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Le monde, d’après elles, tend d’abord vers un état où il restera longtemps
sans changement apparant; et cela est conforme à l’expérience; mais il ne
s’y maintaindra pas toujours, de sorte que le théorème cité plus haut n’est
pas violé; il y demeurera seulement pendant un temps énorme, d’autant
plus long que les molécules seront plus nombreuses. Cet état ne sera donc
pas la mort définitive de l’universe, mais une sorte de sommeil, d’où il se
réveillera après de million de million de siècles.

A ce compte, pour voir la chaleur passe d’un corps froid à un corps
chaud, il ne serait plus nécessaire d’avoir la vue fine, la présence d’esprit,
l’intelligence et l’adresse du démon de Maxwell, il suffirait d’un peu de
patience.

Henry Poincaré, Le mécanisme et l’expérience





Zusammenfassung

Die Nichtgleichgewichtsdynamik komplexer quantenmechanischer Vielteilchensysteme
ist ein breites Forschungsfeld mit Relevanz für die unterschiedlichsten Gebiete der Phy-
sik. Eine der vielseitigsten experimentellen Plattformen in diesem Kontext sind ultra-
kalte Atome, da sie sich durch große Flexibilität und ihre einfache Isolierung von der
Umwelt auszeichnen. Diese Arbeit beschäftigt sich mit der Nichtgleichgewichtsdynamik
eindimensionaler Bosegase, die durch ultrakalte 87Rb Atome auf einem Atom Chip rea-
lisiert werden. Mit dem Fokus auf Phänomenen die sich auf Zeitskalen länger als die
typische Dephasierungszeit von Anregungen abspielen berichten wir über die Beobach-
tung von dynamischen Wiederkehreffekten sowie von der Entdeckung eines neuartigen
Kühlmechanismus.

Eine Wiederkehr, sprich die dynamische Rückkehr eines Systems zu seinem Anfangs-
zustand, ist für große Systeme im Allgemeinen nicht beobachtbar, da die Komplexität
des Spektrums ihr Auftreten erst nach enorm langen Zeitskalen erlaubt. In einem Paar
homogener eindimensionaler Bosegase kann durch die Realisierung eines kommensura-
blen Spektrums jedoch die Zeitskala einer Wiederkehr der niedrigenergetischen Dynamik
in den Bereich des experimentell Beobachtbaren gebracht werden. Um dies zu zeigen
initialisieren wir zwei Gase durch Kopplung über eine Tunnelbarriere in einem phasen-
kohärenten Zustand um dann die Kopplung schlagartig auszuschalten. Die darauffolgen-
de Dynamik wird über Materiewellen-Interferometrie gemessen, wodurch sich die relative
Phase zwischen den Gasen bestimmen lässt. Nach einer anfänglichen Dephasierung be-
obachten wir eine mehrmalige Wiederkehr des kohärenten Anfangszustands aufgrund des
Rephasierens der beteiligten Anregungen. Des Weiteren können wir aus der Dämpfung
der Wiederkehr auf sonst schwer messbare Streueffekte zwischen den Anregungen schlie-
ßen.

Ein weiteres Thema dieser Arbeit ist die Dynamik eindimensionaler Bosegase, welche
einem kontinuierlichen Verlust an Teilchen ausgesetzt sind. Obwohl Thermalisierung in
diesen Systemen stark unterdrückt ist und dadurch reguläres Kühlen durch Evaporation
ineffektiv wird beobachten wir substantielle Kühleffekte. Für diese Kühlung ist ein neu-
artiger Mechanismus verantwortlich, für den weder ein energieselektives Auskoppeln von
Teilchen, noch effiziente Thermalisierungsprozesse von Nöten sind. Stattdessen beruht
der Kühleffekt auf der verlustbedingten Reduktion von Dichtefluktuationen sowie einer
kontinuierlichen Dephasierung der beteiligten Anregungen. Für Experimente mit eindi-
mensionalen Bosegasen füllt dieser Mechanismus eine wichtige Lücke im Verständnis der
Zustandspräparation sowie der Limitierungen von Kühlprozessen.





Abstract

Out-of-equilibrium dynamics in complex quantum many-body systems is a vast topic of
research touching many different areas of physics. One of the most versatile experimental
platforms to investigate these effects are ultracold atoms, due to their flexibility and easy
isolation from the environment. In this thesis, we investigate non-equilibrium dynamics
of one-dimensional (1d) Bose gases realized with ultracold 87Rb atoms on an atom chip.
Focusing on phenomena emerging on timescales beyond the typical dephasing times of
excitations, we report on the observation of recurrences and the finding of a novel cooling
mechanisms.

A recurrence, the dynamic return of a system to its initial state, can generally not
be observed in large systems as the complexity of their excitation spectra shifts its ap-
pearance to prohibitively long times. Yet, by realizing a commensurate spectrum in a
pair of near-homogeneous 1d Bose gases, recurrences in their low-energy dynamics can
be observed on experimentally accessible timescales. We demonstrate this by initializ-
ing two gases in a phase coherent state by coupling them through a tunneling barrier
before suddenly ramping the coupling to zero. The subsequent dynamics is monitored
by matter-wave interferometry, providing access to the relative phase field between the
gases. After an initial dephasing dynamics we observe multiple recurrences of the coher-
ent initial state due to a rephasing of the underlying excitations. Additionally, analyzing
the damping of these recurrences we detect otherwise elusive scattering effects between
excitations.

Furthermore, we investigate the dynamics of a 1d Bose gas under a continuous loss of
particles. With thermalization strongly inhibited in these systems standard evaporative
cooling is rendered ineffective; yet, we still observe a substantial cooling effect. This
cooling is driven by a novel mechanism that neither relies on an energy selective extrac-
tion of particles nor on efficient thermalization channels. Instead, it proceeds through a
loss-induced reduction of density fluctuations and a continuous dephasing of the involved
excitations. For experiments with 1d Bose gases, this mechanism fills an important gap
in the understanding of the state preparation and the limits of cooling.
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1. Introduction

The advent of ultracold atoms, realizing a multitude of condensed matter models in
a well controlled and tunable fashion, marked a new era in the experimental study of
interacting many-body systems [1]. Their near perfect isolation from the environment,
the development of versatile probing schemes and the flexibility in geometry and interac-
tions they exhibit make cold atoms an ideal platform for analog simulations of complex
quantum many-body physics [2]. In particular, otherwise elusive out-of-equilibrium phe-
nomena are well accessible in these systems and generated a large interest over the past
years [3–5]. From the spread of correlations [6, 7] over transport properties [8, 9], the
dynamics of phase transitions [10–12] to periodically driven systems [13], ensembles of
cold atoms are a resourceful tool in the study of physics beyond equilibrium states.

In that context, this thesis studies two effects that emerge on timescales beyond the
typical dephasing time, utilizing one-dimensional (1d) Bose gases on an atom chip as its
experimental platform [14]. The first of these effects is linked to the interesting question
of relaxation dynamics in isolated quantum many-body systems [15]. Following a unitary
microscopic evolution it is a priori not clear how a closed system can lose memory of its
initial configuration and arrive at an equilibrium or thermal state. Yet, we know quantum
statistical mechanics to be a successful theory. For a large class of systems a solution
to this conundrum is provided by the eigenstate thermalization hypothesis, shifting
the the focus from the time evolution to the properties of the involved eigenstates,
which already contain the thermal properties [16–19]. For integrable systems on the
other hand, of which the 1d Bose gas is a prime example, this argumentation fails and
thermalization is shown to be suppressed [20, 21]. Nevertheless, also in these systems,
where a large number of conserved quantities restricts the dynamically available phase
space, an equilibrium can be reached in the form of maximum entropy state [22,23].

Strictly speaking however, any closed system, integrable or not, will only equilibrate
on average or over large intervals of time. The memory of its initial state cannot be truly
lost and will at some point lead to a recurrence, i.e. to a dynamic return of the initial
configuration [24–26]. For all but the simplest systems, the timescale of such a return
is prohibitively long, generally preventing its observation. However, for a large class of
many-body systems the essential dynamical features beyond the microscopic dynamics
can be described by effective field theories, exhibiting a much simple structure. This
simplicity enables us to demonstrate recurrences within the low-energy dynamics of a
system of thousands of particles [27]. Apart from their fundamental interest, these
recurrences pose a sensitive probe into the systems coherent dynamics on timescales
beyond the initial relaxation. We show how their decay can be used to detect otherwise
elusive scattering effects between phononic excitations and thereby test the validity
regime of our low-energy description.

The second study discussed in this thesis is motivated by questions arising for inte-
grable systems regarding the experimental state preparation. If the final preparation
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Chapter 1. Introduction

steps are performed after the system reached its integrable configuration, can one ever
prepare the system in a thermal state? We approach this problem for the preparation
of a 1d Bose gas through evaporative cooling. Experimentally, cooling is observed for
gases deep in the 1d regime, creating states well described by thermal distributions. The
suppression of thermalizing collisions in these systems, however, should render standard
cooling by evaporation ineffective. An explanation for these phenomena is found in a
novel cooling mechanism described in refs. [28, 29]. It relies solely on a loss-induced
reduction of fluctuations paired with a continuous dephasing of the involved excitations.
Each eigenmode of the system is cooled independently, thereby preserving an initialy
thermal distribution. This mechanism fills an important gap in the understanding of
the state preparation and the limits of cooling in experiments with 1d Bose gases and
invites to think along new lines when devising cooling schemes for degenerate gases.

Outline

This thesis is structured as follows: Chapter 2 gives a brief introduction to the physics of
1d Bose gases, providing the necessary tools to describe and interpret the experimental
findings. The discussion focuses on low-energy effective models and the perturbations
arising from the gases transverse confinement. Following that, chapter 3 first discusses
basic experimental techniques and introduces the experimental setup. Both of these
parts are kept short as extensive literature and a comprehensive body of theses exist
on these topics. A final more detailed section is dedicated to probing, describing the
different techniques developed to extract information on the system from absorption
images of its density distributions in expansion.

Chapter 4 discusses the cooling of 1d Bose gases by a uniform loss of particals. First,
the experimental observations that motivated this study are presented. They show that
evaporative cooling still works surprisingly well within the 1d regime, where the suppres-
sion of thermalizing collisions should render it ineffective. In the following, we investigate
the outcoupling process and conclude that in our 1d configuration the extraction of par-
ticles happens nearly homogeneously, adding to the mystery of the cooling process. We
then present a novel mechanism that describes the cooling as a loss-driven reduction of
fluctuations under a continuous dephasing of the involved excitations. In the limit of
classical fields, this model explains the experimental findings well. Though, the contri-
bution of atomic shot noise that is expected to become relevant at low temperatures
seems absent in the measurements. The discussion of this conundrum forms the final
part of the chapter.

Chapter 5 presents the observation of recurrences in the post-quench dynamics of a
pair of 1d Bose gases. After a brief discussion of the conditions of mode rephasing and
the optimal measurement protocols to favor its observation, the experimental findings
are presented at length. It is shown that both the recurrence time and its scaling with
the size of the system are well described by a low-energy Luttinger liquid model. In
contrast, the measured recurrence damping is concluded to stem mainly from phonon-
phonon scattering processes mediated by terms beyond the low-energy description. This
is inferred from comparisons with numerical simulations, setting a striking example
how rephasing effects can be used as sensitive probes for many-body processes at times

2



beyond the initial dephasing dynamics.
Lastly, chapter 6 provides an outlook on ongoing and future research, with a special

focus on projects that are a continuation of the work presented. In particular, a new
light shaping setup is discussed. It is designed to achieve arbitrary control over the
atoms 1d confinement and hold the possibility of accessing multiple interesting research
topics, from quantum thermal machines [30] to analogue black holes [31,32].
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2. Theoretical basics

This chapter discusses the theoretical foundations of 1d Bose gases, geared towards
the systems investigated in our setup. After a short introduction of interacting 1d
Bose gases we briefly introduce the seminal Lieb-Liniger model, discussing its distinct
phases before giving the quasi-condensates regime a more detailed treatment. There,
our main interest lies in a low-energy perturbative expansion, extracting the relevant
terms in the Hamiltonian that dominate the dynamics observable in our experimental
setup. This leads us to the Luttinger liquid model whose elementary phononic excitations
are discussed in detail, providing the basis for the loss cooling model introduced in
chapter 4. Another focus is laid on the description of two coupled quasi-condensates,
with the treatment of their excitation spectrum laying the theoretical foundation for
the discussion of the recurrence phenomena in chapter 5. Further, perturbations to the
1d description stemming from the transverse confinement in real world implementations
are discussed at length. At last, some numerical tools are introduced that allow us to
efficiently simulate the systems dynamics for different levels of description.

2.1. The interacting 1d Bose gas

One-dimensional models of many-body systems have been a playground of mathemat-
ical and theoretical physics for decades [33]. Long thought to be purely academic, ap-
proximate real world realizations renewed the interest in these models and enabled the
experimental testing of many of their predictions. These realizations range from edge
states in quantum hall systems over carbon nanotubes to 1d crystal structures within
3d materials. Especially recent progress in cold atoms, creating 1d many-body systems
in a tunable and clean fashion, added to this development.

Although one might expect the 1d world to be full of pathological and boring models
it turns out it houses a rich and unique palatte of physics. For the case of Bosons
moving in a single dimension, already the ideal 1d Bose gas behaves quite different from
its higher dimensional counterparts. While in 3d, a gas brought to low temperatures or
high densities will eventually undergo Bose-Einstein condensation (BEC) where particles
pile up in the lowest energy single particle state, in 1d the behavior is different [34]. The
reason for this lies in the dimensionality dependence of the density of states. In free
space, the density of states behaves as D(ε) ∝ ε d/2−1, where ε is the state energy and
d is the dimensionality. This means, whereas in 3d the density of state is proportional
to
√
ε , for a 1d gas D(ε) ∝ 1/

√
ε . For ε → 0 the number of available states therefore

diverges, such that at lower energies there are increasingly many states found in an
interval [ε, ε+ dε]. This prevents the macroscopic occupation of a single state and leads
to an inherent multimode behavior. Linked to the Mermin-Wagner theorem [35, 36]
stating that for d ≤ 2 continuous symmetries cannot be broken at finite temperatures,
this is the origin of the fluctuations dominating the observations presented in this thesis.
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Chapter 2. Theoretical basics

Turning to interacting gases we observe further peculiarities of the 1d case. If two
particles scatter elastically within a single dimension the combined constraints of energy
and momentum conservation allow only for a swap of their momenta. Such collisions
therefore do not alter the overall momentum distribution, preventing the gas from ergod-
ically sampling the phase space shell associated to its total energy. An intuitive example
from the classical world illustrating this effect is the Newton’s cradle. In this popular
office toy several spheres are suspended on strings allowing them to only move along
one dimension. In a frictionless world, once excited, these spheres would perform the
same periodic motion till eternity. A quantum analogue of this system was realized with
strongly interacting Bosons showing exactly this absence of thermalization [20]. More
formally, the root of this behavior lies in the integrability of the system1. Its dynamical
evolution is constraint through the existence of multiple conserved quantities, a situa-
tion particularly interesting when studying non-equilibrium dynamics. The main results
presented in this thesis are all linked to this integrable behavior.

In cold atoms, 1d Bose gases are predominantly realized in optical lattices [38–41] and
tight magnetic traps created on atom chips [14, 42, 43]. In our experimental setup, we
utilize the latter to trap and cool samples of 87Rb, as described later in chapter 3. At
ultracold temperatures, the interactions of these bosonic atoms are limited to s-wave
scattering and can be described by the pseudopotential Uint(r) = g3d δ(r−r′) [44]. Here,
r and r′ are the positions of the atoms and the coupling constant is given by

g3d =
4π2~2as

m
, (2.1)

with m being the mass of the atoms and as being the s-wave scattering length defining
the strength and sign of the interactions. For 87Rb we get a positive scattering length
of as ' 5.2 nm leading to repulsive interactions [45]2.

In both optical lattices and atom chips, the reduction of dynamics to a single effective
dimension is realized by a strong confinement of the gas in the two other dimensions. At
low enough temperatures this forces the atoms to occupy the ground state of the tight
transverse potential such that any motion along these dimensions is effectively frozen
out. The details of this transition from 3d to 1d and the influence that the transverse de-
grees of freedom have on the 1d description will be discussed in section 2.2. For now, let
us assume that we can separately describe the 1d dynamics and that the effective contact
interactions are inherited from the 3d description, such that Uint(z − z′) = g1d δ(z − z′)
with g1d being the effective 1d coupling constant and z being the position along the
1d axis. The resulting 1d Bose gas with contact interactions is an especially rewarding
system with a rich landscape of physical regimes vastly different from higher dimen-
sions [46–49]. It is exactly solvable, making it an ideal testbed for quantum many-body
physics. In section 2.1.1 we will shortly discuss its different phases, loosely following
ref. [50] which gives an intuitive overview of the topic. Later, in section 2.1.2 we will
concentrate on the experimentally relevant quasi-condensate regime and derive an effec-
tive model for the parameter regime accessible to our setup. Section 2.1.3 then extends

1Note that integrability is only well defined for classical systems and the translation of this concept
to quantum mechanics is not trivial [37]. Nevertheless, the term is generally used in the literature
in reference to 1d Bose gases.

2This particular value is obtained if both atoms are in the internal state |F = 2,mF = 2〉, which is
the case in our setup (see section 3.1.1).
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2.1. The interacting 1d Bose gas

this description to two coupled quasi-condensates.

2.1.1. Lieb-Liniger model

In one dimension, Bosons interacting with a repulsive contact interaction are described
by the seminal Lieb-Lininger Hamiltonian [46]

Ĥ = − ~2

2m

∫
dz ψ̂†(z) ∂2

z ψ̂(z) +
g1d

2

∫
dz ψ̂†(z)ψ̂†(z)ψ̂(z)ψ̂(z) , (2.2)

with ψ̂(z) being the field operator in second quantization. From the coupling constant
g1d one can construct an intrinsic length scale of the problem, lg = ~2/mg1d. The ratio
of the mean inter-particle distance 1/n1d, with n1d being the linear density, and this
length scale then gives the famous Lieb-Liniger parameter γ determining the interaction
strength

γ =
1

n1d lg
=
mg1d

~2n1d

. (2.3)

Note that counterintuitively interactions in this model become stronger when the density
is reduced. At zero temperature, in the regime of weak interactions with γ � 1 the
gas is in a quasi-condensed state where density fluctuations are suppressed, as in 3d
condensates, but phase fluctuations prevail. This is due to the fact that no macroscopic
population of the lowest energy mode is possible in 1d, as discussed above. For γ � 1
the system becomes strongly interacting, entering the so-called Tonks-Girardeau regime.
There, particles act like impenetrable spheres and can be mapped onto spinless Fermions
in the limit of γ →∞, their strong repulsion mimicking the Pauli exclusion principle [48].

At finite temperatures the system can still be solved analytically [49].Similarly to lg
an intrinsic energy scale is constructed by Eg = mg2

1d/2~2 through which the thermal
occupation of excitation can be parametrized by

t =
kBT

Eg
=

2~2kBT

mg2
1d

, (2.4)

with T being the temperature of the gas. Together, γ and t span a rich diagram of
distinct phases (fig. 2.1). The strongly interacting regime discussed above survives for
low temperatures with t� 1. At high temperatures, interactions do not play a significant
role compared to the thermal energy and the system can be described as a nearly ideal
Bose gas, with none of the T = 0 phases occurring. The crossover to the quasi-condensate
regime happens at tγ3/2 = 1 where interactions start to become important and suppress
the fluctuations in density.

At the border between the ideal Bose gas and the quasi-condensate regime some inter-
esting subregimes can be identified. For the ideal Bose gas, around the point where the
thermal de Broglie wavelength gets on the order of the inter-particle spacing n1dλdB ≈ 1,
the gas becomes degenerate and can no longer be described by a Maxwell-Boltzmann
distribution. From λdB =

√
2π~2/mkBT we see that this crossover appears at tγ2 = 1.

Further, in the quasi-condensate regime close to the ideal gas transition mode occupa-
tions are large and thermal fluctuations dominate the gas. Only for tγ � 1 quantum
fluctuations become important.
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Chapter 2. Theoretical basics

Figure 2.1.: Phases of the Lieb-Liniger model. Diagram showing the finite tem-
perature phases of the 1d Bose gas with contact interactions. Indicated by color and
separated by solid lines are the Tonks-Girardeau regime (red; γ � 1, t � 1), the
nearly ideal Bose gas (green; tγ3/2 > 1, t � 1) and the quasi-condensate regime (blue;
tγ3/2 < 1, γ � 1). Furthermore, the dashed line indicates the degeneracy transition
(tγ2 = 1) and the dash-dotted line marks the thermal-quantum boundary (tγ = 1)
for the fluctuations in the quasi-condensate regime. All boundaries between phases are
smooth crossovers rather than sharp transitions. The gray shaded ellipse indicates the
parameter regime of the measurements discussed in this thesis.
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2.1. The interacting 1d Bose gas

The experiments discussed in this thesis cover a small portion of this varied phase
space, as indicated in fig. 2.1. They approximately span 1 · 10−3 < γ < 5 · 10−3 and
2·102 < t < 2.5·103 and mainly fall in the quasi-condensate phase dominated by thermal
fluctuation. This regime will therefore be discussed in more detail in the following
section.

Note that the regimes discussed here are not separated by sharp transitions but by
smooth crossovers. For example, although the experimentally covered parameter space
extends slightly into the quantum quasi-condensate regime (see fig. 2.1) the results dis-
cussed in this thesis can generally be explained by classical fields models. This is because
the quantum-thermal border signifies the point where the modes around kξ ≈ 1, with
ξ = ~/

√
2mg1dn1d being the healing length, are no longer macroscopically occupied.

However, the low-energy modes dominating the experimental observables get quantum
only at lower temperatures currently inaccessible in our setup [51].

2.1.2. Effective description for quasi-condensates

Although analytic solutions exist for the entire phase space of the interacting 1d Bose
gas they are not practical to calculate dynamics. Therefore, in order to describe the
experimental system and get an intuition for the underlying physics in the accessible
parameter regime we turn to effective models. These models are devised to describe
the low-energy collective dynamics of the gas, aligning well with the experimentally
accessible observables. For single quasi-condensates such an effective description is found
in ref. [52] and we will discuss the assumptions and implications of this approach in the
following.

The goal is to do a perturbative expansion of the governing Hamiltonian and collect
the leading terms describing our system. For a weakly interacting condensate in 3d
this can be done by writing the field operator as a combination of the macroscopically
occupied mode φ0 and small perturbations on top of that mode ψ̂ = φ0 â0 + δψ̂. Here,
δψ̂ contains all excitations, be they quantum or thermal, and â0 is the annihilation
operator for the condensate mode. Assuming the occupation of â0 to be much larger
than that of the excitations, the Hamiltonian can be expanded in the small parameter
δψ̂. For quasi-condensates however, no single macroscopically occupied mode exists such
that the phase of the condensate fluctuates strongly. This absence of long range phase
order renders the approach described above incompatible. Yet, one can still rely on the
suppression of density fluctuations, motivating the expression of the field operator in a
phase-density representation

ψ̂(z, t) = eiθ̂(z,t)
√
n1d(z) + δn̂(z, t) , (2.5)

where θ̂(z, t) describes the fluctuating phase and δn̂(z, t) the density fluctuations relative
to the average density profile n1d(z). The two new operators inherit the commutation
relations from the bosonic field, such that [δn̂(z), θ̂(z′)] = iδ(z − z′). Note however
that this definition of the phase operator hides some subtleties and only makes sense
in a coarse grained description where each bin shows a finite occupation of particles.
Nevertheless, for clarity we will always assume the continuum limit in this discussion
and refer to ref. [52] for details.

The Hamiltonian of interest is given by eq. (2.2) but defined in the grand canonical
ensemble with the chemical potential µ setting the total particle number. Further,

9



Chapter 2. Theoretical basics

in order to describe the experimentally realized system we add the confining external
potential U(z) leading to

Ĥ =

∫
dz ψ̂†(z)

[
− ~2

2m
∂2
z + U(z)− µ+

g1d

2
ψ̂†(z)ψ̂(z)

]
ψ̂(z) . (2.6)

Being interested in the low-energy dynamics we can assume |δn̂|/n1d � 1 and |∂z θ̂|/n1d �
1, corresponding to small density fluctuations and long wavelength phase fluctuations.
Inserting the ansatz of eq. (2.5) into eq. (2.6) and expanding the Hamiltonian up
to second order in these small parameters3 reveals the leading contributions: Ĥ =
Ĥ(0) + Ĥ(1) + Ĥ(2) + . . . . The zeroth order term Ĥ(0) only depends on the classical back-
ground density profile n1d(z) and is minimized by the solution of the Gross-Pitaevskii
equation (GPE) [

− ~2

2m
∂2
z + U(z)− µ+ g1dn1d(z)

]√
n1d(z) = 0 . (2.7)

The first order correction Ĥ(1) vanishing for n1d(z) fulfilling the GPE above, leaving the
second order corrections to dominate the fluctuations in the system with 4

Ĥ(2) =

∫
dz

[
− ~2

8m

δn̂
√
n1d

∂2
z

(
δn̂
√
n1d

)
+

+
~2

2m

(
δn̂2

4n2
1d

+ θ̂2

)
√
n1d ∂

2
z

√
n1d +

+
g1d

2
δn̂2 − ~2

2m

√
n1d θ̂ ∂

2
z

(√
n1d θ̂

)]
. (2.8)

Reference [52] shows how this Hamiltonian can be diagonalized by inserting eq. (2.7) into
its second term and performing a Bogoliubov transformation. Here, however, we will
do some further approximations restricting ourselves to the the experimentally relevant
lowest energy modes. For these long wavelength excitations accessible in the experiment
the first term in eq. (2.8), generally called the quantum pressure term, can be neglected
over the third term. Also, in a Thomas-Fermi approximation, neglecting the small kinetic
energy of the background density profile in eq. (2.7), the second term in eq. (2.8) can
be neglected [53]. Further, in the fourth term

√
n1d can be pulled out of the derivative.

This leaves the quadratic Hamiltonian 5

ĤLL =

∫
dz

[
g1d

2
δn̂2 +

~2n1d

2m

(
∂z θ̂
)2
]
, (2.9)

which represents a realization of the Luttinger liquid model [54–56]. Initially devised to
describe interacting electrons in 1d this model constitutes the low-energy description of

3Assuming both expansion parameters to be of the same size.
4Whenever convenient we are suppressing the z and t dependence of δn̂, θ̂, n1d and the quantities

derived from them to simplify the notation and aid readability.
5For the forth term we used −

∫
dz θ̂∂2z θ̂ =

∫
dz (∂z θ̂)

2.

10



2.1. The interacting 1d Bose gas

a large class of 1d problems [57, 58]. Its discussion will lay the groundwork for much of
the physics presented in this thesis.

Even though the external potential does not explicitly enter eq. (2.9) it shapes the
density profile n1d(z) through the GPE in eq. (2.7) and thereby the eigenmodes of the
system. In the following we will discuss different geometries starting with the simple
case of a homogeneous system of length L enclosed by infinitly hard walls. As the walls
of this ideal box force the particle flux at the boundary to zero the phase field, whose
spatial derivative is proportional to the flux, has to fulfill Neumann boundary conditions

∂z θ̂(z)
∣∣
z= 0, L

= 0 . (2.10)

This allows for modes with wave numbers k = π
L
j where j = 1, 2, 3, . . . is the mode

index, as illustrated in fig. 2.2 6. Expanding the fluctuations in these modes we obtain

δn̂(z) =

√
2

L

∑
k

δn̂k cos(kz) , θ̂(z) =

√
2

L

∑
k

θ̂k cos(kz) , (2.11)

with δn̂k and θ̂k being the mode amplitudes fulfilling the commutation relation [δn̂k, θ̂k′ ] =
iδk,k′ . Inserting these expansions into eq. (2.9) with the integration performed over
z ∈ [0, L] results in the momentum space representation of the Luttinger liquid Hamil-
tonian

ĤLL =
∑
k 6=0

[
g1d

2
δn̂2

k +
~2k2n1d

2m
θ̂2
k

]
+ Ĥ0 . (2.12)

The term Ĥ0 corresponds to the k = 0 mode and will be neglected in the following as it
does not enter most observables. From eq. (2.12) we can already see that these modes
do not couple as cross terms between different k modes do not exist. Defining creation
and annihilation operators b̂†k, b̂k for each mode we can construct the mode amplitudes
as

δn̂k =

√
n1d

2

εk
µ

(
b̂k e

−iωkt + b̂†k e
iωkt
)
,

θ̂k = −i
√

1

2n1d

µ

εk

(
b̂k e

−iωkt − b̂†k e
iωkt
)
,

leading to the diagonal form of the Hamiltonian

ĤLL =
∑
k

~ωk b̂†kb̂k . (2.13)

The mode energy εk = ~ωk is given by the linear dispersion relation

ωk = ck =
cπ

L
j , (2.14)

with c =
√
g1dn1d/m being the speed of sound. This shows the low-energy dynamics

of the gas to be dominated by free phononic excitations whose energy is equally spaced.
The zero point energy resulting from the commutator [b̂k, b̂

†
k] = δk,k′ is already subtracted

in eq. (2.13).

6In the case of periodic boundary conditions only every second of these frequencies would be supported
due to the continuity conditions θ̂(0) = θ̂(L) and δn̂(0) = δn̂(L).
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Chapter 2. Theoretical basics

Figure 2.2.: Phase fluctuation modes in the ideal box. Illustration of the box
modes supported by the Neuman boundary conditions imposed through the hard walls.

As discussed in section 2.1.1 the experimentally accessible parameter regime is re-
stricted to temperatures where the average occupation of the observable low lying modes
is much larger than one, 〈b̂†kb̂k〉 � 1. For the rest of this manuscript we will therefore
treat δn(z) and θ(z) as classical fields. In this approximation a thermal state displays
the occupations 〈b†kbk〉 = kBT/εk. This equipartition of energy among modes further
extends to the phase and density fluctuation amplitudes within each mode such that

〈|δnk|2〉 =
kBT

g1d

, 〈|θk|2〉 =
mkBT

~2k2n1d

. (2.15)

The spatial correlations for such a thermal state will be discussed in section 2.1.3 as the
configuration of two adjacent gases allows for their direct observation (see section 3.3.4).

