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Abstract
A common approach for quality assurance in manufacturing is to reject faulty
products before they can reach the customer. This is often achieved using manual
or automated visual inspection systems. The automated approaches can be of
advantage when an accurate prediction of the quality level is needed, as they perform
more consistent than humans. What is more, in many applications, machine vision
methods can be used for on-the-line real time inspection which is manually not
possible.
In Zero Defect Manufacturing (ZDM) the idea is to prevent defective products in
the first place, by for example monitoring the quality of the manufacturing process
itself and e. g. replacing worn tools if necessary. Within the scope of ZDM, this
thesis introduces a machine learning approach for quality assurance of boreholes
in carbon fiber reinforced polymers (CFRP). With the aid of visual analysis and
intelligent learning methods, the quality of the manufacturing process is predicted
by correlating drilling parameters with visual features extracted from images of
the boreholes. The features proposed in this work include low-level characteristics
like entropy or homogeneity of the gray level images, as well as high-level features
like detection of interest regions. We also use a basic photometric stereo approach
to extract 3-dimensional information from the borehole surface as input for the
machine learning model. To provide the model with the most relevant information,
several feature selection algorithms are evaluated and for the final prediction of the
process quality category, three classification methods are compared.
The results show that the predictability of the drilling quality class is around 80%
for both datasets in evaluation and that the separability between optimal and
very poor drilling conditions like fractured tools is very distinct. In addition, the
results approve the use of feature selection as a method to reduce the complexity of
the machine learning problem while keeping the classification performance almost
similar or even improving it.
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Kurzfassung
Ein üblicher Ansatz zur Qualitätssicherung in der industriellen Fertigung besteht
darin, fehlerhafte Produkte auszusortieren, bevor sie den Kunden erreichen können.
Dies wird häufig durch manuelle oder automatisierte visuelle Inspektionssysteme
erreicht. Die automatisierten Ansätze können von Vorteil sein, wenn eine genaue
Vorhersage des Qualitätsniveaus erforderlich ist, da sie konsistenter sind als manuelle
Prüfungen. Außerdem können Bildverarbeitungsmethoden für Inline-Inspektionen
verwendet werden, die manuell so nicht möglich sind.
Beim Zero Defect Manufacturing (ZDM) geht es darum, fehlerhafte Produkte
generell zu vermeiden, indem beispielsweise die Qualität des Fertigungsprozesses
selbst überwacht und gegebenfalls abgenützte Werkzeuge ausgetauscht werden. Im
Rahmen von ZDM wird in dieser Arbeit ein Machine Learning Ansatz zur Quali-
tätssicherung von Bohrungen in kohlefaserverstärkten Kunststoffen vorgestellt. Mit
Hilfe einer visuellen Analyse und intelligenten Lernmethoden wird die Qualität des
Fertigungsprozesses vorhergesagt, indem Bohrparameter mit visuellen Merkmalen
korreliert werden, die aus Bildern der Bohrungen extrahiert werden. Zu den in
dieser Arbeit vorgeschlagenen Merkmalen gehören einfachere Charakteristiken wie
Entropie oder Homogenität der Graustufenbilder sowie auch komplexere Merkmale
wie das Erkennen von Bereichen von Interesse. Ebenso wird ein grundlegender
photometrisch-Stereo Ansatz verwendet, um 3-dimensionale Informationen der
Bohrlochoberfläche als Input für das Machine Learning Modell zu extrahieren. Um
dem Modell möglichst relevante Informationen bereitzustellen, werden mehrere
Algorithmen zur Merkmalsselektion ausgewertet und für die endgültige Vorhersage
der Kategorie der Prozessqualität werden drei Klassifizierungsmethoden verglichen.
Die Ergebnisse zeigen, dass die Vorhersagbarkeit der Klasse der Bohrlochqualität
für beide verwendeten Datensätze etwa 80% beträgt und dass die Trennbarkeit
zwischen optimalen und sehr schlechten Bohrbedingungen, wie zum Beispiel be-
schädigten Werkzeugen, sehr gut möglich ist. Darüber hinaus befürworten die
Ergebnisse die Merkmalsselektion als Methode, um die Komplexität des maschinel-
len Lernproblems zu reduzieren, während das Ergebnis der Klassifizierung nahezu
gleich bleibt oder sogar verbessert wird.
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1 Introduction
This work is part of a range of projects within the term Zero Defect Manufacturing
(ZDM) by the Austrian company Profactor [1]. The primary goal of these projects
is to develop methods and tools to ensure product quality by controlling the
parameters of industrial manufacturing processes. Another aim of the projects is
to inspect complex components which are hard to examine manually due to e. g.
their geometry.
The concept of Zero Defects was first introduced as a revolutionary management
tool in the 1960s [2], with the aim of reducing defects in manufacturing through
prevention. Until then, the quality assurance in production was carried out by
end-of-line inspection which rejected faulty products before they could reach the end
customer. Zero Defects shifted the focus from the quality inspection to controlling
the manufacturing process. This is for example achieved by using information from
methods for quality assurance like visual inspection together with data from the
manufacturing process to train prediction models. The machine learning model
allows to keep the processes in a certain quality tolerance range or helps to adjust
parameters of the process, especially if new variants of products are introduced. In
contrast to other quality assurance approaches like sorting out defective products
after manufacturing, this concept aims to prevent defects in the first place, by
closing the feedback loop to the process. This avoids for example costly quality
inspection to discover defective products and also the need to rework them, as this
is almost always more expensive and laborious than examining the reasons for the
defects during the manufacturing process and trying to find methods to prevent
them in the future.

1.1 Problem Statement
The concrete problem this work is dealing with, is the quality assurance of boreholes
in carbon fiber reinforced polymer (CFRP) parts. During the process of drilling
holes into the components, inhomogeneities in the layered material lead to defects
in the form of delaminations and fraying on the inside surface of the boreholes,
as shown in Figure 1.1 on the right side. As the condition of the holes is very
important for the stability of the rivet connections, there has to be a certain type
of quality inspection after the drilling. Thus, Profactor developed a prototype for
visual inspection in the project HScan [3], which allows the examination of the
inside surface of the holes with an endoscope camera. This very small-geometry
imaging system provides multiple pictures from the same recording position with
varying illumination angles, to be able to inspect the whole surface. The left picture

1



1 Introduction 1.1 Problem Statement

in Figure 1.1 shows the image acquisition process and Figure 1.2 illustrates the
principal setup of HScan.
To prevent defect boreholes in the first place, an approach is to ensure the quality
of the drilling process itself, like selecting appropriate manufacturing parameter
values and controlling the condition of the tools. So far, the method was to ensure
the quality by frequently changing the drilling tools.

Figure 1.1. Example of image acquisition process with HScan (left) and image of
defective borehole with encircled fiber pullout (right). Source: [1]

Figure 1.2. Principal setup of the endoscope imaging system.

2



1 Introduction 1.2 Proposed Solution

1.2 Proposed Solution
In this thesis, we propose a machine learning approach to ensure the quality of the
drilling process by correlating the information from the visual inspection results
of HScan with parameters and tool conditions in the boring process. Figure 1.3
shows a graphical overview on the proposed implementation.

Figure 1.3. Graphical overview of the proposed machine learning implementation.

The first step in this work is the data preprocessing, starting with stitching together
the images acquired from different illumination angles. We then segment the
resulting images into the inside surface of the borehole and the interior. Following,
several surface features are extracted from the segmented images of which the
most relevant are then used to create a machine learning model which predicts the
quality of the drilling process.
The features which we are going to present in this thesis include texture based
features like the entropy or homogeneity of the image and also higher level features
like the results of interest point detections. In addition, a simple photometric stereo
implementation is used to estimate the surface normals of the borehole inside from
which more features are extracted.
The relevance of the surface features is determined using several feature selection
approaches and then, for the final prediction of the quality category, we evaluate
three classification algorithms.

3



1 Introduction 1.3 Outline

1.3 Outline
This thesis is structured as follows. The next chapter, Chapter 2, reviews related
work in terms of machine learning systems for visual inspection. Chapter 3 explains
the mathematical background on the methods used in this work. In Chapter 4, the
first three steps of Figure 1.3 - the dataset, the preprocessing of the images and
the following surface feature extraction - are discussed in detail. The last two steps
- feature selection and classification of the boreholes - are presented in Chapter 5.
In addition, this chapter discusses the evaluations of the methods proposed in this
thesis. The last chapter summarizes the thesis and gives an overview on possibilities
for future work.

4



2 Related Work
As already stated in the last chapter, this work is based on the results of a visual
inspection system called HScan [3], developed by Profactor, which is used to ensure
the quality of the inside of boreholes in CFRP parts. This thesis presents a machine
learning approach for the quality assurance with the aim of preventing defective
bores in the first place. Therefore, in this chapter we discuss related work in the
domain of quality inspection, especially with visual methods. In addition, previous
work on image segmentation and also on photometric stereo approaches is reviewed.
Finally, various projects which are similar to this work in terms of machine learning
methods are addressed.

Visual Inspection and Image Segmentation

Machine vision is an automated and cost-effective way to provide visual inspection
for a variety of applications. In a survey of visual inspection works [4], Newman and
Jain state that automatic is preferable over manual inspection in many applications.
For example, automatic approaches perform rather consistent, therefore the quality
level can be predicted better. Another advantage is the on-the-line real time
inspection with machine vision approaches which is possible in many environments
if the requirements of the manufacturing process are met. Finally, many inspection
tasks might be too boring or time-ineffective for a human to carry out.
One example for visual inspection is the work of Tien et. al [5]. They propose an
automated visual approach for detecting major defects of microdrills, based on color
images acquired by a charge-coupled device (CCD) camera. The regions of interest
are segmented via thresholding and boundary detection which is achieved using
corner detection and a subsequent least-squares line fitting. This segmentation
procedure is in principal kind of similar to the proposed approach in this thesis.
For the following defect detection, various geometric properties of the segmented
regions are extracted and evaluated.
Another more recent machine vision application for inspection is presented in [6].
Wang et. al developed an optical system for measuring the quality of drillings in
printed circuit boards (PCB). This system is designed to examine boreholes with a
specified size of 2 mm, therefore it needs an appropriate imaging resolution. This
is achieved with CCD cameras which are moved across the PCBs while acquiring
images of sub-regions of the boards. All sub-images for a board are registered in the
end, to one large image. The boreholes are then separated from the surrounding
regions by gray-level thresholding. For the evaluation of the boreholes, several
geometric features are calculated, like the center coordinates, the area or the
roundness of the hole. In this paper, the authors also point out that for a successful
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2 Related Work 2 Related Work

distinction between holes and noise, a suitable illumination is an important factor.
Other related works on vision inspection systems include, amongst others, detecting
surface defects of strongly reflective metals [7], or quality inspection of multi-axial
non-crimp fabrics [8].

Photometric Stereo

The idea of using multiple images, taken from the same position with illumination
from different directions, to compute surface orientations, was introduced in 1992 by
Woodham [9]. Since then, the concept was applied in many practical applications,
including surface inspection.
In [10], photometric stereo is used as an improvement over 2D defect detection
for steel strips. The proposed 3D approach can distinguish between real defects
and pseudo-defects which are falsely detected by 2D methods. In this work, an
ideal diffuse reflection model of the steel surface is used for the photometric stereo
approach. For the image acquisition, they use a special splitting prism camera,
which avoids interferences among R, G and B color channels and thermal radiation,
as there are also samples of hot steels in inspection. The illumination is provided by
a set of linear-ranged lasers in blue and green, again in order to avoid interference
with thermal radiation. Due to the proposed type of photometric stereo approach,
only two image channels (blue and green) are required.
Palfinger et. al present a photometric stereo based inspection system that evaluates
quality of carbon fiber surfaces in [11]. The imaging geometry used in this work
is a combination of CMOS cameras together with high power LEDs placed in
a circle around the optical axis for illumination. As carbon fibers have special
reflective properties, a method to compute the reflectivity of the surface is pro-
posed. The results of the photometric stereo approach are the fiber orientation
and a good estimate for diffuse and specular reflectivity. The individual fiber
segments are detected using the proposed fiber line segmentation which allows fast
and robust partitioning. From the segment contours, various characteristics like
orientation information or width and height are used as features for defect detection.

Feature Extraction

An important requirement for a well performing machine learning model is a
suitable data preparation. In the case of visual inspection, this data consists of
information extracted from images acquired by the optical system. The extracted
information is also referred to as features of the image. In this section, several
works which use feature extraction as a basis for visual inspection are discussed.
The work from Palfinger et. al [11] was already mentioned in the last section. The
information extraction is divided into first and second order features where first
order characteristics contain information of single fiber segments like mean and
standard deviation of width, height and orientation. The second order features are
derived from the relation of adjacent segments, like orientation differences.
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In [12], an auto-inspection system for molding surfaces in integrated circuit manu-
facturing is presented. The quality of the molding process is responsible for the
chip’s resistance against damages caused by e. g. external forces. Thus, defects like
cracks or voids have to be detected accurately. Several features which are used to
distinguish between defects and regular patterns are proposed. These include the
area, the average gray value, the eccentricity and the ellipticity of a segmented
region. Depending on the feature values, binary decisions are made to determine
whether a region corresponds to a regular pattern or a defective segment.
A rather different approach to the aforementioned works is presented in [13]. Weimer
et. al propose an automated feature extraction system for industrial inspection
using deep convolutional neural networks. The architecture is given an image as
input and in each stage of the process a convolution, non-linear neuron activation
and feature pooling are used to automatically extract features. The advantage
of this approach is that for different types of inspection problems, no manual
redefinition of features is needed. In addition, only a minimum of expert knowledge
of the specific process is required.

