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In this study a maximum likelihood formalism is used to calculate dark matter parti-
cle nucleus scattering cross section exclusion limits from data obtained in the CRESST-II
and CRESST-III experiment. For this purpose a suitable description for modeling of
data is chosen. A comparison to previous maximum likelihood implementations as well
as Yellin’s optimum interval method is made.
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1 Abstract

The search for dark matter (DM) is one of the most fundamental questions in modern
physics. Evidence for matter beyond the Standard Model (SM) of particle physics is
found in various astrophysical observations. These observations also provide the basis
for theories about the type and properties of potential DM particles. One of the most
promising explanations involves weakly interacting massive particles (WIMPs) and sim-
ilar WIMP-like particles, which are also referred to as WIMPs in the course of this work.
Numerous experiments attempt to find proof of their existence and measure character-
istic properties. So far no conclusive proof has been found, it was however possible to
put limits on the expected cross section for the interaction of potential particles with
SM particles. One of these experiments is the Cryogenic Rare Event Search with Su-
perconducting Thermometers (CRESST) which is the currently leading experiment for
establishing cross section exclusion limits for WIMPs in the low-mass region.

In this work an extended maximum likelihood method capable of calculating exclu-
sion limits from the data measured with CRESST detectors is presented and tested. At
the beginning an overview of the evidence for dark matter, its possible particle models
and detection methods with focus on WIMPs and direct detection is given. Then, a short
introduction into the CRESST experiment, its setup and capabilities is presented. The
performance of the extended maximum likelihood method is compared against another
method for limit calculation, namely Yellin’s optimal interval method [1]. Therefore,
Yellin’s method is introduced alongside the maximum likelihood formalism. To evaluate
the measured data in the maximum likelihood framework a model for the properties of
the detector as well as the known backgrounds is established. Finally, the maximum like-
lihood method is used to calculate WIMP exclusion limits using data from two CRESST
experimental data taking campaigns with the purpose of achieving stronger limits.
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2 Dark Matter

To a large extend this chapter follows the formalism of the lecture notes of the ”Search
for Dark Matter” lecture [2] taught at the TU Wien in 2017/2018.

2.1 Evidence for Dark Matter

2.1.1 Velocity Distributions of Galaxies

The first indications for the existence of dark matter were discovered by F. Zwicky in
1933. He observed that the velocity distribution of galaxies in the Coma cluster is greater
than expected. Through the viral theorem, which states that in a closed, bound system
in equilibrium the average kinetic energy is half the potential energy −〈Epot〉 = 2 〈Ekin〉,
it was possible to estimate the total mass of the clusters:

M =
5R

3G
v2 (1)

Through this the ratio of gravitationally interacting to luminous matter in terms
of solar mass M� and luminosity L� was determined for numerous clusters and it was
found that M

L ≈ 300M�
L�

. It was therefore established that most of the matter in galaxy
clusters is dark.

Similar observations were made for individual galaxies in the 1970s where the velocity
distribution of stars outside the visible halo was studied. For these stars a Keplerian
behavior where the velocity drops with 1√

r
was expected. For a large number of measured

galaxies the curve stays flat well beyond the galactic body. This also holds true for the
milky way. To explain those rotational curves non luminous matter is required. The
rotational curve of the M33 spiral galaxy is presented in figure 1 as an example for the
discrepancy between visible and total matter.

2.1.2 Gravitational Lensing

Another hint for the existence of dark matter comes in the form of gravitational lenses.
Gravitational lenses are massive objects which are capable of bending the light trajectory,
thus acting similar to optical lenses. The mass of the object bending the light can be
determined using the deflection angle α and the impact parameter ξ:

M =
αξc2

4G
(2)

In case of strong visible distortion the effect is called strong gravitational lensing.
Without clearly visible distortion it is called weak gravitational lensing. A highly located
strong gravitational lens is called microlens. Through the observation of distortions in
the image of far away objects the gravitational mass between the object and the observer
can be determined. This allows to map the distribution of mass in the universe, even if
it is non-luminous.
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Figure 1: The measured rotation curve of the M33 spiral galaxy with the rotation curve
expected from the visible matter as comparison [3].

One especially good example for non-luminous gravitational matter which was dis-
covered this way is in the so-called bullet cluster, shown in figure 2. The bullet cluster
consists of two well separated merging sub-clusters. Through measurement of the grav-
itational lensing it was found that the distribution of mass mostly coincides with the
individual sub-clusters, but that the visible matter only contributes roughly 2% of the to-
tal mass. A standard baryonic dark matter candidate would be the intergalactic medium
(hot gas mostly consisting of H and He ions). This gas was indeed found using X-ray
observations. This matter only contributes to around 15% of the total mass and is lo-
cated in-between the two subclusters with a visible bow shock in the gas. This is because
the gas separated from the subclusters through friction when they were interpenetrating
each other. Due to the large distance between individual stars they were mostly unaf-
fected in this process. Since the distribution of remaining dark matter coincides with the
subclusters it must have a low self-interaction cross section because it would otherwise
have separated from the clusters through friction.
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Figure 2: Bullet cluster; The x-ray emissions from the intergalactic medium are shown
in pink and the blue overlay represents the mass distribution deduced from gravitational
lensing [4].

2.1.3 Cosmic Microwave Background

In the early universe the temperatures were above the ionization energy of hydrogen and
radiation and matter were in thermal equilibrium. Due to expansion of the universe the
plasma cooled. At a temperature of roughly 3000 K the radiation decoupled and the
universe became transparent. Today this radiation is redshifted to 2.7255 K and called
cosmic microwave background (CMB). It is omnipresent and isotropic to an order of
10−4. However, on the mK-scale the CMB is anisotropic, which is the result of density
fluctuations of the matter at the point of decoupling, roughly 380000 years after the
big bang. Therefore, the CMB represents a snapshot of the universe at that point.
Small overdensities in the primordial plasma lead to a gravitational collapse, where the
matter falls into the gravitational well. This causes the temperature to increase and
with it the radiation pressure rises which counteracts the collapse. Due to this there
were acoustic oscillations and higher harmonics in the plasma which stopped at the
point of decoupling. An analysis of the angular power spectrum of the CMB allows to
draw conclusions about these oscillations and therefore the distribution of matter. Non-
electromagnetic interacting massive matter amplifies the gravitational collapse while it
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does not contribute to the radiation pressure. It therefore leaves a different signature
in the power spectrum than baryonic matter. Through this it was possible to estimate
the content of baryonic and non-baryonic matter. The most common model states that
baryonic matter only contributes around 15% of the total gravitational mass in the
universe [5].

2.1.4 Structure Formation

The size of regions with over-densities depends on the speed of sound in the medium. For
a large speed of sound small over-densities are almost instantly washed out by pressure
changes. Therefore, the speed of sound in the universe before and after decoupling
defines the size of the structures which are able to be formed. Without dark matter
the very high speed of sound in the primordial plasma prevents any structures from
forming before decoupling. This is, however, not consistent with observations. For
a baryon-radiation-plasma the speed of sound is determined from radiation. Thus, any
non-radiating matter reduces the speed of sound. Structure formation in the universe can
therefore be explained through the existence of dark matter. Additionally, the speed of
the dark matter particles also influences the speed of sound and therefore determines the
size of structures which are able to form first. For relativistic moving (hot) dark matter
the larger speed of sound allows very large structures, with the size of superclusters, to
form first (top down scenario). For slow moving (cold) dark matter smaller structures,
like galaxies, form first (bottom up scenario). Since the forming of superclusters is
observed only now the cold dark matter model is heavily favored.

2.2 Dark Matter Candidates

There are many models attempting to explain the particle character of dark matter.
They can be classified into baryonic and non-baryonic matter models. Baryonic matter
is part of the Standard Model of particle physics while non-baryonic dark matter requires
an extension of the Standard Model. Another distinction can be made between cold and
hot dark matter. Cold dark matter refers to particles which move slow compared to
the speed of light while hot dark matter moves at (ultra) relativistic speeds. Cold
dark matter models are favored because of the better agreement of structure formation
predictions with observations.

2.2.1 Baryonic Dark Matter

One explanation for the excess in non-luminous mass in the universe is the existence
of massive compact halo objects (MACHOs). These massive objects consist of normal
baryonic matter and emit little to no light. Common examples include black holes,
neutron stars and brown dwarfs. However, observations show that such objects only
contribute roughly 8% to the galactic mass. Furthermore, large amounts of non-baryonic
mass are needed to explain various measurements, among them CMB observations.
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2.2.2 Sterile Neutrinos

The weak interaction only couples to left-handed particles and right-handed antiparti-
cles. Neutrinos are leptons without an electric charge and do not partake in the strong
and electromagnetic interaction. Right-handed Neutrinos do not interact weakly and
are called sterile neutrinos. In the Standard Model neutrinos are massless. However,
observed neutrino oscillations are only possible if they have mass. The mass term can
then propagate with a different frequency than the flavor eigenstate and the neutrino
can oscillate between states. Massive sterile neutrinos could also explain the extremely
low mass of active (left-handed) neutrinos, compared to other leptons, through an effect
called seesaw mechanism. This effect states that through mass mixing of the Majorana-
and Dirac-massterms the light active neutrino gets lighter as the sterile neutrino gets
heavier. Massive sterile neutrinos are therefore a candidate for dark matter. Conven-
tionally sterile neutrinos are considered hot dark matter. Recently however models have
been found in which they can also act as cold dark matter [6].

2.2.3 Axions

Axions are hypothetical particles which arise from an additional symmetry that was
introduced as a possible solution to the strong CP problem. Axion radiation transports
energy out of stars and supernovae which limits the coupling strength of axions. Axions
are non-thermal produced particles. They can be converted into photons and vice versa
in the presence of a magnetic field, via the so called Primakoff effect. This effect is used
to search for axions, however none were found so far.

2.2.4 Weakly Interacting Massive Particles

Weakly interacting massive particles (WIMPs) is the name for a group of hypothetical
particles which, as their name suggests, only interact through the weak and the gravita-
tional interaction. Depending on the model WIMPs can act as either cold or hot dark
matter. They are currently the most popular dark matter candidate, which is in part
the result of an effect called the WIMP miracle and their prediction through various
extensions of the Standard Model.

The WIMP Miracle

Using the Boltzmann equation it is possible to determine the relic density of a weakly
coupling particle with mass m. The Boltzmann equation in this case is

dnχ
dt

= −3Hnχ − 〈σannv〉
(
n2χ − n2eq

)
(3)

with the Hubble constant H, the equilibrium density neq, the WIMP density nχ and
the average thermal WIMP annihilation cross section 〈σannv〉. The Hubble constant is
needed to account for the expanding universe, which reduces the density over time. For
a relic density, which matches the observed dark matter density today, the Boltzmann
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equation leads to a particle with a mass and cross section in the scale of the known weak
interaction. This alignment is whats referred to as the WIMP miracle.

