
Sound Event Detection with Deep
Neural Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Seyedeh-Anahid Naghibzadeh-Jalali
Matrikelnummer E1229620

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.univ.Prof. Dr. Andreas Rauber
Mitwirkung: Dipl. Ing. Alexander Schindler

Wien, 28. Februar 2018 Seyedeh-Anahid
Naghibzadeh-Jalali Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Sound Event Detection with Deep
Neural Networks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Informatik

by

Seyedeh-Anahid Naghibzadeh-Jalali
Registration Number E1229620

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.univ.Prof. Dr. Andreas Rauber
Assistance: Dipl. Ing. Alexander Schindler

Vienna, 28th February, 2018 Seyedeh-Anahid
Naghibzadeh-Jalali Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Seyedeh-Anahid Naghibzadeh-Jalali
Address

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. Februar 2018 Seyedeh-Anahid
Naghibzadeh-Jalali

v

Acknowledgements

At first, I would like to thank my thesis advisor, Prof. Andreas Rauber, who accepted my
thesis proposal and made this work possible by offering his advice and supervision. Also
my teacher, Rudolf Mayer, who helped me through with his constructive guidance.
Furthermore, I would like to express my gratitude to Alexander Schindler for the
considerable amount of time that he invested in answering my early questions, as
well as for the interesting discussions and organizational support. Moreover, I would
like to thank the Austrian Institute of Technology for their technical support and efforts
which gave me a great platform to work and write my thesis. Finally, I would like to
thank my family, who have always stood by me and dealt with my absence from many
family occasions with a smile and never-ending support.

vii

Kurzfassung

Acoustic Sound Event Detection (SED) wurde in den letzten Jahren intensiv erforscht und
gilt als ein aufstrebendes Thema in der Computational Auditory Scene Analysis (CASA)
Forschung. Das menschliche Gehirn hat die Fähigkeit, mehrere Töne gleichzeitig zu
erkennen und das Hintergrundrauschen auszublenden, um sich auf ein selektives Ereignis
zu konzentrieren. Dieses Phänomen ist auch als Cocktailparty-Effekt bekannt. Ziel von
SED ist es, Systeme zu entwickeln, die es ermöglichen, Ereignisse in einer Geräuschkulisse
zu erkennen. Daher werden diese so trainiert, dass sie Klangereignisse anhand der
Audiosignale zuordnen. Ein Sound-Ereignis ist eine Bezeichnung, die von Menschen
verwendet wird, um ein Ereignis in einer Audiosequenz zu beschreiben und zu identifizieren.
Diese Arbeit konzentriert sich auf die beiden Teilaufgaben von DCASE 2017 Challenge, der
seltenen Erkennung von Sound Events, die die Erkennung des Auftretens und Auslösens
eines Sound Events in einem Audio und die Erkennung von Sound Event in Umgebungen
mit mehreren Quellen darstellt. Die vorgeschlagene Methodik basiert auf Künstlichen
Neuronalen Netzen (KNN), die eine robuste Leistung bei komplizierten Aufgaben wie
Spracherkennung, Verarbeitung natürlicher Sprache und Bildklassifizierung gezeigt haben.
Verschiedene Audioeingangsdarstellungen, wie z. B. konstante Q-Transformation, Mel
Frequency Cepstral Coefficient (MFCC) und Mel Spectrogram, werden ebenfalls getestet,
wobei sich das Mel-Spektrogramm als die bessere Darstellung unter den genannten
erwies. Die in dieser Arbeit untersuchten ANN-Architekturen sind das Recurrent Neural
Network (RNN) und seine Erweiterung, Long Short Term Memory (LSTM) und das
Convolutional Neural Network (CNN). Die RNN-Architektur wurde wegen ihrer Fähigkeit
gewählt, das zeitliche Verhalten ihrer Eingänge und ihrer CNN-Architektur zu erfassen,
da sie die Funktionen auf hoher Ebene durch ihre Faltungsschichten erlernen kann. Um
diese Architekturen zu trainieren, wurden verschiedene Hyperparameter getestet. Das
Verhalten jedes Modells wird analysiert und ihre Ergebnisse verglichen. Um die Konvergenz
und Generalisierbarkeit der Modelle zu verbessern, wurde eine Data Augmentation
durchgeführt, und die Dropout-Technik wurde angewendet, um Over-Fitting zu vermeiden.
Um die Leistung dieser Modelle zu bewerten, wurden zwei Datensätze aus der DCASE
2017 Challenge verwendet. Im Rare Sound Event Detection-Dataset werden die Audio
Events synthetisch in die Audio-Aufzeichnungen eingefügt, bei denen jedes Ereignis nur
einmal oder gar nicht auftrat. Der zweite Audio-Datensatz enthält Umweltaufnahmen
mit unterschiedlichen Längen von 3 Minuten bis zu 5 Minuten, welche manuell annotiert
wurden. Die experimentellen Ergebnisse dieser Arbeit zeigen die Robustheit von tiefen

ix

neuronalen Netzwerken im Vergleich zum konventionellen Multilayer Perzeptron, das
als Referenzsystem betrachtet wird. Unter Verwendung dieser Architekturen wurde
eine Fehlerrate von 0,30 erreicht, die eine Verbesserung von 43.39% im Vergleich zu
einer Fehlerrate von 0,53 aufweist, die durch das Referenzsystem der Rare Sound Event
Detection Task erreicht wurde. Bei Real Life Sound Event Detection erreichte die beste
Performance eine Fehlerrate von 0,77, die eine Verbesserung von 17,20% im Vergleich zu
der Fehlerrate von 0,93 aufweist, die durch das Referenzsystem erreicht wurde.

Abstract

Acoustic Sound Event Detection (SED) has been extensively studies over the past years
and is considered an emerging topic in Computational Auditory Scene Analysis (CASA)
research. The human brain has the ability to recognize multiple sounds at once, reducing
the background noise to focus on a selective event. This phenomenon is referred to
the cocktail party effect. SED aims to implement systems, which enables them to
detect any events occurring in the environmental sound in their surroundings. Therefore,
those are trained in such a way that they classify sound events in the input audio
signals. A Sound event is a label used by humans to describe and identify an event in
an audio sequence. This thesis focuses on the two subtasks of DCASE 2017 Challenge,
the rare sound event detection which is the identification of the onset and offset of a
sound event in an audio, and the sound event detection in multi source environments.
The proposed methodology used for this thesis is based on Artificial Neural Networks
(ANNs) which have shown robust performance on complicated tasks such as Speech
Recognition, Natural Language Processing and Image Classification. Different audio
input representations such as Constant Q-transform, Mel Frequency Cepstral Coefficient
(MFCC) and Mel Spectrogram are also tested from which Mel-Spectrogram proved to be
the better representation among the ones mentioned. The ANN architectures studied in
this work are the Recurrent Neural Network (RNN) and its extension, Long Short Term
Memory (LSTM) and the Convolutional Neural Network (CNN). RNN architecture was
chosen because of its ability to capture the temporal behavior of its inputs and CNN
architecture because of its ability to learn the high level features through its convolutional
layers. To train these architectures, different hyper parameters were tested. The behavior
of each model is analyzed and their results compared. To improve convergence and
generalizability of the models, data augmentation was performed and also, the dropout
technique was applied to avoid over fitting. To evaluate the performance of these models,
two datasets provided by the DCASE 2017 challenge were used. The Rare Sound Event
Detection dataset added the audio events synthetically in the audio recordings where
each event appeared only once or not at all. The second audio dataset has environmental
recordings with different lengths from 3 minutes up to 5 minutes which were manually
labeled by the providers. The experimental results of this thesis show the robustness of
deep neural networks in comparison with the conventional Multilayer Perceptron, which
is considered as the baseline system. Using these architectures, an error rate of 0.30 was
achieved which has 43.39% improvement compared to 0.53 error rate achieved by the

xi

baseline system on the Rare Sound Event Detection Task. On Real Life Sound Event
Detection the best performance achieved 0.77 error rate which has 17.20% improvement
in comparison with the 0.93 error rate achieved by the baseline system.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contribution of this thesis . 5
1.3 Outline . 7

2 State Of The Art 9
2.1 Data Augmentation . 10
2.2 Architecture . 12

3 Theoretical Contribution 15
3.1 Audio Features . 15
3.2 Data Augmentation . 24
3.3 Learning Process . 28

4 Experimental Results 43
4.1 Datasets . 43
4.2 Framework . 46
4.3 Hardware Specifications . 47
4.4 Experiment Results . 47

5 Conclusion and Future Work 91
5.1 Conclusion . 91
5.2 Future Work . 92

List of Figures 93

List of Tables 95

Bibliography 97

xiii

CHAPTER 1
Introduction

A sound event is a label used by humans to describe and identify an event in an audio
sequence. These labels give people a clearance to understand and associate each event
with their previously known events. Sound Event Detection (SED) also known as Acoustic
Event Detection (AED) is an important task for computational auditory scene analysis
(CASA)[MTX+16]. The input of SED systems is a continuous signals. The system learns
the appropriate features of the events, in order to recognize them within the given signals.
Perhaps one of the questions which rises above at this point is the motivation behind such
studies. Humans use their senses such as sight, touch, sound sense in order to understand
the surroundings of them. To simulate such behavior, systems, applications and artificial
agents require the same understanding. Therefore to answer the question, the need to
detect sound events is to understand the situations, using acoustic signals.
SED could be employed in applications such as information retrieval [BPT+09], military
and automated surveillance applications [KŁC11] and also smart home systems [vHA09].
Adding listening ability to embedded systems allows them to be more aware of their
environment [CNK09, CNKM06]. Automatically detecting the events of interest in
industrial and surveillance systems as well as smart homes also attracts attention to
applications which detect acoustic sounds and events [HMS05]. To detect a single event
at the same time, approaches such as Mel Frequency Cepstral Coefficients (MFCC)
and Hidden Markov Models (HMM) were used which are known as the conventional
approaches [HMEV13]. However, in real life environments, it is more likely that more
than a single event occur simultaneously in a signal. Therefore detecting these overlapping
events is considered as a challenge and the mentioned methods may not be suitable. A
solution to that was proposed in [CKBK16], using polyphonic SED system which aims
to detect multiple sound events in the same time instance of the sound data. Using the
development dataset from second task of DCASE 2017 challenge, the focus of the first
phase of this work will be on using different approaches in order to detect each sound
event more accurate and classify them into the following predefined target classes: Sound

1

1. Introduction

of a crying baby, Gunshot, Breaking glasses. For phase two, the development dataset of
the third task is used which brings the focus of this thesis into multilabel classification
and event detection with overlapping sound events. The predefined classes in this phase
are: Brakes squeaking, Car, Children, Large vehicle, People speaking, People walking.
Considering deep learning methods have shown good performance in many different
applications such as image and speech recognition [MHV16b, HWT+16] , the method
used for this project in order to achieve the goal is chosen to be an architecture (or a
hybrid system) of deep learning methods. Another issue to mention here is the data.
Classifiers tend to perform better when the data is large enough to train. A common
strategy adopted to enlarge the amount of the training data, increase the robustness of
the model and avoiding the problem of over fitting, is data augmentation. Therefore
this strategy will also be used in order to enlarge the training data and improve the
performance of the models. In this chapter, first the problem is formally defined. Next
the contribution of this project is briefly introduced, followed by the chapter on state of
art and the analysis of the existing approaches. Afterwards, the methods used in this
work to achieve more accurate detection is described in more depth. Eventually, in order
to achieve a final conclusion, the obtained results is presented and discussed.

1.1 Problem Statement

Sound event detection task tries to address the problem of detecting sound events within
overlapping signals. These events are referred to the segments of audio which human
listeners constantly label and distinguish in an acoustic environment [APP+16]. The
automatic SED task is to recognize the sound event(s) in a continuous audio signal.
This task is one of the emerging topics of CASA research (Computational Audio Signal
Analysis) where the researchers try to replicate the phenomenon effect of human brain,
the cocktail party effect [PT17], which is the ability of listening to multiple sound and
reducing the background noise. Applications of this task are used in militarily [HMEV13],
smart homes [HMS05], embedded systems with listening capability to make them aware
of their surrounding environment [CNKM06].

Figure 1.1: An overview of a sound event detection1

2

1.1. Problem Statement

In figure 1.1, an overview of the sound event detection is depicted. Given an input signal,
SED system will output the label of the event occurring in the given input as well as the
onset and offset of the event’s time frames (time steps). This problem can be categorized
into two subcategories; first is to detect only one specific event (a rare event) within
the signal which is illustrated on the left side of the figure. This category addresses the
binary detection issue which was covered by the second task of DCASE 2017. The other
subcategory is to detect multiple events which can happen at the same time. The multiple
overlapping sound event detection addresses the multi-label classification problem and is
shown on the right side of the figure. SED systems try to locate the starting and label
the sound event classes present in a polyphonic audio signal. [PHH+17] formally defines
the SED problem as follows; by extracting frame-level sound features for each time frame
t in the audio time series, a feature vector xt ∈ RF is then obtained. F is the number of
features per frame. Afterwards, the probabilities p(yt(k)|xt, θ) for classification phase
needs to be estimated. k = 1, ..,K denoted the events in the frame t and θ refers to the
set of the model parameters. Finally, using a specified threshold, these event probabilities
are binarized, namely, if the label k occurs in the frame t, the output yt(k) will be set
to 1 and otherwise 0. By breaking down SED into smaller steps, the factors which are
required to be considered for more accurate detection.

Scientific Question 1.1: SED Problem Statement
INSTANCE:
Given two different sets of recorded audio as input and the ground truth for one of
the sets, together with a sound event detection system.

PROBLEM:
How to determine the starting point of the rare event occurring in each input stream
and classify it into the correct predefined class with granularity of 500 ms.

Scientific question 1.1 describes this project’s focus. However, as mentioned before, SED
task needs to be broken down to number of subtasks.

Scientific Question 1.2: Input Representation selection
INSTANCE:
Given a set of recorded audio as input and an approach for input representation such
as mel spectrograms, mfcc,

PROBLEM:
Which representation is most effective to use as the input of deep learning model in
order to detect the audio event.

1http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/

3

1. Introduction

The first subtask addresses the issue of input representation. The inputs of the deep
learning classifiers are feature vectors and the classifiers will be trained over these selected
feature. In order to have a robust detection, these selected features are considered as
very important factors. Conventional SED and Acoustic Speech Recognition (ASR)
used features such as Mel-Frequency-Cepstral-Coefficients (MFCC), Frequency Filtering
(FF), Linear Prediction Cepstral (LPC) and Hidden Markov Models (HMMs) which were
mostly for monophonic systems to detect a single event at a time. However, in real life,
the occurrences of multiple events simultaneously is more likely to happen. In the work
of [PHV16] the proposed polyphonic SED system, MFCC features were selected and
HMM was the chosen classifier. A polyphonic SED system has the focus on detecting
concurrent occurrences of events. In other works, Generalized Hough Transform (GHT)
was selected in order to detect overlapping acoustic events [DTC13] and Nonnegative
Matrix Factorization based (NFM-based) approach was applied for source separation and
detecting the events occurring in each audio stream [HMVG13]. Modeling overlapping
sound events with the traditional DNN also showed a good performance in the work of
[CHHV15]. For this work, features such as MFCC, Short Time Fourier Transformation
(STFT) and Constant Q Transform (CQT) will be implemented and compared. The
purpose of this subtask is to observe and analyze the differences between each feature in
accuracy of the detection task in order to detect overlapping/non-overlapping events.

Scientific Question 1.3: Generalizability of the Model
INSTANCE:
Given a sets of recorded audio as input and a deep learning architecture for event
detection.

PROBLEM:
Can the generalizability of model be improved by the solutions such as data augmen-
tation and dropout?

Question 1.3 formally describes the problem of generalizing the model. Model general-
ization refers to the high classification performance of the model on any type of data.
In many applications, deep learning classifiers have shown good performance. For that,
some factors such as data augmentation and dropout are pointed at. Having large
training data allows these classifiers to learn from the variations of samples under the
same labels in the dataset. For this matter, the training data from each class should
be sufficient enough to cover its labeled class variations, otherwise using poor data
will lead to a weak generalization ability of classifiers. In order to overcome such issue
data augmentation methods have been introduced. There exist numerous approaches to
augment data. Applying transformations and adding noise to existing data is counted as
the simplest approach of data augmentation.Also employing dimensional reduction and
imputation methods in order to increase the number of instances in sparse areas of the
dataset are counted as another ways of augmenting data. As more advanced approaches

4

1.2. Contribution of this thesis

simulating the data based on evolutionary and dynamic systems can be mentioned.
To mention some: approaches such as Vocal Tract Length Perturbation (VTLP) and
Equalized Mixture Data Augmentation (EMDA) which have shown improvements for
the sound event detection task was implemented and tested in [CGK15]. This project
will implement the applied data augmentation methods using the librosa library. More
detailed of the used approaches and their performances are explained in theoretical
contribution part of this thesis. The last subtask of this thesis, mentioned in question
4, is the implementation of different deep learning approaches such as Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNN), CNN-RNN, the hybrid
approach Bidirectional Long-Short-Term-Memory (BLSTM) and Hidden Markov Models
(BLSTM-HMM). The behavior of each model is analyzed and compared with other
implemented approaches and a conclusion will be drawn.

Scientific Question 1.4: Classifier Selection
INSTANCE:
Given a feature vector from the recorded audio dataset and a deep neural network
model.

PROBLEM:
Does this model have a better performance than the baseline system? How does
RNN model and its extensions perform compare to Multilayer perceptron?

In this project, we tried to analyze different proposed approaches and argue which of the
architecture, using which features lead to more accurate detection of the sound events. Ref-
erence to the questions 2,3 and 5, the main interest of these work, given the DCASE2017
rare sound event dataset, is to utilizing different classification methods and compare them
in order to detect the best matching deep learning architecture for the discussed questions.

1.2 Contribution of this thesis

The key contribution of this thesis is to apply deep neural network on the sound event
detection task and use solutions such as data augmentation, dropout technique in order
to generalize the deep model as well as trying to explain the behavior and performance
of the model buy changing its number of inputs, extracted features and parameters. A
numbers of factors (i.e. input representation, model parameters, ..) need to be considered
for the task of sound event detection and classification. As mentioned earlier, we consider
the task in different steps which each can be seen as a sub-task to be further analyzed.
Here, the first problem to address is how to augment the available data in order to
create more instances for each class, for the purpose of model training and improvement
in detection and classification process. What manipulation on the instances is mostly
needed and whether the chosen data augmentation approaches or even the combination

5

1. Introduction

of them will improve the learning rate.
Moreover, the representation of each audio segments should be strong enough to capture
the different energy levels. Which input representation captures the features and char-
acteristics of the sound events and is most effective for the defined task. Also reducing
the background noise which enhances the event’s features, leading to more accurate
classification. The importance of this work is to comprehend the environment and events
arising within surrounding areas using the extracted information from the received signals.
multiple architectures and the training process with manipulating their parameters in
order to analyze the behavior of each model on the task is another step of this procedure.
Following sections show the operations which are performed in each of these steps.

Training Instances
As mentioned earlier, the robustness of deep models highly depends on the number of
input data. Therefore, one of the contributions of this thesis is to apply data augmenta-
tion techniques such as pitch shifting and time stretching on audio signals to create more
training samples for the model and study the model’s performance on these techniques.
For this purpose, two different audio scenes provided by Tampere university for TUT
Acoustic scene 2017 challenge are used. Two provided datasets are: Rare-sound event
detection dataset and real life sound event detection dataset.
The rare-sound event detection dataset comprises of isolated sound events for each
target class. The background sound served in each audio is the everyday acoustic scene
recordings. To evaluate the model’s performance, an evaluation dataset is also provided
which comprises of 250 recordings for each classes.
The real life sound event detection dataset is only the street recordings, where the events
are sound of cars and people. Unlike the rare-sound event detection dataset, this dataset
is not synthesized and is an actual recording of the street sound. Therefore, the quality
of the recordings for this dataset is much lower than the first dataset.

Features
As mentioned before, the challenging part of the task is to determine the onset of each
event in the given audio inputs; for that, conventional approaches such as HMM and
MFCC need to be modified to accurately detect the sound events. Also other features such
as CQT and Mel-band energy are applied and analyzed. These features help the classifiers
to deal with the variation of instances and try to improve the accuracy of detection.We
thus provide, as a result of this thesis, insights into these input representation techniques
and evaluation of the effectiveness of Mel-band energies and CQTs in comparison to
conventional MFCCs.

6

1.3. Outline

Classifiers
Many approaches exist to evaluate the outcome of different classifiers applied to the
SED task. The chosen machine learning approach for this work is different deep learning
architectures. Through SED challenge, when facing different level of complexity such as
noise or polyphony, these methods will be studied and compared. Previous works showed
the high performance of architectures such as Recurrent Neural Networks [PHV16] and
Convolutional Neural Network (CNN) [CKBK16] separately utilized for acoustic scene
classification and audio tagging. RNN has feedback structure and in comparison to
feed-forward layered neural network, earlier time information can be propagated forward
to the current time which in case of event detection is very important (the beginning and
ending of an event will be detected). CNN is a given raw input signal which is divided into
segments called frames, and outputs a score in each predefined class. This architecture is
the combination of several filter stages and a max-pooling layer. BLSTM-HMM hybrid
system for polyphonic sound detection is another approach which had outperformed the
conventional RNN [HWT+16]. Other contribution of this thesis is to investigate these
different options and analyze the behavior of each approach on the same dataset and to
be able to explain and justify the model’s prediction.

Classifier Parameters
Finding the appropriate set of parameters in order to achieve more accurate result from
the employed method is another important aspect of the detection and classification task.
These parameters have the capability of noticeably varying the behavior of the mentioned
algorithms. Therefore, parameters for each algorithm will be altered and the results of
corresponding cases will be shown in the future chapters.

1.3 Outline
In the following chapter, we discuss the state of art for the related issues and different
applied approaches in those works are analyzed. In chapter 3, we describe the theoretical
contribution of this thesis as well as explaining the pre-processing steps, implemented
algorithms, employed dataset and the detailed plan of the experimental section of this
work. Chapter 4 comprises of the details for practical part of the thesis, training process
of classifiers and the experimental results are explained. Eventually in chapter 5, we
provide a summary of the conclusions and mention the possible future plan for this work.

