
DIPLOMARBE IT

Sequence Reconstruction

in Nanopore Sequencing

Ausgeführt am Institut für

Analysis und Scienti�c Computing

der Technischen Universität Wien

unter der Anleitung von

Prof. Dr. Clemens Heitzinger

durch

Clemens Etl

Grohgasse 5-7/1/7, 1050 Wien

Wien, 14.02.2019
Unterschrift Verfasser Unterschrift Betreuer

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Acknowledgements

First of all, I would like to thank my supervisor Prof. Clemens Heitzinger
for giving me the opportunity to be a part of this fascinating project and for
supporting me with his advice.

Furthermore, I express my gratitude to my colleagues, on whom I could
always rely on and with whom I could cooperate well. They were very help-
ful and motivating.

Also I want to thank my friends for giving me the backing I needed dur-
ing my whole study time.

Finally, I want to thank my family, especially my parents Hubert and Maria,
for their trust, their support and their patience.

1

Danksagung

Zuerst möchte ich mich bei meinem Betreuer Prof. Clemens Heitzinger be-
danken, der mir die Möglichkeit gab, an diesem faszinierenden Projekt mit-
zuwirken und mich stets mit seinen Ratschlägen unterstützte.

Des Weiteren bedanke ich mich bei meinen Studienkollegen, die sehr hilfsbe-
reit waren, auf die ich mich immer verlassen konnte und mit denen ich gut
zusammenarbeiten konnte.

Ein groÿer Dank gilt auch meinen Freunden, die mir den nötigen Rückhalt
während meiner Studienzeit gaben.

Zu guter letzt möchte ich mich herzlich bei meiner Familie bedanken, speziell
bei meinen Eltern Maria and Hubert, für ihr Vertrauen, ihre Unterstützung
und ihre Geduld.

2

Abstract

This master thesis is about nanopore sequencing. In this method, a single-
stranded DNA oligomer is pulled through a tiny pore. Electric current �ows
through the pore and is modulated to di�erent degrees by the di�erent bases
contained therein. By measuring the current one can draw conclusions on
the DNA sequence. This process is called basecalling.

The goal of this thesis is to develop, implement and evaluate algorithms
for basecalling. Currently this value is about 80% for a single read. By
sequencing the same section multiple times an accuracy of over 99% can
be reached. In order to develop a basecaller bidirectional recurrent neural
networks are used in this thesis. In addition to their implementation, the
optimal hyperparameters, e.g. the size and number of layers, the optimizer,
the loss function, etc. are determined.

To train the RNN a training dataset must be created �rst. For each read,
the corresponding section in the reference sequence must be determined in
order to assign the actual bases to the read. Since the bases translate the
pore at di�erent speeds, it is necessary to �rst determine from the raw data
when a base reaches the pore. Therefore a break point detection is applied.
This method detects when the current changes signi�cantly. The method
used for this work is a window-based break point detection algorithm, which
is characterized by its high speed.

The evaluations of the test data obtained have shown that the precision
of the developed basecaller does not exceed the precision of the basecaller
Metrichor, supplied by Oxford Nanopore. An improvement could be achieved
by using a di�erent break point detection algorithm.

3

Zusammenfassung

In dieser Diplomarbeit geht es um Nanopore-Sequenzierung. Bei dieser
Methode wird ein einsträngiges DNA-Oligomer durch eine winzige Pore gezo-
gen. Elektrischer Strom �ieÿt anschlieÿend durch diese Pore und wird durch
die darin be�ndlichen Basen unterschiedlich stark moduliert. Wird dieser
Strom gemessen, so kann man anhand der Messwerte auf die DNA-Sequenz
zurückrechnen. Dieser Vorgang wird Basecalling genannt.

Das Ziel dieser Diplomarbeit ist es, Algorithmen für das Basecalling mit
einer möglichst hohen Genauigkeit zu entwickeln, zu implementieren und
auszuwerten. Derzeit liegt diese bei ungefähr 80% für einen einzelnen Read.
Durch mehrfaches Sequenzieren desselben Abschnittes können Genauigkeiten
von über 99% erreicht werden. Um den Basecaller zu entwickeln, werden in
dieser Arbeit bidirektionale rekurrente neurale Netze (kurz RNN) verwen-
det. Neben deren Implementierung müssen zusätzlich die optimalen Hyper-
parameter, wie z.B. die Gröÿe und Anzahl der Schichten, der Optimierer,
die Verlustfunktion etc. bestimmt werden.

Um das RNN trainieren zu können, muss zuvor ein Trainings-Datensatz
erstellt werden. Dafür muss für jeden Read der zugehörige Abschnitt in der
Referenzsequenz ermittelt werden, um die tatsächlichen Basen dem Read
zuordnen zu können. Da die Basen mit unterschiedlichen Geschwindigkeiten
durch die Pore wandern, muss man zuvor anhand der Rohdaten feststellen,
wann eine Base die Pore erreicht. Dazu wird eine Break Point Detection

durchgeführt. Diese erkennt, wenn sich ein Signal signi�kant ändert. Als
Methode wurde für diese Arbeit ein Window-based Break Point Detection-
Algorithmus verwendet, der sich durch seine hohe Geschwindigkeit auszeich-
net.

Die Auswertungen der erhaltenen Testdaten haben gezeigt, dass die Präzi-
sion des erstellten Basecallers die des von Oxford Nanopore mitgelieferten
Basecallers Metrichor nicht übersteigt. Durch die Verwendung eines anderen
Break Point Detection-Algorithmus könnte eine Verbesserung erzielt werden.

4

Contents

1 Introduction 7
1.1 The History of Nanopore Sequencing 7
1.2 Recurrent Neural Networks 8

2 Methods 10
2.1 Break Point Detection . 10

2.1.1 Raw Signal . 10
2.1.2 Finding the Sequencing Start 10
2.1.3 Overview of Break Point Detection Algorithms 12
2.1.4 Window-based Break Point Detection 16
2.1.5 Window Lengths and Thresholds 17

2.2 Recurrent Neural Networks 20
2.3 Preparation of Training Data 21

2.3.1 Finding the Initial Event 22
2.3.2 Allocating the Corresponding Bases to the Events . . 23

2.4 Training . 26
2.4.1 Optimizer . 26
2.4.2 Loss Function . 28
2.4.3 Hyperparameters . 28
2.4.4 Building the Model . 28
2.4.5 Training the Model . 29

2.5 Sequencing . 31

3 Numerical Results 32
3.1 Recurrent Neural Network . 32

3.1.1 Loss Function . 32
3.1.2 Optimizer . 33
3.1.3 Size of the Layers . 35
3.1.4 Number of Layers . 36
3.1.5 Learning Rate Decay 37
3.1.6 Class Weight . 40
3.1.7 Regularizer . 42
3.1.8 Training vs. Validation 43

5

3.2 Break Point Detection . 44
3.2.1 Window Lengths and Thresholds 45

3.3 Comparison of the results . 45

4 Conclusions 48

6

Chapter 1

Introduction

1.1 The History of Nanopore Sequencing

In the late 80's David Deamer, a biophysicist, had the idea to sequence
DNA by pulling it through a tiny pore and measuring the electric current
that �ows through the pore, see Figure 1.1. This is the principle of a Coulter
counter. Deamer's expectation was that the bases block the pore di�erently,
depending on their shapes and sizes. He believed that when ions pass through
the pore at the same time, the ionic is modulated. By measuring the ionic
current, one can draw conclusions on the DNA that passes through. In
today's nanopores at least �ve bases in�uence the measurements at a time.
Since DNA consists of four di�erent bases � cytosine, guanine, adenine and
thymine � there are 1024 possible arrangements, called pentamers, which
require a high precision of the measurements.

