

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Frameworks for Distributed Big
Data Processing:

A Comparison in the Domain of
Predictive Maintenance

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Business Informatics

eingereicht von

Rudolf Plettenberg
Matrikelnummer 01229086

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer: Assistant Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Manuel Wimmer
Mitwirkung: Projektass. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Alexandra Mazak

Wien, 16.04.2018

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

i

Erklärung zur Verfassung der Arbeit

Rudolf Plettenberg, Stubenring 2, 1010 Wien

„Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf
jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.“

____________________________ ____________________________
 Ort, Datum Unterschrift

ii

Abstract

Predictive maintenance is a novel approach for making maintenance decisions, lowering

maintenance costs, increasing a plants capacity and production volume, and positively

affecting environmental and employee safety. In predictive maintenance, condition data

of machines is constantly collected and analysed to predict future machine failures. Due

to the high volume, velocity, and variety of gathered data, Big Data analytic frameworks

are necessary to provide the desired results. The performance of these frameworks highly

influences the overall performance of a predictive maintenance system, raising the need

for tools to measure it.

Benchmarks present such tools by defining general workloads for a system to measure its

performance. Due to the wide popularity of Big Data analytics across industries,

benchmarks for Big Data analytic frameworks are defined specifically for each domain.

While there are currently many benchmarks available for other domains such as retail,

social network, or search engines, there are none available for Big Data analytic

frameworks in the application area of predictive maintenance.

This thesis introduces the predictive maintenance benchmark (PMB). The PMB is a

benchmark aimed at measuring the performance of Big Data analytic frameworks in the

field of predictive maintenance. The data model and workload of the PMB represent

typical tasks encountered by a predictive maintenance system. The PMB is implemented

in the two most popular Big Data analytic ecosystems Hadoop and Spark and show Spark

outperforming Hadoop in almost every task. For evaluation, findings gathered during

implementation and execution of the PMB are analysed. Furthermore, the PMB results are

validated against other studies comparing Hadoop and Spark.

iii

Kurzfassung

Predictive Maintenance (vorausschauende Wartung) ist ein neuer Ansatz für das Fällen

von Wartungsentscheidungen und ermöglicht eine Senkung von Wartungskosten, eine

Steigerung der Produktion, sowie eine Erhöhung der Sicherheit und des

Umweltbewusstseins. Bei Predictive Maintenance werden permanent daten über den

Zustand einer Maschine gesammelt und verwendet, um Vorhersagen über künftige

Ausfälle zu treffen. Auf Grund des Volumens, der Geschwindigkeit, und der Vielfalt der

gesammelten Daten werden für deren Analyse spezielle Software Frameworks aus dem

Bereich der Big Data Analyse benötigt. Die Leistung dieser Frameworks ist maßgeblich

für die Leistung des gesamten Predictive Maintenance Systems.

Benchmarks erlauben es die Leistung von Frameworks zu messen und dienen daher

gleichzeitig als Basis dafür, diese zu vergleichen. Durch den branchenweiten Einsatz von

Big Data Analyse, und die daraus resultierenden unterschiedlichen Einsatzgebiete, ist es

wichtig die Frameworks innerhalb eines bestimmten Aufgabengebietes zu vergleichen.

Zurzeit existieren solche Big Data Benchmarks für die Bereiche des Handels, der Sozialen

Netzwerke, der Web Suche, sowie der Bioinformatik. Es gibt allerdings derzeit keinen

Benchmark, der den Tätigkeitsumfeld von Predictive Maintenance abdeckt.

Die vorliegende Diplomarbeit stellt daher den Predictive Maintenance Benchmark (PMB)

vor. Der PMB setzt sich zum Ziel, die Leistung von Big Data Analyse Frameworks an Hand

von Aufgaben aus dem Bereich Predictive Maintenance zu testen. Das Datenmodell und

das Arbeitsvolumen von PMB repräsentieren hierbei typische Aufgaben eines Predictive

Maintenance Systems. Nach der Entwicklung des PMBs, wird er auf den zwei populären

Big Data Frameworks Hadoop und Spark implementiert. Die Resultate der jeweiligen

Implementationen dienen als Basis für den Leistungsvergleich zwischen Hadoop und

Spark. Schlussendlich wird der PMB durch Erkenntnisse, die während der Planung,

Implementierung und Analyse der Resultate gewonnen wurden evaluiert. Zusätzlich

werden die Resultate des PMBs noch mit anderen Studien, die die Leistung von Hadoop

und Spark vergleichen, validiert.

iv

Table of Content

1 Introduction ... 1
1.1 Motivation ... 1
1.2 Problem Statement ... 2
1.3 Aim of the Work ... 2
1.4 Methodological Approach .. 3

1.4.1 Literature Research .. 3
1.4.2 Benchmark Development ... 3
1.4.3 Benchmark Implementation ... 4

1.5 Structure of the Work .. 5

2 Related Work ... 6
2.1 Technology-bound Benchmarks ... 6
2.2 Technology-agnostic Benchmarks .. 8

3 Big Data Analytics ... 10
3.1 Big Data .. 10
3.2 Technology Drivers for Big Data Analytics ... 11

3.2.1 Distributed Computing ... 12
3.2.2 In-Memory ... 13

3.3 Classification of Big Data Analytic Frameworks ... 15
3.3.1 Storage Pillar .. 15
3.3.2 Processing Pillar .. 18
3.3.3 Orchestration Pillar ... 22
3.3.4 Interface Pillar.. 23
3.3.5 Assistance Pillar .. 26
3.3.6 Deployment Pillar ... 27

3.4 Architecture of a Big Data Ecosystem ... 28

4 Predictive Maintenance .. 31
4.1 Overview of Maintenance Techniques ... 31

4.1.1 Breakdown Maintenance ... 32
4.1.2 Time Based Preventive Maintenance ... 32
4.1.3 Predictive Maintenance .. 33

4.2 Data Acquisition ... 34
4.2.1 Condition Monitoring Data ... 34
4.2.2 Event Data .. 36

4.3 Data Processing .. 36
4.3.1 Data Cleaning .. 37
4.3.2 Data Analysis .. 38

4.4 Maintenance Decision Support ... 41
4.4.1 Failure Diagnostics ... 41
4.4.2 Failure Prognostics .. 48

5 Predictive Maintenance Benchmark (PMB) .. 59
5.1 Planning of the PMB .. 59
5.2 PMB Data Model ... 60

5.2.1 Specifications of the PMB Data Model .. 60
5.2.2 Volume, Velocity, and Variety of the PMB Data Model .. 67

5.3 Workload Specification.. 69
5.3.1 Phase 1: Training the Predictive Maintenance System ... 69
5.3.2 Phase 2: Running the Predictive Maintenance System ... 73

5.4 Metrics ... 75

6 Benchmark Evaluation .. 77
6.1 Selection of Big Data Analytic Frameworks ... 77

v

6.2 Selected Big Data Analytic Frameworks .. 83
6.2.1 Apache Hadoop .. 83
6.2.2 Apache Spark .. 91
6.2.3 Mahout .. 97

6.3 Testing Environment .. 98
6.3.1 The Raspberry Pi... 98
6.3.2 Raspberry Pi Based Computer Clusters .. 98
6.3.3 Raspberry Pi as Basis for PMB Implementations .. 99

6.4 Benchmark Execution .. 100
6.4.1 Cluster Network Setup .. 100
6.4.2 Ecosystem 1: HDFS, YARN, MapReduce, Mahout, Hive .. 101
6.4.3 Ecosystem 2: HDFS, YARN, Spark, MLlib, Hive .. 106

6.5 PMB Analysis and Findings... 111
6.5.1 Comparison between Ecosystem 1 and Ecosystem 2 ... 111
6.5.2 Validating PMB Results by Analysing other Performance Evaluation Studies 113
6.5.3 Key Findings and Evaluation of the PMB ... 114

7 Conclusion and Future Work .. 116
7.1 Conclusion .. 116
7.2 Future Work ... 117

Bibliography .. 118

vi

List of figures

Figure 1: Benchmarking process as defined by Han and Lu [12]. .. 3

Figure 2: Popularity of "Big Data" and "Data Analytic" according to Google Trends from
2004 – 2017. ... 10

Figure 3: Architecture of a Hadoop 2.x cluster. .. 13

Figure 4: Memory hierarchy and access speed [49]. .. 14

Figure 5: Six pillars for building Big Data analytics ecosystems [18,p. 3]. 15

Figure 6: The storage pillar. ... 15

Figure 7: The processing pillar. ... 18

Figure 8: Workflow of batch processing. ... 18

Figure 9: Workflow of stream processing. .. 19

Figure 10: Workflow of interactive processing. ... 20

Figure 11: Workflow of iterative processing. .. 20

Figure 12: Workflow of approximate processing. ... 21

Figure 13: Workflow of in-database processing. ... 22

Figure 14: The orchestration pillar. .. 22

Figure 15: The interface pillar. .. 23

Figure 16: The assistance pillar. ... 26

Figure 17: The deployment pillar. .. 27

Figure 18: High level architecture of a Big Data analytic ecosystem.. 29

Figure 19: Process of Breakdown Maintenance. .. 32

Figure 20: Process of Time Based Preventive Maintenance. ... 32

Figure 21: Process of Predictive Maintenance. ... 33

Figure 22: Three steps of predictive maintenance. ... 34

Figure 23: Illustration of the relationship between time and frequency dimensions of a
wave as established by the Fourier Transformation (based on). 40

Figure 24: Example of failure identification by cluster analysis. ... 42

Figure 25: Illustration of a hidden Markov model consisting of three hidden states and
four points in time. ... 43

Figure 26: Structure of an artificial neural network with one input layer, two hidden
layers and one output layer. ... 44

Figure 27: General architecture of an expert system. .. 46

Figure 28: Fuzzy logic system modelling temperature.. 47

Figure 29: Workflow of a model based approach for failure diagnostics. 48

Figure 30: Prediction of RUL vs prediction of component failure. .. 49

Figure 31: Example of a decision tree for predicting component failures. 53

Figure 32: Example of a decision forest consisting of three decision trees. 54

Figure 33: A Support Vector Machine for classification of two classes. 55

Figure 34: Nearest Neighbour algorithm for classification of two classes. 56

Figure 35: Data model of the PMB. .. 61

Figure 36: Distribution of telemetry data. .. 62

Figure 37: Telemetry data over one week. ... 62

Figure 38: Model and age distribution of machines. ... 63

Figure 39: Distribution of errors (left), number of errors per machine (middle), and
errors per age of machine (right) ... 64

Figure 40: Distribution of exchanged components (left), number of services per machine
(middle), and number of services per age of machine (right). 65

Figure 41: Distribution of component failures (left), number of failures per machine
(middle), and number of failures per age of machine (right). 66

vii

Figure 42: Phase 1 of PMB: Training the predictive maintenance system. 70

Figure 43: Phase 2 of PMB: Running the predictive maintenance system. 74

Figure 44: Selected ecosystems for PMB implementation. .. 82

Figure 45: Embedding Hadoop in the architecture of a Big Data analytic ecosystem. 83

Figure 46: HDFS Architecture. ... 84

Figure 47: Reading and writing data from/to HDFS. .. 85

Figure 48: YARN Architecture. .. 86

Figure 49: The process of resource allocation in YARN. ... 88

Figure 50: Execution of a MapReduce job. .. 89

Figure 51: MapReduce example: counting words in text documents. 90

Figure 52: Embedding Spark in the architecture of a Big Data analytic ecosystem. 91

Figure 53: Creating RDDs and splitting them into Partitions .. 92

Figure 54: Master/slave architecture of Spark. .. 93

Figure 55: Workflow of a Spark application. ... 93

Figure 56: Interfaces of Spark SQL and interaction with Spark. .. 94

Figure 57: Mini-batch processing model of Spark Streaming. .. 95

Figure 58: Traditional approaches for providing fault tolerance in continuous data
processing systems. ... 96

Figure 59: Processing model of discretized streams. ... 96

Figure 60: Embedding Mahout in the architecture of a Big Data analytic ecosystem. 97

Figure 61: Raspberry Pi Model 3 B. ... 98

Figure 62: Test environment cluster network setup. ...100

Figure 63: Ecosystem 1. ...101

Figure 64: Implementation of Phase 1 of the PMB on Ecosystem 1.102

Figure 65: Implementation of Phase 2 of the PMB on Ecosystem 1.103

Figure 66: PMB results of Ecosystem 1 in seconds. ..104

Figure 67: Ecosystem 1: Performance breakdown of Phase 1 and Phase 2 in seconds. .105

Figure 68: Ecosystem 2. ...106

Figure 69: Implementation of Phase 1 of the PMB on Ecosystem 2.107

Figure 70: Implementation of Phase 2 of the PMB on Ecosystem 2.108

Figure 71: PMB results of Ecosystem 2 in seconds. ..109

Figure 72: Ecosystem 2: Performance breakdown of Phase 1 and Phase 2 in seconds. .110

Figure 73: Comparison between Ecosystem 1 and Ecosystem 2 during Phase 1 of the
PMB in seconds. ...111

Figure 74: Comparison between Ecosystem 1 and Ecosystem 2 during Phase 2 of the
PMB in seconds. ...112

viii

List of Tables

Table 1: Design-science research guidelines as proposed by Hevner et al. [17, p. 83]. 4

Table 2: Observations of pressure and heat and corresponding state of the machine. 57

Table 3: Tables of frequencies and likelihood of failures. .. 57

Table 4: Telemetry data set of the PMB data model. .. 61

Table 5: Machine metadata of the PMB data model. ... 63

Table 6: Error log data of the PMB data model. .. 64

Table 7: Maintenance log data of the PMB data model. ... 65

Table 8: Failure log data of the PMB data model. ... 66

Table 9: Final data set after preprocessing. ... 71

Table 10: Workloads of the PMB. ... 75

Table 11: Data set sizes for both phases of the PMB. ... 76

Table 12: Scientific survey papers of Big Data analytic frameworks. 78

Table 13: Number of citations in Big Data analytic frameworks survey papers. 79

Table 14: Number of peer-reviewed papers by Big Data analytic framework. 81

Table 15: Specifications of the Raspberry Pi 3 Model B. ... 98

Table 16: Ecosystem 1: frameworks and versions. ...101

Table 17: Cluster specific configuration of frameworks in Ecosystem 1.101

Table 18: Ecosystem 2: frameworks and versions. ...106

Table 19: Cluster specific configuration of frameworks in Ecosystem 2.106

1

1 Introduction

1.1 Motivation

The importance of maintenance has grown with the increasing complexity of production

systems [1]. Efficient maintenance lowers costs, increases a plants capacity and

production volume, and positively affects environmental and employee safety [2].

Predictive maintenance is a novel approach for making decisions on timing and substance

of maintenance work. The basic concept behind predictive maintenance is to predict

future failures based on past and current condition data of a machine [3]. An increasing

number of machines, affordable sensors, and intensive research have led to an immense

volume of available data, often known as Big Data [4].

Big Data is characterised by its huge volume of data, speed of creation (velocity), and

variety in data formats [5]. This leads to the following significant challenges [6]:

• Big Data often contains inaccuracies, duplicates, or missing values. Data cleaning

detects and removes these errors in order to raise overall data quality [7].

• Information comes from many different sources in various data formats and must

be transformed to be analysed [6].

• The high volume of Big Data exceeds the capacity of common storage solutions and

requires new approaches such as distributed databases, where data is spread

among multiple devices [6].

• Volume and variety of Big Data present significant challenges during analysis. Fast

and accurate processing of petabytes of data requires specialised soft- and

hardware [6].

Thus, to cope with these challenges specialised software frameworks have been

developed, utilizing not only one but a cluster of multiple computers to store and process

Big Data [12]. Processing Big Data generally requires multiple frameworks to work

together, in a so-called Big Data analytic ecosystem [13].

The Big Data analytic ecosystem plays a central role in a predictive maintenance system.

Its performance affects how much information can be processed, effectively limiting the

amount of monitored machines as well as the speed of the analysis. It depends on the

performance of each individual framework as well as how well they cooperate. Thus, it is

2

important to analyse and compare such frameworks to discover their strengths and

weaknesses in the application area of predictive maintenance.

1.2 Problem Statement

Due to volume, variety, and velocity of Big Data, common data processing technologies

cannot handle its analytics satisfactory [8]. Only advanced data mining and storage

techniques enable storage, management, and analysis of Big Data [8]. This has led to the

development of specialised software frameworks. In many cases, such as predictive

maintenance, one framework is not enough to provide all desired functionalities [9].

Before assembling a Big Data analytic ecosystem, a decision on which frameworks should

be used has to be made. There are many possible candidates with more than 70

contestants in the open-source world alone [10]. Due to their differences in technology

and functionality, direct comparison is difficult and special tools such as benchmarks are

necessary. Benchmarks define general workloads and measurement metrics, which are

used to compare different software with each other [11]. Due to the various application

areas of Big Data analytics (i.e. search engines, e-commerce, social networks, or predictive

maintenance) Big Data benchmarks aim to generate application-specific workloads [12,

13]. While benchmarks for other areas exist [11, 14, 15], there are currently none

available for predictive maintenance. This lack of benchmarks for Big Data frameworks in

the field of predictive maintenance prevents focused comparisons in this application area.

1.3 Aim of the Work

Benchmarks are tools to compare different software frameworks with each other. In the

area of Big Data, they generally define application specific tasks due to the different

possibilities for Big Data analytics. Currently, there are no benchmarks available for

predictive maintenance. This thesis introduces such a benchmark: The predictive

maintenance benchmark (PMB). The PMB enables the comparison of Big Data analytic

ecosystems in the area of predictive maintenance. This thesis answers following research

question:

1. What are the requirements for a Big Data analytic ecosystem to perform predictive

maintenance?

2. What are the requirements of a benchmark comparing Big Data analytic

frameworks in the field of predictive maintenance?

3

3. Are there any benchmarks for testing the performance of Big Data analytic

frameworks in relation to predictive maintenance?

4. Is it possible to test Big Data analytic frameworks using the developed PMB?

5. Using the PMB, how do the most popular Big Data analytic frameworks compare to

each other?

1.4 Methodological Approach

1.4.1 Literature Research

A systematic literature search is performed to determine the theoretical background,

current state of the art and the landscape of current Big Data analytic frameworks. It

follows the methodology defined by Kitchenham at al. [16]: After identifying the research

questions, search queries are formulated. These queries are then being used in search

engines for data collection. Selecting relevant information is done through an iterative

process: At first the titles are scanned for relevant topics, then the abstracts, and at last

the full text is read. Each step filters out irrelevant literature. This process ensures a broad

and efficient way for literature research [16].

1.4.2 Benchmark Development

The development of the PMB follows the methodology on designing Big Data benchmarks

defined by Han and Lu [12]. Major technology-agnostic Big Data benchmarks such as

BigBench [14] and BigDataBench [15] followed a similar approach. As shown in Figure 1,

designing a benchmark can be divided into the 5 steps of planning, generating data,

generating tests, execution, and analysis and evaluation [12]. During the planning step,

the benchmark object, application domain, and evaluation metric are defined. The next

two steps specify the data and workload of the benchmark. Both of them depend on the

application domain and should represent common, real-life tasks. For execution, the

benchmark is implemented and executed. As described below, the implementation of the

benchmark follows the methodology of Hevner at al. [17]. During the last step of the

methodology, the benchmarking result is analysed and evaluated.

Figure 1: Benchmarking process as defined by Han and Lu [12].

4

1.4.3 Benchmark Implementation

For the individual implementations of the PMB on the most popular Big Data analytic

frameworks, the thesis follows the methodology proposed by Hevner at al. [17]. Table 1

displays the seven guidelines for design-science research and their description. The bold

text below specifies how the guideline will be followed during this master thesis.

Table 1: Design-science research guidelines as proposed by Hevner et al. [17, p. 83].

Guideline Description / specification
Design as an Artefact Design science research must produce a viable artefact in the form of a construct,

a model, a method, or an instantiation.
The PMB is implemented on the most popular Big Data analytic
frameworks and executed on a cluster of five Raspberry Pi’s 1. For each
tested ecosystem, an artefact is created consisting of the code
implementing the benchmark as well as the cluster-specific configuration
of the frameworks within the ecosystem.

Problem Relevance The objective of design science research is to develop technology based solutions
to important and relevant business problems
Implementing and executing a benchmark is important to evaluate its
design. Observations made during implementation as well as analysing
the benchmark results provide feedback on the validity of the
benchmark.

Design Evaluation The utility, quality, and efficiency of a design artefact must be rigorously
demonstrated via well-executed evaluation methods.
The implementation of the PMB is evaluated by comparing the
measurement results to findings of similar benchmarks from other
domains.

Research
Contributions

Effective design science research must provide clear and verifiable contributions
in the areas of the design artefact, design functions, an/or design methodologies.
The PMB serves as a measurement tool to compare Big Data analytic
frameworks in the domain of predictive maintenance. The
implementation of the PMB serves during its evaluation.

Research Rigor Design science research relies upon the application of the rigorous methods in
both the construction and evaluation of the design artefact.
Each step of the process is rigorously documented and follows before
defined guidelines.

Design as a Search
Process

The research for an effective artefact requires utilizing available means to reach
desired ends while satisfying laws in the problem environment.
The implementation of the PMB follows an iterative process. After each
iteration, the current state is tested and evaluated.

Communicate
Research

Design-science research must be presented effectively both to technology-
oriented as well as management-oriented audiences
The results of the research are presented within the proposed master
thesis. The thesis provides a theoretical background, the specifications of
the PMB, and the results of its implementation.

1 https://www.raspberrypi.org/

5

1.5 Structure of the Work

Following the introduction, the second chapter covers the related work. This thesis

proposes PMB, a new Big Data benchmark in the field of predictive maintenance. The

related work therefore covers other benchmarks in the field of Big Data, separating them

into technology-bound and technology-agnostic works.

The third chapter gives an overview of Big Data analytics and Big Data analytic

ecosystems. The different elements of such ecosystems are explained in detail based on

the six pillars model proposed by Khalifa et al. [18]. Building upon this, a general

architecture of a Big Data analytic ecosystem is presented, which will be used to develop

test-setups for the benchmark implementation.

In the fourth chapter a theoretical background to the field of predictive maintenance is

offered. After an introduction in different maintenance techniques, all necessary steps

from collecting data to making maintenance decisions are explained.

The fifth chapter presents the predictive maintenance Benchmark (PMB) following the

methodology introduced in chapter 1.4.2. After determining the requirements and goals

of the PMB, the data model and workloads are specified.

In the sixth chapter the evaluation of the PMB is shown. The benchmark is implemented

on the currently most popular frameworks, which are portrayed in detail. The

performance of the frameworks is measured and compared to each other. The results are

used to evaluate if the PMB is viable.

Finally, conclusions as well as limitations of the work are discussed. Furthermore,

possibilities for future work are presented.

6

2 Related Work

This thesis introduces the PMB, a new Big Data benchmark in the field of predictive

maintenance. Related work therefore covers relevant research in the area of Big Data

benchmarks. The increase in popularity of Big Data analytics led to the rapid development

of new benchmarks by both academia and industry [11]. Existing Big Data benchmarks

can be separated in technology-bound and technology-agnostic benchmarks [11].

2.1 Technology-bound Benchmarks

Technology-bound benchmarks are tied to specific Big Data analytic frameworks. They

measure the performance of this framework across multiple hardware systems.

Technology-bound benchmarks pursue different goals than PMB. While the PMB

compares Big Data analytic frameworks with each other, technology-bound benchmarks

compare the performance of one framework on different hardware setups. Below, the

main contributions to technology-bound benchmarks are listed. They are grouped by the

framework they are bound to.

HiBench, introduced by Huang et al. [19], and the MapReduce Benchmark Suite (MRBS)

developed by Sangroya et al. [20] offer a variety of benchmarks for the Hadoop 2

MapReduce environment. The tests performed by HiBench include micro-benchmarks

such as WordCount and Terasort as well as complex use cases from the domains of web

search (page rank, nutch indexing), machine learning (Bayesian classification, K-Means

clustering) and analytical queries (Hive 3 joins and aggregations). Similar to HiBench,

PMBs workloads also include machine learning (classification) and analytical queries.

However, they are neither bound to Hadoops MapReduce or Hive, nor are they utilized in

the context of predictive maintenance. MRBS defines workloads such as a movie

recommender, database queries, DNA sequencing, text processing and classification using

the Naïve Bayes algorithm. In contrast to PMB, MRBS is tied to Hadoop and does not cover

tasks in the area of predictive maintenance.

Li et al. [21] present SparkBench, a comprehensive benchmarks suite for the Spark

ecosystem 4 . It offers workloads in four different areas: machine learning, graph

computation, SQL queries and streaming applications. The workloads include logistic

2 http://hadoop.apache.org/
3 http://hive.apache.org/
4 http://spark.apache.org/

7

regression, support vector machines, matrix factorization, pagerank, triangle count, hive

SQL queries, twitter tags and page views as well as K-Means, linear regression, decision

tree, and shortest path calculations. SparkBench measures execution time and data

process rate (data size/execution time) as performance indicators. In contrast to PMB,

Sparkbench is limited to the Spark ecosystem. Additionally, the workload of SparkBench

covers a set of multiple generic tasks rather than focusing on a specific application area

as PMB does.

Apart from the scientific community, manufacturers of Big Data frameworks provide

benchmarks for their respective products. The Apache Software Foundation introduces

GridMix5 , a benchmark for their Hadoop MapReduce environment. GridMix emulates

different users sharing the same cluster resources submitting synthetic MapReduce jobs

into the system. Different to other benchmarks, the workload is not predefined but

modelled after an existing Hadoop system by analysing its job history. GridMix enables

analysis on how an existing Hadoop system would perform on different hard- and

software settings. In contrast to PMB, GridMix does not specify a fixed set of workloads

but uses the workloads of an existing Hadoop cluster. Thus, GridMix can be used for any

application area, provided a Hadoop cluster already exists. Many Big Data analytic

frameworks offer examples that can be considered as micro benchmarks. Hadoop, for

example, includes examples such as WordCount, Pi, Terasort and Grep 6 . WordCount

calculates the amount of words in a provided text file. Pi estimates the digits of the

mathematical constant Pi using a quasi-Monte Carlo method. Terasort sorts one terabyte

of data and Grep counts the matches to a regex expression in an input file. Spark7, Storm8

and Flink 9 also include such examples. These examples have already been used in

scientific papers as micro benchmarks to test Big Data analytic frameworks [22–26].

Micro benchmarks are fundamentally different to PMB. They are bound to a specific

framework and only consider small and simple tasks. The PMB is framework independent

and defines complex workloads in the domain of predictive maintenance.

5 http://hadoop.apache.org/docs/r1.2.1/gridmix.html
6 http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html
7 http://spark.apache.org/examples.html
8 http://github.com/apache/storm/tree/v1.2.1/examples/storm-starter
9 http://ci.apache.org/projects/flink/flink-docs-release-1.4/examples/

8

2.2 Technology-agnostic Benchmarks

Technology-agnostic benchmarks define general workloads without tying them to a

specific framework. Their goal is to compare similar software rather than the same

software across multiple hardware settings [11]. This section discusses the scientific

effort in the development of Big Data benchmarks. The benchmarks are grouped by

similar approaches.

The first group of benchmarks focuses on specific parts of a Big Data analytic ecosystem

such as data storage or data processing. This focus presents the main difference to the

PMB, which tests an entire Big Data analytic framework. Pavlo et al. [27] introduce a

benchmark to compare the capabilities of different distributed databases, therefore

focusing on data storage frameworks. The benchmark defines a series of 23 SQL-queries

on a given data set and measures their execution time as performance indicator. The

university of Berkley implemented a variation of Pavlov’s benchmark, the AMPLab

Benchmark10. The AMPLab benchmark builds upon the queries defined by Pavlo et al. [27]

but uses a different data set. The university of Berkley implemented the benchmark for

Redshift11, Hive12, Impala13 and Stinger14. Ferrarons et al. [28] present a benchmark called

Primeball, which focuses on data processing. They propose a fictitious news site hosted

in the cloud to serve as a benchmark. A data set, queries and several use cases typical for

news sites are defined to be implemented and measured. In addition to execution time,

Primeball also takes costs of cloud services into account and integrates them into their

performance matrix. In addition to the focus on single processing frameworks, Primeball

differs from PMB in its application area. While Primeball consists of tasks typical to an

online news site, PMB defines tasks based on predictive maintenance.

Like the PMB, the second group of benchmarks tests entire Big Data analytic ecosystem

rather than its parts. However, while PMB focuses on tasks typical for predictive

maintenance, the benchmarks below are based on tasks from other application areas.

Ghazal et al. [14] presents the end-to-end Big Data benchmark BigBench, which is based

on a product retailer model. BigBench covers ten business cases: Cross-selling, customer

micro-segmentation, sentiment analysis, analysing user shopping experience, assortment

10 http://amplab.cs.berkeley.edu/benchmark/
11 http://aws.amazon.com/
12 http://hive.apache.org/
13 http://impala.apache.org/
14 http://de.hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-hive/

9

optimization, pricing optimization, store performance analysis, return analysis, inventory

management and price comparison. The tests include handling structured and

unstructured data as well as different data set sizes. Since its initial proposal, BigBench

was continuously improved and in 2017 standardized by Cao et al. [29] of the Transaction

Processing Performance Council (TPC) under the name TPCx-BB. Gao et al. [15] introduce

the Big Data benchmark BigDataBench, which offers a wide variety of workloads. It does

not focus on one business model but takes data sets from various domains and defines

related workloads. In particular, BigDataBench consists of 15 data sets and 40 workloads

coming from the domains of search engine, social networks, e-commerce, multimedia

analytics and bioinformatics.

