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Abstract

We study a theoretical model the growth of sessile Escherichia coli colonies in the

exponential growth phase (feasting), by performing Discrete Element Simulations

in two dimensions. We find that mechanical interactions are sufficient for the for-

mation of highly ordered mesoscopic structures, vulgo microdomains. Basic tools of

analysis, such as the contact angle distribution or the radial distribution function

do not indicate the formation of these microdomains. For this purpose, we employ a

community detection algorithm on contact networks representing the colonies. We

compare three different variants with a range of threshold angles, and evaluate their

overall performance and correlation with more conventional measures. We find that

a good threshold angle to discriminate “cohesive” from “repulsive” contacts between

particles i and j, to be ct = |ûi · ûj| ≈ 0.96. For high threshold angles, all three

variants performed comparably well, whereas the naive dichotomization variant was

clearly outperformed for lower threshold angles. We believe that this method opens

new avenues to study morphogenesis and can be equally beneficially applied in re-

lated fields such as systems of anisometric particles.
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Chapter 1

Introduction

Microbes were first observed by Antonie van Leeuwenhoek, who found these “an-

imalcules” in the plaque of his own teeth in 1676. Numerous species have been

observed displaying a vast range of interesting properties, still only a tiny fraction

of all microorganism-species have been classified. Many questions of basic and ap-

plied sciences are immediately related to understanding the individual and collective

properties of microbial forms of life. They are the simplest and the oldest living or-

ganisms on our planet. Also, due to their simplicity, they are perfectly suited to

study evolutionary processes and to use them as model for active matter systems.

In the last few years, a multitude of phenomena of the motile microorganisms

have attracted great attention in the physics community, and a lot of work has been

done to understand this form of active matter. In contrast, much less work has

been devoted to understanding the fundamental physics governing growing sessile

colonies [8].

Sessile microbial colonies might provide insights into the mechanisms to create

complex, highly specialized structures, such as biofilms or human tissues. Under-

standing microbial colony growth could help to address the standing questions of

emerging anisotropy in embryonic development [9] and give way to novel applica-

tions.

We want to contribute with this work by performing discrete element simulations

of Escherichia coli colonies in the exponential growth phase (feasting). We choose

E. coli, because they take a special position in microbial research. They have been

studied for over 150 years; their genome was fully sequenced and they serve as a

‘workhorse’ for numerous laboratories around the world [10].

Our simulation model only incorporates mechanical interactions, which con-

trasts traditional microbial research, which focusses primarily on chemical processes.

In fact, only recently the significance of mechanical interactions has been recog-

nized [6, 9, 11].

1



1.1. BASIC PHYSIOLOGY OF E. COLI CHAPTER 1. INTRODUCTION

In accordance with recent results published by You et al. [12], we find that

mechanical interactions suffice to form mesoscale structures, vulgo microdomains.

These mesoscale structures might in vivo prepattern tissues and as such significantly

effect their development and final structures. We have devised a novel method to

identify microdomains, that is based on community detection, and studied their

growth behavior.

After completing this thesis, we found that the problem formulation and objective

is closely related to image segmentation tasks [13], while this late insight does not

effect the outcomes of this thesis, it might well inform the choice of methods in

future studies.

In the following section, we want to recap some results of E. coli research, putting

the present work into perspective of the current state of knowledge and providing the

reader new to the field with an overview to the basic processes and phenomena. In

Chapter 2 we will introduce the particle-based model for our numerical simulations.

Chapter 3 is devoted to the simulation methods employed. Chapter 4 introduces

the notion of microdomains and motivates a networked approach to analyze these.

Moreover, we will outline pathways to evaluate identified micro-domains. In Chapter

5 we discuss the results, of our simulations and their significance in relation to prior

investigations. In Chapter 6 we conclude the work with a summary and indicate

possible questions for further research.

In the following we will describe basic properties of E. coli ; this will aid the

layout of our model in Chapter 2, as well as indicate possible directions for future

studies.

1.1 Basic physiology of E. coli

Bacterial cells commonly exhibit one of the three basic shapes: bacilli, cocci and spir-

illa, that refer to rod-like, spherical and curved shapes, respectively. Some species

aggregate these basic cell architectures to form more complex multicellular consor-

tia, see Figure 1.1a. E. coli is a bacillus, i.e. single cell rod-shaped bacteria. The

sizes and aspect ratios depend on the specific strain, the physiological state and

the experienced environmental conditions. Governed by the same influences, E. coli

grow a range of functional appendages, that serve to perform most different tasks,

see Figure 1.1b for illustration.

Now we want to briefly introduce the reader to the physiological states of E. coli,

following the order given by the sketch in Figure 1.1c.

2
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(a) (b)

(c)

Figure 1.1: (a) Light-microscopy picture of an E. coli biofilm, taken from Ref. [1]. (b)

Sketch of the architecture of a single E. coli bacterium, from Microbiology Notes [2].

(c) Sketch of the physiological life-cycle of E. coli, inspired by Ref. [3]

3
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1.1.1 Planctonic state

Today the planctonic or motile state arguably attracts the highest attention from

the physicists community. Swimming bacteria are along with flocks of birds and

robot swarms [14,15] a prototypic example of collective motion and more generally

active matter [8, 16]. This state is closely related to the earliest systems that were

studied in the field of active matter (e.g. by Viscek et al. [17]).

E. coli cells reach a length of up to roughly 8µm, a width of 1.5µm, and they

develop multiple flagella. A flagellum comprises a rotary motor, that drives a long

helical filament that extends several cell body lengths out into the external medium

and is an interesting piece of nanomachinery of its own [18].

Bacteria use these flagella to propell themselves performing a run-and-tumble

motion. Intervals of concerted flagellar movements, that result in straight paths

(runs), are interrupted by non-synchronized flagellar movements, that lead to ran-

dom reorientations of the bacterium (tumbles). The frequency of these tumble events

is tuned to the environmental conditions, and result in an effective attraction to-

wards favorable regions in terms of nutrient supply (chemotaxis) [19], temperature

(thermotaxis) [20], and other stimuli.

Bacteria live in a low-Reynolds number environment, i.e. the viscous forces

dominate over the inertial forces [21]. The effect of explicit hydrodynamic interac-

tions (and consequently momentum conservation) is increasingly studied within the

notion of wet active matter [22], while dry active matter research follows a coarse

grained approach, to study larger systems [23,24]. While it is possible to study some

phenomena by approximating the hydrodynamic fields with simple force dipoles, on

the microscopic level some results sensitively depend on the explicit geometry and

interactions [25–28]. The swimming mechanics of individual cells have been recently

studied in great detail [29], and the impact of external fields attracts increasing at-

tention [30]. A range of fluid-dynamic solvers can be used to study these systems [31],

where Multiparticle Collision Dynamics [32–34] and its variants proove to be one of

the most popular choice today.

Active motion systems do not obey detailed balance [35] and yield a range of

interesting phenomena and potential applications. Among others, trapping [36] and

cargo delivery [37], rectification [38], driving of micromachines [39] or the physiolog-

ically important wall-hugging have been studied. Wall-hugging denotes the effect

that E. coli bacteria, like many other motile particles, experience an effective attrac-

tion towards surfaces. This attraction can be caused by hydrodynamic interactions

and/or geometric effects. It is believed that this effective attraction to surfaces fa-

cilitates the invasion of surfaces and thus promotes the formation of sessile colonies.

4



CHAPTER 1. INTRODUCTION 1.1. BASIC PHYSIOLOGY OF E. COLI

1.1.2 Surface colonialization and growth

Sessile E. coli consume nutrients and grow in length, while maintaining their width.

During this process new cell wall is inserted along the cylindrical midcell and in-

sertion is decreased at the cell poles [40]. Once the cell reaches a certain length, a

septum forms in the middle of the cell that closes and divides the bacterium into

two basically equal daughter cells with complete nucleoids and at least one copy of

the genome each [41]. This process is referred to as binary fission, and the details

of the underpinning mechanisms are actively researched upon. Generally, the pro-

cess comprises the coordinated operation of two mechanisms in the cytoskeleton.