The pores were made of a protein isolated from the bacterium Staphylo-
coccus aureus called α-hemolysin. Seven units are arranged in a circle with
a hole in the middle. Several thousands of these pores are placed on a mem-
brane, which increases the speed of sequencing. An enzyme, which binds
to the end of the single-stranded DNA, is used to control the speed of the
strand that passes through. When it is attached to the pore, the DNA is
split into two strands and is fed to the pore.

This idea took Deamer and the Harvard University cell biologist Daniel
Branton decades of research to develop the �rst prototype for nanopore se-
quencing [7, 18, 12]. The di�culty was to �nd a pore with an appropriate
size and charging state to control the speed of the DNA while it passes
through and to measure the electric current accurately. Years later the idea
was patented by Deamer, Branton and others.

Almost 30 years later this technology was licensed by the company Ox-
ford Nanopore Technologies. They developed a device called MinION, which
is able to read DNA, RNA and protein samples and has the size of a mod-
ern mobile phone. There are also larger models, such as PromethION and

7

GridION, which are able to sequence several DNA probes at a time. They
all use the same principle. All of these devices can be connected to a com-
puter via USB. The great advantage of this method is its ability to observe
reads with a length of up to two million bases. This is impressive compared
to conventional chemical methods, which can only decode short stretches
of DNA with a length of about 200 bases. As a result, long calculation
times can be saved, since piecing short strands together is computationally
very complex. It also enables reading DNA sequences with many repetitions
and copy-number variations. Moreover, this method is faster than chemical
methods.

DNA

Nanopore

Unwinding
enzyme

G T A C T

Current

Sequence

Membrane

Ions

Figure 1.1: Nanopore.

1.2 Recurrent Neural Networks

The average accuracy of a single read is about 80%. Since most sections
of the DNA are sequenced multiple times, the accuracy can be increased to
over 99% by assembling the reads [9]. Nevertheless, this technology is still
under development and will be improved.

The main purpose of this master thesis is to improve the process of con-
verting the electric signal into the actual sequence, called basecalling. There
are di�erent approaches for this purpose, such as hidden Markov models.
We decided to use an approach from machine learning. More precisely, we
used recurrent neural networks (RNN), since they are suitable for varying

8

input lengths. An RNN consists of several neurons, which are connected to
each other. During the learning process some of these connections become
stronger. The more the RNN is trained, the more accurate it becomes. In
order to develop a functioning network, an appropriate training set has to
be created. This leads us inter alia to break point detection algorithms.

This thesis is structured as follows:

• Chapter 2 delivers the theoretical background to create a basecaller.
First, break point detection algorithms are presented. They are used to
determine when a new base has reached the pore. Depending on the
software used, the break point detection is already performed during
the sequencing. If this is not the case, one has to perform it oneself.
In this case the window-based break point detection algorithm, which
is known for its speed, is used. It is also explained how to create an
RNN and the needed training datasets. Finally, the training process
and the basecalling are discussed.

• In Chapter 3 the numerical results are presented. The e�ects of the
various parameter settings are compared in several charts and tables.
Also, both the accuracy of the RNN and the functionality of the break
point detection were tested.

• Chapter 4 includes conclusions about the results and provides ap-
proaches for further improvement.

9

Chapter 2

Methods

This chapter presents the theoretical background that is necessary to develop
a basecaller.

2.1 Break Point Detection

The electric current in the pore is represented by a raw signal at every point
in time during the whole read. The number of measurements per second is
de�ned by the sampling rate. The duration a base is located in the pore
is variable, but can be detected since the current changes immediately with
each base. For this purpose break point detection algorithms are required.
These algorithms search through the raw data for signi�cant changes.

2.1.1 Raw Signal

The raw signal is digitized and therefore needs to be converted to the actual
value of the measured current. For this we need the o�set, range and digiti-
zation, which are stored in the meta data. All these parameters are stored
in HDF5 �les, together with the raw signal and the break point detection.
The digitization represents the number of possible output values. The range
is the di�erence between the smallest and greatest values. By adding the
o�set to the raw signal, we calculate the actual current as

rawreal = (rawdigitized + o�set) · range

digitization
. (2.1)

Since there are many reads, where the �rst base reaches the pore some
time after the start of the recording, it is necessary to evaluate the moment
when the actual sequencing starts.

2.1.2 Finding the Sequencing Start

As evident from Figure 2.1, the measured current peaks at the very beginning
of the read. This occurs due to the fact that no base has yet reached the

10

pore. The value drops immediately when the �rst base passes through, which
can be explained by the resistance of the base. This drop is the initial event.

Figure 2.1: Plot of the raw data. The current is higher at the beginning of
the read. It drops when the �rst base passes the pore.

Taking a closer look at the region marked with the red rectangle (Fig-
ure 2.2), it becomes obvious that there is no signi�cant signal, but only noise.
In the region marked with the green rectangle (Figure 2.3) a lot of jumps in
the data can be seen. Those jumps are caused by bases reaching the pore
and thereby changing the resistance drastically.

Figure 2.4 shows the possibility of reads which start already with a base
in the pore. There is only a short period of noise, as one can see in the region
marked in red (Figure 2.5).

Algorithm 1 can be used to �nd the �rst event in the raw data. First,
the digitized data is converted to the actual current and the whole data is
split into 200 equally sized intervals. Afterwards we evaluate the mean of
each interval and append those values to the list mean. To determine in
which interval the jump has occurred, we calculate the average between the
maximum and the minimum of the mentioned list and save it as mid. Then
we search for all intervals that have a greater mean than mid. We assume
that a jump has happened when the whole read can be split into two regions
of intervals, whereby the �rst region is above mid and the second one is
below. If this is not the case we assume the read starts from the beginning.
In this case, we set rawstart to zero. Next, we search for the exact position of
the initial event. Therefore we take a closer look at the two intervals, where
the crossing below mid has happened. Then a window with a length of 50
is slid through both of them. Simultaneously we evaluate the mean of this

11

Figure 2.2: Zoom in Figure 2.1, marked by the red rectangle. No base has
yet reached the pore. Thus there is only noise.

Figure 2.3: Zoom in Figure 2.1, marked by the green rectangle. Every time
a new base enters the pore the value changes rapidly.

window. If the mean falls below mid, we set rawstart to the current position
plus the window length.

2.1.3 Overview of Break Point Detection Algorithms

There are several break point detection algorithms available. Some of them
are listed below [21, 15, 5].

12

Figure 2.4: Another plot of the raw data. In this case the level of the read
seems to be constant.

Figure 2.5: Zoom in Figure 2.4. After a short period of noise the �rst base
translocates the pore.