Although seemingly removed from application the description of the gas in an ideal
box describe many of the observations made in the imperfect experimental box trap
discussed in section 3.2.3 (see chapter 5). The second relevant confining geometry is that
of the harmonic trap, with U(z) = 1

2
mω2

zz
2. There, the Thomas-Fermi approximation

of eq. (2.7) leads to the inverted parabola profile

n1d(z) = n0

[
1−

( z
R

)2
]

Θ (R − |z|) ,

n0 =
3

4

(
2mω2

zN
2

g1d

)1/3

, R =

(
3Ng1d

2mω2
z

)1/3

(2.16)

with n0 being the density in the center of the trap, R the radius of the cloud, N the
number of particles in the trap and Θ(z) the Heaviside function. As in eq. (2.11) we can
expand the fluctuations in the eigenmodes of the Hamiltonian

δn(z) =
∑
j

δnj fj(z) , θ(z) =
∑
j

θjfj(z) , (2.17)

with the mode functions fj(z) now being defined by Legendre polynomials, fj(z) =√
j + 1/2 Pj(z/R) [59]. Proceeding as for the ideal box, defining creation and anni-

hilation operators for each mode, we arrive at a diagonal Hamiltonian with the mode
energies

ωj = ωz
√
j(j + 1)/2 . (2.18)
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2.1. The interacting 1d Bose gas

Compared to the homogeneous case this dispersion is neither equally spaced nor com-
mensurate which will become important in chapter 5 where we discuss the dynamic
recurrence of the system due to a rephasing of excitations.

With the quantum pressure term in eq. (2.8) neglected the above descriptions are valid
for k ξ � 1. However, when taking the term into account we can still diagonalize the
Hamiltonian through free excitations and push the validity beyond these energies [52].
For the homogeneous case the mode energies are then given by

ωk =

√
~2k2

2m

(
~2k2

2m
+ 2µ

)
.

For k ξ � 1 this reduces to the linear dispersion found above while for k ξ � 1 we recover
the free particle dispersion ωk = ~2k2/2m. Due to most of the experimental observables
being dominated by low-k modes we can safely restrict ourselves to the linear phononic
dispersion for most discussions in this thesis.

Both the Luttinger liquid and the Bogolibov description taking the quantum pressure
term into account are integrable, their trivial conserved quantities being the eigenmode
occupations. Going beyond second order in the expansion of eq. (2.6) breaks this inte-
grability and leads to terms mediating interactions between the modes. This does not
contradict the fact that the Lieb-Liniger model, at least in the homogeneous case, is
integrable. The eigenmodes of the effective description simply do not coincide with the
conserved charges of the Lieb-Liniger Hamiltonian. Therefore, integrable dynamics on
the level of the full description can present themselves as apparent thermalization in the
basis of the effective descriptions.

2.1.3. Coupled quasi-condensates

A key feature of our setup is the ability to realize a double well potential along one of the
tightly confined dimensions of the trap (see section 3.1.3). This allows the realization
of two adjacent 1d Bose gases separated by an adjustable barrier. As in the case of the
single gas, if the internal energy scales are low enough we can restrict the description to
the lowest transverse states in each of the wells7. This means each gas can be described
by the Hamiltonian of a single gas (eq. (2.6)) while additionally experiencing a coupling
from particles tunneling through the inter-well barrier. If the barrier is large enough and
the overlap between the two wave functions is small such linear coupling dominates and
interactions between the wells can be neglected. The Hamiltonian of the entire system
then reads

H = H1 +H2 +HJ

=
∑
i=1,2

∫
dz ψ†i (z)

[
− ~2

2m
∂2
z + U(z)− µ+

g1d

2
ψ†i (z)ψi(z)

]
ψi(z)−

−
∫

dz ~J
(
ψ†1(z)ψ2(z) + ψ†2(z)ψ1(z)

)
,

with i = 1, 2 being the well index and J being the coupling strength which can be tuned
by changing the overlap between the transverse wave functions.

7This is equivalent to the two mode approximation of the double well potential.
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Chapter 2. Theoretical basics

We can now apply the same treatment as for the single gas in section 2.1.2, writing the
wave functions in phase-density representation and performing a perturbative expansion
in δn1,2(z) and ∂zθ1,2(z). Applying the same approximations as before, for H1,2 this leads
to two independent Luttinger liquid Hamiltonians of the form given in eq. (2.9). Before
considering the coupling term HJ , however, it is convenient do a variable transformation
to common (c) and relative (r) fluctuations

δnc(z) = δn1(z) + δn2(z) , ϕc(z) =
1

2
[θ1(z) + θ2(z)] ,

δnr(z) =
1

2
[δn1(z)− δn2(z)] , ϕr(z) = θ1(z)− θ2(z) . (2.19)

This is helpful as the coupling term predominantly affects the relative degrees of freedom
and since the relative phase field ϕ(z) constitutes our main experimental observable. The
normalization of the transformation is in principle arbitrary but chosen such that ϕ(z)
best aligns with the measured quantity (see section 3.3.4). Transforming the Luttinger
liquid Hamiltonians in each well to the new degrees of freedom results again in two
independent Luttinger liquids for the common and relative fluctuations, respectively,
HLL,1 + HLL,2 = HLL,c + HLL,r. Note however that this is only the case if the average
density in both wells is the same. For an imbalanced double well an additional term
proportional to the density difference n1d,1 − n1d,2 arises coupling common and relative
degrees of freedom [60]. In the following discussion we will assume the wells to be
perfectly balanced, although experimentally this is never the case. Later in chapter 5
we will discuss the common-relative coupling induced by an imbalance spread due to a
distribution of experimental initial conditions.

Turning to the actual tunneling coupling and expanding HJ up to second order we
obtain

H
(2)
J = −2~J n1d cos(ϕr)

[
1 +

δnc
2n1d

− δn2
r

2n2
1d

]
. (2.20)

Here, the second term in the angled brackets is coupling common and relative degrees
of freedom. However, in thermal equilibrium and at low energies this term is expected
to have little influence [61]. Though it might be important in a non-equilibrium context
we neglect it here as our focus lies in the equilibrium properties of the coupled system.
Further approximating the last term in the angled brackets of eq. (2.20) to contribute
only to the δn2

r term in HLL,r we obtain for the relative degrees of freedom at

Hr =

∫
dz

[
g̃1dδn

2
r +

~2n1d

4m
(∂zϕr)

2 − 2~Jn1d cos(ϕr)

]
, (2.21)

with g̃1d = g1d+~J/n1d. In this low-energy description common and relative fluctuations
completely decouple and as we are mainly interested in the relative dynamics we will
drop the r-indices from the phase and density fields from now on.

The Hamiltonian obtained in eq. (2.21) represents a realization of the sine-Gordon
model, a seminal field theory important in many branches of physics [62]. It is of
particular interest as the cosine term brings it away from the somewhat trivial form of
quadratic Hamiltonians, leading to non-Gaussian fluctuations and soliton excitations of
the relative phase field. For equilibrium states it could be shown experimentally that it
indeed describes the fluctuations between two coupled quasi-condensates [61]. However,
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2.1. The interacting 1d Bose gas

for the experiments discussed in this thesis we are mainly interested in two limiting cases:
vanishing coupling and strong coupling. In the first case, for J = 0, eq. (2.21) reduces to
the Luttinger liquid Hamiltonian of a single gas (eq. (2.9)), up to prefactors stemming
from the normalization in eq. (2.19). The same diagonalization procedure can therefore
be performed leading to the same linear dispersion relation. For strong coupling, the
cosine term dominates the phase and localizes it around zero such that 〈cos(ϕ)〉 ≈ 1.
With the phase being a small quantity the cosine can be expanded keeping only the
leading quadratic term which results in 8

Hr =

∫
dz

[
g̃1dδn

2 +
~2n1d

4m
(∂zϕ)2 + ~Jn1d ϕ

2

]
. (2.22)

Again a quadratic Hamiltonian, Hr can be diagonalized in a straightforward way. For
the ideal box confinement the relative phase field inherits the boundary conditions
(eq. (2.10)) from the individual gases and the fluctuations can be expanded in the same
cosine modes as in eq. (2.11). However, the expansion coefficients change to

δnk =

√
n1d

2

(
Ek + 2~J
2µ+ 2~J

)1/4 (
bk e

−iωkt + b†k e
iωkt
)
,

ϕk = −i
√

1

2n1d

(
2µ+ 2~J
Ek + 2~J

)1/4 (
bk e

−iωkt − b†k e
iωkt
)
, (2.23)

with Ek = ~2k2

2m
and a dispersion relation is given by

εk,J =
√

(Ek + 2~J)(2µ+ 2~J) . (2.24)

Here, we can see that the coupling opens a gap in the otherwise linear spectrum with
εk=0,J ≈ 2

√
~Jµ for ~J � µ (fig. 2.3a). At the same time the common degrees of

freedom still retain the linear dispersion of a single gas.
Just as discussed for the single gas the effective model described by eq. (2.22) is

integrable and going beyond second order in the expansion around small fluctuations
leads to terms that break this integrability. This forces the excitations discussed above
to acquire a finite lifetime [63–65] and leads to a coupling of common and relative degrees
of freedom. As these additional terms are of higher order they will only have significant
effects over longer times, leaving the short time dynamics well described by eq. (2.22).

Experimentally, our window into the the relative degrees of freedom is the phase field
ϕ(z) (see section 3.3.4). Being able to measure the entire phase field of single realizations
brings with it the possibility to evaluate spatial correlation functions. An intuitive form
of such a correlation function is given by

C(z, z′) = 〈cos [ϕ(z)− ϕ(z′)]〉 . (2.25)

This quantity, referred to as phase correlation function from now on, measures the
correlations of ϕ at points z and z′, giving 1 for perfectly correlated phases and zero for
uncorrelated ones. It obtains further meaning when evaluating the two-point correlation

8The constant first term being absorbed by a shift of the energy minimum that does not affect the
dynamics.
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Chapter 2. Theoretical basics

a b

Figure 2.3.: Relative fluctuations in coupled quasi-condensates. (a) Linear dis-
persion of the relative modes between two uncoupled quasi-condensates (blue) compared
to the dispersion in the coupled case given by eq. (2.24) (red). The parameters are
set to values typical for the measurements presented in chapter 5 (n1d = 70 µm−1,
c = 2.2 µm/ms, J = 2π · 5 Hz). (b) Thermal phase correlation functions of the relative
phases between two uncoupled gases given by eq. (2.27) (blue) and two strongly coupled
gases with lJ = 0.15·λT given by eq. (2.28) (red). The dashed gray line indicates lJ . Both
plots give the results obtained from the harmonic approximation made in eq. (2.22).

function of the fields in both wells. The real part of this correlation function gives
eq. (2.25) when assuming density fluctuations to be negligible

〈ψ1(z)ψ†2(z)ψ†1(z′)ψ2(z′)〉
〈|ψ1(z)|2〉〈|ψ2(z′)|2〉

' 〈ei[ϕ(z)−ϕ(z′)]〉 .

With the Hamiltonians for the uncoupled and the strongly coupled case both being
quadratic we can assume the fluctuations always to be Gaussian. For a homogeneous
system this leads to

C(z̄ = |z − z′|) = exp

[
−1

2
〈[ϕ(z)− ϕ(z′)]

2〉
]

= exp

[
−
∫ ∞

0

dk

π
〈|ϕk|2〉 [1− cos(kz̄)]

]
. (2.26)

Inserting the thermal expectation value of ϕk for the uncoupled case and performing the
integration this simplifies to

C(z̄) = exp

[
− 2z̄

λT

]
, (2.27)

with λT = 2~2n1d/mkBT being the thermal coherence length of the gases (fig. 2.3b). The
factor of 2 in the exponent stems from the definition of the relative phase in eq. (2.19)
and does not appear for the phase correlations in a single gas. In the strongly coupled
case we obtain

C(z̄) = exp

[
−2 lJ
λT

(
1− e−

z̄
lJ

)]
, (2.28)
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2.2. From 3d to 1d

for the correlation function of a thermal state. Here, lJ =
√
~/4mJ is the phase locking

length scale. Beyond this length, long range phase fluctuations are suppressed by the
coupling leading to a flat correlation function (fig. 2.3b). For the strong coupling limit
lJ � λT , leading to the phase being well localized around zero.

In chapter 5 we will discuss the dynamics resulting from quenching the system from a
strongly coupled initial state to an uncoupled situation by a fast ramp up of the double
well barrier.

2.2. From 3d to 1d

As our world is made up of three spatial dimensions any experimental realization of
lower dimensional systems in the lab needs to either restrict or decouple the dynamics
in the supernumerous dimensions. In cold atoms this is usually achieved by a tight
confinement along these dimensions [66]. By bringing the internal energy scales of the gas
far below the energy of the lowest excited states along these tightly confined dimensions
all dynamics is frozen out and the system becomes effectively lower dimensional. For a
1d system in a tight harmonic potential with trap frequency ω⊥ this results in the 1d
condition

~ω⊥� kBT, µ . (2.29)

If it is fulfilled, both the thermal energy and the interaction energy per particle are
too low to allow for transverse excitations, forcing all particles to occupy the transverse
ground state and the system becoming effectively 1d. In this section we will discuss
the influence the transverse confinement has on the 1d dynamics and investigate the
consequences of eq. (2.29) not being strictly fulfilled.

2.2.1. Effective 1d interaction strength

Let us assume a gas confined in a tight harmonic potential along x and y and an arbitrary
potential U(z) along z, described by the mean field Hamiltonian

H =

∫
dr Ψ∗(r)

[
− ~2

2m
∂2
r +

mω2
⊥(x2 + y2)

2
+ U(z) + g3d|Ψ(r)|2

]
Ψ(r) . (2.30)

Interested only in the dynamics along z, the tightly confined dimensions can be inte-
grated out, assuming the separability of the wave function Ψ(r) = φ(x, y) ·ψ(z). Further
neglecting interaction along x and y, for a cold gas we can expect all atoms to occupy
the single particle ground state of the tight confinement, given by a Gaussian localized
at the harmonic oscillator length a⊥=

√
~/mω⊥

φ(x, y) =
1

a2
⊥
√
π
e
− (x2+y2)

2a2
⊥ . (2.31)

Integrating eq. (2.30) along x and y leads to a constant energy shift ~ω⊥ irrelevant for
the dynamics and to a renormalization of the interaction strength

g1d = g3d

∫
dx dy |φ(x, y)|4 = 2~ω⊥as. (2.32)
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with g3d given by eq. (2.1). Note that in contrast to the 3d case g1d explicitly depends
on the trap frequency of the transverse potential, enabling tuning of the interaction
strength to a certain extent.

When a⊥ becomes of the same order as as a more careful analysis of the two-body
scattering process has to be performed. In this case, virtual transverse excitations lead
to a confinement induced resonance [67,68]

g1d = 2~ω⊥as

(
1− ϑas

a⊥

)−1

,

where ϑ ≈ 1 is a numerical factor. For the transverse trap frequencies of ω⊥ = 2π ·
1.4 – 2.1 kHz realized in our setup a⊥ is much larger than as such that the correction to
eq. (2.32) amounts to ∼ 2 % and can be neglected.

2.2.2. Transverse broadening

Assuming all atoms to occupy the transverse single particle ground state of eq. (2.31),
neglecting the effects of interactions along these dimensions, is only valid as long as
the density is small n1das � 1. In the cross over regime for n1das < 1, a variational
approach can be used to calculate corrections to the effective 1d interactions obtained
in eq. (2.32) [69]. As interactions are expected to lead to a broader state, a natural
ansatz for the transverse wave function is a Gaussian of variable width, φ(x, y;σ(z, t)).
Again assuming separability of the 3d wave function we can insert this ansatz into
the Hamiltonian given in eq. (2.30), integrate over x and y and minimize the action
functional. Assuming that φ only varies slowly along z this gives the density dependent
transverse width σ2 = a2

⊥
√

1 + 2asn1d and the chemical potential

µ = ~ω⊥
1 + 3asn1d√
1 + 2asn1d

= ~ω⊥ + g1dn1d +
3

4
g1dasn

2
1d + O

[
(asn1d)3

]
. (2.33)

As shown in the expansion on the right hand side, this expression includes the transverse
ground state energy and gives the 1d chemical potential at first order in asn1d. Compar-
ing the results from this approach with GPE simulations of the full mean-field solution
in the xy-plane shows good agreement in the transverse density distribution, the width
and the chemical potential (fig. 2.4a, b and c, respectively). Figure 2.4d shows how the
interaction energy gets gradually more important when the density is increased. Go-
ing beyond the experimentally relevant densities this plot would show the cross-over to
the Thomas-Fermi regime for the transverse wave function where the interaction energy
approaches the potential energy and the kinetic term can be entirely neglected.

The equations of motion in the remaining longitudinal dimension obtained from this
approach give a non-polynomial extension of the GPE

i~ ∂tψ(z, t) =

[
− ~2

2m
∂2
z + U(z) + ~ω⊥

1 + 3as|ψ(z, t)|2√
1 + 2as|ψ(z, t)|2

]
ψ(z, t) . (2.34)

For an inhomogeneous longitudinal confinement the most obvious effect of the broaden-
ing is the distortion of the ground state density profile. In the typical harmonic potential
U(z) = mω2

zz
2/2 the density distribution is squeezed, increasing the central density and
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a b

c d

Figure 2.4.: Interaction effects on the transverse wave function. (a) Compar-
ison of the transverse density profile obtained from imaginary time evolution of the
radial GPE (red) (see appendix B) with the single particle ground state (blue) and the
broadened Gaussian obtained from the variational approach (black dashed line). All
profiles are calculated for a linear density of n1d = 80 µm−1. (b,c) Density dependence
of the transverse width σ and the chemical potential µ for the states plotted in (a) using
the same colors. (d) Density dependence of the kinetic (yellow), potential (green) and
interaction energy (blue) obtained from the radial GPE simulations.

reducing the system size compared to eq. (2.16) (fig. 2.5a). For more homogeneous po-
tentials like the nearly ideal box discussed in section 3.2.3 the effect is less pronounced
(fig. 2.5b)

Beyond the profile distortion the broadening has a marked effect on the excitation
spectrum. Calculating the speed of sound from the the chemical potential given in
eq. (2.33) through the hydrodynamic relation [34,70]

c =

√
n1d

m

∂µ

∂n1d

= c0

√
1

2

2 + 3asn1d

(1 + 2asn1d)3/2
=

√
gn n1d

m
, (2.35)

we obtain a complicated density dependency. Here, c0 =
√
g1dn1d/m is the bare speed

of sound introduced in section 2.1.2 and gn is the effective density dependent interaction
strength emerging for the second order description of fluctuations. The broadening
effects on the speed of sound are by no means a small perturbation as shown in fig. 2.6.
For the typical densities of the measurements presented in chapter 5 (n1d = 70 µm−1)
the change in c amounts to ∼ 20 %, crucially influencing the timing of the return of
coherence observed. Inserting gn in the Luttinger liquid Hamiltonian given in eq. (2.9)
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a b

Figure 2.5.: Longitudinal ground state density under transverse broadening.
Comparison of the ground state density profile obtained from the 1d GPE as given in
eq. (2.7) (blue) and the the non-polynomial extension of the GPE given in eq. (2.34)
(red). (a) shows the case of a harmonic potential and (b) the nearly ideal box trap
discussed in section 3.2.3. All profiles are obtained through imaginary time evolution
(see section 2.3.2).

or the coupled model in harmonic approximation given in eq. (2.22) allows us to take
these broadening effects into account, especially in the numerical calculations discussed
in section 2.3.1.

It is interesting to note that the observed reduction in the speed of sound for higher
densities reflects the transition to the 3d regime. Figure 2.6 shows that for typical
experimental densities we are already closer to the 3d result than to the purely 1d
prediction [70,71]9.

2.2.3. Collisions

With the 1d condition given in eq. (2.29) strictly fulfilled elastic collisions between atoms
are fully restricted to the single remaining dimension. In such collisions energy and
momentum conservation only allow for a swap of momenta between the particles and
thereby forbid the redistribution of energy. This leads to the inhibition of thermaization
in 1d Bose gases discussed earlier. However, in experimental implementations eq. (2.29)
will only be fulfilled up to a certain degree. If transverse excited states are populated
with finite probabilities, e.g. due to kBT 6� ~ω⊥, the 1d paradigm is broken and collisions
involving these states can redistribute energy and lead to thermalization. The rate of
such thermalizing two-body collisions was calculated in ref. [72] to be

Γ2b = 2
√

2 ω⊥
a2

sn1d

a⊥
e
− 2~ω⊥
kBT . (2.36)

The exponential factor represents the Boltzmann weight of states with a high enough
energy to facilitate transverse excitations, strongly suppressing the rate even at mod-
erately low temperatures. For typical experimental parameters of the measurements
presented in this thesis Γ2b is on the order of a few Hertz or below, rendering the pro-
cess much slower than the observed dynamics. Also, note that eq. (2.36) was calculated

9Note that eq. (2.35) is not exactly converging to the 3d result c3d =
√

~ω⊥/m (asn1d)
1/4 due to the

approximation made by taking the broadened Gaussian ansatz.
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Figure 2.6.: Broadening effects on the speed of sound. Comparison of the bare
speed of sound c0 (blue) with the broadened speed of sound given in eq. (2.35) (red).
The dashed green line shows the 3d prediction which the broadened speed of sound
approaches for large densities.

for non-degenerate atoms and is expected to be even more suppressed for a degenerate
gas [73].

However, even with the thermal population of excited transverse states strongly sup-
pressed their mere presence can open up new atomic scattering channels. Specifically,
virtual transverse excitations can mediate effective three-body collisions [72,74]. In such
processes two atoms scatter, one gets virtually excited but gets immediately deexcited in
a second two-body process involving a third atom, in total allowing for a redistribution
of energy. In leading order the rate of these collisions is predicted to be independent of
temperature, dominating over Γ2b for cold samples. Yet, for our typical experimental
parameter range we obtain Γ3b ≈ 2π ·0.5 Hz which is also much slower than the dynamics
we are interested in.

Interestingly, also the broadening effects discussed in section 2.2.2 can be understood
as an admixture of transverse excited single particle orbitals to the many-body ground
state. Up to second order they only lead to a renormalization of the effective 1d in-
teraction strength but going to third order one can show that a new term arises (see
appendix A). Adding this term to the Luttinger liquid Hamiltonian in eq. (2.9) we obtain

HLL +H
(3)
broad '

∫
dz

[
gn
2
δn2

(
1− 1

2
asδn

)
+

~2n1d

2m

(
∂z θ̂
)2
]
. (2.37)

As shown shown in ref. [72] the interaction term stemming from the virtual three-body
collisions is (almost) equivalent to the first order cubic corrections of the broadening.

Therefore, H
(3)
broad describes the leading phonon-phonon interactions induced by the vir-

tual atomic three-body collisions that break the purely 1d configuration. However, as
already discussed for Γ3b, with asδn < asn1d < 1 being quite small this correction should
not have significant effects on the intermediate time dynamics of our system.
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2.3. Numerical methods

Finally, in this section we will discuss some numerical tools that allow us to efficiently
calculate the dynamics of inhomogeneous systems. We start with a numerical implemen-
tation of the Luttinger liquid model, including the coupling in harmonic approximation.
It allows us to calculate thermal states and dynamical properties for arbitrary con-
finements beyond the ideal box and the harmonic potential discussed in section 2.1.2.
Furthermore, we shortly review a numerical implementation of the GPE and discuss how
we obtain thermal initial states for our system.

2.3.1. Discretized Luttinger liquid

To implement the mean field Hamiltonian describing the relative degrees of freedom
between two coupled Luttinger liquids in harmonic approximation (eq. (2.22)) on an
arbitrary background destiny we first discretize the problem casting the fluctuating fields
~ϕ and ~δn into vectors on the spatial grid. As phase and density fluctuations completely
decouple we can write the density matrix of a thermal state with inverse temperature
β = 1/kBT as

% =
1

Z
exp[−βH] =

1

Z
exp

[
−β

2

(
~ϕT (KLL +KJ) ~ϕ+ ~δn

T
LLL ~δn

)]
,

where Z = Tr [exp(−βH)] is the partition function, KLL and LLL are matrices that
represent the discretized Luttinger liquid Hamiltonian (first two terms of eq. (2.22)) and
the matrix KJ implements the tunneling coupling in quadratic approximation (last terms
of eq. (2.22)). These matrices include the spatially varying background density n1d(z) as
well as the density dependent interaction constant gn resulting from the broadening of
the transverse wave function (see section 2.2.2). In mean field, since % is a product of two
multivariate Gaussian distributions, the variances of the phase and density fluctuations
can simply be obtained from inverting β(KLL +KJ) and βLLL. Thereby, thermal states
for any density profile or coupling can be obtained. Setting KJ to zero and adapting
the prefactors to describe eq. (2.9) also the fluctuations within a single gases can be
described. Dynamics can further be calculated from the fields Heisenberg equations
of motion, for any initial state. The employed code used to obtain initial states and
propagate them was written by Thomas Schweigler [75].

2.3.2. Gross-Pitaevskii equation

Going beyond the quadratic description we can numerically solve the non-polynomial
GPE given in eq. (2.34). This provides a mean field description that also includes
terms mediating scattering between the phonon modes that diagonalize the Luttinger
liquid model. For the implementation we use a standard second order split-step Fourier
spectral method [76] which allows for the time propagation of arbitrary initial states and
the calculation of ground states through an imaginary time evolution.

However, in order to faithfully describe the experimental dynamics it is crucial to start
from thermal initial states. Whereas for 3d GPE simulations it is often sufficient to start
from a state at a defined energy that thermalizes during some initial time evolution, the
suppressed thermalization in 1d precludes such procedures [77]. A common approach
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to obtain (nearly) thermal initial states in homogeneous 1d systems is to populate the
Bogoliubov modes according to a thermal distribution. Yet, this demands knowledge of
the mode functions which are not directly available for arbitrary trapping geometries. For
the simulations discussed here we therefore opt for an initialization through a stochastic
GPE (SGPE) [78]. There, a thermal state is obtained from modeling the contact of the
system to a thermal background reservoir through incoherent scattering by adding noise
and dissipation terms to the regular GPE. The resulting Langevin equation for a single
gas is given by

i~ ∂tψ = (1 + iγ)HGP ψ + η , (2.38)

with the GP operator HGP given by the expression in the square brackets on the right
hand side of eq. (2.34). Here, γ is the dissipation strength and η a Gaussian white
noise term defined by its second moment 〈η(z, t)η(z′, t′)〉 = 2~γkBTδ(z − z′)δ(t− t′). A
thermal state is obtained by numerically propagating a seed state (e.g. an empty state
or a state with a homogeneous density distribution) with eq. (2.38) until convergence
is reached. In this process γ defines the speed of the interaction with the incoherent
thermal background and can be chosen arbitrarily as we are only interested in the final
state and not the time evolution of the condensation dynamics. For coupled condensates
two separate states ψ1,2 are propagated in parallel with an additional −~Jψ2(z) term
added to the GP operator of the first condensate HGP[ψ1], and vice versa10. The noise
terms η1,2 are independent for the two systems. The GPE simulations presented in
chapter 5 starting from thermal initial states were performed by Sebastian Erne [79].

10In order to avoid spurious soliton excitations in the relative degrees of freedom of two coupled gases
the seed state needs to have a finite occupation.

23





3. Experimental setup and probing

This chapter serves as an introduction to the experimental setup. It discusses the tools
and techniques developed to create and probe the 1d Bose gases described in chapter 2.
First, section 3.1 reviews basic experimental techniques until section 3.2 describes the
experimental setup and cycle. Both of these discussion are kept brief as there exists a
vast body of literature and theses on these topics. Finally, in section 3.3, the techniques
employed to probe the 1d Bose gases are discussed in detail, from time-of-flight expansion
to methods of extracting information from absorption images.

3.1. Trapping and cooling neutral atoms

Over the last decades various techniques have been developed to trap, store and cool
neutral atoms. In the following, the ones most relevant to our experimental setup will
be discussed briefly. The focus of this discussion lies on topics which are either not
ubiquitously covered in the literature or are of particular importance for the results
presented in this thesis.

First, a review of magnetic trapping, mainly covering wire traps and radio-frequency
(rf) dressed state potentials is given. The wire layouts and field configurations employed
in our setup are at the center of this discussion. In the following, the foundations of
optical dipole potentials are discussed, since their introduction to the experiment was
part of this thesis (see section 3.2.3). Finally, evaporative cooling is reviewed shortly as
its comprehension poses a prerequisite to understand the novelty of the results presented
in chapter 4. For discussions of the magneto-optical trap (MOT), laser cooling and
optical pumping the reader is referred to refs. [80–82].

3.1.1. Magnetic trapping

Magnetic traps for neutral atoms are based on the local energy shift an atom experiences
in a inhomogeneous magnetic field B(r). For an atom with a magnetic dipole moment
µm this is given by −µm · B. If this shift is small enough such that the magnitude of
the total angular momentum F is still a good quantum number the resulting potential
can be written as

Umag(r) = gF µB F ·B(r) = mF gF µB|B(r)| , (3.1)

with gF being the Landé factor and µB the Bohr magneton. For the last equality we
assumed the atomic angular momentum always to be aligned with the local magnetic
field, mF being the quantum number of the F component along this direction. This
assumption is justified as long as, in the frame of a moving atom, the direction of the
magnetic field changes slower than the Larmor frequency ωL = mF gF µB|B|/~, such
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that ∂tB/|B| � ωL. Is this the case, then the orientation of the magnetic moment can
adiabatically follow the local magnetic field.

