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Abstract

This thesis deals examines the adaptive LASSO estimator in the setting of moving parameter
in the low-dimensional case, while the tuning parameters may vary over the components. The
main part deals with the construction of asymptotic confidence sets based on the adaptive
LASSO estimator in the case where at least one component of the tuning parameter is tuned to
perform consistent model selection. The asymptotic distribution of the appropriately scaled and
centred adaptive LASSO estimator is derived implicitly as the minimizer of a stochastic function,
which is used to create confidence sets with – asymptotically – infimal coverage probability
of 1. Besides confidence sets of the partially consistent tuned adaptive LASSO estimator, a
condition on the tuning parameters is shown to be equivalent to consistency in parameter
estimation. Conditions concerning the consistency in model selection are also derived. In
particular, obtaining consistency in model selection for the adaptive LASSO estimator requires
consistency in parameter estimation.
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1 Introduction

It is better to know some of the
questions than all of the answers.

James Thurber

The least absolute shrinkage and selection operator (LASSO), as proposed in R. Tibshirani
(1996), has been a topic of research in statistics and econometrics as it satisfies several desirable
properties. On the one hand it can be used in cases, where the number of explanatory variables
exceeds those of observations. On the other hand, it performs model selection and parameter
estimation simultaneously. Besides its theoretical properties, the LASSO can be – in terms of
computational effort – efficiently calculated for all values of its tuning parameter concurrently
via the LARS algorithm introduced by Efron et al. (2004), which supports its use in application.
Heading back to theoretical properties, shrinkage operators may increase prediction accuracy
in specific cases, but come at the cost of an increasing bias. A prominent example is the ridge
estimator, which outperforms the least squares estimator in terms of mean square error in the
standard linear regression model when the true parameter is located in the neighbourhood of
0. This estimator has been generalized in Frank and Friedman (1993) to the bridge estimator,
where the parameter γ describes the type of the penalizing term’s norm. Coinciding with the
ridge estimator at γ = 2, it also includes the LASSO when using the `1-norm. As shown in
Knight and Fu (2000), bridge estimators with γ ≤ 1 may also achieve sparse solutions due to
the singularity of the corresponding norms at the origin.

Fan and Li (2001) argued that penalized least squares estimators should yield the properties of
sparsity, continuity and unbiasedness and introduced the smoothly clipped absolute deviation
(SCAD) estimator. As the latter property was weakened to the restriction, that the bias should
be near zero when the true parameter is sufficiently large, the SCAD estimator satisfies these
conditions. They argued that continuity in terms of the given data may be a desirable property
in order to produce stable solutions. Besides providing an interpretation concerning the com-
ponent’s influence on the model, sparsity may increase prediction accuracy when choosing the
correct underlying model. Furthermore, Fan and Li argued that a good estimator should sat-
isfy the so-called oracle properties, consisting of the optimal convergence rate (and asymptotic
variance) as well as consistency in model selection.

Zou (2006) proved that the LASSO may either converge with optimal rate of root-n or per-
form consistent model selection, but it cannot be tuned to possess both properties at a time.
Moreover, even when the convergence rate is sacrificed to obtain consistent model selection,
that property still depends on the structure of the underlying model and cannot be guaranteed
either. In the same paper, Zou introduced the adaptive LASSO estimator, which is closely
related to the nonnegative garotte of Breiman (1995), and proved its oracle properties when
tuned suitably. However, it has been argued that the asymptotic distribution, when considering
fixed parameters over the sample size, may be highly misleading (Leeb and Pötscher, 2005;
Leeb and Pötscher, 2008; Pötscher and Leeb, 2009), especially in the case of confidence sets
(Pötscher, 2009; Pötscher and Schneider, 2010). When allowing the true parameter to vary
over sample size, Pötscher and Schneider (2009) showed that in the case of orthogonal regres-
sors the adaptive LASSO estimator’s uniform convergence rate is actually slower than root-n
when tuned to perform consistent model selection. Besides this, Pötscher and Schneider pro-
vided an impossibility result for estimating the distribution of the adaptive LASSO estimator.
Considering the case of orthogonal regressors, Pötscher and Schneider (2010) examined confi-
dence sets based on the adaptive LASSO estimator, the hard- as well as the soft-thresholding
estimator proposed by Donoho and I. M. Johnstone (1994), which coincides with the LASSO
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in that specific framework.

In this thesis, we study the adaptive LASSO estimator’s consistency in model selection and
parameter estimation in a moving-parameter framework for general regressor matrices with
full column rank and allow the tuning parameter to vary over its components. Our results
generalize the findings of Pötscher and Schneider (2009), which were derived for orthogonal
regressors and uniform tuning. While most of the required conditions carry over to the general
setting in a natural way, componentwise tuning may need another restriction depending on
the regressor’s structure to ensure consistency in model selection. Besides the consistency
properties, we examine the asymptotic distribution of the adaptive LASSO estimator in the
framework of partial consistent tuning, where at least one component has to be tuned to perform
consistent model selection, while the other components may be tuned arbitrarily. We then
use our findings to construct asymptotic confidence sets with infimal coverage probability 1,
which generalizes the results of Pötscher and Schneider (2010) concerning the adaptive LASSO
estimator. The reason for the counterintuitive coverage probability of 1 is based on the existence
of a compact set, which covers the asymptotic distribution regardless of the underlying true
parameter. Hence, confidence sets containing that set may possess coverage probability of 1
(and actually do so if they include an open superset of the asymptotic distributions’ support).
The boundedness of the asymptotic distribution can easily be understood in the case of uniform
tuning, where the stochastic parts vanish asymptotically. In that case, the confidence set
covers all possible deterministic residuals and hence may possess asymptotic infimal coverage
probability of 1.

This thesis is organized as follows: the model and its framework are described in Section 2.
Conditions concerning consistency in model selection, pointwise parameter estimation and its
uniform equivalent are derived in Section 3. Section 4 deals with the asymptotic behaviour of
the appropriately scaled and centred adaptive LASSO estimator. These results were used in
Section 5 to obtain the 0–1 confidence sets based on the adaptive LASSO estimator described
above. Section 6 summarizes the results and conclusions. The appendix in Section A gives
a short overview on random functions and repeats a specific result concerning the asymptotic
behaviour of their minimizers used in this thesis.

2 Setting

Everything is vague to a degree you do
not realize till you have tried to make it
precise.

Bertrand Russell (1872 - 1970)

2.1 Model assumptions

During this work we postulate the following assumptions.

i. The underlying model is of the form y = Xnβn + ε.

ii. The true parameter βn ∈ Rk is non-stochastic.

iii. The error term ε = (ε1, . . . , εn)′ consists of independent and identically distributed compo-
nents εi ∼

iid
(0, σ2), i = 1, . . . , n with finite variance σ2 > 0.

2
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iv. The regressor matrix Xn = (x′1, . . . , x
′
n)′ ∈ Rn×k is non-stochastic.

v. Xn has full rank k for every fixed n.

vi. There is a positive definite matrix C ∈ Rk×k, such that lim
n→∞

X′nXn

n = C.

Denote β̂LS
n = (X′nXn)−1X′ny the least squares estimator for βn. Assumption v guarantees the

uniqueness of the least squares estimator for every fixed n. Furthermore, the assumptions ensure
asymptotic normality for the centred and scaled least squares estimator and, hence, imply its
consistency in parameter estimation.

2.2 Definition of the adaptive LASSO estimator

We define the weights as follows

ŵn,j =

{
1/|β̂LS

n,j | if β̂LS
n,j 6= 0

0 else.

Furthermore, Ln : Rk → R denotes the objective function

b 7→ (yn −Xnb)
′(yn −Xnb) + 2

k∑
j=1

λn,jŵn,j |bj |.

The components of the tuning parameter fulfil λn,j ≥ 0. Throughout this work we assume
the tuning parameter to be non-stochastic and, in particular, data-independent. The objective
function’s properties lim

‖b‖→∞
Ln(b) = ∞ and Ln(b) ≥ 0 for all b ∈ Rk imply the existence of

a minimizer. Furthermore, it is strictly convex even in the case where λn,jŵn,j = 0 for all j
due to assumption v. Defining the adaptive LASSO estimator as the minimizer of Ln, i.e.,
β̂A
n = arg min

b∈Rk
Ln(b), we immediately conclude its uniqueness.

2.3 Notation

R denotes the real numbers extended by {−∞,∞}. For a given n ∈ N we define λ∗n as the largest
component of the tuning parameter, i.e., λ∗n = maxj=1,...,k λn,j . Let ei be the i-th canonical unit
vector

ei,j =

{
1 i = j

0 i 6= j.

The bold 0 denotes the zero-vector, i.e., 0i = 0 for all i. Furthermore sgn : R → {−1, 0, 1}
stands for the sign-function

x 7→


1 x > 0

0 x = 0

−1 x < 0.

Denote 1A(x) : Rl → {0, 1} the indicator function of the set A ⊆ Rl for some l ∈ N

x 7→

{
1 x ∈ A
0 x /∈ A.

3
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The one-sided directional derivatives of a function f with respect to the direction z 6= 0 at x
will be denoted as D+

z f(x) and D−z f(x), where

D+
z f(x) = lim

h↘0

f(x+ hz)− f(x)

h
,D−z f(x) = lim

h↘0

f(x− hz)− f(x)

h
.

Following this notation, the one-sided partial derivatives of a function f with respect to the
j-th component at x will be denoted as D+

ejf(x) and D−ejf(x), respectively.

3 Properties of the adaptive LASSO estimator

Education’s purpose is to replace an
empty mind with an open one.