PELT: PELT stands for �Pruned Exact Linear Time� and is used when
the total number of break points is unknown, as in our case. The
goal of this algorithm is to minimize the sum of the objective function

V (T , y0...T) =
∑|T |

k=0 c(ytk...tk+1
) and the penalty function pen(T) =

β|T |, where T denotes the break points, c the cost function and β > 0
the smoothing parameter. The complexity of this algorithm can be

13

Algorithm 1 Finding the initial event

raw← (rawdigitized + o�set) range
digitization

mean ← empty list
for n ← 1 to 200 do

mean append mean of(raw(length(raw) n
200 , . . . , length(raw)n+1

200))

mid ← max(mean)+min(mean)
2

rawstart ← 0
fail ← False
for n ← 1 to 200 do

if n > 0 and rawstart 6= n− 1 then:
fail ← True

rawstart ← n

if fail then:
rawstart ← 0

else:
rawstart ← rawstart · length(raw)/200

for n← rawstart to rawstart + length(raw)/200 · 2 do
if mean(raw(n, . . . , n+ 50) < mid then

rawstart ← n+ 50
Leave the for loop

return rawstart

reduced to O(T) by using the pruning rule, which discards certain
points from the potential break points.

Binary Segmentation: This algorithm can be used for a �xed number of
break points and when the number is unknown. The principle is simple:
The �rst break point t̂(1) is given by

t̂(1) := argmin1≤t<T−1c(y0...t) + c(yt...T). (2.2)

This break point splits the whole signal into two intervals, where we
repeat this process until a stopping criterion is met, see Figure 2.6.
This process has a complexity of O(T log T).

Bottom-up Segmentation This algorithm starts by splitting the signal
into equally sized intervals. Afterwards some of the intervals are merged
gradually, depending on the distance function d(., .) of two adjoining
intervals, whereby d(., .) is de�ned as

d(ya...t, yt...b) = c(ya...b)− c(ya...t)− c(yt...b). (2.3)

A visualization of this process is illustrated in Figure 2.7. This algo-
rithm has a complexity of O(T log T) and can also be used for both,
known and unknown numbers of break points, depending on the stop-
ping criterion.

14

Step 0

Step 1

Step 2

Figure 2.6: Binary Segmentation.

Step 0

Step 1

Step 2

Figure 2.7: Bottom-up segmentation.

15

2.1.4 Window-based Break Point Detection

Since some reads can be of considerable length, we choose the window-based
break point detection algorithm, which is the algorithm with the lowest com-
putation time (O(T)), see Figure 2.8. More precisely we use an adaptation
of said algorithm (Algorithm 2) with two windows, a short and a long one,
suggested by the Deepnano project [1].

Signal

t-test

Peak Detection

Figure 2.8: Window-based break point detection algorithm.

The �rst step of the algorithm is to de�ne the window lengths and thresh-
olds. In the for loop, we set two windows side by side at the beginning of
the read. The number of the contained raw data points is equal to the
short_window_length. Next, we calculate the mean and variance of both
windows. In the if condition we run a t-test between those windows. In
order to perform the t-test we need to determine the di�erence between the
means and variances. This is an appropriate way to determine whether there
is a signi�cant change of the signal. Next, we repeat the same procedure for
the long window. Then we use the t-test results to �nd the break points by
calling the �nd peak positions algorithm (Algorithm 3), which we will discuss
in the next paragraph. Finally, we evaluate and return the means, variances
and lengths of the events.

To determine the locations of the break points, find_peak_positions
veri�es if the t-test exceeds a certain threshold. After initialization the
function starts a for loop, which runs through the whole data of the t-
test. After one iteration we repeat this process, except for the if condition
marked with a comment. This ensures that only one window is detecting
a certain break point. The function has two possible states, depending on
whether short_peak_pos is set to NO_PEAK_POS. In this case, the function

16

constantly checks if the t-test exceeds the threshold. Once the threshold
is exceeded, short_peak_val and short_peak_pos are set to the current
values. Since short_peak_pos is no longer equal to NO_PEAK_POS the else
condition is ful�lled. In this state short_peak_pos and short_peak_val are
constantly updated until the latter reaches its maximum. Simultaneously
the short_found_peak �ag is set true. If there is no further increase for the
next half short_window_length, short_peak_pos will be saved as a break
point and the function falls back into the initial state.

Algorithm 2 Window-based Break Point Detection

Require: short_window_length, long_window_length, short_threshold,
long_threshold
for counter← 1 to length of raw_data − window_length do

short_window(counter)← raw_data(counter, . . . , counter
+short_window_length)

mean ← get mean of short_window
variance ← get variance of short_window

if counter > short_window_length then
∆mean(counter)← mean(counter)−mean(counter

+window_length)
∆variance(counter)← (variance(counter)− variance(counter

+window_length)) 1
window_length

t_statistics_short(counter)← | ∆mean(counter)√
∆variance(counter)

|

Repeat for-loop for long_window
event_positions ← find_peak_positions(t_statistics_short,

t_statistics_long, short_window_length, long_window_length,
short_threshold, long_threshold)

Evaluate means, variances and lengths of events
return position, length, mean and standard deviation of events

2.1.5 Window Lengths and Thresholds

Choosing the optimal window lengths and thresholds is essential for an op-
erational break point detection and furthermore for training and sequencing.
Our goal is to set the break points so that exactly one base per event goes
through the pore as often as possible. Another important factor is to avoid
more than two bases per event, since this error cannot be corrected during
basecalling. Therefore we have to write an appropriate algorithm to �nd the
ideal window lengths and thresholds, see Algorithm 4. We assume that we
know the actual break points of the reads. They can be evaluated by using
the break point detection of Metrichor [2]. First, we create a list named val.
The �rst two entries de�ne the short and large window length, the last two

17

Algorithm 3 Find peak positions

NO_PEAK_POS ← −1
NO_PEAK_VAL ← 10100

long_mask ← 0
short_peak_pos, long_peak_pos ← NO_PEAK_POS
short_peak_val, long_peak_val ← NO_PEAK_VAL
short_found_peak, long_found_peak ← False
peaks ← empty vector
for i← 1 to length of short_data do

val ← short_data[i]
if short_peak_pos = NO_PEAK_POS then

if val < short_peak_val then
short_peak_val ← val

else if val > short_peak_value then
short_peak_val ← val
short_peak_pos ← i

else
if val > short_peak_val then

short_peak_pos ← i
short_peak_val ← val

. Don't repeat the following if condition for long-values
if short_peak_val > short_threshold then

long_mask ← short_peak_pos + short_window
long_peak_pos ← NO_PEAK_POS
long_peak_val ← NO_PEAK_VAL
long_found_peak ← False

if short_peak_val > val and
short_peak_val > short_threshold then
short_found_peak ← True

if short_found_peak and
(i − short_peak_pos) > short_window / 2 then
peaks append short_peak_pos
short_peak_pos ← NO_PEAK_POS
short_peak_val ← val
short_found_peak ← False

if i > long_mask then
Repeat code of For-loop for long-values, except one If-condition

return peaks

18

their thresholds. Then we generate random values for them. In the for loop
we load the start and end positions of the raw data. The �rst four entries of
the list counter report how many bases have passed the pore between two
calculated break points. counter1, counter2 and counter3 stand for zero,
one and two or more bases per event. If there are more than two, the surplus
bases are written to counter4. counter5 represents the number of events
and counter6 the number of bases in total. In every step we change one
parameter randomly. Then we take a �le sample and evaluate each param-
eter of counter by calling the function count_bases. Finally, we calculate
a score for our values. If this score reaches a new maximum, we write it to
max_score, otherwise val will be discarded.