7

CHAPTER 2
State Of The Art

In recent years, Sound Event Detection and Classification (SED/C) have been active
fields of research and there have been number of studies over these issues [TMZ+06].
As mentioned in chapter 1, event detection is more complicated than classification of
acoustic scenes. This statement can be explained by the fundamental differences of the
two following folds. It is apparent that the detection task requires the discrimination of
event categories as well as the target event categories from extremely rich background
audio. [PKK+17] stated the second fold as having access to the global context of the
events (namely, the full event which is fed into the classifier) in a classification task while,
in the detection task, we do not know in advance boundaries of the events and usually
need to rely on unreliable local audio features (namely, the segment size which is used
for the analysis window and do not contain the global context of the event) for inference.
Two alternative approaches for the sound event detection have been studied by Tampere
University of Technology [MHV16b] where we need to find the most prominent event
at each time instance, which will output a monophonic event sequence and was named
monophonic sound event detection. The second study is to find a predefined number
of overlapping events where produces a polyphonic event sequence as an output, and
therefore is called polyphonic sound event detection. The figure 2.1 illustrates an example
of the difference between outputs of these two approaches. As shown in the figure,
monophonic sound event detection refers to sound events which appears as a sequence
with no overlapping signals. Unlike monophonic SED, in polyphonic SED, the event
signals overlap which is a realistic example of real life situation.

In the recent research work (from 2016 to 2017) there have been published papers,
applying deep learning approaches on sound event detection. In the chart 2.2, number
of published works on sound event detection task for DCASE challenge using deep
learning approaches within these two years illustrates the large number of dedicated
works on convolutional, recurrent and dens layers. The robust performance of CNNs
and RNNs on SED task lead to further investigation on hybrid architectures such as

9

2. State Of The Art

Figure 2.1: An example of the differentiation between the outputs of monophonic SED
and polyphonic SED [MHV16b].

CRNN, CNN-LSTM and other extentions of RNN model in the year of 2017. The
chart analysis was done by categorizing the papers based on the publication year and
the applied methods. The color blue represents the year 2016 and color orange rep-
resents the year 2017. In the following of this chapter some of these studies will be
pointed and their approaches will be analyzed for both monophonic and polyphonic
SED tasks in terms of the two most faced issues with this study, data and model selection.

Figure 2.2: The number of published work using deep learning architectures on sound
event detection task

2.1 Data Augmentation
In order to achieve good classification/detection results, we need to train the model
on numbers of samples. The larger the size of the training sample, the more reliable
the performance of the model. However, collecting the training samples is an expensive
process. Therefore, there have been proposed approaches which create artificial training
samples by manipulating the already existing data. These methods normally create new
data by changing the amplitude and/or length of the audio or adding noise to the signals.

10

2.1. Data Augmentation

Utilizing these artificial signals, improves the complexity of the classifier which makes
the machine more general to classify variation of same label audio signals. A method
was proposed by [CGK15] which is called Vocal Tract Length Perturbation (VTLP) with
the purpose of adding noise to each recorded stream and create more artificial samples.
This method have shown very good results for Acoustic Speech Recognition (ASR) tasks.
The attempt of this method is to change the length of vocal tracts while extracting
the descriptors. Another approach mentioned in [TGPVG16] called Equalized Mixture
Data Augmentation (EMDA) which randomly mixes two different audio signals from the
same class and further, by boosting a particular frequency band, perturb the sound by
moderately modifying frequency characteristics of each source sound. The using a deep
convolutional network in [CGK15] achieved 80.6% accuracy with the data augmentation
and 76.1% without the data augmentation. The figure below, depicts the effect of using
the mentioned methods for data augmentation and improvement on performance of their
model.

Figure 2.3: Effects of EMDA and VTLP (data augmentation) methods with enlarging
number of augmented data [CGK15]

Other popular data augmentation approaches are pitch shifting, time stretching and
blocks mixing which is used in the works of [PHV16, LD17a, SB17, SG15]. Blocks mixing
method generates new recordings with either equal or higher polyphony which is by
combining different blocks of the signals within the same context. In a frequency domain,
this can be directly achieved by using the mix-max principle (overlapping two blocks of
the log mel spectrogram at the time, overall the whole spectrograms). Pitch shifting is
done by scaling linear-frequency spectrogram excerpts vertically which raises or lowers the
pitch while time stretching is the horizontal scaling of the linear-frequency spectrogram
and is the process of slightly slowing down or speeding up the recording. In recent
related works on audio information retrieval, pitch shifting and time stretching have been
very popular and have also shown very good results [SG15]. A library for music and

11

2. State Of The Art

audio analysis called librosa1 is providing these two functions which is used for the data
augmentation purposes in this work. The functionality and effects of these two functions
will be explained in detail later on in chapter 3, where the theoretical contributions of
this thesis are presented.
The procedure of augmenting the data is placed at the beginning of the SED system,
where the actual data is read and is ready to be pre-processed. Figure 2.4 illustrate the
flowchart of a SED systems using data augmentation to enlarge the dataset.

Figure 2.4: Flowchart of the sound event detection system

2.2 Architecture

The focus of the state of the arts in sound event detection systems points to the extreme
usage of deep learning architectures [CKBK16, AV17, CKBK16, TGPVG16, PHH+17,
PHH+17]. The work of Adavanne, Parascandolo, Pertilae, Heittola and Virtanen in
[AV17] is motivated by performance of RNN-LSTM over DNN. For the automatic sound
event detection task, they have proposed the use of harmonic and spatial features com-
bining with long short term memory (LSTM) Recurrent Neural Network (RNN) using
multi-channel audio. The performance of their approach was with 0.91 for error rate and
35.4 for F-measure slightly better than the Gaussian Mixture Model (GMM) classifier
with 0.91 for error rate and 23.7 for f-measure. To face the challenge of multiple event
detection, there have been introduced methods such as multiple path Viterbi Decoding
or multi-labeled DNN explained in [DHV13] and [CHHV15]. The detection method pro-
posed in [GPMK16] uses concatenated NMF (sparse-CNMF): a given dictionary of events
and determines the spectral patches for each class, over time. Based on [GAFC+16], as
the addition of two signals in temporal domain does not necessarily result in the addition
of their power spectra, a priori decomposition of sound spectra in several components is
therefore problematic. Their proposed solution was to use MFCC to directly coding the
spectrum of recorded signal. Via splitting the signals into frames before the processing and

1https://librosa.github.io/librosa/

12

2.2. Architecture

calculating the first derivatives of MFCC, the temporal dimension of the issue in detecting
the event was acknowledged. The proposed system used a non-parametric classifier and
have shown that the performance is directly depends on two factors: a proper selec-
tion of the sound recordings in order to train the machine and key spectral information
to detect the sound event had seemed to be concentrating on the range lower than 8000 Hz.
For the task of rare (monophonic) sound event detection, the hybrid system of convolutional-
recurrent neural networks was extensively used. The robustness of this system was proved
in [LPLH17] by achieving 0.1307 for the error rate and 93.1% for f-measure and placing
them as the winner of the DCASE2017 Rare Sound Event Detection competition. In
[PKBGM17], the CNN architecture was used and outperformed the Multi Layer per-
ceptron (MLP) baseline system by achieving 0.2773 error rate and 85.3% for f-measure.
Other architectures used for RSED task were the ensemble learning, with MLP, CNN
and recurrent Neural networks (RNN)- Long Short term memory (LSTM) applied by
[GSR+17] which achieved 0.4267 and 78.6% for error rate and f-measure values, respec-
tively.
In the more complicated task of polyphonic sound event detection (PSED), [AV17] used
a deep model which outperformed the baseline system with the error rate value as 0.7914
and 41.7 % f-measure by applying the CRNN architecture on the DCASE 2017 SED
task and achieved the first place in this competition. The RNN architecture used by
[LD17b] on the same dataset resulted error rate value as 0.8306 and 39.2 % f-measure. A
summarization of the state of the art mentioned in this chapter on both polyphonic and
monophonic SED task is presented in the table 2.1.

These works motivated this thesis to investigate the behavior of deep models on the
SED task using the same datasets provided by the DCASE 2017 for comparison and
evaluation purposes. The architecture studied for this project are RNNs and its popular
extension, LSTMs and the hybrid system CRNN which is explained and the effect of
each hyper parameter in these architectures on the results is analyzed and explained in
the following chapter.

13

2. State Of The Art

Source Dataset Featur-Extraction Method Err F-score
[LPLH17] RSED DCASE2017 log-mel energies CRNN 0.1307 93.1%
[CV17] RSED DCASE2017 log-mel energies CRNN 0.1733 91.0%
[KLB17] RSED DCASE2017 log-mel energies CNN 0.3173 82.0%
[RD17] RSED DCASE2017 log-mel energies Ensemble 0.4267 78.6%
[WL17] RSED DCASE2017 log-mel energies DNN 0.4320 73.4%
[AV17] SED DCASE2017 log-mel energies CRNN 0.7914 41.7%
[JLHL17] SED DCASE2017 log-mel energies CNN 0.8080 40.8%
[LD17b] SED DCASE2017 MFCC RNN 0.8251 39.6%
[Zho17] SED DCASE2017 log-mel energies LSTM 0.8526 39.3%
[LL17] SED DCASE2017 MFCC Bi-LSTM 0.9523 41.0%
[WL17] SED DCASE2017 MFCC RNN 0.9749 40.8%
[HWT+16] SED DCASE2016

(synthetic)
log-mel energies Bi-LSTM 0.4958 76.0%

[HWT+16] SED DCASE2016
(synthetic)

log-mel energies Bi-LSTM-PP2 0.4082 78.1%

[CKBK16] SED DCASE2016
(synthetic)

log-mel energies DNN 0.3660 78.7%

[KSWP16b] SED DCASE2016
(synthetic)

log-mel energies DNN 3.5464 12.6%

[VW16] SED DCASE2016
(synthetic)

CQT RNN 0.8979 52.8 %

[APP+16] SED DCASE2016
(real life audio)

log-mel energies RNN 0.8051 47.8%

[VW16] SED DCASE2016
(real life audio)

log-mel energies RNN 0.9124 41.9%

[KSWP16a] SED DCASE2016
(real life audio)

MFCC DNN 0.9557 36.3%

[GMS16a] SED DCASE2016
(real life audio)

log-mel energies CNN 0.9799 41.1%

Table 2.1: A tabular summarization of the similar works on sound event detection.

14

CHAPTER 3
Theoretical Contribution

In this chapter, the techniques for representing the input signals are presented. Afterwards,
the data augmentation approaches used for this thesis are explained. Then, the layout of
experimental part is presented which comprises of the preprocessing phase on the given
datasets, as well as an overview of the selected deep learning architectures.

3.1 Audio Features
In sound detection task, audio features play a very important role. First a sound and its
features must be known and for that, a brief explanation of it and its features is provided
in this section. A sound is a vibration which propagates only through a transmission
medium such as water, air or solid materials such as wood or iron. This means a sound
cannot propagate through vacuum. There are numbers of properties which are used to
define a wave. Such properties are:

• The wavelength, which is the horizontal distance between two points (either peaks
or troughs) on a waveform.

• The amplitude which is the height of the wave.
• Frequency of a wave, known as the cycles that pass a set point in a second and is

measured in Hertz.

However, the representation of the sound must give the information needed for the task.
The most useful representation of the sound which is used is the spectrogram. Spectro-
grams are the time ordered series of frequency compositions which reveals information
about the frequency content without sacrificing the time information [dOVG+15].
In figure 3.1, on the left, the wave data from a mixture sound of a baby cry within an
environmental noise is presented. Notice that the event can be detected, but there is no

15

3. Theoretical Contribution

information on how it sounds. The red lines was added later on to show the beginning
and the ending of event. However on the right side of the figure 3.1, each individual
sound and also how it sounds without using the spectral information over the time axis,
can be seen. In comparison with other sounds such as a gunshot or a glass breaking,
figures 3.2 and 3.3 illustrate the waveform and the spectrogram of a glass break and
waveform and the spectrogram of a gunshot, respectively. The background noise used for
the baby cry mixture is residential area, for glass break is sound of water waves and for
the gunshot is the street which sound of running engine is part of it. Approaches which
are used in this work to extract sound features and produce such spectrograms are Short
Time Fourier Transform, Mel Frequency Cepstral Coefficient, Mel band energies, and
Constant-Q Transform.

Figure 3.1: Sub-figure(a) illustrates the waveform and sub figure (b) is the calculated spectrogram
of waveform, representing a baby cry

Figure 3.2: Sub-figure(a) illustrates the waveform and subfigure (b) illustrates the spectrogram
of the waveform, representing a glass break

Figure 3.3: Sub-figure(a) illustrates the waveform and subfigure (b) illustrates the spectrogram
of the waveform, representing a gunshot

16

3.1. Audio Features

3.1.1 Short Time Fourier Transform

Short Time Fourier Transform also known as Short Term Fourier Transform (STFT) is
a powerful tool for audio signal analysis which defines a useful class of time frequency
distribution [All77]. The procedure here is to divide a longer time signal into smaller
segments with equal length segments and afterwards, computing the Fourier Transform
on each short segment, separately.
Taking this procedure step by step, first the Fourier Transform and Fourier Series are
defined as follows:

• The Fourier Transform is a mathematical method to convert the non-periodic
function in the amplitude vs time domain to the amplitude vs frequency domain.

• The Fourier Series is a mathematical method to convert the periodic function in
the amplitude vs time domain to the amplitude vs frequency domain.

Note the similarity between Fourier transform and Fourier series, both convert a time
domain to a frequency domain, however Fourier Series is applied on periodic functions
and Fourier Transform is applied on non-periodic functions. Namely, Fourier Transform
only takes a single segment of the signal and applies the Fourier computation. The result
is a continuous frequency value which looks the same as the discrete frequency value
returned by the Fourier Series for a periodic function. Short-time Fourier transform
(STFT) is a complex-valued matrix such that this matrix is the magnitude of frequency
bin f at frame t. To calculate the STFT, the following parameters are then needed:

1. First, define the length of the analysis window.
2. Amount of overlap among each window.
3. The chosen windowing function in order to avoid spectral leakage. The most

common functions are Hann and hamming windows.
4. Generating the window segment via multiplying window function by signal.
5. At the end, apply the Fast Fourier Transform (FFT) computation on each windowed

segment.

In order to get the most dominant frequency, FFT gives a distribution over a group
of different frequencies. As mentioned before, each signal has a time domain and a
frequency domain which has N complex points. Time domain refers to how the signals
change over time and frequency domain refers to the magnitude of the signals which
lie in the frequency range. By theory (Fourier series), signals are composed of many
sinusoidal signals with different frequencies, like triangle signal, it is actually composed
of infinite sinusoidal signal (fundamental and odd harmonics frequencies) [Smi99]. The
main parameters of the FFT are window size and FFT size. Window size defines the
duration and number of samples which depends on the fundamental frequency, intensity

17

3. Theoretical Contribution

and changes of the signal. The window size influences the representation of the signal or
the frequency resolution. However, the FFT size is the number of the bins of the analysis
window. By changing the FFT size, the frequency resolution can be increased and by
default it gets the value with a power of 2 factor (2, 4, . . . , 512, 1024, ..) [Smi99]. Short
Term Fourier Transform is a solution to capture the temporal changes of the content of
the spectral. As explained before, STFT applies Fourier Transform on each short period
of time. The window length determines the frequency resolution. Namely, the larger
the Fourier Transform input, the higher the resolution of the frequency. After applying
this computation steps, one last step is needed in order to represent the spectrogram
of the given input. As mentioned before, spectrogram is a series of the consecutive
magnitude Fourier Transforms on a signal. Figure 3.4 shows the spectrograms resulted
after applying STFT to extract the features, using different length for time-window. By
carefully examining the illustration, one can notice the bigger number of time-windows
zooms out the image (outputs an image with higher resolution) and the smaller number,
obviously, zooms into the image (outputs an image with lower resolution). The audio is
the sound of a baby cry on a residential area as background noise. This audio is a sample
from TUT rare sound event detection 2017’s dataset. Library used for this feature in
this work is Librosa which provides STFT as its core application.

Figure 3.4:
Illustration of the different window sizes in Short Time Fourier Transform spectrograms.

The larger the window size, the more zoomed out the spectrogram becomes.
Sub-figure (a) has the FFT window size 512. In sub-figure (b), the FFT window size is

1014. Sub-figures (c) and (d) have the FFT window sizes 2048 and 4096.

18

3.1. Audio Features

3.1.2 Mel-Spectrograms and Mel Frequency Cepstral Coefficients

SED task mainly focuses on training the system to distinguish events occurring in an
audio stream. The most common feature extraction technique used for this matter is Mel
Frequency Cepstral Coefficients called MFCC which is highly effective, powerful under
various conditions and is less complex to implement [PKVK13].
The Mel, comes from melody which indicates that the scale is based on pitch comparison
and was named by Stevens, Volkmann, and Newman in 1937. The motivation behind the
MFCC design is the knowledge of human auditory system. The step by step computation
of MFCC are pre-emphasis, Framing, windowing, Fast Fourier Transform, Mel filter bank
and computing DCT (Discrete Cosine Transform).

Figure 3.5:
MFCC block diagram

Pre-emphasis: In this step, the input audio signal is passing through a filter which empha-
sizes higher frequencies. This process increases the energy of the signal at higher frequency.

Frame Blocking: Through the process of segmentation, the input signal is divided
into smaller duration called frames. Since an audio signal can be a time varying, it needs
to be examined in shorter durations, therefore short time spectral analysis is required.

Hamming Windowing: Hamming window is a window function used to reduce disconti-
nuity. In the equation below, W(n) is the window function, X(n) is the signal which they
output a signal Y(n).

Y (n) = X(n) ·W (n) (3.1)

Fast Fourier Transform: In this step, as mentioned the the STFT section, the time
domain will be converted to a frequency domain. By using FFT (supported by the
equation below), the magnitude frequency response of each frame can be obtained and
the output is a spectrum. Equation below shows this calculation where Xp represent the

19

3. Theoretical Contribution

Fourier Transform of the windowed pth frame of the signal X[n] for each k=0,.., N-1.

Xp(k) =
∑

n = 0N−1xp[n]ω[n]exp−j fπkn
N (3.2)

Mel-Scaled Filter Bank: The goal of this step is to get smooth magnitude spectrum. It
also reduces the size of the features involved. Using the following formula [PKVK13],
the mel spectrograms for each input frequency is computed:

Lp(m, k) = log10

N−1∑
K=0

M(m, k) · |Xp(k)| (3.3)

where m= 1, .., F and p=1, .. P. The filter bank output is the product of the Mel filter
bank M and the magnitude spectrum |X| and mel filter banks M(m, k) are computed as

M(m, k) =



0, for lf (k) < lf (m− 1)
lf (k)− lf c(m− 1)
lf c(m)− lf c(m− 1) , for lf c(m− 1) < lf (k) ≤ lf c(m)

lf (k)− lf c(m+ 1)
lf c(m)− lf c(m+ 1) , for lf c(m) < lf (k) ≤ lf c(m+ 1)

0, for lf (k) ≥ lf (m+ 1)

(3.4)

Discrete Cosine Transform: In order to achieve the L mel-scale cepstral coefficient, DCT
is applied on the 20 log energy obtained from the previous step.

φrpx[n] =
F∑

m=1
Lp(m, k)cos[r(2m− 1)π

2F] (3.5)

where r = 1, .., F and φrpx[n] represent the rth MFCC of the pth frame in the audio signal.
The overview of MFCC algorithm:

1. Segment the audio signal into short durations
2. For each frame calculate the periodogram estimate of the power spectrum.
3. Apply the mel filterbank to the power spectra, sum the energy in each filter.
4. Take the algorithm of the filter bank energies.

20

3.1. Audio Features

5. Take the DCT (Discrete Cosine Transform) of the log filterbank energies.

In order to generate the mel features, two different librosa functions, MFCC and Mel-
Spectrogram were used. The first function, librosa.feature.mfcc, computes the Mel-
frequency cepstral coefficients which outputs an mfcc matrix which is a numpy array
with the size of (n_mfcc, T) which are the number of the mfccs and the track durations
in frames. Figure 3.6 illustrates the spectrograms generated by MFCC feature extraction
approach. As before, different numbers for MFCC to return are depicted. The audio
signal is the same as before. The difference between the sub-figures with different MFCC
numbers (20, 40, 80, ...) is not obvious to human eyes. However, by increasing the
number of MFCCs, features with higher frequency are captured.
The function librosa.feature.melspectrogram, computes a mel-scaled spectrogram which
outputs a numpy array matrix of mel scales. The parameters passed to this function are
only the wave-data and sample rate, then its magnitude spectrogram is computed at first
and it will be mapped onto the mel-scale by mel_f.dot(S · ·power). By default, power is
set to 2. Figure 3.7 illustrates the spectrograms generated by mel-spectrogram feature
extraction approach. Unlike the MFCCs figure, differences in increasing the number mel-
bands are depicted in each sub-figure. The larger number of bands results in capturing
the high frequency features. Therefore, the babycry in this image is visibly separated
from the background noise. Note that two other events are also visibly noticeable which
shows their high frequency feature. These events are birds singings (two different bird
types).

21

3. Theoretical Contribution

Figure 3.6:
Comparison of different mel-bands in Mel Frequency Cepstral Coefficients. (a) 20, (b),

40, (c) 80 and (d) 160 mel bands.

3.1.3 Constant-Q Transform

Constant-Q Transform (CQT) resembles human auditory system. Similar to human
auditory sense, a digital computer also requires more time in order to perceive low tune
frequencies. To calculate the constant Q transform of some sequence x, first it is required
to examine the Fourier filter formula:

N∑
n<1

x[n]e−2πinz/N (3.6)

This filter has the frequency to resolution ratio as z = fz
∆ft
z

and the bandwidth is ∆ft
z

which is the sampling rate divided by the number of samples N and it is independent of z.
Therefore, by choosing a window of length Nk = ∆cq

k can be perceived. In this equation,
fs is the sampling rate and fk denotes the frequency of the kth bin.

Note that cq-bins which are the components of the CQT will be calculated as the above
filter. However, to match the properties, the appropriate values for z and window length
N needs to be previously recognized. By choosing Q as z, a constant value Q for the
frequency to resolution ratio of each cq-bin is achieved. Hence the Qth Discrete Fourier

22

3.1. Audio Features

Figure 3.7:
Comparison of different mel bands in Mel spectrograms. (a) 20, (b) 40, (c) 80 and (d)

160 mel bands.