Since Maxwell’s equations do not allow for free space maxima of the magnetic field,
only atoms in low-field seeking states with mF gF > 0 can be trapped magnetically [83].
For 87Rb used in our setup, the two hyperfine states F = 1, 2 of the 52S1/2 ground state
have the Landé factors gF ' −1/2 and gF ' 1/2, respectively [84]. This means that
the state |F = 1,mF = −1〉 as well as |2, 1〉 and |2, 2〉 can be trapped magnetically,
the latter of which is used in our setup. This state selectivity poses an advantage for
magnetic traps when employing evaporative cooling as rf induced spin flips to untrapped
states can be used to remove atoms at a defined energy (see section 3.1.5). However, it
also severely restricts the accessible internal state dynamics.

Note that the above conditions for the Larmor frequency is violated in regions of zero
or low magnetic fields, leading to so-called Majorana spin flips to possibly untrapped
states resulting in loss [85]. In hot clouds, it is less probable for atoms to be found at
the minimum of the trap and these losses therefore do not pose a problem.

3.1.2. Wire traps

In our setup, magnetic trapping potentials are created by current carrying wires and
homogeneous bias field. These wires are either solid macroscopic copper structures
or microfabricted films on a chip surface, however, the basic principles of the realized
trapping potentials are the same. Sending the current Iw through an infinitely thin wire
creates a magnetic field pointing around the wire given by

Bw(r) =
µ0Iw

2πr
êφ ,

where µ0 is the vacuum permeability and êφ the angular unit vector. The radial distance
from the wire is given by r2 = x2+y2 in our choice of coordinates (fig. 3.4a inset). Adding
a homogeneous bias field Bbias = Bbiasêx to this configuration, oriented perpendicular to
the wire, leads to a cancellation of the fields at a distance defined by the wire current
and the magnitude of the bias field given by

y0 =
µ0Iw

2πBbias

.

This creates a trap with a quadrupole field configuration that harmonically confines
atoms in the xy-plane (fig. 3.1a), however, they can still move freely along the wire.

To realize a 3d trap, confining the atoms also along z, additional wires are needed.
One of the simplest configuration to achieve this is by bending the two ends of the the
wire into a “Z” shape (fig. 3.1b). The fields created by these perpendicular leads, which
are typically further away from the atoms, result in a weak harmonic confinement along
the z direction. Together with the central section and the bias field, this adds to a
Ioffe-Pritchard trap configuration [85]. Bending both leads in the same direction, giving
the wire a “U” shape, creates a 3d quadrupole configuration (fig. 3.1b).

Using multiple wires, one gains more flexibility. For example, a straight trapping wire
augmented with two perpendicular wires responsible for the longitudinal confinement
along z realizes a Ioffe-Pritchard field configuration as well (fig. 3.1c). The advan-
tage of this “H” configuration over the Z-trap discussed above is that the longitudinal
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a b c

Figure 3.1.: Wire traps. (a) Magnetic field magnitude of a wire guide trap (green)
created at a distance y0 below the wire. The trap arises from adding the magnetic field of
an ideal wire Bw (blue) and a homogeneous bias field Bbias (red) oriented perpendicular
to the wire. An additional bias field B0 (yellow) aligned along z lifts the minimum of the
trap away from zero magnetic field. The inset shows a schematics of the field orientations
and axis conventions. (b) Planar schematics of two single wire trap configurations in
the shape of a ”Z” and the shape of a ”U”. (c) Schematics of a multi-wire configuration
in the shape of an ”H”. Figures inspired by ref. [86].

confinement can be changed independently of the transverse one. Additionally, the H-
configuration is completely symmetric while the Z-trap is slightly tilted in the xz-plane
with respect to the central wire segment.

For the wire guide realized by a single straight wire and a transverse bias field the
magnetic field goes to zero in the center of the trap. To avoid Majorana losses an
additional homogeneous bias field B0 = B0êz oriented along the wire can be added
(fig. 3.1a). For the Z- and H-configuration, the wire segments creating the longitudinal
confinement already add a z-component to the field, lifting the trap minimum from zero
field to finite field strengths. Yet, the bias field along z can still be used to control the
field at the trap minimum. For the U-configuration, creating a 3d quadrupole field, the
bias field along z only moves the zero field minimum.

Micro-fabrication of such wire structures on a chip surfaces turns them into an inte-
grated and robust platforms for cold atom experiments. These so-called ‘atom chips’
allow for the trapping of atoms close to the current carrying structures, realizing strong
field gradients without resorting to excessive currents. Especially, the quasi-1d con-
finements discussed in section 2.2 can be realized effectively due to the elongated trap
geometry. For reviews on magnetic micro-traps and atom chips covering the fabrication
process, real wire effects and the different configurations employed see refs. [14, 87,88].

3.1.3. Radio-frequency dressed state potentials

Another advantage of atom chips is that they are particularly well suited to imple-
ment rf dressed state potentials. These potentials arise when strongly coupling the
atomic Zeeman states through an oscillating magnetic field, resulting in a new set of
dressed eigenstates. Depending on the geometry of the coupling, the composition of
these eigenstates can vary in space. Just as for static magnetic traps, a moving atom
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can adiabatically follow these changes and always remain in the same state. This spatial
dependence of the eigenstate structure enables confinement geometries beyond what is
possible with static magnetic fields. In atom chips, dedicated wires carrying rf currents
can, due to their proximity, deliver strong oscillating fields at the position of the atoms.
Furthermore, the superposition of phase-shifted fields from multiple wires allows for a
precise control of the rf field polarization. In the following, we will briefly discuss rf
dressed state potentials and give an example relevant to our setup. For a more detailed
discussion see ref. [89] and for a pedagogical introduction to rf dressed state potentials
ref. [90].

The interaction of an atom subject to a static magnetic field Bstat(r) and a rapidly
oscillating field with an amplitude Brf(r) is described by the Hamiltonian 1

Hmag = gF µB F ·
[
Bstat(r) + Brf(r) cos (ωrf t)

]
, (3.2)

with ωrf being the frequency of the rf field oscillation. Assuming that the spin adia-
batically follows the static field direction we can perform a local rotation of coordinates
to a frame where the spin is always aligned in z-direction. From this we immediately
see that only components of the rf field oriented perpendicular to the local static field,
Brf,⊥(r), are coupling the spin states. Further, going to a frame co-rotating with the rf
field and neglecting the term oscillating at 2ωrf in the rotating wave approximation, we
can diagonalize the local Hamiltonian ending up with the adiabatic potential

Urf(r) = m′F gF µB

√(
|Bstat(r)| − ~ωrf

|gF |µB

)2

+

(
|Brf,⊥(r)|

2

)2

= m′F ~
√

∆(r)2 + Ω(r)2 .

Here, m′F is the quantum number of the new dressed basis. The geometry of the potential
is defined by the local rf detuning ∆(r) and the Rabi frequency Ω(r). The latter is
proportional to the magnitude of Brf,⊥(r) while the first is given by the local energy
difference between the Zeeman splitting and ωrf .

On an atom chip, placing two wires carrying rf currents adjacent to a straight trapping
wire of the kind discussed in fig. 3.1a, we can create a nearly homogeneous rf field at the
location of the trap minimum (fig. 3.2a). The orientation of this field can be controlled
by the relative phase of the currents in the two wires. Setting the phase to π results in a
linearly polarized rf field oriented perpendicular to the chip surface. Together with the
quadrupole field orientation of the static trap in the xy-plane, this leads to a horizontal
double well potential (fig. 3.2). For negative detunings, where ωrf is larger than the
Zeeman splitting in the center of the trap, there is always a double well forming. In
the case of positive detuning, the double well forms at a critical rf field strength, when
Ω(r) overpowers ∆(r). The latter is used in our setup. In this configuration, when the
current in the rf wires is ramped up slowly, the atoms seamlessly cross from the bare
states to the dressed eigenstates such that the trap smoothly transforms from a single
well to a double well.

1As for eq. (3.1), this expression is valid as long as the fields are small enough such that the magnitude
of F remains a good quantum number
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a b

c

d

Figure 3.2.: Rf dressed state potentials on a chip. (a) Schematics of magnetic
field orientations creating the dressed state potentials in our setup. The static current
Iw through the main trapping wire, together with the transverse bias field Bbias and the
longitudinal field B0, creates the quadrupole trapping field Bstat (blue). The alternating
currents Irf in the two rf wires give rise to oscillating fields that add to Brf , oriented along
y perpendicular to the chip surface (red). In the 3d schematics of the field orientations
in the trap center (yellow circle) we see that the rf component perpendicular to the
static field direction, Brf,⊥ (green), decreases when leaving the trap center in x direction
but remains constant when moving along y. The dashed black lines in the inset acts as
guides to the eye, tracing the orientation of the x and y axis. (b) Contour plot showing
the spatial detuning of the rf from the local Zeeman energy splitting, reflecting the bare
harmonic trap. The color map goes from blue (small values) to red (large values). (c)
Contour plot of the coupling strength proportional to Brf,⊥. The spatial structure arises
from the relative field orientations observed in (a). (d) Contour plot of the resulting
adiabatic potential for a positive rf detuning.
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For more information on the different trap geometries that can be realized with rf
dressed state potentials see refs. [89,91–93]. For an analysis of effects beyond the rotating
wave approximation see ref. [94].

3.1.4. Optical dipole potentials

Another way to confine atoms to a defined region of space are optical dipole potentials.
They utilizing the electric dipole interaction of an atom with a light field that is far
detuned from an atomic transition. The following section discusses the topic in broad
strokes. For a more detailed treatment the reader is directed to ref. [95].

An intuitive framework to understand optical dipole potentials is the dressed state
picture, already employed in section 3.1.3, and time-independent perturbation theory.
As the electric dipole moment µe is induced by the field E experienced by the atom, it is
necessary to go to second order in perturbation theory for the leading energy correction.
Assuming a two-level atom this correction is given by

δε =
|〈e|V |g〉|2

εg − εe
, (3.3)

where V = −µeE is the interaction term with the electric field and εg,e are the energies of
the ground state |g〉 and the excited state |e〉, respectively. Considering the full system of
light and atom in the states |g〉 and |e〉, one needs to take the electric field into account.
If the atom is in the ground state, it has no internal energy. The total energy of the
combined state with the light field is then given by εg = n~ω, with ω being the laser
frequency and n the mode occupation. To get to the excited state, the atom needs to
absorb a photon, such that εe = ~ω0 + (n− 1)~ω, where ~ω0 is the energy of the atomic
transition. The energy difference in the denominator of eq. (3.3) is therefore given by
εg − εe = ~(ω − ω0) = ~∆. Using the relation between the dipole matrix element and
the line width

Γ =
ω2

0

3πε0~c3
|〈e|µe|g〉|2,

we therefore obtain for the energy shift

δε =
|〈e|µe|g〉|2

~∆
|E|2 =

3πc2

2ω3
0

Γ

∆
I. (3.4)

For the last equality we averaged over the rapidly oscillating field and inserted I =
2ε0c|E|2 for the intensity of the laser light. The energy obtained in eq. (3.4) gives the
light shift of the atomic ground state. The excited state experiences the opposite shift as
the denominator in eq. (3.3) changes sign. However, as dipole potentials aim to minimize
scattering and therefore work with low saturation, the atom predominantly resides in
the ground state, such that eq. (3.4) can be seen as the potential experienced by the
atom. As the detuning ∆ defines the sign of this potential it determines whether it is
repelling or attractive. For blue detuned light (∆ > 0) the atoms are repelled from
regions of high intensity while for red detuned light (∆ < 0) they are attracted.

For real atoms with many transitions one needs to sum eq. (3.3) over all contributing
lines, taking the different transition matrix elements into account. In the case of alkali
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atoms the fine structure splitting of the D line leads, for linearly polarized light, to the
dipole potential2

Uod(r) =
πc2Γ

2ω3
0

(
1

∆D1

+
2

∆D2

)
I(r) , (3.5)

with ∆D1 and ∆D2 being the individual detunings to the D1 (2S1/2 → 2P 1/2) and the
D2 (2S1/2 → 2P 3/2) line. For circularly polarized light not discussed here, an explicit
dependence on the hyperfine state and the magnetic substructure enters. Similar to
eq. (3.5), and under the same assumptions, the scattering rate of dipole light photons
by the atom can be shown to be

Γsc(r) =
πc2Γ2

2~ω3
0

(
1

∆2
D1

+
2

∆2
D2

)
I(r) .

As Γsc/Uod scales with ∆−1, it is beneficial to go to large detunings and high laser
intensities in order to avoid scattering. Also, traps created from blue detuned light are
advantageous to obtain minimal scattering as there atoms typically reside in regions of
low intensity.

In comparison to magnetic traps optical dipole traps are typically much shallower.
If scattering is meant to be negligible, large detunings and laser powers in the range
of Watts are needed to achieve potentials with millikelvin depths. Further, evaporative
cooling does not work as straightforward as for magnetic traps (see section 3.1.5). To
selectively release the most energetic particles, the trap needs to be ramped down which
can change the shape of the confinement.

An advantageous feature of dipole traps is that, under the right conditions, different
internal states experience the same potential. This opens the possibility to utilize in-
ternal ground state dynamics to a degree not accessible with magnetic traps. Another
striking advantage of optical dipole traps is their flexibility. Laser light can easily be
shaped, superposed and interfered to create complex trapping geometries ranging from
optical lattices [38] or flat bottom box potentials [96–98] up to fully arbitrary 3d arrays
of trapping sites [99]. Section 3.2.3 will discuss how we exploit this flexibility to create a
1d box trap and in section 6.1 a new light shaping setup will be discussed that enables
an arbitrary control over the longitudinal potential of our 1d system.

3.1.5. Evaporative cooling

Apart from trapping, efficient cooling techniques are imperative for the preparation of
cold atomic gases. Beyond the limits of laser cooling, cooling by evaporation is the prime
tool to achieve ultracold temperatures and reach degeneracy. First devised for spin-
polarized hydrogen [100], its implementation for cold gases of alkali atoms represented
the last step towards the experimental realization of BEC [101,102].

Evaporative cooling works through an energy selective removal of particles and consec-
utive rethermalization. The most energetic particles are expelled from the trap, reducing
the average energy per particle such that the gas equilibrates to a lower temperature
(fig. 3.3). For this mechanism to work, the gas needs to be sufficiently ergodic, meaning
that an atom with a certain energy can sample the entire phase space corresponding

2Assuming that all detunings are much larger than the excited state hyperfine splitting.
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Figure 3.3.: Evaporative cooling. Schematic depiction of standard evaporative cool-
ing. Shown is the Maxwell-Boltzmann distribution of particles with the energy ε in a
harmonic trap. Cutting the most energetic particles (shaded area) from a hot cloud (red)
results after rethermalization in a colder distribution (blue). The inset depicts cooling
through rf outcoupling from an harmonic trap.

to that energy, and thermalization needs to proceed fast compared to the evaporation
rate. The cooling efficiency depends on the density of states and therefore on the trap
geometry. Under realistic conditions, the cooling also needs to be faster than any loss or
heating processes limiting the lifetime of the gas. For a semi-classical treatment of evap-
orative cooling see refs. [103,104]. Chapter 4 will discuss how this process translates to a
degenerate 1d Bose gas where thermalization is highly suppressed, which should render
the cooling ineffective.

For magnetically trapped samples, energy selective outcoupling can efficiently be im-
plemented by rf or microwave induced spin-flips to untrapped states. These spin-flips
are driven by oscillating magnetic fields through the interaction term given by eq. (3.2).
Setting the rf frequency to the desired outcoupling energy above the bottom of the
trap opens the potential and lets particles that reach this point transition to untrapped
states (fig. 3.3 inset). For 87Rb atoms in |F = 2,mF = 2〉 either all states within the
F = 2 manifold can be coupled via rf fields or microwave fields can be used to drive the
transition to |F = 1,mF = 1〉 3.

3.2. Experimental setup

Initially designed to investigate Bose-Fermi mixture of 40K and 87Rb , building of the
experimental apparatus started about 10 years prior to the measurements presented
in this thesis. The goal was to combine the low-dimensional trapping geometry of an
atom chip with the physics of Bose-Fermi mixtures. Main features of the setup were
envisioned to be versatile species-selective rf dressed state potentials, allowing for the
implementation of 2d tube-like traps [89], and a high resolution absorption imaging
system working in reflection from the chip surface (see section 3.3.2) [105]. The design
and conception of the setup is described in detail in the theses of the first generation of
students [93,106,107]. The theses of the successive students cover the final construction

3The ground state hyperfine splitting in 87Rb is 6.8 GHz [84] while the for typical parameters in our
setup the Zeeman state splitting in the center of the undressed trap is ∼ 390 kHz (see section 3.2.2).
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and improvements to the setup [108–113].

In the following, a brief overview of the setup and the procedure to create a degenerate
1d Bose gas is given. This intends only to give a broad reference for the measurements
discussed in chapters 4 and 5. For details the reader is directed to the comprehensive
body of theses. Only the newly implemented dipole trap setup will be discussed in full
detail.

3.2.1. Overview

The setup is built around two vacuum chambers (fig. 3.4a and b). A science cham-
ber with good optical access houses the atom chip while an axillary source chamber is
equipped with atom dispensers for Potassium and Rubidium. The two chambers are
linked by a differential pumping stage allowing the science chamber to maintain better
vacuum4. In the source chamber, atoms are gathered from the background vapor in a
standard six-beam 3d MOT. While this source-MOT is loading, the trapped atoms are
continuously pumped through the differential pumping stage and into the science cham-
ber by a resonant laser beam (fig. 3.4a). In the science chamber, they are collected by a
second 3d MOT which is formed in reflection just below the atom chip [114, 115]. The
chip is mounted upside-down on a rod connected to the ceiling of the vacuum chamber
(fig. 3.4d). Inside this rod, just above the downwards facing chip surface, macroscopic
copper wire-structures are placed (fig. 3.4c). Sending current though a U-shaped wire,
in combination with a homogeneous external bias field, creates the quadrupole field for
the second MOT (see section 3.1.2).

After a 10 s collection phase the second MOT is turned off for a ∼ 10 ms long stage of
polarization gradient cooling in the σ+-σ− configuration [82]. Following that, the atoms
are pumped into the |F = 2, mF = 2〉 state for optimal load-over to an intermediate
magnetic trap. This magnetic trap is formed by current flowing in two Z-shaped copper
wires above the chip (fig. 3.4c) and homogeneous external fields (see section 3.1.2). It
provides a much deeper and wider confinement than the final chip trap and is used for
compression and an initial evaporative cooling stage. After about 6 s of evaporation we
obtain a thermal cloud of ∼ 2 · 106 atoms at 1 – 2µK. By ramping down the current in
the Z-shaped wires while sending current through the main trapping wire of the atom
chip, the atoms are finally loaded into the chip wire trap. There, a second stage of
evaporation cools the gas to degeneracy.

For both evaporation stages, rf fields energy-selectively couple atoms to untrapped
Zeeman states mF 6 0. An arbitrary waveform generator5 programmed to output sine
waves of adjustable frequency is connected to the U-shaped wire below the chip, bringing
the rf current close to the position of the trap. During cooling, combinations of linear and
exponential frequency ramps, starting at 15 MHz and ending between 390 and 520 kHz,
continuously eject the most energetic particles from the trap [113]. Alternatively, a
microwave source6 connected to an antenna outside the chamber can be used to drive
transitions to untrapped states in the F = 1 manifold [112].

410−10 mbar, pumped by an ion pump (Varian 150 l/s Star-Cell) and a titanium sublimation pump.
5Tabor Electronics WW1071
6A 6.81 GHz oscillator mixed with a sweepable 0 – 30 MHz source (SRS DS345) or/and a sweepable

1 – 150 MHz source (VFG150).
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Figure 3.4.: Experimental setup. (a) Schematics of the experimental setup showing
the source chamber (lower left) and the science chamber containing the atom chip (upper
right). The MOT beams are depicted as thick red lines while the beam pushing the
atoms through the differential pumping stage is shown as a thin red line. (b) Picture of
the two vacuum chambers. (c) Chip mounting containing the macroscopic copper wire
structures. (d) Mounting rod with the chip on top.

The laser light for cooling, pumping and imaging, tuned close to the F = 2→ F ′ = 3
transition of the 87Rb D2 line, is obtained from a single frequency Ti:sapphire laser7.
Light locked to the F = 1→ F ′ = 2 transition, used to pump atoms that accumulate in
F = 1 back into resonance with the cooling and pumping lasers is generated by a DFB
diode laser8.

3.2.2. Atom chip trap

The atom chip is a microfabricated assembly of gold wires structured onto a silicon wafer
with a thin isolating layer of SiO2 in between [93]. The wires are 10 to 100µm wide and
individually bonded to leads leading outside the chamber. The empty areas in between
the wires are covered in gold to achieve maximum reflectivity. This is important for the
reflective MOT discussed above and the transverse imaging system where the imaging
light is reflected off the chip surface (section 3.3.2). Although the chip is equipped with
two independent main trapping wires both supplemented by two adjacent rf wires, and
three pairs of U-shaped wires, only the ones shown in the schematics given in fig. 3.5
are used in the measurements presented in this thesis. For a detailed layout of the wires
see [109].

As discussed in section 3.1.2 the strong transverse confinement is created by adding the
field of a single main trapping wire with a homogeneous bias field. In our case this wire
is 100 µm wide and carries a current of Iw = 820 mA. The bias field is typically 15.5 G,
forming the trap minimum about 100 µm below the chip surface. For the longitudinal

7Coherent MBR-110 pumped by a Coherent Verdi V18.
8Toptica LD-0780-0080-DFB-1 in a ThorLabs LDM21 mount.
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Iw

x

z

Figure 3.5.: Chip wire layout. Schematics of the chip wires with the arrows indi-
cating the direction of current flow. The elongated atom cloud is shown in red. The
depiction is not to scale and only the wires used in the measurements presented in this
thesis are shown.

confinement, the U-wires shown in fig. 3.5 approximate an H-configuration, with IU =
307 mA and IU = 196 mA flowing through the first and second pair, respectively 9 (see
section 3.1.2). Additionally, a homogeneous bias field along the z-direction is applied to
lift the frequency of the Zeeman energy splitting in the trap center to 390 kHz. The final
confinement has typical trap frequencies of ω⊥= 2π · 2.1 kHz in the two tightly confined
transverse directions and ωz = 2π · 11 Hz in the weakly confined longitudinal direction.

For the dressed trap discussed in section 3.1.3, the necessary oscillating magnetic field
is generated by applying rf currents to two 30 µm-wide wires next to the main trapping
wire (fig. 3.5). To achieve an oscillating field pointing along y, creating a double well
orientated perpendicular to gravity along x, the currents are set to a relative phase shift
of π (see section 3.1.3). Typical currents amplitudes of Irf = 24 mA at a frequency tuned
∼ 30 kHz below the Zeeman splitting in the trap center lead to a fully decoupled double
well for the standard static trap parameters discussed above. The trap frequencies in
each of the wells are typically ω⊥ = 2π · 1.45 kHz and ωz = 2π · 7 Hz. Lower currents
create coupled double wells or deformed single wells.

A limiting factor for our setup are corrugations in the main trapping wire, typical
for atom chips [116, 117]. They lead to imperfect current distributions in the wires
and ultimately to unwanted spatial modulations of the magnetic potential. Moving
the trap further away from the wires diminishes the contribution of short length scale
modulations and allows to select regions along the wire where an unperturbed trap
can be formed. However, this puts constraints on the realizable trap frequencies, such
that the frequencies given above are the upper limit for ω⊥ and the lower limit for ωz
at the chosen position along the wire. The dipole trap setup discussed in section 6.1 is
designed to smoothen the trap modulations, allowing for more flexibility of the magnetic
trap position.

9In fig. 3.5, the first and second U-wire pairs correspond to the left and right U-wires. A difference in
the currents flowing in these pairs allows to move the trap along the main trapping wire. For us, the
optimal position is chosen by finding a region where the potential is sufficiently flat, least perturbed
by wire corrugations.
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3.2.3. Box trap

While being a robust and integrated platform for cold atoms experiments, atom chips
lack the flexibility of optical dipole traps. For the chip design used in our setup a
constraint particularly interesting to overcome is the limitation to harmonic confinements
along the longitudinal axis of the trap. Especially desirable are flat bottom box traps
allowing the preparation of samples with nearly homogeneous density profiles. Such
confinements were previously realized for optically trapped bosonic systems in various
dimensionalities [96–98]. Being closer to the condensed matter systems often inspiring
cold atoms quantum simulations, such traps can enable the straight forward inference of
bulk properties and render the local density approximation unnecessary. For 1d systems
on atom chips, box-like confinements have been realized through local bends in the main
trapping wire [118]. However, this approach is not particularly flexible as the properties
of the trap are defined with the chip fabrication and any extensions to more complicated
geometries require a new chip design. In our setup we therefore opt to augment the
magnetic chip trap with a superposed optical dipole potential. This approach allows to
maintain the advantages of the chip trap, such as rf dressed state potentials and effective
evaporative cooling, while adding flexibility to the longitudinal confinement.

The optical potential is applied by shining light on the atoms from a direction trans-
verse to the longitudinal axis of the trap. We use a blue detuned Gaussian beam10 that
is sent on an exchangeable wire mask target. The mask target is imaged onto the trap
through the objective of the transverse imaging system (see section 3.3.2). It cuts away
the central part of the beam leaving two repelling, steep potential walls at its edges,
thereby forming the box confinement (fig. 3.6a). The length of the box is set by the
width of the mask and the 4.6 fold demagnification of the imaging11. Its wall steepness
is defined by the resolution of the mask imaging. Assuming that any point on the mask is
imaged as a Gaussian intensity spot of width σbox we can convolve an ideal box potential
of length L and height U0 with the effective point spread and obtain

Ubox(z) =
U0

2

[
erfc

(
z + L/2

σbox

√
2

)
+ erfc

(
−z + L/2

σbox

√
2

)]
,

with erfc(z) being the complementary error function. To obtain the full longitudinal
potential experienced by the atoms, the harmonic confinement of the magnetic trap has
to be added, leading to a slight curvature of the box bottom (fig. 3.6b). This limits the
box length to well below 2R, the size of a corresponding cloud in the bare magnetic trap,
as for larger boxes the harmonic trap would dominate. For the measurements presented
in this thesis we therefore use box lengths between 38 and 60µm.

A typical measured density profile of a quasi-condensate trapped in a box confinement
is given in fig. 3.6c. The parameters of the potential can be determined by recording
density profiles for different atom numbers and fitting them with numerically obtained
ground state profiles for a box trap with variable wall height and wall steepness. As
the effective spot size of the transverse imaging system used to measure the profiles is
larger than the expected wall extension it is not possible to precisely determine σbox.

10λ = 767 nm, Toptica DLX 110
11The optical setup was previously used with resonant light. It was designed to selectively pump parts

of the cloud into a dark state for tomographic imaging. More information can be found in [108] and
the supplementary materials of [21].
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Figure 3.6.: Box trap. (a) Schematics of the box trap setup. Blue detuned laser light
is sent on a mask that is imaged onto the atoms. Light is blocked from the center of the
beam forming a box with steep potential walls. (b) Box potential (yellow), harmonic
potential (blue) and their combination (green) for typical experimental parameters U0 =
1.3 kHz, σbox = 1.2 µm, L = 49 µm and ωz = 2π ·7 Hz. (c) Measured quasi-in situ density
profile after 2 ms of expansion. The red line corresponds to the density profile of the
broadned GPE ground state in the combined potential shown in (b). It is obtained from
an imaginary time evolution (see section 2.3.2) and takes the finite imaging resolution
into account.

We therefore assume σbox = 1.2 µm which is the largest value still compatible with the
observed profiles and agrees with the diffraction limit of the box imaging optics of 0.9 µm.
With the magnetic confinement present, we only need wall heights that just surpass the
chemical potential to fully confine the gas in the box. Tuning the laser power such
that U0/h ' 1.3 kHz suffices for typical parameters of the measurements presented in
chapter 5. The low intensities necessary to achieve these shallow potentials, together
with the fact that for our a blue detuned configuration the atoms mainly reside outside
regions of high intensity, assures that scattering is low. For typical trap parameters we
calculate a negligible scattering rate of Γsc = 2π · 10 µHz stemming from the overlap the
of atomic density with the light field at the walls.

Previous implementations of optical dipole traps on atom chips focused only on optical
lattices. They exploited the interference of retro-reflecting the dipole light from the chip
surface [119] or used additional optical elements on the chip [120]. In our setup we would
like to avoid such interference effects. However, the e−2 diameter of the dipole beam
in the image plane is ∼ 500 µm, which is much larger than the 100µm distance of the
atoms to the chip. Therefore, also light reflected from the chip passes the atoms and
interference is inevitable, yet we do not see any unwanted effects from this.

Furthermore, sending a demagnified spot right on the chip surface should not be done
without safety considerations. However, as we only apply very shallow potentials and
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the spot is spread out due to the small incidence angle, the intensity on the chip surface
does not surpass a few mW/mm2, which is far below any damage threshold. For a
detailed study on chip heating effects due to reflected dipole trap light see ref. [121].

A much more versatile dipole trap setup using a digital micormirror device (DMD)
is discussed in section 6.1. It is designed to enabling arbitrary longitudinal potentials,
replacing the mask setup discussed here [122].

3.3. Probing

Various techniques to probe cold atom systems have been developed in the past decades
[85]. Most of them exploit the interaction of atoms with light to gain information about
their spatial distribution. Resonant or off-resonant light may be used for that purpose.
For resonant light one can either detect the amount of photons absorbed by the atoms
(absorption imaging), or directly detect the remitted fluorescence photons (fluorescence
imaging). Using off-resonant light, the measurement of the local phase shift induced by
the real part of the atom clouds index of refraction returns information about the atomic
density distribution (phase contrast imaging). While the latter is interesting for probing
high density samples and fluorescence imaging when single atom precision is desired,
absorption imaging is the most straight forward and easily implementable technique. It
is therefore the only technique used in the measurements described in this thesis.

As the atoms need to be released from the trap and the imaging process demands
multiple scattering events heating up the cloud, absorption imaging is an inherently
destructive technique. This means that the temporal evolution of a single realization
of the system can not be tracked and each picture taken demands a repetition of the
experimental cycle described in section 3.2.1.