Algorithm 4 Window Lengths and Thresholds
max_score ← −100
val ← (0, 0, 0, 0)
val1 ← random integer in [3, 10]
val2 ← random integer in [7, 14]
val3 ← random �oat in [0, 10)
val4 ← random �oat in [0, 10)
for q ← 1 to number of loops do

old_val ← val
raw_start, raw_end ← Load start and end positions in raw data
counter ← (0, 0, 0, 0, 0, 0)
if q mod 4 = 0 then

val1 ← random integer in [3, 10]
else if q mod 4 = 1 then

val2 ← random integer in [7, 14]
else

valq mod 4 ← random �oat in [0, 10)

for �le in �le_sample do
window_lengths← (val1, val2)
thresholds← (val3, val4)
break points ← break_point_detection(�le, raw_start(�le),

raw_end(�le),window_lengths, thresholds)
real_bp ← get_real_bp(�le)
counter ← counter + count_bases(real_bp, break points)

score ← counter1
counter4

− counter0
counter4

− 2.5 · counter2counter4
− 5 · counter3counter5

if score > max_score then
max_score ← score

else
val ← old_val

return val

19

2.2 Recurrent Neural Networks

Since the reads have variable lengths, an appropriate machine learning algo-
rithm is needed. For this purpose Recurrent Neural Networks (RNN) [19, 8]
are suitable. The goal of an RNN is to �nd an accurate function, which
transforms the events to the corresponding bases. An RNN consists of an
input layer, several hidden layers and one output layer. The length t of each
layer is equal to the length of the read, see Figure 2.9.

...

...

...

...

...

h(3+)
0

h(2+)
0

h(1+)
0

h(3-)
0

h(2-)
0

h(1-)
0

h(3)

h(2)

h(1)

Output y

Input x

Figure 2.9: Structure of an RNN.

Input layer: The input vectors x1, x2, . . . , xt, are transferred to the
input layer. In our case one vector contains the mean, standard deviation
and length of an event.

Hidden layer: A typical RNN has multiple hidden layers h(j). Every

hidden state h
(j)
t , also called neuron, represents a vector with a certain size.

First, we describe a one directional RNN. In this case to obtain h
(j)
t we need

a function fj that depends on the neuron of the previous layer h
(j−1)
t and

the previous neuron in the current layer h
(j)
t−1. For the �rst hidden state in

each layer there is an initial state h
(j)
0 , which is a parameter of the model.

For the function fj we use the Long Short-Term Memory unit (LSTM).

De�nition 2.1 (Long short-term memory (LSTM)) Let xt ∈ Rd be

the input vector of the LSTM unit, ht ∈ Rh the output vector, Wf , Wi,

Wo, Wc ∈ Rh×d and Uf , Ui, Uo, Uc ∈ Rh×h the weight matrices, and bf , bi,

bo, bc ∈ Rh the bias vectors, where d denotes the size of the previous layer,

and h the current layer size. The gates and the cell state are de�ned as

20

• forget gate ft = σ(Wfxt + Ufht−1 + bf),

• input gate it = σ(Wixt + Uiht−1 + bi),

• output gate ot = σ(Woxt + Uoht−1 + bo),

• cell state ct = ft ◦ ct−1 + it ◦ tanh(Woxt + Uoht−1 + bo),

where ◦ denotes the element-wise product and σ the sigmoid function. Fi-

nally, the output vector ht is given by

ht = ot ◦ tanh(ct).

The weight matrices U and W , the bias vectors b and the initial state h0 are
also parameters of our network and will be trained.

Since the output vector is also in�uenced by the following outputs, we
need a bidirectional RNN. Therefore two output vectors will be calculated,
one in forward and one in backward direction. The concatenation of those
yields the input vector of the next layer.

Output layer: Ideally, each input event leads to exactly one base, but
in some cases more than one base passes through the pore during one event.
Thus we need at least two outputs. It is also possible, that there are three
or more bases, but this happens very rarely and for this reason was left
unattended. For every output there are �ve possibilities: A, C, G and T
denote the four bases and N denotes no base. In case of one base per event,
the base in question is allocated to the second output. The probabilities for
the four bases, respectively blank, are calculated by the softmax function

P (out
(k)
i = q) =

exp(Wi ◦ h(n)
i + bi)∑5

i=1 exp(Wi ◦ h(n)
i + bi)

, (2.4)

where h
(n)
i is the output vector of the last hidden layer, k ∈ {1, 2},W ∈ Rd×5

and b ∈ R5. W and b are also trainable parameters.
The RNN returns two 5-dimensional vectors for each event, where every

element stands for the probability of one base, or a blank.

2.3 Preparation of Training Data

To train our model a set of training data is necessary. The reads of those
data sets are usually stored in HDF5 �les, containing the raw data, break
point detection and output of the Oxford Nanopore Technologies' basecaller
Metrichor. We use this output to determine the region of the reference
sequence to which the read belongs to. For that, we use the aligner Minialign
[3] (Algorithm 5).

The output at the beginning and ending of the read is often inaccurate,
which is why it cannot be aligned. Therefore Minialign returns the start and

21

Algorithm 5 Prepare dataset

for all reads do
(read_start_pos, read_end_pos, ref_start_pos,
ref_end_pos, cigar_string)←Minialign(read, reference sequence)

scale events of read to normal distribution N (0, 1)
Data append load_data(read, read_start_pos, read_end_pos,

ref_start_pos, ref_end_pos, cigar_string)

split Data into trainData, validationData and testData
return events with the corresponding bases

end position in the read and in the reference, as well as the accuracy and the
cigar string. The cigar string describes how the read aligns with the refer-
ence. It consists of a series of sets, containing a number followed by one letter,
whereby the letter denotes an operator and the number stands for the quan-
tity of those. Here a short example: 49S3M1D3M1D8M1I23M1D4M1D9M1D6M...

The meaning of the operators are shown in Table 2.1.

Operator Description

D Deletion: the nucleotide is present in the reference, but not in
the read.

H Hard clipping: the clipped nucleotides are not present in the
read.

I Insertion: the nucleotide is present in the read, but not in the
reference.

M Match: can be either an alignment match or mismatch. The
nucleotide is present in the reference.

S Soft clipping: the clipped nucleotides are present in the read.

Table 2.1: Meaning of the cigar string operators.

2.3.1 Finding the Initial Event

In the next step, we will use this string to allocate each event to the corre-
sponding bases of the reference. Since the basecaller of Metrichor sometimes
returns two or no bases, the start and end position of the output is not the
same as the one of the events. Thus, �rst we have to �nd the starting event
(Algorithm 6).

