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Kurzfassung der Dissertation

Diese Dissertation befasst sich mit finanz- und versicherungsmathematischen Produk-
ten, deren Auszahlungen von stochastischen Prozessen bestimmt werden. Der Zeitpunkt
der Auszahlung ist zufällig und wird daher durch eine Stoppzeit modelliert, die Werte
in einem vorbestimmten Zeitbereich annimmt. Diese Stoppzeit soll einer bestimmten
Verteilung folgen und kann von dem zugrunde liegenden Auszahlungsprozess abhän-
gen. Diese vorgegebene Verteilung enthält zusätzliche Informationen, die bekannt sind
oder auf die man Zugriff hat. Das Ziel ist es, eine Abschätzung für den schlechtesten
Fall, also der Worst-Case-Situation, abzuleiten. Dies ergibt sich aus dem Supremum der
zu erwarteten Auszahlung über alle Stoppzeiten, die die angegebene Randbedingung
erfüllen. Es liegt im besonderem Interesse, eine optimale Stoppzeit zu finden, die diesen
Maximalwert annimmt. Dieses Problem soll als OptStop

τ bezeichnet werden. Eine Erwei-
terung besteht in der Verwendung von adaptierten zufälligen Wahrscheinlichkeitsmaßen
anstelle von Stoppzeiten. Das dazugehörige Problem wird mit OptStop

γ bezeichnet. Aus
mathematischer Sicht ist das betrachtete Problem eine spezielle und erweiterte Version
eines optimalen Stoppproblems. Zum ersten Mal wurden die Probleme OptStop

τ und
OptStop

γ in [33] betrachtet, was der Ausgangspunkt dieser Arbeit war. In [33] werden
drei Hauptannahmen an den stochastischen Auszahlungsprozess gestellt, um ein wohlde-
finiertes Problem zu garantieren. Diese drei wichtigsten Annahmen sind die fast-sichere
Endlichkeit des Supremums der Beträge der Elemente des Prozesses, die Endlichkeit des
Erwartungswertes und die gleichgradige Integrierbarkeit des Prozesses. Die hier vorliegen-
de Arbeit beinhaltet eine Verallgemeinerung und berücksichtigt sensitivere Bedingungen.
Diese Bedingungen machen sich die Struktur und die Informationen, die sich aus der
Verteilungseinschränkung an die Stoppzeiten oder adaptierten zufälligen Wahrschein-
lichkeitsmaßen ergeben, tatsächlich zunutze. Man kann das Problem aus verschiedenen
Anwendungsbereichen motivieren und es gibt eine weitere Betrachtungsmöglichkeit. Für
diesen Ansatz wird die Aufgabe als optimales Transportproblem neu formuliert und aus
Sicht des Transports von Massen betrachtet. Dieses Problem wird dann als OptStop

π

bezeichnet.
Im ersten Teil dieser Arbeit werden wir die Ergebnisse für die adaptierten Abhängigkeiten
in diskreter Zeit herleiten, d.h. wir betrachten eine vollständig geordnete, abzählbare In-
dexmenge. Es werden die verschiedenen Optimierungsprobleme OptStop

τ , OptStop
γ und

OptStop
π eingeführt und deren Zusammenhänge schrittweise erarbeitet und beschrieben.

Der Schwerpunkt dieses Teils liegt auf dem Problem OptStop
γ und damit auf adaptierten

zufälligen Wahrscheinlichkeitsmaßen. Ein wichtiger Aspekt bei der Betrachtung solcher
Probleme ist die Frage nach einer optimalen Strategie. In dieser Arbeit wird die Existenz
einer solchen optimalen Strategie in diskreter Zeit für den verallgemeinerten Ansatz
bewiesen, der es erlaubt, eine größere Anzahl möglicher Prozesse zu berücksichtigen.
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Diese optimale Strategie ist im Allgemeinen nicht eindeutig, wie anhand einiger Beispiele
erläutert wird. Darüber hinaus werden in dieser Dissertation einige Schranken angegeben.
Einige davon gelten für das Problem im Allgemeinen, während andere von der Struktur
des zugrunde liegenden Prozesses abhängen. Für bestimmte Klassen stochastischer Pro-
zesse ist es möglich, eine optimale Strategie und somit den daraus resultierenden Wert
des Optimierungsproblems zu bestimmen. Dazu gehören beispielsweise Prozesse, die als
Produkt eines Martingals und einer deterministischen Funktion oder im Binomialmodell
gegeben sind. Zusätzlich wird eine Anwendung des Problems im Bereich der fondsge-
bundenen Lebensversicherungen diskutiert, in der die Modellierung des Vertrags ohne
Annahme der Unabhängigkeit zwischen biometrischen Risiken und Finanzmarktrisiken
erfolgt. Der letzte Abschnitt dieses Teils behandelt dann das Problem OptStop

π. Wir
fomulieren dazu das Problem als optimales Transportproblem und zeigen die Existenz
einer optimalen Strategie mithilfe der Theorie des optimalen Transports. Es werden auch
hier Beispiele betrachtet.
Im zweiten Teil dieser Arbeit werden wir die Ergebnisse für die adaptierten Abhängig-
keiten in kontinuierlicher Zeit herleiten. Um das Problem OptStop

γ in kontinuierlicher
Zeit zu betrachten, müssen die adaptierten zufälligen Wahrscheinlichkeitsmaße durch
stochastische Übergangskerne ersetzt werden. Es wird eine diskrete Approximation ange-
geben, mit deren Hilfe die in diskreter Zeit gefundenen Ergebnisse übertragen werden
können. Außerdem werden Ergebnisse für den Spezialfall hergeleitet, in dem die Prozesse
als Produkt eines Martingals und einer deterministischen Funktion gegeben sind. Der
Hauptabschnitt dieses Teils befasst sich jedoch mit dem Problem OptStop

π. Unter Ver-
wendung der Methoden und Techniken aus der optimalen Transporttheorie erhalten wir
die Existenz einer optimalen Stoppzeit einer Brown’schen Bewegung mit vorgegebenen
Randverteilungen. Dazu muss der Kostenprozess jedoch mindestens messbar und ange-
messen adaptiert sein. Gewisse Stetigkeitssannahmen garantieren dann die Existenz von
Lösungen des betrachteten Problems. Des Weiteren werden Ideen und Konzepte aus dem
optimalen Transport (und seiner Martingalvariante) angepasst, um eine geometrische
Beschreibung der optimalen Strategie zu erhalten. Die Methoden sind auf eine große
Klasse an Kostenprozessen anwendbar und es wird gezeigt, dass für viele Kostenprozesse
eine Lösung durch die erste Trefferzeit einer Barriere in einem geeigneten Phasenraum
gegeben ist. Die Ergebnisse dieses Abschnitts der Arbeit sind bereits in [10] veröffentlicht.
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Abstract

This thesis deals with financial and actuarial products whose payouts are driven by
stochastic processes. The time point of the payouts is random and is therefore modeled by
a stopping time that is taking values in a predetermined time domain. This stopping time
should follow a given distribution and may depend on the underlying process modeling
the payouts. The given distribution contains additional information that is known to us or
to which we have access. Our target is to deduce the estimation of the worst-case situation.
This results from the supremum of the expected payout over all stopping times satisfying
the given marginal. It is of particular interest to find an optimal stopping time that yields
this maximal value. This problem is denoted by OptStop

τ . An extension is the use of
adapted random probability measures instead of stopping times. The problem involved
is called OptStop

γ . From a mathematical point of view, the problem being considered
is a special and extended version of an optimal stopping problem. For the first time
the problems OptStop

τ and OptStop
γ were introduced in [33], which was the starting

point of this work. In [33] three main assumptions are made of the stochastic payout
process to guarantee a well-defined problem. These three main assumptions are that the
supremum of the absolute values of the elements of the process is almost surely finite,
that it has finite expectation, and that the process is uniformly integrable. This thesis
contains a generalization and takes more sensitive conditions into account that really take
advantage of the structure and information resulting from the distributional restriction
of the stopping times or adapted random probability measures. We can motivate the
problem from different application areas and there is another way to describe the problem.
For this approach, the task is reformulated as an optimal transport problem and discussed
from a mass transport perspective. The problem is denoted as OptStop

π.
In the first part of this thesis we will derive the results for the adapted dependence
in discrete time, i.e., we consider a totally-ordered countable index set. The different
optimization problems OptStop

τ , OptStop
γ and OptStop

π will be introduced and the
various connections between them are gradually worked out and described. The focus
of this part is on the problem OptStop

γ and therefore on adapted random probability
measures. An important aspect in considering this problem is the question of an optimal
strategy. In this thesis, the existence of such an optimal strategy in a discrete time setting
is proven for the generalized approach, which allow us to consider a much larger set
of possible processes. This optimal strategy is not unique in general as illustrated by
some examples. In addition to this, some bounds are derived in this dissertation. Some
of them apply to the problem in general, while others depend on the structure of the
underlying process. For certain classes of stochastic processes, it is possible to find an
optimal strategy and the resulting value of the optimization problem. These include, for
example, processes that are the product of a martingale and a deterministic function or in
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the binomial model. In addition, an application of the problem in the area of unit-linked
life insurance is discussed in which the modeling of the contract takes place without
assuming independence between biometric and financial market risks. The last section of
this part deals with the problem OptStop

π. We will formulate the problem as an optimal
transport problem and show the existence of an optimal strategy by using the theory of
optimal transport. Examples are also considered here.
In the second part of this thesis we will derive the results for the adapted dependence in
continous time. To view the problem OptStop

γ in continuous time, the adapted random
probability measures have to be replaced by stochastic transition kernels. A discrete
approximation is given, with the aid of which the results found in discrete time can be
transferred. In addition, results are derived for the special case in which the processes
are given as the product of a martingale and a deterministic function. However, the
main section of this part deals with the problem OptStop

π. Using the methods and
techniques of optimal transport theory we obtain the existence of optimal stopping times
of a Brownian motion with given marginal. For this, the cost process must be at least
measurable and appropriately adapted. Certain continuity assurances then guarantee
the existence of solutions to the considered problem. Furthermore, ideas and concepts
from the optimal transport (and its martingale variant) are adapted to obtain a geometric
description of the optimal strategies. The methods work for a large class of cost processes
and it is shown that for many cost processes a solution is given by the first hitting time of
a barrier in a suitable phase space. As a by-product we recover classical solutions of the
inverse first passage time problem / Shiryaev’s problem. The results of this section of the
thesis are already published in [10].
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1
Introduction

There are many situations in financial and actuarial mathematics where independence is
assumed for two stochastic components. It is often questionable whether this assumption
is always justified. This work presents a general framework to show how some of these
situations can be handled without the assumption of independence.
We want to deal with distribution-constrained optimization problems and the correspond-
ing theory. But what is that? Consider financial and actuarial products whose payoffs
are determined by a stochastic process. The time point of the payouts is random and is
therefore modeled by a stopping time that takes values in a predetermined time domain.
This stopping time should follow a given distribution and may depend on the underlying
process modeling the payoffs. The given distribution contains additional information
that is known to us or to which we have access. Then we are concretely interested in the
deduction of estimations for the worst-case situation. This results from the supremum
of the expected payout over all stopping times satisfying the given marginals. It is of
particular interest to find an optimal stopping time that yields this maximal value. This
problem is denoted by OptStop

τ . From a mathematical point of view, the problem being
considered is a special and extended version of an optimal stopping problem. This is only
one possible description of the problem. But before we look at the others, we want to
motivate it more closely with an example. Let us take a look on unit-linked life insurances,
for more details see Section 3.6.
First, we consider a single unit-linked life insurance contract with payoff at the end of the
year of death of the insured x-year old person or at the end of the contract. We assume this
contract runs for 30 years and a payout can always be made at the end of the year, such
that our predetermined time interval is given by I = {0, . . . ,30}. Let (Ω,F ,F = (Ft)t∈I ,P) be
a filtered probability space and let (Zt)t∈I be the process of the payouts. The family of the
insured person will get the insurance benefit Zτ at an random time point τ after paying
advance premiums. In this case, the random time point τ is an stopping time and the
insurance companies are interested in the maximal expected value E[Zτ ] of the payouts
of the contract. This would be a classical optimal stopping problem with value VT (Z).
However, we have more information. The stopping time τ is modeled as the minimum of
the maturity T = 30 and the future lifetime Tx of the insured person, where x indicates the
age at conclusion of contract. Thus this stopping time has the distribution which is given
through the life table or through the termination of a contract. That is how we would like
to get our distributional constraint ν from the life table. With the given distribution ν, we

1



Chapter 1. Introduction

consider then a distribution-constrained optimal stopping problem OptStop
τ with value

V νT (Z).
As already described in [33], in the praxis for unit-linked life insurances it is normally
assumed that financial and biometric risks are independent, see e.g. [43]. Under the
assumption of independence between Z and τ we will get the value V νind(Z). Examples
show that the two values V νind(Z) and V νT (Z) can differ greatly from each other.
If surrender of the contract is allowed, this reason for dropping out, which also leads
to a payoff, should not be set independent of the financial market. It is possible that a
downturn in the economy, which is often followed by high unemployment rates, leads
to more lapses for an insurance company. It is equally conceivable that a flu epidemic
could influence the financial markets. In the technical specifications of the long-term
guarantees assessment (LTGA, [49]) or the fifth quantitative impact study (QIS5, [60])
for Solvency II there are assumptions about a positive correlation between financial and
biometric risks used to compute the solvency capital requirement. Similar ideas are
followed in current research. In [19], worst-case scenarios for pricing and reserving life
insurance products are considered where a mutual dependence between interest rates and
mortality is allowed. In [47], a valuation framework is presented with a given correlation
between the dynamics of mortality and interest rates. Further upper and lower bounds for
the value of a guaranteed annuity option are found using comonotonicity theory. Variable
annuities are very flexible, long-term tax-deferred investments whose design matches
features of unit-linked life insurance contracts that package several types of options and
guarantees, at the policyholder’s discretion. In [7], a quite general valuation model for
variable annuities, with death and survival guarantees and state-dependent fee structure,
along the lines of [6], is defined and numerically analysed the interaction between fee
rates, death/survival guarantees, fee thresholds and surrender penalties under alternative
model assumptions and policyholder behaviors, thus getting also some interesting insights
into the model risk. In [6], it is shown that in some situations, namely when the guarantee
concerns the choice of the post-retirement income, policyholder preferences significantly
affect the value of the guarantee.
Let us now consider the unit-linked life insurance of a married couple or a group of per-
sons. In addition to the assumption of independence of financial risks and biometric risks,
in this case, the independence of the physical and emotional health of the partners from
each other is often assumed. Then we calculate the expected values for each individual
person by means considered above and add them together. But with some common sense,
it is clear that this is not the case. The couple live in the same environment and is strongly
connected. For example, both can get be injured in a possible car accident. Furthermore,
the broken heart syndrome is also known and studied since a long time in medicine, see
[26]. They found that the mortality rate of bereaved close relatives is much greater within
a year of bereavement compared with a control group. As a consequence, health can
drastically deteriorate when one’s partner dies. Therefore, it is not reasonable to assume
independence of the times of death of either partner. Current research, that is concerned
with this, is for example [50].
To model a portfolio of similar contracts in a discrete time setting we have to use adapted
random probability measures instead of stopping times. From a mathematical point of
view, the problem being considered then is a special and extended version of an optimal
stopping problem and is called OptStop

γ . The problems OptStop
τ and OptStop

γ were
introduced in [33] for the first time. If a stopping time τ is used for modeling a life
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insurance contract for one person, then the adapted random probability measure can be
used to model a married couple.
It is also possible to use this setting for health insurance contracts. These are often mod-
eled in a similar way as life insurance contracts. The payoff for these contracts, called
claims amount per risk in this setting, is normally a deterministic number, corresponding
to the value the insurer expects to pay, and based on historical data. Using the setting
of this article, such claims amount per risk can be modeled stochastically. This is more
appropriate, since it is influenced by many factors, such as modern techniques in health
care, the status of the corresponding country (social turmoil, peace or war, . . . ) and
political decisions. These factors also influence the probability of occurrence of an insured
event. Improvements in the medical system will guarantee that people are cured more
rapidly and that the probability of a relapse declines.
The dependence between severe medical diseases and crises or catastrophes in the sur-
roundings of patients is a matter of paramount interest to medical research. One especially
interesting work with regard to this thesis is about the impact of the socioeconomic crisis
in Greece on acute myocardial infarction [51]. In [51] the authors found that the financial
crisis may have led to a higher incidence of acute myocardial infarction in the population
of Messinia and assert the need for an analysis of this phenomenon for the entire Greek
population. In [44] and [54] the aftermath of the earthquake in Japan in March 2011 on
coronary syndromes is analyzed. Both studies seem to demonstrate that the stress of this
disaster has increased the number of hospitalized patients. Similarly, an alteration in the
pattern of acute myocardial infarction onset followed in the wake of hurricane Katrina in
New Orleans. This is discussed in [59].
As seen, this issue has a lot of applications in the field of financial and actuarial risk man-
agement. We have only introduced the two problems OptStop

τ and OptStop
γ so far, but

there is another way to describe the problem. For this approach, the task is reformulated
as an optimal transport problem and discussed from a mass transport perspective. The
problem is then denoted as OptStop

π. IIf we deal with the theory of optimal transport,
we come into contact with the two common basic concepts: cyclical monotonicity and
Kantorovich duality. The cyclical monotonicity is a geometric property. An optimal plan
should be c-cyclically monotone, i.e., it is concentrated on a c-cyclically monotone set
and you can not improve the cost by rerouting mass along some cycle. It is impossible to
perturb it and get something more economical. Informally, a c-cyclically monotone plan
is a plan that cannot be improved. The converse property is considerably less obvious,
i.e., c-cyclically monotone plan should be optimal. Maybe it is possible to get something
better by radically changing the plan as only rerouting mass along some cycle. In this
work we will see that it holds true under certain conditions. The Kantorovich duality is
used to show the existence of an optimal strategy.
In the first part of this thesis we will derive the results for the adapted dependence in
discrete time. The different optimization problems OptStop

τ , OptStop
γ and OptStop

π

will be introduced and the various connections between them are gradually worked out
and described. The focus of this part is on the problem OptStop

γ and consequently on
adapted random probability measures. An important aspect in considering this problem
is the question of an optimal strategy. In this thesis, the existence of such an optimal
strategy in a discrete time setting is proven for the generalized approach, which allows us
to consider a much larger set of possible processes. This optimal strategy is not unique in
general as illustrated by some examples. In addition to this, some bounds are derived in
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Chapter 1. Introduction

this dissertation. Some of them apply to the problem in general, while others depend on
the structure of the underlying process. For certain classes of stochastic processes, it is
possible to find an optimal strategy and the resulting value of the optimization problem.
These include, for example, processes that are the product of a martingale and a determin-
istic function or in the binomial model. In addition, an application of the problem in the
area of unit-linked life insurance is discussed in which the modeling of the contract takes
place without assuming independence between biometric and financial risks. The last
section of this part deals with the problem OptStop

π. We will formulate the problem as
an optimal transport problem and show the existence of an optimal strategy by using the
theory of optimal transport. Examples are also considered here.
In the second part of this thesis we will derive the results for the adapted dependence in
continous time. To view the problem OptStop

γ in continuous time, the adapted random
probability measures have to be replaced by stochastic transition kernels. A discrete
approximation is given, with the aid of which the results found in discrete time can be
transferred. In addition, results are derived for the special case in which the processes
are given as the product of a martingale and a deterministic function. However, the main
section of this part deals with the problem OptStop

π. Using the methods and techniques
of optimal transport theory we obtain the existence of optimal stopping times of a Brown-
ian motion with given marginals. However, the cost process must be at least measurable
and appropriately adapted. Certain continuity assurances then guarantee the existence of
solutions of the considered problem. Furthermore, ideas and concepts from the optimal
transport (and its martingale variant) are adapted to obtain a geometric description of the
optimal strategies. The methods work for a large class of cost processes and it is shown
that for many cost processes a solution is given by the first hitting time of a barrier in a
suitable phase space. As a by-product we recover classical solutions of the inverse first
passage time problem / Shiryaev’s problem. The results of this section of the thesis are
already published in [10].
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2
The Problem

We now introduce our problem of study and create a connection to the classical optimal
stopping problem. The distribution-constrained optimization problem, which we consider,
is a modified version of an optimal stopping problem.
We deal with financial and actuarial products, whose payoffs taking value during a certain
time interval are determined by an stochastic process. The time point of the payoff is
modeled by a stopping time. This stopping time or adapted random probability measure
follows a given distribution and can depend on the underlying process of payoff. With
other words we want to consider distribution-constrained optimal stopping problems. Our
target is to deduce the estimation of the worst-case situation. That means, the supremum
of the expected payoff over all stopping times satisfying the given marginals. It may
happen that this problem is not well-posed and therefore does not have a solution.
There are different views on these restricted optimization problem. One possibility is that
we replace the stopping times by adapted random probability measures and prove the
existence of an optimal strategy for these problems by using functional analysis, for more
details see Chapter 3. Another possibility is that we formulate the problem in terms of
an optimal transport problem and prove the existence of an optimal strategy for these
problems by using the theory of optimal transport, see Chapter 4.

First of all, we introduce the notational conventions for this part. We will see that the
problem is a modified version of an optimal stopping problem.

Notation 2.0.1. Throughout this part, we consider a discrete-time setting and stick to the
following notation.

(a) Let I , ∅ denote a countable, i.e., a finite or countably infinite, totally-ordered index
set; for simplicity the reader may assume that I ⊆R∪ {−∞,∞}. Let T := sup(I) and
Ī := I ∪ {T }.

(b) For t ∈ I we define the set I<t = {s ∈ I |s < t} of all times before t, the set I≤t = {s ∈ I |
s ≤ t} of all times up to t, the set I≥t = {s ∈ I |s ≥ t} of all times from t on, and the set
I>t = {s ∈ I |s > t} of all times after t. The same holds for Ī .

(c) Let (Ω,F ,P) be a probability space with filtration F = (Ft)t∈I . If T < I , we define
FT = σ

(⋃
t∈I Ft

)
.

(d) The given probability measure on I will be denoted by ν = (νt)t∈I , its support by

7



Chapter 2. The Problem

supp(ν) := {t ∈ I | νt > 0}. For t ∈ I we define ν<t =
∑
s∈I<t νs and ν>t =

∑
s∈I>t νs, as

well as ν≤t = ν<t + νt and ν≥t = ν>t + νt. Relations like ν≤t + ν>t = 1 will be used
without mentioning it. For (γt)t∈I as in Definition 3.1.1 below, we use a similar
notation.

(e) TI denotes the set of all stopping times τ : Ω→ Ī with P(τ ∈ I) = 1 and T νI its subset
of all τ with distribution ν, i.e., L(τ) = ν. Note that we use in this thesis another
definition as [33, Definition 2.4].

Typical examples for an infinite index set I are N, Z or Q and for a finite {1, . . . ,N } for
some N ∈N. Our considered index set I is especially a directed set, which satisfies the
following definiton.

Definition 2.0.2 (Directed set).
A directed set is a partially ordered set with the additional property that two elements in
the set have a common upper bound in the set, respectively

Furthermore, note the difference between a mapping σ : Ω → I such that {σ = t} is
F -measurable for each t ∈ I and a stopping time. A stopping time τ with respect to
the filtration (Ft)t∈I is a mapping τ : Ω→ I which satisfies the measurability property
{τ = t} ∈ Ft for each t in I . Corresponding to each stopping time τ there is a τ-field denoted
by Fτ and defined as

Fτ := {A ∈ F | A∩ {τ = t} ∈ Ft for all t ∈ I}.

We now assume that the values we are interested in exist and are finite. If we want to
make sure that the values exist, we can assume that E[supt∈I |Zt |] <∞ or that we are given
an adapted process Z in L1(P) with E[supt∈I Z

+
t ] <∞ or E[supt∈I Z

−
t ] <∞. Note that such

assumptions are very strong and do not use the given information about the distribution
on I .
The value of a classical optimal stopping problem, which we will denote by VT (Z), is
given by

VT (Z) := sup
τ∈TI

E[Zτ ].

Note that TI is defined slightly different as in [33] and therefore this value too, cf. equation
(2.5) in [33]. This value coincides for a non-negative process Z with the value of a standard
American option without any hedging possibilities. The pricing of American options or
optimal stopping problems are well known problems in the literature. An example of the
calculation via Snell envelope can be found in Section 3.6.
Keeping such classical optimal stopping problems in mind, the difference to the following
one is our assumption that we have considered some information about the distribution
of the stopping times. Then the distribution-constrained optimal stopping problem is
given in the following way:

Problem (OptStop
τ ). Consider a real-valued and F -adapted stochastic process Z = (Zt)t∈I

such that E[Z+
τ ] is finite for all τ ∈ T νI . Find sufficient conditions such that among all

stopping times τ ∈ T νI there exists a maximizer τ∗ solving

E[Zτ∗] = sup
τ∈T νI

E [Zτ ] .
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T νI and V νI (Z) are again defined slightly diffferent as in [33], cf. equation (2.7) there. In
general we can not expect a maximizer τ∗ to be unique. As example, consider a uniformly
integrable martingale Z with index set I = N. By Doob’s optional stopping theorem, every
stopping time τ ∈ T

N
gives the same value for E[Zτ ].

It may happen, in particular on a finite space Ω, that OptStop
τ is not well posed and

therefore does not have a solution because the filtration is so small that T νI = ∅. This
happens for example when there exists a t ∈ I such that no event A ∈ Ft satisfies P(A) = νt,
cf. Example 2.0.3 below, or when there is an At ∈ Ft with P(At) = νt for each t ∈ I , but it is
impossible to have As ∩At = ∅ for all s, t ∈ I with s , t, cf. Example 2.0.4 below.

Example 2.0.3. Cf. [33, Example 2.21]: Given a one-period model with I = {0,1}, we
consider the probability space Ω = {0,1} with F = P (Ω) = {∅, {0}, {1},Ω} and P({ω}) ∈ (0,1)
for all ω ∈Ω. Let the filtration be given by F0 = {∅,Ω} and F1 = F . For every probability
distribution ν on I with ν0 ∈ (0,1) there does not exist a stopping time τ with {τ = 0} ∈ F0
and P(τ = 0) = ν0. Consequently OptStop

τ is not a well-posed problem and cannot be
solved.

Example 2.0.4. Given a two-period model with I = {0,1,2}, we consider the probability
space Ω = {0,1,3} with F = P (Ω) and P({ω}) = 1

3 for all ω ∈Ω. Let the filtration be given
by F0 = F1 = {∅, {0}, {0,1},Ω} and F2 = F . For the probability distribution ν on I with
ν0 = ν1 = ν2 = 1

3 there does not exist a stopping time τ with {τ = 0} ∈ F0 and {τ = 1} ∈ F1

satisfying P(τ = 0) = P(τ = 1) = 1
3 , because there is only one event in F1 with the correct

probability. Thus OptStop
τ is not a well-posed problem and can not be solved.

Assume that the expected values of interest are well-defined. Then the connection be-
tween the standard and distribution-constrained optimal stopping problem is given for a
process Z by

V νT (Z) := sup
τ∈T νI

E[Zτ ] ≤ sup
τ∈TI

E[Zτ ] =: VT (Z) . (2.0.5)

Note that we set supτ∈T νI E[Zτ ] = −∞ in the case T νI = ∅. It implies the existence of the
value V νT (Z) whenever the corresponding classical optimal stopping problem is well-
defined. For further information about the value VT (Z) we refer to the corresponding
literature about optimal stopping problems.
If we assume that the adapted process Z and the stopping time τ ∈ T νI , ∅ are independent,
then we receive by using Corollary 3.5.1 below that

V νind(Z) := E[Zτ ] =
∑
t∈I

E[Zt1{τ=t}] =
∑
t∈I

E[Zt]νt

with νt := P(τ = t) for all t ∈ I . If such an independent stopping time τ ∈ T νI does not exist,
then we set V νind(Z) = −∞.
Like in [33], it is easy to see that V νind(Z) ≤ V νT (Z) ≤ VT (Z). If I ⊆ N0 is a discrete
interval with 0 ∈ I , the process Z is a uniformly integrable martingale and T νI , ∅, then
V νT (Z) = VT (Z), because of Doob’s optional stopping theorem (given below) that states
that E[Zτ ] = E[Z0] for all stopping times τ . Furthermore, if there exists a stopping time
τ ∈ T νI , ∅, which is independent of the uniformly integrable martingale Z, then this
stopping time proves V νind(Z) = V νT (Z) = VT (Z). Of course these equalities are also true
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for all martingales Z and stopping times τ that satisfy the necessary conditions for using
Doob’s optional stopping theorem. The different conditions on the martingale and the
stopping time in Doob’s optional stopping theorem are noted, for example Theorem 2.0.10
in [74] or Theorem 2.0.11 below.

Theorem 2.0.6 (Doob’s optional stopping theorem).
Cf. [33, Theorem 2.9]:

(a) Given I ⊆N0 with 0 ∈ I . Let τ be a stopping time and Z be a supermartingale. Then Zτ
is integrable and E[Zτ ] ≤ E[Z0] in each of the following situations:

1. τ is bounded a.s., i.e., for some N ∈ I \ {0} ⊆N we have P(τ ≤N ) = 1,

2. τ is finite a.s. and Z is bounded a.s., i.e., for some K > 0 we have P(|Zt | ≤ K) = 1 for
all t ∈ I ,

3. E[τ] <∞ and for some K > 0 we have P(|Zt −Zs| ≤ K |t − s|) = 1 for all s, t ∈ I \ {0}.

(b) If I ⊆ N0 with 0 ∈ I , any of the conditions (a1), (a2), (a3) or (a4) holds and Z is a
martingale, then E[Zτ ] = E[Z0].

(c) If I ⊆Z is a countably infinite index set, Z is a martingale and τ is a bounded stopping
time, then Zτ is integrable and E[Zτ ] = E[Zt] for all t ∈ I .

(d) Given a totally ordered countable set I ⊆R, let ν be a probability distribution on I and
let τ be a stopping time.

1. ν has a finite support. Let Z be a supermartingale. Then, for every τ ∈ T νI , the
random variable Zτ is well-defined, integrable and satisfies E[Zτ ] ≤ E[Zt] for every
minω∈Ω τ(ω) ≥ t, t ∈ I .

2. Let Z be a martingale with Z∗ = supt∈I |Zt | ∈ L1. Then, for every τ ∈ T νI , the random
variable Zτ is well-defined, integrable and satisfies E[Zτ ] = E[Zt] for every t ∈ I .

3. Let Z be a supermartingale,
∑
t∈I |t|νt <∞ and for some K > 0 we have |Zt −Zs| ≤

K |t − s| a.s. for all s, t ∈ I . Then, for every τ ∈ T νI , the random variable Zτ is
well-defined, integrable and satisfies E[Zτ ] ≤ E[Zt] for every minω∈Ω τ(ω) ≥ t,
t ∈ I .

Before we prove this theorem, let us start with some preliminary considerations. There
are a lot of different versions of Doob’s optional sampling theorem and different ways to
get it.
The paper [74] gives a characterization of the class of stopping times for which the optional
sampling theorem is true for all uniformly bounded submartingales indexed by countable
partially ordered set. A totally ordered countable index set is a special countable partially
ordered set, so that the results in [74] remain also in the special index set I .
Before we come to the main results of this paper, we want to define uniformly bounded-
ness.

Definition 2.0.7 (Uniformly bounded).
A mapping X : I ×Ω→ R

d , d ∈N, is uniformly bounded if there exists a non-negative
random variable X+ : Ω→ R+ with finite expectation E[X+] such that ‖Xt‖ ≤ X+ for all
t ∈ I , where ‖ · ‖ is a norm on R

d .
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Theorem 2.0.8. See [74]: For a given pair σ,τ of stopping times such that σ ≤ τ on a countable
partially ordered set, the optional sampling inequality

Xσ ≤ E[Xτ |Fσ ], a.s.,

is true for all uniformly bounded submartingales X if and only if τ is reachable from σ .

Example 2.0.9. Cf. [74]: Let I = {a,b,c} with the order relation a ≤ b and a ≤ c. Let τ be a
random function taking only the value b and c with P(τ = b) = P(τ = c) = 1

2 . The filtration
is defined as

Fa = {∅,Ω} and Fb = Fc = {∅,Ω, {τ = b}, {τ = c}}.

Our considered process is given as

Xt =


0, t = a,

1, t , τ,

−1, t = τ.

Then E[Xb|Fa] = E[Xc|Fa] = Xa and X is a uniformly bounded martingale on I . However,
E[Xτ |Fσ ] = −1 < Xσ for the choice σ = a. In this example τ is not reachable from σ and
Theorem 2.0.8 fails.

Theorem 2.0.10. See [74]: If X is a uniformly bounded martingale and if the countable
partially orderd index set is directed, then

Xσ = E[Xτ |Fσ ], a.s.,

is true for any stopping time σ,τ such that σ ≤ τ .

It is also possible to use the continuous case. If the process (Xtn)n∈N0
is a discrete-time

submartingale with respect to the filtration (Ftn)n∈N0
, where 0 = t0 < t1 < t2 · · · <∞, then

Xt := Xγ(t) and Ft := Fγ(t) with γ(t) := max{tn | tn ≤ t, n ∈N0} for t ∈R+ gives a well-defined
right-continuous submartingale and the setting of Theorem 2.0.11.

Theorem 2.0.11 (Doob’s optional sampling theorem).
Cf. [71, Theorem 4.83]: Let X = (Xt)t≥0 be a right-continuous F -submartingale, σ : Ω→ [0,∞]
an F -stopping time, and τ : Ω→ [0,∞] an F -stopping time. Then the following holds:

(a) For every u ≥ 0, Xτ∧u and Xσ∧τ∧u are integrable random variables and

Xσ∧τ∧u ≤ E[Xτ∧u |Fσ ], a.s. (2.0.12)

(b) If P(τ <∞) = 1 and if (X+
τ∧u)u≥0 is uniformly integrable, then Xτ and Xσ∧τ are a.s. well

defined and integrable, and

Xσ∧τ ≤ E[Xτ |Fσ ], a.s. (2.0.13)

11
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We need the following two other versions to prove parts of Theorem 2.0.6.

Theorem 2.0.14 (Optional sampling, Doob).
See [39, Theorem 6.12]: Let Z be a martingale on some countable totally ordered index set I
with filtration F , and consider two optional times σ and τ , where τ is bounded. Then Zτ is
integrable, and Zσ∧τ = E[Zτ |Fσ ], a.s.

Theorem 2.0.15 (Finite optional sampling for submartingales).
Cf. [71, Lemma 4.57]: Let (Xt)t∈I be a submartingale and let σ , τ be stopping times, where τ
attains only finitely many values of I and σ takes values of I such that {t ∈ σ (Ω)|t ≤maxτ(Ω)}
is finite. Then Xτ and Xσ∧τ are integrable and

Xσ∧τ ≤ E[Xτ |Fσ ], a.s.

With I is discrete and contains the infimum of every subset which is bounded below, like I finite,
I = N0, I = Z or I = {0} ∪

{
1
n | n ∈N

}
.

Proof of Theorem 2.0.6.

(a) For the special case that I = {0,1, . . . ,T } with T ∈N you can find the proof in [75].
Using Theorem 2.0.11 with σ ≡ 0 and n ≥ 0 we obtain that Zτ∧n is integrable and

E[Zτ∧n] ≤ E[Z0]. (2.0.16)

1. For some N ∈N we have P(τ ≤ N ) = 1 for all t ∈ I . Furthermore, for n =N
we get, using the first considerations, that Zτ = Zτ∧N is integrable and
E[Zτ ] ≤ E[Z0], a.s.

2. Right now τ is finite a.s., i.e., P(τ <∞) = 1 and Z is bounded a.s., i.e., for some
K > 0 we have |Zt(ω)| ≤ K = 1 for all t ∈ I and ω ∈ Ω. We can let n→ ∞ in
(2.0.16) using bounded convergence theorem such that we get the statement.

3. E[τ] =
∑
t∈I |t|νt < ∞ and for some K > 0 we have |Zt(ω) − Zt−1(ω)| ≤ K = 1

for all t ∈ I \ {0} and for all ω ∈ Ω. Assume that we define the index set as
I := {tn|n ∈N0,0 = t0} ⊆N0. Either there exists an m ∈N such that τ ∧ n = tm
or we use [33, Remark 3.91], if τ ∧n = n < I . For simplification we assume that
there exists an m ∈N such that tm = τ ∧n. With

|Zτ∧n −Z0| =
∣∣∣∣ m∑
k=1

Ztk −Ztk−1

∣∣∣∣ ≤ K( m∑
k=1

|tk − tk−1|︸    ︷︷    ︸
>0

)
= K(τ ∧n) ≤ Kτ

and E[τ] <∞, so that dominated convergence justifies letting n→∞ in (2.0.16)
to obtain the answer we want.

(b) Z is a martingale implies that Z is a supermartingale and −Z is an supermartingale.
The statement follows from the application of (a) on Z and −Z.

(c) It follows from Theorem 2.0.14.

(d) 1. If ν has a finite support, there exists an element T ∈ I such that ν≤T = 1, i.e.,
P(τ ≤N ) = ν≤N = 1. If ν has a finite support, it also implies that τ attains only
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finitely many values of I . If a t ∈ I with ν≤t = 1 exists, then the corresponding
stopping time is bounded by t a.s. We can use [71, Lemma 3.72] below or
[71, Theorem 3.86] and get by the convenient choice with σ = t that

Zτ∧t ≥ E[Zτ |Ft], a.s. for all max
ω∈Ω

τ(ω) ≥ t

such that

E[Zt] ≥ E[Zτ ], a.s. for all min
ω∈Ω

τ(ω) ≥ t

and that Zτ is integrable.
If we assume that Z is a martingale, the corresponding statement would be
follow immediately from Theorem 2.0.14.

2. With Z∗ = supt∈I |Zt | ∈ L1 we have that Z is uniformly bounded.
Using Theorem 2.0.10 we obtain the desired answer.

3.
∑
t∈I |t|νt <∞ and for some K > 0 we have |Zt −Zs| ≤ K |t − s| a.s. for all s, t ∈ I .

For all ω ∈Ω and for all s, t ∈ I \{0}: ∃k, l,m ∈N0 such that t = tk and tl = s with
s ≤ τ ∧ t = tm:

|Zτ∧t −Zs| =
∣∣∣∣ m∑
k=l

Ztk −Ztk−1

∣∣∣∣ ≤ K( m∑
k=l

|tk − tk−1|
)

= K |τ ∧ t − s| ≤ K |τ ∧ t|︸  ︷︷  ︸
K |τ |

+ K |s|.︸︷︷︸
<∞

We get

E[|Zτ∧t −Zs|] ≤ K ·E[|τ |] +K |s| = K
∑
t∈I
|t|νt︸  ︷︷  ︸
<∞

+K |s| <∞,

so that dominated convergence justifies letting k → ∞ in E[Zτ∧tk − Ztl ] ≤ 0,
k, l ∈N0 k ≤ l, to obtain the answer we want.

q
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3
Adapted Random Probability

Measure

In the previous section we have discussed the problem OptStop
τ and its connection to the

standard problem. Now we will replace the stopping times by adapted random probability
measures. First we have to define adapted random probability measures and describe
the corresponding problem OptStop

γ . Furthermore, in Section 3.2 we will show the
connection between the different optimization problems OptStop

τ and OptStop
γ and how

the corresponding values of the problems change. An important aspect in considering
this problem is the question of an optimal strategy. In Section 3.3, the existence of such an
optimal strategy in a discrete time setting is proven for the generalized approach, which
allow us to consider a much larger set of possible processes. This optimal strategy is not
unique in general as illustrated by some examples. In addition to this, some general results
and bounds are derived in Section 3.4. Some of them apply to the problem in general,
while others depend on the structure of the underlying process. For certain classes of
stochastic processes, it is possible to find an optimal strategy and the resulting value of the
optimization problem, see Section 3.5. These include, for example, processes that are the
product of a martingale and a deterministic function or in the binomial model. In Section
3.6, an application of the problem in the area of unit-linked life insurance is discussed in
which the modeling of the contract takes place without assuming independence between
biometric and financial risks.
Some additional results and proofs that would unnecessarily disturb the flow of reading
are outsourced. The reader can find them in Subsection 3.3.3 or in the Appendix A.
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Chapter 3. Adapted Random Probability Measure

3.1. The Problem and Main Results

First we will give the definition of adapted random probability measures. Note that we
modify [33, Definition 2.12] for our considerations. This modified definition gives us
the possibility to avoid the necessity of stopping on the one hand and consider adapted
random subprobability measures on the other hand, see Remark 3.1.8. Adapted random
probability measures are adapted stochastic processes γ = (γt)t∈I defined as follows:

Definition 3.1.1. For a real-valued process γ = (γt)t∈I , we write γ ∈MI , if

(a) γt ≥ 0 for all t ∈ I ,

(b)
∑
t∈I γt ≤ 1,

(c)
∑
t∈I γt ≥ 1, a.s.,

(d) γt is Ft-measurable for all t ∈ I , i.e., γ is adapted.

Given a probability measure ν = (νt)t∈I on I , we say that the above stochastic process γ is
inMν

I , if in addition,

(e) E[γt] = νt for all t ∈ I .

Two adapted random probability measures may be identified if they induce the same
probability measure on F ⊗P (I).

Example 3.1.2. Cf. [33, Remark 2.18]: Given a F -stopping time τ with P(τ ∈ I) = 1, it can
be naturally identified with the F -adapted stochastic process γ = (γt)t∈I defined by

γt(ω) = 1{τ(ω)}(t), ω ∈Ω, t ∈ I. (3.1.3)

On {τ ∈ I} this stochastic process γ defines a probability measure on I . If L(τ) = ν, then
γ ∈ Mν

I . The reverse construction, i.e., finding a stopping time τ producing a given
γ ∈Mν

I via (3.1.3), is contained in Theorem 3.2.8 below and relies on an enlargement of
the filtration F .

Example 3.1.4. Cf. [33, Remark 2.20]: The setMν
I is never empty, because it contains the

adapted random probability measure γ defined by γt = νt1Ω for all t ∈ I .

Furthermore, we know that the setMν
I of adapted random probability measures is convex.

Lemma 3.1.5. Cf. [33, Lemma 3.1]: Given γ and γ̃ inMν
I and a [0,1]-valued random variable

Λ which is Ft-measurable for all t ∈ I . If Λ is uncorrelated to γt and γ̃t for all t ∈ I , then also
Λγ + (1−Λ)γ̃ ∈Mν

I . In particular the setMν
I is convex.

Proof. Using Definition 3.1.1 it is easy to check that for γ and γ̃ inMν
I we have

Λγ + (1−Λ)γ̃ ∈Mν
I . q

The attentive reader might have stumbled upon ‘almost surely’ in Definition 3.1.1(c).
This is related to the definition of a stopping time as a map to Ī . Example 3.2.4 below
shows the necessity. Additionally, note that the Jensen’s inequality for the convex function
x 7→ |x|p with p ≥ 1 works for substochastic measures. The definition of adapted random
probability measures, Definition 3.1.1, can be modified depending on the interest.
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Remark 3.1.6. Cf. [33, Remark 2.16]: Another point of interest could be to assume
∑
t∈I γt ≤

x, a.s., or γt ∈ [0, y], a.s., for t ∈ I , x,y ∈ [0,∞). Some of the results, which are shown,
can be adjusted to such a problem. Nevertheless, we will concentrate on x = y = 1 in the
article.

In this chapter we will mainly consider the distribution-constrained optimization problem
of the following form:

Problem (OptStop
γ ). Consider a real-valued and F -adapted stochastic process Z = (Zt)t∈I .

Find sufficient conditions such that:

(a) For every γ ∈Mν
I , the series

∑
t∈I γtZt defining Zγ , is P-a.s. absolutely convergent

in R satisfying E[Z+
γ ] <∞.

(b) There exists a maximizer γ∗ ∈Mν
I solving

E[Zγ∗] = sup
γ∈Mν

I

E[Zγ ] . (3.1.7)

Remark 3.1.8. Our framework also includes two special cases which can be of interest. By
adding an additional time point t? to I , which is an upper bound for I , and setting Zt? = 0,
we can avoid the necessity of stopping on the one hand and consider adapted random
subprobability measures on the other hand. By defining γt? = 1−

∑
t∈I γt we construct an

adapted random probability measure.

Remark 3.1.9. The definitions of TI , T νI ,MI andMν
I depend on the underlying filtration

F .

Due to Mν
I , ∅, see Example 3.1.4, the filtration F is not a limiting factor to have a

solution for the problem OptStop
γ (unlike OptStop

τ ). However, as Example 3.3.90 below
shows, a process Z, even when it is bounded in L1 and guarantees (a) of OptStop

γ , might
be growing too fast for an optimizer γ∗ to exist. Therefore, we will concentrate on moment
conditions for the adapted stochastic process Z.
Thus the value we want to compute under the assumptions of Theorem 3.3.5 or Theorem
3.3.34 for Z, is defined by

V νM(Z) = sup
γ∈Mν

I

E[Zγ ] . (3.1.10)

Note thatMν
I , ∅ and V νM(Z) <∞ is guaranteed by Example 3.1.4 and Theorem 3.3.34

(or Theorem 3.3.5) , as the assumptions stated there make sure that the problem is well-
posed. The value V νM(Z) is defined and finite for all processes Z ∈

∏
t∈I Lp(Ω,Ft ,P;K)

with ‖Z‖ν,p,q <∞, p ∈ [1,∞) and q ∈ [1,∞], see Lemma 3.3.65 (or Z ∈
∏
t∈I L

p(Ω,Ft ,P;R)
with ‖Z‖ν,p <∞, p ∈ [1,∞), see Lemma 3.3.25). Furthermore, the distribution-constrained
optimization problem OptStop

γ is indeed an enlargement of the problem OptStop
τ by

using (3.1.3).
All relevant considerations, preliminaries and the proof of the existence of an optimal
strategy can be found in Section 3.3.

Remark 3.1.11. Cf. [33, Remark 2.10]: All the results stated can also be adjusted to treat
the infimum instead of the supremum, because

inf
γ∈Mν

I

E[Zγ ] = − sup
γ∈Mν

I

E[−Zγ ] .

17



Chapter 3. Adapted Random Probability Measure

Example 3.1.12. If we assume that (Zt)t∈I satisfies E[supt∈I |Zt |] <∞ as required in [33],
our considered problem is well-posed and the values, we are interested in, exist and are
finite. For example, E[Zγ ] exists and is finite for every γ ∈MI , because of

E[|Zγ |] = E

[∣∣∣∣∑
t∈I
Ztγt

∣∣∣∣] ≤∑
t∈I

E[|Zt |γt] ≤ E

[
sup
t∈I
|Zt |

∑
t∈I
γt︸︷︷︸

≤1 a.s.

]
≤ E[sup

t∈I
|Zt |] <∞.

This implies that Zγ is well-defined and integrable. Because of Mν
I ⊆ MI , we get an

analogously definition on the smaller setMν
I .

Furthermore, it should be also clear that an optimal strategy for our problem OptStop
γ

satisfies the following definition:

Definition 3.1.13 (Optimal strategy).
Let I be a countable, totally-ordered index set and (Zt)t∈I a process such that E[Z+

γ ] is
finite for all γ ∈Mν

I . If there exists a γ∗ ∈Mν
I such that

E[Zγ∗] ≥ E[Zγ ], ∀γ ∈Mν
I ,

then γ∗ is optimal for (Zt)t∈I .

3.2. Connections between the Different Optimal Stopping

Problems and Illustrating Examples

In this section we will show the connection between the different optimization problems
OptStop

τ and OptStop
γ and how the corresponding values of the optimization problems

change. Note that thereby the problems depend on the given distribution, the filtration
and the underlying process. In Example 3.1.2 we have already seen that T νI can be
embedded inMν

I via (3.1.3). By enlarging the filtration in an eligible way we can also
embed the original setMν

I into a set T̃ νI corresponding to an enlarged filtration, if the
underlying process Z retains its original measurability. This reverse construction is
contained in Theorem 3.2.8 below.
For the computation of the value V νT (Z) we assume that the filtration in our model is chosen
appropriately. Otherwise it could happen that T νI = ∅, as shown in Example 2.0.3 above,
since a set might not exist in Ft with probability νt for some t ∈ I . This is not necessary
for the computation of V νM(Z) since at least one adapted random probability measure
exists inMν

I , see Example 3.1.4. We have seen that the OptStop
γ is an enlargement of the

problem OptStop
τ , cf. (3.1.3). Therefore, it holds obviously that

sup
τ∈T νI

E[Zτ ] ≤ sup
γ∈Mν

I

E[Zγ ] ≤ sup
γ∈MI

E[Zγ ] =: VM(Z), (3.2.1)

because T νI is embedded inMν
I via (3.1.3) andMν

I ⊆MI .

18



3.2. Connections between the Different Optimal Stopping Problems and Illustrating
Examples

Remark 3.2.2. Cf. [33, Remark 2.18]: If a stopping time τ is used for modeling a claim,
then an adapted random probability measure can be used to model a portfolio of such
claims. If a portfolio consists of countable many claims, indexed by the set C, modeled
by a series of stopping times (τj)j∈C , then the whole portfolio can be modeled using the
adapted random probability measure γ given by γt(ω) =

∑
j∈Cwj1τj (ω)({t}) for t ∈ I , ω ∈Ω

with non-negative weights (wj)j∈C defining a probability measure on C. Note that τj in
T νI for every j ∈ C implies γ ∈Mν

I .

In the study of these two problems OptStop
γ and OptStop

τ we do not suppose that the
underlying process and the stopping time or the adapted random probability measure are
independent. Hence, we have an adapted dependence between Z and τ or Z and γ .
We already noted that V νT (Z) ≤ V νM(Z) and that the inequality can be strict if T νI = ∅. As
we will see in the following example, it is possible that V νT (Z) < V νM(Z) even in the case
T νI , ∅.

Example 3.2.3. Cf. [33, Remark 2.22]: We take a look at a one-period model with I = {0,1}
and Ω = {ω0,ω1}. We assume that a probability distribution ν on I with ν0 , ν1 and
ν0,ν1 ∈ (0,1) is given. Let F0 = F1 = P (Ω) = {∅, {ω0}, {ω1},Ω}. Furthermore, we assume
P({ωi}) = νi for i ∈ {0,1}. Now we know that the only stopping time τ ∈ T νI with the given
distribution ν is given by

{τ = 0} = {ω0} , {τ = 1} = {ω1} .

An adapted random probability measure γ ∈Mν
I different from the one induced by the

stopping time τ is given by γi = νi for i ∈ {0,1}. If the process Z is given by Z0(ω0) = 0,
Z1(ω0) = 1, Z0(ω1) = 1 and Z1(ω1) = 0, then we have V νT (Z) = 0, whereas

V νM(Z) ≥ E[Z0γ0] +E[Z1γ1] = ν0ν1 + ν1ν0 > 0 .

Therefore, we have V νT (Z) < V νM(Z).

The next example explains why it is necessary to consider Ī and how it connects to the
condition (c) in Definition 3.1.1.

Example 3.2.4. Let I = N and the probability space be given by Ω = {0,1}N, the product
σ -algebra and the product measure of the Laplace distribution on {0,1}. Then Ī = N∪{∞}.
Define the process Z by Zt(ω) =ωt for all t ∈N. Let F = (Ft)t∈N be the natural filtration
of Z, i.e., Ft = σ (Z1, . . . ,Zt) for all t ∈ I . We want maximize the value E[Zτ ]. It is obvious
that the greedy strategy will solve the problem such that an optimal stopping time is
given by τ = inf{t ∈ I | Zt = 1}. For this it holds that τ((0,0, . . .)) = ∞. If we instead
of using the convention inf∅ = ∞ assume that τ((0,0, . . .)) = t for some t ∈N, we get a
contradiction to {τ ≤ t} ∈ Ft. Therefore, the definition of stopping times as maps to Ī
is necessary. Furthermore, this implies by using (3.1.3) that the corresponding adapted
random probability measure γ satisfies

∑
t∈I γt ≥ 1 only a.s. Note that T ν

N
, ∅ if and only

if 2tνt ∈N0 for all t ∈N.

19



Chapter 3. Adapted Random Probability Measure

Example 3.2.5. Given p = 1, q ∈ (1,∞) and a probability measure ν with countably infinite
support supp(ν), we claim that there is always a process Z ∈ Xν,p,q and a γ ∈ Mν

I such
that

∑
t∈I |Zt |γt = ∞ on Ω. Indeed, for an enumeration (tn)n∈N of supp(ν), define the

deterministic process

Zt =

1/(nνtn) if t = tn for an n ∈N,
0 if t ∈ I \ supp(ν) .

Using Definition 3.1.1(e), it follows for every γ ∈Mν
I and n ∈N that

(E[|Ztn |γtn])
q = (ZtnE[γtn])

q = (Ztnνtn)
q = 1/nq,

hence ‖Z‖qν,p,q =
∑
n∈N1/nq <∞. If, as in Example 3.1.4, we take γt := νt1Ω for all t ∈ I ,

then
∑
t∈I |Zt |γt simplifies to the harmonic series.

For the next example we need an elementary proposition.

Proposition 3.2.6. Let (an)n∈N be a sequence in [0,∞) converging to zero and such that∑
n∈N an =∞. Then there exists a decreasing sequence (bn)n∈N in (0,1] converging to zero such

that
∑
n∈N anbn =∞ and

∑
n∈N anb

q
n <∞ for every q > 1.

Proof. Define sn = a1 + · · ·+ an for n ∈N0. Furthermore, there exists an upper bound c ≥ 1
for (an)n∈N, because there is a N ∈N such that an ≤ 1 for all n ≥N . Starting with n0 := 0,
we can find iteratively for every l ∈N an nl > nl−1 such that l ≤ snl − snl−1

≤ 2cl. Define
bn = 1/l2 when n ∈N satisfies nl−1 < n ≤ nl . Then∑

n∈N
anbn =

∑
l∈N

snl − snl−1

l2
≥

∑
l∈N

1
l

=∞

and, for every q > 1, ∑
n∈N

anb
q
n =

∑
l∈N

snl − snl−1

l2q
≤ 2c

∑
l∈N

1
l2q−1 <∞.

q

Example 3.2.7. Given p,q ∈ (1,∞) and a probability measure ν not satisfying the decay
condition (3.3.35), we claim (as in Example 3.2.5) that there is always a process Z ∈ Xν,p,q
and a γ ∈Mν

I such that
∑
t∈I |Zt |γt =∞ on Ω. Indeed, if (3.3.35) is not satisfied, then the

support supp(ν) of ν is countably infinite. Let p′ = (p′ −1)p, (q′ −1)q = q′ and (tn)n∈N be

an enumeration of supp(ν). Apply Proposition 3.2.6 with an := νq
′/p′

tn
for n ∈N. Use the

corresponding sequence (bn)n∈N to define the deterministic process

Zt =

bnνq
′/p′−1
tn

if t = tn for an n ∈N,
0 if t ∈ I \ supp(ν) .

Using Definition 3.1.1(e), it follows for every γ ∈Mν
I and n ∈N that(

E[|Ztn |
pγtn]

)q/p
=

(
Ztn(E[γtn])

1/p
)q

=
(
Ztnν

1/p
tn

)q
= bqn

(
ν
q′/p′−1+1/p
tn

)q
= bqn

(
ν

(q′−1)/p′
tn

)q
= bqnν

q′/p′

tn
,
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hence ‖Z‖qν,p,q =
∑
n∈N anb

q
n <∞ by Proposition 3.2.6. If, as in Example 3.1.4, we take

γt := νt1Ω for all t ∈ I , then
∑
t∈I |Zt |γt simplifies to

∑
n∈N anbn, which diverges by

Proposition 3.2.6.

The distribution-constrained optimization problem OptStop
γ can also be connected to a

distribution-constrained optimal stopping problem OptStop
τ given an enlarged filtration

(F̃t)t∈I . By enlarging the filtration in an eligible way we can also embed the original set
Mν

I into a set T̃ νI corresponding to an enlarged filtration. Remember that the setsMν
I and

T νI depend on the underlying filtration and their defintions are more general to the ones
in [33]. Now, the following theorem describes the construction of an appropriate stopping
time, cf. [33, Theorem 2.41].

Theorem 3.2.8. Let be (Ω,F , (Ft)t∈I ,P) the filtered probability space. We may assume w.l.o.g.
that there exists a random variable U , uniformly distributed on (0,1] and independent of FT ,
see Remark 3.2.10.
Consider an adapted random probability measure γ ∈ MI as in Definition 3.1.1 w.r.t. the
filtration F := (Ft)t∈I . Define the random time τ : Ω→ Ī by

{τ = t} =

{γ<t < U ≤ γ≤t} for t ∈ I \ {T } ,
{γ<T < U } for t = T ,

(3.2.9)

where γ<t, γ≤t and γ<T are to be understood as in Notation 2.0.1(d), if T ∈ I . For T < I , it
holds that γ<T =

∑
t∈I γt. Then the following holds:

(a) Define the enlarged filtration (F̃t)t∈I by

F̃t = σ
(
Ft ∪

⋃
s∈I≤t

{τ ≤ s}
)
⊆ σ (Ft ∪ σ (U )) for t ∈ I.

Then τ is a stopping time w.r.t. (F̃t)t∈I satisfying P(τ = t |FT ) a.s.= γt for all t ∈ I .

(b) If γ ∈Mν
I , then L(τ) = ν.

(c) Let Z = (Zt)t∈I be an FT -measurable process such that Zτ ∈ L1. Then

E[Zτ |FT ] a.s.= Zγ and E[Zτ ] = E[Zγ ].

Proof. (a) We see that τ defined as in (3.2.9) is really a stopping time w.r.t. (F̃t)t∈I . If T < I ,
then P(τ < I) = P(γ<T < 1) = 0 by Definition 3.1.1(c). As U is independent of FT we also
have P(τ = t |FT ) a.s.= γt for t ∈ I .

(b) It follows immediately by part (a) and Definition 3.1.1(e).

(c) Since I is countable, there exists an increasing sequence (Ik)k∈N of finite index sets
with

⋃
k∈N Ik = I . Note that for every finite set Ik, k ∈ N, it holds that Ik = Īk. Since

Zτ = limk→∞Zτ1Ik (τ) pointwise on Ω and |Zτ1Ik (τ)| ≤ |Zτ | for every k ∈N, we can apply
the dominated convergence theorem for conditional expectations, and have

E[Zτ |FT ] = E

[∑
t∈I
Zt1{τ=t}

∣∣∣FT ] =
∑
t∈I

E[Zt1{τ=t}|FT ]

=
∑
t∈I
ZtP(τ = t|FT ) =

∑
t∈I
Ztγt = Zγ , a.s.

q
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Chapter 3. Adapted Random Probability Measure

Remark 3.2.10. If it is necessary to enlarge the probability space, this can be done by
setting Ω̂ := (0,1]×Ω, F̂ := B(0,1]⊗F and P̂ := λ⊗P, where λ denotes the Lebesgue–Borel
measure. Let U : Ω̂→ (0,1] be the projection onto the first component. For a filtration
on the extended probability space it would be sufficient to consider a filtration given
by F̂t := {∅, (0,1]} ⊗ Ft for t ∈ I . Let π: (0,1] ×Ω→ Ω be the projection on the second
component. We then consider on (Ω̂, F̂ , P̂) the process Ẑt := Zt ◦π for all t ∈ I . Similarly
we consider γ̂t := γt ◦π for all t ∈ I . Note that Ẑ and γ̂ are adapted to (F̂t)t∈I .
Remark 3.2.11. Due to the construction of the stopping time τ in Theorem 3.2.8 by using
the given adapted random probability measure γ we have {τ = t} ⊆ {γt > 0} for all t ∈ I \{T }.

Finally, we conclude that there is a solution to these induced problems of the form
OptStop

τ , thus there also exists an optimal strategy. By Theorem 3.2.8 we have shown that
the problem OptStop

γ can be connected to a distribution-constrained optimal stopping
problem OptStop

τ given an enlarged filtration (F̃t)t∈I . Therefore, there exists an optimal
strategy τ ∈ T νI for all processes Z which satisfies Theorem 3.3.5 or Theorem 3.3.34 and
for such a problem OptStop

τ which can be traced back to a problem of form OptStop
γ .

Corollary 3.2.12. Consider a real-valued process Z which satisfies Theorem 3.3.5 or
Theorem 3.3.34. Then there always exists an optimal strategy τ∗ ∈ T νI for all problems
OptStop

τ , which emerges from a problem OptStop
γ by means of the Theorem 3.2.8, such

that τ∗ solves

sup
τ∈T νI

E[Zτ ] = E[Zτ∗].

Proof. It follows by the combination of Theorem 3.3.5 or Theorem 3.3.34 and
Theorem 3.2.8. q

3.3. Existence of an Optimal Strategy

After the introduction of our considered problem in the last section, an important question
is whether an optimal strategy exists that yields the supremum we want to calculate.
Again we take a look at a discrete time interval I . As we will see in this section an optimal
γ ∈ Mν

I in Definition 3.1.1 always exists for a process Z satisfying the conditions in
Theorem 3.3.5 or in Theorem 3.3.34. These are a generalization of [33, Theorem 3.10]. In
[33, Chapter 3] the existence of an optimal strategy γ ∈Mν

I is shown for all processes Z
satisfying E[supt∈I |Zt |] <∞. This assumption for the process Z does not depend on the
given probability measure ν on I . Thus known information does not be used. We have
considered a more refined version, which uses the structure and information given by ν.
This gives us the opportunity to look at many more processes, as the following example
shows.

Example 3.3.1 (Motivation of the generalization). Suppose that (Xn)n∈N is a sequence of
i.i.d. random variables satisfying

P(Xn = 1) = P(Xn = −1) =
1
2

n ∈N.
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3.3. Existence of an Optimal Strategy

Define the simple symmetric random walk as Zn := 1 +
∑n
i=1Xi for all n ∈ N0. Let

Fn = σ (Z0, . . . ,Zn). Define the first hitting time of the level zero by τ0 = inf{n ∈N : Zn = 0}.
Then the process Z = (Zn)n∈N is adapted and τ0 is a stopping time.
We will show that P(τ0 <∞) = 1. Given k ≥ 2, define the first exit time of the open interval
(0, k) by τ0,k = τ0 ∧ τk which is also a stopping time. By Borel-Cantelli lemma we get
that P(τ0,k < ∞) = 1, i.e., the random walk Z leaves a.s. every bounded Borel set of Z.
Since {Zτ0,k∧u}u≥0 is bounded by k, it is uniformly integrable. Applying of Doob’s optional

sampling theorem, we see that Z0
a.s.= E[Zτ0,k

|F0], hence

1 = E[Z0] = E[Zτ0,k
] = k ·P(Zτ0,k

= k) + 0 ·P(Zτ0,b
= 0),

which implies that P(Zτ0,k
= k) = 1/k for k ≥ 2. Hence, we get

P(Zτ0,k
= 0) = 1− 1

k
↗ 1 as k→∞. (3.3.2)

If the random walk leaves (0, k) at 0, then it reaches 0, meaning that {τ0,k <∞,Zτ0,k
= 0} ⊆

{τ0 <∞}. Hence (3.3.2) proves that P(τ0 <∞) = 1. From now on, we consider the stopped
process Zτ0 , which is again a martingale and we know that

E

[
sup
n∈N0

Zτ0
n

]
=

∑
k∈N

P

(
sup
n∈N0

Zτ0
n ≥ k

)
=∞ .

Let ν be an arbitrary measure on I with finite first moment, i.e.,∑
k∈N

k νk <∞,

then

E[|Zτγ |] = E

[∑
k∈N

|Zτk |︸︷︷︸
≤k+1

γk

]
≤

∑
k∈N

(k + 1)E[γk]︸︷︷︸
=νk

<∞.

This inequality holds for all martingales satisfying |Zk | ≤ k + 1 for all k ∈N0, such that we
can consider our problem OptStop

γ for these processes.

The main results are given in Theorem 3.3.5 and Theorem 3.3.34. In this context you
get Theorem 3.3.5 by using Theorem 3.3.34 with p = q, such that the second one is a
generalization. But both have their validity. In some cases we get our distribution ν from
empirical data such that we have no further information about the higher moments of this
distribution. For example in actuarial mathematics we determine the distribution ν of the
stopping time τ or the adapted random probability measure γ by using a life table, see
Subsection 3.6. For this application the Subsection 3.3.1 is enough and there are a lot of
additional results in this section. Otherwise, it is also possible that our given distribution
ν belongs to a special family of distributions such that we know much more about ν. In
this case we would consider Subsection 3.3.2. For better readability, some proofs have
been moved to the Subsection 3.3.3. For the argumentation will be used partly analogous
aids from functional analysis like in [33].
Remember that in general we can not expect an optimal strategy to be unique. As example,
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consider for OptStop
τ a uniformly integrable martingale Z with index set I = N. By

Doob’s optional stopping theorem, every stopping time τ ∈ T
N

gives the same value for
E[Zτ ]. Therefore, all strategies τ with L(τ) = ν are optimal for OptStop

τ and we do not
have uniqueness.
Again, let I be a countable totally-ordered index set and (Ω,F ,P) be a probability space
with a collection of σ -algebras F = (Ft)t∈I .