Prediction Through Supersymmetry

Another argument in favor of WIMPs is the prediction of WIMP-like particles through
supersymmetric extensions of the Standard Model. The minimal supersymmetric model
(MSSM) is an extension of the Standard Model which allows to explain many of the open
questions in modern physics. In MSSM every Standard Model particle has a supersym-
metric partner. In this extension baryon and lepton numbers are no longer conserved
and the supersymmetric partners would have a mass identical to their Standard Model
counterparts. However, baryon and lepton number conservation is tested very precisely,
for example through the lifetime of the proton, which is at least 1033 years. Without
baryon and lepton number conservation the proton would decay fast. Therefore, a new
conserved parity, called R-parity, is introduced, which breaks this symmetry and strongly
suppresses proton decay. As another consequence of this the lightest supersymmetric
particle, the neutralino, cannot decay into Standard Model particles, which would make
it a prime dark matter candidate. Due to their high mass and therefore non-relativistic
behavior neutralinos are cold dark matter candidates. However, supersymmetric theo-
ries are under pressure because of recent particle accelerator experiments, in particular
at the LHC, which have already excluded some supersymmetric models.

2.3 Search for Dark Matter

Due to various astrophysical observations most dark matter models assume particles that
do not partake in the strong or electromagnetic interaction. However, to be successfully
detected dark matter has to interact more than just through gravitation. Therefore, most
dark matter searches focus on detection through interaction of dark matter particles with
Standard Model particles through a weak interaction. The Feynman diagram of this
interaction, shown in figure 3, allows to illustrate three different detection approaches.

2.3.1 Indirect Detection

In indirect searches dark matter is detected through its signature when annihilating
into Standard Model particles. The type and strength of the expected signal is highly
dependent on the properties of the particle as well as astrophysical assumptions. Indirect
search is mostly used to detect WIMP-like particles in the high mass region, where
this detection method is most sensitive. The model for the WIMP freeze-out provides
estimates for the expected cross section and mass. Possible decay channels include all
Standard Model particles, even photons through secondary decays. All regions with
sufficiently high DM density are possible sources for decay signals, for example the
center of the milky way, dwarf spheroidal galaxies outside of the galactic plane or even
the sun. A few interesting signals have been found this way, however due to very large
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Direct detection

Production
at colliders

Indirect
detection

DMDM

SMSM

Figure 3: Feynman diagram showcasing the possible approaches for dark matter detec-
tion.

uncertainties in the astrophysical models or weak signals clear interpretation as dark
matter annihilation was not possible.

2.3.2 Production

Dark matter search through production in particle colliders utilizes the same axis in the
Feynman diagram as indirect detection, but with inverted time. This method is partic-
ularly sensitive for low-mass dark matter particles. Detectors in particle physics utilize
electromagnetic interaction for detection. Since DM does not interact electromagneti-
cally it is only detected indirectly through missing energy. It is also possible to search
for dedicated dark matter decay chains. However, it is not possible to prove the lifetime
of the produced particles and since the lifetime of DM-particles should be in the order
of the age of the universe it is only possible to find DM-particle candidates with this
method. So far no signal has been found using this search strategy.

2.3.3 Direct Detection

If dark matter interacts weakly it can transfer energy and momentum to Standard Model
particles via scattering. According to the models of the dark matter distribution in our
galaxy the earth is located inside a dark matter halo. Therefore, it should be possible
to observe dark matter interactions with earth-based detectors. Since the interaction of
dark matter with Standard Model particles is expected to be very minimal the detectors
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need to be sufficiently sensitive. A model for the expected signal as well as the back-
ground is required to quantify the measurements. The expected signal consists of two
contributions:

• The velocity distribution and density of the dark matter particles at the point of
the detector, which depends on the mass of the particle as well as the distribution
of dark matter

• The strength and type of interaction of the dark matter particles with the detector,
depending on the cross section of the interaction, the mass of the dark matter
particle as well as the detector material

These contributions are explained in more detail in chapter 4.1. The expected dark
matter signal is very small, therefore an effective shielding is required to reduce the
background, which consists of Standard Model particles interacting with the detector.
To distinguish dark matter from Standard Model events many detectors utilize two dif-
ferent detection channels. This allows to distinguish between electromagnetic interacting
Standard Model particles and non electromagnetic interacting WIMPs. However neu-
trons cannot be distinguished this way, therefore special care has to be taken to reduce
and estimate the neutron background. The CRESST experiment is presented in section
3 and serves as an example for a direct dark matter detection technique.

12



3 The CRESST Experiment

The Cryogenic Rare Event Search with Superconducting Thermometers experiment is
located at the Gran Sasso underground laboratory (LNGS) in Italy. The aim is the
direct detection of WIMPs though elastic scattering off nuclei. An introduction into
the experimental setup as well as its capabilities are presented here. A schematic of
the experimental setup as well as the shielding structure and the cooling mechanism is
presented in figure 4.

3.1 Experimental Setup

As a reduction of the background is very important various shielding techniques are
employed to prevent or at least reduce certain backgrounds. The experiment is located
at an underground laboratory inside the Gran Sasso massif where a minimal overburden
of over 1400 m of rock provides shielding against high energy cosmic radiation and muons.
While muons cannot be shielded entirely the muon rate at the detector is only one muon
per hour per square metre, which is equivalent to a reduction in the order of 10−6

compared to sea level [7]. The remaining muons are taged through plastic scintillators
covering almost 99% of the solid angle around the detector. If a detector event coincides
with a muon veto event it is rejected. Most of the remaining radiation comes from
natural radioactivity present in the rock, mainly through decays of 40K, 232Th, 238U
and members of their decay chains. α- and β-radiation are already blocked by thin
layers of metal. However, γ-radiation and bremsstrahlung x-rays, which are emitted
when β-radiation is absorbed, have large penetrating power. Therefore a thick lead
shielding surrounds the detectors, due to its high Z lead is especially capable of stopping
γ-radiation. Unfortunately, radio-pure lead cannot be produced. Therefore, a second
shield consisting of radio-pure copper is installed in order to block radiation from the
lead shielding.

Gaseous 222Rn, which is an intermediate member of the 238U decay chain, is present
in the air of the laboratory and could penetrate to the insides of the shields. To prevent
this, the shields are encased in a gas-tight container, which is under slight overpressure
and constantly flushed with radioactively clean nitrogen gas.

As already mentioned in chapter 2.3.3, neutrons can imitate the signal of WIMPs.
Therefore, the reduction of the neutron background is especially crucial. Because of
its high capability of moderating neutrons hydrogen is used in the neutron shielding
to reduce the energy of free neutrons below the detection threshold. Polyethylene
([–CH2–CH2–]n) with its high hydrogen content is used for most of the neutron shield-
ing. Only in small parts, where installation of polyethylene was not possible, water is
used. A primary shielding of around 50 cm polyethylene is installed around the previ-
ously mentioned lead shielding to moderate external neutron radiation. However, since
neutrons can also be produced further inside of the shielding layers, for example through
the decay of light, through fission of heavy nuclei or through muon interactions, another
polyethylene shielding is installed inside of the experimental volume.
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The experimental volume is cooled to ≤ 10 mK using a commercial 3He/4He dilution
refrigerator. The cryostat is not made out of radio pure materials and is therefore located
outside the shielding layers. The cooling power is transferred to the experimental volume
through a copper rod called ”cold finger”, which also holds the experimental volume in
place.

3.2 Detectors

The detectors used in the CRESST experiment use scintillating CaWO4 crystals as their
target material. As mentioned in section 2.3.3, most modern dark matter detectors utilize
two detection channels to separate particles based on whether they interact electromag-
netically or not. The CRESST detectors are also designed this way and measure energy
deposition using:

• Heating of the crystal through energy deposition caused by elastic scattering of
particles on the atoms of the target material

• Scintillation light emitted when (through scattering) excited electrons relax into a
lower energetic state

Electrically charged particles and gammas predominantly interact with the shell of
the atoms and therefore cause much more scintillation light, compared to the thermal
energy they deposit, than neutral particles, which practically only interact with the
atomic nuclei. Using the ratio of emitted scintillation light to deposited phonon energy
it is possible to determine the type of particle on an event-by-event basis. It has to be
noted that even for gammas, which relatively produce the most scintillation light, only
around 1-2% of the total deposited energy is detected as scintillation light. Therefore,
the phonon energy is used to measure the total energy deposition.

The temperature change caused by a change in phonon energy is approximated as

∆T ' ∆E

C
(4)

Since the expected energy deposition is extremely small a very high resolution in
the thermometer as well as a low heat capacity C is required. For dielectric materials
at low temperatures the heat capacity is proportional to T 3. As mentioned earlier the
detectors are operated at 10 mK, which reduces the heat capacity of the crystal by
around 13 orders of magnitude compared to room temperature. Nonetheless, the change
in temperature is still very small in the order of µK/keV. The thermometer used in the
CRESST detectors to detect this minimal change is a so-called transition edge sensor
(TES). It utilizes the relatively large change in resistance of a material at its transition
point between superconducting and normal state. A transition curve for a TES used in
the CRESST experiment is shown in figure 5. The TES used for the detectors consist of
a thin layer of tungsten which is evaporated onto the CaWO4 crystal and a small heater
used to keep the TES in a stable operating point.
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Figure 4: A drawing of the CRESST setup including the onion-like shielding structure
and the dilution refrigerator.

15



Figure 5: The transition curve of a TES used in detector TUM40 for the CRESST
experiment [8].

The scintillation light is detected through a light absorber with another tungsten
transition edge sensor evaporated onto it. The absorbers are made out of a sapphire wa-
ver with a thin silicon layer. Sapphire is chosen because it absorbs light with wavelengths
similar to those of the scintillation light especially well. If a photon which is emitted as
scintillation light in the detector crystal is absorbed in the silicon-on-sapphire it slightly
heats the absorber, which is measured using the TES. The measured resistance change is
proportional to the total emitted scintillation light. Simplified drawings of the detector
setup for different generations is shown in figure 6.

While there are a large variety of detectors in the CRESST experiment this work
focuses on three detectors chosen specifically because of their characteristic features and
properties. These detectors along with their peculiarities are presented in the following.

3.2.1 Detector TUM40

Detector TUM40 consists of a block-shaped crystal with a height of 40 mm, an edge
length of 32 mm and a mass of 248 g which was grown at Technische Universität München.
It was used in CRESST-II Phase 2. This detector is chosen because of its overall good
properties, namely low background level (3.51 counts

kgd ), low trigger threshold (603 eV) and
good energy resolution for phonon and light detector [9][8].

The measurement data on which the calculations are performed was collected in 2013
with a total exposure of 29.35 kgd (before cuts).
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(a) A schematic representation of a CRESST-II detector with holding clamps, an example for
such a detector would be LISE.

light detector (with TES)
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CaWO4  sticks 
(with holding clamps) 

(b) A schematic representation of a CRESST-II detector with holding sticks, an example for such
a detector would be TUM40.

block-shaped target crystal
(with TES)

reflective and 
scintillating housing

CaWO4 iSticks
(with holding clamps & TES)

light detector (with TES)

(c) A schematic representation of a CRESST-III detector.