Transform (DFT)-bin with the window length Q fs
fk

is the integer value Q the kth cq-bin.
An efficient algorithm for calculating Constant Q Transform is proposed in the work of
Judith C Brown and Miller S. Puckette [BP92].

A summary of the CQT calculation process, first a minimal frequency f0 and the
number of bins per octave are determined (these are according to the requirements of the
application). fmax is only affecting the number of cq-bins which needs to be calculated.
It is also recommended to use any window function such as hamming window, in order
to avoid the spectral leakage.
The figure 3.8 illustrates a comparison between the CQT features and STFT features
which was computed by librosa core functions. The reason we compare CQT with FFT
is because of its close relation to FFT which results in bank of filters but visualization of
their spectrograms are completely different.

23

3. Theoretical Contribution

Figure 3.8:
Comparison of STFT and CQT. The top image, shows the STFT results with 4096 FFT

size with 120 bins.

3.2 Data Augmentation

In order to increase the performance of the models, a large amount of training data is
required. However, collecting such amount of data is expensive. The offered solution of
this issue is to artificially enlarge the size of the dataset by generating manipulations of
the existing data. Data augmentation enhance the performance of the models in many
machine learning applications. Different variations of each label in the training data helps
the deep neural network to learn the classification tasks much better. The goal of the data
augmentation approaches is to improve the generalization ability of the machine learning
models, accuracy in detection and classification tasks and controlling the over-fitting.
Issue which occurs in this task are such as class imbalance. Class imbalance refers to the
problem of having classes with large number of samples and classes with fewer samples.
For this thesis, since the learning process is a supervised learning, namely the training
data is labeled, the method used are some audio manipulations from librosa library
[MRL+15] with label preserving. Using time and frequency effects, from each audio input,
two different classes of audio waves are generated. Functions used for these purposes are
librosa.effects.time_stretch and librosa.effects.pitch_shift. Time_stretch, stretches the
time in an audio file by a fixed rate and pitch_shift, shifts the pitch in the waveform by
a given number of steps half-steps.

24

3.2. Data Augmentation

3.2.1 Time_Stretch

The output of this function is a time stretched waveform. The generated audio, depending
on the given stretch factor, is either faster (compressed waveform) than the original audio,
or slower (stretched waveform). To generate such output, first by applying the Short
Time Fourier Transform, the given waveform is transformed to its frequency domain.
Afterwards, using the Phase Vocoder approach presented by Laroche and Dolson in
[LD99], the frequency of the wave data is stretched. Phase Vocoder is an algorithm
which stretches or compresses the time-base of a spectrogram to change the temporal
characteristics of an audio.
The length of the timesteps array determines the length of generated audio. The difference
between each timestep in this array is equal to the stretch factor. To make it a bit more
clear, given the stretch factor 2, for a waveform with length 10 seconds and 44100 sample
rate (wavelength = 441000), the calculated timesteps will have the wavelength equal to
22500 (5 seconds).
After calculating the linear magnitude interpolation from the actual waveform and storing
them into the output array, the Invert Short Time Fourier Transform is used to transfer
the frequency domain back to the time domain and the stretched waveform is then
returned as the output.
As an example, the audio can be twice as fast as its original speed (compressed) by giving
the stretch factor as 2. Note that this factor should always be a positive number. An
audio can be also expanded (slower than the original audio) by giving the stretch value as
a real value smaller than 1. For example, given the stretch value as 0.5 creates a signal,
2 times slower than the original signal, the function will compress the audio by twice as
fast as its original speed.

Figure 3.9 illustrates one of the augmented wave generated by the time_stretch function.
The stretched rate for the augmented wave was set as 2. As noticed here, the augmented
wave is compressed

In order to stretch an audio, the value for the stretch rate needs to be smaller than 1
and bigger than 0. Figure 3.10 shows this example which the stretch rate was chosen as
0.5. This made the augmented audio to be half the time slower than the original audio.
In this image, notice the time axis, the length of the audio was stretched to twice as the
original length.
When using the time_stretch function for data augmentation, given the stretch rate, the
onset and offset of the labeled audio will be accordingly changed, therefore the onsets
and offsets of the events in the newly generated audio are calculated as follows: The
given onset and the offset of the original formula divided by the stretch factor gives the
onset and offset of the target audio.

target_onset(offset) = original_onset(offset(x))
stretch_factor (3.7)

25

3. Theoretical Contribution

Figure 3.9: The Original waveform (a) with the length 30 seconds and the augmented waveform
(b) with the stretched_factor = 2 which resulted the compressed waveform with length 15 seconds.

3.2.2 Pitch_Shift

To shift the pitch of an audio, two parameters need to be determined; the number of
steps which is desired to shift the wave data and also the desired number of bins per
octave which determines the number of the steps per octave and have the default value
of 12 (the actual number of the steps in one octave). The function will then outputthe
pitch shifted form of the original waveform. The function calculates the rate by given
the mentioned parameters as:

rate = 2
n_steps

bins_per_octave (3.8)

Afterwards, it will stretch the wave (with the calculated rate) in time and re-sample it
from the calculated sample rate to the original sample rate. At last it returns the shifted
wave with the fixed length as the original wave data. Figure 3.11 and 3.13 illustrate the
augmented wave data compared with the original wave data. The results is also shown
as spectrograms in figures 3.12 and 3.14.
In figure 3.11 the number of steps were set as 2, resulting an audio with higher pitch
than the original one and in figure 3.13 the number of steps is set to be -2 which resulted
the augmented audio with lower pitch. The figure 3.12 visualizes the difference between
the mel-spectrogram of the original signal and the augmented signal, using pitch shifting
with 2 number of steps in the octave. Using the equation 3.7 the calculated rate for the

26

3.2. Data Augmentation

Figure 3.10: The Original waveform (a) with the length 30 seconds and the augmented waveform
(b) with the stretched_rate = 0.5 which resulted the expanded waveform with length 60 seconds.

Figure 3.11: original waveform (a) and the pitch shifted waveform (b) with the number of steps
= .

2 steps per octave is 1.122 which means 12% shifting up the signal’s pitch. As for the
figure 3.14, calculating the rate for -2 as the value of the number of steps in an octave,
the value 0.8908 is resulted which is 11% shifting down the pitch in the signal. A good
way to choose the steps parameter is to listen to the augmented waveform. Created
audio should be noticeably different from the original audio while sounding like what is
is supposed to sound i.e. to augment a baby cry, by increasing/decreasing the steps more
than 8 (58% up shifting the pitch) or less than -6 (30% sown shifting the pitch), the cry

27

3. Theoretical Contribution

Figure 3.12: Original spectrogram (a) and the pitch shifted spectrogram (b) with the number of
steps = 2. By looking carefully at the images, it is noticeable that the distance in the y axis has
been slightly stretched (up-shifted pitch) which is mostly noticeable at the event area. The event
shows a baby cry and the spectrogram is the results of calculated mel energies with FFT window
size = 2014.

Figure 3.13: Original waveform (a) and the pitch shifted waveform (b) with the number of steps
= -2.

did not sound like a babycry anymore and was an animal-like sound.

3.3 Learning Process

This section consists of the data preprocessing and architectures used for this work.
Afterwards the post-processing approaches required to achieve the desired results is
mentioned. Before fitting the data into the designed model, first it should be appropriately
shaped to be used as the input of the model. Afterwards by setting the values for model’s
parameters, the model will train itself and starts the learning process on each data. All

28

3.3. Learning Process

Figure 3.14: Original spectrogram (a) and the pitch shifted spectrogram (b) with the number of
steps = -2. By looking carefully at the images, it is noticeable that the distance in y axis has
been slightly compressed (down-shifted pitch) which is mostly noticeable at the event area. The
event shows a baby cry and the spectrogram is the results of calculated mel energies with FFT
window size = 2014.

these steps are explained in more detail in their corresponding sub-section.

3.3.1 Pre-processing

The aim of the data pre-processing is to reduce the complexity of the data in order to
enhance the performance of the learning algorithms. Data cleaning, integration, trans-
formation and data reduction are some of the major tasks in data pre-processing. Data
cleaning refers to removing the outliers, smoothing the noisy data and filling the missing
values. For pre-processing phase of this thesis i.e Z-score normalization or attribute-wise
standardization, Scikit-learn library is used. Scikit-learn is a powerful machine learning
library which provides pre-processing functions such as StandardScaler which standardize
features by removing the mean and scaling to unit variance. Standardization re-scales
the features in a way that they have the properties of a standard normal distribution
with a mean of zero and a standard deviation of one.
The datasets used for this work are already cleaned and normalized by the provider
(Tampere University of Technology) for the DCASE challenge. Namely, all the data are
correctly labeled with their appropriate events and the continuous values for their onsets
and offsets. Also the time scale is all in the same unit with the duration of 30 seconds.
Each audio is labeled with either no event, babycry, glassbreak or gunshot. Having 3000
audios, 500 of them are labeled with baby cry, 500 with glassbreak and 500 with gunshot,
in total there are 1500 audios which an event occurs in them and 1500 audios which no
event occurs in them.

However, the third task of the DCASE 2017 do not have equally distributed labels. All

29

3. Theoretical Contribution

the audios in the development set are labeled with the 1 or more events which have
been occurred within them. To overcome this issue, data augmentation was applied on
the other 5 labels (by augmenting only segments of the audio where the other 5 labels
occur) in order to have normal distribution of the labels. The overall distribution of
labels among all 24 audios are illustrated in the figure 3.17. As depicted below, for the
label brakes, there are 52 occurrences, for cars, 304 which is the dominant event in all
the audios. For children, large vehicle, people speaking and people talking, there are
respectively 44, 61, 89 and 109 occurrences.

3.3.2 Deep Learning Architectures

Since the scope of signal analysis and processing research has been significantly widened,
it has embraced many broad areas of information processing and machine learning has
been an important area of these researches [Den12].
Since 2006, deep learning has emerged and the technique, developing from its research
have affected a broad range of signal and information processing within the traditional and
the new extensive scopes including artificial intelligence and machine learning [HOT06].
Deep Learning refers to a class of machine learning techniques where within a hier-
archical architecture, many layers of information processing stages are extracted and
as mentioned in the first chapter these techniques, in contrast with the earlier tech-
niques such as Support Vector Machines (SVMs) have shown very good performance
[MHV16b, GPMK16, GAFC+16, HWT+16]. There are variants of deep architectures;
Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), Deep Belief
Neural Networks (DBNNs) and Recurrent Neural Networks (RNNs).
In this work, chosen methods are RNNs and its extensions which have been selected
based on their popularity for the task of Audio Event detection. Afterwards CNN
architecture will also be tested to compare the performance of this architecture with
RNNs for detection and classification tasks on time series data. Following this chapter, a
brief explanation of each method is provided and afterwards the result of implementation
of them and a combination of them are shown in the next chapter.

Recurrent Neural Networks

Recurrent neural networks address the issue of reasoning about previous events in order
to make a decision for future events. They are networks with loops in them, allowing
information to persist. Recurrent Neural Networks (RNNs) are popular models of Deep
learning Networks. The internal structure of a RNN forms a directed graph which displays
a dynamic temporal behavior and is called recurrent because of its ability to perform
the same task for every element of the given sequence, having the output depended
on the previous computations, or so to say, they are able to memorize what had been
observed and calculated sofar. However there is limitation on its “memory”; only the
information for just a few states before is captured. Tasks that RNN is popular for:
Speech recognition, Natural Language Processing, Handwriting recognition, ...

30

3.3. Learning Process

Figure 3.15:
A recurrent neural network in its forward computation process1

In figure 3.15, unfolding the network refers to the number of iteration process in the
recurrent cell which depends on the given input. each of these iterations are called a
time-step. St is the unit memory which captures the previously calculated information.
RNN shares the same parameter at each step (W,U,V) which greatly reduces the number
of parameters needed to be learned. This is an advantage of RNN in comparison with
traditional DNN which used different parameters at each level. The hidden states of
an RNN are its main feature which represent the information of previous steps. As
extensions of RNN, Bidirectional RNNs can be mentioned. The idea behind this extension
is that the output of a specific time may not only depend on the previous elements, but
also the future elements. For example in an Natural Language Processing (NLP) task, to
predict a missing word, the previous word and the next words need to be known. BRNN
have relatively simple model. They are only two RNNs stacked on top of each other.
Deep Bidirectional RNNs are another extension of RNNs (also BRNNs) which is similar
to BRNNs but multiple layers per time steps are sustained.

Denoting the feature vector as x1, x2, ..., xT , the equation below mathematically describes
an RNN network. An RNN with a hidden layer output vector ht and output layer one yt
are calculated as follows:

ht = f(W1 +Wrht − 1 + b1) (3.9)

yt = g(W2ht + btHz (3.10)

In the equation above, Wi represent the input weight matrix and bi denotes the bias
vector of the ith layer, Wr represents a recurrent weight matrix. f is the hidden layer

1http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/09/rnn.jpg
2http://d3kbpzbmcynnmx.cloudfront.net/wp-content/uploads/2015/09/rnn.jpg

31

3. Theoretical Contribution

Figure 3.16:
Architecture of BRNN with one hidden layer and 3 hidden layers.2

function and g is the output layer function.

The Problem of Long-Term Dependencies
One major problem with RNNs is that they cannot learn context information over long
stretches of time which is due to the so called vanishing gradient problem [PMB13]. The
training process uses something called gradient which measures the rate at which cost
changes with respect to weights or biases. While training a neural network, the cost value
is constantly calculated. The cost value is the difference between the predicted output
and the actual output. This value is then lowered by slightly adjusting the weights and
biases over and over throughout the training process, until the lowest possible value is
obtained. This process is called back propagation. Since the obtained values from back
propagation gets smaller and smaller, it leads slowing down the training process. This
is the issue which developers were facing while training an RNN model. The solution
proposed to avoid the vanishing gradient descent are:

1. The choice of the activation function: many activation functions squash their input
into a very small output range In a very nonlinear fashion i.e. sigmoid function
maps a real number onto a small range between zero and one which results to
mapping large regions of the input space to an extremely small range. Therefore,
even a large change in the input will produce a small change in the output and
hence, the gradient is small. Therefore activation functions such as rectified Linear
Unit (ReLu) are strongly advised. This activation function maps the value x to
max(0, x).

32

3.3. Learning Process

2. LSTMs or GRUs: LSTMs (short for Long Short Term Memories) and GRUs
(short for Gated Recurrent Units). These both extensions of RNN, use different
approaches of gating information to avoid vanishing gradient problem. GRUs was
introduced by Cho et al in 2014 [CVMBB14] and have a very similar architecture
to LSTMs and is achieved by modifying the recurrent unit in an RNN network
and adding a new variable to represent the memory cell. The task of this cell
is to remember and forget its state based on the input signal to the unit. Each
GRU thus has a reset gate and an update gate. This unit fully exposes its memory
content at each time-step and balances between the previous memory content and
the new memory content strictly using leaky integration, albeit with its adaptive
time constant controlled by update gate. The update technique helps the GRU to
capture long term dependencies. At the point where a previously detected feature,
or the memory content is considered to be important for later use, the update
gate will be closed to carry the current memory content across multiple time-steps.
By allowing the GRU to reset itself whenever the detected feature is not of use
anymore, the reset function helps to use the capacity of the cell memory efficiently
[CGCB15, LD17a]. As for LSTMs, this extension is chosen to be experimented in
this thesis, motivated by the work of [HWT+16] explained in more details in the
following section of this chapter.

Long Short Term Memories

Long Short Term Memory is a special case of deep learning RNN which solves the problem
discussed before. It is very similar to RNNs but uses different methods for computing
the hidden states. The memories in LSTM are referred to as cells.These cells carefully
decide whether an information is needed (to keep the information) or not (to erase them).
For that, gates are used to let the information in (or not) which are formulated from a
sigmoid neural net layer and a point-wise multiplication operation.
Sigmoid Neural Net layer which outputs a value between 0 and 1 and represents how
much of a information are allowed to go through. In other words, if the function outputs
zero, the information is not needed at all (let nothing through) on the other hand the
value one means all the information are important (let everything through). Point-wise
multiplication Operation is used to generate a continuous value between 0 and 1, in order
to determine how much of the given information is important to hold on to. Describing
this approach more in detail, as mentioned before, an LSTM contains three gate layers:
A forget gate layer, an input gate layer and a tanh layer.

First Layer: Forget layer is used in the first step of the LSTM which decides which
information is going through and which is not.
Note that deciding which information to forget and which ones to keep is learned auto-
matically from the data. The target labels that are used and the process of training with
gradient back-propagation will accordingly adjust the parameters in order to understand
the importance of the information for keeping them and in contrary forgetting the non-
important information. Learning the parameters which control this decision is modeled

33

3. Theoretical Contribution

by the memory cell through the computation in this unit.

Figure 3.17:
Forget layer in the LSTM Architecture3

Second Layer: In this step, we need to decide what new information is needed to be
stored in the cell state. This process is performed in two parts: first part is a sigmoid
function which decides which values needs to be updated. Afterwards a tang layer, creates
a vector of new candidate values that could be added to the states. The reason behind
using the tanh as the function in this layer is its ability to sustain for a long range before
going to zero.

Figure 3.18:
Input layer in the LSTM Architecture4

Third Layer: Next, the out outputs of the previous step (tang gate and the input gate)
will be combined in order to create an update for the state. Afterwards they combine the
current state, the previous knowledge and the input which makes these units very efficient
at capturing long terms dependencies (states). In the recurrency of LSTM, the activation
function is the identity function with a derivative of 1.0. Therefore, the back-propagated

3http://colah.github.io/posts/2015-08-Understanding-LSTMs/
4http://colah.github.io/posts/2015-08-Understanding-LSTMs/

34

3.3. Learning Process

gradient remains constant [ZSV14].

Figure 3.19:
The repeating module in an LSTM contains four interacting layers. 5

To mathematically describe LSTM, the previous RNN formula is replaced by the following
equations:

gIt = σ(W Ixt +W I
r ht−1 + st−1), (3.11)

gFt = σ(WFxt +WF
r ht−1 + st−1), (3.12)

St = gIt � f(W1xt +Wrht−1 + b1) + gFt � st−1 (3.13)

gOt = σ(WOxt +WO
r ht−1 + st−1) (3.14)

ht = gOt � tanh(St) (3.15)

In the set of equations above, 3.10 is the mathematical computation inside the input gate
of LSTM where W denote input weight matrices and Wr represents recurrent weight
matrices. The σ represents the logistic sigmoid function which gives this gate’s output, a
number between 0 and 1. 3.11 represents the mathematical calculations in the forget gate.
3.12 represents the calculation which updates the state captured information. Again,
using a sigmoid function, equation 3.13 gives the memory state output based on the

5http://colah.github.io/posts/2015-08-Understanding-LSTMs/

35

3. Theoretical Contribution

previously captured information, output of the previous unit and its input. The value
calculated by 3.13 will be then used to calculate the final output of the LSTM unit which
is represented in equation 3.14 where � represents point-wise multiplication.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a powerful architecture motivated by variants
of Multi-Layer Perceptrons (MLPs) and is emulating the behavior of a natural visual
cortex. CNNs are feed-forward neural networks which contain one or more convolutional
layers. Neurons in this architecture are purposely spatially arranged to form feature
maps. Each of these neurons has a connection to a fixed-size local region of the input
which corresponds to its position in the map and weights are shared among all neurons
in the map. The output which feature map computes is interpreted as a convolution of
its input with a small filter kernel followed by an element wise nonlinearity.

Figure 3.20:
Example of a convolutional layer.6

What the filter kernel does, is to match the features with each piece of the given input
by comparing the pixels one by one. Compared to a fully connected layer, the outcome
given by the feature map is spatial layout of the input data which has noticeably lower
number of trainable parameters. A convolutional layer can be followed by a Pooling layer.
This layer sub-samples each feature map by retaining e.g. only the maximum value in
non-overlapping usually 2x2 or 3x3 pixel cells in order to reduce the size of the data. It
also introduces some translation invariance. For the classification task, a fully-connected
network is the ending of the computation chain of CNN. This part integrates information
among all feature maps of CNN layers. However to use as an onset detector, giving binary
labels to specify onsets and non-onsets, the CNN is trained on spectrogram excerpts
centered on the frame for classification.
Figures 3.20 and 3.21 illustrates a convolutional layer and also an example of a CNN

6http://deeplearning.net/tutorial/lenet.html

36

3.3. Learning Process

model, respectively. In figure 3.21, as depicted, the input of the network is a feature
matrix (here taken from a 2D spectrogram). At the end, there is a fully connected layer
which maps the learned features from the convolutional layers to the out put layer.

Figure 3.21:
An overview of a convolutional neural network model.7

In the work of [SB14] As the task of signal processing mostly involves discovering changes
over time, filters wide in time and narrow in frequency was used and since results of high
time resolution was required, max-pooling over only frequencies was performed. With
different window sizes and same frame rate, training was on a stack of spectrograms
reduced to the same number of frequency bands with logarithmic filter banks. This way,
each neuron combines information of high temporal and high frequency accuracy for
its location. In order to detect onsets in a signal, he spectrograms was computed in
their work and was fed to the network which onset activation function over time was
obtained. Using a hamming window of 5 frame, the function was smoothed and local
maxima higher than a given threshold was reported as onsets.

3.3.3 Parameters

As for the parameters, in each section of the experiment using different techniques and
algorithm, require different parameters to set. In this section, the parameters used for
each phase of the work is briefly explained. Afterwards, in the next chapter, the values
set for each parameters is specified.

Input Representation parameters

The parameters used for this phase, depending on the feature extraction method are
presented as follows:

7http://deeplearning.net/tutorial/lenet.html

37

3. Theoretical Contribution

The fast Fourier transform size: Defines the number of bins used for dividing the window.
Each bin is a spectrum sample which defines the frequency resolution of the window8.
Therefore, the larger the FFT size, the higher the frequency.

Overlap: this parameter determines how many percentage is desired in order to hop to
the next window. The hop size is then calculated as

hopsize = fft_size · (1− overlap)

.

Figure 3.22:
Overlap between two windows.

In the figure 3.22, the first analysis window (shown in black) is an FFT_window which
contains some information about the signal. By setting the overlap value as 0.5, we are
determining the hop size as half of the FFT size, therefore the next window (shown in
green) will move only half of the window size forward which leads to have half of the
information in the green window to be the same as the previous window. If the value of
overlap is set to be as 0.25, then the hop size is 0.75 of the FFT size which leads to have
only 25% of the information in the next window to be the same as the previous window.

