
Dissertation

Entanglement Entropy from Numerical

Holography

Ausgeführt zum Zwecke der Erlangung des Akademischen Grades
eines Doktors der technischen Wissenschaften

unter der Leitung von
Assoc.-Prof. Priv.-Doz. Dr. Daniel Grumiller

Institut für theoretische Physik
Technische Universität Wien, AT

eingereicht an der Technischen Universität Wien
Fakultät für Physik

von
Dipl.-Ing. Christian Ecker

Blütengasse 9/2/22
1030 Wien

Wien, am 07.09.2018

Prof. Daniel Grumiller Prof. Javier Mas Solé Prof. Paul Romatschke
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Abstract

In this thesis I present numerical studies of entanglement entropy and the quantum
null energy condition in strongly coupled far-from-equilibrium quantum states using
holography. The holographic prescription for entanglement entropy requires to deter-
mine the area of extremal surfaces in asymptoticaly Anti-de Sitter spacetimes which
I do both numerically and, when possible, analytically. I give a careful introduction
into the numerical methods used and provide the computer codes to compute entangle-
ment entropy and the quantum null energy condition. These methods are then applied
to systems of various degrees of complexity, including homogeneous and isotropic far-
from-equilibrium quantum quenches dual to Vaidya spacetimes, to homogeneous and
anisotropic finite temperature states dual to anisotropic black brane geometries, and to
inhomogeneous and anisotropic states of colliding walls of energy dual to gravitational
shock wave collisions in Anti-de Sitter space. For all these scenarios I compute the
fully non-linear dynamics of the dual geometry, which requires to numerically solve
five-dimensional Einstein equations with negative cosmological constant and asymp-
totic Anti-de Sitter boundary conditions. The numerical solutions for the geometries
allow to extract the time evolution of the holographic energy momentum tensor and
provides the background for computing two-point functions, entanglement entropy and
the quantum null energy condition. From the anisotropic system one learns that the
near-equilibrium dynamic of entanglement entropy has an accurate description in terms
of quasinormal modes. In the shock wave system I identify characteristic features of
entanglement entropy that allow to discriminate between thick and narrow shocks. All
my numerical studies confirm the quantum null energy condition, also the shock wave
system, which itself can violate the classical null energy condition for sufficiently nar-
row shocks. My results also show that the quantum null energy condition can saturate
in the far-from-equilibrium regime.
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ii ABSTRACT



Zusammenfassung

In dieser Dissertation beschreibe ich numerische Studien der Verschränkungsentropie
und der Quanten-Null-Energie-Bedingung in stark gekoppelten Nicht-Gleichgewichts-
Quantenzuständen unter Verwendung des holographischen Prinzips. Die holographis-
che Beschreibung der Verschränkungsentropie erfordert die Bestimmung von extremalen
Flächen in asymptotischen Anti-de Sitter Raumzeiten, welche ich numerisch mache.
Ich geben eine detaillierte Einführung in die verwendeten numerischen Methoden und
stellen die Computercodes zur Verfügung, um die Verschränkungsentropie und die
Quanten-Null-Energie-Bedingung zu berechnen. Diese Methoden werden dann auf Sys-
teme verschiedener Komplexität angewendet, einschließlich homogener und isotroper
Nicht-Gleichgewichts-Quantenzustände, die dual zu Vaidya Raumzeiten sind, auf ho-
mogene aber anisotrope Zustände bei endlicher Temperatur, welche dual zu anisotropen
Black-Brane Geometrien sind, und auf inhomogene und anisotrope Zustände kolli-
dierender Energiewände, die sich mit kollidierenden Gravitationsschockwellen im dualen
Anti-de Sitter Raum beschreiben lassen. Für alle diese Systeme berechne ich vollständig
die nichtlineare Dynamik der dualen Geometrie, indem ich die zeitabhängigen Einstein
Gleichungen mit negativer kosmologischer Konstante und asymptotischen Anti-de Sit-
ter Randbedingungen in fünf Dimensionen numerisch löse. Die numerische Lösung
für die Geometrien erlaubt es die zeitliche Entwicklung des holographischen Energie-
Impuls-Tensors zu extrahieren und liefert den notwendigen Hintergrund zur Berech-
nung von Zweipunktfunktionen, der Verschränkungsentropie und der Quanten-Null-
Energie-Bedingung. Aus dem anisotropen System sieht man, dass sich die Dynamik
der Verschränkungsentropie nahe am Gleichgewicht präzise mit Quasinormalmoden
beschreiben lässt. Im Schockwellensystem identifiziere ich charakteristische Merkmale
der Verschränkungsentropie, die es erlauben zwischen dicken und dünnen Schockwellen
zu unterscheiden. Alle meine numerischen Ergebnisse bestätigen die Quanten-Null-
Energie-Bedingung, auch die des Schockwellensystems, in welchem die klassische Null-
Energie-Bedingung für hinreichend dünne Schocks verletzt sein kann. Meine Ergebnisse
zeigen weiters, dass die Quanten-Null-Energie-Bedingung in diesem System auch in weit
aus dem Gleichgewicht gebrachten Zuständen saturiert werden kann.
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Chapter 1

Introduction

The gauge/gravity duality [1–3] has established itself as a valuable tool in the quest
for a better understanding of strongly coupled systems. In particular it is used to gain
insights into the thermalization process of non-Abelian plasmas by studying the gravi-
tational dual of N = 4 Super–Yang–Mills (SYM) theory, a maximally supersymmetric
conformal field theory (CFT) in four spacetime dimensions. Thermal equilibration of
the field theory is then mapped to black hole formation on the gravity side.

Important examples are the experiments at RHIC and the LHC which revealed that
the quark gluon plasma created in heavy ion collisions behaves as a strongly coupled
viscous liquid that thermalizes extremely fast [4–7]. In the last decade there has been
considerable progress in setting up collisions of SYM matter in various scenarios and
studying its evolution. One of the starting points was the study of perfect fluid dynam-
ics in a boost invariant setting [8,9]. In [10] it was possible to study far-from-equilibrium
dynamics by numerically solving the full Einstein equations in an anisotropic but oth-
erwise completely homogeneous system. Trying to come closer to mimic a heavy ion
collision led to the idea [8] of colliding delta like gravitational shock waves [11, 12],
which are dual to lumps of energy in the SYM theory moving at the speed of light.
The next step was to make the system anisotropic and inhomogeneous by the collision
of gravitational shock waves which are homogeneous in the transverse direction and
have finite width in the longitudinal direction [13]. It was found that a hydrodynamic
description of the plasma is valid even when the anisotropy is still large [14]. This onset
of hydrodynamic behavior is now termed hydrodynamization.

Further advances include radial flow [15], the effect of different initial conditions [16],
the collision of two black holes [17], and more [18–20]. Now it is even possible to
simulate the collision of two localized lumps of matter to mimic off-central nucleus-
nucleus [21, 22] and proton-nucleus collisions [23]. More recently, these studies were
extended to collisions including electromagnetic fields [24], to non-conformal systems
including scalar fields in the bulk [25], and to collisions including finite coupling cor-
rections using Gauss-Bonnet gravity [26]. An excellent review of the state-of-the-art of
such calculations, including a discussion of remaining challenges, can be found in [27].

Despite all the advances one has to keep in mind that in heavy ion collisions there
are many energy scales involved. To get an accurate understanding of all the relevant
thermalization mechanisms, strong and weak coupling phenomena must be combined.
One step towards this direction is the combination of different effective descriptions [28]
or by constructing a semi-holographic framework where the weakly and strongly coupled
sector can interact with each other [29–31].

So far, in most colliding shock wave studies the quantities of interest are local

1



2 CHAPTER 1. INTRODUCTION

quantities, i.e. the components of the energy momentum tensor, such as the energy
density or the pressures. This allows to determine if local equilibrium is reached, here
understood as the local applicability of hydrodynamics. In order to gain further insights
into the thermalization process the time evolution of nonlocal quantities, such as various
correlation functions (e.g. Wightman function or Feynman propagator), in coordinate
space needs to be considered. This is still a complicated task but two such nonlocal
quantities can be obtained relatively easy with the help of the gauge/gravity duality,
namely the equal time two-point function for scalar operators of large conformal weight
and entanglement entropy.

The equal time two-point function can be obtained from the length of spacelike
geodesics which are anchored to the boundary of Anti-de Sitter (AdS) and extending
into the bulk. Although the geodesic approximation is only valid for operators of
large conformal weight, a comparison of the Feynman propagator for a scalar field
with conformal dimension ∆ = 3/2 with the geodesic approximation revealed that
they show the same qualitative behavior [32]. Similarly the holographic entanglement
entropy can be obtained from the area of extremal surfaces [33, 34]. A motivation to
study entanglement entropy in N = 4 SYM theory comes from the question how to
measure entropy production in holographic models for heavy ion collisions [35]. Within
the gauge/gravity duality the entropy of the (stationary) black hole corresponds to the
entropy of the field theory. However, in time dependent backgrounds entropy as defined
from the area of the apparent horizon is ambiguous because it depends on the choice
of time slicing. By contrast, the definition of the holographic entanglement entropy is
unique and therefore may serve as an alternative measure for entropy production.

Another set of examples for thermal equilibration in strongly interacting time-
dependent physics systems are condensed matter experiments, where it is now possible
to drive an isolated system to a far-from-equilibrium state by a quantum quench, i.e. a
control parameter of the system is varied rapidly [36]. In a seminal work, Calabrese
and Cardy [37] were able to compute the time evolution of the entanglement entropy
after a quench in a two-dimensional conformal field theory and in the Ising spin chain
model in a transverse magnetic field. In both cases they find that for an entangling
interval of length l, the entanglement entropy increases linearly with time until t ∼ l/2
after which it saturates. The linear scaling with time and the crossover at t ∼ l/2 can
be understood in terms of entangled quasiparticle pairs emitted from the initial state
and is therefore expected to hold for a wider class of systems.

The simplest example where one can study the analog of quenches in the holo-
graphic setup are spacetimes where thin shells collapse to form a black hole. This
was first worked out in the Vaidya spacetime [38–41] where the shell is composed out
of null dust and later generalized to matter with arbitrary equation of states [42, 43].
The linear scaling is even present in geometries with Lifshitz scaling and hyperscaling
violation [44]. The behavior of the entanglement entropy in these setups has been
studied extensively [38,41,45–49] and indeed shows universal behavior consistent with
the findings of Cardy and Calabrese.

However, this universal behavior disappears in more complicated setups [50–55].
For example, a radially collapsing scalar field in global AdS can have many bounces
between the boundary and the center of AdS before a black hole forms [56], resulting
in a periodic behavior of the entanglement entropy [52, 53]. In [50] a massive scalar
field dual to a massive fermionic operator was turned on, treating the quench as a
perturbation on the static spacetime. In this setup the entanglement entropy is also
not monotonic and in some cases approaches the equilibrium value from above. This
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reveals a qualitative difference of entanglement entropy to the thermal entropy which,
on general grounds, must be monotonically growing in a closed system. Note that
these quenches are thermal quenches because the end state is a thermal state. In
anisotropic N = 4 SYM the entanglement entropy and equal time two-point functions
show oscillatory behavior with exponential damping at late times which is given by
the lowest quasinormal mode [54]. Analytic progress has been made in [57] where the
late-time behavior of two-point functions, Wilson loops and entanglement entropy has
been studied perturbatively in a boost-invariant system.

Another motivation to study entanglement entropy comes from the recently pro-
posed quantum null energy condition (QNEC) [58, 59], which is currently the only
known local energy condition that is supposed to hold in any relativistic QFT. The
QNEC inequality states that the null projection of the expectation values of the energy
momentum tensor for any quantum state is larger than, or equal to, the second variation
of entanglement entropy with respect to lightlike deformations of the entangling region
evaluated for the same state. Energy conditions rose to prominence in the 1960s as req-
uisites for proofs of singularity theorems or Hawking’s area theorem [60,61]. While the
specific energy condition needed depends on details of the particular theorem, all local
classical ones are violated by quantum effects [62]. Instead, QFTs typically obey non-
local conditions such as the Averaged Null Energy Condition (ANEC, [63, 64]), which
is the statement that negative energy density along a complete null geodesic is com-
pensated by positive energy density (with “quantum interest” [65]). These averaged
energy conditions can sometimes be proven for QFTs (see [66,67] for ANEC) and hence
provide non-trivial consistency conditions for general QFTs. A better understanding of
quantum energy conditions can then even lead to bounds on inflationary parameters,
such as conjectured in [68]. In general relativity the null energy condition (NEC), which
states that the null projection of the energy momentum tensor is strictly positive or
zero, together with the Raychaudhuri equation implies the focusing of geodesics. This
in turn implies that classically the total area of black hole horizons does not decrease.
When including quantum effects this needs to be generalized by adding area and (en-
tanglement) entropy together, after which the generalized entropy cannot decrease.
This quantum focusing conjecture [58] then implies QNEC. QNEC has been proven for
free and superrenormalizable theories [59], theories with holographic duals [69], and
interacting quantum field theories in d ≥ 3 [70]. Quantum energy conditions are par-
ticularly relevant for systems that violate the classical ones. This is for instance the
case in holographic models of heavy ion collisions, where sufficiently narrow shocks can
produce regions of negative energy density in the forward light cone. As a consequence
the classical null energy condition is violated in these regions [71], but it can be shown
that QNEC still holds [72].

The outline of this thesis is as follows: Chapter 2 provides the necessary back-
ground material, starting with a basic introduction to entanglement entropy, followed
by a review of relevant concepts in string theory and a motivation of the AdS/CFT cor-
respondence. With these basic concepts at our disposal we introduce the holographic
prescription for entanglement entropy and close the chapter with a section on the quan-
tum null energy condition. In Chapter 3 we explain the numerical methods used in this
thesis, starting with the method of characteristics which we use to solve the Einstein
equations, followed by the shooting method and the relaxation method which we use
to compute entanglement entropy, and ending with our numerical method to compute
QNEC. In Chapter 4 we present our analysis of two-point functions and entanglement
entropy in an anisotropic far-from-equilibrium system. In Chapter 5 we study two-
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point functions and entanglement entropy in shock wave collisions and in Chapter 6 we
present our QNEC computations in this system. We summarize, conclude and suggest
possible extensions to our work in Chapter 7. In Appendices A–F we collect basic
derivations and provide selected code listings of our numerical procedures.



Chapter 2

Theoretical Background

The aim of this chapter is to introduce the theoretical concepts, and to make basic
definitions used in this thesis. We start in Section 2.1 with the definition and im-
portant properties of entanglement entropy in quantum mechanics and quantum field
theory. After that we briefly discuss in Section 2.2 the holographic principle, followed
by a lightning review of string theory before we motivate and define the AdS/CFT
correspondence. In Section 2.3 we discuss the Ryu-Takayanagi prescription for the
holographic entanglement entropy including some basic calculations of extremal sur-
faces which will be used in later chapters. Finally, in Section 2.4 we introduce the
quantum null energy condition.

2.1 Entanglement Entropy

Entanglement is a genuine feature of quantum states which is absent in systems that
follow the laws of classical mechanics. It is highly desirable to formulate measures that
quantify how much “quantum” a given system is. Several such entanglement measures
have been introduced, including Rényi entropies, mutual information, entanglement
entropy and many more (see [73] for a more complete list). Mainly because of its
computational accessibility, the entanglement entropy plays a particularly important
role in quantifying entanglement.

Currently, entanglement entropy is studied in many different research areas, includ-
ing information theory, condensed matter physics, high energy physics and quantum
gravity. Originating in quantum information theory [74], entanglement entropy pro-
vides a connection between seemingly unrelated fields and initiated many ideas leading
to interesting new insights. In condensed matter theory the entanglement entropy
provides a useful order parameter for quantum-phase transitions which are character-
ized by their entanglement pattern and not by the usual Ginzburg-Landau paradigm
of spontaneous symmetry breaking [75–77]. In high energy physics, entanglement en-
tropy is important because it characterizes the number of degrees of freedom under
renormalization group flow in QFTs [78]. The AdS/CFT correspondence led to an
interesting geometric construction of entanglement entropy, establishing a tight con-
nection between spacetime geometry and entanglement. This led to the idea of formu-
lating quantum gravity from quantum entanglement [79] and resulted in the famous
ER=EPR slogan [80]. As we will discuss in some detail in later chapters, entanglement
entropy plays an important role in formulating a local energy bound in quantum field
theories, called quantum null energy condition [58, 59]. In the context of this thesis
we will study entanglement entropy in holographic models relevant for the quark gluon

5
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plasma produced in relativistic heavy ion collisions.

An overview on recent developments in (holographic) entanglement entropy, includ-
ing an extensive list of references, can be found for instance in the textbook [81] and
the review article [82] on which some of the discussion in this section is based.

2.1.1 Definition and Important Properties

We start with the general definition of entanglement entropy. Let us assume a quantum
system in the ground state |ψ〉 which is pure in the Hilbert space H and normalized
(〈ψ|ψ〉 = 1) such that the corresponding density matrix ρ = |ψ〉〈ψ| has unit trace
Tr(ρ) = 1. In order to define entanglement entropy it is necessary to divide the whole
system into two parts A and B = Ā such that the total Hilbert space takes a direct
product form H = HA ⊗HB1. The shared boundary ∂A is called entangling surface.
We want to stress that this dividing procedure only assigns the degrees of freedom in the
system to two disjoint sets and does not correspond to a physical change of the system.
This situation is illustrated in Figure 2.1 for the case of a discrete lattice system, where
the lattice points are grouped into two sets, and a continuous quantum field theory in
which the bipartitioning is realized by splitting a Cauchy slice into two spatial regions.
As a next step let us define the reduced density matrix ρA of the subsystem A by taking

A

B

∂A

A

∂A

B

Σd-1

Figure 2.1: Left: Example for bipartitioning a discrete quantum system by grouping
lattice sites into two sets A and B. Right: In a continuous QFT on a d-dimensional
Lorentzian manifold a Cauchy slice Σd−1 is split into two spatial regions A and B such
that A ∪B = Σd−1.

the partial trace over the degrees of freedom in B

ρA = TrB(ρ) . (2.1)

Intuitively, ρA corresponds to the density matrix for an observer who is causally con-
nected to the degrees of freedom in A only. The exact definition of the trace operation
in (2.1) depends on the theory. For instance in a discrete quantum system for which

1We want to stress that for theories without gauge symmetries the total Hilbert space can always
be written in a tensor product form. However, for pure gauge theories without any matter degrees of
freedom no such decomposition exists and the prescription remains ambiguous. For a recent review on
this issue see [83].
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an orthonormal basis {|iB〉, i = 1, . . . ,dim(HB)} of the Hilbert space HB is available
the partial trace is defined as

TrB(ρ) =
∑
i

〈iB|ρ|iB〉 . (2.2)

The entanglement entropy associated to the subregion A is then defined as the von
Neumann entropy of the reduced density matrix

SA = −TrA(ρA log(ρA)) . (2.3)

It quantifies how much entanglement is in the state |ψ〉 when bipartitioning the system.
In general a state is called separable when it can be written in product form |ψ〉 =∑

ij cicj |iA〉|jB〉 = |ψA〉 ⊗ |ψB〉, such that the reduced density matrix becomes pure
ρA = |ψA〉〈ψA| in which case the entanglement entropy vanishes SA = 0. A state which
is not separable |ψ〉 =

∑
ij cij |iA〉|jB〉 6= |ψA〉⊗|ψB〉, where cij 6= cicj , is called entangled

or mixed and the entanglement entropy takes a finite value SA > 0. Entanglement
entropy is a measure for how much a given quantum state differs from a pure state.
We want to stress that the amount of entanglement in a state depends on the Hilbert
space in which it is defined. It is always possible to purify a state that is mixed in
the original Hilbert space by extending the Hilbert space such that it is pure in the
extended Hilbert space. This procedure is called entanglement purification.

Until now we were not explicit about the quantum system under consideration. In
order to build an understanding of the concept of entanglement and to see why the
definition (2.3) provides a useful measure for it, let us have a look at a simple discrete
quantum mechanical system consisting of two interacting spin 1/2 degrees of freedom.
The total Hilbert space has by construction a tensor product form H = HA ⊗ HB
with basis {|00〉, |01〉, |10〉, |11〉} where |ij〉 = |iA〉 ⊗ |jB〉 for i, j = 0, 1. Let us further
consider a general state of the form

|ψ〉 = cos(θ)|01〉 − sin(θ)|10〉 , θ ∈ [0, π/2] , (2.4)

for which the entanglement entropy evaluates to

SA(θ) = − cos2(θ) log(cos2(θ))− sin2(θ) log(sin2(θ)) . (2.5)

The angle θ parametrizes a linear superposition of the pure states |01〉 = |0A〉 ⊗ |1B〉,
obtained for θ = 0, and |10〉 = |1A〉 ⊗ |0B〉, obtained for θ = π/2, which both satisfy
individually SA = SB = 0. For 0 < θ < π/2 the state is not pure. In particular for
θ = π/4 one obtains a maximally entangled state 1

2(|01〉 − |10〉), i.e. a superposition of
all possible states with equal weight, which satisfies SA = log dim(HA) = log(2). Such
maximally entangled states are called Bell states or Einstein-Podolski-Rosen pairs.
This is shown in Figure 2.2 for the simple example given in (2.4).

Entanglement entropy satisfies a number of interesting inequalities [84].

• In bipartite systems H = HA ⊗HB the entanglement entropies of the respective
subsystems satisfy subadditivity

SA + SB ≥ SA∪B . (2.6)

Subadditivity motivates the definition of a strictly positive quantity called mutual
information

IAB = SA + SB − SA∪B ≥ 0 . (2.7)
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Figure 2.2: Entanglement entropy for the one-parameter family of states given in (2.4).
For θ = 0, π/2 the state is pure and the entanglement entropy vanishes, where for
θ = π/4 one obtains a Bell state for which the entanglement entropy takes its maximum
value log dim(HA) = log 2.

It is particularly useful in QFTs, where entanglement entropy is UV-divergent,
because the divergent contributions cancel each other out and mutual information
realizes a divergence free measure for entanglement.

• Araki-Lieb inequality [85]

|SA − SB| ≤ SA∪B . (2.8)

• Tripartite systems H = HA ⊗HB ⊗HC satisfy strong subadditivity

SA∪B + SB∪C ≥ SA + SC . (2.9)

This inequality relies on unitarity of the underlying quantum systems and plays
an important role in proving c- and F-theorems for renormalization group flows
in QFTs. Strong subadditivity is regarded as the most fundamental one because
both, the Araki-Lieb inequality and subadditivity, are derivable from it [85].

There is another set of entropies called Rényi entropies [86] which is defined in
terms of the n-th moments of the reduced density matrix

S
(n)
A =

1

1− n
log TrA(ρnA), n ∈ Z+ . (2.10)

After analytically continuing the definition to n ∈ R+ and taking the n → 1 limit the
Rényi entropy converges to the entanglement entropy

SA = lim
n→1

S
(n)
A = − lim

n→1
∂n log TrA(ρnA) . (2.11)

This way of expressing the entanglement entropy is particularly useful for calculations
in two-dimensional QFTs by the so called replica method as we will discuss in the next
section. We can readily apply (2.11) to the two spin system. For simplicity we consider
the maximally entangled state (θ = π

4 ) for which the n-th power of the reduced density
matrix is given by

TrA(ρnA) = 21−n . (2.12)
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Using this result in (2.11) gives the expected result

SA = − lim
n→1

∂n log 21−n = log 2 . (2.13)

2.1.2 Entanglement Entropy in Quantum Field Theories

Let us assume a relativistic local QFT on a Lorentzian d-dimensional spacetime M
which is globally hyperbolic such that the notion of a Cauchy slice (Σd−1) is available.
The specific structure of the spacetime is not essential for the following discussion so we
can, for simplicity, assume it to be Minkowski M = R1,d−1. One can then describe an
instantaneous state of the system by its density matrix ρΣ on Σd−1. After bipartitioning
the system according to A ∪ B = Σd−1 (see right panel of Figure 2.1), the reduced
density matrix ρA can be constructed by integrating ρΣ over all field configurations in
region B. The desired expression for the entanglement entropy then follows from (2.10)
and (2.11).

Causality puts some important constraints on entanglement entropy in any local
relativistic QFT [87]. Given a state ρA on A ⊂ Σd−1 there exists a unitary transforma-
tion (localized on A) which allows to evolve it within its domain of dependence D[A].
The entanglement entropy remains invariant under such transformations. Consider
now a deformation of the spatial domain A→ A′, which is part of another Cauchy slice
Σ′d−1, such that D[A′] = D[A]. This situation is illustrated in Figure 2.3. The state ρA′

on the new slice is related to ρA by a unitary transformation. Therefore entanglement
entropy does not depend on the particular choice of Cauchy slice. It only depends on
D[A]. This is why entanglement entropy is called a wedge observable.

D[A]

A

A'

Σd-1

Σ'd-1

ℳ

Figure 2.3: Illustration of the causal domain D[A] of the subregion A which is a subset
of the Cauchy slice Σd−1 of M. The entanglement entropy associated to A remains
invariant under deformations A→ A′ that leave the causal domain unchanged D[A] =
D[A′], and for which A′ is part of another Cauchy slice Σ′d−1.

Since we are in the continuum we anticipate UV-singularities coming from contri-
butions in the neighborhood of the entangling surface ∂A. Physically, the major con-
tributions to the entanglement entropy originate from Einstein-Podolski-Rosen pairs
across ∂A which suggests that the most divergent contribution scales like the area of
the entangling surface. This is known as the area law of entanglement entropy [88,89].
The analogy in the scaling behavior to the entropy of black holes initiated the interest
in entanglement entropy [89].
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The divergences in entanglement entropy are usually regulated using a UV-cutoff ε,
which effectively introduces a minimal length scale or, equivalently, a maximal energy
scale in the theory. In general one obtains the following scaling behavior for entangle-
ment entropy in the UV

SA =

{
sd−2(Lε )d−2 + sd−4(Lε )d−4 + . . .+ s1

L
ε + (−1)

d−1
2 s0 +O(ε) , if d odd ,

sd−2(Lε )d−2 + sd−4(Lε )d−4 + . . .+ (−1)
d−2

2 s0 log(Lε ) +O(ε0) , if d even ,

(2.14)
where L denotes a characteristic length scale of the entangling region (like the radius
in case of a spherical entangling region). The coefficient s0 turns out to be universal,
where the coefficients si>0 depend on the particular regularization and the shape of
the entangling surface. The appearance of the logarithmic contribution originates in
conformal anomalies which only exist in even dimensions. In the limiting case of d = 2,
where ∂A degenerates to two disconnected points, the area law fails in the sense that
one obtains to leading order a log-contribution SA∝ log(L/ε) instead of SA∝(L/ε)d−2.

The IR behavior of entanglement entropy can be analyzed by assuming a fixed
value for the cutoff ε and studying the scaling with the characteristic length scale L.
Ground states typically exhibit an area law behavior SA ∝ Ld−2, where excited states,
like thermal ensembles at high temperature, show a volume law SA ∝ Ld−1. This char-
acteristic scaling will become particularly clear once we have the holographic picture
of entanglement entropy available. There are important exceptions to the general rule,
namely systems with Fermi surfaces, which are known to violate the area law behavior,
due to the presence of an IR-scale given by the Fermi momentum kF , and one obtains
instead SA ∝ L(d−1) log(kFL) [90].

Explicit calculations of entanglement entropy within QFT can be done using the so-
called replica method [91]. In this approach the trace of the n-th power of the reduced
density matrix is expressed in terms of a path integral Z over a n-branch coverMn of
the original spacetime manifold M

Tr(ρnA) = Z[Mn] . (2.15)

This allows to write the Rényi, by using (2.10), in the following way

S
(n)
A =

1

1− n
log

(
Z[Mn]

Z[M]n

)
. (2.16)

The entanglement entropy follows then from (2.11), by analytically continuing to
n ∈ R+, and sending n → 1. Such calculations turn out to be tractable only for
few examples, like free field theories [88] in d > 2 and for interacting CFTs in 1+1
dimensions [92], where the conformal symmetry algebra so(2, d) gets enhanced and
becomes of Virasoro type, which simplifies the calculation significantly. A technical
discussion of path integral methods to compute entanglement entropy in 2d CFTs is
out of the scope of this thesis; we will rather state here some important results which
have been obtained in closed form in the literature. These results will also provide
important consistency checks for the holographic calculations of entanglement entropy
we present later.

For a single interval A for the vacuum state in a CFT2 on R1,1 one obtains

SA =
c

3
log

(
l

ε

)
, (2.17)
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where c denotes the central charge in the CFT2, and l parametrizes the spatial size
of the entangling region A = {x ∈ R| − l/2 ≤ x ≤ l/2}. For a thermal system with
temperature T = 1/β one finds

SA =
c

3
log

(
β

πε
sinh

(
πl

β

))
. (2.18)

Interestingly, the method is also applicable to dynamic systems like quantum-
quenches giving the result [37]

SA(t) ∝

{
πc
6ε t if t < l

2 ,
πc
12ε l if t ≥ l

2 .
(2.19)

which means that SA(t) increases linearly until it saturates at t = l/2. Later in Chapter
3 we will obtain exactly the same scaling in a holographic calculation where the quench
is realized by the so-called Vaidya geometry.

We close this section by mentioning one major disadvantage of the pure field the-
oretic approach of computing entanglement entropy. While the path integral method
is a powerful tool to compute entanglement entropy in CFTs, its feasibility heavily
relies on the enhanced symmetry in two dimensions. In spacetime dimensions larger
than two, such calculations are practically impossible, except in non-interacting theo-
ries for highly symmetric entangling regions (half spaces, balls and infinite strips). As
we will see in later sections, for theories with holographic dual, one can overcome this
limitation.

2.2 Holography and the AdS/CFT Correspondence

The goal of this chapter is to introduce and motivate the AdS/CFT correspondence,
which is the main theoretical tool in this thesis. We start with a discussion of the
holographic principle, followed by a short review of basic concepts in string theory
which are necessary to understand the arguments which led to the correspondence
before we finally state the AdS/CFT correspondence.

It should be emphasized that the AdS/CFT correspondence has the status of a
conjecture which currently lacks a proof. Nevertheless, as we will discuss below, in
certain limits exist a number of non-trivial checks of the correspondence. In that sense,
we assume the validity of the AdS/CFT correspondence as a working hypothesis.

2.2.1 The Holographic Principle

The holographic principle goes back to an idea by ’t Hooft [93] and Susskind [94], who
conclude, from unitarity and counting arguments, that the physics involving gravity
in a given number of dimensions can be completely captured by a lower-dimensional
description without gravity. The holographic principle is motivated by the behavior of
black holes which obey the famous Bekenstein-Hawking formula [95–97]

SBH =
A

4GN~
, (2.20)

which relates the entropy of a black hole SBH to the area of its event horizon A
(measured in Planck units) and GN denotes Newtons constant. The coefficient 1

4 was
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originally fixed by the first law of thermodynamics dE = TdS in Hawking’s calculation
of the black hole temperature [98,99].

The argument that leads to the holographic principle goes as follows: any attempt
to probe the structure of a theory down to the shortest distances, in order to learn
about the microscopic degrees of freedom, will eventually probe energy densities which
will dynamically form a black hole for which (2.20) holds. Hence, the largest obtainable
entropy for a given volume is that held by a black hole filling that volume. The black
hole entropy puts an upper limit on the number of degrees of freedom inside a volume
which is then given by the surrounding area. This leads to the conclusion that in any
theory of quantum gravity the number of degrees of freedom in any volume are of order
one per unit area of the surface surrounding that volume.

The holographic principle is not specific about the theories it relates, only that they
are formulated in different dimensions and that one of them includes gravity, and the
other not. For that reason, the holographic principle is assumed to hold generally. For
the same reason, specific examples can not be constructed from the principle itself, but
rather need to be discovered. The probably most famous example discovered so far
is the AdS/CFT correspondence [1], which is a concrete realization of the holographic
principle in string theory. It relates gravity in (d+1)-dimensional Anti-de Sitter space to
a d-dimensional gauge theory. Before we give a precise statement of the correspondence
we will introduce in the next section some basic concepts in string theory which are
necessary to understand the AdS/CFT correspondence.

2.2.2 Strings and D-Branes

The basic idea of string theory is to use one-dimensional objects, called strings, rather
than point like objects, as fundamental building blocks of the theory. Historically,
string theory arose in the late 1960s as an attempt to describe the physics of strong
interactions. The vibration modes of a string provided a way to explain the relation
between mass and angular momentum M2 ∝ J , the so-called Regge behavior , of parti-
cles discovered in the first collider experiments. The formulation of Quantum Chromo
Dynamics (QCD) and the discovery of confinement made string theory obsolete as a
theory for the strong interaction. Today string theory is seen as a framework that con-
sistently unifies quantum theory and gravity, thus making it a promising candidate for
a theory of quantum gravity. Remarkably, the AdS/CFT correspondence in some sense
closes this cycle by relating string theory again with gauge theories that are similar to
QCD.

The strings of string theory are characterized by the string length ls and by the
dimensionless string coupling gs which is not a free parameter but is determined dy-
namically by the expectation value of the dilaton field. Being extended objects, strings
can come in two topologically different realizations, namely in the form of open strings
and closed strings. The vibration modes of open strings can be associated to excita-
tions of gauge fields, whereas those of closed strings represent gravitational degrees of
freedom.