Figure 6
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3.2.2 Detector Lise

The Lise detector was also used in CRESST-II Phase 2. It is a commercial crystal
with a mass of 306 g in cylindrical shape with a height and radius of 40 mm. Unlike
TUM40 this detector displays relatively large background levels and the resolution of
the light detector is low. However, the trigger threshold of 307 eV is the lowest for all
phase 2 detectors [10]. Overall this detector behaves quite differently than the TUM40
module and together these two detectors are good benchmark cases for describing the
measurement data.

The data used in this work was collected during CRESST-II Phase 2 with a total
exposure of 52 kgd.

3.2.3 Detector A

The detector A module is a new model of CRESST-III Phase 1. The detector design
was optimized to achieve lower thresholds, below 100 eV, and, therefore, a sensitivity for
even lower dark matter particle masses. Of all new detector modules detector A reaches
the lowest threshold of only 30.1 eV and therefore is the new benchmark for low-mass
dark matter search [11]. Additionally this detector module displays a very low level of
background and has good energy resolution. The CaWO4 crystal of detector A weighs
23.6 g and has a size of 20x20x10 mm..

The data used for the calculations in this work was collected between 10/2016 and
01/2018 with a total exposure of 5.689 kgd.
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4 Calculating an Upper Limit on the Dark-Matter-Particle-
Nucleus Scattering Cross-Section

If no dark matter signal is measured or too weak for a positive discovery one calculates
an upper limit on the cross section on the potential dark matter particle for a given
mass. This is based on the idea that a DM particle with a larger cross section has a
higher chance of interacting with the detector and would therefore lead to a stronger
signal, which at some point is no longer compatible with the measured data. For this
approach a precise estimate of the density and velocity distribution of the potential DM
particles at the point of the detector as well as knowledge of the interaction with the
detector is required, except for the cross-section.

4.1 Calculating the Expected Dark Matter Signal

4.1.1 Dark Matter Distribution

The expected dark matter density and velocity distribution at the point of the detector
can be estimated through astrophysical observations. For DM search experiments the
conventionally used model assumes thermalized DM particles, which follow a Maxwell-
Boltzmann velocity distribution in the galactic rest frame. For a spherical and isothermal
galactic halo the density takes the form:

ρ (r) =
ρc

1 +
(
r
rc

)2 (5)

Using astrophysical observations the expected DM density at Earths position for this
parametrization is estimated as:

ρχ := 0.3
GeV/c2

cm3 (6)

This value is used in practically all DM searches to allow for easier comparison
between experiments

The velocity distribution of the DM particles compared to the galactic rest frame is
given as:

fg (~vG) =
1

N

(
3

2πw2

) 3
2

exp

(
−

3v2G
2w2

)
(7)

where ~vG is the velocity of the particle compared to the rest frame, w is the root
mean square velocity of the WIMP and N is the normalization factor. To determine the
expected DM signal the integral of fg has to be evaluated. The lower integration limit is
defined through the minimal velocity vmin for which a DM particle can induce a nuclear
recoil with a recoil energy of ER on a nucleus N :
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vmin =

√
ERmN

2µ2N
(8)

The upper limit is determined through the galactic escape velocity vesc over which
nothing is expected to remain in the galactic halo. Therefore, no DM-particles with a
speed higher than the escape velocity are expected to be measured. A value of 544 km/s
for the escape velocity is used in this work. Using this, the normalization factor can be
determined:

N = erf (z)− 2√
π
z exp

(
−z2

)
with z2 :=

3v2esc
2w2

(9)

The velocity of the earth relative to the galactic rest frame v⊕ has to be taken
into account. This is an overlap of earth’s annual travel around the sun and the suns
movement around the galactic centre.

v⊕ (t) = 220

[
1.05 + 0.07 cos

2π (t− t0)
1yr

]
km

s
(10)

With this the integral can be determined for the masses expected in the CRESST
experiment. Since measurements are conducted over a timespan in the order of a year the
annual modulation can be neglected. Only the final result is presented here, a derivation
can be found in [12].

I (vmin) =
1

Nη

(
3

2πw2

) 1
2
(√

π

2
[erf (xmin − η)− erf (xmin + η)]− 2η exp

(
−z2

))
(11)

with

η2 :=
3v2⊕
2w2

(12)

x2min :=
3v2min
2w2

=
3mNER
4µ2Nw

2
(13)

For w the standard value of 270 km/s [13] is used.

4.1.2 Interaction of Dark Matter Particles with the Detector

WIMPs only interact with regular matter via weak and gravitational interaction and are
immune to electromagnetic interaction. Therefore, they only interact with the nuclei of
the detector material. This interaction is described using a form factor which corresponds
to the Fourier transformation of the nucleus density. For DM experiments the most
common parametrization for the nucleus density is the one proposed by Helm [14], which
assumes a constant core density convolved with a Gaussian function that models the
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decreasing density at the edge of the core. This model however is too simple, especially
for heavy nuclei. For this reason, a more sophisticated model was used.

For Calcium and Oxygen so-called model-independent form factors are used. They
have been proposed by G. Duda et al. [15] and postulate the density as a sum of N
Bessel functions. This leads to a form factor of:

F (q) =
sin(qR)

qr

N∑
v=1

(−1)vav
v2π2−q2R2

N∑
v=1

(−1)vav
v2π2

(14)

A suitable choice for N as well as the parameters av and radius R have been deter-
mined for 16O and 40Ca in [15], however for tungsten no such parameters exist.

Therefore, a different form factor is chosen for tungsten, namely the Woods-Saxon
form factor:

ρ(q) =
ρc

e
r−c
a + 1

(15)

for which dedicated parameters exist for 184W:

a = 0.535fm, c = 6.51fm (16)

For this parametrization no analytical Fourier transformation is possible, which would
require a slow numerical convolution for every recoil energy q. To avoid this the form
factor is precalculated for recoil energies between 0.1 and 300 keV and then interpolated
using splines of order 1. This interpolation is then used to estimate the form factor for
any recoil energy. The impact of form factors is much stronger for higher recoil energies,
therefore form factors play only a minor role in low-mass DM search.

4.1.3 Differential Recoil Rate

Using these properties the differential recoil rate can be calculated:

dN

dE
=

ρχ
2mχµ2N

σχF
2(ER)I(vmin) (17)

This can be compared to the measured data to calculate an exclusion limit using e.g.
the following methods.

4.2 Yellin’s Optimal Interval Method

This method was proposed by Yellin [1] [16] as a way to calculate exclusion limits despite
the presence of an unknown background by utilizing the difference in distribution of the
expected signal to the measured background to find an exclusion limit.

In the following it is assumed that measured events are distributed along an 1D-
intervall. Furthermore, the distribution consists of the signal for which the shape of
the expected signal but not the total intensity is known, a known background for which
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the shape and size is known, and an unknown background. In the case of the CRESST
experiment the 1D measured data is the number of events along the energy axis. The
dark matter signal is distributed according to the differential recoil rate in equation
17 and the number of expected events is determined by the DM-particle-nucleus cross
section as well as the exposure. The background consists of electron, gamma, alpha and
neutron events. In this case these contributions are not included as known background
in Yellin’s optimal interval mode.

The ”maximum gap” method utilizes the gap between events along the horizontal
axis to calculate a limit. The size of the gap between two measurement points Ei and
Ei+1 is defined by the expected number of events in that interval:

xi =

∫ Ei+1

Ei

dN

dE
dE (18)

The maximum gap method now increases the intensity of dN
dE until the largest gap

reaches a size where, with a given probability, it is no longer compatible with the obser-
vation. Vividly said the number of expected events in that gap is increased until, under
a certain probability, it is no longer possible to receive the given measurement result.
The probability for a gap smaller than the observed one only depends on the size of the
gap x and the expected number of events in that region µ:

C0 (x, µ) =

bµxc∑
k=0

(kx− µ)k e−kx

k!

(
1 +

k

µ− kx

)
(19)

In this case the sought after confidence for the upper limit is 90% and dN
dE is increased

by increasing the DM cross section σχ. Since dN
dE is directly proportional to σχ at any

point E, σχ is also directly proportional to x and µ.
For a high density of events the intervals between data points get relatively small,

which requires a larger dN
dE to reach an exclusion limit. In this case it is useful to use

intervals over which there are especially few events instead of restricting it to none.
Cn (x, µ) now corresponds to the probability that all intervals with ≤ n events have ≤ x
expected events for a given dN

dE and no background. For n > 0 it is not analytically
determinable, but can be tabulated using Monte Carlo simulations. Cn can then be
used the same way as C0. To avoid an arbitrary choice of n, which could lead to skewed
results, Yellin [1] proposed an automatic choice for n.

The largest possible intervals are those with an event or the bounds of the exper-
imental range right before its starting-point and right after its endpoint. Cn is now
calculated for all of these intervals and the largest Cn of these intervals is called CMax.
For an experiment with N events this requires an evaluation of (N+1)(N+2)

2 intervals. The
function C̄Max (C, µ) is now defined in a way that for a fraction C of random experiments
with no unknown background CMax < C̄Max (C, µ). This guarantees that C̄Max (0.9, µ)
always equals at least the 90% confidence level upper limit.
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4.3 Extended Maximum Likelihood Method

The optimum interval method is one dimensional and utilizes the different shape of
the energy spectrum in the measured data compared to the expected spectrum dN

dE . In
CRESST, however, the data are available in two dimensions, namely the energy and the
light energy. While this property is also used to cut background events from the data
used in Yellin’s method it enables the use of a maximum likelihood method. It should
be noted that, it is also possible to use the optimal interval method in two dimensions
[7] or apply a one dimensional likelihood formalism.

4.3.1 The Likelihood Function

The likelihood of a set of parameters for a given model describes the plausibility that
these parameters describe the given data. It is therefore strongly connected to the
probability which describes the plausibility of an outcome for a given set of parameters.
Simply put, the likelihood function is the inverse of the probability function in the sense
that:

L (θ|O) = P (O|θ) (20)

where O is the set of observed data and θ is the set of parameters for the model. P is
the discrete probability of observing O for the parameters θ. The likelihood function L is
the plausibility of θ fo the given dataset O. This is also applicable for a (non-normalized)
density function ρ (O|θ).

In this case the likelihood function can be seen as the product of the evaluation of
the density function ρ at each individual datapoint Oi over all N datapoints:

L (θ|O) =

N∏
i=1

ρ (Oi|θ) (21)

4.3.2 Handling Non-Normalized Distributions - The Extended Likelihood

The maximum likelihood method maximizes the likelihood function L by finding those
parameter values θ for which the model best describes the observed data. If the density
function ρ is not normalized, but the normalization depends on the parameters θ, it is
possible for the likelihood to increase indefinitely. To avoid this, the likelihood formalism
can be expanded to include the number of expected events. This is called extended
likelihood method. If the number of observed events N is, according to the model, a
Poisson distributed random number with mean ν the extended likelihood function can
be written as [17]:

L (θ|O) = e−ν
N∏
i=1

νf (Oi|θ) = e−ν
N∏
i=1

ρ (Oi|θ) (22)
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In this case f (Oi|θ) is a normalized density function and ρ (Oi|θ) is a distribution with
norm ν.