The growth and maintainance of the cell shape is attributed to the actin homologue

MreB, that are filamentous proteins inside the cell envelope. The MreB cytoskeleton

in Escherichia coli preferentially localizes at regions of negative curvature, directing

growth away from the poles and actively straightening locally curved regions of the

cell [42]. The second mechanism is related to the FtsZ protein. This protein is

connected with the formation of the Z-ring, that spans the cell circumference and

contributes to the cell-division [43].

When strictly constraint, E. coli can occupy all sorts of bent shapes, squeeze

through pores as narrow as half their diameter. Within a certain range of distortions,

E. coli bacteria can recover their original shape after the constrictions are released,

beyond this regime a wide range of morphologies can persist [44].

At optimum conditions, i.e. sufficient supply of nutrients, oxygen and the opti-

mum temperature E. coli colonys grow exponentially (exponential- or log phase) at

a doubling time of approximately 20 minutes [45]. After a short time the nutrient

sources are usually fully consumed or poisonous waste products hinder further bac-

terial growth. In the superseding stationary phase, bacteria grow smaller, with more

spherical shapes, and become more resistent to various environmental challenges and

starvation. Bacterial growth is characterized by long periods of nutritional depriva-

tion punctuated by short periods that allow fast growth, a feature that is commonly

referred to as the feast-or-famine lifestyle. See Ref. [46] for a more detailed overview.

Unconstrained E. coli colonies grow initially as a circular monolayer of parti-

cles with a complex internal organization [4, 12]. Particles at the colony perimeter

predominantely orient perpendicular to the vector pointing from its position to the

colony center [4]. Experiments with two differently dyed sub-populations showed

that regions inhabited by distinct sub-populations shared fractal boundaries [47,48].

At a more detailed level, the formation of highly ordered micro-domains have been

studied [12], which will also be the subject matter of our study. As a colony grows

on, bacteria in the colony center perceive growth constraining pressure, as they have

to push the neighboring bacteria to the side, and eventually buckle to form a sec-

ond, and subsequently third layer [49,50], cf. Figure 1.2. A sufficiently large colony

depletes the nutrients at the colony edge, bulk bacteria enter the stationary phase

5
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Figure 1.2: Architecture of a small E. coli colony. Light-microscopy image taken

from Ref. [4].

while a leading edge keeps expanding [51]. The formation of rough colony edges

(i.e. branching instability) were previously attributed to chemical and mechanical

interactions [52, 53]. If multiple different species or mutants are present distinct

sectors form. Also gene-surfing was observed [54,55].

E. coli produce chemicals that diffuse and possibly trigger colony-level synchro-

nized processes [56]. In response to environmental conditions, bacteria can develop

a range of adhesive appendages (fimbriae, pili) to adhere to invaded surfaces and to

engage in more complex interactions.

1.1.3 Biofilm formation

The transition from a surface-bound microcolony to a full-fledged biofilm is gradual.

A biofilm is an equally complex and fascinating multi-cellular consortium, where

the structural and functional properties drastically differ from the single-cell and

colony properties. The initial structure of the microcolony prepatterns the biofilm

architecture. At the onset of biofilm formation, bacteria cells produce large amounts

of biopolymers, collectively termed extracellular polymeric substance (EPS). Despite

the fact that EPS is not necessarily important for the initial colonialization [57], it

proves pivotal for the development of a three-dimensional framework (biofilm matrix,

see Figure 1.3) [5]. This matrix builds a highly heterogeneous structure of aggregates
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CHAPTER 1. INTRODUCTION 1.1. BASIC PHYSIOLOGY OF E. COLI

Figure 1.3: Structure of (a,c) wild type and (b,d) EPS-defective E. coli biofilms,

grown for 72h under similar conditions. In contrast to the EPS-defective strain, the

wild type E. coli form a three dimensional biofilm. Taken from [5].

Table 1.1: Composition ranges of biofilm matrices, from [7].

Component % of matrix

Water up to 97%

Microbial cells 2-5% (Many species)

Polysaccharides 1-2%

Proteins <1-2%

DNA and RNA <1-2%

Ions unkown

of microbial cells, interstitial voids and channels, and provides protection against

physical, chemical and biological agents, facilitates cell-cell signaling and horizontal

gene transfer [58]. EPS might even provide a nutrient source for some of the cells [59].

Microbes account only for a small fraction of a biofilms mass [60] that is mostly made

up by water [61], cf. Table 1.1 for a detailed listing.

Biofilms are commonly referred to as microbial communities, which reflects on

the fact, that biofilms often comprise microorganisms of many different species [7,62].

Analyzing the composition of a microbial community is the common starting point

for a detailed ecological analysis [7]. Each species can perform important tasks

within the community and engage in a range of inter-species interactions. Symbi-

otic interactions include parasitism (i.e. one organism benefits at the expense of

7



1.2. MORPHOGENESIS CHAPTER 1. INTRODUCTION

the other), commensalism (i.e. one organism benefits without effecting the other)

or mutualism (i.e. each organism benefits). Different species can also interact an-

tagonistically, for instance, if they compete for the same nutrients or if they have

a predator-prey relationship [63]. Evolutionary processes like point mutations and

gene rearrangements can introduce additional heterogeneities [64].

An important feature of microbial communities is their robustness, which has

structural and functional components. Biofilms continuously adapt to changing

environmental conditions and can in turn modify their habitat by increasing or

decreasing porosity of geologic media, altering the electrochemical properties, surface

roughness, elastic moduli, stiffness, as well as seismic and magnetic properties of

minerals through the precipitation of bacterial magnetosomes [65].

The earliest biofilm simulations employed Cellular Automata (i.e. local update

rules on a discrete grid) [66] or Diffusion Limited Aggregation (i.e. random accumu-

lation of biomass on the biofilm surface) [67] and seeked to study a biofilm on the

scale of small volume elements. These models mostly neglected explicit growth and

interaction mechanisms between individual cells, or volume elements. In contrast,

the popular agent- and individual based models [68–70] incorporate particle-particle

interactions, where the focus typically lies upon the chemical interactions. From a

physicists view-point, biofilms resemble complex fluids: the rigid bacteria are anal-

ogous to colloids, and the EPS is a cross-linked polymer gel [65, 71]. This analogy

has inspired polymer network-based models [72,73].

The inherently complex nature of biofilms have caused some authors to raise

doubts whether it is possible, after all, to gain insights into biofilms via purely reduc-

tionistic methods, but advocated a systems biology approach instead [63]. However,

the large range of experimental and theoretical tools to study microbial communi-

ties are continuously advancing [62, 65, 67]. It will be necessary to focus the efforts

on yet to be established model systems, to meet the many challenges that are con-

nected with understanding the mechanisms that govern the complex structure and

dynamics of microbial communities [62].

1.2 Morphogenesis

Morphogenesis is the biological process that causes an organism to develop its shape.

The process controls the organized spatial distribution of cells during the embry-

onic development of an organism. Advances in data recording and data processing

allow more detailed studies, coined “morphological profiling” [74]. This includes

subpopulation identification and aggregation. Little is known about the influence

of mechanical interactions on morphogenesis.
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Figure 1.4: Emerging nematic order in a geometrically confined, growing E. coli

colony. Subfigures (A-C) show the same colony at subsequent points in time. Taken

from [6].

1.2.1 Significance of mechanical interactions

Traditionally, microbiological research focused on chemical processes in microbial

colonies. Only recently the significance of mechanical interactions has been recog-

nized. Today readily available microfluidic devices, make it possible to more closely

study the mechanical interactions together with other effects [75]. About a decade

ago, Volfson et al. [6] and Cho et al. [11] published pioneering works in this field.

