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Abstract

In recent years, interest in self-learning methods has increased significantly. A driving
factor was the growing computing power, which first enabled machines to carry out such
computationally intensive methods. Nowadays, machine learning is used in many areas,
such as prediction, pattern recognition, and anomaly detection.

In this thesis, a self learning embedded system (SLES) is supposed to learn solving
tasks completely independently and with as little prior knowledge about itself, the task
and the environment, as possible. The learning process is guided by a reward signal, which
punishes or rewards the performed actions. Our main focus is on the task of surviving as
long as possible. For this purpose charging stations must be located. Subsequently, they
must be approached properly to allow a successful charging of the battery.

In order to enable the independent learning of tasks, various methods from the
field of Reinforcement Learning (RL), in particular from Q-learning, are used. In addition,
several replay memories and exploration methods are implemented and modified. Further,
completely new approaches and ideas are realized with the aim of achieving better results.
Evaluations help to find the most appropriate methods for our problem. Finally, they
are tested in a simulation environment to ensure that they can be applied to the final
hardware without significant changes.

With the help of evaluations and simulations, this work shows the entire process,
from the selection of the methods to the determination of which process parameters to
use for the final SLES. In the future, it is planned to improve the selected methods, to
reduce the memory requirements and to handle other tasks besides survival. In addition,
the simulation model should be improved to be even closer to the real model.
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Kurzfassung

In den letzten Jahren hat das Interesse an selbstlernenden Methoden deutlich zugenommen.
Ein treibender Faktor war die wachsende Rechenleistung, die es Maschinen erst ermöglichte,
solche rechenintensiven Verfahren durchzuführen. Heutzutage wird maschinelles Lernen
in vielen Bereichen, wie zum Beispiel für sämtliche Vorhersagen, Mustererkennungen und
Anomalieerkennungen, eingesetzt.

In dieser Arbeit soll ein selbstlernendes Embedded System (SLES) das Lösen von
Aufgaben völlig selbstständig und mit möglichst wenig Vorwissen über sich selbst, die
Aufgabe und die Umgebung, erlernen. Der Lernprozess wird von einem Belohnungssignal
gesteuert, das die ausgeführten Aktionen bestraft oder belohnt. Unser Hauptaugenmerk
liegt auf der Aufgabe, so lange wie möglich zu überleben. Zu diesem Zweck müssen
Ladestationen geortet werden. Diese müssen anschließend korrekt angefahren werden, um
ein erfolgreiches Aufladen der Batterie zu ermöglichen.

Um das selbstständige Erlernen von Aufgaben zu ermöglichen, werden verschiedene
Methoden aus dem Bereich des Reinforcement Learning (RL), insbesondere aus dem
Q-learning, eingesetzt. Darüber hinaus werden mehrere Wiedergabespeicher - und
Erkundungsmethoden implementiert und modifiziert. Weiteres werden völlig neue
Ansätze und Ideen, mit dem Ziel bessere Ergebnisse zu erreichen, realisiert. Mittels
Evaluierungen werden die am besten geeignetsten Methoden für unser Problem gefunden.
Schlussendlich werden diese in einer Simulationsumgebung getestet, um sicherzustellen,
dass sie ohne erhebliche Änderungen auf die endgültige Hardware angewendet werden
können.

Mit Hilfe von Auswertungen und Simulationen zeigt diese Arbeit den gesamten Prozess
von der Auswahl der Methoden bis hin zur Bestimmung, welche Prozessparameter für
das endgültige SLES verwendet werden sollen. In Zukunft ist geplant, die ausgewählten
Methoden zu verbessern, den Speicherbedarf zu reduzieren und neben dem Überleben
andere Aufgaben zu bewältigen. Außerdem sollte das Simulationsmodell verbessert
werden, um dem realen Modell noch näher zu sein.
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1 Introduction

The interest in machine learning research has exploded in recent years. Nowadays, it
helps us to accomplish tasks that could not be implemented from scratch because of
the immense state space. These methods learn from experiences like humans do, but
compared to us, much more additional experiences are necessary to learn a task. Humans
immediately recognize the impact their actions have on the environment, but machines
lack that understanding. For a machine, moving to the left is just a number, without
realizing the effects of this action on the environment. However, due to the tremendous
state space, the function to be learned is usually approximated. Among researchers, it
has been established to use neural networks as these approximators. These networks,
modeled after the human brain, are nonlinear and resource intensive. Although, the
idea of neural networks exists since 1943 [MP43, pp. 1-21], it could not be implemented
until several years ago, due to the lack of computation power [PG17, p. 1]. In addition,
neural networks were completely underestimated because of the simple idea behind them.
However, it has been found that these networks are very flexible and provide unbelievably
good results, as can be seen in the following examples: Neural networks can be trained to
understand the textual context with near-human accuracy, such as Facebook’s DeepText,
which understands several thousand posts per second in more than 20 languages, [2] or for
the early detection of lung cancer using digital X-ray, CT or MRI images [SLHV18, p. 1].
They were even successfully used to defeat a Go Grandmaster, where artificial intelligence
has not had a chance so far due to the high complexity of Go [SSS+17, pp. 1-2]. Last but
not least, neural networks are even deployed for the detection of depressions only on the
basis of speech patterns, without the need for further information about the questions or
answers [HGG18, p. 1].

In this thesis, a self learning embedded system (SLES), in the further work designated
as agent, should learn to solve tasks completely independently and with as little prior
knowledge as possible. This also includes knowledge about the task, the environment
exposed and the meaning of the inputs or outputs of the agent. To interact with the
environment and to perceive its state the agent is equipped with sensors and actuators.
The learning process is only guided by a reward signal, which punishes or rewards the
performed actions. One issue is, that only a partial part of the environmental state, due to
the small number of sensors, is perceived. In addition, a continuous and real state sensed
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Introduction

by the sensors results in a large state space, that needs to be explored. Since effective
exploration of large state spaces is difficult to execute and due to the poor resolution of
the environmental state, only sparse rewards are obtained. The task, which the agent
should solve first, is to survive as long as possible. This enables solving several other tasks.

In order to gain experience with self-learning methods and to be flexible about
which method is used on the final hardware, several state of the art methods have been
implemented. Additionally, changes to the state of the art methods and new approaches
have been realized to further improve our knowledge and to find the most appropriate
method for the agent. Various methods from the field of Reinforcement Learning (RL)
are used, in particular from Q-learning (Deep Q-learning, Double Deep Q-learning, Deep
Deterministic Policy Gradient). In order to work, these methods require a replay memory,
an exploration method, and a reward function. Therefore, several replay memories
(Experience Replay, Priority Replay, Hindsight Experience Replay), exploration methods
(ε-greedy, Ornstein Uhlenbeck process) and reward functions (shaped and not shaped)
have been implemented.

Q-learning methods must explore the environment and the task to be solved in
order to gain knowledge about it. The explored knowledge is accumulated and an
expected reward (Q-value) can be calculated. This Q-value indicates how much reward
to expect for performing an action from a certain state. A neural network can be
trained by comparing the predicted Q-values to the received reward. To find the most
appropriate method for the agent, each of them is evaluated quantitatively against the
others. Furthermore, to ensure that our chosen method is usable on the final hardware
without major changes, the agent in combination with the selected method, is simulated
with Unity [12], a state-of-the-art game engine.

With the help of evaluations and simulations, this work shows the entire process,
from the selection of the methods to the determination of which process parameters to
use for the final agent. In addition, the question of how to design a reward function and
how different sensors can be simulated is answered.

In the future, the memory of the selected method should be drastically reduced,
with the aim of fitting on a small memory of a resource-limited system. To speed up the
simulation time, an asynchronous algorithm should be implemented that allows parallel
execution of multiple agents. The Q-learning algorithm should be improved to better
respond to sparse reward problems. Consideration should also be given to formulating a
better exploration method since exploration is a key RL task. Improvements can reduce
training time and dramatically improve learning success. Other tasks, beside surviving,
should be defined and resolved. Finally, the simulation model should be improved to be
even closer to the real agent.
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Introduction

1.1 Motivation

Some tasks can not be completely solved by algorithms because of their complexity and
enormous state space. For example, grabbing objects with a robotic arm is a difficult task
to program because of the myriad positions an object can take in space. Even for the
automated digitization of handwritten texts, finding an universal algorithm is not easy,
because each of us writes in a different way. Another example would be the recognition
of chairs on pictures. Due to the large number of different-looking chairs, this seemingly
simple task is very difficult to solve in the end for a high hit probability.

A good approach to tackle such issues is to let the decision maker learn to solve
the task completely independently. For scalability and reusability, the method applied to
the agent should not be tied to any assumptions or restriction, such as the design of the
environment, the agent or the task to learn. Therefore, the agent should have as little
prior knowledge about the task, the environment and the meaning of its in- or outputs.
This ensures that this thesis can serve as a basis for other work. In order for a new task
to be learned, only a reward function, which rewards the agent for performed actions,
has to be designed. In our vision, workers will only need to define a reward function
while the robot learns the task by itself. The time-consuming and error-prone writing of
algorithms and programs is eliminated. In addition, massive amount of computations are
cheaper than paying employees. This will dramatically reduce the project costs and result
in higher production yield and throughput.

1.2 Problem

The main objective of this thesis is to address the question how an agent can learn to solve
tasks completely independently. Therefore, the agent should know as little as possible
about the task, the environment and the meaning of its in- or outputs. Through a reward
signal, which is used to punish or reward performed actions, the agent can learn more about
the task to be solved. In order to be able to perceive its surroundings, the agent is equipped
with various sensors. Thus, only a partial part of the environment is perceived. On the one
hand, this can affect the learning performance of tasks, because the unperceived states can
change or be forgotten by the method used. On the other hand, designing of a motivating
reward signal depends on the perceived state. Therefore, the design of the reward function
can only be as good as the state perceived by the sensors used. In addition, with the
equipped sensors, a continuous state of the environment is perceived. Consequently, this
results in a large state space because real numbers are uncountable. Therefore, a function
approximator should be used to predict what action should be taken from a particular
state, as saving the action state pair would require a lot of memory. However, this large
state space needs to be explored, in order to learn which actions the agent should perform
to solve the task. Therefore, the learning success heavily depends on a good exploration
of the state space. If the task goal is underexplored, it is unlikely that the used method is
able to learn to solve the task. Since one requirement is that the agent should have as little
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prior knowledge as possible, only random exploration methods can be used. Not only that
random exploration of large state spaces is already difficult, storing already visited states is
not applicable because memory is a limited resource in an embedded system. However, due
to the large state space the rewarding goal is not often achieved which yields to a sparse
reward problem. This means that many of the gathered experiences do not contribute
significantly to task resolution. The applied method should be able to learn to solve the
tasks, even if it is flooded with many non-task-relevant transitions. Finally, the applied
method should be able to learn to solve the tasks in the best way possible. The following
list summarizes the requirements that the learning method should meet:

• Have as little knowledge about itself, the task and the environment as possible.

• Work only with a partial part of the environment perceived.

• Use a function approximator to predict which action to perform due to the large
state space.

• Require less memory because it should run on an embedded system.

• Handle continuous state spaces, because sensory outputs are continuous.

• Deal with sparse rewards because random exploration of large state spaces is
difficult.

• Able to learn to solve the task in the best way possible.

1.3 Task

In general, the agent possesses several inputs from sensors for state observation and
outputs to actuators for movement. Additionally, it is equipped with communication
hardware and a battery for self-power. To determine the boundaries of the environment,
for orientation and for state observation, two rangefinders and a compass are mounted on
it. More on, it is equipped with two photodiodes to facilitate locating the charging stations
as they emit ultraviolet light. Additional hardware has been installed to determine the
battery charge status. To enable movements, two actuators are placed at the bottom
of the agent. For communication with a base station, a Bluetooth chip is attached.
The architecture of the agent can be observed in figure 1.1. In the first approaches the
processor is only used for communication with a base station, due to the low processing
power and memory of the mounted processor. Hence, the perceived state is processed in
the base station. Then the control values for the actuators are calculated and returned
to the agent. Gradually, in the future, attempts will be made to move more and more
computations from the base station to agent’s processor.

The reward or punishment signal, that is used to motivate learning, is calculated
in the base station, based on agent’s current state. First, the agent will explore its
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Photodiode #1

Photodiode #2

Battery Charge

Compass

Rangefinder #1

Rangefinder #2

Processor Bluetooth

Battery

Actuator #1

Actuator #2

SLES

Figure 1.1: SLES Architecture.

surroundings, gather experiences and hopefully be rewarded for some actions. With these
experiences, learning can be enabled and the agent can be taught which actions it has to
perform in order to solve its task. Based on the knowledge it gained from its previous
experiences, the agent learns to do his job better and better. The goal is to find the
optimal strategy.

In order to enable learning multiple other tasks, the first task addressed within
this thesis is to survive as long as possible. This can be achieved by locating the charging
station and charge agent’s battery. Since the real agent is not yet build, an attempt is
made to solve this task by simulation. Therefore, the agent, the environment and the
algorithm used are simulated as realistically as possible with Unity. After the task of
survival has been successfully resolved, other, even more complex tasks can be tackled.

1.4 Methodology

The task is learned with machine learning methods. Machine learning can be considered
as automated large scale data analysis [Bar12, p. 285] and allows learning of problems that
can not be completely solved by algorithms due to their complexity. Machine learning can
be applied to the following problems:

• Prediction

• Pattern recognition

• Anomaly detection

Since the agent has to predict which action to perform next in order to receive a high
amount of reward, our issue can be considered as a prediction problem. Therefore, machine
learning can be applied to our issue. However, since one goal is to learn to solve the
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problem in the best possible way, the method used must be from the field of Reinforcement
learning (RL) because the other fields are not applicable for this problem. Since Deep
Q-learning (DQN) performed well on several Atari 2600 games (DQN outperformed a
linear learning function in 43 out of 49 games and a professional human game tester in 29
out of 49 games [MKS+15, pp. 2-3]), algorithms from this area are selected. Q-learning
calculates Q-values that show how much reward to expect by performing a particular
action from a certain state. The Deep in Deep Q-learning means that a neural net is used
as a function approximator. This neural net is used to predict the Q-values.

To familiarize ourselves with Deep Q-learning and to be flexible about which method is
used on the final agent, several Q-learning algorithms are implemented such as:

• Deep Q-Network (DQN)

• Double Deep Q-Network (DDQN)

• Deep Deterministic Policy Gradient(DDPG)

DQN and DDQN can be used for discrete action spaces, while DDPG can be used for
continuous action spaces. For example, if the movement of the agent is discretized to:
forward, backward and turn; DQN or DDQN can be applied. On the other hand, if the
raw continuous actuator values are used, DDPG can be applied.

