

DIPLOMARBEIT

Quantifizierungsalgorithmen für Röntgenfluoreszenzanalyse mit Sekundärtargetanregung von verschiedenen Probenarten

zur Erlangung des akademischen Grades Diplom-Ingenieur

im Rahmen des Studiums

066 461 Masterstudium Technische Physik

eingereicht von

Alexander Kleeweiss

Matrikelnummer 01325187

ausgeführt am Atominstitut der Fakultät für Physik der Technischen Universität Wien

Betreuung Betreuerin: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Christina Streli

Wien, 27.03.2019

(Unterschrift Verfasser)

(Unterschrift Betreuerin)

Ι

Danksagung

Hiermit bedanke ich mich bei allen, die mich bei der Fertigstellung dieser Diplomarbeit unterstützt haben. Im Speziellen bei:

- Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Christina Streli, für die Zuteilung und Betreuung dieser Diplomarbeit
- Dipl.-Ing. Dr.techn. Peter Kregsamer, für seine außerordentlichen Hilfestellungen im Zusammenhang mit der verwendeten Software, den Auswertungen von Messungen sowie für seine Unterstützung mit seinem umfangreichen Wissen bei den einzelnen Problemstellungen
- allen Mitarbeiterinnen und Mitarbeiter des Forschungsbereichs Strahlenphysik am Atominstitut der TU Wien

III

Kurzfassung

Die Röntgenspektroskopie ist eine Analysemethode mit der eine Probe auf eine Vielzahl von unterschiedlichen Elementen untersucht und diese sowohl qualitativ als auch quantitativ bestimmt werden können. Diese Methode lässt sich in eine große Anzahl von unterschiedlichen Messverfahren unterteilen. Diese wissenschaftliche Arbeit beschäftigt sich mit der energiedispersiven Röntgenfluoreszenzspektroskopie (auch EDXRF abgekürzt) und deren Anwendung auf unterschiedliche Problemstellungen.

Das für diese Arbeit zum Einsatz gekommene energiedispersive Röntgenspektrometer wird als "Epsilon 5" bezeichnet und stammt von der Firma PANalytical. Mit dieser Maschine kann Proben auf einen großen Elementbereich untersuchen, beginnend mit dem leichtesten Element Natrium bis hin zu dem schweren Element Uran. Weiters ist das Spektrometer mit mehreren unterschiedlichen Sekundärtargets ausgestattet. Jedes Sekundärtarget ist darauf ausgelegt, für eine bestimmte Gruppe von Elementen eine möglichst hohe Intensitätsausbeute zu erzielen, wodurch sehr niedrige Nachweisgrenzen für diese Elemente erreicht werden können.

Da Röntgenröhren mit der Zeit einem gewissen Verschleiß unterliegen, kam es in der Vergangenheit dazu, dass die Röhre der Epsilon 5 nicht mehr voll einsetzbar war. Daher wurde die nicht mehr funktionstüchtige Röntgenröhre gegen eine neue Röhre ausgetauscht. Im Rahmen dieser Arbeit soll nun anhand von verschiedenen Fragestellungen untersucht werden, ob ein labortauglicher Betrieb des Röntgenspektrometers möglich ist. Um dies festzustellen zu können, wurden unterschiedliche Arten von Proben gemessen, dazu gehören solide Proben, gepresste Pellets, beschichtete Filtermembranen und Schmelztabletten.

Bei der Untersuchung von Tonproben sowie Plättchen, die großteils aus Aluminium und nur aus einem sehr geringen Anteil an Magnesium und Silizium bestehen, wurde beobachtet, wie sich die elementare Zusammensetzung, d.h. die Matrix der Probe, auf die gemessenen Intensitäten auswirkt.

Mit der Messung einer standardisierten Luftfiltermembrane wurde überprüft, ob sich die Messgenauigkeit des Spektrometers durch den Wechsel der Röntgenröhre verändert hat.

Hierfür wurde die Luftfiltermembrane mittels der neuen Röhre untersucht und die erhaltenen Messergebnisse mit jenen der alten Röntgenröhre verglichen.

Weiters wurden Aerosole auf Filtermembranen gesammelt, um die Messgenauigkeit zwischen den beiden Analyseverfahren EDXRF und der Totalreflexion-

Röntgenfluoreszenzspektroskopie (auch TXRF genannt) vergleichen zu können.

Unter Verwendung von vorhandenen Aerosolstandards wurden mehrere Kalibrierungen für APM Filter erstellt.

In Zusammenarbeit mit dem Forschungsbereich Physikalische Chemie des Instituts für Materialchemie der TU Wien wurde ein Pulvergemisch bestehend aus den Elementen Silber und Titan auf seinen Silbergehalt untersucht. Die Problemstellung lag hierbei darin, dass Silber von Titan umgeben wurde. Dadurch musste eine Möglichkeit gefunden werden, das vorhandene Silber von dem Titan zu trennen.

Eine weitere wichtige Aufgabenstellung dieser Arbeit lag darin, zu prüfen, ob es möglich ist, mit Hilfe von Schmelzaufschlüssen Standards herzustellen und mit diesen eine von der elementaren Zusammensetzung der Probe unabhängige Kalibrierung zu erstellen.

V

Abstract

X-ray spectroscopy is an analytical method, with which a sample can be examined for a variety of different elements. These elements can not only be determined qualitatively but also quantitatively. X-ray spectroscopy is subdivided into a large number of different analytical methods. This thesis concentrates on energy dispersive x-ray fluorescence spectroscopy and its application to different problems.

The energy dispersive x-ray spectrometer available for this thesis is called "Epsilon 5"and was manufactured by the company Panalytical. This machine can analyze samples on a wide elemental range starting with fluorine to uranium. Furthermore, the spectrometer is equipped with a variety of different secondary targets. Each secondary target is designed to achieve the highest possible intensity yield for a given group of elements, which means very low detection limits can be achieved for these elements.

Because X-ray tubes wear out over time, the tube of the Epsilon 5 was no longer fully usable in the past. After some time, the defect x-ray tube was replaced. For this reason, the aim of this work is to determine, based on different problems, whether a laboratory suitable operation of the X-ray spectrometer is possible. To determine this, different kinds of samples, this includes solid samples, pressed pellets, loaded filters and fused beads, were measured.

During the examination clay samples and small plates, which consists for the most part of aluminum and only a very small part of magnesium and silicon, the influence of the matrix of the sample on the measured intensity was observed.

With the measurement of a standardize aerosol membrane it was examined, if the measure accuracy of the spectrometer changed through the swap of the x-ray tube. Therefore the membrane was examined with the new tube and the measurement results were compared with measurement results that were taken with the old x-ray tube.

Furthermore, aerosols were gathered on filters to compare the measurement accuracy between EDXRF and TXRF.

Existing aerosol standards were used to create several calibrations for the measurement of air particulate Filters.

In cooperation with the Department of Physical Chemistry of the Chemical Institute of Materials Chemistry of the Vienna University of Technology, a powder mixture consisting of the elements silver and titanium was examined for its silver content. The problem here was that silver was surrounded by titanium. As a result, a way had to be found to separate the existing silver from the titanium.

Another important task of this work was whether it is possible to prepare standards by means of melt digestion and use these to create a calibration which is independent of the elemental composition of the sample.

Inhaltsverzeichnis

1	Allg	Allgemeines zur Röntgenstrahlung 1				
	1.1	Ents	stehung von Röntgenstrahlung	1		
2	Inte	raktio	on von Röntgenstrahlung mit Materie	5		
	2.1	Abs	orption von Röntgenstrahlung in Materie	5		
	2.2	Pho	toelektrische Absorption (Photoeffekt)	7		
	2.3	Stre	uung	8		
3	Bere	echnu	ing der Fluoreszenzröntgenstrahlung	10		
	3.1	Spe	zialfälle	14		
	3.1.	1	Monochromatische Strahlung	14		
	3.1.2	2	Unendlich dicke Probe	14		
	3.1.	3	Unendlich dünne Probe	15		
4	Erze	eugur	ng von Röntgenstrahlung mit Hilfe einer Röntgenröhre	16		
5	Einl	leitun	g zur Röntgenfluoreszenzanalyse	17		
6	Ene	rgied	ispersive Röntgenfluoreszenzspektroskopie	19		
7	Fluc	oresze	enzwirkungsquerschnitt und dessen Abhängigkeit von der Anregungsenergie	21		
8	Auf	treter	nde Probleme bei der Analyse von leichten Elementen	22		
9	Das	Epsi	lon 5 Spektrometer	23		
	9.1	Die	triaxiale Geometrie der Epsilon 5	24		
	9.2	Die	Sekundärtargets der Epsilon 5	27		
	9.3	Plat	zieren von Proben	28		
	9.4	Dur	chführung einer Messung mit der Epsilon 5	30		
10	0 P:	rober	vorbereitung	32		
	10.1	Eint	eilung von Proben anhand ihrer Dicke	32		
	10.1	.1	Dicke Proben	32		
	10.1	.2	Dünne Proben	32		
	10.1	.3	Mitteldicke Proben	32		
	10.2	Eint	eilung von Proben anhand ihrer Beschaffenheit	33		
	10.2	2.1	Feste Proben	33		
	10.2	2.2	Gepresste Pellets	33		
	10.2	2.3	Schmelztabletten	35		
	10.2	2.4	Filtermembrane	39		
	10.3	Wic	htige Probeneigenschaften	39		
1	1 E	ffekte	e der Probenmatrix auf die gemessene Intensität	41		

11.1	Ma	trixeffekte	41
11	1.1.1	Selbstabsorption	41
11	1.1.2	Interelement-Effekt	41
11.2	Übe	erlappung von Linien	41
12	Das K	orrekturmodell der Fundamentalen Parameter für voluminöses Material	43
13	Kalibr	ierungsvorgang in der Röntgenfluoreszenzanalyse	44
14	Minim	nales Detektionslimit	46
15	Die B	lank-Korrektur	47
16	Messu	ing eines Monitors	48
17	Bestin	nmung des Magnesium- und Siliziumgehalts in Aluminium	50
17.1	Auf	gabenstellung	50
17.2	Dur	chführung	51
17.3	Faz	it	65
18	Bestin	nmung des Zirkongehalts in Tonproben	67
18.1	Auf	gabenstellung	67
18.2	Her	angehensweise an die Problemstellung	67
18.3	Faz	it	75
19	Vergle	eich von Messergebnissen einer zertifizierten Luftfiltermembrane zwischen der al	ten und
neuen	Röhre.		
19.1	Auf	gabenstellung	
19.2	Dur	chführung	
19.3	Faz	it	
20 sowie	Validi Verglei	erung der Sammelmethode von Aerosolen für die Messung mittels TXRF und EL ich der Reproduzierbarkeit der Messergebnisse	DXRF
20.1	Auf	gabenstellung:	81
20.2	San	nmlung von Aerosolen	81
20.3	Der	GENT Sampler	83
20.4	Her	angehensweise an die Problemstellung	
20.5	Faz	it	90
21	Erstell	lung von mehreren Applikationen für die Messung von Aerosolen	
21.1	Auf	gabenstellung	
21.2	Dur	chführung	
21	1.2.1	Bestimmung der Elemente Natrium und Magnesium	
21.2.2 Fazit für die Kalibrierung der Elemente Natrium und Magnesium			
2	123	Bestimmung von leichten Elementen	

21.2	P.4 Fazit für die Kalibrierung der leichten Elemente	98			
21.2	2.5 Bestimmung von schweren Elemente	103			
21.2	2.6 Fazit für die Kalibrierung der schweren Elemente	103			
22 U	ntersuchung von Silber in Titanmatrix	104			
22.1	Aufgabenstellung	104			
22.2	Durchführung	104			
22.3	Fazit	106			
23 A	pplikation mittels Spezialgläser und Spezialkeramiken	107			
23.1	Aufgabenstellung	107			
23.2	Durchführung	107			
23.3	Fazit	107			
24 K	alibrierung mittels Schmelzaufschluss	108			
24.1	Aufgabenstellung	108			
24.2	Durchführung	109			
24.2	2.1 Erstellung einer Applikation für ein Mischverhältnis von 1:100	110			
24.2	2.2 Fazit	112			
24.2	2.3 Erstellung einer Applikation für ein Mischverhältnis von 1:5	113			
24.2	2.4 Fazit	116			
25 B	estimmung der vorhanden Elemente in Schweineknorpel	117			
25.1	Aufgabenstellung	117			
25.2	Durchführung	117			
25.3	Fazit	123			
26 Ü beschrieb	bersicht der vorhandenen Kalibrierungskurven für die in den Kapiteln 21, 23 und 24 ben Applikationen	124			
27 Z	usammenfassung und Zukunftsausblicke	126			
28 A	bbildungsverzeichnis	128			
29 T	abellenverzeichnis	132			
30 L	iteraturverzeichnis	134			
Anhang A	Α	136			
Anhang B					
Anhang C					
Anhang D 163					
Anhang E166					
Anhang I	Anhang F168				
Anhang (Anhang G 217				

ing H

1 Allgemeines zur Röntgenstrahlung

Die Röntgenstrahlung wurde von Wilhelm Conrad Röntgen im Jahr 1895 entdeckt [1, S. 253].

Bei der Röntgenstrahlung handelt es sich um elektromagnetische Strahlung im Wellenlängenbereich von 10⁻⁸ m bis 10⁻¹¹ m. Dies entspricht einem Energiebereich von 125 eV bis 125 keV. Energetisch gesehen liegt die Röntgenstrahlung somit zwischen der Ultraviolettstrahlung und der Gammastrahlung, wobei die Grenze zwischen Röntgenstrahlung und Gammastrahlung nicht klar abgegrenzt ist. Es gibt Röntgenstrahlung, die im Wellenbereich der Gammastrahlung liegt und umgekehrt. Die Unterscheidung zwischen Röntgenstrahlung und Gammastrahlung erfolgt aufgrund der Entstehungsart der Strahlung. Gammastrahlung entsteht durch Prozesse die im Atomkern stattfinden, wohingegen Röntgenstrahlung durch Elektronenanregung entsteht.

Da es sich bei Röntgenstrahlung um elektromagnetische Wellen handelt, verfügt diese sowohl über Wellen- als auch Teilcheneigenschaften. In Streu- und Ionisationsexperimenten wurde von Arthur H. Compton der Teilchencharakter von Röntgenstrahlung bewiesen [1, S. 86] und in Diffraktionsexperimenten wurde von Walter Friedrich und Paul Knippling deren Wellencharakter festgestellt [2, S. 255].

Energie und Wellenlänge eines Röntgenphotons sind nicht unabhängig voneinander. Diese beiden Größen erfüllen die Beziehung:

$$\mathbf{E} = \frac{\mathbf{h} \cdot \mathbf{c}}{\lambda} = \mathbf{h} \cdot \mathbf{v} \tag{Gl. 1}$$

Dabei steht E für die Energie des Photons, h für die Planckkonstante, c für die Lichtgeschwindigkeit, λ für die Wellenlänge des Photons und υ für die Frequenz des Photons. Die Energie ist somit invers proportional zur Wellenlänge des Photons.

1.1 Entstehung von Röntgenstrahlung

Röntgenstrahlung entsteht, wenn hochenergetische Elektronen mit Atomen wechselwirken. Aufgrund ihrer Entstehungsart lässt sich die Röntgenstrahlung in drei Gruppen untergliedern. Hierzu gehören die Bremsstrahlung, die Synchrotronstrahlung und die charakteristische Röntgenstrahlung. Da für diese Arbeit vor allem die charakteristische Röntgenstrahlung von Bedeutung ist, wird diese im Weiteren genauer behandelt, wohingegen auf die Bremsstrahlung sowie Synchrotronstrahlung nur sehr kurz eingegangen wird.

• Bremsstrahlung

Diese Art von Strahlung wird erzeugt, wenn hochenergetische Elektronen (Energiebereich von einigen keV bis MeV) im Coulomb-Feld von Materie abgebremst bzw. abgelenkt werden. Bei diesem Prozess geben die Elektronen Energie in Form von Röntgenstrahlung ab. Bei dem so erzeugten Röntgenspektrum handelt es sich um ein kontinuierliches Spektrum, das von der Energie der Elektronen abhängt.

• Synchrotronstrahlung

Werden geladene Teilchen, die sich mit relativistischer Geschwindigkeit bewegen, aus ihrer ursprünglichen Bahn abgelenkt, so strahlen diese tangential zu ihrer Bewegungsrichtung elektromagnetische Strahlung ab. Diese tangential zu ihrer Bewegungsrichtung ausgesendete Strahlung wird als Synchrotronstrahlung bezeichnet. Da die Ablenkung des Teilchens einer Änderung seiner Beschleunigung entspricht, ist die so erzeugte Synchrotronstrahlung genaugenommen ein Spezialfall der allgemeinen Bremsstrahlung. Die Erzeugung von Synchrotronstrahlung erfolgt indem geladene Teilchen in großen ringförmigen Teilchenbeschleunigern mittels Magnetfelder abgelenkt werden. Bei dem so erzeugten Röntgenspektrum handelt es sich, wie bei der Bremsstrahlung, um ein kontinuierliches Spektrum.

Charakteristische Röntgenstrahlung

Im Gegensatz zu der oben erwähnten Brems- und Synchrotronstrahlung zeichnet sich die charakteristische Röntgenstrahlung durch ein diskretes Energiespektrum aus. Moseley fand heraus, dass die Frequenz einer charakteristischen Linie proportional zum Quadrat der Ordnungszahl Z des emittierenden Atoms ist [3] [4]. Dadurch unterscheidet sich das emittierte Energiespektrum von Atom zu Atom, wodurch man diese unterscheiden kann. Nach dem Moseley schen Gesetz gilt für die Frequenz einer charakteristischen Röntgenlinie [1, S. 260]:

$$\nu = R \cdot \frac{1}{1 + \frac{m_e}{M}} \cdot (Z - S)^2 \cdot \left(\frac{1}{{n_1}^2} - \frac{1}{{n_2}^2}\right)$$
(Gl. 2)

Hierbei steht R für die Rydbergfrequenz, m_e für die Elektronenmasse, M für die Kernmasse des Elements, Z für die Ordnungszahl des Elements, S für die Abschirmkonstante und n_1 bzw. n_2 für die Hauptquantenzahl der inneren bzw. äußeren Schale.

Unter Verwendung von (Gl. 1) lässt sich mittels obiger Gleichung die Energie einer charakteristischen Röntgenlinie mittels folgender Gleichung berechnen:

$$E = h \cdot R \cdot \frac{1}{1 + \frac{m_e}{M}} \cdot (Z - S)^2 \cdot \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$
(GI. 3)

Damit ein Atom charakteristische Röntgenstrahlung emittiert, muss dieses zuerst in einen angeregten Zustand übergeführt werden. Dies geschieht, indem man ein Atom ionisierender Strahlung, wie z.B. Röntgenstrahlung oder dem Beschuss von Elektronen, aussetzt. Trifft ionisierende Strahlung auf ein Atom, so kann diese Energie an ein gebundenes Elektron abgeben und es dadurch aus seiner Bindung lösen. Tritt dieser Fall ein, so entsteht an seiner Stelle ein Loch in der betreffenden Schale. Entsteht das Loch in einer der inneren Schalen eins Atoms, so versucht das Atom den Originalzustand wiederherzustellen, indem ein Elektron aus einer energetisch höher liegenden Schale das entstandene Loch wieder auffüllt. Damit dies geschehen kann, muss das Elektron, bevor es die Schale wechseln kann, seine Energie verringern. Dies geschieht indem es ein Röntgenphoton aussendet, dessen Energie gleich der Energiedifferenz zwischen den beteiligten Energieniveaus der beiden Schalen entspricht. Diese Aussendung wird auch als Fluoreszenzstrahlung bezeichnet. Die Energie bzw. Wellenlänge der ausgesendeten Röntgenstrahlung kann abhängig von dem Element nur diskrete Werte annehmen und ist daher spezifisch für das jeweilige Element. Da jedes Atom über spezielle Energieniveaus verfügt, ist die ausgesendete Strahlung einzigartig und somit charakteristisch für die jeweilige Atomsorte. Deswegen spricht man auch von charakteristischer Röntgenstrahlung.

Da eine Vielzahl an verschiedenen Übergängen in einem Atom sattfinden kann, wurde ein bestimmtes Bezeichnungsmuster eingeführt. Die Bezeichnung eines Übergangs erfolgt mittels einem lateinischen und einem griechischen Buchstaben. Der lateinische Buchstabe beschreibt dabei die Schale, in der ein Loch erzeugt wurde und das ein Elektron nach dem Aussenden eines Lichtquants wieder besetzt. Die erste Schale wird mit dem Buchstaben K bezeichnet. Jede nachfolgende Schale wird mit dem im Alphabet darauffolgenden Buchstaben bezeichnet. Die erste, zweite und dritte Schale wird somit mit den Buchstaben K, L und M bezeichnet. Man spricht daher auch von der sogenannten K-, L- oder M-Schale. Des Weiteren lassen sich diese Schalen auch mittels der Hauptquantenzahl n voneinander unterscheiden. Die K-, Lbzw. M-Schale weist eine Hauptquantenzahl von n=1, n=2 bzw. n=3 auf. Der griechische Buchstabe hingegen beschreibt die Differenz der zwei Hauptquantenzahlen n₁ und n₂ der beiden am Übergang beteiligten Schalen. So steht z.B. der Buchstabe α für ein $\Delta n = 1$, β für ein $\Delta n = 2$, γ für ein $\Delta n = 3$ usw. Damit lässt sich ein Übergang eines Elektrons aus der L-Schale in die K-Schale mittels der Bezeichnung K_a darstellen. Diese Art der Bezeichnung beinhaltet nur die Hauptquantenzahl n und die Bahndrehimpulsquantenzahl l eines Elektrons, da die Energie eines Elektrons in erster Linie von diesen Quantenzahlen abhängt.

Unter Berücksichtigung diverser quantenphysikalischer Prozesse lassen sich die bisherigen betrachteten Schalen mit Hauptquantenzahl n in 2n - 1 Unterschalen aufspalten. Für eine genauere Beschreibung muss auch die Spinquantenzahl s des betrachtenden Elektrons berücksichtigt werden. In diesem Fall ist es besser die Gesamtdrehimpulsquantenzahl j des Systems zu betrachten. Für die Gesamtdrehimpulsquantenzahl j gilt die Beziehung:

$$\mathbf{j} = |\mathbf{l} + \mathbf{s}| \tag{Gl. 4}$$

Die Gesamtdrehimpulsquantenzahl j setzt sich aus dem Betrag der Summe der Bahndrehimpuls-quantenzahl 1 und der Spinquantenzahl s zusammen. Die Gesamtdrehimpulsquantenzahl j hat genau einen möglichen Wert für die K-Schale, drei Werte für die L-Schale (L_I, L_{II}, L_{III}) und fünf Werte für die M-Schale (M_I, M_{II}, M_{III}, M_{IV} und M_V) (siehe Tabelle 1).

Schale	Hauptquantenzahl n	Drehimpulsquantenzahl l	Spinquantenzahl s	Gesamtdrehimpuls j
Κ	1	0	¹ / ₂	¹ / ₂
LI	2	0	¹ / ₂	¹ / ₂
L _{II}	2	1	$-\frac{1}{2}$	¹ / ₂
L _{III}	2	1	1/2	³ / ₂
MI	3	0	¹ / ₂	¹ / ₂
M _{II}	3	1	$-\frac{1}{2}$	¹ / ₂
M _{III}	3	1	¹ / ₂	³ / ₂
M _{IV}	3	2	$-\frac{1}{2}$	³ / ₂
M _V	3	2	1/2	⁵ / ₂

Tabelle 1: Mögliche Kombinationen der Haupt-, Drehimpuls- und Spinquantenzahlen sowie die daraus resultierende Gesamtdrehimpulsquantenzahl für die K-, L- und M-Schale.

Um die bei einem Übergang eines Elektrons beteiligte Unterschale berücksichtigen zu können, wird zusätzlich zu dem lateinischen und griechischen Buchstaben eine Zahl verwendet. Wird ein Elektron in der K-Schale ionisiert, so ist der mit größter Wahrscheinlichkeit auftretende Elektronenübergang jener K \leq =L_{III}, welcher mit der Emission eines K_{a1} Photon verbunden ist. Der nächst wahrscheinliche Übergang ist K \leq = L_{II}, gefolgt von K \leq = M_{III}, welche mit der Emission eines K_{a2} bzw. K_{β1} Photon verbunden ist. Die durch solche Übergänge hervorgerufenen Löcher in den energetisch höherliegenden Schalen, werden kaskadenförmig mittels Elektronen aus den energetisch noch höherliegenden Schalen aufgefüllt, bis ein freies Elektron aus dem Kontinuum eingefangen werden kann. Die Summe der Energien aller emittierten Photonen ist gleich der Ionisationsenergie des ursprünglichen Photoelektrons.

Bei den durchgeführten Untersuchungen wurde beobachtet, dass das erzeugte K-Spektrum eines Elements immer eine höhere Intensität aufwies, als das L-Spektrum. Dadurch empfiehlt sich die Auswertung der Elemente immer über deren K-Spektrum durchzuführen, soferne dies möglich ist.

2 Interaktion von Röntgenstrahlung mit Materie

Trifft Röntgenstrahlung auf Materie und bewegt sich durch diese hindurch, so kann ein Teil der Strahlung durch die Materie transmittieren oder von der Materie absorbiert bzw. gestreut werden [5, S. 17].

Wird Röntgenstrahlung absorbiert, so spricht man von photoelektrischer Absorption. Bei der Streuung unterscheidet man weiterhin zwischen Rayleigh-Streuung, die auch als elastische Streuung oder kohärente Streuung bezeichnet wird und Compton-Streuung, die auch als inelastische Streuung oder inkohärente Streuung bezeichnet wird. In der praktischen Anwendung führt die photoelektrische Absorption zur Aussendung von

Fluoreszenzstrahlung, diese wird auch als charakteristische Röntgenstrahlung der Probe bezeichnet, wodurch hingegen durch Streuung des Röhrenspektrums der gemessene Background des Spektrums erhöht wird.

2.1 Absorption von Röntgenstrahlung in Materie

Bewegt sich Röntgenstrahlung durch Materie hindurch, so wird diese abgeschwächt. Die Abnahme von parallel einfallenden Röntgenstrahlen, wenn diese eine infinitesimal dicke Schicht durchdringt, wird durch die Formel

$$dI = -\mu \cdot I \cdot dx \tag{GI. 5}$$

beschrieben. Hierbei steht I für den einfallenden Photonenfluss, von dem dI absorbiert werden, während diese eine dünne Schicht Material mit der Dicke dx und linearen Absorptionskoeffizienten μ durchdringen.

Integration für eine gewisse Schichtdicke ergibt das Lambert-Beersche Gesetz:

$$I(x) = I_0 \cdot e^{-\mu \cdot x} = I_0 \cdot e^{-\frac{\mu}{\rho} \cdot \rho \cdot x} = I_0 \cdot e^{-\mu_m \cdot \xi}$$
(Gl. 6)

Hierbei steht I bzw. I₀ für den Photonenfluss hinter bzw. vor dem Absorber, ρ für die Dichte des Absorbers, $\xi = x \cdot \rho = \frac{m}{A}$ ist die flächenbezogene Massenbelegungsdichte und μ_m wird als Massenschwächungskoeffizient bezeichnet. Zu beachten ist jedoch, dass dieses Gesetz lediglich für monochromatische Photonen gilt, da der Massenabschwächungskoeffizient $\mu_m = \mu_m(E)$ abhängig von der Energie ist.

Verantwortlich für die Abschwächung der Röntgenstrahlung innerhalb von Materie ist die Streuung und Absorption von Photonen. Aus diesem Grund lässt sich der Massenabschwächungskoeffizient μ_m darstellen als:

$$\mu_{\rm m} = \tau_{\rm m} + \sigma_{\rm m} \tag{Gl. 7}$$

Dieser setzt sich aus der Summe des Streukoeffizienten σ_m und dem Massenabsorptionskoeffizienten τ_m zusammen. Der Streukoeffizient σ_m beschreibt die

Streuung und der Massenabsorptionskoeffizienten τ_m beschreibt die Photoabsorption. Der Koeffizient τ_m wird daher auch als Photoabsorptionskoeffizient bezeichnet. Da man bei der Streuung zwischen der kohärenten und inkohärenten Streuung unterscheidet, lässt sich der Streukoeffizient σ_m anschreiben als:

$$\sigma_{\rm m} = \sigma_{\rm mkoh} + \sigma_{\rm mink} \tag{Gl. 8}$$

Dieser setzt sich aus der Summe des Streukoeffizienten σ_{mkoh} für die kohärente und einem Streukoeffizienten σ_{mink} für die inkohärente Streuung zusammen.

Wie man der Abbildung 1 entnehmen kann, stimmt der Massenabschwächungskoeffizient μ_m für Eisen mit dem Absorptionskoeffizienten τ_m fast überein. Erst ab einer Energie von ca. 30 keV beginnt der Verlauf des Massenabschwächungskoeffizient μ_m sich von dem des Absorptionskoeffizienten τ_m zu unterscheiden. Der Streukoeffizienten für die kohärente und inkohärente Streuung zusammen tragen erst bei sehr hohen Energien einen wesentlichen Beitrag zum Massenabschwächungskoeffizient bei. Der in Abbildung 1 sichtbare Sprung entspricht der Absorptionskante der K-Schale. Diese liegt bei einer Energie von 7,11keV.

Im Falle der Röntgenfluoreszenzspektroskopie lässt sich die generelle Aussage treffen, dass beide Arten von Streuung wesentlich weniger zum Massenabschwächungskoeffizienten μ_m beitragen als die Photoabsorption [6, S. 6]. Erst bei Energien, die über der der Röntgenstrahlung liegt, wird der Streukoeffizient der inkoheränten Streuung ein tragender Faktor.

Abbildung 1: Grafische Darstellung des Massenabschwächungskoeffizienten µm für Eisen [7, S. 37].

Zwischen dem Absorptionskoeffizienten τ_m , der Energie E und der Ordnungszahl Z besteht folgender Zusammenhang [1, S. 259]:

$$\tau_{\rm m} \propto \frac{{\rm Z}^3}{{\rm E}^3}$$
 (Gl. 9)

Bewegt sich Röntgenstrahlung durch Materie hindurch, die aus einer Verbindung an unterschiedlichen Elementen besteht, so setzt sich der Massenabsorptionskoeffizient der Materie aus der Summe der Massenabsorptionskoeffizienten eines jeden vorhandenen Elements zusammen:

$$\mu = \sum \mu_i \cdot w_i \tag{GI. 10}$$

Hierbei steht μ_i für den Massenabsorptionskoeffizienten und w_i für den Gewichtungsfaktor des Elements i.

2.2 Photoelektrische Absorption (Photoeffekt)

Dieser Effekt kann nur dann auftreten, wenn die Energie eines Röntgenquants höher ist als die Bindungsenergie eines Elektrons. Ist dies der Fall, so kann das Photon seine Energie an das Elektron abgeben und dieses aus seiner Bindung lösen. Das dadurch entstehende Loch kann von einem Elektron einer höheren Energieschale aufgefüllt werden, indem es Energie in Form eines Röntgenphotons abgibt. Dieser Prozess wird auch als Röntgenfluoreszenz bezeichnet. Diese ausgesendete Röntgenstrahlung wird auch als charakteristische Röntgenstrahlung bezeichnet und kann mittels eines Detektors gemessen werden. Es kann jedoch passieren, dass die Energie des Röntgenphotons von einem anderen gebundenen Elektron des Atoms absorbiert und so aus seiner Bindung gelöst wird. Ein auf diese Weise entstandenes freies Elektron wird auch als Auger-Elektron bezeichnet. Neben der Aussendung von charakteristischer Röntgenstrahlung oder eines Auger-Elektrons, kann theoretisch auch der Fall einer resonanten Absorption kommen, bei der das gebundene Elektron in eine höhere Energieschale angehoben wird. Dieser Prozess tritt jedoch fast nie ein, da die Wahrscheinlichkeit, dass ein Photon über die dafür exakte benötigte Energie verfügt, sehr gering ist.

Da photoelektrische Absorption in einer beliebigen besetzten Schale innerhalb eines Atoms auftreten kann, setzt sich der Absorptionskoeffizient τ_m in (Gl. 7) aus den einzelnen Ionisationswahrscheinlichkeiten einer jeder Schale zusammen [8, S. 23]:

$$\tau_{\rm m} = \tau_{\rm mK} + \tau_{\rm mLI} + \tau_{\rm mLII} + \tau_{\rm mMII} + \tau_{\rm mMII} + \tau_{\rm mMII} + \tau_{\rm mMIV} + \tau_{\rm mMV} + \cdots \qquad (\text{Gl. 11})$$

Sollte die Energie des Photons für eine Ionisation einer gewissen Schale zu gering sein, so wird der entsprechende Teilkoeffizient in (Gl. 11) auf 0 gesetzt. Trägt man τ_m als Funktion der Energie auf, so treten an jenen Stellen, an denen ein Koeffizient auf 0 gesetzt wurde, eine Diskontinuität auf (siehe Abbildung 1). Eine solche Diskontinuität wird als Absorptionskante bezeichnet und wird mit dem Namen der entsprechenden Schale benannt (z.B.: K-Absorptionskante). Die Energie der K-Absorptionskante ist dieselbe Energie, die benötigt wird, um die K-Schale zu ionisieren.

2.3 Streuung

Trifft Röntgenstrahlung auf Materie so können einzelne Photonen durch Kollisionen mit Elektronen in einer äußeren Schale des Atoms von ihrem ursprünglichen Pfad abgelenkt werden. Dieser Prozess wird als Streuung bezeichnet und man unterscheidet hierbei zwischen Rayleigh-Streuung (auch als elastische Streuung oder kohärente Streuung bezeichnet) und Compton-Streuung (auch als inelastische Streuung oder inkohärente Streuung bezeichnet).

• Compton-Streuung

Die Compton-Streuung eines Photons an einem Elektron kann als elastischer Stoß zwischen zwei Teilchen aufgefasst werden (siehe Abbildung 2). Ist die Energie des Photons wesentlich größer als die Bindungsenergie des Elektrons, kann es dazu kommen, dass bei der Kollision das Photon nur einen Teil seiner Energie an das Elektron abgibt und unter einem Winkel ν gestreut wird. Dabei ist die übertragene Energie abhängig vom Streuwinkel ν des einfallenden Photons.

Abbildung 2: Schematische Darstellung des Compton-Effekts.

Durch den Energietransfer zwischen Photon und Elektron kommt es aufgrund des Streuprozesses zu einer Änderung der Wellenlänge des beteiligten Photons. Diese wird durch folgende Formel beschrieben:

$$\Delta \lambda = \lambda' - \lambda = 2 \cdot \frac{h}{m_e \cdot c} \cdot \sin^2\left(\frac{\upsilon}{2}\right) = 2 \cdot \lambda_c \cdot \sin^2\left(\frac{\upsilon}{2}\right)$$
(GI. 12)

Hierbei stehet $\Delta\lambda$ für die Änderung der Wellenlänge des beteiligten Photons, λ' für die Wellenlänge des Photons nach dem Stoß, λ für die Wellenlänge vor dem Stoß, h für das Plancksche Wirkungsquantum, m_e für die Ruhemasse des an dem Stoß beteiligten Teilchens, c für die Lichtgeschwindigkeit und der Winkel v für den Streuwinkel zwischen der Bewegungsrichtung des Photons vor und nach dem Stoß. Der Faktor λ_c wird auch als

Compton-Wellenlänge bezeichnet. Für Elektronen beträgt die Compton-Wellenlänge 2,4262 $\cdot~10^{\text{-12}}~\text{m}$

Für die Epsilon 5 beträgt der Streuwinkel v gleich 90° [9] womit die Beziehung gilt:

$$\lambda' = \lambda + 2,4262 \cdot 10^{-12} \tag{GI. 13}$$

• Rayleigh-Streuung

Die Rayleigh-Streuung eines Photons an einem Elektron kann, wie die Compton-Streuung, ebenfalls als elastischer Stoß zwischen zwei Teilchen aufgefasst werden (siehe Abbildung 3). Im Gegensatz zur Compton-Streuung bleibt hierbei jedoch die Energie des Photons erhalten. Rayleigh-Streuung tritt auf, wenn der Durchmesser des beteiligten Elektrons wesentlich kleiner als die Wellenläge des Photons ist. Das Photon verfügt somit nicht über genügend Energie um das Elektron aus seiner Bindung zu lösen. Wird das Photon vom Elektron absorbiert, so wird dieses zu Oszillationsschwingungen angeregt. Die Frequenz dieser Schwingung stimmt mit der Frequenz des absorbierten Photons überein. Diese Schwingung sorgt jedoch dafür, dass das Elektron ein Photon mit der betreffenden Frequenz der Schwingung aussendet.

Abbildung 3: Schematische Darstellung der Rayleigh-Streuung. Die zwei vertikalen Pfeile beim Elektron sollen die Oszillation des Elektrons darstellen.

Für den Streukoeffizient σ aus (Gl. 6) gilt die Beziehung [9]:

$$\sigma = \sigma_{\rm coh} + \sigma_{\rm inc} = Z \cdot f(\lambda)^2 + (1 - f(\lambda)^2)$$
(Gl. 14)

Hierbei steht der Koeffizient Z für die Ordnungszahl des Atoms, in dessen äußeren Schale ein Photon gestreut wird und f für den elektrischen Strukturfaktor des Elektrons.

Wie der Gleichung (Gl. 14) entnommen werden kann, überwiegt die kohärente Streuung bei schweren Elementen, wohingegen die inkohärente Streuung bei leichteren Atomen häufiger auftritt. Da der Strukturfaktor f abhängig von der Wellenlänge der einfallenden Röntgenstrahlung ist, wächst die Wahrscheinlichkeit, dass es zu inkohärenten Streuung kommt, wenn die Wellenlängen der einfallenden Röntgenstrahlung kleiner wird.

3 Berechnung der Fluoreszenzröntgenstrahlung

Im nachfolgenden wird die theoretische Ableitung der Intensität der ausgesendeten primären charakteristischen Röntgenstrahlung eines Elements hergeleitet. Die Herleitung richtet sich nach den Ausführungen in dem Buch mit dem Titel "QUANTITATIVE X-RAY SPECTROMETRY" [8, S. 27-38]. Sekundäre Anregung wird dabei nicht genauer betrachtet. Der für die Berechnung verwendete Messaufbau sieht wie folgt aus:

Für die nachfolgende Berechnung der ausgesendeten Röntgenstrahlungsintensität einer Probe nach Abbildung 4 werden folgende Annahmen getroffen:

- Bei der Röntgenquelle handelt es sich um eine Punktquelle.
- Die Röntgenquelle emittiert keine perfekt kollimierte Röntgenstrahlung. Sie strahlt die Röntgenstrahlung in den Raumwinkel dΩ₀ ab.
- Die Anzahl an in den differentiellen Raumwinkel dΩ₀ abgestrahlter Photonen in einem Energiebereich von [E₀,E₀+dE₀] ist definiert als I₀(E₀)·dE₀·dΩ₀.
- Die von der Quelle ausgesendete Röntgenstrahlung trifft unter einem Winkel von ψ_0 auf die Probenoberfläche
- Die von der Probe emittierte charakteristische Röntgenstrahlung kann in den Raumwinkel $d\Omega_1$ abgestrahlt werden
- Die von der Probe ausgesendete Röntgenstrahlung trifft unter einem Winkel von ψ_1 auf den Detektor
- Betrachtet wird jene charakteristische Röntgenstrahlung die aus einer infinitesimalen Schicht mit der Dicke dx ausgesendet wird
- Die betrachtete Probe ist homogen und verfügt über eine ebene Oberfläche.
- Für die Betrachtung wird angenommen, dass sich der Aufbau im Vakuum befindet.
- Die betrachtete Probe verfügt über endliche Dicke.

Damit die von der Quelle in den Raumwinkel $d\Omega_0$ emittierte Röntgenstrahlung die betrachtete infinitesimalen Schicht erreichen kann, muss diese die Probe durchqueren. Dabei wird diese laut (Gl. 6) abgeschwächt. Nach dem Gesetz von Beer-Lambert erreicht nur mehr die Intensität

$$I_{1}(E_{0}) = I_{0}(E_{0}) \cdot dE_{0} \cdot d\Omega_{0} \cdot e^{-\mu_{m}(E_{0}) \cdot \xi} = I_{0}(E_{0}) \cdot dE_{0} \cdot d\Omega_{0} \cdot e^{-\mu_{m}(E_{0}) \cdot \rho \cdot \frac{x}{\sin(\psi_{0})}}$$
(Gl. 15)

die betrachtete infinitesimale Schichtdicke dx.

Wie bereits in Kapitel 2.1 ausgeführt, beschreibt der Faktor τ_m die Photoabsorption. In einer ersten Näherung lässt sich die in der infinitesimalen Schicht absorbierte Intensität aufgrund des Photoeffekts mittels folgender Gleichung berechnen:

$$I_2(E_0) = I_1(E_0) \cdot \tau_m(E_0) \cdot \rho \cdot \frac{dx}{\sin(\psi_0)} = I_1(E_0) \cdot \frac{\tau(E_0)}{\rho} \cdot \rho \cdot \frac{dx}{\sin(\psi_0)}$$
(Gl. 16)

Dabei ist zu beachten, dass sich der Koeffizient τ_m aus der Summe der einzelnen Massenabsorptionskoeffizienten eines jeden vorhandenen Elements zusammen:

$$\tau_{\rm m}({\rm E}_0) = \sum_x c_x \cdot \tau_{{\rm m},x}({\rm E}_0)$$
 (Gl. 17)

In Hierbei beschreibt der Faktor c_x den vorhandenen Gewichtsprozent-Anteil des Elements x und $\tau_{m,x}$ den Massenabsorptionskoeffizienten des Elements x.

Jedoch sind nicht alle Elemente in der betrachteten infinitesimalen Schicht von Interesse. Da man die Intensität der charakteristischen Röntgenstrahlung des i-ten Elements berechnen möchte, ist man auch nur an der Anregung des i-ten Elements interessiert. Dadurch reduziert sich die in (Gl. 16) berechnet absorbierte Intensität zu:

$$I_{3}(E_{0}) = I_{2}(E_{0}) \cdot c_{i} \cdot \frac{\tau_{m,i}(E_{0})}{\tau_{m}(E_{0})}$$
(Gl. 18)

Wie bereits in (Gl. 11) beschrieben, setzt sich der Absorptionskoeffizient τ eines Elements aus den einzelnen Ionisationswahrscheinlichkeiten einer jeden Schale zusammen. Somit berücksichtigt die Berechnung der Intensität I₃ das Auftreten des Photoeffekts in allen vorhandenen Schalen des Atoms i. Sollte die Energie des Photons für eine Ionisation einer gewissen Schale zu gering ist, so wird der entsprechende Teilkoeffizient in (Gl. 11) auf 0 gesetzt.

Um die entstehenden Ionisationsprozesse nur in einer bestimmten Schale j des betrachtenden Elements i bei der Berechnung berücksichtigen zu können, betrachtet man den Faktor τ_{ij} . Dieser besteht nur aus dem Faktor, der die Schale j des Elements i beschreibt. Die absorbierte Intensität in der Schale j des Elements i lässt sich mit folgender Gleichung berechnen:

$$I_4(E_0) = I_3(E_0) \cdot \frac{\tau_{m,i,j}(E_0)}{\tau_{m,i}(E_0)}$$
(Gl. 19)

Für die weitergehende Berechnung wird nur Ionisation in der K-Schale des i-ten Elements betrachtet. Somit ergibt sich (Gl. 19) zu:

$$I_4(E_0) = I_3(E_0) \cdot \frac{\tau_{m,i,K}(E_0)}{\tau_{m,i}(E_0)}$$
(GI. 20)

Mittels des Absorptionskantensprungs r_{ij} , dieser beschreibt die Anzahl der Ionisationsprozesse in der Schale j eines Elements i, kann die (Gl. 19) für die K-Schale geschrieben werden als:

$$I_4(E_0) = I_3(E_0) \cdot \left(\frac{r_{i,K} - 1}{r_{i,K}}\right)$$
 (Gl. 21)

Um die Intensität der ausgesendeten charakteristischen Röntgenstrahlung richtig zu berechnen, muss berücksichtigt werden, dass es neben der Aussendung von charakteristischer Röntgenstrahlung auch zu der Aussendung von Auger-Elektronen kommen kann. Dies wird mittels der Fluoreszenzausbeute $\omega_{i,K}$ beschrieben. Weiters kann ein Loch in der K-Schale durch Elektron, dass sich in einer beliebigen höheren Schale 1 befindet, besetzt werden. Um zu berücksichtigen aus welcher Schale 1 das Elektron kommt, wird mittels der Emissionswahrscheinlichkeit $p_{i,K,l}$ angegeben.

Mittels der Fluoreszenzausbeute ω_{ij} und der Emissionswahrscheinlichkeit p_{ijk} ergibt sich die Intensität der ausgesendeten charakteristischen Röntgenstrahlung aus der infinitesimalen Schicht zu:

$$I_{5}(E_{0}) = I_{4}(E_{0}) \cdot \omega_{i,K} \cdot p_{i,K,l}$$
(Gl. 22)

Weiters muss berücksichtigt werden, dass nicht die gesamte ausgesendete charakteristische Röntgenstrahlung des Materials den Detektor erreicht und somit detektiert werden kann:

- Die aus der infinitesimalen Schicht ausgesendete charakteristische Röntgenstrahlung wird von den Atomen isotrop ausgestrahlt. Der Detektor erfasst jedoch nur jenen Anteil der Röntgenstrahlung, der in den Raumwinkel dΩ₁ emittiert wird. Dies wird mittels des Faktors dΩ₁/(4π) berücksichtigt.
- Die charakteristische Röntgenstrahlung muss auf den Weg zum Detektor die Materie durchqueren, wodurch ein gewisser Anteil absorbiert wird.
- Die Effizienz des Detektors ε(E_{i,K,l}) f
 ür die Energie E_{i,K,l} der charakteristischen Röntgenstrahlungsenergie. Diese gibt die Wahrscheinlichkeit an, ein Photon mit der Energie E_{i,K,l} zu detektieren.

Damit ergibt sich die gemessene Intensität der ausgesendeten charakteristischen Röntgenstrahlung zu:

$$I_{6}(E_{0}, E_{i,K,l}) = I_{5}(E_{0}) \cdot \frac{d\Omega_{1}}{4\pi} \cdot e^{-\mu_{m}(E_{i,K,l}) \cdot \rho \cdot \frac{x}{\sin(\psi_{1})}} \cdot \varepsilon(E_{i,K,l})$$
(Gl. 23)

Einsetzen aller zuvor hergeleiteten Terme ergibt:

$$I(E_{0}, E_{i,K,l}) = \frac{1}{4\pi} \cdot I_{0}(E_{0}) \cdot e^{-\mu_{m}(E_{0}) \cdot \rho \cdot \frac{x}{\sin(\psi_{0})}} \cdot e^{-\mu_{m}(E_{i,K,l}) \cdot \rho \cdot \frac{x}{\sin(\psi_{1})}} \cdot \tau_{m,i}(E_{0}) \cdot \rho$$

$$\cdot \frac{dx}{\sin(\psi_{0})} \cdot c_{i} \cdot \left(\frac{r_{i,K} - 1}{r_{i,K}}\right) \cdot \omega_{i,K} \cdot p_{i,K,l} \cdot \varepsilon(E_{i,K,l}) \cdot d\Omega_{1} \cdot d\Omega_{0} \cdot dE_{0}$$
(GI. 24)

Diese Gleichung muss nun noch über die Probendicke und über den Energiebereich der anregenden Strahlung, dieser beginnt mit der Absorptionskante der betrachteten Schale K des Elements i bis hin zur Maximalenergie der Quelle, integriert werden.

$$I(E_{0}, E_{i,K,l}) = \frac{d\Omega_{1} \cdot d\Omega_{0}}{4\pi} \cdot \int_{E_{\text{Kante }ij}}^{E_{\text{max}}} I_{0}(E_{0}) \cdot \frac{1 - e^{-\mu_{m}(E_{0}) \cdot \rho \cdot \frac{D}{\sin(\psi_{0})} - \mu_{m}(E_{i,K,l}) \cdot \rho \cdot \frac{D}{\sin(\psi_{1})}}}{\mu_{m}(E_{0}) \cdot \frac{\rho}{\sin(\psi_{0})} + \mu_{m}(E_{i,K,l}) \cdot \frac{\rho}{\sin(\psi_{1})}} \cdot \frac{\tau_{m,i}(E_{0})}{\sin(\psi_{0})} \cdot \rho \cdot c_{i}}$$
(G1. 25)
$$\cdot \left(\frac{r_{i,K} - 1}{r_{i,K}}\right) \cdot \omega_{i,K} \cdot p_{i,K,l} \cdot \varepsilon(E_{i,K,l}) \cdot dE_{0}$$

Bei dieser Gleichung ist darauf zu achten:

- Der Massenabsorptionskoeffizient μ_m ist nach (Gl. 10) von der Zusammensetzung der betrachteten Probe abhängig. Dadurch kann die Gleichung nur mittels Iterationsverfahren gelöst werden.
- Für eine Lösung der Gleichung muss die Spektralverteilung der Anregungsquelle bekannt sein.
- Obige Gleichung berücksichtigt keine Sekundäranregung. Hierunter versteht man die Anregung eines Elements i durch die ausgesendete charakteristische Röntgenstrahlung eines Elements l innerhalb der Probe.

In (Gl. 25) können Terme auf gewisse physikalische Ereignisse zurückgeführt werden:

• Absorptionsterm:

Hierbei werden alle Terme, die die Absorption der Röntgenstrahlung beschreiben, zusammengefasst.

$$A(E_{0}, E_{i,K,l}, D) = \frac{1 - e^{-\mu_{m}(E_{0}) \cdot \rho \cdot \frac{D}{\sin(\psi_{0})} - \mu_{m}(E_{i,K,l}) \cdot \rho \cdot \frac{D}{\sin(\psi_{1})}}}{\mu_{m}(E_{0}) \cdot \frac{\rho}{\sin(\psi_{0})} + \mu_{m}(E_{i,K,l}) \cdot \frac{\rho}{\sin(\psi_{1})}}$$

• Geometriefaktor Hierbei werden alle Terme, die von der betrachtenden Geometrie abhängen, zusammengefasst.

$$G = \frac{d\Omega_1 \cdot d\Omega_0}{4\pi \cdot \sin(\psi_0)}$$

• Fundamentaler Parameter Hierbei werden alle Terme, die von der Probe abhängen, zusammengefasst.

$$Q_i = \tau_{m,i}(E_0) \cdot \left(\frac{r_{i,K} - 1}{r_{i,K}}\right) \cdot \omega_{i,K} \cdot p_{i,K,l}$$

3.1 Spezialfälle

3.1.1 Monochromatische Strahlung

Wird die von der Anregungsquelle erzeugte Röntgenstrahlung monochromatisiert, so verfügt diese nur über einen einzelnen Energiewert, wodurch das Integral über die Energie in (Gl. 25) wegfällt. Somit bleibt nur mehr folgende Gleichung übrig:

$$I(E_0, E_{i,K,l}) = G \cdot I_0(E_0) \cdot Q_i \cdot c_i \cdot \varepsilon(E_{i,K,l}) \cdot A(E_0, E_{i,K,l}, D)$$
(Gl. 26)

3.1.2 Unendlich dicke Probe

Durch die Integration der Dicke von x=0 bis x= ∞ kommt es zu einer Vereinfachung des Absorptionsterms.

Für eine endliche Dicke D der erhält man den Term:

$$A(E_{0}, E_{i,K,l}, D) = \frac{1 - e^{-\mu_{m}(E_{0}) \cdot \rho \cdot \frac{D}{\sin(\psi_{0})} - \mu_{m}(E_{i,K,l}) \cdot \rho \cdot \frac{D}{\sin(\psi_{1})}}}{\mu_{m}(E_{0}) \cdot \frac{\rho}{\sin(\psi_{0})} + \mu_{m}(E_{i,K,l}) \cdot \frac{\rho}{\sin(\psi_{1})}}$$
(Gl. 27)

Hingegen für eine unendlich Dicke Probe erhält man den Term:

$$A(E_{0}, E_{i,K,l}) = \frac{1}{\mu_{m}(E_{0}) \cdot \frac{\rho}{\sin(\psi_{0})} + \mu_{m}(E_{i,K,l}) \cdot \frac{\rho}{\sin(\psi_{1})}}$$
(Gl. 28)

3.1.3 Unendlich dünne Probe

Hierbei kann der Absorptionsterm vernachlässigt werden. Unter Verwendung von monochromatischer Strahlung ergibt sich für die Intensität folgende Gleichung:

$$I(E_0, E_{i,K,l}) = G \cdot I_0(E_0) \cdot Q_i \cdot c_i \cdot \varepsilon(E_{i,K,l})$$
(GI. 29)

4 Erzeugung von Röntgenstrahlung mit Hilfe einer Röntgenröhre

Eine Röntgenröhre besteht im einfachsten Fall aus einer evakuierten Glasröhre, einer Glühkathode, einer Anode und einem Berylliumfenster.

Zur Erzeugung von Röntgenstrahlung wird an einer Glühkathode eine Heizspannung angelegt, um aus der Kathode Elektronen mittels Glühemission zu emittieren. Mit Hilfe einer anliegenden Hochspannung zwischen der Glühkathode und der Anode, wobei letztere aus einem schweren Material besteht, werden die freigesetzten Elektronen zur Anode hin beschleunigt. Dieser Vorgang findet in einer evakuierten Glasröhre statt. Ohne vorhandenes Vakuum könnten Elektronen auf ihrem Weg zur Anode mit vorhandenen Gasteilchen zusammenstoßen und somit an Energie verlieren. Beim Auftreffen auf die Anode können die beschleunigten Elektronen durch das Coulombfeld der schweren Kerne abgebremst und abgelenkt werden, wodurch die Elektronen Energie in Form von Bremsstrahlung abgeben. Des Weiteren können einige der beschleunigten Elektronen über genügend Energie verfügen, um Atome des Anodenmaterials zu ionisieren, was zur Aussendung von charakteristischer Röntgenstrahlung des Anodenmaterials führt (siehe Kapitel 2.2). Das erzeugte Röntgenspektrum einer Röntgenröhre setzt sich somit aus Bremsstrahlung und charakteristischer Röntgenstrahlung zusammen.

Einige wichtige Eigenschaften einer Röntgenröhre für die Untersuchung von Proben mittels eines Röntgenfluoreszenzanalyseverfahrens sind [6, S. 17]:

- Erzeugung eines ausreichenden Photonenflusses über einen großen spektralen Bereich.
- Eine sehr gute Stabilität des Photonenflusses, da eine starke Schwankung während der Messung einer Probe zu Problemen in der Auswertung des aufgenommenen Spektrums führen kann.
- Mit Hilfe eines veränderbaren Röhrenpotentials ist die Erstellung von höchst effizienten Anregungskriterien für jedes Element möglich.
- Im aufgenommenen Spektrum sollten sich die charakteristischen Linien des Anodenmaterials nicht zu stark zeigen.

5 Einleitung zur Röntgenfluoreszenzanalyse

Das Ziel bei der Röntgenfluoreszenzspektroskopie liegt sowohl in der qualitativen als auch quantitativen Bestimmung der einzelnen Elemente die in einer Probe vorhanden sind.

Grundlage dafür ist die Messung der ausgesendeten charakteristischen Röntgenstrahlung einer Probe. Diese entsteht aufgrund der Photoelektrischen Absorption (siehe Kapitel 2.2). Durch Messung der Energie der ausgesendeten Strahlung können Rückschlüsse auf die in der Probe vorhandenen Elemente gezogen werden. Diese von einem Atom ausgesendete Röntgenstrahlung wird auch als charakteristische Röntgenstrahlung bezeichnet (siehe Kapitel 1.1). Die Energie der charakteristischen Röntgenstrahlung kann mittels dem Moseley´schen Gesetz, siehe (Gl. 3) berechnet werden.

Statt der Emission eines Photons kann es auch dazu kommen, dass ein Elektron mit der kinetischen Energie ΔE - E_B freigesetzt wird, wobei ΔE die Differenz der zwei beteiligten Energieniveaus des abgeregten Elektrons und E_B der Bindungsenergie des ursprünglich gebundenen Elektrons entspricht. Ein auf diese Art und Weise ausgesendetes Elektron wird auch als Auger-Elektron bezeichnet. Die Wahrscheinlichkeit eines solchen Prozesses liegt bei höchstens 50 % für schwere und mittelschwere Atome. Für leichte Atome hingegen wird dieser Prozess dominant und mit einer Wahrscheinlichkeit von bis zu 99,9% durchgeführt, wodurch es zu einer Limitierung der zu detektierbaren Elemente kommt.

Die für die Aussendung der charakteristischen Röntgenstrahlung eines Atoms benötigte ionisierende Strahlung kann entweder aus elektrisch geladenen Teilchen oder hochenergetischen Photonen bestehen. Mittels Beschleuniger oder radioaktiver Isotopen lassen sich z.B.: hochenergetische Elektronen, Protonen oder α-Teilchen erzeugen. Mittels Röntgenröhren, Synchrotrone oder radioaktive Isotope lassen sich Photonen mit genügend Energie erzeugen.

Mit Hilfe von Detektoren wird die ausgesendete Röntgenstrahlung erfasst und können somit über ihre Energie bzw. Wellenlänge identifiziert werden. Wird mittels des Detektors die Energie der einfallenden Photonen direkt gemessen, so spricht man von energiedispersive Röntgenfluoreszenzspektroskopie. Erfolgt die Berechnung der Photonenenergie, indem zuerst die Wellenlänge der Photonen bestimmt wird, so spricht man von wellenlängendispersiver Röntgenfluoreszenzspektroskopie. Die vom Detektor erfassten Photonen können in einem Diagramm dargestellt werden, in dem die Anzahl der gemessenen Counts über die Energie aufgetragen wird. Mittels der gemessenen Intensität einer Linie kann man Rückschlüsse auf die vorhandene Menge eines Elements in der Probe ziehen. Dabei gilt, je höher die Intensität desto höher ist die Konzentration des Elements in der Probe.

Der Vorteil der Röntgenfluoreszenzanalyse gegenüber anderen Analyseverfahren liegt darin, dass die Probe durch die Untersuchung nicht zerstört wird. Des Weiteren können die unterschiedlichsten Proben gemessen werden, wie Flüssigkeiten, Festkörper oder Pulver. Weiters können mittels eines Röntgenfluoreszenzanalysegeräts Proben auf Elemente des Periodensystems, beginnend mit Natrium bis hin zu Uran, untersucht werden. Einer der Nachteile der Röntgenfluoreszenzanalyse liegt darin, dass die zu untersuchende Röntgenstrahlung nur aus oberflächennahen Schichten der Probe stammt. Die Informationstiefe liegt oftmals im Bereich von einigen 100 µm. Dies hat zur Folge, dass die Probe entweder sehr dünn (z.B.: Luftfilter) oder sehr gut homogenisiert sein muss (z.B.: Schmelzaufschluss).

6 Energiedispersive Röntgenfluoreszenzspektroskopie

Bei dieser Methode der Spektroskopie werden Detektoren verwendet, die zur Identifikation der charakteristischen Röntgenstrahlung direkt die Energie der ausgesendeten Photonen messen. Um dies zu bewerkstelligen, werden sogenannte Halbleiterdetektoren verwendet. Beispiele für Halbleiterdetektoren sind der Lithium-gedrifteter Siliziumdetektor (Si(Li)-Detektor), der Lithium-gedriftete Germaniumdetektor (Ge(Li)-Detektor), der High-Purity-Germaniumdetektor (HP-Ge-Detektor) und der Siliziumdriftdetektor (SDD).

Im Nachfolgenden wird die Funktionsweise eines Si(Li)-Detektor kurz beschrieben. Zum Detektieren der einfallenden Photonen wird eine sogenannte P-I-N Diode verwendet (siehe Abbildung 5). Die i-Schicht zeichnet sich dadurch aus, dass nur sehr wenige freie Ladungsträger vorhanden sind. Wird die Diode durch Anlegen einer Spannung, im Normalfall beträgt diese ca. 500-1000 V, in Sperrrichtung betrieben, so werden jegliche freie Ladungsträger abgezogen und es kommt zur Ausbildung einer Raumladungszone. Gelangt ein Photon in die Raumladungszone, so kann dieses mit den vorhandenen Atomen wechselwirken. Dabei kann das Photon einen Teil oder die gesamte Energie an ein gebundenes Elektron abgeben und dies aus seiner Bindung lösen. Das dadurch freigesetzte Elektron kann wiederum unter Abgabe von Energie weitere Atome in der Raumladungszone ionisieren. Die durch diesen Prozess entstandenen Elektron-Loch-Paare wandern aufgrund der angelegten Spannung zu den entsprechenden Elektroden und verursachen somit ein Stromsignal. Die Anzahl der erzeugten Elektronen-Loch-Paare ist proportional zu der Energie des Photons. [5, S. 153-154]

Abbildung 5: Schematische Darstellung der Funktionsweise eines Si(Li)-Halbleiterdetektors. In Anlehnung an [8, S. 169].

Jeder der zuvor genannten Detektoren verfügt über Vor- und Nachteile. Der Siliziumdriftdetektor bietet eine gute Energieauflösung und es wird kein flüssiger Stickstoff für dessen Kühlung benötigt. Jedoch verfügt er über eine geringere Effizienz für Energien über 10keV im Gegensatz zu einem Silizium- bzw. Germanium-Halbleiterdetektor. Bei der Verwendung eines Germanium-Halbleiterdetektors können jedoch auftretende Escape-Peaks von intensitätsstarken Linien mit niederenergetischen Spektrallinien überlagern.

Die Epsilon 5 verwendet einen High-Purity-Germaniumdetektor.

Bei der Messung einer Probe können durch den verwendeten Detektor gewisse Artefakte beobachtet werden. Hierzu gehören: Rayleigh-Peaks, Compton-Peaks, Escape-Peaks und Summen-Peaks.

• Summen-Peaks

Diese kommen zustande, indem zwei Photonen gleichzeitig im Detektor detektiert werden. Der Detektor interpretiert die zwei Photonen als ein einzelnes Photon mit deren addierten Energien.

• Streu-Peaks

Die an der Probe gestreute Röntgenstrahlung des Sekundärtargets führt zum Auftreten von Rayleigh-Peaks und Compton-Peaks. Rayleigh-Peaks kommen durch elastische Streuung an der Probe zustande. Diese haben gleiche Energie und Breite als wäre das Element in der Probe vorhanden.

Compton-Peaks kommen durch inelastische Streuung an der Probe zustande. Diese Peaks haben weniger Energie und sind wesentlich breiter als ihre korrespondierenden Rayleigh-Peaks.

Elemente die im Sekundärtarget vorhanden sind führen zur Produktion von Rayleighals auch Compton-Peaks, die beim Fitten des aufgezeichneten Spektrums berücksichtigt werden müssen.

• Escape-Peaks

Diese kommen zustande, wenn die Energie eines einfallenden Photons größer ist als die Energie der K-Absorptionskante des Detektormaterials. Sollte es im äußeren Bereich des Detektormaterials zu einer Anregung kommen, so kann das dadurch entstandene Röntgenphoton den Detektor verlassen. Dadurch würde die Energie des Photons im aufgenommenen Spektrum fehlen. Da bei der Epsilon 5 ein Germaniumdetektor zum Einsatz kommt, treten im gemessenen Spektrum Escape-Peaks jeweils mit einem um 9,88 keV und 10,96 keV niedrigeren Wert als das verursachende Photon auf. Diese zwei Energien entsprechen der K_{α}- und K_{β}-Line von Germanium.

7 Fluoreszenzwirkungsquerschnitt und dessen Abhängigkeit von der Anregungsenergie

Die beobachtbare Intensität von Linien in einem Spektrum ist nach (Gl. 16) vom Photoabsorptionswirkungsquerschnitt τ des entsprechenden Elements abhängig. Wie bereits in Kapitel 2.3 (Gl. 9) beschrieben, ist der Photoabsorptionswirkungsquerschnitt proportional zu E⁻³. Das bedeutet, je weiter die Energie der Anregungsquelle von der Absorptionskante entfernt ist, desto kleiner wird die Absorptionswahrscheinlichkeit und somit auch die beobachtbare Linienintensität. Ist die Anregungsenergie niedriger als die Absorptionskante, so kann kein Elektron aus der Schale entfernt werden und es wird keine Linienintensität beobachtet. Optimale Anregung erhält man somit, wenn folgende zwei Bedingungen erfüllt sind [6, S. 8]:

- Die Anregungsenergie muss höher sein als die Absorptionskante des betrachteten Elements.
- Je näher die Anregungsenergie bei der Absorptionskante liegt desto besser ist die Anregung.

Da nicht jedes einzelne Element als Anodenmaterial in einer Röntgenröhre geeignet ist und es beim Tausch einer Röntgenröhre zu Komplikationen kommen kann, hat sich die Verwendung von Sekundärtarget bewährt. Dieses befindet sich im Strahlengang zwischen Probe und Röntgenröhre. Trifft die von der Röntgenröhre ausgesendete Strahlung auf das Sekundärtarget, so kommt es zur Aussendung von spezifischer charakteristischer Röntgenstrahlung. Mittels dieser Strahlung ist es möglich, Elemente deren Absorptionskante unterhalb der Energie der charakteristischen Röntgenstrahlung liegen besser anzuregen als mit dem Spektrum der Röntgenröhre.

8 Auftretende Probleme bei der Analyse von leichten Elementen

Bei der energiedispersiven Röntgenfluoreszenzanalyse ist die Sensitivität und die Detektionsgrenze für leichte Elemente, wie z.B: Natrium, Magnesium, Aluminium und Silizium, wesentlich geringer als für schwere Elemente. Ursachen hierfür sind unter anderem:

- Für leichte Elemente ist der Auger-Effekt dominant (siehe Kapitel 5). Das bedeutet, dass die Wahrscheinlichkeit für die Aussendung eines Auger-Elektrons wesentlich größer ist als für die Aussendung eines Fluoreszenzphotons. Dadurch verringert sich die gemessene Intensität der Spektrallinien.
- Die Analyse von leichten Elementen beschränkt sich auf die Oberflächenschichten der Probe. Im untersuchten Volumen entkommt durch die Probenselbstabsorption weniger charakteristische Röntgenstrahlung von leichten Elementen im Vergleich zu den schweren Elementen. Ursache hierfür ist die Absorption der ausgesendeten charakteristischen Röntgenstrahlung innerhalb der Probe.
- Damit die niederenergetischen charakteristischen Röntgenlinien nicht auf dem Weg zwischen Probe und Detektor absorbiert werden, sollte die Messung im Vakuum stattfinden.
- Das Ausgangsfenster der Röntgenröhre und das Eingangsfenster des Detektors führen zur Absorption von Röntgenstrahlung. Aus diesem Grund wird darauf geachtet, diese Fenster möglichst dünn herzustellen.
- Spektrallinien von leichten Elementen erscheinen nur als einzelne Linie (nur K-Linie) im niederenergetischen Bereich des Spektrums. Diese Linien können mit L- oder M-Linien von schweren Atomen oder deren K-Linien Escape-Peaks überlappen. Dadurch kann es zu einer Fehlinterpretation der vorhandenen Konzentrationen kommen.

Um leichte Elemente in einer Probe besser nachweisen zu können, eignet sich die Verwendung eines Sekundärtargets, das ebenfalls aus einem leichten Element besteht. Hierbei ist darauf zu achten, dass die Ordnungszahl Z des verwendeten Elements für das Sekundärtarget höher ist als jene der Elemente, die nachgewiesen werden sollen. Dadurch wird die Probe hauptsächlich mittels der charakteristischen Röntgenstrahlung des Sekundärtargets angeregt, welche die zwei im Kapitel (Gl. 7) beschriebenen Bedingungen für optimale Anregung erfüllt. Ohne Verwendung eines geeigneten Sekundärtargets, liegt nur eine geringe Anregung der leichten Elemente vor.

9 Das Epsilon 5 Spektrometer

Die nachfolgenden Informationen über das Epsilon 5 Spektrometer sowie die Ausführungen im Kapitel 9.1 und Kapitel 9.2 wurden dem "Course Binder" der Firma PANalytical [9] entnommen.

Als Röntgengerät steht ein Spektrometer mit dem Namen "Epsilon 5" von der Firma PANalytical zur Verfügung. Hierbei handelt es sich um ein energidispersives Röntgenspektrometer, das nicht nur über eine Röntgenröhre und einen Detektor verfügt, sondern auch mit einer 3D Optik und mehreren Sekundärtargets ausgestattet ist. Die in der Röntgenröhre eingebaute Anode besteht aus Wolfram, die mit einer dünnen Schicht Skandium beschichtet ist. Das Skandium erlaubt eine bessere Anregung der Sekundärtargets für die Analyse von leichten Elementen. Die Röhre kann mit einer maximalen Spannung von 100keV und mit einem maximalen Strom von 24 mA betrieben werden. Die maximale elektrische Leistung der Röhre ist jedoch auf 600 W beschränkt. Diese Betriebsweise erlaubt die effiziente Anregung von K-Linien für die Elemente Natrium bis Lutetium und L-Linien für die Elemente Hafnium bis Uran. Als Detektor wird ein Germaniumdetektor verwendet. Die vorhandenen Sekundärtargets sind in einem rotierbaren Zylinder eingebaut, sodass bei Bedarf eine Probe unkompliziert mit mehreren Sekundärtargets gemessen werden kann.

In Abbildung 6 ist der für die Platzierung der Proben vorgesehene Bereich in der Epsilon 5 zu sehen. Insgesamt können hier acht Stahlbecher im Spektrometer platziert werden, die mit dem vorhandenen Greifarm automatisch in die Messkammer geladen werden können.

In Abbildung 7 ist die Funktionsweise der Epsilon 5 schematisch dargestellt.

Abbildung 6: Platzierung der Proben vorgesehene Bereich. Aufgrund von Reparaturarbeiten, ist die hintere Abdeckung des Spektrometers auf der Abbildung nicht vorhanden.

Abbildung 7: Schematische Darstellung des in der Epsilon 5 realisierten Messaufbaus. Bei der Abbildung handelt es sich um einen Screenshot aus der verwendeten Software von der Firma PANalytical mit dem Titel "PANalytical Epsilon 5 Software".

9.1 Die triaxiale Geometrie der Epsilon 5

Unter Ausnützung der im Spektrometer verwendeten triaxialen Geometrie, kann der gemessene Background verringert werden. Dies geschieht unter der Ausnützung der Tatsache, dass es sich bei Röntgenstrahlung um elektromagnetische Wellen handelt und diese immer nur als transversale Wellen auftreten. Da es sich um elektromagnetische transversale Wellen handelt, gibt es somit keine elektrische oder magnetische Feldkomponente die in Bewegungsrichtung der Welle zeigt. Des Weiteren steht das elektrische Feld immer rechtwinklig zu dem magnetischen Feld (siehe Abbildung 8).

