
AUTOMATION & CONTROL INSTITUTE

INSTITUT FÜR AUTOMATISIERUNGS-

& REGELUNGSTECHNIK

Hierarchical Component-Based Programming of
Control Systems

DIPLOMARBEIT

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs (Dipl.-Ing.)

unter der Leitung von

Univ.-Prof. Dr.sc.techn. Georg Schitter
Dipl.-Ing. Martin Melik-Merkumians

eingereicht an der
Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik
Institut für Automatisierungs- und Regelungstechnik

von
Iñigo Alvarez, BSc.

Matrikelnummer: 11740451

Wien, im September 2018

Advanced Mechatronic Systems Group
Gußhausstrasse 27-29, A-1040 Wien, Internet: http://www.acin.tuwien.ac.at

Acknowledgements

First of all, I want to thank both my advisor Univ.-Prof. Dr.sc.techn. Georg
Schitter and my co-advisor Dipl.-Ing. Martin Melik-Merkumians for giving me the
opportunity to work for my master thesis in the Advanced Mechatronic Systems
group at ACIN. Without them I could not have worked in a field that I am passion-
ate about in the beautiful city of Vienna. I am very grateful for their patience and
understanding with an exchange student, with all the extra administration issues
that this condition entails. On the technical aspect, they did a great job in guiding
me through my thesis and always helped me with their expertise. I also want to
express my gratitude to Peter Gsellmann from the AMS group for his technical
advice during the thesis. Many thanks as well to all the staff at the Mechatronics
and Embedded Control Systems research group at KTH in Stockholm, my home
university, for giving me the opportunity to do my master thesis at TU Wien. In
this aspect, I am really grateful as well to all the staff at the ITM Schools Office of
Students Affairs in KTH for their great help regarding the administration of my
exchange period at TU Wien. Last but not least, I want to thank my girlfriend
Kathrin, who shared these incredible months in Vienna with me, and my parents
Alberto and Iciar for their great support during all this time.

Vienna, September 2018 Iñigo Alvarez

i

Abstract

Current programming techniques in industrial automation tend to mix control logic
with hardware implementation, making it difficult to reuse the control logic during
the plant life cycle if a certain hardware component has to be replaced for a different
one. Hierarchically structured and component-based design approaches have been
implemented in IEC 61131 and IEC 61499 with the goal of decoupling control
logic from hardware implementation, thus enabling the reuse of the components
which encapsulate control logic. In this work we show how these state of the art
approaches still do not succeed in creating reusable components at every level in
the component hierarchy, and therefore we propose a new component-based design
approach that further decouples control logic from hardware implementation. This
new approach is implemented in IEC 61499 in order to compare it against the state
of the art approach and show the improvements in component reuse and plant
reconfiguration effort.

iii

Kurzfassung

Aktuelle Programmierpraktiken in der industriellen Automation tendieren zu einer
Kombination aus Logik- und Hardwareimplementierung, die die Wiederverwend-
barkeit der Steuerungslogik bei Austausch gewisser Teile während dem Lebenszyk-
lus einer Anlage erschweren. Hierarchisch strukturierte und komponentenbasierte
Entwurfsansätze sind in IEC 61131 und IEC 61499 implementiert worden, mit dem
Ziel der Entkopplung von Steuerungslogik und Hardwareimplementierung. Diese
Arbeit zeigt, dass diese State of the Art Ansätze noch immer keine Erfolge in der
Erstellung von wiederverwendbaren Komponenten in jeder Ebene der Komponen-
tenhierarchie verzeichnen können. Als Lösungskonzept wird ein neuer komponen-
tenbasierter Entwurfsansatz mit weitgehender Entkopplung von Steuerungslogik
und Hardwareimplementierung vorgeschlagen. Die Implementierung dieses neuen
Ansatzes wird in IEC 61499 vorgenommen um einen Vergleich mit der State
of the Art Methode zu ermöglichen. Hierbei können die Verbesserungen in der
Wiederverwendbarkeit von Komponenten und der Aufwand der Anlagenrekonfig-
uration gezeigt werden.

v

Contents

Acronyms xi

List of Figures xiii

List of Listings xix

List of Tables xxi

1 Introduction 1
1.1 Scope of the Thesis . 2
1.2 Outline . 2

2 State of the Art 5
2.1 Approaches and Design Methodologies from Software Engineering . 5
2.2 An Overview of IEC 61131 . 8

2.2.1 Function Blocks . 8
2.2.2 Architecture and Software Model 9
2.2.3 Programming Languages in IEC 61131-3 10

2.2.3.1 Structured Text . 11
2.2.3.2 Function Block Diagram 11
2.2.3.3 Ladder Diagram 12
2.2.3.4 Instruction List . 13
2.2.3.5 Sequential Function Chart 13

2.3 An Overview of IEC 61499 . 14
2.3.1 Function Blocks . 14
2.3.2 Service Interface Function Blocks 15
2.3.3 SubApplications . 16
2.3.4 Adapters . 16
2.3.5 Architecture and Software Model 18

vii

viii Contents

2.4 Design Approaches Based on IEC 61131 19
2.5 Design Approaches Based on IEC 61499 21

2.5.1 Hardware Abstraction Approaches 22
2.5.2 Hierarchical Control Architecture Approaches 26

2.6 Research Questions . 29

3 Concept 31
3.1 Case Study: Initial Setup . 32

3.1.1 Layer 1 . 34
3.1.1.1 Resistance Sensors 34
3.1.1.2 Resistance Measuring Clamps 35
3.1.1.3 Turning Table . 36
3.1.1.4 Manipulator Axis 36
3.1.1.5 Gripper . 38
3.1.1.6 Compressed Air Resource 38
3.1.1.7 Vibrating Conveyor 39

3.1.2 Layer 2 . 39
3.1.2.1 Measurement Station 39
3.1.2.2 Manipulator . 40

3.1.3 Layer 3 . 41
3.2 Case Study: Change in the Setup 43

3.2.1 Layer 1 . 43
3.2.2 Layer 2 . 44
3.2.3 Layer 3 . 44

3.3 Conclusions of the Case Study . 46
3.4 Proposed Design Approach . 47

4 Implementation 51
4.1 Implementation-Specific Details in IEC 61499 51
4.2 Developed Coupling/Translation FBs 52

4.2.1 Coupling With an Electric Motor 53
4.2.2 Coupling With a Pneumatic Cylinder 54
4.2.3 Translation Algorithm Complexity 56

4.3 Development of a Domain-specific Language (DSL) 57
4.4 Code Generation . 59
4.5 Integration in Eclipse 4diac . 60
4.6 Case Study: Initial Setup . 61

4.6.1 Logic Part . 63
4.6.1.1 Manipulator . 63
4.6.1.2 Measurement Station 63
4.6.1.3 Resistor Sorter . 64

Contents ix

4.6.2 Hardware-Dependent Part 65
4.6.2.1 Double Acting Cylinder 65
4.6.2.2 Servomotor . 67

4.6.3 Coupling . 68
4.6.3.1 The Logic Part . 68
4.6.3.2 The Hardware-Dependent Part 69
4.6.3.3 Coupling with the DSL 69

4.7 Case Study: Change in the Setup 71

5 Results 75
5.1 Coupling and Component Reuse . 75

5.1.1 Qualitative Comparison . 76
5.1.2 Quantitative Comparison . 77

5.2 Complexity . 79
5.2.1 Coupling Layer Complexity: Manual vs DSL Implementation 79

5.2.1.1 Qualitative Comparison 80
5.2.1.2 Quantitative Comparison 81

5.2.2 Overall Application Complexity 82
5.3 Reconfiguration Effort . 83

6 Conclusions 85

A DSL Grammar Definition 89

B DSL Code generation 91

Bibliography 95

Acronyms

4diac Framework for Industrial Automation & Control.

BFB Basic Function Block.

CBSE Component-Based Software Engineering.

CFB Composite Function Block.

DSL Domain-Specific Language.

ECC Execution Control Chart.

FB Function Block.

FBD Function Block Diagram.

FORTE 4DIAC RunTime Environment.

GA Generalized Actuator.

GD Generalized Device.

HSIFB Hardware-Specific Implementation Function Block.

ICP Instrumentation and Control-Point.

IDE Integrated Development Environment.

IEC International Electrotechnical Commission.

IL Instruction List.

xi

xii Contents

IO Input/Output.

LD Ladder Diagram.

LED Light-Emitting Diode.

LSFB Logical Service Function Block.

MDA Model-Driven Architecture.

OOP Object-Oriented Programming.

PDM Platform-Dependent Model.

PIM Platform-Independent Model.

POU Program Organisation Unit.

PSM Platform-Specific Model.

PTP Point-to-Point.

ROOM Real-Time Object-Oriented Modeling.

SFC Sequential Function Chart.

SIFB Service-Interface Function Block.

ST Structured Text.

List of Figures

2.1 Graphical notation of an actor reference in ROOM. 6
2.2 A ROOMchart with 6 states and 6 transitions. 6
2.3 Example of a hierarchical control application modelled in ROOM.

Adapted from [8]. 7
2.4 A function block graphical representation as defined in IEC 61131. . 9
2.5 The software model in IEC 61131-3. 10
2.6 A SR bistable FB as defined in IEC 61131-3. 12
2.7 A program in FBD containing FBs and functions in IEC 61131-3.

Adapted from [1]. 12
2.8 An example of a Ladder Diagram in IEC 61131-3. 12
2.9 An example of a Sequential Function Chart in IEC 61131-3. 13
2.10 A function block graphical representation as defined in IEC 61499. . 15
2.11 Example of an ECC in IEC 61499. Adapted from [6]. 15
2.12 Example of a service sequence diagram in IEC 61499. Adapted from

[6]. 16
2.13 A SubApp, unlike a FB, can be distributed over multiple resources

in IEC 61499. 17
2.14 Example of an adapter in IEC 61499. Adapted from [6]. 17
2.15 A device model in IEC 61499. 18
2.16 The distributed architecture in IEC 61499. 19
2.17 Interfaces for the two types of Generalized Actuators FBs. Adapted

from [11]. 20
2.18 The hierarchical structure of the approach presented in [11]. The

layer 1 includes the components that encapsulate hardware control
operations. 21

2.19 The hierarchical structure of the approach presented in [13]. This
approach takes the hierarchy presented in [11] and adds a new layer,
the layer 2, to further decouple hardware and control logic. 21

xiii

xiv LIST OF FIGURES

2.20 Interface of a GD for a single-actuating pneumatic cylinder with
two sensors. Adapted from [13]. 22

2.21 A MDA approach for control application design in industrial au-
tomation. The control application is divided into two parts: the
PIM and the PDM. These two parts are then coupled together.
Adapted from [14]. 23

2.22 Example of a LSFB and two possible HSIFBs provided by the ven-
dors. Adapted from [3]. 23

2.23 Example of an ICP adapter for a gripper. The adapter describes a
minimal logic interface without any hardware parameters. Adapted
from [15]. 24

2.24 A hierarchical structure implementing the ICP concept. Adapted
from [15]. 25

2.25 On the left, a simple logic that generates a cyclic boolean signal. On
the right, a device model with one master and two slaves managing
the IOs. Adapted from [17]. 26

2.26 A hierarchical control architecture as defined in [18]. Layers 1 and
0 shall encapsulate hardware-related operations, while higher layers
implement the control logic. 27

2.27 A hierarchical control architecture as defined in [19, Chapter 19].
Authors propose the same hierarchy as in [18], and suggest to group
components by using SubApps in order to enhance modularity. . . . 29

3.1 Overview of the initial setup of the resistor sorter. 33
3.2 A mechatronic component-based hierarchy for the resistor sorter. . . 33
3.3 Hierarchical structuring of the control application in 4diac. 34
3.4 SubApp containing the ResistanceSensors FB, a layer 1 compo-

nent. The READ_REAL SIFBs (layer 0 components) read the resistor
values coming from the sensors and send them to the Resistance-

Sensors FB. This FB can then send this values on command to
higher level components, and its services are depicted in the adapter
interface AMeasurements. 35

3.5 SubApp containing the ResistanceMeasuringClamps FB, a layer 1
component. The READ_BOOL_CYCLE SIFBs (layer 0 components) read
the clamp sensors, and the WRITE_BOOL SIFBs (layer 0 components)
update the actuator values. The services that the ResistanceMea-

suringClamps FB offers for higher level components are depicted in
the adapter interface AMeasuringClamps. 36

LIST OF FIGURES xv

3.6 SubApp containing the TurningTable FB, a layer 1 component. The
READ_BOOL_CYCLE SIFBs (layer 0 components) read the position sen-
sors of the turning table, and the WRITE_BOOL SIFBs (layer 0 compo-
nents) update the actuator values of the component. The services
that the TurningTable FB offers for higher level components are
depicted in the adapter interface ATurningTable. 37

3.7 SubApp containing the AxisPTP FB, a layer 1 component. The
READ_BOOL_CYCLE SIFB (layer 0 component) reads the position of
the manipulator in one axis. The WRITE_LREAL SIFB (layer 0 com-
ponent) communicates with the motor controller in order to specify
the final position coordinates, while the WRITE_BOOL SIFB (layer 0
component) commands the motor controller to start the movement.
The services that the AxisPTP FB offers for higher level components
are depicted in the adapter interface AMovement. 37

3.8 SubApp containing the VacuumGripper FB, a layer 1 component.
The READ_BOOL_CYCLE SIFB (layer 0 component) reads the state of
the gripper (gripped or not gripped), and the WRITE_BOOL SIFBs
(layer 0 components) command the actuators of the gripper (suck
air or flush air). The services that the VacuumGripper FB offers
for higher level components are depicted in the adapter interface
AGripper. 38

3.9 SubApp containing the CompressedAirResource FB, a layer 1 com-
ponent. This FB is only used to activate or deactivate the com-
pressed air resource that feeds all the pneumatic components. The
SIFB WRITE_BOOL communicates with the actuator. 39

3.10 SubApp containing the VibratingConveyor FB, a layer 1 compo-
nent. The READ_BOOL_CYCLE SIFB (layer 0 component) reads the
state of the position sensor at the end of the conveyor (part in place
or not), and the WRITE_BOOL SIFB (layer 0 component) commands
the actuator of the conveyor to vibrate. The services that the Vi-

bratingConveyor FB offers for higher level components are depicted
in the adapter interface AConveyor. 40

3.11 SubApp containing the MeasurementStation FB (layer 2 compo-
nent) and the layer 1 SubApps that it controls (the measurement
station controls the turning table, the measuring clamps and the
resistance sensors). 41

3.12 SubApp containing the Manipulator FB (layer 2 component) and
the layer 1 SubApps that it controls (the manipulator controls three
manipulator axes and the gripper). 42

xvi LIST OF FIGURES

3.13 View of the complete control application. The ResistorSorter FB
(layer 3 component) is the main coordinator of the control application. 43

3.14 Overview of the new setup, where the vertical axis electric motor
has been swapped by a pneumatic actuator. 44

3.15 Incompatible layer 1 component interfaces. 45
3.16 Incompatible layer 2 component interfaces. 45
3.17 Incompatible layer 3 component interfaces. 45
3.18 The components marked with a circle could not be reused after the

hardware change in the vertical axis of the manipulator. 46
3.19 A MDA-like approach, with two independent application parts, the

PIM and the PDM. These two parts can be coupled together in order
to obtain the specific control application. The necessary information
for the coupling is defined in a DSL, and code is automatically
generated out of this definition in order to perform the coupling. . . 48

3.20 A view of the proposed hierarchy. The bottom layer components
are hardware-dependent, while layer 2 and higher layers only contain
control logic. A new intermediate layer between layer 2 and layer 1
performs the necessary translations in order to couple both parts of
the application. 49

4.1 A view of the proposed hierarchy for IEC 61499 applications. 52
4.2 The coupling between layers 2 and 1 in IEC 61499. The commu-

nication is performed via adapters. The coupling FBs only have
one adapter input or socket and one adapter output or plug in their
interfaces. 53

4.3 The adapter interface for a logic movement in one axis or around
one axis. A component implementing this interface can command
a lower-level component to move to a certain position, and expects
some feedback when the movement is done. 54

4.4 An adapter interface for an electric motor controller. A motor con-
troller component can take a command to drive the motor until a
specific position is reached. It can also communicate higher-level
components that the position has been reached. 54

4.5 ECC of the FB used to couple a logic movement with an electric
motor controller. When a component in layer 2 commands a move-
ment through the AAxisLogic adapter interface, the state Trans-
late is reached, in which the necessary translation between sym-
bolic names and coordinates is performed and communicated to the
hardware component. 54

LIST OF FIGURES xvii

4.6 An adapter interface for a pneumatic cylinder controller. A cylinder
controller component can take a command to extend or retract the
cylinder, and communicate to higher-level components when each
action is done. 55

4.7 ECC of the FB used to couple a logic movement with a double act-
ing pneumatic cylinder. Depending on the symbolic position name
sent through the AAxisLogic adapter interface, either an Extend or
Retract state is entered. The direct jump between START and the
ExtDone or RetDone states on the right is a safety feature to avoid
deadlocks. 55

4.8 Example of the stringTOreal algorithm written in the ST language,
performing four translations. 57

4.9 View of the resistor sorter prototype. 61
4.10 Hierarchical structuring of the control application in 4Diac. 62
4.11 Pneumatic hardware used for the vertical axis of the manipulator,

the measuring clamps and the turning table. 62
4.12 Interface of the Manipulator FB. 63
4.13 Interface of the MeasurementStation FB. 64
4.14 Interface of the ResistorSorter FB. 65
4.15 ECC of the ResistorSorter FB, control flow from bottom to top. . 66
4.16 Algorithm passPosition of the ResistorSorter FB. 67
4.17 SubApp containing the DA_53Valve_2Solenoid FB. 67
4.18 SubApp containing the Servomotor FB. 68
4.19 The logic part of the control application in 4diac, with the two

components from the layer 2 on the right and the main coordinator
component in layer 3 on the left. 69

4.20 Defining the translation with the DSL in 4diac. After saving the
file, four coupling FBs are automatically generated under the folder
translation. 71

4.21 Interface of a translation FB in 4diac. 71
4.22 SubApp containing the Manipulator component and its subcompo-

nents. 72
4.23 SubApp containing the Measurement Station component and its

subcomponents. 72
4.24 View of the complete control application. From left to right: layer

3, layer 2, coupling layer and layer 1. 73
4.25 SubApp containing the DA_53Valve_2Solenoid_NS FB. 74

List of Listings

2.1 An example of ST code in IEC 61131-3. Adapted from [1]. 11
2.2 An example of IL code in IEC 61131-3. Adapted from [1]. 13
4.1 Coupling with electric motor defined in the DSL. 58
4.2 Coupling with pneumatic cylinder defined in the DSL. 58
4.3 Translation for the new hardware in the Z axis defined in the DSL. 74
5.1 Implementation of a translation FB with the DSL. 80
5.2 Manual implementation of a translation FB. 80

xix

List of Tables

3.1 Types of SFIBs used in 4diac for the case study. 32

4.1 Functions and their corresponding big-O notation. 56
4.2 List of components of the logic part. 68
4.3 List of components of the hardware part. 70

5.1 Fenton and Melton modified definition for Myers coupling levels. . . 78
5.2 Coupling between the Manipulator component (component x) and

lower-level components using the Felton and Melton metrics. 79
5.3 Halstead complexity measures for two different ways of creating the

coupling FBs: manual vs DSL implementation. 82
5.4 Halstead complexity measures of the two design approaches imple-

mented on the resistor sorter. For the approach proposed in this
thesis, two cases are considered: manually implementing the cou-
pling layer and defining the coupling layer with the DSL. 82

5.5 Reconfiguration effort, measured in LOC. 83
5.6 LOC of different components in the state of the art approach (total

number of LOC per component). 84

xxi

CHAPTER 1

Introduction

Today’s rapidly changing industry demands flexible production plants. The man-
ufacturing industry requires production systems that are able to quickly adapt to
new requirements. The reconfiguration of production systems implies the change
of mechanical structures of the plant. Consequently, changes in both the electrical
setup and the control software application are required [2].

