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Abstract

The goal of this thesis is to study the functional central limit theorems, especially the exten-
sion of Donsker’s approximation of Brownian motion the so-called rough Donsker (rDonsker)
theorem, which helps us approximate the fractional Brownian motion essential for further im-
plementations of rough volatility models. Furthermore, based on the results those convergence
theorems, the numerical implementation of rough Donsker volatility model is presented and its

results are discussed .

This work is largely based on the paper Functional central limit theorems for rough volatility

by Blanka Horvath, Antoine Jacquier, and Aitor Muguruza [1].
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1. Introduction

Alongside the financial market development and introduction of derivatives of primary assets,
a strong need for mathematical modeling of their prices emerged. Financial mathematics is a
relatively new branch of mathematics dealing with modeling of these prices without introducing
an arbitrage into the financial market. Intuitively, an arbitrage opportunity means investing in
an asset which, with positive probability, yields a profit without any downside risk. Assuming
the financial market is arbitrage free, all the investments are exposed to some kind of downside
risk. By Financial Times lexicon the volatility is defined as the extent to which the price of a
security or commodity, or the level of a market, interest rate or currency, changes over time.
High volatility implies rapid and large upward and downward movements over a relatively short
period of time; low volatility implies much smaller and less frequent changes in value. In other
words, volatility gives us the idea about our investment risk by showing the range to which
the price may change while keeping the direction of the change unrevealed. The log-prices of
derivatives are usually modeled as continuous semi-martingales.For X; being a log-price of the

asset at the time t, the price-process is given by
dXt = Mtdt + O'tth,

where p; denotes the drift, o; volatility and W; standard one-dimensional Brownian motion. A
several models were introduced throughout the years such as Black-Scholes where the volatility
function is either constant or a deterministic function of time, Dupire’s local volatility model,
see [2], the local volatility o(Y;;t) is a deterministic function of the underlying price and time,
chosen to match observed European option prices exactly. Such a model is by definition time-
inhomogenus; its dynamics are highly unrealistic, typically generating future volatility surfaces
completely unlike those we observe. On the other hand, in so-called stochastic volatility models,
the volatility o, is modeled as a continuous Brownian semi-martingale. Notable amongst such
stochastic volatility models are the Hull and White model [5], the Heston model [4], and the
SABR model [3]. Whilst stochastic volatility dynamics are more realistic than local volatility
dynamics, generated option prices are not consistent with observed European option prices
[21]. From an analysis of the time series of realized variance using recent high-frequency data,
see [21], previously showed that the logarithm of realized variance behaves essentially as a

fractional Brownian motion with Hurst exponent H of order 0.1, at any reasonable timescale.
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The resulting Rough Fractional Stochastic Volatility (RFSV) model is remarkably consistent
with financial time series data [24]. Throughout the thesis, the exstention of Donsker theorem,
the so called rDonsker theorem, is explored along with its applications general volatility models

given by the following system
dX, = -3V, dt +VVdB,, X, =0,

Vi=2(G*Y)), V>0,
Also, the precise definition of G*Y is given and the approximation sequence for X; derived.
In following chapter the mathematical background is introduced. Then, in Chapter 3, the
theorems and results of the paper, see[l], are presented. Finally, in Chapter 4, numerical
implementation, two "R” codes, of rough Bergomi model is given and explained. In chapter 5,

all the results of implementations are discussed and final conclusions are given.



2. Mathematical background

In order to properly explain the model and its implementation, it is necessary to introduce

the following mathematical concepts.
Definition 2.1. For 3 € (0, 1], the s-Holder space C*(I), equipped with the norm

115 2= 1715 + [l = sup OISO o001,

t SE |t — |ﬁ tel
t;és

is a non-separable Banach space |26, Chapter 3].

Definition 2.2. For any A € (0, 1), the left Riemann-Liouville fractional operator is defined

on CA(I) as

! ) ds for a € [0,1)
1) ()= L o P o
&]Ho‘f) (t) = mg/o (t—s)"f(s)ds, forae (—A,0).

Following the spirit of Riemann-Liouville fractional operators we introduce the class of Gen-
eralised Fractional Operators (GFO). For any o € (—1,1), we introduce the space L£* :=
{ur u*L(u) : L € C}(I)}, as well as the following subset of R?:

R = {(a,)\) € (—1,1) x (0,1) such that a + \ € (0, 1)}.
Definition 2.3. For any (o, \) € R, the GFO associated to g € £ is defined on C*(I) as
/f 9 g(t—s)ds, ifae[0,1-—2N),
(2.2) (G~
dt/f (t —s)ds, if a € (—=A,0).

We shall further use the notation G(t fo u)du, for any ¢ € I. The following kernels and

operators are well-known examples of Generalised Fractional Operators:

Riemann-Liouville:  g(u) = u®, for a € (—=1,1);
(2.3) Gamma fractional:  g(u) = u®ef, for a € (=1,1), 5 > 0;
Power-law: g(u) = u*(1 +u)’~@, forae(-1,1),8<—1.

The following proposition generalises the classical mapping properties of Riemann-Liouville
fractional operators first proved by Hardy and Littlewood [28], and will be of fundamental

importance in the rest of our analysis.
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Proposition 2.4. For (a,\) € R, the operator G* : CMNI) — G (1) is continuous.

Proof. Since g € L®, there exists C' > 0 such that |g(u)| < Cu®; hence, for ¢ € I,

& [t -9l as <o [ s s

Therefore, for f € C*(I), the inequalities involving the Riemann-Liouville fractional operator

(2.4) (G N)(E) <CUIf)E) < C[If]la

hold for « < 0 and all £ € I. Since Riemann-Liouville operators are continuous, continuity of
the GFO follows directly from along with linearity. To prove that G* belongs to C**<(1),
we may invoke and easily adapt Theorem Similarly, when o > 0, for any v € I,
g (u) = uL'(u) + v L(u) < Cy 4+ Cou®™!, and the A-Holder continuity of f yields, for any
tel,

/0 % g(t B S)f(S) ds < )\i’lltA—H +C?/0 (t B S)a—lf(s) ds < C} —{—02/0 (t — s)a—lf(S) ds.

Since the time horizon I is compact, the first constant does not affect continuity or mapping
properties of the GFO. The second term is bounded by the Riemann-Liouville integral operator,
hence continuity and mapping properties follow as before by straightforward modification of

Theorem 2.9
L]

Definition 2.5. Let (€2, F', P) be a probability space. A fractional Brownian motion W#
with Hurst parameter H € (0, 1], is an almost surely continuous, centered Gaussian process
(W) ter with

Cov(WH, WEH) = Z([t|*" + |s|* — |t — s]*"), t,seR

s

Definition 2.6. A stationary fractional Ornstein-Uhlenbeck process (X;) is defined as the

stationary solution of the stochastic differential equation
dX, = vdW} — a(X; —m)dt,

where m € R and v and « are positive parameters, see [32].
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For the usual Ornstein-Uhlenbeck processes, there exists an explicit form for the solution given

by

¢
(2.5) X = V/ e~ = awit 4 m.

Where the stochastic integral with respect to fBM is a pathwise Riemann-Stieltjes integral, see

again [32].

2.1. Rough fractional volatility models. In this paper, an approximation scheme for the
following system is developed generalising the concept of rough volatility introduced in [19] 20|
22] in the context of mathematical finance, where the X process represents the dynamics of the

logarithm of a stock price process:

1
X, = Vidt + VVidB,, X, =0,
Vi =0(GY) (1), Vo >0,

(2.6)

with a € (—1,1), and Y the (strong) solution to the stochastic differential equation
(2.7) dY; = b(Y)dt + a(Y;)dW;, Yy € R,

The two Brownian motions B and W, defined on a common filtered probability space (2, F, (F;)ier, P),
are correlated by the parameter p € [—1,1]. The functional ® is continuous on C(I), and for any
p € C(I), ®(¢p) is continuously differentiable and integrable. This is enough to ensure that the
first stochastic differential equation is well defined. It remains to formulate the precise definition
for G*Y (Propsition to fully specify the system (2.6)) and clarify the existence of solutions.
Existence and (strong) uniquess of a solution to the second SDE in is guaranteed by the

following standard assumption [I8]:

Assumption 2.7. There exist Cj, C, > 0 and an increasing function p : (0,00) — (0, 00) with

lii%l fel % = 00. such that

b(z) —b(y)| < Chlr —y|  and  |a(z) —a(y)] < Cav/o(|lz — yl).