Classification

The feature extraction results are used to identify the category or state a certain
sample belongs to. In defect detection, this is often a binary choice between
defective and faultless.
Weimer et. al [14] propose a machine vision system for defect detection on textured
surfaces. They use a neural network learning model for binary classification of
image patches. This model is trained from images with premarked defective regions.
The proposed system is able to detect 100 % of the defects for the evaluated real
scenario.
The approach from Zhang et. al [7] uses a multi-class Support Vector Machine
(SVM) to detect seven classes of defects on strongly reflective metal surfaces suc-
cessfully. They also evaluate different kernel functions and parameter settings for
the SVM.
In [15], Ravikumar et. al propose a machine learning system for visual inspection of
machine components. The state of the components is divided into three categories,
depending on the quality. As classification algorithms, the authors evaluate a
decision tree approach and a Naïve Bayes classifier. The results show that the
decision tree performs superior to the Naïve Bayes.
Two other works on flaw detection ([16],[17]) use convolutional neural networks for
classifying defects for various types of surfaces.
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3.1 Least Squares Problem
The starting point of this topic is a problem in data analysis, where a certain value
b is determined through taking measurements. Assuming that b depends on various
parameters, collected in a parameter vector p ∈ Rn, ideally n measurements have
to be taken to identify the relation between b and p. This process can be described
by a system of linear equations in the form of Ap = b, where A ∈ Rm×n is the
coefficient matrix, b ∈ Rm the measurement vector and p the vector of unknown
parameters, with the formalization in matrix form being

A11 A12 . . . A1n
A21 A22 . . . A2n
... ... . . . ...

Am1 Am2 . . . Amn


︸ ︷︷ ︸

A


p1
p2
...
pn


︸ ︷︷ ︸

p

=


b1
b2
...
bm


︸ ︷︷ ︸

b

. (3.1)

In the aforementioned ideal case, m = n is sufficient to determine p. In reality,
measurement errors and model uncertainties make additional measurements nec-
essary. Therefore, m > n and (3.1) is now called overdetermined. The problem
in this situation is that in most cases (where A has full rank), overdetermined
systems have no exact solution. The approach is now, to find an optimal solution p̂
such that Ap̂ is as close as possible to b [18]. This is achieved using a least squares
approach, by minimizing the `2-norm of the vector of residuals r(p) = Ap− b as
follows [19]:

p̂ = argmin
p

J(p), (3.2)

where

J(p) = 1
2rT r = 1

2 ‖Ap− b‖2
2 . (3.3)

The solution for the minimization problem is found by computing the gradient of
J and setting the result to zero:

∇pJ = ∇p(1
2(Ap− b)T (Ap− b)) = ∇p(1

2(pTATAp− 2bTAp + bTb)

= 1
2(2ATAp− 2ATb) != 0

(3.4)
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3 Background 3.2 Photometric Stereo

The least squares solution [19] p̂ is now given by

p̂ = A†b, (3.5)
where A† is called the generalized inverse or pseudoinverse with

A† = (ATA)−1AT . (3.6)
The following conditions for A† to be the generalized inverse of the matrix A have
to be met [19]:

AA†A = A, (3.7)
A†AA† = A†, (3.8)
(A†A)T = A†A, (3.9)
(AA†)T = AA†. (3.10)

The direct inversion of the matrix ATA is often omitted by using numerical methods
to compute the pseudoinverse, like the QR decomposition or the singular value
decomposition for computational cost efficiency [18].

3.2 Photometric Stereo
There are various approaches in computer vision to reconstruct 3D geometry from
2D images. These methods together are sometimes referred to as Shape from X
[20], as the shape of an object is determined using different information derived
from the images or the imaging geometry.
In this work, an extension of the Shape from Shading (SFS) principle, called Pho-
tometric Stereo, is used. SFS was first introduced in the work of Horn [21] and
is based on recovering the shape of a surface from variations in the intensity of
an image. Generally speaking, the fraction of light reflected by the surface of a
material depends, amongst others, on its optical properties and surface orientation.
For many surfaces, the assumption that the reflection of incident light can be
written as a function of the incident angle i, the emittance angle e and the phase
angle g, depicted in Figure 3.1, holds. This reflectance function φ(i,e,g) determines
the ratio of surface radiance to irradiance in the direction of the viewer [9].

Assuming an imaging geometry where the size of the objects in the scene is small
compared to the camera distance, the object points (x,y,z) and the image points
(u,v) can be used interchangeably, with u = x and v = y. The negative z-axis is
conveniently aligned in direction of the camera. This is called an orthographic
projection.
The z-coordinate of the object and, thus, the object surface can be expressed as
z = f(x,y) and the corresponding surface normal is given by the gradient of f(x,y)
[9]

9



3 Background 3.2 Photometric Stereo

n = ∇f(x,y) =


∂f(x,y)
∂x

∂f(x,y)
∂y

−1

 =


p

q

−1

 , (3.11)

with the parameters p and q. In the case of orthographic projection and homoge-
neous illumination of the scene, the image intensity depends only on these gradient
coordinates p and q, hence, the intensity of an image can be modeled as a function
of both parameters by

I(x,y) = R(p,q), (3.12)
with R being the reflectance map, which captures the reflections of an object for a
particular imaging geometry.
The relation between R(p,q) and φ(i,e,g) can be derived from the scene in Figure 3.1,
with normalized dot products of the vectors n = [p q −1]T , s = [ps qs −1]T and
v = [0 0 −1]T . These result in equations for cos(i), cos(e) and cos(g) [9]:

cos(i) = 1 + pps + qqs
√

1 + p2 + q2
√

1 + p2
s + q2

s

(3.13)

cos(e) = 1√
1 + p2 + q2 (3.14)

cos(g) = 1√
1 + p2

s + q2
s

(3.15)

For an idealized example of the reflectance function φL(i,e,g) = % cos(i) for a Lam-
bertian surface, which reflects radiance equally into all directions, the corresponding
reflectance map can be expressed by

RL(p,q) = %(1 + pps + qqs)
√

1 + p2 + q2
√

1 + p2
s + q2

s

. (3.16)

Figure 3.1. Depiction of the imaging geometry for a single light source.
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3 Background 3.2 Photometric Stereo

Looking at (3.12), the image intensity can be used to determine the surface normals
of an object. The problem is that for the parameters p and q there is only one
partial differential equation, therefore, it is underdetermined. To solve this issue,
on the one hand additional assumptions regarding special reflectivity or surface
curvature can be made. On the other hand, the concept of photometric stereo,
introduced in [9], can be applied.
The idea is to use multiple images (at least three), taken from the same position,
with illumination from varying directions. This variation in the illumination results
in a different reflectance map and intensity distribution for each image, whereas
the surface orientation doesn’t change. Thus, generally a system of equations in
the form of

I1(x,y) = R1(p,q)
I2(x,y) = R2(p,q)
I3(x,y) = R3(p,q)

(3.17)

is satisfactory to uniquely determine the surface normals and the reflectance factor
% [9] in the case of (3.16). In certain other cases, only two images would be sufficient,
however, the common approach is to use at least three images.
Assuming three images with different illumination, the unit surface normal n =
[nx ny nz]T at (x,y) can be computed with the corresponding intensity values for
the three images I = [I1 I2 I3]T and the unit vectors in direction of the illumination
sources

L =


l1

l2

l3

 =


lx1 ly1 lz1

lx2 ly2 lz2

lx3 ly3 lz3

 (3.18)

from the equation

%L n = I. (3.19)
If the inverse L−1 exists (if there is no plane that can be fit to the vectors l1, l2
and l3), the solution for the reflectance factor and surface normals at the point
(x,y) is [9]

%n = L−1 I (3.20)
where

% = |L−1 I| (3.21)
and

n = 1
%
L−1 I. (3.22)

11



3 Background 3.3 Spherical Coordinate System

3.3 Spherical Coordinate System
In the spherical coordinate system, the position of a point in 3-dimensional space
can be expressed using three parameters, as shown in Figure 3.2. The first one is
the radial distance r which is the distance between the point and the origin of the
coordinate system. The second parameter is the angle θ from the zenith direction,
which coincides with the z-coordinate in the Cartesian coordinate system, to the
vector connecting the origin and the point P. The last coordinate is the angle ϕ,
measured from the x-coordinate to the projection of the vector between origin and
expressed point onto the xy-plane.

Figure 3.2. Spherical coordinate system.

The spherical coordinates can be derived from the Cartesian coordinates using the
equations

r =
√
x2 + y2 + z2, (3.23)

θ = cos−1 z

r
, (3.24)

ϕ = atan2(y,x). (3.25)

The atan2 is used to take the correct quadrant of (x,y) into account. A common
definition for the possible range for the three coordinates is as follows:

r ≥ 0 (3.26)
0◦ ≤ θ ≤ 180◦ (3.27)
0◦ ≤ϕ < 360◦ (3.28)
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3.4 Feature Selection
The objective of variable or feature selection is to improve the performance in
learning applications, with faster, more accurate and more cost effective classifica-
tions by reducing the dimensionality of the data of the underlying process. This
is achieved by testing the feature space for redundancies and then, using one of
many applicable methods, to reduce them. For instance, redundancy is present
when several features contain similar information which already could be preserved
through keeping only one of these features. The task of the feature selection
approaches is now to determine which features to keep in the model for the best
classification results, especially for high-dimensional data [22].
In general, there are three different types of methods for feature selection which
differ in how the subset selection process is combined with the creation of the
classification model [22]:

• Filter methods

• Wrapper methods

• Embedded methods

The feature selection with filter methods is done independently before the learning
algorithm and consists of two basic steps: ranking the features and selecting the
best subset.
Wrapper methods evaluate the feature subsets based on the performance of the
learning algorithm which is an inherent step in these methods. Thus, they are
more complex regarding computation.
Finally, the embedded methods are similar to wrapper approaches, with the
difference that the variable selection is part of the specific learning algorithm and
is directly related to the construction of the model. An example for an embedded
approach is a Random Forest [23].
In the following sections, several filter-based feature selection and dimensionality
reduction concepts are described in detail.

3.4.1 ReliefF
The ReliefF algorithm, proposed in [24], is an extension of the Relief approach [25]
for the multi-class case. The idea of this method is to calculate the weight or impor-
tance of a feature depending on the differences between neighboring observations
of the same, as well as other classes, regarding the considered feature. A parameter
k defines the amount of neighbors used for both cases (same and different class).
The first step is to set all weights w to 0. Then, for a random instance xr, the
k-nearest observations for every class are found, with the neighborhood criterion
being the `1-norm over all features. For each of these observations xq, the weight
of the j-th feature is updated as follows:
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If xr and xq have the same class:

wij = wi−1
j − ∆j(xr,xq)

m
(3.29)

If xr and xq have different classes:

wij = wi−1
j +

pyq
1− pyr

∆j(xr,xq)
m

(3.30)

wij describes the weight of the j-th feature for the i-th iteration step and py indicates
the a priori probabilities for the corresponding class, depending on the total number
of observations for each class. The parameter m is the amount of iterations and
corresponds to the number of random observations which are used for updating
a weight. ∆j(xr,xq) defines the normalized difference in the values for the j-th
feature for xr and xq:

∆j(xr,xq) =

∣∣∣xjr − xjq
∣∣∣

max(xj)−min(xj) (3.31)

3.4.2 Fisher Score
The next approach for feature selection in the multi-class case is Fisher Score. The
idea behind this method, described in [26], is to select features in a way that the
inter-class distance in the feature space is as high as possible and the intra-class
distance as small as possible.
This concept is computationally expensive for a high amount of features, thus, for
every feature j, independent from the other features, the weight wj is calculated
separately by

wj =

K∑
k=1

nk(µjk − µj)2

K∑
k=1

nkσ
j
k

2
. (3.32)

The total number of classes is K and nk indicates the amount of observations with
class k. µjk and σjk define the mean value and the standard deviation, respectively,
for the k-th class and the j-th feature, while µj is the mean value for all classes for
the j-th feature.
Fisher Score calculates the weights for each feature independent of the others,
therefore it is not possible to detect redundant features or features which are
individually unimportant but would be important in combination with others [27].
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3.4.3 Correlation-based Feature Selection (CFS)
This approach, introduced in [28], uses a correlation-based filter method to evaluate
the importance of a feature or set of features regarding classification. It accounts
both individual influence and also the correlation between separate features to
detect redundancy. The assumption is, that relevant feature sets contain elements
which strongly correlate with the classes but not within the set [28].
The heuristic which is used as a measure for the importance of a feature subset S
can be expressed by

MS = prkf√
p+ p(p− 1)rff

. (3.33)

MS is the merit of the feature subset containing p elements with rkf and rff being
the mean correlation between the separate features and the class k (f ∈ S), and the
feature-feature correlation, respectively. In his work [29], Hall compares different
methods to calculate the correlations rkf and rff , namely minimum description
length, relief and symmetrical uncertainty.
The numerator in (3.33) is a measure of how predictive S is of the class k whereas the
denominator gives information on the redundancy of the features. Hall implemented
three different search strategies to find the best feature set S, according to (3.33),
which are forward selection, backward elimination and best first. The stopping
criterion for each search is basically when adding a feature to/removing a feature
from a subset doesn’t improve/decreases the merit.
The result of CFS is the estimate of the best feature subset according to (3.33).