Model Parameters

The parameters used for building a deep learning model, compiling and training are
described in the following;

Units: Neurons or units if using the RNN model, if using the CNN model is called filters
in each layer and using an activation function they calculate a weighted sum of their
inputs, and adds a bias to it. To choose a value for this parameter, we need to look at
the size of the data. The larger the number of neurons and layers results in a larger
model and more parameters to calculate. If the size of dataset is smaller than the size of
the model, the model will have numbers of neurons which are not used in calculations
[CGCB15].

Activation function: A neuron needs to be either activated or not. This decision relies on
the value which neuron calculates. Here, the activation functions used in this work are

8http://support.ircam.fr/docs/AudioSculpt/3.0/co/FFT%20Size.html

38

3.3. Learning Process

described in the following. These function were chosen based on their popularity among
the activation functions.

Sigmoid function
Sigmoid activation function is a nonlinear function. The form of this function is shown
in the equation 3.15.

σ(x) = 1
1 + e−x (3.16)

It takes a real number x as its input and returns a value between 0 and 1. Sigmoid
function is a particular case of the logistic function and the output of it can be interpreted
as the probability value. Sub figure a in figure 3.23 depicts the shape of this function.
Tanh function

The tanh activation function is a scaled sigmoid function. The equation 3.16 defines the
form of this function shown in the sub figure c in 3.23.

σ(x) = 1
1 + e−2x = 2 ∗ sigmoid(2x)− 1 (3.17)

This activation function is also nonlinear and it is bound to range (−1, 1). The different
between the tanh function and the sigmoid function is the strength of their gradient. As
illustrated in the figure below, the gradient of a tanh function is steeper than the sigmoid
function which depending the importance of the gradient’s strength, one can decide
whether to use a tanh function or a sigmoid function. However, as also mentioned in the
earlier section of this chapter, where the problem of vanishing gradient was explained,
both these activation functions cause the vanishing gradient.

Rectified Linear Unit (relu)
As it was mentioned in the other section 3.3.2, ReLu is one of the solution for vanishing
gradient problem. The equation 3.17 shows the form of this function.

A(x) = max(0, x) (3.18)

For the positive value of x, this function return x and for the negative value of x it
returns 0. The shape of this function is illustrated in the sub figure b in 3.23.

Dropout: Dropout is one of the most used tools in many deep learning models as a way
to avoid over-fitting [43]. The key idea behind this theory is to randomly turn off or
‘drop’ units along with their connections during the training process, in the layer which
it is applied. This act prevents the units from co-adopting too much which leads to
over-fitting. Dropout is also a form of a regularization of the model. [SHK+14] depicted
dropout technique as shown in the figure 3.24. Note that setting dropout to 50 means the
50% of neurons in each layer will be randomly shut down, namely, 50% of the calculated
information will not go through the next layer. In this thesis, the value of the dropout is

39

3. Theoretical Contribution

Figure 3.23:
Sigmoid activation function

Figure 3.24:
Dropout method applied in the layers of a fully connected neural network.

set after visualizing the learning curve and the prediction results to lower the model’s
over learning and improving the predictions on the evaluation set.

Loss function: Loss function or cost function maps one or more values onto a real number
representing some cost associated with the values. A loss function l(ŷ, y), where ŷ is
the predicted value of an event and y the actual value of the event aims to lower the
difference between the predicted output value and the actual output value. This function
is used in order to compile a deep learning model. For this work, these two loss function
were used: categorical cross entropy and binary cross entropy. The first one is used for
categorical prediction, which in this work is task 3 of the DCASE 2017. The latter is
used for binary prediction and in this work, it was applied to compile the models for the

40

3.3. Learning Process

task 2 DCASE 2017.

Optimizer: As mentioned in the previous part, a loss function needs to be minimized.
Therefore the usage of an optimizer is needed. The optimizers used for this work are
from the category of the most popular ones and are briefly explained. The optimizer is
chosen based on the experimental results. In some works optimizers such as adam and
PMSprop are recommended for RNN and its extensions [CV17]

Stochastic Gradient Descent (SGD)
The gradient descent algorithm minimizes the loss function l(θ)by updating the parameters
as shown in the equation 3.18.

θ = θ − α∇θE[J(θ)] (3.19)

Using the full training set, gradient descent algorithm approximates the cost and gradient.
However, SGD simply computes the gradient of the parameters over only a single or a
few training samples in the set. The equation 3.19 shows the form of the SGD. The pair
(x(i), y(i))are the random choices from the training set.

θ = θ − α∇θJ(θ;x(i), y(i)) (3.20)

RMSprop
RMSProp is the combination of Rprop and SGD. Resilient Propagation (Rprop), uses
adaptive learning rate approach which is by increasing the learning rate multiplicatively
for a weight only if signs of two previous gradients agree. Otherwise it decreases the
learning rate multiplicatively.
RMSprop divides the learning rate by an exponentially decaying average of squared
gradients and uses the equations 3.20 and 3.21 to update the parameters.

E[g2]t = 0.9E[g2]t−1 + 0.1g2
t (3.21)

θt+1 = θt −
η√

E[g2]t + ε
(3.22)

where E[g2]t is the exponentially decaying average of the squared parameter updates.

Adam
Adaptive moment estimation (adam) computes individual adaptive learning rates for
different parameters from estimates of first and second moments of the gradients [44].
In the equations 3.22 and 3.23 calculations of the first moment mt (the mean) and the
second moment vt (the un-centered variance) of the gradients are shown.

mt = β1mt−1 + (1− β1)gt (3.23)

41

3. Theoretical Contribution

vt = β2vt−1 + (1− β2)g2
t (3.24)

Adam updates its parameter just as RMSprop using the following equation 3.24 as the
update rule.

θt+1 = θt −
η√
v̂t + ε

m̂t (3.25)

where v̂t and m̂t are calculated as follows:

m̂t = mt

1− βt1
(3.26)

v̂t = vt
1− βt2

(3.27)

Which are the computations of bias-corrected first and second moment estimates. The
default values for β1 is 0.9, for β2 is 0.999 and for ε is 10−8. in practice, this optimizer has
shown very good performances compared to other adaptive learning method algorithms
such as SGD and RMSprop [KB15].

Kernel size: This parameter is only set in a convolutional layer which determines the
largeness of the convolutional window. This window replicates how human eyes function
when looking at an image. First a small region is picked and then the window slides
to capture the information of the neighboring regions. The length of sliding is also
determined by setting the strides parameter. The kernel size is normally set based on
practice, however [AHMJ+14] recommended to start by small sized such as kernel size
3x3.

Max pooling layer: This parameter is also set only for CNN architectures and maps the
dot products calculated by the kernel size, into one single integer which is the maximum
value within the determined pooling size. The same as kernel size, the value set for this
layer is determined by practice [Wu17].

Early stopping: This is a technique which is considered another solution to over learning
and reduces the execution time while training a model with an iterative method. As
the name describes, early stopping of the models training is applied when no change
withing some pre defined number of iterations (epochs) are not observed. For this we
define a patience, i.e. the number of epochs to wait before early stop if no progress on
the validation set. The patience is often set somewhere between 10 and 100 (10 or 20 is
more common) [PHH+17, PHH+17, LD17a].

In the next chapter, the chosen values for all the mentioned parameters is written and
also explained.

8http://www.hpmemoryproject.org/an/pdf/an_243.pdf

42

CHAPTER 4
Experimental Results

In this chapter, steps of the practical part of this work are presented. As mentioned
in the first chapter, sound event detection is a task which can be classified into two
categories: multi label classification which addresses the issue of detecting overlapping
sound events and multi-class detection such as addressing the issue of detecting a rare
sound event. Different architectures are tested and methods such as dropout and data
augmentation are applied to generalize the model and improve the performance. To
evaluate the models, two datasets provided by [MHD+17] have been used.
The first part of this chapter, presents these datasets. Afterwards, the systems which have
been developed for this thesis as well as frameworks and libraries used for the application
is introduced. Furthermore, the phases of processing the data, extending training dataset
and creating different models to find the best fit for the data are described.

4.1 Datasets

The evaluation presented in this chapter is based on two experiments: experiment 1, uses
the dataset for DCASE 2017 task 2 which is rare sound event detection with no multi
label tagging. Experiment 2, is the task of sound event detection with overlapping sound
events which the dataset for DCASE 2017 task 3 is used.

4.1.1 DCASE 2017 Task 2 dataset: Rare Sound event detection

The dataset used for the phase one of the project is given by [MHD+17] for the second
task. This dataset has two parts, development dataset and evaluation dataset and they
both comprises of isolated sound events for each target class. These classes are babycry,
glassbreak and gunshot. The recordings of everyday acoustic scenes are also part of the
dataset.
Background audio material consists of recordings from 15 different audio scenes, and is

43

4. Experimental Results

part of TUT Acoustic Scenes 2016 dataset.
The isolated sound examples are collected from the website “Freesound”1 and the selection
of the sound was based on the exact label and had sampling frequency higher than 44.1kHz.
The annotation of the start and end time of isolated examples in the training set were
created by a SVM-based semi supervised segmentation. Afterwards, for correctness, a
manual refinement was also applied.
The event-to-background ratio (EBR) [MHD+17], randomly selected positioning for the
target sound and also the probability of event occurrences (there are mixtures where
no event is occurred in them) are counted as the parameters controlling synthesized
material. Isolated sounds and background samples are selected at random. The mixture
synthesizer automatically produce annotations for the synthetic mixtures. Since the task
is independent of the background acoustic scene, these annotations contain only the
target sound event temporal position.
As mentioned before, there are two subsets: the evaluation and development dataset.
Development dataset comprises the original background, isolated event samples and a
set of generated mixture audio tracks. The background audio file in this dataset are
approximately 9 hours and for each target class, around 100 isolated sound examples
and 500 mixture audio samples are provided. Each of these mixtures contains zero or
one target sound.
For the system’s evaluation during the development phase, 500 mixtures per target class
are also provided which different background audio and sound examples was used to
create these mixtures. Using original audio material not distributed in development set,
the evaluation set is produced the same way. As mentioned in the challenge description,
the evaluation metric for the task is event-based error rate calculated from one second
length segments and is used for ranking the submitted systems.

1https://freesound.org/

44

4.1. Datasets

4.1.2 DCASE 2017 Task 3 dataset: Sound Event Detection in Real
life Audio

The difference between this dataset and the one for second task is that, this dataset
provides audios for sound event detection task with multiple possibly overlapping audio
signals originating from different sources (e.g. baby cry, glass break and gunshot). Namely,
similar to everyday life situation, the sound sources are rarely heard in isolation. Another
thing which makes the third task more complicated than the second task is that there
are no control over the number of overlapping sound events at each time, not in the
training nor in the testing audio data. The background audio used in this dataset is part
of the Acoustic scene dataset used for task 1 DCASE 20172 which are recordings of street
acoustic scenes with various levels of traffic and other activity. The length of each audio
provided in this dataset are between 3 to 5 minutes. The recording used sampling rate
44.1 kHz and 24 bit resolution. To annotate the audios, the labels were chosen freely
(which resulted in a large set of raw labels) by the same person who recorded the audios.
These labels are divided into two groups; the noun-labels which characterize the sound
source, and verb-labels for the sound production mechanism (using a non-verb pair if
possible). Annotation of the offset and onset of the events was performed manually.
By creating a mapping from the raw labels, sounds were merged into classes described
by their source, i.e. “car passing by”, “car engine running”, “car idling”, etc are under
the label “car”, sounds produced by buses and trucks are under the label “large vehicle”,
“children yelling” and ” children talking” are under the label “children” and so on. Final
event classes, selected by the providers of this dataset, are:

• brakes squeaking
• car
• children
• large vehicle
• people speaking
• people walking

Three persons other than the annotator, listened to each of the audios in this data set as
well. Agreement and disagreements of their annotating process were not on the onsets and
offsets, rather on the occurrences of the presence of sound in each labeled audio segment.
Similar to the task 2 dataset, task 3 dataset also comprises 2 parts; development and
evaluation dataset. The event subclasses in each different classes are distributed unevenly
in each recordings, therefore, the partitioning of individual classes can be controlled only
to a certain extent.
A four fold cross validation was provided which made each recording exactly used once
as the test data and Segment-Based Error rate is used for the model evaluation.

2http://www.cs.tut.fi/sgn/arg/dcase2017/index

45

4. Experimental Results

4.2 Framework

Over the recent, the popularity of deep learning models have increased and therefore
several deep learning software frameworks have appeared to efficiently develop and
implement these methods. As a number of such frameworks, Theano3, Caffe4, Neon5,
Tensorflow6 and Torch7 can be named.
The framework used to implement the SED application is chosen to be Theano and it is
briefly explained. A summary of the other libraries and system language used for the
practical part of the project is also given.

Theano
Theano is one of the deep learning frameworks which is used as a Python library for
optimization and evaluation mathematical expressions, especially matrix-valued ones.
This library has a close integration with NumPy, another python library for scientific
computing. Using GPU, theano performs the computation process on large amount of
data much faster than using CPU. Function derivations are with one or more inputs
and it has an extensive unit-testing and self-verification8. For this work theano is used
as backend. The motivation was to support rapid development of machine learning
algorithms. The name Theano comes after a Greek mathematicians, who was possible
Pythagoras’ wife [BBB+10].

System Language and Libraries
The language used for this work is Python version 2:7:13 [Pyt09]. Python is an ”easy to
learn, powerful programming language. It has efficient high-level data structures and a
simple but effective approach to object oriented programming [pyt]”.
Other used libraries are listed below:

• Numpy9: Numpy version 1.12.1 is used for the experiments. This package is used
for scientific computing. This library is also used as an efficient multi-dimensional
array of generic data and creates the feature vectors from the input representations.
Numpy’s arrays compactness, accelerate the mathematical calculations practices
on the data.

3http://deeplearning.net/software/theano/
4http://caffe.berkeleyvision.org/
5https://github.com/NervanaSystems/neon
6https://www.tensorflow.org/
7http://torch.ch/
8http://deeplearning.net/software/theano/
9http://www.numpy.org/

46

4.3. Hardware Specifications

• Scikit-learn10 version 0:16:1: [PVG+11] This library is a simple and yet efficient
tool for data mining and analysis which is developed for Python. This package is
used to scale the data and calculate the confusion matrix.

• Keras11 version 2.0.9: An open source high level deep learning library designed for
Python. This library abstracts from the underlying backends and provides simple
implimentation, traing and apply models. For this thesis, the sequential keras layers
were used to build the RNNs, LSTMs and Bidirectional LSTMs [HWT+16] and
the convolutional layers for CNN architecture [Wu17].

• Librosa12 0.5.1: [MRL+15] Librosa is a python package for music and audio
analysis which offers commonly used functions such as spectrogram calculations and
frequency conversions to represent audio signals. For this work, the melspetrogram
function, MFCC [GAFC+16] and CQT [BP92] functions of librosa were used to
test and compare the different input representations.

4.3 Hardware Specifications

For all parts of the experiments that are conducted in this project, a single computer with
the specifications mentioned in Table 4.1 is utilized. Thus, all represented running times
of different algorithms or different runs are measured on the stated hardware system and
may differ if tested on different specifications.

Component Details
Processor Intel(R) Xeon(R) CPU x5680
GPU GForce GTX Titan X

Operating System Linux Ubuntu 16.04

Table 4.1:
Hardware specifications on which the experiments of this project are conducted.

4.4 Experiment Results

In this section, the experimental results of the project are presented. In each sub-section,
approaches used for signal processing are mentioned as well as the learning part along
with the outcome. At the end, a comparison is made to magnify the differences among
the approaches and a conclusion is made base on the analysis of the comparison.

10http://scikit-learn.org/stable/
11https://keras.io/
12https://librosa.github.io/librosa/

47

4. Experimental Results

4.4.1 Overview of Experiments

To analyze the performance of SED systems, the input representation and the model
architecture are important factors. Therefore different input representation on different
architectures are tested and the result for each experiment is presented in the two
following sections in more details. Due to their recent popularity [PKBGM17, GSR+17],
chosen models are RNN, LSTM, BLSTM and CNNs which have has been explained in
the theoretical part of this thesis in 3. The sequential layers of RNNs and its extensions,
LSTMs and BLSTMs give them the capability of exploiting temporal dependencies in
audio which is why, they are widely used in speech recognition tasks [PKVK13].
Another network that proved robust in classification tasks is CNN architecture [SB17]
which is suited to exploit image-like log-Mel spectrograms to learn and identify both
high-level and low-level features. Choosing the parameters for these networks, are mostly
experimental such as learning rate and optimizers. However, some parameters such as
defining the size of networks with number of neurons and layers depend on the size of
data [VBGS17]. As large models have larger number of parameters to compute, they
do not perform well on small datasets which require smaller number of parameters to
compute. therefore, to pick the size of model, parameters computed by the model should
be smaller than the size of dataset. More detail explanation of parameter setting is
presented in the following sub chapters, where the analysis of experimental results on
each dataset are provided. The overview of these experiments in table 4.2 and 4.3 have
shown that models performed noticeably better on rare sound event detection (detecting
only one event on a given audio signal). One reason for that is the precise annotation
of the datasets. Rare sound event dataset, each audio signal is a result of synthetic
generated mixture and the detected event boundaries are therefore precise. The second
dataset comprises randomly recorded audios from streets and the annotation was done
using a support vector machine and then was checked manually. Also, for the second
dataset, the model is trained to recognize the presence of multiple events at once. The
highest performances are highlighted in each table.

As shown in table 4.2, CNN and LSTM architectures achieved lower error rate and higher
F-score than the other tested architectures as well as both baseline systems. It is worth to
mention that these results are after applying data augmentation and dropout technique
which decreases model’s over learning and helps to improve the model by providing more
training samples. Through these experiments, we have observe the difficulty of detecting
the gunshot which was due to different types of gun sounds. As the length of each sound
event is different from one another (the average length of event baby cry is much longer
than glass break and gunshot), we needed to find a comprise on the segment length
in a way tat it captures information of all the events, longer segment length increased
the detection accuracy of baby cry but reduced the glass break and gunshot. Smaller
segments resulted in higher accuracy on detecting the glass break and lower on baby cry
and gunshot. More detail description of the experiments are explained in experimental
results of rare sound event detection subsection.

48

4.4. Experiment Results

Overview of the RSED Experimental Results
Models MLP SVM RNN
Classes Err F1 Err F1 Err F1
Babycry 0.67 72.00% 0.37 64.60% 0.41 77.03%
Glassbreak 0.22 88.50% 0.31 70.36% 0.38 78.91%
Gunshot 0.69 57.40% 0.63 34.43% 0.60 59.34%
Average 0.53 72.70% 0.43 54.95% 0.46 71.85%
Models LSTM BLSTM CNN
Classes Err F1 Err F1 Err F1
Babycry 0.27 77.84% 0.40 69.43% 0.24 83.17%
Glassbreak 0.34 81.05% 0.33 76.27% 0.24 84.17%
Gunshot 0.53 69.53% 0.69 41.47% 0.44 58.04%
Average 0.38 76.16% 0.47 62.34% 0.30 75.12%

Table 4.2: Rare Sound Event Detection Experiment Overview: Event-based overall metrics
(onset only, t-colar=500 ms).

As mentioned before, these models are further tested on a real life street recording dataset
and the results are shown in table 4.3. The overall observation on the real life street sound
dataset experiments have proved the complexity of polyphonic sound event detection
in comparison to the monophonic. As explained previously, the target classes on this
dataset are people walking, people speaking, children, car, large vehicle and sound of
brake squeaking. After multiple experiments using different set of parameters for signal
processing and model’s hyper parameter, we noticed the difficulty of detecting the brakes,
children and people speaking. Brake squeaking and children were hardly ever detected.
Car, large vehicle and people walking had better chance of recognition by the models
but te were still always below average segment-based f_score of 50%. This shows that
the model needs more advanced signal processing techniques to boost the presence of
these events within the recordings. However, in comparison with the baseline models,
the deep models had lower error rate which shows the lower number of False positives
these models achieved comparing to the baseline models.

4.4.2 Experimental Results on Rare Sound Event Detection

The approach used to detect the rare sound events from an audio signal is the state of
the art and commonly used method "detection by classification". Namely, by applying
number of pre-processing steps on the dataset, inputs of the network are then pieces
of the audio signal which the network learns which pieces contain an event and which
do not contain an event. The step by step process used to run these experiments are
explained in the following subsections.

content of DCASE 2017 development dataset was already explained at the beginning of
this chapter. After reading all the tracks, a segmentation method on each audio signal

49

4. Experimental Results

Overview of the real-life SED Experimental Results
Models MLP SVM RNN
Classes Err F1 Err F1 Err F1
People Walking 1.44 33.5% 1.40 13.33% 0.93 07.90%
People Speaking 1.29 3.6% 1.31 4.5% 1 0.0%
Children 2.66 0.0% 2.4 0.95% 1 0.0%
Car 0.76 65.01% 0.95 19.54% 0.8 20.52%
Large Vehicle 1.44 42.07% 0.00 7.01% 0.98 1.59%
Brake 0.98 4.1% 1.86 1.31% 1 0.0%
Average 0.93 42.08% 1.28 8.12% 0.98 22%
Models LSTM BLSTM CNN
Classes Err F1 Err F1 Err F1
People Walking 0.89 13.53% 0.91 15.94% 0.92 9.29%
People Speaking 0.92 12.21% 0.95 6% 0.97 2.71%
Children 1 0.0% 0.99 1.11% 0.98 2.88%
Car 0.63 42.35% 0.7 34.35% 0.74 28.82%
Large Vehicle 0.87 14.66% 0.91 9.71% 0.00 00.00%
Brake 1 0.0% 0.97 3.23% 1 0.0%
Average 0.79 41.09% 0.93 31.72% 0.77 28.61%

Table 4.3: Real Life Street Sound Event Detection Experiment Overview: Segment-based overall
metrics.

was applied. The motivation for segmenting the signal is to reduce the size of network’s
analysis window which improves the accuracy [CKBK16, PHV16, SGB+15].
In order to segment the audio signal, first the spectrogram of audio wave data is calculated.
Then, in case an event occurred within the audio, onset and offset position of the event
in spectrogram is calculated. Then each of these smaller pieces of spectrograms were
divided into number of fixed size segments (the segment size refers to the number of
frames in the given segment duration i.e 0.5 second as segment duration). If no event
is occurred in the audio, a random piece of the spectrogram with the average (mode)
length of the event is chosen and segmented. This will keep the balance between the
distribution of segments with no events and segments with events in the input dataset to
the deep model. Figure 4.1 depicts this process.