Malcom Forbes

In this section we study the behaviour of the adaptive LASSO estimator in finite samples as well
as its consistency in parameter estimation and model selection. This section’s results mainly
base on the following lemma, which limits the deviation of the adaptive LASSO estimator from
the least squares estimator.

Lemma 1. The term β̂A
n − β̂LS

n is contained in the following set

β̂A
n − β̂LS

n ∈

{
z ∈ Rk : zj

(
X′nXn

n
z

)
j

≤ λn,j
n

for all j = 1, . . . , k

}

Proof Consider the function Wn : Rk → R

v 7→ Ln(v + β̂LS
n )− Ln(β̂LS

n ).

Denote S = {j : β̂LS
n,j 6= 0} ⊆ {1, . . . , k} the set of all non-zero components of the least squares

estimator. Rearranging the terms, Wn(v) can be written as

v′(X′nXn)v + 2(y −Xnβ̂
LS
n )′Xnv + 2

∑
j∈S

|vj + β̂LS
n,j | − |β̂LS

n,j |
|β̂LS
n,j |

λn,j .

The second term vanishes due to the normal equations of the least squares estimator. The
function Wn achieves its minimum at (β̂A

n − β̂LS
n ), where all of its one-sided partial derivatives

are nonnegative. Let j /∈ S, then the desired result immediately follows from λn,j ≥ 0 and

0 =
∂Wn

∂vj
(β̂A
n − β̂LS

n ) = 2
(
X′nXn(β̂A

n − β̂LS
n )
)
j
.

For the remaining part of the proof we assume j ∈ S, for which we have

0 ≤ D+
ejWn(β̂A

n − β̂LS
n ) = 2

(
X′nXn(β̂A

n − β̂LS
n )
)
j

+ 2λn,j
1[0,∞)(β̂

A
n,j)− 1(−∞,0)(β̂A

n,j)

|β̂LS
n,j |

0 ≤ D−ejWn(β̂A
n − β̂LS

n ) = −2
(
X′nXn(β̂A

n − β̂LS
n )
)
j
− 2λn,j

1(0,∞)(β̂
A
n,j)− 1(−∞,0](β̂A

n,j)

|β̂LS
n,j |

.

4
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Hence, we conclude (
X′nXn(β̂A

n − β̂LS
n )
)
j

= −
λn,jsgn(β̂A

n,j)

|β̂LS
n,j |

(1)

for β̂A
n,j 6= 0 and ∣∣∣∣(X′nXn(β̂A

n − β̂LS
n )
)
j

∣∣∣∣ ≤ λn,j

|β̂LS
n,j |

.

for β̂A
n,j = 0. Considering the case |(β̂A

n − β̂LS
n )j | ≤ |β̂LS

n,j |, it follows∣∣∣∣(β̂A
n − β̂LS

n )j

(
X′nXn(β̂A

n − β̂LS
n )
)
j

∣∣∣∣ ≤ λn,j .
Otherwise we have sgn(β̂A

n,j) = sgn(β̂A
n,j − β̂LS

n,j) 6= 0. Thus, the following equation holds true

(β̂A
n − β̂LS

n )j

(
X′X(β̂A

n − β̂LS
n )
)
j

= −λn,j
|(β̂A

n − β̂LS
n )j |

|β̂LS
n,j |

≤ 0,

which completes the proof.

q

Inspection of the foregoing proof shows that no assumption but the normal-equations have been
used. Therefore the statement still remains true in the case of stochastic covariates, tuning
parameters or even stochastic βn, in the sense that β̂A

n − β̂LS is surely contained in the set on
the right-hand side. The full rank condition of Xn is not needed either. However, neither β̂A

n

nor β̂LS
n need not to be well defined in this case. Therefore the statement can be read as follows.

Lemma 2. Let β̃An be a minimizer of Ln and β̃LSn fulfil the normal equations, i.e., X′ny =
X′nXnβ̃

LS
n . If the weighting vector ŵn is defined by using that β̃LSn , then the following statement

is true for every event of the σ-algebra of the corresponding measure space.

(β̃An − β̃LSn )j

(
X′nXn

n
(β̃An − β̃LSn )

)
j

≤ λn,j
n

for all j = 1, . . . , k

However, we can be obtain another interesting conclusion if we head back to our assumptions
and suppose additionally that lim

n→∞
λ∗n = 0. Then, Lemma 1 shows that the bias is governed by

the stochastic noise and therefore the adaptive LASSO estimator is asymptotically equivalent
to the least squares estimator.

Lemma 3. Suppose lim
n→∞

λ∗n = 0. Then the scaled and centred adaptive LASSO estimator

converges in law to a normally distributed random vector with expectation 0 and covariance
matrix σ2C−1.

Proof In the decomposition
√
n
(
β̂A
n − βn

)
=
√
n
(
β̂A
n − β̂LS

n

)
+
√
n
(
β̂LS
n − βn

)
the bias vanishes asymptotically while the second term converges in distribution toN (0, σ2C−1).

q

The lemma above is a well known result in literature (Pötscher and Schneider, 2009). We
would like to stress that the true parameter vector βn may vary over the sample size and the
asymptotic normality extends to all components regardless of the active set. Furthermore, the
statement is valid for componentwise tuning as well as non-orthogonal covariates.

5
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3.1 Consistency in parameter estimation

First we start with a general statement on the asymptotic behaviour of the adaptive LASSO
estimator using weak assumptions.

Lemma 4. If
(

min(
λn,j
n , |βn,j |)

)
n∈N

is bounded for all j = 1, . . . , k, then the sequence of the

centred adaptive LASSO estimator
(
β̂A
n − βn

)
n∈N

is tight.

Proof Consider the function 1
nLn(·+ βn) : Rk → R. Rewriting 1

nLn(u+ βn) gives

ε′ε

n
+ u′

X′nXn

n
u− 2

n
ε′Xnu+ 2

k∑
j=1

λn,j
n
ŵn,j |uj + βn,j |

As u′X
′
nXn

n u governs the third term, every sequence of random vectors (xn)n∈N not being tight
implies that the sequence ( 1

nLn(xn + βn))n∈N is not bounded in probability either. If we find a
sequence γn inducing ( 1

nLn(γn+βn))n∈N being tight, then minu∈Rk Ln(u+βn) and, subsequently,

β̂A−βn = arg minu∈RkLn(u+βn) are bounded in probability as well. Now we define γn as follows:

γn,j =

{
−βn,j if |βn,j | ≤ max(1,

λn,j
n )

0 else.

Denoting {n ∈ N : γn,j + βn,j 6= 0} with Lj , we conclude the boundedness of (
λn,j
n )n∈Lj as

well as the tightness of (βn,jŵn,j)n∈Lj . Thus, the sequence
(
|γn,j + βn,j |ŵn,j λn,jn

)
n∈N

is tight.

Together with the fact, that the boundedness of min(
λn,j
n , |βn,j |) carries over to γn,j , we infer

the tightness of ( 1
nLn(γn + βn))n∈N.

q

The following proposition is a generalization of Theorem 2 in Pötscher and Schneider (2009),
as the regressor matrix need not be orthogonal.

Proposition 5. Let an = min(
√
n,
√

n
λ∗n

). Then, for every ε > 0, there exists a real number M

such that

sup
n≥k

sup
β∈Rk

Pn,β
(
an‖β̂A

n − β‖ > M
)
< ε (2)

holds. If lim
n→∞

λ∗n
n = 0, then the adaptive LASSO estimator is uniformly an-consistent in param-

eter estimation.

Proof Denote αn,j the j-th eigenvalue of X′nXn

n and α0,j the j-th eigenvalue of C. As all these
matrices are positive definite and lim

n→∞
αn,j = α0,j > 0 for all j = 1, . . . , k, the infimum L of the

set {αn,j : n ≥ k, j = 1, . . . , k} is strictly positive. Let M ≥
√

4k
L , then by Lemma 1 and the

fact, that
a2nλn,j
n

≤ 1,

a2n‖β̂A
n − β̂LS

n ‖22 ≤
a2n

min
j=1...k

αn,j
(β̂A
n − β̂LS

n )′
X′nXn

n
(β̂A
n − β̂LS

n ) ≤ a2n
min
j=1...k

αn,j

k∑
j=1

λn,j
n
≤ M2

4

6
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holds true surely. Thus, it follows that

inf
β∈Rk

Pn,β
(
an‖β̂A

n − β‖ ≤M
)
≥ inf

β∈Rk
Pn,β

(
an‖β̂A

n − β̂LS‖ ≤ M

2
, an‖β̂LS

n − β‖ ≤
M

2

)
= inf
β∈Rk

Pn,β
(
an‖β̂A

n − β̂LS‖ ≤ M

2

∣∣∣∣ an‖β̂LS
n − β‖ ≤

M

2

)
Pn,β

(
an‖β̂LS

n − β‖ ≤
M

2

)
= inf
β∈Rk

Pn,β
(
an‖β̂LS

n − β‖ ≤
M

2

)
.

Now, Equation (2) directly follows from the uniform root-n-consistency of the least squares
estimator.

q

Proposition 5 allows us to create confidence sets based on the adaptive LASSO estimator.
However, they are conservative in the sense that their actual coverage probability is not smaller
than their nominal coverage probability. Another reason against the use of these confidence sets
is the fact, that – for a given coverage probability – they are proper supersets of confidence sets
based on the least squares estimator. Nevertheless, the Proposition above precisely describes the
condition for performing consistent parameter estimation. The property lim

n→∞
λ∗n
n = 0 guarantees

consistency in parameter estimation. However, that condition is not only a sufficient, but also
a necessary one, as the following result shows.