3.4.4 Decision Tree (DT)
The general concept of Classification and Regression Trees (CART) was introduced
by Breiman et al. in [30]. The classification tree is a model that is used to predict
the class label y of an observation x by passing through the tree from its root
node to a leaf. The classification result for x is the class which the majority of the
observations in the corresponding terminal node belongs to.
The model is constructed by splitting every non-terminal node of the tree into two
nodes, starting with the root node which contains all observations of the training
data. The feature on which the split is based, is chosen according to the impurity
of the child nodes, that the corresponding split results in.
Impurity can be described as the degree of homogeneity of observations in a node,
regarding their classes. A pure node only consists of instances of the same class,
therefore the aim of the splitting process is to minimize the sum of impurities
of the two child nodes [31] and, accordingly, the best feature is selected for the
current split. Figure 3.3 shows a simple example for a decision tree with 3 classes
of observations, for a single feature (color). For each non-terminal node, the best
split is used.
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Figure 3.3. Example of a decision tree with observations (represented by circles) of
3 classes.

As a measure for impurity, the CART algorithm uses the Gini-Index G, proposed
in [32]. It is calculated by

Gi = 1−
K∑
j=1

p2(j) (3.34)

for the node i. p(j) describes the ratio of elements from the class j to the total
amount of observations n in the node. The tree is grown until there is no significant
improvement regarding the impurity. If this is the case for a node, it is not split
anymore and becomes a terminal node.
The importance of a single feature, in [30] referred to as variable importance, is
determined by summing the impurity gain ∆G separately over all node splits for
every feature:

∆Gi = Gi −
nl

n
Gl
i −

nr

n
Gr
i (3.35)

Gl
i and Gr

i are the Gini-Indices for the left and right sibling node of i and n, nl
and nr are the amount of observations in the split node and its left and right child,
respectively.
As concluded in [31], it is also possible to use these decision trees for feature
selection, even in high-dimensional space. The result of the feature selection is a
ranking of the sums of the impurity gains over all splits where the highest value
corresponds to the most important feature in the tree.
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3.4.5 Principal Component Analysis (PCA)
The earliest works of the concept now known as Principal Component Analysis
were carried out in [33] and [34] by Pearson and Hotelling, respectively.
PCA is a method to approximate a set of M features by a smaller set of k ≤M
linear combinations of these features, defined as principal components (PCs), as
to reduce the dimensionality of the data. The assumption in this concept is,
that the derived k variables can preserve most of the information regarding the
variances of the m features [35]. In Figure 3.4, a simplified example is given,
showing observations with two features f1 and f2. The fitted PC coordinate system
indicates that most of the variance in the example data can be preserved by the
first PC.

Figure 3.4. Plot with two-dimensional example data and fitted PC coordinate
system.

Mathematically speaking, the original data X = [x1 x2 . . . xN ], containing N
observations, is projected onto the PC space, resulting in a new matrix P =
[p1 p2 . . . pN ].
The first step of this process [36] is the centering of the data in X ∈ RM×N by
subtracting the mean µ for every feature over all observations with

Xc = [x1 − µ x2 − µ . . . xN − µ], (3.36)
where

µ = 1
N

N∑
i=1

xi. (3.37)

Next, the covariance matrix Σ ∈ RM×M of the centered data is computed by

Σ = 1
N − 1XcXT

c , (3.38)
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where the element at position (i,j) in Σ is the covariance of the observations xi
and xj.
Following, the N eigenvectors V = [v1 v2 . . . vM ] and eigenvalues
λ = [λ1, λ2, . . . , λM ]T of Σ are calculated from [37]

Σvi = λivi. (3.39)
According to Hotelling’s definition of PCA in [34], the PCs are the orthonormal
axes onto which the variance of the data is maximal. Thus, the eigenvectors, as
they represent these orthonormal axes, are sorted according to their corresponding
eigenvalues, as they correspond to the variances, starting with the highest value. The
eigenvectors with the k largest eigenvalues are collected in the matrix W ∈ RM×k

which is used for the transformation from the original feature space to the lower
dimensional PC space. With

P = WTXc, (3.40)
the original data is now represented in the PC space where P ∈ Rk×N contains the
projected data.
Compared to the other approaches presented before, PCA doesn’t select the
most important elements from the feature space, but instead creates a new lower
dimensional variable space. Therefore, the term feature selection is not really
appropriate, but rather dimensionality reduction or feature extraction. Another
difference is that PCA is an unsupervised method and thus has no knowledge of
the classes of the samples.

3.5 Classification
In machine learning, the term classification refers to the task where the attributes
or features of a sample are acquired (e. g. by measurements) and further processed,
to identify the category or class to which the sample belongs. Typically, this means
that the features corresponding to this sample i (which is often referred to as
observation) are stored in a vector xi and the aim of the process is basically to
find the correct label yj for the sample, where j is one out of a fixed set of discrete
classes.
The classification algorithm itself can be thought of as a rule that takes xi as an
input and returns a class label. With the knowledge of the cost of mislabeling
for each class, this rule is defined in a way that the expected mislabeling cost
is minimized [38]. The realization of this rule is based on previously collected
data that consists of a set of observations together with the acquired features and
the correct labeling. This process of training the model from labeled data is also
referred to as supervised learning. The classification model is fitted to this so called
training data in a way that the above mentioned mislabeling cost is a minimum.
Nevertheless, if the model is evaluated with new observations - the test data - the
classification error might be worse. This phenomenon is often called overfitting
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which indicates that the model is biased to the training data [38]. To avoid this, a
common approach is to validate the model during the learning process with a subset
of the data which is intentionally left out during the training. Thus, the evaluation
is done with data which is new to the model and the estimated performance is
more likely to be similar to the test data.
An even better method to get a good estimate on the test performance, especially
when the training set is sparse, is k-fold cross-validation. The training data is
split into k parts which are about the same size. Then, the model is trained
k-times with k− 1 parts as training set and 1 part as validation set. The mean vali-
dation error over the k iterations is an effective estimate of the average test error [39].

The performance of a classifier can be measured with various methods. Probably
the simplest, most obvious approach is the error rate which measures the percentage
of wrong classifications or its counterpart, the accuracy, which indicates the correct
predictions. In cases where the misclassification cost varies between the classes or
where the dataset is imbalanced (if the amount of observations is not the same for
every class), different performance measures achieve more appropriate results. An
improvement over the usual accuracy is the recall which is computed equivalently
to the average accuracy over all classes in the multi-class case:

recallmc = 1
K

K∑
j=1

1
Nj

Nj∑
n=1

snj , (3.41)

where

snj =
1, for a correct prediction

0, for a false prediction
. (3.42)

Nj is the size of the test samples sj for the class j and K is the amount of discrete
classes.
Another performance measure, especially for more than two classes, is the confusion
matrix. It is a table-like visualization where the rows correspond to the true labels
of the observations and the columns correspond to the predicted classes. Thus, it
gives hints on the general performance of the classifier and also which classes are
often confused by the model [38]. A three-class example for a confusion matrix
is shown in Figure 3.5, where the percentage of classifications is noted in every
field. For instance, 16.2% of the samples from class 1 are falsely labeled with class 2.

3.5.1 Support Vector Machine (SVM)
A very useful tool in machine learning is the group of algorithms called Support
Vector Machines. The basic idea of SVMs is to create a mathematical model that
categorizes data from different classes by finding a hyperplane (e. g. a line in the
case of two-dimensional space) in the feature space that best separates the data.
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Figure 3.5. Example of a confusion matrix for a three-class problem.

Assuming a two-class problem for simplicity, the data of N observations is given by
N features vectors xi, where each vector contains M elements. The corresponding
class labels are given by yi where yi ∈ {−1,1}. The separating margin can now be
defined by the equation [39]

f(x) = xTβ + β0 = 0 (3.43)
with the vector β and the scalar β0 as parameters. The function f(xi) calculates
the signed distance from the point xi in feature space to the hyperplane defined by
(3.43). Hence, the rule which gives the classification result can be written as

ỹ(x) = sign(xTβ + β0). (3.44)
For data with separable classes, the hyperplane parameters β and β0 can be found
in a way that yif(xi) > 0 ∀i. In [39], the optimization problem for finding the
margin which separates the classes -1 and 1 best, can be expressed by

min
β,β0
‖β‖

for yi(xTi β + β0) ≥ 1, i = 1, . . . ,n.
(3.45)

The points for which the equality in (3.45) is true are called the support vectors
and, in Figure 3.6, lie on the dashed lines with distanceM = 1

‖β‖ to the hyperplane.

20



3 Background 3.5 Classification

Figure 3.6. Example for an SVM in the two-dimensional case, on the left for
separable and on the right side for non-separable data. Source: [39]

The previous concept works for separable data, however, in the case that the data
overlaps for different classes, the model has to be adapted. This situation is depicted
in the right image in Figure 3.6. The idea is now, to allow some observations on the
wrong side of the hyperplane by defining so called slack variables ξi. This parameter
defines the proportional amount by which the corresponding classification result
ỹi(xi) is on the wrong side of the margin [39]. The sum of the slack variables

N∑
i=1

ξi

is used as a boundary condition in the newly formulated optimization problem

min
β,β0
‖β‖ for


yi(xTi β + β0) ≥ 1− ξi ∀i

ξi ≥ 0,
N∑
i=1

ξi ≤ constant
. (3.46)

So far, linear margins for the features were described. In many cases, hyperplanes
are not sufficient to separate the data, hence, more complex - non-linear - geometries
are necessary. The original feature vectors are transformed into higher dimensional
space, where a linear separation is possible. With the transformation expressed
by h(x), the now non-linear function is defined as f̂(x) = h(x)T β̂ + β̂0 with the
corresponding classifier and the optimization problem similar to (3.44) and (3.46),
respectively.
To deal with the computational complexity that this non-linear separation may
require for very high-dimensions, the so called kernel trick is applied [40]. During
the solving of the optimization problem, the term 〈h(xi),h(xj)〉 has to be computed
for every pair of vectors. The trick is that now for particular functions (called
kernels), the value for two feature vectors is the inner product of the transformed
vectors and can be expressed with

K(xi,xj) = 〈h(xi),h(xj)〉. (3.47)
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The most common kernels for SVMs are [39]

• Polynomial kernel (d-th order): K(xi,xj) = (1 + 〈xi,xj〉)d

• Gaussian kernel (Radial basis) : e−γ‖xi−xj‖2

• Neural network (Sigmoid): tanh(κ1〈xi,xj〉+ κ2)

The basic concept of SVMs is binary classification. As in practice the number
of classes K is often greater than two, multi-class models have to be used. The
simplest method is to reduce the multi-class to a binary problem by creating K
separate SVMs where each one separates the K-th class from the other K−1 classes.
This approach is called the one-vs-all method [41]. The rule for the multi-class
model is then expressed by

ỹ(xi) = max
K

ỹK(xi). (3.48)

In the case, that several binary classifiers produce the same result, i. e. predict that
xi is of the corresponding class, often additional information, like the prediction
confidence, is used to determine the actual class [41].

3.5.2 Random Forest (RF)
The concept of CARTs for feature selection was presented earlier in Section 3.4.4. As
the term suggests, the method is intended for classification in learning applications.
In this section, the usage of CARTs in an ensemble method is described, namely
Random Forests, introduced by Breiman in [23]. Ensemble learning in general refers
to a set of classifiers that are trained simultaneously. The overall prediction for an
observation is then based on the majority vote or the averaging of the results for
all learners.
A random forest takes up this concept, as it is a collection of decision trees, with
the goal to improve the classification accuracy compared to the single classifier
approach. This improvement is achieved with a modification of a technique called
bagging which aims to reduce the variance of prediction results in ensemble learning,
by using different subsets of the training samples for each classifier [39].
This concept is extended by the random forest approach which, in addition to
varying samples for each tree, randomly selects a subset with r ≤M of the input
features for each split, with a typical value for r being

√
M .

As a result of this approach, the correlation between the individual trees is reduced,
which improves the performance of the classifier [39].
An important advantage of random forests is the use of out-of-bag samples for
classification. The label yi for the observation xi is the result of averaging only
those trees for which xi is not used for training. The estimate for the prediction
error is similar to the result for k-fold cross-validation, hence, there is no need for
additional validation of the model [39].
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3.5.3 Artificial Neural Network (ANN)
Inspired by simplified models of the neural network structure of the human brain,
Artificial Neural Networks are methods used in a wide range of learning applications.
They can be graphically described as directed graphs, with nodes corresponding
to neurons and edges linking them. The exact structure depends on the type of
the ANN. Figure 3.7 shows an example for a common category of neural networks,
called the feed-forward network.

Figure 3.7. Structure of a feed-forward neural network with a single hidden layer.

In this structure, the input layer is connected to the output layer through at least
one hidden layer, where the output of each node is linked to the input of every node
in the following layer. Mathematically, the input of a neuron can be described by a
linear combination of the connected outputs of the previous layer. This relation
can be expressed by

zm = σ(α0p + αT
p x), p = 1, . . . , P, (3.49)

tk = β0k + βT
k z, k = 1, . . . , K, (3.50)

fk(x) = gk(t), k = 1, . . . , K, (3.51)

with z = (z1, z2, . . . , zM) as the output of the M neurons in the hidden layer and
t = (t1, t2, . . . , tK) as the input for the K neurons in the output layer [39]. The
number of neurons in the hidden layer depends on the application and typically
is somewhere between the size of the input layer (number of features M) and
the output layer (number of classes K). σ(v) is called the activation function
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where common choices are the sigmoid function σ(v) = 1/(1 + e−v) or the rectifier
function σ(v) = max(0,v). Through choosing a nonlinear transformation function
for σ, the neural network basically models a nonlinear function from the input
variables x to the output variables y and thus can be used for complex scenarios.
The vectors αp and βk contain the so called weights for the corresponding edges. In
addition to the neurons depicted in Figure 3.7, optional bias units can be inserted
into the model, which can be thought of as neurons with the output value 1 and a
weighting parameter, here α0p and β0k.
For classification purposes, the output of the hidden layer is usually transformed
with the softmax function

gc(t) = etk

K∑
`=1

et`

. (3.52)

The results for each neuron in the output layer sums up to one, where the highest
value is the estimate for the class label yi of the model input xi.