As mentioned above, string theory provides a consistent framework for quantum
gravity which elegantly resolves the issues of short-distance divergences resulting in non-
renormalizability when quantizing Einsteins theory of general relativity. The argument
[100] goes as follows: consider, for example, the process of two propagating particles
corrected by the exchange of two gravitons such as depicted in Figure 2.4. In a quantized
version of Einstein gravity the scattering amplitude of this process at the energy scale E
is proportional to G2

NE
2
∫
dE′E′, which diverges for large internal energy transfer E′.
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Figure 2.4: Left: Feynman diagram of two propagating particles (straight lines) cor-
rected by two-graviton (curly lines) exchange. Right: World sheet of two closed strings
giving rise to a similar process such as shown left. Here the interaction is not point-
like, thus avoiding the short range singularities that appear when quantizing general
relativity. Figures are adopted from [100].

The corresponding Feynman diagram is shown on the left side of Figure 2.4. In position
space the divergences appear in the limit where the graviton vertices coincide. Moreover
they grow worse with each additional graviton, resulting in non-renormalizability of
the theory. In string theory the strings sweep out a world sheet and interactions are
represented by joining and separating of the sheets such as shown on the right side
of Figure 2.4. The interaction is not localized but rather smeared out in a way that
Lorentz invariance is maintained and the divergences are avoided.

Quantization imposes strict constraints on the spacetime dimensions in which string
theories can be formulated consistently. The consistency condition is the requirement
that the Lorentz group remains free of anomalies on the quantum level. Bosonic string
theories are anomaly free only in 26 spacetime dimensions. However, string theories
containing only bosonic degrees of freedom are, from the physics point of view, in-
complete because they do not include fermions. Furthermore, they have a tachyonic
ground state, i.e. the lowest energy state has negative mass squared, making the the-
ory unstable. It is unknown if stable vacua for bosonic string theories exist. A natural
way to include fermions is to impose supersymmetry which requires to project out2 the
tachyonic states from the spectrum which also leads to a stable vacuum. The result-
ing theories are called superstring theories and they are anomaly free in ten spacetime
dimensions only. An active field of research, called string phenomenology, aims to
construct the standard model of particle physics in four spacetime dimensions from
such theories by compactifiying the superfluous six dimensions on so-called Calabi-Yau
manifolds [102].

It is natural to ask how many different ten-dimensional superstring theories exist.
As shown in the seminal paper by Michael Green and John Schwarz [103], only a
few choices of gauge groups for the fields in the low energy limit eliminate quantum
anomalies, which is an important consistency condition. The so-called Green-Schwarz
anomaly cancellation mechanism allows to restrict the gauge groups to SO(32) and

2The so-called GSO projection was originally introduced in [101].
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E8 × E8, resulting in only five different consistent superstring theories. Furthermore,
these five superstring theories plus 11d supergravity (SUGRA) were found to be linked
by a chain of dualities, known as the duality web [104–106], which we illustrate in Figure
2.5. All of them can be interpreted as effective theories obtained in certain limits of
so-called M-theory [107,108].

E8×E8 heterotic

T-duality

SO(38) heterotic

S-duality

type Itype IIB

T-duality

type IIA

on S
1

11d SUGRA

S-duality

M theory

on S
1

Figure 2.5: Web of dualities relating basic string theories and M-theory.

The canonical example of the AdS/CFT correspondence is realized in type IIB string
theory, a theory of closed strings. On the perturbative level string theory is a theory of
one-dimensional strings only. However, on the non-perturbative level there exist also
higher-dimensional solitonic objects, extending along (p+1) directions {x0, x1, . . . , xp},
called Dirichlet-branes or D-branes for short [109]. It can be shown that stable3 Dp-
branes exist in IIA theory for p = 0, 2, 4, 6, 8 and in type IIB theory for p = 1, 3, 5, 7
[109]. Including D-branes adds open string sectors to type II theories which originally
contain closed strings only. The endpoints of the open strings in this sector have to
obey Dirichlet boundary conditions in directions of the Dp-branes, i.e. the endpoints
are allowed to move only along the (p + 1) directions of the Dp-brane and not in the
transverse directions {xp+1, xp+2, . . . , x9}. The massless excitations of these open string
sectors correspond to an Abelian gauge field Aµ(x0, x1, . . . , xp), describing longitudinal
excitations of the brane, plus (9 − p) scalar fields φi(x0, x1, . . . , xp), accounting for
transverse excitations, and their superpartners. Moreover, a stack of N coincident Dp-
branes gives rise to a non-Abelian U(N) gauge theory living in the (p+ 1)-dimensions
of the brane plus extra fields, all in the adjoined representation of the gauge group.

In 1995 Joseph Polchinski made the important discovery that D-branes are the same
as extremal (mass = electric charge) p-brane solutions of supergravity which started
the second superstring revolution [109]. As we will explain in the next section, the two
different effective descriptions of D3-branes in type IIB superstring theory in terms of a
supersymmetric gauge theory and in terms of p-brane solutions of type IIB supergravity
play a crucial role in the formulation of the AdS/CFT correspondence.

Let us close this section by summarizing the most important string theoretic con-
cepts relevant for the AdS/CFT correspondence. A consistent formulation of super-
string theory requires ten spacetime dimensions. One of the five basic superstring
theories is type IIB superstring theory which on the perturbative level consists only of

3In these cases the corresponding Dp-branes are the lightest states that carry a conserved charge
and preserve part of the supersymmetry of the underlying theory.
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Table 2.1: Embedding of N coincident D3-branes in ten-dimensional Minkowski space
such as relevant for the AdS/CFT correspondence. Directions parallel to the D3-brane
are indicated by •, directions orthogonal to the branes by –. Endpoints of open strings
are restricted to the four •-directions, whereas closed strings can propagate in all ten
spacetime directions.

0 1 2 3 4 5 6 7 8 9

N D3 • • • • – – – – – –

closed strings and whose low energy spectrum contains the graviton. Adding a stack of
N coincident D-branes to the theory includes an open string sector whose low energy
spectrum includes a non-Abelian U(N) gauge field depending only on the directions of
the D-branes. D-branes have an alternative description in terms of extremal p-brane
solutions of supergravity giving rise to a curved background geometry. In the next
section we will use these statements to motivate the AdS/CFT correspondence.

2.2.3 Motivation and Definition of the AdS/CFT Correspondence

We are now ready to motivate and define the AdS/CFT correspondence in the way it
was originally proposed by Juan Maldacena in 1997 [1]. As mentioned in the beginning
of this chapter, there exists currently no proof of the correspondence, rather a con-
vincing chain of arguments which is supported by a number of non-trivial consistency
checks. The correspondence can be stated as follows [110]:

N = 4 Super Yang-Mills (SYM) theory with gauge group SU(N) and Yang-
Mills coupling gYM is equivalent to type IIB string theory with string length ls
and string coupling gs on AdS5×S5 with curvature radius L related by (2.21).

The free parameters on the field theory side, the Yang-Mills coupling gYM and the
rank of the gauge group N , are mapped by the correspondence to the free parameters
on the string theory side, the string coupling gs and L/ls in the following way

g2
YM = 2πgs, 2g2

YMN = L4/l4s . (2.21)

Note that the relevant combination that characterizes finite-size effects of the strings is
the dimensionless ratio L/ls, i.e. the size of the strings relative to the curvature scale
L of the background geometry, and not ls by itself. The coupling strength of the field
theory dual comes in form of the ’t Hooft coupling λ = g2

YMN which was originally
introduced in the 1970s as parameter in the large-N expansion of non-Abelian gauge
theories [111]. Already then it was realized that the Feynman diagrams in the large-N
expansion organize in a similar way as the world sheets in the perturbative expansion
of closed strings, thereby providing a first hint to the gauge/gravity correspondence.

After having stated the correspondence, let us now review how it was originally mo-
tivated. The relevant setup is type IIB superstring theory with a stack of N coincident
D3-branes embedded into (9+1)-dimensional Minkowski space. The D3-branes extend
along the spacetime directions {x0, x1, x2, x3} and are transversal to the remaining six
directions (see Table 2.1). As already mentioned, the stack of D3-branes can be viewed
from two perspectives, namely from an open and a closed string point of view. Which
perspective is more appropriate depends on the value of gs which controls the coupling
strength between open and closed strings.
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In the open string picture, which is valid for gsN � 1, D-branes can be viewed as
higher-dimensional objects where open strings end, such as depicted on the left side of
Figure 2.6. The dynamics of open strings in the low energy limit (E � 1/ls) can then
be described by a supersymmetric gauge theory living on the (3+1)-dimensional world
volume of the D-branes. The fields of this theory are all in the adjoint representation
of the U(N) gauge group and can be organized into a N = 4 supermultiplet. The U(1)
part, describing simultaneous center of mass motions of the branes, decouples from the
remaining SU(N) ⊂ U(N). The associated SU(N) Super-Yang-Mills (SYM) theory is
very special because it is the most general renormalizable SU(N) gauge theory in four
dimensions with global N = 4 supersymmetry. Furthermore, its β-function vanishes
exactly, hence the coupling constant is independent of the energy scale which makes
the theory superconformal . The full system also contains closed strings which are
allowed to propagate in all ten spacetime dimensions and correspond to excitations of
the (9+1)-dimensional Minkowski background. The effective action for these massless
string modes is given by ten-dimensional supergravity plus higher derivative terms
proportional to powers of α′ = l2s . In the so-called decoupling limit (α′ → 0) the
effective interaction contribution between closed and open string sector vanishes. We
conclude that in the open string picture (gsN � 1) in the decoupling limit the dynamics
of open strings is governed by N = 4 SYM theory, where the dynamics of closed strings
is described by type IIB supergravity on R9,1. This closes the discussion of the open
string picture.

Figure 2.6: Left: Open strings (red lines) stretched between a stack of N coincident
D3-branes (blue surfaces) giving rise to (3 + 1)-dimensional N = 4 SU(N) SYM theory
in the open string picture. Right: Throat geometry induced by the D-branes in the
closed string picture.

In the closed string perspective, which is appropriate in the strong coupling limit
gsN � 1, the stack of D3-branes is viewed as a p-brane solution of type IIB supergravity ,
the low-energy limit of type IIB superstring theory. The metric part of this solution is
given by

ds2 = H(r)−1/2ηµνdx
µdxν +H(r)1/2δijdx

idxj , H(r) = 1 +
L4

r4
, (2.22)

with µ, ν = 0, 1, 2, 3 and i, j = 4, . . . , 9 and the radial coordinate is defined as r2 =
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δijx
ixj . The geometry consists of two different regions. Firstly, for r � L where

H(r) ≈ 1 one obtains the asymptotically flat region and the effective low energy theory
for the closed strings becomes type IIB SUGRA on R9,1. Secondly, the case r � L,
where H(r) ≈ L4/r4, corresponds to the so-called near-horizon or throat region in
which the metric is given by

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2ds2

S5 . (2.23)

The first two parts in (2.23) correspond to the metric of five-dimensional Anti-de Sitter
space (AdS5) which is a maximally symmetric solution of the Einstein equations with
negative cosmological constant and curvature radius L. The last part (ds2

S5) is the
metric of a five-dimensional sphere (S5) with radius L. In the decoupling limit (α′ → 0)
one can show that the dynamics of closed strings in the asymptotic and the throat region
decouple. We arrive at the conclusion that in the decoupling limit and for gsN � 1
closed strings are described by type IIB SUGRA on R9,1 in the asymptotic region and
on AdS5×S5 in the throat region.

The open and the closed string picture gives two different ways of describing the
same physical system. Since type IIB SUGRA on R9,1 appears in both perspectives,
also the other two effective theories, namely N = 4 SYM theory in four dimensions
and type IIB SUGRA on AdS5×S5 are conjectured to be equivalent. This is the main
assumption on which the AdS/CFT correspondence is based.

A first plausibility check of the conjecture is to see if the symmetries of N = 4
SYM theory in four dimensions and type IIB SUGRA on AdS5×S5 match, which
is indeed the case. It turns out that the bosonic and fermionic symmetries in the
respective theories can be combined into the supergroup SU(2, 2|4). The bosonic part
of SU(2, 2|4), for instance, is SO(2, 4) × SO(6) and corresponds on the string theory
side to the isometries of AdS5×S5. In N = 4 SYM theory the SO(2, 4) part is realized
in form of the conformal group of (3 + 1)-dimensional Minkowski space and the SO(6)
part corresponds to the R-symmetry group under which the scalar fields in the theory
transform as vectors.

The AdS/CFT correspondence provides a one-to-one map, the so-called holographic
dictionary , between gauge invariant operators O(x) in the field theory side and their
dual fields Φ(r, x) on the string theory side. This field-operator map is established by
equating the generating functional for one-particle irreducible (1PI) correlation func-
tions of the CFT side and the string theory partition function [2, 3]〈

e
∫
ddxO(x)φ(0)(x)

〉
CFT

= Zstring[Φ(r, x)] , (2.24)

where the boundary conditions for the bulk field Φ are identified with the source func-
tions φ(0) in the CFT via φ(0)(x) = lim

r→∞
rαφΦ(r, x) with αφ determined by the asymp-

totic behavior of Φ.
The AdS/CFT correspondence, and therefore (2.24), is conjectured to hold for all

values of the parameters gs and ls, or equivalently, for all values of gYM and N . From
the theoretical point of view this is truly remarkable, because it allows to express a
consistent theory of quantum gravity in terms of a quantum field theory. However,
expressing the right hand side of (2.24) for generic values for the string coupling is
extremely difficult and in explicit calculations one usually has to consider the limit
where gs � 1, while the string length ls (in units of L) is kept fixed.

At leading order in gs only tree level (genus zero) diagrams are kept in Zstring,
which physically means that quantum gravity effects are neglected. On the field theory
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side this gives the so-called ’t Hooft limit , characterized by N → ∞ and fixed (but
arbitrary) ’t Hooft coupling λ.

By neglecting finite size effects of the strings as well, i.e. sending L/ls → ∞,
one obtains the point like approximation for gravity excitations which is governed by
classical supergravity. On the field theory side this corresponds, via (2.21), to the
infinite coupling limit λ→∞. From this relation one can also see that the AdS/CFT
correspondence is a strong-weak duality , meaning when the field theory side becomes
strongly coupled the gravity side becomes weakly curved and vice versa. In this so-
called supergravity limit the right hand side of (2.24) reduces, by the saddle point
approximation, to

Zstring[Φ] ≈ eSren[Φc] , (2.25)

where Sren[Φc] is the renormalized on-shell supergravity action evaluated at a solution
Φc to the classical equations of motion. The connected (1PI) correlation functions in
the large-N CFT can then be obtained from variations of the on-shell action of the
classical gravity dual

〈O(x1) . . .O(xn)〉CFT =
δnSren[Φc]

δφ(x1) . . . δφ(xn)

∣∣∣
φ=0

, (2.26)

where the expectation value 〈. . .〉CFT can either be in vacuum or in a thermal state.
All applications of the AdS/CFT correspondence presented in this thesis assume

the supergravity limit in which the AdS side is represented by Einstein gravity and the
CFT side by a large-N N = 4 SYM theory at infinite ’t Hooft coupling λ. This drastic
restriction is extremely useful because it makes first principle studies in strongly cou-
pled gauge theories possible by solving classical Einstein equations of the dual gravity
problem. In the next section we will use (2.26) to compute the holographic energy
momentum tensor for N = 4 SYM theory from the dual gravity action.

2.2.4 The Holographic Energy-Momentum-Tensor

In this section we derive the holographic energy momentum tensor [112,113] using the
method of holographic renormalization [114,115]. For simplicity we restrict the discus-
sion to the case where the gravity action (in Euclidean signature) is of the following
form

S = − 1

16πGN

∫
dd+1x

√
g

(
R+

d(d− 1)

L2

)
− 1

8πGN

∫
ddx
√
γK . (2.27)

Cases including in addition to the metric also bulk matter fields will not be considered
in this thesis. Next we express the asymptotically AdS metric in terms of a so-called
Fefferman-Graham expansion

ds2 = GMNdx
MdxN = L2

(
dρ2

4ρ2
+

1

ρ
gµν(ρ, x)dxµdxν

)
. (2.28)

The Fefferman-Graham theorem [116] states that if GMN satisfies Einstein equations,
then the metric gµν(ρ, x) can be expanded in the following way

gµν(ρ, x) = g(0)µν(x)+ρg(2)µν(x)+. . .+ρd/2
(
log(ρ)h(d)µν(x) + g(d)µν(x)

)
+. . . , (2.29)

For given boundary conditions g(0)µν(x) the Einstein equations, following from (2.27),

can be solved order by order in ρ. The coefficient matrices up to O(ρd/2) are functions
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of g(0)µν(x) only and only integer powers of ρ appear up to that order in the expansion.
In d = 4, for example, the matrix g(2)µν is given by

g(2)µν(x) =
L

d− 2

(
R(0)µν −

1

2(d− 1)
R(0)g(0)µν

)
, (2.30)

where R(0)µν (R(0)) is the Ricci tensor (scalar) associated to the boundary metric g(0)µν .
Furthermore, the logarithmic terms are present only for even d and are related to the
conformal anomaly which vanishes for odd d [117]. The higher order coefficients contain
contributions which can only be extracted from a full bulk solution.

Putting the asymptotic expansion of the metric into the action and evaluate it at
a cutoff ε gives

Sε = − 1

16πGN

∫
dd+1x

√
g(0)

(
a(0)ε

−d/2 + a(2)ε
−d/2+1 + . . .− log a(d)ε

)
+ Sfinite ,

(2.31)
where Sfinite summarizes the finite contributions and the coefficients of the divergent
parts read

a(0) =
2(d− 1)

L
, a(2) =

LR(0)

2(d− 1)
, a(4) =

L3

2(d− 2)2

(
Rµν(0)R(0)µν − 1

(d−1)R
2
(0)

)
.

(2.32)
A renormalized version of the action is obtained by adding an appropriate counterterm
Sct that cancels the divergences4 in the limit ε→ 0

Sren = lim
ε→0

(Sε + Sct) . (2.33)

The holographic energy momentum tensor is then obtained by varying the renormalized
action Sren with respect to the boundary metric g(0)µν

〈Tµν(x)〉 = − 2
√
g(0)

δSren
δgµν(0)(x)

. (2.34)

In d = 4 this gives the following expression for the holographic energy momentum
tensor [114]

〈Tµν〉 =
4

16πGN

(
g(4)µν +

1

8

(
Trg2

(2) − (Trg(2))
2
)
g(0)µν −

1

2
(g2

(2))µν +
1

4
g(2)µνTrg(2)

)
.

(2.35)

2.2.5 AdS/CFT and the Quark Gluon Plasma

In heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) at CERN a deconfined state of quarks and gluons, called quark
gluon plasma (QGP) is produced. This plasma has several remarkable properties in-
cluding a very small shear viscosity over entropy density ratio η/s whose explanation
provides a theoretical challenge to first principle QCD approaches. The weak and
strong coupling results for this dimensionless ratio turn out to differ parametrically
and experimental data favor the strong coupling result η/s = 1

4π obtained from the
AdS/CFT correspondence [118, 119]. While strong coupling provides no challenge to

4Note that this way of renormalizing the action is ambiguous, because it is possible to include in
Sct terms that are finite in the ε→ 0 limit. In the following we neglect such terms.
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first principle lattice QCD techniques, the inherent dynamical nature of the collision
makes it not accessible to lattice simulations, which are best suited to study equilibrium
properties. Today, the AdS/CFT correspondence can be seen as the only first prin-
ciple approach in which real time calculations of strongly coupled non-Abelian gauge
theories are feasible.

However, there are several subtleties one has to address when using the AdS/CFT
approach. It is a well-known fact that the vacua of QCD and N = 4 SYM theory have
very different properties, but there are good arguments for why AdS/CFT can never-
theless teach important lessons about the QGP in heavy ion collisions. For example,
at T > Tc, where Tc ≈ 170MeV is the temperature in QCD at which the hadron gas
crosses over to a deconfined quark-gluon plasma phase, many of the differences become
unimportant [120]. One might criticize that N = 4 SYM is superconformal, has no
running coupling and therefore no confinement like QCD. However, at finite T SUSY
is explicitly broken and above Tc both theories are non-confining. Therefore, the fact
that QCD has a good quasiparticle description in terms of hadrons becomes irrelevant.
It is also true that QCD is significantly non-conformal just above Tc but at higher
temperatures the quark gluon plasma becomes more and more scale invariant.

Another fact is that AdS/CFT calculations are usually performed in the infinite
coupling limit (λ → ∞), which is certainly not the case in experimentally realized
QCD plasmas. Furthermore, QCD is asymptotically free, which means that high en-
ergy processes are weakly coupled. However, at temperatures slightly above Tc, which
are accessible in heavy ion collision experiments, the QGP turns out to be strongly
coupled. It is an active field of research to include finite coupling corrections [26, 121]
in AdS/CFT simulations. As mentioned earlier, taking finite coupling corrections into
account requires higher curvature terms in the classical gravity action, which can be
technically involved.

A more severe challenge is to overcome the large N limit. QCD has Nc = 3
colors, but AdS/CFT calculations are typically tractable only in the Nc → ∞ limit.
Computing finite Nc corrections is conceptually far more involved than computing finite
coupling corrections, because it requires to take quantum corrections in the gravity
theory into account.

QCD also has Nf = Nc = 3 flavors in the fundamental representation, but in
AdS/CFT it is usually necessary to work either in the quenched approximation, where
0 < Nf � Nc, or in the Veneziano limit in which both Nc and Nf are taken to be
large but having fixed ratio Nf/Nc [122].

2.3 Holographic Entanglement Entropy

After having reviewed some basic aspects of entanglement entropy and the AdS/CFT
correspondence we are now ready to introduce the holographic prescription for en-
tanglement entropy. The original proposal for the holographic entanglement entropy
formula, valid for static states, was given in the seminal paper by Ryu and Takayanagi
(RT) [33] (see also [78]) and is since then referred to as the RT-formula. The proposal
by Ryu and Takayanagi states that the entanglement entropy for a spatial region A,
which is part of a Cauchy slice in a holographic CFTd, is given by the minimal area
A∂A of a co-dimension two surface γ in the dual bulkspace time which is anchored
(∂γ = ∂A) on the boundary at ∂A

SA =
A∂A
4GN

. (2.36)
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This situation is illustrated in Figure 2.7. Notice also the striking similarity to the
Bekenstein-Hawking formula (2.20). In addition, the bulk surface γ has to satisfy

Figure 2.7: Illustration of the (H)RT prescription for the holographic entanglement
entropy. The red surface, anchored on the boundary ∂A of the entangling region
A ∈ Σd−1, is the extremal co-dimension two surface γ whose surface area determines
the entanglement entropy of region A.

a homology constraint which demands that the extremal surface must be smoothly
retractable to the boundary region. The latter is for instance relevant in global AdS
black hole spacetimes where several topologically different surfaces can satisfy this
constraint. If this is the case one has to pick the surface with the smallest area.

Because entanglement entropy has a well defined prescription in terms of the time
dependent density matrix in quantum field theory, it is expected that also a dual
geometric prescription for the time dependent case exists. Such a prescription was
given by Hubeny, Rangamani and Takayanagi (HRT) [34] who proposed the covariant
holographic entanglement entropy . In their proposal the notion of minimal surfaces is
replaced by the one of extremal surfaces. More precisely, in time dependent situations
one has to find surfaces which extremize the corresponding area functional, subject to
the boundary conditions ∂γ = ∂A and the homology constraint mentioned above. We
will not attempt to repeat existing derivations of the holographic entanglement entropy
formulas, but rather refer the interested reader to [123] where a proof of the original
RT prescription is given, and to [124], where the HRT prescription was derived.

We also mention an alternative formulation of the extremal surface prescription in
terms of so-called maximin surfaces, such as given by Wall [125]. In this construction
one picks a Cauchy slice in the bulk Σguess

d such that ∂Σguess
d = A∪ Ā = Σd−1. On this

slice one finds a minimal surface γguess. One then varies the choice of the bulk Cauchy
slice Σguess

d and generates a family of minimal surfaces γguess associated to those slices
and computes their areas. The maximin surface is then defined as the minimal surface
of maximal area in the entire family, which can be shown to be equivalent to the
extremal surface associated to A [125].

Before closing this section we mention how general the holographic entanglement
entropy formula stated in (2.36) is. The HRT proposal in terms of extremal surfaces in
the classical bulk theory assumes the semiclassical limit provided by N →∞. Further-
more, it assumes classical Einstein gravity, i.e. only second derivative terms in the bulk
action, which corresponds to the infinite coupling limit in the dual CFT. Including fi-
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nite N and finite coupling corrections requires to modify the holographic entanglement
entropy prescription. The case for higher curvature bulk theories, such as relevant for
finite coupling corrections in the CFT, has been worked out in [126,127]

SA =
1

8GN

∫
dd−1x

√
hDL , (2.37)

where h denotes the determinant of the induced metric on the relevant bulk surface and
DL is given by a complicated functional, involving first and second variations of the
Lagrangian, associated to the higher derivative theory, with respect to the Riemann
tensor. This expression can be seen as a generalization of the Iyer-Wald black hole
entropy for higher derivative theories [128].

Quantum corrections in the bulk, such as necessary for finite N corrections, can be
organized in powers of the Newton constant

SA = SRT + Sq +O(GN ) , (2.38)

where the leading contribution SRT ∝ 1/GN is given by the RT-formula (2.36). The
sub-leading term Sq has been worked out in [129,130]

Sq = Sbulk−ent +
δA

4GN
+ 〈∆SW−like〉+ Scounterterms , (2.39)

where the first term denotes the bulk entanglement, the second term is the change
in area due to quantum backreactions of the classical background, the third term is
the quantum expectation value of the Wald-like entropy [128] and the last term is a
collection of counter-terms necessary to render the expression finite. In this thesis we
stick to the simplest case of infinite N and infinite coupling where the above mentioned
corrections are not required. In the next section we shall demonstrate the power of
the geometric picture for entanglement entropy by reviewing the holographic proof of
strong subadditivity.

2.3.1 Holographic Proof of Strong Subadditivity

To appreciate the power of the holographic prescription let us revisit the strong sub-
additivity inequality introduced in (2.9). In the time independent case, where the
entanglement entropy is given by the area of a minimal bulk surface, the holographic
proof of strong subadditivity becomes extremely simple. The argument goes as follows:
using the RT-formula the strong subadditivity inequality (2.9) can be written as

A1,2 +A2,3 ≥ A1,2,3 +A2 , (2.40)

where Ai,j,... denotes the minimal surface areas associated to a combined region Ai ∪
Aj ∪ . . .. The key aspect of the geometric proof is to interpret the left hand side of
(2.40) in two different ways. The first way is to consider the areas associated to regions
A1∪A2 and A2∪A3 to be computed from genuine minimal surfaces such as illustrated
by the red and blue curves in the first plot of Figure 2.8. The second way is to intersect
these surfaces, without changing the total area, and construct two new surfaces which
are now associated to regions A2 and A1 ∪ A2 ∪ A3 such as shown in the center of
Figure 2.8. In the latter picture the red and blue surfaces are in general not minimal
because, by definition, already the green and orange surfaces shown on the right hand
side are. Hence (A1,2 + A2,3) must be larger than the sum of the areas of the true
minimal surfaces (A1,2,3 +A2). This completes the proof.
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Figure 2.8: Geometric proof of strong subadditivity in time independent spacetimes.

The proof for the time dependent case using the HRT prescription is more subtle,
because the extremal surfaces associated to the different entangling regions in general
do not reside on the same Cauchy slice. Nevertheless, an analogous proof was obtained
in [125], using the earlier mentioned maximin surface construction.

2.3.2 Extremal Surfaces

Computing entanglement entropy using the (H)RT prescription requires the computa-
tion of minimal/extremal co-dimension two surfaces in asymptotically AdS spacetimes.
In this section we provide the differential equations such extremal surfaces have to sa-
tisfy. We write the line element of a completely general asymptotic AdSd+1 spacetime
as follows

ds2 = Gµνdx
µdxν . (2.41)

A (d−1)-dimensional surface in the bulk can be written in terms of embedding functions
Xµ = Xµ(σa, z) which are parametrized with d − 2 intrinsic coordinates σa and the
bulk coordinate z. The induced metric on the surface is given by

Hαβ = ∂αX
µ∂βX

νGµν . (2.42)

The area functional can be written in terms of the induced metric

A =

∫
dzdd−2σ

√
H[X]. (2.43)

We are interested in stationary solutions δA = 0, which means we have to perform the
variation of the surface functional with respect to the embedding functions

δA =

∫
dzdd−2σδ

(√
H[X]

)
. (2.44)

This variation is performed explicitly in Appendix A. Here we only state the final result
which is the differential equation a surface extremizing the area functional has to satisfy

1√
H
∂α(
√
HHαβ∂βX

µ) +Hαβ∂αX
σ∂βX

νΓµσν = 0 , (2.45)

where Γµσν denote the Christoffel symbols associated to the bulk metric Gµν .
We note that solving the above non-linear partial differential equation subject to

boundary conditions describing the entangling region is a formidable task. Explicit
solutions are only available for certain highly symmetric cases in which the shape of
the entangling region in the boundary respects the symmetries of the bulk geometry.
Some of these basic examples, where the extremal surface can be found either in closed
form or using simple shooting methods will be discussed in the next section. For more
complicated time dependent geometries and/or unregularly shaped entangling regions
one typically has to resort to more sophisticated numerical methods like relaxation
which we discuss in Chapter 3.
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2.3.3 Basic Examples

In this subsection we give some examples in which the geodesic or extremal surface
equations can either be solved explicitly or by means of a simple shooting method.
For simplicity we restrict ourselves to stripe-shaped entangling regions A that preserve
(d− 2)-dimensional translational symmetry and are defined by

A = {x1 ∈ (−l/2, l/2), xi ∈ R ∀ i = 2, 3, . . . , d− 1} . (2.46)

For ball-shaped entangling regions, preserving SO(d − 2) rotational symmetry, the
calculations are completely analogous, but these will not be important for the later
discussion. From these basic examples we can already learn a lot about characteristic
features of these surfaces. Furthermore, they play an important role in finding numer-
ical solutions in more complicated situations. To unclutter the notation we set from
here on the AdS-radius L ≡ 1.

Let us start with the simplest possible case, namely minimal surfaces in Poincaré
patch AdSd+1. The areas of these surfaces correspond to the entanglement entropy
of vacuum states in d-dimensional Minkowski space Rd−1,1. For later convenience we
choose Eddington-Finkelstein coordinates for this example in which the line element is
given by

ds2 =
1

z2

(
−dv2 − 2dzdv + d~x2

)
. (2.47)

Because it is beneficial for later numerical applications we use a non-affine parametriza-
tion of the embedding functions Xα(σ) = (Z(σ), V (σ), X(σ)) defined by Z(σ) =
z∗
(
1−σ2

)
and V (σ) = v0−Z(σ) with σ ∈ [−1, 1] and fixed boundary time V (±1) = v0.

In this parametrization the extremal surface equation (2.45) reduces to a non-affine
geodesic equation5

Ẍα(σ) + Γαβγ(Xδ(σ))Ẋβ(σ)Ẋγ(σ) = J(σ)Ẋα(σ) , (2.48)

where Γαβγ denote the Christoffel symbols associated to the auxiliary spacetime g̃αβ =

1
z2(d−2)Gαβ and J(σ) = d2τ

dσ2

/
dτ
dσ denotes the Jacobian for the transformation to the

affine parameter τ defined by dXα(τ)
dτ

dXβ(τ)
dτ g̃αβ

!
= 1. The solution for X(σ), which

satisfies the boundary conditions defined in (2.46), can be expressed as

X(σ) = sgn(σ)
(
− l

2
+
Z(σ)d

dzd−1
∗

2F1

[
1
2 ,

d
2(d−1) ,

3d−8
2d−6 ;

(
Z(σ)
z∗

)2(d−1)
])

, (2.49)

where z∗ = 2l√
π

Γ( 1
2(d−1))

/
Γ( d

2(d−1)) denotes the z-position at which the two branches

join. We realize a UV-cutoff at a given value zcut by truncating the non-affine parameter
σ ∈ [σ−, σ+] with σ± given by

σ± = ±
√

1− zcut
z∗

. (2.50)

For the parametrization given above the Jacobian in d = 2, 3, 4 evaluates to

J(σ) =
d2τ

dσ2

/dτ
dσ

=



5σ−3σ3

2−3σ2+σ4 d = 2 ,

σ(7σ6−27σ4+38σ2−22)
σ8−5σ6+10σ4−10σ2+4

d = 3 ,

−51σ+145σ3−205σ5+159σ7−65σ9+11σ11

(2−σ2)(1−σ2)(3−3σ2+σ4)(1−σ2+σ4)
d = 4 .