Both contributions showed that the emergence of order, in geometrically confined E.

coli colonies, can be directly attributed to pairwise mechanical interactions, cf. Fig-

ure 1.4. Analogies to granular physics have been drawn. These initial results inspired

further research, focussing on different confining geometries [76–78], sub-population

boundaries [47], cell-morphologies [79], social interactions [80], nutrient distribu-

tion [52], buckling into a second layer [50], the structural influence of EPS [81], and

the mesoscale structure [12].

Simulations are usually performed using Discrete Element methods. A compre-

hensive review on the mechanistic world of bacteria was recently given by Persat et

al., cf. Ref. [82].
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Chapter 2

Model

Following an increasingly popular granular material approach, we study growing E.

coli bacteria at the individual particle level, taking only mechanical interactions into

account. Our model is closely related to the pioneering paper by Volfson et al. [6].

Our model can be used to perform detailed simulations in 3 dimensions, however,

in this thesis we limit our studies to 2 dimensional systems. We will use the terms

bacteria, cell and particle synonymously.

2.1 Particle model

A colony is a system of neutrally bouyant [83], rigid, granular particles, with an

elongated spherocylindrical shape. The mass of a particle i computes to

mi = ρ

[
(li − d)d2π

4
+
d3π

6

]
, (2.1)

and the diagonal elements of the mass moment of inertia tensor in the body frame

approximate to (cf. Ref. [84])

Ii,z = πρd5

[
(γi − 1) +

8

15

]
along the symmetry axis, and (2.2)

Ii,x = πρd5

{
γi − 1

6

[
3 + 4(γi − 1)2

]
+

4

3

[
83

320
+

(
(γi − 1) +

3

8

)2
]}

(2.3)

along the off-symmetry axes. Here, ρ denotes the particles density and d the length

of the particles off-symmetry axes. The end-to-end length of the spherocylinder i is

denoted with li and the aspect ratio by γi = li
d
.

Particles grow along their symmetry axis at an exponential rate, while keeping

the dimensions of their off-symmetry axes constant [45].

dli
dt

= αli (2.4)
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CHAPTER 2. MODEL 2.2. PAIR-WISE INTERACTION

Figure 2.1: Sketch of two interacting particles: illustration of forces, torques, particle

properties and geometry.

A particle grows up to a certain length lspliti and splits into two particles of close to

similar length. The mean splitting length 〈lsplit〉 is chosen as a Gaussian-distributed

random variable with an average of lspliti = 4d, and with standard deviation σl =

0.3d. The two resulting colinear daughter cells have lengths of l
(1)
i = pli and l

(2)
i =

(1 − p)li, where p ∈ [0.45, 0.55] is a uniformly distributed random value. In the

studied exponential growth regime, the proliferation behavior is robust and the

effect of apoptosis can be readily neglected [45].

A particle’s position is exhaustively described by the vector pointing from the

coordinate origin to the center of mass xi, its length li and the orientational vector

ûi. Particles interact via contact-forces (see Figure 2.1 for illustration).

2.2 Pair-wise interaction and equations of motion

The pair-wise particle-interaction was modelled as the interaction of two virtual

spheres located at the points of closest approach along the particles’ main axes.

The two virtual spheres of diameter d, with centers at ri and rj, and with velocities

vi and vj, interact via a Hertzian force of elastic contact and Coloumb friction

Fij = Fnnij + Ft, (2.5)

Fn = knδ
3/2 − γnMeδvn, (2.6)

Ft = −γtMeδ
1/2vt, (2.7)
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where Fn is the normal force and Ft is the tangential force. The magnitude of the

tangential force is bounded from above by the sliding friction force: µccFn for cell-

cell contacts and µcwFn for cell-wall contacts. Me is the reduced mass for cell-cell

interaction. δ = d− rij and vn = vij ·nij are the overlap and the relative velocity in

the direction of the normal nij = (ri − rj) /rij, respectively. The tangential velocity

direction tij = vt/vt is specified by the relative tangential velocity vt = vij − vnnij.
Furthermore, particles experience a Stokesian drag force through the surrounding

fluid

FStokes = −βmv (2.8)

These forces enter Newton’s equations of motion1

mẍ = Fe +
∑

c Fc, (2.9)

I · ω̇ =
∑

c (xc − x)× Fc, (2.10)

where m and I are the mass and the tensor of intertia, respectively. x denotes the

center of mass of the particle, ω is the angular velocity, Fe represents external body

forces, the sums run over the contact forces applied at every contact a given particle

has, and xc defines the vector pointing from the particle’s center of mass to the

contact point.

2.3 Reduced units and parametrization

There is no unique choice of reduced units. In principle, the goal is to simplify

the equations of motion and to generalize the outlined problem to describe a class

of related problems. This procedure allows to easily identify qualitatively equal

configurations and helps to prevent running redundant simulations.

In accordance with the original paper by Volfson et al. [6], we normalized all

quantities by an appropriate combination of the diameter, d, mass of a virtual cube,

M = ρd3, and the gravitational acceleration, g.

distance r∗ = r/d (2.11)

mass m∗ = m/M (2.12)

time t∗ = t
√
g/d (2.13)

force F ∗ = F/(Mg) (2.14)

The characteristic mass computes to M = 10−18kg, the characteristic length is

1µm and the characteristic timescale computes to roughly
√
g/d ≈ 50 minutes, i.e.

twice the experimentally observed doubling time of E. coli. We have chosen the

1In literature, it is also common to integrate a simplified set of equations in the over-damped

limit.
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growth rate accordingly to α = 2 ln 2 ≈ 1.4. The force parameters were chosen to

be the same values as published by Volfson: kn = 2 × 106(Mg/d) and γn = γt =

2.2 × 102(g/d)1/2. The coefficients of friction for cell-cell and cell-wall interactions

are µcc = 0.1 and µcw = 0.8, respectively. The Stokes drag factor was chosen to be

smaller than in the original paper to be β = 0.04.
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Chapter 3

Methods

Based on the forces described in Chapter 2, we performed Discrete Element Simu-

lations to simulate freely growing E. coli bacteria on a two dimensional plane. The

simulations were seeded with two particles of equal length, and random relative ori-

entations and separation. The time integration was implemented in parallel code,

running on GPUs using the python pycuda package.

3.1 Discrete Element Simulations

The chosen simulation approach is based on the well known method of molecular

dynamics (MD) simulations [6]. The main idea of the method is to follow the

dynamics of the individual particles that constitute the system under study. In the

case of a gas, these particles are molecules, and in the case of a granular material,

each particle represents a single grain.

In the general case, for the integration of the equations of motion we need to

calculate the particle’s moment of inertia around any axis. Following the integration

scheme outlined in Ref. [85], 1 we calculate the moment of inertia in the particle’s

body frame and transform it into the laboratory frame, Therefore, the orientation

of a particle is described with a rotation quaternion q = (q0, q1, q2, q3) [85, 86], that

is related to a rotation matrix

D(q) =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 . (3.1)

We distinguish vectors in the laboratory frame and body-fixed frame by a super-

script, i.e. vs is a vector in the laboratory (or space-fixed) frame, while

ub = Dus (3.2)

1The integration scheme was originally chosen, to study microbial growth in an explicit fluid.

For the final simulation setup and the questions we eventually addressed, a simpler integration

scheme would be sufficient.
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is the corresponding vector in the body-fixed frame. For vectors in the labora-

tory frame, we will frequently omit the superscript. The orientation 3-vector of a

particle is u = Dᵀub = Dᵀ(0, 0, 1)ᵀ. The moment of inertia tensor in the body-

fixed frame I0 is a constant diagonal matrix. The angular velocity is calculated as

ωs = Dᵀ(I0)−1Dls, were l is the angular momentum.

This leads us to the following definition of the equations of motion

M ẍ = F, (3.3)

q̈ =
1

2

[
Q(q̇)

(
0

ωb

)
+ Q(q)

(
0

ω̇b

)]
, (3.4)

q̇ =
1

2
Q(q)

(
0

ωb

)
, (3.5)

dωbα
dt

= I−1
α

[
T bα + (Iβ − Iγ)ωbβωbγ

]
. (3.6)

Here, Q(q) is defined as

Q(q) =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 (3.7)

To numerically integrate the equations of motion, we employ a Verlet algorithm.