Theorem 6. The adaptive LASSO estimator β̂A is consistent in parameter estimation if and

only if lim
n→∞

λn,j
n
→ 0 for all j = 1, . . . , k.

Proof The first implication follows directly from Proposition 5. For the second direction, as-

sume that there exists a j∗ such that lim sup
n→∞

λn,j∗

n
= c ∈ (0,∞]. With the linear functions

fn : Rk → R, x 7→
(
X′nXn

n x
)
j∗

denote L̄ = sup
n∈N
‖fn‖ the supremum of the operator norms of fn.

As lim
n→∞

X′nXn

n → C and C has full rank, we conclude 0 < L̄ < ∞. For a given ε > 0, let

βn,j∗ = 2ε and consider the event where |β̂A
n,j∗ −βn,j∗ | < ε and β̂LS

n,j∗ 6= 0. On this event we have

β̂A
n,j∗ 6= 0 and from Equation (1)

λn,j∗

n|β̂LS
n,j∗ |

=

∣∣∣∣∣
(

X′nXn

n

(
β̂A
n − β̂LS

n

))
j∗

∣∣∣∣∣ ≤ L̄‖β̂A
n − β̂LS

n ‖ ≤ L̄‖β̂LS
n − βn‖+ L̄ε.

Altogether we have

lim inf
n→∞

P
(
|β̂A
n,j∗ − βn,j∗ | < ε

)
≤

lim inf
n→∞

P
(
β̂LS
n,j∗ = 0

)
+ lim inf

n→∞
P

(
λn,j∗

n

1

L̄|β̂LS
n,j∗ |

− ε ≤ ‖β̂LS
n − βn‖

)
(3)

Due to the consistency of the least squares estimator and the fact, that βn,j∗ = 2ε, the first

term in (3) vanishes. On the other hand, lim supn→∞
λn,j∗
n = c > 0, implies the existence of a

subsequence nl, such that

λnl,j∗

nl

1

L̄|β̂LS
nl,j∗
|
− ε p−→

l→∞

c

2L̄ε
− ε,

7
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which is strictly positive for sufficiently small ε. Note that the limit on the right-hand side is
located in (0,∞], as c can take the value ∞. On the other hand ‖β̂LS

nl
− βnl‖

p−→
l→∞

0. Therefore

the last term in (3) equals 0 as well.

q

Remark. Inspection of the proof of Theorem 6 gives us another result. In fact, the stricter

condition of a component j∗ fulfilling lim inf
n→∞

λn,j∗
n = c ∈ (0,∞] implies the existence of βn,j∗

where lim sup
n→∞

P
(
|β̂A
n,j∗ − βn,j∗ | < ε

)
= 0 for every ε > 0. The main idea is, again, based on

Equation (1), which shows that, given β̂A
j∗ 6= 0 and β̂LS

j∗ 6= 0, β̂A
n − β̂LS

n cannot converge to 0 in
probability.

Remark. The equivalence of lim
n→∞

λn
n = 0 and the consistency in parameter estimation was

already pointed out in Pötscher and Schneider (2009) for a special case. Theorem 6 confirm
that the condition on the tuning parameter carries over in a natural way in the framework of
componentwise tuning and non-orthogonal regressors.

Assuming lim
n→∞

λ∗n = ∞, Proposition 5 shows that the convergence rate of supβ∈Rk(β̂A
n − β)

towards 0 is at least of the order λ∗n
1
2n−

1
2 . The findings of Pötscher and Schneider (2009)

imply that the convergence rate is indeed of that order in the case of orthogonal covariates
and uniform tuning. Our results of Chapter 4 confirms that for the general case. Interestingly,
the convergence rate is restricted by the cases, where the true parameter βn converges to 0
while not being 0. The property, that the convergence rate of the adaptive LASSO estimator is
restricted by parameters being in the neighbourhood of 0, was already pointed out in Pötscher
and Schneider (2009). However, considering the fixed-parameter framework, i.e., βn = β for all
n, the adaptive LASSO estimator may attain a faster convergence rate, which is a matter of
interest when considering consistency in model selection.

Lemma 7. Denote bn = min(
√
n, nλ∗n

). If βn = β for all n ∈ N and λ∗n
n → 0, then the adaptive

LASSO estimator is bn-consistent.

Proof We define the function Hn(u) = b2n
n

(
Ln( ubn + β)− Ln(β)

)
. Rewriting Hn(u) gives

Hn(u) = u′
X′nXn

n
u− 2u′X′nε

bn
n

+ 2

k∑
j=1

λn,jŵn,j
b2n
n

(
|uj
bn

+ βj | − |βj |
)

The minimum of Hn cannot be positive and is achieved at the point bn(β̂A
n − β). With the

notation A = {j : βj 6= 0}, we conclude

bn(β̂A
n − β)′

X′nXn

n
(β̂A
n − β)bn ≤ 2

ε′Xn√
n

(β̂A
n − β)bn

bn√
n

+ 2
∑
j∈A

ŵn,j |bn(β̂A
n − β)j |bn

λn,j
n
,

where we used |βj |−|ujbn +βj | ≤ |ujbn | for the latter term. Both bn√
n

and bn
λn,j
n are upper bounded

by 1, while the sequences X′nε√
n

and (ŵn,j)j∈A are tight. As for all n in N the matrix X′nXn

n and

its limit C are positive definite, bn(β̂A
n − β)′X

′
nXn

n (β̂A
n − β)bn can be lower bounded by a scalar

multiplied with ‖bn(β̂A
n − β)‖2. Hence, bn(β̂A

n − β) is bounded in probability.

q

8
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Remark. In the case, where the adaptive LASSO estimator is uniformly tuned with a rate
faster than root-n, i.e., lim

n→∞
λn√
n
→ ∞, Lemma 7 can be directly concluded by Theorem 2 in

Zou (2006). Nevertheless, the consistency of the adaptive LASSO estimator is independent of

the limit of
λn,j√
n

and may be attained by componentwise tuning as well.

In order to see that the actual convergence rate of β̂A
n − β towards 0 cannot be faster than bn,

we may again refer to Pötscher and Schneider (2009). Nevertheless, we would like to outline a
proof for the general case as well. To achieve this, we consider the case βj < 0 for all j. Then
Hn converges in distribution to

u′Cu− 2Z ′1uc1 − 2
k∑
j=1

λ0,jc2
uj
|βj |

,

with Z1 being a normally distributed random variable with mean 0 and covariance matrix C,
c1 = lim

n→∞
bn√
n

, c2 = lim
n→∞

bn
λ∗n
n and λ0,j = lim

n→∞
λn,j
λ∗n

. If one or more of these limits do not exist,

we consider a subsequence nl, such that all limits exist. Due to the compactness of [0, 1]k+2

there is always such a subsequence. Using the convexity of Hnl and its limit, it is possible
to show that the minimizer of Hnl converges in distribution to the minimizer of its limiting
function. However, the latter one is not a Dirac distributed random variable with its mass at 0.

3.2 Consistency in model selection

In Zou (2006) the consistency in model selection of the adaptive LASSO estimator was proved
for uniform tuning under the conditions lim

n→∞
λn = ∞ and lim

n→∞
λn√
n

= 0. With a slight modifi-

cation of their proof, the same holds true in the case of component wise tuning if we rewrite the
assumptions as lim

n→∞
λn,j = ∞ and lim

n→∞
λn,j√
n

= 0 for all j. Interestingly, consistency in model

selection may also be achieved under different circumstances. In fact, this property is indepen-
dent of the limit of λ∗n√

n
. More precisely, consistency in model selection requires the conditions

lim
n→∞

λ∗n
n = 0 and lim

n→∞
λn,j = ∞ for all j in any case. In the uniform tuning framework these

assumptions suffice. However, in the componentwise tuning framework an additional condition
on the ratio of the tuning parameter’s components may be necessary depending on the structure
of the covariates.

Definition 8. Concerning consistency in model selection, it seems reasonable to consider the
parameters to be fixed over the sample size n, i.e., βn = β for all n ∈ N. Thus, we can define
the active set A = {j : βj 6= 0}.

Proposition 9. Suppose the adaptive LASSO estimator is tuned to perform consistent param-

eter estimation, i.e., lim
n→∞

λ∗n
n = 0. If lim

n→∞
λn,j = ∞ and lim

n→∞
λn,j
√
n

λ∗n
= ∞ for all j = 1, . . . , k,

then the adaptive LASSO estimator is consistent in model selection.

Proof The condition lim
n→∞

λ∗n
n = 0 ensures the consistency in parameter estimation, which gives

us conservative model selection in the sense that the probability of underestimating a model
vanishes asymptotically. Thus, we only need to prove

lim
n→∞

P(∃j /∈ A : β̂A
j 6= 0) = 0

9
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for all β ∈ Rk. Consider the function Gn(u) = 1
nLn(u+ β)− 1

nLn(β). Rewriting Gn(u) gives

u′
X′nXn

n
u− 2ε′Xn

u

n
+ 2

k∑
j=1

λn,j
n
ŵn,j(|uj + βj | − |βj |).

Since β̂A − β minimizes Gn, the existence of j̃ /∈ A, such that β̂A

j̃
6= 0, implies∣∣∣∣∣

(
X′nXn

n
(β̂A − β)− X′nε

n

)
j̃

∣∣∣∣∣ =
λn,j̃√
n

ŵn,j̃√
n
.

Multiplying each side with bn = min(
√
n, nλ∗n

) yields∣∣∣∣∣
(

X′nXn

n
bn(β̂A − β)− X′nε√

n

bn√
n

)
j̃

∣∣∣∣∣ = bn
λn,j̃√
n

ŵn,j̃√
n
.