In the development of control applications for industrial automation, the rapid
changes of the industry demand fast reconfiguration of the control applications.
During the development of control applications, one the biggest challenges faced is
the intrinsic hardware dependability of the developed control applications. Tradi-
tional control application programming techniques tend to mix logical functionality
with hardware access methods [3], increasing the complexity of the software ap-
plications. This issue translates into significant system development times and
increased costs in the automation and control engineering of production plants.
For example, in the automotive sector’s production plants, the development tasks
related to software make up 55% of the total costs [4]. However, recent studies
show that by optimizing the overall engineering process using the proper methods,
architectures and tools the engineering effort can be reduced up to a 70% [5].

In the industrial automation field, current control systems are based on the
IEC 61131-3 standard. A new standard for the development of control systems,
IEC 61499 (first published in 2005), is said to improve some of the deficiencies of
IEC 61131-3 by considering three important properties: interoperability, portability
and configurability [6]. However, automation programs developed accordingly to
these two standards are still quite platform dependent and software reuse is com-
plicated. Most of the times, developers of automation programs "copy & paste"
code from a previously developed application, or use this previously developed
application as a template for the new control logic. In software engineering, mod-

1

2 1.1. Scope of the Thesis

ular organization aims at reuse of software components. Such component-based
approach could be implemented in the design of control applications in the indus-
trial automation field to create hierachically structured and modular applications
that help to split the control logic from the hardware implementation and improve
software reuse. The implementation of the component-based approach is, how-
ever, not straightforward in automation programs. Components may, for example,
require some data or control signals from other components. In addition, nested
structures of components may create hidden links between reusable modules [7].

1.1 Scope of the Thesis

The thesis work can be divided into three parts. The first part consists in research-
ing the state of the art approaches that help to build modular and reusable control
applications. The research focuses on approaches that are component-based and
aim to decouple the logic and hardware-specific parts in industrial control appli-
cations developed under the IEC 61131 and IEC 61499 standards.

The second part of the thesis starts with a case study in which the state of the
art approaches will be tested on a prototype in order to identify the current prob-
lems with such approaches. Then, a generic design concept will be presented, with
the aim of solving the problems identified with the state of the art approaches.
This design approach shall be component-based, hierarchically structured and en-
hance software reuse by further decoupling logic from hardware implementation in
the control application. Since it is a generic design approach, specific IEC 61131
and IEC 61499 implementations can be derived from it.

The last part of the thesis consists in the implementation of the proposed design
approach for IEC 61499. This implementation will be tested in a case study, over
the same prototype as the one used to test the state of the art approaches. The
goal is to then compare both approaches in order to evaluate the proposed concept.

1.2 Outline

The thesis starts with a state of the art research in Chapter 2, which focuses on
component-based and hierarchically structured design approaches for IEC 61131
and IEC 61499 applications. In Chapter 3, a case study is conducted, in which
the state of the art design approach is implemented on a real prototype in order
to analyze the limitations of this design approach. At the end of the chapter, a
generic design approach that enhances component reuse by overcoming the state
of the art limitations is presented. This generic design approach is implemented in
IEC 61499 in Chapter 4. The case study that was initially presented in Chapter

1. Introduction 3

3 continues at the end of Chapter 4, by implementing the new design approach
over the same prototype. The results of the case study are presented in Chapter
5, comparing the state of the art approach with the proposed design approach.
The thesis ends in Chapter 6, presenting the conclusions of the research and work
performed.

CHAPTER 2

State of the Art

In this section the state of the art research starts with a look into the software
engineering field, in order to get an idea of how this field approaches modular and
reusable component-based systems. Then the IEC 61131 and IEC 61499 standards
are presented, in order to understand the following sections which review the state
of the art component-based hierarchical design approaches for both standards.

2.1 Approaches and Design Methodologies from
Software Engineering

A lot of interesting concepts from software engineering can be applied in the de-
sign of control applications in order to achieve more modular and reusable con-
trol programs. Perhaps the most interesting concept from the control application
development point of view is the programming paradigm called Object-oriented
Programming (OOP). Some of the programming languages that support OOP are
C++, Java, and Python. Object-oriented programming is an approach for design-
ing modular reusable software systems. Thus, some of the characteristics of OOP
can be very useful in the design of modular and reusable control applications.

The main concept in OOP is known as object. The object concept can be seen
in different ways. The most interesting view for a control application is an object
as a logical machine, that is, an active component that can be implemented as
software, hardware or non-electronic. This view of an object in particular, and
the OOP paradigm in general is the base of Real-Time Object-Oriented Mod-
eling (ROOM), a modelling language developed in the early 1990s for modeling
real-time systems [8]. In ROOM, an object has an encapsulation shell, and the
communication between objects is based on a message-passing model. The models

5

6 2.1. Approaches and Design Methodologies from Software Engineering

are represented in terms of class definitions. This class definitions can then be
implemented as objects. Also, inheritance can be used when defining a new class
that shares some properties in common with a previously created class. If apply-
ing inheritance recursively, and ordered structure of class definitions is achieved,
known as inheritance hierarchy. To sum up, an object in ROOM is defined as an
independently active logical machine with an encapsulation shell.

AnActor

p

q

Figure 2.1 – Graphical notation of an actor reference in ROOM.

A key element in ROOM is the actor. An actor is the interpretation of the
object concept from the OOP in ROOM. The basic interface of an actor is de-
picted in Figure 2.1, where p and q represent ports. Ports in ROOM are used for
communication between actors. Actors must be capable of having a state. The
internal operation of an actor over time is referred to as its behaviour. The high-
level behaviour of an actor over time is represented by an extended state machine
called ROOMchart. The state machines in ROOM can perform actions when a
transition is taken, a state is entered or a state is exited. Also, ROOM provides for
hierarchical state machines to any desired depths. An example of a ROOMchart is
depicted in Figure 2.2. An actor in ROOM as both a structure, as seen in Figure
2.1, and behaviour, as depicted in Figure 2.2.

A1

A2

a2 a1

A

B1

B2

b2 b1

B

a

b

Figure 2.2 – A ROOMchart with 6 states and 6 transitions.

In ROOM a model is a collection of three class definitions: actor class defini-
tions, protocol class definitions and data class definitions. An actor class definition
has a structure and a behaviour, as previously mentioned. The ports in the actor
structure are references to protocol class definitions. The data classes in ROOM
are used to declare data objects that are encapsulated within actors. A ROOM

2. State of the Art 7

model is, in effect, a source program in a very high-level language and can be
executed.

A single actor class definition in ROOM can have multiple references (also
called instances in OOP). An actor class definition can contain other actors. In the
example of Figure 2.3, an actor of class DyeingSystem contains the following actors:
Valve, DyeingRunController, DyeingSolution and DyeingSpecifications. Also, there
are two actors of class Valve, one that plays the role of drainValve and another
one that plays the role of dyeValve.

DyeingSystem
Valve
DyeingRunController
DyeingSolution
DyeingSpecifications

Fabric Dyeing Actor Classes

dyeValve

drainValve

dyeingSolution

dyeingSpecifications

dyeingRunController

DyeingSystem

Reference

Reference

Reference
Reference Reference Expanded definition

Figure 2.3 – Example of a hierarchical control application modelled in ROOM.
Adapted from [8].

The main interest of ROOM for this thesis is the use of OOP concepts in
order to achieve hierarchically structured and modular control programs. The
actor concept in ROOM enables the construction of hierarchical structures by
composition and layering. The authors of the ROOM methodology show how to
create hierarchically structured and reusable control applications by applying some
of the OOP paradigm concepts.

Another interesting concept from software engineering that can be applied in
the development of control applications is the concept of software components,
which are the key element in Component-based Software Engineering (CBSE).
The main idea in CBSE is that software components enable practical reuse of
software parts. To be more specific, software components are executable units of
independent production, acquisition, and deployment that can be composed into
a functioning system [9].

In the OOP, an object encapsulates state and behaviour and the mechanisms
that this paradigm provide in order to achieve a hierarchical construction and

8 2.2. An Overview of IEC 61131

reusable software units are polymorphism and inheritance. However, OOP lacks
a view on independence and late composition. This is where the component-
based paradigm complements the OOP. Components are units of independent
deployment and third-party composition.

2.2 An Overview of IEC 61131

Traditional PLC programs have been developed according to the IEC 61131 pro-
gramming languages, and this standard is still nowadays the preferred choice in
the industry. Part 3 of the standard, known as IEC 61131-3, was first published
in 1993.

This standard was developed to overcome the limitations of the ladder pro-
gramming previously used for PLCs, as well as to improve software quality (ca-
pability, availability, usability and adaptability) [1]. Ladder programming evolved
from the electrical wiring diagrams used in the car industry for describing relay
control schemes. This programming technique became popular among mainte-
nance engineers, since it allowed faults to be quickly traced. It was as well easy to
understand for people who are familiar with simple electronic or electrical circuits.
Therefore, it was well accepted by electricians and plant technicians. However, this
programming technique had a weak software and data structure and made reuse of
control applications nearly impossible [1]. In order to overcome these limitations
the IEC 61131-3 standard introduced a new program development approach for
PLCs, including five programming languages and the use of function blocks.

2.2.1 Function Blocks

Function blocks should be regarded as the basic building blocks of a control system,
since they allow to pack a part of a control program so that it can reused in
different parts of the same or a different program. The standard provides facilities
so that well defined algorithms or control strategies written in any of the IEC
languages can be packaged as reusable software elements [1]. The IEC 61131-3
standard defines a few rudimentary function blocks but there is not an available
set of standard industrial FBs. The introduction of FBs into PLC programming
introduces as well some concepts from OOP, since a FB encapsulates data and its
associated methods. Since the third edition of the standard, OOP mechanisms are
available in IEC 61131 and FBs allow for inheritance or polymorphism. The use
of FBs allows the design of hierarchical and structured programs.

In IEC 61131, a function block has a set of input and output parameters that
define data. Encapsulated in the FB there is an algorithm that runs every time
that the block is executed, processing the input parameters and internal variables

2. State of the Art 9

and producing a new set of output parameters. A FB can have a defined state and
is able to store values. Figure 2.4 shows how a function block looks like in IEC
61131.

Data inputs Data outputs

Instance name

FB type name

Figure 2.4 – A function block graphical representation as defined in IEC 61131.

2.2.2 Architecture and Software Model

At the highest level the standard defines the so-called configuration, which can
be regarded as the required software for a specific control application. Within
each configuration there can be one or more resources. A PLC is in this context
a resource, and can contain more than one resource if it has multiple processor
cards.

A program is executed in a resource and can be written in any of the languages
described in Section 2.2.3. Typically a program contains multiple interconnected
FBs. A program is able to read and write IOs and communciate with other pro-
grams. Tasks are used to configured and control a program or a FB. In IEC 61131,
a program or FB has to be assigned to a task and this task has to be configured
in order to execute periodically or when triggered by a changing state.

The standard defines the concept of program organisation unit or POU. Pro-
grams, functions and function blocks are POUs in IEC 61131. The main charac-
teristic of a POU is that it can be used multiple times in an application. This
characteristic encourages software reuse. A single FB type can have multiple in-
stances, as well as a program type, or a function type. Another great advantage of
this characteristic is that it allows to build FBs out of instances of other function
block types. By building FBs out of networks of instances of other FB types,
hierarchical structures can be achieved within IEC 61131 [1, p. 46].

In IEC 61131, there are both local and global variables. Local variables can
only be accessed within the software elements in which they were declared. On the
other hand, global variables can be accessed from any software element, allowing
data transfer between different programs. There is another type of variables in IEC
61131 known as directly represented variables, which are used to access specific

10 2.2. An Overview of IEC 61131

memory locations in a PLC. These variables shall not be used directly in FBs
in order to facilitate software reuse, since they are hardware-specific parameters.
Therefore, directly represented variables can only be declared and accessed within
programs. For a whole view of the software model, see Figure 2.5.

Configuration

Resource

Program Program

FB FB

Task Task

Resource

Program Program

FB FB

Task Task

Global and directly represented variables

Var

Var

Var

Access paths

Figure 2.5 – The software model in IEC 61131-3.

IEC 61131 does not describe mechanisms for managing distributed configura-
tions. As detailed in Section 2.3, IEC 61499 was designed with distributed systems
in mind, overcoming the limitations of IEC 61131 in this area.

2.2.3 Programming Languages in IEC 61131-3

IEC 61131-3 defines five programming languages. Two of them are textual lan-
guages: Structured Text (ST) and Instruction List (IL). The others are graphical:
Function Block Diagram (FBD), Ladder Diagram (LD) and Sequential Function
Chart (SFC). Programs, functions and function blocks can be defined using any
of the languages. No matter the language chosen, the variables and data types in
POUs are describe using the the same common programming elements.

2. State of the Art 11

2.2.3.1 Structured Text

ST is a high level language with a syntax similar to PASCAL, developed specifically
for industrial control applications. For an example of ST code, see Listing 2.1.

TYPE Alarm
STRUCT

TimeOn : DATE_AND_TIME ;
Duration : TIME;

END_STRUCT;
END_TYPE

VAR
Rate ,A1 : REAL;
Count : INT ,
Alarm : Alarm ;
Alarm2 : Alarm ;
P r o f i l e : ARRAY[1 . . 0] OF REAL;
RTC1 : RTC; (∗ Real time c l o ck ∗)

END_VAR

Rate := 1 3 . 1 ; (∗ L i t e r a l va lue i . e . constant ∗)
Count := Count + 1 ; (∗ Simple exp r e s s i on ∗)
Al := LOG(Rate) ; (∗ Value from a func t i on ∗)
Alarml .TimeOn:= RTC1.CDT; (∗ Value from a func t i on ∗)

(∗ block output parameter ∗)
Alarm2 := Alarml ; (∗ Multi−element v a r i a b l e ∗)

(∗ Value from a complex exp r e s s i on as s i gned to ∗)
(∗ a s i n g l e element o f an array ∗)
P r o f i l e [3] := 10 .3 + SQRT((Rate + 2 .0) ∗

(A1 / 2 .3)) ;

Listing 2.1 – An example of ST code in IEC 61131-3. Adapted from [1].

2.2.3.2 Function Block Diagram

A Function Block Diagram can express the behaviour of a POU (a program, a
function or a function block) through a set of interconnected graphical blocks.
These blocks can be standard FBs included in IEC 61131-3 (for example, an SR
bistable as depicted in Figure 2.6), FBs from the library of a specific IDE, or
functions (for example, an AND function) encapsulated in a block. An example
of a program in the FBD language is depicted in Figure 2.7.

12 2.2. An Overview of IEC 61131

SR
S1
R

Q1

SR1

Figure 2.6 – A SR bistable FB as defined in IEC 61131-3.

ReqOpen

ReqClose

Position

DemandOpen

DemandClose

OpenLS

CloseLS
DemandClose

MoveTimeOut

Discrepancy

RS

NOT

AND

AND

OR TON

S

R1

Q

Q

PT

IN

Timer 1

Figure 2.7 – A program in FBD containing FBs and functions in IEC 61131-3.
Adapted from [1].

.

2.2.3.3 Ladder Diagram

This graphical language has been adapted from the traditional programming ap-
proach used in relay logic, which is based on the use of relays to describe a certain
logic. Extending this traditional programming technique, in IEC 61131-3 both
function blocks and functions can be added to the ladder diagrams. For an exam-
ple of a program in the LD language, see Figure 2.8.

I1 TON
EN

IN

PT

ENO

Q

ET

TM1
M

I2 R

T#3s

Figure 2.8 – An example of a Ladder Diagram in IEC 61131-3.

2. State of the Art 13

2.2.3.4 Instruction List

The second textual programming language included in the standard is a low level
language with a similar structure to that found in a simple machine assembler.
For an example of code written in IL, see Figure 2.2.

LD Speed (∗ Load Speed and ∗)
GT 1000 (∗ Test i f > 1000 ∗)
JMPCN VOLTS_OK (∗ Jump i f not ∗)
LD Volts (∗ Load Volts and ∗)
SUB 10 (∗ Reduce by 10 ∗)
ST Volts (∗ Store Volts ∗)

VOLTS_OK: LD 1 (∗ Load 1 and s t o r e ∗)
ST \%Q75 (∗ in output 75 ∗)

Listing 2.2 – An example of IL code in IEC 61131-3. Adapted from [1].

2.2.3.5 Sequential Function Chart

The last language defined in IEC 61131-3 is a graphical language for describing
the sequential behaviour of a control program. The behaviour of a system is based
on states and transitions. It is based on Petri-net, with actions associated to each
state. For an example of a program in the SFC language, see Figure 2.9.

b1 AND NOT b0

b0

0

1 N

L
T#3s

D
T#3s400ms

K1

K2

K3

Figure 2.9 – An example of a Sequential Function Chart in IEC 61131-3.

14 2.3. An Overview of IEC 61499

2.3 An Overview of IEC 61499

IEC 61499 defines a general model and methodology for describing function blocks
in a format that is independent of implementation. The methodology can be used
by system designers to construct distributed control systems. It allows a system
to be defined in terms of logically connected function blocks that run on different
processing resources [6]. The standard was initially published in 2005, with the
second edition being published in 2012.

The IEC 61499 standard builds on the function block concept defined in the
PLC language standard IEC 61131-3. One of the main differences between the IEC
61131-3 and IEC 61499 is that the former one is based on scan-based execution
while IEC 61499 is based on event-based execution, although this topic has been
discussed [10]. IEC 61499 was also developed with distributed control systems in
mind, in contrast to IEC 61131 which focuses on centralized computing platforms.

2.3.1 Function Blocks

In IEC 61499, a function block (FB) is a functional unit of software that encapsu-
lates a certain behaviour. There are three types of function blocks: basic function
blocks (BFBs), composite function blocks (CFBs) and service-interface function
blocks (SIFBs). The first two will be described in this section and the third one
will be described in the next section.

The IEC 61499 standard introduces a new approach to FBs, defining two types
of inputs and outputs for FBs: event inputs/outputs and data inputs/outputs.
Events and data can be linked together by using the WITH qualifier (represented
as a square connector). By linking an event with some data input or output, the
linked data will be sampled each time that the corresponding event arrives. A
basic function block is depicted in Figure 2.10.