ν =

∫
A
ρ (X|θ) dX (23)

This introduces a penalty if the number of expected events deviates from the number of
actual events in the data.

4.3.3 Considering Machine Precision - The Logarithmic Likelihood

Due to the finite precision in the representation of real numbers on computers a mul-
tiplication over many values with varying size might lead to a quite significant error.
The accumulation of error can be considerably reduced by using the logarithm of the
likelihood and adding up the individual contributions.

ln [L (θ|O)] = ln

(
e−ν

N∏
i=1

ρ (Oi|θ)

)
= −ν +

N∑
i=1

ln [ρ (Oi|θ)] (24)

4.3.4 Calculating an Exclusion Limit

The likelihood can now be used to calculate an exclusion limit on the dark matter cross
section depending on its mass. The number of expected events is directly proportional
to the DM cross section σχ. For a given measurement it is possible that the true dark
matter signal fluctuates up- or downwards, resulting in the observed number of events.
In the context of this work the 90% upper exclusion limit describes the value of σχ,excl
for which, under a given measurement, the true value of σχ is smaller with a probability
of 90%. Another way to interpret this is that for 90% of experiments the calculated
upper exclusion limit is above the real cross-section.

This is also known as the p-value in statistics which describes the probability that,
assuming the model is true, the measurement is equal to or greater than a certain value.
For a general pdf ρ (x) p is the integral of ρ over the region from n to ∞:

p =

∫ ∞
n

ρ (x) dx (25)

For Gaussian distributed random events this corresponds to:

p =

∫ ∞
n

1√
2πσ

e−
(x−µ)2

2σ2 dx =
1

2

[
1− erf

(
(n− µ)2

2σ2

)]
(26)

Where erf is the error function. The next step is to calculate the p value from the
likelihood. The p value thus needs to be converted to the significance Z:

Z = Φ−1 (1− p) (27)

Φ is the cumulative of the distribution and Φ−1 is known as the quantile of the
distribution. For the standard Gaussian distribution Φ−1 takes the form:
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Φ−1 (p) =
√

2 erf−1 (2p− 1) (28)

A visualization of Z and the p value for a Gaussian distribution can be seen in figure 7

Figure 7: A visualization of the relation between the Z and the p value for a Gaussian
distribution. A Z value of 1 corresponds to a (right-sided) p value of 0.1587 which is the
integral of the (normalized) distribution from µ+ (Z ·σ) to infinity, where µ is the mean
and σ the standard deviation of the distribution (0 and 1 respectively for this plot). The
figure is taken from [8] and follows the formalism used by Cowan et al. [18].

To calculate the pdf ρ the likelihood ratio λ is established, using θ =
(
mχ, σχ, ~ϑ

)
.

This ratio is also referred to as profile likelihood:

λ (mχ) =
L
(
mχ, σχ,excl, ~ϑexcl|O

)
L
(
mχ, σχ,best~ϑbest|O

) =
Lexcl
Lbest

(29)

σχ,excl corresponds to the exclusion and σχ,best to the optimal value for the DM cross
section. Using λ the parameter q can be calculated:

q =

{
−2 ln (λ (mχ)) λ > 0

0 λ < 0
(30)

which is a measure for the compatibility of the σχ,excl model with the measurement
data with the best model σχ,best as reference. The higher q the higher the incompatibility
between the two models. q is usually distributed according to a χ2-distribution (note
that in this case χ is not the one used to reference a potential DM particle). Z can be
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calculated directly from q if q follows a χ2-distribution. This cannot be assumed a priori
and is examined in section 7.2.

Z ' √q (31)

Using equations 29, 30 and 31 the likelihood value for the exclusion limit can be
calculated:

Z =

√
−2 ln

(
Lexcl
Lbest

)
(32)

for the logarithmic likelihood this equates to:

Z =
√
−2 [ln (Lexcl)− ln (Lbest)] (33)

This is solved for ln (Lexcl):

ln (Lexcl) = ln (Lbest)−
Z2

2
(34)

The Z value for a probability of 90% is 1.282.

4.3.5 Discovery Calculation

Another advantage of the likelihood formalism is the capability of a discovery calculation.
This is done the same way as for an exclusion, except the best fit is compared to the null
hypothesis where no dark matter signal is expected at all. In this case q corresponds
to the compatibility of the null hypothesis with the data compared to the best fit. Z
corresponds to the probability that the null hypothesis cannot explain the data compared
to the best fit model with dark matter and p corresponds to the discovery probability
(assuming a correct model!).

Z =

√√√√√−2 ln

 L
(

0, 0, ~ϑnull|O
)

L
(
mχ, σχ,best, ~ϑbest|O

)
 (35)

In addition to the much higher probability needed for a successful discovery unknown
backgrounds might mimic the signal and make the discovery more difficult. This could
lead to a false discovery or a discovery with a higher significance than in reality. In
comparison for an exclusion limit an unknown (or not considered) background similar
to the signal results in a weaker limit which is a conservative approach.
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5 Parametrization of the Measurement Data

As already mentioned in section 3.2 the CRESST detectors measure the signal in two
observables, the phonon energy and the scintillation light. A 2D plot of datapoints mea-
sured by a CRESST detector is shown in figure 8. To apply the likelihood formalism to
the measurement data a suitable model for the distribution of events is required. Such
a parametrization is presented here. It is based on an already existing parametrization
[8][19] with added improvements for better agreement of the model with the data. Ad-
ditionally, earlier implementations of a likelihood fit required an acceptance region while
this implementation does not. Another improvement is the possibility to include neutron
calibration data into the fit, which allows to better constrain the model and therefore
put sharper limits on the cross section.
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Figure 8: A 2D scatter plot of the detector A measurement and neutron calibration
data.

5.1 The Electron-Gamma-Band

5.1.1 Parametrization of the Mean Line

Even with all the shielding described in section 3.1 most of the measured data still orig-
inates from gamma or beta background mainly from radioactive decays. The detectors
are calibrated in a way that the light-yield (LY), LY = L

E , of a 122.1 keV gamma peak
from a 57Co source is LY = 1. Due to this calibration the mean of the electron-gamma-
band is roughly at a light yield of 1. This is described using a linear function, this and
the following equations all use energy (E) and light (L):
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Le(E) = L0E (36)

However, since the scintillator does not behave perfectly linear a quadratic term is
introduced to better describe this behavior, especially at higher energies.

Le(E) = L0E + L1E
2 (37)

At lower energies a saturation effect known as scintillator non-proportionality bends
the electron band towards lower light yields [20][21]. This is taken into account using an
exponentially decaying factor. Therefore, the complete description of the mean of the
electron band is:

Le(E) =
(
L0E + L1E

2
) [

1− L2 exp

(
− E
L3

)]
(38)

This function is shown together with the measurement data in figure 9.
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Figure 9: The 2D plot of figure 8 overlaid with the electron band mean light function.

In a first approximation this parametrization can also be used to describe the mean
of the gamma-band, as was done in earlier versions of the likelihood fit. This, however, is
only a rough approximation since a γ-photon, which interacts with the detector material,
produces multiple secondary electrons, each with energies lower than the initial photon.
Since the scintillation does not behave perfectly linear the sum of the emitted light from
the individual electrons is not identical to the light a single electron with the same total
energy would emit [21]. Therefore, the mean of the gamma-band is slightly quenched
compared to the electron band. To describe this behavior two different phenomenological
approaches have been implemented for the first time.
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The first one is a simple linear quenching factor multiplied with the mean of the
electron band:

Lγ(E) = Le(E) [Qγ,1 + EQγ,2] (39)

The second method attempts to stay more true to the underlying mechanism by
evaluating the electron band mean function at a lower energy. This is again accomplished
using a linear function:

Lγ(E) = Le (E [Qγ,1 + EQγ,2]) (40)

The idea behind this second approach is that multiple secondary electrons, which are
emitted by an initial phonon, have lower individual energies and therefore a lower light
yield due to the stronger impact of the non-proportionality effect, which can be approxi-
mated by evaluating the electron band at a lower energy. Both of these approaches have
been implemented and both performed well. A comparison of the two can be found in
section 7.1.

5.1.2 Width of the Bands

The phonon and light detectors have a finite resolution, therefore, the measured data-
points deviate from the mean line. Since the phonon signal is stronger compared to the
scintillation light signal the resolution of the phonon detector usually is much better.
Therefore, the width of the bands is described in terms of light. This is accomplished
using a Gaussian function. The mean is defined by the functions 38 and 39 or 40. The
width σL is influenced by 3 effects [7]:

1. Uncertainties due to baseline noise in the light detector. This manifests as an
energy-independent width σL,0.

2. The number of scintillation photons produced can also fluctuate due to the finite
energy required to produce a single photon. This effect is expected to be propor-
tional to

√
L and described with S1.

3. Other light energy dependent uncertainties, for example a position dependance in
the crystal, are considered using a parameter S2

Together these three factors describe the total resolution of the light detector:

σL (L) =
√
σ2L,0 + S1L+ S2L2 (41)

Even if the influence of the phonon detector resolution σP is small compared to
the light detectors it cannot be neglected. Therefore, a parametrization for the phonon
detector resolution is implemented. Just like the light detector resolution it consists of an
energy-independent resolution σP,0 caused by the baseline noise and a term σP,1 which
scales with

√
E. This parametrization describes the behavior of the phonon detector

well. Therefore, the total phonon detector resolution is:
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σP (E) =
√
σ2P,0 + σP,1E (42)

Since the width of the band is described in terms of light, the phonon resolution does
not directly affect the width but has to be scaled with the slope of the corresponding band
dLx

dE at that point. In previous iterations of likelihood fits this slope was approximated
with 1 for the electron-gamma band and for quenched bands the quenching factor was
used as slope. While this is a fairly good approximation for higher energies, where the
band behaves very linear, it is not valid at lower energies, where the non-proportionality
effect bends the electron- and gamma-bands. For energy-dependent quenching factors
this is also not an ideal approximation. For that reason the analytical derivation of the
electron band mean line was calculated and used as slope for that band:

dLe
dE

(E) =

(L0E + L1E
2
) L2 exp

(
− E
L3

)
L3


+

[
(L0 + 2L1E)

(
1− L2 exp

(
− E
L3

))] (43)

Since the gamma-band is expected to be very similar to the electron band the same
derivation is chosen, but with the quenching factor applied in the same way as it is done
for the mean line. Meaning that for the linear light quenching the slope is just scaled
while for the energy quenching the slope is evaluated at the same quenched energy as
the mean line. For these implementations the slope of the quenched band is:

dLγ
dE

(E) ' [Qγ,1 + EQγ,2]
dLe
dE

(E) (44)

or
dLγ
dE

(E) ' dLe
dE

(E [Qγ,1 + EQγ,2]) (45)

With these slopes the total width of the bands in terms of light can be written as:

σx (E) =

√
σL (Lx (E)) +

dLx
dE

(E)σP (E) (46)

With Lx (E) being the mean line function of the corresponding band. The electron band
with the upper and lower 90% line for the detector A data is shown in figure 10.