The left-hand side is always bounded in probability due to the bn-consistency of the adaptive
LASSO estimator. If lim

n→∞
bn√
n

= c > 0, then lim
n→∞

λn,j = ∞ suffices for the divergence of the

right-hand side to ∞. Otherwise, the second term consists of
λn,j̃
√
n

λ∗n

ŵn,j̃√
n

, which also explodes

asymptotically. In both cases the probability of β̂A

n,j̃
6= 0, for a j̃ /∈ A converges to 0.

q

The condition lim
n→∞

λ∗n
n = 0 is a crucial one in the sense, that lim supn→∞

λ∗n
n = c > 0 leads to

inconsistent model selection as it allows underestimation of a model with a positive asymptotic

probability. To see this, define j∗, such that lim supn→∞
λn,j∗
n = c. (There is always such a

component, as otherwise lim
n→∞

λ∗n
n would be 0.) Now we consider the case β = ej∗

√
c

2Cj∗,j∗
,

where Cj∗,j∗ denotes the j∗-th diagonal element of C. Due to the inequality

lim inf
n→∞

P(An = A) = lim inf
n→∞

P(β̂A
n,i = 0 for all i 6= j∗ and β̂A

n,j∗ 6= 0)

≤ lim inf
n→∞

P(β̂A
n,j∗ 6= 0|β̂A

n,i = 0 for all i 6= j∗)

we assume β̂A
n,i = 0 for all i 6= j∗. Considering the function Gn, β̂A

n,j∗ = 0 requires∣∣∣∣∣
(

X′nXn

n
(β̂A − β)− X′nε

n

)
j∗

∣∣∣∣∣ ≤ λn,j∗

n
ŵn,j∗ .

The first term simplifies to

∣∣∣∣(X′nXn

n

)
j∗,j∗

√
c

2Cj∗,j∗
+
(
X′nε
n

)
j∗

∣∣∣∣ because of the assumption βn,i =

β̂A
n,i for all i 6= j∗. Hence, it converges in probability to

√
Cj∗,j∗

c
2 . On the other hand,

there is a subsequence nl, such that
λnl,j∗

nl
ŵnl,j∗

p−→
l→∞

√
2cCj∗,j∗ , which in turn implies that

lim supn→∞ P(β̂A
n,j∗ = 0|β̂A

n,i = 0 for all i 6= j∗) = 1.

The condition lim
n→∞

λn,j = ∞ for all j contributes a large part in avoiding overestimation of

models. To show the necessity of that condition, we define j̃ such that lim infn→∞ λn,j̃ = c <∞
and consider the case βj = 0 for all j. In order to guarantee consistency in model selection, we

need β̂A = 0 with asymptotic probability 1. A necessary condition for G being minimized at
the point 0 is given by ∣∣∣∣∣(X′nε)j̃√

n

∣∣∣∣∣ ≤ ŵn,j̃√
n
λn,j̃ .

10
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However, there exists a subsequence nl, such that this inequality is fulfilled with a probability
less than 1, which is a contradiction to consistency in model selection.

The condition lim
n→∞

λn,j
√
n

λ∗n
=∞ guarantees, that the convergence rates of the tuning parameter

does not diverge too much. Without this condition, the penalty term of a component j with
βj = 0 needs not to grow faster than the other terms. As a result, β̂A

j is not necessarily set

to 0, especially if Ci,j > 0 for another component i fulfilling βi 6= 0 and lim
n→∞

λn,i
λ∗n
6= 0. In this

case, β̂A
j may be penalized less than β̂A

i , possibly causing β̂A
j compensating the shrinkage of

β̂A
i . However, the necessity of this condition depends on the underlying model. If all covariates

are orthogonal, the condition is not needed as the minimization of the target function reduces
to the one-dimensional minimization of its components. In this case, the components cannot
compensate a possible over-reduction of another non-zero component.

To show the necessity of that condition in certain cases, we assume that there is a j̃ and j∗,

such that Cj∗,j̃ 6= 0, lim sup
n→∞

λn,j̃
√
n

λ∗n
= c <∞ and lim

n→∞
λn,j∗
λ∗n

> 0. Considering the model β = ej∗ ,

consistency in model selection requires β̂A
n,i = 0 for all i 6= j∗ and β̂A

n,j∗ 6= 0 with asymptotic

probability 1. Rewriting the function Hn(u) = b2n
n

(
Ln( ubn + β)− Ln(β)

)
gives

Hn(u) = u′
X′nXn

n
u− 2u′X′nε

bn
n

+ 2
k∑
j=1

λn,jŵn,j
b2n
n

(
|uj
bn

+ βj | − |βj |
)
.

Again, we stress that mn = arg min
u∈Rk

Hn(u) = bn(β̂A
n−β). On every event, on which the adaptive

LASSO estimator performs correct model selection, we have mn,i = 0 for all i 6= j∗. Hence,
necessary optimality conditions on those events are∣∣∣∣∣

(
X′nXn

n

)
j∗,j∗

mn,j∗ −
(
X′nε

)
j∗
bn
n

∣∣∣∣∣ = λn,j∗ŵn,j∗
bn
n

as well as ∣∣∣∣∣
(

X′nXn

n

)
j∗,j̃

mn,j∗ −
(
X′nε

)
j̃

bn
n

∣∣∣∣∣ ≤ λn,j̃ŵn,j̃ bnn .
Combining these formulas and applying the triangle inequality results in∣∣∣∣∣
(

X′nXn

n

)
j∗,j̃

∣∣∣∣∣
(
λn,j∗ŵn,j∗

bn
n
−
∣∣∣(X′nε)j∗∣∣∣ bnn

)
≤
(

X′nXn

n

)
j∗,j∗

(
λn,j̃ŵn,j̃

bn
n

+
∣∣∣(X′nε)j̃∣∣∣ bnn

)
.

The left-hand side converges in probability to |Cj∗,j̃ |λ0,j∗ > 0, where λ0,j∗ denotes the limit of
λn,j∗
λ∗n

. There is a subsequence nl, such that this subsequence of the term on the right-hand side

converges in distribution to
Cj∗,j∗c
|Zj̃ |

, where Zj̃ is a normally distributed random variable with

mean 0 and variance σ2(C−1)j̃,j̃ . However, that inequality cannot be fulfilled with probability

1 and therefore the event β̂A
n,i = 0 for all i 6= j∗ and β̂A

n,j∗ 6= 0 does not posses asymptotic
probability 1.

Remark. In the uniform tuning framework the condition lim
n→∞

λn,j
√
n

λ∗n
= ∞ is always fulfilled,

regardless of the limit of
λn,j√
n

. If λ∗n is not growing faster than with rate root-n, i.e., lim
n→∞

λ∗n√
n
<∞,

then that condition is fulfilled even in the componentwise tuning framework.

11
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Remark. The proof of Proposition 9 gives another, more precise result. Suppose the adaptive
LASSO estimator is tuned to perform consistent parameter estimation. Then every component j

additionally fulfilling lim
n→∞

λn,j =∞ and lim
n→∞

√
nλn,j
λ∗n

=∞ is consistently estimated in terms of

model selection, i.e., |sgn(β̂A
j )| p−→

n→∞
|sgn(βj)|. This property is a matter of interest especially

for the partial adaptive LASSO estimator, in which some of its components are not penalized
at all. Those components are usually assumed to be relevant for the model and the model
selection is reduced to the set of all models, in which these components are located in the active
set. However, that result is also important for all models of the adaptive LASSO estimator
containing an intercept. In practice, that component is often not penalized and therefore its
influence on the consistency in model selection may be a matter of interest.

3.3 Bias of the adaptive LASSO estimator

Lemma 1 and the unbiasedness of the least squares estimator imply that the bias of the adaptive
LASSO estimator is contained in the closure of the convex hull of the set in Lemma 1, i.e.,

E(β̂A
n − β̂LS

n ) ∈ cl

(
co

({
z ∈ Rk : zj

(
X′X

n
z

)
j

≤ λn,j
n

for all j = 1, . . . , k

}))

⊆

z ∈ Rk : z′
(

X′X

n

)
z ≤

k∑
j=1

λn,j
n


Since z′Az =

∑k
j=1 zj(Az)j the second set covers the set in Lemma 1. As it is closed and convex

too, it is a superset of the first set.

Suppose lim
n→∞

λn,j
n → 0 for all j = 1, . . . , k. Then, for every fixed parameter, i.e., βn = β for all

n, the bias of the adaptive LASSO estimator cannot vanish slower than with rate max(λ
∗
n
n , n

− 1
2 )

according to Lemma 7. Hence, a slower rate, as suggested in Proposition 5 and the formula
above, may only be obtained in the moving parameter framework. In fact, supβ∈Rk E(β̂A

n − β)

is indeed of order
√

λ∗n
n , as we will see in Section 4. In order to prove this, we will need the

following auxiliary result.

Lemma 10. For every j = 1, . . . , k the sequence

(√
n
λ∗n

(β̂A
n,j − β̂LS

n,j)

)
n∈N

is uniformly integrable

independent of the underlying sequence (βn,j)n∈N.

Proof Let L be the infimum of all eigenvalues of the matrices (X
′
nXn

n )n∈N. As all of these
matrices as well as their limit C are positive definite we conclude L > 0. Together with Lemma
1 we have

k∑
j=1

λn,j
λ∗n
≥
(√

n

λ∗n
(β̂A
n − β̂LS

n )

)′ X′nXn

n

(√
n

λ∗n
(β̂A
n − β̂LS

n )

)
≥
∥∥∥∥√ n

λ∗n
(β̂A
n − β̂LS

n )

∥∥∥∥2
2

L.