For each time-step τ = 0.001
√
d/g we update x, q and l according to

x(t+ τ) = x(t) + ẋ(t)τ +
τ 2

2M
Fs(t), (3.8)

q(t+ τ) = (1− λ̃)q(t) + q̇τ +
τ 2

2
q̈, (3.9)

λ̃ = 1− q̇2τ 2

2
−
√

1− q̇2τ 2 − q̇q̈τ 3 − (q̈2 − q̇4τ 4/4), and (3.10)

l = l (1 + ατ) . (3.11)

3.1.1 Force calculation

Force calculations are typically the computationally most expensive tasks, when

performing Molecular Dynamics or Discrete Elements simulations. If one calculates

the particle-particle interactions in a naive brute-force manner, the required compu-

tational effort scales with the particle number N like O(N2). A common procedure

to improve the performance of the force calculation requires to create a neighbor list

to keep track of the position of each particle in the simulation box and calculate the

pair-wise forces only for particles within the interaction range, cf. Figure 3.1. We

implemented a grid of cubical bins with side-length L = (〈lsplit〉/2 + σl), where we
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Figure 3.1: At regular intervals, particles are assigned to bins on a fixed grid. The

pair-wise interactions are only computed for particles that reside in bins that are in

proximity to one another. The red dot in the sketch indicates the center of mass of a

particle i, the dashed lines indicate the bin-boundaries, and the red solid line marks

the outline of the considered bins. The interaction potential between the central

particle (with the red dot) and the particles whose center of mass lies outside the

region, is not calculated.
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CHAPTER 3. METHODS 3.2. SIMULATION SETUP

calculated the interactions between particles that resided in the next 2 bins to each

side. We assigned particles to bins at an interval of ∆tbin = 0.01
√
d/g.

We stored bins in a linked list data-structure for which the computational effort

for calculating forces between binned particles scales like O(N log(N)). For the

precise distance calculation between two rods at the points of closest approach, we

implemented the algorithm proposed by Vega and Lago [87].

3.2 Simulation setup

Simulations were seeded with two bacteria in close proximity, of equal length linitial =

3d and random relative orientations. We performed simulations in two dimensions

only, with freely growing colonies, i.e. bacteria do not experience boundaries, and

do not buckle into next layers.
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Chapter 4

Microdomains

The basic objective of this thesis is to gain insights into the local organization of

micro-colonies and to study regions that have some degree of autonomy within a

colony. An intuitive approach is to group together objects that are similar and sep-

arate dissimilar objects. You et al. [12] proposed to study the mesoscopic structure

of growing E. coli colonies, by grouping adjacent particles to microdomains if they

are in contact (i.e. the distance between the points of closest approach along their

main axes is below a threshold, δij ≤ δt) and the enclosing angle αij between their

main axes is below a certain threshold: cosαij = |ûi · ûj| ≥ ct [12]. This partition

can be easily obtained by interpreting the colony as an undirected, spatially em-

bedded network [88], where each particle corresponds to a node and the network

can be described with an adjacency matrix. The adjacency matrix Jij describes the

topology of a network, where each node i is represented by both the ith-row and the

ith-column of the matrix, and the matrix values describe the link “strengths”, where

0 means no link. The adjacency matrix of an undirected network is symmetric, and

for the outlined case it is constructed as

Jij = f(δij, ûi, ûj) = H(δij − δt)H(|ûi · ûj| − ct), (4.1)

with the Heaviside-function H. The proposed hard thresholding criterion results

in a graph of several disconnected components Σ = {σk}, where each component

corresponds to a microdomain.

This simplistic approach is a special case of modularity maximization, that is part

of the more general framework of community detection methods. In the following

sections, we want to discuss the creation of a graph-representation and elaborate

the general ideas behind community detection. Furthermore, we critically discuss

the specifics and weaknesses of the techniques we used, and introduce means to

validate the identified microdomains. We use standard network nomenclature; for a

comprehensive review please refer to Ref. [89].
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4.1 Community detection

Given a system’s graph representation, an expanding body of scholarly literature

has addressed the partitioning problem. This is commonly refered to as community

detection and the identified groups are consequently refered to as communities [90–

93]. Community detection is frequently used to study social or biological networks,

and only recently community detection was used to study force-chain networks in

granular media [94–96].

Modern interpretations of communities focus on the probability that vertices

share edges with a subgraph. Fortunato [90] stated: “The existence of communities

implies that vertices interact more strongly with the other members of their com-

munity than they do with vertices of the other communities. Consequently, there is

a preferential linking pattern between vertices of the same group.”

This definition is the foundation of the popular modularity maximization ap-

proach [97], that is based on maximizing a so called modularity or quality function

Q({σk}) =
1

2m

∑
i 6=j

Jijδ(σi, σj) =
1

2m

∑
i 6=j

(Aij − pij)δ(σi, σj), (4.2)

where δ(σi, σj) is the Kronecker delta, σi, σj denote the communities of the particles

i and j, Aij the adjacency matrix, m the sum over all edge-weights and pij the

null-model (see next Section). This maximization problem is analogous to finding

the ground state of an infinite range Potts spin glass [98] and an interaction is called

ferromagnetic when Jij > 0 and antiferromagnetic when Jij < 0 [99].

The modularity function can be easily extended to multi-layer networks (time

sequence of network-snapshots), cf. Appendix A.1.

4.2 Graph representation and null model

A system’s graph representation and the corresponding null model are closely re-

lated. The null model usually contains important information about the way a

graph is constructed. It is possible to include any form of prior knowledge about

the network to construct pij [93]. Choosing a suitable null-model is a crucial step

in modularity maximization to find good partitions.

As we want to group similar particles, it is important to note that a range

of similarity measures may appear plausible. There is no commonly agreed-upon

procedure to construct a systems graph representation. In accordance with You

et al. [12] and Bassett et al. [95], we construct our graph representation such that

two particles are only connected via an edge, if they are touching. Due to their

spatial extent, particles can only be in contact with their direct neighbors [95].

Furthermore, we calculate the edge weight between two particles as a function of
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the relative orientation. We will describe three different simple monotonic functions

as possible choices to define the Jij matrix, that incorporates the edge weights ωij
and the corresponding null models pij

1, for illustration cf. Figure 4.1:

• Heaviside [12]

A hard threshold angle ct > |ûi · ûj| is defined. All pairs of adjacent particles,

that have a smaller enclosing angle form ferromagnetic links, the others do not

form links; the adjacency matrix reads

Jij = H(δij − δt)H(|ûi · ûj| − ct) (4.3)

This is the simplest way to identify microdomains, but the dichotomization

profoundly alters the network structure, that was reported to potentially yield

a range of problems [100]. Specifically, this definition is very sensitive to

small perturbations and denies to study the time evolution of microdomains2.

Furthermore it is important to note that in this procedure only ferromagnetic

links are taken into account, while antiferromagnetic links are neglected.

• Signum

A hard threshold angle ct > |ûi · ûj| is defined. All pairs of adjacent particles,

that have a smaller enclosing angle form ferromagnetic links, the others form

antiferromagnetic links; the adjacency matrix reads

Jij = H(δij − δt) [2H(|ûi · ûj| − ct)− 1] (4.4)

Besides taking antiferromagnetic links into account, this approach shares many

properties with the Heaviside mapping.