Not only is the solution to (2.7) continuous, but %—Hélder continuous as a consequence of
Kolmogorov-Centsov’s theorem [7]. Existence and precise meaning of the term G*Y is more

delicate, and is treated further below.
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Proposition 2.8. The equality (GYW)(t fo (t — s)dWs holds almost surely for all t € 1.

Proof. Since the paths of Brownian motion are 1/2-Holder continuous, existence (and continu-
ity) of G*W is guaranteed for all & € (—1/2,1/2). When « € [0,1/2), the kernel is smooth and
square integrable, so that It6’s product rule yields (since g(0) = 0)

W0 = [ ot =W s)ds = [ gt = .

and the claim holds. For aw € (—1/2,0), and any € > 0, introduce the operator

(G f) () = /0 _eg(t—s) f(s)ds,  Vtel,

which satisfies lim,o (G1Tf) (t) = (G f) () pointwise. Now, for any ¢ € I, almost surely,

(2.8) (%gﬁw) ) —g(e)W(t—e)jL/Oe %g(t—s)W(s)ds—/oeg(t—s)dWS.

Then, as € tends to zero, the right-hand side of ({2.8]) tends to fot g(t — s)dWy, and furthermore,
the convergence is uniform. On the other hand, the equalities
(G W)(1) — (G W)(0) = limeo(GEW)(1) — (GHW)(0) = limeg [} (£G+2W) (s)ds
= f(f lim,_,o (%QEHO‘W) )ds = fo (fo s —u)dW, ) ds,
hold since convergence is uniform on compacts, and the fundamental theorem of calculus

concludes the proof.

O

Theorem 2.9. For any f € CMNI), with A € (0,1) and o € (0,1), the identity

f(0)

L)) = T(1+a)

t* + (1),
holds for all t € 1, for some v € CA(I) satisfying |¢(t)] < CtA* on 1 for some C > 0.

Proof. We may easily represent

() = g((gc)) /0 (t —u)t-@ / ft —u) 1 o du= F({(—g)a)ta +v(t)




with 9(¢) / ft " du Since f € C*(I), we obtain | ()| < 11](1;\) /t : u:)ladu,
J— 0 -

and hence

NCRPV TN

WOlS T fa s A D’

which proves the estimate for |[¢)|. Next, we prove that ¢p € C*<(I). For this, introduce
o(t) :== f(t) — f(0) and consider t,t + h € I with h > 0,

Ut +h) —¥(t) = (1)(/t (u—it-;?"‘ /¢t_u >
B(t) ((t+ h)® _ta}_'__( Pt — u) Cb(t)du)

~T+a) (u+ h)t=e
1 t . N B
—I—m(/o [(U—Fh) L 1“¢(t—ﬂ)—¢(t)]du) = J; + Jo+ J5.
We first consider J;. If h > t, then
51 o
|J1\_F<1 ) M [(t + h)> —t*] < Ch M,

On the other hand, when 0 < h < t, since (1 +u)* — 1 < au for v > 0, then

|f|)\ Ao
T

For Jy, since f € C*(I), we can write

|f|/\ |’LL|/\ Ao
1% 140y [ e <O

<1 + %) — 1‘ < Cht*ret < opite,

Finally,

t t/h
| 3] < Il‘](cl,\) / M ut — (w4 h)*du = rl‘](c—yoj)hHo‘/O M u™t — (u+ 1) du.

Hence, if t < h, then |J3| < Ch e, Likewise, if t > h and XA + o < 1, then |J3] < Ch M since
1 a—1
™t = (u+ 1) =u! [1 — (1 + —) ] < Cu*2.
u
Thus v satisfies the (A + «)-Hélder condition and belongs to CA(T). O

Corollary 2.10. For any o, A € (0,1) such that A+ a < 1, I* is a continuous operator from
CMNI) to CAM(I).
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Proof. Tt is clear that I* is a linear operator. Using the estimate in Theorem we have

_JfO)
L(1+a)

since | f]x < ||fllx, £(0) < ||fllx. Therefore I is also bounded and hence continuous. O

17 Flloctr < 3 16 It + 18 laac < CUFIMIE It + Coll AW ™ llara < ClLF I,

Theorem 2.11. For any 0 < —a < A < 1, let f € CMN1). Then I°f exists, ["*I*f = f and,
forallt €1,

(1N = ~F e / (t — ) [F (1) — F(u)]du.

L1+ a) Jy

Proof. For f € C*(I), define, for any ¢ > 0 and ¢ € I,

IO = s [ (=0 i

and note that I;™® = I'*®. Then, we have
d t—e
I'(1+a) <dtl€1+af> (t)=e"f(t —e)+ a/ (t —w)* ' f(u)du
0

(2.9) = —a/o _E(t —w)* N (f(t) = fw))du —e*(f(t) — f(t —€)).

where Holder continuity implies that f(t) — f(u) < C(t — u)* , so that the integral in (2.9) is
well defined. Then, as € tends to zero, the right-hand side of (2.9)) tends uniformly to

b(t) = —a / (t — u) (F(t) — f(u))du.

Now, for t € I,

(1)) = (I 0)(0) = lim { (5 )(O) = (11 £)(0) | = lim ( dduIH“f) (u)du

- /Ot lim (%[j*o‘f) (u)du = m/o P(u)du

where the exchange of limit and integral holds since the convergence is uniform and the interval
compact. Therefore, I'(a+ 1)(I'™* f) is the integral of ¢ and, by the Fundamental Theorem of

Calculus,
d
6(0) =T+ 1) (F175) (0 = Tla+ 1))
Therefore it exists and, similarly to Theorem Y € CM(I). Finally, since, for 0 < 8 < 1,

the equality
(PI8 £)(t) = (PP 1P ) (8) = / flu
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holds for all ¢ € I, we conclude that

(P + @)1 f — 179 (1) = / P(L+ ) f(u) — (T4) (u))(t — ) = 0,
and hence, by continuity of both f and I7*, f =1"“I“f. O

This chapter is concluded with two definitions necessary to understand the algorithms in

chapter 4.

Definition 2.12 (Discrete convolution). For any a,b € R"™, the discrete convolution operator
x: R" x R" — R" is defined as

(axb); ::Zambi_m, 1=0,....,n—1.

m=0
When simulating G*W on the uniform partition 7, the scheme reads

%

(GWY (t) = Zg(ti —tp—1)& = Z(tk)fj,k—i-i-la fore=1,...,n,
=1

k=1

which has the form of the discrete convolution in Definition [2.12] Rewritten in matrix form,

gty 0 -+ 0 &1
g(t2)  g(t) -+ 0 &2

. . 0 )
9(tn) glta—1) -+ g(t1)) \&

it is clear that this operator yields a complexity of order O(n?), which can be improved dras-

tically.

Definition 2.13. The Discrete Fourier Transform (DFT) of a sequence ¢ := (¢g, ¢y, ..., 1) €

C" is given by
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In general, both transforms require a computational effort of order O(n?), but the the Fast
Fourier Transform (FFT) algorithm reduces the complexity of both transforms to O(nlogn).
Thankfully, many numerical packages offer a direct implementation of the discrete convolution
which simplifies and fastens the implementation. Although the FFT step is the heaviest com-
putation on the simulation of rough volatility models, the actual time grid 7 is not specially
large, i.e. n < 1000. Hence, it is not important to have the fastest possible FFT for very

large n, it is much more important for the implementation to be fast on small time grids.
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3. Main theorems and convergence results

We now move on to main results of the paper by B. Horvath, A. Jacquier and A. Muguruza [I]

which further made possible and also inspired the implementation presented in this thesis.

Assumption 3.1. The family (¢;);>; forms an iid sequence of centered random variables with

finite moments of all orders and E(£2) = o2 > 0.

Following Donsker [§] and Lamperti [16], we first define, for any w € Q, n > 1, t € I, the

approximating sequence for the driving Brownian motion B as

1 o nt — |nt]
(3.1) By (t) := m;gﬁa—ﬁgmw.
=1

As will be explained later, a similar construction holds to approximate the process Y:

(3.2)
|t
V) = SO+ () ST () e M (V1) €,

n g4/
k=1 k=1

where Y := Y, (t), where t; := %, from which we naturally deduce an approximating scheme
(up to the interpolating term which decays to zero by Chebyshev’s inequality) for X as
[nt] [nt)

B3 Xu(t) =g > BV )+ —= S VGV () (B~ BY)

k=1

All the approximations above, as well as all the convergence statements below should be un-
derstood pathwise, but we omit the w dependence in the notations for clarity. The main result
of the paper is a convergence statement about the approximating sequence (X,),>1. In usual
weak convergence analysis [6], convergence is stated in the Skorohod space (D(I),] - |p) of
cadlag processes equipped with the Skorohod topology. While Theorem proves it, it further
provides convergence in the stronger Hélder space (C*(I), || - ||5) for A < %, but with additional

restrictions.

