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Abstract

The goal of this thesis is to study the functional central limit theorems, especially the exten-

sion of Donsker’s approximation of Brownian motion the so-called rough Donsker (rDonsker)

theorem, which helps us approximate the fractional Brownian motion essential for further im-

plementations of rough volatility models. Furthermore, based on the results those convergence

theorems, the numerical implementation of rough Donsker volatility model is presented and its

results are discussed .

This work is largely based on the paper Functional central limit theorems for rough volatility

by Blanka Horvath, Antoine Jacquier, and Aitor Muguruza [1].
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1. Introduction

Alongside the financial market development and introduction of derivatives of primary assets,

a strong need for mathematical modeling of their prices emerged. Financial mathematics is a

relatively new branch of mathematics dealing with modeling of these prices without introducing

an arbitrage into the financial market. Intuitively, an arbitrage opportunity means investing in

an asset which, with positive probability, yields a profit without any downside risk. Assuming

the financial market is arbitrage free, all the investments are exposed to some kind of downside

risk. By Financial Times lexicon the volatility is defined as the extent to which the price of a

security or commodity, or the level of a market, interest rate or currency, changes over time.

High volatility implies rapid and large upward and downward movements over a relatively short

period of time; low volatility implies much smaller and less frequent changes in value. In other

words, volatility gives us the idea about our investment risk by showing the range to which

the price may change while keeping the direction of the change unrevealed. The log-prices of

derivatives are usually modeled as continuous semi-martingales.For Xt being a log-price of the

asset at the time t, the price-process is given by

dXt = µtdt + σtdWt,

where µt denotes the drift, σt volatility and Wt standard one-dimensional Brownian motion. A

several models were introduced throughout the years such as Black-Scholes where the volatility

function is either constant or a deterministic function of time, Dupire’s local volatility model,

see [2], the local volatility σ(Yt; t) is a deterministic function of the underlying price and time,

chosen to match observed European option prices exactly. Such a model is by definition time-

inhomogenus; its dynamics are highly unrealistic, typically generating future volatility surfaces

completely unlike those we observe. On the other hand, in so-called stochastic volatility models,

the volatility σt is modeled as a continuous Brownian semi-martingale. Notable amongst such

stochastic volatility models are the Hull and White model [5], the Heston model [4], and the

SABR model [3]. Whilst stochastic volatility dynamics are more realistic than local volatility

dynamics, generated option prices are not consistent with observed European option prices

[21]. From an analysis of the time series of realized variance using recent high-frequency data,

see [21], previously showed that the logarithm of realized variance behaves essentially as a

fractional Brownian motion with Hurst exponent H of order 0.1, at any reasonable timescale.
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The resulting Rough Fractional Stochastic Volatility (RFSV) model is remarkably consistent

with financial time series data [24]. Throughout the thesis, the exstention of Donsker theorem,

the so called rDonsker theorem, is explored along with its applications general volatility models

given by the following system

dXt = −1
2
Vt dt+

√
V dBt, X0 = 0,

Vt = Φ(GαY )(t), V0 > 0,

Also, the precise definition of GαY is given and the approximation sequence for Xt derived.

In following chapter the mathematical background is introduced. Then, in Chapter 3, the

theorems and results of the paper, see[1], are presented. Finally, in Chapter 4, numerical

implementation, two ”R” codes, of rough Bergomi model is given and explained. In chapter 5,

all the results of implementations are discussed and final conclusions are given.
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2. Mathematical background

In order to properly explain the model and its implementation, it is necessary to introduce

the following mathematical concepts.

Definition 2.1. For β ∈ (0, 1], the β-Hölder space Cβ(I), equipped with the norm

‖f‖β := |f |β + ‖f‖∞ = sup
t,s∈I
t6=s

|f(t)− f(s)|
|t− s|β

+ max
t∈I
|f(t)|,

is a non-separable Banach space [26, Chapter 3].

Definition 2.2. For any λ ∈ (0, 1), the left Riemann-Liouville fractional operator is defined

on Cλ(I) as

(2.1) (Iαf)(t) :=


1

Γ(α)

∫ t

0

f(s)

(t− s)1−αds, for α ∈ [0, 1),(
d

dt
I1+αf

)
(t) =

1

Γ(1 + α)

d

dt

∫ t

0

(t− s)αf(s)ds, for α ∈ (−λ, 0).

Following the spirit of Riemann-Liouville fractional operators we introduce the class of Gen-

eralised Fractional Operators (GFO). For any α ∈ (−1, 1), we introduce the space Lα :=

{u 7→ uαL(u) : L ∈ C1
b (I)}, as well as the following subset of R2:

R :=
{

(α, λ) ∈ (−1, 1)× (0, 1) such that α + λ ∈ (0, 1)
}
.

Definition 2.3. For any (α, λ) ∈ R, the GFO associated to g ∈ Lα is defined on Cλ(I) as

(2.2) (Gαf)(t) :=


∫ t

0

f(s)
d

dt
g(t− s)ds, if α ∈ [0, 1− λ),

d

dt

∫ t

0

f(s)g(t− s)ds, if α ∈ (−λ, 0).

We shall further use the notation G(t) :=
∫ t

0
g(u)du, for any t ∈ I. The following kernels and

operators are well-known examples of Generalised Fractional Operators:

(2.3)

Riemann-Liouville: g(u) = uα, for α ∈ (−1, 1);

Gamma fractional: g(u) = uαeβu, for α ∈ (−1, 1), β > 0;

Power-law: g(u) = uα(1 + u)β−α, for α ∈ (−1, 1), β < −1.

The following proposition generalises the classical mapping properties of Riemann-Liouville

fractional operators first proved by Hardy and Littlewood [28], and will be of fundamental

importance in the rest of our analysis.
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Proposition 2.4. For (α, λ) ∈ R, the operator Gα : Cλ(I)→ Gλ+α(I) is continuous.

Proof. Since g ∈ Lα, there exists C > 0 such that |g(u)| ≤ Cuα; hence, for t ∈ I,

d

dt

∫ t

0

|f(s)g(t− s)| ds ≤ C
d

dt

∫ t

0

|f(s)(t− s)α| ds.

Therefore, for f ∈ Cλ(I), the inequalities involving the Riemann-Liouville fractional operator

(2.4) (Gαf)(t) ≤ C(Iαf)(t) ≤ C‖f‖λ

hold for α ≤ 0 and all t ∈ I. Since Riemann-Liouville operators are continuous, continuity of

the GFO follows directly from (2.4) along with linearity. To prove that Gα belongs to Cλ+α(I),

we may invoke (2.4) and easily adapt Theorem 2.11. Similarly, when α ≥ 0, for any u ∈ I,

g′(u) = uαL′(u) + uα−1L(u) ≤ C1 + C2u
α−1, and the λ-Hölder continuity of f yields, for any

t ∈ I,∫ t

0

d

dt
g(t− s)f(s) ds ≤ C1

λ+ 1
tλ+1 + C2

∫ t

0

(t− s)α−1f(s) ds ≤ C1 + C2

∫ t

0

(t− s)α−1f(s) ds.

Since the time horizon I is compact, the first constant does not affect continuity or mapping

properties of the GFO. The second term is bounded by the Riemann-Liouville integral operator,

hence continuity and mapping properties follow as before by straightforward modification of

Theorem 2.9.

�

Definition 2.5. Let (Ω, F , P) be a probability space. A fractional Brownian motion WH

with Hurst parameter H ∈ (0, 1], is an almost surely continuous, centered Gaussian process

(WH
t )t∈R with

Cov(WH
t ,W

H
s ) = 1

2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R

Definition 2.6. A stationary fractional Ornstein-Uhlenbeck process (Xt) is defined as the

stationary solution of the stochastic differential equation

dXt = ν dWH
t − α (Xt −m)dt,

where m ∈ R and ν and α are positive parameters, see [32].
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For the usual Ornstein-Uhlenbeck processes, there exists an explicit form for the solution given

by

(2.5) Xt = ν

∫ t

−∞
e−α(t−s)dWH

t +m.

Where the stochastic integral with respect to fBM is a pathwise Riemann-Stieltjes integral, see

again [32].

2.1. Rough fractional volatility models. In this paper, an approximation scheme for the

following system is developed generalising the concept of rough volatility introduced in [19, 20,

22] in the context of mathematical finance, where the X process represents the dynamics of the

logarithm of a stock price process:

(2.6)
dXt = −1

2
Vtdt+

√
VtdBt, X0 = 0,

Vt = Φ (GαY ) (t), V0 > 0,

with α ∈ (−1, 1), and Y the (strong) solution to the stochastic differential equation

(2.7) dYt = b(Yt)dt+ a(Yt)dWt, Y0 ∈ R,

The two Brownian motionsB andW , defined on a common filtered probability space (Ω,F , (Ft)t∈I,P),

are correlated by the parameter ρ ∈ [−1, 1]. The functional Φ is continuous on C(I), and for any

ϕ ∈ C(I), Φ(ϕ) is continuously differentiable and integrable. This is enough to ensure that the

first stochastic differential equation is well defined. It remains to formulate the precise definition

for GαY (Propsition 2.8) to fully specify the system (2.6) and clarify the existence of solutions.