• Polynomial

A simple choice that retains link weights is to use a polynomial function [93]

Jij = H(δij − δt)(|ûi · ûj|n − cnt ). (4.5)

This yields a continuous range of edge-weights. Ferromagnetic and antiferro-

magnetic links are taken into account, and the identified domains are more

1Besides the described choices, the sigmoidal function features favorable properties. This ap-

proach was not studied in detail, but the formulation and the rationale are provided in the Ap-

pendix, cf. Section A.2.
2We found it not feasible to study the microdomain dynamics using the Heaviside network

mapping and performing an ad hoc 2-step approach [91]. In the first step, we identified the colonies’

microdomains at two subsequent time-steps t and t+∆t. In the second step, microdomains σi were

associated between time-steps by using a genetic algorithm to maximize the mutual information

between the two partitions. cf. Figure 4.1.
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Figure 4.1: Illustration of the proposed contact network mappings. The red and

yellow dots indicate a particle’s node representation and the blue lines the edges

that two particles at contact share, where the saturation indicates the contact angle

depended edge-weight. The deficits of dichotomization (Heaviside-mapping (1))

compared to the other mappings (2&3) become evident, as the resulting network

topology sensitively depends on the orientation of the particle marked with the red

dot. In contrast, the mappings (2&3) preserve the topology independently of the

orientation of any individual particle. This yields a more robust and intuitive notion

of microdomains. Here, possible partitionings into microdomains are indicated by

the blue and red coloring of the particles.

robust against small perturbations. However, finding a community structure

is computationally more expensive. For our further studies we have chosen a

linear ansatz, n = 1.

Modularity maximization is known to have deficits in certain contexts, like a

resolution limit [101] and a high computational complexity (NP-hard) [102]. Most

severely, the quality function might have many near-optimum degeneracies [103],

that means one cannot generally assume a community structure of a network is

uniquely defined. There may exist several but very different partitions that all

have a comparably high value of modularity. Quality optimizing algorithms can

emphasize existing difficulties, or even introduce new ones.

4.3 Similarity of identified communities

The aforementioned subtleties of community detection ask for means to evaluate

its effectiveness. Applying the same algorithm several times to a single network

potentially yields structurally very different partitions at comparable modularity

values. To address this issue, we generally repeat the community detection algorithm

10 times for a single network and threshold-angle ct, and aggregate the results.

Furthermore, we will introduce two methods to evaluate the self-similarity and the

similarity of communities detected across different network mappings.
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4.3.1 Normalized mutual information

Similarity of two partitions can be estimated by the normalized mutual informa-

tion, that is the “amount of information” that can be obtained about one partition

through the other partition [90]. The normalized mutual information is not a metric.

This quantity is derived from information theory, where the entropy is the funda-

mental measure for information, or surprise that is carried by an event. For instance,

the flip of a fair coin with equal probability of heads and tails, carries one bit of

information and the entropy of m tosses is m bits. Less likely events provide more

information, conversely, more likely events provide less information. Events that are

certain to occur do not provide any information.

Let Σ = {σi} and Π = {πi} be community assignments, where given two alter-

native partitions S and P of the same colony, σi and πi indicate the community

labels for each particle i within partition S and P , respectively. The entropy of a

community assigment Σ is defined as

H(Σ) = −
∑
σ

P (σ) logP (σ), (4.6)

where P (σ) = P (Σ = σ) = nΣ
σ /n is the probability of particle i being assigned to

community σ, and for P (π) = P (Π = π) = nΠ
π /n analogously.

The mutual information of two random variables Σ and Π is a measure of the

mutual dependence between the two variables. More specifically, it quantifies the

”amount of information” obtained about one random variable, through the other

random variable. It is defined as

MI(Σ,Π) = H(Σ)−H(Σ|Π), (4.7)

where H(Σ|Π) = −∑σ,π P (σ, π) logP (σ|π) is the conditional entropy of Σ given Π.

Dividing the mutual information by the arithmetic average of the entropies of S
and P , yields the normalized mutual information (NMI)

NMI(S,P) =
2MI(Σ,Π)

H(Σ) +H(Π)
. (4.8)

The NMI equals 1 if and only if the partitions are identical, whereas it has an

expected value of 0 if they are independent. Figure 4.2 gives an intuition of this

measure. In the following, we used the implementation that was published in the

python igraph package [104].

4.3.2 Consensus matrix

Another method to visualize the robustness of a partitioning is by plotting the con-

sensus matrix. For this purpose the community detection algorithm is performed
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Figure 4.2: The NMI for two at-first-identical partitions is calculated, where one

partition is continuously modified from the original form. In panel (a) S = P =

(0, 1, · · · , n) is calculated, where n = 100 is the total number of particles and the

first l particles in partition S are reassigned to a new community σi. In (b) S = P =

(0, 0, · · · 0, 1, 1, · · · , 1) with the first half of particles assigned to community σi = 0

and the second half to σi = 1, these two assignment vectors are shifted with respect

to each other.

multiple times on a single network. Then a matrix is created, similarly to an adja-

cency matrix, where particles share a edge if they have been assigned to the same

community, the edge-weight being the fraction of times of this co-assignment. In the

next step, the columns and rows have to be rearranged, such that cohesive blocks are

grouped. This is achieved by applying the Reverse-Cuthill McKee ordering [105].

The resulting - in many cases blockdiagonal - consensus matrix provides a good

overview of the domain-size distribution and the detection robustness. We used

an implementation of the Reverse-Cuthill McKee ordering that is provided in the

python scipy package.

4.4 Validation of communities

This leaves us with the fundamental challenge of evaluating the results, without

auxiliary information, or differently put:

How shall we choose the threshold angle ct to find good partitions? How does a

good partition look like?

In analogy to the data-science task of cluster validation, we suggest a number of

approaches to resolve this problem.
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4.4.1 Particle neighborhood

A common way to parameterize the modularity function (Eq. 4.2) is such, that a

fixed fraction (e.g. 50 percent) of the edges are rendered ferromagnetic, the remain-

ing edges are antiferromagnetic. Information about a particles neighborhood such

as the contact angle distribution |ûi · ûj| may inform a similar choice.

Contact number

We define the contact number Nc of a particle i, as the number of adjacent particles

that are in contact with particle i. As the particles interact purely via contact-forces,

the system offers an intuitive notion of particles in contact. For the data analysis,

we considered particles to be in contact at a distance of closest approach δ, slightly

larger than a particle-width (δ2 ≤ 1.2d). This procedure allows to observe fully

relaxed contacts.

Radial-Distribution function

We calculate the radial-distribution function g(r), which provides a measure of the

local spatial ordering in the bulk of a fluid. It quantifies the probability of finding a

particle within a shell of radius r, around a central particle at the coordinate origin

(ri = 0), normalized by the mean particle density ρ0. In 2D it can be calculated

from

g(r) =
1

2πr(N − 1)φ0

〈
∑
j

∑
i 6=j

δ(|xi − xj| − r)〉 (4.9)

where φ0 and N are the total area fraction and number of particles, respectively.

Structured systems exhibit peaks in g(r), these indicate favored interparticle dis-

tances. In contrast, uncorrelated particle systems do not have favored distances and

the radial distribution function is a constant, g(r) ≈ 1. More specifically, a perfect

crystal structure would yield a sequence of delta-peaks, marking the lattice points,

whereas fluids typically exhibit locally ordered structures, that result in a sequence

of peaks with decreasing magnitude and no long-range correlation.

To calculate the radial distribution function, only central particles i in the bulk

of your colony are taken into account.

4.4.2 Elbow method

The elbow method is a visually aided technique to choose a reasonable parameter

for a clustering task. It is commonly used to choose the correct cluster count k,

for a k-means algorithm. Clustering is performed using different values of k, and

the variance is calculated. As more clusters are introduced, the variance decreases,

24



CHAPTER 4. MICRODOMAINS 4.4. VALIDATION OF COMMUNITIES

here the variance is zero for a single individual in each cluster, which is obviously

overfitting the data. However, the variance over k sometimes shows a point of rapidly

changing slope, from this point on the variance decreases slower with increasing

cluster-number k than previously. The location of the elbow is accepted as good

choice for k.

Translated to our problem, we vary the threshold value ct and evaluate: (i) the

modularity function as defined above, and (ii) the domain averaged nematic order

parameter and search for an elbow in the plot.

