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Abstract

Oceanic-atmospheric oscillation patterns, described by so-called climate modes,

have a strong impact on the variability in the terrestrial water cycle. However,

the relation between climatic oscillations and hydrology is not yet fully understood

due to uncertainties in the observations and the co-varying behavior of multiple

oscillations. A better knowledge about these connections is needed to provide better

predictions about climate and hydrology.

In this study, the impact of 17 major climate modes on monthly precipitation

anomalies in an extended Mediterranean area between 28.5◦N - 56.5◦N and 10◦W

- 46◦E is analyzed. The climate modes are expressed through their corresponding

Climate Oscillation Index (COI), used to describe the state of the atmospheric-

oceanic circulations. A supervised learning approach, called least absolute shrinkage

and selection operator (LASSO) regression is used to quantify the influence of these

teleconnection patterns (e.g., North Atlantic Oscillation, East Atlantic West Russia

Pattern) on precipitation anomalies. Precipitation is an important component of

the hydrological cycle and one of the most dominant climatic drivers for water

availability besides potential evaporation.

The LASSO regression is a data-driven method that uses automatic feature selec-

tion and regularization, which in this study is used, to identify oceanic-atmospheric

controls on precipitation anomalies and to disentangle the impact of individual

climate modes. The methodology considers cross-correlations in the features, i.e.

Climate Oscillation Indices. Time lags ranging between zero and five months are

introduced in every feature to account for potential lagged response of precipitation

anomalies to ocean-atmospheric oscillations. The LASSO model is fitted for each

grid point in two ways. Once, by only using the time series of the grid point and

additionally by adding the information of the eight neighboring grid points. Besides

using all months of the year to build the model, the analysis is also performed for

each season separately. Both of these steps increase the coefficient of determina-

tion R2 derived from the LASSO regression and therefore improve the predictive

performance of the LASSO model. For validation of the regression models two

cross-validations and a significance test using the Benjamini-Hochberg procedure

are applied.

The results gained by the LASSO regression show that in specific hot spot re-

gions up to 70% of the precipitation anomalies can be explained by the modes of

climate variability. Adding the information of the neighborhood into the model in-

creases the explained variance R2 significantly. Analyzing the influence of each COI

shows that the signal of the East Atlantic Pattern (EA), East Atlantic West Russia

Pattern (EAWR), Northern Annular Mode (NAM), and North Atlantic Oscilla-

tion (NAO) have a significant impact in the western parts of the investigated area

during wintertime. These results help to improve the general understanding of how

the individual climate modes affect different parts of the extended Mediterranean

area.
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Kurzfassung

Ozeanisch-atmosphärische Oszillationen, welche durch sogenannte Klimamodi be-

schrieben werden, haben einen starken Einfluss auf die Variabilität des terrestri-

schen Wasserkreislaufs. Der Zusammenhang zwischen diesen Oszillationen und der

Hydrologie ist jedoch aufgrund von Unsicherheiten in den Beobachtungen und des

veränderlichen Verhalten von mehreren Oszillationen noch nicht vollständig verstan-

den. Bessere Kenntnisse sind erforderlich, um bessere Vorhersagen über Klima und

Hydrologie liefern zu können.

In dieser Studie wird der Einfluss von 17 wesentlichen Klimaoszillationen auf

monatliche Niederschlagsanomalien in einem erweiterten Mittelmeerraum zwischen

28.5◦N - 56.5◦N und 10◦W - 46◦O analysiert. Die Klimaoszillationen werden durch

ihren entsprechenden Klimaoszillationsindex, der zur Beschreibung des Zustands der

atmosphärisch-ozeanischen Zirkulationen verwendet wird, ausgedrückt. Ein über-

wachtes maschinelles Lernverfahren, namens least absolute shrinkage and selection

operator (LASSO) Regression, wird verwendet, um den Einfluss von diesen Klimaos-

zillationen (wie zum Beispiel: North Atlantic Oscillation, East Atlantic West Russia

Pattern) auf Niederschlagsanomalien zu bestimmen. Niederschlag ist eine wichtige

Komponente des Wasserkreislaufs und neben der Verdunstung einer der wichtigsten

klimatischen Treiber für die Wasserverfügbarkeit.

Die LASSO Regression ist eine datengetriebene Methode, welche eine automati-

sche Merkmalsauswahl und Regularisierung verwendet. Dies wird in dieser Studie

genutzt, um die ozeanisch-atmosphärischen Oszillationen auf Niederschlagsanomali-

en zu identifizieren, und den Einfluss individueller Klimaoszillationen zu entwirren.

Die Methodik berücksichtigt Kreuzkorrelationen zwischen Klimaoszillationsindizes.

Für jedes Feature werden Zeitverzögerungen zwischen null und fünf Monaten ein-

geführt, um die eventuell verzögerte Reaktion der Niederschlagsanomalien auf die

ozeanisch-atmosphärischen Oszillationen zu berücksichtigen. Das LASSO Modell ist

auf zwei Arten für jeden Gitterpunkt trainiert: einmal nur durch Verwendung der

Zeitserie des entsprechenden Gitterpunkts, und zusätzlich durch Hinzufügen der In-

formationen der acht benachbarten Gitterpunkte. Die Analyse wird sowohl für alle

Monate eines Jahres gleichzeitig als auch für jede Jahreszeit separat durchgeführt.

Diese beiden Schritte erhöhen den aus der LASSO Regression abgeleiteten Bestim-

mungskoeffizienten R2 und verbessern somit die Vorhersageleistung des LASSO Mo-

dells. Zur Validierung der LASSO Modelle werden zwei Kreuzvalidierungen und ein

Signifikanztest mit Benjamini-Hochberg Prozedur eingesetzt.

Die Ergebnisse der LASSO Regression zeigen, dass in speziellen Hotspot Regio-

nen bis zu 70% der Niederschlagsanomalien durch Klimaoszillationen erklärt wer-

den können. Durch das Hinzufügen der Informationen der Nachbarschaft zum Modell

erhöht sich die erklärte Varianz R2 signifikant. Wird der Einfluss von jedem Klimaos-

zillationsindex analysiert, zeigt sich, dass East Atlantic Pattern (EA), East Atlantic

West Russia Pattern (EAWR), Northern Annular Mode (NAM), und North Atlantic

Oscillation (NAO) während der Winterzeit signifikante Auswirkungen in Teilen des

westlichen Untersuchungsgebiets haben. Diese Ergebnisse tragen dazu bei, das all-

gemeine Verständnis dafür zu verbessern, wie sich die einzelnen Klimaoszillationen

auf verschiedene Teile des erweiterten Mittelmeerraums auswirken.
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1. INTRODUCTION

1 Introduction

1.1 Climate of the Mediterranean area

The climate of the Mediterranean basin, which stretches over 3800 km west-east and 1000

km north-south, between 30◦N and 45◦N [Blondel and Aronson, 1999], is of high interest

to environmental scientists and has been the focus of many research studies. The attrac-

tion for this region can be explained by the important social-economical-environmental

impacts of climate variability and change, and the forecasted global warming and dry-

ness, that are likely to greatly affect the environment and human activities [Lionello,

2012; Field et al., 2014].

According to the most frequently used Köppen-Geiger climate classification [Köppen,

1900; Kottek et al., 2006], the Mediterranean climate is defined by a warm temper-

ate climate with hot and dry summers. The Mediterranean region is characterized by

the Mediterranean Sea, an almost completely closed sea, serving as a large reservoir

of heat and moisture for the surrounding land areas. The geographical location of the

Mediterranean Sea is what makes it particularly unique. It is located in a transitional

band between humid and dry areas. This transition zone between subtropical and mid-

latitude systems leads to large climate variability and a strong seasonal variability of

precipitation in many areas [Lionello et al., 2012]. The Mediterranean Sea is an almost

isolated oceanic system, thus many processes that are fundamental to the global ocean

circulation are also taking place within the Mediterranean basin [Robinson et al., 2001].

Strong air-sea interactions occurring due to mesoscale processes and wind regimes con-

siderably affect the thermohaline circulation of the Mediterranean Sea [Lionello et al.,

2012]. Even small modifications in the general circulation, e.g. shifts in the location of

mid-latitude storm tracks or sub-tropical high pressure cells, can have a big impact on

the climate and natural environment of the Mediterranean [Giorgi and Lionello, 2008].

This makes the region very vulnerable to climatic changes. Giorgi [2006] refers to the

Mediterranean as one of the most responsive regions to global change, and as a climate

change hot spot with the trend to a hotter and drier climate.

A dominant role for Earth’s climate plays the Atlantic meridional overturning circu-

lation (AMOC) [Cheng et al., 2013; Pohlmann et al., 2006; Sutton, 2005]. The AMOC

is one of Earth’s major ocean circulation systems in the North Atlantic, redistributing

heat on our planet and thereby affecting climate all over the world [Caesar et al., 2018].

Caesar et al. [2018] show that in recent years the AMOC has weakened and that it is

very likely that the decline since the 1950s is largely anthropogenic due to rising CO2

levels. A weakening of the AMOC, which may already have an impact on weather in

1



1. INTRODUCTION

Europe, is accompanied by a northward shift of the Gulf Stream [Caesar et al., 2018].

The Gulf Stream is highly relevant to the European climate. Its variability manifests in

changes in European temperature, precipitation, and storminess [Palter, 2015].

The assessments of projected climate change show with high confidence that tempera-

tures will increase over the Mediterranean region and that it is likely that Mediterranean

summer mean precipitation decreases, while annual mean precipitation in Northern and

Central Europe will very likely increase [Stocker et al., 2013]. Hence, it is expected

that the hydrological cycle in the Mediterranean basin, which is sensitive to changes in

temperature and precipitation, will be affected by global warming. The expected future

changes in the Mediterranean water budget will have important consequences in the

terrestrial and marine environment in the Mediterranean region [Sanchez-Gomez et al.,

2009]. Major concerns are the increasing frequency of extreme climate events, like heat

waves or floods and a significant reduction of water availability [Barros et al., 2014].

Therefore, it is important to improve the knowledge of the current Mediterranean

hydrological cycle and its interactions and processes to assess the potential implications

of climate change on its future climate.