Abbildung 8: Darstellung einer elektromagnetischen Welle. Das elektrische Feld E (rot) steht rechtwinkelig zum magnetischen Feld B (blau) und beide Felder stehen wiederum rechtwinkelig zur Ausbreitungsrichtung y. In Anlehnung an [10, S. 18]

Die mittels einer Röntgenröhre produzierte Röntgenstrahlung ist zunächst nicht polarisiert, polychromatisch und wird in keine bestimmte Richtung abgestrahlt.

Um die erzeugte Röntgenstrahlung für Messungen nutzen zu können, wird mittels eines Kollimators ein Bündel an parallelen Röntgenstrahlen erzeugt, die sich in dieselbe Richtung
ausbreiten. Es handelt sich jedoch immer noch um nicht polarisierte Strahlung. Um dennoch polarisierte Strahlung zu erhalten, wird die Eigenschaft, wonach elektromagnetische Wellen keine elektrische oder magnetische Feldkomponenten die in Bewegungsrichtung haben, ausgenützt. Dabei wird wie folgt vorgegangen:

Nachstehend erfolgt die Erklärung für die Erzeugung von polarisierter Röntgenstrahlung anhand des elektrischen Feldes. Diese Beschreibung kann ohne Probleme auch auf das magnetische Feld angewendet werden. Für jede Polarisationsrichtung eines parallelen Strahls kann die elektrische Feldkomponente in zwei rechtwinklig zueinander stehenden Komponenten aufgeteilt werden. In diesem Fall in eine vertikalen Komponente E_z und eine horizontale Komponente E_x (siehe Abbildung 9).

Abbildung 9: Für alle möglichen Polarisationen eines parallelen Strahles an Röntgenphotonen können die vorhandenen Feldkomponenten in zwei zueinander rechtwinkelig stehenden Komponenten aufgeteilt werden. Die Amplituden dieser beiden Komponenten können für jede Polarisationsrichtung unterschiedlich sein. links: Zerlegung des Vektors für das elektrische Feld in seine in x- und z-Achse zeigenden Komponenten. rechts: Dreidimensionale Darstellung der Zerlegung des elektrischen Feldes der kollimierten Röntgenröhrenstrahlung (rote Pfeile). In Anlehnung an [10, S. 19].

Trifft diese kollimierte aber nicht polarisierte Röntgenstrahlung auf ein Sekundärtarget und wird diese dadurch unter 90° gestreut, so verschwindet die Feldkomponente der elektromagnetischen Welle, die in die neue Bewegungsrichtung zeigt. Ursache hierfür ist die Tatsache, dass es keine elektrische Feldkomponente in die neue Bewegungsrichtung zeigen kann. In diesem Beispiel führt die Streuung der Welle dazu, dass die neue Bewegungsrichtung mit der z-Achse übereinstimmt. Dies führt dazu, dass die E_z-Komponente verschwindet und nur mehr die E_x-Komponente überbleibt (siehe Abbildung 10).

Weiters wird auch ein Teil der einfallenden Röntgenstrahlung von den Atomen des Sekundärtargets absorbiert, was zur Aussendung von charakteristischer Röntgenstrahlung führt (siehe Abbildung 10). Mittels eines weiteren Kollimators lassen sich wieder parallele Röntgenstrahlen erzeugen, die ebenfalls gemäß Abbildung 9 zerlegen lassen.

Abbildung 10: Nach der Streuung der Röntgenstrahlung unter 90° in die z-Richtung durch das Sekundärtarget, verschwindet die Feldkomponente in z-Richtung der Röntgenröhrenstrahlung, wodurch nur mehr die Komponente des elektrischen Feldes in x-Richtung (rote Pfeile) vorhanden ist. Weiters strahlt das Sekundärtarget charakteristische Röntgenstrahlung aus (grüne Pfeile). In Anlehnung an [10, S. 19].

Trifft die polarisierte Röntgenstrahlung auf die Probe und wird erneut unter 90° gestreut, sodass die neue Bewegungsrichtung rechtwinklig auf die beiden vorherigen Bewegungsrichtungen steht, so verschwindet die letzte vorhanden Komponente der von der Röntgenröhre erzeugten elektromagnetischen Welle (siehe Abbildung 11). Befindet sich rechtwinkelig zur neuen Ausbreitungsrichtung ein Detektor, so würde im Idealfall von perfekter kollimierter Strahlung keine von der Röntgenröhre erzeugte Röntgenstrahlung durch Streuung den Detektor erreichen.

Das zuvor erwähnte Sekundärtarget dient nicht nur zur Streuung der von der Röntgenröhre ausgestrahlten Röntgenstrahlung. Weiters sendet diese auch charakteristische Röntgenstrahlung aus. Diese ausgesendete Fluoreszenzstrahlung wird nur einmal an der Probe unter 90° gestreut. Dadurch erhält man in y-Richtung linear polarisierte Röntgenstrahlung, die den Detektor erreicht (siehe Abbildung 11).

Die von dem Sekundärtarget gestreute Röntgenröhrenstrahlung und die Fluoreszenzstrahlung des Sekundärtargets werden nicht nur von der Probe gestreut, sondern führen auch zur Aussendung von charakteristischer Röntgenstrahlung des Probenmaterials. Die von der Probe ausgesendete charakteristische Fluoreszenzröntgenstrahlung wird nicht gestreut und gelangt ohne Verluste in den Detektor (siehe Abbildung 11).

Abbildung 11: Wird die bereits in x-Richtung polarisierte Röntgenröhrenstrahlung mittels der Probe erneut unter 90° gestreut, sodass die neue Bewegungsrichtung rechtwinkelig auf die beiden vorherigen Bewegungsrichtungen steht, so verschwindet diese Strahlung zur Gänze und erreicht nicht den Detektor. Nach der Streuung der charakteristischen Röntgenstrahlung des Sekundärtargets an der Probe, ist diese in y-Richtung polarisiert (grüner Pfeil). Diese gelangt in den Detektor. Weiters strahlt das Sekundärtarget charakteristische Röntgenstrahlung aus (blaue Pfeile). Beide Komponenten können den Detektor erreichen. In Anlehnung an [10, S. 19].

9.2 Die Sekundärtargets der Epsilon 5

Würde man die Probe direkt mit der Röntgenröhrenstrahlung bestrahlen, so würden Elemente, deren Absorptionskante direkt unter den Energien der charakteristischen Linien des Anodenmaterials liegen, besser angeregt werden, als jene Elemente, deren Absorptionskante über den Energien der charakteristischen Linien des Anodenmaterials liegen und somit nur mit Hilfe des kontinuierlichen Spektrums angeregt werden können. Des Weiteren würde es auch zu einer Streuung der kontinuierlichen und charakteristischen Strahlung an der Probe kommen. Dadurch würde der im aufgenommenen Spektrum vorhandene spektrale Hintergrund verstärkt, was wiederum zu hohen Nachweisgrenzen führen kann. Um diese Probleme zu umgehen, empfiehlt sich die Verwendung von Sekundärtargets. Solche Targets befinden sich im Strahlengang zwischen der Röntgenröhre und der Probe und bestehen meistens nur aus einem metallischen Element. Die von der Röntgenröhre im Betrieb erzeugte Röntgenstrahlung trifft auf das Sekundärtarget und regt dieses zur Erzeugung von charakteristischer Röntgenstrahlung an. Dadurch wird die Probe im Normalfall nicht der direkten Röntgenröhrenstrahlung ausgesetzt sondern der ausgesendeten charakteristischen Röntgenstrahlung des verwendeten Sekundärtargets. Jedes Sekundärtarget besteht aus einem anderen Element, wodurch die Energie der ausgesendeten charakteristischen Röntgenstrahlung vom verwendeten Target abhängt. Für eine optimale Anregung wählt man das Sekundärtarget, dessen Energie der charakteristischen Röntgenstrahlung knapp über der

Absorptionskante der zu analysierenden Elemente liegt. Unter Verwendung von mehreren Sekundärtargets kann eine Probe auf eine Vielzahl an Elementen optimal untersucht werden.

Bei den in der Epsilon 5 eingebauten Sekundärtargets unterscheidet man zwischen Fluoreszenz- und Barkla-Targets. Das Gerät verfügt über acht unterschiedliche Fluoreszenz-Targets und einem Barkla-Target.

Die Elemente der Fluoreszenz-Targets sind: Aluminium, Kalziumfluorid, Eisen, Germanium, Zirkon, Molybdän und Silber. Fluoreszenz-Targets werden verwendet, um mit deren charakteristischen Röntgenstrahlung die Probe anzuregen. Dadurch ergibt sich für Elemente deren Ordnungszahlen knapp unter der Ordnungszahl des Elements des Sekundärtargets liegen eine bessere Anregungswahrscheinlichkeit. Es kommt zwar auch zur Streuung der Röntgenröhrenstrahlung, jedoch überwiegt die Fluoreszenzstrahlung des Sekundärtargets, wodurch der gemessene spektrale Hintergrund, hervorgerufen durch die Streuung des Röntgenröhrenspektrums, stark verringert wird.

Das verwendete Barkla-Target besteht aus Aluminiumoxid (Al₂O₃). Wird dieses Target in Verbindung mit einer an der Röntgenröhre angelegten hohen Beschleunigungsspannung verwendet, so dient dieses Target dazu, die von der Röntgenröhre erzeugte Röntgenstrahlung zu streuen. Da bei der Epsilon 5 die Streuung der Röntgenstrahlung unter einem 90° Winkel erfolgt, wird die Probe hauptsächlich mit dem linearpolarisierten Röhrenspektrum angeregt. Um dies zu bewerkstelligen müssen Barkla-Targets aus Elementen mit niedriger Ordnungszahl bestehen, da die Streuungswahrscheinlichkeit mit niedriger Ordnungszahl des Streuelements steigt. Zwar kommt es neben der Streuung des Röhrenspektrums auch zur Abstrahlung von charakteristischer Röntgenstrahlung des Barkla-Targets, jedoch ist diese energetisch zu schwach um Elemente in der Probe anzuregen. Dieses Traget wird für die Anregung von sehr schweren Elementen verwendet, für die keine passende charakteristische Röntgenlinie eines Sekundärtargets vorhanden ist.

Für die Epsilon 5 sind gewisse Empfehlungen vorhanden (siehe Anhang H) mit welchem Sekundärtarget bestimmte Elemente analysiert werden können. Weiters werden auch Spannungs- bzw. Stromwerte für den optimalen Betrieb der Röntgenröhre angegeben.

9.3 Platzieren von Proben

Damit die Epsilon 5 eine Probe untersuchen kann, wird diese für die Messung mit der zu messenden Seite nach unten in einen Stahlbecher eingelegt. Hierbei ist zu beachten, dass die Probe das im Boden des Stahlbechers vorhandene Loch komplett bedeckt. Sollte die Probe dazu neigen leicht zu verrutschen, so kann mit Hilfe einer Zange ein Sprengring im Stahlbecher platziert werden, um ein Verrutschen der Probe zu verhindern.

Weiters werden für die Messung von bestimmten Proben Aluminiumbecher benötigt. Diese werden für die Messung von dünnen Proben verwendet, wie z.B. Filtermembranen oder dünnen Folien. Da solche Proben fast durchsichtig für Röntgenstrahlen sind, würde bei der Messung auch die Innenseite des Stahlbechers der Röntgenstrahlung ausgesetzt werden. Dies würde dazu führen, dass die Elemente im Stahlbecher angeregt werden und dadurch charakteristische Röntgenstrahlung vom Stahlbecher in den Detektor gelangen kann. Um dies zu vermeiden, wird auf der Filtermembrane bzw. Folie ein Aluminiumbecher platziert. Dieser sorgt dafür, dass der Stahlbecher von der Röntgenröhrenstrahlung abgeschirmt wird und verhindert somit die Anregung und Detektion von Elementen im Stahlbecher. Weiters sorgt der Aluminiumbecher dafür, dass die Filtermembrane bzw. Folie während der Messung in der Vakuumkammer der Epsilon 5 nicht verrutscht.

Für eine schematische Darstellung der drei zuvor beschriebenen Fälle, nämlich Messung einer dicken Probe, Messung einer dünnen Probe ohne Aluminiumbecher und Messung einer dünnen Probe mit Aluminiumbecher siehe Abbildung 12.

Abbildung 12:

oben links: Messung einer dicken Probe. Es kommt zu keiner Anregung des Stahlbechers.

oben rechts: Messung einer dünnen Probe ohne Aluminiumbecher. Hierbei durchdringt die Röntgenstrahlung die Probe und kann den Stahlbecher anregen.

unten mittig: Messung einer dünnen Probe mit Aluminiumbecher. Hierbei verhindert der Aluminiumbecher eine Anregung des Stahlbechers. In Anlehnung an [6, S. 49].

9.4 Durchführung einer Messung mit der Epsilon 5

Das Spektrometer erlaubt vorhandene Proben mittels zwei unterschiedlichen Herangehensweisen zu untersuchen. Einerseits besteht die Möglichkeit Proben mittels einer sogenannten "manuellen Messung" zu untersuchen oder andererseits eine sogenannte Applikation für die Untersuchung von Proben zu erstellen.

Bei einer manuellen Messung werden im Vorfeld die Spannung, der Strom, das Sekundärtarget und die Messzeit definiert sowie eine Bezeichnung für die Messung vergeben. Wenn das Spektrometer die Messung abgeschlossen hat, kann das aufgenommene Spektrum betrachtet und untersucht werden. Durch Hinzufügen von vorhandenen Elementen ist die Software in der Lage einen Fit für das vorhandene Spektrum zu erzeugen. Mit dessen Hilfe kann die Software anschließend die gemessenen Counts pro Sekunde und ein minimales Detektionslimit (LLD) für jeden gefitteten Bereich berechnen.

Eine Applikation besteht aus mindestens einer oder mehreren "Conditions". Diese setzt sich aus vier wichtigen Parametern zusammen: dem Sekundärtarget, der an der Röntgenröhre anliegenden Hochspannung, dem Elektronenstrom und der Messzeit. Die Wahl des Sekundärtargets ergibt sich aus den zu untersuchenden Elementen in der Probe. Für die Messung wird jenes Sekundärtarget ausgewählt, das die beste Anregung für eines oder mehrere Elemente ermöglicht. Die an der Röntgenröhre angelegte Hochspannung richtet sich nach dem verwendeten Sekundärtarget und wird so gewählt, dass eine optimale Anregung vorliegt. Der verwendete Röhrenstrom wird so gewählt, dass dieser mit der angelegten Hochspannung eine maximale Leistung von 600 W erzeugt. Die Messzeit beeinflusst das minimale Detektionslimit (LLD) für jedes Element. Dabei gilt, dass das minimale Detektionslimit (LLD) invers proportional zu der Wurzel aus der Messzeit ist (siehe Kapitel 14). Das bedeutet, dass die Nachweisgrenze für Elemente mit steigender Messzeit sinkt. In der sogenannten "Conditionlist" werden all jene Elemente eingetragen, auf die die zukünftig aufgenommenen Spektren untersucht werden sollen.

Will man eine vorhandene Probe mittels einer Applikation messen, so muss man der Software definieren, ob die Probe als sogenannter "Standard" oder als sogenannte "Routine" gemessen werden soll.

Bei einem "Standard" handelt es sich um eine Probe, bei der die elementare Zusammensetzung bekannt ist. Das heißt, man kennt die in der Probe vorhandenen Elemente und deren Konzentrationsanteile. Um eine Probe als Standard messen zu können, muss in der Spalte "Standard Id" des Reiters "Standards" eine Bezeichnung für den Standard eingetragen werden. In den daneben vorhandenen Spalten werden die vorhandenen

Elementkonzentrationen eingetragen. Werden einige solcher Proben gemessen, so kann die Software mittels der angegebenen Elementkonzentrationen und den gemessenen Intensitäten Kalibrierungskurven erstellen (siehe Kapitel 13).

Bei einer "Routine" hingegen handelt es sich um eine Probe, bei der die elementare Zusammensetzung und deren Konzentrationsanteile nicht bekannt sind. Wird eine als solche deklarierte Probe gemessen, so berechnet die Software mit Hilfe der vorhandenen Kalibrierungskurven den Konzentrationsanteil für jedes Element.

Innerhalb einer Applikation werden alle Standards und Proben mit allen definierten

"Conditions", die in der "Conditionlist" vorkommen, untersucht unabhängig davon ob dies gewünscht wird oder nicht.

10 Probenvorbereitung

Die Probenvorbereitung ist ein wichtiger Abschnitt in der energiedispersiven Röntgenfluoreszenzspektroskopie um bei der Messung einer Probe ein verwertbares Ergebnis zu erzielen. Kommt es zu Fehlern in der Probenvorbereitung, so kann es zu Fehlinterpretationen zwischen der gemessenen Intensität eines Elements und dessen Konzentration in der Probe kommen.

Bevor eine Probe hergestellt werden kann, muss man sich Gedanken über deren benötigten Eigenschaften machen. Das gemessene Spektrum einer Probe ist einerseits abhängig von deren Dicke und andererseits von ihrer elementaren Zusammensetzung. Anhand dieser beiden Merkmale lassen sich Proben in mehrere Kategorien unterteilen.

10.1 Einteilung von Proben anhand ihrer Dicke

Betrachtet man die Änderung der gemessenen Intensitäten einer Probe in Abhängigkeit zu ihrer Dicke kann man drei Arten von Proben unterscheiden und zwar dicke, mitteldicke und dünne Proben. Da die elementare Zusammensetzung der Probe, das Anregungsspektrum und die Energien der charakteristischen Linien einen Einfluss auf das gemessene Spektrum haben, können keine generellen Werte für die Dicke der zuvor erwähnten Probentypen angegeben werden.

10.1.1 Dicke Proben

Bei diesen Proben führt eine Vergrößerung der Dicke zu keiner Änderung der gemessenen Intensitäten der charakteristischen Linien. Nur Änderungen in den vorhandenen Konzentrationen der Elemente beeinflussen die gemessene Intensität. Beispiele für dicke Proben sind solide Proben, gepresste Pellets und Schmelztabletten.

10.1.2 Dünne Proben

Bei diesen Proben führt eine Vergrößerung der Dicke zu einer Erhöhung der gemessenen Intensitäten der charakteristischen Linien. Des Weiteren führen auch Änderungen in den vorhandenen Konzentrationen der Elemente zu einer linearen Änderung der gemessenen Intensität. Beispiele für dünne Proben wären Filtermembranen und Folien.

10.1.3 Mitteldicke Proben

Hierbei handelt es sich um Proben, deren Dicke zwischen den zwei zuvor genannten Fällen liegt. Sowohl eine Änderung der Dicke der Probe als auch eine Änderung der Konzentration der vorhandenen Elemente beeinflussen die gemessene Intensität nicht linear.

10.2 Einteilung von Proben anhand ihrer Beschaffenheit

Abhängig von dem vorhandenen Material aus dem die Probe besteht, lässt sie sich in eine Kategorie einteilen. Die für diese Arbeit verwendeten Proben waren feste Proben, gepresste Pellets, Schmelztabletten und Filtermembranen.

10.2.1 Feste Proben

Hierunter fallen zum Beispiel solide Stücke aus Metall, Keramiken, Gestein oder Plastik. Für ein optimales Messergebnis sollte die zu untersuchende Probe über eine glatte Oberfläche verfügen. Raue Oberflächen erhöhen die Streuwahrscheinlichkeit und die Selbstabsorption für große Wellenlängen. Dies führt dazu, dass Signale von leichteren Elementen stark verringert werden können. [8, S. 371-372]

10.2.2 Gepresste Pellets

Gepresste Pellets werden aus einem feinen Pulvergemisch, das unter hohen Druck zusammengepresst wird, hergestellt. Die Herstellung gepresster Pellets setzt sich aus mehreren Arbeitsschritten zusammen.

Zu Beginn wird das benötigte Werkzeug mit Hilfe von Wasser gut gesäubert und anschließend mittels Papiertücher gut abgetrocknet. Zu dem benötigten Werkzeug gehören der Spatel, das benötigte Presswerkzeug sowie der Achtschale und der Stößel (siehe Abbildung 13 und Abbildung 14).

Abbildung 13: Für die Homogenisierung von Pulvermaterialien benötigtes Werkzeug. In der Abbildung handelt es sich von links nach rechts um: den Spatel, die Achatschale und der Stößel.

Abbildung 14: Die für die Herstellung eines gepressten Pellets benötigten Werkzeuge. Von links nach rechts handelt es sich um die Bodenplatte, die Stahlhülse, die beiden Hülsenstempel, den Pressstempel und die Kunststoffhalterung.

Sollte eines dieser Arbeitsutensilien verunreinigt sein, so kann es zu einer möglichen Kontamination des Pellets kommen. Im nächsten Schritt wird das benötigte Material abgewogen. Um dies zu bewerkstelligen wird ein Stück Papier auf eine Waage gelegt und anschließend die Tara-Taste gedrückt. Dadurch muss das Gewicht des Papiers für den weiteren Wiegeprozess nicht berücksichtigt werden. Danach wird das benötigte Probenmaterial mit dem Spatel aus einem Behälter entnommen und abgewogen. Sollte Probenmaterial aus mehreren Behältern entnommen werden, so muss der Spatel vor jeder Materialentnahme erneut mit Wasser gereinigt und getrocknet werden, um eventuelle Kontaminationen der Materialien zu vermeiden. Damit das Pellet nach dem Pressvorgang nicht zerfällt, wird zusätzlich zu dem benötigten Material noch ein Bindematerial hinzugefügt. Dabei reicht ein Mischverhältnis von 1:4 zwischen Bindematerial und Probe meistens aus. Durch das Hinzufügen des Bindematerials kommt es zu einer Verdünnung der Probe. Dies muss in der Berechnung für die vorhandenen Elementkonzentrationen des Pellets berücksichtigt werden. Das verwendete Bindematerial trägt die Bezeichnung BR HWC Mikropulver Wachs C. Dessen Summenformel lautet: C₃₈H₇₆N₂O₂. Nachdem das benötigte Material abgewogen wurde, wird dieses in einen Achatschale gefüllt und unter Verwendung des Stößels vorsichtig homogenisiert. Im nächsten Schritt wird das Presswerkzeug zusammengesetzt. Hierfür steckt man die Stahlhülse auf die Bodenplatte und legt einen Hülsenstempel in das zylindrische Loch der Stahlhülse. Anschließend füllt man das Pulvergemisch in die Stahlhülse und platziert einen weiteren Hülsenstempel in der Stahlhülse. Mit Hilfe eines Pressstempels wird das Pulver von Hand etwas verdichtet, um eventuell vorhandene Luft zu entfernen. Danach wird die Stahlhülse samt Pressstempel in der Presse platziert und dort für eine Minute mit einem Druck von 10 Tonnen gepresst. Nachdem der Pressvorgang beendet ist, wird die Stahlhülse von der Bodenplatte entfernt und auf ein Blatt Papier gestellt. Anschließend wird per Hand Druck auf den Pressstempel ausgeübt, was dazu führt, dass die in der Stahlhülse befindlichen Hülsenstempel und das gepresste Pellet herausgedrückt werden. Sollte dies nicht funktionieren, so kann die Presse benützt werden, um das gepresste Pellet aus der Stahlhülse zu drücken. Hierfür wird die Stahlhülse mit einer Kunststoffhalterung in die Presse gestellt. Anschließend wird mittels der Presse Druck auf den Pressstempel ausgeübt, bis die Hülsenstempel und das gepresste Pellet herausgefallen.

Die Herstellung eines gepressten Pellets mittels Standard-Additionsverfahren erfolgt folgendermaßen:

Zu Beginn wird die benötigte Menge an Zellulose (ca. 3 g) abgewogen und in ein 30 ml PP-Röhrchen der Firma Sarsted gefüllt. Anschließend mengt man etwas destilliertes Wasser bei, worin sich die Zellulose auflöst. Damit sich die Zellulose komplett auflöst und im Wasser homogen verteilt, wird der Inhalt unter Verwendung eines Vortexmischers gut durchgemixt. Danach wird zu dem vorhanden Gemisch aus Wasser und Zellulose die gewünschte Menge an Flüssigstandardmaterial mittels einer Pipette beigefügt und abermals mit dem Vortexmischer gemixt. Danach wird die Flüssigkeit in eine Glasschale gefüllt und für mehrere Stunden im Ofen auf 115°C erhitzt. Die Dauer des Trocknungsvorganges ist von der verwendeten an Flüssigkeitsmenge abhängig. Da dies mehrere Stunden in Anspruch nehmen kann, ist es empfehlenswert, das Material über Nacht zu trocknen. Durch das Erhitzen verdampft das Wasser, bis nur mehr die getrocknete Zellulose in der Schale zurück bleibt. Anschließend wird die getrocknete Zellulose in einen Mörser gegeben und mit dem Stößel zu einem feinen Pulver zermahlen. Das so hergestellte Pulver kann anschließend zu einem Pellet gepresst werden.

10.2.3 Schmelztabletten

Schmelztabletten sind Glasscheiben, die mit Hilfe von hohen Temperaturen hergestellt werden. Eine solche Schmelztablette besteht zum größten Teil aus einem Flussmittel, zu einem geringen Teil aus der zu untersuchenden Probe, einem sognannten "non wetting agent" und eventuell einem Oxidationsmittel. Als Flussmittel wird ein Gemisch bestehend aus 66% Lithiumtetraborat und 34% Lithiummetaborat verwendet. Der "non wetting agent" besteht aus im Wasser aufgelöstem Natriumbromit. Dabei wird Natriumbromit und Wasser in einem Massenverhältnis von 1:10 miteinander vermischt. Der "non wetting agent" sorgt dafür, dass das geschmolzene Material nicht am Platin haften bleibt. Als Oxidationsmaterial wird Natriumnitrat verwendet. Dieses wird nur für Proben benötigt, in denen nicht oxidierte Elemente enthalten sind, wie zum Beispiel Kohlenstoff oder Schwefel. Weiters wird für die Herstellung einer Schmelztablette ein Platintiegel und ein Platinteller benötigt.

Abbildung 15: Platintiegel und Platinteller

Die Herstellung einer Schmelztablette setzt sich aus mehreren Arbeitsschritten zusammen. Zu Beginn sollte das benötigte Werkzeug gut gereinigt und getrocknet werden. Hierzu gehören der Spatel, Platintiegel und Platinteller sowie Mörser und Stößel. Sollte eines dieser Arbeitsutensilien verunreinigt sein, so kann es zu einer möglichen Kontamination der herzustellenden Schmelztablette kommen. Im nächsten Schritt wird das benötigte Material abgewogen. Dieser Vorgang ist identisch mit dem, der in Kapitel 10.2.2 beschrieben wird. Danach wird das abgewogene Material in einen Mörser gefüllt und unter Zuhilfenahme des Stößels vorsichtig homogenisiert. Anschließend wird das Material in den Platinbecher gefüllt und es werden 200µl Natriumbromit-Lösung mittels Pipette hinzugefügt. Das Schmelzen des Pulvergemisches erfolgt in der "Pearl X". Hierbei handelt es sich um eine Maschine der Firma PANalytik. Der Platintiegel wird in der dafür vorhergesehenen Öffnung platziert und der Platinteller wird mit Keramikkeilen eingespannt. Anschließend wählt man am Bedienfeld das gewünschte Programm für den Schmelzprozess aus.

Für die Herstellung einer Schmelztablette stehen drei verschiedene Programme zur Verfügung:

• Programm Nummer 3

Bei diesem Programm werden vor dem Schmelzen des Pulvers keine Oxidationsschritte ausgeführt. Der Platintiegel wird gleich zu Beginn des Programms auf 1150°C erhitzt.

Für die Herstellung einer Schmelztablette verwendet das Programm folgende Parameter:

Fusion:				
Temperatur:	1150°C			
Dauer:	7 Minuten			
Schwenken:	Ja			
Schwenkgeschwindigkeit:	5			
Schwenkwinkel:	15°			
Pause nach der Fusion:	Nein			
Casting:				
Temperatur:	1150°C			
Dauer:	1 Minute			
Winkel:	115°			
Geschwindigkeit:	1			
Aushärtungsprozess:				
Dauer:	3 Minuten			
Natürliche Kühlung:				
Dauer:	3 Minuten			
Erzwungene Kühlung:				
Dauer	3 Minuten			
Luftdurchfluss:	50			

• Programm Nummer 5

Im Gegensatz zu dem vorherigen Programm Nr. 3 werden hierbei vor der Fusion noch zwei Oxidationsschritte durchgeführt.

Für die Herstellung einer Schmelztablette verwendet das Programm folgende Parameter:

Erste Oxidation:	
Dauer:	5 Minuten
Temperatur:	650°C
Schwenken:	Nein
Zweite Oxidation:	
Dauer:	5 Minuten
Temperatur:	750°C
Schwenken:	Nein
Fusion:	
Temperatur:	1150°C
Dauer:	7 Minuten
Schwenken:	Ja
Schwenkgeschwindigkeit:	5
Schwenkwinkel:	15°
Pause nach der Fusion:	Nein
Casting:	
Temperatur:	1150°C
Dauer:	1 Minute
Winkel:	115°
Geschwindigkeit:	1
Aushärtungsprozess:	
Dauer:	3 Minuten
Natürliche Kühlung:	
Dauer:	3 Minuten
Erzwungene Kühlung:	
Dauer	3 Minuten
Luftdurchfluss:	50

• Programm 26

Dieses Programm wird verwendet, wenn dem Pulver ein Oxidationsmittel hinzugefügt wird. Im Gegensatz zu den beiden vorherigen Programmen werden hierbei drei Oxidationsstufen durchgeführt.

Für die Herstellung einer Schmelztablette verwendet das Programm folgende Parameter:

Erste Oxidation:	
Dauer:	15 Minuten
Temperatur:	350°C
Schwenken:	Nein
Zweite Oxidation:	
Dauer:	10 Minuten
Temperatur:	450°C
Schwenken:	Nein
Dritte Oxidation:	
Dauer:	8 Minuten
Temperatur:	700°C
Schwenken:	Nein
Fusion:	
Temperatur:	1150°C
Dauer:	9 Minuten
Schwenken:	Ja
Schwenkgeschwindigkeit:	5
Schwenkwinkel:	15°
Pause nach der Fusion:	Nein
Casting:	
Temperatur:	1150°C
Dauer:	1 Minute
Winkel:	115°
Geschwindigkeit:	1
Aushärtungsprozess:	
Dauer:	3 Minuten
Natürliche Kühlung:	
Dauer:	3 Minuten
Erzwungene Kühlung:	
Dauer	3 Minuten
Luftdurchfluss:	50

Nach dem Schmelzen wird die flüssige Mischung in einen Platinteller, der über eine glatte und ebene Oberfläche verfügt, geleert. Nach dem Auskühlen der flüssigen Masse erhält man eine Glasscheibe bzw. Schmelztablette, in der die Probe homogen gelöst ist.

Ein wichtiger Punkt, der bei der Herstellung von Schmelztabletten beachtet werden muss, ist der Verlust bzw. Gewinn an Gewicht während der Herstellung. Diese werden im Englischen auch als "loss on ignition" (auch LOI genannt) bzw. "gain on ignition" (auch GOI genannt) bezeichnet. Für eine korrekte Berechnung der elementaren Zusammensetzung einer Schmelztablette müssen diese beiden Faktoren berücksichtigt werden. Der Verlust von Material während der Herstellung einer Schmelztablette kommt dadurch zustande, dass bestimmte Elemente bzw. Elementverbindungen durch das Erhitzen des Materials verdampfen. Hierzu gehört z.B. in der Probe vorhandenes Wasser (H₂O) oder Kohlenstoff (C), der als Kohlenstoffdioxid (CO₂) verdampft. Für ein paar verwendete Standardmaterialien wurde der jeweilige LOI-Faktor angegeben.

Der Gewinn an Material entsteht, wenn in der Probe nicht oxidiertes Material vorhanden ist. Durch das Erwärmen der Probe kann dieses Material Sauerstoff aufnehmen, wodurch das Gewicht zunimmt.

10.2.4 Filtermembrane

Diese besteht aus einem sehr dünnen Filter, der mit einer dünnen Probenschicht versehen ist. Für diese Art von Probe wird keine besondere Probenvorbereitung benötigt. Die Membrane wird mit Hilfe einer Pinzette auf einen auf dem Kopf stehenden Aluminiumbecher mit der beschichteten Seite nach oben gelegt. Anschließend wird ein Stahlbecher über den Aluminiumbecher gestülpt. Danach wird der Stahlbecher samt Aluminiumbecher vorsichtig umgedreht und kann anschließend in der Epsilon 5 platziert werden. Der Aluminiumbecher sorgt dafür, dass die Filtermembrane während der Messung im Vakuum nicht aus dem Stahlbecher gesaugt werden kann.

Da es sich bei Filtermembranen um dünne Proben handelt, werden keine Korrekturen bezüglich der Kompensation von Interelementeffekten oder Selbstabsorption angewendet.

10.3 Wichtige Probeneigenschaften

Um bei der Messung möglichst genaue Messergebnisse zu erzielen, müssen die verwendeten Standards und Proben über gewisse Voraussetzungen verfügen:

• Da die von der Probe ausgesendete charakteristische Röntgenstrahlung nur aus oberflächennahen Schichten kommt, ist es wichtig, dass die Probe über eine gute Homogenität verfügt. Ist dies nicht der Fall, so kann es zu einer Über- bzw. Unterschätzung der Konzentration von vorhandenen Elementen kommen.

- Um die Streuwahrscheinlichkeit und die Selbstabsorption zu minimieren muss die zu untersuchende Probe über eine glatte Oberfläche verfügen. Diese Voraussetzung kann von beladenen Filtermembranen oftmals nicht erfüllt werden, da sich die beladene Folie oftmals leicht nach innen bzw. nach außen durchbiegt.
- Das im Stahlbecher vorhandene Loch sollte komplett von der zu untersuchenden Probe bedeckt sein. Dadurch wird gewährleistet, dass die im Detektor gemessene Röntgenstrahlung auch tatsächlich von der Probe kommt. Sollte das Loch nicht komplett bedeckt sein, so kann es zu der Anregung des dahinterliegenden Stahlbechers kommen.
- Die Oberfläche der Probe muss mit der Referenzebene des Spektrometers übereinstimmen. Die Referenzebene des Spektrometers ist dabei definiert als die Innenseite des Stahlbechers. Dies kann zum Beispiel bei Filtermembranen nicht erfüllt werden. Filtermembranen werden oftmals an einen Rahmen befestigt. Es kann nun der Fall eintreten, dass die Filtermembranen so beladen sind, dass diese mit dem Rahmen nach unten in den Stahlbecher gelegt werden müssen, sodass ein kleiner Spalt zwischen der beladenen Seite und der Referenzebene existiert. Dieser Spalt führt zu einer geringeren gemessenen Intensität, was mit einem Geometriefaktor berücksichtigt werden muss.

11 Effekte der Probenmatrix auf die gemessene Intensität

11.1 Matrixeffekte

Wichtig bei der Erstellung einer Kalibrierung ist die Berücksichtigung von sogenannten Matrixeffekten. Verantwortlich für das Auftreten von Matrixeffekten bei einer Messung sind Absorption und Verstärkung von Röntgenstrahlung innerhalb einer Probe. Unter Matrix versteht man alle Elemente einer Probe bis auf jenes Element auf das die Probe untersucht wird. Dieses Element wird auch als Analyt bezeichnet. Man unterscheidet zwischen zwei Arten:

11.1.1 Selbstabsorption

Hierbei kommt es zur Abschwächung von charakteristischer Röntgenstrahlung durch Absorption von charakteristischer Röntgenstrahlung des Analyten. Da die Matrix einfallende Röntgenstrahlung absorbiert, kann auch innerhalb der Probe ausgesendete charakteristische Röntgenstrahlung beim Verlassen der Materie absorbiert werden. Dies führt zu einer Verringerung der Zählrate für den Analyten und somit zu einer eventuellen Unterschätzung.

11.1.2 Interelement-Effekt

Durch die Absorption von einfallender Röntgenstrahlung senden die Elemente, aus denen die Matrix besteht ihre eigene charakteristische Röntgenstrahlung aus. Es kann der Fall eintreten, dass diese Fluoreszenzstrahlung energetisch höher ist als eine Absorptionskante des Analyten. Ist dies der Fall, so kann diese Strahlung von dem Analyten absorbiert werden, was wiederum zur Aussendung von charakteristischer Röntgenstrahlung des Analyten führt. Dadurch wird die gemessene Zählrate für den Analyten verstärkt und somit zu einer eventuellen Überschätzung führen. Dieser Prozess wird als sekundäre Anregung bezeichnet und kann einen großen Anteil der beobachteten Photonen ausmachen.

11.2 Überlappung von Linien

Zu einer Überlappung von spektralen Linien kommt es, wenn die Energie der beteiligten Linien so nahe beieinanderliegen, dass diese vom Spektrometer nicht mehr als einzelne Linien aufgelöst werden können. Ursache hierfür ist die begrenzte Energieauflösung des verwendeten Detektors im Spektrometer.

Sollte es zu einer Überlagerung von zwei oder mehreren spektralen Linien von unterschiedlichen Elementen in einem aufgenommenen Spektrum kommen, so ist die verwendete Software in der Lage dies zu berücksichtigen. Voraussetzung dafür ist jedoch, dass man der Software definiert, welche Elemente für die Auswertung des Spektrums herangezogen werden sollen. Werden nicht alle an einer Überlappung beteiligten Elemente angegeben, so kann es zu einer Überschätzung der für die Auswertung verwendeten Elemente kommen. Beispiele für das Auftreten von überlappenden Spektrallinien in der Röntgenfluoreszenzspektroskopie:

- Überlappung der K_{β} -Linie eines Elements mit Ordnungszahl Z mit der K_{α} -Line eines Elements mit der Ordnungszahl Z-1.
- Überlappung von K-Linien eines Elements mit den L-Linien eines anderen Elements
- Überlappung von K-Linien eines Elements mit den M-Linien eines anderen Elements
- Überlappung von Escape-Peaks mit vorhanden K_{α} bzw. K_{β} -Linien eines Elements
- Überlappung von Summen-Peaks mit vorhanden K_{α} bzw. K_{β} -Linien eines Elements

Das verwendete Epsilon 5 Spektrometer verfügte während dem Schreiben an dieser Arbeit über eine Energieauflösung von ca. 160 eV bis 180 eV.

12 Das Korrekturmodell der Fundamentalen Parameter für voluminöses Material

Um die im vorherigen Kapitel beschriebenen Matrixeffekte bei der Auswertung der vorhandenen Spektren zu berücksichtigen, wurde das Korrekturmodell der Fundamentalen Parameter verwendet. Im Computerprogramm der Epsilon 5 ist ein entsprechendes mathematisches Modell implementiert.

Die Fundamentale Parametergleichung berücksichtigt die Absorption von Photonen und die Anregungs- bzw. Relaxationsprozesse von Atomen. Des Weiteren wird auch die Selbstabsorption der Probe für alle Elemente berücksichtigt, dies gilt auch für jene Elemente, die mittels Röntgenfluoreszenzanalyse nicht detektiert werden können (z.B.: Wasserstoff, Kohlenstoff, Stickstoff, Sauerstoff, Fluor, ...).

Mittels der Fundamentalen Parametergleichung lässt sich die Intensität $I_{K\alpha}$ einer K_{α} -Linie eines Elements i mit Konzentration w_i für voluminöses Material wie folgt berechnen [6, S. 10]:

$$I_{K\alpha}^{i} = w_{i} \cdot \frac{\Omega}{4\pi \cdot \sin(\psi_{1})} \cdot \omega_{K} \cdot \varepsilon(E_{K\alpha}) \cdot f_{i} \cdot \int_{E_{K}}^{E_{max}} \tau_{i}^{K\alpha}(E) \cdot \frac{1}{\frac{\mu_{S}(E)}{\sin(\psi_{1})} - \frac{\mu_{S}(E_{K\alpha})}{\sin(\psi_{2})}} \cdot I_{0}(E) \cdot dE$$
(Gl. 30)

Hierbei steht Ω für den Raumwinkel, ψ_1 für den Einfallswinkel, ψ_2 für den Observierungswinkel, ω_k für die Fluoreszenzausbeute, $\epsilon(E_{K\alpha})$ für die intrinsische Detektoreffizienz, f_i für einen Korrekturfaktor der von der Messumgebung abhängt (z.B.: Luft, Helium), $\tau_i^{K\alpha}(E)$ für den Photoabsorptionskoeffizienten der K-Schale, $\mu_S(E)$ für den Abschwächungsfaktor der einfallenden Strahlung durch das Probenmaterial, $\mu_S(E_{K\alpha})$ für den Abschwächungsfaktor der Floureszenzstrahlung durch das Probenmaterial bei der Energie $E_{K\alpha}$, $I_0(E) \cdot dE$ für die spektrale Verteilung der anregenden Strahlung, E_{max} für die maximale Energie in dem anregenden Quellenspektrum und E_K für die Energie der betrachteten Absorptionskante des Elements i.

Zu beachten ist, dass dieses Korrekturmodell nur bei dicken Proben zum Einsatz kommt. Eine Korrektur mittels der Fundamentalen Parametermethode wird vor allem dann benötigt, wenn die elementare Probenzusammensetzungen, die mit einer Applikation gemessen werden sollen, stark voneinander abweichen. Diese Korrektur berücksichtigt die in den Proben auftretenden Matrixeffekte und korrigiert die gemessenen Intensitäten, sodass diese miteinander verglichen werden können.

13 Kalibrierungsvorgang in der Röntgenfluoreszenzanalyse

Ziel bei der quantitativen Analyse ist die Bestimmung der prozentuellen Konzentrationsanteile der vorhandenen Elemente in der Probe. Um dies zu bewerkstelligen muss für jedes Element, das quantifiziert werden soll, eine Kalibrierungskurve erstellt werden. Mittels der Kalibrierungskurve ist es der verwendeten Software möglich, die gemessenen Intensitäten eines in der Probe enthaltenen Elements mit einer Konzentration gleichzusetzen. Die Erstellung von Kalibrierungskurven erfolgt, indem Proben, diese werden auch als Standards bezeichnet, mit einer ähnlichen Zusammensetzung an Elementen wie die unbekannte Probe gemessen werden. Standards zeichnen sich dadurch aus, dass deren elementare Zusammensetzung bekannt ist. Verfügen die zu quantifizierenden Proben und Standards über eine ähnliche Zusammensetzung, so können Matrixeffekte in erster Näherung vernachlässigt werden, da sich diese sowohl bei der Messung der Probe als auch bei der Messung der Standards gleich auswirken.

Trägt man die vorhandenen Konzentrationen eines Elements und deren gemessenen Intensitäten als Punkte in einem Diagramm ein, so kann eine Trendlinie durch diese Punkte gelegt werden. Die verwendete Software erlaubt sowohl die Erstellung einer linearen als auch einer quadratischen Kalibrierungskurve. Für die Berechnung einer linearen Kalibrierungskurve wird die Gleichung

$$\mathbf{C} = \mathbf{D} + \mathbf{E} \cdot \mathbf{R} \cdot \mathbf{M} \tag{Gl. 31}$$

wohingegen für die Berechnung einer quadratischen Kalibrierungskurve die Gleichung

$$C = D + E \cdot R + F \cdot R \cdot R \tag{Gl. 32}$$

verwendet wird [9]. Hierbei steht C für die Konzentration des betrachteten Elements, D gibt den Schnittpunkt der Kurve mit der vertikalen Achse an, E definiert die Steigung der Kurve, F steht für den quadratischen Term der Kurve und R für die gemessene Zählrate in Counts pro Sekunde. Mit Hilfe des Faktors M berücksichtigt die Software eventuell vorhandene Matrixkorrekturen. Generell ist die lineare Kalibrierung der quadratischen Kalibrierung vorzuziehen. Bei der linearen Kalibrierung werden auftretende Matrixeffekte wie gewünscht berücksichtigt.

Der Faktor D kann in der Software manuell auf den Wert Null gesetzt werden, um die erstellte Kalibrierungskurve durch den Ursprung des Koordinatengitters zu zwingen. Sollte der Wert D in einer Kalibrierungskurve stark von dem Wert Null abweichen, so kann dies auf einen eventuell vorhandenen Leerwert des Elements in dem Spektrometer oder auf ein Blankproblem hinweisen. Für eine möglichst gute Kalibrierung ist es empfehlenswert, für jedes Element, das quantitativ bestimmt werden soll, eine Kalibrierungskurve bestehend aus mehr als nur einem Kalibrierungsstandard zu erstellen. Zwar besteht die Möglichkeit mit der Fixierung des Faktors D auf den Wert Null eine Kalibrierungskurve mit Hilfe von nur einem Standard zu erstellen, jedoch kann eine solche Kurve nicht auf ihre Richtigkeit überprüft werden. Des Weiteren sollten für eine genaue Auswertung eines Elements in einer Probe Standards mit ungefähr gleichen Konzentrationswerten gemessen werden, welche in der Probe erwartet werden.

Der inverse Wert des Parameters E ist ein Maß für die Sensitivität des jeweiligen Elements. Für eine einfache Kalibrierungskurve mit der Gleichung C = $E \cdot R$ (siehe (Gl. 31)) ergibt sich die Sensitivität für ein Element i wie folgt [9]:

$$S_{i} = \frac{R_{\text{Neti}}}{C_{i}}$$
(Gl. 33)

Hierbei steht C_i für die Konzentration und R_{Neti} für die Nettozählrate des betrachteten Elements. Setzt man nun die angenommene Relation für die Kalibrierungskurve

$$C_i = E_i \cdot R_{Neti} \tag{Gl. 34}$$

in (Gl. 33) ein, so kann für jedes Element, für das eine Kalibrierungskurve erstellt wurde, ein Sensitivitätswert berechnet werden. Für ein Element i gilt somit die Beziehung:

$$S_i = \frac{1}{E_i} \tag{GI. 35}$$

Die auf diese Weise erhaltenen Sensitivitätswerte können in einem Diagramm über der Ordnungszahl Z der Elemente für jedes verwendete Sekundärtarget aufgetragen werden. Diese so erstellten Graphen dienen als Kontrolle, da die Sensitivität benachbarter Elemente einem kontinuierlichen und glatten Anstieg mit ansteigender Ordnungszahl folgt. Des Weiteren können aus den erstellten Graphen Sensitivitätswerte für Elemente, für die es keine Kalibrierungsstandards gibt, interpoliert werden. Um dies zu bewerkstelligen wird eine Kurve durch die vorhandenen Sensitivitätswerte gefittet. Anschließend wird der Wert der gefitteten Kurve mit Hilfe der Ordnungszahl des gesuchten Elements bestimmt. Danach muss dieser Wert noch mit den in einer Messung bereits bestimmten Counts pro Sekunde pro Milliampere des gesuchten Elementes multipliziert werden und man erhält die Konzentration des Elements in der Probe.

Im Falle einer Kalibrierungskurve laut (Gl. 31) ist die Sensitivität eines Elements proportional zum inversen Wert des Parameters E:

$$S_i \propto \frac{1}{E_i}$$
 (Gl. 36)

14 Minimales Detektionslimit

Das minimale Detektionslimit, auch kurz als LLD bezeichnet, gibt die minimale Konzentration eines Elements an, so dass dieses noch vom Spektrometer detektiert werden kann. Das LLD kann mittels folgender Formel berechnet werden [9]:

$$LLD = 3 \cdot \frac{1}{S_i} \cdot \sqrt{\frac{r_{bi}}{t}} = 3 \cdot \frac{\sqrt{BG_i}}{S_i \cdot t}$$
(Gl. 37)

Hierbei steht r_{bi} für die gemessen Zählrate (Anzahl der gemessenen Counts pro Sekunde) der Background-Fläche des betrachtenden Elements i, BG_i für die Background-Fläche (Anzahl der Counts aus denen der Background besteht) unterhalb des betrachteten Peaks des Elements i, S_i für die Sensitivität des Elements i, und t für die gemessene Zeit (live time).

Da für dünne Filtermembranen keine Matrixkorrekturen angewendet werden (siehe Kapitel 10.2.4) und unter der Annahme, dass der Faktor D in den erstellten Kalibrierungskurven 0 beträgt, so ergibt sich unter Verwendung von (Gl. 33) und den Beziehungen

$$N_i = t \cdot R_{Neti} \tag{GI. 38}$$

$$C_i = \left(\frac{M_i}{A_i}\right) \tag{GI. 39}$$

ein LLD von:

$$LLD = 3 \cdot \frac{\sqrt{BG_i}}{N_i} \cdot \left(\frac{M_i}{A_i}\right)$$
(Gl. 40)

Hierbei steht N_i für die Netto-Fläche (Anzahl der Counts aus denen der Peak besteht) des betrachteten Peaks des Elements i, M_i steht für die vorhandene Masse des Elements i auf der Membrane und A_i für die Fläche der Membrane.

Für Filtermembranen können minimale Detektionslimits im Bereich von wenigen ng/cm² und für solide Proben im Bereich von wenigen ppm erreicht werden. Sowohl die Fläche N unter einem Peak als auch die Background-Fläche steigen linear mit steigender Messzeit an. Dadurch verbessert sich das LLD mit der Wurzel aus der Messzeit. Das bedeutet, je länger die Messzeit andauert desto kleiner wird die erreichbare Nachweisgrenze.

15 Die Blank-Korrektur

Bei der Erstellung einer Applikation kann eine sogenannte Blank-Messung berücksichtigt werden. Eine solche Messung wird benötigt, um eventuelle bei der Herstellung von Proben entstandene Verunreinigungen berücksichtigen zu können. Aus diesem Grund sollte sich die Probenvorbereitung bei der Herstellung der Blank-Probe nicht von der Herstellung der anderen Proben unterscheiden. Wird eine Probe mittels der Software als Blank-Probe definiert, so wird diese unter denselben Bedingungen, wie jede andere Probe gemessen. Jedoch werden bei jeder nachfolgenden Messung eines Standards oder einer Routine die gemessenen Intensitäten für die jeweiligen vorhandenen Elemente in der Blank-Messung abgezogen. Dadurch erhält man im Idealfall für die gemessen Probe nur mehr Intensitätswerte von jenen Elementen, deren Konzentrationen sich von der Blank-Probe unterscheiden. Mit der verwendeten Software ist es möglich, für eine Applikation mehrere Blank-Proben zu messen. Jeder gemessenen Routine und jedem gemessenen Standard kann anschließend eine andere Blank-Probe zugewiesen werden. Dabei ist darauf zu achten, dass jedem gemessenen Standard und jeder gemessenen Routine die richtige Blank-Probe zugewiesen wird.

Wird zum Beispiel eine Applikation für die Messung von beladenen Filtermembranen erstellt, so bestünde in diesem Fall die zu verwendende Blank-Probe aus einem nicht beladenen Filter. Sollte es bei der Herstellung der Filter zu einer Verunreinigung z.B. durch das Element Cer gekommen sein, so würde bei jeder Filtermessung diese Verunreinigung im Spektrum auftauchen. Ohne Blank-Messung würde man daraus den Schluss ziehen, dass in jeder gemessenen Umgebung das Element Cer vorhanden wäre, anstatt zu berücksichtigen, dass das im Spektrum vorhandene Cer tatsächlich ein Bestandteil der verwendeten Filtermembrane ist. Wird dagegen im Vorhinein eine saubere Filtermembrane als Blank-Probe gemessen, so erhält man einerseits die Information, dass diese das Element Cer enthält und andererseits wird jeder nachfolgenden Messung die gemessene Intensität des Cers abgezogen. Dadurch wird in den aufgenommenen Spektren nur mehr auf jenen Filterung abgelagert hat.

16 Messung eines Monitors

Die nachfolgenden Informationen für dieses Kapitel wurden aus dem "Course Binder" der Firma PANalytical [9] entnommen.

Bei der Erstellung einer Applikation kann die Messung von sogenannten "Monitoren" berücksichtigt werden. Mit deren Hilfe kann eine Korrektur durchgeführt werden, um über die Zeit auftretende Änderungen des Spektrometers bzw. der Applikation bei der Messung von Proben zu berücksichtigen. Beispiele für mögliche auftretende Änderungen des Spektrometers sind unter anderem Änderungen der Umgebungstemperatur, die Alterung der Röntgenröhre, Fluktuationen im erzeugten Vakuum in der Messkammer und mechanische Fehler in der Position des Kollimators, Kristalls und Filters. Beispiele für mögliche auftretende Änderungen der Applikation sind unter anderem: Änderung des Flussmaterials, Schmelzbedingungen bei Glasaufschlüssen und Veränderungen in der Probengröße. Eine solche Korrektur kann aus der Messung von nur einem bis hin zu ein paar wenigen Monitoren bestehen. Dabei ist zu beachten, dass die verwendeten Monitore jene Elemente beinhalten, für die eine Korrektur vorgenommen werden soll.

Um eine Korrektur mit Hilfe von Monitoren durchzuführen, müssen die vorhanden Monitorproben mittels einer Applikation als solche gemessen werden. Die Messung der Monitore sollte zu Beginn durchgeführt werden, ehe mit der Applikation andere Proben oder Standards gemessen werden. Dies stellt sicher, dass eine solche Korrektur zu einem späteren Zeitpunkt auf jeden Fall durchgeführt werden kann. Sollte es zu Änderungen des Spektrometers bzw. der Applikation kommen, werden dieselben Monitore abermals gemessen. Sind zwei Messungen für ein und denselben Monitor vorhanden, so vergleicht die Software die gemessenen Zählraten der letzten Messung mit den Zählraten der vorletzten Messung. Sollte sich dabei die gemessene Zählrate für ein Element stark verändert haben, berechnet die Software einen Korrekturfaktor auf Basis der gemessen Differenz. Ein solcher Korrekturfaktor wird für jedes Element ermittelt. Mit Hilfe dieser Korrekturfaktoren berechnet die Software korrigierte Zählraten, die für die Berechnung der Konzentrationen herangezogen werden. Korrigierte Zählraten werden dabei mittels der Formel

$$R_{corrected} = Intercept + Slope \cdot R_{measured}$$
(Gl. 41)

berechnet. Die zwei Größen Intercept und Slope in (Gl. 41) für ein Element, werden mittels der Methode der kleinsten Quadrate, unter Verwendung aller gemessenen Monitore, berechnet.

Eine Monitormessung ist nur für jene Applikationen notwendig, die über einen längeren Zeitraum zum Einsatz kommen. Sollte es im Laufe der Zeit zu einer oder mehreren der oben genannten Änderungen kommen, so kann dem entgegengewirkt werden, indem die verwendeten Monitore abermals gemessen werden. Wird hingegen keine Monitormessung berücksichtigt und es kommt im Laufe der Zeit zu einer oder mehreren der oben genannten Änderungen, so müssen alle vorhanden Standards erneut gemessen und die Kalibrierungskurven neu erstellt werden. Da im Normalfall für eine Applikation weniger Monitore als Standards vorhanden sind, ist eine Korrektur mit Hilfe der Monitore wesentlich zeitsparender und mit einem geringeren Arbeitsaufwand verbunden.

Da die Software für die Berechnung der Korrekturfaktoren die gemessenen Zählraten der Monitore verwendet, ist es empfehlenswert, dass die in dem jeweiligen Monitor vorhandenen Elemente über eine gute Langzeitstabilität verfügen. Dies bedeutet, dass sich die gemessenen Zählraten aller vorhandenen Elemente über die Zeit nicht verändern. Weiters ist es nicht notwendig, dass die gemessen Zählraten der Monitore in der gleichen Größenordnung liegen wie die der zu analysierenden Proben.

17 Bestimmung des Magnesium- und Siliziumgehalts in Aluminium

17.1 Aufgabenstellung

Vorhanden sind zwei Aluminiumplättchen mit jeweils ca. 4 cm Länge, 1 cm Breite und 0,2 cm Höhe (siehe Abbildung 16).

Abbildung 16: Aluminiumplättchen

Laut Angaben des Herstellers enthalten diese Plättchen neben Aluminium auch eine geringe Menge Magnesium und Silizium. Neben Aluminium bestehen die beiden Plättchen aus 0,586% Magnesium und 0,483% Silizium.

Die Aufgabe besteht darin, eine geeignete Kalibrierung für die drei Elemente Magnesium, Aluminium und Silizium zu erstellen, um zu verifizieren, ob die vom Hersteller angegebenen Elementkonzentrationen für Magnesium und Silizium korrekt sind.

Das Problem hierbei liegt darin, dass die $K_{\alpha 1}$ -Linien von Aluminium, Magnesium und Silizium energetisch sehr knapp nebeneinander liegen. Die Energie der $K_{\alpha 1}$ -Linien von Magnesium, Aluminium und Silizium betragen 1,254 keV, 1,486 keV und 1,740 keV. Durch den hohen Aluminiumanteil der Probe kommt es in den aufgenommenen Spektren zu einer Überlagerung des sehr dominanten Aluminiumpeaks mit dem Magnesiumpeak bzw. Siliziumpeak (siehe Abbildung 18 und Abbildung 19). Diese Überlagerung der charakteristischen Linien lässt sich mittels des verwendeten Spektrometers nicht verhindern und kann nur mittels der verwendeten Software berücksichtigt werden. Bei der Auswertung der Spektren berücksichtigt die Software die Überlagerung der vorhandenen Peaks bei der Berechnung der vorhandenen Zählraten. Da Magnesium und Silizium nur in sehr geringen Ausmaßen vorhanden sind, wird eine lange Messzeit benötigt, da die Nachweisgrenze mit steigender Zeit sinkt (siehe Kapitel 14).

17.2 Durchführung

Bei der Messung der vorhandenen Plättchen ergaben sich einige Probleme. Als erstes fiel auf, dass aufgrund der Abmessungen der Plättchen eines alleine nicht ausreicht, um die komplette Messfläche im Stahlbecher zu bedecken. Würde man nur ein Plättchen in den Stahlbecher legen, so würde bei einer Messung aufgrund der freien Messfläche der Stahlbecher angeregt werden. Dadurch würde die vom Stahlbecher ausgesendete charakteristische Röntgenstrahlung in den gemessenen Spektren vorhanden sein, was zu einer Fehlinterpretation der Messergebnisse führen könnte. Des Weiteren würde es zu einer Erschwerung der Quantifizierung der vorhandenen Elemente kommen, da die Kalibrierungskurven mit Standards erstellt werden, welche die ganze Messfläche des Stahlbechers bedecken. Aus diesem Grund wurden daher immer beide Plättchen gleichzeitig gemessen. Beim Einlegen der beiden Plättchen in den Stahlbecher wurde darauf geachtet, dass zwischen den Plättchen kein Spalt vorhanden war und diese die Messfläche im Becher komplett bedeckten (siehe Abbildung 17).

Abbildung 17: Beide Plättchen im Stahlbecher

Das zweite Problem bestand in der sehr geringen Konzentration der zu quantifizierenden Elemente. Da die Plättchen nur aus einem sehr geringen Anteil Magnesium und Silizium bestehen, ergab sich zu Beginn der Verdacht, dass die Software diese zwei Elemente nicht auswerten konnte, da deren Peaks im Spektrum eventuell durch einen stark ausgeprägten Aluminiumpeak überlagert werden könnten. Um diese Fragen beantworten zu können, wurden die Plättchen zu Beginn mittels mehreren manuellen Messungen mit dem Aluminiumund Kalziumfluorit-Sekundärtarget untersucht. Das Aluminium-Sekundärtarget regt am besten den vorhandenen Magnesiumanteil an (siehe Abbildung 18), wogegen das Kalziumfluorit-Sekundärtraget am besten für die Anregung des Aluminium- und Siliziumanteils geeignet ist (siehe Abbildung 19). Zu guter Letzt verfügten die beiden Plättchen über keine homogen aussehende Oberfläche, wodurch sich die Frage stellte, ob die Ausrichtung der Plättchen einen Einfluss auf die gemessenen Intensitäten der einzelnen Elemente hat. Um zu bestimmen, ob die Ausrichtung der Plättchen einen Einfluss auf die gemessenen Intensitäten der einzelnen Elemente hat, wurden die Plättchen sowohl in horizontaler als auch in vertikaler Lage in den Stahlbecher eingelegt und anschließend gemessen (siehe Tabelle 2).

Abbildung 18 zeigt das aufgenommene Spektrum der beiden Aluminiumplättchen unter Verwendung des Aluminium-Sekundärtargets. Wie man dieser Abbildung entnehmen kann, ist die Software in der Lage einen Magnesiumpeak zu fitten, jedoch ist der durchgeführte Fit des Spektrums nicht optimal. Aufgrund des hohen Aluminiumanteils in der Probe und der gestreuten Röntgenstrahlung des Sekundärtargets kommt es in dem aufgenommenen Spektrum zu keinem gut ausgeprägten Magnesiumpeak. Stattdessen überlagern sich die Peaks für die Elemente Magnesium und Aluminium.

Abbildung 19 zeigt das aufgenommene Spektrum der beiden Aluminiumplättchen unter Verwendung des Kalziumfluorit-Sekundärtargets. Aufgrund des geringen Siliziumanteils bildet sich nur ein sehr schwach ausgeprägtes Siliziumpeak.

Die beiden durchgeführten manuellen Messungen lieferten zwei wichtige Erkenntnisse:

- Die Software ist in der Lage die Elemente Magnesium und Silizium in den aufgenommenen Spektren zu finden und eine Zählrate für diese Elemente zu berechnen.
- Aufgrund der geringen Menge an Magnesium bzw. Silizium im Vergleich zu Aluminium, gibt es nur einen sehr schwach ausgeprägten Magnesium- bzw. Siliziumpeak, der sich teilweise mit dem Aluminiumpeak überlagert.

Abbildung 18: Spektrum einer manuellen Messung der beiden Aluminiumplättchen mittels des Aluminium-Sekundärtargets.

Abbildung 19: Vergrößertes Spektrum einer manuellen Messung der beiden Aluminiumplättchen mittels des Kalziumfluorit-Sekundärtargets.

	gemessene Intensitäten [cps/mA]		
Ausrichtung	Mg	Al	Si
horizontal	1,748	582,8	2,591
vertikal	1,675	591,3	2,664

Des Weiteren ergaben die Messungen, dass die gemessene Intensität nicht von der Ausrichtung der Plättchen abhängig ist (siehe Tabelle 2).

Tabelle 2: Gemessene Intensitäten für unterschiedliche Ausrichtungen der beiden Aluminiumplättchen

Außerdem wurde bei den durchgeführten Messungen beobachtet, dass die Plättchen im Stahlbecher leicht verrutschten, wenn dieser mit dem vorhandenen Greifarm automatisch im Spektrometer positioniert wurde. Aufgrund dessen erfolgte das Einladen des Stahlbechers, in dem die Plättchen platziert wurden, ausschließlich per Hand. Nach der richtigen Platzierung des Stahlbechers im Spektrometer wurde noch einmal kontrolliert, ob die Plättchen noch die komplette Messfläche bedeckten. Wenn die Plättchen im Stahlbecher dennoch verrutschten, so wurden diese mittels einer Kunststoffpinzette wieder richtig platziert.

Neben den bereits oben genannten Messungen mit dem Aluminium- und Kalziumfluorit-Sekundärtarget, wurden die Plättchen auch mittels des Aluminiumoxid-Sekundärtargets untersucht (siehe Abbildung 20). Diese Messung wurde durchgeführt, um festzustellen, ob noch andere Elemente in den Plättchen vorhanden waren. Diese Messung zeigte, dass neben den drei angegebenen Elementen Magnesium, Aluminium und Silizium auch Chlor, Kalzium und Eisen in den Plättchen enthalten waren. Der in Abbildung 20 vorhandene Skandium-Peak wurde vom Anodenmaterial erzeugt. Laut Angaben des Herstellers sollte jedoch kein Chlor, Kalzium und Eisen in den Plättchen vorhanden sein. Dies zeigte, dass die Plättchen doch nicht so sauber verarbeitet wurden, wie vom Hersteller angegeben. Aufgrund dieser Diskrepanz zwischen der Angabe des Herstellers und den gemessenen Werten wurden die Plättchen auch auf ihren Eisengehalt untersucht, da dieser für eventuell auftretende Matrixeffekte verantwortlich sein könnte.

Nachdem die in den Aluminiumplättchen vorhandenen Elemente qualitativ bestimmt wurden, erfolgte die Erstellung einer Applikation und der benötigten Kalibrierungskurven. Dabei ergab sich jedoch das Problem, dass keine passenden Standards, die über eine ähnliche Matrix wie die beiden Plättchen verfügten, vorhanden waren. Aus diesem Grund wurden, mittels Bindematerial und diverser vorhandener Pulver, Pellets mit bekannter elementarer Zusammensetzung gepresst. Mittels dieser gepressten Pellets sollten die benötigten Kalibrierungskurven für Aluminium, Magnesium und Silizium erstellt werden. Die gepressten Pellets wurden wie im Kapitel 10.2.2 beschrieben hergestellt.

Abbildung 20: Spektrum einer manuellen Messung der beiden Aluminiumplättchen mittels des Aluminiumoxid-Sekundärtargets.

Die erste Herangehensweise an das Problem bestand darin, eine Applikation mit Kalibrierungskurven zu erstellen, die einen sehr großen Konzentrationsbereich für die Elemente Magnesium, Aluminium und Silizium abdeckten. Diese sollten ermöglichen, dass die Applikation auch in Zukunft für die Analyse von Proben, deren prozentueller Anteil an Magnesium, Aluminium und Silizium sich von den Plättchen unterscheidet, verwendet werden kann. Diese Applikation trägt den Namen Al-Mg-Si 1.

Für die Herstellung der gepressten Pellets standen die Elemente Magnesium und Aluminium als Oxidverbindung sowie als Reinelemente zur Verfügung. Silizium hingegen war nur als Oxidverbindung vorhanden. Bei der Herstellung von Pellets, die aus einem oder mehreren Oxidverbindungen bestehen, wird generell ein Bindematerial benötigt, da Oxidverbindungen sich ansonsten nicht zu einem stabilen Pellet pressen lassen (siehe Kapitel 10.2.2). Bei der Herstellung von Pellets, die zum Großteil aus reinem Aluminium bestehen, wurde festgestellt, dass für die Herstellung stabiler Pellets kein Bindematerial benötigt wird. Betreffend der Auflistung der hergestellten Pellets und deren jeweilige elementare Zusammensetzung siehe Anhang A.1. Jedoch konnten mit diesen Pellets keine vielversprechenden Kalibrierungskurven erstellt werden (siehe Abbildung 21, Abbildung 22 und Abbildung 23).

Abbildung 22: Aluminium-Kalibrierungskurve für Applikation Al-Mg-Si 1

Abbildung 23: Silizium-Kalibrierungskurve für Applikation Al-Mg-Si 1

Wie Abbildung 21 zu entnehmen ist, stimmen die Messpunkte mit der Kalibrierungskurve für Magnesium nicht überein. Weiters ergibt sich für Aluminium nach Abbildung 22 eine nicht lineare Kalibrierungskurve, deren Krümmung keinen plausiblen physikalischen Zusammenhang wiederspiegelt. Lediglich die Kalibrierungskurve für Silizium stimmt mit den vorhandenen Messpunkten in erster Linie überein.

Da sich die erstellten Kalibrierungskurven nicht für eine Quantifizierung für Magnesium und Aluminium eigneten, wurde eine andere Herangehensweise an das Problem gewählt. Diese bestand darin, Kalibrierungskurven mittels Standards, die über eine sehr ähnliche Zusammensetzung wie die zwei Plättchen verfügten, zu erstellen. Dies führte dazu, dass die zu erstellenden Kalibrierungskurven nur einen kleinen Konzentrationsbereich abdeckten. Die Applikation ist damit nur für die Analyse von Proben, die über eine sehr ähnliche elementare Zusammensetzung wie die zwei vorhandenen Plättchen verfügten, einsetzbar. Diese Applikation trägt den Namen Al-Mg-Si 2. Betreffend der Auflistung der dafür hergestellten gepressten Pellets und deren jeweilige elementare Zusammensetzung siehe Anhang A.2. Betrachtet man die vorhandenen Elemente in diesen Standards, so bestehen diese hauptsächlich aus Aluminium.

Mittels dieser Standards ist es gelungen bessere Kalibrierungskurven für die Elemente Aluminium und Silizium zu erstellen (siehe Abbildung 24, Abbildung 25 und Abbildung 26). Lediglich die Kalibrierungskurve für Magnesium ergab wieder keinen ersichtlichen Zusammenhang zwischen den gemessenen Intensitäten und den vorhandenen Konzentrationen.

Abbildung 24: Erster Versuch für die Erstellung einer Magnesium-Kalibrierungskurve für Applikation Al-Mg-Si 2

Abbildung 25: Erster Versuch für die Erstellung einer Silizium-Kalibrierungskurve für Applikation Al-Mg-Si 2

Abbildung 26: Erster Versuch für die Erstellung einer Aluminium-Kalibrierungskurve für Applikation Al-Mg-Si 2

Werden die Elemente Magnesium, Aluminium und Silizium in den zwei vorhandenen Aluminiumplättchen, unter Verwendung dieser Kalibrierungskurven quantifiziert, so ergeben sich folgende Konzentrationswerte:

Elemente	vom Hersteller angegebene Konzentration [%]	von der Software berechnete Konzentration [%]
Mg	0,586	0,364
Al	98,931	99,52
Si	0,483	0,112

Tabelle 3: Gegenüberstellung der gemessenen Elementkonzentration mit den angegebenen Werten des Herstellers

Wie man obiger Tabelle entnehmen kann, stimmen die berechneten Konzentrationen nicht ganz mit den Angaben der Herstellerfirma überein, liegen aber sehr knapp nebeneinander.

Um die Kalibrierungskurven zu verbessern, insbesonders für Magnesium, wurden weitere Standards hergestellt. Betreffend der Auflistung der dafür hergestellten gepressten Pellets und deren jeweilige elementare Zusammensetzung siehe Anhang A.3. Jedoch führten diese Standards nur zu einer Verschlechterung der Kalibrierungskurven (siehe Abbildung 27, Abbildung 28 und Abbildung 29).

Abbildung 27: Zweiter Versuch für die Erstellung einer Magnesium-Kalibrierungskurve für Applikation Al-Mg-Si 2

Abbildung 28: Zweiter Versuch für die Erstellung einer Silizium-Kalibrierungskurve für Applikation Al-Mg-Si 2

Abbildung 29: Zweiter Versuch für die Erstellung einer Aluminium-Kalibrierungskurve für Applikation Al-Mg-Si 2

Wie man der Abbildung 27, Abbildung 28 und Abbildung 29 entnehmen kann, ergab sich mittels der eingetragenen Messpunkte wieder kein ersichtlicher Zusammenhang zwischen den gemessenen Intensitäten und der vorhandenen Konzentrationen. Da sich die Kalibrierungskurven mit den neuen Standards nur verschlechtert hatten, wurden diese Standards erst einmal nicht für die Kalibrierung verwendet und daher anderweitig probiert, die Kalibrierungskurven zu verbessern.