Along with the mean, standard deviation and length, there are also a
few more bits of information about every single event. They are stored in an
array of the HDF5 �les. Most of them a�ect the hidden Markov model that
Metrichor works with and are thereby irrelevant for our problem. However,

22

there are also useful ones such as the column move, which shows us how many
bases a single event Metrichor is outputting. According to this, we have to
go over each event and sum up their moves, until the sum reaches the start
and end position of the read. At this point it must be stated that Metrichor
returns pentamers, but we only return single bases. Thus if we use the base
in the middle of the pentamer as output, we have to shift the read position
by two.

Algorithm 6 Find starting event

eventPos ← 2
foundStart ← False
for n← 1 to length of events do

eventsPos ← eventPos + events[move](n)
if eventPos ≥ read_start_pos and not foundStart then

event_start_pos ← n
foundStart ← True

if eventPos ≥ read_end_pos then
event_end_pos ← n
break

return event_start_pos, event_end_pos

2.3.2 Allocating the Corresponding Bases to the Events

Now that we found the appropriate events, we can allocate them to the bases
of the reference sequence (Algorithm 7). Therefore the output of Metrichor
becomes obsolete and we continue using only its moves. We always store two
bases per event in the array read. Additionally we add a list to each base, an
explanation for that will follow in the next section. At �rst we set pointers
for the events, reference and cigar string to the right position (concerning
the cigar string: to simplify the code, we assume n letters in a row instead of
a number n followed by a letter, e.g. MMMMDD instead of 4M2D). Now we have
to go over every single event. Depending on their moves, there are three
di�erent cases:

Case 1: move = 0: In this case we store two N's.

Case 2: move = 1: Again we store an N for output 1, but for output 2
there are another three cases to consider.

Case 2.1: cigar_string[cigPos] = M : The next base in the reference will
be allocated.

Case 2.2: cigar_string[cigPos] = D: At this point the list, that has al-
ready been mentioned before, becomes relevant. The reference pointer

23

Algorithm 7 Allocating the Corresponding Bases to the Events
event_pos ← event_start_pos
ref_pos ← ref_start_pos
cig_pos ← 0
if move(n) = 0 then

read append [N, []]
read append [N, []]

else if move(n) = 1 then
read append [N, []]
if cigar_string[cigPos] = M then

read append reference[refPos]
refPos ← refPos + 1

else if cigar_string[cigPos] = D then
noDels ← number of D's until next M in cigar_string
dels ← reference[refPos, refPos + noDels]
refPos ← refPos + noDels
cigPos ← cigPos + noDels
read append [reference[refPos], dels]
refPos ← refPos + 1

else if cigar_string[cigPos] = I then
read append [N, []]

cigPos ← cigPos + 1
else

for n← 1 to 2 do
if cigar_string[cigPos] = M then

read append reference[refPos]
refPos ← refPos + 1

else if cigar_string[cigPos] = D then
noDels ← number of D's until next M in cigar_string
dels ← reference[refPos, refPos + noDels]
refPos ← refPos + noDels
cigPos ← cigPos + noDels
read append [reference[refPos], dels]
refPos ← refPos + 1

else if cigar_string[cigPos] = I then
read append [N, []]

cigPos ← cigPos + 1
return read

24

jumps to the next base that has a match. The skipped bases are added
to the list and if possible, they can later be inserted to the output.

Case 2.3: cigar_string[cigPos] = I: No base will be allocated. Finally,
the pointer has to be set to the correct positions.

Case 3: move = 2: Similar to case 2, but this time we make the distinction
for output 2 as well.

Finally, we insert the deleted bases from our lists to the output (Algorithm 8).
Before doing that we add the bases without the lists to a string called line.
Now let us take a closer look at one base and its list. There are two key
aspects to consider: First, we only change N's into bases, and secondly, we
only change them if there is no other base in between. Otherwise we would
mix up the order of the output. Thus, we count the N's between the current
and the last base in the read. In case of having more blanks than bases that
should be inserted, we add them to the second output �rst. Those are the
positions in the read that have an even number. The determination of these
positions takes place in the �rst inner for loop. Then we take this position
array to insert the deleted bases to the right spots of the line. Finally, we
split the line into sets of two letters and write them to the output.

Algorithm 8 Creating the dataset

for all Events e in read do
line append e[0]
if e[1] is not empty then

num ← numbers of Ns between e and last output which is no N
pos ← empty list
for j ← 1 to num do

if j = length of e then
break

if j < num
2 then

pos append i− 1− i mod 2− j · 2
else

pos append i− 2 + i mod 2− (j − num
2) · 2

sort pos
for j ← 1 to length of pos do

line[pos[k]] = read[i, 1, j]

for n← 0, 2, 4, . . . , length of read− 2 do
Data append [line[n], line[n+ 1]]

return Data

25

2.4 Training

2.4.1 Optimizer

After having prepared our dataset, we can �nally train our network. In
order to do that we use Python and the Keras library with the Tensor�ow
backend. First, we have to determine the hyperparameters, such as the
learning rate, decay, size and number of hidden layers etc. Furthermore we
need an appropriate loss function and optimizer. An overview of the most
commonly used optimizers is given below.

Stochastic Gradient Descent: In order to optimize the RNN stochastic
gradient descent (SGD) [6] uses the gradient of the loss function f . In
each training step, the parameters x are updated by

xt+1 := xt − η∇f(xt), (2.5)

where η denotes the learning rate. If η is small enough the loss gets
smaller with each step.

Momentum: Momentum [20] adds another term to the equation which uses
the previous update to prevent the learning process from oscillations.

xt+1 := xt − η∇f(xt) + α(xt − xt−1), (2.6)

where α denotes the coe�cient of momentum. This extra term enlarges
the step size when the direction of the gradient stays the same and
reduces it when the direction changes. It is called momentum due to
its analogy to the momentum in physics.

Nesterov Accelerated Gradient Descent: Nesterov accelerated gradient
descent (NAG) [17, 16] changes the second term of (2.6) to γ∇f(xt +
α(xt − xt−1)). By using the momentum for the gradient, Nesterov ap-
proximates the next position of the parameters. This method improved
the convergence rate from O(1/t) to O(1/t2).

Adagrad: Unlike SGD, Adagrad [11] uses di�erent learning rates for every
parameter xt,i. These learning rates are updated at every time step τ
by using the outer product matrix

Gt :=
t∑

τ=1

gτg
T
τ , (2.7)

where gτ = ∇f(xτ). The update of xt is given by

xt+1,i := xt,i −
η√

Gt,ii + ε
gt,i. (2.8)

26

The ε is added to avoid division by zero. Adagrad's weakness is that the
learning rate decreases with every time step and eventually becomes
in�nitesimally small.

