from the British Airways flight
with number BA706 from the 30. November 2018 from London to Vienna.

To avoid collisions, we also have to specify an altitude profile that will be flown by the
aircraft, which is called a vertical profile. Figure [1.3| shows the vertical profile performed
by an Airbus A320-232 (corresponding to flight BA706 from Figure |1.2). This is necessary
to avoid the collision of aircraft that are traversing the same segment in opposite directions

1
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Figure 1.1: Aeronautical chart showing the European Airway system, Source

Figure 1.2: A lateral route from London to Vienna, Source: Flightradar24

as well as to allow the use of a segment by multiple aircraft at the same time in the same
direction.

A lateral route combined with a vertical profile is called a trajectory. This trajectory,
when flown by different aircraft, will result in a different fuel consumption based on the
aircraft type. Not just that, it will also heavily depend on the weight the aircraft has to
carry including the amount of fuel that it was tanked up with.


http://www.skyvector.com
http://www.skyvector.com
http://www.flightradar24.com
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Figure 1.3: A vertical profile flown from London to Vienna, Source: Flightradar24

Another factor on the optimal trajectory is weather, most importantly the speed of the
wind and the direction it is coming from. Using tailwind is beneficial for reducing the
time, and fuel used to travel between points, on the other hand, headwinds will do the
opposite.

Along with the weather information we also need to know the departure time. To calculate
the wind along the trajectory we also need to know the time it will take us to travel a
certain distance. Given the aircraft type and its initial-mass, a departure time, a weather
forecast and navigation data, the goal is to find the trajectory that complies with ATC
and requires the least amount of cost. To know how much fuel an aircraft will use we
need a mathematical model of an aircraft.With the information about the wind and the
model of the aircraft, we are finally able to calculate the total fuel consumption along
the trajectory.

1.1 Motivation

In Europe, air traffic is continuously increasing, putting more and more stress on the
existing airway network. This increase in traffic is followed by an increasing number
of complex restrictions to the airway network from the ATC]| to steer the traffic in a
way that it is easier for them to control. Current implementations of flight planning
systems, however, are not built with such a vast amount of complex constraints to
the navigation system in mind. Additionally, |ATC is increasingly creating Free route
airspaces (FRAs) that allow a higher degree of freedom. Since those systems are typically
purely graph-based algorithms like Dijkstra’s algorithm [3] or improvements like A* [4] it
is hard to take advantage of this new possibility of FRA. Current systems make use of
FRASs| by building grids in such areas to match the input they are used to. Here they
have to find a balance between a high quality in the result, by making the grid as dense
as necessary, and fast optimization times by making the grid as loose as possible.

When planning a flight, one has to deal with a lot of unpredictable events. For example,
weather forecasts are being used for planning, these, however, might be different compared
to the actual weather when the flight is executed. The performance model used to simulate


http://www.flightradar24.com
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the aircraft is an approximation and will, therefore, show differences in the real world.
On top of that, the exact weight of the aircraft is not known which also influences these
calculations. There can be a delay when departing which not only changes the weather
along the way, but one might run into some restrictions due to the time differences
arriving at each point. Therefore it is essential to have a tool that allows adapting fast
to changes in the environment.

For this reason, we want to apply a genetic algorithm to a given trajectory to improve it
in terms of validity and fuel consumption. The anticipated benefits of this approach are
the following:

e no complete re-calculation necessary, which in contrast to Dijkstra or A* allows
“hot-start”

o can be highly parallelized (by design of the algorithm)
o fast iterations with different take-off masses possible

o allows the integration of weather ensembles and show best for all, average or for
specific criteria

« allows adapting to changes (like more accurate weather closer to departure and
when already departed)

1.2 Related Work

Flight planning is an active field of research with enormous scope, and to our knowledge,
no work considers all aspects relevant in a real-world scenario. Therefore there are
many variations on what is considered in each particular work. In general, the different
approaches can be categorized as follows:

o Based on optimal control theory
e Dynamic programming

e Graph-based: Dijkstra, A*

“Optimal control theory deals with the problem of finding the right inputs to a given
system s.t. that an optimality criterion is reached. A control problem includes a cost
functional that is a function of state and control variables. An optimal control is a set
of differnetial equations describing the paths of the control variables that minimize the
cost function.” [5] Approaches based on optimal control theory are applied to problems
where there are a short distance and much freedom. Papers using this approach usually
have high accuracy in their decisions which are direct inputs to the aircraft that a pilot
would make in a fighter jet or in a UAV that allows full control in the 3D space. This
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method is also applied to analyze the direct avoidance of weather phenomena, again
for short distances and highly accurate results. The distances of trajectories calculated
by said approaches are relatively short compared to distances traveled by commercial
aircraft, or they are analyzed without considering ATC|restrictions. [6] [7] uses a hybrid
optimal control approach to analyze the influence of wind on the optimal trajectory. Also
because of the regulations and restrictions by |ATC, this kind of approach does not fit for
commercial aircraft in combination with a realistic real-world problem setting.

In [§] dynamic programming was used to find a vertical profile to a predefined lateral
route. Similarly in [9] first a lateral path in the plane was found using Dijkstra’s algorithm
before applying dynamic programming to find a vertical profile. In practice, as well in
the literature, it is a common approach to first find a lateral route only in the 2D space.
Next, a vertical profile is generated on this lateral route, and then the speed along this
trajectory is optimized. However, this does not guarantee the solution to be a global
optimum for the whole 4D search space.

In [I0] an approach using A* search is presented. Much research that was done for
general 2D route planning, however, is based on pre-processing which is not applicable
in this setting. Mendoza and Botez consider lateral navigation optimization for a fixed
cruising altitude in [I1]. In [I2] a tunnel-like 3D grid was created around an already
planned trajectory. A genetic algorithm was created to find small deviations along the
initial trajectory to beneficially use wind to reduce the required fuel. Patron, Berrou
and Botez improved a given trajectory by changing the vertical profile using a genetic
algorithm in[I3].

1.3 Contribution

Most of the existing works only tackle a restricted portion of the problem. To our
knowledge there is no other work in the literature with a more extensive scope that
includes the following features:

¢ Weather forecast model

Aircraft performance model
o Nayvigation data

e ATC restrictions

All of these points are considered, while performing a full 3D optimization including an
initial climb, allowing step climbs and descends, and a final descent.

Therefore the contribution of this work is to formulate a problem definition comprising
the mentioned points. This problem definition is, to our knowledge, the closest to actual
commercial aviation operation in the literature.
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Next, an exact method that finds an optimal solution to the given problem formulation
is described. Furthermore, a heuristic approach is developed in an attempt to get an
algorithm that comes close the solution quality of the exact approach, while being better
suited for extensions to tackle upcoming challenges (as already mentioned in this section).
Finally, computational experiments are performed to compare the exact and the proposed
heuristic approach.

1.4 Thesis outline

This work is structured as follows:

o Chapter |2 outlines the field of commercial aviation and gives background information
necessary for flight planning.

o Chapter 3| provides a precise formulation of the flight planning problem.

e Chapter 4 a deterministic algorithm to solve the previously defined problem is
presented.

o Chapter 5 contains a newly developed heuristic method for solving the problem.

o Chapter 6 presents the results of tests performed by the reference, as well as the
proposed approach.

o Chapter |7 concludes the work with a discussion and future work recommendation.



CHAPTER

Background

2.1 Flight phases

Planning

; Final approach
| Medium-and short-term b_‘b ol
planning f & %
Pre-departure % - ' P Past flight phase

Yy g — . "‘ﬁ‘f

. e q’rwj‘_ L

Pre- Taxi-out and
departure take-off

Landing Post

Climb Cruise Descent 4 taxi-in flight™;

... Planning

Figure 2.1: Classification of the different phases of a flight [14]

Depending on the domain of application, the phases of flight can be structured differently.
Figure 2.1 shows a simplified classification from [I5] which is sufficient for our use case.
The first phase of flight is called taxi-out and starts at the gate, it describes the drive of
the aircraft from the gate to the runway at which the aircraft is going to take off. When
ready to take off the aircraft will use full thrust and start to climb. Below a certain
altitude, it is typically uneconomical to fly. Therefore the pilot is going to climb as steep
as possible until a more economic altitude is reached.

The point at which this altitude is reached is called Top of climb (TOC), the phase from
take-off to the [TOC| is called initial climb. At this point, the passengers are allowed
to remove their seatbelts and walk around in the plane. In the so-called cruise phase
the aircraft tries to cruise on the altitude at which it requires the least cost. Over time
the aircraft is losing weight because of the fuel being burned which will change the
altitude at which it is most efficient to cruise. Because of this, the pilot might change the
cruising altitude throughout the flight several times. Although the cruise phase is the
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most efficient one, because of the longer duration in this phase it is still the one where
the most fuel is burned in total numbers.

The last phase of the flight is the final descent, which similar to the initial climb is
performed as steep as possible to reduce the duration the airplane is in a state where it
consumes much fuel. The point at which the final descent is initiated is called Top of
descend (TOD). From touchdown to taxing back to the gate is the last phase which we
do not need to consider because this can be performed with the remaining fuel that will
be there for safety purposes.

To summarize the phases of flight consists of the following:

o Taxi-out

e Initial Climb
e Cruise

o Final descent

e Landing and Taxi-in

2.2 Navigation

Official authorities, i.e. ATC, are in charge to manage regions and ensure aircrafts safety.
Therefore they publish navigation data that include points (geographic locations) and
connect them by so-called segments. When planning a flight, one is only allowed to travel
along those published segments. This should allow the controllers to manage traffic easier.
The downside is that with increasing air traffic, the stress on the airway network also
increases. Looking at a single point, all aircraft aiming to fly in the region around the
point are focused precisely on this location, even if it would be more cost effective not to
fly directly over it.

2.2.1 Waypoints

A waypoint is a geographic location on the earth defined by coordinates (latitude and
longitude). To simplify communications these waypoints are given a four-letter Interna-
tional Civil Aviation Organization (ICAQO)| code by which they can be identified. There is
a whole array of different waypoint types. For this work we are only going to differentiate
between airports, en route points and terminal procedure points. Airport waypoints must
be at the beginning and at the end of a route.

In Table [2.1] the definition of the airport point of Vienna International Airport is shown.
Compared to Table 2.2| we can see that different waypoint types have different attributes.



2.2. Navigation

Wien Schwechat (LOWW)

Coordinates: 48° 6’ 37N 16° 34’ 10 E
Elevation: 600ft / 183m MSL
Mag. Var.: 4.262 E

FIR: LOVV
ID/ ICAO: LOWW
Type: Civil

Runways: 2
Time Zone: 1 UTC (DST)

Table 2.1: Definition of waypoint LOWW - Vienna International Airport

Waypoint VENEN AU
Coordinates: 48° 33’ 59N 14° 32’ 29E

RNAV
Mag Var: 2.235 E
FIR: LOVV

Table 2.2: Definition of waypoint VENEN

2.2.2 Segment

A segment is an arc connecting two points, either in only one or both directions. Note
that between two points there might be multiple segments. An additional property of
segments are minimum required and maximum allowed altitude. It is only allowed to
traverse the segment within this altitude range.

The most important properties of a segment are:

minimum required altitude
maximum allowed altitude
allowed direction: single-directional or bi-directional
track: angle of the segment

length: distance between its adjacent points

The track of a segment is the angle between itself and a line from the south to the
north pole. In Figure 2.2 we can see a segment between PEROL and VENEN and the
tracks indicated according to the direction of the segment. Because there is a discrepancy
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between the true north and the magnetic north, one has to consider the magnetic variation
at the waypoints in order to get the correct track.

N
VENEN

~
©
Q

™

PEROL

Figure 2.2: Segment PEROL — VENEN track: a, VENEN — PEROL track:

2.2.3 Direct

A segment that connects two waypoints, but does not have any additional identifier is
called a direct. A commonly used abbreviation for directs is DCT. In Europe, Eurocontrol
is publishing every month a chart of all available DCTs in Europe (which can be found
at: RAD DCT network chart). It shows all new, amended and existing DCTs.

2.2.4 Airway

An airway is a grouping of multiple segments using an identifier to more comfortable
communication. In Table 2.3 we see the (partial) definition of the airway Z50 depicted
in Figure 2.3. As we can see the airway goes from GERSA — KELIP — SOPER —
PELAD — RESIA. It also defines segments in the opposite direction from RESIA —
PELAD — SOPER — KELIP. Additionally, there is a non-consecutive portion AYE —
AVMON — GORKA. An airway can consist of multiple non-consecutive portions that
might not lie on the same continents. Its primary use is to group segments for simplified

communication. If for example, someone wants to go from GERSA — KELIP — SOPER

— PELAD — RESIA, one can also specify only GERSA 230, RESIA. However it is not

necessary to follow an airway from beginning to end, it is also possible to only use parts

of it, like KELIP x50, PELAD, or even just a single segment KELIP X%, SOPER.

2.2.5 Terminal procedures

As already explained there is a global network of waypoints and airways. However, those
waypoints are not connected to any airports directly but, are connected via terminal


https://www.eurocontrol.int/articles/rad-dct-network-chart

2.2. Navigation

Sequence Point 1 Point 2 Direction Cruise .table .. Altitude .