Da die gemessenen Konzentrationen nicht zur Gänze mit den Angaben der Herstellerfirma übereinstimmten, wurde versucht, die Ergebnisse zu verbessern, indem das in den Plättchen enthaltene Eisen quantifiziert und anschließend eine Korrektur mittels fundamentaler Parameter durchgeführt wurde. Die Erstellung einer Kalibrierungskurve für Eisen erfolgte mittels eines Stücks Eisen, das zu 99,9% aus Eisen bestand, und eines gepressten Pellets, das aus dem Standardmaterial PTXRFIAEA04 und dem Bindematerial HWC im Verhältnis 4:1 bestand (siehe Abbildung 30).

Abbildung 30: Eisen-Kalibrierungskurve für Applikation Al-Mg-Si 2

Mittels dieser Kalibrierung ergibt sich ein Eisenanteil in den zwei Plättchen von 0,033%. Die Berücksichtigung des vorhandenen Eisenanteils in den zwei Plättchen mittels fundamentaler Parameterkorrektur führt jedoch zu keiner drastischen Änderung der gemessenen Aluminiumintensität (siehe Tabelle 4).

Elemente	vom Hersteller angegebene Konzentration [%]	berechnete Konzentrationen ohne Berücksichtigung des Eisengehalts [%]	berechnete Konzentrationen mit Berücksichtigung des Eisengehalts [%]
Mg	0,586	0,364	0,358
Al	98,931	99,52	99,49
Si	0,483	0,112	0,117
Fe	-	-	0,033

Tabelle 4: Gegenüberstellung der gemessenen Elementkonzentration mit und ohne Berücksichtigung des Eisengehalts in den zwei Plättchen mit den angegebenen Werten des Herstellers

Da die gemessene Aluminiumkonzentration (siehe Tabelle 4) höher als die vom Hersteller angegebene Konzentration war und eine Korrektur mittels fundamentaler Parameter zu keiner Verbesserung der Ergebnisse führte, wies dies darauf hin, dass die für die Quantifizierung von Aluminium erstellte Kalibrierungskurve zu flach war.

Um dies zu überprüfen, wurde ein vorhandener Aluminiumstandard, dieser bestand aus 99,9% reinem Aluminium, mit der Applikation als Standard gemessen. Da die hergestellten

Standards aus mehr als 94% Aluminium bestanden, sollten sich die gemessenen Intensitäten des Aluminiumstandard und der selbst hergestellten Standards in erster Näherung auf einer geraden Linie befinden. Vergleicht man jedoch die gemessene Intensität des Aluminiumstandards mit den gemessenen Intensitäten der gepressten Pellets, so erkennt man, dass die Intensität des Aluminiumstandards jedoch wesentlich höher war (siehe Abbildung 32).

Aufgrund dieses Intensitätsunterschiedes zwischen den gepressten Pellets und dem Aluminiumstandard ergab sich der Verdacht, dass der beim Pressen der Standards verwendete Pressdruck von 10 Tonnen zu gering war. Um dies festzustellen, wurde die Dichte eines Presslings mittels der Formel $\rho=m/V$ bestimmt (siehe Tabelle 5). Das aus reinem Aluminiumpulver und 10 Tonnen Pressdruck hergestellte Pellet hatte folgende Kenngrößen:

Masse [g]	Durchmesser [cm]	Höhe [cm]	berechnete Dichte [g/cm ³]
4	3,13	0,21	2,48

Tabelle 5: Berechnung der Dichte eines aus reinem Aluminiumpulver bestehendem und mit 10 Tonnen Pressdruck gepressten Pellets

Die Dichte von Aluminium beträgt laut Literatur 2,7 g/cm³ [11, S. 116]. Wie man sieht, unterschied sich die berechnete Dichte des Pellets von dem angegeben Wert in der Literatur. Ein Pressdruck von 10 Tonnen reicht somit nicht aus, um das Pellet stark genug zu verdichten. Um festzustellen, wie sich der Pressdruck auf die gemessene Intensität auswirkt, wurden vier aus reinem Aluminium bestehende Presslinge mit unterschiedlichem Pressdruck hergestellt. Aufgrund des vorhandenen Presswerkzeugs und der Beschaffenheit der Presse konnten nur Pellets mit einem maximalen Druck von 14 Tonnen hergestellt werden. Anschließend wurde die Dicke und der Durchmesser eines jeden Pellets mittels einer Schiebelehre bestimmt und damit deren Dichte berechnet. Weiters wurden die Pellets und der Aluminiumstandard mittels einer manuellen Messung mit dem Kalziumfluorit-Sekundärtarget gemessen und die Netto Intensität des Aluminiumpeaks bestimmt (siehe Tabelle 6).

Proben- bezeichnung	Pressdruck [T]	Masse [g]	Durchmesser [cm]	Dicke [cm]	berechnete Dichte [g/cm ³]	gemessene Netto Intensität [cps/mA]
Probe 1	8	4	3,13	0,22	2,36	531,1
Probe 2	10	4	3,13	0,21	2,48	553,6
Probe 3	12	4	3,13	0,2	2,60	576,3
Probe 4	14	4	3,13	0,19	2,74	585,8
Al Standard						617,9

Tabelle 6: Vergleich der gemessenen Netto Intensität des Aluminiumpeaks für unterschiedliche Pressdrücke mit dem Aluminiumstandard

Wie man der Tabelle 6 und Abbildung 31 entnehmen kann, steigt die gemessene Intensität zwar mit steigendem Pressdruck an, jedoch ergibt sich immer noch eine ca. 5 prozentige Abweichung der gemessenen Intensität zwischen dem Aluminiumstandard und Probe 4, obwohl die berechnete Dichte mit einem Wert von 2,74 g/cm³ etwas höher ist als der Wert aus der Literatur.

Abbildung 31: Vergleich der gemessenen Netto Intensität des Aluminiumpeaks für unterschiedliche Pressdrücke mit dem Aluminiumstandard

Da in den Spektren der Presslinge ein Eisenpeak zu erkennen war, wurden die mit 12 und 14 Tonnen gepressten Pellets mittels der Applikation Al-Mg-Si 2 als Routine gemessen, um deren Eisengehalt zu quantifizieren. Anschließend wurden die beiden gepressten Pellets als Standard gemessen und deren zuvor bestimmter Eisengehalt in der elementaren Zusammensetzung eingetragen. Dies ermöglichte eine Korrektur der gemessenen Zählrate des Aluminiumpeaks mittels fundamentaler Parameter durchzuführen, analog zu den beiden Aluminiumplättchen. Die Berücksichtigung des vorhandenen Eisenanteils in den zwei gepressten Pellets mittels fundamentaler Parameterkorrektur führte jedoch zu keiner drastischen Änderung der gemessenen Intensitäten (siehe Abbildung 32).

Da keine wirklich brauchbaren Kalibrierungskurven mittels der gepressten Pellets hergestellt werden konnten, wurde eine sehr einfache Kalibrierung, bestehend aus vorhandenen Referenzmaterialien, die jeweils aus 99,9% Magnesium, 99% Silizium und 99,9% Aluminium bestanden, und den beiden Aluminiumplättchen erstellt. Mit diesen Kalibrierungskurven ergab sich folgende Elementkonzentration in den beiden Plättchen:

Elemente	vom Hersteller angegebene Konzentration [%]	berechnete Konzentrationen mit Berücksichtigung des Eisengehalts [%]
Mg	0,586	1,575
Al	98,931	97,54
Si	0,483	0,850
Fe	-	0,035

Tabelle 7: Berechnete Konzentrationen in den Aluminiumpellets mittels einer sehr einfachen Kalibrierung

Abbildung 32: Vergleich zwischen der gemessenen Intensität und Aluminiumkonzentration der verwendeten Standards.. Von oben nach unten gehören die Messpunkte zu folgenden verwendeten Standards: Aluminiumstandard mit 99% Al, gepresstes Pellet bestehend aus Aluminium und 14 t Pressdruck, gepresstes Pellet bestehend aus Aluminium und 12 t Pressdruck und die restlichen fünf Punkte sind die mit 10 t Pressdruck hergestellten Pellets aus Anhang A.2

17.3 Fazit

Da mit dem vorhandenen Presswerkzeug und aufgrund der Beschaffenheit der Presse keine Pellets mit einem Pressdruck von mehr als 14 Tonnen hergestellt werden können, ist es unbekannt, ob eine weitere Erhöhung des Pressdrucks zu einer besseren Intensitätsausbeute führen würde. Dies zeigt, dass es mittels der vorhandenen Presse nicht möglich ist, für diese Problemstellung geeignete Standards herzustellen.

Wie man der Tabelle 3 entnehmen kann, erhält man Konzentrationswerte, die in der Größenordnung der vom Hersteller angegebenen Werte liegen. Man kann jedoch nicht behaupten, dass die dafür verwendeten Kalibrierungskurven optimal für die Auswertung geeignet sind.

18 Bestimmung des Zirkongehalts in Tonproben

18.1 Aufgabenstellung

Ziel dieser Problemstellung ist es, den Zirkonanteil in gebrannten Tonproben zu bestimmen. Insgesamt sind fünf gebrannte Tonwürfel vorhanden. Laut Angaben des Herstellers wurden dem ersten Würfel 0,0087%, dem zweiten Würfel 0,0179%, dem dritten Würfel 0,0350% und dem vierten Würfel 0,0642% Zirkon bei der Herstellung hinzugefügt. Dem fünften Würfel hingegen wurde bei der Herstellung kein Zirkon beigemengt und dient somit als eine Blank-Probe.

Abbildung 33: Die für diese Aufgabe vorhandenen fünf Tonproben

Mittels Neutronenaktivierung wurden die Tonwürfel auf ihren Zirkonanteil untersucht. Hierfür wurden die Proben mit dem am Atominstitut zur Verfügung stehenden Atomreaktor bestrahlt und anschließend gemessen. Diese Messungen lieferten für alle vorhandenen Tonwürfel jedoch andere Zirkonanteile als vom Hersteller angegeben. Dadurch ergibt sich der Verdacht, dass den Tonproben bei der Herstellung nicht reines Zirkon sondern Zirkonoxid beigefügt wurde. Mittels EDXRF, als zweite Messmethode neben der Neutronenaktivierung, soll der vorhandene Anteil an Zirkon in den gebranntem Tonwürfeln bestimmt werden, um die Ergebnisse der Neutronenaktivierung entweder zu bestätigen oder zu entkräften.

18.2 Herangehensweise an die Problemstellung

Da keine Informationen über die Beschaffenheit der Tonproben vorlagen, wurden die Tonwürfel zu Beginn auf ihre elementare Zusammensetzung untersucht. Dafür wurde der Tonwürfel, der laut den Angaben des Herstellers 0,0642% Zirkon beinhaltet, mittels einer manuellen Messung mit dem Silber-Sekundärtargets untersucht. Dies diente sowohl zur Identifikation der in den Tonproben vorhandenen Elemente als auch zur Feststellung, ob der Zirkonpeak im Spektrum von der Software ausgewertet werden konnte. Diese Messung ergab,

dass die Tonprobe unter anderem aus den Elementen Aluminium, Silizium, Kalium, Kalzium, Titan, Eisen, Nickel, Kupfer, Zink, Rubidium und Zirkon bestehen (siehe Abbildung 34).

Abbildung 34:Unter Verwendung des Silber-Sekundärtargets aufgenommenes Spektrum der Tonprobe

5

Date/Time

0,001

ld

Sample

Nachdem ein Überblick über die elementare Zusammensetzung der Tonproben vorhanden war und der Zirkonpeak im Spektrum plausibel von der Software gefittet wurde, ging es an die Erstellung einer Applikation und einer geeigneten Kalibrierungskurve für die Quantifizierung des vorhandenen Zirkons. Hierfür wurde die Applikation mit der Bezeichnung "Clay-Zr" erstellt. Da man nur an dem Zirkon in den vorhandenen Tonproben interessiert war, wurden für die Tonprobenuntersuchungen nur das Silber-Sekundärtarget und eine Messzeit von 100 Sekunden verwendet. Der mit dem Sekundärtarget verwendete Strombzw. Spannungswert stimmte mit der angegebenen Empfehlung (siehe Anhang H) des Spektrometerherstellers überein.

10

kV

mΑ

Username

15

Secondary Ta., Real Time (s)

Energy (keV) Live Time (s)

Für eine erste Kalibrierungskurve wurden bereits vorhandene Standards, die über einen geringen Anteil an Zirkon verfügten, gemessen (siehe Abbildung 35). Hierzu gehörten ein Standard mit der Bezeichnung "Soda Lime Container Glass" ein aus jeweils 50% Soil 7 und Cellulose bestehendes gepresstes Pellet, einem Spezialglas mit der Bezeichnung "SVG1" (Herstellerfirma unbekannt), einem aus 97% Zirkon bestehenden Plättchen und einem im Verhältnis von 1:10 bestehenden Fused bead aus Soil 7 und Lithiummeta-/-tetraborat.

Abbildung 35: Erste Kalibrierungskurve für Zirkon unter Verwendung von bereits vorhandenen Standards. Das Bild zeigt die Kalibrierungskurve im Zirkonbereich der Tonstandards.

Für eine Übersicht der elementaren Zusammensetzung siehe Anhang B.1. Da die verwendeten Standards und Tonproben unterschiedliche elementare Zusammensetzungen hatten, wurde eine Korrektur mittels fundamentaler Parameter für die Erstellung der Zirkon-Kalibrierungskurve durchgeführt.

Nachdem eine vorläufige Kalibrierung für Zirkon vorhanden war, wurden die Tonproben mittels der Applikation als Routinen gemessen, um das darin vorhandene Zirkon zu quantifizieren (siehe Tabelle 8).

Probenbezeichnung	angegebener Zirkonanteil [ppm]	gemessener Zirkonanteil [ppm]
Fried Clay 0,0087%	87	335,8
Fried Clay 0,0179%	179	417,6
Fried Clay 0,0350%	350	503,5
Fried Clay 0,0642%	642	738,9

 Tabelle 8: Von der Software berechnete Zirkonkonzentrationen für die Tonproben

Wie der Tabelle 8 entnommen werden kann, weichen die gemessen Werte von den angegeben Werten des Herstellers ab.

Für die Ursache, dass die gemessenen Zirkonintensitäten der Tonproben wesentlich höher waren, gab es drei Möglichkeiten:

- Aufgrund der unterschiedlichen Matrixzusammensetzungen der bislang verwendeten Standards und der Tonproben ist die Erstellung einer Kalibrierungskurve nicht möglich.
- Den Tonproben wurden bei der Herstellung eine größere Menge Zirkon beigemengt als vom Hersteller angegeben.
- Die Tonproben enthalten schon ohne Zugabe von Zirkon einen geringen Anteil von diesem Element.

Am schnellsten und einfachsten zu überprüfen war der dritte Punkt. Aus diesem Grund wurde die vorhandene Blank-Probe als Routine mit der Applikation untersucht (siehe Abbildung 36).

Abbildung 36: Spektrum der vorhandenen Blank-Probe

Wie man dem Spektrum in Abbildung 36 entnehmen kann, befindet sich bereits in der Blank-Probe ein beachtlicher Anteil an Zirkon. Vergleicht man die für Zirkon gemessenen Intensitäten der Blank-Probe mit den gemessenen Werten der anderen vier Tonproben (siehe Tabelle 9), so erkennt man, dass die Intensität in der Blank-Probe ca. halb so groß ist, wie die der Tonprobe mit 0,0350% Zirkon.

Probenbezeichnung	gemessene Intensität des Zirkonpeaks [cps/mA]
Blank Clay	175,1
Fried Clay 0,0087%	223,8
Fried Clay 0,0179%	273,9
Fried Clay 0,0350%	364,1
Fried Clay 0,0642%	519,9

Tabelle 9: Vergleich der gemessenen Intensitäten des Zirkonpeaks für sie fünf vorhandenen Tonproben

Da sich bereits in der Blank-Probe Zirkon befand, ist es nachvollziehbar, warum der berechnete Zirkonanteil in Tabelle 8 wesentlich höher war. Bei der Auswertung der Ergebnisse musste daher die vorhandene Zirkonkonzentration der Blank-Probe von den Messergebnissen der anderen Tonproben abgezogen werden. Normalerweise würde dies mittels einer Blanksubtraktion erfolgen, indem die Blank-Probe als solche der Software definiert wird (siehe Kapitel 15). Da jedoch für die Erstellung der Kalibrierungskurve Standards gemessen wurden, für die keine Blank-Proben vorhanden waren, konnte keine Blanksubtraktion mit der Software erfolgen. Die Blanksubtraktion musste per Hand durchgeführt werden. Hierfür wurde die Zirkonkonzentration in der Blank-Probe, mittels der Applikation bestimmt und von den berechneten Werten der anderen Tonproben abgezogen.

Bevor mit der Quantifizierung der Tonwürfel fortgefahren wurde, wurden jedoch noch weitere Standards hergestellt, die über einen größeren Zirkonanteil als die bisherigen Standards verfügten. Um die Kalibrierungskurve zu verbessern wurden Standards hergestellt, die über eine ähnliche Zirkonkonzentration wie die Tonproben besaßen. Hierfür wurden unter anderem ein gepresstes Pellet, bestehend aus dem Standardmaterial PTXRFIAEA 04 und dem Bindematerial HWC im Verhältnis 4:1, hergestellt. Für Informationen über die elementare Zusammensetzung des Pellets siehe Anhang B.1. Um die Kalibrierungskurve für Zirkon zu kontrollieren wurden die vorhandenen Tonproben ebenfalls als Standards gemessen, um deren Lage in der Kalibrierungskurve zu überprüfen (siehe Abbildung 37). Damit für die gemessenen Intensitäten der Tonproben eine Korrektur mittels fundamentaler Parameter durchgeführt werden konnte, musste deren elementare Zusammensetzung in die Software eingegeben werden. Da vom Hersteller jedoch keine genauen Informationen bezüglich der elementaren Zusammensetzung vorlagen, wurde diese mittels des hergestellten Standards aus PTXRFIAEA 04 berechnet. Die Berechnung erfolgte folgendermaßen:

Oxidverbindung in % (PTXRFIAEA04)	Oxidverbindung in % (Clay)
Intensität Oxidverbindung (PTXRFIAEA04)	Intensität Oxidverbindung (Clay)

Mit dieser Gleichung können die vorhandenen Konzentrationen einer jeden Elementverbindung in den Tonproben bestimmt werden. Mittels des Vergleichs der Intensitäten erhält man folgende Zirkonkonzentrationen:

Probenbezeichnung	berechnete Zirkonkonzentrationen [ppm]
Blank Clay	320
Fried Clay 0,0087%	409
Fried Clay 0,0179%	499
Fried Clay 0,0350%	670

Tabelle 10: Berechnete Zirkonkonzentrationen mittels Vergleich der gemessenen Intensitäten des hergestellten PTXRFIAE 04 Standards mit den vorhandenen Tonproben

Abbildung 37: Überarbeitete Kalibrierungskurve für Zirkon unter Verwendung des gepressten PTXRFIAEA 04 Pellets und der vorhandenen Tonproben. Bei den Messpunkten handelt es sich von rechts nach links beginnend um die Tonprobe mit 0,0350% Zr, 0,0179% Zr, 0,0087% Zr und der Blank-Probe.

Des Weiteren wurden auch Standards mit Hilfe einer Flüssigstandardlösung hergestellt, da die vorhandenen Standardmaterialien nur über einen sehr geringen Zirkonanteil im ppm Bereich verfügten. Diese Methode wird auch als Standard-Additionsverfahren bezeichnet. Diese verwendete Flüssigstandardlösung enthielt einen Zirkonanteil von 1000 ppm. Mittels der Masse des gepressten Pellets konnte der Zirkonanteil im selbigen berechnet werden. Für eine

Auflistung der hergestellten Pellets und deren jeweiligen elementaren Zusammensetzung siehe Anhang B.2. Aufgrund von Erfahrungsberichten aus der bereits durchgeführten Diplomarbeit von Angelika Maderitsch mit dem Titel "Anwendung eines kommerziellen energiedispersiven Röntgenfluoreszenzspektrometers auf unkonventionelle Fragestellungen" wurde als Ausgangsmaterial für die hergestellten Standards Cellulose verwendet [12]. Diese hat den Vorteil, dass sie sich in Wasser auflöst. In dieser Lösung kann der Flüssigstandard gut homogen verteilt werden. Die Herstellung dieser Pellets erfolgte wie in Kapitel 10.2.2 beschrieben.

Die aus Cellulose und Zirkon-Flüssigstandard bestehenden Pellets lieferten jedoch kein verwertbares Ergebnis (siehe Abbildung 38). Die gemessenen Intensitäten waren wesentlich geringer als jene der Tonproben. Die Ursache hierfür lag wahrscheinlich in der Matrix der Cellulose, denn nicht einmal unter Verwendung einer Korrektur mittels fundamentaler Parameter erhielt man verwertbare Intensitäten.

Abbildung 38: Kalibrierungskurve unter Einbeziehung der vier aus Cellulose und Zirkon-Flüssigstandard bestehenden gepressten Pellets. Deren vier Messpunkte befinden sich innerhalb der eingezeichneten Ellipse

Da die mittels Cellulose hergestellten Standards kein befriedigendes Ergebnis lieferten, wurden erneut Presspellets mit Zirkon-Flüssigstandard hergestellt, jedoch statt Cellulose wurde das Standardmaterial PTXRFIAEA 04 verwendet. Für eine Auflistung der hergestellten Pellets und deren jeweilige elementare Zusammensetzung siehe Anhang B.2. Bei dem Standardmaterial PTXRFIAEA 04 handelt es sich um gemahlenen und ungebrannten Ton, der bereits über 177 ppm Zirkon verfügt. Mittels Zugabe von Zirkon-Flüssigstandard wurde dieser Anteil erhöht.

Die aus PTXRFIAEA 04 und Zirkon-Flüssigstandard bestehenden Pellets lieferten ein wesentlich besseres Ergebnis (siehe Abbildung 38). Die gemessenen Intensitäten der aus PTXRFIAEA 04 bestehenden Pellets waren wesentlich höher als jene aus Cellulose gepressten Pellets.

Abbildung 39: Kalibrierungskurve unter Einbeziehung der zwei aus PTXRFIAEA 04 und Zirkon-Flüssigstandard bestehenden gepressten Pellets.

Mittels dieser Kalibrierungskurve wurden folgende Zirkonkonzentrationen berechnet:

	In den Tonwürfel enthaltene Zirkonkonzentration						
Probenbezeichnung	Nominal	ohne Abzug des	mit Abzug des	auf ZrO ₂			
	Nommai	Blanks	Blanks	umgerechnet			
Blank Clay	0,0000	0,0260	0,0000				
Fired Clay 0,0642%	0,0642	0,0760	0,0500	0,0675			
Fired Clay 0,0350%	0,0350	0,0530	0,0270	0,0360			
Fired Clay 0,0179%	0,0179	0,0400	0,0140	0,0190			
Fired Clay 0,0087%	0,0087	0,0330	0,0070	0,0100			

Tabelle 11: Berechnung der vorhandenen Zirkonkonzentration für reines Zirkon und Zirkonoxid

18.3 Fazit

Um besser vergleichen zu können, ob es sich bei den angegebenen Werten des Herstellers tatsächlich um reines Zirkon oder Zirkonoxid handelt, wird in einem Diagramm der angegebene Nominalwert, die von der Software berechnete Zirkonkonzentration und die von der Software berechnete Zirkonkonzentration umgerechnet auf Zirkonoxid dargestellt (siehe Abbildung 40).

Abbildung 40: Gegenüberstellung der angegebenen und gemessenen Zirkonkonzentrationen sowie der Zirkonoxidkonzentration für jede vorhandene Tonprobe

Wie man Abbildung 40 entnehmen kann, stimmen die berechneten Werte für Zirkonoxid nicht genau mit den nominalen Werten des Herstellers überein, liegen aber wesentlich näher als die Ergebnisse für reines Zirkon. Dies deutet daraufhin, dass der Hersteller den Proben Zirkonoxid beigemengt hat.

Da die Kalibrierung jedoch nicht mit gebrannten Tonproben hergestellt wurde, sondern mit vorhandenen Materialien, die über eine komplett andere elementare Zusammensetzung verfügten, kann diese Aussage dennoch falsch sein.

19 Vergleich von Messergebnissen einer zertifizierten Luftfiltermembrane zwischen der alten und neuen Röhre

19.1 Aufgabenstellung

Da die alte und nicht mehr funktionstüchtige Röntgenröhre des Spektrometers im Dezember 2017 gegen eine neue Röntgenröhre getauscht und der Standort der Epsilon 5 im Februar 2018 geändert wurde, stellt sich die Frage, ob diese Änderungen Auswirkungen auf die gemessene Intensitäten von einzelnen Elementen haben. Um dies feststellen zu können, wird der vorhandene zertifizierte Luftfilter "SRM 2783 Air particulate on filter media" von der US-Amerikanischen Firma National Institute of Standards & Technology gemessen. Die Messergebnisse werden anschließend mit bereits durchgeführten Messungen verglichen.

19.2 Durchführung

Bei dem vorhandenen Standard "NIST 2783 Air particulate on filter media" handelt es sich um einen Filtermembrane, die mit Elementen beladen ist, die oftmals in der Luft als Aerosole auftreten. Dieser wird mittels der bereits vorhandenen "Gerelmaa_APM" Applikation gemessen (siehe Tabelle 12).

Mittels des Durchmessers der Membrane, dieser beträgt laut Zertifikat 9,96 cm, kann deren Fläche berechnet werden. Durch Multiplikation einer jeden Massenbelegung mit der Fläche der Filtermembrane, können die vorhandenen Massen auf der Membrane bestimmt werden. Die ermittelten Massen der einzelnen Elemente werden anschließend mit den Messwerten bereits durchgeführter Messungen des Standards und mit den Werten des Standardzertifikats verglichen (siehe Tabelle 13).

19.3 Fazit

In Abbildung 41 werden die gemessenen Werte mit den zertifizierten Werten graphisch dargestellt. Da die vorhandenen Werte einen großen Zahlenbereich abdecken, werden diese mit Hilfe einer logarithmischen Skala dargestellt. Das Element Natrium wird, wie bereits bei vorherigen Messungen, von der Software nicht im Spektrum gefunden. Ursache hierfür liegt in der schlechten Detektion von leichten Elementen (siehe Kapitel 8). Im Gegensatz zu früheren Messungen werden die Elemente Kobalt und Arsen aufgrund der Überlagerung mit anderen Spektrallinien nicht von der Software erkannt. Für die anderen Elemente unterscheidet sich die Schwankung zwischen der neusten Messung vom 23.03.2018 mit den zertifizierten Werten des NIST 2783 Standards nicht stärker als die vorhergegangenen Messungen (siehe Tabelle 14). Die vorliegenden Ergebnisse zeigen daher keine ernst zu nehmenden Veränderungen aufgrund des Wechsels der Röntgenröhre und des Standorts auf.

Floment	gemessene Massenbelegungen [ng/cm ²]						
Element	02.07.15	13.11.15	10.02.16	23.03.18			
Na	-	145,4	-	-			
Mg	-	1117	1012	266,8			
Al	2339	1818	1918	1998			
Si	5816	6827	6735	6485			
S	125,2	19,61	14,34	59,01			
Cl	47,16	37,37	43,66	69,27			
K	843,3	576,7	593,6	562,7			
Ca	1113	1102	1149	1190			
Ti	148,2	125,9	138,2	140,7			
V	7,549	3,6572	1,918	1,642			
Cr	-	14,96	16,71	13,97			
Mn	31,3	26,70	32,44	27,51			
Fe	2596	2565	2591	2623			
Co	0,002	0,147	1,236	-			
Ni	27,57	4,619	5,486	8,085			
Cu	42,82	38,05	41,30	36,48			
Zn	178,1	155,75	181,8	183,4			
Sr	3,235	2,631	0,636	5,745			
Pb	30,67	36,76	41,03	28,219			
As	-	1,759	1,458	_			
Br	15,48	11,03	13,40	12,51			

Tabelle 12: Von der Software berechnete Massenbelegungen der im NIST 2783 Standard vorhandenen Elemente für unterschiedliche Messungen. Die Messergebnisse vom 02.07.15, 13.11.15 und 20.02.16 wurden mit der alten Röntgenröhre bestimmt, wohingegen die Messergebnisse vom 23.03.18 mit der neuen Röntgenröhre ermittelt wurden.

	Zertifizierte Masse[ng]	Zertifizierte	Umrechnung auf ng					Standard.
Element		Standard- abweichung [ng]	02.07.15	13.11.15	10.02.16	23.03.18	[ng]	abweichung [ng]
Na	1860	100	-	1448	-	-	1448,2	
Mg	8620	520	-	11131	10082	2658	7956,6	4619,0
Al	23210	530	23305	18111	19106	19905	20107,0	2255,1
Si	58600	1600	57934	68004	67081	64597	64404,2	4546,8
S	1050	260	1247	195	143	588	543,3	509,5
Cl	-		470	372	435	690	491,7	138,2
K	5280	520	8399	5744	5912	5605	6415,0	1328,9
Ca	13200	1700	11086	10983	11445	11862	11344,0	398,0
Ti	1490	240	1476	1254	1376	1401	1376,6	92,4
V	48,5	6	75	36	19	16	36,6	27,1
Cr	135	25	-	149	166	139	151,5	13,8
Mn	320	12	312	266	323	274	293,6	28,1
Fe	26500	1600	25858	25557	25816	26131	25840,5	235,0
Со	7,7	1,2	-	1	12	-	6,9	7,7
Ni	68	12	275	46	55	81	113,9	108,1
Cu	404	42	427	379	411	363	395,0	29,0
Zn	1790	130	1774	1551	1811	1827	1740,8	128,2
Sr	-	-	32	26	6	57	30,5	21,0
Pb	317	54	305	366	409	281	340,2	58,0
As	11,8	1,2	-	18	15	-	16,0	2,1
Br	-	-	154	110	133	125	130,5	18,5

Tabelle 13: Vergleich der vorhandenen Massen und Standardabweichungen der im NIST 2783 Standard vorhandenen Elemente mit den berechneten Werten für unterschiedliche Messungen. Die Messergebnisse vom 02.07.15, 13.11.15 und 20.02.16 wurden mit der alten Röntgenröhre bestimmt, wohingegen die Messergebnisse vom 23.03.18 mit der neuen Röntgenröhre ermittelt wurden.

Element	prozentuelle Abweichung der gemessenen von der zertifizierten Masse [%]								
	02.07.15	13.11.15	10.02.16	23.03.18					
Na	-100,00	-22,14	-100,00	-100,00					
Mg	-100,00	29,13	16,96	-69,17					
Al	0,41	-21,97	-17,68	-14,24					
Si	-1,14	16,05	14,47	10,23					
S	18,78	-81,40	-86,40	-44,03					
Cl	-	-	-	-					
K	59,08	8,78	11,97	6,15					
Ca	-16,01	-16,80	-13,29	-10,14					
Ti	-0,95	-15,87	-7,64	-5,98					
V	55,03	-26,65	-60,61	-66,28					
Cr	-100,00	10,33	23,30	3,06					
Mn	-2,58	-16,99	0,98	-14,39					
Fe	-2,42	-3,56	-2,58	-1,39					
Co	-100,00	-80,99	59,88	-100,00					
Ni	303,82	-32,35	-19,65	18,42					
Cu	5,58	-6,21	1,83	-10,07					
Zn	-0,88	-13,33	1,16	2,04					
Sr	-	-	-	-					
Pb	-3,64	15,49	28,92	-11,44					
As	-100,00	48,47	23,07	-100,00					
Br	-	-	-	-					

Tabelle 14: Prozentuelle Abweichung der gemessenen von der zertifizierten Masse für die durchgeführten Messungen des NIST 2783 Standards.

Abbildung 41: Vergleich der gemessenen Massen mit den zertifizierten Werten des NIST 2783 Standards.

20 Validierung der Sammelmethode von Aerosolen für die Messung mittels TXRF und EDXRF sowie Vergleich der Reproduzierbarkeit der Messergebnisse

20.1 Aufgabenstellung:

Die Bearbeitung sowie Lösung dieser Problemstellung erfolgt in Zusammenarbeit mit Joseph Prost. Im Rahmen dieser Aufgabe soll gezeigt werden, ob man bei der Analyse von Aerosolproben, unter Verwendung der Analysemethoden EDXRF und TXRF, vergleichbare Ergebnisse erzielen kann.

Die Sammlung von Aerosolen und deren Auswertung mittels EDXRF wurde vom Verfasser dieser Diplomarbeit Alexander Kleeweiss durchgeführt, wohingegen die Sammlung von Aerosolen und deren Auswertung mittels TXRF und der Vergleich der Messergebnisse zwischen den beiden Analysemethoden EDXRF und TXRF von Josef Prost durchgeführt wurde.

Die Untersuchung der vorhandenen Proben mittels EDXRF erfolgte mit dem Epsilon 5 Spektrometer. Für die Auswertung der beladenen Filtermembranen wurde die bereits vorhandene Gerelmaa_APM Applikation verwendet. Da für diese Applikation eine Blank-Korrektur vorgesehen ist, wurde jeweils ein unbeladener PM 10-2,5 und PM 2,5-0 Filter als Blank-Probe gemessen. Werden beladene Filter gemessen, so muss die entsprechende Blank-Probe mittels der Software zugewiesen werden. Die Sammlung von Aerosolen erfolgte mit dem GENT Sampler (siehe Kapitel 20.3).

Die Untersuchung mittels TXRF hingegen erfolgte mit dem Wobistrax Spektrometer. Hierbei handelt es sich um ein von der Röntgenabteilung des Atominstitutes selbst gebautes Spektrometer.

20.2 Sammlung von Aerosolen

Aufgrund der unterschiedlichen Funktionsweisen der zwei Spektrometer kann nicht ein und dieselbe Probe mit beiden Geräten gemessen werden. Die Aerosolsammlung erfolgte daher mit zwei unterschiedlichen Aerosolsammlern.

Für die Untersuchung mittels EDXRF wurde die Sammlung der Aerosole mit einem GENT Samplers durchgeführt (siehe Kapitel 20.3). Hierbei handelt es sich um ein kompaktes Luftfiltersystem, das die in der Luft vorhandenen Aerosolen auf dünne Filtermembranen sammelt. Der GENT Sampler verwendet dafür insgesamt zwei Filtermembranen. Eine Filtermembrane sammelt dabei alle Aerosole ein, die größer als 2,5 µm sind, wohingegen die zweite Filtermembrane alle Teilchen kleiner 2,5 µm einsammelt. Die Betriebsdauer des GENT Samplers während eines Sammelzyklus kann beliebig lange gewählt werden.

Für die Untersuchung mittels TXRF erfolgte die Sammlung unter Verwendung eines Dekati-Impaktors. Bei diesem System werden die Aerosole auf Quarzreflektoren gesammelt. Insgesamt kamen drei Quarzreflektoren und ein Back-Up Filter zum Einsatz. Der erste Quarzreflektor sammelte PM 10 Teilchen, der zweite Quarzreflektor sammelte PM 2,5 und der dritte Quarzreflektor sammelte PM 1 Partikel. Des Weiteren durfte eine Betriebsdauer von 1 Stunde und 45 Minuten nicht überschritten werden, da ansonsten die am Quarzreflektor gesammelte Aerosolschicht zu dick für eine ordnungsgemäße Auswertung mittels TXRF werden kann. Daher wurden die im Dekati-Impaktor vorhandenen Quarzreflektoren nach einer Betriebsdauer von 1 Stunde und 45 Minuten entnommen und durch neue Quarzreflektoren ersetzt.

Aufgrund der unterschiedlichen Funktionsweisen der beiden Aerosolsammler mussten gewisse Vorkehrungen getroffen werden, um eine Vergleichbarkeit der Sammelergebnisse zu erreichen:

- Da der GENT Sampler und der Dekati-Impaktor mit unterschiedlichen Durchflussströmen betrieben wurden, wurden die gemessenen Konzentrationen auf das Durchflussvolumen normiert.
- Um die Messergebnisse f
 ür einen Sammelzyklus vergleichen zu k
 önnen, der l
 änger als
 1 Stunde und 45 Minuten dauerte, wurden nach Ablauf der Zeit die Quarzreflektoren
 im Dekati-Impaktor ausgetauscht. Nachdem der Sammelzyklus beendet wurde,
 wurden alle Quarzreflektoren gemessen und die Messergebnisse gleicher
 Sammelgr
 ö
 ße addiert.
- Da die Sammlung von Aerosolen mit zwei unterschiedlichen Systemen durchgeführt wurde, erfolgte die Sammlung mit beiden Systemen immer am gleichen Ort und wenn möglich zur gleichen Zeit, um eine Vergleichbarkeit der Messungen zu gewährleisten.

20.3 Der GENT Sampler

Die nachfolgenden Informationen über den GENT Sampler stammen aus der von der IAEA zusammengestellten Betriebsanleitung "Operating manual for GENT sampler" [13].

Der GENT Sampler ist eine mobil einsetzbare Gerätschaft, mit dessen Hilfe man Aerosole auf Filtermembranen sammeln kann.

Abbildung 42: Der GENT Sampler

Um dies zu bewerkstelligen, wird mit Hilfe einer Pumpe Umgebungsluft angesaugt und diese durch ein Filtersystem geleitet.

Der GENT Sampler besteht aus mehreren Einzelteilen die für einen erfolgreichen Betrieb zusammengebaut werden müssen. Die Hauptbestandteile des GENT Samplers sind eine Vakuumpumpeinheit und eine Filterkammer. Im Betrieb wird die Vakuumpumpeinheit unter Verwendung eines flexiblen Plastikschlauchs mit der Filterkammer verbunden. In der Filterkammer können bis zu zwei Filtermembranen gleichzeitig platziert werden. Während einer Aerosolsammlung wird die Filterkammer zum Schutz vor Umwelteinflüssen in einem Kunststoffzylinder verstaut.

Die Betriebsweise des GENT Samplers ist recht einfach. Im Betrieb wird mittels der Pumpe Luft durch den Kunststoffzylinder und somit auch durch die Filterkammer gesaugt. Dabei passiert die Luft die in der Filterkammer eingelegten Filtermembranen, wodurch sich die in der Luft befindlichen Aerosole auf den Membranen ablagern. Für den Betrieb wird der GENT Sampler an eine normale Netzsteckdose angeschlossen. Für einen optimalen Betrieb während eines Sammelzyklus wird empfohlen, zwischen dem Boden und der Unterkante des Kunststoffzylinders einen Mindestabstand von 1,6m einzuhalten.

Der GENT Sampler verfügt über zwei verschiedene Betriebsmöglichkeiten. Die Pumpeinheit kann entweder im Dauerbetrieb oder mittels eines Timers für eine bestimmte Stundenanzahl betrieben werden. Des Weiteren ist er mit einem Gasdurchflussmesser und einem Gasvolumenmesser ausgestattet.

Die in der Umgebungsluft befindlichen Aerosole wurden auf Filtermembranen der Marke Whatman Nucleopore gesammelt. Hierbei handelt es sich um dünne Membranen aus Polycarbonat, in denen Löcher in Mikrometergröße vorhanden sind. Für diese Aufgabenstellung standen sogenannte PM 10-2,5 und PM 2,5-0 Filter zur Verfügung. Dabei steht die Abkürzung PM für das englische Wort particulate matter, was übersetzt Feinstaub bedeutet. Der Zahlenbereich gibt an, für welche Aerosoleteilchengröße die Filtermembrane ausgelegt ist. Aufgrund der vorhandenen Löcher eignet sich eine PM 10-2,5 Filtermembrane für die Sammlung von Aerosolen, deren Größe im Bereich von 10 µm bis 2,5 µm liegt. Eine PM 2,5-0 Filtermembrane kann wesentlich feinere Partikel in der Größenordnung von 2,5 µm bis hin zu 0 µm sammeln. Damit die Teilchen besser auf der PM 10-2,5 Filtermembrane haften bleiben, ist diese auf einer Seite mit einer sehr dünnen Schicht Vaseline beschichtet. Mittels dieser Beschichtung soll eventueller Probenverlust verhindert werden. Die PM 2,5-0 Filtermembrane hingegen ist nicht beschichtet.

Um eine Verknüpfung zwischen den gesammelten Elementen und deren Größe herstellen zu können, kommen bei einer Sammlung zwei Filtermembranen mit unterschiedlichen Porengrößen zur Anwendung.

Beim Einlegen der Filtermembrane in die Filterkammer ist darauf zu achten, dass die PM 10-2,5 Filtermembrane so platziert wird, dass die angesaugte Luft die mit Vaseline beschichtete Seite zuerst passieren kann. Dahinter befindet sich die Filtermembrane mit PM 2,5-0 Porengröße. Für eine genaue Beschreibung des Ladevorgangs der Filterkammer siehe Kapitel 2.2 Filtermembrane loading into the stacked Filtermembrane cassette des "Operating manual for GENT sampler" [13].

20.4 Herangehensweise an die Problemstellung

Zu Beginn dieser Problemstellung lagen keine Erfahrungsberichte über die Sammlung von Aerosolen mittels des GENT Samplers vor. Daher wurden, um sich mit der Betriebsweise des GENT Samplers vertraut zu machen, einige Probesammlungen durchgeführt. Die dabei verwendeten Filtermembranen wurden anschließend mit dem Spektrometer untersucht. Des Weitern wurden diese Probesammlungen genutzt, um einen passenden Ort für die gleichzeitige Sammlung von Aerosolen unter Verwendung des GENT Samplers und Dekati-Impaktors zu finden. Bei der Auswahl des Sammelorts musste darauf geachtet werden, dass während der gleichzeitigen Sammlungen keine Ereignisse auftraten, die zu einer Verfälschung der Messergebnisse führen konnten. Die erste Probesammlung fand im Röntgenlabor im zweiten Keller des Atominstitutes statt. Hierfür wurden zwei Filtermembranen in die Filterkammer eingelegt und mit der Vakuumpumpeinheit verbunden. Die Betriebsdauer des GENT Samplers betrug für die erste Probesammlung etwa eine Stunde. Nachdem der Sammelvorgang abgeschlossen war, wurden die beiden Filtermembranen nacheinander aus der Filterkammer entnommen und mit dem Spektrometer, mittels der vorhandenen "Gerelmaa_APM" Applikation, gemessen. Die Tabelle 15 zeigt die gemessenen Blank-korrigierten Zählraten und berechneten Konzentrationen der wichtigsten Elemente.

1 Std Sammlung im Labor					
	PM 10 - 2,5		PM 2,5 - 0		
Elemente	Korrigierte Zählrate [Cps/mA]	Konzentration [ng/cm2]	Korrigierte Cps/mA	Konzentration [ng/cm2]	
Al	-	-	0,03	46,98	
Si	0,481	462,7	0,596	573,5	
Р	-	-	-	-	
S	0,117	39,01	0,052	17,43	
Cl	0,174	34,56	0,061	12,12	
K	0,433	44,49	0,327	33,60	
Ca	1,599	218,0	0,867	118,3	
Ti	0,763	78,59	0,2	20,64	
Cr	0,01	0,620	0,07	4,425	
Mn	0,02	3,260	-	-	
Fe	0,651	95,64	0,732	107,6	
Со	0,01	1,15	-	-	
Ni	0,025	2,444	-	-	
Cu	0,035	3,039	0,064	5,553	
Zn	0,244	16,82	0,102	6,995	
Ga	0,008	2,104	-	-	

Tabelle 15: Auflistung der gemessenen Zählraten und berechneten Konzentrationen für die vorhandenen Elemente nach einer einstündigen Aerosolsammlung im Labor.

Wie der Tabelle 15 entnommen werden kann, sind die gemessenen Zählraten eines jeden Elements sehr niedrig. Lediglich das Element Kalzium weist eine Zählrate von ungefähr einem count per second auf. Um höhere Zählraten zu erreichen, wurde die Betriebszeit des GENT Samplers erhöht. Aus diesem Grund wurde eine Sammlung über das Wochenende im Röntgenlabor durchgeführt. Die Auswertung der Spektren der Filtermembranen ergab jedoch, dass die korrigierten Zählraten niedriger waren, als jene der wesentlich kürzeren einstündigen Sammlung (siehe Tabelle 16).

67,7 Std Sammlung Im Labor über das Wochenende					
	PM 10 - 2,5		PM 2,5 - 0		
Elemente	Korrigierte Zählrate [Cps/mA]	Konzentration [ng/cm2]	Korrigierte Cps/mA	Konzentration [ng/cm2]	
Al	0,02	31,45	-	-	
Si	0,141	135,7	0,114	109,3	
Р	-	-	-	-	
S	-	-	0,233	78,03	
Cl	0,047	9,352	0,103	4,55	
K	0,064	6,534	0,617	54,33	
Ca	0,405	55,18	0,205	27,96	
Ti	0,206	21,27	0,016	1,651	
Cr	-	-	-	-	
Mn	0,008	1,222	-	-	
Fe	0,123	18,12	0,034	4,927	
Со	0,008	0,963	-	-	
Ni	0,011	1,028	-	-	
Cu	0,002	0,148	0,026	2,216	
Zn	0,086	5,891	0,05	3,409	
Ga	0,009	2,351	-	-	

Tabelle 16: Auflistung der gemessenen Zählraten und berechneten Konzentrationen für die vorhandenen Elemente nach einer Aerosolsammlung über ein Wochenende im Labor.

Aufgrund der unterschiedlichen Zählraten der zwei durchgeführten Aerosolsammlungen im Röntgenlabor, wurde ein neuer Aufstellungsort für den GENT Sampler gesucht.

Neben dem Röntgenlabor befindet sich eine kleine Abstellkammer, die auch als bezeichnet wird. Hier wurden damals nicht benötigte Schmierstoffe oder Metallkomponenten gelagert. Um zu kontrollieren, ob mittels des neuen Standorts höhere Zählraten erreicht werden konnten, wurde abermals eine Probesammlung durchgeführt. Die Betriebsdauer des GENT Samplers betrug für diese Probesammlung sechs Stunden.

erste 6 Std Sammlung im Gitterkäfig am 12.3					
	PM 1	0 - 2,5	PM 2	2,5 - 0	
Elemente	Korrigierte Zählrate [Cps/mA]	Konzentration [ng/cm2]	Korrigierte Cps/mA	Konzentration [ng/cm2]	
Na	0,003	35,544	-	-	
Mg	-	-	0,009	34,11	
Al	0,028	43,438	0,035	54,79	
Si	-	-	0,155	149,44	
Р	-	-	-	-	
S	0,018	5,967	0,049	16,31	
Cl	0,129	25,72	0,214	42,61	
K	0,094	9,683	0,242	24,87	
Ca	0,552	75,20	0,650	88,58	
Ti	0,050	5,111	0,025	2,599	
V	-	-	-	-	
Cr	0,026	1,661	0,019	1,216	
Mn	0,023	3,702	-	-	
Fe	0,149	21,89	0,49	39,28	
Со	0,009	1,019	0,003	0,414	
Ni	0,014	1,393	0,004	0,384	
Cu	-	-	0,045	3,887	
Zn	0,043	2,945	0,184	12,68	
Ga	0,005	1,327	-	-	

Tabelle 17: Auflistung der gemessenen Zählraten und berechneten Konzentrationen für die vorhandenen Elemente nach einer sechsstündigen Aerosolsammlung im Gitterkäfig.

Wie der Tabelle 17 zu entnehmen ist, konnten Elemente nach einer sechsstündigen Sammlung im Gitterkäfig nachgewiesen werden, jedoch hat der Standortwechsel zu keiner drastischen Erhöhung der gemessenen Zählraten geführt. Da Spuren von Elementen mit einer relativ kurzen Sammeldauer von sechs Stunden nachgewiesen werden konnten, wurde beschlossen, einige gemeinsame Sammlungen mittels des GENT Sampler und des Dekati-Impaktors im Gitterkäfig durchzuführen. Um die gemessenen Ergebnisse miteinander vergleichen zu können, wurden die gemessenen Massen der vorhandenen Elemente auf das jeweilige Durchflussvolumen des entsprechenden Tages normiert. Es wurden insgesamt drei Sammlungen im Gitterkäfig durchgeführt:

Vergleich der Messergebnisse vom 13.03.2018						
	Dekati-Impakto	or [ng/m³]	GENT Sampler [ng/m ³]			
Element	Teilcheng	röße	Teilchengröße			
	2.5 bis 10 µm	< 2.5 µm	2 bis 10 µm	< 2 µm		
Cl	14,59	3,918	41,99	28,66		
K	5,337	1,089	31,15	40,60		
Ca	99,35	58,72	165,8	93,29		
Ti	5,562	1,274	12,93	0,000		
Cr	0,160	0,068	3,406	4,510		
Mn	1,374	1,261	4,020	0,000		
Fe	45,65	50,80	55,67	57,51		
Cu	1,087	1,503	0,370	3,809		
Zn	2,190	2,743	10,10	6,245		
Sr	0,171	0,145	1,724	1,499		
Pb-L	0,379	0,250	0,000	0,029		

• Erste Sammlung am 13.03.2018 ergab folgende Messergebnisse:

Tabelle 18: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen Teilchengrößen der ersten gemeinsamen Sammlung im Gitterkäfig.

-						
Vergleich der Messergebnisse vom 14.03.2018						
	Dekati-Impakt	or [ng/m³]	GENT Sampler [ng/m ³]			
Element	Teilcheng	röße	Teilchengröße			
	2.5 bis 10 µm	< 2.5 µm	2 bis 10 µm	< 2 µm		
Cl	13,64	1,697	27,801	26,70		
K	9,874	0,000	27,608	38,71		
Ca	184,59	51,54	221,94	136,1		
Ti	5,049	1,622	12,14	3,450		
Cr	0,177	0,000	4,363	17,07		
Mn	1,670	1,080	4,688	2,655		
Fe	51,71	30,92	62,35	65,43		
Cu	1,178	0,882	0,000	0,672		
Zn	4,100	1,738	6,747	7,911		
Sr	0,322	0,055	0,000	0,000		
Pb-L	1.306	0.509	0.000	0.000		

• Zweite Sammlung am 14.03.2018 ergab folgende Messergebnisse:

 Tabelle 19: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen Teilchengrößen der zweiten gemeinsamen Sammlung im Gitterkäfig.

Vergleich der Messergebnisse vom 15.03.2018						
	Dekati-Impakt	or [ng/m³]	GENT Sampler [ng/m ³]			
Element	Teilcheng	röße	Teilchen	größe		
	2.5 bis 10 µm	< 2.5 µm	2 bis 10 µm	< 2 µm		
Cl	4,554	0,000	24,860	19,84		
K	2,621	0,684	22,826	40,66		
Ca	53,88	24,07	135,03	51,90		
Ti	1,852	0,735	0,000	0,000		
Cr	0,266	0,210	1,072	3,381		
Mn	0,785	0,964	5,249	0,828		
Fe	31,78	37,77	33,30	49,08		
Cu	0,917	1,267	0,000	0,335		
Zn	1,713	2,322	0,052	5,333		
Sr	0,133	0,000	0,361	0,000		
Pb-L	4,646	5,875	0,000	6,882		

• Dritte Sammlung am 15.03.2018 ergab folgende Messergebnisse:

Tabelle 20: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen Teilchengrößen der dritten gemeinsamen Sammlung im Gitterkäfig.

Weiters wurden auch am Dach des Atominstituts der TU Wien zwei Sammlungen durchgeführt:

	Vergleich der Messergebnisse vom 21.03.2018						
	Dekati-Impakto	or [ng/m ³]	GENT Sampler [ng/m ³]				
Element	Teilchengr	тöße	Teilcheng	röße			
	2.5 bis 10 µm	< 2.5 µm	2 bis 10 µm	< 2 µm			
Cl	33,92	2,698	45,66	32,72			
K	4,227	1,233	13,91	58,261			
Ca	76,44	22,50	73,33	44,851			
Ti	2,102	1,163	5,269	1,347			
Cr	0,103	0,139	0,349	0,512			
Mn	1,819	0,986	2,222	0,000			
Fe	54,40	35,13	38,38	49,21			
Cu	1,095	0,871	0,629	1,802			
Zn	2,416	1,392	2,309	4,694			
Sr	0,151	0,038	0,000	0,000			
Pb-L	0.177	0.245	0.000	2,191			

• Erste Sammlung am 21.03.2018 ergab folgende Messergebnisse:

Tabelle 21: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen Teilchengrößen der ersten gemeinsamen am Dach des Atominstituts.

Vergleich der Messergebnisse vom 27.03.2018						
	Dekati-Impakto	or [ng/m³]	GENT Sampler [ng/m ³] Teilchengröße			
Element	Teilcheng	röße				
	2.5 bis 10 µm	< 2.5 µm	2 bis 10 µm	< 2 µm		
Cl	426,7	23,44	810,3	77,5		
K	43,86	10,60	95,701	128,1		
Ca	436,4	112,5	737,2	213,4		
Ti	9,473	4,392	28,66	5,842		
Cr	2,009	0,650	0,954	0,134		
Mn	7,990	3,737	5,178	2,910		
Fe	239,7	135,9	288,9	179,6		
Cu	5,828	3,702	6,204	7,179		
Zn	6,515	13,39	13,52	10,84		
Br	0,133	0,047	0,000	0,000		
Rb	0,150	0,015	0,000	0,000		
Sr	0,842	0,248	0,000	0,000		
Pb-L	0,390	0,498	0,000	2,709		

• Zweite Sammlung am 27.03.2018 ergab folgende Messergebnisse:

Tabelle 22: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen Teilchengrößen der zweiten gemeinsamen Sammlung am Dach des Atominstituts.

20.5 Fazit

Vergleicht man die gemessenen Werte für die zwei unterschiedlichen Sammelmethoden in den Tabellen 18 bis 22 für Aerosole die kleiner als 2.5 µm sind, so weichen diese oftmals stark voneinander ab. Ursache hierfür ist die Tatsache, dass beim Dekati-Impaktor die Messergebnisse des Back-up Filters nicht berücksichtigt wurden. Grund dafür war, dass die verwendeten Back-up Filter bereits vor der Sammlung der Aerosole mit Elementen verunreinigt waren und diese somit nicht für eine Auswertung geeignet waren. Deshalb eignen sich die Werte von Aerosole die kleiner als 2.5 µm sind nicht für einen Vergleich.

Um die Ergebnisse für die gröberen Aerosole besser vergleichen zu können, werden die gemessenen Werte für jeden Tag von GENT Sampler und Dekati-Impaktor ins Verhältnis gesetzt. In Tabelle 23 sind einige dieser berechneten Verhältnisse für ein paar Elemente eingetragen. Entspricht das gebildete Verhältnis dem Wert eins, so wurde mit beiden Messmetoden das gleiche Ergebnis erhalten.

Elemente Verhältnis von Gent/Dekati für PM 10 - 2,5						Mittolwort	Standard-
Elemente	13.03.18	14.03.18	15.03.18	21.03.18	27.03.18	WIILLEIWEIL	abweichung
Cl	2,88	2,04	5,46	1,35	1,90	2,72	1,62
K	5,84	2,80	8,71	3,29	2,18	4,56	2,70
Ca	1,67	1,20	2,51	0,96	1,69	1,61	0,59
Fe	1,22	1,21	1,05	0,71	1,21	1,08	0,22
Cu	0,34	0,00	0,00	0,57	1,06	0,40	0,45
Zn	4,61	1,65	0,03	0,96	2,07	1,86	1,72

Tabelle 23: Verhältnisse zwischen den auf das Durchflussvolumen normierte Massen für Dekati-Impaktor und GENT Sampler

Bei dem Vergleich der gemessenen Werte muss berücksichtigt werden, dass beide Sammelmethoden und Messmethoden grundsätzlich verschieden sind. Da die verwendeten Quarzreflektoren des Dekati-Impaktors nach 105 Minuten ausgewechselt werden, kann mit diesem System zeitliche Schwankungen überwacht werden. Dies ist mittels des GENT Samplers nicht möglich. Weiters können mittels TXRF können wesentlich niedrigere Nachweisgrenzen erreicht werden als mit EDXRF.

Wie der Tabelle 23 entnommen werden kann, stimmen die berechneten Mittelwerte unter Berücksichtigung der unterschiedlichen Voraussetzungen für die Sammlung von Aerosolen annähernd miteinander überein.

21 Erstellung von mehreren Applikationen für die Messung von Aerosolen

21.1 Aufgabenstellung

Zu Beginn dieser Arbeit war nur eine Applikation zur Messung von auf Filtermembranen befindlichen Aerosolen vorhanden. Diese Applikation hat den Namen "Gerelmaa_APM" und wurde von Gunchin Gerelmaa unter Verwendung von zertifizierten mit Elementen beschichteten Filtermembranen erstellt. Unter Verwendung dieser Applikation wird eine Membrane mit dem Aluminium-, Kalziumfluorit-, Eisen-, Germanium-, Zirkon-, Molybdän-, Silber- und Aluminiumoxid-Sekundärtargets für jeweils 300 Sekunden pro Target gemessen, um diese auf fast jedes Element zu untersuchen. Dadurch ergibt sich für diese Applikation der Nachteil, dass die Filtermembranen eventuell auf nicht vorhandene Elemente bzw. auf Elemente die nicht von Interesse sind untersucht werden. Dies kann zu einer unnötigen langen Messzeit führen.

Um die Messzeit zu verkürzen, indem beladene Filtermembranen nur auf bestimmte Elemente untersucht werden, sollen zusätzlich zu der bereits vorhanden "Gerelmaa_APM" Applikation weitere Applikationen erstellt werden, die für die Analyse auf bestimmte Elemente ausgelegt sind.

21.2 Durchführung

Die für diese Aufgabenstellung vorhandenen Filtermembranen stammten von zwei unterschiedlichen Marken. Es standen Membranen der Marke MYLAR und Nuclepore zur Verfügung. Von beiden Marken waren sowohl reine als auch beladene Filtermembranen vorhanden. Um diese Filter vor Kontaminationen durch die Umgebung zu schützen, wurden die Membranen in kleinen Kunststoffbehälter aufbewahrt. Auf jeden Kunststoffbehälter war eine Plakette angebracht, auf der die Seriennummer des Filters, die Elemente mit denen der Filter beladen war und deren Massenbelegung in μ g/cm² stand. Für eine bessere Handhabung der Filter wurden diese von beiden Firmen immer auf einem dünnen Kuststoffring montiert. Mittels der reinen Filter konnte für alle erstellten Applikationen eine Blank-Korrektur durchgeführt werden (siehe Kapitel 15). Des Weiteren wurde für die erstellten Applikationen auch die Messung eines Monitors berücksichtigt (siehe Kapitel 16). Für eine genaue Übersicht der verwendeten Filter sowie deren Elemente und Massenbelegungen siehe Anhang C.1, C.2, C.3, C.4 und C.5. Für die Messung der Filter wurde zusätzlich immer ein Aluminiumbecher im Stahlbecher platziert um zu verhindern, dass aufgrund der geringen Probendicke der Stahlbecher angeregt wird.

Insgesamt wurden vier neue Applikationen erstellt.

Abbildung 43: links: mit Siliziumoxid beschichtete Filtermembrane der Marke MYLAR rechts: mit Siliziumoxid beschichtete Filtermembrane der Firma Nuclepore

21.2.1 Bestimmung der Elemente Natrium und Magnesium

Die erste erstellte Applikation dient zur Bestimmung der Elemente Natrium und Magnesium und trägt die Bezeichnung "Luftfilter calib – Elemente Na und Mg mit Sek.Tar Al". Diese Applikation verwendet für die Messung ausschließlich das Aluminium-Sekundärtarget. Der verwendete Strom- bzw. Spannungswert für das Sekundärtarget stimmt mit den angegebenen Empfehlungen (siehe Anhang H) überein. Die Messzeit beläuft sich auf 2000 Sekunden. Dies ermöglicht sehr geringe Nachweisgrenzen für die Elemente Natrium und Magnesium (siehe Kapitel 14). Da für diese Applikation nur die Elemente Natrium und Magnesium von Interesse sind, wurden auch nur jene Filter, die über diese Elemente verfügten, für die Erstellung der Kalibrierungskurven verwendet. Hierzu gehörten die Membranen mit den Seriennummern 38630 und 38631 der Marke Nuclepore (siehe Anhang C.1).

21.2.2 Fazit für die Kalibrierung der Elemente Natrium und Magnesium

Da jeweils nur ein Standard pro Element vorhanden war, kann keine Aussage über die Genauigkeit der Kalibrierungskurven getroffen werden. Weiters war keine Probe vorhanden, mit der die Kalibrierung überprüft werden konnte.

21.2.3 Bestimmung von leichten Elementen

Die zweite Applikation dient zur Untersuchung von Filtermembranen auf häufig in der Luft vorkommende Elemente. Hierzu gehören die leichten Elemente des Periodensystems, beginnend mit Natrium bis hin zu Rubidium. Da mit dem verwendeten Zirkon-Sekundärtarget zusätzlich die L_a-Linie von Blei angeregt werden kann, werden Membranen auch auf dieses schwere Element untersucht. Die dafür erstellte Applikation trägt die Bezeichnung "Luftfilter calib". Diese Applikation verwendet für die Messung mehrere Sekundärtargets. Für die Untersuchung einer Probe wird das Aluminium-, Kalziumfluorit-, Eisen-, Germanium- und Zirkon-Sekundärtarget verwendet. Der verwendete Strom- bzw. Spannungswert für das jeweilige Sekundärtarget stimmt mit Anhang G überein. Die Messzeit beläuft sich für das Aluminium -Sekundärtarget auf 600 Sekunden und für die restlichen Sekundärtargets auf 360 Sekunden. Für die Erstellung der benötigten Kalibrierungskurven wurden sämtliche Membranen gemessen, die in Anhang D.1 und D.2 aufgelistet sind. Weiters wurden auch Membranen, auf denen mehrere Elemente vorhanden waren, gemessen (siehe Anhang C.5). Die Messergebnisse dieser Membranen wurden aber nicht für die Erstellung der Kalibrierungskurven verwendet. Dies hatte zwei Gründe: Einerseits waren die vorhanden Filter sehr klein und konnten dadurch nur sehr schlecht im Stahlbecher platziert werden, sodass sie die ganze Messfläche nicht bedecken konnten. Andererseits fiel bei der Auswertung der Spektren auf, dass mehr Elemente in den Spektren vorhanden waren, als für die Membranen angegeben wurden.

Bei der Messung von Membranen der Marke Nuclepore wurde festgestellt, dass nicht jede der Membranen auf der gleichen Seite mit Elementen beladen war. Dies zeigte sich dadurch, dass bei der Messung einer Membrane mit Spalt eine größere Intensität der vorhandenen Elemente gemessen wurde, als bei der Messung ohne Spalt. Aufgefallen ist dies bei der Messung von leichten Elementen. Ursache für das schwache Signal des vorhandenen Elements war die vorhandene Membrane, die einen Großteil der charakteristischen Röntgenstrahlung absorbierte.

Die meisten dieser Filter konnten in dem Stahlbecher platziert werden, sodass die beladene Seite mit der Referenzebene übereinstimmte (siehe Kapitel 9.3 und rechte Darstellung von Abbildung 44). Aufgrund des vorhandenen Kunststoffrings mussten einige Filter jedoch so eingelegt werden, dass ein kleiner Spalt zwischen der Innenseite des Stahlbechers und der beschichteten Filterseite entstand (siehe linke Darstellung von Abbildung 45). Dies betraf die Filter beginnend mit der Seriennummer #38633 bis hin zu #38643, was den Elementen Silizium bis Mangan entsprach.

Bei den Membranen der Marke MYLAR wurden alle Membranen mit vorhandenem Spalt gemessen.

Abbildung 44: Schematische Darstellung der zwei möglichen Platzierungen einer Filtermembrane in einem Stahlbecher, sodass die von der Probe ausgesendete Röntgenstrahlung nicht von der Filtermembrane absorbiert wird. Die linke Abbildung zeigt eine im Stahlbecher eingelegte Filtermembrane, bei der die beladene Seite mit der Referenzebene übereinstimmt. Die rechte Abbildung hingegen zeigt den entgegengesetzten Fall, bei der die beladene Seite mit der Referenzebene nicht übereinstimmt. Die Farben stehen für: Schwarz = Stahlbecher, Rot = Aluminiumbecher, Grün = Kunststoffring, Gelb = Filtermembrane, Blau = auf der Filtermembrane befindliche Ablagerung.

Durch den Spalt stimmte die Fläche der beschichteten Filterseite nicht mit der Referenzebene des Spektrometers überein (siehe Kapitel 9.3). Bei einer Messung wirkte sich dies in Form einer Abschwächung der gemessen Intensitäten aus. Würde man den Spalt bei der Erstellung von Kalibrierungskurven nicht berücksichtigen und die auf einen Filter angegebene Massenbelegung ohne Korrektur in die Software eingegeben, so ergäbe sich ein falscher Zusammenhang zwischen der gemessenen Intensität und der vorhandenen Massenbelegung. Um dies zu verhindern, wurde eine Korrektur der auf der Membrane vorhandenen Massenbelegung durchgeführt. Da es sich bei den beladenen Filtermembranen um sogenannte dünne Proben handelte, würde eine Änderung in den vorhandenen Konzentrationen der Elemente zu einer linearen Änderung der gemessenen Intensität führen (siehe Kapitel 10.1.2). Eine Verringerung der gemessenen Intensität eines Elements ist daher gleichbedeutend mit einer Verringerung der vorhandenen Massenbelegung.

Um den Geometriefaktor für die Verringerung der Massenbelegung bestimmen zu können, musste der Verlust an Intensität aufgrund des Spalts bestimmt werden. Hierfür wurden schwere Elemente einmal mit und einmal ohne Spalt gemessen.

Da bei den leichten Elementen Membranen nicht auf der gleichen Seite mit Elementen beladen waren, war es zu Beginn nicht klar, ob dies nicht auch auf andere Membranen zutraf. Aus diesem Grund wurden zuerst die zwei möglichen Varianten und deren Auswirkungen auf die Bestimmung des Geometriefaktors genauer betrachtet:

Variante 1: Die Filtermembrane befindet sich zwischen Kunststoffring und dem Probenmaterial

Im Falle der Messung ohne Spalt (siehe linke Darstellung von Abbildung 45) trifft die vom Sekundärtarget erzeugte Röntgenstrahlung auf die vorhandene Probe und regt diese zur Aussendung von charakteristischer Röntgenstrahlung an. Es kommt zu keiner Abschwächung der ausgesendeten Röntgenstrahlung durch die Filtermembrane.

Im Falle der Messung mit Spalt (siehe rechte Darstellung von Abbildung 45) muss die vom Sekundärtarget erzeugte Röntgenstrahlung zuerst die Folie der Membrane durchqueren, bevor sie die dahinterliegende Probe anregen kann. Des Weiteren muss die ausgesendete charakteristische Röntgenstrahlung des Probenmaterials auf dem Weg zum Detektor ebenfalls die Membrane durchqueren. Es kommt somit aufgrund des Spalts und durch die Absorption von Röntgenstrahlung durch die Filtermembrane zu einer Abschwächung der gemessenen Intensitäten.

Abbildung 45: Variante 1 der zwei möglichen Platzierungen einer Filtermembrane in einem Stahlbecher. Die Farben stehen für: Schwarz = Stahlbecher, Rot = Aluminiumbecher, Grün = Kunststoffring, Gelb = Filtermembrane, Blau = auf der Filtermembrane befindliche Ablagerung.

Variante 2: Das Probenmaterial befindet sich zwischen Kunststoffring und der

Filtermembrane

Im Falle der Messung ohne Spalt (siehe linke Darstellung von Abbildung 46) muss die vom Sekundärtarget erzeugte Röntgenstrahlung zuerst die Folie des Filters durchqueren, bevor sie die dahinterliegende auf den Filter aufgebrachte Probe anregen kann. Des Weiteren muss die ausgesendete charakteristische Röntgenstrahlung des Probenmaterials ebenfalls auf dem Weg zum Detektor die Membrane durchqueren. Es kommt somit aufgrund des Spalts und durch die Absorption von Röntgenstrahlung durch die Filtermembrane zu einer Abschwächung der gemessenen Intensitäten.

Im Falle der Messung mit Spalt (siehe rechte Darstellung von Abbildung 46) trifft die vom Sekundärtarget erzeugte Röntgenstrahlung auf die vorhandene Probe und regt diese zur Aussendung von charakteristischer Röntgenstrahlung an. Es kommt zu keiner Abschwächung der ausgesendeten Röntgenstrahlung durch die Filtermembrane. Es kommt somit nur aufgrund des Spalts zu einer Abschwächung der gemessenen Intensitäten.

Abbildung 46: Variante 2 der zwei möglichen Platzierungen einer Filtermembrane in einem Stahlbecher. Die Farben stehen für: Schwarz = Stahlbecher, Rot = Aluminiumbecher, Grün = Kunststoffring, Gelb = Filtermembrane, Blau = auf der Filtermembrane befindliche Ablagerung.
Für die Bestimmung des Geometriefaktors werden zwei Annahmen getroffen:

- Die Absorption der einfallenden Röntgenstrahlung des Sekundärtargets durch die Filtermembrane kann vernachlässigt werden.
- Die Absorption der ausgesendeten K_{α} -Line des Probenmaterials durch die Filtermembrane kann ebenfalls vernachlässigt werden.

Die erste Annahme liegt darin begründet, dass die Wahrscheinlichkeit für die Absorption der einfallenden Röntgenstrahlung, deren Energie groß genug ist, um im Probenmaterial charakteristische Röntgenstrahlung zu erzeugen, aufgrund der sehr dünnen Filtermembrane vernachlässigbar ist. Die zweite Annahme liegt darin begründet, dass aufgrund der relativ hohen Energien der K_{α}-Linien des Probenmaterials die Wahrscheinlichkeit für die Absorption der ausgesendeten charakteristischen Röntgenstrahlung des Probenmaterials durch die sehr dünne Filtermembrane gering ist. Mittels dieser beiden Annahmen beschreiben beide zuvor beschriebenen Varianten das gleiche Phänomen. Nämlich, dass die Abschwächung der Intensität auf den Spalt zurückzuführen ist.

Unter Voraussetzung dieser beiden Annahmen kann der aufgrund des Spalts auftretende Geometriefaktor berechnet werden, indem die ermittelte Intensität für den Fall mit Spalt und die ermittelte Intensität für den Fall ohne Spalt ins Verhältnis gesetzt wird.

Für die Bestimmung des Verlustfaktors wurden die Elemente Silber, Molybdän und Rubidium mit unterschiedlichen Sekundärtargets mehrmals mit und ohne Spalt gemessen und der Geometriefaktor bestimmt (siehe Anhang C.6). Tabelle 24 liefert eine Zusammenfassung der berechneten Geometriefaktoren für die durchgeführten Messungen sowie die Bestimmung des Mittelwerts.