(2.51)

5In Appendix A we show how to obtain the non-affine form of the geodesic equation from (2.45).
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At this point it is interesting to note that the result for d = 2 represents a genuine
solution to the geodesic equation in Poincare patch AdSd+1, irrespective of d

Z(σ) =
l

2

(
1− σ2

)
, (2.52a)

V (σ) = v0 − Z(σ) , (2.52b)

X(σ) =
l

2
σ
√

2− σ2 . (2.52c)

These geodesics will become important in the holographic computation of two-point
functions, which are determined by their geodesic length as we will discuss in Chapter
4. As can be seen from Figure 2.9 (right) for the same boundary separation the surfaces
in higher dimensions reach further into the bulk.
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Figure 2.9: Left: Minimal surfaces in Poincaré patch AdS5 for different boundary
separations. Right: Comparison of minimal surfaces in Poincaré patch AdSd+1 of fixed
boundary separation l = 2.

As next example we discuss minimal surfaces in the non-rotating BTZ geometry
which is holographically dual to thermal states in a CFT2 on S1×R. The corresponding
line element can be written as follows

ds2 = −(r2 − r2
+)dt2 +

dr2

r2 − r2
+

+ r2dϕ2 , ϕ ∈ [0, 2π) , (2.53)

where r+ = 2πT is the radius of the black hole with Hawking temperature T , which can
be identified via the duality with the temperature of the thermal state in the CFT2.
As entangling region we assume a single connected segment of the spatial S1 of the
boundary geometry

A = {t = t0,−ϕ0 < ϕ < ϕ0} . (2.54)

This case allows to determine the minimal surfaces Xα = (R(ϕ), T (ϕ)) in closed form
[131]

R(ϕ) = r+

(
1− cosh2(r+ϕ)/ cosh2(r+ϕ0)

)−1/2
, (2.55a)

T (ϕ) = t0 , (2.55b)

where the solution for pure AdS3, which is dual to the vacuum state that has T = 0,
is obtained for r+ = 0. In Figure 2.10 we plot these surfaces for different sizes ϕ0
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Figure 2.10: Left: Minimal surfaces in global AdS3 obtained from the limiting case
r+ = 0 of (2.55a). The geometry is shown for 0 ≤ r ≤ 3. Right: Minimal surfaces in
the BTZ geometry with black hole radius r+ = 1 shown as the black dashed circle in
the center. The red dashed line is the minimal surface for the limiting case ϕ0 = ϕ∗(r+)
where the saddle points of the area functional exchange dominance.

of the entangling region. Interestingly, in the finite temperature case, which has the
black hole in the center, the area functional has two saddle points. For a given value
of r+, these saddle points exchange dominance for sufficiently large values of ϕ0. The
first saddle point, which is dominant for small ϕ0, corresponds to surfaces that are
homologous to the entangling region A such as given by the differently colored lines in
Figure 2.10 (right). The second one is dominant for large values of ϕ0 and corresponds
to disconnected surfaces, where the first part wraps the horizon and the second part
is homologous to Ā, such as given by the black dashed lines in Figure 2.10 right. The
RT prescription dictates to pick the solution which has minimal area. The areas of the
two possibilities are given by

A =

log
(

2
r+ε

sinh
(
Rr+
2π ϕ0

))
ϕ0 < ϕ∗ ,

πr+ + log
(

2
r+ε

sinh
(
Rr+
2π (π − ϕ0)

))
ϕ0 ≥ ϕ∗ ,

(2.56)

where ε is a UV-cutoff and R is the size of the spatial cycle S1. There is a critical value
ϕ∗(r+) at which the saddle points exchange dominance and where the areas of both
solutions become equal

ϕ∗(r+) =
1

r+
coth−1(2 coth(πr+)− 1) . (2.57)

This situation is illustrated in Figure 2.10 (right) where the surface shown in dashed
red and the disconnected dashed black surface have the same area. For large entangling
regions ϕ0 � ϕ∗ the entanglement entropy approaches the thermal entropy

lim
ϕ0→π

SA =
c

3
πr+ =

A
4G3

N

= SBH , (2.58)

where we have expressed the central charge via c = 3

2G
(3)
N

[132]. The homology con-

straint implies that for ϕ ≥ ϕ∗ the deviation of the entanglement entropy from its pure
state value (δSA = SA−SĀ) becomes constant and equal to the thermal entropy SBH .
This is the so-called entanglement plateau phenomenon discussed in [133]. Interest-
ingly, the case ϕ0 = ϕ∗ saturates the Araki-Lieb inequality [85], as can easily be seen
by setting B = Ā and using SA∪Ā = SBH in (2.8).
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As last example we consider homogeneous and isotropic finite temperature states
in a CFTd for which the entanglement entropy is computed from extremal surfaces in
a Poincaré patch AdSd+1 Schwarzschild black brane geometry

ds2 =
1

z2

(
−(1−Mzd)dv2 − 2dzdv + d~x2

)
, (2.59)

where the temperature of the dual state is given by T = d
4π

d
√
M . Like in the pure

AdS case we consider strip-shaped entangling regions (2.46) for which the area func-
tional again reduces to a geodesic equation in the relevant three-dimensional auxiliary
spacetime

ds̃2 =
1

z2(d−1)

(
−(1−Mzd)dv2 − 2dzdv + dx2

)
. (2.60)

This time we solve the geodesic equation numerically with a simple shooting method
that will be described in the next chapter. The corresponding Mathematica code is
listed in Appendix D. We show the solution for the minimal surfaces, together with
the radial position of the black brane horizon, in Figure 2.11 (left). We find surfaces of
increasing boundary separation approach the horizon closely but never cross it. In [134]
it was shown that this is true in any static black hole spacetime, irrespective of the
dimension and the shape of the boundary region. As we will see later, this is no longer
the case once we consider time dependent systems, where one finds surfaces which can
penetrate both, apparent and event horizons. Like in the pure AdSd+1 case, we find
that in higher dimensions surfaces of the same boundary separation reach deeper into
the bulk (see right plot in Figure 2.12). It is instructive to study the scaling of the
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Figure 2.11: Left: Minimal surfaces in Poincaré patch AdS5 black brane geometry for
different boundary separations. The black dashed line indicates the radial position
of the horizon. Right: Scaling of entanglement entropy with l in the vacuum and a
thermal state of temperature T = 1/π in a CFT4 on R3,1. Both curves are for fixed
UV-cutoff zcut = 5 ∗ 10−3.

entanglement entropy with the system size l for both, vacuum and thermal states. For
small entangling regions we expect the universal UV-scaling given in (2.14) for both
kinds of states. On the other hand, for large regions we expect different IR-scalings
for vacuum and thermal states. In the IR we expect an area law scaling (∝ ld−2) for
the vacuum and an extensive volume law scaling (∝ ld−1) for the thermal state, similar
to the thermal entropy. The holographic entanglement entropy nicely satisfies these
expectations6 as can be seen in Figure 2.11 (right), where we plot the entanglement

6Note that we plot the entanglement entropy density in a (1+1)-dimensional subspace which gives
the constant scaling for the vacuum and the linear scaling for the thermal state.
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entropy for the vacuum, computed from surfaces in pure AdS5, and for the thermal
state with temperature T = 1/π, computed from surfaces in the AdS5-Schwarzschild
with M = 1. On the geometry side both, the UV- and the IR-scaling, can be nicely

d=2 d=3 d=4

2 4 6 8
l
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6
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Figure 2.12: Left: Difference between thermal and vacuum entanglement entropy in
d = 2, 3, 4. Right: Minimal surfaces in AdSd+1 black brane geometries for d = 2, 3, 4
and fixed boundary separation.

explained. The geometric reason for the universal UV-scaling comes from the fact that
surfaces with small l reside in the asymptotic region which, to leading order, is the same
in both geometries. The extensive IR-scaling behavior of the thermal state comes from
the part of the surface that stretches along the horizon. This part gives a contribution
which scales exactly like the horizon area that, via the Bekenstein-Hawking law (2.20),
in holography is identified with the thermal entropy of the dual field theory state.

It is also instructive to study the scaling of entanglement entropy in different dimen-
sions. In the Figure 2.12 (left) we plot the difference between the entanglement entropy
of the thermal state and the vacuum in different dimension. In higher dimensions the
entanglement entropy enters the volume law scaling already for smaller l than in lower
dimensions. The geometric reason is that in higher dimensions the surfaces already
for smaller l get closer to the horizon where the thermal scaling takes over. This is
illustrated in the Figure 2.12 (right), where we show surfaces with fixed separation in
different dimensions.

2.4 The Quantum Null Energy Condition

The quantum null energy condition (QNEC) is a local energy condition that provides a
lower bound for expectation values of null projections of the energy momentum tensor
in relativistic quantum field theories. QNEC connects the null projection of the energy
momentum tensor to the second variation of the entanglement entropy with respect to
a lightlike deformation of the entangling region

〈Tkk〉 ≥
~

2π
√
h
S′′ , (2.61)

where h is the determinant of the induced metric of the entangling surface and 〈Tkk〉
denotes the expectation value of the energy momentum tensor projected onto two
lightlike vectors

〈Tkk〉 ≡ 〈Tµν(x)kµ(x)kν(x)〉 , k2(x) = 0 . (2.62)
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The function S′′ on the right hand side of (2.61) is the diagonal part of the following
expression [69]

δS

δXµ(x)δXν(x′)
kµ(x)kν(x′) = S′′(x)δ(x− x′) + (off − diagonal) , (2.63)

where δXµ(x) is a local variation of the entangling region A at point x ∈ ∂A. Note
that the off-diagonal contributions only exist in d > 2.

Originally, QNEC was discovered by studying the properties of the generalized
entropy

Sgen =
A

4G~
+ Sout , (2.64)

where the first contribution is the usual Bekenstein-Hawking entropy (2.20) and Sout
is the matter entropy outside the horizon. The notion of generalized entropy allowed
Bekenstein to formulate the Generalized Second Law dSgen ≥ 0 [135] that corrects the
ordinary Second Law [136], which fails when matter entropy falls behind a black hole
horizon.

A generalized entropy can be associated not only to horizons but to any surface that
splits a Cauchy slice into two disjoint regions. The generalized entropy can be used
to formulate a semiclassical version of the classical focussing theorem by Penrose [137]
which states that light rays are always focussed and never repelled by matter

dθ

dλ
=

d

dλ

(
1

A
dA
dλ

)
≤ 0 , (2.65)

where A is an infinitesimal area element generated by a congruence of null geodesics
parametrized by an affine parameter λ. The classical focussing theorem in Einstein
gravity follows from the null energy condition which states that the lightlike projection
of the energy momentum tensor is positive

Tabk
akb ≥ 0 ∀k2 = 0 . (2.66)

The null energy condition is sufficient to proof many theorems of classical general rela-
tivity, including area theorems and singularity theorems, without knowing the energy
momentum tensor explicitly [61, 138]. It is widely obeyed by classical fields and by
coherent quantum states.

However, NEC does not hold in general and can be violated by reasonable quan-
tum states [62]. In QFTs the energy density at a given point can be made arbitrarily
negative by an appropriate choice of the quantum state. However, for stability any
negative energy density must be accompanied by a positive energy elsewhere which
can be formalized in terms of the quantum interest conjecture [65]. Positive-definite
expressions of the stress tensor that are bounded from below may exist, but must be
nonlocal. For instance the so-called averaged null energy condition (ANEC) can be
defined by integrating 〈Tkk〉 along a lightlike geodesic and can be proven in certain
QFTs [66, 67]. In Table 2.2 we give a (incomplete) list of energy conditions together
with circumstances under which they are violated. Extending the notion of gener-
alized entropy to arbitrary surfaces allows to lift many classical theorems in general
relativity to the semiclassical level. For instance, the classical focussing theorem fails
for evaporating black holes because quantum fluctuation can have negative energy vi-
olating NEC. Replacing the area in the classical expansion (2.65) by the generalized
entropy via A = 4GNSgen allows to define a quantum expansion

Θ[X(x);x1] ≡ 2GN~√
h(x1)

δSgen[X(x)]

δX(x1)
. (2.67)
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Table 2.2: Summary of some energy conditions and when they are violated. ’EC’
means ’energy condition’ and ’S’, ’W’, ’N’, ’AN’ and ’QN’ mean ’strong’, ’weak’, ’null’,
’averaged null’ and ’quantum null’. Timelike and null vectors are denoted as tµ and kµ

respectively and
∫
γ means integration along a null geodesic γ.

EC Inequality Local? True? Violated by

SEC Tµνt
µtν ≥ Tµµ tνtν yes NO! free scalar field

WEC Tµνt
µtν ≥ 0 yes NO negative cosmological constant

NEC Tµνk
µkν ≥ 0 yes no quantum effects

ANEC
∫
γ Tµνk

µkν ≥ 0 no yes not violated in reasonable QFTs

QNEC 〈Tkk〉 ≥ ~
2π
√
h
S′′ yes yes not violated in reasonable QFTs

The quantum expansion Θ[X(x);x1] measures the rate at which the generalized entropy
changes when locally deforming the associated surface generated by X(x) in one of its
future orthogonal null directions X(x1). In the limit ~ → 0 it becomes the classical
expansion.

The concept of quantum expansion allows to lift the classical focussing theorem
to the semiclassical level. This leads to the so-called quantum focussing conjecture
(QFC) [58]

δ

δX(x2)
Θ[X(x);x1] ≤ 0 , (2.68)

which states that any variation of the quantum expansion along the null direction
X(x2) will not increase. QNEC arises as a special case of the quantum focussing
conjecture [58]. Specializing the QFC to the diagonal case (x1 = x2) gives

0 ≤ θ′ +
4GN~√

h
(S′′out − S′outθ)

= −1

2
θ2 − σ2 − 8πGN 〈Tkk〉+

4GN~√
h

(S′′out − S′outθ) , (2.69)

where prime denotes derivatives with respect to the affine parameter of the null geodesic
generating the deformation vector and in the last step we used the Raychaudhuri equa-
tion and NEC to express θ′. Evaluated for vanishing classical expansion θ = 0 and
shear σ = 0, the last line of (2.69) implies the QNEC inequality stated in (2.61). It is
interesting to note that the derivation of QNEC from the quantum focussing conjecture
employs concepts of semiclassical gravity, but the QNEC inequality itself is a statement
about the energy momentum tensor and entanglement entropy in quantum field theory
only. Newtons constant nicely drops out in (2.69) for θ = σ = 0.

Proofs of QNEC exist for free and superrenormalizable theories [59], theories with
holographic duals [69], and interacting quantum field theories in d ≥ 3 [70]. These
proofs assume that the quantum field theory is formulated on a flat background. QNEC
in curved backgrounds is discussed in [139]. In [140] it was shown that in d > 2 the
diagonal part of QNEC always saturates, i.e. the inequality becomes an equality.

In explicit holographic calculations in higher dimensions it is challenging to isolate
the diagonal part S′′ defined in (2.63), because one would have to perform a local defor-
mation of the RT-surface that breaks translational symmetry in all spatial directions.
This would require to solve the full set of partial differential equations (2.45) and not
only an auxiliary geodesic equation. We will not do that in the examples presented
below, but rather homogeneously deform the infinitely extended bounding surface of
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our strip-shaped entangling region without braking translation symmetry in the infi-
nite directions. This can be interpreted as the so-called global form of QNEC [69].
But before we come to the more advanced numerical examples, we perform in the next
section an explicit calculation of QNEC in a CFT2 using holography.

2.4.1 QNEC in Thermal CFT2

In this subsection we compute the quantum null energy condition for finite temperature
states in the grand canonical ensemble in CFT2 with angular momentum J . In two-
dimensional QFTs the quantum null energy condition takes the stronger form

〈Tkk〉 ≥
~

2π

(
S′′ +

6

c
(S′)2

)
, (2.70)

where c denotes the central charge of the CFT and we use units in which Planck’s
constant ~ = 1. Ultimately we are interested in the right hand side of (2.70) as a
function of the size l of the entangling region. In order to do that we have to compute
the first and second derivative of the entanglement entropy with respect to a lightlike
deformation of one of the boundary points. The dual gravity prescription for these
finite temperature and angular momentum states is given by the BTZ geometry

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2

(r2 − r2
+)(r2 − r2

−)
dr2 + r2(dx+

r+r−
r2

dt)2 , (2.71)

where r+ and r− denote the radial positions of the outer and inner horizon respectively
and we have set the AdS-radius to unity. The mass M and angular momentum J are
related to r+ and r− in the following way

M =
r2

+ + r2
−

8G
(3)
N

, J =
r+r−

4G
(3)
N

, (2.72)

where G
(3)
N denotes the three-dimensional Newton constant. The non-vanishing com-

ponents of the holographic energy momentum tensor in the dual field theory are given
by [141]

Ttt = Txx =
r2

+ + r2
−

16πG
(3)
N

, Ttx =
r+r−

8πG
(3)
N

. (2.73)

This allows us to evaluate the left hand side of (2.70). There are two linearly indepen-
dent lightlike projection vectors ka± = (1,±1) which give

T±± = Tabk
a
±k

b
± =

1

8πG
(3)
N

(r+ ± r−)2 =
1

2π
(M ± J) . (2.74)

To compute the holographic entanglement entropy we use the fact that all BTZ black
holes are locally equivalent to pure AdS3. The relevant coordinate transformation can
be written as follows [142]

w± =

√
r2 − r2

+

r2 − r2
−
e(x±t)(r+±r−) ≡ X ± T , (2.75a)

z =

√
r2

+ − r2
−

r2 − r2
−
exr++tr− . (2.75b)
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In the new coordinates the line element is manifestly Poincaré patch AdS3

ds2 =
1

z2
(dw+dw− + dz2) =

1

z2
(−dT 2 + dX2 + dz2) . (2.76)

This is extremely useful because for this case the formula for the entanglement entropy
is well known [33]

SEE =
A

4G
(3)
N

=
c

3
log

l

ε
, (2.77)

where A is the area of the extremal co-dimension two bulk surface homologous to the
entanglement region in the boundary, c = 3

2G
(3)
N

is the central charge of the CFT [132],

l is the length of the entangling region and ε is a UV-cutoff. We take our entangling
region to range from (t0, x1) to (t0, x2) such that l = |x2 − x1|.

Without loss of generality we choose to deform the second boundary point (t0, x2)→
(t0 + λt, x2 + λx) with a deformation vector (λt, λx). Since the rotating BTZ geometry
is anisotropic (the sign of J singles out a preferred spatial direction), deformations with
(λt, λx) = (λ, λ) and (λt, λx) = (λ,−λ) for λ > 0 are qualitatively different and need to
be treated separately. Our strategy is to construct the proper distance and the cutoff
(supplemented with the deformation (λt, λx)) in Poincaré coordinates and use them in
(2.77). This will give us a formula for the entanglement entropy S±(λ) as a function of

λ from which we can compute S′± = d
dλS±(λ)|λ=0 and S′′± = d2

dλ2S±(λ)|λ=0 and obtain
the right side of (2.70). To construct the proper distance squared it is useful to define
the following quantities at the boundary (r =∞)

∆w± = (X1 ± T1)− (X2 ± T2)

= e(x1±t1)(r+±r−) − e((x2+λx)±(t2+λt))(r+±r−) , (2.78)

where (Xi, Ti) with i = 1, 2 denote the endpoints of the entangling region in Poincaré

coordinates and we have used limr→∞

√
r2−r2

+

r2−r2
−

= 1. The proper distance squared can

now be expressed as

(∆x)2 = ∆w+∆w−

= [(X1 + T1)− (X2 + T2)][(X1 − T1)− (X2 − T2)]

= −(T1 − T2)2 + (X1 −X2)2

=
(
e(r++r−)(t0+x1) − e(r++r−)(t0+λt+x2+λx)

)
×

(
e(r+−r−)(t0−x1) − e(r+−r−)(t0+λt−x2−λx)

)
. (2.79)

Next we use (2.75b) to express the cutoffs ε1, ε2 at the two endpoints of the extremal
surface

ε1 =

√
r2

+ − r2
−

r∞
er+x1+r−t0 , ε2 =

√
r2

+ − r2
−

r∞
er+(x2+λx)+r−(t0+λt) , (2.80)

where r∞ can be identified with the UV-cutoff in the field theory ε = 1
r∞

. We can
now use (2.79) and (2.80) in a slightly generalized form of the entanglement entropy
formula

SEE =
c

6
log

(∆x)2

ε1ε2
. (2.81)
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Evaluating the previous formula for a deformation in positive (S+) or negative (S−)
x-direction gives

S±(λ) =
c

6
log

2 cosh(l r+ + λ(r+ ± r−))− 2 cosh(l r− + λ(±r+ + r−))

ε2(r2
+ − r2

−)
, (2.82)

where we have used x2 − x1 = l. The right hand side of (2.70) is then given by

1

2π

(
S′′± +

6

c
(S′±)2

)
= − c

12π
(r+ ± r−)2

(
csch[1

2 l(r+ ± r−)]2 + coth[1
2 l(r− ± r+)]2

)
=

c

12π
(r+ ± r−)2 , (2.83)

which, after using c = 3

2G
(3)
N

, exactly agrees with the stress tensor null projections

(2.74). This means that the QNEC inequality for states dual to BTZ geometries is not
only satisfied but also saturated, independently of the size of the entangling region. In
Appendix B we give an alternative derivation using the bulk equations of motion of the
RT-surfaces directly. In [143] it is argued using holography that for two-dimensional
field theories QNEC is not saturated if the corresponding RT-surface passes through
matter in the bulk. We present an explicit example for this in Chapter 3.
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Chapter 3

Computing Entanglement
Entropy and QNEC Numerically

In this chapter we introduce the numerical methods used to compute solutions to
Einstein equations with asymptotically AdS boundary conditions in Section 3.1 and to
find extremal surfaces and geodesics in these spacetimes in Section 3.2.

3.1 Solving Einstein Equations on AdS Numerically

In a general coordinate system the Einstein equations consist of a complicated set of
coupled non-linear partial differential equations (PDE) which need to be solved for
a given set of initial and boundary conditions. In applications with asymptotically
flat boundary conditions, like for astrophysical simulations of merging black holes or
neutron stars, the resulting initial value problem is typically formulated in the so-called
BSSN formulation [144,145]. State of the art simulations of this kind play an important
role in the interpretation of gravitational wave signals recently detected by LIGO and
VIRGO [146, 147] and usually require to run sophisticated numerical GR codes1 on
supercomputing facilities 2.

For spacetimes with asymptotic AdS boundary conditions the so-called method
of characteristics [149–151], in which the spacetime is foliated with lightlike slices,
turns out to be particularly well suited. In this formulation the Einstein equations
on each characteristic slice decouple into a nested set of ordinary differential equa-
tions (ODE) which can be efficiently solved using spectral methods [152–154]. The
stepping between slices is usually done with simple Runge-Kutta or Adams-Bashforth
time-stepping algorithms [155] which are typically sufficient to obtain a stable time
evolution. The lightlike slicing is realized with generalized Eddington-Finkelstein co-
ordinates which are regular across the black hole horizon. In the context of numerical
AdS/CFT, this method has been applied by several authors to various time evolution
problems [10, 13, 15, 16, 18, 21, 23, 25, 156, 157]. A detailed explanation of this method
can be found in [158].

In the following we will illustrate this method for the example of a homogeneous but
anisotropic AdS5 black brane for which the initial value problem is solved with fixed

1For example, the Einstein toolkit [148] is a publicly available numerical GR code that is able to
perform such simulations.

2All the simulations presented in this thesis were carried out on an ordinary desktop computer.
However, see for example the numerical AdS/CFT simulations in [25] which were performed on a
supercomputer.

35
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boundary conditions and non-trivial initial conditions in the bulk. We realize Eddinton-
Finkelstein gauge in the line element ds2 = gµνdx

µdxν by setting grv = 1, grµ = 0 and
we fix gvy = 0 by imposing parity invariance in the y-direction. Spatial homogeneity is
realized by the Killing vectors ξ1 = ∂y, ξ2 = ∂x1 , ξ3 = ∂x2 , and SO(2) invariance in the
x1,2-plane by the Killing vector ξ4 = x2∂1− x1∂2. The most general ansatz for the line
element which satisfies these assumptions can be written as

ds2 = −A(r, v)dv2 + 2dvdr + S2(r, v)
(
e−2B(r,v)dy2 + eB(r,v)d~x2

)
, (3.1)

where r is the holographic coordinate in which the asymptotic boundary is located at
r =∞, v the (advanced) time, y the longitudinal and ~x = (x1, x2) the two transversal
coordinates of the five-dimensional spacetime. The aim is to solve the vacuum Einstein
equations with negative cosmological constant subject to fixed asymptotically AdS
boundary conditions and non-trivial initial conditions for the field B(r, v) in the bulk

Rµν −
1

2
gµνR+ Λgµν = 0 , (3.2)

where Rµν and R denote the Ricci tensor and Ricci scalar associated to the metric gµν

respectively. The cosmological constant is given by Λ = − (d−1)(d−2)
2L2 , where d = 5 and

we set the AdS radius L ≡ 1. In the coordinate system defined by (3.1) the Einstein
equations read

0 = 2S′′ + (B′)2S , (3.3a)

0 = S(Ṡ)′ + 2S′Ṡ − 2S2 , (3.3b)

0 = 2S(Ḃ)′ + 3(S′Ḃ +B′Ṡ) , (3.3c)

0 = A′′ + 3B′Ḃ − 12S′Ṡ/S2 + 4 , (3.3d)

0 = 2S̈ −A′Ṡ + Ḃ2S , (3.3e)

where prime denotes radial derivative and dot means time derivative, via

h′ ≡ ∂rh , ḣ ≡ ∂vh+
1

2
A∂rh , (3.4)

for any function h(r, v). Near the boundary (r = ∞) solutions to these equations can
be expressed as generalized power series in r

A(r, v) = r2
∞∑
n=0

(an(v) + α1,n(v) log(r) + . . .+ αn,n(v) log(r)n) r−n , (3.5a)

S(r, v) = r

∞∑
n=0

(sn(v) + σ1,n(v) log(r) + . . .+ σn,n(v) log(r)n) r−n , (3.5b)

B(r, v) =
∞∑
n=0

(bn(v) + β1,n(v) log(r) + . . .+ βn,n(v) log(r)n) r−n . (3.5c)

Fixing the conformal boundary metric to Minkowski ds2
b = r2ηµνdx

µdxν determines
the leading coefficients a0 = 1 and s0 = 1, and the residual gauge freedom r → r+ ξ(v)
of the metric ansatz (3.1) is fixed by setting the subleading coefficient a1 = 0. In order
to get a well defined initial value problem resulting in a stable time evolution it is
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necessary to choose a computational domain in the bulk direction that contains the
apparent horizon rah, defined by Ṡ(r, v)|rah = 0, on the initial slice.3

Solving the Einstein equations order by order in r gives

A(r, v) = r2 +
a4(v)

r2
+
a′4(v)

2r3
+O(r−4) , (3.6a)

S(r, v) = r − a′4(v)

20r4
− b4(v)2

7r7
+O(r−8) , (3.6b)

B(r, v) =
b4(v)

r4
+
b′4(v)

r5
+O(r−6) , (3.6c)

where the normalizable modes a4(v) and b4(v) remain undetermined in this procedure.
In the specific case, where the boundary metric is fixed by b0 = 0, one obtains at
O(r−3) the relation a′4(v) = 0 which means that a4 = const.. As we will see later, this
relation implies the covariant conservation of the holographic stress tensor and a4 is
proportional to the energy of the dual field theory state. The coefficient a4 has to be
provided as initial datum and the function b4(v) needs to be extracted from the full
bulk solution. Furthermore, since the boundary metric is flat, all coefficients of the
logarithmic terms vanish αi,j(v) = βi,j(v) = σi,j(v) = 0. These terms only appear for
curved boundary metrics of even dimension at orders ≥ d.

It is convenient to transform the near boundary solution from Eddington-Finkelstein
to Fefferman-Graham form (2.29) and use the expression (2.35) to determine the holo-
graphic stress tensor. We first write a series ansatz for the Eddington-Finkelstein
coordinates in powers of the radial Fefferman-Graham coordinate

rEF (rFG, tFG) =
∞∑
n=1

[rn(tFG) + ρn(tFG) log(rFG)] (rFG)n , (3.7a)

tEF (rFG, tFG) = tFG +
∞∑
n=1

[tn(tFG) + τn(tFG) log(rFG)] (rFG)n . (3.7b)

The metric transforms as follows

gFGµν =
∂xαEF
∂xµFG

∂xβEF
∂xνFG

gEFαβ , (3.8)

where xµEF = (rEF , tEF ) and xµFG = (rFG, tFG). Using the expressions for the metric
in Eddington-Finkelstein and Fefferman-Graham coordinates4

gEFµν =

(
0 1
1 gEF1,1

)
, gFGµν =

(
r2
FG 0
0 gFG1,1

)
, (3.9)

in the transformation law (3.8) leads to a set of two equations

0 =
∂tEF
∂rFG

∂tEF
∂tFG

gEF1,1 +
∂rEF
∂rFG

∂tEF
∂tFG

+
∂tEF
∂rFG

∂rEF
∂tFG

, (3.10a)

0 = r2
FG − 2

∂rEF
∂rFG

∂tEF
∂rFG

−
(
∂tEF
∂rFG

)2

gEF1,1 , (3.10b)

3Note that other authors [13,16,25] use the residual gauge freedom r → r+ ξ(v) to fix the apparent
horizon to a constant value in the radial direction which is then used to bound the computational
domain.

4We only need to consider time and radial indices in the transformation, since the remaining com-
ponents of the metric are already in Fefferman-Graham form.
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which we can solve order by order in rFG and rFG log(rFG). The near boundary
expansion of the metric in Fefferman-Graham coordinates is given by

gFG1,1 = −r2 − 3a4

4r2
+O(r−4) , (3.11a)

gFG2,2 = r2 −
(a4

4
− 2b4(t)

) 1

r2
+O(r−4) , (3.11b)

gFG3,3 = gFG4,4 = r2 −
(a4

4
+ b4(t)

) 1

r2
+O(r−4) , (3.11c)

where we have used r ≡ rFG and t ≡ tFG to shorten the notation. As expected, the
near-boundary expansion in Fefferman-Graham coordinates contains only even powers
of r and all logarithmic terms vanish. After replacing the radial coordinate by ρ = 1

r2

we obtain explicit expressions for the non-vanishing metric components in Fefferman-
Graham coordinates (2.29) in terms of the Eddington-Finkelstein coefficients

g(0)tt = −1 , g(0)yy = g(0)x1x1
= g(0)x2x2

= 1 , (3.12a)

g(2)tt = g(2)yy = g(2)x1x1
= g(2)x2x2

= 0 , (3.12b)

g(4)tt = −3

4
a4 , g(4)yy = −1

4
a4 − 2b4(t) , (3.12c)

g(4)x1x1
= g(4)x2x2

= −1

4
a4 + b4(t) . (3.12d)

The coefficients in the asymptotic expansion determine via (2.35) the expectation value
of the stress energy tensor in the dual field theory

〈Tµν〉 =
N2
c

2π2
diag

[
E , P‖(t), P⊥(t), P⊥(t)

]
, (3.13)

where

E = −3

4
a4 , P‖(t) = −1

4
a4 − 2b4(t) , P⊥(t) = −1

4
a4 + b4(t) . (3.14)

In the numerical procedure it is convenient to work with the inverse radial coor-
dinate z ≡ 1/r such that the boundary is located at z = 0. Due to asymptotic AdS
boundary conditions, the metric functions A and S diverge as z → 0. It is numerically
favorable to define new functions with the known divergent pieces removed and rescale
them with appropriate powers of z so that the resulting functions are finite or vanish
as z → 0 and the normalizable modes are easy to read of from the numerical solution.
This leads us to the following field redefinitions

A(z, v) → 1
z2 + zA(z, v) , B(z, v) → z3B(z, v) , (3.15a)

S(z, v) → 1
z + z2S(z, v) , Ṡ(z, v) → 1

2z2
+

1

2
z2Ṡ(z, v) , (3.15b)

S̈(z, v)→ 1
2z3 + 1

4 S̈(z, v) , Ḃ(z, v)→ −2z3Ḃ(z, v) . (3.15c)

The redefined function B(z, v) allows to extract b4(t) simply from the boundary value
of B′(z, v)

b4(t) = B′(z = 0, v = t), (3.16)

where B′ = ∂zB. Note that at z = 0 the advanced time is equal to the usual Minkowski
time in the boundary theory v|z=0 = t. In terms of the redefined fields the first four



3.1. SOLVING EINSTEIN EQUATIONS ON ADS NUMERICALLY 39

Einstein equations (3.3) can be rewritten in the form

S′′ +
6

z
S′ +

(
6

z2
+

9

2
z4B2 + 3z5BB′ +

1

2
z6B′2

)
S =jS , (3.17a)

Ṡ′ +
2z2(3S + zS′)

1 + z3S
Ṡ =jṠ , (3.17b)

Ḃ′ +
3(1 + 4z3S + z4S′)

2(z + z4S)
Ḃ =jḂ , (3.17c)

A′′ +
4

z
A′ +

2

z2
A =jA , (3.17d)

with the source functions given by

jS = −9

2
zB2 − 3z2BB′ − 1

2
z3B′2 , (3.18a)

jṠ = −2(5S + 2z3S2 + zS′)

z2 + z5S
, (3.18b)

jḂ =
3(1 + z4Ṡ)(3B + zB′)

8z2(1 + z3S)
, (3.18c)

jA = −6(S(4 + z3S) + z4Ḃ(1 + z3S)2(3B + zB′) + zS′ − zṠ(1− 2z3S − z4S′))

(z + z4S)2
.

