
Real-Time Visualization Pipeline
for Dynamic Point Cloud Data

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

BSc Hansjörg Hofer
Matrikelnummer 01026632

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Mag. Dr. Margrit Gelautz
Mitwirkung: Dr. Florian Seitner

Wien, 26. August 2018
Hansjörg Hofer Margrit Gelautz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Real-Time Visualization Pipeline
for Dynamic Point Clouds

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

BSc Hansjörg Hofer
Registration Number 01026632

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag. Dr. Margrit Gelautz
Assistance: Dr. Florian Seitner

Vienna, 26th August, 2018
Hansjörg Hofer Margrit Gelautz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

BSc Hansjörg Hofer
Sechsschimmelgasse 16/13

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. August 2018
Hansjörg Hofer

v

Danksagung

Ich möchte mich bei allen bedanken, die einen Beitrag zu dieser Abschlussarbeit und
dem resultierenden Projekt geleistet haben. Bei Florian Seitner, für seine Leitung und
die Hilfe den Fokus der Schlüsselaspekte dieser Arbeit nicht aus den Augen zu verlieren
und dafür, dass er mir die Zeit und den Raum zur Verfügung gestellt hat, dieses Projekt
fertigzustellen. Bei Michael Hödlmoser für seine Unterstützung und Hilfe. Bei meiner
Betreuerin, Margrit Gelautz, für die reibungslose Zusammenarbeit mit emotion3D.

Vielen Dank an Reinhold Preiner, für seine vorhergehende Arbeit an AutoSplats und die
Bereitstellung des Shader-Quellcodes für die Singulärwertzerlegung.

Vielen Dank an Christian Schönauer, für das Bereitstellen des mobilen Testgeräts.

Vielen Dank an alle Mitarbeiter bei emotion3D, für die Unterstützung und das geteilte
Interesse am Projekt.

Vielen Dank an meine Freundin, für die Hilfe und Motivation, besonders in den langen
und oft späten Stunden in der Bibliothek.

Besonderen Dank an meine Familie, für die Unterstützung und dafür, dass sie mir
ermöglichen meiner Leidenschaft nachzugehen.

Diese Masterarbeit wurde von dem Projekt Precise3D (num. 855442) unterstützt, welches
vom Bundesministerium für Verkehr, Innovation und Technologie (BMVIT) zusammen
mit der Forschungsförderungsgesellschaft (FFG) finanziert und gefördert wird. Precise3D
ist Teil des „ICT of the Future“ Programms.

vii

Acknowledgements

I would like to thank everyone who contributed to this thesis and the resulting project.
To Florian Seitner, for his guidance and help focusing on the key aspects of this thesis
and for giving me the time and space to accomplish this project. To Michael Hödlmoser
for the support and help. To my advisor, Margrit Gelautz, for the seamless cooperation
with emotion3D.

Thanks to Reinhold Preiner, for his previous work on AutoSplats and for providing the
shader source code for the singular value decomposition.

Thanks to Christian Schönauer, for providing the mobile testing device.

Thanks to all my coworkers at emotion3D and all their support and shared interest for
this project.

Thanks to my girlfriend, for her help and the motivation, especially in the long and often
late hours in the library.

Special thanks to my family, for supporting me and enabling me to pursue my passion.

This work has been supported by the project Precise3D (no. 855442), which is funded
by the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT) in
conjunction with the Austrian Research Promotion Agency (FFG) under the program
„ICT of the Future“.

ix

Kurzfassung

Aktuelle Entwicklungen in Sensor und Computer Vision Technologien erweitern die
Grenzen des Machbaren im Bereich von Extended Reality (XR) Anwendungen. Indi-
vidualisierbare digitale Avatare, die menschliche Emotionen und Gesten nachahmen,
werden bald durch echte 3D Aufnahmen unserer selbst in der virtuellen Welt ersetzt.
Digitale 3D Rekonstruktionen von echten Umgebungen und lebendigen Objekten erlauben
realitätsnahe und immersive Erlebnisse. Solche Aufnahmen können die virtuelle Welt
um lebensechte Inhalte erweitern und so die Möglichkeiten für Virtual Reality (VR),
Augmented Reality (AR) und Mixed Reality (MR) Anwendungen vergrößern. Photo-
grammetrie und Tiefensensoren sind bereits in der Lage starre Körper detailgetreu, mit
erstaunlich lebensechten Resultaten, zu digitalisieren. Moderne Tiefensensoren haben
bereits Einzug in den Smartphone-Markt erhalten und legen somit den ersten Stein für
mobile Applikationen mit Echtzeit-3D-Rekonstruktions-Funktionalität. Allerdings ist
das Rekonstruieren von sich schnell ändernden Szenen mit flexibler Topologie immer
noch eine große Herausforderung, besonders in Echtzeitsystemen. Diese Diplomarbeit
präsentiert eine neue Visualisierungs-Pipeline zur Oberflächenrekonstruktion von dyna-
mischen Punktwolken, integriert in ein weitverbreitetes und flexibles Framework. Das
modulare System erlaubt das flexible Verarbeiten und Darstellen von Punktwolken in der
Unity3D Spiel-Engine, eine gängige plattformunabhängige Engine für XR Applikationen
und mobile Spiele. Die Implementierung ermöglicht das Darstellen von fotorealistischen
dynamischen Objekten direkt aus den Live-Daten von Tiefenkameras. Zusätzlich fördert
die modulare Architektur die Skalier- und Erweiterbarkeit für verschiedenste Anwen-
dungsfälle mit Punktwolkendaten. Die Qualität dieser neuen Visualisierungs-Pipeline
wird durch den optischen Vergleich mit klassischen Visualisierungstechniken bestimmt.
Dadurch kann gezeigt werden, dass sich diese kaum von den Ergebnissen der vorlie-
genden Arbeit unterscheiden. Zugleich wird die exakte Durchlaufzeit der verwendeten
Algorithmen für verschiedene Punktwolken gemessen, um die Echtzeit-Lauffähigkeit zu
belegen.

xi

Abstract

Current developments in sensor and computer vision technologies are pushing the bound-
aries of extended reality (XR) applications. Digital customizable avatars, mimicking
human emotions and gestures, are soon to be replaced by true 3D capturings of humans
in mixed reality environments. Recording action filled scenes to recreate and place
them in virtual or remote environments promises more lifelike and immerse experiences,
extending the possibilities of virtual reality (VR), augmented reality (AR) and mixed
reality (MR) applications. Photogrammetry and depth ranging sensors are already capa-
ble of bringing rigid real-world objects to the virtual world, with astoundingly realistic
results. In addition, with modern depth sensors entering the smartphone industry, the
next steps for mobile 3D capturing and online reconstruction have already been taken.
However, dynamic content with rapid changes in structure and topology is challenging to
reconstruct, particularly for usage in real-time. This thesis presents a novel visualization
pipeline, which facilitates the real-time reconstruction of dynamic point clouds in a widely
used, flexible and powerful framework. We contribute a novel modular processing and
rendering pipeline for the Unity3D game engine, a popular multi-platform engine for
XR applications and mobile games. The implementation is capable of reconstructing
photo-realistic 3D objects from dynamic depth sensor streams. Furthermore, the modular
architecture allows for scalability and easy expandability. The quality of this novel visu-
alization pipeline is determined through optical comparisons with classical visualization
techniques, which show that those techniques are not easily distinguishable from the
results of our work. Moreover, the exact execution time of the algorithms is measured
for different point clouds to proof their real-time ability.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Goal . 2
1.2 Thesis Structure . 3

2 Related Work 5
2.1 End-to-End Systems . 5
2.2 Point Cloud Processing . 7

3 Engine Framework and Libraries 11
3.1 Unity3D Game Engine . 11
3.2 LibRealSense . 15
3.3 OpenCV . 16

4 System Concept 17
4.1 Input Handling . 18
4.2 Data Culling . 20
4.3 Surface Reconstruction . 22
4.4 Rendering . 23

5 Implementation 25
5.1 Point Cloud . 25
5.2 Base Pipeline Component . 26
5.3 Data Handler Components . 27
5.4 Culling Helper Components . 30
5.5 Surface Processor Components . 33
5.6 Renderer Components . 36
5.7 Data Provider Interface . 39
5.8 Restrictions . 41

xv

6 Evaluation and Results 45
6.1 Data Generation . 45
6.2 Visual Quality Comparison . 46
6.3 Performance Comparison . 53
6.4 Applications . 56

7 Conclusion and Future Work 63

List of Figures 65

List of Tables 69

Acronyms 71

Bibliography 73

CHAPTER 1
Introduction

The increasing popularity of virtual reality (VR), augmented reality (AR) and mixed
reality (MR) applications in commercial and industrial environments, due to the emergence
of powerful mobile devices and novel hardware, encourages further advancements in
computer vision and computer graphic technologies. VR systems recreate our world in a
virtual environment and allow us to fully immerse in artificial microcosms. AR and MR
applications aim to enhance our everyday experiences in the real world, through digital
augmentations [CBHH17]. All this is achieved through state-of-the-art technologies,
allowing to overcome the boundaries between reality and virtuality. Equally important is
the use of authentic digital content in order to create seamless, immersive experiences.
Most applications rely heavily on manually fabricated content. Such 3D models, crafted
by artists and designers, can be expensive, as lifelike high fidelity models require a lot
of time, even for skilled professionals. Modern approaches try to minimize the manual
labor, while increasing the visual quality of the 3D objects. This can be accomplished
with the aid of 3D reconstruction technologies. A common procedure is photogrammetry,
where a static object is digitally reconstructed from multiple sources [REH06]. Feature
detection techniques allow to identify points across different views and calculate 3D point
clouds by triangulating the corresponding features. The result is a colored point cloud
which is then refined and converted to a polygonal mesh. This process can be further
improved with additional depth sensors, simplifying the point cloud extraction. Content
created with these technologies is often more authentic than hand-made replications and
allows creating photo-realistic environments rendered in real-time [Bou18].

Reconstructing static objects or objects with defined movement constraints, from point
cloud data, is an ongoing field of research. Sophisticated algorithms are constantly
enhanced to efficiently and accurately reconstruct the original shape and appearance of a
variety of captured environments. However, dynamic scenes with no movement constraints,
nor previous knowledge of the change in topology, are troublesome to reconstruct in
an efficient and automated manner. Virtualizing scenes with moving people, animals

1

1. Introduction

or other non-rigid bodies is still an open challenge. Nevertheless, such scenes are quite
desirable in many applications. The real-time reconstruction of dynamic data allows
using sensor live streams to scan and record arbitrary scenes, with no prior restrictions or
offline preprocessing steps. Especially extended reality (XR) applications can benefit from
the seamless integration of concurrent reconstruction and visualization of live captured
3D data. This becomes even more relevant with the recent advent of depth sensors for
mobile devices [iPh, Str], which open a completely new area of possibilities. For example,
mobile telepresence systems with a live 3D projection of the dialogue partner, making it
possible to talk to a person as if he or she was physically present. By extending this idea,
one could enjoy recordings of a dance performance captured in 3D, or experience a live
concert in the own living room.

While existing approaches focus on the rigorous real-time reconstruction of manifold 3D
meshes, trading performance and robustness for accuracy, the need for a flexible but still
visually appealing visualization is overlooked. Many real-world applications have no need
for precisely reconstructed surface meshes, instead perceivably satisfying representations
of the captured scene with interactive frame-rates are more desired. Commercial systems
have an increasing interest in virtual representations of people, with interactive visual
feedback. In contrast to the true reconstruction of people in 3D, some commercial
applications focus on the usage of customizable avatars as a digital representative of
humans. Sensors and other input devices capture emotions, poses and gestures, which
are then imitated by the virtual personification. With the possibility of truly recreating
dynamic scenes and movements in 3D, it also becomes viable to have realistic virtual
representations of people without the need for sophisticated pre-trained models. This
could make cartoonish avatars become obsolete, as they may be inappropriate for many
serious applications.

This thesis tries to overcome some of these issues by presenting a scalable real-time
visualization pipeline for dynamic point cloud data that runs on current consumer
hardware.

1.1 Goal
The aim of this work is to provide a real-time visualization pipeline for dynamic point
clouds. The reconstruction and visualization algorithms are chosen carefully, as they
need to function without the need for pre-trained models or any other previously defined
constraints of the shape, topology or behavior of the incoming data. The proposed
pipeline is completely unaware of the actual processed scene and its variation over time.
The dynamic data is represented by recordings of human faces and upper bodies, to show
varying facial expressions and movements. Additionally to the dynamic data, also static
point clouds need to be processed with the proposed pipeline, to show its scalability and
flexibility regarding the input data.

The implementation is realized as a set of components and plugins for a common game
engine. The engine simplifies the utilization of the point cloud visualization and enables

2

1.2. Thesis Structure

its usage in a variety of applications and platforms, such as different desktop and mobile
operating systems. The pipeline consists of four different stages, which will be discussed
separately. Each stage is implemented with modularity in mind and offers scalability
in quality and performance. The focus lies on the robustness, easy expandability and
adequate hardware requirement of the plugin. This work will not only be a proof of
concept with theoretically unlimited resources but rather a fully functional point cloud
extension to a widespread multi-platform game engine.

1.2 Thesis Structure
This thesis is structured in seven chapters, which are shortly summarized in this section.
First, we provide an outline of related state-of-the-art techniques, covering similar visual-
ization workflows and publications related to the different point processing stages of our
proposed pipeline. In Chapter 3 a closer look at the adopted engine, the programming
framework and relevant concepts is taken and additional libraries are introduced. Chap-
ter 4 covers the conceptual outline of the proposed visualization pipeline. This guides
the reader through the subsequent Chapter 5, where implementation details and design
specific decisions are explained in depth. After the concept and implementation details of
this work are clarified, the results and evaluations are shown and discussed in Chapter 6.
Lastly, we summarize our outcome and give an outlook on future advancements and
possible further developments.

3

CHAPTER 2
Related Work

Real-time 3D reconstruction is a steadily growing field of research. Faster and cheaper
hardware allows not only to capture 3D data in real-time, but also to reconstruct and
visualize it with interactive frame rates. Early approaches used, for example, multi-view
2D RGB images to extract 3D information of dynamic objects [LZZ13]. Modern systems
are capable of reconstructing triangle meshes of dynamic point clouds from depth sensors
in real-time [OERF+16].

2.1 End-to-End Systems

In this section, real-time reconstruction and visualization pipelines for objects and scenes
are presented. We focus on publications that describe end-to-end systems from the point
cloud generation, data preprocessing and surface estimation to finally rendering of the
reconstructed object. Many of these systems deal with similar problems, limitations and
restrictions, trading visual quality for a higher performance.

An approach using only multi-view 2D images of the object was proposed in [LZZ13].
The work focuses on the real-time digitizing of objects based on the visual hull computed
from segmented images. The proposed algorithm constructs a volumetric grid and culls
voxels based on the object’s silhouette from the different captured views. The object is
carved out of the raw voxel block in a highly parallel manner. Finally, each surface voxel
is rendered using a point rendering technique called splatting [ZPVBG01]. A splat is
an oriented ellipse rendered in place of each surface point. By choosing an appropriate
radius, the splats overlap and can be blended to create a smooth surface [BSK04]. Each
splat is colored from the source images weighted by their contribution in the newly
synthesized view. The size of the splats, and thus the visual quality, depends on the
resolution of the volume.

5

2. Related Work

Current graphics hardware is not optimized for handling massive amounts of pixel-sized
splats. The article [Ric] gives a rough idea of the possible impact of small geometry, by
using very simple benchmarks on a limited set of GPUs. Therefore, an often-favorable
alternative to point based rendering is to generate a simplified triangle mesh from
the captured dense point cloud data. However, point clouds have no connectivity
or neighborhood information stored, which makes meshing algorithms very expensive.
Reconstructing a triangle mesh from 3D points is a challenging field of research. The
popular Point Cloud Library [RC11] provides offline algorithms to estimate surface
normals and compute triangle meshes. Building such meshes in real-time is still an
ongoing challenge. Furthermore, when dealing with dynamic point clouds, which may
change rapidly from frame to frame, meshing algorithms need to keep track of the changes
and have to adapt the reconstructed mesh accordingly [NFS15, DKD+16].