Three independent absorption imaging systems are implemented in the experiment.
Before discussing their particularities in detail, the expansion of quasi-condensates after
release from the trap will be described. Finally, a discussion of the most important
measurement techniques used to obtain the results reported in chapters 4 and 5 is given.

3.3.1. Time-of-flight expansion

When the trap is turned off the atom cloud expands and gets accelerated away from
the chip surface by gravity. Due to the tight transverse confinement the wave function
expands radially much faster than in the weakly confined longitudinal direction. There-
fore, let us first discuss the transverse expansion of a single gas. Assuming the atoms
to be in the single particle ground state of the transverse harmonic potential, given in
eq. (2.31), expanding freely after the potential is switched off, we obtain [108]

φ(x, y; ttof) ∝ exp

(
− (x2 + y2)

2a2
⊥− i2~

m
ttof

)
= exp

(
−(x2 + y2)

2σ2
t

)
·exp

(
i
~ttof(x

2 + y2)

2ma2
⊥σ

2
t

)
, (3.6)

with ttof being the expansion time. The last step, separating the absolute value of the

wave function from its phase, uses σ2
t = a2

⊥ +
(~ttof

ma⊥

)2
, giving the width of the wave

function in expansion.
This calculation, however, neglects the role of transverse interactions which can have

sizable effects on the clouds dynamics, as discussed in section 2.2.2. Numerically solving
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the radial GPE for an expanding gas we can investigate these effects (see appendix B).
Figure 3.7a shows the transverse density profile during the initial expansion for typical
parameters of our setup. After less than half a millisecond the central density drops to
a fraction of its initial value. This is reflected in the fast drop of the interaction energy
plotted in fig. 3.7b. All energy initially stored in the interactions is transformed into
kinetic energy in the first ∼ 0.5 ms of the expansion. The repulsive interactions push the
atoms apart and lead to a significant density dependence of the transverse width of the
cloud (fig. 3.7c). This is not captured by eq. (3.6) which is independent of the density.
Assuming the free expansion of a broadened Gaussian, as obtained in section 2.2.2, would
even lead to tighter density distributions at higher 1d densities due to the uncertainty
relation between position and momentum (dashed green line in fig. 3.7c). However, using
the assumptions that the wave function is of Gaussian shape at all times we can obtain
an expression for the width in expansion from simple energy arguments. Reformulating
the time dependent term of σ2

t for the free expansion to explicitly include the kinetic
energy of the unbroadened single particle ground state Ekin = ~ω⊥

2
and replaced it with

Ekin + Eint = ~2

2mσ2 + ~2asn1d

mσ2 for the broadened wave function with σ2 = a2
⊥
√

1 + 2asn1d

we obtain12
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ma⊥
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]
√

1 + 2asn1d . (3.7)

This means that the expanding width scales with density just as the width of the in situ
wave function. Interestingly, it can be shown that for a variational approach using a
broadened Gaussian to calculate the transverse expansion under interactions this expres-
sion provides a solution. It also agrees well with the results of the radial GPE simulations
(fig. 3.7c)13. Note however that the broadening only enters in the absolute value of the
wave function. The phase factor on the right side of eq. (3.6) is unaffected.

Let us now turn to the longitudinal expansion dynamics. As the confinement along the
longitudinal direction is typically much weaker the dynamical timescales are considerably
longer14. Therefore, the initial period of hydrodynamic expansion on the order of 1/ω⊥
is too short to affect the dynamics on the length scales accessible to our imaging. This
means interaction effects can essentially be neglected and the expansion assumed to be
ballistic. As a consequence, features in the recorded density distributions can easily
be connected to properties of the trapped system. This is a major advantage of low
dimensional cold gases working with single or few realizations.

For a single quasi-condensate expanding ballistically for times ttof � 1/ωz, the average
profile does not change significantly from the in situ density distribution 15. However,
the fluctuations present in the gas result in a near-field speckle pattern. This can be

12The expressions for Ekin and Eint in the broadened case are obtained by integrating over the transverse
degrees of freedom for the kinetic and the interaction term of the Hamiltonian given in eq. (2.30).
Equation (3.7) was also found in [123].

13In ref. [124] a similar density dependence of the width in expansion was measured experimentally,
though the interpretation of the results has some shortcomings. No argument was given as to why
it makes sense to compare the scaling of the measured density distribution width in expansion to
the scaling of the in situ wave function width. Further, the expression for the width used was taken
from [125], which reproduces the broadened chemical potential well but deviate significantly from
the width found in [69] and the width obtained from numerical simulations of the radial GPE.

14For the harmonic longitudinal confinement typically ω⊥/ωz ∼ 200.
15For the box trap it would be ttof � L/cπ.
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a b c

Figure 3.7.: Transverse expansion. (a) Evolution of the transverse radial density
distribution after release from the trap for n1d = 70 µm−1 and ω⊥= 2π ·2 kHz, simulated
by numerically solving the radial GPE (appendix B). After 0.3 ms of expansion the
central density dropped to ∼7 % of its initial value. (b) Dynamical transformation of
interaction energy (blue) to kinetic energy (yellow) during the expansion. The total
energy per particle is given in black. (c) Density dependence of the fitted wave function
width after 1 ms of free expansion in the radial GPE (blue). The width obtained from
the broadened Gaussian ansatz (eq. (3.7)) is shown by the dashed black line. If the
interaction during the expansion would not be taken into account, the width would go
down for higher densities, shown by the dashed green line.

understood from calculating the mean field current density in the trapped gas for the
phase-density representation of the wave function [34]

j(z) =
~
m
∂zθ(z)

(
1 +

δn(z)

n1d

)
. (3.8)

When the trap is turned off, this current distribution translates into longitudinal density
fluctuations of the expanding cloud, referred to as density ripples. From eq. (3.8) we
see that these fluctuations are dominated by the gradient of the phase field. The in situ
density fluctuations enter the current density only in a second order term and can be
neglected16. Experimentally these patterns were first observed in [126] for elongated 3d
condensates. Their strength, i.e. the amplitude of the ripple modulations for a given
expansion time, depends on the magnitude of the in situ fluctuation and can therefore
be used for thermomentry, as discussed later in section 3.3.3.

In the case of a pair of gases released from a double well potential (see section 3.1.3) the
overlapping expansion leads to regular matter wave interference along the direction of
the double well separation. Let us assume separable wave functions Ψi(r) = ψi(z)φi(x, y)
with i = 1, 2 indexing the two wells separated by the distance d along the x-axis. All
atoms occupy the transverse single particle ground state (eq. (2.31)) of their respective
well. Calculating the density distribution for a free expansion in transverse directions,

16Note that the influence of the in situ density fluctuations on the final ripple pattern mainly stems
from their modulation of the initial pre-expansion density profile.
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employing the phase-density representation of ψi(z) (eq. (2.5)), we obtain

n(r) = |Ψ1(r) + Ψ2(r)|2

= |ψ1(z)|2|φ1(x, y)|2 + |ψ2(z)|2|φ2(x, y)|2 + 2Re [ψ∗1(z)ψ2(z)φ∗1(x, y)φ2(x, y)]
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Here, we further assumed the expansion time to be long enough such that σt � a⊥ and
therefore σt ≈ ~ttof

ma⊥
. The time dependencies of ψi, φi and ni are omitted for clarity.

From the cosine factor in eq. (3.9) we see that in expansion interference fringes along
the x-direction emerge whose phase is modulated by the relative phase between the
condensates ϕ(z) = θ1(z) − θ2(z). As discussed later in section 3.3.4, this allows for a
direct measurement of the in situ relative phase field which is the central observable for
the recurrence dynamics discussed in chapter 5.

The spacing of the fringes along x is given by

λfs =
2π~ttof

md
.

As the phase factor in eq. (3.6) is not affected by the broadening of the transverse wave
function the fringe spacing is also not influenced by transverse interaction effects. Only
the size of the entire pattern will be affected by σt,n, entering the Gaussian pre-factor
in eq. (3.9). This translates into a slight density dependence of the number of fringes
visible 17.

Note that longitudinally the same density ripple patterns appear as discussed earlier
for a single gas. However, here we observe an incoherent sum of two of these patterns
originating from the two clouds.

3.3.2. Absorption imaging

After expansion the atomic density distribution is detected via absorption imaging. The
cloud is illuminated by laser light resonant to the F = 2 → F ′ = 3 transition of the
87Rb D2 line while a CCD records the amount of light the atoms scatter from the
beam. Characterizing the gain and quantum efficiency of our cameras allows for absolute
intensity measurements lifting the restriction to intensities far below saturation [127].
However, we still only use intensities between 15 and 35 % of the saturation intensity. For
a detailed discussion on the role of the imaging quantization axis, the light polarization
and the effects of stray fields the reader is refereed to ref. [75].

As absorption imaging projects the 3d density distribution of the expanded cloud
onto a 2d image it intrinsically integrates the profile along the imaging axis. Therefore,
different properties of the gas can be explored via different imaging axes, leading to the

17Calculating the number of fringes within the full 1/e2-width we obtain
2
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Figure 3.8.: Illustration of the accessible imaging axes. (a) Schematic depiction
of the expansion of a single 1d quasi-condensate (red) and the orientation of the imaging
axes (dashed lines) with respect to the cloud geometry. The panels perpendicular to the
imaging axes show density distributions integrated along the respective axes. The left
panel shows the perspective accessible to the longitudinal imaging (integrated along the
z-axis), the right panel the one accessible to the transverse imaging (integrated along
the x-axis) and the lower panel the one accessible to the vertical imaging (integrated
along the y-axis). The plotted example distributions are obtained from simulations. (b)
The same for two adjacent 1d quasi-condensate released from a double well potential,
leading to interference patterns visible in the longitudinal and vertical imaging. Figure
adapted from refs. [108,110].

implementation of three independent absorption imaging systems in our setup. They
are oriented roughly perpendicular to each other along the major axis of the trap, as
sketched in fig. 3.8. In the following, each imaging system will be discussed briefly,
focusing on the aspects relevant to the results presented in this thesis. For more detailed
information on the setups the reader is referred to [108,111,113].

In the following discussion note that the values for the imaging resolution used through-
out this thesis are always to be understood as effective. When imaged, the atomic cloud
is generally larger then the depth of field of the imaging system, and additionally gets
pushed through the focal region by the imaging beam. This leads to a smearing of the
point spread function and thereby to an effectively larger spot size. The size of this
effective spot depends on the density via the cloud width, the imaging intensity and
the exposure time. For a detailed discussion of these effects see ref. [75]. Throughout
the thesis the effective spot size in intensity is referred to by the width of its Gaussian
approximation σpsf .
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Figure 3.9.: Schematic of the imaging light paths. (a) Light path of the transverse
imaging system for short expansion times, reflecting from the chip surface. The angle
between the imaging axis and the chip is exaggerated. For longer expansion times the
light path passes below the chip as in (c). (b) Beam alignment for the vertical imaging
system. (c) Beam alignment for the longitudinal imaging system.

Transverse imaging system

This imaging system is aligned transverse to the z-axis of the chip trap i.e. the 1d axis
of the cloud. It is oriented at a 2° angle to the chip surface such that the imaging light
is reflected from the surface to allow for the measurement of clouds after very short
expansion times (fig. 3.9a). For longer expansion times, ttof > 10 ms, the clouds are far
enough from the chip that the imaging light passes below the chip without reflection.
The imaged 3d density distribution is integrated along an axis almost aligned with the
x-direction. Therefore, the observed profiles provide access to density ripple patterns
discussed in section 3.3.1, forming along the 1d axis during expansion. The right panel
in fig. 3.8a shows an example of such a pattern obtained from simulations while later
fig. 3.10a shows examples of measured density patterns. In the case of two gases released
from a double well trap (fig. 3.8b) we observe the same since the wells are separated
along x such that all interference effects are integrated out by the imaging process.

The core of the imaging system is a home built four lens objective with a numerical
aperture (NA) of 0.26. Together with a two lens telephoto combination on the image
side, this system magnifies the image of the observed density distributions by a factor
of 12.4 onto a CCD camera 18. The pixel size in object space is 1.05µm and the field of
view spans 1.07 mm× 0.72 mm, allowing us to observe the falling clouds for up to 12 ms.
An additional adjustable aperture set to a diameter of ∼ 36 mm in the parallel part of the
imaging system limits the effective NA to 0.20 in order to minimize aberrations. This
leads to a diffraction limited intensity spot of width σpsf = 0.9 µm, when approximated
by a Gaussian. Due to the small depth of field resulting from the large NA, the resolution
is drastically reduced by the spatial extension of the cloud and the push through the
focal plane. For typical cloud sizes and imaging parameters we measure an effective spot
size of σpsf ' 2.6 µm from the the minimum position of the density ripple correlations

18Andor DV435-BV-958
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(see section 3.3.3). This signal can also be used to focus the imaging system. While
coarse focusing is achieved by intentionally detuning the imaging light by a few MHz
and minimizing the diffraction effects caused by a dense cloud of atoms [128], the density
ripple correlations provide a more sensitive probe giving discernable signals down to focus
differences of around 10 µm for clouds that extend ∼ 100µm along the imaging axis19.
Further, also the power spectrum of the density ripples can be used for focusing [129].

As the imaging axis is not perfectly perpendicular to the direction of gravity the focal
point found for the standard time-of-flight of 11.2 ms is shifted by 21µm with respect
to the cloud position after ttof = 2 ms, which is the expansion time used for (quasi)
in situ imaging. Also, as the transverse cloud size after this short expansion is much
smaller and the push through the focal plane is not linear the optimal focal point to
minimize the effective spot size will be different. Using an adjusted focus for short
expansion times is however not feasible for the in situ measurements presented in this
thesis (see fig. 3.6c and fig. 5.6) as they also involve the dipole box trap (see section 3.2.3).
Changing the imaging focus would inevitably also change dipole trap focus as they share
an objective. The mask target position on the other hand, which can be used to focus
the dipole trap independently, can only be moved manually. Therefore, the focus of the
transverse imaging system is generally kept aligned to the ttof = 11.2 ms cloud position.
For ttof = 2 ms the slight defocusing leads to an effective spot size similar to the one
obtained for ttof = 11.2 ms even though the smaller cloud width would in principle result
in a better resolution20. Another difficulty when working with short expansion times is
that the reflection of the imaging light from the chip surface leads to a standing wave
pattern at the point of the atoms as well as an additional virtual image that needs to
be accounted for [105]. Hence, all density profiles presented in this thesis that were
measured with short expansion times were rescaled to fit the expected total number of
particles independently measured at the standard time-of-flight21.

The dipole box trap discussed in section 3.2.3 is imaged onto the atoms through
the objective of the transverse imaging system. Therefore, stray light of the dipole trap
would inevitably scatter into the imaging system. As the camera does not have a shutter
and the exposure is controlled by an AOM switching the imaging light, this dipole light
leads to unwanted counts on the CCD. The camera applies a cleaning shift when no
picture is taken, continuously clearing the CCD of stray light counts, however, this shift
is quite slow. It takes 24 ms to completely clear the uncovered part of the CCD. This
means already minuscule intensities around 1 nW/mm2 sum up to counts comparable
to the ones recorded in a typical imaging situation. To avoid the unwanted exposure
of the CCD we use two narrow bandpass filters22 centered at 780 nm. They are placed
right in front of the CCD, spaced ∼ 8 cm apart to minimize reflections between them23.
With these filters no effect of the dipole light on the transverse imaging process can be

19The strategy here is to maximize the g2 contrast Cg2 or to find the smallest minimum position δzmin

for a given expansion time. See section 3.3.3 for a definition of these quantities.
20This was concluded only from simulations as a sensitive measurement of the effective spot size, as

through the density ripples correlations in the case of long expansion times, is not possible.
21Possible non-linearities due to different saturation levels are neglected.
22Semrock SEM-LL01-780-25
23Even though the filters are mounted parallel to each other, most of the dipole light probably hits the

filters at a small angle. For a large separation this causes the light to undergo only a small number
of reflections before exiting the inter-filter cavity and being dumped, leading to a higher total optical
density.
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observed allowing also for very short times-of-flight where the dipole trap is turned off
only a few milliseconds before the picture is taken.

The tilt of the transverse imaging axis with respect to the chip surface is realized
by a tilted mounting of the entire bread board holding the optics and camera. Due
to this the bread board is not as tightly connected to the surrounding experimental
structures, making it more prone to vibrations. To minimize the diffraction structures
entering the absorption images through these vibrations we employ a fringe removal post-
processing technique that calculates optimal background images from all background
images taken [130]. Especially for small atom numbers, where the signal to noise ratio
is low, this technique greatly improves the image quality. It is used primarily in the
measurements presented in chapter 4.

Vertical imaging system

For imaging along an axis (nearly) aligned to gravity the chip poses a major obstacle.
As for the transverse imaging, the imaging light can be reflected from the chip surface,
however, the additional unfocused virtual image obscures the real image. To avoid this,
while still maintaining a near-vertical orientation of the imaging axis (along the y-axis),
we focus the imaging light close to the position of the atom cloud, slightly displaced in
the xz-plane. Thereby, we bypass the atoms before the light is reflected and restrict
atom-light interactions to the beam bounced off the chip surface (fig. 3.9b). For single
quasi-condensates, images taken along this axis show the same ripple patterns as the
transverse imaging system (fig. 3.8a) but for two gases released from a double well trap
the vertical imaging provides access to the full interference pattern (fig. 3.8b).

The optical setup of this imaging system is composed of a single doublet objective
lens and a two lens telephoto combination casting the image onto a CCD camera 24. The
imaging light enters the vacuum chamber through the same objective lens and is fed into
the setup through a 1.5 inch polarizing beam splitter cube. With a magnification of 8.22
we obtain a pixel size in object space of 1.95µm and a field of view of 1 mm×1 mm. Since
the atoms fall towards the objective during expansion the focus needs to be adjusted to
the desired time-of-flight. However, this is complicated by an astigmatism of the optical
setup due to a slight tilt of the imaging light path with respect to the optical axis. As
mentioned before, the tilt is introduced to focus the imaging light beside the atoms,
thereby avoiding the virtual image. Using different features along the x and z-axis to
find the two foci independently we can quantify this aberration and account for it. Along
the x-axis, where we can observe the interference fringes, we use the detuning technique
discussed for transverse imaging system. This works particularly well on clouds showing
interference patterns. When defocused, the atomic density distribution acts as a grating
such that the observed interference contrast depends on the laser detuning [108]. In
focus, however, the contrast is independent of the detuning. Along the z-axis, the
density ripples can be used, as for the transverse imaging system. The foci obtained
from these two methods differ by ∼ 120 µm. From the NA of 0.08 we would expect a
diffraction limited spot size of 2.2 µm, without the astigmatism. In practice, the effective
spot size for the pushed and extended cloud will depend on the chosen focus and the
feature of interest.

24Andor iXon DV887DCS-BV. An EMCCD camera used without the electron multiplier mode.
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The vertical imaging CCD needs to be shielded from stray dipole trap light as well.
As the dipole beam is reflected on the chip surface, some light is scattered from the
etched trenches between the wires and impurities on the chip surface. To prevent this
light from reaching the CCD a shutter is installed right in front of the camera. With the
region of interest on the CCD only about 2 mm wide we are able to use a small aperture
shutter 25 with low vibrations, not affecting the imaging process.

Longitudinal imaging system

The axis of the third imaging system is aligned with the weakly confining axis of the chip
trap. Hence, the imaging process integrates the expanded 3d density distributions along
the z-axis and returns the distribution of particles in the xy-plane. This means that
primarily information about the transverse degrees of freedom are accessible with this
setup. In the left panel of fig. 3.8a we see the transverse Gaussian density distribution of
an expanding quasi-condensate, as given in eq. (3.6). For gases released from a double
well trap interference can be observed. The integration along the 1d axis smears out the
fringes for quasi-condensates with strong relative phase fluctuations and returns high
contrast only for phase coherent samples (fig. 3.8b, left panel).

The imaging system consists of two doublet lenses and a CCD camera 26. Its magni-
fication is 5.3, leading to a pixel size in object space of 2.45µm. The field of view spans
2.51 mm × 1.67 mm allowing us to observe a falling cloud of atoms from its release up
to ∼ 18 ms of expansion time. As the imaging light passes close to the chip (fig. 3.9c)
diffraction effects from the chip mounting distort the images for short expansion times
ttof < 4 ms. Focusing can be achieved by applying the detuning technique discussed for
the other two imaging systems, ideally on a cloud exhibiting interference fringes.

When used in combination with the dipole trap the longitudinal imaging is limited to
ttof < 11 ms due to the light scattered from the chip structures. For shorter times-of-
flights the cleaning shift of the camera is fast enough to clear the region of interest. No
mechanism to avoid the dipole light reaching the CCD is installed.

3.3.3. Density ripple thermometry

As discussed in section 3.3.1, the quasi-condensate fluctuations translate into 1d density
ripple patterns when the clouds expand after their release from the trap. Figure 3.10a
shows the formation of such patterns, recorded by the transverse imaging system. Since
the magnitude of the ripple modulations directly relates to the strength of the in situ
fluctuations (see eq. (3.8)), they can serve as a means of thermometry. This technique
was first developed in ref. [131] and experimentally applied in ref. [132]. It provides a
thermometry signal in situations where the standard method of fitting the expansion of
the thermal background atoms fails due to a negligible thermal fractions or insufficient
expansion time. Also, it directly measures the condensate temperature such that no
assumption of equilibrium between the thermal and the condensed fraction is necessary.

To quantify the observed density modulations we calculate the normalized two-point

25Uniblitz LS6. This shutter takes 0.7 ms to fully open its 6 mm wide aperture.
26Andor DV435-BV-958
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a b

Figure 3.10.: Density correlation measurement. (a) Absorption images of single
quasi-condensates for different expansion times combined in a single image (ttof = 2, 4.4,
6.8, 9.2, and 11.6 ms). The clouds represent independent realizations showing uncorre-
lated ripple patterns. The horizontal fringes visible in the center of the image are due to
diffraction on the chip edge. (b) Two examples of measured g2 functions, with the error
bars giving the 68 % confidence intervals obtained from a bootstrap (appendix C). The
measurements were performed on pairs of strongly coupled gases confined in a box trap,
exhibiting an inferred thermal coherence length of λT = 24.5 µm (blue) and λT = 9.5 µm
(red). The solid lines show the corresponding correlations obtained from simulated data.
A small global offset of 1 – 2 % of Cg2 was added to the measured data to counteract
normalization errors and better show the agreement with the simulated data.

density correlation function

g2(δz) =

∫
dz 〈n(z + δz)n(z)〉∫

dz 〈n(z + δz)〉〈n(z)〉
, (3.10)

where the expectation values 〈 . . . 〉 are taken over many experimental realizations of
recorded profiles n(z). In fig. 3.10b, examples for these g2 functions are shown, calculated
from measured density profiles. A sample size of at least 100 realizations generally
suffices to obtain a reliable signal. These measured g2 functions are then compared to
equilibrium predictions in order to estimate the condensate temperature.

For a homogeneous weakly interacting Bose gas ref. [131] provides an analytic ex-
pression of the ripple power spectrum that can be directly compared to experimentally
observed spectra. However, calculating the emerging ripple patters from numerically
sampled in situ fluctuation (see section 2.3.1) allows to take the inhomogeneous density
profile and the transverse broadening into account. To this end, we generate on the order
of 105 thermal wave functions within the quadratic Luttinger liquid approximation and
propagate them freely for the expansion time ttof (fig. 3.11a). The expanded density
profiles are then convolved with an effective Gaussian point spread function to take the
experimental imaging resolution into account. From the obtained set of smeared out
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profiles the g2 function is calculated in the same way as for the experimental samples
(eq. (3.10)). Figure 3.11b, c and d show examples of the obtained correlations for differ-
ent imaging resolutions, thermal coherence lengths and expansion times, respectively.

From a measured g2 functions the thermal coherence length is inferred by comparing
them to these simulated correlations. This can be achieved by a direct fit, with λT kept
as a free parameter. However, looking closely at the behavior of the g2 function un-
der changes of λT (fig. 3.11c) we observe that the relevant features are the height of the
peak 27 at δz = 0 and the depth of the minimum at δzmin. It turns out that the difference
of these values Cg2 = g2(0)−g2(δzmin), referred to as the g2 contrast, is indirectly propor-
tional to the thermal coherence length, λT = a(0)+a(1) ·C−1

g2
(fig. 3.11e) 28. Extracting the

proportionality factors a(1,2) from the simulated correlations we can therefore estimate
λT from the experimentally observed contrasts. First described in ref. [77], this tech-
nique is faster and more robust than the full fit. It is insensitive to normalization shifts
and other distortions and allows for a fast resampling, necessary to calculate confidence
intervals from a bootstrap (appendix C).

Experimentally, the shot noise of the imaging light enters in g2(0). In fig. 3.10b this
can be observed when comparing the data points at δz = 0 with the the corresponding
simulated data. We therefore use the second point of the measured g2 functions to extract
Cg2 and take this into account in the comparison to the simulated data. The minimum
value g2(δzmin) is extracted from a third-order polynomial fit around the lowest points
to surpass the discreteness of the measured data. Further, experimental shot-to-shot
fluctuations of the total atom number lead to large normalization shifts, as expected
from eq. (3.10). Dividing the experimental g2 functions by 〈N2〉/〈N〉2 removes the
majority component of this shift.

The position of the g2 minimum changes with the effective imaging point spread and
the expansion time, as seen in fig. 3.11b and d. Both longer ttof and larger σpsf shift
δzmin to larger distances (fig. 3.11f). However, δzmin is almost insensitive against changes
in λT which makes it an ideal probe for the effective imaging resolution (fig. 3.11g).
Also, focusing can be achieved by minimizing δzmin, or maximizing Cg2 , as mentioned in
section 3.3.2.

For pairs of gases trapped in a double well potential the same ripple patterns form in
expansion. If uncoupled, the observed pattern results from the incoherent sum of two
independent patterns. In that case, the resulting g

(J=0)
2 relates to that of a single gas at

the same temperature as g
(J=0)
2 = (1 + g2)/2, corresponding to a reduction of Cg2 by a

factor of two. For strongly coupled gases, the phase fluctuations are locked such that the
resulting correlations g

(J=∞)
2 are equal to that of just one of the two. However, as the

common phase fluctuations in two coupled gases are of the same magnitude as the phase
fluctuations in a single gas with the same coherence length, 2〈|ϕc,k|2〉 ' 〈|θk|2〉, and the
expectation value of the squared phase mode amplitudes is approximately proportional
to Cg2 , the correlations in the coupled case are as large as in the uncoupled case, g

(J=∞)
2 ≈

g
(J=0)
2 . Therefore, in both cases the direct proportionality factor between λT and C−1

g2
is

simply given half of that of a single gas, a
(1)
J = a(1)/2.

Note that for the simulated data presented here we used the discretized Luttinger liq-

27The peak height was the observable used for thermometry in [132].
28Numerically we observe that this relation breaks down when the size of the density modulations

emerging in expansion get comparable to the average density.
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Figure 3.11.: Simulated density ripple correlations. (a) Ballistic expansion dy-
namics calculated for a single wave function realization sampled from a thermal state of
the Luttinger liquid Hamiltonian at T = 40 nK (section 2.3.1). While the upper panel
gives the full expansion dynamics, the lower panel shows cuts at ttof = 0, 6, 12 ms (blue,
red, green). In both, the typical imaging resolution is taken into account. (b) Effect
of the limited imaging resolution on the g2 functions. For larger effective point spreads
σpsf the g2 contrast decreases and δzmin shifts to larger distances. (c) Correlations for
different thermal coherence lengths λT . A larger coherence length leads to a smaller g2

contrast. (d) Effects of the expansion time ttof on the g2 functions. (e) Linar relation
between λT and the inverse g2 contrast C−1

g2
. (f) Shift of the g2 minimum position δzmin

with σpsf for different expansion times ttof . (g) Minimum position δzmin over λT for
different σpsf .
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a b c

Figure 3.12.: Extraction of the relative phase field. (a) Absorption image of the
matter-wave interference pattern generated by two 1d superfluids in expansion. The 1d
axis of the gases is aligned along z while the double well separation runs along x. (b)
Selected pixel rows of the interference pattern (blue) shown with the corresponding fits
(red). The dashed red line indicates the position of the fitted most central fringe. Would
the local relative phase be zero this line would coincide with the dashed black line at
x = 0. (c) Relative phase field ϕ(z) extracted from the pattern in (a) by individually
fitting each pixel row. Unphysical jumps > π are removed.

uid, taking both density and phase fluctuations into account (see section 2.3.1). In most
experimentally relevant cases, however, the phase fluctuations dominate the observed
patterns and the density fluctuations can be neglected. A simple stochastic process [51]
generating phase fluctuation patterns for inhomogeneous background densities can there-
fore be used as well to simulate thermal g2 functions.

3.3.4. Relative phase measurement

From the interference term in the density distribution of two expanding quasi-condensates
(eq. (3.9)) we see that the phase of the interference pattern is modulated along the z-axis
by the relative phase field between the two gases, ϕ(z) = θ1(z)− θ2(z). Fluctuations in
the relative phase therefore directly translate into fluctuations of the interference fringe
positions. The vertical imaging system allows us to image this modulation and extract
ϕ(z) (fig. 3.12). For this we individually fit each pixel row along z with a cosine mod-
ulated Gaussian, as shown in fig. 3.12b for three examples. In these fits we extract the
contrast (i.e. the amplitude of the cosine modulation) and the phase, while keeping the
fringe spacing and the Gaussian center position fixed. The fringe spacing is extracted
separately and averaged over the whole ensemble of images taken with the same con-
figuration. The central position is extracted from a separate Gaussian fit of the image
binned along the z-axis.