As mentioned before, FBs encapsulate a certain functionality. An Execution
Control Chart (ECC) represents the behaviour of a BFB. Furthermore, it maps
the events of the FB on to algorithms and describes the relationships between
the possible states of the FB. In order to go from one state to another one in
an ECC, a certain transition condition has to be evaluated to true. Also, each
state has an associated action that can contain an algorithm, an output event or
both of them. The algorithm associated to a certain action can be defined using a
suitable language such as Java, C, or Structured Text (as defined in IEC 61131-3,
see Section 2.2.3.1). For an example of an ECC as defined in IEC 61499, see Figure
2.11. The standard also defines a way to describe how to use the interface of a
FB through the use of the service sequence diagrams. For a FB definition zero or
more service sequence diagrams can be used to describe the timing and sequential
relationships between various interactions with the function block [6]. An example

2. State of the Art 15

Event inputs Event outputs

Data inputs Data outputs

Instance name

FB type name

WITH qualifier

Figure 2.10 – A function block graphical representation as defined in IEC 61499.

of a service sequence diagram is depicted in Figure 2.12.

START State2

State3State1

EI1 EI2 [DO2=TRUE]

EI2[DI2>0]

[DO2=FALSE]

Alg2

Alg1

1

Transition condition
Action

Figure 2.11 – Example of an ECC in IEC 61499. Adapted from [6].

In IEC 61499, a CFB is a different type of FB than the BFB. These CFBs are
constructed from a network of FBs (these can be either BFBs, lower level CFBs,
or SIFBs).

2.3.2 Service Interface Function Blocks

A service-interface function block (SIFB) is a special type of function block that
provides an interface between FBs located in one resource and services provided
by or outside the resource. The standard presents two SIFBs as examples and
reference, the REQUESTER and RESPONDER SFIBs, the later one being the
only type of FB in IEC 61499 that is active instead of passive (it does not need an
input event coming from another FB to actuate, since an underlying service can

16 2.3. An Overview of IEC 61499

EI1

E01
initialise

FB_interface FB_internals

Figure 2.12 – Example of a service sequence diagram in IEC 61499. Adapted from
[6].

trigger its execution). The standard stipulates that these forms of function blocks
should be defined using a standard set of input and output variables and input
and output events [6]. The behaviour of SIFBs is defined by a service sequence
diagram.

Two common applications of SIFBs are network communication and IO read-
ing/writing. For example, in a distributed application CLIENT and SERVER
SIFBs can be used to send and request data between different resources. To in-
teract with the hardware, IO_WRITER and IO_READER SIFBs can be used to
write to physical outputs and read from physical inputs, respectively.

2.3.3 SubApplications

SubApplications (SubApps for short) encapsulate a network of BFBs, CFBs and/or
SIFBs. They are, therefore, similar to Composite Function Blocks. However,
unlike CFBs, they can be distributed between multiple resources. Each BFB and
CFB can only be allocated to one resource, while a single SubApp can run over
multiple resources. Another difference is that the WITH qualifier is not used in
type definitions. To sum up, SubApps provide a way to structure IEC 61499
applications and can be distributed over many resources. The difference between
CFBs and SubApps is illustrated in Figure 2.13.

2.3.4 Adapters

As mentioned in Section 2.3.1, in IEC 61499 the event and data interface is sep-
arated in FBs. This can lead to cluttered design spaces with lots of connections
between FBs. Moreover, the interaction between FBs is confusing and the user
may omit to connect all the required interface elements or wrongly connect inter-
face elements [6]. To overcome these problems the adapter concept was introduced
in IEC 61499.

Adapters allow to group multiple data an events, in order to pass them between

2. State of the Art 17

BBFFBB

SSuubbAApppp

CCFFBB

Resource 1 Resource 2

Figure 2.13 – A SubApp, unlike a FB, can be distributed over multiple resources
in IEC 61499.

FBs within a single connection. An adapter contains no algorithms or state, it
is just an extension of the interface of a FB. An adapter in IEC 61499 can be
compared to an electrical cable and takes its terminology from this element (plugs
and sockets, as following explained). An adapter provides a Plug for the FB that
provides the data and events (represented as ">>" on the output side of a FB)
and a Socket for the FB that requests the data and event (represented as ">>" on
the input side of a FB). Therefore, a Plug is a providing interface and a Socket
is a requesting interface. The interface of adapters is defined in the form of a FB
interface. For an example of an application where the adapter concept is used, see
Figure 2.14.

Figure 2.14 – Example of an adapter in IEC 61499. Adapted from [6].

According to the standard, the adapter interface (defined as a FB) is declared
and stored as the requesting side of the interface (the Socket). However, the

18 2.3. An Overview of IEC 61499

standard also states that IEC 61499 compliant IDEs could declare the adapter
interface either as a Socket or as a Plug. The dynamic behaviour of adapters is
described through service sequence diagrams. In contrast to the service sequence
diagrams used for BFBs, which define the interaction between the FB interface
and the FB internals, the service sequence diagrams used for adapters define the
interactions between the Plug and the Socket.

2.3.5 Architecture and Software Model

The standard was developed with a focus on distributed control applications. With
this idea in mind, the architecture of IEC 61499 can be divided into different views
or models: the application model, the system model, and the distribution model.

The application model contains the function block network, linked by event and
data. All the behaviour is defined by the function block network. The design of the
application model is the first stage in the control application design and does not
consider any particular hardware. This is why IEC 61499 is application-centered,
while IEC 61131 on the other hand is very resource focused.

The system model considers the available devices and the physical communi-
cation network between them. In contrast to IEC 61131, IEC 61499 introduces the
device concept. A device model in IEC 61499, with a single or multiple processing
units, can contain one or more resources. Therefore, in IEC 61499 a resource is
just a logical separation within a device that provides an independent execution
environment. In IEC 61131, a single processing unit can only contain one resource.
A device as defined in IEC 61499 is depicted in Figure 2.15.

Resource A Resource B Resource C

Communications interface

Process interface

Figure 2.15 – A device model in IEC 61499.

The distribution model links the application model to the system model. An
application can be distributed between multiple devices. Each application contains
function blocks (BFBs, CFBs and SIFBs) and subapplications. However, only
subapplications can be distributed between multiple resources. A global view of
the three models is depicted in Figure 2.16.

2. State of the Art 19

FFBB11

FFBB22

Device 1 Device 2 Device 3

System Model

Application ModelApplication 1

Application 1

Application 3App 2

Distribution Model

Figure 2.16 – The distributed architecture in IEC 61499.

2.4 Design Approaches Based on IEC 61131

Authors in [11] propose a hierarchical modelling procedure that can be applied
in IEC 61131, with the goal of achieving a reusable and modular control logic in
industrial automation. By modeling an example control logic in the SFC language
from IEC 61131-3, the authors identify two types of modifications that can be
needed in the plant during its life cycle: modifications in action mechanisms (re-
lated to sensor or actuators) and policy changes (related to a change in functional
requirements). In traditional control logic design approaches there is a mix be-
tween mechanisms and policies which minimizes the modularity and reusability of
the application.

To achieve a reusable and modular control logic, the authors propose a proce-
dure that separates mechanisms and policies. The concept first splits the control
logic into two groups: a set of basic actions (the mechanisms of functionality im-
plementation) and sequences to coordinate actions execution (the control policy).
These two have to be completely independent in order to have a reusable control

20 2.4. Design Approaches Based on IEC 61131

IInntteerrffaaccee ttoo PPoolliiccyy
Do
DoWhat

Done
DoneWhat

LLooww LLeevveell IInntteerrffaaccee

Communication

State

Standard Interface

Plant I/O Link

Constant Parameters

(a) Do-Done GA interface.

IInntteerrffaaccee ttoo PPoolliiccyy
Start
Stop

DoingWhat

LLooww LLeevveell IInntteerrffaaccee

Communication

State

Standard Interface

Plant I/O Link

Constant Parameters

StartWhat

(b) Start-Stop GA interface.

Figure 2.17 – Interfaces for the two types of Generalized Actuators FBs. Adapted
from [11].

logic. An entity called Generalized Actuator (GA) is introduced for the presented
approach. The steps to define the GAs in a control application are the following:

1. Identify the actions that cannot be further decomposed.

2. Associate each of the previously identified actions to a sensor or an actuator.

3. Define the GAs. Each GA groups a set of actions and sensors/actuators. It
is represented as a FB in IEC 61131-3, which runs continuously even if no
specific action is required from it.

The Generalized Actuators (GAs) can be divided into two groups: the Do-
Done GAs and the Start-Stop GAs. The first group is associated to actions that
terminate after a finite amount of time. The second group is associated to actions
that could continue for an infinite time and whose termination has to be decided
“externally”. The interface of these two types of GAs is depicted in Figure 2.17.
Authors suggest defining the behaviour of the GA function blocks in the SFC
language. By encapsulation into GAs reusable components are achieved. A change
in an action mechanism just implies changing the implementation in a certain
GA, without affecting other mechanisms or the overall policy. This approach was
applied to another case study in [12], where authors also conclude that GAs serve
to create highly reusable mechatronic components.

The hierarchy in the approach presented in [11] has (at least) two levels. In
the lower layer the GAs are located. The GAs are managed by a policy manager
in the top level. This overall control policy represented by a policy manager in
2.18 can be defined in the SFC language as well.

In [13], the GA concept is extended by introducing a new concept: the General-
ized Device (GD). The author points out a limitation of the GAs: the components,

2. State of the Art 21

Layer 1:Generalized
Actuators

Layer 2: Policy
manager

Figure 2.18 – The hierarchical structure of the approach presented in [11]. The
layer 1 includes the components that encapsulate hardware control operations.

encapsulated as FBs, can be reused as long as the hardware component used in
the plant is the same. The idea of the GDs is to add a new layer in the hierarchy
which is independent from hardware, since different field devices often require the
same control logic. A classification of pneumatic cylinders, according to the type
of sensors and actuators that can be used, is presented. Each of these pneumatic
cylinder hardware components corresponds to a single Generalized Device, encap-
sulated as a FB (see Figure 2.20). What was previously encapsulated as a GA
in [11] is now divided into a GA and a GD, in order to split the logic from the
hardware implementation. The new hierarchy is shown in Figure 2.19.

Layer 1: Generalized
Devices

Layer 2: Generalized
Actuators

Layer 3: Policy
manager

Figure 2.19 – The hierarchical structure of the approach presented in [13]. This
approach takes the hierarchy presented in [11] and adds a new layer, the layer 2,
to further decouple hardware and control logic.

2.5 Design Approaches Based on IEC 61499

All the design approaches reviewed for IEC 61499 can be divided into two groups.
The first group, presented in Section 2.5.1, contains approaches that focus on
hardware abstraction, without providing details of how the application components
would be hierarchically structured (or only showing part of a hierarchy). The
second group, presented in Section 2.5.2, contains design approaches that focus on
and explicitly show a component hierarchy.

22 2.5. Design Approaches Based on IEC 61499

GGAA--ss..cc..ll.. IInntteerrffaaccee

Activation Request
Deactivation Request

Activation Ack
Deactivation Ack

FFiieelldd DDeevviiccee IInntteerrffaaccee

Configuration/Communication

Deactivated
Activated

Activation

Figure 2.20 – Interface of a GD for a single-actuating pneumatic cylinder with two
sensors. Adapted from [13].

2.5.1 Hardware Abstraction Approaches

Melik-Merkumians et al. [14] present an approach based on an adapted version of
MDA (Model-Driven Architecture). The authors suggest to split the application
in a Platform Independent Model (PIM), which contains the logic control part of
the application, and a Plant Model (PDM) which describes the exact configuration
of the actual plant to be programmed. This two parts can be mapped together
generating the hardware-specific control application, which in a MDA approach
is the Platform Specific Model (PSM). This concept is illustrated in Figure 2.21.
Authors suggest that IEC 61499 is suited as a logical control application (PIM)
metamodel, and also state that in the case of IEC 61499 it is possible to directly link
the logical application blocks to the specific hardware through the use of hardware-
specific adapters for the task function blocks. They provide an example of use for
this concept. However, the example does not contain any implementation details
for IEC 61499 or any other language, nor shows how to avoid hardware-specific
parameters in the PIM.

Wenger et al. [3] propose also a MDA approach to design 61499 applications,
with the goal of improving reusability by separation of logical functionality and
hardware access methods. In their work the authors compare the different mod-
els specified by the MDA to the models in IEC 61499. By doing so they show
the capabilities of the standard to decouple the logical part of the application
from the hardware implementation. However, the SIFB defined in the standard
renders hardware access methods at very high level in the application architec-
ture. To overcome this issue the authors propose replacing the SIFB by two new
FBs: Logical Service Function Blocks (LSFB) and Hardware-Specific Implementa-
tion Function Blocks (HSIFB). The LSFB specify a minimal logic interface where
hardware-dependent parameters are fully avoided. Then, at the deployment phase,
the appropriate HSIFB is selected and connected to the LSFB via the adapter con-

2. State of the Art 23

PIM

PDM

PSM
generate
HW-SW

connections

Logical Control
Application

Plant Model

Figure 2.21 – A MDA approach for control application design in industrial au-
tomation. The control application is divided into two parts: the PIM and the
PDM. These two parts are then coupled together. Adapted from [14].

cept defined in the standard. The idea of the authors is that LSFB are identified
and standardized and that the vendors provide the HSIFBs. An example of this
approach is reflected in Figure 2.22, where a LSFB of a handling unit which pics
and places components represents a minimal logic. This LSFB could then be
connected via an adapter to different HSIFBs provided by different vendors.

Pick_And_Place_LSFB

INITO

MOVEREACHED

STATUS PICK_PLACE

POSE

INITEVENT
EVENT

EVENT
EVENT

DATA
DATADATA

Pick_And_Place_HSFIB_
Vendor_B_
Variant_Y

Vendor_Specific_Parameter 1

Vendor_Specific_Parameter 2

Vendor_Specific_Parameter 3

Pick_And_Place_HSFIB_
Vendor_B_
Variant_X

Vendor_Specific_Parameter 1

Vendor_Specific_Parameter 2

DATA
DATA
DATA

DATA
DATA

Handling_Unit_Vendor_A Handling_Unit_Vendor_B

>> Pick_And_Place_Socket >> Pick_And_Place_Socket

Figure 2.22 – Example of a LSFB and two possible HSIFBs provided by the ven-
dors. Adapted from [3].

24 2.5. Design Approaches Based on IEC 61499

Hegny et al. [15] base their approach on the concept of Instrumentation and
Control-Points (ICPs) introduced in [16]. The aim is to provide easily identifiable
interfaces, since hidden interfaces impose a higher effort in grasping the function-
ality. The ICPs provide a unified interface to well-defined parts of the plant, and
are introduced in IEC 61499 applications via the adapter concept. Therefore, the
access to all relevant sensors and actuators (basic services of the components) is en-
capsulated within the appropriate ICP. During the development of the hardware
independent control application, only the well defined interface is available, the
plug representation of the adapter (representing the ICP concept). The interac-
tion of the control application with the controlled process can be defined through
service sequence diagrams within the adapter. For example, an ICP adapter for
a gripper only defines two possible states (gripped or released) and dictates via
output events to the hardware-specific parts if the gripper shall grip or release (see
Figure 2.23). An adapter representing an ICP has no hardware parameters, it only
represents a minimal interface and can therefore be used for any type of gripper
(it doesn’t matter if its a vacuum or a 2-finger gripper, for example). This way
hardware-specific parameters are pushed to the very lowest layer of the control
application, enhancing reusability. The ICP adapter concept in [15] represents a
similar approach as the use of the adapter between LSFB and HSIFB described in
[3].

GripEvent Event
Event

BOOL

ICP_Gripper_2pos

IND

Release

SensorReleased

BOOL SensorGripped

Figure 2.23 – Example of an ICP adapter for a gripper. The adapter describes a
minimal logic interface without any hardware parameters. Adapted from [15].

Authors in [15] also state the importance of a well-structured hierarchical con-
trol application in order to improve reusability. Separation into manageable com-
ponents increases comprehensiveness in control applications. This approach for
hierarchical control application structuring is based on the use of the SubApps
and adapter concepts from the IEC 61499 standard, and it is the same as de-
scribed in Section 2.5.2. The concept presented in [15] uses the adapter concept
to both structure the application hierarchically and decouple the hardware imple-
mentation from the control logic through the use of ICPs. The basic structure of
this approach is depicted in Figure 2.24.

Authors in [17] propose a methodology to increase reusability by hardware

2. State of the Art 25

ICP_A >>

C

D

IF_C >>
IF_D >>

ICP_B >>

>> IF_C

>> IF_C

>> ICP_A

>> ICP_B

Control Logic Process Interface

E

HW Acess A

HW Acess B

ICP_B

RSP_ICP_B_1
RSP_ICP_B_2 CMD_ICP_B_2

CMD_ICP_B_1

DATA_TO_ICP DATA_FROM_ICP

Figure 2.24 – A hierarchical structure implementing the ICP concept. Adapted
from [15].

separation that can be implemented for the IEC 61499 standard in Eclipse 4diac.
This methodology is based on a metamodel for describing a model generic device
configuration. The proposed concept can be applied to both a standalone device
or a modular device. The root element of this metamodel is the Device, which
contents Module elements. These Module elements can be of type master or slave,
and contain IO elements which represent the interface for interacting with the
actuators and sensors hardware. Module elements also contain ConfigParameter
elements. Another important element is the BusInterface, which represents the
interface for the communication between module elements and other device with
the same type of BusInterface. From the BusInterface two elements are inherited:
Socket and Plug.

The idea is that this generic device model is then translated into SIFBs in a
IEC 61499 application. Each hardware device is represented by a SIFB. In case
of a distributed device configuration, the bus is implemented through the adapter
concept. A control application developed according to this methodology will have
at least two resources: one containing the hardware independent control logic and
another one containing the device configuration FBs. The hardware-independent
control logic is achieved by removing the PARAMS data input from the generic
IO FBs. Now, all the hardware configuration parameters are in the resource which
contains the device configuration model. In the device configuration model, each
pin takes as a data input the instance name of the IO FBs used in the harware-
independent control logic. That is, the instance names are used as identifiers.

26 2.5. Design Approaches Based on IEC 61499

To implement this functionality additional features have to be added to 4diac and
FORTE. In Figure 2.25 an example of this methodology in 4diac is depicted, where
a simple program turns a LED on and off. As can be seen, there are no hardware
specific parameters on the control logic side.

Control Logic (Resource 1) Device Model (Resource 2)

Figure 2.25 – On the left, a simple logic that generates a cyclic boolean signal.
On the right, a device model with one master and two slaves managing the IOs.
Adapted from [17].

To sum up, authors in [17] developed a methodology that can be applied in
IEC 61499 to develop hardware-independent control applications. This methodol-
ogy splits the application development into a device configuration model, located
in one resource, and a control logic model, located in another resource. The device
configuration model is a generic model that can be translated into FBs and used
in an IDE like 4diac. The control logic located in a different resource has now no
hardware specific parameters. However, this approach still introduces hardware
interfaces (function blocks IX and QX in Figure 2.25) very early into the devel-
opment process, does not specify how to get rid of other type of parameters that
could couple the logic to the hardware and overall it just implements an approach
that is very similar to how IO mapping is done in IEC 61131.