Zusammenfassung der Ergebnisse						
Geometriefaktor Standardabwei						
Ausgangslage Nr.1	0,95	0,02				
Ausgangslage Nr.2	0,95	0,02				
Ausgangslage Nr.3	0,94	0,01				
Ausgangslage Nr.4	0,94	0,01				
Ausgangslage Nr.5	0,96	0,02				
Mittelwert	0,95	0,08				

Tabelle 24: Berechnung der Geometriefaktoren

Die durchgeführten Messungen ergaben einen Geometriefaktor von 0,95. Jede Massenbelegung einer Membrane, die mit einem Spalt zwischen der Referenzebene und der Probenebene gemessen wurde, wurde mit diesem Wert multipliziert, um somit die für das Spektrometer vorhandene effektive Massenbelegung zu berechnen. Da die Filtermembranen der Marken Nuclepore und MYLAR auf gleich hohen Kunststoffringen montiert waren und sich die Dicke der MYLAR Membranen optisch nicht von denen der Marke Nuclepore unterschieden, wurde für die MYLAR Membranen ebenfalls der gleiche Geometriefaktor verwendet.

21.2.4 Fazit für die Kalibrierung der leichten Elemente

Zur Überprüfung der erstellten Kalibrierungskurven stand der zertifizierte Luftfilter "SRM 2783 Air particulate on filter media" von der US-Amerikanischen Firma National Institute of Standards & Technology zur Verfügung (siehe Anhang H). Hierbei handelt es sich um eine Filtermembrane, die mit Elementen beladen ist, die oftmals in der Luft als Aerosole auftreten. Die Membrane wurde mit dieser Applikation gemessen um die vorhandenen Massenbelegungen der Elemente mit den selbst erstellten Kalibrierungskurven zu bestimmten Massenbelegungen mit dem Durchmesser der Membrane, dieser beträgt laut Zertifikat 9,96 cm, multipliziert. Diese Massen wurden mit jenen Werten der am 23.03.2018 mit der "Gerelmaa_APM" Applikation durchgeführten Messung und den Werten aus dem Standardzertifikat verglichen (siehe Tabelle 25 und Anhang H).

Element	Zertifizierte Masse [ng]	Gerelmaa_APM 23.03.2018 [ng]	Applikation Luftfilter calib [ng]	Abweichung zur zertifizierten Masse [%]	Abweichung zur Messung vom 23.03.2018 [%]
Na	1860	-	-	-	-
Mg	8620	2658	328,7	96,19	96,38
Al	23210	19905	19949	14,05	99,93
Si	58600	64597	52479	10,44	99,98
S	1050	588	906,4	13,68	97,67
Cl	-	690	-	-	-
K	5280	5605	5976	-13,18	100,2
Ca	13200	11862	11454	13,23	99,89
Ti	1490	1401	1513	-1,61	100,1
V	48,5	16	29,88	38,39	-140,0
Cr	135	139	139,4	-3,29	102,4
Mn	320	274	338,6	-5,83	102,1
Fe	26500	26131	26125	1,41	99,99
Co	7,7	-	39,84	-417,4	-
Ni	68	81	59,76	12,12	85,04
Cu	404	363	428,3	-6,01	101,7
Zn	1790	1827	1872	-4,61	100,3
Sr	-	57	-	-	-
Pb	317	281	308,8	2,60	99,07
As	11,8	-	0	100,0	-
Br	-	154	-	-	-

Tabelle 25: Vergleich der vorhandenen Massen und Abweichungen der im NIST 2783 Standard vorhandenen Elemente mit gemessenen Werten.

In Abbildung 48 werden die gemessenen Werte mit den zertifizierten Werten graphisch dargestellt. Da die vorhandenen Werte einen großen Zahlenbereich abdecken, werden diese mit Hilfe einer logarithmischen Skala dargestellt. Das Element Natrium wird, wie bereits bei vorherigen Messungen, von der Software nicht im Spektrum gefunden. Ursache hierfür liegt in der schlechten Detektion von leichten Elementen (siehe Kapitel 8). Im Gegensatz zu früheren Messungen wird das Element Arsen aufgrund der Überlagerung mit anderen Spektrallinien nicht von der Software erkannt. Das Element Magnesium wird stark unterschätzt. Ursache hierfür liegt in der schlechten Kalibrierungskurve für Magnesium. Da für deren Erstellung nur ein Standard zur Verfügung stand, konnte die Kurve nicht auf ihre Richtigkeit überprüft werden. Weiters kommt es in dem auszuwertenden Spektrum zu einem sehr stark ausgeprägten Aluminiumpeak, der sich mit dem Magnesiumpeak überlagert (siehe Abbildung 47). Dies kann ebenfalls zu einer Fehlinterpretation des Magnesiumanteils auf der Filtermembrane führen.

Abbildung 47: Spektrum des NIST 2783 Standards aus dem der Konzentrationsanteil für Magnesium bestimmt wird.

Für die anderen Elemente unterscheidet sich die Schwankung zwischen der neuesten Messung vom 23.03.2018 mit den zertifizierten Werten des NIST 2783 Standards nicht stärker als die vorhergegangenen Messungen (siehe Tabelle 14). Die vorliegenden Ergebnisse zeigen daher keine ernst zu nehmenden Veränderungen aufgrund des Wechsels der Röntgenröhre und des Standorts auf.

Abbildung 48: Vergleich der Massen des Standardzertifikats mit jenen Werten die am 23.03.2018 mit der "Gerelmaa_APM" Applikation bestimmt wurde

Als zweite Kontrollmöglichkeit zur Überprüfung der Kalibrierungskurven wird die Sensitivität herangezogen (siehe Kapitel 13). Die in Tabelle 26 aufgelisteten E-Werte wurden den erstellten Kalibrierungskurven entnommen. Um die berechnete Sensitivität korrekt über die Kernladungszahl auftragen zu können, müssen die Elemente in Gruppen aufgeteilt werden. Dabei umfasst eine Gruppe all jene Elemente, deren Auswertung über dasselbe Sekundärtarget erfolgt.

Sekundärtarget	Element	Kernladungszahl	E-Wert	Sensitivität
A 1	Na	11	11,34	0,09
Aluminium	Mg	12	3,17	0,32
	Al	13	1,66	0,60
	Si	14	0,72	1,39
Kolziumfluorit	Р	15	0,36	2,80
Kaiziuiiiiiuorit	S	16	0,29	3,34
	Cl	17	0,20	5,11
	K	18	0,09	11,14
	Ca	19	0,13	7,89
Ficon	Ti	21	0,10	9,54
Eisen	V	22	0,08	12,20
	Cr	23	0,06	16,89
Germanium	Mn	24	0,18	5,50
	Fe	25	0,15	6,82
	Со	26	0,12	8,60
	Ni	27	0,09	10,54
	Cu	28	0,09	11,55
	Zn	30	0,07	14,43
Tinkon	Ga	31	0,22	4,47
	Ge	32	0,12	8,11
	As	33	0,09	11,12
ZIIKOII	Se	34	0,12	8,05
	Br	35	0,10	9,86
	Rb	37	0,09	11,43

Tabelle 26: Aus den Kalibrierungskurven der Applikation Luftfilter calib entnommene E-Werte und der berechnete Sensitivität.

Abbildung 49: Darstellung der berechneten Sensitivitätswerte der vorhandenen Elemente für jedes Sekundärtarget. Es werden jeweils die Elemente, die mit demselben Sekundärtarget ausgewertet wurden, in Gruppen zusammengefasst.

Wie man Tabelle 26 bzw. Abbildung 49 entnehmen kann, ergeben sich für die Elemente die mit dem Aluminium-, Kalziumfluorit-, Eisen- und Germanium-Sekundärtarget ausgewertet wurden, ein stetiger Anstieg der Sensitivität. Lediglich bei den Elementen, die mit dem Zirkon-Sekundärtarget ausgewertet wurden, ergab sich vom Element Arsen auf Selen ein Sprung in der Sensitivität. Warum dies so ist kann leider nicht beantwortet werden. Eine Möglichkeit liegt darin, dass die Kalibrierungskurven zu flach sind. Leider gab es aber für diese Elemente nur eine Filtermembrane, wodurch die Genauigkeit der Kalibrierungskurven nicht überprüft werden konnte. Es konnte lediglich festgestellt werden, dass bei der vorhandenen Gerelmaa-APM Applikation ebenfalls beim Element Arsen auf Selen ein Sprung in der Sensitivität feststellbar war.

21.2.5 Bestimmung von schweren Elemente

Die dritte und vierte Applikation dient zur Untersuchung von Filtern auf die schweren Elemente des Periodensystems beginnend mit Rubidium bis hin zum schwersten vorhandenen Element Uran. Diese tragen die Bezeichnungen "Luftfilter calib – schwere Elemente mit Sek.Tar Ag" und "Luftfilter calib – schwere Elemente mit Sek.Tar Al2O3". Die erste der beiden Applikationen verwendet für die Messung ausschließlich das Silber-Sekundärtarget wohingegen die zweite Applikation ausschließlich das Aluminiumoxid-Sekundärtarget verwendet. Die Messzeit beläuft sich für das Silber-Target auf 360 Sekunden und bei dem Aluminiumoxid-Target auf 1000 Sekunden. Der verwendete Strom- bzw. Spannungswert für das Sekundärtarget stimmt mit den angegebenen Empfehlungen (siehe Anhang H) überein. Für die Erstellung der benötigten Kalibrierungskurven wurden sämtliche Membranen, die in Anhang D.3 und D.4 aufgelistet sind, gemessen. Zusätzlich zu diesen Elementen wurden auch noch Kalibrierungskurven für Kalzium, Zink und Eisen erstellt, da diese Elemente häufig bei Luftfilterproben vorhanden sind.

Mit beiden Sekundärtargets wird eine Probe zwar auf die gleichen Elemente analysiert, jedoch verwenden die beiden Applikationen bei der Auswertung gewisser Elemente unterschiedliche charakteristische Röntgenlinien. Aufgrund der Energie der charakteristischen Röntgenstrahlung des Silber-Sekundärtargets erfolgt die Analyse mittels der L_{α}-Linie, beginnend mit dem Element Cadmium. Beim Aluminiumoxid-Sekundärtarget hingegen erfolgt die Analyse der Elemente hauptsächlich über die K_{α}-Linien. Lediglich die Elemente Quecksilber, Blei, Bismut, Thorium und Uran müssen über ihre L-Linien ausgewertet werden, da deren K-Linien aufgrund ihrer hohen Energie nicht im aufgenommen Spektrum angezeigt werden können.

21.2.6 Fazit für die Kalibrierung der schweren Elemente

Da jeweils nur ein Standard pro Element vorhanden war, kann keine Aussage über die Genauigkeit der Kalibrierungskurven getroffen werden. Des Weiteren war keine Probe vorhanden, mit der die Kalibrierung überprüft werden konnte.

22 Untersuchung von Silber in Titanmatrix

22.1 Aufgabenstellung

Diese Aufgabenstellung wurde in Zusammenarbeit mit Dipl.-Ing. Andreas Nagl vom Forschungsbereich Physikalische Chemie des Institut für Materialchemie der TU Wien bearbeitet. Im Rahmen seiner Doktorarbeit hat er ein feines Pulver bestehend aus den Ausgangsstoffen Titan und Silber hergestellt. Dieses Pulver sollte sich dadurch auszeichnen, dass die vorhandenen Silberatome von den Titanatomen umgeben sind. Um dies zu kontrollieren, wurde mittels der Messmethode Röntgenphotoelektronenspektroskopie (kurz XPS) der oberflächennahe Bereich des Pulvers untersucht. Dabei wurde nur ein sehr geringer Anteil an Silber nachgewiesen.

Dafür gibt es zwei mögliche Erklärungen:

Entweder verbargen sich die Silberatome tatsächlich in der Titanmatrix oder ein Großteil des Silberanteils ist bei der Herstellung des Pulvers abhanden gekommen. Falls Silber in dem Pulver vorhanden war, stellte sich die Frage, ob sich der Silberanteil durch die Herstellung des Pulvers verändert hat.

22.2 Durchführung

Um eventuell vorhandenes Silber feststellen zu können, wurde nach einem Weg gesucht, um das vorhandene Silber von dem Titan zu trennen. Hierfür bot sich die Herstellung von Schmelztabletten mittels der Methode des Schmelzaufschlusses an (siehe Kapitel 10.2.3). Die Verwendung des Schmelzaufschlusses hat den entscheidenden Vorteil, dass aufgrund der hohen Temperatur die im Pulver vorhandenen Bindungen der einzelnen Atome aufgebrochen werden. Dadurch können sich die Atome homogen in der erzeugten Schmelze verteilen, wodurch sich im Pulver vorhandenes Silber sehr leicht nachweisen lässt.

Aus diesem Grund wurde aus ca. 0,1 g Probenmaterial und 9,9 g Lithiumtetra-/-metaborat eine Schmelztablette hergestellt. Die Herstellung der Schmelztablette erfolgte wie im Kapitel 10.2.3 beschrieben. Als Schmelzprogramm wurde das vorhandene Programm Nr.5 der Pearl X verwendet (siehe Kapitel 10.2.3). Nach der Fertigstellung der Tablette wurde diese anschließend mittels einer manuellen Messung mit dem Ceroxid-Sekundärtarget untersucht (siehe Abbildung 50). Dieses Sekundärtarget bietet den Vorteil, dass es sowohl Titan als auch Silber gut anregen kann. Ursache hierfür liegt in den Energien der charakteristischen Linien des Elements Cer. Die K_{a1}-Linie bzw. K_{a2}-Linie von Cer liegt mit einer Energie von 34,717 keV bzw. 34,276 keV etwas oberhalb der K-Absorptionskante von Silber liegt (25,513 keV). Weiters verfügt Cer über mehrere L_β-Linien, die energetisch knapp oberhalb der K-Absorptionskante von Titan liegen (4,965 keV).

Abbildung 50: Spektrum der manuellen Messung des aus 0,1 g Silber-Titan-Pulver bestehenden Beads mit dem Zeriumoxid-Sekundärtarget.

Wie der Abbildung 50 entnommen werden kann, ist ein stark ausgeprägter Peak für Silber und Titan in dem aufgenommenen Spektrum vorhanden.

Nachdem bewiesen wurde, dass Silber im Pulver vorhanden war, stellte sich für Andreas Nagl die Frage, ob sich der Silberanteil während der Herstellung durch die einzelnen Behandlungsschritte verändert hat. Um dies zu bestimmen, hat er von dem Silber-Titan-Gemisch eine geringe Menge vor der Behandlung des Pulvers beiseitegelegt, um diese mit dem behandelten Material vergleichen zu können. Um sicher zu gehen, dass die Ergebnisse korrekt sind, hat Andreas insgesamt zwei Probenpulver getrennt voneinander vorbereitet. Insgesamt waren somit vier unterschiedliche Pulvergemische vorhanden. Zwei davon waren unbehandelte Pulvergemische, diese enthielten die Elemente Silber und Titan in getrennter Form voneinander, wohingegen es sich bei den anderen zwei um behandelte Pulvergemische handelte, bei denen sich die Silberatome in der vorhandenen Titanmatrix des Pulvers verbargen. Mittels der unbehandelten und behandelten Pulver wurden erneut Schmelztabletten hergestellt. Für deren Zusammensetzung siehe Anhang D.1. Die Herstellung der Schmelztabletten erfolgte wie in Kapitel 10.2.2). Die hergestellten Schmelztabletten wurden anschließend mittels einer manuellen Messung für jeweils 100 Sekunden mit dem Ceroxid-Sekundärtarget untersucht und die gemessenen Intensitäten der beiden Elemente Silber und Titan bestimmt. Damit die statistische Schwankungen der gemessenen Intensitäten bei der Auswertung berücksichtigt werden konnten, wurden mehrere Messungen derselben Probe durchgeführt und anschließend deren Mittelwert für weitere Vergleichszwecke bestimmt (siehe Anhang D.1). Da die verwendeten Probenmassen in den vier hergestellten Schmelztabletten nicht identisch waren, wurden die berechneten Intensitätsmittelwerte auf 0,1 g Probe normiert.

Zusammenfassung der auf 0,1 g normierten Mittelwertintensitäten							
Elemente	Unbehandeltes Probenmaterial Nr. 1	Behandeltes Probenmaterial Nr. 1	Unbehandeltes Probenmaterial Nr. 2	Behandeltes Probenmaterial Nr. 2			
Ti-K _α	148,7	147,5	145,2	146,6			
Ag-K _α	119,2	115,3	114,6	118,4			

Tabelle 27: Berechnete Mittelwerte der Intensitätswerte für die Ka-Linien von Silber und Titan für die vier unterschiedlichen Pulverproben sowie der prozentuelle Unterschied zwischen den behandelten und unbehandelten Probenmaterialien.

22.3 Fazit

Wie man Tabelle 27 entnehmen kann, unterscheiden sich die gemessenen Intensitäten für Titan und Silber zwischen den unbehandelten und behandelten Probenmaterialien nur in einem sehr geringen Ausmaß voneinander. Aufgrund dieser geringen Abweichungen in den gemessenen Intensitäten ist es nicht eindeutig, ob tatsächlich Material verloren gegangen ist, oder ob dies auf statistische Schwankungen der gemessenen Intensität zurückzuführen ist.

23 Applikation mittels Spezialgläser und Spezialkeramiken

23.1 Aufgabenstellung

Unter Verwendung von vorhandenen Spezialgläsern und Spezialkeramiken sollen die Kalibrierungskurven für eine Applikation erstellt werden. Die Kalibrierungskurven sollen dabei alle Elemente umfassen, die in den Spezialgläsern und Spezialkeramiken vorhanden sind.

Von welcher Firma die Spezialgläser und Spezialkeramiken stammen ist nicht bekannt.

23.2 Durchführung

Die dafür erstellte Applikation trägt die Bezeichnung "SV_Gläser+Keramik_Calib". Diese Applikation verwendet für die Messung das Aluminium-, Kalziumfluorit-, Eisen-, Germanium-, Molybdän- und Aluminiumoxid-Sekundärtarget. Der verwendete Strom- bzw. Spannungswert für das Sekundärtarget stimmt mit den angegebenen Empfehlungen (siehe Anhang G) überein. Die Messzeit beläuft sich für jedes Sekundärtarget auf 300 Sekunden. Da die vorhandenen Elemente in den unterschiedlichsten Oxidationsstufen in den Spezialgläsern und Spezialkeramiken vorkommen, wurden zu Beginn die Massenprozente eines jeden Elements berechnet, die in den Proben vorhandenen sind (siehe Anhang E). Da die Angaben der in den Spezialgläsern und Spezialkeramiken enthaltenen Elemente zu 100% bekannt sind, wird keine Blank-Korrektur benötigt.

23.3 Fazit

Die vorhandenen Spezialgläser und Spezialkeramiken wurden als Standards gemessen und die Kalibrierungskurven erstellt. Für die Erstellung der Kalibrierungskurven wird eine Korrektur mittels fundamentaler Parameter durchgeführt. Leider standen keine Proben zur Verfügung, mit denen die Kalibrierungskurven hätten überprüft werden können.

24 Kalibrierung mittels Schmelzaufschluss

24.1 Aufgabenstellung

Ziel dieser Aufgabenstellung bestand darin, eine Applikation für die Messung von Schmelztabletten zu erstellen. Die grundlegende Idee dahinter liegt in der Erstellung einer Applikation, mit der eine Probe analysiert werden kann, unabhängig von deren elementaren Zusammensetzung.

Im Normalfall beeinflusst die Zusammensetzung einer Probe die ausgesendete charakteristische Röntgenstrahlung (siehe Kapitel 11). Aufgrund dessen konnten, z.B. wie in Kapitel 18 beschrieben wird, die mit Cellulose hergestellten Standards nicht für die Erstellung der benötigten Kalibrierungskurve verwendet werden. Sogar mit Berücksichtigung der Zusammensetzung der gepressten Pellets mittels einer fundamentalen Parameterkorrektur konnten die auftretenden Interelementeffekte nicht so korrigiert werden, dass die berechneten Intensitäten zu jenen der Tonproben bzw. Proben, die über eine ähnliche Matrix wie die Tonproben verfügen, passen. Dies weist darauf hin, dass selbst bei Verwendung einer fundamentalen Parameterkorrektur eine gewisse Ähnlichkeit zwischen der vorhandenen Matrix der gemessenen Standards und der zu untersuchenden Probe bestehen muss. Es besteht der Verdacht, dass die Änderung der ausgesendeten charakteristischen Röntgenstrahlung durch die Zusammensetzung für Schmelztabletten vernachlässigt werden kann. Dies Annahme liegt darin begründet, dass eine Schmelztablette hauptsächlich aus Lithiumtetra-/-metaborat und nur zu einem geringen Anteil aus der zu untersuchenden Probe besteht. Werden Schmelztabletten mit dem gleichen Mischverhältnis zwischen Lithiumtetra-/metaborat und Probenmaterial hergestellt, so setzt sich jeweils der Großteil der Matrix einer Schmelztablette aus Lithiumtetra-/-metaborat zusammen und unterscheidet sich nur durch das vorhandene Probenmaterial.

Um diese Aufgabe realisieren zu können, müssen Kalibrierungskurven mittels Schmelztabletten erstellt werden. Für deren Herstellung stand die Maschine mit dem Namen "Pearl X" von der Firma PANalytical zur Verfügung (siehe Kapitel 10.2.3).

Weiters soll auch ausprobiert werden, ob Kalibrierungskurven ohne Berücksichtigung des LOI-Faktors (siehe Kapitel 10.2.3) des Probenmaterials erstellt werden können. Mit Hilfe dieser Kalibrierungskurven soll eine Messung von Probenmaterialien, von denen nicht genügend Material für die Bestimmung des LOI-Faktors vorhanden ist, ermöglicht werden.

24.2 Durchführung

Für die Herstellung der benötigten Schmelztabletten standen diverse Standardreferenzmaterialien zur Verfügung. Hierzu gehörten unter anderem die Materialien mit der Bezeichnung Soil 7, PTXRFIAEA 04, PTXRFIAEA 12, SRM 1646, IAEA-SL-1, IAEA-SL-3, SRM 98a (Plastic Clay) und SRM 97a (Flint Clay) (siehe Anhang H). Diese Materialien verfügen über eine Vielzahl an Elementen, wodurch eine Großzahl an Kalibrierungskurven mit ein paar wenigen Standards erstellt werden konnten. Weiters stand eine Vielzahl an unterschiedlichen chemischen Verbindungen zur Verfügung.

Zu Beginn stellte sich die Frage, welches Mischverhältnis zwischen Flussmittel und verwendetem Probenmaterial für die Herstellung der Schmelztabletten gewählt werden sollte.

Da sowohl Interesse an den vorhandenen Hauptelementen als auch an den Nebenelementen in den Standardmaterialien bestand, wurden am Anfang Mischverhältnisse von 1:5 und 1:10, d.h. ca. 2 g Probe und 8g Flussmittel bzw. 1 g Probe und 9 g Flussmittel, ausgewählt. Anschließend wurden einige Standards mit Hilfe dieser Mischverhältnisse mit der Pearl X hergestellt. Für die Herstellung wurde das Programm Nr. 5 verwendet (siehe Kapitel 10.2.3).

Anschließend wurde für deren Messung eine Applikation erstellt. Da in den vorhandenen Datenblättern der Standardmaterialien die Konzentrationsanteile der enthaltenen Hauptelemente häufig für Oxidverbindungen angegeben werden, erfolgte die Eingabe der zu analysierenden Hauptelemente in der Applikation ebenfalls als Oxidverbindungen. Die Angabe der Konzentrationsanteile für die Nebenelemente erfolgt in den Datenblättern hingegen oftmals als Einzelelementkonzentrationen. Aus diesem Grund erfolgte die Eingabe der zu analysierenden Nebenelemente in der Applikation ebenfalls als Einzelelemente und nicht als Oxidverbindungen. Das verwendete Flussmittel wurde ebenfalls als Elementverbindung angegeben. Durch die Angabe der Elementverbindungen erhoffte man, die Berechnung der Konzentration eines jeden einzelnen Elements zu vermeiden. Nach der Messung der hergestellten Schmelztabletten, wurden diese mit der Applikation gemessen und die erstellten Kalibrierungskurven begutachtet. Diese lieferten aber kein befriedigendes Ergebnis. Es ergab sich für die einzelnen Kalibrierungskurven kein eindeutiger Zusammenhang zwischen der gemessenen Intensität und der vorhandenen Elementkonzentration in den Standards. Daher wurde versucht, mittels Änderungen in der Auswertung der vorhandenen Spektren die Ergebnisse zu verbessern. Unter anderem wurde versucht, eine Verbesserung der Kalibrierungskurven mittels fundamentaler Parameter-Korrektur durchzuführen. Es gelang jedoch nicht, bessere Kalibrierungskurven zu erstellen. Als Ursache dafür wurde angenommen, dass es zu auftretenden Matrixeffekten in den hergestellten Standards kam, die die Software nicht berücksichtigen konnte. Ein weiterer Grund dafür war, dass der Loss on Ignition (siehe Kapitel 10.2.2) nicht berücksichtigt wurde. Aus diesem Grund wurde das Mischverhältnis zwischen Flussmittel und Probenmaterial erhöht. Dadurch erhoffte man, die auftretenden Matrixeffekte und das Nichtberücksichtigen des Loss on Ignition der einzelnen Standardmaterialien stark genug zu unterdrücken, sodass diese keine starken Auswirkungen auf die Messergebnisse haben.

Als nächstes wurden Mischverhältnisse von 1:20 und 1:50, d.h. ca. 0,5g Probe und 9,5g Flussmittel bzw. ca. 0,2 g Probe und 9,8 g Flussmittel ausgewählt. Anschließend wurden

einige Standards mit diesen neuen Mischverhältnisse hergestellt. Für die Herstellung der Schmelztabletten wurde abermals das Programm Nr. 5 verwendet. Die Eingabe der zu analysierenden Hauptelemente in der Applikation erfolgte erneut als Oxidverbindungen und Nebenelemente als Einzelelemente. Das verwendete Flussmittel wurde ebenfalls als Elementverbindung eingegeben.

Nach der Messung der hergestellten Schmelztabletten wurden diese mit einer Applikation gemessen und die erstellten Kalibrierungskurven begutachtet. Diese lieferten aber abermals keine befriedigenden Ergebnisse. Auch durch Änderungen in der Auswertung der vorhandenen Spektren und einer Korrektur mittels fundamentaler Parameter konnten keine besseren Kalibrierungskurven erzeugt werden.

24.2.1 Erstellung einer Applikation für ein Mischverhältnis von 1:100

Da die bisherigen Herangehensweisen an die Problemstellungen zu keinen befriedigenden Ergebnissen führten, wurde im vorhandenen Buch mit dem Titel "Glass beads by borate fusion" [14] recherchiert, woran dies liegen könnte. Bei diesem Werk handelt es sich um eine Zusammenstellung aller wichtigen Informationen, die für die Herstellung von Schmelztabletten benötigt werden.

Unter anderem wird in dem Buch erwähnt, dass erst ein Mischverhältnis von 1:100 zu Kalibrierungskurven führt, die fast frei von Interelementeffekten sind. Weiters wurde herausgefunden, dass die Erstellung einer Kalibrierungskurve für die Elemente Schwefel und Phosphor problematisch ist. Wenn diese zwei Elemente in nicht oxidiertem Zustand im Probenmaterial vorhanden sind, so tendieren diese zwei Elemente beim Schmelzvorgang zu verdampfen. Außerdem kann es zu einer Beschädigung des Platintiegels beim Schmelzvorgang kommen, wenn diese zwei Elemente in nicht oxidiertem Zustand vorliegen.

Aufgrund dieser Recherchen wurde das Mischverhältnis zwischen Flussmittel und Probenmaterial abermals erhöht, in der Hoffnung eventuell auftretende Matrixeffekte und Loss on Ignition zu unterdrücken. Aus diesem Grund wurde ein Mischverhältnis von 1:100, d.h. ca. 0,1g Probe und 9,9g Flussmittel, ausgewählt. Die Herstellung dieser Standards unterschied sich jedoch von den vorherigen Mischverhältnissen. Wie im vorherigen Absatz beschrieben, müssen die beiden Elemente Schwefel und Phosphor im oxidierten Zustand vorliegen, damit diese während des Schmelzvorgangs nicht verloren gehen. Aus diesem Grund wurde dem vorhandenen Pulvergemisch aus Flussmittel und Probenmaterial noch Natriumnitrat als Oxidationsmittel hinzugefügt. Damit am Beginn des Schmelzvorgangs die vorhandenen Elemente auch vollständig oxidiert sind, muss bei der Herstellung darauf geachtet werden, dass der Platintiegel und das darin befindliche Material langsam erhitzt werden. Aus diesem Grund wurde ein neues Programm für die Herstellung von Schmelztabletten mittels der vorhandenen Konsole der Pearl X programmiert. Dieses hat die Programm Nr. 26 (siehe Kapitel 10.2.2).

Zu Beginn wurden Schmelztabletten aus den vorhandenen Standardmaterialien hergestellt. Da es sich hierbei jedoch um ein paar wenige Schmelztabletten handelte, wurden auch aus diversen vorhandenen chemischen Verbindungen Schmelztabletten hergestellt. Auf diese Weise wurden noch weitere Standrads für Aluminium, Phosphor, Schwefel, Kalium und Kalzium hergestellt. Für eine Auflistung der hergestellten Standards und deren Zusammensetzungen siehe Anhang F1.

Für die Messung dieser Schmelztabletten wurde die Applikation mit dem Namen "Schmelzaufschluss 1_100" erstellt. Diese Applikation verwendet für die Messung das Kalziumfluorit-, Eisen- und Germanium-Sekundärtarget. Der verwendete Strom- bzw. Spannungswert für das Sekundärtarget stimmt mit den angegebenen Empfehlungen (siehe Anhang H) überein. Die Messzeit beläuft sich für jedes Sekundärtarget auf 360 Sekunden. Weiters wurde auch eine Änderung bei der Eingabe der in den Standards vorhandenen Elementkonzentrationen durchgeführt. Es wurden diesmal nicht die Konzentrationen der in den Datenblättern angegeben Oxidverbindungen der Standardmaterialien angegeben, sondern es wurde für jede Schmelztablette der prozentuelle Anteil eines jeden vorhandenen Hauptelements berechnet und in die Software eingegeben (siehe Anhang F1).

Nach der Herstellung der Schmelztabletten, wurden diese mit der Applikation als Standards gemessen und Kalibrierungskurven erstellt (siehe Abbildung 28 und Abbildung 29).

Abbildung 51: Silizium-Kalibrierungskurve für die Applikation Schmelzaufschluss 1_100.

Abbildung 52: Schwefel-Kalibrierungskurve für die Applikation Schmelzaufschluss 1_100.

Die restlichen erstellten Kalibrierungskurven sehen ähnlich wie jene in Abbildung 51 und Abbildung 52 aus und können in der entsprechenden Applikation betrachtet werden.

24.2.2 Fazit

Bei der Begutachtung der Kalibrierungskurven fiel wie erwartet auf, dass die Nebenelemente kaum detektiert wurden. Aufgrund des geringen Probenanteils in den vorhandenen Schmelztabletten gelang es daher nur Kalibrierungskurven für die Hauptelemente zu erstellen. Die enthaltenen Nebenelemente konnten aufgrund des hohen Mischverhältnisses zwischen Flussmittel und Probenmaterial kaum mehr nachgewiesen werden. Aus diesem Grund wurden keine Kalibrierungskurven für die Nebenelemente erstellt.

Mit einem Mischverhältnis von 1:100 ist es gelungen Kalibrierungskurven für die Elemente Aluminium, Silizium, Phosphor, Schwefel, Kalium, Kalzium, Titan und Eisen zu erstellen.

Da die Kalibrierungskurve für Aluminium nicht optimal war, wurden für deren Verbesserung weitere Schmelztabletten bestehend aus Aluminiumoxid hergestellt und gemessen. Ursache für die schlechte Kalibrierungskurve liegt in dem relativ hohen Anteil an Silizium im Vergleich zu Aluminium in den verwendeten Standards. Aus diesem Grund dürfte das vorhandene Aluminium in den Standards von der Software unterschätzt werden. Phosphor und Schwefel waren nur in sehr geringen Mengen in den vorhandenen Standardmaterialien enthalten (siehe Anhang H). Daher wurden Schmelztabletten mit einem höheren Phosphorund Schwefelanteil hergestellt. Die Elemente Kalium und Kalzium dienten dabei als weitere Verdünnungsmittel.

24.2.3 Erstellung einer Applikation für ein Mischverhältnis von 1:5

Um auch eine Applikation für die Messung von Nebenelementen in einer Probe zu erstellen, wurde erneut versucht, eine Applikation mit einem Mischverhältnis von 1:5 zwischen Probenmaterial und Flussmittel zu erzeugen. Diesmal jedoch sollte der Loss on Ignition berücksichtigt werden. Dieser lässt sich berechnen, indem man das Gewicht das durch den Glühvorgang verloren geht und die Masse des Probenmaterials vor dem Glühen ins Verhältnis setzt.

Für die Bestimmung des Loss on Ignition wurde wie folgt vorgegangen:

Da der jeweilige Loss on Ignition für die vier Standardmaterialien Soil 7, PTXRFIAEA 04, PTXRFIAEA 12 und SRM 1646 bestimmt werden sollte, wurden vier Keramikbehälter benötigt. Hierbei handelte es sich um hitzebeständige Behälter, da für die Bestimmung des Loss on Ignition das vorhandene Probenmaterial für mehrere Stunden auf 1000°C erhitzt werden musste.

Zu Beginn wurden die vier vorhandenen Keramikbehälter abgewogen und deren Gewicht notiert. Anschließend wurden ca. 2,3 g von den vier vorhandenen Standardmaterialien in jeweils einen Keramikbehälter gegeben und das neue Gesamtgewicht des jeweiligen Keramikbehälters notiert. Danach wurden die vier Keramikbehälter samt Probeninhalt für 2 Stunden und 15 Minuten im Ofen auf 1000°C erhitzt. Im Anschluss daran wurden die Keramikbehälter aus dem Ofen entnommen und ließ diese abkühlen. Nun wog man die Keramikbehälter erneut ab. Mit den vorhandenen Messergebnissen konnte der Loss on Ignition für jedes vorhandene Material bestimmt werden (siehe Tabelle 28).

Verwendete Materialien	Masse des leeren Keramikgefäßes [g]	Gesamtmasse vor dem Glühprozess [g]	Gesamtmasse nach dem Glühprozess [g]	Loss on Ignition %
Soil 7	49,05	51,62	51,09	20,43
S.R.M.1646	55,28	57,59	57,37	9,37
PTXRFIAEA04	27,14	29,45	29,12	14,47
PTXRFIAEA12	29,98	32,24	30,43	80,23

 Tabelle 28: Berechnete Werte f
 ür den Loss on Ignition f
 ür die die vier vorhandenen Standardmaterialien

Laut Datenblatt des Standardmaterials Soil 7 beträgt der Loss on Ignition 20,5%. Vergleicht man diesen mit dem berechneten Wert für den Loss on Ignition aus Tabelle 28, so stimmen diese annähernd überein. Für die restlichen drei Standardmaterialien kann kein Vergleich des Loss on Ignition durchgeführt werden, da in deren Datenblättern kein Wert angegeben wurde. Bei dem Material PTXRFIAEA12 handelt es sich um ein organisches Standardmaterial. Laut Datenblatt besteht dieses aus getrocknetem Pflanzenmaterial. Beim Glühen verschwindet der organische Anteil der den größten Anteil im Probenmaterial ausmacht. Aus diesem Grund ergibt sich der hohe Loss on Ignition für dieses Material. Nach dem Abwiegen der vier Materialien, wurden diese zu Schmelztabletten weiterverarbeitet. Da diese bereits auf 1000°C erhitzt wurden, war anzunehmen, dass alle Elemente im oxidierten Zustand vorlagen. Aus diesem Grund wurde kein zusätzliches Oxidationsmittel hinzugefügt und der Schmelzvorgang erfolgte nicht mit dem Programm Nr. 26 sondern mit dem Programm Nr. 5. Neben diesen Schmelztabletten bestehend aus den Standardmaterialien Soil 7, SRM 1646, PTXRFIAEA04 und PTXRFIAEA12 wurden auch zwei Schmelztabletten aus den Standardmaterialien SRM 97a und SRM 98a hergestellt. Für diese zwei Standardmaterialien wurde ein LOI-Faktor in dem entsprechenden Datenblatt angegeben. Weiters wurden auch zwei weitere Schmelztabletten, bestehend aus dem Standardmaterial SRM 1646 dem ein geringer Anteil an Kupfer, Nickel und Kobalt beigemengt wurde, hergestellt. Für eine detaillierte Berechnung der Elementkonzentrationen der hergestellten Standards siehe Anhang F2.

Für die Messung dieser Schmelztabletten wurde die Applikation mit dem Namen "Schmelzaufschluss 1_5" erstellt. Diese Applikation verwendet für die Messung das Aluminium-, Kalziumfluorit-, Eisen-, Germanium- und Molybdän-Sekundärtarget. Der verwendete Strom- bzw. Spannungswert für das Sekundärtarget stimmt mit den angegebenen Empfehlungen (siehe Anhang G) überein. Die Messzeit beläuft sich für jedes Sekundärtarget auf 400 Sekunden. Die Eingabe der Elementkonzentrationen ist identisch mit der Applikation "Schmelzaufschluss 1_100".

Nach der Messung der hergestellten Schmelztabletten, wurden diese mit der Applikation als Standards gemessen und Kalibrierungskurven erstellt.

Abbildung 53: Silizium-Kalibrierungskurve für die Applikation Schmelzaufschluss 1_5.

Abbildung 54: Mangan-Kalibrierungskurve für die Applikation Schmelzaufschluss 1_5.

Die restlichen erstellten Kalibrierungskurven sehen ähnlich wie jene in Abbildung 53 und Abbildung 54 aus und können in der entsprechenden Applikation betrachtet werden.

24.2.4 Fazit

Es konnten Kalibrierungskurven sowohl für einige Hauptelemente als auch einige Nebenelemente erzeugt werden. Es konnte keine verlässliche Kalibrierungskurve für Phosphor und Schwefel hergestellt werden. Dies liegt daran, dass der in den Standardmaterialien Soil 7, SRM 1646, PTXRFIAEA04 und PTXRFIAEA12 vorhandene Schwefel bzw. Phosphor bei der Feststellung des LOI-Faktors verdampfte.

Mit einem Mischverhältnis von 1:5 ist es gelungen Kalibrierungskurven für die Hauptelemente Aluminium, Silizium, Kalium, Kalzium, Titan und Eisen zu erstellen. Weiters konnten auch Kalibrierungskurven für die Nebenelemente Vanadium, Chrom, Mangan, Kobalt, Nickel, Kupfer, Zink, Arsen, Rubidium, Blei, Strontium und Yttrium erstellt werden.

Da die Kalibrierungskurven für Kupfer, Kobalt und Nickel mittels den hergestellten Standardmaterialien nicht optimal waren, wurde für deren Verbesserung zwei weitere Schmelztabletten, bestehend aus diesen Elementen und dem Standardmaterial SRM 1646, hergestellt und gemessen. Ursache für die schlechte Kalibrierungskurve liegt in den sehr geringen Anteilen der drei Elemente in den vorhandenen Standardmaterialien.

25 Bestimmung der vorhanden Elemente in Schweineknorpel

25.1 Aufgabenstellung

Ziel ist die quantitative und qualitative Bestimmung der Elemente, die in gemahlenen Schweineknorpel vorhanden sind. Für diese Aufgabenstellung wurde mit Angelica de Leon und Lukas Fenninger im Rahmen ihrer jeweiligen Projektarbeiten zusammengearbeitet.

25.2 Durchführung

Im Rahmen einer Projektarbeit wurde von Angelica de Leon Knorpelgewebe von Schweinefüßen extrahiert und anschließend zu feinem Pulver verarbeitet. In Zusammenarbeit erfolgte eine qualitative Bestimmung der in dem Pulver vorhandenen Elemente.

Um herauszufinden aus welchen Elementen sich das vorhandenen Knorpelpulver zusammensetzt, wurde zu Beginn mit Angelica ein Pellet bestehend aus 4 g Knorpelpulver gepresst. Da das vorhandene Pulver etwas fettig war, hielt das Pellet auch ohne zusätzliches Bindemittel zusammen. Anschließend wurde das Pellet mittels einer manuellen Messung mit dem Molybdän- und Kalziumfluorit-Sekundärtarget untersucht (siehe Abbildung 55 und Abbildung 56).

Dabei wurde festgestellt, dass das Knorpelpulver unter anderem aus den Elementen Phosphor, Schwefel, Chlor, Kalium, Kalzium, Eisen und Nickel besteht. Besonderes Interesse lag auf der Quantifizierung der Elemente Kalium, Kalzium, Schwefel und Phosphor, da diese die größten Peaks in den aufgenommenen Spektren erzeugten.

Abbildung 55: Spektrum der manuellen Messung des gepressten Knorpelpulvers mittels des Molybdän-Sekundärtargets.

Abbildung 56:Spektrum der manuellen Messung des gepressten Knorpelpulvers mittels des Kalziumfluorit-Sekundärtargets.

Um die quantitativen Ergebnisse der vorhandenen Elemente auf ihre Richtigkeit zu überprüfen, wurden die vorhandenen Konzentrationen der Elemente mit unterschiedlichen Messverfahren und Probenvorbereitungsmethoden bestimmt. Die quantitative Bestimmung der Elemente erfolgte einerseits mit den Messmethoden ICP-OES und ICP-MS, diese wurden am chemischen Institut der TU Wien am Getreidemarkt durchgeführt, und andererseits mit der energiedispersiven Röntgenfluoreszenzspektroskopie unter Verwendung von zwei unterschiedlichen Applikationen. Eine Applikation analysierte das Schweineknorpelpulver in Form eines gepressten Pellets und die andere Applikation in Form einer Schmelztablette. Die Erstellung der Applikation sowie der Kalibrierungskurven und Analyse des vorhandenen Pulvers mittels gepresster Pellets wurde in Zusammenarbeit mit Lukas Fenninger im Rahmen seiner Projektarbeit mit dem Titel "Quantification of pigleg cartilage powder with EDXRF" bearbeitet.

Für die Quantifizierung der vorhandenen Elemente mit Hilfe des Schmelzaufschlussverfahrens war am Anfang der Aufgabenstellung nicht klar, ob es möglich war, mittels des vorhandenen Pulvers eine Schmelztablette herzustellen. Dies lag daran, dass in der Vergangenheit noch keine aus organischem Material bestehende Schmelztablette hergestellt wurde.

Nach einigen Recherchen im vorhandenen Buch mit dem Titel "Glass beads by borate fusion" [14] konnten folgende Informationen für die Herstellung einer Schmelztablette bestehend aus organischen Material zusammengetragen werden: Beim Herstellen einer Schmelztablette bestehend aus organischen Material muss beachtet werden, dass dieses eventuell aus nicht oxidierten Material besteht. Dieses Material kann während des Schmelzvorgangs den Platintiegel beschädigen. Aus diesem Grund muss dem vorhandenen Pulvergemisch aus Flussmittel und Probenmaterial ein Oxidationsmittel hinzugefügt werden. Das Oxidationsmittel besteht im Normalfall aus einem großen Anteil an Sauerstoff, der bei der Herstellung der Schmelztablette freigesetzt wird, um nicht oxidiertes Material zu oxidieren. Damit dies gelingt, ist es wichtig bei der Herstellung darauf zu achten, dass der Platintiegel und das darin befindliche Material langsam erhitzt werden. Dabei verbrennt das organische Material bereits bei niedrigen Temperaturen.

Da die Herstellung einer Schmelztablette immer mit einer Verdünnung des Probenmaterials einhergeht und eine Quantifizierung von möglichst vielen Elementen gewünscht war, wurde versucht, eine Schmelztablette mit einem relativ hohen Anteil an Knorpelpulver herzustellen. Aus diesem Grund wurde zu Beginn eine Schmelztablette bestehend aus 1g Schweineknorpelpulver, 1g Natriumnitrat (NaNO₃) und 9 g Lithiumtetra-/metaborat hergestellt. Natriumnitrat diente hierbei als Oxidationsmittel und sorgte dafür, dass während der Herstellung der Schmelztablette auch alle Elemente in ihrer höchsten Oxidationsstufe vorlagen. Dies sorgt unter anderem dafür, dass vorhandener Schwefel und Phosphor beim Fusionsprozess nicht verloren gehen und den Platintiegel beschädigen. Für die Herstellung der Schmelztablette wurde das Programm Nr. 26 verwendet (siehe Kapitel 10.2.3) Bei der Herstellung der Tablette ist aufgefallen, dass während den drei Oxidationsstufen des verwendeten Programms das vorhandene Pulvergemisch immer wieder aufpoppte und dadurch kleine Mengen an Material aus dem Platintiegel befördert wurden. Ursache hierfür dürfte das Verbrennen des organischen Materials und die damit einhergehende Produktion von Kohlenstoffdioxid gewesen sein. Dies sollte jedoch nicht geschehen, da dadurch Probenmaterial verloren geht.

Nach der dritten Oxidationsstufe gab es eine kurze Unterbrechung des Programms, um das Pulver zu begutachten. Dabei fiel auf, dass kleine schwarze Flecken im Pulvergemisch vorhanden waren. Hierbei handelte es sich höchstwahrscheinlich um die verbrannten Überreste des Knorpelgewebes.

Anschließend wurde mit dem Schmelzen des Pulvers fortgefahren. Hierbei fiel auf, dass es sich bei der Schmelze um eine trübe und nicht wie sonst um eine klare Flüssigkeit handelte. Beim Ausgießen der flüssigen Masse in den Platinbecher wurde festgestellt, dass diese wesentlich zähflüssiger war als bei zuvor hergestellten Schmelztabletten. Tatsächlich kristallisierte die Masse beim Abkühlen aus und bildete eine auf dem Platinteller klebende Masse, die nur schwer wieder entfernt werden konnte.

Da die Herstellung einer Schmelztablette mit 1 g Schweineknorpelpulver fehlschlug, wurde beschlossen, die Menge an Probenpulver zu verringern. Daraufhin wurde versucht, unter Verwendung von ca. 0,1 g Schweineknorpelpulver, 1g Natriumnitrat (NaNO₃) und 9 g Lithiumtetra-/metaborat eine Tablette herzustellen. Aufgrund des geringen Probenanteils von 0,1g war jedoch nicht klar, ob eine gute Auswertung der Spektren mittels der Software möglich war.

Während der Herstellung ist es zu keinem Aufpoppen des Pulvergemischs gekommen. Nach der dritten Oxidationsstufe waren auch wesentlich weniger schwarze Flecken im Pulvergemisch vorhanden. Auch die Schmelze zeigte keine Besonderheiten, die sich von zuvor hergestellten Schmelztabletten unterschied. Mit diesem Mischverhältnis gelang es eine intakte Schmelztablette herzustellen. Anschließend wurde diese mit einer manuellen Messung unter Verwendung des Kalziumfluorit-Sekundärtargets untersucht (siehe Abbildung 57). Dies diente zur Kontrolle, ob die Elemente Phosphor, Schwefel und Kalium noch nachgewiesen werden konnten.

Abbildung 57: Spektrum der manuellen Messung der aus 0,1g Knorpelpulver bestehenden Schmelztablette mittels des Kalziumfluorit-Sekundärtargets.

Wie man der Abbildung 57 entnehmen kann, erzeugten die Elemente Schwefel, Phosphor, Kalium und Kalzium einen sehr gut erkennbaren Peak in den aufgenommenen Spektren, obwohl nur eine sehr geringe Menge an Probenmaterial verwendet wurde.

Für eine Quantifizierung der vorhandenen Elemente wurde diese Schmelztablette mit der Applikation "Schmelzaufschluss 1_100" gemessen. Mit den vorhandenen Kalibrierungskurven der Applikation erhielt man folgende Elementkonzentrationen:

Elemente	Elementkonzentration [ppm]
Р	44930
K	2701
Ca	96236
S	5415

 Tabelle 29: Mittels Schmelzaufschluss bestimmte Elementkonzentrationen im Knorpelpulver

Im Folgenden wird eine kurze Zusammenfassung über die Quantifizierung der vorhandenen Elementkonzentrationen mittels gepresster Pellets gegeben. Eine detaillierte Beschreibung ist der Projektarbeit von Lukas Fenninger zu entnehmen.

Für die Quantifizierung der Elemente Kalium, Kalzium, Schwefel und Phosphor in dem vorhandenen Knorpelpulver mittels gepresster Pellets wurde die Applikation "Pigleg_Cartilage" erstellt. Für die Erstellung von geeigneten Kalibrierungskurven standen diverse Oxidverbindungen dieser Elemente zur Verfügung. Die hergestellten gepressten Pellets bestanden immer zu 1 Teil Probenmaterial und 9 Teilen Bindematerial. Zu Beginn wurde in Zusammenarbeit mit Lukas versucht, mittels den vorhandenen Oxidverbindungen gepresste Pellets herzustellen, die über annähernd gleiche Elementkonzentrationen verfügten, wie das vorhandene Probenpulver. Nach der Herstellung einiger gepresster Pellets wurden diese als Standards mit der Applikation gemessen. Bei der Begutachtung der Kalibrierungskurven stellte sich jedoch heraus, dass die Messungen widersprüchliche Ergebnisse lieferten. Oftmals war die gemessene Intensität wesentlich niedriger als es erwartet wurde. Daraufhin wurden von mehreren Pellets sowohl die Vorderals auch Rückseite gemessen. Dabei stellte sich heraus, dass sich die gemessenen Intensitäten oftmals zwischen den beiden Pelletseiten unterschieden. Als Ursache hierfür stellte sich heraus, dass die benötigten Mengen der einzelnen Oxidverbindungen oftmals so gering waren, dass eine Herstellung eines homogenen Pellets nicht möglich war. Aus diesem Grund wurde versucht, Pellets mittels Flüssigstandardlösungen herzustellen. Für eine Auflistung der hergestellten Standards siehe Projektarbeit von Lukas Fenninger. Für die Messung dieser Standards wurde die Applikation "Pigleg Cartilage_mittels Flüssigstandards" erstellt. Mittels dieser Applikation werden die Pellets mit dem Kalziumfluorit-, Eisen- und Germanium-Sekundärtarget gemessen. Der verwendete Strom- bzw. Spannungswert für das Sekundärtarget stimmt mit den angegebenen Empfehlungen (siehe Anhang G) überein. Die Messzeit beläuft sich für die drei verwendeten Sekundärtargets auf jeweils 100 Sekunden. Mit diesen gepressten Pellets ist es gelungen, bessere Kalibrierungskurven herzustellen.

Mit den vorhandenen Kalibrierungskurven der Applikation erhielt man folgende Elementkonzentrationen:

Elemente	Elementkonzentration [ppm]
Р	41900
K	2500
Ca	94800
S	6300

Tabelle 30: Mittels gepressten Pellets bestimmte Elementkonzentrationen im Knorpelpulver

Elemente	Ergebnisse der ICP-OES [ppm]			Ergebi ICP-M	niss [S [se der ppm]
Р	43837 ± 12197			46451	±	1153
K	2356	±	734	2459	±	191
Ca	91795	±	23727	-		-
S	-		-	11089	±	1178
Fe	-		-	18	±	2,3
Ti	-		-	1,64	±	0,16

Die Messungen des Knorpelpulvers mittels ICP-OES und ICP-MS ergaben folgende Elementkonzentrationen:

Tabelle 31: Mittels ICP-OES und ICP-MS bestimmte Elementkonzentrationen im Knorpelpulver

25.3 Fazit

Elemente	Ergebnisse der ICP-OES [ppm]		se der DES n]	Ergebnisse der ICP-MS [ppm]		se der ppm]	Ergebnisse mittels Schmelztablette [ppm]	Ergebnisse mittels gepresster Pellets [ppm]
Р	43837	±	12197	46451	±	1153	44930	41900
K	2356	±	734	2459	±	191	2701	2500
Ca	91795	±	23727	-		-	96236	94800
S	-		-	11089	±	1178	5415	6300
Fe	-		-	18	±	2,3	-	_
Ti	-		-	1,64	±	0,16	-	-

Tabelle 32: Vergleich der gemessenen Elementkonzentrationen des Schweineknorpelpulvers für die verwendeten Messmethoden

Wie man der Tabelle 32 entnehmen kann, stimmen die Messergebnisse für Phosphor, Kalium und Kalzium für die vier verwendeten Messmethoden annähernd überein. Lediglich bei der Bestimmung der vorhandenen Schwefelkonzentration gibt es einen großen Unterschied zwischen dem Ergebnis der ICP-MS Messung und den Ergebnissen der EDXRF Messungen. Die Messung mittels ICP-MS liefert eine um das Zweifache größere Schwefelkonzentration als mittels Schmelztablette oder gepresster Pellets bestimmt wurde. Zu Beginn stand der Verdacht nahe, dass bei der Herstellung der Schmelztabletten Schwefel verdampfte. Jedoch liefert die Quantifizierung der Schwefelkonzentration mittels gepresster Pellets einen Wert, der in der gleichen Größenordnung liegt als die mittels Schmelztablette quantifizierte Schwefelkonzentration.

26 Übersicht der vorhandenen Kalibrierungskurven für die in den Kapiteln 21, 23 und 24 beschrieben Applikationen

Bei den angegebenen Konzentrationsbereichen handelt es sich nur um ungefähre Angaben. Detailliertere Angaben sind den Kalibrierungskurven der entsprechenden Applikation zu entnehmen.

Name der Applikation	Probenart	Elemente	Konzentrationsbereich
Luftfilter calib – Elemente Na und Mg mit Sek.Tar Al	Filtermembrane	Na, Mg	$0-8 \mu\text{g/cm}^2$
		Na, Mg, P, S, Cl, K, Zn, As, Br, Rb	$0 - 10 \mu g/cm^2$
		Al, Ti, Se	$0-20 \mu\text{g/cm}^2$
Luftfilter calib	Filtermembrane	Si, Ca	$0-30 \mu\text{g/cm}^2$
		V, Cr, Mn, Co, Ni, Cu, Ge, Pb	$0-40 \mu\text{g/cm}^2$
		Fe	$0-50 \mu\text{g/cm}^2$
		Zn, Zr, Pr, Gd, Hg, Cs, Sc	$0 - 10 \mu g/cm^2$
Luftfilter galib – gabruara Elementa mit Salt Tan A a		Nb, Mo, Rh, Pd, Cd, In, Sn , Sb, Te, La, Bi	$0-20\mu\text{g/cm}^2$
Luitimer cano – schwere Elemente niit Sek. Tar Ag	Filtormombrono	Sm, Eu, Tb, Dy, Ho, Er, Yb, Lu, Pt, Ca, Sr, Y,	$0-30 \mu\text{g/cm}^2$
Luftfilter calib schwarz Elemente mit Selt Tar A1202	Filtermemoralie	Ba, Ce, Nd, Th, I	
Luitimer cand – schwere Elemente nint Sek. Far Al2O5		Au, W	$0-40 \mu\text{g/cm}^2$
		Fe, Pb	$0-50 \mu\text{g/cm}^2$
		CdO, CeO2, Co, Fe2O3, Mn, Se	0-0,25 %
		Cr2O3, CuO, NiO, Pr6O11	0-2~%
		Bi2O3, CaO, MgO, SrO	0-5~%
	Gläser und	K2O, Nb2O3, Sb2O3, ZrO2	0 - 10 %
SV_Gläser+Keramik_Calib		La2O3	0-35 %
	Kelallikeli	Nd2O3, SnO2, Ta2O3, TiO2	0-40~%
		BaO, PbO	0-60~%
		ZnO	0-80~%
		A12O3, SiO2	0 - 100 %
		Ti	0 – 250 ppm
Sahmalzaufaahluga 1, 100	Sahmalztahlatta	Fe	0 – 1000 ppm
Schnietzautschluss 1_100	Schmeiztablette	P, S, K, Ca,	0 – 2000 ppm
		Al, Si	0 – 5000 ppm

	Schmelzaufschluss 1_5	Schmelztablette	V, Rb, Pb Cr, Zn Mn Sr Co, Ni, Cu Mg, Ti K, Ca, Al Si	0 - 30 ppm 0 - 50 ppm 0 - 160 ppm 0 - 300 ppm 0 - 1500 ppm 0 - 3000 ppm 0 - 4000 ppm 0 - 40000 ppm 0 - 70000 ppm
E_{0} $0 - 11000$ mm			Si	0 – 70000 ppm

Tabelle 33: Übersicht über die Elemente für die Kalibrierungskurven erstellt wurden sowie deren ungefährer Konzentrationsbereich

27 Zusammenfassung und Zukunftsausblicke

Die Aufgabe dieser Arbeit bestand darin, mit der Quantifizierung von verschiedenen Probenarten einerseits die Messgenauigkeit der ausgewechselten Röntgenröhre zu überprüfen und andererseits diverse Applikationen für zukünftige Verwendungen zu erstellen. Um dies zu bewerkstelligen, wurden mit Hilfe diverser Aufgabestellungen unterschiedliche Arten von Proben untersucht und gemessen.

Mittels der Messung der standardisierten Luftfiltermembrane "SRM 2783 Air particulate on filter media" von der US-Amerikanischen Firma National Institute of Standards & Technology wurde kontrolliert, ob sich der Einbau der neuen Röntgenröhre auf die Messung auswirkt. Hierfür wurde diese Filtermembrane mit der vorhandenen "Gerelmaa_APM" Applikation gemessen. Die dadurch bestimmten Konzentrationen der vorhandenen Elemente wurden anschließend mit den Messergebnissen derselben Applikation aus vergangenen Jahren und den angegebenen Werten in dem Datenblatt der Luftfiltermembrane verglichen. Dabei zeigten sich keine bedenklichen Abweichungen, woraus zu schließen war, dass durch den Einbau der neuen Röntgenröhre mit keinen Konsequenzen zu rechnen war.

Bei der Untersuchung von Tonproben sowie Aluminiumplättchen wurde beobachtet, dass sich die elementare Zusammensetzung, d.h. die Matrix der Probe, stark auf die gemessenen Intensitäten auswirkt. Daher sollten die hergestellten Proben, die mit derselben Applikation gemessen werden, über eine ähnliche Matrixzusammensetzung verfügen.

Vergleichsmessungen von Filtermembranen mit der Analysemethoden der energiedispersiven Röntgenfluoreszenzspektroskopie und der Totalreflexionsspektroskopie zeigten, dass man unter Berücksichtigung der unterschiedlichen Sammelbedingungen annähernd vergleichbare Ergebnisse in den gemessenen Konzentrationen der Elemente erzielt werden.

Unter Verwendung beladener Filtermembranen wurden mehrere Applikationen für die Messung von Filtermembranen, die mit Aerosolen beladenen sind, erstellt. Hierbei ist darauf zu achten, dass nur eine dieser Applikationen mit der standardisierten Luftfiltermembrane "SRM 2783 Air particulate on filter media" überprüft wurde. Für die anderen Applikationen standen keine passenden standardisierten Filtermembranen für eine Überprüfung der Kalibrierungskurven zur Verfügung. Weiters stand für viele Kalibrierungskurven nur eine Filtermembrane zur Verfügung, wodurch sich keine Aussage über deren Genauigkeit treffen lässt. Sollten in Zukunft neue Aerosolstandards zur Verfügung stehen, können diese mit den erstellten Applikationen gemessen werden, um die Kalibrierungskurven zu verbessern.

Mit Hilfe vorhandener Spezialgläser und Spezialkeramiken wurde eine Applikation erstellt, die für zukünftige Messungen zur Verfügung steht.

In Zusammenarbeit mit dem chemischen Institut der TU Wien wurde festgestellt, dass die Herstellung von Glasscheiben mittels Schmelzaufschlussverfahrens und deren Analyse für eine Vielzahl von Fragestellungen des chemischen Institut eignet. Dadurch könnte sich in Zukunft eine intensivere Zusammenarbeit innerhalb der TU Wien zwischen dem chemischen Institut und dem Forschungsbereich Strahlenphysik am Atominstitut ergeben.

Es wurden zwei Applikationen für die Messung von Glasscheiben erstellt. Hierfür wurde eine Vielzahl an Standards mit dem Schmelzaufschlussverfahren hergestellt. Diese Applikationen wurden verwendet, um die vorhandenen Elemente in Knorpelpulver zu quantifizieren. Vergleicht man die damit bestimmten Elementkonzentrationen mit jenen der ICP-OES, ICP-MS und der mittels gepressten Pellets erstellten Applikation, so stimmen die Ergebnisse annähernd überein.

In Zukunft können weitere Glasscheiben hergestellt und diese mit den zwei Applikationen gemessen werden, um Kalibrierungskurven für bisher noch nicht berücksichtigte Elemente zu erstellen.

28 Abbildungsverzeichnis

Abbildung 1: Grafische Darstellung des Massenabschwächungskoeffizienten μ_m für Eisen [7,
S. 37]
Abbildung 2: Schematische Darstellung des Compton-Effekts
Abbildung 3: Schematische Darstellung der Rayleigh-Streuung. Die zwei vertikalen Pfeile
beim Elektron sollen die Oszillation des Elektrons darstellen9
Abbildung 4: Schematische Anordnung für die Berechnung der Intensität der ausgesendeten
Röntgenstrahlung einer Probe. In Anlehnung an [8, S. 29] 10
Abbildung 5: Schematische Darstellung der Funktionsweise eines Si(Li)-Halbleiterdetektors.
In Anlehnung an [8, S. 169]
Abbildung 6: Platzierung der Proben vorgesehene Bereich. Aufgrund von Reparaturarbeiten,
ist die hintere Abdeckung des Spektrometers auf der Abbildung nicht vorhanden23
Abbildung 7: Schematische Darstellung des in der Epsilon 5 realisierten Messaufbaus. Bei der
Abbildung handelt es sich um einen Screenshot aus der verwendeten Software mit dem Titel
"PANalytical Epsilon 5 Software"
Abbildung 8: Darstellung einer elektromagnetischen Welle. Das elektrische Feld E (rot) steht
rechtwinkelig zum magnetischen Feld B (blau) und beide Felder stehen wiederum
rechtwinkelig zur Ausbreitungsrichtung y. In Anlehnung an [10, S. 18]
Abbildung 9: Für alle möglichen Polarisationen eines parallelen Strahles an Röntgenphotonen
können die vorhandenen Feldkomponenten in zwei zueinander rechtwinkelig stehenden
Komponenten aufgeteilt werden. Die Amplituden dieser beiden Komponenten können für
jede Polarisationsrichtung unterschiedlich sein. links: Zerlegung des Vektors für das
elektrische Feld in seine in x- und z-Achse zeigenden Komponenten. rechts:
Dreidimensionale Darstellung der Zerlegung des elektrischen Feldes der kollimierten
Röntgenröhrenstrahlung (rote Pfeile). In Anlehnung an [10, S. 19]25
Abbildung 10: Nach der Streuung der Röntgenstrahlung unter 90° in die z-Richtung durch das
Sekundärtarget, verschwindet die Feldkomponente in z-Richtung der Röntgenröhrenstrahlung,
wodurch nur mehr die Komponente des elektrischen Feldes in x-Richtung (rote Pfeile)
vorhanden ist. Weiters strahlt das Sekundärtarget charakteristische Röntgenstrahlung aus
(grüne Pfeile). In Anlehnung an [10, S. 19]
Abbildung 11: Wird die bereits in x-Richtung polarisierte Röntgenröhrenstrahlung mittels der
Probe erneut unter 90° gestreut, sodass die neue Bewegungsrichtung rechtwinkelig auf die
beiden vorherigen Bewegungsrichtungen steht, so verschwindet diese Strahlung zur Gänze
und erreicht nicht den Detektor. Nach der Streuung der charakteristischen Röntgenstrahlung
des Sekundärtargets an der Probe, ist diese in y-Richtung polarisiert (grüner Pfeil). Diese
gelangt in den Detektor. Weiters strahlt das Sekundärtarget charakteristische
Röntgenstrahlung aus (blaue Pfeile). Beide Komponenten können den Detektor erreichen. In
Anlehnung an [10, S. 19]
Abbildung 12: oben links: Messung einer dicken Probe. Es kommt zu keiner Anregung des
Stahlbechers. oben rechts: Messung einer dünnen Probe ohne Aluminiumbecher. Hierbei
durchdringt die Röntgenstrahlung die Probe und kann den Stahlbecher anregen. unten mittig:
Messung einer dünnen Probe mit Aluminiumbecher. Hierbei verhindert der Aluminiumbecher
eine Anregung des Stahlbechers. In Anlehnung an [6, S. 49]

Abbildung 13: Für die Homogenisierung von Pulvermaterialien benötigtes Werkzeug. In der
Abbildung handelt es sich von links nach rechts um: den Spatel, die Achatschale und der
Stößel
Abbildung 14: Die für die Herstellung eines gepressten Pellets benötigten Werkzeuge. Von
links nach rechts handelt es sich um die Bodenplatte, die Stahlhülse, die beiden
Hülsenstempel, den Pressstempel und die Kunststoffhalterung
Abbildung 15: Platintiegel und Platinteller
Abbildung 16: Aluminiumplättchen
Abbildung 17: Beide Plättchen im Stahlbecher
Abbildung 18: Spektrum einer manuellen Messung der beiden Aluminiumplättchen mittels
des Aluminium-Sekundärtargets
Abbildung 19: Vergrößertes Spektrum einer manuellen Messung der beiden
Aluminiumplättchen mittels des Kalziumfluorit-Sekundärtargets
Abbildung 20: Spektrum einer manuellen Messung der beiden Aluminiumplättchen mittels
des Aluminiumoxid-Sekundärtargets
Abbildung 21: Magnesium-Kalibrierungskurve für Applikation Al-Mg-Si 1
Abbildung 22: Aluminium-Kalibrierungskurve für Applikation Al-Mg-Si 1
Abbildung 23: Silizium-Kalibrierungskurve für Applikation Al-Mg-Si 1
Abbildung 24: Erster Versuch für die Erstellung einer Magnesium-Kalibrierungskurve für
Applikation Al-Mg-Si 2
Abbildung 25: Erster Versuch für die Erstellung einer Silizium-Kalibrierungskurve für
Applikation Al-Mg-Si 2
Abbildung 26: Erster Versuch für die Erstellung einer Aluminium-Kalibrierungskurve für
Applikation Al-Mg-Si 2
Abbildung 27: Zweiter Versuch für die Erstellung einer Magnesium-Kalibrierungskurve für
Applikation Al-Mg-Si 2
Abbildung 28: Zweiter Versuch für die Erstellung einer Silizium-Kalibrierungskurve für
Applikation Al-Mg-Si 2
Abbildung 29: Zweiter Versuch für die Erstellung einer Aluminium-Kalibrierungskurve für
Applikation Al-Mg-Si 2
Abbildung 30: Eisen-Kalibrierungskurve für Applikation Al-Mg-Si 2
Abbildung 31: Vergleich der gemessenen Netto Intensität des Aluminiumpeaks für
unterschiedliche Pressdrücke mit dem Aluminiumstandard
Abbildung 32: Vergleich zwischen der gemessenen Intensität und Aluminiumkonzentration
der verwendeten Standards Von oben nach unten gehören die Messpunkte zu folgenden
verwendeten Standards: Aluminiumstandard mit 99% Al. gepresstes Pellet bestehend aus
Aluminium und 14 t Pressdruck, gepresstes Pellet bestehend aus Aluminium und 12 t
Pressdruck und die restlichen fünf Punkte sind die mit 10 t Pressdruck hergestellten Pellets
aus Anhang A.2
Abbildung 33: Die für diese Aufgabe vorhandenen fünf Tonproben 67
Abbildung 34 Unter Verwendung des Silber-Sekundärtargets aufgenommenes Spektrum der
Tonprobe
Abbildung 35: Erste Kalibrierungskurve für Zirkon unter Verwendung von bereits
vorhandenen Standards. Das Bild zeigt die Kalibrierungskurve im Zirkonbereich der
Tonstandards

Abbildung 36: Spektrum der vorhandenen Blank-Probe	70
Abbildung 37: Überarbeitete Kalibrierungskurve für Zirkon unter Verwendung des gepresst	en
PTXRFIAEA 04 Pellets und der vorhandenen Tonproben. Bei den Messpunkten handelt es	
sich von rechts nach links beginnend um die Tonprobe mit 0,0350% Zr, 0,0179% Zr,	
0,0087% Zr und der Blank-Probe.	72
Abbildung 38: Kalibrierungskurve unter Einbeziehung der vier aus Cellulose und Zirkon-	
Flüssigstandard bestehenden gepressten Pellets. Deren vier Messpunkte befinden sich	
innerhalb der eingezeichneten Ellipse	73
Abbildung 39: Kalibrierungskurve unter Einbeziehung der zwei aus PTXRFIAEA 04 und	
Zirkon-Flüssigstandard bestehenden gepressten Pellets.	74
Abbildung 40: Gegenüberstellung der angegebenen und gemessenen Zirkonkonzentrationen	ı
sowie der Zirkonoxidkonzentration für jede vorhandene Tonprobe	75
Abbildung 41: Vergleich der gemessenen Massen mit den zertifizierten Werten des NIST	
2783 Standards	80
Abbildung 42: Der GENT Sampler	83
Abbildung 43: links: mit Siliziumoxid beschichtete Filtermembrane der Marke MYLAR	
rechts: mit Siliziumoxid beschichtete Filtermembrane der Firma Nuclepore	93
Abbildung 44: Schematische Darstellung der zwei möglichen Platzierungen einer	
Filtermembrane in einem Stahlbecher, sodass die von der Probe ausgesendete	
Röntgenstrahlung nicht von der Filtermembrane absorbiert wird. Die linke Abbildung zeigt	
eine im Stahlbecher eingelegte Filtermembrane, bei der die beladene Seite mit der	
Referenzebene übereinstimmt. Die rechte Abbildung hingegen zeigt den entgegengesetzten	
Fall, bei der die beladene Seite mit der Referenzebene nicht übereinstimmt. Die Farben	
stehen für: Schwarz = Stahlbecher, Rot = Aluminiumbecher, Grün = Kunststoffring, Gelb =	:
Filtermembrane, Blau = auf der Filtermembrane befindliche Ablagerung	95
Abbildung 45: Variante 1 der zwei möglichen Platzierungen einer Filtermembrane in einem	L
Stahlbecher. Die Farben stehen für: Schwarz = Stahlbecher, Rot = Aluminiumbecher, Grün	=
Kunststoffring, Gelb = Filtermembrane, Blau = auf der Filtermembrane befindliche	
Ablagerung	96
Abbildung 46: Variante 2 der zwei möglichen Platzierungen einer Filtermembrane in einem	L
Stahlbecher. Die Farben stehen für: Schwarz = Stahlbecher, Rot = Aluminiumbecher, Grün	=
Kunststoffring, Gelb = Filtermembrane, Blau = auf der Filtermembrane befindliche	
Ablagerung	96
Abbildung 47: Spektrum des NIST 2783 Standards aus dem der Konzentrationsanteil für	
Magnesium bestimmt wird	99
Abbildung 48: Vergleich der Massen des Standardzertifikats mit jenen Werten die am	
23.03.2018 mit der "Gerelmaa_APM" Applikation bestimmt wurde 1	00
Abbildung 49: Darstellung der berechneten Sensitivitätswerte der vorhandenen Elemente fü	r
jedes Sekundärtarget. Es werden jeweils die Elemente, die mit demselben Sekundärtarget	
ausgewertet wurden, in Gruppen zusammengefasst	02
Abbildung 50: Spektrum der manuellen Messung des aus 0,1 g Silber-Titan-Pulver	
bestehenden Beads mit dem Zeriumoxid-Sekundärtarget	05
Abbildung 51: Silizium-Kalibrierungskurve für die Applikation Schmelzaufschluss 1_100.	
	11

Abbildung 52: Schwefel-Kalibrierungskurve für die Applikation Schmelzaufschluss 1_100.
Abbildung 53: Silizium-Kalibrierungskurve für die Applikation Schmelzaufschluss 1_5 115
Abbildung 54: Mangan-Kalibrierungskurve für die Applikation Schmelzaufschluss 1_5115
Abbildung 55: Spektrum der manuellen Messung des gepressten Knorpelpulvers mittels des
Molybdän-Sekundärtargets
Abbildung 56:Spektrum der manuellen Messung des gepressten Knorpelpulvers mittels des
Kalziumfluorit-Sekundärtargets
Abbildung 57: Spektrum der manuellen Messung der aus 0,1g Knorpelpulver bestehenden
Schmelztablette mittels des Kalziumfluorit-Sekundärtargets

29 Tabellenverzeichnis

Tabelle 1: Mögliche Kombinationen der Haupt-, Drehimpuls- und Spinquantenzahlen sowie
die daraus resultierende Gesamtdrehimpulsquantenzahl für die K-, L- und M-Schale
Tabelle 2: Gemessene Intensitäten für unterschiedliche Ausrichtungen der beiden
Aluminiumplättchen
Tabelle 3: Gegenüberstellung der gemessenen Elementkonzentration mit den angegebenen
Werten des Herstellers
Tabelle 4: Gegenüberstellung der gemessenen Elementkonzentration mit und ohne
Berücksichtigung des Eisengehalts in den zwei Plättchen mit den angegebenen Werten des
Herstellers
Tabelle 5: Berechnung der Dichte eines aus reinem Aluminiumpulver bestehendem und mit
10 Tonnen Pressdruck gepressten Pellets
Tabelle 6: Vergleich der gemessenen Netto Intensität des Aluminiumpeaks für
unterschiedliche Pressdrücke mit dem Aluminiumstandard
Tabelle 7: Berechnete Konzentrationen in den Aluminiumpellets mittels einer sehr einfachen
Kalibrierung
Tabelle 8: Von der Software berechnete Zirkonkonzentrationen für die Tonproben
Tabelle 9: Vergleich der gemessenen Intensitäten des Zirkonpeaks für sie fünf vorhandenen
Tonproben
Tabelle 10: Berechnete Zirkonkonzentrationen mittels Vergleich der gemessenen Intensitäten
des hergestellten PTXRFIAE 04 Standards mit den vorhandenen Tonproben
Tabelle 11: Berechnung der vorhandenen Zirkonkonzentration für reines Zirkon und
Zirkonoxid74
Tabelle 12: Von der Software berechnete Massenbelegungen der im NIST 2783 Standard
vorhandenen Elemente für unterschiedliche Messungen. Die Messergebnisse vom 02.07.15,
13.11.15 und 20.02.16 wurden mit der alten Röntgenröhre bestimmt, wohingegen die
Messergebnisse vom 23.03.18 mit der neuen Röntgenröhre ermittelt wurden77
Tabelle 13: Vergleich der vorhandenen Massen und Standardabweichungen der im NIST
2783 Standard vorhandenen Elemente mit den berechneten Werten für unterschiedliche
Messungen. Die Messergebnisse vom 02.07.15, 13.11.15 und 20.02.16 wurden mit der alten
Röntgenröhre bestimmt, wohingegen die Messergebnisse vom 23.03.18 mit der neuen
Röntgenröhre ermittelt wurden
Tabelle 14: Prozentuelle Abweichung der gemessenen von der zertifizierten Masse für die
durchgeführten Messungen des NIST 2783 Standards
Tabelle 15: Auflistung der gemessenen Zählraten und berechneten Konzentrationen für die
vorhandenen Elemente nach einer einstündigen Aerosolsammlung im Labor
Tabelle 16: Auflistung der gemessenen Zählraten und berechneten Konzentrationen für die
vorhandenen Elemente nach einer Aerosolsammlung über ein Wochenende im Labor
Tabelle 17: Auflistung der gemessenen Zählraten und berechneten Konzentrationen für die
vorhandenen Elemente nach einer sechsstündigen Aerosolsammlung im Gitterkäfig
Tabelle 18: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen
Teilchengrößen der ersten gemeinsamen Sammlung im Gitterkäfig
Tabelle 19: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen

Teilchengrößen der zweiten gemeinsamen Sammlung im Gitterkäfig
Tabelle 20: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen
Teilchengrößen der dritten gemeinsamen Sammlung im Gitterkäfig
Tabelle 21: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen
Teilchengrößen der ersten gemeinsamen am Dach des Atominstituts
Tabelle 22: Auf das Durchflussvolumen normierte Ergebnisse für die unterschiedlichen
Teilchengrößen der zweiten gemeinsamen Sammlung am Dach des Atominstituts
Tabelle 23: Verhältnisse zwischen den auf das Durchflussvolumen normierte Massen für
Dekati-Impaktor und GENT Sampler
Tabelle 24: Berechnung der Geometriefaktoren
Tabelle 25: Vergleich der vorhandenen Massen und Abweichungen der im NIST 2783
Standard vorhandenen Elemente mit gemessenen Werten
Tabelle 26: Aus den Kalibrierungskurven der Applikation Luftfilter calib entnommene E-
Werte und der berechnete Sensitivität
Tabelle 27: Berechnete Mittelwerte der Intensitätswerte für die Ka-Linien von Silber und
Titan für die vier unterschiedlichen Pulverproben sowie der prozentuelle Unterschied
zwischen den behandelten und unbehandelten Probenmaterialien
Tabelle 28: Berechnete Werte für den Loss on Ignition für die die vier vorhandenen
Standardmaterialien
Tabelle 29: Mittels Schmelzaufschluss bestimmte Elementkonzentrationen im Knorpelpulver
Tabelle 30: Mittels gepressten Pellets bestimmte Elementkonzentrationen im Knorpelpulver
Tabelle 31: Mittels ICP-OES und ICP-MS bestimmte Elementkonzentrationen im
Knorpelpulver
Tabelle 32: Vergleich der gemessenen Elementkonzentrationen des Schweineknorpelpulvers
für die verwendeten Messmethoden
Tabelle 33: Übersicht über die Elemente für die Kalibrierungskurven erstellt wurden sowie
deren ungefährer Konzentrationsbereich

30 Literaturverzeichnis

- [1] W. Demtröder, "Experimentalphysik 3. Atome, Moleküle und Festkörper," 4. Auflage, Berlin, Heidelberg: Springer Verlag, 2010.
- [2] H. Biermann und L. Krüger, "Moderne Methoden der Werkstoffprüfung, "Weinheim: Wiley-VHC, 2014.
- [3] H. G. J. Moseley, "The High-Frequency Spectra of the Elements," in THE LONDON, EDINBURGH, AND DUBLIN PHILOSOPHICAL MAGAZINE AND JOURNAL OF SCIENCE, VOL. XXVI-SIXTH SERIES, London, 1913, S. 1024-1034.
- [4] H. G. J. Moseley, "The High-Frequency Spectra of the Elements Part II," in THE LONDON, EDINBURGH, AND DUBLIN PHILOSOPHICAL MAGAZIN AND JOURNAL OF SCIENCE, VOL. XXVII-SIXTH SERIES, London, 1914, S. 703-713.
- [5] R. E. Van Grieken und A. A. Markowicz, Handbook of X-Ray Spectrometry, Methods and Techniques, New York: Marcel Dekker, Inc., 1993.
- [6] P. Kregsamer, "EDXRF analysis of Air Particulate Matter, " Unpubliziertes Dokument, o.O, 2016.
- [7] XRF Group IAEA Laboratories Seibersdorf, "QUANTITATIVE X RAY ANALYSIS SYSTEM, USER'S MANUAL AND GUIDE TO X RAY FLUORESCENCE TECHNIQUE," International Atomic Energy Agency, [Online]. Available: https://www-pub.iaea.org/MTCD/publications/PDF/IAEA-CMS-21_CD_web/PDF/CMS_21.pdf. [Zugriff am 07 03 2019].
- [8] R. Jenkins, R. W. Gould und D. Gedcke, QUANTITATIVE X-RAY SPECTROMETRY, New York: Marcel Dekker Inc, 1981.
- [9] PANalytical, Epsilon 5, Course Binder, Almelo, 2005.
- [10] P. Brouwer, *THEORY OF XRF, Getting aquainted with the principles, 2nd edition,* Almelo: PANalytical B.V, 2006.
- [11] U. Fischer, R. Gomeringer, M. Heinzler, R. Kilgus, F. Näher, S. Oesterle, H. Paetzold und A. Stephan, "Tabellenbuch Metall," 44. Auflage, Haan-Gruiten: Europa-Lehrmittel, 2008.
- [12] A. Maderitsch, "Anwendung eines kommerziellen energiedispersiven Röntgenfluoreszenzspektrometers auf unkonventionelle Fragestellungen, " Diplomarbeit, Wien, Atominstitut der Österreichischen Universitäten an der Technischen Universität Wien, 2014.
- [13] A. Markwitz, "Operating manual for GENT sampler," S. 1-14, Neuseeland, 2004.
- [14] J. P. Willis, "XRF SAMPLE PREPARATION, Glass beads by borate fusion," Niederlande: PANalytical BV, 2010.