During the learning or fitting process of ANNs, the set of weights and biases θ is
adapted, in order to fit the model to the training data. The typical approach to
determine the parameters, desribed in [39], is called back-propagation, where, by
using gradient descent optimization, a loss function in the form of the squared error

R(θ) ≡
N∑
i=1

Ri =
K∑
k=1

N∑
i=1

(yik − fk(xi))2 (3.53)

is minimized. With zpi = σ(α0p + αT
p xi) from (3.49) and zpi = (z1i, z2i, . . . , zPi),

the partial derivatives of Ri are expressed by

∂Ri

∂βkp
= −2(yik − fk(xi))g′k(βTk zi)zpi = δkizpi, (3.54)

∂Ri

∂αp`
= −

K∑
k=1

2(yik − fk(xi))g′k(βTk zi)βkpσ′(αTp xi)xi` = spixi`. (3.55)

The values δki and spi can be referred to as the errors of the output and hidden
layer calculated from the current model. With the relation

spi = σ′(αTp xi)
K∑
k=1

βkpδki, (3.56)

the weights and biases are updated by repeating two steps:

• The forward pass, where the training data is classified with (3.49) - (3.51),
using the current weights,

• and the backward pass, where the values for δki are calculated and afterwards
back-propagated to spi using (3.56)
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The errors are then used for the computation of the gradients in the equations for
the parameter updates

β
(r+1)
kp = β

(r)
kp − γr

N∑
i=1

∂Ri

∂β
(r)
kp

(3.57)

α
(r+1)
p` = α

(r)
p` − γr

N∑
i=1

∂Ri

∂α
(r)
p`

, (3.58)

with the learning rate γr which defines how much the weights are changed in each
step according to the gradients.
To avoid overfitting of the model to the training data, the learning process is
stopped before the global minimum is reached [39].

3.5.4 Synthetic Minority Over-sampling Technique (SMOTE)
In [42], Chawla et al. propose an effective method to deal with dataset imbalance in
machine learning applications. This imbalance is often caused by the nature of the
problem, e. g. in defect detection, where in most of the cases the “normal” elements
without defects dominate over the faulty samples. Thus, the simple assumption
that no observation is defective, leads to a seemingly good classifier performance,
although all the defect samples are falsely classified.
To deal with this problem, the above mentioned paper describes a method called
Synthetic Minority Over-sampling Technique, where the idea is to create “synthetic”
observations for the underrepresented class(es). This is done by randomly generating
new samples which lie between existing instances and their neighbors in feature
space.
First, the k nearest minority class neighbors in the feature space are found for
every instance xi of the corresponding class. Depending on the required amount
of oversampling, an appropriate set out of the k neighboring instances is chosen
randomly for every sample and for every element xj of this set, the distance vector
d = (xi− xj) to xi is calculated over all features. The “synthetic” sample x̃j is the
result of the sum of xj and the distance d weighted with a random value r between
0 and 1. Mathematically this can be expressed by

x̃j = xj + rd = xj + r(xi − xj). (3.59)
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4 Extraction of Surface Features
The following chapter describes the concepts for the steps of the feature extraction,
including the pre-processing of the borehole images explained in detail, the image
stitching, the following image segmentation and also the photometric stereo ap-
proach. In addition, the datasets, which are the basis of this work, are discussed.
Finally, the ideas and mathematical formulations for the extraction of the different
features is presented. Figure 4.1 shows an overview and a short description of the
individual steps.

Figure 4.1. Graphical overview of the feature extraction process.
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4.1 Dataset
4.1.1 Borehole Images
The first part of this dataset, provided by the company Profactor [1], consists of
grayscale images of the insides of boreholes (� ∼6mm) in CFRP parts. Prior to
this work, pictures of 72 boreholes in uni-directional material (UD) and 72 holes
in multi-directional material (Fabric) were acquired by a special endoscope with
illumination from optical fibers, where each one is connected to an LED. In total,
there are 8 fibers, which are distributed equally around the endoscope, to enable
illumination of the borehole from all angles.
To be able to capture the whole inside of the hole, the endoscope is moved step by
step along the z-axis and for each of the 13 steps, 8 High Dynamic Range (HDR)
images are taken, where for each image, only the corresponding fiber is active. As
a result, each of the 8 images per acquisition step shows 360◦ (normal to the z-axis)
of the inside of the borehole with the only difference being the illuminated area.
Thus, the position of a pixel corresponding to a point on the surface is the same
for all images per step, so the different illuminated parts can be easily stitched
together without complex registration methods. This stitching is discussed in the
next section. An example of the imaging process is shown in Figure 1.1.
The sensor unit, which was used to create the dataset, is called HScan [3] and was
designed by Profactor for borehole inspection. Figure 1.2 pictures the principal
setup of the endoscope and the arrangement of the illumination.

4.1.2 Drilling Parameters
The second part of the dataset consists of the parameters of the drilling process
for each borehole, like the wear of the tool, or the applied feed. Based on these
parameters, the holes were manually classified in three categories:

1: Optimal (Fabric: 14 samples, UD: 14 samples)

2: Bad drilling (Fabric: 38 samples, UD: 21 samples)

3: Pushed through (Fabric: 20 samples, UD: 37 samples)

This separation was done in advance to this thesis and is later used as groundtruth
for the classification process.

4.2 Pre-Processing
To extract surface features and other data from the borehole images, it is useful to
process them in advance, so e. g. to combine the different illuminated regions of the
inside of the hole to get a more or less fully illuminated image for every acquisition
step.
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4.2.1 Image Stitching
The combination of the partial images with different lighting was implemented
in two different ways, which are used depending on the desired information. In
the following chapters, the first one is called Maximum-based and the second one
Region-based. As a starting point for the pre-processing, the third acquisition step
(step2 ) was used, as the entire inside of the borehole is visible and not occluded by
the imaging geometry, like in other steps.

Maximum-based

This method compares all the images per step along the z-axis and the intensity
value of the resulting image corresponds to the maximum value in the partial
images. This is possible due to the matching pixel position through the 8 images,
as already mentioned before. Figure 4.2 shows an example of maximum-based
image stitching.

Region-based

The idea behind this method is to combine the most illuminated region from every
partial image to a final, fully illuminated picture. For this approach, only 6 of
the initially 8 images per step were used, as the illumination in the first and last
picture for every step is worse than for the remaining 6 which provide sufficient
information for the stitching. The result is shown in Figure 4.3, with an annotation
of the corresponding image used for each region.

Comparison of methods

The results for the maximum-based and region-based stitching approaches are
mostly similar. Nevertheless, for the second method, the edges between the image
regions are visible, which can lead to problems when extracting certain features, like
edge detection for example. Another difference in the approaches is the blending of
images in the first method. This means that the reflections on the hole surface for
every region of the image originate from different illumination angles, which might
cause errors, for example with the photometric stereo approach. Therefore, both
methods have different use cases, as shown in the following sections.
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Figure 4.2. Maximum-based image
stitching.

Figure 4.3. Region-based image stitch-
ing.

4.2.2 Image Segmentation
The type of pre-processing depends on the desired image information. If for example
only the inside-surface of the borehole or the fiber pullout of the material is of
interest, the picture has to be segmented accordingly. A graphical overview on the
following segmentation process is given in Figure 4.4.

Approach

Assuming the endoscope centered in the borehole, it should be possible to approx-
imate the hole by using two roughly concentric circles which originate from the
inlet opening (outer circle) and the outlet opening (inner circle). Starting from
the image center, the nearest pixels in radial direction determine the first circle,
the inner circle, assuming that the image center is inside this circle. For the outer
circle, radiant again from the image center, the farthest pixels are used. Therefore,
with the identification of these two circles, the image can be segmented in three
parts:

• The inside-surface of the borehole (between the circles)

• The interior of the borehole (inside of the inner circle)

• The surface of the CFRP part (outside of the outer circle)
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d) circle detectionc) binary image

e) outlier elimination f) segmented image

a) original image b) image after CLAHE

Figure 4.4. Steps of the segmentation process.
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Implementation

To be able to detect the points of the borehole inside, beginning with the image
in Figure 4.4 a), the picture is transformed to a binary mask (Fig. 4.4 c) with
the MATLAB function imbinarize, in order to segment the inside surface of the
borehole from the rest of the image. The intensity value of pixels under a certain
threshold are set to 1 and the remaining pixels to 0. This threshold t is calculated
with Otsu’s Method [43], in a way that the intra-class variance σ2

w(t), defined as
the weighted sum of both white and black pixels, is minimized. With the intensity
variances σ2(t) and the class probabilities ω(t) (number of pixels per class divided
by total amount of pixels), the following function is minimized:

σ2
w(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t) (4.1)

This is done iteratively, by computing the result for each value of t, which corre-
sponds to 256 iterations in an 8-bit image.
If the intensity values of the borehole inside surface are too inhomogeneous, for
example if some pixels are very bright compared to others, the transformation to
the binary mask can result in black areas that ideally should be white, as their
intensity value is under the threshold. To deal with this problem, an intermediate
step is introduced (Fig. 4.4 b), where previous to the binary transformation, the
image’s intensity histogram is adapted. This is done using the function adapthisteq,
which implements the Contrast Limited Adaptive Histograph Equalization (CLAHE)
[44]. The idea of this method is to compute several intensity histograms for each
section of the image, to improve the local contrast by spreading the most frequent
intensity values.
Next, using the binary image, the closest and farthest points in each radial di-
rection is determined. The number of directions n is pre-defined and equally
distributed along the angle. A suitable value for n is around 60-120. In order to
identify the desired points, the absolute image coordinates pai for every pixel i
are transformed (4.2) to coordinates relative to the image center (pri ), using the
homogeneous transformation matrix T, with W and H as the image width and
height, respectively.

pri = T pai


xri
yri
1

 =


1 0 −W

2
0 −1 H

2
0 0 1



xai
yai
1


(4.2)

As a starting point, the standard form of the circle equation (4.3), with xc and yc
as the relative coordinates of the circle center, is used:
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(xi − xc)2 + (yi − yc)2 = r2 (4.3)
x2
i − 2xixc + x2

c + y2
i − 2yiyc + y2

c = r2 (4.4)
2xixc + 2yiyc + r2 − x2

c − y2
c = x2

i + y2
i (4.5)

The last equation can be formulated in matrix notation as

[
xi yi 1

] 
2xc
2yc

r2 − x2
c − y2

c

 =
[
x2
i + y2

i

]
(4.6)

Now, for n points per circle, the result is an overdetermined system of linear
equations in the form of (4.6):

y1 x1 1
y2 x2 1
... ... ...
yn xn 1


︸ ︷︷ ︸

A


2xc
2yc

r2 − x2
c − y2

c


︸ ︷︷ ︸

p

=


x2

1 + y2
1

x2
2 + y2

2
...

x2
n + y2

n


︸ ︷︷ ︸

b

(4.7)

With the full rank matrix A, there is no exact solution for

Ap = b. (4.8)
The least squares approach, presented in Section 3.1, computes an optimal solution
p̂ for this problem:

p̂ = (ATA)−1ATb. (4.9)
In MATLAB, this approach is implemented with the backslash operator:

p̂ = A\b. (4.10)
The resulting parameters - the coordinates of the circle center x̂c, ŷc and the radius
r̂ - can be extracted from p̂ as solutions of the system of equations

p̂ =


p̂1

p̂2

p̂3

 =


2 ŷc
2 x̂c

r̂2 − x̂2
c − ŷ2

c

 . (4.11)

After this step, the optimal solution, in a mathematical sense, for both inner and
outer circle is available in standard form, depicted in Figure 4.4 d). As (4.7) is an
overdetermined system, the detected points don’t fit the calculated circles exactly.
The openings are not perfectly smooth, especially for lower quality boreholes.
Therefore, the circles are improved by eliminating outliers which originate for
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example from surface reflections on the outside of the borehole or delaminated
material in the inner circle. In every step, the most distant point from the circle
is eliminated and the remaining points are again least squares fitted to a new
circle. This procedure is repeated until only a pre-specified number of points is left
(minimum 3). The segmentation result with the final circles (Fig. 4.4 e)) is shown
in Figure 4.4 f).

4.2.3 Photometric Stereo
In order to not only rely on features extracted directly from the grayscale intensity
values, an idea is to get 3-dimensional knowledge about the inside surface of
the borehole to be able to detect surface defects. This is implemented using a
photometric stereo approach, as to calculate the surface normals of the inside. The
surface normal vectors are then used as a starting point for calculating various
features.

Approach

The 8 images per borehole and vertical step are taken from the same position, with
the single difference, that for every image a different glassfiber (LED) is active and
therefore the illumination angle changes. For the photometric stereo approach, a
minimum of three illumination directions per scene is needed, as to calculate the
normal vectors at a certain point from the incident angle-dependent reflection of
the material. As a consequence, the three most suitable images for every region
are chosen for the computations.
As the implementation of an optimal photometric stereo approach is difficult,
especially due to the small geometries, the imaging system is assumed to be ideal
and the material is assumed to reflect completely diffuse, which doesn’t correspond
to reality, however, is necessary for the ease of implementation.