Existence and (strong) uniquess of a solution to the second SDE in (2.7) is guaranteed by the

following standard assumption [18]:

Assumption 2.7. There exist Cb, Ca > 0 and an increasing function % : (0,∞)→ (0,∞) with

lim
ε↓0

∫ 1

ε
dx
%(x)

=∞. such that

|b(x)− b(y)| ≤ Cb|x− y| and |a(x)− a(y)| ≤ Ca
√
%(|x− y|).

Not only is the solution to (2.7) continuous, but 1
2
-Hölder continuous as a consequence of

Kolmogorov-C̆entsov’s theorem [7]. Existence and precise meaning of the term GαY is more

delicate, and is treated further below.
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Proposition 2.8. The equality (GαW )(t) =
∫ t

0
g(t− s)dWs holds almost surely for all t ∈ I.

Proof. Since the paths of Brownian motion are 1/2-Hölder continuous, existence (and continu-

ity) of GαW is guaranteed for all α ∈ (−1/2, 1/2). When α ∈ [0, 1/2), the kernel is smooth and

square integrable, so that Itô’s product rule yields (since g(0) = 0)

(GαW )(t) =

∫ t

0

d

dt
g(t− s)W (s)ds =

∫ t

0

g(t− s)dWs,

and the claim holds. For α ∈ (−1/2, 0), and any ε > 0, introduce the operator

(
G1+α
ε f

)
(t) :=

∫ t−ε

0

g(t− s)f(s)ds, ∀t ∈ I,

which satisfies limε↓0 (G1+α
ε f) (t) = (G1+αf) (t) pointwise. Now, for any t ∈ I, almost surely,

(2.8)

(
d

dt
G1+α
ε W

)
(t) = g(ε)W (t− ε) +

∫ t−ε

0

d

dt
g(t− s)W (s)ds =

∫ t−ε

0

g(t− s)dWs.

Then, as ε tends to zero, the right-hand side of (2.8) tends to
∫ t

0
g(t− s)dWs, and furthermore,

the convergence is uniform. On the other hand, the equalities

(G1+αW )(t)− (G1+αW )(0) = limε→0(G1+α
ε W )(t)− (G1+α

ε W )(0) = limε→0

∫ t
0

(
d
ds
G1+α
ε W

)
(s)ds

=
∫ t

0
limε→0

(
d
ds
G1+α
ε W

)
(s)ds =

∫ t
0

(∫ s
0
g(s− u)dWu

)
ds,

hold since convergence is uniform on compacts, and the fundamental theorem of calculus

concludes the proof.

�

Theorem 2.9. For any f ∈ Cλ(I), with λ ∈ (0, 1) and α ∈ (0, 1), the identity

(Iαf)(t) =
f(0)

Γ(1 + α)
tα + ψ(t),

holds for all t ∈ I, for some ψ ∈ Cλ+α(I) satisfying |ψ(t)| ≤ Ctλ+α on I for some C > 0.

Proof. We may easily represent

(Iαf)(t) =
f(0)

Γ(α)

∫ t

0

du

(t− u)1−α +
1

Γ(α)

∫ t

0

f(u)− f(0)

(t− u)1−α du =
f(0)

Γ(1 + α)
tα + ψ(t)
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with ψ(t) :=
1

Γ(α)

∫ t

0

f(u)− f(0)

(t− u)1−α du. Since f ∈ Cλ(I), we obtain |ψ(t)| ≤ |f |λ
Γ(α)

∫ t

0

uλ

(t− u)1−αdu,

and hence

|ψ(t)| ≤ Γ(2 + λ)|f |λ
(1 + λ)Γ(α + λ+ 1)

tα+λ,

which proves the estimate for |ψ|. Next, we prove that ψ ∈ Cλ+α(I). For this, introduce

φ(t) := f(t)− f(0) and consider t, t+ h ∈ I with h > 0,

ψ(t+ h)− ψ(t) =
1

Γ(α)

(∫ t

−h

φ(t− u)

(u+ h)1−αdu−
∫ t

0

φ(t− u)

u1−α du

)
=

φ(t)

Γ(1 + α)
[(t+ h)α − tα] +

1

Γ(α)

(∫ 0

−h

φ(t− u)− φ(t)

(u+ h)1−α du

)
+

1

Γ(α)

(∫ t

0

[
(u+ h)α−1 − uα−1

]
[φ(t− u)− φ(t)] du

)
=: J1 + J2 + J3.

We first consider J1. If h > t, then

|J1| ≤
|f |λ

Γ(1 + α)
tλ [(t+ h)α − tα] ≤ Chλ+α.

On the other hand, when 0 < h < t, since (1 + u)α − 1 ≤ αu for u > 0, then

|J1| ≤
|f |λ

Γ(1 + α)
tλ+α

∣∣∣∣(1 +
h

t

)α
− 1

∣∣∣∣ ≤ Chtλ+α−1 ≤ Chλ+α.

For J2, since f ∈ Cλ(I), we can write

|J2| ≤
|f |λ
Γ(α)

∫ 0

−h

|u|λ

(u+ h)1−α ≤ Chλ+α.

Finally,

|J3| ≤
|f |λ
Γ(α)

∫ t

0

uλ[uα−1 − (u+ h)α−1]du =
|f |λ
Γ(α)

hλ+α

∫ t/h

0

uλ[uα−1 − (u+ 1)α−1]du.

Hence, if t ≤ h, then |J3| ≤ Chλ+α. Likewise, if t > h and λ+ α < 1, then |J3| ≤ Chλ+α since

∣∣uα−1 − (u+ 1)α−1
∣∣ = uα−1

[
1−

(
1 +

1

u

)α−1
]
≤ Cuα−2.

Thus ψ satisfies the (λ+ α)-Hölder condition and belongs to Cλ+α(I). �

Corollary 2.10. For any α, λ ∈ (0, 1) such that λ + α ≤ 1, Iα is a continuous operator from

Cλ(I) to Cλ+α(I).
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Proof. It is clear that Iα is a linear operator. Using the estimate in Theorem 2.9 we have

‖Iαf‖α+λ ≤
f(0)

Γ(1 + α)
‖(·)α‖λ+α + ‖ψ‖λ+α ≤ C1‖f‖λ‖(·)α‖λ+α + C2‖f‖λ‖(·)α+λ‖λ+α ≤ C‖f‖λ,

since |f |λ ≤ ‖f‖λ, f(0) ≤ ‖f‖λ. Therefore Iα is also bounded and hence continuous. �

Theorem 2.11. For any 0 < −α < λ ≤ 1, let f ∈ Cλ(I). Then Iαf exists, I−αIαf = f and,

for all t ∈ I,

(Iαf)(t) = − α

Γ(1 + α)

∫ t

0

(t− u)α−1[f(t)− f(u)]du.

Proof. For f ∈ Cλ(I), define, for any ε > 0 and t ∈ I,

(I1+α
ε f)(t) :=

1

Γ(α + 1)

∫ t−ε

0

(t− u)αf(u)du,

and note that I1+α
0 = I1+α. Then, we have

Γ(1 + α)

(
d

dt
I1+α
ε f

)
(t) = εαf(t− ε) + α

∫ t−ε

0

(t− u)α−1f(u)du

= −α
∫ t−ε

0

(t− u)α−1(f(t)− f(u))du− εα(f(t)− f(t− ε)).(2.9)

where Hölder continuity implies that f(t)− f(u) ≤ C(t− u)λ , so that the integral in (2.9) is

well defined. Then, as ε tends to zero, the right-hand side of (2.9) tends uniformly to

ψ(t) = −α
∫ t

0

(t− u)α−1(f(t)− f(u))du.

Now, for t ∈ I,

(I1+αf)(t)− (I1+αf)(0) = lim
ε↓0

{
(I1+α
ε f)(t)− (I1+α

ε f)(0)
}

= lim
ε↓0

∫ t

0

(
d

du
I1+α
ε f

)
(u)du

=

∫ t

0

lim
ε↓0

(
d

du
I1+α
ε f

)
(u)du =

1

Γ(1 + α)

∫ t

0

ψ(u)du,

where the exchange of limit and integral holds since the convergence is uniform and the interval

compact. Therefore, Γ(α+ 1)(I1+αf) is the integral of ψ and, by the Fundamental Theorem of

Calculus,

ψ(t) = Γ(α + 1)

(
d

dt
I1+αf

)
(t) = Γ(α + 1)(Iαf)(t).

Therefore it exists and, similarly to Theorem 2.9, ψ ∈ Cλ+α(I). Finally, since, for 0 < β < 1,

the equality

(IβI1−βf)(t) = (I1−βIβf)(t) = (I1f)(t) =

∫ t

0

f(u)du
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holds for all t ∈ I, we conclude that(
Γ(1 + α)I1+αf − I−αψ

)
(t) =

∫ t

0

Γ(1 + α)f(u)− (I−αψ)(u))(t− u)αdu = 0,

and hence, by continuity of both f and I−αψ, f = I−αIαf . �

This chapter is concluded with two definitions necessary to understand the algorithms in

chapter 4.

Definition 2.12 (Discrete convolution). For any a, b ∈ Rn, the discrete convolution operator

∗ : Rn × Rn → Rn is defined as

(a ∗ b)i :=
i∑

m=0

ambi−m, i = 0, . . . , n− 1.