Many of today’s popular Big Data benchmarks do not originate in scientific work but are

defined by institutions. Since they are often considered as industry standards, the main

non-scientific benchmarks are mentioned below. In contrast to the PMB they focus on

testing specific areas of a Big Data analytic ecosystem. The main institutes defining Big

Data benchmarks are the Transaction Processing Performance Council (TPC)15, Standard

Performance Evaluation Corporation (SPEC) 16 and the Storage Performance Council

(SPC)17 [11]. The TPC-H benchmark (Ad-hoc decision support benchmark) [30] is aimed

at testing data warehouse frameworks and consists of 22 business queries simulating

companies involved in managing, selling, and distributing products. The performance of

the data warehouse is given by the execution time of the individual queries. The TPC-H

benchmark is available for the Big Data querying systems Hive18 and Pig19. The SPEC SFS

2014 benchmark [31] measures the maximum sustainable throughput of file systems. Its

workloads consist of creating, reading and removing directories and files of various sizes.

The performance of the file system is defined by the execution time of the workloads. The

SPC-1 and SPC-2 benchmarks [32, 33] are targeted at comparing the performance of

different storage systems. SPC-1 defines various I/O operations for file systems such as

read, write, and remove. SPC-2 specifies I/O operations in the three areas of file

processing, database-queries, and video on demand.

15 http://www.tpc.org/
16 http://www.spec.org/
17 http://www.storageperformance.org/
18 http://github.com/rxin/TPC-H-Hive
19 https://issues.apache.org/jira/browse/PIG-2397

10

3 Big Data Analytics

In the data-centric world of the 21st century, Big Data analytics has become a major issue

and research topic [34]. Cheaper data storage, a growing number of Internet users,

connected devices, and sensors contribute to an ever increasing volume of collected data

[35]. Data analysis has become a critical corporate asset, is disrupting industries, and

enables new markets and opportunities [36].

This chapter offers an introduction into the world of Big Data and Big Data analytics. After

defining the term, the main technology drivers are introduced to provide background

knowledge for the techniques used in Big Data analytics software. Following this, the Big

Data analytic ecosystem is introduced, describing a construct of multiple software

frameworks working together [37]. In order to structure such an ecosystem, Khalifa et al.

developed a 6-pillar model [18], which is presented thereafter. At last, a general

architecture for Big Data applications is introduced.

3.1 Big Data

The origin of the term Big Data is not known, but assumed to be in the mid-1990s

somewhere in Silicon Valley [38]. However, its widespread popularity began as recent as

2011 [39], as indicated by Figure 2, which shows a Google Trends20 analysis.

Figure 2: Popularity of "Big Data" and "Data Analytic" according to Google Trends from 2004 – 2017.

Even though the importance of Big Data has been widely recognized, a unified definition

has not yet been reached. In the following some of the most popular ones are presented.

20 https://trends.google.com

11

McKinsey & Company, one of the world’s leading consulting agencies, describes Big Data

as data sets, whose size is beyond the ability of typical database software tools to capture,

store, manage, and analyse [40]. In this definition, McKinsey uses size as the primary

characteristic. McKinsey does not set a fixed value but defines Big Data dynamically by

linking it to the capabilities of current database tools. With this approach the definition of

Big Data grows with the capabilities of databases, respecting the fact that data sizes too

big to process today may become standard in just a few years.

Laney introduced a more diverse approach for the definition of Big Data by characterising

it through 3 V’s: Volume, Velocity, and Variety [5]:

• Volume characterises size of Big Data. Similar to McKinsey’s approach, the

definition of volume is dynamical rather than absolute. Instead of being linked to

a certain amount of petabytes, the size of Big Data is defined as too much to handle

for common storage system [38].

• Velocity outlines the speed at which Big Data is generated. The growth in smart

devices, sensors and online services has led to an enormous rate of data creation,

which is still increasing [38].

• Variety describes the diversity of data types within Big Data. In Big Data,

traditional tabular information (structured data) is often accompanied by photos,

video (unstructured data), or emails (semi-structured data) [41].

While Laneys 3 V’s represent the most popular understanding of Big Data, many

suggestions were made to extend them. The International Data Corporation (IDC) added

Value as a fourth V, outlining the importance of utilizing Big Data analytics to gain insights

and to support decision making [42]. IBM coined the term Veracity, which addresses the

uncertainty and unreliability of Big Data. And SAS proposed Variability, describing the

variations in data flow rate [41].

Throughout the last decade, many other extensions were suggested, resulting in a total of

42 V’s as listed by Elder Research [43].

3.2 Technology Drivers for Big Data Analytics

Over the last decade, Big Data analytics has enabled many industries such as retail and

manufacturing to increase their margin by lowering operating costs, product

development costs, and increasing customer experience [36]. Data centric companies

12

such as Amazon21 or Ebay22 significantly transformed their respective market through

their recommender systems [44]. Manufacturing companies have the potential of

lowering their operating costs by up to 30% by adopting Big Data analytic technologies

such as predictive maintenance [44].

The rising popularity of Big Data analytics is driven by an ever increasing capacity of

storage and data processing, new and cheap ways of data generation, and the

development of new data processing technologies. This chapter presents some of the

important technological drivers behind Big Data analytics.

3.2.1 Distributed Computing

The high volume, velocity and variety of Big Data poses big challenges for computer

systems such as high demands on storage space and processing power. Storing and

processing large amounts of data often exceeds the capabilities of commonly available

systems [45].

Distributed systems help in addressing these challenges. Instead of having just one single

computer, multiple machines are connected together into a cluster. Data is distributed

around the system and stored on different machines. Processing tasks are split into

smaller ones, which are then executed in parallel. The system is easily scalable by

introducing additional machines into the system.

Figure 3 illustrates the structure of a typical computer cluster in the example of the

popular Big Data processing framework Apache Hadoop. For a cluster to work correctly

it is important to keep track of all connected machines. Keeping track includes knowing

their name, capabilities and how to reach them within the network. Furthermore, their

status must be monitored for possible failures or breakdowns. This responsibility of

managing the cluster is often separated from normal processing tasks and specifically

assigned to one or more machines. By this way it can be separated from the cluster and is

less prone for failure. As shown in Figure 3 on a Hadoop cluster the NameNode is

responsible for overseeing the network. Besides monitoring the resources of a cluster, it

is necessary to divide the computational work among it. Therefore, it is necessary to split

tasks into multiple smaller ones and distribute them within the network. In the example

of Hadoop, this responsibility falls upon the Resource Manager. It splits tasks up, monitors

21 https://www.amazon.com/
22 https://www.ebay.com/

13

the current utilization of all connected computing nodes, and distributes the workload

accordingly. It also ensures that all tasks are completed successfully and, if necessary,

redistributes failed tasks again. The third component of the cluster is the DataNodes. Their

primary purpose lies in processing tasks and storing data. To prevent loss of data due to

component failure, it is replicated multiple times across the cluster [46].

Figure 3: Architecture of a Hadoop 2.x cluster.

Distributed systems offer a lot of advantages over a single machines. They are easier to

scale, naturally support running multiple applications, and are more reliable since they

do not have one point of failure [47]. However, there is evidence that single-machine

systems are sometimes superior due to the costs of task distribution and network traffic:

A recent study suggests that in many common data analytic cases with data of up to 100

GB, a single-machine system is sufficient and even outperforms clusters [48]. Single-

systems are however strictly limited in their processing capabilities, while distributed

systems simply grow by adding components.

3.2.2 In-Memory

Traditionally a computer has two main kinds of storage systems: the hard disk and the

random access memory (RAM). The hard disk is responsible for persistent data storage.

It has a high storage volume and information stays available even after shutting down the

system. The two most common technologies for hard disc storage are ferromagnetic

drives (HDD) and solid-state drives (SDD), which use flash memory. RAM is traditionally

responsible for volatile information. It offers very fast access speed but is expensive and

information is lost if power is removed. Therefore, it is mostly used by software to store

frequently used and currently needed information.

In recent years many Big Data analytic frameworks have switched from using disk

memory to RAM for data storage [49]. This technique is generally referred to as keeping

14

data in-memory. In-memory technology enables over 1.000 times faster access speed than

the traditional disk-memory as illustrated in Figure 4. The figure shows the memory

hierarchy of a computer with a two-core processor [49]. The hierarchy is defined in terms

of access latency and the logical distance to the CPU. In addition to hard disk and RAM, the

CPU internal memory caches are listed. Data transfers through the caches into the

registry, where the core then processes it. As displayed, latency increases highly down the

layers. While RAM is 100 times slower than caches, the latency of disk memory is over a

1.000 times higher than RAM.

Figure 4: Memory hierarchy and access speed [49].

As mentioned above, the challenge of in-memory technology is preventing information

loss if power is removed. Therefore, frameworks based on in-memory technology need

rigorous backup mechanisms to ensure data recovery in case of unscheduled system

shutdown. Although still very expensive, the highly increased accessing speed of RAM

offers great value for companies and is predicted to gain market share with falling prices

[50, 51].

15

3.3 Classification of Big Data Analytic Frameworks

Big Data analytic frameworks are often specialised on specific tasks such as data storage,

processing or visualization. Utilizing Big Data analytics in a business context often needs

solutions combining many different frameworks. Various tools assembled together form

an ecosystem. In general, a software ecosystem consists of a set of software solutions. Such

ecosystems enable, support and automate the activities of associated social and business

systems. [52]. For Big Data analytic ecosystems, typical activities are collecting, preparing,

transforming, storing and analysing data. To describe the requirements of a Big Data

analytic ecosystem, Khalifa et al. [18] developed a model consisting of the six pillars

Storage, Processing, Orchestration, Assistance, Interface, and Deployment as shown in

Figure 5.

Figure 5: Six pillars for building Big Data analytics ecosystems [18,p. 3].

3.3.1 Storage Pillar

Storage is the first pillar of a Big Data ecosystem and describes all

functions concerning preserving information [18]. Volume, variety, and

velocity of Big Data put high requirements on data storage systems: Big

Data storage systems must be able to store an ever growing amount of

information in many formats such as tables, text or video [53]. They also

must provide high access speed to cope with the high rate new data is

entering the system [53]. Traditional data management systems do not

satisfy these requirements, which has led to the development of new

approaches [54]. To address the challenges of volume, variety, and
Figure 6: The
storage pillar.

16

velocity, Big Data ecosystems often rely on distributed storage systems specifically

designed to handle large amounts of diverse information. As shown in Figure 6, storage

systems can be divided into three sub categories: relational database management

systems (RDBMS), distributed file systems (DFS) and Not-only structured query language

systems (NoSQL).

Relational Database Management Systems (RDBMS)

Relational database management systems organize data in one or more tables, following

a model first proposed by Codd in 1970 [55]. Tables consist of columns and rows, where

each row is identified by a unique key-value. The columns define the schema of the table

while the rows hold the information.

Relational databases are designed to support the ACID (Atomicity, Consistency, Isolation,

and Durability) properties, first mentioned by Haerder and Reuter in 1984 [56]. To

conform to ACID properties, transactions should either succeed or be rolled back

(Atomicity), never leave the database inconsistent (Consistency), never interfere with

each other (Isolation), and persist even after restart of the database (Durability). A

transaction is a short sequence of interactions with the database through which a user can

manipulate the data.

According to the information platform DB-Engines23 RDBMS is by far the most popular

database technology with an overwhelming popularity score of 79.6% [57]. This is also

supported by the yearly data connectivity report published by Progress [58], which states

that only 2% of respondents do not use a relational database. However, it has to be

mentioned that both surveys are not focused on Big Data solutions but include the whole

infrastructure of a company. While RDBMS are still the most popular choice in Big Data

storage, their dominance is not as high as the surveys suggest. Due to the variety of Big

Data, other data storage techniques are on the rise [58].

Distributed File Systems (DFS)

Distributed file systems (DFS) offer similar functionalities as file systems implemented in

popular operating systems such as Windows or Linux. In contrast to them, files are not

stored on a single computer but are distributed across multiple machines.

23 https://db-engines.com/

17

Observing the distributed file systems at Google, Ghemawat et al. [59] concluded that

machine breakdowns inside a DFS are unavoidable. DFS often consist of hundreds or even

thousands of inexpensive machines. Due to the huge size of systems and poor component

quality machine breakdowns are rather common. To address this issue, DFSs implement

rigorous methods to prevent data loss. Many products such as the Google file system (GFS)

[59] or the Hadoop distributed file system (HDFS) [60] replicate data within the system.

This replication ensures that loss of hardware components does not result in loss of data.

Not only Structured Query Language Systems (NoSQL)

Not only structured query language (NoSQL) databases are the third and final element of

the storage pillar. According to Brewers CAP theorem, any networked shared-data system

can achieve at most two of the three desirable properties consistency, high availability,

and partitioning [61].

• Consistency (C) means that the data is always the same across the entire system.

All users have the same view of the data at all time.

• High availability (A) entails that every request results in a meaningful result rather

than error messages or silence. The higher the availability, the faster these

requests are processed.

• Partitioning (P) implies that the system can be separated without further

compromising the before mentioned qualities. Consistency and availability can be

maintained even in the event of message loss or partial system failure.

As described above, relational databases are designed for strong consistency and

serializability. Following the CAP theorem, they are not able to offer high availability.

Opposite to that NoSQL databases sacrifice consistency in order to provide high

availability and serializability. Instead of being consistent at all time, temporary

inconsistency is possible. Still, eventually, consistency at a future state is guaranteed [62].

18

3.3.2 Processing Pillar

Processing is the second pillar of a Big Data analytic ecosystem. It

includes all activities of manipulating and analysing data [18]. Similar to

storage systems, volume, velocity, and variety of Big Data demand special

requirements of Big Data processing systems: Analysing tera- or even

petabytes of diverse data at once exceeds the capabilities of single

computers [63]. Therefore, distributed systems are used to process data

in parallel on multiple computers. Tasks are split into smaller parts that

can be executed simultaneously on multiple machines. As shown in

Figure 7, there are six different approaches how Big Data is processed:

batch, incremental (also called stream processing), interactive, iterative,

approximate, and in-database processing.

Batch Processing

Batch processing describes executing a series of commands without manual intervention

[18]. The program containing the commands is defined before the analysis and runs

uninterrupted from start to finish. Therefore batch processing is best suited for complex

analysing of large data sets [25]. After initialization, the process can take minutes, hours

or even days. Correspondingly, it is not well suited for real-time processing. Figure 8

illustrates the workflow of a batch process. Before processing, individual data is collected

and combined into one big data set. Additionally, the program to analyse the data set is

written. Both are then submitted to the batch-processing engine, which produces the

desired results.

Figure 8: Workflow of batch processing.

Batch processing is generally used for big and complex analysis where execution time is

not essential. For many Big Data analysis use cases such as sales forecast, customer

segmentation, or medical diagnostics this method is sufficient.

Figure 7: The
processing pillar.

19

Batch processing is not necessarily slow. There have been efforts to achieve almost real-

time analysis using very small batch processes, executed in succession. Data is collected

from a very small timespan and analysed in intervals of milliseconds [22].

Incremental Processing

Incremental or stream processing focuses on the analysis of moving data instead of resting

data sets like batch processing. This means that data is processed immediately when it

gets available [18].

In many cases today data is collected continuously and at a high rate: User behaviour is

observed live, machines are monitored non-stop, and transactions are tracked steadily.

Gathered information is only valuable a short amount of time and real-time analysis is

essential. Product recommendations, as for example done by Amazon, must be calculated

almost instantaneously or they do not benefit their customers.

Figure 9 displays the general workflow of stream processing. In contrast to batch

processing, data is not accumulated but processed as soon as it enters the system. The

analysis program runs continuously and waits constantly for new data. Rather than

producing one single result, stream processing provides continuous analysis.

Figure 9: Workflow of stream processing.

The key challenge in stream processing is keeping the latency low [22]. Latency describes

the time that passes from the moment data enters the system until it is processed. In order

to handle large amounts of data, many modern frameworks for stream processing

implement a distributed processing methodology [64].

Interactive Processing

Interactive processing allows for user interaction during an analysis. As Big Data analysis

becomes more popular in companies – experiencing a year-to-year growth of 11%

between 2015 and 2016 [58] - the user base grows steadily. Due to new applications in a

20

wide range of industries, new types of users have emerged. Instead of traditional long and

complex analysis, ad-hoc queries and reports are gaining ground and are responsible for

up to 80% of a company’s workloads [65].

As shown in Figure 10, the user has multiple interactions with the system during

interactive processing. In contrast to batch processing not all steps have to be predefined,

but user input is possible after initialization.

The entire process can consist of multiple queries and analyses. The system fetches

necessary data from the databank and processes it accordingly.

Figure 10: Workflow of interactive processing.

Interactive processing frameworks are designed for fast execution of small jobs consisting

of data queries. There are multiple methods available to optimize query performance.

Apache Tez, for example, reduces the overhead of launching queries resulting in faster

initialization times [66]. Apache Spark saves intermediate results in-memory, enabling

faster response times for future queries concerning the same data [67]. And Google

Dremel as well as Apache Drill have optimized accessing data by only searching through

relevant columns [68].

Iterative Processing

Iterative processing describes workloads that repeatedly do the same processing steps or

run multiple times through the same data set [18] as illustrated in Figure 11. Machine

learning and graph processing algorithms are common examples containing a lot of

iterative computations [24].

Figure 11: Workflow of iterative processing.

21

Iterative execution engines are optimized on reusing input data, code, or intermediate

results. They often hold frequently used data in-memory for fast access [24].

Approximate Processing

The goal of approximate processing is to deliver very fast results from analysis of large

amounts of data. In order to increase their speed, accuracy is compromised. Results are

not found by analysing the whole data set but approximated using a representative

sample [18].

This allows for almost real-time response time when querying peta and exabytes of data

[69–71]. It is especially useful in situations where an exact result would not benefit the

quality of decisions or where data is incomplete and noisy to begin with. Approximation

is also applicable for predictions or other statistical analysis.

Figure 12 illustrates the general concept of approximate processing. The program does

not analyse the whole data set but approximates the result processing only part of the

available data.

Figure 12: Workflow of approximate processing.

Nair [72] argues that the amount of data and data analysis will exceed the available

processing capabilities. In order to cope with the vast amount of data, approximation

techniques are necessary.

In-database Processing

In all other introduced concepts, processing of data is separated from data storage. This

separation requires the movement of data between storage and processing layers. The

concept behind in-database processing is to move data processing tasks inside the storage

layer as shown in Figure 13. The goal is to eliminate data movement between storage and

processing by analysing it without moving it out of the database [18].

22

Figure 13: Workflow of in-database processing.

Apache MADLib24, for example, offers machine learning in SQL. Its goal is to operate on

the data in-database and eliminate unnecessary movement of data between multiple

runtime environments. MADLib provides various supervised and unsupervised machine

learning algorithms as functions that can be called via SQL.

3.3.3 Orchestration Pillar

In a distributed system the workload is divided and spread around

multiple nodes. Tasks are assigned to individual computers depending

on available resources. Resources include memory, CPU, network

capacity and disk storage space. The pillar of Orchestration covers the

management of these resources inside a cluster [18]. The management

of a cluster is generally separated from the clusters and the responsibility

of the resource manager [18]. The responsibilities of a resource manager

include monitoring status and current workload of all nodes.

Furthermore it distributes the workload among the cluster and

supervises the progress of individual tasks [73]. As illustrated in Figure 14, orchestration

frameworks are differentiated depending on their techniques of resource allocation:

scheduling or provisioning.

Scheduling

Scheduling frameworks maximize resource utilization or data locality. Maximizing

resource allocation aims at using as many of the above mentioned resources of the cluster

as possible instead of letting only a few nodes work. This means spreading the workload

as wide as possible among the cluster. Maximizing data locality aims at minimizing data

transfer within the cluster. The goal is to process data only on those nodes it is stored on.

Maximizing resource utilization and data locality can almost never be achieved together.

24 http://madlib.apache.org/

Figure 14: The
orchestration pillar.

23

Data is not replicated on every node. Therefore, in order to utilize every resource of the

cluster, data has to be transferred. Likewise, maximizing data locality results in

processing data on only those nodes the information is stored on, disregarding others.

Therefore, either resource allocation or data locality has to be prioritized [18].

Provisioning

Provisioning minimizes job execution time and monetary costs. This is especially helpful

on cloud-based solutions. In cloud environments the user is charged depending on the

amount and time resources are used. Provisioning frameworks take the increasing costs

of additional nodes into account when distributing resources and weigh them against the

benefits of more processing power [18].

3.3.4 Interface Pillar

As mentioned before, Big Data analytic systems have a broad audience.

In order to match their specific needs, user interfaces are developed

offering different access points [18]. They allow users to interact with Big

Data analytics in a familiar environment by providing an abstraction

level from underlying functions such as processing or storage. Interviews

with expert show that there is a lot of potential in improving user

experience for beginners, since many programs today are primary

designed for professional users [74].

Khalifa et al. [18] distinguish five main approaches to interfaces: sheets,

graphical interfaces, visualization tools, interfaces providing SQL capabilities, and scripts

(see Figure 15).

Sheet Interfaces

Sheet interfaces offer environments similar to popular spreadsheet based tools like

Microsoft Excel. Although very consumer friendly, they are commonly only suitable for

data exploration and preparation. For model building and complex analysis, other tools

are necessary [18].

Figure 15: The
interface pillar.

24

Spreadsheets are established tools in data science [75] and especially popular for

business users. Projects such as the from Barga et al. [76] introduced Daytona or

OpenRefine25 aim at providing a spread-sheet like environment for Big Data analytics.

Graphical Interfaces

Graphical tools provide a visual interface for Big Data analytics. Instead of writing code,

users are able to assemble workflows via drag and drop or use menus to analyse data [18].

Big Data analytic features can be accessed through a graphical user interface.

The field of traditional data analysis already offers many tools with a graphical interface.

Solutions such as RapidMiner26, IBM SPSS27, SAS28 and KNIME29 provide highly developed

graphical user interfaces, which offer a huge variety of data analytic functions. However,

they are limited to processing data on one machine, limiting the amount of data to be

processed at once.

In the last decade, there has been some effort to bring graphical user interfaces into the

field of distributed Big Data analytics. Especially commercial products such as Microsoft

Azure30 and IBM Watson31 have worked hard on providing user-friendly interfaces. Other

examples of graphical user interfaces in the domain of Big Data analytic frameworks are

Radoop32, which extends RapidMiner to work on the distributed processing framework

Hadoop [77], and WINGS33, which provides a drag and drop interface to create workflows

for large computational experiments [78].

Visualization Interfaces

Large data sets are difficult to process for the human mind. In the sense of the old proverb

“a picture is worth more than thousand words”, visualization of data helps to comprehend

and analyse information. While before mentioned graphical tools provide a graphical user

interface to analyse data (i.e. menus or drag and drop), visualization tools provide a visual

presentation of Big Data itself (i.e. bar graphs or diagrams) [18].

25 https://openrefine.org/
26 https://www.rapidminer.com/
27 https://www.ibm.com/spss
28 https://www.sas.com/
29 https://www.knime.com/
30 https://azure.microsoft.com/
31 https://www.ibm.com/watson/
32 https://rapidminer.com/products/radoop/
33 https://www.wings-workflows.org/

25

Data visualization can be utilized during the whole process of data analytics: from initial

data exploration to representation of results [79]. Visualization helps in analysing

outliers, recognizing patterns, or determining important features. It can also serve as a

communication tool. Companies consist of different stakeholders such as executives,

functional leaders and data scientist. Each of them works with different methods and

communication channels. Data visualization supersedes these differences and provides a

single platform for discussions [80].

The visualization of Big Data introduces many additional challenges in comparison to

traditional data visualization. Big Data is often composed of various different data types.

Visualization tools must therefore be able to deal with semistructured and unstructured

data. They must also be able to process large amounts of data, preferably in parallel to

provide scalability. Big Data can be very complex, consisting of multiple dimensions.

Multidimensional data is too complex for the human mind to process at once. One of the

biggest challenges of data visualization is to reduce complexity enough to make

information comprehensible without losing significance or missing important

connections [81]. Many commercial Big Data analytic solutions such as IBM Watson or

Microsoft Azure offer many features to visualize data in different ways such as bar graphs

or pie charts. They utilize their underlying distributed computing power to cope with the

large volumes of data. Microstrategy34 and Tableau 35 offer tools that can easily visualize

data from different sources and formats and present them in interactive visualizations.

Driven by the entertainment industry, there is a lot of research going into the field of

visualization. New technologies such as virtual and augmented reality offer immersive

user experience. In recent years, there has been some effort to combine Big Data with

augmented reality, raising Big Data visualization into the next dimension [82–85].

Structured Query Language (SQL) Interfaces

Developed by IBM in 1976 [86], SQL is the de-facto standard language for relational

database management systems and is supported by the most popular systems [57]. SQL

enables the user to add, update, delete, or find data inside a database. However, SQL is

limited to structured data formats. Due to the variety in formats within Big Data, many

Big Data applications utilize NoSQL databases to manage unstructured and semi-

34 https://www.microstrategy.com/
35 https://www.tableau.com/

26

structured data. They are often a better fit [62] and grow steadily in their popularity [58].

Due to their different structure, not all of them natively support SQL.

Due to the wide popularity of SQL and its big support among many tools, SQL interfaces

aim at providing NoSQL databases with a SQL interface. This way Big Data can be accessed

through the well-known language of SQL, simplifying the switch to a NoSQL system [18].

Script Interfaces

Scripts offer algorithms, functions or other code fragments for Big Data analytics. Users

do not have to implement algorithms from scratch but can build on prior work [18].

The lowest level of scripts provides support for higher languages such as R36 or Python37,

which are currently the most popular languages for data analytics [87] This allows users

to create analytic processes in a higher language and port it to different Big Data analytic

platforms. Projects such as “R on Hadoop” [88] for example bring R to platforms for

distributed computing. Other languages such as Pig Latin [89] or Jaql [90] are specifically

designed as scripting languages for Big Data analytics and tailored for distributed

processing. Code libraries present a higher level of scripts. They contain already

implemented algorithms that can be reused. Especially complex algorithm families like

machine learning have led to the development of many libraries [91–94].

3.3.5 Assistance Pillar

According to McKinseys 2016 Big Data report [36], there is a severe

shortage of qualified analytical talents, in particular data scientists.

During the report, many executives across geographies and industries

where interviewed, stating great difficulties finding qualified analytical

personnel. The lack of qualified personnel greatly decreases a company’s

capability of implementing Big Data analytics.

Assistance frameworks make Big Data analytics more accessible. They

provide support during the design and implementation of analytical

processes. As shown in Figure 16, assistance frameworks can be separated into the two

major categories of static and intelligent tools [18].

36 https://www.r-project.org/
37 https://www.python.org/

Figure 16: The
assistance pillar.

27

Static Assistance Tools

Static assistance tools always offer the same assistance, regardless of the data set. They

are not aware of the specific context and provide general support. This category includes

well-known tools such as tooltips, wizards and help pages [18]

Static tools alone are often not sufficient. There is a vast amount of analysis techniques

available. Choosing the correct one is usually highly dependent on the available data set

and use case, which static tools do not take into account. Novices and experts alike often

struggle during the selection process due to insufficient knowledge [95]. This has led to

the development of intelligent tools.

Intelligent Assistance Tools

Intelligent assistance tools take the context of a data analysis into account. They provide

different support depending on the use case and data set [18]. For example, they may

suggest different analytical techniques depending on the size of a data set or on its value

distribution.

Bernstein et al. [96] propose an intelligent discovery assistance tool, that suggests data

mining processes depending on the input data as well as desired mining results. It

searches the space of possible processes and ranks them by speed and accuracy. This

greatly simplifies the selection process between multiple data analytic algorithms.

In recent years many tools have emerged [95], assisting users during the whole process

of knowledge discovery [97]: data selection, preprocessing, transformation, data mining,

and interpretation.

3.3.6 Deployment Pillar

The sixth and final pillar consists of deployment methods for Big Data

solutions [18]. When a company decides to adopt Big Data analysis it is

faced with many decisions beyond the analysis process itself. Questions

such as “Does the company want to develop the software themselves or

outsource it?” or “Do they use their own or third-party IT

infrastructure?” have to be answered. Depending on strategic, resource

and their operating environment factors, different strategies are best

suited [98]. As shown in Figure 17, the product and service model can be distinguished

during deployment.

Figure 17: The
deployment pillar.

28

Product Model

In the product model organizations buy or develop the software and deploy it on their

own infrastructure. This ensures data security and privacy. It also benefits processing

large on-site data since it does not have to be uploaded to third party servers [18].