Identifier minimum maximum

10 GERSA KELIP — RR 14000 ft 66000 ft

20 KELIP SOPER > RR 14000 ft 66000 ft

23 SOPER PELAD &~ RR 16000 ft 66000 ft

26 PELAD RESIA &~ RR 16000 ft 66000 ft

40 AYE AVMON — RR

50 AVMON GORKA — RR

Table 2.3: Definition of airway Z50

:_, ,“\\% % 4 }

; /" sB%

Figure 2.3: Aeronautical chart showing Airway Z50

procedures. To get to the network departing from an airport one has to use a [Standard
Instrument Departure (SID) which starts at a runway and ends at a transition point that
is part of the global network.

As of right now, LOWW (Vienna Internation Airport) has 228 airport specific points,
each of which can be used in several terminal procedures.

All the points before the transition point are airport specific and are not allowed to be
used other than for the terminal procedure. Analog to the [SIDs there exist procedures
for getting from the global network system to an airport, which are called |Standard
Terminal Arrival Route (STAR)s. For easier communication, each terminal procedure
has a unique ICAQ) code.

In Figure 2.4 we can see |[STAR| with the ICAO code VENEN2W used for arriving at
LOWW starting from VENEN which is the transition point and landing on runway RW34

11
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in Vienna.

Table [2.4] shows more information like the specific altitude range the aircraft has to stay
within. Additionally, there is much information that was omitted here for simplicity.
These include a predefined speed and more detailed information of the flight path that
has to be taken. Also, terminal procedures are structured into multiple parts, however,
this is not of concern for this work. Additional information also specifies if a waypoint
has to be flown directly over or has to be used as a reference point for a circular turn.
This is essential for navigation, however the information shown here is sufficient for our
use case.

VENENZW

MNERBUIW
WENEN2W

Figure 2.4: [STAR VENEN2W from VENEN to LOWW Runway RW34

2.2.6 Airspace

There are different categorizations of airspaces, but for our purpose, it is enough to say
that an airspace is a portion of the atmosphere above a country (and connected waters)
which is controlled by a country.

Free route airspace - FRA

Free route airspaces are specified by a polygon that outlines the area. Along the outline,
there are regular waypoints which will be referred to as boundary points. These boundary
points connect it to the global airway network. In practice, there are different types of
boundary points like entry, exit, and entry&exit points. The names specifies for what
purposes they may be used. As a simplification in this work, all boundary points will be
treated as entry&exit points, which means it is both allowed to be used for entering and
exiting the FRA [16].
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Altitude

Sequence Point .. .
minimum maximum

50 MASUR 6000 17000
60 TEMTA 6000
80 NERDU 6000
90 NERDU 6000
95 WW987 6000
97 WW9I85 6000
105 WW983 6000
120 WW981 6000
130 WW979 6000
140 WWIT7 6000
150 WW975 6000
160 WW974 6000
170 WW9I73 4000
172 WW972 4000
175 WW9IT1
180 WW9IT1
185 OENT4
195 OEN40
205 RW34

Table 2.4: STAR VENEN2W from VENEN to LOWW Runway RW34

2.2.7 Cruise tables

When an aircraft is flying at a steady altitude, it is called cruising. To ensure safety, ATC
is limiting the amount of aircraft using a particular segment at a time. Having a segment
to be used by only one aircraft after the other seems wasteful. Therefore cruise tables
have been introduced. A record in a cruise table defines at which altitudes it is allowed
to cruise. The necessary information to do so is an altitude range (minimum altitude to
maximum altitude) and vertical separation. For example, a minimum altitude of 1000
feet, maximum altitude 7000 feet, vertical separation 2000 ft, means that effectively it is
allowed to cruise at 1000, 3000, 5000 and 7000 feet altitude.

Additionally, many segments are also available in opposite directions which introduces
the risk of frontal collisions. Therefore each record of a cruise table also includes a course
from and course to value which specifies for which track each record applies. Cruise
tables are made up in a way that opposing traffic allowed to use alternating altitudes.

In Table 2.5 we can see that separation of 2000 feet and different “from” altitudes for
courses of 0°-180° and 180°-360° are used to achieve vertical separation of 1000 feet for
opposing traffic. A different visualization of the same cruise table is depicted in Figure
2.5l

13
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As a result, [ATC| only has to check for possible collisions of aircraft that are changing
their altitude, since aircraft are crossing cruising altitudes by doing so.

Course . Altitude . .
from  to True/Magnetic from to Vertical Separation

0° 1K0° M 1000 ft 41000 ft 2000 ft

0° 180° M 45000 ft 4000 ft
180° 360° M 2000 ft 40000 ft 2000 ft
180° 360° M 43000 ft 4000 ft

Table 2.5: Cruise table “RR” Source A424

180°-360°

2000ft-4000ft|/ 2000ft
4300ft-

S

Figure 2.5: Circular visualization of the cruise table “RR” from Table [2.5

As a result of the increased air traffic, Reduced Vertical Separation Minimum (RVSM)
was introduced throughout Europe which reduced the vertical separation to 1000 feet up
to an altitude of 41000 feet and a separation of 2000 feet above 41000 feet. In order to
use RVSM  the aircraft requires specific equipment, which by now is present in almost all
passenger aircraft [17].

2.2.8 Restrictions

To control the flow of aircraft, ATC| uses restrictions to allow or forbid the use of points
and segments based on certain conditions. ATC restrictions can be categorized into
forbidding and mandatory restrictions. As the name suggests, the former tell that
something is forbidden whenever a condition is true. The latter, in contrast, states that
something is mandatory whenever a condition evaluates to true. Also important is that
every restriction has a validity that determines at which time it is enabled. This validity
refers to the actual time the aircraft is at an object (waypoint, segment, airspace, ...)



2.2. Navigation

# 0°-180° 4900ft
180°-360° aged - 47001t
S 0°-180° 4500ft

180°-360° aed - 43001t

180°-360° aged - 4000t

S 0°-180° 3000ft
180°-360° aed - 20001t
A 0°-180° 1000ft

Figure 2.6: Effective cruise altitudes of the cruise table “RR”

that is restricted. In the following, we will discuss the syntax and semantics of those
restrictions sufficient for the course of this thesis.

Syntax

In Table 2.6/ we can see an excerpt of how such a restriction can syntactically look like.

For simplicity, different predicates have been omitted in the BNF. Most notably some

that checks if an aircraft is equipped with certain items or the engine type of the aircraft.

A similar version including “mandatory” restrictions was defined in [I8§].

15
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<restriction> = <restricted-element>
closed <opt-altitude-range> <opt-conditions>

<restricted-element> = <point>

| <segment>

|  <airspace>
<point> = Point <point-name>
<segment> = Segment <segment-name>>
<airspace> = Airspace <airspace-name>

<opt-altitude-range>
from <altitude> to <altitude>
<integer> FL

<altitude>
<opt-conditions>

with condition <condition>

|
<condition> = <operand>

|  <terminal>
<operand> = <or>

|  <and>

| <seq>

|  <not>
<or> = or ( <condition-list> )
<and> = and ( <condition-list> )
<seq> = sequence ( <condition-list> )
<not> = not ( <condition> )

<condition-list> <condition>

<opt-condition-list-extra>

, <condition> <opt-terminal-list-extra>

|
<terminal> n=  <dep-apt>

| <dest-apt>

|  <pointx>

|  <segmentx>

|  <airspacex>
<dep-apt> ::= Departure_Airport <airport-icao>
<dest-apt> = Destination_ Airport <airport-icao>
<pointx> ::= Point__crossing <point-name> <opt-altitude-range>
<segmentx> = Segment_ crossing <segment-name> <opt-altitude-range>
<airspacex> = Alirspace_ crossing <airspace-name> <opt-altitude-range>

Table 2.6: BNF of forbid restrictions

16
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Example 2.1 AT restriction according to BNF specified in Table |2.6
Point VENEN closed
with condition or( Departure__Airport LOWW, Point_Crossing MASUR)

Semantics

In order to evaluate a restriction, we need to have a trajectory, that we can evaluate
the restriction against. Figure [2.7 shows a generic trajectory (referred to as ty in the
following section) from Aptl to Apt2 which we will use as an example for explaining
restrictions.

A
TOD
TOC
]
e
35
=
=
<
Depppt Rwy, Pt, Pt, Pts Pt, Pts Pts Rwy, DSt
Airspace, . .
Airspace; Airspace,
Airspace;

.
Ptg

Rwy,

Airspace; Dstagt

Deppge

Figure 2.7: Generic trajectory for evaluation of example restrictions

A condition tells under which circumstance a restriction is active or inactive. In the
following section the different types of conditions mentioned in 2.6/ will be explained.

To this end we define the following 1-ary predicates:

Departure__airportrrajectory : Airport — { T, F }
allows checking whether the trajectory starts at a given airport.

Destination__airportrrajectory : Airport — { T, F }
allows checking whether the trajectory ends at a given airport.

Point__crossingrrajectory : Point — { T, F }
This condition type allows to check whether a certain point is part of the planned
trajectory.

17
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Segment_crossingrrajectory : Segment — { T, F }
allows checking whether the trajectory contains a given segment.

Airspace_ crossingrrajectory : Airspace — { T, F }
allows checking whether the trajectory contains any point that is within a given airspace.

In Example 2.2, we can see the predicates for which it is not even necessary to know
a trajectory to evaluate them. In contrast, the predicates from Example 2.3| require a
complete trajectory to be evaluated.

Example 2.2 For this and the follwing examples, we are again going to use the trajectory
to previously defined in Section 2.2.8.

to |E Departure__Airport Aptl
to = Departure__Airport Apth
to = Destination__Airport Apt2
to = Destination__Airport Apth

Example 2.3 tg = Point__crossingPt2
to = Point__crossing Pt8

to = Segment_crossingDCTpy pr2

to = Segment__crossing AW 1ps1 pea

to | Airspace__crossingAirspace2

to [~ Airspace__crossingAirspacel

Logical connectives can be used to build complex condition trees. The following
list is an excerpt of all the operators available. The most common ones are:

e and n-ary
e or n-ary

e not l-ary

These and and or take an arbitrary number of truth values, while not only takes a single
truth value. However, all of them are defined in the usual way, as seen in Example 2.4.

Example 2.4 Consider again our running example of trajectory to (defined in Section
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2.2.8) for the follwing evaluation.

to = or(Departure__Airport Aptl, Departure__Airport Apt2,
Departure__Airport Apt3)

to E Departure__Airport Aptl V Departure_Airport Apt2 V
Destination__Airport Apt3

toETVFVF

to =T

Example 2.5/ shows complete (but small) restrictions including with an explaination of
their effect.

Example 2.5 In the follwing enumeration we can see generic restrictions with a textual
explaination.

1. Point 4 closed if or(Departure__Airport Loww, Departure__Airport EGLL,
Departure__Airport EDDF)

This means that the waypoint A only allowed to be used for flights which are not
departing from LOWW (Vienna), EGLL (London) and EDDF (Frankfurt).

2. DCT4 p closed if and(not(Departure_Airport LOWW),
not(Destination__Airport EGLL))

This means that the direct from point A to point B is only allowed to be used for
flights departing from Vienna (LOWW) with destination airport London (EGLL).

3. Pointy closed if and(not(Point B),not(Point C))
This means that the point A is only allowed to be used if the trajectory also contains
point B or point C.

The last of the commonly used operators is the sequence operator. It is more complex
than the others, because of its temporal aspect. It evaluates to true, iff there exists a
partition of the trajectory such that all of its arguments evaluate to true.

sequencer, qjcctory (Far1, Para, Pars, ..., Pary) = True
iff Jtq,t0,ts,...,t, : Trajectory =t1 Dto Ptz P ... D,
s.t. t1 | Pary , ta |E Parg , t3 = Pars , ..., t, E Pary,

19
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Altitude ISA7emp Actualrenp, Temperature Arga

0m 15. °C 0°C -15. °C
5000 m  -17.5 °C 0°C +17.5 °C
10000 m -50 °C 0°C +50 °C
20000 m  -115°C 0°C +115 °C

Table 2.7: Example conversions from temperature in °C to Ajg4°C.

2.2.9 Publication

The full state of the navigation system is published via an [Aeronautical Information
Publication (AIP)| by the authority of a state. The interval at which these publications
appear is a 28-day cycle called the [Aeronautical Information Regulation And Control
(AIRAC) cycle. In between cycle dates, changes are published in the form of an amend-
ment. The AIP already contains simple restrictions. However, the majority (and also the
more complex ones) are found in the Route Availability Document (RAD) [19].

2.3 Weather

Weather plays an essential role in the execution of a flight. It could render regions
unavailable for the operation because of hazardous conditions like thunderstorms or
clouds of volcanic ash. Temperature changes the density of the air which influences the
speed the aircraft can fly as well as the altitude it can operate. Having bad weather
conditions for a route can increase the required fuel significant. On the other hand, wind
can also be used to advantage to use less fuel than in still air.

2.3.1 Temperature

The [International Standard Atmosphere (ISA)| is an atmospheric model of how the
pressure, temperature, density, and viscosity of the earth’s atmosphere change over
altitude. The intent for the model was to create a reference model to which the actual
conditions can be put into reference. Therefore the temperature at a certain altitude can
be expressed in terms of deviation to [SA|conditions. Equation 2.1/ shows the function
for calculating the temperature in deg Celsius for an altitude in meters at ISA| conditions
up to an altitude of 20 kilometers (which is sufficient for commercial aircraft operation).