3.3.1. One Fixed Given Distribution

We have introduced our problem in Section 3.1 and detected that the filtration is not a
limiting factor to have a solution for OptStop

γ . In this section we want to answer the
crucial question whether an optimal strategy exists that yields the supremum V νM(Z)
we want to compute. Therefore, we have to concentrate on moment conditions for the
adapted stochastic process Z = (Zt)t∈I . For this, we will define the vector spaces we are
working with such that we can use results from functional analysis.
Let q ∈ (1,∞] be the conjugate Hölder exponent for p ∈ [1,∞), that means (1 − q)p = q.
For p ∈ [1,∞) the main statement given in following theorem comprises that there exists
an optimal strategy γ ∈Mν

I of the problem OptStop
γ for all processes Z for which the

following should be assumed throughout:

Assumption 3.3.3. Let Z = (Zt)t∈I be the real-valued and F -adapted stochastic process of
interest, which describes the underlying price process or a special payoff. Set ZT = 0, if
T < I . Furthermore, we define ‖ · ‖ν,p as

‖Z‖ν,p := sup
γ∈Mν

I

p

√
E

[∑
t∈I
|Zt |pγt

]
∀Z ∈

∏
t∈I
Lp(Ω,Ft ,P;R), (3.3.4)

which is a seminorm on {Z : ‖Z‖ν,p < ∞}. The proof of the norm property is given by
Theorem 3.3.13 and this set will be denoted by Xν,p, cf. (3.3.10).

For p ∈ [1,∞) and ν, we assume that

(a) (Zt)t∈I is an element of
∏
t∈I L

p(Ω,Ft ,P;R) with ‖Z+‖ν,p <∞.

In addition, for p = 1 we assume that

(b) Z ∈ Xν,p and its positive part Z+ can be approximated with respect to ‖ · ‖ν,p
by bounded processes unless otherwise stated. This set will be denoted by X̃ν,p,
cf. (3.3.20).

This guarantees that all values we are interested in are well-posed and finite, see
Lemma 3.3.25. The reader should be aware that some definitions also apply to a larger
class of processes. However, we will not point this out every time.

Theorem 3.3.5 (Existence of an optimal strategy).
Let Z ∈

∏
t∈I L

p(Ω,Ft ,P;R) with Z+ ∈ Xν,p for p ∈ [1,∞) and in addition, for p = 1 let Z ∈ Xν,p
with Z+ ∈ X̃ν,p. Then there always exists an optimal adapted random probability measure
γ∗ ∈Mν

I solving

sup
γ∈Mν

I

E[Zγ ] = E[Zγ∗].
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3.3. Existence of an Optimal Strategy

For p ∈ [1,∞) the main statement given in Theorem 3.3.5 comprises that there exists
an optimal strategy γ ∈ Mν

I of the problem OptStop
γ for all processes Z which satisfy

Assumption 3.3.3. To prove this, we use different results from functional analysis. At first,
we consider the underlying space, its properties and the subspace containing all Z with
the necessary properties given above. It appears that we are working in Banach spaces.
We go over to the corresponding dual space and specify a subset which is weak∗-compact.
With these preliminary considerations, we can finally prove the result.
At first, we want to introduce a convenient notation.

Definition 3.3.6. Let p ∈ [1,∞). For γ ∈MI we define

|Z |γ,p =
(∑
t∈I
|Zt |pγt

)1/p
. (3.3.7)

Remark 3.3.8. Note that in general |Z |γ,p does not agree with |Zγ | =
∣∣∣∑t∈I Ztγt

∣∣∣. However,
by the convexity of R 3 x 7→ |x|p and Jensen’s inequality,

|Zγ | ≤ |Z |γ,p for all γ ∈MI . (3.3.9)

For p ∈ [1,∞) we define the vector space Xν,p of all R-valued F -adapted processes
Z = (Zt)t∈I with finite norm ‖Z‖ν,p by

Xν,p =
{
(Zt)t∈I ∈

∏
t∈I
Lp(Ω,Ft ,P;R) : ‖Z‖ν,p <∞

}
, (3.3.10)

where the seminorm given in (3.3.4) can be rewritten using Definition 3.3.6 as

‖Z‖ν,p = sup
γ∈Mν

I

‖ |Z |γ,p‖Lp . (3.3.11)

The seminormed vector space obtained can be made into a normed vector space in a
standard way; one simply takes the quotient space with respect to the kernel of ‖ · ‖ν,p.
The resulting normed vector space is denoted by (Xν,p,‖ · ‖ν,p).

Remark 3.3.12. For p ∈ [1,∞) the norm ‖ · ‖ν,p depends on the given probability measure
ν on I . Let J = supp(ν) = {t ∈ I | νt > 0} be the support of ν. Note that the restriction on
the support of ν does not change the value of the norm of Z. This means that for every
γ ∈Mν

I and t ∈ I \ J the correspondent summands in (3.3.7) would be equal to zero, a.s.,
because νt = 0 implies that γt = 0, a.s.

Note that for every t ∈ I the space Lp(Ω,Ft ,P;R) is a Banach space, where random variables
are identified if they are equal, P-a.s. This structure transfers to the previously defined
space.

Theorem 3.3.13. For every p ∈ [1,∞), the vector space (Xν,p,‖ · ‖ν,p) is a Banach space.

Proof. See Section 3.3.3. q

Lemma 3.3.14. For 1 ≤ p < r ≤ ∞ we have that Xν,r ⊆ Xν,p and for Z ∈ Xν,r it holds that
‖Z‖ν,p ≤ ‖Z‖ν,r .
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Proof. It follows immediately by equation (3.3.11) and the property of Lp-spaces that
Lp(Ω,Ft ,P;R) ⊇ Lr(Ω,Ft ,P;R) if 1 ≤ p < r and for a real-valued measurable function f on
Ω it holds that ‖f ‖Lp ≤ ‖f ‖Lr . q

Remark 3.3.15. Note that we have for every γ ∈Mν
I and p ∈ [1,∞) by (3.3.9) and (3.3.11)

‖Zγ‖Lp ≤ ‖|Z |γ,p‖Lp ≤ ‖Z‖ν,p.

With

|Z |pγ,p =
∑
t∈I
|Zt |pγt ≤ sup

s∈I
|Zs|p ·

∑
t∈I
γt ≤ sup

s∈I
|Zs|p

we get that

‖Z‖ν,p = sup
γ∈Mν

I

(
E

[
|Z |pγ,p

])1/p
≤

(
E

[
sup
s∈I
|Zs|p

])1/p
.

The last term is exactly the considered norm ‖ · ‖Xp,p′ with p ∈ [1,∞) and p′ = ∞ in [33,
Chapter 3]. The introduced norm is thus an improved bound.

Lemma 3.3.16 (Convergence).
Let T < I and Z ∈ Xν,p, p ∈ [1,∞). We define for u ∈ I and γ ∈Mν

I

Zγ,u =
∑
t∈I≤u

Ztγt =
∑
t∈I
Zt1I≤u (t)γt = (Z1I≤u )γ . (3.3.17)

Then it holds that

lim
u↗T
‖Zγ −Zγ,u‖Lp = 0.

Proof. Using (3.3.17) and Remark 3.3.15 we get for every u ∈ I and γ ∈Mν
I that

‖Zγ −Zγ,u‖Lp ≤ ‖Z −Z1I≤u‖ν,p = ‖Z1I>u‖ν,p ≤ ‖Z‖ν,p <∞. (3.3.18)

Let (un)n∈N be an ascending sequence such that un ↗ T for n→∞. Using dominated
convergence with

∑
t>un
|Zt |pγt ≤ |Z |

p
γ,p <∞, a.s., we get E[

∑
t>un
|Zt |pγt]→ 0 for n→∞.

Combine this with (3.3.18) implies the statement. q

Remark 3.3.19. It is intuitively obvious that an optimal strategy should then be optimal
even for a limited time horizon. The converse property is much less obvious (maybe it
is possible to get something better by radically changing the strategy on a larger time
horizon). The lemma above tell us that it is possible to approximate suitably every strategy
and it converges then accordingly fast depending on the p.

There are two sets of processes of Xν,p we are interested in, for which it turns out that
they are closed, linear subspaces. For every p ∈ [1,∞) we define these sets of R-valued
F -adapted processes Z = (Zt)t∈I by

X̃ν,p =
{
(Zt)t∈I ∈

∏
t∈I
Lp(Ω,Ft ,P;R)

∣∣∣∣ limsup
M→∞

sup
γ∈Mν

I

E

[∑
t∈I

(|Zt |p −M)+γt

]
= 0

}
, (3.3.20)
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where x+ = max{x,0} defines the positive part, and

X̂ν,p =
{
(Zt)t∈I ∈

∏
t∈I
Lp(Ω,Ft ,P;R)

∣∣∣∣{∑
t∈I
|Zt |pγt

}
γ∈Mν

I

uniformly integrable
}
. (3.3.21)

The set X̃ν,p can be defined in two different ways. On the one hand it can be defined
by the condition in (3.3.20) which can be considered as a uniform Fatou property. On
the other hand it is the closure of the set of all bounded processes in ‖ · ‖ν,p of Xν,p. In
other words, this set includes all processes which can approximated by a bounded process
with respect to ‖ · ‖ν,p. In this case, by a bounded process is meant that there exists a
bounded representative in the corresponding equivalence class with respect to ‖ · ‖ν,p.
This definition is very descriptive. Now we have to show that these two definitions are
equivalent.

Lemma 3.3.22. It holds for the set X̃ν,p given in (3.3.20) that

X̃ν,p = {Z ∈ Xν,p | Z bounded}
‖·‖ν,p . (3.3.23)

Proof. See Section 3.3.3. q

Both sets given in (3.3.20) and (3.3.21) are subsets of Xν,p and equipped with ‖ · ‖ν,p they
are again Banach spaces as the following theorem shows:

Theorem 3.3.24. Let p ∈ [1,∞).

(a) The vector space (X̃ν,p,‖ · ‖ν,p) is a Banach space.

(b) The vector space (X̂ν,p,‖ · ‖ν,p) is a Banach space.

(c) We have that

X̃ν,p ⊆ X̂ν,p $ Xν,p.

The above Theorem 3.3.24 is only necessary for the proof of the existence in the case of
p = 1 and therefore the reader is referred to the Subsection 3.3.3. Now, we consider the
topological dual space of (Xν,p,‖ · ‖ν,p) (respectively (X̃ν,p,‖ · ‖ν,p)) which is denoted by X∗ν,p
(respectively X̃∗ν,p) and is equipped with the operator norm

‖φ‖X∗ν,p := sup{|φ(Z)| : Z ∈ Xν,p, ‖Z‖ν,p ≤ 1} for φ ∈ X∗ν,p

(analog ‖φ‖X̃∗ν,p for φ ∈ X̃∗ν,p). In addition, X∗ν,p ⊆ X̃∗ν,p and ‖φ‖X̃∗ν,p ≤ ‖φ‖X∗ν,p for all φ ∈ X∗ν,p.

Due to [66, Theorem 4.1], (X̃∗ν,p,‖ · ‖X̃∗ν,p ) and (X∗ν,p,‖ · ‖X∗ν,p ) are again Banach spaces.
For p ∈ [1,∞) let q ∈ (1,∞] be the conjugate Hölder exponent, that means 1/p + 1/q = 1.
Note that for p ∈ [1,∞) the space (Lq(Ω,Ft ,P;R),‖·‖Lq ) = (Lp(Ω,Ft ,P;R),‖·‖Lp )∗ is a Banach
space for every t ∈ I , where random variables are identified if they are equal, P-a.s.
We want consider a subset of these linear and continuous functionals which satisfy the
extremal equality of Hölder’s inequality and is described in the following lemma.
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Lemma 3.3.25. For every γ = (γt)t∈I ∈Mν
I the map φγ : Xν,p→R defined by

φγ (Z) := E

[∑
t∈I
Ztγt

]
, Z = (Zt)t∈I ∈ Xν,p, (3.3.26)

is a well-defined element of (X∗ν,p,‖ · ‖X∗ν,p ) and satisfies ‖φγ‖X∗ν,p ≤ 1.

Remark 3.3.27. The same considerations are possible for the restriction to the subspace
(X̃∗ν,p,‖ · ‖X̃∗ν,p ).

Proof. Using Hölder’s inequality, we get for every γ ∈ Mν
I and for all Z ∈ Xν,p with

‖Z‖ν,p ≤ 1 that

|φγ (Z)| ≤ E

[∑
t∈I
|Zt |γt

]
= E

[∑
t∈I
|Zt |γ

1/p
t ·γ1/q

t

]
≤

(
E

[∑
t∈I
|Zt |pγt

])1/p(
E

[∑
t∈I

(γ1/q
t )q︸      ︷︷      ︸
≤1

])1/q
≤ ‖Z‖ν,p ≤ 1. (3.3.28)

Therefore, φγ as defined in (3.3.26) is a bounded linear functional, which implies that it
is continuous. Thus it is a well-defined element of (X∗ν,p,‖ · ‖X∗ν,p ) for every γ ∈Mν

I . By the
definition of the operator norm we have that ‖φγ‖X∗ν,p ≤ 1. q

For p ∈ [1,∞), we define

Bν,p =

{Z ∈ X̃ν,1 : ‖Z‖ν,1 ≤ 1} for p = 1,

{Z ∈ Xν,p : ‖Z‖ν,p ≤ 1} for p ∈ (1,∞).

Note that in the case of p = 1 we restrict to the smaller space X̃ν,1 instead of Xν,1. By the
theorem of Banach–Alaoglu (see e.g. [66, Theorem 3.15]), we have that the polar set

Kν,p :=

{φ ∈ X̃∗ν,p : φ(Z)| ≤ 1 for all Z ∈ Bν,p} for p = 1,

{φ ∈ X∗ν,p : φ(Z)| ≤ 1 for all Z ∈ Bν,p} for p ∈ (0,∞),

is weak∗-compact. For the proof of the main statement of this section we need the following
key lemma:

Lemma 3.3.29. For p ∈ [1,∞) considered in Lemma 3.3.25, the set {φγ }γ∈Mν
I

is contained in
Kν,p and weak∗-compact, where every φγ is of the form as in (3.3.26).

Proof. See Section 3.3.3. q

28



3.3. Existence of an Optimal Strategy

With these preliminary considerations, we can finally prove the main result.

Proof of Theorem 3.3.5. For p ∈ (1,∞) let Z ∈ Xν,p. Then we can rewrite the considered
problem by

sup
γ∈Mν

I

E[Zγ ] = sup
γ∈Mν

I

φγ (Z) = sup
ψ∈{φγ }γ∈MνI

ψ(Z).

As {φγ }γ∈Mν
I

is weak∗-compact by Lemma 3.3.29 andMν
I is not empty by Example 3.1.4,

there exists a γ∗ ∈Mν
I such that

sup
ψ∈{φγ }γ∈MνI

ψ(Z) = φγ∗(Z),

as every continuous function on a non-empty compact set attains its supremum on this
set (see e.g. [61, Chapter IV.3, p. 99] for compact sets that are Hausdorff). Now, let
Z ∈

∏
t∈I L

p(Ω,Ft ,P;R) with Z+ ∈ Xν,p for p ∈ (1,∞). We define Z(n)
t = max{Zt ,−n}, n ∈N.

It holds that Z(n) ∈ Xν,p, n ∈ N, and Z(n) ↘ Z as n → ∞. Then we can prove that the
functional

H : {φγ }γ∈Mν
I
→R, φγ 7→ φγ (Z),

is upper semicontinuous w.r.t. the weak∗ topology on {φγ }γ∈Mν
I
. For Z ∈ Xν,p and Z+ ∈ X̃ν,p,

there exists a sequence Z(n) ∈ X̃ν,p, n ∈N, such that Z(n)↘ Z as n→∞. Furthermore, we
can define the sequence of functionals

Hn : {φγ }γ∈Mν
I
→R, φγ 7→ φγ (Z(n)), where inf

n
Hn(φγ ) =H(φγ ) .

For every n ∈N, the functional Hn is continuous w.r.t. the weak∗ topology on {φγ }γ∈Mν
I
,

because of Lemma 3.3.25. Then φγ (Z) = infn φγ (Z(n)) and using [3, Lemma 2.41] we get
that H is upper semicontinuous. Furthermore, an upper semicontinuous function on a
compact set attains a maximum value, and the non-empty set of maximizers is compact,
see [3, Theorem 2.43].
For p = 1, let Z ∈ Xν,p and Z+ ∈ X̃ν,p. The proof follows as before only on the subspace
X̃ν,p. q

Finally, we conclude that there is a solution for these induced problems of the form
OptStop

τ , thus there also exists an optimal strategy. By Theorem 3.2.8 we have shown that
the problem OptStop

γ can be connected to a distribution-constrained optimal stopping
problem OptStop

τ given an enlarged filtration (F̃t)t∈I . Therefore, there exists an optimal
strategy τ ∈ T νI for all processes Z which satisfy Assumption 3.3.3 and for such a problem
OptStop

τ which can be traced back to a problem of form OptStop
γ .

Corollary 3.3.30. For p ∈ [1,∞) let Z ∈
∏
t∈I L

p(Ω,Ft ,P;R) with Z+ ∈ Xν,p and in addition,
for p = 1 let Z ∈ Xν,p with Z+ ∈ X̃ν,p. Then there always exists an optimal strategy τ∗ ∈ T νI for
all problems OptStop

τ , which emerges from a problem OptStop
γ by means of the Theorem

3.2.8, such that τ∗ solves

sup
τ∈T νI

E[Zτ ] = E[Zτ∗].

Proof. It follows by the combination of Theorem 3.3.5 and Theorem 3.2.8. q
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3.3.2. Generalization

Let us introduce the corresponding notation in a slightly more general setting, where K

denotes either R or C. For exponents p,q ∈ [1,∞] define

Xν,p,q =
{
Z = (Zt)t∈I ∈

∏
t∈I
Lp(Ω,Ft ,P;K)

∣∣∣∣ ‖Z‖ν,p,q <∞}
, (3.3.31)

where Lp(Ω,Ft ,P;K) denotes the set of K-valued Ft-measurable random variables X with
E[|X |p] <∞, respectively E[esssup |X |] <∞ when p =∞, (we pass to Lp when we identify
P-a.s. equal ones) and

‖Z‖ν,p,q = sup
γ∈Mν

I


q

√∑
t∈I ‖Zt‖

q
Lp(γtP) if q ∈ [1,∞),

supt∈I ‖Zt‖Lp(γtP) if q =∞,

= sup
γ∈Mν

I

∥∥∥‖Z·‖Lp(γ·P)

∥∥∥
lq(I)

.

(3.3.32)

Here, for t ∈ I and γ ∈Mν
I , we write γtP for the substochastic measure on (Ω,Ft) which

has density γt with respect to P. Then ‖Zt‖Lp(γtP) is a seminorm on Lp(Ω,Ft ,P;K) and∏
s∈I Lp(Ω,Fs,P;K) for each t ∈ I . To calculate ‖Z‖ν,p,q, we then take the lq-norm of

I 3 t 7→ ‖Zt‖Lp(γtP) with respect to the counting measure on I , and finally the l∞-norm of
Mν

I 3 γ 7→
∥∥∥‖Z·‖Lp(γ·P)

∥∥∥lq(I) with respect to the counting measure onMν
I . Hence (3.3.32)

defines a seminorm on Xν,p,q and Xν,p,q is a vector space. Identifying Z,Z ′ ∈ Xν,p,q
with ‖Z − Z ′‖ν,p,q = 0, we get a Banach space, see Theorem 3.3.47, which we denote
by (Xν,p,q,‖ ·‖ν,p,q).
We shall also use the subset X̃ν,p,q of all Z ∈ Xν,p,q, for which there is a sequence (Zn)n∈N
of bounded processes in Xν,p,q such that ‖Z −Zn‖ν,p,q→ 0 as n→∞. Of course, X̃ν,p,q and
the corresponding set X̃ν,p,q of equivalence classes are vector spaces with seminorm and
norm ‖ ·‖ν,p,q, respectively. A standard argument shows that X̃ν,p,q is a closed subset of
Xν,p,q and, therefore, itself a Banach space. For the case p = q = 1, Example 3.3.90 below
shows that X̃ν,1,1 is necessary because there is no solution of the problem OptStop

γ for
some process in Xν,1,1.
For later reference consider q ≤ q̃ in [1,∞) and recall that for x = (xt)t∈I ∈ lq(I) (with
respect to the counting measure on I) satisfying ‖x‖lq ≤ 1, we have |xt | ≤ 1 for each t ∈ I ,
hence ‖x‖q̃l q̃ =

∑
t∈I |xt |q̃ ≤

∑
t∈I |xt |q = ‖x‖qlq ≤ 1. For general x ∈ lq(I) \ {0}, apply this result

to αx with α := 1/‖x‖lq , implying that αq̃‖x‖q̃l q̃ ≤ 1. Hence

lq(I) ⊆ l q̃(I) and ‖x‖l q̃ ≤ ‖x‖lq , x ∈ lq(I). (3.3.33)

Since |xt | ≤ ‖x‖lq for all t ∈ I and x ∈ lq(I), (3.3.33) extends to all q ≤ q̃ in [1,∞].
The next result, which is the main one of this section, shows that under appropriate
moment conditions on the process Z, which in turn depends on the decay of the probability
distribution ν, problem OptStop

γ has a solution.

Theorem 3.3.34 (Existence of an optimal strategy). Consider a real-valued process Z ∈ Xν,p,q,
where p ∈ [1,∞) and q ∈ [1,∞], and assume that
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3.3. Existence of an Optimal Strategy

(a) either p = q = 1 and Z+ ∈ X̃ν,1,1,

(b) or p > 1 and, with p′ = p
p−1 and q′ denoting the conjugate exponents of p and q, respec-

tively, ν satisfies the decay condition∑
t∈I
ν
q′/p′

t <∞, (3.3.35)

then the random variable Zγ is a well-defined element of L1(Ω,F ,P) for every γ ∈ Mν
I and

there exists an optimal adapted random probability measure γ∗ ∈Mν
I solving

sup
γ∈Mν

I

E

[
Zγ

]
= E

[
Zγ∗

]
.

Remark 3.3.36. By Lemma 3.3.48 below, the set Xν,p,q of processes gets bigger when p
decreases or q increases. The decay condition (3.3.35), which is trivially satisfied when
q′/p′ ≥ 1, puts a threshold to this procedure.

Remark 3.3.37. Suppose we know for a c ∈ (0,1) that
∑
t∈I ν

c
t <∞ and p ∈ (1,∞) is so small

that a condition on q is required, i.e., 1/p′ < c, meaning that p < 1/(1− c). Then we know
that (3.3.35) is certainly satisfied if q′ ≥ cp′, meaning that

q ≤ 1 +
1

cp′ − 1
=

cp

1− (1− c)p
.

Remark 3.3.38. For the missing pairs (p,q) ∈ [1,∞) × [1,∞] not be treated in the
Theorem 3.3.34, namely p = 1 and q ∈ (1,∞] as well as p > 1 and q ∈ (1,∞] not satis-
fying (3.3.35), there always exist Z ∈ Xν,p,q and γ ∈Mν

I such that
∑
t∈I Ztγt =∞ on Ω, see

Examples 3.2.5 and 3.2.7 below.

Remark 3.3.39. To motivate the use of the spaces Xν,p,q and the decay condition (3.3.35) in
Theorem 3.3.34, consider a corresponding Z ∈ Xν,p,q.

(a) If p = q = 1, then (3.3.32) implies∑
t∈I

E[|Zt |γt] ≤ ‖Z‖ν,1,1, γ ∈Mν
I .

(b) Consider p ∈ (1,∞) and q ∈ [1,∞] satisfying (3.3.35). Then by Hölder’s inequality for
exponents p and p′,

E[|Zt |γt] = E[|Zt |γ
1/p
t γ

1/p′
t ]

≤ (E[|Zt |pγt])1/p(E[γt])
1/p′ , t ∈ I, γ ∈Mν

I .

Using that E[γt] = νt ≤ 1 by Definition 3.1.1(e), we get for every γ ∈Mν
I and I ′ ⊆ I

in the case q = 1∑
t∈I ′

E[|Zt |γt] ≤
∑
t∈I ′

(E[|Zt |pγt])1/p · sup
t∈I ′

ν
1/p′
t ≤ ‖Z‖ν,p,1 sup

t∈I ′
ν

1/p′
t , (3.3.40)

in the case q =∞ (using q′ = 1 and (3.3.35))∑
t∈I ′

E[|Zt |γt] ≤ sup
s∈I ′

(E[|Zs|pγs])1/p
∑
t∈I ′

ν
q′/p′

t ≤ ‖Z‖ν,p,∞
∑
t∈I ′

ν
q′/p′

t , (3.3.41)
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and in the remaining case q ∈ (1,∞) another use of Hölder’s inequality for the
exponents q and q′ as well as (3.3.32) yield

∑
t∈I ′

E[|Zt |γt] ≤
(∑
t∈I ′

(E[|Zt |pγt])q/p
)1/q(∑

t∈I ′
ν
q′/p′

t

)1/q′

≤ ‖Z‖ν,p,q
(∑
t∈I ′

ν
q′/p′

t

)1/q′
.

(3.3.42)

Hence in both cases (a) and (b), in the latter one using (3.3.40), (3.3.41) or (3.3.42),
respectively, with I ′ = I , the series

∑
t∈I Ztγt defining Zγ converges absolutely P-a.s.,

Zγ ∈ L1(Ω,F ,P) and {Zγ }γ∈Mν
I

is L1-bounded. The above calculation also shows that each
γ ∈Mν

I induces a bounded linear (hence continuous) functional

Xν,p,q 3 Z 7→ φγ (Z) := E[Zγ ] .

For (p,q) ∈ [1,∞) × [1,∞] the main statement given in Theorem 3.3.34 comprises that
there exists an optimal strategy γ ∈ Mν

I of the problem OptStop
γ for all processes Z

which satisfy Theorem 3.3.34. To prove this, it suffices to find a topology onMν
I which

turns it into a compact set, and show that for each Z ∈ Xν,p,q the mapMν
I 3 γ 7→ E[Zγ ]

is continuous with respect to this topology. We shall apply methods from functional
analysis for this purpose. At first, we consider the underlying space, its properties and the
subspace containing all Z with the necessary properties given above. It appears that we
are working in Banach spaces. We go over to the corresponding dual space and specify a
subset which is weak∗-compact. With these preliminary considerations, we can finally
prove the result.

Remark 3.3.43. The reader interested in the time-continuous case is referred to Part II.
There we use a different approach and view of the problem, and the existence of an optimal
strategy is proven through ideas and concepts from the theory of optimal transport, see
Chapter 7.

Remark 3.3.44 (Restriction to support of ν). For p,q ∈ [1,∞] the seminorm ‖ ·‖ν,p,q on Xν,p,q
depends on the given probability measure ν on I . Let J = supp(ν) = {t ∈ I | νt > 0} be the
support of ν. Note that the restriction on the support of ν does not change the value of
the seminorm of Z defined in (3.3.32). This means that for every γ ∈Mν

I and t ∈ I \ J the
corresponding term ‖Zt‖Lp(γtP) in (3.3.32) is zero, because νt = 0 implies that γt = 0 P-a.s.

Remark 3.3.45 (Basic Lp-inequalities). For future reference, let us show here that, for every
γ ∈Mν

I , p ∈ [1,∞], t ∈ I , and Zt ∈ Lp(Ω,Ft ,P;K),

‖Ztγt‖Lp(P) ≤ ‖Zt‖Lp(γtP) ≤ ‖Zt‖Lp(P). (3.3.46)

Recall that 0 ≤ γt ≤ 1 due to Definition 3.1.1(a) and (b). If p ∈ [1,∞), then γpt ≤ γt ≤ 1,
hence E[|Ztγt |p] ≤ E[|Zt |pγt] ≤ E[|Zt |p], which implies (3.3.46). If p = ∞, define
c = ‖Zt‖L∞(γtP). This means that {|Zt | > c, γt > 0} is a P-null set. Since it contains {|Zt |γt > c},
it follows that ‖Ztγt‖L∞(P) ≤ c, proving the first inequality in (3.3.46). The second one
follows similarly, using {|Zt |γt > c} ⊆ {|Zt | > c} for c := ‖Zt‖L∞(P).
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For every p ∈ [1,∞] and t ∈ I the space Lp(Ω,Ft ,P;K) with norm ‖ ·‖Lp(P) is a Banach space
(with random variables identified if they are P-a.s. equal). This structure transfers to the
quotient spaces Xν,p,q derived from Xν,p,q given in (3.3.31).

Theorem 3.3.47. For every probability measure ν on I and every choice of exponents
p,q ∈ [1,∞], the normed vector space (Xν,p,q,‖ ·‖ν,p,q) is a Banach space.

Proof. See Section 3.3.3. q

Lemma 3.3.48. Consider p,q ∈ [1,∞).

(a) If p̃ ∈ [1,p], then Xν,p,q ⊆ Xν,p̃,q and

‖Z‖ν,p̃,q ≤ ‖Z‖ν,p,q, Z ∈ Xν,p,q. (3.3.49)

(b) If q̃ ∈ [q,∞), then Xν,p,q ⊆ Xν,p,q̃ and

‖Z‖ν,p,q̃ ≤ ‖Z‖ν,p,q, Z ∈ Xν,p,q. (3.3.50)

(c) Given r ∈ (1,p] and s ∈ (1,q], define Cp,q,r,s =
∑
t∈I ν

qrs′/psr ′

t , where r ′ and s′ denote the
conjugate exponents of r and s, respectively. If Cp,q,r,s <∞, then Xν,p,q ⊆ Xν,p/r,q/s and

‖Z‖ν,p/r,q/s ≤ C
s/qs′
p,q,r,s‖Z‖ν,p,q, Z ∈ Xν,p,q. (3.3.51)

Proof. Note that Lp(Ω,Ft ,P;K) ⊆ Lp̃(Ω,Ft ,P;K) for 1 ≤ p̃ ≤ p and each t ∈ I , because P is
a finite measure.
(a) Let γ ∈Mν

I . Then Jensen’s inequality applied to the substochastic probability measure
γtP yields (E[|Zt |p̃γt])1/p̃ ≤ (E[|Zt |pγt])1/p for each t ∈ I , hence (3.3.49) follows via (3.3.32).
(b) For every γ ∈Mν

I , apply inequality (3.3.33) to xγ = (xγ,t)t∈I with xγ,t := (E[|Zt |pγt])1/p.
Taking the supremum over γ ∈Mν

I yields (3.3.50).
(c) By Hölder’s inequality with exponents r and r ′,

E

[
|Zt |p/rγt

]
= E

[
|Zt |p/rγ1/r

t γ1/r ′
t

]
≤

(
E[|Zt |pγt]

)1/r(
E[γt]

)1/r ′
, γ ∈Mν

I , t ∈ I. (3.3.52)

Using this result and E[γt] = νt from Definition 3.1.1(e), another application of Hölder’s
inequality with exponents s and s′ yields, for every γ ∈Mν

I ,∑
t∈I

(
E

[
|Zt |p/rγt

])qr/ps
≤

∑
t∈I

(
E

[
|Zt |pγt

])q/ps
ν
qr/psr ′

t

≤
(∑
t∈I

(
E

[
|Zt |pγt

])q/p)1/s
C1/s′
p,q,r,s .

Raising this inequality to the power s/q and using (3.3.32), estimate (3.3.51) follows. q
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Lemma 3.3.53 (Convergence).
Let p ∈ [1,∞] and Z ∈ Xν,p,1. Then

‖Zγ‖Lp(P) ≤ ‖Z‖ν,p,1, γ ∈Mν
I . (3.3.54)

For γ ∈ Mν
I and a sequence (Jn)n∈N of increasing subsets of I with

⋃
n∈N Jn = I define the

approximations

Zγ,Jn =
∑
t∈Jn

Ztγt =
∑
t∈I
Zt1Jn(t)γt = (Z1Jn)γ , n ∈N. (3.3.55)

Then
lim
n→∞
‖Zγ −Zγ,Jn‖Lp(P) = 0. (3.3.56)

Proof. To prove (3.3.54), we use Minkowski’s integral inequality (for P and the counting
measure on I) and then (3.3.46) and (3.3.32) to get that, for every γ ∈Mν

I ,

‖Zγ‖Lp(P) =
∥∥∥∥∑
t∈I
Ztγt

∥∥∥∥
Lp(P)

≤
∑
t∈I
‖Ztγt‖Lp(P) ≤

∑
t∈I
‖Zt‖Lp(γtP) ≤ ‖Z‖ν,p,1. (3.3.57)

To prove (3.3.56), use (3.3.55) to write Zγ −Zγ,Jn = (Z1I\Jn)γ and the first two estimates of
(3.3.57) to get that

‖Zγ −Zγ,Jn‖Lp(P) ≤
∑
t∈I\Jn

‖Zt‖Lp(γtP). (3.3.58)

Since the last series in (3.3.57) converges in R, the claim (3.3.56) follows from (3.3.58). q

Remark 3.3.59. It is intuitively obvious that an optimal strategy should then be optimal
even for a limited time horizon. The converse property is much less obvious (maybe it
is possible to get something better by radically changing the strategy on a larger time
horizon). The lemma above tell us that it is possible to suitably approximate every strategy
and then it converges accordingly fast depending on the p.
For example, let T < I and (un)n∈N ⊆ I be an increasing sequence in I with un ≤ un+1 for
all n ∈N. Then un↗ T for n→∞ and we can choose Jn = I≤un ∩ J for all n ∈N.

Lemma 3.3.60. Consider p, q ∈ (1,∞) and let q′ denote the conjugate exponent of q. Given
r ∈ (1,p], define Kp,q,r =

∑
t∈I ν

q′(r−1)/p
t . If Kp,q,r <∞, then

‖Zγ‖Lp/r (P) ≤ K
1/q′
p,q,r ‖Z‖ν,p,q, γ ∈Mν

I , Z ∈ Xν,p,q.

Remark 3.3.61. Suppose we know for a c ∈ (0,1) that
∑
t∈I ν

c
t <∞ and p ∈ (1,∞) is so small

that a condition on q is required, i.e., (r − 1)/p < c. Then we know that (3.3.35) is certainly
satisfied if q′ ≥ cp′, meaning that

q ≤
cp

cp − (r − 1)
.
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3.3. Existence of an Optimal Strategy

Proof of Lemma 3.3.60. Using Minkowski’s integral inequality and that |γt |p/r ≤ γt for all
t ∈ I , we get that

‖Zγ‖Lp/r (P) =
(
E

[∣∣∣∣∑
t∈I
Ztγt

∣∣∣∣p/r])r/p ≤∑
t∈I

(
E[|Zt |p/rγt]

)r/p
. (3.3.62)

Using Hölder’s inequality with conjugate exponents r and r/(r −1) like in (3.3.52) and that
E[γt] = νt we have

E

[
|Zt |p/rγt

]
≤

(
E

[
|Zt |pγt

])1/r
ν

(r−1)/r
t , t ∈ I.

Substitution into (3.3.62) and applying Hölder’s inequality to the series with conjugate
exponents q and q′ shows that

‖Zγ‖Lp/r (P) ≤
∑
t∈I

(
E

[
|Zt |pγt

])1/p
ν

(r−1)/p
t

≤
(∑
t∈I

(
E

[
|Zt |pγt

])q/p)1/q(∑
t∈I
ν
q′(r−1)/p
t

)1/q′

.

Using (3.3.32), the claimed inequality follows. q

There is a subset of processes of Xν,p,q we are interested in, especially in the case p = q = 1,
for which it turns out that it is a closed linear subspace.
Recall that the subset X̃ν,p,q is the set of all Z ∈ Xν,p,q, for which there is a sequence (Zn)n∈N
of bounded processes in Xν,p,q such that ‖Z −Zn‖ν,p,q→ 0 as n→∞. For every p ∈ [1,∞)
and q ∈ [1,∞] we define these sets of K-valued F -adapted processes Z = (Zt)t∈I by

X̃ν,p,q = {Z ∈ Xν,p,q | Z bounded}
‖·‖ν,p,q . (3.3.63)

Of course, X̃ν,p,q and the corresponding set X̃ν,p,q of equivalence classes are vector spaces
with seminorm and norm ‖ ·‖ν,p,q, respectively. A standard argument shows that X̃ν,p,q is a
closed subset of Xν,p,q and, therefore, itself a Banach space.

Theorem 3.3.64. Let p ∈ [1,∞) and q ∈ [1,∞].

(a) The vector space (X̃ν,p,q,‖ · ‖ν,p,q) is a Banach space.

(b) We have that

X̃ν,p,q $ Xν,p,q.

The above Theorem 3.3.64 are only necessary for the proof of the existence in the case of
p = q = 1 and therefore the reader is referred to the Section 3.3.3.
Now, we consider the topological dual spaces of Xν,p,q and its subspace X̃ν,p,q with respect
to the norm ‖ · ‖ν,p,q. These are denoted by X∗ν,p,q and X̃∗ν,p,q, respectively, and are equipped
with the corresponding operator norms

‖φ‖X∗ν,p,q := sup{|φ(Z)| : Z ∈ Xν,p,q, ‖Z‖ν,p,q ≤ 1}, φ ∈ X∗ν,p,q,

and ‖ ·‖X̃∗ν,p,q . In addition, X∗ν,p,q ⊆ X̃∗ν,p,q and ‖φ‖X̃∗ν,p,q ≤ ‖φ‖X∗ν,p,q for all φ ∈ X∗ν,p,q. Due
to [66, Theorem 4.1], (X∗ν,p,q,‖ ·‖X∗ν,p,q ) and (X̃∗ν,p,q,‖ ·‖X̃∗ν,p,q ) are again Banach spaces. The
following lemma is a corresponding reformulation of Remark 3.3.39 taking equivalence
classes into account.
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Lemma 3.3.65. For every γ ∈ Mν
I and (p,q) ∈ [1,∞) × [1,∞] with either p = q = 1 or p > 1

satisfying the decay condition (3.3.35), the map Xν,p,q 3 Z 7→ φγ := E[Zγ ] is a well-defined
element of X∗ν,p,q with

‖φγ‖X∗ν,p,q ≤

1 if p = q = 1,(∑
t∈I ν

q′/p′

t

)1/q′
if p > 1, q ∈ [1,∞] satisfy (3.3.35).

For p,q = 1, define Vν,p,q = {Z ∈ X̃ν,p,q : ‖Z‖ν,p,q ≤ 1}, and for p > 1 and q ∈ [1,∞] satisfying
(3.3.35) define

Vν,p,q =
{
Z ∈ Xν,p,q : ‖Z‖ν,p,q ≤

(∑
t∈I ν

q′/p′

t

)−1/q′ }
.

In both cases Vν,p,q is a neighborhood or the origin. By the Banach–Alaoglu theorem (see
e.g. [66, Theorem 3.15]), the polar set

Kν,p,q :=

{φ ∈ X̃∗ν,p,q : |φ(Z)| ≤ 1 for every Z ∈ Vν,p,q} if p = q = 1,

{φ ∈ X∗ν,p,q : |φ(Z)| ≤ 1 for every Z ∈ Vν,p,q} if p > 1, q ∈ [1,∞] satisfy (3.3.35),

is weak∗-compact. For the proof of the main statement of this section we need the following
key lemma:

Lemma 3.3.66. For the pairs (p,q) ∈ [1,∞) × [1,∞] considered in Lemma 3.3.65, the set
{φγ }γ∈Mν

I
is contained in Kν,p,q and weak∗-compact.

Proof. See Section 3.3.3. q

With these preliminary considerations, we can finally prove the main result.

Proof of Theorem 3.3.34. First we consider the case (p,q) ∈ (1,∞)×[1,∞] satisfying (3.3.35).
We pass to the corresponding sets Xν,p,q of equivalence classes. Thus, let Z ∈ Xν,p,q. Then
we can rewrite the considered problem by using the notation of Lemma 3.3.65 as

sup
γ∈Mν

I

E[Zγ ] = sup
γ∈Mν

I

φγ (Z) = sup
ψ∈{φγ }γ∈MνI

ψ(Z).

As {φγ }γ∈Mν
I

is weak∗-compact by Lemma 3.3.66 andMν
I is not empty by Example 3.1.4,

there exists a γ∗ ∈Mν
I such that

sup
ψ∈{φγ }γ∈MνI

ψ(Z) = φγ∗(Z),

as every continuous function on a non-empty compact set attains its supremum on this
set (see e.g. [61, Chapter IV.3, p. 99] for compact sets that are Hausdorff).
For p = q = 1 let Z ∈ Xν,p,q and Z+ ∈ X̃ν,p,q. We define Z(n)

t = max{Zt ,−n}, n ∈N. It holds
that Z(n) ∈ X̃ν,p,q, n ∈N, and Z(n)↘ Z as n→∞. Then we can prove that the functional

H : {φγ }γ∈Mν
I
→R, φγ 7→ φγ (Z),
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is upper semicontinuous w.r.t. the weak∗-topology on {φγ }γ∈Mν
I
. Furthermore, we can

define the sequence of functionals

Hn : {φγ }γ∈Mν
I
→R, φγ 7→ φγ (Z(n)), where inf

n
Hn(φγ ) =H(φγ ) .

For every n ∈N, the functional Hn is continuous w.r.t. the weak∗-topology on {φγ }γ∈Mν
I
,

because of Lemma 3.3.65. Then φγ (Z) = infnφγ (Z(n)) and using [3, Lemma 2.41] we get
that H is upper semicontinuous. Furthermore, an upper semicontinuous function on a
compact set attains a maximum value, and the non-empty set of maximizers is compact,
see [3, Theorem 2.43].

q
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3.3.3. Outstanding Proofs

Proofs of Section 3.3.1

In this section the remaining proofs of Section 3.3.1 are to be delivered.

Proof of Theorem 3.3.13.

(i) ‖ · ‖ν,p is a norm: It is trivial that | · |ν,p given in Definition 3.3.6 is a norm. Using
the norm properties of | · |ν,p and ‖ · ‖Lp we get that ‖ · ‖ν,p is a norm for p ∈ [1,∞) by
the representation (3.3.11). In this connection the absolute homogeneity follows by
the iterative composition of the absolute homegeneity of | · |ν,p and ‖ · ‖Lp . We get
the triangle inequality by using the Minkowski inequality for | · |ν,p and the triangle
inequality of ‖ · ‖Lp .

(ii) Completeness: For a fixed t ∈ I we have on the one hand for every γ ∈Mν
I that(

E[|Zt |pγt]
)1/p
≤

(
E

[∑
s∈I
|Zs|pγs

])1/p
≤ sup
γ̃∈Mν

I

(
E

[
|Z |pγ̃,p

])1/p
= ‖Z‖ν,p

and on the other one we get for the deterministic choice γt = νt1Ω that
E[|Zt |pγt] = νtE[|Zt |p]. Due to Remark 3.3.12 we restrict our considerations on
the support J = supp(ν) of ν. Combining both thoughts we have for t ∈ J that

‖Zt‖Lp =
(
E[|Zt |p]

)1/p
≤ ν−1/p

t ‖Z‖ν,p, Z ∈ Xν,p. (3.3.67)

Now, let (Zn)n∈N be a ‖ · ‖ν,p-Cauchy sequence. Fix t ∈ J . Then inequality (3.3.67)
implies that the corresponding t-components (Znt )n∈N form a ‖ ·‖Lp-Cauchy sequence
in Lp(Ω,Ft ,P;R). By completeness of Lp(Ω,Ft ,P;R) (see [65, Theorem 3.11]) there
exists Zt ∈ Lp(Ω,Ft ,P;R) such that ‖Zt − Znt ‖Lp → 0 as n → ∞. For t ∈ I \ J we
choose Zt = 0. Therefore, we have constructed an adapted process Z = (Zt)t∈I ∈∏
t∈I L

p(Ω,Ft ,P;R), which is an eligible representative of the corresponding equiva-
lence class with respect to ‖ · ‖ν,p.

Next, we will show that the sequence (Zn)n∈N converges to Z with respect to ‖ · ‖ν,p
as n→∞. Since J is countable, there exists an increasing sequence (Jk)k∈N of finite
index sets with

⋃
k∈N Jk = J . By monotone convergence (cf. [75, Theorem 5.3]) we

have that

E

[∑
t∈J
|Zt −Znt |pγt

]
= lim
k→∞

E

[∑
t∈Jk

|Zt −Znt |pγt
]
, n ∈N, γ ∈Mν

I ,

and thus

‖Z −Zn‖pν,p = sup
γ∈Mν

I

lim
k→∞

E

[∑
t∈Jk

|Zt −Znt |pγt
]
, n ∈N. (3.3.68)

Fix ε > 0. Since (Zn)n∈N is a ‖ · ‖ν,p-Cauchy sequence, there exists an Nε ∈N such
that ‖Zm −Zn‖ν,p ≤ ε for all m,n ∈N with m,n ≥Nε. Fix k,n ∈N with n ≥Nε. Since
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‖Zt −Zmt ‖Lp → 0 as m→∞ for every t in the finite set Jk, we may iteratively find a
subsequence (ml)l∈N with ml ≥ Nε for all l ∈N such that (Zml

t )l∈N converges to Zt
a.s. for every t ∈ Jk . Using Fatou’s lemma ([75, Section 5.4]) for every n ≥Nε and that
Jk ⊆ J we get therefore that for every γ ∈Mν

I

E

[∑
t∈Jk

|Zt −Znt |pγt
]
≤ liminf

l→∞
E

[∑
t∈Jk

|Zml
t −Znt |pγt

]
(3.3.69)

≤ liminf
l→∞

‖Zml −Zn‖pν,p ≤ εp. (3.3.70)

We know that Z−Zn ∈
∏
t∈I L

p(Ω,Ft ,P;R) and we conclude from (3.3.68) and (3.3.70)
that ‖Z −Zn‖ν,p ≤ ε for all n ≥ Nε such that Z −Zn ∈ Xν,p. We also have Z ∈ Xν,p,
because Z = (Z−Zn)+Zn, where Z−Zn and Zn are both elements of the vector space
Xν,p.

q

Proof of Lemma 3.3.22. At first, given a process Z ∈ X̃ν,p we show that the uniform Fatou
property implies that

‖Z −ZM‖ν,p→ 0 as M→∞,

where ZM is defined for a constant M > 0 as

ZMt := (−M)∨ (Zt ∧M) = max{−M,min{Zt ,M}}, t ∈ I.

It is obvious that ZM is bounded by M. Therefore we know that ‖ZM‖ν,p is finite and
ZM ∈ X̃ν,p. In addition, we have that

Zt = ZMt + (Zt −M)+ − (Zt +M)−,

where x+ = max{x,0} defines the positive part and x− = −min{x,0} the negative part. Let
ε > 0. By the uniform Fatou property given in (3.3.20), there exists M > 0 such that
supγ∈Mν

I
E[

∑
t∈I (|Zt |p −M)+γt] ≤ ε. Furthermore, every convex function f : R+→R with

f (0) ≥ 0 satisfies

f (a) + f (b) ≤ f (0) + f (a+ b) . (3.3.71)

This follows by adding the inequality

f (a) = f
( a
a+ b

(a+ b) +
b

a+ b
0
)
≤ a
a+ b

f (a+ b) +
b

a+ b
f (0)

to the corresponding one where a and b are changed. For p ≥ 1 the function R+ 3 x 7→ xp

is convex and from (3.3.71) we get

(|Zt | −M)p ≤ |Zt |p −Mp on {|Zt | >M}

and thus

((|Zt | −M)+)p ≤ (|Zt |p −Mp)+ on Ω. (3.3.72)
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Using that |Zt −ZMt | = (|Zt | −M)1{|Zt |>M} = (|Zt | −M)+ it holds that for all M > 0

‖Zt −ZMt ‖
p
ν,p = sup

γ∈Mν
I

E

[∑
t∈I

(|Zt | −M)p+γt
] (3.3.72)
≤ sup

γ∈Mν
I

E

[∑
t∈I

(|Zt |p −Mp)+γt

]
.

Hence, for M → ∞ it follows that ‖Zt − ZMt ‖ν,p → 0 by the uniform Fatou property.
Furthermore, for a M that is big enough we have that Z −ZM ∈ Xν,p. By Z = Z −ZM +ZM

it follows that also Z ∈ Xν,p such that X̃ν,p is a subset of Xν,p.
Finally, we want to show that the reverse inclusion holds. For the convex function x 7→ xp,
p ≥ 1 on R+ we have by Jensen’s inequality that for a,b ∈R+

(a+ b)p = 2p
(1

2
a+

1
2
b
)p
≤ 2p−1(ap + bp) . (3.3.73)

Therefore, we have for every constant M > 0

|Zt |p − 2p−1Mp ≤ 2p−1(|Zt | −M)p on {|Zt | >M}

and

(|Zt |p − 2p−1Mp)+ ≤ 2p−1(|Zt | −M)p+ on Ω, (3.3.74)

because {|Zt |p > 2p−1Mp} ⊆ {|Zt | >M}. Using (3.3.74) we get with M̃ = (2M)1/p

2 that

sup
γ∈Mν

I

E

[∑
t∈I

(|Zt |p −M)+γt

]
≤ 2p−1 sup

γ∈Mν
I

E

[∑
t∈I

(|Zt | − M̃)p+γt
]

= 2p−1‖Zt −ZM̃t ‖ν,p→ 0 as M→∞.

Thus, ‖Z −ZM‖ν,p→ 0 for M→∞ implies the uniform Fatou property. q

Proof of Theorem 3.3.24.

(a) We know by the first part of the proof of Theorem 3.3.13 that ‖ ·‖ν,p is a norm. By the
descriptive definition of X̃ν,p given in (3.3.23) it is clear that X̃ν,p is a closed linear
subspace of Xν,p, cf. the proof of Lemma 3.3.22. A closed subset of a Banach space is
again complete.

(b) We know that ‖ · ‖ν,p is a norm, see the first part of the proof of Theorem 3.3.13.
Moreover, we have to show that X̂ν,p is a closed linear subspace of Xν,p. A closed
subspace of a Banach space is again complete.
(i) X̂ν,p is a vector space: Note that the condition, that {|Z |pγ,p}γ∈Mν

I
is uniformly

integrable, keeps the vector space properties. This is easily verifiable. Therefore
X̂ν,p is a vector space.
(ii) X̂ν,p is subset of Xν,p: Note that the condition, that Z := {|Z |pγ,p}γ∈Mν

I
is uniformly

integrable, implies that ‖Z‖ν,p <∞. LetZ be the uniformly integrable set of R-valued
functions on (Ω,F ). Then we have that Z ⊆ Lp(Ω,F ,P;R) and that Z is bounded in
Lp, that means

‖Z‖ν,p = sup
γ∈Mν

I

‖ |Z |γ,p‖Lp = sup
f ∈Ψ
‖f ‖Lp <∞.
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We get this in the following way, in the case p = 1 it is given by the equivalence
of (i) and (ii) in [70, Theorem 16.8]. Given ε > 0, there exists n ∈ N such that
E[|Z |pγ,p1{|Z |pγ,p>n}] ≤ ε for all γ ∈ Mν

I , because of the uniform integrability of the
considered set. Therefore

‖Z‖ν,p = sup
γ∈Mν

I

(
E

[∑
t∈I
|Zt |pγt

])1/p

= sup
γ∈Mν

I

(
E

[
|Z |pγ,p(1{|Z |pγ,p>n} +1{|Z |pγ,p≤n})

p
])1/p

≤ sup
γ∈Mν

I

(
E

[
|Z |pγ,p1{|Z |pγ,p>n}

])1/p
+ sup
γ∈Mν

I

(
E

[
n1{|Z |pγ,p≤n}

])1/p

(Minkowski inequality)

≤ ε1/p +n1/p <∞.

Therefore we have that X̂ν,p ⊆ Xν,p.
(iii) X̂ν,p is closed: Let (Zn)n∈N be a sequence in X̂ν,p which converges with respect to
‖·‖ν,p to Z ∈ Xν,p. Thus, we have to show that Z ∈ X̂ν,p, i.e., the set {|Z |pγ,p}γ∈Mν

I
is uni-

formly integrable. Let ε > 0. We know that there exists Nε ∈N with ‖Z −Zn‖pν,p ≤ ε
for all n ≥ Nε, in particular for n = Nε. Since {

∑
t∈I |Z

Nε
t |pγt}γ∈Mν

I
is uniformly

integrable, there exists M̃ ∈R such that

E

[
|ZNε |pγ,p1{|ZNε |pγ,p>M̃}

]
≤ ε for all γ ∈Mν

I .

Since ‖Z‖ν,p <∞, there exsits M > 0 such that M̃‖Z‖pν,p ≤ εM. Hence we get with
Z = (Z −ZNε ) +ZNε and (3.3.73) that

E

[
|Z |pγ,p1{|Z |pγ,p>M}

]
≤ 2p−1

E

[
|Z −ZNε |pγ,p

]
+ 2p−1

E

[
|ZNε |pγ,p1{|ZNε |pγ,p>M̃}

]
+ 2p−1

E

[
|ZNε |pγ,p1{|Z |pγ,p>M, |ZNε |pγ,p≤M̃}

]
≤ 2p−1‖Z −ZNε‖pν,p + 2p−1ε+ 2p−1M̃P(|Z |pγ,p >M)

≤ 2pε+ 2p−1M̃
E[|Z |pγ,p]

M
≤ 2pε+ 2p−1M̃

‖Z‖pν,p
M

≤ (2p + 1)ε

for all γ ∈Mν
I such that Z ∈ X̂ν,p.

(c) We get in the parts (a) and (b) of the proof of Theorem 3.3.24 that X̃ν,p ⊆ Xν,p and
X̂ν,p ⊆ Xν,p. Now, we have to show that X̃ν,p is a subspace of X̂ν,p. In other words,
the uniform Fatou property implies the uniform integrability of {|Z |pγ,p}γ∈Mν

I
. We

have to show that for every ε > 0 there exists M > 0 such that

E

[
|Z |pγ,p1{|Z |pγ,p>M}

]
≤ ε for all γ ∈Mν

I .
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Since Z satisfies limsupM→∞ supγ∈Mν
I
E

[∑
t∈I (|Zt |p − M)+γt

]
= 0, we get that

‖Z‖ν,p <∞ and there exists M̃ > 0 such that

E

[∑
t∈I

(|Zt |p − M̃)+γt

]
≤ ε for all γ ∈Mν

I . (3.3.75)

Since ‖Z‖ν,p <∞, there exists M > 0 such that M̃‖Z‖ν,p ≤ εM.
Furthermore,

|Z |pγ,p − M̃ =
∑
t∈I

(|Zt |p − M̃)γt ≤
∑
t∈I

(|Zt |p − M̃)+γt

and therefore

(|Z |pγ,p − M̃)+ ≤
∑
t∈I

(|Zt |p − M̃)+γt . (3.3.76)

Using (3.3.75), (3.3.76) and the transformation of |Z |pγ,p1{|Z |pγ,p>M} as

|Z |pγ,p1{|Z |pγ,p>M} = (|Z |pγ,p − M̃)1{|Z |pγ,p>M} + M̃1{|Z |pγ,p>M}

≤ (|Z |pγ,p − M̃)+ + M̃
‖Z‖ν,p
M

,

yield that

E

[
|Z |pγ,p1{|Z |pγ>M}

]
= E

[
(|Z |pγ,p − M̃)+

]
+E[M̃1{|Z |pγ,p>M}]

= E

[
(|Z |pγ,p − M̃)+

]
+ M̃P(|Z |pγ,p >M)

≤ E

[
(|Z |pγ,p − M̃)+

]
+ M̃

E[|Z |pγ,p]

M

≤ E

[∑
t∈I

(|Zt |p − M̃)+γt

]
+ M̃
‖Z‖ν,p
M

≤ 2ε.

Thus, we get that {|Z |pγ,p}γ∈Mν
I

is uniformly integrable.
q

Remark 3.3.77. It is unknown to us whether X̃ν,p is really a proper subset of X̂ν,p.

The next example shows us that in general X̂ν,p is really a proper subset of Xν,p. For that
we specify a process (Zt)t∈I ∈ Xν,p such that {

∑
t∈I |Zt |pγt}γ∈Mν

I
is not uniformly integrable.

Therefore we choose p = 1.

Example 3.3.78. Let I = N, ((0,1],B(0,1],F ,λ) be the considered probability space with λ
denoting the Lebesgue-Borel measure and the filtration F given as

Fn := σ ({((k − 1)2−n, k2−n] | k ∈ {1, . . . ,2n}})
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3.3. Existence of an Optimal Strategy

for all n ∈ N. The distributional restriction is given by νn = 2−n for all n ∈ N and our
underlying process (Zn)n∈N of random variables is defined by Zn = 2n1(0,2−n] for n ∈N.
Note that the sequence (Zn)n∈N is bounded in L1(λ) but not uniformly integrable, because
E[Zn1{Zn>c}] = E[Zn] = 1 for all c > 0 and n ∈N with n > c. It converges pointwise to zero,
hence there can be no integrable random variable dominating the sequence to apply the
dominated convergence theorem.
(a) ‖Z‖ν,1 <∞: Using Theorem 3.2.8 we find an enlarged filtration and a random stop-
ping time τ such that E[Zγ ] = E[Zτ ]. Furthermore, we know that for the non-negative
martingale Z we get E[Zτ ] = E[Z1] = 1. Therefore E[Zγ ] is bounded and consequently
‖Z‖ν <∞.

n = 1 | | ||

x Ax
1

n = 2 | | | | ||

xAx
2

n = 3 | | | | | | | | ||

xAx
3

Figure 3.1.: Iteration steps of Axn for a given x

(b) {
∑
t∈N |Zt |γt}γ∈Mν

N

is not uniformly integrable: For a fixed x ∈ (0,1], we define γx by
γxn := 1Axn for all n ∈N, where

Axn :=
(d2n−1xe − 1

2n−1 ,
d2n−1xe

2n−1

] ∖ (d2nxe − 1
2n

,
d2nxe

2n

]
, (3.3.79)

see Figure 3.1. Note that x < Axn, because x ∈
( d2nxe−1

2n , d2
nxe

2n
]

and E[γxn] = λ(Axn) = 2−n = νn
for all n ∈ N. Furthermore, we have that |Z |γ = Zγ =

∑
j∈NZjγ

x
j = Zn if Axn = (0,2−n].

For n = min{j ∈N | 2jx > 1} we get that Axn = (0,2−n]. Thus, {|Z |γ }γ∈Mν
N

is not uniformly
integrable, because {Zn}n∈N ⊆ {|Z |γ }γ∈Mν

N

and we know that (Zn)n∈N is not uniformly
integrable.

Proof of Lemma 3.3.29. Using the definition of Bν,p and the estimates for Lemma 3.3.25, it
follows that {φγ }γ∈Mν

I
is indeed a subset of Kν,p. Furthermore, by Lemma 3.3.25 we know

that ‖φγ‖X∗ν,p ≤ 1.
It remains to show that {φγ }γ∈Mν

I
is weak∗-compact. As a closed subset of a compact space

it is compact in the relative topology, see e.g. Proposition in [61, Chapter IV.3, p. 99], it is
enough to show that {φγ }γ∈Mν

I
is weak∗-closed.

For this let ψ ∈ X∗ν,p ⊆ X̃∗ν,p (or ψ ∈ X̃∗ν,1, respectively) be in the weak∗-closure of {φγ }γ∈Mν
I
.

We have to show that ψ ∈ {φγ }γ∈Mν
I

by proving that there exists a γ̃ ∈Mν
I such that ψ = φγ̃

on Xν,p.
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Chapter 3. Adapted Random Probability Measure

(a) Existence of γ̃ : Fix t ∈ I and define ψt : Lp(Ω,Ft ,P;R)→ R by ψt(Zt) = ψ(Z(t)) for all
Zt ∈ Lp(Ω,Ft ,P;R), where Z(t) ∈ Xν,p is given by

Z
(t)
s = Zt1{t}(s) ∀s ∈ I. (3.3.80)

Note that

‖Z(t)‖ν,p = sup
γ∈Mν

I

(
E

[∑
s∈I
|Zt1{t}(s)|pγs

])1/p
= sup
γ∈Mν

I

(E[|Zt |pγt])1/p

≤ (E[|Zt |p])1/p = ‖Zt‖Lp ,

because γt ≤ 1 a.s. The functional ψt is linear and

|ψt(Zt)| = |ψ(Z(t))| ≤ ‖ψ‖X∗ν,p‖Z
(t)‖ν,p ≤ ‖ψ‖X∗ν,p‖Zt‖Lp ,

hence ψt ∈ (Lp(Ω,Ft ,P;R))∗ = Lq(Ω,Ft ,P;R). By [65, Theorem 6.16] there exists a
γ̃t ∈ Lq(Ω,Ft ,P;R) with ψt(Zt) = E[γ̃tZt] for all Zt ∈ Lp(Ω,Ft ,P;R). Hence we have
γ̃ = (γ̃t)t∈I ∈

∏
t∈I L

q(Ω,Ft ,P;R) such that φγ̃ (Z(t)) is well-defined and ψ(Z(t)) = φγ̃ (Z(t))
for all t ∈ I .

(b) The candidate γ̃ is inMν
I :

(i) Note that γ̃t is Ft-measurable for all t ∈ I by construction.

(ii) Distribution of γ̃ : For t ∈ I define Zt = 1Ω and Z(t) via (3.3.80). Then

φγ (Z(t)) = E[Ztγt] = E[1Ωγt] = E[γt] = νt

for every γ ∈ Mν
I , hence E[γ̃t] = ψ(Z(t)) = νt. For this, consider for Z ∈ Xν,p the

functional ΘZ : X∗ν,p → R defined as ΘZ(φ) := φ(Z). Note that ΘZ is an element
of the second dual X∗∗ν,p. Using that ψ is in the weak∗-closure of {φγ }γ∈Mν

I
and the

continuity of every element of X∗∗ν,p, we get that for all ε > 0 and for for every Z ∈ Xν,p
there exists a γ ∈ Mν

I such that |ΘZ(ψ) −ΘZ(Φγ )| < ε. Particularly, we get with
ΘZ(t)(φγ ) = φγ (Z(t)) = νt that ψ(Z(t)) = ΘZ(t)(ψ) = νt.

(iii) γ̃ is non-negative: Fix t ∈ I . DefineA = {γ̃t < 0} and note thatZt := 1A ∈ Lp(Ω,Ft ,P;R).
Z(t) is defined as in (3.3.80). For every γ ∈Mν

I we have φγ (Z(t)) = E[γt1A] ≥ 0, hence
0 ≤ ψ(Z(t)) = φγ̃ (Z(t)) = E[γ̃t1A]. This implies P(A) = 0.

(iv) γ̃ is a probability measure satisfying conditions (b) and (c) of Definition 3.1.1:
Consider an increasing sequence (In)n∈N of finite index sets with

⋃
n∈N In = I . Define

ZΩ,n ∈ Xν,p by ZΩ,n
s = 1Ω for all s ∈ In and ZΩ,n

s = 0 for all s ∈ I \ In. Since for all
γ ∈Mν

I

φγ (ZΩ,n) = E

[∑
t∈In

γt

]
=

∑
t∈In

νt ≤ 1,

we have ψ(ZΩ,n) =
∑
t∈In νt, hence

E

[∑
t∈In

γ̃t

]
= φγ̃ (ZΩ,n) = ψ(ZΩ,n) =

∑
t∈In

νt↗
∑
t∈I
νt = 1 as n→∞.
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3.3. Existence of an Optimal Strategy

Further, by monotone convergence,

E

[∑
t∈In

γ̃t

]
↗ E

[∑
t∈I
γ̃t

]
as n→∞.

Therefore E[
∑
t∈I γ̃t] = 1.

DefineA = {
∑
t∈I γ̃t > 1} ∈ σ (

⋃
t∈I Ft). Furthermore, setAn = {

∑
t∈In γ̃t > 1} ∈ σ (

⋃
t∈I Ft).

Then A =
⋃
n∈NAn. For n ∈N consider the processes ZAn with ZAnt = E[1An |Ft] for

all t ∈ In and ZAnt = 0 for all t ∈ I \ In. For every γ ∈Mν
I ,

φγ (ZAn) = E

[∑
t∈In

E[1An |Ft]γt
]

=
∑
t∈In

E[1Anγt] ≤ E

[
1An

∑
t∈I
γt

]
= P(An).

Therefore, ψ(ZAn) ≤ P(An). By the same calculation

E

[
1An

∑
t∈In

γ̃t

]
= φγ̃ (ZAn) = ψ(ZAn) ≤ P(An),

which implies that P(An) = 0. Since A is a countable union of null sets, we have also
that P(A) = 0. Hence ∑

t∈I
γ̃t = 1, a.s.

Finally, γ̃ satisfies all properties of Definition 3.1.1, thus γ̃ ∈Mν
I .

(c) ψ(Z ) = φγ̃(Z ) for all Z ∈ Bν,p: Let Z ∈ Xν,p be fixed and ε > 0 arbitrary. By Lemma
3.3.25 and γ̃ ∈ Mν

I we have that φγ̃ is well-defined. We will now make a case-by-case
analysis. In fact, the case p = 1 forms an exception and the corresponding proof is
different.
Let p ∈ (1,∞). As Z ∈ Xν,p we have that ‖Z‖ν,p < ∞. Set M > 0 such that ‖Z‖ν,p ≤ M.
Further there exists a finite set J̃ ⊆ I such that (

∑
t∈I\J̃ νt)

1/q ≤ ε
M , where q is the Hölder

conjugate of p. Define the process Z J̃ ∈ Xν,p by

Z J̃t =

0 for t ∈ J̃ ,
Zt for t ∈ I \ J̃ .

(3.3.81)

Using the Hölder’s inequality like in (3.3.28), we get for every γ ∈Mν
I that

|φγ (Z J̃ )| ≤ E

[ ∑
t∈I\J̃

|Zt |γt
]

= E

[ ∑
t∈I\J̃

|Zt |γ
1/p
t ·γ1/q

t

]
≤

(
E

[ ∑
t∈I\J̃

|Zt |pγt
])1/p(

E

[ ∑
t∈I\J̃

(γ1/q
t )q

])1/q

≤ ‖Z‖ν,p
(
E

[ ∑
t∈I\J̃

γt

])1/q
≤ ‖Z‖ν,p

( ∑
t∈I\J̃

νt

)1/q
≤ ε.
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Then also |ψ(Z J̃ )| ≤ ε. By the construction of γ̃ and linearity of ψ we have

ψ(Z −Z J̃ ) = φγ̃ (Z −Z J̃ ) .