The more recent publication [OERF+16] describes the usage of a high-resolution multi-
stereo-camera setup. The authors present a 360° immersive 3D telepresence system.
A scene with static furniture, moving persons and even animals can be captured by
multiple stereo and RGB cameras. Each sensor setup is preprocessed by a multi-GPU
workstation, where the depth is computed and the foreground segmented. An additional
workstation is then collecting all views to combine them to compute the final textured
triangle mesh. The used reconstruction algorithm proposed previously by [DKD+16] is
the computationally most expensive part in the pipeline. The algorithm was implemented
on a dual-GPU scheme to allow room scaled reconstruction while still having real-time
performance. The big advantage of computing triangle meshes, as opposed to point based
visualization techniques, is the straightforward high-performance rendering. This allows
the remote rendering of the reconstructed mesh on a multitude of devices, including
Microsoft’s HoloLens [Hol], only limited by the communication bandwidth. The focus of
[OERF+16] lies in the high-quality reconstruction while still having real-time performance.
An immense amount of processing power was needed to achieve this goal.

In contrast to the extensive use of high-end hardware needed for the Holoportation
system [OERF+16], Tytgat et al. [TADB+16] present a low-cost end-to-end application
running on consumer hardware. They use similar reconstruction techniques but with
lower resolution and on a smaller scale. The proposed system is capable of capturing and
reconstructing a single person’s upper body and subsequently rendering it remotely in
real-time. The used setup consist of multiple depth and color cameras. The gathered
data is then meshed by first computing an implicit surface, which is then triangulated
with the marching cubes technique [LC87]. Furthermore, different architectures with
distinct compression and bandwidth requirements are discussed. The authors investigated
different bandwidth usages and processing strategies, and state their advantages and
use cases. A use case for low bandwidth usage would be the streaming of depth maps
and color images from the server side to perform a full reconstruction on the client
device. This requires high computational capabilities on the client side. The second
strategy suggests to perform the implicit surface calculation on the server side and stream
the surface data to the client. This allows the client to implement different meshing

6

2.2. Point Cloud Processing

algorithms based on its capabilities. In the last approach, the fully constructed mesh
and texture data are compressed and transmitted to the client. Then, the client has the
minimal computational effort, but an efficient mesh compression algorithm is required to
save bandwidth.

Bonatto et al. [BRS+16] focus on large, static point clouds and exploit state-of-the-art
techniques to achieve high frame-rates, which are required for the use in modern head
mounted displays (HMDs). To avoid computationally heavy meshing algorithms, they
make use of offline preprocessing steps to estimate the orientation of each surface point.
With known surface normals, the point cloud can then be visualized in real-time using
the surface splatting technique [ZPVBG01]. This allows to efficiently render a closed and
shaded surface from oriented points, independent from the resolution or the point cloud
density. Dealing with massive point clouds requires advanced memory management, so
called out-of-core algorithms [VM02]. In favor of faster access, the point cloud is stored
using optimized spatial data structure layouts. This improves loading times, minimizes
working memory usage and prevents wasting processing power on points outside the
current view. Furthermore, new points are gradually loaded to increase the point density
and thus, improve the level of detail. The rendering in HMDs is especially challenging
because the scene is rendered in stereo, ultimately doubling the required rendering time
while frame rates of 60-90 frames per second (FPS) are desirable to reduce motion
sickness.

2.2 Point Cloud Processing

The processing of point clouds encompasses a multitude of research areas, from the point
cloud generation through photogrammetry or sophisticated scanning devices to continuous
data compression, object reconstruction and optimized visualization techniques. The
following publications cover different aspects of point processing, which represent the
state-of-the-art in each respective field.

2.2.1 Input Data Compression

With improving depth-sensing technologies and increasing sensor resolutions, the amount
of captured data is constantly rising. Novel compression algorithms specifically designed
for dynamic point clouds can help to reduce the required bandwidth for streaming
applications. In [KBR+12], the authors propose a lossy compression algorithm for point
cloud streams. An octree is populated with the dataset captured at each point in time, in
order to detect spatial and temporal redundancies between consecutive point clouds. This
information is subsequently used to compress the data stream. Thanou et al. [TCF15]
focus on the compression of color information by introducing a graph based approach
with feature matching and motion estimation between frames.

7

2. Related Work

2.2.2 Culling and Level of Detail

When dealing with large point clouds, the processing power often represents a major
bottleneck, considering that millions of points are fairly common in current datasets.
Therefore, it is necessary to reduce the number of processed points to the visible portion
of the data. Furthermore, a dynamic level of detail is desirable, to reduce the complexity
of dense point clusters and allow interactivity even on large scenes. A fast hidden point
removal operator was introduced in [KTB07]. The visibility of a point can be determined
without the requirement of surface normals and independently from the screen resolution.
The point cloud is first transformed and then the convex hull of the result is computed.
If the point appears on the convex hull, it is also visible on the screen. Since convex hull
computations are very time consuming and not feasible in real-time, an approximation of
the visibility operator, which is taking advantage of current GPU architectures, has been
proposed by Machado e Silva et al. [eSEO12]. Dynamic levels of detail for point clouds
for efficient rendering are proposed by Renato Pajarola [Paj03]. The author uses spatial
data structures to determine visible points and creates levels of detail by calculating
the extent of each hierarchy node with the novel concept of transformation-invariant
homogeneous covariance matrices.

2.2.3 Reconstruction

Contrary to classic polygonal meshes, point clouds lack vertex neighborhood information.
This makes normal estimation calculations very computational expensive and often
infeasible for online processing. With improved GPU capabilities, new algorithms
are developed to estimate point orientations or entire polygon meshes in real-time.
Newcombe et al. [NFS15] propose DynamicFusion, an online mesh reconstruction for
non-rigid motions captured with a single depth camera. The algorithm describes each
frame as a flow field, which warps the point cloud into an initial estimation of the 3D
mesh. This initial mesh, called canonical frame, is constructed from an implicit surface
function, which is continuously enhanced with the increasing amount of captured frames.
With this technique, it is possible to reconstruct a dense polygonal mesh of dynamic
point clouds captured by a single camera. However, fast changes in topology and rapid
motions are still challenging. Fusion4D by Dou et al. [DKD+16] tackles this challenge by
introducing multiple key frames and numerous camera views. The key frames behave
similar to the canonical frame in DynamicFusion [NFS15] but allow to dynamically blend
between various key frames to handle larger topological changes. Opposed to the online
mesh reconstruction, AutoSplats from Preiner et al. [PJW12] estimates point normals of
unorganized large point cloud data. The authors exploit modern GPU capabilities to
estimate the surface normal of each projected point in screen space. Multiple fragment
shader passes are used to find the k nearest neighbors (kNN) and finally estimate the
normal by fitting a plane in the neighboring points.

8

2.2. Point Cloud Processing

2.2.4 Point Rendering

Correct illumination of object surfaces is crucial for 3D shape perception. Illumination
models require surface information to approximate the reflected and refracted light in
order to create realistic shadings. Point clouds typically lack surface normals and require
additional processing steps to acquire this information. Boucheny et al. present Eye-
Dome Lighting [Bou09], a visualization technique to enhance shape perception for point
clouds without surface information. Their technique resembles the screen space ambient
occlusion (SSAO) technique [Kaj09] with the most notable difference of neglecting the
surface normals. [Bou09] use a view aligned half dome centered at each pixel. The
number of points inside this half dome determine the shading intensity. This approach
can also be interpreted as an edge detection filter on the z-buffer. Datasets with point
normals can take advantage of physically based per pixel lighting models. Dobrev et
al. [DRL10] propose an image-space technique to render closed surfaces from sparse point
clouds. The idea is to project the illuminated point cloud into screen space and write
colors and normals into separate render textures. The point surface is then reconstructed
using conditional dilation filters, which attempt to fill holes between the projected points.
Botsch et al. [BSK04, BHZK05] pursue a different approach to reconstruct local surfaces
for illuminated point cloud rendering. The basic idea is to adopt the surface splatting
technique [ZPVBG01] for GPUs. Their surface splatting algorithm renders the albedo
color and surface normal as oriented ellipses for each point in different render textures.
The overlapping ellipses are then blended and create a closed surface with averaged
properties across the rendered ellipses. The final rendering pass uses deferred lighting
algorithms for physically correct per-pixel shading with support for multiple light sources.

2.2.5 Correlations with this work

This work combines relevant State-of-the-Art methods and algorithms to achieve the goal
of creating a real-time reconstruction and visualization pipeline for dynamic point cloud
data. The pipeline is separated in multiple stages, similar to the client-server architecture
proposed in [TADB+16]. This allows spreading the pipeline over multiple machines
and thus, distributing the required processing power among all devices. Contrary to
[TADB+16] and [OERF+16], no meshes are reconstructed in our point cloud processing
pipeline. Meshing of point clouds has the big advantage that standard rendering techniques
can be used. However, the reconstruction requires high amounts of processing power and
mostly relies on temporal consistent inputs to sustain real-time performance. This makes
robust real-time mesh reconstruction challenging for fast changing data [NFS15, DKD+16].
The surface reconstruction step used in our work takes another path and calculates per-
point surface normals, comparable to [LZZ13]. The performance of the reconstruction
in [LZZ13] is bound to the spatial resolution of the volumetric grid. A more flexible
alternative is presented in [PJW12] by approximating the reconstruction in screen space.
[PJW12] require no temporal coherent inputs and are therefore robust to rapid changes
in movement and topology. The point cloud with enriched surface normal information is
rendered with a modern surface splatting technique [BHZK05] that is taking advantage

9

2. Related Work

of modern GPU features. This technique is often used in point based visualization
algorithms [LZZ13, BRS+16].

10

CHAPTER 3
Engine Framework and Libraries

In this chapter, we present the engine, framework and libraries used to implement this
work. The graphics engine was chosen carefully, as it has a great leverage on how the
actual pipeline concept is implemented. The decision is explained in detail and was made
due to four significant reasons. Subsequently, the most relevant engine concepts, with
respect to this work, are explained. How does it work under the hood? What does the
engine provide out of the box? How can it be extended for custom applications? The
answers to these questions will be essential for a better understanding of the Chapter 5,
where the implementation is explained in detail. Lastly, other third party libraries and
their usage are described.

3.1 Unity3D Game Engine
Unity3D, more often just referred to as Unity, is a cross-platform game engine developed
by Unity Technologies [Uni]. The engine supports the development of 2D/3D games as
well as XR applications. The included features encompass a modern real-time rendering
engine, a physics engine, spatial sound, animations and a cinematic composition editor,
just to name a few. The rendering engine has support for various graphic application
programming interfaces (APIs) like OpenGL [Ope], DirectX [Dirb], Vulkan [Vul] and
Metal [Met].

Since its first release in 2004, Unity is steadily gaining popularity. The statistics published
on their company website claim that 34% of the top 1000 mobile games in 2016 were
made with their engine. Furthermore, they claim that 90% of Samsung-Gear-VR games
and 53% of Oculus-Rift games are made with Unity [UPR].

Unity’s increasing popularity has several reasons: First, Unity uses a very open license
agreement, allowing free usage up to a maximal annual revenue and fair annual fees
if this threshold is exceeded. This attracts many independent developers and small

11

3. Engine Framework and Libraries

companies, leading to a steadily growing community. Secondly, the engine was built with
the develop-once, deploy-everywhere mentality. It supports more than 25 platforms [Uni]
including Windows, Mac OSX, Android, iOS, Play Station 4, XBox One and many others.
This enabled smaller teams to publish their games on multiple platforms with almost
no additional overhead. The fourth reason for its popularity is the huge community.
There are many forums, books, tutorials and other resources available to support the
development of multi-platform games and XR applications, which can lower the entry
barrier for beginners and non-programmers. The last reason was probably the main
reason we have chosen Unity over other competitive engines currently available. Unity is
labeled as a game engine but is not restricted for game development only. The generic
concepts used to build games can be adopted for interactive applications with the need for
real-time graphics. At its core, Unity can be seen as an high level abstraction framework
on top of the underlying graphics API and operating system.

3.1.1 Programming

The Unity run-time environment is built on a platform dependent C/C++ core, providing
the graphics layer abstraction and operating system specific code. On top of that sits the
open source cross-platform Mono framework [Mon]. This framework offers an alternative
to Microsoft’s .NET framework [NET] and allows the developer to use the exposed
run-time functionality in a high-level language like C# or JavaScript.

Most internal processes are hidden from the developer. There are only a few access points
to extend and customize the functionality of the engine. Beyond that, the developer can
freely write custom classes or include external libraries, which are compatible with the
used Mono/.NET version.

3.1.2 GameObjects and Components

Unity scenes are composed from GameObjects. GameObjects represent the base for
everything that can be interacted with, executes code or that is visible in the final
rendered screen. Complex scenes contain a hierarchy of numerous GameObjects with
different purposes. They can also be created and destroyed at run-time.

A GameObject holds various components, which define its behavior and appearance.
Per default each GameObject has a transform component which basically represents
the model matrix and, thus, describes how the object is placed in the virtual world.
Other components provided by the engine are, for example, the camera, light or mesh
component. These components are directly integrated in the engine and provide basic
functionalities for games and other interactive applications.

To extend the GameObject with custom behavior it is possible to write component scripts.
Custom component scripts can be created by extending the internal MonoBehaviour base
class. The MonoBehaviour has access to all other components on the owning GameObject
and can then be used to implement various routines to change or extend the object’s
properties. The scripting framework makes use of different method hooks to control and

12

3.1. Unity3D Game Engine

execute the component in the underlying game loop. Commonly used hooks are the
Start and the Update method, which are called for initialization and before each frame is
rendered.

3.1.3 Mesh Filter and Mesh Renderer

Imported 3D models are stored as mesh assets and can be rendered by applying it to
a GameObject. The components responsible for drawing a mesh are the Mesh Filter
component, and the Mesh Renderer component. The Mesh Filter holds the reference to
the imported 3D model and is a simple geometry provider for the rendering component.
A Mesh Renderer component receives the geometry from the Mesh Filter and issues
the actual draw commands to the graphics API. Additional options allow changing the
behavior of the renderer and improving the visual quality or performance. The most
prominent settings are shadow casting/receiving and environmental reflections. In order
to control the visual appearance, every renderer holds one, or multiple references to
materials, used to render the different parts of the mesh.

3.1.4 Materials and Shaders

In modern computer graphics an object’s appearance is defined by the shader used
to draw its geometry on the GPU. Shader program combinations, shading properties
and textures make up the look of a rendered object and are, for this reason, bundled
together into so-called materials. This is a convenient way to reuse and control the visual
characteristics of multiple objects in a scene. Many objects with the same material are
also batched in the graphics pipeline and therefore handled in a more optimized way to
gain performance. Unity includes physically based materials to create realistic surfaces
and lifelike scenes. The standard material allows rendering metallic as well as diffuse
surfaces, with additional color textures, normal maps, displacement maps and much
more.

Shaders make up a large portion of the modern programmable graphics pipeline. It has
become an absolute requirement for every modern rendering engine to support custom
shader programs. In Unity shaders are declared in the proprietary ShaderLab syntax,
which wraps multiple shader programs and shader passes up in one file. The shader
programs are then written in high level shading language (HLSL) and subsequently
cross-compiled for every supported platform. For applications where OpenGL support is
sufficient, it is also allowed to use OpenGL shading language (GLSL) in Unity’s ShaderLab
files.

Additionally to the common shader programs, Unity also supports compute shaders.
This shader type exposes general-purpose computation on GPU (GPGPU) technology to
the graphics pipeline and can be used for arbitrary computations on the GPU exploiting
the highly parallelized architecture. This special shader type is discussed in the Section
3.1.5.

13

3. Engine Framework and Libraries

Unity has a strong focus on platform independence, this is especially challenging if a
consistent rendering output is expected on all supported devices. Different platforms
support different graphic APIs, and each device has different hardware capabilities. To
support all of them and still guarantee to deliver identical output on every device would
mean to restrict the complete engine to the smallest common denominator, in terms of
GPU features. However, in order not to restrict modern applications to the limits of
older GPUs or mobile GPUs, Unity tries to separate the shader features by compilation
target levels. Each level supports different GPU feature sets on different graphic APIs.
Therefore, it is the developer’s responsibility to provide fall-back solutions for newer
features.

3.1.5 Compute Shader and Compute Buffer

If the target platform supports GPGPU features, compute shaders can be used to
run massively parallelized algorithms on the GPU. This functionality in Unity closely
resembles DirectX 11 DirectCompute technology [Dira]. Data arrays can be sent to the
GPU memory and are stored in compute buffers. Prior to the compute shader execution
multiple compute buffers can be bound to the program as an input, output or both.
Furthermore, it is possible to bind compute buffers to vertex, geometry and fragment
shaders1 in order to directly use the generated data for rendering.