Hence, for every n in N the term

(√
n
λ∗n
|β̂A
n,j − β̂LS

n,j |
)

is less or equal
√

k
L which guarantees the

uniform integrability.

q
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4 Asymptotic behaviour of the adaptive LASSO estimator

Mathematics is not a deductive science – that’s a cliché. When you
try to prove a theorem, you don’t just list the hypotheses, and then
start to reason. What you do is trial and error, experimentation,
guesswork.

Paul Halmos

In the case where lim
n→∞

λ∗n = 0 is fulfilled, Lemma 3 describes the asymptotic behaviour of

the centred and scaled adaptive LASSO estimator, which can be used to set up confidence
sets. Alternatively, the assumption lim

n→∞
λ∗n = ∞ allows us to construct confidence sets with

asymptotic coverage probability 1 according to Lemma 1. The reason for the counter-intuitive
(asymptotic) coverage probability of 1 is the partitioning of the adaptive LASSO estimator’s

deviation into a bounded term of order λ∗n
1
2n−

1
2 and an unbiased deviation of order n−

1
2 . In the

case where lim
n→∞

λ∗n =∞ the bias term β̂A− β̂LS vanishes asymptotically slower than the β̂LS−β.

Thus, confidence sets containing the bounded set of Lemma 1 may have asymptotic coverage
probability 1. Nevertheless, the constructed confidence set is not necessarily the smallest set
for this asymptotic coverage probability. Hence, during this and the following section we study
the asymptotic behaviour of the adaptive LASSO estimator under the condition lim

n→∞
λ∗n = ∞

in order to get the smallest confidence set. To guarantee consistency in parameter estimation,
we additionally assume lim

n→∞
λ∗n
n = 0 according to Theorem 6. Interestingly, the assumptions

stated do not contain only the case of consistent model selection, but also some kind of “mixed“
tuning. This includes the partial adaptive LASSO estimator if at least one component is tuned
to perform consistent model selection.

To summarise, we extend the existing assumptions throughout this and the subsequent section
by the following conditions:

∀j ∃λ0,j ∈ [0, 1] : λ0,j = lim
n→∞

λn,j
λ∗n

lim
n→∞

λ∗n =∞ lim
n→∞

λ∗n
n

= 0.

Furthermore, we assume in this section the existence of ϕ ∈ Rk and ψ ∈ [0,∞]k, such that

lim
n→∞

√
nβn,j

√
λ∗n

λn,j
= ϕj as well as lim

n→∞

√
λ∗n

λn,j
= ψj for all j. In this section we postulate the

following notation. Denote by (Ω,S, µ) a probability space, while Z describes a k-dimensional,
normally distributed random vector on Ω with Z ∼ N(0, σ2C−1).

4.1 Asymptotic distribution

In this subsection we derive the asymptotic distribution of the properly scaled and centred
adaptive LASSO estimator. For this the following definitions turned out to be fruitful concepts.

Definition 11. Let Vn : Rk → R, given by Vn(u) = 1
λ∗n

(
Ln

(√
λ∗n
n u+ βn

)
− Ln(βn)

)
, i.e.,

u 7→ u′
X′nXn

n
u− 2ε′Xnu

1√
nλ∗n

+ 2

k∑
j=1

λn,jŵn,j√
nλ∗n

(
|uj +

√
n

λ∗n
βn,j | − |

√
n

λ∗n
βn,j |

)
.

13
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Since β̂A
n uniquely minimizes Ln, Vn also possesses a unique minimizer, which is given by√

n
λ∗n

(β̂A
n − βn). In order to construct asymptotic confidence sets we follow the approach of

Ewald and Schneider (2015), which is used to obtain asymptotic confidence sets for the LASSO
estimator. First we derive lim

n→∞
Vn equipped with a suitable topology. Afterwards we show

that for these functions the convergence carries over to the convergence of their minimizers,
which gives us the asymptotic distribution of the properly scaled and centred adaptive LASSO
estimator. For this, we need some more definitions.

Definition 12. Denote by I = {j : max(|ϕj |, ψj) = ∞} and Z = {j : max(|ϕj |, ψj) = 0},
fulfilling I ∪ Z ⊆ {1, . . . , k}.

Definition 13. Let V ϕ : Rk → R be the following function

u 7→ u′Cu+

k∑
j=1


∞ j ∈ Z and uj 6= 0

0 j ∈ I or uj = 0

2
|uj + λ0,jϕj | − |λ0,jϕj |

|ϕj + ψjZj |
else.

In the case where 0 < ψj <∞, uj 6= 0 and ϕj = −ψjZj(ω), we define the summand as ∞.

Remark. In our setting 0 < ψj < ∞ implies λ0,j = 0. Hence, the numerator is given by |uj |
and therefore non-negative, which justifies the sign in the latter definition.

Lemma 14. The “weighting“ terms of Vn converge in distribution

ŵn,jλn,j√
nλ∗n

d−→
n→∞


0 j ∈ I

∞ j ∈ Z

(|ϕj + ψjZj |)−1 else.

Moreover, the stacked “weighting“ vector

(
ŵn,jλn,j√

nλ∗n

)k
j=1

converges in distribution to the stacked

vector of the limiting distributions.

Proof The following equation holds

β̂LS
n,j

√
nλ∗n

λn,j
=
√
n
(
β̂LS
n,j − βn,j

) √λ∗n
λn,j

+
√
nβn,j

√
λ∗n

λn,j
.

For j ∈ I the term
ŵn,jλn,j√

nλ∗n
converges according to Lemma 27 in probability to 0. On the

other hand, the vector
√
n(β̂LS

n −βn) converges in distribution to a normally distributed random

vector Z with expectation 0 and covariance σ2C−1. Applying Slutsky’s Theorem, (

√
nλ∗n

ŵn,jλn,j
)j /∈I

converges in distribution to (|ϕj + ψjZj |)j /∈I.

q

The limiting distribution in Lemma 14 may contain non-deterministic parts only if there is a j
fulfilling 0 < ψj <∞. This property holds true also for the following results, which makes the
behaviour of ψ a subject of interest.

Remark. For the partial adaptive LASSO, that is ∃j : λn,j = 0 for all n, every non-penalized
component j fulfils ψj =∞.

14
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Remark 15. For every fixed j ∈ {1, . . . , k} either λ0,j or ψj is zero. This immediately follows
from the definitions of these quantities.

Remark 16. In the following proposition we will deal with the limit ξj of
√

n
λ∗n
βn,j . It is linked

to ϕj the following way. If ϕj 6= 0 or λ0,j 6= 0, then the equation ϕj = ξj/λ0,j holds true in the
sense that for ξj 6= 0, λ0,j = 0 the limit ϕj takes the value of sgn(ξj)∞.

Remark. By Remark 16 it follows in the case of uniform tuning (λn,j = λn for all j) that ϕ
equals ξ and ψj = 0 for all j.

The possibility of V ϕ taking the value ∞ causes some disadvantages. For the ensuing proofs
the following auxiliary functions, which can be considered as the finite parts of Vn, turned out
to be practicable.

Definition 17. We define the function gn : Rk → R

u 7→ u′
X′nXn

n
u− 2ε′Xnu

1√
nλ∗n

+ 2
∑
j /∈Z

λn,jŵn,j√
nλ∗n

(
|uj +

√
n

λ∗n
βn,j | −

√
n

λ∗n
βn,j |

)
and the limiting function g : Rk → R

u 7→ u′Cu+ 2
∑

j /∈(I∪Z)

|uj + λ0,jϕj | − |λ0,jϕj |
|ϕj + ψjZj |

.

The set N = {ω ∈ Ω | ∃j /∈ (I ∪ Z) : ϕj + ψjZj(ω) = 0} possesses probability 0 and hence is
of no interest if considering convergence in law / in probability. For convenience, we define the
term in the third sum as 0, whenever ϕj + ψjZj(ω) = 0. Thus, g and gn are continuous, strict
convex and finite.

In order to apply Lemma 25 we need another result concerning the pointwise convergence in
law of the functions Vn to V ϕ and gn to g.

Proposition 18. For every finite subset {s1, . . . , sl} ⊂ Rk we have

(Vn(s1), . . . , Vn(sl))
d−→

n→∞
(V ϕ(s1), . . . , V

ϕ(sl)) .

The same holds true for the sequence of the functions gn with its limiting function g.

Proof First, we rewrite Vn as a sum of two functions

V 1
n (u) = u′

X′nXn

n
u− 2ε′Xnu

1√
nλ∗n

+ 2
∑
j∈Z∪I

λn,jŵn,j√
nλ∗n

(
|uj +

√
n

λ∗n
βn,j | − |

√
n

λ∗n
βn,j |

)

V 2
n (u) = 2

∑
j /∈Z∪I

λn,jŵn,j√
nλ∗n

(
|uj +

√
n

λ∗n
βn,j | − |

√
n

λ∗n
βn,j |

)
The function V 1

n represents those parts of Vn converging in probability to some limit, which
allows us to conclude joint convergence from marginal convergence. For every fixed u ∈ Rk,
u′X

′
nXn

n u converges to u′Cu, while ε′Xnu
1√
nλ∗n

vanishes with rate 1√
λ∗n

. For the remaining part

of V 1
n we remark that ∣∣∣∣|uj +

√
n

λ∗n
βn,j | − |

√
n

λ∗n
βn,j |

∣∣∣∣ ≤ |uj | as well as (4)√
n

λ∗n
βn,j =

λn,j
λ∗n

(
√
nβn,j

√
λ∗n

λn,j

)
holds. (5)
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Let j be arbitrary. In the case of uj = 0 the corresponding term in the sum is 0. If j ∈ I,
the convergence to 0 follows by Equation (4) and Lemma 14. Let j ∈ Z and uj 6= 0 hold

true, then by equation (5) the term |uj +
√

n
λ∗n
βn,j |−|

√
n
λ∗n
βn,j | converges to |uj |. Together with

Lemma 14 the term converges to∞ in probability. Altogether we have (V 1
n (s1), . . . , V

1
n (sl))

p−→
n→∞

(V 1(s1), . . . , V
1(sl)) with V 1 : Rk → R fulfilling

u 7→

{
u′Cu uj = 0 for all j ∈ Z

∞ else.