2.5.2 Hierarchical Control Architecture Approaches

Zoitl and Prähofer describe in [18] an approach to build hierarchical applications
in IEC 61499 with FBs. The authors suggest to use the adapter concept defined
in the standard in order to define components’ interfaces. This has the advantage
of both making the design space less cluttered as well as clearly separating higher
and lower level components. The plug (the providing interface) is implemented
in the higher-level side and the socket (the required interface) is implemented on

2. State of the Art 27

the lower-level side of a hierarchical component connection. This implies that the
lowest components in the hierarchy have no plugs. Therefore, the use of the adapter
increases the decoupling of application parts. The behaviour of the interface can
be documented with service sequences. If only the adapter is used, the component
hierarchy is still flat. The authors suggest structuring the components with sub-
applications, also defined in the standard. By using SubApps all the components
of each hierarchy level can be encapsulated.

As mentioned in [18], in a hierarchical control architecture the components at
different hierarchy levels usually serve different functions. At the lowest level in
the hierarchy (layer 0) we usually find the components which implement hardware
interfaces. In the upper level (layer 1) the basic control operation components are
located. At higher levels the components are in charge of the coordination of the
sub-components in the lower levels. This structure implies that there is a directed
control flow, where events are flowing down to initiate control operations in the
lower-level components and feedback on the progress of the control operations is
flowing back up. This architecture is depicted in Figure 2.26.

Layer 0: Hardware
interfaces

Layer 1: Elementary
control operations

Layer 2: Coordination
of subcomponents

Layer n: Main
coordinator

C
O

N
TR

O
L

FL
O

W

C
O

N
TR

O
L

FE
ED

B
A

C
K

Figure 2.26 – A hierarchical control architecture as defined in [18]. Layers 1 and 0
shall encapsulate hardware-related operations, while higher layers implement the
control logic.

Authors in [19, Chapter 19] apply the concepts in [18] to a pick and place
station. This approach implies that the control software hierarchy follows the
mechatronical hierarchy of the plant. This means that each mechatronical com-
ponent has a counterpart in the software structure. Therefore, the first step in
the control application design process is to analyze the mechanical structure and
identify the different components at different levels in the hierarchy. In the lowest
level of the hierarchy (layer 0) we find the atomic components. These atomic com-
ponents interact directly with the hardware, and are implement through SIFBs.

28 2.5. Design Approaches Based on IEC 61499

Within the 4diac IDE, these can be implemented with IX and QX SIFBs. Com-
ponents at these level are hardware-dependent since a PARAMS input has to be
specified with the desired input and output numbers. The upper layer (layer 1)
contains the elementary components. These components connect atomic compo-
nents and provide an independent function. In these layer the components are
reusable for other applications of the same domain, since these components imple-
ment a very basic functional logic. An example of a component at this layer could
be a gripper component that implements two outputs for the SIFBs in the lower
layer (Grip and Release) and provides four states that are fed back to the upper
layer components with information about the current state of the gripper (Gripped,
Released, GripFailed and ReleaseFailed). An adapter provides the interface for the
gripper component services to the higher level components. This approach renders
components in the layer 1 reusable. Following the gripper example, it does not
matter the gripper type (vacuum, two-finger, ...), all of the them have the same
basic logic and functionality and therefore by encapsulating their basic behaviour
and providing an interface via adapters reusable automation components can be
developed.

The authors in [19, Chapter 19], following the approach in [18], make use of
SubApps to group components of different hierarchy layers. For example, each
hardware accessing SIFB in layer 0 is encapsulated with its corresponding com-
ponent in layer 1 into a SubApp. This SubApp is connected to the components
in layer 2, referred to as coordinating components. These components in layer 2
coordinate the lower layer components. Common interface elements of both layers
are combined within adapters. Each component in layer 2 is encapsulated into a
SubApp with its underlying components. In the pick and place example given by
the authors, the highest level in the hierarchy is the layer 3, which contains a single
component known as the process control component. Its role is to coordinate all
the underlying SubApps. This hierachical structure is reflected in Figure 2.27. As
shown, components in the lowest level of the hierarchy (layer 0) are implemented
as SIFBs. The components at the other levels of the hierarchy are implemented
with BFBs. Each component in layer 1 is encapsulated into SubApp with its
corresponding component in layer 0. Furthermore, each component in layer 2 is
encapsulated into a SubApp with its underlying SubApps in layer 1.

To sum up, in [19, Chapter 19] a hierarchical control application is designed
and implemented in an IEC 61499 compliant IDE (Eclipse 4diac). The hierar-
chical structure is achieved by layering mechatronic components. The SubApp
and adapter concepts in IEC 61499 are used to structure the application and
provide logic interfaces to other layers, respectively. The authors claim that the
components used up to the top layer are reusable, including the hardware access
components in layer 0, since the IX and QX SIFBs are independent of the applied

2. State of the Art 29

Layer 0: Hardware
interfaces

Layer 1: Elementary
control operations

Layer 2: Coordination
of subcomponents

Layer n: Main
coordinator

SIFBs

BFBs

BFBs

BFBs

SubApp
layer 2

SubApp
layer 1

SubApp
layer 1

Figure 2.27 – A hierarchical control architecture as defined in [19, Chapter 19].
Authors propose the same hierarchy as in [18], and suggest to group components
by using SubApps in order to enhance modularity.

hardware and make the application hardware independent. However, authors do
not proof if the top layer components are reusable against hardware changes.

2.6 Research Questions

The design approaches reviewed in Section 2.4 and Section 2.5 claim to achieve
reusable control applications for industrial automation, by decoupling the control
logic from the hardware. Most design approaches suggest to structure the control
application in a hierarchical way, where the components in the bottom of the hier-
archy encapsulate hardware-control operations and the components in the higher
layers implement basic control logic operations. However, none of the reviewed
works explain how these components in higher layers can be completely hardware-
independent. The initial hypothesis is that with the current design approaches,
components in the higher layers of the hierarchy can still be coupled to hardware
and therefore they cannot be reused when a hardware component is replaced, even
if the control logic remains the same. From this initial hypothesis the first research
question is derived:

30 2.6. Research Questions

Research Question 1

What are the limitations of the current hierarchical and component-based
control design approaches in industrial automation?

An easy experiment to answer this research question and verify the initial hy-
pothesis consists in implementing a state of the art design approach on a prototype
with a certain hardware configuration. Then, a specific hardware component can
be replaced by another hardware component which implements the same control
logic, but has a different working principle. This experiment can verify the initial
hypothesis if components in the higher layers of the hierarchy can not be reused
after the hardware change. In case these components can not be reused, the ex-
periment can also identify what is limiting the component reuse in the state of
the art design approaches. With a better understanding of these limitations, the
goal of this thesis is to come up with a design approach that improves component
reuse, which leads to the second research question:

Research Question 2

How can component reuse be improved in control applications design for
industrial automation?

CHAPTER 3

Concept

Between all the state of the art approaches there are multiple elements in com-
mon. Some authors propose an MDA approach, with two different application
parts that are independent of each other and are finally mapped or coupled to
each other in order to obtain the final control application. However, implemen-
tation details are not sufficient to test these approaches, since it is not speci-
fied how the hardware-independent part is designed or how the mapping between
the two independent application parts is done. The most recent approaches in-
clude implementation specific details for IEC 61131 and IEC 61499 and focus on
hierarchically-structured applications. In these hierarchical and component-based
approaches, the hardware-specific components are located at the bottom of the hi-
erarchy while on the higher levels components responsible of the logic control flow
of the application are found. Authors claim that in these approaches components
are reusable at every level in the hierarchy.

In this chapter a case study is going to be carried out, in which the state of the
art approaches are going to be tested. The experiment is going to be implemented
in IEC 61499, since there are implementation-specific details for this standard
(see [19, Chapter 19], for example). However, it is sufficient to extract a generic
conclusion on the limitations of all the approaches reviewed, since regardless of the
language used (IEC 61131 or IEC 61499) all the approaches share a very similar
concept. Once that the limitations are identified in the case study, a new design
approach is going to be proposed.

31

32 3.1. Case Study: Initial Setup

Table 3.1 – Types of SFIBs used in 4diac for the case study.

Service Interface Function Blocks
RBC Read Bool Cycle
WB Write Bool
RR Read Real
WR Write Real
WLR Write LReal

3.1 Case Study: Initial Setup

The case study is carried out in a resistor sorter plant (see Figure 3.1). The
chosen IDE for the case study is Eclipse 4diac, an open source infrastructure for
distributed industrial process measurement and control systems based on the IEC
61499 standard [20]. It is available for multiple platforms: Windows, Linux and
Mac OS. The runtime environment for 4diac is called FORTE.

The resistor sorter prototype has a vibrating conveyor, which is filled with
resistors. When the conveyor is on, the resistors move up in the conveyor until
a resistor reaches the pick-up position in the conveyor (signaled by a position
sensor). When a resistor is in the pick-up position, a 3-axis manipulator with a
gripper in the bottom of its vertical axis picks up the resistor and transports it
to a measuring station. In this initial setup, the three axis of the manipulator
are driven by electric motors. The resistor is positioned by the manipulator in
a two-position turning table. This turning table rotates in order to position the
resistor under some measuring clamps. Then the measuring clamps go down to
measure the resistor. This measured value is compared against a reference value.
Once the measurement is done, the measuring clamps retract and the turning table
moves back to its initial position. Then the manipulator collects the resistor and
positions it in one of the two available storage trays, depending if the resistor is
between tolerances or not.

According to the guidelines in [18], a hierarchical composition of the plant can
be created based on mechatronic components, as depicted in Figure 3.2 (the SIFB
components on layer 0 have been omitted in this diagram).

In 4diac, the control application has been structured as depicted in Figure 3.3.
The green blocks represent SIFBs in 4diac (layer 0 components). The blue blocks
represent layer 1 FBs. Layer 0 and 1 components are grouped into SubApps (dark
grey blocks). The orange blocks represent layer 2 FBs. Layer 1 SubApps and their
corresponding layer 2 components are grouped into SubApps (light grey blocks).
Finally, the top component FB in layer 3 is represented as a yellow block. The
different SIFBs used are listed in Table 3.1.

3. Concept 33

Vibrating
Conveyor

Measuring
Station

Manipulator

Gripper
Storage
Trays

Z

X

Y

XReference
Resistor

Resistors to
be sortedZ

Y

Figure 3.1 – Overview of the initial setup of the resistor sorter.

Sorting
Station

Measurement
Station

Resistance
Meters

Measuring
Clamps

Turning
Table

Manipulator

X Axis Y Axis Z Axis Gripper Compressed
Air

Vibrating
ConveyorLayer 1

Layer 2

Layer 3

Figure 3.2 – A mechatronic component-based hierarchy for the resistor sorter.

34 3.1. Case Study: Initial Setup

WBRR RR

ResistanceSensors

WB RBC RBC

ResistanceMeasuringsClamps

WB WB RB
C

RB
C

TurningTable

MeasurementStation

AxisPTP

Manipulator

RBC WLR WB

AxisPTP

RBC WLR WB

AxisPTP

RBC WLR WB

VacuumGripper

RBC WBWB

CompressedAirResource

WB WB

VibratingConveyor

RBC
ResistorSorter

Figure 3.3 – Hierarchical structuring of the control application in 4diac.

3.1.1 Layer 1

The layer 1 includes the components that encapsulate basic hardware control op-
erations (motor or gripper controllers, for example). In IEC 61499, there is one
more layer below the layer 1, the layer 0, which includes the SIFBs that each com-
ponent in layer 1 requires in order to communicate with the real hardware. The
state of the art design guidelines suggest to encapsulate each layer 1 component
with its corresponding layer 0 SIFBs into a SubApp. Therefore, layer 0 and layer
1 constitute the hardware-dependent part of the control application.

3.1.1.1 Resistance Sensors

The function block ResistanceSensor in layer 1 controls the two resistance sensors
located in the resistor sorter: one sensor that measures the reference resistor and
another sensor that measures the resistor that has to be sorted. Through the
adapter interface AMeasurements the service offered for higher level components
is an event Measurements_Done to signal that the measurements are ready. This
event also samples the data corresponding to the two resistors (Reference_Value
and ToBeSorted_Value), which is also fed back to the higher level component.
The adapter interface also defines the requests that the component can take from
upper level components: in this case, an event Read_Values from a higher level
component commands the component to read the resistor values. The SubApp is
depicted in Figure 3.4.

3. Concept 35

Figure 3.4 – SubApp containing the ResistanceSensors FB, a layer 1 component.
The READ_REAL SIFBs (layer 0 components) read the resistor values coming from
the sensors and send them to the ResistanceSensors FB. This FB can then send
this values on command to higher level components, and its services are depicted
in the adapter interface AMeasurements.

3.1.1.2 Resistance Measuring Clamps

In the measuring station, there is a pair of measuring clamps to measure the
resistor which is in the turning table. These clamps have a pneumatic actuator
and move along the vertical axis. When a resistor in the turning table is in the
measuring position, underneath the measuring clamps, the pneumatic actuator
should make the clamps descent until contact with the resistor is made. After the
measurement is taken, the pneumatic actuator retracts the clamps back to their
initial position.

The function block ResistanceMeasuringClamps (see Figure 3.5), as a layer 1
component, only implements a very simple functionality: extending and retracting
the clamps that measure the resistor. The adapter AMeasuringClamps provides the
communication interface with higher level components. Higher level components
can request the actual position of the clamps as well as command the clamps
to retract (GoTo_InitialPosition) or extend (GoTo_Measurement). Through the
adapter the component also feeds back to upper layer components the current
position of the clamps when the position is requested, by triggering events Ini-

tial_Position and Measurement_Position.

36 3.1. Case Study: Initial Setup

Figure 3.5 – SubApp containing the ResistanceMeasuringClamps FB, a layer 1
component. The READ_BOOL_CYCLE SIFBs (layer 0 components) read the clamp
sensors, and the WRITE_BOOL SIFBs (layer 0 components) update the actuator
values. The services that the ResistanceMeasuringClamps FB offers for higher
level components are depicted in the adapter interface AMeasuringClamps.

3.1.1.3 Turning Table

The turning table in the measurement station has two possible positions. By
rotating, it moves the resistor from a pick-up position (where the manipulator can
drop it or pick it up) to a position just underneath the clamps which measure the
resistance.

The function block TurningTable works in a similar way as the FB Resis-

tanceMeasuringClamps. Through an adapter of type ATurningTable, a higher level
component can request the FB TurningTable to send back the current position
of the turning table or command the turning table to move clockwise or counter-
clockwise. The SubApp with the layer 1 component and its corresponding layer 0
SIFBs is depicted in Figure 3.6.

3.1.1.4 Manipulator Axis

The manipulator has three axes (X,Y,Z), and in the initial configuration each axis
is driven by electric motors. A function block called AxisPTP in layer 1 commands
a motor to drive its corresponding axis until a certain position is reached. For each
axis, the function is the same: go to point A and stop when point A is reached.
Therefore, the same component (AxisPTP) is used for each axis. In Figure 3.7, the
SubApp that encapsulate the control of the X axis is represented, but for the Y
and Z axis the design is exactly the same.

This layer 1 component is responsible of sending the controller of the electric
motor the coordinate of the desired position and a command to drive the motor.

3. Concept 37

Figure 3.6 – SubApp containing the TurningTable FB, a layer 1 component. The
READ_BOOL_CYCLE SIFBs (layer 0 components) read the position sensors of the
turning table, and the WRITE_BOOL SIFBs (layer 0 components) update the actuator
values of the component. The services that the TurningTable FB offers for higher
level components are depicted in the adapter interface ATurningTable.

Figure 3.7 – SubApp containing the AxisPTP FB, a layer 1 component. The READ_-

BOOL_CYCLE SIFB (layer 0 component) reads the position of the manipulator in one
axis. The WRITE_LREAL SIFB (layer 0 component) communicates with the motor
controller in order to specify the final position coordinates, while the WRITE_BOOL

SIFB (layer 0 component) commands the motor controller to start the movement.
The services that the AxisPTP FB offers for higher level components are depicted
in the adapter interface AMovement.

38 3.1. Case Study: Initial Setup

As feedback from the motor controller, the component can sense that the final
position has been reached. Through the adapter AMovement the component receives
a command to move (and the corresponding coordinate) from the upper layer. As
feedback for the upper layer, it triggers an event when the desired position is
reached.

3.1.1.5 Gripper

The resistors are picked up with a vacuum gripper that is attached to the vertical
axis (Z axis) of the manipulator. The component responsible for controlling the
basic functionality of the vacuum gripper is represented as the function block
VacuumGripper in Figure 3.8. The communication interface with the upper layer
is represented in the adapter AGripper. A higher level component can command
the FB VacuumGripper to either grip or release a component, and the component
VacuumGripper can signal to the upper layer that the component has been gripped
or released.

Figure 3.8 – SubApp containing the VacuumGripper FB, a layer 1 component. The
READ_BOOL_CYCLE SIFB (layer 0 component) reads the state of the gripper (gripped
or not gripped), and the WRITE_BOOL SIFBs (layer 0 components) command the
actuators of the gripper (suck air or flush air). The services that the VacuumGrip-

per FB offers for higher level components are depicted in the adapter interface
AGripper.

3.1.1.6 Compressed Air Resource

Compressed air has to be provided to the different pneumatic actuators. To control
the resource that provides compressed air a simple layer 1 component is needed.
The function block CompressedAirResource, depicted in Figure 3.9, provides a
simple interface to activate or deactivate the compressed air resource.

3. Concept 39

Figure 3.9 – SubApp containing the CompressedAirResource FB, a layer 1 compo-
nent. This FB is only used to activate or deactivate the compressed air resource
that feeds all the pneumatic components. The SIFB WRITE_BOOL communicates
with the actuator.

3.1.1.7 Vibrating Conveyor

At the top of the conveyor, there is an extension where the resistors are driven
to by vibrations. At the end of this extension, there is a position sensor. When
a resistor arrives at the end of the extension, the position sensor signals a "high"
value. This indicates that there is a resistor ready to be picked up and therefore,
the conveyor should stop vibrating. When the resistor is collected, the position
sensor value goes back to "low" and the conveyor will vibrate again until another
resistor reaches the desired position.

This functionality is encapsulated by the FB VibratingConveyor in Figure 3.10.
The adapter AConveyor provides the interface of the communication with upper
layer components. An upper layer component can request to get feedback about
the availability of a component through the event REQ_State and the Vibrating-

Conveyor component can then signal an event PartFeedback back to the upper
component with the corresponding status (available/not available) represented in
PartStatus.

3.1.2 Layer 2

All the layers in the hierarchy from layer 2 and up include components that are
responsible for logic control operations. Therefore, all these layers constitute the
logic part of the application, according to the state of the art guidelines. The guide-
lines also suggest to encapsulate each component in layer 2 with its corresponding
layer 1 SubApps into a single SubApp.