Theorem 3.2. The sequence (X,)n>1 converges weakly to X in (D(L), || - ||p). Furthermore,
for A< % and o € (=3, 1), convergence in the Holder space (CM (L), || - ||) holds if either of the

following two conditions holds:

(i) all the & are distributed as N'(0,1) and E[e®9°Y)] is finite;
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(ii) all the & are bounded almost surely and E[e®9"Y)] is finite for each n.

In (ii), the moment condition on the sequence (Y,,) is difficult to check. However, it clearly
holds as soon as the iid sequence ((;), approximating the stochastic driver of Y, is bounded.
The construction of the proof allows to extend the convergence to the case where Y is a d-
dimensional diffusion without additional work. The proof of the theorem requires a certain
number of steps: we start with the convergence of the approximation (Y,) in some Holder
space, which we then translate, first into convergence of the stochastic integral in , then,
by continuity of the mapping ® into convergence of the sequence (®(G*Y,,)). All these ingredi-
ents are detailed down below. Once this is achieved, the proof of the theorem itself is relatively

straightforward, as will be illustrated.

The standard convergence result for Brownian motion can be stated as follows:

Theorem 3.3. For a < %, the sequence (By,) in (3.1) converges weakly to a Brownian motion
in (C*(I), || - lla)-

Theorem 3.4 (Sufficient conditions for weak convergence in Holder spaces). Let Z € C*(I)
and (Zy,)n>1 its corresponding approximating sequence in the sense that for any t; < ... <ty
inl, (Zn(t1), ..., Zn(tx)) converges in distribution to (Z(t1),...,Z(tx)) as n tends to infinity.

Assume further that the tightness criterion
(3.4) E (1Za(t) = Zn(s)|*) < CJt — s|"*?

holds for alln > 1, t,s € I, and some C,a, > 0. Then (Z"),>1 converges weakly to Z in
CANI) for \ < g

As pointed out by Rackauskas and Suquet in [15], strictly speaking the convergence takes
place in the Hélder space C(I) endowed with the norm || f[| := | f|x + | f(0)], for all functions
that satisfy

lim syp O =IO
010 g<p—s<s  (t—8)*
t,sel

Then (C3(I),| - ]|}) becomes a separable closed subspace of (C*(I),|-|[x) (see [15, 10] for
details),
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To conclude our review of weak convergence in Holder spaces, the following theorem, due to
Rackauskas and Suquet [15] provides necessary and sufficient conditions ensuring convergence

in Holder space:

Theorem 3.5 (Rackauskas-Suquet [I5]). Let a € (0,3) and p(a) := 5. The sequence
(Bn)n>1 tn (3.1) converges (pathwise) weakly to a Brownian motion in C*(I) if and only if

E(&) =0 and hmtp P(|&1] > t) = 0.

The first important step in our analysis is to extend Donsker-Lamperti’s weak convergence

from Brownian motion to the It6 diffusion Y in ({2.7)).

Theorem 3.6. The sequence (Y,)n>1 converges weakly to Y in (2.7)) in (C*(L),| - ||a) for all

1
OZ<§.

Proof. Finite-dimensional convergence is a classical result by Kushner [12], so only tightness
needs to be checked. Using V! :=Y,, (%) as above, and without loss of generality assume Y,? = 0
and b(Y,%) = 0, so that

() <[5 A

2p O )
) < v (|§1‘ p)~

2’”)

e sl

Assumption [2.7] yields
B (jv2P7) = ( b () + 7 Sa (V) &

{eumn+ e |(
< CE ((|&] + &)™)

, . 2
By induction we find E (|Y7f — Yo|2p> < LE {(Z;_l |fz|> p} , which implies the tightness cri-
terion (3.4) for p > 1 for « =2p and f=p — 1. 0J

c,,y

IN

We have set the ground to extend our results to processes that are not necessarily 1/2-Holder
continuous, Markovian nor semimartingales. More precisely, we are interested in a-Hoélder
continuous paths with a € (0, 1), such as Riemann-Liouville fractional Brownian motion. A key
tool is the Continuous Mapping Theorem which establishes the preservation of weak convergence

under continuous operators.
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Theorem 3.7 (Continuous Mapping Theorem [I4]). Let (X, - |lx) and (V,] - |ly) be two
normed spaces and assume that g : X — Y is a continuous operator. If the sequence of random

variables (Z,)n>1 converges weakly to Z in (X, || - ||x), then (9(Zn))n>1 also converges weakly

to g(Z) in (Y, || - [|y).

Many authors have exploited the combination of Theorems [3.3 and in order to prove
weak convergence [27, Chapter IV]. This path avoids the lengthy computations of tightness
and finite-dimensional convergence in classical proofs [6]. In fact, Hamadouche [10] already
realised that Riemann-Liouville fractional operators are continuous, hence Theorem holds
under mapping by Holder continuous functions. In contrast, the novelty of our approach is to
consider, on the one hand the family of GFO applied to a Brownian motion, and on the other
hand the extension of Brownian motion to It6 diffusions. In fact, minimal changes to the proof

in Proposition [2.8] yield the following:

t
Corollary 3.8. If Y is the solution to (2.7)), then (GY)(t) = / g(t — s)dYs almost surely for
0
allt € L.

The analogue of Theorem for Y follows by continuous mapping along with the fact that
G“ is a continuous operator from (C*I), || - [[o) to (C***(I), || - [lo) for all A € (0,1) such that

(a, A) € A.

Theorem 3.9 (Generalised rough Donsker). For (Y,,) in (3.2), Y its weak limit in (C*(I), ]| - ||z

for A < %,
(3.5)
(G°Yn) (1) = %n {G (t _ ; 1) -G <t —~ %)} (Y- Y™ ) +nG (t “:J) (Yo (t) — vl

converges weakly to G*Y in (C"‘“(]I), | - ||a+/\) for any a € (_%’ %)

Proof. We apply directly the definition (2.2)) of the GFO to the sequence (3.2)), recalling that

the latter is differentiable in time. For o > 0, integration by parts yields, for any n > 1 and
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tel,

(Q“Yn)(t):/o g/(t_s)yn(s)dsz/o g(t_s)d}:;s(s>ds

[nt)

U\/_ Z / (t—s)a (Yz 1) §1d3+nﬁm g(t—s)a ( ,}"“)fmtﬁlds

[nt| ¢

— nZ/ (t—s)b Y@'1)ds+n/b;”g(t—s)b(ynlnﬂ)ds
_% { < 1>—G(t—%>} (y;_y,gl)mG(t_%) (Vi) — v10)

since G(0) = ¢g(0) = 0. When « < 0, similar steps imply

d [ dY,,(s)

@00 = 5 [ at- 9= 5 [ G- T,
_% { ( n1>_g(t—%)} (Y,f—Y,f‘l)+nG<t—LnTtJ) (Yn(t)—Yn <L7:L—”))
when " = ¢ G(0) = 0, and the expression is well defined. O

We may omit the interpolation term in Donker’s linear interpolating sequence , and
Lamperti’s proof [I3] still holds with the sequence B, (t) := f Yo nt] ¢, as the rightmost term
in converges to zero by Chebychev inequality. This statement also holds for the sequence
(3-2), so that, G*Y,, in (B.5) reduces to

[ nt] [nt]—1

(3.6) Zg t—tin) (V=Y ) = D gt —te) =g (t = )] ¥,

k=1

which coincides with the usual left-point forward Euler approximation. For numerical purposes,
is much more efficient, since the integral G required in is not necessarily available in
closed form. The speed of convergence of the rDonsker scheme is not of order O (nil/ 2) as one
might assume. In fact the Hurst parameter (in particular o € (—%, 0)) influences the speed of

convergence adversely, as the following proposition shows.

Proposition 3.10. The speed of convergence of the rDonsker scheme is of order O (n““_l/Q)
when a € (—1,0] and O (n™"?) when a € (0, 3).