3.1.6 Command Buffer

As mentioned before, Unity can be seen as a high level abstraction layer on top of
the native graphics pipeline. Besides the out-of-the-box rendering functionality, it is
also possible to issue low-level graphics commands to the GPU directly in the custom
component code. This can be achieved through the GL class, which exposes similar basic
functionality as most graphic APIs. However, this is often not sufficient, as we want to
extend and modify Unity’s rendering behavior directly. Issuing GL commands results in
either rendering before or after Unity’s default rendering workflow. This approach makes
it impossible to use or alter intermediate rendering results from Unity’s pipeline. At the
time this thesis was written the only way to extend the default graphics pipeline within
Unity’s framework, were so called command buffers. Command buffers are a list of low
level graphics instructions injected into the default rendering pipeline. This allows great
control over various pipeline stages, and enables to write custom render components for
structures and visuals, which were not considered by Unity’s default pipeline, while still
using the overall advantages of the engine. A command buffer may, for example, contain
custom shader passes to add contents to the internal G-Buffer [AMHH08], extending the
deferred shading pipeline. Even if this feature allows many customizations, it is restricted
by the position of predefined injection hooks in the default pipeline. A more flexible
approach introduced in a recent release is shortly discussed in Section 5.8.2.

1Pixel shader in DirectX [Dirb]

14

3.2. LibRealSense

Figure 3.1: Depth capturing process in the RealSense SR300 [Int16]

3.1.7 Native Plugins

Within a custom component script, it is also possible to call code from external C/C++
libraries. These libraries are called native plugins and can be used to include extended
functionality, which may only be accessible through native code. Additionally, popular
libraries like OpenCV (discussed in Section 3.3) can be included by using native Plugins.
The platform independence must be guaranteed by the developer of the plugin interface,
as different platforms require different plugin binaries. Native plugins have also access to
the graphics API through a low-level native plugin interface. Allowing to directly issue
GPU commands from the plugin code makes massive data exchanges between the plugin
and the application in many cases obsolete.

3.2 LibRealSense

This thesis covers real-time point cloud processing of live sensor streams. For this
purpose, we used the Intel RealSense SR300 RGB and depth (RGB-D) camera. The
term RGB-D camera is frequently used for devices incorporating color and depth sensing
technologies. The depth capturing in the RealSense SR300 functions with the structured
light technology. The general process is outlined in Figure 3.1. An infrared laser projector
illuminates the scene with multiple consecutive patterns, these patterns are reflected
and captured by the infrared camera, which then translates the distorted patterns into
per-pixel depth values [Int16]. The camera is suited for a close range usage and provides
a full HD (1920× 1080) RGB color stream and VGA (640× 480) depth stream at 30 FPS.
The RGB data stream has a color depth of 8 bits per channel, resulting in 24 bits per
pixel. The depth values are streamed as 16 bit integer values, representing the distance
in millimeters.

The RealSense software development kit (SDK) [Lib] is open source and developed in
C++. In addition to the color, infrared and depth stream, the SDK provides access
to the camera’s intrinsic and extrinsic (relative offset of the color camera to the depth
sensor) calibration information. The mapping between color and depth information is

15

3. Engine Framework and Libraries

handled internally by the SDK. Since the color and infrared camera have mismatching
aspect ratios (color 16:9, infrared 4:3), the color values do not cover the complete depth
map. This results in uncolored points in upper and lower regions in the point cloud.

The LibRealSense SDK can be integrated as a native plugin (Section 3.1.7) for the usage
in Unity. In this case, the plugin serves as an interface to control the SDK directly from
code executed by Unity. For live-streaming applications, performance is crucial, therefore
the additional overhead of copying each received frame from the unmanaged memory
(in the plugin) to the managed memory (in Unity) should be avoided. Implementation
details and how this issue was tackled can be found in Section 5.3.2.

3.3 OpenCV
OpenCV [Bra00] is an open source library and provides a broad collection of high
performance computer vision tools and algorithms. The library is written in C/C++
and has additional interfaces for Python and Java. OpenCV has become the de-facto
standard for image processing applications, it implements a multitude of processing tools
as well as high level object recognition algorithms and can handle almost every common
image file format.

There is no official support for the usage of OpenCV within Unity and its C# scripting
framework. However, there are some third party plugins available for purchase in the
Unity asset store. A free alternative to charged plugins is the EmguCV open source
project [Emg]. The EmguCV project is a cross platform .NET wrapper for OpenCV.
This library can therefore simply be included in Unity C# projects, as it supports most
desktop and mobile platforms.

If only a limited amount of OpenCV’s functionality is needed, building a custom plugin
may also be a suitable choice. Unity’s native plugin interface is shortly described in
Section 3.1.7. All functionalities required from OpenCV can be outsourced to a C/C++
plugin. This means the native plugin serves as a simple wrapper for the needed features.
For certain Unity applications, which rely on a lot of OpenCV’s functionality, this
approach is less recommended as maintaining a continuously growing interface would get
too labor intensive.

16

CHAPTER 4
System Concept

From the raw point cloud data, to the final rendered reconstruction placed in a virtual
environment, several steps are necessary. The proposed visualization pipeline is structured
in four pipeline stages with modular character (Figure 4.1): The Input Handler stage,
followed by the Data Culling and the Surface Renconstruction stage and finally concluding
with the Rendering stage. Each stage can have a variety of implementations depending on
the needed functionality, from photo-realistic reconstruction of live sensor data, to coarse
high performance previews of large environmental scans. Furthermore, the proposed
modular architecture extends the idea of a separate data-providing server-side and a
visualizing client-side [TADB+16]. Modules may be separately executed on different
physical machines by implementing remote connections between their interfaces. This
flexibility allows high-quality reconstructions on low performance devices, while heavy
processing algorithms are outsourced to remote machines. The following sections will
explain each pipeline stage in detail and introduce possible implementation variants.

Input Handler Data Culling
Surface

Reconstruction
Rendering

Figure 4.1: Flowchart of the visualization pipeline stages and their execution order.

17

4. System Concept

4.1 Input Handling

The first stage of the visualization pipeline covers the initial data acquiring process. Point
clouds can be represented and stored in many different forms. The simplest form are
a set of points, i.e. positions in 3D space. This type of data could be the result of a
sampled 3D model or preprocessed sensor data. Simple point sets can be extended with
further information about the original sampled signal, like surface colors, orientation and
curvature. Points with surface information are referred to as surfels, derived from the
term surface element [PZVBG00]. In this thesis, we reference both simple point position
and surfel datasets as points or point clouds, regardless of their extra information. Where
it is necessary to point out that additional surface knowledge is required, it is explicitly
mentioned that this part refers to surfel datasets.

The input handling stage is responsible for the loading, parsing and storing of the raw
point cloud data. This can range from loading binary data files, reading raw sensor
outputs, to handling live streams from connected devices or remote data sources. The
following sections discuss some distinct formats, which need to be considered when
working with heterogeneous point cloud data sources.

4.1.1 Point Cloud Files

Various file formats can be used to store point cloud data. Commonly accepted are file
formats known from 3D meshes. These formats have already been established in the
computer graphics community and provide enough flexibility to store points or surfels.
Exemplary file formats which are commonly used are the Wavefront file format (.obj),
polygon file format (.ply) and object file format (.off), just to name a few. Every file
format capable of storing 3D geometry is generally also able to hold point cloud data,
as most file formats store additional information on a vertex basis. This means that
surfel data, like per point color and normals, are also usually needed for each vertex in
a typical polygon mesh. However, these files were not intended for point cloud usage
and therefore lack flexibility as more precision or arbitrary information per element
are desired. The point cloud library (PCL) [RC11] introduced a new file format (.pcd)
specifically tailored for point cloud data. The biggest advantages of this format are higher
read/write performances, storing of organized point clouds and the support for various
data types.

The input handler stage is responsible for parsing these files and storing the gathered
point or surfel information directly onto the GPU memory.

4.1.2 Sensor Data

In addition to the usage of preprocessed 3D point cloud data, it has advantages to store
and process raw 2D sensor outputs. Modern depth sensing cameras provide depth maps,
containing the measured distance for each pixel in the projected sensor image plane.
Moreover, RGB-D cameras often grant access to color images as well as confidence maps

18

4.1. Input Handling
P

o
in

t
/

S
u

rf
e
l
D

a
ta

P
o

in
t

/
S
u

rf
e
l
D

a
ta

R
G

B
-D

 D
a
ta

R
G

B
-D

 D
a
ta

Generated

Point Cloud

Point Cloud Files

Depth / Color

Image Files

Depth / Color

Sensor Stream

Depth / Color

Network Stream

Point / Surfel

GPU Array

Sensor Space

Textures

File Parsing

Upload to

GPU Memory

Upload to

GPU Textures

Image File

Decoding

Stream

Decoding

Figure 4.2: Flowchart of the Input Handler Stage and its input/output interface. The
flowchart outlines the internal workflow of the stage, from the provided input, the main
processing steps and the final output. The vertical lanes differentiate between the two
fundamentally different data types, the point based data and the raw sensor image
data. The input for the Input Handler Stage is heterogeneous and requires customized
implementations for each source, while the output is reduced to the two main types,
point arrays and sensor textures.

and near-infrared intensity values. This additional information is very useful and often
desired in specific visualizations. Furthermore, the input handler stage should not be
simply reduced to a 3D point cloud handler, since the 2D domain of raw sensor inputs has
convenient advantages in subsequent stages (e.g. image filtering for noise reduction, see
Section 4.2.3). This leads to the fundamental distinction of the two main input handler
types: Point Input Handler and Image Input Handler.

4.1.3 I/O Interface

Both input handler types need to manage data from specific sources, depending on the
used module. Each source can provide either static or dynamic data, the input handler
is then responsible for the memory management of the currently relevant information.

19

4. System Concept

The distinction between point and image data leads to different outputs of this stage.
Point Input Handler provides a reference to the GPU memory where the array of points
or surfels is stored. The Image Input Handler holds an array of GPU texture references,
for each sensor image.

4.2 Data Culling
After retrieving the raw data from the various input sources, it is necessary to reduce
the further processed data. This is essential to minimize the additional overhead of
processing unwanted information or data, which is not visible in the final rendered image.
This process is generally called culling and can be achieved in many different approaches.

P
o

in
t

In
p

u
t

P
o

in
t

In
p

u
t

T
e
xt

u
re

 I
n

p
u

t
T
e
xt

u
re

 I
n

p
u

t

Point / Surfel

GPU Array

Sensor Space

Textures

Point / Surfel

GPU Array

Screen Space

Point / Surfel

Textures

View

Frustum

Culling

Occlusion

Culling

Project to

Screen Space

Image

Filtering

Project to

3D Space

Figure 4.3: Flowchart of the Data Culling Stage and its input/output interface. The
flowchart outlines the internal workflow using the provided input resulting in two distinct
outputs. The two lanes separates our two main data types, point and sensor image data.
Note that the texture input and output are defined in different spaces. The image input
lane expects raw depth values in sensor space while the image output consists of screen
space attribute textures (Similar to a G-Buffer [AMHH08]). Furthermore, this stage
allows to transform the data type to adapt the output for subsequent stages.

4.2.1 View Frustum Culling

A simple and efficient way to render huge amounts of polygons in modern graphic
applications is to reduce the number of draw calls issued by the CPU, to lower the GPU
workload. This is achieved by discarding objects, which are not contained in the camera’s

20

4.2. Data Culling

view frustum and thus not present in the final rendered image [AMHH08]. Testing if an
object, or its bounding box, is inside of the view frustum is a simple geometric operation.
To further reduce the processing time, the objects in the scene are organized into spatial
search data structures, e.g. an Octree or k-d tree [AMHH08]. Static point datasets can
be easily organized in such a way, because the overhead of creating the spatial data
structure has only to be considered once at loading time. Dynamic datasets suffer from
the continuous rebuilding of the data structure and hence losing its initial benefit.

4.2.2 Occlusion Culling

Even though view frustum culling assures that only points which can be seen by the
camera are sent to the GPU, occlusions by other polygons or points are still a problem.
Various occlusion-culling techniques evolved in the past to reduce the cost of unnecessary
overdraw [AMHH08]. Furthermore, point clouds suffer from different point densities
on the projected image. Surfaces which are farther away are usually represented by
more points than surfaces which appear closer. Especially the back-facing points cannot
be as easily discarded as with typical triangle geometries, if no surface information is
available. This results in the redundant processing of potentially occluded but densely
represented surfaces, while the occluding surface seems very sparse. Detecting occluders
and discarding occluded point subsets before they are rendered could save a lot of
performance. This point cloud specific occlusion culling technique is referred to as hidden
point removal [KTB07, eSEO12].

4.2.3 Filtering and Clipping

The previously made distinction of point datasets and image datasets also applies to
the data culling stage. Image datasets are usually unprocessed sensor outputs and can
therefore be refined before projecting them back into 3D space. Raw 2D sensor data
can be enhanced by applying image processing filter operations. Such filters are able to
manipulate the depth values in order to remove outliers or reduce sensor noise [GTKK13].
Additionally, sensor depth images can be clipped using manually adjusted near and
far planes in the sensor camera space. This allows discarding points when projecting
them into the 3D sensor camera space. Points too close or far away from the sensor’s
optimal working range are often erroneous and should therefore be clipped, as they are
not reliable. After the projection, image inputs are treated like point datasets and go
through the same culling steps.

4.2.4 I/O Interface

In the most trivial case, all input points are simply passed through and nothing needs to
be culled. In a more optimal situation, parts of the passed input points are outside the
view frustum or occluded and, thus, culled. Then the output is a subset of the initial
point cloud. Filtered depth images are first projected into the 3D space and then passed
through the same culling steps. The standard output of the data culling stage is therefore

21

4. System Concept

a reduced GPU point array, for point and image data inputs. An alternative thereto is
the output of multiple textures with the required information stored in the color channels,
similar to a G-Buffer [AMHH08]. For this, each point is projected into screen space,
where only the closest points to the viewer are kept, discarding occluded points. Screen
space outputs are required for screen space surface reconstruction algorithms, which are
discussed in Chapter 4.3.

4.3 Surface Reconstruction

Point positions and colors are not enough to render a point cloud with a visually appealing
closed surface. The surface orientation is crucial for lighting and reflection calculations.
If the desired surface normal is not available in the first place, an offline preprocessed step
is necessary to recalculate it for the complete dataset. However, this offline preprocessing
step is not always possible, especially when the point cloud needs to be captured and
rendered in real-time. This section describes the pipeline stage, which provides the
functionality to reconstruct the surface of the remaining point cloud subset, after the
data culling stage.

P
o

in
t

In
p

u
t

P
o

in
t

In
p

u
t

T
e
xt

u
re

 I
n

p
u

t
T
e
xt

u
re

 I
n

p
u

t

Point GPU Array

Screen Space

Point Texture

Surfel

GPU Array

Screen Space

Surfel Textures

kNN

Search

Plane Fitting

and Normal

Estimation

kNN

Search

Plane Fitting

and Normal

Estimation

Figure 4.4: Flowchart of the Surface Reconstruction Stage and its input/output interface.
The flowchart outlines the internal workflow, the required input and the expected output.
Vertical lanes separate the point data from the screen space attribute textures. The
internal processing for this stage was depicted using the kNN plane fitting approach
[PJW12, Sch16], but could vary depending on the implemented algorithm.

22

4.4. Rendering

4.3.1 Screen Space Reconstruction

A common simplification of the surface reconstruction problem is the reconstruction of
the surface points visible in screen space. This is obviously an approximation of the real
surface, because only the visible part of the surface is considered [PJW12]. Nevertheless,
this approach has still big advantages like the real-time performance, robustness and
sufficiently convincing visual results. The reconstruction algorithms attempt to find the
kNN of each point and subsequently fit a regression plane into this point subset. The
normal of the estimated supporting plane directly corresponds to the point’s surface
normal. A more detailed explanation of such algorithms can be found in Section 5.5.

4.3.2 I/O Interface

The input requested from the surface reconstruction stage is either a point array or the
pre-projected screen space textures created in the data culling stage. The exact procedure
of estimating the surface of the passed point cloud is implementation dependent. The
expected outputs are the resulting surfel properties: mainly the surface normal and in
some advanced cases also the tangent, co-tangent and curvature of the originally sampled
surface.

4.4 Rendering

The final stage draws the point cloud with varying realism, depending on the properties
of the initial dataset or the additionally gained properties from the various stages. The
point cloud can be represented as simple colored dots all the way to a closed, shaded
surface with reflections and shadows.

4.4.1 Billboard Points

Without surface information points can only be displayed as camera facing quads, so
called billboards [AMHH08]. To reduce the aliasing artifacts due to the quad edges,
pixels outside the desired disk radius are discarded. Billboard points are a rudimentary
visualization which is often good enough to give a fast first impression of the captured
data. This rough depiction is often used to visualize various properties of the point cloud,
encoded in the color. For the visualization of meta data, like the actual sensor depth
values, surface normals or the near infrared intensity, this representation usually suffices.