When simulating GαW on the uniform partition T , the scheme reads

(GαW )j(ti) =
i∑

k=1

g(ti − tk−1)ξk =
i∑

k=1

(tk)ξj,k−i+1, for i = 1, . . . , n,

which has the form of the discrete convolution in Definition 2.12. Rewritten in matrix form,
g(t1) 0 · · · 0

g(t2) g(t1) · · · 0
...

. . . . . . 0

g(tn) g(tn−1) · · · g(t1)




ξ1

ξ2

...

ξn

 ,

it is clear that this operator yields a complexity of order O(n2), which can be improved dras-

tically.

Definition 2.13. The Discrete Fourier Transform (DFT) of a sequence c := (c0, c1, ..., cn−1) ∈

Cn is given by

f̂(c)[j] :=
n−1∑
k=0

ck exp

(
−2iπjk

n

)
, for j = 0, . . . , n− 1,

and the Inverse DFT of c is given by

f(c)[k] :=
1

n

n−1∑
j=0

cj exp

(
2iπjk

n

)
, for k = 0, . . . , n− 1.
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In general, both transforms require a computational effort of order O(n2), but the the Fast

Fourier Transform (FFT) algorithm reduces the complexity of both transforms to O(n log n).

Thankfully, many numerical packages offer a direct implementation of the discrete convolution

which simplifies and fastens the implementation. Although the FFT step is the heaviest com-

putation on the simulation of rough volatility models, the actual time grid T is not specially

large, i.e. n < 1000. Hence, it is not important to have the fastest possible FFT for very

large n, it is much more important for the implementation to be fast on small time grids.
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3. Main theorems and convergence results

We now move on to main results of the paper by B. Horvath, A. Jacquier and A. Muguruza [1]

which further made possible and also inspired the implementation presented in this thesis.

Assumption 3.1. The family (ξi)i≥1 forms an iid sequence of centered random variables with

finite moments of all orders and E(ξ2
1) = σ2 > 0.

Following Donsker [8] and Lamperti [16], we first define, for any ω ∈ Ω, n ≥ 1, t ∈ I, the

approximating sequence for the driving Brownian motion B as

(3.1) Bn(t) :=
1

σ
√
n

bntc∑
k=1

ξk +
nt− bntc
σ
√
n

ξbntc+1.

As will be explained later, a similar construction holds to approximate the process Y :

(3.2)

Yn(t) :=
1

n

bntc∑
k=1

b
(
Y k−1
n

)
+
nt− bntc

n
b
(
Y bntcn

)
+

1

σ
√
n

bntc∑
k=1

a
(
Y k−1
n

)
ξk+

nt− bntc
σ
√
n

a
(
Y bntcn

)
ξbntc+1,

where Y k
n := Yn(tk), where tk := k

n
, from which we naturally deduce an approximating scheme

(up to the interpolating term which decays to zero by Chebyshev’s inequality) for X as

(3.3) Xn(t) := − 1

2n

bntc∑
k=1

Φ (GαYn) (tk) +
1

σ
√
n

bntc∑
k=1

√
Φ (GαYn) (tk)

(
Bk+1
n −Bk

n

)
All the approximations above, as well as all the convergence statements below should be un-

derstood pathwise, but we omit the ω dependence in the notations for clarity. The main result

of the paper is a convergence statement about the approximating sequence (Xn)n≥1. In usual

weak convergence analysis [6], convergence is stated in the Skorohod space (D(I), ‖ · ‖D) of

càdlàg processes equipped with the Skorohod topology. While Theorem 3.2 proves it, it further

provides convergence in the stronger Hölder space
(
Cλ(I), ‖ · ‖λ

)
for λ < 1

2
, but with additional

restrictions.

Theorem 3.2. The sequence (Xn)n≥1 converges weakly to X in (D(I), ‖ · ‖D). Furthermore,

for λ < 1
2

and α ∈ (−1
2
, 1

2
), convergence in the Hölder space

(
Cλ(I), ‖ · ‖λ

)
holds if either of the

following two conditions holds:

(i) all the ξi are distributed as N (0, 1) and E[eΦ(GαY )] is finite;
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(ii) all the ξi are bounded almost surely and E[eΦ(GαYn)] is finite for each n.

In (ii), the moment condition on the sequence (Yn) is difficult to check. However, it clearly

holds as soon as the iid sequence (ζi), approximating the stochastic driver of Y , is bounded.

The construction of the proof allows to extend the convergence to the case where Y is a d-

dimensional diffusion without additional work. The proof of the theorem requires a certain

number of steps: we start with the convergence of the approximation (Yn) in some Hölder

space, which we then translate, first into convergence of the stochastic integral in (2.6), then,

by continuity of the mapping Φ into convergence of the sequence (Φ(GαYn)). All these ingredi-

ents are detailed down below. Once this is achieved, the proof of the theorem itself is relatively

straightforward, as will be illustrated.

The standard convergence result for Brownian motion can be stated as follows:

Theorem 3.3. For α < 1
2
, the sequence (Bn) in (3.1) converges weakly to a Brownian motion

in (Cα(I), ‖ · ‖α).

Theorem 3.4 (Sufficient conditions for weak convergence in Hölder spaces). Let Z ∈ Cλ(I)

and (Zn)n≥1 its corresponding approximating sequence in the sense that for any t1 ≤ . . . ≤ tk

in I, (Zn(t1), . . . , Zn(tk)) converges in distribution to (Z(t1), . . . , Z(tk)) as n tends to infinity.

Assume further that the tightness criterion

(3.4) E (|Zn(t)− Zn(s)|α) ≤ C|t− s|1+β

holds for all n ≥ 1, t, s ∈ I, and some C, α, β > 0. Then (Zn)n≥1 converges weakly to Z in

Cλ(I) for λ < β
α

.

As pointed out by Račkauskas and Suquet in [15], strictly speaking the convergence takes

place in the Hölder space Cλ
0 (I) endowed with the norm ‖f‖0

λ := |f |λ + |f(0)|, for all functions

that satisfy

lim
δ↓0

sup
0<t−s<δ
t,s∈I

|f(t)− f(s)|
(t− s)α

= 0.

Then
(
Cλ

0 (I), ‖ · ‖0
λ

)
becomes a separable closed subspace of

(
Cλ(I), ‖ · ‖λ

)
(see [15, 10] for

details),
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To conclude our review of weak convergence in Hölder spaces, the following theorem, due to

Račkauskas and Suquet [15] provides necessary and sufficient conditions ensuring convergence

in Hölder space:

Theorem 3.5 (Račkauskas-Suquet [15]). Let α ∈ (0, 1
2
) and p(α) := 1

1−2α
. The sequence

(Bn)n≥1 in (3.1) converges (pathwise) weakly to a Brownian motion in Cα(I) if and only if

E(ξ1) = 0 and lim
t↑∞

tp(α)P(|ξ1| ≥ t) = 0.

The first important step in our analysis is to extend Donsker-Lamperti’s weak convergence

from Brownian motion to the Itô diffusion Y in (2.7).

Theorem 3.6. The sequence (Yn)n≥1 converges weakly to Y in (2.7) in (Cα(I), ‖ · ‖α) for all

α < 1
2
.

Proof. Finite-dimensional convergence is a classical result by Kushner [12], so only tightness

needs to be checked. Using Y i
n := Yn

(
i
n

)
as above, and without loss of generality assume Y 0

n = 0

and b(Y 0
n ) = 0, so that

E
(∣∣Y 1

n

∣∣2p) = E

(∣∣∣∣b (Y 0
n )

n
+
a (Y 0

n )

σ
√
n
ξ1

∣∣∣∣2p
)
≤ C

np
E
(
|ξ1|2p

)
.

Assumption 2.7 yields

E
(
|Y 2
n |

2p
)

=

(∣∣∣ 1
n

∑2
k=1 b

(
Y k−1
n

)
+ 1

σ
√
n

∑2
k=1 a

(
Y k−1
n

)
ξk

∣∣∣2p)
≤
{
E [|Y 1

n |] + 1√
n
E
[(∣∣∣CbY 1

n√
n

∣∣∣+
|b(Y 0

n )|√
n

+ Ca
σ

√
ρ (|Y 1

n |)ξ2 + |a(Y 0
n )ξ2|

)]}2p

≤ C
np
E
(
(|ξ1|+ |ξ2|)2p) .

By induction we find E
(
|Y i
n − Y0|

2p
)
≤ C

np
E
[(∑i

k=1 |ξi|
)2p
]
, which implies the tightness cri-

terion (3.4) for p > 1 for α = 2p and β = p− 1. �

We have set the ground to extend our results to processes that are not necessarily 1/2-Hölder

continuous, Markovian nor semimartingales. More precisely, we are interested in α-Hölder

continuous paths with α ∈ (0, 1), such as Riemann-Liouville fractional Brownian motion. A key

tool is the Continuous Mapping Theorem which establishes the preservation of weak convergence

under continuous operators.
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Theorem 3.7 (Continuous Mapping Theorem [14]). Let (X , ‖ · ‖X ) and (Y , ‖ · ‖Y) be two

normed spaces and assume that g : X → Y is a continuous operator. If the sequence of random

variables (Zn)n≥1 converges weakly to Z in (X , ‖ · ‖X ), then (g(Zn))n≥1 also converges weakly

to g(Z) in (Y , ‖ · ‖Y).