Implementation

The calculation of the surface normals is implemented in two slightly different ways,
due to manufacturing variances regarding the glassfibers. To begin with, their
total brightness varies, as well as the diameter. In addition, the cutting angle at
the fiber ends is not exactly the same, therefore the illumination angles are not
consistent. For these reasons, the first implementation (Figure 4.6) takes only the 6
best illuminated images per step into account, whereas the second implementation
(Figure 4.7) uses all 8 images.
Figure 4.5 shows the fiber placement around the endoscope with the consecutive
numbering. For the first implementation, the images from the fibers 1 and 8 are
not taken into account due to their lacking illumination.
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Figure 4.5. Placement of the fibers around the endoscope.

Figure 4.6. Fiber utilization for the 1st
implementation.

Figure 4.7. Fiber utilization for the 2nd
implementation.

Intensity equalization

As mentioned before, the brightnesses of the fibers differ from each other. Figure 4.8
to Figure 4.15 illustrate the varying illuminations.
To cope with this, an intensity equalization factor (Feq) is calculated for both
photometric stereo implementations for each of the 6 or 8 regions, respectively.
The mean intensity Ī over all n pixels of the borehole inside for the step2 image j
is averaged over all m step2 images with the same illumination, separately for each
single region, dataset and implementation.

Īj = 1
n

n∑
i=1

Ii (4.12)

Ītot = 1
m

m∑
j=1

Īj (4.13)

Next, the highest value over all regions Īmaxtot is multiplied with the reciprocal value
for each Ītot, which results in the Feq, again for each single region, dataset and
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implementation. Finally, the corresponding factor is applied to each image matrix,
to adapt the pixel intensities I:

Feq = Īmaxtot

Ītot
(4.14)

Ieq = Feq I (4.15)

Figure 4.8. Illumination with fiber 1. Figure 4.9. Illumination with fiber 2.

Figure 4.10. Illumination with fiber 3. Figure 4.11. Illumination with fiber 4.
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Figure 4.12. Illumination with fiber 5. Figure 4.13. Illumination with fiber 6.

Figure 4.14. Illumination with fiber 7. Figure 4.15. Illumination with fiber 8.

Calculation of surface normals

The ideal parameters for the imaging geometry, like camera position, distribution of
the glassfibers around the endoscope and borehole dimensions are known. Therefore,
as already mentioned, the surface normals can be computed from three images
with different illumination direction.

Figure 4.16 shows the geometry of the imaging system and the borehole, respec-
tively. Moreover, it depicts an example on how three images, necessary for the
photometric stereo approach, are chosen for a certain point in the scene.
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Figure 4.16. Illustration of imaging geometry and borehole dimensions.

For the computation of the surface normals, the vector I = [I1 I2 I3]T with the
adapted intensity values of the three images at this point pi is needed. In addition,
the normalized vectors l1,2,3 in the direction from pi to the three corresponding
fibers, aggregated into the matrix L, are necessary:
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l1 =
[
lx1 ly1 lz1

]
l2 =

[
lx2 ly2 lz2

]
l3 =

[
lx3 ly3 lz3

]

L =


l1
l2
l3


(4.16)

For the calculation of the unit vectors, the coordinate system with the position
of the endoscope as origin, is set as shown in Figure 4.16. Next, the x- and y-
coordinates of the fibers are computed using the corresponding angle (e. g. for
the second fiber this is 90◦) in the xy-plane, together with their distance to the
endoscope. This distance is the sum of the radii of the endoscope (re = 1.15mm)
and the fiber (rf = 0.375mm).
To compute the z-distance of the fibers to the points in the scene, the z-coordinate
of a certain point is estimated with the knowledge of the borehole radius rb and
depth hb, as follows:

First, the distance det from the endoscope to the top surface of the hole is calculated
under consideration of the camera opening angle β, which is 80◦. As for the third
imaging step along the z-axis (step2 ) the inlet opening of the hole is just visible,
this image is used for the calculation of det.

det = rb

tan β
2

(4.17)

Next, the effect of the perspective projection through the imaging process is
recalculated. To prevent errors due to non-concentric circles (example in Figure 4.17)
which originate from surface defects or inexact positioning of the imaging system,
the distance between the farthest dmax and the nearest point dmin, in radial direction
from the image center, is computed in intervals of 0.01 rad. The maximum point
corresponds to a point on the top surface of the hole and the minimum point to a
point on the outlet opening. With this projected distortion dp = dmax − dmin and
the radial distance dr = di − dmin of the pixel pi to the pixel with the minimum
distance pmin, the z-coordinate of pi is calculated to

zi = det + hb − hb
dr
dp

(4.18)

For a point on the top surface of the hole (dr = dp), this results in zi = det, as
expected. The calculated z-coordinate of the pixel corresponds to the negative
z-component of the vector from the pixel to the endoscope, as the endoscope and
the origin lie on the same plane. Now, the unit vector for the surface normal
n = [nx ny nz]T can be computed using the following equations:
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Figure 4.17. Image segmentation mask with unconcentric circles.

%L n = I (4.19)
%n = L−1 I (4.20)

The scalar % corresponds to the surface albedo, which is a measure of the diffuse
reflectivity of a material.
To provide additional information and features, the surface normal is also trans-
formed to the spheric coordinate system. With the Euclidean vector norm of n,
r =

√
n2
x + n2

y + n2
z, the results for the polar angle θ and the azimuth angle ϕ

(starting from the y-axis) are:

θ = cos−1 nz
r

(4.21)

ϕ = atan2(nx,ny) (4.22)

4.3 Proposed Features
In this section, the ideas and algorithms for the extraction of the implemented
features are described. The features are separated in two classes, on the one hand
the Photometric Stereo features and on the other hand the rest of the features
(Standard features). Figure 4.18 to Figure 4.21, here with an example for a borehole
with poor quality, show the different pre-processed images which are the basis for
the extraction process. The image which is in the end used, is annotated for each
feature separately.

39



4 Extraction of Surface Features 4.3 Proposed Features

Figure 4.18. Preprocessed image img-
Step2

Figure 4.19. Preprocessed image img-
Step12

Figure 4.20. Preprocessed image imgIn-
nerROI

Figure 4.21. Preprocessed image imgIn-
nerROIEqHist

4.3.1 Standard Features
Pixel intensities

The first features are the mean value and standard deviation of the pixel intensities.
For the image imgStep2, the whole image is used, for imgInnerROI the pixels with
Ii 6= 0 are used, so only the segmented region.

Ī = 1
n

n∑
i=1

Ii (4.23)
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Iσ =
√√√√ 1
n

n∑
i=1

(Ii − Ī)2 (4.24)

Processed images: imgStep2, imgInnerROI

Circle parameter

This characteristic corresponds to the image segmentation in Section 4.2.2. As
features, the circle radii, the ratio of both radii and also the ratio of the radii to
the image dimensions (width W ), are used.

rio = r̂in
r̂out

(4.25)

riw = 2 r̂in
W

(4.26)

row = 2 r̂out
W

(4.27)

Processed images: imgStep2

Circle quality

This feature also refers to the image segmentation in Section 4.2.2. The idea is,
to describe the uniform roundness of the hole, using the Euclidean distances d of
the n points to the resulting circle fit, for the inner, as well as for the outer circle.
Defects at the inlet and outlet opening, for example, lead to higher values for these
distances.
To evaluate this attribute, the mean and standard deviation of the distances for
both circles are computed, as follows:

di =
∣∣∣∣√(xiR − x̂)2 + (yiR − ŷ)2 − r̂

∣∣∣∣ (4.28)

d̄ = 1
n

n∑
i=1

di (4.29)

dσ =
√√√√ 1
n

n∑
i=1

(di − d̄)2 (4.30)

Processed images: imgStep2
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Weighted average distance

The next feature is calculated from the mean weighted and normalized distances
of all n pixels to the image center. The pixel intensity Ii is used as weight. For
imgInnerROI, again only the pixels with Ii 6= 0 are used.

d̄w = 1
n

n∑
i=1

Ii

√
x2
iR

+ y2
iR

W
(4.31)

Processed images: imgStep2, imgInnerROI

Energy inner ROI

For this feature, the sum of the squared pixel intensities is computed. It can be an
indicator for reflective fraying or other defects on the inside surface of the borehole.

eROI =
n∑
i=1

I2
i (4.32)

Processed images: imgInnerROI

Hollow part defections

This feature is similar to the last one, with the single difference that now the
imgStep12 is processed, as for this image the fiber pullout inside the borehole
is visible particularly good. Optimal holes result in a low value for this feature,
whereas holes with inner defects achieve a high value.

eHoll =
n∑
i=1

I2
i (4.33)

Processed images: imgStep12

Entropy inner ROI

The entropy of an image is a measurement for the degree of randomness and is
used to characterize the texture of the image. If, for example, the intensity values
are distributed equally likely, the entropy is at the maximum. If, on the other hand,
all intensities are equal, the entropy is zero.
In detail, the MATLAB function entropyfilt is used, which calculates the entropy
value Ey,x at the position (y,x) of the n× n neighborhood of a pixel for an image
with the dimensions r (rows) and c (cols) as follows:
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Ey,x = −
m∑
k=1

hk log2(hk) (4.34)

h is the normalized histogram of the n× n neighborhood where m is the amount
of bins.
Finally, the mean and standard deviation of the entropy values of all n pixels with
Ey,x 6= 0 is calculated.

Ē = 1
n

r∑
y=1

c∑
x=1

Ey,x (4.35)

Eσ =
√√√√ 1
n

r∑
y=1

c∑
x=1

(Ey,x − Ē)2 (4.36)

Processed images: imgInnerROI

Radial frequency

Due to the layered structure of the CFRP parts and the endoscope imaging, the
layers show similarities to concentric circles, especially if the holes are of good
quality. The idea of the next feature is to measure this similarity.
Starting from the image center, in 8 radial directions (0◦, 45◦, 90◦, 135◦, 180◦, -45◦,
-90◦ and -135◦), the frequency of the bright peaks, due the more reflective layers,
is measured. For a comparable measurement, at first the intensity vector in each
direction is created and the zero entries are deleted, as they don’t correspond to the
layered region. Then a moving-average filter is applied to the vector, to eliminate
high-frequent intensity differences and to smoothen the vector. The value of the
i-th element of the vector v with the length of the filter n = 15 is calculated as
follows:

vfilti = 1
n

(vi + vi−1 + · · ·+ vi−(n−1)) (4.37)

Afterwards, the function findpeaks is used to detect the peaks of the filtered vector
vfilt and diff to compute the distances between those peaks. Finally, for every
direction j the median mj is computed and then the mean value and standard
deviation over all medians is calculated.

m̄ = 1
8

8∑
j=1

mj (4.38)

mσ =
√√√√1

8

8∑
j=1

(mj − m̄)2 (4.39)

Processed images: imgInnerROIEqHist
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Radial frequency correlation

The next feature is a measure for the symmetry of the hole, using the afore
mentioned radial intensity vectors. With the MATLAB function xcorr, the cross-
correlation of 2 of the 8 distance vectors at a time is computed, as to measure the
similarity of the regions. In detail, the correlation of a vector x with another vector
y and its shifted copies is needed, as two vectors with the same components which
are shifted towards each other, are not identified as similar. If the vectors have
different lengths, the one with less entries is repeated until it matches the length l
of the other vector.
The cross-correlation rx,y(n) of the vector x and the vector y, shifted by n pixels is
calculated with

rx,y(n) =
l∑

m=1
x(m)y(n+m). (4.40)

The result is a vector rx,y with the length n, which contains all cross-correlation
values of x with y and its shifted copies. Now, for each possible combination of
the 8 radial difference vectors, the most suitable shifting is chosen, which is the
maximum of rx,y. These 28 maxima are then averaged and their standard deviation
is computed. Finally, both statistical measures are used as features.

r̄ = 1
28

8∑
i=1

8∑
j 6=i,j=1

max(ri,j) (4.41)

rσ =

√√√√√ 1
28

8∑
i=1

8∑
j 6=i,j=1

(max(ri,j)− r̄)2 (4.42)

Processed images: imgInnerROIEqHist

Kurtosis 1D

To examine the directional vectors further, the fourth central moment, the kurtosis,
is used. In statistics, it describes the shape of a probability distribution and
measures the deviation from the normal distribution, so it provides information
about outliers. The idea is to use the kurtosis as a measure for defects, as they
will change the radial intensity distribution, compared to the ideal case.
The kurtosis k for a vector v of the length n with the mean v̄ and the standard
deviation σ is calculated to

k = 1
n

n∑
i=1

(
vi − v̄
σ

)4
(4.43)

As features, the mean and standard deviation over the 8 radial vectors are used.
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k̄ = 1
8

8∑
j=1

kj (4.44)

kσ =
√√√√1

8

8∑
j=1

(kj − k̄)2 (4.45)

Processed images: imgInnerROIEqHist

Skewness 1D

Similar to the kurtosis, the third central moment, the skewness s, is computed. It
is a measure for the asymmetry of a distribution.

s = 1
n

n∑
i=1

(
vi − v̄
σ

)3
(4.46)

Again, the mean and standard deviation over the 8 radial vectors are computed.

s̄ = 1
8

8∑
j=1

sj (4.47)

sσ =
√√√√1

8

8∑
j=1

(sj − s̄)2 (4.48)

Processed images: imgInnerROIEqHist

Kurtosis 2D

As for the 1-dimensional case, here the kurtosis is computed, but this time for the
whole image, to be more concrete, for every column of the matrix. The result is
then averaged over all columns m and also the standard deviation is computed.

k̄ = 1
m

m∑
j=1

kj (4.49)

kσ =
√√√√ 1
m

m∑
j=1

(kj − k̄)2 (4.50)

Processed images: imgInnerROI
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Skewness 2D

The same approach is used for the skewness of the image:

s̄ = 1
m

m∑
j=1

sj (4.51)

sσ =
√√√√ 1
m

m∑
j=1

(sj − s̄)2 (4.52)

Processed images: imgInnerROI

FAST Corner Detection

One of the more complex features is the result of the corner detection using the
MATLAB function detectFASTFeatures, which implements the Features from Accel-
erated Segment Test (FAST) method proposed in [45] and [46]. The basic principle
of the algorithm works as follows:

At first, a corner-candidate pixel p from the image with the intensity Ip is selected
and an appropriate threshold value t is chosen. Considering a circle of a pre-defined
number of points (shown in Figure 4.22) around the pixel as the basis for the
decision, p is labeled a corner pixel if there are n contiguous pixels which are either
darker than Ip − t or brighter than Ip + t.
This basic method, together with some extensions for enhanced performance
(e. g. machine learning and non-maximal suppression), is often used in real-time
applications, when other approaches are not fast enough.