15 — (altitude - 0.0065), 0 < altitude < 11km
—56.5, 11km < altitude < 25km

Trsa(altitude) := { (2.1)

Using Equation 2.1, temperature is not expressed absolute, but in terms of how much
the actual temperature deviates from the temperature at ISA| condition. Table [2.7 shows
examples for some scenarios.
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2.3.2 Wind

Since air is the medium in which the aircraft travels, the movement of the air itself has
a significant influence on the effective distance the aircraft has to travel. Assuming we
are flying from one point to another with a tailwind, this means that not only we are
moving through the air towards the target point, but the air itself is moving as well. This
means that we will be even faster at the target which means the aircraft will require
less fuel than in still air. On the other hand, if you have a strong headwind, the same

effect will result in longer travel time to the target point, which means more fuel required.

Therefore the most fuel-efficient trajectory is heavily dependent on weather conditions.

2.3.3 Forecasts

For planning a flight in the future, it is necessary to get weather forecasts on which a

calculation will be based. There are several commercial providers for weather forecasts.

However, some countries meteorologic departments like the “Deutscher Wetterdienst” of
Germany and government of Canda publish forecasts as a public service. The resolution

goes as detailed as .25° x .25° which is more detailed than necessary for our use case.

The interval in which different weather forecasts are available is 1 hours snapshots and
up to 48 hours ahead of time.

2.3.4 GRIB

For distribution of weather forecasts a special format called GRIdded Binary (GRIB)
was created by the World Meteorological Organization (WMO) [20]. Each GRIB | file
consists of multiple GRIB| messages. A (GRIB| message contains a header that gives
information about what kind of value this message contains. The values of a message
itself are single values per point on a regular grid. Information on the resolution of the
grid is also specified in the header. A typical |GRIB| could, for example, contain multiple
GRIB| messages per altitude. Furthermore, for every altitude it contains a message for
wind speed, wind direction and [ISA| deviation.

2.3.5 SIGMET

Significant Meteorological Information (SIGMET) is a meteorological information service
that publishes information about dangerous weather phenomena.

These weather phenomena include

¢ strong thunderstorms
e strong convection
o strong iceing

o strong hail

21


https://www.dwd.de/EN/ourservices/nwp_forecast_data/nwp_forecast_data.html
https://weather.gc.ca/grib/index_e.html

2.

BACKGROUND

22

e strong turbulence
¢ sand and duststorm

e volcanic eruptions or volcanic ash

Regions at which such a [SIGMET]is published best be avoided during the planning phase
of the flight.

2.4 Aircraft performance

To simulate the flight of an aircraft for a given trajectory, we need an Aircraft Performance
Model (APM). In the following section, we are going to present two commonly used
methods to get aircraft specific values. After that, we will introduce some general formulas
for calculating the time and fuel used by the aircraft to traverse between two waypoints.

2.4.1 Tabular performance estimation

The basis of aircraft performance calculation is a so-called aircraft performance database
typically provided by aircraft manufacturers. There is no standard for how they are
formatted. Each manufacturer uses a slightly different format, all of which are in plain
text format to be read by a human. An alternative way to get a performance database is
to create one from actual recorded flight data. What one has to keep in mind is that this
data is particular to the aircraft (performance degradation).

A performance database typically consists of at least three separate parts, which are
“climb”, “cruise” and “descend” [21]. Its records show a certain fuel flow for a given
altitude, temperature, speed and mass. For climb and descend, it additionally contains
information about the Rate of Climb (RoC)| and Rate of Descent (RoD). They allow
determining how steep the aircraft can climb and descend. For information on how climb
and descend performance are calculated from a performance database, we want to referer
to [22].

For cruise at a given altitude with a certain speed, temperature (T'emp) and weight
(Weight) we have to find four records in the performance database such that temperatures
Temp, < Temp < Temp, and weights W1 < Weight < Wsy. Next, to get the fuel flow
for a specific configuration bilinear interpolation between those records is necessary as
seen in Figure [2.8, The accuracy of this approach depends on the number of records as
well as the quality of the data.

2.4.2 Algorithmic performance estimation

The second approach we are going to present is to arithmetic formulas.
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Tempy, W1, FFrempy,wy

erFFTemp,Wl

Temp2, W1, FFremp,w;

Weight

I:FTemp,W

Templ:W2r FFTempl,Wz

WZI I:FTemp,Wz

Temp;, Wo, FFremp,,w,

Figure 2.8: Interpolation process of performance records

Eurocontrol worked together with aircraft manufacturers to create an APM) for scien-
tific and commercial application. What they came up with is set of polynomials that
approximate physical behavior of aircraft [23].

Eurocontrol has published a set of formulas that allow the approximate calculation of
aircraft performance. For calculating a specific aircraft’s performance, they provide a
set of different coefficients for these formulas. The weight of the aircraft influences the
most cost-efficient altitude for level flight. Also, the [RoC and [RoD|are influenced by the
weight of the aircraft. However, for the [RoD| the influence is minimal. It is necessary to
consider different speeds to find the most cost-effective way to travel between two points.

2.4.3 Further calculations

To get the amount of fuel and time required to traverse between two points we have to do
some further calculations. In the following section we are going to present one possible
way how this can be achieved.

The True Air Speed (TAS) is the speed of an aircraft relative to the mass of air that
it is traveling in. The speed of the aircraft is given as a Mach number, which is the
speed relative to the speed of sound. Furthermore, the speed of sound, only depends
on the temperature but not the pressure or density of the air. Equation 2.2/ shows the
fomula for speed of sound depending on the temperature (T), but all its other parameters
are natural constants. Using this, the true air speed can be calculated using the Mach
number and the local speed of sound (¢ by using the temperature at the specific location
and altitude) as in Equation 2.3.

“R-T
Clocal = VT (22>
T AS|= MachNumber - cipeal (2.3)

The speed of the aircraft, observed by someone on the ground is called the ground speed.
In order to calculate the ground speed, we ultimately have to take wind and its effect

23
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Figure 2.9: Effect of wind

(shown in Figure 2.9) into account. Equation 2.4 shows the resulting formlua, where R4z
is the azimuth of the segment and W,z the azimuth of the wind. This formula is only
valid as long as the speed of the wind is significantly less than the TAS, however, for this
use case, the formula can safely be used.

GS=TAS+ WS -cos(Raz —Waz) (2.4)

Now that we know the speed relative to the ground, we have to calculate the distance
that the aircraft is traveling. Since the world is not a perfectly round sphere, the World
Geodetic System 1988 (WGS84) was introduced to better approximate the shape of
the world. The shortest distance between two points on a sphere is called great-circle
distance as shown in Figure 2.10. Algorithm [2.1 shows how to approximately compute
the distance between two points on the earth using the haversine formula.

Algorithm 2.1: Distance between Points

Input: Point pq, Point po
Output: Distances in km
Ajgr < deg2rad (214t — Pliat)

1

2 AlOn < degZ2rad (p2lon - pllan)
3 a siHZ(%) + cos(deg2rad (pliy) ) - cos(deg2rad (p24) ) - sin%w)

4 ¢+ 2-atan2(y/a,/1 —a)

5 R+ 6371 // Earth radius in km
6 return 6371 - c // Distance in km

Finally, we can calculate the time (Equation 2.5) and fuel (Equation 2.6) it requires the
aircraft to travel between two points. Both of these values will contribute to the total
cost of the trajectory.
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Figure 2.10: Great circle distance between P and Q [24]

distance
trlight = — =g 2.
flight GS ( 5)
fuelburn = fuel flow - tf1gn (2.6)

2.5 Cost

For calculating a trajectory, several factors influence the cost of a flight. Many factors
contribute to the total cost of a flight. In the following section, we are going to explain
primary costs and how airlines include secondary costs into the calculation.

2.5.1 Fuel cost

The most obvious of all costs is of the fuel that is required by the aircraft to operate. It
is purchased in the country where the aircraft departs. In order to keep the fuel costs
as low as possible, airlines are interested in the route that requires the least amount of
fuel. Also, every kilogram of fuel that goes into the airplane needs to be carried, which
means that if you depart with 1 kilogram extra, does not mean that you will land with 1
kilogram more than otherwise. Therefore it is necessary to find the amount of fuel to
depart with that is as low as possible while complying to all safety regulations.

2.5.2 Overflight charges

Every county charges fees in order to allow passage over its territory, which are called
overflight charges. In general, there is no single formula for how those fees are going to
be calculated, but the following covers the majority:

o Based on total distance traveled inside an airspace
o Based on distance between entry and exit point of an airspace

 Fixed one-time fee (per flight)

25
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o Fixed fee every time the airspace is entered

2.5.3 Cost Index

As mentioned before, many secondary costs are generated by the operation of a flight.
These are ranging from a simple example like the cost of the crew on board, up to cost
for maintenance of the aircraft. The concept of cost index was introduced to allow taking
this extra cost into account. The cost index is a measure of how expensive a minute
of flight is expressed fuel (kg/min). This is not just used for calculating the cost of a
route, but also by the aircraft itself. Before the flight, the pilots enter the cost-index that
is going to be used in the Flight Management System (FMS) so that the aircraft can
calculate the optimum speed accordingly. If for a flight a cost-index of 150 is used, this
means that the for every minute during the flight, an additional amount of 150 units of
fuel is treated as an extra cost. As a simple example, a |Cost Index (CI) of 0 would add
no additional cost, so the optimal route is the one which has the shortest Equivalent Still
Air Distance (ESAD). Increasing the cost-index puts more focus on finding a faster route.
Calculation of a |CI within the scope, however, it needs to considered for calculating a
route.

Note that some of the costs conflict because the route which requires the least amount of
fuel, might not be the cheapest one regarding overflight charges or maybe takes more
time increasing the cost induced by the (CI.



CHAPTER

Problem definition

In the following chapter, we are going to define the flight planning problem we consider here
as a tuple < G, C, wf, apm, Dep 4,1, Dep Time, Deputass, Dst apt, CI > where G = (V, A) is
a directed multigraph, C a set of constraints on the graph, wf a weather forecast, apm
an aircraft performance module, Depa,; and Dst 4, departure and destination airports
respectively, Deprime the departure time, Depasqss the aircraft’s takeoff mass, and the
cost index CI. We will use the abbreviation FPP for Flight Planning Problem.

3.0.1 Navigation

The global airway network can naturally be seen as a directed multigraph G = (V, A)
where the waypoints represent the nodes V' and all the segments correspond to the arcs A.

Waypoint attributes:

coord, ... coordinate of the waypoint u € V

Segment attributes:

taily,, . . . refers to the source u of the segment (u,v)
head,, ,, . ..refers to the target v of the segment (u,v)
althfJ” ... minimum required altitude
alty'y” ... maximum allowed altitude
altﬂftbl ...a set of cruise table records in the form of a tuple (from,to, separation)

leny,y . .. length of the segment (determined by Algorithm 2.1)

mid, , . .. coordinate of the mid point
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The following must hold:

altum,f)” < alty’y” for all (u,v) € A (3.1)
k- alty® = alt]s” — alt]s? for all (u,v) € A (3.2)

midy, = distance(coord,, mid, ,) = distance(mid,,,, coord,)) for all (u,v) € A
(3.3)
Where distance is determined by Algorithm 2.1,
3.0.2 Restrictions

Set C is the set of all forbid constraints as explained in Section 2.2.8.

3.0.3 Weather

The weather prediction function wf (specified in Equation 3.4) allows to query a weather
forecast for a specific coordinate and altitude. The forecast contains a prediction of the
wind direction, wind speed, and a temperature.

wf : Coordinates x Altitudes x Time — Directions x Speeds x ISAa (3.4)

3.0.4 Aircraft performance

An aircraft performance module apm (Equation 3.5) allows simulation of aircraft perfor-
mance.

apm : Altitudesx Altitudesx Massx Distancesx Weather — Altitudesx Weight x Durations
(3.5)

By specifying

e current altitude,

target altitude,
o mass of the aircraft before the traversal,
« distance to travel,

o weather information (wind speed, direction, temperature)

the APM| returns
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o altitude reached
o fuel burned during traversal

e duration for traversal

The interface of the performance module is shown in Figure 3.1.

altitude

S

altitudetg rget
cost index

— e

mass

—_—2 >

distance
weather

Aircraft
Performance
Module

altitude

— = >

fuel-burn

— e >

duration

Figure 3.1: Aircraft performance module

For a climb or descend the distance might be to short for the aircraft to reach the
target altitude altitudeiqrger. In such cases, the module returns the altitude that was
reached within the given distance. Another case is that the aircraft cannot perform the
request, if this happens, the aircraft performance module returns an error. Reasons for
the aircraft not being able to perform a request can be the altitude, mass, altitude, and
combinations of them. Depending on the cost index, the optimal speed is chosen by the
aircraft performance module, as it would be done by the [FMS|.

— altitudetarget
gross mass-fuelburn
to-duration
a‘ititude

Altitude

3 — altitude
gross mass, to, altitude

distance

Distance

(a) Aircraft reaches the target altitude
within the given distance

Altitude

O —altitudetarget

'éross mass-fuelburn
to-duration
altitude

X — altitude
gross mass, to, altitude

distance

A\

Distance

(b) The target altitude could not be reached

Figure 3.2: Example calls of the aircraft performance module and result

3.1 Trajectory

A solution to an FPP is a trajectory ¢ in the form of Equation [3.6.
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A
TOD
TOC
[]
e
35
2
£
<
Depapt Rwy; Pt; Pt, Pt; Pt, Pts Ptg Rwy, Dstapt
Airspace, o ;
Airspace; Airspace,
Airspace;

L]
Pt

Depp: Airspace;

Figure 3.3: Generic trajectory for evaluation of example restrictions

Rwys

Dstapt

t=[{(Pr1, P), altft },{(P, P3), altft},....,{(Pu-1, Pn), altft}] (3.6)
segi target sega targets segn targetn

where P; is the departure airport and P, the destination airport.