Many authors have exploited the combination of Theorems 3.3 and 3.7 in order to prove

weak convergence [27, Chapter IV]. This path avoids the lengthy computations of tightness

and finite-dimensional convergence in classical proofs [6]. In fact, Hamadouche [10] already

realised that Riemann-Liouville fractional operators are continuous, hence Theorem 3.7 holds

under mapping by Hölder continuous functions. In contrast, the novelty of our approach is to

consider, on the one hand the family of GFO applied to a Brownian motion, and on the other

hand the extension of Brownian motion to Itô diffusions. In fact, minimal changes to the proof

in Proposition 2.8 yield the following:

Corollary 3.8. If Y is the solution to (2.7), then (GαY )(t) =

∫ t

0

g(t− s)dYs almost surely for

all t ∈ I.

The analogue of Theorem 3.6 for Y follows by continuous mapping along with the fact that

Gα is a continuous operator from
(
Cλ(I), ‖ · ‖α

)
to
(
Cλ+α(I), ‖ · ‖α

)
for all λ ∈ (0, 1) such that

(α, λ) ∈ R.

Theorem 3.9 (Generalised rough Donsker). For (Yn) in (3.2), Y its weak limit in
(
Cλ(I), ‖ · ‖λ

)
for λ < 1

2
,

(3.5)

(GαYn) (t) =

bntc∑
i=1

n

[
G

(
t− i− 1

n

)
−G

(
t− i

n

)] (
Y i
n − Y i−1

n

)
+nG

(
t− bntc

n

)(
Yn(t)− Y bntcn

)

converges weakly to GαY in
(
Cα+λ(I), ‖ · ‖α+λ

)
for any α ∈ (−1

2
, 1

2
).

Proof. We apply directly the definition (2.2) of the GFO to the sequence (3.2), recalling that

the latter is differentiable in time. For α > 0, integration by parts yields, for any n ≥ 1 and
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t ∈ I,

(GαYn)(t) =

∫ t

0

g′(t− s)Yn(s)ds =

∫ t

0

g(t− s)dYn(s)

ds
ds

=
1

σ
√
n

bntc∑
i=1

n

∫ i
n

i−1
n

g (t− s) a
(
Y i−1
n

)
ξids+ n

∫ t

bntc
n

g (t− s) a
(
Y bntcn

)
ξbntc+1ds


+

1

n

n bntc∑
i=1

∫ i
n

i−1
n

g (t− s) b
(
Y i−1
n

)
ds+ n

∫ t

bntc
n

g (t− s) b
(
Y bntcn

)
ds


=

bntc∑
i=1

n

[
G

(
t− i− 1

n

)
−G

(
t− i

n

)] (
Y i
n − Y i−1

n

)
+ nG

(
t− bntc

n

)(
Yn(t)− Y bntcn

)
since G(0) = g(0) = 0. When α < 0, similar steps imply

(GαYn)(t) =
d

dt

∫ t

0

g (t− s)Yn(s)ds =
d

dt

∫ t

0

G(t− s)dYn(s)

ds
ds

=

bntc∑
i=1

n

[
G

(
t− i− 1

n

)
−G

(
t− i

n

)] (
Y i
n − Y i−1

n

)
+ nG

(
t− bntc

n

)(
Yn(t)− Yn

(
bntc
n

))
;

when bntc
n

= t, G(0) = 0, and the expression is well defined. �

We may omit the interpolation term in Donker’s linear interpolating sequence (3.1), and

Lamperti’s proof [13] still holds with the sequence Bn(t) := 1
σ
√
n

∑bntc
i=1 ξi, as the rightmost term

in (3.1) converges to zero by Chebychev inequality. This statement also holds for the sequence

(3.2), so that, GαYn in (3.5) reduces to

(3.6) (GαYn) (t) =

bntc∑
k=1

g (t− tk−1)
(
Y k
n − Y k−1

n

)
=

bntc−1∑
k=1

[g (t− tk−1)− g (t− tk)]Y k−1
n

which coincides with the usual left-point forward Euler approximation. For numerical purposes,

(3.6) is much more efficient, since the integral G required in (3.5) is not necessarily available in

closed form. The speed of convergence of the rDonsker scheme is not of order O
(
n−1/2

)
as one

might assume. In fact the Hurst parameter (in particular α ∈ (−1
2
, 0)) influences the speed of

convergence adversely, as the following proposition shows.

Proposition 3.10. The speed of convergence of the rDonsker scheme is of order O
(
n−α−1/2

)
when α ∈ (−1

2
, 0] and O

(
n−1/2

)
when α ∈ (0, 1

2
).
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Proof. Let α ∈ (−1
2
, 0]. Since g ∈ Lα, the approximation (3.6) reads, for any n ≥ 1,

(GαYn) (ti) =
1

n1/2−ασ

i∑
k=1

(nti − (k + 1)T )α L (ti − tk−1)
(
Y k
n − Y k−1

n

)
σ
√
n, for i = 0, . . . , n.

Here, (nti − T (k − 1))α ≤ (ti)
α is bounded for any n ≥ 1 so that the claim follows directly.

When α ∈ (0, 1
2
) we may rewrite (3.6) as

(GαYn) (ti) =
1

σ
√
n

i∑
k=1

(ti − tk−1)α L (ti − tk−1)
(
Y k
n − Y k−1

n

)
σ
√
n, for i = 0, . . . , n.

In this case, (ti − tk−1)α ≤ (ti)
α is also bounded for any n ≥ 1, and the proposition follows. �

So far, our results hold for a class of α-Hölder continuous functions. It is often necessary,

at least for practical reasoning purposes, to constrain the volatility process (Vt)t∈I to remain

strictly positive at all times. The stochastic integral GαY need not be so in general. However, a

simple transformation (e.g. exponential) can easily overcome this fact. The remaining question

is to know whether the α-Hölder continuity is preserved after this composition.

Proposition 3.11. Let (Yn)n≥1 be the approximating sequence (3.2). Then (Φ (GαYn)) con-

verges weakly to Φ (GαY ) in
(
Cα+1/2(I), ‖ · ‖α+1/2

)
for any α ∈ (−1

2
, 1

2
).

Proof. Drábek [9] found necessary and sufficient conditions ensuring that Hölder continuity is

preserved under composition (which he calls Nemyckij operators). More precisely, he proved

that the composition f ◦ g is continuous from
(
Cλ(I), ‖ · ‖λ

)
to
(
Cλ(I, ‖ · ‖λ

)
if and only if f

is of class C1. The proof of the proposition then follows by applying the Continuous Mapping

Theorem to Theorem 3.9 along with Drábek’s continuity property. The following diagram

summarises the steps, where λ < 1/2. The double arrows indicate weak convergence, and we

indicate next to them the topology in which it takes place.
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(
Cλ(I), ‖ · ‖1/2

) (
Cα+λ(I), ‖ · ‖α+λ

) (
Cα+λ(I), ‖ · ‖α+1/2

)
Yn Gα(Yn) Φ(GαYn)

Y GαY Φ(GαY )

Gα

Gα

Gα

Φ

Φ

Φ

‖ · ‖λ ‖ · ‖α+λ ‖ · ‖α+λ

�

3.1. Convergence of the (log-)stock process in the Hölder topology. We extend here

the convergence to the log-stock process maintaining the Hölder space framework. To start with,

the Hölder regularity coefficient of an Itô integral with an integrand having λ-Hölder continuous

paths is not at all obvious. The following proposition gives an answer to this question.

Proposition 3.12. Let W be a standard Brownian motion, and Θ a càdlàg process on the

same filtered probability space with finite moments up to order 2p. Then Θ •W ∈ Cλ(I) for all

λ < 1
2

(
1− 1

p

)
.

Proof. For this we will use Kolmogorov-C̆entsov’s continuity theorem [7].

E

[(∫ t

0

Θ(u)dWu −
∫ s

0

Θ(u)dWu

)2p
]

= E

[(∫ t

s

Θ(u)dWu

)2p
]

= E
[(∫ t

s

Θ(u)2du

)p]

≤ C(t− s)p−1

(∫ t

s

E
[
Θ(u)2p

]
du

)
≤ C(t− s)p

by Itô’s isometry and Hölder’s inequality along with the finite moments of Θ. Thus, by Kol-

mogorov’s continuity criterion the stochastic integral Θ •W has continuous paths with Hölder

regularity1−1/p
2

for all p ≥ 1. �

The finiteness of all moments might be too restrictive for some applications, and in fact this

will be relaxed in Section 3.2 at the cost of switching to the Skorohod topology. Nevertheless,

in the Hölder setting, once Proposition 3.12 applies, it suffices to prove continuity of the Itô

map between the corresponding Hölder spaces.
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Proposition 3.13. The Itô map Θ 7→ Θ•W is continuous from Cλ(I) to Cυ(I) for all λ ∈ (0, 1),

υ < 1
2
.

Proof. Let f ∈ Cλ(I) and W ∈ Cυ(I). Since the Itô map is linear, it suffices to check bounded-

ness. ∥∥∥∥∫ t

0

f(s)dWs

∥∥∥∥
Υ

≤
∥∥∥∥∫ t

0

||f ||λdWs

∥∥∥∥
υ

≤ ||f ||λ ‖Wt‖Υ ≤ ||f ||λ
∥∥Ct1/2∥∥

υ
≤ CT 1/2||f ||λ,

where we have used the Hölder continuity of W , and the proposition follows. �

Finally, we present the main convergence result.