The ability to extract the entire relative phase field enables us to analyze its spatial
correlations and their dynamics [7, 23, 61]. In this thesis, we are mainly interested in
the phase correlation function, as defined in eq. (2.25) of section 2.1.3. The dynamics
of this correlation function after decoupling two gases trapped in a longitudinal box
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Figure 3.13.: Finite resolution effects on the phase correlation function. Com-
parison of equilibrium phase correlation functions (dashed lines) with the ones obtained
from phase profiles smeared by a finite resolution imaging process (solid lines). The
plot shows the case of two uncoupled gases (blue) and two strongly coupled gases with
lJ = 0.15 · λT (red). The effective imaging resolution is given by σpsf = 0.2 · λT .

confinement is the topic of chapter 5. However, when comparing measured phase profiles
or correlation functions to theoretical predictions, like the thermal correlations given in
eqs. (2.27) and (2.28), we need to consider the finite imaging resolution. As the images of
the interference patterns are subject to a certain resolution limit also the extracted phase
fields are smeared over some effective point spread length σpsf (see ref. [75]). Assuming
this spread to be Gaussian we can take it into account when calculating C(z̄) for states
with Gaussian fluctuations, as in eq. (2.26), and obtain

C(z̄, σpsf) = exp

[
−
∫ ∞

0

dk

π
〈|ϕk|2〉 e−k

2σ2
psf
(
1− cos(kz̄)

)]
. (3.11)

Inserting the equilibrium phase mode amplitudes of two uncoupled gases this gives

C(z̄, σpsf) = exp

[
− 2z̄

λT

(
erf

(
z̄

2σpsf

)
+

2σpsf

z̄
√
π

(
e
−
(

z̄
2σpsf

)2

− 1
))]

, (3.12)

which, for large distances z � σ, approaches the ideal unsmeared form given in eq. (2.27)
(fig. 3.13). Figure 3.14a shows examples for measured phase correlation functions of
uncoupled systems and compares them to thermal fits employing eq. (3.11). Such fits
provides a method of thermometry for the relative degrees of freedom. For coupled
gases in thermal equilibrium (fig. 3.13) or non-equilibrium correlations, eq. (3.11) can
be evaluated numerically.

The effective resolution of the extracted phase profiles is strongly influenced by the
astigmatism of the vertical imaging system discussed in section 3.3.2. The question arises
for which focus the phase fluctuations are optimally resolved. While the relative phase
is a quantity changing along z, a fit of the fringes along x is used to extract it. To find
the optimal focus we measure the phase correlations function of two uncoupled quasi-
condensates in thermal equilibrium for different times-of-flight (fig. 3.14b). The different
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a b

c

Figure 3.14.: Measured phase correlation functions. (a) Two examples for mea-
sured equilibrium phase correlation functions of uncoupled gases. The error bars give the
68 % confidence interval obtained from a bootstrap (appendix C). Fits with eq. (3.12)
are shown as solid lines, returning λT = 47.3 µm (44.7 µm, 49.8 µm) and λT = 18.0 µm
(17.0 µm, 19.0 µm) respectively for the blue and red data points. The confidence inter-
vals of the fit indicated by the shaded areas are obtained as well from a bootstrap. (b)
Phase correlation function for different times-of-flight. (c) Effective spot size extracted
from the data shown in (b) assuming a constant temperature. Again a bootstrap is
used to extract the confidence intervals. The solid green line shows a quadratic fit in-
dicating that the effective focus for the phase extraction lies between the density ripple
focus (dashed line) and the fringe focus (dash-dotted line). The temperature in this
measurement was too high for faithful thermometry therefore the absolute values of the
extracted σpsf can not be trusted.
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expansion times translate into different cloud positions with respect to the foci along the
x and z-axis, as the cloud falls towards the objective. Fitting the phase correlations with
eq. (3.12) keeping σpsf a free parameter we find that the optimal focus for the extraction
of phase profiles lies in between the one obtained from focusing the fringes along x
and the one found focusing the density ripples along z (fig. 3.12c). All measurements
presented in this thesis therefore use this effective focus. Comparing phase correlations
with predictions for thermal equilibrium states, as in fig. 3.14a, we estimate an effective
spot size of σpsf ' 3.0 µm.

For higher temperatures, the finite imaging resolution renders the phase extraction
partially unreliable. With λT no longer much larger than σpsf , large phase fluctuations
on length scales of the resolution limit become possible. If the phase winds close to 2π
or more on such short scales the contrast on the corresponding pixel rows will go to zero
and the fit will locally fail. For the extracted phase profiles this introduces an effective
cut-off for large short range fluctuations. Simulations of the imaging process show that
for thermal coherence lengths below λT ∼ 10 µm the thermometry through fitting the
phase correlation function starts to fail. With typical densities of n1d = 70 µm−1 this
corresponds to a temperatures of ∼ 70 nK. However, temperatures above this limit can
still be faithfully inferred from the contrast distributions, as discussed in the following
section. For phase correlations between points separated by large distances, like the
recurrence signal discussed in chapter 5, overlooking short range jumps of 2π does not
matter.

3.3.5. Contrast distribution thermometry

Another technique to investigate the spatial correlations of the relative phase between
two quasi-condensates is to extract the distribution of interference contrasts. Integrat-
ing the interference patterns obtained from the vertical imaging system along z and
fitting them with a cosine modulated Gaussian, as shown for the individual pixel rows
in fig. 3.12b, returns the contrast C as the amplitude of the modulation. A flat relative
phase field resulting in straight fringes will lead to a high contrast while strong fluctua-
tions in the phase wash out the integrated interference pattern and lead to a vanishing
contrast. Hence, the distribution of observed contrasts contains information about the
degree of phase correlation within the integrated region. Performing the integration over
different length scales adds the spatial component to this observable. Figure 3.15 shows
examples for the contrast extraction (a,b) and the resulting contrast distributions (c).

For two uncoupled gases in thermal equilibrium this full distribution function of in-
terference contrasts was first discussed in refs. [133, 134] and applied experimentally in
ref. [135]. It also serve as a sensitive probe for non-equilibrium dynamics as demonstrated
in refs. [21, 136–138]. However, for the analysis presented in this thesis they only serve
as a means of thermometry. For that we fit the distribution of the squared contrasts
normalized by their mean C2/〈C2〉 with equilibrium predictions obtained from simulated
data. This quantity is experimentally more robust as unwanted effects that reduce the
contrast, such as the angle of the imaging light with respect to the fringe orientation, can
be ignored. A stochastic process is used to obtain single realizations of the phase field in
quadratic approximation [51], with the finite imaging resolution considered by smearing
the e−iϕ(z) factor whose integration over the considered length scale gives the contrast
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a b c

Figure 3.15.: Extraction of interference contrasts. (a) Matter-wave interference
pattern with three integration regions indicated by the shaded areas enclosed in the
dashed gray lines. Integration is performed along the z-axis over the length of s = 9.7,
25.3, and 40.9 µm, respectively. (b) Integrated interference patterns (blue) together
with the corresponding fits (red). The width of the red shaded area indicates the fitted
interference contrast C. The pattern in (a) is summed up and divided by s to allow
for comparisons between the panels and between (a) and (b). (c) Histograms showing
the distribution of the normalized squared contrast C2/〈C2〉 for the set of images from
which the example pattern in (a) is taken. The three panels correspond to the three
integration lengths shown in (b).

(see ref. [108], eq. (3.12))29. Examples for fits of the measured contrast distributions
with these simulated results are presented in fig. 3.16. For a detailed discussion on the
influences of the detection process on the contrast distributions the reader is referred to
ref. [108].

Thermometry via the contrast distributions provides a key advantage over fitting the
equilibrium phase correlation function, as discussed in section 3.3.4. Due to the inherent
integration and the higher stability of the contrast extraction for low fringe visibility
the method is not limited to low temperatures. It therefore allows to estimate the
temperature of the relative degrees of freedom in regimes where the phase extraction is
not reliable anymore. However, as we can see from the fits in fig. 3.16c the confidence
intervals at high temperatures become quite large. This is linked to the fact that λT is
proportional to 1/T (see section 2.1.3), meaning that the relative change in correlation
length gets smaller for higher temperatures. Further, as λT gets small compared to
the used integration lengths the contrast distributions obtained for different integration
lengths become more and more similar.

3.3.6. Balance measurement

An important auxiliary tool for experiments performed in the double well potential is the
measurement of the population imbalance between the two clouds. For this we separate

29The soundness of this phenomenological consideration of the imaging resolution was confirmed by
numerical simulations if the imaging process. Numerical integration was performed using the novel
technique found in ref. [139].
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Figure 3.16.: Examples of contrast distribution fits. Histograms showing the
distribution of the normalized squared measured contrast C2/〈C2〉 for five different in-
tegration length s compared to the corresponding fits (red lines). Three measurements
fitted with different temperatures are presented: (a) T = 43 nK (37 nK, 50 nK), (b)
T = 72 nK (66 nK, 77 nK) and (c) T = 100 nK (79 nK, 123 nK). The values in the
brackets give the confidence intervals obtained from a reduced χ2 fit, further visualized
by the red shaded areas around the fit curves.
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a

b

c

Figure 3.17.: Balance measurement. (a) Atomic density distribution of clouds sep-
arated when the double well trap is turned off. The white boxes indicate the area
integrated to obtain the respective atom numbers N1,2. (b) Imbalance between the
clouds for different current imbalances between to the rf wires 30. The red line shows a
linear fit. (c) Typical histogram of measured balances for a fixed double well configura-
tion. The distribution shows a mean balance of 〈b〉 = 0.011 and a standard deviation of
σb = 0.051. The red line shows a Gaussian distribution with exactly these parameters,
agreeing well with the data.

the clouds after their release from the trap and measure the number of particles in each
well individually. The separation is achieved by ramping down the amplitude of the
dressing rf field in 0.1 ms, just before the static trap is turned off. This brings the the
two clouds in the bare harmonic confinement, off-centered with respect to the minimum
of the trap. In the short time before the switch off they acquire enough momentum to
separate in time-of-flight (fig. 3.17a).

We define the imbalance of the clouds as

b =
N1 −N2

N1 +N2

,

where N1,2 is the number of particles in each of the wells, respectively. For balanced
clouds 〈b〉 = 0, which can be achieved by tuning the relative amplitude of the currents in
the rf wires (fig. 3.17b). However, even when balanced on average the balance distribu-
tion exhibits an inevitably spread. In the case of coupled quasi-condensates this spread
results from intrinsic thermal fluctuations and technical fluctuations. After the decou-
pling process used to initiate the recurring dephasing dynamics discussed in chapter 5
we observe a typical standard deviation of σb ' 0.05. When splitting a single well in
two thermal fluctuations are absent but atomic shot noise needs to be considered [21].

30The parameter ∆rf gives the relative difference of the squared peak-to-peak amplitude of the applied
voltages, translating into a current amplitude imbalance. Due to possible differences in resistance
∆rf = 0 does not equate balanced rf currents.
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4. Cooling through uniform loss

Cooling through a controlled loss of particles, in the form of evaporative cooling, is a
foundational technique in the field of cold atoms. In nearly all experimental setups it
is an essential tool to cool atoms below the limits of laser cooling and to reach degen-
eracy. Its key ingredients are the energy selective removal of particles paired with an
efficient thermalization process (see section 3.1.5). Also in experiments with 1d Bose
gases evaporative cooling serves as the final cooling stage. While in optical lattice setups
the 1d confinement is usually ramped up after the cooling stopped [20, 40, 68], in mag-
netic micro-traps the 1d regime is generally reached through the evaporation process.
On atom chips, the final evaporation segment thus happens when the gas is effectively
1d. However, as discussed in chapter 2 thermalization is strongly suppressed in the
1d regime, rendering standard evaporative cooling ineffective. One would therefore as-
sume that such cooling ceases to work. Nevertheless, in experiments, cooling under the
extraction of particles is observed and cold samples deep in the 1d regime can be ob-
tained [135, 140]. In this chapter we will examine this phenomenon and present a novel
cooling mechanism that neither relies on thermalization nor on an energy selective out-
coupling of particles [28, 29]. This mechanism fills an important gap in the knowledge
of state preparation and the limits of cooling in atom chip setups working with 1d Bose
gases.

The chapter starts with a detailed description of the experimental findings, presenting
measurements of the temperature evolution under evaporation for different experimental
conditions. Further, after investigating the outcoupling process, we discuss the theory of
the novel cooling mechanism and compare its predictions to the experimental observa-
tions. A final discussion interprets the findings while focusing on the puzzeling absence
of atomic shot noise effects in the measured cooling sequences.

4.1. Experimental observation

As mentioned in section 3.1.5, evaporation in our setup is facilitated by coupling atoms
to untrapped spin states through rf or microwave transitions. In the standard cooling
protocol, the final stage of the experimental cycle consists of an exponential rf frequency
ramp reaching a final value a few kHz above the trap bottom, i.e. the Zeeman energy
splitting in the center of the trap. This frequency is then held for 100 – 400 ms. During
this final cooling stage the initially thermal gas of atoms first condenses into an elongated
3d condensate and later transitions into the 1d regime. This transition occurs when both
the thermal energy kBT and the chemical potential µ drop below the energy spacing of
the transverse motional states ~ω⊥ (see section 2.2). Past this point, we observe a further
reduction of temperature under a continuing loss of particles although thermalizing two-
body collisions are expected to freeze out fast (see section 2.2.3).

In order to quantify the cooling in the 1d regime we measure the temperature of a
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Chapter 4. Cooling through uniform loss

Figure 4.1.: Cooling measurements. Temperature over the total number of particle
for different cooling procedures. The green and yellow data are recorded at different
points in time during a 25 ms long continuous rf induced outcoupling of particles from a
harmonic trap with ω⊥= 2π ·2.1 kHz and ωz = 2π ·11 Hz. They only differ in their initial
temperature and particle number. The blue data is obtained in the same way but over
a timescale of 90 ms in a weakly dressed trap. This trap is still a single well but slightly
anharmonic in the transverse directions, with ω⊥' 2π · 1.6 kHz and ωz = 2π · 8 Hz. For
the red data atoms are outcoupled from the same weakly dressed trap via microwave
transitions to the anti-trapped |F = 1, mF = 1〉 state. There, the data points are all
taken at the same point in time but the preceding outcoupling rate was changed. The
inset shows the g2 functions of the density ripples corresponding to the coldest data
points of the blue and red data. They are compared to simulated data corresponding
to the extracted temperatures (solid lines) showing good agreement. All error bars give
the 68 % confidence interval obtained from a bootstrap (appendix C).

single quasi-condensate during the extraction of particles or for different final particle
numbers. Figure 4.1 shows such cooling trajectories, with the temperatures inferred
from the density ripple thermometry method described in section 3.3.3. The trajecto-
ries are obtained from different measurement procedures detailed in the figure caption.
All procedures start from a single 1d quasi-condensate keeping the evaporative cooling
sequence before and over the 3d−1d transition the same in order to limit the observed
cooling effects to the 1d regime. In all cases we observe a clear cooling effect that reaches
down to kBT = 0.14 ~ω⊥ for the coldest measurement. This corresponds to kBT = 0.32µ
showing that temperatures well below the chemical potential can easily be reached.

As thermalizing collisions are strongly suppressed in the 1d regime, one would expect
the dissipation of particles to drive the system into a non-equilibrium state. However,
throughout the whole cooling process the measured g2 functions stay close to their
thermal form, indicating that the state of the gas does not deviate much from, thermal
equilibrium (fig. 4.1 inset)1. This is also observed in the double well potential when

1Only when the particle number drops further, approaching the lowest densities we can resolve, devi-
ations from the thermal form of the g2 start to appear. This behavior was documented in ref. [113]
and is not understood up to now.
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analyzing the correlations in the relative phase field between two independent gases
cooled by the same procedure (see fig. 3.14a). Even for coupled gases the evaporation
process is shown to prepare equilibrium states when performed slow enough [61]. As
phase correlations have been shown to act as sensitive probes for states with non-thermal
mode occupations [23] these observations strongly indicate that the evaporation process
indeed approximately preserves thermal equilibrium.

Another remarkable observation is that, although the cooling procedures differ signif-
icantly between the measurements presented in fig. 4.1, they all seem to show a linear
decrease of temperature with the total number of particles.

4.2. Outcoupling process

To understand the observed cooling behavior we first turn to the outcoupling mechanism
and investigate its peculiarities in the 1d regime. In a 3d system undergoing standard
evaporative cooling, an energy selective extraction is desired, primarily outcoupling the
most energetic particles (see section 3.1.5). However, this does not seem to be the case
in the measurements presented in fig. 4.1, since without efficient thermalization such an
outcoupling would drive the system far from equilibrium.

For a direct measurement of the rf induced extraction of particles in 1d we perform a
pulsed outcoupling from a quasi-condensate and observe both the outcoupled atoms and
the source cloud in a single image (fig. 4.2). Comparing their spatial distribution we find
no indications for energy selectivity. Along the 1d axis the outcoupled atoms show the
same average spatial distribution (fig. 4.2b) and further also seem to exhibit the same
density ripple patterns (fig. 4.2a). This points to a nearly homogeneous outcoupling
mechanism. However, note that in this measurement the rf amplitude was about 4
times larger than in the standard final cooling segment in order to obtain a large enough
signal from the outcoupled atoms. High rf amplidtudes lead to dressing and thereby to
a deformation of the trap such that a direct comparison to the measurements presented
in fig. 4.1 can not be made.

Nevertheless, also calculations of the outcoupling rate Γ support the hypothesis of
a near-homogeneous extraction of particles. This rate is proportional to the overlap
between the trapped and the outcoupled wave function. Let us first consider the most
simplified model of rf outcoupling: the coupling of a single particle in the ground state
of a harmonic potential to the states of a free particle experiencing no potential. There,
Γ is given by the overlap of the trapped Gaussian wave function (eq. (2.31)) and the free
plane wave solutions of the continuum. Figure 4.3a shows Γ in dependence of δ = ωrf−ω0,
the detuning of the rf photon energy ωrf from the transition energy between the atomic
states ω0. For δ < 0, the final continuum state has a positive kinetic energy and Γ is
proportional to the overlap of the corresponding plane wave with the trapped Gaussian,
which decays exponentially. For δ > 0, no final states are available and Γ drops to zero.

The sharp feature at δ = 0 (fig. 4.3a) results in an ideal energy selectivity for this
simplified outcoupling situation. If the rf frequency is set to slightly positive δ, atoms in
longitudinal states (which were not considered in the calculation) with an energy higher
than δ get into resonance with the rf while atoms in lower energy states are not affected
at all. However, experimentally, when outcoupling atoms to states that are insensitive
to the magnetic trap, they still experience gravity which significantly influences their
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Chapter 4. Cooling through uniform loss

a b

Figure 4.2.: Pulsed outcoupling measurement. (a) Absorption image of single re-
alization of an expanded quasi-condensate subjected to a 2 ms rf pulse 2.5 ms before the
trap is turned off. The pulse couples a small amount of atoms to untrapped states such
that they leave the trap earlier and show up below the source cloud on the image. Com-
paring the pattern in the outcoupled cloud with the ripples in source cloud shows clear
similarities, indicating that there is no strong energy selectivity of the outcoupling pro-
cess. (b) Longitudinal density distribution of the source cloud (upper panel, blue) and
the outcoupled cloud (lower panel, red) averaged over many realizations. To avoid any
overlap only the blue and red shaded regions indicated in (a) are used for the averages.
The agreement between the two indicates that atoms are outcoupled homogeneously.
The measurement was performed in a double well potential meaning that the transverse
image in (a) shows the summed signal from two clouds which, however, should not affect
the conclusions.
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a b

c d

Figure 4.3.: Outcoupling rate. (a) Transition rate Γ of an atom in the single particle
ground state of an harmonic confinement with ω⊥= 2π · 2.1 kHz (blue) into a continuum
of untrapped plane waves (red), given in arbitrary units over the rf detuning δ. The dark
gray lines in the inset schematics represent the trap potentials. (b) Transition rate for
the same configuration but under consideration of gravity. The light gray line shows the
curve from (a) for comparison. (c) Density dependence of Γ arising when considering
the repulsion the source cloud exerts on an outcoupled atom. This caluclation also takes
the transverse broadening into account. (d) Γ(n1d) obtained from the calculation in (c)
for δ/2π = 0.5 kHz showing only a small dependence for higher densities.

61



Chapter 4. Cooling through uniform loss

structure. The solutions to the Schrödinger equation in a linear potential are Airy
functions (fig. 4.3b inset). In this case the easiest way to obtain Γ(δ) is to numerically
evaluate the spatio-temporal overlap of the trapped wave function φ(x, y) and the falling
and expanding untrapped state φout(x, y; t) [141]

Γ(δ) ∝
∫ ∞

0

dt e−iδt
∫ ∞
−∞

dx dy φ∗(x, y)φout(x, y; t) . (4.1)

Figure 4.3b shows the resulting rate for atoms trapped in a harmonic potential with
ω⊥ = 2π · 2 kHz coupled to states that get accelerated away from the trap with g =
9.8 m/s2. Due to the linear gravitational potential there are final states available for all
δ, leading to a smearing of Γ(δ) that extends to positive δ. The shift of the maximum
of Γ(δ) can be understood from the shape of the Airy function. The first and largest
Airy maximum is located at a point where the energy of the linear potential lies a bit
below the energy of the state. Therefore, the maximal overlap with trapped Gaussian
is obtained not for δ = 0 but for slightly negative detunings. Also the minor oscillatory
behavior of Γ(δ) for negative δ stems from the Airy shape.

As the longitudinal confinement is much weaker, the motional states along the 1d axis
are spaced dense compared to the transverse energy scales. For harmonic longitudinal
confinements the typical trap frequency for a single gas is ωz ' 2π · 10 Hz, such that
ω⊥/ωz ≈ 200. Therefore, the gravitational smearing of the steep rise in Γ(δ) seen in
fig. 4.3a happens over a broader energy range than typically occupied in a thermal
state. An intuitive way to picture this result is that the timescale on which outcoupled
atoms leave the trap is on the order of 1/ω⊥, which is fast compared to the timescales
of the longitudinal dynamics. Thus, the typical energy differences between atoms are
not resolved leading to a near-homogeneous outcoupling, vastly different from standard
evaporative cooling.

Of course, this picture is incomplete as interactions of the source cloud and the outcou-
pled atoms are not taken into account. Solving the Schrödinger equation numerically 2

to calculate the expansion dynamics of an atom that gets accelerated by gravity and
repelled from the trapped cloud we obtain a density dependence of Γ(δ, n1d) from nu-
merically integrating eq. (4.1) (fig. 4.3c). Such a density dependence can lead to an
energy selectivity of the outcoupling process. For example, with an rf detuning set to
the slope around δ ∼ 0, atoms at the edge of the longitudinal trap where the density is
low are expelled at a higher rate than atoms in the center where the density is highest.
As atoms with a higher energy reach positions further out at the edge of the trap they
have a higher probability of being flipped to an untrapped state. However, when ana-
lyzing Γ(n1d) for rf fields blue detuned from the resonance (δ > 0), corresponding to the
typical experimental configuration, we observe only a minor dependence, negligible for
the central part of the cloud where density does not vary much. Most atoms therefore
experience similar transition rates, which is a situation markedly different from standard
evaporative cooling for which outcoupling is generally much more selective.

All these considerations lead to the conclusion that when outcoupling atoms from
a 1d quasi-condensate a strong energy selectivity is hard to obtain. Even though the

2The radial solver discussed in appendix B can not be used here as the problem is not radially sym-
metric due to gravity. Instead a full 2d split-step Fourier spectral algorithm was employed. For the
trapped state and the initial state of the expansion dynamics the ansatz of an interaction broadened
Gaussian discussed in section 2.2.2 was used.
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outcoupling rate does show density dependencies, they do not allow to selectively address
only the most energetic atoms, especially deep in the 1d regime where the central density
is low. This near-homogeneous outcoupling makes the the measurements presented in
fig. 4.1 even more remarkable as both pillars of standard evaporative cooling, efficient
rethermalization and energy selectivity, are not present. In the following, a theoretical
model will be presented showing that efficient cooling however can still be achieved under
these conditions.

The full experimental situation is even more complex than the one considered in
fig. 4.3c. As we are working with atoms in |F = 2,mF = 2〉, for rf induced outcouling
all five mF states are coupled simultaneously, of which also |2, 1〉 is trapped (see sec-
tion 3.1.1). Atoms leaving the trap via single photon transitions to the untrapped |2, 0〉
state therefore need to pass through this intermediate trapped state. However, observing
the state population3 while cooling we can observe no accumulation or large population
of the |2, 1〉 state. In the microwave cooling data presented in fig. 4.1 the atoms are
directly flipped to the anti-trapped |1, 1〉 state, presenting also a slightly different situa-
tion than fig. 4.3c. Also, deformations of the potentials due to a dressing of the atomic
states (see section 3.1.3) by the outcoupling rf field are not taken into account in the
above calculations.

4.3. Theoretical model

In this section a novel mechanism to explain the observed cooling in 1d quasi-condensates
will be presented [28, 29]. It relies on a reduction in the phonon mode occupations and
energies through an non-selective particle loss. This reduction is driven by a scaledown of
density fluctuations affecting the occupations and by a lowering of the chemical potential
altering the mode energies. If the system is initially in a thermal state and the loss
proceed slower than the mode dynamics, thermal mode occupations are preserved. In
contrast to standard evaporative cooling this mechanism neither requires an energy
selective extraction of particles nor effective rethermalization as each mode is cooled
individually.

In the following we will first discuss the case of a homogeneous system dominated
by phononic excitation. The approach taken is inspired by ref. [142] as it gives a very
intuitive picture of the process. Then, we turn to the experimentally relevant case of
a harmonically trapped gas and compare the measurements presented in fig. 4.1 to the
model predictions. We further discuss the cooling mechanism for particle-like excitations
assuming a Bogolibov dispersion and investigate how well the system can be described
by an equilibrium distribution throughout the cooling process. Also, we consider the
transverse broadening and how it affects the cooling efficiency. In a final section, we
discuss the effects atomic shot noise is expected to have on the process and find a
theoretical cooling limit inconsistent with the experimental observations.

3For this we apply a magnetic field gradient to the expanding clouds separating the different mF states
in a Stern-Gerlach type measurement.
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Chapter 4. Cooling through uniform loss

4.3.1. Loss cooling

First, let us consider the effects of loss on a homogeneous 1d quasi-condensate. The loss
is assumed to be uniform and non-selective in energy such that each particle experiences
the same probability of being extracted from the gas. As our observables are dominated
by the low-energy part of the excitation spectrum, we first consider the Luttinger liquid
model discussed in section 2.1.2. From earlier discussion we know that the governing
Hamiltonian given in eq. (2.9) can be diagonalized by free phononic modes that exhibit
a linear dispersion relation. In thermal equilibrium, for temperatures large compared
to the relevant mode energies kBT � ~ωk, we can assume each mode to contain the
energy kBT . Within each mode this energy is equally distributed between the phase and
density quadrature (see eq. (2.15)) resulting in the expectation values of the squared
mode amplitudes to be given by

g1d

2
〈|δnk|2〉 =

~2k2n1d

2m
〈|θk|2〉 =

kBT

2
. (4.2)

With the Hamiltonian being quadratic the fluctuations of δnk and θk are Gaussian, fully
determined by the second moments given above. They can be visualized by a Wigner
function of the mode as shown in fig. 4.4a.

Let us now consider the effects of a sudden uniform outcoupling of particles reducing
the entire density profile n(z) = n1d + δn(z) by a factor α, such that n(z)→ αn(z). This
reduces both the average density as well as the density fluctuations by this same factor.
From the energy balance in in eq. (4.2) we see that such a quench scales down the energy
in the density quadrature by α2 while the energy in the phase quadrature reduces only
by α. Therefore, the Wigner function gets compressed along the density quadrature and
energy is no longer equally distributed between density and phase fluctuations (fig. 4.4b).
The resulting non-equilibrium state rotates under free evolution leading to phase shifted
oscillations of 〈|δnk|2〉 and 〈|θk|2〉. As the modes do not couple the system does not
return to a thermal state in this description4.

However, when atoms are extracted continuously at a rate γ slower than the mode
rotation the compression is distributed among the quadratures and equipartition is pre-
served (fig. 4.4c). Like for a piece of clay on a potters wheel a weak pressure applied along
one axis leads to a reduced width in both if the rotation is fast enough. Specifically, the
rate needs to fulfill γ � 2ωk as the oscillation between density and phase fluctuations
happens twice as fast as the full mode rotation. The change in energy stored in mode k
can then be expressed by

δEk = − 2γδt
g1d

2
〈|δnk|2〉 − γδt

~2k2n1d

2m
〈|θk|2〉 , (4.3)

with the factor of two in front of the first term stemming from the fact that it is pro-
portional to the squared density mode amplitude. Assuming that eq. (4.2) holds at each
point in time we obtain

δTk = − 3

2
γδt Tk, (4.4)

4See ref. [143] for an experimental observation of similar dynamics resulting from a quench in the
interaction strength.
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a

b

c

Figure 4.4.: Mode rotation and loss. (a) Contour representation of the Gaussian
Wigner function of a single k-mode under equipartition of energy between the density
and the phase quadrature. The axis are scaled such that the thermal state given by
eq. (4.2) is radially symmetric. The thick horizontally oriented arrows represent the
loss which compresses the distribution in the density quadrature. The thin circularly
oriented arrows indicate the rotation of the Wigner function under unitary evolution.
(b) An instantaneous loss quench compressed the Wigner function and leads to an
asymmetric non-equilibrium distribution. Under unitary time evolution the distribution
rotates leading to oscillations in 〈|δnk|2〉 and 〈|θk|2〉. (c) If the extraction of particles
is slow compared to the rotation of the mode the Wigner function stays approximately
symmetric. The compression is distributed over both quadratures and only the overall
width, associated with the effective temperature of the mode, is reduced.
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for the effective mode temperature. This means that the energy in each mode is inde-
pendently reduced at the same rate, thereby preserving the initial thermal distribution
also without effective rethermalization. The resulting time evolution of the overall tem-
perature is therefore given by

T (t) = T0 e
− 3

2
γt = T0

(
n1d(t)

n1d(0)

)3/2

. (4.5)

This cooling effect stems in part from a reduction of the mode energies and a reduction
of the mode occupations. The mode energies are reduced due to the density dependence
of the dispersion relation (see eq. (2.14)) while the mode occupations decrease due to
the continuous reduction of density fluctuations, visualized in fig. 4.4. Although being
based on quite different premises, this cooling mechanism shows similarities to standard
evaporative cooling. In both cases the extraction of particles drives the system away
from equilibrium while a continuous equilibration mechanism counteracts this process.
For evaporative cooling this equilibration stems from thermalizing collisions. For the loss
cooling presented here dephasing drives the redistribution of energy within each mode.