Service Model

The service model describes the approach of outsourcing the infrastructure to an external

service provider [18]. This offers companies flexibility in adding or reducing

infrastructure and releases them from the responsibility of maintenance.

The extent of the service can differ in their depth. In general, three approaches can be

differentiated: The Infrastructure as a Service (IaaS), Platform as a Service (PaaS) or

Software as a Service (SaaS) model [37].

• In IaaS, the service provider offers its hardware with basic software like operating

system, network security and similar utilities.

• PaaS provides an environment on which applications can be developed. The user

does not have to maintain the platform but only his application.

• Following the SaaS approach the user consumes the whole analysis service. The

service provider develops and maintains the software and the customer pays for

the entire software.

3.4 Architecture of a Big Data Ecosystem

The above presented framework from Khalifa et al. [18] can now be used as the

foundation to describe a general architecture of a Big Data analytic ecosystem. The six

pillars can be transformed almost directly into the components of a general software

architecture. Only the last pillar, deployment, represents implementation requirements

rather than an architectural component and is therefore not considered. Retaining the

names introduced before, the components can be separated into storage, orchestration,

processing, interfaces, and assistance.

29

Figure 18: High level architecture of a Big Data analytic ecosystem.

Figure 18 shows a graphical representation of the architecture of a Big Data analytics

ecosystem. Starting from the bottom, the first layer represents the storage component.

Data can be stored either on a distributed file system or on (distributed) databases, as

depicted in yellow and red. As mentioned above there are many types of databases. An

ecosystem is not limited to only using one storage system but can combine multiple

systems (i.e. a relational database for financial data and a NoSQL database for emails). The

next layer, depicted in orange, is the resource manager. The resource manager is vital in

distributed environments. It is responsible for managing the computer cluster and its

resources as well as distributing the workload among all computing nodes. The

processing layer, here represented in blue, focuses on the workload itself. It is responsible

for analysis and manipulation of data. It defines the programming paradigm used for all

data processing and therefore influences how applications must be written. As described

before there are different programming paradigms that are implemented in different

execution engines. Execution engines offer APIs for different programming languages. The

famous Hadoop MapReduce framework for example offers an API for Java. Developers can

write a program consisting of Mappers and Reducer in Java and feed it into the execution

engine. Creating a program for one execution engine however is often linked to writing a

large amount of engine specific code. This especially applies when implementing complex

analysis. The interface layer, depicted in green, addresses this problem by adding an

additional abstraction layer. Interfaces are situated between the execution engine and

application developers. They provide already implemented functionalities that can be

used by developers. They range from simple data access and search applications to

complex machine learning libraries. While most of them are aimed at one specific

execution engine, some offer support for more than one. This allows developers to switch

between execution engines in the future and increases longevity of applications. The last

layer, illustrated in black, are assistance tools. They provide functionalities over the entire

30

system but are not directly related to the analytical process. This includes for example

security, logging services and programs related to monitoring cluster health and

performance.

The goal of this general architecture is to provide a frame of reference when describing

and comparing Big Data analytic ecosystems. The architecture is a tool to compare Big

Data analytic ecosystems in a uniform way. Differences can be recognized and formulated

in a consistent manner. Singular components of the architecture can be exchanged to form

a new ecosystem.

31

4 Predictive Maintenance

4.1 Overview of Maintenance Techniques

Maintenance describes all activities necessary to restore equipment, or to keep it in a

specified operating condition [2]. Maintenance retains or prolongs the life of an item.

Producers as well as consumers encounter the issue of maintenance on a regular basis.

Cars, jet engines, laptops, manufacturing plants, houses and even software systems need

to be serviced periodically to maintain their functionalities.

In many companies, maintenance related costs are only depicted as a simple cost centre,

divided into direct and indirect costs [100]. Regarded as cost centres, maintenance costs

rise and fall in direct relation to performed services. In reality however, maintenance can

increase productivity and profitability of a company by influencing their entire value

chain [101]: Poor maintenance results in higher deterioration, more breakdowns, and

reduced reliability. Breakdowns delay production, decrease production capacity, and

raise overall uncertainty of the production process. Poorly serviced machines are prone

to making more mistakes, reducing product quality and increasing rejection rate. On the

other hand, a well-implemented maintenance system can affect the whole process,

increasing quality and reliability while minimizing costs for spare parts and fluids [100].

Many scientists have analysed the impact of maintenance on the production systems. Al-

Najjar and Alsyouf [100] developed a model to identify, monitor and improve the impact

of vibration-based maintenance. When the model was tested in a Swedish paper mill, it

reduced maintenance costs over 25% (-0.353 Mio USD). Furthermore, potential profits

due to elimination of unscheduled downtime were estimated at around 3 Mio USD. Carter

[102] examined the possible gains through maintenance systems of high-capacity coal

shovels. Since shovels are becoming bigger and more efficient any downtime has an

increased effect on production outcome. Therefore, minimizing machine breakdowns has

a significant impact on overall productivity.

The literature distinguishes breakdown maintenance, time based preventive maintenance,

and predictive maintenance as the three main types of maintenance [3, 103, 104]. As

explained below, their main difference lies in the method used to determine maintenance

needs.

32

4.1.1 Breakdown Maintenance

Breakdown maintenance is the simplest and oldest type of maintenance. As illustrated in

Figure 19, in breakdown maintenance a machine is repaired after a failure occurs.

Figure 19: Process of Breakdown Maintenance.

The orange line indicates the time a broken component (red) is replaced (blue).

Breakdown maintenance is very efficient, since each component operates its entire

lifespan (from instalment until breakdown). However, breakdown maintenance also

produces the most amounts of failures out of all maintenance types, since no proactive

actions are taken to prevent them. It also takes some time between discovering and fixing

a failure. Therefore, sudden breakdowns can lead to very expensive delays throughout the

production chain [104].

4.1.2 Time Based Preventive Maintenance

Time based preventive Maintenance is based on the assumption that similar machines

deteriorate in comparable fashion [105]. To prevent failures, machines are periodically

serviced, regardless of their current health as shown in Figure 20: .

Figure 20: Process of Time Based Preventive Maintenance.

The orange line indicates the periodical service of the machine; the red X shows the

remaining possibility of unscheduled services due to failures. Time and substance of the

33

periodical services are based on failure statistics. These statistics can be derived from

predecessor models, machine tests or experience. Preventive maintenance can prolong

the remaining useful life of a machine by targeting vulnerable components directly. It also

lowers the risk of unplanned failures and production breaks since maintenance can be

scheduled during times of lower capacity utilization [105]

4.1.3 Predictive Maintenance

Predictive maintenance, also called condition-based maintenance, is the newest

maintenance type. Building up upon the approach of time based preventive maintenance

predictive maintenance follows the goal of exchanging components before they fail. In

contrast to preventive maintenance, predictive maintenance does not only rely on

average-life statistics but also considers the current condition of a machine. Specific

environmental effects are part of the calculation at which time a machine should be

serviced. This approach leads to increased efficiency for maintenance tasks. While

preventive maintenance may exchange parts to soon, predictive maintenance ideally

intervenes just before a component will fail. Monitoring the condition of a machine also

enables catching premature failure due to higher wear and tear.

Figure 21: Process of Predictive Maintenance.

Figure 21 depicts the general process of a predictive maintenance system. Machines

measure their current condition and report the data to a prediction system. Depending on

an analysis of incoming measurements, often supported by historical data, the system

makes predictions on possible machine failures. These predictions are then interpreted

and may induce machine service [105].

A predictive maintenance system consists of three main steps. The first step is acquiring

data to obtain information relevant to the systems condition. In the second step this data

34

is processed for better understanding and interpretation. Finally, efficient maintenance

policies are recommended during the last step of maintenance decision making [104] (see

Figure 22).

Figure 22: Three steps of predictive maintenance.

The subsequent chapters analyse these three steps in detail and introduce different

techniques and approaches.

4.2 Data Acquisition

The foundation of every predictive maintenance system is information about the current

condition of a machine. This information is the basis for future predictions resulting in

maintenance decisions. Therefore, collection and storage of information is considered as

first step of a predictive maintenance system. Gathered data can be separated into

condition monitoring data and event data [104].

4.2.1 Condition Monitoring Data

Condition monitoring data consists of all measurements related to the health of a machine

[104]. In general, sensors inside or next to a machine collect measurements automatically.

Measurements are either periodically or continuously. Modern sensors allow for a

multitude of available data sources. The most common sources include vibration data,

acoustic data, oil analysis, temperature, electrical measurements, pressure, moisture,

humidity, weather, or environment data [3, 104, 105].

Depending on the sensor, data is recorded in different data types: The simplest type is a

single value, for example, determining the oil pressure within a machine. Another data

type is a wave, which records continuous data such as sound or vibration. The last

possible type is multidimensional data, where one measurement consists of multiple

values. The most common multidimensional data type is an image [104].

Vibration Monitoring

Vibration monitoring refers to measuring the vibration of machines with non-destructive

sensors and analysing equipment [105]. Vibration data is used to detect wear, imbalance,

misalignment, loosened assemblies or turbulence on machines with rotational or

35

reciprocating parts [106]. Rotational and reciprocating parts produce significant

frequencies on various amplitudes. Deviations can be used as indicators on their condition

[107]. Rotational and reciprocating parts are integrated in most machines used in

manufacturing plants. Therefore, and due to the fact that vibration monitoring allows the

detection of a multitude of different problems, it is the widest used technique in predictive

maintenance [108]. Vibration sensors are able to produce both continuous data and

periodical measurements. Analysis of vibration data is especially well suited for detecting

failures in the early stage of a machine, right after its installation [100].

Sound or Acoustic Monitoring

Another way of monitoring the condition of a machine is analysing its sound emissions.

This technique has a strong relationship with vibration monitoring and can be used in

similar environments [105]. Goti [109] implemented a predictive maintenance system

based on data collected by electronic stethoscopes in a Spanish manufacturing plant. His

results indicate that sound monitoring can be a cost efficient alternative to vibration

monitoring. However, it is often complicated to isolate the sound of single machines,

especially in environments where multiple machines are working close to each other.

Oil Analysis and Lubricant Monitoring

Lubricants like oil are used to decrease effects of wear, friction, and heat generation of

moving parts. Leaks, broken off fragments and oxidation can lead to contamination

resulting in reduced effectiveness of the lubricants or even harming the machine [107].

Oil analysis and lubricant monitoring serve two purposes [105]. At first, it provides

information about the current state of the fluid to analyse if it is suitable for further use,

or if it needs to be exchanged. Second, it serves as an indicator for wear conditions of

internal oil-wetted components. The use and viability of fluid monitoring for predictive

maintenance has been analysed in some scientific papers. Gonzales et al. [110] for

example implemented a predictive maintenance system for cogeneration engines based

on the analysis of circulating fluids resulting in a working system able to make suggestions

for component replacements. Lukas and Anderson [111] utilized lubricant analysis for

condition monitoring of gas turbines. And Kalligeros [112] examined the possibility of

lubricant analysis to determine maintenance needs of hydraulic lifts.

36

Temperature Monitoring

Temperature can be measured either by temperature sensors or infrared emissions.

Deviations of temperature are signs of pending problems [107]. Excessive heat for

example can indicate too much friction, problems with heat dissipation or lubrication

issues. Temperature monitoring is often used on electric and electronic components to

control power flow [105]. Especially infrared sensors are highly influenced by their

environment. Changing seasons, open windows or the installation of a machine nearby

can result in temperature fluctuations. The system has to account for these environmental

effects and include them in the calculations.

Electrical Monitoring

There are two main ways to monitor electrical signal. First, it can be measured how much

electricity a machine uses. Second, changes in equipment properties such as resistance,

conductivity, dielectric strength, and potential can be observed [105]. Variations in either

property indicates broken parts, excessive heat or shortages.

4.2.2 Event Data

In contrast to conditional monitoring data, event data is neither measured continuously

nor periodically, but event based. Event data is created whenever a specific incident

occurs. Event data often includes incidents such as installation, errors, breakdowns,

repairs, or component changes. Although many events must be recorded manually,

modern machines allow for at least partial automation. Error logs for instance allow an

automated registration of errors. Although often receiving less attention, event data is as

important as condition monitoring data for predictive maintenance systems since they

are good indicators of future failures (i.e. frequent small errors can indicate a bigger

error) [104].

4.3 Data Processing

Data processing is the second step of a predictive maintenance system. It describes

handling and analysing the data collected during data acquisition [104]. Raw data often

contains errors or missing values. These lead to reduced data quality. Therefore, data is

often processed first, cleaning out poor quality data and increasing its analysability.

37

4.3.1 Data Cleaning

Data quality is the fitness of data in regards to its purpose [41]. Data quality is critical.

Often referred as “garbage in – garbage out” [7, 104, 113], analysis performed on poor

quality data can lead to misleading or wrong conclusions. Poor data quality can be caused

by different factors: Sensors may malfunction or miss a measurement, data transmission

can fail due to network errors, or humans enter faulty inputs. Before analysing data it is

therefore important to clean “dirty data” [104]. Data cleaning is the process of identifying

and possibly fixing data errors [114]. There is not one single method to handle data errors.

The subsequent paragraphs give an overview to the most popular techniques. Since data

cleansing has become a growing research area with an increasing amount of

contributions, a more in-depth analysis is beyond the scope of this thesis.

Sensor Failures

With often hundreds of machines under surveillance, sensor failure is a common issue in

the field of predictive maintenance. There are usually four types of sensor failures: bias,

precision degradation, complete failure, and drift [115]. Biased failures describe errors

due to measurements that are off by a specific amount, for example, a light sensor that

catches only 80% of light due to dust particles on its lens. Precision degradation outlines

the fact that many sensors loose precision over time due to wear and tear. Complete

failure implies a sensor malfunction and drift errors arise when sensor measurements

drift in one direction over time. Various strategies have been introduced to handle sensor

failures. For instance, Xu and Kwan [115] approach the issue by building a residual model

for a given system based on input-output measurement data. Future sensor

measurements are tested against that model to detect failures. Koushanfar et al. [116]

developed a cross-validation based technique for detection of sensor faults. They detect

errors by analysing sensor data for inconsistent readings.

Missing Data

Missing data describes incomplete data rows. Data analysis processes are seldom able to

handle missing values. Therefore, they must be dealt with before further analysis. There

are three main approaches of handling missing data [117]. One strategy is to discard all

data items containing missing values. Thus, only healthy data is considered for analysis.

If, however, many items have missing values this approach may result in discarding most

38

of the data. The second strategy is to substitute a missing value with the mean value of the

data item (i.e. substituting missing information about the age of a machine with the mean

age of all machines). This strategy implies a normal distribution of the data. The third

strategy is to estimate the missing value based on other existing values (i.e. estimating the

age of a machine based on its serial number). Statistical estimation techniques such as

regression are often utilized for calculating missing values.

Even if one of the strategies is applied, missing data can still be a problem. Each strategy

can introduce bias into the analysis, resulting in misleading or wrong conclusions [117,

118].

4.3.2 Data Analysis

Data analysis describes techniques to analyse the data in order to gain insights and deeper

understanding. Depending on the specific data type, different analyses are available. As

mentioned above, the three data types are value, waveform and multidimensional data

[104].

Analysing Value Data

Value data is the simplest form, consisting of at least one item. To get a better

understanding of a single data item basic statistical analyses can be applied. This includes

calculating features like mean, standard deviation, variance, and min-max values. Another

analysis technique is visualizing the data. Visualization allows for a comprehensible quick

look at data to get a feeling for the overall value distribution, to detect outliers and trends,

and to discover relationships [104].

The complexity of analysing value data increases with the number of variables. Beyond

examining every variable for itself, correlations between variables can be analysed. One

of the most popular techniques is the regression analysis, where one dependent variable

is defined as a function of multiple independent variables. As with single variable data,

data containing multiple variables can be visualized (i.e. a graph visualizing the

development of variables over time). A modern approach for analysing multi dimensional

data is utilizing unsupervised machine learning algorithms [104]. Machine learning

describes a class of algorithms that is able to make predictions based on existing data.

They “learn” data correlations from a set of input data. Generally, machine learning is

divided into supervised and unsupervised learning [119]: Supervised learning techniques

39

are used to make predictions, where all possible outcomes are known up front. A

supervised learning algorithm is first trained on a data set, where possible outcomes are

labelled. After training, the algorithm, it is able to make predictions on unlabelled data.

For instance, a supervised machine learning algorithm is trained on multiple images

showing cats and dogs. Afterwards the trained algorithm is able to detect whether a new

image shows a cat or a dog but unable to identify other animals like bunnies because it

has not yet learned them. Unsupervised learning algorithms do not have to be trained.

They take in raw data and draw conclusions based on correlations they find. For instance,

an unsupervised learning algorithm can find images showing similar content.

Unsupervised machine learning algorithms are therefore best suited for data exploration

[119].

Large amount of variables leads to high complexity in further analysis. Especially in

prediction models, too many variables result in long execution times and can even

negatively affect the accuracy of the outcomes [120, 121]. In order to reduce complexity,

dimensional reduction techniques are utilized. The basic idea is to remove variables with

no or little descriptive benefit. The simplest approach is leaving out data columns with a

large amount of missing values since they do not convey a high amount of information.

Similarly, variables with a very small variance have limited impact. Another way is to

analyse correlations between variables. If at least two of them have high correlation and

follow the same trends, they likely carry similar information and can be reduced to only

one. In addition to these simple techniques, more sophisticated methods are available.

Principal component analysis (PCA) is the most popular method for dimensional

reduction [121, 122]. PCA transforms the data into in an equal or smaller amount of

uncorrelated data. It uses the most expressive features to approximate the data [121].

Analysing Waveform Data

Many data such as vibration analysis or acoustic data are recorded as waves. Waves

convey a lot of information, but their analysis is complex. Wave analysis can be split into

three main categories: time domain analysis, frequency domain analysis and time

frequency analysis [104].

Time domain analysis applies statistical methods directly to the wave itself. It analyses

changes to the wave over time. Typical features are mean, peak, peak-to-peak interval,

standard deviation, crest factor, skewness and kurtosis [104].

40

Frequency-domain analysis is not based on time but on frequency. Instead of analysing

changes to the signal over time, frequency-domain analysis concentrates on how much of

the frequency lies in between specific frequency bands [104].

Time-frequency analysis combines the two approaches by investigating waves both in the

time and frequency domain. Waves are represented as two-dimensional functions of time

and frequency [104].

Figure 23 illustrates the time and frequency dimension of a wave as well as their

relationship. The conversion between the two is done by Fourier transformation. As

displayed below, the Fourier transformation decomposes a given wave, which was

measured over time, into separate waves of consistent frequency [104].

Figure 23: Illustration of the relationship between time and frequency dimensions of a wave as established by the
Fourier Transformation (based on 38).

Figure 23 illustrates the time dimension as orange line, which displays the changes to the

wave over time. The blue bars in the frequency dimension show the various frequencies

the wave is composed of.

Analysing Multidimensional Data

Multidimensional data like images are complex to analyse. Sometimes raw image data

provides enough information to identify patterns. If this is not the case, image processing

techniques have to be applied to extract useful information [104] .

Image processing techniques have found their way into the manufacturing industry and

have proven to be an excellent data source for data analysis and decision making systems.

Oikawa et al. [123] designed a system based on image and sound data to detect oil and

steam leaks as well as fire and smoke in the vicinity for a thermal power plant. Demant et

38 http://pgfplots.net/tikz/examples/fourier-transform/

41

al. [124] show how image processing can be used to implement a visual quality control

system in a manufacturing plan. Connolly [125] introduces many more application areas

for infrared images in the manufacturing industry like identifying heat leaks and product

defects.

4.4 Maintenance Decision Support

After collecting and analysing data, the final step of a predictive maintenance system is to

decide whether a machine has to be serviced or not. The decision is highly dependent on

the previous steps. Independent of the chosen method, analysis can only be meaningful

when performed on significant quality data. Maintenance decision making techniques can

be separated into two categories: diagnostics and prognostics [104]. Fault diagnostics

focuses on the detection, isolation, and identification of faults. Prognostics builds upon

diagnostics and tries to predict failures before they occur [104].

4.4.1 Failure Diagnostics

Machine diagnostics is the process of analysing data to diagnose the state of a machine.

Its goal is to recognize if a failure is currently present. One of the main tasks is to identify

patterns indicating failures. These patterns can then be used to detect failures inside of a

machine without manual inspection. Analysing faults and investigating their causes is

often done by experts of the respective fields. This requires qualified personnel and

results in time and monetary costs. To speed up the process and to make it universally

applicable, automated diagnostic approaches have been developed. Diagnostic techniques

can be generally categorized into three types: statistical, artificial intelligence and model

based approaches [126].

Statistical Approaches for Machine Diagnostics

Statistical approaches utilize statistical methods to diagnose machine failures. They

analyse and compare machine data to previous measurements to detect the current state

of the machine. Common statistical methods include hypothesis tests, cluster analysis, and

hidden Markov models.

Hypothesis Test

The problem of detecting a specific fault inside a machine can be described as a hypothesis

test problem with the following hypothesis [104]:

42

H0: Fault x is present

H1: Fault x is not present.

In order to test the hypothesis, current measurements are compared to measurements

taken during normal behaviour.

Nyberg [127], for example, introduces a framework of structured hypothesis tests for

automated fault diagnostics. He splits the diagnostic problem into multiple hypotheses

following the above-mentioned design. After testing for each hypothesis, he combines the

results logically to detect which failures are able to describe the current state.

The key to hypothesis tests lies in careful definition of possible failure states as well as the

presence of sufficient data measured during them. The initial development of the

statistical model therefore requires expert knowledge and has to be thoroughly tested

against reality [127].

Cluster Analysis

Cluster analysis is another statistical method to detect machine failures. The basic idea is

to group similar data points together into fault categories. New measurements are then

compared to these groups and are put into the ones they are most similar to [128].

Consider Figure 24 as an illustrated example. The first graph (left) plots two-dimensional

data consisting of a x- and y-value. Green points indicate measurements taken during

normal working time of the machine, red points indicate measurements during failure

occurrences. A clustering analysis then groups similar data together into two groups: the

failure and non-failure group (middle). To diagnose the current state of the machine, the

new data point (orange) is analysed and compared to both groups (right): The new orange

data point is most similar to the failure group. Hence the current state of the machine is

diagnosed as failure.

Figure 24: Example of failure identification by cluster analysis.

43

There are multiple ways to define groups. A common technique is to cluster points

together, which have the smallest distance to each other. There are however many types

of distances that can be utilized. Examples include Euclidean distance, Mahalanobis

distance, Kullback–Leibler distance and Bayesian distance [104].

Hidden Markov Model

Named after the Russian mathematician Andrey Markov, the Markov process is

mathematical model to represent a stochastic system. The system consists of states and

transitions between these states. The Markov model predicts the next state of the system.

The future state is only dependent on the present one. Past states and transitions are not

considered [126]. In a hidden Markov model some, or all states are not directly, but

indirectly observable. The states are therefore hidden from the observer [126].

Figure 25 illustrates an example for a hidden Markov model of a machine. The machine

either runs normal (Fault-free) or experiences one of two possible failures (Failure 1 or

Failure 2). The hidden Markov Model below models these three states of the machine.

Every state can transition into each of the others as represented by the grey dotted

arrows. The orange arrows show one possible sequence of states. Each transition has a

probability p. The goal of the hidden Markov model is to estimate the most likely system

sequence based on the current state at the present time Tk.

Figure 25: Illustration of a hidden Markov model consisting of three hidden states and four points in time.

Many experiments have been performed to test the application of hidden Markov models

in the field of predictive maintenance. Ying et al. [129] introduce a hidden Markov based

algorithm for fault diagnosis in systems with partial and imperfect tests. They model

failures as hidden states and calculate the transition probabilities by the well-known

Baum–Welch algorithm [130]. Tai et al. [131] explore the application of a hidden Markov

model to detect machine failures in a production environment based on the quality of the

manufactured products. Li et al. [132] show that a hidden Markov based fault diagnostic

model can effectively predict failures during the speed-up and speed-down process of

44

large rotating machinery (i.e. turbines in a power plant) based on vibration data. And Wu

et al. [133] propose a real-time condition monitoring system based on acoustic sensors

and a hidden semi-Markov model, yielding positive results in the detection of common

machine failures.

Artificial Intelligence Approaches for Machine Diagnostics

Artificial intelligence describes a group of techniques that try to simulate intelligent

behaviour. In the field of failure diagnostics, artificial neural networks, expert systems,

and fuzzy logic systems are the most popular methods.

Artificial Neural Networks

Artificial neural networks have their origins in studies of the human brain [134]. They try

to mimic the activities of the brain, where millions of interconnected neurons process

information in parallel. The idea of neural networks for processing information was born

in the middle of the 20th century. The first model was developed in 1943 by McCulloch

and Pitts [135]. In 1954 Minsky [134] introduced the first working prototype Snark,

consisting of 300 vacuum tubes and 40 variable resistors. It could be trained to run a

maze. Although the research on artificial neural networks continued on, it really gained

momentum in the 1980s with the rise of modern computers.

Figure 26: Structure of an artificial neural network with one input layer, two hidden layers and one output layer.

An artificial neural network transforms multiple inputs into multiple outputs. It utilizes

interconnected nodes as processing units. Figure 26 displays the structure of an arbitrary

artificial neural network. It consists of three main parts: the input layer, the output layer,

and one or more hidden layers in between. Each layer consists of multiple nodes. Each

45

node is connected to all nodes of the previous and the next layer. Each connection has a

weight assigned to it. The weight represents how strong nodes are connected and can be

a positive as well as a negative value.

Each node has a value. The value is calculated as the sum of all nodes of the previous layer

multiplied by the weight of the connection to it. This calculation is done for each layer.

The result is given by the node in the output layer with the highest value. The performance

of the algorithm highly depends on set weights of the connections. They are usually set

during a learning phase, in which the algorithm is fed with training data. The training data

consists of multiple data items that are already labelled with the correct outcome.

The possible application of artificial neural networks to the issue of failure diagnostic is

explored in multiple occasions. He and Li [136] use ultrasound data and an artificial

neural network to successfully diagnose the condition of grinding machines. Verma et al.

[137] introduce a system detecting faults of an air compressor based on acoustic data.

Soliman et al. [138] utilize an artificial neural network to estimate current capacity of DC-

link capacitors. Their input data includes in-/output current/voltage as well as loading

power and DC-link voltage. Their results indicate that their model was able to detect even

very small changes of capacity.

While artificial neural networks can be very accurate, Gowid et al. [139] point out that

they bear high computational as well as development costs. Gowid et al. [139] compare

the application of neural network with a fast Fourier transformation based segmentation

algorithm to condition monitoring of centrifugal equipment.

Expert Systems

Instead of learning from historic data, expert systems use domain expert knowledge for

problem solving. Inference engines are used to transform inputs into conclusions. In the

field of machine failure, the most commonly used reasoning techniques are rule-based

reasoning, case-based reasoning, and model-based reasoning.

In general an expert system is composed of a man-machine interface, an interpreter, a

reasoning machine, a knowledge acquisition module and a knowledge base [140]. Figure

27 display its architecture and interaction.

46

Figure 27: General architecture of an expert system.

During development of the system, domain experts fill the knowledgebase through the

knowledge acquisition module. Depending on the reasoning method, this can be in form

of rules, cases or an underlying model. New input by users is processed by the reasoning

machine, which applies rules extracted from the existing knowledge in the knowledge

base. The result is presented to the user through the interpreter, explaining all reason

leading to the conclusion [140].

The feasibility of expert systems in the field of machine diagnostics is examined multiple

times. Deng et al. [140] present a rule-based expert system to monitor the condition of

wind turbines. In addition to identifying the state of the machine, the expert system

advises the user on how to restore functionality. Gao et al. [141] developed an intelligent

fault diagnostic system for gearboxes of rolling mills in the steel industry. Their hybrid

reasoning machine uses a combination of rules and cases to generate a fault diagnostic

report. Wen et al. [142] apply case-based reasoning to vehicle fault diagnostic. Their

system is able to find root causes of vehicle faults. Their experiments with real data show

its accuracy and effectiveness. Stanek et al. [143] use a combination of model and case

based reasoning to diagnose high-voltage switching devices. Their model simulates the

behaviour of the devices based on the input data. The case based reasoner complements

the results of the model to get the final results.

Fuzzy Logic Systems

First mentioned by Zadeh in 1965 [144], the main goal behind fuzzy logic is to describe a

system that is capable of dealing with classes that do not have precise defined criteria.

Traditional logic knows only two conditions: true or false. In the real world we often

encounter situations where this binary classification leads to problems. Fuzzy logic does

not limit itself to true and false but utilizes a sliding scale between 0 and 1.

47

Consider the classical example of water temperature. In a traditional logic system the

water has only two states: hot and cold [145]. At very high or low temperatures the

classification into either one of these states is simple. The problem arises when defining

the transition point at which the state changes from cold to hot. The question is, if there

is really one point where all higher temperatures can be considered as hot and all lower

ones can be considered as cold. Fuzzy logic helps to define the grey area between hot and

cold. Instead of having two absolute values, a value between one and zero is assigned to

each state. Figure 28 shows a possible temperature function in fuzzy logic. In this example

the three states cold, warm and hot are possible. Each state is described by a membership

function. The membership function defines the value at a specific temperature. For

example, in point P, the membership functions of both the cold and the warm state assign

a value of 0.5 each.