Figure 4.22. Circle around corner-candidate pixel in FAST corner detection. Source:
[45]
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The idea is now that boreholes with many defects result in a high number of
detected corners and therefore, as a feature for the borehole classification, the
number of corners is used.

Processed images: imgStep2

Harris Corner Detection

The next feature which also relies on detecting interest points is the Harris corner
detection, proposed in [47]. This algorithm finds intensity differences between an
image and a slightly shifted copy (by (u,v)) of itself. Mathematically, with the
window function w, this can be formulated as

E(u,v) =
∑
x,y

w(x,y)(I(x+ u,y + v)− I(x,y))2. (4.53)

A corner in an image is characterized by big intensity differences, so the function
E(u,v) has to be maximized for the detection. The result of this maximization is
the equation

E(u,v) ≈
[
u v

]
M
[
u
v

]
, (4.54)

with

M =
∑
x,y

w(x,y)
[
IxIx IxIy
IxIy IyIy

]
(4.55)

where Ix and Iy are the partial derivatives of the image in x and y directions. Next,
the Harris response

R = λ1λ2 − k(λ1 + λ2)2 (4.56)
determines the “cornerness” of the window, i. e. if it contains a corner. λ1 and λ2
are the eigenvalues of M and k is an empirical constant with k ∈

[
0.04, 0.06

]
. A

small R (small λ1 and λ2) means no corner, R < 0 (λ1 � λ2 or vice versa) indicates
an edge and a large R (both λ1 and λ2 are large) a corner. Finally, non-maxima
suppression and thresholding is applied, to get the most important corner locations.
In this work, the amount of corners is in the end used as a feature.

Processed images: imgStep2

SURF Interest Point Detection

Another method to detect points of interest in an image is the Speeded Up Robust
Features (SURF) method [48]. It is an enhancement compared to similar approaches
(e. g. Scale Invariant Feature Transform (SIFT) [49]), regarding the performance,
mainly due to the use of box filters as approximations of Gaussian second derivative
masks. The two images on the left side in Figure 4.23 show the original second
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derivative masks Gyy and Gxy. The right side shows the box filters denoted as Dyy

and Dxy.

Figure 4.23. Gaussian second derivative masks (left) and approximations with
block filters (right). Source: [48]

The big advantage of this approximation is the computation efficiency using integral
images, which supports very little processing time for the application of rectangular
masks. It basically allows the computation of any rectangular sum of pixel intensities
in only four array references, as shown in Figure 4.24. The integral image equation
for point 1 at the position (x,y) is

II(x,y) =
∑

x′≤x, y′≤y
I(x′,y′). (4.57)

This equals the sum of all points in the rectangle A. Therefore, the integral image
at point 2 is the sum of all points of A and B, and so on. Thus, the rectangular
sum of D equals 4 + 1− 3− 2, which are the four necessary array references.

Figure 4.24. Graphical representation of integral images. Source: [50]

For the detection of the interest points, the Hessian matrix

H(x,y) =
[
Lxx(x,y) Lxy(x,y)
Lxy(x,y) Lyy(x,y)

]
(4.58)

is used, where Lxx(x,y) is the convolution of Gxx with the image in (x,y). The
maxima of the determinant of the Hessian matrix are then located by non-maximum
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suppression in a neighborhood around (x,y) and the amount of maxima detected
is used as a feature for the borehole classification. The SURF algorithm is not
further explained, as this work only uses the approach for detection of the interest
points and not for their description.

Processed images: imgStep2

MSER Interest Region Detection

The last interest region detection method, used for feature extraction, is Maximally
Stable Extremal Region (MSER) [51]. The basic idea of this approach is, to search
the gray scale image for regions with the following characteristics:

• Firstly, a contrast in intensity compared to their surrounding areas

• Secondly, homogeneous pixel intensities within the region

A general explanation of this algorithm starts with the input image, shown in
Figure 4.25 a).

Figure 4.25. Thresholding process with the resulting images for each step. Source:
[52]

Now, step by step, the intensity threshold g is increased and pixels below this
threshold are set to zero. In every step, the remaining connected regions are stored
in a data structure, e. g. a connected tree, as used in [52]. For this example, the
data structure is shown in Figure 4.26.
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Figure 4.26. Structure of the connected tree used for the MSER algorithm. Source:
[52]

The MSERs are identified by computing a stability value for each region in the
connected tree. As the size of the regions decreases with increasing threshold,
a stable region is characterized by an approximately constant region size. The
stability value Ψ for the region Rg

i , which is a result of the thresholding at a value
g, is defined as

Ψ(Rg
i ) = (|Rg−∆

j | − |Rg+∆
k |)/|Rg

i | (4.59)
where |.| is the cardinality and ∆ is the parameter for the desired intensity range
of the stability, in both directions j and k. The MSERs are now the regions where
Ψ is a local minimum along each path to the root of the tree [52], here for example
region 7. A similar procedure can be applied to detect dark regions.
In this work, the amount of the MSERs found in each borehole image is used as a
feature. The reason for the implementation of all the different interest point/region
detection methods is the easy availability in MATLAB and also a possible compar-
ison of them.

Processed images: imgStep2

Interest point matches

The next feature is a measure for the homogeneity of the borehole inside. This is
done by comparing the original image with a rotated copy of itself (e. g. by 90◦).
First, both images are searched for interest points, using the Harris corner detector,
as explained before. Then, at the location of these points, so called Histogram of
Oriented Gradients (HOG) descriptors, first described in [53] and used in [54], are
computed using MATLAB’s function extractHOGFeatures.
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The calculation starts with filtering the borehole image with a [−1 0 1] kernel for
the x-direction and [−1 0 1]T for the y-direction. Then, for every pixel pi, the
magnitude g and direction θ of the gradient from the two resulting filtered images
gx and gy is computed with

g =
√
g2
x + g2

y (4.60)

θ = arctan
(
gy
gx

)
. (4.61)

Next, the image is divided into quadratic cells with a parameter defined size (e. g.
8× 8) and for each cell a histogram over the unsigned gradient direction (0◦...180◦)
as bins (9 in total), with the values of g as basis for the votes (the values which go
into the bins), is created. To remove the influence of different illuminations, the
histograms are normalized over 4 neighboring cells (e. g. 16× 16 in total). These 4
normalized cells are then combined to a feature vector with 9 · 4 = 36 elements.
As already mentioned, the HOG descriptors for both the original image and the
rotated copy are computed. To be able to match similar features in both images,
the pairwise distance between the feature vectors is computed. If this distance is
under a certain threshold, the features count as a match. The idea in this work is
now to count these matches and use the result as a feature. In addition, the ratio
of the matches to the interest points detected by the Harris method is relevant. An
example for the matching is depicted in Figure 4.27. Crucial for this approach is
the rotation variance of the HOG descriptors, which allows to find matches between
different regions of the image, as otherwise only physically identical points would
be matched.

Processed images: imgStep2

Figure 4.27. Comparison of a borehole image with a rotated copy of itself using
matching interest points.
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Image correlation with rotated copy

Another measure for the similarity of different regions within a single image is
the 2D-cross-correlation of the image with a rotated copy of itself. As for the last
feature, the rotation angle is 90◦.
The 2D-correlation C(k,l) of the M ×N matrix X with the matrix Y, shifted by
k pixels in y-direction and l pixels in x-direction is calculated by

C(k,l) =
M∑
m=1

N∑
n=1

X(m,n)Y (m+ k,n+ l). (4.62)

For the computation of C(k,l), only pixels of the borehole inside surface are used.
To improve the performance of this approach, the maximal shifts in x- and y-
direction are only small compared to the image dimensions.
Moreover, the correlation of the image with itself (the autocorrelation) is computed
and as features the maximum of the cross-correlation matrix C and also the ratio
of the autocorrelation to this maximum are used.

Processed images: imgInnerROI

Image difference to rotated copy

This feature is calculated similar to the previous, however, here the difference
D(k,l) between the two images is of interest.

D(k,l) =
M∑
m=1

N∑
n=1
|X(m,n)− Y (m+ k,n+ l)| (4.63)

Again, the rotated copy is shifted by k pixels in y-direction and l pixels in x-
direction. Like before, only the borehole inside surface is processed. The minimum
of the difference matrix D is used as a feature.

Processed images: imgInnerROI

Gray co-occurrence matrix

The last “standard” features are computed from the Gray Level Co-occurrence
Matrix (GLCM), which provides various information about a gray level image. As
an example, the GLCM of the Matrix M is computed. The elements of this matrix
show the occurrences of certain gray value combinations in M. The specific type of
combination used in this work is the direct horizontal neighborhood of two pixels.
For instance, the sequence [0 2] occurs 2 times in M, thus, the corresponding entry
in the GLCM is 2.

M =


1 0 0 2
0 2 2 1
1 3 1 3
3 4 3 4

 (4.64)
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GLCM =


(0,0) (0,1) (0,2) (0,3) (0,4)
(1,0) (1,1) (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,3) (3,4)
(4,0) (4,1) (4,2) (4,3) (4,4)

 =


1 0 2 0 0
1 0 0 2 0
0 1 1 0 0
0 1 0 0 2
0 0 0 1 0

 (4.65)

For the computation of the GLCM, the built-in MATLAB function graycomatrix
is used. It scales the processed image down to 8 intensity values and provides a
normalized 8× 8 matrix as a result. With the function graycoprops, now 4 features
are extracted from it:

The first one is the contrast in intensity between a pixel and its neighbors, over
the whole image. It is calculated by

Contrast =
8∑
i=1

8∑
j=1
|i− j|2GLCM(i,j). (4.66)

It is apparent that for an image with constant intensity, the contrast would be
computed to 0.

The next feature is the correlation of a pixel with its neighbors, calculated again
over the whole image. With µi and µj as the mean values and σi, σj as the standard
deviations of the GLCM values in i- and j-direction, the correlation is calculated
as follows:

Correlation =
8∑
i=1

8∑
j=1

(i− µi)(j − µj)GLCM(i,j)
σiσj

(4.67)

The energy of the GLCM is the next feature and is the result of the sum of the
squared elements:

Energy =
8∑
i=1

8∑
j=1

GLCM(i,j)2 (4.68)

The last feature, extracted from the GLCM, is the homogeneity, as a measure for
the similarity of the GLCM to a diagonal matrix.

Homogeneity =
8∑
i=1

8∑
j=1

GLCM(i,j)
1 + |i− j| (4.69)

For a diagonal GLCM, the resulting homogeneity is 1 (due to the normalization).
With more equally distributed elements, this value is < 1.

Processed images: imgStep2
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4.3.2 Photometric Stereo Features
The following features are based on the photometric stereo approach, described
in Section 4.2.3. To be able to evaluate the features, “ideal” surface normals are
computed for every point pi of a borehole, as the dimensions of the holes and the
parameters of the imaging geometry are known. These surface normals are three
dimensional vectors which are perpendicular to the cylindrical inside surface of the
holes.

Surface Normal Distance

This feature describes the Euclidean distance d of the surface normals nrj , computed
with the photometric stereo method, to the “ideal” normals nij. The mean and
standard deviation of the distances over all m points of the surface are used as
features for both photometric stereo implementations (see Section 4.2.3).

dj =
∣∣∣∣∣∣nrj − nij

∣∣∣∣∣∣ =

∥∥∥∥∥∥∥∥
xrj − xij
yrj − yij
zrj − zij

∥∥∥∥∥∥∥∥ (4.70)

d̄ = 1
m

m∑
j=1

dj (4.71)

dσ =
√√√√ 1
m

m∑
j=1

(dj − d̄)2 (4.72)

Surface Normal Distance 1/6,1/8

Similar to the previous feature, the distance between “ideal” and calculated surface
normals is of interest. Depending on the photometric stereo implementation, the
mean and standard deviation are computed separately for each image region, which
results in 12 features for the first implementation and 16 features for the second
implementation.

Spherical Histogram Intersection

As mentioned at the end of Section 4.2.3, the Cartesian surface normals are
transformed to the spherical coordinate system to extract further information. One
of the spherical features is the intersection of the real (hr) with the ideal histogram
(hi) over the azimuth angle ϕ. It is calculated by

Iϕ = 1
n

m∑
j=1

min(hrj ,hij), (4.73)

where m is the number of bins in the histograms and n is the number of pixels in all
bins. Again, this feature is computed for both photometric stereo implementations.
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Spherical Histogram Intersection 1/6,1/8

The spherical histogram intersection is also computed separately for each image
region, resulting in 6 features for the first implementation and 8 features for the
second implementation, respectively.