Compared to evaporative cooling, this loss cooling is however limited in its efficiency.
When considering the Lieb-Liniger phase diagram in fig. 2.1 we notice that the cooling
trajectory defined by eq. (4.5) moves the system in parallel to the border between the
quasi-condensate regime and the ideal Bose gas 5. This means, although the process can
lead to lower mode occupations and therefore bring the system closer to the regime where
quantum fluctuations become relevant, it does not bring the gas further into the quasi-
condensate regime with respect to the transition to the ideal Bose gas. Nevertheless, the
thermal coherence length grows as λT (t) ∝ e

1
2
γt, and equivalently the ratio between the

thermal energy and the interaction energy drops kBT/µ ∝ e−
1
2
γt.

Figure 4.5 shows how the scaling found in eq. (4.5) is confirmed by dynamical GPE
simulations (see section 2.3.2). Here, the loss was implemented as an additional dissipa-
tive term −iγ

2
ψ(z) and the initial state was sampled by thermally occupying the known

plane wave eigenmodes. In fig. 4.5c, good agreement is found with the 3/2 exponent
of eq. (4.5) indicating that the loss cooling mechanism survives beyond the low-energy
approximation.

For the homogeneous case discussed here, the relation given in eq. (4.5) translates to
the same 3/2 scaling of temperature with the total number of particles, as N ∝ n1d. In
the following, we will discuss how this mechanism acts in a harmonically trapped system
and compare its predictions to the experimentally observed cooling effect.

4.3.2. Trap effects

The measurements presented in fig. 4.1 are performed in a harmonic longitudinal trap.
To determine the influences of the confinement on the cooling dynamics let us first
assuming all atoms to occupy the transverse single particle ground state, neglecting
the broadening effects discussed in section 2.2.2. In that case, the equilibrium density
profile in Thomas-Fermi approximation is given by an inverse parabola with the central

5This is due to Tn
−3/2
1d ∝ tγ3/2 and the quasi-condensate to ideal Bose gas transsition being defined

by tγ3/2 = 1. Here, γ and t refer to the parameters of the Lieb-Liniger model defined in eq. (2.3)
and eq. (2.4), and not the dissipation rate and time!
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a b c

Figure 4.5.: GPE simulations of the cooling. Figures reproduced with permis-
sion from [141]. GPE simulation of the cooling dynamics in a homogeneous 1d quasi-
condensate subjected to uniform loss. (a) and (b) show the evolution of the total atom
number N and the temperature T in time, respectively. (c) shows the development of
the temperature rescaled to its initial value in dependence of the rescaled average den-
sity. The solid line shows the predicted 3/2 exponent scaling found in eq. (4.5) agreeing
well with the observed temperature evolution.

density scaling as n1d(z = 0) ∝ N2/3, as discussed in section 2.1.2. Therefore, by directly
inserting this relation into the scaling found in eq. (4.5) with n1d replaced by the central
density, we find a linear scaling of temperature and atom number

T (t)

T0

=
N(t)

N0

. (4.6)

However, this naive translation assumes that the mechanism described in the previous
sections is not affected by the inhomogeneous density distribution in the trap, which
needs to be shown.

In Thomas-Fermi approximation, the fluctuations in a harmonically confined gas can
be decomposed by modes described by Legendre polynomials (see eq. (2.17)). The same
argumentation leading to the energy reduction given in eq. (4.3) applies as well for a
homogeneous reduction of an inhomogeneous density profile. But, scaling down the
density uniformly drives the profile away from its equilibrium form as the cloud size is
not reduced while the atom number decreases (fig. 4.6a). To reestablish an equilibrium
form the profile needs to contract, increasing the central density while reducing the cloud
radius R (fig. 4.6b). This contraction preserves the mode occupations but compresses
them spatially leading to a change in the dispersion relation ω′j = ωj [R(t)/R0]−3/2. For
the temperature of the gas, proportional to the mode energy, this results in the same
scaling with R [144]. Assuming the outcoupling process to be slow enough that the cloud
shape adiabatically follows we can separate the incremental temperature changes of the
outcoupling δTout and the compression δTcomp giving

δTout = −3

2
γδt T,

δTcomp = −3

2
γ
δR

R
T =

1

2
γδt T .

For the second equality of the last line we used the fact that the equilibrium cloud radius
scales as R′/R ∝ (N ′/N)1/3 (see eq. (2.16)). Note that, as γ scales down the entire
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a b

Figure 4.6.: Loss dynamics in an harmonic trap. Schematic depiction of the
density profile deformations caused by uniform loss in a harmonically trapped quasi-
condensate. (a) The loss leads to a uniform reduction of the local density resulting in
a profile larger than the equilibrium size for the now reduced number of particles. (b)
Therefore, the system contracts to reach its equilibrium configuration. If the loss rate
is slow the profile adiabatically follows its equilibrium form. The derivation in the main
text considers infinitesimal changes while here the differences are exaggerated for clarity.

density profile the overall number of particles scales down the same way δN = −γδtN .
Adding the two contributions of the temperature change we obtain

δT = δTout + δTcomp = −γδt T ,

which confirms the linear scaling of eq. (4.6) found by assuming the result of the ho-
mogeneous case applies with n1d replaced by the central density. Note that, in contrast
to the homogeneous case, the dispersion relation in the harmonic trap does not depend
on density (see eq. (2.18)). Therefore, cooling only stems from a reduction of the mode
occupation.

Rescaling the measurements presented in fig. 4.1 to their respective initial state values
T0 and N0 we see that the obtained scaling agrees well with the data (fig. 4.7). When
taking a closer look at the loss rates we find that for the fast cooled green and yellow
data sets γ ≈ 2π · 20 Hz ' 2ωj=1, such that the condition of slow outcoupling is barely
fulfilled for the lowest mode. For the blue data set γ ≈ 2π · 12 Hz, which is a bit below
2ωj=1. For the red data set the rate is different for each point but the maximum rate
can be assumed similar to the one found for the blue data 6. Nevertheless, the cloud
form stays close to its equilibrium shape, indicating that the loss does not substantially
drive the system away from equilibrium.

As the cooling in the harmonic trap depends on the energy balance between phase
and density fluctuations and the shape of the average profile, the transverse broadening
will also affect it. As discussed in section 2.2.2, the broadening leads to a distortion
of the inverse parabola profile and to a density dependent interaction constant entering
eq. (4.2). Assuming that the simple translation from the homogeneous case applies,
as for the inverse parabola profile, we can divide the contribution of the broadening
in two parts. First, for the broadened profile the central density does not scale with
N2/3. When inserting the numerically obtained broadened density scaling into eq. (4.5)
we recover a more efficient cooling (fig. 4.8). However, the second contribution, that of

6Unfortunately, in this measurement the rate was not independently determined.
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4.3. Theoretical model

Figure 4.7.: Rescaled cooling data. The measurements presented in fig. 4.1 are
rescaled to their respective initial temperatures T0 and particle numbers N0. The colors
are kept the same.

the modified energy balance, acts in the opposite direction. Considering again the case
of a homogeneous gas, replacing g1d in eq. (2.12) by the density dependent interaction
parameter gn defined through eq. (2.35), we find the modified incremental temperature
change 7

δT = −3

2

(
2 + 6n1das + 5(n1das)

2

2 + 7n1das + 6(n1das)2

)
γδt T . (4.7)

In the 1d limit for n1das � 1 this reduces to eq. (4.5), but for typical initial values of
n1das ∼ 0.6 the additional prefactor decreases the cooling efficiency. However, adding
this effect to the profile distortion described above we find that for typical experimen-
tal parameters the overall discrepancy from the linear scaling is too small to observe
(fig. 4.8).

4.3.3. Non-thermal states

The preservation of a thermal equilibrium distribution throughout the loss cooling dy-
namics discussed above crucially depends on the k-independence of the energy reduction
δEk and the classical fields limit of large mode occupations. Leaving the applicabil-
ity regime of these approximations we expect the loss to drive the system into a non-
equilibrium state as thermalizing collisions are suppressed. In ref. [142] Johnson et al.
calculate the k-dependence of the temperature scaling arising from keeping the quantum
pressure term in the second order Hamiltonian given in eq. (2.8). In momentum space,
the Hamiltonian then reads

HBG =
∑
k 6=0

[(
~2k2

8mn1d

+
g1d

2

)
δn2

k +
~2k2n1d

2m
θ2
k

]
+ H0 .

7The given expression is obtained by expanding gn in powers of n1das and accounting for the different
decrease rates for each term when calculating δEk as in eq. (4.3). Finally, a closed expression can
be found for the resulting series.

69



Chapter 4. Cooling through uniform loss

Figure 4.8.: Cooling under transverse broadening in a harmonic trap. Assum-
ing the scaling of temperature with density obtained in eq. (4.5), but taking into account
the distortion of the inverse parabola profile by the transverse broadening, we observe a
slightly more efficient cooling (dotted gray line). For comparison the ideal unbroadened
linear scaling obtained through n1d ∝ N2/3 is shown by the dashed gray line. Taking
both the broadening effects on the temperature-density scaling given by eq. (4.7) and the
profile distortion into account we see that the two contributions counteract each other
and lead to a marginally less effective cooling (red line). The trap frequencies used here
are ω⊥= 2π · 2 kHz and ωz = 2π · 10 Hz.

As discussed in section 2.1.2 the eigenmodes of this Hamiltonian follow the Bogolibov
dispersion ωk =

√
Ek(Ek + 2µ) with Ek = ~2k2/2m, going beyond the linear phononic

regime for high-k modes. Performing the same calculation as in section 4.3.1 we obtain

δTk = −
3 + Ek

µ

2 + Ek
µ

γδt Tk . (4.8)

Here, δTk does depend on k, resulting in a different temperature evolution for each
mode. For the linear part of the spectrum with k ξ � 1, eq. (4.8) reduces to eq. (4.4),

leading to the phononic e−
3
2
γt temperature scaling found previously. For the high-energy

particle-like excitations in the limit of k ξ � 1, however, the temperature drops only
by a factor e−γt. This means the higher modes are not cooled as efficiently and the
system is driven into a non-thermal state. As mode occupations are conserved this state
can only be described by a generalized form of the standard Gibbs-ensemble [22, 23].
In ref. [142] it was further shown numerically that within a full GPE description the
non-thermal mode occupations obtained from a uniform loss are robust, in contrast to
previous observations that mode occupations are not conserved [145,146].

With our observables dominated by the low-energy, phononic part of the spectrum
these non-thermal states elude our experimental observation. However, in a different
group they observed discrepancies between the temperatures inferred from in situ den-
sity fluctuations and the temperatures obtained through fitting the density profile with
predictions from the Yang-Yang equation of state [147, 148]. They reported the latter
method, which is more sensitive to high-k modes, to give consistently higher temperature
then the first. Numerical studies of an harmonically trapped gas described by a GPE
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Figure 4.9.: Loss induced non-thermal state. Mode occupations 〈b†kbk〉 under ho-
mogeneous loss assuming a Bogoliubov dispersion. The red solid line shows the Bose-
Einstein distributed occupations of the initial state with T0 = 100 nK, n1d = 100 µm−1

and ω⊥= 2π · 2 kHz. The blue solid lines give the occupations after 50 % of the particles
were removed by a slow continuous cooling. The dashed line shows a thermal distribu-
tion at the temperatures obtained from eq. (4.5) for the cooling in the phononic regime.
At higher momenta strong deviations from the thermal state become visible. The k-axis
is rescaled by the healing length of the initial state ξ0.

with homogeneous loss indicate that these observations can indeed be traced back the
non-thermal states induced by the cooling process [149].

Another source for non-thermal occupations is the fact that for high-k modes 〈b†kbk〉 �
1 does not apply and therefore the assumption that in equilibrium each mode hold the
energy kBT is not valid anymore. Figure 4.9 shows the non-thermal mode occupations
after cooling incorporating both the effect described by eq. (4.8) and an initial Bose-
Einstein distribution. However, note that these curves still result from a classical field
approximation which also breaks down at these momenta. A first step towards a quan-
tum mechanical treatment of the loss process and the corresponding cooling effects is
described in the following section.

4.3.4. Shot noise corrections

A crucial detail neglected in all models discussed above is that the loss from an atomic
gas is not continuous as atoms are outcoupled one by one. The smooth loss of ampli-
tude of a classical field does not capture the microscopic granularity of this outcoupling
process. Moreover, one can picture an atom expelled from the gas at a certain location
to leave a ‘hole’, thereby imparting additional fluctuation on the remaining atom cloud
counteracting the cooling process. In ref. [29] a semi-classical model was derived to
describe this noise and quantify its effects on the temperature evolution under uniform
loss. In the following we will shortly review this model and compare its predictions to
the cooling observed experimentally.

We start again from a homogeneous system well within the 1d regime where the
broadening of the transverse wave function can be neglected. Further, neglecting gravity
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Chapter 4. Cooling through uniform loss

and all interactions of the outcoupled atoms with the trapped cloud we assume the
untrapped states to be plane waves. Writing down the coupled equations of motion for
the trapped field ψ̂(z, t) and the outcoupled field we can integrate8 out the latter and
obtain [29]

i~ ∂tψ̂ = − ~2

2m
∂2
z ψ̂ + g1dψ̂

†ψ̂ψ̂ − i~
γ

2
ψ̂ + ς̂ . (4.9)

Here, γ is again the rate of atom loss depending on the overlap between the trapped
and the oucoupled states while the last term ς̂ represents the shot noise contribution
stemming from the discrete nature of the atomic field. Assuming the outcoupled states
to be initially empty, occupied only by vacuum fluctuations, and the outcoupling pro-
cess to be Markovian we find the noise correlations to be linked to the loss rate by
〈ς̂(z, t)ς̂†(z, t)〉 = ~γ δ(z − z′) δ(t − t′). This white noise properties make sense as the
extraction time for a single atom 1/ω⊥ is very short such that the probability of a return
to the condensate through reabsorbing a photon is low.

Expressing the field operator in eq. (4.9) in phase and density fluctuations, again
assuming adiabaticity and focusing on the low-energy phononic part of the excitation
spectrum in classical field approximation, it can be shown that for a slow loss the ratio
between temperature and chemical potential evolves as [29]

kBT (t)

µ(t)
=
kBT0

µ0

e−
1
2
γt +

(
1 − e−

1
2
γt
)
. (4.10)

The first term on the right hand side gives the same scaling as found for the classical
cooling model discussed in section 4.3.1 while the second term stems from the atomic
shot noise and does not depend on the initial state . In the limit t→∞ this term drives
the system into a dissipative steady state where the temperature is set by the chemical
potential kBT = µ (fig. 4.10). This state represents the equilibrium between the cooling
force arsing from the loss and the heating stemming from its discrete nature. Note
however that the final state of the system, for both the classical and the semi-classical
model, is the vacuum with all atoms expelled from the trap. The two models only show
different routs to arrive at this final state.

This hard limit of the loss cooling mechanism should also affect the experimentally
observed cooling. To compare eq. (4.10) with the measured temperature data we rewrite
it to obtain the temperature-density scaling

T (t)

T0

=

(
n1d(t)

n1d(0)

)3/2

+
µ0

kBT0

[
n1d(t)

n1d(0)
−
(
n1d(t)

n1d(0)

)3/2
]
. (4.11)

Again, the first term on the right hand side corresponds to eq. (4.5) found for the
classical case while the second term represents the noise contribution. With the noise
term inversely proportional to kBT0/µ0 it only significantly affects the scaling in cases
where the initial temperature is low compared to the chemical potential. Figure 4.11
shows a comparison between eq. (4.11) and three of the data sets presented in fig. 4.19.

8Under the assumption that the dynamics of interest happen on timescales larger than 1/ω⊥, the time
an outcoupled atom takes to leave the trap

9For the fourth data the degree of discrepancy with the shot noise prediction lies somewhere between
fig. 4.11b and c but qualitatively shows the same behavior.
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Figure 4.10.: Shot noise induced cooling limit. Thermal energy over the chemical
potential during loss cooling in a 1d quasi-condensate. For the classical model discussed
in section 4.3.1 (dotted lines) the system evolves towards kBT /µ = 0 getting more and
more coherent. However, taking the shot noise contribution in eq. (4.10) into account
(solid lines) the system runs into a dissipative steady state with kBT /µ = 1.

As before, we assumed the harmonically trapped system to adiabatically follow the
equilibrium density profile such that the central density scales as N2/3 and we can
replace n1d(t)/n1d(0) by (N(t)/N0)2/3. Effects of the broadening were neglected as we
found them not to influence the scaling significantly. Interestingly, a large discrepancy
between the shot noise model and the data is observed with the classical linear prediction
describing the measured cooling much better. The discrepancy is largest for the data
shown in fig. 4.1a as there the initial state exhibits a temperature of less than half
the chemical potential. For the data in fig. 4.1c kBT0 / µ0 ∼ 1 such that the differences
between the predictions of the classical fields and the shot noise model are small, making
it hard to distinguish them experimentally. Note that measuring kBT < µ for the initial
state alone is no contradiction to the shot noise model as the prior cooling in the 1d-3d
crossover might be more efficient.

The coldest data point in fig. 4.11 reaches down to kBT /µ = 0.32, far below the
expected limit. This is a puzzling result as the introduction of noise through the discrete
extraction of particles seems natural. Up to now no satisfying answer resolving this
contradiction could be found, however possible explanations will be discussed in the
following.

4.4. Discussion

In this chapter we described a novel cooling mechanism dominant in 1d quasi-condensates
subjected to a slow uniform loss of particles. This cooling proceeds without efficient
thermalization channels and does not rely on an energy selective outcoupling of particles,
setting it apart from standard evaporative cooling. In experiments investigating 1d Bose
gases in magnetic traps evaporation is the standard technique to reach degeneracy and
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a b c

Figure 4.11.: Comparison of the measurements to the shot noise prediction.
Measured temperatures for three of the cooling sequences presented in fig. 4.1, (a)
blue, (b) green, (c) red, compared to the classical linear scaling (dashed lines) and
the predictions including the shot noise contribution (solid lines). No agreement with
the shot noise model can be observed while the classical model describes the cooling
behavior very well. The initial states of these measurements show kBT0 / µ0 = 0.41, 0.66
and 1.25, respectively, when taking the transverse broadening into account. The coldest
data point in (a) reaches kBT /µ = 0.32. Note that eq. (4.11) defining the solid lines
does not include the transverse broadening.

the 1d regime. Therefore, this mechanism fills an important gap in the understanding
of the state preparation and the limits of cooling.

The results presented in refs. [28, 29] sparked an interest in the problem and inspired
further studies of the cooling mechanism [142,149–152]. However, the puzzling discrep-
ancy between the experimental observations and the expected shot noise limit described
in section 4.3.4 remains unresolved. In ref. [151] Bouchoule et al. examine the noise
induced cooling limit for generic uniform few-body losses in inhomogeneous systems,
also taking the transverse broadening into account. They find that under broadening
kBT locks to mc2 = n1d∂nµ instead of µ and that for a harmonically trapped gas the
cooling limit reduces to kBT /mc

2 ' 0.75. Yet, the lowest temperatures we observe are
still significantly below this limit. Furthermore, the same group recently reported the
observation of cooling through recombination induced three-body losses where they see
behavior compatible with the predicted cooling limits [152]. However, their initial values
of kBT0 /mc

2
0 are already at the predicted limit and they observe no dynamics in that

quantity. For regular rf induced outcoupling they observe similar behavior as shown in
fig. 4.11, also reaching temperatures below the expected shot noise induced limit [153].

A possible explanation for these discrepancies might be found in the residual energy-
selectivity of the outcoupling process, discussed in section 4.2. Although on the level
of single atoms this energy-selectivity should not lead to an additional cooling force
due to the lack of thermalizing collisions, it might affect the way excitation are created
and annihilated on the level of collective modes [154]. Taking the mode energies into
account, outcoupling events that add an excitation to the system should be positively
detuned by the energy of that excitation while events that remove an excitation should be
negatively detuned. If the rf detuning is set to positive values, on the right hand side of
the resonance shown in fig. 4.3b and c, this would mean that the extraction of excitations
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happens at a higher rate than their creation. Hence, the amount of energy added to the
system would be mitigated, equivalent to a reduced noise contribution. This is related to
the fact that an energy-selectivity in the extraction of particles leads to non-Markovian
memory effects in the bath and thereby to a coloring of the noise correlations [29].
Yet, for the low-energy modes dominating the experimental observables the difference
in detuning for creation and annihilation events is small. It would require a strong
energy dependence of the outcoupling rate to obtain significant dentuning differences,
which in turn seems unlikely as it would lead to large deviation from thermal equilibrium
incompatible with the observations.

A path to further investigate the influence of the outcoupling process would be to
compare how cooling proceeds for a truly uniform extraction of particles. Such a uni-
form outcoupling could for example be realized through two-photon Raman transitions
to untrapped states [155]. There, the only requirement for a homogeneous non-selective
outcoupling rate would be a uniform intensity pattern of the involved laser beams. Fur-
thermore, outcoupling particles at negative rf or microwave detunings10 would test the
assumption that the specific shape or residual density dependence of the outcoupling
rate does not influence the cooling. Tuning the frequency to the other side of the reso-
nance shown in fig. 4.3c realizes a situation where standard evaporative cooling cannot
work, the mechanism presented here however can if the rate is sufficiently uniform.

10Microwave transitions would be the better choice in our setup as for rf tuned to negative detungings
atoms proliferate in |F = 2,mF = 1〉.
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5. Recurrences

Each finite and isolated physical system undergoing dynamics will return arbitrarily close
to its initial configuration after a certain amount of time. This fundamental consequence
of Hamiltonian dynamics, illustrated in fig. 5.1, was first formulated by Poincaré in
1890 [156]. Later the recurrence theorem sparked the seminal debate between Boltzmann
and Zermelo [157, 158] and stimulated a statistical interpretation of the second law of
thermodynamics. For quantum mechanics a similar theorem can be proven stating
that the wave function of an isolated system with a discrete energy spectrum returns
arbitrarily close to its starting point after a finite time [24–26].

As the recurrence timescales for generic many-body systems are astronomically long,
easily exceeding the age of the universe, most of the discussions of this phenomena focus
on fundamental aspects of thermodynamics and statistical mechanics. Experimental
illustrations of the periodicity of the microscopic dynamics are mostly limited to small
systems. The revival dynamics in the interaction of a single atom with a cavity field
[159,160] or the periodic collapse and return of coherence between a few atoms localized
in isolated sites of an optical lattice [161,162] are some of the most prominent examples.
Yet, partial revivals of the initial state were observed also for more complex many-body
systems, in small 1d spin chains realized in ion traps [163] or Rydberg dressed atoms in
optical lattices [164].

For larger systems several problems arise. On the one hand the increasing complex-
ity of the eigenstate spectrum leads to exceedingly long recurrence times prohibiting
their experimental observation. On the other hand it becomes exponentially difficult
to measure the entire state of the system leaving the return of observables as the only
viable recurrence criteria. However, the essential dynamical features of large many-body
systems can often be described by much simpler effective field theories [61]. In these
effective models the complexity of many interacting constituents can reduced to a few
collective modes. If these modes are engineered to be almost commensurately spaced in
energy a recurrence of the observables dominated by these modes can be realized even
in systems of a few thousand particles.

This chapter is dedicated to the observation of recurrences in our model system of two
adjacent 1d quasi-condensates [27]. It starts out with a discussion on the role of the dis-
persion relation in the rephasing dynamics of a multi-mode system and investigates how
the most promising conditions for rephasing can be engineered in our system. Following
that, we describe the experimental protocol devised to observe recurrences, its imple-
mentation and the results obtained. After a general discussion of the measurements a
large part of the chapter is dedicated to the recurrence damping and the quest to find
its primary sources. In the conclusion we review our findings and discuss them in the
general context of quantum simulations.
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Figure 5.1.: Poincaré recurrence theorem. Illustration of the classical recurrence
theorem through the ball movement on an ideal billiard table without friction or pockets.
The dynamics starts in the left most panel and recurs shortly after the instance shown
in the right most panel.

5.1. Dispersion relation and rephasing

The key feature determinating a systems dephasing and rephasing dynamics is the dis-
persion relation of its excitations. It defines the frequency at which modes evolve relative
to each other and therefore after what time their phases realign. In the general case,
the greatest common divisor of all frequencies sets the timescale for the return. For an
arbitrary spectrum this divisor will be extremely small, leading to tremendously long
recurrence times eluding observation. However, if the mode energies are commensurate,
following from a simple dispersion relation, the timescale of a mode realignment can be
greatly reduced.

For the 1d quasi-condensates realized in our setup the dispersion of excitations is
modified by the background density profile n1d(z) which in turn is set by the shape
of the longitudinal confinement. In the standard harmonic trap, the mode energies
are proportional to

√
j(j + 1)/2 , as discussed is section 2.1.2. For low j they are

therefore incommensurate and do not facilitate a recurrence at experimentally accessible
timescales. A detailed discussion of the imperfect rephasing dynamics in the harmonic
trap is presented in section 5.5.

In the ideal case of a homogeneous background density the phonon modes are described
by plane waves exhibiting an equally spaced dispersion. For the hard wall boundary
conditions of an ideal box this leads to eq. (2.14) and the mode energy spacing ∆ω =
cπ/L. Independent of the initial conditions, a recurrence of these excitations occurs
when all of them performed an integer number of rotations nj such that the recurrence
condition

ωj t = 2π nj, (5.1)

is fulfilled. For the equally spaced mode energies of eq. (2.14) this happens at t =
2π/∆ω = 2L/c. At that time the lowest lying mode performed a single turn while the
second one performed two turns and so forth (nj = j).

The augmentation of the atom chips magnetic confinement by the dipole trap de-
scribed in section 3.2.3 allows for the realization of a nearly ideal box potential of vari-
able length. Typical box length lie in the range of few tens of µm and for our parameter
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regime the speed of sound c lies between 1 to 2µm/ms (see fig. 2.6). This brings the
recurrence time well within the experimentally accessible time frame. In the following
we will describe how the discussed rephasing can be realized and observed in our setup.

5.2. Experimental implementation

Although the rephasing condition discussed in the previous section applies for any initial
state and shows up in the density fluctuations as well as the phase fluctuations, its
measurement demands a more sophisticated approach. First, as the fluctuations in a
single gas are not easily accessible a pair of quasi-condensates trapped in a transverse
double well potential is employed. In such a configuration matter-wave interferometry
provides direct access to the relative phase field between the two gases, as discussed
in section 3.3.4. For two uncoupled gases the low-energy dynamics of these relative
fluctuations is governed by a Luttinger liquid Hamiltonian, just like the fluctuations
in a single well (see section 2.1.3). Up to second order they completely decouple from
the fluctuations common to both gases. All considerations on the rephasing of phonon
modes discussed above therefore also apply for these relative degrees of freedom. If
the low-energy approximations holds sufficiently long such that interactions between the
phonon modes can be neglected over the corresponding time scales the observation of
recurrences should be feasible.

Another crucial ingredient to experimentally measure a recurrence is the ability to
create a distinct initial state. In principle, any state evolving under the Hamiltonian
of eq. (2.9), ontop a sufficiently homogeneous background density n1d, will return to its
origin. However, for the experimental implementation it is important to choose a state
that can be reproduced and that provides a large signal at its returns. As our main
observable is the relative phase field ϕ(z), the latter can be achieved by creating a state
with long range phase correlations. This can be realized either by splitting a single gas
in two, as shown in refs. [7, 21] or by suddenly decoupling two strongly coupled gases.
For the measurements presented in this thesis we opted for the decoupling scheme as
it provides a cleaner initial state with less spurious excitations. The intricacies of the
splitting process are discussed in more detail in section 5.2.4.

In the following, the measurement procedure, the obtained results and their interpre-
tation will be presented.

5.2.1. Measurement scheme

To prepare the strongly coupled initial state we directly cool the atoms into a double
well potential with a low enough barrier height to allow for phase locking. The final
stage of evaporative cooling is performed much slower than the cooling into a single
well, employed for the measurements presented in chapter 4. The rf frequency is first
ramped down exponentially over ∼ 30 kHz in 470 ms and then held constant for 400 ms.
This slow cooling sequence assures that no spurious solitons are excited in the process.
It is adapted from ref. [61] where it was shown that the final state created is indeed
consistent with thermal equilibrium predictions of the sine-Gordon model.

At the beginning of this final cooling sequence the optical dipole trap amplitude is
ramped up in 200 ms. The height of the added box walls is ∼ 1.3 kHz and stays unchanged
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after its initialization. It is only turned off together with the magnetic trap when the
gases are released for measurement.

The decoupling of the wells, initiating the non-equilibrium dynamics, is performed
immediately after the cooling rf field is ramped down by increasing the rf current in the
dressing wires from ∼ 20 to 24 mA. In about 2 ms the barrier between the wells is raised
and their separation increased, completely shutting off the tunneling coupling between
the quasi-condensates. As it is not possible to pin down the exact point of decoupling,
all times given in the following are with respect to the middle of this ramp1. The fact
that the decoupling is performed right after the cooling rf field is turned off is essential to
avoid unwanted dynamics. Apart from the dressing rf field, also the cooling rf field exerts
a slight dressing on the atoms which, when turned off, leads to a sudden change in the
coupling strength J , triggering unwanted dynamics in the relative degrees of freedom.
By starting the decoupling ramp right after the cooling is stopped the effects of this
additional quench can be minimized.