For every j /∈ Z ∪ I by Equation (5) the expression |uj +
√

n
λ∗n
βn,j | − |

√
n
λ∗n
βn,j | converges to

|uj + ϕjλ0,j | − |ϕjλ0,j |. From Lemma 14 we additionally have(
ŵn,jλn,j√

nλ∗n

)
j /∈I∪Z

d−→
n→∞

(
1

|ϕj + ψjZj |

)
j /∈I∪Z

.

Denote by V 2 : Rk → R the function

u 7→ 2
∑
j /∈I∪Z

|uj + λ0,jϕj | − |λ0,jϕj |
|ϕj + ψjZj |

then, by the Continuous Mapping Theorem, it follows that (V 2
n (s1), . . . , V

2
n (sl)) converges in

distribution to (V 2(s1), . . . , V
2(sl)). The convergence of gn to g can be concluded analogously

by simply reducing the summands in V 1
n to j ∈ I and redefining V 1 as u 7→ u′Cu.

q

The functions gn, n ∈ N, are strictly convex and fulfil

gn(u)
p−→

‖u‖→∞
∞. (6)

The same property holds true for Vn, g and V ϕ. Thus, all of them possess unique minimizers.

Denote m the minimizer of V ϕ and mn the minimizer of Vn, which is given by
√

n
λ∗n

(β̂A
n − βn).

We then immediately conclude mj = 0 for j ∈ Z, as otherwise V ϕ would become ∞.

Theorem 19. The scaled and centred adaptive LASSO estimator converges in distribution to
the minimizer of V ϕ, i.e, √

n

λ∗n
(β̂An − βn)

d−→
n→∞

arg min
u∈Rk

V ϕ(u). (7)

Proof To prove the statement above directly, V ϕ needs to be finite on Rk. As this is not
necessarily fulfilled, we split the proof into two parts. In the first one, we prove the convergence
in probability of mn,j to mj for all j ∈ Z. In the second part we restrict the definition range of
our functions to those dimensions, on which V ϕ is finite in order to apply Lemma 25. However,
gn fulfils the conditions of Lemma 25, which gives us

min
u∈Rk

gn(u)
d−→

n→∞
min
u∈Rk

g(u).

16
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By the Prohorov Theorem the sequence min
u∈Rk

gn(u) is tight. From Vn(mn) ≤ 0 we have for every

j ∈ Z

0 ≤ λn,j√
nλ∗n

ŵn,j

∣∣∣∣mn,j +

√
n

λ∗n
βn,j

∣∣∣∣ ≤ −gn(mn) +
∑
i∈Z

ŵn,i
λn,i
λ∗n
|βn,i|.

To see the boundedness of
∑

j∈Z
λn,j
λ∗n
ŵn,j |βn,j | we apply, again, the Prohorov Theorem. Due

to the compactness of R, every subsequence of ŵn,j |βn,j | contains a subsubsequence fulfilling

lim
m→∞

√
(nlm)βnlm ,j = c for some c ∈ R. This subsubsequence converges in distribution to |c|

|c+Zj |
(becoming one in the case |c| =∞), where Zj stands for the j-th element of the k-dimensional,
normally distributed random vector of Lemma 14. As every subsequence of ŵn,j |βn,j | contains
a subsubsequence converging in distribution, the sum on the right-hand side is tight. Together
with the fact, that lim sup

n→∞
P(−gn(mn) ≤ K) ≥ P(−min

u∈Rk
g(u) ≤ K) for every K ∈ R, we conclude

the tightness of the right-hand side. Since
λn,j√
nλ∗n

ŵn,j converges to ∞ for every j ∈ Z, the term

|mn,j +
√

n
λ∗n
βn,j | converges in probability to 0. Finally, lim

n→∞

√
n
λ∗n
βn,j = lim

n→∞

√
nλ∗n
λn,j

λn,j
λ∗n
βn,j = 0

implies mn,j
p−→

n→∞
0. As mentioned above, mj equals 0 for j ∈ Z, which gives us mn,Z

p−→
n→∞

mZ.

For the second part of the proof, denote s the cardinality of the set Z and, without loss of
generality, let Z = {1, . . . , s}. If s = k, then the proof is complete. Otherwise we define
embedding functions ιn : Rk−s → Rk at the point mn

[ιn(u)]j =

{
uj−s j > s

mn,j j ≤ s
.

The embedding function ι : Rk−s → Rk at m is defined analogously as

[ι(u)]j =

{
uj−s j > s

mj j ≤ s
.

Now we can define g̃n : Rk−s → R as the function composition gn ◦ ιn

v 7→ gn(ιn(v))

and g̃ as g ◦ ι analogously. The functions g̃n and g̃ are strictly convex and, due to equation (6),
possess a unique minimizer. On the set E = {x ∈ Rk : xj = 0 for all j ∈ Z} the functions g and
V ϕ coincide almost surely. Therefore the minimizer of g̃ equals the minimizer of V ϕ ◦ ι almost
surely, which in turn is – according to its definition – mZC . Furthermore, the functions g̃n and
Vn ◦ ιn differ only by a constant, which implies the equality of its minimizers. For every fixed
v ∈ Rk−s the sequence (g̃n(v))n∈N converges in distribution to g̃(v). Hence, we conclude

arg min
v∈Rk−s

gn(ιn(v))
d−→

n→∞
arg min
v∈Rk−s

g(ι(v)).

Altogether we have

mn,ZC = arg min
v∈Rk−s

Vn(ιn(v)) = arg min
v∈Rk−s

gn(ιn(v))
d−→

n→∞
arg min
v∈Rk−s

g(ι(v)) = arg min
v∈Rk−s

V ϕ(ι(v)) = mZC ,

where the equality after the limit is fulfilled almost surely. Together with the fact mn,Z
p−→

n→∞
mZ

we conclude the desired result.
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q

From the foregoing result we now can conclude that the convergence rate of supβ∈Rk(β̂A
n − β)

is indeed of order
√

n
λ∗n

. Since there must be at least one j∗ fulfilling ψj∗ = 0, we can always

find a ϕ, such that
√

n
λ∗n

(β̂A
n − β) converges to a random vector not being 0. Together with

Proposition 5, which gives an upper bound for the convergence rate, we conclude the desired
result. Moreover, with a slightly improved argumentation we can also show that the convergence
rate of supβ∈Rk E(β̂A−β) equals the same rate. Defining (βn)n∈N such that ϕi =∞ for all i 6= j∗

and |ϕj∗ | being neither 0 nor ∞, the limiting random vector is deterministic. Furthermore, the
expectation of its j∗-th component does not equal 0 either. On the other hand, Lemma 10

ensures the uniform integrability of
√

n
λ∗n

(β̂A
n − β̂LS

n )j∗ . As lim
n→∞

λ∗n = ∞, the latter expression

converges in probability to the same limit as
√

n
λ∗n

(β̂A
n − βn)j∗ . Thus, we have

lim
n→∞

E
(√

n

λ∗n
(β̂A
n − βn)j∗

)
= lim

n→∞
E
(√

n

λ∗n
(β̂A
n − β̂LS

n )j∗

)
=

E
(

lim
n→∞

√
n

λ∗n
(β̂A
n − β̂LS

n )j∗

)
= E

(
arg min
u∈Rk

V ϕ(u)

)
j∗

6= 0.

Now the upper bound of supβ∈Rk E(β̂A − β) in the subsection 3.3 implies that its convergence

rate coincides with
√

n
λ∗n

.

4.2 Alternative representation

In order to get an asymptotically valid confidence set one may consider the union of the mini-
mizers of the functions V ϕ. However, they are defined implicitly and may be hard to calculate.
Therefore we are looking for a more convenient representation of that set.

Definition 20. Let λ0 ∈ [0, 1]k and ψ ∈ [0,∞]k. Then M denotes the following set

M =Mλ0,ψ = {m ∈ Rk : mj(Cm)j ≤ λ0,j for all j} ∩ {m ∈ Rk : (ψj =∞)⇒ ((Cm)j = 0)}.

Proposition 21. Let ψ ∈ [0,∞]k and denote (Ω,S, µ) the probability space of Lemma 14.
Then for all ω ∈ Ω the set M coincides with the set of all minimizers of the function V ϕ.

M =
⋃
ϕ∈Rk

arg min
u∈Rk

V ϕ(u)(ω) for all ω ∈ Ω.

In particular, the sets coincide µ-almost surely.

Proof Take an arbitrary ω ∈ Ω and denote M̃ =
⋃

ϕ∈Rk
arg min
u∈Rk

V ϕ(u)(ω).

First, we want to prove M̃ ⊆ M. Let m ∈ M̃ and j ∈ {1, . . . , k}. By definition there is a

ϕ ∈ Rk, such that m = arg min
u∈Rk

V ϕ(u)(ω). If j ∈ I, that is to say max(|ϕj |, |ψj |) =∞, then the

directional derivative in the direction of the j-th unit vector ej exists. Since m is a minimizer,
it follows that

0 =
1

2

∂V ϕ

∂uj
(m)(ω) = (Cm)j .