(3.18d)

The relation between dot-derivative and time-derivative, originally given in (3.4), turns
into

Ḃ = −1

2
∂vB +

1

4
B′ +

3

4z
B +

3

4
z2AB +

1

4
z3B′A . (3.19)

The boundary conditions for the redefined fields read

S(z = 0, v) = 0 , S′(z = 0, v) = 0 , (3.20a)

Ṡ(z = 0, v) = a4 , (3.20b)

Ḃ(z = 0, v) = B′(z = 0, v) , (3.20c)

A(z = 0, v) = 0 , A′(z = 0, v) = a4 . (3.20d)

For a given set of initial data {B(z, v0), a4} and fixed boundary metric the system of
equations (3.17) allows for the following solution strategy:

1. With the initial conditions {B(z, v0), a4} and the boundary conditions (3.20) we
first solve (3.17a) for S on the initial time slice.

2. For given S and the boundary condition (3.20b) we solve (3.17b) for Ṡ.

3. Having B, S and Ṡ we next solve (3.17c) for Ḃ using the boundary condition
(3.20c).

4. With B, S, Ṡ and Ḃ and the boundary conditions in (3.20d) we solve (3.17d) for
A.

5. Finally we integrate (3.19) to get the new B on the next time slice and repeat
the whole procedure all over again.
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For constant v we solve each of the equations (3.17) with a pseudo-spectral method [159]
where the N + 1 grid points ui on an interval [a, b] are located at

zi =
1

2

(
(a+ b) + (a− b) cos(iπ/N)

)
i = 1, . . . , N + 1. (3.21)

These points can be used to construct the entries of the spectral differentiation matrix
Dij [160]:

D00 =
2N2 + 1

6
, DNN = −2N2 + 1

6
, (3.22a)

Djj =
−zj

2(1− z2
j )

j = 1, . . . , N − 1 , (3.22b)

Dij =
ci
cj

(−1)i+j

(zi − zj)
j 6= j i, j = 0, . . . , N , (3.22c)

where c0 = cN = 2 and otherwise ci = 1. The derivative of a function f(zi) ≡ fi on
the spectral grid points is obtained by multiplication with this differentiation matrix

f ′i = Dijfj . (3.23)

This allows to turn each of the equations (3.17) into a system of linear equations. For
example the second equation in (3.17) translates to

LijṠj = (jṠ)i , (3.24)

where the matrix Lij is given by

Lij = Dij + diag
[2z2(3S + zS′)

1 + z3S

]
ij
, (3.25)

and the source vector (jṠ)i by

(jṠ)i =
[
− 2(5S + 2z3S2 + zS′)

z2 + z5S

]
i
. (3.26)

The boundary condition Ṡ1 = a4 is implemented by setting (jṠ)1 = a4 and L1j = δ1j .

The solution vector Ṡi is then obtained by multiplying the inverse of Lij with the source
vector

Ṡi = [Lij ]
−1(jṠ)j . (3.27)

The equations for Si, Ai and Ḃi can be solved in the same way.
To advance the solution for B to the next time slice it is sufficient to use a simple

fourth order Runge-Kutta method [155]

B(z, v + δv) = B(z, v) + δv
(

1
6k1 + 1

3k2 + 1
3k3 + 1

6k4

)
. (3.28)

where the coefficients ki are given by

k1 = ∂vB(z, v) , (3.29a)

k2 = ∂v
(
B(z, v) + 1

2k1

)
, (3.29b)

k3 = ∂v
(
B(z, v) + 1

2k2

)
, (3.29c)

k4 = ∂v
(
B(z, v) + k3

)
, (3.29d)

and ∂vB is computed from (3.19). The solution for a specific example of the case
discussed in this section is presented in Chapter 4. Details about the numerical im-
plementation of colliding shock waves can be found in [25,161]. For the latter case we
present simulation results in Chapter 5 and Chapter 6.
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3.2 Finding Geodesics and Extremal Surfaces

Mathematically, finding extremal surfaces with fixed boundary conditions in asymptot-
ically AdS spacetimes boils down to solving a two-point boundary value problem. The
main difference to the initial value problem discussed in the previous section is that
giving boundary conditions at the starting point is not sufficient to uniquely determine
a solution. There are two standard approaches used to solve such problems namely
the shooting method and the relaxation method [155]. In the following two subsec-
tions we discuss in some detail both of these methods and provide simple Mathematica
implementations in Appendix D and Appendix E.

3.2.1 Shooting Method

In this section we discuss a simple shooting method which is usually good enough to
solve for minimal surfaces in time independent situations with boundary conditions
coming from regularly shaped entangling regions.

In shooting we start with a guess for the initial conditions and integrate the differ-
ential equation up to some matching point which we want to hit. The solution obtained
from the initial guess will typically not hit the desired matching point, but there will be
some mismatch Fi between the point we hit and the aim. The strategy is to iteratively
improve the guess by a correction vector δVj for the initial conditions until the desired
matching point is hit to a certain accuracy. The correction vector can be obtained by
inverting the following relation

SijδVj = −Fj , (3.30)

where the Jacobian is usually not known analytically and needs to be approximated

Sij =
∂Fi
∂Vj
≈ Fi(V0, . . . , Vj + ∆Vj , . . .)− Fi(V0, . . . , Vj , . . .)

∆Vj
. (3.31)

The correction vector is used to generate the next guess

V new
i = V old

i + α δVi , (3.32)

To stabilize the first iterations, where the discrepancy max|Fi| is typically large, it is
sometimes necessary to use α < 1 which has the side effect of slowing down convergence.
Usually one can set α = 1 as soon as the discrepancy is sufficiently small to speed up
convergence again.

Let us now apply this procedure to the case of minimal surfaces in an AdSd+1

Schwarzschild black brane geometry

ds2 =
1

z2

(
−(1−Mzd)dv2 − 2dzdv + d~x2

)
, (3.33)

where the temperature of the dual state is given by T = d
4π

d
√
M . Like in the pure AdS

case we consider strip-shaped entangling regions (2.46) for which the area functional
reduces to a geodesic equation in the relevant three-dimensional auxiliary spacetime

ds̃2 =
1

z2(d−1)

(
−(1−Mzd)dv2 − 2dzdv + dx2

)
. (3.34)

For this simple setting it is sufficient to stick to an affine parametrization [Xα(τ) =
(Z(τ), V (τ), X(τ)), ẊαẊβ g̃αβ ≡ 1] in which the minimal surface equation takes the
form

Ẍα(τ) + Γαβγ(Xδ(τ))Ẋβ(τ)Ẋγ(τ) = 0 , (3.35)
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where Γαβγ denote the Christoffel symbols associated to the auxiliary spacetime (3.34).
In this case we only need to optimize one parameter, which is the z-position z∗ of

the turning point of the geodesic in the bulk. To solve (3.35) we shoot from an initial
guess Xµ

ini(0) and try to hit a point (Z(τ±), T (τ±), X(τ±)) = (zcut, t0,±l/2) at the
cutoff surface located at zcut. We initialize the procedure with a guess for the initial
conditions at the turning point of the surface located at x = 0

Z(0) = z
(0)
∗ , T (0) = t0, X(0) = 0 , (3.36a)

Z ′(0) = 0, T ′(0) = 0, X ′(0) = 1 . (3.36b)

Using these initial conditions we numerically integrate the geodesics equation up to
some large value of the affine parameter τend ≈ O(106). This can be done, for instance,
using standard tools like Mathematicas NDSolve (for details see Appendix D). Next
we have to extract the boundary separation at a fixed cutoff zcut from the solution of
the first shot and compute the mismatch vector. To do that we first solve numerically
for the parameter values τ± at the desired cutoff zcut

Z(τ±) = zcut . (3.37)

This can be done conveniently using, e.g Mathematicas NSolve. Having τ± we can
determine the separation at the cutoff

l
(0)
cut = X(τ+)−X(τ−) . (3.38)

The mismatch in our simple case reduces to a single function that measures the dis-
crepancy between the boundary separation of the guess and the desired separation of
the true solution

F (0) = |l − l(0)
cut| . (3.39)

Typically, the mismatch after the initial shot will not be sufficiently small and we have
to compute corrections to the initial guess

z
(1)
∗ = z

(0)
∗ + αδz

(0)
∗ , (3.40)

where we also included the weight α. The corrections in subsequent iterations are
obtained from inverting (3.30) and using (3.31), which for the case at hand gives

δz
(i)
∗ = − F (i)∆z∗

F
(i)
∆ − F (i)

, (3.41)

where F
(i)
∆ is the mismatch obtained from the guess z

(i)
∗ + ∆z∗. The constant shift

∆z∗ in the finite difference approximation needs to be sufficiently small ∆z∗ ≈ 10−10

to make high accuracies accessible. We typically iterate this procedure until we reach
F < 10−15.

In Figure 3.1 we show the convergence behavior of the shooting method discussed
above. In the plot on the left hand side we show the surfaces obtained in subsequent
iterations, starting in violet and ending with the red curve which is the converged
solution. The initial solution is given by the black dashed line and the horizon is given
by the black solid line. On the right hand side we show the mismatch over the number
of iterations for a given value of the weight α. In this example the optimal value for α
which results in the minimal number of iterations is α = 0.9.
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Figure 3.1: Left: Iterations in the shooting method. The black dashed curve is the
result obtained from the initial guess z∗ = 0.5 and the colored lines, from purple to
red, correspond to subsequent iterations, where the red curve is the converged result.
Right: Error δ over the number of iterations for different values of the weight α. In this
example the optimal weight that leads to the minimal number of iterations is α = 0.9.

3.2.2 Relaxation Method

In relaxation methods differential equations are replaced by approximate finite dif-
ference equations (FDEs) on a discrete set of points. The solution is determined by
starting with an initial guess and improving it iteratively. In this iterative procedure
the result is said to relax to the true solution.

The equation relevant for our present purposes is the non-affine geodesic equation
(2.48) which is a set of three coupled second order differential equation in the three
variables Xα(σ) = (Z(σ), V (σ), X(σ)) representing the embedding of the surface in the
ambient spacetime

Ẍα(σ) + Γαβγ(Xδ(σ))Ẋβ(σ)Ẋγ(σ) = J(σ)Ẋα(σ) . (3.42)

First we reduce the order of the set of differential equations to first order by promoting
Ẋα(σ) ≡ Pα(σ) to a separate variable

0 = Ẋα(σ)− Pα(σ) , (3.43a)

0 = Ṗα(σ) + Γαβγ(Xδ(σ))P β(σ)P γ(σ)− J(σ)Pα(σ) . (3.43b)

Next we define a grid σi = h i with N points of equidistant spacing h = σN−σ1
N with

i = 1, . . . , N . The upper and lower bound of this grid are given by σ1 = σ− and
σN =σ+ respectively, with σ± given in (2.50). The discredized version of the embedding
functions and their first derivatives on this grid are written as

Xα(σi) ≡ Xα
i = (Zi, Vi, Xi) , (3.44a)

Pα(σi) ≡ Pαi = (P zi , P
v
i , P

x
i ) . (3.44b)

The finite difference representation of the geodesic equation (3.43a) on the interior
points i = 1, . . . , N − 1 of the grid are given by

0 = E2α−1
i = Xα

i+1 −Xα
i − hP̄αi , (3.45a)

0 = E2α
i = Pαi+1 − Pαi − hJ̄iP̄αi + h

∑
βγ

(Γ̄αβγ)iP̄
β
i P̄

γ
i , (3.45b)

where Eki is the residual at point i in equation k; quantities with bar are averaged

via X̄α
i =

Xα
i +Xα

i+1

2 and P̄αi =
Pαi +Pαi+1

2 ; the Christoffel symbols (Γ̄αβγ)i ≡ Γαβγ(X̄δ
i ) are
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evaluated from the averaged metric functions; the explicit form of the Jacobian J̄i ≡
J(σi+1+σi

2 ) is given in (2.51). The equations (3.45a) and (3.45b) represent a set 6 (N−1)
algebraic relations for 6N unknowns Xα

i and Pαi . The missing six equations that are
necessary to make the system solvable are obtained from the boundary conditions.
These are imposed at a fixed cutoff surface located at z = zcut

E1
0 = Z1 − zcut , E1

N = ZN − zcut , (3.46a)

E3
0 = V1 − v0 , E3

N = VN − v0 , (3.46b)

E5
0 = X1 + l/2 , E5

N = XN − l/2 , (3.46c)

where the remaining components of the vectors E2α
0,N are zero.5 To initialize the pro-

cedure we need an initial guess for Xα
i and Pαi which we generate from the discredized

version of the AdSd−1 solutions given in (2.49)

Zi = z∗(1− σ2
i ) , (3.47a)

Vi = v0 − Zi , (3.47b)

Xi = sgn(σi)
(
− l

2
+

(Zi)
d

dzd−1
∗

2F1

[
1
2 ,

d
2(d−1) ,

3d−8
2d−6 ;

(
Zi
z∗

)2(d−1)
])

, (3.47c)

The initial guess will in general not satisfy these FDEs very well, i.e. the residua Eki
will be rather large. To quantify the deviation of a given trial solution to the true
solution we use the following measure

δ =

∑
i,k |Eki |
6N

. (3.48)

For notational reasons it is convenient to collect Xα
i and Pαi into a single vector Y k

i ≡
(Zi, P

z
i , Vi, P

v
i , Xi, P

x
i ). The strategy is to compute increments ∆Y k for Y k such that

Y k
new = Y k

old + ∆Y k is an improved approximation to the previous solution Y k
old. This

we do iteratively until we typically reach

δ < 10−15 . (3.49)

Equations for the increments are obtained by demanding the first order Taylor expan-
sion of the FDEs with respect to small changes in the coordinates to vanish

Eki (Y k
i + ∆Y k

i , Y
k
i+1 + ∆Y k

i+1) ≈ Eki (Y k
i , Y

k
i+1) +

∑
n

(
∂Eki
∂Y n

i

∆Y n
i +

∂Eki
∂Y n

i+1

∆Y n
i+1

)
.

(3.50)
For a solution we want the updated value E(Y + ∆Y ) to be zero, which gives a set of
algebraic equations for the increments on the interior points

−Eki =

6∑
n=1

Ŝki,n∆Y n
i +

12∑
n=7

S̃ki,n∆Y n−6
i+1 , (3.51)

where

Ŝki,n ≡
∂Eki
∂Y n

i

, S̃ki,n+6 ≡
∂Eki
∂Y n

i+1

n = 1, ..., 6 . (3.52)

5Note, that we also could have instead imposed boundary conditions for Pα1,N , or mixed boundary
conditions, including both, Pα1,N and Xα

1,N to provide the missing six equations. However, for the kind
of problems we are interested in this thesis, our choice in the main text is the most natural one.
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Similarly one obtains algebraic relations at the boundary

−Ek0 =
6∑

n=1

Ŝk0,n∆Y n
1 , −EkN =

6∑
n=1

S̃kN,n∆Y n
N , (3.53)

with

Ŝk0,n ≡
∂Ek0
∂Y n

1

, S̃kN,n ≡
∂EkN
∂Y n

N

n = 1, ..., 6 . (3.54)

Combining S̃ and Ŝ into a single matrix S gives a linear system which has to be
solved for the correction vector ∆Y

S.∆Y = −E . (3.55)

Here it is crucial to note that the matrix S typically has a huge number of vanishing
entries, i.e. it can be brought into a sparse representation which allows for an efficient
inversion. We do this following exactly the procedure described in the section on
relaxation methods in reference [155]. Mathematica provides convenient commands to
set up such sparse matrices which we have used in our example code in Appendix E.

The correction ∆Y k generated from the first order Taylor expansion is in general
only an improvement close to the true solution. We account for this by introducing a
weight α that modifies the correction in each relaxation step

Y k
new = Y k

old + α∆Y k. (3.56)

We choose the weight α such that the full correction is used only close to the true
solution

α =

{
0.5 if δ ≥ 10−3 ,

1 else .
(3.57)

We illustrate the convergence behavior of our code for the AdS-Vaidya spacetime

ds̃2 =
1

z2(d−1)

(
−
(
1−M(v)zd

)
dv2 − 2dzdv + dx2

)
, (3.58)

where we parametrize the profile of the mass shell by

M(v) =
1

2

(
1 + tanh(av)

)
. (3.59)

On the left side of Figure 3.2 we show the surfaces starting with the initial guess
which is the black dashed line together with subsequent iterations from the purple to
the final solution which is the red line. On the right hand side we show the error
measure δ for different choices of the weight α. For this example the optimal choice
is α = 0.5 for which after 12 iterations the error criterion δ < 10−15 is fulfilled. Note
that in general the optimal value for α strongly depends on the chosen ansatz and the
detail of the spacetime in which the surface resides. For more complicated examples
smaller values of α often make the relaxation more stable.

For the time evolution we use as ansatz at time ti = ti−1 + δt the geodesic from the
previous time step ti−1. With a step size of δt ≈ 0.05 usually less than five relaxation
steps are sufficient to reach the accuracy of (3.49). In Figure 3.3 we show the results
for the time evolution of such surfaces and the corresponding entanglement entropy
computed from their surface areas. In strong contrast to the static case, where the
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Figure 3.2: Left: Surfaces obtained in subsequent relaxation steps with fixed boundary
time v0 = 2 and separation l = 5.5 in a AdS3 Vaidya spacetime with a = 30. Right:
Error δ over the number of iterations for different values of the weight α. In this
example the optimal weight, that leads to the minimal number of iterations, is α = 0.5.
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Figure 3.3: Left: Minimal surfaces at different times and fixed boundary separation
l = 6 in the AdS3 Vaidya geometry with a = 30. The black dashed line indicates
the radial position of the apparent horizon. Right: Vacuum subtracted entanglement
entropy Sren = S − Svac as function of time for different separations l. Sren nicely
reproduces the scaling behavior of (2.19).

surfaces always remain outside the horizon, in the time dependent Vaidya spacetime
the surfaces can cross the horizon as shown in the plot on the left side. This happens
when the surfaces probe a region of the spacetime which is highly dynamic like it is
around t = 0, where the black hole rapidly forms. At later times the surfaces remain
entirely outside the horizon because they only probe the final black hole geometry
which is almost static in this case. In the plot on the right hand side we show the
vacuum subtracted entanglement entropy Sreg as a function of time for different widths
of the entangling region. It nicely shows the linear growth Sreg ∝ t for t < l/2 and
the constant behavior for t > l/2 such as expected from (2.19) obtained from the CFT
calculation [37]. The linear growth has no obvious explanation in the geometric picture,
but the constant behavior can easily be understood from the fact that at t > l/2 the
surfaces remain entirely in the almost static black hole spacetime.

In Figure 3.4 (left) we show surfaces at fixed time t = 2 and different separations
on the boundary. Surfaces with large separation are highly distorted, because they
probe regions of the spacetime where the curvature strongly varies. Interestingly, the
central point, located at y = 0, of all the surfaces remains always outside the horizon.
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Figure 3.4: Left: Minimal surfaces for different boundary separation l and fixed bound-
ary time t = 2 in the AdS3 Vaidya geometry with a = 30. Right: location of the central
point, located at y = 0, of a family of surfaces with different separation but fixed bound-
ary time. The central point of all the surfaces remains outside the apparent horizon
given by the black dashed line.

This can be seen in the plot on the right hand side of Figure 3.4, where each colored
line represents the location of the central point of a family of surfaces with different
separation but fixed boundary time.

The metric of the Vaidya spacetime is known in closed form and can be written
explicitly into the relaxation code. In cases where no analytic solution is available, like
for the anisotropic black brane or the shock wave geometries presented in later chapters,
we feed our relaxation code an interpolated form of the metric which we generate by
solving the Einstein equations numerically, using the spectral method explained in the
first section of this chapter.

3.3 Computing QNEC Numerically

In this section we discuss our method to compute the variation of the entanglement
entropy with respect to a lightlike deformation such as required in QNEC. With the
relaxation method, introduced in the previous section, this becomes rather simple. We
use again the AdS3 Vaidya spacetime of (3.58) with (3.59) to illustrate our method.

First we generate a family of extremal surfaces with one endpoint shifted in equidis-
tant steps of size ε along the desired lightlike vector kµ± = (1,±1), using our relax-
ation code. In Figure 3.5 (left) we show such a family of surfaces with shifted end-
points. Figure 3.5 (right) shows the corresponding values of the entanglement entropy
computed from the area of each surface, together with a third order polynomial fit
S ≈ c0 + c1ε + c2ε

2 + c3ε
3 from which we compute the desired derivatives at ε = 0,

such as required in the QNEC formula. Note that the values of ε in these plots are
exaggerated for illustrative purposes. The typical values for ε we use in our simulations
are O(10−3).

It is instructive to study QNEC as function of time and separation in our simple
Vaidya example. As argued in [140], QNEC in d > 2 is saturated by all states. However,
as noted in [143], QNEC in d = 2 does not need to saturate in the presence of bulk
matter. More precisely, in d = 2 QNEC is not saturated if the corresponding RT-
surface probes through regions of the geometry where the bulk energy momentum
tensor is non-vanishing. This behavior is nicely confirmed by in our example with
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Figure 3.5: Left: Family of extremal surfaces with one endpoint deformed along the
lightlike vector kµ+ = ε ∗ (1, 1) in the AdS3 Vaidya geometry with a = 30. Right:
Discrete values of the entanglement entropy such as computed from the areas of the
surface family shown in the left plot. The black dashed line is a third order polynomial
fit generated from the discrete values of the entanglement entropy.

the Vaidya spacetime, which has an in-falling matter shell defined by a non-vanishing
energy momentum tensor located close to t = 0.6
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Figure 3.6: Left: QNEC for positive deformation (kµ+ ∝ (1, 1)) as function of separation
and fixed boundary time t = 2 in the Vaidya geometry with a = 30. The black dashed
line is T++(t = 2). Right: QNEC as function of time and fixed separation l = 5.0.

In Figure 3.6 (left) we plot QNEC at t = 2 as function of the size of the entangling
region. Note that surfaces anchored at t = 2 with separations l < t+ 2 are too short to
cross the in-falling shell at t = 0 and QNEC is saturated. The apparent non-saturation
in this plot at very small l is a finite-cutoff effect in our numerics which is non-physical
and QNEC actually saturates all the way down to l = 0. At l ≈ 4 the QNEC becomes
suddenly non-saturated and one can show that it diverges in the limit of δ-like shells
obtained by sending a→∞. This is the point where the dip of the RT-surface touches
the matter shell. For t > 2l QNEC increases again without saturating, because the
surface then always crosses the in-falling matter shell.

In Figure 3.6 (right) we plot QNEC as function of time for constant separation

6Note that for our choice of Eddington-Finkelstein coordinates the in-falling shell resides at a fixed
value of the advanced time coordinate.
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l = 5. Here the situation is similar. For t < 0 the surface resides entirely in the vacuum
region of the spacetime and QNEC is saturated trivially. At t = 0 the surface starts
to cross the matter shell and QNEC is not saturated. At t = l/2 = 2.5 the dip of the
surface crosses the matter shell and QNEC becomes sharply peaked. For t > l/2 the
surface is not long enough to touch the matter shell any more and QNEC saturates
again. In Appendix F we give a simple Mathematica implementation of the numerical
method presented in this section. This closes our discussion on numerical methods. In
the following chapters we will apply these methods to more complicated examples.



50 CHAPTER 3. NUMERICAL ENTANGLEMENT ENTROPY AND QNEC



Chapter 4

Entanglement Entropy in an
Anisotropic System

In this chapter we determine holographically two-point correlators of gauge invariant
operators with large conformal weights and entanglement entropy of strips for a time
dependent anisotropic five-dimensional asymptotically Anti-de Sitter spacetime. At
the early stage of evolution where geodesics and extremal surfaces can extend beyond
the apparent horizon all observables vary substantially from their thermal value, but
thermalize rapidly. At late times we recover quasinormal ringing of correlators and
holographic entanglement entropy around their thermal values, as expected on general
grounds. We check the behavior of holographic entanglement entropy and correlators
as function of the separation length of the strip and find agreement with the exact
expressions derived in the small and large temperature limits. Results displayed in this
chapter are published in [54].

4.1 Anisotropic Asymptotically AdS5 Spacetimes

In this section we review the most important details of the model first introduced in [10]
and studied further in [156–158,162].

The five-dimensional bulk metric that introduces anisotropy between the longitu-
dinal (y) and transverse (~x = (x1, x2)) directions with an O(2) rotational invariance in
the transverse plane is the one we have introduced in (3.1) which we repeat here for
convenience,

ds2 = −A(r, v)dv2 + 2drdv + S2(r, v)
(
e−2B(r,v)dy2 + eB(r,v)d~x2

)
. (4.1)

The Einstein equations given in (3.3) have to be solved for special initial conditions
and appropriate boundary conditions. There are, at least, two ways to create a far-
from-equilibrium state. On the one hand one can turn on a time dependent anisotropy
function at the boundary B(r =∞, v) = B0(t) as in the original works of [10,156] and
let the system evolve. In this case the boundary metric is curved and the conformal
anomaly is present [117]. On the other hand one can specify the initial state in the
absence of external sources by specifying the metric in the bulk on the initial time
slice [157] with a flat boundary geometry. For simplicity, in the following we will study
the setup where the boundary metric is flat and time independent.

For our initial data we follow [158, 162] and choose for the anisotropy function on

51
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the initial time slice

B(r, v0) =
β

r4
exp

[
−
(1

r
− 1

r0

)2
/ω2

]
, (4.2)

with β = 6.6, r0 = 4 and w = 1. In addition the initial conditions have to be sup-
plemented with a value for the coefficient a4 which sets the energy density of the
initial state, for which we take a4 = −1, corresponding to an equilibrium temperature
T = 1/π, as we now recall.

At late times we expect isotropization, B = 0. In that case we recover the usual
static AdS black brane solution as follows. Solving (3.3a) and using residual gauge
transformations yields S = r. This implies S′ = 1 and Ṡ = 1

2 A. Solving (3.3b) then
yields A = r2 (1 − 1/r4), where we fixed the integration constant such that a4 = −1.
The other equations are either trivial, (3.3c) and (3.3e), or redundant, (3.3d). The
result for A is the usual Killing norm for the static AdS black brane. Surface gravity
is given by κ = 1

2 A
′∣∣
r=1

= 2 so that the Hawking temperature is T = κ/(2π) = 1/π.

In the generic anisotropic case, B 6= 0, we solve the Einstein equations (3.3) numer-
ically for the initial conditions (4.2). In this background we then study the evolution
of two-point correlation functions for operators of large conformal weights and the en-
tanglement entropy. This in turn requires us to determine the background sufficiently
far beyond the apparent horizon.

We solve the Einstein equations (3.3) using pseudo spectral methods such as de-
scribed in Chapter 3. We do not fix the location of the apparent horizon. This facilitates
the study of geodesics and extremal surfaces that reach behind the apparent horizon,
which is of relevance for two-point functions and entanglement entropy. For that reason
we want a large computational domain in the holographic coordinate z = 1/r. In all
the computations we took z ∈ [0, 1.6] with the final position of the horizon located at
z = 1. For the time evolution it is sufficient to use a fourth order Runge-Kutta method
with time steps δt = 10−3. All the computations in this chapter were done with the
open source software GNU Octave [163].

4.1.1 Two-Point Correlators

The equal time two-point function for an operator of large conformal weight ∆ can be
computed via a path integral as [164,165]

〈O(t, ~x)O(t, ~x′)〉 =

∫
DP ei∆L(P) ≈

∑
geodesics

e−∆Lg ≈ e−∆L , (4.3)

where the integral is a sum over all possible paths with endpoints at (t, ~x′) and (t, ~x) and
L(P) is the proper length of the path. The first approximation neglects perturbative
corrections and is the so-called geodesic approximation, which holds in the limit when
the conformal weight of the operator is large. The conformal weight effectively plays
the role of 1/~ in usual perturbative expansions of path integrals. Then it can be
shown that the sum over all paths reduces to a sum over all geodesics where Lg denotes
the length of the corresponding geodesic. To leading order only the geodesic with the
smallest value of Lg contributes, whose length we denote by L, which explains the
second approximation1. It neglects instanton corrections.

1 For a comparison of the two-point correlation function obtained by using the “extrapolate” dic-
tionary and the geodesic approximation in AdS3 Vaidya spacetime see [32].
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However, the length of the geodesic has a divergence originating from the asymp-
totically AdS boundary and therefore needs to be renormalized. We choose to subtract
the length of a geodesic in the static black brane background, which we denote by
Ltherm. In terms of the renormalized length δL = L − Ltherm the two-point function
becomes

〈O(t, ~x)O(t, ~x′)〉 ∼ e−∆δL . (4.4)

This means that we can obtain the time evolution of two-point functions by looking
at spacelike geodesics that are anchored at the boundary at fixed separation l and
calculating their length at different times. Due to the anisotropy in the system we only
solve for the subset of correlation functions that are either separated in the longitudinal
direction or in the transverse directions.

To this end we let all the coordinates depend on one parameter σ, which lies in the
interval σ ∈ [−σm, σm]. To obtain the lengths of the geodesics we have to solve the
geodesic equation for the two subspaces given by the line elements

ds2
x1,2

= −Adv2 − 2

z2
dzdv + S2eBdx2

1,2 , (4.5a)

ds2
y = −Adv2 − 2

z2
dzdv + S2e−2Bdy2 . (4.5b)

For the separation in the transverse direction the geodesics end at (v(±σm) = t,
x1(±σm) = ±x0/2, x2(±σm) = 0, y(±σm) = 0), where t is the boundary time. Simi-
larly, for the longitudinal separation we take (v(±σm) = t, y(±σm) = ±x0/2, ~x(±σm) =
0). With this choice of boundary conditions the lengths of the geodesics in the back-
ground (4.1) are given by

Lx1,2 =

∫ σm

−σm
dσ

√
−A(v′)2 − 2

z2
z′v′ + S2eB(x′1,2)2 , (4.6a)

Ly =

∫ σm

−σm
dσ

√
−A(v′)2 − 2

z2
z′v′ + S2e−2B(y′)2 , (4.6b)

where prime denotes the derivative with respect to σ.
We can only study geodesics after some advanced time v > vmin with boundary

separations below a maximal separation l < lmax. This comes from the fact that
by solving Einstein’s equations numerically we have to choose a finite computational
domain. Also, by specifying the initial state in the entire bulk on the initial time slice
the advanced time interval at our disposal is v ∈ [v0,∞]. As the geodesics reach into the
bulk they bend back in advanced time leaving the computational domain for advanced
times v < vmin as well as extending too far into the bulk for separations l > lmax.

To compute two-point functions we need to find curves of extremal length in a
curved spacetime whose endpoints reside on fixed positions on the boundary of that
spacetime. These curves are solutions to the geodesic equation subject to boundary
conditions at the endpoints. For numerical reasons it turns out to be convenient to
use a non-affine parameter σ , where τ = τ(σ) is the usual affine parametrization,
dXµ

dτ
dXν

dτ gµν = 1. In terms of σ the geodesic equation reads

Ẍµ + ΓµαβẊ
αẊβ = JẊµ , (4.7)

where Ẋµ = dXµ

dσ and J = d2τ
dσ2 /

dτ
dσ denotes the Jacobian which originates from the

change in parametrization (see Appendix A). This form of the geodesic equation gives
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us the freedom to choose parametrizations resulting in better convergence behavior of
the relaxation algorithm than the affine parametrization does. In physical terms the
right hand side in (4.7) introduces a fictitious viscous force that enhances numerical
convergence. In our case the geodesic equation (4.7) is given by a set of three coupled
non-linear ODEs of second order for the geodesic coordinates V,Z,X.

This set of equations is a two-point boundary value problem, which is usually either
solved with shooting methods or relaxation methods [155]. We do not shoot but relax,
following the procedure described in Chapter 3, where we state explicitly the geodesics
used as initial guess for the relaxation algorithm and the corresponding Jacobian used in
the numerical simulation. Since we are interested in one-parameter families of geodesics
(evaluated at different constant time slices) we can take the solution for the nth family
member as initial guess for the (n+ 1)st family member.

4.1.2 Holographic Entanglement Entropy

In time dependent systems the covariant entanglement entropy [34] for some boundary
region A is obtained by extremizing the 3-surface functional

A =

∫
d3σ

√
det
(∂Xµ

∂σa
∂Xν

∂σb
gµν

)
, (4.8)

that ends on the boundary surface A. In the dual field theory the entanglement entropy
is then conjectured to be given by [33,34,78]

SEE =
A

4GN
. (4.9)

Usually the boundary regions of interest are either a sphere or a strip that has finite
extent in one direction and infinite extent in the other two directions. In spacetimes
with spherical symmetry in the three spatial dimensions the problem of finding the
extremal area functional (4.8) effectively reduces to finding geodesics. In our case
where spherical symmetry is broken this is not the case anymore. For example, finding
the extremal area for a spherical boundary region would require to solve non-linear
coupled PDEs. However, in the case of a strip with finite extent either in the transverse
or longitudinal direction it is possible to reduce the problem to finding geodesics in a
suitable auxiliary spacetime, as we now demonstrate.