Finally

|ψ(Z)−φγ̃ (Z)| ≤ |ψ(Z −Z J̃ )−φγ̃ (Z −Z J̃ )|+ |ψ(Z J̃ )|+ |φγ̃ (Z J̃ )| ≤ 2ε.

It follows that ψ(Z) = φγ̃ (Z) for all Z ∈ Bν,p, p ∈ (1,∞).
Now, we consider the case p = 1. As Z ∈ X̃ν,p we have that {

∑
t∈I |Zt |pγt}γ∈Mν

I
is uniformly

integrable, because X̃ν,1 is a subset of X̂ν,1.

(1) Let Z be additionally (uniformly) bounded. Then there exists M > 0 such that
|Zt | ≤M a.s. for all t ∈ I . Further there exists a finite set J̃ ⊆ I such that

∑
t∈I\J̃ νt ≤ ε

M . Let

the process Z J̃ ∈ X̃ν,p be defined like in (3.3.81). Then for every γ ∈Mν
I

|φγ (Z J̃ )| ≤ E

[ ∑
t∈I\J̃

|Zt |γt
]
≤M E

[ ∑
t∈I\J̃

γt

]
≤ ε.

Then also |ψ(Z J̃ )| ≤ ε. By the construction of γ̃ and linearity of ψ we have

ψ(Z −Z J̃ ) = φγ̃ (Z −Z J̃ ) .

Finally

|ψ(Z)−φγ̃ (Z)| ≤ |ψ(Z −Z J̃ )−φγ̃ (Z −Z J̃ )|+ |ψ(Z J̃ )|+ |φγ̃ (Z J̃ )| ≤ 2ε.

Thus, ψ(Z) = φγ̃ (Z) for all uniformly bounded Z ∈ Xν,p.

(2) At first, recall that we define for the constant M > 0

ZMt := (−M)∨ (Zt ∧M) = max{−M,min{Zt ,M}}, t ∈ I,

such that ZM is bounded byM. Using that Zt = ZMt +(Zt−M)+−(Zt+M)− and the linearity
of φγ for all γ ∈Mν

I , we have that

φγ (Z) = φγ (ZM ) +φγ (((Zt −M)+)t∈I )−φγ (((Zt +M)−)t∈I ) .

For the bounded process ZM we get with item (1) that φγ (ZM) = ψ(ZM) for all
γ ∈ Mν

I . Now, we have to consider φγ (((Zt −M)+)t∈I ) and φγ (((Zt +M)−)t∈I ). For this,
let ε > 0. As limsupM→∞ supγ∈Mν

I
E[

∑
t∈I (|Zt |p −M)+γt] = 0, there exists M > 0 such that

supγ∈Mν
I
E[

∑
t∈I (|Zt |p −M)+γt] ≤ ε. Using that 0 ≤ (Zt +M)− ≤ (|Zt | −M)+ ≤ (|Zt |p −M)+

and 0 ≤ (Zt −M)+ ≤ (|Zt |p −M)+ we have besides that

sup
γ∈Mν

I

E

[∑
t∈I

(Zt +M)−γt
]
≤ ε and (3.3.82)

sup
γ∈Mν

I

E

[∑
t∈I

(Zt −M)+γt

]
≤ ε. (3.3.83)
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Furthermore, we get that |φγ ((Zt + M)−)t∈I )| ≤ ε and |φγ ((Zt − M)+)t∈I )| ≤ ε for all
γ ∈ Mν

I because of (3.3.82) and (3.3.83). In particular, it applies to γ̃ such that we
have |ψ((Zt +M)−)t∈I )| ≤ ε and |ψ((Zt −M)+)t∈I )| ≤ ε. Finally we get

|φγ̃ (Z)−ψ(Z)| ≤ |φγ̃ (ZM )−ψ(ZM )|︸                 ︷︷                 ︸
=0

+|φγ̃ ((Zt +M)−)t∈I )|

+ |ψ((Zt +M)−)t∈I )|+ |φγ̃ ((Zt −M)+)t∈I )|+ |ψ((Zt −M)+)t∈I |
≤ 4ε.

It follows that ψ(Z) = φγ̃ (Z) for all Z ∈ Bν,1. q

Note that the uniform Fatou property is essential for the case p = 1 and the last step of the
proof of Lemma 3.3.29. It will be clear by the next example. Remember that we consider
for p = 1 the Banach space (Xν,1,‖ · ‖ν,1), Bν,1 = {Z ∈ X̃ν,1 : ‖Z‖ν,1 ≤ 1} and the polar set
Kν,1 = {φ ∈ X̃∗ν,1 : |φ(Z)| ≤ 1 for all Z ∈ Bν,1}. K is weak∗-compact. The following example
shows that {φγ }γ∈Mν

I
is contained in K but not weak∗-closed. For this we will choose a

ψ ∈ X̃∗ν,1 in the weak∗-closure of {φγ }γ∈Mν
I

for which there exists no γ̃ ∈ Mν
I such that

ψ(Z) = φγ̃ (Z) for all Z ∈ Xν,1 with {|Z |γ }γ∈Mν
I

is uniformly integrable, which implies the
uniform Fatou property.

Example 3.3.84 (Extension of Example 3.3.78). First of all, define γ̃n = 1(2−n,2−n+1] for all
n ∈N. Then we have that

∑∞
n=1 γ̃n = 1 on Ω = (0,1] and for the given process (Zn)n∈N in

Example 3.3.78 it holds that
∑∞
n=1Znγ̃n = 0, because for Zn = 2n1(0,2−n] every summand is

zero. Let Y = (Yn)n∈N be an F -adapted process with Y ∗ := supn∈N |Yn| ∈ L1. Then Y ∈ Xν,1,
because {|Y |γ }γ∈Mν

I
is uniformly integrable. Remember the definition of γx for x ∈ (0,1],

which is given by γxn := 1Axn for all n ∈N, where Axn is given as in (3.3.79). Futhermore we
have for n = min{j ∈N | 2jx > 1} that Axn = (0,2−n]. Thus, for every m ∈N with m ≤ n− 1
we get that γ2−n

m = γ̃m.

E

[∣∣∣∣ ∞∑
m=1

Ymγ̃m −
∞∑
m=1

Ymγ
2−n
m

∣∣∣∣] ≤ E

[
Y ∗

∞∑
m=1

|γ̃m −γ2−n
m |

]
= E

[
Y ∗

∞∑
m=n

|γ̃m −γ2−n
m |

]
n→∞−−−−−→ 0 .

The term converges to zero because of dominated convergence. Thus, we get that
φγ2−n → φγ̃ for n→∞. From the proof of Lemma 3.3.29 we know that φγ̃ is the limit of
sequence (φγ2−n )n∈N for all Y ∈ X̃ν,1. Finally, we have an element ψ ∈ X̃∗ν,1 in the weak∗-
closure of {φγ }γ∈Mν

I
for which there exists γ̃ ∈Mν

I such that ψ(Y ) = φγ̃ (Y ) for all Y ∈ X̃ν,1.
Now, we want to show that this equation does not hold for an element of Xν,1 \ X̃ν,1. We
consider the sequence Z := (Zm)m∈N defined in Example 3.3.78. Then Z is in Xν,1 \ X̃ν,1
and for every n ∈N we have that

∑∞
m=1Zmγ

2−n
m = Zn and E[Zn] = 1. But

∑∞
m=1Zmγ̃m = 0

such that ψ(Z) , φγ̃ (Z).
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Proofs of Section 3.3.2

In this section the remaining proofs of Section 3.3.2 are to be delivered.

Proof of Theorem 3.3.47. As explained just after its definition in (3.3.32), ‖ ·‖ν,p,q is a semi-
norm on Xν,p,q, which is a vector space. Therefore, it is a norm on the quotient space
Xν,p,q.
To prove completeness, fix a t ∈ I and a process Z ∈ Xν,p,q first. Then by (3.3.32),

‖Zt‖Lp(γtP) ≤
∥∥∥‖Z·‖Lp(γ·P)

∥∥∥
lq(I)
≤ ‖Z‖ν,p,q, γ ∈Mν

I . (3.3.85)

For the deterministic choice γt = νt1Ω from Example 3.1.4 we have that

‖Zt‖Lp(γtP) = cp,t‖Zt‖Lp(P) with cp,t =

ν1/p
t if p ∈ [1,∞),

νt if p =∞.
(3.3.86)

Due to Remark 3.3.44 we restrict our considerations on the support J = supp(ν) of ν.
Combining (3.3.85) and (3.3.86),

‖Zt‖Lp(P) ≤ c−1
p,t‖Z‖ν,p,q, t ∈ J, Z ∈ Xν,p,q. (3.3.87)

Now, let (Zn)n∈N be a ‖ ·‖ν,p,q-Cauchy sequence in Xν,p,q. Fix t ∈ J . Then inequality (3.3.87)
implies that the corresponding t-components (Znt )n∈N form a ‖ ·‖Lp(P)-Cauchy sequence
in Lp(Ω,Ft ,P;K). By completeness of Lp(Ω,Ft ,P;K) (see [65, Theorem 3.11]) there exists
Zt ∈ Lp(Ω,Ft ,P;K) such that ‖Zt −Znt ‖Lp(P)→ 0 as n→∞. Due to (3.3.46), it follows for
each γ ∈Mν

I that ‖Zt −Znt ‖Lp(γtP)→ 0 as n→∞. For t ∈ I \ J we choose Zt = 0. Therefore,
we have constructed an adapted process Z = (Zt)t∈I in

∏
t∈I L

p(Ω,Ft ,P;K).
Next we will show that the sequence (Zn)n∈N converges to Z with respect to ‖ ·‖ν,p,q and
that ‖Z‖ν,p,q <∞. Since J is countable, there exists an increasing sequence (Jk)k∈N of finite
index sets with

⋃
k∈N Jk = J . By monotone convergence (cf. [75, Theorem 5.3]) for the

counting measure on J in the case q ∈ [1,∞), and the property of the supremum of an
increasing sequence in the case q =∞, respectively, we have that∥∥∥‖Z· −Zn· ‖Lp(γ·P)

∥∥∥
lq(J)

= lim
k→∞

∥∥∥‖Z· −Zn· ‖Lp(γ·P)

∥∥∥
lq(Jk)

, n ∈N, γ ∈Mν
I

and thus by (3.3.32) and Remark 3.3.44,

‖Z −Zn‖ν,p,q = sup
γ∈Mν

I

lim
k→∞

∥∥∥‖Z· −Zn· ‖Lp(γ·P)

∥∥∥
lq(Jk)

, n ∈N. (3.3.88)

Fix ε > 0. Since (Zn)n∈N is a ‖ ·‖ν,p,q-Cauchy sequence, there exists an Nε ∈ N such
that ‖Zm − Zn‖ν,p,q ≤ ε for all m,n ∈ N with m,n ≥ Nε. Fix k,n ∈ N with n ≥ Nε. Since
‖Zt − Zmt ‖Lp(P) → 0 as m → ∞ for every t in the finite set Jk, we may iteratively find a
subsequence (ml)l∈N with ml ≥Nε for all l ∈N such that (Zml

t )l∈N converges to Zt a.s. for
every t ∈ Jk (see [65, Theorem 3.12]). Using Fatou’s lemma ([75, Section 5.4]) for every
n ≥Nε and that Jk ⊆ J we get therefore that, for every γ ∈Mν

I ,∥∥∥‖Z· −Zn· ‖Lp(γ·P)

∥∥∥
lq(Jk)
≤ liminf

l→∞

∥∥∥‖Zml· −Zn· ‖Lp(γ·P)

∥∥∥
lq(Jk)

≤ liminf
l→∞

‖Zml −Zn‖ν,p,q ≤ ε.
(3.3.89)
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We know that Z−Zn ∈
∏
t∈I L

p(Ω,Ft ,P;K) and we conclude from (3.3.88) and (3.3.89) that
‖Z −Zn‖ν,p,q ≤ ε for all n ≥Nε such that Z −Zn ∈ Xν,p,q. We also have Z ∈ Xν,p,q, because
Z = (Z −Zn) +Zn and Z −Zn and Zn are both elements of the vector space Xν,p,q. q

Proof of Theorem 3.3.64. We know by the first part of the proof of Theorem 3.3.47 that
‖ · ‖ν,p,q is a norm. By the descriptive definition of X̃ν,p,q given in (3.3.63) it is clear that
X̃ν,p,q is a closed linear subspace of Xν,p,q. A closed subset of a Banach space is complete
again. q

The next example shows that there are processes in Xν,1,1 for which problem OptStop
γ

has no solution although the supremum in (3.1.7) has a well-defined real value.

Example 3.3.90. Let I = N, consider the filtered probability space ((0,1],B(0,1],F ,P)
with P denoting the Lebesgue–Borel measure and the filtration F = (Fn)n∈N given by
Fn = σ ({((k − 1)2−n, k2−n] | k ∈ {1, . . . ,2n}}) for all n ∈N. The distributional restriction ν
is given by νn = 2−n and the non-negative adapted process Z by Zn = 2n(1 − 1

n )1(0,2−n]
for n ∈ N. Given γ ∈ Mν

I , the random variable γn, due to Fn-measurability, has to be
constant on (0,2−n], say αn, for every n ∈N, and it follows from Definition 3.1.1(b) that∑
n∈Nαn ≤ 1. Hence

E[Zγ ] =
∑
n∈N

E[γnZn] =
∑
n∈N

αnE[Zn] =
∑
n∈N

αn

(
1− 1

n

)
< 1

for every γ ∈Mν
I . By (3.3.32), ‖Z‖ν,1,1 ≤ 1. For every n ∈N there exists a stopping time

τ ∈ T νI with {τ = n} = (0,2−n] (and by Example 3.1.2 a corresponding γ ∈ Mν
I ), hence

E[Zτ ] ≥ E[Zn] = (1 − 1
n ). Therefore, the supremum in (3.1.7) equals 1 but there is no

γ∗ ∈Mν
I with E[Zγ ] = 1, hence OptStop

γ has no solution.

The next example shows us that in general X̃ν,p,q is really a proper subset of Xν,p,q. We
choose the case p = q = 1. To show this, we specify a process (Zt)t∈I ∈ Xν,1,1 such that
{
∑
t∈I |Zt |γt}γ∈Mν

I
is not uniformly integrable and particularly not bounded.

Example 3.3.91. Let I = N, consider the filtered probability space ((0,1],B(0,1],F ,P)
with P denoting the Lebesgue–Borel measure and the filtration F = (Fn)n∈N given by
Fn = σ ({((k − 1)2−n, k2−n] | k ∈ {1, . . . ,2n}}) for all n ∈N. The distributional restriction ν is
given by νn = 2−n for all n ∈N and our underlying process (Zn)n∈N of random variables is
defined by Zn = 2n1(0,2−n] for n ∈N. Note that the sequence (Zn)n∈N is bounded in L1(λ)
but not uniformly integrable, because E[Zn1{Zn>c}] = E[Zn] = 1 for all c > 0 and n ∈N with
n > c. It converges pointwise to zero, hence there can be no integrable random variable
dominating the sequence to apply the dominated convergence theorem.

(a) ‖Z‖ν,1,1 <∞: Using Theorem 3.2.8 we find an enlarged filtration and a random stop-
ping time τ such that E[Zγ ] = E[Zτ ]. Furthermore we know that for the non-negative
martingale Z we get E[Zτ ] = E[Z1] = 1. Therefore E[Zγ ] is bounded and consequently
‖Z‖ν,1,1 <∞.
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n = 1 | | ||

x Ax
1

n = 2 | | | | ||

xAx
2

n = 3 | | | | | | | | ||

xAx
3

Figure 3.2.: Iteration steps of Axn for a given x

(b) {
∑
t∈N |Zt |γt}γ∈Mν

N

is not uniformly integrable: For a fixed x ∈ (0,1] we define γx by
γxn := 1Axn for all n ∈N, where

Axn :=
(d2n−1xe − 1

2n−1 ,
d2n−1xe

2n−1

] ∖ (d2nxe − 1
2n

,
d2nxe

2n

]
, (3.3.92)

see Figure 3.2. Note that x < Axn, because x ∈
( d2nxe−1

2n , d2
nxe

2n
]

and E[γxn] = λ(Axn) = 2−n = νn
for all n ∈ N. Furthermore we have that |Z |γ = Zγ =

∑
j∈NZjγ

x
j = Zn if Axn = (0,2−n].

For n = min{j ∈N | 2jx > 1} we get that Axn = (0,2−n]. Thus {|Z |γ }γ∈Mν
N

is not uniformly
integrable, because {Zn}n∈N ⊆ {|Z |γ }γ∈Mν

N

and we know that (Zn)n∈N is not uniformly
integrable.

Proof of Lemma 3.3.66. Using the definition of Vν,p,q and the estimates in Remark 3.3.39,
it follows that {φγ }γ∈Mν

I
is indeed a subset of Kν,p,q.

It remains to show that {φγ }γ∈Mν
I

is weak∗-compact. As a closed subset of a compact space
it is compact in the relative topology, see e.g. Proposition in [61, Chapter IV.3, p. 99], it is
enough to show that {φγ }γ∈Mν

I
is weak∗-closed.

For this let ψ ∈ X∗ν,p,q ⊆ X̃∗ν,p,q (or ψ ∈ X̃∗ν,1,1, respectively) be in the weak∗-closure of
{φγ }γ∈Mν

I
. We have to show that ψ ∈ {φγ }γ∈Mν

I
by proving that there exists a γ̃ ∈Mν

I such
that ψ = φγ̃ on Xν,p,q.

Step 1 (Existence of γ̃). Fix t ∈ I and define ψt: Lp(Ω,Ft ,P;K)→K by ψt(Zt) = ψ(Z(t)) for
all Zt ∈ Lp(Ω,Ft ,P;K), where Z(t) given by

Z
(t)
s = Zt1{t}(s), s ∈ I, (3.3.93)

is always in the smaller space X̃ν,p,q. Note that by (3.3.32) and Definition 3.1.1(a) and (b),

‖Z(t)‖ν,p,q = sup
γ∈Mν

I

(E[|Zt |pγt])1/p ≤ (E[|Zt |p])1/p = ‖Zt‖Lp .

The functional ψt is linear and

|ψt(Zt)| = |ψ(Z(t))| ≤ ‖ψ‖X̃∗ν,p,q‖Z
(t)‖ν,p,q ≤ ‖ψ‖X̃∗ν,p,q‖Zt‖Lp ,

hence ψt ∈ (Lp(Ω,Ft ,P;K))∗ = Lp
′
(Ω,Ft ,P;K), where p′ ∈ (1,∞] is the conjugate exponent.

By [65, Theorem 6.16] there exists a γ̃t ∈ Lp
′
(Ω,Ft ,P;K) with ψt(Zt) = E[γ̃tZt] for all
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3.3. Existence of an Optimal Strategy

Zt ∈ Lp(Ω,Ft ,P;K).
Putting all γ̃t for t ∈ I together, we have γ̃ := (γ̃t)t∈I ∈

∏
t∈I L

p′(Ω,Ft ,P;K) such that
φγ̃ (Z(t)) = E[Ztγ̃t] is well-defined andψ(Z(t)) = φγ̃ (Z(t)) for every t ∈ I andZt ∈ Lp(Ω,Ft ,P;K).
By linearity, it follows thatψ(Z) = φγ̃ (Z) =

∑
t∈I E[Ztγ̃t] for allZ = (Zt)t∈I ∈

∏
t∈I L

p(Ω,Ft ,P;K)

with Zt
a.s.= 0 for all but finitely many t ∈ I .

Step 2 (A version of the candidate γ̃ is in Mν
I ). Let (γ̃)t∈I ∈

∏
t∈I Lp

′
(Ω,Ft ,P;K) be any

version from Step 1. We construct a version satisfying Definition 3.1.1

(a) γ̃ is adapted: By construction, γ̃t is Ft-measurable for every t ∈ I .

(b) Distribution of γ̃ : For t ∈ I define Zt = 1Ω and Z(t) via (3.3.93). Then

φγ (Z(t)) = E[Ztγt] = E[γt] = νt

for every γ ∈Mν
I . We will prove next that E[γ̃t] = ψ(Z(t)) = νt. For this, consider for

Z ∈ Xν,p,q the functional ΘZ : X∗ν,p,q→K defined as ΘZ(φ) = φ(Z). Note that ΘZ is an
element of the second dual X∗∗ν,p,q. Using that ψ is in the weak∗-closure of {φγ }γ∈Mν

I

and the continuity of every element of X∗∗ν,p,q, we get that for every ε > 0 and for
every Z ∈ Xν,p,q, there exists a γ ∈Mν

I such that |ΘZ(ψ)−ΘZ(φγ )| < ε. In particular,
we get with ΘZ(t)(φγ ) = φγ (Z(t)) = νt that ψ(Z(t)) = ΘZ(t)(ψ) = νt.

(c) γ̃ can be chosen real and non-negative: Fix t ∈ I . Given A ∈ Ft, note that Zt := 1A
is in Lp(Ω,Ft ,P;K). Let Z(t) by defined by (3.3.93). For every γ ∈ Mν

I we have
φγ (Z(t)) = E[γt1A] ≥ 0, hence ψ(Z(t)) = φγ̃ (Z(t)) = E[γ̃t1A] has to be real-valued
and non-negative. This implies that the three Ft-measurable sets {<(γ̃t) < 0},
{=(γ̃t) > 0} and {=(γ̃t) < 0} have P-measure zero, where<(·) denotes the real part
and =(·) the imaginary part. Hence, from now on we may take a non-negative
γ̃t ∈ Lp

′
(Ω,Ft ,P;R).

(d) γ̃ satisfies Definition 3.1.1(c) and can be chosen to satisfy (b): Consider an increasing
sequence (In)n∈N of finite index sets with

⋃
n∈N In = I . Define ZΩ,n ∈ Xν,p,q by

ZΩ,n
t = 1Ω for all t ∈ In and ZΩ,n

t = 0 for all t ∈ I \ In. Since

φγ (ZΩ,n) = E

[∑
t∈In

γt

]
=

∑
t∈In

νt ≤ 1, γ ∈Mν
I ,

by Definition 3.1.1(e), we have ψ(ZΩ,n) =
∑
t∈In νt, hence

E

[∑
t∈In

γ̃t

]
= φγ̃ (ZΩ,n) = ψ(ZΩ,n) =

∑
t∈In

νt
n→∞−→

∑
t∈I
νt = 1.

Further, by monotone convergence,

E

[∑
t∈In

γ̃t

]
n→∞−→ E

[∑
t∈I
γ̃t

]
.

Therefore E[
∑
t∈I γ̃t] = 1.

For n ∈N define An = {
∑
t∈In γ̃t > 1} and the processes ZAn by

ZAnt =

E
[
1An |Ft

]
for t ∈ In,

0 for t ∈ I \ In.
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For every γ ∈Mν
I , using Definition 3.1.1(b),

φγ (ZAn) = E

[∑
t∈In

E[1An |Ft]γt
]

=
∑
t∈In

E

[
1Anγt

]
≤ E

[
1An

∑
t∈I
γt

]
≤ P(An) .

Therefore, ψ(ZAn) ≤ P(An). By the same calculation

E

[
1An

∑
t∈In

γ̃t

]
= φγ̃ (ZAn) = ψ(ZAn) ≤ P(An),

which implies that P(An) = 0. Hence A := {
∑
t∈I γ̃t > 1} =

⋃
n∈NAn is also a P-null

set, which implies that
∑
t∈I γ̃t = 1 a.s., hence γ̃ satisfies Definition 3.1.1(c). Using

Notation 2.0.1(d) we replace γ̃t by min{γ̃t , (1− γ̃<t)+} for each t ∈ I , which is a change
only on the P-null set A.1 Then (γ̃t)t∈I also satisfies Definition 3.1.1(b).

Step 3 (ψ(Z) = φγ̃ (Z) for all Z ∈ Xν,p,q or Z ∈ X̃ν,1,1, respectively). Fix Z ∈ Xν,p,q. Since
γ̃ ∈ Mν

I by Step 2, it follows from Remark 3.3.39 for the exponents p,q considered in
Theorem 3.3.34 that Zγ̃ is a well-defined element of L1(P), hence φγ̃ (Z) = E[Zγ̃ ] is a
well-defined extension of φγ̃ given at the end of Step 1. Note that this extension is linear.

(a) First, we consider the case p ∈ (1,∞). Take any ε > 0. If q = 1, then there exists a
finite set Iε ⊆ I such that

‖Z‖ν,p,1 · sup
t∈I\Iε

ν
1/p′
t ≤ ε. (3.3.94)

If q ∈ (1,∞], then due to (3.3.35) there exists a finite set Iε ⊆ I such that

‖Z‖ν,p,q ·
( ∑
t∈I\Iε

ν
q′/p′

t

)1/q′

≤ ε, (3.3.95)

where p′ ∈ (1,∞) and q′ ∈ [1,∞) are the conjugate exponents of p and q, respectively.
In both cases define the process ZIε ∈ Xν,p,q by

Z
Iε
t =

0 for t ∈ Iε,
Zt for t ∈ I \ Iε.

(3.3.96)

Using the estimates (3.3.40), (3.3.41) or (3.3.42), respectively, for I ′ := I \Iε, it follows
in combination with (3.3.94) or (3.3.95), respectively, that |φγ (ZIε )| ≤ ε for every
γ ∈ Mν

I , hence also |ψ(ZIε )| ≤ ε. By the construction of φγ̃ at the end of Step 1,
ψ(Z −ZIε ) = φγ̃ (Z −ZIε ). By the linearity of ψ and φγ̃ on Xν,p,q as well as the triangle
inequality,

|ψ(Z)−φγ̃ (Z)| ≤ |ψ(Z −ZIε )−φγ̃ (Z −ZIε )|+ |ψ(ZIε )|+ |φγ̃ (ZIε )| ≤ 2ε.

Since ε > 0 was arbitrary, ψ(Z) = φγ̃ (Z).

1If I = Q and γ̃t(ω) = 1 for all t ∈ I , then this construction produces the zero path for ω, which is (besides
Example 3.2.4) another reason to have the exceptional null set in Definition 3.1.1(c).
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(b) Now, we consider the case p = q = 1. First we consider a Z ∈ X̃ν,1,1 such that there
exists a real number M > 0 satisfying |Zt | ≤M for all t ∈ I (i.e., Z is bounded). Take
any ε > 0. There exists a finite set Iε ⊆ I such that

∑
t∈I\Iε νt ≤ ε/M. Let the process

ZIε be defined by (3.3.96). Then, using Definition 3.1.1(e),

|φγ (ZIε )| ≤ E

[ ∑
t∈I\Iε

|Zt |γt
]
≤ME

[ ∑
t∈I\Iε

γt

]
≤ ε, γ ∈Mν

I ,

hence also |ψ(ZIε )| ≤ ε. As in the previous case, it follows that ψ(Z) = φγ̃ (Z).
For a general Z ∈ X̃ν,1,1 there exists by definition a sequence (Zn)n∈N of bounded
processes in X̃ν,1,1 with ‖Z −Zn‖ν,1,1→ 0 as n→∞. Then, using linearity and the
above result,

|ψ(Z)−φγ̃ (Z)| ≤ |ψ(Z −Zn)|+ |ψ(Zn)−φγ̃ (Zn)|+ |φγ̃ (Zn −Z)|

≤
(
‖ψ‖X̃∗ν,p,q + ‖φγ̃‖X̃∗ν,p,q

)
‖Z −Zn‖ν,1,1→ 0

as n→∞, hence ψ(Z) = φγ̃ (Z).
q

Note that in the case p = q = 1 special consideration is required what the Example
3.3.84 from the previous section shows. Remember that we consider there for p = 1 the
Banach space (X̃ν,1,‖ · ‖ν,1), Bν,1 = {Z ∈ Xν,1 : ‖Z‖ν,1 ≤ 1} and the polar set K = {φ ∈ X̃∗ν,1 :
|φ(Z)| ≤ 1 for all Z ∈ Bν,1}. K is weak∗-compact. The example shows that {φγ }γ∈Mν

I
is

contained in K but not weak∗-closed. For this we choose a ψ ∈ X∗ν,1 in the weak∗-closure of
{φγ }γ∈Mν

I
for which there exists no γ̃ ∈Mν

I such that ψ(Z) = φγ̃ (Z) for all Z ∈ X̃ν,1 with
{|Z |γ }γ∈Mν

I
is uniformly integrable, which implies the uniform Fatou property.
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3.4. General Results and Bounds

Some general bounds have already been specified in [33, Section 4.2] and can be easily
transferred. We can find a lower bound by assuming that the process Z and the stopping
time or adapted random probability measure are independent. If we assume that the
process Z and the stopping time τ are independent, we have that

V νind(Z) =
∑
t∈I

E[Zt1{τ=t}] =
∑
t∈I

E[Zt]νt .

We get the same result, if Z and the adapted random probabilty measure are independent,
see Lemma 3.5.1 below, such that it holds:

V νind(Z) ≤ V νT (Z) ≤ V νM(Z),

with V νT (Z) as in (2.0.5) and V νM(Z) as in (3.1.10). We have seen in Section 3.2 that there
are examples for V νT (Z) < V νM(Z), cf. Example 3.2.3. Furthermore by (2.0.5) and (3.2.1) we
have V νT (Z) ≤ VT (Z) and V νM(Z) ≤ VM(Z), because T νI ⊆ TI andMν

I ⊆MI . However, it is
very questionable if V νM(Z) ≤ VT (Z), as in [33] discussed.
Furthermore we modify [33, Theorem 2.49] in the following way:

Theorem 3.4.1.

(a) Let I ⊆N0 with 0 ∈ I . Let Z be a uniformly integrable supermartingale. Then, for every
γ ∈MI , the random variable Zγ is well-defined, integrable and satisfies E[Zγ ] ≤ E[Z0].
If, further, Z is a martingale, then, for every γ ∈MI , E[Zγ ] = E[Z0].

(b) Let be I a totally ordered countable set. Let Z be a closable martingale. Then, for every
γ ∈MI , the random variable Zγ is well-defined, integrable and satisfies E[Zγ ] = E[Zt]
for all t ∈ I .

(c) Let I ⊆N0 with 0 ∈ I , ν be a probability distribution on I . Let Z be a supermartingale.
Then, for every γ ∈Mν

I , the random variable Zγ is well-defined, integrable and satisfies
E[Zγ ] ≤ E[Z0] in each of the following situations:

1. There exists a t ∈ I with ν≤t = 1,

2. Z is bounded a.s.,

3.
∑
t∈I |t|νt < ∞ and for some K > 0 we have |Zt(ω) − Zs(ω)| ≤ K |t − s| a.s. for all

s, t ∈ I \ {0} and for all ω ∈Ω.

(d) If I ⊆N0 with 0 ∈ I , any of the conditions (c1), (c2) or (c3) holds and Z is a martingale,
then, for every γ ∈Mν

I , Zγ is well-defined, integrable and E[Zγ ] = E[Z0].

(e) If I ⊆ Z is a countably infinite index set, ν is a probability distribution on I, Z is a
martingale and there exists t ∈ I with ν≤t = 1, then Zγ is integrable and E[Zγ ] = E[Zt]
for all t ∈ I .

(f) Let I be a totally ordered countable set, ν be a probability distribution on I . Let Z be a
martingale with Z∗ = supt∈I |Zt | ∈ L1. Then, for every γ ∈Mν

I , the random variable is
well-defined, integrable and satisfies E[Zγ ] = E[Zt] for every t ∈ I .
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By [33, Remark 2.50] it should hold that
∑
t∈I tνt =

∑
t∈I (1− ν≤t), when we use Condition

(c3) of [33, Theorem 2.49], i.e., I ⊆N0 with 0 ∈ I , ν is a probability distribution on I and∑
t∈I |t|νt <∞, which is similar to Condition (c3) of Theorem 3.4.1. The next example is a

counterexample for that. The corrected version is given in Remark 3.4.3.

Example 3.4.2. Counterexample for [33, Remark 2.50]:
Let I = {0,2,4} and choose νt = 1

3 for all t ∈ I . We get for the right side of the equation∑
t∈I

(1− ν≤t) = (1− ν≤0) + (1− ν≤2) + (1− ν≤4)

= 3− ν0 − ν0 − ν2 − ν0 − ν2 − ν4

= 3− 3ν0 − 2ν2 − ν4 = 3− 6 · 1
3

= 1

and for the left side∑
t∈I
tνt = 0 · ν0 + 2 · ν2 + 4 · ν4

= 2 · ν2 + ν4 + 3 · ν4 = 2 · ν2 + ν4 + 3 · (1− ν0 − ν2)

= 3− 3ν0 − ν2 + ν4 = 3− 3 · 1
3

= 2.

Remark 3.4.3. Given I ⊆ N0 with 0 ∈ I , let ν be a probability distribution on I with∑
t∈I tνt <∞. Let |I | be the number of elements of the index set I . Then∑

t∈I
|I<t |νt =

∑
t∈I

(1− ν≤t)

or rather ∑
t∈I
|I≤t |νt =

∑
t∈I

(1− ν<t) .

This is obtained as follows∑
t∈I

(1− ν≤t) =
∑
t∈I

∑
s∈I
s>t

νs =
∑
t∈I

(|I | −
∑
s∈I
s≥t

1)νt =
∑
t∈I
|I<t |νt and

∑
t∈I
|I≤t |νt =

∑
t∈I

(|I<t |+ 1)νt =
∑
t∈I
|I<t |νt +

∑
t∈I
νt (rearrangement of the first sum)

=
∑
t∈I

(1− ν≤t) +
∑
t∈I
νt =

∑
t∈I

(1− ν<t − νt) +
∑
t∈I
νt

=
∑
t∈I

(1− ν<t) .

Example 3.4.4. We consider again Example 3.4.2, where I = {0,2,4} and νt = 1
3 for all t ∈ I .

It holds that ∑
t∈I

(1− ν≤t) = 3− 3ν0 − 2ν2 − ν4 = 3− 6 · 1
3

= 1
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and ∑
t∈I
|I<t |νt = 0 · ν0 + 1 · ν2 + 2 · ν4(= 3 · 1

3
= 1)

= 1 · ν2 + 3 · ν4 − ν4 = 1 · ν2 + 3 · (1− ν0 − ν2)− ν4

= 3− 3ν0 − 2ν2 − ν4.

Proof of Theorem 3.4.1. At first, we prove (b): Using monotone convergence and Jensen’s
inequality, we get

E[|Zγ |] =E
[∣∣∣∑
t∈I
Ztγt

∣∣∣] ≤ E

[∑
t∈I
|Zt | |γt |︸︷︷︸

≥0 a.s.

]
Z closable= E

[∑
t∈I

|E[Z∞|Ft]|︸      ︷︷      ︸
≤E[|Z∞||Ft] (Jensen)

γt

]
γt Ft-measurable

≤
∑
t∈I

E[E[|Z∞|γt |Ft]] =
∑
t∈I

E[|Z∞|γt] = E

[
|Z∞|

∑
t∈I
γt︸︷︷︸

=1

]
= E[|Z∞|] <∞.

This implies that Zγ is well-defined and integrable. Repeating the calculation without
absolute values, which is allowed due to the almost surely absolute convergence of Zγ , we
get

E[Zγ ] = E

[∑
t∈I
Ztγt

]
=

∑
t∈I

E[E[Z∞γt |Ft]] =
∑
t∈I

E[Z∞γt] = E

[
Z∞

∑
t∈I
γt

]
= E[Z∞] = E[Zt] ∀t ∈ I,

because Z is a closable martingale.
The rest of the results of this theorem follows by Theorem 2.0.6 and Theorem 3.2.8. The
conditions imposed on Z and ν in this theorem are equivalent to the conditions on the
process and the stopping time in Theorem 2.0.6, where the stopping time is now found
using Theorem 3.2.8. q

As in [33] discussed, we can find an upper bound by the value of an optimal stopping prob-
lem with the same underlying process. We get that V νT (Z) ≤ E[ZT ] by [33, Lemma 4.37],
if Z is a submartingale. At first we will take a closer look at this inequality given by
[33, Lemma 4.7] in the following way:

Lemma 3.4.5. Assume I = N0 and that the process Z is a submartingale.

(a) If E[supt∈I |Zt |] <∞, then for every γ ∈MI

E[Z0] ≤ E[Zγ ] ≤ E[Z∞].

(b) Using the Doob decomposition M +A of the submartingale Z and assuming that M (or in
case γ ∈Mν

I we consider M and ν) satisfies one of the conditions of [33, Theorem 2.49],
we find

E[M0] ≤ E[Zγ ] ≤ E[M0] +E[A∞].
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3.4. General Results and Bounds

Remark 3.4.6. The results are shown for I = N0. If I = {0, . . . ,T } we simply have to replace
Z∞ and A∞ by ZT and AT , respectively.

If Z is a supermartingale, we have

E[ZT ] = E[ZT ] · 1 = E[ZT ]
∑
t∈I
νt =

∑
t∈I

E[ZT ]νt

≤
∑
t∈I

E[Zt]νt = V νind(Z),

because it holds then that E[Zt] ≤ E[Zt−1] for all t ∈ I , in particular E[ZT ] ≤ E[Zt] for all
t ∈ I . The equality holds only for martingales. The results of Lemma 3.4.5 and the version
for supermartingales, [33, Lemma 4.35], were not observed in [33, Section 5.5], such that
the binomial model was taken up again in this work as an example. The results for the
binomial model are additionally extended, see Section 3.5.3. As we already have discussed,
the assumption E[supt∈I |Zt |] < ∞ for the process Z is a strong condition and does not
depend on the given probability measure ν on I . For finite time domains like I = {0, . . . ,T }
and processes that do not explode, this assumption makes sense, but the given information
remains unused. Furthermore we have considered a more refined version by introducing
the norms ‖·‖ν,p for p ∈ [1,∞) and ‖·‖ν,p,q for (p,q) ∈ [1,∞)×[1,∞], which uses the structure
and information given by ν. For example it is enough when the processes satisfy such
condition on the support of ν. This can give us the opportunity to look at many more
processes. Now, we want to remember the important bounds from the Section 3.3. If we
only have given a distribution ν on I and we do not have more information about this
distribution. Then we consider processes Z which satisfy Theorem 3.3.5 and the following
bounds.

Lemma 3.4.7 (Bounds). Let p ∈ [1,∞) and Z be a process which statisfies Theorem 3.3.5. Then
for every γ ∈Mν

I

(a)

‖Z‖ν,p ≤ sup
γ∈Mν

I

(
E

[
sup
s∈I
|Zs|p

∑
t∈I
γt

])1/p
≤

(
E

[
sup
s∈I
|Zs|p

])1/p
.

(b)

E[Zγ ] ≤ |E[Zγ ]| ≤ E

[∑
t∈I
|Zt |γt

]
≤

(
E

[∑
t∈I
|Zt |pγt

])1/p(∑
t∈I
νt

)1/q
≤ ‖Z‖ν,p.

(c)

‖Zγ‖Lp ≤
(
E

[∑
t∈I
|Zt |pγt

])1/p
≤ ‖Z‖ν,p.

(d)

‖Zt‖Lp ≤ ν
−1/p
t ‖Z‖ν,p, t ∈ J,

where J is the support of ν given by supp(ν) = {t ∈ I | νt > 0}.
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Furthermore, for 1 ≤ p < r ≤∞ we have for Z ∈ Xν,r that

(e)
‖Z‖ν,p ≤ ‖Z‖ν,r .

The first item of the lemma above shows us that the introduced norm is an improved
bound, see Remark 3.3.15.
If we have more information about the given distribution ν on I , we consider processes Z
which satisfy Theorem 3.3.34. The most important inequalities are given in Remark 3.3.39
and Lemma 3.3.48.

3.5. Results for Special Cases

3.5.1. Independent Stochastic Components

As described in the introduction, there are many situations in financial and actuarial
mathematics where independence is assumed for two stochastic components. It is ques-
tionable whether this assumption is always correct, but we will take a look at it in this
section, because it is a special case. The following lemma is the generalized version of [33,
Corollary 2.39].

Lemma 3.5.1. Consider a totally-ordered countable set I , a process Z = (Zt)t∈I that satisfies
Theorem 3.3.5 (or Theorem 3.3.34) and a γ ∈Mν

I as in Definition 3.1.1. Then

E[Zγ ] =
∑
t∈I

E[Ztγt] . (3.5.2)

If Z and γ are independent, then

E[Zγ ] =
∑
t∈I

E[Zt]E[γt] =
∑
t∈I

E[Zt]νt .

Proof. First, we consider Znt := max{−n,min{Zt ,n}} ↗ Zt as n→∞ for every t ∈ I . Then

for every n ∈ N the process Z(n) = (Z(n)
t )t∈I is bounded. Using

∑
t∈I γt ≤ 1, a.s., as in

Definition 3.1.1 we get that

Znγ =
∑
t∈I
Znt γt ≤

(
sup
t∈I

Znt

)∑
t∈I
γt ≤ n, a.s.

By dominated convergence (see [75, Theorem 5.9]) we see that we can exchange the
expected value and the series, which proves (3.5.2) for Zn. If Zγ is well-defined, the
process Z satisfies (3.5.2) by monotone convergence (see [75, Theorem 5.3]).
Now, we want to show that Zγ is well-defined for a general process Z satisfying Theo-
rem 3.3.5 (or Theorem 3.3.34). Note that E[Znγ ] <∞ and Znγ is well-defined for all n ∈N.
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• For processes Z satisfying Theorem 3.3.5, we have on the one hand that
E[|Znγ |] ≤ E[|Zγ |] and on the other hand we get with (3.3.28)

E[|Zγ |] ≤ E[|Zγ −Znγ |] +E[|Znγ |] ≤ ‖Z −Zn‖ν,p +E[|Znγ |].

We have that E[|Znγ |] <∞ and ‖Z −Zn‖ν,p→ 0 as n→∞ by Theorem 3.3.5.

• For a process Z satisfying Theorem 3.3.34, we have on the one hand that
E[|Znγ |] ≤ E[|Zγ |] and on the other hand by using Remark 3.3.39 we get

E[|Zγ |] ≤ E[|Zγ −Znγ |] +E[|Znγ |] ≤ E[|Znγ |] + ‖Z −Zn‖ν,p,q
(∑
t∈I ′

ν
q′/p′

t

)1/q′
.

We have that E[|Znγ |] <∞ and ‖Z −Zn‖ν,p,q→ 0 as n→∞ by Theorem 3.3.34.

Thus E[|Zγ |] <∞ and by dominated convergence (see [75, Theorem 5.9]) we have that Zγ
is well-defined. Due to the independence of Z and γ , we have E[Ztγt] = E[Zt]E[γt] for all
t ∈ I . q

3.5.2. Product of a Martingale and a Deterministic Function

The results of [33, Subsection 5.6] can be corrected, generalized and extended in the
following way. We resort to the preliminaries from Section A.1.
Let I be a totally ordered countable index set, M be a martingale, ν be a given distribution
on I and the support of ν is defined as

J = supp(ν) := {t ∈ I | νt > 0}. (3.5.3)

The considered, adapted process Z is given in the form

Zt = f (t)Mt , t ∈ I, (3.5.4)

where f is an element of the set

Fν(M) :=
{
f : I →R

∣∣∣∣ f non-decreasing function,∑
t∈I
|f (t)Mt |γt integrable for all γ ∈Mν

I

}
.

Using the adapted random probability measure to describe our problem we are interested
in

V νM(Z) := sup
γ∈Mν

I

E

[∑
t∈I
Ztγt

]
.

The main theorem of this section will give us a characterization of an optimal strategy for
this problem. We generalize the Lemma [33, Lemma 5.55] and additionally extend it to
an if-and-only-if condition. One part of the proof is leaned on the one given in [33], the
other parts are proved by using the known structure of any f ∈ Fν(M).
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The Lemma [33, Lemma 5.55] starts with considering processes Z which are given as
a product of a martingale M bounded from below and a non-decreasing deterministic
function f and are satisfied E[supt∈I Z

+] < ∞ or E[supt∈I Z
−] < ∞. We were starting

our consideration with the assumption for the martingale that E[supt∈I |Mt |] <∞. This
assumption makes sure that all value we are interested in are well-defined and finite. Step
by step it was possible to generalize this assumption and we stop with the assumption
that Fν(M) includes the identically one function. Before we formulate the main theorem
we want to take a look at Fν(M) and some specific properties.

Lemma 3.5.5 (Fν(M) ).

(a) For every f ∈ Fν(M) and γ ∈Mν
I the series defining Zγ is absolutely convergent almost

surely and Zγ is integrable.

(b) If Fν(M) includes the identically one function, then

(i) Mγ is absolutely convergent almost surely and integrable for every γ ∈Mν
I ,

(ii) all bounded non-decreasing functions f : I →R are in Fν(M), especially all constant
functions.

Proof. (a) For every f ∈ Fν(M) we have that
∑
t∈I |f (t)Mt |γt is integrable for all γ ∈Mν

I
such that

E[|Zγ |] = E

[∣∣∣∣∣∑
t∈I
Ztγt

∣∣∣∣∣] ≤ E

[∑
t∈I
|Zt |γt

]
= E

[∑
t∈I
|f (t)Mt |γt

]
<∞.

This implies the almost surely absolute convergence of Zγ and using dominated
convergence we have that Zγ is integrable. In addition, we get for every γ ∈Mν

I that

E[Zγ ] = E

[∑
t∈I
Ztγt

]
= E

[∑
t∈I
f (t)Mtγt

]
=

∑
t∈I
f (t)E[Mtγt].

(b) (i) If Fν(M) includes the identically one function, we have that
∑
t∈I |Mt |γt is

integrable for all γ ∈ Mν
I such that Mγ is absolute convergent almost surely

and integrable, cf. the thoughts above. Moreover E[Mγ ] exists and is finite.

(ii) Fν(M) includes the identically one function which means that
∑
t∈I |Mt |γt is

integrable for all γ ∈Mν
I . Moreover, for every bounded non-decreasing func-

tions f : I → R it holds that supt∈I |f (t)| <∞. Using these statements we get
that

∑
t∈I |f (t)Mt |γt ≤ supt∈I |f (t)|

∑
t∈I |Mt |γt is integrable for all γ ∈Mν

I . Thus
f ∈ Fν(M). Especially for every constant function f ≡ c, c ∈ R, we have the
equality

∑
t∈I |f (t)Mt |γt = |c|

∑
t∈I |Mt |γt .

q
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3.5. Results for Special Cases

Theorem 3.5.6. Given a totally ordered countable index set I ⊆ R∪ {−∞,∞}, a probability
distribution ν on I and a martingale M. Assume that Fν(M) contains the identically one
function. Then for an adapted random probability measure γ∗ ∈Mν

I the following properties
are equivalent:

(a) γ∗ is optimal for all processes (Zt)t∈I given by

Zt = f (t)Mt , t ∈ I, (3.5.7)

with f ∈ Fν(M) and f is bounded.

(b) γ∗ satisfies E[Mγ∗] = E[Mγ ] and

E

[∑
t∈I>s

Mtγ
∗
t

]
≥ E

[∑
t∈I>s

Mtγt

]
(3.5.8)

for all s ∈ I and all γ ∈Mν
I .

(c) γ∗ is optimal for all processes (Zt)t∈I given by

Zt = f (t)Mt , t ∈ I,

with f ∈ Fν(M).

Remark 3.5.9. Note that the condition (3.5.8) is independent from the choice of the non-
decreasing function f ∈ Fν(M), such that we get an optimal adapted random probability
measure for the whole class of processes, which can be written as a product of a martingale
and a deterministic function and satisfies certain conditions.

Proof of Theorem 3.5.6. We prove that (a)⇔ (b) and (c)⇔ (b). The proof of the return
direction is the same in both cases. We will give two different proofs of the only-if-part.
One proof uses the knowledge about the structure of our considered functions f ∈ Fν(M)
and the other one uses the dominance in first order.

1. (a) implies (b):
Note that based on the claimed conditions we have that Zγ and Mγ are well-defined and
in L1 for all γ ∈Mν

I , see Lemma 3.5.5. A random probability measure γ∗ ∈Mν
I is optimal

for (Zt)t∈I , if E[Zγ∗] ≥ E[Zγ ] for all γ ∈ Mν
I . For every (Zt)t∈I given in the form as in

condition (a) of Theorem 3.5.6, the optimality of γ∗ implies

E[Zγ∗] = E

[∑
t∈I
f (t)Mtγ

∗
t

]
≥ E[Zγ ] = E

[∑
t∈I
f (t)Mtγt

]
, ∀γ ∈Mν

I . (3.5.10)

For a fixed s ∈ I the function fs : I →R is defined as

fs(t) := 1I>s (t), t ∈ I, (3.5.11)

is a special non-decreasing deterministic function and bounded by 1. We have that

fs(t)Mt =

0 for t ∈ I≤s,
Mt for t ∈ I>s,
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and
∑
t∈I |fs(t)Mt |γt =

∑
t∈I>s |Mt |γt ≤

∑
t∈I |Mt |γt. Due to the identically one function being

in Fν(M), we get that fs ∈ Fν(M). The inequality (3.5.10) holds for every non-decreasing
deterministic function f ∈ Fν(M), particularly for fs, s ∈ I . For s ∈ I and for every γ ∈Mν

I
we have

E

[∑
t∈I
fs(t)Mtγt

]
= E

[∑
t∈I>s

Mtγt

]
, (3.5.12)

so that we get for every s ∈ I and every γ ∈Mν
I with the special choice fs that

E

[∑
t∈I>s

Mtγ
∗
t

]
≥ E

[∑
t∈I>s

Mtγt

]
.

Note that we need Mγ is well-defined and integrable for the existence of the terms above.
Now, we want to show that E[Mγ ] is the same real number for all γ ∈Mν

I . Applying the
inequation (3.5.10) for the identically one function, we get immediately that

E[Mγ∗] ≥ E[Mγ ], ∀γ ∈Mν
I . (3.5.13)

If Fν(M) includes the identically one function, then we know that all constant functions
are in Fν(M), see Lemma 3.5.5. Therefore we can also apply the inequation (3.5.10) for the
function which is identically minus one, i.e., g(t) = −1, for all t ∈ I . Note that g is bounded
by one. We get for every γ ∈Mν

I that

E[Mγ∗] ≤ E[Mγ ], ∀γ ∈Mν
I . (3.5.14)

Putting the inequations (3.5.13) and (3.5.14) together we get the assertion.

2. (b) implies (a) and (b) implies (c):
For every t ∈ I and γ ∈Mν

I we define

µγ,t := E[Mtγt]. (3.5.15)

• Because Fν(M) contains the identically one function, we get that Mγ is well-defined
and integrable, cf. Lemma 3.5.5. Thus we get that µγ is σ -additive. Using that
|E[Mtγt]| ≤ E[|Mt |γt] and monotone convergence we have additionally that

|µγ |(I) =
∑
t∈I
|E[Mtγt]| ≤

∑
t∈I

E[|Mt |γt] = E

[∑
t∈I
|Mt |γt

]
<∞.

Therefore µγ is a signed measure of finite total variation.

• Due to E[Mγ ] is the same real number for all γ ∈Mν
I , we have for every γ, γ̃ ∈Mν

I
that µγ (I) = E[Mγ ] = E[Mγ̃ ] = µγ̃ (I).

Now, we assume that γ∗ ∈Mν
I is optimal and satisfies

E

[∑
t∈I>s

Mtγ
∗
t

]
≥ E

[∑
t∈I>s

Mtγt

]
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for all s ∈ I and γ ∈Mν
I . It follows with monotone convergence that for all s ∈ I∑

t∈I>s

E[Mtγ
∗
t ] ≥

∑
t∈I>s

E[Mtγt].

Using equation (3.5.15) we have∑
t∈I>s

µγ∗,t ≥
∑
t∈I>s

µγ,t , ∀s ∈ I,

this means µγ∗ dominates µγ in first order, cf. Definition A.1.11. Due to Lemma A.1.15 we
have equivalently ∑

t∈I
f (t)µγ∗,t ≥

∑
t∈I
f (t)µγ,t , (3.5.16)

for all non-decreasing functions f for which the expectations exist. Because of the claimed
conditions of Theorem 3.5.6 we know that the expectations in equation (3.5.16) exist for
all f ∈ Fν(M), especially also for bounded functions, and Zγ is well-defined and integrable.
Therefore we have by monotone convergence that

E[Zγ ] = E

[∑
t∈I
Ztγt

]
= E

[∑
t∈I
f (t)Mtγt

]
=

∑
t∈I
f (t)E[Mtγt] =

∑
t∈I
f (t)µγ,t . (3.5.17)

Finally, with equation (3.5.17) and inequation (3.5.16) it follows for every (Zt)t∈I given in
the form as in condition (a) of Lemma 3.5.6 that

E[Zγ∗] ≥ E[Zγ ], ∀γ ∈Mν
I ,

such that we get the assertion.

3. Alternative proof for (b) implies (a) and (b) implies (c):
Let γ∗ ∈Mν

I satisfying

E

[∑
t∈I>s

Mtγ
∗
t

]
≥ E

[∑
t∈I>s

Mtγt

]
for all s ∈ I and γ ∈Mν

I . Then using equation (3.5.12) and fs ∈ Fν(M) for all s ∈ I which is
given in (3.5.11) we get that γ∗ ∈Mν

I is optimal for (Zt)t∈I with Zt = fs(t)Mt = 1I>s(t)Mt.
Thus we have

E

[∑
t∈I

1I>s (t)Mtγ
∗
t

]
≥ E

[∑
t∈I

1I>s (t)Mtγt

]
, ∀γ ∈Mν

I . (3.5.18)

Now, we show this statement for any non-decreasing deterministic function in Fν(M).
For simplification we consider the case that I has no accumulation points. If I has some
accumulation points, we only need additionally some limit arguments.

(i) Let f ∈ Fν(M) be bounded and non-negative. Then f can be written as linear
combination of the fs given in (3.5.11), i.e.,

f (t) = a+
∑
s∈I
asfs(t) = a+

∑
s∈I≤t

asfs(t) = a+
∑
s∈I≤t

as1I>s(t), t ∈ I,
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where a is constant and as, s ∈ I , are suitably chosen coefficients which are given by

as := inf
t∈I>s

(f (t)− f (s)) ≥ 0.

These coefficients describe the size of the jumps. Due to f is non-negative, it
holds that as ≥ 0 for every s ∈ I and a ≥ 0. Using inequality (3.5.18) and that
E[Mγ ] = E[Mγ∗] for γ, γ∗ ∈Mν

I we get

E[Zγ∗] = E

[∑
t∈I
f (t)Mtγ

∗
t

]
= E

[∑
t∈I

(
a+

∑
s∈I≤t

as1{s<t}

)
Mtγ

∗
t

]

= aE[Mγ∗] +E

[∑
t∈I

∑
s∈I
as1{s<t}Mtγ

∗
t

]
= aE[Mγ∗] +

∑
s∈I
asE

[∑
t∈I

1{s<t}Mtγ
∗
t

]
(3.5.18)
≥ aE[Mγ ] +

∑
s∈I
asE

[∑
t∈I

1{s<t}Mtγt

]
= E

[∑
t∈I

(
a+

∑
s∈I≤t

as1{s<t}

)
Mtγt

]
= E[Zγ ].

The rearrangement of the sums is possible, because the sums are well-defined due to∑
t∈I |f (t)Mt |γt is integrable and E[Mγ ] <∞ for all γ ∈Mν

I . So we have that γ∗ ∈Mν
I

is optimal for (Zt)t∈I with f ∈ Fν(M) is bounded and non-negative.

(ii) Let f ∈ Fν(M) be bounded. We know that every f has the representation
a+

∑
s∈I≤t asfs(t). We choose c := ‖f ‖∞. Then f + c is bounded and non-negative

such we can use the thoughts above. It holds that

E[Zγ∗] = E

[∑
t∈I

(f (t) + c − c)Mtγ
∗
t

]
= E

[∑
t∈I

(f (t) + c)︸    ︷︷    ︸
≥0

Mtγ
∗
t

]
− cE

[∑
t∈I
Mtγ

∗
t

]
︸         ︷︷         ︸

=E[Mγ∗ ]<∞

≥ E

[∑
t∈I

(f (t) + c)Mtγt

]
− cE[Mγ∗] = E

[∑
t∈I
f (t)Mtγt

]
+ c (E[Mγ ]−E[Mγ∗])︸                ︷︷                ︸

=0

= E[Zγ ].

Thereby we get also that γ∗ ∈Mν
I is optimal for (Zt)t∈I with f ∈ Fν(M) is bounded.

(iii) Now, we consider the case that f ∈ Fν(M) and f is unbounded. Therefore let α ∈R
and α ≤ 0. We define g := α ∨ f . Then g is in Fν(M), bounded from below and we
know that γ∗ ∈Mν

I is optimal for (Zt)t∈I with Zt = g(t)Mt. Furthermore we have that
|g(t)Mt | = |(α∨ f )(t)||Mt | ≤ |Zt | and that g(t) = (α∨ f )(t) converge to f (t) for α→−∞.
Using dominated convergence we get our claim.

4. (c) implies (b):
It follows immediately using (a) implies (b). q
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Remark 3.5.19. The conditions in Lemma 3.5.6 are chosen in such a way that the key
properties are satisfied for the above proof. So, the key properties used and needed are:

(a) Zγ is well-defined and integrable for every γ ∈Mν
I ,

(b) Mγ is well-defined and integrable for every γ ∈Mν
I ,

(c) E[Mγ ] = E[Mγ̃ ] for all γ , γ̃ ∈Mν
I .

The next lemmas and remarks give us different assumptions for the processes Z and M
such that the key properties given in Remark 3.5.19 are fulfilled. We will show them
directly.

Lemma 3.5.20. Given a totally ordered countable set I . Zγ is well-defined and integrable for
every γ ∈Mν

I if Z satisfies one of the following conditions:

(a)
∑
t∈I |f (t)Mt |γt integrable for all γ ∈Mν

I ,

(b) E[supt∈I |Zt |] <∞,

(c) E[supt∈supp(ν) |Zt |] <∞.

Proof. (a) The condition
∑
t∈I |f (t)Mt |γt integrable for all γ ∈Mν

I implies that f ∈ Fν(M).
Due to Lemma 3.5.5 we know that Zγ is well-defined and integrable.

(b) Let E[supt∈I |Zt |] < ∞. Using that |
∑
t∈I Ztγt | ≤

∑
t∈I |Zt |γt and monotone conver-

gence, we get that

E[|Zγ |] = E

[∣∣∣∣∣∑
t∈I
Ztγt

∣∣∣∣∣] ≤∑
t∈I

E[|Zt |γt] ≤ E

[
sup
t∈I
|Zt |

∑
t∈I
γt︸︷︷︸

=1 a.s.

]
= E

[
sup
t∈I
|Zt |

]
<∞.

The absolute convergence almost surely of Zγ implies immediately that Zγ is well-
defined and integrable.

(c) If E[supt∈supp(ν) |Zt |] <∞ hold we can prove the claim analogously to (2), because
the restriction on the support of ν does not change anything. For every t ∈ I \supp(ν)
the correspondent summands would be equal to zero, because νt = 0 for t ∈ I
implies that γt = 0, a.s. Therefore we have that

∑
t∈I E[Ztγt] =

∑
t∈JE[Ztγt], where

J = {t ∈ I |νt > 0}. Note that the restriction is a weaker condition on the process.
q

The following lemma show us that the condition (2) and (3) of Lemma 3.5.20 are much
stronger.

Lemma 3.5.21. Let I ′ be a subset of a totally ordered countable index set I , M be a martingale
and f : I →R be a non-decreasing deterministic function. Then E[supt∈I ′ |f (t)Mt |] <∞ implies
that f ∈ Fν(M) for all ν ∈ D1(I) with supp(ν) ⊆ I ′, where D1(I) is the set of all probability
distribution on I .
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Proof. For a fixed ν ∈ D1(I) with supp(ν) ⊆ I ′ we have to show that
∑
t∈I |f (t)Mt |γt is

integrable for all γ ∈ Mν
I . Note that for every t ∈ I \ supp(ν) we know that νt = 0. This

implies γt = 0 a.s for these t ∈ I \ supp(ν) and every correspondent summand would be
equal to zero. Therefore we have that

E

[∑
t∈I
|f (t)Mt |γt

]
= E

[ ∑
t∈supp(ν)

|f (t)Mt |γt
]

= E

[∑
t∈I ′
|f (t)Mt |γt

]
.

Using the equality above we have that

E

[∑
t∈I
|f (t)Mt |γt

]
= E

[∑
t∈I ′
|f (t)Mt |γt

]
≤ E

[
sup
t∈I ′
|f (t)Mt |

∑
t∈I
γt︸︷︷︸

≤1 a.s.

]
≤ E

[
sup
t∈I ′
|f (t)Mt |

]
<∞,

such that
∑
t∈I |f (t)Mt |γt is integrable for all γ ∈Mν

I and therefore f ∈ Fν(M). q

Lemma 3.5.22. Given a totally ordered countable set I . For every γ ∈Mν
I , the random variable

Mγ is well-defined and integrable, if the martingale M satisfies one of the following conditions:

(a) E[supt∈I |Mt |] <∞,

(b) M = (Mt)t∈I is closable,

(c)
∑
t∈I |Mt |γt integrable for all γ ∈Mν

I ,

(d) E[supt∈supp(ν) |Mt |] <∞,

(e) M = (Mt)t∈supp(ν) is closable.

Remark 3.5.23. Note that the condition (a) and (b) are independent from ν such that
the lemma would hold for the set MI instead of Mν

I . The condition (c), (d) and (e)
depend on ν. The restriction on the support of ν does not change anything in the
calculations. This means that for every t ∈ I \supp(ν) the correspondent summands would
be equal to zero, because νt = 0 for t ∈ I implies that γt = 0, a.s. Therefore we have that∑
t∈I E[Ztγt] =

∑
t∈JE[Ztγt], where J = {t ∈ I |νt > 0}. The restriction on the support of ν,

however, places a weaker condition on the martingale.

Proof of Lemma 3.5.22. We want to prove that if M satisfies one of the conditions given in
Lemma 3.5.22, the random variable Mγ is well-defined and integrable for every γ ∈Mν

I .
For condition (a), (c) and (d) the proof is the same like the proof of Lemma 3.5.20.
Now, let M = (Mt)t∈I be a closable martingale. The same consideration are possible
for M = (Mt)t∈supp(ν), because the restriction on the support of ν does not change the
calculations. Using the property that M is closable, i.e., Mt = E[M∞|Ft] for all t ∈ I , we get
with Jensen’s inequality that

|Mt | = |E[M∞|Ft]| ≤ E[|M∞||Ft]

such that using γt is Ft-measurable, we have

E

[∑
t∈I
|Mt |γt

]
=E

[∑
t∈I
|E[M∞|Ft]|γt

]
≤E

[∑
t∈I

E[|M∞|γt |Ft]
]
.
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Furthermore, using monotone convergence we get that

E

[∑
t∈I

E[|M∞|γt |Ft]
]

=
∑
t∈I

E[|M∞|γt] = E

[
|M∞|

∑
t∈I
γt︸︷︷︸

=1 a.s.

]
= E[|M∞|] <∞.

Using dominated convergence we have that
∑
t∈IMtγt ∈ L1 and we can define

Mγ :=
∑
t∈IMtγt which is well-defined and integrable. q

Remark 3.5.24. (a) Note that we get the same result as in Lemma 3.5.6, if we use respec-
tively one of the condition in Remark 3.5.20 and Remark 3.5.22 for the definition of
Fν(M) and the condition of M. Then we get that Zγ and Mγ are well-defined and
integrable. The rest of the proof of the modified Theroem 3.5.6 would be analog.

(b) With E[supt∈supp(ν) |Mt |] <∞ and E[supt∈supp(ν) |Zt |] <∞ we restrict the conditions
on the support of ν. This is a weaker condition on the martingale and process.

Remark 3.5.25. Note that if M is a closable martingale, then E[supt∈ I |Mt |] <∞. The other
direction does not hold in generality. Therefore we will give an example of a closable
martingale which has not an integrable majorant.

Example 3.5.26. On the probability space ((0,1],B(0,1],P) with Lebesgue-Borel measure P

define the random variable

M(ω) =
1

ω log2(e/ω)
, ω ∈ (0,1].

Then M is integrable, because by the fundamental theorem of calculus

E[M] =
∫

(0,1]

dx

x log2(e/x)
= lim
ε→0

∫ 1

ε

dx

x log2(e/x)
= lim
ε→0

1
log(e/x)

∣∣∣∣∣1
ε

= 1,

because

d
dx

log(e/x)−1 = (−1) · log(e/x)−2 · x
e
·
(
− e
x2

)
=

1

x log2(e/x)
.

For t ∈ [1,∞) define Ft = {A∪B | A ∈ {∅, (0,1/t]}, B ∈ B(1/t,1]}.

(a) (Ft)t≥1 is a filtration.
Show that Ft is a σ -algebra for all t ∈ [1,∞).

a) We have with ∅ ∈ {∅, (0,1/t]} and ∅ ∈ B(1/t,1] that ∅ = ∅∪∅ ∈ Ft.

b) Let C ∈ Ft , then we get for the complement with De Morgan’s laws that
Cc = Ac ∩Bc = ∅ ∈ Ft.

c) Let Cn ∈ Ft for all n ∈N. There exist An ∈ {∅, (0,1/t]} and Bn ∈ B(1/t,1] such that
Cn = An ∪Bn. Then ⋃

n∈N
Cn =

⋃
n∈N

An︸ ︷︷ ︸
=∅ or (0,1/t]

∪
⋃
n∈N

Bn︸ ︷︷ ︸
∈B(1/t,1]

∈ Ft .
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Show that for 1 < s ≤ t⇒Fs ⊆ Ft:

1 < s ≤ t⇒ 1
t
≤ 1
s
⇒ (1/s,1] ⊆ (1/t,1] and (0,1/t] ⊆ (0,1/s] .