Deep Q-learning requires other methods to work. First, a reward function is used
to reward or punish the agent’s actions. Without this function no learning can take
place. To enable learning from past experiences and to guarantee the convergence of the
Q-network a replay memory has to be used. Several replay memories are implemented in
order to find the one which suits our needs best:

• Experience Replay (EXPR)

• Prioritized Experience Replay (PEXPR)

• Hindsight Experience Replay (HER)

By exploring, the agent can eventually gather information about the task and the
environment unknown to him. This can be achieved by exploration methods. Without
exploration, the agent learns little or nothing about the task and the environment. This
drastically harms the tasks solving performance. On the other hand, only exploring the
environment results in overfitting of the Q-network. In this case the Q-learning method
is only able to solve a specific task and environment. Little changes to the environment
causes the Q-learning method to fail in solving the task. Several exploration strategies are
implemented in order to find the one which suits our needs best:
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• ε-greedy (EG)

• Ornstein Uhlenbeck process (OU)

These methods and requirements mentioned are evaluated against each other in order to
measure the performance. In addition, since the internal behaviour of neural networks is
difficult to understand, the meta-parameters and methods are subjects to minor changes
in order to study their impacts.

Furthermore, to make sure that our chosen Q-learning method and requirement
will work and that they can be deployed on the final hardware without much change, they
are simulated with Unity [12], a state-of-the-art game engine. To model neural nets we
use Keras [5], a high-level neural network application programming interface (API), in
combination with Tensorflow [9].

7



2 State of the Art

This chapter introduces the field of machine learning. First, a general overview of the
styles of machine learning is offered. It is explained why only one particular style,
namely Reinforcement Learning, can be considered for our work. Followed with important
definitions and equations the reader is guided to Q-learning, a subfield of Reinforcement
Learning. The most common and in this work used Q-learning algorithms are explained.
Since Q-learning requires other methods such as exploration, reward functions, and
transition storage, a detailed explanation of these techniques is provided. Eventually,
related work will be presented.

2.1 Machine Learning

Machine learning uses experiences to train a function or a model. The experiences are
either available in datasets or are collected. Predictions about the experiences can be used
to calculate an error or loss that is then used to refine the function or model being trained.
Machine learning distinguishes three learning styles. To solve a problem using machine
learning, the learning style has to be determined first, because different styles can only
solve certain problems. Therefore, follows an introduction of the different learning styles.

2.1.1 Styles of Learning

Machine learning aims to give computers the ability to learn the way humans do. In
general, machine learning can be divided into three subfields:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

8
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2.1.1.1 Supervised Learning

As the name already indicates, learning with this method is supported by a kind of
supervisor. This supervisor can be considered as a dataset with known outputs. Usually,
we call this dataset ground truth and the outputs labels. The goal is to learn the
relationship between the input x and the output y. Since we want to classify novel
inputs x∗, which are not present in the ground truth, it is necessary to use a function
approximator y∗ = f(x∗) to predict the output y∗. By means of a loss function
L(y, y∗), which calculates the error between the labels and the predictions, the function
approximator can learn. In general, this learning method is used for two types of problems.
First, when data must be classified with an integer label, such as the recognition of dogs
or cats on pictures. Second, for regression tasks, which means that the data can not be
classified by a simple integer value. For example, the forecast of a stock price because the
output must be a real number. [Bar12, pp. 285-286]

As already mentioned in section 1.2 one goal is to master the tasks in the best
way possible. Thus, we can not use supervised learning for this thesis. For example,
imagine our goal is to master a computer game and we address this problem with
supervised learning. To generate the ground truth we invite an expert player and let him
play the game a millon times. After training our function approximator with this data,
we find that our result is just as good as the expert player. Of course, we humans learn
from observations too, but through practice we can become even better than this observed
behaviour.

2.1.1.2 Unsupervised Learning

In unsupervised learning, we want to learn by observation and find the hidden structures
behind unlabeled datasets. Usually, by hidden structure a compact data description of
large datasets is meant. This can be used to cluster data, as object segmentation in
pictures or for anomaly detection. However, it is not possible to determine the accuracy
of such algorithms since there are no labels. [Bar12, pp. 286-287][SB98, p. 2]

Obviously, we can not use this method for our thesis, because the agent has to
learn to solve tasks, rather than the hidden structures or patterns behind the perceived
data.
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2.1.1.3 Reinforcement Learning

Reinforcement Learning (RL) does not use labels for datasets in the same way as
supervised learning does. There is no ground truth present, which describes the data to
expect. Just because there are no labels from the beginning, one might think that RL
can be considered as a subset of unsupervised learning, as it was often the case in the
past. In RL the agent receives a reward or punishment signal through exploration of an
environment. Obviously, it is attempted to maximize this reward signal in the long-term,
because the amount of reward describes how well or worse the agent had performed.
Learning can now be described as finding actions that result in a higher reward. Therefore,
the reward signal is transferred to an expected reward (or expected return) R, which
defines how much reward to expect, for each state. These expected rewards can be
used to calculate an error between different explorations. By ongoing explorations, the
expected rewards can be refined iteratively. This usually happens by the improvement of
a so-called policy or value function, which can be considered as learning. Although, the
expected rewards can be understood as labels, as it is the case in supervised learning, the
maximum improvement is not limited by a ground truth. In addition, these labels can
be used to determine an accuracy. Therefore, RL can not be considered as supervised or
unsupervised learning [SB98, p. 2].

In literature [SB98, p. 38] the standard interaction of an agent with its environment can be
observed in figure 2.1. Actions At taken by an agent, who is learner and decision maker,
change the state St → St+1 of the environment. These changes may result in rewards or
punishments Rt that are granted to the agent and reflect how appropriate his behaviour
has been in the past. This experience is used to learn how to solve the task, which means
choosing actions that maximize the reward in a long-term. [HMLIR07, p. 2]

Basically, RL methods can be divided into two groups: Model-Free or not. Not
Model-Free methods require prior knowledge about the environment, which means to
know the transition probabilities P and/or expected rewards R. More information about
transition probabilities P and expected rewards R are given in section 2.1.2. As mentioned
in the paragraph above, our agent has no a priori knowledge about the environment.
Therefore, we only discuss Model-Free methods within this thesis.

Environment

Agent

Reward rt

State st
Action at

Figure 2.1: Interaction between agent and environment.
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2.1.1.4 Policy

A policy π is a function which maps states s to actions a. At a certain time, the agent
perceives a state s. The policy determines which action s the agent should perform. In
most cases, the policy aims to maximize the cumulative reward R. A policy can either be
stochastic, for example if the agent’s movement is unpredictable due to a slippery surface,
observable in equation 2.1, or deterministic, observable in equation 2.2 .

πt(s|a) (2.1)

πt : s→ a (2.2)

In general, RL algorithms can be classified as On- or Off-Policy learning methods.
On-Policy methods are based on a known policy π(s). This means that in each state s
the action a, which leads to the highest amount of reward, must be known. Obviously, in
this case the agent requires prior knowledge about the task and environment.
With Off-Policy algorithms, the policy π(s) is learned, which means the action a leading
to a high amount of reward is unknown. Thus, the agent has to experiment with his
environment and after receiving a reward R, the actions (a0, a1, a2, . . . , an) leading to it
are known. On this basis, the policy π(s) can be improved.

Due to the fact that our agent has no prior knowledge about the environment or
task, mentioned in section 1, we use Off-Policy algorithms for this thesis.

2.1.1.5 Reward

The reward (or penalty) R is a numeric scalar value granted to the agent through actions.
Each action a ends in a reward, so that the total reward which the agent receives over time
can be expressed as follows:

Rt = r1 + r2 + r3 + · · · =
N∑
t=0

rt+1 (2.3)

Usually, there is no reward r0 given for the initial state s0, as observable in equation 2.3.
N is the horizon or episode length, that can be infinite. In general, with regard to their
delay, rewards can be divided into three classes:

• immediate reward

• delayed reward

• pure-delayed reward

Immediate rewards mean that a reward is given directly after an action and no future
rewards need to be considered. To maximize the reward, only the selected action and
the current state of the agent are important. For example, if you play with a k-armed
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bandit, you will be rewarded right after pulling the lever. No past experiences need to be
considered.
Delayed rewards mean that an action can generate immediate rewards, but the future must
be considered; at least the next state of the environment. These problems are more difficult
to solve because the agent has to choose actions that pay off in the future. For example,
cooking could be considered as such a problem. If the dish is removed from the pan too
soon and some of the ingredients are still not cooked properly, waiting would have been
better and thus more rewarding.
Pure-delayed reward means that the reward is the same for all states except the last state
of an environment. These problems can be very difficult to solve if reaching the final state
is not very likely. Playing chess, for example, could be such a problem because you only
give the agent a reward for winning or losing the game [Gas02, p. 7].

2.1.2 Markov Decision Process

Basically, RL techniques try to solve finite Markov Decision Processes (MDPs), which were
first mentioned in the article [Bel57, pp. 1-6]. With MDPs decision making situations can
be modeled. In principle MDPs are finite, discrete time and stochastic automata defined
as a 5-tuple (S,A, Pa, Ra, γ) 2.4 [HMLIR07, pp. 1-2].

S . . . finite set of states
A . . . finite set of actions
Pa(s, s

′) = Pr{st+1 = s′|st = s, at = a} . . . state transition probabilities
Ra(s, s

′) . . . reward for state transition
γ . . . discount factor

(2.4)

Figure 2.2 shows an example of a discrete time and stochastic MDP consisting of two
states {S0, S1} ∈ S, two actions {a0, a1} ∈ A and two different rewards {−1, 1}. Starting
from the initial state S0 for each timestep t the agent can perform two actions {a0, a1}.
Action a0 will result with a probability of 0.6 in state S1. Otherwise the agent remains in
state S0. Action a1 will always result in state S0 due to the transition probability of 1.0.
For actions which results in state S0 the performer is penalized with a reward of -1. For
actions which yields to the state S1 the reward is set to a value of 1. Performing only the
action a0 on this MDP will result in the highest possible reward.

MDPs describe the agent’s interaction with the environment and vice versa. At
each timestep t, the agent is located in state st and performs an action at selected by
a policy π(st) that leads to a successor state st+1 and receives a reward Rat(st, st+1).
Obviously, the amount of rewards depends on the used policy π, so our goal is to find the
optimal policy π∗(s). Since a policy, described in section 2.1.1.4, aims to maximize the
cumulative reward, equation 2.3, this can be formulated as an optimization issue where
the total discounted rewards, equation 2.5, must be maximized over time.

Gt =
∞∑
t=0

γtrt+1 (2.5)
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S0start

a0

a1

S1 a0

a1

1.
0

0.
4

0.6

1.
0

1.0

1.0

0.
1

0.9

Figure 2.2: Example of a discrete time and stochastic MDP.

Note that the total discounted rewards 2.5, have an infinite time horizon N → ∞. To
guarantee the convergence of Gt the discount factor γ ∈ [0, 1] has to be introduced.

2.1.2.1 Value Functions

As explained in section 2.1.2 the goal is to optimize the total discounted rewards over
time Gt but this knowledge does not help our agent to decide which action a it should
choose in a certain state s. This would require a scalar number that estimates how good
it is to be in specific state s or which action a ∈ A should be performed next to receive a
high amount of reward.

This can achieved with the help of the so called state-value function vπ(s) 2.6 and
action-value function qπ(s, a) 2.8. The state-value function vπ(s) provides the expected
cumulative discounted reward (expected return) for a state s under a policy π(s). On
the other hand, the action-value function qπ(s, a) provides the expected return for a state
s taking the action a under a policy π(s). E denotes the expected value of a random
variable. [SB98, pp. 45-53]

vπ(s) = E[Gt|St = s] = E

[
∞∑
k=0

γtrk+t+1|St = s

]
, for all s ∈ S (2.6)

Optimal:
v∗(s) = max

π
vπ(s) (2.7)

qπ(s, a) = E[Gt|St = s, At = a] = E

[
∞∑
k=0

γtrk+t+1|St = s, At = a

]
(2.8)

Optimal:
q∗(s, a) = max

π
qπ(s, a) (2.9)

Intuitively, if the state visits of an agent in any MDP will emerge to infinity, the expected
return will converge to the optimal value functions v∗(s) and q∗(s, a). Then the optimal
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value of a state s under a policy vπ(s) must be equal to the expected return from the best
action from that state, as can be observed in equation 2.10.

v∗(s, a) = max
a∈A(s)

q∗(s, a) (2.10)

In order to get in touch with the value functions, an example is presented at this point.
Imagine an agent being exposed to a random location in a grid cell maze environment
consisting of 16 states (floors), observable in figure 2.2. At any state the agent can go up,
down, left, right or stay at the current position. Grid cells are drawn with a thin black
line, while walls are drawn with a larger one. If an action pushes the agent into a wall,
it remains at its current position. The agent’s goal is to learn the quickest way through
the maze and reach the exit floor which is located in the bottom left. After reaching the
exit floor, the agent perceives a reward of +1 and is exposed at a random position again.
As can be seen in the reward map 2.1a, all other rewards are set to zero. The discount
factor γ is chosen as γ = 0.9. The converging of the state-value function vπ(s) to the
optimal state-value function v∗(s) can be observed in figure 2.1b. The same applies to
the action-value function qπ(s, a) which will converge to the optimal action-value function
q∗(s, a) 2.1d. As already apparent in the equation 2.10, the optimal action-value q∗(s, a)
corresponds to the optimal state-value v∗(s).