Anhang A

Berechnung der Elementkonzentrationen für Kapitel 17 Bestimmung des Magnesium- und Siliziumgehalts in Aluminium

Anhang A.1: Standards die einen großen Konzentrationsbereich abdecken

In den	In den Pellets vorhandene Elemente		
Element	Atomgewicht [u]		
0	16		
Mg	24,3		
Al	27		
Si	28,1		

Standard 1		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Mg	3,01	100

Standard 2		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	4	100

Standard 3		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	4	96,16
Mg	0,08	1,92
SiO2	0,08	1,92
Gesamt	4,16	100,00
Zusammensetzung des Siliziumoxid		
Si	0,90	%
0	1,02	%

Standard 4		
Element	Masse [g]	prozentueller Anteil an dem Pellet
MgO	2,97	83,19
HWC	0,6	16,81
Gesamt	3,57	100,00
Zusammensetzung des Magnesiumoxid		
Mg	50,16 %	
0	33,03	%

Standard 5		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al2O3	4	84,03
MgO	0,08	1,68
SiO2	0,08	1,68
HWC	0,6	12,61
Gesamt	4,76	100,00
Zu	sammensetz	zung der Oxide
Al	44,49	%
Mg	1,01	%
Si	0,79	%
0	41,11	%

Standard 6		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al2O3	4	86,77
HWC	0,61	13,23
Gesamt	4,61	100,00
Zusammensetzung des Aluminiumoxids		
Al	45,94	%
0	40,83	%

Standard 7			
Element	Masse [g]	prozentueller Anteil an dem Pellet	
SiO2	4,02	88,74	
HWC	0,51	11,26	
Gesamt	4,53	100,00	
Zusammensetzung des Siliziumoxids			
Si	41,49	%	
0	47,25	%	

Standard 8			
Element	Masse [g]	prozentueller Anteil an dem Pellet	
Al	1,3	27,03	
Mg	1,5	31,19	
SiO2	1,51	31,39	
HWC	0,5	10,40	
Gesamt	4,81	100,00	
Zusammensetzung des Siliziumoxids			
Si	14,68	%	
0	16,72	%	

Standard 9			
Element	Masse [g]	prozentueller Anteil an dem Pellet	
Al2O3	2,5	41,67	
MgO	2,5	41,67	
HWC	1	16,67	
Gesamt	6	100,00	
Zu	Zusammensetzung der Oxide		
Al	22,06	%	
Mg	25,12	%	
0	36,15	%	

Standard 10			
Element Masse [g] prozentueller Antei an dem Pellet			
Al	0,43	22,16	
Mg	0,5	25,77	
HWC	1,01	52,06	
Gesamt	1,94	100,00	

Standard 11		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Mg	3	66,52
SiO2	1,01	22,39
HWC	0,5	11,09
Gesamt	4,51	100,00
Zusammensetzung des Siliziumoxide		
Si	10,47	%
0	11,92	%

Standard 12		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	0,2	5,13
Mg	0,8	20,51
SiO2	2,5	64,10
HWC	0,4	10,26
Gesamt	3,9	100,00
Zusammensetzung des Siliziumoxids		
Si	29,97	%
0	34,13	%

Standard 13		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	0,8	15,69
Mg	3	58,82
SiO2	0,8	15,69
HWC	0,5	9,80
Gesamt	5,1	100,00
Zusammensetzung des Siliziumoxids		
Si	7,33 %	
0	8,35 %	

Standard 14		
Element	Masse [g]	prozentueller Anteil an dem Pellet
MgO	0,5	12,50
SiO2	3	75,00
HWC	0,5	12,50
Gesamt	4	100,00
Zusammensetzung der Oxids		
Mg	7,54	%
Si	35,07	%
0	44,90	%

Standard 15		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	4	98,04
MgO	0,04	0,98
SiO2	0,04	0,98
Gesamt	4,08	100,00
Zusammensetzung der Oxids		
Mg	0,59	%
Si	0,46	%
0	0,91	%

Anhang A.2: Standards die einen kleinen Konzentrationsbereich abdecken

In den Pellets vorhandene Elemente		
Element	Atomgewicht [u]	
0	16	
Mg	24,3	
Al	27	
Si	28,1	

Standard 3		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	4	96,15
Mg	0,08	1,92
SiO2	0,08	1,92
Gesamt	4,16	100,00
Zusammensetzung des Siliziumoxid		
Si	0,90	%
0	1,02	%

Standard 2.3		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	4	95,92
Mg	0,02	0,48
SiO2	0,15	3,60
Gesamt	4,17	100,00
Zusammensetzung des Siliziumoxid		
Si	1,68 %	
0	1,92	%

Standard 2.1		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	4	94,34
Mg	0,06	1,42
SiO2	0,18	4,25
Gesamt	4,24	100,00
Zusammensetzung des Siliziumoxid		
Si	1,98	%
0	2,26	%

Standard 2.4		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	4	97,80
Mg	0,05	1,22
SiO2	0,04	0,98
Gesamt	4,09	100,00
Zusammensetzung des Siliziumoxid		
Si	0,46 %	
0	0,52	%

Standard 2.2		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	4	96,15
Mg	0,04	0,96
SiO2	0,12	2,88
Gesamt	4,16	100,00
Zusammensetzung des Siliziumoxid		
Si	1,35	%
0	1,54	%

Standard 2.5		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	4	99,26
Mg	0,01	0,25
SiO2	0,02	0,50
Gesamt	4,03	100,00
Zusammensetzung des Siliziumoxid		
Si	0,23	%
0	0,26	%

Anhang A.3: Weiter Standards die einen kleinen Konzentrationsbereich abdecken

In den Pellets vorhandene Elemente		
Element	Atomgewicht [u]	
0	16	
Mg	24,3	
Al	27	
Si	28,1	

Standard 3.1			
Element	Masse [g]	prozentueller Anteil an dem Pellet	
Al	5	95,60	
MgO	0,1	1,91	
SiO2	0,13	2,49	
Gesamt	5,23	100,00	
Zusammensetzung der Oxide			
Mg	1,15 %		
Si	1,16 %		
0	2,08	%	

Standard 3.2		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	5	96,81
MgO	0,08	1,55
SiO2	0,085	1,65
Gesamt	5,165	100,00
Zusammensetzung der Oxide		
Mg	0,93	%
Si	0,77	%
0	1,49	%

Standard 3.3		
Element	Masse [g]	prozentueller Anteil an dem Pellet
Al	5	97,66
MgO	0,06	1,17
SiO2	0,06	1,17
Gesamt	5,12	100,00
Zusammensetzung der Oxide		
Mg	0,71	%
Si	0,55	%
0	1,09	%

Standard 3.4			
Element	Masse [g]	prozentueller Anteil an dem Pellet	
Al	5	98,43	
MgO	0,04	0,79	
SiO2	0,04	0,79	
Gesamt	5,08	100,00	
Zusammensetzung der Oxide			
Mg	0,47	%	
Si	0,37	%	
0	0,73	%	

Standard 3.5			
Element	Masse [g]	prozentueller Anteil an dem Pellet	
Al	5	99,01	
MgO	0,02	0,40	
SiO2	0,03	0,59	
Gesamt	5,05	100,00	
Zusammensetzung der Oxide			
Mg	0,24	%	
Si	0,28	%	
0	0,47	%	

Standard 4.1			
Element	Masse [g]	prozentueller Anteil an dem Pellet	
Al	4	95,01	
MgO	0,1	2,38	
SiO2	0,11	2,61	
Gesamt	4,21	100,00	
Zusammensetzung der Oxide			
Mg	1,43	%	
Si	1,22	%	
0	2,33	%	

Standard 4.1			
Element	Masse [g]	prozentueller Anteil an dem Pellet	
Al	4	96,15	
MgO	0,08	1,92	
SiO2	0,08	1,92	
Gesamt	4,16	100,00	
Zusammensetzung der Oxide			
Mg	1,16 %		
Si	0,90 %		
0	1,79	%	

Anhang B

Berechnung der Elementkonzentrationen für Kapitel 18 Bestimmung des Zirkongehalts in Tonproben

Spezialglas SV-G1		
Hauptelemente im Spezialglas SV-G1	Massenprozent [%]	
A12O3	2,31	
BaO	11,10	
CeO2	0,28	
CuO	0,92	
K2O	7,41	
MgO	0,58	
Na2O	7,59	
PbO	2,03	
Sb2O3	0,57	
SiO2	61,15	
SrO	4,99	
TiO2	0,14	
ZrO2	1,00	
Im Spezialglas SV-G1 enthaltenes Zirkon [ppm]		
7403		

Soil 7 50:50		
Bestandteile	Massenprozent [%]	
Soil 7	50,00	
Cellulose	50,00	
Gesamtmasse	100,00	

Da in dem Pellet 50% Soil 7 vorhanden ist, müssen alle im Datenblatt angegebene Massenprozente halbiert werden.

Hauptelemente in Soil 7	Massen- prozent	Massenprozent im gepressten Pellet
A12O3	8,9	4,45
CaO	22,9	11,45
Fe2O3	3,7	1,85
K2O	2,9	1,45
MgO	1,9	0,95
Na2O	0,06	0,03
SO3	0,3	0,15
SiO2	38,5	19,25
TiO2	0,5	0,25
L.OI	20,5	10,25
In Soil 7 enthaltenes Zirkon [ppm]		Im Pellet enthaltenes Zirkon [ppm]
185		92,5

Zirkonstandard			
Im Zirkonstandard			
enthaltenes Zirkon [ppm]			
970000			

Soda-Lime Container Glass-Nr.1				
Hauptelemente im Soda-Lime Container Glass	Massenprozent [%]			
SiO2	71,13			
Na2O	12,74			
CaO	10,71			
A12O3	2,76			
K2O	2,01			
MgO	0,27			
SO3	0,13			
BaO	0,12			
Fe2O3	0,04			
As2O3	0,03			
TiO2	0,14			
ZrO2	0,007			
Im Spezialglas SV-G1 enthaltenes Zirkon [ppm]				

Soil7 1:10						
Bestandteile Masse [g] Massenprozent [%]						
Soil 7	1,000	9,78				
Flux	9,220	90,22				
Gesamtmasse	10,22	100,00				

Laut dem Datenblatt von Soil-7 (siehe Anhang H) weist das Standardmaterial einen Glühverlust (LOI) von 20,5% auf. Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berchnet werden. Desweitern muss, für eine korrekte Berechnung der Massenproznete der einzelnen Elementverbindungen, berücksichtigt weredn, dass das Fused Bead nur zu einem kleinen Teil aus Soil 7 und zum Größtenteils aus Flux besteht.

Hauptelemente in Soil 7	Massen- prozent	Massenprozent unter berücksichtigung des LOI		Massenprozent im vorhandenen Fused Bead
A12O3	8,9	11,19		1,10
CaO	22,9	28	,81	2,82
Fe2O3	3,7	4,65		0,46
K2O	2,9	3,65		0,36
MgO	1,9	2,39		0,23
Na2O	0,06	0,08		0,01
SO3	0,3	0,38		0,04
SiO2	38,5	48,43		4,74
TiO2	0,5	0,63		0,06
In Soil 7 entha	In Soil 7 enthaltenes Zirkon [ppm]		Im Pellet	enthaltenes Zirkon [ppm]
185			18,10	

Soil 7 + Flux							
Bestandteile Masse [g] Massenprozent [%]							
Soil 7	0,614	8,86					
Flux	6,311	91,14					
Gesamtmasse	6,9245	100,00					

Laut dem Datenblatt von Soil-7 (siehe Anhang H) weist das Standardmaterial einen Glühverlust (LOI) von 20,5% auf. Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berchnet werden. Desweitern muss, für eine korrekte Berechnung der Massenproznete der einzelnen Elementverbindungen, berücksichtigt weredn, dass das Fused Bead nur zu einem kleinen Teil aus Soil 7 und zum Größtenteils aus Flux besteht.

Hauptelemente in Soil 7	Massen- prozent	Massenprozent unter berücksichtigung des LOI	Massenprozent im vorhandenen Fused Bead
A12O3	8,9	11,19	0,99
CaO	22,9	28,81	2,55
Fe2O3	3,7	4,65	0,41
K2O	2,9	3,65	0,32
MgO	1,9	2,39	0,21
Na2O	0,06	0,08	0,01
SO3	0,3	0,38	0,03
SiO2	38,5	48,43	4,29
TiO2	0,5	0,63	0,06

In Soil 7 enthaltenes Zirkon [ppm]		Im Pellet enthaltenes Zirkon [ppm]
185		16,40
	PTXRFIAEA	. 04 4:1
Bestandteile	Masse [g]	Massenprozent
PTXRFIAE04	2,4	80,00
HWC	0,6	20,00
Gesamtmasse	3	100,00
Berechnung der im Elementkonzentrat	gepressten Pe ionen	llet vorhanden
Hauptelemente in PTXRFIAEA04	Atom- gewicht [u]	Massenprozent
Al	27	11,1
Ca	40	0,218
Cl	35,4	0,131
Fe	55,8	4,99
K	39,1	1,96
Mg	24,3	0,859
Na	23	0,473
Si	28	25,3
Ti	47,9	0,595
0	16	
Da die Massenkonz	zentration im S	Standardmaterial Soil 7 als

Da die Massenkonzentration im Standardmaterial Soil 7 als Oxidverbindungen angegeben sind, werden die im PTXRFIAEA04 angegebenen Massenprozente der einzelnen Elemente auf Oxidverbindungen umgerechnet. Anschließend muss noch berücksichtigt weredn, dass das gepresste Pellet nur zu 80 % aus PTXRFIAEA04 besteht.

Vorhandene Oxide	Massen- prozent	Umrechnen auf 80 % Oxide
A12O3	20,97	16,77
CaO	0,31	0,24
ClO2	0,25	0,20
Fe2O3	7,14	5,71
K2O	2,36	1,89
MgO	1,42	1,14
Na2O	1,28	1,02
SiO2	54,21	43,37
TiO2	0,99	0,79
In PTXRFIAEA enthaltenes Zirkon [ppm]		Im Pellet enthaltenes Zirkon [ppm]
177		141,60

Anhang B.2: Mittels Flüssigstandardmaterial hergestellte Standards

Der verwendete Flüssigstandard enthält: 1000 ppm Zirkon => Dies entspricht: 1000 ng/µl

Flüssigstandard Nr. 1				
300 µl Flüssigstandard entspricht somit:	300000	ng Zirkon		
Dies entspricht:	0,0003	g Zirkon		
Unter Verwendung von:	3,002	g Cellulose		
ergibt sich ein prozentueller Anteil des Zirkons	s im fertig	en Presssling von:	0,010	%

Flüssigstandard Nr. 2

500 µl Flüssigstandard entspricht somit: 5	500000	ng Zirkon		
Dies entspricht:	0,0005	g Zirkon		
Unter Verwendung von:	3,02	g Cellulose		
ergibt sich ein prozentueller Anteil des Zirkons in	n fertige	en Presssling von:	0,017	%

Flüssigstandard Nr. 3					
1500	µl Flüssigstandard entspricht somit:	1500000	ng Zirkon		
	Dies entspricht:	0,0015	g Zirkon		
	Unter Verwendung von:	3,002	g Cellulose		
ergib	t sich ein prozentueller Anteil des Zirkons	s im fertig	en Presssling von:	0,050	%

Flüssigstandard Nr. 4				
2000 µl Flüssigstandard entspricht somit:	2000000	ng Zirkon		
Dies entspricht:	0,002	g Zirkon		
Unter Verwendung von:	3,02	g Cellulose		
ergibt sich ein prozentueller Anteil des Zirkons im fertigen Presssling von: 0,066 %				%

Flüssigstandard Nr. 5				
1500 µl Flüssigstandard entspricht somit:	1500000	ng Zirkon		
	0,0015	g Zirkon		
Dies wurde mit 2,4 g PTXRFIAEA04 vermisc	ht.			
PTXRFIAEA04 enthält:	177	ppm Zirkon		
Dies entspricht:	177	mg/kg		
Dies entspricht:	0,177	mg/g		
2,4 g PTXRFIAEA04 enthalten somit:	0,4248	mg Zirkon		
Dies entspricht:	0,0004	g		
Gesamtgewicht des Zirkons beträgt:	0,0019	g		
Nach dem Trocknen war nur mehr 2,3 g festes Vergleich zur ursprünglichen vorhandenen Ma	Material i	ibrig. Im 4 g		
entspricht dies:	95.83	%		
Somit wiegt das Zirkon im Material:	0,0018	g		
Um ein Pellet pressen zu können, wird zusätzl:	ich noch 0	,6 g HWC-		
Bindematerial hinzugefügt.				
Gesamtmasse des Pelletmaterials:	2,9	g		
Prozentueller Zirkonanteil an dem Pellet:	0,064	%		

Flüssigstandard Nr. 6					
2000 µl Flüssigstandard entspricht somit	2000000	ng Zirkon			
	0,002	g Zirkon			
Dies wurde mit 2,4 g PTXRFIAEA04 vermisc	ht.				
PTXRFIAEA04 enthält:	177	ppm Zirkon			
Dies entspricht:	177	mg/kg			
Dies entspricht:	0,177	mg/g			
2,4 g PTXRFIAEA04 enthalten somit:	0,4248	mg Zirkon			
Dies entspricht:	0,0004	g			
Gesamtgewicht des Zirkons beträgt:	0,0024	g			
Nach dem Trocknen war nur mehr 2,3 g festes Vergleich zur ursprünglichen vorhandenen Ma	Material i	ibrig. Im 4 g			
entspricht dies:	95 83	т <u>б</u>			
Somit wiegt das Zirkon im Material:	0,0023	g			
Um ein Pellet pressen zu können, wird zusätzlich noch 0,6 g HWC-					
Bindematerial hinzugefügt.		_			
Gesamtmasse des Pelletmaterials:	2,9	g			
Prozentueller Zirkonanteil an dem Pellet:	0,080	%			

Anhang C

Berechnung der Elementkonzentrationen für Kapitel 21 Erstellung von mehreren Applikationen für die Messung von Aerosolen

Anhang C.1: Leichte Elemente der Firma Nuclepore

Serial#: 38630 option B			
vorhandene Elemente:	NaCl		
Massenbelegung:	20	±5%	µg/cm ²
Atommassen der vorhandenen Elemente			
Atommasse von Na:	23	u	
Atommasse von Cl:	35,5	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Na:	7,86	±5%	µg/cm ²
Massenbelegung von Cl:	12,14	±5%	µg/cm ²

Serial#: 38632 option B

	-		
vorhandenes Element:	Al		
Massenbelegung:	19,9	±5%	µg/cm ²

Serial#: 38633			
vorhandene Elemente:	SiO		
Massenbelegung:	22,5	±5%	µg/cm ²
Atommassen der vorhandenen Elemente			
Atommasse von O:	16	u	
Atommasse von Si:	28,09	u	
Massenbelegungen der e	inzelne	n Eler	nente
Massenbelegung von O:	8,17	±5%	µg/cm ²
Massenbelegung von Si:	14,33	±5%	µg/cm ²
Da dieser Filter mit einem Spalt gemessen wurde			

Da dieser Filter mit einem Spait gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegungen

Massenbelegung von O: 7,75 $\pm 5\%$ µg/cm² Massenbelegung von Si: 13,60 $\pm 5\%$ µg/cm²

Serial#: 38635				
vorhandene Elemente:	CuSx			
Massenbelegung:	16,8	±5%	μ g/cm ²	
Massenbelegungen der e	inzelne	n Elei	nente	
Massenbelegung von Cu:	11,8	±5%	μ g/cm ²	
Massenbelegung von Sx:	5	±5%	μ g/cm ²	
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.				
Korrigierte Massenbelegungen				
Massenbelegung von Cu:	11.20	±5 <i>0</i> ‰	$ualom^2$	

Massenbelegung von Cu:	11,20	$\pm 5\%$	$\mu g/cm^2$
Massenbelegung von Sx:	4,75	±5%	$\mu g/cm^2$

Serial#: 38631 option B			
vorhandene Elemente:	MgF_2		
Massenbelegung:	18,6	±5%	µg/cm ²
Atommassen der vorhandenen Elemente			
Atommasse von F ₂ :	38	u	
Atommasse von Mg:	24,3	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von F ₂ :	11,35	±5%	µg/cm ²
Massenbelegung von Mg:	7,25	±5%	µg/cm ²

Serial#: 38634			
vorhandene Elemente:	GaP		
Massenbelegung:	20,2	±5%	µg/cm ²
Atommassen der vorha	ndener	n Elem	nente
Atommasse von Ga	69,7	u	
Atommasse von P	31	u	
Massenbelegungen der e	inzelne	en Elei	mente
Massenbelegung von Ga:	13,98	±5%	µg/cm ²
Massenbelegung von P:	6,22	±5%	µg/cm ²
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.			
Korrigierte Massenbelegungen			
			2

Massenbelegung von Ga:	13,27	±5%	$\mu g/cm^2$
Massenbelegung von P:	5,90	±5%	µg/cm ²

Serial#: 38636	Serial#: 3
vorhandene Elemente: KCl	vorhandene Elemente:
Massenbelegung: $23,4 \pm 5\% \mu g/cm^2$	Massenbelegung:
Atommassen der vorhandenen Elemente	Atommassen der vorha
Atommasse von K 39,1 u	Atommasse von K:
Atommasse von Cl 35,45 u	Atommasse von I:
Massenbelegungen der einzelnen Elemente	Massenbelegungen der
Massenbelegung von K: $12,27 \pm 5\% \mu g/cm^2$	Massenbelegung von K:
Massenbelegung von Cl: 11,13 $\pm 5\%$ µg/cm ²	Massenbelegung von I:
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.	Da dieser Filter mit einem S müssen die vorhanden Konz Abschwächungsfaktor von (werden, da effektiv weniger wurde.
Korrigierte Massenbelegungen	Korrigierte Masse
Massenbelegung von K: 11,65 $\pm 5\%$ µg/cm ²	Massenbelegung von K:
Massenbelegung von Cl: 10,56 $\pm 5\%$ µg/cm ²	Massenbelegung von I:
Serial#: 38638	Serial#: 3
vorhandene Elemente: CaF2	vorhandenes Element:
Massenbelegung: $21,2 \pm 5\% \mu\text{g/cm}^2$	Massenbelegung:
Atommassen der vorhandenen Elemente Atommasse von Ca: 40,1 u Atommasse von F2: 38 u Massenbelegungen der einzelnen Elemente Massenbelegungen von Ca: 10,80 ± 5% ± ug/cm²	Da dieser Filter mit einem S müssen die vorhanden Konz Abschwächungsfaktor von (werden, da effektiv weniger wurde.
Massenbelegung von E.: $10.31 \pm 5\%$ µg/cm ²	Korrigierte Mas
Massenbelegung von F_2 : 10,51 $\pm 5\%$ µg/cm	Massarhalagura yan Tiy
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde. Korrigierte Massenbelegungen Massenbelegung von Ca: 10,33 ±5% µg/cm ²	mussenberegung von 11.
Massenbelegung von F ₂ : 9,79 $\pm 5\%$ µg/cm ²	
Serial#: 38641	Serial#: 3
vorhandene Elemente: V	vorhandenes Element:
Massenbelegung: $17,4 \pm 5\% \ \mu g/cm^2$	Massenbelegung:
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.	Da dieser Filter mit einem S müssen die vorhanden Konz Abschwächungsfaktor von 0 werden, da effektiv weniger wurde.

Korrigierte Massenbelegung

Massenbelegung von V: 16,51 ±5% µg/cm²

Serial#: 38637			
vorhandene Elemente:	KI		
Massenbelegung:	20,9	±5%	µg/cm ²
Atommassen der vorha	ndener	n Elem	iente
Atommasse von K:	39,1	u	
Atommasse von I:	126,9	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von K:	4,92	±5%	µg/cm ²
Massenbelegung von I:	15,98	±5%	µg/cm ²

Spalt gemessen wurde, zentrationen mit dem),949 multipliziert Intensität gemessen

enbelegungen

Massenbelegung von K:	4,67	±5%	$\mu g/cm^2$
Massenbelegung von I:	15,16	±5%	$\mu g/cm^2$

Serial#: 38640			
vorhandenes Element:	Ti		
Massenbelegung:	22	±5%	µg/cm ²
vornandenes Element: Massenbelegung:	11 22	±5%	µg/cm ²

Spalt gemessen wurde, zentrationen mit dem 0,949 multipliziert Intensität gemessen

Korrigierte Mass			
Massenbelegung von Ti:	20,88	±5%	µg/cm ²

Serial#: 38642				
vorhandenes Element:	Cr			
Massenbelegung:	22,5	±5%	µg/cm ²	
Da dieser Filter mit einem Sp müssen die vorhanden Konze Abschwächungsfaktor von 0, werden, da effektiv weniger I wurde.	oalt ger entratio 949 mi Intensit	nessen onen m ultipliz tät gen	i wurde, it dem ziert nessen	
Korrigierte Massenbelegung				
Massenbelegung von Cr.	21 35	+5%	$\mu g/cm^2$	

vorhandenes Element: Mn Massenbelegung: 22 ±5% µg/cm²

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Mn: 20,88 $\pm 5\%$ µg/cm²

Serial#: 38646

vorhandenes Element: Ni Massenbelegung: 20,4 ±5% µg/cm²

Serial#: 38648				
vorhandene Elemente:	ZnTe			
Massenbelegung:	19,8	±5%	µg/cm ²	
Atommassen der vorhandenen Elemente				
Atommasse von Zn:	65,4	u		
Atommasse von Te:	127,6	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Zn	6,71	±5%	µg/cm ²	
Massenbelegung von Te	13,09	±5%	µg/cm ²	

Serial#: 38650				
vorhandenes Element: Ge				
Massenbelegung:	19,1	±5%	$\mu g/cm^2$	

Serial#: 38652				
vorhandene Elemente:	CsBr			
Massenbelegung:	20,8	±5%	$\mu g/cm^2$	
Atommassen der vorhandenen Elemente				
Atommasse von Cs:	132,9	u		
Atommasse von Br:	79,9	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Cs:	12,99	±5%	µg/cm ²	
Massenbelegung von Br:	7,81	±5%	µg/cm ²	

Serial#: 38662				
vorhandene Elemente:	CdSe			
Massenbelegung:	21	±5%	$\mu g/cm^2$	
Atommassen der vorhandenen Elemente				
Atommasse von Cd:	112	u		
Atommasse von Se:	79	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Cd:	12,31	±5%	$\mu g/cm^2$	
Massenbelegung von Se:	8,69	±5%	μ g/cm ²	

Serial#: 38644

vorhandenes Element: Fe Massenbelegung: 20,9

Fe 20,9 ±5% μg/cm²

Serial#: 38645			
vorhandenes Element:	Co		
Massenbelegung:	22,7	±5%	µg/cm ²

Serial#: 38647			
vorhandenes Element:	Cu		
Massenbelegung:	22,4	±5%	µg/cm ²

Serial#: 38649				
vorhandene Elemente:	GaAs			
Massenbelegung:	21,7	±5%	µg/cm ²	
Atommassen der vorhandenen Elemente				
Atommasse von Ga:	69,7	u		
Atommasse von As:	74,9	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Ga:	10,46	±5%	µg/cm ²	
Massenbelegung von As:	11,24	±5%	µg/cm ²	

Serial#: 38651				
vorhandenes Element:	Se			
Massenbelegung:	20,5	±5%	µg/cm ²	

Serial#: 38653				
vorhandene Elemente:	RbI			
Massenbelegung:	21,2	±5%	µg/cm ²	
Atommassen der vorhandenen Elemente				
Atommasse von Rb:	85,4	u		
Atommasse von I:	126,9	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Rb:	8,53	±5%	µg/cm ²	
Massenbelegung von I:	12,67	±5%	$\mu g/cm^2$	

Serial#: 38687				
vorhandenes Element:	Pb			
Massenbelegung:	20,8	±5%	µg/cm2	

Anhang C.2: Leichte Elemente der Firma Nuclepore MYLAR

Serial#: 15387
vorhandene Elemente: SiO
Massenbelegung: $45,6 \pm 5\% \mu g/cm^2$
Atommassen der vorhandenen Elemente
Atommasse von O: 16 u
Atommasse von Si: 28,09 u
Massenbelegungen der einzelnen Elemente
Massenbelegung von O: $16,55 \pm 5\% \mu g/cm^2$
Massenbelegung von Si: 29,05 $\pm 5\%$ µg/cm ²
Da dieser Filter mit einem Spalt gemessen wurde
müssen die vorhanden Konzentrationen mit dem
Abschwächungsfaktor von 0,949 multipliziert
werden, da effektiv weniger Intensität gemessen
wurde.
Korrigierte Massenbelegungen
Massenbelegung von O: $15,70 \pm 5\% \ \mu g/cm^2$
Massenbelegung von Si: $27.57 \pm 5\%$ µg/cm ²
Serial#: 15389
vorhandene Elemente: KI
Massenbelegung: $44.4 + 5\%$ µg/cm ²
Atommassen der vorhandenen Elemente
Atommasse von K° 39.1 u
Atommasse von I: 126.9 u
Massenbelegungen der einzelnen Elemente
Massenbelegung von K: $10.46 + 5\%$ ug/cm ²
Massenbelegung von I: 33.04 $\pm 5\%$ µg/cm ²
Wiassenberegung von 1. 55,94 ±5 // µg/em
Da dieser Filter mit einem Spalt gemessen wurde,
müssen die vorhanden Konzentrationen mit dem
Abschwachungsläktor von 0,949 multipliziert
wurde
wurde.
Korrigierte Massenbelegungen
Massenbelegung von K: $9,92 \pm 5\% \ \mu g/cm^2$
Massenbelegung von I: $32,21 \pm 5\% \mu g/cm^2$
Serial#: 15392
vorhandene Elemente: V
Massenbelegung: $42.7 \pm 5\%$ ug/cm ²

müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von V: 40,52 $\pm 5\%$ µg/cm²

Serial#: 15388			
vorhandene Elemente:	CuSx		
Massenbelegung:	45,6	±5%	µg/cm ²
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Cu:	39,7	±5%	µg/cm ²
Massenbelegung von Sx:	11,5	±5%	µg/cm ²
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.			
Korrigierte Massenbelegungen			
Massenbelegung von Cu:	37,68	±5%	µg/cm ²

Massenbelegung von Sx: $10,91 \pm 5\% \mu g/cm^2$

Serial#: 15390				
vorhandene Elemente:	CaF2		<u> </u>	
Massenbelegung:	45,1	±5%	µg/cm ²	
Atommassen der vorha	ndenen	Elem	ente	
Atommasse von Ca:	40,1	u		
Atommasse von F _{2:}	38	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Ca:	23,16	±5%	µg/cm ²	
Massenbelegung von F ₂ :	21,94	±5%	µg/cm ²	
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem				

müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegungen

Serial#: 15393				
vorhandenes Element:	Cr			
Massenbelegung:	45,9	±5%	µg/cm ²	
Da dieser Filter mit einem Sp	alt gen	nessen	wurde,	

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Cr: $43,56 \pm 5\% \mu g/cm^2$

vorhandenes Element: Mn Massenbelegung: 38,2 ±5% μg/cm²

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Mn: $36,25 \pm 5\% \ \mu g/cm^2$

Serial#:	15396
----------	-------

vorhandenes Element:	Co		
Massenbelegung:	42,5	±5%	µg/cm ²

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Co: 40,33 $\pm 5\%$ µg/cm²

Serial#: 15398				
vorhandenes Element:	Cu			
Massenbelegung:	45,6	±5%	µg/cm ²	

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Cu: $43,27 \pm 5\% \mu g/cm^2$

Serial#: 15408			
vorhandenes Element:	Pb		
Massenbelegung:	51,6	±5%	µg/cm ²

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Pb: 48,97 $\pm 5\%$ µg/cm²

Serial#: 15395

vorhandenes Element: Fe Massenbelegung: 50,8

 $50,8 \pm 5\% \ \mu g/cm^2$

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Fe: $48,21 \pm 5\% \mu g/cm^2$

Serial#: 153	97
--------------	----

vorhandenes Element:	Ni		
Massenbelegung:	41,8	±5%	µg/cm ²

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Ni: 39,67 $\pm 5\%$ µg/cm²

Serial#: 15	399		
vorhandenes Element:	Ge		
Massenbelegung:	45,6	±5%	µg/cm ²

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Ge: $43,27 \pm 5\% \mu g/cm^2$

Anhang C.3: Schwere Elemente der Firma Nuclepore

Serial#: 3	8638
vorhandene Elemente:	CaF ₂
Massenbelegung:	$21,2 \pm 5\% \ \mu g/cm^2$
Atommassen der vorha	andenen Elemente
Atommasse von Ca:	40,1 u
Atommasse von F ₂ :	38 u
Massenbelegungen der	einzelnen Elemente
Massenbelegung von Ca:	$10.89 \pm 5\% \ \mu g/cm^2$
Massenbelegung von F_2 :	$10.31 \pm 5\% \ \mu g/cm^2$
Da dieser Filter mit einem S müssen die vorhanden Konz Abschwächungsfaktor von 0 werden, da effektiv weniger wurde	palt gemessen wurde, entrationen mit dem 0,949 multipliziert Intensität gemessen
Korrigierte Masse	enbelegungen
Massenbelegung von Ca-	$10.33 + 5\% \text{ µg/cm}^2$
Massenbelegung von F ₂ .	$9.79 \pm 5\% \ \mu g/cm^2$
Serial#: 3	8654
vorhandene Elemente:	SrF_2
Massenbelegung:	$21,6 \pm 5\% \ \mu g/cm^2$
Atommassen der vorna	andenen Elemente
Atommasse von Sr:	87,62 u
Atommasse von F:	19 u
Massenbelegungen der	
Massenbelegung von Sr:	$15,07 \pm 5\% \ \mu g/cm^2$
Wassenberegung von Γ_2 .	0,55 ±5% μg/cm
Serial#: 3	8656
vorhandene Elemente:	ZrF_4
Massenbelegung:	20,8 $\pm 5\%$ µg/cm ²
Atommassen der vorha	andenen Elemente
Atommasse von Zr:	91,22 u
Atommasse von F:	19 u
Massenbelegungen der	einzelnen Elemente
Massenbelegung von Zr:	11,35 $\pm 5\%$ µg/cm ²
Massenbelegung von F ₄ :	9,45 $\pm 5\%$ µg/cm ²
Serial#: 3	8658
vorhandene Elemente:	MoO ₃
Massenbelegung:	22,3 $\pm 5\%$ µg/cm ²
Atommassen der vorha	andenen Elemente
Atommasse von Mo:	95,92 u
Atommasse von O:	16 u
Massenbelegungen der	einzelnen Elemente
Massenbelegung von Mo:	14,86 $\pm 5\%$ µg/cm ²
Massenbelegung von O ₃ :	$7,44 \pm 5\% \ \mu g/cm^2$
Serial#: 3	8662

Serial#: 38644				
vorhandenes Element:	Fe			
Massenbelegung:	20,9	±5%	µg/cm ²	
Serial#: 3	8648			
vorhandene Elemente:	ZnTe			
Massenbelegung:	19,8	±5%	µg/cm ²	
Atommassen der vorha	andenei	ı Elen	nente	
Atommasse von Zn:	65,4	u		
Atommasse von Te:	127,6	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Zn:	6,71	±5%	$\mu g/cm^2$	
Massenbelegung von Te:	13,09	±5%	µg/cm ²	

Serial#: 38655			
vorhandene Elemente:	YF ₃		
Massenbelegung:	20,5	±5%	µg/cm ²
Atommassen der vorhandenen Elemente			
Atommasse von Y:	88,91	u	
Atommasse von F:	19	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Sr:	12,49	±5%	µg/cm ²
Massenbelegung von F ₃ :	8,01	±5%	µg/cm ²

Serial#: 38657			
vorhandene Elemente:	Nb ₂ O ₃		
Massenbelegung:	22,6	±5%	µg/cm ²
Atommassen der vorh	andenei	n Elen	nente
Atommasse von Nb:	92,91	u	
Atommasse von O:	16	u	
Massenbelegungen der	einzelne	en Ele	mente
Massenbelegung von Nb ₂ :	17,96	±5%	µg/cm ²
Massenbelegung von O ₃ :	4,64	±5%	µg/cm ²
Serial#: 3	38659		
vorhandenes Element:	Rh		
Massenbelegung:	19,4	±5%	µg/cm ²
Somial#. 2	20440		

Serial#: 38660			
vorhandenes Element:	Pd		
Massenbelegung:	18,9	±5%	µg/cm ²

Serial#: 38663

vorhandenes Element: In

Massenbelegung:	21	±5%	µg/cm ²
Atommassen der vorha	andener	n Elen	nente
Atommasse von Cd:	112	u	
Atommasse von Se:	79	u	
Massenbelegungen der	einzelne	en Ele	mente
Massenbelegung von Cd:	12,31	±5%	µg/cm ²
Massenbelegung von Se:	8,69	±5%	µg/cm ²

Serial#: 38			
vorhandenes Element:	Sb		
Massenbelegung:	19,6	±5%	µg/cm ²

Serial#: 38667			
vorhandene Elemente:	BaF_2		
Massenbelegung:	21,1	±5%	μ g/cm ²
Atommassen der vorhandenen Elemente			
Atommasse von Ba:	137,3	u	
Atommasse von F:	19	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Ba:	16,53	±5%	µg/cm ²
Massenbelegung von F ₂ :	4,57	±5%	µg/cm ²

Serial#: 38669			
vorhandene Elemente:	CeF ₃		
Massenbelegung:	21,5	±5%	µg/cm ²
Atommassen der vorh	andene	n Elen	nente
Atommasse von Ce:	140,1	u	
Atommasse von F:	19	u	
Massenbelegungen der	einzeln	en Ele	mente
Massenbelegung von Ce:	15,28	±5%	µg/cm ²
Massenbelegung von F ₃ :	6,22	±5%	µg/cm ²
Serial#: 3	38671		
vorhandene Elemente:	NdF ₃		
Massenbelegung:	18,1	±5%	µg/cm ²
Atommassen der vorh	andene	n Elen	nente
Atommasse von Nd:	144,2	u	
Atommasse von F:	19	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Nd:	12,97	±5%	$\mu g/cm^2$
Massenbelegung von F ₂ :	5,13	±5%	$\mu g/cm^2$

Massenbelegung:	17,8 ±5%	μ g/cm ²

 Serial#: 38664

 vorhandenes Element:
 Sn

 Massenbelegung:
 18,8 ±5% μg/cm²

Serial#: 38666vorhandenes Element:TeMassenbelegung:22 ±5% µg/cm²

Serial#: 38668				
vorhandene Elemente:	LaF ₃			
Massenbelegung:	21,1	±5%	µg/cm ²	
Atommassen der vorhandenen Elemente				
Atommasse von Cd:	138,9	u		
Atommasse von F:	19	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von La:	14,96	±5%	µg/cm ²	
Massenbelegung von F ₃ :	6,14	±5%	µg/cm ²	

Serial#: 38670			
vorhandene Elemente:	PrF ₃		
Massenbelegung:	18,9	±5%	µg/cm ²
Atommassen der vorh	andenei	n Elen	nente
Atommasse von Pr:	140,9	u	
Atommasse von F:	19	u	
Massenbelegungen der	einzelne	en Ele	mente
Massenbelegung von Pr:	13,46	±5%	µg/cm ²
Massenbelegung von F ₃ :	5,44	±5%	µg/cm ²
Serial#: 3	88672		
vorhandene Elemente:	SmF ₃		
Massenbelegung:	26,6	±5%	µg/cm ²
Atommassen der vorh	andener	n Elen	nente
Atommasse von Sm:	150,4	u	
Atommasse von F:	19	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Sm:	19,29	±5%	µg/cm ²
Massenbelegung von F ₃ :	7,31	±5%	µg/cm ²

Serial#: 38673

vorhandene Elemente: EuF₃

vorhandene Elemente: GdF₃

Massenbelegung:	23,5	±5%	µg/cm ²
Atommassen der vorha	andener	n Elen	nente
Atommasse von Eu:	152	u	
Atommasse von F:	19	u	
Massenbelegungen der	einzelne	en Ele	mente
Massenbelegung von Eu:	17,09	±5%	µg/cm ²
Massenbelegung von F ₃ :	6,41	±5%	µg/cm ²

Serial#: 38675				
vorhandene Elemente:	TbF ₃			
Massenbelegung:	18,1	±5%	µg/cm ²	
Atommassen der vorhandenen Elemente				
Atommasse von Tb:	158,9	u		
Atommasse von F:	19	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Tb:	13,32	±5%	µg/cm ²	
Massenbelegung von F ₃ :	4,78	±5%	μ g/cm ²	

Serial#: 38677			
vorhandene Elemente:	HoF ₃		
Massenbelegung:	19,8	±5%	µg/cm ²
Atommassen der vorhandenen Elemente			
Atommasse von Ho:	164,9	u	
Atommasse von F:	19	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Ho:	14,71	±5%	µg/cm ²
Massenbelegung von F ₃ :	5,09	±5%	µg/cm ²

Serial#: 38680			
vorhandene Elemente:	YbF ₃		
Massenbelegung:	21,2	±5%	$\mu g/cm^2$
Atommassen der vorhandenen Elemente			
Atommasse von Yb:	173,1	u	
Atommasse von F:	19	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Yb:	15,95	±5%	µg/cm ²
Massenbelegung von F ₃ :	5,25	±5%	µg/cm ²

Serial#: 38683				
vorhandenes Element: Pt				
Massenbelegung:	19,6 $\pm 5\%$ µg/cm ²	2		

Serial#: 38685				
vorhandene Elemente:	AgHg			
Massenbelegung:	20,8	±5%	µg/cm ²	
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Ag:	11,2	±5%	µg/cm ²	
Massenbelegung von Hg:	9,6	±5%	µg/cm ²	

Massenbelegung:	19,2	±5%	µg/cm ²
Atommassen der vorha	andenei	n Elen	nente
Atommasse von Gd:	157,3	u	
Atommasse von F:	19	u	
Massenbelegungen der	einzelne	en Ele	mente
Massenbelegung von Gd:	14,09	±5%	µg/cm ²
Massenbelegung von F ₃ :	5,11	±5%	µg/cm ²

Serial#: 38676			
vorhandene Elemente:	DyF ₃		
Massenbelegung:	21,1	$\pm 5\%$	µg/cm ²
Atommassen der vorhandenen Elemente			
Atommasse von Dy:	162,5	u	
Atommasse von F:	19	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Dy:	15,62	±5%	µg/cm ²
Massenbelegung von F ₃ :	5,48	±5%	μ g/cm ²

Serial#: 38678				
ErF_3				
22,7	±5%	$\mu g/cm^2$		
Atommassen der vorhandenen Elemente				
167,3	u			
19	u			
Massenbelegungen der einzelnen Elemente				
16,93	±5%	μ g/cm ²		
5,77	±5%	µg/cm ²		
	38678 ErF ₃ 22,7 andener 167,3 19 einzelne 16,93 5,77	38678 ErF ₃ 22,7 ±5% andenen Elem 167,3 u 19 u einzelnen Elem 16,93 ±5% 5,77 ±5%		

Serial#: 38681				
vorhandene Elemente:	LuF ₃			
Massenbelegung:	19,9	±5%	μ g/cm ²	
Atommassen der vorhandenen Elemente				
Atommasse von Lu:	175	u		
Atommasse von F:	19	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Lu:	15,01	±5%	μ g/cm ²	
Massenbelegung von F ₃ :	4,89	±5%	µg/cm ²	

Serial#: 38684			
vorhandenes Element:	Au		
Massenbelegung:	19,6	±5%	µg/cm ²

Serial#: 38687				
vorhandenes Element:	Pb			
Massenbelegung:	20,8	±5%	µg/cm ²	
Serial#: 3	8688			
vorhandenes Element:	Bi			
Massenbelegung:	22.7	+5%	$\mu g/cm^2$	

Anhang C.4: Schwere Elemente der Firma MYLAR

Serial#: 15389					
vorhandene Elemente:	KI				
Massenbelegung:	44,4	±5%	µg/cm ²		
Atommassen der vorhar	ndenen	Elem	ente		
Atommasse von K:	39,1	u			
Atommasse von I:	126,9	u			
Massenbelegungen der ei	nzelne	n Elen	nente		
Massenbelegung von K:	10,46	±5%	µg/cm ²		
Massenbelegung von I:	33,94	±5%	$\mu g/cm^2$		
wurde. Korrigierte Massenbelegungen					
Massenbelegung von K:	9.92	±5%	ug/cm ²		
Massenbelegung von I:	32,21	±5%	$\mu g/cm^2$		
Serial#: 15	395				
vorhandenes Element:	Fe				
Massenbelegung:	50,8	±5%	µg/cm ²		
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem					

müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Fe: 48,21 $\pm 5\%$ µg/cm²

Serial#: 15	401			
vorhandene Elemente:	YF_3			
Massenbelegung:	48,8	±5%	µg/cm ²	
Atommassen der vorhar	ndenen	Elem	ente	
Atommasse von Y:	88,91	u		
Atommasse von F:	19	u		
Massenbelegungen der ei	nzelne	n Elen	nente	
Massenbelegung von Y:	29,74	±5%	µg/cm ²	
Massenbelegung von F ₃ :	19,06	±5%	µg/cm ²	
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.				

Korrigierte Massenbelegungen

Massenbelegung von Y:	28,22	±5%	µg/cm ²
Massenbelegung von F ₃ :	18,09	±5%	$\mu g/cm^2$

Serial#: 1	5390			
vorhandene Elemente:	CaF_2			
Massenbelegung:	45,1	±5%	μ g/cm ²	
Atommassen der vorha	ndene	n Elen	nente	
Atommasse von Ca:	40,1	u		
Atommasse von F:	19	u		
Massenbelegungen der	einzeln	en Ele	mente	
Massenbelegung von Ca:	23,16	±5%	µg/cm ²	
Massenbelegung von F ₂ :	21,94	±5%	μ g/cm ²	
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.				

Korrigierte Massenbelegungen

Serial#: 15400				
vorhandene Elemente:	SrF_2			
Massenbelegung:	47,1	±5%	µg/cm ²	
Atommassen der vorha	ndene	n Elen	nente	
Atommasse von Sr:	87,62	u		
Atommasse von F:	19	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Sr:	32,85	±5%	µg/cm ²	
Massenbelegung von F ₂ :	14,25	±5%	µg/cm ²	
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen				

Korrigierte Massenbelegungen

wurde.

Massenbelegung von Sr:	31,18	±5%	µg/cm ²
Massenbelegung von F ₂ :	13,52	±5%	µg/cm ²

Serial#: 15402					
vorhandenes Element:	Ag				
Massenbelegung:	46,2	±5%	μ g/cm ²		

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Fe: 43,84 $\pm 5\%$ µg/cm²

Serial#: 15403				
vorhandene Elemente:	BaF ₂			
Massenbelegung:	46,8	±5%	µg/cm ²	
Atommassen der vorhandenen Elemente				
Atommasse von Ba:	137,3	u		
Atommasse von F.	19	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von Ba:	36,66	±5%	$\mu g/cm^2$	
Massenbelegung von F ₂ :	10,14	±5%	µg/cm ²	

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegungen

Massenbelegung von Ba:	34,79	±5%	µg/cm ²
Massenbelegung von F ₂ :	9,63	±5%	µg/cm ²

Serial#: 15405			
vorhandene Elemente:	NdF ₃		
Massenbelegung:	48,2	±5%	$\mu g/cm^2$
Atommassen der vorhandenen Elemente			
Atommasse von Nd:	144,2	u	
Atommasse von F:	19	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von Ce:	34,55	±5%	µg/cm ²
Massenbelegung von F ₃ :	13,65	±5%	µg/cm ²

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegungen

Massenbelegung von Y:	32,79	±5%	µg/cm ²
Massenbelegung von F ₃ :	12,96	±5%	µg/cm ²

Serial#: 15407				
vorhandenes Element:	Au			
Massenbelegung:	45,9	±5%	$\mu g/cm^2$	
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.				
Korrigierte Masse	nbeleg	ung		

Massenbelegung von Fe: $43,56 \pm 5\% \mu g/cm^2$

Serial#: 15404				
vorhandene Elemente:	CeF ₃			
Massenbelegung:	50,4	±5%	μ g/cm ²	
Atommassen der vorhandenen Elemente				
Atommasse von Ce:	140,1	u		
Atommasse von F:	19	u		
Massenbelegungen der e	einzeln	en Ele	mente	
Massenbelegung von Ce:	35,83	±5%	µg/cm ²	
Massenbelegung von F ₃ :	14,57	±5%	µg/cm ²	

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegungen

Massenbelegung von Y: $34,00 \pm 5\% \mu g/cm^2$ Massenbelegung von F₃: $13,83 \pm 5\% \mu g/cm^2$

Serial#: 15406			
vorhandene Elemente:	WO ₃		
Massenbelegung:	47,1	±5%	µg/cm ²
Atommassen der vorhandenen Elemente			
Atommasse von W:	183,8	u	
Atommasse von O:	16	u	
Massenbelegungen der einzelnen Elemente			
Massenbelegung von W:	37,35	±5%	µg/cm ²
Massenbelegung von O ₃ :	9,75	±5%	µg/cm ²

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegungen				
Massenbelegung von W:	35,44	±5%	µg/cm ²	
Massenbelegung von O ₃ :	9,25	±5%	µg/cm ²	

Serial#: 15408				
vorhandenes Element:	Pb			
Massenbelegung:	51,6	±5%	µg/cm ²	
De diesen Eilten mit einem Geelt ermessen wurde				

Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.

Korrigierte Massenbelegung

Massenbelegung von Fe: 48,97 $\pm 5\%$ µg/cm²

Serial#: 15409	Serial#: 15410
vorhandene Elemente: ThF ₄	vorhandene Elemente: UF ₄
Massenbelegung: 46,6 $\pm 5\%$ µg/cm ²	Massenbelegung: $50,7 \pm 5\% \ \mu g/cm^2$
Atommassen der vorhandenen Elemente	Atommassen der vorhandenen Elemente
Atommasse von Th: 232 u	Atommasse von U: 238 u
Atommasse von F: 19 u	Atommasse von F: 19 u
Massenbelegungen der einzelnen Elemente	Massenbelegungen der einzelnen Elemente
 Massenbelegung von Th: 35,10 ±5% μg/cm² Massenbelegung von F₄: 11,50 ±5% μg/cm² Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert 	 Massenbelegung von U: 38,43 ±5% μg/cm² Massenbelegung von F₄: 12,27 ±5% μg/cm² Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert
werden, da effektiv weniger Intensität gemessen wurde.	werden, da effektiv weniger Intensität gemessen wurde.
Korrigierte Massenbelegungen	Korrigierte Massenbelegungen
Massenbelegung von Th: $33,31 \pm 5\% \ \mu g/cm^2$ Massenbelegung von F ₄ : $10,91 \pm 5\% \ \mu g/cm^2$	Massenbelegung von U: $36,47 \pm 5\% \mu \text{g/cm}^2$ Massenbelegung von F ₄ : $11,64 \pm 5\% \mu \text{g/cm}^2$

Serial#: 1	5410			
vorhandene Elemente:	UF_4			
Massenbelegung:	50,7	±5%	µg/cm ²	
Atommassen der vorha	ndene	n Elen	nente	
Atommasse von U:	238	u		
Atommasse von F:	19	u		
Massenbelegungen der einzelnen Elemente				
Massenbelegung von U:	38,43	±5%	µg/cm ²	
Massenbelegung von F ₄ :	12,27	±5%	µg/cm ²	
Da dieser Filter mit einem Spalt gemessen wurde, müssen die vorhanden Konzentrationen mit dem Abschwächungsfaktor von 0,949 multipliziert werden, da effektiv weniger Intensität gemessen wurde.				
Korrigierte Massenbelegungen				
Massenbelegung von U:	36,47	±5%	µg/cm ²	

Anhang C.5: Mehrelementfilter der Marke MYLAR

Serial#: 37592				
vorhandene Elemente:	Al, KO	Cl, Cr,	Cu, CsBr	
Massenbelegung:	Al	11,6	µg/cm ²	
	KC1	12,3		
	Cr	12,5		
	Cu	11,8		
	CsBr	10,4		
Atommassen der vorhandenen Elemente				
Atommasse von K:	39,1	u		
Atommasse von Cl:	35,5	u		
Atommasse von Cs:	132,9	u		
Atommasse von Br:	79,9	u		
Massenbelegungen der e	inzelne	en Eler	nente	
Massenbelegung von K:	6,45	±5%	µg/cm ²	
Massenbelegung von Cl:	9,50	±5%	µg/cm ²	
Massenbelegung von Cs:	6,50	±5%	µg/cm ²	
Massenbelegung von Br:	3,90	±5%	µg/cm ²	

Serial#: 37602			
vorhandene Elemente:	Ti, Mn	, Co, C	Cu, Ge
Massenbelegung:	Ti	14,5	µg/cm ²
	Mn	15,6	µg/cm ²
	Co	13,9	µg/cm ²
	Cu	12,8	µg/cm ²
	Ge	16,7	µg/cm ²

Serial#: 37595				
vorhandene Elemente:	Na, Ca, Sc,Ti			
Massenbelegung:	Na	14,7	µg/cm ²	
	Ca	12,5	µg/cm ²	
	Sc	14,1	µg/cm ²	
	Ti	13	µg/cm ²	

Serial#: 37599

vorhandene Elemente:	Si,	Ca, Fe	, Ni,Ga
Massenbelegung:	Si	12,3	µg/cm ²
	Ca	12,5	µg/cm ²
	Fe	15,2	µg/cm ²
	Ni	13,6	µg/cm ²
	Ga	12,5	µg/cm ²

Anhang C.6: Bestimmung des Abschwächungsfaktors

	Ausgangslage Nr.1			
verwe	ndetes Sekundärtarget: Al2O3			
	verwendeter Filter: Serial # 3866	1		
	vorhandenes Element: Ag			
	Massenbelegung: 20,8 ±5%	μg/cm2		
Durchgeführte Messungen	Gemessene Intensitäten ohne Spal [cps/mA]	Gemessene Intensitäten mit Spalt [cps/mA]		
Messung Nr. 1	28,31	27,52		
Messung Nr. 2	28,78	27,40		
Messung Nr. 3	28,77	26,83		
	Bestimmung des Spaltfaktors			
	Mittelwert der gemessenen Intensitäten [cps/mA]	Standardabweichung [cps/mA]		
ohne Spalt	28,62	0,268		
mit Spalt	27,25	0,372		
	Abschwächungsfaktor:0,952Standardabweichung:0,022			

	Ausgangslage Nr.2			
verwe	verwendetes Sekundärtarget: CeO2			
	verwendeter Filter: Serial # 38661			
	vorhandenes Element: Ag			
	Massenbelegung: 20,8 ±5% µ	ıg/cm2		
Durchgeführte Messungen	Gemessene Intensitäten ohne Spalt [cps/mA]	Gemessene Intensitäten mit Spalt [cps/mA]		
Messung Nr. 1	53,92	50,14		
Messung Nr. 2	52,21	50,50		
Messung Nr. 3	52,65	50,78		
	Bestimmung des Spaltfaktors			
	Mittelwert der gemessenen Intensitäten [cps/mA]	Standardabweichung [cps/mA]		
ohne Spalt	52,92	0,886		
mit Spalt	50,47	0,317		
	Abschwächungsfaktor:0,954Standardabweichung:0,022			

	Ausgangslage Nr.3		
verwe	endetes Sekundärtarget: Ag		
	verwendeter Filter: Serial # 38658		
	vorhandene Elemente: MoO3		
	Massenbelegung: 22,3 ±5% µ	ıg/cm2	
Durchgeführte Messungen	Gemessene Intensitäten ohne Spalt [cps/mA]	Gemessene Intensitäten mit Spalt [cps/mA]	
Messung Nr. 1	115,3	109,2	
Messung Nr. 2	117,2	109,3	
Messung Nr. 3	115,8	110,2	
Bestimmung des Spaltfaktors			
	Mittelwert der gemessenen Intensitäten [cps/mA]	Standardabweichung [cps/mA]	
ohne Spalt	116,1	1,020	
mit Spalt	109,6	0,536	
	Abschwächungsfaktor:0,944Standardabweichung:0,013		

	Ausgangslage Nr.4		
verwe	ndetes Sekundärtarget: Al2O3		
	verwendeter Filter: Serial # 38659		
	vorhandene Elemente: Rh		
	Massenbelegung: 19,4 ±5%	ug/cm2	
Durchgeführte Messungen	Gemessene Intensitäten ohne Spalt [cps/mA]	Gemessene Intensitäten mit Spalt [cps/mA]	
Messung Nr. 1	30,27	28,25	
Messung Nr. 2	30,22	28,38	
Messung Nr. 3	30,25	28,65	
Bestimmung des Spaltfaktors			
	Mittelwert der gemessenen Intensitäten [cps/mA]	Standardabweichung [cps/mA]	
ohne Spalt	30,25	0,024	
mit Spalt	28,43	0,207	
	Abschwächungsfaktor:0,940Standardabweichung:0,008		

	Ausgangsla	age Nr.5		
verwe	ndetes Sekundärtarget: Ce	02		
	verwendeter Filter: Ser	rial # 38659		
	vorhandene Elemente: Rh	l		
	Massenbelegung:	19,4 ±5% µ	lg/cm2	
Durchgeführte Messungen	Gemessene Intensitäten o [cps/mA]	ohne Spalt	Gemessene Intensitäten mit Spalt [cps/mA]	
Messung Nr. 1	47,79		45,88	
Messung Nr. 2	48,55		46,58	
Messung Nr. 3	48,64		45,95	
	Bestimmung des Spaltfaktors			
	Mittelwert der geme Intensitäten [cps/n	ssenen nA]	Standardabweichung [cps/mA]	
ohne Spalt	48,33		0,468	
mit Spalt	46,14		0,385	
	Abschwächungsfaktor: Standardabweichung:	0,955 0,017		

Anhang D

Berechnung der Gemessene Intensitäten der Schmelztabletten für Kapitel 22 Untersuchung von Silber in Titanmatrix

	Unbehandeltes Probenmaterial Nr. 1		
Zusammen	setzung der Schmelztablette:		
Probe	0,109 g		
Flux	9,803 g		
Gesamt	9,912 g		
Um die Sch derselben P verwendet.	Um die Schwankung der gemessenen Intensität berücksichtigen zu können, werden mehrere Messungen derselben Probe durchgeführt und anschließend deren Mittelwert für weitere Vergleichszwecke verwendet.		
Elemente	gemessene Intensitäten Messung Nr.1 [cps/mA]	gemessene Intensitäten Messung Nr.2 [cps/mA]	gemessene Intensitäten Messung Nr.3 [cps/mA]
Τί-Κα	162,461	162,736	160,964
Ag-Kα	131,561	130,845	127,481
Elemente	Mittelwert der gemessene Intensitäten [cps/mA]	Standardabweichung [cps/mA]	
Ti-Kα	162,054	1,318	
Ag-Ka	129,962	2,866	
Da nicht jed verfügt, we	le Schmelztablette über die gleich rden die Ergebnisse auf 0,1 g Pro	ne Menge an Probenmaterial benmaterial normiert.	
Elemente	Mittelwert normiert auf 0,1 g Probenmaterial [cps/mA]	Standardabweichung normiert auf 0,1 g Probenmaterial [cps/mA]	
Ti-Kα	148,673	1,209	
Ag-Ka	119,231	2,629	

Unbehandeltes Probenmaterial Nr. 2

Zusammensetzung der Schmelztablette:

114,575

Probe	0,102 g
Flux	10,009 g
Gesamt	10,111 g

Ag-Kα

Um die Schwankung der gemessenen Intensität berücksichtigen zu können, werden mehrere Messungen derselben Probe durchgeführt und anschließend deren Mittelwert für weitere Vergleichszwecke verwendet.

Elemente	gemessene Intensitäten Messung Nr.1 [cps/mA]	gemessene Intensitäten Messung Nr.2 [cps/mA]	gemessene Intensitäten Messung Nr.3 [cps/mA]
Ti-Kα	147,124	147,41	149,822
Ag-Ka	116,519	115,524	118,556
Elemente	Mittelwert der gemessene Intensitäten [cps/mA]	Standardabweichung [cps/mA]	
Τί-Κα	148,119	1,974	
Ag-Ka	116,866	2,172	
Da nicht jed verfügt, we	le Schmelztablette über die gleich rden die Ergebnisse auf 0,1 g Pro	he Menge an Probenmaterial benmaterial normiert.	
Elemente	Mittelwert normiert auf 0,1 g Probenmaterial [cps/mA]	Standardabweichung normiert auf 0,1 g Probenmaterial [cps/mA]	
Ti-Kα	145,214	1,936	

2,129

Behandeltes Probenmaterial Nr. 1

Zusammensetzung der Schmelztablette:

Probe	0,0967	g
Flux	9,9133	g
Gesamt	10,01	g

Um die Schwankung der gemessenen Intensität berücksichtigen zu können, werden mehrere Messungen derselben Probe durchgeführt und anschließend deren Mittelwert für weitere Vergleichszwecke verwendet.