Therefore for any B ∈ B(1/s,1] it follows that B ∈ B(1/t,1]. Furthermore we have that

(0,1/s] = (0,1/t]︸ ︷︷ ︸
∈Ft

∪ (1/t,1/s]︸    ︷︷    ︸
∈B(1/t,1]

∈ Ft .

It follows that Fs ⊆ Ft.

(b) Then we get that

E[M |Ft](ω) a.s.=

M(ω) for ω ∈ (1/t,1],
t

log(et) for ω ∈ (0,1/t],
(3.5.27)

and that

Y (ω) :=
1

ω log(e/ω)
, ω ∈ (0,1],

is the smallest random variable dominating the right-hand side of (3.5.27) pointwise
for every t ≥ 1. Y is not integrable, because of

E[Y ] =
∫

(0,1]

dω
ω log(e/ω)

= lim
ε→0

∫ 1

ε

dω
ω log(e/ω)

substitute:
e
ω

= x⇔− e
ω2dω = dx⇔ dω

ω
= −dx

x

= lim
ε→0

∫ e

e/ε
− 1
x log(x)

dx

(
d
dx

log(|f (x)|) =
f ′(x)
f (x)

)
= lim
ε→0
− log(| log(e/ω)|)

∣∣∣∣∣1
ε

= lim
ε→0

(
− log(1) + log(| log(e/ε)|)

)
= +∞.

Remark 3.5.28. Note that in general E[supt∈ I |Zt |] <∞ does not imply that E[supt∈ I |Mt |] <
∞. Take a look at the next example.

Example 3.5.29 (Continuation of Example 3.5.26). For every ω̃ ∈ (0,1] which is sufficiently
big we define fω̃ : (0,1]→R as

fω̃(ω) =

0 for ω ≤ ω̃,
1 for ω > ω̃,

and Z(ω) = fω̃(ω)M(ω). Then we have that supω∈(0,1] |Z(ω)| = 1
ω̃ log2(e/ω̃)

<∞. Hence with

lim
x→0

1

x log2(e/x)

L’Hospital
= lim

x→0

1
2x log(e/x)

L’Hospital
= lim

x→0

1
2x

=∞,

we know that supω∈(0,1] |M(ω)| = supω∈(0,1]M(ω) =∞.
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Lemma 3.5.30. Given a totally ordered countable set I . For every γ ∈Mν
I , the random variable

Mγ is well-defined, integrable and satisfies E[Mγ ] = E[Mt] for all t ∈ I , if M satisfies one of the
following conditions:

(a) E[supt∈I |Mt |] <∞,

(b) E[supt∈supp(ν) |Mt |] <∞,

(c) M is closable.

Proof. If M satisfies one of the conditions given in Lemma 3.5.30, the random variable
Mγ is well-defined and integrable for every γ ∈Mν

I . This is shown in Lemma 3.5.22. Now,
we have to prove that we also get that E[Mγ ] = E[Mt] for all t ∈ I and for every γ ∈Mν

I .
For first two conditions it follows immediately from Theorem 3.4.1(f ).
For the last condition we can repeat the calculation in the proof of Lemma 3.5.22 without
absolute values, due to the absolute convergence almost surely of Mγ , and we get

E[Mγ ] = E

[∑
t∈I
Mtγt

]
=

∑
t∈I

E[E[M∞γt |Ft]] =
∑
t∈I

E[M∞γt] = E

[
M∞

∑
t∈I
γt

]
= E[M∞] = E[Mt] ∀t ∈ I,

because M is a closable martingale. q

The following corollary shows us a turnaround which does not hold in general.

Corollary 3.5.31. LetM = (Mt)t∈I orM = (Mt)t∈J be a closable martingale. Then the following
equivalence holds: Fν(M) contains the identically one function if and only if E[Mγ ] is the same
real number for all γ ∈Mν

I .

Proof. If M is closable, we get for every γ ∈Mν
I that E[Mγ ] = E[M∞] ∈ R, see the proof

of Lemma 3.5.30. In the proof of Lemma 3.5.22 it is shown that
∑
t∈I |Mt |γt is integrable.

Thus it follows that the identically one function is in Fν(M). q

Remark 3.5.32. Note that E[supt∈ I |Mt |] < ∞ (E[supt∈supp(ν) |Mt |] < ∞) implies that
E[Mγ ] = E[Mt] for every γ ∈ MI and t ∈ I due to Theorem 3.4.1(f ). Thereby we use
the stopping theorem. What happen, if we only claim that E[Mγ ] = E[Mγ∗]?

Remark 3.5.33. Note that E[Mγ ] is the same real number for all γ ∈ Mν
I do not need

the stopping theorem, e.g. there are martingales for which hold E[Mγ ] = E[Mγ∗] for all
γ, γ∗ ∈ Mν

I , but E[Mγ ] , E[Mt] for every γ ∈ Mν
I and t ∈ I . (For example think about

the standard Brownian motion B on the real line R starting at the origin and the time
of hitting a single point different from the starting point 0. Furthermore we know that
this hitting time for B has the Lévy distribution.) If we only claim that E[Mγ ] = E[Mγ∗],
what about the proof of Theorem 3.4.1 without using the stopping times? These are still
outstanding questions.
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A special case is, if M is a closable martingale. Then the second condition in Theorem
3.5.6 has a certain form and we get the following corollary.

Corollary 3.5.34. Given a totally ordered countable index set I ⊆R and a probability distri-
bution ν on I . Let (Mt)t∈I be a real-valued closable martingale. Then for an random adapted
probability measure γ∗ ∈Mν

I the following conditions are equivalent:

(a) γ∗ is optimal for all processes (Zt)t∈I given by

Zt = f (t)Mt , t ∈ I, (3.5.35)

with f ∈ Fν(M) (and f is bounded).

(b) γ∗ ∈Mν
I satisfies

E[Msγ
∗
>s] ≥ E[Msγ>s] or E[Msγ

∗
≤s] ≤ E[Msγ≤s].

for all s ∈ I and γ ∈Mν
I .

Proof of Corollary 3.5.34. Due to Remark 3.5.19 and Remark 3.5.24 the proof follows from
Theorem 3.5.6. We only have to show that

E

[∑
t∈I>s

Mtγt

]
= E[Msγ>s]

for every s ∈ I and γ ∈Mν
I . Using that M is closable, we get with Jensen’s inequality that

|Mt | = |E[M∞|Ft]| ≤ E[|M∞||Ft].

Thus we have

E

[∑
t∈I>s

|Mt |γt
]

= E

[∑
t∈I>s

|E[M∞|Ft]|γt
]
≤ E

[∑
t∈I>s

E[|M∞||Ft]γt
]

= E

[∑
t∈I>s

E[|M∞|γt |Ft]
]
.

The last equality results from the fact that γt is Ft-measurable. Using monotone conver-
gence it follows that

E

[∑
t∈I>s

E[|M∞|γt |Ft]
]

=
∑
t∈I>s

E[E[|M∞|γt |Ft]] =
∑
t∈I>s

E[|M∞|γt] = E[|M∞|γ>s] <∞

for every s ∈ I and γ ∈Mν
I such that

∑
t∈I>sMtγt ∈ L1. Thus everything is well-defined and

integrable. Repeating the calculation without absolute values, which is allowed due to the
absolute convergence almost surely, we get that

E

[∑
t∈I>s

Mtγt

]
= E[M∞γ>s].

Furthermore, we have for every s ∈ I and γ∗,γ ∈Mν
I that

E[M∞γ
∗
>s] ≥ E[M∞γ>s],

E[E[M∞γ
∗
>s|Fs]] = E[E[M∞|Fs]γ∗>s] ≥ E[E[M∞|Fs]γ>s] = E[E[M∞γ>s|Fs]],

E[Msγ
∗
>s] ≥ E[Msγ>s].

Because of γ>s = 1−γ≤s, for every γ ∈MI , it is like E[Msγ
∗
≤s] ≤ E[Msγ≤s]. q
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Remark 3.5.36. As the proof of Corollary 3.5.34 shows, it is also possible to use the
condition E[M∞γ∗>s] ≥ E[M∞γ>s] instead of E[Msγ

∗
>s] ≥ E[Msγ>s].

The next corollary gives us an equivalently condition to the second one in Theorem 3.5.6
using the expected shortfall, see Section A.3.

Corollary 3.5.37. Given a totally ordered countable index set I ⊆R and a probability distribu-
tion ν on I . If Fν(M) includes the identically one function and E[Mγ ] = E[Mt] for all γ ∈Mν

I
and t ∈ I , then an adapted random probability measure γ∗ ∈Mν

I is optimal for all (Zt)t∈I given
in (3.5.4), if for all s ∈ I

E

[∑
t∈I>s

Mtγ
∗
t

]
= (1− ν≤s)ES[Ms;ν≤s]. (3.5.38)

Proof. The optimality of γ∗ follows by Theroem 3.5.6 such that we only need to show that
the equation (3.5.38) holds. With the additional assumption that E[Mγ ] = E[Ms] for every
γ ∈Mν

I and s ∈ I and we get

E[Ms] = E[Mγ ] = E

[∑
t∈I
Mtγt

]
.

Therefore

E

[∑
t∈I>s

Mtγt

]
= E[Ms]−E

[∑
t∈I≤s

Mtγt

]
= E[Ms]−

∑
t∈I≤s

E[E[Msγt |Ft]]

= E

[
Ms

(
1−

∑
t∈I≤s

γt

)]
= E[Ms(1−γ≤s)]

≤ sup
1−γ≤s∈F 1

ν≤s ,Ms

E[Ms(1−γ≤s)]
Lemma A.3.3= (1− ν≤s)ES[Ms;ν≤s]

= E

[∑
t∈I>s

Mtγ
∗
t

]
.

q

Remark 3.5.39. With E[Mγ ] = E[Ms] for every γ ∈Mν
I and s ∈ I we have

E

[∑
t∈I>s

Mtγt

]
= E[Ms(1−γ≤s)] ≤ sup

1−γ≤s∈F 1
ν≤s ,Ms

E[Ms(1−γ≤s)]

Lemma A.3.3= (1− ν≤s)ES[Ms;ν≤s].

In particular, it follows that

E

[∑
t∈I>s

Mtγ
∗
t

]
≤ (1− ν≤s)ES[Ms;ν≤s].
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The following statements remain in similar form as in [33]:

Remark 3.5.40. Cf. [33, Remark 5.58]:
Equivalently a stopping time τ∗ ∈ T νI is optimal, if for all t ∈ I

E[Mτ∗1{τ∗>t}] = (1−P(τ∗ ≤ t))ES[Mt;P(τ∗ ≤ t)].

Remark 3.5.41. Cf. [33, Remark 5.59]:
In the setting of Corollary 3.5.37 a stopping time τ∗ ∈ T νI is optimal, if for all t ∈ I

E[Mτ∗1{τ∗>t}] = E[Mt1{τ∗>t}] = ‖Mt‖∞P(τ∗ > t) .

This implies that up to a null set {τ∗ > t} is contained in {Mt = ‖Mt‖∞} for all t ∈ I , i.e.,
P({τ∗ > t} \ {Mt = ‖Mt‖∞}) = 0 for all t ∈ I . This representation will be useful in the
following sections.

Corollary 3.5.37 gives us an upper bound for our problem, which is not achieved in
any case. Using a different approach, which is not directly connected to the one of
Corollary 3.5.37, we want to deduce another upper bound, which will be achieved from
an adapted random probability measure. For this we will use F 1−γ<s

δs ,Ms
which includes the

past of γ .
Remember that

F Yδ,X := {f : Ω→ [0,1] | f measurable, E[f Y ] = E[fδ,XY ]}

for δ ∈ [0,1] and two real-valued random variables X and Y , which satisfy Y ≥ 0, E[Y ] <∞
and E[|X |] <∞. Then we have that E[fδ,XXY ] is well-defined and

sup
f ∈F Y

δ,X

E[f XY ] = E[fδ,XXY ].

Given s ∈ I , we want to maximize E[Ms(1−γ≤s)]. There exists δs ∈ [0,1] such that

E[fδs ,Ms
(1−γ<s)] = 1− ν≤s.

Note that

E[Ms(1−γ≤s)] = E[Ms(1−γ<s)f ] (3.5.42)

with

f :=

1− γs
1−γ<s on {γ<s < 1},

0 otherwise,

because

E[Ms(1−γ<s)f ] = E

[
Ms

(
1−γ<s − (1−γ<s)

γs
(1−γ<s)

)]
= E[Ms(1−γ≤s)].

Furthermore, we get with the choice X =Ms and Y = 1−γ<s that

E[Y f ] = E[(1−γ<s)f ] = E

[
1−γ<s − (1−γ<s)

γs
(1−γ<s)

]
= E[1−γ≤s] = 1− ν≤s = E[fδs ,Ms

(1−γ<s)] = E[Y fδs ,Ms
],
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such that it follows that f ∈ F 1−γ<s
δs ,Ms

. Using Lemma A.3.3 we get

E[Ms(1−γ≤s)] = E[Ms(1−γ<s)f ] ≤ sup
g∈F 1−γ<s

δs,Ms

E[Ms(1−γ<s)g] = E[Ms(1−γ<s)fδs ,Ms
].

For every γ ∈Mν
I we have the inequality

E[Ms(1−γ≤s)] ≤ E[Ms(1−γ<s)fδs ,Ms
]. (3.5.43)

For I = N0 we want to construct the process (γt)t∈I recursively such that for every s ∈ I it
hold the equality in (3.5.43), i.e.,

E[Ms(1−γ≤s)] = E[Ms(1−γ<s)fδs ,Ms
]. (3.5.44)

Lemma 3.5.45. For I = N0 we define

γs :=

1− fδ0,M0
for s = 0,

(1− fδs ,Ms
)(1−γ<s) for s ∈N,

and γ<0 = 0. Then we get

γs = (1− fδs ,Ms
)
s−1∏
t=0

fδt ,Mt
, ∀s ∈N, (3.5.46)

1−γ≤s =
s∏
t=0

fδt ,Mt
, ∀s ∈N, (3.5.47)

E[Ms(1−γ≤s)] = E[Ms(1−γ<s)fδs ,Ms
] = E

[
Ms

s∏
t=0

fδt ,Mt

]
, ∀s ∈N0. (3.5.48)

Proof. 1.) We show the equations (3.5.46) and (3.5.47) by induction.

(a) Basis: Show that the statements hold for s = 1. We have that

γ1 = (1− fδ1,M1
)(1−γ<1) = (1− fδ1,M1

)(1−γ0) = (1− fδ1,M1
)fδ0,M0

= (1− fδ1,M1
)

0∏
t=0

fδt ,Mt

and

1−γ≤1 = 1−γ1 −γ0 = 1− (1− fδ1,M1
)fδ0,M0

− (1− fδ0,M0
)

= 1− fδ0,M0
+ fδ1,M1

fδ0,M0
− (1− fδ0,M0

) = fδ1,M1
fδ0,M0

=
1∏
t=0

fδt ,Mt
.

(b) Inductive step: Show that if the equation holds for γs , then it also holds for γs+1.
This can be done as follows:

γs+1 = (1− fδs ,Ms
)(1−γ<s+1) = (1− fδs ,Ms

)(1−γ≤s) = (1− fδs ,Ms
)
s∏
t=0

fδt ,Mt
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and

1−γ≤s+1 = 1−γ<s+1 −γs+1 = (1−γ≤s)−γs+1

=
s∏
t=0

fδt ,Mt
− (1− fδs ,Ms

)
s∏
t=0

fδt ,Mt
=
s+1∏
t=0

fδt ,Mt
.

Thus the statements are true for γs+1.

2.) We show by induction that E[Ms(1−γ≤s)] = E[Ms(1−γ<s)fδs ,Ms
] for all s ∈N0, i.e., the

equation (3.5.48).

(a) Basis: Show that the statement holds for s = 0. For the left-hand side of the equation
we have

E[M0(1−γ≤0)] = E[M0(1−γ0)] = E[M0fδ0,M0
].

For the right-hand side of the equation we get

E[M0(1−γ<0)fδ0,M0
] = E[M0(1− 0)fδ0,M0

] = E[M0fδ0,M0
].

The two sides are equal, so the statement is true for s = 0.

(b) Inductive step: Show that if the equation holds for s, then also holds for s+ 1. This
can be done as follows. For the left-hand side of the equation we have

E[Ms+1(1−γ≤s+1)] = E

[
Ms+1

s+1∏
t=0

fδt ,Mt

]
.

For the right-hand side of the equation we get

E[Ms+1(1−γ<s+1)fδs+1,Ms+1
] = E[Ms+1(1−γ≤s)fδs+1,Ms+1

]

= E

[
Ms+1 ·

s∏
t=0

fδt ,Mt
· fδs+1,Ms+1

]
= E

[
Ms+1

s+1∏
t=0

fδt ,Mt

]
.

The two sides are equal, so the statement is true for s+ 1. Thus it has been shown
that equality holds in (3.5.43) for this special γ .

q

In this case we maximize the value E[Ms(1−γ≤s)] = E[Ms(1−γ<s)f ] over the set ∈ F 1−γ<s
δs ,Ms

which bear the past of γ in mind.
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3.5.3. The Binomial Model

The results of [33, Section 5.8] can be corrected, generalized and extended in the following
way.
For I = {0} ∪ J with J ⊆ N and n = |J | (number of elements of J), let X = (Xt)t∈J be an
independent process of {0,1}-valued random variables and let the filtration be given by

Ft =

{∅,Ω} for t = 0,

σ (Xs | s ∈ J≤t) for t ∈ J,

where J≤t := {s ∈ J | s ≤ t} and J<t := {s ∈ J | s < t}. We set pt = P(Xt = 1) for all t ∈ J . Let Z
be the underlying price process or a process which describes a special payoff. This process
Z is modeled by Z0 > 0 and

Zt = Z0

∏
s∈J≤t

uXss d
1−Xs
s , t ∈ J, (3.5.49)

with ut > 1 ≥ dt > 0. In this model the price process Z could be recursively rewritten as

Zt = Zt−1u
Xt
t d

1−Xt
t , t ∈ J,

such that the increments of the process are given by

∆Zt := Zt −Zt−1 = Zt−1(uXtt d
1−Xt
t − 1), t ∈ J.

In addition, depending on the choice of parameters, the following applies

Lemma 3.5.50. In the setting of the binomial model with Z given in (3.5.49), we get that

(a) Z is a submartingale iff pt ≥ 1−dt
ut−dt

for all t ∈ J .

(b) Z is a supermartingale iff pt ≤ 1−dt
ut−dt

for all t ∈ J .

(c) Z is a martingale iff pt = 1−dt
ut−dt

for all t ∈ J .

Proof. We only show the first case, because the others follow analogously. The process Z
is a submartingale if and only if E[Zt] ≥ E[Zt−1] for all t ∈ J . Furthermore it holds that

E[Zt] = (utpt + dt(1− pt))E[Zt−1].

Therefore we get for all t ∈ J that

E[Zt] ≥ E[Zt−1]

E[Zt−1](utpt + dt(1− pt)) ≥ E[Zt−1]

utpt + dt(1− pt) ≥ 1

(ut − dt)pt ≥ 1− dt

pt ≥
1− dt
ut − dt

. q
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Let the Doob decomposition of Z be given by Z = M + A with a martingale M and a
predictable process A. Then the increments of the predictable process A are given by

∆At := E[∆Zt |Ft−1] = Zt−1

(
E

[
uXtt d

1−Xt
t | Ft−1

]
− 1

)
= Zt−1(utpt + (1− pt)dt − 1), t ∈ J.

Remark 3.5.51 (Special cases).

• Let be Z0 > 0, ut ≡ u, dt ≡ d and pt ≡ p ∈ (0,1) for all t ∈ J . The assumption that
pt ≡ p for all t ∈ J implies that X = (Xt)t∈J is an independent process of identically
distributed {0,1}-valued random variables. Then the process Z is given by

Zt = Z0u
Ntdnt−Nt , t ∈ J, (3.5.52)

with u > 1 ≥ d > 0, nt = |J≤t | and Nt =
∑
s∈J≤t Xs.

• Let be I = {0, . . . ,T }, then nt = t for all t ∈ J and we have that

E[Zt] = E[Zt−1](up+ d(1− p)) = E[Z0](up+ d(1− p))t = Z0(up+ d(1− p))t .

• If ut ≡ u, dt ≡ d for all t ∈ J , the cases 1 ≥ u > d > 0 and u > d ≥ 1 are out of our
interest, because it is clear when Z must be stopped. In the first case we stop the
process immediately, because Z is (strictly) monotone decreasing. In the second case
Z is (strictly) monotone increasing and we stop at the maturity T . This also applies
for a single time step.

Now, we want to pick up the considerations in [33, Section 5.8], correct and expand them.
Therefore we consider a binomial model on I = {0, . . . ,T } with given constants Z0 > 0,
ut ≡ u, dt ≡ d with u > 1 ≥ d > 0 and pt ≡ p ∈ (0,1) for all t ∈ I \ {0} =: J .
In our reflections, we refer back to stopping times. We assume that T νI , ∅ and an optimal
stopping time exists and is denote by τ∗. Then we have that

V νT (Z) = sup
τ∈T νI

E[Zτ ] = E[Zτ∗] =
∑
t∈I

E[Zt1{τ∗=t}].

If the process Z and a stopping time τ or an adapted random probability measure γ are
independent, we have that

V νind(Z) =
∑
t∈I

E[Zt]νt .

As in [33] discussed, V νind(Z) ≤ V νT (Z) and if Z is a submartingale, we get that
V νT (Z) ≤ E[ZT ] by [33, Lemma 4.37]. We want to consider the following proposition
from [33].

Proposition 3.5.53. Cf. [33, Proposition 5.61]:
In the setting for the binomial model stated above we now assume I = {0, . . . ,T }. Further we
have to assume that the distribution ν is given by

νt =


0 if t = 0,
1
2t if t ∈ {1, . . . ,T − 1},

1
2T−1 if t = T .

Then the optimal stopping time is given by

τ∗ = T ∧min{t ∈ I | Zt < Zt−1}.
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This proposition is for the special choice p = 1
2 which is not explicitly specified and it gen-

erates the so called "symmetric" case. Furthermore it is illustrated with [33, Example 5.62].
This proposition fails for each choice of u and d such that u + d ≤ 2.

Example 3.5.54. Counterexamples for [33, Proposition 5.61]:
We will now consider a binomial model with given constants Z0 = 1, u, d with u > 1 ≥ d > 0
and p = 1

2 . We assume that the distribution ν is given as in Proposition 3.5.53. For each
choice of u and d such that u+d ≤ 2 we get a counterexample for this proposition. Further
let I = {0, . . . ,5}.

(u,d) (3
2 ,

1
4 ) (2, 1

2 ) (2, 1
5 )

V νind(Z) 0.7813 1.6031 1.2110

V νT (Z) 0.6187 2.25 1.5

E[Z5] 0.5129 3.0518 1.6105

To get the inequality V νT (Z) ≤ E[ZT ], we need that Z is an submartingale. By Lemma 3.5.50,
we get that Z is a submartingale if p ≥ 1−d

u−d , i.e., for p = 1/2 if u + d ≥ 2. In the case that Z
is a supermartingale, iff p ≤ 1−d

u−d , we have

E[ZT ] = E[ZT ] · 1 = E[ZT ]
∑
t∈I
νt =

∑
t∈I

E[ZT ]νt ≤
∑
t∈I

E[Zt]νt = V νind(Z),

because for any supermartingale Z it holds that E[Zt] ≤ E[Zt−1] for all t ∈ I and in
particular, E[ZT ] ≤ E[Zt] for all t ∈ I . The equality holds only for martingales, i.e., in the
case p = 1−d

u−d . In general we get the following proposition:

Proposition 3.5.55. In the setting of Proposition 3.5.53 with I = {0, . . . ,T } and p ≥ 1−d
u−d we

have that E[Zτ∗] ≤ E[ZT ].

Proof. We know by Lemma 3.5.50 that the process Z is a submartingale for p ≥ 1−d
u−d . Using

Lemma 3.4.5 we get for every γ ∈Mν
I that E[Zγ ] ≤ E[ZT ]. It is obvious that the stopping

time τ∗ given in Proposition 3.5.56 satisfies L(τ∗) = ν. Furthermore, τ∗ can be identified
with γ ∈Mν

I given by γt(ω) = 1τ∗(ω)(t) for all t ∈ J . q

We consider an restricted optimization problem. The stopping time or adapted random
probability measure follows a given distribution and can depend on the underlying
process of payoff. We are concretely interested in the deduction of estimations for the
worst-case scenario for this problem, that means, the supremum over the expected payoffs.
The stopping time τ = T ∧min{s ∈ I | Zs < Zs−1}might be a good candidate for the optimal
strategy, because it is the mathematical description of the greedy strategy. We now want
to clarify the question for which problems this special strategy is optimal. This strategy τ
stops our process Z in the following way:

τ = 0 Zτ = Z0
τ = t with t ∈ {1, . . . ,T − 1} Zτ = Z0 ·ut−1 · d

τ = T Zτ =

Z0 ·uT with probability p,

Z0 ·uT−1 · d with probability 1− p .
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The distribution of the stopping time τ is given by

P(τ = t) =


0, if t = 0,

pt−1(1− p), if t ∈ {1, . . . ,T − 1},
pT−1, if t = T .

Thus we get

E[Zτ ] =
∑
t∈I

E[Zt1{τ=t}]

= Z0 · ν0 +Z0d · ν1 +Z0ud · ν2 + . . .+ (Z0u
T−1d(1− p) +Z0u

T p) · νT .

If we assume that the process Z and the stopping time τ are independent, we get

V νind(Z) =
∑
t∈I

E[Zt]νt =
∑
t∈I
Z0(up+ d(1− p))tνt .

The following Proposition gives us a generalized and corrected version of [33, Proposition 5.61].

Proposition 3.5.56. In the setting for the binomial model stated above we now assume
I = {0, . . . ,T }. Let be p ≥ 1−d

u−d and the distribution ν is given by

νt =


0, t = 0,

pt−1(1− p), if t ∈ {1, . . . ,T − 1},
pT−1, if t = T .

Then the optimal stopping time is given by

τ∗ = T ∧min{t ∈ I |Zt < Zt−1}.

Remark 3.5.57. Note that the optimal stopping time in Proposition 3.5.56 has the distribu-
tion ν, i.e., L(τ∗) = ν.

Proof of Proposition 3.5.56. The result of this proposition follows from Corollary 3.5.37.
For this we need to represent Z as Zt = f (t)Mt for t ∈ I with a martingale (Mt)t∈I and a
non-decreasing deterministic function f : I →R which satisfy certain conditions. We set
f (0) := 1 and M0 := Z0 as well as for each t ∈ J

f (t) :=
t∏
s=1

E[uXsd1−Xs ]

and

Mt := Z0

t∏
s=1

uXsd1−Xs

E[uXsd1−Xs ]
.

The inequality p ≥ 1−d
u−d is equivalent to up + (1− p)d ≥ 1. Therefore it is immediately clear

that f is a non-decreasing deterministic function. Furthermore using that Xs, s ∈ J , are
independent and Z0 is F0-measurable, we have for every t ∈ I that

E[Mt] = E

[
Z0

t∏
s=1

uXsd1−Xs

E[uXsd1−Xs ]

]
=Z0

t∏
s=1

E[uXsd1−Xs ]
E[uXsd1−Xs ]

= Z0,
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such that M = (Mt)t∈I is a martingale and M is non-negative because Z0 ≥ 0 and u, d > 0.
Furthermore we know that for every t ∈ I

|Mt | =Mt ≤ Z0
uT

E[uXsd1−Xs ]
and |Zt | = Zt ≤ Z0u

T

such that we have E[supt∈I |Mt |] <∞ and E[supt∈I |Zt |] <∞. Due to the structure of the
stopping time, for all t ∈ I we have

{τ∗ > t} = {Mt = ‖Mt‖∞} = {Zt = ‖Zt‖∞} ,

which implies optimality of τ∗ by Remark 3.5.41. q

Example 3.5.58 (Examples for Proposition 3.5.56). We will now consider a binomial
model with given constants Z0 = 1, u, d with u > 1 ≥ d > 0 and p ∈ [0,1]. Let I = {0, . . . ,5}.
Further we assume that the distribution ν is given as in Proposition 3.5.56. As in [33]
discussed, it should hold that V ind(ν) ≤ V νT (Z) and if Z is a submartingale, we get that
V νT (Z) ≤ E[ZT ] by [33, Lemma 4.37].

(a) Z0 = 1, u = 2, d = 1
2

p 1
6

1
4

1
3

1
2

2
3

3
4

V νind(Z) 0.7143 0.8401 1 1.6031 3.5 5.8254

V νT (Z) 0.6265 0.7578 1 2.25 5.8210 9.2422

E[Z5] 0.2373 0.51291 1 3.0518 7.5938 11.3310

1−d
u−d = 1

3

(b) Z0 = 1, u = 3, d = 1
3

p 1
6

1
4

1
3

1
2

2
3

3
4

V νind(Z) 0.7447 1 1.3708 3.3925 13.3328 28.4010

V νT (Z) 0.5694 1 2.1111 9.7917 35.4444 61.4427

E[Z5] 0.2846 1 2.7274 12.8601 41.9330 69.1646

1−d
u−d = 1

4

(c) Z0 = 1, u = 2, d = 1
5

p 1
6

1
4

1
3

1
2

2
3

3
4

V νind(Z) 0.4545 0.5821 0.7276 1.2110 2.7505 4.8012

V νT (Z) 0.2531 0.3219 0.4790 1.5 4.8568 8.2531

E[Z5] 0.0312 0.1160 0.3277 1.6105 5.3782 8.9466

1−d
u−d = 4

9
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The following proposition gives an condition for ν such that we get a better lower bound
for the value of the expected payoff V νT (Z) by using the greedy strategy.

Proposition 3.5.59. In the setting for the binomial model stated above we now assume
I = {0, . . . ,T } and p ≥ 1−d

u−d . If the distribution ν satisfies the following condition:

T−1∑
t=1

(ut−1d − (up+ d(1− p))t)νt ≥ ((up+ d(1− p))T −uT−1(up+ d(1− p)))νT ,

we get that V νind(Z) ≤ E[Zτ∗] ≤ V νT (Z) for τ∗ = T ∧min{t ∈ I |Zt < Zt−1}.

Proof. It follows by

T−1∑
t=1

(ut−1d − (up+ d(1− p))t)νt ≥ ((up+ d(1− p))T −uT−1(up+ d(1− p)))νT

with e := up+ d(1− p) that

0 ≥
T−1∑
t=1

(et −ut−1d)νt + (eT −uT−1e)νT

0 ≥
T−1∑
t=1

(Z0e
t −Z0u

t−1d)νt + (Z0e
T −Z0u

T−1e)νT

0 ≥
T−1∑
t=0

Z0e
tνt +Z0e

T νT − (Z0ν0 +
T−1∑
t=1

Z0u
t−1dνt +Z0u

T−1eνT )

0 ≥
T∑
t=0

(E[Zt]−E[Zt1{τ∗=t}])νt

0 ≥ V νind(Z)−E[Zτ∗].

In the martingale case, i.e., up+ d(1− p) = 1, the assumption is given by

T−1∑
t=1

(ut−1d − 1)νt ≥ (1−uT−1)νT .

It is clear that V νT (Z) = supτ∈T νI E[Zτ ] ≥ E[Zτ∗], because τ∗ is an element of T νI . q

In the most general setting for the binomial model the strategy τ stops our process Z,
which is given by (3.5.52), in the following way

τ = 0 Zτ = Z0

τ = t with t ∈ I \ {0,T } Zτ = Z0 ·
( ∏
s∈J<t

us

)
· d

τ = T Zτ =


Z0 ·

( ∏
s∈J<t

us

)
with probability p,

Z0 ·
( ∏
s∈J<t

us

)
· d with probability 1− p .
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The distribution of the stopping time τ is given by

P(τ = t) =


0 if t = 0,

(1− pt) ·
∏
s∈J<t

ps if t ∈ I \ {0,T },∏
s∈J<t

ps if t = T .

We obtain the following proposition:

Proposition 3.5.60. In the setting for the general binomial model stated above we now assume
I = {0} ∪ J ⊆N0, J is finite, T = max(J) and pt ≥

1−dt
ut−dt

for all t ∈ J . Further we have to assume
that the distribution ν is given by

νt =


0 if t = 0,

(1− pt) ·
∏
s∈J<t

ps if t ∈ I \ {0,T },∏
s∈J<t

ps if t = T .

Then the optimal stopping time is given by

τ∗ = T ∧min{t ∈ I | Zt < Zt−1}.

Proof. The proof works similar to that of Proposition 3.5.56. q

Analogous to the Proposition 3.5.59 we get

Proposition 3.5.61. In the setting for the binomial model stated above we now assume
I = {0, . . . ,T }, ut > 1 ≥ dt ≥ 0 and pt ∈ [0,1] with dt(1 − pt) + utpt ≥ 1 for all t ∈ I \ {0}.
Then Z = (Zt)t∈I given in (3.5.52) is a submartingale with Z0 ≥ 0.
Let ν be a distribution on I with

νt ≥ ν≥t(1− pt), ∀t ∈ J.

Then each τ∗ with L(τ∗) = ν and

{τ∗ = t} ⊃ {τ∗ ≤ t, Zt < Zt−1}, ∀t ∈ J

is optimal.

81



Chapter 3. Adapted Random Probability Measure

Special Payout: Call-Option Now, a short example of special payouts will be given.
The payout, which we will denote by Z = (Zt)t∈I , at each time point t ∈ I is given by

Zt = (St −K)+

with strike K ∈ R, the underlying price process S = (St)t∈I and x+ := max{0,x}. We
assume that the process Z is given in such a way that the processes M and A of the
Doob decomposition satisfy the necessary conditions. By construction, the process Z is a
submartingale, such that Zt =Mt+At for each t ∈ I with a martingaleM and a predictable,
increasing process A = (At)t∈I starting at A0 = 0. Furthermore we have that

E[Zτ ] = E[Mτ ] +E[Aτ ] = E[M0] +
∑
t∈I

E[At1τ=t] and E[Zγ ] = E[Mγ ] +E[Aγ ].

Now, we consider the distribution-constrained optimization problem. For that we know
that E[Mγ ] is constant for all γ ∈ Mν

I and E[Aγ ] =
∑
t∈I E[∆Atγ≥t] with the increments

∆At = At −At−1. In the binomial model these increments are given by

∆At = E[Zt | Ft−1]−Zt−1 = E[(St −K)+|Ft−1]− (St−1 −K)+

= St−1E

[(
uXtd1−Xt − K

St−1

)+ ∣∣∣∣∣ Ft−1

]
− (St−1 −K)+

= St−1E

[(
uXtd1−Xt − K

St−1

)+]
− (St−1 −K)+.

The last equality follows by Proposition A.2.7. We can use this formulation to determine a
strategy to yield the worst case scenario. If we have the simulated paths for Z, we will stop
at every time t ∈ I the part of the simulated paths with the smallest values determined
by ∆At+1 = E[Zt+1|Ft]−Zt. The share in stopped paths depends on the adapted random
probability measure γ . Similar can be obtained for the put options. We will use this in
the next section.
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3.6. Examples for Applications in Actuarial Mathematics

In the introduction we already noted that there are several applications of the problem
in financial and actuarial mathematics. In this section we discuss applications of the
problem in actuarial mathematics, especially unit-linked life insurances with guarantee.
We reproduce examples from [33, Chapter 9] more detailed and add additional ones. The
considerations are intentionally very detailed.
Imagine that you are a unit-linked life insurer and want to insure a married couple.
Before we can do this, we consider the insurance for one person. For this we survey
the discrete time interval I = {0, . . . ,T } with T ∈N. Let (Ω,F ,F = (Ft)t∈I ,P) be a filtered
probability space. Furthermore let S = (St)t∈I be the stock price process at the financial
market, G = (Gt)t∈I the deterministic process of the guarantee and Z = (Zt)t∈I ∈ L1(P) be
a real-valued adapted process or special payout. The process of the payouts (Zt)t∈I is
defined by

Zt = max{Gt ,St} = St + (Gt − St)+, for all t ∈ I.

The family of the insured person will get the insurance benefit Zτ at an random time point
τ after paying advance premiums. In this case the random time point τ is an stopping time
and the insurance companies are interested in the expected value E[Zτ ] of the payouts
of the contract. Thus we would consider an classical optimal stopping problem with
value VT (Z). Furthermore τ is modeled as the minimum of the maturity T and the future
lifetime Tx of the insured person, where x indicate the age at conclusion of contract. Thus
this stopping time has the distribution which is given through the life table or through
the termination of a contract.
In order to determine the distribution ν of the stopping time τ we need to use a life
table. The probability that a x-year old person will survive the next n years is denoted
by npx. Conversely, we denote by nqx = 1− npx the probability that a x-year old person
will die within the next n years. For n = 1 we write px and qx. At first we set ν0 = 0. This
is a reasonable assumption, since there will not be a payoff at the initiation time of the
contract and the person to be insured is alive. For modeling one single unit-linked life
insurance contract with payoff at the end of the year of death of the insured or at the end
of the contract, we set νt equal to the probability that a x-year old person survives t − 1
years and dies within the t-th year for t ∈ {1, . . . ,T − 1}. Finally, we have that

νt =


0 for t = 0,

t−1px · qx+t−1 for t ∈ {1, . . . ,T − 1},
T−1px for t = T .

(3.6.1)

Importantly, we have to choose νT = T−1px to have
∑T
t=0νt = 1. With the given distribution

ν, we consider then a distribution-constrained optimal stopping problem OptStop
τ with

value V νT (Z). It is also possible to replace the stopping time by an adapted random
probability measure and consider OptStop

γ .
As already described, in practice it is usually assumed that financial risks and biometric
risks are independent. Using these assumption it follows that

E[Zτ ] =
T∑
t=0

E[1{τ=t}Zt]
indep.

=
T∑
t=0

P(τ = t)E[Zt],

83



Chapter 3. Adapted Random Probability Measure

where P(τ = t) = νt is determined by the life table and E[Zt] by models from mathematical
finance. We have denoted that value by V νind(Z). In the introduction it is already presented
that the assumption of independence is questionable and that the approaches of models
with dependence are searched. Since (Zt)t∈I depends on the financial market and there is
an restriction of distribution for the stopping time τ , the problem equates to the problem
of one-time optimal stopping under distribution restriction described in Chapter 2.
Let us go back to the insurance of a married couple. A description of how the distribution
of the stopping time can be found using a life table is given in (3.6.1). In addition to
the assumption of independence of financial risks and biometric risks, in this case the
independence of the physical and emotional health of the partners from each other is often
assumed. Then we calculate the expected values for each individual person by means
of the above considerations and add them together. But with some common sense, it is
clear that this is not the case. The couple lives in the same environment and is strongly
connected. For example, both can get injured in a possible car accident. Furthermore
the broken heart syndrome is also known and studied since a long time in medicine, see
[26]. They found that the mortality rate of bereaved close relatives is much greater within
a year of bereavement compared with a control group. As a consequence, health can
drastically deteriorate when one’s partner dies. Therefore, it is not reasonable to assume
independence of the times of death of either partner.
Moreover, using the adapted random probability measure a portfolio of similar contracts
can be modeled. If a stopping time τ is used for modeling a life insurance contract for one
person, then the adapted random probability measure can be used to model a married
couple. Our married couple consists of person A and person B with the corresponding
stopping times τA and τB. Then the group can be modeled using Remark 3.2.2 and the
adapted random probability measure γ given by

γt(ω) = wA1{τA(ω)}(t) +wB1{τB(ω)}(t) for t ∈ I, ω ∈Ω

with non-negative weights wA and wB defining a probability measure on {A,B}. Note that
τj in T νI for every j ∈ {A,B} implies γ ∈ Mν

I . If one prefers to model a whole portfolio
of N ∈N homogeneous contracts using adapted random probability measures, one can
choose E[γt] = νt with νt defined as before for t ∈ I . Assume that the process Z models
the evolution of the underlying fund for one single contract. Then X =N ·Z models the
evolution of the entire portfolio.
Health insurance contracts are often modeled similar to life insurance contracts. This
implies that the problem could also be used for modeling a health insurance contract.
Especially the claims amount per risk could be modeled stochastically.
We will illustrate the computation of the values VT (Z), V νT (Z) and V νind(Z) for a unit-
linked life insurance with and without guarantee. We use [33, Lemma 5.37] and [33,
Theorem 5.25]. In order to derive the values for the distribution ν we will use the values
qx given in the Austrian annuity table 2005, which was presented in [37].
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3.6.1. Example without Guarantee

First, we look at examples without guarantee, such that we have Gt = 0 and Zt = St for all
t ∈ I . The following example corresponds to [33, Example 9.2].

Example 3.6.2 (Uniform distribution). In order to be able to use results from [33] we need
to assume that the process Z consists of independent random variables. We will assume
that Z is an i.i.d. process with Zt ∼U (a,b) for all t ∈ I . Let the distribution ν be given from
a life table as explained above, see (3.6.1). First of all, we will compute the quantiles and
expected shortfalls needed. For a random variable X ∼U (a,b) the δ-quantile of X is given
by

qδ(X) = δ(b − a) + a.

Then the expected shortfall of X for a given δ ∈ (0,1) is given by

ES[X;δ] =
1

P(X > qδ(X))
E[X1{X>qδ(X)}] =

1
1− δ

∫ b

qδ(X)

x
b − a

dx

=
1

2(b − a)(1− δ)
(b2 − (qδ(X))2) .

Note that ES[X;δ] = 0 for δ = 1 and ES[X;δ] = E[X] = a+b
2 for δ = 0.

Computation of V νind(Z): Under the assumption of independence between the process
Z and the stopping time τ or the adapted random probability measure γ we have
V νind(Z) = a+b

2 for all maturities T ∈N, because of

V νind(Z) = E[Zτ ] =
∑
t∈I

E[Zt1{τ=t}] (independence between Z and τ)

=
∑
t∈I

E[Zt]︸︷︷︸
= a+b

2

E[1{τ=t}]︸    ︷︷    ︸
=νt

(Zt ∼U (a,b) for all t) (3.6.3)

=
(
a+ b

2

)∑
t∈I
νt︸︷︷︸

=1

=
a+ b

2

or rather

V νind(Z) = E[Zγ ] = E

[∑
t∈I
Ztγt

]
(independence between Z and γ)

=
∑
t∈I

E[Zt]︸︷︷︸
= a+b

2

E[γt]︸︷︷︸
=νt

(Zt ∼U (a,b) for all t) (3.6.4)

=
(
a+ b

2

)∑
t∈I
νt︸︷︷︸

=1

=
a+ b

2
.
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Computation of V νT (Z): In order to be able to use Lemma A.3.7, respectively
[33, Lemma 5.37], we have to use δt = 1 − νt

1−ν0−...−νt−1
= 1 − νt

ν≥t
= ν>t

ν≥t
for each t ∈ I for

the computation of the expected shortfall, such that

V νT (Z) =
T∑
t=0

νt ·ES[Zt;δt] =
T∑
t=0

νt ·ES
[
Zt;1−

νt
ν≥t

]
.

Computation of VT (Z): The computation of VT (Z) is described in Example 3.6.6 with
G = 0.

Sample calculation: For a sample calculation we assume now that Zt ∼U (0,2) for all
t ∈ I . We want to compute the price for a unit-linked life insurance contract for a 20-year
old male person, with different maturities. We get the following values:

T 10 20 40 60 80

V νind(Z) 1.0 1.0 1.0 1.0 1.0

V νT (Z) 1.0071 1.0156 1.0736 1.3229 1.8866

VT (Z) 1.7222 1.8398 1.9122 1.9393 1.9536

Figure 3.3 shows the evolution of the values VT (Z), V νT (Z) and V νind(Z) for different
maturities. We see that the difference between V νT (Z) and V νind(Z) becomes higher for
larger maturities, while the difference between VT (Z) and V νT (Z) becomes smaller.

Example 3.6.5 (Log-normal distribution). We assume that Z is an i.i.d. process with
Zt ∼ LogN (µ,σ2) for all t ∈ I . Let the distribution ν be given as explained above, see (3.6.1).
First we will compute the quantiles and expected shortfalls needed. For a random variable
X ∼ LogN (µ,σ2) the δ-quantile of X is given by

qδ(X) = exp(µ+u(δ) · σ ),

where u(δ) denotes the δ-quantile of the standard normal distribution. The cumulative
distribution function of the standard normal distribution will be denoted by Φ . Then the
expected shortfall of X is

ES[X;δ] =


E[X] = exp(µ+ σ2

2 ) for δ = 0,

exp
(
σ2

2 +µ
)
Φ
(
σ − ln(qδ(X))−µ

σ

)
for δ ∈ (0,1),

0 for δ = 1.
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Figure 3.3.: The values VT (Z), V νT (Z) and V νind(Z) for a unit-linked life insurance contract
for a 20-year old male person for different maturities with an uniformly
distributed underlying process on [0,2].

For δ ∈ (0,1), it follows from

ES[X;δ] =
1

P(X > qδ(X))
E[X1{X>qδ(X)}]

=
1

1− δ

∫ ∞
qδ(X)

x · 1
√

2πσx
exp

(
−

(ln(x)−µ)2

2σ2

)
dx

substitution: y =
ln(x)−µ

σ
; dy =

dx
σx

=
1
√

2π

∫ ∞
u(δ)

exp(yσ +µ)exp
(
−
y2

2

)
dy

=
1
√

2π
exp(

σ2

2
+µ)

∫ ∞
u(δ)−σ

exp
(
−
y2

2

)
dy

if X ∼ LogN (µ,σ2), then Y =
ln(X)−µ

σ
∼N (0,1)

= exp
(σ2

2
+µ

)
(1−Φ(u(δ) − σ )) (Φ(−x) = 1−Φ(x))

= exp
(σ2

2
+µ

)
Φ(σ −u(δ)) = exp

(σ2

2
+µ

)
Φ

(
σ −

ln(qδ(X))−µ
σ

)
.
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Computation of V νind(Z): Under the assumption of independence between the process
Z and the stopping time τ or the adapted random probability measure γ we have

V νind(Z) =
∑
t∈I

E[Zt]νt = exp
(
µ+

σ2

2

)
for all maturities T ∈N.

Computation of V νT (Z): In order to be able to use Lemma A.3.7 we have to use δt = 1− νt
ν≥t

for each t ∈ I for the computation of the expected shortfall, so that

V νT (Z) =
T∑
t=0

νt ·ES[Zt;δt] =
T∑
t=0

νt ·ES
[
Zt;1−

νt
ν≥t

]
.

Computation of VT (Z): The computation of VT (Z) is described in Example 3.6.11 for
G = 0.
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Figure 3.4.: The values VT (Z), V νT (Z) and V νind(Z) for a unit-linked life insurance contract
for a 20-year old male person for different maturities with a log-normally
distributed underlying process with σ = 0.21 and µ = −σ2

2 .

Sample calculation: Now we want to compute the price for a unit-linked life insurance
contract for a 20-year old male person with different maturities. Furthermore let σ = 0.21
and µ = −σ2

2 such that E[Zt] = exp
(
µ+ σ2

2

)
= 1 for all t ∈ I . If σ describes an index, it is
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reasonable to choose σ lower than 30%. For this unit-linked life insurance we get the
following values:

T 10 20 40 60 80

V νind(Z) 1.0 1.0 1.0 1.0 1.0

V νT (Z) 1.0072 1.0158 1.0651 1.2288 1.4867

VT (Z) 1.2938 1.3853 1.4755 1.5273 1.5636

Figure 3.4 shows the evolution of the values VT (Z), V νT (Z) and V νind(Z) for different
maturities. We get a similar behavior as in Figure 3.3. Note the serious difference between
V νind(Z) and V νT (Z) for long-term maturities and the one between V νT (Z) and VT (Z) for
mid-term maturities.

3.6.2. Example with Guarantee

Nowadays, the payoff of the last examples is not absolutely realistic for an insurance
contract. We are also interested in insurance contracts including a guarantee. Such a
contract can often not be perfectly hedged. To model a unit-linked life insurance contract
including a guarantee, let the process S = (St)t∈I model the underlying fund and let
G = (Gt)t∈I model the guaranteed value. Then the payoff of the insurance contract, which
we will denote by Z = (Zt)t∈I , at each time point t ∈ I is given by Zt = max{St ,Gt}. This
payoff may then be represented as the sum of the fund and the value of a put option by
writing Zt = St + (Gt −St)+ with x+ = max{x,0}. The payoff will be modeled very simple by
an i.i.d. process. This allows us to use Lemma A.3.7, see [33, Lemma 5.37].
In the following example we will now extend Example 3.6.2 by a guarantee. It corresponds
to [33, Example 9.4].

Example 3.6.6 (Uniform distribution). Let S = (St)t∈I be an i.i.d. process with St ∼U (a,b)
for all t ∈ I and let G = (Gt)t∈I be a deterministic process with Gt ∈ [a,b] for all t ∈ I .
The process G will model the guaranteed value. Let the process Z = (Zt)t∈I be given
by Zt = max{St ,Gt} for all t ∈ I as described above. Let the distribution ν be given as
explained above, see (3.6.1). For each t ∈ I and x ∈R the distribution of Zt is given by

P(Zt ≤ x) =


0 if x < Gt ,

P(St ≤ Gt) if x = Gt ,

P(St ≤ Gt) +P(Gt < St ≤ x) if Gt < x < b,

1 if x ≥ b.

Furthermore, we have that

P(St ≤ Gt) =
∫ Gt

a

1
b − a

dx =
Gt − a
b − a

and

P(Gt < St ≤ x) = P(St ≤ x)−P(St ≤ Gt) =
x − a
b − a

− Gt − a
b − a

=
x −Gt
b − a

.
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Then it follows that

P(Zt ≤ x) =


0 if x < Gt ,
x−a
b−a if Gt ≤ x < b,
1 if x ≥ b.

For every t ∈ I the δ-quantile of Zt is therefore given by

qδ(Zt) =


−∞ for δ = 0,

Gt for 0 < δ ≤ P(St ≤ Gt),
δ(b − a) + a for P(St ≤ Gt) < δ ≤ 1,

and the expected value of Zt is given by

E[Zt] = E[max{St ,Gt}] = E[Gt1{St>Gt}] +E[St1{St≥Gt}]

(G is a deterministic process)

= GtP(St ≤ Gt) +
∫ b

Gt

s
b − a

ds =
1

b − a

(
G2
t − aGt +

1
2

(b2 −G2
t )
)

=
1

b − a

(1
2

(G2
t + b2)− aGt

)
.

For simplification we will assume that Gt = G for all t ∈ I , such that Z is also an i.i.d.
process.

Computation of V νind(Z): Under the assumption from above and the independence of
the process Z and the stopping time τ or the adapted random probability measure γ we
have that V νind(Z) = E[Z0] for all maturities T ∈N, compare (3.6.3) and (3.6.4). Therefore
the value of V νind(Z) is given by

V νind(Z) =
1

b − a

(1
2

(G2 + b2)− aG
)
.

Computation of V νT (Z): To compute the value V νT (Z) we need the expected shortfall of
Zt for all t ∈ I . It is computed as

ES[Zt;δ] =


1
b−a

(
1
2 (G2

t + b2)− aGt
)

for δ = 0,
1

2(b−a)(1−δ) (b
2 − (qδ(Zt))2) for δ ∈ (0,1),

0 for δ = 1.

In order to be able to use Lemma A.3.7, respectively [33, Lemma 5.37], we have to use
δt = 1− νt

ν≥t
= ν>t
ν≥t

for each t ∈ I . Then we could determine V νT (Z) as

V νT (Z) =
T∑
t=0

νt ·ES[Zt;δt] =
T∑
t=0

νt ·ES
[
Zt;1−

νt
ν≥t

]
.
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Computation of VT (Z): The value VT (Z) coincides for a non-negative process Z with
the value of a standard American option without any hedging possibilities. The pricing of
American options or optimal stopping problems are well known problems in the literature.
The calculation results from the Snell envelope U = (Ut)t∈I of Z which is given by

Ut =

ZT if t = T ,

max{Zt , E[Ut+1|Ft]} otherwise,
(3.6.7)

and the corresponding process of values (Vt)t∈I which is given by

Vt = sup{ E[Zτt ] | τt : Ω→ {t, . . . ,T } stopping time }.

Then the value VT (Z) is determined by VT (Z) = V0.
Using the recursive scheme (3.6.7) of the Snell envelope and the assumptions from above,
yields UT = ZT and UT−1 = max{ZT−1,E[UT ]}, because

E[UT |FT−1] = E[ZT |FT−1] (independence between ZT and FT−1)

= E[ZT ] = E[UT ].

For each t ∈ {0, . . . ,T − 1} we get recursively that E[Ut |Ft−1] = E[Ut] and consequently
Ut = max{Zt ,E[Ut+1]}. Furthermore it holds

E[Ut] = E

[
max{Zt ,E[Ut+1]}

]
= E

[
Zt1{Zt>E[Ut+1]}

]
+E

[
E[Ut+1]1{Zt≤E[Ut+1]}

]
= E

[
Zt1{Zt>E[Ut+1]}

]
+E[Ut+1]P(Zt ≤ E[Ut+1]) . (3.6.8)

We know for every t ∈ I and K ∈R with K , Gt that

E

[
Zt1{Zt>K}

]
= E

[
max{St ,Gt}1{max{St ,Gt}>K}

]
= E

[
St1{St>Gt}1{St>K}

]
+E

[
Gt1{Gt>K}1{St≤Gt}

]
Gt is deterministic

= E

[
St1{St>max{Gt ,K}}

]
+Gt1{Gt>K}E

[
1{St≤Gt}

]
= E

[
St1{St>max{Gt ,K}}

]
+Gt ·max

{
Gt −K
|Gt −K |

,0
}
·P(St ≤ Gt)

=
1

b − a

(1
2

(b2 − (max{Gt ,K})2
)

+Gt ·max
{
Gt −K
|Gt −K |

,0
}
· Gt − a
b − a

.

The process of values (Vt)t∈I can also be calculated recursively. For the first steps it holds
that VT = E[ZτT ] = E[ZT ] and VT−1 = E[ZτT−1

] = E[UτT−1
] = E[UτT−1∧T ] = E[UT−1], because

UτT−1
is a martingale, τT−1 is optimal and τT−1 ≥ T − 1. For each t ∈ I we get then

Vt = E[Zτt ] = E[Ut].
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Finally, it follows that

Vt = E[Ut] = E

[
Zt1{Zt>E[Ut+1]}

]
+E[Ut+1]P(Zt ≤ E[Ut+1])

= E

[
St1{St>max{Gt ,E[Ut+1]}}

]
+Gt1{Gt>E[Ut+1]}P(St ≤ Gt) +E[Ut+1]P(Zt ≤ E[Ut+1]) (3.6.9)

=
1

b − a

(
1
2

(b2 − (max{Gt ,E[Ut+1]})2) +Gt · (Gt − a) ·max
{
Gt −E[Ut+1]
|Gt −E[Ut+1]|

,0
})

+E[Ut+1]P(Zt ≤ E[Ut+1]) . (3.6.10)

Note that in equation (3.6.9) the term Gt1Gt≥E[Ut+1]P(St ≤ Gt) or E[Ut+1]P(Zt ≤ E[Ut+1]) is
zero. If G = (Gt)t∈I dominates (E[Ut])t∈I , we get that the last term E[Ut+1]P(Zt ≤ E[Ut+1])
of equation (3.6.9) is zero for all t ∈ T . We get this through the following considerations.
We know that the Snell envelope U = (Ut)t∈{0,...,T } is a supermartingale in general, i.e.,
E[Ut |Fs] ≤Us for all s ≤ t. It holds for all t ∈ {0, . . . ,T }

E[ZT ] = E[UT ] ≤ . . . ≤ E[Ut] ≤ . . . ≤ E[U0].

In the case of uniform distribution and for every constant guarantee G we have that

G ≥ E[UT ] = E[ZT ] =
1

b − a

(1
2

(G2 + b2)− aG
)

0 ≥ 1
2(b − a)

G2 − b
b − a

G+
1

2(b − a)
b2

0 ≥ G2 − 2bG+ b2 = (G − b)2,

such that 0 = (G−b)2, if G = b. It follows for Gt = G for all t ∈ I (note: Z is an i.i.d. process)
and G ≥ E[UT ] = E[ZT ] (note: E[ZT ] = E[Zt]∀t) that VT (Z) = V νind(Z), because

VT (Z) = V0 = E[S01{S0>max{G,E[U1]}}] +G1{G>E[U1]}P(St ≤ G)

= E[S01{S0>G}] +GP(S0 ≤ G) = E[Z0] = V νind(Z).

If G = b, we get VT (Z) = V νind(Z) for all maturities.

Sample calculation: Assume that we again want to compute the price for a unit-linked
life insurance contract for a 20-year old male person with different maturities. Further-
more St ∼ U (0,2) and Gt = 1 for all t ∈ I . For this unit-linked life insurance we get the
following values:

T 10 20 40 60 80

V νind(Z) 1.25 1.25 1.25 1.25 1.25

V νT (Z) 1.2553 1.2617 1.3052 1.4908 1.8908

VT (Z) 1.7415 1.8462 1.9142 1.9403 1.9541
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Figure 3.5.: The values VT (Z), V νT (Z) and V νind(Z) for a unit-linked life insurance contract
with guarantee 1 for a 20-year old male person for different maturities with
an uniformly distributed underlying process on [0,2].

We get another solution as in [33], but there is the same trend as in Figure 3.5.
Figure 3.5 shows the evolution of the values VT (Z), V νT (Z) and V νind(Z) for different
maturities. We see that the difference between V νT (Z) and V νind(Z) becomes higher for
larger maturities, while the difference between VT (Z) and V νT (Z) becomes smaller for
larger maturities. Note that including the guarantee increases the values of VT (Z), V νT (Z)
and V νind(Z) from the beginning, compared to Figure 3.3 it does not increase the difference
between V νT (Z) and V νind(Z).

We still consider the values for unit-linked life insurance contracts with guarantee 1.5 and
0.5. For this unit-linked life insurance contract with St ∼U (0,2) and Gt = 1.5 for all t ∈ I
we get the following values:

T 10 20 40 60 80

V νind(Z) 1.5625 1.5625 1.5625 1.5625 1.5625

V νT (Z) 1.5656 1.5693 1.5946 1.7007 1.8774

VT (Z) 1.7884 1.8637 1.9198 1.9430 1.9558
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Figure 3.6.: The values VT (Z), V νT (Z) and V νind(Z) for a unit-linked life insurance contract
with guarantee 2 for a 20-year old male person for different maturities with
an uniformly distributed underlying process on [1,4].

For this unit-linked life insurance contract with St ∼U (0,2) and Gt = 0.5 for all t ∈ I we
get the following values:

T 10 20 40 60 80

V νind(Z) 1.0625 1.0625 1.0625 1.0625 1.0625

V νT (Z) 1.0692 1.0771 1.1315 1.3648 1.8877

VT (Z) 1.7261 1.8410 1.9126 1.9395 1.9537

We want to consider another unit-linked life insurance contract for a 20-year old male
person. Now, the process St ∼ U (1,4) and Gt = 2 for all t ∈ I . Then we get the following
values:

T 10 20 40 60 80

V νind(Z) 2.6667 2.6667 2.6667 2.6667 2.6667

V νT (Z) 2.6762 2.6875 2.7648 3.0962 3.8327

VT (Z) 3.5943 3.7632 3.8694 3.9095 3.9307

The corresponding results for the different maturities are shown in Figur 3.6.
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In the following example we will now extend Example 3.6.5 by a guarantee.

Example 3.6.11 (Log-normal distribution). We assume that S = (St)t∈I is an i.i.d. process
with St ∼ LogN (µ,σ2) for all t ∈ I . Let G = (Gt)t∈I be a deterministic process with Gt ∈R+
for all t ∈ I which models the guaranteed value. Moreover, the process Z = (Zt)t∈I is again
given by Zt = St + (Gt −St)+ for all t ∈ I . Let the distribution ν be given as explained above,
see (3.6.1). First we will compute the distribution of Zt for each t ∈ I and x ∈R. For this
we have that

P(Zt ≤ x) =


0 if x < Gt ,

P(St ≤ Gt) if x = Gt ,

P(St ≤ Gt) +P(Gt < St ≤ x) if Gt < x.

Furthermore, the cumulative distribution function of the standard normal distribution
will be denoted by Φ and u(δ) denote the δ-quantile of the standard normal distribution.
Then we have that

P(St ≤ Gt) =
∫ Gt

0

1
√

2πσx
exp

(
−

(ln(x)−µ)2

2σ2

)
dx

substitution: z =
ln(x)−µ

σ

=
1
√

2π

∫ ln(Gt )−µ
σ

−∞
exp

(
−z

2

2

)
dz = Φ

(
ln(Gt)−µ

σ

)
and P(Gt < St ≤ x) = P(St ≤ x)−P(St ≤ Gt) = Φ

(
ln(x)−µ
σ

)
−Φ

(
ln(Gt)−µ

σ

)
. It follows that

P(Zt ≤ x) =

0 if x < Gt ,

Φ

(
ln(x)−µ
σ

)
if Gt ≤ x.

For every t ∈ I the δ-quantile of Zt is therefore given by

qδ(Zt) =


−∞ for δ = 0,

Gt for 0 < δ ≤ P(St ≤ Gt),
exp(µ+u(δ) · σ ) for P(St ≤ Gt) < δ ≤ 1.

For simplicity we will now assume that G is deterministic, for example Gt is constant for
all t ∈ I .

Computation of V νind(Z): Under the assumption from above and the independence of
the process Z and the stopping time τ or the adapted random probability mesure γ we
have that V νind(Z) =

∑T
t=1E[Zt]νt for all maturities T ∈ N, compare (3.6.3) and (3.6.4).

Given that St ∼ LogN (µ,σ2) for every t ∈ I the expected value of Zt for each t ∈ I is given
by

E[Zt] = E[max{St ,Gt}] = E[Gt1{St≤Gt}] +E[St1{St>Gt}]

= GtP(St ≤ Gt) +
∫ ∞
Gt

x
√

2πσx
exp

(
−

(ln(x)−µ)2

2σ2

)
dx

= Gt ·Φ
(

ln(Gt)−µ
σ

)
+ exp

(
σ2

2
+µ

)
Φ

(
−

ln(Gt)−µ
σ

+ σ
)
. (3.6.12)
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Furthermore, if Gt = G for all t ∈ I and a constant G ∈R+, then Z is also an i.i.d. process
and V νind(Z) = E[Z0] for all maturities T ∈N.

Computation of V νT (Z): To compute the value V νT (Z) we need the expected shortfall of
Zt for all t ∈ I . For δ ∈ (0,1) it is computed as

ES[Zt;δ] =
1

(1− δ)
exp

(
σ2

2
+µ

)
Φ(σ −u(δ))

=
1

(1− δ)
exp

(
σ2

2
+µ

)
Φ

(
σ −

ln(qδ(Z0))−µ
σ

)
.

Note that for each t ∈ I ES[Zt;0] = Gt · Φ
(

ln(Gt)−µ
σ

)
+ exp

(
σ2

2 +µ
)
Φ

(
− ln(Gt)−µ

σ + σ
)

and

ES[Zt;1] = 0. In order to be able to use Lemma A.3.7, respectively [33, Lemma 5.37], we
have to use δt = 1− νt

ν≥t
for each t ∈ I . Then we could determine V νT (Z) as

V νT (Z) =
T∑
t=0

νt ·ES[Zt;δt] =
T∑
t=0

νt ·ES
[
Zt;1−

νt
ν≥t

]
.

Computation of VT (Z): The value VT (Z) coincides for a non-negative process Z with the
value of a standard American option without any hedging possibilities. The computation
of VT (Z) could be described analogously to the previous example. The calculation results
also from the Snell envelope U = (Ut)t∈I of Z and its process of values V = (Vt)t∈I . Using
the definition (3.6.7) of the Snell envelope and the assumption of Z we have for each
t ∈ {0, . . . ,T − 1} that Ut = max{Zt ,E[Ut+1]} and UT = ZT . It hold for each t ∈ I that

Vt = E[Zτt ] = E[Ut].

The value VT (Z) is determined by VT (Z) = V0. Furthermore it holds analogously to (3.6.8)
that

E[Ut] = E[Zt1{Zt>E[Ut+1]}] +E[Ut+1]P(Zt ≤ E[Ut+1]) .

We know for every t ∈ I and K ∈R with K , Gt that

E[Zt1{Zt>K}] = E[St1{St>Gt}1{St>K}] +E[Gt1{Gt>K}1{St≤Gt}]

Gt is deterministic

= E[St1{St>max{Gt ,K}}] +Gt1{Gt>K}E[1{St≤Gt}]

= E[St1{St>max{Gt ,K}}] +Gt ·max
{
Gt −K
|Gt −K |

,0
}
·P(St ≤ Gt)

= exp
(
σ2

2
+µ

)
Φ

(
µ− ln(max{Gt ,K})

σ
+ σ

)
+Gt ·max

{
Gt −K
|Gt −K |

,0
}
·Φ

(
ln(Gt)−µ

σ

)
.
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Then we have that

Vt = E[Ut] =exp
(
σ2

2
+µ

)
Φ

(
−

ln(max{Gt ,E[Ut+1]})−µ
σ

+ σ
)

+Gt ·max
{
Gt −E[Ut+1]
|Gt −E[Ut+1]|

,0
}
·Φ

(
ln(Gt)−µ

σ

)
+E[Ut+1]P(Zt ≤ E[Ut+1]) .