1.2 Climate variability in the Mediterranean area

A large portion of the natural variability of climate is controlled by the coupled state

of ocean and atmosphere, the so-called oceanic-atmospheric oscillations. The climate

system largely depends on large-scale phenomena that occur more or less regularly,

which are called modes of climate variability [de Viron et al., 2013]. These climate

modes characterized by a repeating time-space pattern are important drivers of the

hydrology and can even influence regions that are far apart. Therefore, they are known

as teleconnections [Wallace and Gutzler, 1981; Wang and Schimel, 2003]. One of the

most relevant teleconnections affecting Mediterranean hydrology is the link between

normalized sea-level pressure at Lisbon, Portugal and Reykjavik, Iceland which defines

the well-known North Atlantic Oscillation (NAO). However, not only the NAO influences

the Mediterranean climate but also other large-scale phenomena like the East Atlantic

Pattern (EA), the East Atlantic West Russia Pattern (EAWR) or the Scandinavian

Pattern (SCAND).

Mikhailova and Yurovsky [2016] have analyzed the mechanism of the EA and its

impact on the atmospheric circulation patterns, as well as the surface air temperature

and precipitation in the European region in winter. They found that 15 − 25% of the

precipitation interannual variability is explained by the EA. Chronis et al. [2011] point

2



1. INTRODUCTION

out the importance of the summer NAO over the eastern Mediterranean. They detected

that higher NAO summer values are related to the relative cooling of the surface, and

lower troposphere, respectively, which leads to an enhanced meridional circulation and

cloudiness over Greece, the Anatolian Plateau, and the surrounding waters. The study

of Bladé et al. [2012] has focused on the impacts of the summer NAO on precipitation in

Europe. By computing linear correlations and regressions between the summer NAO and

precipitation they found that the influence of summer NAO is characterized by a strong

north-south dipole in precipitation between north-west Europe and the Mediterranean.

These findings are consistent with Mariotti and Arkin [2007]. Bueh and Nakamura [2007]

describe the impact of the SCAND on the climate, whereas Krichak and Alpert [2005]

demonstrate the existence of a significant relationship between precipitation and the

EAWR.

A lot of studies concerning the variability of individual climate modes and their impact

on the Mediterranean climate have been conducted. It is shown that teleconnection

patterns exert a significant impact on climatic drivers [Krichak et al., 2014; Martens

et al., 2018]. However, several climate modes show a co-varying behaviour as will be

later shown in Figure 3. Individual climate modes are highly correlated. An extreme

example is the correlation between AMM and TNA with a pearson correlation coefficient

of 0.8. While looking only at correlations of individual modes with climate variables,

the coupled interactions between individual climate modes are not addressed. However,

these interactions are important and their consideration improves the accuracy of the

results compared to correlations. Therefore, further research is necessary to further

clarify the relation between precipitation anomalies and climate modes.

1.3 Objective of this study

The goal of this study is to reveal the dominant modes of climate variability controlling

precipitation anomalies in different parts of an extended Mediterranean area. Thus,

the general understanding of the connection between ocean-atmospheric oscillations and

precipitation anomalies can be improved. This is essential to gain new insights into

the interactions between ocean, atmosphere, land and ultimately the biosphere to accu-

rately predict the impact of climate change on hydrology and ecosystem response in the

Mediterranean region.

For this purpose, a supervised machine learning technique called least absolute shrink-

age and selection operator (LASSO) regression is used. It is a multivariate method, that

analyses the joint behavior of multiple variables concurrently. This is important be-
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cause many climate modes are highly correlated, up to a factor of 0.8. That is, if the

analysis would be performed separately for each climate mode, as it is the case for a

correlation, the cross-correlations between the single climate modes would not be taken

into account. However, when using a LASSO regression, the co-varying behavior of

the individual climate modes is considered and the impact of many climate modes on

precipitation anomalies is determined simultaneously.
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2 Data

2.1 Climate modes

Climate modes describe the state of the atmospheric-oceanic circulations and follow

distinct repeating spatio-temporal patterns. The strength of each individual climate

mode is generally monitored by a so-called Climate Oscillation Index (COI), a simple

diagnostic quantity that is used to characterize an aspect of a geophysical system such

as a circulation pattern.

In this study, 17 major ocean-atmospheric oscillations, expressed through their as-

sociated COI, listed in Table 1, are used as predictive features in a LASSO regression

framework to analyze the effects of climate variability on the Mediterranean hydrology.

The following subchapters describe the 17 climate modes used and their associated

COI in more detail. A complete list of the used time series and the associated references

including the data origin can be found in Table 3 and 4 in the appendix.

Climate mode Climate Oscillation Index (COI)

Atlantic Meridional Mode (AMM) AMM sea-surface temperature (AMMSST) index

Atlantic Multidecadal Oscillation (AMO) AMO index

Indian Ocean Dipole (IOD) Dipole Mode Index (DMI)

East Atlantic Pattern (EA) EA index

East Atlantic West Russia Pattern (EAWR) EAWR index

East Pacific North Pacific Pattern (EPNP) EPNP index

Northern Annular Mode (NAM) NAM index

North Atlantic Oscillation (NAO) NAO index

Pacific Decadal Oscillation (PDO) PDO index

Polar Eurasia Pattern (PEA) PEA index

Pacific-North American Pattern (PNA) PNA index

Southern Annular Mode (SAM) SAM index

Scandinavian Pattern (SCAND) SCAND index

El Niño-Southern Oscillation (ENSO) Southern Oscillation Index (SOI)

Tropical Northern Atlantic Dipole (TNA) TNA index

Tropical Southern Atlantic Dipole (TSA) TSA index

West Pacific Pattern (WP) WP index

Table 1: Climate modes used in this study with their corresponding COI.
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2.1.1 Atlantic Meridional Mode (AMM)

The Atlantic Meridional Mode (AMM) is the leading mode of coupled ocean-atmosphere

variability in the tropical Atlantic Ocean. It is a dipole mode that has a typical oscillation

period of about a decade [Chang et al., 1997]. A Maximum Covariance Analysis between

the Sea Surface Temperature (SST) and the zonal and meridional components of 10-m

wind defines the spatial structure [Chiang and Vimont, 2004]. The AMM is coupled with

an anomalous displacement of the intertropical convergence zone toward the warmer

hemisphere.

A positive phase of the AMM is associated with anomalously warm SSTs in the trop-

ical North Atlantic and anomalously cool SSTs in the tropical South Atlantic. These

changing SSTs lead to higher than normal surface air pressure over the cold SSTs and

lower than normal surface air pressure over the warm SSTs. That, in turn, leads to

strengthened south-easterly trade winds in the South Atlantic and weaker north-easterly

trade winds in the North Atlantic. Moura and Shukla [1981] observed that these effects

produce severe drought conditions over north-east Brazil, whereas Vimont and Kossin

[2007] found out that seasonal hurricane activity in the Atlantic is strongly related to

the AMM.

The AMMSST index used in this study is obtained from the Earth System Research

Laboratory (ESRL) of the National Oceanic and Atmospheric Administration (NOAA)

of the U.S. Department of Commerce. The data is originally from the University of

Wisconsin-Madison using SST from the National Centers for Environmental Prediction

(NCEP).

2.1.2 Atlantic Multidecadal Oscillation (AMO)

The Atlantic Multidecadal Oscillation (AMO) is characterized by North Atlantic SSTs

containing a 65-80 year cycle [Enfield et al., 2001].

The AMO has alternating warm and cold phases, which are causing interannual cli-

mate variability, influencing rainfall in certain areas. When looking at the United States,

warm phases lead to less precipitation than normal in the eastern Mississippi basin,

whereas in Florida more rainfall occurs. A cold phase in turn leads to less precipitation

in most of the southern parts of the United States [Enfield et al., 2001].
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There are two major issues when calculating the AMO index. First, the tropical

region is not included in the selected area because it is influenced by the ENSO. Second,

global warming is affecting the average of SSTs in a non-linear way. Therefore, van

Oldenborgh et al. [2009] defined the AMO index as the averaged SST in the North

Atlantic, at latitudes north of 25◦N, minus the regression of the SST on global mean

temperature.

The AMO index used in this study is obtained from the Royal Meteorological Institute

of the Netherlands (KNMI) based on HadSST 3.1.1.0 data of the Met Office Hadley

Centre for Climate Science and Services.

2.1.3 Indian Ocean Dipole (IOD)

The Indian Ocean Dipole (IOD) is a climate mode which shows patterns of internal

variability with anomalously low SSTs off Sumatra and high SSTs in the western Indian

Ocean, with accompanying wind and precipitation anomalies [Saji et al., 1999].

The IOD mode is responsible for 12% of the SST variability in the Indian Ocean and

brings heavy rainfall to Eastern Africa and causes severe droughts in Indonesia [Saji

et al., 1999]. Black et al. [2003] show that during an extreme IOD mode event a weaken-

ing of the westerly flows over the northern Indian Ocean is happening. The consequence

is strong East African rainfall because these winds normally transport moisture away

from the African continent out over the Indian Ocean.

The associated COI is called Dipole Mode Index (DMI). It is defined as the difference

in SST anomaly between the tropical western Indian Ocean (50◦E - 70◦E, 10◦S - 10◦N)

and the tropical south-eastern Indian Ocean (90◦E - 110◦E, 10◦S - Equator) [Saji et al.,

1999].

The DMI used in this study is obtained from the ESRL of the NOAA of the U.S.

Department of Commerce. The data is originally from the Japan Agency for Marine-

Earth Science and Technology (JAMSTEC) using SST based on HadISST data of the

Met Office Hadley Centre for Climate Science and Services.

2.1.4 East Atlantic Pattern (EA)

The East Atlantic Pattern (EA) is the second leading mode over the North Atlantic

besides NAO [Barnston and Livezey, 1987]. Due to structural similarities with the

NAO, the EA is often referred to as southward shifted NAO pattern.
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During a positive phase of the EA pattern, Europe experiences above average surface

temperatures over the whole year, whereas below average temperatures occur during

January to May over the southern United States and during July to October in the

north-central United States. Furthermore, above average precipitation is expected over

northern Europe and Scandinavia and below average precipitation across southern Eu-

rope [Wallace and Gutzler, 1981].

The EA index is originally defined by Wallace and Gutzler [1981], based on normalized

500 hPa height anomalies at three specific centres: one located southwest of the Canary

Islands, another west of Great Britain, and a third near the Black Sea. The positive

phase is characterized by anomalously high 500 hPa height fields over the North Atlantic

and low heights over the subtropical Atlantic and Eastern Europe. The negative pattern

index shows a reversed behaviour [Wallace and Gutzler, 1981].

The EA index used in this study is obtained from the Climate Prediction Center of

the NOAA of the U.S. Department of Commerce. The indices are normalized using the

1981-2010 base period monthly means and standard deviations. The data is based on

height anomalies from the NCEP.