3.1.2.1 Measurement Station

A layer 2 component, represented as the FB MeasurementStation in Figure 3.11
controls three sub-components (each one encapsulated as a SubApp) through the
corresponding adapter interfaces: the resistor sensors, the pneumatic clamp actu-

40 3.1. Case Study: Initial Setup

Figure 3.10 – SubApp containing the VibratingConveyor FB, a layer 1 component.
The READ_BOOL_CYCLE SIFB (layer 0 component) reads the state of the position
sensor at the end of the conveyor (part in place or not), and the WRITE_BOOL

SIFB (layer 0 component) commands the actuator of the conveyor to vibrate. The
services that the VibratingConveyor FB offers for higher level components are
depicted in the adapter interface AConveyor.

ator and the turning table. A layer 3 component can request the MeasurementSta-

tion component to take a measurement by triggering the event Measure_Resistor.
On the arrival of this event, the MeasurementStation component manages its sub-
components in order to:

1. Turn the turning table when a resistor is placed by a manipulator in order
to position the resistor that is going to be sorted underneath the clamps.

2. Move the measuring clamps down to measure the resistor that has to be
sorted.

3. Measure as well the reference resistor (which is located in a static position
all the time, next to the turning table).

4. Retract the measuring clamps and turn the table back to its initial position.

When this process is finished, the MeasurementStation triggers the event Re-

sistorMeasurement_Done to signal that the measurement is done and the resistor
back at a pick-up position. This event also samples the values of the two mea-
sured resistors. The combination of this event and the two measured values serve
as feedback for an upper layer component.

3.1.2.2 Manipulator

The function of the manipulator in the current control application, from a logic
perspective, is to either perform a simple point-to-point (PTP) movement, or to

3. Concept 41

Figure 3.11 – SubApp containing the MeasurementStation FB (layer 2 component)
and the layer 1 SubApps that it controls (the measurement station controls the
turning table, the measuring clamps and the resistance sensors).

perform a PTP pick-and-place (extend vertical axis, suck component with gripper,
retract vertical axis, move to final x-y point, extend vertical axis, flush component
with gripper and retract vertical axis). These two functionalities are implemented
in the Function Block Manipulator (see Figure 3.12) , and can be requested by
an upper layer component through the events Move_PTP and PickAndPlace_PTP.
The upper layer component must also pass the coordinates of the final position
of the requested action. When one of these two actions is done, the Manipulator

triggers the corresponding event Move_Done and PickAndPlace_Done as feedback
for the upper layer component.

3.1.3 Layer 3

In this application, the top layer is the layer 3 and it includes only one compo-
nent which acts as the main coordinator. This component is encapsulated in the
function block ResistorSorter and directly controls four SubApps: one to control
the measurement station, one to control the manipulator, one to control the com-
pressed air resource and one to control the vibrating conveyor, as seen on Figure
3.13.

The functionality that this FB encapsulates is the following:

1. At initialization, it activates the compressed air resource and the vibrating
conveyor.

2. When the component is commanded to start the sorting process by triggering

42 3.1. Case Study: Initial Setup

Figure 3.12 – SubApp containing the Manipulator FB (layer 2 component) and
the layer 1 SubApps that it controls (the manipulator controls three manipulator
axes and the gripper).

the event Sort, it waits until a resistor is available at the pick-up position in
the conveyor.

3. When a resistor is available, it commands to the manipulator (which should
be located on top of the pick-up position in the conveyor at initialization)
to perform a pick-and-place action in order to carry the resistor to the mea-
surement station.

4. When a resistor arrives at the measurement station, it commands the mea-
surement station to perform the measuring action, and when the values are
received it calculates if the resistor is between tolerances.

5. Commands the manipulator to perform a pick-and-place action in order to
carry the resistor from the measurement station into the corresponding stor-
age tray (and its corresponding position in the storage tray, with nine posi-
tions in total each).

6. Commands the manipulator to perform a PTP movement back to the initial
position (above the pick-up position in the conveyor) after placing the resistor
in a storage tray.

The component provides feedback to the operator, by triggering an event Sort-
ing_Done every time that a resistor is sorted, an event Tray_Full when one storage

3. Concept 43

tray is full (in this case also the sorting process is ended) and also displays the num-
ber of resistors that where under tolerances (GoodResistors) or outside tolerances
(BadResistors).

Figure 3.13 – View of the complete control application. The ResistorSorter FB
(layer 3 component) is the main coordinator of the control application.

3.2 Case Study: Change in the Setup
In this new setup for the case study, the electrical motor that drives the vertical
axis (Z axis) of the manipulator is replaced by a pneumatic cylinder (see Figure
3.14). Since the logic of the control application remains exactly the same, the
goal is to see how a change in hardware affects the components of the control
application. The hierarchical composition in the application stays the same as
well. After rebuilding the control application, the components that needed to be
changed are listed in the following subsections. The rest of the components remain
the same as in the initial setup.

3.2.1 Layer 1

The FB AxisPTP is no longer valid for the Z axis. Even though the logic keeps being
the same, a different FB interface is need due to how each hardware component
works. In Figure 3.15, we can clearly see how the interfaces are not compatible
(different number of sensors/actuators and different data types), and therefore, we

44 3.2. Case Study: Change in the Setup

Y

Vibrating
Conveyor

Measuring
Station

Manipulator

Gripper
Storage
Trays

Z

X
Pneumatic
Cylinder

Figure 3.14 – Overview of the new setup, where the vertical axis electric motor
has been swapped by a pneumatic actuator.

cannot reuse the component AxisPTP. A new FB had to be created, AxisPneumatic,
since the used pneumatic cylinder cannot take coordinates to move. Also a new
adapter ACylinder was needed, since the services offered by this component are
also different. The different adapter interface implies a different service offered to
the higher level components. As a consequence, the higher level components will
have to adapt to this new services.

3.2.2 Layer 2

The FB Manipulator is also no longer valid. This time, the changes in the interface
are not that severe (see Figure 3.16): we no longer need the coordinates for the
Z axis as an input and the adapter type for the Z axis has also changed, which is
now of type ACylinder. However, parts of the internal code of the component have
to be modified (states, transitions, and algorithms), because the Manipulator FB
was programmed to work with coordinates, but now in order to control the Z axis
it needs to deal with "extend" and "retract" actions.

3.2.3 Layer 3

The FB ResistorSorter is, again, no longer valid. This time also, the changes in
the interface are minimal since we are not longer passing coordinates for the Z Axis
to the components in lower layers (see Figure 3.17). However, as with the Manipu-

lator FB, parts of the internal code of the component have to be modified (states,

3. Concept 45

(a) AxisPTP FB. (b) AxisPneumatic FB.

Figure 3.15 – Incompatible layer 1 component interfaces.

transitions, and algorithms), because the ResistorSorter FB was programmed to
work with coordinates, but now coordinates are no longer needed for the Z axis.

(a) Manipulator FB. (b) ManipulatorPneumatic FB.

Figure 3.16 – Incompatible layer 2 component interfaces.

(a) ResistorSorter FB. (b) ResistorSorterPneumatic FB.

Figure 3.17 – Incompatible layer 3 component interfaces.

46 3.3. Conclusions of the Case Study

3.3 Conclusions of the Case Study

The goal of the case study was to test if the current component-based design
approaches for industrial control systems success in achieving truly reusable and
modular applications, where hardware and control logic are decoupled. The con-
clusions of this case study can answer the Research Question 1.

As seen with this simple example, hardware and logic are still mixed together.
The hardware implementation was changed (electric motor driven axis replaced
by pneumatic cylinder) while the logic stayed the same. This change in hardware
affected all the layers in the application, leaving the initial control application
useless. The FBs that had to be modified (both the interface and the ECC)
in order to work with the new pneumatic actuator were: AxisPTP, Manipulator

and ResistorSorter. Basically, the fact that a pneumatic cylinder does not work
with coordinates required to change the Manipulator and ResistorSorter FBs,
since these two components where implemented with coordinates for positioning.
As represented in Figure 3.18, all the layers in the hierarchy were affected by a
hardware change, even though the control logic of the application remained the
same.

Sorting
Station

Measurement
Station

Resistance
Meters

Measuring
Clamps

Turning
Table

Manipulator

X Axis Y Axis Z Axis Gripper Compressed
Air

Vibrating
Conveyor

Figure 3.18 – The components marked with a circle could not be reused after the
hardware change in the vertical axis of the manipulator.

It is clear that there is still something missing in order to achieve truly modu-
lar and reusable applications. The ‘what’ or logic is still coupled with the ‘how’ or
implementation, at least in the higher layers of the component hierarchy. Some-
thing is missing to further decouple the ‘what’ and the ‘how’, so changes in the
implementation only require minimal reconfiguration at software level, and do not
require any modifications on logic-only components. Since different hardware of-
ten require the same logic, decoupling these hardware components from their logic
control components would enable full component reuse.

3. Concept 47

3.4 Proposed Design Approach

The most important aspect for component reuse in industrial automation control
applications is hardware and logic independence. This means that the whole con-
trol logic must be able to be defined in a complete hardware-independent way, in
order to be able to reuse this components in other applications where the logic
needed is the same, but the hardware or physical plant configuration has changed.
So far, we have seen with the experiment in the resistor sorter (Sections 3.1, 3.2,
and 3.3) that there are still hardware-specific parameters in higher level compo-
nents in the hierarchy. Thus, in this thesis a methodology is presented with the
aim of achieving two completely independent parts (a logic part and a hardware-
dependent part) that can then be "glued" together under deployment depending
on the plant configuration and hardware used.

This approach has a MDA-like architecture as other concepts that were re-
viewed in Section 2.5.1, since it divides the control application into two different
parts: a logic part or PIM and a hardware-dependent part or PDM. These two
parts are then mapped or coupled together in order to obtain the specific con-
trol application (see Figure 3.19). The corresponding hierarchical composition is
depicted in Figure 3.20. In contrast to the state of the art approaches, a new
intermediate layer has been introduced in the hierarchy, the coupling or transla-
tion layer. A control application designed following this approach can therefore
be divided into three parts:

• Logic Part

This part of the application includes all the components from layers 2 and
up. Components in this part of the application should totally define the
control logic of the application. As mentioned before, no hardware-related
parameters are allowed in this part, these components must be completely
decoupled from the specific hardware used. It is proposed to use symbolic
names, as a string data type for example, to represent positions or other
parameters that could be easily coupled to hardware in these higher levels
in the hierarchy. The idea is to have a control flow that is defined in a very
high level and simple language, similar to human language. For example, a
command could be send to a manipulator to move to a certain position as
"move to positionA", being positionA a string.

• Hardware-Dependent Part

Components at the bottom of the hierarchy (layer 1) are hardware-dependant.
These components implement hardware control operations. For example, a
FB in this layer could be an electric motor controller.

48 3.4. Proposed Design Approach

• Coupling or Translation Layer

Between the logic part and the hardware-dependent part there must be an
intermediate layer that couples both parts, which are completely indepen-
dent between them. Otherwise, the communication between the logic and
hardware-dependent parts is not possible, since the FB interfaces of both
parts will not match. In order to reduce reconfiguration times when there
is a change in hardware or in the physical plant configuration (reallocation
of different stations, dimension increase/decrease, etc.), it is also proposed
that this components in the coupling layer are not defined following IEC
61131-3 or IEC 61499 coding standards. To reduce complexity, a very sim-
ple Domain-Specific Language (DSL) should allow the user to provide just
the minimal information required for the coupling, such as type of logic and
hardware to couple and a translation between symbolic names used in the
logic part of the application and their corresponding hardware-dependent
parameters. Then, code is generated out of this definition for the specific
implementation (IEC 61131 or IEC 61499) in order to create the required
FBs for this coupling.

����� �
�	� ���
���� �
�	�

�������� �
���
� �� 	 ���

��������

���
���� �	�
�
�� �����
�����

�	�	�
�
��
��	���	����

��
�

�

�

�	
���

�

Figure 3.19 – A MDA-like approach, with two independent application parts, the
PIM and the PDM. These two parts can be coupled together in order to obtain the
specific control application. The necessary information for the coupling is defined
in a DSL, and code is automatically generated out of this definition in order to
perform the coupling.

The design flow shall start with the design of the logic part of the application.
Then at deployment, hardware components are added to the application and both

3. Concept 49

���	� �� �
���
��
������� ����
�����

������

����
������

���	�

���	� �� �������
����
�� �������������

���	� � �
��
�������
���

�
��

�
�

��
��

	�
�

�

�

��

�

��
�

��
��

��
��

�

��

��
�

�
�

Figure 3.20 – A view of the proposed hierarchy. The bottom layer components
are hardware-dependent, while layer 2 and higher layers only contain control logic.
A new intermediate layer between layer 2 and layer 1 performs the necessary
translations in order to couple both parts of the application.

parts are coupled, providing the minimal information necessary for this coupling
through the DSL.

CHAPTER 4

Implementation

The concept presented in Section 3.4 is going to be implemented in this chapter for
IEC 61499. Furthermore, the creation of the function blocks for the new coupling
layer, the domain-specific language and the code generation are detailed in this
chapter for the two cases that were presented for the resistor sorter plant described
in Chapter 3 (using an electric motor or a pneumatic cylinder to perform a linear
movement in one axis). It is shown as well how the concept from Section 3.4 can
be totally integrated in the Eclipse 4diac IDE for IEC 61499.

4.1 Implementation-Specific Details in IEC 61499

With respect to the generic concept presented in Section 3.4, the specific imple-
mentation for IEC 61499 implies the presence of an additional layer, the layer
0. Unlike in IEC 61131, in IEC 61499 IO writing and reading is performed in a
special type of FB called SIFB. These SIFBs will be allocated to layer 0, while the
components in the other layers will always be regular FBs (either BFBs or CFBs).
The hierarchy for IEC 61499 is depicted in Figure 4.1.

Another important aspect of an IEC 61499 implementation is the use of the
adapter concept for communication between components of different hierarchy
levels. The goal of this new intermediate layer is to couple the logic and hardware-
dependant parts of the application. For an IEC 61499 application, what has to be
coupled are two different adapter interfaces. A component in this coupling layer
shall be able to translate the commands coming from an adapter interface in layer
2 so that the adapter interface in layer 1 can understand these commands. For
example, a component in layer 2 might issue a command to a motor controller
component in layer 1 like this: "go to position posX1". Since the message is

51

52 4.2. Developed Coupling/Translation FBs

�	�
� �� �
�
�
��
������� ����
�����

����
������	��
	����
�	�
�

�	�
� �� ����
��
����
�� �������������

�	�
� � �
��
����
��
���

��
��

�
	

��
�

�

�

�
��

�
��

��

�

��
	

��

�	�
� �� �
�
�
��
������
���

Figure 4.1 – A view of the proposed hierarchy for IEC 61499 applications.

coming from the logic part of the application, the adapter interface (seen as a
socket) of the component in layer 2 will have at least two outputs, one to send an
event that commands the movement and a data output containing the symbolic
name of the position as a string. On the other hand, the adapter interface (seen
as a socket) of the motor controller in layer 1 is not exactly the same. It will have
as well an event to command the start of the movement but the data output will
be of a different data type, for example a real number, since a motor controller
would require some coordinates for the movement. The components in this new
intermediate layer will therefore perform a translation between different adapters,
so that a coordinate can be associated to a symbolic name in this example. The
FB interface of these components is very simple, with just an adapter socket as
input (with the adapter type used by the component in layer 2) and an adapter
plug as output (with the adapter type used by the component in layer 1). This
idea is depicted in Figure 4.2.

4.2 Developed Coupling/Translation FBs
For this thesis two FBs have been created for this new intermediate layer, which
cover all the translations needed for the resistor sorter prototype available for
tests. The first one performs a translation between an adapter interface for a linear

4. Implementation 53

Layer 2 Layer 1

Logic >> >> Logic Hardware >> >> Hardware

Coupling/Translation Layer

Figure 4.2 – The coupling between layers 2 and 1 in IEC 61499. The communica-
tion is performed via adapters. The coupling FBs only have one adapter input or
socket and one adapter output or plug in their interfaces.

movement in one axis (or rotation around one axis) and an adapter interface for
an electric motor controller. The second one performs a translation between the
same previous logic (movement in one axis or rotation around one axis) and an
adapter interface for a pneumatic cylinder controller. In this implementation, the
adapter interface for a simple linear movement along one axis or rotation around
one axis is depicted in Figure 4.3.

4.2.1 Coupling With an Electric Motor

An electric motor controller will provide an adapter interface similar to the one
depicted in Figure 4.4. The FB able to couple a component with the adapter
interfaces in Figure 4.3 to a component using the adapter in Figure 4.4 must be
able to translate symbolic position names (string data type) into coordinates (lreal
data type). The ECC of the FB created for this purpose is depicted in Figure 4.5.
As seen, the ECC is very simple, with only one algorithm: stringTOlreal. This
algorithm defines which coordinate corresponds to which symbolic name used for
positioning in the logic part of the application. With this FB, an event ToPosition
which is sent along with data of type string from a component in layer 2 will
be translated into an event GoTo_Position along with data of type lreal for a
component in layer 1.

54 4.2. Developed Coupling/Translation FBs

Figure 4.3 – The adapter interface for a logic movement in one axis or around
one axis. A component implementing this interface can command a lower-level
component to move to a certain position, and expects some feedback when the
movement is done.

Figure 4.4 – An adapter interface for an electric motor controller. A motor con-
troller component can take a command to drive the motor until a specific position
is reached. It can also communicate higher-level components that the position has
been reached.

Figure 4.5 – ECC of the FB used to couple a logic movement with an electric
motor controller. When a component in layer 2 commands a movement through
the AAxisLogic adapter interface, the state Translate is reached, in which the
necessary translation between symbolic names and coordinates is performed and
communicated to the hardware component.

4.2.2 Coupling With a Pneumatic Cylinder

The adapter interface designed for a pneumatic cylinder controller is depicted in
Figure 4.6. In this case, the ECC of the FB designed to translate the interface
depicted in Figure 4.3 for a linear movement into the interface that a pneumatic
cylinder would require is depicted in Figure 4.7. In this case the ECC does not

4. Implementation 55

contain any algorithm. It simply checks the symbolic name in a transition, to
decide whether to command an Extend or Retract event. With this FB, an event
ToPosition which is sent along with data of type string from a component in layer
2 will be translated into an event Extend or Retract for a component in layer 1.

Figure 4.6 – An adapter interface for a pneumatic cylinder controller. A cylinder
controller component can take a command to extend or retract the cylinder, and
communicate to higher-level components when each action is done.

Figure 4.7 – ECC of the FB used to couple a logic movement with a double acting
pneumatic cylinder. Depending on the symbolic position name sent through the
AAxisLogic adapter interface, either an Extend or Retract state is entered. The
direct jump between START and the ExtDone or RetDone states on the right is
a safety feature to avoid deadlocks.

As seen, adapter interfaces are in fact a way to define an interaction protocol
between two entities. The FBs in this new intermediate layer provide the necessary

56 4.2. Developed Coupling/Translation FBs

Table 4.1 – Functions and their corresponding big-O notation.