For a trajectory to be a valid solution to the FFP it has to respect the following constraints:

Validity w.r.t. the graph:
The trajectory describes a path from the departure airport to the destination airport, i.e.
all segments (u,v) in its path:

(u,v) € A... for all ((u,v),target) € Trajectory

Cruise tables

Cruising is only allowed on altitudes which obey the separation rule (Equation 3.7),

which allows cruising on a segment (u,v) only on altitudes € alt{7.

alt? = {alt?y + k- alt;® | 3k : 0 < k Aaltyy + k- alty® < alt]'s” (3.7)

Example 3.1 In this example we define the segment from KELIP to SOPER (and the
segment in the opposite direction) including its cruise table and show on which altitudes
it will be allowed to cruise at.
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° alt%%LIP,SOPER = 140001t
e altRyT1psoppr = 660001
o alt§G¥ b soppr = {1000£t,41000£t,2000t), (45000, 0o ft, 4000 t)}
° alt@%%ER,KELIP = 140001
* alt§Sppr kprrp = 66000f1

e alt@3Bnr kprrp = {2000t,40000ft, 2000£t), (43000 t, 0o f£,4000ft)}

The effectively allowed cruising altitudes are:

alt$s1p.soper = 115000ft, 17000 £t, 19000, . .., 41000, 45000 ¢, 49000t, .. ., 65000t}

altZ3ppr cprp = {14000£t,16000t, 180001, ..., 40000 ft, 43000t, 47000t, ..., 63000t}

crz —_
’altKELIP,SOPER| =20

crz —_
alt$bprr kpLipl = 20

Example (3.1 shows the formal definition of the segment KELIP 250, SOPER (with a

track of 118°) and the segment in the opposite direction SOPER 2%, KELIP (with a

track of 298°) from Table 2.3 (with sequence number 20) using the cruise table “RR”
from Table 2.5.

Equation 3.8 enforces that a cruise can only happen on altitudes on which it is actually
allowed to cruise. The aircraft does not necessarily have to cruise on the target altitude.

crz
u,v

target € alt for all ((u,v),target) € Trajectory (3.8)

Restrictions

The set C' defined as part of the FPP, contains all ATC restrictions that the trajectory
has to respect. For a trajectory to respect ATC| restrictions no restriction must be
violated. That means that for all restricted elements elem (waypoints, segments, airspaces)
contained in the trajectory, the trajectory does not fulfill the condition ¢ of the restriction
(Equation 3.9).

elem € Trajectory = Trajectory [~ c for all (elem closed if ¢) € C (3.9)

Validity w.r.t. aircraft performance:
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Let J,, denote the state of the aircraft at waypoint P, along a trajectory.

The initial state of the aircraft is given by the problem instance.

mass  .__
Depapt ~— DepMass
time e .
5D€pApt = Deprime
altitude .__ elevation
5DepApt = DepApt

Let w(y,y) denote the weather on a segment (u,v) € A on a Trajectory given by Equation
3.10.

53”“1“[8 + target,

time 1
LI gtime) (3.10)

w(u,v) == wf(midy,y,

The previous definitions allow us to inductively define the state of the aircraft for each
point of the trajectory. By utilizing the aircraft performance module and the weather
forecast we can calculate, the aircrafts state for each following segment.

8y := 0y @ apm(§altitutde, ... altitude at the previous point
targetatitude, ...target altitude for the next point
0,55, ...aircraft mass at previous point
leny, v, ...length of traversed segment
w(u,v)) ... weather on the segment at the current time

for all ((u,v),targetqtiuge) € Trajectory

The operation & is defined in Equation |3.11 in a way that the time increases by the
duration the traversal takes, the mass gets reduced by the fuel burned by the aircraft and
the altitude is set to the altitude reached according to the aircraft performance module.

Oout := O0in, @ (altitude, weight, duration) (3.11)
defined as:
galtitude . gltitude
Tt = 01458 — weight
521?6 = 53[”8 + duration

The trajectory is valid w.r.t. aircraft performance if no performance query exceeds the
aircraft’s performance capabilities.
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3.1.1 Total Costs

The total costs (Equation 3.12) of a trajectory are made up of the fuel consumed for
traveling, as well as the operational cost per unit of time. Overflight charges are also a
typical part of the cost of a trajectory. However, for this work we do not consider them
as part of the problem.

.__ smass mass time time
totalcost := 6450 — O apiy. + (0dpis., — Odpip.,) = CI (3.12)
Cost of fuel Cost of time

3.2 Objective ans Solution

The goal is to find a trajectory which respects [ATC| restrictions and for which the total
costs are minimal. The optimal solution to our problem is a trajectory from the departure
airport to destination airport that is valid w.r.t. the graph, restrictions and aircraft
performance while minimizing the total cost.

3.3 Simplifications

In this work, we are applying the following simplifications.

3.3.1 Navigation

We are going to use a generic cruise table 3.1 which allows for cruising on all 1000
feet regardless of the direction. The generality of the problem is not affected by this
simplification.

Course from to True/Magnetic Altitude from to Vertical Separation

0°  360° T 0ft ooft 1000 ft

Table 3.1: Generic cruise table used for computation

3.3.2 Restrictions

For checking if an | ATC| restriction is active, we would have to check the actual time the
aircraft is at the restricted element. Since we are using the departure time instead, this
can lead to false results. Either we are avoiding a restriction that is not active anymore,
or we are considering a restriction not active and violating it. The result can be that
ATC| will reject the found trajcetory.

In this work, we do not consider ATC]| restrictions of the “mandatory” form. They
are constructed similar to the “forbid” restrictions, but they denote that something is
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mandatory if a condition is met. However, since restrictions of the mandatory form can
be translated into forbid restrictions, the generality of the problem is not affected.

3.4 Complexity

We are going to show the NP-hardness of the FPP by reduction from the problem of a
path avoiding forbidden pairs (FAFP). The FAFP consists of a Graph G = (V,E), two
fixed vertices s,t € V and a set F' of pairs of vertices € V. The goal is to find a path from
s to t, where at most one vertex of every forbidden pair of F is in the path, or to say
with certainty that such a path does not exist. A forbidden pair (A, B) with A,B €V
effectively allows to either use A, B but never both of them. The decision variant of this
problem was shown to be NP-complete in [25].

Theorem 1 The FPP is NP-hard.

Proof 1 Given a FAFP instance we are going to create an FPP problem as follows:
The graph G will be used without any alterations and Depaps will be s while Dst oy will
be t. The restrictions C' are constructed by creating two point crossing restrictions for
every forbidden pair as shown in Equation |3.135.

A closed if: B A\ B closed if: A forall (A,B) e F (3.13)

The validity of every restriction is equal to the departure time s.t. all restrictions are
active for the calculation. This already concludes the main part of the reduction, the rest
is only to complete the FPP instance.

For simplicity let the weather function always return zero wind, and no deviation to ISA
conditions for all altitudes. The |APM always returns fuel-burn, altitude and duration
zero, for all possible inputs. Because the altitude is always zero, the aircraft is cruising
from departure to the destination on an altitude of zero feet. The cruise table and segment
minimum and mazximum altitude are constructed s.t. cruising is allowed at zero feet.
Since the duration for traversing an arc is always zero the Cost Index can be ignored.

A solution to the initial PAFP exists iff there is a solution to the constructed FPP, hence
the FPP is NP-hard.



CHAPTER

Reference system

In this chapter, we are going to explain the functional principle of an implementation
that is used to set the baseline for comparing our approach to. It is based on Dijkstra’s
algorithm for finding the shortest path in the airway system. In this way, it will first find
the route with the least cost wihout considering constraints. Next, a repeated process is
applied to handle constraints, like the restrictions in the airway network. Although this
method provides exact solutions to the problem, its runtime is already barely sufficient for
practial use. Additionally instances get more and more complicated, while the industry
aims to further extend the influencing factors.

4.1 Dijkstra’s algorithm

Dijkstra’s algorithm, published by Edsger W. Dijkstra in 1959, is a greedy algorithm for
the single source shortest path problem in graphs with non-negative arc weights [3].

Dijkstra’s shortest path algorithm 4.1 is a greedy algorithm that always expands the
cheapest vertex of a so-called open list. Dist stores the distance from the source vertex s
to each already explored vertex. In the beginning, the only available information is the
distance to itself which is 0. To start, s will be put on to the open list, being its only
element at that time. Next, a loop will always take the vertex u from the open list for
which distance(u) is the lowest among all vertices in the open list H. Now, for all outgoing
arcs (u,v) € A of u we consider going to v via this arcs. If the cost to v via u using arc
(u,v) is cheaper than the already known path to u (i.e. dist(u) + l(u,v) < dist(v)) we
update it. If v has not been visited so far its distance will be infinite, and dist(u) 4 (u, v)
will be trivially less than that. Because the arc weights are required to be non-negative,
once a vertex is taken from the queue the lowest cost from s to it are known, and we
can be confident that there will not be shorter paths to it discovered later. Once ¢ is
taken from the open list H we, therefore, know the shortest path from s to ¢ is found.
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Algorithm 4.1: Dijkstra’s algorithm
Input: Graph G = (V, A), len(u,v) positive arc lengths (u,v) € A, vertex s € V
Output: Distances from vertex s to all other vertices
1 forveV do
‘ dist(v) < oo
end
dist(s) <0
parent(s) < s
H < makequeue(V) // generate queue ordered by dist
while H # () do
U < POPmin(H) // remove item with lowest distance
for (u,v) € A do
if dist(u) + len(u,v) < dist(v) then
dist(v) < dist(u) + l(u,v) // set new discovered distance
parent(v) < u
decreasekey(H,v) // update key v to lower value

© W N O kA WN

T e = =
W N = O

end
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end

=
w

end
return dist, parent

— e
N o

By repeatedly following the parent vertex, starting from the target vertex t, we will
eventually end up at s. This sequence is the shortest path from s to ¢ in reversed order.

pt, . pt, distance parent
, Apt; |[0]
3 Pty ®© Apt,
X , » Pt, | 4 Apt,
Ph - pr2 Pt, |® o 9 9 [9 Pt,
4 aAirport Pt © o 8 Pt P,
Pt 1 Pts e Point Apt, | © ® o o 17 16 |Pt;Pt;
(a) Sample graph for explaination (b) Result of Dijkstra’s algorithm

Figure 4.1: Application of Dijkstra’s algorithm to find a shortest path

Example 4.1 In Figure 4.1 the application of Dijkstra’s algorithm is shown to find the
shortest path from vertex Apty to Apt2 in the graph shown in|4.1d. Table|4.1 shows
the final state of the data structure used in the algorithm. Since the cost of the target
vertex Apts is less than oo this means that there was a path found. To retrieve the path
from the data structure we finally have to follow each consecutive parent starting from
the target vertex. The result is the shortest path from the starting vertex to the target
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vertex in reversed order. In this example, we will obtain Apt; — Pty — Pts — Apty with
a total cost of 16.

4.2 Application to flight planning

In order to use Dijkstra’s algorithm for flight, planning we have to define a graph. In
this case, we will be using a 3-dimensional graph G(V34, A3yq) defined by:

Altitudes := {0, 1000, 2000, . .., 40000}
Vg :={va | v € V,alt € Altitudes}
Asq = {(uaity, Vai,) | (u,v) € A, (alty,alty) € Altitudes x Altitudes}

For this algorithm, it does not matter if the vertices are in the plane or the 3-dimensional
space. Therefore we do not need to extend it to include the altitude. We can extend
the graph such that instead for every vertex v € V multiple vertices have the same
geographic location but different altitudes.

In the case of flight planning, we want to reduce the total cost of traveling from the
departure airport to the destination airport. For this thesis, this will only be the cost
of fuel required. Therefore the optimization target changes from simply arc length
(Algorithm |4.1) to the accumulated cost down a path. In Algorithm 4.2 we see a simple
modification of Dijkstra that uses an |APM]|to determine the fuel used for traversing an
arc. The required parameters needed by the APM| are the mass of the aircraft (mass)
and start altitude (encoded in u) and target altitude (encoded in v). From the APM we
expect here that if the aircraft cannot fly from u to v because of the given altitudes of
the vertices and the current gross mass of the aircraft, the required fuel for traversal it
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will return will be infinite. This way the vertex v will not be updated.