Nematic order parameter

The scalar nematic order parameter S is a measure for the parallel alignment of

particles in a system. 0 ≤ S ≤ 1, where larger values indicate higher order and

smaller values lower order. The tensor order parameter Qαβ for m nematogens in a

d-dimensional system reads

Qαβ =
d〈ûmαûmβ〉 − δαβ

d− 1
. (4.10)

The scalar nematic order parameter is defined as the largest eigenvalue of Qαβ.

We calculate particle number-weighted average of the scalar nematic order pa-

rameter of individual domains as

Sσ =

∑
σNσS∑
σNσ

, (4.11)

where S denotes the scalar nematic order parameter evaluated for the given domain

σ, and Nσ the domain number-size.

4.4.3 Clustering index

A large number of clustering indices have been proposed to evaluate the quality of

a clustering [106, 107]. We adapted the following definition of the silhouette index

from Ref. [106].

Silhouette index

The silhouette index C compares the distance of a particle i ∈ σk to the other

particles j in the same domain, with the distance to the other adjacent domains. At

the optimum resolution, it is maximal, where C = +1 indicates highest proximity

within the domains, at maximal distance to the adjacent domains, and C = −1 the

contrary.

First, we define the distance between two particles i and j as

d(i, j) = 1− |ûi · ûj|. (4.12)
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The within-domain mean distance a(i) reads

a(i) =
1

Nσk − 1

∑
i,j∈σk
j 6=i

d(i, j), (4.13)

The mean distance d(i, σk′) of i to the particles of each of the adjacent domains

σk′ ∈ ∂σk

d(i, σk′) =
1

Nσk′

∑
i∈σkj∈σk′

d(i, j). (4.14)

Let us also denote by b(i) the smallest of these mean distances

b(i) = min
k′ 6=k

d(i, σk′) (4.15)

For each particle i, one then forms the quotient

s(i) =
b(i)− a(i)

max (a(i), b(i))
. (4.16)

That is called the “silhouette width” of the particle. Extending this standard proce-

dure, we assigned “orphaned” particles that constitute their own domain a silhouette

width of sorphaned = −1.

The mean of the silhouette widths for a given micro-domain σk is called the

cluster mean silhouette and is denoted as sk

sk =
1

nk

∑
i∈σk

s(i) (4.17)

Finally, the global silhouette index is the mean of the cluster mean silhouettes

C =
1

K

K∑
k=1

sk (4.18)

4.4.4 Feature size matching

Another option to find a useful parameter value range is to match domain sizes with

feature sizes derived from a different method. In the results section we will compare

the feature sizes found with the equal-time polar-pair correlation function, with the

average domain particle count Nσ and the average radius of the smallest domain

enclosing circle rσ
3.

3A number of other geometrical measures are possible [108,109].
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Rσ
Figure 4.3: Sketch to illustrate the smallest enclosing circle, with radius Rσ around

a group of particles.

Equal-time polar pair-correlation function

The spatial extent of a nematic microdomain can be approximated from the spatial

correlation of the orientations of a center particle with particles at distance r, at

time t, and can be described with the equal-time polar pair-correlation function [110].

That is defined as

C2(r, t) =
〈∑i 6=j [d(ûi(t) · ûj(t))2 − 1] δ(|ri − rj| − r)〉

(d− 1)〈∑i 6=j δ(|ri − rj| − r)〉
. (4.19)

The average is taken over all pairs of particles (i, j) in the bulk of the studied

system, and d = 2 denotes the dimensionality of the studied system. C2 = 1

indicates a parallel alignment, while C2 = 0 for random relative alignment and

C2 < 0 for more perpendicular relative alignments.

Smallest enclosing circle

Analogously, the spatial extent of a microdomain can be estimated by the smallest

circle that contains all center-points of the particles that contitute the microdomain,

cf. Figure 4.3.4 We calculate the average of the radii Rσ of the smallest enclosing

circles, for all domains weighted by the number of particles

rσ =

∑
σNσRσ∑
σNσ

. (4.20)

4We used a python implementation available at https://www.nayuki.io/page/smallest-

enclosing-circle.
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Pearson correlation

We use the Pearson correlation coefficient to measure the linear correlation between

feature sizes x and y found using different methods. Strictly speaking, Pearson’s

correlation requires that each dataset be normally distributed, and not necessarily

zero-mean. A value of r = 1 implies an exact linear positive correlation, r = −1 an

exact linear negative correlation and r = 0 no correlation.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
, (4.21)

where x̄ and ȳ denote the respective mean values. We have used the implementation

provided in the python scipy package.

4.5 Community detection algorithm

To optimize the quality function, we use an implementation of the popular Louvain

method that was published by Mucha et al. [111]. The Louvain method is known

to be computationally very efficient and to perform well in practical contexts [112].

The algorithm optimizes the quality function in a two step procedure. In the first

step, the method locally optimizes the quality function by creating a partition with

“small” communities. In the second step, the algorithm aggregates nodes that be-

long to the same community and builds a new network, where each community

is a node. These steps are repeated iteratively until a maximum of modularity is

attained. Eventually, the algorithm will partition the graph into non-overlapping

communities [90]. The Louvain method performs best if the analyzed network com-

prises communities of approximately equal size.

4.5.1 Visualization

We found a simple way to visually distinguish adjacent microdomains. Similarly to

the Louvain algorithm, we first aggreated nodes that belong to the same community

and build a new network where each community is a node. Then we made use of a

greedy color search algorithm, that is based on the four-color theorem, to make sure

adjacent communities are colored in distinct colors. We used an implementation

that was published in the python networkx package [113,114].
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Chapter 5

Results

5.1 Comparison with previously published results

for growing E. coli colonies

To test our implementation of the discrete element simulations, we compare results

obatained from our simulation to results that were reported in related experimental

and simulation studies, and find good agreement.

5.1.1 Particle growth

In agreement with reported results, particles quickly form circular colonies [12, 52],

and orientationally ordered patches evolve [12], cf. Figure 5.1. Visual inspection of

the configurations shown in Fig. 5.1 reveals a strong degree of nematic alignment

that is, however limited to short length scales. The local environment around any

particle within the bulk of the system exhibits a microdomain of nearly parallel

particles. As we move away from the reference particle discontinuous changes in

orientation are often visible. These changes are the physical basis for our definition

of microdomains.

The number of particles in the system grows at an exponential rate. All par-

ticles descend from the two seed particles, and their growth behavior is uniform

except for a small variations in splitting ratios and splitting lengths. This yields

synchronized particle growth within the system, however, relative growth synchrony

is continuously decreasing over time, cf. Figure 5.2.

5.1.2 Local packing fraction

Colonies at unconstrained exponential growth behave like a compressible fluid, where

the density in the center of the colony increases continuously [12,52]. In the chosen

simulation layout, as the colony size increases, particle overlap becomes inevitable.

29



5.1. COMPARISON WITH PREVIOUS RESULTS CHAPTER 5. RESULTS

(a) Generation 1 (b) Generation 5 (c) Generation 7

(d) Generation 9 (e) Generation 11

(f) Generation 13

Figure 5.1: Growth of an unconstrained colony of particles with an average splitting

length of 〈lsplit〉 = 4. Coloring indicates the orientation of the particles.
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Figure 5.2: The relative difference between the observed number of particles in the

colony and a continuous exponential count ((N −Ncontinuous)/Ncontinuous) oscillates

due to synchronized growth, and it decreases in magnitude over time.
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Figure 5.3: Local packing-fraction of colonies of particles with an average splitting

length of 〈lsplit〉 = 4, at different times.

In vivo, bacteria will both buckle and change their physiological state in response to

the growth pressure, therefore, we limit our observations to smaller colonies, before

the onset of strong overlaps.

To calculate the local packing fraction, we approximated each particle by a set

of np = 10 evenly distributed points along its main axis and performed a Voronoi

tessellation. The local packing fraction can then be obtained from

η(ri) =
Vi∑np

j=1 v
(i)
j

(5.1)

with particle i’s volume Vi, and the volume of a Voronoi cell v
(i)
j of the point j

along the main axis of particle i. Our observations are again in agreement with the

previously published results. Figure 5.3 shows the dependence of the local packing-

fraction η on distance from the colony center at successive generations. As the time

(generations) increases, η increases monotonically within the bulk, but always shows

a sharp drop in proximity of the colony boundary.