More specifically, we have for all t ∈ I that if

(a) Gt ≥ E[Ut+1]

Vt = exp
(
σ2

2
+µ

)
Φ

(
−

ln(Gt)−µ
σ

+ σ
)

+Gt ·Φ
(

ln(Gt)−µ
σ

)
,

(b) Gt ≤ E[Ut+1]

Vt = exp
(
σ2

2
+µ

)
Φ

(
−

ln(E[Ut+1])−µ
σ

+ σ
)

+E[Ut+1] ·Φ
(

ln(E[Ut+1])−µ
σ

)
.

Finally, it follows that

Vt = E[Ut] =exp
(
σ2

2
+µ

)
Φ

(
−

ln(max{Gt ,E[Ut+1]})−µ
σ

+ σ
)

+ max{Gt ,E[Ut+1]} ·Φ
(

ln(max{Gt ,E[Ut+1]})−µ
σ

)
. (3.6.13)

The value VT (Z) is determined by V0. Analogously to Example 3.6.6, if Gt = G for all t ∈ I
(note: Z is then also an i.i.d. process) and G ≥ E[UT ] = E[ZT ] (note: E[ZT ] = E[Zt]∀t), we
have that VT (Z) = V νind(Z). Figure 3.9 shows for which choice G dominates the expected
values of the Snell envelope (E[Ut])t∈I , in the case that St ∼ LogN (µ,σ2) with σ = 0.21
and µ = −σ2

2 .

Sample calculation: Assume that we again want to compute the price for a unit-linked
life insurance contract for a 20-year old male person with different maturities. Further-
more let σ = 0.21 and µ = −σ2

2 , so that exp
(
µ+ σ2

2

)
= 1 for all t ∈ I . Let St ∼ LogN (µ,σ2)

and Gt = 1 for all t ∈ I . Then we get for this unit-linked life insurance the following values:

T 10 20 40 60 80

V νind(Z) 1.0836 1.0836 1.0836 1.0836 1.0836

V νT (Z) 1.0903 1.0981 1.1426 1.2850 1.4881

VT (Z) 1.3064 1.3917 1.4786 1.5294 1.5652

Figure 3.7 shows the evolution of the values VT (Z), V νT (Z) and V νind(Z) for different
maturities. In this figure we see that the difference between V νT (Z) and V νind(Z) becomes
higher for larger maturities, while the difference between VT (Z) and V νT (Z) becomes
smaller for larger maturities. We get analogously results as in the previous example with
the uniformly distributed underlying process.
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Figure 3.7.: The values VT (Z), V νT (Z) and V νind(Z) for a unit-linked life insurance contract
with guarantee 1 for a 20-year old male person for different maturities with a
log-normally distributed underlying process with σ = 0.21 and µ = −σ2

2 .

We consider the same unit-linked life insurance contract with other guarantees. The
underlying process S is again log-normally distributed with σ = 0.21 and µ = −σ2

2 . Then
for Gt = 0.5 for all t ∈ I we get the following values:

T 10 20 40 60 80

V νind(Z) 1.0000 1.0000 1.0000 1.0000 1.0000

V νT (Z) 1.0072 1.0158 1.0652 1.2288 1.4867

VT (Z) 1.2938 1.3853 1.4755 1.5273 1.5636

For Gt = 4 for all t ∈ I we get the following values:

T 10 20 40 60 80

V νind(Z) 4.0000 4.0000 4.0000 4.0000 4.0000

V νT (Z) 3.9715 3.9375 3.7046 2.6867 0.0665

VT (Z) 4.0000 4.0000 4.0000 4.0000 4.0000
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Note that the choice Gt = 4 for all t ∈ I illustrates the case that VT (Z) = V νind(Z), see
Figure 3.9. Figure 3.9 shows for which choice G dominates the expected values of the
Snell envelope (E[Ut])t∈I , in the case that St ∼ LogN (µ,σ2) with σ = 0.21 and µ = −σ2

2 .
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Figure 3.8.: The values VT (Z), V νT (Z) and V νind(Z) for a unit-linked life insurance contract
with guarantee 4 for a 20-year old male person for different maturities with a
log-normally distributed underlying process with σ = 0.21 and µ = −σ2

2 .

The table for Gt = 4, t ∈ I , and Figure 3.8 shows the evolution of the values VT (Z), V νT (Z)
and V νind(Z). It shows a totally different behavior, such that it is obviously that the choice
of the guarantee is important and the choice should be well-considered.

Finally, we consider another unit-linked life insurance contract. The underlying process S
is again log-normally distributed with σ = 0.18 and µ = 1. Then for Gt = 0.9, t ∈ I , we get
the following values:

T 10 20 40 60 80

V νind(Z) 2.7627 2.7627 2.7627 2.7627 2.7627

V νT (Z) 2.7790 2.7982 2.9103 3.2859 3.8862

VT (Z) 3.4495 3.6587 3.8626 3.9790 4.0603
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Figure 3.9.: Let St ∼ LogN (µ,σ2) with σ = 0.21 and µ = −σ2

2 and Gt = G for all t ∈ I . The
relation between G and E[Zt], t ∈ I , is given.

3.6.3. Comparison

In this subsection we want to compare the two cases of a unit-linked life insurance
contract without and with guarantee separately, see Subsection 3.6.1 and Subsection 3.6.2.
For comparison we consider an uniformly distributed underlying process S1 and a log-
normally distributed process S2. Both processes should have the same expected value. For
example in the case without guarantee, we will assume that S1 = Z1 is an i.i.d. process
with S1

t ∼ U (a,b) for all t ∈ I as in Example 3.6.2 and S2 = Z2 is an i.i.d. process with
S2
t ∼ LogN (µ,σ2) for all t ∈ I as in Example 3.6.5. We demand that E[Z1

t ] = E[Z1
t ] for all

t ∈ I . Because of this condition, note that the value V νind(Z1) is equal to the value V νind(Z2).
The analog applies to the case of a unit-linked life insurance contract with guarantee. The
given distribution ν is defined by (3.6.1) and is calculated via the values qx given in the
Austrian annuity table 2005, which was presented in [37].

Example 3.6.14 (Without Guarantee). We want to compute the price for a unit-linked life
insurance contract for a 20-year old male person with different maturities. For a sample
calculation we assume now that Z1

t ∼U (0,2) for all t ∈ I , cf. Example 3.6.2 . Then we have
that E[Z1

t ] = 1 for all t ∈ I . Furthermore, let Z2
t ∼ LogN (µ,σ2) for all t ∈ I with σ = 0.21

and µ = −σ2

2 such that E[Z2
t ] = exp

(
µ+ σ2

2

)
= 1 for all t ∈ I , cf. Example 3.6.5. Thus, the

required condition E[Z1
t ] = E[Z2

t ] is fulfilled for all t ∈ I .
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Figure 3.10.: The values VT (Z), V νT (Z) and V νind(Z) for a unit-linked life insurance contract
with guarantee 0.9 for a 20-year old male person for different maturities with
a log-normally distributed underlying process with σ = 0.18 and µ = 1.

We get the following values:

T 10 20 40 60 80

Uniform V νind(Z1) 1.0000 1.0000 1.0000 1.0000 1.0000

V νT (Z1) 1.0071 1.0156 1.0736 1.3229 1.8866

VT (Z1) 1.7222 1.8398 1.9122 1.9393 1.9536

Log-normal V νind(Z2) 1.0000 1.0000 1.0000 1.0000 1.0000

V νT (Z2) 1.0072 1.0158 1.0651 1.2288 1.4867

VT (Z2) 1.2938 1.3853 1.4755 1.5273 1.5636

In the following Figure 3.11, the corresponding results are shown graphically.

Example 3.6.15 (With Guarantee G = 1). Now, we want to compute the price for a unit-
linked life insurance contract with guarantee G = 1 for a 20-year old male person with
different maturities. For a sample calculation we assume that S2

t ∼ LogN (µ,σ2) for all
t ∈ I with σ = 0.21 and µ = −σ2

2 , cf. Example 3.6.11, and S1
t ∼ U (0,bt) for all t ∈ I , cf.

Example 3.6.6. In order to fulfill the required condition E[Z1
t ] = E[Z2

t ] for all t ∈ I , we
have to choose bt as a solution of the equation 0 = b2

t − 2btE[Z2
t ] + 1.
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(a) Uniformly distributed underlying
process on [0,2].
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(b) Log-normally distributed underlying
process with σ = 0.21 and µ = −σ2

2 .

Figure 3.11.: The values VT (Z), V νT (Z) and V νind(Z) for a unit-linked life insurance contract
without a guarantee for a 20-year old male person for different maturities.

We get the following values:

T 10 20 40 60 80

Uniform V νind(Z1) 1.0836 1.0836 1.0836 1.0836 1.0836

V νT (Z1) 1.0866 1.0901 1.1143 1.2166 1.4202

VT (Z1) 1.3255 1.3923 1.4387 1.4572 1.4672

Log-normal V νind(Z2) 1.0836 1.0836 1.0836 1.0836 1.0836

V νT (Z2) 1.0903 1.0981 1.1426 1.2850 1.4881

VT (Z2) 1.3064 1.3917 1.4786 1.5294 1.5652

In the following Figure 3.12, the corresponding results are shown graphically.
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(a) Uniformly distributed underlying
process on [0,1.501047].
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(b) Log-normally distributed underlying
process with σ = 0.21 and µ = −σ2

2 .

Figure 3.12.: The values VT (Z), V νT (Z) and V νind(Z) for a unit-linked life insurance con-
tract without guarantee G = 1 for a 20-year old male person for different
maturities.

3.6.4. Examples of Strategies

Now, we want to consider a model for insurance contracts in which the random variables
of the underlying process are not independent such that we have not a formula for the
value V νT (Z). We assume that we work with already discounted values to slightly simplify
the considerations.
Let (Ω,F ,F ,P) be the given filtrated probability space and I = {0, . . . ,T } the observed
discrete time interval with T ∈N. The given distribution ν is defined by (3.6.1) and is
calculated via the values qx for a 20-year old male person given in the Austrian annuity
table 2005, which was presented in [37].
Furthermore let X = (Xt)t∈I be a process of independent and log-normally distributed ran-
dom variables with expected value 1, such that the starting value X0 = 1 and
Xt ∼ LogN (µt ,σ

2
t ) with −2µt = σ2

t for each t ∈ I \ {0}. Note that E[Xt] = exp(µt + σ2
t /2) = 1,

if −2µt = σ2
t for all t ∈ I \ {0}. The filtration F = (Ft)t∈I is given by F0 = {∅,Ω} and

Ft = σ (X1,X2, . . . ,Xt) for each t ∈ I \ {0}.
Then we consider the development S = (St)t∈I of the underlying fund which is modeled as
product of the random variables of the process X. This means that the process S is defined
by

St = X0 · . . . ·Xt for each t ∈ I.

In this model the process S could be recursively rewritten as S0 = X0 = 1 and St = Xt · St−1
for all t ∈ I \ {0}.
Remark 3.6.16 (The underlying process). The underlying process S = (St)t∈I is modeled
as a product of independent, log-normally distributed random variables Xt, t ∈ I , with
expected value 1. By Lemma A.4.5 we know for every t ∈ I \ {0} with µ = (µ1, . . . ,µt) ∈Rt,
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C = diag(σ2
1 , . . . ,σ

2
t ) ∈Rt×t and p = (1, . . . ,1) ∈Rt that

St =
t∏

u=0

Xu ∼ LogN
( t∑
u=1

µu ,
t∑

u=1

σ2
u

)
.

Thus we have that St ∼ LogN (µ̄t , σ̄
2
t ) with µ̄t =

∑t
u=1µu and σ̄2

t =
∑t
u=1σ

2
u for all t ∈ I \ {0}.

Furthermore, it follows that E[St] = exp
(
µ̄t + σ̄2

t /2
)

= 1 for all t ∈ I \ {0}. That means, the
underlying process consists of random variables that are also log-normally distributed
with expected value 1, but in this case not independent and not identically distributed. In
particular, the process S is a martingale and the discrete version of a geometric Brownian
motion.

Additionally, let (Gt)t∈I be the deterministic process of the guarantee. Then the payoff
of the insurance contract, which we will denote by Z = (Zt)t∈I , at each time point t ∈ I is
defined as

Zt = max{Gt ,St} = St + (Gt − St)+.
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Figure 3.13.: Simulated paths of the process S and the corresponding ones of the process
Z with σt = 0.21, −2µt = σ2

t and Gt = 1 for all t ∈ I .

In Figure 3.13, five simulated paths of the underlying process S and the corresponding
ones of Z are shown with constant guarantee Gt = 1 for all t ∈ I . We are interested in
the value V νT (Z), VT (Z) and V νind(Z). For the value V νind(Z), we can use the results of
Example 3.6.11, because of the above considerations. Then we get the following:

Computation of V νind(Z): Under the assumption from above and the independence of
the process Z and the stopping time τ or the adapted random probability measure γ we
have that

V νind(Z) =
T∑
t=1

E[Zt]νt
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for all maturities T ∈N. This payoff is represented as the sum of the fund and the value
of a put option. Using (3.6.12) and Remark 3.6.16, then the expected value of Zt is given
for each t ∈ I by

E[Zt] = E[max{St ,Gt}] = E[Gt1{St≤Gt}] +E[St1{St>Gt}]

= Gt ·Φ
(

ln(Gt)− µ̄t
σ̄t

)
+ exp

(
σ̄2
t

2
+ µ̄t

)
·Φ

(
−

ln(Gt)− µ̄t
σ̄t

+ σ̄t

)
.

Computation of V νT (Z): Due to the construction of S, the variables of Z are also depen-
dent. Therefore we can not use the results of Example 3.6.11. Instead, we want to find a
suitable strategy that closely approximates the value V νT (Z).
As we have already seen, we can write the payoff as the sum of the fund and the payoff of
a put option. We will denote this payoff of the corresponding put option by P = (Pt)t∈I
with

Pt = (Gt − St)+, t ∈ I.

Remark 3.6.17 (Put Option). By construction the process P is a submartingale.

(a) We assume that the process P is given in such a way that the processes M and A of
the Doob decomposition satisfy the necessary conditions. Then we have for each
t ∈ I that Pt = Mt +At with a martingale M and a predictable, increasing process
A = (At)t∈I starting at A0 = 0. This knowledge will influence the choice of the
strategies.

(b) Let (Gt)t∈I be a non-decreasing process. Then, in addition, for all t ∈ I \ {T } we have
that

Pt = (Gt − St)+ ≤ E[(Gt − St+1)+| Ft] ≤ E[(Gt+1 − St+1)+| Ft], a.s. (3.6.18)

Furthermore, we have that E[Zτ ] = E[Sτ ] +E[Pτ ] = 1 +E[Pτ ], such that we can reduce the
problem of finding an optimal strategy for the payoff of the process Z to find an optimal
one for the payoff of the corresponding put option.

Computation of V νT (P ): Now, we want to find a suitable strategy that closely approxi-
mates the value V νT (P ). To get such an lower bound for the value V νT (P ), we simulated
nsim ∈N different possible paths of S for any fixed maturity T ∈N and consider different
strategies. The motivation behind the choice of strategies will be explained later in the
detailed consideration of the respective strategy. The different strategies should be used
to stop the paths of P in a proper way. Iteratively starting from time 0, at every time t ∈ I ,
those remaining simulated paths with the smallest values determined by strategies. We
will consider the following strategies:

1. Bt = E[Pt+1|Ft]− Pt
2. Ct = E[PT |Ft]− Pt
3. Dt =

∑T
u=t+1

νu
1−ν0−...−νt (E[Pu |Ft]− Pt)

The share of stopped paths at t ∈ I depends on the given probability νt.
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Strategy 1: At every time t ∈ I the part of the simulated paths with the smallest values
of Bt will be stopped. The share of stopped paths depends on the probability of the
stopping time τ .
The random variable Bt describes the difference between the expected value in the next
time step under the given information and the current value at time t. We stop those
paths with the smallest value. To clarify the motivation behind the chosen strategy, we
use the Remark 3.6.17. Given the Doob decomposition of P , i.e., we have for each t ∈ I
that Pt =Mt +At. Then we can rewrite the strategy as

Bt = E[Pt+1|Ft]− Pt = E[Mt+1|Ft]−Mt +E[At+1|Ft]−At = At+1 −At = ∆At+1.

The process A is predictable and increasing, so that we stop those paths that have the
smallest growth in the next time step.
The values Bt for every t ∈ I are given by

Bt = E[Pt+1|Ft]− Pt = E[(Gt+1 − St+1)+| Ft]− (Gt − St)+

= E[(Gt+1 − St ·Xt+1)+| Ft]− (Gt − St)+

= StE
[(Gt+1

St
−Xt+1

)+∣∣∣ Ft]− (Gt − St)+ .

Using Proposition A.2.7 we only have to observe the following function for the computa-
tion

H(K,t) := E

[(
K −Xt

)+]
(3.6.19)

for all K ∈R+ and t ∈ I . Furthermore, we obtain that

E

[(
K −Xt

)+]
= KE[1{Xt≤K}]−E[Xt1{Xt≤K}] .

If we look at the two terms individually and use the given conditions, we get for each t ∈ I
that

E[1{Xt≤K}] = P(Xt ≤ K) = P(exp(σtY +µt) ≤ K) with Y ∼N (0,1)

= P

(
Y ≤

ln(K)−µt
σt

)
= Φ

( ln(K)−µt
σt

)
(3.6.20)

and

E[Xt1{Xt≤K}] =
∫ K

0
x · 1
√

2πσtx
exp

(
−

(ln(x)−µt)2

2σ2
t

)
dx

substitution: y =
ln(x)−µt

σt
; dy =

dx
σtx

=
1
√

2π
exp

(σ2
t

2
+µt

)∫ ln(K)−µt
σt

−∞
exp

(
−

(y − σt)2

2

)
dy

if Xt ∼ LogN (µt ,σ
2
t ), then Y =

ln(Xt)−µt
σt

∼N (0,1)

= exp
(σ2

t

2
+µt

)
Φ

( ln(K)−µt
σt

− σt
)
. (3.6.21)
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Hence, the formula (3.6.19) could be written as

H(K,t) = K ·Φ
( ln(K)−µt

σt

)
− exp

(σ2
t

2
+µt

)
Φ

( ln(K)−µt
σt

− σt
)
. (3.6.22)

Finally, it follows for every t ∈ I that

Bt = St ·H
(
Gt+1

St
, t + 1

)
− (Gt − St)+

= −(Gt − St)+ +Gt+1 ·Φ
( ln(Gt+1/St)−µt+1

σt+1

)
− St · exp

(σ2
t+1
2

+µt+1

)
·Φ

( ln(Gt+1/St)−µt+1

σt+1
− σt+1

)
.

Note that E[Xt] = exp
(
µt + σ2

t /2
)

= 1, if −2µt = σ2
t for all t ∈ I .

Strategy 2: At every time t ∈ I the part of the simulated paths with the smallest values of
Ct = E[PT |Ft]− Pt will be stopped. The share of stopped paths depends on the probability
of the stopping time τ .
The random variableCt describes the difference between the expected value at the maturity
under the given information at time t and the current value at t. We stop those paths with
the smallest value. Given the Doob decomposition of P , we stop those paths that have the
smallest expected growth of A until the maturity.
The values Ct for all t ∈ I are given by

Ct = E[PT |Ft]− Pt = E[(GT − ST )+| Ft]− (Gt − St)+

= E[(GT − St ·Xt+1 · . . . ·XT )+| Ft]− (Gt − St)+

= St ·E
[(GT
St
−Xt+1 · . . . ·XT

)+∣∣∣ Ft]− (Gt − St)+ .

Analogously to Strategy 1, by using Proposition A.2.7 we observe initially the following
function

H̃(K,t) := E

[(
K −

T∏
u=t+1

Xu
)+

]
(3.6.23)

for all K ∈R+ and t ∈ I . Furthermore, we obtain that

E

[(
K −

T∏
u=t+1

Xu
)+

]
= KE

[
1{

∏T
u=t+1Xu≤K}

]
−E

[ T∏
u=t+1

Xu1{
∏T
u=t+1Xu≤K}

]
.

By Lemma A.4.5 we know with µ = (µt+1, . . . ,µT ) ∈RT−t, C = diag(σ2
t+1, . . . ,σ

2
T ) ∈R(T−t)×(T−t)

and p = (1, . . . ,1) ∈RT−t that

X̃t+1 =
T∏

u=t+1

Xu ∼ LogN
( T∑
u=t+1

µu︸   ︷︷   ︸
=µ̃t+1

,
T∑

u=t+1

σ2
u︸   ︷︷   ︸

=σ̃2
t+1

)
.
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With the computation of Strategy 1 we get that for each t ∈ I

E[1{X̃t+1≤K}] = P(X̃t+1 ≤ K) = Φ

( ln(K)− µ̃t+1

σ̃t+1

)
and

E[X̃t+11{X̃t+1≤K}] = exp
( σ̃2

t+1
2

+ µ̃t+1

)
Φ

( ln(K)− µ̃t+1

σ̃t+1
− σ̃t+1

)
.

Finally, the formula (3.6.23) could be written as

H̃(K,t) = K ·Φ
( ln(K)− µ̃t+1

σ̃t+1

)
− exp

( σ̃2
t+1
2

+ µ̃t+1

)
Φ

( ln(K)− µ̃t+1

σ̃t+1
− σ̃t+1

)
. (3.6.24)

Finally, we get

Ct = St ·E
[(GT
St
−

T∏
u=t+1

Xu

)+∣∣∣ Ft]− (Gt − St)+

= −(Gt − St)+ +GT ·Φ
( ln(GT /St)− µ̃t+1

σ̃t+1

)
− St · exp

( σ̃2
t+1
2

+ µ̃t+1

)
·Φ

( ln(GT /St)− µ̃t+1

σ̃t+1
− σ̃t+1

)
.

If −2µt = σ2
t for all t ∈ I , then E[Xt] = exp

(
µt + σ2

t /2
)

= 1 and it also follows E[X̃t+1] = 1
for every t ∈ I , because of the independence of the Xt’s, t ∈ I .

Strategy 3: At every time t ∈ I the part of the simulated paths with the smallest values
of

∑T
u=t+1

νu
1−ν≤t (E[Pu |Ft]− Pt) will be stopped. The share of stopped paths depends on the

probability of the stopping time τ .
The random variable Dt describes the weighted sum of the differences between the
expected value at a time point u ∈ {t + 1, . . . ,T } under the given information at time t
and the current value at t. We stop those paths with the smallest value. Given the Doob
decomposition of P , we stop those paths that have the smallest expected growth of A until
the maturity.
The values E[Pu |Ft]− Pt for all t ∈ I and for all u ∈ {t + 1, . . . ,T } are given analogously to
Strategy 2 by

E[Pu |Ft]− Pt = E[(Gu − Su)+ | Ft]− (Gt − St)+

= E[(Gu − St ·Xt+1 · . . . ·Xu)+ | Ft]− (Gt − St)+

= St ·E
[(Gu
St
−Xt+1 · . . . ·Xu

)+∣∣∣ Ft]− (Gt − St)+ .

Analogously to Strategy 1 and 2 we observe initially the following function

H̆(K,t,u) := E

[(
K −

u∏
j=t+1

Xj
)+

]
(3.6.25)
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for all K ∈ R+, t ∈ I and u ∈ {t + 1, . . . ,T }, because of Proposition A.2.7. Furthermore, by
Lemma A.4.5 we know with µ = (µt+1, . . . ,µu) ∈ Ru−t, C = diag(σ2

t+1, . . . ,σ
2
u ) ∈ R(u−t)×(u−t)

and p = (1, . . . ,1) ∈Ru−t for all u ∈ {t + 1, . . . ,T } that

X̆t+1,u =
u∏

j=t+1

Xj ∼ LogN
( u∑
j=t+1

µj︸  ︷︷  ︸
=µ̆t+1,u

,
u∑

j=t+1

σ2
j︸  ︷︷  ︸

=σ̆2
t+1,u

)
.

With the similar consideration as for Strategy 2 the formula (3.6.25) could finally be
written as

H̆(K,t,u) = K ·Φ
( ln(K)− µ̆t+1,u

σ̆t+1,u

)
− exp

( σ̆2
t+1,u

2
+ µ̆t+1,u

)
Φ

( ln(K)− µ̆t+1,u

σ̆t+1,u
− σ̆t+1,u

)
(3.6.26)

for all K ∈R+, t ∈ I and u ∈ {t + 1, . . . ,T }.
If −2µt = σ2

t for all t ∈ I , then E[Xt] = exp
(
µt + σ2

t /2
)

= 1 and it also follows E[X̆t+1,u] = 1
for every t ∈ I , because of the independence of the Xt’s, t ∈ I . Finally, we get

E[Pu |Ft]− Pt = St ·E
[(Gu
St
−

u∏
j=t+1

Xj
)+∣∣∣ Ft]− (Gt − St)+

= −(Gt − St)+ +Gu ·Φ
( ln(Gu/St)− µ̆t+1,u

σ̆t+1,u

)
− St · exp

( σ̆2
t+1,u

2
+ µ̆t+1,u

)
·Φ

( ln(Gu/St)− µ̆t+1,u

σ̆t+1,u
− σ̆t+1,u

)
for all t ∈ I and u ∈ {t + 1, . . . ,T }. It holds that

Dt =
T∑

u=t+1

νu
1− ν0 − . . .− νt

(E[Pu |Ft]− Pt)

= −(Gt − St)+ +
T∑

u=t+1

νu
1− ν≤t

GuΦ
( ln(Gu/St)− µ̆t+1,u

σ̆t+1,u

)
− St ·

T∑
u=t+1

νu
1− ν≤t

exp
( σ̆2

t+1,u

2
+ µ̆t+1,u

)
Φ

( ln(Gu/St)− µ̆t+1,u

σ̆t+1,u
− σ̆t+1,u

)
.

Sample calculation: From now on and for our later simulation, we will assume the
following:

Assumption 3.6.27 (Simulation). For all t ∈ I we assume that

(a) the guaranteed value should be fixed over time, i.e.,Gt = G for all t ∈ I and a constant
G ∈R+.

(b) σt = σ with a constant σ ∈R+ and −2µt = σ2
t for the log-normally distributed random

variables.
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Using Remark 3.6.16 and Assumption (b), we have that St ∼ LogN (µt, tσ2) for all t ∈ I \{0}.
Furthermore, it follows that E[St] = exp

(
tµ+ tσ2/2

)
= 1 for all t ∈ I \ {0}. The payoff of the

insurance contract is represented as the sum of the fund and the payoff of a put option.
By Assumption (a) we have that Zt = St + (G − St)+ and Pt = (G − St)+ for all t ∈ I . As we
already known, we can reduce the problem of finding an optimal strategy for the payoff
of the process Z by finding an optimal one for the payoff of the corresponding put option,
such that we are interested in the value V νT (P ), VT (P ) and V νind(P ).

Computation of V νind(P ): Using the notation from above and the independence of the
process P and the stopping time τ or the adapted random probability measure γ we have
that

V νind(P ) =
T∑
t=1

E[Pt]νt

for all maturities T ∈ N. Using Assumption 3.6.27, Remark 3.6.16 and (3.6.21) the
expected value of Pt is given for each t ∈ I by

E[Pt] = E[(G − St)+] = E[(G − St)1{St≤G}]

= G ·Φ
(

ln(G)− tµ
√
tσ

)
− exp

(
tσ2

2
+ tµ

)
Φ

(
ln(G)− tµ
√
tσ

−
√
tσ

)
.

Furthermore, we have that V νind(Z) = 1 +V νind(P ). In the simulation, we will also determine
V νind(P̂ ) which is the estimated value from the data. For this, the expected value of Pt, t ∈ I ,
is calculated as arithmetic mean.

Computation of V νT (P ): Using Assumption 3.6.27 we get the following formulas for the
different strategies.
For all t ∈ I \ {0}, we get for Strategy 1 that

Bt = G ·Φ
(2ln(G/St) + σ2

2σ

)
− St ·Φ

(2ln(G/St)− σ2

2σ

)
− (G − St)+ . (3.6.28)

Using Assumption (b), we have for all t ∈ I \{0} that σ̃2
t+1 = (T −t)σ2 and µ̃t+1 = −σ2(T −t)/2

and thus for Strategy 2 that

Ct = G ·Φ
(2ln(G/St) + (T − t)σ2

2σ
√
T − t

)
− St ·Φ

(2ln(G/St)− (T − t)σ2

2σ
√
T − t

)
− (G − St)+ . (3.6.29)

Using Assumption (b), we have for all t ∈ I \ {0} that µ̆t+1,u = −σ2(u − t)/2 and
σ̆2
t+1,u = (u − t)σ2 and thus for Strategy 3 that

Dt =− (G − St)+ +G ·
T∑

u=t+1

νu
1− ν≤t

·Φ
(2ln(G/St) + (u − t)σ2

2σ
√
u − t

)
− St ·

T∑
u=t+1

νu
1− ν≤t

·Φ
(2ln(G/St)− (T − t)σ2

2σ
√
T − t

)
. (3.6.30)
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Computation of VT (P ): Analogously to Example 3.6.11 the calculation results also from
the Snell envelope U = (Ut)t∈I of P and its process of expected values V = (Vt)t∈I . Keep
in mind that the process P consists of dependent variables. Using the Definition of
the Snell envelope given in (3.6.7) and 0 ≤ Pt = (G − St)+ ≤ G for all t ∈ I , we have that
0 ≤UT = PT ≤ G. Furthermore, then it yields recursively for all t ∈ {0, . . . ,T − 1} that

0 ≤Ut = max
{
Pt , E[Ut+1|Ft]

}
≤ G,

because of 0 ≤ Pt ≤ G and 0 ≤Ut+1 ≤ G for the considered time point t. It follows also that
0 ≤ E[Ut+1|Ft] ≤ G for each t ∈ I \ {T }.
It holds for each t ∈ I that Vt = E[Ut] and the value VT (P ) is determined by VT (P ) = V0.
To calculate the expected value of Ut for all t ∈ I , we have to determine Ut itself.

(i) For t = T , we have that UT = PT and

E[UT ] = E[PT ] = G ·Φ
(

ln(G)− T µ
√
T σ

)
− exp

(
T σ2

2
+ T µ

)
Φ

(
ln(G)− T µ
√
T σ

−
√
T σ

)
.

(ii) For t = T − 1, we have that UT−1 = max
{
PT−1, E[UT |FT−1]

}
, where

E[UT |FT−1] = E[PT |FT−1] = ST−1E

[( G
ST−1

−XT
)+∣∣∣FT−1

]
= ST−1 ·H

(
G
ST−1

,T

)
= G ·Φ

( ln(G/ST−1)−µT
σT

)
− ST−1 ·Φ

( ln(G/ST−1)−µT
σT

− σT
)
.

Using that P is a submartingale and (3.6.18) we get that UT−1 = E[UT |FT−1].

(iii) For all t < T −1, we get iteratively that Ut = E[Ut+1|Ft] because of the tower property
of the conditional expected value and P is a submartingal. Using parts of the
calulation in Strategy 2 and (3.6.24), we obtain the following:

E[Ut+1|Ft] = E[E[Ut+2|Ft+1]|Ft] = E[Ut+2|Ft] = . . . = E[UT |Ft]

= E[(G − ST )+|Ft] = St ·E
[(G
St
−Xt+1 · . . . ·XT

)+∣∣∣Ft] = St · H̆
(G
St
, t,T

)
= G ·Φ

( ln(G/St)− µ̆t+1,T

σ̆t+1,T

)
− St ·Φ

( ln(G/St)− µ̆t+1,T

σ̆t+1,T
− σ̆t+1,T

)
= G ·Φ

(2ln(G/St) + (T − t)σ2

2σ
√
T − t

)
− St ·Φ

(2ln(G/St)− (T − t)σ2

2σ
√
T − t

)
.

Using the tower property of the conditional expectation again, we have that (Ut)t∈I is a
martingale and VT (P ) = V0 = E[U0] = E[UT ].
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Finally, the results of the simulation are to be presented. We assume that the guaranteed
value G is 1 and σ is 0.21 over time. The calculations were made for nsim = 100,000 paths.
Note that the simulated paths are generated at the beginning of the simulation and are
the same for all calculations. Then we get the following values:

T 10 20 30 40 50 60 80

V νind(P ) 0.2595 0.3596 0.4313 0.4867 0.5302 0.5624 0.5835

V νind(P̂ ) 0.2593 0.3588 0.4302 0.4865 0.5304 0.5614 0.5831

VT (P ) 0.2601 0.3613 0.4348 0.4934 0.5422 0.5840 0.6523

Strategy 1 0.2598 0.3603 0.4334 0.4928 0.5416 0.5812 0.6407

Strategy 2 0.2598 0.3603 0.4334 0.4928 0.5419 0.5820 0.6428

Strategy 3 0.2598 0.3603 0.4333 0.4924 0.5361 0.5646 0.5827

The following figures additionally illustrate the results. Figure 3.14 shows the evolution
of the approximated values by the different strategies for V νT (P ), VT (P ) and V νind(P ) for the
different maturities. The differences are sometimes very small, especially between the
calculated values through the strategies.
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Figure 3.14.: Simulation with σt = 0.21, −2µt = σ2
t and Gt = 1 for all t ∈ I .
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With longer term of the contract, the differences become more visible. To make it more
visible, the differences to the value V νind(P ) were calculated and shown in Figure 3.15. Note
that the value V νind(P ) is explicit and does not depend on the data. Therefore, it is taken as
a reference value. The value V νind(P̂ ) estimated from the data was calculated and given to
evaluate the quality of the data and calculations. The differences vary, but they are low,
see Figure 3.15 and Figure 3.16.
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Figure 3.15.: Simulation with σt = 0.21, −2µt = σ2
t and Gt = 1 for all t ∈ I .

The values of Strategy 1 and 2 behave relative to the value similar V νind(P ) to the Exam-
ple 3.6.11. The behavior of the third strategy does not meet the expectations. The highest
values are thus obtained with the strategy that at every time t ∈ I the part of the simulated
paths with the smallest values of E[PT |Ft]− Pt will be stopped, see also Figure 3.17. We
stop those paths with the smallest difference between the expected value at the maturity
under the given information at time t and the current value at t, i.e., those paths that have
the smallest expected growth until the maturity.
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Figure 3.16.: Simulation with σt = 0.21, −2µt = σ2
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0 20 40 60 80

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Duration of contract

V
al

ue

Strategy 1 Strategy 2 Strategy 3

30 32 34 36 38 40

0.
44

0.
45

0.
46

0.
47

0.
48

0.
49

Duration of contract

V
al

ue

Strategy 1 Strategy 2 Strategy 3

Figure 3.17.: Simulation with σt = 0.21, −2µt = σ2
t and Gt = 1 for all t ∈ I .

114



4
Randomized Stopping Time

As we have already mentioned, there are many situations in financial and actuarial
mathematics where it is questionable whether the assumed independence of two stochastic
components is always justified. The recent research proves an increasing interest in the
topic of distribution-constrained optimal stopping problems as in [8, 10, 9, 14, 38]. This
chapter deals with another general framework to show how some of these situations
can be handled without the assumption of independence. As seen, there is the view of
the distribution-constrained optimal stopping problem in discrete time as a restricted
optimization problem where we replace the stopping times by adapted random probability
measures, see Chapter 3. Now, we want to consider another possibility. These problems
can also be formulated as optimal transport problems based on the theory of optimal
transport. The existence of optimizers can be shown, see Chapter 7 in Part II for the
continuous time case and this chapter for the discrete time case.
We will follow the conventions of optimal transport and especially the one of [73]. To do
so, we have to slightly reformulate our starting problem. An attempt of modeling the
dependency can be made by using measures related to stochastic processes which mimic
ordinary stopping times and are, in fact, a generalization of the latter. An informal way of
posing this problem is the following:
Given a payoff function c, which may depend on the values of the stochastic process up
to a time t and in the theory of optimal transport is called the cost function, we seek to
maximize

τ 7→ E[c((Zt)t≤τ , τ)],

where τ is not an ordinary stopping time in the filtration generated by Z, i.e., it does not
stop the process at a time τ(ω), but rather τ(ω) is a sub-probability measure on the time
domain by itself. Essentially this can be formalized in three different ways:

(a) As an optimal stopping problem where adapted random probability measures are
used instead of ordinary stopping times.

(b) As an optimal transport problem by reformulating it by means of randomized
stopping times.

(c) As an ordinary optimal stopping problem on a larger probability space, cf.
[13, Lemma 3.11].
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It should be clear that this type of problems naturally arises from ordinary optimal
stopping problems, where additional dependencies have to be modeled. In addition to the
existence, questions about different geometric optimality criteria – so-called monotonicity
principles – are of interest. If we deal with the theory of optimal transport, we come
into contact with the two common basic concepts, cyclical monotonicity and Kantorovich
duality. The cyclical monotonicity is a geometric property. An optimal plan should be
c-cyclically monotone, i.e., it is concentrated on a c-cyclically monotone set and you can
not improve the cost by rerouting mass along some cycle. It is impossible to perturb it
and get something more economical. Informally, a c-cyclically monotone plan is a plan
that can not be improved. The converse property is much less obvious, i.e., a c-cyclically
monotone plan should be optimal. Maybe it is possible to get something better by radically
changing the plan as only rerouting mass along some cycle. In this chapter we will see
soon that it holds true under certain conditions.
Inspired by this classical c-monotonicity which shows that optimality is an attribute of
the support of a coupling, other different monotonicity principles have been developed
in the area of martingale optimal transport problems, cf. [9, 10]. To test if a randomized
stopping time is a possible candidate for optimality in the considered problem, different
monotonicity criteria were developed. In this context, the so-called c-cyclical monotonicity
as in [73] deserves a special mention, which is in fact a geometric property of the support
of an optimal transport plan. In the initial form the monotonicity was shown only for
couplings which do not have to satisfy additional adaptivity constraints. Zaev introduced
(c,W )-cyclical monotonicity in [76, Theorem 3.6], which enhances the notion with con-
straints, denoted by W . Contrary to the classical c-monotonicity, the (c,W )-monotonicity
of a support of a randomized stopping time is a necessary optimality condition, but in
general not sufficient. In independent work, Beiglböck and Griessler found a closely
related monotonicity principle which includes the result [76, Theorem 3.6] as a special
case, see [11, Theorem 1.4].
The remainder of this chapter is organized as follows: in Section 4.2 the maximization
problems OptStop

γ and OptStop
π are formally introduced. We give the notions of

adapted random probability measures (MI ), couplings (Cpl) and randomized stopping
times (RST), and explore their relations. The subsequent Subsection 3.2 especially draws
the connection between OptStop

γ and OptStop
π. The following considerations then

focus on the problem OptStop
π. The existence of a maximizer of OptStop

π is shown in
Section 4.3 utilizing Prokhorov’s Theorem and [13, Lemma 2.3]. Based on the theory of
optimal transport and recent results [76] in this area, duality in the sense of Kantorovich is
deduced in Section 4.4. In Section 4.5 examples are investigated and optimal maximizers
are determined. Finally, Section 4.6 shortly sketches different monotonicity principles and
uses one to show optimality of the maximizer introduced in the previous section. Some
further considerations are mentioned.

This chapter was written in collaboration with Gudmund Pammer, who received his
diploma thesis from it, see [57].
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4.1. Notational Conventions

4.1. Notational Conventions

Since this topic can be considered separately, some important notations are repeated. In
principle we will follow the conventions of [73].
In this chapter, we consider a discrete time domain. Its index set is again denoted by I .
Typical examples for an infinite index set are N and for a finite {1, . . . ,T }, T ∈N. For better
readability and simplification we choose I = {1, . . . ,T } with T ∈N and T <∞ or T =∞
which represents the finite or infinite index set. For t ∈ I we define the set I<t := {s ∈ I |s < t}
of all times before t, the set I≤t := {s ∈ I |s ≤ t} of all times up to t, the set I≥t := {s ∈ I |s ≥ t} of
all times from t on, and the set I>t := {s ∈ I |s > t} of all times after t. We also use I<t = [0, t),
I≤t = [0, t] and I>t = (t,T ] as a representation, where 0 symbolizes the starting point and T
the maturity.
Given a topological space (X,T ), we denote its Borel-σ -algebra with B(X) = σ (T ), the
interior of a set A ⊆ X with int(A) and its boundary with ∂(A). The space of all Borel-
measurable functions from X into R is denoted by B(X) and its subspace of all bounded,
Borel-measurable functions by Bb(X).
Typically, we will work with (sub-)probability measures on the Polish space R

I . To
facilitate the notation of projections onto particular subspace of RI , which we may define
as

R
I =:

∏
i∈I
Xi ,

and for instance call the projection of a measure µ on R
I onto the first component projX1

(µ).
Several different notations will be used to refer to elements of RI . For any vector ω ∈RI ,
its entries are denoted with

ω = (ωt)t∈I = (ω1,ω2, . . . ) .

Parts of the vector (path) ω will be referred to by

(ωt)t∈I≤s =ω�[0,s], (ωt)t∈I>s =ω�(s,T ], s ∈ I,

where ω�J with J ⊆ I stands for the restriction of ω onto R
J .

If ω ∈RI , s ∈ I and θ ∈RI>s , we may use ⊕ to indicate the concatenation of the paths ω�[0,s]
and θ, such that

ω�[0,s] ⊕θ := (ω1, . . . ,ωs,ωs +θ1,ωs +θ2, . . . ) ∈RI .

In the following Z = (Zt)t∈I will denote a distinguished stochastic process. If Z is assumed
to have independent increments, i.e., for any t1, . . . , tn ∈ I with t1 < . . . < tn the increments
Zt1 ,Zt2 −Zt1 , . . . ,Ztn −Ztn−1

are independent. It is convenient to define (pi)i∈I via

Zt = Z0 +
∑
i≤t
pi ,

where Z0 is the initial distribution of the stochastic process Z. The measure induced by
the process starting in 0, Z̃t :=

∑
i≤t pi , on R

I is denote by P .
For signed measures ξ there exists a Hahn-Jordan decomposition,

ξ = ξ+ − ξ−,

where ξ+ and ξ− are the positive and negative parts of ξ, respectively.
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4.2. The Different Problems

Let (Ω,G,G := (Gt)t∈I ,P) be an abstract filtered probability space and Z := (Zt)t∈I be the
stochastic, real-valued and G-adapted process of interest. Further, let ν denote a (discrete)
probability measure on (I,B(I)). We assume that the process Z is uniformly integrable,
i.e.,

∀ε > 0, ∃δ > 0 :
∫
E
|Zt |dP < ε

whenever Zt ∈ L1(P) for all t ∈ I and P(E) < δ. Furthermore, we denote with µ the
probability measure induced onto the measurable space (RI ,B(RI )) by the stochastic
process Z via

µ(B) := Z#P(B) ∀B ∈ B(RI ),

and call the probability triplet (RI ,B(RI ),µ) the path space of Z. The payoff function c is
assumed to be real-valued and Borel-measurable on S with

S := {(x, t) | x ∈RI , t ∈ I}.

The space S is adequate for our purposes since for a given time t and path (Zs(ω))s≤t =: x
up to the time t, the function c returns the payoff c(x, t). Note that the space is Polish as it
is the direct sum of Polish spaces. For example, the topology induced on S by the metric
d : S × S→R defined as

((xi)i≤s, s), (yi)i≤t , t)) 7→max
(
|t − s|, max

i≤min(s,t)
(|xi − yi |)

)
,

causes (S,d) to be Polish. Further, there exists a surjective, open, continuous map r with

r : (RI × I,B(RI × I))→ (S,d),

((xs)s∈I , t) 7→ ((xs)s≤t , t), (4.2.1)

such that the topology on S is the final topology on S with respect to the map r. Note that
the map r is Borel-measurable.

4.2.1. Adapted Random Probability Measures

Instead of restricting ourselves to G-stopping times on (Ω,G,G,P), we introduce a gener-
alization of the notion of G-stopping times. As seen in Chapter 3, we assume τ to be a
G-stopping time, then it can be naturally identified with a G-adapted stochastic process
γ := (γt)t∈I such that

γt(ω) := 1{τ(ω)}(t), ω ∈Ω, t ∈ I.

Thus, for a.e. ω the stochastic process γ defines a probability measure on I , which in turn
tells us the probability of having already stopped at time t. This leads us to the following
defintion of adapted random probability measures which is slightly attenuated from the
Definition 3.1.1.
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Definition 4.2.2 (Adapted Random Probability Measure).
For a real-valued, stochastic process γ = (γt)t∈I on (Ω,G,G,P) , we write γ ∈MI , if

(a) γt ≥ 0 a.s. for all t ∈ I ,

(b)
∑
t∈I γt = 1, a.s.,

(c) γ is G-adapted.

The space of all these adapted random probability measure is denoted withMI . Given a
probability measure ν = (νt)t∈I on I , we say that the stochastic process γ above is inMν

I ,
if in addition

(d) E[γt] = νt for all t ∈ I .

As explained at the beginning of this chapter, we want to maximize the expected payoff
given a cost function c : S→R and a stochastic process Z where now the maximization
is taken over all adapted random probability measures which continue along a given
probability measure.

Problem (OptStop
γ ). Given a Borel-measurable payoff function c : S→R and a proba-

bility measure ν on I , we seek to find a maximizer of

γ 7→ E

∑
t∈I
c((Zs)s≤t , t)γt

 , γ ∈Mν
I .

Remark 4.2.3. Note that this is an enlargement of the standard optimal stopping problem

τ 7→ E[c((Zs)s≤τ , τ)],

where τ is a G-stopping time and P(τ = t) = νt for all t ∈ I . We denote the space of all
G-stopping times with TI and its restriction to all stopping times τ such that L(τ) = ν with
T νI . Obviously it holds that

sup
τ∈T νI

E[c((Zs)s≤τ , τ)] ≤ sup
γ∈Mν

I

E

∑
t∈I
c((Zs)s≤t , t)γt

 ,
because T νI is embedded inMν

I .

4.2.2. Randomized Stopping Times and Couplings

Rather than working with an abstract filtered probability space, it is possible to work on
the path space (RI ,F ,F := (Ft)t∈I ,µ) of the stochastic process Z, where F is the natural
filtration of Z and F the Borel-σ -algebra on R

I . If T <∞ the space R
I equipped with the

product topology is a complete metric space, where the metric can be chosen as

max
t∈I
|xt − yt |.

If we admit T =∞, i.e., an infinite time horizon, the path space with the product topology
remains Polish as a countable product of Polish spaces. Furthermore, a possible metric
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which induces the product topology is

ρ(x,y) : R
I ×RI →R ,

(x,y) 7→
∑
t∈I

1
2t
|xt − yt |

1 + |xt − yt |
.

As stated in the introduction of this chapter, instead using stopping times which stop at
one point in time, it is possible to generalize this with so-called randomized stopping
times. A randomized stopping time π tries to mimic stopping times by assigning almost
every path ω a probability measure πω on I which again tells us the probability with
which we stop at time t.

Definition 4.2.4 (Randomized Stopping Times).
A probability measure π on R

I × I is called randomized stopping time, if

(a) proj
R
I (π) = µ,

(b) the mapping ω 7→ πω(t) is Ft-measurable for all t ∈ I , where (πω)ω∈RI is a disin-
tegration of π. Or equivalently, the with π associated process A := (At)t∈I , where
At(ω) :=

∑
s≤tπω(s) is Ft-measurable.

Again, the space of all randomized stopping times on R
I × I which satisfy (a) and (b) are

denoted with RST(µ). Given a probability measure ν on I , we are interested in random
stopping times π such that

(c) projI (π) = ν.

The restriction of RST(µ) to all probability measures which in addition satisfy (c) is
denoted with RST(µ,ν).

Remark 4.2.5. The marginal of the random stopping time π is assumed to be distributed
with the law of µ. This can be understood as that the probabilities of the paths are
preserved. Since we are working on Polish spaces, the (unique) disintegration (πω)ω∈RI

exists and assigns µ-almost every path ω a probability measure on I .

In the setting of optimal transport it is more convenient to work with so-called couplings
which are product probability measures such that the marginals satisfy a certain law. For
our case it is reasonable to consider all couplings on R

I × I between µ and ν.

Definition 4.2.6 (Couplings).
A coupling on R

I × I with marginals µ and ν is a product probability measure π on R
I × I

such that

(i) proj
R
I (π) = µ,

(ii) projI (π) = ν.

The space of all these product measures on R
I ×I is denoted with Cpl(µ,ν). The restriction

of Cpl(µ,ν) to all couplings satisfying

(iii)
∫
1{t}(s)(g −E[g |Ft])(ω)dπ(ω,s) = 0 for all g ∈ Bb(RI ), t ∈ I

is denoted with Cplad(µ,ν).
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Remark 4.2.7. For a couplingπ the property (iii) corresponds to property (b) of randomized
stopping times in the Definition 4.2.4. In fact, Cplad(µ,ν) coincides with RST(µ,ν). This
follows by Lemma 4.2.8 which is an adaptation of [9, Theorem 3.8], where also a proof for
the time continuous case can be found.

Lemma 4.2.8. Let π ∈ Cpl(µ,ν). Then the following are equivalent:

(a) π ∈ Cplad(µ,ν),

(b) Given a disintegration (πω)ω∈RI of π, the random variable πω(t) is Ft- measurable for all
t ∈ I .

Proof. To show the equivalence, we use a different characterization of measurability of
integrable random variables, see e.g. in [21]:
An integrable random variable X on R

I is Ft-measurable if and only if

E[X(Y −E[Y |Ft])] = 0 ∀ Y integrable and Borel-measurable.

Instead of working with all integrable random variables, we can restrict us to bounded,
Borel-measurable random variables. Thus, by a monotone class argument and setting
X := πω(t), this is equivalent to

E

[
1{t}(s)

(
g −E[g |Ft]

)]
=

∫
R
I
πω(t)

(
g −E[g |Ft]

)
(ω)µ(dω) = 0 ∀g ∈ Bb(RI ) . q

As already explained, we want to maximize the expected payoff given a cost function
c : S→R and the paths ω of a stochastic process Z where now the maximization is taken
over all randomized stopping times which are in RST(µ,ν).

Problem (OptStop
π). Let c̃ : S→R be Borel-measurable, then we can define the Borel-

measurable function c := c̃ ◦ r, with r given by (4.2.1), by

c : R
I × I →R ,

(ω,t) 7→ c̃((ω)s≤t , t) .

We want to find a maximizer of

π 7→
∫
R
I×I
c(ω,t)dπ(ω,t), π ∈ RST(µ,ν) .

Remark 4.2.9. By Lemma 4.2.8 the problem OptStop
π is equivalent to

π 7→
∫
R
I×I
c(ω,t)dπ(ω,t), π ∈ Cplad(µ,ν) .
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4.2.3. Connection between the Different Views

The next theorem gives us the connection between the different ways of formalizing our
considered problem.

Theorem 4.2.10. If the filtration G of the abstract probability space (Ω,G,G,P) coincides with
the natural filtration of the stochastic process Z, then there is a bijection between MI and
RST(µ). Given a probability measure ν on I , then there is a bijection fromMν

I into RST(µ,ν).

Proof. Since G coincides with the natural filtration of the stochastic process Z, there is a
Borel-measurable functions hγ for every γ ∈MI such that

hγ : S→R,

γt(ω̄) = hγ (Zs(ω̄)s≤t , t) , P-a.e., t ∈ I.

We already know that the mapping r : R
I × I → S is Borel-measurable. Thus,

Φγ := hγ ◦ r : RI × I →R

is Borel-measurable, Φγ (·, t) is Ft-measurable and

γt(ω̄) = Φγ (Z(ω̄), t) , P-a.e.

Therefore, we deduce that for any C ∈ Gt

E[1Cγt] = E[1CΦγ (Z,t)] = E[1C̃(ω)Φγ (ω,t)] ,

where C̃ is the with C associated set in Ft. We define π such that π(dω,t) := Φγ (ω,t)µ(dω)
which indeed defines a probability measure on R

I × I , and π ∈ RST(µ). As a result, the
map Ψ

Ψ : MI → RST(µ) , γ 7→ π,

is well-defined and injective.
For any π ∈ RST(µ), the map ω 7→ πω(t) is Ft-measurable. Hence, ω̄ 7→ πZ(ω̄) is
Gt-measurable. Therefore, we may define γ̃t(ω̄) = πZ(ω̄)(t) and conclude

Ψ ((γ̃t)t∈I ) = π(Z(ω̄), t) , P-a.e, t ∈ I,

which proves the first part of the assertion. Using Lemma 4.2.8 the second part follows
analogously. q

Remark 4.2.11. If the probability space (Ω,G,G,P) coincides with (RI ,F ,F ,µ), then the
bijection of Theorem 4.2.10 follows due to the relation of disintegration and product
measure on Polish spaces.

Corollary 4.2.12. Under the assumptions of Theorem 4.2.10, the optimization problems
OptStop

γ and OptStop
π are equivalent.

122



4.3. Existence of a Maximizer

Proof. For any γ ∈Mν
I , we define a product measure on Ω× I via γ̃(dω̄, t) = γt(ω̄)P(dω̄).

Following the proof of Theorem 4.2.10 we see that (Z,id)#γ̃ = π, where π is the associated
product measure on R

I × I .∫
Ω

∑
t∈I
c̃(Zs(ω̄)s≤t , t)γt(ω̄)dP(ω̄) =

∫
Ω×I

c̃(Zs(ω̄)s≤t , t)dγ̃(ω̄, t) ,∫
R
I×I
c̃(Zs(ω̄)s≤t , t)dπ(ω̄, t) =

∫
R
I×I
c(ω,t)dπ(ω,t) .

Following the second part of the proof of Theorem 4.2.10, we may define for any
π ∈ Cplad(µ,ν) an adapted random probability measure γ ∈Mν

I via

γt(ω̄) := πZ(ω̄)(t),

where πω is the disintegration of π. Then∫
R
I×I
c(ω,t)dπ(ω,t) =

∫
R
I

∑
t∈I
c̃((ωs)s≤t , t)πω(t)dµ(ω) =

∫
Ω

∑
t∈I
c̃(Zs(ω̄)s≤t , t)γt(ω̄)P(dω̄) .

q

We have shown the connection between the two different approaches. From now on,
however, we only deal with the second possibility of considering our problem, namely to
formulate it as an optimal transport problem.

4.3. Existence of a Maximizer

The main statement given in Theorem 4.3.4 comprises that there exists an optimal ran-
domized stopping time for our problem OptStop

π. To prove this, we consider first needed
help statements and remember the notable Prokhorov’s Theorem.

Proposition 4.3.1. For every b : R
I × I →R, bounded and Borel-measurable, the functional

F : Cpl(µ,ν)→R , π 7→
∫
b(ω,t)dπ(ω,t) =: π(b) ,

is continuous w.r.t. weak topology on Cpl(µ,ν).

Proof. Given a sequence πn ∈ Cpl(µ,ν), n ∈N, such that πn⇀π as n→∞, we know by
[13, Lemma 2.3] that for all A ∈ B(RI ) and t ∈ I

πn(A× {t})→ π(A× {t}) .

Since b is bounded and measurable, there exists a sequence of simple functions bm such
that |b − bm| < 1

m , µ-a.e. Therefore

∀ε > 0, ∀n ∈N, ∃mε : |π(b − bm)| < ε and |πn(b − bm)| < ε, m ≥mε,

and

∀ε > 0, ∀m ∈N, ∃nε : |πn(bm)−π(bm)| < ε, n ≥ nε.
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We conclude

|π(b)−πn(b)| ≤ |π(b − bm)|+ |π(bm)−πn(bm)|+ |πn(b − bm)| < 3ε, n ≥ nε, m ≥mε.
q

Corollary 4.3.2. For every h : RI × I →R∪ {−∞}, bounded from above and Borel-measurable,
the functional

H : Cpl(µ,ν)→R , π 7→
∫
h(ω,t)dπ(ω,t) ,

is upper semicontinuous w.r.t. the weak topology on Cpl(µ,ν).

Proof. We define hn := max(h,−n), n ∈ N, which are bounded, measurable and hn ↘ h
pointwise as n → ∞. By Proposition 4.3.1, we can define a sequence of continuous
functionals

Hn : Cpl(µ,ν)→R , π 7→ π(hn), where inf
n
Hn(π) =H(π) .

Let πm⇀π in Cpl(µ,ν) as m→∞, then

H(π) = inf
n
Hn(π) = inf

n
limsup

m
Hn(πm) ≥ limsup

m
inf
n
Hn(πm) = limsup

m
H(πm) .

q

For the sake of completeness, we want to state the notable Prokhorov’s Theorem, see
[73, Lemma 4.4].

Theorem 4.3.3 (Prokhorov). Let P (X) be the set of Borel probability measures on a topological
space X. If X is a Polish space, then a set P ⊆ P (X) is precompact for the weak topology if and
only if it is tight, i.e., for any ε > 0 there is a compact set Kε such that π(X\Kε) ≤ ε for all π ∈ P .

To show the existence, we will proceed as follows:

(I) Show that the set, over which the supremum is taken, is compact.

(II) Show that the functional is upper semicontinuous.

Note that Cplad(µ,ν) is non-empty, since the product measure µ⊗ ν ∈ Cplad(µ,ν) and it
holds for all g ∈ Bb(RI ) that∫

R
I×I

1{t}(s)(g −E[g |Ft])(ω)dµ⊗ ν(ω,s)

=
∫
I
1{t}(s)dν(s)

∫
R
I
(g −E[g |Ft])(ω)dµ(ω) = ν({t})Eµ[g −E[g |Ft]] = 0.

Thus, a maximizing sequence exists and the compactness provides a maximizer.

Theorem 4.3.4 (Existence of a Maximizer). Let c : S → R∪ {−∞} be bounded from above
and Borel-measurable, then there exists a solution to OptStop

π.
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Proof. As a direct consequence of Prokhorov’s Theorem, see Theorem 4.3.3, we get that
Cpl(µ,ν) is relatively compact. By [13, Lemma 2.3], we obtain in addition that Cpl(µ,ν)
is closed, hence compact in the weak topology. To see the compactness of Cplad(µ,ν), we
consider

b(ω,s) := 1{t}(s)(g −E[g |Ft])(ω)

for a bounded and Borel-measurable function g on R
I and t ∈ I . Let πn⇀π in Cpl(µ,ν)

as n→∞ and πn ∈ Cplad(µ,ν), n ∈N, by applying Proposition 4.3.1, we obtain

0 = πn(b)→ π(b) .

Since s and g were arbitrary, we conclude π ∈ Cplad(µ,ν) signifying the compactness of
Cplad(µ,ν).
Now, choose a sequence πn ∈ Cplad(µ,ν) such that

lim
n
πn(c) = sup

π̃∈Cplad (µ,ν)

∫
R
I×I
c(ω,s)dπ̃(ω,s) =: C.

Due to the compactness of Cplad(µ,ν), we can extract a convergent subsequence
πnk ⇀π ∈ Cplad(µ,ν) such that π possesses the desired property by Corollary 4.3.2

C = limsup
nk

πnk (c) ≤ π(c) ≤ C.
q

4.4. Duality

In the theory of optimal transport is the Kantorovich duality a basic concept. The classical
Monge-Kantorovich problem deals with the topic of minimizing the expected loss given a
cost function c : X ×Y →R∪ {∞} when iterating over all couplings π ∈ Cpl(µ,ν), where
µ and ν are probability measures on X and Y , respectively. Formally, we seek to find a
coupling of (µ,ν) which minimizes the total cost function

Cpl(µ,ν) 3 π 7→
∫
cdπ

among all possible couplings. The function c can be interpreted as the cost of moving mass
from X, which is distributed according to µ, to Y which shall be distributed according to
ν. The couplings π ∈ Cpl(µ,ν) are called transport plans; and a coupling which minimizes
the expected loss is called an optimal transport plan.
Our considered problem OptStop

π is a maximization problem. However, we can switch
from a minimization problem to a maximization problem, simply by multiplying the
payoff function c with −1, and hence call it cost function, because it holds that

inf
π∈Cpl(µ,ν)

π(c) = − sup
π∈Cpl(µ,ν)

π(−c) .
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Therefore we want to state the usual Kantorovich duality Theorem, see [73, Theorem 5.10].

Theorem 4.4.1 (Kantorovich duality). Let (X,µ) and (Y ,ν) be two Polish probability spaces
and let c : X ×Y →R∪ {+∞} be a lower semicontinuous cost function, such that

∀(x,y) ∈ X ×Y , c(x,y) ≥ a(x) + b(y)

for some real-valued upper semicontinuous functions a ∈ L1(µ) and b ∈ L1(ν). Then there is
duality

inf
π∈Cpl(µ,ν)

π(c) = sup
(f ,g)∈Cb (X)×Cb (Y )

f1+f2≤c

(∫
X
f1 dµ+

∫
Y
f2 dν

)
.

We are interested into maximizing OptStop
π which is a maximization problem over the

space Cplad(µ,ν). In fact, this space is a restriction of Cpl(µ,ν). We may define a space W
as the linear span of{

w(ω,s) := 1{t}(s)(g −E[g |Ft])(ω) | g ∈ C(RI )∩L1(µ), t ∈ I
}
. (4.4.2)

Evidently, Cplad(µ,ν) coincides with the restriction of Cpl(µ,ν) to all couplings π satisfy-
ing the additional linear constraints

π(w) = 0 for all w ∈W. (4.4.3)

Thus the Kantorovich duality Theorem has to be extended to the case where linear
constraints are posed to Cpl(µ,ν). A generalized version of this problem was shown by
Zaev in [76]. Following the proof of [76, Theorem 2.1] and using Theorem 4.4.1 yields the
following theorem:

Theorem 4.4.4 (Duality). If the cost function c satisfies the assumptions of Theorem 4.4.1
with X := R

I and Y := I . Then there is duality

inf
π∈Cplad (µ,ν)

π(c) = sup
(f1,f2,w)∈Cb(RI )×Cb(I)×W

f1+f2+w≤c

(∫
R
I
f1 dµ+

∑
t∈I
f2(t)ν(t)

)
.

Proof. The inequality

inf
π∈Cplad (µ,ν)

π(c) ≥ sup
f1+f2+w≤c

(
µ(f1) + ν(f2)

)
follows immediately from

inf
π∈Cplad (µ,ν)

π(c) ≥ inf
π∈Cplad (µ,ν)

sup
f1+f2+w≤c

(
µ(f1) + ν(f2)

)
= sup
f1+f2+w≤c

(
µ(f1) + ν(f2)

)
.

For the reverse inequality we consider

sup
f1+f2+w≤c

(
µ(f1) + ν(f2)

)
= sup
w∈W

sup
f1+f2≤c−w

(
µ(f1) + ν(f2)

)
.
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Note that W ⊆ Cb(RI × I), thus, c −w is again lower semicontinuous on R
I × I . We may

choose aw(x) := a(x)− ‖w‖∞ and bw(x) := b(x)− ‖w‖∞ which in turn satisfy the assumption
of Theorem 4.4.1. Thereby we obtain that

sup
f1+f2+w≤c

(
µ(f1) + ν(f2)

)
= sup
w∈W

inf
π∈Cplad (µ,ν)

π(c −w) .

For any π < Cplad(µ,ν) there exists a w ∈W such that π(w) < 0, and

sup
α>0

π(c −αw) = +∞.

Since Cplad(µ,ν) is not empty, we conclude that

inf
π∈Cplad (µ,ν)

π(c) = sup
(f1,f2,w)∈Cb(RI )×Cb(I)×W

f1+f2+w≤c

(
µ(f1) + ν(f2)

)
.

q

4.5. Examples

In this section we investigate examples and determine optimal maximizers. At first we
consider the two time steps. In this case we can reformulate appropriately the problem
and then construct the optimal strategy. This can be used to generalize it on a finite time
domain and to determine the optimal strategy for special cost function.

4.5.1. Example: Two Time Steps

First, we want to consider a stochastic process (Zt)t∈I with independent increments on the
time domain I := {1,2} and maximize the following functional on RST(µ,ν)

π 7→
∫
R

2×{1,2}
c(ω,t)dπ(ω,t), (4.5.1)

as in OptStop
π. Remember that the set RST(µ,ν) coincides with the set Cplad(µ,ν). To

facilitate notations, we will denote by π(·, t) for t ∈ I and π ∈ RST(µ,ν) the (sub-)probability
measure on R

I = X1 ×X2 induced by

B 7→ π(B,t) B ∈ B(RI ) .

Given a randomized stopping time π, we may consider the measurem on X1 = R such that

m(A) := π(A×R× {1}) = projX1
(π(·,1))(A) ∀A ∈ B(R) .

Remember that ω 7→ πω(t) is Ft-adapted, in particular for t = 1, we find a Z1-measurable
function h : X1 ×X2→R such that

πω(1) = h(ω) , µ-a.e., ω ∈RI , (4.5.2)
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and for h = h̃ ◦ r analogously to (4.2.1)

h(ω) = h(ω̃) =: h̃(ω1) ω, ω̃ ∈RI , ω1 = ω̃1.

Therefore, we deduce that

m(A) =
∫
1A×R(ω)πω(1)dµ(ω) =

∫
1A(ω1)h(ω1)dprojX1

(µ)(ω),

which implies m ≤ projX1
(µ) and let us define a measure n on R satisfying

n := projX1
(µ)−m.