2.1.5 East Atlantic West Russia Pattern (EAWR)

The East Atlantic West Russia Pattern (EAWR) is one of three major teleconnections

influencing Eurasia the whole year. Barnston and Livezey [1987] defined this pattern as

Eurasian pattern Type 2. It is an east-west pattern with three centres, one near England

or Denmark, another north or north-east the Caspian Sea which is oppositely signed,

and the third in north-east China having the same sign as the British centre [Barnston

and Livezey, 1987].

During a positive phase, positive height anomalies are located over Europe and North-

ern China, and negative height anomalies are located over the central North Atlantic and

north of the Caspian Sea. A positive phase indicates higher surface temperatures over

Eastern Asia, and lower surface temperatures over large portions of Western Russia and

North-Eastern Africa. Furthermore, below average precipitation across Central Europe

and above average precipitation in Eastern China is occurring.

The EAWR index used in this study is obtained from the Climate Prediction Center

of the NOAA of the U.S. Department of Commerce. The indices are normalized using
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the 1981-2010 base period monthly means and standard deviations. The data is based

on height anomalies from the NCEP.

2.1.6 East Pacific North Pacific Pattern (EPNP)

The East Pacific North Pacific Pattern (EPNP) is a pattern appearing mostly in spring,

summer, and fall with three main anomaly centres: one located in the central North

Pacific, another near Korea and the last near Eastern Alaska [Barnston and Livezey,

1987]. Barnston and Livezey [1987] show that the EPNP is reflecting the strength of the

westerlies in the 50◦ - 70◦N zone in Eastern Asia and across the Pacific.

The positive phase of this pattern is characterized by positive height anomalies located

over Alaska and Western Canada, and negative anomalies over the central North Pacific

and eastern North America. A persistent positive phase of the EPNP is associated with

an anomalous circulation with higher cyclone activity over the middle latitudes of the

North Pacific and with lower cyclone activity over the western and central United States.

Furthermore, it leads to an intensification of the Pacific jet stream from Eastern Asia to

the eastern North Pacific. A strong negative phase of this pattern features circulation

anomalies of opposite sign in these areas.

During a positive phase, the surface temperatures are above average over the eastern

North Pacific, and below average over the central North Pacific and eastern North Amer-

ica. Furthermore, higher precipitation is arising in the region north of Hawaii, whereas

lower precipitation is occurring over south-western Canada.

The EPNP index used in this study is obtained from the Climate Prediction Center

of the NOAA of the U.S. Department of Commerce. The indices are normalized using

the 1981-2010 base period monthly means and standard deviations. The data is based

on height anomalies from the NCEP.

2.1.7 Northern Annular Mode (NAM)

The Northern Annular Mode (NAM), also known as Arctic Oscillation, is a leading

mode in the Northern Hemisphere during wintertime [Thompson and Wallace, 1998]. It

is characterized by winds circulating counterclockwise around the Arctic at around 55◦N

latitude. The NAM is related to the NAO which shows a similar structure.
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The negative phase is defined by high pressure over the polar region and low pressure

at mid latitudes. The positive phase shows a reversed behaviour. Due to the weaker

pressure system during a negative phase, the cold arctic air masses move south, causing

more storms in the mid latitudes. In contrast, in a positive phase the cold arctic air

does not move across polar regions. Consequently, the northern Hemisphere, except

regions as Greenland or Newfoundland, experiences temperatures warmer than usual.

Additionally, the positive phase, characterized by higher pressure at mid latitudes, brings

wetter conditions to northern countries, like Scotland and Scandinavia, whereas the

Mediterranean or the western United States experience drier conditions.

In the past centuries the NAM alternated between its positive and negative phases.

However, since the 1970s, a trend to a lower than normal arctic air pressure can be seen,

meaning that the NAM tends to stay in the positive phase.

The NAM index used in this study is obtained from the Climate Prediction Center of

the NOAA of the U.S. Department of Commerce. The data is based on height anomalies

from the NCEP.

2.1.8 North Atlantic Oscillation (NAO)

The North Atlantic Oscillation (NAO) is the dominant climate mode in the North At-

lantic. It contains a strong center over Greenland, and another of opposite sign over the

Atlantic, Europe or the United States [Barnston and Livezey, 1987].

The positive phase of the NAO is associated with weaker than usual heights and

pressure across the high latitudes of North Atlantic and stronger than usual heights and

pressure over the central North Atlantic, the eastern United States and Western Europe.

These height and pressure patterns lead to warmer and wetter conditions over northern

Europe and most of north-eastern North America, whereas below normal temperatures

and precipitation are observed over Greenland and southern Europe. The negative phase

of the NAO shows a reversed behaviour. It brings cold air to northern Europe and the

north-eastern North America, and moist air to southern Europe.

The NAO index is defined as the difference of normalized surface sea-level pressure at

Lisbon, Portugal and Reykjavik, Iceland. The NAO index used in this study is obtained

from the KNMI. The data is originally from the Climate Prediction Center of the NOAA

of the U.S. Department of Commerce. The indices are normalized using the 1981-2010
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base period monthly means and standard deviations. The data is based on sea-level

pressure anomalies from the NCEP.

2.1.9 Pacific Decadal Oscillation (PDO)

The Pacific Decadal Oscillation (PDO) is often described as a ENSO-like pattern of

Pacific climate variability [Zhang et al., 1997]. The spatial pattern are similar, however,

the main difference between these two modes of climate variability is their timescale.

The ENSO is an interannual phenomena, while the PDO is decadal in scale. Therefore,

observations for a long time are needed to understand the PDO and analyze its phases.

During a positive phase of the PDO the SSTs are anomalously warm along the eastern

Pacific Coast and sea-level pressures are below normal over the North Pacific. A reversed

behaviour is associated in a negative phase. Extremes in the PDO are associated with

widespread variations in the Pacific Basin and the North American climate [Mantua

et al., 1997].

The PDO index used in this study is obtained from the National Centers for Envi-

ronmental Information of the NOAA of the U.S. Department of Commerce. The PDO

index is based on NOAA’s extended reconstruction of SSTs (Extended Reconstructed

Sea Surface Temperature (ERSST) Version 4).

2.1.10 Polar Eurasia Pattern (PEA)

The Polar Eurasia Pattern (PEA) is a teleconnection pattern, that is apparent over the

whole year [Gao et al., 2016].

The positive phase of the PEA is associated with positive height anomalies over North-

ern China and Mongolia, and negative height anomalies over the polar region [Barnston

and Livezey, 1987]. These height anomalies lead to above normal temperatures in Siberia

and below normal temperatures in Eastern China. In addition, more than usual precip-

itation is expected in the polar region north of Scandinavia during a positive phase.

The PEA index used in this study is obtained from the Climate Prediction Center of

the NOAA of the U.S. Department of Commerce. The indices are normalized using the

1981-2010 base period monthly means and standard deviations. The data is based on

height anomalies from the NCEP.
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2.1.11 Pacific-North American Pattern (PNA)

The Pacific-North American Pattern (PNA) is a dominant teleconnection over the North

Pacific-North American region [Chen and van den Dool, 2003]. It is characterized by

alternating pressure patterns in the central Pacific Ocean and over Western Canada and

the south-eastern United States [Wallace and Gutzler, 1981].

The positive phase of the PNA is associated with above average geopotential heights

over the western United States and below average geopotential heights over the eastern

United States. These height field pattern result in above normal temperatures in West-

ern Canada and the western United States, whereas the south-central and south-eastern

United States experience below normal temperatures. Moreover, above average precipi-

tation is identified in the Gulf of Alaska extending into the Pacific north-western United

States, and below average precipitation over the upper Midwestern United States.

The PNA index used in this study is obtained from the Climate Prediction Center of

the NOAA of the U.S. Department of Commerce. The indices are normalized using the

1981-2010 base period monthly means and standard deviations. The data is based on

height anomalies from the NCEP.

2.1.12 Southern Annular Mode (SAM)

The Southern Annular Mode (SAM), also known as Antarctic Oscillation is the leading

mode of variability in the southern hemisphere [Marshall, 2003].

The SAM influences the westerly wind belt that circles Antarctica. The changes in

the position and strength of the westerlies can have a major impact on rainfall and

temperature variability.

In a positive phase of the SAM stronger than average westerlies occur over the mid-

high latitudes and weaker westerlies in the mid-latitudes. This leads to higher pressures

and drier conditions over Southern Australia. During a negative phase, the westerly

winds expand towards the equator, resulting in low pressure systems over Southern

Australia. Consequently, increased storms and rain are expected over this area.

The SAM index is based on the zonal pressure differences between 40◦S and 60◦S. The

observations are based on 12 stations. The SAM index used in this study is obtained

from Marshall [2003].
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2.1.13 Scandinavian Pattern (SCAND)

The Scandinavian Pattern (SCAND) was originally defined by Barnston and Livezey

[1987] as Eurasian Type 1 pattern. Its primary centre of action is located around the

Scandinavian Peninsula and two other centres with opposite sign are found over the

North-Eastern Atlantic and over Central Siberia to the south-west of Lake Baikal.

The positive phase of the SCAND is characterized by positive height anomalies over the

Scandinavian Peninsula and Western Russia. These patterns lead to lower than usual

temperatures across Central Russia and Western Europe. Furthermore, the positive

phase is associated with higher than usual precipitation across central and southern

Europe, and lower than usual precipitation across Scandinavia [Bueh and Nakamura,

2007]. The negative phase of the SCAND is associated with a reversed behaviour in

these regions.

The SCAND index used in this study is obtained from the Climate Prediction Center

of the NOAA of the U.S. Department of Commerce. The indices are normalized using

the 1981-2010 base period monthly means and standard deviations. The data is based

on height anomalies from the NCEP.

2.1.14 El Niño-Southern Oscillation (ENSO)

The El Niño-Southern Oscillation (ENSO) is a well-known teleconnection pattern and

one of the most prominent global drivers of interannual variability [Trenberth and Caron,

2000]. The ENSO describes periodic fluctuations in SST and air pressure across the

equatorial Pacific Ocean. Due to the changing water temperatures in the eastern tropical

Pacific, there are far-reaching consequences to weather patterns.

The negative phase of the SOI is associated with below normal air pressure at Tahiti

and above normal air pressure at Darwin. Long periods of negative SOI values lead to

abnormally warm ocean waters across the eastern tropical Pacific, referred to as El Niño.