Figure 28: Fuzzy logic system modelling temperature.

Fuzzy logic can be utilized to diagnose machine faults as well. Instead of cold, warm and

hot, measurements are classified into groups like low, normal, and high. Rules are then

applied on these outcomes to reach conclusions. Fuzzy logic is also often coupled with

inference engine. Mechefske [145] analyses the application of fuzzy logic for fault

diagnosis based on vibration data. He experiments with different shapes of membership

functions, namely linear, triangular, S-, and π-curve, with the last one yielding the best

performance. Noreesuwan and Suksawat [146] use fuzzy logic and sound analysis to

monitor the health of groove ball bearings. They present nine fuzzy rules to accurately

determine the condition of the bearings. Hichem et al. [147] propose a system for

detecting stator windings faults in induction machines. They combine fuzzy logic with an

inference engine consisting of 14 rules to determine one of four possible machine states.

The challenge of developing an effective fuzzy logic system is defining the membership

function as well as the rules applied to measurements. They can be either set manually or

48

calculated analysing historic data. Especially manual configuration bears the risk of

introducing bias into the system.

Model Based Approaches for Machine Diagnostics

Model based techniques utilize physical and explicit mathematical models of the machine

to diagnose their current state [148]. The model simulates the behaviour of the physical

machine and is used to predict its future condition. Figure 29 illustrates the workflow of

a model based approach for failure diagnostics. It displays the physical, real system as

well as the mathematical model of this system. Both, the system and the model are fed

with input data (i.e. how fast a rotor should spin). The model simulates how the real

system should behave under perfect conditions. Sensors monitor the real system and

measure how the system actually behaves. The simulated data and the actual sensor data

are then compared to find discrepancies. Analysing these discrepancies can lead to the

detection of failures within the real system.

Figure 29: Workflow of a model based approach for failure diagnostics.

The mathematical model must be very precise to simulate the real system accurately.

Developing the model is time-consuming and requires expert knowledge. Furthermore a

model is only applicable to the type of machine it was designed for [148]. However, once

constructed, they are very accurate in simulating the correct behaviour [148]. The

complexity of the model increases with the number of its components. Most research

available targets single components rather than entire machines. For instance, Bartelmus

[149] presents a mathematical model for a one-stage and two-stage gearbox. The gearbox

is simulated on a computer and compared to real-life sensor data to infer the current

condition of the gearbox.

4.4.2 Failure Prognostics

While diagnostics focus on assessing the current condition of a machine, prognostics aim

at predicting the machine’s future condition. As illustrated in Figure 30, there are two

49

main prediction types [104]: Predicting the remaining useful life (RUL) of a machine and

predicting component failures.

Figure 30: Prediction of RUL vs prediction of component failure.

Predicting the RUL of a machine is calculating how much time is left until a failure occurs.

The problem can be formulated as follows: “How much time will pass until machine X will

fail?” The result of this prediction is a number representing the time until failure.

Predicting component failure calculates if a specific component will fail in a fixed time

period, resulting in the problem statement “Will component Y of machine X fail in the next

24 hours?”. Depending on the technique, this prediction can have two different outcomes:

Either the result is a simple binary yes or no, or the result is a percentage representing

the probability of component failure.

In general, both prediction types utilize similar techniques to diagnostics, which were

already presented in chapter 4.4.1.

Predicting Remaining Useful Life

The RUL represents the time until a machine will fail. Calculating the RUL enables

servicing the machine just in time before it would break down. RUL can be predicted on a

component, machine, or system level (i.e. RUL of a bearing, engine, or car). The RUL can

be represented in two main ways. It can be indicated in a time unit, for example hours

until failure. This time unit is sometimes accompanied by a percentage indicating the

certainty of the prediction (i.e. the component has a RUL of 50h with a certainty of 85%).

Or the RUL can be presented in form of degradation, for example the component has been

worn down to 5o%. Similar to diagnostics, RUL prediction falls into the three categories

of statistical approaches, artificial intelligence approaches, and model-based approaches.

50

Statistical Approaches for Predicting RUL

Statistical approaches to RUL prognostics utilize statistical methods to predict the time

until failure of a machine. They compare current data of a machine to historic

measurements to calculate the RUL. Typical statistical methods include the already

discussed techniques of hypothesis tests and hidden Markov models. Besides them,

regression is one of the main methods to determine the RUL.

Goode et al. [150] use a traditional statistic approach to solve the problem of determining

the RUL. They utilize statistical process control to separate the whole machine life into

the two intervals I-P (Installation - Potential failure) and P-F (Potential failure - Functional

failure). While the machine is running correctly in the I-P interval, it runs with a problem

during P-F. The current interval of a machine is predicted using a Weibull distribution and

RUL is estimated. Another example is presented by Li et al. [151], who predict the RUL of

rolling bearings based on R/S Statistic and fractional Brownian motion. The fractional

Brownian motion is a mathematical function representing a continuous series of data. It

is a semi-random continuous stochastic process. R/S Statistic is one of the oldest methods

for estimating the Hurst-index, which can be used to describe the trend within a time

series such as the fractional Brownian Motion [152]. The prognosis of Li et al. [151] is

based on vibrational data and predicts the degradation status of rolling bearings.

As mentioned before, the Markov model is based upon states and the transition between

them. Each transition only depends on the current state of a machine. Markovian-based

models can be used to estimate the time passed between the current and a future state,

for example operating and broken [153]. The model can be further refined by adding

multiple states (i.e. excellent, good, minor defects, and critical failure). The main limitation

of Markov-based models is their central assumption of independence of past states. To

estimate RUL, Markovian models only consider current values. Banjevic and Jardine [154],

for example, estimates RUL of a transporters transmission based on a Markov failure time

process. They calculate RUL as a function dependent on machine age and current

condition data derived from oil analysis.

Another method to estimate RUL is regression. Regression is a statistical process for

estimating one (dependent) variable based on the values of one or more (independent)

variables. Consider the following linear regression model. Linear regression is a special

form of regression, where the relationship between the independent variable and the

dependent variable is represented by a linear function.

51

y = β0 + β1x1 + β2x2 + β3x4 + β4x4

In this function, the dependent variable y is represented as a function of the four

independent variables x1-x4. β1- β4 are the unknown coefficients for the values of the

independent variables and β0 is the unknown constant. The unknown coefficients β0 - β4

are estimated by analysing historic data, where y and x are known. In the case of

predictive maintenance, xi represents the current condition of a machine and y the RUL.

Regression based methods are widely used in industry and academic research due to their

simplicity [153]. However, this simplicity creates some problems: Regression assumes a

monotonic degradation process, which cannot always be observed in real life [153].

Regression also cannot model temporal variability and uncertainty in the degradation

process [155].

Caesarendra et al. [156], for example, utilize logistic regression (a special form of

regression used to calculate the percentage if an event will occur or not) to calculate the

degradation status of bearings based on vibration data. Yan et al. [157] also applied a

logistic regression model to determine RUL of an elevator door motion system. Kehlif et

al. [158] use a regression model to predict RUL of the Turbofan machine based on a data

set provided by NASA.

Artificial Intelligence Approaches for predicting RUL

Most of the artificial intelligence approaches for predicting RUL are based upon the

artificial neural network (see chapter 4.4.1). While the input data to the neural network

is the same as in diagnostics (current condition data of a machine), the output differs.

Instead of outputting the current health of the machine, the neural network is trained to

predict RUL. For instance, Wang and Vachtsevanos [159] predict the fault propagation

process using a artificial neural network and estimate RUL as the time left before the fault

propagates to a certain level. Another example is provided by Asmai et al. [160]. In a first

step they predict the failure probability using a logistic regression model. In a second step,

the result of the logistic regression is fed into an artificial neural network, predicting RUL.

While artificial neural networks can achieve good prediction results with only a few

samples to train on [159, 161], they can take a long time to train due to a high amount of

hidden layers and data points [162].

52

Model Based Approaches for Predicting RUL

Similar to model based approaches used for machine diagnostics (see chapter 4.4.1),

model based approaches for failure prognostics build a mathematical model of a physical

system. They predict RUL by simulating future behaviour on the theoretical model. Model

based approaches require specific mechanistic and theoretical knowledge of the system

of which the RUL is estimated. This results in long development periods and the need for

experts. Models are also only applicable to one specific machine and cannot be easily

applied to others. Ray and Tangirala [163], for example, developed a non-linear stochastic

model to predict crack dynamics in order to estimate RUL. Li et al [164, 165] introduce a

stochastic model to simulate defect propagation in bearings with the goal of calculating

RUL.

Predicting Component Failures

Predicting component failures formulates the prediction problem differently than

predicting RUL. Instead of estimating the average time until failure, a prediction is made

whether a specific component will fail in a specified time horizon (i.e. 24h). The answer is

a binary yes or no instead of a numerical time value. The binary result is sometimes

accompanied by a percentage representing the certainty of the prediction. Predicting

component failure is typical solved by classification machine learning algorithms.

Classification algorithms identify to which class a certain set of values belong. In case of

predictive maintenance, the classes are for example “will fail” or “will not fail”. The values

for the prediction are given by current condition data of a machine. The following sections

introduce the most prominent machine learning algorithms for classification problems:

decision tree, decision forest, naïve Bayes, artificial neural networks, and support vector

machines.

Decision Tree and Decision Forest for Predicting Component Failure

The basic idea of decision trees is to break up a complex decision into a union of several

simpler decisions [166]. Instead of making one decision, several small decisions are made

to come to a conclusion. The structure of the possible decisions resembles a tree.

53

Figure 31: Example of a decision tree for predicting component failures.

Figure 31 illustrates an exemplary decision tree from the domain of predictive

maintenance. It consists of one root node (orange), internal nodes (blue), and leaf nodes

(green) holding the final prediction [167]. At each node a decision is made revealing the

path to the next node. Consider a machine with four different sensors measuring pressure,

voltage, heat, and vibration. The measurements of these sensors can indicate imminent

component failure. Instead of considering all measurements at once, the decision tree

splits the problem into multiple smaller decisions. Starting at the orange root node, at first

only the pressure is considered. Depending on its value, a different path is chosen for the

next node (in this case <100, =100, >100). At the subsequent node the next variable is

considered (voltage, heat, or vibration) and leads to the final green leaf node holding the

class prediction.

In machine learning a data set is used to create such a decision tree. The tree is recursively

partitioned until all data items of the same class belong to the same label [168]. This

process is called the training of the decision tree. Training is a computationally very

expensive task, since the data set is traversed multiple times [167]. However, after

training, the decision tree model is computational very efficient since new data is only

checked for a few attributes when traversing through the tree [166]. One of the biggest

advantages of the decision tree is its transparency regarding decision making. Decision

trees produce understandable results since all steps leading to the final decision are made

due to transparent rules.

The decision forest is an expansion of the decision tree. Instead of having only one

decision tree, multiple trees are trained. The trees are uncorrelated and differ due to some

54

random variable considered during training. Figure 32 illustrates an example for a

decision forest made from three different decision trees. In a first step, new data is

classified by every single tree. Afterwards, in a second step, a majority vote is used to

conclude the final classification.

Figure 32: Example of a decision forest consisting of three decision trees.

Decision trees and forests have been employed to predict machine failures multiple times.

For instance, Sylvain et al. [169] use a decision tree to predict aircraft component

replacements. Their goal is to predict whether a specific component should be replaced

within a given time period or not. The input data was gathered from an Airbus A-320 and

the experiment was conducted for 16 different components with positive results.

Bonissone and Goebl [170] present a model combining a neural network and a decision

tree to predict imminent failure of a paper web in a paper mill. The paper web transports

the paper through the process with speeds up to 60 mph. Due to high stress, the web

breaks on average once per day, resulting in standstill of the entire machine for up to 90

minutes, leading to revenue losses of several million dollars per year. The model proposed

by Bonissone and Goebl predictis imminent failures to enable personnel to take

preventive actions. Guang et al. [171] propose a decision forest model to predict failures

in a cloud computing system. They collect 83 runtime performance metrics from two

clusters containing 166 servers each. The data is then used to train a decision forest to

predict component failures within the cluster.

Support Vector Machines for Predicting Component Failure

First proposed for by Cortes and Vapnik [172], support vector machines (SVM) are a tool

for classification in data analysis. Figure 33 shows the basic concept of SVM with two-

dimensional data. In this figure, data points are plotted against a field. They are either a

55

member of class working (green) or failure (red). The SVM then calculates a boundary

between them (blue). The goal of the boundary is to separate both classes in such a fashion

that it has the maximum distance to points of both classes, placing it right in the middle of

them [172]. To classify a new data point (orange), it is plotted on the same plain.

Depending on which side of the boundary the new data point resides, a classification is

made. In the illustrated case, the new orange data point would be classified as failure.

Figure 33: A Support Vector Machine for classification of two classes.

SVMs are able to achieve high accuracy on complex classification problems, but they are

computational very expensive to train with increased dimensionality of the data [173].

There have been some experiments to use SVM to predict machine failures. For instance,

Susto et al. [173] utilize multiple SVMs to predict failures of an ion-inducing machine used

in the semi-conductor industry. The machine is critical to the process and considered a

bottleneck due to its high costs. The tool utilizes a tungsten filament, which has to be

replaced frequently, disabling the machine for up to three hours and slowing down the

entire production line. The model proposed by Susto et al. determines the optimal time

for the replacement of the tungsten filament.

Nearest Neighbour for Predicting Component Failure

Nearest neighbour is a method to classify data by finding the most similar known data

points. Figure 34 illustrates this technique. New data (orange) is compared to all other

data points, whose class is already known (in this case red for class failure and green for

class working). The new data is classified the same class as its nearest neighbour (in this

example failure).

56

Figure 34: Nearest Neighbour algorithm for classification of two classes.

By considering only the nearest neighbour, the method is not aware of outliers in the

training data. Therefore, instead of finding only the nearest neighbour, multiple close

neighbours are considered. This approach is generally called k-nearest neighbours.

Nearest Neighbours is one of the simplest classification algorithms, requiring just the

computation of distance between samples [173]. No explicit training of the model is

necessary. However, this leads to expensive calculations each time a new data point is

classified. Thus, it is not surprising that nearest neighbour approaches have not yet been

heavily researched for the domain of failure classification. Verma and Kusiak [174] give

an example by using a k-nearest neighbour approach to predict failures of generators and

blades of wind turbines. They compare its performance to implementations using a

decision tree, support vector machine, and genetic algorithm, resulting in k-nearest

neighbour performing worse than any other algorithm.

Naïve Bayes for Predicting Component Failure

The Naïve Bayes classifier is a simple probabilistic classifier with strong (naïve)

independence assumptions [175]. It classifies a set of variables based on already classified

data. The classifier strongly assumes that all variables are independent of each other.

Although this assumption is generally not realistic, the Naïve Bayes classifier can perform

surprisingly well even when classifying data with highly dependent variables [176]. Using

the Naïve Bayes Classifier, the probability of a class c given the variable x can be expressed

as follows:

𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)

P(c|x): the probability of class c given the attribute x

P(x|c): probability of variable x given the class c

P(c): the probability of class c

57

P(x): probability of variable x

With n variables X, the probability of class c is given by the product of the individual

variables xi:

𝑃(𝑐|𝑋) = 𝑃(𝑐|𝑥1) × 𝑃(𝑐|𝑥2) × … × 𝑃(𝑐|𝑥𝑛)

Consider following example for clarification. A machine periodically measures pressure

and heat. For simplification, the measurements are either high or low. Table 2 lists ten

observations made of the machine. Each observation consists of the pressure and heat

measurements as well as a binary yes/no, indicating if a failure was present at the time.

Table 3 lists the frequencies of failures depending on the individual measurements. They

are separated by variable. The table also lists the likelihood of failure given a specific

measurement.

Table 2: Observations of pressure and heat
and corresponding state of the machine.

Observations

Pressure Heat Failure
low high yes
low low no
high low no
low low no
high high yes
low high yes
low low yes
low high no
low low no
high low yes

Table 3: Tables of frequencies and likelihood of failures.

Frequency Tables and Likelihood of Failure

Pressure Failure No Failure Likelihood
low 3 4 =3/10
high 2 1 =2/10
Sum 5 5
 =5/10 =5/10

Heat Failure No Failure Likelihood

low 3 1 =3/10
high 4 2 =4/10
Sum 7 3
 =7/10 =5/10

Now, consider a new observation with high pressure and low heat. The question is

whether the observation will likely result in failure or not. Using the formula above and

the values calculated in Table 3, the probability of failure given the new observation is

calculated as follows. At first, the probability of failure given the high pressure is

calculated:

𝑃𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑦𝑒𝑠|ℎ𝑖𝑔ℎ) =
𝑃(ℎ𝑖𝑔ℎ|𝑦𝑒𝑠)𝑃(𝑦𝑒𝑠)

𝑃(ℎ𝑖𝑔ℎ)

P(high|yes) = 2/5 = 0.4
P(yes) = (5/10)*(7/10) = 0.35
P(high): 5/10 = 0.5

 =
0.4 ∗ 0.35

0.5
= 0.28

Afterwards, the probability of failure given the low heat measurement is calculated:

𝑃ℎ𝑒𝑎𝑡(𝑦𝑒𝑠|𝑙𝑜𝑤) =
𝑃(𝑙𝑜𝑤|𝑦𝑒𝑠)𝑃(𝑦𝑒𝑠)

𝑃(𝑙𝑜𝑤)

P(low|yes) = 3/7 = 0.43
P(yes) = (5/10)*(7/10) = 0.35
P(low): 3/10 = 0.3

58

 =
0.43 ∗ 0.35

0.3
= 0.5

Multiplying both probabilities results in the overall probability for the observation of

being in the class failure with 14%:

𝑃𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑚(𝑦𝑒𝑠|𝑋) = 𝑃𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑦𝑒𝑠|ℎ𝑖𝑔ℎ) × 𝑃ℎ𝑒𝑎𝑡(𝑦𝑒𝑠|𝑙𝑜𝑤) = 0.28 × 0.5 = 0.14

There is only a limited amount of research available utilizing a Naïve Bayes classifier for

predicting machine failures. Di Maio et al. [177], for example, use a Naïve Bayes classifier

to predict failures of bearings. They use data collected by vibration sensors and classify

the data to find the most similar degradation process.

Artificial Neural Networks for Predicting Component Failure

The artificial neural network as portrayed in chapter 4.4.1 can also be used to predict

component failures. Instead of training the neural network to predict the current state,

the network is trained to predict future component failures. Therefore, the training data

set is labelled with future component failures instead of current state.

Bangalore and Tjernberg [178] use a neural network to predict failures of gearbox

bearings from wind turbines. They collect the average temperature of the bearings every

10 minutes and use a neural network to predict its future development. Based on this

prediction an assessment is made whether the bearing will fail or will continue to work.

They tested their model with data from offshore wind turbines and were able to detect

severe damages of gearbox bearings in advance.

59

5 Predictive Maintenance Benchmark (PMB)

This chapter introduces the Predictive Maintenance Benchmark (PMB). The PMB is a tool

to compare Big Data analytic ecosystems in the domain of predictive maintenance. It

follows an end-to-end approach and tests an entire ecosystem rather than single Big Data

analytic frameworks.

Due to the broad employment of Big Data analytics across industries [179], it is important

to compare Big Data analytic frameworks in context of their application area [12, 13].

Today’s end-to-end Big Data benchmarks focus on the domains of retail, e-commerce,

search engines, or social networks [14, 15]. PMB expands the available benchmarking

domains into the field of predictive maintenance. It is based on a predictive maintenance

use case, in which a machine learning algorithm is used to predict future component

failures.

PMB is developed following the methodology of Han et al. [12]. As described in chapter

1.4, the methodology separates the development of a benchmark into the five steps of

planning, data generation, test generation, execution, and analysis and evaluation. This

chapter covers the first three steps of the methodology, while execution and evaluation

are completed in chapter 6.

5.1 Planning of the PMB

During planning, the benchmark object, application domain, and evaluation metrics are

determined [12]. As mentioned before, the goal of PMB is to test an end-to-end process in

the not yet covered domain of predictive maintenance. Therefore, the object of PMB is a

Big Data analytic ecosystem and the application domain is predictive maintenance. In

accordance to the popular end-to-end Big Data benchmarks BigBench [14] and

BigDataBench [180], as well as many other benchmarks [11], execution time is the main

performance metric of PMB.

The workloads of PMB are based on a predictive maintenance use case, which is described

below in section 5.3. The use case consists of the three steps data acquisition, data

processing, and maintenance decision making (see chapter 4.2-4.4). The data is collected

from multiple sources, including periodic condition monitoring data (i.e. vibration data),

event based data (i.e. occurrences of errors), and additional information (i.e. machine

60

age). The data is processed and combined to extract significant features for the prediction.

Afterwards, a machine learning algorithm is used to make predictions on future machine

failures based on the extracted features. The predictions are made following the

classification approach described in chapter 4.4.2, where the algorithm is trained to

predict whether a component will fail in a given time period. PMB defines workloads for

training a new model as well as using an already trained model for new predictions.

5.2 PMB Data Model

The data model of a Big Data benchmark must be comparable to those of real live

applications. Otherwise it cannot be considered representative and results are not useful

for the process of implementing Big Data solutions [12]. Therefore, two main aspects have

to be considered for the data model of PMB. First, the data model must be representative

of predictive maintenance use cases. In particular this means the inclusion of various

condition monitoring measurements as well as event text based data such as errors and

maintenance information [104]. Second, the data model must represent Big Data and its

main characteristics volume, variety and velocity.

This section introduces the chosen data model and explains how it meets the above

mentioned criteria. After presenting the components of the data model, the model is

analysed in respect to the three dimensions of volume, variety, and velocity.

5.2.1 Specifications of the PMB Data Model

The basis for the data model is a data set [181] published by Microsoft39, which is part of

the guide “Predictive Maintenance Modelling Guide” of their Big Data analytics platform

Microsoft Azure40. The data set was created by monitoring 100 machines over the period

of one year. Each hour four condition indicators were measured (volt, pressure, rotation,

vibration). Furthermore, errors, failures, and services were logged. Each machine consists

of five components which can break down. The data set is anonymised and does not

specify which machines where monitored. Additionally, model, error types, and

components are only available as generic names (i.e. error1, error2) to prevent

conclusions about the machine itself. As illustrated in Figure 35 the data model consists

39 http://www.microsoft.com/
40 http://azure.microsoft.com/

61

of the five parts telemetry data, machine metadata, error log, maintenance log, and

machine failures.

Figure 35: Data model of the PMB.

The periodical telemetry data holds information about the condition of the machines and

is recorded each hour. Furthermore, the data model consists of three event based data

logs: the error log which automatically registers all minor errors a machine experiences,

the maintenance log which keeps records of time and substance of regular services and is

maintained by the service personnel, and the failure log which documents machine

breakdowns. The last data set of the data model is the machine metadata, which holds

additional information about the machine such as type and age.

Telemetry Data

The telemetry data set consists of condition data of 100 machines. Each hour, voltage,

pressure, rotation, and vibration of the machine is measured. Each set of measurements

is marked with a timestamp and the ID of the machine. Table 4 lists the information

recorded in the telemetry data. Additionally, the range of the variables, their arithmetic

mean μ, and the standard deviation σ are presented.

Table 4: Telemetry data set of the PMB data model.

Name Description Unit Range μ σ

machineID ID of machine number 1-100 -

datetime date and time of record date 1.1.– 31.12.2015 -

volt voltage level of the machine volt 97 – 256 170.8 15.5

pressure pressure inside the machine bar 51 - 186 100.9 11.0

rotation rotation speed of the rotor 138 – 695 446.6 52.7

vibration vibration indicator 15 - 77 40.4 5.4

Figure 36 displays the distribution of the individual values in respect to the number of

their measurements. The highest peak of the graph represents the mean value. The higher

the value of the standard deviation, the flatter the distributions curve. Vibration data has

62

the smallest standard deviation and therefore shows the steepest graph while rotation

displays the flattest curve due to its high standard deviation.

Figure 36: Distribution of telemetry data.

As an example, Figure 37 shows the development of telemetry data over one week. During

this time three errors and one failure occurred as indicated by the orange (error) and red

(failure) lines. Errors are small disturbances during runtime while failures occur when a

component breaks down. The illustrations clearly show the ups and downs of vibration

measurements during normal runtime as well as heavy drops just before or after errors

and failures.

Figure 37: Telemetry data over one week.

63

Machine Metadata

The machine metadata stores additional information about machines such as model type

and age. There are 100 machines of four different types and age between 0 and 20 years.

The model types are anonymised and only available as generic names (modelX). Table 5

lists the individual features.

Table 5: Machine metadata of the PMB data model.

Name Description Unit Range

machineId ID of machine number 1-100

model type of machine name Model1-Model4

age age of machine year 1-20

Figure 38 shows the model and age distribution of the machines. There are four different

machine models available. More than 65% of all machines are either Model 3 or Model 4

(Figure 38, left graph). The smallest group is Model 1 with a size of only 16%. Machines

are between 0 and 20 years old. The average age is 11.3 years. 35% of all machines are 15

years or older (right graph).

Figure 38: Model and age distribution of machines.

64

Error Log

Each time a minor error occurs the machine records it automatically. In contrast to fatal

errors, minor errors do not result in failure. The machine is able to detect five different

errors. The nature of these errors is not further specified in the data set. Each record is

accompanied by a timestamp. The time is rounded to the closest hour. Table 6 lists the

individual features recorded in the error log.

Table 6: Error log data of the PMB data model.

Name Description Unit Range

machineId ID of machine number 1-100

datetime date and time of record Date 1.1.– 31.12.2015

errorID ID of error name Error1-Error5

During the monitored year 3.919 errors have been recorded. As shown in the left bar

graph of Figure 39, Error 1 and 2 are most common with over 50% of all recorded errors

falling into these two categories. The least frequent error is Error 5 with only 9.1%. On

average, a machine experiences 39 errors per year. Over half of all machines recorded

between 35 and 45 errors (Figure 39, middle graph). No machine recorded less than 20

errors and only one had more than 55. Errors seem to be independent of age (Figure 39,

right graph). All four age groups experience approximately the same amount of average

errors.

Figure 39: Distribution of errors (left), number of errors per machine (middle), and errors per age of machine (right)

65

Maintenance Log

The maintenance team services machines periodically. During these services the machine

is inspected, and components are replaced if necessary. The service crew records the date

and exchanged components in the maintenance log. The components are not further

specified in the data set than by generic names (CompX). There are four different types of

components. Table 7 displays the individual features, their data type and range.

Table 7: Maintenance log data of the PMB data model.

Name Description Unit Range

machineID ID of machine number 1-100

datetime date and time of record date 1.1 – 31.12.2015

comp ID of changed component name Comp1-Comp4

In total 3.268 services with component changes have been recorded in 2015. As shown in

Figure 40, replacements are distributed evenly among all four components (left graph).

On average, a machine experiences 33 component changes per year. Only 9 machines have

more than 38 replacements and only 9 less than 28 (Figure 40, middle graph). The

number of services is independent of age (Figure 40, right graph). All machine age groups

experience approximately the same amount of component replacements.

Figure 40: Distribution of exchanged components (left), number of services per machine (middle), and number of
services per age of machine (right).

66

Failure Log

Machine failures occur if a component breaks down. The affected component is replaced

by the maintenance team. Each time a component is exchanged due to failure, it is

recorded in the failure log. The failure log follows the same structure as the maintenance

log and is also kept manually by the service personnel. Each record consists of the time of

failure, the failed component, and the id of the machine. As before, the individual

components are not further specified. The time is rounded to the closest hour. Table 8

lists the individual features, their data type and range.

Table 8: Failure log data of the PMB data model.

Name Description Unit Range

machineID ID of machine number 1-100

datetime date and time of record date 1.1 – 31.12.2015

failure ID of changed component name Comp1-Comp4

Overall, there have been 761 failures during the entire year. The components vary in their

susceptibility to failure. As shown in Figure 41, Component 1 and 2 experienced the most

break downs, while Component 3 is least prone for failure (left graph). On average,

machines experience 7.6 component failures per year. Most machines record 6-10 failures

(Figure 41, middle graph). Only 2 % of all machines have not had any breakdowns. In

general, older machines are more error-prone to failure than new ones (Figure 41, left

graph). Over 60% of all failures occur on machines older than 10 years. Since machines

are also more vulnerable right after commissioning, the slight increase of failures in young

machines is expected.

Figure 41: Distribution of component failures (left), number of failures per machine (middle), and number of failures
per age of machine (right).

67

5.2.2 Volume, Velocity, and Variety of the PMB Data Model

This section covers how the PMB data model addresses the Big Data key characteristics

volume, velocity, and variety.

Volume

To address the dynamic volume characteristic of Big Data, the data model of a Big Data

benchmark must be able to provide different data sizes and possibilities for future data

expansion. Below, all possibilities for adjusting the volume are discussed. The volume of

the PMB data model is determined by three main factors:

• Number of monitored machines

• Number of records per machine

• Number of measured variables (i.e. voltage)

The number of monitored machines influences all five data sets of the PMB data model.