Algorithm 4.2: Flight planning algorithm based on Dijkstra

Input: Graph G = (V| A), len(u,v) positive arc lengths (u,v) € A, vertex s € V
Output: Distances from vertex s to all other vertices

1 forveV do
2 ‘ cost(v) < oo

3 end

'y

cost(s) « 0

1

time(s) < Tdeparture

[=2]

gm(s) < Miakeoff // initial mass of the aircraft

7 H <+ makequeue(V')

8 while H # () do
9 U < POPmin(H)
10 for (u,v) € A do
/+ using Weather model determine current weather on
arc */
11 weather < W F (time(u), midy )
/* using APM to determine fuel consumption */
12 perf < APM (gm(u),len(u,v))
13 cost_to_v < cost(u) + per fruer + ver fauration - C1
14 if cost_to_v < cost(v) then
15 cost(v) < cost_to_v
16 gm(v) < gm(u) — per fryer
17 time(v) < time(u) + per fauration
18 decreasekey(H,v)
19 end
20 end
21 end

22 return dist
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4.3 Extension for Restrictions

The previously explained algorithm does not consider restrictions of any form. Therefore,
we are going to present a process that allows the integration of certain constraints, like
ATC restrictions as specified in Section 2.2.8, in the problem.

Pt, o 6 Pts
3 7
2
5
Apt, Apt, Apty Apt,
4 6
Pt~ 1 Pt
(a) Graph specified by navigation data (b) Reduced graph

Figure 4.2: Respecting restrictions by changeing the graph

Consider the graph from Figure 4.2a) for the following example, where Apt; is the
departure, and Apts is the destination airport. Additionally, we are going to add the
following two constraints to the instance:

o (Cp := Pty closed if or(Departure__Airport Apti, Departure_ Airport Apts)

o (' := Pt3 closed if not(Point_crossing Pts)

First, let us have a look at the constraint Cy. The condition of Cy can be evaluated solely
based on information specified in the instance of the FPP because its only terminals are
of the type DepartureAirport which is part of the instance. Because Apt; is for a fact
the departure airport for this instance, the constraint tells us that Pty must not be in
the resulting trajectory. This can be achieved by removing Pty and all its connected
segments from the graph. In Figure 4.2b| we see the graph after we removed Pts. It is
obvious that the constraint Cy can not be violated in the generated graph. Since any
possible trajectory using Pty would have been invalid, we know that we did not remove
any valid solutions.

In the process that we present, it is best to integrate as many restrictions in the graph as
possible. Therefore, we are using a three-valued logic which allows to increase the number
of restrictions that we can already handle this way. Terminals like Point crossing,
Segment crossing and Airspace crossing are treated as “unknown”, while all the other
terminals can be evaluated to true and false.
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Example 4.2 Consider the following constraint

Pty closed if or(Departure Airport Apty, Point crossing Pt1) Because for the given in-
stance Apty is the departure airport, even though we do not know if the trajectory will
cross the point Pt1 we can perform the following assertion:

Instance = or(Departure__Airport Apty, Point_crossing Pty)

Instance = or(T'rue, Unkonwn)

Instance = True

Since it evalutes to true, we know we must not use Pto which we can ensure by adapting
the graph accordingly.

To integrate as many restrictions as possible in the graph we evaluate all restrictions
using the information given by the instance. Based on the resulting truth value we
proceed with the following actions:

e true = remove the corresponding element from the graph
o false = the constraint will not be violated and can, therefore, be ignored

o unknown = handle the constraint later

We call the result of this process the reduced graph because it is prepared in a way s.t.
the consideration of constraints reduced the search-space.

If we continue our current example, Cy’s condition evaluates to true which caused us to
close Pts. Since C7’s condition evaluates to “unknown”, the graph that we constructed
(Figure 4.2b) is already the reduced graph of the instance. We can now use Algorithm
4.2 on the reduced graph without ever violating Cjy. The result that we get for applying
the algorithm to the reduced graph is t; := Apt;, — Pty — Pts — Apts.

As already mentioned before, now that we have a complete trajectory, we have to validate
all previously unhandled constraint. If the trajectory does not violate any restrictions,
we can safely say that this is the cheapest trajectory respecting all restrictions. However,
if it violates any restriction we have to proceed.

Because t; [~ C1, t; is not a valid route for the given problem. The reason for the
violation of the constraint is that while Pt3 € t1 also Pts ¢ t1. In order to respect this
constraint we have to run further optimizations for which we ensure that this restriction is
not violated anymore. Because we want to maintain optimality of the result and there are
several ways how to avoid violating the constraint, we have to run several optimizations
for which we each add a minimal set of constraints that ensure just that.

First off, we can avoid the violation by merely avoiding the element of the restriction
altogether. Second, we have to find all possible cases that make the condition false which
we achieve by using Algorithm 4.3.

Algorithm 4.3 recursively traverses a given condition-tree. The result is a set of the form
{reopty, reopty, ... reopt,}, where reopt; might look like this {Pt;, —Airspaces}. Each
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Algorithm 4.3: Generating re-optimization constraints

Input: Condition C, negate if subtree is negated
Output: Set of reoptimizations
1 if C is terminal then

2 if negated then

3 | return {{element}} // element must be visited
4 else

5 | return {{-element}} // element must be closed
6 else if C is operator Not then

7 ‘ return rec (child, ! negate) // flip negation
8 else if (C is operator And) # negate then

/* Operation similar to cross product, but empty sets

are ignored */
9 reoptimizations < ()
10 foreach c € children do
11 sub < rec (¢, negate)
12 if reoptimizations = () or sub = () then
13 ‘ reoptimizations < reoptimizations U sub // Ignore empty
14 else
15 ‘ reoptimizations < reoptimizations X sub // Cross product
16 end
17 end
18 return reoptimizations
19 else if (C is operator Or) # negate then
/+ Append all reoptimizations x/
20 reoptimizations < ()
21 foreach c € children do
22 ‘ reoptimizations < reoptimizations U rec (c, negate)
23 end
24 return reoptimizations
25 end
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set represents an individual re-optimization and the elements indicate the way how the
restriction is avoided. A negated element requires us to close it in the graph, while an
original one requires us to find a solution that uses this element.

Example 4.3 In order to respect or(Point__crossing A, Point_crossing B) we have
to avoid both points A and B at the same time, represented as {{—A,~B}}.

Example 4.4 In order to respect and(Point__crossing A, Point__crossing B), we could
avoid both points at the same time, but since it is enough to avoid just one we need to do
so to maintain optimality. Because we do not know which one to choose, we have to run
two individual optimizations represented as {{—A},{—B}}.

Algorithm 4.3 applies the pattern from Example 4.3 and [4.4 and also uses De Morgan’s
law s.t. negations are pushed down to the terminals. The sequence operator is left out
for simplicity, but it can be treated like the and operator with the additional condition
ensuring the conservation of the order in which elements are visited.

To continue the running example, we obtain {{Pt5}} by using Algorithm 4.3 on the
condition of C7. Combining it by avoiding the element Pts we get the necessary opti-
mizations:

1. try to make Pts part of the path

2. try to avoid Pt3 altogether

For the first one {Pt5} we have to find a path containing Pt;. We can use our FPP
algorithm to find the cheapest trajectory Pts; and subsequent the cheapest path from
Pts5 to Apts.

to := Apty — Pt1 — Pts @ Pts — Apty (4.1)
to 1= Aptl — Ptl — Pt5 — Aptz

For the second case {—~Pt3} we must find a path that avoids Pt3. Therefore, we again
have to use the reduced graph and additionally remove the vertex Pt3 before performing
an optimization.

The result we obtain is

t3 1= Aptl — Ptl — Pt5 — Ath (4.3)

In our example, none of the gathered trajectories (to and t3) violate any additional
restrictions. If any of them had violated a restriction, we would have to repeat this
process and combine all the constraints generated by Algorithm 4.3| with the constraints
that have been used in the optimization leading us to this point.
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In this scenario, all consequently obtained trajectories were the same, but this must not
be the case in general. The result that we are looking for is the cheapest, valid route,
which will be the one that we are going to return. Next, we will formalize the previously
shown steps in a generalized process that finds the cheapest trajectory in the presence of
constraints.

Please note that, although the condition terminals may contain an additional altitude
range to which they apply (see Table [2.6), it was left out of this section in order to
increase readability and to keep the focus on the main points. It should be enough to say
that it is just an additional attribute of the terminal that needs to be passed along the
way and respected during optimizations.

General process

In Figure |4.3| we can see the overall schema of the process. Please note that we depicted
this recursive process in an iterative manner. We start by building a graph reflecting
the airway system. All constraints that can already be decided by the parameters of the
FPP instance, like depature and destination airport get applied, resulting in the reduced
graph. This graph is then used by Algorithm 4.2 to find the cheapest trajectory, without
considering any additional restrictions. Next, we have to evaluate the resulting trajectory
to see if it violates any of those restrictions that where undecidable beforehand. If this is
the case, we build a set of constraints which will prevent violating this restriction again,
we will call them re-optimization constraints. In the case that this trajectory was the
result of an optimization that already contained re-optimization constraints, we have to
combine them with those newly generated ones. All of the possible cases that ensure
avoiding this restriction will be queued for later optimization. If the trajectory did not
violate any restrictions, i.e. , was valid, we store it as a potential final result. As long
as there are re-optimization constraints in the queue, we take any of them and repeat
this process. Once the queue is empty, we are done. If not a single optimization resulted
in a valid route, we can conclude that this instance of the FPP has no solution. In real
life, this is a very unlikely case and probably raises the question of wrongly entered
restrictions by the ATCl. On the other hand, if there has been at least one trajectory that
was valid, we are going to return the one with the least cost as the final solution to the
FPP.

Pruning

The runtime of this method heavily depends on the number and the structure of the
ATC restrictions. Although to try to reduce the number of individual optimization runs
by taking as many restrictions into account by adapting the graph, this is not always
possible. Currently, there are more than 20.000 ATC| restrictions with bigger conditions
than we showed in our examples. Most of the restrictions require several reoptimizations,
some of which can easily be discarded. If the reoptimization constraint is contradicting
like {..., Pt;,...,—Pt;,...} we can reject this optimization because it can not result in
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Figure 4.3: Process of handling constraints in the graph

a trajectory. Similar to the previous example, we could be required to use a point that is
part of an airspace that we are required to avoid.

Another critical measure we took is to prune entire branches. Consider a trajectory that is
violating a restriction, although it is invalid we have a corresponding cost. All subsequent
optimizations that we are going to perform in order to make it valid, will only result in
trajectories at a higher cost. The reason is that we are adding an additional constraint.
Therefore, every time we obtain a valid trajectory, we can prune all optimizations that
are currently queued and have a higher bound. Furthermore, it is not necessary to queue
any re-optimizations from an invalid trajectory if we already found a solution that has a
lower cost.

In Figure |4.4] can see an example of a re-optimization process. The root node represents
the first optimization without any additional constraint {} which resulted in an invalid
trajectory with a cost of 1800. From the root node, we have two necessary re-optimizations,
to the left with {A} (A closed) and {B} (B closed) to the right. We picked the left one
first, again resulting in an invalid trajectory, with a cost of 1950, and subsequently {B}.
Finally, {A, C'} returned a valid route with a cost of 1960. This means that we can now
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{A,C}#1960 {A,D}®No result {B,E}®Pruned {B,F}®Pruned

Figure 4.4: Example re-optimization tree

prune all re-optimizations with a higher bound than 1960, which are all re-optimizations
caused by {B} (1970) in this example. Next, we still have to optimize {A, D} because
it could lead to a better result. As it turned out, we did not find a result using these
constraints, which leaves us with a total of 5 optimizations. Since we do not know what
the result of the two re-optimizations that we pruned was going to be, we can not tell
what the total number of saved re-optimizations was, but it was at least two.
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The optimal trajectory for given departure and destination airports depends on many
parameters. However, within a certain range, best trajectories do only change marginally
in dependence of parameters like the aircraft’s takeoff weight. When considering changes
in the weather, navigation data and restriction activation due to the departure time, we
expect that there is only a limited set of favorable trajectories. Based on this assumptions,
the idea is to take already known trajectories from previous optimizations and those
from past flight plans, combine and adapt them to get new ones that are the best fit
for the current situation. This way we can also profit from previous calculations and
take advantage of the fact that the airway network does not completely change from one
optimization to the next. The best case scenario is that already known trajectories, from
previous calculations, are still valid and can be reused.

5.1 Genetic algorithms

A genetic algorithm (GA) is a metaheuristic inspired by Charles Dawrin’s process of
natural selection. It was developed by John Holland in 1960 as an effort to bring nature’s
way of evolution to computational optimization [26].

As previously mentioned in Section (1.2, genetic algorithms have already been used in the
field of flight planning. In [I3] a genetic algorithm was used to optimize a flight from
TOC| to [TOD) on a single fixed altitude and without considering [ATC] restrictions. In
[12], a GA was used to find an improved solution in a 3D grid that was created around a
pre-planned trajectory, not considering ATC|restrictions. A genetic approach was chosen
because of its low computational effort, such that it can be carried out on an onboard
computer. In [27], a GA was used to solve the k-shortest path problem.

Genetic algorithms belong to the category of population-based algorithms, which means
that they operate on a set of candidate solutions, called the population. A solution of
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Figure 5.1: Canonical genetic allgorithm processes

the population is called an individual. In Figure 5.1, as well in more detail in Algorithm
5.1 we can see the general architecture and the building blocks of a genetic algorithm.
Starting with an initial population, each individual gets evaluated using a fitness function
to determine the quality of each individual. Next, a set of individuals is selected from
the previous population to move on and make up a new generation. Parent individuals
get combined to create new individuals in the crossover phase. Random changes called
mutations are made to the individuals to increase diversity. Finally, we have to decide if
we are satisfied with the result, or if we want to repeat this process. In the following
sections, we are going to explain each phase in more detail.