72
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Proof. Let o € (—%, 0]. Since g € L, the approximation (3.6 reads, for any n > 1,

Z (nt; — (k+1)T)*L(t; — tier) (Yr =Y ) oy/n, fori=0,...,n.

k=1

1
nl/2-aq

(G°Ya) (1) =

Here, (nt; — T'(k — 1))* < (t;)® is bounded for any n > 1 so that the claim follows directly.
When a € (0,3) we may rewrite (3.6) as

7

(G°Y,) (1) = %
k=1

(ti - tk_l)a L (ti - tk—l) (Ynk - Y,f_1> 0'\/57 for ¢ = O, .o, N

In this case, (t; — t,_1)" < (t;)* is also bounded for any n > 1, and the proposition follows. [J

So far, our results hold for a class of a-Hdélder continuous functions. It is often necessary,
at least for practical reasoning purposes, to constrain the volatility process (V;)i e to remain
strictly positive at all times. The stochastic integral G*Y need not be so in general. However, a
simple transformation (e.g. exponential) can easily overcome this fact. The remaining question

is to know whether the a-Holder continuity is preserved after this composition.

Proposition 3.11. Let (Y,)n,>1 be the approzimating sequence (3.2)). Then (P (G*Y,)) con-

verges weakly to ® (G*Y') in (Ca+1/2(]1), Il - Ha_;,_l/g) for any a € (—%, %)

Proof. Drabek [9] found necessary and sufficient conditions ensuring that Holder continuity is
preserved under composition (which he calls Nemyckij operators). More precisely, he proved
that the composition f o g is continuous from (C*(I), || - ||l») to (CML || - ||x) if and only if f
is of class C!. The proof of the proposition then follows by applying the Continuous Mapping
Theorem to Theorem along with Dréabek’s continuity property. The following diagram
summarises the steps, where A < 1/2. The double arrows indicate weak convergence, and we

indicate next to them the topology in which it takes place.
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/\/\
€@, 11 1lhye) (CoFAD), |1+ Nact) (€MD, [ Nactr/2)

Y, 9, g S, a0,
[IRIE |- [lata |- [lasa
% 9, gy >, agey)

O

3.1. Convergence of the (log-)stock process in the Hélder topology. We extend here
the convergence to the log-stock process maintaining the Holder space framework. To start with,
the Holder regularity coefficient of an Ito integral with an integrand having A-Holder continuous

paths is not at all obvious. The following proposition gives an answer to this question.

Proposition 3.12. Let W be a standard Brownian motion, and © a cadlag process on the

same filtered probability space with finite moments up to order 2p. Then © ¢ W € C*(I) for all
A<3 (1——l>.
p

Proof. For this we will use Kolmogorov-Centsov’s continuity theorem [7].

< /0 o)W, — /0 8®(u)qu)2p ( / t@(u)qu)2p _E K / t@(u)2du>p]

< C(t— sy ( / E [0(u)*] du) < Ct—s)

S

E =K

by Itd’s isometry and Holder’s inequality along with the finite moments of ©. Thus, by Kol-
mogorov’s continuity criterion the stochastic integral © @ W has continuous paths with Holder
1-1/p

regularity—*= for all p > 1. 0

The finiteness of all moments might be too restrictive for some applications, and in fact this
will be relaxed in Section at the cost of switching to the Skorohod topology. Nevertheless,
in the Holder setting, once Proposition [3.12] applies, it suffices to prove continuity of the It6

map between the corresponding Holder spaces.
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Proposition 3.13. The Ité map © — OeW is continuous from C*(I) to C*(I) for all X € (0,1),

1
'U<§.

Proof. Let f € CMI) and W € C¥(I). Since the It6 map is linear, it suffices to check bounded-

[ s <] [ paw,

where we have used the Holder continuity of W, and the proposition follows. U

ness.

< AWl < PN [[CE2, < CTY2) £

<
T

v

Finally, we present the main convergence result.

Theorem 3.14. Let ®(G*Y,) as in (3.6) with & ~ N(0,1), and weak limit ®(G*Y) in
(COMD), [ - flasnr), for A< % and o € (=3, 1), IfE[e®9"Y)] < 0o, then the sequence defined by
|nt| [nt| _ |nt]

; + % Z @ (G°Y,) (L) + L Z D (GYY,) ()G

where () is an iid family of N'(0,1) random variables, converges weakly in (C* (L), || - ||5) to

—% /0 ® (G*Y) (s)ds + /0 V@ (GYY) (s) (pdWs + pdW,') .

Proof. The proof follows by repeatedly applying the continuous mapping theorem after Propo-
sition [3.11] For the deterministic integral part one can easily prove that the integral mapping

is continuous from C*** to C* using a similar argument to Proposition m Then we get

Lnt)

/Ot ®(G*Y,) (s)ds = Z:; /+ d (G*Y,,) (%) ds = %gcp (G*Y,) (%) :

For the stochastic integral by definition we have that ® (G*Y) € L' is well defined and the
finiteness of all moments allows us to apply Proposition [3.12] Then using the continuity of the

[t6 map we obtain the following approximating sequence weakly convergent in C*/2(I):

t lnt] i+l J
/Owwam(smzszz / VEGV) (047, = 3 /B G () (Z(t) = Z(0).

Then, the problem reduces to being able to simulate the increments of Z exactly, taking into

[nt

account that corr(Z, W) = p must also hold. Since the increments of Z are Gaussian we may

easily construct this explicitly

Z(tiya) — Z(t:) = L (P{fi +1 - PQQ>

n
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where the independence of the iid N(0,1) sequences (§;) and ((;) is crucial for this to be

exact. O

We used here the approximation (3.6)), instead of , essentially for computational reasons.
It is of course possible to use the latter, at the cost of increasing complexity of the approximating
sequence due to the interpolating term involving double integrals, in general not available in
closed form. Proposition |3.13| allows to maintain the Holder space framework but only if
the family (¢;) is restricted to be Gaussian, which is in any case sufficient for Monte-Carlo

simulations. Nevertheless, the following proposition relaxes this condition.

Theorem 3.15. Let the sequences (®(G*Y,,), W,,) defined by and converge weakly to
(G*Y,W)) in the joint Holder topology C*** x CM(I) for A < 3 and v € (—3%,3). Assume further
E[e®"Y")] < 0o and that the iid family (&) in Assumption is bounded. Then the sequence

of stochastic integrals (®(G*Y,,)  W,,) also converges to ®(G*Y) @ W in C*(I).

Proof. We will make use of Theorem[3.4] Finite dimensional convergence follows from Jakubowski,
Memin and Pages [I1], since the approximating sequence with bounded random variables
satisfies the Uniform Tightness (see [11] for details) criterion. Then it remains to prove tightness

of the approximating sequence,

E {Z B (G7Y:) (1) (W, (10) - Wn<tj>>} < s (Z ®(0Y,) <tj>2p>

j=ns j=ns
C & C
< Z E[®(GY,) (t;)™] < o
j=ns

where we have made use of the boundedness of £, Jensen’s inequality and the finiteness of all

moments of ® (G*Y,,). The inequality then gives the desired convergence result in C*(I) O

As opposed to Theorem (where the driving random variables are forced to be Gaussian),
Theorem [3.15]allows to use any family of bounded random variables as approximating sequences
of W+ and any family random variables ensuring the moment condition E[e*9*Y)] < oo. The

gap between these two sets of conditions, that neither theorem covers, but this will be discussed

in Section B.2
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3.2. Extending the weak convergence to the Skorohod space and proof of Theo-
rem [3.2] The Skorohod space of cadlag processes equipped with the Skorohod topology has
been widely used to prove weak convergence [6]. The Skorohod space of cadlag processes
equipped with the Skorohod norm, which we denote (D(I), || - ||p), markedly simplifies when
we only consider continuous processes (as is the case of our framework with Hélder continuous
processes). Billingsley [6, Chapter 3 Section 12] proved that the identity (D(I) N C(L),| - ||p) =
(C(D), || - |lo) always holds. This seemingly simple statement allows us to reduce proofs of weak
convergence of continuous processes in the Skorohod topology to that in the supremum norm,

usually much simpler. We start with the following straightforward observation:

Lemma 3.16. The identity map is continuous from (CMI), || - ||») to (D), ]| - ||p) for all X €
(0,1).