Altering the number of monitored machines therefore impacts the entire data model. The

data sets have information of 100 machines, making one machine make up 1% of the data

volume. Decreasing the number of machines is as simple as removing all records with a

given machine id from all five data sets, enabling data sets between 1 and 100 machines.

Increasing the number of monitored machines is achieved by duplicating existing

machine data and assigning it new machine ids. By duplicating existing machines, the data

size of the PMB data model can be increased indefinitely. Therefore, altering the number

of monitored machine is a viable option to influence the data set size of the PMB data

model.

The number of records per machine is influenced by the length of observation as well as

the interval between measurements. For the data sets of the PMB data model, the length

of observation is one year. The observation period directly influences all five data sets and

can be decreased by removing all data items collected after a given point in time.

Increasing the observation time is done by duplicating data from one year to the next (i.e.

January 2015 is duplicated to January 2016). However, increasing the observation period

by duplicating data does not consider potential aging effects of the machines, making it

suboptimal for data size adjustments. The measurement intervals are fixed at 1 hour.

Shortening the intervals results in more measurements and extending the intervals leads

to less measurements. Extending the intervals can be achieved by deleting data points

within them. Shortening intervals however is not possible without additional

68

measurements. Thus, it is not feasible to adjust the data size by altering the measurement

periods.

The number of measured variables of the PMB data model are given by the data set. There

is not enough information available for adding meaningful variables to the data set and

removing a variable may take away too much information, leading to an unrealistic data

model. Thus, changing the number of variables is not a viable option for altering the

volume of the PMB data model.

In summary, altering the number of monitored machines is the best method to adjust the

volume of the data model. This method will be used to provide different data sizes for the

PMB.

Velocity

The data model of Big Data benchmarks must be capable to simulate different speeds of

data generation. In the context of the PMB, the velocity is given by the number of

measurements entering the system in a time period (i.e. measurements per hour). In the

PMB data model, data velocity is influenced by the number of monitored machines and

the time interval between measurements. As discussed before, altering the measurement

interval is not a viable option since it is not possible to shorten the intervals without

additional information. Therefore, the velocity of the PMB data model is adjusted by

altering the number of machines.

Variety

The data model combines periodic measurements (telemetry), event based data

(maintenance, errors, failures) and long-term information (machine metadata), which are

all typical for predictive maintenance [104]. All measurements are value type data and do

not include other data types such has waves. There is also no unstructured or semi-

structured data in the data set. However, while unstructured or semi-structured data is

common in many Big Data applications [38], it is seldom considered in predictive

maintenance use cases [104].

The data model includes the most popular data types for predictive maintenance.

Nevertheless, it does not cover all possibilities (i.e. waveform analytics). In future work,

the PMB can be extended by adding more data types to the data model.

69

5.3 Workload Specification

This section presents the workload of the benchmark. PMB is designed to represent

common tasks within a predictive maintenance system. PMB is based on a predictive

maintenance use case, where future machine failures are predicted using multiple data

sources. The workload can be separated into the two phases of training and running the

system.

During the training phase, the system learns to predict future machine failures. More

precise, a supervised machine learning algorithm learns to predict whether a specific

component will fail during the next 24 hours. The machine learning algorithm is trained

on data collected over one year, consisting of telemetry data, error logs, maintenance log,

failure logs, and meta information. Before training, the different data sources are first

combined and processed to extract important features. During training, the algorithm

processes the data set to examine correlations between conditional data and failures.

After completing the training, the precision of the algorithm is tested. Training an

algorithm is generally done on big data sets. Therefore, this part of the PMB tests how Big

Data analytic ecosystems perform when processing big data set at once.

The running phase simulates normal operation of a predictive maintenance system.

During the running phase, the trained algorithm is utilized to make predictions for new

data input. After loading, the model is used to classify new information. Rather than

making multiple predictions at once, multiple single predictions are made in a row. In

contrast to the training phase, the running phases tests how a Big Data analytic ecosystem

handles multiple small requests to predict machine failures.

5.3.1 Phase 1: Training the Predictive Maintenance System

In the training phase, the predictive maintenance system learns how to predict machine

failures. As illustrated in Figure 42, this training process can be separated into the three

main steps of preprocessing, training, and testing. During preprocessing, collected data is

combined and important features are extracted from the data. After preprocessing, the

created data set is split into a training and test set. The training set is used to train the

machine learning algorithm into a trained model. The test set is then utilized to test the

accuracy of this model. The individual steps are portrayed in detail below:

70

Figure 42: Phase 1 of PMB: Training the predictive maintenance system.

Preprocessing the Data

The preprocessing step covers all tasks to prepare raw incoming data for the training of

the machine learning algorithm. Preprocessing can be separated into the three subtasks

of ingesting data into the system, combining the individual data sets, and splitting the data

into training and test set. For each step, the execution time is measured and used as

performance indicator.

Data Ingestion

Ingesting the data describes all necessary steps to bring the data into the Big Data analytic

ecosystem. In general, this includes tasks such as creating databases or file systems and

copying data into them. At the end of data ingestions, the information should be accessible

for further processing. The execution time of the entire process is timed for the

benchmark metric.

71

Data Processing

After data ingestion, the data sets are combined and prepared for the training of the

machine learning algorithm, resulting in one single data set. The final data set combines

information from the telemetry data set with the event based error and maintenance log.

Furthermore, it contains information about age and model of the machine. Each data row

is labelled with the information if a component will fail in the next 24 hours. This label

represents the value that will be predicted by the machine learning algorithm. The entire

process is timed and used for the PMB metric.

Table 9 shows the content of the final data set. The date and machine ID identify each

record set uniquely. Information about the machine (model and age) is added from the

machine meta data. The telemetry data (volt, pressure, rotation, and vibration) is

accompanied by calculated short time trend indicators such as mean and standard

deviation for the past three, and 24 hours. Information about the errors is added by

calculating how often a specific error occurred in the last 24 hours and the maintenance

log is used to calculate the days since a component was last changed. At last, the label is

added to the record set. The label represents the data field that should be predicted by the

predictive maintenance system. It states whether a component will fail within the next 24

hours.

Table 9: Final data set after preprocessing.

Name Description Unit Source

datetime date and time of record Date telemetry data

machineID ID of the machine numerical telemetry data

General Machine Data

model Model of the machine numerical meta data

age Age of the machine numerical meta data

Telemetry Data: Current Information and short-time Trend

volt voltage level of the machine numerical telemetry data

pressure pressure inside the machine numerical telemetry data

rotation rotation speed of the rotor numerical telemetry data

vibration vibration indicator numerical telemetry data

volt-mean 3h μ voltage of last 3h numerical mean of last 3 hours

rotation-mean 3h μ rotation of last 3h numerical mean of last 3 hours

pressure-mean 3h μ pressure of last 3h numerical mean of last 3 hours

vibration-mean 3h μ vibration of last 3h numerical mean of last 3 hours

72

volt-sd 3h σ volt of last 3h numerical σ of last 3 hours

rotation-sd 3h σ rotation of last 3h numerical σ of last 3 hours

pressure-sd 3h σ pressure of last 3h numerical σ of last 3 hours

vibration-sd 3h σ vibration of last 3h numerical σ of last 3 hours

volt-mean 24h μ voltage of last 24h numerical mean of last 24 hours

rotation-mean 24h μ rotation of last 24h numerical mean of last 24 hours

pressure-mean 24h μ pressure of last 24h numerical mean of last 24 hours

vibration-mean 24h μ vibration of last 24h numerical mean of last 24 hours

volt-sd 24h σ volt of last 24h numerical σ of last 24 hours

rotation-sd 24h σ rotation of last 24h numerical σ of last 24 hours

pressure-sd 24h σ pressure of last 24h numerical σ of last 24 hours

vibration-sd 24h σ vibration of last 24h numerical σ of last 24 hours

Error Information

error1count
number of occurrences of error1
in the last 24 hours

numerical error log

error2count
number of occurrences of error2
in the last 24 hours

numerical error log

error3count
number of occurrences of error3
in the last 24 hours

numerical error log

error4count
number of occurrences of error4
in the last 24 hours

numerical error log

error5count
number of occurrences of error5
in the last X days

numerical

error log

Maintenance Information

comp1_lastchange
days since last replacement of
component 1

numerical maintenance log

comp2_lastchange
days since last replacement of
component 1

numerical maintenance log

comp3_lastchange
days since last replacement of
component 1

numerical maintenance log

comp4_lastchange
days since last replacement of
component 1

numerical maintenance log

Failure Information

failure
ID of component that fails within
the next 24h. 0 if none fail.

numerical Failure log

73

Splitting the Data Set

The final step of preprocessing is splitting the data set into training and test set. The

training set is used for training the machine learning algorithm. Afterwards the trained

algorithm predicts failures based on the data from the test set. These predictions are then

compared to the real failure data to calculate the precision of the algorithm. For the PMB,

the data set is split in a ratio of 70:30 for training and test set.

Training the Machine Learning Algorithm

In this step the machine learning algorithm is trained on the training set produced during

preprocessing. The resulting model should be able to make predictions if any of the five

machine components will fail during the next 24 hours. Therefore, a supervised machine

learning algorithm for classification is necessary. As mentioned in chapter 4.4.2, the most

commonly used classification algorithms for predictive maintenance are decision trees,

support vector machines, and artificial neural networks. While all three are viable options,

the decision tree is currently available in most machine learning libraries for Big Data

analytics. The decision tree also produces the most transparent model, making it easy to

understand the reasoning behind predictions. Therefore, the PMB uses a decision tree as

machine learning algorithm. Other machine learning algorithms may be added in future

work.

After initializing the data and the machine learning algorithm, the decision tree is trained.

The training of the algorithm should be done in a distributed fashion, utilizing multiple

nodes of a cluster.

Testing the Machine Learning Model

The trained decision tree is tested using the test set produced in preprocessing. Testing a

machine learning model is done in two steps. First, the model makes predictions based on

the data from the test set without knowing the real labels. Second, the predictions made

by the model are compared to the real labels, and the accuracy is calculated.

5.3.2 Phase 2: Running the Predictive Maintenance System

The second phase of PMB tests the predictive maintenance system in a running

environment. It can be divided into the two steps of preprocessing and scoring as

74

illustrated in Figure 43. Similar to Phase 1, preprocessing covers all tasks from data

ingestion to preparing the data set. During scoring the trained model is loaded and used

to make predictions.

Phase 2 is tested using different data and request sizes to examine their effects. The data

sizes are determined by the number of telemetry data items that have to be predicted by

the system. There are three different data sizes consisting of 10, 100, and 1.000 data items

respectively. By using different data sizes, it can be analysed how the predictive

maintenance system scales with the number of predictions it must make at once. The

request sizes. Running one data size through the entire process of Phase 2 represents one

request. Besides testing the effect of data size, the PMB also tests the effect of multiple

subsequent requests. Therefore, three request sizes are used within Phase 2 of the PMB.

The small size consists of 1 request, medium size of 10 requests, and big size of 100

requests. By varying data and request size, the PMB tests how the system handles multiple

predictions at once as well as multiple predictions after each other.

Figure 43: Phase 2 of PMB: Running the predictive maintenance system.

75

Preprocessing the Data

In a production environment, preprocessing covers all activities from ingesting new data

into the system to preparing it for the trained machine learning model. The prepared data

set has to be in the exact same format as the data set the algorithm was trained on.

Otherwise a prediction is not possible.

When new telemetry data enters the system, all values as described above in Table 9 have

to be calculated. The necessary information is loaded from data storage. For the PMB, the

two tasks of ingesting new data as well as preparing the data set are timed.

Scoring the Data

During data scoring, the trained model is used to predict failures based on new

information. The trained machine learning algorithm is loaded and used to classify the

newly prepared data.

5.4 Metrics

The PMB tests the performance of Big Data analytic ecosystems in the field of predictive

maintenance. The performance is measured by the execution time of the individual tasks.

As summarized in Table 10, the workload is separated into the two phases of training and

running the predictive maintenance system.

Table 10: Workloads of the PMB.

Workload Description

Phase 1 Training the predictive maintenance system

Preprocessing All steps from data ingestion to preparing it for training

Data Ingestion Create database and copy data sets into the system

Processing Combine data and calculate necessary features

Training Training of the decision tree

Loading Load data and initialize model

Training algorithm Train the decision forest on training data set

Testing Test the algorithm

Loading Loading data and model

Predicting Predict failures based on the test set

Phase 2 Running the predictive maintenance model

Preprocessing All steps from data ingestion to preparing it for training

76

Data Ingestion Ingest new telemetry data into the system

Processing Calculate all necessary features

Scoring Score new telemetry data

Loading Load the prepared data and machine learning model

Predicting Use trained decision tree to make predictions

Each phase is executed multiple times, using different data sizes. This way, PMB also

analyses how the performance of the Big Data analytic ecosystem scales with different

growing data.

Table 11 lists the various data set sizes for both phases. Phase 1 is executed using three

different data set sizes: A small data set, containing data of 33 machines; a medium data

set, containing data for 66 machines; and a big data set, containing data of 100 machines.

Phase 2 is executed using different request sizes and data sizes. One request covers the

entire workload described in Phase 2. Multiple requests therefore execute Phase 2

multiple times after each other. Phase 2 is tested with a small data size of 10 items, a

medium data size of 100 items, and a big data size of 1.000 items. Additionally, three

request sizes of 1, 10, and 100 requests are used.

Table 11: Data set sizes for both phases of the PMB.

Data Size Specification

Data set sizes for Phase 1:

small Data set includes data of 33 machines

medium Data set includes data of 66 machines

large Data set includes data of 100 machines

Data set / request size for Phase 2:

small / small 1 prediction request with 10 data items

small / medium 1 prediction request with 100 data items

small / large 1 prediction request with 1.000 data items

medium / small 10 prediction requests with 10 data items each

medium / medium 10 prediction requests with 100 data items each

medium / large 10 prediction requests with 1.000 data items each

large / small 100 prediction requests with 10 data items each

large / medium 100 prediction requests with 100 data items each

large / large 10 prediction requests with 1.000 data items each

77

6 Benchmark Evaluation

The PMB is evaluated by a case study. The benchmark is implemented and executed on

two popular Big Data analytic ecosystems, which run on a 5 node Raspberry Pi cluster.

The results are then analysed and compared to the findings of similar benchmarks.

This chapter starts with a scientific literature research, identifying popular open source

Big Data analytic frameworks. Based on this research, the frameworks for implementing

the PMB are chosen. The chosen frameworks are then portrayed in detail. Afterwards, the

testing environment, the individual benchmark implementations, and their results are

presented. Finally, the PMB is evaluated by comparing the results of the implementations

and analysing findings gathered during the process.

6.1 Selection of Big Data Analytic Frameworks

To determine the most popular open source Big Data analytic frameworks, a ranking was

established using two main criteria:

I. How many times is a framework mentioned in survey papers?

II. How many times is a framework cited in peer reviewed papers?

The above listed criteria must be first formulated as research questions. Based on these

research questions, search queries are formulated to find related papers using the Catalog

Plus41 search engine provided by the TU Vienna. The resulting documents are screened to

filter out relevant papers, which are finally used to create the popularity ranking of open

source Big Data analytic frameworks. The problem resulting from the first criteria (I) can

be formulated as two separate research questions:

R1: What scientific survey papers of Big Data analytic frameworks are

available?

R2: How many times are the individual Big Data analytic frameworks

mentioned within the papers resulting from R1?

The second criteria (II) analyses how often Big Data analytic frameworks are cited in peer

reviewed papers. To limit the search space, only the most popular frameworks resulting

from R2 are considered.

41 http://catalogplus.tuwien.ac.at

78

R3: How many times are the popular Big Data analytic frameworks (based on

R2) mentioned in the title of peer-reviewed papers?

R4: How many times are the popular Big Data analytic frameworks (based on

R2) mentioned inside the entire text of peer-reviewed papers?

R1: What scientific survey papers of Big Data analytic frameworks are available?

The following query searches for scientific survey papers of Big Data analytic frameworks:

R1/Q1: “Survey” in the title AND “Big Data analytic framework” in the text

The query resulted in 137 potentially relevant documents. The filtering is done in three

steps: First, papers are filtered based on their title. Second, papers are filtered based on

their abstract. And third, papers are filtered based on their entire content. This screening

process resulted in 9 relevant survey papers as listed in Table 12. Khalifa et al. [18] also

provide a broad survey while describing their six pillar model (see chapter 3.3).

Therefore, their paper was added. Table 12 lists title, reference, journal, and publication

year of relevant papers. All journals where published between 2013-2016.

Table 12: Scientific survey papers of Big Data analytic frameworks.

Title and Reference Journal Year

A Survey on Real-time Big Data Analytics: Applications and Tools
[182]

IEEE 2016

Parallel and Distributed Collaborative Filtering: A Survey [183]
ACM Computing

Surveys
2016

The Six Pillars for building Big Data Analytics Ecosystems [18]
ACM Computing

Surveys
2016

A survey of open source tools for machine learning with big data in
the Hadoop ecosystem [94]

Journal of Big Data 2015

Big Data Analytics: A Survey [184] Journal of Big Data 2015

In-Memory Big Data Management and Processing: A Survey [49] IEEE 2015

A Survey on Platforms for Big Data Analytics [185] Journal of Big Data 2014

Big Data: A Survey [186] Springer Science 2014

Toward Scalable Systems for Big Data Analytics: A Technology
Survey [187]

IEEE 2014

A Survey on Big Data Analytic Tools [188] IDEAS 2013 2013

79

R2: How many times are the individual Big Data analytic frameworks mentioned within the

papers resulting from R1?

The second research question analyses how many times open source Big Data analytic

frameworks are mentioned within the survey papers discovered during R1. Therefore,

there is no specific query for the search engine but a screening of the survey papers. Table

13 lists the individual Big Data analytic frameworks and the references of the papers they

are mentioned in. The frameworks are further grouped by the 6 pillars and their

subcategories [18] (see 3.3). Hadoop and Spark are often mentioned in broader sense and

therefore are categorized as ecosystems rather than processing engines.

Table 13: Number of citations in Big Data analytic frameworks survey papers.

Frameworks Pillar Subtype Mentioned in Sum Rank

Hadoop Ecosystem [18][94][182][183][185][186][188] 7 1.
Spark Ecosystem [18][49][94][182][183][185] 6 2.

Mahout Interface Scripts [18][94][183][185][186][187] 6 2.
MLBase Interface Scripts [18][185] 2 6.

MLlib Interface Scripts [18][94] 2 6.
Radoop Interface Scripts [18][186] 2 6.
SAMOA Interface Scripts [94] 1 7.

deeplearning4j Interface Scripts [18] 1 7.
FlinkML Interface Scripts [94] 1 7.
HiveMall Interface Scripts [18] 1 7.

QDrill Interface Scripts [18] 1 7.

Hive Interface SQL [18][94][185][187][188] 5 3.
Drill Interface SQL [18][94][188] 3 5.

YARN Orchestration Scheduling [18][94][185] 3 5.
IReS Orchestration Scheduling [18] 1 7.

Pegasus Orchestration Scheduling [18] 1 7.

MapReduce Processing Batch [94][185][186][187] 4 4.
Flink Processing Batch/Incr. [94][183] 2 6.

DistWEKA Processing Batch [18][94] 2 6.
H2O Processing Batch [18][94] 2 6.

Storm Processing Incremental [18][94][182][183][186][187] 6 2.
Spark Streaming Processing Incremental [18][49][185] 3 5.

Samza Processing Incremental [18] 1 7.

Tez Processing Interactive [18] 1 7.

Cassandra Storage Column [18][94][186][187] 4 4.
HBase Storage Column [18][94][186][187] 4 4.

HyperTable Storage Column [186] 1 7.

HDFS Storage DFS [18][185][94][186] 4 4.
Alluxio Storage DFS [185] 1 7.

FastDFS Storage DFS [186] 1 7.
QFS Storage DFS [186] 1 7.

HyPer/ScyPer Storage RDBMS [49] 1 7.
MySQL Cluster Storage RDBMS [18] 1 7.

ScaleDB Storage RDBMS [18] 1 7.

80

Overall, Hadoop, Spark, Mahout, Storm, and Hive are clearly the most mentioned

technologies, being cited seven, and six times respectively. MapReduce, Cassandra, HBase,

and HDFS follow with 4 citations each. YARN, Drill, and Spark Streaming are the only other

frameworks mentioned more than twice.

R3: How many times are the popular Big Data analytic Frameworks (based on R2)

mentioned in the title of peer-reviewed papers?

R4: How many times are the popular Big Data analytic Frameworks (based on R2)

mentioned inside the entire text of peer-reviewed papers?

Both, the third and fourth research question analyse how many times the most popular

frameworks as determined in R2 are mentioned in peer-reviewed journals. For each

framework, three different search queries are introduced as listed below. The first query

searches for papers containing the name of the framework in the title. The second query

builds upon this and adds the term “Big Data” as a search parameter. In the third query,

the name of the framework is searched for within all search fields. To ensure only relevant

papers are included, the term “Big Data” is given as a second search parameter. The first

and second queries are expected to give similar results. Table 14 shows the results of the

executed queries.

R3/Q1: “Name of the Framework” in the title

R3/Q2: “Name of the Framework” in the title AND “Big Data” over all fields

R4/Q1: “Name of the Framework” over all fields “Big Data” over all fields

For each pillar, regardless of subtype, the top 3 frameworks as determined by R2 are

chosen. Only the two subtypes scripts and sql where separated, since they serve

fundamentally different purposes. For the category of orchestration, no further analysis

is undertaken, since YARN is the only framework mentioned more than once.

Due to the ambiguous names of many frameworks, the name of the developing company

was added as search parameter over all fields (i.e. Apache for Storm). The ranking shows

the overall rank of the framework for R3 and R4. The score is the mean rank within each

query resulting in the overall rank.

81

Table 14: Number of peer-reviewed papers by Big Data analytic framework.

Frameworks R3/Q1 R3/Q2 R4/Q1 Score/Rank

Processing
Hadoop 171 85 338 1.33 / 1.

Spark 34 28 168 2.66 / 2.
Storm 5 5 44 6.33 / 7.

Interface / Scripts
Mahout 3 1 108 6.66 / 8.

MLlib 0 0 40 9.33 / 10.
MLBase 0 0 10 9.66 / 11.
Radoop 0 0 4 10.00 / 12.

Interface / SQL
Hive 13 7 163 3.66 / 4.
Drill 1 1 81 7.66 / 9.

Storage
HDFS 13 7 451 2.33 / 2.
HBase 5 1 257 5.00 / 5.

Cassandra 3 3 126 6.00 / 6.

The conducted literature survey clearly shows that – in accordance with the former

results – Hadoop and Spark dominate this research area. Especially Hadoop, being the

oldest and most developed framework, has been studied extensively. In the category of

Scripts, Mahout is mentioned in most papers, with three of them carrying the framework

in the title. MLlib, in second place, has no dedicated research papers but is mentioned in

40 others. Hive leads the area of SQL interfaces with 13 papers mentioning the framework

within their title and HDFS is in front within the storage category.

Summary and Framework Selection

Apache Hadoop leads both rankings. It is by far the most mentioned and analysed open

source Big Data framework and has accumulated a vast number of other related projects

around itself. Nonetheless Apache Spark seems to challenge its positions and has gained

significant traction by introducing its faster in-memory based execution engine. In third

place is the data stream processing engine Storm. Concerning machine learning libraries

Mahout is the most prominent framework with Sparks machine learning library MLlib

being in second place. In the area of SQL interfaces, Hive leads clearly before Drill in both

rankings. And finally, HDFS is ahead in the realm of storage frameworks due to its better

performance in the second ranking.

For the implementation of the PMB, a framework from each of the above mentioned

categories is necessary: processing, interface/script, interface/SQL, storage, and

orchestration. Together, these frameworks form the Big Data analytic ecosystem that is

82

tested by the PMB. For evaluation, the PMB is implemented in two ecosystems. The

frameworks are selected depending on their ranking.

Figure 44: Selected ecosystems for PMB implementation.

Figure 44 illustrates the two chosen ecosystems. Due to the high individual rankings, the

two frameworks Hadoop MapReduce and Spark are selected as processing engines (blue).

Mahout and MLlib are chosen as machine learning libraries (red). Mahout currently

provides the decision tree only for Hadoop, and MLlib only supports the spark processing

engine. Each ecosystem is orchestrated (orange) by YARN. HDFS and Hive serve as storage

system (yellow) and sql interface (green) for both ecosystems.

83

6.2 Selected Big Data Analytic Frameworks

6.2.1 Apache Hadoop

Apache Hadoop42 is an open-source framework for distributed storage and processing of

Big Data. It started as an open source implementation of the Google Distributed File

System (GFS) [59] and its associated programming model MapReduce [23]. Hadoops first

version 0.1.0 was released in April 200643. In 2017, Hadoop released its third big release

step with version 3.0.0-alpha. The framework is written in Java and therefore runs on any

platform capable of running a java virtual machine.

Today, Hadoop has become an integral part of big companies such as Facebook, Ebay or

Adobe 44 . Many companies provide products that build upon Apache Hadoop.

Hortonworks 45 and Cloudera 46 are two of the biggest companies offering customized

releases of Hadoop with additional features as well as support. Many platform providers

like Amazon Web Services (AWS)47 or Microsoft Azure48 also offer preconfigured Hadoop

environments to their customers.

The Hadoop project includes three main modules: A storage module (Hadoop Distribued

File System (HDFS)), a cluster management module (Hadoop Yet Another Resource

Negotiator (YARN)), and a processing module (Hadoop MapReduce). Additionally, Hadoop

offers a Java API for programming MapReduce applications and provides some support

functions such as a web based interface for application tracking. Figure 45 displays how

Hadoop can be embedded within the architecture of a Big Data ecosystem.

Figure 45: Embedding Hadoop in the architecture of a Big Data analytic ecosystem.

42 https://hadoop.apache.org/
43 https://archive.apache.org/dist/hadoop/core/
44 https://wiki.apache.org/hadoop/PoweredBy
45 https://hortonworks.com/
46 https://www.cloudera.com/
47 https://aws.amazon.com/
48 https://azure.microsoft.com/

84

Hadoop Distributed File System (HDFS)

The Hadoop distributed file system (HDFS)49 is one of the four core modules of the Apache

Hadoop framework and implements a distributed file system designed to store large

amounts of data [60]. It is an open source implementation of the Google File System (GFS).

HDFS is designed to run on a cluster of commodity hardware, containing hundreds or

even thousands of nodes. Due to the high component failure rate in big clusters, data

reliability represents a key issue [60]. To address this issue, data is replicated among

multiple nodes.

As shown in Figure 46, HDFS implements a master/slave architecture [60]. The master is

responsible for managing the file system. It decides where new data should be saved,

keeps track where data is stored, and regulates file access to clients. When clients want to

store or retrieve information, they contact the master, which in return refers them to a

slave node. The slave nodes store data and respond to approved read and write requests

from the client. In the Hadoop environment the master is called the NameNode and the

slaves are called DataNodes. The system is designed to have only one NameNode but up

to hundreds or thousands of DataNodes.

Figure 46: HDFS Architecture.

The NameNode in HDFS stores the namespace of the system. The namespace in HDFS is a

hierarchy of files and directories. For each file and directory attributes like permission,

access times, and disc space quotas are recorded. The NameNode also maintains the

locations of files. For faster access the HDFS stores the whole namespace in RAM.

DataNodes are responsible for storing the data. The HDFS interface is patterned after the

UNIX file system. Behind this interface, data is stored as multiple smaller data blocks of

49 http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

85

the same size. Each block is represented by two files on the local filesystem of the

DataNodes. The first file holds metadata like checksums for the block data and generation

stamps, and the second file contains the data itself. Blocks are replicated on multiple

DataNodes to ensure data safety. DataNodes send heartbeats every three seconds to the

NameNode to confirm their operational status. After 10 minutes of not receiving a

heartbeat, the DataNode is considered dead and the NameNode schedules to recreate the

lost blocks on other, functional DataNodes. The heartbeat contains data about total

storage capacity, storage used and currently conducted data transfers. The NameNode

uses this information for load balance across the system.

Figure 47 shows the process of reading and writing data from and to HDFS. If a client

wants to store information in HDFS it first creates an HDFS file and fills it with the desired

data. The HDFS file is then split into multiple data blocks of the same size. Next the client

contacts the NameNode and requests a DataNode to host the first data block and

additional DataNodes to store its replicas. Then the client transfers the data block directly

to the suggested DataNodes. After the completion of the transfer the client contacts the

NameNode again to decide where the next data block and its replicas will be stored. This

process repeats for all data blocks of the file. For reading data from HDFS the client first

contacts the NameNode for information on what blocks the desired file is made of and

their location. The locations of each block are ordered according to their distance to the

client. The client tries to fetch the closest replicas of the blocks first and assembles the file

after receiving all blocks.

Figure 47: Reading and writing data from/to HDFS.

HDFS implements a single-writer, multiple-reader model. While one client writes a file,

no other client is permitted to write on that same file. However, multiple users may read

the same file simultaneously. The file system is optimised for high throughput instead of

86

low latency. This means, one single request of many read/write commands outperforms

multiple single requests containing only a few read/write commands. Therefore, HDFS is

streamlined for batch processes rather than interactive user requests.