Algorithm 5.1: Canonical GA

1t+0

2 initialize (F)

3 evaluate (F;)

4 while not termination-condition do

5 t+—t+1

6 Qj < select (FPi_1)

7 QY < crossover (Qf)
8 Q7' <+ mutate (Q})

9 Pt — an

10 evaluate (FP;)

11 end

5.1.1 Fitness

The fitness of an individual is a measure of how well it performs. It is used to compare
individuals to find the best ones. For some problems, it is beneficial, or even necessary, to
allow invalid solutions. In such cases, a common way to handle those is to add a penalty
to solutions that are invalid. This penalty changes the fitness of an individual such that
valid ones are preferred over invalid ones.



5.1. Genetic algorithms

5.1.2 Initial population

As already mentioned before, genetic algorithms fall in the category of population-
based algorithms. All the following phases are based on the assumption that there is a
preexisting set of solutions. For the future efficiency of the algorithm, it is essential that
the initial solution already contains a high degree of diversity. One way to get a diverse
population is by using a randomized heuristic to creating initial individuals.

5.1.3 Selection

In the selection phase, a set of individuals get, as the name suggests, selected for the next
generation. The fitness of an individual should be reflected in its probability for getting
selected. There are a variety of methods for selecting individuals from a population.
In the following, we are going to show two popular selection methods. Both of these
methods return a single individual per invocation. If a total of n individuals are desired
to be selected for the next population, the methods need to be used n-times. This process
simulates the survival of the fittest individuals.

Roulette wheel selection

In the roulette wheel selection method, every individual gets a probability proportional
to its fitness. If an individuals fitness is as high, as the sum of the fitness of all other
individuals, there will be a 50% chance it will be selected. Algorithm 5.2/ shows an
implementation of this approach. First, the total fitness of all individuals needs to
be calculated. The next step is to guess a number between zero and the total fitness
randomly. This process is comparable to throwing the ball into a roulette game, where
every field represents an individual. In contrast to the popular gambling game, not all
fields have the same size, but their size is proportional to the fitness of the individual it
represents. Finally, we have to find out on which individual the ball has fallen, i.e., was
randomly selected. Performing a selection like that has an inherent problem which is
already indicated in the mentioned example. Depending on the range of the objective
function an individual with much higher fitness than the average could dominate all the
other individuals. Therefore all other solutions get lost which results in a population of
mostly inbreds of this solution. On the other hand, if the range of fitness values is small,
one might end up with a purely random selection. Therefore fitness scaling is crucial to
get the right balance between exploration and exploitation. [2§]

Tournament selection

The tournament selection is the second procedure to select an individual from a population
that we are going to show. As in Algorithm /5.3, a fixed number of individuals, the
tournament size k, are randomly picked from the population. From all of those selected

individuals, the one with the best fitness function wins the tournament, i.e. , gets selected.

The tournament size allows adjusting the pressure on the individuals. Compared to other
selection methods, the relative difference of the fitness measure does not influence the
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Algorithm 5.2: Roulette wheel selection

Input: Population p
Output: Select individual randomly based on fitness
total < 0
foreach individual € p do
total <+ total + £ (individual)
end

AW N

guessggn—doﬁ [0, total] // pick value between 0 and total

foreach individual € p do
guess < guess — f (individual)
if guess < 0 then
return individual
10 end

© o N O O

11 end

outcome. If the tournament size is reduced, individuals with lower fitness have a higher
chance to be selected then compared to a higher tournament size where the probability
that a better individual makes it into the tournament is consequently higher.

Algorithm 5.3: Tournament selection

Input: Population p, Tournament size k

Output: The best individual from k£ randomly selected ones

. d . . -
winner == p // pick random individual

2 while k£ > 1 do

random

[y

end
return winner

3 individual «——— p

4 if £ (individual) > £ (winner) then

5 ‘ winner < individual // assume higher fitness is better
6 end

7 k+—k—1

8

9

5.1.4 Crossover

In this phase, called crossover, parent individuals are selected to be combined in order to
create new individuals (also referred to as recombination). Using a so-called crossover
probability, we can control how likely it is for two individuals to be combined to generate
an individual. There are several well-established crossover procedures of which we are
going to explain three basic ones in this section. The selection of the right crossover
operation is dependent on the problem and the encoding of the individuals.
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Single point crossover

Given two individuals, a single point at each is selected at which they get split put and
be put together with a piece of the other individual. Figure |5.2a shows an example of a
single point crossover on two individuals.

Two point crossover

The two point crossover is similar to the single point crossover, but this time two points
get selected per individual and the middle part gets exchanged. In Figure 5.2b| we can
see the generation of two new individuals using two point crossover. The individual, in
this example, is an array of seven integers in the range of one to seven. Depending on
how the individual is build and what it represents, this type of crossover might result in
an invalid solution.

Crossover point Crossover points
[117]a]3]2]6]5] [1]7]2]3]2]6]5]
parents parents
12[3]6[4[1]7]5] [2]3]6]4[1]7]5]
1(7(4|4|1|7|5
T o I o,
2|13(6|3|2|7]|5
(a) Single point crossover (b) Two point crossover

Figure 5.2: Examples for single and two point crossover

Cycle crossover

If the individual is, for example, representing an ordering of some sort, then the cycle
crossover is a method that allows exchange without ever generating an invalid individual.
The previously presented methods do not preserve the set of values used in the individuals.
For example in the single point crossover, one child ended up with two fours, but without
a three. Instead of merely exchanging parts of the individual at a fixed position, we
are looking for a cycle of values across both parents. Then the individual cycles get
transferred to the child individuals either like they were found, or swapped. This way
only a set of values, gets exchanged with the same set of values from the other individual.

5.1.5 Mutation

A problem in many optimization methods is getting stuck in local optima. The mutation
operation is an attempt at escaping local optima, by applying random changes to individ-
uals. Doing so increases the diversity of the population which makes the optimization
explore more of the search space. This change can be as simple as flipping a bit, but
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714[3]26[5] )

\ parents
3/6(4 715

S

N
3/6(4 715

> children
71413 6|5

P

Figure 5.3: Example of a cycle crossover

again, this depends on the solution representation. The mutation probability defines how
likely it is for an individual to get mutated.

5.1.6 Termination criterion

The final piece of the puzzle is the termination criterion. One big problem when using
a genetic algorithm is that it is usually not known when the optimal result is found.
Therefore, we need to define a point at which we decide to stop the search for a better
solution. Common termination criteria are:

e number of iterations

e certain fitness reached

e number of iterations without improvement
e when the improvement rate declines

e amount of time spent

Also, a combination of multiple criteria can be used.

5.2 Solution representation

A solution to our problem at hand, the FPP, is a trajectory. Therefore we need to find a
suitable representation of a trajectory for use with a genetic algorithm. In order to do so,
we have to encode the path as well as the altitude profile. The path will be represented
by a sequence of consecutive arcs. This also means that the solution will not be of fixed
length, but variable depending on the number of arcs used. For the altitude profile, we
considered relative altitude changes and absolute target altitudes. When using relative
altitude changes, a combination of two individuals can lead to the situation that not the
same altitude that was climbed was also descended. This can lead to the fact that either
at the destination we are still in the air, or hit the ground before. Also, it is not directly
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noticeable if the current altitude is within the bounds of the segment, or if the aircraft
cruises on an incorrect altitude. Simply combining two individuals using single point
crossover (assuming these two individuals share a waypoint), can cause the previously
mentioned problems.

Few of these problems cannot arise when using absolute target altitudes of the segment.

It can easily be checked if the target altitude is within the bounds of a segment and also
if it aligns with the cruise altitude. For these reasons, we decided to go with absolute
target altitudes. The resulting representation is shown in Figure 5.4, where the target
altitude is represented as a blue line.

| TOD|

TOC

Altitude

——umim . . . [ —
Depapt Rwy, Pt Pt2 Pt3 Ptg Pts Ptg Rwy, Dstapt

Figure 5.4: Representation of a trajectory, target altitude in blue

One disadvantage that we identified when using absolute altitudes is that not all changes
to the individual affect the resulting trajectory. Consider Figure 5.5, with two different
sequences of target altitudes (in blue and in red) and the trajectory the aircraft performed
in grey. The problem occurs on segments where there is a climb or a descend throughout
the whole segment. Example 5.1 additionally shows the encoding using the blue target
altitudes. Since the target altitude is never reached, it can be higher (in the case of a
climb) or lower (in the case of a descend) without a change to the trajectory. Because we
do not know when a climb or descend is finished just by looking at the individual, we
cannot tell if the change affects the trajectory without the complete aircraft performance
calculation. When using the relative altitude change representation, we would have had
the same problem, even though in a slightly different form.

Example 5.1 This example shows the encoding of the blue individual shown in Figure
5.8. It consinsts of a sequence of arcs with a correspnding target altitude.

[((Pl, PQ), 7000 fOOt), N ((PG, P7), 7000 fOOt), ((P7, Pg), 0 fOOt), ((Pg, Pg), 0 fOOt)]

Another problem is that we do not know when the final descend needs to be initiated
such that the aircraft reaches the ground precisely at the runway. As we can see in Figure
5.4, the TOD| is initiated during a segment and not exactly at a waypoint. In Figure 5.6
we can see again the same solution represented as in Figure 5.4, The red trajectory is
the result of the aircraft following the target altitudes as they are defined. At the end
of the trajectory, we can see that the aircraft reached the ground after the runway. To
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Pty Pty Pt3 Ptg4 Pts Pte Pty Ptg Pto

Figure 5.5: Representation of a trajectory, target altitude in blue

solve this problem, once the aircraft calculation is done as defined before, we are going
to perform an aircraft performance calculation in reverse, starting from the destination
(in blue). This reverse calculation is done until we cross the forward calculation, and
the two trajectories get merged. The final trajectory, matching the one shown in 5.4, is
shown in green.

| TOD,

Altitude

—

DepApt Rwy, Pty Pt Pt3 Ptg Pts Ptg Rwy, Dstapt

Figure 5.6: Finding the [TOD and performing the final descent

5.3 Objective function

The objective is to find the cheapest trajectory, as specified in Section 3.1.1, while
conforming to [ATC restrictions. Therefore it is natural to use the total cost of the
trajectory (consisting of primary and secondary cost) as the objective value that we want
to minimize. Because our solution representation allows to model solutions that are not
valid w.r.t. ATC restrictions, we need to add a penalty to such solutions.

The penalty that we propose is based on how deep vertically a trajectory is “in” a
restriction. A restriction usually can be avoided by going above or below it. In the case
where we cannot avoid violating a restriction without changing the path lateral, we set
the penalty to infinity. Based on the condition, there could be a less costly way out
than avoiding the restricted element itself. Therefore we consider all possible changes we
can make, in order to avoid the violation and take the smallest necessary change. If a
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trajectory violates various restrictions, we sum the necessary change for each restriction.
It can be the case that multiple restrictions are avoided by the same change. However, to
keep it simple, we only consider each violated restriction individually. This simplification
might result in a trajectory being over-penalized. Since the objective function is called
many times, it is essential that it can be calculated efficiently. The final result of this
procedure is a value in feet, which we add 1:1 as a penalty in kg to the total cost of the
trajectory. Example 5.2/ and [5.3| show how the penalty is calculated for the violation of a
simple restriction.

Example 5.2 In Figure 5.7 we see a trajectory that crosses a restriction on the segment
(Pty, Pt3). The restriction is from 18000 foot to 30000 foot. We are crossing the
restriction at an altitude of 29000 foot, which is 1000 foot too low respectively 9000 foot
too high to avoid it. The small deviation is 1000 foot, not considering if this is even
possible to avoid. Therefore the penalty we add to this trajectory is 1000 kg.

Example 5.3 Let us reuse the previous ezample (Example|5.2) and additionally assume
that, Pts is closed completely (from the ground to unlimited) if Pty was crossed. This
means that just changing the altitude is not sufficient to ever make the trajectory valid.
Therefore the penalty for this trajectory is infinite.

Altitude

Depapt Rwy, Pty Pt Pt3 Ptg Pts Ptg Rwy, Dstapt

Figure 5.7: A trajectory crossing a restriction

In Equation |5.1 we formulate the deepness of a restriction that is violated. Let Reopti-
mizations of v be the set of possible ways to avoid violating a restriction generated by
Algorithm 4.3| for the condition of the restriction v including avoiding of the element itself.
Each of those ways to avoid that the restriction is violated consists of a set of constraints,
for which dogeﬁz{ftmy indicates the necessary altitude change (by going higher) to avoid
the violation. The same is possible by going lower (denoted by dogeé@?gftory) than the
actual altitude, whatever is smaller is taken. All of those altitude changes get accumulated
to get the total change in altitude for avoiding the restriction in this particular way. Since
there are several ways how a restriction can be avoided, we take again the minimum of

those.

doge'" %€ty (constr)
deepness, = min E min 4RO tory 7 (5.1)
Avoide - doge, ;7 ° (constr)
Reoptimizations(v) Ai;oggilarnece
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The final objective function is shown in Equation 5.2l

objective 1= total cost + deepness 5.2
J Z ' D v (5.2)
From Equation 3.12] v€V'iolations

5.4 Initial population

The initial population consists of solutions built from preferred routes provided by
Eurocontrol for each city pair. Additionally, routes from all kind of sources can be
integrated, like results from previous optimizations. Most airports are connected by
multiple flights a day, by different operators. For all of these flights, a flight plan needs
to be filed to |[ATCL Therefore there many past flight plans available. The strategies that
we are going to explain for mutating a given solution can easily be changed to generate
solutions. This approach can be used to generate an initial population for city pairs where
no data is available. Because the available routes we have are less than the population
size we choose, we use all available solutions for the initial population. If there are more
initial solutions available, it would be best to start with a diverse set, rather than all
similar solutions.