Figure 4.1 illustrates the segmentation process of two different spectrograms. The calcu-
lated spectrogram has the occurrence of an event "babycry". The segmentation function
starts from the beginning of event and finishes at the end of event. The ending of event
is always inside of the last segment. Sub-figure b illustrates a calculated spectrogram
from an audio which no labeled event is occurring within it. Therefore, the segmentation
function chooses a random place to start segmenting the spectrogram. The number of
iteration for such spectrograms depend on mode of the event lengths. Here, most events

50

4.4. Experiment Results

Figure 4.1:
Segmentation process of two different spectrograms.

had the length 4 seconds. therefore only 4 segments are picked from the audios with
no events. In this case, the train dataset remains balanced. The size of segment here is
calculated as 11 frames (0.5 second) with FFT_size as 4096 with 50% overlapping.
Using the scikit-learn package, the segmented spectrograms are then standardized to
zero mean and unit variance. To prepare the data as a valid feature matrix for RNN
networks, the data is then a Numpy array with the shape (samples, timesteps , features).
In the following of this section the different parameters such as FFT_size and mel bands
are tested and analyzed.

Post-processing

In order to detect the onset and offset of the event, model predictions need to be pro-
cessed. Therefore, all the probability values of each segment, needs to be listed to
complete the whole audio signal again. Afterwards, where the value of the probability is
higher than the defined threshold, the segment will be considered an active event, and
where the value of probability is below the threshold, the segment will be labeled as no
event. The figure 4.2 shows an example of a model’s prediction the predicted probabil-
ity of segments are listed next to each other to create the audio recording and where
the probability is higher than 0.5, presence of an event (in this case a baby cry) is detected.

51

4. Experimental Results

Figure 4.2:
Probability distribution through an audio signal.

52

4.4. Experiment Results

Model Evaluation
To Evaluate the performance of deep learning architectures for SED task, evaluation
metrics event-based error rate and f-score are used. The system ranking for the challenge
is based on the event based error rate. The calculation of these metrics are presented in
[MHV16a] where the f-score is calculated for all the detected events and is shown in the
equation 4.1 and error rate calculation is shown in the equation 4.2. TP and FP refer to
True and False Positives, TN and FN refer to True and False Negatives.

f1 = 2 · TPs
2 · TPs+ FNs+ FPs

(4.1)

errorrate = S +D + I

N
(4.2)

where SS is the sum of substitution errors (min(FP, FN)), I is the sum of insertion
(max(0, FPs − FNs)), D is the sum of deletions (max(0, FNs − FPs)) and N is the
number of active events in the audios.

Baseline Systems

In order to evaluate the deep learning models, a baseline system is needed to determine
the performance of these deep models in comparison to the state of the art machine
learning algorithms. for that two different baselines were chosen; one is a Multilayer
Perceptron model, provided by the DCASE challenge 2017 team [MHD+17] and the
other method is a support vector machine. The detail of these both system’s results are
in the following. DCASE 2017 Base line system:
The base line system which was provided by the DACSE 2017 challenge is a Multilayer
Perceptron (MLP) model and provides a simple entry-level approach but still close to
the state of the art systems to give a reasonable performance for the rare sound event
detection task. In this approach Log Mel Band energies in a 40 ms window with 20 ms
hop size were extracted from the audio signals. The MLP model has 2 layers with 50
neurons in each and 20% of dropout between each layer. A model is provided to detect
three different events (babycry, glassbreak and gunshot) separately at a time. The results
are shown in the table 4.4 below.

Support Vector Machine as baseline System: For this work, a conventional machine
learning algorithm for classification tasks called support vector machines is chosen to
compare the deep learning models’ results with. The approach in DCASE 2017 base line
system [MHD+17] gave the motivation to also use the SVM models to train each event
separately and then take the average results for the event detection. This experiment

53

4. Experimental Results

DCASE baseline results
Error-Rate F-score

Babycry 0.67 72.00%
Glassbreak 0.22 88.50%
Gunshot 0.69 57.40%
Average 0.53 72.70%

Table 4.4:
DCASE 2017 Rare Sound Event Detection baseline results: Event-based overall metrics

(onset only, t-colar=500 ms).

is also only performed on the given trained set and tested on the provided test set (the
same as DCASE2017 baseline system) to be used as a baseline system.
The hyper parameters used to train the SVM classifier are the kernel with default value
of "rbf" (radial basis function), penalty parameter C of the error term with the default
value of 0.1, Gamma with the value of "Auto", decision_function_shape with the default
value of "ovr", degree with default value of 3, and tolerance with default value of 0.001.
Previous studies showed that using MFCC as features results in better performance of
the SVM algorithm [CDY10, CGO06]. The same as DCASE2017 baseline system, the
same parameters for features extraction is used for SVM model. The results of SVM
baseline system are shown in the table 4.5.
First experiment started with the default SVM parameters. The model achieved average
error rate of 0.77 and f-score of 27.91%. The segment classification results with 10 fold
cross validations for babycry achieved the 0.7 error rate and 37.41% f-score. The low
error rate is because of the very high number False Positives (348/500) which cause a
very low precision of 0.23. The class gunshot and glass break had much lower f-score
and higher error rate than the MLP baseline system. This is also because of the very
large number of False Positives (431/500 FP for gunshot and 360/500 FP for glassbreak)
which resulted in very low precision for detected events.
Since the results of SVM on MFCC were not very high, the input representation mel-
spectrogram was also tested to observe the performance of SVM on the not so conventional
feature representation for onset detection. the table 4.5 showed that this classifier (with
its default parameters) performed much better on mel spectrogram with the same feature
extraction parameters used for MFCC. This improvement is due to low number of False
Positives which for MFCC proved to be very high. For baby cry, the falsely detections
were decreased from 348 to 203. For glassbreak and gunshots it was decreased from 360
to 281 and 431 to 324 respectively.
Afterwards, to find the best set of parameters for SVM, a grid search was applied. The
chosen set of parameters are the penalty parameter C as 10, 0.0001 gamma and ’rbf’
kernel. The results were the average error rate of 0.48 and f-score of 54.95%

54

4.4. Experiment Results

SVM baseline results
MFCC Mel-Spectrogram mel grid-search
Err F-score Err F-score Err F-score

Babycry 0.70 37.41% 0.53 58.17% 0.43 64.60%
Glassbreak 0.73 31.63% 0.41 70.95% 0.37 70.36%
Gunshot 0.88 14.70% 0.71 31.35% 0.70 34.43%
Average 0.77 27.91% 0.55 53.49% 0.48 54.95%

Table 4.5: Rare Sound Event Detection SVM baseline results: Event-based overall metrics (onset
only, t-colar=500 ms).

RNNs

RNNs are meant to learn the temporal behavior of time series data. therefore, this
architecture is tested with different parameters. RNN models are trained separately
on each event. That is each time, the RNN model will focus only on one event and
learn the features of only that event. Then the model is reset and learns the feature of
the next event. This approach is motivated by [MHD+17] which transfers a multi-class
classification into a binary classification. As mentioned in the third chapter of this thesis,
different input representations such as MFCC, Mel-spectrogram and CQT is used as the
input of models. The result of onset detection and analysis are shown in the following of
this part.
As for mel-spectrograms, in the following experiments, these features were calculated from
each audio. Afterwards the segmentation was applied and the models were trained using 4
fold cross validation approach. the rest of parameters are determined in the following table.

The results provided in 4.6 shows the performance of RNNs in 4 experiments, each
changing some hyper parameters to observe and compare the results. Chosen values for
hyper parameter in these experiments are based on the size of dataset, observations of
learning curves and model results.
Hyper parameters such as number of layers, neurons and batch size are directly depended
on the size of dataset [VBGS17]. The number of neurons and layers determine the size of
model. Therefore, for a small dataset, a larger model is not appropriate as it will require
a large number of parameters to calculate which is not matched with the size of dataset.
The other hyper parameters such as segment duration (how long each segment should
be), size of the FFT-window, optimizer, epoch and learning rate are chosen after number
of experiments and comparison of their results.
The value of dropout is chosen based on the number of neurons in each layer. For
instance, if the number of neurons are 32, randomly shutting off 20% of them means the
information of only 25 neurons are passed on to the next layer. Number of epoch is also
chosen after observing the learning rate. If the value for epoch is too low, the model will
not improve on learning the data. if it is too high, the model reaches to a point where
is does not learn any further, therefore will not improve anymore and it will just slows

55

4. Experimental Results

RNN results on mel-spectrogram
Parameters Exp-1 Exp-2 Exp-3 Exp-4

Augmentation False False True True
n_fft 2048 4096 4096 4096
overlap 50% 50% 50% 50%

segment duration 0.4 s 0.4 s 0.4 s 0.4 s
n_mels 128 128 128 128
n_layers 2 2 2 3
n_units 32 8 8 8
dropout False 20% 20% 20%

loss-function BCE BCE BCE BCE
activation sigmoid sigmoid sigmoid sigmoid
optimizer rmsprop rmsprop rmsprop rmsprop

lr 0.0001 0.0001 0.0001 0.0001
batchsize 128 128 128 128
epochs 100 100 200 200

Babycry err 0.64 0.45 0.41 0.54
fscore 68.24% 74.06% 77.03% 73.05%

Glassbreak err 0.56 0.47 0.38 0.31
fscore 70.56% 70.54% 78.91% 82.58%

Gunshot err 0.83 0.58 0.60 0.56
fscore 38.09% 37.50% 59.34% 58.08%

Average err 0.67 0.50 0.46 0.45
fscore 58.96% 60.70% 71.85% 71.05%

Table 4.6: RNN results on DCASE 2017 Rare Sound Event Detection evaluation dataset, using
mel-spectrograms as input representation.

down the training process.
However setting the early stopping fixes this issue, as it will stop the training when it
does not see any changes in the loss or accuracy of the model or any degradation in these
parameters after some specific epochs.
The experiments in this table are chosen to show the effect of dropout and data augmen-
tation in learning process of a model. To Augment the data, different shift steps and
stretch factors were tested and values which sounded different but still realistic to the
audio were chosen and applied on the training set on each fold of the cross validation.
Stretch factors were chosen from ±0.5,±0.7 and Shift steps where chosen from ±2,±4 to
create an augmented dataset with different sizes (up to 8 times larger than the original
dataset). In experiment 1, 128 mel bands from the Audio with window length as 2048
is extracted and the log amplitude of these bands is calculated. In order to avoid over
fitting, early stopping with choosing patience as 10 on the validation loss value is applied.
For this experiment, the dropout parameter is not set so that the result can be compared

56

4.4. Experiment Results

with other experiments where the dropout is set with a value. The result of this experi-
ment has a lower error rate of 0.51 than the baseline system which is 0.53. however, the
F-score metric here is 58.96%, also lower than the baseline which is 72.70%. This is due
to the low precision of this model in comparison with the baseline system. Details of
experiment 1 is as follows; Using 4 fold cross validation, the model is each time trained
on 3/4 of the dataset and evaluated on the remaining 1/4 to provide reproducibility of
the experimental results.
Model precision and recall for baby cry detection are respectively 0.53 and 0.93. This is
calculated based on the number of correct and wrong predictions which are 187 (out of
250) true positives and 139 (out of 250) true negatives for correct predictions and 12 false
negatives and 162 false positives for wrong predictions. Other than the recordings which
contain no labeled events, false positives also contain those wrong predictions where the
onset of event is predicted after/before than the tolerance rate which is half a second
offset from the beginning of event.
Figure 4.3 shows the prediction results for the experiment 1 of the table 4.6. The
model actually detected each occurrence of the events very good (both for babycry and
glassbreak, not for gunshot).

The table 4.7 shows the effect of shifting the tolerance each time by 0.25 seconds on the
results for the events. Note that, other than the recordings which do not contain any
labeled events, false positives also contain the prediction of wrong onsets. This means,
the ones that the onset was shifted before/after the tolerance (500 ms) and also the ons
which another sound was detected as the event.
The abbreviations TN, FN, TP, FP in the table 4.7, refer to true negatives, false negatives,
true positives and false positives relatively. WO stands for number of detecting the wrong
onset. Prcs and Rcl refer to precision13 and recall14 respectively.

After analyzing the results, it came to notice that the system detected the sound of a
rooster, bird singing and running tap water in the kitchen as babycry, therefore in audio
tracks where no event was happening but the mixture was created either in a park or in
a kitchen, the system detected the mentioned sounds as the crying baby. by visualizing
the spectrograms of such signals, the bird sounds had similar features to the babycry,
however, the running tab water was not much similar. The similarity of the rooster sound
is shown in the figure 4.4.

For glass break, most of the time which the sound of cutlery in a restaurant was occurring
in the audio, the model mistakenly detected it as the glassbreak. On the other hand the
model could not learn the gunshot features in a louder background environment very
well. As illustrated in 4.3 through out the length of the audio, the model detected couple
of times gunshot occurrences.
The figure 4.5 illustrates the learning curve of experiment 1 for each events and each
folds. At the x-axis, the number of epochs are shown. Note that the experiment had
100 number of epochs. however due to early stopping, the learning process was stopped

13Precision = TP/(TP+FP)
14Recall = TP/(TP+FN)

57

4. Experimental Results

Figure 4.3:
The prediction visualization for RNN experiment 1.

Figure 4.4:
The wrong onset prediction visualization for RNN experiment 1. The model confused
the sound of baby cry with a rooster. This is due to the similarity of their features.

58

4.4. Experiment Results

babycry TN TP FN FP WO Prcs Rcl ERR F1
0.5 s 139 187 12 162 51 0.5358 0.9396 0.64 68.24%
0.75 s 139 193 12 156 45 0.5530 0.9414 0.62 69.67%
1 s 139 195 12 154 43 0.5587 0.9420 0.61 70.14%
glassbreak
0.5 s 157 187 15 141 48 0.5701 0.9257 0.56 70.56%
0.75 s 157 190 15 138 45 0.5792 0.9268 0.55 71.29%
1 s 157 191 15 137 44 0.5823 0.9271 0.54 71.53%
gunshot
0.5 s 126 88 77 209 85 0.2962 0.5333 0.83 38.09%
0.75 s 126 91 77 206 82 0.3063 0.5416 0.82 39.13%
1 s 126 93 77 204 89 0.3131 0.5470 0.81 39.82%

Table 4.7:
Testing the Onset detection results with different tolerances for the experiment 1.

before that. By observing the model’s training log, it came to understanding that for
glassbreak and babycry, the validation loss did not change (shown with the red color)
and for gunshot, after the 10th time reduction increase in validation loss, the condition
met and the learning was stopped. Also, the over learning in this image can be observed
by looking at the sudden jump within the first 10 epochs. After the jump the value of
accuracy did not have a significant change. However, this sudden jump is not observed
in the learning curve of the second and third fold of the model, training on the babycry
features.

The second experiment in the table 4.6, zooming into the spectrogram (FFT size as 4096,
2 times more than the FFT size in experiment 1) and setting the dropout value to 20%,
the model achieved better result than the one with smaller window size. As noticed in
the results zooming in the spectrogram had a noticeable effect on babycry and gunshot
results but lower on glass break where lowered the error rate which improved the error
rate 31% compared to experiment 1 and 5% compared to the baseline system.
The third and forth experiments used similar model as the second one but data aug-
mentation was applied here and which increased the size of dataset to 2 times more
(using both pitch shifting with 2 steps and time stretching with factor 0.5). The forth
experiment has 1 layer more than the third experiment which yield a slightly different
result than the third experiment. By adding the third layer, the detection od glassbreak
and gunshot slightly improved. However the babycry weakened. Average of result in
forth experiment turned out to be very close/slightly less than the third experiment, in
terms of f-score. In the end, result of the model trained with data augmentation was
noticeably better than the one with less data to train. Table 4.8 shows the confusion
matrix of the experiment 3, with different tolerance of offset.

Figure 4.6 illustrates the learning curve for experiment 3 with 4 fold cross validation.

59

4. Experimental Results

Figure 4.5:
Visualization of the RNN- 4 fold cross validation- for each label in experiment 1.

babycry TN TP FN FP WO Prcs Rcl ERR F1
0.5 s 181 201 15 103 34 0.6611 0.9303 0.41 77.30%
0.75 s 181 208 15 96 27 0.6842 0.9327 0.38 78.93%
1 s 181 210 15 94 25 0.6907 0.9333 0.37 79.39%
glassbreak
0.5 s 187 204 13 96 33 0.68 0.94 0.38 78.91%
0.75 s 187 206 13 94 31 0.6866 0.9406 0.37 79.38%
1 s 187 208 13 92 29 0.6933 0.9411 0.36 79.84%
gunshot
0.5 s 126 88 77 209 85 0.2962 0.5333 0.83 38.09%
0.75 s 126 91 77 206 82 0.3063 0.5416 0.82 39.13%
1 s 126 93 77 204 89 0.3131 0.5470 0.81 39.82%

Table 4.8:
Testing the Onset detection results with different tolerances for the experiment 3.

The sudden jump here still exists, However, the curve has a smaller slope than the one
in 4.5. By changing the learning rate from 0.0001 (the default value for RMSProp) to

60

4.4. Experiment Results

0.001 and 0.00001 the result got worsen. Therefore other optimization functions which
were discussed in chapter 3, such as SGD and Adam with different learning rate was
also tested. However the result of those experiments where also worsen than the one
illustrated in the table 4.6.
Choosing the SGD optimization function for the same model and, same parameters and
also data augmentation resulted the average result of 0.72 for error rate and 65.29% for
f-score which was caused by very high false positive rate. Choosing the adam optimization
function resulted 0.91 for average error rate and 6.03% f-score which was caused by very
large number of falsely negative detection. Also different window sizes as well as segment
length was tested. The 40 ms segment length and 4096 window size gave the best result
among the tested ones. smaller segment size improved the glass break but could not
capture enough information on baby cry and gunshot class where have relatively longer
duration than glass break.

Figure 4.6:
Visualization of the RNN- 4 fold cross validation- for each label in experiment 1.

As shown in the table 4.6, a simple RNN method with no data augmentation or any noise
reduction already resulted lower error rate than the baseline system. Error rate in baseline
system provided by the DCASE 2017 is 0.67, 0.22 and 0.69 for babycry, glassbreak and
shotgun respectively. The RNN architecture used in the table 4.6 improved the results to

61

4. Experimental Results

0.41, 0.38 and 0.60 error rate for the classes babycry, glassbreak and gunshot respectively.
However, the precision of the RNN models are lower than the baseline system which is
72.70% average of f-score as the best result achieved by the RNNs is 71.05%.
Different tolerances (0.75 and 1 second) also did not noticeably change the overall result
of the experiment with tolerance of half a second. For instance, after analyzing the result
for babycry, the number of correctly detected onsets (True Positives) within 1 second
interval after and before the actual onset changed from 201 to 210 (out of 250 samples).
After changing other parameters such as the segment size, window size, overlap size, and
also the model parameters (larger number of neurons, deeper layers), the model still has
difficulties to learn the gunshot features.
Different numbers of mels was also tested which the higher the number improved the
accuracy of the onset detection. The reason was mentioned in [PHV16] which is the need
to look for higher frequency in tasks such as SED. Therefore choosing higher value for
mel, captures the high frequency information and improves the event detection. Here
128 was chosen as the mel band value which is also used in [PHV16].
To compare the performance of the RNN with different parameters, the confusion matrix of
all the experiments done for this model was compared to see how each set of parameters
effect on the prediction. There were some audio tracks which the event was always
correctly detected. By listening to those tracks, it was understood that they all had a
similar condition, that is, the background noise was very quiet (mostly recordings in a
quiet room or office or street). On the other hand there where some tracks which had
louder backgrounds in which the detection of the events was much more difficult which
changing the parameter caused false positive or wrong onset. This means, either another
sound was detected as the event, or the event was detected but was outside of the offset
tolerance (half a second). The most effective parameters which had influence on the
prediction accuracy where the FFT window size, number of mel-bands, optimization
functions and the learning rate.
Another observation is the size of model, the higher number of neurons or deeper number
of layers did not improve the results.
Other input representations such as MFCCs and CQTs are also tested and the best
results are presented here and compared to mel-spectrogram input representation results.
These experiments and their details are illustrated in the table 4.9 and 4.10.

62

4.4. Experiment Results

MFCC and simple-RNN Results for RSED
Parameters Exp-1 Exp-2

n_fft 2048 2048
overlap 50% 50%
MFCCs 40 128
layers 1 1
units 32 32

activation sigmoid sigmoid
dropout 20% 20%

loss_function BCE BCE
optimizer rmsprop

(.0001)
rmsprop
(.0001)

batchsize 128 128
epoch 100 100

Babycry err 0.55 0.82
fscore 53.44% 30.07%

Glassbreak err 0.54 0.87
fscore 57.43% 56.76%

Gunshot err 0.62 0.55
fscore 25.05% 18.07%

Average err 0.58 0.62
fscore 45.30% 50.20%

Table 4.9: RNN results on DCASE 2017 Rare Sound Event Detection Development Dataset,
using MFCC as input representation.

As shown in the tables 4.9 and 4.10, both MFCC and CQT as input representation did not
catch the important information for the RNN model to learn the events features. After
observing and analyzing the results, it came to notice that any loud noise in the audio
track was detected as a glassbreak and resulted a very high number of false positives.
Another notable point which is observed, is the learning curve of the model on CQT,
over learn on the input data and hence the predictions were poor. This over learning
can be observed within the first 10 epochs of training for glassbreak. Figures 4.7 and 4.8
illustrate the learning rate of the models using MFCC and CQT respectively as input
representation.

63

4. Experimental Results

CQT and simple-RNN Results for RSED
Parameters Exp-1 Exp-2

n_cqt 120 60
layers 1 1
units 32 32

activation sigmoid sigmoid
dropout 20% 20%

loss_function BCE BCE
optimizer rmsprop

(.0001)
rmsprop
(.0001)

batchsize 128 128
epoch 100 100

Babycry err 0.52 0.71
fscore 66.19% 56.56%

Glassbreak err 0.81 0.73
fscore 4.26% 13.71%

Gunshot err 0.72 0.85
fscore 34.72% 38.58%

Average err 0.68 0.56
fscore 35.05% 36.28%

Table 4.10:
RNN results on DCASE 2017 Rare Sound Event Detection Development Dataset, using

CQT as input representation.