Yet Another Resource Negotiator (YARN)

Yet Another Resource Negotiator (YARN) 50 is the cluster management framework of

Hadoop. Its main responsibility is to manage the computing resources of a cluster [73].

This includes keeping track of available resources and assigning them to applications.

Introduced in 2012 with the second generation of Hadoop (Version 2.0.0-alpha51), the

basic idea of YARN is to separate the functionalities of resource management and job

scheduling/monitoring [73]. In Hadoop 1.0 both tasks where tied together in the

MapReduce module. By detaching the resource management, the system is no longer

dependent on the MapReduce programming model but may also run other applications.

Like HDFS, YARN follows a master/slave architecture, which is depicted in Figure 48 [73].

The master, or Resource Manager, is the central manager of the cluster resources. It keeps

track of available resources and assigns them to applications. Slaves, or Node Managers,

are responsible for processing data. They also monitor the health of the node and report

their status to the Resource Manager.

Figure 48: YARN Architecture.

The Resource Manager is the central point for managing the cluster resources. In YARN,

resources are represented as containers, where a container is a logical set of resources

(e.g. 1 GB Ram, 1 CPU). Each container is bound to a node. Applications request resources

50 http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
51 http://hadoop.apache.org/releases.html

87

from the Resource Manager. Their request submission includes the number and size of

required containers as well as locality preferences. The Resource Manager then allocates

resources to the application through a scheduler. It assigns them containers and issues

tokens that enables the application to contact them. If not all requests can be satisfied, a

scheduler decides how to allocate the resources. YARN offers three different schedulers:

FIFO, Fair, and Capacity scheduler. The FIFO (first in first out) scheduler allocates

resources according to their submission order. Jobs submitted first, are executed first. The

Fair scheduler allocates resources in such a way, that over time all applications get an

equal share of them on average. The capacity scheduler is designed for sharing Hadoop

clusters among multiple organisations. Each organization is guaranteed a certain overall

capacity of the cluster. However, if the cluster is not utilized fully, organizations may

access additional resources beyond their capacity. This way the cluster is utilized in its

full potential. The Resource Manager is not responsible for coordinating execution and for

providing fault tolerance for applications. Both these tasks fall into the responsibility of

the application itself.

Node Manager represent the working force of the cluster. They authenticate requests and

monitor container execution. A Node Manager communicates with the Resource Manager

via heart-beats, where they report information about overall and available resources as

well launches and terminations of containers. Node Manager also monitor the health of

the underlying physical system. If a software or hardware problem on the local system is

detected, the status of the node is changed to unhealthy and reported to the Resource

Manager.

Figure 49 shows YARNs process of resource allocation. At first, a client contacts the

Resource Manager and submits an application. After passing a security credential

validation as well as administrative checks the Application Master is launched on a

container in the system. The Application Master is the manager of an application. It is

responsible for the lifecycle management of an application as well as handling faults. It is

part of the application itself and may be written in any programming language. The

Application Master requests resources from the Resource Manager. Depending on

availability and active type of scheduler, the Resource Manager assigns resources in form

of container to the applications and issues tokens to the Application Master for activating

them. The Application Master then coordinates its tasks and utilizes the containers as

necessary. It may dynamically request additional resources or terminate containers if no

88

longer needed. After completion the Application Master terminates their containers and

reports to the Resource Manager

Figure 49: The process of resource allocation in YARN.

Hadoop MapReduce

Hadoop MapReduce52 is Hadoops native programming framework. It is an open source

implementation of Googles MapReduce [23] programming model. It was inspired by the

map and reduce primitives already present in Lisp and other functional programming

languages [23]. The purpose of MapReduce lies in processing large amounts of data on

computer clusters. It takes a set of input key/value pairs and produces a set of output

key/value pairs. Following the principle of divide and conquer, tasks are split into smaller

ones and processed in parallel on multiple machines. Generated intermediate results are

then merged back into a final output. The process of a MapReduce program can be

separated into two main phases: the map-phase and the reduce-phase [189].

Hadoops implementation of MapReduce consists of two main modules [190]. The first one

is the job tracker. Its main purpose is the management of MapReduce jobs. The job tracker

receives all jobs from the client, schedules map and reduce tasks, monitors failing tasks

and reschedules them if necessary. There is only one job tracker in a Hadoop cluster. The

second module is the task tracker. It purpose lies in executing and reporting back to the

job tracker. In a Hadoop cluster there exists one task tracker per cluster node.

52 http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-
core/MapReduceTutorial.html

89

Figure 50 depicts the steps of a MapReduce program, commonly referred to as a job. In

the beginning, the input data is split into multiple smaller key/value pairs. In the map

phase, the worker nodes take the input data and follow a user defined map function to

produce a set of intermediate results. In between the map and reduce phase, all

intermediate results with the same key value are merged together. This intermediate step

is often referred to as shuffle phase. The shuffle phase not considered one of the main

phases since it cannot be programmatically influenced by the user. Finally, in the reduce

phase, workers follow the user defined reduce function to group intermediate results

together.

Figure 50: Execution of a MapReduce job.

For better understanding the process of a MapReduce job, consider the word-count

example provided by Dean and Ghemawat [23]. Imagine having a large set of text

documents and wanting to know how many times a word is mentioned within them. To

solve this problem, it is necessary to counts overall occurrences of each word. This task

can be fulfilled by a MapReduce program. The MapReduce program takes a set of input

key/value pairs (document name/content) to create the desired output key/value pairs

(word/count). In the map phase, the workers execute the user defined map function to

count the words in each document. The map function takes a document as input and

creates a new key/value pair for each word as an intermediate result. The key is the word

itself and the value is its occurrence, which initially is always “1”. The following pseudo-

code is an example of how this map function may look like:

map(String key, String value):

 //key: document name

90

 //value: document content

 for each word w in value:

 create IntermediateResult(w,1)

If a map process has finished, intermediate results are sorted by key and saved to local

disk. They are not saved to HDFS to avoid unnecessary duplication. The shuffle phase

describes the process of getting intermediate results to the workers for the reduce phase.

During shuffle, all intermediate results are grouped together depending on their key

value. Finally, the reducers add up the intermediate results. Their input is a key/value pair

where the key is the word and the value is a list of its occurrences. The following pseudo-

code shows the concept of such a reduce function:

reduce(String key, Iterator values):

 //key: word

 //value: list of counts

 int result = 0

 for each v in values:

 result += ParseInt(v)

 return result

Figure 51 illustrates the word-count example with its inputs and outputs during each

phase. The two texts “hello world” and “around the world” have been chosen as an

example. The map- and reduce functions follow the logic of the above defined pseudo code

examples.

Figure 51: MapReduce example: counting words in text documents.

91

6.2.2 Apache Spark

Apache Spark53 is a framework for distributed, parallel processing [191]. In comparison

to Hadoop, Spark utilizes in-memory technology to achieve better performance. Spark

started as a project at the university of California, Berkley, and was later donated to the

Apache foundation, where it became a top level Apache project in 201454. The framework

is written in Java and Scala, and therefore runs on any JVM capable system. It offers APIs

in Scala, Java, Python and R. Today, over 50 contributors actively develop the

framework55.

Figure 52: Embedding Spark in the architecture of a Big Data analytic ecosystem.

As shown in Figure 52, Spark consists in its current version 2.2.156 (released 1.12.2017),

of 6 main modules. The centre of Spark is Spark Core. It is responsible for executing and

monitoring data processing. Spark Core also includes a cluster management module and

is therefore able to run its own cluster (Spark Standalone). However, Spark also provides

native support for third party cluster management frameworks Hadoop YARN and

Apache Mesos57. The other 5 components (Spark SQL, Spark Streaming, MLlib, GraphX,

and Spark R) offer high level features on top of Spark Core. Spark SQL provides an SQL-

like interface to work with structured data. Spark Streaming enables processing of data

streams. MLlib is a library of machine learning algorithms for Big Data analysis. GraphX

provides an API for graphs and graph-parallel computation and Spark R is an API for R.

Additionally, Spark offers support functions such as central logging and a web based

graphical user interface for job monitoring. In contrast to Hadoop, Spark does not provide

a distributed storage system. It is dependent on other frameworks like Hadoop HDFS. The

following sections presents the most prominent modules of Spark (Spark Core, Spark SQL,

53 https://spark.apache.org/
54 https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces50
55 https://spark.apache.org/committers.html
56 https://spark.apache.org/docs/2.2.1/
57 https://mesos.apache.org/

92

Spark Streaming and MLib). Since neither Spark R nor GraphX are necessary for a PMB

implementation, they are not portrayed.

Spark Core

Spark Core is the data processing engine of Spark [191]. It is responsible for data

processing as well as management functions such as scheduling and monitoring tasks.

Spark Core implements, and is built around a programming abstraction called Resilient

Distributed Data Sets (RDD) [24].

The main characteristic of RDDs is that they may exist beyond the lifetime of a job. This

allows for the reuse of intermediate data across multiple computations. While reusing

results in Hadoop would require the data to be saved on disk, RDDs can be stored in-

memory. The reuse of data is especially common in iterative machine learning and graph

algorithms. Reusing data also benefits interactive use cases, for example running multiple

ad-hoc queries against the same set of data. Stored intermediate query results can be used

to speed up future ones.

As shown in Figure 53, RDDs are created from data in stable storage or other RDDs

through deterministic operations called transformations [24]. Transformations include

mapping data to RDDs (map), filter or join operations. Once a RDD is created, it cannot be

changed. RDDs are read-only. They are split up into partitions that are distributed around

the cluster to enable distributed processing.

Figure 53: Creating RDDs and splitting them into Partitions

RDDs are fault tolerant [24]. In many distributed systems like Hadoop HDFS, fault

tolerance is provided by replicating data on multiple cluster nodes [60]. This is associated

with a lot of network traffic and data replication. In contrast to that, RDDs ensure fault

tolerance by saving transformations needed for creating it, rather than its data. Storing

transformations instead of raw data represents just a fraction of the data volume but still

ensures there is always enough information available to rebuild a RDD if lost.

93

Figure 54: Master/slave architecture of Spark.

As illustrated in Figure 54, Spark follows a master/slave architecture similar to the one of

Hadoop. The master runs the Spark application that is provided through the so-called

Driver Program. The Driver defines the RDDs and their analysis. It launches the

SparkContext, which coordinates the application. The SparkContext connects to the

cluster manager to demand resources, schedules tasks, and monitors them. The slaves or

workers process data. They host Executors which execute tasks provided by the

SparkContext. They report back to the SparkApplication.

Figure 55: Workflow of a Spark application.

Figure 55 presents the workflow of starting an application inside Spark. To run a Spark

application a user has to define a Driver Program, which defines RDDs and their

processing. Each Spark application is coordinated by its own SparkContext, which is

launched on the master. The SparkContext takes the user defined transformations and

translates them into a directed acyclic graph. The graph is then submitted to the

94

scheduler. After scheduling, the SparkContext connects to the cluster manager to demand

computing resources in the cluster. Then the SparkContext connects to the allocated

workers and invokes Executors, which process RDD partitions. Each worker runs one

Executor per application. After completion, Executors report results back to the

SparkContext.

Spark SQL

Spark SQL58 is Sparks module to work with structured data and was introduced in 2014

during the release of Spark 1.0.059. It allows users to access many popular data sources,

including Hive, Avro, Parquet, ORC, JSON, and JDBC. Spark SQL enables clients to perform

SQL-queries but also offers APIs in Scala, Java, and Python to connect to data sources

programmatically [67]. Independent of the utilized language, all queries are executed by

the same engine, allowing for high flexibility and developers to switch languages

depending on the use case.

Figure 56: Interfaces of Spark SQL and interaction with Spark.

Figure 56 displays the interfaces of Spark SQL and how it interacts with Spark Core [67].

Spark SQL offers a SQL interface that can be accessed through JDBC/ODBC or through

command-line console. Additionally, Spark SQL offers a DataFrame API for user programs.

DataFrames are the main abstraction in Spark SQL. They are equivalent to a table in a

relational database. DataFrames can be created either from relational data sources or

RDDs. The Catalyst Optimizer is the internal interface to Spark Core. It plans queries and

translates them into Spark executable code [67].

58 https://spark.apache.org/sql/
59 https://spark.apache.org/news/spark-1-0-0-released.html

95

Spark Streaming

Spark Streaming60 is Sparks dedicated processing engine for data streams. It is designed

to offer real-time data processing and was introduced in 2013 as part of Sparks release

0.7.061.

The general idea behind Spark Streaming was to create a system capable of real time data

processing that is able to provide fast recovery in case of failure [22]. Other stream

processing systems often utilize a continuous processing model, where data is processed

as soon as it enters the system. However, continuous processing results in high costs for

providing fault tolerance [22]. Instead of continuous processing, Spark Streaming

implements a mini-batch processing approach as shown in Figure 57. Input data of

continuous data streams is first stored and grouped into small data sets. Periodically these

data sets are processed in batch using the Spark Core processing engine. The time

intervals between batch processes are very small, achieving almost real-time

computation speed.

Figure 57: Mini-batch processing model of Spark Streaming.

Structuring stream processing as a set of short, stateless, deterministic tasks is called

discretized streams [22]. To highlight the advantages of discretized streams, consider

traditional approaches for providing fault tolerance in continuous data processing

system. As displayed in Figure 58, there are two main methods. The first method sustains

fault tolerance through replication. The entire data processing stream is duplicated to

provide a backup if one stream fails, doubling the hardware requirements of the system.

Furthermore, to ensure identical outcomes, all nodes down the stream must be

synchronized. The second method implements upstream backups. Each node retains a

copy of sent messages. If a failure occurs, all messages are resent to a backup machine.

The recovery therefore rests solely on the backup machine, which has to reprocess data

on its own.

60 https://spark.apache.org/streaming/
61 https://spark.apache.org/releases/spark-release-0-7-0.html

96

Figure 58: Traditional approaches for providing fault tolerance in continuous data processing systems.

Spark Streaming uses discretized streams to provide fault tolerance. Figure 59 shows the

processing model of discretized streams. Input data is stored in the form of RDDs among

the cluster. After a short period of time, the accumulated data is processed within a batch

process using the Spark Core execution engine. Spark Streaming stores all operations, a

discretized stream goes through. In case of failure, the affected stream checks its history

and repeats all lost transformation steps. The recomputation can be done in parallel on

multiple nodes.

Figure 59: Processing model of discretized streams.

The Spark Streaming library offers APIs in Java, Scala and Python. Spark Streaming allows

for custom data source configuration but natively supports HDFS, Flume, Kafka, Twitter,

and ZeroMQ.

MLlib

MLlib62 is a library of machine learning algorithms and had its debut in Spark version

0.863. Its development began in 2012 as part of the MLBase project [92] and was open

sourced in September 2013. MLlib is written in Scala and provides interfaces for Java,

62 https://spark.apache.org/mllib/
63 https://spark.apache.org/releases/spark-release-0-8-0.html

97

Scala, Python and R. It offers a wider variety of implemented algorithms for classification,

regression clustering, and collaborative filtering [91].

6.2.3 Mahout

Apache Mahout64 is a programming framework for creating distributed machine learning

algorithms. Additionally, Mahout provides some premade machine learning algorithms

for Hadoop MapReduce, Spark, H2O and Flink. In 2016, Mahout introduced a new math

environment called Samsara with its 0.11.1 release65. In Samsara, developers can specify

machine learning algorithms in an abstract language similar to R or MATLAB. The Mahout

project started in 2009 as part of Apache Lucene66 (a text search engine library) with the

goal to provide scalable machine learning algorithms67. In 2010, Mahout split from Lucene

to become an independent Apache project. In recent years Mahout shifted its focus from

a library of machine learning algorithms to an environment for building them.

Figure 60: Embedding Mahout in the architecture of a Big Data analytic ecosystem.

Considering the architecture of a Big Data ecosystem, Mahout is a high level library on top

of an existing Big Data environment as shown in Figure 60. Mahout natively supports the

execution engines of Hadoop MapReduce, Spark, Flink and H2O.

64 https://mahout.apache.org/
65 https://mahout.apache.org/general/release-notes.html
66 https://lucene.apache.org/
67 https://lucidworks.com/2009/04/07/apache-mahout-01-released/

98

6.3 Testing Environment

6.3.1 The Raspberry Pi

The Raspberry Pi68 is a series of single-board computers developed in the United Kingdom

by the Raspberry Pi Foundation. It is a low cost, high performance computer, intended to

promote computer science in education and developing countries. Since its first release,

over 17 million Raspberry Pi’s have been sold worldwide [192]. The current model of the

Raspberry Pi is the Raspberry Pi 3 Model B69, which is illustrated in Figure 61. Table 15

lists its specifications.

Table 15: Specifications of the Raspberry Pi 3 Model B.

Figure 61: Raspberry Pi Model 3 B70.

6.3.2 Raspberry Pi Based Computer Clusters

Due to its low costs, small size, and good performance, the Raspberry Pi is a multipurpose

tool that can be utilized in many different application areas such as education, media

centres and game machine71. These attributes also promote the Raspberry Pi as basis for

computer clusters – an approach, whose viability has been explored in scientific papers.

Cox et al. [193] introduce Iridis-Pi, a cluster comprising of 64 Raspberry Pi Model 3 B.

Fung et al. [194] present the Glasgow Raspberry Pi Cloud, a scale model of a datacentre

composed of clusters of Raspberry Pi devices. Abrahamsson et al. [195] constructed the

68 http://www.raspberrypi.org/
69 http://www.raspberrypi.org/products/raspberry-pi-3-model-b/
70 http://www.Raspberry Pi-spy.co.uk/2016/02/introducing-the-raspberry-pi-3-model-b/
71 https://www.raspberrypi.org/forums/

RaspberryPi Model B
specifiations

1.2 GHz 64-bit quad-core ARMv8 CPU

1 GB RAM
Micro SD card slot

4 USB ports

Full HDMI port
Ethernet port

Combined 3.5mm audio jack and
composite video

Camera interface (CSI)
Display interface (DSI)

VideoCore IV 3D graphics core
40 GPIO pins

99

Bolzano Raspberry Pi cluster, which connects 300 Raspberry Pi 3 model B to an energy

efficient computing cluster. Ashari and Riasetiawan [196] compare the performance of a

cluster comprising of 14 Raspberry Pi Model B to a the performance of the multicore

processor chips Intel72 i5 and i7 in the area of matrix calculations. Their results show that

the Intel chips outperform the cluster significantly. Schot [197] analyses the capabilities

of the Raspberry Pi 2 as basis for a micro data centre. The micro data centre consists of 8

Raspberry Pi 2 running Hadoop and shows low power consumption with a moderate

performance.

Overall, the Raspberry Pi can be considered a viable basis for computer clusters. Its low

costs and high performance allow to create cluster environments on a budget. Therefore,

a Raspberry Pi cluster was chosen as hardware for running the two Big Data analytic

ecosystems.

6.3.3 Raspberry Pi as Basis for PMB Implementations

There are good reasons for choosing the Raspberry Pi as basis for the cluster running the

Big Data analytic ecosystems. Firstly, the Raspberry Pi uses an SD-Card as hard drive. Its

content can be stored as an image, enabling simple replication of experiments. Secondly,

distributed processing frameworks are designed to work best on clusters consisting of

multiple nodes of the same hardware. And thirdly, the Raspberry Pi Model 3 is affordable.

Therefore, the PMB is implemented on two Big Data analytic ecosystems running on a

Raspberry Pi cluster. The utilized Raspberry Pi cluster consists of five Raspberry Pi 3

Model B. The Raspberry Pi’s operate on Raspbian 73 , a lightweight Linux Debian

distribution. For storage, each unit has a MicroSD card with a capacity of 32 GB. The

individual units are connected by LAN, using a standard 8-Port network switch as

connection device.

72 http://www.intel.com/
73 http://www.raspbian.org/

100

6.4 Benchmark Execution

The PMB is implemented on two Big Data analytic ecosystems. This section presents their

configuration, implementation details, and benchmark results. To prevent distortion

effects of outliers, each benchmark is performed ten times and the results are calculated

as the mean of these ten repetitions.

6.4.1 Cluster Network Setup

The cluster consists of five Raspberry Pi 3 Model B, which are connected to an 8-port

gigabit switch via Ethernet cable. As illustrated in Figure 62, the switch is connected to a

router, which manages the network. The Raspberry Pis are capable of network transfers

speeds of 100 Mbit/s, the switch and router are able to achieve transfer speeds of up to

1.000 Mbit/s. Therefore, the single Ethernet cable between switch and router is able

handle all incoming requests from the five Raspberry Pis.

Figure 62: Test environment cluster network setup.

The Raspberry Pis operate on Raspbian74, a free operating system based on Debian,

which is optimised for the Raspberry Pi hardware. In the network, the individual

Raspberry Pis are named as master, slave-01, slave-02, slave-03, and slave-04. For easy

identification, are assigned static ip-addresses by the router (192.168.1.10-192.168.1.10).

The names are assigned on each machine by editing the hostname file located at

/etc/hostname. External access to the cluster can be achieved via ssh75 or ftp76. SSH is

used to grant password free access between all Raspberry Pis, since the orchestration

framework YARN needs all nodes to be able to communicate with each other directly and

without password authentication.

74 https://www.raspberrypi.org/documentation/raspbian/
75 https://www.ssh.com/
76 https://tools.ietf.org/html/rfc959

101

6.4.2 Ecosystem 1: HDFS, YARN, MapReduce, Mahout, Hive

Ecosystem 1 combines the most popular Big Data

analytic frameworks Hadoop, Mahout, and Hive (see

Figure 63). It is based on Hadoop, covering the

filesystem HDFS, the resource manager YARN and the

execution engine MapReduce. Mahout serves as the

machine learning library and Hive as the sql interface

for data access and preparation.

Ecosystem 1: Cluster Configuration

This section specifies the frameworks, their

respective versions, and configurations used for

implementing the PMB. Table 16 lists the

frameworks and their respective versions. For

Hadoop, version 2.7.5 is chosen, since the newest version Hadoop 3.0.0 was still in Alpha

release phase during the development of PMB. For Hive and Mahout, the most recent

versions 2.3.2 and 0.13.0 are selected.

Hadoop and Hive must be configured to run on the limited resources of the Raspberry Pi

cluster. All configurations are done by editing xml-files within the respective installation

folder on each node. Table 17 list the adjusted parameters, their values, and in which files

they are set.

Table 17: Cluster specific configuration of frameworks in Ecosystem 1.

File Parameter Value Comment

hdfs-site.xml
dfs-replication 3 number of data replication

dfs.blocksize 67108864
the size of HDFS blocks in bytes

(here 64 MB)

mapred-site
.xml

mapreduce.reduce.
memory.mb

512
max memory in MB assigned

for reduce tasks
mapreduce.map.

memory.mb
512

max memory assigned in MB
for map tasks

yarn.app.mapreduce.am.
resource.mb

512
size of a container requested

from YARN in MB

yarn-site.xml

yarn.nodemanager.
resource.memory-mb

1024 memory of the NodeManager in MB

yarn.scheduler.minimum-
allocation-mb

128
minimum allocation for every container

request in MB
yarn.scheduler.maximum-

allocation-mb
1024

maximum allocation for every container
request in MB

hive-site.xml hive.execution.engine mr sets MapReduce as execution engine

Frameworks Version

Hadoop 2.7.5
Hive 2.3.2

Mahout 0.13.0

Figure 63: Ecosystem 1.

Table 16: Ecosystem 1: frameworks and versions.

102

Ecosystem 1: PMB Implementation

The PMB is implemented using a Bash77 script. The script invokes Hadoop commands,

calls Hive scripts, and executes a java program for training and testing the decision tree.

It also measures execution time and saves performance results to a csv file. Figure 64

illustrates how Phase 1 of the PMB (see 5.3.1) is implemented on Ecosystem 1. The first

step of Phase 1, preprocessing, is separated into data ingestion and data processing. For

data ingestion, the data is copied into HDFS using its command line interface. Hive then

creates corresponding tables for easy data access. For data processing, Hive transforms

the individual data sets into the final processed data set according to a Hive script written

in HiveQL 78 , a language similar to SQL. Hive creates a MapReduce application that

requests resources from YARN. The resulting data set is split into training set and test set

and stored in HDFS. In the second step of Phase 1, training, a Java program is invoked. The

program trains a decision tree implemented by the Mahout library using the training set

stored in HDFS. The resulting decision tree model is saved in HDFS. In the third step of

Phase 1, testing, a Java program loads the trained model and tests it against the test set.

Figure 64: Implementation of Phase 1 of the PMB on Ecosystem 1.

77 https://www.gnu.org/software/bash/
78 https://cwiki.apache.org/confluence/display/Hive/LanguageManual

103

Phase 2 of the PMB (5.3.2) consists of preprocessing new data and scoring it (see Figure

65). During the first step, preprocessing, data is ingested into HDFS using the Hadoop

command line interface. Then the data is preprocessed in Hive according to a HiveQL

script that calculates all values necessary for prediction. Hive translates the HiveQL

commands into MapReduce jobs, which in turn requests cluster resources from YARN. For

the second step of Phase 2, scoring, a Java program loads the Mahout decision tree model

created during Phase 1 and classifies the new processed data. The results are saved into

HDFS.

Figure 65: Implementation of Phase 2 of the PMB on Ecosystem 1.

For each step of Phase 1 and Phase 2, the execution time is measured. Where possible, the

execution time is further divided into subcategories such as time for initializing a

framework, loading data, and processing it. The results of the PMB implementation are

shown below.

Ecosystem 1: PMB Results

The performance of Ecosystem 1 is determined by measuring the execution time of Phase

1 and Phase 2 as defined by the PMB in seconds. Both phases are executed with three

different data set sizes. In Phase 1 the data sets vary in the number of machines they

contain. The small data size contains 33 machines, the medium size 66 machines, and the

big size 100 machines. During Phase 2 the data sizes vary in the number of data items that

need to be classified. The data sizes for Phase 2 are 10 items (small), 100 items (medium),

and 1.000 items (big). Figure 66 shows the PMB performance results of Ecosystem 1.

104

Figure 66: PMB results of Ecosystem 1 in seconds.

In Phase 1 (Figure 66, blue), most of the execution time is accumulated during

preprocessing of data in Hive (blue bar graph, left). Hive needs 876 seconds more for

processing the medium data set (66 machines) than processing the small data set (33

machines). It takes only 577 additional seconds to process the big data set (100

machines). This observation suggests good performance scalability with increasing data

volume since adding machines decreases the average preprocessing time per machine.

During training and testing, the scaling effect is almost linear. For training, the time

increase is 54 seconds for the medium data set, and 57 seconds for the big data set (blue

bar graph, centre). For testing, additional time of 127 seconds (medium data set) and 120

seconds (big data set) is necessary (blue bar graph, right).

In Phase 2 (Figure 66, green), data sizes do not grow linear as in Phase 1 but by a factor

of ten. Therefore, even though the absolute execution time of preprocessing during Phase

2 increases rapidly with each data set, the processing time per data item decreases (green

bar graph, left). In particular, the processing time per item decreases from 84 seconds

(small data set) to 12,4 seconds (medium data set) to 5,4 seconds (big data set). Scoring

is separated into three request sizes consisting of 1 request (small), 10 requests

(medium), and 100 requests (big) respectively. In each request, the entire data set is

classified. The collected data shows that an increase in data size has only marginal effects

on the execution time of the requests. For the small request size, the execution time for all

three data sets is between 114 and 119 seconds (green bar graph, centre left). When

comparing the measurements of small, medium, and big request Scoring (green bar graph,

right three) it shows that execution time scales linear with the requests size. Increasing

the number of requests by ten results in roughly 10 times longer execution time (i.e.

execution time for the small data set increases from 119 to 1.150 to 11.642 seconds).

105

Figure 67 provides a detailed view of Phase 1 (blue) and Phase 2 (green). The individual

steps discussed above are broken down further into sub steps for in-depth analysis.

Figure 67: Ecosystem 1: Performance breakdown of Phase 1 and Phase 2 in seconds.

In Phase 1, preprocessing (Figure 67, blue bar graph, top) is divided into the two tasks of

data ingestion and processing. Most of preprocessing is spent processing the data with

data ingestion taking a maximum of 5% of overall time. The breakdown of training (blue

bar graph, centre) shows that only the loading of the data is affected by the file size. The

time for initializing Mahout (66-69 seconds) and training the model (115-117 second) is

almost constant throughout all three data sets. During testing (blue bar graph, bottom),

the time for loading and classifying data increases with growing data size, while the time

for initializing Mahout stays at 61-67 seconds.

Preprocessing of Phase 2 (Figure 67, green bar graph, top) almost exclusively consists of

processing the data with only 8 seconds spent for data ingestion. All three types of scoring

(small, medium, and large request) show a similar percentage distribution between

classifying data and initializing Mahout (green bar graph, bottom three sections).

Classifying data accounts for minimum 51% (medium request/medium data size) to

maximum 61% (small request/medium data size) of overall scoring execution time.