4.4.2 Blended Splats

For a visual reconstruction of the discretely sampled object it is necessary to render
a continuous surface without holes. These surfaces are approximated with so-called
splats [ZPVBG01]. Similar to billboards, splats are generated quads centered in the
surfels position. The surface normal is then used to orient the quad such that the quad’s
normal is aligned with the surfel normal. Additional surface properties can be used to

23

4. System Concept

S
u

rf
e
l
In

p
u

t
S
u

rf
e
l
In

p
u

t
P

o
in

t
In

p
u

t
P

o
in

t
In

p
u

t

Surfel GPU Array

Screen Space

Surfel Texture

Point GPU Array

Screen Space

Point Texture

Smooth Surface

Rendering

Simple Point

Rendering

Emit

Oriented

Splats

Blend

Splats

Emit

Billboards

Apply

Color

Deferred

Shading

Figure 4.5: Flowchart of the Rendering Stage and its input/output interface. The flowchart
outlines the internal workflow of the stage, from the provided input, the main processing
steps and the final output. Contrary to the previous flowcharts (Figures 4.2, 4.3, 4.4), the
lanes in this figure do not separate the input by type (points or images) but instead by
the information they contain. Specifically surfel input, containing positions and surface
normals, and input containing plain point positions. Note that the additional surface
information can always be omitted or used for simplified visualization paths.

further distort the disk. Finally, the overlapping splat colors and normals are blended
together to achieve a smooth appearance. The resulting surface is then shaded according
to the material properties and the environmental effects.

4.4.3 I/O Interface

The rendering stage accepts point and surfel data, either as data arrays or attribute
textures defined in screen space. The output is the final rendered point cloud, ready for
the scene composition in the standard rendering pipeline.

24

CHAPTER 5
Implementation

This chapter is dedicated to the implementation of the proposed visualization pipeline. It
gives an in detail description on how the presented stages from Chapter 4 are integrated
in the chosen framework (Chapter 3.1). The focus of this work is the visual reconstruction
of dynamic, constantly changing point clouds, in real-time. Algorithms and techniques
used in the various pipeline module implementations were chosen to process and render
live sensor data in an efficient manner while maintaining a robust reconstruction and high-
quality visuals. Some alternative module implementation are provided to demonstrate
the flexibility of the proposed pipeline. Figure 5.1 shows the implemented modules
from the four different pipeline stages, introduced in Figure 4.1. Starting from an input
handler module and ending at a renderer module, each connection shown in Figure 5.1
represents a valid pipeline setup. In addition to the general implementation explanations,
Section 5.8.5 gives an overview of the connection, inheritance and cooperation between
all implemented classes of the novel visualization pipeline. It provides an outline of the
base modules, as well as the sample implementations of each stage, and can be seen as
the pipeline’s backbone.

5.1 Point Cloud
In order to seamlessly integrate point cloud rendering into Unity, we based our implemen-
tation on Unity’s proven concepts and structures. Unity’s representation of interactive
scene elements are GameObjects. Customizable components define the object’s behavior,
appearance and functionality. 3D meshes are represented by GameObjects with built-in
components responsible for managing the mesh data and rendering it to the display. A
more in detail discussion can be found in Chapter 3.1.2. Based on the same concept we
build our novel point cloud rendering pipeline.

The novel collection of custom components in our implementation allows displaying a
point cloud with adaptable processing performance and customizable visual quality.

25

5. Implementation

Input Handler Data Culling
Surface

Reconstruction
Rendering

Points to

World Texture

Depth to

World Texture

Depth to

Object Points

Simple Point

Renderer

AutoSplats

Point Data

Handler

e.g. 3D Geometry Files

Point Data

Handler

e.g. 3D Geometry Files

Image Data

Handler
e.g. RGB-D Stream

Image Data

Handler
e.g. RGB-D Stream

Smooth Surface

Renderer

Figure 5.1: Flowchart of the implemented visualization pipeline stages, their execution
order and possible combinations. Each connected set of modules (from left to right)
represents a valid pipeline setup.

5.2 Base Pipeline Component

The basic implementation of a pipeline stage is crucial for the reliable functioning of
the custom work-flow. The most convenient way to execute custom and reusable code
in Unity is a MonoBehaviour component script. Analogous to the mesh and rendering
components attached to GameObjects, we implement each pipeline stage as a distinct
component. This creates a flexible and modular way to configure the different pipeline
variations.

Component scripts are usually initialized independently on start-up or when they are
first instantiated on run-time. This initialization process is executed sequentially on the
main update thread, meaning that any long running initialization would restrain the
start-up time of the application or freeze the application mid-frame. As our pipeline
components potentially need to process millions of points by parsing a data source or to
populate a spatial data structure, an asynchronous approach is preferable.

We achieved this non-blocking initialization with Unity’s co-routines. A co-routine is a
function, which allows execution over multiple frames, thus, preventing the application
from getting unresponsive.

Still, concurrent initialization is only possible for every pipeline stage at a time, as
subsequent stages may be dependent on each other. To prevent premature initialization

26

5.3. Data Handler Components

on an undefined predecessor state, each pipeline component defines its dependencies.
The initialization process is then delayed until all dependencies are completely ready.
For example, a renderer component is dependent on the data provider with the highest
priority.

5.3 Data Handler Components
Data handler components retrieve, store and continuously update raw point cloud
information. The data handler stage proposed in Chapter 4.1 may be implemented
differently for each input source and data type. This work encompasses data handler
components handling geometry files, images, sensor and network streams. Every data
handler component inherits from the abstract BaseDataHandler class, which provides
basic query methods like the maximum number of points or which supplementary
information is stored within the input data. More specialized functionality can be found in
the two extending abstraction layers BasePointDataHandler and BaseImageDataHandler.
Both classes serve as generalizations of the two main input formats: 3D points/surfels
sets and unprocessed 2D sensor outputs.

Figure 5.2: Live streamed data from a depth sensor and color camera. The streams are
handled in a native plugin and directly uploaded to the GPU. The visualized frustum
represents the view of the sensor in a virtual 3D coordinate system. The yellow area
highlights the region of interest, points outside this frustum are discarded. The surface
of the persons head is reconstructed and rendered in real-time. The sun icon shows the
position of the virtual light source, used to recalculate the lighting of the captured scene.

27

5. Implementation

5.3.1 Point Data Handler

Point data handlers load and store 3D positions and additional surfel information, if they
are available beforehand. In the scope of this work, we mostly deal with easily manageable
point cloud sizes and are therefore able to directly upload the data to GPU memory at
once. Larger point sets require out-of-core loading schemes in order to efficiently handle
the limited memory.

All graphics APIs provide some sort of vertex buffers to store custom array data on the
GPU memory. Unity’s graphics abstraction layer, unfortunately, does not allow direct
access to vertex buffers. A naive method to circumvent this restriction is to exploit the
built-in mesh class. Points can be passed as vertices to a mesh instance, along with their
color and normal vector. An advantage of this workaround is that the engine handles
the GPU upload and all bindings before each draw call. This seems rather convenient at
first, but using these concealed built-in classes leads to a great shortcoming in flexibility.
Unity does not provide any functionality to persistently modify1 vertex buffers on the
GPU. Furthermore, the mesh class only supports a predefined number of attributes per
vertex, additional information has to fit into this predefined schema or cannot be used.

A more flexible alternative to this approach is to abandon common vertex buffers and
use compute buffers2 instead. Compute buffers are intended for the generation and
manipulation of arbitrary data in compute shader programs. The buffers can also be
bound to any other shader stage. This makes it ideal for our point cloud storage. Point
and surfel data is stored in compute buffers where we can manipulate the data as we
desire and finally read the required data for rendering. However, only newer devices with
state-of-the-art graphics APIs support compute shaders and compute buffers. Thus, we
still use mesh objects as a fallback solution for simple visualizations.

An exemplary implementation of a point data handler is the PointCloudGenerator, which
generates rudimentary point clouds of basic geometric shapes. This data handler is mostly
used for testing purposes. A component for real life use cases is the PointFileLoader.
This component is used if the point cloud is present as a set of points stored in a geometry
mesh file (e.g. processed 3D scan outputs). The file is loaded and parsed using a suitable
parser for the given file extension. In the scope of this work, we implemented parsers for
the Object File Format (.off) and the ASCII variant of the Polygon File Format (.ply).

5.3.2 Image Data Handler

Image data handlers store raw sensor output and update the memory if the input changes.
This component abstraction is designed for sensors with 2D depth image outputs, like
time of flight cameras, sensors using structured light or preprocessed stereo camera rigs.
Additionally to the depth map, most sensors provide an infrared intensity image and a
rgb-color image for each captured frame. The latter needs to be mapped into the sensor
image space in order to match the points captured in the depth map.

1e.g. stream-output stage on DirectX and transform feedback on OpenGL.
2The matching technology in OpenGL is called shader storage buffer.

28

5.3. Data Handler Components

Image data handler implementations provide the intrinsic camera parameters of the
depth camera for the usage in all subsequent stages. These parameters are required to
re-project the depth values into 3D sensor space. Furthermore, the sensor dimensions
define the size of the allocated GPU textures. Image data handlers hold two textures,
which are used to store the raw sensor output, one for the depth image and another for
either the infrared intensity image or the mapped color image.

The ImageFileLoader component is an example of an image data handler. This component
loads images for the depth and the color or infrared image. The image decoding and
uploading is handled by a custom plugin using OpenCV [Bra00]. The integration of
external code in Unity was discussed in Chapter 3.1.7. OpenCV provides great flexibility
when loading images of any type and color depth. High color depths are especially
important for depth maps, to preserve higher precision and avoid quantization artifacts.

We implemented the CameraStreamInputHandler and the TCPInputStreamHandler
component to handle continuous data of depth, color and infrared information. Live
sensor data is either received from a remote streaming source or by polling the sensor API
directly. Most devices only provide APIs programmed in C/C++, so it is necessary to
write custom wrappers and integrate them as engine plugins. In this work, we integrated
the Intel RealSense SR300 near-range depth-sensing camera. We poll the images in a
separate thread and write them into the designated texture on each frame. Decoupling
the sensor polling from the main thread is crucial, as our goal was to achieve interactive
frame-rates, unbound by the low capturing speed of the sensor. The sensor API wrapper
was built with future extensions in mind. A generic camera interface hides the sensor
specific implementation and facilitates additional sensor adaptations.

Unmanaged Memory Our image data handlers involve native plugins to handle
the diverse requirements of the raw depth sensors inputs. Memory in native C/C++
plugins is unmanaged and Unity’s C# scripting framework cannot directly access it.
If we still want to use Unity’s cross-platform graphics abstraction, we would need to
copy each sensor frame from unmanaged to managed memory, before we could start the
GPU upload. This process is very time consuming, especially with high frame-rates and
large image resolutions. Keeping the data in unmanaged memory would be favorable.
Fortunately, Unity provides rendering event hooks, which were introduced to trigger
rendering calls in native plugins. This enables us to process each sensor frame directly in
the plugin and let Unity call the GPU upload at an appropriate point in its rendering
pipeline, through the implemented event hook. Allowing the complete native graphics
API to be accessed through native plugins may sound convenient, however, it comes at
the additional overhead of platform dependency, forcing custom plugin implementations
for each supported operating system.

29

5. Implementation

5.4 Culling Helper Components
The rendering performance of large geometry sets can be drastically increased with
efficient culling techniques [AMHH08]. Culling describes the removal of redundant data,
which is not visible in the final output and may therefore be neglected early on, to
save otherwise wasted processing time. Our proposed culling modules implement highly
flexible and efficient culling techniques for dynamic datasets. Furthermore, the culling
helper components are also responsible for potential transformations of the dataset to
different coordinate systems. This is, for example, necessary for the further processing
of depth maps from depth sensors. Depth maps are defined in the camera space of the
sensor device, for further processing a transformation into world space or screen space
can be advantageous (Section 5.5.1).

Figure 5.3: View frustum (grey) of a depth sensor. The yellow area marks the area
of interest while everything else is culled. The color used to render this simplified
visualization encodes the depth value, from green on the near culling plane to blue on
the far culling plane.

5.4.1 Depth To Object Points

Our implementation focus in this stage was the efficient processing of continuously
changing live sensor data. Spatial data structures for fast point removal are great for
large static datasets, but often lack flexibility when it comes to dynamic, fast changing
data. Efficient and more flexible approaches needed to be considered for live sensor
stream processing. The implementation of our depth processing module exploits the

30

5.4. Culling Helper Components

2D representation of the raw input data (Figure 5.4). Image filters provide an efficient
way to reduce sensor noise and enhance the overall sensor output [GTKK13]. The filters
used in our DepthToObjectPoint component are proven image processing tools, like the
median filter and the bilateral filter [TM98]. McGuire [McG08] introduces a highly
efficient median filter for modern programmable GPUs. That implementation performs
in a single shading pass, exploiting the high parallelization capabilities of the fragment
shader stage. Additionally to the median filter, we incorporate a subsequent modified
bilateral filter [TM98], to smooth the noisy depth values without destroying characteristic
edges. Our custom modification prevents the smoothing over invalid depth pixels, which
would otherwise result in unwanted bleeding of invalid values into the dataset. The
BaseDepthCullingHelper class implements both image filters with a 3 × 3 and a 5 × 5
kernel. This reduces unwanted depth outliers originating from sensor noise and smooths
noise stricken surfaces.

Figure 5.4: Unprocessed raw depth map (left) and the same depth map after distance
culling and filtering (right).

Subsequently we project the filtered 2D depth image into the sensor camera coordinate
system. With the use of the intrinsic sensor calibration parameters, we are able to
re-project each depth value from the 2D image space to the 3D sensor space:

d = =(x, y) · s (5.1)

~p =

dx−cx

fx

d
y−cy

fy

d
1

 (5.2)

Equation 5.2 depicts how the point ~p in sensor space is acquired. The depth value d is
calculated from the depth stored in the image = at the image coordinates (x, y), scaled
with the factor s to adjust the sensor depth units to meters (which is Unity’s default
unit). Usually sensor metrics are defined in millimeters, in that case s = 10−3. The
parameters cx, cy and fx, fy state the principal point c and the focal length f of the depth

31

5. Implementation

camera, provided by the intrinsic calibration. The re-projected point ~p. is then defined
in the 3D sensor space, which can also be interpreted as the point clouds object space.

We execute a compute shader program to perform the projection on each valid depth pixel
in the image and store the 3D points in a compute buffer. Commonly image processing
on the GPU is executed in fragment shader programs. The texture fetching cache allows
efficient access to surrounding pixels for various filter operations. However, projecting
the depth values in the image can be done independently for each pixel and does not
require any texture-tile caches. Furthermore, compute shaders provide great control over
the patch size and the number of spawned threads, while avoiding the overhead of the
rasterization and output stages in the standard rendering pipeline.

Depth values outside the needed working range are clipped using a configurable near and
far plane in sensor space. The result of this process is shown in Figure 5.4 and illustrated
in 3D in Figure 5.3. The number of valid depth projections is unknown at initialization
time, only the upper bound is defined by the image resolution. To avoid wasting GPU
memory we use the append compute buffer type. As the name suggests, an append
buffer allows to append new points to the existing buffer without manual re-allocations
or initial assumptions on the maximum size. This is a large advantage, as we only need
to further process this subset of points, greatly reducing the number of draw calls.

The implementation of the described method can be found in the DepthToObjectPoints
component. It is required to transform image data input handler outputs to 3D space.
Afterwards, sensor inputs can be treated in the same way as datasets provided by point
data handlers. Nonetheless, the points created from projecting depth values into 3D space
still lack surface information and can therefore only be displayed as plain point clouds.
For further processing an intermediate representation, mandatory for the AutoSplats
[PJW12] algorithm, is required.

5.4.2 Intermediate World Texture Format

AutoSplats [PJW12] is a surface reconstruction algorithm, which estimates the surface
normals of the currently visible point cloud in screen space. Projecting the points into
screen space can be loosely interpreted as a simple form of view frustum and occlusion
culling as hidden points are discarded and not further processed in the pipeline. Therefore,
we decided to integrate this part of the algorithm into the culling helper stage. Making
this component also requisite for point data handler outputs if no surfel information is
known.

Projecting points and storing the output in textures is the designated work-flow of the
standard rendering pipeline. Rendering points, which are stored in compute buffers is
achieved with the indirect draw call of the graphics abstraction layer. This draw call
does not require any vertex buffer bound to it, the number of desired vertices is simply
passed as a parameter to the call. Instead of the vertex information, only a single index
is provided as an input to the vertex shader stage. This index may be used to address a
bound compute buffer, which serves as a vertex buffer replacement. All further steps are

32

5.5. Surface Processor Components

performed as usual. Projecting points from a depth map in a single pass is achieved in a
similar fashion. As we do not know how many valid points were captured by the depth
sensor, we have to assume that all points are potentially projected. Therefore, we issue
an indirect draw call with vertex number matching the number of pixels in the depth
map. In the vertex shader the index is used to fetch the corresponding texel3 in the
sensor image. Invalid pixels are discarded by projecting them outside the clipping box.