5.1.3 Excess Light Events

In the measured data there is an abundance of events with a higher light yield than
expected for electron- or gamma-events. These events are called excess light events and
might arise from electrons which produce additional scintillation light in the foil, which
surrounds the detector, before they are absorbed in the detector crystal [8].

An empirical model for these events was developed by J. Schmaler [7]. Excess light
events are more frequent at lower energies E and decrease in frequency with higher en-
ergy. This is modeled by an exponential decrease with an amplitude of Elamp at origin
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Figure 10: The 2D plot of figure 8 overlaid with the electron band mean light function
and the upper and lower 90% lines, 80% of all electron events are expected to occur
between the two dashed lines.

and a decay length of Eldec. In the original implementation of Schmaler a fraction of the
electron-gamma-events Xel was used instead of the independent amplitude Elamp. How-
ever, since the gamma-peaks do not contribute to the abundance of excess light events
an independent definition is more sensible, in particular for the current crystals. For the
distribution of events along the light axis another exponential decay, with a decay length
of Elwidth, was used. This time, however, the decay is not starting at origin but at the
mean line of the electron band. This does not account for the resolution of the detector.
For this reason J. Schmaler convolved this distribution with the Gaussian resolution of
the detector. With this the total parametrization of the excess light distribution is:

ρexcess (E,L) = Elamp exp

(
− E

Eldec

)
·

(
1

2Elwidth
exp

(
− L

Elwidth
+

(σL,e)
2

2El2width

)
·

[
1 + erf

(
L√

2σL,e
−

σL,e√
2Elwidth

)]) (47)

Where σL,e is short for the resolution of the detector at the mean line of the electron
band σL [Le (E)]

5.2 Nuclear Recoil Bands

Nuclear recoils, which originate from neutrons or potentially dark matter particles in-
teracting with the nuclei of the detector atoms, emit far less scintillation light than
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electromagnetic interactions of the same energy. In addition, the amount of scintillation
light produced also depends on the type of atom which partakes in the interaction. The
standard CRESST detector crystals are made out of CaWO4, which contains three dif-
ferent chemical elements. Therefore, for the CaWO4 detectors there is a total of three
nuclear recoil bands, one corresponding to each chemical element. Since the nuclear
recoil bands do not display the non-proportionality effect, the parametrization of the
electron band mean line without the non-proportionality correction, see equation 37,
is used as basis for the description of the nuclear recoil bands. An energy dependent
quenching-factor is applied to this parametrization to produce the mean line of the nu-
clear recoil band. This description is based on the work of R. Strauss et al. [22], however,
it was converted to use a quenching factor as basis of the energy dependent description
instead of the light yield at infinite energy. The mean line can therefore be written as:

Lx(E) =
(
L0E + L1E

2
)
·QFx ·

[
1 + fx exp

(
− E
λx

)]
(48)

Where x represents the chemical element to which the band belongs.
One key discovery by Strauss et al. was that the energy dependent quenching factor

is the same for each detector, but scaled with a factor ε which is individual for each
detector. This means that QFx, fx and λx can be generally determined for all detectors.
This was done by Strauss et al. and the values they determined for the oxygen, calcium
and tungsten bands are:

QFx fx λx
O 0.0739± 0.000019 0.7088± 0.0008 567.1± 0.9

Ca 0.0556± 0.00073 0.1887± 0.0022 801.3± 18.8

W 0.0196± 0.0022 0 ∞

Therefore, the complete description for the mean line of the nuclear recoil band is:

Lx(E) =
(
L0E + L1E

2
)
· ε ·QFx ·

[
1 + fx exp

(
− E
λx

)]
(49)

With the QFx, fx and λx values from the earlier table.
For these bands the resolution of the detectors is applied in the same way as for

the electron band, again with an analytical derivation dLx
dE as slope. The nuclear recoil

bands along with the measurement and neutron calibration data of detector A is shown
in figure 11.

5.3 Description of the Energy Spectra

Now that the band structure is introduced a description for the energy spectra dNx
dE

of the bands is required. For excess light events the differential recoil rate is already
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Figure 11: The 2D plot of the measurement and neutron calibration data of detector A
overlaid with the nuclear recoil band description. The solid lines are the mean lines of
the bands and the dashed lines represent the upper and lower 90% lines. The oxygen
band is displayed in red, the calcium band in purple and the tungsten band in green.
The lower 90% line of the electron band is shown in black and demonstrates the overlap
of the bands at low energies.

included in equation 47. This leaves the spectra of the electron-, gamma- and neutron-
backgrounds as well as a description for the dark matter signal and the signal of the
neutron calibration.

5.3.1 Dark Matter Rate

The expected energy spectrum for the potential dark matter signal is already established
in equation 17. However, this does not account for the phonon detector resolution. The
resolution of the detector blurs the dark matter spectrum and also allows true energies
which lie below the threshold to get detected. This is taken into account by numerically
convolving the dark matter energy spectrum with a Gaussian function with the width
σP . This is done for recoil energies down to six times the resolution σP away from the
threshold. Since calculating the numerical convolution for every data and integration
point is very time consuming, the dark matter spectrums are pre-calculated for a number
of points and then a spline interpolation of order 4 is used to approximate the spectrum.
In total 1000 points are used in this interpolation and the density of points is higher for
lower energies since the spectrum displays sharper features in that region.
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This method is not entirely correct. Therefore, for the newer detector A of run
34 a simulation for the resolution and cut-efficiency1 replaces this convolution. The
simulated data consists of the induced true energy, the measured energy and whether the
event survives the cuts. With this data and the calculated spectrum

dNχ
dE the expected

measured spectrum can be constructed. This is done by evaluating the dark matter
spectrum at the induced energy and then adding this amplitude to bins according to
the measured energy, if the event survives. The bins are then renormalized to account
for the number of simulated events and a spline interpolation is used to construct the
spectrum from the bins. The impact of the simulated cut-efficiency in comparison to the
convolution is studied in more detail in chapter 7.7.

5.3.2 Electron Rate

For the energy spectrum of the electron band a linear spectrum in the form dNe
dE =

P0 + EP1 was chosen initially. Many detectors exhibit a sharp increase in events at
the lower end of their detection range, which as long as there are detectors with a
similar or lower threshold without an increase with similar energy dependence, cannot
originate from a dark matter signal, which has to have the same energy dependance in
all detectors. Therefore, an exponentially decaying term was introduced to the energy
spectrum to describe this behavior. Thus, the complete parametrization of this spectrum
is:

dNe

dE
= P0 + EP1 + Fe exp

(
− E

De

)
(50)

Due to the high overlap of the electron band with the nuclear recoil bands at lower
energies this exponential function can, to some degree, mimic the shape of the dark
matter signal. Therefore, special care has to be taken when using this parametrization.
This will be further discussed in chapter 7.5.

5.3.3 Gamma Rate

Practically all measured gamma-events originate from radioactive decays inside of the
shielding, most from the detector crystal itself. Therefore, the energy of the measured
gamma-events should correspond to the characteristic energies of the associated radioac-
tive decays. These measured energies slightly deviate from the real energy due to the
resolution of the phonon detector. This is modeled using Gaussian functions with the
peak position Mx as mean and the phonon resolution σp (Mx) as width. The intensity
of the peak is incorporated using an amplitude Cx. Therefore, the parametrization for
each gamma peak is:

1The goal of the raw data selection is to filter false events from the data. However, this also filters some
potential signal events. The chance for a signal events to survive this cuts is called cut-efficiency. The
cut-efficiency is energy-dependent and can be measured by injecting artificial signal events (simulated
events) and measuring fraction of events surviving the cut [8].
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dNγ,x

dE
=

1√
2πσp (Mx)

exp

(
−(E −Mx)2

2σ2p (Mx)

)
(51)

5.3.4 Neutron Rate

One special feature of the program developed in this work is its capability to include
neutron calibration data into the likelihood function which allows a better fit and agree-
ment of the model with the actual detector behavior. For this reason a description of
the differential recoil rate for these type of events is required. The rate of the neutron
calibration signal as well as of the neutron background are modeled as an exponentially
decreasing function:

dNn,x

dE
= An,x exp

(
− E

Ndecay,x

)
(52)

This implementation is based on previous implementations of a likelihood fit [19].
Since the number of expected neutron background events in the measured data is very

small, usually less than 0.1 events per kgd of measurement data, it is not sensible to fit the
energy dependence to the background data. Instead, the same energy dependance is used
for the nuclear recoil spectrum in the neutron calibration data as well as for the spectrum
of the neutron background. Only the amplitudes An,x are determined separately. Since
the neutron calibration is performed with an AmBe source and the background neutrons
are a mix of source-like and muon-induced neutrons the energy spectrum of the neutron
background can vary a lot from the spectrum in the calibration, but due to the very
low number of neutron background events this approximation has to be made. In the
future Monte Carlo simulations could replace this implementation and lead to a further
improvement of the description. To avoid an overestimation of the neutron background,
which would reduce the number of events identified as dark matter interactions and
therefore lower the exclusion-limit, the number of neutron events determined by the
fit is brought into relation to the expected number of neutron events via a Poisson
distribution. The Poisson distribution is included in the likelihood function.