Informally, the measures m and n describe with which probability a path is stopped
at time 1 or continues to time 2, respectively. Remember that Z2 −Z1 ∼ p2. Using the
measures m and n in the maximization problem (4.5.1) yields to∫

R
I×I
c(ω,t)dπ(ω,t) =

∫
R
I
c(ω,1)dπ(ω,1) +

∫
R
I
c(ω,2)dπ(ω,2)

=
∫
X1

c̃((ω1),1)dm(ω1) +
∫
R
I
c(ω,2)(1− h(ω))µ(dω)

=
∫
X1

c̃((ω1),1)dm(ω1) +
∫
X1

(1− h̃(ω1))
∫
R

c((ω1,ω1 + z),2)dp2(z)dprojX1
(µ)(ω1)

=
∫
X1

c̃((ω1),1)dm(ω1) +
∫
X1

∫
R

c((ω1,ω1 + z),2)dp2(z)dn(ω1) . (4.5.3)

This equality can be interpreted in the way that the first integral in (4.5.3) describes the
expected payoff if the process is stopped at time 1, whereas the second integral describes
the expected payoff at time 2. Note that∫

R

c((x,x+ z),2)dp2(z)

is the expected payoff when we stop at time 2, conditioned on ω1 = x.
For any path ω := (ω1,ω2) ∈RI and the corresponding probability measure πω on I , we
see that

(c(ω,1)πω(1) + c(ω,2)πω(t))− c(ω,1) = (c(ω,2)− c(ω,1))πω(2) .

Without loss of generality we may assume that

c(ω,1) = 0. (4.5.4)

If c(ω,1) , 0, than we might define c̄(ω,t) := c(ω,t)−c(ω,1). Clearly, it holds that c̄(ω,1) = 0.
Because subtracting a constant from the functional solving the problem given in (4.5.1)
does not change the property of being a maximizer of it, we will instead maximize

π 7→
∫
R
I×I
c̄(ω,t)dπ(ω,t) =

∫
R
I×I
c(ω,t)dπ(ω,t)−

∫
R
I
c(ω,1)dµ(ω),

where the last equality holds due to proj
R
I (π) = µ. Note that both maximization problems

are equivalent, but c̄(ω,1) = 0.
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Using the reformulation (4.5.3) and assumption (4.5.4) our problem given in (4.5.1) is
reduced to the following maximization problem:
Among all measures n on X1 = R satisfying

n ≤ projX1
(µ) and n(R) = n(X1) = ν(2)

find the maximizer of

n 7→
∫
X1

∫
R

c((x,x+ z),2)dp2(z)dn(x) .

Define the function k : X1→R by

k(x) :=
∫
R

c((x,x+ z),2)dp2(z), (4.5.5)

where Z2 −Z1 ∼ p2. Then we get that
∫
X1

∫
R
c((x,x+ z),2)dp2(z)dn(x) = n(k).

The considerations above lead to the following theorem:

Theorem 4.5.6. Let I = {1,2}, RI = X1 ×X2. Given an optimal π∗ ∈ RST(µ,ν) such that

π∗(c) = sup
π∈RST(µ,ν)

π(c) . (4.5.7)

Then,
nπ∗ := projX1

(µ−π∗(·,1))

is a measure on X1 = R satisfying

nπ∗ ≤ projX1
(µ), nπ∗(R) = nπ∗(X1) = ν(2), (4.5.8)

and maximizes under all measures satisfying (4.5.8)

nπ∗(k) = sup
n
n(k) . (4.5.9)

Vice versa, let n∗ be a measure on R(µ,ν) satisfying (4.5.8) and maximizing (4.5.9).
Then,

πn∗((dx,dy), t) =

(projX1
(µ)−n∗)(dx)p2(dy) for t = 1,

n∗(dx)p2(dy) for t = 2,

defines a RST which maximizes (4.5.7).

Remark 4.5.10. Note the overlaps of the definitions with regard to the arguments c and
(ω,t) or ω1.

Proof. First, we take a closer look at nπ∗ and note that it satisfies (4.5.8) and, due to Lemma
4.2.8 and (4.5.2),

nπ∗(dx) = projX1
(µ−π∗(·,1))(dx) = (1− h̃(x))projX1

(µ)(dx),
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implying

π∗(c) =
∫
X1×R

c((ω1,ω1 + z),2)π∗(ω1,ω1+z)(2)dµ((ω1,ω1 + z)) =
∫
R

k(ω1)dnπ∗(ω1) . (4.5.11)

Furthermore, πn∗ defines a measure on R
I × I such that projI (πn∗) = ν and

πn∗(c) =
∫
R

k(ω1)dn∗(ω1) . (4.5.12)

For any bounded, Borel-measurable function g on R
I , the function

f (x) :=
∫
R

g(x,x+ z)dp2(z)

is Borel-measurable and

f (Z1) = E[f (Z1)|F1] =
∫
R

E[g(Z1,Z1 + z)|F1]dp2(z) a.e.,

which particularly yields for t ∈ I∫
X1

∫
R

(g −E[g |Ft])(ω1,ω1 + z)dp2(z)dprojX1
(µ)(ω1) = 0,

implying that πn∗ ∈ RST(µ,ν). Due to (4.5.11) and (4.5.12) the optimality of nπ∗ and πn∗ ,
respectively, follow, and thus the assertion. q

Remark 4.5.13. By Theorem 4.5.6, it becomes obvious that for two time steps, it is sufficient
to consider a quantile q of k given in (4.5.5) such that q is maximal in R with the property
ν(2) ≤ projX1

(Uq), where Uq := {x ∈ X1 : k(x) ≥ q}. Then we define

n(dx) :=


projX1

(µ)(dx) k(x) > q,

α ·projX1
(µ)(dx) k(x) = q,

0 else,

(4.5.14)

where α ∈ [0,1] is chosen such that n(R) = ν(2). It is apparent that n maximizes (4.5.9),
since for any other measure ñ satisfying (4.5.8), it holds

n(k)− ñ(k) =
∫
R

k(x)(n− ñ)(dx) ≥
∫
R

q − k(x)(ñ−n)+(dx) ≥ 0.

The second part of Theorem 4.5.6 yields the maximizer π∗n. As already mentioned, this
method can be interpreted as not-stopping those paths, which have a higher expected
payoff in the next turn. Instead of interpreting it this way, we can view it as stopping all
paths with a lower expected payoff – indeed, this would result in the same quantiles.
For a special class of cost functions, we will be able to extend the idea of using quantiles
of the corresponding k for each time step inductively, to construct an optimizer for an
arbitrary amount of time steps.
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4.5.2. Example: Symmetric Random Walk

For I := {1, . . . ,T }, T ∈N, we consider a symmetric random walk (Zt)t∈I on Z starting at 0,
where the increments Zs −Zs−1 are independent and uniformly distributed on {−1,1}. Let
the payoff function c be

c : R
I × I →R : (ω,t) 7→ t ·ωt ,

which is indeed Ft-adapted and bounded, if the time horizon is finite.

1 2 3 4 t

−2

0

2

Figure 4.1.: Paths of the process (Zt)t∈I starting at 0 for I := {1,2,3,4}.

We want to find an optimal π ∈ RST. Note that for ω,η ∈RI and t ∈ I∫
c̃
(
(ω1, . . . ,ωt−1,ωt−1 + z), t

)
dpt(z) ≥

∫
c̃
(
(η1, . . . ,ηt−1,ηt−1 + z), t

)
dpt(z)

⇐⇒
∫
t · (ωt−1 + z)dpt(z) ≥

∫
t · (ηt−1 + z)dpt(z)

⇐⇒ ωt−1 ≥ ηt−1.

(4.5.15)

By using Theorem 4.5.6 we are able to solve the problem restricted to two time steps. By
skillful projection of the path space, we may consider a case with exactly two time steps.
For the marginal of π to satisfy the constraint ν, we have to define π(ω,1) = ν(1). For
every step of our recursion i ≥ 2 we consider the two dimensional space Xti ×Xti+1

. Note
that for I := {1, . . . ,T }, T ∈N, we consider Xt ×Xt+1, and the recursion step i corresponds
to the time step t. Therefore we define measures µi := projXt×Xt+1

(µ−
∑
s<tπ(·, s)) and νi

such that
νi(1) = ν(t), νi(2) =

∑
s∈I>t

ν(s) .

Then we have to solve the problem of finding the maximizer of

n 7→
∫
Xt

∫
R

c((x,x+ z), t + 1)dpt+1(z)dn(x),

among all measures ni on Xt = R satisfying

ni ≤ projXt (µi) and ni(R) = νi(2),
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which can be done according to Remark 4.5.13, particularly (4.5.14). Thus, by applying
Theorem 4.5.6 recursively, we obtain a randomized stopping time πi ∈ RST(µi ,νi), ti ∈ I ,
which can be naturally merged into π ∈ RST(µ,ν) via

π(ω,t) := (µ(ω)−
∑
s<t

π(ω,s)) ·πt(ωt ,ωt+1)(t) .

Optimality can be shown in the following way: Starting with another arbitrary
ξ ∈ RST(µ,ν), we assume that there exists a minimal t such that ξ(·, t) , π(·, t). Therefore,
there exist ζ,η ∈RI such that

α1 := ξη(t)−πη(t) > 0, α2 := πζ(t)− ξζ(t) > 0

and let α := min(α1,α2). The overall mass of all paths ω ∈ R
I , such that the initial

segments ω�[0,t] coincide with that of η or ζ, is 2−t. Hence, it is possible to swap 2−tα mass
from {ω ∈ RI : ω�[0,t] = η�[0,t]} to {ω ∈ RI : ω�[0,t] = ζ�[0,t]}. A new measure is gradually
defined by

ξ̃(ω,s) = ξ(ω,s), ω ∈RI , s < t

and

ξ̃ω(t) :=


ξω(t)−α ∀ω ∈RI such that ω�[0,t] = η�[0,t],

ξω(t) +α ∀ω ∈RI such that ω�[0,t] = ζ�[0,t],

ξω(t) otherwise .

So far, ν(s) = projI (ξ̃) still holds as long as s ≤ t. To fully preserve the marginals, i.e.,
ξ̃ ∈ RST(µ,ν), mass is carefully added to the remaining paths ω ∈RI , where
ω�[0,t] ∈ {η�[0,t],ζ�[0,t]}. Let ω ∈ RI such that ω�[0,t] = η�[0,t], then there exists θ ∈ RI such
that θ�[0,t] = ζ�[0,t] and (θ −ω)(r) = 0 for all r > t. We may set

ξ̃ω(s) := ξω(s) +
α

1−
∑
r≤t ξθ(r)

· ξθ(s), ξ̃θ(s) := ξθ(s)− α
1−

∑
r≤t ξθ(r)

· ξθ(s),

which yields the correct marginals for ξ̃. Clearly, ξ̃ ∈ RST(µ,ν) and due to Theorem 4.5.6
together with equation (4.5.15) it holds that ηt ≥ ζt, yielding

ξ̃(c)− ξ(c) =
∫
{ω∈RI :ω�[0,t]=η�[0,t]}×I>t

(ηt − ζt)(s − t)(ξ̃ − ξ)+(dω,s) ≥ 0. (4.5.16)

Hence, continuing this construction recursively leads in a finite amount of steps to

ξ̃(ω,s) = π(ω,s), s ≤ t, ω ∈RI .

By equation (4.5.16), π(c) is an upper bound for the payoff of any constructed ξ̃, and as a
consequence an upper bound for ξ(c).

Remark 4.5.17. The method shown in Example 4.5.2 can be used to show optimality for
the introduced "greedy" strategy π for a larger class of optimization problems. In the
setting of Example 4.5.2, we cannot expect uniqueness of the optimizer π, since for any
η,ζ ∈RI , ηt = ζt and t ∈ I such that

πη(t) > 0, πζ(t) < 1,

it is possible to swap some mass analogously as described above, creating a new random-
ized stopping time, but preserving marginals and payoff.
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4.5.3. Example: Generalized Setting

Let (Zt)t∈I be the stochastic process with independent increments and c be the payoff
function of the form

c(ω,t) = f (t) ·ωt ,

where f : I →R+ is monotone increasing. Motivated by Theorem 4.5.6 and Example 4.5.2,
we want to show that a greedy algorithm is optimal here, cf. Theorem 4.5.27. Analogous
to (4.5.15), we obtain for the expected payoff∫

c̃((ω1, . . . ,ωt ,ωt + z), t + 1)dpt+1(z) ≥
∫
c̃((η1, . . . ,ηt ,ηt + z), t + 1)dpt+1(z)

⇐⇒ f (t + 1)ωt +
∫
f (t + 1)zdpt+1(z) ≥ f (t + 1)ηt +

∫
f (t + 1)zdpt+1(z) (4.5.18)

⇐⇒ ωt ≥ ηt .

We construct a randomized stopping time π by defining a quantile qt for any t ∈ I such
that

qt := inf
{
q ∈R : projXt

(
µ−

∑
s<t

π(·, s)
)
((−∞,q]) ≥ νt

}
,

where π(ω,t) can be defined as

π(ω,t) := projXt

(
µ−

∑
s<t

π(·, s)
)
�(−∞,qt]

(ωt), (4.5.19)

if the quantile qt is exact, otherwise it can be defined similar to Remark 4.5.13.
As in Example 4.5.2, we will show optimality of this strategy by transforming any ran-
domized stopping time iteratively into the proposed one, without lowering the payoff,
cf. Theorem 4.5.27. But, before we can show optimality we need some preparations to
conduct the swapping of mass.

Lemma 4.5.20. Let m, n be finite measures on [0,1] such that m([0,1]) = n([0,1]). Then there
exists a Borel-measurable map U = (U1,U2) from [0,1]× [0,1] onto [0,1]× [0,1] such that

m([0,x)) +u ·m({x}) = n([0,U1(x,u))) +U2(x,u) ·n({U1(x,u)}), x,u ∈ [0,1].

In addition, the map U1 is surjective onto the support of n denoted by supp(n).

Proof. We can easily extend the measures m and n to measures M and N on [0,1]× [0,1]
by defining them via

M(dx,du) =m(dx), N (dy,dv) = n(dy) .

For a given pair (x,u) ∈ [0,1]× [0,1] we may define the first component of U as

U1(x,u) := inf
{
y ∈ [0,1] : M([0,x)× [0,1]) +M({x}×[0,u]) ≤ n([0, y])

}
∈ supp(n) . (4.5.21)
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The corresponding second component of U can be defined as follows

U2(x,u) := inf
{
v ∈ [0,1] : M([0,x)× [0,1]) +M({x} × [0,u]) (4.5.22)

=N ([0,U1(x,u))× [0,1]) +N ({U1(x,u)} × [0,v])
}
.

By construction, U (x,u) = (U1(x,u),U2(x,u)) is well-defined and Borel-measurable. Fur-
ther,

m([0,x)) +u ·m({x}) =M([0,x)× [0,1]) +M({x} × [0,u])

=N ([0,U1(x,u))× [0,1]) +N ({U1(x)} × [0,U2(x,u)])

= n([0,U1(x,u))) +U2(x,u) ·n({U1(x,u)}),

where the second equality follows from (4.5.22).
Assume that there exists (x,u) ∈ [0,1]× [0,1] with U1(x,u) =: y < supp(n), then there exists
a δ > 0 such that n([y − δ,y + δ]) = 0, and hence

M([0,x)× [0,1]) +M({x} × [0,u]) ≤ n([0, y − δ]),

which contradicts the definition of U1(x,u), see (4.5.21). Furthermore, for any y ∈ supp(n)
there exists (x,u) ∈ [0,1]× [0,1] with

m([0,x)) ≤ n([0, y]) ≤m([0,x]),

M([0,x)× [0,1]) +M({x} × [0,u]) = n([0, y]) .

For z ∈ supp(n), z < y implies n([0, z]) < n([0, y]), which yields U1(x,u) = y and surjectivity.
q

Lemma 4.5.23. Under the assumptions of Lemma 4.5.20, we may define a map
Vy : [0,1]→ [0,1] for a fixed y ∈ supp(n) by

Vy(x) :=


1 x ∈ int(γy), n({y}) , 0,

sup(x,u)∈U−1
1 ({y})u − inf(x,v)∈U−1

1 ({y}) v x ∈ ∂γy , n({y}) , 0,

0 else,

where γy := {x : ∃u ∈ [0,1] s.t. U1(x,u) = y}, int(γy) denotes the interior of the set γy , ∂γy the
boundary of this set and U−1

1 (·) is the preimage of U1. The set γy is a closed interval and the
map Vy is well-defined. Furthermore, the maps y 7→ inf(x,u)∈U−1

1 ({y}) x =: xl(y) and (x,y) 7→ Vy(x)
are Borel-measurable.

Proof. Let y ∈ supp(n). Note that for any (x1,u1), (x2,u2) ∈U−1
1 ({y}) holds

(x1,u1) ≤ (x,u) ≤ (x2,u2) =⇒ (x,u) ∈U−1
1 ({y}),

where ≤ refers to the lexicographical order. Hence,

γy =
{
x ∈ [0,1] | ∃u ∈ [0,1] s.t. (x,u) ∈U−1

1 ({y})
}
.
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Especially, γy is an interval with left and right boundary points xl and xr . When n({y}) , 0,
for any point x ∈ (xl ,xr ) follows Vy(x) = 1. Further, γy contains its boundary points, since
(xl ,1), (xr ,0) ∈U−1

1 ({y}). If y1, y2 ∈ supp(n), y1 < y2 with

γy1
= [al , ar ], γy2

= [bl ,br ],

implies that ar ≤ bl . Therefore, the map y 7→ xl(y) is monotonously increasing, and hence
Borel-measurable. As a matter of fact there can only be a countable amount of point
masses of n, which shows measurability of (x,y) 7→ Vy(x). q

To simplify notation, we set
~x := (x,0, . . . ,0) ∈RI

for any starting point x ∈R. Given the starting distribution projX1
(µ) = 1

2 (δx +δy) for x , y
and ξ ∈ RST(µ,ν) we can construct, by virtue of Z’s independent increments, another
probability measure ξ̃ ∈ RST(µ,ν) such that

ξ̃ω+~x = ξω+~y , ξ̃ω+~y = ξω+~x, ω ∈RI .

If the starting distributions are arbitrary (sub-)probability measures, we can construct
another randomized stopping time by following the idea of "swapping branches", see the
following lemma.

Lemma 4.5.24. Under the assumptions of Lemma 4.5.20, let m and n be the starting distribu-
tions of the (sub-)probability measures µ and µ̃ associated with Z, i.e.,

m = projX1
(µ), n = projX1

(µ̃) .

Then, for fixed y ∈ supp(n) the measure

my(dx) =


δxl (y)(dx) n({y}) = 0,

Vy (x)m(dx)
n({y}) else,

is well-defined.
Furthermore, for every ξ ∈ RST(µ,ν) there exists a ξ̃ ∈ RST(µ̃,ν) with disintegration (ξ̃ω)ω∈RI

such that for t ∈ I and ω ∈RI

ξ̃ω(t) :=


∫
ξω+~x− ~ω1

(t)mω1
(dx) ω1 ∈ supp(n),

1{1}(t) else.
(4.5.25)

Proof. According to Lemma 4.5.23 the measuremy is well-defined and y 7→my measurable.
Following the proof of Lemma 4.5.20, there exist ul ,ur ∈ [0,1] such that

m([0,xl)) +ul ·m({xl}) = n([0, y)),

m([0,xr )) +ur ·m({xr}) = n([0, y]),

where [xl ,xr] = γy . We will only discuss the case that xl < xr , since the other case can be
dealt in similar fashion. If n({y}) > 0, it holds that ul = 1−Vy(xl) and ur = Vy(xr ).

m(Vy) =m([xl ,xr )) +ur ·m({xr})− (1−ul) ·m({xl}) = n({y}) .
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Thus my is a probability measure on [0,1]. As a composition of measurable functions,
ω 7→ ξ̃ω is measurable. By construction ξ̃ is F -adapted, therefore it remains to establish
the marginal properties. Let ω ∈RI and ω1 ∈ supp(n).∑

t∈I
ξ̃ω(t)

(4.5.25)
=

∫ ∑
t∈I
ξ̃ω+~x−~ω1

mω1
(dx) = 1,

which implies

proj
R
I (ξ̃)(dω) = µ̃(dω) .

Then

projI (ξ̃)(t) =
∫
R
I
ξ̃(ω,t)µ̃(dω) =

∫
ξ̃θ+~y(t)P(dθ)n(dy)

=
∫ ∫

ξθ+~x(t)my(dx)n(dy)P(dθ) .

To prove projI (ξ̃) = ν(t) it is sufficient to show that for any interval A := [a,b] ⊆ [0,1]

m(A) =
∫

[0,1]2
1A(x)my(dx)n(dy) , (4.5.26)

since the assertion follows then by the monotone class theorem. With Lemma 4.5.20 we
obtain for U (a,0) =: (y1,v1) and U (b,1) =: (y2,v2). As above, we assume that y1 < y2 which
yields

m([0, a)) = n([0, y1)) + v1 ·n({y1}),
m([0,b]) = n([0, y2)) + v2 ·n({y2}),

cf. (4.5.21) and (4.5.22). And hence

m([a,b]) = (1− v1) ·n({y1}) +n((y1, y2)) + v2 ·n({y2}),
m([0, a)) ≤ n([0, y]) ≤m([0,b]) ∀y ∈ (y1, y2)∩ supp(n) .

For any y ∈ (y1, y2)∩ supp(n), x ∈ γy and v ∈ [0,1], we note that

m([0, a]) ≤ n([0, y1]) ≤m([0,x)) + v ·m({x}) ≤ n([0, y2)) ≤m([0,b]),

which implies that γy ⊆ A and my(γy ∩A) = 1, and thus

n((y1, y2)) =
∫

(y1,y2)

∫
[0,1]

1A(x)my(dx)n(dy) .

In the case that n({y1, y2}) = 0, the assertion follows. If y1 or y2 are point masses, we have
to show that (1−v1) =my1

(A) and v2 =my2
(A), respectively. We only consider the case that

yl is a point mass, since the other cases (y3 or y1 = y2 is a point mass) follow analogously.
We know that γy1

∩A = [a,c] ⊆ [a,b] and

m([0, a)) = n([0, y1)) + v1 ·n({y1}),
n([0, y1]) =m([0, c)) +u ·m({c}) .
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Based on these two equations, the assertion follows:

1− v1 =
1

n({y1})
(m([a,c]) +u ·m({c})) =my1

(A) .

Analogous considerations can be made for ν2. q

Theorem 4.5.27. The greedy strategy π is optimal, i.e.,

π(c) ≥ ξ(c), ∀ξ ∈ RST(µ,ν) .

If f is strictly increasing, π is the unique optimizer in the following sense:

Any π̃ ∈ RST(µ,ν) with π̃(c) = π(c) satisfies for all t ∈ I, t < T

projXt×Xt+1
(π(·, t)− π̃(·, t)) = 0, projXt×Xt+1

(µ)-a.e.

Proof. Let t ∈ I be fixed and assume that π(·, s) = ξ(·, s), µ-a.s., for all s < t. Hence, there
exists a Ft-measurable set B ⊆R

I with full measure such that πω(s) = ξω(s) holds pointwise
for all ω ∈ B, s < t.

A+ := {ω : (π − ξ)ω(t) > 0} ∩B, A− := {ω : (ξ −π)ω(t) > 0} ∩B.

Define A := A+ ∪A−. In view of the (quantile) structure of π, cf. (4.5.19), it follows that

ωt ≤ ηt ∀ω ∈ A+, ∀η ∈ A−. (4.5.28)

Let the finite measures φ+ and φ− on A× I be given by

φ+ := (π − ξ)+
�A×I , φ− := (ξ −π)+

�A×I .

Note that proj
R
I (φ+) = proj

R
I (φ−), which implies

0 < φ+(A+, t) =: α ≤ φ+(A+ × I≥t) = φ−(A+ × I>t) =: β.

The second marginal property of π and ξ, i.e., projI (π)(t) = ν(t) = projI (ξ(t)), yields

α = φ+(A+, t) = φ−(A−, t) .

We may define two F -adapted measures ψ and χ via

ψ(dω,s) :=
α
β
·

φ−(dω,s) (ω,s) ∈ A+ × I,
0 else,

χ(dω,s) :=

φ−(dω,s) (ω,s) ∈ A− × {t},
0 else.

Due the scaling factor of α
β , we obtain ψ(A+ × I) = χ(A− × I). Therefore, we can define m

and n as the starting distributions of ψ̄ := proj
R
I≥t (ψ) and χ̄ := proj

R
I≥t (χ) such that

m := projXt (ψ̄), n := projXt (χ̄) .
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Let C ⊆ A be a Fs-measurable set for s ≥ t and C′ its projection onto R
I≥t , then

ψ(C) = ψ̄(C′), χ(C) = χ̄(C′) .

Again by a monotone class argument it follows that

ψ(c) = ψ̄(c′), χ(c) = χ̄(c′),

where c′ is the natural restriction of c onto R
I≥t × I≥t. Applying Lemma 4.5.24 to m, n,

ψ̄ and χ̄ results in two measures ψ̃ and χ̃, which preserve the marginals of ψ̄ and χ̄,
respectively. In the final step, we want to extend χ̃ and ψ̃ to measures ψ̂ and χ̂ on R

I × I .

ψ̂(dω,s) :=

ψ̃ω�[t,T ]
(s)proj

R
I (ψ)(dω) ω ∈ A+, s ≥ t,

0 else.

χ̂(dω,s) :=

χ̃ω�[t,T ]
(s)proj

R
I (χ)(dω) ω ∈ A−, s ≥ t,

0 else.

For s ≥ t we obtain

projI (ψ +χ)(s) = projI≥t (ψ̄ + χ̄)(s) = projI≥t (ψ̂ + χ̂)(s) = projI (ψ̃ + χ̃)(s) .

Then

proj
R
I (ψ +χ) = proj

R
I≥t (ψ̃ + χ̃) = proj

R
I≥t (ψ̃ + χ̃) = proj

R
I (ψ̂ + χ̂)

holds µ-a.e. Hence, we are able to define ξ̃ ∈ RST(µ,ν) via

ξ̃ := ξ −ψ −χ+ ψ̂ + χ̂.

ψ(c) +χ(c) = ψ̄(c′) + χ̄(c′)

=
∫
c′(θ + ~y,1)ψ̄θ+~y(1)P(dθ)n(dy) +

∫
c′(θ + ~x,s))χ̄θ+~x(s)P(dθ)m(dx)

≤
∫
c′(θ + ~y,s)χ̄θ+~x(s)P(dθ)my(dx)n(dy) +

∫
c′(θ + ~x,1)ψ̄θ+~y(1)P(dθ)nx(dy)m(dx)

= ψ̃(c′) + χ̃(c′) = ψ̂(c) + χ̂(c),

where the inequality holds due to (4.5.28), which implies

x ≥ y ∀x ∈ supp(m), y ∈ supp(n),

together with the explicit form of c′ and (4.5.26). We see that we can exchange ξ with ξ̃
without lowering the payoff. Further, ξ̃(ω,s) = π(ω,s) ω-a.e. for all s ≤ t. By continuing
this procedure iteratively over t, we can transform the initial ξ into π without lowering
the payoff. Hence, π is optimal. If f is monotonously strictly increasing, this inequality
holds strictly if and only if

projXt×Xt+1
(π(·, t)− ξ(·, t)) , 0, projXt×Xt+1

(µ)− a.e.

Thus, π is the unique optimizer in the sense described above. q
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4.6. Monotonicity Principle in an Example

To test if a randomized stopping time is a possible candidate for optimality in problem
OptStop

π, different monotonicity criteria were developed. In this context, the so-called
c-cyclical monotonicity as in [73] deserves a special mention, which is in fact a geometric
property of the support of an optimal transport plan. In the initial form, the mono-
tonicity was shown only for couplings which do not have to satisfy additional adaptivity
constraints. Zaev introduced (c,W )-cyclical monotonicity in [76, Theorem 3.6], which
enhances the notion with constraints, denoted by W . In our considerations, randomized
stopping times are couplings satisfying additional linear constraints given through (4.4.2)
and (4.4.3). Thus, Zaev’s monotonicity principle can be applied naturally. Contrary
to the classical c-monotonicity, the (c,W )-monotonicity of a support of a randomized
stopping time is a necessary optimality condition, but in general not sufficient. In an
independent work, Beiglböck and Griessler found a closely related monotonicity principle
which includes the result [76, Theorem 3.6] as a special case, see [11, Theorem 1.4].
Inspired by the classical c-monotonicity which shows that optimality is an attribute of the
support of a coupling, other different monotonicity principles have been developed in the
area of martingale optimal transport problems, cf. [9] and Chapter 7. The approach of
the previous section for showing optimality is strongly inspired by the latter chapter of
this thesis which deals with time-continuous distribution-constrained optimal stopping
problems where the underlying stochastic process is a Brownian motion. Analogously, it
is possible to find a monotonicity principle for the time-discrete case. Again, we assume
that (Zt)t∈I is a stochastic process in discrete time with independent increments.

Definition 4.6.1. The set RSTtκ of randomized stopping times (of a stochastic process Z
with initial distribution κ) is defined as the set of all Z-adapted probability measures π
on R

I≥t × I≥t such that Z ∼ proj
R
I≥t (π).

Definition 4.6.2 (Concatenation).
For every t ∈ I we have an operation � of concatenation, which is a map into R

I≥t and is
defined for (ω,s) ∈RI≥t × I≥t and θ ∈RI≥s with θ(s) = 0 by

((ω,s)�θ) (r) =

ω(r) t ≤ r ≤ s ,
ω(s) +θ(r) r > s.

(4.6.3)

Definition 4.6.4 (Conditional randomized stopping times).
For π ∈ RST(µ,ν) and (ω,t) ∈ S, we define π(ω,t) ∈ RSTt by defining a disintegration

(π(ω,t)
θ )θ∈RI≥t with respect to Z̃ as

π
(ω,t)
θ :=

 1
1−π(ω,t)(I≤t)

(π(ω,t)�θ)�I≥t for π(ω,t)(I≤t) < 1,

δt for π(ω,t)(I≤t) = 1,

where δt is the Dirac measure concentrated at t and θ ∈RI≥t with θ1 = 0.

139



Chapter 4. Randomized Stopping Time

Definition 4.6.5 (Relative Stop-Go pairs).
For ξ ∈ RST(µ,ν) define SGξ ⊆ (RI × I)× (RI × I) as the set of all pairs (ω,t), (η, t) ∈ RI × I
such that there exist ξ̃1 ∈ RSTtδω(t)

and ξ̃2 ∈ RSTtδη(t)
such that

• proj{t,...,T }(ξ
(ω,t) + ξ(η,t)) = proj{t,...,T }(ξ̃1 + ξ̃2),

• ξ(ω,t)(c) + ξ(η,t)(c) < ξ1(c) + ξ2(c).

Theorem 4.6.6 (Monotonicity Principle).
Assume that π is a solution of OptStop

π, then there is a measurable, F -adapted set Γ ⊆R
I × I

such that

π(Γ ) = 1

and

SG∩ (Γ < × Γ ) = ∅,

where Γ < := {(ω,s) ∈RI × I : (ω,t) ∈ Γ for some t > s}.

Equipped with this general result, we can easily show optimality of the greedy strategy
introduced in the last section. For this class of payoff functions in particular, it can be
shown that monotonicity is already a sufficient condition for being an optimizer.

Corollary 4.6.7. Let the payoff function c be given as

c(ω,t) = f (t)ωt ω ∈RI , t ∈ I,

where f : I → R
+ is monotonously increasing. Then the greedy strategy π ∈ RST(µ,ν) is a

maximizer of OptStop
π. If ξ ∈ RST(µ,ν) satisfies the assertions of Theorem 4.6.6, then

projXt×Xt+1
(ξ(·, t)) = projXt×Xt+1

(π(·, t)) , projXt×Xt+1(µ)-a.e., t ∈ I.

Proof. From the construction of π via quantiles, see Example 4.5.3, there exists
At := (−∞, at] ⊆R, t ∈ I such that Mt =

∏
s<t[as,∞)×At ×

∏
r>tR, each at is minimal with

µ

∑
s≤t

Ms

 ≥∑
s≤t

ν(s) .

Let ξ ∈ RST(µ,ν) be optimal, then we denote the set of Theorem 4.6.6 with Γ . Assume that

projXs×Xs+1
(ξ(·, s)−π(·, s)) = 0, projXs×Xs+1

(µ)-a.s., s < t < T ,

projXt×Xt+1
(ξ(·, t)−π(·, t)) , 0quadprojXt×Xt+1

(µ)-a.e.

Then there exists ω ∈ Γ such that

ωs ∈ (as,∞), s < t, ω(t) ∈ [at ,∞) and ξω(t) > 0.

Since ξ has to preserve the marginals, there exists η ∈Mt ∩ Γ such that ξη(s) > 0 for an
s > t, which yields ηt < ωt. We want to show that ((η, t), (ω,t)) ∈ SGξ which would lead
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to a contradiction. Therefore, we construct ξ1 ∈ RSTtδωt
and ξ2 ∈ RSTtδηt

by defining two
disintegrations

ξ1
θ(s) := ξ(ω,t)

θ (t) · ξ(η,t)
θ (s) +

0 s = t,

ξ
(ω,t)
θ (s) s > t.

ξ2
θ(s) := (1− ξ(ω,t)

θ (t)) · ξ(η,t)
θ (s) +

ξ(ω,t)
θ (t) s = t,

0 s > t.

Computing the payoff yields

ξ1(c)− ξ(ω,t)(c) + ξ2(c)− ξ(η,t)(c)

= −
∫
f (t)ωtξ

(ω,t)
θ (t) ·

(
1− ξ(η,t)

θ (t)
)
dP(θ) +

∑
t>s

∫
f (s)(ωt +θs)ξ

(ω,t)
θ (t) · ξ(η,t)

θ (s)dP(θ)

+
∫
f (t)ηtξ

(ω,t)
θ (t) ·

(
1− ξ(η,t)

θ (t)
)
dP(θ)−

∑
t>s

∫
f (s)(ηt +θs)ξ

(ω,t)
θ (t) · ξ(η,t)

θ (s)dP(θ)

=
∑
s>t

∫
(f (s)− f (t))(ωt − ηt)ξ

(ω,t)
θ (t)ξ(η,t)(dω,s) > 0.

Therefore, ((η, t), (ω,t)) ∈ SGξ ∩(Γ < × Γ ) which is a contradiction. q

Corollary 4.6.8. Under the assumption of Corollary 4.6.7, the support of the greedy strategy
π ∈ RST(µ,ν) introduced in Example 4.5.3 satisfies the assertions of Theorem 4.6.6.

Proof. Let ((η, t), (ω,t)) ∈ Γ < × Γ and κ := 1
2 (δηt + δωt ), then 1

2 (π(η,t) +π(ω,t)) =: π̃ ∈ RSTtκ can
be viewed as a greedy strategy to the auxiliary problem:

Maximize ξ 7→ ξ(c) under ξ ∈ RSTtκ s.t. projI≥t (ξ − π̃) = 0.

By applying Corollary 4.6.7 we obtain optimality of π̃, and

SGπ∩(Γ < × Γ ) = ∅.
q
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4.7. Conclusion and Outlook

In Chapter 4.2, the optimization problems OptStop
γ and OptStop

π were formally intro-
duced and a link between them was made. Based on the theory of optimal transport, the
existence of optimizers is shown in Chapter 4.3. In addition, a Kantorovich-type duality
theorem was developed, inspired by recent work of Zaev [76]. Chapter 4.5 deals with the
optimization of a class of payoff functions. For this, an optimal strategy was found in
Theorem 4.5.27. Finally, in Chapter 4.6 different geometric optimality criteria – so-called
monotonicity principles – are formulated, which have their roots in the theory of optimal
transport. It is shown how they can be adapted for OptStop

π and are applied to show
optimality of the strategy introduced in Section 4.5.3.

We close with an outlook on future research possibilities. Considerations were made on
more general monotonicity principles, for example on the monotonicity principle for
Gozlan-type problem. These considerations have not been completed yet. Furthermore,
efforts were made by Källblad [38] in the area of time-continuous distribution-constrained
optimal stopping problems to reformulate the problem using so-called measure-valued
martingales. In this current work [38], the following optimal stopping problem with a
constraint placed on the distribution of the stopping time is considered: given a probability
measure µ on (0,∞) (that corresponds to our measure ν on I) and a filtered probability
space supporting a Brownian motion (Bt)t≥0, we aim at finding

sup
τ∈T µ

E[c(B·, τ)], (4.7.1)

where T µ is the set of stopping times with distribution µ and c is a given measurable cost
function satisfying c(ω,t) = c(ω·∧t , t). This is a special case of our problem OptStop

γ .
Each stopping time τ in T µ is identified with the measure-valued martingale (ξt)t≥0
defined as its conditional distribution given the current information:

ξt = L(τ | Ft); (4.7.2)

any such process will satisfy the initial condition ξ0 = µ along with a martingale property
and a certain adaptedness condition corresponding to the stopping-time property of τ .
When reformulating the optimal stopping problem as an optimization problem over such
measure-valued martingales (MVMs), the distribution-constraint is then incorporated
as an initial condition which allows the problem to be addressed as a stochastic control
problem; the main result establishs that the dynamic programming principle holds for this
problem.It should be outlined here how this could apply. If you transfer these considera-
tion to the enlarged problem OptStop

γ , there arise interesting connections. Analogously
we get the following for our problem OptStop

γ and notation: given a probability measure
ν on I and a filtered probability space supporting a Brownian motion (Bt)t∈I , we aim at
finding

sup
γ∈Mν

I

E[c(B·,γ)], (4.7.3)

whereMν
I is the set of adapted random probability measures with distribution ν and c

is a given measurable cost function satisfying c(ω,t) = c(ω·∧t , t). Each adapted random
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probability measure γ in Mν
I is identified with the measure-valued martingale (ξt)t∈I

defined as its conditional distribution given the current information:

ξt(A) = E

[∑
u∈A

γu
∣∣∣ Ft]; ∀t ∈ I, A ∈ B(I), (4.7.4)

any such process will satisfy the initial condition ξ0 = ν along with a martingale property
and a certain adaptedness condition corresponding to the property of γ .
The process (ξt)t∈I defined in (4.7.4) is a measure-valued martingale, because it satisfies
the following definition with P denotes the set of probability measures on I with finite
first moment, which can easily checked:

Definition 4.7.5 (MVM). Cf. [38, Definition 3.1]:
Given a filtered probability space supporting an adapted process (ξt)t∈I with ξt ∈ P , we
say that

• the process ξ is a measure-valued martingale (MVM) if ξ·(A) is a martingale, for any
A ∈ B(I);

• a MVM is continuous if t 7→ ξt is continuous in the topology induced byW1, the first
Wasserstein metric, for almost all ω ∈Ω;

• a MVM is adapted if ξt(I≤s) = ξu(I≤s) a.s. , for all s ≤ t ≤ u.

By Section 3.2 we know that OptStop
γ coincides with OptStop

π. We will focus on these
considerations. Let T := sup(I). Each randomized stopping timeπ in RST(µ,ν) is identified
with the measure-valued martingale (ξt)t∈I defined as its conditional distribution given
the current information:

ξT ,ω = πω; ∀ω ∈ B(RI ), (4.7.6)

ξt = E[π | Ft]; a.s. ∀t ∈ I, (4.7.7)

any such process will satisfy the initial condition ξ0 = ν along with a martingale property
and a certain adaptedness condition corresponding to the property of π.

Let MVM(ν) denote the set of adapted measure-valued martingales ξ with ξ0 = ν. Then
we have to show that our original problem OptStop

π (cf. [38, Problem 3.2]), indeed, admits
the following equivalent formulation:

Problem (OptStop
ξ). On the given space (Ω = R

I ,F ,F ,µ), consider the problem of
maximizing

E

[∑
I

c(B·∧s, s)dA
ξ
s

]
with Aξt := ξt(I≤t), over ξ ∈MVM(ν). (4.7.8)

Finally, this would be a further approach or formulation for our considered problem.
Furthermore, it would be interesting in which form [38, Corollary 3.9] is applicable. In
this case, the Relation to Bayraktar and Miller [8] should also be considered.
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II.
Adapted Dependence in

Continuous Time
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5
The Problem

In this chapter we introduce our problem of study in continuous time, cf. [33, Section 7.1].
The distribution-constrained optimization problem, which we consider, is a modified
version of an optimal stopping problem. We deal with financial and actuarial products,
whose payoffs taking value during a certain time interval, are determined by an stochastic
process. The time point of the payoff is modeled by a stopping time. This stopping
time follows a given distribution and can depend on the underlying process. Our tar-
get is to deduce the estimation of the worst-case situation, that means, the supremum
of the expected payoff over all stopping times satisfying the given marginals. We are
interested in sufficient conditions such that there exists a maximizer. As in discrete
time, the problem is denoted by OptStop

τ , because it does not change significantly. In
discrete time we have used adapted random probability measure to extend the problem
or alternatively formulate the problem of several withdrawals within the predefined
time interval. Now, we have to exchange the adapted random probability measures by
stochastic transition kernels to formulate OptStop

γ . Afterwards some general results are
presented for OptStop

γ in Chapter 6. We can formulate these problems again as optimal
transport problems and prove the existence of an optimal strategy for these problems by
using the theory of optimal transport, see Chapter 7. This chapter is the main part and
the results of it are already published ([10]). But first of all and similar to discrete time,
we introduce the notational conventions and necessary assumptions for this part and look
at the distribution-constrained optimal stopping problem OptStop

τ .

Notation 5.0.1. Throughout this part, we consider a continuous time setting and stick to
the following notation.

(a) Let I ⊆R (or I ⊆ [0,∞)) denote a continuous time interval.

(b) For t ∈ I we define the set I<t = (−∞, t)∩I of all times before t, the set I≤t = (−∞, t]∩I
of all times up to t, the set I≥t = [t,∞) ∩ I of all times from t on, and the set
I>t = (t,∞)∩ I of all times after t.

(c) Let (Ω,F ,P) be a probability space with filtration F = (Ft)t∈I .

(d) TI denotes the set of all stopping times τ : Ω→ I . For a given probability distribution
ν on I , let T νI be the set of all I-valued stopping times with distribution ν, i.e.,
L(τ) = ν.
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Let Z = (Zt)t∈I be the adapted process with Z ∈ L1(P), i.e., E[|Zt |] <∞ for all t ∈ I , which
will be needed from time to time. Furthermore, in continuous time we will often need to
assume that the process Z is càdlàg or that it is at least right-continuous.
We now assume that the expected values we are interested in exist and are finite. Using
stopping times in continuous time does not significantly change the formulation of our
problem. Since the problems are similar, we will use the same notation as in discrete time.
Then the value of a classical optimal stopping problem, which we will denote by VT (Z), is
given by

VT (Z) := sup
τ∈TI

E[Zτ ].

Moreover, the distribution-constrained optimal stopping problem is given in the following
way.

Problem (OptStop
τ ). Consider a real-valued and F -adapted stochastic process Z = (Zt)t∈I

such that E[Z+
τ ] or E[Z−τ ] is finite for every τ ∈ T νI . Find sufficient conditions such that

among all stopping times τ ∈ T νI there exists a maximizer τ∗ solving

E[Zτ∗] = sup
τ∈T νI

E [Zτ ] =: V νT (Z) .

If T νI = ∅, we set V νT (Z) = −∞.

Then the connection between the standard and distribution-constrained optimal stopping
problem is given for a process Z by

V νT (Z) := sup
τ∈T νI

E[Zτ ] ≤ sup
τ∈TI

E[Zτ ] =: VT (Z) . (5.0.2)

Note that we set supτ∈T νI E[Zτ ] = −∞ in the case T νI = ∅.
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6
Adapted Random Probability

Measure

In this chapter we want to introduce our distribution-constrained optimization problem
OptStop

γ in continuous time similar to the one in discrete time. For this we have to
exchange the adapted random probability measures by stochastic transition kernels. Some
preliminaries to stochastic transition kernels are given in Section A.5 at the beginning of
this work. Similar to discrete time, the formulation and some results are stated in Section
6.1. In Section 6.2 we give some results for a special class of processes.

6.1. The Problem

For the similar definition of V νM(Z) and formulation of OptStop
γ we have to exchange the

adapted random probability measures by stochastic transition kernels, which are given in
the following definition.

Definition 6.1.1. Cf. [33, Definition 7.6]: For a fixed probability measure ν on BI we say
that a stochastic transition kernel Γ : Ω×BI → [0,1] is inMν

I if for all t ∈ I

(a) Ω 3ω 7→ Γ (ω,I≤t) is Ft-measurable,

(b) E[Γ (·, I≤t)] = ν(I≤t).

For a (F ⊗BI )-measurable process Z : Ω× I →R and Γ ∈Mν
I with

P

({∫
I
Z−t Γ (·,dt) <∞

}
∪

{∫
I
Z+
t Γ (·,dt) <∞

})
= 1

we define

ZΓ :=
∫
I
Zt Γ (·,dt) . (6.1.2)

For an adapted process Z with E[
∫
I
Z−t Γ (·,dt)] <∞ or E[

∫
I
Z+
t Γ (·,dt)] <∞ for all Γ ∈Mν

I ,
we are now interested in the value

V νM(Z) := sup
Γ ∈Mν

I

E[ZΓ ]. (6.1.3)
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Chapter 6. Adapted Random Probability Measure

Remark 6.1.4. See [33, Remark 7.7]: For the definition of ZΓ it is sufficient to assume that
Z is a (F ⊗BI )-measurable process. Furthermore it is necessary to assume that the process
Z is adapted to find a reasonable optimal stochastic transition kernel Γ ∗ satisfying

E[ZΓ ∗] = sup
Γ ∈Mν

I

E[ZΓ ].

Then there exists a modification of Z, which is progressively measurable (see Defini-
tion A.2.6).

Using the preliminaries in Section A.5 we get the following:

Remark 6.1.5. Note that (Ω,F ) and (I,BI ) are measurable spaces. In addition, P is a
probability measure on (Ω,F ) and Γ is a stochastic transition kernel from Ω×BI to I .

(a) Applying Lemma A.5.11 for f : Ω× I → [0,∞] with f (ω,t) = Zt(ω) we know that the
map

ω 7→
∫
Zt(ω)Γ (ω,dt)

is well-defined and F -measurable, because Z is (F ⊗BI )-measurable.

(b) Using Corollary A.5.14 we have that P⊗ Γ is a probability measure on (Ω× I,F ⊗BI )
and uniquely determined by

P⊗ Γ (A1 ×A2) =
∫
A1

Γ (ω,A2)P(dω) for all A1 ∈ F ,A2 ∈ BI .

(c) Let Z be non-negative or in L1(P ⊗ Γ ). Then the thoughts above and the Fubini
for transition kernels, see Theorem A.5.18, allow the given a.s. definition of ZΓ in
Definition 6.1.1, because

E[ZΓ ] =
∫
Ω×I

Zt(ω)P⊗ Γ (dω,dt) =
∫
Ω×I

Zt(ω)d(P⊗ Γ )(ω,t)

Theorem A.5.18=
∫
Ω

(∫
I
Zt(ω)Γ (ω,dt)

)
P(dω) = E

[∫
I
Zt Γ (·,dt)

]
.

Note that the expectations are with respect to different measures.

(d) Note that for all Γ ∈Mν
I the marginal/projection from P⊗ Γ to I is also a probability

measure, because of the definition of Γ . It holds that

projI (P⊗ Γ ) = ν for all Γ ∈Mν
I ,

such that ν can be rewritten as

ν(B) = E[Γ (·,B)] =
∫
Ω

Γ (ω,B)dP(ω) for all B ∈ BI .
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Then the distribution-constrained optimization problem OptStop
γ is given in the follow-

ing way:

Problem (OptStop
γ ). Consider a real-valued and F -adapted stochastic process Z = (Zt)t∈I .

Find sufficient conditions such that:

(a) For every Γ ∈Mν
I , the integral

∫
I
Zt Γ (·,dt) defining ZΓ , is P-a.s. absolutely convergent

in R satisfying E[
∫
I
Z−t Γ (·,dt)] <∞ or E[

∫
I
Z+
t Γ (·,dt)] <∞.

(b) There exists a maximizer Γ ∗ ∈Mν
I solving

E[ZΓ ∗] = sup
Γ ∈Mν

I

E[ZΓ ] . (6.1.6)

As in discrete time, we have that T νI can be embedded inMν
I andMν

I is not empty.

Example 6.1.7. Given an F -stopping time τ ∈ T νI , it can be naturally identified with the
stochastic transition kernel Γ ∈Mν

I defined by

Γ (ω,t) = 1{τ(ω)}(t), ω ∈Ω, t ∈ I. (6.1.8)

Example 6.1.9. The setMν
I is never empty, because it contains the stochastic transition

kernel Γ defined by Γ (·, t) = νt1Ω for all t ∈ I .

Therefore, the introduced distribution-constrained optimization problem OptStop
γ is

an enlargement of the problem OptStop
τ and it holds obviously that V νT (Z) ≤ V νM(Z). In

[33, Chapter 7] and [33, Chapter 8], there are already discussed some elementary general
results and also bounds for special cases. Similar to discrete time the value of the classical
optimal stopping problem, which we have denoted by VT (Z), is an upper bound for V νT (Z)
and also for V νM(Z), which is proven with [33, Lemma 8.17]. Furthermore it holds again
that V νind(Z) gives us a lower bound. For every Γ ∈ Mν

I which is independent of Z and
satisfies E[

∫
I
Z−t Γ (·,dt)] <∞ or E[

∫
I
Z+
t Γ (·,dt)] <∞ we get by using [33, Lemma 7.8] that

V νind(Z) =
∫
I
E[Zt]ν(dt) .

Then we have for independent Z and τ ∈ T νI , ∅ or Γ ∈Mν
I satisfying E[

∫
I
Z−t Γ (·,dt)] <∞

or E[
∫
I
Z+
t Γ (·,dt)] <∞

V νind(Z) ≤ V νT (Z) ≤ V νM(Z) .

In discrete time we have seen that we can also embed the original setMν
I into a set T̃ νI

corresponding to an enlarged filtration, if the underlying process Z retains its original
measurability. We also get this in continuous time by [33, Theorem 7.12], which is given
in the following way:

Theorem 6.1.10. Let I ⊆ [0,∞) and Γ be an adapted stochastic transition kernel with respect
to the filtration (Ft)t∈I . By extending the probability space if necessary, we may assume w.l.o.g.
that there exists a random variable U , uniformly distributed on [0,1] and independent of
F∞ := σ (

⋃
t∈I Ft). Then

τ(ω) := inf{t ∈ I | U (ω) ≤ Γ (ω,I≤t)}, ω ∈Ω,
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satisfies {τ ≤ t} = {U ≤ Γ (·, I≤t)} for every t ∈ I , hence τ is a stopping time with respect to the
filtration F̃ = (F̃t)t∈I defined by F̃t := σ (Ft ∪ σ (U )) for t ∈ I and satisfies P(τ ≤ t|Ft)

a.s.= Γ (·, I≤t)
for all t ∈ I . Let Z : Ω× I →R be an (F∞ ⊗BI )-measurable process such that E[Z−τ ] <∞. Then

E[Zτ |F∞] a.s.= ZΓ and E[Zτ ] = E[ZΓ ].

In [33, Section 8.3], there is given a discrete approximation, which will allow us to transfer
results from discrete time to continuous time. We want to specify this one again here and
its application given by [33, Lemma 8.13].

Proposition 6.1.11. See [33, Proposition 8.10]:
Given a continuous time interval I ⊆ [0,∞) with 0 ∈ I . Let 0 = t

(n)
0 < t

(n)
1 < . . . < t

(n)
mn

be a
partition of the time interval I , such that the length of the corresponding subintervals tends to
zero as n→∞ and that t(n)

mn
→ sup(I) for n→∞ in case sup(I) ∈ I or t(n)

mn
→∞) for n→∞

in case I = [0,∞). Given a stochastic transition kernel Γ , for a fixed n ∈N define a discrete
adapted random probability measure γn by

γn
t

(n)
k

=


Γ (·, {0}) if k = 0,

Γ (·, [0, t(n)
k ])− Γ (·, [0, t(n)

k−1]) if k = 1, . . . ,mn − 1,

Γ (·, I)− Γ (·, [0, t(n)
mn−1]) if k =mn.

Define a sequence of stochastic transition kernels (Γ n)n∈N by

Γ n =
mn∑
k=0

γn
t

(n)
k

δ
t

(n)
k
,

where δ
t

(n)
k

denotes the Dirac measure. Then for every right-continuous process Z = (Zt)t∈I with

E[supt∈I |Zt |] <∞

lim
n→∞

∫
I
Zt Γ

n(dt) =
∫
I
Zt Γ (dt) pointwise on Ω and in L1.

Then it holds that:

Lemma 6.1.12. See [33, Lemma 8.13]:
For a right-continuous process Z = (Zt)t∈I with E[supt∈I |Zt |] <∞ and a discrete approximation
as defined in Proposition 6.1.11 we have

E

[∫
I
Zt Γ (dt)

]
= E

[
lim
n→∞

∫
I
Zt Γ

n(dt)
]

= lim
n→∞

E

[∫
I
Zt Γ

n(dt)
]
.
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6.2. Product of a Martingale and a Deterministic Function

6.2. Product of a Martingale and a Deterministic Function

In this section a special class of processes are considered, for which it is possible to find
an optimal strategy and the extremal value resulting from it, analogously to Section 3.5.2
of Part I where this class is considered in discrete time. Again we consider a continuous
time interval I ⊆ R and adapted stochastic processes Z = (Zt)t∈I with Z ∈ L1(P) and we
assume that the process Z is càdlàg or that it is at least right-continuous. Let M be a
right-continuous martingale, ν be a given distribution on I and the support of ν is defined
as

J = supp(ν) := {t ∈ I | νt > 0}.

The considered, adapted process Z is given in the form

Zt = f (t)Mt , t ∈ I, (6.2.1)

where f is in

Fν(M) :=
{
f : I →R

∣∣∣∣∣ f non-decreasing function,

(ω,t) 7→ f (t)Mt(ω) is (P⊗ Γ )-integrable for all Γ ∈Mν
I

}
.

Using the stochastic transition kernels to describe our problem, we are interested in

V νM(Z) := sup
Γ ∈Mν

I

E[ZΓ ] = sup
Γ ∈Mν

I

E

[∫
I
Zt Γ (·,dt)

]
.

The main theorem of this section will give us a characterization of an optimal strategy for
the problem OptStop

γ . Before we formulate the main theorem we want to take a look at
Fν(M) and some specific properties.

Lemma 6.2.2 (Fν(M) ).

(a) For every f ∈ Fν(M) and Γ ∈Mν
I the Lebesgue integral defining ZΓ is almost surely finite

and E[|ZΓ |] <∞.

(b) If Fν(M) includes the identically one function, then

(i) MΓ is almost surely finite and E[|MΓ |] <∞ for every Γ ∈Mν
I ,

(ii) all bounded non-decreasing functions f : I →R are in Fν(M), especially all constant
functions.

Proof. (a) For every f ∈ Fν(M) we have that |f (t)Mt(ω)| is (P ⊗ Γ )-integrable for all
Γ ∈Mν

I such that

∞ > E[|f (t)Mt(ω)|] =
∫
Ω×I
|f (t)Mt(ω)|d(P⊗ Γ )(ω,t)

Theorem A.5.18=
∫
Ω

(∫
I
|Zt(ω)|Γ (ω,dt)

)
P(dω) ≥

∫
Ω

∣∣∣∣∣∫
I
Zt(ω)Γ (ω,dt)︸              ︷︷              ︸

=ZΓ

∣∣∣∣∣P(dω)

= E[|ZΓ |] .
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This implies that ZΓ is almost surely finite and E[|ZΓ |] <∞.

(b) (i) If Fν(M) includes the identically one function, we have that |Mt(ω)| is
(P⊗ Γ )-integrable for all Γ ∈ Mν

I such that MΓ is almost surely finite and
E[|MΓ |] <∞, cf. the thoughts above.

(ii) Fν(M) includes the identically one function which means that |Mt(ω)| is
(P⊗ Γ )-integrable for all Γ ∈Mν

I . Moreover, for every bounded non-decreasing
functions f : I → R it holds that supt∈I |f (t)| <∞. Using these statements we
get that |f (t)Mt(ω)| ≤ supt∈I |f (t)| |Mt(ω)| is (P⊗ Γ )-integrable for all Γ ∈ Mν

I .
Thus f ∈ Fν(M). Especially for every constant function f ≡ c, c ∈ R we have
that the equality |f (t)Mt(ω)| = |c ||Mt(ω)|.

q

Remark 6.2.3. Note that:

(a) If Fν(M) includes the identically one function, then M ∈ L1(P⊗ Γ ). M ∈ L1(P⊗ Γ ) is
equivalent to the condition E[

∫
I
|Mt |Γ (·,dt)] <∞, which implies that∫

I
|Mt |Γ (·,dt) <∞, P-a.s.

(b) For every f ∈ Fν(M) the process Z given by (6.2.1) is in L1(P⊗ Γ ).

Definition 6.2.4. Fix Γ ∈ Mν
I . For every progressively measurable martingale M with

M ∈ L1(P⊗ Γ ), we define ΓM : Ω×BI →R by

ΓM(ω,B) :=


∫
B
Mt(ω)Γ (ω,dt), if

∫
I
|Mt(ω)|Γ (ω,dt) <∞,

0, otherwise

for ω ∈Ω, B ∈ BI .

Lemma 6.2.5. ΓM given as in Definition 6.2.4 is a (signed) transition kernel.

Proof. We have to show that ΓM satisfies the condition of Definition A.5.10.

(a) At first, we have to show that ω 7→ ΓM(ω,I≤t) is Ft-measurable. We decompose M
into its positive partM+

t := max{Mt ,0} and its negative partM−t := max{−Mt ,0}, such
that Mt :=M+

t −M−t for every t ∈ I . Due to the progressively measurability of M we
know that the restriction of M± to I≤t ×Ω is (BI≤t ⊗Ft)-measurable for every t ∈ I .
Using Lemma A.5.11 for f (ω,t) :=M±t (ω) it follows that

ω 7→
∫
I≤t

M±s (ω)Γ (ω,ds) (6.2.6)

is Ft-measurable and well-defined.

(b) Furthermore we have to show that B 7→ ΓM(ω,B) is a signed measure on (I,BI ) for
every ω ∈ Ω. Combine the knowledge that B 7→ Γ (ω,B) is a probability measure
on (I,BI ) for every ω ∈Ω with E[

∫
|Mt |Γ (·,dt)] <∞, see Remark 6.2.3, implies that

B 7→
∫
B
Mt(ω)Γ (ω,dt) is a signed measure.

q
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Remark 6.2.7. Using Corollary A.5.14 we have that P ⊗ ΓM is a signed measure on
(Ω× I,F ⊗BI ) and uniquely determined by

P⊗ ΓM(A1 ×A2) =
∫
A1

ΓM(ω,A2)P(dω) for all A1 ∈ F , A2 ∈ BI .

Due to ΓM depends on M and Γ , it is obvious that P⊗ ΓM is absolutely continuous with
respect to P⊗ Γ . Under the assumption that a measure λ is σ -finite, the Radon-Nikodym
theorem characterizes the absolute continuity of η with respect to λ with the existence of
a function f ∈ L1(λ) such that η = f λ, i.e., such that

η(A) =
∫
A
f dλ for every A ∈ BI .

Some authors use the name "Differentiation of measures" for the decomposition above
and the density f is sometimes denoted by dη

dλ which we will use. The absolute continuity
of η with respect to λ is denoted by η� λ.

Furthermore, using the definitions given above we have for all A1 ∈ F and A2 ∈ BI that

(P⊗ ΓM )(A1,A2) =
∫
A1

ΓM(ω,A2)P(dω) =
∫
A1

∫
A2

Mt(ω)Γ (ω,dt)P(dω)

=
∫
A1×A2

Mt(ω)d(P⊗ Γ )(ω,t)

such that

d(P⊗ ΓM )
d(P⊗ Γ )

(ω,t) =Mt(ω) .

Remark 6.2.8. In addition, we define

µΓ ,M(B) := E[ΓM(·,B)] = E

[∫
B
Mt Γ (·,dt)

]
for all B ∈ BI .

Because Fν(M) contains the identically one function, we get that MΓ is well-defined and
P⊗Γ -integrable, cf. Lemma 6.2.2. Remembering that E[

∫
|Mt |Γ (·,dt)] <∞ , ifM ∈ L1(P⊗Γ ).

Then µΓ ,M is a signed measure and a projection from P⊗ ΓM to I . In a nutshell, we will
consider the probability measure µΓ and the signed measure µΓ ,M which are given by

µΓ (B) = E[Γ (·,B)] =
∫
Ω

Γ (·,B)dP = ν(B) and (6.2.9)

µΓ ,M(B) = E[ΓM(·,B)] =
∫
Ω

∫
B
Mt Γ (·,dt)dP for all B ∈ BI (6.2.10)

and we know that

projI (P⊗ Γ ) = µΓ = ν and projI (P⊗ ΓM ) = µΓ ,M

and µΓ ,M is absolutely continuous with respect to µΓ = ν, i.e., if ν(A) = 0 for any A ∈ BI ,
then µΓ ,M(A) = 0.
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Chapter 6. Adapted Random Probability Measure

Now, we will formulate the main theorem of this subsection.

Theorem 6.2.11. Given a continuous time interval I ⊆R, a probability distribution ν on I and
a right-continuous martingale M. Assume that Fν(M) contains the identically one function.
Then for a stochastic transition kernel Γ ∗ ∈Mν

I the following properties are equivalent:

(a) Γ ∗ is optimal for all processes (Zt)t∈I given as

Zt = f (t)Mt , t ∈ I, (6.2.12)

with f ∈ Fν(M) and f is bounded.

(b) Γ ∗ satisfies E[MΓ ∗] = E[MΓ ] and

E

[∫
I>s

Mt Γ
∗(·,dt)

]
≥ E

[∫
I>s

Mt Γ (·,dt)
]

(6.2.13)

for all s ∈ I and all Γ ∈Mν
I .

(c) Γ ∗ is optimal for all processes (Zt)t∈I given as

Zt = f (t)Mt , t ∈ I,

with f ∈ Fν(M).

Proof of Theorem 6.2.11.

1. (a) implies (b):
Note that based on the claimed conditions we have that ZΓ and MΓ are well-defined
and in L1(P ⊗ Γ ) for all Γ ∈ Mν

I , see Lemma 6.2.2. A stochastic transition kernel
Γ ∗ ∈ Mν

I is optimal for (Zt)t∈I , if E[ZΓ ∗] ≥ E[ZΓ ] for all Γ ∈ Mν
I . For every (Zt)t∈I

given in the form as in condition (a) of Theorem 6.2.11, the optimality of Γ ∗ implies

E[ZΓ ∗] = E

[∫
I
f (t)Mt Γ

∗(·,dt)
]
≥ E[ZΓ ] = E

[∫
I
f (t)Mt Γ (·,dt)

]
, Γ ∈Mν

I . (6.2.14)

For a fixed s ∈ I the function fs : I →R defined as

fs(t) := 1I>s(t), t ∈ I, (6.2.15)

is a special non-decreasing deterministic function and bounded by 1. We have that

fs(t)Mt =

0 for t ∈ I≤s ,
Mt for t ∈ I>s ,

and
∫
I
|fs(t)Mt |Γ (ω,dt) =

∫
I>s
|Mt |Γ (ω,dt) ≤

∫
I
|Mt |Γ (ω,dt) for almost all ω ∈Ω. Due

to the identically one function being in Fν(M), we get that fs ∈ Fν(M). The in-
equality (6.2.14) holds for every non-decreasing deterministic function f ∈ Fν(M),
particularly for fs, s ∈ I . For s ∈ I and for every Γ ∈Mν

I we have

E

[∫
I
fs(t)Mt Γ (·,dt)

]
= E

[∫
I>s

Mt Γ (·,dt)
]
, (6.2.16)
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6.2. Product of a Martingale and a Deterministic Function

so that we get for every s ∈ I and every Γ ∈Mν
I with the special choice fs that

E

[∫
I>s

Mt Γ
∗(·,dt)

]
≥ E

[∫
I>s

Mt Γ (·,dt)
]
.

Now, we want show that E[MΓ ] is the same real number for all Γ ∈Mν
I . Applying

the inequation (6.2.14) for the identically one function, we get immediately that

E[MΓ ∗] ≥ E[MΓ ] for all Γ ∈Mν
I . (6.2.17)

If Fν(M) includes the identically one function, then we know that all constant
functions are in Fν(M), see Lemma 6.2.2. Therefore we can also apply the inequality
(6.2.14) for the function which is identically minus one, i.e., g(t) = −1, for all t ∈ I .
Note that g is bounded by one. We get for every Γ ∈Mν

I that

E[MΓ ∗] ≤ E[MΓ ] for all Γ ∈Mν
I . (6.2.18)

Putting the inequations (6.2.17) and (6.2.18) together we get the assertion.

2. (b) implies (a) and (b) implies (c):
Using Remark 6.2.8 and Definition 6.2.4, we define for all B ∈ BI and for every
Γ ∈Mν

I

µΓ ,M(B) := E[ΓM(·,B)] = E

[∫
B
Mt Γ (·,dt)

]
.

• Because Fν(M) contains the identically one function, we get that MΓ is well-
defined and P⊗ Γ -integrable, cf. Lemma 6.2.2.
Remember that E[

∫
|Mt |Γ (·,dt)] <∞ , if M ∈ L1(P⊗ Γ ). Then µΓ ,M is a signed

measure with finite total variation, because of

|µΓ ,M |(I) = E

[∫
I
|Mt |Γ (·,dt)

]
<∞.

• Due to E[MΓ ] is the same real number for all Γ ∈Mν
I , we have for every

Γ , Γ̃ ∈Mν
I that µΓ ,M(I) = E[

∫
I
Mt Γ (·,dt)] = E[MΓ ] = E[MΓ̃ ] = µΓ̃ ,M(I).