During El Niño enhanced cloudiness and rainfall occur along the coasts of Ecuador and

northern Peru because of the abnormally warm waters. In contrast, at the same time

rainfall is reduced over Indonesia, Malaysia and Northern Australia, leading to drier

than normal conditions [Ropelewski and Halpert, 1987].

In contrast, prolonged positive periods of the SOI come with abnormally cold ocean

waters across the eastern tropical Pacific, referred to as La Niña. During La Niña
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the situation is reversed: rainfall is enhanced over Indonesia, Malaysia and Northern

Australia, whereas less rainfall is occurring along the eastern tropical Pacific [Ropelewski

and Halpert, 1989].

The corresponding index is called Southern Oscillation Index (SOI) [Chen, 1982]. It

measures the differences in air pressure anomaly between Tahiti and Darwin, Australia.

The SOI used in this study is obtained from the Australian Government Bureau of

Meteorology. The data is based on means and standard deviations calculated over the

period 1933 to 1992 inclusive.

2.1.15 Tropical Northern Atlantic Dipole (TNA)

The Tropical Northern Atlantic Dipole (TNA) is defined by Enfield et al. [1999] as the

average of SSTs over the region 5◦N - 25◦N, 55◦W - 15◦W. It is associated with variations

in the so called Hadley circulation [Wang, 2002]. The TNA shows a connection to other

teleconnection patterns, namely ENSO and NAO [Andreoli, 2004; Rajagopalan et al.,

1998].

The TNA index used in this study is obtained from the ESRL of the NOAA of the U.S.

Department of Commerce. The indices are standardized by the 1971-2000 climatology.

The data is based on HadISST and NOAA OI 1x1 datasets.

2.1.16 Tropical Southern Atlantic Dipole (TSA)

The Tropical Southern Atlantic Dipole (TSA) is defined by Enfield et al. [1999] as the

average of SSTs over the region 20◦S - 0, 30◦W - 10◦E. As the TNA, also the TSA is

associated with variations in the so called Hadley circulation [Wang, 2002].

The TSA index used in this study is obtained from the ESRL of the NOAA of the U.S.

Department of Commerce. The indices are standardized by the 1971-2000 climatology.

The data is based on HadISST and NOAA Optimal Interpolation (OI) 1x1 datasets.

2.1.17 West Pacific Pattern (WP)

The West Pacific Pattern (WP) is a teleconnection pattern with two centers of action

[Wallace and Gutzler, 1981]. One center is located east of Kamchatka and another broad

center of opposite sign in the east-west Pacific [Barnston and Livezey, 1987].
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The positive phase of the WP leads to higher than average temperatures over the

lower latitudes of the western North Pacific in winter and spring, and to lower than

average temperatures over eastern Siberia over the whole year. While the high latitudes

of the North Pacific experience above normal precipitation in all seasons, below normal

precipitation is expected across the central North Pacific, in particular, in winter and

spring.

The WP index used in this study is obtained from the Climate Prediction Center of

the NOAA of the U.S. Department of Commerce. The indices are normalized using the

1981-2010 base period monthly means and standard deviations. The data is based on

height anomalies from the NCEP.

2.2 Precipitation data

One key component of the hydrological cycle is precipitation [Bonan, 2015]. Many studies

require precipitation estimates, but the non-homogenous spatial and temporal precipi-

tation patterns, as well as the limitations of the observing systems, make it difficult to

provide high-quality datasets covering long time series [Stephens and Kummerow, 2007;

Tang et al., 2009; Sun et al., 2018; Sene, 2013].

In this study, precipitation provided by the Climatic Research Unit (CRU) TS v.3.23

[Harris et al., 2013] is used. In the LASSO framework, precipitation anomalies are used

as the target variable and the climate modes are the features. Thus, the impact of the

individual climate modes on precipitation anomalies can be quantified.

2.3 Data preparation

2.3.1 Climate Oscillation Index (COI) data

The 17 climate modes discussed from section 2.1.1 to 2.1.17 include all important oscilla-

tions covering the globe. The COIs have a monthly temporal resolution. The time series

are pre-processed based on the multi-year climatology to eliminate the effect of seasonal

variations. Therefore, the raw time series of the COIs are standardized by month. This

means that the mean of all January values is calculated and subtracted from these val-

ues. Afterwards, the January values are standardized to give them a standard deviation

of one. This process is repeated for every month. As an example Figure 1 shows the time

series of the NAM index before and after the pre-processing. Finally, the full time series

is normalized by dividing it by the l2 norm for better numerical behavior during the
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regression algorithm and easier interpretation during the LASSO regression, see section

3.1.

There are no data gaps for the climate modes, except the East Pacific North Pacific

Pattern (EPNP). For the entire time span of the EPNP the December values are missing.

These data gaps are filled with the arithmetic mean of the respective November and

January value.

Figure 1: Illustration of the time series of the NAM index before and after pre-processing.

2.3.2 Precipitation data

CRU TS is a gridded high-resolution climate dataset from monthly observations at me-

teorological stations across the world’s land areas. It is provided on a regular latitude-

longitude grid with a common spatial resolution of 0.5◦. This dataset covers all land

areas but Antarctica over the period 1901 to 2014.

The LASSO regression is trained by the anomalies of the precipitation data instead of

the raw time series to remove seasonal signals. First, the linear trend is subtracted, then

the anomalies are calculated based on the multi-year climatology similar to the climate

modes, see section 2.1, but without standardizing the monthly data. As an example

Figure 2 shows the raw time series of precipitation and the derived precipitation anoma-

lies at the location 38.75◦N and 7.25◦W. This specific location is further investigated in

section 4.3. In contrast to COI data, occurring data gaps are not filled and thus not

included in the analysis leaving the original time series unchanged.
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Anomalies are used because the time series are dominated by a yearly signal due

to seasonal effects as can be seen in Figure 2. It is known that the winters in the

Mediterranean area are wetter than the summers [Kottek et al., 2006; Kelley et al.,

2012]. However, the seasonal signals are not of interest and should therefore be removed

during the analysis. This is achieved by using anomalies.

Figure 2: Example time series of precipitation and precipitation anomalies at 38.75◦N

and 7.25◦W

17



3. METHODS

3 Methods

3.1 LASSO regression

For this study, a supervised machine learning algorithm based on least absolute shrinkage

and selection operator (LASSO) models [Tibshirani, 1996] is used to disentangle the

impact of COIs on precipitation anomalies. In our framework, 17 COIs (see Table 1) are

used as features, and anomalies of CRU TS precipitation (see section 2.2) are used as

the target variable. The LASSO regression is chosen because it is a relatively simple but

more advanced method than correlation. However, compared to other machine-learning

algorithms like random forest, the LASSO regression is easier to understand and evaluate.

Furthermore, providing a simple model helps interpreting the result. Another advantage

is that the LASSO supervised learning approach takes cross-correlations between the

single predictors into account, which leads to an improvement in the quality of the

model compared to correlations.

The cross-correlations need to be considered because the features, i.e. the COIs, are

showing a co-varying behavior, as shown in Figure 3. Some COIs are correlated up to a

factor of 0.8. If seasonal models are computed the cross-correlations increase even more.

The LASSO regression is a data-driven method that uses automatic feature selection

and regularization to quantify the impact of each feature on the target variable. The

regularization helps to prevent overfitting and helps to provide a simple model by setting

the impact of weak features to zero. This means that only a subset of features is left

for the final predictive model, which improves its prediction accuracy and simplifies the

interpretation of the result.

The LASSO regression finds the estimated regression coefficients β̂ by minimizing a

penalized residual sum of squares [Tibshirani, 1996].

β̂ = argmin


n∑

i=0

yi − β0 −
p∑

j=1

βjxij

2

+ α

p∑
j=1

|βj |

 (3.1)

In equation (3.1), β̂ is the p-dimensional vector with the estimated regression coeffi-

cients, n the number of training samples in the dataset, yi the value of the target variable

in sample i, p the number of features, xij the value of feature j in sample i, and α a

hyper-parameter controlling the amount of shrinkage [Martens et al., 2018].

18



3. METHODS

Figure 3: Cross-correlation of COI anomalies

Concentrating the individual feature vectors xi lead to the feature matrix X (3.2)

shown in Figure 5, 6 and 8.

X =
[
x1 x2 x3 ... xn

]
(3.2)

With the help of the resulting regression coefficients β̂ of the LASSO regression the

target variable can be predicted,

ypred =

17∑
feature=1


5∑

lag=0

(
xfeaturelag · β̂featurelag

)
+ bias

 (3.3)
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where ypred is the value of the predicted target variable, x is the feature vector for a

given time lag, and β̂ the vector with the corresponding estimated regression coefficients.

For the evaluation of the predictive model the performance measure R2, the coefficient

of determination, is used, which is the squared correlation between our target variable

y and the predicted target variable ypred.

R2 = corr(y, ypred)2 (3.4)

3.2 Cross-validation

To determine the regularization parameter α and evaluate the coefficient of determina-

tion R2, two five-fold cross-validations are applied for each grid point. First, one five-fold

cross-validation is used for the determination of the regularization parameter α, after

this parameter is fixed, the second five-fold cross-validation is applied for the calculation

of the coefficient of determination R2.

During the cross-validation, the data is split randomly into five equally sized folds.

Four of these folds are used to train the model and calculate predictions for the remaining

test fold. This step is repeated five times until predictions for every fold are calculated.

The five predictions are put together and the coefficient of determination R2 is calculated

based on the predicted and original values.

Figure 4: Concept of five-fold cross-validation for R2. Every time stamp is used once for

testing.

Figure 4 illustrates the scheme of the five-fold cross-validation for R2. The data is

shuffled and spread among five equally sized folds. Four of these folds are used for

training, illustrated as grey time stamps, whereas the fifth fold, including the coloured
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time stamps, remains for testing. A LASSO model is fitted based on the training data

and used to calculate predictions for the testing time points. This procedure is repeated

five times, until every time stamp is used once as testing data and, therefore, predictions

are available for the entire time span. If, for example, folds 1 to 4 are the training

folds, the orange time stamps in fold 5 would be the ones predicted. If the folds 2 to

5 are used to train the model, the red time stamps in fold 1 would be the calculated

predictions, and so on. In the end, every time stamp is predicted once, based on one of

the five models. This information is combined to produce the predicted time series ypred

as shown in the last row of Figure 4 which is used to calculate the explained variance

R2, see equation (3.4).