Figure 4.7:
Illustration of the learning curves of table 4.9 experiment 1, using MFCC as input

representation.

64

4.4. Experiment Results

Figure 4.8:
Illustration of the learning curves of table 4.10 experiment 1, using CQT as input

representation.

LSTMs

As mentioned in the third chapter, to improve the performance of RNNs, an extension
called Long Short Term Memories (LSTMs) was proposed. In this subsection, the feed
forward LSTM architecture and the bidirectional LSTMs are tested and compared. The
results of the feed forward LSTMs are shown in the table 4.11.
This table illustrated the onset detection results are using mel-spectrograms as input
representation method.

A simple LSTM model already performed better than the simple RNN model with no
augmentations (look at the RNN table of results 4.6). Total average of the error rate and
F-score of a simple RNN model were 0.67 and 58.96% respectively, while the simple LSTM
resulted 0.61 and 65.43%. The lowest error rate achieved in RNN experiments is 0.45
(and 71.05% f-score) as the LSTMs yield 0.38 (and 76.16% f-score). This improvement is
mostly because of the class babycry.
Figure 4.9 illustrates the prediction results of experiment 4 in table 4.11. This recordings
are the same ones in RNN prediction results 4.3. This visualizations only shows the
similarity between the model predictions. However, there is a noise in the background of
glassbreak event (the middle picture) which the LSTM also detected it as glassbreak.

Figure 4.10 illustrates the prediction results of experiment 4 in table 4.11 for the same
mistake that RNNs did on detecting the sound of a rooster as babycry event shown in the
figure 4.4. LSTMs also did detect the rooster as the babycry. However, the probability of
its detection was lower than the RNNs and therefore the babycry is correctly detected.

Observations of confusion matrix in the experiment 4 in table 4.11 are shown in the table
4.12. Comparing this table with the RNNs confusion matrix on different offset tolerance
in table 4.8 shows that the LSTMs result improvements was because of the lower False
Positive rate and False negative rate for all events, especially the gunshot event which
had the most impact on the lower error rate and higher f-score in comparison with these
metrics achieved by RNNs.

Figure 4.11 illustrates the learning curve of the experiment 4 in table 4.11 for a 4 fold

65

4. Experimental Results

LSTM results on mel-spectrogram
Parameters Exp-1 Exp-2 Exp-3 Exp-4

Augmentation False False False True
n_fft 2048 2048 1024 1024
overlap 50% 50% 50% 50%

segment duration 0.5 s 0.5 s 0.4 s 0.4 s
n_mels 128 128 128 128
n_layers 1 2 2 3
n_units 32 32 32 32
dropout False 20% 30% 20%

loss-function BCE BCE BCE BCE
activation sigmoid sigmoid sigmoid sigmoid
optimizer rmsprop rmsprop rmsprop rmsprop

lr 0.0001 0.0001 0.0001 0.0001
batchsize 128 128 128 128
epochs 100 100 100 100

Babycry err 0.65 0.30 0.28 0.27
fscore 64.24% 72.27% 77.35% 77.84%

Glassbreak err 0.46 0.45 0.45 0.34
fscore 74.68% 78.54% 79.43% 81.05%

Gunshot err 0.72 0.60 0.54 0.53
fscore 63.37% 67.69% 68.52% 69.53%

Average err 0.61 0.45 0.42 0.38
fscore 65.43% 72.83% 75.10% 76.16%

Table 4.11:
LSTM results on DCASE 2017 Rare Sound Event Detection evaluation dataset, using

mel-spectrograms as input representation.

cross validation. What can be observed in this image is that the gunshot and babycry
events have relatively similar learning curv and that for gunshot, the model have relatively
lower accuracy at the beginning but it learns the features of the event relatively fast
within the first 10 epochs and afterwards it slowly goes higher, namely, higher accuracy
and lower loss. The difference between validation accuracy and evaluation accuracy is
not much which shows the similarity between the training batch and the evaluation batch
in each fold.
Another interesting observation of learning curve for these experiments on LSTMs is that
they all learned the glass break features relatively fast and the accuracy of the model
prediction at the first epoch was much higher than the gunshot and baby cry events.
Also notice that none of the learning process in each folds yield the complete 100 epochs
due to the early stopping technique. This is because the validation loss did not change
after 10 observations.

66

4.4. Experiment Results

Figure 4.9: LSTM learning curve in experiment 4.

Figure 4.10:
Wrong onset prediction visualization for LSTM experiment 1. The model predicted the
onset of the babycry correctly. However, still confused the sound of the cry with sound

of a rooster.

To test the performance of LSTMs when using MFCCs and CQTs as input representa-
tion, more experiments were also performed and the results are written in the following

67

4. Experimental Results

babycry TN TP FN FP WO Prcs Rcl ERR F1
0.5 s 213 181 36 70 33 0.7211 0.8341 0.28 77.35%
0.75 s 213 188 36 63 26 0.7490 0.8392 0.25 79.15%
1 s 213 190 36 61 24 0.7569 0.8407 0.24 79.66%
glassbreak
0.5 s 160 224 2 114 24 0.6627 0.9911 0.45 79.43%
0.75 s 160 225 2 113 23 0.6656 0.9911 0.45 79.64%
1 s 160 227 2 111 21 0.6715 0.9912 0.44 80.07%
gunshot
0.5 s 170 172 22 136 56 0.5584 0.8865 0.54 68.53%
0.75 s 170 173 22 135 55 0.5615 0.8871 0.54 68.78%
1 s 170 174 22 134 54 0.5649 0.8887 0.53 69.04%

Table 4.12:
Testing the Onset detection results with different tolerances for the experiment 3.

Figure 4.11: LSTM learning curve in experiment 4.

tables 4.13 and 4.14, respectively. To compare LSTMs with RNNs on MFCCs, the same
parameters were used for both models and the feature extraction. Average results for
experiment 1, using an RNN model was 0.58 error rate and 45.30% f-score which LSTMs

68

4.4. Experiment Results

outperformed RNNs by achieving 0.53 and 68.33% for error rate and f-score value. By
analyzing the result of confusion matrix, it came to notice that RNN models had much
difficulties in distinguishing background noise from the gunshot and glass break feature
which caused very high false positive rate. LSTMs on the other side could detect these
events more robust than RNNs and therefore had lower false positive rate. Also, LSTMs
could often detect the events which lead to higher true positive rte than RNNs and
therefore higher f-score. Still, compare to model’s performance on mel-spectrograms as
input representation, MFCC yield poorer results.

MFCC and LSTM Results for RSED
Parameters Exp-1 Exp-2

n_fft 2048 2048
overlap 50% 50%
MFCCs 40 128
layers 1 3
units 32 32

activation sigmoid sigmoid
dropout 20% 20%

loss_function BCE BCE
optimizer rmsprop

(.0001)
rmsprop
(.0001)

batchsize 128 128
epoch 100 100

Babycry err 0.39 0.47
fscore 76.22% 72.83%

Glassbreak err 0.74 0.67
fscore 67.37% 70.19%

Gunshot err 0.46 0.39
fscore 61.40% 52.40%

Average err 0.53 0.57
fscore 68.33% 65.14%

Table 4.13: LSTM results on DCASE 2017 Rare Sound Event Detection Development Dataset,
using MFCC as input representation.

69

4. Experimental Results

CQT and LSTM Results for RSED
Parameters Exp-1 Exp-2

n_cqt 120 60
layers 1 1
units 32 32

activation sigmoid sigmoid
dropout 20% 20%

loss_function BCE BCE
optimizer rmsprop

(.0001)
rmsprop
(.0001)

batchsize 128 128
epoch 100 100

Babycry err 0.27 0.80
fscore 73.26% 3.36%

Glassbreak err 0.71 0.88
fscore 29.48% 4.35%

Gunshot err 0.65 0.70
fscore 44.44% 33.07%

Average err 0.54 0.39
fscore 49.06% 52.40%

Table 4.14:
LSTM results on DCASE 2017 Rare Sound Event Detection Development Dataset, using

CQT as input representation.

The visualizations of MFCC experiment 1 are depicted in Figure 4.12 which shows the
difference between false and true positive detections for each class. In sub-figure (a) the
audio mixture with park recording as background where no baby cry event was placed,
the model detected the constant bird sounds throughout the audio as baby cry. However,
in sub-figure (b) where the baby cry was placed on a office background noise, the event
was correctly distinguished. Sub-figure (c) has street noise in the background where the
model confused the sound of a bus with glass break. However, in sub-figure (d), where
the background noise is in a room with air conditioner running ans people speaking,
the glass break was detected correctly. Sub-figure (e) shows the MFCC representation
of a beach recording as noise background where the sound of seagull was detected as
gunshot. Sub-figure (f) has a quite room in the background where the gunshot sound is
clearly detected by the model. In general, the model successfully detected the gunshot
event, where no louder noise in the background was active. This problem was solved by
using mel-spectrogram as input representation which lowered the false positive rate for
all classes.

After investigating the learning process and results of the feed forward LSTM model, the
work of [HWT+16] gave the motivation to use the BLSTM model which had successfully
learned the features of events using the information from previous and the feature time

70

4.4. Experiment Results

Figure 4.12: Comparison of false and true detection in an LSTM-MFCC based model.

steps. The results of the experiments are shown in the table 4.15.

Results of this model compare to the feed forward LSTMs and RNNs is very low and
caused relatively large number of False Positives compare to LSTMs and RNNs. At
first smaller model was used to train the model on non-augmented data. Then dropout
technique was applied which avoided model’s over fitting and showed improvement on
model’s performance on the evaluation dataset. The results are presented in table 4.15,
experiment 1 and 2. Afterwards we augmented the data as explained before, both pitch
shifting and time stretching manipulations on the signals which and achieved a dataset 2
times larger than the original dataset. By largening the model, the gunshot and glass
break detection got improved but baby cry had very large number of false positive rate
which caused a larger error rare. Overall, the learning rate achieved by the model in
exp-4 was lower among the other experiments in the table 4.15 with error rate of 0.5 and
f-score of 59.44% which in comparison with LSTMs is still low. Another set of BLSTM
experiments is provided in table 4.16 to show the effect of using different optimization
functions and learning rate for this model.
The parameters used for this table remained the same as the table 4.15 and only the
optimization functions and learning rates are changed. The reason is because the
remaining parameters showed to have the best of results among other sets of parameters
which were tested. Experiment 5 in this table shows that by decreasing the learning
rate of RMSProp from the default value 0.0001 to 0.00001 result of the BLSTM model
improved from 0.5 error rate (and 59.44% f-core) to 0.48 error rate (and 61.74% f-score).
This decrease of learning rate is due to observing high fluctuations in the learning curve
for this experiment which showed that the learning rate is probably high and the step
towards minimizing the cost function is large. Lowering the learning rate fixed those
fluctuations and improved the results.

71

4. Experimental Results

BLSTM results on mel-spectrogram
Parameters Exp-1 Exp-2 Exp-3 Exp-4

Augmentation False False True True
n_fft 2048 2048 2048 2048
overlap 50% 50% 50% 50%

segment duration 0.4 s 0.4 s 0.4 s 0.4 s
n_mels 128 128 128 128
n_layers 1 2 3 3
n_units 32 32 32 64
dropout False 20% 30% 25%

loss-function BCE BCE BCE BCE
activation sigmoid sigmoid sigmoid sigmoid
optimizer rmsprop rmsprop rmsprop rmsprop

lr 0.0001 0.0001 0.0001 0.0001
batchsize 128 128 128 128
epochs 100 100 100 100

Babycry err 0.51 0.55 0.56 0.58
fscore 60.86% 59.32% 57.79% 56.24%

Glassbreak err 0.38 0.39 0.39 0.29
fscore 71.32% 69.20% 68.68% 78.43%

Gunshot err 0.71 0.81 0.84 0.65
fscore 40.14% 36.23% 34.32% 43.67%

Average err 0.53 0.58 0.58 0.50
fscore 57.44% 54.91% 53.53% 59.44%

Table 4.15:
BLSTM results on DCASE 2017 Rare Sound Event Detection evaluation dataset, using

mel-spectrograms as input representation.

As it shows in the experiment 6, unlike the RNNs and feed forward LSTMs, Adam as
optimization with 0.001 learning rate function improved the results for BLSTMs. This
optimizer was also used for the experiments done by [HWT+16] for BLSTM model on
sound event detection. However, increasing the learning rate for this optimizer noticeably
dropped down the precision and increased the error rate of the models prediction.
In the experiment 8, SGD optimizer with learning rate 0.0001 is used which did not
outperformed the error rate using Adam optimizer for BLSTMs. Again, this was unlike
the LSTMs and RNNs which SGD did not prove appropriate to use. Note that the model
in experiment 8 has equal error rate with the one in experiment 6 but the model in
experiment 6 has higher precision than the one in experiment 8 therefore higher f-score
(62.34% compared to 60.44%). This is because of the lower number of False positives
achieved in experiment 6.

72

4.4. Experiment Results

BLSTM results on mel-spectrogram
Parameters Exp-5 Exp-6 Exp-7 Exp-8

Augmentation True True True True
n_fft 2048 2048 2048 2048
overlap 50% 50% 50% 50%

segment duration 0.4 s 0.4 s 0.4 s 0.4 s
n_mels 128 128 128 128
n_layers 1 1 1 1
n_units 32 32 32 32
dropout 20 20% 20% 20%

loss-function BCE BCE BCE BCE
activation sigmoid sigmoid sigmoid sigmoid
optimizer rmsprop Adam Adam SGD

lr 0.00001 0.0001 0.001 0.0001
batchsize 128 128 128 128
epochs 100 100 100 100

Babycry err 0.42 0.40 0.56 0.32
fscore 67.51% 69.43% 54.41% 73.51%

Glassbreak err 0.34 0.33 0.45 0.39
fscore 75.31% 76.27% 66.54% 70.76%

Gunshot err 0.68 0.69 0.73 0.70
fscore 42.40% 41.47% 39.14% 37.06%

Average err 0.48 0.47 0.58 0.47
fscore 61.74% 62.34% 53.37% 60.44%

Table 4.16:
BLSTM results on DCASE 2017 Rare Sound Event Detection evaluation dataset, using

mel-spectrograms as input representation.

CNNs

The motivation behind using the recurrent neural network for the task of sound event
detection is because of its ability to capture the temporal behavior of time series data. As
this task is also similar to a computer vision task which is labeling images (spectrogram
segments) with one or more classes, CNNs proved to excel at this and is widely used
in image classification [SZ14, LSD15, OBLS14] and audio classification and recognition
tasks [Pic15, PJAM15]. Therefore, this architecture is also tested and the results are
compared with the recurrent neural networks.
As mentioned in the theoretical part of the thesis, CNNs are stacks of fully connected
layers which each neurons in these layers are connected to all the pixels and performs dot
products on an input weight matrix. The three main parameters which are set for CNNs
in this work are the number of filters (which are the number of neurons), kernel-size in
which determines a window which the network can "see" the image through it, similar to

73

4. Experimental Results

the way that human eyes see an image. Max-pooling layer is used to down-sample the
feature maps and only captures the maximum case of informations. By increasing the
pooling filter size, the resolution is decreased even further and more information is lost
[HZRS15, PHMM16].
The parameters chosen for these parameters are set by practice and performance obser-
vation. However, it is recommended to start from a small kernel size [AHMJ+14]. The
first experiments using CNNs, a kernel with size 3*3 with 32 filters and a max-pooling
layer with the size 2*2 were chosen, following 2 fully connected layers which achieved
0.32 average error rate and 75.04% f-score. As the size of the dataset was small (no
augmentation was applied yet), enlarging the model by adding more layers to it, decreased
the model’s performance. In order to improve the model’s precision, data augmentation
was applied which 500 more samples of each event was created and using dropout method,
30% of the filters where randomly shutdown at each layer. Throughout the experiments,
it came to notice that increasing the max-pooling filter size to 5*5 (and the same as the
kernel size) improved the gunshot detection by reducing the error rate down to 0.35 and
f-score to 63%. But reduced the average error rate of all the events to 0.41 error rate
and 68.45% f-score which was caused by higher error rate for glass break and baby cry
(0.38 and 0.54 respectively). Like the other model investigations in this work, only the
experiments which had the best results among all the others are chosen and mentioned
in the table 4.17.

Compared to the RNN model and its extensions, feed forward LSTMs and Bidirectional
LSTMs, the CNNs performed better in the sound event detection task. However, the
best performance which is shown in the experiment 4 is only slightly better than LSTMs.
In experiment 1, no augmentation is applied and yet the lowest error rate for babycry
and glassbreak events is achieved which yield over all the lowest error rate among all
the other models and experiments. However, in terms of f-score (model’s precision and
recall), the experiment 4 had slightly better results than the one in first experiment
(achieving 75.12% compared to 75.04% f-score in experiment 1). As for the optimization
function, unlike RNNs and LSTMs, CNN performed much better on the inputs with SGD
and Adam. Also, zooming into the spectrogram, lowered the accuracy of the segment
classification. Therefore smaller values (1024 and 2048) for FFT size have been chosen.
Another interesting observation here is the effect of data augmentation which for the CNN
model with the same set of parameters resulted worse prediction on babycry but much
better prediction for glassbreak. This is shown in experiments 2 and 3. The detection of
gunshot changed slightly lower in terms of both f-score and error rate. By adding more
convolutional layers from 2 to 3, the result got much closer to the results in experiment
2.The glass break was detected much better (having 0.25 error rate and 87.20% f-score).
But since the babaycry and gunshot did not improve much (for babycry the deeper model
achieved the error rate of 0.32 and f-score of 79.80% and for gunshot 0.42 and 66.15%
error rate and f-score respectively), the average result of the detection was lower than
the ones mentioned in the table 4.17.

74

4.4. Experiment Results

CNN results on mel-spectrogram
Parameters Exp-1 Exp-2 Exp-3 Exp-4

Augmentation False False True True
n_fft 1024 2048 2048 1024
overlap 50% 50% 50% 50%

segment duration 0.4 s 0.4 s 0.4 s 0.4 s
n_mels 128 128 128 128
n_layers 1 2 2 1
n_filters 32 32 32 32

kernel_size 5x5 5x5 5x5 5x5
max_pooling 5x5 3x3 5x5 5x5

dropout 20% 30% 30% 30%
loss-function BCE BCE BCE BCE
activation sigmoid RELU RELU RELU
optimizer sgd sgd sgd adam

lr 0.001 0.001 0.001 0.0001
batchsize 128 128 128 128
epochs 100 100 100 100

Babycry err 0.18 0.52 0.66 0.24
fscore 80.70% 79.71% 71.67% 83.47%

Glassbreak err 0.22 0.33 0.26 0.24
fscore 82.28% 85% 79.43% 83.59%

Gunshot err 0.57 0.42 0.38 0.44
fscore 62.14% 67.22% 66.81% 57.34%

Average err 0.32 0.42 0.43 0.30
fscore 75.04% 76% 74.49% 75.03%

Table 4.17:
CNN results on DCASE 2017 Rare Sound Event Detection evaluation dataset, using

mel-spectrograms as input representation.

Figure 4.13 illustrates the prediction results of experiment 4 in table 4.17. These recordings
are the same as in RNN 4.3 and LSTM prediction results 4.9, except the babycry recording
which was predicted as False Negative by CNNs. The noise in background of glassbreak
recording (the middle picture) is also confused as glassbreak which is the same mistake
in both RNNs and LSTMs (both feed forward and bidirectional).

Figure 4.14 illustrates the prediction results of experiment 4 in table 4.17 for the same
mistake that RNNs and LSTMs did on detecting a bird sound as babycry event shown
in the figure 4.4 and 4.10. CNNs also did detect the bird as the babycry. Also, even
though that the babycry is detected here, it fell outside of the offset tolerance of the
onset detection, namely, more than half a second further from the actual onset.

The same as other investigations, observations of confusion matrix in the experiment 4 in

75

4. Experimental Results

Figure 4.13: CNN learning curve in experiment 4.

Figure 4.14:
Wrong onset prediction visualization for CNN experiment 4. The model, the same as

RNN and LSTMs, confused the sound of baby cry with sound of a rooster.

table 4.17 are shown in the table 4.18. Comparing CNNs confusion matrix with RNNs 4.8
and LSTMs 4.12 shows that the CCNs have higher precision than the LSTMs and RNNs
but also lower recall. This is because of the improvement in number of True Positives

76

4.4. Experiment Results

and also increasing in number of False Negatives. As shown in this table, changing the
tolerance affected only on the baby cry which reduced the shifted detected onsets from
37 to 30. By listening to those audio and visualizing their spectrograms it came to notice
that the background noise in those audios where high when the event was occurring. For
example a restaurant background noise, sound of cutleries caused the model not to be
able to detect the start of cry.
However, changing the offset tolerance did not effect the glassbreak and gunshot event
at all. for gunshot, the wrong detected onset was mostly because of the other events
occurring in the recording which were more bold than the gunshot (such as smashing the
door, tapping on the table, tapping on the pot while cooking). For glass break, there
where only 2 recording which were detected as False Negative. By listening to the audios,
it came to understanding that the glass break was very short (almost half a second) and
the model did predict it, but it did not go above the determined threshold to recognize is
as the glassbreak.

babycry TN TP FN FP WO Prcs Rcl ERR F1
0.5 s 218 202 19 61 29 0.7680 0.9140 0.24 83.47%
0.75 s 218 208 19 55 23 0.7908 0.9162 0.22 84.89%
1 s 218 209 19 54 22 0.7946 0.9166 0.21 85.13%
glassbreak
0.5 s 241 186 61 12 3 0.9393 0.7530 0.24 83.59%
0.75 s 241 186 61 12 3 0.9393 0.7530 0.24 83.59%
1 s 241 186 61 12 3 0.9393 0.7530 0.24 83.59%
gunshot
0.5 s 187 132 73 108 46 0.55 0.6439 0.43 59.32%
0.75 s 187 132 73 108 46 0.55 0.6439 0.43 59.32%
1 s 187 132 73 108 45 0.55 0.6439 0.43 59.32%

Table 4.18:
Testing the Onset detection results with different tolerances for the experiment 4.

In figure 4.15, the learning cure of the experiment 4 in table 4.17 is illustrated. Like the
other models, CNN results where also tested with 4 fold cross validation. The model
learned event features relatively fast and the learning improvement slowly increased.
Within the first epochs, the model rapidly increased its accuracy for all the events. But
this pace for glassbreak was even higher. The learning curve for train and the evaluation
sets are very similar which could show the great similarity between the sets.