18
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We would like to emphasize that j ∈ I already contains the special case ψj = ∞, for which
the stricter condition (Cm)j = 0 has to be fulfilled. Now we consider the case ϕj = −ψjZj(ω),
which includes j ∈ Z as well as ϕj = 0 = ψjZj(ω). Here, the objective function V ϕ(·)(ω) is finite
if and only if mj = 0. This, again, gives us mj(Cm)j ≤ 0 ≤ λ0,j . For the following case analysis
we always additionally suppose ϕj 6= −ψjZj(ω). In the case of 0 < max(|ϕj |, |ψjZj(ω)|) < ∞
and λ0,j = 0, mj either equals 0 or the directional derivative of V ϕ at the point m in the
direction ej exists. In the latter case we have

0 =
1

2

∂V ϕ

∂uj
(m)(ω) = (Cm)j +

sgn(mj)

|ϕj + ψjZj(ω)|

Thus, mj fulfills

mj (Cm)j = − |mj |
|ϕj + ψjZj(ω)|

< 0 = λ0,j .

Considering the case 0 < max(|ϕj |, |ψjZj(ω)|) < ∞, λ0,j > 0 and mj = −λ0,jϕj we conclude
ψj = 0 due to remark 15. The one-sided partial derivatives of V ϕ at m have to be nonnegative,

which gives us | (Cm)j | ≤
1

|ϕj |
and furthermore

λ0,j ≥ λ0,j | (Cm)j ϕj | = | (Cm)jmj |.

If 0 < max(|ϕj |, |ψjZj(ω)|) < ∞, λ0,j > 0 and mj 6= −λ0,jϕj , then the j-partial derivative of
V ϕ at m exists and equals 0. Hence, we conclude

0 =
1

2

∂V ϕ

∂uj
(m)(ω) = (Cm)j +

sgn(mj + λ0,jϕj)

|ϕj |
. (8)

In the subcase |mj | ≤ λ0,j |ϕj | it follows by equation (8)

λ0,j = λ0,j | (Cm)j ϕj | ≥ | (Cm)jmj |,

while the other subcase |mj | > λ0,j |ϕj | implies

mj (Cm)j = −mjsgn(mj + λ0,jϕj)

|ϕj |
< 0.

To summarise, every m ∈ M̃ fulfils mj(Cm)j ≤ λ0,j and (ψj =∞)⇒ ((Cm)j = 0), which gives

us M̃ ⊆M. For the opposite direction we assume m ∈ M. We want to find ϕ, such that m is
the minimizer of V ϕ(·)(ω). In order to do so, we define ϕ as follows

ϕj =


∞ (Cm)j = 0

− mj
λ0,j

(Cm)j 6= 0, λ0,j > 0 and |mj(Cm)j | ≤ λ0,j
−ψjZj(ω) + 1

|(Cm)j | else

.

Denote Q := {j : ϕj = 0 and λ0,j > 0} and P := {j : (Cm)j = 0}. For a given j ∈ Q
the function V ϕ(u)(ω) is finite if and only if uj = 0. As Q is a subset of {j : mj = 0}, m
fulfils this property. Moreover, arg min

u∈Rk
V ϕ(u) coincides with arg min

u∈Rk:uj=0 ∀j∈Q
V ϕ(u). Thus, it
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suffices to concern only about one-sided directional derivatives of V ϕ(·)(ω) with direction in
{r ∈ Rk : rj = 0 for all j ∈ Q}.

1

2

∂V ϕ

∂r
(m)(ω)− r′Cm =

∑
j∈Q

0 +
∑
j∈P

0 +
∑

λ0,j=0,j /∈Q∪P
mj=0

|rj |
|ϕj + ψjZj(ω)|

+

∑
λ0,j=0,j /∈Q∪P

mj 6=0

rjsgn(mj)

|ϕj + ψjZj(ω)|
+

∑
λ0,j>0,j /∈Q∪P
|mj(Cm)j |≤λ0,j

|rj |
|ϕj |

+
∑

λ0,j>0,j /∈Q∪P
|mj(Cm)j |>λ0,j

rjsgn(mj + λ0,jϕj)

|ϕj |

In order to recognize that this summation contains all possible cases, we mention that λ0,j > 0
already implies ψj = 0. The third sum’s terms correspond with |rj(Cm)j | and are greater
or equal than −rj(Cm)j . The fourth sum implies mj(Cm)j < 0 and its summands equal

−rj(Cm)j . In the penultimate sum the terms equal |rj λ0,jmj
| and hence are greater or equal than

|rj(Cm)j |. For the last sum’s term it holds ψj = 0 due to Remark 15 and ϕj = 1
|(Cm)j | . From

|mj | > λ0,j
|(Cm)j | and mj(Cm)j ≤ λ0,j we conclude sgn(mj + λ0,jϕj) = sgn(mj) = −sgn((Cm)j).

Hence, all summands of the last sum equal −rj(Cm)j . Altogether, the one-sided directional
derivative is nonnegative and – due to the strict convexity of the objective function – m is the
minimizer of V ϕ(·)(ω).

q

5 Confidence sets

5.1 Construction of the Confidence sets

Mathematics consists in proving the most
obvious thing in the least obvious way.

George Polya

Theorem 22. Let

√
λ∗n

λn,j
→ ψj ∈ [0,∞] for all j. Then, for every open superset O of M, it

holds

lim
n→∞

inf
β∈Rk

P

(
β̂A
n − β ∈

√
λ∗n
n
O

)
= 1.

On the other hand, for all d < 1 we have

lim
n→∞

inf
β∈Rk

P

(
β̂A
n − β ∈

√
λ∗n
n
Mdλ0,ψ

)
= 0.

Proof We start proving the first claim. Let c = lim inf
n→∞

inf
β∈Rk

P(βA − β ∈
√

λ∗n
n O). Hence, there

is a subsequence nl, such that

c = lim
l→∞

inf
β∈Rk

P(βA − β ∈

√
λ∗nl
nl
O)
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For an arbitrary ε > 0 there is a sequence βnl , such thatPnl(β̂
A − βnl ∈

√
λ∗nl
nl
O)− inf

β∈Rk
Pβ(β̂A − β ∈

√
λ∗nl
nl
O)

 ≤ ε for all l

holds true. If we could show

lim
l→∞

Pβnl (β̂
A
nl
− βnl ∈

√
λ∗nl
nl
O) = 1,

then the proof would be completed due to the arbitrariness of ε. However, we can neither

assume the existence of this limit, nor the convergence of the vector (
√
nlβnl,j

√
λ∗nl,j

λnl
)kj=1, and

therefore have to deal again with subsequences. Denote

d = lim inf
l→∞

Pβnl

β̂A
nl
− βnl ∈

√
λ∗nl
nl
O

 .

The sequence nl contains a subsequence nlp , such that

d = lim
p→∞

Pβnlp

β̂A
nlp
− βnlp ∈

√
λ∗nlp
nlp
O


holds true. There is another subsequence nlpq , such that the vector√nlpqβnlpq ,j

√
λ∗nlpq

λnlpq ,j

k

j=1

converges to ϕ ∈ Rk. According to Proposition 19 it follows√
nlpq
λ∗nlpq

(
β̂A
nlpq
− βnlpq

)
d−→

q→∞
arg min
u∈Rk

V ϕ(u).

Finally, the Portemanteau-Theorem implies

lim inf
q→∞

Pβnlpq

√ nlpq
λ∗nlpq

(
β̂A
nlpq
− βnlpq

)
∈ O

 ≥ Pϕ

(
arg min
u∈Rk

V ϕ(u) ∈M

)
= 1

For the second part of the proof, denote S = {j : λ0,j = 0} and r = C−1λ0 ∈ Rk. As there is at
least one j with λ0,j = 1, the set {1, . . . , k}\S is not empty and r is not the zero vector. Due
to the positive definiteness of C,

0 < r′Cr =
∑
j /∈S

rjλ0,j ,

implies that there exists at least one strictly positive rj . Defining m as r

(
max
l /∈S

rl

)− 1
2

, it satisfies

the equations mj(Cm)j = λ0
rj

max
l/∈S

rl
and is contained inMλ0,ψ\Mdλ0,ψ. In order to see this, we
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stress the fact that |ψj | =∞ implies j ∈ S. Let

ϕj =


∞ j ∈ S
− mj
λ0,j

j /∈ S and |mj(Cm)j | ≤ λ0,j
1

|(Cm)j | else

,

then, analogously to the second part of the proof of Lemma 21, m is the unique minimizer of
V ϕ. As for all j in {j : 0 < ψj <∞} ⊆ S the value of ϕj is infinite, the objective function V ϕ

is non-stochastic. This in turn implies for all sequences (β̃n)n∈N with limit ϕ

mn = arg min
u∈Rk

V β̃n,λn
n (u)

p−→
n→∞

arg min
u∈Rk

V ϕ(u) = m.

Because of the continuity of the function m 7→ mj(Cm)j , mn ∈ Mdλ0,ψ implies ‖mn −m‖ ≥ ε
and therefore

lim sup
n→∞

inf
β∈Rk

P

(
β̂A
n − β ∈

√
λ∗n
n
Mdλ0,ψ

)
≤ lim sup

n→∞
Pβ̃n

(
β̂A
n − β̃n ∈

√
λ∗n
n
Mdλ0,ψ

)
= lim sup

n→∞
Pβ̃n

(
mn ∈Mdλ0,ψ

)
≤ lim sup

n→∞
Pβ̃n (‖mn −m‖ ≥ ε) = 0

q

Remark. Pötscher and Schneider (2010) derived one-dimensional confidence intervals based on
the adaptive LASSO estimator for orthonormal regresssors and uniform tuning. In this special

case the confidence sets of Theorem 22 are given by open supersets of [β̂A
j −

√
n
λn
, β̂A
j +

√
n
λn

].