106

6.4.3 Ecosystem 2: HDFS, YARN, Spark, MLlib, Hive

Ecosystem 2 implements the second most popular Big

Data analytic frameworks Spark and MLlib (see Figure

68). The remaining frameworks are the same as in

Ecosystem 1, with the difference of Hive not running on

MapReduce but Spark. In contrast to the Hadoop

MapReduce execution engine, Spark is based on in-

memory technology.

Ecosystem 2: Cluster Configuration

Ecosystem 2 is built upon Spark, Hadoop, and

Hive. For Hadoop and Hive the same versions as

in Ecosystem 1 are selected. For Spark and its

machine learning library MLlib version 2.2.1

(prebuilt for Apache Hadoop 2.7 and later) is chosen. Figure 19 lists the frameworks and

their respective versions.

Similar to Ecosystem 1, Spark must be configured to run on the limited resources

provided by the cluster. In particular, available resources, storage block size, and

execution engine for Hive must be configured. Table 19 list the individual parameters,

their values, and in which files they are set.

Table 19: Cluster specific configuration of frameworks in Ecosystem 2.

File Parameter Value Comment

hdfs-site
.xml

dfs-replication 3
how many time data is replicated on the

system
dfs.blocksize 67108864 the size of HDFS blocks in bytes

spark-env
.sh

SPARK_EXECUTOR_MEMORY 512
memory to use per executor process, in

MB

SPARK_DRIVER_MEMORY 512
memory to use for the driver process

(i.e. SparkContext initialization) in MB
SPARK_WORKER_MEMORY 512 memory to use per worker process in MB
SPARK_DAEMON_MEMORY 512 memory to use per deamon process

yarn-site
.xml

yarn.nodemanager.
resource.memory-mb

1024 memory of the NodeManager in MB

yarn.scheduler.minimum-
allocation-mb

128
minimum allocation for every container

request in MB
yarn.scheduler.maximum-

allocation-mb
1024

maximum allocation for every container
request in MB

hive-site
.xml

hive.execution.engine spark sets the execution engine of hive to spark

Frameworks Version

Spark 2.2.1
Hadoop 2.7.5

Hive 2.3.2

Figure 68: Ecosystem 2.

Table 18: Ecosystem 2: frameworks and versions.

107

Ecosystem 2: PMB Implementation

To offer maximum comparability of the PMB results of Ecosystem 1 and Ecosystem 2, the

respective implementations are as similar as possible. The PMB in Ecosystem 2 is also

implemented using a Bash script. HDFS and Hive are used in both ecosystems. Therefore,

all data ingestion and preprocessing steps use the same HDFS commands and HiveQL

scripts. The only difference is present in the Java program loading the MLlib library for

training and testing the decision tree, since Mahout and MLlib offer different APIs.

However, the overall procedure in both Java programs was kept the same. Figure 69

illustrates the implementation of PMB Phase 1 (see 5.3.1) in Ecosystem 2. Phase 1 consists

of preprocessing the data, training the decision tree model, and testing the trained model.

The data is ingested using HDFS and processed in Hive, which runs on Spark. For training,

a Java program is executed, that creates a decision tree model using MLlib and the

processed data. The model is stored in HDFS and tested using MLlib on Spark.

Figure 69: Implementation of Phase 1 of the PMB on Ecosystem 2.

In Phase 2 of the PMB (5.3.2), new data is preprocessed and scored. Figure 70 illustrates

how Phase 2 is implemented in Ecosystem 2. After ingesting the data into HDFS, it is

processed in Hive using the same HiveQL scripts developed during the implementation of

Phase 2 in Ecosystem 1. However, since Hive uses Spark and not MapReduce, the HiveQL

108

commands are translated into RDD transformations rather than MapReduce jobs. These

RDD transformations are then executed by the Spark execution engine. During the second

step of scoring, a Java program loads the trained MLlib decision tree model from HDFS

and classifies the processed new data. The results are saved to HDFS.

Figure 70: Implementation of Phase 2 of the PMB on Ecosystem 2.

Similar to the PMB implementation in Ecosystem 1, the execution time of each step of

Phase 1 and Phase 2 is measured. Where possible, the execution time is further divided

into subcategories such as time for initializing a framework, loading data, and processing

it. The results of the PMB implementation are shown below.

Ecosystem 2: PMB Results

The performance of Ecosystem 2 is measured by timing the execution time of the

individual steps of Phase 1 and Phase 2. Figure 71 shows the PMB performance results of

Ecosystem 2 in seconds. As before, the results are divided into Phase 1 (blue) and Phase

2 (green). Data, data size, and request size are identical to the PMB implementation in

Ecosystem 1.

109

Figure 71: PMB results of Ecosystem 2 in seconds.

As before, most of the time during Phase 1 is used for preprocessing the data (Figure 71,

blue bar graph, left). The processing of the medium data size takes 578 additional seconds,

while the processing of the big data set only takes 478 additional seconds. Preprocessing

therefore scales well with increasing data size. For training (blue bar graph, centre) and

testing (blue bar graph, left) an increase in data size results in a decrease in processing

time per machine. For example, training with the small data set takes 283 seconds,

amounting to 8,6 seconds / machine. Adding 33 machines (medium data set) results in

4,6 seconds / machine and adding another 33 machines leads to 3,6 seconds / machine.

Preprocessing during Phase 2 (Figure 71, green bar graph, left) shows good scalability

when increasing the data size. The processing time/item decreases from 57,8 seconds

(small) to 8,47 seconds (medium) to 3,7 seconds (big). The data size has only minimal

effect on the execution time during scoring. For instance, when scoring the small request

(green bar graph, centre left), 10 items (145 seconds) are scored almost as fast as 1.000

items (148 seconds). The execution time scales linear with the request size. Increasing the

request size 10 times results in approximately 10 times longer execution time. For

instance, scoring the small data size increases from 145 seconds (small request), to 1.378

seconds (medium request), to 13.729 seconds (big request).

Figure 72 shows a breakdown of Phase 1(blue) and Phase 2(green) discussed above.

110

Figure 72: Ecosystem 2: Performance breakdown of Phase 1 and Phase 2 in seconds.

In Phase 1, preprocessing (Figure 72, blue bar graph, top) is separated into the two tasks

of data ingestion and processing with processing being the major contributor to execution

time. The breakdown of training (blue bar graph, centre) shows that loading data is not

affected by file size. While counterintuitive at first, this can be explained by Sparks lazy

loading approach. Data is only really loaded if used. During loading, Spark only checks if

the data is available for later use but does not keep it in memory. This means, in Phase 1,

data is first loaded during actual training of the model and not before. Training, and

initializing Spark however, are affected by data size with increased execution times.

During testing (blue bar graph, bottom) a similar phenomenon to training can be

observed. Data size has almost no effect on data loading time but increases the time of

classification. The time for initializing Spark is similar across all data sizes with 49-53

seconds.

Preprocessing of Phase 2 (Figure 72, green bar graph, top) is dominated by processing the

data (>98,5%) with only 8 seconds spent for data ingestion. Across all three request sizes

of scoring (green bar graph, bottom three), the execution time ratio between classifying

data and initializing Spark remains similar at roughly 25%/75%.

111

6.5 PMB Analysis and Findings

This section presents the evaluation of the PMB. First, the performance results of the two

PMB implementations are analysed and used to compare the two ecosystems with each

other. The results of the comparison are then matched against conclusions drawn by other

benchmarks, analysing Hadoop and Spark based environments. Finally, key findings are

presented and used to evaluate the PMB.

6.5.1 Comparison between Ecosystem 1 and Ecosystem 2

During Phase 1 of the PMB, Ecosystem 1 and Ecosystem 2 differ in two main aspects.

Firstly, although both ecosystems run the same Hive preprocessing scripts, Ecosystem 1

runs Hive on MapReduce while Ecosystem 2 runs Hive on Spark. Secondly, Ecosystem 1

uses Mahout for training and testing the model whereas Ecosystem 2 uses MLlib. Figure

73 shows a comparison between the PMB performances of Ecosystem 1 and Ecosystem 2

during Phase 1 of the PMB. The measurements are divided into the three steps of

Preprocessing (left), Training (centre), and Testing (right).

Figure 73: Comparison between Ecosystem 1 and Ecosystem 2 during Phase 1 of the PMB in seconds.

In comparison to Ecosystem 1, Ecosystem 2 shows significantly better performance

during preprocessing (Figure 73, left) with a speed advantage of roughly 30%. Both

preprocessing tasks are done with Hive but using the different execution engines Hadoop

MapReduce and Spark. The better performance of Ecosystem 2 suggests that Hive on

Spark is significantly faster than Hive on MapReduce.

For training (Figure 73, centre) with a small data set, Ecosystem 1 is more than 20% faster

than Ecosystem 2. However, this advantage decreases with growing data sizes to 4,8%

with the medium data set and 3,5% with the big data set. This shows that while Hadoop

112

and Mahout are better with smaller data sets, Spark and MLlib are catching up with

increasing data size.

Considering testing (Figure 73, right), Ecosystem 2 shows better performance across all

three data sets. Spark and MLlib outperform Hadoop and Mahout especially with growing

data sizes and are almost twice as fast when testing the large data set.

In Phase 2, Ecosystem 1 and Ecosystem 2 again use different execution engines for the

same Hive preprocessing scripts (MapReduce om Ecosystem 1, Spark in Ecosystem 2).

While Ecosystem 1 uses Mahout on MapReduce for scoring, Ecosystem 2 utilizes MLlib on

Spark. Figure 74 displays the performance of Ecosystem 1 and Ecosystem 2 during Phase

2 of the PMB.

Figure 74: Comparison between Ecosystem 1 and Ecosystem 2 during Phase 2 of the PMB in seconds.

Similar to the observations during Phase 1, Ecosystem 2 shows roughly 30% better

performance during Preprocessing across all data sizes in Phase 2. This reinforces the

proposition that hive runs faster on the Spark execution engine than on MapReduce.

Throughout scoring, Ecosystem 1 outperforms Ecosystem 2. The main reason is the long

initialization time of Spark. Starting a Spark job takes almost twice as long as starting a

Hadoop MapReduce job. Due to repeated initialization with each request, Spark shows

lower performance across all request sizes.

113

6.5.2 Validating PMB Results by Analysing other Performance Evaluation Studies

This section looks at the results from performance evaluation studies of Hadoop and

Spark and compares them with the results of the PMB implementations. The analysis this

comparison is used to assess the validity of the PMB.

Zaharia et al. [24] compare Spark to Hadoop by implementing two machine learning

applications, logistic regression and k-means, and measuring their execution time. The

experiment is done with 100GB of data on a 100 node cluster. For both applications, Spark

shows significantly better performance: Spark outperforms Hadoop by up to 3x during k-

means application and up to 20x in logistic regression. The PMB also shows a performance

advantage of Spark, although not as high as reported by Zaharia et al. [24]. One possible

explanation is the difference in measured tasks. While the PMB covers the entire process

of data ingestion, data processing and data storage, Zaharia et al. [24] focus on data

processing. Another possible explanation is the bigger cluster used by Zaharia et al. [24].

The significantly higher available RAM benefits Spark because it can store the entire data

set in-memory at all time.

Samadi et al. [198] use the HiBench benchmark suite to analyze the performance of Spark

and Hadoop. HiBench covers workloads from the four categories of micro benchmarks,

web search, SQL, and machine learning. Their results show that Spark is up to 18x faster

in the category of web search tasks, up to 6.7x faster in SQL tasks, 1.8x faster in micro-

benchmarks, and 1.6x faster in machine learning tasks. Overall, the findings of Samadi et

al. [198] correspond with the results of the PMB, where Spark also outperforms Hadoop.

Mavridis and Karatza [199] analyze the performance of Hadoop and Spark when

analyzing web server log files. The analysis consists of tasks such as counting requests per

day, finding possible DoS (Denial of Service) attacks, identifying DoS attackers, counting

errors, and finding most frequent errors. All tasks are done on log files of three different

sizes (1.1GB, 5.5GB, and 11GB) The experiment runs on a 6 node cluster with 8 GB RAM,

and 40GB disk space each. Similar to the results of the PMB, the comparison of Mavridis

and Karatza [199] shows that Spark is faster than Hadoop in every analyzed case.

Poggi et al. [200] compare the performance of Hive, Mahout, and MLlib using BigBench

[14]. Their experiments show that Hive and MLlib is up to 2.2x faster than Hive and

Mahout. These results are similar to the ones produced by the PMB, although in the latter,

the performance advantage of MLlib is not as significant. This can be explained by the

difference in tasks and data size. Due to the smaller data size used in PMB, initialization

114

has a higher impact on overall execution time. Therefore, the higher initialization time of

MLlib compromises its advantage during data processing, resulting in a smaller

performance advantage then measured by Poggi et al. [200].

Overall, the PMB implementations on Ecosystem 1 and Ecosystem 2 produce comparable

results to performance evaluation studies analysing Hadoop and Spark.

6.5.3 Key Findings and Evaluation of the PMB

The development and implementation of the PMB resulted in key findings, which are

presented below:

Representability of the PMB

The PMB is developed based on in-depth research in the field of predictive maintenance

(see chapter 6). The PMB data model (see section 5.2) represents typical data sources and

data types encountered during predictive maintenance. It combines periodic condition

monitoring data with event based maintenance-, error-, and failure logs. The data set was

created by monitoring machines over the period of one year and thus represents real

world data. The workload of the PMB (see section 5.3) is based on typical tasks of PMB,

covering the three steps of predictive maintenance data acquisition, data processing, and

maintenance decision making (see section 4.2-4.4).

Feasibility of the PMB

The PMB was implemented on the two most popular Big Data analytic ecosystems. The

structure of these ecosystems is based on the 6-Pillar of Kahilfa et al. [18] (see section

3.3). The selection of the frameworks underlying the two ecosystems is based on a

scientific literature research (see section 6.1). The successful implementation and

execution of the PMB on two Big Data analytic ecosystem showed its feasibility. The

metric of the PMB enables a structured comparison of the performance of both

ecosystems.

115

Validity of the PMB

The PMB implementations on both ecosystems show similar results as performance

evaluation studies comparing Hadoop and Spark based systems (see section 6.5.2). The

PMB results indicate Spark outperforming Hadoop throughout almost every workload.

This indication corresponds to the results of multiple studies analysing Hadoop and

Spark.

116

7 Conclusion and Future Work

7.1 Conclusion

Benchmarks for Big Data analytic ecosystems need be designed for specific application

areas. Most available Big Data benchmarks focus on tasks originating from e-commerce,

retail, search engines, or social media. There are currently no benchmarks available for

the field of predictive maintenance. This thesis introduced the PMB, a technology-agnostic

benchmark to test Big Data analytic ecosystems in the application area of predictive

maintenance.

The first step was to identify the requirements of a Big Data analytic ecosystem hosting a

predictive maintenance system. For this purpose, extensive research was undertaken to

establish a theoretical understanding of Big Data analytic ecosystems and their

application in the field of predictive maintenance. Based on this research, general

requirements for a benchmark covering predictive maintenance were identified. In the

second step, the acquired knowledge was used to develop the PMB. After planning the

benchmark, the data model and the workloads of the PMB were defined. For evaluation,

the PMB was implemented using two different Big Data ecosystems and executed on a 5

node Raspberry Pi cluster. The frameworks forming the respective ecosystems were

determined through a scientific literature research. Ecosystem 1 is based on Hadoop,

Mahout, and Hive. Ecosystem 2 consists of Hadoop, Spark, MLlib, and Hive. The PMB

results indicate that Ecosystem 2 outperforms Ecosystem 1 in almost every workload.

Furthermore, the performance of Ecosystem 2 scales faster with growing data sizes than

the performance of Ecosystem 1. The main driver behind this performance advantage is

assumed to be the in-memory technology of the Spark execution engine.

The evaluation of the PMB showed that it is a viable tool for comparing Big Data analytic

ecosystems in the field of predictive maintenance. The data model and workloads

represent typical predictive maintenance workflows and the individual measurements

provide a detailed view of the performance of the ecosystem. The results of the PMB

implementations are comparable to results of other Big Data benchmark

implementations, that analyse Hadoop and Spark based ecosystems.

117

7.2 Future Work

The PMB enables comparison of Big Data analytic ecosystems in the application area of

predictive maintenance. Although this benchmark covers a typical data model and typical

workloads faced during predictive maintenance, there are still open issues. These issues

are presented below.

The PMB data model consists of periodic measurements (telemetry data), event based

data (i.e. failure logs) and static information (machine meta data). All considered data

types are value based. As described in chapter 4.2, many condition indicators such as

vibration or acoustic data is measured in waveform. Therefore, incorporating wave data

and analysing it presents a promising extension to the PMB.

PMB uses a decision tree as classification algorithm to predict future failures. As shown in

chapter 4.4.2, multiple other machine learning algorithms are available for predicting

failures. Hence, overall coverage of the PMB can be increased by including multiple

machine learning algorithms for classification as well as prediction of remaining useful

life.

For evaluation, the PMB was implemented on two different Big Data analytic ecosystems

using a 5 node Raspberry Pi cluster. The testing environment is restricted by the limited

capabilities of the Raspberry Pis. The next step is to execute the PMB implementations on

an improved cluster of more capable machines, enabling insights in how both ecosystems

scale with improved hardware.

Finally, the PMB can be implemented on other ecosystems. Analysis of these

implementations can provide feedback on which areas of the PMB need further

development. This iterative procedure improves the benchmark with each

implementation.

118

Bibliography
[1] M. Macchi, I. Roda, and L. Fumagalli. On the Advancement of Maintenance Management: Towards

Smart Maintenance in Manufacturing. In H. Lödding, R. Riedel, K. . Thoben, G. Cieminski, and D.
Kiritsis, editors, Advances in Production Management Systems. The Path to Intelligent, Collaborative
and Sustainable Manufacturing. APMS 2017, volume 513 of IFIP Advances in Information and
Communication Technology, pages 383–390. Springer Cham., 2017.

[2] L. M. Pintelon and L. F. Gelders. Maintenance management decision making, European Journal of
Operational Research, 58(3): 301–317, 1992.

[3] R. K. Mobley. An Introduction to Predictive Maintenance. Elsevier B.V.: Amsterdam, 2nd edition,
2002.

[4] R. Roy, R. Stark, K. Tracht, S. Takata, and M. Mori. Continuous maintenance and the future -
Foundations and technological challenges, CIRP Annals - Manufacturing Technology, 65(2): 667–
688, 2016.

[5] D. Laney. 3D Data Management: Controlling Data Volume, Velocity, and Variety, META Group, 2001.
[6] I. Anagnostopoulos, S. Zeadally, and E. Exposito. Handling big data: research challenges and future

directions, Journal of Supercomputing, 72(4): 1494–1516, 2016.
[7] E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches, Bulletin of the Technical

Committee on Data Engineering, 23(4): 3–13, 2000.
[8] I. Yaqoob, I. A. T. Hashem, A. Gani, S. Mokhtar, E. Ahmed, N. B. Anuar, and A. V. Vasilakos. Big data:

From beginning to future, International Journal of Information Management, 36(6): 1231–1247,
2016.

[9] P. Pääkkönen and D. Pakkala. Reference Architecture and Classification of Technologies, Products
and Services for Big Data Systems, Big Data Research, 2(4): 166–186, 2015.

[10] M. Turck and J. Hao. Firing on All Cylinders: The 2017 Big Data Landscape, 2017.
http://mattturck.com/bigdata2017/, Accessed: 10.05.2017.

[11] T. Ivanov, T. Rabl, M. Poess, A. Queralt, J. Poelman, N. Poggi, and J. Buell. Big data benchmark
compendium. In R. Nambiar and M. Poess, editors, Performance Evaluation and Benchmarking:
Traditional to Big Data to Internet of Things. TPCTC 2015, volume 9508 of Lecture Notes in
Computer Science, pages 135–155. Springer Cham., 2016.

[12] R. Han, L. Xiaoyi, and X. Jiangtao. On big data benchmarking. In J. Zhan, R. Han, and C. Weng, editors,
Big Data Benchmarks, Performance Optimization, and Emerging Hardware. BPOE 2014 , volume
8807 of Lecture Notes in Computer Science, pages 3–18. Springer Cham., 2014.

[13] C. Baru, M. Bhandarkar, R. Nambiar, M. Poess, and T. Rabl. Setting the direction for big data
benchmark standards. In R. Nambiar and M. Poess, editors, Selected Topics in Performance
Evaluation and Benchmarking. TPCTC 2012, volume 7755 of Lecture Notes in Computer Science,
pages 197–208. Springer Berlin Heidelberg., 2013.

[14] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen. BigBench: Towards an
Industry Standard Benchmark for Big Data Analytics, In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’13), pages 1197–1208. ACM New York,
2013.

[15] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan,
X. Li, and B. Qiu. BigDataBench: A big data benchmark suite from internet services, In Proceedings
of the 20th International Symposium on High Performance Computer Architecture (HPCA), pages
488–499. IEEE, Orlando, 2014.

[16] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman. Systematic literature
reviews in software engineering – A systematic literature review, Information and Software
Technology, 51(1): 7–15, 2009.

[17] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Information Systems Research, MIS
Quarterly, 28(1): 75–105, 2004.

[18] S. Khalifa, Y. Elshater, K. Sundaravarathan, A. Bhat, P. Martin, F. Imam, D. Rope, M. Mcroberts, and
C. Statchuk. The Six Pillars for Building Big Data Analytics Ecosystems, ACM Computing Surveys,
49(2): 1–36, 2016.

[19] S. Huang, J. Huang, Y. Liu, L. Yi, and J. Dai. HiBench: A Representative and Comprehensive Hadoop
Benchmark Suite, 2012.

[20] A. Sangroya, D. Serrano, and S. Bouchenak. MRBS: A Comprehensive MapReduce Benchmark Suite,
Research Report RR-LIG-024, LIG Grenoble France, 2012.

[21] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. SparkBench, In Proceedings of the 12th ACM
International Conference on Computing Frontiers - CF ’15, pages 1–8. ACM New York, 2015.

[22] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized Streams: Fault-Tolerant

119

Streaming Computation at Scale, In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 423–438. ACM New York, 2013.

[23] J. Dean and S. Ghemawat. MapReduce: Simplied Data Processing on Large Clusters, In Proceedings
of 6th Symposium on Operating Systems Design and Implementation, pages 137–149. USENIX
Association Berkeley, 2004.

[24] M. Zaharia, C. Mosharaf, D. Tathagata, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I.
Stoicam. Resilient Distributed Datasets- A Fault-Tolerant Abstraction for In-Memory Cluster
Computing, In Proceedings of the Ninth USENIX NSDI Symposium on Networked Systems Design and
Implementation, pages 2–14. USENIX Association Berkeley, 2012.

[25] S. Shahrivari. Beyond Batch Processing: Towards Real-Time and Streaming Big Data, Computers,
3(4): 117–129, 2014.

[26] A. Shukla and Y. Simmhan. Benchmarking distributed stream processing platforms for IoT
applications. In R. Nambiar and M. Poess, editors, Performance Evaluation and Benchmarking.
Traditional - Big Data - Internet of Things. TPCTC 2016, volume 10080 of Lecture Notes in Computer
Science, pages 90–106. Springer Cham., 2017.

[27] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker. A comparison
of approaches to large-scale data analysis, In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pages 165–178. ACM New York, 2009.

[28] J. Ferrarons, M. Adhana, C. Colmenares, S. Pietrowska, F. Bentayeb, and J. Darmont. PRIMEBALL: A
Parallel Processing Framework Benchmark for Big Data Applications in the Cloud. In R. Nambiar
and M. Poess, editors, Performance Characterization and Benchmarking. TPCTC 2013, volume 8391
of Lecture Notes in Computer Science, pages 109–124. Springer Cham., 2014.

[29] P. Cao, B. Gowda, S. Lakshmi, C. Narasimhadevara, P. Nguyen, J. Poelman, M. Poess, and T. Rabl.
From BigBench to TPCx-BB: Standardization of a Big Data Benchmark. In R. Nambiar and M. Poess,
editors, Performance Evaluation and Benchmarking. Traditional - Big Data - Internet of Things.
TPCTC 2016, volume 10080 of Lecture Notes in Computer Science, pages 24–44. Springer Cham.,
2017.

[30] Transaction Processing Performance Council (TPC). Tpc benchmark H: Standard Specification, San
Francisco, 2011. http://www.tpc.org/TPC_Documents_Current_Versions/pdf/tpc-h_v2.17.3.pdf,
Accessed: 10.04.2018.

[31] Standard Performance Evaluation Corporation (SPEC). SFS 2014 SP2 Users Guide, 2017.
https://www.spec.org/sfs2014/docs/usersguide.pdf, Accessed: 10.04.2018.

[32] Storage Performance Council (SPC). SPC-1 Specification, 2017.
http://spcresults.org/sites/default/files/files/specifications/SPC1_v340_final.pdf, Accessed:
10.04.2018.

[33] Storage Performance Council (SPC). SPC-2 Specification, 2017.
http://spcresults.org/sites/default/files/files/specifications/SPC-2_SPC-2E_v1.6.pdf, Accessed:
10.04.2018.

[34] G. Press. A Very Short History Of Big Data, Forbes, 2013.
http://www.forbes.com/sites/gilpress/2013/05/09/a-very-short-history-of-big-data/, Accessed:
08.04.2018.

[35] N. Khan, I. Yaqoob, I. A. T. Hashem, Z. Inayat, W. K. Mahmoud Ali, M. Alam, M. Shiraz, and A. Gani.
Big Data: Survey, Technologies, Opportunities, and Challenges, The Scientific World Journal, 2014:
1–18, 2014.

[36] N. Henke, J. Bughin, M. Chui, J. Manyika, T. Saleh, B. Wiseman, and G. Sethupathy. The Age of
Analytics : Competing in a Data-Driven World, McKinsey Global Institute, 2016.

[37] Y. Demchenko, C. De Laat, and P. Membrey. Defining architecture components of the Big Data
Ecosystem, In Poceedings of the 2014 International Conference on Collaboration Technologies and
Systems (CTS), pages 104–112. IEEE, 2014.

[38] A. Gandomi and M. Haider. Beyond the hype: Big data concepts, methods, and analytics,
International Journal of Information Management, 35(2): 137–144, 2015.

[39] Google. Google Trends, 2018. https://trends.google.de/, Accessed: 25.01.2018.
[40] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big data: The next

frontier for innovation, competition, and productivity, McKinsey Global Institute, 2011.
[41] I. Lee. Big data: Dimensions, evolution, impacts, and challenges, Business Horizons, 60(3): 293–303,

2017.
[42] J. Gantz and D. Reinsel. State of the Universe: An Executive Summary, IDC iView, 2011(June): 1–12,

2011.
[43] T. Shafer. The 42 V’s of Big Data and Data Science, 2017.

https://www.elderresearch.com/company/blog/42-v-of-big-data, Accessed: 15.02.2018.

120

[44] H. Chen, R. H. L. Chiang, and V. C. Storey. Business Intelligence and Analytics: From Big Data to Big
Impact, MIS Quaterly, 36(4): 1165–1188, 2013.

[45] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money. Big Data: Issues and Challenges Moving
Forward, In Proceedings of the 46th Hawaii International Conference on System Sciences, pages
995–1004. IEEE, 2013.

[46] S. Achari. Hadoop Essentials. Packt Publishing Ltd.: Birmingham, 2015.
[47] H. Hussain, S. U. R. Malik, A. Hameed, S. U. Khan, G. Bickler, N. Min-Allah, M. B. Qureshi, L. Zhang, W.

Yongji, N. Ghani, J. Kolodziej, A. Y. Zomaya, C. Z. Xu, P. Balaji, A. Vishnu, F. Pinel, J. E. Pecero, D.
Kliazovich, P. Bouvry, H. Li, L. Wang, D. Chen, and A. Rayes. A survey on resource allocation in high
performance distributed computing systems, Parallel Computing, 39(11): 709–736, 2013.

[48] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Rowstron. Scale-up vs scale-out for
Hadoop, In Proceedings of the 4th annual Symposium on Cloud Computing - SOCC ’13, pages 1–13.
ACM New York, 2013.

[49] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, and M. Zhang. In-Memory Big Data Management and
Processing: A Survey, IEEE Transactions on Knowledge and Data Engineering, 27(7): 1920–1948,
2015.

[50] R. Bärenfänger, B. Otto, and H. Österle. Business value of in-memory technology-Multiple-case
study insights, Industrial Management and Data Systems, 114(9): 1396–1414, 2014.

[51] J. vom Brocke, S. Debortoli, O. Müller, and N. Reuter. How In-memory Technology Can Create
Business Value: Insights from the Hilti Case, Communications of the Association for Information
Systems, 34(1): 151–168, 2014.

[52] J. Bosch. From Software Product Lines to Software Ecosystems, In Proceedings of the 13th
International Software Product Line Conference (SPLC 09), pages 111–119. Carnegie Mellon
University Pittsburgh, 2009.

[53] J. Chen, Y. Chen, X. Du, C. Li, J. Lu, S. Zhao, and X. Zhou. Big data challenge: A data management
perspective, Frontiers of Computer Science, 7(2): 157–164, 2013.

[54] H. Fang, Z. Zhang, C. J. Wang, M. Daneshmand, C. Wang, and H. Wang. A survey of big data research,
IEEE Network, 29(5): 6–9, 2015.