77

4. Experimental Results

Figure 4.15: CNN learning curve in experiment 4.

4.4.3 Experimental Results on Sound Event Detection

As explained in the first chapter, SED is a task of detecting the onset and offset of
multiple overlapping events. The audios provided by the DCASE dataset are 2-channel
audios. The figure 4.16 illustrates polyphonic audio and its monophonic version which is
achieved by averaging both channels into one.
To create an input dataset for the SED system, each audio signal is divided into smaller
duration. Afterwards, as the CQT and MFCCs in the previous sub-section proved not to
be suitable for this task, mel-spectrograms are used as input representation where the
mel-bands are extracted from each of these short duration. Then each of these feature
segments are fed into the neural network architecture which will map each of these
segments into its corresponding audio event label. The same baseline system as for the
RSED task was used for SED task provided by the DCASE2017 challenge [MHD+17]. To
Augment the data, the same as rare sound events experiments, we have tested different
shift steps and stretch factors. Afterwards, the values which sounded different but still
realistic to the audio was chosen and applied on the training set on each fold of the cross
validation. Stretch factors were chosen from ±0.5,±0.7 and Shift steps where chosen
from ±2,±3 to create an augmented dataset with different sizes (from 2 to 8 times larger
than the original dataset).
In the following subsections, results of the experiments and their discussions are provided.

78

4.4. Experiment Results

Figure 4.16: Illustration of a polyphonic and monophonic version of the an audio. The top image
depicts a polyphonic audio with occurrence of multiple events such as car passing and people
walking and speaking at the same time. The Image in the middle is the monophonic version of
the same audio which was produced by calculating the mean of the both channels. The image
bellow illustrates the extracted 100 mel-spectrograms of the mono channel Audio.

Pre-processing
In the figure 4.17, the segmentation process of an audio signal is depicted. Each signal is
divided into smaller parts which then the frame wise multi-labels, based on the given
annotation, are calculated as a binary string with 6 digits (each represents one event).

Figure 4.17 illustrates the segmentation process for SED system. Since the events are
distributed all over the audio and there is no control on how many times they appear,
each audio will be divided into a number of 40 ms segments with 20 ms overlap. Based
on the experiments done in this thesis, this size have shown to be the most effective as
an analysis window for the SED system. These segments are then used as the input. The

79

4. Experimental Results

Figure 4.17: Segmentation procedure for SED task. Each audio is divided into smaller segments
and these segments and their corresponding labels are then used as inputs for the SED system to
be analyzed. The duration of each segment is 40 ms and they have a 20 ms overlap.

same as for the Rare Sound Event Detection, there are multiple experiments applied to
study the behavior of recurrent neural network architecture and are compared with the
state of the art baseline systems used for this work.

Model Evaluation
To Evaluate the behavior of deep learning architectures used as SED systems, two different
systems are used as baseline. Multiple parameters was tested to study the performance
of these models and table of results are provided in the following of this subsection. The
evaluation metric used for comparison is the segment-based error rate. However, for
further evaluation metrics such as accuracy and f-score are also provided. The calculation
of segment-based error rate and f-score are presented in [MHV16a] where for each one
second segment the f-score is calculated as shown in the equation 4.3 and error rate
calculation is shown in the equation 4.4.

f1 = 2 · TPs
2 · TPs+ FNs+ FPs

(4.3)

80

4.4. Experiment Results

errorrate = S +D + I

N
(4.4)

where SS is the sum of substitution errors (min(FP, FN)), I is the sum of insertion
(max(0, FPs − FNs)), D is the sum of deletions (max(0, FNs − FPs)) and N is the
number of active events in the segment.

Baseline Systems

As mentioned before, there are two different baseline systems. One system is provided by
the DCASE challenge and the second is a state of the art machine learning algorithm,
Support Vector Machine. The results of the deep Learning architectures is compared to
both baseline systems.

DCASE 2017 Baseline system:
The baseline system for this task is also the same as the one used for RSED task, a 2
layered MLP system with 50 units in each layer and 20% dropout. The number of epochs
was set to 200 (with early stopping which started the monitoring process at the epoch
100 with 10 observing epochs).The learning rate 0.001 and the activation function in the
output layer, a sigmoid function. The experiment was trained and tested on each full
audio. The average results are shown in the table 4.19 Note that the results of each class
are the average of segment-wise f_score and error rate of one second long segments per
each class and the average results which is then compared to the baseline system is the
segment-wise average of all segments.

DCASE baseline results
Error-Rate F-score

People Walking 1.44 33.5%
People Speaking 1.29 3.6%
Children 2.66 0.0%
Car 0.76 65.01%
Large Vehicle 1.44% 42.07%
Break 0.98% 4.1%
Average: 0.93 42.8 %

Table 4.19: DCASE 2017 Sound Event Detection baseline results: Segment-based overall metrics.

81

4. Experimental Results

Support Vector Machine as baseline System:
A simple SVM was used as the second baseline system. The results of MFCC-based
SVM, are shown in the table 4.20. We have trained the classifier separately for each class.
Afterwards the segment based f-score and error rate for each class was calculated and
the segment_wise average of error rate and f-score of taken as SVM-baseline results.
To set a SVM baseline, 2 different experiments were applied. As we observed from the
previous subsection, mel-spectrogram as input representation achieved better results
than the MFCCs. Therefore, here we also tested both MFCCs and Mel-spectrogram,
applying a grid search on SVM with a given set of values for each hyper parameter.
After comparing the results of both mel-spectrogram and MFCCs by applying the best
parameter set for SVM model, we have observed that for this task, MFCCs have achieved
better results than mel spectrogram. This is because of the high error rate which was
caused due to large false positive rate which resulted 8% f-score and 1.61 error rate. As
a consequence of having too little samples of Children, Large Vehicle and Brake, these
labels had a large error rate which was due to large false negative and false positive rate.
The detection of Car passing was less challenging (still very low precision) in comparison
to the other labels.
Following of this section contains subsection for each model and explains each deep
learning architectures performance with different set of parameters. As the RNN model
results were poor in previous dataset and also the first tries on this dataset (achieving
segment base error rate with augmentation 0.98 and f_score below 22%), we continue
the experiments by focusing on LSTMs and its extension Bi-LSTMs and CNNs. The
result of RNN experiment is shown in the overview table 4.3

SVM baseline results
Error-Rate F-score

People Walking 1.40 13.33%
People Speaking 1.31 4.5%
Children 2.4 0.95%
Car 0.98 19.54%
Large Vehicle 1.74% 7.01%
Break 1.86% 1.31%
Average 1.28 8.12%

Table 4.20: Sound Event Detection SVM-MFFC based baseline results: Segment-based overall
metrics.

LSTMs

Following the work of Adavanne et al. [APP+16] on DCASE 2016 Sound Event detection
and Classification, a two layer LSTM with 32 hidden unit was used on the real life sound
event detection dataset. Table 4.21 shows the result of multiple experiments motivated
by their work. The first experiment uses the same signal processing parameters for
audio segmentation which are 2048 FFT window size on 40 ms audio segments with

82

4.4. Experiment Results

50% overlap. Afterwards, 40 mel-spectrograms where calculated from each of the audio
segments which were then used as the LSTM input.
The same as previous dataset, we also trained the model using a 4 fold cross validation.
Variance of classification accuracy among all the folds is very low which means the
training folds where not diverse.

LSTM results on mel-spectrogram
Parameters Exp-1 Exp-2 Exp-3 Exp-4

Augmentation False False True True
n_fft 2048 2048 2048 2048
overlap 50% 50% 50% 50%

segment duration 0.4 s 0.4 s 0.4 s 0.4 s
n_mels 40 80 80 80
n_layers 2 2 3 3
n_units 32 32 64 64
dropout 20% 20% 25% 25%

loss-function BCE CCE CCE CCE
activation sigmoid sigmoid sigmoid sigmoid
optimizer RMSprop RMSprop RMSprop RMSprop

lr 0.0001 0.0001 0.0001 0.0001
batchsize 64 64 128 128
epochs 200 200 200 200

People
Walking

err 0.92 0.92 0.90 0.89
fscore 8.34% 8.21% 10.13% 13.53%

People
Speaking

err 0.99 0.98 0.96 0.92
fscore 0.44% 1.37% 4.35% 12.21%

Children err 1 1 1 1
fscore 0.0% 0.0% 0.0% 0.0%

Car err 0.8 0.76 0.7 0.63
fscore 22.33% 27.09% 33.14% 42.35%

Large
Vehicle

err 0.81 0.76 0.82 0.87
fscore 20.08% 26.29% 20.61% 14.66%

Brake err 1 1 1 1
fscore 0.0% 0.0% 0.0% 0.0%

Seg-Wise
Average

err 0.82 0.83 0.81 0.79
fscore 27.40% 30.11% 33.21% 41.02%

Table 4.21:
LSTM results on DCASE 2017 Real Life Sound Event Detection evaluation dataset,

using mel-spectrograms as input representation.

As shown in the table, in all the experiments, squeaking sound of the car brake, people
speaking and children where never detected. For each experiment, different set of

83

4. Experimental Results

parameters for input representation is tested to see if we can improve the results. As it
was mentioned in multiple works [TGPVG16] [PHH+17], choosing a higher value for mel-
spectrogram extract high frequency components from the audio [HWT+16]. Therefore
the 80 mel bands were extracted from the audio signals which resulted a higher precision
but also slightly increased the segment based error rate in comparison with experiment
1. This is due to higher precision on detecting the car and large vehicle sound events.
Even though the error rate is lower than the baseline system, the model has lower true
positives (correct detection) and therefore is not as precise. In order to increase the
True Positive rate, we have applied data augmentation which was mentioned before
and increased the size of the dataset 4 times more and carefully used thresholding to
reduce the false positive by setting the threshold from 0.5 to 0.7. The larger value
for resulted in increasing the number of false negative and therefore 0.7 proved more
appropriate. Experiments 3 and 4 in the table 4.21 provide the highest results of the
model with data augmentation. The combination of both shifted-pitch and stretched
audios using a deeper LSTM model resulted in increasing the f-score (by improving the
number of correct detections). In experiment 3, size of the dataset is 4 times bigger
which is by augmenting the segments using pitch shifting (±2steps) and time stretching
(±0.5factors). For experiment 4, we increased the dataset 8 times more also using both
pitch shifting (±2,±3) and time stretching (±0.5,±0.7). As shown in the table of results,
the augmentation improved the detection of classes "People Walking", "People Speaking"
and "Car" noticeably but decreased the prediction of "Large Vehicle" where the model
failed to predict any active event in the segment and resulted high False Negative rate
for large vehicle event.
We further tried experiments by zooming in and zooming out the segments (choosing
4098 and 1024 FFT size respectively). However, the FFT size 2048 proved better than
1024 and 4096 in terms of detection with size 1024 False negative rate and with 4096
False positive rate increased. Additionally, we applied CQTs and MFCCs as input
representation which MFCC resulted in very high error rate (1.45) and very low (12.08%)
proved to be not suitable. CQT also achieved lower results compared to LSTMs but still
higher than MFCCs (26.41% f-score and 1.26 error rate). Different input representation
also did not help the model in detecting the children and brake squeaking sound events.

Following the work of [HWT+16], we further tested Bidirectional-LSTMs on this dataset.
The results of this experiments are provided in table 4.22. The BLSTM model performed
better with 40 mel bands extracted features and FFT size 4096 (2 times more than
the window size used for LSTMs) which shows that zooming in the spectrogram and
concatenating informations from both direction helped the model to be able to make
more correct predictions. The f-score result is almost the same as LSTM but with slightly
lower error rate (0.2 decreasing in error rate). The BLSTM detected passing cars better
than the LSTMs but performed poorly on detecting the large vehicle. By increasing the
number of extracted mel-bands, the model has improved in detecting large vehicles but
precision of car sound event noticeably decreased.

We have compared the performance of LSTM with BLSTM, by observing the best

84

4.4. Experiment Results

BLSTM results on mel-spectrogram
Parameters Exp-1 Exp-2 Exp-3 Exp-4

Augmentation False False True True
n_fft 4096 4096 4096 4096
overlap 50% 50% 50% 50%

segment duration 0.4 s 0.4 s 0.4 s 0.4 s
n_mels 40 80 40 40
n_layers 2 2 3 3
n_units 32 32 64 128
dropout 20% 20% 25% 30%

loss-function BCE CCE CCE CCE
activation sigmoid sigmoid sigmoid sigmoid
optimizer RMSprop RMSprop RMSprop RMSprop

lr 0.0001 0.0001 0.0001 0.0001
batchsize 64 64 128 128
epochs 200 200 200 200

People
Walking

err 0.95 0.93 0.9 0.91
fscore 5.28% 6.99% 11.94% 15.94%

People
Speaking

err 0.97 0.81 0.95 0.95
fscore 2.60% 2.86% 5.06% 6%

Children err 1 1 1 0.99
fscore 0.0% 0.0% 0.0% 1.11%

Car err 0.70 0.72 0.72 0.7
fscore 34.39% 26.96% 31.50% 34.35%

Large
Vehicle

err 0.86 0.71 0.91 0.91
fscore 14.45% 16.35% 9.54% 9.71%

Brake err 1 1 1 0.97
fscore 0.0% 0.0% 0.0% 3.28%

Seg-Wise
Average

err 0.80 0.89 0.90 0.93
fscore 31.00% 24.63% 27.88% 31.72%

Table 4.22:
BLSTM results on DCASE 2017 Real Life Sound Event Detection evaluation dataset,

using mel-spectrograms as input representation.

prediction results of these models (for LSTM, experiment 2 in table 4.21 and for BLSTM,
experiment 2 in table 4.22). As also provided in the table of results, the LSTM model
performed better than the BLSTM model. One reason could be the information of both
direction which confused the BLSTM model and reduced its precision in event detection.
However, unlike LSTMs, BLSTM was able to detect the children and brake squeaking
sound events (referring to the Exp-4 in the table of results) but had a poor prediction on
large vehicle where LSTMs performed better. Compared to BLSTMs, prediction results

85

4. Experimental Results

in LSTM had higher True positives (also False positive). This observation is illustrated
in figure 4.18 which is the prediction results of one of the evaluation set audios. As also
depicted in the figure, both models failed to detect the children sound and the break
squeaking.

Figure 4.18: Comparison of LSTM (Experiment 2 in 4.21) prediction results with BLSTM
(Experiment 1 in 4.22)

CNNs

In this subsection, we followed the work of [GMS16b], we used 1 Convolutional layer
consists of 80 filters with 3*60 kernel size followed by a 4x3 max-pooling layer and 2 fully
connected layers. We trained the network using Adam (0.001 learning rate) optimizing
cross-entropy loss function. We stop the training using the early stopping technique by
10 epoch patience on validation loss. Like the other experiments, 20% dropout is also
applied on each layer and the model is tested on 4 fold cross validation. Afterwards,
to observe the changes in results and improving the prediction scores, we applied more
experiments which 4 of the top results are provided in table 4.23. Experiment 1 refers
to the first experiment which was motivated by [GMS16b]. Comparing to BLSTM and
LSTMs, CNN had lower f-score and higher error rate which shows that the LSTMs (and
B-LSTMs), this model is less suited for detecting the overlapping sounds and capturing

86

4.4. Experiment Results

the temporal behavior of the events. We have also tried smaller kernel sizes (as it was
recommended by [AHMJ+14]) which reduced the error rate and increased the f-score.
However, the score is still less than the ones provided by the baseline which is due to
low number of correctly detected events (True Positive rate). We further more applied
data augmentation which the experiments 3 and 4 in the table 4.23 refer to two of the
highest results achieved by this model. We have compared the prediction results of CNNs
with LSTMs which is illustrated in figure 4.19 where we can see the lower number of
false predictions by CNN in comparison with LSTMs but also lower number of correctly
predicted segments which resulted in lower f-score for the CNN model. CNN model in
exp-3 was able to predict children and brake sqeaking as well as the BLSTM in exp-4
4.22 which shows that augmenting the data helped these two models on discovering these
difficult events.
Throughout these experiments we noted the difficulty in detecting the street sound
events in comparison with the synthetic sound events where the presence of each classes
using the extracted mel-bands where more clear to the model. As it is also stated in
[PKK+17], audio event detection is a more complex task than classification and needs
further investigation in order to achieve accurate models. Moreover, complex signal
processing techniques are required to separate the source of each sound in order to capture
their characteristic and properly identify the presence of events in the audio signals.

87

4. Experimental Results

CNN results on mel-spectrogram
Parameters Exp-1 Exp-2 Exp-3 Exp-4

Augmentation False False True True
n_fft 2048 1024 1024 1024
overlap 50% 50% 50% 50%

segment duration 0.4 s 0.4 s 0.4 s 0.4 s
n_mels 60 40 80 128
n_layers 2 2 2 2
n_filters 80 64 64 64

kernel_size 60 5 5 7
max_pooling 4 3 3 5

dropout 20% 20% 30% 25%
loss-function BCE CCE CCE CCE
activation sigmoid sigmoid sigmoid sigmoid
optimizer SGD Adam SGD SGD

lr 0.001 0.001 0.001 0.001
batchsize 64 64 128 128
epochs 200 200 200 200

People
Walking

err 0.95 0.96 0.94 0.92
fscore 5.33% 4.62% 5.89% 9.29%

People
Speaking

err 1 1 0.98 0.97
fscore 0.0% 0.0% 3.65% 2.71%

Children err 1 1 0.97 0.98
fscore 0.0% 0.0% 3.14% 2.88%

Car err 0.88 0.80 0.8 0.74
fscore 14.03% 22.02% 23.48% 28.82%

Large
Vehicle

err 0.84 0.86 0.87 0.84
fscore 16.38% 14.25% 13.82% 16.38%

Brake err 1 1 0.80 1
fscore 0.0% 0.0% 23.69% 0.0%

Seg-Wise
Average

err 0.93 0.84 0.89 0.77
fscore 18.61% 21.11% 23.63% 28.61%

Table 4.23:
CNN results on DCASE 2017 Real Life Sound Event Detection evaluation dataset, using

mel-spectrograms as input representation.

88

4.4. Experiment Results

Figure 4.19: Comparison of LSTM (Experiment 2 in 4.21) prediction results with CNN (Experi-
ment 1 in 4.23)

89

CHAPTER 5
Conclusion and Future Work

In this chapter, a conclusion is made over the entire project and steps which have been
taken to achieve these goals, and the outcomes, in Section 5.1. Furthermore, Section
5.2 sketches some possible ways to continue and expand this project toward further
optimizations and improvements of the solution to the problem which was stated in
Section 1.1.

5.1 Conclusion

In this thesis we have systematically investigated the characteristics of two most popular
architectures of deep neural networks, Convolutional Neural Networks and Recurrent Neu-
ral Networks (with its extensions, Bidirectional network and long Short term Memories).
To answer the first scientific question of this thesis, we have studied the performance
of deep models by applying different techniques such as MFCCs, Log-Amplitude Mel-
spectrograms and CQTs which Log-Amplitude Mel-spectrograms proved to be more
appropriate for these models.
To answer the second scientific question of the thesis contribution, we have utilized
techniques such as dropout which avoids model’s over fitting by randomly blocking
informations from passing to the next layer and cross validation for reproducibility. To
achieve model’s convergence and generalizability, we have applied data augmentation
which was done by manipulating the audio signals pitch and stretching the time axis.
Furthermore, we answered the final scientific question, by investigating and optimizing
deep models such as LSTMs, BLSTMs and CNNs in which LSTMs and CNNs outper-
formed both baseline systems (MLP and SVM) and other models (RNNs and BLSTMs)
and showed their robustness in learning the characteristics of different events. We have
Also noticed that augmenting the training set noticeably reduces the False positive rate
which leads to higher model precision (70.02%) and therefore higher F-score (76.24%).
We have evaluated the models on two different datasets, synthetic rare sound event de-

91

5. Conclusion and Future Work

tection (RSED) and real life sound event detection (SED) where the model performance
on synthetic RSED dataset exceeded the performance on the real life SED dataset. This
can be due to reasons such as the accuracy in defining the onset and offset of the events.
For synthetic RSED, we observe that the model had difficulties to distinguish gunshot
from louder background noise (e.g. dropping objects on the floor, smashing the door)
and therefore had lowest precision among the other two events (57.17%). The similarity
between features of some singing birds and baby cry also resulted in falsely detecting a
cry event.
In the second dataset, real life SED, the model had difficulties to detect the brakes
squeaking, children (which sometimes was just a scream and sometimes talking and
laughing), and people speaking. On the other hand, car, large vehicle and people walking
had higher chances of detection. However they were often below 50% f_score which
shows the low precision of the model on detecting these street sounds and need for an
approach to clarify the presence of these events in the audio.

5.2 Future Work
There number of works which can be further studied towards advanced optimization and
improvements of the sound event detection task are investigating the hybrid models such as
CRNN which have shown very good performance, GRUS which was introduced later than
LSTMs but achieved the same performance with less computational complexity [GSR+17].
Another study which is considered for improvement on this project is polyphonic SED
where both channels of audio signal (if it is a two channel audio) is used separately to
train the model and then the results are concatenated for the prediction. This approach
mimics the performance of our ear where the audio is heard from two different inputs and
was examined in the work of Adavanne [AV17] which achieved the first place in DCASE
challenge 2017. Also, applying an attention layer on top of neural networks, increases
the detection accuracy which was successfully tested in the work of Xu [XKH+17].
To better understand the behavior of deep neural network and be able to justify the
predictions which they are making, investigation through its deep layers using methods
such as visualization and mathematical models have been investigated [SWM17] which is
considered to be a further study of this project as well.