Proof. Since the identity map is linear, it suffices to check that it is bounded. For this observe
that [[f[[x = [fIx + supser [F(O)] = [fIx + [flle > [Iflloc, Where [f[x > 0, which concludes
the proof since the Skorohod norm in the space of continuous functions is equivalent to the

supremum norm. ]

Applying the Continuous Mapping Theorem twice, first with the Generalised fractional op-
erator (Theorem [3.9), then with the identity map, yields the following result directly:

Theorem 3.17. The sequence (P(G*Y,,)) converges weakly to ® (G*Y') in (D(L),|| - ||p) for any

ac (_%7 %)

The final step in the proof of our main theorem, is to extend weak convergence to the log-
stock price. For this, the following result on weak convergence of stochastic integrals X o Y :=
[ XdY due to Jakubowski, Memin and Pages [I1], and later generalised to SDEs by Kurtz and
Protter [17] is the key ingredient.

Theorem 3.18. Let (W,),>1 be as in (3.1), N a cadlag process on 1, and (N,),>1 an approxi-
mating sequence such that (N, W,) converges weakly in (D(I?), || - ||p) to (N,W). Then, there
exists a filtration H under which W is an H-continuous martingale and (N, W,, N,, e Wn)n21

converges weakly to (N, W, N ¢ W).
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As noted in [I7], the Skorohod topology in D(I?) is stronger than in D(I) x D(I). In order
to use this result, we first need to have the joint convergence of the two correlated driving

Brownian motions W and Z. Let (W,),>; and (W}

n

weak limits W and W+, and let p := /1 — p?. Donsker’s invariance implies that (W,,, W:-),>1

Jn>1 be two sequences as in (3.1]), with

converges weakly to (W, W) in (C*(I?),] - ||), and hence by the Continuous Mapping Theo-
rem with f(z,y) := <a:, pr+ /1 — p2y), the sequence (W, pW,, + pW),>1 converges weakly
to (W, pW + pW+) in (C*(I?), | - |lo) for all @ < 3. Finally, the first term on the right-hand
side of converges weakly to —3 fOT O (GY) (s)ds by the Continuous Mapping Theorem,
as the integral is a continuous operator from (D(I), || - ||p) to itself. Since the couple (Y, W,,)
converges weakly to (Y, W) in (D(I?), ]| - ||p), Theorem [3.1§| implies that the second term on
the right-hand side of converges weakly to \/W o I, and Theorem follows.
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4. Numerical implementation

In this chapter, the core of this thesis is presented. The numerical implementation of the
above mentioned results applied on rBergomi model is given trough two algorithms. Results
as well as pros and cons are further commented. Both algorithms have been written based on
instructions given in [I]. First, the rBergomi model is defined then the instructions for writing
the algorithms are given with further comments on rBergomi model and finally the R-codes are

introduced:

Definition 4.1. Rough Bergomi model introduced by Bayer, Friz and Gatheral [24], where

Vi =& ((4)E (21/CH /Ot(t - s)o‘dWs) :

with parameters Vp,&(-) > 0, & € (—3,3), v > 0 given in definition of fractional Ornstein-
Uhlenbeck process and £(-) is the stochastic exponential. This corresponds exactly to ([2.6))

with g(u) =u®, Y = W and

D(p)(t) = &o(t) exp (2vChp(t)) exp {—QVQCIQ_I /Ot(t — 5)2ads} :

Algorithm 4.2 (Simulation of rough volatility models).

(1) Simulate two A/ (0, 1) matrices {;;}j=1,..m and {CN}] =1,.. am with corr(&4, (i) = p;
i=1

..........

(2) As can be seen above, the driver of volatlhty in rDonsker model is in fact Brownian
motion, e.a. Y = W following AY/(t;) = /T /n&; ;
(3) Simulate M paths of the fractional drlvmg process ((G*Y,,)(t))ier using

(GY,) Zg k1) k):Zg(tk)Aer(ti,kH), i1=1,...,nand j=1,..., M.
The complexity of this step is in general of order O(n?). However, this step is easily
implemented using discrete convolution with complexity O(nlogn). With the vec-
tors g := (9(t;))i=1.. n and AY7 = (AYJ(t;))i=1..,
(GY,)(T) = \/%(g x* AYJ), for j =1,..., M, where * represents the discrete convolu-

n for 7 = 1,..., M, we can write

tion operator.
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(4) Use the forward Euler scheme to simulate the log-stock process, for all i = 1,...,n,
j=1,...,M, as

%

X9(t) :Xﬂ'(tiq)—%% D (GY,) (1) fz VGV (to)Go

=1

As Bayer, Friz and Gatheral [24] and Bennedsen, Lunde and Pakkanen [29] pointed out, a ma-
jor drawback in simulating rough volatility models is the very high variance of the estimators,
so that a large number of simulations are needed to produce a decent price estimate. Nev-
ertheless, the rDonsker scheme admits a very simple conditional expectation technique which
reduces both memory requirements and variance while also admitting antithetic variates. This
approach is best suited for calibrating European type options. We consider FP = o (B, : s < t)
and F}V = o(W, : s < t) the natural filtrations generated by the Brownian motions B and W.
In particular the conditional variance process V;|F}V is deterministic. As discussed by Romano
and Touzi [31], and recently adapted to the rBergomi case by McCrickerd and Pakkanen [30],

we can decompose the stock price process as

:f(p/othBs> <\/1— /\/CD (GoY) ( dBL> = N X

and notice that

XIEAF) N (=) [0@) (s =) [0 @)

Thus exp(X;) becomes log-normal and the Black-Scholes closed-form formulae are valid here

(European, Barrier options, maximum,...). The advantage of this approach is that the orthog-
onal Brownian motion B+ is completely unnecessary for the simulation, hence the generation
of random numbers is reduced to a half, yielding proportional memory saving. Not only this,
but also this simple trick reduces the variance of the Monte-Carlo estimate, hence fewer simu-
lations are needed to obtain the same precision. We present a simple algorithm to implement

the rDonsker with conditional expectation and assuming that Y = W.

Algorithm 4.3 (Simulation of rough volatility models with Brownian drivers). Consider the
equidistant grid 7.

(1) Draw a random matrix {&;;}j=1,. M/2 with unit variance, and create antithetic variates
i=1,...,n

{—fj,i}j;l,...,M/z;

i=1,...,n
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(2) Simulate M paths of the fractional driving process G*W using discrete convolution:

(Q“WV(T):\/%g*fj), j=1,...,M,

|
—

n

T
) T ) )
and store in memory (1 — ,02)/ (GW)(s)ds = (1 — p)= > (G*W)(ty) =: X for
0 " =0
each j =1,..., M;
(3) use the forward Euler scheme to simulate the log-stock process, for each i = 1,... n,

7=1,...,M, as

(2

2

| | T

Xi(t) = Xi(ti) - 22
n

. (G WY (1) + p@ ’; \/ O (GWY (tr1)&);

(4) Finally, we have X7(T) ~ N(X4 — ¥7,%7) for j = 1,...,M; we may compute any

k=1

option using the Black-Scholes formula. For instance a Call option with strike K would

be given by
CH(K) = exp(XJ)N(d]) — KN(d}) for j=1,..., M,

where

. 1 . 1 S :
a5 = —EA(X%—log(K)—FﬁZ]) and d} = d] — V.
NGO

Thus, the output of the model would be C(K) = 224:1 CI(K).

Remark 4.4. These algorithms have been used in order to create the R-codes which simulate
the rBergomi model. Of course, they are only general guidelines for implementation of a larger
group of rough volatility models. In order to write the codes each model has to be further

studied.

Looking at the definition of the rough Bergomi model, one can observe that not all the
information needed for implementation of this specific model is given above. The articles
Pricing under rough volatility by Bayer, Friz and Gatheral [24] and Volatility is rough by
Gatheral, Jaisson and Rosenbaum [22] provide the information about the missing components
Cir, and &(-).

Let us start with Cy. As stated in [22], empirically, the increments of the log-volatility of
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various assets enjoy a scaling property with constant smoothness parameter and that their

distribution is close to Gaussian. This naturally suggests the simple model:
(4.1) logopya —logoy =v (Wiy — W),

where W# is a fractional Brownian motion with Hurst parameter equal to the measured smooth-

ness of the volatility and v is a positive constant. We may of course write (4.1]) under the form
(4.2) o =ocexp {v W/},

where ¢ is another positive constant. Realized variance was found to be consistent with this
simple model as the relationship was found to hold for all 21 equity indices in the Oxford-Man
database, Bund futures, Crude Oil futures, and Gold futures according to [24]. Furthermore

consider the Mandelbrot-Van Ness representation of fractional Brownian motion W in terms

v -onl[ 7255

where v = % — H and the choice

of Wiener integrals:

I(3/2 — H)

Cn = I'(H+1/2)T(2—2H)

ensures that W satisfies the definition, i.e.