[55] E. F. Codd. A relational model of Data for Large Shared Data Banks, Communications of the ACM,
13(6): 377–387, 1970.

[56] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery, ACM Computing
Surveys, 15(4): 287–317, 1983.

[57] DB-Engines. DB-Engines Ranking, 2017. https://db-engines.com/en/ranking, Accessed:
13.11.2017.

[58] Progress Software Corporation. 2017 Data Connectivity Outlook, 2017.
https://www.progress.com/campaigns/datadirect/whitepapers/2017-data-connectivity-outlook-
survey, Accessed: 02.12.2017.

[59] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system, ACM SIGOPS Operating Systems
Review, 37(5): 29, 2003.

[60] K. Shvachko. The Hadoop Distributed File System, In Proceedings of the 26th Symposium on Mass
Storage Systems and Technologies (MSST), pages 1–10. IEEE, 2010.

[61] E. Brewer. CAP twelve years later: How the “rules” have changed, Computer, 45(2): 23–29, 2012.
[62] Y. Huang and T. J. Luo. NoSQL database: A scalable, availability, high performance storage for big

data. In Q. Zu, M. Vargas-Vera, and M. Hu, editors, Pervasive Computing and the Networked World.
ICPCA/SWS 2013, volume 8351 of Lecture Notes in Computer Science, pages 172–183. Springer
Cham., 2014.

[63] L. Liu. Computing infrastructure for big data processing, Frontiers of Computer Science, 7(2): 165–
170, 2013.

[64] W. Wingerath, F. Gessert, S. Friedrich, and N. Ritter. Real-time stream processing for Big Data, it -
Information Technology, 58(4): 186–194, 2016.

[65] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing in big data systems: a cross-
industry study of MapReduce workloads, Proceedings of the VLDB Endowment, 5(12): 1802–1813,
2012.

[66] R. Singh and P. J. Kaur. Analyzing performance of Apache Tez and MapReduce with hadoop
multinode cluster on Amazon cloud, Journal of Big Data, 3(1): 19, 2016.

[67] M. Armbrust, A. Ghodsi, M. Zaharia, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
and M. J. Franklin. Spark SQL: Relational Data Processing in Spark, In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, pages 1383–1394. ACM New York, 2015.

[68] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive Analysis of Web-Scale Datasets, In Poceedings of the 36th International Conference on

121

Very Large Data Bases, pages 330–339. Google, 2010.
[69] S. Agarwal, A. Panda, B. Mozafari, S. Madden, and I. Stoica. BlinkDB: Queries with Bounded Errors

and Bounded Response Times on Very Large Data, In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 29–42. ACM New York, 2012.

[70] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for advanced analytics on MapReduce,
Proceedings of the VLDB Endowment, 5(10): 1028–1039, 2012.

[71] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. ApproxHadoop: Bringing Approximations to
MapReduce Frameworks, In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 383–397. ACM New York, 2015.

[72] R. Nair. Big data needs approximate computing: technical perspective, Communications of the ACM,
58(1): 105–115, 2015.

[73] V. Kumar Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H.
Shah, S. Seth, B. Saha, C. Curino, O. O ’malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache
Hadoop YARN: Yet Another Resource Negotiator, In SOCC ’13 Proceedings of the 4th annual
Symposium on Cloud Computing, page article 5. ACM New York, 2013.

[74] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker. Interactions with big data analytics,
Interactions, 19: 50–59, 2012.

[75] G. Piatetsky. KDnuggets 2016 Software Poll Results. http://www.kdnuggets.com/2016/06/r-
python-top-analytics-data-mining-data-science-software.html, Accessed: 10.03.2017.

[76] R. S. Barga, J. Ekanayake, and W. Lu. Project Daytona: Data analytics as a cloud service, In
Proceedings of the 28th International Conference on Data Engineerin, pages 1317–1320. IEEE, 2012.

[77] Z. P. Ak, G. Makrai, T. Henk, and C. Gar-Papanek. Radoop : Analyzing Big Data with RapidMiner and
Hadoop, In Proceedings of the 2nd RapidMiner Community Meeting and Conference, pages 1–12. ,
2011.

[78] Y. Gil, V. Ratnakar, J. Kim, P. Gonzalez-Calero, P. Groth, J. Moody, and E. Deelman. Wings: Intelligent
Workflow-Based Design of Computational Experiments, IEEE Intelligent Systems, 26(1): 62–72,
2011.

[79] P. Godfrey, J. Gryz, and P. Lasek. Interactive Visualization of Large Data Sets, IEEE Transactions on
Knowledge and Data Engineering, 28(8): 2142–2157, 2015.

[80] A. S. Syed Fiaz, N. Asha, D. Sumathi, and A. S. Syed Navaz. Visualization: Enhancing big data more
adaptable and valuable, International Journal of Applied Engineering Research, 11(4): 2801–2804,
2016.

[81] S. M. Ali, N. Gupta, G. K. Nayak, and R. K. Lenka. Big data visualization: Tools and challenges, In
Proceedings of the 2nd International Conference on Contemporary Computing and Informatics (IC3I),
pages 656–660. IEEE, 2016.

[82] S. A. Hirve, A. Kunjir, B. Shaikh, and K. Shah. An approach towards data visualization based on AR
principles, In Proceedings of the 2017 International Conference on Big Data Analytics and
Computational Intelligence (ICBDAC), pages 128–133. IEEE, 2017.

[83] C. Bermejo, Z. Huang, T. Braud, and P. Hui. When Augmented Reality meets Big Data, In Proceedings
of the 37th International Conference on Distributed Computing Systems Workshops, ICDCSW 2017,
pages 169–174. IEEE, 2017.

[84] E. Olshannikova, A. Ometov, Y. Koucheryavy, and T. Olsson. Visualizing Big Data with augmented
and virtual reality: challenges and research agenda, Journal of Big Data, 2(1): 22, 2015.

[85] C. Donalek, S. G. Djorgovski, A. Cioc, A. Wang, J. Zhang, E. Lawler, S. Yeh, A. Mahabal, M. Graham, A.
Drake, S. Davidoff, J. S. Norris, and G. Longo. Immersive and Collaborative Data Visualization Using
Virtual Reality Platforms, In Proceedings of 2014 IEEE International Conference on Big Data, pages
609–614. IEEE, 2014.

[86] D. D. Chamberlin and R. F. Boyce. SEQUEL: A Structured English Query Language, In Proceedings of
the 1976 ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control - FIDET
’76, pages 249–264. ACM New York, New York, New York, USA, 1976.

[87] G. Piatetsky. Python overtakes R, becomes the leader in Data Science, Machine Learning platforms,
2017. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-
science.html, Accessed: 15.11.2017.

[88] B. Oancea and R. M. Dragoescu. Integrating R and Hadoop for Big Data Analysis, Romanian
Statistical Review, (2): 83–94, 2014.

[89] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: A Not-So-Foreign Language
for Data Processing, In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data - SIGMOD ’08, pages 1099–1110. ACM New York, 2008.

[90] K. . Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C. Kanne, F. Ozcan, and E. . Shekita.
Jaql: A scripting language for large scale semistructured data analysis, Proceedings of the VLDB

122

Endowment, 4(12): 1272–1283, 2011.
[91] X. Meng, J. Bradley, S. Street, S. Francisco, E. Sparks, U. C. Berkeley, S. Hall, S. Street, S. Francisco, D.

Xin, R. Xin, M. J. Franklin, U. C. Berkeley, and S. Hall. MLlib : Machine Learning in Apache Spark, The
Journal of Machine Learning Research, 17(1): 1235–1241, 2016.

[92] T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. Franklin, and M. Jordan. MLbase : A Distributed
Machine-learning System, In Proceedings of the 6th Biennial Conference on Innovative Data Systems
Research (CIDR’13), 2013.

[93] S. Schelter, A. Palumbo, S. Quinn, and A. Musselman. Samsara : Declarative Machine Learning on
Distributed Dataflow Systems, In Proceedings of the 30th Conference on Neural Information
Processing Systems (NIPS 2016), 2016.

[94] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin. A survey of open source tools for
machine learning with big data in the Hadoop ecosystem, Journal of Big Data, 2(1): 24, 2015.

[95] F. Serban, J. Vanschoren, J.-U. Kietz, and A. Bernstein. A survey of intelligent assistants for data
analysis, ACM Computing Surveys, 45(3): 1–35, 2013.

[96] A. Bernstein, F. Provost, and S. Hill. Toward intelligent assistance for a data mining process: An
ontology-based approach for cost-sensitive classification, IEEE Transactions on Knowledge and
Data Engineering, 17(4): 503–518, 2005.

[97] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From Data Mining to Knowledge Discovery in
Databases, AI Magazine, 17(3): 37, 1996.

[98] K. Ebner, T. Bühnen, and N. Urbach. Think big with big data: Identifying suitable big data strategies
in corporate environments, In Proceedings of the 47th Hawaii International Conference on System
Sciences, pages 3748–3757. IEEE, 2014.

[99] M. Kavis. Architecting the cloud: Design decisions for cloud computing service models (SaaS, PaaS,
AND IaaS). John Wiley & Sons: Hoboken, 2014.

[100] B. Al-Najjar and I. Alsyouf. Enhancing a company’s profitability and competitiveness using
integrated vibration-based maintenance: A case study, European Journal of Operational Research,
157(3): 643–657, 2004.

[101] I. Alsyouf. The role of maintenance in improving companies’ productivity and profitability,
International Journal of Production Economics, 105(1): 70–78, 2007.

[102] R. A. Carter. Shovel maintenance gains from improved designs, tools, and techniques, Engineering
and Mining Journal, 202(8): 7–10, 2001.

[103] A. Bousdekis, B. Magoutas, D. Apostolou, and G. Mentzas. A proactive decision making framework
for condition-based maintenance, Industrial Management & Data Systems, 115(7): 1225–1250,
2015.

[104] A. K. S. Jardine, D. Lin, and D. Banjevic. A review on machinery diagnostics and prognostics
implementing condition-based maintenance, Mechanical Systems and Signal Processing, 20(7):
1483–1510, 2006.

[105] R. Ahmad and S. Kamaruddin. An overview of time-based and condition-based maintenance in
industrial application, Computers and Industrial Engineering, 63(1): 135–149, 2012.

[106] A. H. C. Tsang. Strategic dimensions of maintenance management, Journal of Quality in Maintenance
Engineering, 8(1): 7–39, 2002.

[107] D. J. Edwards, G. D. Holt, and F.C.Harris. Predictive maintenance techniques and their relevance to
construction plant, Journal of Quality in Maintenance Engineering, 4(1): 25, 1998.

[108] M. C. Carnera. Selection of diagnostic techniques and instrumentation in a predictive maintenance
program. A case study, Decision Support Systems, 38(4): 539–555, 2005.

[109] G. E. Aitor. Sound-based predictive maintenance : a cost-effective approach, Hydrocarbon
Processing, 87(5): 37–40, 2008.

[110] J. R. González, J. Velayos, and M. Comamala. Predictive Maintenance of Cogeneration Engines
Through the Analysis of the Circulating Fluids, In Proceedings of the 2002 International Joint Power
Generation Conference, pages 389–396. ASME, Phoenix, 2002.

[111] M. Lukas and D. P. Anderson. Lubricant Analysis for Gas Turbine Condition Monitoring, Journal of
Engineering for GAs Turbines and Power, 119(October): 863–869, 1997.

[112] S. Kalligeros. Predictive Maintenance of Hydraulic Lifts through Lubricating Oil Analysis, Machines,
2(1): 1–12, 2013.

[113] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic. Deep
learning applications and challenges in big data analytics, Journal of Big Data, 2(1): 1, 2015.

[114] N. Tang. Big data cleaning. In L. Chen, Y. Jia, T. Sellis, and G. Liu, editors, Web Technologies and
Applications. APWeb 2014, volume 8709 of Lecture Notes in Computer Science, pages 13–24.
Springer Cham., 2014.

[115] R. Xu and C. Kwan. Robust Isolation Of Sensor Failures, Asian Journal of Control, 5(1): 12–23, 2008.

123

[116] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli. On-line fault detection of sensor
measurements, In Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498), pages 974–979.
IEEE.

[117] M. H. Gorelick. Bias arising from missing data in predictive models, Journal of Clinical Epidemiology,
59(10): 1115–1123, 2006.

[118] A. Breitwieser and K. Wick. What we miss by missing data: Aid effectiveness revisited, World
Development, 78(C): 554–571, 2016.

[119] P. Louridas and C. Ebert. Machine Learning, IEEE Software, 33(5): 110–115, 2016.
[120] A. Malhi and R. X. Gao. PCA-based feature selection scheme for machine defect classification, IEEE

Transactions on Instrumentation and Measurement, 53(6): 1517–1525, 2004.
[121] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: a review, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(1): 4–37, 2000.
[122] I. Lopez and N. Sarigul-Klijn. Effects of Dimensional Reduction Techniques on Structural Damage

Assessment Under Uncertainty, Journal of Vibration and Acoustics, 133(6): 61008, 2011.
[123] T. Oikawa, M. Tomizawa, and S. Degawa. New monitoring system for thermal power plants using

digital image processing and sound analysis, Control Engineering Practice, 5(1): 75–78, 1997.
[124] C. Demant, B. Streicher-Abel, and C. Garnica. Industrial Image Processing. visual quality control in

manufacturing, 2013.
[125] C. Connolly. The use of infrared imaging in industry, Assembly Automation, 25(3): 191–195, 2005.
[126] A. Pandian and A. Ali. A review of recent trends in machine diagnosis and prognosis algorithms, In

Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pages
1731–1736. IEEE, 2009.

[127] M. Nyberg. A general framework for fault diagnosis based on statistical hypothesis testing, In
Proceedings of the International workshop on principles of diagnosis, 2001.

[128] V. a. A. Skormin, L. J. J. Popyack, V. I. I. Gorodetski, M. L. L. Araiza, and J. D. D. Michel. Applications of
cluster analysis in diagnostics-related problems, In Proceedings of the 1999 IEEE Aerospace
Conference (Cat. No.99TH8403), pages 161–168 vols.3-161–168 3. IEEE, 1999.

[129] J. Ying, T. Kirubarajan, and K. R. Pattipati. A hidden Markov model-based algorithm for fault
diagnosis with partial and imperfect tests, IEEE Transactions on Systems, Man and Cybernetics Part
C: Applications and Reviews, 30(4): 463–473, 2000.

[130] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm, Journal of the Royal Statistical Society Series B Methodological, 39(1): 1–38, 1977.

[131] A. H. Tai, W. K. Ching, and L. Y. Chan. Detection of machine failure: Hidden Markov Model approach,
Computers and Industrial Engineering, 57(2): 608–619, 2009.

[132] Z. Li, Z. Wu, Y. He, and C. Fulei. Hidden Markov model-based fault diagnostics method in speed-up
and speed-down process for rotating machinery, Mechanical Systems and Signal Processing, 19(2):
329–339, 2005.

[133] H. Wu, Z. Yu, and Y. Wang. Real-time FDM machine condition monitoring and diagnosis based on
acoustic emission and hidden semi-Markov model, International Journal of Advanced
Manufacturing Technology, 90(5–8): 2027–2036, 2017.

[134] C. (Chris) Aldrich and L. Auret. Unsupervised process monitoring and fault diagnosis with machine
learning methods, 2013.

[135] W. S. Mcculloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity, Bulletin
of Mathematical Biophysics, 5(4): 115–133, 1943.

[136] S. He and X. Li. Application of a group search optimization based Artificial Neural Network to
machine condition monitoring, In Proceedings of the 2008 IEEE International Conference on
Emerging Technologies and Factory Automation, pages 1260–1266. IEEE, 2008.

[137] N. K. Verma, R. K. Sevakula, S. Dixit, and A. Salour. Intelligent Condition Based Monitoring Using
Acoustic Signals for Air Compressors, IEEE Transactions on Reliability, 65(1): 291–309, 2016.

[138] H. Soliman, H. Wang, B. Gadalla, and F. Blaabjer. Artificial Neural Network Algorithm for Condition
Monitoring of DC-link Capacitors Based on Capacitance Estimation, Journal of Renewable Energy
and Sustainable Development (RESD), 1(2): 294–299, 2015.

[139] S. Gowid, R. Dixon, and S. Ghani. Performance Comparison Between Fast Fourier Transform-Based
Segmentation, Feature Selection, and Fault Identification Algorithm and Neural Network for the
Condition Monitoring of Centrifugal Equipment, Journal of Dynamic Systems, Measurement, and
Control, 139(6): 61013, 2017.

[140] X. Deng, Q. Gao, C. Zhang, D. Hu, and T. Yang. Rule - based Fault Diagnosis Expert System for Wind
Turbine, In Proceedings of the ITM Web of Conferences 11, page 7005. , 2017.

[141] L. Gao, L. Wu, Y. Wang, H. Wei, and H. Ye. Intelligent fault diagnostic system based on RBR for the
gearbox of rolling mills, Frontiers of Mechanical Engineering in China, 5(4): 483–490, 2010.

124

[142] Z. Wen, J. Crossman, J. Cardillo, and Y. L. Murphey. Case Base Reasoning in Vehicle Fault
Diagnostics, In Proceedings of the International Joint Conference in Neural Networks, pages 2679–
2684. IEEE, 2003.

[143] M. Stanek, M. Morari, and K. Fröhlich. Model-aided diagnosis: An inexpensive combination of
model-based and case-based condition assessment, IEEE Transactions on Systems, Man and
Cybernetics Part C: Applications and Reviews, 31(2): 137–145, 2001.

[144] L. A. Zadeh. Fuzzy sets, Information and Control, 8(3): 338–353, 1965.
[145] C. K. Mechefske. Objective machinery fault diagnosis using fuzzy logic, Mechanical Systems and

Signal Processing, 12(6): 855–862, 1998.
[146] T. Noreesuwan and B. Suksawat. Propose of Unsealed Deep Groove Ball Bearing Condition

Monitoring Using Sound Analysis and Fuzzy Logic, In Proceedings of the International Conference
on Control, Automation and Systems, pages 409–413. IEEE, 2010.

[147] M. Hichem, D. Djalel, and A. Salim. Monitoring of Stator windings Faults in Induction Machine Using
Fuzzy Logic, Journal of Electrical and Electronics Engineering, 9(2): 49–54, 2016.

[148] Y. Peng, M. Dong, and M. J. Zuo. Current status of machine prognostics in condition-based
maintenance: A review, International Journal of Advanced Manufacturing Technology, 50(1–4):
297–313, 2010.

[149] W. BARTELMUS. Mathematical Modelling and Computer Simulations As an Aid To Gearbox
Diagnostics, Mechanical Systems and Signal Processing, 15(5): 855–871, 2001.

[150] K. B. Goode, J. Moore, and B. J. Roylance. Plant machinery working life prediction method utilizing
reliability and condition-monitoring data, Proceedings of the Institution of Mechanical Engineers,
214(2): 109–122, 2000.

[151] Q. Li and S. Y. Liang. Degradation trend prognostics for rolling bearing using improved R/S statistic
model and fractional Brownian motion approach, IEEE Access, 2017.

[152] J. C. R. Pacheco, D. T. Román, and L. E. Vargas. R/S Statistic: Accuracy and Implementations, In
Proceedings of 18th International Conference on Electronics, Communications and Computers
(conielecomp 2008), pages 17–22. IEEE, 2008.

[153] X. S. Si, W. Wang, C. H. Hu, and D. H. Zhou. Remaining useful life estimation - A review on the
statistical data driven approaches, European Journal of Operational Research, 213(1): 1–14, 2011.

[154] D. Banjevic and A. K. S. Jardine. Calculation of reliability function and remaining useful life for a
Markov failure time process, IMA Journal of Management Mathematics, 17(2): 115–130, 2006.

[155] M. D. Pandey, X. X. Yuan, and J. M. van Noortwijk. The influence of temporal uncertainty of
deterioration on life-cycle management of structures, Structure and Infrastructure Engineering,
5(2): 145–156, 2009.

[156] W. Caesarendra, A. Widodo, and B. S. Yang. Application of relevance vector machine and logistic
regression for machine degradation assessment, Mechanical Systems and Signal Processing, 24(4):
1161–1171, 2010.

[157] J. Yan, M. Koç, and J. Lee. A prognostic algorithm for machine performance assessment and its
application, Production Planning & Control, 15(8): 796–801, 2004.

[158] R. Khelif, B. Chebel-Morello, S. Malinowski, E. Laajili, F. Fnaiech, and N. Zerhouni. Direct Remaining
Useful Life Estimation Based on Support Vector Regression, IEEE Transactions on Industrial
Electronics, 64(3): 2276–2285, 2017.

[159] G. J. Vachtsevanos and P. Wang. Fault prognosis using dynamic wavelet neural networks, In
Proceedings of the 2001. IEEE Systems Readiness Technology Conference, pages 857–870. IEEE,
2001.

[160] S. A. Asmai, A. S. H. Basari, A. S. Shibghatullah, N. K. Ibrahim, and B. Hussin. Neural network
prognostics model for industrial equipment maintenance, In Proceedings of the 2011 11th
International Conference on Hybrid Intelligent Systems, HIS 2011, pages 635–640. IEEE, 2011.

[161] Z. Tian. An artificial neural network method for remaining useful life prediction of equipment
subject to condition monitoring, Journal of Intelligent Manufacturing, 23(2): 227–237, 2012.

[162] Z. Yang, P. Baraldi, and E. Zio. A comparison between extreme learning machine and artificial
neural network for remaining useful life prediction, In Proceedings of the 2016 Prognostics and
System Health Management Conference (PHM-Chengdu), pages 1–7. IEEE, 2016.

[163] A. Ray and S. Tangirala. Stochastic modeling of fatigue crack dynamics for on-line failure
prognostics, IEEE Transactions on Control Systems Technology, 4(4): 443–451, 1996.

[164] Y. Li, T. R. Kurfess, and S. Y. Liang. Stochastic prognostics for rolling element bearings, Mechanical
Systems and Signal Processing, 14(5): 747–762, 2000.

[165] Y. Li, S. Billington, C. Zhang, T. Kurfess, S. Danyluk, and S. Liang. Adaptive prognostics for rolling
element bearing condition, Mechanical Systems and Signal Processing, 13(1): 103–113, 1999.

[166] S. R. Safavian and D. Landgrebe. A Survey of Decision Tree Classifier Methodology, IEEE

125

Transactions on Systems, Man and Cybernetics, 21(3): 660–674, 1991.
[167] M. N. Anyanwu and S. G. Shiva. Comparative Analysis of Serial Decision Tree Classification

Algorithms, International Journal of Computer Science and Security, 3(3): 230–240, 2009.
[168] E. B. Hunt, J. Marin, and P. J. Stone. Experiments in induction. Academic Press, 1966.
[169] S. Letourneau, F. Famili, and S. Matwin. Data mining to predict aircraft component replacement,

IEEE Intelligent Systems, 14(6): 59–66, 1999.
[170] P. P. Bonissone and K. Goebel. Soft computing applications in equipment maintenance and service,

In Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No.
01TH8569), pages 2752–2757. IEEE, 2001.

[171] Q. Guan, Z. Zhang, and S. Fu. Ensemble of Bayesian predictors and decision trees for proactive
failure management in cloud computing systems, Journal of Communications, 7(1): 52–61, 2012.

[172] C. Cortes and V. Vapnik. Support-Vector Networks, Machine Learning, 20(3): 273–297, 1995.
[173] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi. Machine learning for predictive

maintenance: A multiple classifier approach, IEEE Transactions on Industrial Informatics, 11(3):
812–820, 2015.

[174] A. Verma and A. Kusiak. Predictive analysis of wind turbine faults: A data mining approach, In
Proceedings of the 2011 Industrial Engineering Research Conference, 2011.

[175] P. Cheeseman, J. Stutz, and Cheeseman. Bayesian Classification(AutoClass):Theory and Results.
Advances in Knowledge Discovery and Data Mining, pages 153–180. American Association for
Artificial Intelligence., 1996.

[176] H. Zhang. The Optimality of Naive Bayes, In Proceedings of the Seventeenth International Florida
Artificial Intelligence Research Society Conference FLAIRS 2004, American Association for Artificial
Intelligence, 2004.

[177] F. Di Maio, S. Ng, K.-L. Tsui, and E. Zio. Naïve Bayesian Classifier for On-line Remaining Useful Life
Prediction of Degrading Bearings, In Proceedings of the MMR 2011, pages 1–14. , 2011.

[178] P. Bangalore and L. B. Tjernberg. An artificial neural network approach for early fault detection of
gearbox bearings, IEEE Transactions on Smart Grid, 6(2): 980–987, 2015.

[179] F. Z. Benjelloun, A. A. Lahcen, and S. Belfkih. An overview of big data opportunities, applications
and tools, In Proceedings of the 2015 Intelligent Systems and Computer Vision (ISCV), pages 1–6.
IEEE, 2015.

[180] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan,
X. Li, and B. Qiu. BigDataBench: A big data benchmark suite from internet services, In Proceedings
of the 20th International Symposium on High Performance Computer Architecture (HPCA), pages
488–499. IEEE, 2014.

[181] F. B. Uz. Predictive Maintenance Modelling Guide, 2016.
https://gallery.cortanaintelligence.com/Collection/Predictive-Maintenance-Implementation-
Guide-1, Accessed: 30.06.2017.

[182] B. Yadranjiaghdam, N. Pool, and N. Tabrizi. A Survey on Real-time Big Data Analytics : Applications
and Tools, In Proceedings of the 2016 International Conference on Computational Science and
Computational Intelligence (CSCI), IEEE, 2016.

[183] E. Karydi and K. Margaritis. Parallel and Distributed Collaborative Filtering, ACM Computing
Surveys, 49(2): 1–41, 2016.

[184] C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos. Big data analytics: a survey, Journal of Big Data,
2(21), 2015.

[185] D. Singh and C. K. Reddy. A survey on platforms for big data analytics, Journal of Big Data, 2(8),
2015.

[186] M. Chen, S. Mao, and Y. Liu. Big data: A survey, Mobile Networks and Applications, 19(2): 171–209,
2014.

[187] H. Hu, Y. Wen, T. S. Chua, and X. Li. Toward scalable systems for big data analytics: A technology
tutorial, IEEE Access, 2: 652–687, 2014.

[188] M. G. Huddar and M. M. Ramannavar. A Survey on Big Data Analytical Tools, International Journal
of Latest Trends in Engineering and Technology, : 85–91, 2010.

[189] S. Sakr. Big Data 2.0 Processing Systems. Springer: Sydney, 2016.
[190] A. Loganathan, A. Sinha, V. Muthuramakrishnan, and S. Natarajan. A Systematic Approach to Big

Data Exploration of the Hadoop Framework, International Journal of Information & Computation
Technology, 4(9): 869–878, 2014.

[191] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark : Cluster Computing with
Working Sets, Proceedings of the 2nd USENIX conference on Hot topics in cloud computing, : 1–10,
2010.

[192] R. P. Foundation. Annual Review 2017, 2017.

126

https://static.raspberrypi.org/files/about/RaspberryPiFoundationReview2017.pdf.
[193] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S. O’Brien. Iridis-pi: A low-cost,

compact demonstration cluster, Cluster Computing, 17(2): 349–358, 2014.
[194] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros. The Glasgow raspberry Pi cloud: A scale

model for cloud computing infrastructures, In Proceedings of the 33rd International Conference on
Distributed Computing Systems Workshops, pages 108–112. IEEE, 2013.

[195] P. Abrahamsson, S. Helmer, N. Phaphoom, L. Nicolodi, N. Preda, L. Miori, M. Angriman, J. Rikkilä, X.
Wang, K. Hamily, and S. Bugoloni. Affordable and energy-efficient cloud computing clusters: The
Bolzano Raspberry Pi cloud cluster experiment, In Proceedings of the 5th International Conference
on Cloud Computing Technology and Science, pages 170–175. IEEE, 2013.

[196] A. Ashari and M. Riasetiawan. High performance computing on cluster and multicore architecture,
Telkomnika (Telecommunication Computing Electronics and Control), 13(4): 1408–1413, 2015.

[197] N. Schot. Feasibility of Raspberry Pi 2 based Micro Data Centers in Big Data Applications, In
Proceedings of the 23th Twente Student Conference on IT, University of Twente, 2015.

[198] Y. Samadi, M. Zbakh, and C. Tadonki. Comparative study between Hadoop and Spark based on
Hibench benchmarks, In Proceedings of the 2nd International Conference on Cloud Computing
Technologies and Applications (CloudTech), pages 267–275. IEEE, 2017.

[199] I. Mavridis and H. Karatza. Performance evaluation of cloud-based log file analysis with Apache
Hadoop and Apache Spark, Journal of Systems and Software, 125(C): 133–151, 2017.

[200] N. Poggi, A. Montero, and D. Carrera. Characterizing BigBench Queries, Hive, and Spark in Multi-
cloud Environments. In R. Nambiar and M. Poess, editors, Performance Evaluation and
Benchmarking for the Analytics Era. TPCTC 2017, volume 10661 of Lecture Notes in Computer
Science, pages 55–74. Springer Cham., 2018.