5.4 Construction of the Density Functions

The band structure as well as the energy spectra are now established. With this the
distribution functions ρx of the individual contributions to the total event distribution
in the measurement data is constructed. Except for the excess light distribution, which
was already introduced in equation 47, all event distributions consist of a normalized
Gaussian function around the corresponding mean line Lx with the width σx. This is
then multiplied with the related energy spectrum dNx

dE to describe the expected number
of events associated with that band. With this the distribution functions can be written
as:
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ρx (E,L) =
dNx
dE (E)
√

2πσx (E)
exp

(
− [L− Lx (E)]2

2σ2x (E)

)
(53)

There are a total of five density functions: ρe for the electron background, ργ fo the
gamma background, ρnb for the neutron background, ρns for the neutron signal in the
neutron calibration and ρχ for the dark matter signal. The density functions describing
the nuclear recoil bands, namely ρnb, ρns and ρχ, actually consist of three separate
density functions, one for each chemical element in the detector material, which are
summarized into one density function. With this the two total density functions, which
are used in the likelihood fit, can be constructed. Two density functions are needed
since there are two data-files, one from the neutron calibration and one from the actual
measurement. The total density function for the measurement is:

ρm = ρe + ργ + ρnb + ρχ (54)

And the one for the neutron calibration:

ρncal = ρe + ργ + ρns (55)

In theory the density functions ρnb and ρχ should also be included in the neutron
calibration, but since the exposure of the neutron calibration is extremely low they can
be neglected. The description of the band structure is the same in both density functions,
only the existence of a dark matter spectrum and the amplitude of the neutron spectrum
varies between the two. Therefore, using both datasets and thus both density functions
the quality of the fit should improve significantly. Since there are very few events in the
nuclear recoil bands in the measurement the inclusion of the neutron calibration should
be especially beneficial to the description of these bands. This is validated in chapter 7.3.
Newer detector modules, e.g. detector A of run 34, display very few electron background
events in the measurement data, which makes it harder to find the correct parameters.
Therefore, for these detectors the neutron calibration with more events also improve the
fit.
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6 Minimizer Algorithms

The parametrization of the bands and the energy spectra require a large number of
parameters. Currently, there are 12 detector-independent parameters, for example the
ones describing the energy-dependent quenching factors. In the current model another 41
parameters are required for the description of each detector. Although not all parameters
are free, for example the exposure is known for each detector, the parameter-space for the
fit is large. Furthermore, due to the complexity of the problem the function is expected
to have multiple local minima. To cope with this, 5 minimizer algorithms are included
in the fit program. The optimization algorithms are part of two packages available for
the Julia programming language. The first is called Optim.jl package [23], which is
written entirely in Julia and includes a variety of algorithms for uni- and multivariate
optimization. A total of four algorithms from this package are implemented into the
program: Nelder-Mead, particle swarm, conjugate gradient and Brent’s method. The
second package is called BlackBoxOptim.jl [24]. It focuses on global optimization of
not-differentiable functions. For this it provides (meta-)heuristic/stochastic algorithms.
The differential evolution method provided by this package is used in the program. Each
algorithm has different strengths and weaknesses and is therefore best used in specific
situations. In the following a short overview of the methods is presented along with a
guideline when they are best applied. For a more detailed description see the individual
references.

6.1 Nelder-Mead

The Nelder-Mead method, also known as downhill simplex method, is a direct search
method, which was first proposed by Nelder and Mead [25]. It does not require a
gradient, instead it evaluates the function at various points in the search space, this
forms a simplex. The algorithm then iteratively replaces the worst point with a better
one. To do this, the algorithm can either reflect, expand, contract, or shrink the simplex.
This is governed by four parameters, one for each type of operation: α for the reflection,
β for the expansion, γ for the contraction and δ for shrinking. The parameters proposed
by Nelder and Mead are:

α = 1, β = 2, γ =
1

2
, δ =

1

2
(56)

However, a more sophisticated parameter choice, which takes the dimensionality n
of the problem into account, was proposed by Gao and Han [26]:

α = 1, β = 1 +
2

n
, γ = 0.75 +

1

2n
, δ = 1− 1

n
(57)

this parametrization is used for the algorithm. The initial simplex is constructed as a
(n+ 1) dimensional vector filled with n dimensional vectors which are constructed using
the start values ~x.

This algorithm is very stable and converges to a very exact minimum, however, it
requires a starting guess and there is the risk of only finding a local minimum. Therefore,
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this method is best suited as a final step when the initial starting point is already pretty
close to the expected global minimum.

6.2 Particle Swarm

Particle swarm optimization refers to a group of optimization algorithms which utilize a
population of candidate solutions. This population can move around in the search space
to find the optimal solution. It is a metaheuristic method and, like the Nelder-Mead
method, requires no gradient. This method takes inspiration from flocks of bird searching
for the optimal feeding or sleeping location. Each individual particle moves around the
search space with a certain velocity. This velocity is influenced by the current position
of the particle in relation to the optimal solution found by this particle, the optimal
solutions found by the nearest particles as well as the global best positions.

Various implementations of this concept exist. The one used in this work is called
”Adaptive Particle Swarm Optimization” and was developed by Zhan et al. [27]. In this
implementation each particle can undergo one of four evolutionary states: exploration,
exploitation, convergence or jumping out. The jumping out state allows the best particle
to move away from its current state which is assumed to be a local optimum. This
improves the ability to find a global optimum at the cost of convergence speed.

Due to the nature of this method finding an exact minimum is very slow, however,
it is very efficient at finding solutions close to the optimal value. Additionally, it is
possible to provide the algorithm with an initial guess for the optimal solution, which
can significantly speed up the convergence. Therefore, this method is best suited to
find a good estimate of the global minimum when a very rough estimate already exists.
Usually, the minimum found by this method is only larger by 0.0001% compared to
the best minimum. The convergence speed is very sensitive to the size of the search
space. Therefore, it is very beneficial to provide a good choice for the region in which
the optimal parameter values are expected.

6.3 Differential Evolution

The differential evolution (DE) method has similarities to the particle swarm optimiza-
tion, both are population-based search strategies, however, it is not inspired by a biolog-
ical model. An advantage of the DE method over other evolutionary algorithm is that
the distance and direction information from the current population is taken into account.
Between generations the population can undergo mutation and crossover operations. In
DE algorithms mutation is always applied first to generate a trial vector which is then
used in the crossover to create the offspring. Also mutation step sizes are not based on
any pre-known assumption.

Simply said, the mutation process allows the candidate solutions to vary and the
crossover operator then attempts to combine these candidate solutions in order to find
a better solution.

The DE method used in this work is called DE/rand/1/bin. ”rand” refers to the
random selection of the target vector from the current population. The target vector is
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used in the mutation operation to produce trial vectors. This leads to a good diversity in
the candidate solutions, which improves the global convergence. However, this also yields
a slower convergence speed compared to a methodical selection of the target vector. The
number, in this case 1, gives the total number of difference vectors which are used for
the determination of the magnitude and direction of the step size. Finally, ”bin” refers
to the binomial crossover, where the crossover points are randomly selected from the set
of possible crossover points. An acceptance probability pr governs the probability that a
crossover point will be included. For a higher pr more points from the trial vector will be
used in the construction of the new candidate solution, while for a lower pr more points
from the previous generation remain. The algorithm uses radius limited sampling. For
a more detailed explanation of this method see [28].

This algorithm does only require a search region instead of a starting point. While
it initially converges very fast the precise convergence is pretty slow. The method also
often converges only to a local minimum. It is therefore best used as a first step to create
an initial estimate for the minimum from which a second algorithm takes over.

6.4 Conjugate Gradient

The conjugate gradient method is an iterative method for solving large systems of linear
equations. It can be seen as an upgraded version of gradient descent which, for exact
computation, converges in n steps, where n is the dimensionality of the problem. As the
name already suggests it requires the gradient of the function to be minimized. However,
it is not possible to calculate an analytical gradient of the likelihood-function since it
depends on the measured data-points. Therefore, to use this method the gradient of
the function has to be calculated numerically, which is slower and less precise. This
further slows down the convergence. Additionally, this method also only converges to
local minima. Because of these drawbacks the method is hardly used in this work, but
due to its popularity and robustness it is included in the available minimizers. For a
complete description of the method see [29].

The used conjugate gradient method uses the implementation of Hager and Zhang
[30][31].

6.5 Brent’s Method

Brent’s Method combines inverse quadratic interpolation, bisection and secant methods
to solve f(x) = 0 [32]. The method starts with an interval in which the function changes
sign. The method then reduces the interval on one side in each iteration. This means
that the method requires only one evaluation of the function in each step and requires
no gradient. For this method convergence is guaranteed and usually fast. But Brent’s
Method can only be applied in one dimension. This means that it has limited use for a
high dimensional likelihood function. However, due to its properties of fast guaranteed
convergence it is perfectly suited to find an estimate for the exclusion cross section
σexclusion by finding the value of σexclusion, for which the likelihood is as implausible,
compared to the optimal fit, as required.
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7 Results

7.1 Comparing the Gamma Quenching Methods

The two gamma-band quenching methods were compared using the CRESST-II Phase
2 (run33) datasets of the TUM40 and Lise detectors. These two detectors were chosen
as test cases because of their very different behavior. The Lise detector displays almost
no non-proportionality in the electron band, however its background levels are very high
and the bands are very wide, which causes a large overlap in the bands. In contrast, the
TUM40 detector features well separated electron- and nuclear recoil bands down to very
low energies and has a low background level, but displays a very pronounced scintillator
non-proportionality. The features in the γ-spectrum of the two detectors are vastly
different. While for the Lise detector the gamma spectrum between the threshold and
40 keV is almost entirely dominated by two large peaks at 5.9 (Mn Kα) and 6.48 keV
(Mn Kβ), the TUM40 detector displays four gamma peaks at 2.59 (179Hf(M1)), 8.04
(Cu), 10.78 (179Hf(L2)) and 11.27 keV (179Hf(L1)). This means that for TUM40 the
gamma peaks are distributed over a broader range, which better tests the description
of the energy dependence, and for Lise the two peaks close together test the general
capability of the quenching method. The energy spectrum for these two detector modules
is displayed in figure 12.

For this test the two detectors were each fitted with both implementations to com-
pare the best possible likelihood obtained through the use of both methods. Since the
likelihood is a measure of how good the model describes the data, the implementation
which achieves higher likelihoods for the fit is preferable. However, due to the nature
of the optimizer algorithms, which are minimizer, the negative likelihood is used in the
program. Therefore a lower value is better. To avoid convergence to a local minimum on
one of the results the fit is repeated multiple times from scratch. First, a fit without any
starting values is applied using the Differential Evolution algorithm. Then the result of
that is used as starting point for a fit using the Particle Swarm algorithm and afterwards
a final optimization is done with the Nelder Mead algorithm. This procedure is repeated
at least two times for every combination of method and dataset to avoid comparing a
local minimum with a global one. The results of these tests are shown in the following
table:

TUM40 Lise TUM40+Lise

L-quenching -3948.884 -51878.34 -55827.22

E-quenching -3949.257 -51878.32 -55827.58

Overall, the energy quenching slightly outperforms the light quenching. Considering
the fact that the Lise gamma spectrum is completely dominated by two peaks and that a
polynomial of second degree can perfectly position these two peaks it is easy to explain
why the light quenching is marginally better for this dataset. However, for TUM40,
where the peaks are distributed over a larger energy range, the energy quenching method
is better. The total likelihood is larger for Lise since there are much more events in the
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(a) Lise energy spectrum using 1000 bins for 52 kgd of measurement data.
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(b) TUM40 energy spectrum using 1000 bins for 29.35 kgd of measurement data.

Figure 12

dataset due to the higher background levels. Thus, if the relative difference is taken into
account the advantage of the energy quenching becomes even more pronounced.

As a result of these comparisons the method which evaluates the electron band at
a lower energy is chosen over the light quenching method and is used in all further
calculations.
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7.2 Verifying the χ2-Distribution of q

Simulated datasets are used to test whether q follows a χ2 distribution for this case. The
simulation is done with a different implementation of the measurement data parametriza-
tion. Therefore, this test also serves as a simple cross check between the two programs.
In total 10000 datasets are generated using a Monte Carlo method. The simulated
dark matter signal uses particles with a mass of 25.3 GeV/c2 and a cross section of
1.6 · 10−6 pb and is simulated for the TUM40 detector with an exposure of 28.548 kgd.