Now, we assume that Γ ∗ ∈Mν
I is optimal and satisfies inequation (6.2.13), i.e.,

E

[∫
I>s

Mt Γ
∗(·,dt)

]
≥ E

[∫
I>s

Mt Γ (·,dt)
]

for all s ∈ I and Γ ∈Mν
I . Using equation (6.2.10) we have

µΓ ∗,M(I>s) ≥ µΓ ,M(I>s) for all s ∈ I,

this means µΓ ∗,M dominates µΓ ,M in first order, cf. Definition A.1.11. In addition,
due to Lemma A.1.18 we have equivalently∫

I
f (t)dµΓ ∗,M(t) ≥

∫
I
f (t)dµΓ ,M(t), (6.2.19)
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Chapter 6. Adapted Random Probability Measure

for all functions f such that the integrals exist. Because of the claimed conditions of
Theorem 6.2.11 we know that the integrals in equation (6.2.19) exist for all f ∈ Fν(M)
and ZΓ is almost surely finite and E[|ZΓ |] <∞, see Lemma 6.2.2. Therefore by using
Remark 6.2.7 we have that

E[ZΓ ] =
∫
I
f (t)dµΓ ,M(t), (6.2.20)

because

E[ZΓ ] =
∫
Ω×I

Zt(ω)d(P⊗ Γ )(ω,t) =
∫
Ω×I

f (t)Mt(ω)d(P⊗ Γ )(ω,t)

=
∫
Ω×I

f (t)
d(P⊗ ΓM )
d(P⊗ Γ )

(ω,t)d(P⊗ Γ )(ω,t) =
∫
Ω×I

f (t)d(P⊗ ΓM )(ω,t)

=
∫
I
f (t)

∫
Ω

d(P⊗ ΓM )(ω,t) =
∫
I
f (t)dµΓ ,M(t) .

Finally, with equation (6.2.20) and inequation (6.2.19) it follows for every (Zt)t∈I
given in the form as in condition (a) of Lemma 6.2.11 that

E[ZΓ ∗] ≥ E[ZΓ ] for all Γ ∈Mν
I

such that we get the assertion.

3. (c) implies (b):
It follows immediately using (a) implies (b).

q
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7
Randomized Stopping Times

In this chapter we consider the distribution-constrained stopping problems from a mass
transport perspective. For this we reformulate the problem OptStop

τ in terms of optimal
transport into OptStop

τ . Using the methods and techniques of optimal transport theory
we obtain the existence of optimal stopping times of a Brownian motion with given
marginals. However, the cost process must be at least measurable and appropriately
adapted. Certain continuity assurances then guarantee the existence of solutions to
the considered problem. The main result is Theorem 7.1.10. To prove it, we have to
introduce randomized stopping times and the problem OptStop

π. Furthermore, ideas
and concepts from the optimal transport (and its martingale variant) are adapted to
obtain a geometric description of the optimal strategy. A fundamental idea in optimal
transport is that the optimality of a transport plan is reflected by the geometry of its
support set which can be characterized using the notion of c-cyclical monotonicity. The
relevance of this concept for the theory of optimal transport has been fully recognized by
Gangbo and McCann [29], based on earlier work of Knott and Smith [42] and Rüschendorf
[67, 68] among others. Inspired by these ideas, the literature on martingale optimal
transport has developed a ‘monotonicity principle’ which allows to characterize martingale
transport plans through geometric properties of their support sets, cf. [14, 76, 11, 9, 32, 15].
This martingale optimal transport problem arises naturally in robust finance; papers to
investigate such problems include [35, 12, 28, 22, 17, 30, 55], and this topic is commonly
referred to as martingale optimal transport. In mathematical finance, transport techniques
complement the Skorokhod embedding approach (see [56, 34] for an overview) to model-
independent/robust finance.
The methods work for a large class of cost processes and it is shown that for many cost
processes a solution is given by the first hitting time of a barrier in a suitable phase space.
As a by-product we recover classical solutions of the inverse first passage time problem /
Shiryaev’s problem. The results of this section of the thesis are already in [10] published.

In this chapter, let (Ω,G, (Gt)t≥0,P) be a filtered probability space and (Bt)t≥0 be a Brown-
ian motion started1 in 0 on some filtered probability space (Ω,G, (Gt)t≥0,P) satisfying the
usual conditions and let ν be a measure on (0,∞). The main contribution of this chapter
is to establish a monotonicity principle which is applicable to distribution-constrained

1We note that the results presented in this section remain valid for Brownian motions started according to a
general law λ at the cost of slightly more tedious moment conditions in the formulation of Corollaries 7.4.1
and 7.4.9.
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Chapter 7. Randomized Stopping Times

optimal stopping problems OptStop
τ . The transport approach turns out to be remarkably

powerful, in particular we will find that questions as raised in Problems OptStop
ψ(Bt ,t) and

OptStop
B∗t can be addressed using a relatively intuitive set of arguments. We emphasize

that the solutions to the constrained optimal stopping problems provided in Corollaries
7.4.1 and 7.4.9 represent particular applications of the abstract results obtained below.
Figure 7.1 presents graphical depictions of stopping rules of several further solutions of
constrained optimal stopping problems (together with the respective optimality proper-
ties). These stopping rules can be derived – under suitable moment conditions – using
arguments very similar to those required for Corollaries 7.4.1 and 7.4.9.
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Figure 7.1.: Solutions to constrained optimal stopping problems.

The remainder of this chapter is organized as follows: in Section 7.1 we reformulate our
considered problem in terms of optimal transport and we specify the necessary assump-
tions, notations and definitions. Furthermore the main results are given in Theorem
7.1.10 and Theorem 7.1.18. The existence of an optimizer of OptStop

τ is shown in Section
7.2. For this we introduce randomized stopping times and the corresponding problem
OptStop

π. We show that Problem OptStop
π has a solution and therefore OptStop

τ .
Section 7.3 deals with the monotonicity principle and is devoted to the proof of Theorem
7.1.18. Finally, in Section 7.4 examples are investigated and optimal maximizers are
determined.
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7.1. The Problem and Main Results

7.1. The Problem and Main Results

Assumption 7.1.1. Let (Ω,G, (Gt)t≥0,P) be a filtered probability space and (Bt)t≥0 be an
adapted process which has continuous paths on (Ω,G, (Gt)t≥0), such that B can be regarded
as a measurable map from Ω to C(R+), the space of continuous functions from R+ to
R. The cost function c will always be a measurable map C(R+) ×R+ → R. Our given
probability measure on R+ will be denoted by ν.

Here we formulate our main optimal stopping problem in terms of minimization, fol-
lowing the usual convention in the optimal transport literature (which is also used in
the closely related paper [9]). Clearly, a sign change transforms this into a maximization
problem and in our applications we will in fact turn to this latter version when resulting
formulations appear more natural, similar to Remark 3.1.11. We trust that this will not
cause confusion. Then the problem we consider can be stated as follows.

Problem (OptStop
τ ). Among all stopping times τ ∼ ν find the minimizer of

τ 7→ E[c(B,τ)].

Remark 7.1.2. Bayraktar and Miller [8] consider the same optimization problem that we
treat here. However their setup and methods are rather distinct from the ones used here:
they assume that the target distribution is given by finitely many atoms and that the
target functional depends solely on the terminal value of Brownian motion. Following the
measure valued martingale approach of Cox and Källblad [20], [8] address the constrained
optimal stopping problem using a Bellman perspective.

Remark 7.1.3. The problem to construct a stopping time τ of Brownian motion such that
the law of τ matches a given distribution on the real line was proposed by Shiryaev in his
Banach Center lectures in the 1970’s, it has since been called Shiryaev’s problem or inverse
first passage problem. Dudley and Gutmann [24] provide an abstract measure-theoretic
construction. An early barrier-type solution to the inverse first passage problem was given
by Anulova [4]. She constructs a symmetric two-sided barrier (corresponding to the case
a = 0 in the sixth picture of Figure 7.1). Anulova discretises the measure µ and concludes
through approximation arguments. The solution to the inverse first passage problem given
in Corollary 7.4.1 was derived by Chen, Cheng, and Chadam, and Saunders [18] based on a
variational inequality which describes the corresponding barrier. Notably, this is predated
by a (formal) PDE description of such barriers given by Avellaneda and Zhu [5] in the
context of credit risk modeling. Ekström and Janson [27] relate this solution to an optimal
stopping problem and provide an integral equation for the barrier. Analytic solutions
to the inverse first passage problem are known only in a few cases ([16, 45, 58, 69, 1, 2]).
An interesting connection between the inverse first passage problem and Skorokhod’s
problem is provided by Jaimungal, Kreinin, and Valov [36].

Throughout we will also make the following assumptions without further mention:

Assumption 7.1.4.

(a) Let c be measurable, (F 0
t )t≥0-adapted, where (F 0

t )t≥0 is the filtration on C(R+)
generated by the canonical process (ω 7→ω(t))t∈R+

.
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Chapter 7. Randomized Stopping Times

(b) There is a G0-measurable random variable U which is uniformly distributed on
[0,1] and independent of the process (Bt)t≥0.

(c) There is a probability measure λ such that (Bt)t≥0 is a Brownian motion with initial
law λ, i.e., B0 ∼ λ.

(d) The problem is well-posed in the sense that E[c(B,τ)] is defined and > −∞ for all
stopping times τ ∼ ν and that E[c(B,τ)] <∞ for at least one such stopping time.

(e)
∫
tp0 dν(t) <∞, where p0 ≥ 0 is some constant that we fix here and that can be chosen

when applying the results from this section.

Remark 7.1.5. A note on language: The adjective “adapted” is usually applied to processes
whose time argument is written in subscript form. For any filtered measurable space Ω̃

and any function f : Ω̃×R+→R (or possibly f : Ω̃×R+→ [−∞,∞]) we will interchangeably
think of f simply as a function or as the process Yt(ω) := f (ω,t). And so f being adapted
means the same thing as (Yt)t∈R+

being adapted. Similarly for a subset Γ of Ω̃×R+ we may
also think of Γ as its indicator function or as the process Yt(ω) := 1Γ (ω,t) and will also say
that the set Γ is adapted. Note that Γ is the common notation in optimal transport and
does not stand in connection with the transition kernels from the previous section. We
trust this will not cause confusion from now on.

Remark 7.1.6. With that in mind, Assumption 7.1.4.(a) should seem like an obvious
thing to ask for from the cost function. Also, knowing about the existence of optional
projections, it should be clear no later than (7.2.4) that Assumption 7.1.4.(a) does not pose
a real restriction on the class of problems we are treating.

Remark 7.1.7. The role of Assumption 7.1.4.(b) should become clearer soon. We would like
to note at this point though that often enough our results, put together, will imply that
the solution of Problem OptStop

τ for a space (Ω,G, (Gt)t≥0,P) which satisfies Assumption
7.1.4.(b) is essentially the same as the solution of the problem for a space which may not
satisfy said assumption, and we will find that we can describe this solution in detail. This
can be seen executed in the proofs of the corollaries stated in the Section 7.4.

Remark 7.1.8. The methods in this chapter work not just for Brownian motion but for
a class of processes which is conceptually bigger, but then turns out to not include
much beyond Brownian motion – namely for any space-homogeneous but possibly time-
inhomogeneous Markov process with continuous paths which has the strong Markov
property. (Here space-homogeneous means that starting the process at location x and
then moving its paths to start at location y results in a version of the process started at y.)
If the reader so wishes, you may think of B as a process from this slightly larger class of
processes. Care was taken not to reference any properties of Brownian motion beyond
those stated here. In particular, our results apply to multi-dimensional Brownian motion.

Remark 7.1.9. The constant p0 in Assumption 7.1.4.(e) will (implicitly) appear in the
statement of Theorem 7.1.18, one of the main results. It is role is to ensure that E[ϕ(B,τ)]
will be finite for some (class of) function(s) ϕ and any solution τ of OptStop

τ . (The choice
ϕ(B,τ) = τp0 is somewhat arbitrary here.)

The main results are Theorem 7.1.10 and Theorem 7.1.18. We give two versions of
Theorem 7.1.10. Version A is easier to state and may feel more natural, but we will need
Version B (which is more general and has essentially the same proof as Version A) in the
proof of the corollaries in the Section 7.4.
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Theorem 7.1.10. .

Version A. Assume that the cost function c is bounded from below and lower semicontinuous
when we equip C(R+) with the topology of uniform convergence on compacts. Then the Problem
OptStop

τ has a solution.

Version B. Assume that the cost function c is lower semicontinuous when we equip C(R+)×R+
with the product topology of two Polish topologies which generate the right sigma-algebras on
C(R+) and R+ respectively and that the set {c−(B,τ) : τ ∼ ν, τ is a stopping time} is uniformly
integrable, where c− := −c∨ 0 denotes the negative part of c. Then the Problem OptStop

τ has a
solution.

To state Theorem 7.1.18 we need a few more definitions.

Remark 7.1.11. We will find it convenient to talk about processes that do not start at time 0
but instead at some time t > 0. Similarly we will consider stopping times taking values in
[t,∞). These will be defined on the space C([t,∞)) equipped with the filtration (F ts )s≥t,
generated by the canonical process (ω 7→ω(s))s≥t again. We refer to the distribution of
Brownian motion started at time t and location x by W

t
x. This is a measure on C([t,∞)).

For a probability measure κ on R we write W
t
κ for the distribution of Brownian motion

started at time t with initial law κ.

Definition 7.1.12 (Concatenation).
For every t ∈ R+ we have an operation � of concatenation, which is a map into C([t,∞))
and is defined for (ω,s) ∈ C([t,∞))× [t,∞) and θ ∈ C ([s,∞)) with θ(s) = 0 by

((ω,s)�θ) (r) =

ω(r) t ≤ r ≤ s
ω(s) +θ(r) r > s

. (7.1.13)

Definition 7.1.14 (Stop-Go pairs).
The set of Stop-Go pairs SG ⊆ (C(R+)×R+)× (C(R+)×R+) is defined as the set of all pairs
((ω,t), (η, t)) (note that the time components have to match) such that

c(ω,t) +
∫
c((η, t)�θ,σ (θ))dW t

0(θ) < c(η, t) +
∫
c((ω,t)�θ,σ (θ))dW t

0(θ) (7.1.15)

for all (F ts )s≥t-stopping times σ for which W
t
0(σ = t) < 1, W t

0(σ =∞) = 0,
∫
σp0 dW t

0 <∞
and for which both sides in (7.1.15) are defined and finite.

A hopefully intuitive way of putting the definition of Stop-Go pairs into words is the
following: ((ω,s), (η, t)) form a Stop-Go pair if and only if, irrespective of how we might
stop after time t (i.e., which stopping rule σ we might use after time t), stopping ω at
time t and letting η go on is better – i.e., has lower cost – than stopping η and letting ω
go on. As hinted at earlier, the definition of Stop-Go pairs depends on the parameter p0
from Assumption 7.1.4.(e). A larger p0 means that we are asking for more in Assumption
7.1.4.(e) and implies that we get a larger set SG, as we are quantifying over fewer stopping
times σ in the definition of SG. This in turn implies that the conclusion of Theorem 7.1.18
below will be stronger.

Definition 7.1.16 (Initial Segments).
For a set Γ ⊆ C(R+)×R+ define the set Γ < ⊆ C(R+)×R+ by

Γ < = {(ω,s) : (ω,t) ∈ Γ for some t > s} . (7.1.17)
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Theorem 7.1.18 (Monotonicity Principle).
Assume that τ solves OptStop

τ . Then there is a measurable, (F 0
t )t≥0-adapted set Γ ⊆ C(R+)×R+

such that
P[((Bt)t≥0, τ) ∈ Γ ] = 1

and

SG∩
(
Γ < × Γ

)
= ∅ . (7.1.19)

The following lemma should give a first hint about how the Monotonicity Principle can
be applied.

Lemma 7.1.20. Let τ be a solution of OptStop
τ and assume that the cost function c is such

that there exists a measurable, (F 0
t )t≥0-adapted process (Yt)t≥0 such that

Yt(ω) < Yt(η) =⇒ ((ω,t), (η, t)) ∈ SG . (7.1.21)

Define the barriers
ˇ
R,R̂ ⊆R×R+ by

ˇ
R =

⋃
(ω,t)∈Γ

(−∞,Yt(ω)]× {t} ,

R̂ =
⋃

(ω,t)∈Γ
(−∞,Yt(ω))× {t} ,

where Γ is a set with the properties in Theorem 7.1.18. Define the functions
ˇ
τ and τ̂ on C(R+)

by

ˇ
τ(ω̃) = inf

{
t ∈R+ : (Yt(B(ω̃)), t) ∈

ˇ
R
}
,

τ̂(ω̃) = inf
{
t ∈R+ : (Yt(B(ω̃)), t) ∈ R̂

}
.

Then

ˇ
τ ≤ τ ≤ τ̂ , P-a.s. (7.1.22)

When applying this Lemma to show that some optimal stopping problem has a barrier-
type solution as symbolized for example by the pictures in Figure 7.1 the process Yt(B)
is of course with what we are labelling the vertical axes in the pictures. So for the
first picture Yt(ω) = ω(t), for the second one Yt(ω) = ω(t) − sups≤tω(s), for the third
Yt(ω) = −(ω(t) − sups≤tω(s)) (the sign is flipped relative to the labelling in the picture
because in this picture the barrier is drawn “up” instead of “down”), etc.
Notice that, contrary to customs, when we draw the barriers

ˇ
R\ R̂ in the pictures coordi-

nate is the in Figure 7.1 the first coordinate is the vertical axis and the second horizontal
axis. This is to make cross-referencing and comparison with [9] easier, we follow their
convention of always having time as the second coordinate but still in the pictures it seems
more natural to put the independent variable on the horizontal axis.
Note that a priori

ˇ
τ and τ̂ do not need to be stopping times or even measurable, as we do

not know much about the sets
ˇ
R and R̂.

Using the properties of a concrete process (Yt)t≥0 we will be able to show in the proofs of
Corollaries 7.4.1 and 7.4.9 that

ˇ
τ = τ̂ a.s. (this should not be surprising as for each time t

the barriers
ˇ
R and R̂ differ by at most a single point) and therefore that the optimizer τ is

the hitting time of a barrier.
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7.2. Existence of an Optimizer

Proof of Lemma 7.1.20. Let ω̃ ∈ Ω s.t. (B(ω̃), τ(ω̃)) ∈ Γ . By assumption this holds for
P-a.a. ω̃. Then

(
Yτ(ω̃)(B(ω̃)), τ(ω̃)

)
∈

ˇ
R and therefore

ˇ
τ(ω̃) ≤ τ(ω̃).

Next, we show that τ̂(ω̃) ≥ τ(ω̃). Assume that (Yt(B(ω̃)), t) ∈ R̂. We want to show that
t ≥ τ(ω̃). By the definition of R̂ we find that there is η ∈ C(R+) with (η, t) ∈ Γ and
Yt(B(ω̃)) < Yt(η), so by (7.1.21) we know ((B(ω̃), t), (η, t)) ∈ SG. Assuming, if possible,
t < τ(ω̃) we get according to Definition 7.1.16 that (B(ω̃), t) ∈ Γ <. Therefore we have that
((B(ω̃), t), (η, t)) ∈ SG∩ (Γ < × Γ ), but this is a contradiction to SG∩ (Γ < × Γ ) = ∅, so we must
have t ≥ τ(ω̃). q

Remark 7.1.23 (Duality). Problem OptStop
τ is an infinite-dimensional linear program-

ming problem and hence, one would expect that a corresponding dual problem can be
formulated. Indeed, assuming that c is lower semicontinuous and bounded from below,
the value of the optimization problem equals

sup
M,ψ

E[M0] +
∫
ψdµ,

where the supremum is taken over bounded G-martingales M = (Mt)t≥0 and bounded
continuous functions ψ : R+→R satisfying (up to evanescence)

Mt +ψ(t) ≤ c(B,t) .

This can be established in complete analogy to the duality result given in [9] and we do
not elaborate.

Remark 7.1.24. The reader interested in the time-discrete case is referred to Part I. There
we also use a different approach and view on the problem, and the existence of an optimal
strategy is proven through ideas and concepts from functional analysis, see Chapter 3,
and from the theory of optimal transport, see Chapter 4.

7.2. Existence of an Optimizer

The proof of existence of solutions to the problem OptStop
τ crucially depends on thinking

of stopping times as the joint distribution of the process to be stopped and the stopping
time. We introduce some concepts to make this precise and give a proof of Theorem 7.1.10
at the end of this section.

Lemma 7.2.1. Let G : C([t,∞))→R, and s ≥ t. The function

ω 7→
∫
G((ω,s)�θ)dW s

0(θ)

is a version of the conditional expectation E
W

t
λ
[G|F ts ] (for any initial distribution λ). Hence-

forth, by E[G|F ts ] we will mean this function.
If G ∈ Cb (C([t,∞))), then E[G|F ts ] ∈ Cb (C([t,∞))).

Proof. Obvious. q
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Here we use Cb(X) to denote the set of continuous bounded functions from a topological
space X to R. The last sentence of the lemma is, of course, true for any topology on
C([t,∞)) for which the map ω 7→ω�θ is continuous for all θ, but we will only need it for
the topology of uniform convergence on compacts.2

Given spacesX and Y we will denote the projection fromX×Y toX by projX (and similarly
for Y ). For a measurable map F : X→ Y between measure spaces and a measure ν on X
we denote the pushforward of ν under F by F∗(ν) :=D 7→ ν(F−1 [D]).

Definition 7.2.2 (RST).
The set RSTtκ of randomized stopping times (of Brownian motion started at time t with initial
distribution κ) is defined as the set of all subprobability measures π on C([t,∞))× [t,∞)
such that (projC([t,∞)))∗(π) ≤W

t
κ and that∫

F(r)
(
G(ω)−E[G|F ts ](ω)

)
dπ(ω,r) = 0 (7.2.3)

for all s > t, all continuous bounded G : C ([t,∞)) → R and all continuous bounded
F : [t,∞)→R supported on [t, s].

In this definition the topology on C([t,∞)) is that of uniform convergence on compacts
and the topology on [t,∞) is the usual order-induced topology.
Given a distribution µ on C ([t,∞)) we write

RSTtκ(µ) :=
{
π ∈ RSTtκ : (proj[t,∞))∗(π) = µ

}
.

We write RSTtκ(P ) for the set of all π ∈ RSTtκ with mass 1 and call these the finite random-
ized stopping times.
In any of these, if we drop the superscript t then we will mean time t = 0, while, if we
drop the subscript κ, then we mean that the initial distribution κ = δ0, i.e., the Brownian
motion to be stopped is started deterministically in 0.

To explain the qualifier finite it may help to imagine that for a non-finite randomized
stopping time of mass α < 1, the mass 1−α which is missing is placed along C([t,∞))×{∞}.

The following (7.2.4) from [9] shows that the problem OptStop
τ is equivalent to the follow-

ing optimization problem OptStop
π in the sense that a solution of one can be translated

into a solution of the other and vice versa. This of course also implies that the values of
the two problems are equal, thereby showing that the concrete space (Ω,G, (Gt)t≥0,P) has
no bearing on this value, as long as Assumptions 7.1.1 and 7.1.4 are satisfied.
The definition we have given for a randomized stopping time is only the most convenient
(for our purposes) of a number of possible equivalent definitions. Although Lemma 7.2.4
below should provide some intuition on what a randomized stopping time is, the reader
may still wish to refer to [9, Theorem 3.8] for the other possible ways of defining random-
ized stopping times. The first step in connecting condition (7.2.3), which is one of the
equivalent conditions listen in said theorem, to the others, is to notice that (7.2.3) can be
rewritten as ∫ (∫

F(r)dπω(r)
)

(G(ω)−E[G|F ts ](ω))dW t
κ(ω) = 0,

2And that choice is rather arbitrary itself, as close reading will reveal.
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7.2. Existence of an Optimizer

where πω is a disintegration of π with respect to W
t
κ. This says that the function

ω 7→
∫
F(r)dπω(r) is orthogonal to G −E[G|F ts ] for all bounded continuous G, i.e., that it

is a.s. F ts -measurable whenever F is supported on [t, s]. A limit argument then shows that
ω 7→ πω([t, s]) is a.s. F ts -measurable. Again, we refer the reader to [9] for a more detailed
exposition.

Problem (OptStop
π). Among all randomized stopping times π ∈ RSTλ(ν) find the mini-

mizer of

π∗ 7→
∫
cdπ∗ .

Lemma 7.2.4. See [9, Lemma 3.11]:
Let τ be an a.s. finite (Gt)t≥0-stopping time and consider

Φ : Ω→ C(R+)× [0,∞] ,

Φ(ω) := ((Bt(ω))t≥0, τ(ω)) .

Then π := Φ∗(P)�C(R+)×R+
is a finite randomized stopping time, i.e., π ∈ RSTλ(P ), and for any

measurable process F : C(R+)×R+→R we have∫
F dπ = E[F ·1C(R+)×R+

◦Φ] = E[F(B,τ) ·1
R+

(τ)] . (7.2.5)

For any π ∈ RSTλ(P ), we can find an a.s. finite (Gt)t≥0-stopping time τ such that π = Φ∗(P)
and (7.2.5) holds.
π is a finite randomized stopping time if and only if τ is a.s. finite.

Proof of Theorem 7.1.10. We prove Version B of the theorem. Version A is a special case.
We show that Problem OptStop

π has a solution. To this end we show that the set RSTλ(ν)
is compact (in the weak topology). From the fact that c is lower semicontinuous and
bounded from below in an appropriate sense we then deduce by the Portmanteau theorem
that the map

ĉ : RSTλ(ν)→ (−∞,∞] ,

ĉ(ζ) :=
∫
cdζ

is lower semicontinuous and therefore that the infimum infζ∈RSTλ(ν) ĉ(ζ) is attained.
Now for the details: On each of the spaces C(R+) and R+ we are dealing with two
topologies, one coming from the (7.2.2) of randomized stopping times (to wit, the topology
of uniform convergence on compacts on the space C(R+) and the usual order-induced
topology on R+) and one coming from the assumptions in the statement of this theorem.
We can equip each of these spaces with the smallest topology which contains the two
topologies in question. These are again Polish topologies and they still generate the
standard sigma-algebras on the respective spaces. For the remainder of this proof all
topological notions are to be understood relative to these topologies. So the topology on
C(R+)×R+ is the product topology of these two topologies, and the weak topology on the
space of measures on C(R+)×R+ is to be understood relative to this product topology, etc.
The cost function c of course remains lower semicontinuous and by (7.2.1) the functions
(ω,r) 7→ F(r)

(
G(ω)−E[G|F 0

s ]
)

appearing in (7.2.2) are continuous.
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Chapter 7. Randomized Stopping Times

Note that for π ∈ RSTλ(ν) as ν has mass 1, so must π and (projC(R+))∗(π), which together
with (projC(R+))∗(π) ≤W

0
λ implies (projC(R+))∗(π) = W

0
λ . So we deduce

RSTλ(ν) =
{
π ∈ Cpl(W0

λ ,ν) :
∫
F(s)

(
G −E[G|F 0

t ]
)
(ω)dπ(ω,s) = 0 ∀(t,F,G) ∈ ?

}
,

where

π ∈ Cpl(W0
λ ,ν) ⇐⇒ (projC(R+))∗(π) = W

0
λ and (proj

R+
)∗(π) = ν ,

(t,F,G) ∈ ? ⇐⇒ t > 0, F : R+ → R is bounded and continuous in
the order-induced topologies, and 0 outside [0, t],
G : C(R+) → R is bounded and continuous as a
function from the topology of uniform convergence
on compacts.

The set Cpl(W0
λ ,ν) is compact by Prokhorov’s Theorem and the fact that pushforwards

are continuous maps between measure spaces. The set Cpl(W0
λ ,ν) is closed because

pushforwards are continuous maps. We show that it is also tight, so that Prokhorov’s
Theorem implies that it is compact. Let ε > 0 and choose compact sets K1 ⊆ C(R+),
K2 ⊆ R+ such that W

0
λ(Kc1) < ε

2 and ν(Kc2) < ε
2 , then for all π ∈ Cpl(W0

λ ,ν) we have
π((K1 × K2)c) ≤ π(Kc1 × R+) + π(C(R+) × Kc2) < ε. It remains to show that RSTλ(ν) is a
non-empty closed subset. It is non-empty because the product measure W

0
λ ⊗ ν ∈ RSTλ(ν).

It is closed because, as noted, the function (ω,s) 7→ F(s)
(
G −E[G|F 0

t ]
)
(ω) is continuous

for all (t,F,G) ∈ ?.
Now, we show that ĉ is lower semicontinuous. The functions cN := c ∨ −N are each
bounded from below and lower semicontinuous. By the Portmanteau theorem the maps
ĉN := ζ 7→

∫
cN dζ are lower semicontinuous. On RSTλ(ν) they converge uniformly to ĉ

because

sup
ζ

∣∣∣ĉ(ζ)− ĉN (ζ)
∣∣∣ ≤ sup

ζ

∫ ∣∣∣c − cN ∣∣∣ dζ ≤ sup
ζ∈RSTλ(ν)

∫
c− · 1{c−≥N }dζ ,

which converges to 0 as N goes to ∞ by the uniform integrability assumption. As a
uniform limit of lower semicontinuous functions is again lower semicontinuous, we see
that ĉ is lower semicontinuous. q

7.3. Geometry of the Optimizer

This section is devoted to the proof of Theorem 7.1.18. The proof closely mimics that of
Theorem 1.3/Theorem 5.7 in [9]. For the benefit of those readers already familiar with
said paper we will first describe the changes required to the proofs there to make them
work in our situation and then – for the sake of a more self-contained presentation –
indulge in reiterating the main arguments and only citing results from [9] that we can use
verbatim.
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7.3. Geometry of the Optimizer

Sketch of differences in the proof of Theorem 7.1.18 relative to [9, Theorem 5.7].

Again the strategy is to show that for a larger set ŜG
ξ ⊇ SG we can find a set Γ ⊆ C(R+)×R+

such that ŜG
ξ∩(Γ < × Γ ) = ∅. The definition of ŜG

ξ
must of course be adapted analoguously

to the changes required to the definition of SG.
Apart from that the only real changes are to [9, Theorem 5.8]. Whereas previously it was
essential that the randomized stopping time ξr(ω,s) is also a valid randomized stopping
time of the Markov process in question when started at a different time but the same
location ω(s), we now need that ξr(ω,s) will also be a randomized stopping time of our
Markov process when started at the same time s but in a different place. Of course, when
we are talking about Brownian motion both are true, but this difference is the reason why
in the case of the Skorokhod embedding the right class of processes. To generalize the
argument to that of Feller processes, we do not need in our setup that our processes to be
time-homogeneous but to be space-homogeneous. That we are able to plant this „bush“
ξr(ω,s) in another location is what guarantees that the measure ξπ1 defined in the proof of
Theorem 5.8 of [9] is again a randomized stopping time.
Whereas in the Skorokhod case the task is to show that the new better randomized stopping
time ξπ embeds the same distribution as ξ we now have to show that the randomized
stopping time we construct has the same distribution as ξ. The argument works along the

same lines though – instead of using that ((ω,s), (η, t)) ∈ ŜG
ξ

implies ω(s) = η(t) we now

use that ((ω,s), (η, t)) ∈ ŜG
ξ

implies s = t. q

We now present the argument in more detail. As may be clear by now, what we will show is
that if ξ ∈ RSTλ(ν) is a solution of OptStop

π, then there is a measurable, (F 0
t )t≥0-adapted

set Γ ⊆ C(R+)×R+ such that SG∩ (Γ < × Γ ) = ∅. Using Lemma 7.2.4 this implies Theorem
7.1.18.

We need to make some preparations. To align the notation with [9] and to make some
technical steps easier it is useful to have another characterization of measurable, (F 0

t )t≥0-
adapted processes and sets. To this end define

Definition 7.3.1.

S :=
⋃
t∈R+

C([0, t])× {t} ,

r : C(R+)×R+→ S ,

r(ω,t) :=
(
ω�[0,t], t

)
.

r has many right inverses. A simple one is

r ′ : S→ C(R+)×R+

r ′(f , s) :=

t 7→
f (t) for t ≤ s
f (s) for t > s

, s

 .

We endow S with the sigma algebra generated by r ′.
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[9, Theorem 3.2], which is a direct consequence of [21, Theorem IV. 97], asserts that
a process X is measurable, (F 0

t )t≥0-adapted if and only if X factors as X = X ′ ◦ r for a
measurable function X ′ : S→R. So a set D ⊆ C(R+)×R+ is measurable, (F 0

t )t≥0-adapted
if and only if D = r−1 [D ′] for some measurable D ′ ⊆ S.
Note that r(ω,t) = r(ω′ , t′) implies (ω,t)�θ = (ω′ , t′)�θ and therefore

SG = (r × r)−1 [SG′
]

for a set SG′ ⊆ S × S which is described by an expression almost identical to that in
Definition 7.1.14. Namely we can overload � to also be the name for the operation whose
first operand is an element of S, such that (ω,t) � θ = r(ω,t) � θ and note that as c is
measurable, (F 0

t )t≥0-adapted we can write c = c′ ◦ r and thus get a cost function c′ which
is defined on S.
Given an optimal ξ ∈ RSTλ(ν) we may therefore rephrase our task as having to find a
measurable set Γ ⊆ S such that r∗(ξ) is concentrated on Γ and that SG′∩ (Γ < × Γ ) = ∅, where
Γ < :=

{
(g�[0,s], s) : (g, t) ∈ Γ , s < t

}
.

Note that for Γ ⊆ S although
(
r−1 [Γ ]

)<
is not equal to r−1 [Γ <] we still have

SG∩
(
r−1

[
Γ <

]
× r−1 [Γ ]

)
= ∅ ⇐⇒ SG∩

(
(r−1 [Γ ])< × r−1 [Γ ]

)
= ∅.

One of the main ingredients of the proof of [9, Theorem 1.3] and of our Theorem 7.1.18 is
a procedure whereby we accumulate many infinitesimal changes to a given randomized
stopping time ξ to build a new stopping time ξπ. The guiding intuition for the authors is
to picture these changes as replacing certain „branches“ of the stopping time ξ by different
branches. Some of these branches will actually enter the statement of a somewhat stronger
theorem (Theorem 7.3.11 below), so we begin by describing them. Our way to get a handle
on „branches“ – i.e., infinitesimal parts of a randomized stopping time – is to describe
them through a disintegration (w.r.t. W0

λ) of the randomized stopping time. We need the
following statement from [9] which should also serve to provide more intuition on the
nature of randomized stopping times.

Lemma 7.3.2. See [9, Theorem 3.8]:
Let ξ be a measure on C(R+) ×R+. Then ξ ∈ RSTλ if and only if there is a disintegration
(ξω)ω∈C(R+) of ξ w.r.t. W0

λ such that (ω,t) 7→ ξω([0, t]) is measurable, (F 0
t )t≥0-adapted and

maps into [0,1].

Using Lemma 7.3.2 above let us fix for the rest of this section both ξ ∈ RSTλ(ν) and a
disintegration (ξω)ω∈C(R+) with the properties above. Both Definition 7.3.3 below and
Theorem 7.3.11 implicitly depend on this particular disintegration and we emphasize
that whenever we write ξω in the following we are always referring to the same fixed
disintegration with the properties given in Lemma 7.3.2. Note that the measurability
properties of (ξω)ω∈C(R+) imply that for any I ⊆ [0, s] we can determine ξω(I) from ω�[0,s]
alone. For (f , s) ∈ S we will again overload notation and use ξ(f ,s) to refer to the measure
on [0, s] which is equal to (ξω)�[0,s] for any ω ∈ C(R+) such that r(ω,s) = (f , s).
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Definition 7.3.3 (Conditional randomized stopping time).
For (f , s) ∈ S, we define a new randomized stopping time ξ(f ,s) ∈ RSTs by setting

ξ
(f ,s)
ω :=

 1
1−ξ(f ,s)([0,s])

(
ξ(f ,s)�ω

)
�(s,∞)

for ξ(f ,s)([0, s]) < 1 ,

δs for ξ(f ,s)([0, s]) = 1 ,
(7.3.4)

∫
F dξ(f ,s) :=

∫ ∫
F(ω,t)dξ(f ,s)

ω (t)dW s
0(ω)

for all bounded measurable F : C([s,∞))× [s,∞)→R, i.e.,
(
ξ

(f ,s)
ω

)
ω∈C([s,∞))

is the disintegra-

tion of ξ(f ,s) w.r.t. W s
0.

Here δs is the Dirac measure concentrated at s. Really, the definition in the case where
ξ(f ,s)([0, s]) = 1 is somewhat arbitrary – it is more a convenience to avoid partially defined

functions. What we will use is that
(
1− ξ(f ,s)([0, s])

)
ξ

(f ,s)
ω =

(
ξ(f ,s)�ω

)
�(s,∞)

.

Definition 7.3.5 (Relative Stop-Go pairs).
The set SGξ consists of all ((f , t), (g, t)) ∈ S × S (again the times have to match) such that
either

c′(f , t) +
∫
c((g, t)�θ,u)dξ(f ,t)(θ,u) < c′(g, t) +

∫
c((f , t)�θ,u)dξ(f ,t)(θ,u) (7.3.6)

or any one of

(a) ξ(f ,t) (C(R+)×R+) < 1 or
∫
sp0 dξ(f ,t)(θ,s) =∞ ,

(b) the integral on the right hand side equals∞ ,

(c) either of the integrals is not defined

holds. We also define

ŜG
ξ

:= SGξ ∪
{
(f , s) ∈ S : ξ(f ,s)([0, s]) = 1

}
× S . (7.3.7)

Lemma 7.3.9 below says that the numbered cases above are exceptional in an appro-
priate sense and one may consider them a technical detail. Note that when we say
((f , t), (g, t)) ∈ SGξ we are implicitly saying that ξ(f ,t)([0, t]) < 1.

Note that the sets SGξ and ŜG
ξ

are measurable (in contrast to SG, which may be more
complicated).

Definition 7.3.8. We call a measurable set F ⊆ S evanescent if r−1 [F] is evanescent, that
is, if W0

λ(projC(R+)[r
−1 [F]]) = 0.
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Lemma 7.3.9. See [9, Lemma 5.2]:
Let F : C(R+)×R+→R be some measurable function for which

∫
F dξ ∈R. Then the following

sets are evanescent.

•
{
(f , s) ∈ S : ξ(f ,s) (C(R+)×R+) < 1

}
•

{
(f , s) ∈ S :

∫
F((f , s)�θ,u)dξ(f ,s)(θ,u) <R

}
Proof. See [9]. q

Lemma 7.3.10. See [9, Lemma 5.4]:

SG′ ⊆ ŜG
ξ
.

Proof. Can be found in [9]. Note that they fix p0 = 1. q

Theorem 7.3.11. Assume that ξ is a solution of OptStop
π. Then there is a measurable set

Γ ⊆ S such that r∗(ξ)(Γ ) = 1 and

ŜG
ξ ∩

(
Γ < × Γ

)
= ∅ . (7.3.12)

Our argument follows [9, Theorem 5.7]. We also need the following two auxilliary
propositions, which in turn require some definitions.

Definition 7.3.13. Let υ be a probability measure on some measure space Y . The set
JOINλ(υ) is the set of all subprobability measures π on (C(R+)×R+)×Y such that

(projY )∗(π) ≤ υ and

(projC(R+)×R+)∗(π�C(R+)×R+×D ) ∈ RSTλ for all measurable D ⊆ Y .

Proposition 7.3.14. Assume that ξ is a solution of OptStop
π. Then we have

(r × Id)∗ (π)(SGξ ) = 0

for all π ∈ JOINλ(r∗(ξ)).

Here we use × to denote the Cartesian product map, i.e., for sets Xi ,Yi and functions
Fi : Xi → Yi where i ∈ {1,2} the map F1×F2 : X1×X2→ Y1×Y2 is given by (F1×F2)(x1,x2) =
(F1(x1),F2(x2)). Proposition 6.10 is an analogue of [9, Proposition 5.8] and it is where the
material changes compared to [9] take place. We will give the proof at the end of this
section.

Proposition 7.3.15. See [9, Proposition 5.9]:
Let (Y ,υ) be a Polish probability space and let E ⊆ S ×Y be a measurable set. Then the following
are equivalent

(a) (r × Id)∗ (π)(E) = 0 for all π ∈ JOINλ(υ)

(b) E ⊆ (F ×Y )∪ (S ×N ) for some evanescent set F ⊆ S and a measurable set N ⊆ Y which
satisfies υ(N ) = 0.
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Proposition 7.3.15 is proved in [9] and we will not repeat the proof here.

Proof of Theorem 7.3.11. Using Proposition 7.3.14 we see that (r × Id)∗ (π)(SGξ ) = 0 for all
π ∈ JOINλ(r∗(ξ)). Plugging this into Proposition 7.3.15 we find an evanescent set F1 ⊆ S
and a set N ⊆ S such that r∗(ξ)(N ) = 0 and SGξ ⊆ (F1 ×S)∪ (S ×N ). Defining for any Borel
set E ⊆ S the analytic set

E> :=
{
(g, t) ∈ S : ∃s < t,

(
g�[0,s], s

)
∈ E

}
,

we observe that ((E>)c)< ⊆ Ec and find r∗(ξ)(F>1 ) = 0.
Setting F2 :=

{
(f , s) ∈ S : ξ(f ,s)([0, s]) = 1

}
and arguing on the disintegration (ξω)ω∈C(R+) we

see that r∗(ξ)(F>2 ) = 0, so r∗(ξ)(F>) = 0 for F := F1 ∪F2.
This shows that S \ (N ∪ F>) has full r∗(ξ)-measure. Let Γ be a Borel subset of that set
which also has full r∗(ξ)-measure.
Then

Γ < × Γ ⊆
(
(F>)c

)<
×N c ⊆ Fc ×N c and

ŜG
ξ ⊆ (F × S)∪ (S ×N )

which shows ŜG
ξ ∩ (Γ < × Γ ) = ∅. q

Lemma 7.3.16. If α ∈ RSTλ and G : C(R+)×R+→ [0,1] is measurable, (F 0
t )t≥0-adapted, then

the measure defined by

F 7→
∫
F(ω,t)G(ω,t)dα(ω,t) (7.3.17)

is still in RSTλ.

Proof. We use the criterion in Lemma 7.3.2. Let (αω)ω∈C(R+) be a disintegration of α
w.r.t. W0

λ for which (ω,t) 7→ αω([0, t]) is measurable, (F 0
t )t≥0-adapted and maps into [0,1].

Then (α̂ω)ω defined by α̂ω := F 7→
∫
F(t)G(ω,t)dαω(t) is a disintegration of the measure

in (7.3.17) for which (ω,t) 7→ α̂ω([0, t]) is measurable, (F 0
t )t≥0-adapted and maps into

[0,1]. q

Lemma 7.3.18 (Strong Markov property for RSTs). Let α ∈ RSTλ. Then∫
F(ω,t)dα(ω,t) =

!
F((ω,t)� ω̃, t)dW t

0(ω̃)dα(ω,t)

for all bounded measurable F : C(R+)×R+→R.

Proof. Using integral notation instead of the more conventional E, we may write the
classical form of the strong markov property as∫

G(Θτ(ω)(ω))H(ω)·1
R+

(τ(ω))dW0
λ(ω) =∫ ∫

G(ω̃)H(ω) ·1
R+

(τ(ω))dWτ(ω)
ω(τ(ω))(ω̃)dW0

λ(ω)
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for all bounded measurableG : C(R+)→R and all bounded F 0
τ -measurableH : C(R+)→R.

Here Θt is the function which cuts off the initial segment of a path up to time t. From this
a simple monotone class argument shows that∫

K(Θτ(ω)(ω),ω)·1
R+

(τ(ω))dW0
λ(ω) =∫ ∫

K(ω̃,ω) ·1
R+

(τ(ω))dWτ(ω)
ω(τ(ω))(ω̃)dW0

λ(ω)

for all bounded F 0
∞ ⊗F 0

τ -measurable K : C(R+)×C(R+)→R.
We may then choose for K(ω̃,ω) the function F(η,τ(ω)) where the path η is created by
cutting off the tail ofω after time τ(ω) and attaching ω̃ in its place. Noting the relationship

between W
τ(ω)
x and W

τ(ω)
0 we then get∫

F(ω,τ(ω))·1
R+

(τ(ω))dW0
λ(ω) =∫ ∫

F((ω,τ(ω))� ω̃,τ(ω)) ·1
R+

(τ(ω))dWτ(ω)
ω(τ(ω))(ω̃)dW0

λ(ω).

Using Lemma 7.2.4 with Ω = [0,1]×C(R+) and Gt = B ([0,1])⊗Ft we find a (Gt)t≥0-stopping
time τ s.t. we may write α as

α = ((y,ω) 7→ (ω,τ(y,ω)))∗(L⊗W0
λ)�C(R+)×R+

(where L is Lebesgue measure on [0,1]). For a fixed y ∈ [0,1], ω 7→ τ(y,ω) is an (Ft)t≥0-
stopping time, so we may apply the previous equation to these stopping times and
integrate over y ∈ [0,1] to get∫

F(ω,τ(y,ω)) ·1
R+

(τ(y,ω))dW0
λ(ω) =∫ ∫

F((ω,τ(y,ω))� ω̃,τ(y,ω)) ·1
R+

(τ(y,ω))dWτ(y,ω)
0 (ω̃)d(L⊗W0

λ)(y,ω).

Using the equation for α we see that this is what we wanted to prove. q

Lemma 7.3.19 (Gardener’s Lemma).
Assume that we have ξ ∈ RSTλ(P ), a measure α on C(R+) × R+ and two families β(ω,t),
γ (ω,t), where (ω,t) ∈ C(R+)×R+, with β(ω,t),γ (ω,t) ∈ RSTt(P ) such that both maps

(ω,t) 7→
∫
1D ((ω,t)� ω̃, s) dβ(ω,t)(ω̃, s) and

(ω,t) 7→
∫
1D ((ω,t)� ω̃, s) dγ (ω,t)(ω̃, s)

are measurable for all Borel D ⊆ C(R+)×R+ and that

ξ(D)−
!
1D ((ω,t)� ω̃, s) dβ(ω,t)(ω̃, s)dα(ω,t) ≥ 0 (7.3.20)

for all Borel D ⊆ C(R+)×R+. Then for ξ̂ defined by∫
F dξ̂ :=

∫
F dξ −

!
F((ω,t)� ω̃, s)dβ(ω,t)(ω̃, s)dα(ω,t)

+
!
F((ω,t)� ω̃, s)dγ (ω,t)(ω̃, s)dα(ω,t)

for all bounded measurable F, we have ξ̂ ∈ RSTλ(P ).
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Remark 7.3.21. The intuition behind the Gardener’s Lemma is that we are replacing certain
branches β(ω,t) of the randomized stopping time ξ by other branches γ (ω,t) to obtain a new
stopping time ξ̂. This process happens along the measure α. Note that (7.3.20) implies
that

∫
1D ((ω,t)� ω̃) dW t

0(ω̃)dα(ω,t) ≤W
0
λ(D) for all Borel D ⊆ C(R+). The authors like to

think of α as a stopping time and of the maps (ω,t) 7→ β(ω,t) and (ω,t) 7→ γ (ω,t) as adapted
(in some sense that would need to be made precise). As these assumptions aren’t necessary
for the proof of the Gardener’s Lemma, they were left out, but it might help the reader’s
intuition to keep them in mind.

Proof of Lemma 7.3.19. We need to check that the ξ̂ we define is indeed a measure, that
(projC(R+))∗(ξ̂) = W

0
λ and that (7.2.3) holds for ξ̂.

Checking that ξ̂ is a measure is routine – we just note that (7.3.20) guarantees that ξ̂(D) ≥ 0
for all Borel sets D.
Let G : C(R+)→R be a bounded measurable function.∫

G(ω)dξ̂(ω,t) =
∫
G(ω)dξ(ω,t)−

!
G((ω,t)� ω̃)dβ(ω,t)(ω̃, s)dα(ω,t)

+
!
G((ω,t)� ω̃)dγ (ω,t)(ω̃, s)dα(ω,t)

=
∫
GdW0

λ −
!
G((ω,t)� ω̃)dW t

0dα(ω,t)

+
!
G((ω,t)� ω̃)dW t

0dα(ω,t)

=
∫
GdW0

λ .

Now let F : R+ → R and G : C(R+)→ R be bounded continuous functions, with F sup-
ported on [0, r].∫

F(t)
(
G −E[G|F 0

r ]
)
(ω)dξ̂(ω,t) =

∫
F(t)

(
G −E[G|F 0

r ]
)
(ω)dξ(ω,t)

−
!
F(s)

(
G −E[G|F 0

r ]
)
((ω,t)� ω̃)dβ(ω,t)(ω̃, s)dα(ω,t)

−
!
F(s)

(
G −E[G|F 0

r ]
)
((ω,t)� ω̃)dγ (ω,t)(ω̃, s)dα(ω,t) . (7.3.22)

The first summand is 0 because ξ ∈ RSTλ(P ). Looking at the second summand we expand
the definition of E[G|F 0

r ].

E[G|F 0
r ]((ω,t)� ω̃) =

∫
G(((ω,t)� ω̃, r)�θ)dW r

0(θ)

=
∫
G((ω,t)� ((ω̃, r)�θ))dW r

0(θ) .

whenever t ≤ r, which is the case for those t which are relevant in the integrand above,
because F(s) , 0 implies s ≤ r and moreover β(ω,t) is concentrated on (ω̃, s) for which t ≤ s.
Setting Ĝ(ω,t)(ω̃) := G((ω,t)� ω̃) and F̂(ω,t) := F�[t,∞) we can write!

F(s)
(
G −E[G|F 0

r ]
)
((ω,t)� ω̃)dβ(ω,t)(ω̃, s)dα(ω,t) =∫
1[0,r](t)

∫
F̂(ω,t)(s)

(
Ĝ(ω,t) −E[Ĝ(ω,t)|F tr ]

)
(ω̃)dβ(ω,t)(ω̃, s)dα(ω,t) ,

which is 0 because β(ω,t) ∈ RSTt(P ) and therefore∫
F̂(ω,t)(s)

(
Ĝ(ω,t) −E[Ĝ(ω,t)|F tr ]

)
(ω̃)dβ(ω,t)(ω̃, s) = 0

for all (ω,t) and r ≥ t. The same argument works for the third summand in (7.3.22). q

175



Chapter 7. Randomized Stopping Times

Proof of Proposition 7.3.14. We prove the contrapositive. Assuming that there exists a
π′ ∈ JOINλ(r∗(ξ)) with (r × Id)∗ (π

′)(SGξ ) > 0, we construct a ξπ ∈ RSTλ(ν) such that∫
cdξπ <

∫
cdξ. If π′ ∈ JOINλ(r∗(ξ)), then for any two measurable sets D1,D2 ⊆ S, because

π′�(C(R+)×R+)×D2
∈ RSTλ and by making use of Lemma 7.3.16 we can see that

(projC(R+)×R+
)∗(π′�(r×Id)−1[D1×D2]) ∈ RSTλ. Using the monotone class theorem this extends to

any measurable subset of S × S in place of D1 ×D2. So we can set π := π′
�(r×Id)−1[SGξ ]

and

know that (projC(R+)×R+
)∗(π) ∈ RSTλ and that π is concentrated on SGξ .

We will be using a disintegration of π w.r.t. r(ξ), which we call
(
π(g,t)

)
(g,t)∈S

and for which

we assume that π(g,t) is a subprobability measure for all (g, t) ∈ S. It will also be useful
to assume that π(g,t) is concentrated on the set {(ω,s) ∈ C(R+) ×R+ : s = t} not just for
r(ξ)-almost all (g, t) but for all (g, t). Again, this is no restriction of generality. We will also
push π onto (C(R+)×R+)× (C(R+)×R+), defining a measure π̄ via∫

F dπ̄ :=
!
F ((ω,s), ((g, t)� η̃, t)) dW t

0(η̃)dπ ((ω,s), (g, t))

for all bounded measurable F. Observe that by Lemma 7.3.18 the pushforward of π
under projection onto the second coordinate (pair) is ξ and that a disintegration of π̄
w.r.t. to ξ (again in the second coordinate) is given by

(
πr(η,t)

)
(η,t)∈C(R+)×R+

. Let us name

(projC(R+)×R+)∗(π) =: ζ ∈ RSTλ. We will now use the Gardener’s Lemma to define two
modifications ξπ0 , ξπ1 of ξ such that ξπ := 1

2 (ξπ0 +ξπ1 ) is our improved randomized stopping
time.
For all bounded measurable F : C(R+)×R+→R define∫

F dξπ0 :=
∫
F dξ +

∫
(1− ξω([0, s]))

(
−
∫
F((ω,s)� ω̃,u)dξr(ω,s)(ω̃,u)

+F(ω,s)
)
dζ(ω,s)∫

F dξπ1 :=
∫
F dξ +

∫
(1− ξω([0, s]))

(
−F(η, t)

+
∫
F((η, t)� ω̃,u)dξr(ω,s)(ω̃,u)

)
dπ̄((ω,s), (η, t)) .

The concatenation on the last line is well-defined π̄-almost everywhere because π̄ is
concentrated on (r × r)−1

[
SGξ

]
and so in the integrand above s = t on a set of full measure.

We need to check that the Gardener’s Lemma applies in both cases. First of all observe
that the product measure W

t
0 ⊗ δt is in RSTt(P ) and that Equation 7.3.18 implies∫

F(ω,t)dα(ω,t) =
!
F((ω,t)� ω̃, s)d

(
W

t
0 ⊗ δt

)
(ω̃, s)dα(ω,t)

for any randomized stopping time α. So for ξπ0 the measures γ (ω,t) are given by W
t
0 ⊗ δt

and for ξπ1 the measures β(ω,t) are given by W
t
0 ⊗ δt.

For ξπ0 the measure along which we are replacing branches is given by

F 7→
∫
F(ω,s)(1− ξω([0, s]))dζ(ω,s) .

The branches β(ω,s) we remove are ξr(ω,s). We need to check that∫
F dξ −

∫
(1− ξω([0, s]))

∫
F((ω,s)� ω̃,u)dξr(ω,s)(ω̃,u)dζ(ω,s) ≥ 0
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for all positive, bounded, measurable F : C(R+)×R+→R. Let us calculate.∫
(1− ξω([0, s]))

∫
F((ω,s)� ω̃,u)dξr(ω,s)(ω̃,u)dζ(ω,s)

=
#

F((ω,s)� ω̃,u)d
(
(ξ(ω,s)�ω̃)�(s,∞)

)
(u)dW s

0(ω̃)dζ(ω,s)

=
!
F(ω,u)d

(
(ξω)�(s,∞)

)
(u)dζ(ω,s) ≤

!
F(ω,u)d(ξω)(u)dζ(ω,s)

≤
!
F(ω,u)d(ξω)(u)dW0

λ(ω) =
∫
F(ω,u)dξ(ω,u) .

Here we first used the definition of ξr(ω,s) and then Lemma 7.3.18 and finally that
(projC(R+))∗(ζ) ≤W

0
λ .

For ξπ1 we replace branches along

F 7→
∫
F(η, t)(1− ξω([0, s]))dπ̄ ((ω,s), (η, t))

=
∫
F(η, t)

∫
(1− ξω([0, s]))dπr(η,t)(ω,s)dξ(η, t) .

The calculation above shows that∫
F dξ −

∫
(1− ξω([0, s]))F(η, t)dπ̄ ((ω,s), (η, t)) ≥ 0

for all positive, bounded, measurable F : C(R+)×R+→R. For ξπ1 the branches γ (η,t) that
we add are given by

F 7→

∫
(1− ξω([0, s]))

∫
F(ω̃,u)dξr(ω,s)(ω̃,u)dπr(η,t)(ω,s)∫

(1− ξω([0, s]))dπr(η,t)(ω,s)

when
∫

(1− ξω([0, s]))dπr(η,t)(ω,s) > 0 and δt otherwise (again, the latter is arbitrary). In

the more interesting case γ (η,t) is an average over elements of RSTt(P ) and therefore itself
in RSTt(P ). Here it is again crucial that for πr(η,t)-almost all (ω,s) we have s = t, otherwise
we would be averaging randomized stopping times of our process started at unrelated
times.
Putting this together we see that ξπ := 1

2 (ξπ0 + ξπ1 ) is a randomized stopping time and that

2
∫
F d(ξπ − ξ) =

∫
(1− ξω([0, s]))

(
F(ω,s)−

∫
F((ω,s)� ω̃,u)dξr(ω,s)(ω̃,u)−F(η, t)

+
∫
F((η, t)� ω̃,u)dξr(ω,s)(ω̃,u)

)
dπ̄((ω,s), (η, t)) (7.3.23)

for all bounded measurable F : C(R+) × R+ → R. Specializing to F(ω,s) = G(s) for
G : R+→R bounded measurable we find that∫

G(s)d(ξ − ξπ)(ω,s) = 0 ,

again because for π̄-almost all ((ω,s), (η, t)) we have s = t. This shows that ξπ ∈ RSTλ(ν).
Now, we want to extend (7.3.23) to c. We first show that (7.3.23) also holds for
F : C(R+)×R+→R which are measurable and positive and for which

∫
F dξ < ∞. To
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see this, approximate such an F from below by bounded measurable functions (for which
(7.3.23) holds) and note that by previous calculations both∫

(1− ξω([0, s]))
∫
F((ω,s)� ω̃,u)dξr(ω,s)(ω̃,u)dπ̄((ω,s), (η, t)) ≤

∫
F dξ <∞

and
∫

(1− ξω([0, s]))F(η, t)dπ̄((ω,s), (η, t)) ≤
∫
F dξ <∞ .

Looking at positive and negative parts of c and using Assumption 7.1.4.(d) to see that∫
c−d(ξπ − ξ) ∈R we get that indeed (7.3.23) holds for F = c.

Now, we will argue that the integrand in the right hand side of (7.3.23) is negative
π̄-almost everywhere. This will conclude the proof.
By inserting an r in appropriate places we can read off from Definition 7.3.5 what it
means that π̄ is concentrated on (r × r)−1

[
SGξ

]
. In the course of verifying that (7.3.23)

applies to c we already saw that cases b and c in Definition 7.3.5 can only occur on a set of
π̄-measure 0. Lemma 7.3.9 excludes case a π̄-almost everywhere. This means that (7.3.6)
holds π̄-almost everywhere – or more correctly, that for π̄-a.a. ((ω,s), (η, t)) we have s = t
and

c(ω,s)−
∫
c((ω,s)� ω̃,u)dξr(ω,s)(ω̃,u)− c(η, t) +

∫
c((η, t)� ω̃,u)dξr(ω,s)(ω̃,u) < 0 ,

(7.3.24)

completing the proof. q

7.4. Special Cases

Both Corollary 7.4.1 and Corollary 7.4.9 assert that the solutions of certain optimal
stopping problems can be described by a barrier in an appropriate phase space.

7.4.1. Product of a Brownian Motion and a Deterministic function

Problem (OptStop
ψ(Bt ,t)). Among all stopping times τ ∼ ν on (Ω,G, (Gt)t≥0,P) find the

maximizer of

τ 7→ E[Zτ ] ,

where the process Z is of the form Zt = ψ(Bt , t).

Corollary 7.4.1. Assume that ν has finite first moment. There is an upper semicontinuous
function β : R+→ [−∞,∞] such that the stopping time

τ := inf {t > 0 : Bt ≤ β(t)} (7.4.2)

has distribution ν.
τ has the following uniqueness properties: On the one hand it is the a.s. unique stopping time
which has distribution ν and which is of the form (7.4.2) (we will later say that such a stopping
time is the hitting time of a downwards barrier).
On the other hand τ is also the a.s. unique solution of OptStop

ψ(Bt ,t) for a number of different
ψ. Namely:
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• Let p ≥ 0, assume µ has finite moment of order 1
2 +p+ε for some ε > 0 and let A : R+→R

be strictly increasing and |A(t)| ≤ K(1 + tp) for some constants K3. Then we may choose

ψ(Bt , t) = BtA(t) .

• Let p ≥ 2, assume µ has finite moment of order p
2 + ε for some ε > 0 and let φ : R→ R

satisfy φ′′′ > 0 as well as
∣∣∣φ(y)

∣∣∣ ≤ K(1 + |y|p) for constants K . Then we may choose

ψ(Bt , t) = φ(Bt) .

Remark 7.4.3. Finally, we note that Corollary 7.4.1 recovers Anulova’s classical solution
to the inverse first passage time problem [4], which has seen some recent interest (see
[27, 18, 36]). Bayraktar and Miller [8] consider the same problem that we treat here.
However their setup and methods are rather distinct from the ones used here: they
assume that the target distribution is given by finitely many atoms and that the target
functional depends solely on the terminal value of Brownian motion. Following the
measure valued martingale approach of [20], [8] address the constrained optimal stopping
problem using a Bellman perspective.

We will now demonstrate how to use the Monotonicity Principle of Theorem 7.1.18 to
derive Corollary 7.4.1.
Both of the sets

ˇ
R and R̂ in Lemma 7.1.20 have the property that (writing R for the set in

question) (y, t) ∈ R and y′ ≤ y implies (y′ , t) ∈ R. We call such sets (downwards) barriers.
More specifically, for technical reasons in what follows it is slightly more convenient
to talk about subsets of [−∞,∞]×R+ instead of subsets of R×R+, giving the following
definition.

Definition 7.4.4. LetX be a topological space. A downwards barrier is a setR⊆ [−∞,∞]×X
such that {−∞}×X ⊆R and

(y, t) ∈ R and y′ ≤ y imply (y′ , t) ∈ R .

Clearly, in Lemma 7.1.20, instead of talking about
ˇ
R⊆R×R+, we could have talked about

ˇ
R∪ ({−∞}×R+) ⊆ [−∞,∞]×R+ without anything really changing, and likewise for R̂.

The reader will easily verify the following lemma.

Lemma 7.4.5. Let X be a topological space. There is a bijection between the set of all upper
semicontinuous functions β : X → [−∞,∞] and the set of all closed downwards barriers
R ⊆ [−∞,∞]×X (where closure is to be understood in the product topology). This bijection
maps any upper semicontinuous function β to the barrier R which is the hypograph of β

R := {(y,x) : y ≤ β(x)} ,

while the inverse maps a barrier R to the function β given by

β(x) := sup {y : (y,x) ∈ R} .
3One may of course choose 0 ≤ p < 1, ε := 1 − p and e.g. A(t) := tp so that no moment conditions beyond

those at the very beginning of this theorem are imposed on µ.
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On the way to proving Corollary 7.4.1, we will show now that the first hitting time after 0
of any downwards barrier by Brownian motion is a.s. equal to the first hitting time after 0
of the closure of that barrier. This serves to both resolve the question whether the times in
Lemma 7.1.20 are stopping times and to show that

ˇ
τ = τ̂ , a.s.

Let us assume for the rest of this section that B is actually a Brownian motion started in 0.

Lemma 7.4.6. Let R be a downwards barrier in [−∞,∞]×R+. Let R be the closure of R (in
the product topology of the usual (order-induced) topologies on [−∞,∞] and R+). Define

τ(ω) := inf{t > 0 : (Bt(ω), t) ∈ R} ,
τ(ω) := inf{t > 0 : (Bt(ω), t) ∈ R} .

Then τ = τ , a.s.

Proof. As R⊇R we clearly have τ(ω) ≤ τ(ω) for all ω ∈Ω. Define

τε(ω) := inf{t > 0 : (Bt(ω) +A(t) · ε, t) ∈ R} ,

where A(t) := t
1+t is a bounded, strictly increasing function. Using just thatR is the closure

of R one proves by elementary methods that τ(ω) ≤ τε(ω) for all ω ∈ Ω and any ε > 0.
Because A(t) =

∫ t
0 (1 + s)−2ds is the integral from 0 to t of a square integrable function we

can apply Girsanov’s theorem (see e.g. [63, Theorem 38.5]) to see that τ1/n converges to τ
in distribution as n→∞. As (τ1/n)n is a decreasing sequence bounded below by τ we get
that convergence holds almost surely. q

The following is a particular case of [31, Corollary 2.3] (which in turn relies on arguments
given in [64, 48]). Note that this lemma is purely a statement about barrier-type stopping
times and is not directly connected to the optimization problem under consideration.

Lemma 7.4.7 (Uniqueness of Barrier-type solutions).
Let (Yt)t≥0 be a measurable, (F 0

t )t≥0-adapted process and assume that the process Z defined
through Zt := Yt(B) has a.s. continuous paths. LetR1,R2 ⊆ [−∞,∞]×R+ be closed downwards
barriers such that for

τi(ω) := inf {t > 0 : (Zt(ω), t) ∈ Ri}

we have τ1 ∼ τ2. Then τ1 = τ2, a.s.

Proof. Is to be found in [31, Corollary 2.3]. q

Now, we have the necessary prerequisites to use our main results to show that the consid-
ered optimization problem in this subsection admits a (unique) barrier-type solution.