Adadelta: Adadelta [24] �xes Adagrad's problem by restricting the number
of past gradients used to some �xed size w. Therefore, the factor Gii
is replaced by the running average E[g2]t, which is de�ned by

E[g2]t+1 = γE[g2]t + (1− γ)g2
t+1. (2.9)

Since
√
E[g2]t + ε is equal to the root mean squared (RMS) error cri-

terion of the gradient, the update of x can be written as

xt+1,i := xt,i −
η

RMS[g]t
gt,i. (2.10)

Adam: In addition to evaluating the RMS of the gradient vt like Adadelta,
Adaptive Moment Estimation (Adam) [13] also calculates the exponen-
tially decaying average of the gradient mt. vt and mt are recursively
de�ned by

mt+1 := β1mt + (1− β1)gt+1, (2.11)

vt+1 := β2vt + (1− β2)g2
t+1. (2.12)

Since vt and mt are initialized as vectors of zeros their values are too
small at the beginning and therefore have to be corrected by

m̂t :=
mt

1− βt1
, (2.13)

v̂t :=
vt

1− βt2
. (2.14)

m̂t and v̂t are then used for updating x by

xt+1,i := xt,i −
η√
v̂i + ε

m̂t+1,i. (2.15)

Adamax: Adamax replaces v̂t from the Adam optimizer by a vector ut,
which is de�ned as

ut+1 := max(β2 · ut, |gt+1|). (2.16)

Since ut is not biased to zeros, a bias correction is not necessary.

Nadam: Nesterov-accelerated Adaptive Moment Estimation (Nadam) [10]
extends the Adam optimizer by using NAG. For this purpose gt is
replaced by γ∇f(x+ α∆x). The update of x is then given by

xt+1,i := xt,i −
η√

v̂t+1,i + ε
(β1m̂t+1,i +

(1− β1)gt+1,i

1− βt+1
1

). (2.17)

27

2.4.2 Loss Function

During training, binary cross entropy turned out to be by far the best loss
function. The only di�erence to the categorical cross entropy is the fact that
it can only categorize two classes. The binary cross entropy function f is
de�ned as

f(y, ŷ) = − 1

N

N∑
n=1

yn log(ŷn) + (1− yn) log(1− ŷn), (2.18)

where y denotes the predicted and ŷ the actual output.

2.4.3 Hyperparameters

The layer size and the number of hidden layers have a major impact on the
accuracy. If the size is too small the network cannot cover the complexity
of the problem. On the other hand, too large a size leads to over�tting
and longer computation time. Thus we have to try out several sizes to
optimize the accuracy and computation time. Changing the learning rate,
β1 and β2, as well as using learning rate decay have no positive in�uence
on the precision. Due to the huge amount of training data over�tting is no
problem. This is the reason why regularizers are not only unnecessary, but
also slow down the learning process.

2.4.4 Building the Model

In the following code lines, written in Python, one can see the structure of
the model. First, we transfer the layer size, the number of layers, the reg-
ularizer and the input size to the model. The input size is equal to three,
since we only use the mean, standard deviation and length of the events. In
line 15 the shape is set to (None, input_size), where None means that one
dimension is variable. Next, we add the layers to the model. Each layer,
except the last one is a bidirectional LSTM-layer. If layer_num is smaller
than one, the program will return an error. The �rst layer depends on the
input, every other layer depends on the previous one. Finally, there are two
output layers, which are time distributed, since the input length is variable.
The output size equals �ve, whereby the �rst four ones represent the bases
and the last one a blank. Softmax is used as our activation function.

def build_model(layer_size,layer_num,reg,input_size):

inputs = Input(shape=(None, input_size))

layer = []

layer.append(Bidirectional(LSTM(layer_size,

return_sequences=True,

kernel_regularizer=regularizers.l2(reg)),

28

input_shape=(None,input_size))(inputs))

for n in range(layer_num-1):

layer.append(Bidirectional(LSTM(layer_size,

return_sequences=True,

kernel_regularizer=regularizers.l2(reg)))(layer[-1]))

out_layer1 = TimeDistributed(Dense(5, activation="softmax",

kernel_regularizer=regularizers.l2(reg)),

name="out_layer1")(layer[-1])

out_layer2 = TimeDistributed(Dense(5, activation="softmax",

kernel_regularizer=regularizers.l2(reg)),

name="out_layer2")(Concatenate()([layer[-1], out_layer1]))

return Model(inputs=inputs, outputs=[out_layer1, out_layer2])

2.4.5 Training the Model

To simplify the code, we use a generator for the training and validation. The
generator is constructed by calling

training_generator = DataGenerator(args.subseq_size,

trainPackage,32)

and de�ned as

class DataGenerator():

def __init__(self,subseq_size,data_package,batch_size):

self.subseq_size = subseq_size

self.data_package = data_package

self.batch_size = batch_size.

subseq_size de�nes how many events are used per training step. This
number is essential for the speed, as well as the batch_size. If it is too low,
the gradient may point in the wrong direction. If it is too high, each step will
take longer. When the generator is called, three empty lists will be created.
Data_X contains the input, whereas Data_Y1 as well as Data_Y2 contain the
corresponding outputs one and two. The number of sequences added is equal
to the batch size. In the for loop we choose a random sub-sequence from
a random read. Next, we add the events and bases from the sub-sequence
to the corresponding lists. After transferring the lists to numpy-arrays we
return them.

def base_transformation(self,out):

new_out = [[0,0,0,0,0] for i in range(len(out))]

for m,n in enumerate(out):

29

new_out[m][n] = 1

return new_out

def __next__(self):

while True:

Data_X = []

Data_Y1 = []

Data_Y2 = []

for n in range(self.batch_size):

file_nr = np.random.randint(0,

len(self.data_package.files)/2)

if len(self.data_package['arr_%d' % (file_nr·2)]) <

self.subseq_size:

continue

event_nr = np.random.randint(0,

len(self.data_package['arr_%d' % (file_nr*2)])-

self.subseq_size)

Data_X.append(self.data_package['arr_%d' % (file_nr*2)]

[event_nr:event_nr+self.subseq_size])

Data_Y1.append(self.base_transformation(

self.data_package['arr_%d' % (file_nr*2+1)]

[event_nr:event_nr+self.subseq_size,0]))

Data_Y2.append(self.base_transformation(

self.data_package['arr_%d' % (file_nr*2+1)]

[event_nr:event_nr+self.subseq_size,1]))

Data_X = np.array(Data_X)

Data_Y1 = np.array(Data_Y1)

Data_Y2 = np.array(Data_Y2)

return (Data_X,[Data_Y1,Data_Y2])

The generator is called when we train our model.

history.append(model.fit_generator(generator=

training_generator,initial_epoch=n,epochs=n+1,

steps_per_epoch=args.steps_per_epoch,

class_weight=class_weight,validation_data=validation_

generator,validation_steps=2,verbose=1))

To save our model, we stop the training by setting epochs to n+1.

30

2.5 Sequencing

For the last step, the sequencing, we load the model we trained before. For
using our own detection we have to use a di�erent model than the detection
of Metrichor as its break point detection is di�erent from ours. In this case
we have to apply the break point detection to the raw data �rst. At this
point it is important to use the same window lengths and thresholds we
used during the training. As a next step, we use the prediction function
from Keras to apply our model to the events. Then we have to translate
the output to the sequence. Thereby we evaluate the maximum of output 1
and 2 of every event, convert it to the corresponding bases and remove the
blanks. Finally, we write the �lenames and sequences to a FASTA �le.

31

Chapter 3

Numerical Results

In order to develop the basecaller with the highest possible accuracy we
need to evaluate the optimal hyperparameters. In this chapter we therefore
compare the obtained results for each of them. Moreover, we will go into
detail on the outputs of the break point detection algorithms.