5.1.3 Radial nematic order structure

In agreement with experimental observations, we observe in our simulations that

bacteria at the colony boundaries preferentially orient perpendicularly with respect
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Figure 5.4: Radial nematic order structure of colonies of particles with an average

splitting length of 〈lsplit〉 = 4. Particles in the bulk orient randomly Srandomr = 2
π
≈

0.637, whereas particles at the colony edge preferentially orient perpendicular to the

vector pointing to the colony center Sedger < Srandomr .

to the vector pointing from the colonies center of mass to the bacteria r̂i,c = xi−xc
[4]. This can be quantified using the radial nematic order structure

Sr(r) =
〈∑i 6=j |ûi(t) · r̂i,c(t)|δ(ri,c − r)〉

〈∑i 6=j δ(ri,c − r)〉
. (5.2)

We observe that, while in the bulk there is no global orientation and microdomains

are equally likely to exhibit any alignment, at the boundary is always normal to the

radial vector r̂i,c. Furthermore, the transition to this orientation occurs at a location

that strongly correlates with the location of the sudden drop of η in Fig. 5.4.
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5.2 Local structure

The local structure in complex systems is frequently studied, as it allows comparison

across different domains. It aids further analysis and will serve as a basis for the

subsequent study of micro-domains.

5.2.1 Particle contacts

The contact angle distribution is skewed towards more parallel contact angles, as

hinted by the inspection of Fig. 5.1. The contact number, as well as the contact

angle distribution remain roughly constant over time, cf. Figure 5.5, where the data

are displayed using box-plots. 1 This suggests that a chosen threshold angle ct for

community detection, is equally valid for the entire time span studied.

5.2.2 Pair-correlation function

To our knowledge, we are the first to publish the radial-distribution function of an

E. coli colony, cf. Figure 5.6. The radial distribution function exhibits the typical

behavior as found in fluids. It shows a pronounced first peak, corresponding to

the closest neighbors in the direction of the particle’s short axis. This first peak is

followed by smaller peaks at the characteristic distances of the successive shells of

neighbors. At large distances, g(r) approaches unity, which indicates that the system

has a homogeneous density. It is interesting that the position of the first peak slowly

shifts towards smaller values of r as time increases, and that is in accordance with

the previously described increase in density over time. However, we were not able to

extract additional information, concerning microdomain properties from the radial

distribution function.

1A box-plot provides information about the distribution of data. The center line indicates the

median, the box indicates the lower and upper quartile, the whiskers describe the values outside

the box, where the maximal length is limited to 1.5 times the inter-quartile range. Data-points

further off are represented as outlier points.
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Figure 5.5: Time resolved distribution of (a) the contact number Nc, and (b) the

contact angle |ûi · ûi| in the bulk of colonies of particles with an average splitting

length of 〈lsplit〉 = 4.
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(a)

(b)

Figure 5.6: Time resolved radial distribution function g(r) (a) for an entire time-

range and (b) at a single point in time.

36



CHAPTER 5. RESULTS 5.3. MICRODOMAINS

5.3 Microdomains

We identified microdomains using the methods introduced in Chapter 4 and compare

the three different variants of network mappings: Heaviside, signum and linear. An

impression of the isolated domains is provided in Figure 5.7. We use configurations

from two simulation snapshots, that were colored according to partitionings using a

set of threshold angles ct ∈ {0.56, 0.86, 0.96} and the linear network mapping (see

Eq. 4.5, where we set n = 1). As can be seen in Fig. 5.7, a low threshold value

(ct = 0.56) yields large structures of low order, whereas the domain-sizes decrease

and the order increases for higher threshold angles ct ∈ {0.86, 0.96}.
From visual inspection only, we cannot decide for the optimal choice of threshold

angle, neither can we provide a rationale for the most beneficial network mapping.

In the following sections we want to present a method to infer possible answers to

these open questions.

5.3.1 Similarity of partitions

The community detection algorithm is not deterministic and applying the algorithm

on a single network will potentially yield different results (this is not the case for the

Heaviside-mapping). To quantify the similarity of partitions obtained from different

network-mappings of colonies in generation 9, we calculated the normalized mutual

information, cf. Figure 5.8. For low threshold angles ct . 0.2 the linear-mapping

(ct . 0.1 the signum-mapping) the colony is consistently partitioned into a single

large community comprising all particles, therefore NMI = 1. For slightly higher

threshold angles ct ∈ [0.3, 0.8] the linear-mapping (ct ∈ [0.1, 0.9]) the partitions

comprise multiple communities and become increasingly similar, for even higher

threshold angles, the the signum and the linear mapping yield close to deterministic

results.

Inspecting the similarity of partitions obtained from different mappings, shows

that the Heaviside-mapping yields drastically different partitions from the other

two, and for very high threshold angles the partitions across mappings are almost

identical, NMI ≈ 1.

The important conclusion of this analysis is that, for low threshold angles ct, the

Heaviside-mapping yields a very unbalanced distribution of domain sizes, character-

ized by a single huge domain, and a number of much smaller domains. This can be

easily seen from the consensus matrix, cf. Figure 5.9.
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(a) Generation 9, ct = 0.56 (b) Generation 11, ct = 0.56

(c) ct = 0.86 (d) ct = 0.86

(e) ct = 0.96 (f) ct = 0.96
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Figure 5.8: Boxplots showing the normalized mutual information of partitions of

colonies in generation 9, obtained using the network mapping in the column-header,

and (a) the Heaviside-, (b) the signum-, (c) the linear-network mapping. These

are all the possible combinations, as the NMI is symmetric and the Heaviside

domain detection is deterministic and will always lead to the same partitioning, i.e.

NMI = 1, i.e. there are a total of 5 distinct combinations convey information.
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Figure 5.9: Consensus matrix obtained from (a) Heaviside-, (b) signum- and (c) lin-

ear network-mappings of colony snapshots at generation 7, generation 9, generation

11, with a threshold angle of ct = 0.81.
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5.4 Domain quality

The modularity function is only interpretable for the linear mapping, and does not

show a clear elbow. The detailed time-evolution of the modularity function is pro-

vided in the appendix A.3. It is interesting to consider the average domain nematic

order, weighted by the domain number-sizes. As can be seen from Figure 5.10, both

the linear and the signum network mapping outperform the heaviside-mapping in

identifying nematic domains. This is especially the case for lower threshold angles,

e.g., when demanding a weaker local similarity criterium. Also for high threshold

angles, the linear and the signum network mapping yield a higher average nematic

order. Again, we found no clear cut elbow point, where the “linear” mapping at

ct = 0.66 most closely resembles one.
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Figure 5.10: The averaged scalar nematic order for partitions obtained from linear

network mappings of colonies in generation 9. The error-bars indicate the standard

deviation.

5.5 Clustering index

Following a popular procedure to evaluate clusterings in machine learning applica-

tions, we calculated the silhouette index C, and is shown in Fig. 5.11. The maximum

indicates the best ratio of intra-domain-distance over adjacent-domain-distance and
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occurs for both the linear- and signum- mappings at a threshold-angle of ct = 0.96.

For the Heaviside-mapping no global maximum was observed for ct ≤ 0.98, but only

a local maximum at ct = 0.81, that coincides with a local minimum for the linear

mapping, cf. Figure 5.11.
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Figure 5.11: The silhouette index for partitions of colonies in generation 9 shows a

maximum for the linear- and the signum-mapping at ct = 0.96.