Proof of Corollary 7.4.1. The strategy is as follows: We choose a cost function and leverage
Theorem 7.1.10 to show that an optimizer exists, the Monotonicity Principle in the form
of Theorem 7.1.18 and Lemma 7.1.20 will – with some help from Lemma 7.4.6 – show
that any optimizer must be the hitting time of a barrier. Lemma 7.4.7 shows that any two
barrier-type solutions must be equal.
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Now, we provide the details. Start with a cost function c(ω,t) := −ω(t)A(t) for a strictly
monotone function A : R+ → R which satisfies |A(t)| ≤ K(1 + tp) and assume that ν has
moment of order 1

2 +p+ ε for some ε > 0. To prove that a barrier type solution exists when
ν has first moment, choose a bounded strictly increasing A and p = 0, ε = 1

2 in this step.
(These assumptions guarantee in particular that the optimization problems considered be-
low have a finite value.) Clearly the problem OptStop

τ for c corresponds to OptStop
ψ(Bt ,t)

for ψ(Bt , t) = BtA(t) (i.e., ψ takes the role for −c such that the minimal/maximal values
agree up to a change of sign). We will deal with the case where ψ(Bt , t) = φ(Bt) at the end
of this proof.
We now check that the conditions in Version B of Theorem 7.1.10 are satisfied. We
also need to check that Assumption 7.1.4 holds. Here we need the assumption that
ν has moment of order 1

2 + p + ε, as well as the Hölder and Burkholder-Davis-Gundy
inequalities. The latter specialized to Brownian motion state that for all q > 0 there are
positive constants K0 and K1 such that for any stopping time τ we have

K0E[τq/2] ≤ E[(|B|∗τ )q] ≤ K1E[τq/2],

where |B|∗t = sups≤t |Bs|. With these in hands straightforward calculation allows us to
bound BτA(τ) in the L1+δ-norm for some δ > 0, independently of the stopping time τ ∼ ν.
This shows both that the uniform integrability condition in Version B of Theorem 7.1.10
is satisfied and that Assumption 7.1.4.(d) is satisfied.
On C(R+) we may choose the (Polish) topology of uniform convergence on compacts. For
the topology on R+ we start with the usual topology and turn A into a continuous function
(if it wasn’t), by making use of the fact that any measurable function from a Polish space
to a second countable space may be turned into a continuous function by passing to a
larger Polish topology (with the same Borel sets) on the domain. (This can be found for
example in [40, Theorem 13.11].)
In the statement of Corollary 7.4.1 we did not ask for the probability space (Ω,G, (Gt)t≥0,P)
to satisfy Assumption 7.1.4.(b). To remedy this, we can enlarge the probability space by
setting Ω̃ := Ω× [0,1], G̃t := Gt ⊗B ([0,1]) and P̃ := P⊗L, where L is Lebesgue measure on
[0,1]. On this space we consider the Brownian motion B̃t(ω,x) := Bt(ω). Theorem 7.1.10
now gives us an optimal stopping time τ̃ on the enlarged probability space. If we can
show that this stopping time is in fact the hitting time of a barrier, then it follows that
τ̃ = τ ◦ ((ω,x) 7→ ω) for a stopping time τ which is defined as the hitting time of the
Brownian motion B of the same barrier. As there are more stopping times on (Ω̃, G̃, (G̃t)t≥0)
than on (Ω,G, (Gt)t≥0) in the sense that any stopping time τ ′ on (Ω,G, (Gt)t≥0) induces
a stopping time τ̃ ′ := τ ′ ◦ ((ω,x) 7→ ω) on (Ω̃, G̃, (G̃t)t≥0) we conclude that τ must also
be optimal among the stopping times on (Ω,G, (Gt)t≥0). Let us denote our Brownian
motion by B, to the optimal stopping time by τ and to our filtered probability space by
(Ω,G, (Gt)t≥0,P), irrespective of whether this is the original process and space we started
with, or an enlarged one.
Choosing p0 := 1

2 + p + ε in Assumption 7.1.4.(e) we apply Theorem 7.1.18 to obtain
a set Γ on which (B,τ) is concentrated under P and for which (7.1.19) holds. As ν is
concentrated on (0,∞), we may assume that Γ ∩ (C(R+)× {0}) = ∅. Next we want to show
that Lemma 7.1.20 applies with Yt(ω) = ω(t).
Translating (7.1.21) to our situation, we want to prove that ω(t) < η(t) implies

−ω(t)A(t)−E
[(
η(t) + B̃σ

)
A(σ )

]
< −η(t)A(t)−E

[(
ω(t) + B̃σ

)
A(σ )

]
, (7.4.8)
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where B̃ is Brownian motion started in 0 at time t on C([t,∞)) and σ is any stopping time
thereon with W

t
0(σ = t) < 1, W t

0(σ =∞) = 0,
∫
σp0 dW t

0 <∞. Again the Burkholder-Davis-
Gundy inequality shows that E[B̃σA(σ )] <∞. So (7.4.8) turns into

ω(t)E[A(σ )−A(t)] < η(t)E[A(σ )−A(t)] ,

which clearly follows from the assumptions. So we know that Lemma 7.1.20 holds, i.e.,
using the names from said lemma we have

ˇ
τ ≤ τ ≤ τ̂ P-a.s.

Γ ∩ (C(R+)× {0}) = ∅ implies
ˇ
R∩ (R× {0}) = ∅ and therefore

ˇ
τ(ω) = inf{t > 0 : (Bt(ω), t) ∈

ˇ
R},

and likewise for R̂ and τ̂ . As
ˇ
R = R̂ =: R it follows from Lemma 7.4.6 that

ˇ
τ = τ = τ̂

a.s. and that τ is of the form claimed in (7.4.2) with β(t) := sup{y ∈ R : (y, t) ∈ R}. The
uniqueness claims follow from Lemma 7.4.7 and what we have already proven.
We now treat the case where ψ(Bt , t) = φ(Bt) with φ′′′ > 0,

∣∣∣φ(y)
∣∣∣ ≤ K(1 + |y|p) and ν has

finite moment of order p
2 + ε for some ε > 0. Most of the proof remains unchanged. Setting

c(ω,t) = −φ(ω(t)) we may again use the Burkholder-Davis-Gundy inequalities to show
that c(Bτ , τ) is bounded in L1+δ-norm, independently of the stopping time τ ∼ ν, thereby
showing both that Assumption 7.1.4.(d) is satisfied and that the boundedness-condition
in Version B of Theorem 7.1.10 is satisfied.
It remains to show that ω(t) < η(t) implies ((ω,t), (η, t)) ∈ SG. φ′′′ > 0 implies that the
map y 7→ φ(η(t) + y) − φ(ω(t) + y) is strictly convex. By the strict Jensen inequality
E[φ(η(t) + B̃σ ) − φ(ω(t) + B̃σ )] > φ(η(t)) − φ(ω(t)) for any stopping time σ on C([t,∞))
which is almost surely finite, satisfies optional stopping and is not almost surely equal
to t. As we may choose p0 := p

2 + ε, which is greater than 1, we may assume that the σ in
the definition of SG has finite first moment, which is enough to guarantee that it satisfies
optional stopping. Rearranging the last inequality gives (7.1.15). q

7.4.2. Supremum Process of Brownian Motion

To give an example of a slightly more complicated functional amenable to analysis with
our tools consider the following problem.

Problem (OptStop
B∗t ). Among all stopping times τ ∼ ν on (Ω,G, (Gt)t≥0,P) find the maxi-

mizer of

τ 7→ E[B∗τ ] ,

where B∗t = sups≤tB(s).

Then

Corollary 7.4.9. Assume that ν has finite moment of order 3
2 . Then OptStop

B∗t has a solution
τ given by

τ = inf {t > 0 : Bt −B∗t ≤ β(t)}

for some upper semicontinuous function β : R+→ [−∞,0].
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We proceed to prove Corollary 7.4.9. This is closely modeled on the treatment of the
Azema-Yor embedding in [9, Theorem 6.5]. As in this case we run into a technical obstacle,
though one which can be overcome by combining the ideas we have already seen in slightly
new ways. Thus the proof of Corollary 7.4.9 is very similar to the proof of Corollary 7.4.1.
To demonstrate the problem let us begin an attempt to prove Corollary 7.4.9. Again,
we read off c(ω,t) = −ω∗(t), with ω∗(t) = sups≤tω(s). We may use Theorem 7.1.10 to
find a solution τ of the problem OptStop

B∗t and we use Theorem 7.1.18 to find a set
Γ ⊆ C(R+) ×R+ for which P[(B,τ) ∈ Γ ] = 1 and SG∩(Γ < × Γ ) = ∅. Now we would like to
apply Lemma 7.1.20 with Yt(ω) = ω(t)−ω∗(t), as proposed by Corollary 7.4.9, so we want
to prove that ω(t)−ω∗(t) < η(t)− η∗(t) implies ((ω,t), (η, t)) ∈ SG.
Let us do the calculations: We start with an (F t

s )s≥t-stopping time σ , for which
W

t
0(σ = t) < 1, W t

0(σ =∞) = 0 and for which both sides in (7.1.15) are defined and finite.
To reduce clutter, let us name (ω 7→ (ω,σ (ω)))∗(W

t
0) =: α, so that (7.1.15), which we want

to prove, reads

−ω∗(t) +
∫

((ω,t)�θ)∗(s)dα(θ,s) < −η∗(t) +
∫

((η, t)�θ)∗(s)dα(θ,s) . (7.4.10)

We may rewrite the left hand side as∫ (
ω∗(t)∨

(
ω(t) +θ∗(s)

))
−ω∗(t)dα(θ,s) =

∫
0∨

(
ω(t)−ω∗(t) +θ∗(s)

)
dα(θ,s) .

For the right hand side we get the same expression with ω replaced by η. Looking at the
integrands we see that if

0 < η(t)− η∗(t) +θ∗(s) (7.4.11)

then

0∨
(
ω(t)−ω∗(t) +θ∗(s)

)
< 0∨

(
η(t)− η∗(t) +θ∗(s)

)
,

but in the other case

0∨
(
ω(t)−ω∗(t) +θ∗(s)

)
= 0 = 0∨

(
η(t)− η∗(t) +θ∗(s)

)
.

So if (7.4.11) holds for (θ,s) from a set of positive α-measure, then we proved what we
wanted to prove. But if θ∗(s) ≤ η∗(t)−η(t) for α-a.a. (θ,s) then in (7.1.15) we have equality
instead of strict inequality.
As in [9, Theorem 6.5], one way of getting around this is to introduce a secondary optimiza-
tion criterion. One way to explain the idea of secondary optimization is to think about
what happens if, instead of considering a cost function c : C(R+)×R+→R we consider a
cost function c : C(R+)×R+→ R

n. Of course, to be able to talk about optimization, we
will want to have an order on R

n. For reasons that should become clear soon, we decide
on the lexicographical order. For the case n = 2 that we are actually interested in for
Corollary 7.4.9 this means that

(x1,x2) ≤ (y1, y2) ⇐⇒ x1 < y1 or (x1 = y1 and x2 ≤ y2) .

We claim that Theorem 7.1.18 is still true if we replace c : C(R+) × R+ → R by
c : C(R+) ×R+ → R

n and read any symbol ≤ which appears between vectors in R
n as

the lexicographic order on R
n (and of course likewise for all the derived symbols and
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notions <, ≥, >, inf, etc. ). Moreover, the arguments are exactly the same. Indeed the
crucial part that may deserve some mention is at the end of the proof of Proposition 7.3.14,
where we use the assumption that (7.3.24) holds on a set of positive measure, i.e., that
the integrand is < 0 on a set of positive measure, and that the integrand is 0 outside
that set, to conclude that the integral itself must be < 0. This implication is also true
for the lexicographical order on R

n. One more detail to be aware of is that integrating
functions which map into R

2 may give results of the form (∞,x), (x,−∞), etc. In the case
of a one-dimensional cost function we excluded such problems by making Assumption
7.1.4.(d). What we really want in the proof of Proposition 7.3.14 is that

∫
cdξ and

∫
cdξπ

should be finite. Clearly a sufficient condition to guarantee this is to replace Assumption
7.1.4.(d) by

(d’) E[c(B,τ)] ∈Rn for all stopping times τ ∼ ν.

This is not the most general version possible but it will suffice for our purposes.
To get an existence result we may assume that c = (c1, c2) is component-wise lower semi-
continuous and that both c1 and c2 are bounded below (in either of the ways described
in the two versions of Theorem 7.1.10). Note that – because we are talking about the
lexicographic order – ξ ∈ RSTλ(ν) is a solution of OptStop

π for c if and only if ξ is a
solution of OptStop

π for c1 and among all such solutions ξ ′, ξ minimizes
∫
c2dξ

′. By
Theorem 7.1.10 in the form that we have already proved the set of solutions of OptStop

π

for c1 is non-empty. It is also a closed subset of a compact set and therefore itself compact.
This allows us to reiterate the argument that we used in the proof of Theorem 7.1.10
to find inside this set a minimizer of ξ ′ 7→

∫
c2dξ

′. This minimizer is the solution of
OptStop

π for c.

With this in hand we may pick up our

Proof of Corollary 7.4.9. The same arguments as in the proof of Corollary 7.4.1 apply, so
we may assume that our probability space satisfies Assumption 7.1.4.(b). We start with a
cost function c(ω,t) := (c1(ω,t), c2(ω,t)) := (−ω∗(t), (ω∗(t)−ω(t))3).

‖c1(B,τ)‖L3 ≤ ‖|B|∗τ‖L3 ≤ K1‖τ‖1/2L3/2 ,

by the Burkholder-Davis-Gundy inequalities, so (c1)− satisfies the uniform integrability
condition and E[c(B,τ)] is finite for all stopping times τ ∼ ν. c2 ≥ 0 and by the Burkholder-
Davis-Gundy inequalities

E[c2(B,τ)] ≤ E[(B∗(τ))3] ≤ K1E[τ3/2] = K1

∫
t3/2dν(t)

for some constant K1. The last term is finite by assumption.
By our discussion in the preceding paragraphs we find a solution τ of OptStop

τ for c
and a measurable, (F 0

t )t≥0-adapted set Γ ⊆ C(R+) ×R+, for which P[(B,τ) ∈ Γ ] = 1 and
SG∩(Γ < × Γ ) = ∅, where now ((ω,t), (η, t)) ∈ SG if and only if for all (F t

s )s≥t-stopping
times σ for which W

t
0(σ = t) < 1, W t

0(σ = ∞) = 0,
∫
σ3/2dW t

0 < ∞, setting α := (ω 7→
(ω,σ (ω)))∗(W

t
0) we have that either equation (7.4.10) holds or

−ω∗(t) +
∫

((ω,t)�θ)∗(s)dα(θ,s) = −η∗(t) +
∫

((η, t)�θ)∗(s)dα(θ,s) (7.4.12)
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and

c2(ω,t)−
∫
c2((ω,t)�θ,s)dα(θ,s) < c2(η, t)−

∫
c2((η, t)�θ,s)dα(θ,s) . (7.4.13)

Now, we want to apply Lemma 7.1.20, so we want to show that ω(t)−ω∗(t) < η(t)− η∗(t)
implies ((ω,t), (η, t)) ∈ SG. We already dealt with the case where α is such that (7.4.11)
holds on a set of positive α-measure. Now, we deal with the other case, so we have

θ∗(s) ≤ η∗(t)− η(t) < ω∗(t)−ω(t) (7.4.14)

for α-a.a. (θ,s) and we know that (7.4.12) holds. We show that (7.4.13) holds. Because of
(7.4.14), ((ω,t)�θ)∗(s) = ω∗(t), and so c2((ω,t)�θ,s) = (ω∗(t)−ω(t)−θ(s))3. We calculate
the left hand side of (7.4.13).∫

(ω∗(t)−ω(t))3 − (ω∗(t)−ω(t)−θ(s))3dα(θ,s)

=
∫

3(ω∗(t)−ω(t))2θ(s)− 3(ω∗(t)−ω(t))(θ(s))2 + (θ(s))3dα(θ,s)

= (ω(t)−ω∗(t))3
∫

(θ(s))2dα(θ,s) +
∫

(θ(s))3dα(θ,s) .

Here the Burkholder-Davis-Gundy inequalities show that both
∫

(θ(s))3dα(θ,s) and∫
(θ(s))2dα(θ,s) are finite so that we may split the integral and they also show that
{B̃σ∧T : T ≥ t} is uniformly integrable so that by the optional stopping theorem∫
θ(s)dα(θ,s) = 0. (B̃ is again a Brownian motion started in 0 at time t on C([t,∞)).)

For the right hand side of (7.4.13) we get the same expression with ω replaced by η.
This concludes the proof that ω(t) − ω∗(t) < η(t) − η∗(t) implies ((ω,t), (η, t)) ∈ SG and
Lemma 7.1.20 gives us barriers

ˇ
R, R̂ such that for their hitting times

ˇ
τ , τ̂ by Bt −B∗t we

have
ˇ
τ ≤ τ ≤ τ̂ , a.s.

Again we want to show that
ˇ
τ = τ̂ , a.s. and that they are actually stopping times. Again

we do so by showing that they are both a.s. equal to the hitting time of the closure of

the respective barrier. If
ˇ
R∩ ({0} ×R+) = ∅ then this works in exactly the same way as

in Lemma 7.4.6. (This time we define τε := inf{t > 0 : (Bεt (ω) − (Bε)∗t(ω), t) ∈ R} where

Bεt (ω) := Bt(ω) +A(t)ε.) If
ˇ
R∩ ({0} ×R+) , ∅ then (Bεt (ω) − (Bε)∗t(ω), t) ∈ R and t > 0 need

not imply Bt(ω)−B∗t(ω) < Bεt (ω)− (Bε)∗t(ω), which is essential for the topological argument
showing that the hitting time of R is less than or equal τε.

But if R̂ ∩ ({0} ×R+) =
ˇ
R∩ ({0} ×R+) , ∅, then

ˇ
τ and τ̂ are both almost surely ≤ T where

T := inf{t > 0 : (0, t) ∈ R̂}, so in the step where we show that the hitting time of R is less
than τε we can argue under the assumption that τε(ω) < T . In this case we do have that
(Bεt (ω)− (Bε)∗t(ω), t) ∈ R and t > 0 implies Bt(ω)−B∗t(ω) < Bεt (ω)− (Bε)∗t(ω). q

Remark 7.4.15. We hope that the proofs of Corollary 7.4.1 and Corollary 7.4.9 have
given the reader some idea of how to apply the main results of this section to arrive at
barrier-type solutions of constrained optimal stopping problems, as depicted in Figure
7.1. We would like to conclude by giving a couple of pointers to the interested reader
who may want to work through the proofs corresponding to the remaining pictures in
Figure 7.1. For the problem of minimizing E[Bτ∗], it may actually happen that the times

ˇ
τ ,

τ̂ from Lemma 7.1.20 do not coincide. Specifically one has to expect this to happen on
non-negligible set when

ˇ
R contains parts of the time axis which R̂ does not contain.
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Under these circumstances an optimizer may turn out to be a true randomized stopping
time, with a proportion of a path hitting the time axis at a certain point needing to be
stopped while the rest continues. In this situation the picture alone does not completely
describe the optimal stopping time.
For the problems involving absolute values one needs to make a minor modification in the
proof of Proposition 7.3.14. Specifically one can allow “mirroring” the paths which are
“transplanted” using the Gardener’s Lemma. This leads to a slightly different definition of
Stop-Go pairs, which is perhaps most easily described by saying that the paths which are
stopped by σ may be flipped upside-down on either side.
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A
Appendix

Finally, some detailed considerations are given, which are used in the main part of the
thesis, but would have had disturbed the reading flow there. The material can therefore be
skipped and considered when needed. The following topics are examined: Dominance in
stochastic order, some general results, expected shortfall, multi-dimensional log-normal
distribution and transition kernels.

A.1. Dominance in Stochastic Order

Dominance in stochastic order is an important tool in many areas of probability and
statistics. Stochastic orders generated by integrals are considered in [52]. We are guided
by [72] and [53] to give a definition of stochastic order with regard to random variables
and probability measures in our considerations. We will transfer it to stochastic order for
signed measures. It finds application in the Section 3.5.2 of Part I and the Section 6.2 of
Part II.
Let I be the considered index set or a continuous time interval.

Definition A.1.1 (Dominance in stochastic order). See [72, p. 3]:
Let X and Y be two random variables such that

P(X > t) ≤ P(Y > t) for all t ∈ I. (A.1.2)

Then X is said to be smaller than Y in the usual stochastic order or Y dominates X in
stochastic order (denoted by X ≤st Y ).

Remark A.1.3. Note that (A.1.2) is the same as

P(X ≤ t) ≥ P(Y ≤ t) for all t ∈ I.

Lemma A.1.4. See [72, p. 4]:
X ≤st Y if, and only if,

E[f (X)] ≤ E[f (Y )] (A.1.5)

holds for all increasing functions f for which the expectations exist.
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Remark A.1.6.

(a) Let I be a continuous time interval. Note that X ≤st Y if, and only if,∫
I>s

P(Y > u)du −
∫
I>s

P(X > u)du is decreasing in s ∈ I. (A.1.7)

(b) Let I be a totally ordered countable index set. If X and Y are random variables
taking on values in I , then we have the following. Let pt = P(X = t) and qt = P(Y = t),
t ∈ I . Then X ≤st Y if, and only if,∑

t∈I≤s

pt ≥
∑
t∈I≤s

qt , for all s ∈ I, (A.1.8)

or, equivalently X ≤st Y if, and only if,∑
t∈I>s

pt ≤
∑
t∈I>s

qt , for all s ∈ I. (A.1.9)

In continuous time the order relation for probability distributions are often immediately
given in the following way, cf. [46] and [52, Example 5.1]. This definition is equivalent to
the definition of the usual stochastic order given in Definition A.1.1.

Definition A.1.10. Let E be a Polish space endowed with a closed partial order. For
probability measures P and Q on (E,E), P is stochastically dominated by Q if∫

f dP ≤
∫
f dQ for all measurable bounded increasing functions f .

We write that P ≤st Q.

In the literature there are definitions of stochastic order with regard to random variables
and probability measures. Now, we want to introduce it for signed measures.

Definition A.1.11 (dominance in first order; signed measure).
Let I be a totally ordered countable index set or a continuous time interval. Let µ∗ and µ
be two signed measures of finite total variation with µ(I) = µ∗(I). Then µ∗ dominates µ in
first order, (denoted by µ ≤st µ∗), if

µ(I>s) ≤ µ∗(I>s), for all s ∈ I. (A.1.12)

Remark A.1.13. (a) Consider it as a function of s, i.e., s 7→ µ(I>s), such that we want to
prove if one function lies always above the other one.

(b) Note that (A.1.12) is equivalent to

µ(I≤s) ≥ µ∗(I≤s), for all s ∈ I.

(c) Let I be a totally ordered countable index set. For any signed measure µ we define
µ({t}) := µt, t ∈ I , and we have that µ(I>s) =

∑
t∈I>s µt.
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(d) Let I be a continuous time interval. For a signed measure µ we denote the positive
and negative variation by µ+ and µ−, cf. [52]. As usual |µ| := µ+ + µ− is the total
variation. Integrals are mostly written in the functional form µ(f ) :=

∫
f dµ :=∫

f dµ+−
∫
f dµ−. Notice that µ(f ) exists and is finite if and only if µ+(|f |)+µ−(|f |) <∞.

Remark A.1.14. Note that there are signed measures without finite total variation, for
example signed measures which are induced by the covariation of two local martingales.

Lemma A.1.15. Let I be a totally ordered countable index set and µ∗, µ be two signed measures
of finite total variation with µ(I) = µ∗(I). Then µ ≤st µ∗ if, and only if,∑

t∈I
f (t)µt ≤

∑
t∈I
f (t)µ∗t (A.1.16)

holds for all increasing functions f : I →R for which the expectations exist.

Proof. "⇐" For all increasing functions f : I → R for which the expectations exist, it
holds that ∑

t∈I
f (t)µt ≤

∑
t∈I
f (t)µ∗t .

Choosing fs := 1I>s we have for µ that
∑
t∈I fs(t)µt =

∑
t∈I>s µt = µ(I>s). Analogously

we get the same for µ∗. Therefore for all s ∈ I it follows from (A.1.16) that

µ(I>s) ≤ µ∗(I>s) .

"⇒" We will decompose a signed measure µ into its positive µ+ and negative part µ−,
whereby µ+

t := max{µt ,0} and µ−t := max{−µt ,0} for every t ∈ I . Then we have
µt = µ+

t −µ−t for every t ∈ I . Now we have that µ∗ dominates µ in first order, i.e.,

µ∗(I>s) ≥ µ(I>s), ∀s ∈ I. (A.1.17)

In the following we will assume that µ(I) + µ−(I) + (µ∗)−(I) > 0, because the case
µ(I) +µ−(I) + (µ∗)−(I) = 0 is trivial. If µ(I) +µ−(I) + (µ∗)−(I) = 0 then everything is null,
i.e., µ(I) = 0, µ−(I) = 0 and (µ∗)−(I) = 0. It follows that µ+(I) = µ(I) + µ−(I) = 0 and
also (µ∗)+(I) = 0, because µ∗(I) = µ(I) = 0. This also holds for every subset of I .
Adding µ−(I>s) + (µ∗)−(I>s) to (A.1.17) and multiplying with 1

µ(I)+µ−(I)+(µ∗)−(I) we get
for all s ∈ I

µ̂ :=
1

µ(I) +µ−(I) + (µ∗)−(I)

(
µ∗(I>s) +µ−(I>s) + (µ∗)−(I>s)

)
≥ 1
µ(I) +µ−(I) + (µ∗)−(I)

(
µ(I>s) +µ−(I>s) + (µ∗)−(I>s)

)
=: µ̃.

With µ+µ− + (µ∗)− = µ+ + (µ∗)− it is clear that µ+µ− + (µ∗)− is a finite, non-negative
measure. Through the appropriate scaling we have that µ̃ is a probability measure.
The same is true for µ̂. Furthermore we have that µ̂ dominates µ̃ in stochastic order.
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Now, let X∗ and X be random variables taking values in I such that P(X∗ = t) = µ̂t
and P(X = t) = µ̃t for every t ∈ I . Due to Lemma A.1.4 we get∑

t∈I
f (t)µ̂t ≥

∑
t∈I
f (t)µ̃t

for all increasing functions f : I →R for which the expectations exist. Multiply the
inequality with µ(I) +µ−(I) + (µ∗)−(I) and subtract

∑
t∈I f (t)(µ−(I>s) + (µ∗)−(I>s)) gives

us the assertion that ∑
t∈I
f (t)µ∗t ≥

∑
t∈I
f (t)µt ,

for all increasing functions f : I →R for which the expectations exist.
q

Lemma A.1.18. Let I be a continuous time interval and µ∗, µ be two signed measures of finite
total variation with µ(I) = µ∗(I). Then µ ≤st µ∗ if, and only if,

µ(f ) ≤ µ∗(f ) (A.1.19)

holds for all measurable bounded increasing functions f : I →R for which the integrals exist.

Proof. We get it analogously like in the proof of Lemma A.1.15, if we replace the sums by
the integrals.

"⇐" For all measurable bounded increasing functions f : I →R for which the expecta-
tions exist, it holds that ∫

f dµ ≤
∫
f dµ∗.

Choosing fs := 1I>s , which is bounded by 1, increasing and measurable, we have for
µ that

∫
fsdµ =

∫
I>s
dµ = µ(I>s). Analogously we get the same for µ∗. Therefore for all

s ∈ I it follows from (A.1.19) that

µ(I>s) ≤ µ∗(I>s) .

"⇒" We will decompose a signed measure µ into its positive µ+ and negative part µ−,
whereby µ+

t := max{µt ,0} and µ−t := max{−µt ,0} for every t ∈ I . Then we have
µt = µ+

t −µ−t for every t ∈ I . Now we have that µ∗ dominates µ in first order, i.e.,

µ∗(I>s) ≥ µ(I>s), ∀s ∈ I. (A.1.20)

In the following we will assume that µ(I) + µ−(I) + (µ∗)−(I) > 0, because the case
µ(I) +µ−(I) + (µ∗)−(I) = 0 is trivial. If µ(I) +µ−(I) + (µ∗)−(I) = 0 then everything is null,
i.e., µ(I) = 0, µ−(I) = 0 and (µ∗)−(I) = 0. It follows that µ+(I) = µ(I) + µ−(I) = 0 and
also (µ∗)+(I) = 0, because µ∗(I) = µ(I) = 0. This also holds for every subset of I .
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A.1. Dominance in Stochastic Order

Adding µ−(I>s) + (µ∗)−(I>s) to (A.1.20) and multiplying with 1
µ(I)+µ−(I)+(µ∗)−(I) we get

for all s ∈ I

µ̂ :=
1

µ(I) +µ−(I) + (µ∗)−(I)

(
µ∗(I>s) +µ−(I>s) + (µ∗)−(I>s)

)
≥ 1
µ(I) +µ−(I) + (µ∗)−(I)

(
µ(I>s) +µ−(I>s) + (µ∗)−(I>s)

)
=: µ̃.

With µ+µ− + (µ∗)− = µ+ + (µ∗)− it is clear that µ+µ− + (µ∗)− is a finite, non-negative
measure. Through the appropriate scaling we have that µ̃ is a probability measure.
The same is true for µ̂. Furthermore we have that µ̂ dominates µ̃ in stochastic order
and we can also use the equivalent definition. Due to Definition A.1.10 we have∫

f dµ̂ ≥
∫
f dµ̃

for all measurable bounded increasing functions f : I →R for which the integrals
exist. Multiply the inequality with µ(I)+µ−(I)+(µ∗)−(I) and subtract

∫
I>s
f d(µ−+(µ∗)−)

gives us the assertion that

µ(f ) ≤ µ∗(f )

for all measurable bounded increasing functions f : I →R for which the integrals
exist.
Note that we could also discuss it about the existence of two random variables X∗

and X taking values in I such that P(X∗ = t) = µ̂t and P(X = t) = µ̃t for every t ∈ I
like in the proof of Lemma A.1.15 using Lemma A.1.4.

q
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A.2. Some General Results

First, we want to show the Jensen’s inequality for substochastic measures.

Lemma A.2.1 (Jensen’s inequality for substochastic measures). Let (Ω,F ,µ) be a subproba-
bility space, such that µ(Ω) ∈ [0,1). If g is a real-valued function that is µ-integrable, and if ϕ
is a convex function on the real line with ϕ(0) ≤ 0, then:

ϕ

(∫
Ω

g dµ

)
≤

∫
Ω

ϕ ◦ g dµ.

Proof. Let µ(Ω) , 0. We define µ̃ = µ
µ(Ω) which is obviously a probability measure. Then

ϕ
(∫

Ω

g dµ
)

= ϕ
(
µ(Ω)

∫
Ω

g dµ̃+ (1−µ(Ω)) · 0
)

≤ µ(Ω) ·ϕ
(∫

Ω

g dµ̃
)

+ (1−µ(Ω)) ·ϕ(0) (convexity)

≤ µ(Ω) · 1
µ(Ω)

∫
Ω

ϕ(g)dµ+ (1−µ(Ω)) ·ϕ(0) (Jensen)

≤
∫
Ω

ϕ(g)dµ. (ϕ(0) ≤ 0)
q

Let I , ∅ denote a countable, i.e., a finite or countably infinite, totally-ordered index
set, (Ω,F ,P) be a probability space with filtration F = (Ft)t∈I and ν a given probability
measure on I . In Section 3.2 we will extend the given filtration F in an eligible way
to embed a special set, the setMν

I of all adapted random probability measures γ with
E[γt] = νt for all t ∈ I , into another set, the set T νI of all stopping times τ with distribution
ν. To have an unique assignment, one of the following assumptions should demand:

Assumption A.2.2. We assume one of the conditions:

(a) Ft includes all null sets of F∞ := σ (
⋃
t∈I Ft) for all t ∈ I .

(b) There exists a sequence (tn)n∈N in I such that tn ≤ tn+1 for all n ∈N and I includes a
maximum element.

By virtue of definition of an adapted random probability measure, it is necessary, in
particular because of Defintion 3.1.1(b), otherwise would be the constructed stopping
time not unique defined on the corresponding null sets. In the case of a finite index set no
additional assumption is necessary.

Remark A.2.3. By condition (a) of Assumption A.2.2, the null sets would be identified.
The condition (b) of Assumption A.2.2 gives us the possibility to redefine the random
adapted probability measure.

If the Assumption A.2.2 does not hold, we have to enlarge the filtration.

Definition A.2.4. A filtration G = (Gt)t∈I of F is called an enlargement of the filtration
F = (Ft)t∈I , if Ft ⊆ Gt for all t ∈ I .
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A.2. Some General Results

Extending the filtration by adding null sets is easier to describe for an interval and can be
done as follows:

Remark A.2.5 (Adding null sets to filtrations). Let I ⊆ R ∪ {∞,−∞} be an interval and
F = (Ft)t∈I a filtration. Define G = (Gt)t∈I by

Gt =
{
G ∈ F | There exists F ∈ Ft with P(F∆G) = 0

}
, t ∈ I.

Then the following holds:

(a) G is an enlargement of F such that Ft ⊆ Gt for all t ∈ I and its σ -algebras contain all
null sets of F .

(b) If F is right-continuous, then G is right-continuous.

(c) Every X ∈ L1(Ω,F ,P) satisfies E[X |Ft]
a.s.= E[X |Gt] for all t ∈ I .

(d) Let H ⊆ F be a σ -algebra and t ∈ I . If H is independent of Ft, then it is also
independent of Gt.

This can easily be verified.

We still want to specify the definition of progressive measurable processes here.

Definition A.2.6 (Progressively measurable). Let I ⊆R be a continuous time interval and
I≤t = (−∞, t]∩ I be the set of all times up to t ∈ I . A stochastic process X defined on a
filtered probability space (Ω,F ,F = (Ft)t∈I ,P) is F -progressively measurable or simply
F -progressive with respect to a filtration F = (Ft)t∈I , if the function X(s,ω) : I≤t ×Ω→R

is BI≤t ⊗Ft-measurable for every t ∈ I .

The section should be completed with a proposition on conditional expectations involving
independent random variables. The following proposition is a modified version of [25,
Example 5.1.5]:

Proposition A.2.7 (Conditional expectation involving independent random variables).
Let (Ω,F ,P) be a probability space, G ⊆ F a sub-σ -algebra, (S1,S1) and (S2,S2) measurable
spaces, X : Ω→ S1 and Y : Ω→ S2 random variables. Suppose X and Y are independent.
Let F : S1 × S2→R be an S1 ⊗S2-measurable function with E[|F(X,Y )|] <∞ and let
h(x) = E[F(x,Y )]. Then we have that

E[F(X,Y )|σ (X)] = h(X) .

Proof. It is clear that h(X) ∈ σ (X). We have to check that for every A ∈ σ (X)∫
A
F(X,Y )dP =

∫
A
h(X)dP.

Note that if A ∈ σ (X) then there exist a C ∈ B (R) with A = X−1(C). Then also the preimage
of C under (X,Y ) is the event A.
Using the change of variables formula ([25, Theorem 1.6.9]) and the fact that the distribu-
tion P(X,Y ) of (X,Y ) is a product measure ([25, Theorem 2.1.7]), then the definition of h,
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and change of variables again, yields∫
A
F(X,Y )dP = E[F(X,Y )1C(X)] =

∫
C×R

F(x,y)dP(X,Y )(x,y)

=
∫
C

∫
R

F(x,y)dPY (y)dPX(x) =
∫
C
h(x)dPX(x) =

∫
A
h(X)dP,

which proves the desired result. q
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A.3. Notes on the Expected Shortfall

A.3. Notes on the Expected Shortfall

In this section we will return the definitions of quantiles and the expected shortfall, given
in [33], to mind. Furthermore we will use in Section 3.5.2 and 3.6 of Part I the result of
Lemma A.3.3 to derive upper bounds which differ from these given in [33].

Definition A.3.1. Given a random variable X : Ω→R, δ ∈ [0,1].

(a) Define the δ-quantile of X by

qδ(X) := inf{x ∈R|P(X ≤ x) ≥ δ}.

Note that q0(X) = −∞ and if P(X ≤ x) < 1 for all x ∈R, then q1(X) =∞.

(b) Define fδ,X : Ω→ [0,1] by

fδ,X :=

0 if δ = 1,

1X>qδ(X) + βδ,X1X=qδ(X) if δ ∈ [0,1),

where

βδ,X :=

P(X≤qδ(X))−δ
P(X=qδ(X)) if P(X = qδ(X)) > 0,

0 otherwise.

(c) The expected shortfall of X at level δ is given by

(1− δ)ES[X;δ] = E[fδ,XX].

Note that ES[X;0] = E[X] and ES[X;1] = 0 as β1,X = f1,X = 0.

Remark A.3.2.

(a) Note that βδ,X ∈ [0,1], because P(X < qδ(X)) ≤ δ ≤ P(X ≤ qδ(X)). Therefore fδ,X is
[0,1]-valued.

(b) For δ ∈ [0,1] we have E[fδ,X] = 1− δ. This is due to the fact that for δ ∈ [0,1)

E[fδ,X] = P(X > qδ(X)) + βδ,XP(X = qδ(X)) .

Lemma A.3.3. Cf. [33, Lemma 4.6]:
Let X and Y be real-valued random variables, δ ∈ [0,1]. Assume Y ≥ 0, E[Y ] < ∞ and
E[|X |] <∞. Define

F Yδ,X :=
{
f : Ω→ [0,1]

∣∣∣∣ f measurable , E[f Y ] = E[fδ,XY ]
}
.

Then the following holds:

(a) E[fδ,XXY ] is well-defined and

sup
f ∈F Y

δ,X

E[f XY ] = E[fδ,XXY ].
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(b) If f ∗ ∈ F Yδ,X satisfies E[f ∗XY ] = E[fδ,XXY ] <∞, then

f ∗ = fδ,X , a.s., on {Y > 0, X , qδ(Y )}.

(c) If Y and fδ,XX are uncorrelated, then

E[fδ,XXY ] = E[Y ]E[fδ,XX] = (1− δ)E[Y ]ES[X;δ].

Remark A.3.4. Note that Y and fδ,XX are uncorrelated, if X and Y are independent.

At this point we would like to reproduce a few important results of [33].

Lemma A.3.5. See [33, Lemma 5.10]:
Given a discrete time interval I ⊆ N0 with 0 ∈ I and a probability distribution ν on I .
For a given adapted stochastic process Z we define the increments of Z by ∆Z0 := Z0 and
∆Zt := Zt −Zt−1 for all t ∈ I \ {0}. Assume the increments are integrable and there exists a
sequence (ct)t∈I ⊆ [1,∞) such that they satisfy

E[∆Zt |Ft−1] = E[∆Zt] , a.s.

and

E[|∆Zt ||Ft−1] ≤ ctE[|∆Zt |] , a.s.

for all t ∈ I \ {0} with νleqt−1 < 1, as well as∑
t∈I
ctE[|∆Zt |](1− ν≤t−1) <∞

with the understanding that 1− ν≤t−1 = 1 for t = 0. Then, for all γ ∈Mν
I , Zγ is well-defined,

integrable and

E[Zγ ] =
∑
t∈I
E[Zt]νt .

Theorem A.3.6. See [33, Theorem 5.25]:
Given a discrete time interval I ⊆N0 with 0 ∈ I and a probability distribution ν on I , assume
that the adapted process Z = (Zt)t∈I can be decomposed into Zt =Mt +Nt +At for t ∈ I , where
M is a martingale such that M and ν satisfy one of the conditions of [33, Theorem 2.49],
N is a process such that N and ν satisfy the conditions of [33, Lemma 5.10] and A is a
predictable process, with A0 = 0. Denote the increments of the process A by ∆A0 = A0 = 0 and
∆At := At −At−1 for t ∈ I \ {0}. Assume that for the density of [33, Definition 4.3(b)] we have
for every t ∈ I \ {0} with t + 1 ∈ I

E[fδt ,∆At+1
|Ft−1] = 1− δt , a.s.

and that for some sequence (ct)t∈I for every t ∈ I \ {0}

E[|∆At ||Ft−1] ≤ ctE[|∆At |] , a.s.
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and that for each t ∈ I \ {0,1} we have that fδt−1,∆At∆At and (1−γ0− . . .−γt−2) are uncorrelated.
Further assume that the process A satisfies either∑

t∈I\{0}
ctE[|∆At |]ν≥t <∞

or

E[sup
t∈I
|At |] <∞.

With these assumptions we have that Zγ is well-defined and integrable. Then an optimal
adapted random probability measure γ∗ is given by

γ∗t =

(1−γ∗≤t−1)(1− fδt ,∆At+1
) for t + 1 ∈ I,

(1−γ∗≤t−1) for t + 1 < I,

where fδt ,∆At+1
is defined as in [33, Definition 4.3(b)] and

δt =

 νt
1−ν≤t−1

if ν≤t−1 < 1,

0 if ν≤t−1 = 1.

Using this strategy we have

V νM(Z) = E[M0] +
∑
t∈I

E[Nt]νt +
∑
t∈I\{0}

(1− ν≤t−1)ES[∆At;δt−1].

If P(∆At+1 = qδt (∆At+1)) = 0 for all t ∈ I with t + 1 ∈ I , then the optimal strategy γ∗ is a.s.
unique.

Lemma A.3.7. See [33, Lemma 5.37]:
Given a discrete time interval I ⊆N0 with 0 ∈ I and a probability distribution ν on I . Assume
that the adapted process Z = (Zt)t∈I is a process of independent random variables such that
E[supt∈I |Zt |] < ∞. Further let U = (Ut)t∈I be an adapted process of independent random
variables uniformly distributed on [0,1], such that Z and U are independent. For t ∈ I set
δt = 1− νt

1−ν0−...−νt−1
and

Et := {Zt > qδt (Zt)} ∪ {Zt = qδt (Zt),1− βδt ,Zt < Ut ≤ 1}

with βδt ,Zt as in Definition A.3.1. Then an optimal stopping time τ∗ solving

sup
τ∈T νI

E[Zτ ] = E[Zτ∗]

is given by

{τ∗ = t} =


⋂
I<t
Ecs ∩Et if ν≤t < 1,⋂

I<t
Ecs if ν≤t = 1.

E[Zτ∗] can be computed as

E[Zτ∗] =
∑
t∈I

E[Zt1τ∗=t] =
T∑
t=0

νt ·ES[Zt;δt] .
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A.4. Multi-Dimensional Log-Normal Distribution

A log-normal distribution is a continuous probability distribution of a random variable
whose logarithm is normally distributed. Therefore we will define at first the multi-
dimensional normal distribution.

Definition A.4.1. See [71, Definition 2.6]: Let µ ∈ Rn, A ∈ Rn×d and X ∼ N (0, Id). Then
the distribution of Y := AX + µ is called a n-dimensional normal distribution with ex-
pected value µ and covariance matrix C := AAT . We use the notation Y ∼ N (µ,C) and
L(Y ) =N (µ,C). If µ = 0, then the normal distribution is called centered.

Proposition A.4.2. Let f : Rn→ R
m be affine, i.e., f (y) = By + ν with ν ∈ Rm and (m× n)-

matrix B. If Y is an R
n-valued random variable with Y ∼N (µ,C), then

f (Y ) ∼N (Bµ+ ν,BCBT ) .

Proof. By Definition A.4.1 there exist a µ ∈Rn, a dimension d ∈N as well as A ∈Rn×d with
C = AAT and X ∼N (0, Id) such that Y := AX +µ ∼N (µ,C). Then f (Y ) = B(AX +µ) + ν =
(BA)X + (Bµ+ ν) and (BA)(BA)T = BAATBT = BCBT which prove the claim. q

Proposition A.4.3. Let X = (X1, . . . ,Xj )T and Y = (Y1, . . . ,Yk)T be random vectors.
If Z := (X,Y )T ∼N (µ,C) and Cov(X,Y ) = 0, then X and Y are independent.

Proof. With CX = Cov(X) and CY = Cov(Y ), we can partition the covariance matrix as

C =
(
CX 0
0 CY

)
.

Furthermore, let

µX =


µ1
...
µj

 , µY =


µj+1
...

µj+k

 and tX =


t1
...
tj

 , tY =


tj+1
...
tj+k

 ,
such that X ∼N (µX ,CX) and Y ∼N (µY ,CY ). Then it holds for t := (tX , tY )T ∈Rj+k that

E[exp(i〈t,Z〉)] = exp(i〈t,µ〉 − 1
2
〈t,Ct〉)

= exp(i〈tX ,µX〉+ i〈tY ,µY 〉 −
1
2
〈tX ,CXtX〉 −

1
2
〈tY ,CY tY 〉)

= E[exp(i〈tX ,X〉)]E[exp(i〈tY ,Y 〉)] .

Because of the fact that the characteristic function determines the distribution uniquely, it
follows that

L (Z) =L (X)⊗L (Y ) ,

which means that X and Y are independent. q
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A.4. Multi-Dimensional Log-Normal Distribution

With the preliminaries to the normal distribution we can now introduce the definition of
the log-normal distribution in higher dimension.

Definition A.4.4. See [71, Definition 2.33]:
Let µ ∈ Rn, C ∈ Rn×n positive semidefinite, and let Y = (Y1, . . . ,Yn) ∼ N (µ,C). Then the
distribution of Z := (exp(Y1), . . . ,exp(Yn)) is called a n-dimensional log-normal distribu-
tion with parameters µ and C and we use the notation Z ∼ MLogN (µ,C). In the one-
dimensional case of a log-normal distribution, we write Z ∼ LogN (µ,C). By definition, a
random vector with an n-dimensional log-normal distribution takes values in (0,∞)n.

Lemma A.4.5 (Properties of the multi-dimensional log-normal distribution).
See [71, Exercise 2.34]: Let Z = (Z1, . . . ,Zn) ∼MLogN (µ,C) and use the multi-index notation

Zp :=
n∏
k=1

Z
pk
k , p = (p1, . . . ,pn) ∈Rn.

(a) Show that Zp ∼ LogN (〈p,µ〉,〈p,Cp〉) for every p ∈Rn.

(b) Show that E[Zp] = exp(〈p,µ〉+ 1
2〈p,Cp〉) for every p ∈Rn.

(c) Show for all p,q ∈Rn that

Cov(Zp,Zq) = E[Zp+q]−E[Zp]E[Zq]

= exp(〈p+ q,µ〉+ 1
2
〈p,Cp〉+ 1

2
〈q,Cq〉)(exp(〈p,Cq〉)− 1) .

(d) Show for all p,q ∈ Rn that Zp and Zq are independent if and only if Cov(Zp,Zq) = 0,
which is the case if and only if 〈p,Cq〉 = 0.

Proof. (a) By Definition A.4.4 there is a random vector Y = (Y1, . . . ,Yn) ∼N (µ,C), such
that Z = (Z1, . . . ,Zn) = (exp(Y1), . . . ,exp(Yn)) ∼MLogN (µ,C). Then we have that

Zp :=
n∏
k=1

Z
pk
k =

n∏
k=1

exp(Yk)
pk = exp

 n∑
k=1

pkYk

 = exp(〈p,Y 〉) .

Using Proposition A.4.2 with f (y) = 〈p,y〉 for some p = (p1, . . . ,pn) ∈ R
n and

Y ∼N (µ,C) implies that 〈p,Y 〉 ∼ N (〈p,µ〉,〈p,Cp〉). Furthermore it follows that
Zp = exp(〈p,Y 〉) ∼MLogN (µ,C).

(b) For X ∼N (µ,σ2) we know that

E[tX] = exp
(
µt +

1
2
σ2t2

)
.

Using this and (a) implies that

E[Zp] = E[exp(1 · 〈p,Y 〉︸︷︷︸)]

∼N (〈p,µ〉,〈p,Cp〉)

= exp
(
〈p,µ〉 · 1 +

1
2
〈p,Cp〉 · 12

)
= exp

(
〈p,µ〉+ 1

2
〈p,Cp〉

)
.
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(c) The covariance is given by Cov(X,Y ) = E[(X −E[X])(Y −E[Y ])] = E[XY ]−E[X]E[Y ],
such that

Cov(Zp,Zq) = E[Zp+q]−E[Zp]E[Zq] ( using (b))

= exp
(
〈p+ q,µ〉+ 1

2
〈p+ q,C(p+ q)〉

)
− exp

(
〈p,µ〉+ 1

2
〈p,Cp〉

)
· exp

(
〈q,µ〉+ 1

2
〈q,Cq〉

)
(using bilinearity of 〈·, ·〉 and exclude a factor)

= exp
(
〈p+ q,µ〉+ 1

2
〈p,Cp〉+ 1

2
〈q,Cq〉

)(
exp(〈p,Cq〉)− 1

)
.

(d) For all p,q ∈ Rn it follows from (a) and the proof of Proposition A.4.3 that Zp and
Zq are independent if and only if Cov(Zp,Zq) = 0. Finally, it follows from (c) that
Cov(Zp,Zq) = 0 if and only if 〈p,Cq〉 = 0.

q
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A.5. Fubini and Transition Kernel

A.5. Fubini and Transition Kernel

To introduce our distribution-constrained optimization problem OptStop
γ in continuous

time similar to the one in discrete time, we must exchange the adapted random proba-
bility measures by stochastic transition kernels, see Section 6.1 of Part II. Here are some
preliminary considerations on this subject from various sources.

Definition A.5.1. Cf. [65, Definition 8.4]:
Let (X,S ,µ) and (Y ,J ,λ) be σ -finite measure spaces, and let f be an (S ×J )-measurable
function on X ×Y .
With each function f on X ×Y and with each x ∈ X we associate a function fx defined on
Y by fx(y) = f (x,y). Similarly, if y ∈ Y , f y is the function defined on X by f y(x) = f (x,y).

Theorem A.5.2 (Fubini). See [65, Theorem 8.8]:
Let (X,S ,µ) and (Y ,J ,λ) be σ -finite measure spaces, and let f be an (S × J )-measurable
function on X ×Y .

(a) If 0 ≤ f ≤∞, and if

φ(x) =
∫
Y
fx dλ, ψ(y) =

∫
X
f y dµ (x ∈ X,y ∈ Y ), (A.5.3)

then φ is S-measurable, ψ is J -measurable, and∫
X
φdµ =

∫
X×Y

f d(µ×λ) =
∫
Y
ψdλ. (A.5.4)

(b) If f is complex and if

φ∗(x) =
∫
Y
|f |x dλ and

∫
X
φ∗dµ <∞, (A.5.5)

then f ∈ L1(µ×λ).

(c) If f ∈ L1(µ × λ), then fx ∈ L1(λ) for almost all x ∈ X, f y ∈ L1(µ) for almost all y ∈ Y ;
the functions φ and ψ, defined by (A.5.3) a.e., are in L1(µ) and L1(λ), respectively, and
(A.5.4) holds.

Remark A.5.6. Notes: The first and last integrals in (A.5.4) can also be written in the more
usual form ∫

X
dµ(x)

∫
Y
f (x,y)dλ(y) =

∫
Y
dλ(y)

∫
X
f (x,y)dµ(x) . (A.5.7)

These are the so-called "iterated integrals" of f . The middle integral in (A.5.4) is often
referred to as a double integral. The combination of (b) and (c) gives the following useful
result: If f is (S ×J )-measurable and if∫

X
dµ(x)

∫
Y
|f (x,y)|dλ(y) <∞,

then the two iterated integrals (A.5.7) are finite and equal.
In other words, "the order of integration may be reversed" for (S×J )-measurable functions
f whenever f ≥ 0 and also whenever one of the iterated integrals of |f | is finite.
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See [41, Chapter 14]: Consider now the situation of finitely many σ -finite measure spaces
(Ωi ,Ai ,µi), i = 1, . . . ,n, where n ∈N.

Lemma A.5.8. See [41, Lemma 14.13]:
Let A ∈ A1⊗A2 and let f : Ω1×Ω2→R be anA1⊗A2-measurable map. Then, for all ω̃1 ∈Ω1
and ω̃2 ∈Ω2,

Aω̃1
:= {ω2 ∈Ω2 : (ω̃1,ω2) ∈ A} ∈ A2,

Aω̃2
:= {ω1 ∈Ω1 : (ω1, ω̃2) ∈ A} ∈ A1,

fω̃1
: Ω2→R, ω2 7→ f (ω̃1,ω2) is A2-measurable,

fω̃2
: Ω1→R, ω1 7→ f (ω1, ω̃2) is A1-measurable.

Theorem A.5.9 (Finite product measures). See [41, Theorem 14.14]:
There exists a unique σ -finite measure µ on A :=

⊗n
i=1Ai such that

µ(A1 × . . .×An) =
n∏
i=1

µi(Ai) for Ai ∈ Ai , i = 1, . . . ,n.

⊗n
i=1µi := µ1⊗ . . .⊗µn := µ is called the product measure of the µi . If all spaces involved equal

(Ω0,A0,µ0), then we write µ⊗n :=
⊗n

i=1µ0.

We come next to a concept that generalizes the notion of product measure. Recall the
definition of a transition kernel, which is given in the following way:

Definition A.5.10 (Transition kernel, Markov kernel). See [41, Definition 8.25]:
Let (Ω1,A1), (Ω2,A2), be measurable spaces. A map κ : Ω1 × A2 → [0,∞] is called a
(σ -)finite transition kernel (from Ω1 to Ω2 ) if:

(i) ω1 7→ κ(ω1,A2) is A1-measurable for any A2 ∈ A2.

(ii) A2 7→ κ(ω1,A2) is a (σ -)finite measure on (Ω2,A2) for any ω1 ∈Ω1.

If in (ii) the measure is a probability measure for all ω1 ∈Ω1, then κ is called a stochastic
kernel or a Markov kernel. If in (ii) we also have κ(ω1,Ω2) ≤ 1 for any ω1 ∈Ω1, then κ is
called sub-Markov or substochastic.

Lemma A.5.11. See [41, Lemma 14.20]:
Let κ be a finite transition kernel from (Ω1,A1) to (Ω2,A2) and let f : Ω1 ×Ω2→ [0,∞] be
measurable with respect to (A1 ⊗A2)-B([0,∞]). Then the map

If : Ω1→ [0,∞],

ω1 7→
∫
f (ω1,ω2)κ(ω1,dω2),

is well-defined and A1-measurable.

Remark A.5.12. See [41, Remark 14.21]:
In the following, we often write

∫
κ(ω1,dω2)f (ω1,ω2) instead of

∫
f (ω1,ω2)κ(ω1,dω2)

since for multiple integrals this notation allows us to write the integrator closer to the
corresponding integral sign.
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Theorem A.5.13. See [41, Theorem 14.22]:
Let (Ωi ,Ai), i = 0,1,2, be measurable spaces. Let κ1 be a finite transition kernel from (Ω0,A0)
to (Ω1,A1) and let κ2 be a finite transition kernel from (Ω0 ×Ω1,A0 ⊗A1) to (Ω2,A2) . Then
the map

κ1 ⊗κ2 : Ω0 × (A1 ⊗A2)→ [0,∞),

(ω0,A) 7→
∫
Ω1

κ1(ω0,dω1)
∫
Ω2

κ2((ω0,ω1),dω2)1A((ω1,ω2)),

is well-defined and is a σ -finite (but not necessarily a finite) transition kernel from (Ω0,A0) to
(Ω1 ×Ω2,A1 ⊗A2). If κ1 and κ2 are (sub)stochastic, then κ1 ⊗κ2 is (sub)stochastic. We call
κ1 ⊗κ2 the product of κ1 and κ2.
If κ2 is a kernel from (Ω1,A1) to (Ω2,A2), then we define the product κ1 ⊗ κ2 similarly by
formally understanding κ2 as a kernel from (Ω0×Ω1,A0⊗A1) to (Ω2,A2) that does not depend
on the Ω0-coordinate.

Corollary A.5.14 (Products via kernels). See [41, Corollary 14.23]:
Let (Ω1,A1,µ) be a finite measure space, let (Ω2,A2) be a measurable space and let κ be a
finite transition kernel from Ω1 to Ω2. Then there exists a unique σ -finite measure µ⊗κ on
(Ω1 ×Ω2,A1 ⊗A2) with

µ⊗κ(A1 ×A2) =
∫
A1

κ(ω1,A2)µ(dω1) for all A1 ∈ A1,A2 ∈ A2.

If κ is stochastic and if µ is a probability measure, then µ⊗κ is a probability measure.

Corollary A.5.15. See [41, Corollary 14.24]:
Let n ∈ N and let (Ωi ,Ai), i = 0, . . . ,n, be measurable spaces. For i = 1, . . . ,n, let κi be a
substochastic kernel from (

�i−1
k=0Ωk ,

⊗i−1
k=0Ak) to (Ωi ,Ai) or from (Ωi−1,Ai−1) to (Ωi ,Ai).

Then the recursion κ1⊗ . . .⊗κi := (κ1⊗ . . .⊗κi−1)⊗κi for any i = 1, . . . ,n defines a substochastic
kernel

⊗i
k=1κk := κ1 ⊗ . . .⊗κi from (Ω0,A0) to (

�i
k=1Ωk ,

⊗i
k=1Ak). If all κk are stochastic,

then all
⊗i

k=1κk are stochastic.

If µ is a finite measure on (Ω0,A0), then µi := µ⊗
⊗i

k=1κk is a finite measure on

(
�i

k=0Ωk ,
⊗i

k=0Ak). If µ is a probability measure and if every κi is stochastic, then µi is a
probability measure.

Definition A.5.16 (Composition of kernels). See [41, Definition 14.25]:
Let (Ωi ,Ai), i = 0,1,2, be measurable spaces and let κi be a substochastic kernel from
(Ωi−1,Ai−1) to (Ωi ,Ai), i = 1,2. Define the composition of κ1 and κ2 by

κ1 ·κ2 : Ω0 ×A2→ [0,∞),

(ω0,A2) 7→
∫
Ω1

κ1(ω0,dω1)κ2(ω1,A2) .

Theorem A.5.17. See [41, Theorem 14.26]:
If we denote by π2 : Ω1 ×Ω2→Ω2 the projection to the second coordinate, then

(κ1 ·κ2)(ω0,A2) = (κ1 ⊗κ2)(ω0,π
−1
2 (A2)) for all A2 ∈ A2.

In particular, the composition κ1 ·κ2 is a (sub)stochastic kernel from (Ω0,A0) to (Ω2,A2).
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Theorem A.5.18 (Fubini for transition kernels). See [41, Theorem 14.29]:
Let (Ωi ,Ai) be measurable spaces, i = 1,2. Let µ be a finite measure on (Ω1,A1) and let κ be
a finite transition kernel from Ω1 to Ω2 . Assume that f : Ω1 ×Ω2→ R is measurable with
respect to A1 ⊗A2. If f ≥ 0 or f ∈ L1(µ⊗κ), then∫

Ω1×Ω2

f d(µ⊗κ) =
∫
Ω1

(∫
Ω2

f (ω1,ω2)κ(ω1,dω2)
)
µ(dω1) .

See [39]: Given two measurable spaces (S,S) and (T ,T ), a mapping µ : S × T → R+ is
called a (probability) kernel from S to T if the function µsB = µ(s,B) is S-measurable in
s ∈ S for fixed B ∈ T and a (probability) measure in B ∈ T for fixed s ∈ S. Any kernel µ
determines an associated operator that maps suitable functions f : T →R into their inte-
grals µf (s) =

∫
µ(s,dt)f (t). Note in particular that the class P (S) of probability measures

on S is a measurable subset ofM(S). Kernels play an important role in probability theory,
where they may appear in the guises of random measures, conditional distributions,
Markov transition functions, and potentials. The following characterizations of the kernel
property are often useful. For simplicity we are restricting our attention to probability
kernels.

Lemma A.5.19 (Kernels). See [39, Lemma 1.37]:
Fix two measurable spaces (S,S) and (T ,T ), a π-system C with σ (C) = T , and a family
µ = {µs;s ∈ S} of probability measures on T . Then these conditions are equivalent:

(i) µ is a probability kernel from S to T ;

(ii) µ is a measurable mapping from S to P (T );

(iii) s 7→ µsB is a measurable mapping from S to [0,1] for every B ∈ C.

More primitive classes than σ -fields often arise in applications. A class C of subsets of
some space Ω is called a π-system if it is closed under finite intersections, so that A, B ∈ C
implies A∩B ∈ C. Furthermore, a class D is a λ-system if it contains Ω and is closed under
proper differences and increasing limits. Thus, we require that Ω ∈ D, that A, B ∈ D with
A ⊃ B implies A \B ∈ D, and that A1,A2, . . . ∈ D with An ↑ A implies A ∈ D.
Let us now introduce a third measurable space (U,U ), and consider two kernels µ and ν,
one from S to T and the other from S × T to U . Imitating the construction of product
measures, we may attempt to combine µ and ν into a kernel µ⊗ν from S to T ×U given by

(µ⊗ ν)(s,B) =
∫
µ(s,dt)

∫
ν(s, t,du)1B(t,u), B ∈ T ⊗U .
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The following lemma justifies the formula and provides some further useful information.

Lemma A.5.20 (Kernels and functions). See [39, Lemma 1.38]:
Fix three measurable spaces (S,S), (T ,T ), and (U,U ). Let µ and ν be probability kernels from S
to T and from S × T to U , respectively, and consider two measurable functions f : S × T →R+
and g : S × T →U . Then

(i) µsf (s, ·) is a measurable function of s ∈ S;

(ii) µs ◦ (g(s, ·))−1 is a kernel from S to U ;

(iii) µ⊗ ν is a kernel from S to T ×U .

For any measurable function f ≥ 0 on T ×U , we get as in [39, Theorem 1.27]

(µ⊗ ν)sf =
∫
µ(s,dt)

∫
ν(s, t,du)f (t,u), s ∈ S,

or simply (µ⊗ν)f = µ(νf ). By iteration we may combine any kernels µk from S0×· · ·×Sk−1
to Sk , k = 1, . . . ,n, into a kernel µ1 ⊗ · · · ⊗µn from S0 to S1 × · · · × Sn , given by

(µ1 ⊗ · · · ⊗µn)f = µ1(µ2(· · · (µnf ) · · · ))

for any measurable function f ≥ 0 on S1 × · · · ×Sn. In applications we may often encounter
kernels µk from Sk−1 to Sk , k = 1, . . . ,n, in which case the composition µ1 · · ·µn is defined
as a kernel from S0 to Sn given for measurable B ⊆ Sn by

(µ1 · · ·µn)sB = (µ1 ⊗ · · · ⊗µn)(S1 × · · · × Sn−1 ×B)

=
∫
µ1(s,ds1)

∫
µ2(s1,ds2) · · ·

∫
µn−1(sn−2,dsn−1)µn(sn−1,B) .

Let (E,E) be a measurable space and Q : E ×E → [−1,1] be a signed bounded kernel, i.e.,
Qx(·) is a finite measure on (E,E) for any x ∈ E and x 7→ Qx(A) is a measurable function
for any set A ∈ E. For any fixed x, let the measure Q+

x be the positive part of the signed
measure Qx as in Hahn-Jordan decomposition. Is it true that Q+ is a kernel, i.e., is the
function x 7→Q+

x (A) measurable for any A ∈ E? It clearly holds if Q is an integral kernel,
i.e., Q(x,dy) = q(x,y)µ(dy), where µ is a finite measure on (E,E) and q : E × E → R is a
jointly measurable function, but I am interested in the general case.
The following answer is based on [23]. The result holds true under the assumption that
(E,E) is countably generated. The algebra generated by a countable set is countable, so we
can assume without loss of generality that there is a countable algebra A with E = σ (A).
Since the difference of two measurable functions is measurable, it suffices to show that Q+

is a kernel.
For all x ∈ E and B ∈ E, we have

Q+
x (B) = sup

A∈E ,A⊆B
Qx(A) .

Let α ∈ [0,1]. We have

{x :Qx(B)+ < α} =
⋃

A∈E ,A⊆B
{x :Qx(A) < α}.
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Now the union on the righthand side is generally over an uncountable set. But for each
x ∈ E, B ∈ E, and ε > 0 there is A ∈ A such that Qx(B∆A) < ε. It follows that⋃

A∈E ,A⊆B
{x :Qx(A) < α} =

⋃
A∈E
{x :Qx(A∩B) < α}.

Here is another proof, taken from [62, Lemma 1.5, page 190], always under the assumption
that (E,E) is countably generated. The following answer is almost a paraphrase of the
proof of Revuz.
By assumption, there is a sequence of finite partitions Pn of E, such that Pn+1 is a refine-
ment of Pn, and E is generated by

⋃
n≥0Pn. For every x ∈ E, there exists a unique Exn ∈ Pn

with x ∈ Exn.
Let x ∈ E be fixed for the moment. Define λx as the probability measure which is a
multiple of |Qx| (if Qx = 0, choose it as you want). Then define a function fn on E by

fn(y) =

Qx(Eyn)
λx(Eyn)

if λx(E
y
n) > 0,

0 otherwise.

By martingale convergence theorem, we have that fn converges λx-a.s. to the density of
Qx with respect to λx. Hence, f +

n converges λx-a.s. to the density of Q+
x , and since fn are

uniformly bounded, we have for all A ∈ E:

Q+
x (A) = lim

n

∫
A
f +
n dλx.

Now, if A ∈ Pk, then for all n > k,
∫
A
f +
n dλx = Q+

x,n(A), where Q+
x,n is the positive part

of the restriction of Qx to the σ -algebra generated by Pn. It is easy to see that the map
x 7→Q+

x,n(A) is measurable, and so is the map x 7→Q+
x (A).

Hence, we have proven that x 7→Q+
x (A) is measurable for every A ∈

⋃
n≥0Pn, and then a

Dynkin class argument finishes the proof. (By monoton class theorem Q+ is a kernel.)

Lemma A.5.21. See [23, 2.2]:
LetM be the set of all countably additive, finite, signed measures on a sigma-field Σ of subsets of
a set X. There is a natural definition of measurability inM, namely, a subset ofM is measurable
if it is an element of Σ∗, the smallest σ -field of subsets of M such that; for each A ∈ Σ the
function µ 7→ µ(A) is measurable from M to the Borel line.
Let X be a non-empty set, F a countable field of subsets of X, and Σ the smallest σ -field
including F .
If φ is a measurable map from (Ω,A) to (M,Σ∗), and f is a bounded, measurable function from
(Ω×X,A×Σ) to the Borel line, then ω 7→

∫
X
f (ω,x)φ(ω)(dx) is a measurable function from

(Ω,A) to the Borel line.
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