S

1
Cov(W", W) = S (It + 15/ — [t = s*")

thus, we obtained the necessary Cy. Now, the only thing left unknown is &y(-). In Bayer, Fritz

and Gatheral[24] it is stated that
gt(u) = E[Uu ’ -ES], u >t

is a forward variance curve, where v? = o2 denotes instantaneous variance at time u > t. This
means that in our case £y(-) represents the evolution of variance expressed as the expected
value of the variance of an asset based on the information available up until the time of our
investment. Normally, the forward variance curve can be obtained from the Market but this is
not the case here because one has to be actively involved in Market trading in order to obtain
such information so we turn to an alternative way of constructing the forward variance curve.
The idea is to obtain the plain vanilla call and put prices for as many different strikes as possible

from the internet, then to compute the price of the log contract for available expiration dates
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and finally, extract the forward variance curve by differentiation. One can of course argue that

this approach influences the precision of our simulations but no better alternative was found.

4.1. Construction of forward variance curve.

Definition 4.5. The log contract is the future type contract whose payoff is equal to the

logarithm of the price of an asset at the time of expiration.

As shown in [21], we consider a contract whose payoff at time T is log(S7/F) where F represents
the time-T forward price of the stock. Then
” 1
g (K)=-=
St |Sr=K

and it follows from the payoff relation
F F
Blg(Sr) | ) =g(F) + [ aKP()G (K)+ [ dKC(E)g (1)
0 0

,with P and C being undiscounted put and call prices respectively and k := log(%), that

E {log (%)] _ /_ (; dp(k) — /0 " dke(k)

Fey Fev

representing option prices expressed in terms of percentage of the strike price. In settings of

with

no interest rates or dividends F' = Sy hence

ST T TdSt TO‘%
1 —_— = 1 = _— _ot
Og(So) | aestsy= [5Gt [ G

One can immediately see that the second term on the right side is the half of total variance

which we are trying to obtain. Taking the risk neutral expectation of this equation, we get

5| ) ot =2 flog ()| =2 { [ OO () + [ et |

It is now explicitly shown that the fair value of total variance is given by the value of an infinite
strip of European options in a completely model independent way so long as the underlying
process is a diffusion. Another small problem here is the assumption that we can obtain prices

of European call and put option for all strikes K € R. In this paper, the integral is obtained
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via upper and lower Darboux sums with mash size being equal to the difference of obtainable
strikes for which we have both, European call and put, prices. In short, we use the arithmetic
middle of upper and lower Darboux sum to calculate this integral with respect to strike and we
do it for different maturity dates. After calculating this integral, differentiation with respect
to time was calculated in order to obtain the forward variance curve. Finally we have all the

ingredients necessary for our implementation and now we move on to the R codes.

4.2. R codes.

The asset chosen for testing the implementation was S&P 500 Index. Because of its impor-
tance, European call and put prices are available for a decent number of strikes which makes
our forward variance curve more accurate and for maturities up to 13 weeks. The obtained
European call and put prices for available strikes were sorted in excel tables and then imported
into RStudio. The prices of call and put options for different strikes are taken as arithmetic
middle of bid/ask spread. Next graphic shows how the data is presented on the webpage

marketwatch.com/ used to obtain them.


https://www.marketwatch.com

| https://www.marketwatch.com/investing/index/spx/options

lome News Viewer Markets nance Retirement Economy Real Estate Entertainmen
SEPTEMBER, 2018 OPTIONS Hide
CALLS PUTS

Expires September 4, 2018

Symbol  Last Change Vol Bid Ask  Openlint | Strike | Symbol Last Change Vol Bid Ask  Opennt
1,500 | quote 0.08 -0.07 247.00 005 005 4,240

quote 1354 000 6000 1354 1,362 1,550 | quote 012 003 27.00 005 005 4,231
1,600 | quote 005 007 400 005 005 8389

quote 000 000 000 1255 1256 1.650 | quote 005 006 800 005 005 4,124
quote 000 000 000 1205 1,206 1.700

quote 000 000 000 1,104 1,106 1.800

quote 000 000 000 1,054 1,056 1.850 | quote 010 005 100 010 005 63.00
quote  993.58 2273  1.00 1,005 1,006 2.00 1,900

1,950 | quote 010 015 7.00 005 005  16.00

quote 87060  0.00  1.00 90470 906.20 1.00/ 2,000 | quote 010 015 500 005 005  132.00
2,050 | quote 010 -020 1000 0.5 005 115.00

2,100 | quote 005 -0.10 11.00 0.05 005 2332

quote 0.00 000 000 754.30 755.80 2,150 | quote 010 002 2500 005 005 99.00
2,200 | quote 005 005 500 005 005 1,153

quote 000 000 000 629.80 631.30 2,275

2,300 | quote 011  -004 200 005 005 143.00

2,325 | quote 005 016 400 005 005 120.00

quote 000 000 000 554.80 556.30 2,350 | quote 005 -025 5000 005 005 179.00
2,400 | quote 004 001 100 005 0.05 107.00

quote 0.00 000 000 494.40 495.90 2,410 | quote 0.00 000 000 005 010 4.00
2,425 | quote 010 080 300 005 0.10  385.00

quote 37165  0.00  1.00 454.90 456.30 1.00/ 2,450

quote 0.00 000 000 429.90 431.40 2,475 | quote 005  -002 13.00 005 010 29.00
quote 0.00 000 000 404.90 406.40 2,500 | quote 005 005 31200 005 010 6,043
quote 0.00 000 000 394.90 396.40 2,510 | quote 040 -060 200 005 010 2.00
2,520 | quote 021 244 200 005 0.10 6.00

quote 0.00 000 000 379.90 381.40 2,525

2,530 | quote 010 120 1,531  0.05 010 1,283

quote 000 000 000 349.50 351.00 2,555

quote 0.00 000 000 34450 346.00 2,560 | quote 010 -050 7500 005 010 4.00
quote 0.00 000 000 33450 336.00 2,570

quote 000 000 000 329.50 331.00 2,575 | quote 065 -005 200 005 010  765.00
quote 000 000 000 31500 316.40 2,590 | quote 018  -0.37 11500 005 015  120.00
quote 0.00 0.00 0.00 26500 266.50 2,640

quote 0.00 0.00 0.00 260.00 261.50 2,645 quote 060  -0D.92 30000 005 015  303.00
quote 0.00 0.00 0.00 25500 256.50 2,650 quote 015  -0.10 12000 005 0.5 3,829
quote 0.00 0.00 0.00 250.00 251.50 2,665 quote 015  -0.50 12000 0.10 020  606.00
2,670 | quote 0.15 -0.60 12000  0.10 0.20 802.00

quote 0.00 0.00 0.00 230.00 231.50 2,675

quote  229.58 37.31  1.00 225.10 226.50 1.00 2,680  quote 0.25 005 1000 010 020  530.00
quote 0.00 0.00 0.00 22010 221.50 2,685 quote 020 047 5100 010 020 1913
quote 0.00 0.00 0.00 21510 216.60 2,690

quote 0.00 000 000 210.10 211.60 2,695 quote 020 025 20000 0.10 020 3,673
2,700 | quote 015 020 1320 0.15 025 4,140

quote 0.00 0.00 0.00 199.80 201.30 2,705 | quote 025 010 3300 010 020 1,564
2,710 | quote 020 060 2300 0.15 0.25 892.00

2,715 | quote 035 010 11500 0.15 025 2831

quote  139.23 3593 200 18510 186.60 2.00 2,720

2,725 | quote 020 -020 5400 0.15 025 3272

quote  114.30 000 200 16520 166.60 2.00 2,740

quote  102.60 1590 14.00 160.20 161.70 3500 2,745 quote 025 020 6800 020 025 3,055
2,750 | quote 025 -025 10000  0.20 025 7587

quote 73.60 0.00 1.00 15020 151.70 1.00 2.755 | quote 0.45 015 17.00 020 030  160.00
quote  116.88 000 1.00 14520 146.70 1.00 2,760 | quote 025 025 2000 020 030 1,089
2,775 | quote 045 016 500 020 030 6592