Theorem 3.14. Let Φ(GαYn) as in (3.6) with ξi ∼ N (0, 1), and weak limit Φ(GαY ) in(
Cα+λ(I), ‖ · ‖α+λ

)
, for λ < 1

2
and α ∈ (−1

2
, 1

2
). If E[eΦ(GαY )] <∞, then the sequence defined by

− 1

2n

bntc∑
i=1

Φ (GαYn) (ti) +
ρ√
n

bntc∑
i=1

√
Φ (GαYn) (ti)ξi +

ρ√
n

bntc∑
i=1

√
Φ (GαYn) (ti)ζi

where (ζi) is an iid family of N (0, 1) random variables, converges weakly in
(
Cλ(I), ‖ · ‖λ

)
to

−1

2

∫ t

0

Φ (GαY ) (s)ds+

∫ t

0

√
Φ (GαY ) (s)

(
ρdWs + ρdW⊥

s

)
.

Proof. The proof follows by repeatedly applying the continuous mapping theorem after Propo-

sition 3.11. For the deterministic integral part one can easily prove that the integral mapping

is continuous from Cα+λ to Cλ using a similar argument to Proposition 3.13. Then we get∫ t

0

Φ (GαYn) (s) ds =

bntc∑
i=1

∫ i+1
n

i
n

Φ (GαYn)

(
i

n

)
ds =

1

n

bntc∑
i=1

Φ (GαYn)

(
i

n

)
.

For the stochastic integral by definition we have that Φ (GαY ) ∈ L1 is well defined and the

finiteness of all moments allows us to apply Proposition 3.12. Then using the continuity of the

Itô map we obtain the following approximating sequence weakly convergent in C1/2(I):∫ t

0

√
Φ (GαYn) (s)dZs =

bntc∑
i=1

∫ i+1
n

i
n

√
Φ (GαYn) (ti)dZs =

bntc∑
i=1

√
Φ (GαYn) (ti) (Z(ti+1)− Z(ti)) .

Then, the problem reduces to being able to simulate the increments of Z exactly, taking into

account that corr(Z,W ) = ρ must also hold. Since the increments of Z are Gaussian we may

easily construct this explicitly

Z(ti+1)− Z(ti) =
1√
n

(
ρξi +

√
1− ρ2ζi

)
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where the independence of the iid N (0, 1) sequences (ξi) and (ζi) is crucial for this to be

exact. �

We used here the approximation (3.6), instead of (3.5), essentially for computational reasons.

It is of course possible to use the latter, at the cost of increasing complexity of the approximating

sequence due to the interpolating term involving double integrals, in general not available in

closed form. Proposition 3.13 allows to maintain the Hölder space framework but only if

the family (ξi) is restricted to be Gaussian, which is in any case sufficient for Monte-Carlo

simulations. Nevertheless, the following proposition relaxes this condition.

Theorem 3.15. Let the sequences (Φ(GαYn),Wn) defined by 3.6 and 3.1 converge weakly to

(GαY,W )) in the joint Hölder topology Cα+λ×Cλ(I) for λ < 1
2

and α ∈ (−1
2
, 1

2
). Assume further

E[eΦ(GαYn)] <∞ and that the iid family (ξi) in Assumption 3.1 is bounded. Then the sequence

of stochastic integrals (Φ(GαYn) •Wn) also converges to Φ(GαY ) •W in Cλ(I).

Proof. We will make use of Theorem 3.4. Finite dimensional convergence follows from Jakubowski,

Memin and Pagès [11], since the approximating sequence 3.1 with bounded random variables

satisfies the Uniform Tightness (see [11] for details) criterion. Then it remains to prove tightness

of the approximating sequence,

E

{ nt∑
j=ns

Φ (GαYn) (tj) (Wn(tj+1)−Wn(tj))

}2p
 ≤ C

n2p
E

( nt∑
j=ns

Φ (GαYn) (tj)
2p

)2p


≤ C

n2p

nt∑
j=ns

E
[
Φ (GαYn) (tj)

2p
]
≤ C

n2p
,

where we have made use of the boundedness of ξ, Jensen’s inequality and the finiteness of all

moments of Φ (GαYn). The inequality then gives the desired convergence result in Cλ(I) �

As opposed to Theorem 3.14 (where the driving random variables are forced to be Gaussian),

Theorem 3.15 allows to use any family of bounded random variables as approximating sequences

of W⊥ and any family random variables ensuring the moment condition E[eΦ(GαYn)] <∞. The

gap between these two sets of conditions, that neither theorem covers, but this will be discussed

in Section 3.2.
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3.2. Extending the weak convergence to the Skorohod space and proof of Theo-

rem 3.2. The Skorohod space of càdlàg processes equipped with the Skorohod topology has

been widely used to prove weak convergence [6]. The Skorohod space of càdlàg processes

equipped with the Skorohod norm, which we denote (D(I), ‖ · ‖D), markedly simplifies when

we only consider continuous processes (as is the case of our framework with Hölder continuous

processes). Billingsley [6, Chapter 3 Section 12] proved that the identity (D(I) ∩ C(I), ‖ · ‖D) ≡

(C(I), ‖ · ‖∞) always holds. This seemingly simple statement allows us to reduce proofs of weak

convergence of continuous processes in the Skorohod topology to that in the supremum norm,

usually much simpler. We start with the following straightforward observation:

Lemma 3.16. The identity map is continuous from
(
Cλ(I), ‖ · ‖λ

)
to (D(I), ‖ · ‖D) for all λ ∈

(0, 1).

Proof. Since the identity map is linear, it suffices to check that it is bounded. For this observe

that ‖f‖λ = |f |λ + supt∈I |f(t)| = |f |λ + ‖f‖∞ > ‖f‖∞, where |f |λ > 0, which concludes

the proof since the Skorohod norm in the space of continuous functions is equivalent to the

supremum norm. �

Applying the Continuous Mapping Theorem twice, first with the Generalised fractional op-

erator (Theorem 3.9), then with the identity map, yields the following result directly:

Theorem 3.17. The sequence (Φ(GαYn)) converges weakly to Φ (GαY ) in (D(I), || · ||D) for any

α ∈ (−1
2
, 1

2
).

The final step in the proof of our main theorem, is to extend weak convergence to the log-

stock price. For this, the following result on weak convergence of stochastic integrals X • Y :=∫
XdY due to Jakubowski, Memin and Pagès [11], and later generalised to SDEs by Kurtz and

Protter [17] is the key ingredient.

Theorem 3.18. Let (Wn)n≥1 be as in (3.1), N a càdlàg process on I, and (Nn)n≥1 an approxi-

mating sequence such that (Nn,Wn) converges weakly in (D(I2), ‖ · ‖D) to (N,W ). Then, there

exists a filtration H under which W is an H-continuous martingale and (Nn,Wn, Nn •Wn)n≥1

converges weakly to (N,W,N •W ).
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As noted in [17], the Skorohod topology in D(I2) is stronger than in D(I) × D(I). In order

to use this result, we first need to have the joint convergence of the two correlated driving

Brownian motions W and Z. Let (Wn)n≥1 and (W⊥
n )n≥1 be two sequences as in (3.1), with

weak limits W and W⊥, and let ρ :=
√

1− ρ2. Donsker’s invariance implies that (Wn,W
⊥
n )n≥1

converges weakly to (W,W⊥) in (Cα(I2), ‖ · ‖α), and hence by the Continuous Mapping Theo-

rem with f(x, y) :=
(
x, ρx+

√
1− ρ2y

)
, the sequence (Wn, ρWn + ρW⊥

n )n≥1 converges weakly

to (W, ρW + ρW⊥) in (Cα(I2), ‖ · ‖α) for all α < 1
2
. Finally, the first term on the right-hand

side of (3.3) converges weakly to −1
2

∫ T
0

Φ (GαY ) (s)ds by the Continuous Mapping Theorem,

as the integral is a continuous operator from (D(I), || · ||D) to itself. Since the couple (Yn,Wn)

converges weakly to (Y,W ) in (D(I2), || · ||D), Theorem 3.18 implies that the second term on

the right-hand side of (3.3) converges weakly to
√

Φ(GαY ) •W , and Theorem 3.2 follows.
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4. Numerical implementation

In this chapter, the core of this thesis is presented. The numerical implementation of the

above mentioned results applied on rBergomi model is given trough two algorithms. Results

as well as pros and cons are further commented. Both algorithms have been written based on

instructions given in [1]. First, the rBergomi model is defined then the instructions for writing

the algorithms are given with further comments on rBergomi model and finally the R-codes are

introduced:

Definition 4.1. Rough Bergomi model introduced by Bayer, Friz and Gatheral [24], where

Vt = ξ0(t)E
(

2νCH

∫ t

0

(t− s)αdWs

)
,

with parameters V0, ξ0(·) > 0, α ∈ (−1
2
, 1

2
), ν > 0 given in definition of fractional Ornstein-

Uhlenbeck process and E(·) is the stochastic exponential. This corresponds exactly to (2.6)

with g(u) ≡ uα, Y = W and

Φ(ϕ)(t) := ξ0(t) exp (2νCHϕ(t)) exp

{
−2ν2C2

H

∫ t

0

(t− s)2αds

}
.