Elemente	gemessene Intensitäten Messung Nr.1 [cps/mA]	gemessene Intensitäten Messung Nr.2 [cps/mA]	gemessene Intensitäten Messung Nr.3 [cps/mA]
Ti-Kα	143,157	141,19	143,414
Ag-Ka	111,347	111,853	111,354
Elemente	Mittelwert der gemessene Intensitäten [cps/mA]	Standardabweichung [cps/mA]	
Ti-Kα	142,587	1,673	
Ag-Ka	111,518	0,392	
Da nicht jed verfügt, we	de Schmelztablette über die gleich rden die Ergebnisse auf 0,1 g Pro	ne Menge an Probenmaterial benmaterial normiert.	
Elemente	Mittelwert normiert auf 0,1 g	Standardabweichung normiert auf 0,1 g	

Elemente	Mittelwert normiert auf 0,1 g Probenmaterial [cps/mA]	normiert auf 0,1 g Probenmaterial [cps/mA]
Ti-Kα	147,453	1,730
Ag-Ka	115,324	0,405

Behandeltes Probenmaterial Nr. 2

Zusammensetzung der Schmelztablette:

Probe	0,1059	g
Flux	9,8871	g
Gesamt	9,993	g

Um die Schwankung der gemessenen Intensität berücksichtigen zu können, werden mehrere Messungen derselben Probe durchgeführt und anschließend deren Mittelwert für weitere Vergleichszwecke verwendet.

Elemente	gemessene Intensitäten Messung Nr.1 [cps/mA]	gemessene Intensitäten Messung Nr.2 [cps/mA]	gemessene Intensitäten Messung Nr.3 [cps/mA]
Ti-Kα	156,765	154,347	154,532
Ag-Kα	126,15	125,244	124,874
		•	•
Elemente	Mittelwert der gemessene Intensitäten [cps/mA]	Standardabweichung [cps/mA]	
Elemente Ti-Kα	Mittelwert der gemessene Intensitäten [cps/mA] 155,215	Standardabweichung [cps/mA] 1,556	

Da nicht jede Schmelztablette über die gleiche Menge an Probenmaterial verfügt, werden die Ergebnisse auf 0,1 g Probenmaterial normiert.

Elemente	Mittelwert normiert auf 0,1 g Probenmaterial [cps/mA]	Standardabweichung normiert auf 0,1 g Probenmaterial [cps/mA]
Τί-Κα	146,567	1,469
Ag-Ka	118,435	0,730

Anhang E

Elementkonzentrationen der verwendeten Spezialgläser und Spezialkeramiken für Kapitel 23 Applikation mittels Spezialgläser und Spezialkeramiken

D 11	Vorhandenen Elementkonzentrationen [%]																										
Bezeichnung	Al	Ba	Bi	Ca	Cd	Ce	Со	Со	Cr	Cu	F	Fe	K	La	Mg	Mn	Mn	Na	Nb	Nd	Ni	Pb	Pr	Sb	Se	Si	Sn
G1	1,22	9,94				0,25				0,73			6,15		0,35			5,63				1,88		0,48		28,59	
H1	2,12			2,72									7,22		1,57			4,60				21,82				23,89	
J1	52,71											0,07			0,09											0,07	
K1	0,00											0,007														46,74	
L1	0,00								0,00			0,21			0,78				8,11		0,79	63,50				0,05	
M1	0,69	55,71							1,92			0,014														0,09	
N1	0,00		4,04	0,00				1,35	1,09								0,44				0,55			7,77		0,09	
P1	0,00			14,51										30,78	2,71		0,63										
Q1	0,00	41,74																									
R1	0,00																				1,57						36,63
T1	0,00	10,75																		37,29		2,78	1,24				
U1	0,00											0,07			2,41	0,08					0,79	60,34					0,24
V1	0,00			1,38	0,23						1,23		6,47					9,01							0,19	31,20	
W1	0,00			3,57			0,13			1,28			1,88		1,94			12,58								33,14	
X1	0,00			3,64					0,21	0,41			2,04		1,88			12,73								33,33	
Y1	0,00			3,57					0,09	2,09			1,79		1,88			12,32								32,96	
Z1	2,06			1,61							4,7		4,37		1,00			9,26								31,32	
Pozoichnung	Vor	hander	en Elei	nentko	nzentra	ationen	[%]																				
Bezeichnung	Sr	Та	Ti	W	Zn	Zr	0																				
G1	4,22		0,08			0,74	39,80																				
H1							35,97																				
J1							47,06																				
K1							53,27																				
L1			5,51																								
M1						7,03	14,02																				
N1			20,08			7,03	14,02 21,52																				
111			20,08 0,54		64,44	7,03	14,02 21,52 19,69																				
P1			20,08 0,54 22,84		64,44	7,03	14,02 21,52 19,69 28,53																				
P1 Q1		39,73	20,08 0,54 22,84		64,44 6,75	7,03	14,02 21,52 19,69 28,53 11,78																				
P1 Q1 R1		39,73	20,08 0,54 22,84 21,28		64,44 6,75	11,84	14,02 21,52 19,69 28,53 11,78 28,68																				
P1 Q1 R1 T1		39,73	20,08 0,54 22,84 21,28 22,48		64,44 6,75 0,80	11,84	14,02 21,52 19,69 28,53 11,78 28,68 23,15																				
P1 Q1 R1 T1 U1		39,73	20,08 0,54 22,84 21,28 22,48 5,99	15,46	64,44 6,75 0,80 0,00	11,84	14,02 21,52 19,69 28,53 11,78 28,68 23,15 14,62																				
P1 Q1 R1 T1 U1 V1		39,73	20,08 0,54 22,84 21,28 22,48 5,99	15,46	64,44 6,75 0,80 0,00 7,77	11,84	14,02 21,52 19,69 28,53 11,78 28,68 23,15 14,62 42,49																				
P1 Q1 R1 T1 U1 V1 W1		39,73	20,08 0,54 22,84 21,28 22,48 5,99	15,46	64,44 6,75 0,80 0,00 7,77	11,84	14,02 21,52 19,69 28,53 11,78 28,68 23,15 14,62 42,49 45,57																				
P1 Q1 R1 T1 U1 V1 W1 X1		39,73	20,08 0,54 22,84 21,28 22,48 5,99	15,46	64,44 6,75 0,80 0,00 7,77	11,84	14,02 21,52 19,69 28,53 11,78 28,68 23,15 14,62 42,49 45,57 45,70																				
P1 Q1 R1 T1 U1 V1 W1 X1 Y1		39,73	20,08 0,54 22,84 21,28 22,48 5,99	15,46	64,44 6,75 0,80 0,00 7,77	11,84	14,02 21,52 19,69 28,53 11,78 28,68 23,15 14,62 42,49 45,57 45,70 45,43																				

Anhang F

Elementkonzentrationen der verwendeten Spezialgläser und Spezialkeramiken für Kapitel 23 Applikation mittels Spezialgläser und Spezialkeramiken
Anhang F1: Berechnung der Schmelztabletten für ein Mischverhältnis von 1:100

	Bal	nk Probe	Berechnung für die Natriumbromit-Lösung		
Bestandteil	Masse [g]	Massenprozent			
Flussmittel	9,996	100		Die Natriumbromit-Lösung bestand aus 3,03g	
Vorhand	lene Massen v	or dem Schmelzaufs	chluss	entspricht einem Natriumanteil in der Lösung von	es
		Leerer Platinbecher	79,989 g	ensprient entern i kantananten in der Losang von	
	Platinbech	er + Pulvermischung	89,985 g	0,000101 g/µl	
Platinbecher -	- Pulvermisch	ung + Natriumbromit	90,196 g	Dichte von Wasser 0,000998 g/µl	
		Pulvermischung	9,996 g	Gewicht der hinzugefügten Natriumbromit-Lösung	
	Na	atriumbromit-Lösung	0,211 g	0,211 g	
Gesa	umtmenge an v	verwendeten Material	10,207 g	Umrechnung des Gewichts der Natriumbromit-Lösung at	uf
Vorhand	ene Massen n	ach dem Schmelzaufs	schluss	μl	
		Schmelztablette	9,51 g	191,993 µl	
	Pla	atinbecher + Überrest	80,344 g	Gewicht des hinzugefügten Natriumbromits	
Vorha	ndene Masse	nach dem Schmelzen	9,865 g	0,019 g	
Bere	echnung des V	Verlusts an Flussmitt	el	Gewicht des hinzugefügten Wassers	
Verlust an	Masse durch	den Schmelzvorgang	0,342 g	0,192 g	
De	er Verlust setz	t sich zusammen aus:			
		Verlust an Wasser	0,192 g	Mittels der molaren Masse von Natriumbromit (dies	
	V	/erlust an Flussmittel	0,150 g	Natrium und Bromit) kann die Anzahl der vorhandenen	
	Loss on Ign	ition des Flussmittels	1,505 %	Natriumbromit-Moleküle berechnet werden.	
Elementar	re Zusammen	setzung der Schmelz	tablette		
				Molare Masse von Natrium	
Das verwendet	e Flussmittel h	esteht aus 66% Lithiu	mtetraborat	22,99 g/mol	
$(Li_2B_4O_7)$ und 3	34% Lithiumn	netaborat ($LiBO_2$). Aut	fgrund der	Molare Masse von Brom	
Vermischung n	nit den anderen	n Elementen ergibt sic	h deren	79,9 g/mol	
prozentueller A	nteil an der So	chmelztablette zu:		Die Avogadro-Konstante beträgt	
				$6,022E+23 \text{ mol}^{-1}$	
Prozent	ueller Anteil v	on Lithiumtetraborat	65,87 %	Anzahl der Natriumbromit-Moleküle	
Prozente	ueller Anteil v	on Lithiummetaborat	33,93 %	1,135E+20	
	Ato	mmasse von Lithium	6,94 u	Berechnung der Masse der Natriumatome	
	Atommasse von Bor		10,81 u	0,004 g	
Atommasse von Sauerstoff		16 u	Berechnung der Masse der Bromatome		
	Prozentuelle	er Anteil von Lithium	<u>10,140</u> %	0,015 g	
	Prozent	ueller Anteil von Bor	<u>24,215</u> %	Prozentueller Anteil von Natrium	
]	Prozentueller .	Anteil von Sauerstoff	<u>65,449</u> %	<u>439,213</u> ppm	
				Prozentueller Anteil von Brom	
				<u>1526,450</u> ppm	

Probe 1			Berechnung für die Natriumbromit	-Lösung	
Bestandteil	Masse [g]	Massenprozent			
Flussmittel	9,900	89,84		Die Natriumbromit-Lösung bestand aus 3,03g	y www.don Diag
NaNO ₃	1,018	9,24		entspricht einem Natriumanteil in der Lösung	von
SRM 1646	0,102	0,92			, , , , , , , , , , , , , , , , , , , ,
Gesamt	11,020	100		0,000101	g/µl
Vorhan	dene Massen vo	or dem Schmelzaufs	chluss	Dichte von Wasser 0,000998	g/µl
		Leerer Platinbecher	79,986 g	Gewicht der hinzugefügten Natriumbromit-L	ösung
	Platinbeche	er + Pulvermischung	90,998 g	0,214	g
Platinbecher	+ Pulvermischu	ng + Natriumbromit	91,212 g	Umrachnung das Gawichts dar Natriumbrom	it Lösung ouf ul
		Pulvermischung	11,012 g	Officemung des Gewichts der Nathumbfohn	It-Losung aut µ
	Na	triumbromit-Lösung	0,214 g	194,722	μl
Ge	samtmenge an v	erwendeten Material	11,226 g	Gewicht des hinzugefügten Natriumbromits	
Vorhand	lene Massen na	ch dem Schmelzauf	schluss	0,020	g
		Schmelztablette	9,868 g	Gewicht des hinzugefügten Wassers	
	Pla	tinbecher + Überrest	80,34 g	0,194	g
Vorł	nandene Masse r	nach dem Schmelzen	10,222 g	Mittels der molaren Masse von Natriumbrom	it (dies
Bei	rechnung des V	erlusts an Flussmitt	el	entspricht der Summe der relativen Atommas	sen von
Verlust a	an Masse durch o	den Schmelzvorgang	1,004 g	Natrium und Bromit) kann die Anzahl der vo	rhandenen
I	Der Verlust setzt	sich zusammen aus:		Natriumbromit-Moleküle berechnet werden.	
	Verlust	des Oxidiermaterials	0,647 g		
		Verlust an Wasser	0,194 g	Molare Masse von Natrium	1
		erlust an Flussmittel	0,163 g	22,99	g/mol
Prozentuelle	r Anteil des Flus	ssmittels an der Schn	nelztablette	Molare Masse von Brom	1
_				/9,9	g/mol
Das verwende $(I \stackrel{.}{:} P \cap Q)$ und	te Flussmittel be	esteht aus 66% Lithiu	mtetraborat	Die Avogadio-Kolistante betragt	mol ⁻¹
$(Ll_2D_4O_7)$ und Vermischung	mit den anderen	Elaboral (LIDO ₂). Au Flementen ergibt sic	h deren	0,022E+25	III01
prozentueller .	Anteil an der Scl	hmelztablette zu:	ii deren	1 151F+20	1
1				Berechnung der Masse der Natriumatome	
Prozer	ntueller Anteil vo	on Lithiumtetraborat	62.87 %	0.004	g
Prozen	tueller Anteil vo	on Lithiummetaborat	32,39 %	Berechnung der Masse der Bromatome	8
	Ator	nmasse von Lithium	6,94 u	0,015	g
		Atommasse von Bor	10,81 u	Prozentueller Anteil von Natrium	-
	Atomn	nasse von Sauerstoff	16 u	<u>430</u>	ppm
	Prozentueller	r Anteil von Lithium	<u>9,678</u> %	Prozentueller Anteil von Brom	
	Prozentu	eller Anteil von Bor	<u>23,112</u> %	<u>1494</u>	ppm
	Prozentueller A	Anteil von Sauerstoff	<u>62,468</u> %		
Vorhande	nen Elementko	nzentrationen für Sl	RM 1646		
Anteil von SR	M 1646 an der 0	Gesamtmasse	0,010		
Haupt-	Prozentueller	In der Schmelztable	tte enthalten	1	
elemente	Anteil [ppm]	Konzentration	[ppm]		
Al	62500	<u>622</u>			
Ca	8300	<u>83</u>			
Fe	33500	<u>333</u>			
Mg	10900	<u>108</u>			
Р	540	<u>5</u>			
Si	310000	<u>3084</u>		1	
S	9600	<u>96</u>		1	
K	14000	<u>139</u>		1	
Ti	5100	<u>51</u>			

Berechnung für das Oxidierma	terial				
Ab einer Temperatur über 800°C zerlegt sich Natriumnitrat in folgende Komponenten: $4NaNO_3 => 2Na_2O+2N_2+5O_2$					
Mittels der molaren Masse von N (dies entspricht der Summe der re Atommassen von Stickstoff, Saue Natrium) kann die Anzahl der vo Natriumbromit-Moleküle berecht	latriumnitrat elativen erstoff und rhandenen net werden.				
Molare Masse von Stickstoff					
14,01	g/mol				
Molare Masse von Sauerstoff	-				
16 Molare Masse von Natrium	g/mol				
	a/mol				
22,99 Die Avogadro Konstante beträgt	g/mor				
6 022E+2	3 mol ⁻¹				
0,022E+2					
7,212E+2	1 Moleküle				
Dies entspricht einer Anzahl an 4 Molekülen von	NaNO ₃				
1,803E+2	1 Moleküle				
Ab einer Temperatur von 800°C	sind somit				
1,8031E+21 2Na ₂ O, 2N ₂ und	5O ₂ Teilchen				
vorhanden.					
Berechnung der Masse der 2Na ₂ O	O Atome				
0,371	g				
Berechnung der Masse der 2N ₂ A	tome				
0,168	g				
Berechnung der Masse der 5O ₂ A	tome				
0,479	g				
Der Stickstoff und der Sauerstoff während des Schmelzvorgangs vo entspricht einer Masse von	gehen erloren. Dies				
0,647	g				
Berechnung der Masse der Natriu	imatome				
0,275	g				
Berechnung der Masse der Sauer	stoffatome				
0,096	g				
Prozentueller Anteil von Natrium	l				
<u>26936</u>	ppm				
Prozentueller Anteil von Sauersto	off				
<u>9373</u>	ppm				

Probe 2				Berechnung für die Natriumbromit	-Lösung	
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	9,900	89,98			Die Natriumbromit-Lösung bestand aus 3,03g	wurden Dies
NaNO ₃	1,001	9,10			entspricht einem Natriumanteil in der Lösung	von
PTXRFIAEA04	0,101	0,92				
Gesamt	11,002	100			0,000101	g/µl
Vorhan	dene Massen vo	or dem Schmelzaufs	schluss		Dichte von Wasser 0,000998	g/µl
		Leerer Platinbecher	79,986	g	Gewicht der hinzugefügten Natriumbromit-Le	ösung
	Platinbeche	r + Pulvermischung	90,98	g	0,216	g
Platinbecher	+ Pulvermischur	ng + Natriumbromit	91,196	g	Umrechnung des Gewichts der Natriumbromi	t-I ösung auf ul
		Pulvermischung	10,994	g	Childenhung des Gewichts der Tvarramotorin	t-Losung aut µt
	Nat	riumbromit-Lösung	0,216	g	196,542	μl
Ges	samtmenge an ve	rwendeten Material	11,21	g	Gewicht des hinzugefügten Natriumbromits	
Vorhand	dene Massen na	ch dem Schmelzauf	schluss		0,020	g
		Schmelztablette	9,978	g	Gewicht des hinzugefügten Wassers	
	Plat	inbecher + Überrest	80,206	g	0,196	g
Vorh	andene Masse n	ach dem Schmelzen	10,198	g	Mittala dar malaran Massa yan Natriumbram	it (dias
Bei	rechnung des V	erlusts an Flussmitt	el		entspricht der Summe der relativen Atommas	sen von
Verlust a	n Masse durch d	en Schmelzvorgang	1,012	g	Natrium und Bromit) kann die Anzahl der vor	rhandenen
E	Der Verlust setzt	sich zusammen aus:			Natriumbromit-Moleküle berechnet werden.	
	Verlust d	les Oxidiermaterials	0,636	g		
	X7.	Verlust an Wasser	0,196	g	Molare Masse von Natrium	- / 1
Design		erlust an Flussmittel	0,180	<u>g</u>		g/mol
Prozentuelle	er Antell des Flus	smittels an der Schr	neiztable	tte	Molare Masse von Brom	- / 1
					/9,9	g/mol
Das verwende $(I \neq P, Q)$ und	ete Flussmittel be	esteht aus 66% Lithiu	imtetrabo	orat	Die Avogadro-Konstante betragt	mol ⁻¹
$(L1_2B_4O_7)$ und Vermischung	mit den anderen	Elementen ergibt sig	igruna a ch deren	er	0,022E+23	11101
prozentueller	Anteil an der Scl	hmelztablette zu:	in deren		Alizani dei Walitumoronint-Wolekule 1.162E+20	
1					Berechnung der Masse der Natriumatome	
Prozen	ntueller Anteil vo	n Lithiumtetraborat	62.91	%	0.004	g
Prozen	tueller Anteil vo	n Lithiummetaborat	32,41	%	Berechnung der Masse der Bromatome	6
	Atom	masse von Lithium	6,94	u	0,015	g
	A	Atommasse von Bor	10,81	u	Prozentueller Anteil von Natrium	C
	Atomm	asse von Sauerstoff	16	u	<u>435</u>	ppm
	Prozentueller	Anteil von Lithium	<u>9,684</u>	%	Prozentueller Anteil von Brom	
	Prozentue	eller Anteil von Bor	<u>23,126</u>	%	<u>1512</u>	ppm
	Prozentueller A	nteil von Sauerstoff	<u>62,505</u>	%		
Vorhandener	n Elementkonze	entrationen für PTX	RFIAE	404		
Anteil von PT	XRFIAEA04 an	der Gesamtmasse	0,010			
Haupt-	Prozentueller	In der Schmelztable	tte enthal	lten		
elemente	Anteil [ppm]	Konzentration	[ppm]			
Al	111000	<u>622</u>			1	
Ca	2070	<u>21</u>			1	
Fe	47900	<u>475</u>			1	
Mg	82400	<u>818</u>			1	
Si	250000	<u>2481</u>			1	
K	19600	<u>195</u>]	
Ti	5570	<u>55</u>			J	

Berechnung für das Oxidiermaterial					
Ab einer Temperatur über 800°C zerlegt sich Natriumnitrat in folgende Komponenten: $4NaNO_3 => 2Na_2O+2N_2+5O_2$					
Mittels der molaren Masse von Natriumnitrat (dies entspricht der Summe der relativen Atommassen von Stickstoff, Sauerstoff und Natrium) kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.					
Molare Masse von Stickstoff					
Molare Masse von Sauerstoff					
16 g/mol Molare Masse von Natrium					
22,99 g/mol Die Avogadro-Konstante beträgt					
6,022E+23 mol ⁻¹					
Anzahl der Natriumbromit-Moleküle 7,092E+21 Moleküle					
Dies entspricht einer Anzahl an 4NaNO ₃ Molekülen von					
1,773E+21 Moleküle					
Ab einer Temperatur von 800°C sind somit					
$1,7729E+21$ $2Na_2O$, $2N_2$ und $5O_2$ Teilchen vorhanden.					
Berechnung der Masse der 2Na ₂ O Atome					
0,365 g					
Berechnung der Masse der 2N ₂ Atome					
0,165 g Berechnung der Masse der $5O_2$ Atome					
0,471 g					
Der Stickstoff und der Sauerstoff gehen während des Schmelzvorgangs verloren. Dies entspricht einer Masse von					
0,636 g Berechnung der Masse der Natriumatome					
0,271 g					
Berechnung der Masse der Sauerstoffatome					
0,094 g Prozentueller Anteil von Natrium					
<u>26548</u> ppm Prozentueller Anteil von Sauerstoff					
<u>9238</u> ppm					

Probe 3				Berechnung für die Natriumbromit-Lösung		
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	9,912	90,00			Die Natriumbromit-Lösung bestand aus 3,03g	y wurden Dies
NaNO ₃	1,001	9,09			entspricht einem Natriumanteil in der Lösung	von
PTXRFIAEA12	0,100	0,91				
Gesamt	11,013	100			0,000101	g/µl
Vorhand	ene Massen vor	dem Schmelzaufs	chluss		Dichte von Wasser 0,000998	g/µl
	L	eerer Platinbecher	79,989	g	Gewicht der hinzugefügten Natriumbromit-Le	ösung
	Platinbecher ·	+ Pulvermischung	90,98	g	0,216	g
Platinbecher +	- Pulvermischung	g + Natriumbromit	91,196	g	Umrechnung des Gewichts der Natriumbromi	t-I ösung auf ul
		Pulvermischung	10,991	g	Childennung des Sewients der Hatramotorin	t Losung dui pi
	Natri	umbromit-Lösung	0,216	g	196,542	μl
Gesa	umtmenge an verv	wendeten Material	11,207	g	Gewicht des hinzugefügten Natriumbromits	
Vorhande	ene Massen nach	dem Schmelzauf	schluss		0,020	g
		Schmelztablette	9,73	g	Gewicht des hinzugefügten Wassers	
	Platin	becher + Uberrest	80,406	g	0,196	g
Vorha	indene Masse nac	h dem Schmelzen	10,147	g	Mittels der molaren Masse von Natriumbrom	it (dies
Bere	chnung des Ver	lusts an Flussmitt	el		entspricht der Summe der relativen Atommas	sen von
Verlust an	Masse durch der	n Schmelzvorgang	1,06	g	Natrium und Bromit) kann die Anzahl der vor	rhandenen
De	er Verlust setzt sid	ch zusammen aus:			Natriumbromit-Moleküle berechnet werden.	
	Verlust des	s Oxidiermaterials	0,636	g	Malan Manager Nations	
	Var	veriust an wasser	0,190	g a	Molare Masse von Natrium	a/mol
veriust an Flussmittel			g tto	Molore Masse von Brom	g/moi	
FIOZentuener	Anten des Flussn	initiers an der Schn	leiztable	ille		a/mol
D	T 1 11				79,7 Die Avogadro-Konstante beträgt	g/moi
Das verwendete $(I_i \cdot B_i \cdot O_i)$ und 3	e Flussmittel best	eht aus 66% Lithiu	mtetrabo	orat	6 022E+23	mol ⁻¹
Vermischung m	nit den anderen E	lementen ergibt sic	h deren	CI	Anzahl der Natriumbromit-Moleküle	mor
prozentueller A	nteil an der Schm	nelztablette zu:			1.162E+20	
					Berechnung der Masse der Natriumatome	
Prozent	ueller Anteil von	Lithiumtetraborat	62,99	%	0,004	g
Prozentu	ueller Anteil von	Lithiummetaborat	32,45	%	Berechnung der Masse der Bromatome	-
	Atomn	nasse von Lithium	6,94	u	0,015	g
	At	ommasse von Bor	10,81	u	Prozentueller Anteil von Natrium	
	Atommas	sse von Sauerstoff	16	u	<u>437</u>	ppm
	Prozentueller A	nteil von Lithium	<u>9,696</u>	%	Prozentueller Anteil von Brom	
	Prozentuel	ler Anteil von Bor	<u>23,156</u>	%	<u>1519</u>	ppm
]	Prozentueller Ant	eil von Sauerstoff	<u>62,587</u>	%		
Vorhandenen	Elementkonzent	rationen für PTX	RFIAE	A12		
Anteil von PTX	RFIAEA12 an d	er Gesamtmasse	0,010			
Haupt-	Prozentueller	In der Schmel	ztablette	e		
elemente	Anteil [ppm]]	11		
Al	111000	<u>1095</u>			1	
Ca	2070	<u>20</u>			1	
Fe	47900	<u>473</u>			1	
Mg	82400	<u>813</u>			1	
Si	250000	2466			1	
К	19600	<u>193</u>			1	
Ti	5570	<u>55</u>			1	
				-	-	

Berechnung für das Oxidiermaterial						
Ab einer Temperatur über 800°C zerlegt sich Natriumnitrat in folgende Komponenten: $4NaNO_3 => 2Na_2O+2N_2+5O_2$						
Mittels der molaren Masse von Natriumnitrat (dies entspricht der Summe der relativen Atommassen von Stickstoff, Sauerstoff und Natrium) kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.						
Molare Masse von Stickstoff						
14,01 g/mol Molare Masse von Sauerstoff						
16 g/mol Molare Masse von Natrium						
22,99 g/mol Die Avogadro-Konstante beträgt						
6,022E+23 mol ⁻¹						
Anzahl der Natriumbromit-Moleküle						
7,092E+21 Moleküle Dies entspricht einer Anzahl an 4NaNO ₃						
1,773E+21 Moleküle						
Ab einer Temperatur von 800°C sind somit						
1,7729E+21 2Na ₂ O, 2N ₂ und 5O ₂ Teilchen vorhanden						
Berechnung der Masse der 2Na ₂ O Atome						
0,365 g Berechnung der Masse der $2N_2$ Atome						
0,165 g						
Berechnung der Masse der 5O ₂ Atome						
0,471 g						
Der Stickstoff und der Sauerstoff gehen während des Schmelzvorgangs verloren. Dies entspricht einer Masse von						
0,636 g						
Berechnung der Masse der Natriumatome						
0,2/1 g Berechnung der Masse der Sauerstoffatome						
0.094 g						
Prozentueller Anteil von Natrium						
<u>26682</u> ppm						
Prozentueller Anteil von Sauerstoff						
<u>9285</u> ppm						

Probe 4				Berechnung für die Natriumbromit	-Lösung	
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	9,902	89,99			Die Natriumbromit-Lösung bestand aus 3,03g	wunden Dies
NaNO ₃	1,001	9,10			entspricht einem Natriumanteil in der Lösung	von
Soil 7	0,101	0,92				
Gesamt	11,004	100			0,000101	g/µl
Vorhand	lene Massen vor	dem Schmelzaufs	chluss		Dichte von Wasser 0,000998	g/µl
	L	eerer Platinbecher	79,985	g	Gewicht der hinzugefügten Natriumbromit-Lö	ösung
	Platinbecher	+ Pulvermischung	90,897	g	0,214	g
Platinbecher -	+ Pulvermischung	g + Natriumbromit	91,111	g	Umrachnung das Gawichts dar Natriumhrami	t Lösung ouf ul
		Pulvermischung	10,912	g	Onlieennung des Gewichts der Naufunbionn	t-Losung aut µt
	Natri	umbromit-Lösung	0,214	g	194,722	μl
Gesa	amtmenge an ver	wendeten Material	11,126	g	Gewicht des hinzugefügten Natriumbromits	
Vorhand	ene Massen nacl	h dem Schmelzauf	schluss		0,020	g
		Schmelztablette	10,034	g	Gewicht des hinzugefügten Wassers	
	Platir	nbecher + Überrest	80,154	g	0,194	g
Vorha	andene Masse nac	ch dem Schmelzen	10,203	g		1.
Ber	echnung des Ver	lusts an Flussmitt	el		Mittels der molaren Masse von Natriumbromi entspricht der Summe der relativen Atommass	it (dies
Verlust ar	n Masse durch de	n Schmelzvorgang	0,923	g	Natrium und Bromit) kann die Anzahl der vor	handenen
D	er Verlust setzt si	ch zusammen aus:			Natriumbromit-Moleküle berechnet werden.	
	Verlust de	s Oxidiermaterials	0,636	g		
		Verlust an Wasser	0,194	g	Molare Masse von Natrium	
Verlust an Flussmittel 0		0,093	g	22,99	g/mol	
Prozentueller	Anteil des Fluss	mittels an der Schn	nelztable	ette	Molare Masse von Brom	
					79,9	g/mol
Das verwendet	e Flussmittel bes	teht aus 66% Lithiu	imtetrab	orat	Die Avogadro-Konstante beträgt	1-1
$(Li_2B_4O_7)$ und	34% Lithiummet	aborat (LiBO ₂). Au	fgrund d	ler	6,022E+23	mol
vermischung r	nit den anderen E	enenten ergibt sic	en deren		Anzahl der Natriumbromit-Moleküle	
prozentuener 7	linten un der Sein	neiztubiette zu.			I,151E+20	
Duozon	huallan Antail yan	Lithiumstateshoust	62 15	01	Berechnung der Masse der Natriumatome	~
Prozent	ueller Anteil von	Lithiummetaborat	32 60	%0 0%	0,004 Barachnung der Massa der Bromstoma	g
FIOZEIII	Atomr	nasse von Lithium	52,09 6 94	70	Derechnung der Masse der Bromatome	g
	Atom	tommasse von Bor	10.81	u 11	Prozentueller Anteil von Natrium	g
	Atomma	sse von Sauerstoff	10,01	u 11	431	nnm
	Prozentueller A	Anteil von Lithium	9.768	а %	Prozentueller Anteil von Brom	PPm
	Prozentuel	ler Anteil von Bor	23,326	%	1497	ppm
	Prozentueller An	teil von Sauerstoff	63.048	%		11
Vorhand	lenen Elementko	nzentrationen für	• Soil 7	, -		
Anteil von Soil 7 an der Gesamtmasse						
Haupt-	Prozentueller	In der Schmel	ztablette			
elemente	Anteil [ppm]	enthalten Konzent	ration [p	pm]		
Al	47000	464			1	
Ca	163000	1609			1	
Fe	25700	<u>254</u>			1	
Mg	11300	<u>112</u>			1	
Si	180000	<u>1777</u>			1	
К	12100	119			1	
Ti	3000	<u>30</u>			1	

Berechnung für das Oxidiermaterial

Ab einer Temperatur über 800°C zerlegt sich Natriumnitrat in folgende Komponenten: $4NaNO_3 \Rightarrow 2Na_2O+2N_2+5O_2$

Mittels der molaren Masse von Natriumnitrat (dies entspricht der Summe der relativen Atommassen von Stickstoff, Sauerstoff und Natrium) kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.

Molare Masse von Stickstoff

14,01 g/mol

Molare Masse von Sauerstoff

Molare Masse von Natrium

22,99 g/mol

16 g/mol

Die Avogadro-Konstante beträgt

6,022E+23 mol⁻¹

Anzahl der Natriumbromit-Moleküle 7,091E+21 Moleküle

Dies entspricht einer Anzahl an 4NaNO₃ Molekülen von

1,773E+21 Moleküle

Ab einer Temperatur von 800°C sind somit

1,7728E+21 $2Na_2O$, $2N_2$ und $5O_2$ Teilchen vorhanden.

Berechnung der Masse der 2Na₂O Atome

0,365 g Berechnung der Masse der $2N_2$ Atome 0,165 g Berechnung der Masse der $5O_2$ Atome

0,471 g

Der Stickstoff und der Sauerstoff gehen während des Schmelzvorgangs verloren. Dies entspricht einer Masse von

0,636 g Berechnung der Masse der Natriumatome

0,271 g

Berechnung der Masse der Sauerstoffatome

0,094 g Prozentueller Anteil von Natrium

<u>26533</u> ppm

Prozentueller Anteil von Sauerstoff

<u>9233</u> ppm

Probe 5					Berechnung für die Natriumbromit	-Lösung	
Bestandteil	Masse [g]	Massenprozent					
Flussmittel	9,900	89,99			Die Natriumbromit-Lösung bestand aus 3,03g	y	
NaNO3	1,000	9,09			entspricht einem Natriumanteil in der Lösung	von	
$(H_4N)_2O_4S$	0,102	0,92			entsprient emen rutariumanen in der Losang	von	
Gesamt	11,002	100			0,000101	g/µl	
Vorhand	ene Massen v	vor dem Schmelzaufs	chluss		Dichte von Wasser 0,000998	g/µl	
		Leerer Platinbecher	79,989	g	Gewicht der hinzugefügten Natriumbromit-L	ösung	
	Platinbech	her + Pulvermischung	90,95	g	0,216	g	
Platinbecher -	- Pulvermisch	ung + Natriumbromit	91,166	g	Umrechnung des Gewichts der Natriumbromi	t-Lösung auf	
		Pulvermischung	10,961	g	μ1	C	
	N	atriumbromit-Lösung	0,216	g	196,542	μl	
Gesa	umtmenge an v	verwendeten Material	11,177	g	Gewicht des hinzugefügten Natriumbromits		
Vorhando	ene Massen n	ach dem Schmelzauf	schluss		0,020	g	
		Schmelztablette	9,656	g	Gewicht des hinzugefügten Wassers		
	Pla	atinbecher + Überrest	80,492	g	0,196	g	
Vorha	ndene Masse	nach dem Schmelzen	10,159	g			
Bere	echnung des V	Verlusts an Flussmitt	el		Mittels der molaren Masse von Natriumbromit (dies		
Verlust an	Masse durch	den Schmelzvorgang	1,018	g	entspricht der Summe der relativen Atommas	sen von	
De	er Verlust setz	t sich zusammen aus:		-	Natriumbromit-Moleküle berechnet werden.	manuenen	
	Verlust	des Oxidiermaterials	0,635	g			
		Verlust an Wasser	0,196	g	Molare Masse von Natrium		
	Verlust d	les Ammoniumnitrats	0,040	g	22,99	g/mol	
	V	Verlust an Flussmittel	0,146	g	Molare Masse von Brom		
Prozentueller	Anteil des Flu	issmittels an der Schn	nelztablet	te	79,9	g/mol	
					Die Avogadro-Konstante beträgt		
Das verwendete	e Flussmittel b	esteht aus 66% Lithiu	mtetrabor	at	6,022E+23	mol ⁻¹	
$(Li_2B_4O_7)$ und 3	34% Lithiumn	netaborat (LiBO ₂). Au	fgrund de	r	Anzahl der Natriumbromit-Moleküle		
Vermischung n	nit den andere	n Elementen ergibt sic	h deren		1,162E+20		
prozentueller A	inteil an der S	chmelztablette zu:			Berechnung der Masse der Natriumatome		
					0,004	g	
Prozent	ueller Anteil v	on Lithiumtetraborat	63,37	%	Berechnung der Masse der Bromatome		
Prozentu	ueller Anteil v	on Lithiummetaborat	32,64	%	0,015	g	
	Ato	mmasse von Lithium	6,94	u	Prozentueller Anteil von Natrium		
		Atommasse von Bor	10,81	u	<u>437</u>	ppm	
	Atom	masse von Sauerstoff	16	u	Prozentueller Anteil von Brom		
	Prozentuelle	er Anteil von Lithium	<u>9,754</u>	%	<u>1517</u>	ppm	
	Prozent	ueller Anteil von Bor	<u>23,294</u>	%			
]	Prozentueller	Anteil von Sauerstoff	<u>62,961</u>	%			

Berechnung für das Oxidiermaterial	Berechnung für (H ₄ N) ₂ O ₄ S
Ab einer Temperatur über 800°C zerlegt sich Natriumnitrat in folgende Komponenten: 4NaNO ₃ => 2Na ₂ O+2N ₂ +5O ₂	Bei hohen Temperaturen zerlegt sich Ammoniumsulfat in folgende Komponenten:(H ₄ N) ₂ O ₄ S=>2NH ₃ +H ₂ O+SO ₃
Mittels der molaren Masse von Natriumnitrat (dies entspricht der Summe der relativen Atommassen von Stickstoff, Sauerstoff und Natrium) kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.	Mittels der molaren Masse von Ammoniumsulfat (dies entspricht der Summe der relativen Atommassen von Wasserstoff, Stickstoff, Sauerstoff und Schwefel kann die Anzahl der vorhandenen Natriumbromit- Moleküle berechnet werden.
14 01 g/mol	Molare Masse von Wasserstoff
Molare Masse von Sauerstoff	1.01 g/mol
16 g/mol	Molare Masse von Stickstoff
Molare Masse von Natrium	14,01 g/mol
22,99 g/mol	Molare Masse von Sauerstoff
Die Avogadro-Konstante beträgt	16 g/mol
$6,022E+23 \text{ mol}^{-1}$	Molare Masse von Schwefel
Anzahl der Natriumbromit-Moleküle	32,07 g/mol
7,085E+21 Moleküle	Die Avogadro-Konstante beträgt
Dies entspricht einer Anzahl an 4NaNO ₃	6,022E+23 mol ⁻¹
Molekülen von	Anzahl der (H ₄ N) ₂ O ₄ S Moleküle
1,771E+21 Moleküle	4,625E+20 Moleküle
Ab einer Temperatur von 800°C sind somit	Berechnung der Masse der SO3 Atome
1,7714E+21 2Na ₂ O, $2N_2$ und $5O_2$ Teilchen	0,061 g
vorhanden.	Der Wasserstoff, Stickstoff und der Sauerstoff
Berechnung der Masse der 2Na ₂ O Atome	gehen während des Schmelzvorgangs verloren.
0,365 g	Dies entspricht einer Masse von
Berechnung der Masse der 2N ₂ Atome	0,040
0,165 g	Berechnung der Masse der Schwefelatome
Berechnung der Masse der 50_2 Atome	0,025 g
0,471 g	
Der Stickstoff und der Sauerstoff gehen	Prozentueller Anteil von Schwefel
entspricht einer Masse von	2424 ppm
0,635 g	Prozentueller Anteil von Sauerstoff
Berechnung der Masse der Natriumatome	<u>3628</u> ppm
0,270 g	
Berechnung der Masse der Sauerstoffatome	
0,094 g	
Prozentueller Anteil von Natrium	
<u>26626</u> ppm	

Prozentueller Anteil von Sauerstoff

<u>9265</u> ppm

	Р	robe 6	Berechnung für die Natriumbromit-Lösung			
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	9,900	89,98		Die Natriumbromit-Lösung bestand aus 3,03g	y wurden Dies	
NaNO3	1,001	9,10		entspricht einem Natriumanteil in der Lösung	von	
H8N2O4S	0,051	0,46				
K2HPO4	0,051	0,46		0,000101	g/µl	
Gesamt	11,002	100,00		Dichte von Wasser 0,000998	g/µl	
Vorhand	lene Massen v	vor dem Schmelzaufs	chluss	Gewicht der hinzugefügten Natriumbromit-Le	ösung	
		Leerer Platinbecher	79,986 g	0,212	g	
	Platinbeck	er + Pulvermischung	90,984 g	Umrechnung des Gewichts der Natriumbromi	it-Lösung auf	
Platinbecher +	Pulvermisch	ung + Natriumbromit	91,196 g	μΙ		
		Pulvermischung	10,998 g	192,903	μl	
	N	atriumbromit-Lösung	0,212 g	Gewicht des hinzugefügten Natriumbromits		
Gesa	amtmenge an v	verwendeten Material	11,21 g	0,019	g	
Vorhande	ene Massen n	ach dem Schmelzauf	schluss	Gewicht des hinzugefügten Wassers		
		Schmelztablette	9,67 g	0,193	g	
	Pla	atinbecher + Überrest	80,52 g			
Vorha	indene Masse	nach dem Schmelzen	10,204 g	Mittels der molaren Masse von Natriumbromit (dies		
Bere	echnung des V	Verlusts an Flussmitt	el	entspricht der Summe der relativen Atommassen von Natrium und Bromit) kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.		
Verlust an	Masse durch	den Schmelzvorgang	1.006 g			
De	er Verlust setz	t sich zusammen aus:	, 6	Nathumoromit-worekure bereemiet werden.		
	Verlust	des Oxidiermaterials	0.636 g	Molare Masse von Natrium		
		Verlust an Wasser	0,090 g	22.99	g/mol	
	Verlust d	les Ammoniumnitrats	0.020 g	Molare Masse von Brom	0	
Verl	ust des Dikali	umhydrogenphosphat	0.003 g	79,9	g/mol	
	v	Verlust an Flussmittel	0,155 g	Die Avogadro-Konstante beträgt	C	
Prozentueller	Anteil des Flu	issmittels an der Schn	nelztablette	6,022E+23	mol ⁻¹	
				Anzahl der Natriumbromit-Moleküle		
Das verwendete	- Flussmittel k	esteht aus 66% Lithiu	mtetrahorat	1,14E+20		
$(Li_2B_4O_7)$ und 3	34% Lithiumn	netaborat (LiBO ₂). Aut	fgrund der	Berechnung der Masse der Natriumatome		
Vermischung n	nit den andere	n Elementen ergibt sic	h deren	0,004	g	
prozentueller A	nteil an der S	chmelztablette zu:		Berechnung der Masse der Bromatome		
				0,015	g	
Prozent	ueller Anteil v	on Lithiumtetraborat	63,03 %	Prozentueller Anteil von Natrium		
Prozentu	ueller Anteil v	on Lithiummetaborat	32,47 %	<u>427</u>	ppm	
	Ato	mmasse von Lithium	6,94 u	Prozentueller Anteil von Brom		
		Atommasse von Bor	10,81 u	<u>1483</u>	ppm	
	Atom	masse von Sauerstoff	16 u			
	Prozentuelle	er Anteil von Lithium	<u>9,703</u> %			
	Prozent	ueller Anteil von Bor	<u>23,171</u> %			
]	Prozentueller	Anteil von Sauerstoff	<u>62,628</u> %			

Berechnung für das Oxidiermaterial	Berechnung für (H ₄ N) ₂ O ₄ S		
Ab einer Temperatur über 800°C zerlegt sich Natriumnitrat in folgende Komponenten: $4NaNO_3 \Rightarrow 2Na_2O+2N_2+5O_2$	Bei hoher Temperatur von zerlegt sich Ammoniumsulfat in folgende Komponenten:(H ₄ N) ₂ O ₄ S=>2NH ₃ +H ₂ O+SO ₃		
Mittels der molaren Masse von Natriumnitrat (dies entspricht der Summe der relativen Atommassen von Stickstoff, Sauerstoff und Natrium) kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.	Mittels der molaren Masse von Ammoniumsulfat (dies entspricht der Summe der relativen Atommassen von Wasserstoff, Stickstoff, Sauerstoff und Schwefel kann die Anzahl der vorhandenen Natriumbromit-		
Molare Masse von Stickstoff			
14,01 g/mol	Molare Masse von Wasserstoff		
Molare Masse von Sauerstoff	1,01 g/mol		
16 g/mol	Molare Masse von Stickstoff		
Molare Masse von Natrium	14,01 g/mol		
22,99 g/mol	Molare Masse von Sauerstoff		
Die Avogadro-Konstante betragt	16 g/mol		
6,022E+23 mol	Molare Masse von Schwefel		
Anzahl der Natriumbromit-Moleküle	32,07 g/mol		
7,092E+21 Moleküle	Die Avogadro-Konstante beträgt		
Dies entspricht einer Anzahl an 4NaNO ₃	$6,022E+23 \text{ mol}^{-1}$		
Molekülen von	Anzahl der (H ₄ N) ₂ O ₄ S Moleküle		
1,773E+21 Moleküle	2,315E+20 Moleküle		
Ab einer Temperatur von 800°C sind somit	Berechnung der Masse der SO3 Atome		
1,7729E+21 2Na ₂ O, 2N ₂ und 5O ₂ Teilchen	0,031 g		
vorhanden. Berechnung der Masse der 2Na ₂ O Atome	Der Wasserstoff, Stickstoff und der Sauerstoff gehen während des Schmelzvorgangs verloren.		
0,365 g	Dies entspricht einer Masse von		
Berechnung der Masse der 2N ₂ Atome	0,020		
0,165 g	Berechnung der Masse der Schwefelatome		
Berechnung der Masse der 5O ₂ Atome	0,012 g		
0,471 g	Berechnung der Masse der Sauerstoffatome		
Der Stickstoff und der Sauerstoff gehen	0,018 g		
während des Schmelzvorgangs verloren. Dies	Prozentueller Anteil von Schwefel		
entspricht einer Masse von	<u>1208</u> ppm		
0,636 g	Prozentueller Antell von Sauerstoll		
Berechnung der Masse der Natriumatome	<u>1808</u> ppm		
0,271 g			
Berechnung der Masse der Sauerstoffatome			
0,094 g			
Prozentueller Anteil von Natrium			
<u>26532</u> ppm			
Prozentueller Anteil von Sauerstoff			

<u>9233</u> ppm

Berechnung	fiir	K ₂ HPO ₄
Durunnung	Iui	132111 04

Bei hoher Temperatur zerlegt sich
Dikaliumhydrogenphosphat in folgende
Komponenten: $2K_2HPO_4 = K_4P_2O_7 + H_2O$

Mittels der molaren Masse von Dikaliumhydrogenphosphat (dies entspricht der Summe der relativen Atommassen von Wasserstoff, Sauerstoff Phosphor und Kalium kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.

Molare Masse von Wasserstoff

1,01 g/mol

Molare Masse von Sauerstoff

16 g/mol

Molare Masse von Phosphor

30,97 g/mol

Molare Masse von Kalium

39,1 g/mol

Die Avogadro-Konstante beträgt 6,022E+23 mol⁻¹

Anzahl der K₂HPO₄ Moleküle

1,749E+20 Moleküle

Dies entspricht einer Anzahl an $2K_2HPO_4$ Molekülen von

8,747E+19 Moleküle Berechnung der Masse der K₄P₂O₇ Atome

0,048 g

<u>882</u> ppm

Der Wasserstoff und der Sauerstoff gehen während des Schmelzvorgangs verloren. Dies entspricht einer Masse von

0,003 gBerechnung der Masse der Kaliumatome 0,023 gBerechnung der Masse der Sauerstoffatome 0,016 gBerechnung der Masse der Phosphoratome 0,009 gProzentueller Anteil von Kalium $\underline{2226}$ ppm Prozentueller Anteil von Sauerstoff $\underline{1594}$ ppm Prozentueller Anteil von Phosphor

Probe 7			Berechnung für die Natriumbromit	-Lösung	
Bestandteil	Masse [g]	Massenprozent			
Flussmittel	9,899	89,97		Die Natriumbromit-Lösung bestand aus 3,03g	g wurden Dies
NaNO3	1,002	9,11		entspricht einem Natriumanteil in der Lösung	von
H8N2O4S	0,034	0,31		1 2	
K2HPO4	0,034	0,31		0,000101	g/µl
CaCO3	0,034	0,31		Dichte von Wasser 0,000998	g/µl
Gesamt	11,003	100,00		Gewicht der hinzugefügten Natriumbromit-L	ösung
Vorhand	lene Massen	vor dem Schmelzaufs	chluss	0,212	g
		Leerer Platinbecher	79,983 g	Umrechnung des Gewichts der Natriumbromi	it-Lösung auf
	Platinbech	her + Pulvermischung	90,976 g	μl	C
Platinbecher -	+ Pulvermisch	ung + Natriumbromit	91,188 g	192,903	μl
		Pulvermischung	10,993 g	Gewicht des hinzugefügten Natriumbromits	
	N	atriumbromit-Lösung	0,212 g	0,019	g
Gesa	amtmenge an v	verwendeten Material	11,205 g	Gewicht des hinzugefügten Wassers	
Vorhand	ene Massen n	ach dem Schmelzauf	schluss	0,193	g
		Schmelztablette	9,796 g		
	Pla	atinbecher + Überrest	80,376 g	Mittels der molaren Masse von Natriumbrom	it (dies
Vorha	andene Masse	nach dem Schmelzen	10,189 g	entspricht der Summe der relativen Atommas	sen von
Ber	echnung des V	Verlusts an Flussmitt	el	Natrium und Bromit) kann die Anzahl der vor Natriumbromit-Moleküle berechnet werden	rhandenen
Verlust an	Masse durch	den Schmelzvorgang	1 016 g		
De	er Verlust setz	t sich zusammen aus:	1,010 g	Molare Masse von Natrium	
2	Verlust	des Oxidiermaterials	0.637 g	22.99	g/mol
		Verlust an Wasser	0.193 g	Molare Masse von Brom	C
	Verlust d	les Ammoniumnitrats	0.013 g	79.9	g/mol
Verl	ust des Dikali	umhydrogenphosphat	0.002 g	Die Avogadro-Konstante beträgt	6
	Verlust	des Kalziumkarbonat	0.015 g	6,022E+23	mol ⁻¹
	V	Verlust an Flussmittel	0,157 g	Anzahl der Natriumbromit-Moleküle	
Prozentueller	Anteil des Flu	issmittels an der Schn	nelztablette	1,14E+20	
				Berechnung der Masse der Natriumatome	
Das verwendet	e Flussmittel k	esteht aus 66% Lithiu	mtetraborat	0,004	g
$(Li_2B_4O_7)$ und 3	34% Lithiumn	netaborat (LiBO ₂). Aut	fgrund der	Berechnung der Masse der Bromatome	-
Vermischung n	nit den andere	n Elementen ergibt sic	h deren	0,015	g
prozentueller A	Inteil an der So	chmelztablette zu:		Prozentueller Anteil von Natrium	
				<u>427</u>	ppm
Prozent	ueller Anteil v	von Lithiumtetraborat	63,11 %	Prozentueller Anteil von Brom	
Prozent	ueller Anteil v	on Lithiummetaborat	32,51 %	<u>1485</u>	ppm
	Ato	mmasse von Lithium	6,94 u		
		Atommasse von Bor	10,81 u		
	Atom	masse von Sauerstoff	16 u		
	Prozentuelle	er Anteil von Lithium	<u>9,714</u> %		
	Prozent	ueller Anteil von Bor	<u>23,198</u> %		
	Prozentueller	Anteil von Sauerstoff	<u>62,702</u> %	J	

Berechnung für das Oxidiermaterial	Berechnung für $(H_4N)_2O_4S$ ei hoher Temperatur zerlegt sich mmoniumsulfat in folgende componenten: $(H_4N)_2O_4S=>2NH_3+H_2O+SO_3$ flittels der molaren Masse von mmoniumsulfat (dies entspricht der Summe er relativen Atommassen von Wasserstoff, tickstoff, Sauerstoff und Schwefel kann die		
Ab einer Temperatur über 800°C zerlegt sich Natriumnitrat in folgende Komponenten: $4NaNO_3 => 2Na_2O+2N_2+5O_2$	Bei hoher Temperatur zerlegt sich Ammoniumsulfat in folgende Komponenten:(H ₄ N) ₂ O ₄ S=>2NH ₃ +H ₂ O+SO ₃		
Mittels der molaren Masse von Natriumnitrat (dies entspricht der Summe der relativen Atommassen von Stickstoff, Sauerstoff und Natrium) kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden. Molare Masse von Stickstoff	Mittels der molaren Masse von Ammoniumsulfat (dies entspricht der Summe der relativen Atommassen von Wasserstoff, Stickstoff, Sauerstoff und Schwefel kann die Anzahl der vorhandenen Natriumbromit- Moleküle berechnet werden.		
14,01 g/mol	Molare Masse von Wasserstoff		
16 g/mol	I,01 g/moi Molare Masse von Stickstoff		
Molare Masse von Natrium	14,01 g/mol		
22,99 g/mol	Molare Masse von Sauerstoff		
Die Avogadro-Konstante beträgt $6.022E \pm 22$ mol ⁻¹	16 g/mol		
0,022E+25 III0I	22.07 s/mal		
7 099E+21 Malalin	32,07 g/mol		
Nolekule	$6.022\text{F}+23 \text{ mol}^{-1}$		
Dies entspricht einer Anzahl an 4NaNO ₃	Anzahl der (H ₄ N) ₂ O ₄ S Moleküle		
1,775E+21 Moleküle	1,549E+20 Moleküle		
Ab einer Temperatur von 800°C sind somit	Berechnung der Masse der SO3 Atome		
1,7747E+21 2Na ₂ O, 2N ₂ und 5O ₂ Teilchen	0,021 g		
vorhanden. Berechnung der Masse der 2Na ₂ O Atome	Der Wasserstoff, Stickstoff und der Sauerstoff gehen während des Schmelzvorgangs verloren.		
0,365 g Berechnung der Masse der 2N ₂ Atome	Dies entspricht einer Masse von		
0.165 g	Berechnung der Masse der Schwefelatome		
Berechnung der Masse der 5O ₂ Atome	0,008 g		
0,472 g	Berechnung der Masse der Sauerstoffatome		
Der Stickstoff und der Sauerstoff gehen während des Schmelzvorgangs verloren. Dies entspricht einer Masse von	0,012 g Prozentueller Anteil von Schwefel 810 ppm		
0,637 g	Prozentueller Anteil von Sauerstoff		
Berechnung der Masse der Natriumatome	<u>1212</u> ppm		
0,271 g Berechnung der Masse der Sauerstoffatome 0,094 g			
Prozentueller Anteil von Natrium			
<u>26598</u> ppm Prozentueller Anteil von Sauerstoff			

<u>9256</u> ppm

Berechnung für K ₂ HPO ₄	Berechnung für CaCO ₃
Bei hoher Temperatur zerlegt sich Dikaliumhydrogenphosphat in folgende Komponenten: 2K ₂ HPO ₄ =>K ₄ P ₂ O ₇ +H ₂ O	Bei einer Temperatur über 600°C zerlegt sich Kalziumkarbonat in folgende Komponenten: CaCO ₃ =>CaO+CO ₂
Mittels der molaren Masse von Dikaliumhydrogenphosphat (dies entspricht der Summe der relativen Atommassen von Wasserstoff, Sauerstoff Phosphor und Kalium kann die Anzahl der vorhandenen Natriumbromit- Moleküle berechnet werden.	Mittels der molaren Masse von Kalziumkarbonat (dies entspricht der Summe der relativen Atommassen von Kalzium Kohlenstoff und Sauerstoff kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.
Molare Masse von Wasserstoff	Molare Masse von Kohlenstoff
1,01 g/mol	12,01 g/mol
Molare Masse von Sauerstoff	Molare Masse von Sauerstoff
16 g/mol	16 g/mol
Molare Masse von Phosphor	Molare Masse von Kalzium
30,97 g/moi Molare Masse von Kalium	40,08 g/III01 Die Avogadro-Konstante beträgt
39.1 g/mol	$6.022\text{E}+23 \text{ mol}^{-1}$
Die Avogadro-Konstante beträgt	Anzahl der CaCO ₃ Moleküle
6,022E+23 mol ⁻¹	2,034E+20 Moleküle
Anzahl der K ₂ HPO ₄ Moleküle	Berechnung der Masse der CaO Atome
1,169E+20 Moleküle	0,019 g
Dies entspricht einer Anzahl an 2K ₂ HPO ₄ Molekülen von	Das gebildete Kohlenstoffdioxid geht während des Schmelzvorgangs verloren. Dies entspricht einer
5,843E+19 Moleküle	Masse von
Berechnung der Masse der $K_4P_2O_7$ Atome	0,015 g
0,032 g	
Der Wasserstoff und der Sauerstoff gehen während des Schmelzvorgangs verloren. Dies entspricht	Berechnung der Masse der Sauerstoffatome
o 002 g	0,005 g Prozentueller Anteil von Kalzium
Berechnung der Masse der Kaliumatome	1328 ppm
0,015 g	Prozentueller Anteil von Sauerstoff
Berechnung der Masse der Sauerstoffatome	<u>530</u> ppm
0,011 g Berechnung der Masse der Phosphoratome	
0,006 g Prozentueller Anteil von Kalium	
<u>1489</u> ppm	
Prozentueller Anteil von Sauerstoff	
<u>1067</u> ppm	
Prozentueller Anteil von Phosphor	
<u>590</u> ppm	

	Р	robe 8			Berechnung für die Natriumbromit-	Lösung
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	9,900	99,00			Die Natriumbromit-Lösung bestand aus 3,03g	;
KHSO4	0,050	0,50			entspricht einem Natriumanteil in der Lösung	von
CaCO3	0,050	0,50				
Gesamt	10,000	100,00			0,000101	g/µl
Vorhand	lene Massen v	or dem Schmelzaufs	chluss		Dichte von 0,000998 Wasser	g/µl
		Leerer Platinbecher	79,983	g	Gewicht der hinzugefügten Natriumbromit-Lö	ösung
	Platinbech	er + Pulvermischung	89,977	g	0,211	g
Platinbecher -	Pulvermisch	ung + Natriumbromit	90,188	g	Umrechnung des Gewichts der Natriumbromi	t-Lösung auf
		Pulvermischung	9,994	g	μl	
	N	atriumbromit-Lösung	0,211	g	191,993	μl
Gesa	amtmenge an v	verwendeten Material	10,205	g	Gewicht des hinzugefügten Natriumbromits	
Vorhande	ene Massen n	ach dem Schmelzauf	schluss		0,019	g
		Schmelztablette	9,579	g	Gewicht des hinzugefügten Wassers	
	Pla	atinbecher + Überrest	80,246	g	0,192	g
Vorha	ndene Masse	nach dem Schmelzen	9,842	g		
Bere	echnung des V	Verlusts an Flussmitt	el		Mittels der molaren Masse von Natriumbromi	t (dies
Verlust an	Masse durch	den Schmelzvorgang	0 363	σ	entspricht der Summe der relativen Atommass	sen von
V erfust an	r Varlust satz	t sich zusammen aus:	0,505	6	Natrium und Bromit) kann die Anzahl der vor	handenen
De	er verrust setz	t sich zusählnen aus.	0.100		Natriumbromit-Molekule berechnet werden.	
_		Verlust an Wasser	0,192	g		
	/erlust des Ka	liumhydrogensulphat	0,003	g	Molare Masse von Natrium	
	Verlust	des Kalziumkarbonat	0,022	g	22,99	g/mol
		erlust an Flussmittel	0,146	g	Molare Masse von Brom	
Prozentueller	Anteil des Flu	issmittels an der Schm	nelztablet	te	79,9	g/mol
					Die Avogadro-Konstante beträgt	1
Das verwendete	e Flussmittel b	esteht aus 66% Lithiu	mtetrabor	at	6,022E+23	mol
$(\text{Li}_2\text{B}_4\text{O}_7)$ und 3	34% Lithiumn	netaborat (LiBO ₂). Aut	fgrund de	r	Anzahl der Natriumbromit-Moleküle	
Vermischung n	nit den anderei nteil an der S	n Elementen ergibt sic	h deren		1,135E+20	
prozentuener A		liineiztabiette zu.			Berechnung der Masse der Natriumatome	
_					0,004	g
Prozent	ueller Anteil v	on Lithiumtetraborat	65,41	%	Berechnung der Masse der Bromatome	
Prozentu	ueller Anteil v	on Lithiummetaborat	33,70	%	0,015	g
	Ato	mmasse von Lithium	6,94	u	Prozentueller Anteil von Natrium	
		Atommasse von Bor	10,81	u	<u>440</u>	ppm
	Atom	masse von Sauerstoff	16	u	Prozentueller Anteil von Brom	
	Prozentuelle	er Anteil von Lithium	<u>10,069</u>	%	<u>1530</u>	ppm
	Prozent	ueller Anteil von Bor	<u>24,045</u>	%		
]	Prozentueller	Anteil von Sauerstoff	<u>64,991</u>	%		

Berechnung für KHSO ₄	Berechnung für CaCO ₃
Bei hoher Temperatur zerlegt sich Kaliumhydrogensulphat in folgende Komponenten: 2KHSO ₄ =>K ₂ S ₂ 0 ₇ +H ₂ O	Bei einer Temperatur über 600°C zerlegt sich Kalziumkarbonat in folgende Komponenten: $CaCO_3 = >CaO+CO_2$
Mittels der molaren Masse von Kaliumhydrogensulphat (dies entspricht der Summe der relativen Atommassen von Wasserstoff, Sauerstoff, Schwefel und Kalium kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.	Mittels der molaren Masse von Kalziumkarbonat (dies entspricht der Summe der relativen Atommassen von Kalzium Kohlenstoff und Sauerstoff kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.
Molare Masse von Wasserstoff	Molare Masse von Kohlenstoff
1,01 g/mol	12,01 g/mol
Molare Masse von Sauerstoff	Molare Masse von Sauerstoff
16 g/mol	16 g/mol
Molare Masse von Schwefel	Molare Masse von Kalzium
32,07 g/mol	40,08 g/mol
Molare Masse von Kalium	Die Avogadro-Konstante beträgt
39,1 g/mol	$6,022E+23 \text{ mol}^{-1}$
Die Avogadro-Konstante beträgt	Anzahl der CaCO ₃ Moleküle
6,022E+23 mol ⁻¹	3,014E+20 Moleküle
Anzahl der KHSO ₄ Moleküle	Berechnung der Masse der CaO Atome
2,215E+20 Moleküle	0,028 g
Dies entspricht einer Anzahl an 2KHSO ₄ Molekülen von	Das gebildete Kohlenstffdioxid geht während des Schmelzvorgangs verloren. Dies entspricht einer
1,108E+20 Moleküle	Masse von
Berechnung der Masse der K2S2O7 Atome	0,022 g
0,047 g	Berechnung der Masse der Kalziumatome
Das gebildete Wasser geht während des	0,020 g
Schmelzvorgangs verloren. Dies entspricht einer	
	Prozentueller Anteil von Kalzium
Berechnung der Masse der Kaliumatome	2038 ppm
0,014 g	Prozentueller Anteil von Sauerstoff
Berechnung der Masse der Sauerstoffatome	<u>814</u> ppm
0,021 g	
Berechnung der Masse der Schwefelatome	
0,012 g	
Prozentueller Anteil von Kalium	
<u>1462</u> ppm	
Prozentueller Anteil von Sauerstoff	
<u>2093</u> ppm	
Prozentueller Anteil von Phosphor	

	Р	robe 9		Berechnung für die Natriumbromit-	Lösung		
Bestandteil	Masse [g]	Massenprozent					
Flussmittel	9,900	99,00		Die Natriumbromit-Lösung bestand aus 3,03g			
A12O3	0,100	1,00		Natriumbromit die in 30ml Wasser aufgelöst entspricht einem Natriumanteil in der Lösung	wurden. Dies		
Gesamt	10.000	100.00		entspricht einem ruurfuhlanten in der Losung	von		
Vorhand	ene Massen v	vor dem Schmelzaufs	chluss	0,000101	g/µl		
		Leerer Platinbecher	79,983 g	Dichte von Wasser 0,000998	g/µl		
	Platinbech	er + Pulvermischung	89.968 g	Gewicht der hinzugefügten Natriumbromit-Lö	ösung		
Platinbecher +	- Pulvermisch	ung + Natriumbromit	90,182 g	0,214	g		
		Pulvermischung	9,985 g	Umrechnung des Gewichts der Natriumbromi	t-Lösung auf		
	N	atriumbromit-Lösung	0,214 g	μ1	_		
Gesa	imtmenge an v	verwendeten Material	10,199 g	194,722	μl		
Vorhande	ene Massen n	ach dem Schmelzaufs	schluss	Gewicht des hinzugefügten Natriumbromits	umbromit-Lösungd aus 3,03gaufgelöst wurden. Diesder Lösung von $0,000101 g/\mu l$ $0,000998 g/\mu l$ nbromit-Lösung $0,214 g$ triumbromit-Lösung auf194,722 μl mbromits $0,020 g$ $0,194 g$ triumbromit (diesAtommassen vonexhl der vorhandenenet werden.22,99 g/mol $79,9 g/mol$ $5,022E+23 mol^{-1}$ ile $1,51E+20$		
		Schmelztablette	9,6498 g	0,020	g		
	Pla	atinbecher + Überrest	80,189 g	Gewicht des hinzugefügten Wassers			
Vorha	ndene Masse	nach dem Schmelzen	9,8558 g	0,194	g		
Bere	echnung des V	Verlusts an Flussmitt	el				
Verlust an	Masse durch	den Schmelzvorgang	0,3432 g	Mittels der molaren Masse von Natriumbromi entspricht der Summe der relativen Atommas	t (dies		
De	er Verlust setz	t sich zusammen aus:		Natrium und Bromit) kann die Anzahl der vor	handenen		
		Verlust an Wasser	0,194 g	Natriumbromit-Moleküle berechnet werden.			
	V	Verlust an Flussmittel	0,149 g				
Prozentueller	Anteil des Flu	issmittels an der Schm	elztablette	Molare Masse von Natrium			
				22,99	g/mol		
Das verwendete	e Flussmittel b	esteht aus 66% Lithiu	mtetraborat	Molare Masse von Brom			
$(Li_2B_4O_7)$ und 3	34% Lithiumn	netaborat (LiBO ₂). Aut	grund der	79,9	g/mol		
Vermischung n	nteil an der So	n Elementen ergibt sic. chmelztablette zu:	h deren	Die Avogadro-Konstante beträgt	1-1		
prozentuener /				6,022E+23	mol		
Durant			(5.20.01	Anzahl der Natriumbromit-Moleküle			
Prozent	ueller Anteil v	on Lithiumtetraborat	65,30 %	1,151E+20			
Prozenti	leller Antell V	massa yan Lithium	55,04 %	Berechnung der Masse der Natriumatome	~		
	Alo	Atommasse von Bor	0,94 u 10.81 u	0,004 Berechnung der Masse der Bromatome	g		
	Atom	masse von Sauerstoff	10,01 u 16 u	0 015	σ		
	Prozentuelle	er Anteil von Lithium	<u>10.052</u> %	Prozentueller Anteil von Natrium	Ð		
	Prozent	ueller Anteil von Bor	24,005 %	446	ppm		
]	Prozentueller	Anteil von Sauerstoff	<u>64,882</u> %	Prozentueller Anteil von Brom	- •		
				<u>1550</u>	ppm		

Berechnung für	r Al ₂ O ₃
Molare Masse von Aluminiun	n
26,98	g/mol
Molare Masse von Sauerstoff	
16	g/mol
Die Avogadro-Konstante betr	ägt
6,022E+23	mol ⁻¹
Anzahl der Al ₂ O ₃ Moleküle	
5,924E+20	Moleküle
Berechnung der Masse der Al	uminiumatome
0,053	g
Berechnung der Masse der Sa	uerstoffatome
0,047	g
Prozentueller Anteil von Alun	ninium
<u>5386</u>	ppm
Prozentueller Anteil von Saue	erstoff
<u>4791</u>	ppm

BestandteilMasse [g]MassenprozentFlussmittel9,80098,00PTXRFIAEA040,2002,00Gesamt10,000100,00Vorhandene Massen vor dem Schmelzaufschluss	nbromit einem
Flussmittel9,80098,00PTXRFIAEA040,2002,00Gesamt10,000100,00Vorhandene Massen vor dem Schmelzaufschluss0,000101 g/μ1	nbromit einem
PTXRFIAEA04 0,200 2,00 Gesamt 10,000 100,00 Vorhandene Massen vor dem Schmelzaufschluss 0,000101 g/μ1	einem
Gesamt 10,000 100,00 Vorhandene Massen vor dem Schmelzaufschluss 0,000101 g/μ1	
Vorhandene Massen vor dem Schmelzaufschluss 0,000101 g/µ1	
Leerer Platinbecher 79.984 g Dichte von Wasser 0,000998 g/ul	
Platinbecher + Pulvermischung 90,004 g Gewicht der hinzugefügten Natriumbromit-Lösung	
Platinbecher+ Pulvermischung + Natriumbromit 90,218 g 0,214 g	
Pulvermischung 10,02 g Umrachnung des Gautights der Netriumbromit Lösung	a ouf ul
Natriumbromit-Lösung 0,214 g	g aur µr
Gesamtmenge an verwendeten Material 10,234 g 194,722 µ1	
Vorhandene Massen nach dem Schmelzaufschluss Gewicht des hinzugefügten Natriumbromits	
Schmelztablette 9,65 g 0,020 g	
Platinbecher + Überrest 80,216 g Gewicht des hinzugefügten Wassers	
Vorhandene Masse nach dem Schmelzen 9,882 g 0,194 g	
Berechnung des Verlusts an Flussmittel	
Verlust an Masse durch den Schmelzvorgang 0,352 g Mittels der molaren Masse von Natriumbromit (dies entspricht der Summe der relativen Atommassen von	
Der Verlust setzt sich zusammen aus: Natrium und Bromit) kann die Anzahl der vorhandener	en
Verlust an Wasser 0,194 g Natriumbromit-Moleküle berechnet werden.	
Verlust PTXRFIAEA04 wegen Loss on Ignition $0,029$ g	
Prograntuellan Antail das Elusamittels on dan	
Schmelztablette 22,99 g/mol	
Molare Masse von Brom	
Das verwendete Elussmittel besteht aus 66% Lithiumtetraborat	
$(Li_2B_4O_7)$ und 34% Lithiummetaborat $(LiBO_2)$. Aufgrund der Die Avogadro-Konstante beträgt	
Vermischung mit den anderen Elementen ergibt sich deren 6,022E+23 mol ⁻¹	
prozentueller Anteil an der Schmelztablette zu: Anzahl der Natriumbromit-Moleküle	
1,151E+20	
Prozentueller Anteil von Lithiumtetraborat 64,60 % Berechnung der Masse der Natriumatome	
Prozentueller Anteil von Lithiummetaborat 33,28 % 0,004 g	
Atommasse von Lithium 6,94 u Berechnung der Masse der Bromatome	
Atommasse von Bor 10,81 u 0,015 g	
Atommasse von Sauerstoff 16 u Prozentueller Antell von Natrium	
Prozentueller Anteil von Bor 23746 % Prozentueller Anteil von Brom	
Prozentueller Anteil von Sauerstoff 64.183 % 1545 npm	
Anteil von PTYPEIAE $A04$ and der Gesamtmasse 0.017	
In der Schmelztablette	
Haupt- Prozentueller elemente Anteil [nnm] enthalten Konzentration	
[ppm]	
Al <u>111000 <u>1915</u></u>	
<u>Ca</u> 2070 <u>36</u>	
Fe 47900 <u>827</u>	
<u>Mg 82400 <u>1422</u></u>	
<u>Si 250000 <u>4314</u></u>	
K 19600 <u>195</u>	
Ti 5570 <u>96</u>	

Probe 11	l		Berechnung für die Natriumbromit-	·Lösung
Bestandteil Masse [g] Mass	senprozent			
Flussmittel 9,800	98,00		Die Natriumbromit-Lösung bestand aus 3,03g	Natriumbromit
SRM 97a 0,200	2,00		die in 30ml wasser aufgelost wurden. Dies en Natriumanteil in der Lösung von	tspricht einem
Gesamt 10,000	100,00		Ruthanianten in der Losung von	
Vorhandene Massen vor der	n Schmelzauf	fschluss	0,000101	g/µl
Leerer Platinbecher 79 984 g		Dichte von Wasser 0,000998	g/µl	
Platinbecher + Pul	vermischung	90 g	Gewicht der hinzugefügten Natriumbromit-Lö	bsung
Platinbecher + Pulve	rmischung +	σ	0.22	σ
Na	atriumbromit	90,22 ^g	0,22	Б
Pul	vermischung	10,016 g	Umrechnung des Gewichts der Natriumbromit	t-Lösung auf ul
Natriumbr	omit-Lösung	0,22 g		
Gesamtmenge an verwende	eten Material	10,236 g	200,182	μl
Vorhandene Massen nach de	m Schmelzau	fschluss	Gewicht des hinzugefügten Natriumbromits	
Sch	nmelztablette	9,744 g	0,020	g
Platinbech	er + Überrest	80,136 g	Gewicht des hinzugefügten Wassers	
Vorhandene Masse nach der	n Schmelzen	9,896 g	0,200	g
Berechnung des Verlust	s an Flussmi	ttel		/
Verlust an Masse durch den Sch	melzvorgang	0,34 g	Mittels der molaren Masse von Natriumbromi	t (dies
Der Verlust setzt sich zu	sammen aus:		Natrium und Bromit) kann die Anzahl der vor	handenen
Verlu	st an Wasser	0,200 g	Natriumbromit-Moleküle berechnet werden.	nundenen
Verlust SRM 97a wegen Los	s on Ignition	0,027 g		
Verlust a	n Flussmittel	0,114 g	Molare Masse von Natrium	
Prozentueller Anteil des Flussmitt	els an der Sch	melztablette	22,99	g/mol
			Molare Masse von Brom	
Das verwendete Flussmittel besteht	aus 66% Lith	iumtetrabora	t 79,9	g/mol
(Li ₂ B ₄ O ₇) und 34% Lithiummetabor	rat (LiBO ₂). A	ufgrund der	Die Avogadro-Konstante beträgt	
Vermischung mit den anderen Elem	enten ergibt s	ich deren	6,022E+23	mol⁻¹
prozentueller Anteil an der Schmelz	tablette zu:		Anzahl der Natriumbromit-Moleküle	
			1,183E+20	
Prozentueller Anteil von Lithi	umtetraborat	64,60 %	Berechnung der Masse der Natriumatome	
Prozentueller Anteil von Lithi	ummetaborat	33,28 %	0,005	g
Atommasse	von Lithium	6,94 u	Berechnung der Masse der Bromatome	
Atomm	asse von Bor	10,81 u	0,016	g
Atommasse vo	on Sauerstoff	16 u	Prozentueller Anteil von Natrium	
Prozentueller Anteil	von Lithium	<u>9,944</u> %	<u>457</u>	ppm
Prozentueller A	nteil von Bor	<u>23,749</u> %	Prozentueller Anteil von Brom	
Prozentueller Anteil vo	on Sauerstoff	<u>64,189</u> %	<u>1587</u>	ppm
Vorhandenen Elementkonzent	rationen für	SRM 97a		

Laut dem Datenblatt von SRM 97a (siehe Anhang H) weist das Standardmaterial einen Glühverlust (LOI) von 13,32% auf. Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt werden, dass das Schmelztablette nur zu einem kleinen Teil aus SRM 97a und zum Größtenteils aus Flussmittel besteht. Weiters müssen in dem Datenblatt angegeben Konzentrationen der vorhandenen Oxidverbindungen auf die einzelnen Elemente umgerechnet werden.