(a) Reward Map

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1.0

(b) Optimal State-Value Function

0.53 0.59 0.66 0.73
0.59 0.53 0.48 0.81
0.66 0.48 0.81 0.90
0.73 0.81 0.90 1.0

(c) Optimal Policy

→ → → ↓
↓ ← ← ↓
↓ ↑ → ↓
→ → → �

(d) Optimal Action-Value Function

0.53 → 0.59 → 0.66 → 0.73 ↓
0.59 ↓ 0.53 ← 0.48 ← 0.81 ↓
0.66 ↓ 0.48 ↑ 0.81 → 0.90 ↓
0.73 → 0.81 → 0.90 → 1.0 �

Figure 2.2: Value functions description using a simple maze world.
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2.1.3 Bellman Equations

Using the value functions equations: 2.6 and 2.8; our agent can already decide which
actions a to select in each state s, but so far it has not been clear how to calculate these
values through exploration. This is where the Bellmann equations [Bel54, pp. 1-19] comes
into play. With the use of the recursive property of the total discounted rewards over time
∞∑
k=0

γkRt+k+1 = Rt+1 +
∞∑
k=0

γkRt+k+2 the state-value function vπ(s) 2.6 and action-value

function qπ(s, a) 2.8 can be expanded to the Bellman equations 2.11 2.13:

vπ(s) = Eπ

[
Gt|St = s

]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s

′)
] (2.11)

Optimal:
v∗(s) = max

π
vπ(s) (2.12)

Considering the final expression from equation 2.11, γvπ(s′) can be seen as the expected
reward from the next state s′ multiplied with the discount factor γ to make this equation
convergent. Note that the expected return Eπ following an policy π can be rewritten as∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a), which can be seen as summing over all possible actions and all

possible returning states [SB98, p. 46].

qπ(s, a) = Eπ

[
Gt|St = s, At = a

]
=

∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s

′)
] (2.13)

Optimal:
q∗(s, a) = max

π
qπ(s, a) (2.14)

The Bellman optimality equation 2.12 is a fix point equation which provides a unique
solution for a finite MDP. Any finite MDP with n states can be converted into n equations
with n unknowns [SB98, pp. 50-51]. Learning algorithms which use equation 2.12 to
find an optimal solution v∗(s) are called value iteration algorithm, observable in listing
1. Although, these algorithms are Off-Policy, because v∗(s) can be calculated without a
policy π(s), they are not Model-Free since solving equation 2.12 requires the transition
propabilities P and expected rewards R.
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Initialise V (s) ∈ R, e.gV (s) = 0
∆← 0
while ∆ < θ (a small positive number) do

foreach s ∈ S do
v ← V (s)
V (s)← max

a

∑
s′,r

p(s′, r|s, a)
[
r + γV (s′)

]
∆← max(∆, |v − V (s)|)

end
end
output: Deterministic policy π ≈ π∗ such that
π(s) = argmax

a

∑
s′,r

p(s′, r|s, a)
[
r + γV (s′)

]
Algorithm 1: Value Iteration

2.1.4 Q-Learning

As mentioned in section 1.2 and 2.1.1.3, a Model-Free algorithm is required for our issue.
Consequently, the just mentioned value iteration algorithm 1 can not be used, because it
would presuppose to know the transition probabilities P , as well as the expected rewards
R. May it is possible to obtain these unknowns by allowing an agent to experiment with
the consequences of its actions taken in a MDP. However, since the policy π(s) is also
unknown, the agent has no knowledge how to act at any given state. Overall, the agent has
to learn the transition probabilities P , the expected rewards R as well as the policy π(s).
To solve this problem, at least two policies are typically used: One just for exploring the
environment an a second one which is trained. For example, a random policy πε−greedy(s)
where the agent performs random actions on a MDP and collects experiences. These
experiences contain small partial parts of the unknown variables. With this knowledge the
second policy π(s), which is used after training to exploit the environment, can be trained.
When the state visits approach towards infinity, the trained policy π(s) will converge to
the optimal policy π∗(s). At that point the agent can stop performing random actions
and start to act accordingly to the trained policy π(s). That is exactly the idea behind
Q-learning. [WD04, pp. 1-14]

In order to understand Q-learning the Q-function Q(st, at) 2.15 has to be explained. This
function provides the expected reward (total expected cumulative discounted reward)
performing an action at from state st and following policy π thereafter. From the Bellmann
equation 2.13 the Q-function 2.15 can be derived [HMLIR07, pp. 2-3]:

Qπ(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γVπ(s

′)
]

(2.15)

Optimal:
Q∗(s, a) =

∑
s′,r

p(s′, r|s, a)
[
r +maxa′∈AQ∗(s

′, a′)
]

(2.16)
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An agent using the Q-learning approach updates the corresponding Q-value (expected
reward) after each observed transition. Any action taken by an agent on an MDP will
result in such a transition. A transition is a 4-tuple (st, at, rt+1, st+1), that consists of the
current state st, the performed action at, the resulting state st+1 and the reward rt+1 earned.
Q-values can be calculated with the help of the Q-function 2.15 and by approximating the
state-value function vπ. This can be done by using the Temporal Differences(TD) method
[Day92, pp. 2-3] resulting in equation 2.17. The Q-values can be stored by the agent in a
look-up table, better known as Q-table [HMLIR07, p. 6].

Q(st, at)← Q(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

 rt+1︸︷︷︸
reward

− γ︸︷︷︸
discount factor

max
a′∈A

Q(st+1, a
′)︸ ︷︷ ︸

estimate of optimal future value

−Q(st, at)︸ ︷︷ ︸
old value

 (2.17)

With equation 2.17 we can present the Temporal Differences Q-learning algorithm:

Initialise Q(s, a) arbitrarily and Q(terminal − state, ) = 0
foreach episode ∈ episodes do

while s is not terminal do
Choose a from s using policy derived from Q (e.g., ε-greedy)
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
s← s′

end
end

Algorithm 2: TD Q-learning

2.1.5 Deep Q-Learning

A big problem with the TD Q-learning algorithm, observable in listing 2, is, that the
Q-values must be stored in a Q-table. Suppose that the TD Q-learning algorithm 2 is used
for a simple computer game with a screen size of 64x64 pixels. Of course, the computer
game uses coloured images, but since this example can not derive any helpful information
from the image colors, they are converted into greyscale images with 256 grey levels. For
motion tracking four consecutive images are used. This would result in a huge Q-table
with 25664∗64∗4 rows. In literature this problem is called Curse of Dimensionality [KP12,
p. 5].

Since our agent operates in huge continuous state spaces and memory is limited,
the TD Q-learning approach can not be used. In addition, as mentioned in section 1.2, it
is required to use a resource-saving method. The team of Google DeepMind were facing
the same problem. [MKS+13, p. 19] They overcame this issue by using a neural network
(called Q-network) with weights θ to approximate the action-value function qπ(s, a)2.11
resulting in Q(s, a; θ) ≈ Q∗(s, a). Neural networks are non linear function approximators
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which are very flexible. Appendix A provides more information about neural networks.
Consequently, the use of Q-networks leads to a change in the learning architecture, which
can be seen in figure 2.3. Instead of using a state s and an action a to update the Q-table,
we only feed the Q-network with a state s and obtain a Q-value prediction for each action
a. As always, the highest Q-value represents the best action that can be performed from
this state s. The Deep Q-learning network (DQN) is trained with a loss function. With a

State s

Action a

Q-table Q-value

TD Q-learning

State s Q-network

Q-value action1

Q-value action2

Q-value action3

Deep Q-learning

Figure 2.3: Difference between TD Q-learning and Deep Q-learning architecture.

loss function 2.18, the error of a neural network can be determined and with the gradient
of its derivative, the weights θ are changed.

Li(θi) = E(s,a,r,s′)∼U(D)

[
(r + γmax

a
Q(s′, a′; θi−1)︸ ︷︷ ︸

target

−Q(s, a; θi)︸ ︷︷ ︸
prediction

)2
]

(2.18)

U(D) is the experience replay history which is stored in the replay memory. This memory
stores the last N transitions and at every learning step a minibatch is sampled and used
to train the neural net. More information about replay memories can be read in section
2.1.9. The DQN learning algorithm can be observed here 3.
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Initialise replay memory D with capacity N
Initialise exploration method E
Initialise Q(s, a) arbitrarily
foreach episode ∈ episodes do

while s is not terminal do
Use exploration method E to choose an action a ∈ A(s)
Take action a, observe r, s′

Store transition (s, a, r, s′) in D
Sample random minibatch of transitions (sj, aj, rj, s

′
j) from D

Set yj ←

{
rj for terminal s′j
rj + γmax

a
Q(s′, a′; θ) for non-terminal s′j

Perform gradient descent step on (yj −Q(sj, aj; Θ))2

s← s′

end
end

Algorithm 3: Deep Q-learning algorithm.

2.1.6 Double DQN

One problem with DQN, described in section 2.1.5, is that small changes in the Q-values
can lead to rapid policy changes and thus the policy can begin to oscillate. This leads to an
overestimation of the Q-values, which harms the task solving performance. [HGS15, p. 1] To
prevent this particular case, Double DQN (DDQN) [HGS15] uses two Q-networks: Q(s, a; θ)
and Q(s, a; θ−). Q-network Q(s, a; θ−) is usually called target Q-network in literature.
While the Q-network Q(s, a; θ) is used for action selection only, the other Q-network
Q(s, a; θ−) evaluates actions. This means that the Q-network Q(s, a; θ−) predicts the
Q-values of the next states (s′, a′) during training. It is attempted to keep this Q-network
Q(s, a; θ−) as stable as possible over several transitions. To achieve this, its weights θ−

are updated slowly with equation θ− = (1− τ)θ− + τθ. If τ is to be chosen small enough,
usually τ ≤ 10−3, the weights of the evaluation Q-network converges slowly to the weights
of the action Q-network θ− → θ. As a consequence, small changes in the Q-values do not
lead to rapid policy changes anymore. The DDQN algorithm can be observed in listing 4.

2.1.7 Deep Deterministic Policy Gradient

As already observable in figure 2.3 with DQN (section 2.1.5) and DDQN (section 2.1.6)
the predicted Q-values only determine which action leads to the highest amount of reward.
It does not describe, with how much energy or force this action should be performed. For
robotic control, this information is essential. Of course, we can discretize each action of
the action space to extend DQN or DDQN for continuous action spaces. This approach
has many drawbacks: First, the curse of dimensionality. Imagine an agent with four
actions and a discretization of ten. The corresponding Q-network will have an output
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Initialise replay memory D with capacity N
Initialise exploration method E
Initialise τ
Initialise Q(s, a; θ) and Q(s, a; θ−) arbitrarily
foreach episode ∈ episodes do

while s is not terminal do
Use exploration method E to choose an action a ∈ A(s)
Take action a, observe r, s′

Store transition (s, a, r, s′) in D
Sample random minibatch of transitions (sj, aj, rj, s

′
j) from D

Set yj ←

{
rj for terminal s′j
rj + γQ(s′,max

a
Q(s′, a′; θ); θ−) for non-terminal s′j

Perform gradient descent step on (yj −Q(sj, aj; θ))
2

Update weights θ− = (1− τ)θ− + τθ
s← s′

end
end

Algorithm 4: Double Deep Q-learning algorithm.

size of forty and an action space size of 410 = 1048576. Efficient exploration of such
large action spaces is very difficult and successful learning can not longer be guaranteed.
In addition, instead of four output neurons, this Q-network will need forty, which will
slow down training drastically. Second, discretization implies the loss of information that
can cause states to become inaccessible. This can make learning very difficult or even
impossible. [LHP+15, pp. 3-4] Deep Deterministic Policy Gradient (DDPG) introduces an
actor-critic (AC) algorithm which can deal with continuous action spaces. AC algorithms
are hybrid methods which combine policy-based and value-based RL algorithms. Figure
2.4 explains the relationship of this methods.

DDPG uses two Q-networks, of which one learns to act (actor), while the other

Value
Based

Policy
Based

Actor
Critic

Figure 2.4: Realtionship between value-based, policy-based and AC algorithms.

learns to criticize the taken action (critic). Just as DQN and DDQN the critic is
trained with the value-based learning approach, which means the approximation of the
action-value function qπ(s, a) and is therefore trained with the standard Deep Q-learning
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Environment Actor Critic

State s

Action a

TD error

Figure 2.5: DDPG Architecture.

approach, mentioned in section 2.1.5. On the other hand, the actor uses the policy-based
learning approach and tries to approximate the policy function π(s). The actor Q-network
has to be trained with the policy gradient ∇θJ = ∂Q(s,a;θQ)

∂a
∗ ∂µ(s;θµ)

∂θµ
which is proved that

this equation calculates the gradient of the policy’s performance [LHP+15, p. 3]. The
architecture of this approach can be observed in figure 2.5. The environment provides the
state for the actor and critic Q-network. During the training, the actor predicts the next
action to perform, which is then criticized by the critic. This criticism can be used to
train the actor while the critic is trained with the starndard Deep Q-learning approach.
The DDPG algorithm can be observed in listing 5.

Initialise replay memory D with capacity N
Initialise exploration method E
Initialise Critic Q(s, a; θQ) with random weights θQ

Initialise Actor µ(s; θµ) with random weights θµ

foreach episode ∈ episodes do
while s is not terminal do

Use exploration method E to choose an action a ∈ A(s)
Take action a, observe r, s′

Store transition (s, a, r, s′) in D
Sample random minibatch of transitions (sj, aj, rj, s

′
j) from D

Perform Q-learning e.g. DQN or DDQN
Update critic with (yj −Q(sj, aj; θ))

2

Update actor with policy gradient ∇θJ = ∂Q(s,a;θQ)
∂a

∗ ∂µ(s;θµ)
∂θµ

s← s′

end
end

Algorithm 5: DDPG algorithm.
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2.1.8 Reward Function

The reward function determines for which states the agent is rewarded or penalized. This
function is crucial for solving a task correctly. Minor errors or few adjustments to this
function, such as providing too little or too much reward, giving reward at the wrong
time or rewarding subgoals, can cause the agent to learn a completely different task. As
mentioned in this dissertation [Gas02, p. 8], researchers worked on a robot pushing task,
in which a robot had to push boxes. Unremarkable minor mistakes in the reward function
have caused the robot to crash into the wall or bypass the boxes completely. In addition,
the amount of immediate reward given should be chosen very carefully. Giving naive high
rewards can make the gradients of a Q-network large and unstable when backpropagated
[8, p. 28]. Therefore, rewards should be clipped.

A simple approach for designing a reward function is to reward all the small successes of
an agent. Through this approach, it is likely that the agent learns to master a subgoal
rather than the main goal of a task. The reason for that is that Q-learning tries to
maximize the total cumulative reward it receives in the long term. Repeated execution
of a subgoal can lead to such high rewards that achieving the main goal is no longer
attractive. As rewarding subgoals is very difficult, it is recommended in literature to omit
this completely [SB98, p. 42]. Now it is more obvious, why RL faces many problems with
sparse rewards.

Therefore, a task usually consists only of one goal state, in which a positive reward
is achieved, or of an shaped reward. Shaped rewards mean that the amount of perceived
reward depends on a function. For example, this function may be the distance between
the agent and its destination to be reached. This would encourage the agent to reduce this
distance. However, reward shaping requires a very good domain knowledge [AWR+17,
p. 8], because if the underlying function is poorly designed, it can be seen as rewarding
subgoals, causing the agent to learn a completely different task. Negative rewards
encourage the agent to leave the current state as fast as possible. Moreover, in common
Q-learning methods, these negative rewards are not backprobagated more than one state,
since only the maximum argument max

a
Q(s′, a′; θ) is considered [FAS10, p. 1]. Therefore,

negative rewards can be applied for each state that the agent should leave as soon as
possible.