We introduce two scalar fields φi(x
α) and write the line element as

ds2 = gµνdx
µdxν = hαβdx

αdxβ + φ2
1dx

2
2 + φ2

2dx
2
3 , (4.10)

where hαβ is a three-dimensional metric with coordinates (v, r, x1) where x1 represents
the coordinate we choose to have finite spatial extent, i.e. either x‖ or one of x⊥. The
remaining (non-compact) coordinates are then denoted by x2, x3, which we choose to be
two of our three world-volume coordinates; the third one is denoted by σ. Parametrizing
the three-dimensional coordinates as xα = (v(σ), r(σ), x1(σ)), the area functional (4.8)
can be written as

A =

∫
dx3

∫
dx2

∫
dσ

√
φ2

1φ
2
2hαβ

∂xα

∂σ

∂xβ

∂σ
. (4.11)

Performing the integration over the Killing coordinates x2 and x3 yields a (possibly infi-
nite) constant volume factor through which we are going to divide. Thus, instead of cal-
culating entanglement entropy we calculate a entanglement entropy density per Killing
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volume. The problem of extremizing the three-surface corresponding to a boundary
region A of strip-topology is then reduced to a one-dimensional problem.

In fact, from the expression (4.11) one can see that the problem of finding the
extremal three-surfaces reduces to finding geodesics of the conformal metric

ds̃ = h̃αβdx
αdxβ = φ2

1φ
2
2hαβdx

αdxβ . (4.12)

The three-dimensional conformal metrics for separation in the transverse and longitu-
dinal directions for which we have to solve the geodesic equation in our case are given
by

ds̃2
x1,2

= S4e−B
(
−Adv2 + 2drdv + S2eBdx2

1,2

)
, (4.13a)

ds̃2
y = S4e2B

(
−Adv2 + 2drdv + S2e−2Bdx2

y

)
. (4.13b)

The numerical procedure discussed for the two-point functions works also for entan-
glement entropy. Namely, for our problem at hand the evaluation of extremal surfaces
is reduced to the evaluation of geodesics in some auxiliary spacetime.

4.2 Results

In this section we display and discuss our main results. In all figures where a time axis
is plotted we measure the boundary time t or the bulk advanced time v in units of
the temperature of the final black brane, T = 1/π. To make the approach to thermal
equilibrium most transparent we use normalized quantities for the geodesic length Lren

and entanglement entropy Sren defined by

Lren =
L− Lth

Lth
, (4.14a)

Sren =
S − Sth

Sth
, (4.14b)

where L (S) is the unrenormalized length (entanglement entropy) and Lth (Sth) is the
corresponding thermal value.

4.2.1 Background Geometry and Holographic Stress Tensor

Figure 4.1 displays the most salient features of the background geometry. The left figure
plots the anisotropy function B(r, v) and displays the regions outside and inside the
apparent horizon, as well as the event horizon. The black lines depict a null congruence
of geodesics close to the event horizon to exhibit their ingoing/outgoing nature. The
right figure plots transversal and longitudinal pressures as function of boundary time
t. Note the quick thermalization of the pressure components.

4.2.2 Two-Point Correlators

As we have noted before geodesics can extend beyond the apparent horizon. This
is made explicit in Figure 4.2 where the blue curve serves as our initial guess for the
relaxation code. The red geodesics at late times approach the apparent horizon without
crossing it. At sufficiently early times (and sufficiently large separation) the geodesics
cross the apparent horizon, an example of which is depicted by the cyan curve.
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Figure 4.1: Left: anisotropy function B(r, v). Right: transverse and longitudinal
pressure.

Figure 4.2: The green (black-dashed) line indicates the z-position of the apparent
(event) horizon; the dark blue curve is the Poincaré patch AdS geodesic we use to
initialize the simulation; red curves are geodesics with different boundary separation
probing the thermal regime (none of them crosses the apparent horizon); the cyan
curve in the left part of each plot is a geodesic which probes the non-thermal regime
and reaches beyond event and apparent horizon. three-dimensional plot (left) and view
in x-direction (right).
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Figure 4.3: Renormalized length of geodesics for different separations in longitudinal
and transverse directions.
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Figure 4.4: Comparison of longitudinal and transverse geodesic lengths for the same
boundary separation.

The evolution of the renormalized lengths in the transverse and longitudinal direc-
tions for different separations are depicted in Figure 4.3. Depending on the separation
the two-point functions start at t = tmin which is the time when the geodesics extend
beyond the computational domain.

The first observation is that the transverse and longitudinal directions oscillate out
of phase as shown in Figure 4.4. The same feature is seen in the transverse and lon-
gitudinal pressure. By comparing the thermalization times of the one-point functions,
i.e. the expectation value of the stress energy tensor with the two-point functions we
see that the two-point functions thermalize as expected later. Also, the thermalization
time increases if the boundary separation is increased.

4.2.3 Holographic Entanglement Entropy

The extremal surface equations — which we mapped to geodesic equations in an auxil-
iary spacetime — are solved again by a relaxation method. We observe the same qual-
itative features as for geodesics in Figure 4.2 above: at early times extremal surfaces
can extend beyond the apparent horizon, while at sufficiently late times they approach
it from the outside without crossing. However, there are also notable differences to
geodesics, which we discuss now.

As discussed in Section 2.3.3 conformal geodesics reach much farther into the bulk
compared to the pure AdS case. Therefore the boundary separations we can study for
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Figure 4.5: Longitudinal and transverse entanglement entropy for different separations.
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Figure 4.6: Longitudinal and transverse entanglement entropy for same separation.

the entanglement entropy are smaller compared to the two-point functions. This is also
the reason why for the same boundary separation the entanglement entropy reaches
equilibrium later as the two-point functions. For the same boundary separation and
at the same boundary time conformal geodesics reach deeper into the bulk and further
back in time and therefore are more sensitive to out of equilibrium effects which are
most noticeable at early times. In addition the shape of the curves differs from the
two-point functions and we exhibit these features now in some plots.

Figure 4.5 plots entanglement entropy for different separations in longitudinal and
transverse directions. Comparison with Figure 4.3 shows that the oscillations are less
pronounced for entanglement entropy.

Figure 4.6 plots entanglement entropy for a fixed separation in longitudinal and
transverse directions. Again the behavior of the curves is out of phase, in the sense that
maxima of one curve correspond to minima of the other. Comparison with Figure 4.4
shows again that the oscillations are less pronounced for entanglement entropy.

4.3 Late Time Behavior and Quasinormal Modes

After the early far-from-equilibrium phase the geometry relaxes to the static Schwarz-
schild black brane solution. As noted in [158, 162] the anisotropy of the system is
exponentially damped and at sufficiently late times one enters the linearized regime.
In this regime the approach to equilibrium is accurately described by the lowest lying
quasinormal mode (QNM) which characterizes the response of the system to infinitesi-
mal metric perturbations. In the case at hand the relevant channel for the gravitational
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Figure 4.7: Left: Renormalized geodesic length for longitudinal (red) and transverse
(blue) separation l = 1 multiplied by the imaginary part of the lowest QNM. Right:
Renormalized entanglement entropy for the same parameters as on the left.

fluctuations is the spin two symmetry channel which coincides with the fluctuations of
a massless scalar field in the static black brane geometry. The asymptotic response of
the pressure anisotropy then takes the form

b4(t) ∼ Re
[
c1e
−i ω1t

]
, (4.15)

with some constant c1 and the complex frequency ω1 of the lowest QNM given by
[166,167]

ω1

πT
= ±3.119452− 2.746676 i . (4.16)

On the field theory side QNMs appear as poles in the retarded Green function [167–170].
It is therefore expected that also the late time behavior of the correlation functions
obtained in the previous section is described by the lowest QNM. We now show that
this is indeed the case.

In Figure 4.7 (left) we plot the renormalized geodesic length multiplied with the
imaginary part of the lowest QNM e−Im[ω1t]Lren for transverse and longitudinal separa-
tions. One clearly sees that after a short period of time the evolution of the correlator
is accurately described by the ring-down of the black brane with constant amplitude
and frequency. The connection between the late time behavior of correlation functions
and QNMs was previously also observed in [171–173].

It turns out that entanglement entropy also follows this pattern. In [174] a connec-
tion between QNMs and the behavior of the entanglement entropy was found. From
linearized Einstein equations one can derive a differential equation for the first order
correction ∆SA of the entanglement entropy describing its change when a given ground
state is excited. By imposing in-falling boundary conditions at the horizon one obtains
a QNM dispersion relation putting a constraint on entanglement entropy. With our
numerical solution we can demonstrate that the late time behavior of entanglement
entropy indeed follows the QNM ring-down even without imposing in-falling boundary
conditions. In Figure 4.7 (right) we show the entanglement entropy multiplied with
e−Im[ω1t]Sren for the infinite strip with finite separation in longitudinal and transverse
direction. As for the correlation function, at late times, the entanglement entropy
shows quasinormal ringing with constant amplitude and frequency. These oscillations
show that entanglement entropy need not approach its thermal value from below but
rather shows oscillatory behavior around its thermal value.
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Figure 4.8: Left: Renormalized length of geodesics as a function of their boundary
separation in transverse directions for different fixed boundary times t = 0.5, 1, 1.5
(endpoints from left to right). The curves terminate when the geodesics leave the
computational domain. The black dashed line shows the thermal limit. Right: En-
tanglement entropy (blue) and geodesic length (red) in the thermal (solid) and zero
temperature (dashed) limit.

To conclude this section we finally study the departure of the length of the geodesics
and entanglement entropy from equilibrium for different times as a function of the
boundary separation. This time we normalized the length of geodesics by subtracting
a cutoff dependent piece

L(l, t) = Lbare(l, t, zc)− Lbare(l = 0.1, t, zc) , (4.17)

where zc is the value of the cutoff. The case for the two-point function with separation
in the transverse direction is displayed in Figure 4.8. Out of equilibrium effects manifest
themselves as oscillations around the thermal value. The curves terminate when the
geodesics leave the computational domain, so for early times we only have access to
rather small boundary separations. The same effect is seen for entanglement entropy.

In the thermal limit the scaling for the geodesic length at small and large boundary
separation is dictated by conformal symmetry and is proportional to 2 log(l/2) and 2l
respectively. At large separation the entanglement entropy also scales linearly with the
separation length, whereas at small separation it is proportional to 1/l2. All these re-
sults agree precisely with the perturbative expressions derived in the limits of small and
large temperatures [78, 175]. Our numerical results are shown in Figure 4.8 where we
also plot the corresponding zero temperature results, which coincide with the thermal
curves for small separations.



Chapter 5

Entanglement Entropy in Shock
Wave Collisions

In this chapter we study the time evolution of two-point functions and entanglement
entropy in strongly anisotropic, inhomogeneous and time dependent N = 4 super
Yang–Mills theory in the large N and large ’t Hooft coupling limit using AdS/CFT.
On the gravity side this amounts to calculating the length of geodesics and area of ex-
tremal surfaces in the dynamical background of two colliding gravitational shock waves,
which we do numerically. We discriminate between three classes of initial conditions
corresponding to wide, intermediate and narrow shocks, and show that they exhibit
different phenomenology with respect to the nonlocal observables that we determine.
Our results permit to use (holographic) entanglement entropy as an order parameter
to distinguish between the two phases of the cross-over from the transparency to the
full-stopping scenario in dynamical Yang–Mills plasma formation, which is frequently
used as a toy model for heavy ion collisions. The time evolution of entanglement
entropy allows to discern four regimes: highly efficient initial growth of entanglement,
linear growth, (post) collisional drama and late time (polynomial) fall off. Surprisingly,
we found that two-point functions can be sensitive to the geometry inside the black
hole apparent horizon, while we did not find such cases for the entanglement entropy.
Results displayed in this chapter are published in [176].

5.1 Gravitational Shock Waves in Asymptotically AdS5

The holographic setup we consider describes the collision of two sheets of energy having
Gaussian shape in their direction of motion and which are homogeneous in the remain-
ing two spatial directions. These shocks serve as caricatures of two highly Lorentz
contracted nuclei which approach each other at the speed of light and induce non-
Abelian plasma formation as they collide.

On the gravity side the corresponding five-dimensional bulk metric is rotationally
invariant and homogeneous in the transverse plane (x1, x2) but inhomogeneous in the
longitudinal direction y, which is the direction of motion of the shocks. The metric
ansatz in Eddington–Finkelstein coordinates reads

ds2 = −Adv2 + S2
(
e−2Bdy2 + eBd~x2

)
+ 2dv(dr + Fdy) , (5.1)

where the functions A, S, B and F depend on the holographic coordinate r, (advanced)
time v and longitudinal coordinate y, but are independent from the transversal coor-

61
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dinates ~x. The equations of motion can be found e.g. in [13] and are solved near the
boundary by

A = r2 + 2ξr + ξ2 − 2∂vξ +
a4

r2
+
∂va4 − 4ξa4

2r3
+O(r−4) , (5.2a)

B =
b4
r4

+
15∂vb4 + 2∂yf4 − 60ξb4

15r5
+O(r−6) , (5.2b)

S = r + ξ − 4∂yf4 + 3∂va4

60r4
+O(r−5) , (5.2c)

F = ∂yξ +
f4

r2
+

4∂vf4 + ∂ya4 − 10ξf4

5r3
+O(r−4) , (5.2d)

where ξ(v, y) encodes the residual diffeomorphism freedom r → r+ξ(v, y). It is possible,
though not necessarily numerically convenient, to choose ξ = 0.

As usual the normalizable modes a4(v, y), b4(v, y) and f4(v, y) are undetermined
by the near-boundary expansion and require a solution of the full bulk dynamics.
These coefficients in the asymptotic expansion determine the expectation value of the
conserved and traceless stress energy tensor in the dual field theory [114]

〈Tµν〉 =
N2
c

2π2


E S 0 0
S P‖ 0 0

0 0 P⊥ 0
0 0 0 P⊥

 , (5.3)

where

E = −3

4
a4 , P‖ = −1

4
a4 − 2b4 , P⊥ = −1

4
a4 + b4 , S = −f4 . (5.4)

5.1.1 Initial Conditions

The pre-collision geometry describing two shocks moving in ±ỹ-direction can be written
down in Fefferman-Graham coordinates (r̃, t̃, ỹ, ~̃x) as follows [8]

ds2 = r̃2ηµνdx̃
µdx̃ν +

1

r̃2

(
dr̃2 + h(t̃+ ỹ)(dt̃+ dỹ)2 + h(t̃− ỹ)(dt̃− dỹ)2

)
, (5.5)

where ηµν denotes the usual four-dimensional Minkowski boundary metric and h(t̃± ỹ)
is an arbitrary function for which we choose a Gaussian of width ω and amplitude µ3

h(t̃± ỹ) =
µ3

√
2πω2

e−
(t̃±ỹ)2

2ω2 . (5.6)

In this gauge the non-vanishing components of the energy momentum tensor read

T̃ t̃t̃ = T̃ ỹỹ = h(t̃− ỹ) + h(t̃+ ỹ) , T̃ t̃ỹ = h(t̃− ỹ)− h(t̃+ ỹ) , (5.7)

and describe two lumps of energy with maximum overlap at t̃ = 0. At early times
t̃ � −w, when the shocks h(t̃ ± ỹ) have negligible overlap, the line-element (5.5) is
close to an exact solution to Einstein’s equations, but around t̃ = 0 their dynamics can
only be computed numerically.

We do this for three different initial conditions hn,i,w(ỹ) describing qualitatively
different situations that we shall refer to as narrow, intermediate and wide shocks,
where in all cases the initial position of the shocks is at ỹ0 = ±7/4. For the width of
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the shocks we take ωn,i,w = 0.1, 0.25, 0.5 and we will display all our results in units of
µ.

For the numerical evolution scheme the initial data needs to be transformed to
Eddington–Finkelstein coordinates (r, v, y, x1, x2) by solving for radially in-falling null
geodesics in the background (5.5), leading to ordinary differential equations, which are
solved for appropriate boundary conditions at the boundaries of the radial domain. We
omit a discussion of the numerical details concerning this coordinate transformation
and the subsequent evolution and refer the reader to [158,161], where the full procedure
is explained.

5.1.2 Evolution of the Energy Momentum Tensor

The time evolution of the energy momentum tensor for colliding shocks has been studied
extensively in [13, 16, 158, 177]. In Figure 5.1 we show the evolution of the energy
density E(t, y) extracted from the numerical evolution for the different initial conditions
stated above. As discussed in [16] the energy density behaves qualitatively different
in collisions of narrow shocks and in those of wide shocks. This cross-over is not only
of academic interest, but also for applications, since it was argued that the narrow
shocks describe more adequately the situation at LHC, while the wide shocks are more
suitable for RHIC [16] (see also [22]). We list below some relevant properties that differ
between wide and narrow shocks:

• Narrow shocks exhibit transparency, in the sense that they pass through each
other and, even though their shape gets altered and they decay, they continue to
move at the speed of light after the collision. By contrast, wide shocks realize a
full-stopping scenario, in the sense that the energy density is localized mostly in
the central region after the collision, and the shocks themselves not only change
their shape but also get slowed down. Wide shocks then lead to initial con-
ditions for hydrodynamics where all velocities are close to zero, i.e. there is a
hydrodynamical explosion in close similarity to the Landau model of heavy ion
collisions [178].

• Narrow shocks can yield regions of negative energy density after the collision
right behind the original shocks on the lightcone. Curiously, this region does
not admit a local restframe [71], but also does not violate general principles of
quantum field theory, such as the averaged null energy condition [65]. At y = 0
after the shocks pass through each other, the energy density grows at early times
as E = 2µ6t2 +O(t5), which implies pressures equal to P‖/E = −3 and P⊥/E = 2.
This feature was first observed for δ-like shock waves analytically [11] and then
numerically for sufficiently narrow Gaussian profiles [16]. By contrast, for the
wide shocks the energy density and pressures remain positive everywhere.

Given the substantial differences in local observables one may expect that the charac-
teristic features for narrow and wide shocks also show up in nonlocal observables, like
two-point functions and entanglement entropy. In the remainder of this chapter we
verify this expectation by explicit computations, starting with the two-point functions
in the next section.
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Figure 5.1: Evolution of the energy density ε/µ4 as a function of time t and longitudinal
coordinate y for wide, intermediate and narrow shocks (from left to right).

5.2 Two-Point Functions

Within AdS/CFT the equal time two-point function of operators O with large confor-
mal weight ∆ can be computed from the length L of spacelike geodesics in the bulk
geometry [164,165] via

〈O(t, ~x)O(t, ~x′)〉 =

∫
DP ei∆L(P) ≈

∑
geodesics

e−∆Lg ≈ e−∆L . (5.8)

In asymptotically AdS the length of a geodesic which is attached to the boundary is
infinite and a regularization scheme must be adopted. A natural way to regularize is
to subtract the length L0 of a geodesic in AdS corresponding to the vacuum value of
the correlator

Lreg = L− L0 . (5.9)

For illustrative purposes we set ∆ = 1 when we display our results which is the
same as interpreting Lreg to be given in units of ∆. Thus, the two-point functions we
compute are defined as follows

〈O(t, ~x)O(t, ~x′)〉reg = e−Lreg . (5.10)

In order to obtain the geodesic length we solve the geodesic equation numerically
with a relaxation algorithm such as described in Chapter 3.

5.2.1 Geodesics in the Shock Wave Geometry

For simplicity we restrict our attention to geodesics that only extend along the y-
direction and not along the transverse directions (x1, x2), i.e. we consider geodesics in
the three-dimensional bulk-subspace

ds2
y = −Adv2 − 2

z2
dzdv + 2Fdydv + S2e−2Bdy2, (5.11)

where z = 1/r. To find these geodesics we solve the (non-affine) geodesic equation

Ẍµ + ΓµαβẊ
αẊβ = JẊµ, (5.12)

subject to the following boundary conditions at z = 0

Xµ(±1) ≡ (V (±1), Z(±1), Y (±1)) = (t, 0,±l/2), (5.13)
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where Xµ(σ) are the embedding functions of the geodesic and dots denote derivatives
with respect to the non-affine parameter σ ∈ [−1, 1]. As initial guess we use again
the pure AdS geodesics of (2.52a)–(2.52c) and the corresponding expression for the
Jacobian given in (2.51). We assume the boundary separation to be centered around
y = 0. Describing off-central geodesics requires some straightforward modifications of
our formulas.

The bulk part of the geodesic length, which is the contribution from z > zcut, follows
from integrating the line element (5.11) and the corresponding line element for pure
AdS

Lbulk =

∫ σ+

σ−

dσ

√
−AV̇ 2 − 2

Z2
ŻV̇ + 2FV̇ Ẏ + S2e−2BẎ 2, (5.14a)

Lbulk
0 =

∫ σ+

σ−

dσ
1

Z0

√
−V̇0

2 − 2Ż0V̇0 + Ẏ 2
0 , (5.14b)

where the metric functions (A,B, S, F ) have to be evaluated along the geodesic Xµ(σ).
In order to realize an IR-cutoff at a given value zcut the range of the non-affine parameter
σ ∈ [σ−, σ+] is bounded as usual

σ± = ±
√

1− 2zcut

l
. (5.15)

The near boundary part of the geodesic length, which is the contribution from 0 ≤ z ≤
zcut, can be extracted from the near boundary solution of the geodesic equation. Near
z = 0 the embedding functions and the Jacobian can be expressed in terms of a power
series in z

Z(z) = z, V (z) =

nmax∑
n=1

vnz
n, Y (z) =

nmax∑
n=1

ynz
n, J(z) =

nmax∑
n=1

jnz
n−2 ,

(5.16)
The coefficients (tn, yn, jn) in (5.16) can be computed by solving the geodesic equation
order by order in z, which leads to the following expressions

Z(z) = z , (5.17a)

V (z) = v0 − z + v2z
2 +

(
v2y

2
2 − v3

2

)
z4 +O

(
z5
)
, (5.17b)

Y (z) =
l

2
+ y2z

2 +
(
y3

2 − v2
2y2

)
z4 +O

(
z5
)
, (5.17c)

J(z) =
1

z
+
(
4v2

2 − 4y2
2

)
z +O

(
z5
)
. (5.17d)

Here we fixed the leading coefficients by the boundary conditions (5.13), but the co-
efficients v2 and y2 cannot be determined by a near boundary expansion. This is
analogous to the normalizable modes of the metric, which are also sensitive to the full
bulk geometry. The pure AdS solution is given by

Z0(z) = z , (5.18a)

V0(z) = t0 − z , (5.18b)

Y0(z) = ±
√

(l/2)2 − z2

= ±
( l

2
− z

l
− z4

l3

)
+O(z6) , (5.18c)

J0(z) =
1

z
− 4

l2
z − 16

l4
z3 +O(z5) . (5.18d)
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which hence has v2 = 0 and y2 = ∓1/l. We can now compute the near boundary
expansion of the geodesic length, which for one branch is given by

Lbdry − Lbdry

0 =

∫ zcut

0
dz

(
− 2

l2
− 2v2

2 + 2y2
2

)
z

+

(
−a4

2
− 6

l4
− 12v2

2y
2
2 + 6v4

2 + 6y4
2

)
z3 +O

(
z5
)
, (5.19)

where the leading AdS divergent 1
z term nicely cancels out. The regularized geodesic

length Lreg, which we need to evaluate (5.10), is the sum of the bulk contribution and
the near boundary contribution 1

Lreg = (Lbulk − Lbulk
0 ) + (Lbdry − Lbdry

0 ) . (5.20)

When using (5.20) to evaluate (5.10) numerically one has to ensure that the results
are, to some required accuracy, independent of the discretization and the cutoff. We
require this accuracy to be of the same order as the maximal residual (= 10−5) we allow
in the geodesic equation and below which we stop to iterate the relaxation procedure.
We checked the convergence of the two-point function with the gridsize in the range
from 50 up to 400 gridpoints and find that for more than 200 gridpoints the change is
smaller than O(10−5) which is the same order as the allowed residual. Based on this
analysis we choose 200 gridpoints to discretize our geodesics and set zcut = 0.075 in all
the calculations in this chapter.

5.2.2 Evolution of Two-Point Functions

In this section we present our numerical results for two-point functions in holographic
shock wave collisions. Before we discuss the actual results let us start with some
remarks regarding the computational domain used in these simulations. As input for
the relaxation algorithm we provide numerical results of the shock wave metric in
a finite domain in (t, y, z). This computational domain, in which we can solve the
geodesic problem, is bounded by µt ∈ [−1.5, 6], µy ∈ [−5, 5], where in the radial
coordinate we have chosen the apparent horizon as a natural bound z ∈ [0, 1.08zAH].
That means whenever we display geodesics which reach beyond this radial domain,
which can happen as we discuss below, an extrapolated version of the metric is used2.
For a given choice of boundary conditions (µt, µl) the final shape of the geodesic in
the bulk is a priori unknown, i.e. initially we do not know if the geodesic resides
entirely within or extends beyond the computational domain in which the metric is
known. Therefore finding a feasible set of parameters (µt, µl) for a given computational
domain requires some trial and error. The geodesics bend back in advanced time as
they reach into the bulk, leaving the computational domain for too early boundary
times. Therefore we can display our results only in a finite time near the collision time
t = 0 where all geodesics with different boundary separation lie in the computational
domain. All these points apply accordingly to the entanglement entropy simulation.

1In practise we do not compute the near boundary term, as the extraction of v2 and y2 would be
numerically as hard as taking a small enough zcut such that this term is small. We have included
this formula for completeness, and will later see that a similar procedure does work for entanglement
entropy.

2 For the narrow shocks the computational domain does not reach behind the horizon, so there
extrapolation is always used (note that the fact that the geodesic crosses the horizon or not is not
affected by this extrapolation).
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Figure 5.2: Left: Summary of the geometrical setup. The black surfaces represent the
radial position zAH(t, y) of the apparent horizon; red curves are AdS geodesics used for
the initialization, the green lines are geodesics (µl = 1.5) for various time steps and at
z = 0 we show a density plot of the energy density for wide, intermediate and narrow
shocks (top to bottom). Right: Corresponding evolution of the two-point function for
different boundary separation µl.



68 CHAPTER 5. ENTANGLEMENT ENTROPY IN SHOCK WAVE COLLISIONS

For the time evolution it is of advantage, after using the pure AdS geodesic at
the initial time, to use the previous solution to initialize the next time step. This
approach turns out to be numerically extremely efficient and the relaxation algorithm
reveals its full power, since in most cases the result at a given time is an excellent
estimate at the next time step. A time step of ∆t = 0.1 allows to resolve nicely the
shape of the two-point function and reduces the required number of iterations almost
to a minimum. Usually two iterations are sufficient to achieve relative residuals in the
geodesic equation which are < 10−5 and in many cases even one or two orders smaller.

We follow the same logic when we compute the evolution in the boundary sepa-
ration, where this approach is not only numerically efficient but also crucial to reach
large separations. Undeformed ansatz geodesics of large separation typically reach far
beyond the radial domain and finding the true solution using such geodesics to initial-
ize the relaxation inevitably fails. We circumvent this problem by initializing with an
ansatz of small separation (µl = 0.2), which comfortably resides within the computa-
tional domain. Then we increase step by step the boundary separation and use the
result for a given separation as ansatz for the next separation step. By using a step size
of ∆l = 0.1 we can nicely resolve the shape of the two-point function and the relaxation
usually converges again after two iterations. Since the relaxed geodesics are typically
strongly deformed in direction away from the apparent horizon, i.e. the upper bound of
the radial domain, we can reach separations which were inaccessible by simply relaxing
the corresponding ansatz geodesic.

We like to discuss first the results from the time evolution before we go to the
evolution in the separation. In Figure 5.2 (left) the whole setup for wide, intermediate
and narrow shocks is displayed. The dark surface represents the radial position of
the apparent horizon zAH(t, y). The evolution of the energy density of the boundary
conformal field theory is shown by a contour plot located at the boundary z = 0.
The green lines are geodesics at various time steps for a given separation. For narrower
shocks the minimum of the apparent horizon is closer to the boundary and the influence
on the shape of the geodesics is bigger. One can see that the tips of the geodesics tend
to avoid the apparent horizon and the evolution of the tips show a similar shape as
the apparent horizon. Once the profile of the geodesics is found the evolution of the
two-point functions can be extracted by computing their length. On the right hand side
of Figure 5.2 the evolution of the two-point functions for various boundary separations
for the different geometries are displayed.

Let us now summarize the most salient features in the time evolution of the two-
point function during a holographic shock wave collision.

• rapid onset of linear de-correlation: The system starts in some correlated
state. As the shocks are getting closer more and more short range correlations
are destroyed and the system rapidly starts to de-correlate in a linear fashion
until a local minimum is reached. The rapid onset of the linear regime is clearly
visible for the narrow shocks in Figure 5.2, where for intermediate and wide shocks
the onset lies outside our computational domain for larger separations, but the
linear regime is still visible. For intermediate and narrow shocks the minimum is
located close to t = 0 where the energy density is maximal. For wide shocks this
minimum is reached significantly before t = 0.

• premature de-correlation: A careful tracking of the position of the minimum
as a function of the boundary separation reveals that it is shifted to earlier times
as the separation increases. This effect, which is very small and therefore hardly
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Figure 5.3: Left: Summary of the geometrical setup. The black surfaces represent
the radial position zAH(t, y) of the apparent horizon; red, green and blue curves are
geodesics of various separations at µt = 0, µt = 1 and µt = 2 respectively and at z = 0
we show a contour plot of the energy density for wide, intermediate and narrow shocks
(top to bottom). Right: Corresponding evolution of the two-point function with the
boundary separation µl at different times.
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visible in Figure 5.2, is a robust feature of all three kinds of shocks that we have
studied.

• linear correlation restoration: During the collision, when the shocks interact,
new correlations are formed in the system. As the shocks move outwards (t > 0),
the correlations are linearly restored for all three kinds of shocks.

• correlation overshooting of narrow shocks: After the linear restoration
regime, the correlations in wide and narrow shocks approach their final values in
very different ways. For intermediate and narrow shocks the correlations signifi-
cantly overshoot their final values before they finally approach them from above.
In the case of wide shocks this effect is strongly damped and the correlations
approach their initial value almost monotonically from below.

We switch now to the scaling of the two-point function with the separation. The
holographic setup and the results for the evolution of the two-point function are dis-
played in Figure 5.3. At the collision time (µt = 0) the two-point function falls
off monotonically with the separation in all three cases, although the corresponding
geodesics are strongly deformed. For the wide shocks this behavior persists also at
later times, where due to the weaker influence of the shocks the correlations fall off
more slowly. For intermediate and narrow shocks an additional maximum appears at
µt > 0 which is more pronounced for narrow shocks. The position of this additional
maximum is centered around the position of the outgoing shocks. It is suggestive that
narrow shocks which pass through each other almost transparently remain correlated
for some time after the collision while wide shocks stop each other before they explode
hydrodynamically and the correlations are completely lost. This motivated us to study
the correlations between the shocks themselves, which we do systematically in Section
5.2.3. There we find that the correlations between intermediate and narrow shocks
significantly grow after the collision before they start to decay, where the correlations
between wide shocks decay immediately.

Interestingly, for larger separations the geodesics remain outside the horizon for
early times, but they cross the horizon after a time of around µt = 1.5. This can be
seen from the blue curves in Figure 5.3 and is displayed more clearly in Figure 5.4
where we plot the tip of the geodesic located at y = 0, for different separations and the
position of the apparent horizon at y = 0. This happens for all the initial conditions
(wide, intermediate, narrow) we have studied and is in strong contrast to the entan-
glement entropy case where we do not find extremal surfaces which cross the horizon.
The crossing after a time of µt = 1.5 is perhaps counterintuitive since geodesics are
expected to remain outside the horizon when the system is close to equilibrium. Indeed,
hydrodynamics applies after a time µt = 0.89 [16], which is well before the crossing of
the geodesics. At later times presumably the geodesics indeed remain outside again,
though our numerics did not allow to determine the precise time at which this is the
case.

5.2.3 Correlations of Colliding Shocks

Instead of studying the time evolution of the two-point function between two fixed
points in space, in the context of heavy ion collisions it might be more interesting to
actually study the correlation between the two shocks itself. In order to do so, the
endpoints of the geodesics follow the maxima of the energy density.



5.2. TWO-POINT FUNCTIONS 71

μt=0.0 μt=0.5 μt=1.0

μt=1.5 μt=2.0 μt=2.5
zhorizon

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
μt

0.2

0.4

0.6

0.8

1.0

1.2

1.4
μz

μt=0.0 μt=0.5 μt=1.0

μt=1.5 μt=2.0 μt=2.5
zhorizon

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5
μt

0.2

0.4

0.6

0.8

1.0

1.2

1.4
μz

μt=0.0 μt=0.5 μt=1.0

μt=1.5 μt=2.0 μt=2.5
zhorizon

-1 0 1 2
μt

0.2

0.4

0.6

0.8

1.0

1.2

1.4
μz

Figure 5.4: The z-position of the geodesics at y = 0 for several times and separa-
tions, starting with l = 0 near the boundary, and increasing going towards the end of
the curve. We show wide, intermediate and narrow shocks (from left to right). The
z-position of the apparent horizon at y = 0 is shown in black. At late times and suf-
ficiently large boundary separation in all three cases (wide, intermediate and narrow
shocks) geodesics can reach behind the apparent horizon, whereas for early times they
reside outside the horizon entirely.

When the separation of the endpoints becomes smaller than three times the cutoff
we fix the endpoints to this value until the distance between the two maxima after
the collision exceed this value. The results are displayed in Figure 5.5, where the
geometrical situation is displayed on the left hand side and the time evolution of the
two-point-functions on the right hand side.