After decoupling the evolution of the system is observed through matter-wave interfer-
ometry, as described in section 3.3. Repeating this procedure many times for different
evolution times t after the quench provides multiple independent realizations of the
relative phase field ϕ(z) during the dynamics. From these realizations we are able to
calculate the phase correlation function C(z, z′, t) (eq. (2.25)). As the effect we intend
to measure is global and the system is sufficiently homogeneous in its central region we
calculate an averaged translation invariant from of the phase correlations

C(z̄, t) =
1

nz̄

∑
z̄=z−z′

C(z, z′, t), (5.2)

where nz̄ is the number of distinct pairs of points z and z′ separated by z̄.

5.2.2. Results

The phase correlation dynamics resulting from the described quench protocol in a
L = 49 µm long box trap are shown in fig. 5.2. Initially, the relative phase between
the quasi-condensates is locked exhibiting long range correlations over the whole sam-
ple, as discussed in section 2.1.3. This represents the equilibrium state of the strongly
coupled system shown in fig. 2.3b. With the decoupling quench at t = 0 this state is
projected onto the eigenstates of the uncoupled Hamiltonian and immediately start to
dephase. During the first ∼ 10 ms we observe this dephasing through a decay of long
range correlations and the establishment of a thermal-like state (see green data points
in fig. 5.2c). This completely dephased state, unfolding in a light-cone-like evolution [7],
would represent the end of dynamics for a Hamiltonian with a fully incommensurate
spectrum.

In the case of the box confinement used here however, the mode energies are commen-
surate. Therefore, the excitations start to rephase after the initial complete dephasing.
In fig. 5.2a and b this can be seen around t = 26 and 52 ms. Contrary to the discussion
in section 5.1, the recurrences occur in intervals of

trec =
L

c
,

1Since the time scale of the decoupling ramp is much smaller than than the recurrence time scale this
choice only has negligible effects on the results presented (see fig. 5.4c).
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a

b c

Figure 5.2.: Phase correlation dynamics after decoupling. (a) Evolution of the
averaged phase correlation function C(z̄, t) (eq. (5.2)) in a box trap with L = 49 µm.
(b) Temporal cut of C at z̄c = 27.3 µm. The error bars give the 68 % confidence interval
obtained from a bootstrap (appendix C). The vertical blue and red lines correspond to
the times at which the first two recurrences are expected, trec = L/c and 2trec respectively.
(c) Spatial phase correlations at different times, corresponding to the colored data points
in (b).

indicated by the vertical lines in fig. 5.2b. The reason for this is that at that time, half
way to the full recurrence, the modes rephase to the mirrored initial state ϕ(z)→ ϕ(−z).
While all even modes fully rephase, the uneven modes are half a rotation away from
rephasing leading to this inverted state. However, since the observable C(z̄) is insensitive
to this mirror transformation and the long range correlations in our initial state are not
affected by it we see no difference in this half-way recurrence and the full recurrence at
2trec. For the rest of the manuscript we will therefore make no distinction between them.

It is important to note that the observed return of phase correlation is a global effect;
it does not depend on the specific locations z and z′ at which C(z̄) is evaluated. This
becomes especially clear when looking at the full two-point phase correlations presented
in fig. 5.3. The recurrence uniformly appears over the whole analyzed central region of
the clouds with no significant local substructure. This gives an additional justification
to the use of the averaged phase correlation function of eq. (5.2) which corresponds to a
mean over the diagonals of the data presented in fig. 5.3.

To investigate the scaling of the recurrence time with system size we repeated the
measurement for different lengths of the box potential. The results are shown in fig. 5.4a
for L = 38 – 60µm. As expected, for larger systems the recurrences are shifted to
later times. Fitting a Gaussian to a temporal cut of the phase correlations around the
time of the recurrences (fig. 5.4b) reveals the linear scaling of the recurrence time with
L (fig. 5.4c). Here, the fit is mainly employed to overcome the coarse experimental
sampling in time; however, in section 5.3 a justification for its Gaussian form is given.
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Figure 5.3.: Dynamics of the full two-point phase correlation function. Pre-
sented is the same data as in fig. 5.2 but for each (z, z′) combination within the central
region of the gases. The recurrences can be seen around t = 26 and 52 ms.

The cut distance z̄c = 27.3 µm is chosen such that it is long enough to observe a high
contrast between the recurrences and the dephased state while still being well below the
size of the shortest box traps employed.

From fig. 5.2 and fig. 5.4 we can see that our experimental observations are well
described by a rephasing of phonon modes and that we indeed observe recurrences in
our system.

5.2.3. Non-recurring zero mode

Although we are able to observe high contrast recurrences of phase correlations this
does not mean that in each realization the phase field ϕ(z) fully recurs back to its initial
configuration. Looking at a different observable, the coherence factor shown in fig. 5.5a,
we see no recurrence. It decays during the initial dephasing dynamics and stays zero
from then on. The reason for this is a small random imbalance in the number of particles
in each well. This imbalance originates in the thermal fluctuations of the initial state
and technical fluctuations. The random particle number difference leads to a running
global phase between the wells that accumulates at a different speed for each realization.
It can be described as a population of the k = 0 mode [165], leading to a dynamics that
is not periodic in trec.
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a b c

Figure 5.4.: Comparison of different box length. (a) Evolution of the averaged
phase correlations C(z̄, t) (eq. (5.2)) in box traps of length L = 38, 43, 49, 54, and 60µm
(top to bottom). The time axis is rescaled by the speed of sound c to make measurements
with slightly different mean particle number comparable. (b) Corresponding temporal
cuts of C at z̄c = 27.3 µm. The error bars give the 68 % confidence interval obtained
from a bootstrap (appendix C). The red lines show a double Gaussian fits to the first
two recurrences. (c) Times of the first (blue) and second (red) recurrences extracted
from the Gaussian fits. The error bars again give the 68 % confidence interval obtained
from a bootstrap (appendix C). The dashed line shows the ideal linear scaling while the
green shaded area indicates the uncertainty of the point of decoupling in time.
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a

b

Figure 5.5.: Evolution of the coherence factor and the average interference
picture. (a) Dynamics of the coherence factor 〈cos(ϕ)〉 after decoupling, evaluated
at the center of the trap at z = 0. Due to the near homogeneity of the box trap the
behavior is qualitatively the same over the whole sample. The error bars give the 68 %
confidence interval obtained from a bootstrap (appendix C). The dashed line is a guide
to the eye representing the fully dephased state. (b) Dynamics of the ensemble averaged
interference picture, integrated along the z-axis. The black vertical line separates the
dynamics after decoupling (right) from the average interference pattern of the initial state
(left). As the well separation is increased in the decoupling process, the fringe spacing
in the initial state interference pattern is larger. The color map is adjusted to provide
maximal contrast for the dynamics after decoupling and therefore locally saturates for
the central fringe of the initial state. Due to a small none-zero mean imbalance the
central fringe slightly moves to negative x values during the first 10 ms of the dynamics.
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This global dephasing is also reflected in the evolution of the ensemble averaged in-
terference picture, shown in fig. 5.5b. The straight high contrast fringes of the initial
state decay and do not recur. At the time of the recurrence the fringes return to their
straight initial state but are shifted by the random global phase, destroying the contrast
in an averaged picture.

The phase correlation function C(z̄), however, is insensitive to global phase drifts as it
only depends on differences of the phase. This illustrates the importance of correlations
for our analysis and shows that recurrences or revival effects can be hidden behind a
global phase diffusion.

5.2.4. Common density dynamics

Up to this point, the discussion of the dynamics induced by the decoupling focused on
the relative fluctuations between the two wells. This is due to the relative phase being
our main observable but also since in the ideal case, where only the tunnel strength J is
changed, the common modes stay unaffected in the initial dynamics (see section 2.1.3).
However, as the decoupling process demands a change of the transverse confining po-
tential, spurious effects come into play leading to the common mode density dynamics
shown in fig. 5.6a. At the time of decoupling, density dips are launched from the box
walls in both wells and travel through the gases at the speed of sound (dotted green
lines). One source for these unwanted excitations is a slight change in the transverse
trap frequency of each well, leading to a quench in the interaction strength. As the wells
are separated and the barrier is raised they are also tightened from ω⊥' 2π · 1.40 kHz to
2π ·1.45 kHz. This 4 % difference leads to a change in the equilibrium density profile that
is most prominent at the edges of the system (fig. 5.6c and d), partly explaining the form
of the induced excitations. A second source is a shift of the longitudinal minimum of the
dressed state potential during decoupling. This is caused by the chip wire corrugations
discussed in section 3.2.2 and explains the asymmetry of the density waves observed in
fig. 5.6a.

The effects of both of these sources are much more severe when splitting a single well in
two, rendering this protocol unfeasible in the box trap, though the phase coherent state
created would provide an excellent recurrence signal in the relative phase. In previous
studies performed in an harmonic longitudinal confinement [7,21,23] these common mode
excitations only led to slow breathing and dipole oscillation irrelevant for the short time
dynamics.

As the dynamics in the longitudinal potential are common to both wells, the observed
density waves should have no effect on the recurrences observed in the relative fluctua-
tions. However, since the time the density waves take to traverse the system naturally
coincides with the recurrence time trec = L/c it has to be ensured that the periodic
signal observed in the relative phase correlations can not be influenced by them. To this
end, we simulated the dynamics after decoupling in a GPE simulation (see section 5.4.2)
including the interaction quench at t = 0. The observed common mode excitations look
qualitatively similar to fig. 5.6a but no influence on the relative phase fluctuations could
be found on experimentally relevant timescales.
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Figure 5.6.: Density waves caused by the decoupling process. (a) Dynamics of
the in situ density profile after decoupling, imaged after 2 ms of free expansion. Plotted
is the deviation of the density profile from its temporal mean n1d in relation to the
maximum density in percent, ∆n1d(z) = [n1d(z) − n1d(z)]/max(n1d(z)). The vertical
dashed lines indicate the walls of box. At t = 0, one can see small density waves being
launched from the walls and traveling through the system. The dotted green lines,
sloped at the speed of sound, are a guide to their path. (b) Temporal profile mean.
The slight asymmetry of the profile edges is an artifact of an unwanted image shift in
the CCD. (c) Difference between the equilibrium profiles before and after decoupling,
calculated from an imaginary time evolution of the broadened GPE (see section 2.2.2).
(d) Corresponding density profiles before (solid blue line) and after decoupling (dashed
red line) illustrating that the induced density waves are only a small perturbation.

86



5.3. Theoretical description

5.3. Theoretical description

The observation made in fig. 5.2c, that the dephased state between the recurrences is
experimentally indistinguishable from a thermal state is remarkable as it shows how hid-
den correlations in a seemingly equilibrated system can retain the memory of the initial
state. It illustrates how closed quantum systems will equilibrate on average even though
their dynamics is inherently recurrent [15]. However, the thermal form of the correla-
tions is still surprising as the mode populations after decoupling result from projecting
the strongly coupled initial state onto the modes of the gapless uncoupled Hamiltonian.
A priori there is no reason why this should result in a thermal distribution. Further, any
non-thermality originating from the quench would persist during this initial dynamics
as phonon-phonon interactions should not yet affect the state much. When completely
dephased, such non-thermal states are described by a generalized form of the standard
Gibbs ensemble [22] and can experimentally be detected [23].

Let us therefore briefly return to the analytic description of the ideal box modes
discussed in section 2.1.3 and calculate the post-quench mode occupations by project-
ing the strongly coupled thermal initial state onto the modes of the gapless uncoupled
Hamiltonian. In the new basis this gives

〈b†kbk〉 =
kBTinit

2εk

(
Ek

Ek + 2~J
+

µ

µ+ ~J

)
,

〈bkbk〉 = 〈b†kb
†
k〉 =

kBTinit

2εk

(
Ek

Ek + 2~J
− µ

µ+ ~J

)
. (5.3)

in classical field approximation, with Tinit being the temperature of the coupled thermal
state and εk the linear dispersion of the final Hamiltonian. For a completely dephased
state we can calculate the effective mode temperature kBTk = 〈b†kbk〉/εk from the first
line in eq. (5.3). At large k values the dispersion does not change much during the
quench such that Tk→∞ = Tinit, whereas for low k modes the temperature is closer to
Tk=0 = Tinit/2 (fig. 5.7a). For intermediate k values Tk lies in between these two limits.
Even though the population of modes is clearly non-thermal the finite resolution of the
phase measurement (see section 3.3.4) smears the phase correlation function such that
it remains still close to a thermal form (fig. 5.7b, inset). This explains the thermal C(z̄)
observed between the recurrences in fig. 5.2c.

From eq. (5.3) we can further calculate the full dynamics of the phase correlation
function. Taking the variance of the phase mode amplitude in eq. (2.23), for J = 0 we
obtain

〈|ϕk|2〉 =
1

n1d

µ

εk

[
2〈b†kbk〉 −

(
〈bkbk〉ei2ωkt + H.c.

)]
,

=
2

n1d

µ

εk

[
〈b†kbk〉 − 〈bkbk〉

(
1− 2 sin2(ωkt)

)]
, (5.4)

where for the last step we used the fact that for our initial state the anomalous correlators
are equal. Inserting this result into eq. (3.11) and converting the integral to a sum for a
finite system, we can calculate the time evolution of the phase correlation function. Note
that the factor of two in the exponential time dependence of eq. (5.4) again illustrates
why the obtained signal is periodic in trec = π/∆ω and not the full recurrence time 2trec.
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a b

Figure 5.7.: Mode population after decoupling. (a) Effective mode temperatures
reflecting the occupations given by eq. (5.3) for typical experimental parameters (L =
50 µm, n1d = 70 µm−1, J = 2π · 3 Hz). (b) Actual occupations for Tinit = 50 nK and the
parameters used in (a). The solid red and green lines show thermal distributions for Tinit

and Tinit/2, respectively. The inset shows the corresponding phase correlation functions
taking the experimental imaging resolution into account.

Expanding eq. (5.4) for short times around the recurrence at ωkt = π nk, with nk being

an integer, gives a quadratic time dependence in first order, 〈|ϕk|2〉 = a
(0)
k −a

(1)
k t2+O(t4),

with a
(i)
k being the k-dependent expansion coefficients. Using this expansion to calculate

the temporal evolution of the phase correlation function in the vicinity of the recurrence
shows that C(z̄, t) is given by a product of Gaussians with k-dependent widths. As a
product of Gaussians is again Gaussian the heuristic fits employed in fig. 5.4 are well
justified.

Calculating the evolution of C(z̄, t) over longer times reveals interesting finite size
effects. Additional features appear between the recurrences when analyzing the correla-
tion dynamics between two specific points z, z′, without averaging over multiple points
that fulfill z̄ = |z − z′|. The blue line in fig. 5.8b shows an example of these features
for a specific choice of z, z′. At t0 = |z − z′|/2c the light-cone-like spreading of de-
phased correlations reaches the distance between the two points and the initial decay
of correlations stops; later, at trec = L/c the global recurrence occurs. In between, at
t1 = |z1 + z2 − 2zB|/2c, where zB is the point of the closest boundary, we see a dip in
the correlations which repeats itself at trec − t1. This effects is best understood within
the picture of correlated quasi-particle pairs that are created locally in the quench and
traverse the system during dynamics [166]. Figure 5.8a shows a schematic of their tra-
jectories and explains how their reflection on the boundary of the system leads to the
observed features. Of the pair marked in yellow, one quasi-particle travels to the right
reaching z′ after t1 while the other first travels to the left, gets reflected off the wall, and
then reaches z after t1. As this folded light-cone brings quasi-particles that originated
together to z and z′ one would expect a peaked correlation feature. However, due to the
Neumann boundary conditions imposed by the hard walls the reflected quasi-particle
picks up a π phase shift at the wall, leading to the observed dip. Such boundary induced
correlation features are discussed in the literature on post-quench dynamics in finite

88



5.4. Damping

a b

Figure 5.8.: Finite size effects in the phase correlations. (a) Schematics of the
quasi-particle propagation after the decoupling quench in an ideal box trap with respect
to the two point z = L/4 and z′ = L/2 chosen asymmetrically around the center. The
green lines show a quasi-particle pair originating in between z and z′ and reaching them
after t0 (dashed black line). The yellow lines indicate a pair of quasi-particles that
simultaneously pass the points at t1 (solid black line) after one reflection. Both pairs
return to their mirrored origin (z → −z) after the recurrence time trec (dash-dotted
black line). (b) Corresponding temporal evolution of the two-point phase correlations
C(z, z′, t) (blue) compared to the evolution of the averaged phase correlations C(z̄ =
|z − z′|, t) (red) (used parameters: L = 50 µm, T = 40 nK, n = 70 µm−1).

spin-chains where they are sometimes called ‘traversals’ [167,168].
In the experiment, the finite wall steepness and the finite optical resolution gener-

ally wash out these dips. This explains why no additional features can be seen in the
unaveraged full two-point correlations shown in fig. 5.3.

5.4. Damping

The dynamics predicted by the quadratic model of the ideal box discussed above is
completely periodic in trec, it entails no damping of the recurrences. Nevertheless, the
measurements presented in fig. 5.2 and fig. 5.4 do show a distinct recurrence damping.
The first recurrence does not reach the level of correlation in the initial state and the
second one is damped even further. A third recurrence might have been observable in
some of these configurations but was not investigated due to the long measurement times
necessary2. However, in a single high density measurements with coarser time resolution
we managed to observe an albeit faint third recurrence, as shown in fig. 5.9.

For the ideal system an exactly equally spaced spectrum and a free evolution of phonon
modes lead to phase correlations that reproduce themselves till eternity. To investigate
why the experimental realization differs from this ideal situation and what the leading
damping mechanisms are we increase the initial temperature of the system by intention-

2For a typical measurement like the one presented in fig. 5.2 we record at 28 different points during
the evolution and additionally perform a balance (section 3.3.6) and density ripple measurement
(section 3.3.3). For each data point we repeat the experiment 300 times to obtain the necessary
statistics. This demands 9000 runs of the 25 s long experimental cycle leading to a total measurement
time of over 60 hours.
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b

Figure 5.9.: Observation of a third recurrence. (a) Evolution of the averaged
phase correlation function C(z̄, t) (eq. (5.2)) in a box trap with L = 49 µm measured for
up to 94 ms. (b) Temporal cut of C at z̄c = 27.3 µm with the error bars giving the 68 %
confidence interval obtained from a bootstrap (appendix C). The vertical lines indicate
the expected recurrence times. Due to the higher central density of 101µm−1, leading
to a larger speed of sound, the recurrences occur slightly earlier than in fig. 5.2.
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Figure 5.10.: Recurrence signals for different temperatures. Temporal cut
C(z̄c = 27.3 µm, t) for six different effective temperatures (a) Teff = 43 nK, (b) 70 nK,
(c) 72 nK, (d) 79 nK, (e) 85 nK and (f) 100 nK. The error bars give the 68 % confi-
dence interval obtained from a bootstrap (appendix C). The solid lines show the double
Gaussian fits employed to extract the recurrence heights (eq. (5.5)).

ally deoptimizing the evapoartive cooling process in the Z-trap. The resulting recurrence
signals are shown in fig. 5.10. For higher temperatures the damping increases signifi-
cantly, until around Teff ' 100 nK the recurrences are fully damped. The temperatures
given are extracted from the full distribution functions of interference contrasts (see sec-
tion 3.3.5) around t = trec/2 in the fully dephased state3. They represent an effective
measure since the mode occupation of the relative degrees of freedom are not expected
to be thermal, as discussed in section 5.3. To isolate the temperature dependence of
the damping from its dependence on density all measurements presented in fig. 5.10 are
performed at similar central densities of n1d = 74 – 79 µm−1.

As for the extraction of the recurrence times shown in fig. 5.4 the fit function used in
fig. 5.10 is a superposition of Gaussians, motivation by the discussion in section 5.3

f(t) = Cbase +
2∑
i=1

C
(i)
fit e

− (t−i·trec)2

2σ2
i . (5.5)

However, to stabilize the fit for the bootstrap procedure (appendix C) in the cases of low
recurrence amplitude, some parameters were fixed. The recurrence time trec was first

3The interference pictures of the four points in time closest to t = trec/2 are combined in this analysis
to obtain a better estimate of the effective temperature. The fits shown in fig. 3.16 correspond to
three of the measurements presented in fig. 5.10. As discussed in section 3.3.4, the spatial decay of
the phase correlations does not allow for a reliable thermometry at such high temperatures.
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separately extracted from an unrestricted fit 4 while the amount of base correlation Cbase

in the fully dephased state (zero line of the Gaussian fit) was obtained from averaging

over the data points around t = trec/2, 3trec/2 and 5trec/2. This means only C
(i)
fit and σi

in eq. (5.5) are extracted from the fit. With these restrictions the fitting is stable for all
investigated temperature sets and virtually all bootstrap realizations.

There are several sources of damping that contribute to the decay of the recurrence
signal. In the following we will first discuss the different damping mechanisms and
further try to disentangle their contribution to the observed decay by comparing the
experimental results with the predictions of different theoretical models.

5.4.1. Sources

The damping sources can be classified in trivial sources stemming from experimental
imperfections and fundamental sources related to many-body processes. A prime source
of trivial damping is the spread in atom number of the experimental samples. Each
realization inevitably has a slightly different number of particles, which leads to a differ-
ent speed of sound and therefore to a different recurrence time. The phase correlation
dynamics extracted from many realizations is therefore averaging over all these slightly
displaced recurrence signals, reducing the observed recurrence height. Typical standard
deviations of the number of particles are around 15 % of the average. Due to the weak
density dependence of the speed of sound for higher densities (see fig. 2.6) this translates
to only a ∼ 5 % spread in c for the investigated parameter region. By post-selecting for
realizations with similar atom number this effect can be further reduced but never erad-
icated due to the limited statistics available5. Another source of spread is the imbalance
in the number of particles between the wells discussed in section 5.2.3. The occupied
k = 0 mode can also be understood as a difference in speed of sound in the two wells
which leads to a coupling between the common and relative degrees of freedom, as dis-
cussed in section 2.1.3 and ref. [60]. With the common degrees of freedom being in a
thermal state this coupling also leads to a decay of the recurrence signal.

The second major source of trivial damping is the imperfect box potential. Both the
residual longitudinal harmonic trap and the finite steepness of the walls (see section 3.2.3)
distort the equally spaced dispersion relation of the perfectly homogeneous system. This
leads to a relative detuning of the phonon mode oscillations away from the recurrence
condition of eq. (5.1) and thereby reduces the height of the recurrence signal.

Only a minor role is played by the quadratic part of the Bogoliubov dispersion which
also leads to unequal energy spacings in the spectrum. Due to the limited contribution
of high energy modes to the dynamics and the finite imaging resolution our observations
are always dominated by the linear part of the dispersion relation. Also the total loss of
atoms over the measurement time, amounting to ∼ 5 %, should only contribute weakly
to the damping. This loss stems from three-body recombinations, technical noise and
collisions with background gas [109], all leading to an immediate removal of the involved
particles from the trap. Auxiliary measurements in uncoupled equilibrium systems show

4Meaning that all parameters in eq. (5.5) are fitted together. Only for the hottest data set in fig. 5.10
the recurrence time predicted by the Luttinger liquid model was used due to the low experimental
signal.

5For the analysis presented in this chapter we generally disregard the lowest and highest ∼ 15 % in
atom number for each data point.
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no significant heating over the investigated time scales, indicating that the loss does not
substantially affect the dynamics. As discussed in section 3.2.3, also the scattering of
dipole trap photons can be completely neglected.

Processes that go beyond dephasing or loss are of greater interest. They necessitate
scattering channels that allow for the redistribution of momenta or phonon-phonon in-
teractions mediated by higher-order terms in the 1d Hamiltonian. However, as discussed
in section 2.2.3, both thermalizing two-body collisions and three-body processes involv-
ing virtual excitations of transverse excited states are predicted to be negligible on the
observed timescales. Even though for T = 100 nK, corresponding to the hottest mea-
surement in fig. 5.10, the rate of thermalizing two-body processes rises to Γ2b = 2π ·7 Hz,
the resulting thermalization time scale is still much slower than the recurrence damping,
which appears to happen in less than 20 ms. This leaves higher-order terms within the
1d description as a possible non-trivial source of damping. As discussed in section 2.1,
terms going beyond the quadratic approximation lead to phonon-phonon interactions
and the coupling of common and relative degrees of freedom [63–65]. Numerically, these
processes can for example be studied by solving the GPE [64, 145, 146], however, their
experimental observation is challenging. Due to its fragility, the recurrence signal can
pose as a sensitive experimental probe for these otherwise elusive processes. In the fol-
lowing, we will try to unveil the source of the observed damping and show that it can
indeed be linked to phonon-phonon interactions.

5.4.2. Theoretical modeling

To separate the trivial from the non-trivial sources of damping we first simulate the
dynamics of the relative degrees of freedom on the level of the inhomogeneous Luttinger
liquid, include the damping due to the spread of initial conditions and the imperfect
experimental box potential. Then, we numerically solve the GPE for two coupled quasi-
condensates, which includes higher-order terms beyond the quadratic approximation.

Luttinger liquid description

To be able to take the inhomogeneous background density and the transverse broadening
effects into account we use the method outlined in section 2.3.1 to numerically calculate
the thermal initial state of the strongly coupled system and propagate it with the equa-
tions of motion of the uncoupled Hamiltonian. This assumes the quench to J = 0 to be
instantaneous. In the experiment, the raising of the barrier between the wells proceeds
over a time scale of ∼ 2 ms with the actual decoupling happening even faster. Therefore,
on the time scales of the recurrence dynamics the tunneling switch off is fast, justifying
this simplification.

In fig. 5.11 the results of the calculations are presented. The effects of a spread in
atom number or imbalance and the effects of a finite box wall steepness are investigated
separately. Figure 5.11a and c show that the averaging over realizations with different
initial conditions indeed leads to a significant damping of the recurrence height. For
these curves the phase correlations are calculated for different atom number and imbal-
ance values and are then combined in a weighted average according to the respective
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distributions shown in fig. 5.11b and d 6. In the case of the spread in atom number the
single realizations recur perfectly but at different times, leading to an apparent damping
in the average. The cut tails of the Gaussian distributions in fig. 5.11b reflects the ex-
perimental post-selection in atom number discussed in section 5.4.1. For the spread in
imbalance the individual realizations all recur at the same time but the different speeds
of sound in the two gases prevents a perfect rephasing also for a single realization. How-
ever, as the difference in the speed of evolution simply adds another low frequency to
the problem we find a beating pattern for longer times that leads to a nearly perfect
recurrence after 2L/|c1 − c2|, where c1,2 are the speeds of sound in the two wells (see
figure 3 in [60]) 7.

In fig. 5.11e we see the effects that finite box walls have on the recurrence signal. Apart
from the expected damping we also notice a small shift of the recurrence time which is
linked to the growing length of the density profile for the smeared out box walls. The
density profiles used in these calculations are ground state solutions of the broadened
GPE for the potential given in section 3.2.3, numerically obtained from an imaginary
time evolution (see section 2.3.2). Their edge shape can be seen in fig. 5.11f. As the
chemical potential is lower than the box wall height the change in the density profile is
more pronounced for z > 0.

Figure 5.11g shows how all these damping processes combined act for experimentally
relevant parameters at different initial temperatures. As the dispersion relation is linear,
one might expect that a higher temperature does not affect the damping. However,
since the recurrences get narrower with increasing temperature all effects that prevent
a perfect rephasing have more severe consequences on the recurrence height, leading to
the observed temperature dependence (fig. 5.11h). In this calculation we also included
the residual harmonic potential of ωz = 2π · 7 Hz, not included in the case of fig. 5.11e
and f. The harmonic potential counteracts the shift in recurrence time observed in
fig. 5.11e, explaining why we still find good agreement with the ideal recurrence time
trec = L/c in fig. 5.4. Although the trend of high temperature states being damped faster
is reproduced, the trivial damping sources on the level of the Luttinger liquid description
cannot qualitatively reproduce the experimental findings.

The exact value of the initial coupling J does not play a crucial role for these calcula-
tions. We therefore fixed the ratio λT/lJ to 7 which is in the regime of strong coupling.
Experimentally we estimate that J = 2π · 1 – 5 Hz which agrees well with this regime 8.

GPE simulations

To understand the dynamics beyond the quadratic low-energy sector we simulate the
system with the GPE, as discussed in section 2.3.2. There, higher order terms mediating
scattering between the dephasing and rephasing phonon modes are included. Starting
from a thermal initial state of two coupled gases obtained from the SGPE the tunneling
coupling J is instantly quenched to zero and the state is propagated in time with two

6For both distributions the dynamics is calculated for 13 values. They are linearly spaced and lie
within ±1σ for the atom number spread and within ±1.8σ for the imbalance spread.

7A perfect recurrence is found only when the dispersion spacing ∆ω is a multiple of the added frequency.
8These values were extracted by comparing the initial state fluctuations with calculated data ob-

tained from a random process simulating the full mean-field sine-Gordon Hamiltonian for a fixed λT
determined from density ripple thermometry (see section 3.3.3) [61,75]
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Figure 5.11.: Recurrence damping within the Luttinger liquid model. (a) Dy-
namics of the averaged phase correlations C(z̄c = 27.3 µm, t) in a perfect hard-walled box
of L = 50 µm for different spreads of the total particle number, σN/〈N〉 = 0, 0.1, 0.2, 0.3
(blue, red, yellow, green), with the distribution cut at 1σN , mimicking the experimental
post-selection process, and 〈N〉 = 3500. The temperature of the initial state is set to
Tin = 40 nK. (b) Corresponding particle number distributions. (c,d) The same for
different imbalance spreads, σb = 0, 0.04, 0.08, 0.12 (blue, red, yellow, green). (e) Phase
correlation dynamics in a box trap with varying wall steepness, σwall = 0, 1.2, 2.4, 3.6 µm
(blue, red, yellow, green). The total particle number was adjusted such that the cen-
tral density is n = 70 µm−1 in all cases. (f) Corresponding density profiles at the edge
of the system. (g) Phase correlation dynamics for typical experimental parameters
(σN/〈N〉 = 0.15, σb = 0.05, σwall = 1.2 µm) calculated for different initial temperature
Tin = 25, 50, 75, 100 nK (blue, red, yellow, green). (h) Corresponding height of the first
(blue) and second (red) recurrence relative to the initial correlations at t = 0. For all
calculations the transverse broadening was taken into account.
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independent GPEs 9. As for the experiment, many realizations of the system are needed
to obtain converging results for the phase correlations. In the simulations presented here
2500 realizations were used. Fluctuations of the total atom number are implemented
through a variation of µ and the spread in the imbalance between the wells is in part
intrinsic to the thermal nature of the initial states10. As for the Luttinger liquid calcu-
lations, the broadening induced density dependence of the interaction term is taken into
account as well.