As a first step all datasets are combined into one dataset with a hypothetical exposure
of 285480 kgd. With this a maximum likelihood fit is performed to calculate the probable
dark matter particle properties. For this case the maximum likelihood is for a DM mass
of 25.5 GeV/c2 and a cross section of 1.627 · 10−6 pb, which is close to the simulated
properties. This small discrepancy can be explained by some minor differences between
the two implementations.

The program used for the simulation does not use the derivations of the mean lines as
slope. Furthermore, this program uses a spline interpolation of order two to handle the
measured cut efficiency while the program used for the simulation uses splines of order
one. Additionally, the convolution of the dark matter spectrum with the Gaussians is also
implemented differently. As mentioned in chapter 5.3.1, the program developed in this
thesis uses a spline interpolation of order 4 to approximate the dark matter spectrum,
while the program used for the simulation uses binning for the pre-calculation. Together
these three differences are most likely the cause of the small discrepancy.

Finally, an exclusion calculation is performed for a dark matter mass of 25.3 GeV/c2

for all 10000 datasets individually. This is done to determine whether q is χ2 distributed
and to test if the cross section exclusion limit calculated using these data is larger than
the simulated cross section in 90% of the cases. The result of these calculations is
presented in figure 13.
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Figure 13: Histogram of the calculated exclusion limit for 10000 simulated datasets
overlaid with a Gaussian distribution constructed with the mean and σof the exclusion
limits. The black vertical lines represent the limit above which 90% of all exclusion
limits lie and the red vertical line represents the simulated cross section.

It can be seen that the gaussian and the histogram of the exclusion limits show a
very good agreement. Additionally over 90% of all calculated exclusion limits lie above
the cross section of the simulated dark matter.

7.3 Impact of Including the Neutron Calibration on the Calculated
Exlusion-Limits

As already mentioned in chapter 5.4 the program has the ability to include the neutron
calibration data into the likelihood fit to better constrain the parameters, especially
the ones describing the nuclear recoil band. To test the impact of this inclusion on
the fit and, therefore, on the calculated exclusion limits, the limits calculated using the
TUM40 and Lise datasets with and without neutron calibration are compared. These
two detectors are chosen again for the same reasons as in chapter 7.1. The parameters
obtained in the previous fit are used as starting values for all four cases. Then a global
optimization using the particle swarm algorithm and afterwards a local optimization
with the Nelder Mead algorithm is performed. The band fit for both detectors is shown
in figures 14 and 15.
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(a) 2D scatter plot of 51.1284 kgd detector Lise measurement data overlaid with the band fit
functions introduced in chapter 5.1.
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(b) 2D scatter plot of 28.548 kgd detector TUM40 measurement data overlaid with the band fit
functions introduced in chapter 5.1.

Figure 14
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(a) 2D scatter plot of the detector Lise measurement and neutron calibration data overlaid with
the band fit functions introduced in chapter 5.1.
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(b) 2D scatter plot of the detector TUM40 measurement and neutron calibration data overlaid
with the band fit functions introduced in chapter 5.1.

Figure 15
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From the parameters obtained through this fit, limit calculations with Yellin’s method
as well as with the profile likelihood method are carried out. The Yellin exclusion limits
are calculated using the mean of the oxygen band as upper limit on the region of interest
and the lower limit is chosen to include the upper 99.5 % of the tungsten band. The
calculated limits are shown in figure 16.

100 101

Dark Matter Particle Mass (GeV/c2)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Da
rk

 M
at

te
r P

ar
tic

le
-N

uc
le

on
 C

ro
ss

 S
ec

tio
n 

(p
b)

Lise Yellin
Lise LL
Lise LL with Ncal
TUM40 Yellin
TUM40 LL
TUM40 LL with Ncal

Figure 16: Dark matter particle exclusion limits for the Lise and TUM40 datasets with
and without the inclusion of the neutron calibration (Ncal)

It can be seen that the profile likelihood method vastly outperforms Yellin’s opti-
mal interval method for the Lise detector data, especially for higher masses. This is
expected since the large overlap of the bands leads to a significant leakage of electron-
gamma-background to the nuclear recoil bands. The profile likelihood approach can
account for this background while the optimal interval method cannot. For the TUM40
data Yellin’s method actually outperforms the profile likelihood approach. This is most
likely caused by two different effects. First, a large increase in event frequency near the
threshold increases the exclusion limit for low dark matter particle masses and second,
possible neutron background events increase the limit in the medium dark matter mass
region. More on these contributions later in sections 7.5 and 7.6. For both detectors the
inclusion of the neutron calibration data results in stronger exclusion limits. Especially
the Lise limit benefits from the inclusion of the neutron calibration and is up to one
order of magnitude lower than without. Since there are more data-points to evaluate
and more degrees of freedom when the neutron calibration is included in the fit it is
expected that the calculation requires significantly more time. However, the opposite
is the case. The calculations without the neutron calibration data are mostly slower.
This is especially apparent for the exclusion calculations, which often require roughly
ten times longer without neutron calibration. This indicates that it is easier for the
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optimizer algorithms to converge when the neutron calibration data are included. This
effect is more prominent in exclusion calculation, where the largest changes between the
fit happen in the nuclear recoil bands.

7.4 Combining Detectors

Another innovation of the fit program presented here is its capability to combine the
measurement data of multiple detectors into the likelihood fit and limit calculation. The
idea behind this is that a combination of detectors results in a higher total exposure and
therefore better statistics which then potentially leads to a stricter exclusion limit. An-
other advantage might be that this method takes advantage of the individual strengths
of the detectors. For example the lower threshold of the Lise detector module in com-
bination with the lower background levels and better separated bands of TUM40 could
result in a better combined limit. To test this hypothesis the Lise and TUM40 measure-
ment data are both included in a profile likelihood exclusion calculation. The result is
then compared to the exclusion limits of the individual detectors. The limits calculated
with the inclusion of the neutron calibration are used as benchmark. This means that
also for the combined limit calculation the neutron calibration of both detectors is used.
The comparison of the individual and combined limits is presented in figure 17.
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Figure 17: Dark matter particle exclusion limits for the Lise and TUM40 datasets sep-
arately and combined each including the neutron calibration (Ncal)

Below a dark matter mass of roughly 0.75 GeV/c2 the combined limit is almost
identical to the Lise limit. The reason for this is that due to its higher threshold of
0.603 keV the TUM40 detector has nearly no sensitivity in that mass region. However,
for DM masses above 0.75 GeV/c2 the combined limit is actually worse than the Lise
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only limit. This is caused by the exponential increase in events near the threshold for
the TUM40 dataset which mimics a dark matter signal and therefore increases the limit.
However, since the Lise detector does not feature such an increase in event frequency,
at least not at similar energies, it can be excluded as a dark matter signal. For this
reason an exponential energy spectrum is introduced to the electron band to describe
this behavior.

7.5 Testing the Exponential Electron Energy Spectrum

To test the impact of the exponential term in the electron energy spectrum the same
procedure as in the last section is performed. As long as there are detectors with a
lower threshold which do not display a similar exponential increase as the detectors with
a higher threshold it should be possible to enable the exponential term in the electron
energy spectrum. Therefore the exponential electron energy spectrum is enabled for both
detectors, Lise and TUM40. It has to be noted here that the sharp increase in event
frequency near the threshold does not happen in the electron recoil band. Instead it is
centered around a light-yield of 0. However due to the very large overlap of the bands
in that region and to avoid an exponential term in the nuclear recoil bands, which could
be too similar to the possible dark matter spectrum, this spectrum is included in the
spectrum of the electron band. Figure 18 shows the results of the exclusion calculations
with that additional term.
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(a) Lise and combined limits

100 101

Dark Matter Particle Mass (GeV/c2)

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Da
rk

 M
at

te
r P

ar
tic

le
-N

uc
le

on
 C

ro
ss

 S
ec

tio
n 

(p
b)

TUM40 Yellin
TUM40 LL with Ncal
TUM40 LL with exp Espec
Lise+TUM40 LL with Ncal
Lise+TUM40 LL with exp Espec

(b) TUM40 and combined limits

Figure 18: Dark matter particle exclusion limits for the Lise (a), TUM40 (b) and com-
bined (a and b) datasets including the neutron calibration, with and without the expo-
nential energy spectrum.
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With this added term in the spectrum the limit calculated with the profile likelihood
approach outperforms the optimal interval method for both detectors. The combined
limit shows a slight improvement over the Lise limit for DM masses below 7 GeV/c2.
For higher masses there is a sudden rise in the combined limit. This most likely arises
from a neutron background event in the TUM40 dataset which is misidentified as a dark
matter interaction. For the TUM40 dataset used in this calculation the existence of an
event, which is not compatible with any other type of background or signal other than
the neutron background, is known [8].

7.6 Impact of a Neutron Background Estimation

For earlier runs an estimate for the number of expected neutron background events exists
[19]. However, this was before the inner polyethylene shielding was installed. Due to
this the neutron background significantly changed and no measurement of its size exists.
There are, however, simulations which estimate a reduction of the neutron background
by a factor of 10, due to the polyethylene shielding [8]. Since this is just a very weak
hint for the real neutron background the limits calculated with the inclusion of this
background spectrum hold a very limited validity. Therefore the main aim of this test is
just to demonstrate the potential impact of a background reduction on the individual as
well as the combined limits. For this purpose two different expected neutron background
rates are tested. First, a rate of 0.04 neutron background events per kgd of exposure is
used. In this case there is roughly one expected neutron event in the TUM40 dataset,
which has an exposure of 28.548 kgd. The limits calculated with this background rate
are shown in figure 19. A second test, shown in figure 20, is performed with a rate of
0.07 events per kgd, which leads to two expected neutron events in the TUM40 dataset.
These two rates are also used for the Lise and the combined limits. Since the poisson
distribution, which restricts the number of neutron events in the fit, uses the total
exposure of all included detectors the combined fit can attribute the neutron events to
whichever dataset they match best.
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(a) Lise and combined limits
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Figure 19: Dark matter particle exclusion limits for the Lise (a), TUM40 (b) and com-
bined (a and b) datasets including the neutron calibration, exponential energy spectrum,
with and without a neutron background of 0.04 events per kgd.
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Figure 20: Dark matter particle exclusion limits for the Lise (a), TUM40 (b) and com-
bined (a and b) datasets including the neutron calibration, exponential energy spectrum,
with and without a neutron background of 0.07 events per kgd.
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The additional background spectrum of 0.04 neutron events per kgd does not affect
the exclusion limit calculated with the Lise dataset. However, for the TUM40 limit the
inclusion of a neutron background significantly lowers the exclusion limit for dark matter
particle masses between 5 and 13 GeV/c2. For higher masses up to 60 GeV/c2 the limit
calculated with a neutron background spectrum is still slightly better than without one.
The biggest change occurs in the combined limit which is clearly better with the neutron
background for dark matter masses above 5 GeV/c2. Additionally, the combined limit
is lower than the limit calculated with only the Lise data up until roughly 15 GeV/c2.
However, for higher masses the individual limit is still slightly better. It is interesting
to note that when looking at the parameters of the fit for the combined datasets it is
apparent that the fit attributes all of the neutron background events to the TUM40
data.