DepthToWorldTexture and PointToWorldTexture are the exemplary implementations
leading to this intermediate format. Figure 5.1 illustrates that either one of these culling
helper modules is required for our subsequent implementation of the surface reconstruction
stage. Both classes implement the IWorldPositionTexture interface to abstract the output
access for the next stage.

5.5 Surface Processor Components

Modern computer graphics and rendering algorithms mostly operate on the visible outer
hull of volumetric objects, often referred to as the boundary representation [Hof89]. A
crude discretization of complex real-world surfaces are triangle meshes, which are easy
to store and geometrical calculations can be greatly simplified. Triangles are especially
convenient as the three vertices in 3D space always describe a plane and each point on the
spanned plane inside the triangle can be uniquely parametrized. The neighborhood of a
vertex can be found by iterating though the vertices of all the triangles, which contain the
initial vertex. The orientation of a triangle face is not unambiguously defined, it can either
be front facing or back facing. Therefore, it is necessary to agree on the orientation by
considering the winding order of the vertices, being either clockwise or counter-clockwise.
If the winding order is known, the face normal can be simply calculated by taking the
cross-product of two edges in the correct order.

Point clouds are a discretization retrieved by capturing point samples of real-world
surfaces. Point samples commonly hold information on the position and color of the
observed surface. The lack of connectivity between neighboring points increases the
required effort to reconstruct the surface orientation.

In general, two distinct approaches can be pursued to gain surface information from
point cloud datasets. [NFS15, DKD+16, TADB+16, YGX+17] apply algorithms similar
to the triangulation of volumetric data. An implicit function is defined to parametrize the
complete surface, this implicit function is then triangulated with the use of techniques like
the marching cube algorithm [LC87]. Continuous mesh morphing and deformation, often
referred to as geometry fusion, allows reusing the generated mesh over multiple frames
for temporal consistent outputs and real-time efficiency [NFS15, DKD+16, YGX+17].
These algorithms work very well in a defined context and result in stunning and detailed
dynamic meshes. However, real-time meshing is a fairly new field of research because the
computational effort for real-time results is very high, bringing current generation GPUs

3short for texture element, a sampled value from a texture [AMHH08]

33

5. Implementation

to their limits. State-of-the-art algorithms for real-time surface reconstruction often
require initial assumptions and constraints regarding the target object, the topological
changes or movements speeds [NFS15].

An alternative approach, used by [PJW12, LZZ13, Sch16], does not intend to reconstruct
and maintain a whole triangle mesh, but rather estimates the surface normal on each
sampled point and use point rendering techniques to visualize the point cloud’s surface
[PZVBG00, BSK04, BHZK05]. AutoSplats [PJW12] estimates the surface normal in
screen space by finding the kNN for every point and fitting a plane into the local
neighborhood. The normal of the plane is then oriented by estimating the interior of the
closed object, or by assuming that all points are facing the viewer. The rendered splat
size is also given by the determined kNN radius. An optimization of the GPU shader
approach was proposed by [Sch16], using GPGPU programs and 2D search structures
leading to a large performance boost. [LZZ13] roughly estimate the surface normals of
their volumetric dataset from the gradient image calculated by the weighted camera views.
Both techniques [PJW12, LZZ13] are approximations of the real surface, as only points in
projected screen-space are considered. However, this approximation delivers sufficiently
realistic results with real-time performance, while running on consumer hardware.

5.5.1 AutoSplats

The reconstruction module implemented in our real-time point cloud processing pipeline
is based on the AutoSplats algorithm, proposed in the previous work of Preiner et
al. [PJW12]. AutoSplats estimates the surface normal in screen space by finding the kNN
for every point and fitting a plane into its local neighborhood. The algorithm operates on
a frame-by-frame basis and does not require temporal coherence or previous knowledge
of the input data, which improves the robustness when dealing with rapidly changing
point clouds with large changes in the topology.

For each frame AutoSplats carries out the following steps in multiple shader passes:

1. Initial projection of the point cloud.

2. Estimate initial radius for each point.

3. Iteratively refine the radius depending on the enclosed number of neighbors, until
the desired number of neighbors (k) is reached.

4. Accumulate neighboring point positions for the covariance matrix construction.

5. Calculate the surface normal by solving the singular value decomposition (SVD) of
the covariance matrix.

The result are per-frame reconstructed normals for dynamic point clouds. The algorithm
achieves real-time performance, even for large point clouds, through resourceful usages of

34

5.5. Surface Processor Components

fragment shader programs. Elementary per-point operations are executed in single render
passes, exploiting the parallelization on the GPU. This parallel splat communication
[PJW12], introduced in AutoSplats, is used for simple position accumulation or range
searching tasks. It functions by drawing screen space patches for each point and using
the hardware accelerated add and max blending functions to obtain the specified goal on
the projected position or radius buffer textures.

We use the same technique in our reconstruction module to estimate per-point normals.
The input for the algorithm is a screen space buffer texture, holding each projected
point’s world position. The initial projection, is already performed by the previous
culling helper stage. This step was separated from the main algorithm as it enables other
surface reconstruction algorithms (e.g. [Sch16]) to reuse this intermediate point cloud
representation. An additional texture created from the initial point projection contains
each point’s compute buffer index. This index is used to query additional properties
directly from the buffer without allocating additional texture memory. The world position,
however, is written directly into a separate four-channel texture (RGB channels for the x,
y and z coordinate. Alpha channel for the point radius). Steps 2 and 3 from the original
algorithm where skipped, favoring higher performance over reconstruction accuracy. Step
4 is carried out in two shader passes. First, the average point position of each fixed
sized point neighborhood, is calculated in a single fragment shader pass. The results are
again stored in a screen space buffer texture for a simplified fragment shader access in
the subsequent passes. In the second shader pass, the scaled covariance matrix for each
neighborhood is constructed using the previously calculated average positions. Finally,
in step 5, the SVD of these covariance matrices is solved, to calculate the supporting
plane’s orientation. This orientation is a good estimate of the point surface normal and
is stored in a per-point normal buffer texture. Contrary to the remarks in the AutoSplats
publication, we use the geometry shader stage to dynamically draw quads for the parallel
splat communication, instead of using OpenGL’s point size (point sprite) feature, which
is not supported on DirectX.

Our simplified reconstruction approach neglects the dynamic, per point, radii search and
directly jumps from step 1 to step 4 using a manually adjusted radius, which is constant
for each point. This is a crude approximation of the real kNN search as not every point
has the same number of neighbors in the end. This leads to some minor artifacts when
changing the point of view, because the number of effective neighbors may change due to
the screen space projection, resulting in slightly different normals. However, this process,
as also stated in the work of Preiner et al. [PJW12], accounts for almost 80-90% of the
complete run-time of the algorithm. Depending on the number of neighbors and the
point cloud size, this step requires up to 10 full-screen fragment shader passes. This can
drastically affect the performance with higher resolutions and larger point densities.

In our evaluation we show that skipping this dynamic radii search allows much higher
performance, while still resulting in satisfying per-point normals. Especially when dealing
with point clouds with a low variation in densities, this adaptation delivers satisfying
results while being less computational expensive and therefore, also more suitable for low

35

5. Implementation

performance devices.

5.6 Renderer Components

The rendering of point-based models on modern GPUs is only supported up to a certain
degree. Our goal is to render points with as little memory and processing overhead as
possible. Point primitives, contrary to standard triangle primitives, are an obvious choice
and supported by all major graphic APIs. Positions, colors and other attributes are passed
to the GPU in a vertex list. Rendering point primitives with default settings results in
pixel sized rectangles, which in some cases may lead to an acceptable representation,
if the dataset density allows for a pixel accurate, gapless visualization. Otherwise, the
point cloud may be too sparse and therefore, having visible holes between the displayed
points or even be barely visible on higher display resolutions. Most graphic APIs support
the point size attribute, enabling to draw a larger rectangle around the point, instead
of just filling a single pixel. This feature is often referred to as point sprites [AMHH08].
Varying screen resolutions can then simply be compensated by adjusting the point size.
However, this feature is not supported on all platforms and should therefore be used with
care. Furthermore, point sprites are always screen-aligned, perspective distortions and
correct depth values have to be reproduced inside the drawn rectangle. This technique is
known as impostor rendering [AMHH08].

A modern approach to substitute the outdated hardware implementation of point sprites,
are geometry shaders. With geometry shaders it is possible to dynamically generate
new primitives for each input vertex. Allowing to create a quad for all of the originally
drawn points. Correct projection and depth values are then taken care of in the default
rendering pipeline. This approach was also pursued in our rendering pipeline as Unity
does not offer consistent support for the point size feature across platforms. A downside
to this method is that the number of drawn vertices is quadrupled since two new triangles
are created per point. This has a clear impact on the overall performance, compared to
the more simplistic point sprites.

Our implementation contributes two distinct point cloud rendering components which
are explained in detail in the following sections.

5.6.1 Simple Point Renderer

The SimplePointRenderer component allows displaying plain point clouds by drawing a
quad on the position of each point. If a point contains surface information, the quad is
created in object space and first oriented along the surface normal before the perspective
projection is applied. Hereby a simple and efficient estimation of the surface is rendered.
The output looks similar to the non-overlapping surface splats in Figure 5.6. Point
clouds without surfel information are represented by screen-aligned quads. Round edges
enhance the simple visualization and mitigate aliasing effects. Additional attributes can
be visualized by encoding them into the color.

36

5.6. Renderer Components

Simple Point Visualization

High Quality RenderingNormal Estimation

Raw Point Cloud

Figure 5.5: Different visualization paths depending on the provided or processed surface
information. Starting from the raw point cloud, either present as point positions or depth
values defined in sensor space, we can visualize the point cloud as it is, with additional
color-coded information, or as an alternative we use the existing or estimated normals to
reconstruct a closed surface with photo-realistic shading.

The SimplePointRenderer module is especially useful for straightforward point cloud
visualizations on hardware with limited memory and processing power. Point based input
handlers require no additional preprocessing, this input handler and renderer combination
represents the minimum pipeline setup which can be used to display a point cloud. Also,
image based input handlers benefit from this simple and efficient visualization, e.g. for
fast sensor previews with color-coded depth values.

5.6.2 Smooth Surface Renderer

Assuming that the point cloud contains surface orientation information, this component
is able to reconstruct a perceptibly closed and smooth surface. Furthermore, it integrates
the point cloud into Unity’s lighting system and makes use of all light sources, shadows
and reflections. The implemented rendering technique is called surface splatting and first
introduced by Matthias Zwicker et al. [ZPVBG01] in 2001. Later adaptations for modern
lighting models and GPUs were proposed by Mario Botsch et al. [BSK04, BHZK05] a
few years later. But even today this technique is still an efficient solution which can be
integrated into modern state-of-the-art deferred shading pipelines and provide stunning
high-quality results.

The concept of surface splatting is similar to painting differently colored dots onto an
object in the real world. The larger the painted dots the more they start to blend into

37

5. Implementation

Figure 5.6: Surface splats made visible by decreasing the splat radius. Point attributes like
color and surfle orientation are propagated across the splat and blended with overlapping
neighboring points.

each other and the gaps between the dots vanish. These painted dots or splats are
rendered as oriented disks at each point position. The size of these disks has to be chosen
carefully, in order to create a sufficiently large overlap. Surface splats with reduced radius
size can be seen in Figure 5.6.

The surface splatting technique is then performed in three passes [BHZK05]: First,
the visibility of the splats is determined by performing a depth only pass to speed up
subsequent passes with the early-Z test [AMHH08]. In the second pass colors, normals
and other attributes are rendered into multiple render buffers and blended together. By
taking the weighted average of the attributes, smooth transitions between colors and
normals of adjacent splats are generated. The weights are sampled from a precalculated
Gaussian distribution using the Euclidean distance of the current pixel to its splat center.
Finally, the blended attributes are divided by their accumulated weights and written into
Unity’s deferred G-Buffer [AMHH08]. This way Unity’s illumination pipeline takes care

38

5.7. Data Provider Interface

of the shading and environmental reflections.

Shadow Casting Unity provides built-in real-time cascaded shadow mapping for
directional lights. While this works out-of-the-box for Unity’s renderer components,
extending custom renderers with shadow functionality is not easily possible. It is possible
to substitute default shadow shaders with custom shaders for built-in materials and
renderers, but it is not allowed to inject arbitrary shader passes into the shadow collection
stage. Unity’s shadow collection stage is a highly optimized closed system and does
not offer command buffer hooks or other possibilities to access the generated shadow
map. Nevertheless, we provided real-time shadow casting support for static point clouds.
Implementing a custom separate shadow collection stage with the same feature set as
provided from Unity is not trivial and would be out of the scope of this work. Thus, we
implemented a custom workaround still allowing to use Unity’s sophisticated shadow
mapping. Our approach was to generate an additional supporting mesh for the point
cloud, which serves as a shadow caster for Unity’s shadow system. The shadow caster
mesh consists only of vertices from the original dataset and uses Unity’s built-in renderer
component with special materials and custom shaders to ensure that the shadow caster is
only visible in the rendering passes responsible for the shadow map generation. The mesh
renderer is then automatically called from the engine, drawing overlapping view-aligned
quads, to create an approximated depth footprint of the point cloud from the light’s
perspective. An example of the dynamic point cloud shadow is shown in Figure 5.7. As
already discussed in Chapter 5.3, working with Unity’s built-in mesh type is not flexible
enough for continuous updates and dynamic re-allocations of large vertex sets. Therefore,
we limited shadow support to static point data handlers.

5.7 Data Provider Interface

The main input source for our custom rendering components are data providers. Every
component, which holds data that can be used to render the point cloud, implements
the IDataProvider interface. This interface grants access to functionalities needed to
display the point cloud. A big advantage of this abstraction layer is that the data
provider itself is responsible for the data binding and issuing of the drawing commands.
The renderer is unaware of the data type itself and only has to call the appropriate
shader programs. On initialization, the renderer components dynamically search for an
appropriate data provider, in the pipeline. If multiple suitable candidates are found,
the data provider which comes last in the rendering pipeline is chosen. This order is
called data provider priority (Input Data Handler < Culling Helper < Surface Processor).
Our SimplePointRenderer implementation accepts data provider with compute buffer
point data and mesh data (which can be used as a fallback, see Chapter 5.3.1). The
SmoothSurfaceRenderer has higher requirements, as it only accepts compute buffer data
with additional surface normal attributes. If no compatible data provider is found, the
renderer is disabled triggering an error message. A list of implemented data providers
and their properties is shown in Table 5.1.

39

5. Implementation

(a)

(b) (c)

Figure 5.7: Dynamic real-time shadow casting and receiving on the dragon dataset with
reconstructed normals. The scene shows the combination and interaction between point
cloud objects and classic triangles mesh based geometry. The dragon point cloud is
placed on a marble pedestal inside a wooden cage. The gold-like material has a polished
appearance with characteristic environmental reflections. The cage casts shadows onto
the pedestal as well as the point cloud, at the same time is the dragon casting shadows
onto the environment and itself. Figure (a) depicts the scene illuminated with a virtual
light source projecting the dragon silhouette onto the cage, Figure (b) and (c) show the
same scene with light coming from different directions. Additional post-processing effects,
like SSAO and depth of field, improve the final result considerably.

40

5.8. Restrictions

Data Provider Data Type Normals Priority
BasePointDataHandler (5.3.1) Comp. Buffer | Mesh From input 1
DepthToObjectsPoints (5.4.1) Compute Buffer No 2
BaseSurfaceProcessor (5.5.1) Compute Buffer Yes 3

Table 5.1: Different data provider implementations. The data type defines how the data
needs to be rendered, and can be used to check if the renderer component is compatible
with the specified type. Not all components are inherently able to provide surface normals,
e.g. DepthToObjectPoints solely process depth maps to compute 3D points. Surface
normals can then only be gained with further processing steps, e.g. with subsequent
stages extending the BaseSurfaceProcessor component. The priority of a data provider
tells the rendering component which component is the most relevant, if multiple data
providers are present.

The IDataProvider as an additional abstraction layer allows introducing new pipeline
components without additional integration overhead.

5.8 Restrictions

Although Unity generalizes a variety of modern GPU features for numerous platforms,
there are still many functionalities not accessible by Unity’s rendering framework. This
section discusses some of the restriction we had to face in the development process of
this work. Some of these issues are already mentioned in the previous sections.