3.3 Significance test

To ensure that the results are robust and trustful, a significance test at a significance

level of 95% is applied. First, a nonparametric permutation test is used to obtain

the null distribution of the test statistic (R2 values). LASSO models are fitted using

the same data as target variable but shuffled in time. Therefore, the nonparametric

null distribution of the R2 values is gained, which is compared with the distribution

of the original R2 values. As a second step the false discovery rate at a level of 5%

is controlled by adjusting the p-values according to the Benjamini-Hochberg procedure

[Benjamini and Hochberg, 1995]. The procedure is carried out by arranging the p-values

in ascending order, then assigning ranks to the p-values, so that the smallest p-value

starts with rank one, the second smallest with rank two etc., and finally calculating the

Benjamini-Hochberg critical value for each individual p-value. The Benjamini-Hochberg

critical value is calculated with the formula,

i

m
·Q (3.5)

where i is the rank of the individual p-values, m is the total number of tests, and Q is

the false discovery rate, in our case 5%. The largest p-value that is smaller than the

critical value (3.5), is significant and defines the threshold. All the p-values smaller than

that are significant too, the remaining are rejected. As a result, the significant R2 values

can be declared.

21



3. METHODS

3.4 Experimental set up

In this study, an extended Mediterranean area spanning from 28.5◦N to 56.5◦N and

from 10◦W to 46◦E is investigated. A LASSO regression model (see section 3.1) is fitted

individually for every grid point using 17 major COIs as features (see section 2.1) and

precipitation anomalies as target variable (see section 2.2). The overlapping time period

for the climate modes and the precipitation dataset is from 1957 to 2014. This time

span is used for the analysis.

In order to consider possible delayed responses of the COIs on the Mediterranean

hydrology, six time lags ranging between zero and five months are introduced for every

predictor, resulting in a total of 102 predictive features, i.e. 17 COIs times six time lags.

Figure 5: Basic framework of the LASSO regression

Figure 5 shows the concept of the LASSO regression when using all months of a year.

The left block is the target variable vector y (3.1), in our case precipitation anomalies

from CRU, and the right block represents the feature matrix X (3.2), containing 17

features, i.e. 17 COIs listed in Table 1, each with six time lags. The data is sampled

with a monthly temporal resolution.

In general, if more than 50% of the target data are missing values or if less than 10

samples are available, the LASSO regression is not performed for that particular grid

point due to a lack of reliability.

To optimize and validate the predictive LASSO regression models, two five-fold cross-

validations are applied (see section 3.2), one for the regularization parameter α, see

equation (3.1), and the second for the coefficient of determination R2, see equation (3.4),

a metric indicating the performance measure of the model. Furthermore, a significance
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test using the Benjamini-Hochberg procedure (see section 3.3) [Benjamini and Hochberg,

1995] is applied to verify the results.

3.4.1 Seasonal models

Additionally, seasonal models are calculated as it was done in similar studies [Martens

et al., 2018; Mariotti et al., 2002; Bladé et al., 2012]. By using seasonal models a higher

coefficient of determination R2 is achieved, meaning that the derived models from the

COIs fit better to the precipitation anomalies. The seasonal models are trained using

only data of three months:

• winter model: December, January, February

• spring model: March, April, May

• summer model: June, July, August

• autumn model: September, October, November

Figure 6: Framework of the LASSO regression for the winter model. Due to the six time

lags also months before December occur in the framework for the features.

Figure 6 shows the concept of the LASSO regression for the winter model. The winter

model covers the time span between December and February of each year for the target

variable. As already described, time lags are introduced for the feature vectors x (3.1).

Therefore, only the feature vector with lag = 0 covers the same period. However, when

time lags are applied, the months shift and the data is used up to July.

3.4.2 Neighborhood information

To increase the predictive performance of the model and make the results more robust,

the 3× 3 neighborhood is included. The framework is extended by the data of the eight
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Figure 7: Illustration of the 3× 3 neighborhood

neighboring grid points. Since the variables are provided with a monthly resolution

and the time series covers 58 years, the number of samples is relatively short for using

supervised machine learning algorithms. This is especially true for the seasonal models

when keeping the additional 20% data reduction due to five-fold cross-validation in mind.

It is expected that by including the neighborhood information and therefore extending

the time series by a factor of nine, more information can be extracted from the time series

and fit into the model. If one individual grid point does not provide enough information

to create a good model, at least the neighboring grid points can help improving the

prediction.

Figure 7 shows the concept of the 3 × 3 neighborhood. The grey grid illustrates the

spatial expansion of the examined area with its respective latitude and longitude. An

individual LASSO regression model is computed for each target grid point. The black

square marks the target grid point for which the LASSO regression model is currently

computed, while the red square marks the corresponding 3× 3 neighborhood. The time

series of the target grid point is extended by the eight neighboring grid points as shown

in Figure 8. Due to the neighborhood, the time span typically increases by a factor of

nine. Since the CRU data set only contains values over land areas, grid points near the

coast typically have fewer neighbors with data and, therefore, a fewer amount of samples

can be used. At the corners of the investigated area, only three neighbors are available,

while at the edges only five neighbors can be used.
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Figure 8: Framework of the LASSO regression for the full time series including the 3×3
neighborhood. The terms upper left, upper mid and lower right next to the
target variable y indicate the position of the specific grid point in the 3 × 3
neighborhood as shown in Figure 7

Figure 8 illustrates how the time series for the target variable y (3.1) is extended by

up to eight neighbours. In detail, this means that the time series of all nine grid points

are concatenated for the target variable. Consequently, the time series for one grid point

is artificially prolonged by its eight neighbors, resulting in nine times more samples for

the target variable. The 102 predictive COI features x (3.1), which have no spatial

affiliation, remain the same but are copied nine times, resulting in the same number of

samples as for the target variable.

It is assumed that the areas lying close together have similar climatic conditions influ-

enced by precipitation in a similar way. Therefore, it is reasonable to include the 3× 3

neighborhood to get more appropriate results. From a mathematical point of view, the

results get smoothed because the noise is reduced.
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4 Results and Discussion

4.1 Analysis based on coefficient of determination

4.1.1 Full-year model

Figure 9: Explained variance R2 of the LASSO regression with monthly precipitation

anomalies as the target and 17 climate modes with six time lags as features.

Areas that are classified as non-significant are marked white. a) the model is

trained for each pixel individually, b) additional 3 × 3 neighborhood is taken

into account

Figure 9 shows the explained variance R2 of the precipitation anomalies obtained by

the LASSO regression using all months of a year from 1957 to 2014. In the left plot,

the LASSO regression is trained for each pixel individually, while in the right plot ad-

ditionally the 3× 3 neighborhood is taken into account. By comparing the two maps in

Figure 9 it can be seen that the explained variance R2 gets significantly higher when the

3×3 neighborhood is included. The reason for the higher coefficient of determination R2

when using the 3×3 neighborhood is, that the impact of the noise in the data is reduced

due to the nine times longer time series. Thus, the time series gets more robust. If the

information provided by one pixel is not sufficient for deriving a good model, at least

the information of neighboring pixels can help to improve the model. Therefore, it gets

easier for the LASSO regression to predict the precipitation anomalies and consequently,

the model gets significantly better.

The white areas in the maps in Figure 9 have been declared as non-significant by

the permutation test using the Benjamini-Hochberg procedure at a significance level of

95%. Both results in Figure 9 agree that precipitation anomalies in the northern and

eastern region of the extended Mediterranean area, as well as precipitation anomalies in
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Northern Africa are not significantly driven by any climate mode.

The hot spot regions, where climate modes have a high influence on precipitation

anomalies, occur in particular over the Iberian Peninsula, Ireland, the United Kingdom,

France, big parts of Italy, and the eastern Adriatic coast. In these regions, up to 40%

of the variability can be explained. These results provide evidence that the monthly

precipitation anomalies are significantly driven by the main modes of climate variability.

4.1.2 Seasonal models

Figure 10: Explained variance R2 for seasonal models including the 3× 3 neighborhood.

a) winter model, b) spring model, c) summer model, d) autumn model

The seasonal models show a considerably higher coefficient of determination R2 than

the model that uses precipitation anomalies of all months of a year shown in Figure 9.

This means that the seasonal signals can be better explained by the COI anomalies.

When computing separate models, as shown in Figure 10, variabilities up to 70% can

be estimated. Especially, precipitation anomalies in the winter model show a high sen-

sitivity to the climate modes. In particular, the Iberian Peninsula, Ireland, the United

Kingdom, France, Belgium, the Netherlands, as well as some parts of Italy, and the

eastern coast of the Adriatic Sea are influenced by the modes of climate variability. The

autumn model looks similar to the winter model but less strong, highlighting the same
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regions responding to the climate modes. In summer only in a few regions precipitation

anomalies are driven by the COIs. The western Iberian Peninsula, Ireland, northern

France, Belgium, and the Netherlands are showing a high explained variance R2. In

contrast, the spring model is showing hardly any explained variance R2, meaning that

there is nearly no influence of teleconnection patterns on precipitation anomalies during

that season.

The patterns seen in Northern Africa, and the Middle East, especially in the summer

model, have to be interpreted with caution. In these regions, no precipitation occurs.

Therefore, the precipitation signal is constant zero, which, obviously, makes it easy for

the LASSO regression to create a good model and thus leading to a high explained

variance R2.

Figure 11: Explained variance R2 for seasonal models without using the 3 × 3 neigh-

borhood. a) winter model, b) spring model, c) summer model, d) autumn

model

Figure 11 shows the explained variances R2 of the precipitation anomalies when the

data is separated for each season but without using the 3× 3 neighborhood. The spatial

patterns detected look very similar to the ones identified by the LASSO regression that

includes the information of the 3 × 3 neighborhood shown in Figure 10. However, the

explained variances R2 are significantly higher, when the 3×3 neighborhood is taken into
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account. This confirms our findings in Figure 9, where the full-year model is computed.

4.2 Impact of individual COIs

Figure 9, 10 and 11 show that teleconnection patterns influence precipitation anomalies

in the extended Mediterranean area.

The impact of each individual COI is shown by calculating the explained variance

for each individual COI R2
COI . This value is calculated by taking the six regression

coefficients β̂ of one individual COI from the LASSO regression and based on these

coefficients the predicted target variable ypredCOI
and finally the explained variance R2

COI

is calculated. Therefore, equation (3.4) changes to (4.2), and equation (3.3) changes to

(4.1). This is done for each COI individually.

ypredCOI
=

5∑
lag=0

xCOIlag · β̂COIlag (4.1)

R2
COI = corr(y, ypredCOI

)2 (4.2)

4.2.1 Full-year model

Looking at the explained variances R2
COI of the full-year model, the same five COIs are

detected having a significant impact as for the winter or autumn model, namely EA,

EAWR, NAM, NAO, and SCAND. Interestingly, the remaining 12 COIs do not show

any influence at all, the explained variances R2
COI are zero. This can be explained by

the automatic feature selection of the LASSO regression. Since all four seasons are put

together into one model, it is significantly harder for the LASSO regression to disentangle

the impact of individual features. The explained variances R2
COI detected for each COI

for the full-year model are significantly lower than the ones when separating the time

period into the four seasons.