Spherical difference

This feature describes the difference in the azimuth angle ϕ between the photometric
stereo and the “ideal” surface normals, respectively. This angle difference δ is
computed using the MATLAB function angDiff and the result is averaged over
all m borehole surface points and, in addition, the standard deviation is used a
feature, for both photometric stereo implementations.

δj = angDiff(ϕr,ϕi) (4.74)

δ̄ = 1
m

m∑
j=1

δj (4.75)

δσ =
√√√√ 1
m

m∑
j=1

(δj − δ̄)2 (4.76)

Spherical difference 1/6,1/8

The previous measure is also computed for each image region separately, which
means 12 features for the first and 16 features for the second implementation.

Spherical mean

The mean value of both spherical angles ϕ and θ of the photometric stereo sur-
face normals, over all m borehole inside pixels, is used for this feature, for both
implementations.

ϕ̄ = atan2
 1
m

m∑
j=1

sin(ϕj),
1
m

m∑
j=1

cos(ϕj)
 (4.77)

θ̄ = atan2
 1
m

m∑
j=1

sin(θj),
1
m

m∑
j=1

cos(θj)
 (4.78)

Spherical mean 1/6,1/8

Similarly, the spherical means for each image region are used as features for both
photometric stereo implementations.
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4.4 Summary
In this chapter, the surface feature extraction process with all the implemented
ideas and algorithms was described in detail. To begin with, the preparation and
pre-processing of the datasets were explained. This included the imaging geometry,
used for recording the boreholes, the stitching of the resulting images for different
illumination, and the image segmentation which was necessary for the extraction
of most of the features. Moreover, the photometric stereo approach, also used for
feature extraction, was described.
Eventually, the mathematical formulations for the extracted features were presented.
In the following chapter, the proposed features and methods are evaluated in detail.
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5 Experiments and Evaluation
In the previous chapter, all in all 158 features for the borehole classification were
described. Following, the methods and settings for the evaluation of those features
regarding their correlation with the drilling parameters are explained, as well as
the results of the experiments for feature selection and classifier comparison. In
addition, approaches to deal with the dataset imbalance are evaluated.

5.1 Evaluation Methods and Settings
5.1.1 Dataset Balancing
The dataset processed in this work was described in Section 4.1. It contains borehole
images of three different quality categories, for two types of CFRP parts, called
Fabric and UD. The classes are not equally represented in both datasets, meaning
that the datasets are imbalanced. This imbalance might cause the classification
models to favor the majority class and therefore to produce misleading results. To
avoid this, two methods for balancing the dataset are explained here and evaluated
later in Section 5.4.

Class-Specific Weighting

The idea of this approach is to vary the influence of an observation on the machine
learning model according to the total amount of observations for each class. Re-
garding classification for example, this can lead to higher misclassification costs for
samples of classes which are underrepresented in the dataset. The weighting factor
used in this work is calculated by

wj =
√
Nmax

Nj

, (5.1)

for elements of the class j, with Nmax being the number of observations in the
majority class and Nj the corresponding amount for the class j.
If not explicitly stated otherwise, this balancing approach is used for all evaluations
in this work.

SMOTE

The concept behind this approach was already explained in detail in Section 3.5.4.
SMOTE creates additional “synthetic” observations for the underrepresented classes
to balance the dataset. These new samples are derived from “real” observations.
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In this work, SMOTE is used after the separation of the data into training- and
test set, to avoid bias due to too similar observations in both sets.

5.1.2 Categorization of Features
For the experiments, the features presented in Chapter 4 are divided into 4 sets
which are evaluated separately in the following sections. The categories are:

• PS6
– All features which are calculated from the first photometric stereo

implementation (see Figure 4.6), in total 50

• PS8
– All features which are calculated from the second photometric stereo

implementation (see Figure 4.7), in total 64

• Standard
– The rest of the features, in total 44

• All
– All features together, in total 158

5.1.3 Feature Selection
The overall 158 features, described in the previous chapter, are collected in a
feature matrix and normalized over all borehole instances, separately for each
dataset (Fabric and UD). The dimensions of the matrix are M ×N , where N is
the number of instances and M is the total number of features.
Next, the feature selection is applied, as to eliminate redundant features that only
increase the dimensionality of the matrix and don’t add further information about
the data. This step leads to a reduced complexity of the classification problem.
Figure 5.1 gives an overview on the feature selection process.
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Figure 5.1. Overview on the feature selection and classification steps.

The following feature selection methods, explained in Section 3.4, are evaluated in
this work:

• ReliefF

• Fisher Score

• Correlation-based Feature Selection

• Decision Tree

• Principal Component Analysis

The whole selection process is done in MATLAB. The reliefF function is part
of the Statistics and Machine Learning Toolbox (SMLT) and is used to rank the
importance of features, based on the ReliefF algorithm [24].
The functions fsfisher and fsCFS are available in the ASU feature selection repository
[55] and implement the Fisher Score [26] and the CFS method [28], respectively.
The feature selection using the Decision Tree [30] was implemented with the fitctree
and predictorImportance functions which are both available in the SMLT.
The last feature selection method used in this work is PCA, described in Section 3.4.5.
As explained in this section, it differs from the other algorithms, because it is
unsupervised, which means that the function doesn’t have knowledge of the class
labels, compared to the supervised approach, which relies on this information. It is
also different in a way that it doesn’t search for the best features, but transforms
the feature space in order to compress it and, therefore, reduces its dimensionality.
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5.1.4 Classification Methods and Parameters
The most important details of the borehole classification are briefly outlined in
Figure 5.1. This step of the machine learning application is used to evaluate the
features which were selected with the methods mentioned in the previous section.
The features are fed to three classifiers in evaluation, namely:

• Support Vector Machine

• Random Forest

• Artificial Neural Network

The underlying concepts of these approaches are explained in detail in Section 3.5.
For the SVM classifier, at first a template with all the necessary parameters is
created with the MATLAB function templateSVM. The classification model is then
generated and trained using the function fitcecoc.
The Random Forest algorithm [23] is implemented in the function TreeBagger,
which creates and trains the model.
The last classifier, the ANN, is carried out using the Keras Deep Learning Library
[56] available in Python.

Classifier parameters

In general, the results of a classification process depend strongly on the parameter
values used to create the classifier model. Thus, for every method, values for
the most important parameters were experimentally determined through a grid
search in an appropriate parameter range for every combination of feature- and
dataset. The parameter names are chosen according to the respective classifier
implementation in MATLAB and Python.
Table 5.1 shows the resulting parameter values for the SVM. As a kernelFunction,
a polynomial was selected, with the polynomialOrder listed in the table. The
kernelScale parameter is the value which every element of the feature matrix is
divided by, before applying the kernel. The boxConstraint is a parameter which
determines the weight of misclassifications, with a high value leading to a more
strict separation between the data.
The parameter values for the ANN are listed in Table 5.2. The layerCount and
layerSize determine the number of hidden layers and neurons per layer, respec-
tively. The epochs parameter is the number of forward and backward passes the
whole training set goes through. The hidden layer activation function used in this
experiment is the rectifier.
Finally, the parameter values for the random forest approach are shown in Ta-
ble 5.3. minLeafSize determines the minimum number of observations in a terminal
node. nrTrees is the total amount of decision tress in the classification model
and maxNumSplits is the maximum number of splits allowed per tree. The last
parameter, nrPredictors, is the amount of random features selected for every tree.
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Parameter Standard PS6 PS8 All
Fabric UD Fabric UD Fabric UD Fabric UD

polynomialOrder 4 5 4 4 3 5 4 5
boxConstraint 5 5 5 5 5 5 5 5
kernelScale 5 4 5 6 7 5 7 5

kernelFunction polynomial

Table 5.1: Classification parameters for SVM.

Parameter Standard PS6 PS8 All
Fabric UD Fabric UD Fabric UD Fabric UD

layerSize M
2

3
4M

M
2

3
4M

M
2

3
4M

M
2

3
4M

layerCount 1
epochs 700

activation rectifier

Table 5.2: Classification parameters for ANN.

Parameter For every set
minLeafSize 1

nrTrees 300
maxNumSplits 20
nrPredictors

√
M

Table 5.3: Classification parameters for RF.

Performance measures

The classification results consist of the calculations for accuracy and recall measures
which were previously described in Section 3.5. To be able to give a good estimate
on the classifier performance for new data, the evaluations were done using 5-
fold cross validation. For an even better estimate and to account for statistical
deviations, the results are averaged over 10 iterations of cross validation for each
classifier. Additionally, the results are presented via confusion matrices.

5.2 Evaluation of Feature Selection Methods
To evaluate the influence of the chosen methods for ranking and selecting the
features, Figure 5.2 to Figure 5.9 show the classification results for accuracy
and recall over the amount of selected features for every dataset, featureset and
classifier. In the graphs, an x-value of 20 corresponds to the 20 most relevant
features according to the respective feature selection method.
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As the output of the CFS approach is the most relevant set of features and no
ranking of individual features, there is only one data point for this selector in the
diagram. Regarding PCA, the amount of features corresponds to the number of
PCs used.
In addition to the mentioned feature selection approaches, also a series of results is
plotted for randomly chosen features for comparison.

Interpretation of results

A general evaluation of the feature selection methods is not easy, as the results
depend on the one hand on the feature set and on the other hand also on the
dataset. In addition, the type of classifier plays a role, as Figure 5.2 to Figure 5.9
show.
An indication for a successful feature selection is an approximately horizontal line
and in the ideal case, the performance drops with a higher number of features. A
rising line indicates that relevant features are not ranked as such and thus are only
used for classification when a high percentage of the total feature set is used.
In the result images, the left part of the graphs is important for the evaluation
of the feature selection. The fewer features selected, the more influence has the
quality of the feature selection method on the classifier performance. With a higher
percentage of features used, the results are more similar, as most of the graphs
show clearly. This is not the case for the combination of random forest classifier
and PCA. Instead, in most of the graphs the performance decreases with increasing
number of features. The reason for this effect is most probably a characteristic
property of the random forest classifier, as it chooses a random subset of features
for the creation of each decision tree. The features correspond to the PCs which
differ in the variance of the data that they contain. Only a few of the PCs account
for a high variance and as a result, this might lead to problems when many of
the random subsets don’t contain relevant PCs and are therefore not used for the
classification.
In general, most of the graphs show a quite good prediction performance when
around 25 % of the whole featureset is used, with a lower percentage resulting in a
decrease of accuracy and a higher percentage only improving the results slightly.
Especially for the recall measure it is important not to select too few features, as
can be seen for most of the feature sets.
Regarding the comparison between the random feature selection and the proposed
feature selection algorithms, in most of the cases the random option leads to
poorer classification results when the amount of selected features is low. Thus, the
use of feature selection is favorable in this work and the results of the different
feature selection methods are combined for a feature ranking estimate, presented
in Section 5.3.
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(a) SVM Accuracy (b) SVM Recall

(c) ANN Accuracy (d) ANN Recall

(e) RF Accuracy (f) RF Recall

Figure 5.2. Comparison of feature selection methods for
Dataset: Fabric/Featureset: Standard.
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(a) SVM Accuracy (b) SVM Recall

(c) ANN Accuracy (d) ANN Recall

(e) RF Accuracy (f) RF Recall

Figure 5.3. Comparison of feature selection methods for
Dataset: Fabric/Featureset: PS6.
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(a) SVM Accuracy (b) SVM Recall

(c) ANN Accuracy (d) ANN Recall

(e) RF Accuracy (f) RF Recall

Figure 5.4. Comparison of feature selection methods for
Dataset: Fabric/Featureset: PS8.
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(a) SVM Accuracy (b) SVM Recall

(c) ANN Accuracy (d) ANN Recall

(e) RF Accuracy (f) RF Recall

Figure 5.5. Comparison of feature selection methods for
Dataset: Fabric/Featureset: All.

66



5 Experiments and Evaluation 5.2 Evaluation of Feature Selection Methods

(a) SVM Accuracy (b) SVM Recall

(c) ANN Accuracy (d) ANN Recall

(e) RF Accuracy (f) RF Recall

Figure 5.6. Comparison of feature selection methods for
Dataset: UD/Featureset: Standard.
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(a) SVM Accuracy (b) SVM Recall

(c) ANN Accuracy (d) ANN Recall

(e) RF Accuracy (f) RF Recall

Figure 5.7. Comparison of feature selection methods for
Dataset: UD/Featureset: PS6.
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(a) SVM Accuracy (b) SVM Recall

(c) ANN Accuracy (d) ANN Recall

(e) RF Accuracy (f) RF Recall

Figure 5.8. Comparison of feature selection methods for
Dataset: UD/Featureset: PS8.
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(a) SVM Accuracy (b) SVM Recall

(c) ANN Accuracy (d) ANN Recall

(e) RF Accuracy (f) RF Recall

Figure 5.9. Comparison of feature selection methods for
Dataset: UD/Featureset: All.
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5.3 Evaluation of Relevant Features
In this section, the relevance of the individual features, based on the results of
Section 5.2, is discussed. The relevance of a feature in this work is determined
through counting the occurrences of every feature within the best ranked 40 % of
the total features for every feature selection method (except for CFS where the
single data point was used, and PCA) and for every dataset-featureset combination.
Therefore, the highest possible value is 40 which is the amount of iterations (10)
multiplied by the number of feature selections methods used for this evaluation (4).
The assumption of this approach is that over all feature selections, the relevant
features are picked more frequently than less important ones.
The results for these calculations are shown in Figure 5.10 to Figure 5.17 where
the frequency of the individual features is plotted over their names. For a better
visualization, only the highest ranked features are shown, except for the set with
all features where also the least relevant ones are listed.