5.8.1 Source Code and Extensibility

Unity has different licensing models, all of them provide the same engine features and
just differ in support and additional cloud services. The engine’s source code is not
included in any of these licensing models. Unity states to grant source code access only
with a special license, which is only available through direct contact. However, Unity’s
documentation is extensive and detailed for the most parts. The lack of source code
access is not really an issue as long as the built-in features are sufficient for the project.
Nevertheless, extending core functionality can be painful and often not even possible. For
example, the renderer component is crucial for many of Unity’s rendering features, like
light-map baking, shadow map generation or real-time global illumination. Extending
this component would be desirable to create custom objects, which exploit Unity’s rich
rendering pipeline. However, the component’s class structure is hidden and required
interfaces are not accessible.

5.8.2 Default Rendering Pipeline

At the time of writing this thesis, the only possibility to add functionality to Unity’s
default rendering pipeline is through command buffers. Command buffers are a list of

41

5. Implementation

graphic API instructions, which can be inserted at predefined hooks in the rendering
pipeline. With this feature, it is possible to add custom post-processing effects to the final
rendered output, or to alter the G-Buffer [AMHH08] after its generation. For a variety
of rendering algorithms, this type of access and execution is sufficient. Nonetheless, the
default pipeline stays untouched and can only be extended in some predefined instants.
Many internal processes, like the shadow map generation, stay a black box and cannot
be altered or accessed (discussed in Chapter 5.6.2). This issue is hopefully solved by a
new feature, the scriptable rendering pipeline, which was announced for a future release
(announced for Unity 2018.1, current version Unity 2017.3). The scriptable rendering
pipeline allows creating custom rendering pipelines in a C# script, giving more control
over the internal rendering.

5.8.3 GPU memory

The graphics abstraction layer provides useful platform independent rendering function-
ality. Unfortunately, basic GPU memory access can be difficult to achieve. Vertex and
index buffers are not accessible outside the built-in mesh component and cannot be
arbitrarily manipulated. An independent vertex array implementation would be favorable
to allow custom implementation of geometry classes or other arbitrary data structures.
However, the engine does provide native memory pointers for the manipulation in native
plugins. If platform independence can be neglected, this enables to use specific graphic
API features, which are not abstracted by Unity, e.g. stream-output stage on DirectX and
transform feedback on OpenGL. As an easy to use alternative, we switched to compute
buffers, which are able to store arrays of arbitrary structs on the GPU and allow easy
access and manipulation in the different shader programs (discussed in Chapter 5.3.1).

5.8.4 Lights and Shading

Unity’s rendering engine supports two different types of shaders. Generally, they are
referred to as unlit shaders and surface shaders. Unlit shaders represent classic ver-
tex/fragment shader combinations, known from the programmable graphics pipeline.
Whereas a surface shader only represents the part of the fragment shader where the
inherent fragment properties are calculated and loaded, like albedo color, surface normal
and smoothness factor. The surface shader function is then internally called by Unity’s
default fragment shader implementations and the final per-pixel lighting is calculated.
Standard vertex/fragment shaders are labeled as unlit because they are not easily inte-
grated in the engine’s lighting system. If interaction with dynamic lights in the scene
is desired, the documentation recommends using surface shaders instead, as they take
care of the complex light handling code and the developer can focus on the essential
surface properties of the object. The disadvantage of surface shaders is the limitation
that comes with this simplification. As already stated in the previous paragraphs, Unity’s
rendering strongly relies on its built-in renderer and mesh components. Surface shaders
assume to be applied to the default renderer component drawing the standard mesh
type. For our point cloud implementation, we abandoned mesh components early on,

42

5.8. Restrictions

so we had to dismiss surface shaders as well. However, we still wanted to integrate
our custom renderer into the engine’s convenient lighting system. Fortunately, Unity
supports deferred rendering as an alternative rendering path. With full access to the
G-Buffer [AMHH08] and the appropriate invocations of our command buffer, we were
able to inject the reconstructed point cloud into the lighting system (See Chapter 5.6.2).

5.8.5 Class Inheritance Structure

This section outlines the overall inheritance structure, shown in Figure 5.8. The modular
implementation of our pipeline requires a strict inheritance structure. The base class
for all components is Unity’s built-in MonoBehaviour class. Overriding special methods
ensures that our custom code is executed by the engine on specific events. The abstract
BasePipelineComponent class (Introduced in Section 5.2) encapsulates functionalities
all stage components share, like the asynchronous initialization. Each pipeline stage
then inherits from a base class representing the basic interfaces for each module. The
InputHandler requires an additional abstraction layer for the two main data types, point
and image input data. The explicit classes shown in this figure are all sample imple-
mentations included in this thesis. New input sources, culling techniques, reconstruction
algorithms and rendering methods can easily be added by extending the respective base
classes.

Implementation relations of the IWorldPositionTexture (Section 5.4.2) and the IDat-
aProvider (Section 5.7) interfaces are also shown in the diagram.

43

5. Implementation

<<Abstract>><<Abstract>>

BaseDataHandler

<<Abstract>>

BaseDataHandler

<<Abstract>><<Abstract>>

BaseCullingHelper

<<Abstract>>

BaseCullingHelper

<<Abstract>><<Abstract>>

ImageDataHandler

<<Abstract>>

ImageDataHandler

<<Abstract>><<Abstract>>

PointDataHandler

<<Abstract>>

PointDataHandler

CameraInputStreamCameraInputStream

ImageFileLoaderImageFileLoader

PointCloudGeneratorPointCloudGenerator

PointFileLoaderPointFileLoader

DepthToObjectPointsDepthToObjectPoints

<<Abstract>><<Abstract>>

BasePipelineComponent

<<Abstract>>

BasePipelineComponent

<<Interface>><<Interface>>

IDataProvider

<<Interface>>

IDataProvider

<<Abstract>><<Abstract>>

BaseSurfaceProcessor

<<Abstract>>

BaseSurfaceProcessor

<<Abstract>><<Abstract>>

BaseRenderer

<<Abstract>>

BaseRenderer

DepthToWorldTextureDepthToWorldTexture

PointsToWorldTexturePointsToWorldTexture

AutoSplatsAutoSplats

SimlePointRendererSimlePointRenderer

SmoothSurfaceRendererSmoothSurfaceRenderer

TCPInputStreamTCPInputStream

<<Interface>><<Interface>>

IWorldPositionTexture

<<Interface>>

IWorldPositionTexture

MonoBehaviourMonoBehaviour

Figure 5.8: UML class diagram of the pipeline inheritance structure.

44

CHAPTER 6
Evaluation and Results

6.1 Data Generation

The datasets used to evaluate the proposed visualization pipeline are listed in Table 6.1.
The datasets are separated by data type: point cloud files and sensor depth maps. The
static point cloud scans are provided by the well-known Standford Scanning Reposi-
tory [Sta]. Each point dataset contains normals, which are used to evaluate the rendering
stage (Section 6.2). However, the preprocessed normals are neglected for the evaluation
of the surface reconstruction stage and the performance comparisons (Section 6.3). The
Teddy dataset was captured by the Technical University of Munich [SEE+12] and is
used as a static image dataset. Intrinsic parameters were included in the dataset. The
RealSense sensor represents a dynamic data-source, streaming 24-bit color and 16-bit
depth data with a resolution of 640× 480px at 30 FPS. The depth sensor was calibrated
using the standard OpenCV [Bra00] calibration functions, using a checkerboard pattern
captured by the infrared camera.

Even though the focus of this work lies on the processing of dynamic input data, we
decided also to use static datasets for our evaluation, for the following reasons: Static
datasets are often also provided with an reconstructed polygonal mesh with multiple
levels of detail [Sta] and are therefore perfectly suited for a direct comparison of the
rendering results (Section 6.2). Furthermore, as all of our processing stages (data culling,
reconstructing and rendering) work on a per-frame basis, all performance evaluations are
directly applicable to dynamic inputs (Section 6.3). This means that the performance
measurements carried out on a static point cloud would lead to the exact same result as
if the same point cloud was constantly altered, provided that the number of points does
not drastically change.

45

6. Evaluation and Results

Dataset Name Data Type Points Colors Normals Dynamic
Bunny [Sta] Point 36K no yes no
Dragon [Sta] Point 438K no yes no
Asian Dragon [Sta] Point 3.6M no yes no
Statuette [Sta] Point 5M no yes no
Teddy [SEE+12] Image 307K yes no no
RealSense Stream Image 307K yes no yes

Table 6.1: Used datasets for the evaluation process.

6.2 Visual Quality Comparison

This section evaluates the overall rendering quality of the proposed visualization pipeline.
The focus lies in the seamless integration of point cloud data in Unity’s lighting pipeline.
This encompasses physically correct shading, dynamic lighting, environmental mapping,
real-time shadows and additional post-processing effects.

6.2.1 Mesh to Point Cloud Comparison

Figure 6.1 compares polygon meshes rendered with the default renderer in Unity, to
the point cloud representation rendered with our custom pipeline. All scenes use the
same lighting, environment mapping and material properties to allow for a meaningful
comparison. Moreover, all images are rendered with additional post-processing effects,
that is anti-aliasing, ambient occlusion and depth of field. Figure 6.1a and 6.1b show a
high and low poly mesh, with two point light sources of different color and a directional
light source casting the shadow. On the left side, the wireframe representation with
additional scene information is shown, whereas on the right side the final rendered result is
displayed. Figure 6.1c shows the rendered point cloud using our smooth surface renderer
component. The point cloud consists of 36 thousand points, similar to the high poly
mesh in figure 6.1a. The quality of our surface rendering component for point clouds is
almost indistinguishable from the high poly mesh rendered with Unity’s default renderer.
Only upon closer inspection one can see that some details are getting lost due to the
fixed splat radius, leading to slightly smoother normals in the bunny’s body (Figure 6.2c)
compared to the high-detail rendering using traditional mesh rendering (Figure 6.2a).
This uniform radius was manually chosen to fill holes in sparse spots, while highly detailed
point clusters are over-smoothed. The difference is visible in the specular highlights,
created from the red and white illumination. A more prominent artifact is created on
the point clouds silhouette. Hard edges lead to visible splat disks peering over the edge.
This can be best observed on the inside of the bunny’s ear (Figure 6.2c). The shadow on
the ground plane as well as self-shadowing is rendered correctly. A negligible difference
remarks the slightly larger point cloud shadow. This is caused by the simplified shadow
rendering pass with light-aligned point billboards, meaning that silhouettes are expanded
by the shadow disk radius.

46

6.2. Visual Quality Comparison

The visual quality of the same point cloud, this time processed with our real-time surface
reconstruction component, is displayed in figure 6.1d. Similar to the splat rendering, the
normal reconstruction stage uses uniform point radii for the whole point cloud. This
accelerates the normal estimation process on the cost of preserving fewer details. As the
reconstruction stage was introduced for high performance normal estimation for dynamic
point clouds, a comparison to the low poly mesh in figure 6.1b is more suitable. The
normals are computed correctly resulting in correct shading, especially notable from the
specular highlights and environmental reflections visible in Figure 6.2d. Additionally
to the artifacts caused by the rendering stage, we can see that some silhouette points
produce erroneous normals (Visible as a black contour on the outside of the bunny’s
ears in Figure 6.2d). This was already stated as an unsolved challenge in the original
publication of the reconstruction algorithm [PJW12].

6.2.2 Dynamic Point Cloud Reconstruction

Reconstructing live sensor output in real-time is challenging. The depth maps needs to
be processed with 30 FPS and the projected point clouds continuously change, due to
natural movements or unpredictable sensor noise. This section presents the results of our
visualization pipeline using a single RGB-D camera to capture live footage of a person’s
head.

Depth sensing devices provide detailed scans of the captured scenes. The acquired
depth images are, depending on various conditions, often very noisy. This noise causes
incorrectly projected points, leading to temporally inconsistent artifacts in the surface
estimation process. These artifacts present themselves as randomly flickering bumps
all over the reconstructed surface. Figure 6.3a shows an example of a noisy sensor
image reconstruction. Such artifacts are particularly troubling on actually flat surfaces.
Applying 2D image processing filters can mitigate this issue and provide smooth and
temporal-consistent surfaces. Figure 6.3b shows a reconstructed scan filtered using a
median filter for outlier reduction and a bilateral filter to smooth the depth values
without over-smoothing hard edges. However, filtering of heavily noise stricken depth
maps inevitably results in smoothing of important details.

Figure 6.4 shows similar head poses with different virtual lighting conditions, displaying
realistic shading and specular reflections. Figure 6.4a shows the reconstructed head
rendered with a diffuse material. In the left rendering, the virtual light matches the
lighting condition of the real world light of the captured scene. The right side in
Figure 6.4a shows a relighting of the scene, with the light coming from the opposite side
than in the real capturing. The surface is shaded properly and creates the impression
of a real light source shining on the face from the top-right. Figure 6.4b shows the
same scene with a glossy material, enhancing the original lighting on the left side while
correctly relighting the head with a virtual light on the right side. The results can be
further improved by using uniform diffuse lighting to illuminate the scanned person, this
reduces specular highlights and shadows which are otherwise captured in the color image.
An additional processing step could be introduced, to reduce the illumination on the

47

6. Evaluation and Results

(a) High poly mesh, 36K vertices and 70K faces

(b) Low poly mesh, 7K vertices and 14K faces

(c) Point cloud with per-point surface normals, 36K surfels

(d) Point cloud with reconstructed surface normals, 36K points

Figure 6.1: Rendering of the triangle mesh representation compared to the point cloud
of the Bunny dataset.

48

6.2. Visual Quality Comparison

(a) High-polygon mesh. (b) Low-polygon mesh.

(c) Oriented point cloud. (d) Reconstructed point cloud.

Figure 6.2: Details of the rendered bunnies from Figure 6.1. (a) displays a detail of the
high-poly mesh, rendered using the Unity default renderer. (b) Is a simplified version of
(a) with a fifth of the original polygon count. (c) is rendered with our smooth renderer
using per-point normals calculated in an offline pre-processing step. In (d) the normals are
reconstructed using our real-time reconstruction stage and our smooth surface renderer.

49

6. Evaluation and Results

(a)

(b)

Figure 6.3: Filtering of noisy depth maps. (a) Reconstruction of noisy sensor output.
Flickering irregularities on actual smooth surfaces. (b) Reconstruction of filtered sensor
output, using median and bilateral filter. Recovering smooth surfaces but loosing sharp
details.

50

6.2. Visual Quality Comparison

(a)

(b)

Figure 6.4: Relighting of reconstructed head. (a) Left: Virtual light source matching real
light source direction. (a) Right: Relighted scene with a virtual light source illuminating
the face from the right side. (b) Left: Glossy material, with enhanced real light source.
(b) Right: Virtual light source, relighting the face with a light source from the right side.

51

6. Evaluation and Results

(a)

(b)

Figure 6.5: Different materials on reconstructed live stream data. (a) Glossy material
with high specular value. Enhancing specular highlights and creating a glazed effect.
(b) Reflective material with no color, environmental reflections and multiple point light
sources.

already captured color image [FHD02], for applications where lighting constraints are
undesirable.

Additionally to photo-realistic representations, our high-quality rendering component
allows the usage of Unity’s built-in physically based materials. These predefined materials
allow to set color, metallic and smoothness properties. Figure 6.5a depicts the recorded
head with mapped color texture and material with a high smoothness and metallic factors.
The surface obtains a digitally added glazed appearance. Further abstractions can be
created by using artificial colors and surreal material properties. Figure 6.5b (left) depicts

52

6.3. Performance Comparison

how multiple colored and dynamically moving light sources interact with the highly
reflective material. For photo-realistic results, environmental reflections are essential, the
effects of the environment on a mirror-like material can be seen in Figure 6.5b (right).

6.3 Performance Comparison

Performance is a crucial aspect in real-time rendering applications. This section evaluates
the performance of our visualization pipeline on two different platforms. The first platform
represents a high-end consumer system, using a desktop PC running Windows 10 with
an Intel i7 CPU and a NVIDIA GTX1060 GPU. The second device is a Google Pixel XL
Android smartphone with a quad-core processor and an Adreno 530 GPU.

The performance measurements are narrowed down to the actual GPU processing time
of the custom processing stages in milliseconds, which are computed every frame. These
stages encompass view dependent point culling, normal estimation and smooth surface
rendering. Loading times for the specific file formats or stream upload times were
neglected. This leaves us with the performance evaluation of the algorithms in the culling,
reconstruction and rendering stage. Existing normals on some datasets were ignored to
evaluate the per-frame real-time reconstructed stage. All performance evaluations were
executed with the same material properties. The neighborhood radius and splat radius
were chosen separately to best represent each dataset and render it with perceptibly
correct normals and without holes in the surface.