Anteil von SRM 97 a an der Gesamtmasse0,018Loss on Ignition von SRM 97a13,32 %

Haupt- elemente	Atommasse [u]				
Al	26,98				
Ca	40,08				
Fe	55,85				
Mg	24,3				
Si	28,09				
K	39,09				
Ti	47,87				
Р	30,97				
0	16				
				Umrechnung auf Reinelemente [ppm]	
Haupt- elemente	Massen- prozente	Massenprozente unter Berücksichtigung des LOI	Massenprozent in der vorhandenen Schmelztablette	Umrec Reineler	chnung auf nente [ppm]
Haupt- elemente Al2O3	Massen- prozente 38,79	Massenprozente unter Berücksichtigung des LOI 44,75	Massenprozent in der vorhandenen Schmelztablette 0,78	Umrec Reineler Al	chnung auf nente [ppm]
Haupt- elemente Al2O3 CaO	Massen- prozente 38,79 0,11	Massenprozente unter Berücksichtigung des LOI 44,75 0,13	Massenprozent in der vorhandenen Schmelztablette 0,78 0,00	Umrec Reineler Al Ca	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Haupt- elemente Al2O3 CaO Fe2O3	Massen- prozente 38,79 0,11 0,45	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52	Massenprozent in der vorhandenen Schmelztablette 0,78 0,00 0,01	Umrec Reineler Al Ca Fe	2hnung auf mente [ppm] 4149 16 64
Haupt- elemente Al2O3 CaO Fe2O3 MgO	Massen- prozente 38,79 0,11 0,45 0,15	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17	Massenprozent in der vorhandenen Schmelztablette 0,78 0,00 0,01 0,00	Umrec Reineler Al Ca Fe Mg	chnung auf mente [ppm] <u>4149</u> <u>16</u> <u>64</u> <u>18</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2	Massen- prozente 38,79 0,11 0,45 0,15 43,67	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17 50,38	Massenprozent in der vorhandenen Schmelztablette 0,78 0,00 0,01 0,00 0,88	Umrec Reineler Al Ca Fe Mg Si	chnung auf nente [ppm] <u>4149</u> <u>16</u> <u>64</u> <u>18</u> <u>4126</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O	Massen- prozente 38,79 0,11 0,45 0,15 43,67 0,5	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17 50,38 0,58	Massenprozent in der vorhandenen Schmelztablette 0,78 0,00 0,01 0,00 0,88 0,01	Umrec Reineler Al Ca Fe Mg Si K	chnung auf nente [ppm] <u>4149</u> <u>16</u> <u>64</u> <u>18</u> <u>4126</u> <u>84</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O TiO2	Massen- prozente 38,79 0,11 0,45 0,15 43,67 0,5 1,9	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17 50,38 0,58 2,19	Massenprozent in der vorhandenen Schmelztablette 0,78 0,00 0,01 0,00 0,88 0,01 0,04	Umrec Reineler Al Ca Fe Mg Si K Ti	Enhung auf $\underline{4149}$ $\underline{16}$ $\underline{64}$ $\underline{18}$ $\underline{4126}$ $\underline{84}$ $\underline{230}$
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O TiO2 P2O5	Massen- prozente 38,79 0,11 0,45 0,15 43,67 0,5 1,9 0,36	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17 50,38 0,58 2,19 0,42	Massenprozent in der vorhandenen Schmelztablette 0,78 0,00 0,01 0,00 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01 0,01	Umrec Reineler Al Ca Fe Mg Si K Ti P	

	Р	robe 12			Berechnung für die Natriumbromit-Lösung		
Bestandteil	Masse [g]	Massenprozent					
Flussmittel	9,800	98,00			Die Natriumbromit-Lösung bestand aus 3,03g	, Natriumbromit	
SRM 98a	0,200	2,00			die in 30ml Wasser aufgelöst wurden. Dies er Natriumanteil in der Lösung von	itspricht einem	
Gesamt	10,000	100.00			Nathanianten in der Lösung von		
Vorhand	lene Massen	vor dem Schmelzauf	schluss		0.000101	g/ul	
		Leerer Platinbecher	79 984	g	Dichte von Wasser 0.000998	g/u1	
	Platinbech	er + Pulvermischung	90.02	e g	Gewicht der hinzugefügten Natriumbromit-Lö	ösung	
	Platinbecher	+ Pulvermischung +	<i>y</i> 0,0 <u>2</u>	~	0.2	~	
		Natriumbromit	90,22	g	0,2	g	
		Pulvermischung	10,036	g	Umrechnung des Gewichts der Natriumbromi	t-Lösung auf ul	
	Na	triumbromit-Lösung	0,2	g			
Gesar	ntmenge an v	erwendeten Material	10,236	g	181,984	μl	
Vorhand	ene Massen 1	nach dem Schmelzau	fschluss		Gewicht des hinzugefügten Natriumbromits		
		Schmelztablette	9,724	g	0,018	g	
	Pla	tinbecher + Überrest	80,17	g	Gewicht des hinzugefügten Wassers		
Vorhar	ndene Masse r	nach dem Schmelzen	9,91	g	0,182	g	
Ber	echnung des	Verlusts an Flussmit	ttel				
Verlust an I	Masse durch o	den Schmelzvorgang	0,326	g	Mittels der molaren Masse von Natriumbromit (dies		
Der	Verlust setzt	sich zusammen aus:			Natrium und Bromit) kann die Anzahl der vorhandenen		
		Verlust an Wasser	0,182	g	Natriumbromit-Moleküle berechnet werden.		
Verlust	SRM 97a we	gen Loss on Ignition	0,025	g			
	V	erlust an Flussmittel	0,120	g	Molare Masse von Natrium		
Prozentueller	Anteil des Fl	ussmittels an der Sch	melztablet	tte	22,99	g/mol	
					Molare Masse von Brom		
Das verwendet	e Flussmittel	besteht aus 66% Lithi	umtetrabo	orat	79,9	g/mol	
$(Li_2B_4O_7)$ und	34% Lithium	metaborat (LiBO ₂). A	ufgrund de	er	Die Avogadro-Konstante beträgt		
Vermischung r	nit den ander	en Elementen ergibt si	ich deren		6,022E+23	mol^{-1}	
prozentueller A	Anteil an der S	Schmelztablette zu:			Anzahl der Natriumbromit-Moleküle		
					1,076E+20		
Prozentu	eller Anteil v	on Lithiumtetraborat	64,47	%	Berechnung der Masse der Natriumatome		
Prozentue	eller Anteil vo	on Lithiummetaborat	33,21	%	0,004	g	
	Ator	mmasse von Lithium	6,94	u	Berechnung der Masse der Bromatome		
		Atommasse von Bor	10,81	u	0,014	g	
	Atomr	nasse von Sauerstoff	16	u	Prozentueller Anteil von Natrium		
	Prozentuelle	r Anteil von Lithium	<u>9,924</u>	%	<u>414</u>	ppm	
	Prozentu	eller Anteil von Bor	<u>23,701</u>	%	Prozentueller Anteil von Brom		
P	rozentueller A	Anteil von Sauerstoff	<u>64,059</u>	%	<u>1440</u>	ppm	
Vorhande	nen Elementl	konzentrationen für	SRM 98a				

Laut dem Datenblatt von SRM 98a (siehe Anhang H) weist das Standardmaterial einen Glühverlust (LOI) von 13,32% auf. Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt werden, dass das Schmelztablette nur zu einem kleinen Teil aus SRM 98a und zum Größtenteils aus Flussmittel besteht. Weiters müssen in dem Datenblatt angegeben Konzentrationen der vorhandenen Oxidverbindungen auf die einzelnen Elemente umgerechnet werden.

Anteil von SRM 98 a an der Gesamtmasse0,018Loss on Ignition von SRM 98a12,44 %

Haupt- elemente	Atommasse [u]				
Al	26,98				
Ca	40,08				
Fe	55,85				
Mg	24,3				
Si	28,09				
Κ	39,09				
Ti	47,87				
Р	30,97				
0	16				
0	10				
Haupt- elemente	Massen- prozente	Massenprozente unter Berücksichtigung des LOI	Massenprozent in der vorhandenen Schmelztablette	Umrec Reineler	chnung auf nente [ppm]
Haupt- elemente Al2O3	Massen- prozente 33,19	Massenprozente unter Berücksichtigung des LOI 37,91	Massenprozent in der vorhandenen Schmelztablette 0,67	Umrec Reineler Al	chnung auf nente [ppm]
Haupt- elemente Al2O3 CaO	Massen- prozente 33,19 0,31	Massenprozente unter Berücksichtigung des LOI 37,91 0,35	Massenprozent in der vorhandenen Schmelztablette 0,67 0,01	Umrec Reineler Al Ca	2hnung auf nente [ppm] <u>3545</u> <u>45</u>
Haupt- elemente Al2O3 CaO Fe2O3	Massen- prozente 33,19 0,31 1,34	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53	Massenprozent in der vorhandenen Schmelztablette 0,67 0,01 0,03	Umrec Reineler Al Ca Fe	2hnung auf nente [ppm] <u>3545</u> <u>45</u> <u>189</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO	Massen-prozente 33,19 0,31 1,34 0,42	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48	Massenprozent in der vorhandenen Schmelztablette 0,67 0,01 0,03 0,01	Umrec Reineler Al Ca Fe Mg	Chnung auf nente [ppm] 3545 45 189 51
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2	Massen- prozente 33,19 0,31 1,34 0,42 48,94	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48 55,89	Massenprozent in der vorhandenen Schmelztablette 0,67 0,01 0,03 0,01 0,01 0,99	Umrec Reineler Al Ca Fe Mg Si	chnung auf nente [ppm] 3545 45 189 51 4617
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O	Massen-prozente 33,19 0,31 1,34 0,42 48,94 1,04	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48 55,89 1,19	Massenprozent in der vorhandenen Schmelztablette 0,67 0,01 0,03 0,01 0,99 0,02	Umred Reineler Al Ca Fe Mg Si K	Chnung auf nente [ppm] 3545 45 189 51 4617 174
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O TiO2	Massen- prozente 33,19 0,31 1,34 0,42 48,94 1,04 1,61	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48 55,89 1,19 1,84	Massenprozent in der vorhandenen Schmelztablette 0,67 0,01 0,03 0,01 0,99 0,02 0,03	Umred Reineler Al Ca Fe Mg Si K Ti	Chnung auf nente [ppm] 3545 45 189 51 4617 174 195
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O TiO2 P2O5	Massen- prozente 33,19 0,31 1,34 0,42 48,94 1,04 1,61 0,11	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48 55,89 1,19 1,84 0,13	Massenprozent in der vorhandenen Schmelztablette 0,67 0,01 0,03 0,01 0,99 0,02 0,03 0,03	Umrec Reineler Al Ca Fe Mg Si K Ti P	

Probe 13				Berechnung für die Natriumbromit-Lösung			
Bestandteil	Masse [g]	Massenprozent					
Flussmittel	9,900	99,00			Die Natriumbromit-Lösung bestand aus 3,03g	yuundan Dias	
A12O3	0,050	0,50			entspricht einem Natriumanteil in der Lösung	von	
CaCO3	0,050	0,50			B		
Gesamt	10,000	100,00			0,000101	g/µl	
Vorhand	ene Massen v	or dem Schmelzaufs	chluss		Dichte von Wasser 0,000998	g/µl	
Leerer Platinbecher 79,981 g			g	Gewicht der hinzugefügten Natriumbromit-Lö	ösung		
	Platinbech	er + Pulvermischung	89,963	g	0,213	g	
Platinbecher + Pulvermischung + Natriumbromit 90,176			90,176	g	Umrechnung des Gewichts der Natriumbromi	t-Lösung auf	
		Pulvermischung	9,982	g	μl		
	Na	atriumbromit-Lösung	0,213	g	193,813	μl	
Gesa	imtmenge an v	verwendeten Material	10,195	g	Gewicht des hinzugefügten Natriumbromits		
Vorhand	ene Massen n	ach dem Schmelzauf	schluss		0,020	g	
		Schmelztablette	9,5507	g	Gewicht des hinzugefügten Wassers		
	Pla	atinbecher + Überrest	80,273	g	0,193	g	
Vorhandene Masse nach dem Schmelzen 9,8424 g		g					
Bere	echnung des V	Verlusts an Flussmitt	el		Mittels der molaren Masse von Natriumbromit (dies entspricht der Summe der relativen Atommassen von Natrium und Bromit) kann die Anzahl der vorhandenen		
Verlust an	Masse durch	den Schmelzvorgang	0,3526	g			
De	er Verlust setz	t sich zusammen aus:			Natriumbromit-Moleküle berechnet werden.		
		Verlust an Wasser	0,193	g			
	V	Verlust an Flussmittel	0,159	g	Molare Masse von Natrium		
Prozentueller	Anteil des Flu	ıssmittels an der Schn	nelztablet	te	22,99	g/mol	
					Molare Masse von Brom		
Das verwendete	e Flussmittel b	esteht aus 66% Lithiu	mtetrabor	at	79,9	g/mol	
$(Li_2B_4O_7)$ und 3	34% Lithiumn	netaborat (LiBO ₂). Aut	fgrund der	r	Die Avogadro-Konstante beträgt		
Vermischung n	nit den anderen	n Elementen ergibt sic	h deren		6,022E+23	mol^{-1}	
prozentueller A	inteil an der So	chmelztablette zu:			Anzahl der Natriumbromit-Moleküle		
					1,146E+20		
Prozent	ueller Anteil v	on Lithiumtetraborat	65,32	%	Berechnung der Masse der Natriumatome		
Prozentu	ueller Anteil v	on Lithiummetaborat	33,65	%	0,004	g	
	Ato	mmasse von Lithium	6,94	u	Berechnung der Masse der Bromatome		
		Atommasse von Bor	10,81	u	0,015	g	
	Atom	masse von Sauerstoff	16	u	Prozentueller Anteil von Natrium		
	Prozentuelle	er Anteil von Lithium	<u>10,055</u>	%	<u>444</u>	ppm	
	Prozent	ueller Anteil von Bor	<u>24,012</u>	%	Prozentueller Anteil von Brom		
]	Prozentueller .	Anteil von Sauerstoff	<u>64,901</u>	%	<u>1544</u>	ppm	

Fortsetzung	der	Berechnung	für	Probe	13

Berechnung für Al ₂ O ₃	Berechnung für CaCO ₃
Molare Masse von Aluminium	Pai ainer Temperatur über 600°C zerlegt sich
26,98 g/mol	Kalziumkarbonat in folgende Komponenten:
Molare Masse von Sauerstoff	$CaCO_3 = >CaO + CO_2$
16 g/mol	
Die Avogadro-Konstante beträgt	Mittels der molaren Masse von Kalziumkarbonat
6,022E+23 mol ⁻¹	(dies entspricht der Summe der relativen Atommassen von Kalzium Kohlenstoff und
Anzahl der Al ₂ O ₃ Moleküle	Sauerstoff kann die Anzahl der vorhandenen
2,953E+20 Moleküle	Natriumbromit-Moleküle berechnet werden.
Berechnung der Masse der Aluminiumatome	
0.026	Molare Masse von
0,026 g Berechnung der Masse der Sauerstoffatome	Kohlenstoff
	Molare Masse von Sauerstoff
Prozentueller Anteil von Aluminium	16 g/mol
2689 ppm	Molare Masse von Kalzium
Prozentueller Anteil von Sauerstoff	40,08 g/mol
<u>2392</u> ppm	Die Avogadro-Konstante beträgt
	6,022E+23 mol ⁻¹
	Anzahl der CaCO ₃ Moleküle
	3,014E+20 Moleküle
	Berechnung der Masse der CaO Atome
	0,028 g
	Das gebildete Kohlenstffdioxid geht während des Schmelzvorgangs verloren. Dies entspricht einer Masse von
	0,022 g
	Berechnung der Masse der Kalziumatome
	0,020 g
	Berechnung der Masse der Sauerstoffatome
	0,008 g
	Prozentueller Anteil von Kalzium
	$\frac{2038}{2} \text{ ppm}$
	Prozentueller Antell von Sauerstoff
	<u>814</u> ppm

Probe 14				Berechnung für die Natriumbromit-	·Lösung	
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	9,900	98,86		Die Natriumbromit-Lösung bestand aus 3,03g	, 	
A12O3	0,050	0,50		Natriumbromit die in 30ml Wasser aufgelost	wurden. Dies	
(NH ₄)H ₂ PO ₄	0,064	0,64		ensprient entern Paulanten in der Losang	von	
Gesamt	10,014	100,00		0,000101	g/µl	
Vorhand	lene Massen v	vor dem Schmelzaufs	chluss	Dichte von Wasser 0,000998	g/µl	
		Leerer Platinbecher	79,983 g	Gewicht der hinzugefügten Natriumbromit-Lö	ösung	
	Platinbech	er + Pulvermischung	89,973 g	0,215	g	
Platinbecher + Pulvermischung + Natriumbromit 90,188			90,188 g	Umrechnung des Gewichts der Natriumbromi	t-Lösung auf	
		Pulvermischung	9,99 g	μ1	C	
	N	atriumbromit-Lösung	0,215 g	195,632	μl	
Gesa	umtmenge an v	verwendeten Material	10,205 g	Gewicht des hinzugefügten Natriumbromits		
Vorhande	ene Massen n	ach dem Schmelzaufs	schluss	0,020	g	
		Schmelztablette	9,5756 g	Gewicht des hinzugefügten Wassers		
	Pla	atinbecher + Überrest	80,252 g	0,195	g	
Vorha	ndene Masse	nach dem Schmelzen	9,8446 g		-	
Bere	echnung des V	Verlusts an Flussmitte	el	Mittels der molaren Masse von Natriumbromit (dies entspricht der Summe der relativen Atommassen von Natrium und Bromit) kann die Anzahl der vorhandenen		
Verlust an	Masse durch	den Schmelzvorgang	0,3604 g			
De	er Verlust setz	t sich zusammen aus:	-	Natriumbromit-Moleküle berechnet werden.	nandenen	
		Verlust an Wasser	0,195 g			
	V	Verlust an Flussmittel	0,165 g	Molare Masse von Natrium		
Prozentueller	Anteil des Flu	ıssmittels an der Schr	nelztablette	22,99	g/mol	
				Molare Masse von Brom		
Das verwendete	e Flussmittel h	esteht aus 66% Lithiu	mtetraborat	79,9	g/mol	
$(Li_2B_4O_7)$ und 3	34% Lithiumn	netaborat (LiBO ₂). Auf	fgrund der	Die Avogadro-Konstante beträgt		
Vermischung m	nit den andere	n Elementen ergibt sic	h deren	6,022E+23	mol^{-1}	
prozentueller A	nteil an der So	chmelztablette zu:		Anzahl der Natriumbromit-Moleküle		
				1,156E+20		
Prozent	ueller Anteil v	on Lithiumtetraborat	65,26 %	Berechnung der Masse der Natriumatome		
Prozentu	ueller Anteil v	on Lithiummetaborat	33,62 %	0,004	g	
	Ato	mmasse von Lithium	6,94 u	Berechnung der Masse der Bromatome		
		Atommasse von Bor	10,81 u	0,015	g	
	Atom	masse von Sauerstoff	16 u	Prozentueller Anteil von Natrium		
	Prozentuelle	er Anteil von Lithium	<u>10,046</u> %	<u>448</u>	ppm	
	Prozent	ueller Anteil von Bor	<u>23,992</u> %	Prozentueller Anteil von Brom		
]	Prozentueller .	Anteil von Sauerstoff	<u>64,847</u> %	<u>1559</u>	ppm	

Berechnung für Al ₂ O ₃	Berechnung für (NH ₄)H ₂ PO ₄
Molare Masse von Aluminium	Ammoniumdihydrogenphospat zersetzt sich ab
Molare Masse von Sauerstoff	Phosphoroxide.
16 g/mol	
Die Avogadro-Konstante beträgt	Mittels der molaren Masse von Kalziumkarbonat
$6,022E+23 \text{ mol}^{-1}$	(dies entspricht der Summe der relativen Atommassen von Kalzium Kohlenstoff und
Anzahl der Al ₂ O ₃ Moleküle	Sauerstoff kann die Anzahl der vorhandenen
2,953E+20 Moleküle	Natriumbromit-Moleküle berechnet werden.
Berechnung der Masse der Aluminiumatome	
	Molare Masse von
0,026 g	Wasserstoff
Berechnung der Masse der Sauerstoffatome	1,01 g/mol
0,024 g	Molare Masse von Stickstoff
Prozentueller Anteil von Aluminium	14,01 g/mol
<u>2688</u> ppm	Molare Masse von Sauerstoff
Prozentueller Anteil von Sauerstoff	16 g/mol
<u>2391</u> ppm	Molare Masse von Phosphor
u	30,97 g/mol
	Massenanteil von Phosphor
	26,92 %
	Berechnung der Masse der Phosphoratome
	0,017 g
	Prozentueller Anteil von Phosphor
	<u>1745</u> ppm

S	chweineknor	pel-Schmelztablette		Berechnung für die Natriumbromit-Lösung		
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	9,901	89,86		Die Natriumbromit-Lösung bestand aus 3,03g		
NaNO ₃	1,016	9,22		Natriumbromit die in 30ml Wasser aufgelöst wurden. Dies entspricht einem Natriumanteil in der Lösung von		
Pigleg	0,101	0,92				
Gesamt	11.018	100		0,000101 g/µ1		
Vorhand	lene Massen v	or dem Schmelzaufs	chluss	Dichte von Wasser 0,000998 g/µl		
Leerer Platinbecher 79 983			79,983 g	Gewicht der hinzugefügten Natriumbromit-Lösung		
Platinbecher + Pulvermischung			90,991 g	0,214 g		
Platinbecher -	+ Pulvermisch	ung + Natriumbromit	91,205 g	Umrechnung des Gewichts der Natriumbromit-Lösung auf	<u>,</u>	
		Pulvermischung	11,008 g	μ1		
	N	atriumbromit-Lösung	0,214 g	194,722 µl		
Gesa	amtmenge an v	verwendeten Material	11,222 g	Gewicht des hinzugefügten Natriumbromits		
Vorhand	ene Massen n	ach dem Schmelzaufs	schluss	0,020 g		
		Schmelztablette	9,698 g	Gewicht des hinzugefügten Wassers		
Platinbecher + Überrest 80			80,446 g	0,194 g		
Vorha	andene Masse	nach dem Schmelzen	10,161 g			
Bere	echnung des V	Verlusts an Flussmitt	el	Mittels der molaren Masse von Natriumbromit (dies entspricht der Summe der relativen Atommassen von Natrium und Bromit) kann die Anzahl der vorhandenen		
Verlust an	Masse durch	den Schmelzvorgang	1,061 g			
De	er Verlust setz	t sich zusammen aus:		Natriumbromit-Moleküle berechnet werden.		
	Verlus	t des Oxidiermaterial	0,646 g			
		Verlust an Wasser	0,194 g	Molare Masse von Natrium		
	V	/erlust an Flussmittel	0,221 g	22,99 g/mol		
Prozentueller	Anteil des Flu	issmittels an der Schm	nelztablette	Molare Masse von Brom		
				79,9 g/mol		
Das verwendet	e Flussmittel b	esteht aus 66% Lithiu	mtetraborat	Die Avogadro-Konstante beträgt		
$(Li_2B_4O_7)$ und 3	34% Lithiumn	netaborat (LiBO ₂). Aut	fgrund der	$6,022E+23 \text{ mol}^{-1}$		
Vermischung n	nit den andere	n Elementen ergibt sic	h deren	Anzahl der Natriumbromit-Moleküle		
prozentueller A	Inteil an der So	chmelztablette zu:		1,151E+20		
				Berechnung der Masse der Natriumatome		
Prozent	ueller Anteil v	on Lithiumtetraborat	62,88 %	0,004 g		
Prozent	ueller Anteil v	on Lithiummetaborat	31,95 %	Berechnung der Masse der Bromatome		
	Ato	mmasse von Lithium	6,94 u	0,015 g		
		Atommasse von Bor	10,81 u	Prozentueller Anteil von Natrium		
	Atom	masse von Sauerstoff	16 u	<u>432</u> ppm		
	Prozentuelle	er Anteil von Lithium	<u>9,618</u> %	Prozentueller Anteil von Brom		
	Prozent	ueller Anteil von Bor	<u>23,019</u> %	<u>1503</u> ppm		
]	Prozentueller .	Anteil von Sauerstoff	<u>62,193</u> %			

Berechnung für den Oxidiermaterial

Ab einer Temperatur über 800°C zerlegt sich Natriumnitrat in folgende Komponenten: $4NaNO_3 => 2Na_2O+2N_2+5O_2$

Mittels der molaren Masse von Natriumnitrat (dies entspricht der Summe der relativen Atommassen von Stickstoff, Sauerstoff und Natrium) kann die Anzahl der vorhandenen Natriumbromit-Moleküle berechnet werden.

Molare Masse von Stickstoff

14,01 g/mol Molare Masse von Sauerstoff

Molare Masse von Natrium

22,99 g/mol

16 g/mol

Die Avogadro-Konstante beträgt

6,022E+23 mol⁻¹

Anzahl der Natriumbromit-Moleküle 7,198E+21 Moleküle

Dies entspricht einer Anzahl an 4NaNO₃ Molekülen von

1,8E+21 Moleküle

Ab einer Temperatur von 800°C sind somit

1,7995E+21 2Na₂O, $2N_2$ und $5O_2$ Teilchen vorhanden.

Berechnung der Masse der 2Na2O Atome

0,370 g Berechnung der Masse der 2N2 Atome 0,167 g Berechnung der Masse der 5O2 Atome 0,478 g

Der Stickstoff und der Sauerstoff gehen

während des Schmelzvorgangs verloren. Dies entspricht einer Masse von

0,646 g Berechnung der Masse der Natriumatome

0,275 g Berechnung der Masse der Sauerstoffatome 0,096 g Prozentueller Anteil von Natrium <u>27044</u> ppm Prozentueller Anteil von Sauerstoff

<u>9411</u> ppm

Anhang F2: Berechnung der Schmelztabletten für ein Mischverhältnis von 1:5

]	Probe 1			Berechnung für die Natriumbromit-	Lösung
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	7,127	100,00			Die Natriumbromit-Lösung bestand aus 3,03g	Natriumbromit
Soil 7	1,781	24,99			die in 30ml Wasser aufgelöst wurden. Dies en Natriumanteil in der Lösung von	tspricht einem
Gesamt	7,127	100			Nathumanen in der Lösung von	
Vorhandene Massen vor dem Schmelzaufschluss			fschluss		0,000101	g/µl
		Leerer Platinbecher	79,980	g	Dichte von Wasser 0,000998	g/µl
	Platinbech	er + Pulvermischung	88.880	g	Gewicht der hinzugefügten Natriumbromit-Lö	bsung
Platinbecher +	Pulvermisch	ung +Natriumbromit	89,092	g	0,212	g
		Pulvermischung	8,9003	g		
	Na	triumbromit-Lösung	0,212	g	Umrechnung des Gewichts der Natriumbromit	t-Losung auf µl
Gesar	ntmenge an v	erwendeten Material	9,1123	g	192,903	μl
Vorhand	ene Massen i	nach dem Schmelzau	ifschluss	-	Gewicht des hinzugefügten Natriumbromits	
		Schmelztablette	8,580	g	0,019	g
	Pla	tinbecher + Überrest	80,212	g	Gewicht des hinzugefügten Wassers	-
Vorhar	ndene Masse r	nach dem Schmelzen	8,8118	g	0,193	g
Ber	echnung des	Verlusts an Flussmit	ttel		Ϊ	
Verlust an	Masse durch o	len Schmelzvorgang	0,3005	g	Mittels der molaren Masse von Natriumbromi	t (dies
Der	· Verlust setzt	sich zusammen aus:		C	entspricht der Summe der relativen Atommass	sen von
		Verlust an Wasser	0,193	g	Natrium und Bromit) kann die Anzani der vor Natriumbromit-Moleküle berechnet werden	nandenen
	V	erlust an Flussmittel	0,108	g	Nutrumbronint Wolekule bereemiet werden.	
Prozentueller	· Anteil des Fl	ussmittels an der Sch	melztable	ette	Molare Masse von Natrium	
					22,99	g/mol
Das verwendet	e Flussmittel	besteht aus 66% Lith	iumtetrah	orat	Molare Masse von Brom	-
(Li2B4O7) und	d 34% Lithiur	nmetaborat (LiBO2).	Aufgrund	l der	79,9	g/mol
Vermischung	nit den andere	en Elementen ergibt s	ich deren		Die Avogadro-Konstante beträgt	
prozentueller A	Anteil an der S	Schmelztablette zu:			6,022E+23	mol ⁻¹
					Anzahl der Natriumbromit-Moleküle	
Prozentu	eller Anteil v	on Lithiumtetraborat	52,57	%	1,14E+20	
Prozentu	eller Anteil v	on Lithiumtetraborat	27,08	%	Berechnung der Masse der Natriumatome	
	Ator	nmasse von Lithium	6,94	u	0,004	g
		Atommasse von Bor	10,81	u	Berechnung der Masse der Bromatome	
	Atomr	nasse von Sauerstoff	16	u	0,015	g
	Prozentuelle	r Anteil von Lithium	<u>8,093</u>	%	Prozentueller Anteil von Natrium	
	Prozentu	eller Anteil von Bor	<u>19,326</u>	%	<u>494</u>	ppm
P	rozentueller A	Anteil von Sauerstoff	<u>52,236</u>	%	Prozentueller Anteil von Brom	
Vorhand	lenen Elemei	ntkonzentrationen fü	ir Soil 7		<u>1717</u>	ppm

Laut dem Datenblatt von Soil 7 (siehe Anhang H) weist das Standardmaterial einen Glühverlust (LOI) von 20,5 % auf. Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt werden, dass das Schmelztablette nur zu einem geringen Teil aus Soil 7 und zum Größtenteils aus Flussmittel besteht.

Anteil von Soil 7 an der Gesamtmasse0,202Loss on Ignition von Soil 720,5 %

Vorhandene Elemente	Massen- prozent [ppm]	Massenprozente unter Berücksichtigung des LOI [ppm]	Massenprozent in der vorhandenen Schmelztablette [ppm]
Mg	11300	14214	<u>2873</u>
Ca	163000	205031	<u>41440</u>
Al	47000	59119	<u>11949</u>
K	12100	15220	<u>3076</u>
Ti	3000	3774	<u>763</u>
Si	180000	226415	<u>45762</u>
Fe	25700	32327	<u>6534</u>
Р	460	579	<u>117</u>
V	59	74	<u>15</u>
Cr	60	75	<u>15</u>
Mn	631	794	<u>160</u>
Со	8,9	11	<u>2</u>
Ni	26	33	<u>7</u>
Cu	11	14	<u>3</u>
Zn	104	131	<u>26</u>
As	13,4	17	<u>3</u>
Se	0,4	1	$\underline{0}$
Sr	108	136	<u>27</u>
Y	21	26	<u>5</u>
S	1200	1509	<u>305</u>
Pb	60	75	<u>15</u>
Rb	51	64	<u>13</u>

Fortsetzung der Berechnung für Probe 1

Probe 2			Berechnung für die Natriumbromit-Lösung		
Bestandteil Masse [g] Massenprozent					
Flussmittel 8,000 100,00			Die Natriumbromit-Lösung bestand aus 3,03g	Natriumbromit	
SRM 1646 2,085 26,06			die in 30ml Wasser aufgelost wurden. Dies en Natriumanteil in der Lösung von	tspricht einem	
Gesamt 8,000 100			radiumanten in der Zobung von		
Vorhandene Massen vor dem Schmelza	ifschluss		0,000101	g/µl	
Leerer Platinbeche		σ	Dichte von 0.000998	g/u1	
	79,979	5	Wasser	<i>g</i> /μ1	
Platinbecher + Pulvermischung	90,037	g	Gewicht der hinzugefügten Natriumbromit-Lö	sung	
Platinbecher + Pulvermischung +Natriumbromit	90,253	g	0,216	g	
Pulvermischung	10,058	g	Umrechnung des Gewichts der Natriumbromit	-Lösung auf µl	
Natriumbromit-Lösung	0,216	g			
Gesamtmenge an verwendeten Material	10,274	g	196,542	μl	
Vorhandene Massen nach dem Schmelza	ufschluss		Gewicht des hinzugefügten Natriumbromits		
Schmelztablette	9,8638	g	0,020	g	
Platinbecher + Überrest	80,089	g	Gewicht des hinzugefügten Wassers		
Vorhandene Masse nach dem Schmelzen	9,973	g	0,196	g	
Berechnung des Verlusts an Flussm	ittel				
Verlust an Masse durch den Schmelzvorgang	0,3006	g	Mittels der molaren Masse von Natriumbromit (dies entspricht der Summe der relativen Atommassen von		
Der Verlust setzt sich zusammen aus		-			
Verlust an Wasser	0,196	g	Natriumbromit-Moleküle berechnet werden.		
Verlust an Flussmittel	0,104	g	Wallfulliofolint-Wolckule bereelinet werden.		
Prozentueller Anteil des Flussmittels an der Sc	hmelztable	ette	Molare Masse von Natrium		
			22,99	g/mol	
Dec very undet a Elucamittal hastaht aus 660° Lit		anot	Molare Masse von Brom	C	
(Li2B4O7) und 34% Lithiummetaborat (LiBO2)	Auforund	der	79.9	g/mol	
Vermischung mit den anderen Elementen ergibt	sich deren	uer	Die Avogadro-Konstante beträgt	8	
prozentueller Anteil an der Schmelztablette zu:			6.022E+23	mol ⁻¹	
			Anzahl der Natriumbromit-Moleküle		
Prozentueller Anteil von Lithiumtetraborat	52,25	%	1,162E+20		
Prozentueller Anteil von Lithiummetaborat	26,92	%	Berechnung der Masse der Natriumatome		
Atommasse von Lithium	6,94	u	0,004	g	
Atommasse von Bor	10,81	u	Berechnung der Masse der Bromatome		
Atommasse von Sauerstoff	16	u	0,015	g	
Prozentueller Anteil von Lithium	<u>8,043</u>	%	Prozentueller Anteil von Natrium		
Prozentueller Anteil von Bor	19,208	%	445	ppm	
Prozentueller Anteil von Sauerstoff	<u>51,918</u>	%	Prozentueller Anteil von Brom		
Vorhandenen Elementkonzentrationen für	SRM 164	6	<u>1546</u>	ppm	

Das Standardmaterial SRM 1646 weist einen Glühverlust (LOI) von 9,37 % auf (siehe Anhang H). Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt werden, dass das Schmelztablette nur zu einem geringen Teil aus SRM 1646 und zum Größtenteils aus Flussmittel besteht.

Anteil von SRM 1646 an der Gesamtmasse	0,209	
Loss on Ignition von SRM 1646	9,37	%

Vorhandene Elemente	Massen- prozent [ppm]	Massenprozente unter Berücksichtigung des LOI [ppm]	Massenprozent in der vorhandenen Schmelztablette [ppm]		
Al	62500	68962	<u>14417</u>		
Ca	8300	9158	<u>1915</u>		
Fe	33500	36963	<u>7728</u>		
Mg	10900	12027	<u>2514</u>		
Р	540	596	<u>125</u>		
Si	310000	342050	<u>71511</u>		
S	9600	10593	<u>2215</u>		
К	14000	15447	<u>3230</u>		
Ti	5100	5627	<u>1176</u>		
Р	540	596	<u>125</u>		
V	94	104	<u>22</u>		
Cr	76	84	<u>18</u>		
Mn	375	414	<u>87</u>		
Со	10,5	12	<u>2</u>		
Ni	32	35	<u>7</u>		
Cu	18	20	<u>4</u>		
Zn	138	152	<u>32</u>		
As	11,6	13	<u>3</u>		
Se	0,6	1	<u>0</u>		
Pb	28,2	31	<u>1</u>		
Rb	87	96	<u>20</u>		
Probe 3			Berechnung für die Natriumbromit-Lösung		
---	---------------	-------	---	-------------------	--
Bestandteil Masse [g] Massenprozent					
Flussmittel 7,859 100,00			Die Natriumbromit-Lösung bestand aus 3,03g	Natriumbromit	
PTXRFIAEA0			die in 30ml Wasser aufgelöst wurden. Dies en	tspricht einem	
4 1,962 24,96			Natriumanteil in der Lösung von		
Gesamt 7,859 100					
Vorhandene Massen vor dem Schmelzaufs	chluss		0,000101	g/µl	
Leerer Platinbecher	79,979	g	Dichte von Wasser 0,000998	g/µl	
Platinbecher + Pulvermischung	89,784	g	Gewicht der hinzugefügten Natriumbromit-Lö	sung	
Platinbecher + Pulvermischung +Natriumbromit	89,998	g	0,214	g	
Pulvermischung	9,8046	g	Umrechnung des Gewichts der Natriumbromit	-Lösung auf ul	
Natriumbromit-Lösung	0,214	g		Looung un p-	
Gesamtmenge an verwendeten Material	10,019	g	194,722	μl	
Vorhandene Massen nach dem Schmelzauf	schluss		Gewicht des hinzugefügten Natriumbromits		
Schmelztablette	9,582	g	0,020	g	
Platinbecher + Überrest	80,109	g	Gewicht des hinzugefügten Wassers		
Vorhandene Masse nach dem Schmelzen	9,7112	g	0,194	g	
Berechnung des Verlusts an Flussmitt	el				
Verlust an Masse durch den Schmelzvorgang	0,3074	g	Mittels der molaren Masse von Natriumbromit	t (dies	
Der Verlust setzt sich zusammen aus:			Natrium und Bromit) kann die Anzahl der vorhandenen		
Verlust an Wasser	0,194	g	Natriumbromit-Moleküle berechnet werden.	landenen	
Verlust an Flussmittel	0,113	g			
Prozentueller Anteil des Flussmittels an Schmelztablette	der		Molare Masse von Natrium		
			22,99	g/mol	
Das verwendete Flussmittel besteht aus 66% Lithiu	untetraho	orat	Molare Masse von Brom	C	
(Li2B4O7) und 34% Lithiummetaborat (LiBO2). A	Aufgrund	l der	79,9	g/mol	
Vermischung mit den anderen Elementen ergibt sic	ch deren		Die Avogadro-Konstante beträgt		
prozentueller Anteil an der Schmelztablette zu:			6,022E+23	mol ⁻¹	
			Anzahl der Natriumbromit-Moleküle		
Prozentueller Anteil von Lithiumtetraborat	52,64	%	1,151E+20		
Prozentueller Anteil von Lithiummetaborat	27,12	%	Berechnung der Masse der Natriumatome		
Atommasse von Lithium	6,94	u	0,004	g	
Atommasse von Bor	10,81	u	Berechnung der Masse der Bromatome	-	
Atommasse von Sauerstoff	16	u	0,015	g	
Prozentueller Anteil von Lithium	<u>8,104</u>	%	Prozentueller Anteil von Natrium		
Prozentueller Anteil von Bor	<u>19,352</u>	%	<u>453</u>	ppm	
Prozentueller Anteil von Sauerstoff	<u>52,307</u>	%	Prozentueller Anteil von Brom		
Vorhandenen Elementkonzentrationen für PTX	RFIAE	A04	<u>1573</u>	ppm	

Das Standardmaterial PTXRFIAEA04 weist einen Glühverlust (LOI) von 14,47 % auf. Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt werden, dass das Schmelztablette nur zu einem geringen Teil aus PTCRFIAEA04 und zum Größtenteils aus Flussmittel besteht.

Anteil von PTXRFIAEA04 an der Gesamtmasse0,202Loss on Ignition von PTXRFIAEA0414,47 %

Vorhandene Elemente	Massen- prozent [ppm]	Massenprozente unter Berücksichtigung des LOI [ppm]	Massenprozent in der vorhandenen Schmelztablette [ppm]
Al	111000	129779	<u>26216</u>
Ca	2070	2420	<u>489</u>
Fe	47900	56004	<u>11313</u>
Mg	8240	9634	<u>1946</u>
K	19600	22916	<u>4629</u>
Si	250000	292295	<u>59045</u>
Ti	5570	6512	<u>1316</u>
Р	448	524	<u>106</u>
V	140	164	<u>33</u>
Cr	90,7	106	<u>21</u>
Mn	193	226	<u>46</u>
Со	10	12	<u>2</u>
Ni	27,2	32	<u>6</u>
Cu	21,7	25	<u>5</u>
Zn	177	207	<u>42</u>
As	16,4	19	<u>4</u>
Sr	109	127	<u>26</u>
Y	27,9	33	<u><u>7</u></u>
Pb	29,6	35	<u>1</u>
S	613	717	<u>145</u>
Rb	137	160	<u>32</u>

	Pi	obe 4			Berechnung für die Natriumbromit-	Lösung	
Bestandteil	Masse [g]	Massenprozent					
Flussmittel	9,702	100,00			Die Natriumbromit-Lösung bestand aus 3,03g		
PTXRFIAEA1					Natriumbromit die in 30ml Wasser aufgelöst	wurden. Dies	
2	0,371	3,82			entspricht einem Natriumanteil in der Lösung	von	
Gesamt	9,702	100					
Vorhande	ne Massen v	or dem Schmelzauf	schluss		0,000101	g/µl	
		Leerer Platinbecher	79,985	g	Dichte von Wasser 0,000998	g/µl	
	Platinbeche	r + Pulvermischung	90,057	g	Gewicht der hinzugefügten Natriumbromit-Lö	ösung	
Platinbecher + I	Pulvermischu	ng +Natriumbromit	90,271	g	0,214	g	
		Pulvermischung	10,073	g	Umrachnung das Gawichts der Netriumbrami	t Lögung ouf ul	
	Nat	riumbromit-Lösung	0,214	g	Onneemung des Gewichts der Naurumbrohn	t-Losung aut µi	
Gesam	tmenge an ve	rwendeten Material	10,287	g	194,722	μl	
Vorhanden	e Massen na	ich dem Schmelzau	fschluss		Gewicht des hinzugefügten Natriumbromits		
		Schmelztablette	9,5623	g	0,020	g	
	Plat	inbecher + Überrest	80,382	g	Gewicht des hinzugefügten Wassers		
Vorhand	lene Masse n	ach dem Schmelzen	9,9596	g	0,194	g	
Berec	hnung des V	erlusts an Flussmit	tel		Mittels der molaren Masse von Natriumbromi	t (dies	
Verlust an M	lasse durch d	en Schmelzvorgang	0,3269	g	entspricht der Summe der relativen Atommass	sen von	
Der	Verlust setzt	sich zusammen aus:			Natrium und Bromit) kann die Anzahl der vorhandenen		
		Verlust an Wasser	0,194	g	Natriumbromit-Moleküle berechnet werden		
	Ve	erlust an Flussmittel	0,133	g			
Prozent	ueller Antei	des Flussmittels ar	ı der		Molare Masse von Natrium		
	Schme	elztablette					
_					22,99	g/mol	
Das verwendete	Flussmittel b	esteht aus 66% Lithi	umtetrabo	rat	Molare Masse von Brom		
(Li2B4O7) und 3	34% Lithium	netaborat (LiBO2).	Aufgrund	der	79,9	g/mol	
Vermischung mi	t den anderer	Elementen ergibt si	ch deren		Die Avogadro-Konstante beträgt	1-1	
prozentueller An	teil an der Sc	hmelztablette zu:			6,022E+23	mol	
D		T 1 1 1 1 1	(2.11	~	Anzahl der Natriumbromit-Moleküle		
Prozentue	ller Anteil vo	n Lithiumtetraborat	63,41	%	1,151E+20		
Prozentuel	ler Anteil vo	n Lithiummetaborat	32,67	%	Berechnung der Masse der Natriumatome		
	Atom	imasse von Lithium	6,94	u	0,004	g	
	A i	Atommasse von Bor	10,81	u	Berechnung der Masse der Bromatome		
	Atomm	asse von Sauerstoff	16	u a	0,015	g	
l 1	Tozentueller	Antell von Lithium	<u>9,762</u>	% ∩	Prozentueller Antell von Natrium		
D	Prozentu	eller Antell von Bor	<u>23,312</u>	% 07	Brogentueller Anteil ver Broge	ppm	
Pro	ozentueller A	nien von Sauerstoff	<u>03,009</u>	%	Prozentueller Antell von Brom		
Vorhandenen E	lementkonz	entrationen für PT2	KFIAEA	112	<u>1533</u>	ppm	

Das Standardmaterial PTXRFIAEA12 weist einen Glühverlust (LOI) von 80,23 % auf. Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt werden, dass das Schmelztablette nur zu einem geringen Teil aus PTCRFIAEA12 und zum Größtenteils aus Flussmittel besteht.

Anteil von PTXRFIAEA12 an der Gesamtmasse0,037Loss on Ignition von PTXRFIAEA1280,23 %

Vorhandene Elemente	Massen- prozent [ppm]	Massenprozente unter Berücksichtigung des LOI [ppm]	Massenprozent in der vorhandenen Schmelztablette [ppm]
Mg	4940	24987	<u>931</u>
Ca	59700	59700	<u>2224</u>
Cl	8520	8520	<u>317</u>
K	47800	47800	<u>1781</u>
Р	4080	4080	<u>152</u>
S	3930	3930	<u>146</u>
V	1,31	1	$\underline{\underline{O}}$
Cr	1,81	2	$\underline{0}$
Mn	83,3	83	<u>3</u>
Со	0,22	0	<u>0</u>
Cu	10,3	10	$\underline{0}$
Zn	107	107	<u>4</u>
As	1,8	2	<u>0</u>
Sr	94,3	94	<u>4</u>

Probe 5			Berechnung für die Natriumbromit-Lösung					
Bestandteil	Masse [g]	Massenprozent						
Flussmittel	8,000	80,00			Die Natriumbromit-Lösung bestand aus 3,03g	Natriumbromit		
SRM 97a	2,000	20,00			die in 30ml Wasser aufgelost wurden. Dies en Natriumanteil in der Lösung von	tspricht einem		
Gesamt	10,000	100,00			r automatich in der Lobang von			
Vorhand	lene Massen	vor dem Schmelzauf	fschluss		0,000101	g/µl		
		Leerer Platinbecher	79,985	g	Dichte von 0,000998 Wasser	g/µl		
	Platinbech	er + Pulvermischung	90,02	g	Gewicht der hinzugefügten Natriumbromit-Lö	isung		
Platinbecher +	Pulvermisch	ung +Natriumbromit	90,22	g	0,2	g		
		Pulvermischung	10,035	g	Umrachnung das Gawichts dar Natriumbrami	t Lösung ouf ul		
	Na	triumbromit-Lösung	0,2	g	Onneemiding des Gewichts der Nathumbrohm	t-Losung aut µf		
Gesar	ntmenge an v	erwendeten Material	10,235	g	181,984	μl		
Vorhand	ene Massen 1	nach dem Schmelzau	fschluss		Gewicht des hinzugefügten Natriumbromits			
		Schmelztablette	9,397	g	0,018	g		
	Pla	tinbecher + Überrest	80,236	g	Gewicht des hinzugefügten Wassers	-		
Vorhar	ndene Masse r	nach dem Schmelzen	9,6476	g	0,182	g		
Ber	echnung des	Verlusts an Flussmit	ttel					
Verlust an	Masse durch o	den Schmelzvorgang	0,587	g	Mittels der molaren Masse von Natriumbromi	t (dies		
Der	Verlust setzt	sich zusammen aus:			Natrium und Bromit) kann die Anzahl der vorhandenen			
		Verlust an Wasser	0,182	g	Natriumbromit-Moleküle berechnet werden.			
Verlust	SRM 97a we	gen Loss on Ignition	0,266	g				
	V	erlust an Flussmittel	0,139	g	Molare Masse von Natrium			
Proze	ntueller Ante	eil des Flussmittels a	n der		22.99	g/mol		
	Schn	nelztablette				8,		
					Molare Masse von Brom	/ 1		
Das verwendet	te Flussmittel	besteht aus 66% Lithi	iumtetrab	orat	/9,9	g/mol		
(Li2B4O7) und	d 34% Lithiur	nmetaborat (LiBO2).	Aufgrund	l der	Die Avogadro-Konstante betragt	1 -1		
prozentueller 4	nn den andere Anteil an der S	en Elementen ergibt si	ich deren		6,022E+23	mol		
prozentuener 7		enneiztaolette zu.			Anzahl der Natriumbromit-Moleküle			
	11 4 . 11	T • • • • • • • • • • •	52 50	~	1,076E+20			
Prozentu	eller Anteil v	on Lithiumtetraborat	53,78	%	Berechnung der Masse der Natriumatome			
Prozentu	eller Anteil vo	on Lithiummetaborat	27,70	%	0,004	g		
	Ator	nmasse von Litnium	0,94	u	Berechnung der Masse der Bromatome			
	Atom	Atominasse von Bor	10,81 1 <i>2</i>	u	0,014	g		
	Atomr.	nasse von Sauerstoff	10 8 270	u 0%		nnm		
	Drozentu	eller Anteil von Bor	<u>0,278</u> 10,760	70 0%	420 Prozentueller Anteil von Brom	рып		
р	rozentueller A	Anteil von Sauerstoff	<u>19,709</u> 53 434	70 %	1470	nnm		
Vorbondo	non Flomort	conzentrationen für	SDM 07.			РЪщ.		
vornande	lien Element	konzentrationen für	SKIVI 9/8	1				

Laut dem Datenblatt von SRM 97a (siehe Anhang H) weist das Standardmaterial einen Glühverlust (LOI) von 13,32% auf. Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt werden, dass das Schmelztablette nur zu einem kleinen Teil aus SRM 97a und zum Größtenteils aus Flussmittel besteht. Weiters müssen in dem Datenblatt angegeben Konzentrationen der vorhandenen Oxidverbindungen auf die einzelnen Elemente umgerechnet werden.

Anteil von SRM 97 a an der Gesamtmasse0,180Loss on Ignition von SRM 97a13,32 %

Haup- telemente	Atommasse [u]				
Al	26,98				
Са	40,08				
Fe	55,85				
Mg	24,3				
Si	28,09				
К	39,09				
Ti	47,87				
Р	30,97				
0	16				
Haupt- elemente	Massen- prozente	Massenprozente unter Berücksichtigung des LOI	Massenprozent in der vorhandenen Schmelztablette	Umrec Reinelen	hnung auf nente [ppm]
Haupt- elemente Al2O3	Massen- prozente 38,79	Massenprozente unter Berücksichtigung des LOI 44,75	Massenprozent in der vorhandenen Schmelztablette 8,04	Umrec Reinelen Al	hnung auf nente [ppm] <u>42557</u>
Haupt- elemente Al2O3 CaO	Massen- prozente 38,79 0,11	Massenprozente unter Berücksichtigung des LOI 44,75 0,13	Massenprozent in der vorhandenen Schmelztablette 8,04 0,02	Umrec Reinelen Al Ca	hnung auf nente [ppm] <u>42557</u> <u>163</u>
Haupt- elemente Al2O3 CaO Fe2O3	Massen- prozente 38,79 0,11 0,45	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52	Massenprozent in der vorhandenen Schmelztablette 8,04 0,02 0,09	Umrec Reinelen Al Ca Fe	hnung auf nente [ppm] <u>42557</u> <u>163</u> <u>652</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO	Massen- prozente 38,79 0,11 0,45 0,15	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17	Massenprozent in der vorhandenen Schmelztablette 8,04 0,02 0,09 0,03	Umrec Reinelen Al Ca Fe Mg	hnung auf nente [ppm] <u>42557</u> <u>163</u> <u>652</u> <u>188</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2	Massen- prozente 38,79 0,11 0,45 0,15 43,67	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17 50,38	Massenprozent in der vorhandenen Schmelztablette 8,04 0,02 0,09 0,03 9,05	Umrec Reinelen Al Ca Fe Mg Si	hnung auf nente [ppm] <u>42557</u> <u>163</u> <u>652</u> <u>188</u> <u>42320</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O	Massen- prozente 38,79 0,11 0,45 0,15 43,67 0,5	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17 50,38 0,58	Massenprozent in der vorhandenen Schmelztablette 8,04 0,02 0,09 0,03 9,05 0,10	Umrec Reinelen Al Ca Fe Mg Si K	hnung auf nente [ppm] <u>42557</u> <u>163</u> <u>652</u> <u>188</u> <u>42320</u> <u>860</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O TiO2	Massen- prozente 38,79 0,11 0,45 0,15 43,67 0,5 1,9	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17 50,38 0,58 2,19	Massenprozent in der vorhandenen Schmelztablette 0,02 0,09 0,03 9,05 0,10 0,39	Umrec Reinelen Al Ca Fe Mg Si Si K Ti	hnung auf nente [ppm] <u>42557</u> <u>163</u> <u>652</u> <u>188</u> <u>42320</u> <u>860</u> <u>2361</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O TiO2 P2O5	Massen- prozente 38,79 0,11 0,45 0,15 43,67 0,5 1,9 0,36	Massenprozente unter Berücksichtigung des LOI 44,75 0,13 0,52 0,17 50,38 0,58 2,19 0,42	Massenprozent in der vorhandenen Schmelztablette 0,02 0,09 0,03 9,05 0,10 0,39 0,07	Umrec Reinelen Al Ca Fe Mg Si Si K Ti P	hnung auf nente [ppm] <u>42557</u> <u>163</u> <u>652</u> <u>188</u> <u>42320</u> <u>860</u> <u>2361</u> <u>326</u>

Probe 6			Berechnung für die Natriumbromit-Lösung			
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	8,000	80,00			Die Natriumbromit-Lösung bestand aus 3,03g	Natriumbromit
SRM 98a	2,000	20,00			die in 30ml Wasser aufgelost wurden. Dies en Natriumanteil in der Lösung von	itspricht einem
Gesamt	10.000	100.00				
Vorhand	lene Massen	vor dem Schmelzauf	schluss		0,000101	g/µl
		Leerer Platinbecher	79,982	g	Dichte von Wasser 0,000998	g/µl
	Platinbech	er + Pulvermischung	90,01	g	Gewicht der hinzugefügten Natriumbromit-Lo	isung
Platinbecher +	Pulvermisch	ung +Natriumbromit	90,31	g	0,3	g
		Pulvermischung	10,028	g	Umasahawa a dag Cawishta dan Natriumhaawi	
	Na	triumbromit-Lösung	0,3	g	Omrechnung des Gewichts der Natriumbromi	t-Losung aut µ1
Gesar	ntmenge an v	erwendeten Material	10,328	g	272,975	μl
Vorhand	ene Massen 1	nach dem Schmelzau	fschluss		Gewicht des hinzugefügten Natriumbromits	
		Schmelztablette	9,384	g	0,028	g
	Pla	tinbecher + Überrest	80,21	g	Gewicht des hinzugefügten Wassers	
Vorhar	ndene Masse r	nach dem Schmelzen	9,612	g	0,272	g
Ber	echnung des	Verlusts an Flussmit	ttel			
Verlust an	Masse durch o	len Schmelzvorgang	0,716	g	Mittels der molaren Masse von Natriumbromi	t (dies
Der	Verlust setzt	sich zusammen aus:			entspricht der Summe der relativen Atommass Natrium und Bromit) kann die Anzahl der vor	sen von handenen
		Verlust an Wasser	0,272	g	Natriumbromit-Moleküle berechnet werden.	nandenen
Verlust	SRM 97a we	gen Loss on Ignition	0,249	g		
	V	erlust an Flussmittel	0,195	g	Molare Masse von Natrium	
Prozentueller	· Anteil des Fl	ussmittels an der Sch	melztable	ette	22,99	g/mol
					Molare Masse von Brom	
Das verwendet	te Flussmittel	besteht aus 66% Lithi	iumtetrab	orat	79,9	g/mol
(Li2B4O7) une	d 34% Lithiur	nmetaborat (LiBO2).	Aufgrund	l der	Die Avogadro-Konstante beträgt	
Vermischung i	nit den ander	en Elementen ergibt s	ich deren		6,022E+23	mol ⁻¹
prozentueller A	Anteil an der S	Schmelztablette zu:			Anzahl der Natriumbromit-Moleküle	
					1,614E+20	
Prozentu	eller Anteil v	on Lithiumtetraborat	53,59	%	Berechnung der Masse der Natriumatome	
Prozentu	eller Anteil vo	on Lithiummetaborat	27,61	%	0,006	g
	Ator	nmasse von Lithium	6,94	u	Berechnung der Masse der Bromatome	
	A .	Atommasse von Bor	10,81	u	0,021	g
	Atomr	nasse von Sauerstoff	16	u a	Prozentueller Anteil von Natrium	
	Prozentuelle	r Anteil von Lithium	<u>8,250</u>	% 01	<u>641</u>	ppm
ח	Prozentuallar /	ener Anten von Bor	<u>19,702</u> 53 251	70 0%	riozentuener Anten von Brom	DD 22
	iozentueller A	Amen von Sauerstoff	<u>33,231</u>	<i></i> %0	<u> </u>	ррш
Vorhande	nen Elementl	konzentrationen für	SRM 98a	a		

Laut dem Datenblatt von SRM 98a (siehe Anhang H) weist das Standardmaterial einen Glühverlust (LOI) von 12,44% auf. Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt werden, dass das Schmelztablette nur zu einem kleinen Teil aus SRM 98a und zum Größtenteils aus Flussmittel besteht. Weiters müssen in dem Datenblatt angegeben Konzentrationen der vorhandenen Oxidverbindungen auf die einzelnen Elemente umgerechnet werden.

Anteil von SRM 98 a an der Gesamtmasse0,182Loss on Ignition von SRM 98a12,44 %

Haup- telemente	Atommasse [u]				
Al	26,98				
Ca	40,08				
Fe	55,85				
Mg	24,3				
Si	28,09				
Κ	39,09				
Ti	47,87				
Р	30,97				
0	16				_
Haupt- elemente	Massen- prozente	Massenprozente unter Berücksichtigung des LOI	Massenprozent in der vorhandenen Schmelztablette	Umrec Reineler	hnung auf nente [ppm]
Haupt- elemente Al2O3	Massen- prozente 33,19	Massenprozente unter Berücksichtigung des LOI 37,91	Massenprozent in der vorhandenen Schmelztablette 6,91	Umrec Reineler Al	hnung auf nente [ppm]
Haupt- elemente Al2O3 CaO	Massen- prozente 33,19 0,31	Massenprozente unter Berücksichtigung des LOI 37,91 0,35	Massenprozent in der vorhandenen Schmelztablette 6,91 0,06	Umrec Reineler Al Ca	hnung auf nente [ppm] <u>36548</u> <u>461</u>
Haupt- elemente Al2O3 CaO Fe2O3	Massen- prozente 33,19 0,31 1,34	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53	Massenprozent in der vorhandenen Schmelztablette 6,91 0,06 0,28	Umrec Reineler Al Ca Fe	hnung auf nente [ppm] <u>36548</u> <u>461</u> <u>1950</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO	Massen- prozente 33,19 0,31 1,34 0,42	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48	Massenprozent in der vorhandenen Schmelztablette 6,91 0,06 0,28 0,09	Umrec Reineler Al Ca Fe Mg	Shnung auf nente [ppm] 36548 461 1950 527
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2	Massen- prozente 33,19 0,31 1,34 0,42 48,94	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48 55,89	Massenprozent in der vorhandenen Schmelztablette 6,91 0,06 0,28 0,09 10,18	Umrec Reineler Al Ca Fe Mg Si	hnung auf nente [ppm] 36548 461 1950 527 47602
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O	Massen- prozente 33,19 0,31 1,34 0,42 48,94 1,04	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48 555,89 1,19	Massenprozent in der vorhandenen Schmelztablette 6,91 0,06 0,28 0,09 10,18 0,22	Umrec Reineler Al Ca Fe Mg Si K	hnung auf nente [ppm] <u>36548</u> <u>461</u> <u>1950</u> <u>527</u> <u>47602</u> <u>1796</u>
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O TiO2	Massen- prozente 33,19 0,31 1,34 0,42 48,94 1,04 1,61	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48 55,89 1,19 1,84	Massenprozent in der vorhandenen Schmelztablette 6,91 0,06 0,28 0,09 10,18 0,22 0,33	Umrec Reineler Al Ca Fe Mg Si K Ti	Behnung auf nente [ppm] 36548 461 1950 527 47602 1796 2008
Haupt- elemente Al2O3 CaO Fe2O3 MgO SiO2 K2O TiO2 P2O5	Massen- prozente 33,19 0,31 1,34 0,42 48,94 1,04 1,61 0,11	Massenprozente unter Berücksichtigung des LOI 37,91 0,35 1,53 0,48 55,89 1,19 1,84 0,13	Massenprozent in der vorhandenen Schmelztablette 6,91 0,06 0,28 0,09 10,18 0,22 0,33 0,02	Umrec Reineler Al Ca Fe Mg Si Si K Ti P	hnung auf nente [ppm] 36548 461 1950 527 47602 1796 2008 100

Probe 7				Berechnung für die Natriumbromit-Lösung		
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	8,000	77,32			Die Natriumbromit-Lösung bestand aus 3,03g	Natriumbromit
SRM 1646	2,303	22,26			Natriumanteil in der Lösung von	ispricht einem
CuO	0,0158	0,15			Tuttulianten in der Losang von	
Ni	0,0177	0,17			0,000101	g/µl
Со	0,0104	0,10			Dichte von Wasser 0,000998	g/µl
Gesamt	10,347	100,00			Gewicht der hinzugefügten Natriumbromit-Lö	isung
Vorhan	dene Massen	vor dem Schmelzau	ıfschluss		0,216	g
		Leerer Platinbecher	79,977	g	Umrachnung das Cawichts dar Natriumhromi	t Lösung ouf ul
	Platinbeche	er + Pulvermischung	90,315	g	Onlieennung des Gewichts der Nathumoronn	t-Losung aut µt
	Platinbeche	er + Pulvermischung	00 521	g	196,542	μl
		+Natriumbromit	90,531	g	Gewicht des hinzugefügten Natriumbromits	
	Nat	triumbromit-Lösung	0.216	g g	0 020	σ
Gesam	ntmenge an ve	erwendeten Material	10 554	e g	Gewicht des hinzugefügten Wassers	5
Vorhand	ene Massen	nach dem Schmelza	ufschlus	<u> </u>	0.196	σ
, or munic		Schmelztablette	9 585	σ	-	8
	Plat	inbecher + Überrest	80.49	Б g	Mittels der molaren Masse von Natriumbromi	t (dies
Vorhan	dene Masse n	ach dem Schmelzen	10.098	g	entspricht der Summe der relativen Atommass	sen von
Berechnung des Verlusts an Flussmittel			0	Natrium und Bromit) kann die Anzahl der vor Natriumbromit-Moleküle berechnet werden.	handenen	
Verlust an M	Aasse durch d	len Schmelzvorgang	0,456	g		
Der	Verlust setzt	sich zusammen aus:			Molare Masse von Natrium	
		Verlust an Wasser	0,196	g	22,99	g/mol
Verlust S	RM 1646 weg	gen Loss on Ignition	0,216	g	Molare Masse von Brom	
	V	erlust an Flussmittel	0,044	g	79,9	g/mol
Prozentueller	· Anteil des F	lussmittels an der Sc	hmelztab	lette	Die Avogadro-Konstante beträgt	
					6,022E+23	mol ⁻¹
Das verwende	te Flussmittel	besteht aus 66% Lith	niumtetra	borat	Anzahl der Natriumbromit-Moleküle	
(Li2B4O7) un	d 34% Lithiu mit dan andar	mmetaborat (LiBO2)	. Aufgrur	nd der	1,162E+20	
prozentueller /	Anteil an der	Schmelztablette zu:		11	Berechnung der Masse der Natriumatome	
r					0,004 Derechnung der Messe der Bromstome	g
Prozentue	aller Anteil vo	n Lithiumtetrahorat	52.00	0%	Derechnung der Wasse der Bromatome	g
Prozentue	ller Anteil vo	n Lithiummetaborat	26 79	%	Prozentueller Anteil von Natrium	5
Tielentue	Aton	nmasse von Lithium	6,94	u	439	ppm
	1	Atommasse von Bor	10,81	u	Prozentueller Anteil von Brom	r r
	Atomn	hasse von Sauerstoff	16	u	<u>1527</u>	ppm
	Prozentueller	Anteil von Lithium	<u>8,005</u>	%		
	Prozentu	eller Anteil von Bor	<u>19,116</u>	%		
Pr	ozentueller A	nteil von Sauerstoff	<u>51,667</u>	%		
Vorh	andenen Ele	ementkonzentration	en für da	s verv	wendete Kupfer, Kobalt und Nickel	
	Prozentuelle	er Anteil von Kupfer	1250	ppm		
	Prozentuelle	er Anteil von Kobalt	<u>1030</u>	ppm		
	Prozentuelle	er Anteil von Nickel	<u>1753</u>	ppm	l	

Vorhandenen Elementkonzentrationen für SRM 1646

Das Standardmaterial SRM 1646 weist einen Glühverlust (LOI) von 9,37 % auf (siehe Anhang H). Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt wereden, dass das Schmelztablette nur zu einem geringen Teil aus SRM 1646 und zum Größtenteils aus Flussmittel besteht.