5.5 Selection

We choose the tournament selection method to pick individuals from the population.
The decision was based on the fact that for roulette wheel selection, without a fitness
scaling function, the relative objective is playing a much higher role. Furthermore, it
is expected that the penalty that we add because of restriction violations has a higher
influence then compared to the tournament selection. To counteract that, we have to
find a suitable scaling, while the tournament selection can be used as is.

Because of the random element in the selection process, it is not certain that the fittest
individual will always move to the next generation. This means that the best solution
might get “lost” during the selection phase. As a result, the best solution found, is not
necessarily the fittest individual of the last generation. Moreover, this has an impact on
the whole optimization process. An extension to the GA called elitism always allows the
best individual to move on to the next generation as it is.

5.6 Crossover operation

An inherent problem of our solution representation is that a meaningful combination of
two individuals is difficult. If two trajectories cross perfectly, lateraly and verticaly, one
or multiple times, it is easy to perform a single or double point crossover. However, given
the size of the graph, this case is somewhat rare. A solution would be to add segments to
the graph when necessary, keeping in mind that an individual using such a segment is not
valid w.r.t. the graph and therefore not a valid solution to the FPP. The added segments
for the crossover operation would require some penalty in the objective function, such
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Figure 5.8: Two routes, no crossover possible

that individuals without them are superior. Finding a good value is difficult because
these artificial segments would not have any restrictions, while regular ones do. So if all
regular arcs have restrictions, it could still be cheaper to use the artificial ones. Because
of this, we choose to use an approach where we are combining solutions that share at least
one waypoint (i.e. cross lateraly) and perform single point crossover. If two individuals
do not cross, they are incompatible for crossover (shown in Figure 5.8).

Figure 5.9 shows an example of two compatible lateral routes which can be used to
generate two new solutions. D is a common waypoint of both routes, so it is possible to
take the path from dep to D from one route and combine it with the path D to dst from
the other route. Same can be done with the other halfs of the routes to generate a total
of two new individuals. This might lead to loops in the path of a generated individual
which need to be detected and removed.

(a) Before crossover (b) After Crossover

Figure 5.9: Two individuals before and after crossover.

Figure [5.10 shows two trajectories from the vertical perspective, centered around a
common waypoint crosspoint. Even though they start and end at the same waypoint,
they do not line up, because the two trajectories have different ground distances. This
visualization is chosen to show how the crossover is performed vertically.

A problem in the trajectory that might arise due to the crossover is shown in Figure
5.11. The yellow and green lines show the target altitude of two trajectories (Figure
5.11a) before the crossover operation is performed at the waypoint crossover. While the
trajectory generated by the green target altitude lines is perfectly fine, the other one
is not (Figure 5.11b). The trajectory generated by the yellow altitude lines performed

o7
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1 Crosspoint Pty 2 Depapt 1,1 Crosspoint Pt] 2

WITNWTTN

Depapt Pty Crosspoint Depapt Pty Crosspoint

) Before crossover ) After Crossover

Figure 5.10: Two individuals, in the vertical perspective, before and after crossover.

a descend, followed by a climb without a cruise in between. This same problem can
also arise oppositely, i.e., a climb directly followed by a descent. A trajectory containing
such a spike will not be accepted by any pilot or ATCL Just by looking at the individual,
without using the aircraft performance model, we cannot tell the if target altitude is
reached in the given distance before it changes again. We solved this problem with
an addition to the objective function. All individual waypoints, for which the current
altitude is not an allowed cruising altitude, are inspected and checked if such a case is
present (i.e., the altitude before and after are both higher (or lower)). For every point
that matches this description, we add a small penalty of 100 kg to the objective function,

and we mark the solution as invalid.

Pty Pt, Pty Pt,

(a) Before crossover (b) After Crossover

Figure 5.11: Problem of climb after descend because of crossover.

5.7 Mutation operation

Our solution representation consists of a sequence of arcs with a corresponding target
altitude. Therefore we can change the path, as well as the target altitude. Next we
are going to explain changes to the path and later in this section we are going to show
mutation on the target altitude.

The change we are going to apply is to divert from the original path at a certain point
and join it again at a later waypoint. Changing the patch is only possible starting at
waypoints of the path that have at least two outgoing arcs. For most arcs (u,v) there also
exists a counterpart (v,u) in the graph. Since we do not want to go back to a waypoint
that we already visited, we cannot count these arcs for the decision. Based on these
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criteria we are going to randomly pick one of these waypoints as the starting point for
the mutation. Algorithm [5.5/ shows this process in more detail.

Algorithm 5.4: Find starting point for mutation
Input: Graph G = (V, A), Path P
Output: Mutated individual
1 choices < ()
2 visited < ()
3 for (u,v) € P do
4 visited < visited U {u}
5 for (u,a) € A do
6
7
8
9

if a &€ visited and a # v then
‘ choices < choices U {u}
end

end

10 end

. Random .
11 point «——— choices
12 return point

The next step is to randomly choose a different outgoing arc of the waypoint. As already
said, we do not want to go back to an already visited waypoint, neither do we want to use
the same arc as before. Again, we are using a random variable to decide which arc we are
going to use. However, this time we do not want the probability to be uniform but take
information about the arc into account. Choosing an arc that directly points towards
the destination seems like a good decision while going in the opposite direction, towards
the departure, will hardly result in an improved solution. Therefore we will define the

most direct way possible for visiting a point in Equation 5.3 and call it diversion,.

Let the diversion on arc be the distance from the departure airport to its tail, its length,

plus the distance from its head to the destination airport like shown in Equation 5.4.

The maximum diversion that we consider is an additional detour of 15% of the direct
distance diversion,n.

The probability to select an arc will be based on the diversion that is created by using it.

Between a diversion of diversion,, and diversion,,., we linearly interpolate from 0 to
1 respectively. All arcs with a diversion bigger than diversion,,,, get a probability of
zero to be selected. Preliminary experiments showed that a value of 15% was a good
compromise between pushing into the correct direction while still allowing changes off
the great circle line.
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diversiony, = distance(Depapt, u) + distance(u, Dest gp;) (5.3)
diversion := distance(Depap, u) + len, .y + distance(v, Dest op)

diversionma, := diversiong,, - 1.015

Algorithm 5.5: Pick random out arc

Input: Graph G = (V, A), Path P, (u,v) arc to replace

Output: Random outgoing arc

exclude <+ points up to u

choices < ()

diversionm, < distance (Depap, w) + distance (u, Dstapy)

diversionmas < diversiongi, - 1.015

for (u,v') € A do

visited < visited U {u}

if v & excluded and v' # v then
diversion <— distance (Depapt, u) +len, ,+ distance (v, Dst pt)
/+ Calculate probability for choosing this arc */

9 prop < linear (diversionmn, diversionm.:, diversion)
10 choices < choices U (prop, (u,v'))
11 end

00 N O U A W N

12 end
/* Randomly select arc from set of tuples, where the first

element defines the probability to be picked x/

weighted .
13 arc +——— choices
Random

14 return arc

When performing the mutation, we want to append a random outgoing arc to our
trajectory repeatedly. How many steps of random appends we are going to perform
will be a parameter to the mutation operation. Once these random steps are added,
we need to join this partial trajectory with the original one. Therefore we are going to
add random arcs to the end of the solution towards the closest waypoint of the original
solution. This process will be performed repeatedly until the old trajectory is joined. It
might as well join the old trajectory, not before the destination airport, which means
that we created a new path starting from the mutation point. It is possible that this
process does not successfully finish because we navigated into a dead end and we do not
reach the original trajectory. If we cannot join the original trajectory, we repeat this
process for several tries until we stop without having this individual mutated.

The process of mutation was, up to this point, only considering changing the path, but
the altitude was neglected. Because we also need a target altitude for every segment that
we are going to pick the allowed cruising altitude of the segment closest to the target
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altitude of the previous segment. This way the aircraft will cruise as steady as possible
between the mutation point until it joins the original trajectory.

The entire process of mutation is shown in Algorithm [5.6. We are using the previously
defined algorithms for finding a point where the mutation will start. Step by step we
choose a random arc while respecting the defined constraints. In this process, we want to
avoid using arcs that are definitely closed by restrictions of the FPP instance. Therefore
we are already operating on the reduced graph where certain restrictions are already
applied. Example 5.4 shows the mutation of an individual shown in Figure 5.12.

Algorithm 5.6: Mutation process
Input: Graph G = (V, A), Individual T, Steps s
Output: Mutated individual
mp < mutation_point (G,T) // randomly pick suitable point
po < sub (T,mp) // Subpath up to mp
11
while 7 < s do
P; < pi—1 random_arc (p;—1)
1+—1+1
end
mutated <— join (ps, T)
return pg

© 0 N o ok~ W N =

Example 5.4 Consider Figure|5.12 for the following example of a mutation precedure.
Let Pty bet the node that was choosen to be the mutation point. The possible outgoing
connections of Pty are to Ptoy and Ptoo, Pts is excluded because it is part of the original
individual. The orange dashed line shows the direct connection from the departure airport
Dep apt to the destination airport Dst ope via the mutation point Pty. This distance is the
diversion value for the probability calculation for each arc, diversion,q, will be 115% of
that. The individual value for the probability calculation of each arc will be the distance
in green up to Pty plus the distance of the arc at hand, plus the distance from the head
of the arc to the destination. The distance for choosing the arc (Pa, Po1) is marked in
green and the distance for the arc (Pa, Py2) in yellow.

Compared to the lateral mutation, the changes to the target altitude are relatively simple.
Since the initial climb and final descend are always formed as steep as possible we are not
going to make any changes during these phases. However, in between the TOC|and TOD,
we are going to apply random changes to the target altitude. Additionally, improving
the vertical profile will be backed by a local search explained in the next section.

When implementing the described approach, because this is a very practically oriented
problem setting, there are many small details and problems that we encountered but have
been left out when writing. To go into every detail would exceed the scope of this work.
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Figure 5.12: Example mutation process at a waypoint P». The diversion,;, is indicated
with an orange dashed line. The diversion distances for the segment (Ps, Py1) and
(Pa, Py2) are drawn in green and yellow respectively.

Instead, the focus was to capture the essential components and the general functionality
that is behind this approach.

5.8 Local search

To improve the vertical profile, we are performing a simple hill-climbing search based on
a local search probability. In Algorithm 5.7 we can see a local search, first improvement
algorithm. This means that the algorithm tries to iteratively improve the current solution
by applying a single change, moving towards a local optimum. For all the segments of a
solution, we try to increase and decrease the target altitude to the next allowed cruising
altitude. A single change at a time is applied, looking for the best possible change. The
algorithms can be either implemented with best improvement or a first improvement
strategy.

In the former one, all possible changes are evaluated to find the change with the single
most improvement to the solution. The latter one stops its search as soon as a move was
found that improves the current solution. If an improving move was found, it will be
applied, and the process repeats. Once no improving move was found, the algorithm
terminates. Additionally, we first try to improve the altitudes starting at the destination
because, apart from restrictions, we expect there to be more improvements and want to
reduce the computational efforts.
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Algorithm 5.7: Local search

Input: Solution S

Output: Improved trajectory

moves < [lower (), higher () |

/+ takes a solution and a segment and increases/decreses
the cruising altitude to the next altitude according to
its cruise table */

=

2 for move € moves do

3 for (u,v) € reverse (S) do

4 if fitness (move (S,(uw,v))) < fitness(S) then

5 S + move (S, (u,v))

6 return local_search (9) // Recursively try again
7 end

8 end

9 end

10 return S
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CHAPTER

Computational results

In this chapter, we first provide information on the data that was used. Next, we present
the computational results comparing the reference method from Chapter 4] with the
proposed approach from Chapter 5.

6.1 Datasets

All the datasets for navigation data, restrictions, weather, aircraft performance, as well
as the [APM | itself where provided by an industrial partner.

6.1.1 Navigation database

The navigation database consists of 112.023 en route waypoints as part of the global
network which are connected by 1.674.990 segments. A total of 599.056 terminal procedure
nodes are used by terminal procedures to connect the airports to the global network. At
the time the tests were carried out, 20.372 restrictions were active.

Search-space reduction

To reduce the search-space, we are limiting the feasible region for each flight. Only
waypoints for which Equation 6.1/ holds is included for the search. This reduction is going
to inrease the performance of the reference implementation while for the GA approach
we do not expect a big impact.

dist(Depapt,v) + dist(v, Dst apt) < dist(Depapt, Dstapt) - 1.2 forallv eV (6.1)

Additionally, the outgoing arcs of each node in the Dijkstra main iteration have been
limited to include only segments where the turn angle is less than 170° (ultimately
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excluding 20°). In practice such a close angle would not be flown, this again limits the
number of considered arcs.

6.1.2 Aircraft performance module

Although this approach is aircraft independent, we choose to use the Airbus A-320 for
all our test. The database used for this aircraft contained 1.2034 records for climb,
26.1964 records for cruise and 13.648 descend records. This is a very common aircraft
and therefore a good representative of a real-world scenario.