6.3.1 High-end desktop PC

Table 6.2 list the measured GPU times for the high performance system using a NVIDIA
GTX1060 with a rendering resolution of 1920× 1080px. The table lists the dataset by
name with the corresponding number of points, the point count after the culling process
and the respective processing times. The visible points are obviously view dependent and
change if the camera or the point cloud is moved. This leads to different computation
times depending on the viewing angle and the distance of the point cloud to the camera.
The measured times were acquired with the point cloud positioned in full view of the
camera at a suitable distance to fully fit into the rendered image. The statuette dataset
(Figure 6.9) has an elongated form leading to an effectively small projection on the
wide-screen view port. Therefore, we rendered the statuette again by aligning its main
axis horizontally, allowing to position the statuette closer to the camera resulting in a
larger representation. The larger projection of the same dataset is listed as Statuette
Portrait.

The measurements show that the proposed visualization pipeline performs in real-time,
even on very large point clouds with 5 million points. However, the performance of the
normal estimation stage and the rendering stage is largely dependent on the chosen radii.
This can be seen in Table 6.2. Rendering the Asian Dragon dataset is 1.8ms faster than
the Dragon and Statuette dataset, despite having roughly 50% more visible points. This

53

6. Evaluation and Results

Dataset Points Visible Cull Reconstr. Render Overall
Bunny 36K 34K 0.12ms 1.80ms 2.00ms 3.92ms
Live Stream 307K 145K 1.07ms 4.89ms 1.60ms 7.56ms
Dragon 438K 215K 0.32ms 7.40ms 5.80ms 13.52ms
Asian Dragon 3610K 364K 2.62ms 13.30ms 4.00ms 19.92ms
Statuette 5000K 271K 3.90ms 8.10ms 5.75ms 17.75ms
Statuette Portrait 5000K 628K 4.10ms 17.10ms 7.70ms 28.90ms

Table 6.2: Performance evaluation of the GPU time of the culling, reconstruction and
rendering stage on a NVIDIA GTX1060 at 1920× 1080px.

results from the actual point distribution of the points in the dataset. The Asian Dragon
dataset contains very dense and regular sampled surface points, needing smaller splat
radii to render a closed surface, which is more efficient due to reduced splat overdraw.
Dense and regular points are also an advantage for the reconstruction stage. However, the
large number of visible points requires longer normal estimation computations (13.3ms),
leading to an overall longer reconstruction time compared to the Dragon (7.4ms) or
Statuette (8.1ms) dataset (Table 6.2).

A notable difference in computation time can be observed between the Statuette and the
Statuette Portrait dataset. The culling time stays roughly the same since the number of
points in both executions is equal. The largest difference to notice is the pronounced
change in the reconstruction processing time regardless of the same neighborhood radius.
This again shows how the number of visible points in the reconstruction stage affects the
overall performance. This is especially challenging with increasing resolution, as more
points are visible in the final rendering.

6.3.2 Mobile Device

The second evaluation was performed on a mobile device. We used a Google Pixel XL
smartphone with an Adreno 530 GPU and a 5.5 inch display. The native resolution of
this device is 2560× 1440px with a pixel density of roughly 534 dots per inch (DPI). The
mobile application uses the same scene and material settings as the high-end evaluation
on the desktop PC. Because of the limited computation power of the mobile GPU,
combined with the high native resolution, we solely used the Bunny dataset, with 35K
points (Table 6.1), for the mobile evaluation. The point cloud is rendered at different
lower resolutions and subsequently upscaled for the output on the device display. Unity
provides fixed resolution rendering for mobile devices by setting the desired DPI. Table
6.3 shows the resulting measurements on different DPI scaling levels using the Bunny
dataset. The 180 DPI pixel density on the 5.5 inch screen results in an effective rendering
resolution of 823 × 463px, where we achieve almost real-time rendering capabilities.
Higher resolutions, however, increasingly demand longer computation times for the
reconstruction and rendering stage, as these stages use multiple full-frame fragment
shader passes. Rendering the dataset at native resolution, 2560× 1440px (534 DPI) is

54

6.3. Performance Comparison

Figure 6.6: Chart of the GPU processing time with color-coded measurements for the
specific pipeline stages. The data corresponds to the measurements in Table 6.2. Most
notably, one can observe that the Asian Dragon dataset has faster rendering times despite
having more visible points than the Dragon or Statuette datasets. This results from the
more regular structure of the captured point cloud.

not feasible using our current implementation (as seen in Table 6.3). Nevertheless, even
without special optimizations for mobile devices, the evaluation shows that the proposed
pipeline is capable to run on multiple platforms and has the means to bring point cloud
rendering to next-generation smartphones.

Rendering Resolution Visible Cull Reconstr. Render Overall
823× 463px (180 DPI) 28K 1.30ms 27.70ms 32.30ms 61.60ms
914× 514px (200 DPI) 29K 1.40ms 32.70ms 37.30ms 71.40ms
1143× 643px (250 DPI) 31K 1.60ms 47.40ms 51.60ms 100.60ms
2560× 1440px (534 DPI)* 35K 2.40ms 195.60ms 112.40ms 310.40ms

Table 6.3: Performance evaluation on the Google Pixel XL Android smartphone recon-
structing and rendering the Bunny dataset on different rendering resolutions. The result is
automatically upscaled to the device’s native display resolution at 2560×1440px (534 DPI).
* Native display resolution.

55

6. Evaluation and Results

Figure 6.7: Chart of the measured computations times of the visualization pipeline
executed on a mobile device. The actual GPU times are listed in Table 6.3

6.4 Applications

In this chapter, we introduce some use cases which benefit from our contribution. The
integration of our processing and visualization pipeline in a wide spread multi-platform
engine facilitates the handling and integration of point clouds in a variety of applications.
This enables the usage of high-quality point cloud renderings in combination with classic
geometry representations. As point clouds are no longer visually distinguishable from
high-poly triangle meshes, we can exploit their specific advantages. For example, the
lack of connectivity between neighboring points in a point cloud simplifies geometry
modifications, object merging and morphing, without the need to maintain manifold
meshes.

Figure 6.8 depicts two renderings of different, physically based, materials on the Asian
Dragon dataset. The final scene is additionally enhanced using temporal anti-aliasing and
state-of-the-art post-processing effects, namely SSAO and depth of field. In addition, large
point clouds, with more than 5 million points, are rendered with interactive frame-rates
(Figure 6.9).

Apart from the high-quality renderings, the modularity of the proposed work-flow allows
to substitute all stages with different components, depending on the provided input,
the available performance and the expected quality of the visualization. A simplified
rendering might be used for previews or data visualizations, where the visual quality
is less important than the inherent information stored in the point cloud. A sample
implementation is shown in Figure 6.10, where the sensor depth values of the raw
Teddy dataset are visualized with a predefined color scheme. Figures 6.11 displays four
different representations of the same dataset. All visualizations were achieved with no
additional coding, only configuring the components on the point cloud GameObject in the
Unity integrated development environment (IDE). The teddy point cloud was culled using
the depth culling planes, in order to remove unnecessary background points. Figure 6.11
shows the raw points with color-coded depth (a) and sensor infrared intensities (b). The
result of the surface reconstruction is highly dependent on the chosen neighborhood

56

6.4. Applications

radius, a small radius preserves more edges while being more prone to noise (Figure 6.11c),
larger radii create a smoother surface but tend to reduce sharp details (Figure 6.11d).

A very promising future prospect is the usage of point clouds in AR and MR applications.
Especially since AR goggles like the HoloLens [Hol] or current mobile devices like the
iPhone X [iPh] incorporate depth sensors to capture point clouds. We implemented an
exemplary Android mobile AR app using the Unity engine with AR marker detection
and tracking provided by the Vuforia SDK [Vuf]. The application uses a book cover
as the tracking marker and places the bunny dataset on top of the book as soon as it
is detected (Figure 6.12). The bunny dataset used in the mobile app already provides
normals, since the concurrent tracking and point cloud reconstruction are currently not
feasible and require further optimizations.

57

6. Evaluation and Results

Figure 6.8: Smooth surface renderings of the Asian Dragon dataset with two different,
physically based materials. In the rendering on top, the dragon has a metallic, gold-like
appearance. The surface has high-detailed environmental reflections, this can be best
observed in the dragon’s eye. The rendering on the bottom results from the same point
cloud. This time, a diffuse turquoise stone-like material is used to display the dragon.
The rough surface is nicely represented with high fidelity. This is especially visible
on the structured area below the eye. Both renderings were enhanced with temporal
anti-aliasing, SSAO and depth of field post-processing effects.

58

6.4. Applications

Figure 6.9: The surface of large point clouds can be reconstructed and rendered in
real-time, using our proposed smooth surface renderer components for Unity. The
reconstructed surface of the Statuette dataset, with 5 million points, is rendered in less
than 18ms (exact rendering times in Table 6.2) 59

6. Evaluation and Results

Figure 6.10: The Teddy dataset was captured with a single RGB-D camera. This
rendering visualizes a sample application previewing the sensor output directly projected
to the 3D space, using a predefined color scheme to encode the depth values retrieved
from the sensor. Red points are very close to the sensor, whereas, far away points are
colored in blue. This interactive visualization allows emphasizing a variety of properties
of the captured scene, in real-time. This type of visualization could be used in robotic
and automotive applications, where the real-time preview of the perceived environment
can help to gain useful new insights.

60

6.4. Applications

(a) Per-point greyscale color. (b) Per-point color-coded surface normal.

(c) Hight-detail reconstruction. (d) Smooth recontruction.

Figure 6.11: Visualizing a subset of the Teddy point cloud with different rendering
modules and visualization settings. Figure (a) and Figure (b) are rendered using the
Simple Point Renderer component (Section 5.6.1). Using the mapped greyscale value (a)
and the reconstructed surfel normal (b) to color each point. Figure (c) and Figure (d)
are using the Smooth Surface Renderer component (Section 5.6.2). With a small (c) and
larger (d) kNN-radius for the surface normal estimation (Section 5.5.1). The scene is
illuminated with a white directional light from the top and a red point light from the top
right.

61

6. Evaluation and Results

Figure 6.12: The proposed point cloud rendering pipeline in an AR application using
the Vuforia SDK. The book cover was used as a tracking marker. The Bunny dataset is
rendered with its preprocessed normals. Without the reconstruction stage the tracking
and rendering was performed in real-time on the Google Pixel XL with a resolution of
2560× 1440px.

62

CHAPTER 7
Conclusion and Future Work

We presented a visualization pipeline for static as well as dynamic point clouds, capable
of reconstructing and rendering the originally sampled surface in real-time. The pipeline
was implemented as an extension of the widely used Unity game engine, which enables
the fast development of a variety of applications for multiple platforms. The configurable
pipeline components can be used directly in the Unity editor and require no additional
coding. The pipeline is separated in four stages, using state-of-the-art point processing
methods and algorithms optimized for modern GPUs. The modular implementation of
the pipeline as Unity components allows substituting single stages to change the behavior
and adapt to a wide range of possible applications.

The input handler stage provides a common interface for the heterogeneous input sources
and manages the data access for following stages. This allows the pipeline to access point
cloud information from various file sources as well as continuous input streams, either from
a local device or from a remote network connection. The second stage dynamically reduces
the processing overhead by culling hidden or invisible points. Furthermore, depth maps
from sensor inputs can be enhanced by applying 2D image processing filters, effectively
reducing sensor noise. The surface reconstruction stage implements a normal estimation
algorithm based on AutoSplats. The algorithm estimates the surface normal for each
visible point in screen space, optimized for parallel execution on modern programmable
GPUs. This stage is required if the surface needs to be reconstructed dynamically and
offline preprocessing steps are not applicable. The last stage uses the results from the
previous stages to render the point cloud. The visual appearance of the point cloud can
strongly differ, depending on the use case in the application. This ranges from scientific
visualizations and fast sensor previews to photo-realistic renderings with closed surfaces,
virtual lighting, environmental reflections and dynamic shadows. High-quality renderings
of point clouds are achieved by rendering the points with the GPU accelerated surface
splatting technique.

63

7. Conclusion and Future Work

We showed that the pipeline is capable of visualizing photorealistic 3D point clouds,
which are nearly indistinguishable from classic polygonal meshes. The point clouds are
fully integrated in the lighting and shadow system of the game engine and take full
advantage of its platform-independence. Furthermore, we showed that the complete
pipeline performs in real-time, even for large data sets with 5 million points. The end-
to-end system, featuring live reconstructed, relighted and rendered data from a RGB-D
camera represents the main contribution of this work.

In the future, we want to continue our work on the proposed pipeline to further expand the
field of application and increase the visual quality as well as the performance. This includes
the implementation of pipeline components especially optimized for mobile devices, to
facilitate the extensive use of larger point clouds in AR applications. Furthermore,
an extension for optimized concurrent handling of multiple point clouds from various
input sources in a single scene is desirable. A possible improvement for the high-end
visual quality reconstructions is the full implementation of the AutoSplats algorithm
with adaptive per-point radii. Further, we are looking into newly added techniques and
functionalities in next-generation Unity versions. Especially the scriptable rendering
pipelines and the multi-threaded job-system look promising to increase the performance
of our visualization pipeline.

64

List of Figures

3.1 Depth capturing process in the RealSense SR300 [Int16] 15

4.1 Flowchart of the visualization pipeline stages and their execution order. . 17
4.2 Flowchart of the Input Handler Stage and its input/output interface. The

flowchart outlines the internal workflow of the stage, from the provided input,
the main processing steps and the final output. The vertical lanes differentiate
between the two fundamentally different data types, the point based data
and the raw sensor image data. The input for the Input Handler Stage is
heterogeneous and requires customized implementations for each source, while
the output is reduced to the two main types, point arrays and sensor textures. 19

4.3 Flowchart of the Data Culling Stage and its input/output interface. The
flowchart outlines the internal workflow using the provided input resulting
in two distinct outputs. The two lanes separates our two main data types,
point and sensor image data. Note that the texture input and output are
defined in different spaces. The image input lane expects raw depth values
in sensor space while the image output consists of screen space attribute
textures (Similar to a G-Buffer [AMHH08]). Furthermore, this stage allows
to transform the data type to adapt the output for subsequent stages. . . 20

4.4 Flowchart of the Surface Reconstruction Stage and its input/output interface.
The flowchart outlines the internal workflow, the required input and the
expected output. Vertical lanes separate the point data from the screen space
attribute textures. The internal processing for this stage was depicted using
the kNN plane fitting approach [PJW12, Sch16], but could vary depending
on the implemented algorithm. 22

4.5 Flowchart of the Rendering Stage and its input/output interface. The flowchart
outlines the internal workflow of the stage, from the provided input, the main
processing steps and the final output. Contrary to the previous flowcharts
(Figures 4.2, 4.3, 4.4), the lanes in this figure do not separate the input by type
(points or images) but instead by the information they contain. Specifically
surfel input, containing positions and surface normals, and input containing
plain point positions. Note that the additional surface information can always
be omitted or used for simplified visualization paths. 24

65

5.1 Flowchart of the implemented visualization pipeline stages, their execution
order and possible combinations. Each connected set of modules (from left to
right) represents a valid pipeline setup. 26

5.2 Live streamed data from a depth sensor and color camera. The streams are
handled in a native plugin and directly uploaded to the GPU. The visualized
frustum represents the view of the sensor in a virtual 3D coordinate system.
The yellow area highlights the region of interest, points outside this frustum
are discarded. The surface of the persons head is reconstructed and rendered
in real-time. The sun icon shows the position of the virtual light source, used
to recalculate the lighting of the captured scene. 27

5.3 View frustum (grey) of a depth sensor. The yellow area marks the area of
interest while everything else is culled. The color used to render this simplified
visualization encodes the depth value, from green on the near culling plane to
blue on the far culling plane. 30

5.4 Unprocessed raw depth map (left) and the same depth map after distance
culling and filtering (right). 31

5.5 Different visualization paths depending on the provided or processed surface
information. Starting from the raw point cloud, either present as point
positions or depth values defined in sensor space, we can visualize the point
cloud as it is, with additional color-coded information, or as an alternative
we use the existing or estimated normals to reconstruct a closed surface with
photo-realistic shading. 37

5.6 Surface splats made visible by decreasing the splat radius. Point attributes
like color and surfle orientation are propagated across the splat and blended
with overlapping neighboring points. 38