2,785 quote 033 041 2000 025 0.35 168.00

2,795 quote 0.68 028 7800 025 040 1,108

2,800 | quote 035 035 1579 0.35 040 2,054

quote 10645 3955  1.00 100.30 101.80 30.00 2,805

2,810 | quote 040 -025 500 0.35 045 1493

quote 90.60 820 1000 8990 9140 8500 2,815 quote 060  -0.10 30000 035 045  619.00
quote 91.30 1430 800 8510 8660 136.00 2,820 quote 045 043 3600 040 050  668.00
quote 8630 1165 600 8020 8170 357.00 2,825

quote 7150 -530 3200 6530 6670 25200 2,840  quote 060 -0.75 61200 055 065 1,379
2,845 | quote 080 046 11.00  0.60 070 1331

quote 5140 -1425 67.00 5540 5690 826.00 2,850

quote 49.84 358 200 5050 5200 139.00 2,855

quote 3556 459 600 4080 4220 1458 2,865

quote 37.00 363 21.00 36.30 37.70 1751 2,870 quote 1.35 105 21800 125  1.45 1518
quote 26.88 1.33 1800 2470 26.00 1,973 2,880

2,885 | quote 260 -1.80 107.00 250 2.90 998.00

quote 1480 081 117.00 1820 19.00 57500 2,890 | quote 325 209 190,00 3.30  3.80 1,546
quote 14.79 259 156.00 1270 13.20 1,081 2,895

quote 10.05 0.04 312.00 940 10.00 2,543 2,900
2,903 Current price as of 8/31/2018 10:45:10 AM

quote 7.40 0.09 271.00 6.70 7.10 1,088 2,905 quote 7.80 -3.05  79.00 8.00 8.70 955.00
quote 4.90 -0.40 232.00 4.60 4.90 841.00 2,910 quote 11.05 253 37.00 1040 11.60 188.00
quote 225 0.00 352.00 2.00 2.15 1,970 2,920

2,925 | quote 19.75 295 10.00 22.00 2350 27.00

2,930 quote 25186 -583 3200 2410 2620 60.00

quote 0.45 -0.30 121.00 0.65 0.80 2,342 2,935

quote 0.25 -0.10 1,330 0.20 0.25 2,082 2,950

quote 020 -010 4700 0.05 010 67.00 2,985

3,000 | quote 0.00 0.00 0.00 94.00 95.50

3,025 quote 0.00 0.00 000 11860 120.00

quote 0.05 -0.05 460.00 0.05 0.05 3,412 3,050 quote 0.00 0.00 0.00 143.50 145.00

3,075 | quote 0.00 0.00 0.00 168.50 170.00

quote 0.05 -0.05 36400 0.05 0.05 1,436 3,100 quote 0.00 0.00 000 19350 19500

quote 0.05 0.02 6.00 0.05 0.05 52.00 3,150

quote 0.05 0.00 1.00 0.00 0.05 1.00 3,200

quote 0.00 0.00 0.00 0.00 005 3,250 quote 0.00 0.00 000 34340 34490

quote 0.00 0.00 0.00 0.00 0.05 3,300

FIGURE 1. An example of data for different strikes and single maturity date



4.2.1. Forward variance curve.

library (stats)
library (pracma)
library (” xlsx”)
a <—0

c <— 0
p<—0
d<-0
Ie <~ 0

Ip <~ 0
min <— 200

ind <— 0

i <—1

fK <— c(length(table 128X __1))
fcall <— c¢(length(table_ 12$X__1))
fput <— c(length(table_12$X__1))

for (1 in 1:length(table_12$X__1)) {
fK[1]<—table_12[1,8] $X__8
fcall [l]<—table_12[1,9]$X__9
fput [1]<—table_12[1,7]$X__7

LK <— log (fK,10)

for (i in 1:(length(fK)—1))
{
diff <— fcall[i]—fput[i]
if (diff < 0) {diff <— (—diff)}

31
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if (diff < min)
{

min <— diff

ind <— i
¥
}
for (j in 1:(ind —1))
{
a <— (LK[j+1]-LK[j])
p <= ((fput [j+1]+fput[j])/2)
d <= ((LK[j+1]+LK[j])/2)
Ip <= Ip + (ax(p/d))
}
for (k in ind:(length(K)—1))
{
c <— ((fcall [k+1]+fcall [k])/2)
a <— (LK[k+1]-LK[k])
d <— ((LK[k+1]+LK[k])/2)
Ic <— Ic + (ax(c/d))
}

#obtained values

fwdve <— c(length (13))

fw <—c(0.01838119, 0.11818865, 0.21840105, 0.35303439, 0.45754196, 0.58420218,

0.73187350, 0.91971890, 1.10343434,
1.79916553)
fwdve [1] <— fw[1]

for(o in 2:13) {

fwdve[o] <— fw[o]—fw[o—1]

1.21383215,

1.39843313,

1.58303411,
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plot (fwdve[1:13], xlab="time (weeks)”,

ylab="Expectation of sigma squared (variance)”, main="plot”, type="1")
points (0, 0, type = "17)
plot
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FIGURE 2. Total variance curve
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Remark 4.6. One may notice that the obtained results were written down and saved in a
vector at the end of the program, that is done in order to prevent the tedious import of excel
tables in case of something going wrong. Furthermore, if we consider the plot of expected
values of forward variance and take into consideration that the differentiation with respect to
time was done for a time unit of one week, then the values of our forward variance curve, are

actually the slopes of lines connecting the points of the plot.

4.2.2. Algorithm 4.2.

library (stats)

library (pracma)

n <— 182
m <— 1000
t <— 0.07
alph <— 0.1
H<- 0.1
nu <— 2.8
acall <— 0
aput <— 0
rho <— 0.5
put <— 0
call <— 0
ksi <— 0

var <— c(length(13))
sp <— (2760, 2755, 2760, 2760, 2770, 2745, 2760, 2755, 2750, 2760, 2765, 2765,
2760)
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start_time <— Sys.time/()

#foward variance curve

fwdve <— c(length (13))

fw <— ¢(0.01838119, 0.11818865, 0.21840105, 0.35303439, 0.45754196, 0.58420218,
0.73187350, 0.91971890, 1.10343434, 1.21383215, 1.39843313, 1.58303411,
1.79916553)

fwdve [1] <— fw[1]

for(o in 2:13) {

fwdvc|o] <— fw[o]—fw[o—1]

#simulating correlated matrices

matrica <— matrix (rnorm (nxm, mean=0, sd=1),m,n)
tmpMatrica <— matrix (rnorm (n*m, mean=0, sd=1),m,n)
matrica2 <— rhosmatrica + sqrt(l—rhoxrho)*tmpMatrica

matrica3 <— matrix (nrow=m, ncol=n)

#volatility simulation

sum (matricaxmatrica2)/(mxn)
for (j in 1:m)
{for (i in 1:n)
{
G<-0
for (k in 1:i)

{
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G<—+4+ ((((i—k+1)*(t/n)) " alph)xsqrt (t/n)*matricalj,k])
}

matrica3[j,i] <— G

}

#simulating prices

matrica4d <— matrix (nrow=m, ncol=n)

CH <— sqrt ((2+«Hxgamma(1.5—-H)) /(gamma(H+0.5)+gamma(2—2xH)))

for (j in 1:m)

{ X <— log(2760,exp (1))

for (i in 1:n)

{

S1 <= 0

S2 <= 0

if (i %% 14 = 1){ksi <— fwdvc[(i+13)/14]}
for (k in 1:i)

{

integrand <— function(s)

{(((kxt)/n)=s)" (2xalph)}
Itp <— integrate (integrand , lower = 0, upper = ((kxt)/n))
I <— ItpS$value

Y <— (—2)*(nusnu)x*(CHxCH)x* I
Z <— 2snuxCHxmatrica3[j, k]
S1 <— + (0.5%t/nxksixexp(Z)*(exp(Y)))

S2 <— + (sqrt(t/nxksixexp(Z)*(exp(Y)))*matrica2|[j,k])

W <— (S2-S1)
X<—X+W



matricad [j,1] <— exp(X)

}

plot (matrica4 [1,1:n], xlab="time”, ylab="price”, main="plot”, type="1")
points (0,2760, type = "17)

lines (matrica4 [33,1:n], col="darkgreen”)

lines (matrica4 [50,1:n], col="brown”)

lines (matrica4 [89,1:n], col="darkblue”)

#pricing asian options with strike K

K <— 2760
avgp <— c(length (m))
for (j in 1:m) {
avg <— 0
for (i in 1:n) {
avg <— avg + matricad[j, 1]
}

avgp[j] <— avg/n

for (j in 1:m) {
put <— put + (max(0,K-avgp[j]))
call <— call + (max(0,avgp[j]-K)) }
acall <— call/m
aput <— put/m
print (acall)

print (aput)

end_time <— Sys.time /()