Hence, our results essentially coincide with the proposed intervals (β̂A
j − d

√
n
λn
, β̂A
j + d

√
n
λn

)

(with d > 1).

Remark. Since λ0,j may take the value 0, a classification of the confidence sets as in Ewald and
Schneider (2015) is not possible. Assume that C is a diagonal matrix and there is at least one
j̃ fulfilling λ0,j̃ = 0. Then, for every d ∈ R, dM does not contain any elements with mj̃ 6= 0.
Hence, it cannot be an open strict superset.

Remark. The set M is symmetric. In Pötscher and Schneider (2010) it was shown for the case
of orthogonal regressors, that symmetric intervals are the shortest confidence sets for a given
infimal coverage probability. However, this result was proven in the finite sample framework.

5.2 Illustration

Figure 1 illustrates the set M in the case of λ0,j = 1 and ψj = 0 for all j with C being[
1 −0.7
−0.7 1

]
, which is the case for uniform tuning and negative correlated covariates. The colour

indicates the value of max1≤j≤2mj(Cm)j at the specific point m inside the set. The higher
the absolute value of the correlation of the covariates is, the flatter and more stretched the
confidence set becomes. As one may expect intuitively, in the case of negative correlation, the
confidence set covers more of the area, where the covariates’ signs equal. A positive correlation
causes the opposite behaviour.
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Figure 1: Two-dimensional example of M in the case of uniform tuning
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Figure 2: Three-dimensional example of M in the case of uniform tuning
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Figure 3: Projections of the three-dimensional set of Figure 2

As a three-dimensional example of M we consider again uniform tuning with

C =

 1 −0.3 0.7
−0.3 1 0.2
0.7 0.2 1

 ,

which is illustrated in Figure 2. To give a better impression of the structure, the set is coloured
depending on the value of the third coordinate. Here, the high correlation of the first and the
third covariate

”
stretches“ the set in the direction, where the covariates’ signs differ. From an

interpretative point of view this can be read as follows: Due to the hight correlation of the
regressor variables, the underestimation of one component compensating the overestimation of
the other one would lead to similar results in the observated values and hence is more likely
to occur. Figure 3 shows the projections of the three-dimensional set of Figure 2 onto three
planes where one component is held fixed. The projection on that plane, where the second
component is fixed, clearly shows the behaviour explained above. On the other hand, the other
two projections emphasize that for covariates with a lower correlation (in absolute value) the
confidence set is less distorted. Figure 4 shows the case of a partial adaptive LASSO estimator
with the same matrix C, where the first component is not penalized while the other ones are
uniformly tuned. Hence, we have λ0,1 = 0, ψ1 = ∞, λ0,j = 1 as well as ψj = 0 for j > 1. Due
to the condition (Cm)1 = 0 for all m ∈M that set is the intersection of a plane with the set of
Figure 2.
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Figure 4: Three-dimensional example of M in the case of partial tuning

6 Conclusion

Education is what you get when you read
the fine print. Experience is what you
get when you don’t.

Arthur Levitt

We have studied the asymptotic behaviour of the adaptive LASSO estimator in the framework
of componentwise tuning and covariates being not necessarily orthogonal. Hence, our results
generalize the findings in Pötscher and Schneider (2009), which are also derived in the low-
dimensional setting. Regarding consistency in parameter estimation in the moving-parameter
framework, the necessary and sufficient condition on the tuning parameter barely differs from
those of the one-dimensional case and intuitively carries over to componentwise tuning. Con-
sistency in parameter estimation is necessary to guarantee consistency in model selection as
well. Besides that condition, a multidimensional equivalent of the uniform tuning’s condition
for consistency in model selection has to be fulfilled, too. Depending on the underlying model
structure, however, another condition limiting the deviation of the tuning parameter’s conver-
gence rates may be required to ensure consistent model selection.

The main result of this work consists in the construction of confidence sets, which are derived
in the framework of partial consistent tuning: At least one component is tuned to perform
consistent model selection, while the other components may be tuned arbitrarily. First, the
asymptotic distribution of the appropriately scaled and centred adaptive LASSO estimator is
derived implicitly and expressed as a function’s minimizer. Afterwards, we present a more
practicable expression of the set of all possible minimizers, which makes it far more easier to
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compute. These results are used to create confidence sets with asymptotic infimal coverage
probability 1. As a side result, we derived the convergence rate (towards 0) of the supremum
of the adaptive LASSO estimator’s bias in the case of partial consistent tuning.

26



Confidence sets based on the adaptive LASSO estimator Nicolai David Amann

A Appendix

If `2 was the norm of the 20th century, then `1 is the norm of the
21st century ... OK, maybe that statement is a bit dramatic, but
at least so far, there’s been a frenzy of research involving the `1
norm and its sparsity-inducing properties.

Ryan J. Tibshirani (in R. J. Tibshirani and Wasserman, 2015 )

A.1 Random functions

Definition 23. Let (Ω,A) be a measurable space and denote Bb the Borel-σ-algebra of Rb
equipped with the Euclidean metric. A mapping f : Ω×Ra → Rb is called a stochastic function
if for every x ∈ Ra the mapping f(·, x) : Ω→ Rb is n Borel random vector on (Ω,A).

A.2 Asymptotics of minimizers

In this section we recapitulate some results for the asymptotic properties of minimizers of convex
functions derived in Geyer (1996). First we start with a definition using the notation in that
paper.

Definition 24. A sequence tn is called an approximate minimizing sequence for a sequence
of functions gn if for some sequences νn ↘ 0 and rn ↘ −∞

gn(tn) ≤

{
inf gn + νn if inf gn > −∞
rn if inf gn = −∞.

Lemma 25. Suppose gn is a sequence of random convex functions on Rd and g is another
such function. Let D be a countable dense set in Rd and denote tn an approximate minimizing
sequence of gn. If for each finite subset {s1, . . . , sk} of D, the random vector (gn(s1), . . . , gn(sk))
converges in law to the random vector (g(s1), . . . , g(sk)), and if with probability one g has a
unique minimizer t, then tn converges in law to t and gn(tn) converges in law to g(t).

The lemma above mainly bases on Theorem 3.2 in Geyer (1996), which deals with extended-
real-valued functions that are finite on some nonempty open set. However, we will only use a
version for finite functions as the extension does not yield any advantages for our application.
Due to Lemma 3.1 in Geyer (1996) it suffices to consider the convergence of gn on a countable
dense subset D of Rd. As mentioned in Chapter 3 of that paper, this condition reduces to the
convergence of finite-dimensional distributions, which results in the condition of Lemma 25.
Altogether Lemma 25 is a slight modification for finite functions of a statement in Chapter 1 of
Geyer (1996).

A.3 Auxiliary results

First we need the following lemma, also known as Polya’s Theorem.

Lemma 26. Let (Fn)n∈N as well as F be cumulative distribution functions on R. Furthermore,
let (Fn)n∈N converge pointwise to F . If F is continuous, then the sequence (Fn)n∈N converges
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uniformly to F . For every convergent sequence (xn)n∈N with limit x ∈ R it therefore holds

lim
n→∞

Fn(xn) = F (x).

In all cases, where either |a| or |b| is finite, the following lemma directly follows from Slutsky’s
Lemma. However, the consideration of the case min(|a|, |b|) = ∞ makes it practicable for our
use.

Lemma 27. Let (Xn)n∈N be a sequence of random variables in R, converging in distribution
to a continuous random variable X in R. Furthermore, let (an)n∈N, (bn)n∈N be sequences of real
numbers with limits a ∈ R and b ∈ R, respectively. If a 6= 0, suppose the limit c ∈ R of bn

an
exists. If max(|a|, |b|) =∞ holds true, then it follows that

1

|anXn + bn|
p−→

n→∞
0. (9)

Proof The case a = 0 implies |b| =∞ and therfore (9) is fulfilled. Otherwise, take an arbitrary
ε > 0. Then the following equalities hold

P
(

1

|anXn + bn|
≥ ε
)

= P(|anXn + bn| ≤
1

ε
) =

P(anXn ≤
1

ε
− bn)− P(anXn < −

1

ε
− bn).

Since a 6= 0, the sign of an equals sgn(a) for sufficiently large n. Thus, the term above is
eventually upper bounded by

sign(a)

(
P(Xn ≤

2
ε − bn
an

)− P(Xn ≤
−2
ε − bn
an

)

)
= sign(a)

(
Fn

(
2
ε − bn
an

)
− Fn

(
−2
ε − bn
an

))
.

(10)

Denote yn =
2
ε
−bn
an

, zn =
− 2
ε
−bn
an

. In the case where 0 < |a| < ∞, |b| = ∞ and therefore
both sequences converge either to ∞ or −∞. If |a| = ∞, then the distance between the
sequences vanishes asymptotically and therefore they converge to the same limit −c as well.
Thus, according to Lemma 26, the expression in equation (10) converges to 0.

q

Remark. The condition on the continuity of X is – in the case where min(|a|, |b|) = ∞ – a
crucial one. To see this, define Xn = − bn

an
+ Z

an
, with Z being bounded in probability. Then

min(|a|, |b|) = ∞ implies 1
|Xnan+bn|

p−→
n→∞

1
|Z| . However, Xn

p−→
n→∞

−c, which is not a continuous

random variable.
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