In order to understand this context better, an example is provided in figure 2.6.
Here, the agent’s (sign A in figure) main goal is to reach the exit point E of a maze. For
reaching the exit point E the agent will be rewarded with 1.0. He is powered with a
battery and therefore one charging field C is placed in the middle of the maze. At any
state the agent A can move up, down, left, right or stay at his current position. Actions
that move the agent A out of the maze are not possible. In this case, he will be moved
back to the last correct position. Figure 2.2a shows the initial state in which the agent A
starts. After the charging field C has been reached, the battery of the agent is loaded.
When the battery power drops to zero, the agent A will be penalized with -1.0 and will be
reset to the initial state 2.2a. Since overcharging the battery is not useful, the agent will

22



State of the Art

be punished with -1.0 for such actions. After six actions the battery power will drop to
zero, so the agent has to charge his battery in order to reach the exit point E. Therefore,
he will be rewarded with 0.1 for charging. Now charging can be seen as a subgoal and
rewarding this subgoal will result in a wrong behaviour. The agent will learn to move on
a charging field C 2.2b and charge his battery. After the battery is full, he will move away
from the charging field C 2.2c. Finally, he will move back to the charging field 2.2d again.
This behaviour is repeated forever, as more reward is generated in the long term t → ∞
than reward is perceived for reaching the exit point E.

Figure 2.6: Example maze where a subgoal is rewarded.

(a) Initial state

A

C

E

(b) Timestep n+ 0
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E
(c) Timestep n+ 1
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E

2.1.9 Replay Memory

All Deep Q-learning algorithms, mentioned in this work, 3 4 5, need to store transitions
in a replay memory. If it is not the case, it is obvious that the Q-network must be trained
by successive transitions. This is like learning only on the basis of immediate experiences,
without considering the past. Imagine a child who is trying to learn how to walk without
past experiences. It may learn to move forward somehow, but it is very unlikely that it will
succeed in walking on its feet. That is because past experiences are missing. Therefore,
past experiences have to be considered to enable a successful learning approach. This can
be done by saving transitions in a so called replay memory. Moreover, the learning of
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successive transitions is very inefficient due to the strong correlation between them. To
break up these correlations, the transitions are usually sampled randomly. In addition,
after each action, a minibatch, which contains at least two transitions, is sampled from
the whole memory. Therefore, it is likely that every transition is replayed often enough.
This results in more weight updates and thus in better data efficiency. After the memory
is full, the oldest transitions are deleted. [MKS+13, pp. 4-5]

The collaboration of the environment, Q-learning method and replay memory can
be observed in figure 2.7. The Q-learning method perceives the state s from the
environment and predicts the next action a to perform. Then the next state s′ and reward
r is available. Finally, the transition (s, a, r, s′) is stored in the replay memory.

Unfortunately, using this kind of replay memory leads to more issues, such as catastrophic
forgetting [KPR+17, p. 1]. This means the Q-network has either learned a task correctly,
but forgets about it by simply being trained with many useless transitions, or it was not
trained with transitions that solve the task at all. The first case, for example, occurs if an
agent finds the exit point of a maze early and the Q-network learns about it. However, due
to worse exploration, the exit point is not found again and therefore no more transitions,
leading to this exit point, are stored in the replay memory. After all, the Q-network is
trained too rarely with useful transitions and it will slowly forget about the exit point.
The second case occurs due to random sampling or deletion of transitions from the
replay memory. These deleted or not sampled transitions could have contained important
information required to accomplish the task. It may happen that these transitions were
not experienced by the Q-network at all. A successful learning process can be difficult or
even impossible on this basis. This section lists popular replay memory methods.

Environment

Q-learning
Method

Transition #1

Transition #2

Transition #3

Transition #4

...

Replay
Memory

State
s

A
ct

io
n
a

Transition

(s, a, r, s′)

batch for training

Figure 2.7: Collaboration of the replay memory with the Q-learning method and
environment.
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2.1.9.1 Experience Replay

Experience Replay (EXPR) [MKS+13, pp. 4-5] is the simplest and most widely used one.
Transitions are stored one after the other in a memory of size N . The most recent
transitions experienced are always stored at the end of the memory. Minibatches are
sampled randomly distributed from the whole memory. After the memory is full, the
oldest transitions, which are the transitions at the beginning of the memory, are discarded.
Intuitively, this memory is most susceptible to catastrophic forgetting.

2.1.9.2 Prioritized Experience Replay

Introduced in paper [SQAS15, pp. 1-10] Prioritized Experience Replay (PEXPR) takes
advantage of the fact, that the temporal difference (TD) error δ of transitions can easily
be calculated with algorithms using Q-learning approach: δ = |Qnew − Qold| with Qold =
Q(s, a; θ) and Qnew = r + γmaxaQ(s

′, a′; θ) (in the case of DQN). This TD error shows
how surprising or unexpected a transition is: in other words, the higher the TD error of a
transition, the more the agent can learn from these transitions. Sampling only transitions
with high TD error can make a system prone to overfitting, due to the lack of diversity.
Therefore, the TD error is converted to a priority. The probability of sampling transition
i is defined as 2.19

P (i) =
pαi∑
k p

α
k

(2.19)

where pi > 0 is the priority of transition i and exponent alpha determines how much
prioritization is used, with α = 0 corresponding to the uniform case. To guarantee that
even transitions with low priorities are sampled with a non zero probability from the
memory, multiple methods are used, like setting the priority of a transition to maximum
for the first insert. This ensures that these transitions are sampled for sure in the upcoming
minibatch. The paper introduces to types of prioritizations: rank-based (PRANK) and
proportional-based (PPROP).

2.1.9.3 Hindsight Experience Replay

In a sparse reward environment, where rewards are only given if a goal is reached, usually
multiple entire episodes without any positive rewards are stored in the memory. Assume,
an agent is equipped with a battery and his goal is to reach a charging station. When
the charging station is not reached within an episode, the episode ends without a positive
reward stored. From such episodes, the Q-learning approach only learns which actions
should not be performed. Of course, this is not a completely useless knowledge, but in the
end it does not help to solve the task. So Q-learning learns little or even nothing from
such episodes. However, these episodes contain useful information, such as how non goal
states can be reached. This knowledge is useful and can help the agent to solve the task
better and faster. [AWR+17, pp. 3-4]

25



State of the Art

Consider an episode sequence like observable in figure 2.8 where the agent failed to
reach a desired goal and received only negative rewards. This sequence is not helpful

states : s0 → s1 → s2 → . . . → st−1 → st
rewards : −1 → −1 → −1 → . . . → −1 → −1

Figure 2.8: Example of an episode in which no goal state was reached.

for learning how to reach the goal state, but it tells us how to reach the state st. In
addition, if this state must be visited in order to solve the task, the knowledge about
how to reach it, can be considered as very important. To enable learning we define st
as a virtual goal or additional goal, reward it with zero and add it to the memory. So
the episode contains at least one non-negative reward that supports learning. Figure
2.9 shows an example of an episode with one virtual goal inserted. This is exactly the

states : s0 → s1 → s2 → . . . → st−1 → st
↘

svirtual
rewards : −1 → −1 → −1 → . . . → −1 → −1

↘
0

Figure 2.9: Episode with one virtual goal inserted.

idea behind Hindsight Experience Replay (HER) [AWR+17, pp. 1-11]. With HER, each
state of an episode is treated as a virtual goal and for each of them, k virtual goals are
inserted into the memory additionally. The article presents several policies for sampling
the k virtual goals. However, we use the future method, which samples the virtual goals
from the same episode. However, these virtual goals has to be observed after the current
treated state. An example of this can be observed in figure 2.10. The ability to learn

s1...tv0 s2...tv0 s3...tv0 stv0
↑ ↑ ↑ ↑

states : s0 → s1 → s2 → . . . → st−1 → st
↓ ↓ ↓ ↓
s1...tv1 s2...tv1 s3...tv0 stv1

Figure 2.10: HER example with k = 2. s1...tv0 defines a virtual goal which is
randomly drawn from state 1 to t. With st this episode ends.

more from episodes that did not reach a main goal allows HER to deal well with delayed
and sparse rewards. Additionally, HER only instructs how virtual goals are generated
and not how to save them. Therefore, HER is with all other replay memory methods, like
Experience Replay 2.1.9.1 or Prioritized Experience Replay 2.1.9.2 combinable. In order
to decide which goal the Q-network should follow, the state of the goals, virtually or main,
is additionally provided as input. Therefore, the input size (state space) of the Q-network
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State Input #1

State Input #2

Goal Input #1

Goal Input #2

Qvalue for action #1

Qvalue for action #2

Hidden
layer 1

Input
layer

Output
layer

Figure 2.11: Example of a Q-network combined with HER, where main or virtual
goals must be provided as input.

must be doubled: current perceived state of the environment as well as the actual goal to
follow. An example of the changed Q-network architecture can be observed in figure 2.11.

This means that, for HER, the main goals G of the tasks must be known and inputted
to the Q-network. Providing the main goals as an input for the Q-network is, in our
opinion, like fraud. The Q-network simply learns that it must reach the state which is
equal to the goal input. This is supported by the virtual goals, that reward the learning
algorithm with zero when the current action a leads to a state s′ which is equal to the goal
input. The learning algorithm slowly learns to acquire this behaviour. Another limitation
is that the problem to be solved should be divisible into episodes. For example, it is not
limiting for tasks, in which the agent might ”die”, but for continuous tasks, where the agent
should never stop to learn, HER is not usable. Another disadvantage is that the input size
must be twice the state space size. The resulting Q-network’s number of input neurons
is increased, which will drastically slow down training and reduce scalability. In addition,
HER performs bad in combination with shaped reward functions [AWR+17, p. 8]. Finally,
if the main goals are dynamic, which means that they can change during task execution,
without adjustments, HER is not applicable.

2.1.10 Exploration

For RL issues, an agent must make two far-reaching decisions: how long should the
environment be explored and when should it be exploited? Exploration means that an
agent performs actions to gather more information about the task and environment. On
the other hand, exploitation means that an agent only takes the best action possible from
a state. When an environment is under-explored, the agent learns a suboptimal policy
that does not or poorly solves the task. However, only exploring one environment results
also in a suboptimal policy, due to overfitting of the Q-network or congestion of the
replay memory with unprofitable transitions. Finding out when to explore and when to
exploit is a key challenge in RL, known as the exploration-exploitation dilemma.[SB98, p. 2]
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Exploration methods can be divided into two groups: directed and undirected. [Thr92,
p. 3] Directed exploration uses information about the task and/or environment. One
of the requirements mentioned in section 1.2 is that the agent should know as little as
possible about the task and the environment. For this reason, directional exploration is
not used within this thesis. However, undirected exploration methods use no information
about environment and task, and thus use random exploration strategies.

2.1.10.1 ε-greedy

ε-greedy (EG) is a non-greedy exploratory method in which the agent chooses a random
action with a probability of 0 ≤ ε ≤ 1 at each timestep instead of performing the action
with the highest Q-value:

π(s) =

{
random action from action space A(s), if ζ < ε.

argmaxa∈A(s)Q(s, a), otherwise.
(2.20)

with an uniform random number 0 ≤ ζ ≤ 1 which is drawn at each timestep.

To avoid the exploration-exploitation dilemma, ε is decreased at each timestep by a
fixed scalar number κ. The main challenge is to find the right value for κ.

2.1.10.2 Ornstein-Uhlenbeck process

For physical environment with momentum an Ornstein-Uhlenbeck process (OU), observable
in equation 2.21, is usually used as additive noise to enable exploration. This process
models the velocity of a Brownian particle with friction [LHP+15, p. 11]. Especially in the
case of robot control, such a process is used, due to the drifting behaviour of the output
values. The parameters can be set to produce only small drift-like values, which are quite
friendly for robot joints. In general, the Ornstein-Uhlenbeck process is a stochastic process
with medium-reversing properties:

dXt = θ · (µ−Xt)dt+ σdWt, X0 = a (2.21)

where θ means how fast the variable reverts towards the mean. σ is the degree of the
process volatility and µ represents the equilibrium or mean value and a is the start value
of the process, which is usually chosen to be zero.

The Ornstein-Uhlenbeck process can be considered as noise process N (a, θ, σ, µ)
which generates temporarily correlated noise. This noise is then added to the action to
enable exploration, observable in equation 2.22

π(s) = π(s) +N (a, θ, σ, µ) (2.22)
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2.2 Related Work

In this chapter similar articles and works are presented. Although RL is a hot topic
these days, finding up-to-date articles which use real physical robots, that learn to solve
problems on their own, is a difficult task. For computer programs, dozens of articles and
simulation environments exist. For example, the OpenAI Gym website [6] offers more
than sixty environments in which learning algorithms can be evaluated and compared to
the results of other competitors. In addition, there are not many articles that deal with
few sensors and thus with a poor resolution of the environmental state. In this context, no
robotic arms, that are used for learning to solve tasks, are meant, of which are countless
of articles available.

Since robotic tasks are often associated with complex robot motion models, poor
environmental state resolution and sparse rewards, the article [VHS+17] introduces a new
DDPG methodology called Deep Deterministic Policy Gradient from Demonstrations
(DDPGfD), that should help to solve those issues. The idea is to store a defined
number of task solving demonstrations in the replay memory and keep them forever.
As replay memory PPROP is used. In addition, a new loss function is introduced,
which helps to propagate the Q-values backwards along the trajectories [VHS+17,
p. 3]. Finally, multiple learning updates per environment step should help to deal
with sparse rewards. However, this third modification should be used with caution as
it may cause the Q-network to diverge. With these three modifications, environments
with very sparse rewards can be successfully solved even with non shaped reward functions.

In this article, An Adaptive Strategy Selection Method With Reinforcement Learning
for Robotic Soccer Games [SLH+18], researchers from China used Q-learning to learn
which strategy small robots should follow in certain situations to successfully play football.
Each team consists of four robots and the game state was observed with a camera filming
the entire football field. The main issue addressed by this work is that a very dynamic
environment, such as soccer with multiple teammates, requires timely and precise decision
making [SLH+18, p. 1]. This work is very interesting considering how the strategy
selection is learned but compared to our work, the behaviour of the robots is not learned
by a machine learning method. In addition, due to the camera, the entire state of the
environment is accessible.