Each climate mode drives precipitation anomalies in regions of the extended Mediter-

ranean area. The patterns detected by the model that uses all months of a year corre-

spond to the patterns detected by one or more of the seasonal models, shown in Figure

13, 15, 16, and 17.

The EA drives precipitation anomalies in several regions of the extended Mediter-

ranean area. Some patterns seen in the model that uses all months of a year correspond

to the patterns found in the winter, spring and autumn model. The impact west of the

Black Sea can be seen in the autumn model, whereas the patterns in northern France
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Figure 12: Impact of individual climate modes on precipitation anomalies R2
COI for the

model using all months of the year with additional neighborhood information.
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correspond to the patterns seen in the winter and spring model. The patterns identi-

fied in Ireland and the United Kingdom are also seen in the winter, spring and autumn

model.

Especially, precipitation anomalies in the northern part of France, Belgium, the Nether-

lands, as well as in the eastern coast of the Adriatic Sea are driven by the EAWR. The

regions influenced by the EAWR correspond to the ones in the winter and autumn model.

The regions where precipitation anomalies are driven by the NAM are the same as in

the winter or autumn model. In particular, the Iberian Peninsula and France, but also

the eastern coast of the Adriatic Sea show a high response.

The NAO has an impact in the Iberian Peninsula, as well as in the north-eastern part

of the extended Mediterranean area. A high explained variance R2
COI at the Iberian

Peninsula is also seen in the winter model, whereas the impact in the north-eastern part

of the extended Mediterranean area is detected in the autumn model.

Precipitation anomalies in the northern Iberian Peninsula and France are driven by

the SCAND. Precipitation anomalies in these regions show the same response as in the

autumn model.

4.2.2 Winter model

Figure 13 shows the explained variance for each COI R2
COI (4.2) for the winter model.

The explained variance of each individual COI R2
COI (Figure 13) is considerably lower

than the explained variance R2 of the complete model (Figure 10a). This can be ex-

plained by the now missing interaction of the individual COIs. As already mentioned in

section 1.3 the LASSO regression is a multivariate method, having the unique charac-

teristic of considering all features simultaneously. Due to the interaction of individual

features, the model improves, resulting in a high coefficient of determination R2. How-

ever, the partial R2
COI values of each COI shown in Figure 13 are lower. The LASSO

model is created based on the information of all features, but only the regression coeffi-

cients β̂ of a single feature are used to calculate the coefficient of determination R2
COI .

Moreover, since the model is based on all features and cross-correlation is taken into

account the partial R2
COI values get even smaller compared to correlation results which

do not take cross-correlation into account.

Nevertheless, the regions in which a particular COI has a significant impact can be

identified and the received results are reasonable and most likely more accurate than

correlation results.
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Figure 13: Impact of individual climate modes on precipitation anomalies R2
COI for the

winter model with additional neighborhood information. The respective ab-
breviations of each climate mode are written in the bottom right corner.
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Figure 13 reveals five COIs that have a significant impact on precipitation anomalies

in winter, i.e. the East Atlantic Pattern (EA), the East Atlantic West Russia Pattern

(EAWR), the Northern Annular Mode (NAM), the North Atlantic Oscillation (NAO),

and the Scandinavian Pattern (SCAND).

Based on the LASSO model the EA shows the highest impact in the southern United

Kingdom, at the western coast of France and at the western Iberian Peninsula. Up

to 30% of the precipitation anomalies can be explained. A less strong influence can

be seen south and west of the Black Sea. These results correspond very well to the

studies conducted by Mikhailova and Yurovsky [2016] and Casanueva et al. [2014]. In

both studies correlations between the EA and winter precipitation from E-OBS gridded

dataset [Haylock et al., 2008] are computed over Europe. The identified areas of highest

influence are very similar to our results, moreover, they correspond quite well to the

areas used by the definition of the EA index, which is based on normalized 500 hPa

height anomalies at three specific centres, one located southwest of the Canary Islands,

another west of Great Britain, and a third near the Black Sea, see section 2.1.4.

Furthermore, the LASSO result shows that the EAWR explains a lot of variance in

France and the eastern coast of the Adriatic Sea. These findings agree well with the

results shown by Ionita [2014] and Casanueva et al. [2014]. Both studies investigated

the relationship between winter precipitation and the EAWR, showing high negative

correlations up to 0.5, i.e. a R2 of 0.25, over central Europe and the Balkans. Moreover,

the patterns correspond well to the areas used by the definition of the EAWR, which

is defined as an east-west pattern with three centers, one near England and Denmark,

another northeast the Caspian Sea, and the third in northeast China, see section 2.1.5.

In addition, with the help of the LASSO regression, it is found that NAM drives

especially precipitation anomalies in the eastern investigated area and to a less extent

parts of the Iberian Peninsula. The study of Kryzhov and Gorelits [2015], as well as

the study of Givati and Rosenfeld [2013] are confirmed by our findings by detecting a

significant dependence of precipitation anomalies on the NAM. Both studies show strong

negative correlations up to 0.7 between the NAM and wintertime precipitation in the

same areas.

Furthermore, the results of the LASSO regression show that the NAO has the high-

est explained variance R2
COI of all climate modes and is, therefore, the dominant cli-

mate mode, especially in the southern Iberian Peninsula, Ireland, and Scotland. These
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results are reasonable when looking at its definition in section 2.1.8. Several stud-

ies describe the relationship between the NAO and precipitation. Mariotti and Arkin

[2007] analyzed the behavior between the NAO and winter precipitation using differ-

ent precipitation datasets. All results show strong positive correlations in the northern

Mediterranean, whereas over the southern Mediterranean strong negative correlations

are detected. These patterns correspond well to the patterns that we reveal.

Finally, the SCAND is detected by the LASSO regression as a driver of precipitation

anomalies of the northern investigated area, however its influence is weaker than that

of EA, EAWR, NAM or NAO. The correlation map in the study of Comas-Bru and

McDermott [2013] between winter precipitation from the CRU and the SCAND is similar

to the pattern seen in our study.

All other climate modes show no strong significant influence individually but are useful

for possible interactions with other modes as shown in Figure 14. Figure 14a illustrates

the coefficient of determination R2 when using only the five most significant COIs listed

above while Figure 14b illustrates the same by using all 17 COIs.

Figure 14: Explained variance R2 for the winter model including the 3×3 neighborhood.

a) LASSO model is trained by using only EA, EAWR, NAM, NAO, and

SCAND, b) LASSO model is trained by using all 17 COIs
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4.2.3 Spring model

Figure 15: Impact of individual climate modes on precipitation anomalies R2
COI for the

spring model with additional neighborhood information.

Figure 15 shows the influence of each individual COI on precipitation anomalies for the

spring model, using data of March, April and May. During this time of the year the

impact of climate modes on precipitation anomalies is rather low. This manifests in a low
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explained variance R2
COI . Only the EA index shows a raised coefficient of determination

R2
COI over Ireland, the United Kingdom, France, parts of Italy and the areas west of

the Black Sea. The precipitation anomalies in the eastern part of the investigated area

seem to be affected to a low extent by the EAWR, whereas precipitation anomalies over

Italy and the southern part of France are driven by the SCAND. All the other COIs do

not show any strong patterns and, therefore, have no influence during spring.

4.2.4 Summer model

In the summer model which is trained using data of June, July and August three cli-

mate modes are detected to be the drivers of precipitation anomalies, i.e. EA, NAO

and SCAND. This can be seen in Figure 16. However, in general, the impact of the

individual COIs is rather low compared to the winter model shown in Figure 13. The EA

is showing an influence over Ireland, the northern part of the United Kingdom and Italy.

The NAO is driving the precipitation anomalies in the northern part of the extended

Mediterranean area, including Ireland, the southern part of the United Kingdom, Bel-

gium, the Netherlands and the very northern Germany. In contrast, the SCAND drives

the precipitation anomalies over Spain, northern Italy, Poland and Czech Republic. The

explained variance R2
COI of the other COIs is close to zero, thus, no impact of these

COIs is detected during summer.
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Figure 16: Impact of individual climate modes on precipitation anomalies R2
COI for the

summer model with additional neighborhood information.
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4.2.5 Autumn model

Figure 17: Impact of individual climate modes on precipitation anomalies R2
COI for the

autumn model with additional neighborhood information.

The autumn model which is trained using data of September, October and November

has the second highest average coefficient of determination R2 after the winter model,

which can be seen in Figure 10. Figure 17 displays the impact of the individual climate
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modes during autumn. The same COIs are driving precipitation anomalies as in the

winter model shown in Figure 13. However, the patterns are slightly different and the

explained variance for each COI R2
COI is lower. The strongest influence occurs in Ireland

and Scotland and is caused by the EA. Additionally, precipitation anomalies in regions

west of the Black Sea are driven by this climate mode. The EAWR, in contrast, has its

influence at the eastern coast of the Adriatic Sea and in the northern parts of France,

Belgium and the Netherlands. The NAM is driving the eastern coast of the Adriatic

Sea too, but also the eastern part of Germany and the western part of Poland. The

NAO shows an impact, especially, in the northern part of the investigated area, whereas

SCAND influences precipitation anomalies over the northern Iberian Peninsula, France

and the southern United Kingdom. The other COIs do not have any impact on the

investigated area during autumn.

4.3 Analysis over single location in the Iberian Peninsula

A LASSO model is fitted for each grid point individually. To better understand how the

LASSO model works and what the coefficient of determination R2 shows, the results of

one randomly chosen grid point are discussed in more detail. The displayed grid point

is located at a latitude of 38.75◦N and 7.25◦W. Figure 18 shows its location on a map.

It lies in the south-western region of the Iberian Peninsula.

Figure 18: Location of the LASSO regression model that is discussed in more detail.
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4.3.1 Without neighborhood information

Figure 19: Step-wise addition of COIs building the LASSO winter model for precipitation

anomalies at 38.75◦N and 7.25◦W. Blue: target variable y, orange: predicted

target variable ypred. Only three COIs are selected by the LASSO regression

model.