Notation Name
O(1) constant
O(log(n)) logarithmic
O(n) linear
O(n2) quadratic
O(cn) exponential

information in order to translate one interaction protocol into a different one, so
that the logic and hardware parts of the application can be coupled together and
information can flow between each other.

4.2.3 Translation Algorithm Complexity

When evaluating an algorithm or piece of code, a differentiation has to be made
between performance and complexity. Performance relates to the amount of time,
memory, and disk used when a program runs, and therefore depends on the ma-
chine, compiler, and code. On the other hand, complexity refers to how a program
or algorithm scale when the problem being solved gets larger. Complexity affects
performance but not the other way around [21].

Big-O notation is a symbolism used in different fields like computer science to
describe how fast a function grows or declines. Complexity can be expressed using
big-O notation. A list of functions usually encountered when analyzing algorithms
can be found on Table 4.1.

The FB responsible of coupling a one-axis movement and an electric motor
controller might have to implement multiple translations between symbolic names
and coordinates. The algorithm responsible of this translation is stringTOreal in
Figure 4.5. For a simple view on how this stringTOreal algorithm is implemented
in 4diac, let us consider the piece of code in Figure 4.8, where four translations
are performed.

This implementation is not ideal, since an if-else chain is usually O(n), because
having n conditions means that for the worst case there are n comparisons being
made. On the other hand, a switch statement could (depending on the compiler)
reduce the complexity down to O(1). Whether or not the complexity is reduced, a
switch statement is easier to read and understand. However, the switch statement
cannot be used with strings in some programming languages, including ST from
IEC 61131-3 (which is the only language fully supported in 4diac for algorithm
definitions at the moment), or C++. A way around this could be to use an enum

4. Implementation 57

IF Logic_Interface.Position = "measurementX" THEN

Hardware_Interface.Final_Position := 910.2;

ELSIF Logic_Interface.Position = "measurementY" THEN

Hardware_Interface.Final_Position := 153.5;

ELSIF Logic_Interface.Position = "initialX" THEN

Hardware_Interface.Final_Position := 222.9;

ELSIF Logic_Interface.Position = "initialY" THEN

Hardware_Interface.Final_Position := 178;

END_IF;

Figure 4.8 – Example of the stringTOreal algorithm written in the ST language,
performing four translations.

and then map the strings to the enum values, so that the switch statement can
be used with the numeric enum values. Unfortunately, enums are not supported
in 4diac at the moment.

Then, it has to be considered that everytime a condition is checked, there is a
string comparison. A string comparison has a complexity O(n) for the worst case
scenario:

• If the two objects are the same the result is immediate and only one operation
is required. The complexity is therefore O(1).

• If the two strings have different lengths, they cannot be equal, and the com-
plexity is O(1) as well.

• If the two strings have the same length, n characters have to be compared
one by one until two characters are different, and the complexity is therefore
O(n) for the worst case scenario.

Considering the string comparison and the if-else chain, this algorithm stringTO-

real has a quadratic complexity for the worst case scenario.

4.3 Development of a Domain-specific Language
(DSL)

The Xtext framework [22] allows to define a custom language using a powerful
grammar language. Furthermore it provides a full infrastructure, including parser,
linker, typechecker, compiler, as well as editing support for Eclipse. Xtext is the

58 4.3. Development of a Domain-specific Language (DSL)

chosen tool to develop a simple language for this project. For more information
about Xtext and DSLs, please refer to [23].

The main reason for having a DSL in this component-based design approach is
to simplify the creation of the FBs that are responsible for the translation of logic
control commands into hardware-specific commands. Instead of having to hard-
code the translation for each specific case where this coupling is required in our
application, a DSL allows the programmer to just type in a very simple way the
minimal information necessary for the translation. The structure of this language
should be very simple: the user can introduce the type of logic and hardware
components to be coupled. According to the type of hardware selected (pneumatic,
hydraulic, electric, etc...) the user should introduce additional information in
order to link the symbolic names used in the logic part of the application with the
information that the specific hardware requires (coordinates in case of using an
electric-motor based positioning system or "extend" and "retract" actions in case
of using a pneumatic cylinder, for example).

logic movement

hardware electric axistranslation1 {

posX1 = 123.0

posX2 = 21

posY1 = 421.2

posY2 = 231.2

}

Listing 4.1 – Coupling with electric motor defined in the DSL.

logic movement

hardware pneumatic axistranslation2 {

posZ1 = extend

posZ2 = retract

}

Listing 4.2 – Coupling with pneumatic cylinder defined in the DSL.

Once that the grammar of the language is defined, Xtext provides an editor
for the custom DSL with syntax highlighting and auto-completion. The code of

4. Implementation 59

the grammar definition for the DSL is listed in Appendix A. For this project, only
a translation between one type of logic (a linear movement in one axis or rotation
around one axis) and two types of hardware (an electric motor and a pneumatic
cylinder) have been considered, as they represent all the different possible reconfig-
uration cases in the prototype available for tests during the thesis work. Therefore,
the developed grammar only takes into account these cases. Examples of this lan-
guage are depicted in Figures 4.1 and 4.2. As seen in Figure 4.1, the user has
to first specify the type of logic and hardware to be coupled. First, the user can
type the keyword logic followed by the type of logic, which for the grammar de-
signed can only be movement meaning a linear movement in one axis or a rotation
around one axis. Then the user has to introduce the keyword hardware followed
by the type of hardware used, which for this project can be electric, meaning that
an electric motor is the hardware used, or pneumatic as in Figure 4.2, meaning
that a pneumatic cylinder is used. Following the type of hardware, the user has
to introduce the name of the FB type that will perform the desired coupling or
translation. Depending on the type of hardware selected, the grammar is defined
to request different type of information to the user. If the electric type is selected,
then the user shall introduce the symbolic name of the position used in the logic
part of the application, followed by the = symbol and the corresponding coordinate
needed by the motor controller, which must be an integer or a real number. The
user can introduce as many associations between symbolic names and coordinates
as needed. On the other hand, if the type of hardware used is pneumatic, the user
shall introduce the symbolic name for the position towards which the pneumatic
cylinder has to extend, followed by the = symbol and the keyword extend. The
same has to be done for the position towards which the cylinder should retract
(the order does not matter, the user can also define the retract action first).

4.4 Code Generation

The main goal of introducing a DSL to specify the minimum information required
for the translation is to save the control application designer from manually coding
the translation FB each time that a physical reconfiguration in the plant happens
(while the control logic stays the same). Therefore, the information introduced in
this DSL has to be translated into code to create the necessary FB.

The Xtext framework provides code generation capabilities. The code gener-
ator for the created DSL is a program written in the Xtend language. Xtend is
a modernized Java, as defined by its authors [24]. Using Xtend, a code generator
has been implemented for the defined DSL grammar. This means that, depend-
ing on the user input in the defined DSL, a FB will be automatically generated
to couple or glue the selected logic and hardware. Since the implementation is

60 4.5. Integration in Eclipse 4diac

carried out for IEC 61499, the generated FB will be a BFB according to the IEC
61499 standard, and will only have one input and one output (an adapter socket
to connect with the logic part of the application and an adapter plug to connect
with the hardware-dependant part of the application).

Basically, what has to be coded to define a FB in IEC 61499 is the ECC.
A code written in the DSL such as that listed in Figure 4.1 will generate a FB
with the ECC depicted in Figure 4.5. In this translation FB for an electric motor,
the only thing in the ECC code which is dependent on the DSL input is the
algorithm stringTOlreal. During code generation, the corresponding algorithm
will be created depending on the information provided by the user (which symbolic
name is equal to which coordinate). If working with a pneuamtic cylinder, A code
written in the DSL such as that listed in Figure 4.2 will generate a FB with the
ECC depicted in Figure 4.7. In this case, the only parameters in the ECC that
are dependent on the user input are the symbolic names that are checked for
transitions, which in this example are the names posZ1 and posZ2.

It is clear that for such automatic generation of FBs to work, the types of
logic and hardware interfaces have to be, in some way, standardized. The reason
for this is that the adapter interfaces have to be known for the code generation
program. In this project, the adapter interfaces used are depicted in Figures 4.3,
4.4 and 4.6.

Once that the code generator is done, everytime that a file that is created with
the DSL extension is saved, a folder called translation is created under the same
root with the generated FBs. The grammar and code generator are programmed
in such away that they allow the user to define multiple FBs coupled with the same
type of logic at once, and a single FB will be generated per hardware definition.
The Xtend code for the code generator is listed in Appendix B.

4.5 Integration in Eclipse 4diac

Both the Xtext framework and the 4diac IDE are integrated into the Eclipse
platform. This allows to generate a plugin out of a Xtext project created in an
Eclipse version with the Xtext SDK installed that can then be installed into the
Eclipse 4diac IDE, allowing us to create a DSL file inside a project in 4diac (under
Type Library).

Once that the plugin is installed in Eclipse 4diac, a file created with the same
file extension as the one defined for our DSL in Xtext will automatically generate
the required coupling or translation FBs on save.

4. Implementation 61

4.6 Case Study: Initial Setup
The prototype used for the implementation of the suggested design methodology
is the same as in Chapter 3. Therefore, a hierarchical mechatronic component-
based decomposition as the one presented in Figure 3.2 is still valid. The resistor
sorter architecture was well defined in Figure 3.1, and a real image of the actual
prototype is depicted in Figure 4.9. As in Chapter 3, first the case were the vertical
axis of the manipualtor is driven by an electric motor is considered.

Figure 4.9 – View of the resistor sorter prototype.

For the actual hierarchical composition in Eclipse 4diac, see Figure 4.10. As in
Figure 3.3, the yellow component represents a layer 3 FB, orange components rep-
resent layer 2 FBs, blue components represent layer 1 FBs and green components
represent layer 0 SIFBs. Moreover, some components could be grouped into Sub-
Apps as it was shown in Chapter 3. However, the hierarchical structuring in 4diac
(see Figure 4.10) is going to be different than that in Chapter 3 (see Figure 3.3).
Applying all the guidelines from Chapter 3 and the previous sections in this chap-
ter, the control application will have two completely independent parts, as seen on
Figure 4.10 (note that in this figure the intermediate layer with the necessary FB
to couple both parts is not represented). With respect to the approach in Chapter
3, some changes that were made in order to emphasize the hardware-dependant
components can already be seen:

• Since the hardware technology for the measuring clamps and the turning
table is in fact, the same, both components can use the same FB type.
These two mechatronic elements are actuated by double-acting pneumatic
cylinders, controlled by 2-solenoid 5/3 valves, and have two position sensors

62 4.6. Case Study: Initial Setup

each (see Figure 4.11 for a schematic view of the type of cylinder and valve
used). Therefore, both mechatronic elements will be now represented by the
same FB type in the control application: DA_53Valve_2Solenoid.

• The FB block type that was previously called AxisPTP in Chapter 3 is now
called Servomotor, to emphasize that it encapsulates a controller for a ser-
vomotor and therefore it is a completely hardware-dependant component.

MeasurementStation Manipulator

ResistorSorter

WBRR RR

ResistanceSensors

WB RBC RBC

DA_53_Valve_2_Solenoid

WB WB RB
C

RB
C

DA_53_Valve_2_Solenoid Servomotor

RBC WLR WB

VacuumGripper

RBC WBWB

CompressedAirResource

WB WB

VibratingConveyor

RBC

Servomotor

RBC WLR WB

Servomotor

RBC WLR WB

LLooggiicc PPaarrtt

HHaarrddwwaarree--ddeeppeennddeenntt PPaarrtt

Figure 4.10 – Hierarchical structuring of the control application in 4Diac.

(a) A double-acting cylinder. (b) A 5/3 pneumatic valve.

Figure 4.11 – Pneumatic hardware used for the vertical axis of the manipulator,
the measuring clamps and the turning table.

4. Implementation 63

4.6.1 Logic Part

The logic part of the control application for the resistor sorter includes the layer
2 and the layer 3 components. These components, represented as IEC 61499 FBs
are: ResistorSorter (layer 3), MeasurementStation (layer 2) and Manipulator

(layer 2).

4.6.1.1 Manipulator

This FB implements the same control logic that was defined Section 3.1.2.2. How-
ever, in this new approach the FB Manipulator, both its interface and ECC, have
been modified (the interface is depicted in Figure 4.12). Now the Manipulator FB
is completely hardware-independent. In order to achieve this independence from
hardware, all the positions towards which the manipulator is commanded to move
are represented by symbolic names as a string data type.

Figure 4.12 – Interface of the Manipulator FB.

The communication with lower level components is represented by the plugs
X_Axis, Y_Axis, Z_Axis and Gripper. The first three plugs are of type AAxisLogic,
whose interface was depicted in Figure 4.3. The communication between these
three plugs and the three hardware-dependent components’ sockets is not direct.
A translation in between will be necessary via three translation/coupling FBs, as
will be detailed in Section 5.1. For the last plug, the adapter type is AGripper and
no translation will be necessary with the hardware-dependant component in layer
1 (the gripper controller).

4.6.1.2 Measurement Station

Again, this FB implements the same control logic that was defined Section 3.1.2.1.
However, in this new approach the FB MeasurementStation, both its interface and
ECC, have been modified (the interface is depicted in Figure 4.13), in order to
decouple its control logic from the hardware used to implement it. The strategy

64 4.6. Case Study: Initial Setup

is the same as with the Manipulator FB, all the positioning-related commands are
represented as symbolic names, or more precisely, as a string data type. Positioning
is needed for both the measuring clamps and the turning table control.

Figure 4.13 – Interface of the MeasurementStation FB.

The communication with lower components is represented by plugs, two of
which are of type AAxisLogic, since the logic for the measuring clamp is a linear
movement along the Z axis and the turning table’s logic is a rotation around the
Z axis.

4.6.1.3 Resistor Sorter

This FB is the top component in the hierarchy, the main coordinator. The logic
that this ResistorSorter FB implements is the same as in Section 3.1.3. However,
again the interface and ECC had to be modified. Previously, the component stored
the coordinates of all the positions and passed them down in the hierarchy to
other components. Since this obviously coupled the component with the hardware
used, now all the positions are symbolic names stored as strings. The new FB
interface is depicted in Figure 4.14. The ECC of this FB is shown in Figure 4.15.
The goal of showing the ECC is to give an example of how the logic of this FB
was decoupled from the hardware by using symbolic names. Therefore, there is
no detailed explanation of the ECC, which is in fact very simple and it lacks
functionalities that would be required on a real industrial application like fault
protection.

To give an example about how the decoupling from hardware was implemented
in this FB, see Figure 4.16, which contains the algorithm passPosition associated
to the state Pass in the ECC. As seen, the positioning of each storage spot in a
tray is not attached to coordinates in this FB, which would already couple the
application to the type of hardware used. By using symbolic names like "passX1"
the FB is kept hardware-independent and can therefore be reused in this control
application no matter what kind of hardware is used for positioning, or even if

4. Implementation 65

Figure 4.14 – Interface of the ResistorSorter FB.

the configuration of the plant changes and the coordinates of each element are no
longer the same.

4.6.2 Hardware-Dependent Part

The hardware-dependent part of the control application for the resistor sorter
includes the layer 0 and the layer 1 components. In total, there are six different
FB types for the layer 1: DA_53Valve_2Solenoid, Servomotor, ResistanceSensors,
VacuumGripper, CompressedAirResource, and VibratingConveyor. Of these six FB
types, the last four are exactly the same as in Section 3.1.1 and therefore are not
explained here again. The SIFB types are also the same as the ones used for the
experiment in Chapter 3.

4.6.2.1 Double Acting Cylinder

The turning table and the measuring clamps in the measuring station are both
driven by a double acting cylinder. This type of pneumatic actuator is controlled
by a 5/3 valve with two solenoids in the prototype. For this reason, in this section
it has been decided to use a single FB type for both mechatronic components, since
the underlying hardware is the same. The ECC of this FB is essentially the same as
in the FBs ResistanceMeasuringClamps and TurningTable of Section 3.1.1. Only
the interface nomenclature and the adapter type for the socket, which is now of
type ACylinder as in Figure 4.6, have been changed. In Figure 4.17 the SubApp for
the turning table control is depicted, containing the DA_53Valve_2Solenoid type
FB and its corresponding layer 0 SIFBs.

66 4.6. Case Study: Initial Setup

Figure 4.15 – ECC of the ResistorSorter FB, control flow from bottom to top.

4. Implementation 67

Figure 4.16 – Algorithm passPosition of the ResistorSorter FB.

Figure 4.17 – SubApp containing the DA_53Valve_2Solenoid FB.

4.6.2.2 Servomotor

The Servomotor FB encapsulates a servomotor controller. It can be thought of
as a "black box" that provides an interface for the rest of the control application
through its socket Controller_Interface, of type AMotor, which was presented in
Figure 4.4. In this FB only the interface nomenclature has been changed with
respect to the FB AxisPTP in Section 3.1.1, in order to emphasize that this compo-
nent is hardware-dependent and can be reused for the same hardware equipment.

68 4.6. Case Study: Initial Setup

Table 4.2 – List of components of the logic part.

Component Layer FB Type
Sorting Station 3 ResistorSorter

Measurement Station 2 MeasurementStation

Manipulator 2 Manipulator

In this case, all the three manipulator axes are driven by electric motors and there-
fore all of them require a Servomotor FB. In Figure 4.18 the SubApp for the control
of the X axis is depicted.

Figure 4.18 – SubApp containing the Servomotor FB.

4.6.3 Coupling

Once that the logic part of the control application is designed and tested, it can
be coupled to the hardware-dependent part. The connection between these two
independent application parts will be defined in the DSL that was created for this
project.

4.6.3.1 The Logic Part

The components that belong to this part of the application are listed in Table 4.2
(the notation used for the components is the same as in Figure 3.2). The complete
logic part of the control application in 4diac is depicted in Figure 4.19.

4. Implementation 69

Figure 4.19 – The logic part of the control application in 4diac, with the two
components from the layer 2 on the right and the main coordinator component in
layer 3 on the left.

4.6.3.2 The Hardware-Dependent Part

In Table 4.3 all the components that belong to the hardware-dependent part of
the application are listed (the notation used for the components is the same as in
Figure 3.2). The table also provides information about the component which is
right above in the hierarchy and whether or not a translation is needed in order
to couple these components to the logic part of the application.

4.6.3.3 Coupling with the DSL

The last step of the control application is to couple the hardware-dependent and
logic parts. As Table 4.3 reflects, for some components no intermediate layer
is needed in order to couple them with the logic part. On the other hand, for
other components this new intermediate layer is necessary in order to perform
the required translation between logic and hardware-specific parameters. This
translation is going to be performed in Eclipse 4diac through the DSL defined in

70 4.6. Case Study: Initial Setup

Table 4.3 – List of components of the hardware part.

Component FB Type Component
above

Translation
needed?