A very interesting article, Control of a Quadrotor With Reinforcement Learning
[HSSH17], introduces the control of a quadrotor with RL methods. The 18-dimensional
state vector of the quadrotor includes a rotation matrix, the position, the linear velocity
and the angular velocity. The policy is optimized with three different methods: A new
optimization algorithm developed by the authors, Trust Region Policy Optimization
[SLM+15] and DDPG [LHP+15]. While TRPO and DDPG performed poorly, the
algorithm of the authors performed well. Unfortunately, they used a model-based learning
approach, therefore their work is not fully comparable to ours.
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This chapter introduces an adapted interaction model, in section 3.1, that is required
because the reward can not be calculated and granted by the environment through agent’s
sensors. Followed by an improvements section 3.2, which presents new techniques and
improvements done to the state of the art methods with the aim of achieving better results
overall. Afterwards, the evaluation setup is introduced in section 3.3. This section contains
a description of all important meta parameters. The experiments section 3.4 contains an
evaluation of the Q-learning algorithms, replay memories, exploration methods, reward
functions and improvements mentioned in this thesis. The performance of these methods
are measured in a discrete and continuous action space and state space environment. In
addition, the effects of changed meta parameters, such as the batch size or the OU 2.1.10.2
parameters, are observed. Finally, the best combinations of these techniques are discussed
and presented in the measurements section 3.5.

3.1 Adapted Interaction Model

A problem with the standard interaction model, presented in section 2.1.1.3 and
observable in figure 2.1, of an agent with its environment is, that the reward is provided
by the environment. For computer-written programs, this assumption holds, but for
environments in the real world, this model can not be used. Since such environments only
provide the state that is captured with agent’s sensors. Therefore, the reward must be
calculated by the agent itself. Thus, an adapted interaction model, which is used within
this thesis, is introduced at this point and can be observed in figure 3.1. The state of the
environment is provided to the agent and to the reward function. Then the reward can be
calculated by the reward function, based on the current state of the agent. Finally, with
this reward, the Q network can learn how to reach the rewarding states of the environment.

Obviously, the motivation quality of the reward function depends heavily on how
well the state of the environment is resolved by the agent’s sensors. Therefore, choosing
the right sensors for the task to be solved can be considered as a key challenge.
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Figure 3.1: Interaction between agent and a real world environment.

3.2 Improvements

In this section, the improvements to the state of the art methods is introduced. Goal of
these enhancements is to achieve better results overall. The performance of these changes
is then measured in the experiments section 3.4.

3.2.1 Hindsight Experience Replay With Goal Discovery

The idea behind Hindsight Experience Replay With Goal Discovery (HERGD) is that the
environment’s main goal has to be discovered first and only after its discovery it is provided
to the Q-network. This approach offers more flexibility than standard HER 2.1.9.3, in which
the main goal has to be provided right from the beginning to the Q-network. However, the
virtual goals are inserted as defined in standard HER algorithm. Of course, in environments
where it is unlikely that the target will be reached with random exploration methods, this
approach will struggle the same way as EGC 2.1.10.1 or OU 2.1.10.2. However, once the
goal is finally found, this approach can help to get to the optimal policy faster.

3.2.2 ε-greedy Continuous

Since ε-greedy, described in section 2.1.10.1, is only applicable to integer actions, ε-greedy
Continuous (EGC) is introduced. EGC extends the idea of standard ε-greedy in order to
support continuous action spaces as well. The key idea behind this approach is that every
action from the action space a ∈ A(s) has its own action range [alower, aupper]. For each
action a a random uniform value λ is drawn, for which alower ≤ λ ≤ aupper holds:

π(s) =

{
apply λ to each action a ∈ A(s), if ζ < ε.

take actions from π(s), otherwise.
(3.1)

In order to avoid the exploration-exploitation dilemma and to switch from exploring to
exploiting, ε is decreased at each timestep by a fixed scalar number κ.
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3.2.3 Ornstein-Uhlenbeck Annealed

One issue concerning standard Ornstein-Uhlenbeck process 2.1.10.2 is that switching from
exploring to exploiting is done immediately. This means the process outputting noise
until the exploration stops and the exploitation begins. This can harm the learning
process, because actions that are already learned optimally can be totally overwritten
by the outputted noise. On the other hand, limiting the outputted noise by adjusting θ
or σ leads to under exploration. Therefore, the idea behind Ornstein-Uhlenbeck Annealed
(OUA) NA(a, θ, σ, µ) is to reduce the generated outputed noise after every timestep by a
function f(t):

π(s) = π(s) +NA(a, θ, σ, µ) ∗ f(t) (3.2)

For this evaluation, the function f(t) is selected to reduce NA linearly after every timestep.
Of course, more complex reducing functions f(t), such as exponentially reducing the noise
NA, can be designed as well.

3.3 Setup

As already mentioned in section 2.1, a Q-learning method requires other methods in order
to work. It consists of an algorithm, an exploration method, a replay memory and a reward
function. For simplicity and abbreviation, a four tuple named RL ∈ (M, E ,RM,RF)
method is introduced at this point:

M . . . Q-learning algorithm such as DQN, DDQN, …
E . . . Exploration method such as ε-greedy, …
RM . . . Replay Memory method such as Experience Replay, …
RF . . . Reward function

(3.3)

A RL method includes all the pieces required to work. The Q-learning algorithm M can
be considered as the brain. Learning and decision making is done here. The important
parameters are the number of layers and neurons, the activation functions, the optimizer,
the learning rate α, the discount factor γ and the soft target update factor τ . τ is only
required for DDQN and DDPG because DQN Q-networks do not include a second neural
net. The optimizer calculates an update value for the Q-network weights. Applying these
calculated values to the weights can be considered as learning. As in the DDPG article
[LHP+15, p. 11], all Q-networks in this work use the Adam [KB14, pp. 2-3] optimizer.
The learning rate α is multiplied by the values computed by the optimizer. Therefore, α
determines how fast the Q-network learns. Since some of our evaluations have to deal with
sparse rewards, which means that the past experiences are important, the discount factor
γ is chosen to be close to 1.0 with γ = 0.98 The learning rate α and soft target update
factor τ , described in section 4.3, is chosen to be small α = τ = 0.001, because solving
sparse reward problems requires a lot of transitions, since the rewarding state is not often
experienced. DQN and DDQN use standard feed-forward multilayer neural networks,
described in section A, while DDPG uses the same architecture as described in section 4.3
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and observable in figure 4.15 and 4.16. All hidden layers use RELU units as activation
function, as they are currently the most successful and widely used [RZL17, pp. 1-2].

The replay memory RM can be considered as the counterpart to the biological
memory. All experiences, in our case transitions, are stored in the replay memory. The
most important parameter is the size of the replay memory, which determines how many
transitions can be stored. While large memory sizes can only slow down learning, too
small memory sizes can drastically reduce learning success or even make it impossible
[LZ17, pp. 4-5]. Therefore, this parameter is usually selected to be large enough. For
HER also the sampling method and the quantity of additional goals k to sample has to
be chosen. As sampling method, the future method is selected because it gives the best
overall results [AWR+17, p. 9]. Since article [AWR+17, p. 9] showed that for the future
method the best value for parameter k is k = 4 or k = 8, k = 4 is used. For PPROP
the article [SQAS15, p. 6] mentioned that a good value for prioritization factor α is α = 0.6.

The exploration E method can be considered as curiosity, which inspires us to learn
more and more. Here, the sweet spot between exploration-exploitation has to be found.
To switch from exploration to exploitation, most methods are somehow annealed. If
annealing is used in this work, it is done in a linear manner. However, only standard
OU is not annealed. If the exploration methods were not somehow annealed, but rather
switched from exploration to exploitation instantly, which means that after n actions
the exploration ends and the exploration begins without any annealing, the learning
performance can be harmed drastically. When exploring, it is sometimes necessary to
carry out already learned actions in order to be able to further refine them and finally
to solve the task in the best way possible. The most important parameter here is the
exploration rate e which determines after how many actions performed the exploration
ends and the exploitation begins. Of course, it is common practice to place the value for e
exactly at the end of an entire learning run e = episodes ∗ stepsper episode. In addition, for
an OU process θ, σ and µ has to be chosen. θ describes how fast the output noise returns
to the mean, σ is the degree of process volatility and µ indicates the equilibrium or the
mean.

Finally, the reward function RF motivates us to learn by giving a reward for good
actions and punishing bad actions. Obviously, this function is crucial and determines if
the task is learned or not. Special attention should be given to this function because
minor errors can cause the agent to learn a completely different task. This function can
be designed shaped or non shaped. While non shaped reward functions usually provide
only a positive reward for the main goal of the task, shaped reward functions are usually
designed to guide the learner towards the main goal.

The evaluations are carried out with Keras [5] framework, which is programmed
with Python [11]. Keras is used to model neural networks and runs on top of the symbolic
math libary TensorFlow [9]. All global parameter settings used in all evaluations are
summarized in table 3.1.
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Q-learning method M
General Optimizer Adam

Learning rate α 0.001
Discount factor γ 0.98
Hidden layer 1 neurons 64
Hidden layer 2 neurons 128
Hidden layer activation function RELU
Batch sizes 16, 32, 64, 128

DQN & DDQN Output layer activation function Linear
DDPG Learning rate actor 0.001

Learning rate critic 0.001
Output layer activation function Tanh
Replay memory RM

General Size 500000
PPROP Prioritization factor α 0.6
HER Sample method future

Additional goals 4
Exploration method E

ε-greedy Start value ε 1.0
End value ε 0.1
Annealing linearly

Ornstein-Uhlenbeck θ 0.15
µ 0.0
σ 0.2

Table 3.1: Global parameter settings for all evaluations.

3.4 Experiments

In this section the state of the art methods, mentioned in chapter 2, and improvements,
mentioned in section 3.2, are evaluated. All experiments use the global parameter settings
presented in section 3.3. To get an idea of which reward function, whether shaped or not,
works well, all environments are evaluated with a shaped and non shaped reward function.
In addition, several minibatch sizes are tried out in order to find a meaningful value.

Firstly, various parameter settings of an OU and OUA process are evaluated in
order to find meaningful values. Secondly, the evaluations are performed in a bit-flip
environment, presented in section 3.4.2, which itself consists of a discrete state and action
space. This is followed by a short discussion about the results, observable in section 3.4.2.
Thirdly, to measure the performance in a continuous state and action space environment
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the evaluations are performed in the pendulum environment, introduced in section 3.4.3.
This is followed by a short discussion about the results, observable in section 3.4.3.
Finally, a measurements section 3.5 discusses and presents the RL methods performed
best.

3.4.1 Ornstein Uhlenbeck Process Parameter Determination

In this section several different parameter settings for an OU and OUA process,
introduced in sections 2.1.10.2 and 3.2.3, are evaluated in order to find meaningful
values. Observing the impacts of the various settings will help to determine which values
are usful for certain environments. In addition, since exploration is very important for
successful learning a wrong understanding of this settings hinders task solving performance.

All Q-networks in this thesis use an output range of [−1.0; 1.0]. Therefore, the OU
parameters are determined for that range. As already known from section 2.1.10.2, an
OU process consists of four parameters to adjust: θ, σ, µ and a. Parameter µ, which
represents the mean value, and a, which represents the starting value of the process,
are set to zero. Parameter θ, which indicates how fast the process reverts towards the
mean and σ, which determine the maximum volatility, must be found. If θ is chosen to
be very large, the process will produce values close to the mean µ. On the other hand,
if θ is chosen to be very small, the output drifts in the direction of +1 or -1 and only
returns to µ after a very long time. Parameter σ indicates how fast the output can drift.
Selecting σ to be very large will generate a lot of values close to 1 and -1. However, if
σ is chosen to be very small, the drift speed is impaired and values close to µ are generated.

The evaluation only records the noise N (a, θ, σ, µ) and NA(a, θ, σ, µ) generated by
the OU or OUA process. Two graphs are generated per evaluation. One graph shows the
output of the process over time while the other one counts how many times a noise value
occurs. Therefore, the range [−1.0; 1.0] is discretized with a step size of 0.001. Then it is
counted how often an output value occurs in a certain discretization level. This process is
executed for 50 times and finally the average is calculated.

Results

Figure 3.2 show the evaluations of the standard OU process with different settings for θ
and σ. In the first figure (θ = 0.15 and σ = 0.3), it can be observed that setting θ smaller
than σ will cause the process to output a lot of values near to the range boundries. This
can be useful for agents where abrupt control of the actuators is required. For example,
if a robotic arm is used to control a heavy mass object, abrupt controlling can be useful
[RNS13, p. 1]. The next graph (θ = 0.3 and σ = 0.2) shows the opposite of the first one.
Here θ is set to be greater than σ. This results in many output values being close to zero.
For agents, where fine steering is necessary, these settings can be used. Finally, the third
graph (θ = 0.3 and σ = 0.3), shows what happens if θ is set to be equal to σ. In this case,
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the output values are concentrated close to zero and at the boundaries of the range. This
setting may be useful for environments where the entire output range must be approached.

Finally the evaluations of the OUA process, introduced in section 3.2.3, is shown
in figure 3.3. Especially in the second (θ = 1.0 and σ = 0.5) and third evaluation (θ = 0.5
and σ = 1.0) a linear decreasing of the output values can be observed. Unfortunately,
since an OU process uses the previous outputted value, the output value increases over
some time again. This behaviour, which is contra productive, since it was planned to
decrease the outputted noise slowly to enable soft switching from exploring to exploiting,
can be recognized best in the third evaluation (θ = 0.5 and σ = 1.0). Therefore, the OUA
process can not be used. The proposed settings for different controlled agents for θ and σ
is summarized in table 3.2.

Control of the agent
fine control abrupt control entire control range

θ > σ θ < σ θ ' σ

Table 3.2: Summary of OU parameters for various controlled agents.

3.4.2 Bit-flip Environment

The basic idea of this environment is based on the bit-flip environment from the HER
[AWR+17, pp. 3-4] article. However, minor adjustments had to be made to use this
environment for this thesis. Basically, the goal of the bit-flip environment is to flip the
bits in a bit vector BVn of length n in the same way that it matches a target bit vector
BV Tn within n tries. The state S = {BVn0 , BVn1 , . . . , BVnn−1} of this environment is the
bit vector BVn = S. The action a is the number of the bit to flip and can be chosen from
the action space A = {0, 1, . . . , n− 2, n− 1}. For example, an action a = 2 means that the
bit BVn1 in bit vector BVn is flipped. To make the algorithms and methods comparable,
bit vector BVn is always reset to zero and the target bit vector BV Tn is taken from a
look-up table.