Figure 19 shows the results of a step-wise addition of COIs to the LASSO regression

model. It is calculated with the help of equation (3.1). The LASSO model is trained by

using all 17 COIs. In case of the no neighborhood model, for this specific grid point only

three features, namely EA, NAO, and NAM are used by the automatic feature selection

of the LASSO regression to build the final model. The result of the LASSO regression

are the regression coefficients β̂ of the features x. The prediction ypred can be build

based on the calculated regression coefficients β̂ as shown in equation (3.3).

The first plot in Figure 19 shows the result, if only the regression coefficients β̂ from

the full LASSO regression model of one feature, namely EA, would be used to predict

the precipitation anomalies. The corresponding coefficient of determination would result
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in R2 = 0.12. By adding the regression coefficients β̂ of the second feature, i.e. NAO,

the coefficient of determination would increase considerably to R2 = 0.54. Adding the

third feature, i.e. NAM, shows the final LASSO result with a R2 of 0.55. The patterns

of the predictions ypred of the final LASSO model follow the temporal patterns of the

target variable y well but the amplitude is lower.

In contrast, Figure 20 shows the impact of each individual COI without interactions

with other COIs. It is clearly visible that taking only the regression coefficients β̂

from the full LASSO regression model of one COI at a time leads to a significantly

worse prediction and, therefore, low explained variance R2. While the R2 of the final

LASSO regression is 0.55, the highest possible obtained R2 by only using the regression

coefficients β̂ from the full LASSO regression model of one feature at a time is 0.40.

The same would occur by using correlations instead of a LASSO regression because a

correlation also only takes one feature into account.

Figure 20: Individual COIs multiplied with its coefficients β̂ from the LASSO winter

model at 38.75◦N and 7.25◦W. Blue: target variable y, orange: predicted

target variable ypred
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The possibility to analyze all features simultaneously and, therefore, also account for

their cross-correlations and interactions, is one of the biggest benefits of the LASSO

regression.

4.3.2 With neighborhood information

Figure 21 shows the same step-wise addition of individual features as Figure 19 but

includes the 3×3 neighborhood. By adding the neighborhood information the LASSO

regression uses a lot more features to build its prediction model. Therefore, three to

four features are added simultaneously in Figure 21 to reduce the number of necessary

plots. The final LASSO regression model is the last plot in Figure 21. It is clearly

visible, that the final result including the neighborhood corresponds better to the target

variable y as it is the case in Figure 19. This time the temporal patterns and amplitudes

are represented better. This can also be verified by the higher explained variance R2 of

0.77. However, the contribution per COI is lower as shown in Table 2.

COI R2 COI R2 COI R2 COI R2

AMMSST 0.00 EPNP 0.00 PEA 0.00 SOI 0.00

AMO 0.03 NAO 0.31 PNA 0.00 TNA 0.00

DMI 0.01 NAM 0.00 SAM 0.00 TSA 0.01

EA 0.13 PDO 0.02 SCAND 0.00 WP 0.00

EAWR 0.00

Table 2: Explained variances by each individual COI R2
COI for the grid point at 38.75◦N

and 7.25◦W including the neighborhood.

Table 2 shows the explained variance by each COI R2
COI for the single grid point

at 38.75◦N and 7.25◦W including the neighborhood. It can be seen that the explained

variance for one individual COI R2
COI is rather low, with R2

COI = 0.31 being the highest

for the NAO. However, the coefficient of determination R2 of the final LASSO model

is significantly higher with a value of 0.77, as it can be seen in Figure 21. This can

be explained by the interaction of the individual COIs. Even if one COI alone has a

low explained variance R2
COI , it still contributes to the accuracy of the final LASSO

regression model. Thus, the explained variance R2 of the final LASSO model is higher

than the one for each individual COI.
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Figure 21: Step-wise addition of COIs building the LASSO model for precipitation
anomalies at 38.75◦N and 7.25◦W including the neighborhood. Blue: tar-
get variable y, orange: target variable ypred.
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Although this is only the result of one grid point, the same can be seen at nearly every

location. As shown in Figure 9 and when comparing Figure 10 with 11 the explained

variance R2 is almost always higher when adding the information of the neighborhood.

4.4 Effect of cross-validation on coefficient of determination

Figure 22: Comparison of the effect of five-fold cross-validation on R2 for the win-

ter model. a) R2 with cross-validation without neighborhood, b) R2 with-

out cross-validation without neighborhood, c) R2 with cross-validation with

neighborhood, d) R2 without cross-validation with neighborhood

Figure 22 compares the results gained with and without cross-validation for the winter

model. The first row shows the explained variance R2 without neighborhood, the sec-

ond row with neighborhood. The first column is with cross-validation and the second

is without cross-validation. The results without five-fold cross-validation have a signifi-

cantly higher explained variance R2 than the ones with cross-validation. Although the

explained variance R2 gets higher, the significance test marks roughly the same areas as

significant. Only areas where the explained variance R2 gets too low, like the northern

parts of Europe without using the neighborhood information, get additionally marked

as non-significant.
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Cross-validation is a model validation technique that estimates the model’s predictive

performance. To validate the LASSO regression model, a five-fold cross-validation is

applied for the coefficient of determination R2 (section 3.2). This is done to avoid effects

of data-overfitting. Without cross-validation the model would be based on 100% of the

data and it is more likely that overfitting would occur. By using a cross-validation,

the explained variance R2 is based on predictions and, thus, it is unlikely that strong

overfitting occurs.

Furthermore, the results are more reasonable using a cross-validation. If the model is

fitted to 100% of the data, as it is the case without cross-validation, the model param-

eters are optimized fitting this data as good as possible. However, it is not clear how

accurately the predictive model will perform on an independent data set. Therefore, a

cross-validation needs to be applied to show a more realistic model.

4.5 Comparison of LASSO regression with correlation

A correlation coefficient is a very common metric used to determine the relationship be-

tween two variables. There are several correlation coefficients that are assuming different

data distributions. In this study, the so-called pearson correlation is used, that mea-

sures the linear relationship between two variables. It assumes two normally distributed

datasets. The pearson correlation coefficient ranges between -1 and 1. High positive co-

efficients indicate that the two tested variables show the same behaviour, whereas high

negative coefficients indicate an opposite behavior of the two tested variables.

Correlations between climate modes and precipitation have been computed in sev-

eral studies [Steirou et al., 2017; Comas-Bru and McDermott, 2013; Bladé et al., 2012;

Mariotti and Arkin, 2007].

As the winter model shows the strongest impact on precipitation anomalies, correla-

tions are computed between climate modes and winter precipitation anomalies, using

data of December, January, and February.
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Figure 23: Comparison of the explained variance R2 of LASSO regression and maxi-

mum squared correlation coefficients corr2 for the winter model. No cross-

validation and no significance test is applied. a) R2 without neighborhood,

b) R2 with neighborhood c) corr2 without neighborhood, d) corr2 with

neighborhood

Figure 23 compares the LASSO regression without cross-validation and without signif-

icance test and correlation results of the winter model with and without using the 3× 3

neighbourhood. As already discussed for Figure 9 the explained variance R2 gained by

the LASSO regression gets significantly higher when the 3× 3 neighbourhood is used.

The correlation plots in Figure 23 show the maximum squared correlation over all

COIs and lags

corr2 = max
COI

{
max
lag

{
corr(xCOIlag , y)2

}}
(4.3)

where x are the COI anomalies with a specific time lag and y are the precipitation

anomalies.

In contrast to the LASSO regression, the correlation coefficients show no improvement

when including the 3× 3 neighbourhood. The result remains the same, apart from the

smoothing effect resulting from the 3× 3 neighbourhood.

To compare the LASSO results with the correlation coefficients in the best possible

manner, all 17 correlation coefficients of the individual climate modes are combined. This
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means in detail that in each case the maximum correlation coefficient of the 17 COIs is

taken per grid point. Hence, comparable maps are created. Since no significance test

and no five-fold cross-validation is applied for the correlation results, the LASSO results

are also shown without significance test and cross-validation. Nevertheless, it is obvious

that the LASSO regression provides better results than the correlation, especially, if the

3× 3 neighborhood is included.

4.5.1 Without neighborhood information

In order to compare the LASSO regression results with correlations in more detail, Figure

24 and 26 were created.

The correlations are computed for each COI for six time lags.

corr2
COI = max

lag

{
corr(xCOIlag , y)2

}
(4.4)

The square of the highest correlation coefficient per grid point corr2
COI is displayed

to obtain comparable results similar to the explained variances R2
COI of the LASSO

regression shown in Figure 25 and 13.

The impact of each COI on precipitation anomalies R2
COI for the winter model without

using the 3× 3 neighbourhood shown in Figure 25 is almost the same as the correlation

results shown in Figure 24.

The climate modes EA, EAWR, NAM, NAO, and SCAND show high correlation

coefficients (Figure 24). These COIs are the same as the ones identified by the LASSO

regression (Figure 25).
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Figure 24: Squared correlations between climate modes and winter precipitation anoma-
lies corr2

COI for winter model without using the neighborhood.
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Figure 25: Impact of individual climate modes on precipitation anomalies R2
COI for the

winter LASSO model without using the neighbourhood.
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4.5.2 With neighborhood information

Comparing Figure 24 and 26, which show the squared correlations with and without

including the neighborhood, no differences can be seen. Consequently, adding the neigh-

borhood information does not make a difference for correlation.

In contrast to the correlation, the final model of the LASSO regression benefits greatly

by including the information of the 3×3 neighborhood, as shown in Figure 23. However,

the explained variance for each COI R2
COI does not increase as shown when comparing

Figure 25 and Figure 13.

Since correlation indicates the strength of association between variables, extending

the time series does only help by reducing the noise of the computation. Unlike the

LASSO regression, where the model is derived and optimized using the information of

all features simultaneously, the correlation coefficient still relies only on the two tested

variables and no additional information can be added.

However, the squared correlation coefficients including the 3×3 neighbourhood, shown

in Figure 26 are stronger than the explained variances R2
COI of the LASSO regression

shown in Figure 13. This can be explained by the interaction of the individual COIs

which is not considered for the correlation and thus leads to higher correlation coeffi-

cients. Additionally, the results gained by the LASSO regression are computed using

a five-fold cross-validation for the coefficient of determination R2, meaning that only

80% of the data is used at once, while the correlation is using 100% of the available

data without any cross-validation. Moreover, a significance test is applied in case of

the LASSO regression. A more detailed explanation concerning the consideration of the

cross-correlations and the significance test can be found in section 3.
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Figure 26: Squared correlations between climate modes and winter precipitation anoma-
lies corr2

COI for winter model including the neighborhood.