5.6 Domain sizes

We estimate the size of the nematic features in a colony by the first zero-crossing of

the the equal-time polar-pair correlation function C2. These zero-crossings show a

growing trend with time, cf. Figure 5.12. This growing trend can also be found for

extensive properties of the domains that were isolated with the Heaviside-, signum-

and linear-network mapping. We calculated the average particle count per domain

and the average radius of the smallest domain-enclosing circle, cf. Figure 5.13. We

calculated the Pearson’s correlation coefficient r between the different size-measures

at a range of threshold angles ct. We found moderate correlation (r ≈ 0.5) between

the mean domain number-size Nσ and C2, cf. Figure A.2 in the appendix A.4,

strong correlation (r ≈ 0.7) between the radius of smallest domain-enclosig circle rσ
and C2, cf. Figure 5.14, and very strong correlation (r ≈ 1.0) across the network

mapping variants measuring Nσ and rσ respectively (see Fig. 5.14). Furthermore,
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Figure 5.12: Equal-time polar-pair function at sequential times. The red dots in-

dicate the first zero-crossing of the function that serves as an estimate for the size

of the nematic features in the colony. The red line is the best linear function fit

through the zero-crossing points.

we performed a one-way analysis of variance comparing the domain-sizes found in

the colonies with resampled networks that have the same topology but randomly

redistributed edge-weights. The domains in the colonies are significantly larger

(p� 1, for all times, methods and contact-angle thresholds) than domains isolated

in the resampled networks. This indicates a non-trivial relationship between the

contact-network topology and the contact-angles. Thus, it will be necessary to

quantify this relationship, in order to design a generative model for colony networks.
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Figure 5.13: Average domain number-size and radius of smallest domain-enclosing

circle for domains of obtained from (a) Heaviside-, (b) signum- and (c) linear-network

mappings.
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Figure 5.14: Correlation matrix, showing the Pearson correlation coefficient r of

ensemble-averaged time series of the equal-time polar-pair correlation C2 and the

radius of the smallest domain-enclosing circle rσ.
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Figure 5.15: (a-c) Extraction of E. coli coordinates from light microscopy image [4],

and (d) the probability density functions for community sizes in experimentally

observed and simulated colonies, at a threshold angle of ct = 0.96 and linear network

mapping.

5.7 Comparison with experimental data

Exemplarily, we compare the microdomain structure obtained from the numerical

model with data extracted from previously published light microscopy images of E.

coli colonies [4] (cf. Figure 1.2). We manually tagged two light microscopy images

with the ImageJ software [115, 116] and find that the domain size distributions in

experimental data for different threshold angles ct and linear network mapping are in

reasonable agreement with the domain size distributions found in simulated colonies

of similar size, cf. Figure 5.15 and Figure 5.16.
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Figure 5.16: Comparison of microdomain size distributions in simulation and exper-

iment for a range of threshold angles ct and linear network mapping, at two different

colony generations, (a) generation 7-8 and (b) generation 8-9.
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Chapter 6

Conclusion

In this thesis, we studied the growth of sessile Escherichia coli colonies in the ex-

ponential growth phase (feasting), by performing Discrete Element Simulations in

two dimensions. We have found that mechanical interactions are sufficient for the

formation of highly ordered mesoscopic structures, vulgo microdomains. The basic

tools of analysis, such as the contact angle distribution or the radial distribution

function do not indicate the formation of these structures. For this purpose we

employed a modularity maximizing community detection algorithm on contact net-

work representations of the colonies. Hereby, the particles are represented by nodes,

forming edges with particles at contact. The edge-weight is determined from the

contact-angle and the community detection algorithm partitions the network into co-

hesive subgraphs for microdomains. We compared three different variants (defining

the modularity based on Heaviside-, Signum- and Linear-mappings) with a range of

threshold angles, and evaluated their overall performance and correlation with more

conventional measures. We found that a good threshold angle to discriminate ”cohe-

sive“ from ”repulsive“ contacts between particles i and j, to be ct = |ûi · ûj| ≈ 0.96.

For high threshold angles, all three variants performed comparably well, whereas the

simple dichotomization variant (i.e. Heaviside based modularity) was clearly out-

performed for lower threshold angles. Eventually, we compared the microdomain

structure of previously reported experimental data with our simulations and found

decent agreement. This opens new avenues to understanding morphogenesis and

tissue growth. Beyond the field of morphogenesis, this methodology can be applied

in related fields, for instance to study systems of anisometric particles.

Only for the last decade bacterial colonies have been studied using Discrete

Element Simulations and, as indicated in the introduction, a myriad of different

research pathways appear fruitful. Immediately linked to our present work, we

can evaluate more elaborate domain-separation mechanisms, or in detail trace the

evolution of individual domains; both are outlined in the Appendix. We have a

variety of additional measures at hand to quantify the properties of microdomains
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(e.g. Minkowski metrics, network diameter, . . . ). We can study the mesoscopic

features of three dimensional colonies, by allowing particle to buckle into subsequent

layers. Also the effects of resource limitations, chemical interactions, growth-limiting

pressure, apoptosis, external confinement or explicit hydrodynamic interactions can

be incorporated into the existing model.
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Appendix A

Appendix

A.1 Modularity for mutli-layer networks

Over the course of time communities may grow or shrink, they may merge with each

other or split into smaller clusters, or do all of the above. To study the dynamics of

communities, Mucha et al. extended the modularity quality function, to study the

temporal evolution of communities [111].

Qtemporal =
∑
ijsr

{(Aijs − pijs) δsr + δijCjsr}δ (σis, σjr) , (A.1)

where the matrix Cjsr, couples nodes with themselves across network snapshots

at times s and r.

Choosing the most truthful value for Cjsr is similarly to choosing ct a non-trival

task, that is left for future studies. However, interesting phenomena can occur:

sufficiently high time cross-layer correlations Cjsr can yield spatially seperated sub-

domains (i.e. domains with enclaves).

A.2 Logistic sigmoidal function

Next to the in detail-studied network representations with heaviside-, signum- and

linear-edge weights, several other functions are plausible. One such possible option is

a logistic sigmoidal function, that is frequently used for decision-problems in machine

learning applications [117]. This approach combines features of the linear and the

signum edge weights: it is continuous and allows to finely tune a threshold,

Jij = H(δij − δt)
(

1

1 + exp (−a(|ûi · ûj| − ct))
− 1

2

)
. (A.2)

The additional parameter a tunes the steepness of the curve, and has to be

chosen appropriately.
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A.3 Time evolution of the modularity Q

The modularityQ does not show an elbow, and therefore no indication for an optimal

threshold angle ct, c.f. figure A.1a. The modularity slightly increases with colony

age, c.f. figure A.1.

A.4 Correlation of equal-time polar-pair correla-

tion C2 and the average domain number-size

Nσ
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Figure A.1: The modularity Q of partitions obtained from a linear network mapping
(a) for a single time-stamp (b) for a sequence of time-stamps.
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AND THE AVERAGE DOMAIN NUMBER-SIZE Nσ
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Figure A.2: Correlation matrix, showing the Pearson correlation coefficient r of
ensemble-averaged time series of the equal-time polar-pair correlation C2 and the
domain number-size Nσ.
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[101] S. Fortunato and M. Barthélemy, Resolution limit in community detection,

Proceedings of the National Academy of Sciences 104, 36 (2007).

61



BIBLIOGRAPHY BIBLIOGRAPHY

[102] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and

D. Wagner, On modularity clustering, IEEE transactions on knowledge and

data engineering 20, 172 (2008).

[103] B. H. Good, Y.-A. de Montjoye, and A. Clauset, Performance of modularity

maximization in practical contexts, Physical Review E 81, 046106 (2010).

[104] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, Comparing community

structure identification, Journal of Statistical Mechanics: Theory and Experi-

ment 2005, P09008 (2005).

[105] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric ma-

trices, in Proceedings of the 1969 24th national conference, 157–172, (ACM

1969).

[106] B. Desgraupes, Clustering indices, University of Paris Ouest-Lab Modal’X 1,

34 (2013).

[107] E. Rendón, I. Abundez, A. Arizmendi, and E. M. Quiroz, Internal versus

external cluster validation indexes, International Journal of Computers and

Communications 5, 27 (2011).
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