As already discussed in Section 5.2.2, for wide shocks the behavior is qualitatively
different than for intermediate and narrow shocks.

As the two wide shocks approach each other their correlation increases almost lin-
early until it reaches a plateau, which is the point when the separation of the endpoints
is smaller than three times the cutoff. Once the shocks separate again from each other
their correlation decreases.

As the shocks get narrower the initial growth slows down because the shocks start
to overlap later. After the fixed separation period a local minimum appears after which
the correlations continue to grow to reach another maximum which appears later for
narrow shocks. In addition, the maximum correlation is highest for narrow shocks.

This behavior is reminiscent of the full stopping and transparency scenario for wide
and narrow shocks considered in [16]. As the wide shocks start to interact the energy
density starts to pile up and all the energy density is contained in a small region after
which hydrodynamical explosion occurs. This behavior is also encoded in the two-
point function which reaches a maximum and can only decrease when hydrodynamic
explosion occurs.

For narrower shocks the situation is different. The shocks almost move through
each other. Their shape gets altered but no hydrodynamic explosion occurs. The
shocks separate from each other and plasma between them forms resulting in a growth
of the correlation also after the collision. At sufficiently late times, when the shocks
are separated far enough and a hydrodynamical description is applicable the two-point
function decreases rapidly.

To summarize, there is a general pattern appearing. As the shocks become narrower
the initial growth slows down, the maximum correlation increases and occurs later.
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Figure 5.5: Left: Time evolution of geodesics in the shock wave geometry (green) for
wide, intermediate and narrow shocks (top to bottom) pure AdS geodesics (red) with
endpoints attached to the position of the maxima in the energy density. Right: Time
evolution of the correlation between the shocks; dashed lines indicate the region where
only a central maximum in the energy density exist and the separation is fixed to 3∗zcut.



5.3. ENTANGLEMENT ENTROPY 73

5.3 Entanglement Entropy

In this section we monitor the evolution of entanglement entropy. In time dependent
systems the covariant entanglement entropy [34] for some boundary region A is obtained
by extremizing the three-surface functional

A =

∫
d3σ

√
det
(∂Xµ

∂σa
∂Xν

∂σb
gµν

)
, (5.21)

that ends on the boundary surface A. In the dual field theory the entanglement entropy
is then conjectured to be given by [33,34,78]

SEE =
A

4GN
. (5.22)

Under certain circumstances the problem of finding extremal surfaces can be reduced
to finding geodesics in an auxiliary space-time and the problem of solving non-linear
partial differential equation can be circumvented [54]. In the case at hand this can be
achieved by considering a stripe entangling region with finite extent in the longitudinal
direction y and infinite extent in the homogeneous transverse directions (x1, x2) for
which (5.21) simplifies to

A =

∫
dx1

∫
dx2

∫
dσ

√
Ω2hµν

∂Xµ

∂σ

∂Xν

∂σ
= V L̃ . (5.23)

The surface functional (5.23) suffers from two kinds of infinities, one from the integral
V =

∫
dx1

∫
dx2 over the homogeneous directions and another one from the infinite

geodesic length L̃ in the auxiliary spacetime Ω2hµν . Since the infinite volume factor
V contains no dynamical information these singularities are avoided by considering
entanglement entropy densities SEE

V . Analogous to the two-point function we regularize

the geodesic length L̃ by subtracting the corresponding auxiliary vacuum contribution
L̃0. The observable we compute is the regularized entanglement entropy density per
Killing volume in units of 4GN

Sreg = 4GN

(SEE

V
− S0

EE

V0

)
= L̃− L̃0 . (5.24)

5.3.1 Geodesics in the Auxiliary Spacetime

Our aim is to compute the entanglement entropy for a stripe region with finite extent
in y-direction and infinite extent in (x1, x2) using formula (5.24). Therefore we have to
find geodesic lengths L̃ and L̃0 in the corresponding auxiliary spacetimes. The auxiliary
spacetime, which is related to the metric (5.1) by a conformal factor Ω2 = S4e2B, reads

ds̃2
y = S4e2B

(
−Adv2 − 2

z2
dzdv + 2Fdydv + S2e−2Bdy2

)
. (5.25)

This time we initialize the relaxation algorithm with a geodesic in Poincaré patch AdS
times a conformal factor Ω2

0 = 1
z4

ds̃2
0 =

1

z6

(
−dv2 − 2dzdv + dy2

)
. (5.26)

Using the ansatz (2.49) and the corresponding Jacobian (2.51) in the relaxation algo-
rithm allows us to compute geodesics in the auxiliary spacetime (5.25).
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The bulk parts of the geodesic lengths in (5.24), which are the contributions from
z > zcut, follow from integrating the line elements (5.25) and (5.26)

L̃bulk =

∫ σ+

σ−

dσS2eB
√
−AV̇ 2 − 2

Z2
ŻV̇ + 2FV̇ Ẏ + S2e−2BẎ 2, (5.27a)

L̃bulk
0 =

∫ σ+

σ−

dσ
1

Z3
0

√
−V̇0

2 − 2Ż0V̇0 + Ẏ 2
0 , (5.27b)

where in this case the bounds of the integral σ±, implementing the IR-cutoff at z=zcut,
are given by

σ± = ±
√

1− zcut

z∗
, (5.28)

with z∗ such as defined above (2.50).

We build the near boundary part (0 ≤ z ≤ zcut), like for the two-point function,
from the asymptotic solution of the geodesic equation in the conformal spacetime,
which leads to the following near-boundary expansion

Z(z) = z , (5.29a)

V (z) = t0 − z + v4z
4 +

a4z
5

5
+O

(
z6
)
, (5.29b)

Y (z) =
l

2
+ y4z

4 +
f4z

5

5
+O

(
z6
)
, (5.29c)

J(z) =
3

z
+ (2a4 − 4b4) z3 +O

(
z6
)
, (5.29d)

where the normalizable modes a4(v, y), b4(v, y) and f4(v, y) are evaluated at v = t0
and y = ± l

2 . We again have two undetermined constants v4 and y4, which now appear
two orders higher than for the case of the two-point function. Again we also have the
analytic solution in the auxiliary pure AdS spacetime

Z0(z) = z , (5.30a)

V0(z) = t− Z0(z) , (5.30b)

Y0(z) = ±
(
− l

2
+
WZ0(z)4

4
2F1

[
1
2 ,

2
3 ,

5
3 ;W 2Z0(z)6

] )
= ±

(
− l

2
+
W

4
z4
)

+O(z10) , (5.30c)

J0(z) =
3− 6W 2z6

z −W 2z7
=

3

z
− 3W 2z5 +O(z11). (5.30d)

The near boundary contribution to the geodesic length for both endpoints evaluates to

L̃bdry − L̃bdry

0 =
(
b4 −

a4

2

)
z +

(
∂tb4 −

7∂ta4

20

)
z2

+
1

120
(20∂y∂tf4 − 13∂2

t a4 + 70∂2
t b4 + 7∂2

ya4 + 2∂2
yb4 + 960y2

4 − 960t24)z3

+ O(z4), (5.31)

where the divergent term cancels out again. Now this formula is clearly more useful,
as the two leading contributions do not depend on the unknown coefficients v4 and y4,
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Figure 5.6: Evolution of the entanglement entropy for different separations of width
µl of the stripe region for wide (left), intermediate (middle) and narrow (right) shocks.

which hence allows to reduce the cutoff dependence significantly. The regularized en-
tanglement entropy of (5.24) is the sum of the bulk contribution and the near boundary
contribution

Sreg = (L̃bulk − L̃bulk
0 ) + (L̃bdry − L̃bdry

0 ) . (5.32)

As for the two-point function we checked the convergence of Sreg with the gridsize in the
range from 50 up to 400 gridpoints and find again that for more than 200 gridpoints the
change in Sreg is smaller than O(10−5) which is the same order as the allowed residual
we choose in the relaxation algorithm.

To achieve cutoff independence of Sreg turns out to be more delicate than for the
two-point function. Now for a range zcut = [0.05, 0.1] we obtain a slightly worse cutoff
dependence of O(10−3) which is however sufficient for our qualitative studies where
Sreg = O(10−1) and the influence of the cutoff can be estimated to be ≈ 1%. Again
we choose 200 gridpoints to discretize our geodesics and set zcut = 0.075 in all the
calculations we present in this chapter.

5.3.2 Evolution of Entanglement Entropy

In this section we present our numerical results for the entanglement entropy. The
shape of entanglement entropy as a function of time originates from a complicated
interplay between the different metric functions appearing in the energy momentum
tensor. However, most features can be understood in terms of energy density and
pressures. In Figure 5.6 we display the time evolution of entanglement entropy for
various separations in the two different scenarios. It can be characterized by four
distinct regions:

1. rapid initial growth: Once some energy density enters the entangling region
the rapid initial growth starts. The narrower the shocks the more rapidly the
initial growth happens, because the rate at which the energy density enters the
entangling region is bigger than for wider shocks.

2. linear growth: The linear growth starts when the two shocks start to overlap and
the energy piles up, with a steeper slope for larger separations. This is the same
behavior as the post-local equilibration growth after a global quench [40]. The
maximum occurs with a short delay compared to the maximum energy deposited
in the entangling region, with a more pronounced delay for wider shocks.

3. post collisional regime: The post collisional regime is quite different for the
three cases considered. For wide shocks the entanglement entropy falls off without
any additional features. In the case of intermediate shocks a small shoulder
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Table 5.1: Late time fit of the entanglement entropy in the time range µt ∈ [2.0, 6.0].

µl aw ai an bw bi bn
0.5 0.202 0.171 0.158 -1.136 -0.978 -1.074
1.0 0.709 0.602 0.564 -1.092 -0.961 -1.035
1.5 1.276 1.099 1.031 -1.036 -0.952 -0.982

Table 5.2: Late time fit of the effective entropy density in the time range µt ∈ [2.0, 6.0].

µl aw ai an bw bi bn
0.5 1.042 0.696 0.665 -1.107 -0.749 -0.952
1.0 2.035 1.430 1.372 -1.088 -0.766 -0.971
1.5 2.924 2.244 2.241 -1.054 -0.795 -1.027

appears. In the case of narrow shocks this shoulder turns into a new feature, where
an additional minimum appears and the entanglement entropy starts growing
again until a second maximum is reached. The minimum happens approximately
at a time when the longitudinal pressure becomes negative. The existence or
absence of a minimum of entanglement entropy in this regime thus serves as an
order parameter to discriminate between narrow and wide shocks.

4. late time regime: At late times we find a polynomial fall off behavior

Sreg ≈ aw,i,n(µt)−bw,i,n , (5.33)

where the coefficient aw,i,n depends on the initial conditions and the separation.
In Table 5.1 we give the late time behavior extracted from the time interval
µt = [2, 6] for different separations. The late time behavior can be compared to
the late time behavior of an effective entropy density

seff(t) =

l/2∫
−l/2

dy S3(rh, t, y) , (5.34)

where the function S is evaluated at the position of the apparent horizon and
integrated over the same intervals as for the entanglement entropy. The late time
behavior is displayed in Table 5.2 and barely depends on the separation. It is
expected on general grounds that at very late times and large separations, far be-
yond our computational domain, the effective entropy density and entanglement
entropy show the same fall off behavior.

Let us now discuss the results from the evolution in the separation. The geometrical
setup and the evolution in the separation at different times are shown in Figure 5.7.
Analogous to Figure 5.4 we show in Figure 5.8 again the position of the tip of the
extremal surface, this time for the entanglement entropy. Surprisingly, contrary to
case of the two-point function we never see the tip crossing the horizon, and in fact
it always closely follows the horizon for larger separations. This is again perhaps
counter-intuitive, since one would usually think about the entanglement entropy as a
more ‘nonlocal’ quantity than the two-point functions, and hence probing deeper in
the bulk. Indeed, this is the case for pure AdS and also for thermal AdS, but in this
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Figure 5.7: Left: Summary of the geometrical setup. The black surfaces represent
the radial position zAH(t, y) of the apparent horizon; red, green and blue curves are
geodesics of various separations at µt = 0, µt = 1 and µt = 2 respectively and at z = 0
we show a contour plot of the energy density for wide, intermediate and narrow shocks
(top to bottom). Right: Corresponding evolution of the entanglement entropy with
the boundary separation µl at different times.
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Figure 5.8: The z-position of the geodesics at y = 0 for several times and separations,
starting with l = 0 near the boundary, and increasing going towards the end of the
curve. We show wide, intermediate and narrow shocks (from left to right). The z-
position of the apparent horizon at y = 0 is shown in black. In all the cases we studied
the geodesics do not cross the horizon.

case for large enough separations the two-point function at the same time and length
probes deeper in the bulk than the entanglement entropy.

Of course our simulations only probed a limited set of times and lengths for our
extremal surfaces and hence we cannot make a general statement if the entanglement
entropy never probes beyond the apparent horizon in geometries produced by shock
wave collisions. Nevertheless, we think we have strong evidence that this is so, mainly
since increasing the lengths at our chosen times clearly moves the tip of the surface
along the horizon. We furthermore checked that extremal surfaces centered around
y 6= 0 behave similarly, so that the property is not due to our symmetric set-up.



Chapter 6

QNEC in Shock Wave Collisions

In this chapter we present a series of explicit computations of QNEC in a strongly cou-
pled QFT, including vacuum, thermal equilibrium, a homogeneous far-from-equilibrium
quench as well as a colliding system that violates NEC. For vacuum and the thermal
phase QNEC is always weaker than NEC. While for the homogeneous quench QNEC
is satisfied with a finite gap, we find the interesting result that the colliding system can
saturate QNEC, depending on the null direction. Results displayed in this chapter are
published in [72].

6.1 Computing QNEC

We determine QNEC holographically by studying the gravitational dual, where en-
tanglement entropy of a region in the CFT can be computed using the RT-formula
[33,34,124]

SEE =
A

4GN
=
N2
c

2π
A ≡ N2

c SEE (6.1)

Here A is the area of an extremal co-dimension 2 surface in the bulk which is homol-
ogous to the entangling region in the boundary and GN is Newton’s constant. The
prescription was proven in the static case [123] and has survived many tests in dynam-
ical situations [34,124,125,179].

All our examples use five-dimensional metrics of the form

ds2 = 2dt (Fdy − dz/z2)−Adt2 +R2
(
eBdx2

⊥ + e−2Bdy2
)

(6.2)

where A, B, F and R can depend on boundary coordinates t, y and the AdS radial
coordinate z. Near the AdS5 boundary at z = 0 these functions can be expanded as

A = z−2 + a4(t, y)z2 +O(z3) , (6.3a)

B = b4(t, y)z4 +O(z5) , (6.3b)

F = f4(t, y)z2 +O(z3) , (6.3c)

R = z−1 +O(z4) . (6.3d)

They have normalizable modes a4, b4 and f4, from which the projection of the stress
tensor can be determined [180] as

1

N2
c

〈Tµνkµ±kν±〉 ≡ T±± =
1

2π2
(−a4 − 2b4 ± 2f4), (6.4)

79
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with null vectors kµ± = δµt ± δ
µ
y at the boundary z = 0.

In this chapter all our entangling regions are infinite strips along the perpendicular
directions x⊥ and hence are specified fully by their endpoints SEE(tL, yL; tR, yR) with a
corresponding separation L = yR−yL. For these regions the extremal surface equation
reduces to a geodesic equation in an auxiliary spacetime, which simplifies the compu-
tation considerably (see [54, 176] for a detailed description of the numerical procedure
to find the relevant geodesics 1). The lengths of the geodesics then give the entropy
density per transverse area. An important subtlety in computing (6.1) is its UV diver-
gence. We regulate it by putting a cutoff at zcut = 0.01 and verifying that none of the
physics presented in this chapter depends on the cutoff 2.

After computing entanglement entropy it is straightforward to evaluate QNEC

〈Tkk〉 ≥
1

2π
√
h
S′′ , ∀ kµkµ = 0 , (6.5)

at some point (t, y) for the null vectors kµ±. This is done by computing ∂2
λSEE(t+λ, y±

λ; t, y + L) at λ = 0, which yields S′′/
√
h in (6.5) 3.

It is instructive to examine QNEC from a near-boundary perspective, where it is
possible to prove QNEC [69]. Close to the boundary point (tL, yL) an extremal surface
is given by t(z) = tL + λ− z+ t4(λ)z4 + a4z

5/5 +O(z6), y(z) = yL± λ− z+ y4(λ)z4 +
f4z

5/5+O(z6), where t4 and y4 also depend on (tR, yR) and are undetermined in a near-
boundary analysis. Extremal surfaces are stationary under perturbations, so variations
of extremal surfaces only yield boundary terms. A simple geometric argument then
gives ∂λA = −4t4(λ)± 4y4(λ), which leads to the second variation

S′′± = (±4∂λy4 − 4∂λt4)/(4GN ) . (6.6)

Comparing the results (6.4) and (6.6) with each other shows that inclusive QNEC does
not hold or saturate automatically, but may do so for suitable functions a4, b4, f4, y4

and t4.
Since we perturb in a null direction the leading contribution to the distance between

the two extremal surfaces separated by λ vanishes. We have two subleading contribu-
tions, coming from the subleading terms in the extremal surface and metric expansions
respectively:

∆s2 = |xµ(tL, yL, z)− xµ(tL + λ, yL + λ, z)|
= z2λ2(−2b4 ± 2f4 − a4 ∓ 2∂λy4 + 2∂λt4) (6.7)

Assuming the classical NEC in the bulk spacetime and using that the deformation
along λ is null, it can be shown [125] that the distance between the surfaces has to
be spacelike, i.e., ∆s2 ≥ 0, also called ‘entanglement nesting property’. This condition
reduces precisely to QNEC in (6.5), see [69]. Equation (6.7) is useful for us, not only
to illustrate why in holography we expect QNEC to be valid, but also to independently

1In this work we mostly work in a gauge where the horizon is at z = 1 and the geodesics are
parametrized by t and the angle in the y-z-plane. To solve the equations we used a 5th order finite
difference scheme with order 100 grid points. We verified our results with other gauges and numerical
settings.

2There is a subtlety in taking the functional derivative in (2.70), which can be UV-divergent if not
taken in the right direction [58]. We only deform the entangling region in the longitudinal direction,
which then avoids this divergence.

3In this chapter all set-ups are invariant under y → −y so without loss of generality we only vary
the left point of the entangling region.
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Figure 6.1: Top: Two families of extremal surfaces at representative locations
(tL, yL) = (0.75, ±0.5) for the shock wave geometry. The families correspond to a
null variation at a point where the classical NEC is violated (purple region at z = 0
or black region in Figure 6.6). The family starting at y = −0.5 hovers just above
the apparent horizon (colored surface) and hence has larger entropy, as well as more
negative S ′′± (bottom Figure, see also Figure 6.5).

verify QNEC from a bulk perspective. This is done by explicitly computing the distance
between two nearby extremal surfaces and comparing this with QNEC determined as
described next.

To evaluate QNEC in practise we evaluate the second derivative by computing SEE

for five equidistant values of λ between −0.05 and 0.05. We then obtain four estimates
of S ′′± by generating a quadratic fit through all five points, the first three points, the
middle three points and the last three points, thereby both obtaining a mean estimate
as well as a numerical error.

Figure 6.1 shows an example of a family of surfaces for kµ+ at tL = tR = 0.75,
y = 0.5 and L = 1.0, including the apparent horizon of the shock wave collisions and
the (violation of) NEC in the boundary theory. On the right we display entanglement
entropy of the five surfaces, having their vacuum contribution subtracted.

To obtain the full QNEC result it is necessary to add the vacuum contribution
again. This is straightforward, since for a strip the vacuum entanglement entropy per
transverse area is known analytically [33],

SEE =
1

2π

(
1

z2
cut

− 1

2c3
0l

2

)
, c0 =

3Γ[1/3]3

21/3(2π)2
, (6.8)

where l =
√

(L± λ)2 − λ2 is the proper length of the (boosted) strip. Taking the
second derivative with respect to λ at λ = 0 gives

1

2π
S ′′± = − 1

π2c3
0L

4
≈ −0.06498

L4
. (6.9)
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From (6.9) it is clear that the CFT vacuum satisfies QNEC in a trivial way, especially
for small L, while it saturates QNEC in the limit L→∞.

6.2 Results

6.2.1 Thermal Plasma

We first consider a homogeneous thermal equilibrium state with dual description in
terms of the AdS5 Schwarzschild black brane that has A = 1/z2−(πT )4z2, R = 1/z and
B = F = 0, where the energy density is related to the temperature by T 0

0 = 3N2
c π

2T 4/8.
The null projections of the energy momentum tensor, T±±, are the same for both
lightlike directions due to parity symmetry,

1

N2
c

〈Tµνkµ±kν±〉 ≡ T±± =
π2

2
T 4 ≈ 0.0507π4T 4 . (6.10)

In this case S ′′+ = S ′′−, which can be understood by realizing that the plasma is time-
reversal invariant. That means we can invert the kt component and invariance of the
second derivative under kµ → −kµ yields the identity.

In Figure 6.2 we show that at small length S ′′± approaches the vacuum result, while
for large L it approaches zero from below exponentially fast. Since T±± is positive
we see that QNEC is easily satisfied for all lengths and never saturates. Analytic
calculations in the appendix confirm our numerical results at small and large L.

Figure 6.2: S ′′± for the thermal state as a function of strip length (blue). For small L
the curve follows the vacuum result ((6.9), red) whereas for large length S ′′± approaches
zero exponentially (black). Since S ′′± < 0 and T±± > 0 QNEC is obviously satisfied.

6.2.2 Far-From-Equilibrium Quench

Now we consider a quenched far-from-equilibrium system where a homogeneous shell of
null dust is injected in the gravitational dual [38], leading to the AdS5 Vaidya spacetime

A = z−2 −M(t)z2 , M(t) ≡ 1
2 (1 + tanh(2t)) . (6.11)

Equation (6.11) realizes a homogeneous quench of the vacuum at t=−∞ to a thermal
state with T = 1

π at t =∞. The corresponding projection of the energy momentum
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Figure 6.3: Left: S ′′± at four different times as a function of separation L together with
the corresponding T±± (for the quenched geometry (6.2) with (6.11) and B=F = 0).
Right: Time evolution of T±± and the long length limit of S ′′±/(2π). Growth and
settling down of S ′′±/(2π) happens later than for T±±.

tensor is time dependent, with T±± = 1
2π2M(t). The Vaidya geometry is not invariant

under time inversion, so S ′′± are distinct from each other.
In Figure 6.3 (left) we show S ′′± versus the length of the strip at four different times.

For small lengths these curves again approach the vacuum result, but at intermediate
lengths there is a clear difference between S ′′+ and S ′′−, whereby in particular S ′′− can
develop a pronounced local minimum. For large lengths we find that S ′′+ and S ′′−
asymptote to equal values. In Figure 6.3 (right) we plot these asymptotic values as
a function of time, where we see that QNEC is always satisfied, and S ′′± reaches a
maximum slightly after the time of the quench. We also see that QNEC settles down
to its thermal value later than the stress-tensor itself.

Even though the geometry is only slightly perturbed at early times, we curiously
see that the ratio of S ′′±/(2π) versus T±± reaches a constant value of about 0.25, see
Figure 6.4. This setting is the first case where QNEC is stronger than NEC, i.e. we find
S ′′± > 0. Nevertheless, QNEC never saturates, even at early times where both sides
approach 0.

6.2.3 Shock Wave Collision

The richest example presented here analyzes QNEC for the CFT state dual to collid-
ing gravitational shock waves. This in particular leads to regions where the ordinary
NEC is violated [71] and hence gives a perfect setting to examine QNEC. Colliding
shock waves are dual to planar sheets of energy moving at the speed of light and fully
characterized by their only non-zero component of the boundary stress-energy tensor
T±± = 1/2π2h±(x±), with x± = t±y, where h±(x±) = µ3 exp[−x2

±/2w
2]/
√

2πw2 and
µw = 0.1. We determined the functions A, B, F and R in the metric (6.2) numer-
ically in previous work [16] and use these results here as input for our evaluation of
entanglement entropy and QNEC.

Figure 6.1 shows the bulk shock wave evolution, whereby the colors at z = 0
represent (the violation of) NEC (see also [71] and Figure 6.6). Figure 6.7 shows
analogous S ′′± versus L plots at three representative points, noting that T++ differs from
T−− at y 6= 0. The red curve is at the location where NEC is significantly violated,
with T−−=−0.04µ4, while QNEC is satisfied, with S ′′−/(2π) asymptoting to −0.19µ4.
For kµ=k+ NEC is satisfied, but QNEC is saturated, with T++ =S ′′+/(2π)=0.01µ4 for
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Figure 6.4: Ratio of the two sides of the QNEC inequality (6.5). Curiously the ratio
asymptotes to 0.25 at early times and never grows above that value. QNEC is still
non-trivial for a time of order 1/(πT ) after the geometry has already settled down.

L→∞.

Figure 6.5 shows the asymptotic behavior of QNEC for µy = −0.5, 0.0 and 0.5
(recall that ±0.5 are distinct from each other due to our choice of varying the left point
of the strip in (6.5)).

Strikingly, at y = 0 we find QNEC saturation in the far-from-equilibrium regime for
k− at negative times, which transitions to saturation for k+ at positive times. During
the hydrodynamic phase at µt > 0.8 there is no saturation. For y = 0.5 we have the
non-trivial result that QNEC is saturated for both k− and k+ as the outgoing shock
passes around µt = 0.3 − 0.5. Lastly, for y = −0.5 the entangling region encompasses
most of the collision region and we do not find saturation for t > 0.

6.3 Discussion

Our main result of this chapter is the saturation of (inclusive) QNEC in far-from-
equilibrium regions created during shock wave collisions. This saturation is non-trivial
and not seen in other systems we studied. For vacuum and thermal states QNEC is
weaker than NEC, since S ′′ is always negative. For a homogeneous quench QNEC is
stronger than NEC, but the ratio of both sides of the inequality never exceeds 0.3.
In shock wave collisions QNEC is never saturated in the hydrodynamic regime, but
it is saturated in the far-from-equilibrium region, regardless of whether NEC is valid.
Reference [181] (see also [182]) conjectures that saturation of QNEC can lead to a
simplified expression for (part of) the modular Hamiltonian of a half-space in vacuum.

Even in vacuum QNEC is non-trivial, as for our strip the entanglement entropy
term scales as S ′′± ∝ −1/L4, which has a UV divergence as L → 0. This makes the
inequality trivially satisfied in the small length limit, and it is hence an interesting
question whether QNEC also holds if one looks at a more physical quantity, such as
the vacuum subtracted entanglement entropy. None of the proofs of QNEC apply for
that case, but for all points where we checked QNEC we found that this stronger
condition also holds.

QNEC is a remarkable quantum inequality, and examples such as the ones studied
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Figure 6.5: Large L limit of QNEC as a function of time for y = −0.5 (left), y = 0
(middle) and y = 0.5 (right). Strikingly, depending on the direction of kµ all cases
show a saturation of QNEC in the far-from-equilibrium regime, where in the center
case first the k− direction saturates, after which it transitions to the k+ direction,
which saturates when NEC is violated (T±± < 0).

in this Chapter will help to further explore its more general implications as well as
applications such as holographic descriptions of strongly coupled quantum matter.
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Figure 6.6: Contour plot of T−− with NEC violation in the black region.
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Figure 6.7: QNEC terms as a function of L for three representative points in the shock
wave geometry (see Figure 6.1). Dashed blue saturates QNEC, even though NEC is
positive. Dashed red violates NEC, but S ′′− is even smaller and no saturation occurs in
− direction, while it occurs in + direction.



Chapter 7

Closing Remarks

7.1 Summary

In the thesis at hand I studied the time evolution of equal time two-point functions,
the holographic entanglement entropy and the quantum null energy condition of var-
ious strongly coupled far-from-equilibrium states in N = 4 Super-Yang-Mills theory
via their higher-dimensional gravity duals. After reviewing in Chapter 2 the neces-
sary basics of entanglement entropy, string theory, the AdS/CFT correspondence, the
holographic entanglement entropy and the quantum null energy condition, I gave in
Chapter 3 a detailed description of the numerical techniques used in the thesis. The
holographic prescription of two-point functions and entanglement entropy amounts to
finding geodesics and extremal surfaces in the dual gravitational background which
usually requires numerical techniques. My main tool to determine geodesics and ex-
tremal surfaces is the so-called relaxation method which I explained in detail in Section
3.2. I provided a ready-to-use and easily adaptable Mathematica implementation of the
relaxation method in Appendix E and also a simple version of the shooting method in
Appendix D, where the latter turned out to be sufficient in time independent situations.
These computer codes can also be downloaded from my homepage christianecker.com.

In addition to the numerical studies, I presented a number of cases where the entan-
glement entropy and the quantum null energy condition can be determined in closed
form. This includes several basic examples for entanglement entropy in vacuum pre-
sented in Section 2.3.3 and two specific examples of the quantum null energy condition
for thermal states in CFT2 (Section 2.4.1 and Appendix B) and CFT4 (Appendix
C), where I studied the later perturbatively in the small and large size limits of the
entangling region.

Furthermore, I provided in Section 3.2.2 and Section 3.3 basic numerical studies
of entanglement entropy and the quantum null energy condition of globally quenched
states in CFT2 which are holographically dual to AdS3 Vaidya geometries. In this case
the entanglement entropy follows nicely the well-known scaling behavior obtained from
a direct CFT2 calculation. My simulations also confirmed the effect of non-saturation
of the quantum null energy condition in cases where the associated extremal surfaces
cross the infalling matter shell in the Vaidya geometry.

The first advanced examples presented in Chapter 4 are homogeneous but anisotropic
finite temperature far-from-equilibrium states in strongly coupled N = 4 Super-Yang-
Mills theory. I studied the time evolution of two-point functions and entanglement
entropy of these states. I found that the entanglement entropy approaches its equi-
librium value in an oscillatory manner and not monotonically from below, as it is for
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thermodynamical reasons the case for the thermal entropy. Furthermore, I have shown
that the entanglement entropy close to equilibrium is well described by the lowest
quasinormal mode in the spin-two channel.

In the second advanced example in Chapter 5 I applied the methods developed
for the anisotropic system to the more complicated inhomogeneous system of colliding
gravitational shock waves. In this case I made a careful comparison between differ-
ent initial conditions, describing narrow, intermediate and wide shocks and discovered
characteristic features of two-point functions and entanglement entropy that allow to
discriminate between the kind of initial conditions used.

In the final advanced example in Chapter 6 I studied the quantum null energy
condition in the shock wave system, which itself can violate the classical null energy
condition for sufficiently narrow shocks, and showed that the quantum null energy
condition holds. Furthermore, I made the unexpected observation that the integrated
version of the quantum null energy condition can saturate in situations where the
energy momentum tensor is still far from equilibrium.

In the next section I draw some conclusions based on the lessons learned from the
results summarized above.

7.2 Conclusion

Today holography is the only tool available to study the full non-linear dynamics of
strongly coupled quantum systems from first principles. The holographic mapping of
complicated quantum dynamics to classical gravitational dynamics allows to study the
time evolution of local and non-local observables like the energy momentum tensor,
two-point functions and entanglement entropy, which is not accessible via a pure field
theoretic approach.

Many of the analytic and numeric calculations in this thesis are pioneering achieve-
ments in the sense that they represent first numerical studies of entanglement entropy
and the quantum null energy condition in various highly non-trivial far-from equilib-
rium situations, thereby also providing an important proof of principle for the methods
used.

Especially the studies of holographic shock wave collisions, which can be seen as
holographic toy models for heavy ion collisions, can provide valuable insights into the
physics of the quark gluon plasma. In particular collisions of narrow shocks, which
model collisions at LHC energies, show interesting features like regions of negative
energy density in the forward light cone resulting in a violation of the classical null
energy condition. My studies successfully show that in this context the quantum null
energy condition is a correct replacement for the null energy condition that is not only
satisfied but can also saturate which might have detectable consequences in heavy ion
experiments.

The specific applications mentioned here are motivated by the holographic mod-
elling of the quark gluon plasma. However, the methods developed are applicable in
many contexts where entanglement entropy plays an important role, like in quantum
gravity, information theory and condensed matter physics. I made my computer codes
available (http://christianecker.com/) to the scientific community, hoping that other
researches profit from my implementation efforts and find novel applications that go
beyond those presented in this thesis. In the next section I will provide some ideas of
possible generalizations and extensions of my work.

http://christianecker.com/
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7.3 Outlook

There are plenty of generalizations and extensions possible for the studies presented in
this thesis. I list some of them and provide suggestions how they might be approached.

Two-Dimensional CFTs In two-dimensional CFTs the quantum null energy con-
dition has the special form (2.70) which, as shown in Section 2.4.1, saturates in vacuum
and thermal states dual to BTZ geometries. In an upcoming work [183] we are able to
prove saturation for an even larger class of excited states dual to the so-called Bañados
family of bulk geometries [184] which includes far-from-equilibrium systems studied
by other authors [185, 186]. However, as pointed out in [143], in two dimensions the
quantum null energy condition does not need to saturate if the bulk theory contains
matter. A concrete example is the Vaidya setup presented in Section 3.3. Finding
an exact relation, if there is one, between the bulk energy momentum tensor and the
amount of non-saturation remains an interesting outstanding challenge.