5.7 Dynamic real-time shadow casting and receiving on the dragon dataset with
reconstructed normals. The scene shows the combination and interaction
between point cloud objects and classic triangles mesh based geometry. The
dragon point cloud is placed on a marble pedestal inside a wooden cage. The
gold-like material has a polished appearance with characteristic environmental
reflections. The cage casts shadows onto the pedestal as well as the point cloud,
at the same time is the dragon casting shadows onto the environment and itself.
Figure (a) depicts the scene illuminated with a virtual light source projecting
the dragon silhouette onto the cage, Figure (b) and (c) show the same scene
with light coming from different directions. Additional post-processing effects,
like SSAO and depth of field, improve the final result considerably. 40

5.8 UML class diagram of the pipeline inheritance structure. 44

6.1 Rendering of the triangle mesh representation compared to the point cloud of
the Bunny dataset. 48

66

6.2 Details of the rendered bunnies from Figure 6.1. (a) displays a detail of the
high-poly mesh, rendered using the Unity default renderer. (b) Is a simplified
version of (a) with a fifth of the original polygon count. (c) is rendered
with our smooth renderer using per-point normals calculated in an offline
pre-processing step. In (d) the normals are reconstructed using our real-time
reconstruction stage and our smooth surface renderer. 49

6.3 Filtering of noisy depth maps. (a) Reconstruction of noisy sensor output.
Flickering irregularities on actual smooth surfaces. (b) Reconstruction of
filtered sensor output, using median and bilateral filter. Recovering smooth
surfaces but loosing sharp details. 50

6.4 Relighting of reconstructed head. (a) Left: Virtual light source matching real
light source direction. (a) Right: Relighted scene with a virtual light source
illuminating the face from the right side. (b) Left: Glossy material, with
enhanced real light source. (b) Right: Virtual light source, relighting the face
with a light source from the right side. 51

6.5 Different materials on reconstructed live stream data. (a) Glossy material
with high specular value. Enhancing specular highlights and creating a glazed
effect. (b) Reflective material with no color, environmental reflections and
multiple point light sources. 52

6.6 Chart of the GPU processing time with color-coded measurements for the
specific pipeline stages. The data corresponds to the measurements in Ta-
ble 6.2. Most notably, one can observe that the Asian Dragon dataset has
faster rendering times despite having more visible points than the Dragon
or Statuette datasets. This results from the more regular structure of the
captured point cloud. 55

6.7 Chart of the measured computations times of the visualization pipeline exe-
cuted on a mobile device. The actual GPU times are listed in Table 6.3 . 56

6.8 Smooth surface renderings of the Asian Dragon dataset with two different,
physically based materials. In the rendering on top, the dragon has a metallic,
gold-like appearance. The surface has high-detailed environmental reflections,
this can be best observed in the dragon’s eye. The rendering on the bottom
results from the same point cloud. This time, a diffuse turquoise stone-like
material is used to display the dragon. The rough surface is nicely represented
with high fidelity. This is especially visible on the structured area below the
eye. Both renderings were enhanced with temporal anti-aliasing, SSAO and
depth of field post-processing effects. 58

6.9 The surface of large point clouds can be reconstructed and rendered in real-
time, using our proposed smooth surface renderer components for Unity.
The reconstructed surface of the Statuette dataset, with 5 million points, is
rendered in less than 18ms (exact rendering times in Table 6.2) 59

67

6.10 The Teddy dataset was captured with a single RGB-D camera. This rendering
visualizes a sample application previewing the sensor output directly projected
to the 3D space, using a predefined color scheme to encode the depth values
retrieved from the sensor. Red points are very close to the sensor, whereas,
far away points are colored in blue. This interactive visualization allows
emphasizing a variety of properties of the captured scene, in real-time. This
type of visualization could be used in robotic and automotive applications,
where the real-time preview of the perceived environment can help to gain
useful new insights. 60

6.11 Visualizing a subset of the Teddy point cloud with different rendering modules
and visualization settings. Figure (a) and Figure (b) are rendered using
the Simple Point Renderer component (Section 5.6.1). Using the mapped
greyscale value (a) and the reconstructed surfel normal (b) to color each point.
Figure (c) and Figure (d) are using the Smooth Surface Renderer component
(Section 5.6.2). With a small (c) and larger (d) kNN-radius for the surface
normal estimation (Section 5.5.1). The scene is illuminated with a white
directional light from the top and a red point light from the top right. . . . 61

6.12 The proposed point cloud rendering pipeline in an AR application using the
Vuforia SDK. The book cover was used as a tracking marker. The Bunny
dataset is rendered with its preprocessed normals. Without the reconstruction
stage the tracking and rendering was performed in real-time on the Google
Pixel XL with a resolution of 2560× 1440px. 62

68

List of Tables

5.1 Different data provider implementations. The data type defines how the data
needs to be rendered, and can be used to check if the renderer component
is compatible with the specified type. Not all components are inherently
able to provide surface normals, e.g. DepthToObjectPoints solely process
depth maps to compute 3D points. Surface normals can then only be gained
with further processing steps, e.g. with subsequent stages extending the
BaseSurfaceProcessor component. The priority of a data provider tells the
rendering component which component is the most relevant, if multiple data
providers are present. 41

6.1 Used datasets for the evaluation process. 46
6.2 Performance evaluation of the GPU time of the culling, reconstruction and

rendering stage on a NVIDIA GTX1060 at 1920× 1080px. 54
6.3 Performance evaluation on the Google Pixel XL Android smartphone recon-

structing and rendering the Bunny dataset on different rendering resolutions.
The result is automatically upscaled to the device’s native display resolution
at 2560× 1440px (534 DPI). 55

69

Acronyms

API application programming interface.

AR augmented reality.

CPU central processing unit.

DPI dots per inch.

FPS frames per second.

GLSL OpenGL shading language.

GPGPU general-purpose computation on GPU.

GPU graphics processing unit.

HD high definition.

HLSL high level shading language.

HMD head mounted display.

IDE integrated development environment.

kNN k nearest neighbors.

MR mixed reality.

PCL point cloud library.

RGB red green blue.

RGB-D RGB and depth.

SDK software development kit.

71

SSAO screen space ambient occlusion.

SVD singular value decomposition.

VGA video graphics array.

VR virtual reality.

XR Extended reality, general term describing VR, AR and MR.

72

Bibliography

[AMHH08] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time rendering.
CRC Press, 2008.

[BHZK05] Mario Botsch, Alexander Hornung, Matthias Zwicker, and Leif Kobbelt.
High-quality surface splatting on today’s GPUs. In Proceedings of VGTC
Symposium on Point-Based Graphics, pages 17–141. Eurographics, 2005.

[Bou09] Christian Boucheny. Visualisation Scientifique de Grands Volumes de Don-
nées: Pour une Approche Perceptive. PhD thesis, Université Joseph-Fourier-
Grenoble I, 2009.

[Bou18] Paul Bourke. Automatic 3D reconstruction: An exploration of the state of
the art. GSTF Journal on Computing (JoC), 2(3), 2018.

[Bra00] Gary Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer, 25(11):120–123, 2000.

[BRS+16] Daniele Bonatto, Ségolène Rogge, Arnaud Schenkel, Rudy Ercek, and Gau-
thier Lafruit. Explorations for real-time point cloud rendering of natural
scenes in virtual reality. In Proceedings of International Conference on 3D
Imaging (IC3D), pages 1–7. IEEE, 2016.

[BSK04] Mario Botsch, Michael Spernat, and Leif Kobbelt. Phong splatting. In
Proceedings of 1st Conference on Point-Based Graphics, pages 25–32. Euro-
graphics, 2004.

[CBHH17] Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng Huang, and Pan Hui.
Mobile augmented reality survey: From where we are to where we go. IEEE
Access, 5:6917–6950, 2017.

[Dira] Microsoft® Developer Network, Compute Shader Overview. msdn.
microsoft.com/library/ff476331.aspx. Accessed: 2018-08-26.

[Dirb] Microsoft® DirectX® API. msdn.microsoft.com/library/windows/
desktop/ee663274.aspx. Accessed: 2018-08-26.

73

msdn.microsoft.com/library/ff476331.aspx
msdn.microsoft.com/library/ff476331.aspx
msdn.microsoft.com/library/windows/desktop/ee663274.aspx
msdn.microsoft.com/library/windows/desktop/ee663274.aspx

[DKD+16] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan
Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David
Kim, and Jonathan Taylor. Fusion4d: Real-time performance capture of
challenging scenes. ACM Transactions on Graphics (TOG), 35(4):114, 2016.

[DRL10] Petar Dobrev, Paul Rosenthal, and Lars Linsen. An image-space approach
to interactive point cloud rendering including shadows and transparency.
Computer Graphics and Geometry, 12(3):2–25, 2010.

[Emg] EmguCV. www.emgu.com. Accessed: 2018-08-26.

[eSEO12] Renan Machado e Silva, Claudio Esperança, and Antonio Oliveira. Efficient
hpr-based rendering of point clouds. In Proceedings of the 25th Conference
on Graphics, Patterns and Images (SIBGRAPI), pages 126–133. IEEE, 2012.

[FHD02] Graham D. Finlayson, Steven D. Hordley, and Mark S. Drew. Removing
shadows from images. In Proceedings of the 7th European Conference on
Computer Vision, pages 823–836. ECCV, Springer Berlin Heidelberg, 2002.

[GTKK13] Marcin Grzegorzek, Christian Theobalt, Reinhard Koch, and Andreas Kolb.
Time-of-Flight and Depth Imaging. Sensors, Algorithms and Applications:
Dagstuhl Seminar 2012 and GCPR Workshop on Imaging New Modalities,
volume 8200. Springer, 2013.

[Hof89] Christoph M. Hoffmann. Geometric and Solid Modeling: An Introduction.
Morgan Kaufmann Publishers Inc., 1989.

[Hol] Microsoft® HoloLens. www.microsoft.com/hololens. Accessed: 2018-
08-26.

[Int16] Intel®. RealSense™Camera SR300 Product Datasheet, 6 2016. Revision 1.

[iPh] Apple® iPhone X. www.apple.com/iphone-x. Accessed: 2018-08-26.

[Kaj09] Vladimir Kajalin. Screen space ambient occlusion. Shader X, 7(413):24,
2009.

[KBR+12] Julius Kammerl, Nico Blodow, Radu Bogdan Rusu, Suat Gedikli, Michael
Beetz, and Eckehard Steinbach. Real-time compression of point cloud
streams. In Proceedings of International Conference on Robotics and Au-
tomation (ICRA), pages 778–785. IEEE, 2012.

[KTB07] Sagi Katz, Ayellet Tal, and Ronen Basri. Direct visibility of point sets. ACM
Transactions on Graphics (TOG), 26:24, 2007.

[LC87] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3D surface construction algorithm. In Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH),
pages 163–169. ACM, 1987.

74

www.emgu.com
www.microsoft.com/hololens
www.apple.com/iphone-x

[Lib] Intel® RealSense™SDK on GitHub. www.github.com/
IntelRealSense/librealsense. Accessed: 2018-08-26.

[LZZ13] Charles Loop, Cha Zhang, and Zhengyou Zhang. Real-time high-resolution
sparse voxelization with application to image-based modeling. In Proceedings
of the 5th High-Performance Graphics Conference, pages 73–79. ACM, 2013.

[McG08] Morgan McGuire. A fast, small-radius GPU median filter. Shader X,
February 2008.

[Met] Apple® Metal® API. developer.apple.com/metal. Accessed: 2018-
08-26.

[Mon] Mono Project. www.mono-project.com. Accessed: 2018-08-26.

[NET] Microsoft® .NET. www.microsoft.com/net. Accessed: 2018-08-26.

[NFS15] Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time. In Proceedings
of Conference on Computer Vision and Pattern Recognition, pages 343–352.
IEEE, 2015.

[OERF+16] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang,
Adarsh Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh
Khamis, and Mingsong Dou. Holoportation: Virtual 3D teleportation in
real-time. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology, pages 741–754. ACM, 2016.

[Ope] OpenGL™ API. www.opengl.org. Accessed: 2018-08-26.

[Paj03] Renato Pajarola. Efficient level-of-details for point based rendering. In
Proceedings of Computer Graphics and Imaging, pages 141–146, 2003.

[PJW12] Reinhold Preiner, Stefan Jeschke, and Michael Wimmer. Auto splats: Dy-
namic point cloud visualization on the GPU. In Proceedings of EGPGV
Symposium on Parallel Graphics and Visualization, pages 139–148. Euro-
graphics, 2012.

[PZVBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross.
Surfels: Surface elements as rendering primitives. In Proceedings of 27th
Annual Conference on Computer Graphics and Interactive Techniques, pages
335–342. ACM Press/Addison-Wesley Publishing Co., 2000.

[RC11] R. B. Rusu and S. Cousins. 3D is here: Point cloud library (PCL). In
Proceedings of International Conference on Robotics and Automation, pages
1–4. IEEE, 2011.

75

www.github.com/IntelRealSense/librealsense
www.github.com/IntelRealSense/librealsense
developer.apple.com/metal
www.mono-project.com
www.microsoft.com/net
www.opengl.org

[REH06] Fabio Remondino and Sabry El-Hakim. Image-based 3D modelling: a review.
The photogrammetric record, 21(115):269–291, 2006.

[Ric] Riccio Christophe Blog: How bad are small triangles on GPU and why?
www.g-truc.net/post-0662.html. Accessed: 2018-08-26.

[Sch16] Dominik Schörkhuber. Fast kNN in screenspace on GPGPU. Bachelor’s
thesis, Institute of Computer Graphics and Algorithms, Vienna University
of Technology, 2016.

[SEE+12] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of RGB-D SLAM systems. In Proceedings
of International Conference on Intelligent Robot Systems (IROS), pages
573–580, 2012.

[Sta] The Stanford 3D Scanning Repository. graphics.stanford.edu/data/
3Dscanrep. Accessed: 2018-08-26.

[Str] Structure Sensor - 3D scanning, augmented reality, and more for mobile
devices. www.structure.io. Accessed: 2018-08-26.

[TADB+16] Donny Tytgat, Maarten Aerts, Jeroen De Busser, Sammy Lievens,
Patrice Rondao Alface, and Jean-Francois Macq. A real-time 3D end-
to-end augmented reality system (and its representation transformations).
In Proceedings of Applications of Digital Image Processing XXXIX, volume
9971. International Society for Optics and Photonics, 2016.

[TCF15] Dorina Thanou, Philip A Chou, and Pascal Frossard. Graph-based motion
estimation and compensation for dynamic 3D point cloud compression. In
Proceedings of International Conference on Image Processing (ICIP), pages
3235–3239. IEEE, 2015.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color
images. In Proceedings of Sixth International Conference on Computer
Vision, pages 839–846. IEEE, 1998.

[Uni] Unity 3D. www.unity3d.com. Accessed: 2018-08-26.

[UPR] Unity 3D Fast Facts. www.unity3d.com/public-relations. Accessed:
2018-05-12.

[VM02] G. Varadhan and D. Manocha. Out-of-core rendering of massive geometric
environments. In Proceedings of Conference on Visualization, pages 69–76.
IEEE, Nov 2002.

[Vuf] Vuforia Augmented Reality SDK. www.vuforia.com. Accessed: 2018-08-
26.

76

www.g-truc.net/post-0662.html
graphics.stanford.edu/data/3Dscanrep
graphics.stanford.edu/data/3Dscanrep
www.structure.io
www.unity3d.com
www.unity3d.com/public-relations
www.vuforia.com

[Vul] Khronos™Group Vulkan® API. www.khronos.org/vulkan. Accessed:
2018-08-26.

[YGX+17] Tao Yu, Kaiwen Guo, Feng Xu, Yuan Dong, Zhaoqi Su, Jianhui Zhao,
Jianguo Li, Qionghai Dai, and Yebin Liu. Bodyfusion: Real-time capture
of human motion and surface geometry using a single depth camera. In
Proceedings of International Conference on Computer Vision (ICCV), pages
910–919. IEEE, 2017.

[ZPVBG01] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross.
Surface splatting. In Proceedings of 28th Annual Conference on Computer
Graphics and Interactive Techniques, pages 371–378. ACM, 2001.

77

www.khronos.org/vulkan

	Kurzfassung
	Abstract
	Contents
	Introduction
	Goal
	Thesis Structure

	Related Work
	End-to-End Systems
	Point Cloud Processing

	Engine Framework and Libraries
	Unity3D Game Engine
	LibRealSense
	OpenCV

	System Concept
	Input Handling
	Data Culling
	Surface Reconstruction
	Rendering

	Implementation
	Point Cloud
	Base Pipeline Component
	Data Handler Components
	Culling Helper Components
	Surface Processor Components
	Renderer Components
	Data Provider Interface
	Restrictions

	Evaluation and Results
	Data Generation
	Visual Quality Comparison
	Performance Comparison
	Applications

	Conclusion and Future Work
	List of Figures
	List of Tables
	Acronyms
	Bibliography