37
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FiGURE 3. Path simulations of Algorithm 4.2
end_time — start_time

Remark 4.7. The vector sp contains the weekly forward prices of the asset during 13 weeks.
Also, Sys.time() was introduced in order to measure the speed of both algorithms. Variables
m and n denote the number of simulated paths and number of discretisation points during 13

weeks respectively.
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4.2.3. Algorithm 4.3.

library (stats)

library (pracma)

m <— 1000

n <— 182

alph <— 0.1

H<- 0.1

ksi <— 0

nu <— 2.8

t <— 0.07

call <— 0

put <— 0

acall <— 0

aput <— 0

var <— c(length(13))

sp <— ¢(2760, 2755, 2760, 2760, 2770, 2745, 2760, 2755, 2750, 2760, 2765, 2765,
2760)

lg <— 0

dg <— 0

start_time <— Sys.time ()

#foward variance curve

fwdve <— c(length (13))

fw <— ¢(0.01838119, 0.11818865, 0.21840105, 0.35303439, 0.45754196, 0.58420218,
0.73187350, 0.91971890, 1.10343434, 1.21383215, 1.39843313, 1.58303411,
1.79916553)

fwdve [1] <— fw[1]
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for(o in 2:13) {

fwdvc|o] <— fw[o]—fw[o—1]

#antithetic variates matrix

matrica <— matrix (rnorm(n*(m/2),mean=0, sd=1),(m/2),n)
matrica2 <— matrix (nrow=(m/2),ncol=n)

matrica2 <— (—1)*matrica

matricad <— rbind(matrica, matrica2)

matrica4d <— matrix(nrow = m, ncol = n)

g <— c(length(n))

h <— c(length(n))

for (j in 1:m)
{
for (i in 1:n)
{
gli] < ((it)/n)"alph
h[i] <— matrica3[j,i]

}

x <— fft(g)
y <— fft (h)
z <— X%y

matricad [j,1:n] <— Re(sqrt((t)/n)xifft(z))

#simulating log—prices
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matricab <— matrix (nrow=m, ncol=n)

CH <— sqrt ((2+«Hxgamma(1.5—-H)) /(gamma(H+0.5)*gamma(2—2xH)))

for (j in 1:m)
{ X <= log(2760,exp (1))
for (i in 1:n)
{
S1 <=0
S2 <~ 0
Pf( i %% 14 = 1 ) {ksi < fwdve[(i+13)/14]}
for (k in 1:i)
{
integrand <— function(s) {(((kxt)/n)—s) " (2xalph)}
Itp<—integrate (integrand , lower = 0, upper = (kxt)/n)
I<~ItpS$value
Y<—(—2)*(nu*nu)* (CH«CH) *
Z<—2xnuxCHxmatricad [ , k]|
S1 <— + (0.5%(t/n)*ksixexp(Z)*(exp(Y)))
S2 <— + (sqrt ((t/n)*xksixexp(Z)*(exp(Y)))*matrica3d[j,k])

}
W <— (S2-S1)
X<-X+W

matricab[j,i] <— exp(X)

}
}
plot (matricab5[3,1:n], xlab="time”, ylab="price”, main="plot”, type="1")
points (0,2760, type = "17)
lines (matricab[28,1:n], col="blue”)
lines (matricab[57,1:n], col="red”)

lines (matrica5[99,1:n], col="purple”)
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#pricing asian options with strike K

K <— 2870
avgp <— c(length (m))
for (j in 1:m)
{
avg <— 0

for (i in 1:n)

{
avg <— avg + matricab[j,i]
}
avgp[j] <— avg/n

for (j in 1:m) {
call <— call + (max(0,avgp[j]-K))
put <— put + (max(0,K-avgp[j]))

acall <= call/m

aput <— put/m

print (acall)
print (aput)

end_time <— Sys.time()

end_time — start_time
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path simulation
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FIGURE 4. Path simulations of Algorithm 4.3

Remark 4.8. Looking at the sample paths of both algorithms, it is easily observed that their
values differ more with time. That is consistent with the fact that total variance of the asset
price is monotone increasing with respect to time. Omne can also notice that the paths of
Algorithm 4.3 are less dispersed for a first few weeks than the paths of Algorithm 4.2. That
is due to antithetic variates used in algorithm 4.3 which is a known method of reducing the

variance of Monte Carlo simulations.

For the final part, the title of the thesis is justified as we move on to pricing of Asian options

using the above introduced algorithms adapted to fit the rBergomi model.
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Definition 4.9. Given an underlying asset S; with exercise date T and strike price K, the

payoff of the Asisan call option is given by

1 (7 !

whereas the payoff of the Asian put option is given by

1 T
=K — =
¢ ( T/o Stdt)

As we can see, Asian options are path dependent options on average price and thus less

+

volatile than the European ones. Looking at the Asian call option price, it can be shown that
its upper bound is given by the corresponding European call price using convexity arguments
and Jensens inequality. To my knowledge, this is the first attempt of pricing Asian options
in the settings of rough Bergomi model and no data on Asian option prices was found on the
internet, meaning that this was the only bound one could turn to in order to see if the obtained
prices could be realistic. Some may argue that Black-Scholes formula could have been used,
but these results wouldnt be useful or helpful because their significance is questionable for a
number of reasons one of them being that the model assumes constant volatility and does not

take into consideration the volatility smile observed at the market.

4.2)

A. put (Alg. 4.2) | A. put (Alg. 4.3) | Put | Strike| Call | A. call (Alg. 4.3) | A. call (Alg.
18.54 17.82 38.30 | 2670 | 130.70 113.79 109.66
19.62 17.04 39.25 | 2675 | 126.72 107.20 106.21
27.77 22.90 42.45 | 2690 | 115.10 99.18 94.26
24.51 24.76 44.70 | 2700 | 107.35 89.72 95.28
34.52 29.25 48.45 | 2715 | 96.15 78.91 79.31
48.93 49.65 62.05 | 2760 | 64.95 54.01 56.42
56.13 54.87 63.80 | 2765 | 61.75 01.17 49.72
61.36 56.74 65.65 | 2770 | 58.60 49.25 45.51
97.72 95.48 93.55 | 2830 | 26.85 31.97 29.57
127.11 125.95 119.50 | 2870 | 13.25 12.48 11.93

F1GURE 5. Results of both algorithms for different strikes and 3 months maturity
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In the end, we state a few observations that were made while creating the above introduced
algorithms. In Algorithm 4.2, the correlation coefficient p between the price and the volatility
drivers was assumed to be negative because one would expect the prices to drop as the volatility
rises and vice versa. At the end, -0.1 value was chosen because the results best matched the
results obtained using algorithm 4.3. Discretization was proved to be of great importance. As
often found in discretization processes, the finer the subdivision of the given time interval is, the
better the end result is. For instance, using five days a week or even daily time discretization, i.e.
n=65 and n=91 respectively, the obtained results for Asian call option would sometimes break
the upper bound. In the end twice a day time discretization was used in testings which gave the
above presented results. An even better time discretization would probably yield better results
in sense of accuracy but that requires a lot of computational power which, unfortunately, was
not available at the time being so we leave that for some further research. It was also found that
the obtained Asian options prices do not vary much for multiple Monte Carlo simulations if
thousand paths are simulated. Of course, more paths would make this variance even smaller but
the reason for not simulating more than one thousand paths is again the lack of computational

power.

5. Conclusion

To conclude, rough volatility models have a great potential because they explain the volatility
behavior in the most accurate way possible today. The paper written by Horvath, Jaquier and
Muguruzall] enables faster and easier implementation methods. Of course they have some
downsides, the obvious one being lack of closed forms, as in rBergomi for example, which leaves
us with Monte Carlo simulations as the only possible implementation method. The biggest
problem of Monte Carlo is the need for a vast number of simulations which in turn sets the
need for lot of computational power in order to achieve accuracy in a sensible amount of time.
The accuracy of the above presented results cannot be properly discussed as this is the first
simulation of that kind so no results were provided to make the comparison. We can only state
that they can be improved via more refined subdivision of time interval and larger number of
simulated paths. The questions about the optimal correlation coefficient p and constant v >0
are left for some further research because with result comparison possibility. It is also worth

mentioning that they probably arent unique in sense that they depend on the underlying asset.
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