51



4. RESULTS AND DISCUSSION

4.5.3 Detailed analysis at the Iberian Peninsula

As already mentioned in section 3.1 one improvement of the LASSO regression model

over correlation is, that the influence of multiple COIs is calculated simultaneously and

cross-correlations between COIs are taken into account. Therefore, the result is expected

to be more accurate and the real impact of individual climate modes can be shown better.

This is explained by looking at the study of Comas-Bru and McDermott [2013] where

correlations between precipitation of CRU TS v3.1 and the climate modes NAO, EA,

and SCAND are computed. Their results show that the NAO and the EA have a high

correlation over the Iberian Peninsula, while the SCAND seems to have a low influence

in this area.

These results are different from the patterns found by the LASSO regression (Figure

13). The LASSO result shows that precipitation anomalies only in the southern part of

the Iberian Peninsula are dominated by the NAO, whereas precipitation anomalies only

in the western part are driven by the EA, and the SCAND is not driving precipitation

anomalies at all in this area. Precipitation anomalies in the northern part of the Iberian

Peninsula is mainly driven by the EAWR and the NAM.

The reason for the differences between the correlation results and the LASSO re-

gression result is the cross-correlation of individual COIs. For example, the correlation

between NAO and NAM is 0.75 during the winter months. By calculating correlations

between NAO and precipitation anomalies, and NAM and precipitation anomalies, both

results would show a high correlation coefficient in the northern part of the Iberian

Peninsula. In contrast, the LASSO regression uses feature selection to only select the

feature with the highest predictive power, in case of those cross-correlated features.

Therefore, in our results, only the NAM shows an impact in the northern part of the

Iberian Peninsula and the NAO does not. This confirms that the LASSO regression is

able to disentangle individual climate modes in a more sophisticated manner.
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5 Conclusion

In this study, the impact of 17 climate modes on precipitation anomalies over an extended

Mediterranean area is analyzed. The results show that the variability in precipitation

anomalies are strongly affected by ocean-atmospheric oscillations.

A supervised learning approach, called LASSO regression (section 3.1) is used to dis-

entangle the impact of individual climate modes. The analysis is performed in two ways,

once by analyzing the time series of each grid point individually and, furthermore, by

adding the information of the 3×3 neighborhood, see section 3.4.2. If the LASSO frame-

work is extended by the 3× 3 neighborhood, the model improves significantly, resulting

in a high explained variance R2, as it can be seen in section 4.1. Additionally, seasonal

models are calculated (section 3.4.1) which lead to a significantly higher explained vari-

ance R2 compared to the full-year model that uses all months of a year (section 4.1).

Especially, the winter model shows a high coefficient of determination R2. In some re-

gions, up to 70% of the precipitation anomalies can be explained by the combination

of specific climate modes. For the winter model, the LASSO regression detected that

EA, EAWR, NAM, NAO, and SCAND have the greatest impact, meaning that these

climate modes are mostly responsible for interannual precipitation anomalies, as shown

in section 4.2.

The LASSO regression is a method that can definitely help revealing the dominant

modes of climate variability by disentangling their complex impacts and interactions.

New insights have been gained by using the LASSO regression over correlation. In

general, the results from the LASSO regression correspond quite well with correlation

results between climate modes and winter precipitation anomalies computed in previous

studies. However, certain differences can be seen, described in section 4.5, which can be

explained by the fact that the LASSO regression is considering cross-correlations between

individual climate modes and uses the information of all climate modes simultaneously

to create the predictive model. If several climate modes are correlated, the automated

feature selection carried out by the LASSO regression selects the ones with the highest

predictive power, whereas the others are set to zero, meaning that they show no influence

in that area. The regularization of the LASSO regression and the fact that predictions

based on cross-validation are calculated helps preventing overfitting and thus the impacts

of each COI in specific regions can be detected more accurately than it is done by

correlation in previous studies.
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Furthermore, data quality is highly important to achieve meaningful results. This

is confirmed by the findings in the analysis when including the neighborhood. As al-

ready mentioned, the coefficient of determination R2 improves significantly by adding

the neighborhood information due to the noise reduction in the data. If the data is too

noisy, less information can be extracted and it gets difficult to build a good regression

model. Moreover, long time series are absolutely necessary to build a good and sophis-

ticated model. Especially for machine learning algorithms the length of the data plays

a crucial role. The algorithms need enough training data to perform well.

Based on the results found in this study, further research can be carried out to improve

the understanding of the relation between climatic oscillations and hydrology.
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6 Outlook

The LASSO regression worked quite well, showing reasonable results, with a higher

explained variance R2 than correlations. Therefore, further studies should be conducted

using the LASSO regression. Although a lot of investigations have been performed

regarding the methodology, possible improvements or new ideas could be incorporated,

making the LASSO regression perform even better.

The regularization parameter α is set by the algorithm automatically. A better un-

derstanding on how the model is affected by this parameter could be helpful to improve

the model. Additionally, the estimation of the regularization parameter α and the co-

efficient of determination R2 could be determined together in a single nested five-fold

cross-validation.

The limits of the method regarding the length of the data or the number of features still

need to be investigated further. Further analysis could be conducted to know whether

the method fails at some point because of numeric reasons or if the data itself is the

pivotal factor to achieve good results. This could be determined by using different data

sets with different data quality.

As the noise in the data affects the results, the pre-processing of the data is important

to achieve good results. Therefore, further investigations on how the data should be

prepared could be carried out.

Additionally, other regression methods like elastic net regression or ridge regression

could be used which might create a better predictive model and help interpreting the

results. Results from other regression models could be used to validate the results found

by using the LASSO regression.

Another idea would be to separate the investigated area into groups with similar

hydro-climatic properties and train and use the regression models based on these groups

instead of calculating a new regression model for each grid point individually. Since it is

found out that adding the neighborhood information helps the LASSO regression, this

would be the next logical step. This idea would also help in case of short time series

with only few samples since the information of a whole region is used simultaneously for

the training of the regression model.

Furthermore, the study region could be extended to the global scale, making it possible

to explore the impact of large-scale climate modes on precipitation anomalies over the

whole globe. Thus, hot spot regions would be highlighted, showing which climate drivers

are dominant in which region of the world.
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This study focused on precipitation anomalies as response variable. However, different

hydrological variables, as well as vegetation variables, could be used as the target vari-

able. These experiments are required to gain new insights in the interactions between

ocean, atmosphere, land, and ultimately the biosphere. Improving this knowledge is

needed to assess the potential implications of climate change on our future climate and

to provide predictions about the evolution of climate and hydrology.
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Climate mode, Reference

Climate Oscillation Index (COI)

Atlantic Meridional Mode (AMM),

AMM sea-surface temperature (AMMSST)

[Chiang and Vimont, 2004; Kossin and Vimont, 2007;

Vimont and Kossin, 2007]

Atlantic Multidecadal Oscillation (AMO),

AMO index

[van Oldenborgh et al., 2009; Enfield et al., 2001]

Indian Ocean Dipole (IOD),

Dipole Mode Index (DMI)

[Saji et al., 1999; Black et al., 2003]

East Atlantic Pattern (EA),

EA index

[Barnston and Livezey, 1987; Wallace and Gutzler,

1981]

East Atlantic West Russia Pattern (EAWR),

EAWR index

[Barnston and Livezey, 1987]

East Pacific North Pacific Pattern (EPNP),

EPNP index

[Barnston and Livezey, 1987; Bell and Janowiak,

1995]

Northern Annular Mode (NAM),

NAM index

[Higgins et al., 2002, 2000; Larson et al., 2005; Zhou

et al., 2001]

North Atlantic Oscillation (NAO),

NAO index

[Walker and Bliss, 1932; van Loon and Rogers, 1978;

Barnston and Livezey, 1987; Hurrell, 1995]

Pacific Decadal Oscillation (PDO),

PDO index

[Zhang et al., 1997; Mantua et al., 1997]

Polar Eurasia Pattern (PEA),

PEA index

[Barnston and Livezey, 1987; Gao et al., 2016]

Pacific-North American Pattern (PNA),

PNA index

[Barnston and Livezey, 1987; Wallace and Gutzler,

1981; Chen and van den Dool, 2003; van den Dool

et al., 2000]

Southern Annular Mode (SAM),

SAM index

[Marshall, 2003]

Scandinavian Pattern (SCAND),

SCAND index

[Barnston and Livezey, 1987]

El Niño-Southern Oscillation (ENSO),

Southern Oscillation Index (SOI)

[Walker and Bliss, 1932; Chen, 1982; Ropelewski and

Jones, 1987; Trenberth and Caron, 2000]

Tropical Northern Atlantic Dipole (TNA),

TNA index

[Barnston and Livezey, 1987; Enfield et al., 1999]

Tropical Southern Atlantic Dipole (TSA),

TSA index

[Enfield et al., 1999]

West Pacific Pattern (WP),

WP index

[Barnston and Livezey, 1987; Wallace and Gutzler,

1981]

Table 3: The climate modes used in this study are listed with their corresponding COI.

Additionally, the references are provided for each climate mode.
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COI Data origin

AMMSST index http://www.esrl.noaa.gov/psd/data/timeseries/monthly/AMM

AMO index http://climexp.knmi.nl/amo.cgi

DMI https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/

EA index http://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml

EAWR index http://www.cpc.ncep.noaa.gov/data/teledoc/eawruss.shtml

EPNP index http://www.cpc.ncep.noaa.gov/data/teledoc/ep.shtml

NAM index http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml

NAO index http://climexp.knmi.nl/getindices.cgi?WMO=NCEPData/cpc_nao

PDO index https://www.ncdc.noaa.gov/teleconnections/pdo/

PEA index http://www.cpc.ncep.noaa.gov/data/teledoc/poleur.shtml

PNA index http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/pna.shtml

SAM index http://www.nerc-bas.ac.uk/icd/gjma/sam.html

SCAND index http://www.cpc.ncep.noaa.gov/data/teledoc/scand.shtml

SOI http://www.bom.gov.au/climate/current/soi2.shtml

TNA index http://www.esrl.noaa.gov/psd/data/climateindices/list/

TSA index http://www.esrl.noaa.gov/psd/data/climateindices/list/

WP index http://www.cpc.ncep.noaa.gov/data/teledoc/wp.shtml

Table 4: Data origin for each COI is listed.
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