Examples for the obtained phase correlation dynamics are shown in fig. 5.12. For high
temperatures, T > 90 nK, a strong damping of the recurrences can observed, similar to
the experiment. The small ‘anti-recurrence’ dips visible between the peaks at trec/2 in
fig. 5.12a and b stem from the fact that here the unaveraged phase correlation function
is plotted where z and z′ are chose symmetrically around the center of the system. The
dips are therefore of the same origin as the features discussed in fig. 5.8.

5.4.3. Discussion

In order to quantitatively compare the discussed models with the experimental observa-
tions it is practical to devise a measure for the recurrence height. We chose

H(i)
rec =

C
(i)
fit − Cbase

C(0)− Cbase

,

where i = 1, 2 stands for the first and second recurrence and C(0) is the value of the
correlation function before decoupling. The phase correlation values at the time of the
recurrences C

(i)
fit are extracted from the fits presented in fig. 5.10. As for these fits, the

base correlation value Cbase is obtained by averaging over the data points of the dephased
correlations in between the recurrences. For a perfect return Hrec becomes unity while
a vanishing recurrence signal gives zero.

Figure 5.13 shows a comparison of the measured recurrence heights and the results
obtained from the Luttinger liquid model and the GPE simulations, all evaluated at
z̄c = 27.3 µm. For both models the experimental spread of initial conditions, the form
of the experimental potential and limited imaging resolution are taken into account.
Further, in both cases the effective temperature was extracted from the spatial decay of
correlations at trec/2 as in the experimental analysis11.

From the comparison it becomes clear that the trivial damping mechanisms accounted
for in the Luttinger liquid model can not explain the damping observed in the experiment.
Even for the coldest data point they would predict a much higher recurrence signal.
Together with the good agreement reached with the GPE simulations this indicates
that genuine phonon-phonon scattering stemming from higher-order terms in the 1d
Hamiltonian is the prime source of the damping. This constitutes the first experimental

9As argued above in the case of the Luttinger liquid calculations, an instant quench of the tunneling
coupling is a good approximation for the fast experimental decoupling.

10Technical sources of imbalance spread are neglected as it is not trivial to implement them in the GPE
calculations.

11This was done by fitting a thermal form (eq. (2.27)) to the spatial decay of correlations. As the
Luttinger liquid calculations and the GPE simulations are no plagued by the distortion effects
stemming from a finite imaging resolution in the experiment (see section 3.3.4), resorting to an FDF
fit was not necessary.
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5.4. Damping

a

b

c

Figure 5.12.: Phase correlations obtained from GPE simulations. Dynamics of
C(z̄c, t) in a realistic box potential of length L = 49 µm after quenching the coupling
to zero for (a) Teff = 29 nK, (b) Teff = 57 nK and (c) Teff = 103 nK. Here, the phase
correlation function is not averaged and z and z′ are chose symmetrically around the
center of the system. As for the measured phase correlations, Teff is extracted from the
dephased state at trec/2. The simulations were performed by Sebastian Erne and details
can be found in ref. [79].
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Chapter 5. Recurrences

Figure 5.13.: Comparison of the recurrence height to different models. The
blue and red data points show the recurrence height Hrec of the first and second recur-
rence respectively, extracted from the fits shown in fig. 5.10. Both horizontal and vertical
error bars give the 68 % confidence interval obtained from a bootstrap (appendix C). The
dashed lines show the recurrence heights obtained from the Luttinger liquid model. The
solid lines give the result of the GPE simulations obtained from averaging over 2500
independent realizations with the corresponding shaded areas indicating the uncertainty
resulting from the limited experimental sample size (1σ deviation). For both calculations
the spread of initial conditions, the imperfections of the experimental box potential and
the limited imaging resolution were taken into account.
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observation of such physics for 1d Bose gases and will form the foundation for several
follow-up studies.

Note that the broadened interaction term used in the GPE also partially includes the
effects of virtual three-body processes. Just as higher-order terms of the 1d Hamiltonian
are included also terms like the one added in eq. (2.37) are taken into account. However,
based on predictions for Γ3b made in ref. [72] we do not expect these terms to play a
significant role in the damping.

Another important note is that the unreliability of the phase extraction at high tem-
peratures rooted in the finite imaging resolution and discussed in section 3.3.4 does not
significantly affect the recurrence signal at large z̄. If short range phase jumps are missed
in the analysis, C(z̄c, t) is not affect. This was confirmed by simulations of the imaging
process.

5.5. Harmonic trap

In the beginning of this chapter we briefly mentioned that observing rephasing in a pair
of gases trapped in a harmonic longitudinal confinement is not feasible in our setup.
Figure 5.14a, showing measured phase correlation dynamics after decoupling in a har-
monic trap, validates this statement. The main reason for this qualitatively different
behavior is that the phonon modes in the harmonic trap are described by Legendre
polynomials [59], leading to the dispersion given in eq. (2.18) (see section 2.1.2). The
incommensurate spacings of mode energies inhibits any recurrence on observable time
scales and lead to a complicated structure of the phase correlation dynamics [169].

This is further illustrated in fig. 5.14b showing the evolution of the phase correlation
function after a decoupling quench, calculated in the Luttinger liquid model (see sec-
tion 2.3.1) for the typical longitudinal trap frequency ωz = 2π · 7 Hz. Although partial
revival features can be found, more distinct than in the measured correlations, there is
no full return of the initial state. However, around t = 210 ms a signal appears whose
magnitude is at least comparable to the recurrences observed in the imperfect box trap.
The origin of this signal lies in the

√
j(j + 1)/2 structure of the dispersion relation

(eq. (2.18)). Higher energy modes in the limit of large j become equally spaced with
∆ω = ωz/

√
2 , only the lowest modes are incommensurate. On a closer look however,

the spectrum reveals that the modes dynamics are not completely out of sync. The
main difference in energy spacings occurs for ω1 = ωz and all higher modes which are
nearly equally spaced with ∼∆ω. This reduces the problem to a rephasing of these
two frequencies and since 1/

√
2 ≈ 2/3 they are also nearly commensurate. From the

recurrence condition (eq. (5.1))

ω1 trec = ωz trec = 2π n1 ,

∆ω trec ≈
2

3
ωz trec = 2π n′ ,

where n1 and n′ are integers denoting the number of turns the lowest mode and the
number of additional turns all higher modes perform, respectively, we can see that at
trec = 6π/ωz all modes rephase close to the initial configuration. At that time the lowest
lying mode performed n1 = 3 turns while each higher mode performed an additional
n′ = 2 turns (n2 = 5, n3 = 7, n3 = 9, . . . ). For a longitudinal trap frequency of
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a

b

c

Figure 5.14.: Dephasing dynamics in the harmonic trap. (a) Measurement of
the dephasing dynamics after decoupling in a harmonic trap with longitudinal trap
frequency ωz = 2π ·7 Hz and N = 4500 atoms in each well. Due to the inhomogeneity of
the system the correlations are calculated for points located symmetrically around the
center of the gas, i.e. not averaged over all points that fulfill z̄ = z − z′. (b) Luttinger
liquid calculations for the same parameters as in (a), also showing the unaveraged two-
point phase correlations. (c) Comparison of a temporal cuts of the measurement (black
data points) and the Luttinger liquid calculations (green line) for z̄c = 37 µm. The error
bars of the measured data give the 68 % confidence interval obtained from a bootstrap
(appendix C).
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ωz = 2π · 7 Hz this happens after ∼ 430 ms. As in the case of the box confinement, we
would already expect a recurrence signal after half of that time since we start from a
situation with a long range correlated relative phase field ϕ(z) and the mirrored phase
field ϕ(−z) reached in between looks just like the initial one (see section 5.1).

In the experiment, however, at that timescale phonon-phonon scattering will have de-
stroyed most of the signal, as we have seen in section 5.4, explaining why the marked fea-
ture at ∼ 215 ms does not show up in the measurement shown in fig. 5.14a. Nevertheless,
the measured phase correlations agree stunningly well with the complex substructure be-
fore this point, as shown in fig. 5.14c. For a tighter harmonic trap with ωz > 2π · 20 Hz,
moving the whole dynamics to earlier times, it might therefore be feasible to observe
also this reshaping feature. However, due to technical limitations of the current in the
atom chips U-wires responsible for the longitudinal confinement we are limited to lower
trap frequencies in our setup.

5.6. Conclusion

This chapter gave a detailed account of the observation of recurrences in a system of a
few thousand particles. Beyond the fundamental interest connected to the emergence of
statistical ensembles from unitary dynamics this study also opens a new window into the
non-equilibrium dynamics of complex many-body systems. The recurrences provide a
signal at times much past the global dephasing time. This enables the quantification of
coherences at these late times and with it allows for the testing of effective models, the
verification of quantum simulators or the probing of small perturbations whose effects
are magnified by the long evolution times. Tracing the recurrence damping back to
phonon-phonon interactions mediated by higher order terms, as done in section 5.4,
is a prime example for their merit as it enabled the first quantitative experimental
study of phonon-phonon scattering in weakly interacting 1d Bose gases. Although the
engineering of spectra that support a full recurrence at accessible time scales will not be
feasible in many systems, also the realization of partial revivals gives valuable insights
into the evolution of coherence and provides a promising route to investigate complex
many-body systems.

On a final note, it is important to stress that the observed signal constitutes more than
a revival of the involved observables. Within the low-energy description it corresponds to
a return of the entire state, and therefore to a recurrence. Of course, the full many-body
wave function guided by the Lieb-Lininger Hamiltonian does not return to its initial
configuration on experimentally accessible time scales. However, it is also not accessible
to measurements. Nevertheless, we have to remark that, although constituting a quan-
tum Poincaré recurrence, the rephasing of modes observed in our setup is somewhat of
an exceptional case. The key feature of both classical and quantum recurrence theorems
is that the return inevitably happens after a long enough time, also for chaotic systems
or incommensurately spaced spectra. The rephasing of the equally spaced modes in our
system represents the most trivial application of these ideas.
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6. Outlook

The measurements and analysis presented in this thesis investigate two phenomena oc-
curring in 1d Bose gases on time scales longer than the initial dephasing time: the
cooling through uniform loss covered in chapter 4 and the observation of recurrences
in the relative phase fluctuations of two decoupled gases presented in chapter 5. Both
projects offer interesting routes to continue research and in the following some thoughts
on possible directions will be given. Also, in section 6.1, a new dipole trap setup is pre-
sented that will allow for an arbitrary and dynamic control of the longitudinal potential,
opening up various possibilities for novel experiments.

For the loss induced cooling we already discussed possible routes to further investigate
the absence of the shot noise contribution in section 4.4. However, within the classical
description promising avenues to continue research on this topic exist as well. For one, it
would be interesting to experimentally investigate the non-thermal occupations arising
in the high-k modes during cooling. Even though in our setup this is not feasible at
the moment, a light sheet imaging capable of resolving the momentum distribution after
long expansion times would make it possible [170]. Focusing the cloud in expansion
through a potential lens applied by a dipole light pattern shaped accordingly could also
provide access to the momentum space distribution (see section 6.1). Such studies would
complement the observation of non-thermal states mentioned in refs. [147,148] and test
how well the models discussed in chapter 4 apply to the higher energy modes.

Another interesting experiment realizable through arbitrary control over the longitu-
dinal potential is a truly 1d evaporation where atoms can only leave the gas at the edges.
Such a localized outcoupling would predominantly target high energy modes driving the
system far from equilibrium or bringing non-thermal states created by homogeneous
outcoupling closer to thermal equilibrium.

For the recurrence damping discussed in chapter 5 a promising route for further in-
vestigations would be to systematically measure the recurrence height dependence on
density and temperature to pin down the specific higher-order terms primarily respon-
sible for the decay. Additional theoretical and numerical studies would be necessary to
predict scaling relations between the damping rate and the samples temperature and
density. According to ref. [64] the damping should become stronger for smaller densities
which would be interesting to verify experimentally.

Another interesting angle would be to initialize the system in a double well with a
lower tunneling coupling such that the relative phase exhibits non-Gaussian fluctuations,
as discussed in ref. [61]. With the initially Gaussian relative density fluctuations being
rotated into the phase quadrature during the short time dephasing the non-Gaussianity
is lost during the dynamics [171]. However, at the point of the recurrence one could
expect it to return. Investigating this processes experimentally as well as characterizing
the damping of the possible non-Gaussian return would be of great interest. Though,
one has to note that these measurements would be challenging as the estimation of the
higher-order correlations necessary would demand large statistics.
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A new method to gain information through the known unitary dynamics in exper-
iments like the ones presented in chapter 5 is presented in ref. [172]. In this work, a
reconstruction protocol is demonstrated that allows to extract the otherwise hidden rel-
ative density fluctuations from the dynamics of the relative phase fluctuations. For the
case of the recurrence measurements, this allows to quantify the full initial state of the
relative degrees of freedom and to predict a recurrence from information gathered solely
in between recurrences. The method opens up new measurement possibilities and might
be useful in a further investigation of the recurrence damping.

6.1. Arbitary 1d potentials

A more precise and flexible control over the confining potential in a cold atoms experi-
ment often allows one to access completely new phenomena. For one, the realization of
homogeneous samples can unveil effects otherwise hidden by a inhomogeneous density
distribution [97,173,174], as illustrated by the results presented in chapter 5 and ref. [27].
Further, a local or dynamic control of the potential landscape offers new possibilities in
manipulating the excitations in the system. For example, it allows for the controlled
excitation of modes [175] or the realization of sonic black holes [31, 176]. In order to
go beyond the possibilities of the mask setup presented in section 3.2.3 we therefore de-
signed an imaging system demagnifying the light patterns shaped by a DMD, providing
us with an arbitrary control of the longitudinal trapping potential. In the following,
we will shortly discuss this setup and the possibilities it provides. For a more detailed
discussion see ref. [122].

The basic principle of the applied dipole potentials remains the same as for mask
setup. The objective of the transverse imaging system is used to image a shaped intensity
pattern onto the atoms from a direction perpendicular to the 1d axis of the magnetic
trap. Only now, the shaping of the light is performed by the array of micromirrors on
the DMD chip1 instead of the static wire mask. Each of these mirrors can be set to
an on or off state, either reflecting light into the optical system that delivers it to the
atoms or reflecting it out such that it is dumped. This provides a local digital control
of the light intensity. To achieve arbitrary potentials, however, a smooth tuning of the
local intensity is necessary. This is realized in two ways. First, the employed imaging
system2 demagnifies a single mirror down to an edge length of ∼ 0.4 µm in image space.
This length is far below the diffraction limited 4µm Airy spot diameter of the optical
system, meaning that many mirrors are imaged onto a single spot in the plane of the
atoms. Grayscaling can therefore be achieved by activating different numbers of mirrors
within one spot. Further, each mirror can be toggled with varying on and off times. As
long as the toggling frequency is far above the largest trap frequency of the transverse
confinement the atoms experience an averaged intensity, providing an additional degree

1Texas Instruments DLP9500, 1920 × 1080 FullHD resolution with 10.8 × 10.8 µm mirror size and a
maximum full pattern refresh rate of about 18 kHz. The DMD and its controllers are implemented
in a V-9501 module from ViALUX.

2The imaging system consists of two parts. The first part is a two lens 4f systems with a 3-fold
demagnification and a variable horizontal and vertical slit in the Fourier plane. The second part
consists of a single lens and the objective of the transverse imaging system, forming a second 8.5-fold
demagnification stage. The light is fed into transverse imaging path by a 2” polarizing beam splitter
(ThorLabs PBS512).
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of freedom to tune the local potential strength.
With the DMD shaping the spatial light intensity in two dimensions while we are

only interested in 1d optical potentials, additional possibilities arise to improve the
grayscaling resolution. First, the DMD can be run in a special area-of-interest mode
that allows to control 200 rows with a maximum pattern refresh rate of 47.6 kHz. As we
only need a few tens of rows to span the transverse extension of our cloud we can make
use of this mode allowing us to apply several toggling patterns whose lowest frequency
lies distinctively above our maximum transverse trapping frequency of ω⊥= 2π · 2 kHz.
Second, as we are not interested in applying transverse potentials we can implement
a horizontal slit in the Fourier plane of the first 4f system to artificially degrade the
resolution in the transverse direction. This leads to more pixels contribution to a single
spot, improving the grayscale resolution while keeping the longitudinal spatial resolution
the unchanged.

The flexibility gained through the DMD setup will open a myriad of interesting paths
to continue research on our 1d bosonic systems. For experiments necessitating a uni-
form density we will be able to counteract the harmonic magnetic potential and realize
truly flat potentials over length scales much longer than the box lengths employed in
chapter 5. Further, also the magnetic potential roughness stemming from wire imper-
fections (see section 3.2.2) can be corrected through this setup. This will allow for the
creation of large systems that can be split or moved longitudinally while still retaining
the flexibility of the transverse double well potential. Simple experiments could investi-
gate how two gases with different temperature equilibrate via a longitudinal tunneling
coupling and how such processes proceed locally. Also, being able to move small systems
longitudinally, alternatively coupling them to different heat bathes while compressing or
decompressing them should allow us to realize simple thermal machines [30]. Turning to
dynamic potentials, we could further shake parts of the potential at specific frequencies
to excite only certain modes in the system. This would allow us to perform phonon
spectroscopies and to monitor the modes decay individually, providing a much cleaner
measurement of the damping effects found in fig. 5.10 of chapter 5. As the optical po-
tential is independent of the magnetic confinement it can also be used to manipulate the
atoms in their initial expansion phase after the trap has been turned off. This should
enable the implementation of optical potential lenses that map the atomic momentum
distribution into real space during the expansion. Finally, as already mentioned above,
the shaping of condensate flow through specially designed dynamic potentials opens the
possibility to investigate sonic black hole analogues and the associated effects of phononic
Hawking radiation [32,177].
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A. Transverse broadening corrections

In section 2.2.2 we discussed the corrections due to transverse interactions derived from
a variational approach [69]. Here, we will show the full perturbative expansion for a
single gas going up to third order. The calculation closely follows the approach of Mora
and Castin [52] and takes the discretization necessary for the definition of the phase
operator into account.

From the expression for the width of the transverse wave function we can calculate
the mean field interaction energy term for the effective longitudinal Hamiltonian to be

Eint = ~ω⊥
√

1 + 2asn1d .

Requantizing this result and inserting it in the a discretized form of the Hamiltonian
introduced in [52] we obtain

Ĥ =
∑
z

l ψ̂†z

[
− ~2

2m
∆z + Uz − µ+ ~ω⊥

√
1 + 2asψ̂

†
zψ̂z

]
ψ̂z .

Here, z is the index of position on the grid and l is the dicretization length. We insert
a phase-density representation of the field operator on each grid point ψ̂z = eiθ̂z

√
n̂z =

eiθ̂z
√
n1d + δn̂z and perturbativly expand the Hamiltonian around small density and

long range phase fluctuations. The spatial indices of the fields will be omitted from now
on for clarity.

Our interest lies in the modifications the broadening causes in the potential energy
terms. Inserting the phase-density representation we obtain

Ĥp =
∑
z

l

[
(U − µ)ψ̂†ψ̂ + ~ω⊥ψ̂†

√
1 + 2asψ̂†ψ̂ ψ̂

]
=
∑
z

l n̂

[
(U − µ) + ~ω⊥

√
1 + 2as

(
n̂− 1

l

) ]
. (A.1)

Here we used the identity ψ̂†ψ̂ = n̂ and the commutator of the field operators [ψ̂z, ψ̂
†
z′ ] =

δz,z′

l
. Expanding the square root in this expression for small asn̂ we can rewrite eq. (A.1)

as

Ĥp =
∑
z

l(n1d +δn̂)

[
(U−µ)+~ω⊥

(
1+as

(
n1d +δn̂− 1

l

)
− 1

2
a2

s

(
n1d +δn̂− 1

l

)2

+ . . .

)]
.

Collecting all terms of order O(δn̂n) with n ≤ 3, considering that 1/l is of second order
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and associating the obtained series with closed expressions we obtain1

Ĥ(0)
p =

∑
z

l n1d

[
(U − µ) + ~ω⊥

√
1 + 2asn1d

]
Ĥ(1)
p =

∑
z

l δn̂

[
(U − µ) + ~ω⊥

1 + 3asn1d√
1 + 2asn1d

]
Ĥ(2)
p =

∑
z

l δn̂2 ~ω⊥as

2

[
2 + 3asn1d

(1 + 2asn1d)3/2

]
−
∑
z

~ω⊥asn1d√
1 + 2asn1d

Ĥ(3)
p =−

∑
z

l δn̂3 ~ω⊥a2
s

2

[
2a2

sn
2
1d − asn1d + 1

(1 + 2a2
sn

2
1d)5/4

]
−

−
∑
t

δn̂ ~ω⊥as
[

2a2
sn

2
1d − asn1d + 1

(1 + 2a2
sn

2
1d)3/2

]
(A.2)

In zeroth order we regain the broadened potential energy for the average density profile
n1d. In first order we obtain the broadened expression for the chemical potential given
in eq. (2.33). Therefore, as in the unbroadened case, H(1) vanishes for the density profile
that minimizes H(0), i.e. solves the non-polynomial GPE in eq. (2.34). This again leaves
the leading terms governing the fluctuations to be of second order. They are of the same
form as in the purely 1d case but their prefactors exhibit a more complicated density
dependence. The first term in H

(2)
p reproduces gn defined in eq. (2.35) and thereby

confirms the expression for the speed of sound found from the hydrodynamics relation.
In third order, apart from the rescaled prefactor of the last term in eq. (A.2) which

is also appears in the purely 1d case, the first new term arises. It is proportional to δn̂3

and represents the lowest order integrability breaking that arises from the broadening.
Combining this term with the second order term, neglecting the last term in eq. (A.2)

and disregarding the constant energy functional in H
(2)
p we end up with

Ĥ(2+3)
p =

∑
z

l
gn
2
δn̂2 (1− χnasδn̂) ,

where χn ≈ 1/2 for asn1d < 1. As asδn̂ is small, this correction will not have large effects
on equilibrium states. For long time dynamics like the loss of coherence observed in the
measurements presented in chapter 5 in might play a larger role. However, as discussed
in section 2.2.3, a more rigorous treatment of the integrability breaking effects stemming
from transverse interactions performed in refs. [72,74] concluded that also the effects on
intermediate time dynamics are negligible for our parameter range.

1The closed expressions were obtained through the Mathematica function ’FindGeneratingFunction’.
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B. Radial GPE simulations

Solving the GPE numerically in more than one dimension can become computationally
demanding especially when interested in dynamical effects. However, in certain cases
the exploitation of symmetries can cast the problem into a lower dimensional form. In
this appendix, we will discuss how the 2d GPE can be solved numerically for a radially
symmetric problem with the aid of Fourier-Bessel series. The approach maps the 2d
problem onto a 1d radial problem thereby significantly reducing the its computational
demands.

For an arbitrary potential U(r) the radially symmetric 2d GPE can be written as

i~
∂

∂t
φ(r, t) = − ~2

2m
∆r φ(r, t) + U(r)φ(r, t) + g|φ(r, t)|2 φ(r, t) , (B.1)

with r2 = x2 + y2 and ∆r = 1
r
∂
∂r
r ∂
∂r

being the radial part of the Laplace operator in
polar coordinates. A common strategy to numerically solve the GPE is the split-step
method [76]. There, the wave function is propagated alternatingly by the kinetic term of
the Hamiltonian and the terms diagonal in real space, using small time steps to minimize
the error. The propagation with the kinetic term is usually performed in momentum
space where it becomes diagonal. This strategy can also be applied to solve eq. (B.1),
only that instead of obtaining the momentum space wave function through a Fourier
transform one uses the Fourier-Bessel series [178], expanding φ(r) in Bessel functions of
the first kind Jα

φ(r) =
∞∑
j=1

ψj J0(βj r) , (B.2)

ψj =
2[

LJ1(u0,j)
]2 ∫ L

0

r dr φ(r) J0(βj r) . (B.3)

Here, βj =
u0,j

L
are the radial momenta with u0,j being the j-th root of J0(r) and L

the radial size of the system. The pre-factor in front of the integral in eq. (B.3) is a
normalization stemming from∫ L

0

r dr J0(βi r) J0(βj r) = δij

[
LJ1(u0,j)

]2
2

.

Using the fact that J0(r) is a solution of Bessel’s differential equation it can be shown
that

∆r φ(r) =
∞∑
j=1

ψj ∆r J0(βj r) = −
∞∑
j=1

ψj β
2
j J0(βj r) ,

rendering the kinetic term in eq. (B.1) diagonal for the momentum space wave function
ψj. This allows for an effective implementation of the kinetic propagation through the
transformations defined in eq. (B.2) and eq. (B.3) .
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a b

Figure B.1.: Radial wave function. (a) Normalized wave function φnorm(r) =

φ(r)/
√∫
|φ(r)|2r dr of 87Rb atoms trapped in a harmonic confinement with ω⊥ =

2π · 2 kHz for three different longitudinal densities n1das = 0, 0.3 and 0.6 (blue, red
and green). (b) Corresponding Fourier-Bessel coefficients representing the radial mo-
mentum distribution.

As for Cartesian coordinates, the ground state of the system can be found through
imaginary time evolution. Figure B.1 shows ground states for different numbers of
particles in an harmonic potential. Dynamical solutions of eq. (B.1) are discussed in
the context of the transverse expansion of clouds released from the tight atom chip
confinement (see section 3.3.1). It is important to note that this approach is limited
to fully radially symmetric problems. For example, dipole oscillations of a condensate
trapped in a otherwise radially symmetric potential can not be simulated.

This approach can further be extended to cylindrical coordinates (r, z) to effectively
solve 3d problems. There, a combination of Fourier transform and Fourier-Bessel series
can be used to obtain the momentum space wave function.
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C. Bootstrap

Bootstrapping is a resampling technique that allows in many cases to assert the accuracy
of a parameter estimation even for complex estimators where an accuracy measure (i.e.
confidence interval, bias,. . . ) is hard to calculate analytically [179,180]. Its core premise
is to assume the empirical distribution of measured data to be a good approximation
of the unknown true distribution underlying the data. From this empirical distribution
the statistical quantities are then calculated, generally by resampling the available data
with replacement. In the following, first an intuitive example is given before a typical
use case from the data analysis presented in this thesis is described.

Let us consider a set of measured data {x1, . . . , xn} from which we infer the sample
mean, x̄ = 1

n

∑
i xi. If we want to know how accurate the value is we obtained we can

perform a bootstrap. For that, we resample the data with replacement and thereby
generate a set of bootstrap samples each containing again n values. Looking at one of
these bootstrap samples, some of the original values will most likely appear multiple
times and some will not appear at all. Also, the probability that the original sample is
reproduced is very small if n is large. From each of these bootstrap samples we can now
infer its sample mean, which gives us the bootstrap distribution. This distribution gives
a measure of accuracy for the value x̄ estimated from the original sample and allows
us to obtain confidence intervals. In this simple example one could have also directly
calculated the standard error of the mean σ̄ =

√∑
i(xi − x̄)2/n(n− 1) . However, if

the estimator of interest is more complicated and such an expression is not known the
bootstrap provides a simple technique to infer measures of accuracy.

In this thesis, bootstrapping is used to obtain confidence intervals for parameter esti-
mations which involve correlation functions or fits to features of correlation functions. An
example for measured data that is resampled are sets of phase profiles {ϕ1(z), . . . , ϕn(z)},
where each spatial profile ϕi(z) = [ϕi(z1), ϕi(z2), . . . , ϕi(zm)] is a vector extracted from
a single interference picture (see section 3.3.4). Here, m is the number of pixels for
which the phase is extracted and zj are the positions in the cloud corresponding to the
individual pixels. Typically, like in the recurrence measurements presented in chapter 5,
multiple of these phase profile sets are taken at different evolution times t. Let us now
consider the case of the recurrence height fits presented in fig. 5.10. There we want to
fit a feature in the dynamics of the phase correlation function C(z̄, t) which is calcu-
lated from the phase profiles (see eq. (2.25) and eq. (5.2)). For that, we draw samples
from the full measurement runs, where one run includes one profile from each evolu-
tion time1. From these samples we calculate the phase correlations and fit the double
Gaussian function given in eq. (5.5) to the spatial cut C(z̄c, t). Doing this for many
resampled configurations, typically around 1000, we obtain a distribution of the fitted
recurrecne heights C

(1,2)
fit and recurrence width σ1,2 (fig. C.1) From these distributions we

1These profiles are independent of each other and therefore could, in principle, also be sampled inde-
pendently. However, in the current implementation of Matlabs ‘bootci’ it is not possible to sample
from multiple sets.
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Appendix C. Bootstrap

a b c

d e

Figure C.1.: Bootstrap example. (a) Fit of the recurrence height for a system with
Teff = 72 nK and L = 49 µm, presented earlier in fig. 5.10c . The red shaded area shows
the fit values between the 10th and the 90th percentile of the bootstrap distribution for
999 runs. The fit function is given in eq. (5.5). (b,d) Corresponding distributions of

fitted recurrence heights C
(1,2)
fit of the first and second recurrence, respectivly. The black

dashed lines indicate the values estimated from the original sample while the red lines
give the obtained 68 % confidence intervals. (c,e) Same for the recurrence widths σ1,2.

can infer confidence intervals which translate, for example, to the confidence intervals of
Hrec shown in fig. 5.13. This is done by the bias-corrected and accelerated method [179]
implemented by the Matlab function ‘bootci’.
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Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien (II) 66,
275–370 (1872).

[158] Zermelo, E. Über einen Satz der Dynamik und die mechanische Wärmetheorie.
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