Algorithm 4.2 (Simulation of rough volatility models).

(1) Simulate two N (0, 1) matrices {ξj,i}j=1,...,M
i=1,...,n

and {ζj,i}j=1,...,M
i=1,...,n

with corr(ξj,i, ζj,i) = ρ;

(2) As can be seen above, the driver of volatility in rDonsker model is in fact Brownian

motion, e.a. Y = W following ∆Y j
n (ti) =

√
T/nξi,j

(3) Simulate M paths of the fractional driving process ((GαYn)(t))t∈T using

(GαYn)j (ti) :=
i∑

k=1

g(ti−k+1)∆Y j
n (tk) =

i∑
k=1

g(tk)∆Y
j
n (ti−k+1), i = 1, . . . , n and j = 1, . . . ,M.

The complexity of this step is in general of order O(n2). However, this step is easily

implemented using discrete convolution with complexity O(n log n). With the vec-

tors g := (g(ti))i=1,...,n and ∆Y j
n := (∆Y j

n (ti))i=1,...,n for j = 1, . . . ,M , we can write

(GαYn)j(T ) =
√

T
n

(g ∗∆Y j
n ), for j = 1, . . . ,M , where ∗ represents the discrete convolu-

tion operator.
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(4) Use the forward Euler scheme to simulate the log-stock process, for all i = 1, . . . , n,

j = 1, . . . ,M , as

Xj(ti) = Xj(ti−1)− 1

2

T

n

i∑
k=1

Φ (GαYn)j (tk−1) +

√
T

n

i∑
k=1

√
Φ (GαYn)j (tk−1)ζj,k.

As Bayer, Friz and Gatheral [24] and Bennedsen, Lunde and Pakkanen [29] pointed out, a ma-

jor drawback in simulating rough volatility models is the very high variance of the estimators,

so that a large number of simulations are needed to produce a decent price estimate. Nev-

ertheless, the rDonsker scheme admits a very simple conditional expectation technique which

reduces both memory requirements and variance while also admitting antithetic variates. This

approach is best suited for calibrating European type options. We consider FBt = σ(Bs : s ≤ t)

and FWt = σ(Ws : s ≤ t) the natural filtrations generated by the Brownian motions B and W .

In particular the conditional variance process Vt|FWt is deterministic. As discussed by Romano

and Touzi [31], and recently adapted to the rBergomi case by McCrickerd and Pakkanen [30],

we can decompose the stock price process as

eXt = E
(
ρ

∫ t

0

√
Φ (GαY ) (s)dBs

)
E
(√

1− ρ2

∫ t

0

√
Φ (GαY ) (s)dB⊥s

)
:= eX

1
t eX

2
t ,

and notice that

Xt|(FWt ∧ FB0 ) ∼ N
(

eX
1
t − (1− ρ2)

∫ t

0

Φ (GαY ) (s)ds, (1− ρ2)

∫ t

0

Φ (GαY ) (t)ds

)
.

Thus exp(Xt) becomes log-normal and the Black-Scholes closed-form formulae are valid here

(European, Barrier options, maximum,. . . ). The advantage of this approach is that the orthog-

onal Brownian motion B⊥ is completely unnecessary for the simulation, hence the generation

of random numbers is reduced to a half, yielding proportional memory saving. Not only this,

but also this simple trick reduces the variance of the Monte-Carlo estimate, hence fewer simu-

lations are needed to obtain the same precision. We present a simple algorithm to implement

the rDonsker with conditional expectation and assuming that Y = W .

Algorithm 4.3 (Simulation of rough volatility models with Brownian drivers). Consider the

equidistant grid T .

(1) Draw a random matrix {ξj,i}j=1,...,M/2
i=1,...,n

with unit variance, and create antithetic variates

{−ξj,i}j=1,...,M/2
i=1,...,n

;
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(2) Simulate M paths of the fractional driving process GαW using discrete convolution:

(GαW )j(T ) =

√
T

n
(g ∗ ξj), j = 1, . . . ,M,

and store in memory (1 − ρ2)

∫ T

0

(GαW )j(s)ds ≈ (1 − ρ2)
T

n

n−1∑
k=0

(GαW )j(tk) =: Σj for

each j = 1, . . . ,M ;

(3) use the forward Euler scheme to simulate the log-stock process, for each i = 1, . . . , n,

j = 1, . . . ,M , as

Xj(ti) = Xj(ti−1)− ρ2

2

T

n

i∑
k=1

Φ (GαW )j (tk−1) + ρ

√
T

n

i∑
k=1

√
Φ (GαW )j (tk−1)ξj,i;

(4) Finally, we have Xj(T ) ∼ N (Xj
T − Σj,Σj) for j = 1, . . . ,M ; we may compute any

option using the Black-Scholes formula. For instance a Call option with strike K would

be given by

Cj(K) = exp(Xj
T )N (dj1)−KN (dj2) for j = 1, . . . ,M,

where

dj1 :=
1√
Σj

(Xj
T − log(K) +

1

2
Σj) and dj2 = dj1 −

√
Σj.

Thus, the output of the model would be C(K) = 1
M

∑M
k=1 C

j(K).

Remark 4.4. These algorithms have been used in order to create the R-codes which simulate

the rBergomi model. Of course, they are only general guidelines for implementation of a larger

group of rough volatility models. In order to write the codes each model has to be further

studied.

Looking at the definition of the rough Bergomi model, one can observe that not all the

information needed for implementation of this specific model is given above. The articles

Pricing under rough volatility by Bayer, Friz and Gatheral [24] and Volatility is rough by

Gatheral, Jaisson and Rosenbaum [22] provide the information about the missing components

CH , and ξ0(·).

Let us start with CH . As stated in [22], empirically, the increments of the log-volatility of
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various assets enjoy a scaling property with constant smoothness parameter and that their

distribution is close to Gaussian. This naturally suggests the simple model:

(4.1) log σt+∆ − log σt = ν
(
WH
t+∆ −WH

t

)
,

whereWH is a fractional Brownian motion with Hurst parameter equal to the measured smooth-

ness of the volatility and ν is a positive constant. We may of course write (4.1) under the form

(4.2) σt = σ exp
{
ν WH

t

}
,

where σ is another positive constant. Realized variance was found to be consistent with this

simple model as the relationship was found to hold for all 21 equity indices in the Oxford-Man

database, Bund futures, Crude Oil futures, and Gold futures according to [24]. Furthermore

consider the Mandelbrot-Van Ness representation of fractional Brownian motion WH in terms

of Wiener integrals:

WH
t = CH

{∫ t

−∞

dWs

(t− s)γ
−
∫ 0

−∞

dWs

(−s)γ

}
where γ = 1

2
−H and the choice

CH =
Γ(3/2−H)

Γ(H + 1/2) Γ(2− 2H)
.

ensures that WH satisfies the definition, i.e.

Cov(WH
t ,W

H
s ) =

1

2
(|t|2H + |s|2H − |t− s|2H)

thus, we obtained the necessary CH . Now, the only thing left unknown is ξ0(·). In Bayer, Fritz

and Gatheral[24] it is stated that

ξt(u) = E[vu | Ft], u ≥ t

is a forward variance curve, where v2
t = σ2

t denotes instantaneous variance at time u > t. This

means that in our case ξ0(·) represents the evolution of variance expressed as the expected

value of the variance of an asset based on the information available up until the time of our

investment. Normally, the forward variance curve can be obtained from the Market but this is

not the case here because one has to be actively involved in Market trading in order to obtain

such information so we turn to an alternative way of constructing the forward variance curve.

The idea is to obtain the plain vanilla call and put prices for as many different strikes as possible

from the internet, then to compute the price of the log contract for available expiration dates
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and finally, extract the forward variance curve by differentiation. One can of course argue that

this approach influences the precision of our simulations but no better alternative was found.

4.1. Construction of forward variance curve.

Definition 4.5. The log contract is the future type contract whose payoff is equal to the

logarithm of the price of an asset at the time of expiration.

As shown in [21], we consider a contract whose payoff at time T is log(ST/F) where F represents

the time-T forward price of the stock. Then

g”(K) = − 1

S2
T |ST=K

and it follows from the payoff relation

E[g(ST ) | St] = g(F ) +

∫ F

0

dKP̃ (K)g”(K) +

∫ F

0

dKC̃(K)g”(K)

,with P̃ and C̃ being undiscounted put and call prices respectively and k := log(K
F

), that

E
[
log

(
ST
F

)]
= −

∫ 0

−∞
dkp(k)−

∫ ∞
0

dkc(k)

with

c(y) :=
C̃(Fey)

Fey
; p(y) :=

P̃ (Fey)

Fey

representing option prices expressed in terms of percentage of the strike price. In settings of

no interest rates or dividends F = S0 hence

log

(
ST
S0

)
=

∫ T

0

dlog(St) =

∫ T

0

dSt
St
−
∫ T

0

σ2
St

2
dt

One can immediately see that the second term on the right side is the half of total variance

which we are trying to obtain. Taking the risk neutral expectation of this equation, we get

E
[∫ T

0

σ2
Stdt

]
= −2E

[
log

(
ST
F

)]
= 2

{∫ 0

−∞
dkp(k) +

∫ ∞
0

dkc(k)

}
It is now explicitly shown that the fair value of total variance is given by the value of an infinite

strip of European options in a completely model independent way so long as the underlying

process is a diffusion. Another small problem here is the assumption that we can obtain prices

of European call and put option for all strikes K ∈ R. In this paper, the integral is obtained
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via upper and lower Darboux sums with mash size being equal to the difference of obtainable

strikes for which we have both, European call and put, prices. In short, we use the arithmetic

middle of upper and lower Darboux sum to calculate this integral with respect to strike and we

do it for different maturity dates. After calculating this integral, differentiation with respect

to time was calculated in order to obtain the forward variance curve. Finally we have all the

ingredients necessary for our implementation and now we move on to the R codes.