Resistance
Meters

ResistanceSensors
Measurement
Station No

Measuring
Clamps

DA_53Valve_2Solenoid
Measurement
Station Yes

Turning
Table

DA_53Valve_2Solenoid
Measurement
Station Yes

X Axis Servomotor Manipulator Yes
Y Axis Servomotor Manipulator Yes
Z Axis Servomotor Manipulator Yes
Gripper VacuumGripper Manipulator No
Compressed
Air

CompressedAirResource
Sorting Sta-
tion No

Vibrating
Conveyor

VibratingConveyor
Sorting Sta-
tion No

Section 4.3.
As the extension for this DSL was chosen to be ".translation", a file created

in 4diac with this extension allows the user to type the necessary information for
each translation. In Figure 4.20, the necessary translations for this specific control
application are represented. After saving the ".translation" file, four FB types are
automatically generated under the folder "translation": AxisTranslationXY (used
for the components X Axis and Y Axis), AxisTranslationZ (used for the compo-
nent Z Axis), TurningTableTranslation (used for the component Turning Table)
and MeasuringClampsTranslation (used for the component Measuring Clamps).
As mentioned in Section 4.1, the interface of the FB generated for the coupling is
very simple (see Figure 4.21 for example).

Once that the necessary FBs have been generated, the connection between
the logic and hardware parts when a translation is necessary is very straightfor-
ward. An example of this connection is depicted in Figure 4.22, where the layer
2 FB Manipulator could be encapsulated in a SubApp along with its lower level
components in the hierarchy. In Figure 4.22 the new intermediate layer is very
clear, made up of three FBs (one per manipulator axis) since these are the three
components that require a translation between symbolic names in the logic part
of the application and hardware-specific parameters in the hardware-dependent

4. Implementation 71

Figure 4.20 – Defining the translation with the DSL in 4diac. After saving the file,
four coupling FBs are automatically generated under the folder translation.

Figure 4.21 – Interface of a translation FB in 4diac.

part of the application. For the Gripper component no translation is necessary
and it corresponding SubApp can be connected straight to the Manipulator FB
through the corresponding adapter. In Figure 4.23, the connection between the
MeasurementStation and its subcomponents is shown.

The whole control application, with the logic and hardware-dependant parts
coupled together is depicted in Figure 4.24. From left to right, we have the layer
3, layer 2, coupling intermediate layer and the layer 1 components (encapsulated
in a SubApp with their respective layer 0 SIFBs).

4.7 Case Study: Change in the Setup

As in Section 3.2, the vertical axis actuator in the manipulator is going to be
replaced with a double-acting pneumatic cylinder. With the new design approach,
no changes are needed now in the components ResistorSorter and Manipulator,
since they are now decoupled from the hardware implementation.

In the hardware-dependent part, the change only affects the Z axis component.
The new SubApp for this component is depicted in Figure 4.25. The new layer
1 FB needed is DA_53Valve_2Solenoid_NS. This FB is almost the same as DA_-

72 4.7. Case Study: Change in the Setup

Figure 4.22 – SubApp containing the Manipulator component and its subcompo-
nents.

Figure 4.23 – SubApp containing the Measurement Station component and its
subcomponents.

53Valve_2Solenoid. The only difference is that this one controls a pneumatic
cylinder without position sensors, and therefore uses a delay to estimate when the
cylinder has reached the desired position.

Since the hardware used for the Z axis has changed, a new translation is
needed. Following the same procedure as in Figure 4.20, the code listed in Figure
4.3 is used in order to generate the FB AxisTranslationZPneumatic. This is the

4. Implementation 73

Figure 4.24 – View of the complete control application. From left to right: layer
3, layer 2, coupling layer and layer 1.

FB that will be used for this translation instead of the FB AxisTranslationZ used
previously, when the Z Axis was driven by a servomotor.

74 4.7. Case Study: Change in the Setup

Figure 4.25 – SubApp containing the DA_53Valve_2Solenoid_NS FB.

logic movement

hardware pneumatic AxisTranslationZPneumatic {

top = retract

bottom = extend

}

Listing 4.3 – Translation for the new hardware in the Z axis defined in the DSL.

CHAPTER 5

Results

During Chapter 3 and 4 a case study has been presented. A resistor sorter proto-
type was used in order to test two different control application design approaches
implemented in IEC 61499. The goal of this case study was to understand how
component reuse works with two different design approaches. In Chapter 3 a state
of the art approach was tested, while in Chapter 4 a new design approach which
was presented is Section 3.4 was implemented. In this chapter, some results about
the new concept presented in Section 3.4 are going to be extracted from the case
study.

5.1 Coupling and Component Reuse

In OOP a key concept is coupling. Coupling can be defined as the extend to
which the various subcomponents interact. If they are highly interdependent then
changes to one are likely to have significant effects on the behaviour of others [25].
CBSE has an important focus on reusing software components. Therefore, it is
interesting to give a quantitative measurement about coupling, since reusability
and maintainability are the advantages of low coupling [26]. In this section, both
a qualitative and a quantitative comparison (with static measurements) are going
to be presented between the two different design approaches that were applied to
the resistor sorter, in order to see up to which extend component reuse has been
improved.

75

76 5.1. Coupling and Component Reuse

5.1.1 Qualitative Comparison

The state of the art approaches for hierarchical and component-based designs in
industrial automation proposed a hierarchical structure where components in layer
1 are hardware-dependent and components in the layers above make up the logic
part of the application. An approach of this type produces reusable components
according to the authors of the publications reviewed in Chapter 2. During the
case study in Chapter 3, it was shown how the current state of the art approaches
do not guarantee component reuse on the logic part of the control application, since
these components still contain hardware-specific information that couple them to
the hardware implementation.

The case study continued in Chapter 4, where the new proposed approach was
implement on the resistor sorter. The results of this implementation achieved a
lower coupling between the logic and hardware-dependent parts of the application.
With this new approach, the components in layer 2 (Manipulator and Measurement
Station) and layer 3 (Resistor Sorter) are free of hardware-specific parameters for
positioning. This allows to reuse these components independently of what is the
hardware type chosen to implement the required movements for the X, Y and Z axis
of the manipulator, as well as for the turning table and measuring clamps in the
measurement station. This does not imply that there is no coupling at all between
the logic and hardware-dependent parts of the application. However, the coupling
with hardware has been moved to a single point in the new intermediate "coupling"
or "translation" layer, enabling a higher degree of reusability in the higher layers of
the hierarchy, which are now less tightly coupled to the hardware implementation.
This coupling point is easily reconfigurable according to the selected hardware.
Since positioning via a manipulator or other mechatronic devices is highly present
in production lines, the presented approach in this thesis could be very useful for
achieving modular and flexible control applications in this field.

At this point the Research Question 2 can be answered. By using symbolic
names for position-related parameters in components which are part of the high
levels of the component hierarchy, these components can be decoupled from the
hardware implementation and then coupled to the hardware-specific components
with the addition of a new layer in the hierarchy that performs the necessary
translations between the two independent parts of the application. This allows
higher-level components to be reused in cases where there is a hardware reconfig-
uration, or cases where there is a physical change in the layout meaning that the
coordinates of certain positions have changed.

5. Results 77

5.1.2 Quantitative Comparison

Authors in [27] propose a way to measure the coupling level for FBs in IEC 61499
based on the fan-out concept, which for a FB A is the number of FBs whose
inputs are connected to the outputs of FB A. The higher the fan-out, the higher
the coupling level. However, this quantitative measurement does not take into
account the type of connection between two FBs. Since this thesis focuses in
decoupling higher level components from the hardware implementation, a metric
that weights in some way the type of parameters that are being send from one
FB to another one gives a better understanding on how coupled the logic side of
the application is to the hardware implementation. For this reason the Fenton
and Melton [28] coupling metric has been selected, since it distinguishes between
different coupling types. Felton and Melton define the the coupling between two
components x and y as:

C(x, y) = i+
n

n+ 1
, (5.1)

where n is the number of interconnections between x and y and i is the level
of the worst coupling type found between x and y and its based on the Myers
classification [29], as shown in Table 5.1.

In our case study, the number of interconnections n between one component x
in layer 2 and one component y in layer 1 is the total number of IO parameters of
the adapter interface that defines the communication between the two components.

The worst coupling level or type i between components in layer 3 and 2, and
between components in layers 2 and below is i = 5 or content type for the de-
sign approach in Section 3.1 and Section 3.2. This is because the components on
the logic part of the application (Manipulator, Measurement Station and Resistor
Sorter) internally have hardware-specific parameters (coordinates, for example)
that are being passed down in the hierarchy. If we analyze the connection between
the component for the X Axis and the Manipulator component, the X Axis com-
ponent branches into the Manipulator component via the coordinates, which ties
the Manipulator component content to the type of content the X Axis component
requires (coordinates if it is an electric motor controller).

When implementing the new design approach in Section 4.6 and Section 4.7
the coupling level between components in the logic part of the application is re-
duced to i = 2 or stamp type. In the new approach, what is being passed down
the hierarchy are symbolic names that represent positions. Now the Manipulator
component is not directly connected to the X Axis component, but to the trans-
lation component in the new intermediate layer instead. A coupling level i = 1 or
data coupling for this approach is too low, since passing these symbolic position
names creates some sort of interdependency between the modules, because it is

78 5.1. Coupling and Component Reuse

Table 5.1 – Fenton and Melton modified definition for Myers coupling levels.

Coupling Type Coupling Level Definition

Content 5
Component x refers to the inside of y, i.e., it
branches into, changes data, or alters a state-
ment in y.

Common 4 Components x and y refer to the same global
data.

Control 3
Component x passes a parameter to y with
the intention of controlling its behavior, i.e.,
the parameter is a flag.

Stamp 2

Components x and y accept the same record
type as a parameter. This type of coupling
may manufacture an interdependency between
otherwise unrelated modules.

Data 1

Components x and y communicate by param-
eters, each one being either a single data ele-
ment or a homogeneous set of data items that
do not incorporate any control element.

No Coupling 0 Components x and y have no communication,
i.e., are totally independent.

implicit that these modules are related together by implementing a positioning
system. However, a control type (i = 3) is too high, since position names do
not really affect control behaviour. Control behaviour parameters in a positioning
application could include proportional–integral–derivative (PID) parameters, for
example. Coupling type of i = 4 is not possible in IEC 61499 since this standard
forbids the use of global data. And in the new approach the hardware components
do not branch into the logic part of the application, they do not share the same
content so a coupling type of i = 5 or content type can be easily disregarded for
this case.

In Table 5.2 the coupling values according to the Felton and Melton metrics
are listed, choosing the Manipulator component as component x and three of
its subcomponents below (one per axis) as components y, in order to compare
the different approaches from the case study. Table 5.2a and 5.2b showcase the
coupling for the state of the art approach, for the initial setup with the electric
motor driving the Z axis and for the setup change with the pneumatic cylinder
driving the vertical axis, respectively. Table 5.2c shows the coupling values for the
new approach, where the Manipulator component is not connected straight to the
hardware, but to the translation or coupling FBs. In this case the FB Manipulator

5. Results 79

Table 5.2 – Coupling between the Manipulator component (component x) and
lower-level components using the Felton and Melton metrics.

(a) Old approach, electric motor.

Component y i n C(x, y)

X Axis 3 5 5.75
Y Axis 3 5 5.75

Z Axis (M) 3 5 5.75

(b) Old approach, cylinder.

Component y i n C(x, y)

X Axis 3 5 5.75
Y Axis 3 5 5.75

Z Axis (C) 4 5 5.8

(c) New design approach.

Component y i n C(x, y)

X Axis Translation 3 2 2.75
Y Axis Translation 3 2 2.75
Z Axis Translation 3 2 2.75

does not depend on the hardware so the number of connections n is the same for
every axis no matter the hardware used to drive the Z axis, since all the adapter
interfaces used for every axis in the manipulator are of type AAxisLogic.

5.2 Complexity

The approach presented in Section 3.4 adds a new layer in the component hierarchy
and consequently, more complexity in the application design. Therefore, in this
section the complexity or cost of this new layer is going to be evaluated. Also, the
complexity of the DSL is going to be measured in order to justify its use in this
design approach.

5.2.1 Coupling Layer Complexity: Manual vs DSL Imple-
mentation

In this section, a comparison between manually creating a coupling FB and au-
tomatically generating these FBs out of a DSL definition is presented. The goal
is to show that the introduction of a DSL reduces the complexity when creating
coupling FBs.

80 5.2. Complexity

5.2.1.1 Qualitative Comparison

A new intermediate layer with new components means more design complexity,
since more FBs have to be created. The idea behind the use of a DSL and code
generation is to make the implementation of these FBs more agile and simple for
the application designer. Instead of manually creating or editing one FB that per-
forms some sort of translation in the coupling layer, the DSL allows the user to
just specify the minimum information required for the coupling in a very simple
and high level language. For example, the manual and DSL implementations can
be compared for the FB in Figure 4.21. This FB translated the positions coming
from the manipulator as symbolic names into the coordinates for the servomotor
controller. Taking just the first four positions (from a total of forty translations
made in this FB) we can see the difference in complexity between the two ap-
proaches. In Figure 5.1, the DSL code necessary to create the whole FB is listed.
On the other hand, if the FB is created manually, the ECC in Figure 4.5 has to
be created and the code of the algorithm stringTOlreal is listed in Figure 5.2.

logic movement

hardware electric axistranslation1 {

measurementX = 910.2

measurementY = 153.5

initialX = 222.9

initialY = 178

}

Listing 5.1 – Implementation of a translation FB with the DSL.

IF Logic_Interface.Position = "measurementX" THEN

Hardware_Interface.Final_Position := 910.2;

ELSIF Logic_Interface.Position = "measurementY" THEN

Hardware_Interface.Final_Position := 153.5;

ELSIF Logic_Interface.Position = "initialX" THEN

Hardware_Interface.Final_Position := 222.9;

ELSIF Logic_Interface.Position = "initialY" THEN

Hardware_Interface.Final_Position := 178;

END_IF;

Listing 5.2 – Manual implementation of a translation FB.

It can be argued that user-wise it is more simple in case of a reconfiguration

5. Results 81

in the plant to generate the new coupling FBs via the DSL than to create the FBs
manually, saving time during reconfiguration.

5.2.1.2 Quantitative Comparison

In order to make a quantitative comparison between a manual implementation of
the translation FBs and their definition through a DSL, the Halstead metrics have
been chosen. The reason to choose these metrics is that there is a methodology for
applying Halstead metrics to IEC 61499 FBs in [27]. Therefore, a fair comparison
can be made between a FB coded in IEC 61499 and a textual program coded in
the developed DSL.

With Halstead’s metrics a static code analysis can be derived by taking into
account the number of distinct operators n1 and operands n2, as well as the to-
tal number of operators N1 and operands N2. From these parameters, several
complexity measures can be derived:

• Program length: N = N1 +N2

• Program vocabulary: n = n1 + n2

• Estimated length: N̂ = n1 log2 n1 + n2 log2 n2

• Purity ratio: PR =
N̂

N

• Program volume: V = N log2 n

• Difficulty: D =
n1

2
× N2

n2

• Program effort: E = D × V

For the complexity comparison, two FBs have been created in Eclipse 4diac,
one for a hardware of type electric and the other one for hardware of type pneu-
matic. Each FB has been created in two different ways: first manually and then
through the DSL. For the FB which performs the coupling with an electric motor
controller, only fours translations have been implemented, as in Figure 5.1. In the
DSL, keywords logic and hardware, the hardware type and the "=" symbol have
all been considered as operators. The rest of the elements in the DSL code are
considered as operands. The complexity results are listed in Table 5.3. From the
results listed it can be observed that both the difficulty D and the effort E are
lower when the FBs are generated from the code written in the DSL. The difficulty
measure is related to the difficulty of the program to write or understand, while
the program effort measure translates into the actual coding time.

82 5.2. Complexity

Table 5.3 – Halstead complexity measures for two different ways of creating the
coupling FBs: manual vs DSL implementation.

HW/Implementation N n N̂ PR V D E

Electric/Manual 35 21 72.95 2.08 153.73 5 768.66
Electric/DSL 18 15 44.04 2.45 70.32 3 210.97
Pneumatic/Manual 16 13 35.61 2.23 59.21 6.4 378.93
Pneumatic/DSL 12 11 27.12 2.26 41.51 3 124.54

Table 5.4 – Halstead complexity measures of the two design approaches imple-
mented on the resistor sorter. For the approach proposed in this thesis, two cases
are considered: manually implementing the coupling layer and defining the cou-
pling layer with the DSL.

Approach N n N̂ PR V D E

State of the
art

297 484 2236.49 4.62 3975.73 32.67 129873.86

Proposed
approach

627 1043 5525 5.30 9691.89 38.28 371033.89

Proposed
approach
w/DSL

366 616 2908.86 4.72 5245.67 29.52 154871.40

5.2.2 Overall Application Complexity

The approach presented in Section 3.4 introduces a new layer in the component
hierarchy. This means more FBs in the control application and hence more code.
In this section a quantitative comparison is going to be presented between the
two design approaches implemented on the resistor sorter, using Halstead metrics.
Two designs are going to be compared: the whole control application designed
following the state of the art guidelines, as depicted in Figure 3.13, and the whole
control application designed following the proposed methodology in Section 3.4,
as depicted in Figure 4.24. For both approaches, the case where an electric motor
is used to drive the Z axis is going to be compared. The results of the Halstead
metrics for these two approaches are listed in Table 5.4.

As expected, the new layer increases the difficulty and program effort. How-
ever, a third measurement was taken, removing the complexity of the translation
FBs and substituting it by the complexity of the DSL required to generate these
FBs, since from the programmer perspective what matters is the code in the DSL,

5. Results 83

Table 5.5 – Reconfiguration effort, measured in LOC.

Approach LOC Difference
state of the art 7
Proposed approach 4

which will automatically generate the FBs. This third case is labelled as "Pro-
posed approach w/DSL" on the table. It can be seen that when using the DSL to
generate the coupling or translation FBs not only the program effort increase with
respect to the state of the art approach is very small, but the program difficulty
is smaller than that of the state of the art approach. This lower program diffi-
culty can be linked with the higher modularity of the proposed approach, which
facilitates code maintainability and readability.

5.3 Reconfiguration Effort

In Section 3.1 and Section 3.2 the control application for the resistor sorter follow-
ing the state of the art approach was presented, first by using an electric motor
to actuate the vertical axis of the manipulator and then by using a double acting
pneumatic cylinder instead. In Section 4.6 and Section 4.7 the same experiment
was performed on the resistor sorter, but in this case following the design approach
presented in Section 3.4.

A quantitative measurement of the reconfiguration effort that this hardware
change introduced in the control application can be presented in the form of lines
of code (LOC). The number of lines of code that had to be written or deleted give
an idea of the effort that the programmer needed in order to adapt the control
application for the new hardware. In [27] a methodology to count the LOC in IEC
61499 was presented. The results are presented in Table 5.5.

For both approaches, it has been considered that the component that imple-
ments the hardware control in layer 1 is retrieved from a component library and
therefore the LOC change when replacing the FB for an electric motor controller
with a FB for a double acting pneumatic cylinder controller has not been taken
into account. For the state of the art approach changes were needed in the Ma-
nipulator component in layer 2 as well as the Resistor Sorter component in layer
3. The LOC for these components have been calculated following the guidelines
in [27] for IEC 61499 FBs, and are listed in Table 5.6. For the proposed approach,
the change in the setup from Section 4.6 to Section 4.7 only required to define a
new translation in the DSL, which was depicted in Figure 4.3. Blank lines and
indentation have been omitted for the LOC count.