Since DDPG outputs continuous values and the bit to be flipped must be an integer
number, a conversion from real to natural numbers has to be made. Therefore, the output
of DDPG is divided into n equal sections, each representing one bit in the bit vector.
In addition, DDPG does not use an OU process for exploration, because the drift-like
behaviour of the output values is indeed good for robotic control, but not for a discrete
action space such as the bit-flip environment has. Thus, we only used continuous ε-greedy
exploration for DDPG.

This environment uses equation 3.4 as non shaped reward function. The reward
for reaching the goal is set to 1 and all other rewards are set to -1. This simulates a
delayed and sparse rewards problem, since the probability of finding the target bit vector
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Figure 3.2: Evaluations for the Ornstein-Uhlenbeck (OU) process.

BV Tn is drastically decreasing with the bit vector length n.

RF =

{
+1, if BVn = BV Tn.

−1, otherwise.
(3.4)

37



Selection of Algorithms

−1 −0.5 0 0.5 1

0

100

200

300

400

(a) Counted output values.

0 5,000 10,000 15,000 20,000

−0.5

0

0.5

1

(b) Output value over time.

Evaluation for θ = 0.3 and σ = 0.3.

−1 −0.5 0 0.5 1

0

100

200

300

400

(c) Counted output values.

0 5,000 10,000 15,000 20,000
−1

−0.5

0

0.5

(d) Output value over time.

Evaluation for θ = 1.0 and σ = 0.5.

−1 −0.5 0 0.5 1

0

50

100

150

200

(e) Counted output values.

0 5,000 10,000 15,000 20,000

−1

−0.5

0

0.5

1

(f) Output value over time.

Evaluation for θ = 0.5 and σ = 1.0.

Figure 3.3: Evaluations for the annealed Ornstein-Uhlenbeck (OUA) process.

The shaped reward function, observable in equation 3.5, simply counts the equal bits of
bit vector BVn and target bit vector BV Tn. Then the counted number is divided by n− 1.

RF =

{
+1, if BVn = BV Tn.

countn(BVn = BV Tn)/(n− 1), otherwise.
(3.5)
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The evaluation starts with a bit vector length of n = 1. At the end of each episode, which
is exactly after 200 bit flips, it is checked if the current RL method solves the bit vector
with length n within n bit flips. If so, the current attempt t is considered as successful. An
attempt t is assumed to be failed, if a RL method fails to solve a certain bit vector within
50 episodes. After determining whether the bit vector length n has been solved successfully
or the attempt has failed, the RL method is reset and the next attempt t = t+1 is started.
After 5 tries, it is checked if the current RL method has at least one successful attempt.
If this is the case, the next bit vector of length n = n+ 1 can be performed, otherwise the
next RL method is selected and the evaluation starts again with a bit vector length of n = 1.

The success rate of a RL method can be calculated by dividing the total successful
attempts by the number of all attempts. In addition, the average training times and the
average bit flips, ranging from 1 to a maximum of 1000, which are needed to solve a bit
vector length n, are measured.

Results

First the evaluation results of the bit-flip environment with a non shaped reward function
are discussed. The success rate and average training time of this evaluation can be
observed in figure 3.4 and 3.5. All methods suffered from the fact, that with raising bit
vector lengths n the target bit vector BV Tn is more difficult to discover. In addition,
with random exploration methods it could happen that one method experiences the target
bit vector more often than the others. Only HER has the advantage that the Q-network
knows the goal state of the environment right from the beginning. HERGD first has the
same discovery issue as PPROP and EXPR until the goal is experienced once. In general,
it can be said that using larger batch sizes in combination with HER, HERGD or PPROP
really helps when dealing with sparse rewards. Comparing DQN with DDQN, it can be
observed that DDQN solves more consistently a bit vector length n, even with smaller
batch sizes. One reason that DDQN behaved in this evaluation pretty much like DQN
is the low number of episodes and bit flips to solve for a bit vector length n. Since the
target network used by DDQN is updated only slowly to avoid divergence, this method
requires more training steps than DQN. Unfortunately, due to the low computing power
no higher number of episodes or game steps could be executed. Although the DDPG
results may not seem promising at first glance, they are unexpectedly good. For DDGP,
the environment was even more difficult to solve because a continuous action space has
to be searched, while DQN and DDQN only have to search a discrete action space with
length n. Considering the average training time, observable in figure 3.5, it can be said,
that higher batch sizes require more training time. In addition, methods using PPROP
or DDPG require a lot more training time. One reason is that the DDPG Q-network
architecture is more complex than the others since it consists in total of four neural nets.
PPROP internally uses a sum-tree to store transitions, which lengthens training times.

The evaluation results of the bit-flip environment with a shaped reward function
can be observed in figure 3.6. First, it can be noticed that DQN and DDQN were
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able to solve a much larger number of bit vector lengths n. Reward shaping drastically
improved the task solving performance. Only DDPG performed not much better with
non shaped rewards. Comparing DQN with DDQN, it can be seen that DDQN solves
more consistently a bit vector length, even with smaller batch sizes, as it was the case
with the non shaped reward function. HER and HERGD performed very similar, but
worser than the EXPR or PPROP. That is not suprising, since the HER paper [AWR+17,
p. 8] mentioned that it performs bad with shaped rewards. PPROP performed a little bit
better than EXPR. The average training times do not differ much from the non shaped
ones and will not be listed here anymore.

3.4.3 Pendulum Environment

To be able to evaluate the RL methods within a continuous action and state space
environment the pendulum environment from open AI Gym [7] was chosen. The goal of
this environment is to swing a frictionless pendulum upright, so that it stays vertical,
pointing upwards. Image 3.7 shows the pendulum near to the maximum reward position.
The perceived state S of this environment is a three tuple S ∈ (cos(φ), sin(φ), υ̇). This
state is generated by the pendulum angle φ and vertical velocity υ̇ of the pendulum. To
change pendulum’s state a torque −2 ≤ τ ≤ 2 can be provided as an action a. However,
to make this environment more difficult to solve, the torque is limited to −1 ≤ τ ≤ 1 in
our evaluations. Therefore, the pendulum must gain velocity through swinging to reach
the rewarding position. After a reset, the pendulum starts in a random position and with
a random torque.

Since DQN and DDQN output for discrete action spaces a conversion from natural
numbers to real numbers has to be made. The output layer of DQN and DDQN has been
extended to 21 nodes. Each of them represents a specific torque value, starting from -1.0,
with a step size of 0.1, to 1.0 including zero.

For shaped rewards this environment uses equation 3.6 with −π ≤ φnorm ≤ +π and
−8 ≤ υ̇ ≤ +8. Therefore, the reward is in range of −16.27 ≤ R ≤ 0.

RF = −(φ2
norm + 0.1 ∗ υ̇2 + 0.001 ∗ τ) (3.6)

For non shaped rewards equation 3.7 is used. The reward is set to 1 if the pendulum points
upwards and its angle φ is in range of −1◦ ≤ φ ≤ 1◦ . If not, the reward is set to -1.

RF =

{
+1, if −1◦ ≤ φ ≤ 1◦.

−1, otherwise.
(3.7)
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Figure 3.7: Image of the pendulum environment with the pendulum position near
the maximum reward position.

Each tested RL method has exactly 250 episodes to solve the pendulum environment.
Each episode consists of 300 steps. At each step, an action is predicted by the Q-network
and applied as torque to the pendulum. After every 10th episode, the learning success is
tested. For this purpose, the learned policy π(s) is used over 20 episodes and the received
rewards are summed up. Then the mean value is calculated from the sum of rewards. In
addition, the standard deviation is computed and presented as a transparent background
in the graph.

Results

The evaluation results for the shaped reward function can be observed in figure 3.8. Since
HER and HERGD in combination with shaped reward functions, already mentioned
in Section 3.4.3, performed poorly, these evaluations are discarded on this point.
DDPG performed very well, while DQN and DDQN did very poorly in comparison.
Suprisingly, EXPR delivered a little bit better results than PPROP. Concerning the
fact that the dimension of a discrete state space is countable, this is not the case for a
continuous state space. PPROP prioritizes the transitions that are new or surprising.
For continuous state spaces, this almost applies to every transition. Especially this
affects the learning performance for small batch sizes. For the exploration methods it
can be said that EGC performed better than OU. That is because the behavior of OU
is drift-like. In the pendulum environment it is better to switch the torque repeatedly
from positive to negative values and back again. This behavior increases the speed and
allows the pendulum to move to a vertical position. Finally, considering the average
training time diagrams, it can be said, that PPROP increases the training times drastically.

The evaluation results for the non shaped reward function can be observed in figure 3.9.
In general it can be said that the task solving performance was quite bad. Again, as
it was the case in the bit-flip environment 3.4.2, it can be seen that with non shaped
rewards the task is much harder to solve. Only, DDQN and DDPG in combination with
EXPR as replay memory and EG or EGC as exploration method somekind managed to
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perform acceptable. The HER delivers quite the same result as HERGD and is therefore
omitted. HERGD was not able to solve the environment at all. In continuous state space
environments, the main goal can only be defined within a range. In addition, since the
state of the pendulum environment consists of the vertical velocity, goal discovery is very
bad since the goal is discovered with an non zero velocity. Of course this is hindering, since
the goal is to keep the pendulum upright in a vertical position. In the other cases, where
HERGD is not used, it can be seen that larger batch sizes will help to solve the task, but if
the rewarding goal of the environment is not experienced often, a lot of non-task-relevant
transitions are stored in the replay memory hindering successful learning.

3.5 Measurements

This chapter introduced the adapted interaction model in section 3.1 that is required
because the reward can not be perceived by agent’s sensors. Subsequently, improvements
of the state of the art methods were presented in section 3.2, with the aim of achieving
better results. Afterwards, the evaluation setup was introduced in section 3.3, which
contains a description and the value set of all important meta parameters. Finally, in
the experiments section 3.4 the state of the art methods and improvments are evaluated
against the others using different enironments.

Based on the evaluations done with the bit-flip environment and pendulum environment
the best combination of the RL methods can be presented in this section. For discrete
action spaces, it is strongly recommended to use DDQN, as it works better in such
environments than DQN and DDPG. Obviously, in all cases a shaped reward function
should be used, since it drastically improves the learning performance. For continuous
state space environments it is recommended to use EXPR as replay memory, because it
performs quite same as PPROP and HERGD, but requires less training time. On the
other hand, for discrete state space environments, where a non shaped reward function
is used, it is recommended to use HERGD in combination with PPROP. This will help
to successfully solve sparse reward environments. For the batch size it is recommended
to choose a larger value depending on how sparse the rewards are. The selection of the
exploration method has to be tuned based on the environment. For a robotic environment
where the decision maker is an robotic arm, OU is recommended. For environments, such
as the pendulum environment, where drift-like behaviour of the output values is not good,
EGC is recommended. A summary of the best RL method combinations can be observed
in table 3.3.

Environment
cont. action space
cont. state space

dis. action space
cont. state space

cont. action space
dis. state space

dis. action space
dis. state space

Reward
function

non shaped DDPG, EXPR DDQN, EXPR DDPG, HERGD(PPROP) DDQN, HERGD(PPROP)
shaped DDPG, EXPR DDQN, EXPR DDPG, EXPR DDQN, PPROP

Table 3.3: Summary of the best RL method combinations.
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4 Simulation

In this section the agent and the environment in combination with the selected RL method
from chapter 3 are simulated. The goal is to ensure that the chosen RL method operates
on the final hardware without major changes. Therefore, agent and environment should
be modeled as realistically as possible. Of course, this includes all connected sensors
and movements of the agent. Furthermore, special emphasis is placed on the model of
the charging station. The simulation environment should be able to model problems as
realistically as possible, be fully 3D, open for academic use, easy to learn and use. Unity
[12] was chosen because it easily meets all these requirements. Unity is a cross-platform
game engine developed by Unity Technologies. It is delivered with an editor and the
primary programming language is C# [10].

This chapter starts with a description, in section 4.1, how the communication between
agent and the RL method works. Followed by an introduction of the modelling done in
Unity. Then the architecture of the chosen RL method and the used meta parameters
are presented in section 4.3. Finally, with meaningful diagrams and measurements, the
performance of the chosen RL method, in combination with agent and environment, are
measured and presented in the evaluation section 4.4.

4.1 Communication

As mentioned in section 1, the SLES is a very small and resource constraint embedded
system. Thus, the memory of the attached processor is very limited. Without a drastic
and time-consuming reduction of the required memory size of the RL method used, it
would not fit into the memory of the processor. Particular the memory requirement of
the Q-network and replay memory should be reduced because they consume most of the
memory. This issue may be addressed in the future. Therefore, the RL method is executed
on an external host that communicates with the agent via an UDP interface. For the
final hardware, this UDP interface is replaced with a Bluetooth interface. Therefore, the
communication architecture, including the protocol and interface, is designed for simple
exchangeability. The communication architecture can be observed in figure 4.1. For sake
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Host

RL method UDP server

Agent

UDP client Unity
Messages Messages

Protocol Protocol

Changeable interface

Figure 4.1: Communication architecture.

of simplicity, a blocking communication interface is chosen. That means, the recipient
of a message waits until the entire message is received, even if this would take forever.
This ensures, that the Q-learning algorithm and the agent are synchronized and that no
message is dropped. If one message would not reach the recipient, the execution of both
programs would be blocked.

Figure 4.2 visualizes the communication sequence in a sequence diagram. First, the
agent sends its perceived state to the host station, which predicts the next action to
perform. This action is then sent back to the agent for execution. Obviously, this process
is repeated for the entire learning process. In order to ensure that the agent’s processor

Agent Host
SEND_STATE

RECEIVE_STATE
SEND_ACTION

State s

RECEIVE_ACTION
SEND_STATE

Action a

RECEIVE_STATE
SEND_ACTION

State s

...
Action a

Figure 4.2: Communication sequence diagram.

does not have to spend a lot of time computing the message sent or received, it has been
designed with performance in mind. Therefore, each state or action entry is sent as a
32-bit integer.
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4.2 Unity Models

Unity allows to generate quite precise models of real physical objects. Large models can be
built by composing smaller sub-models or components. This improves the maintainability
and interchangeability of existing components and models. That is why the models in
Unity scale very well. Furthermore, Unity also takes many physical parameters, such
as gravity, friction and much more, into account. For sub-models which are connected
through physical joints, Unity contains joint components. Since the real agent is not yet
built, some parameters of the model had to be estimated, but with the future perspective
of designing it more and more accurately. Important to note is, that every component:
sensors, charging station, actuators, …; has its own model and script. A script describes
the behaviour of the model to which it is attached.