4.2. R codes.

The asset chosen for testing the implementation was S&P 500 Index. Because of its impor-

tance, European call and put prices are available for a decent number of strikes which makes

our forward variance curve more accurate and for maturities up to 13 weeks. The obtained

European call and put prices for available strikes were sorted in excel tables and then imported

into RStudio. The prices of call and put options for different strikes are taken as arithmetic

middle of bid/ask spread. Next graphic shows how the data is presented on the webpage

marketwatch.com used to obtain them.

https://www.marketwatch.com
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Figure 1. An example of data for different strikes and single maturity date
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4.2.1. Forward variance curve.

l i b r a r y ( s t a t s )

l i b r a r y ( pracma )

l i b r a r y (” x l sx ”)

a <− 0

c <− 0

p <− 0

d <− 0

Ic <− 0

Ip <− 0

min <− 200

ind <− 0

i <− 1

fK <− c ( l ength ( tab l e 12$X 1 ) )

f c a l l <− c ( l ength ( tab l e 12$X 1 ) )

fput <− c ( l ength ( tab l e 12$X 1 ) )

f o r ( l in 1 : l ength ( tab l e 12$X 1 ) ) {

fK [ l ]<− t a b l e 1 2 [ l , 8 ] $X 8

f c a l l [ l ]<− t a b l e 1 2 [ l , 9 ] $X 9

fput [ l ]<− t a b l e 1 2 [ l , 7 ] $X 7

}

LK <− l og ( fK , 1 0 )

f o r ( i in 1 : ( l ength ( fK)−1))

{

d i f f <− f c a l l [ i ]− fput [ i ]

i f ( d i f f < 0) { d i f f <− (− d i f f )}
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i f ( d i f f < min )

{

min <− d i f f

ind <− i

}

}

f o r ( j in 1 : ( ind −1))

{

a <− (LK[ j +1]−LK[ j ] )

p <− ( ( fput [ j +1]+fput [ j ] ) / 2 )

d <− ( (LK[ j +1]+LK[ j ] ) / 2 )

Ip <− Ip + ( a ∗(p/d ) )

}

f o r ( k in ind : ( l ength (K)−1))

{

c <− ( ( f c a l l [ k+1]+ f c a l l [ k ] ) / 2 )

a <− (LK[ k+1]−LK[ k ] )

d <− ( (LK[ k+1]+LK[ k ] ) / 2 )

I c <− I c + ( a ∗( c/d ) )

}

#obtained va lue s

fwdvc <− c ( l ength (1 3 ) )

fw <−c (0 .01838119 , 0 .11818865 , 0 .21840105 , 0 .35303439 , 0 .45754196 , 0 .58420218 ,

0 .73187350 , 0 .91971890 , 1 .10343434 , 1 .21383215 , 1 .39843313 , 1 .58303411 ,

1 .79916553)

fwdvc [ 1 ] <− fw [ 1 ]

f o r ( o in 2 : 1 3 ) {

fwdvc [ o ] <− fw [ o]− fw [ o−1]
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}

p lo t ( fwdvc [ 1 : 1 3 ] , x lab=”time ( weeks )” ,

ylab=”Expectat ion o f sigma squared ( var iance )” , main=”p lo t ” , type=” l ”)

po in t s (0 , 0 , type = ” l ”)

2 4 6 8 10 12
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0
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0
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Figure 2. Total variance curve
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Remark 4.6. One may notice that the obtained results were written down and saved in a

vector at the end of the program, that is done in order to prevent the tedious import of excel

tables in case of something going wrong. Furthermore, if we consider the plot of expected

values of forward variance and take into consideration that the differentiation with respect to

time was done for a time unit of one week, then the values of our forward variance curve, are

actually the slopes of lines connecting the points of the plot.

4.2.2. Algorithm 4.2.

l i b r a r y ( s t a t s )

l i b r a r y ( pracma )

n <− 182

m <− 1000

t <− 0 .07

alph <− 0 .1

H <− 0 .1

nu <− 2 .8

a c a l l <− 0

aput <− 0

rho <− 0 .5

put <− 0

c a l l <− 0

k s i <− 0

var <− c ( l ength (1 3 ) )

sp <− c (2760 , 2755 , 2760 , 2760 , 2770 , 2745 , 2760 , 2755 , 2750 , 2760 , 2765 , 2765 ,

2760)
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s t a r t t i m e <− Sys . time ( )

#foward var iance curve

fwdvc <− c ( l ength (1 3 ) )

fw <− c (0 .01838119 , 0 .11818865 , 0 .21840105 , 0 .35303439 , 0 .45754196 , 0 .58420218 ,

0 .73187350 , 0 .91971890 , 1 .10343434 , 1 .21383215 , 1 .39843313 , 1 .58303411 ,

1 .79916553)

fwdvc [ 1 ] <− fw [ 1 ]

f o r ( o in 2 : 1 3 ) {

fwdvc [ o ] <− fw [ o]− fw [ o−1]

}

#simula t ing c o r r e l a t e d matr i ce s

matr ica <− matrix ( rnorm (n∗m, mean=0, sd =1) ,m, n)

tmpMatrica <− matrix ( rnorm (n∗m, mean=0, sd =1) ,m, n)

matr ica2 <− rho∗matrica + s q r t (1−rho∗ rho )∗ tmpMatrica

matrica3 <− matrix ( nrow=m, nco l=n)

#v o l a t i l i t y s imu la t i on

sum( matr ica ∗matrica2 )/ (m∗n)

f o r ( j in 1 :m)

{ f o r ( i in 1 : n )

{

G <− 0

f o r ( k in 1 : i )

{
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G <− + ( ( ( ( i−k+1)∗( t /n ) )ˆ alph )∗ s q r t ( t /n)∗matrica [ j , k ] )

}

matrica3 [ j , i ] <− G

}

}

#simula t ing p r i c e s

matr ica4 <− matrix ( nrow=m, nco l=n)

CH <− s q r t ( (2∗H∗gamma(1.5−H) ) / (gamma(H+0.5)∗gamma(2−2∗H) ) )

f o r ( j in 1 :m)

{ X <− l og (2760 , exp ( 1 ) )

f o r ( i in 1 : n )

{

S1 <− 0

S2 <− 0

i f ( i %% 14 == 1){ k s i <− fwdvc [ ( i +13)/14]}

f o r ( k in 1 : i )

{

in tegrand <− f unc t i on ( s ) { ( ( ( k∗ t )/n)−s )ˆ(2∗ alph )}

I tp <− i n t e g r a t e ( integrand , lower = 0 , upper = ( ( k∗ t )/n ) )

I <− I tp$va lue

Y <− (−2)∗(nu∗nu )∗ (CH∗CH)∗ I

Z <− 2∗nu∗CH∗matrica3 [ j , k ]

S1 <− + ( 0 . 5∗ t /n∗ k s i ∗exp (Z)∗ ( exp (Y) ) )

S2 <− + ( s q r t ( t /n∗ k s i ∗exp (Z)∗ ( exp (Y) ) )∗ matrica2 [ j , k ] )

}

W <− ( S2−S1 )

X <− X + W
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matrica4 [ j , i ] <− exp (X)

}

}

p lo t ( matr ica4 [ 1 , 1 : n ] , x lab=”time ” , ylab=”p r i c e ” , main=”p lo t ” , type=” l ”)

po in t s (0 ,2760 , type = ” l ”)

l i n e s ( matr ica4 [ 3 3 , 1 : n ] , c o l=”darkgreen ”)

l i n e s ( matr ica4 [ 5 0 , 1 : n ] , c o l=”brown ”)

l i n e s ( matr ica4 [ 8 9 , 1 : n ] , c o l=”darkblue ”)

#p r i c i n g as ian opt ions with s t r i k e K

K <− 2760

avgp <− c ( l ength (m) )

f o r ( j in 1 :m) {

avg <− 0

f o r ( i in 1 : n ) {

avg <− avg + matrica4 [ j , i ]

}

avgp [ j ] <− avg/n

}

f o r ( j in 1 :m) {

put <− put + (max(0 ,K−avgp [ j ] ) )

c a l l <− c a l l + (max(0 , avgp [ j ]−K) ) }

a c a l l <− c a l l /m

aput <− put/m

pr in t ( a c a l l )

p r i n t ( aput )

end time <− Sys . time ( )
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Figure 3. Path simulations of Algorithm 4.2

end time − s t a r t t i m e

Remark 4.7. The vector sp contains the weekly forward prices of the asset during 13 weeks.