84 5.3. Reconfiguration Effort

Table 5.6 – LOC of different components in the state of the art approach (total
number of LOC per component).

Component LOC(ALG) LOC(ECC) LOC(FB)

Manipulator (Electric) 5 45 50
Manipulator (Pneumatic) 2 45 47
Resistor Sorter (Electric) 39 30 69
Resistor Sorter (Pneumatic) 35 30 65

As depicted on Table 5.5 The difference in LOC is smaller for the proposed
approach. It has to be mentioned that this measurement does not fully represent
the difference in reconfiguration effort. First of all, because the LOC metrics for
IEC 61499 FBs proposed in [27] do not take into account the changes on FB
interfaces, which are changes that the programmer would also have to make and
would add extra effort in the state of the art approach. Second, the difference
in LOC between using an electric motor or a pneumatic cylinder do not reflect
the LOC that had to be modified, only the number of LOC that were added or
removed. If not only the lines that do not disappear or have to be added are taken
into consideration, but also those that have to be anyways modified are counted,
the total LOC change for the state of the art approach would also increase. And
last, in the state of the art approach two FBs have to be reconfigured, while on the
proposed approach only one FB is reconfigured. Moreover, reconfiguring FBs in
the logic part of the application as in the state of the art approach adds an extra
difficulty, since the programmer has to make an effort in order to understand the
code and identify the LOC that have to be modified. In contrast, on the proposed
approach only a new configuration has to be defined with the DSL.

CHAPTER 6

Conclusions

In the last years there has been an interest in the industrial automation world in
new design approaches that enhance code reusabilty. Looking into the software en-
gineering field, multiple authors have proposed component-based designs. The goal
of these proposed approaches was to create reusable automation components, and
many authors suggested to encapsulate hardware-control operations in the bottom
layer components, while the higher levels of the component hierarchy include only
components that encapsulate logic control operations. Since the reviewed works
do not explain how these higher level components can be hardware-independent,
and the use cases that they presented did not show how changes in hardware com-
ponents affect the rest of the component hierarchy, the initial hypothesis was that
the state of the art approaches still have some limitations regarding component
reuse, leading to the Research Question 1:

Research Question 1

What are the limitations of the current hierarchical and component-based
control design approaches in industrial automation?

The results of the case study in Section 3.1, Section 3.2, and Section 3.3 iden-
tified the following limitations in the state of the art approaches: the type of hard-
ware used still couples higher levels of the component hierarchy with the hardware
implementation, and the state of the art approaches do not propose any measures
to avoid this. Therefore, when the hardware type is changed (for example, an elec-
tric motor is replaced by a pneumatic actuator) the components in higher layers
of the hierarchy can not be reused, even if the control logic is the same.

In order to overcome the state of the art limitations, logic and hardware have
to be further decoupled. With this goal in mind, a new design approach has been

85

86

proposed in Section 3.4. In Chapter 4, this new design approach was implemented
in IEC 61499 and tested on the same prototype (Section 4.6 and Section 4.7) as
the state of the art approach.

Comparing the two different design approaches implemented on the same plat-
form over the same prototype delivered some promising results in Chapter 5. The
proposed design approach provides a looser coupling between the hardware imple-
mentation and the control logic, thus improving component reuse on the higher
layers of the control application (Section 5.1). The complexity of the presented
approach requires a slightly higher programming effort (i.e. total coding time) but
delivers a lower programming difficulty, which translates into better code modu-
larity, readability and maintainability (Section 5.2). Finally, the reconfiguration
effort of the proposed approach turned out to be smaller, by reducing the number
of total changes in the code and shifting multiple variation points in the control
application into a single variation point in the new coupling or translation layer
(Section 5.3). From the results in Chapter 5 it can be derived that the proposed
design approach outperforms the state of the art approach in terms of component
reuse and ease of plant reconfiguration against hardware changes in a sequential
control application with multiple positioning-related operations, like the resistor
sorter prototype used for the experiments. Thus, in the light of the results ob-
tained, the Research Question 2 can be answered:

Research Question 2

How can component reuse be improved in control applications design for
industrial automation?

Component reuse can be improved in industrial automation applications by re-
placing hardware-dependent parameters in higher level components with symbolic
names. These symbolic names are then translated in a new intermediate layer into
the necessary parameters that a hardware-specific component needs. With this
approach even if the hardware technology in the plant is changed, the higher level
components of the control applications can still be reused. When compared to the
state of the art approaches, hardware and control logic in the high layers of the
component hierarchy have been further decoupled with this methodology .

The great results obtained open the possibility of new research areas in the
field of modular and reusable control applications in industrial automation. It
would be very interesting to study what is the best way to implement this new
design approach in IEC 61131 applications. Also, it would be useful to investigate
the possibility of implementing enum types into 4diac, in order to improve the
translation algorithm in IEC 61499 applications. Finding other use cases for this
design approach would be very beneficial in order to collect more data and show
the industry the advantages of implementing this new design approach in their

6. Conclusions 87

control applications. Moreover, while analysing the results in Chapter 5 it was
clear that component reuse and reconfiguration effort are currently difficult to
measure in industrial automation control applications, due to the lack of specific
metrics for this field. Therefore, a new research possibility opens in the metrics
field for IEC 61131 and IEC 61499, as to provide better ways to compare different
modular design approaches.

APPENDIX A

DSL Grammar Definition

1 grammar org.xtext.CouplingLayer with org.eclipse.xtext.common.Terminals

2

3 generate couplingLayer "http://www.xtext.org/CouplingLayer"

4

5 Model:

6 ’logic’ name=LOGIC_TYPE

7

8 (elements += Hardware)*;

9

10 Hardware:

11 ’hardware’ HardwareType

12 ;

13

14 HardwareType:

15 type=’electric’ name=ID ’{’

16 (electricfeats += FeatureElectric)*
17 //symbolic_position_name = coordinate (as REAL or INT)

18 ’}’ |

19 type=’pneumatic’ name=ID ’{’

20 pneumaticfeats += FeaturePneumatic

21 pneumaticfeats += FeaturePneumatic

22 //symbolic_position_name = "extend" or "retract"

23 ’}’

24 ;

25

89

90

26 FeatureElectric:

27 name=ID ’=’ coordinate=COORDINATE

28 ;

29

30 FeaturePneumatic:

31 name=ID ’=’ action=ACTION

32 ;

33

34 ACTION:

35 ’extend’ | ’retract’

36 ;

37

38 COORDINATE:

39 REAL | INT

40 ;

41

42 terminal REAL:

43 INT ’.’ (EXT_INT | INT)

44 ;

45

46 terminal EXT_INT:

47 INT (’e’|’E’)(’-’|’+’) INT

48 ;

49

50 LOGIC_TYPE:

51 ’movement’ | ’grip’

52 ;

APPENDIX B

DSL Code generation

1 package org.xtext.generator

2

3 import org.eclipse.emf.ecore.resource.Resource

4 import org.eclipse.xtext.generator.AbstractGenerator

5 import org.eclipse.xtext.generator.IFileSystemAccess2

6 import org.eclipse.xtext.generator.IGeneratorContext

7 import org.xtext.couplingLayer.HardwareType

8 import org.xtext.couplingLayer.FeatureElectric

9 import org.eclipse.emf.ecore.EObject

10 import org.xtext.couplingLayer.Model

11

12 class CouplingLayerGenerator extends AbstractGenerator {

13

14 override void doGenerate(Resource resource, IFileSystemAccess2 fsa,

IGeneratorContext context) {

15 resource.allContents.filter(typeof(HardwareType)).forEach[it.

generateFunctionBlock(fsa)]

16 }

17

18 def void generateFunctionBlock(HardwareType hw, IFileSystemAccess2 fsa

) {

19 fsa.generateFile(hw.name.toFirstUpper+".fbt", hw.generate)

20 }

21

22 def CharSequence generate(HardwareType hw) ’’’

91

92

23 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

24 <!DOCTYPE FBType SYSTEM "http://www.holobloc.com/xml/LibraryElement.dtd

">

25 <FBType Comment="Tamplate for a simple Basic Function Block Type" Name="

«hw.name.toFirstUpper»">

26 <Identification Standard="61499-2"/>

27 <VersionInfo Author="4DIAC-IDE" Date="2018-06-06" Organization="4DIAC-

Consortium" Version="0.0"/>

28 <VersionInfo Author="AZ" Date="2016-05-26" Organization="fortiss GmbH"

Version="1.0"/>

29 <InterfaceList>

30 <EventInputs/>

31 <EventOutputs/>

32 <InputVars/>

33 <OutputVars/>

34 <Plugs>

35 <AdapterDeclaration Comment="" Name="Hardware_Interface" Type="«IF

hw.type==’electric’»AMotor"/>«ELSEIF

hw.type==’pneumatic’»ACylinder"/>«ENDIF»

36 </Plugs>

37 <Sockets>

38 <AdapterDeclaration Comment="" Name="Logic_Interface"«IF

hw.modelOf.name==’movement’» Type="AAxisLogic"/>«ENDIF»

39 </Sockets>

40 </InterfaceList>

41 «IF hw.type==’electric’»

42 <BasicFB>

43 <ECC>

44 <ECState Comment="Initial State" Name="START" x="475.0" y

="1125.0"/>

45 <ECState Comment="" Name="Translate" x="1205.0" y="750.0">

46 <ECAction Algorithm="stringTOlreal" Output="Hardware_Interface.

GoTo_Position"/>

47 </ECState>

48 <ECState Comment="" Name="Done" x="1200.0" y="1400.0">

49 <ECAction Output="Logic_Interface.PositionReached"/>

50 </ECState>

51 <ECTransition Comment="" Condition="Logic_Interface.ToPosition"

Destination="Translate" Source="START" x="815.0" y="965.0"/>

52 <ECTransition Comment="" Condition="1" Destination="START" Source

B. DSL Code generation 93

="Done" x="965.0" y="1345.0"/>

53 <ECTransition Comment="" Condition="Hardware_Interface.

Position_Reached" Destination="Done" Source="Translate" x="1435.0" y

="1140.0"/>

54 </ECC>

55 <Algorithm Comment="new algorithm" Name="stringTOlreal">

56 <ST Text="«FOR elfeat:hw.getElectricfeats()»«IF

hw.getElectricfeats().indexOf(elfeat)==0»IF Logic_Interface.Position

= "«hw.getElectricfeats().get(0).name»" THEN

Hardware_Interface.Final_Position :=

«hw.getElectricfeats().get(0).coordinate»;

«ELSE»«elfeat.nameToCoordinate»«ENDIF»«ENDFOR» END_IF;"/>

57 </Algorithm>

58 </BasicFB>

59 </FBType>

60 «ELSEIF hw.type==’pneumatic’»

61 <BasicFB>

62 <ECC>

63 <ECState Comment="Initial State" Name="START" x="475.0" y

="1125.0"/>

64 <ECState Comment="" Name="Extend" x="500.0" y="600.0">

65 <ECAction Output="Hardware_Interface.Extend"/>

66 </ECState>

67 <ECState Comment="" Name="ExtDone" x="500.0" y="200.0">

68 <ECAction Output="Logic_Interface.PositionReached"/>

69 </ECState>

70 <ECState Comment="" Name="Retract" x="500.0" y="1600.0">

71 <ECAction Output="Hardware_Interface.Retract"/>

72 </ECState>

73 <ECState Comment="" Name="RetDone" x="500.0" y="2000.0">

74 <ECAction Output="Logic_Interface.PositionReached"/>

75 </ECState>

76 <ECTransition Comment="" Condition="Logic_Interface.ToPosition[

Logic_Interface.Position="«IF hw.getPneumatic

feats().get(0).action=="extend"»«hw.getPneumaticfeats().get(0)

.name»«ELSE»«hw.getPneumaticfeats().get(1).name»«ENDIF»"]"

Destination="Extend" Source="START" x="585.0" y="900.0"/>

77 <ECTransition Comment="" Condition="Hardware_Interface.Extended"

Destination="ExtDone" Source="Extend" x="645.0" y="465.0"/>

78 <ECTransition Comment="" Condition="1" Destination="START" Source

94

="ExtDone" x="-135.0" y="655.0"/>

79 <ECTransition Comment="" Condition="Logic_Interface.ToPosition[

Logic_Interface.Position="«IF hw.getPneumatic

feats().get(1).action=="retract"»«hw.getPneumaticfeats().get(1)

.name»«ELSE»«hw.getPneumaticfeats().get(0).name»«ENDIF»"]"

Destination="Retract" Source="START" x="630.0" y="1405.0"/>

80 <ECTransition Comment="" Condition="Hardware_Interface.Retracted"

Destination="RetDone" Source="Retract" x="595.0" y="1800.0"/>

81 <ECTransition Comment="" Condition="1" Destination="START" Source

="RetDone" x="-200.0" y="1760.0"/>

82 <ECTransition Comment="Not part of translation. Signal to the

upper component that the movement is done if we were already at the

requested position." Condition="Hardware_Interface.Retracted"

Destination="RetDone" Source="START" x="2940.0" y="1575.0"/>

83 <ECTransition Comment="Not part of translation. Signal to the

upper component that the movement is done if we were already at the

requested position." Condition="Hardware_Interface.Extended"

Destination="ExtDone" Source="START" x="2980.0" y="635.0"/>

84 </ECC>

85 </BasicFB>

86 </FBType>

87 «ENDIF»

88 ’’’

89

90 def nameToCoordinate(FeatureElectric electricfeat)’’’

91 ELSIF Logic_Interface.Position = "«electricfeat.name»" THEN

Hardware_Interface.Final_Position := «electricfeat.coordinate»;

92 ’’’

93

94 }

Bibliography

[1] R. Lewis, Programming Industrial Control Systems Using IEC 1131-3 (Con-
trol, Robotics and Sensors). The Institution of Engineering and Technology,
1998.

[2] H. A. Elmaraghy, “Flexible and reconfigurable manufacturing systems
paradigms”, International Journal of Flexible Manufacturing Systems,
vol. 17, no. 4, pp. 261–276, Oct. 2005.

[3] M. Wenger, M. Melik-Merkumians, I. Hegny, R. Hametner, and A. Zoitl,
“Utilizing IEC 61499 in an MDA control application development approach”,
in 2011 IEEE International Conference on Automation Science and Engi-
neering (CASE), IEEE, Aug. 2011.

[4] A. Hirzle, AutomaionMLTM, Press Conference, Hannover Messe – HMI,
DaimlerChrysler AG, 2007.

[5] M. Buchwitz, “Neue wege in der software entwicklung”, SPS Magazin, 2012.

[6] A. Zoitl and R. Lewis, Modelling Control Systems Using IEC 61499, 2nd ed.
The Institution of Engineering and Technology, 2014.

[7] W. Dai and V. Vyatkin, “A component-based design pattern for improving
reusability of automation programs”, in 39th Annual Conference of the IEEE
Industrial Electronics Society (IECON), IEEE, Nov. 2013.

[8] B. Selic, G. Gullekson, and P. T. Ward, Real-Time Object-Oriented Modeling.
Wiley, 1994.

[9] C. Szyperski, Component Software: Beyond Object-Oriented Programming,
2nd. Addison-Wesley Longman Publishing Co., Inc., 2002.

[10] K. Thramboulidis, “IEC 61499 vs. 61131: A comparison based on misper-
ceptions”, Journal of Software Engineering and Applications, vol. 6, no. 8,
pp. 405–415, Jan. 2013.

95

96 BIBLIOGRAPHY

[11] E. Faldella, A. Paoli, M. Sartini, and A. Tilli, “Hierarchical control architec-
tures in industrial automation: a design approach based on the generalized
actuator concept”, in 17th International Federation of Automatic Control
World Congress, IFAC, vol. 41, Jul. 2008, pp. 69–76.

[12] A. Tilli, A. Paoli, M. Sartini, C. Bonivento, and D. Guidi, “Hierarchical and
cooperative approaches to logic control design in industrial automation”,
in 2009 IEEE Conference on Emerging Technologies Factory Automation
(ETFA), IEEE, Sep. 2009.

[13] M. Sartini, “Architectures and design patterns for functional design of logic
control and diagnostics in industrial automation.”, PhD thesis, University of
Bologna, 2010.

[14] M. Melik-Merkumians, M. Wenger, R. Hametner, and A. Zoitl, “Increasing
portability and reuseability of distributed control programs by i/o access
abstraction”, in 15th Conference on Emerging Technologies Factory Au-
tomation (ETFA), IEEE, Sep. 2010.

[15] I. Hegny, T. Strasser, M. Melik-Merkumians, M. Wenger, and A. Zoitl, “To-
wards an increased reusability of distributed control applications modeled in
IEC 61499”, in 2012 IEEE Conference on Emerging Technologies Factory
Automation (ETFA), IEEE, Sep. 2012.

[16] I. Hegny and A. Zoitl, “Component-based simulation framework for produc-
tion systems”, in IEEE International Conference on Industrial Technology
(ICIT), IEEE, Mar. 2010.

[17] W. Eisenmenger, J. Meßmer, M. Wenger, and A. Zoitl, “Increasing control
application reusability through generic device configuration model”, in 2011
IEEE International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), IEEE, Sep. 2017.

[18] A. Zoitl and H. Prähofer, “Guidelines and patterns for building hierarchical
automation solutions in the IEC 61499 modeling language”, IEEE Transac-
tions on Industrial Informatics, vol. 9, no. 4, pp. 2387–2396, Nov. 2013.

[19] A. Zoitl and T. Strasser, Distributed Control Applications: Guidelines, De-
sign Patterns, and Application Examples with the IEC 61499. CRC Press,
2016.

[20] Eclipse 4diac, https://www.eclipse.org/4diac/index.php, Accessed: 10-
04-2018.

[21] 16.070 Introduction to Computers and Programming, MIT, http://web.mit.
edu/16.070/www/lecture/big_o.pdf, Accessed: 06-08-2018.

BIBLIOGRAPHY 97

[22] Xtext - language engineering made easy, https://www.eclipse.org/Xtext/,
Accessed: 08-08-2018.

[23] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend,
2nd. Packt Publishing, 2016.

[24] Xtend - modernized java, https : / / www . eclipse . org / xtend/, Accessed:
08-08-2018.

[25] G. Gui and P. D. Scott, “Measuring software component reusability by cou-
pling and cohesion metrics”, Journal of Computers, vol. 4, Sep. 2009.

[26] R. S. Pressman, Software Engineering - A Practitioner’s Approach, 4th.
Mcgraw-Hill Companies, 1997.

[27] G. Zhabelova and V. Vyatkin, “Towards software metrics for evaluating qual-
ity of iec 61499 automation software”, in IEEE 20th Conference on Emerging
Technologies Factory Automation (ETFA), IEEE, Sep. 2015.

[28] N. Fenton and A. Melton, “Deriving structurally based software measures”,
Journal of Systems and Software, vol. 12, Jul. 1990.

[29] N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Ap-
proach, 2nd. PWS Publishing Co., 1997.