Anteil von SRM 1646 ar	n der Gesamtmasse	0,207	
Loss on Ignition von SR	M 1646	9,37 %	
Vorhandene Elemente	Massen-prozent [ppm]	Massenprozente unter Berücksichtigung des LOI [ppm]	Massenprozent in der vorhandenen Schmelztablette [ppm]
Al	62500	68962	<u>14254</u>
Ca	8300	9158	<u>1893</u>
Fe	33500	36963	<u>7640</u>
Mg	10900	12027	<u>2486</u>
Р	540	596	<u>123</u>
Si	310000	342050	<u>70700</u>
S	9600	10593	<u>2189</u>
K	14000	15447	<u>3193</u>
Ti	5100	5627	<u>1163</u>
Р	540	596	<u>123</u>
V	94	104	<u>21</u>
Cr	76	84	<u>17</u>
Mn	375	414	<u>86</u>
Со	10,5	12	2
Ni	32	35	<u>7</u>
Cu	18	20	<u>4</u>
Zn	138	152	<u>31</u>
As	11,6	13	<u>3</u>
Se	0,6	1	<u>0</u>
Pb	28,2	31	<u>6</u>
Rb	87	96	20

Probe 8				Berechnung für die Natriumbromit-Lösung		
Bestandteil	Masse [g]	Massenprozent				
Flussmittel	8,000	77,34			Die Natriumbromit-Lösung bestand aus 3,03g	Natriumbromit
SRM 1646	2,306	22,29			Natriumanteil in der Lösung von	ispricht enlem
CuO	0,0107	0,10				
Ni	0,0113	0,11			0,000101	g/µl
Со	0,0161	0,16			Dichte von Wasser 0,000998	g/µl
Gesamt	10,344	100,00			Gewicht der hinzugefügten Natriumbromit-Lö	ösung
Vorhan	dene Massen	vor dem Schmelzau	ıfschluss	5	0,214	g
		Leerer Platinbecher	79,979	g	Umrechnung des Gewichts der Natriumbromi	t-I ösung auf ul
	Platinbeche	er + Pulvermischung	90,311	g	Onneemiung des Gewients der Nathumbronn	t-Losung aut µt
	Platinbeche	er + Pulvermischung	00 525	g	194,722	μl
		Pulvermischung	10 332	g	Gewicht des hinzugefügten Natriumbromits	
	Na	triumbromit-Lösung	0.214	g	0,020	g
Gesan	ntmenge an ve	erwendeten Material	10,546	g	Gewicht des hinzugefügten Wassers	C
Vorhand	lene Massen	nach dem Schmelza	ufschlus	S	0,194	g
		Schmelztablette	9,7179	g		
	Plat	inbecher + Überrest	80,334	g	Mittels der molaren Masse von Natriumbromi	t (dies
Vorhandene Masse nach dem Schmelzen 1			10,073	g	entspricht der Summe der relativen Atommass Natrium und Bromit) kann die Anzahl der vor	sen von handenen
Berechnung des Verlusts an Flussmittel					Natriumbromit-Moleküle berechnet werden.	nandenen
Verlust an M	Masse durch d	len Schmelzvorgang	0,4727	g		
Der	Verlust setzt	sich zusammen aus:			Molare Masse von Natrium	
		Verlust an Wasser	0,194	g	22,99	g/mol
Verlust S	RM 1646 weg	gen Loss on Ignition	0,216	g	Molare Masse von Brom	
D	V	erlust an Flussmittel	0,062	g	79,9	g/mol
Proze	ntueller Ant Schi	nelztablette	an der		Die Avogadro-Konstante beträgt	
					6,022E+23	mol ⁻¹
Das verwende	te Flussmittel	besteht aus 66% Lith	niumtetra	borat	Anzahl der Natriumbromit-Moleküle	
(Li2B4O7) un	d 34% Lithiu	mmetaborat (LiBO2)	. Aufgru	nd der	1,151E+20	
Vermischung	mit den ander	en Elementen ergibt	sich dere	n	Berechnung der Masse der Natriumatome	
prozentueller A	Anteil an der	Schmelztablette zu:			0,004	g
					Berechnung der Masse der Bromatome	
Prozentue	eller Anteil vo	on Lithiumtetraborat	52,01	% ~	0,015	g
Prozentue	eller Anteil vo	n Lithiummetaborat	26,79	%	Prozentueller Anteil von Natrium	
	Aton	Atommasse von Lithium	0,94	u	4.30 Prozentueller Anteil von Brom	ppm
	Atomn	asse von Sauerstoff	10,81	u 11	1516	nnm
	Prozentuallar	Antail yon Lithium	8 006	0%	<u>1310</u>	ppm
	Prozentu	eller Anteil von Bor	<u>0,000</u> 10,110	70 %		
Pr	ozentueller A	nteil von Sauerstoff	<u>17,117</u> 51.677	%		
	Vorhande	enen Elementkonzer	ntratione	en für	das verwendete Kupfer. Kobalt und Nickel	
	Prozentuelle	r Anteil von Kunfer	839	ppm		
	Prozentuelle	er Anteil von Kobalt	1598	ppm		
	Prozentuelle	er Anteil von Nickel	1122	ppm		
					1	

Vorhandenen Elementkonzentrationen für SRM 1646

Das Standardmaterial SRM 1646 weist einen Glühverlust (LOI) von 9,37 % auf (siehe Anhang H). Hierbei handelt es sich um Material, das beim Glühvorgang verloren geht. Durch diesen Verlust an Material müssen die vorhandenen Massenprozente der einzelnen Elementverbindungen neu berechnet werden. Desweitern muss, für eine korrekte Berechnung der Massenprozente der einzelnen Elementverbindungen, berücksichtigt wereden, dass das Schmelztablette nur zu einem geringen Teil aus SRM 1646 und zum Größtenteils aus Flussmittel besteht.

Anteil von SRM 1646 ar	n der Gesamtmasse		
Loss on Ignition von SR	M 1646	9,37 %	
Vorhandene Elemente	Massen-prozent [ppm]	Massenprozente unter Berücksichtigung des LOI [ppm]	Massenprozent in der vorhandenen Schmelztablette [ppm]
Al	62500	68962	<u>14306</u>
Ca	8300	9158	<u>1900</u>
Fe	33500	36963	<u>7668</u>
Mg	10900	12027	<u>2495</u>
Р	540	596	<u>124</u>
Si	310000	342050	<u>70956</u>
S	9600	10593	<u>2197</u>
K	14000	15447	<u>3204</u>
Ti	5100	5627	<u>1167</u>
Р	540	596	<u>124</u>
V	94	104	<u>22</u>
Cr	76	84	<u>17</u>
Mn	375	414	<u>86</u>
Co	10,5	12	<u>2</u>
Ni	32	35	<u>7</u>
Cu	18	20	<u>4</u>
Zn	138	152	<u>32</u>
As	11,6	13	<u>3</u>
Se	0,6	1	<u>0</u>
Pb	28,2	31	<u>6</u>
Rb	87	96	<u>20</u>

Anhang G Sekundärtargets und deren empfohlenen Messparameter

Sekundärtarget	Elemente	empfohlene	empfohlener
Sekundartarget	Liemente	Spannung [kV]	Strom [mA]
Aluminium	Na, Mg	25	24
Kalziumfluorit	Al, Si, P,S, Cl, Ar, K	40	15
Eisen	Ca, Sc, Ti, V, Cr	75	8
Germanium	Mn, Fe, Co, Ni, Cu, Zn + Ta	75	8
Tirkon	Ga, Ge, As, Se, Br, Kr, Rb +	100	6
ZIIKOII	Os, Ir, Pt, Au, Hg, Tl, Pb		
Molubdön	Sr, Y +	100	6
Worybuan	Bi, Po, At, Rn, Fr, Ra, Ac, Th, Pa, U		
Silbor	Zr, Nb, Mo, Tc, Ru +	100	6
511061	Np, Pu		
	Rh Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce,	100	6
Aluminiumoxid	+ Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,		
	Lu		
Ceroxid	keine Empfehlungen vorhanden	100	6

Anhang H Datenblätter der verwendeten Standardmaterialien

Breitländer

EICHPROBEN UND LABORMATERIAL GMBH

BREITLÄNDER GMBH · HANS-SACHS-STRASSE 12 · D-59077 HAMM

HANS-SACHS-STRASSE 12, D-59077 HAMM TELEFON 0 23 81/40 40 00, FAX 0 23 81/40 31 89 e-mail: mail@breitlander.com - www.breitlander.com

Analytical Datasheet For XRF Setting Up Sample

BR PC3

Special Silicate Glass for XRF-Monitoring

Intended Use: This sample has been designed to assess and control the performance of instruments (regulation diagrams) for many commonly analysed elements.

<u>User information</u>: The glass matrix of sample ensures a unique chemical and mechanical stability of the sample surface. Repeated irradiation at routine conditions with glass samples of similar composition over a period of many years have shown no sign of drift. A possible change in colour is due to irradiation and does not affect stability of analytical properties.

<u>Analytical data</u>: The glass sample is of homogeneous composition. The analytical values stated, however should be considered as guiding analytical data. They have been calculated from the batch composition of the glass melt.

<u>Safety notice</u>: This material will not release or otherwise result in exposure to hazardous chemicals under normal working conditions.

<u>Legal notice</u>: There is no warrenty with respect to accuracy or usefulness of material and information supplied and no liability is assumed for its use.

B R EITLÄNDER GmbH Eichproben + Labormaterial Hans-Sachs-Str. 12 D-59077 HAMM

Tel. ..(0)2381 / 40 40 00 Fax ..(0)2381 / 40 31 89

Rolf Breitländer Managing Director

Hamm, Jan. 05

Analytical Datasheet for XRF-Monitor Sample (Setting Up Sample)

BR PC3

approx. Analysis in mass %

Ζ	Constit.	PC3
5	BaOa	10 1
11		70
13		07.1
13		27.1
14		9.9
15	P ₂ O ₅	15.6
19	K ₂ O	6.9
20	CaO	0.03
22	TiO ₂	0.10
23	V ₂ O ₅	0.26
25	MnO	0.47
26	Fe ₂ O ₃	5.4
28	NIO	0.29
32	GeO ₂	0.27
33	As ₂ O ₃	0.78
41	Nb ₂ O ₅	0.60
42	MoO ₃	2.0
48	CdO 🗸	0.16
56	BaO	1.0
59	Pr ₂ O ₃	0.20
60	Nd ₂ O ₃	0.46
74	WO ₃	0.90
83	Bi ₂ O ₃	0.50

International Atomic Energy Agency Analytical Quality Control Services Wagramer Strasse 5, P.O.Box 100, A-1400 Vienna, Austria

REFERENCE SHEET

REFERENCE MATERIAL

IAEA-SL-1

TRACE AND MINOR ELEMENTS IN LAKE SEDIMENT

Date of issue: September 1999[⊕]

Element	Recommended Value mg/kg	95% Confidence Interval mg/kg	N*
As	27.6	24.7 - 30.5	24
Ba	639	586 - 692	15
Ce	117	100 – 134	8
Со	19.8	18.3 – 21.3	35
Fe	67400	65700 - 69100	35
La	52.6	49.5 - 55.7	26
Mn	3460	3300 - 3620	34
Rb	113	102 - 124	12
Th	14	13 - 15	18
Ti	5170	4740 - 5600	15
V	170	155 - 185	20
Zn	223	213 - 233	26

<u>Recommended Values</u> (Based on dry weight)

* Number of accepted laboratory means which were used to calculate the recommended values and confidence intervals.

• Revision of the original reference sheet dated December 1979

Element	Information Value mg/kg	95% Confidence Interval mg/kg	N *
Cd	0.26	0.21 - 0.31	7
Cr	104	95 - 113	34
Cs	7.0	6.1 – 7.9	20
Cu	30	24 - 36	31
Dy	7.5	5.3 – 9.7	5
Eu	1.6	1.1 – 2.1	10
Ga	23.7	18.6 - 28.8	11
Hf	4.2	3.6 – 4.8	7
Hg	0.13	0.08 - 0.18	5
K	14500	12400 - 16600	7
Lu	0.54	0.41 - 0.67	10
Na	1700	1600 - 1800	5
Ni	44.9	36.9 - 53.9	11
Pb	37.7	30.3 – 45.1	20
Sb	1.31	1.19 – 1.43	15
Sc	17.3	16.2 – 18.4	16
Se	2.85	1.31 – 4.37	7
Sm	9.25	8.74 – 9.76	8
Sr	80	37 – 123	7
Та	1.58	1.00 – 2.16	6
Tb	1.40	0.94 – 1.86	7
U	4.02	3.69 - 4.35	15
Yb	3.42	2.77 – 4.07	5

Information Values (Based on dry weight)

* Number of accepted laboratory means which were used to calculate the information values and confidence intervals.

The values listed above were established on the basis of statistically valid results submitted by laboratories which had participated in an international intercomparison exercise organized during 1977-1978. The details concerning the criteria for qualification as a recommended or an information value can be found in the report (IAEA/RL/64) "Intercomparison Run SL-1: Determination of Trace and Minor Elements in Lake Sediment IAEA-SL-1" [1]. This report is available free of charge upon request.

Intended Use

This sample is intended to be used as a reference material for the measurement of trace and minor elements in lake sediment samples. It can also be used as a quality control material for the assessment of a laboratory's analytical work, for the validation of analytical methods and for quality assurance within a laboratory.

Origin and preparation of the material

The lake sediment material was collected and prepared by Drs. J.C. Richie and C. Cooper (US Department of Agriculture, Agricultural Research Service, USDA Sedimentation Laboratory, Oxford, Mississippi, USA) and donated to the Agency by Dr. J.C. Ritchie. The sediment was collected at the Sardis Reservoir; Panola County, Mississippi, USA (water depth: 15 m).

The material was dried in an oven at 50 °C over a seven day period then ground and sieved. The fraction of the material which passed through a 0.1mm sieve (ca. 60 Kg) was collected and sent to the Agency for further processing. The material was thoroughly mixed at the Agency's Laboratory by rotating it in a plastic drum for 60 hours before it was dispensed into plastic bottles. Each bottle contained approximately 25 g of the material.

Homogeneity

The within and between bottle homogeneity was evaluated by determining the content of three marker elements (As, Cs and Sc) by instrumental neutron activation analysis. A number of sub-samples (100 mg) was taken from a single bottle and an equal number of single samples were taken from individual bottles selected at random. A statistical analysis of the results using F and t-tests indicated that the within and between bottle results did not differ significantly and the material can therefore be considered homogeneous (at a sample intake mass at, or above, 100 mg).

Dry weight determination

All recommended and information values are expressed on a dry weight basis. Therefore the dry weight must be determined at the time of analysis, using separate sub-samples of 500 mg dried to constant weight in a drying oven set to 105 °C. Subsequent weighings should differ by less than 5 mg.

The moisture content of the material was assessed at the time of bottling and after a one year period of storage, by drying the material in an oven at 105 °C to constant weight. The results indicated that the moisture content had increased slightly from 2.7 % to 3.4% over this period.

Instructions for use

The recommended minimum sample size for analysis is 100 mg. Analysts are reminded to take appropriate precautions in order to avoid contaminating the remaining material in the bottle. No special precautions are required for the storage of this material.

Legal disclaimer

The IAEA makes no warranties, expressed or implied, with respect to the data contained in this reference sheet and shall not be liable for any damage that may result from the use of such data.

References

 Dybczynski R. and Suschny O., Final report on the intercomparison run SL-1 for the determination of trace elements in a Lake Sediment sample. IAEA/RL/64, IAEA, Vienna, Austria 1979. Issued & supplied by

Analytical Quality Control Services (AQCS) Agency's Laboratories, Seibersdorf International Atomic Energy Agency P. O. Box 100 A-1400 Vienna, Austria

Prepared by

M. Campbell, Z. Radecki, A. Trinkl, K. I. Burns

International Atomic Energy Agency Analytical Quality Control Services Wagramer Strasse 5, P.O.Box 100, A-1400 Vienna, Austria

REFERENCE SHEET

REFERENCE MATERIAL

IAEA-SL-3

TRACE AND MINOR ELEMENTS IN LAKE SEDIMENT

Date of issue: September 1999[®]

		• •	
Element	Recommended Value mg/kg	95% Confidence Interval mg/kg	N *
As	3.2	3.0 – 3.4	17
Ce	45.5	43.8 - 47.2	14
Eu	0.66	0.64 - 0.68	14
Hf	9.1	8.5 - 9.7	18
K	8740	7910 - 9570	9
La	22.5	21.5 - 23.5	18
Nd	21.5	20.0 - 23.0	13
Rb	38.8	36.9 – 40.7	20
Sm	3.83	3.53 - 4.13	16
Sr	4700	4500 - 4900	14
Th	7.0	6.5 – 7.5	21

<u>Recommended Values</u> (Based on dry weight)

* Number of accepted laboratory means which were used to calculate the recommended values and confidence intervals.

• Revision of the original reference sheet dated July 1987

Element	Information Value mg/kg	95% Confidence Interval mg/kg	N*
Al	24500	23300 - 25700	5
Br	5.6	4.8 - 6.4	16
Ca	111100	107200 - 115000	9
Cs	1.38	1.24 – 1.52	16
Dy	2.22	1.65 – 2.79	6
Lu	0.30	0.27 – 0.33	12
Mg	27000	24600 - 29400	5
Na	6690	6360 - 7020	13
Sb	0.56	0.46 - 0.66	15
Sc	3.91	3.64 - 4.18	18
Та	0.70	0.65 - 0.75	8
Tb	0.49	0.44 - 0.54	9
Ti	2610	2300 - 2920	5
U	2.30	2.08 - 2.52	13
Yb	1.89	1.77 – 2.01	14

Information Values (Based on dry weight)

* Number of accepted laboratory means which were used to calculate the information values and confidence intervals.

The values listed above were established on the basis of statistically valid results submitted by laboratories which had participated in an international intercomparison exercise organized during 1986-1987. The details concerning the criteria for qualification as a recommended or an information value can be found in the report (IAEA/RL/143) "Report on the Intercomparison Run IAEA-SL-3: Trace Elements in Lake Sediment" [1]. This report is available free of charge upon request.

Intended Use

This sample is intended to be used as a reference material for the measurement of trace and minor elements in lake sediment samples. It can also be used as a quality control material for the assessment of a laboratory's analytical work, for the validation of analytical methods and for quality assurance within a laboratory.

Origin and preparation of the material

The lake sediment was collected from the Neusiedlersee, located some 80 km south-east of Vienna, Austria. The material was collected directly from the top layer of the sediment using a mud pump and then coarse particle were removed in the field by passing the sediment through a 1 cm sieve.

After removal of the superficial water, the sediment material still retained approximately 46% water by weight. The material was allowed to air dry for one month before being dried in an oven at 400 °C for 24 hours. After drying, the material was milled to pass a 500 μ m sieve. This fraction was then passed through a 71 μ m sieve and the collected material was designated SL-3 and was used for this intercomparison study. The material was thoroughly mixed in a rotating plastic drum for 48 hours and then bottled into plastic containers each containing approximately 25 g. Finally, the samples were irradiated to a dose of 2.5 x 10⁴ Gy using a ⁶⁰Co source to ensure long-term stability of the material by inhibiting microbial action.

Homogeneity

The homogeneity of the material was assessed by determining the concentration of a number of elements (Ce, Th, Hf, Ba, Sc, Rb, Fe, Co) by instrumental neutron activation analysis in ten sub-samples taken from the bulk sample at random. It was found that the results did not differ significantly and therefore this material could be considered homogeneous (at a sample intake mass at, or above, 150 mg).

Dry weight determination

All recommended and information values are expressed on a dry weight basis. Therefore the dry weight must be determined at the time of analysis, using separate sub-samples of 500 mg dried to constant weight in a drying oven set to 105 °C. Subsequent weighings should differ by less than 5 mg.

Instructions for use

The recommended minimum sample size for analysis is 150 mg. Analysts are reminded to take appropriate precautions in order to avoid contaminating the remaining material in the bottle. No special precautions are required for the storage of this material.

Legal disclaimer

The IAEA makes no warranties, expressed or implied, with respect to the data contained in this reference sheet and shall not be liable for any damage that may result from the use of such data.

References

 LaBrecque J. J., Hanna A. N., Rassoul A. and Schelenz R., Report on the Intercomparison run IAEA-SL-3: Trace Elements in Lake Sediment. IAEA/RL/143, IAEA, Vienna, Austria 1987. Issued & supplied by

Analytical Quality Control Services (AQCS) Agency's Laboratories, Seibersdorf International Atomic Energy Agency P. O. Box 100 A-1400 Vienna, Austria

Prepared by

Z. Radecki, M. Campbell, A. Trinkl, K. I. Burns

REFERENCE SHEET

REFERENCE MATERIAL

IAEA-SOIL-7

Trace Elements in Soil

Date of issue: January 2000[®]

<u>Recommended Values</u> (Based on dry weight)

Element	Recommended Value mg/kg	95% Confidence Interval mg/kg	N *
As	13.4	12.5 - 14.2	25
Ce	61	50 - 63	15
Со	8.9	8.4 - 10.1	32
Cr	60	49 - 74	41
Cs	5.4	4.9 - 6.4	16
Cu	11	9 - 13	34
Dy	3.9	3.2 - 5.3	3
Eu	1.0	0.9 - 1.3	10
Hf	5.1	4.8 - 5.5	11
La	28	27 - 29	12
Mn	631	604 - 650	36
Nd	30	22 - 34	7
Pb	60	55 - 71	31
Rb	51	47 - 56	24
Sb	1.7	1.4 - 1.8	18
Sc	8.3	6.9 - 9.0	22
Sm	5.1	4.8 - 5.5	12
Sr	108	103 - 114	19
Та	0.8	0.6 - 1.0	12
Tb	0.6	0.5 - 0.9	12
Th	8.2	6.5 - 8.7	18
U	2.6	2.2 - 3.3	14
V	66	59 - 73	18
Y	21	15 - 27	11
Yb	2.4	1.9 - 2.6	12
Zn	104	101 - 113	44
Zr	185	180 - 201	15

* Number of accepted laboratory means which were used to calculate the recommended values and confidence intervals about the median value.

Element	Information Value mg/kg	95% Confidence Interval mg/kg	N*
Al	47000	44000 - 51000	24
Ba	159	131 - 196	22
Br	7	3 - 10	11
Ca	163000	157000 - 174000	32
Cd	1.3	1.1 - 2.7	18
Fe	25700	25200 - 26300	46
Ga	10	9 - 13	3
Hg	0.04	0.003 - 0.07	5
K	12100	11300 - 12700	27
Li	31	15 - 42	4
Lu	0.3	0.1 - 0.4	8
Mg	11300	11000 - 11800	24
Mo	2.5	0.9 - 5.1	5
Na	2400	2300 - 2500	33
Nb	12	7 - 17	8
Ni	26	21 - 37	30
Р	460	460 - 462	3
Se	0.4	0.2 - 0.8	6
Si	180000	169000 - 201000	11
Ti	3000	2600 - 3700	19

<u>Information Values</u> (Based on dry weight)

* Number of accepted laboratory means which were used to calculate the information values and confidence intervals about the median value.

The values listed above were established on the basis of statistically valid results submitted by laboratories which had participated in an international intercomparison exercise conducted in 1983. The details concerning the criteria for qualification as a recommended value can be found in the report (IAEA/RL/112) "Report on the Intercomparison Run IAEA-Soil-7: Trace Elements in Soil" [1]. This report is available free of charge upon request.

Intended Use

This sample is intended to be used as a reference material for the measurement of trace elements in soil samples. It can also be used as a quality control material for the assessment of a laboratory's analytical work, for the validation of analytical methods and for quality assurance within a laboratory.

Origin and preparation of the material

The soil sample (top soil to a depth of 10 cm) was collected near Ebensee in Upper Austria at an altitude of 1100 m above sea level. The material was sieved through a 1 cm sieve, then heated at 450°C for 24 hours to destroy organic matter. After ashing, the sample was crushed, ground and milled to pass through a 71 μ m sieve. The material was thoroughly mixed in a rotating plastic drum for 24 hours and then bottled into plastic containers each containing approximately 25 g.

Reference

 Pszonicki L., Hanna A. N. and Suschny O., Report on the Intercomparison Run IAEA-Soil-7: Trace Elements in Soil. IAEA/RL/112, IAEA, Vienna, Austria 1984.

Homogeneity

The within and between bottle homogeneity was evaluated by determining the content of four marker elements (Na, Fe, Sc and Sm) by instrumental neutron activation analysis. A number of sub-samples (100 mg) was taken from a single bottle and an equal number of single samples were taken from individual bottles selected at random. A statistical analysis of the results using F and t-tests indicated that the within and between bottle results did not differ significantly and the material can therefore be considered homogeneous (at a sample intake mass at, or above, 100 mg).

Dry weight determination

All values are expressed on a dry weight basis. Therefore the dry weight must be determined at the time of analysis, using separate sub-samples of at least 500 mg dried to constant weight in a drying oven set to 105 °C. Subsequent weighings should differ by less than 5 mg.

Instructions for use

The recommended minimum sample size for analysis is 100 mg. Analysts are reminded to take appropriate precautions in order to avoid contaminating the remaining material in the bottle. No special precautions are required for the storage of this material.

Legal disclaimer

The IAEA makes no warranties, expressed or implied, with respect to the data contained in this reference sheet and shall not be liable for any damage that may result from the use of such data.

Issued & supplied by

Analytical Quality Control Services (AQCS) Agency's Laboratories, Seibersdorf International Atomic Energy Agency P. O. Box 100 A-1400 Vienna, Austria

Prepared by

L. Pszonicki, A. N. Hanna and O. Suschny

REPORT ON THE PROFICIENCY TEST EXERCISE FOR X-RAY FLUORESCENCE LABORATORIES ORGANIZED BY INTERNATIONAL ATOMIC ENERGY AGENCY PTXRFIAEA/04 "SAMPLE OF ENVIRONMENTAL ORIGIN"

IAEA International Atomic Energy Agency

Atoms For Peace

IAEA Laboratories, Seibersdorf November 2007 Table 3. The assigned values of analytes, the target values of the standard deviations, obtained by using modified Horowitz function, Eqn. (1), and the consensus values. The populations with at least 5 reported results were tested for normality by using Kolmogorov-Smirnov test, all examined populations passed the test. For the elements Cl, Cs, Hf, Pd, Pr, and Sm, the assigned and target values were not available. The assigned values of elements shown in *italics* should be considered indicative.

Analyte symbol	Assigned value of the analyte, $X_{\rm A}$	Target val	ue of standa tion, <i>σ</i> A	rd devia-	Consensus value of the analyte, $X_{\rm C}$	Consensus value of the standard deviation, $\sigma_{\rm C}$	Number of results	Number of out- liers
		k = 0.5	k = 1.0	<i>k</i> = 1.5				
			[g/k	[g]				
Al	111.0	1.55	3.09	4.64	110.9	6.03	11	2
Ca	2.07	0.053	0.105	0.158	2.18	0.157	17	0
Cl	-	-	-	-	1.31	0.131	1	0
Fe	47.9	0.76	1.52	2.28	49.9	1.64	22	2
Κ	19.60	0.355	0.709	1.064	19.6	0.726	17	1
Mg	8.24	0.170	0.340	0.510	8.592	0.0149	6	3
Na	4.21	0.096	0.192	0.288	4.73	0.687	6	0
Si	253.0	2.52	5.03	7.55	253.0	5.03	12	1
Ti	5.57	0.122	0.244	0.366	5.95	0.195	20	3
			[mg/	kg]				
Δs	16.4	0.86	1 72	2 58	10.3	2 47	8	0
Ra	414	13 35	26.7	40.1	420	15.3	10	1
Br	8 52	0 494	0.988	1 48	914	0.078	6	3
Cd	0.02	0.00895	0.0179	0.0269	2 20	0.708	2	0
Ce	95.0	3.83	7.66	115	99.6	6.04	6	1
Co	10.0	0.57	1.14	1.71	12.3	1.30	7	1
Cr	90.7	3.685	7.37	11.06	79.8	6.58	13	4
Cs	-	-	-	-	10.0	1.34	1	0
Cu	21.7	1.095	2.19	3.29	21.9	2.05	16	4
Ga	26.2	1.285	2.57	3.86	25.23	0.447	10	3
Hf	-	-	-	-	21	18.1	2	0
La	45.1	2.04	4.07	6.11	54.0	2.31	6	0
Mn	193	7	14.0	21.0	230	12.6	18	2
Nb	19.3	0.990	1.98	2.97	20.4	1.21	9	0
Nd	43.1	1.96	3.91	5.87	41.70	0.135	3	1
Ni	27.2	1.325	2.65	3.98	28.2	1.34	10	2
Р	448	14.3	28.6	42.9	359	26.4	1	0
Pb	29.6	1.425	2.85	4.28	42.2	3.69	15	1
Pd	-	-	-	-	16.9	2.20	1	0
Pr	-	-	-	-	7.90	0.800	1	0
Rb	137	5.25	10.5	15.8	138.7	5.89	17	0
S	613	18.7	37.4	56.1	1504	330	4	0
Sc	15.8	0.835	1.67	2.51	16.75	0.396	4	1
Sm	-	-	-	-	7	-	1	0
Sn	4.09	0.265	0.530	0.795	6.2	1.34	1	0

15

Table 3 continued...

Analyte symbol	Assigned value of the analyte, $X_{\rm A}$	Target value of standard devia- tion, σ_A		Consensus value of the analyte, $X_{\rm C}$	Consensus value of the standard deviation, $\sigma_{\rm C}$	Number of results	Number of out- liers	
		k = 0.5	k = 1.0	k = 1.5				
Sr	109.0	4.305	8.61	12.92	102.6	4.74	18	2
Th	15.7	0.83	1.66	2.49	18.7	2.18	4	0
U	2.86	0.196	0.391	0.587	4.25	0.631	2	0
V	140	5.35	10.7	16.1	167	29.8	9	0
Y	27.9	1.355	2.71	4.07	27.1	1.32	11	2
Zn	161	6	12.0	18.0	166.2	5.65	20	4
Zr	177	6.5	13.0	19.5	176.7	9.04	14	1

16

Worldwide Open Proficiency Test for X Ray Fluorescence Laboratories

PTXRFIAEA12

Determination of Major, Minor and Trace Elements in a Plant Sample

IAEA Laboratories, Seibersdorf December 2015

Analyte symbol	Assigned value of the analyte, X_A	Tarį	Target value of standard deviation, σA			Consensus value of the standard deviation, σ _C	Number of results	Number of outliers
		k = 0.5	<i>k</i> = 1.0	<i>k</i> = 1.5				
			[g/kg	g]				
Ca	59.7	0.91	1.82	2.74	52.78	3.35	34	2
Cl	8.52	0.17	0.35	0.52	8.17	1.17	17	0
Κ	47.8	0.76	1.51	2.27	37.24	2.58	36	4
Mg	4.94	0.11	0.22	0.33	3.74	0.82	8	1
Р	4.08	0.09	0.19	0.28	3.16	0.33	20	1
S	3.93	0.09	0.18	0.27	2.55	0.29	20	1
Si	-	-	-	-	3.88	1.16	8	1
			[mg/k	[g]				
Al					786.97	175.06	8	2
As	1.8	0.1318	0.2636	0.3953	2.29	0.25	9	3
Ba	9.97	0.5641	1.13	1.69	19.65	2.82	5	2
Bi	_	-	-	-	6.50	1.30	1	0
Br	_	-	-	-	61.42	9.47	28	1
Cd	0.544	0.0477	0.0954	0.1431	0.84	0.52	4	2
Ce	_	-	-	-	1.65	0.19	1	0
Со	0.22	0.0221	0.0442	0.0663	4.20	2.26	4	0
Cr	1.81	0.1324	0.2648	0.3972	6.16	1.47	14	1
Cu	10.3	0.5800	1.16	1.74	9.80	0.52	33	6
Fe	526	16.39	32.77	49.16	493.98	35.11	35	2
Ga	_	-	-	-	0.30	0.03	1	0
Hg	0.0807	0.0089	0.0178	0.0266	0.50	0.15	1	0
La	-	-	-	-	0.10	0.01	1	0
Mn	83.3	3.42	6.85	10.27	75.66	4.53	36	4
Mo	2.46	0.1718	0.3437	0.5155	2.13	0.04	5	2
Na	_	-	-	-	320.96	165.12	3	0
Nb	_	-	-	-	24.00	2.00	1	0
Ni	_	-	-	-	4.72	1.04	15	0
Pb	6.16	0.3748	0.7495	1.12	7.72	0.92	23	0
Pd	-	-	-	-	7.00	3.00	1	0
Rb	-	-	-	-	9.21	0.77	28	1
Sc	-	-	-	-	25.45	12.09	2	0
Se	-	-	-	-	0.08	0.00	1	0
Sn	_	-	-	-	13.24	6.02	4	0

TABLE 2. THE ASSIGNED VALUES OF ANALYTES, THE TARGET VALUES OF THE STANDARD DEVIATIONS AND THE CONSENSUS VALUES

Analyte symbol	Assigned value of the analyte, X_A	Tar	Target value of standard deviation, σA			Consensus value of the standard deviation, σ_C	Number of results	Number of outliers
		<i>k</i> = 0.5	<i>k</i> = 1.0	<i>k</i> = 1.5				
			[1	ng/kg]				
Sr	94.3	3.80	7.61	11.41	95.11	4.62	32	4
Th	-	-	-	-	2.31	0.21	1	0
Ti	-	-	-	-	37.50	6.39	16	1
U	-	-	-	-	12.00	3.00	1	0
V	1.31	0.1006	0.2012	0.3018	2.85	0.63	3	1
W	-	-	-	-	153.00	40.00	1	0
Y	-	-	-	-	0.87	0.10	2	0
Zn	107	4.24	8.47	12.71	86.15	6.52	36	2
Zr	-	-	-	-	13.18	6.99	4	1

																			20-11	132															
		1	X					1									-	21 22	IN AS	TH AC	SV VI	TO AS	SV TI	SV R1	TO AS	SV PI	SV NI	TH AS	TT AS	SV KI	IL AS	SV III	SV GI	SUS	Richt
153	人人	× ×	2		у . Б.	73	20	22	50	212	27	<u> </u>	てい	LH/	2		¢	< <	len >	5	R C	V/	<u>ر</u>	. <	1	<	<u> </u>	. ر	~	<	1	7	1		analyse
1	I	1	1			. 1		r i		1)	10.2	5 1	1		1	Man		ני ס	1 1	1	1	f	I	l	1	1	8	3	ł	0.005	99.6	4.00	2.31	M20a	ddy ::
I	8	ł	I	8	۲. ت	ີວ I ກ	1			1	-	1	1	8	t	Maho	135	1	1 1	8	8	ł	12.0	I	46.6	ł	1	62.2	1	8	1	1	11.10	Bao	nordinati
1	1	1	r		ا د ۲	2.0	ן נ ל		0.1	ו כ נ	1.0	1	1		1	Nio		1	1	1	1	1	1	I	1	1	8.5	8	I	8	1	1	1	Bia	e chead
ı	ı	,	1	0.00		. I	1	1	ı	1	68.4	1	1	23.5	2.0	Pbo	4.4	ى د د	6 ° 6		1.9	I	t	r	1	20.3	1	1	1	0.(0.0	3-2	8	ହ ହ ୁ	cal com
ı	I	r I	11	1	1.2	• I	1	I	r	1	-	t	1	1	یں ۱	Pre	ַ בּ	n ú		1 1	0.	1	1	1	-	< 1	1		1	у С 1	1	1	I	8	position
I	ſ	1	1	1	-	1	1	1	9		1	ι	1	1	0.	;O11 ST	1	1	1	1	26 -	ı	ł	1	,	1	1	-	1	1	1		0	0 0	<u>.</u>
1	r I		ı c	2 1	ı	1	ų	1	u L	, ,	-	1	1		57 -	S PO2	I	1	0	1		r	r		-		•	-					.28	800	
5	2	1.	.c 19 61						_			6		5	6	D	-	: 65	.16		•		L	1	1		1		ł	1	1	Ŀ	1	8	
.0		1.29	35		I	2			0.2	0-2	0.1	66.6	0.14	1.1	1.15	Sio) '	I	I	t	1	1	1	I	1	1	1.9	1	I	1	I	Т	t	$C_{02}Q_1$	
1 1	1	1	I	0.3	1	16.5	1	I	ł	1	L	1	I	-	1	SnOz	1	0.13	1	0::30	1	I	1	1	L	1	1.6	2.8	I	1	I	-	1	(12Q1	
11	I	1	I	1	ł	t	ł	1	I	1	I	30	1	-	4.99	SrO	I	2.62	1.60	0.51	1	t	ı	ŀ	1	1	1	1	1	ſ	ł	1	0.92	010	
1 1	1	1	I	ł	1	1	45.0	I	1	1	1	I	-	-	1	TazQa	4.7	1	I	1	1.23	ı	١		1	ı	I	-	ı	ſ	1	-	1	(শ)	
1 7	1	I	1	10.0	37.5	35.5	1	$38.1 \sim$	0.9	33.5	9.2	1	1		0.14	Tioz	1	t	I	1	1	0 1	ı	1	-	1	1	0.0	٤,0	0.0	0.1		ı	Fez	
()	ı	ı	1	19.5	1	L	1	1	ł	1	I	I	-	1	1	ĮQ.	5.2	2.1	2.2	2.4	7.7	1	ī	ı	1	ł	1	-	1	1	ı	.8	7.,	ୁମ୍ ଜୁମ୍	
- 2.75	ı	1	9.6	Ţ	1.0	1	8.4	1	80.2	C	1	L	-		ı	200		1	ر م	1	1	ſ	r	I	1	36	8	-	1	ı	•	-	11	E G	
11	1	I	- 1	1	ſ	16.	I		I	-	9	1	1	1 2		22	Ļ	س	بن ر	لم	1 4	~ 1	I			1 1	3			~ .	(~	0.84	e): 1
						0				[UN I			8	3	Ş	.65	.12.	נו נו	33		2				n C			-	1005	15	3-6	1.58	8	
												-				E S		•		1	0.1	ן כ י		ĩ	2	1	8	1	l 	I	8	1	1	HO	
																		1		1	1	l		ſ	1	1 0 2	7_0	1	8	8	1	-sto	1	MDO2	
																	12.48	16.61	70 YI	12-12	3) I 1 1	1		I	L	1	1	•	9	I	1	6.2	7.59	Na ₂ O	
																												1			Į	1			
Certificate of Analysis

STANDARD REFERENCE MATERIAL 97 a

Flint Clay

(Results based on sample dried for two hours at 140 °C)

Analyst	SiO2	Al ₂ O ₃	Fe ₂ O ₃	TiO2	P204	K₅0	Na2O	Li:0	ZrO:	BaO	MgO	CaO	SrO	Cr:O3	Loss on Igni- tion
10	43.74	38.65	$\binom{0.45^{\star}}{.46^{\rm b}}$	{1.88° (1.89d)	0.34	0.53°	0.033°	0.12«	0.0631	0.078°	0.16*	0.11*	0.17*	0.028h	13,32
212]	43.68	38.95	.45	1.95	.35	.51°	.041*	.10=		.07	.14*	.11×	.18¤	.03	13.31
3	43.60	38.79	.43ª	1.874	.381	.46e									
Average	43.67	38.79	0.45	1.90	0.36	0.50	0.037	0.11	-	0.075	0.15	0.11	0.18	0.03	13 32

References: [1] G.E.F. Lundell and J.I. Hoffman, NBS J. Res. 1, 91 (1928) RP5. [2] L. C. Peck, Geological Survey Bulletin 1170, (1964).

*o-phenanthroline photometric method. Firon reduced with SnCl₂ and titrated with standard potassium dichromate solution. Cupferron gravimetric method.

"H2O2 photometric method.

*Flame emission spectrometric method. 'Pyrocatechol violet photometric method. *Atomic absorption method. hDiphenylcarbazide photometric method. 'Molybdenum-blue photometric method.

List of Analysts

- 1. R. K. Bell, B. B. Bendigo, T. C. Rains, T. A. Rush, E. R. Deardorff, J. R. Baldwin, R. A. Paulson, W. P. Schmidt, and S. D. Rasberry, Analytical Chemistry Division, Institute for Materials Research, National Bureau of Standards.
- 2. L. C. Peck, United States Geological Survey, Denver, Colorado.
- 3. L. M. Melnick, J. D. Selvaggio, and D. G. Cunningham, Applied Research Laboratory, United States Steel Corporation, Pittsburgh, Pennsylvania.

The material for the preparation of this standard was provided by the A. P. Green Fire Brick Company, Mexico, Missouri.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmanships of O. Menis and J. I. Shultz.

The technical and support aspects involved in the preparation, certification and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by J. L. Hague.

Washington, D. C. 20234 October 8, 1969

J. Paul Cali, Acting Chief Office of Standard Reference Materials

Certificate of Analysis

STANDARD REFERENCE MATERIAL 98 a

Plastic Clay

(Results based on sample dried for two hours at 140 °C)

Analyst	SiO2	Al ₂ O ₃	Fe ₂ O ₂	TiO:	P2O3	K10	Na2O	Li ₂ O	ZrO2	BaO	MgO	CaO	SrO	Cr203	Loss on Igni- tion
1 ^[1]	48.98	83.13	${1.34 \atop 1.37^{b}}$	${1.56^{\circ} \\ 1.63^{d}}$	0.11	1.07*	0.080*	0.075°	0.0421	0.031°	0.42*	0.31#	0.041*	0.030 ^h	12.40
2(*)	48.91	33.31	1.35	1.64	.10	1.08*	.083*	.064*		.03	.435	.318	.037#	.04	12.49
3		33.12	1.28*	1.61 ^d	.11;	0.98*									
Average	48.94	33.19	1.34	1.61	0.11	1.04	0.082	0.070		0.03	0.42	0.31	0.039	0.03	12.44

ferences: [1] G.E.F. Lundell and J.I. Hoffman, NBS J. Res. 1, 91 (1928) RP5.
[2] L.C. Peck, Geological Survey Bulletin 1170, (1964).

*o-phenanthroline photometric method. *Iron reduced with SnCl₂ and titrated with standard potas-sium dichromate solution. *Cupferron gravimetric method.

^dH₂O₂ photometric method.

Flame emission spectrometric method.
Pyrocatechol violet photometric method.
Atomic absorption method.
Diphenylcarbazide photometric method.
Molybdenum-blue photometric method.

List of Analysts

- 1. R. K. Bell, B. B. Bendigo, T. C. Rains, T. A. Rush, E. R. Deardorff, J. R. Baldwin, R. A. Paulson, W. P. Schmidt, and S. D. Rasberry, Analytical Chemistry Division, Institute for Materials Research, National Bureau of Standards.
- 2. L. C. Peck, United States Geological Survey, Denvcr, Colorado.
- 3. L. M. Melnick, J. D. Selvaggio, and D. G. Cunningham, Applied Research Laboratory, United States Steel Corporation, Pittsburgh, Pennsylvania.

The material for the preparation of this standard was provided by the A. P. Green Fire Brick Company, Mexico, Missouri.

The overall direction and coordination of the technical measurements leading to certification were performed under the chairmenship of O. Menis and J. I. Shultz.

The technical and support aspects involved in the preparation, certification and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by J. L. Hague.

Washington, D. C. 20234 stober 8, 1969

J. Paul Cali, Acting Chief Office of Standard Reference Materials I. S. Department of Commerce MalcolarBaldrige Secretary National Bureau of Standards Ernest Ambler, Director

National Bureau of Standards

Certificate of Analysis

Standard Reference Material 1646

Estuarine Sediment

This Standard Reference Material is intended primarily for calibrating instrumentation and evaluating the reliability of analytical methods for the determination of major, minor, and trace elements in sediments, and similar matrices.

<u>Values of Constituent Elements:</u> The *certified* values for the constituent elements are shown in Table 1. They are based on results obtained either by definitive methods or by two or more independent, reliable analytical methods. *Noncertified* values, which are given for information only, appear in Table 2. All values are based on a minimum sample size of 500 mg of the material dried as indicated under "Instructions for Drying".

Notice to Users:

Expiration of Certification: The certification of this SRM will be invalid 5 years after date of shipping.

Use: The material should be kept in its original bottle and shaken well before each use. A minimum sample of 500 mg of the dried material (see Instructions for Drying) should be used for any analytical determination to be related to a certified value of this certificate.

Statistical consultation was provided by K. R. Eberhardt of the Statistical Engineering Division.

The overall direction and coordination of the technical measurements leading to certification were performed in the Inorganic Analytical Research Division, E. L. Garner, Chief.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by R. Alvarez.

Washington, D.C. 20234 June 7, 1982 (Revision of Certificate dated 1-6-82)

(over)

George A. Uriano, Chief Office of Standard Reference Materials

	Table 1. Certified Concentra	tion of Constituent Elements	
Element	Concentration, weight %	Element	Concentration, weight %
Aluminum ^{2b, c; 6}	6.25 ± 0.20	Magnesium ^{1c;2c}	1.09 ± 0.08
Calcium ^{2b,c;6}	0.83 ± 0.03	Phosphorus ^{2a;6}	0.054 ± 0.005
lron ^{2c;4a;6}	3.35 ± 0.10	19 - 60050,m.8 • 600536645, 1940	
	Concentration,		Concentration,
Element	<u>μg/g</u>	Element	µg/g
Arsenic ^{1d;4b}	11.6 ± 1.3	Manganese ^{1c;2c}	375 ± 20
Cadmium ^{1b,3a,b;4b}	0.36 ± 0.07	Mercury ^{1a;4b}	0.063 ± 0.012
Chromium ^{1c;3b;4a}	76 ± 3	Nickel ^{1b;2c;5}	32 ± 3
Cobalt ^{1b;4a}	10.5 ± 1.3	Vanadium ^{2a, 3a} ,	94 ± 1
Copper ^{1c;2c;4b}	18 ± 3	Zinc ^{1b,c;2c;3b;5}	138 ± 6
Lead ^{1b;3a;5}	28.2 ± 1.8		
1. Atomic absorption spe	ectrometry	3. Isotope dilution	mass spectrometry
a. cold vapor		a. thermal ionization	on
b. graphite furnace		b. spark source	
c. flame		4. Neutron activation	
d. hydride generation		a. instrumental	
2. Atomic emission spect	trometry	b. radiochemical	
a. dc plasma		5. Polarography	
b. flame		6. X-ray fluorescence	spectrometry

· · · ·

c. inductively coupled plasma

Notes: (1.) Analytical values are based on the "dry-weight" of material (see Instructions for Drying). Mercury should be determined on samples without drying and the results adjusted to a "dry-weight" basis by determining the moisture content of separate samples.

(2.) The estimated uncertainty for an element is based on judgment and represents an evaluation of the combined effects of method imprecision, possible systematic errors among methods, and material variability for samples 500 mg or more.

Table 2. Non-certified Concentrations of Constituent Elements

Note: The values shown in this table are not certified because they are not based on the results of either a definitive method or two or more independent analytical methods. These values are included, for information only, to provide additional information on the composition.

Element	Concentration, Weight %	Element	Concentration, Weight %
Potassium	(1.4)	Sulfur	(0.96)
Silicon	(31)	Titanium	(0.51)
Sodium	(2.0)		
	Concentration,		Concentration,
Element	<u> </u>	Element	<u> </u>
Antimony	(0.4)	Molybdenum	(2.0)
Beryllium	(1.5)	Rubidium	(87)
Cerium	(80)	Scandium	(10.8)
Cesium	(3.7)	Selenium	(0.6)
Europium	(1.5)	Tellurium	(0.5)
Germanium	(1.4)	Thallium	(0.5)
Lithium	(49)	Thorium	(10)

Analysts:

Inorganic Analytical Research Division. National Bureau of Standards. I. L. Barnes, M. B. Blackburn, C. G. Blundell, T. A. Butler, M. S. Epstein, T. E. Gills, J. W. Gramlich, R. R. Greenberg, S. Hanamura, W. R. Kelly, H. M. Kingston, L. Machlan, E. J. Maienthal, J. D. Messman, T. J. Murphy, T. C. Rains, T. A. Rush, R. Sedivy, and R. L. Watters, Jr.

Cooperating Analysts:

University of Tokyo, Tokyo, Japan; present address: Meteorological Research Institute; Tsukuba, Ibaraki, Japan; Y. Dokiya (NBS Guest Worker).

Division of Chemistry, National Research Council of Canada, Ottawa, Canada; S. Berman, A. Desaulniers, R. Sturgeon, A. Mykytuik, J. McLaren, V. Boyko, and P. Semeniuk.

Instructions for Drying: Except for mercury, elements should be determined on samples that have been dried at 110 °C for 2 hours.

Mercury should be determined on undried samples. However, because the certified concentration is reported on a "dryweight" basis, the concentration determined on undried samples should be adjusted for the moisture content of the samples.

Source and Preparation of Material: The material for this SRM was supplied by R. Huggett, Virginia Institute of Marine Sciences, Gloucester Point, Va. It had been dredged from the Chesapeake Bay at a location: 37° 11.1' N, 76° 17.1' W. The material was freeze-dried at Eastern Freeze-Dry Corporation, Lancaster, Pa., and radiation sterilized at Neutron Products Inc., Dickerson, Md. At NBS, the sediment was sieved through a screen with openings of 1.00 mm (No. 18) to remove coarse contaminants; ball-milled to pass a sieve with openings of 150 μ m (No. 100); thoroughly mixed in a V-blender; placed in polyethylene bags; and bottled.

Homogeneity Assessment: A preliminary evaluation of homogeneity was made by instrumental neutron activation using samples of approximately 250 mg taken from various locations of the bulk materials. The samples were irradiated and the activities from radionuclides of Ce, Co, Cr, Cs, Eu, Fe, Rb, Sc and Th were counted. Except for Ce and Th, the observed sample-to-sample variations for the elements were approximately the same as the counting statistics indicating satisfactory homogeneity for these elements within approximately 2%. The homogeneity of the material for As, Cd, Hg, N, and Zn was evaluated by various analytical techniques using samples weighting 250 to 300 mg and found to be satisfactory. The homogeneity of the remaining certified elements was determined using sample weights not exceeding one gram.

The uncertainties of the elemental concentrations in Table 1 take into account possible material inhomogeneity for samples weighing 500 mg.

Certificate of Analysis

Standard Reference Material[®] 2783

Air Particulate on Filter Media

This Standard Reference Material (SRM) is an air particulate sample reduced in particle size to simulate $PM_{2.5}$ air particulate matter (particles with an aerodynamic equivalent diameter of 2.5 µm) and deposited on a polycarbonate filter membrane. It is primarily intended for use in the evaluation and calibration of methods of analysis for common and toxic elements contained in various fractions of airborne particulate matter collected on filter media. A unit of SRM 2783 includes two loaded filters and two blank filters.

Certified Values: The certified values for elemental content of the SRM, expressed as mass of element deposited on the filter membrane, are provided in Table 1. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or accounted for by NIST. Certified values are based on results obtained by a single primary method with confirmation by other methods, or with two or more critically evaluated independent methods [1]. The certified values for all elements are based on results of NIST methods and results from collaborating laboratories using independent and complementary analytical methods.

Reference Values: The reference values for elemental content, expressed as mass of element deposited on the filter membrane, are provided in Table 2. The reference values may be based on only one method; the lack of independent and complimentary analytical methods does not provide estimates for inter-method bias required for assigning a NIST certified value, or they may be based on several methods without a critically evaluated determination at NIST.

Information Values: Information values for average deposit area and mass loading per loaded filter are provided in Table 3. Information values for blank filters are provided in Table 4. These are noncertified values with no uncertainty assessed. Information values for selected elements in the blank filters are provided for guidance only and are not to be used as a substitute for the determination of an analytical blank.

Expiration of Certification: The certification of SRM 2783 is valid, within the measurement uncertainties specified until **01 September 2011**, provided the SRM is handled in accordance with the instructions given in this certificate (see Instructions for Use). This certification is nullified if the SRM is damaged, contaminated, or otherwise modified.

Maintenance of SRM Certification: NIST will monitor representative samples of this SRM over the period of its certification. If substantive changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Return of the attached registration card will facilitate notification.

The technical and support aspects involved in the preparation, certification, and issuance of this SRM were coordinated through the NIST Standard Reference Materials Program by B.S. MacDonald.

Willie E. May, Chief Analytical Chemistry Division

Gaithersburg, MD 20899 Certificate Issue Date: 2 January 2002 See Certificate Revision History on Last Page John Rumble, Jr., Acting Chief Standard Reference Materials Program

SRM 2783

Page 1 of 6

This SRM has been developed in cooperation with the International Atomic Energy Agency (IAEA) Laboratories, Seibersdorf, Austria and collaborating laboratories in several countries.

The material was prepared by R.O. Demiralp and R.L. Zeisler of the NIST Analytical Chemistry Division. The coordination of the technical measurements leading to certification was performed by R.L. Zeisler.

Statistical analyses leading to certified and reference values were performed by S.D. Leigh of the NIST Statistical Engineering Division.

INSTRUCTIONS FOR USE¹

Handling: Please note that no fixation or surface coating was used on the filters, therefore they should be handled with care to avoid material loss or contamination. The filter membranes are mounted in Millipore PetriSlide® containers (Figure 1). These containers are holding the filter membranes in place by means of a plastic ring inside the lid. To remove the filter from the container, the user grasps the lid with thumb and finger of one hand at the grip, while holding the slide, i.e., bottom portion of the casing, with the other hand. The lid is then opened with a slight twisting upward motion. Users are cautioned to use care when opening the container because electrostatic charges may cause the filter membrane to move! The filter membrane can be picked up at the notched side of the casing with round-tipped (blunt) forceps.

Storage: The material should be kept in its original container and stored at temperatures less than 30 °C and away from sources of light.

Use: The filters should be used as received; the surface with the deposit shall NOT be touched or brought into contact with implements. Filters can be used for multiple non-destructive assays; the filter membranes should be stored in the Millipore PetriSlide[®] containers after use; the deposit (shiny) side of the filter must face upward. If a filter is partitioned for analysis or not analyzed in whole due to the analytical technique used, a minimum sample area of 1 cm² should be used for analytical determinations to be related to elemental mass loading values provided. The value of the total deposit area should be determined for the filter being measured because the deposited area is smaller than the filter area. The deposited area can be determined directly, or the information value for average deposited area in Table 3 may be used.

Blanks: Blank filters are supplied to augment the assays of the aerosol loaded filters with the determination of analytical blanks associated with the filter matrix. A heterogeneous distribution of bromine in the filter lots prevents a value assignment for this element. A significant amount of chromium and nickel is found by techniques that assay the whole filter, i.e., matrix and aerosol loading together, such as Instrumental Neutron Activation Analysis (INAA). Reference and information values established for several elements are listed in Table 3.

PREPARATION, HOMOGENEITY, AND ANALYSIS

Source and Preparation of Material: The aerosol material deposited on the filters is intended to represent a material of PM_{2.5} particle size distribution with elemental concentrations typical of that of an urban industrial area. Difficulties associated with a candidate material collected from an EPA national monitoring site in Baltimore [2] made it necessary to use an earlier prepared batch of urban particulate matter [3]. This urban dust had been collected by the IAEA Laboratories Seibersdorf from the air intake system of the Vienna General Hospital (AKH), in Vienna, Austria. The hospital is located in a mixed industrial urban area, with several nearby major highways. The dust was collected with vacuum cleaners from the electrostatic filters of the hospital air intake ducts. Approximately 9 kg of material was collected in three batches over the period September 1994 to December 1995. The batches of material were combined and sieved to particle sizes below 70 µm, to eliminate coarse external materials. The sieved sample was homogenized with a V-shaped blender for 4 h. A portion of this material was then successively air-jet milled three times to obtain a more homogeneous distribution of smaller particles that simulates the respirable fractions of an urban aerosol. The material has a peak particle size of 3.2 µm and a size range (FWHM) of 2.5 µm. The air-jet milled material was designated IAEA-396a/m. Small sample analysis studies have demonstrated a high degree of homogeneity for this material [4].

¹Certain commercial organizations, services, equipment, instrumentation, or materials are identified in this certificate to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the NIST, nor does it imply that the organizations, services, materials or equipment identified are necessarily the best available for the purpose. SRM 2783

All preparation for the deposit on the filter membranes and handling of the filters was carried out in the NIST Specimen Bank clean room. Batches of 700 mL to 900 mL each of air particulate matter suspensions were prepared by weighing appropriate portions of bulk air particulate matter into 1 L Erlenmeyer flasks, adding the appropriate mass of pure water (Baker HPLC) with 0.1 % by weight Triton (Kodak), and ultra-sonicating the mixture. A 140 μ g/mL starting ratio yielded a 100 μ g/mL particulate suspension for deposit after 1 h ultra-sonication, followed by 15 h equilibration and an additional 1 h of ultra-sonication. During the subsequent dispension, the particulate was kept in suspension by vigorous stirring. Each of these batches was prepared for one day of filter preparation (about 150 filters each); a total of 15 batches were prepared yielding 2200 individual filters.

Two Millipore filtration units were used for the preparation. The filters were Nuclepore polycarbonate membrane filters, 0.4 μ m pore size (Corning, Lots 8265024 and 8265025). After mounting the filters into the filtration assembly, the filters were covered with about 40 mL of pure water, then 5 mL aliquots of the suspension were pipetted on top with a 5 mL adjustable pipette (Gelman). Since two experimenters were preparing the SRM filters, the pipettes were calibrated to the same volume by weight. This calibration was controlled before and during the preparation of each SRM batch. After dispension into the filtration apparatus, vacuum was applied and the aerosol matter was deposited on the filters. After filtering to dryness, the filters were removed from the filtration apparatus and allowed to air dry under Class 10 clean air flow.

Homogeneity: The average mass loadings and homogeneity of the deposition procedure for the lot was determined by gravimetry using ten preweighed filters per batch and weighing the prepared filters after drying and conditioning. The pooled relative standard deviation of this procedure was 5.5 %. Considering the difficulties of these mass determinations, the loaded filters were accepted as a homogeneous lot. The homogeneity of elemental mass loadings was determined by INAA on thirty filters, two from each batch selected at random. Twenty elements ranging from several nanogram to tens of microgram amounts exhibited a relative standard deviation attributable to heterogeneity of less than 2.5 %. The within filter homogeneity was determined from micro-EDXRF and micro-PIXE data. Variances in elemental mass loading not exceeding 4 % relative standard deviation were observed for sampling areas ranging from 1 mm² to 30 mm². A sampling area of 1 cm² is deemed necessary for any certified value in Table 1 to be valid within the stated uncertainty.

Certified Values: Certified values are weighted means of results from two or more analytical methods [5]. The uncertainty listed with each value is an expanded uncertainty, with coverage factor 2 (approximately 95 % confidence), calculated by combining a between-source variance incorporating inter-method bias with a pooled within-source variance, and a component of variance for material heterogeneity. The reporting follows the ISO/NIST Guide [6]. Analytical techniques used for the determination of each element are indicated by superscripted letters (see Table 5).

Table 1. Certified Mass Loading for Selected Elements

Elements	Mass Los i	ading in ng*	on Filter	Elements	Mass Loading on Filter in ng*			
Al ^{a,b,d,e}	23210	±	530	${ m Mg}^{{ m a},{ m e}}$	8620	±	520	
As ^{a,e}	11.8	±	1.2	Mn ^{a,b,e}	320	±	12	
Ba ^{a,b,c,e}	335	±	50	Na ^{a,d,e}	1860	±	100	
Ca ^{a,b,e}	13200	±	1700	Ni ^{b,c,e}	68	±	12	
Co ^{a,d}	7.7	\pm	1.2	Pb ^{b,c,e}	317	±	54	
Cr ^{a,b,e}	135	\pm	25	Sb ^{a,b,c}	71.8	\pm	2.6**	
Cu ^{a,b,c,e}	404	\pm	42	Ti ^{a,b,e}	1490	\pm	240	
Fe ^{a,b,e}	26500	\pm	1600	$\mathrm{V}^{\mathrm{a,d,e}}$	48.5	±	6.0	
K ^{a,b,e}	5280	\pm	520	$Zn^{a,b,e}$	1790	\pm	130	

* conversion to ng/cm² must use area of deposit (not total filter membrane)

** expanded uncertainty according to BOB, "Type B On Bias" [7]

Reference Values: Reference values are based on weighted means of results from one method determined in several collaborating laboratories or from two or more analytical methods performed by selected collaborating laboratories. The uncertainty listed with each value is an expanded uncertainty, with coverage factor 2 (approximately 95 % confidence), calculated by combining a between-source variance incorporating inter-method or inter-procedure bias with a pooled within-source variance, and a component of variance for material heterogeneity. These results do not fulfill the criteria for certification since a full estimate of method bias or results from NIST methods have not been available. The reporting follows the ISO/NIST Guide [6].

Table 2. Reference Values for Mass Loading of Selected Elements

Elements	Mass	Load in n	ling on Filter g*	Elements	Mass Lo i	adin n ng	ng on Filter
Ce ^a	23.4	±	3.5	Si ^{a,b,e}	58600	±	1600
Rb ^{a,b}	24.0	±	5.5	Sm ^a	2.04	\pm	0.15
S ^{b,e}	1050	\pm	260	Th ^a	3.23	\pm	0.59
Sc ^a	3.54	±	0.28	U ^c **	1.234	±	0.024
				\mathbf{W}^{a}	5.0	±	1.8

* conversion to ng/cm² must use area of deposit (not total filter membrane)

**data from a single source only, uncertainty does not include an estimate for between source variance

Table 3. Information Values

Average deposit area per filter: $9.96 \text{ cm}^2 (1 \text{ s} = 0.04 \text{ cm}^2)$ Average mass loading per filter: 485 µg (1 s = 10 µg)

Reference and Information Values for Blank Filters: Reference and information values are given for SRM 2783 blank filters to assist users in the determination of the components of their procedural blank that are from the blank filter alone. The uncertainty listed with a reference value is an expanded uncertainty, with coverage factor 2 (approximately 95 % confidence), calculated by combining a between-source variance incorporating interprocedure bias with a pooled within-source variance, and a component of variance for material heterogeneity. The uncertainty for the nickel reference value does not include an estimate for between source variance because nickel data are from a single source only. Information values are based on results that did not allow complete assessment of Type A and Type B components of uncertainty, hence, only an estimated mean without an uncertainty is given for each element. For all blank filters analyzed, only elements for which blank values were observed above the detection limit of the method used are reported. These limits of detection are generally lower than 1 % relative of the certified or reference value in the loaded filter.

Table 4. Reference Values and Information Values (indicated in parentheses) for Selected Elements in Blank Filters

Elements	Mass per Filter in ng*	Elements	Mass per Filter in ng*
Al ^{d,e}	(30)	Na ^{a,d}	(15)
Ba ^c	(0.4)	Ni ^c **	8 ± 2
Co ^d	(0.04)	Pb ^c	(0.4)
Cr ^a **	70 ± 4	S ^{b,e}	(100)
		Zn ^a	(50)

* conversion to ng/cm² must use area of deposit (not total filter membrane)

** only found by techniques that include complete filter matrix in analysis

Supplemental Information:

Table 5. Analytical Techniques Used for Certified, Reference, and Information Values

- ^a Instrumental neutron activation analysis (INAA)
- ^b Energy dispersive X-ray fluorescence (EDXRF), including micro-EDXRF
- ^c Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS)
- ^d Inductively coupled plasma mass spectrometry (ICP-MS)
- ^e Proton induced X-ray emission analysis (PIXE), including micro-PIXE

Analysts: Analytical Chemistry Division, National Institute of Standards and Technology

R.O. Demiralp M.E. Howard A.P. Lindstrom K.E. Murphy J.R. Sieber L.J. Wood L.L. Yu R.L. Zeisler

Cooperating Laboratories and Analysts:

IAEA Laboratories Seibersdorf, Austria; M. Bogovac, A. Mendoza, A. Markowicz ANSTO, Australia; I. Orlic Ghent University, Belgium; W. Maenhaut University of São Paulo, Brazil; P. Artaxo Rudjer Boškoviç Institute, Croatia; M. Jakšiç Nuclear Physics Institute, Czech Republic; J. Kučera University of Pavia, Italy; M. Gallorini:; E. Rizzio U.S. EPA, Research Triangle Park, NC, USA; J. Weinstein

REFERENCES

- [1] May, W.E., Gills, T.E., Parris, R., Beck, II, C.M., Fassett, J.D., Gettings, R.J., Greenberg, R.D., Guenther, F.R., Kramer, G., MacDonald, B.S., and Wise, S.A., "Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements," NIST Special Publication 260-136, (1999); available at <u>http://www.cstl.nist.gov/nist839/srminfo.html</u>.
- [2] Heller-Zeisler, S.F., Ondov, J.M., and Zeisler, R., "Collection and Characterization of a Bulk PM2.5 Air Particulate Matter Material for the Preparation of Standard Reference Materials," Biol. Trace Elem. Res., Vol. 71-72, pp. 195-202, (1999).
- [3] Heller-Zeisler, S.F., Fajgelj, A., Bernasconi, G., Tajani, A., and Zeisler, R. "Examination of a Procedure for the Production of a Filter-Based Air Particulate Matter Reference Material," Fresenius J. Anal. Chem., Vol. 360, pp. 435-438, (1998).
- [4] Zeisler, R., "Reference Materials for Small Sample Analysis," Fresenius J. Anal. Chem., Vol. 360, pp. 376-379, (1998).
- [5] Ruhkin, A.L. and Vangel, M.G., "Estimation of a Common Mean and Weighted Means Statistics," J. Am. Statist. Assoc., Vol. 93, pp. 303-308, (1998).
- [6] Guide to the Expression of Uncertainty in Measurement, ISBN 92-67-10188-9, 1st Ed., ISO, Geneva, Switzerland, (1993); see also Taylor, B.N. and Kuyatt, C.E., "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results," NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC, (1994); available at <u>http://physics.nist.gov/Pubs/</u>.
- [7] Levenson, M.S., Banks, D.L., Eberhardt, K.R., Gill, L.M., Guthrie, W.F., Liu, H.K., Vangel, M.G., Yen, J.H., and Zhang, N.F., "An Approach to Combining Results from Multiple Methods Motivated by the ISO GUM," J. Res. Natl. Inst. Stand. Technol., **Vol. 105**, pp. 571-579, (2000).

Figure 1. Millipore PetriSlide[®] containers

Certificate Revision History: 2 January 2002 (This revision reflects an editorial correction to Table 1); 19 November 2001 (Original certificate date).

Users of this SRM should ensure that the certificate in their possession is current. This can be accomplished by contacting the SRM Program at: telephone (301) 975-6776; fax (301) 926-4751; e-mail srminfo@nist.gov; or via the Internet <u>http://www.nist.gov/srm</u>.

SRM 2783

Page 6 of 6

National Bureau of Standards

Certificate of Analysis

Standard Reference Material 2704

Buffalo River Sediment

This Standard Reference Material (SRM) is intended primarily for use in the analysis of sediments, soils, or materials of a similar matrix. SRM 2704 is a freeze-dried river sediment that was sieved and blended to achieve a high degree of homogeneity.

The certified elements for SRM 2704 are given in Table 1. The values are based on measurements using two or more independent and reliable analytical methods. Noncertified values for a number of elements are given in Table 2 as additional information on the composition. The noncertified values <u>should not</u> be used for calibration or quality control. Analytical methods used for the characterization of this SRM are given in Table 3 along with analysts and cooperating laboratories. All values (except for carbon) are based on measurements using a sample weight of at least 250 mg. Carbon measurements are based on 100 mg samples.

Notice and Warnings to Users: This certification is valid for 5 years from the shipping date. Should any of the certified values change before the expiration of the certification, purchasers will be notified by NBS.

<u>Stability</u>: This material was radiation sterilized to reduce the rate of any biodegradation. However, its stability has not been rigorously assessed. NBS will monitor this material and will report any substantive changes in certification to the purchaser.

<u>Use:</u> A minimum sample weight of 250 mg (dry weight - see Instructions for Drying) should be used for analytical determinations relating to the certified values on this certificate.

Sample preparation procedures should be designed to effect complete dissolution. If volatile elements (i.e., Hg, As, Se) are to be determined, precautions should be taken in the dissolution of SRM 2704 to avoid volatilization losses.

Statistical consultation was provided by S.B. Schiller and K.R. Eberhardt of the Statistical Engineering Division.

The overall direction and coordination of the analyses were under the chairmanship of M.S. Epstein and B.I. Diamondstone of the Inorganic Analytical Research Division.

The technical and support aspects involved in the preparation, certification, and issuance of this Standard Reference Material were coordinated through the Office of Standard Reference Materials by T.E. Gills.

Gaithersburg, MD 20899 June 1, 1988 Stanley D. Rasberry, Chief Office of Standard Reference Materials

(over)

Instructions for Drving: When nonvolatile elements are to be determined, samples should be dried for 2 hours at 110 °C. Volatile elements (i.e., Hg, As, Se) should be determined on samples as received; separate samples should be dried as previously described to obtain a correction factor for moisture. Correction for moisture is to be made to the data for volatile elements before comparing to the certified values. This procedure, which was used for the certification of volatile elements, ensures that these elements are not lost during drying. The approximate weight loss on drying has been found to be 0.8%.

Source and Preparation of Material: The river sediment for this SRM was collected from the Buffalo River in the area of the Ohio Street Bridge, Buffalo, N.Y. The U.S. Army Corps of Engineers, under contract to the NBS, collected and screened approximately 908 kg of river sediment and placed it in six 55 gallon Teflon lined drums. The drums were loaded onto a refrigerated truck and transported to the Technimed Corporation for freeze-drying. The freeze-dried sediment was shipped to an NBS contractor's laboratory where it was screened and passed through a 100 mesh sieve (nominal sieve opening of 150 μ m) and retained on a 400 mesh sieve (nominal sieve opening of 38 μ m). The sieved sediment was returned to NBS, radiation sterilized, blended, and bottled into 50-g units.

<u>Analysis:</u> The homogeneity of the bottled units was assessed using x-ray fluorescence spectrometry. Duplicate one gram samples from 8 randomly selected bottles were analyzed for the following elements: Al, Si, K, Ca, Ti, Fe, Zn, Sr, P, Mn, Rb, and Zr. No statistically significant differences in the composition of samples within or between bottles were observed relative to the uncertainty of the XRF measurements, which is less than 0.4%. Sample inhomogeneity of about 4% for lead was observed in measurements on 250 mg samples by thermal-ionization isotope dilution mass spectrometry. Sample inhomogeneity for lead is reflected in the uncertainty limits placed on the certified value for lead.

Table 1. Certified Values

Element		Wt.	<u>%</u>	Element	<u>w</u>	<u>′t. 9</u>	6
Aluminum	6.11	±	0.16	Phosphorus	0.0998	±	0.0028
Calcium	2.60	±	0.03	Potassium	2.00	±	0.04
Carbon	3.348	*	0.016	Silicon	29.08		0.13
Iron	4.11	±	0.10	Sodium	0.547	+	0.014
Magnesium	1.20	±	0.02	Titanium	0.457	±	0.018
Element,	ı	18/9	6	Element,	لا.	<u>g/g</u>	
Antimony	3.79	±	0.15	Lead	161	+	17
Arsenic	23.4	+	0.8	Manganese	555	+	19
Barium	414.	±	12	Mercury	1.44	=	0.07
Cadmium	3.45	±	0.22	Nickel	44.1	±	3.0
Chromium	135	+	5	Thallium	1.2	+	0.2
Cobalt	14.0	±	0.6	Uranium	3.13	*	0.13
Copper	98.6	±	5.0	Vanadium	95	±	4
101.07				Zinc	438	+.	12

<u>Certified Values and Uncertainty:</u> The certified values are weighted means of results from two or more analytical techniques. The weights for the weighted means were computed according to the iterative procedure of Paule and Mandel (NBS Journal of Research 87, 1982, pp. 377-385). Each uncertainty is the sum, in quadrature, of the half-width of a 95% expected tolerance interval and an allowance for systematic error among the methods used. The interval, the endpoints of which are the certified value minus and plus the uncertainty, respectively, will cover the concentration in a minimum sample weight of 250 mg of this SRM for at least 95% of the samples with 95% confidence.

Table 2. Noncertified Values

Element	Content. Wt.%	Element	Content ug/g
Chlorine	(<0.01)	Bromine	(7)
Sulfur	(0.4)	Cerium	(72)
		Cesium	(6)
		Dysprosium	(6)
		Europium	(1.3)
		Gallium	(15)
		Hafnium	(8)
		Iodine	(2)
		Lanthanum	(29)
		Lithium	(50)
		Lutetium	(0.6)
		Rubidium	(100)
		Scandium	(12)
		Selenium	(1.1)
		Samarium	(6.7)
		Strontium	(130)
		Tin	(9.5)
		Thorium	(9.2)
		Ytterbium	(2.8)
		Zirconium	(300)

Noncertified Values: Noncertified values are provided for information only. An element concentration value may not be certified, if a bias is suspected in one or more of the methods used for certification, or if two independent methods are not available. Certified values for some of these elements will eventually be provided in a revised certificate when more data is available.

-3-