Also, Sys.time() was introduced in order to measure the speed of both algorithms. Variables

m and n denote the number of simulated paths and number of discretisation points during 13

weeks respectively.
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4.2.3. Algorithm 4.3.

l i b r a r y ( s t a t s )

l i b r a r y ( pracma )

m <− 1000

n <− 182

alph <− 0 .1

H <− 0 .1

k s i <− 0

nu <− 2 .8

t <− 0 .07

c a l l <− 0

put <− 0

a c a l l <− 0

aput <− 0

var <− c ( l ength (1 3 ) )

sp <− c (2760 , 2755 , 2760 , 2760 , 2770 , 2745 , 2760 , 2755 , 2750 , 2760 , 2765 , 2765 ,

2760)

l g <− 0

dg <− 0

s t a r t t i m e <− Sys . time ( )

#foward var iance curve

fwdvc <− c ( l ength (1 3 ) )

fw <− c (0 .01838119 , 0 .11818865 , 0 .21840105 , 0 .35303439 , 0 .45754196 , 0 .58420218 ,

0 .73187350 , 0 .91971890 , 1 .10343434 , 1 .21383215 , 1 .39843313 , 1 .58303411 ,

1 .79916553)

fwdvc [ 1 ] <− fw [ 1 ]
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f o r ( o in 2 : 1 3 ) {

fwdvc [ o ] <− fw [ o]− fw [ o−1]

}

#a n t i t h e t i c v a r i a t e s matrix

matr ica <− matrix ( rnorm (n∗(m/2) ,mean=0, sd =1) ,(m/2) , n )

matr ica2 <− matrix ( nrow=(m/2) , nco l=n)

matrica2 <− (−1)∗matrica

matrica3 <− rbind ( matrica , matr ica2 )

matr ica4 <− matrix ( nrow = m, nco l = n)

g <− c ( l ength (n ) )

h <− c ( l ength (n ) )

f o r ( j in 1 :m)

{

f o r ( i in 1 : n )

{

g [ i ] <− ( ( i ∗ t )/n)ˆ alph

h [ i ] <− matrica3 [ j , i ]

}

x <− f f t ( g )

y <− f f t (h )

z <− x∗y

matrica4 [ j , 1 : n ] <− Re( s q r t ( ( t )/n)∗ i f f t ( z ) )

}

#simula t ing log−p r i c e s
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matrica5 <− matrix ( nrow=m, nco l=n)

CH <− s q r t ( (2∗H∗gamma(1.5−H) ) / (gamma(H+0.5)∗gamma(2−2∗H) ) )

f o r ( j in 1 :m)

{ X <− l og (2760 , exp ( 1 ) )

f o r ( i in 1 : n )

{

S1 <− 0

S2 <− 0

i f ( i %% 14 == 1 ) { k s i <− fwdvc [ ( i +13)/14]}

f o r ( k in 1 : i )

{

in tegrand <− f unc t i on ( s ) { ( ( ( k∗ t )/n)−s )ˆ(2∗ alph )}

Itp<−i n t e g r a t e ( integrand , lower = 0 , upper = ( k∗ t )/n)

I<−I tp$va lue

Y<−(−2)∗(nu∗nu )∗ (CH∗CH)∗ I

Z<−2∗nu∗CH∗matrica4 [ j , k ]

S1 <− + ( 0 . 5∗ ( t /n)∗ k s i ∗exp (Z)∗ ( exp (Y) ) )

S2 <− + ( s q r t ( ( t /n)∗ k s i ∗exp (Z)∗ ( exp (Y) ) )∗ matrica3 [ j , k ] )

}

W <− ( S2−S1 )

X <− X + W

matrica5 [ j , i ] <− exp (X)

}

}

p lo t ( matr ica5 [ 3 , 1 : n ] , x lab=”time ” , ylab=”p r i c e ” , main=”p lo t ” , type=” l ”)

po in t s (0 ,2760 , type = ” l ”)

l i n e s ( matr ica5 [ 2 8 , 1 : n ] , c o l=”blue ”)

l i n e s ( matr ica5 [ 5 7 , 1 : n ] , c o l=”red ”)

l i n e s ( matr ica5 [ 9 9 , 1 : n ] , c o l=”purple ”)
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#p r i c i n g as ian opt ions with s t r i k e K

K <− 2870

avgp <− c ( l ength (m) )

f o r ( j in 1 :m)

{

avg <− 0

f o r ( i in 1 : n )

{

avg <− avg + matrica5 [ j , i ]

}

avgp [ j ] <− avg/n

}

f o r ( j in 1 :m) {

c a l l <− c a l l + (max(0 , avgp [ j ]−K) )

put <− put + (max(0 ,K−avgp [ j ] ) )

}

a c a l l <− c a l l /m

aput <− put/m

pr in t ( a c a l l )

p r i n t ( aput )

end time <− Sys . time ( )

end time − s t a r t t i m e
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Figure 4. Path simulations of Algorithm 4.3

Remark 4.8. Looking at the sample paths of both algorithms, it is easily observed that their

values differ more with time. That is consistent with the fact that total variance of the asset

price is monotone increasing with respect to time. One can also notice that the paths of

Algorithm 4.3 are less dispersed for a first few weeks than the paths of Algorithm 4.2. That

is due to antithetic variates used in algorithm 4.3 which is a known method of reducing the

variance of Monte Carlo simulations.

For the final part, the title of the thesis is justified as we move on to pricing of Asian options

using the above introduced algorithms adapted to fit the rBergomi model.
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Definition 4.9. Given an underlying asset St with exercise date T and strike price K, the

payoff of the Asisan call option is given by

C :=

(
1

T

∫ T

0

Stdt−K
)+

whereas the payoff of the Asian put option is given by

C :=

(
K − 1

T

∫ T

0

Stdt

)+

As we can see, Asian options are path dependent options on average price and thus less

volatile than the European ones. Looking at the Asian call option price, it can be shown that

its upper bound is given by the corresponding European call price using convexity arguments

and Jensens inequality. To my knowledge, this is the first attempt of pricing Asian options

in the settings of rough Bergomi model and no data on Asian option prices was found on the

internet, meaning that this was the only bound one could turn to in order to see if the obtained

prices could be realistic. Some may argue that Black-Scholes formula could have been used,

but these results wouldnt be useful or helpful because their significance is questionable for a

number of reasons one of them being that the model assumes constant volatility and does not

take into consideration the volatility smile observed at the market.

A. put (Alg. 4.2) A. put (Alg. 4.3) Put Strike Call A. call (Alg. 4.3) A. call (Alg. 4.2)

18.54 17.82 38.30 2670 130.70 113.79 109.66

19.62 17.04 39.25 2675 126.72 107.20 106.21

27.77 22.90 42.45 2690 115.10 99.18 94.26

24.51 24.76 44.70 2700 107.35 89.72 95.28

34.52 29.25 48.45 2715 96.15 78.91 79.31

48.93 49.65 62.05 2760 64.95 54.01 56.42

56.13 54.87 63.80 2765 61.75 51.17 49.72

61.36 56.74 65.65 2770 58.60 49.25 45.51

97.72 95.48 93.55 2830 26.85 31.97 29.57

127.11 125.95 119.50 2870 13.25 12.48 11.93

Figure 5. Results of both algorithms for different strikes and 3 months maturity
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In the end, we state a few observations that were made while creating the above introduced

algorithms. In Algorithm 4.2, the correlation coefficient ρ between the price and the volatility

drivers was assumed to be negative because one would expect the prices to drop as the volatility

rises and vice versa. At the end, -0.1 value was chosen because the results best matched the

results obtained using algorithm 4.3. Discretization was proved to be of great importance. As

often found in discretization processes, the finer the subdivision of the given time interval is, the

better the end result is. For instance, using five days a week or even daily time discretization, i.e.

n=65 and n=91 respectively, the obtained results for Asian call option would sometimes break

the upper bound. In the end twice a day time discretization was used in testings which gave the

above presented results. An even better time discretization would probably yield better results

in sense of accuracy but that requires a lot of computational power which, unfortunately, was

not available at the time being so we leave that for some further research. It was also found that

the obtained Asian options prices do not vary much for multiple Monte Carlo simulations if

thousand paths are simulated. Of course, more paths would make this variance even smaller but

the reason for not simulating more than one thousand paths is again the lack of computational

power.

5. Conclusion

To conclude, rough volatility models have a great potential because they explain the volatility

behavior in the most accurate way possible today. The paper written by Horvath, Jaquier and

Muguruza[1] enables faster and easier implementation methods. Of course they have some

downsides, the obvious one being lack of closed forms, as in rBergomi for example, which leaves

us with Monte Carlo simulations as the only possible implementation method. The biggest

problem of Monte Carlo is the need for a vast number of simulations which in turn sets the

need for lot of computational power in order to achieve accuracy in a sensible amount of time.

The accuracy of the above presented results cannot be properly discussed as this is the first

simulation of that kind so no results were provided to make the comparison. We can only state

that they can be improved via more refined subdivision of time interval and larger number of

simulated paths. The questions about the optimal correlation coefficient ρ and constant ν >0

are left for some further research because with result comparison possibility. It is also worth

mentioning that they probably arent unique in sense that they depend on the underlying asset.
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