3.1 Recurrent Neural Network

To train the RNN, the E. coli data set [4] was used. This data set contains
over 50,000 reads, hence it provides enough data to work with. Moreover the
E. coli bacteria has almost no mutations and is therefore perfectly suited for
training. In order to reach accurate results several options had to be tested,
such as di�erent loss functions, optimizers, layer size, etc.

In the following sections those options are compared by using the loss
and the accuracy of the validation data for the outputs 1 and 2.

3.1.1 Loss Function

Choosing an appropriate loss function had the biggest impact on the results.
Figure 3.1 and Figure 3.2 show the accuracies of the available loss functions
of Keras. Binary cross entropy had by far the highest accuracy, whereas
hinge, mean absolute error and mean absolute percentage error de-
livered the lowest precision.

32

Figure 3.1: Accuracy of output 1 for di�erent loss functions.

Figure 3.2: Accuracy of output 2 for di�erent loss functions.

3.1.2 Optimizer

The choice of the optimizers was crucial for precise training results. Fig-
ure 3.3 compares the loss function and Figure 3.4 and Figure 3.5 compare
the accuracies of output 1 and 2 for several optimizers. Evidently the Adam-

33

optimizer had the highest precision and leads just ahead of Nadam, followed
by RMSprop, Adamax and Adagrad. SGD and Adadelta delivered the most
imprecise results.

Figure 3.3: Loss for di�erent optimizers.

Figure 3.4: Accuracy of output 1 for di�erent optimizers.

34

Figure 3.5: Accuracy of output 2 for di�erent optimizers.

3.1.3 Size of the Layers

Another crucial factor was the choice of the size of the hidden layers. Fig-
ures 3.6�3.8 indicate that, up to a certain value, a higher layer size led to a
higher accuracy. This held up to a size of 80 layers. More than 80 layers did
not lead to any improvements, but only to higher computation times.

Figure 3.6: Loss of di�erent layer sizes.

35

Figure 3.7: Accuracy of output 1 for di�erent layer sizes.

Figure 3.8: Accuracy of output 2 for di�erent layer sizes.

3.1.4 Number of Layers

It was also important to choose the optimal number of hidden layers. If this
number was too small the complexity of the problem cannot be covered, if it
was too high the computation time and the risk of over�tting would increase
unnecessarily. As we can see from the Figures 3.9�3.11 the error rate of
RNNs with two hidden layer was higher than the error rate of networks with
three or four layers. However a fourth layer had no bene�ts.

36

Figure 3.9: Loss for di�erent numbers of layers.

Figure 3.10: Accuracy of output 1 for di�erent numbers of layers.

3.1.5 Learning Rate Decay

At the beginning of training an RNN a higher learning rate accelerates the
learning progress. On the other hand, if the network is near the optimum
it is advisable to use smaller learning rates in order to make only small
adjustments. This process was implemented by using learning rate decay.
Therefore, an initial learning rate and a decay rate were set. Later the learn-

37

ing rate was divided by the decay rate at every 10 epochs. The e�ects of this
procedure are illustrated in the Figures 3.12�3.14. It is evident that a decay
rate of 2 led to the highest accuracy and the fastest learning progress. A
decay rate of 1.5 also accelerated the training compared to using no learning
rate decay, but stagnated at a certain point.

Figure 3.11: Accuracy of output 2 for di�erent numbers of layers.

Figure 3.12: Loss for di�erent decay rates.

38

Figure 3.13: Accuracy of output 1 for di�erent decay rates.

Figure 3.14: Accuracy of output 2 for di�erent decay rates.

39

3.1.6 Class Weight

In order to focus on output classes that are underrepresented during training
Keras provides a function called class weight. In our case, this concerned
the bases of output 1, since over 95% of the output elements were blanks,
see Table 3.2. Therefore, setting the class weight of N to 0.5 and the weights
for the bases to 1 had the potential to increase the accuracy of output 1. As
it is evident by Figure 3.16 using class weights had no positive impact, but
it slightly decreased the precision of output 2, see Figure 3.17.

Figure 3.15: In�uence of using class weights on the loss.

40

Figure 3.16: In�uence of using class weights on the accuracy of output 1.

Figure 3.17: In�uence of using class weights on the accuracy of output 2.

41

3.1.7 Regularizer

Regularizers [22, 23, 14] are able to prevent the network from over�tting. Due
to the huge amount of training data over�tting did not take place. For this
reason, using regularizers had no positive impact on the accuracy for small
values, as Figures 3.18�3.20 show. The higher the value got, the slower the
RNN learned.

Figure 3.18: In�uence of using a regularizer on the loss.

Figure 3.19: In�uence of using a regularizer on the accuracy of output 1.

42

Figure 3.20: In�uence of using a regularizer on the accuracy of output 2.

3.1.8 Training vs. Validation

Finally, after testing each hyperparameter the optimal training conditions
can be set up. In order to recap a summary of the �nal con�gurations is
listed in Table 3.1. An easy way to determine if the network is over�tted
is to compare the loss and accuracies of the training with those of the val-
idation. This comparison is visualized in the Figures 3.21�3.23. Against
all expectations the precision of the validation was higher than the preci-
sion of the training. One explanation for this circumstance might be that
the accuracies and the loss of the validation were evaluated at the end of
each epoch and the values of the training were determined during the whole
epoch. Nevertheless, this led to the conclusion that no over�tting has taken
place.

Loss function Binary cross entropy

Optimizer Adam

Layer size 80

Number of layers 3

Learning rate decay Factor 2 for every 10 epochs

Class weights No class weights used

Regularizers No regularizers used

Table 3.1: Summary of the �nal con�gurations for the training.

43

Figure 3.21: Comparison of the training with the validation based on the
loss.

Figure 3.22: Comparison of the training with the validation based on the
accuracy of output 1.

3.2 Break Point Detection

As mentioned in Section 2.1.5 the goal is to set the break points so that ex-
actly one base per event goes through the pore as often as possible. Therefore
we evaluate the accuracies and how many bases went through the pore while

44

using the window-based and Metrichor's break point detection. In this sec-
tion we compare both.

3.2.1 Window Lengths and Thresholds

Applying Algorithm 4 of Section 2.1.5 to the raw reads yielded certain val-
ues for the window lengths and thresholds: short window length = 6, long
window length = 10, threshold for the short window = 1.4 and threshold for
the long window = 2.2. Table 3.2 shows the amount of events where zero,
one and two or more bases went through the pore and how many bases were
skipped due to too long events for the window-based break point detection
and the break point detection of Metrichor. The ideal case was maximizing
the amount of events with exactly one base, while simultaneously minimizing
the deleted bases. On the one hand the window-based break point detection
had more events with one base, on the other hand it had more deleted bases.

3.3 Comparison of the results

In order to compare the results of the di�erent basecallers they were applied
to test �les. Afterwards, Minialign was applied on the outputs to determine
the accuracies. Table 3.3 and Figure 3.24 compare the accuracies using
the basecaller of Metrichor and the RNN with and without break point
detection. Apparently, Metrichor had the highest accuracy, but also the

Figure 3.23: Comparison of the training with the validation based on the
accuracy of output 2.