This section describes how the real components work and how they were approximated by
models in Unity. First, the model of the agent is presented in section 4.2.1. To measure
the performance of the agent’s model, a simpler model is also presented in this section.
Followed by a description of all sensor models used. Finally, the model of the charging
station and environment is introduced.

4.2.1 Robot Model

The construction of the agent can be viewed in figure 4.3. In the bottom view, figure
4.3a, the two actuators and the charging pads (the two rectangles in the middle) can be
seen. In addition, the standing pad, located in the bottom right of the bottom view figure
4.3a, which is the third contact point of the agent with the ground, can be observed. This
third contact points guarantees stable, not tilting, movement of the agent. These just
mentioned components can be observed easier with the help of the front view, figure 4.3d,
and the left view, figure 4.3c. The positions of the sensors are not drawn on this building
plans.

The Unity model of the agent can be observed in figure 4.4. This first, very simple
model of the real agent aims to model the motion and sensor positions as accurately
as possible and not the appearance. However, due to the fact, that the robot is not
built yet, a lot of parameters had to be estimated. First and foremost, this includes the
friction parameter of the actuator’s contact point with the ground and the torque that
can be transmitted. For simplicity, the standing pad is modelled without friction. The
contact points of the actuators with the ground are modelled as simple black spheres, best
observable in the bottom and front views of the figures 4.4a and 4.4b. On these spheres,
a torque can be applied. As the motor positions are offset longitudinally, this model
suffers from sliding. Therefore, forward and sideways frictions are added to the spheres
to simulate slippery movements. The actuators are controlled by two vectors. A vector
describes the torque applied to an actuator. In the front view figure 4.4b the infrared
receiver (large grey rectangle) and the range finder (small grey rectangle) can be seen.
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(a) Bottom view. (b) Top view.

(c) Left view. (d) Front view.

Figure 4.3: SLES construction.

The right view figure 4.4c shows another range finder. The infrared receiver in the back
view is omitted at this point. The charging pads, red and blue rectangles, can be seen
best in the bottom view of the figure 4.4d.

Since the real agent suffers from some impairments such as complex movement due

(a) Top view. (b) Front view.

(c) Right view. (d) Bottom view.

Figure 4.4: Unity model of the agent.

to actuator positions, slippery motion, displacement of the sensors and jamming with
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walls due to the rectangular construction, a simpler model is additionally implemented.
In thesis this model is called simple agent. This simple agent is used for comparison with
the model of the real agent. In addition, the simple agent consists of a frictionless and
simpler movement model. It is controlled by two vectors. One vector controls the forward
or backward movement while the other one is used for turning right or left. The forces are
directly applied to the model. In order to make the charging stations more accessible to
the simple agent, it is chosen to be round. For better orientation in the state space, four
range finders, instead of two, are attached to it. The model of the simple agent can be
observed in figure 4.5.

(a) Top view. (b) Bottom view.

(c) Right view. (d) Front view.

Figure 4.5: Unity model of the simple agent.

4.2.2 Range Finder Model

To estimate the distance between the agent and an object, Time-of-Flight sensors (TOF)
are used. These sensors emit a light pulse that travels to the nearest object and is reflected
by it. The flight time of the light pulse, between emitting and returning to the sensor,
is measured. Finally, with the help of the flight time, the distance to that object can be
estimated.

The range finder model in Unity, observable in figure 4.6, is working similar to the
describtion in the previous section. The modelled sensor emits a light ray and the collision
of the light ray with the nearest object is measured. The time does not have to be
measured because with Unity the light ray emit position and the collision position can be
calculated.
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Figure 4.6: Range finder model in Unity.

4.2.3 Infrared Led Model

In order that the agent is able to find the position of the charging station, in particular
the position of the charging pads, it is equipped with an infrared LED [3]. The infrared
led consists of a narrow directivity and a high brightness. In figure 4.7, the scanning angle
and narrow directivity can be seen.

The infrared LED model in Unity, observable in figure 4.8, consist of a sphere

Figure 4.7: Scanning angle and directivity of infrared LED. [3, p. 3]

collider which should model the directivity and angle of the real LED. The red light ray,
which is emitted from the LED model, should only show the middle point of the sphere
collider.

53



Simulation

Figure 4.8: Infrared LED model in Unity.

4.2.4 Infrared Receiver Model

The infrared receiver [4], which is mounted on the agent, is used to detect the infrared light,
emitted by the charging station. This receiver is modelled similar to the diagram presented
in figure 4.9, which simply states out that the sensitivity of the receiver depends on the
angle of the incoming infrared light. Based on the sensitivity diagram, it can be said, that

Figure 4.9: Sensitivity of the infrared receiver based on the angle of the incoming
infrared light. [4, p. 3]

the sensory output value of the infrared receiver depends on the angle of the receiver to
the LED, the distance between them and the displacement of the receiver normal to the
emitted light. For better visualisation these three dependencies are shown in figure 4.10
The infrared receiver model in Unity uses these three dependencies to calculate the sensory
output value. The output is zero if the angle between the LED to the receiver exceeds 70◦
degrees. If not, the sensory output value is calculated with the equation 4.1

value = cos(angle)− displacement ∗ 0.75− distance/10.0 (4.1)
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Figure 4.10: Visualization of the angle of the receiver to the LED, the distance
between them and the displacement of the receiver normal to the emitted light.

4.2.5 Compass Model

To enable, that agent’s perceived state is unique, a compass module [1] is used. Without
this compass module, the agent would perceive the same state for different environmental
positions. This would drastically hinder learning performance or even make it impossible.
The compass module outputs the magnetic field force and acceleration in all three
directions, observable in figure 4.11. The Unity model of the compass simply measures

Figure 4.11: Acceleration and magnetic field measurement directions. [1, p. 11]

the accelerations in all three directions. Since Unity automatically measures the velocity
of an object in all three directions, the values calculated by Unity are used. In addition,
Unity provides the angles of an object relative to world coordinates. These angles, in
combination with trigonometry, are used to estimate the magnetic field values.
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4.2.6 Charging Station Model

For easy access, the design of the charging station, observable in figure 4.12, supports
retraction. Charging pads, positive electrode drawn in red and negative electrode drawn in
blue, are visible on the bottom of the charging station. On the back wall the infrared led
can be observed. Charging is only possible, if the agent drives correctly onto the charging
pads. In addition, the charging pads are offset to the front so that when the agent fully
enters the charging station, no charging takes place.

Figure 4.12: Model of the charging station in Unity.

4.2.7 Environment Model

To test the chosen RL method a quite small and simple environment model was used,
observable in figure 4.13. It was chosen small and simple to reduce the training time which
is required to find the charging stations. If a larger environment is necessary, the agent
can be pre-trained with the smaller environment and subsequently with the larger one to
reduce training time.

4.3 RL Method And Architecture

This chapter introduces the RL method used, including the architecture of the Q-learning
method M. In figure 4.14 the entire architecture, including the interaction of the agent
with the RL method, can be observed. After the environment is reset, the agent perceives
its initial state with the help of its sensors and passes it to the Q-learning method M
(DDPG), which predicts the next action a to perform. The exploration method E adds
noise to the predicted action a′ to enable exploration of the environment. Then the
agent performs the action and perceives the next state s′ from the environment. This
next state s′ is then used to compute the reward r with the help of the reward function
RF . In addition, the previous state s of the environment is saved. Eventually, all
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Figure 4.13: Model of the environment in Unity.

information has been gathered to store a transition (s, a′, r, s′) in the replay memory
RM. Finally, after enough transitions are stored in the replay memory RM, the
Q-network of the Q-method M can be trained with a minibatch of transitions. As

RL method

DDPG Exploration

Environment

Agent

Reward
Function

Replay
Memory

Save state

Action a Noisy action a′ Next state s′

Reward r

Previous state s

Minibatch
Perceive

state from
sensors

Figure 4.14: Interaction of RL method with agent and environment.

suggested by the selection of algorithms chapter 3, as RL method the following tuple is
used: (DDPG,OU,EXPR,Hybrid). DDPG is applied because it performs best with
continuous action and state spaces. As Q-network architecture the proposed architecture
with two hidden layers from the DDPG article [LHP+15, p. 11] is used. In addition, the
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State #8 RELU #400 RELU #300

TANH #1

TANH #1

PWM left motor

PWM right motor

Hidden
Layer #1

Hidden
Layer #2

Input
Layer

Output
Layer Action

Figure 4.15: DDPG actor architecture.

same number of neurons for the first and for the second hidden layer (400 and 300), as
mentioned in this article were applied. A TANH activation function is used in the output
layer to support the output range of [−1; 1]. An output of +1 means full speed of the
actuators in clockwise direction, while an output of -1 means full speed in counterclockwise
direction. The states provided to the Q network consists of 8 values. Some of them are
measured by the sensors of the agent. Only if agent’s battery is currently charged is
determined via a measuring circuit. The state consists of the measured value of the front
range finder, the right range finder, the front infrared receiver, the velocity in x-direction,
the velocity in y-direction, the angle in x-direction, the angle in y-direction and if the
battery is currently charged. This state excludes the battery charge and the angle and
velocity in z-direction. The battery charge state is omitted because it is not helpful for
finding the charging station. The angle and velocity in z-direction are omitted because in
the simulator the robot only operates on a plane. The Q-network architecture of the actor
can be observed in figure 4.15 and the architecture of the critic in figure 4.16.

OU is selected as exploration method because the drift-like behaviour of the generated
noise is a good choice for actuator control. If EGC is used instead, the agent would be
moving back and forth all the time. This is not the desired exploration behaviour. Since
PPROP and HERGD performed bad in continuous state space environments, EXPR is
selected as replay memory method.

State #8

Action #2

RELU
#400

RELU
#300

RELU
#400

Merge Linear
#1 Q-value

Hidden
Layer #1

Hidden
Layer #2

Input
Layer

Merge
Layer

Output
Layer Output

Figure 4.16: DDPG critic architecture.
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Finally, a hybrid reward function is used. It is called hybrid because it is a combination of
a shaped and a non shaped reward function. If agent’s infrared receiver is in range of the
infrared LED, a shaped reward function is used to guide the agent towards the charging
station. Otherwise, the reward is set to -10. For simplicity, the outputted value of the
infrared receiver is limited to the range [0; +1]. A value of zero means that the receiver
is out of range of the transmitter, while a value of +1 means that the agent’s receiver is
directly in front of the transmitter. If the agent is charging, which means the charging
pads of the agent are in contact with the charging pads of the charging station, the reward
is set to 100. A reward of 100 for the recharging may seems very high at first glance,
but considering that the agent needs many steps to reach the charging station and thus
the reward has to be propagated backwards many steps, this value is chosen to be large
enough. The reward function can be observed in equation 4.2.

RF =

{
+100, if agent is charging.
10 ∗ (−1 + IR receiver output value), otherwise.

(4.2)

The shaped reward function does not generate any positive values because otherwise
reaching the infrared LED light bulb could be considered as a subgoal. In this case it
could not longer be guaranteed, that the agent’s policy π(s) will convert to the optimal
policy π∗(s). In addition, the time to learn the task will increase dramatically.

4.4 Evaluation

For this evaluation, the environment from section 4.2.7 is used. The agent is executed
in this environment for 1500 episodes with 500 steps each. After every 50th episode the
learning progress is determined. For this purpose, the learned policy π(s) is used 10 times
for 500 steps each. For each of them, the total reward is summed up and finally the
average reward is calculated. In addition, the standard deviation is determined. After
each episode, the agent is reset to a random position and with a random rotation, but not
directly into the charging station.

As reward function a hybrid function (equation 4.2) is used. The minimal reward
per episode is exactly RFmin = steps ∗ (−10) = −5000. This can happen if the agent was
not charged or was not within range of the infrared LED during an entire episode. The
theoretical maximum reward achievable by the agent is RFmax = steps ∗ 100 = 50000.
For that, the agent has to be reset in correct position on the charging pads of the charging
station after an episode ends. Since this is not possible because the charging station is
not a correct reset position, this reward can not be achieved.

The Q-learning method, as mentioned in section 4.3, is used. The learning rates of
the actor and target network are selected to be small to enable slow adaptation. Since
past experiences are worthy in this environment, the discount factor is chosen to be close
to one. Since the reward function is hybrid a quite large batch size is used. In addition,
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two new factors are used for this evaluation. First, the L2 regularization which addresses
the issue of overfitting. The same value as proposed in article [LHP+15, p. 11] is used.
Second, the warm-up time, which determines after how many transitions the training
begins. Otherwise, training would begin immediately after a minibatch of transitions is
available. From then on, a minibatch is sampled from the replay memory after each game
step. The first transitions would be sampled many times. This can severely affect learning
performance and is therefore avoided with the help this warm up time.

All the used RL method parameter settings can be observed in table 4.1.

Environment Figure 4.13
Episodes 1500
Steps 500
Tests 10
Q-learning method M DDPG
Optimizer Adam
Learning rate actor αA 0.0001
Learning rate critic αC 0.001
Target update factor τ 0.001
L2 regularization 0.001
Discount factor γ 0.99
Hidden layer 1 neurons 400
Hidden layer 2 neurons 300
Hidden layer activation function RELU
Output layer activation function TANH
Batch size 128
Warm-up time 20 Episodes
Replay memory RM EXPR
Size 1000000
Exploration method E OU
θ 0.3
µ 0.0
σ 0.3
Reward function RF Hybrid equation 4.2

Table 4.1: Parameter settings for simulation evaluation.
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Result

The results of the agents can be observed in figure 4.17. Considering the simple agent,
whose line is drawn in red, it can be observed that after ≈400 episodes the average reward
becomes positive. This means that it sometimes managed to find the charging station
and move properly onto the charging pads. From then on, it can be seen, that the simple
agent is constantly improving its task solving performance. Slowly it learns from every
reset position and angle the optimal way to the charging station. After ≈1000 episodes
the improvement stops. From then on the simple agent has learned to find the charging
station from almost every state of the environment.