Finite Coupling Corrections Another possibility is to to follow [126,127] and study
the influence of finite coupling corrections on entanglement entropy and the quantum
null energy condition which requires to include higher derivative terms in the bulk
theory. The authors of [26] provide an interesting example, namely a finite coupling
corrected version of the shock wave system discussed in this thesis. It would be highly
interesting to see, if finite coupling correction also lead to a softening of the top-down
thermalization behavior [121,187] in the entanglement entropy.

Higher-Dimensional Surfaces A numerical challenge would be to generalize my
relaxation code to two or three-dimensional surfaces. In this case one has to solve
partial differential equations which is in principle possible with relaxation. However, the
numerical robustness, efficiency, and feasibility of such a higher-dimensional relaxation
procedure remains to be shown. Having a higher-dimensional surface relaxation code
at hand would open many possibilities, including non-trivial checks of saturation of the
quantum null energy condition in d > 2 dimensional holographic CFTs argued in [140].
Based on my current experience, saturation of the quantum null energy condition in
higher dimensions seems highly non-trivial and it would be extremely interesting to
study the geometric mechanisms responsible for saturation, and how they are encoded
in the shape of extremal surfaces.

Beyond the Semiclassical Limit It would be interesting to construct explicit ex-
amples which include quantum corrections to the holographic entanglement entropy
such as suggested in [129, 130]. In certain three-dimensional bulk theories the leading
order quantum correction to the geometry is known explicitly [188] and it is there-
fore straightforward to compute the shift δA in (2.39) with my methods. The open
challenge is to construct also the remaining terms in (2.39). The quantum corrected
entanglement entropy, together with the corrected boundary stress tensor, can then
directly be used to study the quantum null energy condition in two dimensions beyond
the limit of infinite central charge.

Beyond Relativistic CFTs In this thesis I focus exclusively on relativistic CFTs
and their gravity duals in the supergravity approximation. Beyond those exist many
other quantum field theories of interest which are not relativistic CFTs or relevant
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deformations thereof. One example are Galilean 2d CFTs which are conjectured field
theory duals of flat space Einstein gravity in three dimensions [189]. For these theo-
ries explicit expressions for the holographic stress tensor [190] and the entanglement
entropy [191–193] are known. Another example are warped CFTs in two dimensions
with holographic duals in terms of topological massive gravity [194]. Also for these the-
ories the entanglement entropy formula is available [195]. Like their relativistic CFT2

cousins, Galilean and warped CFTs in 2d have infinite dimensional symmetry algebras
which allow for a high level of analytic control. It would be highly interesting to con-
struct a non-relativistic counterpart to the relativistic quantum null energy condition
for such theories. Some ingredients essential to the relativistic version, like entangle-
ment entropy and the stress tensor, are available for these non-relativistic theories.
However, more conceptional questions, like what the pendant of a lightlike deformation
or projection in a non-relativistic theory might be, still need to be addressed.

As mentioned, the numerical techniques developed and applied in this thesis could
have further applications and lead to additional generalizations not envisaged here.
It seems likely that in the forthcoming years numerical holography will remain an
invaluable tool to unravel holographic mysteries and to provide novel applications of
the AdS/CFT correspondence.



Appendix A

Variation of the Area Functional

We write the line element of the asymptotic AdSd+1 geometry in the following way

ds2 = Gµνdx
µdxν . (A.1)

A (d−1)-dimensional surface in the bulk can be written in terms of embedding functions
Xµ = Xµ(σa, z) which are parametrized with d − 2 intrinsic coordinates σa and the
bulk coordinate z. The induced metric on the surface is given by

Hαβ = ∂αX
µ∂βX

νGµν . (A.2)

The area functional can be written in terms of the induced metric

A =

∫
dzdd−2σ

√
H[X]. (A.3)

We are interested in stationary solutions δA = 0 which means we have to determine
the variation of the surface functional with respect to the embedding functions

δA =

∫
dzdd−2σδ

(√
H[X]

)
. (A.4)

Using δdet(M) = det(M)tr(M−1δM) the variation of the square root in (2.44) is given
by

δ
√
H =

1

2
√
H
δH =

H

2
√
H
HαβδHαβ =

1

2

√
HHαβδHαβ . (A.5)

Plugging the explicit form of the induced metric into the variation of the area functional
yields

δA =

∫
dzdd−2σ

1

2

√
HHαβδHαβ

=

∫
dzdd−2σ

1

2

√
HHαβδ (∂αX

µ∂βX
νGµν)

=

∫
dzdd−2σ

1

2

√
HHαβ (2∂αX

µGµν∂β(δXν) + ∂αX
µ∂βX

νδGµν) . (A.6)

As a next step we perform a partial integration on the first term and the variation of
the metric δGµν = (∂XγGµν)δXγ which gives

δA =

∫
dzdd−2σ

{
∂β(
√
HHαβ∂αX

µGµνδX
ν)− ∂β(

√
HHαβ∂αX

µGµν)δXν

+
1

2

√
HHαβ∂αX

µ∂βX
ν(∂XγGµν)δXγ

}
. (A.7)
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Restricting to variations for which δXz = 0 the total derivative term can be dropped.
Furthermore we perform the partial derivative of the metric ∂βGµν = ∂βX

γ∂XγGµν
and symmetrize the corresponding term in α and β

δA =

∫
dzdd−2σ

{
− ∂β(

√
HHαβ∂αX

µ)GµνδX
ν

− 1

2

√
HHαβ∂αX

µ∂βX
γ(∂XγGµν)δXν

− 1

2

√
HHαβ∂αX

γ∂βX
ν(∂XγGµν)δXν

+
1

2

√
HHαβ∂αX

µ∂βX
ν(∂XγGµν)δXγ

}
. (A.8)

Relabeling indices and identifying the Christoffel symbol for the bulk metric Γρµν =
1
2G

ργ(∂XµGνγ + ∂XνGµγ − ∂XγGµν) the previous expression takes the following form

δA =

∫
dzdd−2σ

{
− ∂α(

√
HHαβ∂βX

µ)−
√
HHαβ∂αX

σ∂βX
νΓµσν

}
δXµ . (A.9)

The surface which extremizes the surface functional has then to satisfy the equation

1√
H
∂α(
√
HHαβ∂βX

µ) +Hαβ∂αX
σ∂βX

νΓµσν = 0 . (A.10)

It is instructive to specialize (A.10) to the one-dimensional case Xµ = Xµ(σ) which
gives the non-affine geodesic equation

0 =
1

τ̇

(
τ̇

1

(τ̇)2
Ẋµ

)
+

1

(τ̇)2
ẊσẊνΓµσν

= −JẊµ + Ẍµ + ẊσẊνΓµσν , (A.11)

where dot means derivative with respect to the non-affine parameter σ; in the first line
we replaced the induced metric by ẊµẊνGµν =: τ̇2; in the second line we made the
identification J ≡ τ̈

τ̇ .



Appendix B

QNEC Saturation in Thermal
CFT2

In this appendix we derive QNEC saturation in a thermal CFT2 with J = 0 using the
minimal surface equations in BTZ coordinates directly. We start with the line element
of the non-rotating BTZ geometry

ds2 =
1

z

(
−f(z)dt2 + f(z)−1dz2 + dy2

)
, f(z) = 1− M̂z2 . (B.1)

Next we introduce the embedding functions Xµ(y) = (z(y), t(y), y) of a one-dimensional
surface with endpoints located at Xµ(0) = (0, 0, 0) and Xµ(l+λ) = (0, λ, l+λ), where l
denotes the length of the entangling region and λ parametrizes the lightlike deformation
of one of the boundary points of the HRT-surface. The surface has a turning point
located at Xµ(y∗) = (z∗, t∗, y∗), where ż|y=y∗ = 0. The corresponding area functional
can be written as an integral over y

A =

∫ l+λ

0
dyL =

∫ l+λ

0
dy

√
gµνẊµẊν , (B.2)

where Ẋµ = d
dyX

µ = (ż, ṫ, 1) and the Lagrangian evaluates to

L = L(z, ż, ṫ) =
1

z

√
−f(z)ṫ2 + f(z)−1ż2 + 1 . (B.3)

Due to invariance of L under y- and t-translations there are two Noether charges

Q1 =
∂L
∂ṫ
ṫ+

∂L
∂ż
ż − L =

2

z
√

1− ṫ2f(z) + ż2/f(z)
, (B.4)

Q2 =
∂L
∂ṫ

= − 2ṫf(z)

z
√

1− ṫ2f(z) + ż2/f(z)
. (B.5)

We can now define a new constant Λ = −Q2

Q1
and express ṫ as follows

ṫ =
Λ

f(z)
. (B.6)

Next we rewrite the left hand side of (B.4) as Q1 = 2
z∗N∗

and use the expression for ṫ
on the right hand side which then gives

ż = ±
√
N2
∗ z

2
∗f(z) + z2(Λ2 − f(z))

z
. (B.7)
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There are two branches, z+(y) for 0 ≤ y ≤ y∗ and z−(y) for y∗ ≤ y ≤ l + λ, because
z(y) is not single valued on the interval y ∈ [0, l + λ]. We can now express the spatial
separation on the boundary in terms of the following integral

l + λ =

∫ l+λ

0
dy =

∫ y∗

0
dy +

∫ l+λ

y∗

dy

=

∫ z∗

0

dy

dz+
dz+ +

∫ 0

z∗

dy

dz−
dz− = 2

∫ z∗

0

dy

dz+
dz+ , (B.8)

where we have used z−(y) = −z+(y) in the last line. It is convenient to transform to
the new variable x ≡ z+/z∗ such that the turning point of the surface is located at
x = 1 and the previous integral can be written as

l + λ

2
= z∗

∫ 1

0

1

ẋ
dx , (B.9)

with ẋ given by

ẋ =

√
N2
∗ f(z∗x) + x2(Λ2 − f(z∗x))

x
. (B.10)

This integral gives the result

l + λ

2
=

1√
M̂

log
Λ2 − 1− M̂(N2

∗ − 2)z2
∗ + 2z∗

√
M̂(Λ2 − (N2

∗ − 1)f(z∗))

Λ2 − (1−
√
M̂N∗z∗)2

. (B.11)

Similar to the spatial separation we can express the temporal separation on the bound-
ary in terms of an integral

λ =

∫ λ

0
dt =

∫ l+λ

0

dt

dy
dy =

∫ y∗

0

dt

dy
dy +

∫ l+λ

y∗

dt

dy
dy

=

∫ z∗

0
ṫ
dy

dz+
dz+ +

∫ 0

z∗

ṫ
dy

dz−
dz− = 2

∫ z∗

0
ṫ
dy

dz+
dz+

= 2z∗

∫ 1

0

ṫ

ẋ
dx . (B.12)

Also this integral can be solved analytically and we find

λ =
1√
M̂

log
Λ2 − f(z∗) + M̂z2

∗(Λ
2 +N2

∗ f(z∗)) + 2Λ

√
z2
∗M̂(Λ2 +N2

∗ f(z∗)− f(z∗))

f(z∗)(Λ2 + 1 +
√
M̂N∗z∗)(Λ2 − 1 +

√
M̂N∗z∗)

.

(B.13)
Next we expand the integral (B.13) for small Λ

λ =
2Λz∗
f(z∗)

+O(Λ3) . (B.14)

We can now solve the previous equation for Λ and obtain an expression for Λ(λ) which
is valid when λ is small

Λ ≈ λf(z∗)

2z∗
. (B.15)

Now we can exponentiate the integral (B.11) and substitute for Λ

e

√
M̂ l+λ

2 =
(λ2 − 4z2

∗)f(z∗)

λ2f(z∗)− 4z2
∗(1−

√
4M̂z2

∗ − M̂λ2f(z∗)) + M̂z2
∗)
. (B.16)
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Expand this equation to second order in λ gives an equation for z∗ which holds as long
as λ is small

0 = 4+4el
√
M̂− 8

1−
√
M̂z∗

+4el
√
M̂
√
M̂λ+

(
2M̂
(
el
√
M̂ − 1

1−
√
M̂z∗

)
−

√
M̂

z∗

)
λ2 .

(B.17)
Solving for z∗ gives two solutions

z∗,1 = − 1− η√
M̂(1 + η)

+
2η

(1 + η)2
λ+

η(3− 2η + 3η2)
√
M̂

2(1− η)(1 + η)3
λ2 , (B.18a)

z∗,2 = −

√
M̂

4(1− η)
λ2 , (B.18b)

where we have to pick the first solution z∗ = z∗,1 because it has a finite λ→ 0 limit and

we have introduced the notation η = e
√
M̂l. For small values of l the surface resides

in the asymptotic AdS region where the embedding function describes a semi-circle of
radius l/2. This is exactly what we find at leading order

z∗ =
l

2
− M̂l3

24
+
M̂2l5

240
− 17M̂3l7

40320
+O(l9) . (B.19)

Having explicit expressions for Λ and z∗ we are equipped to solve the integral (B.2)
and obtain a small λ expansion of the area. For QNEC we only need the first and
second derivative at λ = 0 of the integral, so it is sufficient to compute the O(λ2) term.
Expressing the (regularized) area as integral over x we obtain

A =

∫ 1

0
dx

(
2N∗

x
√

(N2
∗ − x2)f(xz∗) + Λ2x2

− 2

x

)
. (B.20)

Substituting Λ and z∗ and expanding to second order in λ results in a huge expression
which we do not write down here. We only give the relevant O(λ2) solution of the
integral

A′ ≡ dA
dλ

∣∣∣
λ=0

=
√
M̂coth

(
l
√
M̂

2

)
, (B.21a)

A′′ ≡ d2A
dλ2

∣∣∣
λ=0

= −M̂csch

(
l
√
M̂

2

)2

. (B.21b)

The relevant expression for QNEC gives

1

2π

(
S′′ +

6

c
(S′)2

)
=

1

8πG
(3)
N

(
A′′ + 6

c

1

4G
(3)
N

(A′)2

)
,

=
cM̂

12π

(
coth2

(
l
√
M̂/2

)
− csch2

(
l
√
M̂/2

))
,

=
c

12π
r2

+ , (B.22a)

where we have restored the units M̂ = 8πG
(3)
N M = r2

+ in the last step. We find exact
agreement with T±± = c

12π r
2
+ given in (2.74), which proofs QNEC saturation.
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Appendix C

QNEC for AdS5 Schwarzschild
Black Brane

Entanglement entropy for the AdSd Schwarzschild black brane was considered by
Fischler and Kundu who gave infinite series representations in terms of ratios of Γ-
functions [175] and more recently by Erdmenger and Miekley [196] who expressed
their results in closed form in terms of Meijer G-functions. For QNEC it is necessary
to compute non-equal time entanglement entropy, which is not straightforward using
these methods. We use a more pedestrian approach that allows straightforward gen-
eralization from entanglement entropy to QNEC as well as fast and precise numerical
evaluation of QNEC at small and large separations. For sake of specificity we focus
on d = 5, but our methods and results can be generalized easily to arbitrary dimen-
sions. In this way we shall recover the vacuum result for entanglement entropy (6.8)
and QNEC (6.9) as well as the corresponding thermal results in the main text, see
Figure 6.2.

The AdS5 Schwarzschild black brane metric is given by

ds2 =
1

z2

(
− f(z) dt2 +

dz2

f(z)
+ dy2 + dx2

1 + dx2
2

)
, (C.1)

with
f(z) = 1− (πT )4z4 , (C.2)

where T is the Hawking temperature in the same units as in the main text. For a strip
the minimal area per transverse density functional reads

A =

`+λ
2
−ω∫

0

dy L(z, ż, ṫ) , (C.3)

with Lagrangian

L(z, ż, ṫ) =
2

z3

√
1 +

ż2

f(z)
− ṫ2f(z) , (C.4)

where the dimensionful quantity ` is the width of the strip in y-direction before defor-
mation and λ parametrizes the null deformation of the boundary interval with boundary
points (t±, y±) = (±λ/2, ±(`+ λ)/2). This means that for λ = 0 we shall recover the
entanglement entropy results for a strip of width ` centered around y = 0 at the con-
stant time-slice t = 0. Moreover, ω denotes the cutoff on the holographic coordinate,
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such that z(`/2 − ω) = zcut � 1, dots denote derivatives with respect to y and the
overall factor 2 in (C.4) comes from the fact that we have two equally big contribu-
tions to the area by integrating y from the midpoint y = 0 to either of the endpoints
y± = ±(`+ λ)/2.

Since the functional (C.3) respects translation invariance, y → y + y0, there is an
associated Noether charge yielding a first integral,

Q1 = L− ż ∂L
∂ż
− ṫ ∂L

∂ṫ
=

2

z3
√

1 + ż2/f(z)− ṫ2f(z)
=:

2

z3
∗N∗

, (C.5)

with N∗ =
√

1− (ṫ2f)|z=z∗ =
√

1− Λ2/f(z∗) chosen such that at z(y → 0) = z∗ we are
at the tip of the extremal surface, ż = 0. The constant Λ = (ṫf)|z=z∗ was introduced
in anticipation of (C.6) below.

There is a second Noether charge following from ∂y(∂L/∂ṫ) = 0, yielding a constant
of motion Λ

Q2 = ṫf(z) =: Λ . (C.6)

Combining the two Noether charges Q1,2 establishes an expression for ż

ż = −
√(

N2
∗ z

6
∗/z

6 − 1
)
f(z) + Λ2 . (C.7)

The values of the two Noether charges are fixed by the interval parameters ` and
λ. Integrating (C.7) from the tip of the surface z = z∗ to the boundary z = 0 and
introducing the dimensionless variable x = z/z∗ yields

`+ λ

2
= z∗

1∫
0

dx
x3

R(x)
, (C.8)

with R(x) :=
√

(N2
∗ − x6)(1− (πTz∗x)4) + Λ2x6. Similarly, integrating ṫ from t = 0 to

t = λ/2 (which again can be converted into a z-integration from the tip of the surface
z = z∗ to the boundary z = 0) yields

λ

2
= Λ z∗

1∫
0

dx
x3

f(xz∗)R(x)
. (C.9)

For small ` it is useful to determine Λ instead from

Λ =
λ

`+ λ+ 2z∗I∆
, (C.10)

with

I∆ =

1∫
0

dx
x3

R(x)

(
1

f(xz∗)
− 1

)
. (C.11)

For QNEC we need to expand to order O(λ2) but not higher, which means that in
(C.10) we need to take into account only terms in I∆ of order unity or linear in Λ, but
no higher powers of Λ.

Inserting the first integrals (C.7), (C.6) into the area functional (C.3) with (C.4)
and (C.2) and expanding in powers of the cutoff zcut yields

A =
1

z2
cut

+
2

z2
∗

(
IλA − 1

2

)
+O(z2

cut) , (C.12)
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with the finite contribution

IλA =

1∫
0

dx
1

x3

(
N∗
R(x)

− 1

)
. (C.13)

The remaining task in order to get the area as function of the dimensionless product
of temperature and strip width, T`, is to evaluate the integrals (C.13), (C.11) and (C.8).
We consider first the limit of small widths, T`� 1, and then of large widths, T`� 1.
These results will allow comparison with the numerical fits in the main text and in
Figure 6.2.

We start with the small width expansion T` � 1. Note that we have the chain of
inequalities 0 < λ/`� T`� 1. As we shall see, all our results are expressed succinctly
in powers of a single transcendental number,

c0 =
3Γ[1/3]3

21/3(2π)2
≈ 1.159595 , (C.14)

which was already introduced in the main text (6.8). Perturbative evaluation of the
integral (C.11) together with (C.10) yields

Λ = λ
`+λ − (πTz∗)

4 4πc0λz∗
15
√

3(`+λ)2

+ (πTz∗)
8
(

16π2c20λz
2
∗

675(`+λ)3 − 2λz∗
3(`+λ)2

)
+ O((Tz∗)

12) +O(λ3/`3) . (C.15)

Similarly, evaluation of the integral (C.8) establishes a series expansion for z∗,

z∗
c0`

= 1 + (πT`)4 2πc60
15
√

3
+ (πT`)8

(4π2c12
0

135 −
c90
6

)
+ λ

`

(
1− (πT`)4 2πc60

3
√

3
+ (πT`)8

(4π2c12
0

15 − 3c90
2

))
+ λ2

`2

(
− 1

2 + (πT`)4
( c40

6 −
49πc60
45
√

3

)
+ (πT`)8

( c80
6 −

71c90
12 −

c10
0 π

5
√

3
+

2074c12
0 π2

2025

))
+ O((T`)12) +O(λ3/`3) , (C.16)

where we additionally expanded in powers of the dimensionless small parameter λ/`,
keeping only the powers needed to determine QNEC. Finally, the area integral (C.13),
together with the other results above, leads to an expression for the area (C.12)

A = 1
z2
cut
− 1

2c30`
2 + (πT )4`2

πc30
5
√

3
+ (πT )8`6

( c60
12 −

2c90π
2

225

)
+ λ

`

(
1

c30`
2 + (πT )4`2

2πc30
5
√

3
+ (πT )8`6

( c60
2 −

4c90π
2

75

))
+ λ2

`2

(
− 2

c30`
2 + (πT )4`2

2πc30
15
√

3
+ (πT )8`6

(4c60
3 −

88c90π
2

675

))
+ O(z2

cut) +O(T 12`10) +O(λ3/`3) . (C.17)

The first line recovers the entanglement entropy results of [175,196]. The second deriva-
tive of the area (C.17) with respect to ±λ evaluated at λ = 0 yields the QNEC quantity
S ′′± used in the main text

1

2π
S ′′± = − 1

π2c3
0`

4
+

(πT )4 c3
0

15
√

3π
− (πT )8`4

(
44c9

0

675
− 2c6

0

3π2

)
+O(T 12`8) . (C.18)
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This is our main result in the limit of small separations. For comparison with our
numerical results in the main text we evaluate (C.18) using (C.14)

1

2π
S ′′± ≈ −

0.06498

`4
+ 0.01910− 0.08289 `4 , (C.19)

where we set πT = 1. The number 0.06498 reproduces the correct vacuum result (6.9),
while the numbers 0.01910 and 0.08289 appear in the fit in the inset of Figure 6.2.

If T`� 1 then the holographic depth z∗ approaches the horizon,

z∗ = (πT )−1(1− ε) 0 < ε� 1 . (C.20)

This means that we have again a small parameter that we can use for perturbative
purposes, namely ε. However, a technical difficulty is that integrals like (C.13) now
acquire terms that diverge like ln ε or 1/ε due to the behavior of the integrands near
the upper integration boundary x = 1. Thus, we need to isolate these divergences as
we expand around ε = 0. We encounter two types of delicate integrals. The first one
is of the form

I1[h(x)] =

1∫
0

h(x) dx√
1− x (1− x+ εx)3/2

=
2h(1)

ε
+O(ln ε) , (C.21)

and the second one reads

I2[h(x)] =

1∫
0

h(x) dx√
(1− x)(1− x+ εx)

= −h(1) ln
ε

4
+

1∫
0

dx
h(x)− h(1)

1− x
−
(
h(1) + h′(1)

) ε
2

ln
ε

4
+O(ε) ,(C.22)

where in both cases the function h(x) must be (and in all our cases will be) Taylor-
expandable around x = 1. We have also simple explicit expressions for the subleading
terms, but do not display them since we are not going to use them (with one exception).
By virtue of the formulas above we now evaluate the three relevant integrals.

Let us start with the integral (C.9). We rewrite it as

λ

2
= Λ z∗ I1[hΛ(x)] , (C.23)

with hΛ(1) ' 1/(8
√

6) +O(ε) where ' denotes equality up to terms of irrelevant order
in λ. Using (C.21) for small ε the integral (C.23) yields

Λ ' 2
√

6ελ(πT ) +O(λε2 ln ε) . (C.24)

The next integral we consider is (C.8), which determines ε defined in (C.20) in terms
of ` and λ. Again we slightly rewrite the integral

`+ λ

2z∗
' I2[hz(x)] + λ2(πT )2ε I1[hλ(x)] , (C.25)

which for small ε by virtue of (C.21) and (C.22) expands as

`+ λ

2z∗
' −hz(1) ln

ε

4
+ h0

z + 2λ2hλ(1) +O(ε ln ε) , (C.26)
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with hz(1) = 2hλ(1) = 1/(2
√

6) +O(ε) and h0
z ≈ −0.25032 1, yielding

ε ' ε0 exp
[
−
√

6(`+ λ)(πT ) + λ2(πT )2
]

+ . . . , (C.27)

where the ellipsis refers to terms that are exponentially suppressed as compared to the
one displayed. Numerically, ε0 = 4 exp[h0

z/hz(1)] ≈ 1.173487.

Finally, we evaluate the area integral (C.13). We split it into λ-independent and
λ-dependent terms

IA ' I2[hz(x) + ε kz(x)]λ2(πT )2ε I1[hλ(x) + ε kλ(x)]

' `+ λ

2z∗
+ ε
(
I2[kz(x)] + λ2(πT )2ε I1[kλ(x)]

)
, (C.28)

with the same functions hz and hλ as in (C.25), kz(1) = −1/2 and kλ(1) = −
√

6/4.
Physically, the reason why the split of the integrals in (C.28) into h and k is useful is
related to the fact that for large T` entanglement entropy scales linearly with `.

The integration formulas (C.21) and (C.22) together with the results above yield
for the area (C.12)

A ' 1

z2
cut

+
`+ λ

z3
∗

+
1

z2
∗

(
b0 +b1ε+blogε ln ε

)
+λ2(πT )4 b2ε+O(z2

cut)+O(ε2 ln ε) , (C.29)

with b0 ≈ −0.66589, b1 ≈ −0.08889 2, b2 = −
√

6 and blog =
√

6/2. For λ = 0 the area
(C.29) establishes a result for entanglement entropy,

SEE =
1

2π

[ 1

z2
cut

+ `(πT )3 + (πT )2 b0 + e−
√

6`(πT )(πT )2 ε0
(
2b0 + b1 + blog ln ε0

)]
, (C.30)

where we neglected terms that vanish as the cutoff is removed, zcut → 0, and terms
that are exponentially suppressed like ` exp[−2

√
6`(πT )]. Note that all terms of the

form ` exp[−
√

6`(πT )] cancel. Numerically, the cutoff-independent terms read (setting
πT = 1)

2πSfin ≈ `− 0.666− 1.437 e−
√

6` +O(` e−2
√

6`) . (C.31)

The result above agrees with (5.27) and (B.26) in [175].

The second derivative of the area (C.29) with respect to ±λ evaluated at λ = 0
yields again the QNEC quantity S ′′± used in the main text

1

2π
S ′′± = −5

√
6 ε0

4π2
(πT )4 e−

√
6`(πT ) + . . . , (C.32)

where we neglected terms that are suppressed like ` exp[−2
√

6`(πT )] and used the
numerical identity blog ln ε0 = −2b0 − b1 − blog. Note that again all terms of the form

1 The explicit expression for h0
z follows from the integral formula (C.22) and reads

h0
z =

∫ 1

0
dx [hz(x) − hz(1)]/(1 − x) with hz(x) = x3/[(1 + x)W (x)] where W (x) =√

(1 + x2)(1− x+ x2)(1 + x+ x2).
2To evaluate b1 also the first subleading term not displayed in the integral formula (C.22) is

needed. The explicit expression for b1 reads b1 = 1 + 2k0(1) − blog ln 4 + 2
∫ 1

0
dx [k1(x) + 1

2
]/(1 −

x) −
∫ 1

0
dx

∫ 1

x
dy [k0(y) − k0(1)]/(1 − y) with the functions k0(x) = [x4 + x2 + 1 −W (x)]/[x3W (x)],

k1(x) = (1 − x)(3x6 + 2x5 + 4x4 + 2x3 + 4x2 + 2x + 1)/[2x2(1 + x)(1 + x2)W (x)] − 1/(2x2) and
W (x) =

√
(1 + x2)(1− x+ x2)(1 + x+ x2). The explicit expression for b0 follows from the integral

formula (C.22), b0 = −1 + 2
∫ 1

0
dx k0(x).
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` exp[−
√

6`(πT )] cancel. Inserting numbers into our large width result (C.32) yields
(setting πT = 1)

1

2π
S ′′± ≈ −0.364053 e−2.44949` . (C.33)

The exponential behavior in (C.33) agrees rather precisely with the numerical data
displayed in Figure 6.2.



Appendix D

Mathematica Implementation of
the Shooting Method

In this appendix we give a Mathematica implementation of a simple shooting method
that solves the auxiliary geodesic equations for minimal surfaces with infinite stripe
boundary conditions in a homogeneous and isotropic AdS5 Schwarzschild black brane
geometry. Furthermore it computes the regularized (=vacuum subtracted) surface
area which corresponds to the entanglement entropy of the of a stripe region in the
boundary CFT which has finite temperature given by the Hawking temperature of
the black brane. The reader can simply copy and paste the code into a Mathematica
notebook or download the file [AppendixD.nb] and run the simulation.1

In[1]:= (* coordinates and metric *)

xmu={z,t,y};
d=Length[xmu];

metric=1/z^(2(dim-2)){{0,-1,0},{-1,-(1-M z^(dim-1)),0},{0,0,1}};
metricInv=Inverse[metric];

In[2]:= (* Christoffel symbols *)

Gudd=Table[Sum[1/2metricInv[[i,l]](D[metric[[k,l]],xmu[[j]]]

+D[metric[[j,l]],xmu[[k]]]-D[metric[[j,k]],xmu[[l]]]),{l,1,d}],
{i,1,d},{j,1,d},{k,1,d}];

In[3]:= (* embedding functions *)

Xmu={Z[s],T[s],Y[s]};
replXmu={z->Z[s],t->T[s],y->Y[s]};

In[4]:= (* geodesic equation *)

geoEQ=Table[0==D[Xmu[[i]],{s,2}]+Sum[Gudd[[i,j,k]]
D[Xmu[[j]],s]D[Xmu[[k]],s],{j,1,d},{k,1,d}],{i,1,d}]/.replXmu;

1The code is implemented and tested in Mathematica 11.1.1.0 but since only very basic features are
used it should run in any reasonable Mathematica version.
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In[5]:= (* shooting method that computes embedding functions

and geodesics length *)

ShootGeo[l_,zCut_,zIni_,dz_,ErrMax_,ItMax_]:=

Module[{Error,zNow,IC,GeoLength,resGeo,i},
zNow=zIni;

i=0;Error=10^5;

While[Error>ErrMax&&i<ItMax,

(* boundary conditions *)

IC={Z[0]==zNow,T[0]==1,Y[0]==0,Derivative[1][Z][0]==0,
Derivative[1][T][0]==0,Derivative[1][Y][0]==1};
resGeo=NDSolve[geoEQ~Join~IC,Xmu,{s,-10^8,10^8},AccuracyGoal->10,
PrecisionGoal->10, Method->{"ExplicitRungeKutta",
"DifferenceOrder"->8},InterpolationOrder->8][[1]];
(* computing parameter value at cutoff *)

sCut=Solve[(Z[s]/.resGeo)==zCut,s][[1,1]]//Quiet;

lCut=2Y[s]/.resGeo/.sCut;

Error=Abs[lCut-l];

Print["i=",i," z*=",zNow,", Error=",Error,", l=",lCut];

(* Newton step *)

ICnew={Z[0]==zNow+dz,T[0]==1,Y[0]==0,Derivative[1][Z][0]==0,
Derivative[1][T][0]==0,Derivative[1][Y][0]==1};
resGeoNew=NDSolve[geoEQ~Join~ICnew,Xmu,{s,-10^8,10^8},
AccuracyGoal->10,PrecisionGoal->10, Method->{"ExplicitRungeKutta",
"DifferenceOrder"->8},InterpolationOrder->8][[1]];
sCutNew=Solve[(Z[s]/.resGeoNew)==zCut,s][[1,1]]//Quiet;

lCutNew=2Y[s]/.resGeoNew/.sCutNew;

(* updating previous guess *)

delta=If[Error>10^-1,1/10,1];

zNew=zNow-delta dz (lCut-l)/(lCutNew-lCut);

zNow=zNew;

i++;

];

(* geodesic length *)

GeoLength=NIntegrate[Sqrt[D[Xmu/.resGeo,s].metric.