45

Window-based break Metrichor break
point detection point detection

0 bases/event 41.1% 46.5%

1 base/event 53.5% 51.3%

≥2 bases/event 5.43% 2.22%

Deleted bases 3.07% 1.71%

Table 3.2: Amount of events, with 0, 1 and 2 or more bases passing the pore
and the amount of deleted bases for the window-based and Metrichor's break
point detection.

highest standard deviation. The average precision of the RNN was slightly
lower, especially when using the window-based break point detection. This
indicates that using another break point detection algorithm may have the
potential for improvements.

Average of Standard deviation
the accuracy of the accuracy

Metrichor 79.0% 7.42%

RNN with Metichor bp detection 76.4% 6.18%

RNN with window-based bp detecion 73.7% 4.51%

Table 3.3: Accuracies of the di�erent basecallers.

46

Figure 3.24: Histogram of the accuracies using the basecallers of Metrichor
and the RNN with the Metrichor's and the window-based break point detec-
tion.

47

Chapter 4

Conclusions

The purpose of this master thesis was to develop and to evaluate a basecaller
for nanopore sequencing with a high accuracy. The basecaller from Metrichor
was used, which has an accuracy of 79%, served as a comparison. Inspired
by other projects that used machine learning for basecalling, we decided to
use RNNs. In order to maximize the precision many adjustments of the
hyperparameters had to be made. The only method to �gure out which
options worked best was to test and compare each of them. During our
research it became clear that using an appropriate loss function was the most
in�uential factor. Binary cross entropy turned out to be the only useful loss
function, as the outputs of other loss functions had such low accuracies that
not even a single read could be aligned to the reference. Changing the other
hyperparameters in�uenced the precision by just a few percent as Section 3.1
shows.

Although we optimized several hyperparameters, the accuracy of the
RNN, when using the break point detection of Metrichor, was 76.4% and
thus lower than the precision of Metrichor's basecaller. This suggests that
RNNs work, but they are less suitable for basecalling than hidden Markov
models.

It was necessary to implement a break point detection since some versions
of Metrichor did not use events for basecalling. There were many algorithms
to choose from. Because many of them were time consuming, the choice
fell on the window-based break point detection algorithm. This algorithm
achieved a higher amount of events with exactly one base passing through.
However, there were also more deleted bases. Unfortunately, Metrichor's
break point detection is unknown, thus no conclusions can be drawn as to
why it works better. Nevertheless, the comparison of the results of the
RNNs with Metrichor's break point detection on the one hand and with the
window-based break point detection on the other hand, allow conclusions in
regards to possible improvements. Apparently the number of deleted bases
had a greater impact on the accuracy than the amount of events with exactly
one base.

48

Bibliography

[1] https://github.com/jeammimi/deepnano.

[2] https://metrichor.com/.

[3] https://github.com/ocxtal/minialign.

[4] http://s3.climb.ac.uk/nanopore/R9_Ecoli_K12_MG1655_lambda_
MinKNOW_0.51.1.62.tar.

[5] E. Ahmed, A. Clark, and G. Mohay. A novel sliding window based
change detection algorithm for asymmetric tra�c. In IFIP International

Conference on Network and Parallel Computing, pages 168�175. IEEE,
2008.

[6] L. Bottou. Large-scale machine learning with stochastic gradient de-
scent. In Proceedings of COMPSTAT 2010, pages 177�186. Springer,
2010.

[7] D. Branton and D. Deamer. Nanopore Sequencing: An Introduction.
World Scienti�c, 2019.

[8] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[9] D. Deamer, M. Akeson, and D. Branton. Three decades of nanopore
sequencing. Nature Biotechnology, 34(5):518, 2016.

[10] T. Dozat. Incorporating Nesterov momentum into ADAM. Caribe
Hilton, San Juan, Puerto Rico, 2016.

[11] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine

Learning Research, 12(Jul):2121�2159, 2011.

[12] Y. Feng, Y. Zhang, C. Ying, D. Wang, and C. Du. Nanopore-based
fourth-generation DNA sequencing technology. Genomics, Proteomics

& Bioinformatics, 13(1):4�16, 2015.

49

https://github.com/jeammimi/deepnano
https://metrichor.com/
https://github.com/ocxtal/minialign
http://s3.climb.ac.uk/nanopore/R9_Ecoli_K12_MG1655_lambda_MinKNOW_0.51.1.62.tar
http://s3.climb.ac.uk/nanopore/R9_Ecoli_K12_MG1655_lambda_MinKNOW_0.51.1.62.tar

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
International Conference on Learning Representations, 2014.

[14] C.-S. Leung, A.-C. Tsoi, and L. W. Chan. Two regularizers for recursive
least squared algorithms in feedforward multilayered neural networks.
IEEE Transactions on Neural Networks, 12(6):1314�1332, 2001.

[15] S. Liu, M. Yamada, N. Collier, and M. Sugiyama. Change-point de-
tection in time-series data by relative density-ratio estimation. Neural
Networks, 43:72�83, 2013.

[16] Y. Nesterov. A method for solving the convex programming problem
with convergence rate O(1/k2). In Doklady AN USSR, volume 269,
pages 543�547, 1983.

[17] Y. Nesterov. Lectures on Convex Optimization, volume 137. Springer,
2018.

[18] E. Pennisi. Search for pore-fection. Science, 336(6081):534�537, 2012.

[19] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673�2681, 1997.

[20] R. Sutton. Two problems with back propagation and other steepest
descent learning procedures for networks. In Proceedings of the Eighth

Annual Conference of the Cognitive Science Society, 1986, pages 823�
832, 1986.

[21] C. Truong, L. Oudre, and N. Vayatis. Ruptures: change point detection
in Python. arXiv preprint arXiv:1801.00826, 2018.

[22] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of
neural networks using dropconnect. In S. Dasgupta and D. McAllester,
editors, Proceedings of the 30th International Conference on Machine

Learning, volume 28 of Proceedings of Machine Learning Research, pages
1058�1066, Atlanta, Georgia, USA, 17�19 Jun 2013. PMLR.

[23] L. Wu and J. Moody. A smoothing regularizer for feedforward and
recurrent neural networks. Neural Computation, 8(3):461�489, 1996.

[24] M. D. Zeiler. ADADELTA: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701, 2012.

50

	Introduction
	The History of Nanopore Sequencing
	Recurrent Neural Networks

	Methods
	Break Point Detection
	Raw Signal
	Finding the Sequencing Start
	Overview of Break Point Detection Algorithms
	Window-based Break Point Detection
	Window Lengths and Thresholds

	Recurrent Neural Networks
	Preparation of Training Data
	Finding the Initial Event
	Allocating the Corresponding Bases to the Events

	Training
	Optimizer
	Loss Function
	Hyperparameters
	Building the Model
	Training the Model

	Sequencing

	Numerical Results
	Recurrent Neural Network
	Loss Function
	Optimizer
	Size of the Layers
	Number of Layers
	Learning Rate Decay
	Class Weight
	Regularizer
	Training vs. Validation

	Break Point Detection
	Window Lengths and Thresholds

	Comparison of the results

	Conclusions