Figure 5.10. Relevance of features for Fabric-Standard
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Figure 5.11. Relevance of features for Fabric-PS6

Figure 5.12. Relevance of features for Fabric-PS8
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Figure 5.13. Relevance of features for Fabric-All
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Figure 5.14. Relevance of features for UD-Standard

Figure 5.15. Relevance of features for UD-PS6
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Figure 5.16. Relevance of features for UD-PS8
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Figure 5.17. Relevance of features for UD-All
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To evaluate the approach for ranking the features presented on the last few pages,
the Figures 5.18 and 5.19 show the classification results plotted over the amount of
selected features for both datasets. If a feature is not ranked by any method within
the best 40 %, it is not considered in the evaluation. Thus, the total amount of
features for each set differs from the original number.
The first feature that is selected is the most relevant feature which means it has
the highest frequency according to Figure 5.13 for Fabric and 5.17 for UD. The
higher the number of selected features is, the lower is the frequency of the features
that are added to the selection.

Figure 5.18. Evaluation of relevant features for
Dataset: Fabric/Featureset: All.
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Figure 5.19. Evaluation of relevant features for
Dataset: UD/Featureset: All.
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Interpretation of results

From Figure 5.13, two features, for which the normalized values over the number of
the observation are plotted in Figure 5.20 and Figure 5.21, are selected as examples
(encircled).
In the first image, a quite important feature is shown, where a high variance
between category 1 and category 3 is apparent. Therefore, this feature can be a
good indicator whether an observation corresponds to class 1 or 3, respectively. In
comparison, the second image shows a less relevant feature which is indicated by
the lower variance between the categories. Thus, these two features are examples
which encourage the assumption of the feature ranking approach.

Figure 5.20. Sample data for the quite relevant feature rotationMatchRatio for the
Fabric dataset.

Figure 5.21. Sample data for the rather not relevant feature thetaMeanEighth2 for
the Fabric dataset.
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As for the Fabric dataset, also for the UD dataset two features are selected
exemplarily from Figure 5.17 for comparison, plotted in Figure 5.22 and Figure 5.23.
The first image shows a feature ranked as relevant. The variance between the third
class and the other two classes is very high, which probably is the reason that it is
selected quite frequently. Nevertheless, the variance between class 1 and 2 is very
low and thus the feature is only helpful for a distinction between class 3 and the
rest.
In Figure 5.23, the interclass variance is rather low, therefore the feature is no good
pick to distinguish between the classes.

Figure 5.22. Sample data for the quite relevant feature innerDistMean for the UD
dataset.

Figure 5.23. Sample data for the rather not relevant feature thetaMeanSixth4 for
the UD dataset.
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It is also noteworthy that the results in Figure 5.10 to Figure 5.17 show that
features which are within the top ranked for the feature subsets (Standard, PS6
and PS8) are also determined to be relevant for the whole feature set. In the
experiments in the following sections, the results of the ranking is used to create a
new set with the most relevant elements of the whole featureset, where relevant
means that the frequency of the feature is higher than 24.
Regarding Figure 5.18 and Figure 5.19 an approximately horizontal or falling line
in the graphs indicates a successful feature selection, as already mentioned earlier
in this thesis. The graphs in evaluation show comparably good results when only
a few of the features are selected and don’t go up noticeably or even fall if the
amount is increased. This finding shows that it is not only possible to reduce the
dimensionality of the feature space while accepting minimal accuracy losses, but
even to improve the prediction quality.
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5.4 Evaluation of Balancing Methods
Section 5.1.1 lists the methods used in this work for dealing with the imbalanced
datasets. In the current section, these methods are evaluated regarding the resulting
classification accuracy and recall for both datasets, with all features and also only
the relevant feature set, prepared in Section 5.3.
The following tables 5.4 and 5.5 compare the balancing outcomes for each classifier-
featureset combination. The best results for accuracy and recall are highlighted for
every row.
Additionally, confusion matrices in Figure 5.24 - Figure 5.29 show the results for
the dataset balancing for the relevant features with SVM as classifier, to underline
the influence of balancing on the prediction performance for the individual classes.

Method Weighting SMOTE w/o balance
Acc.: Rec.: Acc.: Rec.: Acc.: Rec.:

SVM/Rel. 75.4 % 76.3 % 74.8 % 76.5 % 77.0 % 77.0 %
SVM/All 66.2 % 66.2 % 68.8 % 68.5 % 67.1 % 66.5 %
ANN/Rel. 75.2 % 77.6 % 74.2 % 77.5 % 76.8 % 77.6 %
ANN/All 70.0 % 70.6 % 69.9 % 70.9 % 70.1 % 69.0 %
RF/Rel. 72.3 % 74.3 % 71.8 % 74.0 % 72.9 % 72.9 %
RF/All 71.0 % 71.4 % 69.6 % 70.2 % 73.2 % 71.1 %

Table 5.4: Comparison of balancing methods and classifiers for dataset Fabric.

Method Weighting SMOTE w/o balance
Acc.: Rec.: Acc.: Rec.: Acc.: Rec.:

SVM/Rel. 82.8 % 78.9 % 82.8 % 79.8 % 82.9 % 77.7 %
SVM/All 85.7 % 81.6 % 85.2 % 81.0 % 85.5 % 81.2 %
ANN/Rel. 80.7 % 76.5 % 81.8 % 78.2 % 79.2 % 72.9 %
ANN/All 83.3 % 77.7 % 83.7 % 78.6 % 83.3 % 77.7 %
RF/Rel. 81.7 % 77.3 % 81.8 % 77.2 % 81.7 % 77.2 %
RF/All 80.0 % 73.6 % 81.6 % 76.0 % 80.0 % 72.7 %

Table 5.5: Comparison of balancing methods and classifiers for dataset UD.
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Figure 5.24. Evaluation of relevant features for
Dataset: Fabric/Balancing: Weights

Figure 5.25. Evaluation of relevant features for
Dataset: Fabric/Balancing: SMOTE

Figure 5.26. Evaluation of relevant features for
Dataset: Fabric/Balancing: -
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Figure 5.27. Evaluation of relevant features for
Dataset: UD/Balancing: Weights

Figure 5.28. Evaluation of relevant features for
Dataset: UD/Balancing: SMOTE

Figure 5.29. Evaluation of relevant features for
Dataset: UD/Balancing: -
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Interpretation of results

Regarding the results for the Fabric dataset, the number of correct predictions
is the highest without any balancing method in all cases except one. As already
pointed out earlier, the accuracy measure is a bit misleading for an imbalanced
dataset and therefore the recall is a more accurate measure. It improves with
balancing the datasets, while the accuracy decreases. Looking at the confusion
matrices, the predictions for classes 1 and 3, which are the underrepresented classes
for the Fabric dataset, are better with balancing. Looking at Table 5.4, it is also
noticeable that the results for the relevant feature set are quite better than for the
models with all features.
The results for the UD data are a bit different from Fabric, as the accuracy is in
almost every case better for a balanced dataset. In addition, the improvements in
recall are apparent, especially for SMOTE. The confusion matrices show that for
category 1, the predictions are quite better with balancing methods. Comparing
the featuresets, the results for the relevant features are slightly worse.
To sum up, the influence of balancing methods depend on the dataset, but in general
they improve the prediction performance, especially for the underrepresented classes.
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5.5 Evaluation of Classifiers
Finally, the classification algorithms are evaluated on the relevant features of
both Fabric and UD dataset by using confusion matrices shown in Figure 5.30 to
Figure 5.35. To balance the datasets, class-specific weighting is used.

Interpretation of results

Regarding the results for the Fabric dataset, the classifiers perform very similar.
The predictions for the observations of category 1 are the most accurate, followed
by category 2. Between classes 1 and 3, there are no confusions over all classifiers,
which indicates a good separability of optimal boreholes (class 1) and samples
where the feed during the drilling process was comparably high (class 3). The
decision boundary for the classes 2 and 3 is not as distinct, which could be due to
the fact that both classes share non-optimal drilling characteristics. Finally, the
results regarding the separation between class 1 and 2 show that to a quite high
extent it is possible to differ between observations with optimal and non-optimal
drilling tools. Comparing the classifiers, the SVM and ANN perform similarly,
whereas the Random Forest produces slightly worse results for this dataset.
For the UD dataset, the predictions are slightly better than for Fabric, especially for
the random forest classifier. For this dataset, most of the samples from category 3
are classified correctly, whereas the results for class 1 are comparably bad. Neverthe-
less, the separability between 1 and 3 is again almost perfect. It is noticeable that
a quite high percentage of observations from category 1 is predicted to be category
2 for all classifiers. This difference, compared to the Fabric dataset, probably ori-
gins from the drilling parameters as they are not exactly the same for both datasets.
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Figure 5.30. Evaluation of relevant features for
Dataset: Fabric/Classifier: SVM

Figure 5.31. Evaluation of relevant features for
Dataset: Fabric/Classifier: ANN

Figure 5.32. Evaluation of relevant features for
Dataset: Fabric/Classifier: RF
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Figure 5.33. Evaluation of relevant features for
Dataset: UD/Classifier: SVM

Figure 5.34. Evaluation of relevant features for
Dataset: UD/Classifier: ANN

Figure 5.35. Evaluation of relevant features for
Dataset: UD/Classifier: RF
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6 Conclusion and Future Work
This chapter summarizes the findings of the feature extraction and the subsequent
evaluation of the correlation of these features with the parameters in the drilling
process. The most important results are mentioned, as well as possible further
improvements for the different processing steps of this work.

6.1 Conclusion
In this thesis, we presented a machine learning approach to determine the corre-
lation between surface features of boreholes in CFRP parts and the state of the
tools and parameters values used in the drilling process. It is based on processing
images of the insides of the bores, acquired by an endoscope with additional glass
fiber illumination. From these images, information is extracted in terms of visual
features which are then used as an input for the classification model. The result
is a prediction for the quality of the drilling process and thus can be used as an
indicator for replacing worn tools or adjusting drilling parameters.
We proposed several surface features for this application, for example textural
features like the entropy of the image and higher level features, like corner detection.
Additionaly, features were derived from a standard photometric stereo approach,
which gives an estimate on the surface normals. These characteristics were later on
evaluated regarding their relevance and informative content, using different feature
selection approaches. In the end, the most relevant features were used to create
the classification model. Based on the results of the machine learning process, we
evaluated the feature selection approaches and prediction methods.

In general, the evaluations showed that with the results of the visual inspection of
the boreholes, the predictability for the quality category of the drilling process is
up to 77% for the Fabric dataset and even better for UD dataset, with slightly over
80%. The results vary throughout the three quality categories, as well as between
the datasets. What is noticeable for both datasets, is the good separability be-
tween class 1 and 3 which indicates a very distinct classification boundary between
optimal and very poor drilling conditions, like fractured tools or very high feed.
The category 2, which lies in between the other categories regarding the drilling
conditions, is sometimes confused with one of the other two classes, which is an
indication for the correlation between the results of the visual inspection and the
quality of the drilling process.
The results in Section 5.2 and Section 5.3 emphasize the importance of selecting
relevant features, as they show an improvement of the classification performance
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for the Fabric dataset over all classifiers. The predictions for the UD dataset were
slightly worse for SVM and ANN, taking only the relevant features into account.
Nevertheless, the relevant feature set only contains around 30 features, compared
to the 158 in total, which underscores an important characteristic of the feature
selection, the dimensionality reduction. This can already be achieved with a simple
unsupervised method like PCA.
Regarding the proposed dataset balancing methods, the evaluations show the im-
provement in prediction performance for the individual classes over the imbalanced
dataset.
The classification approaches perform very similar throughout the datasets and
featuresets in evaluation. One slight difference is that the random forest improves
for every dataset if only relevant features are used. As already mentioned in
the previous chapter, this is due to the random feature subset selection, which
negatively affects the performance if there are too many unimportant features in
the set to choose from.
To sum up, it is possible to derive the quality of the drilling process to a certain ex-
tent from the resulting boreholes by means of visual inspection, using the proposed
machine learning approach.

6.2 Future Work
The methods proposed in this work allow an acceptable correlation between surface
features and parameters in the drilling process. Nevertheless, to implement this
approach into an industrial inspection application, some prediction performance
improvements might be necessary.
A possible starting point for future work could be the photometric stereo approach
which in its present implementation is not very accurate regarding the exact surface
normals. The reason for this is that on the one hand, the assumption of diffuse
reflection of the CFRP material is not realistic. On the other hand, it is not
easy to take the influence of the differences in glassfiber illumination into account,
which are for example varying fiber cutting angles or diameters. In addition, the
dimensions of the imaging geometry are very small, lying in the range of only a
few millimeters, which restricts the possibilities for photometric stereo. To improve
the proposed method, different approaches for the reflective characteristics of the
material could be evaluated. In addition, the effect of the imaging geometry could
be examined more detailed.
On top of the approaches for feature extraction presented in this thesis, future
work could evaluate more complex features, like detecting certain geometric shapes
in the images due to fraying or delamination, though, here the problem might be
that the exact shape of such defects is rather random, which would require a more
complex implementation.
With the proposed improvements, the correlation of surface features with the
quality of the drilling process will be an important step towards preventing defective
boreholes in the first place, in order to accomplish the goal of ZDM.
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