In figure 4.18 a successful attempt of the simple agent finding the charging station
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Figure 4.17: Simulation results of different agents.

can be observed. Although the simple agent starts with its back to the charging station, it
managed to find the charging station and move properly onto the loading pads. However,
looking at the real agent model, drawn in blue, it can be said that no learning success was
made. The reason why the agent does not reliably manage to find the charging station is
due to the interaction of several sub-problems. On the one hand, this is due to the two
actuators and the associated complex movements. The robot moves forward or backward
only when both actuators are turning in the same direction. Otherwise it turns in a circle.
Since random exploration of large state spaces is a difficult task per se, but in combination
with agent’s complex movements, this gets much worse. Due to the drifting behaviour
of OU, in most cases the agent only learns to spin around its own axis. The agent has
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Figure 4.18: Trajectory of the simple agent moving towards the charging station.

learned that if his infrared receiver is aiming towards the charging station’s infrared LED
for some time, it will result in less negative rewards overall. Obviously, with this rotating
behaviour, good exploration of the state space, which is crucial for RL, is therefore not
achieved. Further, this causes the replay memory to be filled with many more transitions
that do not contribute to the task’s resolution. This contributes to catastrophic forgetting.
Even if the agent has managed to reach the charging pads properly within an episode,
it will not learn to repeat this behaviour after training ends, because the Q-network is
trained with too many non-task-relevant transitions. One workaround for this would
be to simplify agent’s movements. For example, the movement of the simple agent can
be imitated. A vector used for forward or backward movement and another for left or
rightward movement can be applied. Apart from that, the movements can be discretized
to forward, backward, left and right. However, this is not recommended because of the
lower scalability and because the movements need to be simplified for each other robot
construction.

On the other hand, the robot is equipped with only a few sensors resulting in a
very poorly resolved state of the environment. First, this leads to the fact, that the shape
of the robot is difficult to learn for the Q-network. As a consequence, the robot often
jams in the charging station or wedges with a wall. This makes it difficult to properly
reach the charging pads. Furthermore, the limited sensors make it difficult to define a
reward function that motivates the robot to solve the task. Figure 4.19 shows the reward
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in dependence of agent’s current state. The charging station is located in the upper right
corner and is marked with a thick red border. The dashed red diagonal line indicates
the light emitted by the infrared LED. Figure 4.19a shows the reward for the case if
agent’s infrared receiver is not pointing towards the infrared LED of the charging station.
Therefore, the reward for all states is -10. The next figure 4.19b shows the other case;
Agents’s infrared receiver is directly pointing towards the infrared LED of the charging
station. This environment can be considered as very difficult low reward environment
because the agent only gets a reward other than -10 when pointing towards the infrared
LED. In addition, the area of influence of the infrared LED is small, so the reward for
most states in the environment is -10. With more sensors equipped, perhaps a more
motivating reward function could be defined. It would be ideal if the agent receives a
reward depending on the distance to the charging station, as can be observed in the figure
4.19c.
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Figure 4.19: Reward depending of agent’s current state.
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5 Conclusion

The main objective of this thesis is to address the question how a robot can learn to
solve tasks completely independently. For scalability, the task should not be tied to any
assumptions such as the environment or the design of the robot. Therefore, the robot
should have as little prior knowledge about the task, the environment and the meaning of
its in- or outputs. This should help to solve tasks, which can not be completely solved
by algorithms because of their complexity and enormous state space. The big vision is,
that any kind of robot can independently learn to solve an intended task, eliminating the
time-consuming and error-prone writing of algorithms and programs. This will result in
higher production yield and throughput. The task addressed in this thesis is to learn to
survive as long as possible. Therefore, the robot should find the charging station and
charge its battery.

Since this task setting involves robotics, the chosen algorithm should handle following
issues: continuous state and action spaces because sensor inputs and actuator outputs
are continuous; poorly resolved environmental state, since robots are often equipped with
fewer sensors; sparse rewards due to the large state space and should require as little
knowledge about the task and the environment.

The robot possesses several inputs from sensors for state observation and outputs
to actuators for movement. To determine the boundaries of the environment, for
orientation and for state observation, two rangefinders and a compass are mounted on it.
More on, it is equipped with two photodiodes to facilitate locating the charging stations
as they emit ultraviolet light. Additional hardware has been installed to determine the
battery charge status. To enable movements, two actuators are placed at the bottom of
the robot.

Since machine learning is usable for prediction tasks, methods from this field are
applied. However, since one requirement is to learn to solve the task in the best possible
way, the method used must be from the field of Reinforcement learning, especially
Q-learning algorithms are applied. Q-learning calculates Q-values that show how much
reward to expect by performing a particular action from a certain state. However,
Q-learning requires other methods to work. A reward function is used to reward or
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punish the robot’s actions. To enable learning from past experiences and to guarantee the
convergence of the Q-network a replay memory has to be used. Finally, an exploration
method that allows the robot to explore the environment and gather information about
the task to be learned is needed.

To familiarize ourselves with Q-learning and to be flexible about which Q-learning
algorithms and required methods are used on the finished robot, several of these methods
are implemented and evaluated against each other. In addition, new techniques and
improvements done to the state of the art methods with the aim of achieving better results
overall, such as Hindsight Experience Replay with Goal Discovery, ε-greedy Continuous and
Ornstein-Uhlenbeck Annealed, are implemented. With the aid of these evaluations, it was
possible to determine which methods should be used for the robot. As Q-learning method,
Deep Deterministic Policy Gradient is used because it performs best with continuous
action and state spaces. Standard Experience Replay is used as replay memory because it
provides quite the same results compared to Proportional Prioritized Replay Memory for
continuous state spaces, but requires less training time. As reward function a combination
of a shaped and a non shaped reward function was used. In evaluations the shaped reward
functions performed better than the non shaped ones, but due to the fewer sensors of the
robot, only a combination of both was possible.

To ensure that the selected methods are executed on the final hardware without
major changes, the robot, the environment, and the methods are simulated. This includes
the modelling of all sensors, the charging station and the environment. These simulations
showed that a simpler model of the robot could learn to solve the problem while the
model of the real robot failed. First, the complex and slippery movements of the robot
caused by the positioning of the actuators, is not easy to learn. In addition, this causes
also the exploration method to struggle, since random exploration of large state spaces is
a difficult task per se, but in combination with the complex movements, it is getting even
worse. Also the rectangular construction of the robot leads to several issues, such as it
often jams in the charging station or wedges with a wall. Furthermore, the limited sensors
make it difficult to define a reward function that motivates the robot to learn to solve the
task. This causes the goal state to be under explored. The Q-network is trained with too
many non-task-relevant transitions.

This work has shown that robots using Q-learning are, under certain circumstances, able
to learn to solve tasks independently. Still a lot of little things have to be considered in
order to enable a successful learning of a task. Such as that the task to be learned has
to be very simple and special attention must be paid to the sensors used in order to be
able to resolve the environmental state well enough and to be able to define a motivating
reward function. Furthermore, the construction of the robot movements should be defined
with simplicity in mind. If small mistakes or sloppiness are made to the just mentioned
points, this can impair the learning success or even make it impossible. To make the
usage of Q-learning handier, it is necessary to work on better exploration methods, as the
learning time and success depend drastically on them. Furthermore, improvements to the
Q-Learning algorithms must be met to better deal with sparse rewards. If these issues are
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solved, Q-learning has the potential to address many unsolved robotic and algorithmic
problems and help to shape the future.

5.1 Future Work

As mentioned in section 4.1, the RL method is executed on an external host because of
the limited memory of the agent. In the future, it is planned to compute more and more
parts of the RL methods in the agent’s processor. Most of the memory is consumed by
the Q-network architecture and the replay memory. In order to reduce the memory usage
of the Q-network, it is necessary to find the minimal architecture which is still capable
of learning the task. By decreasing the number of neurons in each layer, fewer weights
and biases are needed to be stored, which drastically reduce memory requirements, since
each neuron is connected to all of the neurons in the previous layer. Then, the bit length
of the weights and biases can be shortened to further reduce the memory requirements.
In order to reduce the replay memory size, the minimum number of transitions to be
stored in the replay memory, which is needed to solve the problem, can be searched.
Or the replay memory size could be adjusted adaptively, for example with an algorithm
such as mentioned in article [LZ17, p. 2]. This approach has the advantage of reducing
development time and scaling better.

A big problem is that an entire training run takes a lot of time. For each action
the agent performs, data must be exchanged between the Unity program and the Python
script, transitions need to be stored in the replay memory, the next action needs to be
computed by the Q-network and new weights and biases have to computed with the aid
of a minibatch. These are all the reasons why a whole training run takes about 4 to 6
hours, depending strongly on the architecture of the Q-network, the replay memory and
exploration method used. Obviously, this dramatically increases the development time.
To achieve faster results faster, these processes should be parallelized. This means that
several agents have to be simulated and the data is gathered by one Q-network which is
trained with the experiences of all agents. Such approaches already exist, for example,
A3C mentioned in article [MBM+16, p. 8].

With sparse reward tasks, one problem is that a transition with a positive reward
had to be sampled from replay memory and had to be propagated back by repeatedly
sampling the predecessor states. The Q-network slowly learns which actions to perform
from certain states in order to reach the rewarding state. Is the rewarding state perceived
only few times, this process is disturbed. Considering catastrophic forgetting, successful
learning of the task becomes unlikely. In order to accelerate the back propagating of
Q-values, an improvement could be made to the Q-learning algorithm. For example, the
Q-function could be applied to the transitions before saving an episode to the replay
memory. Therefore a positive reward is present throughout an entire episode. Sampling
a transition with positive reward becomes more likely. A disadvantage of this change is
that the algorithm would convert more slowly to the ideal policy. This approach can be
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combined with the n-step loss mentioned in the article [VHS+17, p. 3], which should help
to propagate the Q-values along the trajectories.

A great influence on the learning time and the learning success would be the improvement
of the exploration methods. As mentioned in section 2.1.10, only random exploration
methods are possible because the robot should know as little as possible about the task
and the environment. Count-based exploration methods [THF+16, pp. 1-2] that store a
counter, how many times a state has been visited, and what actions are taken to exit
the state, are not applicable for this work because memory on an embedded system is a
limited resource. An interesting idea is presented in article [PHD+17, pp. 1-9]. Instead of
applying noise only to the output neurons, it is applied to the entire Q-network. Another
approach is to let the decision maker adaptively learn the exploration policy in DDPG,
presented in article [XLZP18, p. 1]. Advantage is that this approach is scalable and yields
to a better global exploration. Disadvantage is that this approach consumes more memory
than OU or EGC.

As mentioned in section 4.2.1, the robot is not built yet and therefore a lot of
parameters had to be estimated. This includes the friction parameters of the actuators
contact point to the ground, the transmittable torque and a more accurate modelling of
the sensors used. Is the final robot available, these parameters can be redefined for a more
realistic simulation environment.

When survival has been successfully resolved, other tasks can be tackled. For example,
the Q-network that solves survival can be stored. Another Q-network is used to learn an
new task. After the battery charge is critical, the agent can switch to the Q-network that
has learned to survive. After the battery has been charged successfully, learning continues
with the other Q-network. Even the heuristics, when to switch to other Q-networks, which
are learning different tasks, can be learned by a Q-network.

5.2 Outlook

One reason why this thesis is important and contributes to current research is that it
shows what to consider when using Q-learning for real robots. In addition, the strengths
and weaknesses of Q-learning and the methods required are demonstrated. Firstly, it is
shown which building blocks (exploration method, replay memory and reward function)
are required for Q-learning. For each of these required building blocks, various state of the
art methods are presented, evaluated and discussed. In addition, useful parameters are
revealed for each of them. These explanations, supported by diagrams, make it easier for
researchers, who are not yet familiar with this field, to properly select the methods and
parameters for their own problem to be solved. Secondly, the adapted interaction model,
presented in section 3.1, shows for the first time how and where the reward function has
to be calculated for real robots. In contrast to environments that are only executed in
software, the reward for real robots must be calculated by the robot itself based on the
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sensor values. Thirdly, it is shown how important the selection of sensors is, in order to
be able to define a motivating reward function. This selection must also be adjusted to
the problem to be solved in order to enable a successful design of the reward function.
Fourthly, this work has shown that the more complex the movement of the robot is,
the less successful the learning with the current exploration methods is. This indirectly
refers to one of the biggest weaknesses of Q-learning, the lack of good exploration methods.

Enabling robots to learn complex tasks through experience allows us to take a big
step into the future. The applications for such self learning robots are limitless. Writing
of complex algorithms to control these robots is completely eliminated because they
learn to control themselves. In addition, through repetition they are able to constantly
optimize their behaviour. Changes in the environment do not affect them because they
can adapt to them automatically. It is conceivable that these robots share already
acquired knowledge with each other. This can drastically reduce the time required to
learn a completely new task. In medicine, they could perform complicated operations, for
example on the brain, where very subtle movements are needed. They can even be used to
enter human-unfriendly environments after an environmental crisis or even other planets.
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A Neural Networks

Neural networks are modelled in a similar way as the human brain. Many simple units
(neurons) are connected with each other to form more complex functions. There is no
centralized unit which controls the neurons and they are working completely in parallel.
[PG17, p. 41]

Each neuron sums up the information coming from the previous neurons (inputs).
They consist of an activation function, a bias and a weight. In general, the weights
are used to store the information. Of course, somehow the bias stores information too,
but since his task is to additively shift the activation function, only the weights will
be considered as information memory. The activation function determines if an neuron
is active or not. Therefore, the bias allows more freedom to adjust the activity of a
neuron. Learning is done by changing these weights and biases. The structure of an
neuron is illustrated in figure A.1. The behaviour of a neural network is determined
by its architecture, which describes how the neurons are connected. In this thesis only
feed-forward multilayer neural networks are used. This kind of network consist of one
input layer, one output layer and multiple hidden layers. Each layer contains several
neurons. The layers are fully connected, which means that one neuron of one layer has a
connection to all the neurons in the next layer. Figure A.2 illustrates an example of such
a feed-forward multilayer neural network.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure A.1: Structure of an neuron.
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Figure A.2: Feed-forward multilayer network with four input nodes; two hidden
layers each with five neurons and two output neurons.

A.0.1 Activation Functions

Activation functions in combination of weights, and biases defines the behaviour of a
neuron. A neuron is considered to be active if it passes a non zero value (known as forward
propagation) to another neuron. Activation functions affect many parameters such as the
training dynamics, the tasks performance and the training time [RZL17, p. 1]. In addition,
they are used to clip neuron outputs because open intervals may cause the neural network
training algorithm to diverge. In the output layer, activation functions can be used for
robotic control. For example, if an output is utilized for left or right steering of a car, the
TANH(x) A.3c can be used. Full steering to the left is encoded with −1.0 and 1.0 for a
full steering to the right. An overview of the most common activation functions is shown
in figure A.3.
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LRELU(x) =

{
0.1 ∗ x, if x < 0.

x, otherwise.
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0, if x < 0.

x, otherwise.
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exp(x)− 1, if x < 0.

x, otherwise.

Figure A.3: Overview of popular activation functions.
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