D[Xmu/.resGeo,s]/.replXmu/.resGeo],{s,-s/.sCut,s/.sCut}];
{resGeo,GeoLength}
]

In[6]:= (* example: AdS5 vacuum *)

zIni=2*10^-1;zCut=5*10^-2;M=0;dim=5;

ItMax=100;ErrMax=10^-10;dz=10^-9;

(* computing embedding functions and geodesic length *)

lList=Table[i,{i,1/10,5,1/10}];
zIniNow=zIni;

Do[(*Print["l=",lList[[j]]];*)

solVac[j]=ShootGeo[lList[[j]],zCut,zIniNow,dz,ErrMax,ItMax];

(* using the previous result as new initial guess *)

zIniNow=Z[s]/.solVac[j][[1]]/.s->0;

,{j,1,Length[lList]}]
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In[7]:= (* plotting embedding functions and geodesic length *)

GeoPlot2D[i_]:=ParametricPlot[{Y[s],Z[s]}/.solVac[i][[1]],
{s,-s/.sCut,s/.sCut},PlotRange->{All,{zCut,6}},
BaseStyle->Thick,AxesLabel->{"y","z"},LabelStyle->{Black,20},
ImageSize->400,PlotStyle->ColorData["Rainbow",i/Length[lList]],

MaxRecursion->15];

{Show[Table[GeoPlot2D[i],{i,1,Length[lList]}]],
ListPlot[Table[{lList[[i]],solVac[i][[2]]},{i,1,Length[lList]}],
BaseStyle->Thick,AxesLabel->{"l","S"},LabelStyle->{Black,20},
ImageSize->500,Joined->True,PlotRange->All]}
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In[8]:= (* example: AdS5 black brane *)

zIni=2*10^-1;zCut=5*10^-2;M=1;dim=5;

ItMax=100;ErrMax=10^-10;dz=10^-9;

(* computing embedding functions and geodesic length *)

lList=Table[i,{i,1/10,5,1/10}];
zIniNow=zIni;

Do[

(*Print["l=",lList[[j]]];*)

sol[j]=ShootGeo[lList[[j]],zCut,zIniNow,dz,ErrMax,ItMax];

(* using the previous result as new initial guess *)

zIniNow=Z[s]/.sol[j][[1]]/.s->0;

,{j,1,Length[lList]}]

In[9]:= (* plotting embedding functions and geodesic length *)

GeoPlot2D[i_]:=ParametricPlot[{Y[s],Z[s]}/.sol[i][[1]]
,{s,-s/.sCut,s/.sCut},PlotRange->{All,{zCut,1.1}},
BaseStyle->Thick,AxesLabel->{"y","z"},LabelStyle->{Black,20},
ImageSize->550,PlotStyle->ColorData["Rainbow",

i/Length[lList]],MaxRecursion->15,AspectRatio->0.4];

{Show[Table[GeoPlot2D[i],{i,1,Length[lList]}],
Plot[1,{x,-2.5,2.5},PlotStyle->{Black,Dashed,Thick}]],
ListPlot[Table[{lList[[i]],sol[i][[2]]},{i,1,Length[lList]}],
BaseStyle->Thick,AxesLabel->{"l","S"},
LabelStyle->{Black,20},ImageSize->400,Joined->True,
PlotRange->All]}
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Appendix E

Mathematica Implementation of
the Relaxation Method

In this appendix we give a Mathematica implementation of the relaxation method which
solves the two-point boundary value problem for the geodesics equation. The example
provided here is given for the analytically available Vaidya spacetime, but generalizing
to numeric backgrounds, as it was done in the examples in the main text is straight
forward. The Mathematica file is also available from the following link [AppendixE.nb].

In[10]:= (* Coordinates and metric for the relevant 3dim. subspace

in the Poincare patch *)

xmu={z,t,y};
d=Length[xmu];

(* smooth step function determining the location of the shell *)

M[t_]:=m (1.+Tanh[a t])/2;

(* conformal factor *)

omega=z^-(dim-2);

(* effective metric for the extremal surfaces *)

metric=omega^2{{0,-1/z^2,0},{-1/z^2,-(1-M[t] z^dim)/z^2,0},
{0,0,1/z^2}};
metricinv=Inverse[metric];

g=Det[metric];

(* Christoffel symbol and contraction *)

Gudd=Table[Sum[1/2metricinv[[i,l]](D[metric[[k,l]],xmu[[j]]]

+D[metric[[j,l]],xmu[[k]]]-D[metric[[j,k]],xmu[[l]]])

,{l,1,d}],{i,1,d},{j,1,d},{k,1,d}];
(* building the Christoffels used in the relaxation code *)

gamma[z_,t_,y_]=Table[Gudd[[i,j,k]],{i,d},{j,d},{k,d}];
Dgamma[z_,t_,y_]=Table[Table[D[Gudd[[i,j,k]],xmu[[l]]]

,{i,d},{j,d},{k,d}],{l,d}]//Simplify;
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In[11]:= (* initial guess for the geodesic *)

makeGeoAnsatz[gridsize_,zCUT_,l0_,t0_]:=

Module[{tt,tav,f,tau,Jf,tte,tts,tCUTOFF,lambda,dlambda,h,Jav,
Y,Z,T,dY,dZ,dT,x,Zmax,lambdap,dlambdap,Yp,Ym,dYp,dYm},
(* turning point in the bulk *)

Zmax=l0/2Gamma[1/(2(dim-1))]/(Sqrt[Pi]*Gamma[dim/(2(dim-1))]);

(* parameter value at the z-cutoff *)

tCUTOFF=1-Sqrt[1-zCUT/Zmax];

tts=-1+tCUTOFF;

tte=1-tCUTOFF;

h=(tte-tts)/(gridsize-1);

tt=Table[i, {i, tts, tte, h}];
tav=Table[(i+i+h)/2, {i,tts,tte-h,h}];
f[x_]=x;

tau[x_]=ArcTanh[f[x]*Sqrt[2 - f[x]^2]];

Jf[x_]=Which[

dim==2,-Derivative[2][tau][x]/Derivative[1][tau][x],

dim==3,-1*(Derivative[2][f][x]/Derivative[1][f][x])

+(Derivative[1][f][x]*f[x]*(-22+38*f[x]^2-27*f[x]^4+7*f[x]^6))

/(4-10f[x]^2+10*f[x]^4-5*f[x]^6+f[x]^8),

dim==4,-1*(Derivative[2][f][x]/Derivative[1][f][x])

+(Derivative[1][f][x]*f[x]*(-51+145*f[x]^2-205*f[x]^4+

159*f[x]^6-65*f[x]^8+11*f[x]^10))

/((-2+f[x]^2)*(-1+f[x]^2)*(3-3*f[x]^2+f[x]^4)*(1-f[x]^2+f[x]^4))

];

Jav=Jf[tav];

lambda=f[tt];

dlambda=Derivative[1][f][tt];

lambdap=lambda[[1;;Length[tt]/2]];

dlambdap=dlambda;

Yp=-l0/2+(Zmax*(1-lambdap^2))^dim/(dim*Zmax^(dim-1))*

Hypergeometric2F1[1/2,dim/(2(dim -1)),(3dim-2)/(2dim-2),

(-1+ lambdap^2)^(2(dim-1))];

Ym=Reverse[-Yp];

Y=Join[Yp,Ym];

dYp=dlambdap l0 lambdap (1-lambdap^2)^dim Gamma[1/(2(dim-1))]

/((lambdap^2-1)Sqrt[Pi]Sqrt[1-(lambdap^2-1)^(2(dim-1))]*

Gamma[dim/(2(dim-1))]);

dYm=Reverse[dYp];

dY=Join[dYp,dYm];

Z=Zmax*(1 - lambda^2);

dZ=-2*Zmax*dlambda*lambda;

T=t0-Z;

dT=-dZ;

{{Z,T,Y},{dZ,dT,dY},Jav,lambda,dlambda,h}
];
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In[12]:= (* evaluating the numerical values of the Christoffel symbols *)

evaluateChristoffels[gridsize_,X_,dX_]:=Module[

{Xav,dXav,gammaALL,DgammaALL},
Xav=Table[1/2(X[[i,j+1]]+X[[i,j]]),{i,Length[X]},{j,1,gridsize-1}];
dXav=Table[1/2(dX[[i,j+1]]+dX[[i,j]]),{i,Length[X]},{j,1,gridsize-1}];
gammaALL=gamma[Xav[[1]],Xav[[2]],Xav[[3]]];

DgammaALL=Table[Dgamma[Xav[[1]],Xav[[2]],Xav[[3]]][[i]],{i,Length[X]}];
For[i=1,i<4,i++,For[j=1,j<4,j++,For[k=1,k<4,k++,

If[Length[gammaALL[[i,j,k]]]==0,

gammaALL[[i,j,k]]=Table[0,{gridsize-1}]];
Do[If[Length[DgammaALL[[l,i,j,k]]]==0,

DgammaALL[[l,i,j,k]]=Table[0,{gridsize-1}]],{l,Length[X]}];]]];
{Xav,dXav,gammaALL,DgammaALL}];

In[13]:= (* building the finite differences equations *)

writeFDEs[gridsize_,X_,dX_,dXav_,Jav_,h_,gammaALL_]:=Module[

{i,j,FDEs},
FDEs=Table[0,{6*gridsize}];
j=1;

For[i=1,i<6*(gridsize-1),i+=6,

Do[

FDEs[[i+2m+1]]=X[[m,j+1]]-X[[m,j]]-h*dXav[[m,j]];

FDEs[[i+2m+2]]=dX[[m,j+1]]-dX[[m,j]]+h*Jav[[j]]*dXav[[m,j]]

+h*Sum[gammaALL[[m,k,l,j]]*dXav[[k,j]]*dXav[[l,j]],

{k,Length[X]},{l,Length[X]}];
,{m,1,3}];
j+=1;

];

FDEs];
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In[14]:= (* computing the numerical entries of the S-matrix *)

findSElements[gridsize_,dXav_,Jav_,h_,gammaALL_,DgammaALL_]:=

Module[{j,Sp,Sm},
Sp=Sm=Table[Table[Table[0,{gridsize-1}],{6}],{6}];
For[j=1,j<(gridsize),j+=1,

Do[

If[m==n,

Sp[[2m-1,2n-1,j]]=1;

Sm[[2m-1,2n-1,j]]=-1;

Sp[[2m-1,2n,j]]=-h/2;

Sm[[2m-1,2n,j]]=-h/2;

Sp[[2m,2n,j]]=1+h/2Jav[[j]]

+h Sum[dXav[[k,j]]*gammaALL[[m,n,k,j]],{k,3}];
Sm[[2m,2n,j]]=-1+h/2Jav[[j]]

+h Sum[dXav[[k,j]]*gammaALL[[m,n,k,j]],{k,3}];
,

Sp[[2m,2n,j]]=h Sum[dXav[[k,j]]*gammaALL[[m,n,k,j]],{k,3}];
Sm[[2m,2n,j]]=Sp[[2m,2n,j]];

];

Sp[[2m,2n-1,j]]=h/2Sum[dXav[[k,j]]*dXav[[l,j]]

*DgammaALL[[n,m,k,l,j]] ,{k,3},{l,3}];
Sm[[2m,2n-1,j]]=Sp[[2m,2n-1,j]];

,{m,3},{n,3}];
];

{Sp,Sm}];
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In[15]:= (* building the sparse matrix *)

createSmatrix[gridsize_,Sp_,Sm_,h_]:=

Module[{i,j,dvS,dvSh,dvM,rvS,rvM,cvS,cvSh,cvM,sMatrix,k,n,l},
{rvS,cvSh,dvS,dvSh}=Table[Table[0,{24*(gridsize-1)}],{4}];
j=0;

For[i=1,i<24*(gridsize-1),i+=24,

k=0;n=1;

While[k<23,

Do[

rvS[[i+k]]=If[l<3,2(n+1),2n+3]+6j;

cvSh[[i+k]]=If[l<3,2n-2+l,l-2]+6j;

dvS[[i+k]]=Sp[[If[l<3,2n-1,2n],If[l<3,2n-2+l,l-2],j+1]];

dvSh[[i+k]]=Sm[[If[l<3,2n-1,2n],If[l<3,2n-2+l,l-2],j+1]];

k++;

,{l,1,8}];
n++;

];

j+=1;];

cvS=cvSh+6;

rvM=Flatten[{1,2,3,rvS,rvS,(6*gridsize-2),(6*gridsize-1),
(6*gridsize)}];
cvM=Flatten[{1,3, 5,cvSh,cvS,(6*gridsize-5),(6*gridsize-3),

(6*gridsize-1)}];
dvM=Flatten[{1,1,1,dvSh,dvS,1,1,1}];
sMatrix=SparseArray[Table[{rvM[[k]],cvM[[k]]}->dvM[[k]],
{k,1, Length[cvM]}]];
sMatrix];

In[16]:= (* Newton iteration *)

NewtonStep[gridsize_,errorFDE_,deltaX_,X_,dX_]:=Module[

{i,j,eps,Xnew,dXnew},
Xnew=Table[0,{Length[X]},{gridsize}];
dXnew=Table[0,{Length[X]},{gridsize}];
If[errorFDE<1*10^-3,eps=1.,eps=5*10^-1];

j=1;

For[i=1,i<6*gridsize,i+=6,

Do[

Xnew[[k,j]]=X[[k,j]]+eps*deltaX[[i+2k-2]];

dXnew[[k,j]]=dX[[k,j]]+eps*deltaX[[i+2k-1]];

,{k,1,3}];
j+=1;

];

{Xnew,dXnew}];
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In[17]:= (* relaxation routine *)

relax[gridsize_,X_,dX_,h_,Jav_]:=

Module[{Xav,dXav,gammaALL,DgammaALL,FDEs,errorFDE,
Sp,Sm,sMatrix,deltaX,Xnew,dXnew},
{Xav,dXav,gammaALL,DgammaALL}=evaluateChristoffels[gridsize,X,dX];
FDEs=writeFDEs[gridsize,X,dX,dXav,Jav,h,gammaALL];

errorFDE=Sum[Abs[FDEs[[i]]],{i,Length[FDEs]}]/(6*gridsize);
{Sp,Sm}=findSElements[gridsize,dXav,Jav,h,gammaALL,DgammaALL];
sMatrix=createSmatrix[gridsize,Sp,Sm,h];

deltaX=-LinearSolve[sMatrix,FDEs];

{Xnew,dXnew}=NewtonStep[gridsize,errorFDE,deltaX,X,dX];
{Xnew,dXnew,errorFDE}];

In[18]:= (* computing the geodesic length *)

findGeoLength[X0_,dX0_,X_,dX_,lambda_,zCUT_]:=

Module[{Xint,X0int,dsint,ds0int,L,L0},
Xint=Table[Interpolation[Thread[{lambda,X[[i,;;]]}]],
{i,Length[X]}];
X0int=Table[Interpolation[Thread[{lambda,X0[[i,;;]]}]],
{i,Length[X0]}];
dsint=Xint[[1]][x]^-(dim-1)*

Sqrt[-(1-M[ Xint[[2]][x]]Xint[[1]][x]^dim)D[Xint[[2]][x],x]^2

-2 D[Xint[[2]][x],x] D[Xint[[1]][x],x] + D[Xint[[3]][x],x]^2];

ds0int=X0int[[1]][x]^-(dim-1) Sqrt[-D[X0int[[2]][x],x]^2

-2 D[X0int[[2]][x],x] D[X0int[[1]][x],x] + D[X0int[[3]][x],x]^2];

L=NIntegrate[dsint, {x, First[lambda],Last[lambda]}];
L0=NIntegrate[ds0int, {x, First[lambda],Last[lambda]}];
{L,L0}];

In[19]:= (* routine that relaxes a single geodesic *)

relaxOneGeodesic[gridsize_,zCUT_,l0_,t0_,errMAX_,itMAX_]:=

Module[{L,L0,ansatz,geodesic,i,X0,dX0,Jav,lambda,dlambda,
h,X,dX,errorFDE},
{X0,dX0,Jav,lambda,dlambda,h}=makeGeoAnsatz[gridsize,zCUT,l0,t0];
{X,dX}={X0,dX0};
{X[[2,1]],X[[2,-1]],X[[3,1]],X[[3,-1]]}=
{t0-zCUT,t0-zCUT,-l0/2,l0/2};
errorFDE=10.^5;

i=1;

While[errorFDE>errMAX,

{X,dX,errorFDE}=relax[gridsize,X,dX,h,Jav];
If[i==itMAX,Break[]];

i+=1;

];

Print["Iteration: ",i," with errorFDE: ",errorFDE];

{L,L0}=findGeoLength[X0,dX0,X,dX,lambda,zCUT];
ansatz={t0,l0,gridsize,X0,dX0,lambda,0,0,L0};
geodesic={t0,l0,gridsize,X,dX,lambda,errorFDE,i-1,L};
{ansatz,geodesic}
];
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In[20]:= (* Compute Entanglement entropy as function of time *)

relaxTevolution[gridsize_,zCUT_,l0_,t0_,tMax_,Nt_,errMAX_,itMAX_]:=

Module[{i,j,t,deltat,X0,dX0,Jav,lambda,dlambda,
h,X,dX,errorFDE,L,L0,ansatz,geodesic},
deltat=(tMax-t0)/(Nt-1);

t=t0;ansatz={};geodesic={};
{X0,dX0,Jav,lambda,dlambda,h}=makeGeoAnsatz[gridsize,zCUT,l0,t0];
For[j=1,j<=Nt,j++,

Print["step: ",j," @ t = ",t];

If[j==1,{X,dX}={X0,dX0}];
{X[[2,1]],X[[2,-1]],X[[3,1]],X[[3,-1]]}={t-zCUT,t-zCUT,-l0/2,l0/2};
errorFDE=10^5;i=1;

While[errorFDE>errMAX,

{X,dX,errorFDE}=relax[gridsize,X,dX,h,Jav];
(*Print["Iteration: ",i," with errorFDE: ",errorFDE];*)

If[i==itMAX,Break[]];

i+=1;

];

Print[i-1," iterations with error= ",errorFDE];

{L,L0}=findGeoLength[X0,dX0,X,dX,lambda,zCUT];
AppendTo[ansatz,{t,l0,gridsize,X0,dX0,lambda,0,0,L0}];
AppendTo[geodesic,{t,l0,gridsize,X,dX,lambda,errorFDE,i-1,L}];
t=t+deltat;

];

{ansatz,geodesic}];
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In[21]:= (* compute entanglement entropy as function of the separation *)

relaxLevolution[gridsize_,zCUT_,l0_,t0_,lMax_,Nl_,errMAX_,itMAX_]:=

Module[{i,j,l,deltal,X0,dX0,Jav,lambda,dlambda,
h,X,dX,errorFDE,L,L0,ansatz,geodesic},
deltal=(lMax-l0)/(Nl-1);

l=l0;ansatz={};geodesic={};
For[j=1,j<=Nl,j++,

Print["step: ",j," @ L = ",l];

{X0,dX0,Jav,lambda,dlambda,h}=makeGeoAnsatz[gridsize,zCUT,l,t0];
If[j==1,{X,dX}={X0,dX0}];
{X[[2,1]],X[[2,-1]],X[[3,1]],X[[3,-1]]}={t0-zCUT,t0-zCUT,-l/2,l/2};
errorFDE=10^5;i=1;

While[errorFDE>errMAX,

{X,dX,errorFDE}=relax[gridsize,X,dX,h,Jav];
(*Print["Iteration: ",i," with errorFDE: ",errorFDE];*)

If[i==itMAX,Break[]];

i+=1;

];

Print[i-1," iterations with error= ",errorFDE];

{L,L0}=findGeoLength[X0,dX0,X,dX,lambda,zCUT];
AppendTo[ansatz,{t0,l,gridsize,X0,dX0,lambda,0,0,L0}];
AppendTo[geodesic,{t0,l,gridsize,X,dX,lambda,errorFDE,i-1,L}];
l=l+deltal;

];

{ansatz,geodesic}];

In[22]:= (* time evolution of entanglement entropy *)

gridsize=300;zCut=0.01;l0=6;t0=-0.5;dim=2;a=30;m=1;

itMAX=20;errMAX=10^-10;tMax=4.;Nt=30;Nl=10;lMax=2;

{ansatz,geodesic}=relaxTevolution[gridsize,zCut,l0,t0,
tMax,Nt,errMAX,itMAX];

In[23]:= (* plotting the result *)

{ListPlot[Table[Thread[
{geodesic[[i,4,2,;;]],geodesic[[i,4,1,;;]]}],
{i,1,Length[geodesic]}],
PlotStyle->Table[ColorData["Rainbow",i/(Length[geodesic]-1)],

{i,0,(Length[geodesic]-1)}],PlotStyle->Thick,PlotRange->All,
Joined->True,ImageSize->400,LabelStyle->{Black,20},
AxesLabel->{"t","z"}],
ListPlot[Thread[{geodesic[[;;,1]],
geodesic[[;;,-1]]-ansatz[[;;,-1]]}],
Joined->True,ImageSize->400,LabelStyle->{Black,20},
AxesLabel->{"t","S"}]}
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In[24]:= (* entanglement entropy as function of the separation *)

gridsize=300;zCut=0.01;l0=0.5;t0=2.;dim=2;a=30;m=1;

itMAX=20;errMAX=10^-10;tMax=5;Nt=30;Nl=30;lMax=8;

{ansatz,geodesic}=relaxLevolution[gridsize,zCut,l0,t0,
lMax,Nl,errMAX,itMAX];

In[25]:= (* plotting results *)

{ListPlot[Table[Thread[
{geodesic[[i,4,3,;;]],geodesic[[i,4,1,;;]]}],
{i,1,Length[geodesic]}],
PlotStyle->Table[ColorData["Rainbow",i/(Length[geodesic]-1)],

{i,0,(Length[geodesic]-1)}],PlotStyle->Thick,PlotRange->All,
Joined->True,ImageSize->400,LabelStyle->{Black,20}
,AxesLabel->{"y","z"}],
ListPlot[Thread[{geodesic[[;;,2]],
geodesic[[;;,-1]]-ansatz[[;;,-1]]}],
Joined->True,ImageSize->400,LabelStyle->{Black,20},
AxesLabel->{"l","S"}]}

Out[25]= 
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Appendix F

Mathematica Routine for QNEC

In this appendix we give a Mathematica routine that computes QNEC using the re-
laxation code provided in the previous appendix. Again, the routine can be copied,
together with the code in Appendix E, into an empty Mathematica notebook and
executed or downloaded from [AppendixF.nb].
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In[26]:= (* compute QNEC as function of the separation *)

relaxQNECLevo[gridsize_,zCUT_,l0_,t0_,lMax_,Nl_,errMAX_,itMAX_,

{k0_,k1_},Nk_,epsilon_,side_:-1]:=Module[{i,j,k,deltal,kk,
l,X0,dX0,X,dX,Xk,dXk,Jav,lambda,dlambda,h,errorFDE,

ansatz,geodesic,geodesick,L,L0},
deltal=(lMax-l0)/(Nl-1);

l=l0;ansatz={};geodesic={};
For[i=1,i<=Nl,i++,

Print["step:",i," l=",l];

{X0,dX0,Jav,lambda,dlambda,h}=
makeGeoAnsatz[gridsize,zCUT,l,t0];

If[i==1,

{X,dX}={X0,dX0},{X[[2,1]],X[[2,-1]],
X[[3,1]],X[[3,-1]]}={t0-zCUT,t0-zCUT,-l/2,l/2};
];

geodesick={};
Do[

(*Print["k*eps=",kk*epsilon*{k0,k1}];*)
{Xk,dXk}={X,dX};
If[side==1,

{Xk[[2,1]],Xk[[3,1]]}={X[[2,1]],X[[3,1]]}+
kk*epsilon*{k0,k1};,
{Xk[[2,-1]],Xk[[3,-1]]}={X[[2,-1]],X[[3,-1]]}+
kk*epsilon*{k0,k1};
];

errorFDE=10^5;j=1;

While[errorFDE>errMAX,

{Xk,dXk,errorFDE}=relax[gridsize,Xk,dXk,h,Jav];
(*Print["Iteration: ",i," with errorFDE: ",errorFDE];*)

If[j==itMAX,Break[]];

j+=1;

];

(*Print[j-1," iterations with errorFDE= ",errorFDE];*)

{L,L0}=findGeoLength[X0,dX0,Xk,dXk,lambda,zCUT];
AppendTo[geodesick,{t0,l,gridsize,Xk,dXk,epsilon,
lambda,errorFDE,j-1,L}];
If[kk==0,{X,dX}={Xk,dXk}];
,{kk,(-Nk+Mod[Nk,2])/2,(Nk-Mod[Nk,2])/2}];
AppendTo[geodesic,geodesick];

AppendTo[ansatz,{t0,l,gridsize,X0,dX0,lambda,0,0,L0}];
l=l+deltal;

];

{ansatz,geodesic}];
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In[27]:= (* compute QNEC as function of time *)

relaxQNECTevo[gridsize_,zCUT_,l0_,t0_,tMax_,Nt_,errMAX_,itMAX_,

{k0_,k1_},Nk_,epsilon_,side_]:=Module[{i,j,k,deltat,
kk,t,X0,dX0,X,dX,Xk,dXk,Jav,lambda,dlambda,h,errorFDE,

ansatz,geodesic,geodesick,L,L0},
deltat=(tMax-t0)/(Nt-1);

t=t0;ansatz={};geodesic={};
{X0,dX0,Jav,lambda,dlambda,h}=makeGeoAnsatz[gridsize,zCUT,l0,t];
For[j=1,j<=Nt,j++,

Print["step:",j,", @ t=",t];

If[j==1,{X,dX}={X0,dX0}];
{X[[2,1]],X[[2,-1]],X[[3,1]],X[[3,-1]]}=
{t-zCUT,t-zCUT,-l0/2,l0/2};
geodesick={};
{Xk,dXk}={X,dX};
Do[

(*Print["k*eps=",kk*epsilon*{k0,k1}];*)
{Xk,dXk}={X,dX};
If[side==1,

{Xk[[2,1]],Xk[[3,1]]}={X[[2,1]],X[[3,1]]}+
kk*epsilon*{k0,k1};,
{Xk[[2,-1]],Xk[[3,-1]]}={X[[2,-1]],X[[3,-1]]}+
kk*epsilon*{k0,k1};
];

errorFDE=10^5;i=1;

While[errorFDE>errMAX,

{Xk,dXk,errorFDE}=relax[gridsize,Xk,dXk,h,Jav];
(*Print["Iteration: ",i," with errorFDE: ",errorFDE];*)

If[i==itMAX,Break[]];

i+=1;

];

(*Print[i-1," iterations with errorFDE= ",errorFDE];*)

{L,L0}=findGeoLength[X0,dX0,Xk,dXk,lambda,zCUT];
AppendTo[geodesick,{t,l0,gridsize,Xk,dXk,epsilon,
lambda,errorFDE,i-1,L}];
If[kk==0,{X,dX}={Xk,dXk}];
,{kk,(-Nk+Mod[Nk,2])/2,(Nk-Mod[Nk,2])/2}];
AppendTo[geodesic,geodesick];

AppendTo[ansatz,{t,l0,gridsize,X0,dX0,lambda,0,0,L0}];
t=t+deltat;

];

{ansatz,geodesic}];
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In[28]:= (* numerical parameters *)

epsilon=0.001;gridsize=300;zCUT=0.001;

errMAX=10^-15;itMAX=20;Nk=7;

In[29]:= (* compute QNEC surfaces and areas as function of time *)

dim=2;m=1;a=30;k={1,1};side=1;l0=5;t0=-2.0;tMax=5.0;Nt=70;
{ansatz,geodesic}=relaxQNECTevo[gridsize,zCUT,l0,t0,tMax,Nt,
errMAX,itMAX,k,Nk,epsilon,side];

In[30]:= (* computing QNEC *)

S=Table[Table[{i*epsilon,geodesic[[j,i+4,-1]]/4},{i,-3,3}],
{j,1,Length[geodesic]}];
Sfit=Table[Fit[S[[i]],{1,eps,eps^2,eps^3},eps],{i,1,Length[S]}];
Sd=Table[D[Sfit[[i]],{eps,1}]/.eps->0,{i,1,Length[Sfit]}];
Sdd=Table[D[Sfit[[i]],{eps,2}]/.eps->0,{i,1,Length[Sfit]}];
c=3/2;

QNEClist=Table[{geodesic[[i,1,1]],
(Sdd[[i]]+6/c Sd[[i]]^2)/(2 Pi)},{i,1,Length[geodesic]}];

In[31]:= (* plotting surfaces *)

plotSurf=ListPlot[Table[Thread[{geodesic[[j,4,4,2,;;]],
geodesic[[j,4,4,1,;;]]}],{j,1,Nt}],Joined->True,ImageSize->500,
PlotStyle->Table[ColorData["Rainbow",j/(Nt-1)],{j,0,Nt-1}],
LabelStyle->{Black,20},AxesLabel->{"t","z"}];
(* plotting horizon *)

plotHorizon=Plot[1/M[t]^(1/dim),{t,-0.1,5},AxesOrigin->{0,0},
PlotStyle->{Thickness[0.005], Dashed,Black}];
(* null-projection of the EMT *)

Tkkplot=Plot[1/(8Pi)M[t],{t,-2,5},PlotRange->All,
PlotStyle->{Black,Thick,Dashed},
PlotLegends->Placed[{"Tkk"},Above],LabelStyle->{Black,20}];
(* plotting QNEC *)

plotQNEC=ListPlot[QNEClist,Joined->True,PlotStyle->{Red,Thick},
LabelStyle->{Black,20},AxesLabel->{"t"},
ImageSize->500,PlotRange->All,

PlotLegends->Placed[{"(S’’+6/c(S’)^2)/(2Pi)"},Above]];
{Show[plotSurf,plotHorizon],Show[plotQNEC,Tkkplot]}

Out[31]=
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In[32]:= (* compute QNEC surfaces and areas as function of separation *)

dim=2;m=1;a=30;k={1,1};side=1;t0=1.0;l0=0.1;lMax=5.0;Nl=30;
{ansatz,geodesic}=relaxQNECLevo[gridsize,zCUT,l0,t0,lMax,Nl,
errMAX,itMAX,k,Nk,epsilon,side];

In[33]:= (* computing QNEC *)

S=Table[Table[{i*epsilon,geodesic[[j,i+4,-1]]/4},{i,-3,3}],
{j,1,Length[geodesic]}];
Sfit=Table[Fit[S[[i]],{1,eps,eps^2,eps^3},eps],{i,1,Length[S]}];
Sd=Table[D[Sfit[[i]],{eps,1}]/.eps->0,{i,1,Length[Sfit]}];
Sdd=Table[D[Sfit[[i]],{eps,2}]/.eps->0,{i,1,Length[Sfit]}];
c=3/2;

QNEClist=Table[{geodesic[[i,1,2]],(Sdd[[i]]+6/c Sd[[i]]^2)/(2 Pi)},
{i,1,Length[geodesic]}];

In[34]:= (* plotting surfaces *)

plotSurf=ListPlot[Table[Thread[{geodesic[[j,4,4,3,;;]],
geodesic[[j,4,4,1,;;]]}],{j,1,Nl}],Joined->True,
ImageSize->500,LabelStyle->{Black,20},AxesLabel->{"x","z"},
PlotStyle->Table[ColorData["Rainbow",j/(Nl-1)],{j,0,Nl-1}]];
(* null-projection of the EMT *)

Tkkplot=Plot[1/(8Pi)M[t0],{l,l0,lMax},PlotRange->All,
PlotStyle->{Black,Thick,Dashed},
PlotLegends->Placed[{"Tkk"},Above],LabelStyle->{Black,20}];
(* plotting QNEC *)

plotQNEC=ListPlot[QNEClist[[2;;]],Joined->True,

PlotStyle->{Red,Thick},LabelStyle->{Black,20},AxesLabel->{"l"},
PlotLegends->Placed[{"(S’’+6/c(S’)^2)/(2Pi)"},Above],ImageSize->500];
{Show[plotSurf],Show[plotQNEC,Tkkplot]}

Out[34]= 
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[86] A. Rényi, On measures of entropy and information, in Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, vol. 1,
pp. 547–561, 1961.

[87] M. Headrick, V. E. Hubeny, A. Lawrence and M. Rangamani, Causality &
holographic entanglement entropy, JHEP 12 (2014) 162 [1408.6300].

[88] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666–669
[hep-th/9303048].

[89] L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, A Quantum Source of
Entropy for Black Holes, Phys. Rev. D34 (1986) 373–383.

[90] B. Swingle and T. Senthil, Universal crossovers between entanglement entropy
and thermal entropy, Phys. Rev. B87 (2013), no. 4 045123 [1112.1069].

[91] P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory,
J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152].

[92] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in
conformal field theory, Nucl. Phys. B424 (1994) 443–467 [hep-th/9403108].

[93] G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C930308
(1993) 284–296 [gr-qc/9310026].

[94] L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377–6396
[hep-th/9409089].

[95] J. D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972)
737–740.

[96] J. D. Bekenstein, Black holes and entropy, Phys. Rev. D7 (1973) 2333–2346.

http://arXiv.org/abs/0907.2939
http://arXiv.org/abs/1306.0533
http://arXiv.org/abs/1609.01287
http://arXiv.org/abs/1801.10352
http://arXiv.org/abs/1801.01158
http://arXiv.org/abs/1408.6300
http://arXiv.org/abs/hep-th/9303048
http://arXiv.org/abs/1112.1069
http://arXiv.org/abs/hep-th/0405152
http://arXiv.org/abs/hep-th/9403108
http://arXiv.org/abs/gr-qc/9310026
http://arXiv.org/abs/hep-th/9409089


129

[97] J. D. Bekenstein, Generalized second law of thermodynamics in black hole
physics, Phys. Rev. D9 (1974) 3292–3300.

[98] S. W. Hawking, Black hole explosions, Nature 248 (1974) 30–31.

[99] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43
(1975) 199–220.

[100] J. Polchinski, String Theory: Volume 1, An Introduction to the Bosonic String.
Cambridge Monographs on Mathematical Physics. Cambridge University Press,
1998.

[101] F. Gliozzi, J. Scherk and D. Olive, Supersymmetry, supergravity theories and the
dual spinor model, Nuclear Physics B 122 (Apr., 1977) 253–290.
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