92

List of Figures

1.1 An overview of a sound event detection 2

2.1 Monophonic SED vs Polyphonic SED . 10
2.2 A chart of published work on SED using deep learning 10
2.3 Effects of EMDA and VTLP (data augmentation) methods with enlarging

number of augmented data. 11
2.4 Flowchart of the sound event detection system 12

3.1 Sub-figure(a) illustrates the waveform and sub figure (b) is the calculated spectrogram
of waveform, representing a baby cry . 16

3.2 Sub-figure(a) illustrates the waveform and subfigure (b) illustrates the spectrogram
of the waveform, representing a glass break 16

3.3 Sub-figure(a) illustrates the waveform and subfigure (b) illustrates the spectrogram
of the waveform, representing a gunshot . 16

3.4 Illustration of multiple FFT window sizes 18
3.5 MFCC block diagram . 19
3.6 Comparison of different mel-bands in MFCCs 21
3.7 Comparison of different mel bands in Mel spectrograms 22
3.8 Comparison of STFT and CQT . 23
3.9 Data Augmentation: Compressing the Audio Signal. 25
3.10 Data Augmentation: Expanding the Audio Signal. 26
3.11 Comparison of the pitch shifted audio with an original audio wave: step = 2 27
3.12 Comparison of the pitch shifted spectrogram with an original spectrogram:

step = 2 . 27
3.13 Comparison of the pitch shifted waveform with an original waveform: step =

-2 . 28
3.14 Comparison of the pitch shifted spectrogram with an original spectrogram:

step = -2 . 28
3.15 A recurrent neural network in its forward computation process 30
3.16 Architecture of BRNN . 31
3.17 Forget layer in the LSTM Architecture . 33
3.18 Input layer in the LSTM Architecture . 34
3.19 The repeating module in an LSTM contains four interacting layers 34

93

3.20 Example of a convolutional layer . 36
3.21 An overview of a convolutional neural network model 36
3.22 Overlap between two windows . 38
3.23 Sigmoid activation function . 39
3.24 Dropout method applied in the layers of a fully connected neural network 40

4.1 Segmentation process for rare Sound Event Detection 51
4.2 Probability distribution through an audio signal 52
4.3 The prediction visualization: RNN model for Rare Sound Event Detection 58
4.4 The wrong onset prediction visualization: RNN for rare Sound Event Detection 58
4.5 Visualization of the RNN- 4 fold cross validation on rare Sound Event Detection 60
4.6 Visualization of the RNN- 4 fold cross validation on Rare Sound Event

Detection (2) . 61
4.7 Illustration of the learning curves for 4 fold cross validation (1) 64
4.8 Illustration of the learning curves for 4 fold cross validation (2) 65
4.9 LSTM learning curve in experiment 4. 67
4.10 Wrong onset prediction visualization for LSTM 67
4.11 LSTM learning curve in experiment 4. 68
4.12 LSTM-MFCC based: comparison of FP and TP detections 71
4.13 CNN learning curve in experiment 4. 76
4.14 Wrong onset prediction visualization for CNN 76
4.15 CNN learning curve in experiment 4. 78
4.16 Illustration of a polyphonic and monophonic version of the an audio . . . 79
4.17 Segmentation procedure for SED task . 80
4.18 Comparison of LSTM and BLSTM outputs 86
4.19 Comparison of LSTM and CNN outputs 89

94

List of Tables

2.1 A tabular summarization of the similar works on sound event detection. 14

4.1 Hardware specifications . 47
4.2 Rare Sound Event Detection Experiment Overview 49
4.3 Real Life Street Sound Event Detection Experiment Overview 50
4.4 DCASE 2017 Rare Sound Event Detection baseline results 54
4.5 Rare Sound Event Detection SVM baseline results 55
4.6 RNN-mel based results on DCASE 2017 Rare Sound Event Detection: . . 56
4.7 Onset detection results with different tolerance: RNN-1 59
4.8 Onset detection results with different tolerance: RNN-3 60
4.9 RNN-MFFC based results on DCASE 2017 Rare Sound Event Detection . 63
4.10 RNN-CQT based results on DCASE 2017 Rare Sound Event Detection . 64
4.11 LSTM results on DCASE 2017 Rare Sound Event Detection 66
4.12 Onset detection results with different tolerance: LSTMs-3 68
4.13 LSTM-MFCC based results on DCASE 2017 Rare Sound Event Detection 69
4.14 LSTM-CQT based results on DCASE 2017 Rare Sound Event Detection . 70
4.15 BLSTM results on DCASE 2017 Rare Sound Event Detection 72
4.16 BLSTM results on DCASE 2017 Rare Sound Event Detection evaluation (2) 73
4.17 CNN results on DCASE 2017 Rare Sound Event Detection 75
4.18 Onset detection results with different tolerance: CNN-4 77
4.19 DCASE 2017 Sound Event Detection baseline results 81
4.20 Sound Event Detection SVM-MFFC based baseline results: Segment-based overall

metrics. 82
4.21 LSTM results on DCASE 2017 Real Life Sound Event Detection 83
4.22 BLSTM results on DCASE 2017 Real Life Sound Event Detection 85
4.23 CNN results on DCASE 2017 Real Life Sound Event Detection 88

95

Bibliography

[AHMJ+14] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald
Penn, and Dong Yu. Convolutional neural networks for speech recogni-
tion. IEEE/ACM Transactions on audio, speech, and language processing,
22(10):1533–1545, 2014.

[All77] Jonathan Allen. Short term spectral analysis, synthesis, and modification
by discrete fourier transform. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 25(3):235–238, 1977.

[APP+16] Sharath Adavanne, Giambattista Parascandolo, Pasi Pertilä, Toni Heittola,
and Tuomas Virtanen. Sound event detection in multichannel audio using
spatial and harmonic features. In Proceedings of the Detection and Clas-
sification of Acoustic Scenes and Events 2016 Workshop (DCASE2016),
2016.

[AV17] Sharath Adavanne and Tuomas Virtanen. Sound event detection using
weakly labeled dataset with stacked convolutional and recurrent neural
network. In Proceedings of the Detection and Classification of Acoustic
Scenes and Events 2017 Workshop (DCASE2017), 2017.

[BBB+10] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. Theano: A cpu and gpu math compiler in python. In Proc.
9th Python in Science Conf, pages 1–7, 2010.

[BP92] Judith C Brown and Miller S Puckette. An efficient algorithm for the
calculation of a constant q transform. The Journal of the Acoustical Society
of America, 92(5):2698–2701, 1992.

[BPT+09] Miguel Bugalho, José Portelo, Isabel Trancoso, Thomas Pellegrini, and
Alberto Abad. Detecting audio events for semantic video search. In Tenth
Annual Conference of the International Speech Communication Association,
pages 1151–1154, 2009.

97

[CDY10] Yashpalsing Chavhan, ML Dhore, and Pallavi Yesaware. Speech emo-
tion recognition using support vector machine. International Journal of
Computer Applications, 1(20):6–9, 2010.

[CGCB15] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio.
Gated feedback recurrent neural networks. In International Conference on
Machine Learning, pages 2067–2075, 2015.

[CGK15] Xiaodong Cui, Vaibhava Goel, and Brian Kingsbury. Data augmentation
for deep neural network acoustic modeling. IEEE/ACM Transactions on
Audio, Speech and Language Processing (TASLP), 23(9):1469–1477, 2015.

[CGO06] Lei Chen, Sule Gunduz, and M Tamer Ozsu. Mixed type audio classifica-
tion with support vector machine. In Multimedia and Expo, 2006 IEEE
International Conference on, pages 781–784. IEEE, 2006.

[CHHV15] Emre Cakir, Toni Heittola, Heikki Huttunen, and Tuomas Virtanen. Poly-
phonic sound event detection using multi label deep neural networks. In
2015 International Joint Conference on Neural Networks (IJCNN), pages
1–7. IEEE, 2015.

[CKBK16] Inkyu Choi, Kisoo Kwon, Soo Hyun Bae, and Nam Soo Kim. Dnn-based
sound event detection with exemplar-based approach for noise reduction.
In Proceedings of the Detection and Classification of Acoustic Scenes and
Events 2016 Workshop (DCASE2016), pages 16–19, 2016.

[CNK09] Selina Chu, Shrikanth Narayanan, and C-C Jay Kuo. Environmental sound
recognition with time–frequency audio features. IEEE Transactions on
Audio, Speech, and Language Processing, 17(6):1142–1158, 2009.

[CNKM06] Selina Chu, Shrikanth Narayanan, C-C Jay Kuo, and Maja J Mataric.
Where am i? scene recognition for mobile robots using audio features. In
IEEE International Conference on Multimedia and Expo, pages 885–888.
IEEE, 2006.

[CV17] Emre Cakir and Tuomas Virtanen. Convolutional recurrent neural networks
for rare sound event detection. September 2017.

[CVMBB14] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua
Bengio. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259, 2014.

[Den12] Li Deng. Three classes of deep learning architectures and their applications:
a tutorial survey. Proceedings of Asia Pacific Signal and Information
Processing Association (APSIPA) transactions on signal and information,
2012.

98

[DHV13] Aleksandr Diment, Toni Heittola, and Tuomas Virtanen. Sound event
detection for office live and office synthetic aasp challenge. Proceedings
of the IEEE Audio and Acoustic Signal Processing (AASP) Challenge on
Detection and Classification of Acoust Scenes Events (WASPAA), 2013.

[dOVG+15] Allan G de Oliveira, Thiago M Ventura, Todor D Ganchev, Josiel M
de Figueiredo, Olaf Jahn, Marinez I Marques, and Karl-L Schuchmann.
Bird acoustic activity detection based on morphological filtering of the
spectrogram. Applied Acoustics, 98:34–42, 2015.

[DTC13] Jonathan Dennis, Huy Dat Tran, and Eng Siong Chng. Overlapping sound
event recognition using local spectrogram features and the generalised
hough transform. Pattern Recognition Letters, 34(9):1085–1093, 2013.

[GAFC+16] JM Gutierrez-Arriola, R Fraile, A Camacho, T Durand, JL Jarrin, and
SR Mendoza. Synthetic sound event detection based on mfcc. Integration,
1000(1):30–34, 2016.

[GMS16a] Arseniy Gorin, Nurtas Makhazhanov, and Nickolay Shmyrev. DCASE
2016 sound event detection system based on convolutional neural network.
In Proceedings of the Detection and Classification of Acoustic Scenes and
Events 2016 Workshop (DCASE2016), 2016.

[GMS16b] Arseniy Gorin, Nurtas Makhazhanov, and Nickolay Shmyrev. Dcase 2016
sound event detection system based on convolutional neural network. IEEE
AASP Challenge: Detection and Classification of Acoustic Scenes and
Events, 2016.

[GPMK16] Panagiotis Giannoulis, Gerasimos Potamianos, Petros Maragos, and Athana-
sios Katsamanis. Improved dictionary selection and detection schemes in
sparse-cnmf-based overlapping acoustic event detection. IEEE Audio and
Acoustic Signal Processing (AASP) Challenge on Detection and Classifica-
tion of Acoustic Scenes and Events, 2016.

[GSR+17] Shabnam Ghaffarzadegan, Asif Salekin, Anirudh Ravichandran, Samarjit
Das, and Zhe Feng. Detection and classification of acoustic scenes and events
2017 bosch rare sound events detection systems for dcase2017 challenge.
2017.

[HMEV13] Toni Heittola, Annamaria Mesaros, Antti Eronen, and Tuomas Virtanen.
Context-dependent sound event detection. The European Association for
Signal Processing (EURASIP) Journal on Audio, Speech, and Music, pages
1–13, 2013.

[HMS05] Aki Harma, Martin F McKinney, and Janto Skowronek. Automatic surveil-
lance of the acoustic activity in our living environment. In IEEE Inter-
national Conference on Multimedia and Expo, 2005. ICME., pages 4–pp.
IEEE, 2005.

99

[HMVG13] Toni Heittola, Annamaria Mesaros, Tuomas Virtanen, and Moncef Gab-
bouj. Supervised model training for overlapping sound events based on
unsupervised source separation. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 8677–8681, 2013.

[HOT06] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning
algorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[HWT+16] Tomoki Hayashi, Shinji Watanabe, Tomoki Toda, Takaaki Hori, Jonathan
Le Roux, and Kazuya Takeda. Bidirectional lstm-hmm hybrid system for
polyphonic sound event detection. In Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016),
pages 35–39, 2016.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyra-
mid pooling in deep convolutional networks for visual recognition. IEEE
transactions on pattern analysis and machine intelligence, 37(9):1904–1916,
2015.

[JLHL17] Il-Young Jeong, Subin Lee, Yoonchang Han, and Kyogu Lee. Audio event
detection using multiple-input convolutional neural network. In Proceedings
of the Detection and Classification of Acoustic Scenes and Events 2017
Workshop (DCASE2017), 2017.

[KB15] Diederik P Kingma and Lei Ba. J. adam: a method for stochastic optimiza-
tion. In International Conference on Learning Representations, 2015.

[KLB17] Wang Kaiwu, Yang Liping, and Yang Bin. Audio events detection and
classification using extended R-FCN approach. Technical report, Proceed-
ings of the Detection and Classification of Acoustic Scenes and Events 2017
Workshop (DCASE2017), September 2017.

[KŁC11] Józef Kotus, Kuba Łopatka, and Andrzej Cżyzewski. Detection and local-
ization of selected acoustic events in 3d acoustic field for smart surveillance
applications. Multimedia Communications, Services and Security, pages
55–63, 2011.

[KSWP16a] Qiuqiang Kong, Iwnoa Sobieraj, Wenwu Wang, and Mark D Plumbley.
Deep neural network baseline for dcase challenge 2016. In Proceedings of the
Detection and Classification of Acoustic Scenes and Events 2016 Workshop
(DCASE2016), pages 50–54, 2016.

[KSWP16b] Qiuqiang Kong, Iwona Sobieraj, Wenwu Wang, and Mark Plumbley. Deep
neural network baseline for DCASE challenge 2016. In Proceedings of the
Detection and Classification of Acoustic Scenes and Events 2016 Workshop
(DCASE2016), 2016.

100

[LD99] Jean Laroche and Mark Dolson. New phase-vocoder techniques for pitch-
shifting, harmonizing and other exotic effects. In 1999 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics, pages 91–94.
IEEE, 1999.

[LD17a] Rui Lu and Zhiyao Duan. Bidirectional gru for sound event detection.
Detection and Classification of Acoustic Scenes and Events, 2017.

[LD17b] Rui Lu and Zhiyao Duan. Detection and classification of acoustic scenes
and events 2017 bidirectional gru for sound event etection. 2017.

[LL17] Yanxiong Li and Xianku Li. The SEIE-SCUT systems for IEEE AASP
challenge on DCASE 2017: Deep learning techniques for audio representa-
tion and classification. In Proceedings of the Detection and Classification
of Acoustic Scenes and Events 2016 Workshop (DCASE2016), 2017.

[LPLH17] Hyungui Lim, Jeongsoo Park, Kyogu Lee, and Yoonchang Han. Rare
sound event detection using 1d convolutional recurrent neural networks.
In Proceedings of the Detection and Classification of Acoustic Scenes and
Events 2017 Workshop (DCASE2017), 2017.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3431–3440, 2015.

[MHD+17] Annamaria Mesaros, Toni Heittola, Aleksandr Diment, Benjamin Elizalde,
Ankit Shah, Emmanuel Vincent, Bhiksha Raj, and Tuomas Virtanen. Dcase
2017 challenge setup: Tasks, datasets and baseline system. In Proceedings
of the Detection and Classification of Acoustic Scenes and Events 2017
Workshop (DCASE2017), 2017.

[MHV16a] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Metrics for
polyphonic sound event detection. Applied Sciences, 6(6):162, 2016.

[MHV16b] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Tut database for
acoustic scene classification and sound event detection. In 24th European
Signal Processing Conference (EUSIPCO), pages 1128–1132. IEEE, 2016.

[MRL+15] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar,
Eric Battenberg, and Oriol Nieto. librosa: Audio and music signal analysis
in python. In Proceedings of the 14th python in science conference, pages
18–25, 2015.

[MTX+16] Erik Marchi, Dario Tonelli, Xinzhou Xu, Fabien Ringeval, Jun Deng,
Stefano Squartini, and Björn Schuller. Pairwise decomposition with deep
neural networks and multiscale kernel subspace learning for acoustic scene
classification. In 24th Acoustic Scene Classification Workshop 2016 European
Signal Processing Conference (EUSIPCO), pages 65–69, 2016.

101

[OBLS14] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning
and transferring mid-level image representations using convolutional neural
networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1717–1724, 2014.

[PHH+17] Giambattista Parascandolo, Toni Heittola, Heikki Huttunen, Tuomas Vir-
tanen, et al. Convolutional recurrent neural networks for polyphonic sound
event detection. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 25(6):1291–1303, 2017.

[PHMM16] Huy Phan, Lars Hertel, Marco Maass, and Alfred Mertins. Robust audio
event recognition with 1-max pooling convolutional neural networks. arXiv
preprint arXiv:1604.06338, 2016.

[PHV16] Giambattista Parascandolo, Heikki Huttunen, and Tuomas Virtanen. Re-
current neural networks for polyphonic sound event detection in real life
recordings. In 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6440–6444. IEEE, 2016.

[Pic15] Karol J Piczak. Environmental sound classification with convolutional
neural networks. In Machine Learning for Signal Processing (MLSP), 2015
IEEE 25th International Workshop on, pages 1–6. IEEE, 2015.

[PJAM15] Gerald Bradley Penn, Hui Jiang, Ossama Abdelhamid Mohamed Abdel-
hamid, and Abdel-rahman Samir Abdel-rahman Mohamed. System and
method for applying a convolutional neural network to speech recognition,
November 17 2015. US Patent 9,190,053.

[PKBGM17] Huy Phan, Martin Krawczyk-Becker, Timo Gerkmann, and Alfred Mertins.
DNN and CNN with weighted and multi-task loss functions for audio event
detection. 2017.

[PKK+17] Huy Phan, Philipp Koch, Fabrice Katzberg, Marco Maass, Radoslaw Mazur,
Ian McLoughlin, and Alfred Mertins. What makes audio event detection
harder than classification? In Signal Processing Conference (EUSIPCO),
2017 25th European, pages 2739–2743. IEEE, 2017.

[PKVK13] C Poonkuzhali, R Karthiprakash, S Valarmathy, and M Kalamani. An
approach to feature selection algorithm based on ant colony optimization for
automatic speech recognition. International journal of Advanced Research
in Electrical, Electronics and Instrumentation Engineering, 11 (2), 2013.

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. In International Conference on Machine
Learning, pages 1310–1318, 2013.

102

[PT17] Poorva G Parande and TG Thomas. A study of the cocktail party problem.
In 2017 International Conference on Electrical and Computing Technologies
and Applications (ICECTA), pages 1–5. IEEE, 2017.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

[pyt] The python tutorial. https://docs.python.org/2/tutorial. "Ac-
cessed: 2018-05-01".

[Pyt09] January Python. Python (programming language). Python (programming
Language) 1 CPython 13 Python Software Foundation 15, page 1, 2009.

[RD17] Anravich Ravichandran and Samarjit Das. Bosch rare sound events de-
tection systems for DCASE2017 challenge. Technical report, Proceedings
of the Detection and Classification of Acoustic Scenes and Events 2017
Workshop (DCASE2017), September 2017.

[SB14] Jan Schluter and Sebastian Bock. Improved musical onset detection with
convolutional neural networks. In 2014 IEEE international conference on
Acoustics, speech and signal processing (ICASSP), pages 6979–6983. IEEE,
2014.

[SB17] Justin Salamon and Juan Pablo Bello. Deep convolutional neural networks
and data augmentation for environmental sound classification. IEEE Signal
Processing Letters, 24(3):279–283, 2017.

[SG15] Jan Schlüter and Thomas Grill. Exploring data augmentation for improved
singing voice detection with neural networks. Proceedings of the 16th
International Society for Music Information Retrieval Conference, pages
121–126, 2015.

[SGB+15] Dan Stowell, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange,
and Mark D Plumbley. Detection and classification of acoustic scenes and
events. IEEE Transactions on Multimedia, 17(10):1733–1746, 2015.

[SHK+14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. Journal of machine learning research, 15(1):1929–1958,
2014.

[Smi99] Steven W.. Smith. The scientist and engineer’s guide to digital signal
processing. California Technical Publication, 1999.

103

https://docs.python.org/2/tutorial

[SWM17] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller. Explainable
artificial intelligence: Understanding, visualizing and interpreting deep
learning models. arXiv preprint arXiv:1708.08296, 2017.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[TGPVG16] Naoya Takahashi, Michael Gygli, Beat Pfister, and Luc Van Gool. Deep
convolutional neural networks and data augmentation for acoustic event
detection. arXiv preprint arXiv:1604.07160, 2016.

[TMZ+06] Andrey Temko, Robert Malkin, Christian Zieger, Dušan Macho, Climent
Nadeu, and Maurizio Omologo. Clear evaluation of acoustic event detection
and classification systems. In International Evaluation Workshop on Clas-
sification of Events, Activities and Relationships, pages 311–322. Springer,
2006.

[VBGS17] Rene Vidal, Joan Bruna, Raja Giryes, and Stefano Soatto. Mathematics of
deep learning. arXiv preprint arXiv:1712.04741, 2017.

[vHA09] PWJ van Hengel and Jörn Anemüller. Audio event detection for in-home
care. In International Conference on Acoustics (NAG/DAGA), pages 618–
620, 2009.

[VW16] Toan H. Vu and Jia-Ching Wang. Acoustic scene and event recognition using
recurrent neural networks. In Proceedings of the Detection and Classification
of Acoustic Scenes and Events 2016 Workshop (DCASE2016), 2016.

[WL17] Jun Wang and Shengchen Li. Multi-frame concatenation for detection
of rare sound events based on deep neural network. Technical report,
Proceedings of the Detection and Classification of Acoustic Scenes and
Events 2017 Workshop (DCASE2017), September 2017.

[Wu17] Jianxin Wu. Introduction to convolutional neural networks. National Key
Lab for Novel Software Technology. Nanjing University. China, 2017.

[XKH+17] Yong Xu, Qiuqiang Kong, Qiang Huang, Wenwu Wang, and Mark D Plumb-
ley. Attention and localization based on a deep convolutional recurrent
model for weakly supervised audio tagging. arXiv preprint arXiv:1703.06052,
2017.

[Zho17] Jianchao Zhou. Sound event detection in multichannel audio LSTM network.
Technical report, Proceedings of the Detection and Classification of Acoustic
Scenes and Events 2016 Workshop (DCASE2016), September 2017.

[ZSV14] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329, 2014.

104

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement
	Contribution of this thesis
	Outline

	State Of The Art
	Data Augmentation
	Architecture

	Theoretical Contribution
	Audio Features
	Data Augmentation
	Learning Process

	Experimental Results
	Datasets
	Framework
	Hardware Specifications
	Experiment Results

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