6.1.3 Weather

A single weather set consists of (GRIB|files with a total size of approximately 850MB. The
resolution is 1°, for 16 different altitude levels. For every three hours is a new weather
set available. This input data is pre-processed using linear interpolation to get weather
information on every 1000 feet of altitude in 1-hour increments. The final weather data
used in the optimization uses around 1GB of memory.

The weather module retrieves the closest available data point for any requested location,
altitude, time tuple. Because of the already high resolution, computationally expensive
interpolation can be saved while having very accurate results.

SIGMETS are integrated in the form of restricted areas. This allows to avoid areas with
dangerous weather phenomena without any additionl effort.

6.1.4 GA Computation Improvements

To increase computation speed, a cache for calculating the penalty of a trajectory caused
by restrictions was used. This cache contained the path of every lateral route that was
certainly not valid, independent from the vertical profile. Before calculating the penalty
of a trajectory it is always first checked if it is a known invalid path.

6.2 Test Environment

Both, the approach based on Dijkstras algorithm as well as our genetic approach are
implented in C++14 and compiled with Clang 5.0.1-4 using full compiler optimization.
Our computations were performed on machines with an Intel® Core™ji7-7700 processor
with 3.60GHz and 32GB of RAM running Ubuntu 18.04.1 LTS.

6.3 Instances

In Table [6.1| we can see a list of the busiest airports in Europe from the year 2016. The
last column shows the ICAOI code for identification in the test-cases. For our tests we
picked connections from this list, each city used in a test-instance is written in bold, for
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# Country Airport City ICAO
1  United Kingdom Heathrow London EGLL
2 France Charles de Gaulle Paris LFPG
3  Netherlands Amsterdam Schiphol Amsterdam EHAM
4  Germany Frankfurt Frankfurt EDDF
5 Turkey Istanbul Atatiirk Istanbul LTBA
6 Spain Adolfo Suarez Madrid—Barajas Madrid LEMD
7  Spain Barcelona El Prat Barcelona LEBL
8  United Kingdom London-Gatwick London EGKK
9  Germany Munich Munich EDDM
10 TItaly Leonardo da Vinci-Fiumicino = Rome LIRF
11 Russia Sheremetyevo International Moscow UUEE
12 France Paris-Orly Paris LFPO
13 Turkey Sabiha Gokgen Istanbul LTFJ
14  Denmark Copenhagen Copenhagen EKCH
15 Russia Domodedovo International Moscow UuDD
16 Ireland Dublin Dublin EIDW
17 Switzerland Zirich Zirich LSZH
18 Spain Palma de Mallorca Palma de Mallorca LEPA
19 Norway Oslo Gardermoen Oslo ENGM
20 United Kingdom Manchester Manchester EGCC
21  Sweden Stockholm-Arlanda Stockholm ESSA
22 United Kingdom London Stansted London EGSS
23 Germany Diisseldorf Diisseldorf EDDL
24 Austria Vienna International Vienna LOWW
25 Portugal Lisbon Portela Lisbon LPPT

Table 6.1: Busiest airports in Europe 2016, source Wikipedia

easier reference. However, we did not include two airports from the same country, instead
tried to spread out the instances.

In Table 6.2 we can see the result of a single run of an optimization from EDDF to ENGM.

The first three columns show the trip cost and objective value (which are omitted for
the valid routes because they are equal) of the best valid and invalid individual. The
initial population consists of 23 individuals, which is the number of pre-existing routes
that were available for this city pair. The column “population size” is the absolute
number of individuals that we started with. Also contained in the initial population is
the result (including intermediate invalid results) of a previously run optimization using
the exact algorithm without any wind. Integrating this pre-calculated route improved
the convergence rate significantly.

The termination criterion was configured to be five successive iterations without any
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improvement. This limit seems low, but preliminary tests showed that no improvement
was made by increasing the limit, as long as the results of a “no wind” run were included
in the initial population. A population size of 75 was used, while the best invalid and
invalid individual always were carried to the subsequent population (which explains the
population size of 76 and 77). Increasing the population size has a big impact on the
computation time, largely because of the time-consuming evaluation of restrictions.

Table 6.3/ shows the results of all performed tests on the 20" of January 2019. For
every city pair we tested, we performed 50 runs of the heuristic approach. For the
optimizations using the exact approach, we added a maximum re-optimization limit of 50,
after which the best valid solution (if one found) was returned without having all queued
re-optimizations handled. All tests used the aircraft A320-232 with 75 tons takeoff mass.
A population size of 75 individuals was used. The termination criterion was configured
to stop after 5 consecutive iterations without an improvement. The initial population
consisted of preferred routes as well as the final and intermediate results of a previously
performed optimization using the exact method under no-wind conditions.
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Valid Invalid population size Paths
trip cost objective trip cost popsize valid discovered valid infeasible Time
0 00 5481.93 23 0 0 16 3 1.164421s
1 00 5867.96 76 0 33 35 22 3.578540s
2 00 5867.96 76 0 53 55 42 5.683697s
3 00 5867.96 76 0 62 64 50 7.444512s
4 00 5867.96 76 0 71 73 59 9.545499s
5 00 5840.1 76 0 83 85 70 11.900863s
6 00 5840.1 76 0 93 95 80 14.624752s
7 00 5840.1 76 0 98 100 85 17.475951s
8 6271.74 6271.74  6271.74 76 2 108 110 93 20.136539s
9 6271.74 6271.74  6271.74 77 9 120 122 104 23.960210s
10 6271.74 6271.74  6271.74 77 36 128 130 109 30.368625s
11 6271.74  6271.74  6271.74 77 48 140 142 116 33.892488s
12 5976.38  5976.38  5976.38 77 54 152 154 125 40.351502s
13 5976.38 5976.38  5976.38 77 56 160 162 131 47.881471s
14 5976.38  5976.38  5976.38 77 48 169 171 138 52.444768s
15 5976.38  5976.38  5976.38 77 50 176 178 143 62.347211s
16 5976.38  5976.38  5976.38 77 57 185 187 149 66.527564s
17 5976.38  5976.38  5976.38 77 52 193 195 157 72.132413s

Table 6.2: Result of an optimization from EDDF to ENGM
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Reference system

Proposed heuristic approach

Cost Time Re-opt. Cost Time
Dep  Dst Avg Median Min Max Avg  Median Min Max
LEPA EDDL 7157.10 360 39 7171.39 7171.53 7170.28 7171.92 147.08 139 75 244
LOWW EGLL 6051.13 349 50 6176.91 617548 6175.48 6187.01 76.68 76.5 36 117
EGCC LOWW 6763.97 49 3 6755.26 6755.18 6755.18 6757.07 118.86 115 71 191
EDDF LOWW 3684.56 60 8 3675.64 3675.64 3675.64 3675.64 40.26 39 28 59
LOWW ESSA 6152.76 20 1 6141.00 6141.29 6139.97 6141.58 11.14 11 10 13
LOWW LFPG 5154.90 77 2 5285.36  5285.51 5285.06 5285.51 68.62 67 54 102
ENGM EDDF 5470.09 15 4 5312.66 5311.29 5311.29 5336.43 73.32 715 47 131
LOWW EDDL 4479.23 362 50 4318.07 4318.07 4318.07 4318.07 74.72 71 57 115
EGLL ESSA 6814.38 81 8 6795.98 6795.98 6795.98 6795.98 19.48 19 16 27
EGLL LOWW 6064.52 75 7 6055.33 6055.33 6055.33 6055.33 47.78 47 42 63
LOWW ENGM 6738.23 28 1
EDDL LEPA 6764.54 347 50 6723.46 6722.78 6722.76 6725.98 108.2 103 62 173
EDDF ENGM 5705.94 105 10 5991.58 5972.26 5882.40 6273.00 61.78 61 30 98
ESSA EIDW 7541.32 14 1 7590.05 7594.01 7554.66 7660.06 154 15 12 22
EKCH LIRF 6934.85 428 50 6825.19 6824.31 6816.04 6846.57 133.74 130.5 89 223
EGLL ENGM 5971.36 19 1 5973.52 5973.52 5973.52 5973.52 18.38 18 15 23
EKCH EDDM 4305.50 39 2
ESSA EGLL 6886.23 51 3 6886.20 6886.20 6886.20 6886.20 19.02 18.5 15 26
ESSA EGCC 7276.72 370 47 7333.32 7333.44 7330.09 7333.44 38.26 37.5 31 63
EGCC EKCH 5184.33 143 16 5185.67 5185.99 5185.01 5185.99 15.98 16 12 22

Table 6.3: Results from 20 january 2019
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6.3. Instances

Figure 6.1] shows the cost difference of the result of the exact algorithm as well as the
average and median costs of our result.

[ |
QQQ Q$ | = Heuristic Median
G\)\) - == Heuristic Avg : : : 7 | |
- Exact | i

Q) I I I I I I I I I
A 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500 8,000

Cost in kilogram

Figure 6.1: Cost comparison
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Figure 6.2: Relative cost differences

To illustrate the difference, Figure [6.2 shows the percentual difference of the exact method
vs. the median of our approach. It can clearly be seen that the maximum difference is
less than 0.05 percent. We compared the resulting trajectories that turned out the be
exactly the same and we blame this small offset on the different implementations.

Figure 6.3 visualizes the different time spent for both approaches. While returning the
same results as the exact method, our approach reached much higher performance in
essentially all cases. Also worth noting is that for the reference approach An interesting
observation of the reference system can be made when looking at instances for which
both directions have been calculated. Although there is are city pairs for which the
computation time for both directions is similar, like ESSA to EGLL, 50 vs. 80 seconds
and EDDL to LEPA with more than 340 vs. 360 seconds there we also have EDDF to
ENGM with 105 vs. less than 20 seconds and finally EGLL to LOWW with 80 vs. 350
seconds. This significant difference in computation time is inflicted by restrictions causing
re-optimizations, confirming that the reference approach has difficulties coping with the
restrictions created by [ATCL On the other hand, an impact to such an extent is not
observable to our approach.
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€9

seouR)SU[



6. COMPUTATIONAL RESULTS

10x

8%

6%

Speedup

4x

City pairs

Figure 6.4: Speedup by our heuristic approach

Figure shows the speedup in computation time reached by our heuristic (average of
50 runs) compared to the reference method.
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CHAPTER

Conclusion

In this final concluding chapter we sumarize the contributions of this work and point
thowars possible directions for future work.

7.1 Concluding remarks

We successfully applied a new heuristic approach to the FPP. Although there are two
instances for which the exact method outperformed our approach by half, the average
and maximum time spent on optimization are significantly lower with our approach. As
the computational experiments showed, besides the two instances in which our approach
did not manage to find a valid solution, our method managed to return the same result
as found by the exact approach. Reasons for that might be the comparably low number
of initial solutions we started the algorithm, which might be overcome by randomly
generated initial population.

Because in our approach it is possible to integrate the result of a previous computation,
we do not need to perform a complete optimization from the beginning, but instead, have
a hot-start continuing using the previous results. This hot-start also makes it possible to
consider several iterations with different take-off masses very quickly to figure out how
much fuel needs to be tanked. Furthermore, our approach allows for an easier adaption to
external changes like updated weather information, better estimate about the aircraft’s
payload.

7.2 Summary of thesis contributions

Among other things the main contributions of this work are:

o In this work, we specified the FPP as it is encountered in practice when planning a
trajectory.
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o A reference implementation, based on a exact method, like it is used in many
solutions in the industry, has been explained and implemented.

¢ Next, a new heuristic method has been proposed for solving the problem. Different
variations for solution representation have been discussed.

e A method was shown that allows precluding if for a given lateral path there exists
a vertical profile that does not violate any restrictions

« Both versions have been evaluated in real-world scenarios and results were collected.
The results were analyzed comparing the two presented approaches.

7.3 Future Work

Many interesting tests and evaluations have been left unanswered because of the lack
of time. The question that is most likely to be asked is how well does the algorithm
adapt to changes in the network structure, restrictions, and SIGMETs. The algorithm
has primarily taken Eurocontrols preferred routes as a strating point, however it would
be interesting to see the performance using an initial population made out of solutions
generated by procedure similar to our mutation process.

One of the initial goals set for this work was to find a solving method that allows being
extended to extend the problem further. The reason for this goal was that there is already
a need to further extend the scope of the optimization process by including additional
variables. The following list is only an abstract of interesting directions to go from here.

o As already mentioned, there was one cost component left out in this work which is
cost induced by overflight charges. These can be implemented by just adding the
necessary formulas and adding the resulting cost to the total cost of the trajectory.

¢ Instead of using only one weather model for the optimization it is possible to consider
multiple different weather predictions. These so-called weather ensembles are a set
of different weather forecasts, based on different initial parameters. Depending on
the desired outcome, one could evaluate a single trajectory for all weather forecasts
in the ensemble and generate a combined objective value.

o Extended Range Twin Operations (ETOPS) is a relaxation of the safety measures
which allows carrying less additional fuel for unforeseen emergencies than usual
as long as some other safety regulations are respected. One of those regulations is
that a maximum duration in which an alternate airport can be reached, in case of
an engine failure, must not be exceeded at any point along the trajectory. This
can be integrated as a penalty to the objective function in trajectories where this
condition was not respected.



7.3. Future Work

o To further improve the performance of this approach, it can naturally make use of
multithreading. An implementation for a distributed environment is also possible
with our method.
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