For a rate of 0.07 neutron background events per kgd the exclusion limits of the
individual detectors barely change compared to a rate of 0.04 events per kgd. A larger
change occurs in the combined limit which is now entirely lower or at least on par
with the Lise only limit. Unfortunately, it is only lower up until roughly 20 GeV/c2.
The combined fit once again attributes all neutron background events to the TUM40
dataset. Therefore, the fit most likely overestimates the actual neutron background, but
the combined limit improves only marginally. This indicates that the model used to
describe the neutron background spectrum is not appropriate. However, due to the very
low rate of events fitting a separate spectrum is not practicable. Therefore a simulation
of the expected neutron background could significantly improve the model and therefore
the limit calculation.

7.7 Impact of the Simulated Efficiency on the Exclusion Limits

As already mentioned in section 5.3.1 the convolution of the dark matter spectrum with
a Gaussian distribution to describe the measured dark matter spectrum is not an entirely
correct approach. For this reason the convolution shall be replaced with a simulation of
the detector behavior. Such a simulation exists for detector A, a new detector module in
CRESST-III Phase 1 (run 34). The impact of the simulation compared to the convolution
and measured cut efficiency is tested using the measurement data of this module. The
measurement data for detector A along with the band fit is shown in figure 21 and the
energy spectrum for this detector module is displayed in figures 22 and 24.

Unfortunately, this detector displays a large increase in event frequency near the
threshold, even more extreme than for the TUM40 detector, while also being the module
with the lowest threshold of 30 eV. Thus it is not justified to use the exponential
spectrum in this case. As a result of this the profile likelihood limit performs worse than
the limit calculated with the optimal interval method for higher dark matter particle
masses. This can be seen in figure 23.
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Figure 21: 2D scatter plot of 5.689 kgd of detector A measurement data overlaid with
the band fit functions introduced in chapter 5.1.

0 2 4 6 8 10 12 14 16
Energy E (keV)

0

100

200

300

400

Nu
m

be
r o

f E
ve

nt
s

Figure 22: Nuclear recoil energy spectrum using 1000 bins for 5.689 kgd of detector A
measurement data.
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Figure 23: Dark matter particle exclusion limits calculated with Yellin’s optimal interval
and profile likelihood methods for the detector A dataset with neutron calibration, using
the measured cut effieciency.

For higher dark matter masses above 1.5 GeV/c2, where the dark matter spectrum
reaches higher recoil energies, Yellin’s optimal interval method simply ignores the low re-
coil energy region with a large background and utilizes the higher energy region with few
events. The profile likelihood does not have the ability to ignore a region and while the
shape of the measured spectrum does not match the shape of the dark matter spectrum
it is still beneficial for the fit to attribute some of the events to the dark matter signal
and thus increasing the exclusion limit. For very low dark matter particle masses from
0.1 to 0.4 GeV/c2 the optimal interval method also outperforms the profile likelihood
method significantly. This indicates that the shape of the dark matter spectrum for
such masses differs from the spectrum in the measurement data. However, for masses
between 0.4 and 1.5 GeV/c2 the two exclusion limits are fairly similar. This indicates
that the shape of the measured spectrum is similar to the recoil spectrum of a dark
matter particle in that mass range. A maximum likelihood fit including the dark matter
particle parameters as free fit parameters is done to test this hypothesis. The optimiza-
tion converges to a minimum for a dark matter spectrum of a particle with a mass of
1.34 GeV/c2 and a cross section of 4.25 · 10−3 pb.

Since Yellin’s optimal interval method is preforming better in this case it is used
for the comparison between the convolution and simulation method, which is shown in
figure 25. While the limit calculated with the convolution suggests a sensitivity down
to dark matter masses of 0.1 GeV/c2 the limit for the simulation only reaches down to
roughly 0.17 GeV/c2. This is somewhat expected since for the convolution the sensitivity
theoretically reaches towards DM masses of almost 0 GeV/c2. The convolution pushes
some events above the threshold, no matter how low the actual recoil energy is, as
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Figure 24: Lower part of the nuclear recoil energy spectrum for 5.689 kgd of detector A
measurement data. This time in 5000 bins and showing the spectrum of a dark matter
particle with a mass of 1.34 GeV/c2 and a cross section of 4.25 · 10−3 pb. The black line
is the total spectrum of all three bands and the red, purple and green lines represent the
oxygen, calcium and tungsten bands respectively.

long as the cross section is large and therefore the signal is strong enough. However, this
behavior is wrong and cannot happen with the simulation. Therefore, the limit calculated
with the simulation method starts at higher dark matter masses since the detector has
no sensitivity towards lower masses. For the complete mass range the exclusion limit
calculated with the simulation stays above the limit for the convolution method. This is
again caused by the convolution which pushes more low recoil energy events above the
threshold. The difference between the methods is therefore most prominent in the low
recoil energy region, which also explains why the difference gets smaller for larger dark
matter particle masses.
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Figure 25: Dark matter particle exclusion limits calculated with Yellin’s optimal interval
method for the detector A dataset with neutron calibration using the measured cut
efficiency (blue) and the simulation with different bin sizes (red, purple and green).
Additionally a limit calculation without the convolution with the detector resolution is
performed as comparison, which is shown in black.

8 Conclusion and Outlook

The improvements to the parametrization of the model for the measurement data as well
as new implementations in the maximum likelihood fit introduced in this thesis have
the capability to enhance the exclusion limit calculation for the CRESST experiment.
Especially the inclusion of the neutron calibration data into the maximum likelihood
fit significantly increases its accuracy and convergence speed. But also smaller changes
like the γ-band quenching method and the more accurate implementation of the slopes
improve the model and bring it closer to the true detector behavior.

The change from the convolution to the simulation to calculate the measured dark
matter recoil spectrum also enhances the correctness of the exclusion limits. This method
stays truer to the real detector behavior which leads to slightly less sensitivity towards
low mass dark matter particles.

With the new model a profile likelihood exclusion limit calculation has the capability
to vastly outperform a calculation with Yellin’s optimal interval method. However, this
is very dependent on the knowledge of the background spectra in the detector data. Es-
pecially the increase in event frequency towards the detector threshold in many datasets
has a larger negative impact on the profile likelihood limits than on the optimal inter-
val limits. Therefore, a better knowledge of this behavior and possibly a better overall
description of these events, which in reality do not happen in the electron recoil band,
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but are centered around a light-yield of 0, could further enhance the limit calculation.
Unfortunately, the combination of detectors in the maximum likelihood formalism

does not yield the desired beneficial impact on the exclusion limits. Instead the limits
are mostly weaker with this combination. However, tests have shown that this is most
likely caused by one or more neutron background events. The current model for the
neutron background energy spectrum is not suited to describe the behavior correctly.
Therefore, a simulation of the expected neutron background could possibly improve the
combined limits significantly.

The improved maximum likelihood implementation presented in this thesis has the
capability to calculate stronger exclusion limits for the dark matter particle - nucleon
interaction cross section for the data obtained in the CRESST experiment. There is,
however, still room for improvement. Especially a better knowledge of the expected
backgrounds and the detector behavior can further better the limit calculation with this
method.
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[15] Gintaras Dūda, Ann Kemper, and Paolo Gondolo. “Model-independent form fac-
tors for spin-independent neutralino–nucleon scattering from elastic electron scat-
tering data”. In: Journal of Cosmology and Astroparticle Physics 2007.04 (2007),
p. 012.

[16] Steven Yellin. Feb. 2011. url: http://titus.stanford.edu/Upperlimit/.

59



[17] Stephanie Hansmann-Menzemer. Modern Methods of Data Analysis - Lecture VII
(26.11.07). url: https://www.physi.uni-heidelberg.de/~menzemer/Stat0708/
statistik_vorlesung_7.pdf.

[18] Glen Cowan et al. “Asymptotic formulae for likelihood-based tests of new physics”.
In: The European Physical Journal C 71.2 (Feb. 2011), p. 1554. issn: 1434-6052.
doi: 10.1140/epjc/s10052-011-1554-0. url: https://doi.org/10.1140/
epjc/s10052-011-1554-0.

[19] Godehard Angloher et al. “Results from 730 kg days of the CRESST-II Dark
Matter Search”. In: The European Physical Journal C 72.4 (2012), p. 1971.

[20] Patrick Huff. “The Detector Parameters Determining the Sensitivity of the CRESST-
II Experiment”. PhD thesis. Technische Universität München, 2010.

[21] RF Lang et al. “Scintillator non-proportionality and gamma quenching in CaWO4”.
In: arXiv preprint arXiv:0910.4414 (2009).

[22] R Strauss et al. “Energy-dependent light quenching in CaWO4 crystals at mK
temperatures”. In: The European Physical Journal C 74.7 (2014), p. 2957.

[23] Patrick Kofod Mogensen and Asbjørn Nilsen Riseth. “Optim: A mathematical
optimization package for Julia”. In: Journal of Open Source Software 3.24 (2018),
p. 615. doi: 10.21105/joss.00615.

[24] BlackBoxOptim.jl. url: https://github.com/robertfeldt/BlackBoxOptim.jl.

[25] John A Nelder and Roger Mead. “A simplex method for function minimization”.
In: The computer journal 7.4 (1965), pp. 308–313.

[26] Fuchang Gao and Lixing Han. “Implementing the Nelder-Mead simplex algorithm
with adaptive parameters”. In: Computational Optimization and Applications 51.1
(2012), pp. 259–277.

[27] Zhi-Hui Zhan et al. “Adaptive particle swarm optimization”. In: IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39.6 (2009),
pp. 1362–1381.

[28] Differential evolution. url: https://ucilnica.fri.uni-lj.si/pluginfile.
php/7950/mod_resource/content/5/Engelbrecht07-DE.pdf.

[29] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. url: http://www.cs.cmu.edu/~quake-papers/
painless-conjugate-gradient.pdf.

[30] William W Hager and Hongchao Zhang. “Algorithm 851: CG DESCENT, a conju-
gate gradient method with guaranteed descent”. In: ACM Transactions on Math-
ematical Software (TOMS) 32.1 (2006), pp. 113–137.

[31] William W Hager and Hongchao Zhang. “The limited memory conjugate gradient
method”. In: SIAM Journal on Optimization 23.4 (2013), pp. 2150–2168.

[32] Richard P. Brent. “An algorithm with guaranteed convergence for finding a zero
of a function”. In: The Computer Journal 14.4 (1971), pp. 422–425.

60


