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Kurzfassung der Dissertation

Diese Dissertation beschäftigt sich mit der Theorie und den Anwendungen Zentraler Grenz-
wertsätze (ZGWS) und Nicht-Zentraler Grenzwertsätze (NZGWS). Teil I dient als Ein-
leitung. In Teil II beschäftigen wir uns mit dem Grenzverhalten zufälliger Summen und
beweisen einen NZGWS und Konvergenzraten. In diesem Teil liegt der Schwerpunkt auf
der von uns vorgeschlagenen Beweistechnik. In Teil III analysieren wir das Grenzverhalten
von Semimartingalen für kurze Zeiten. Wir beweisen ZGWS und gehen auf Anwendungen
in der Finanzmathematik ein. Teil II und Teil III sind voneinander unabhängig.

Teil I,Vorbereitung : Kapitel 1 wiederholt klassische ZGWS und ist Grundlage für alles
Weitere. In den Kapiteln 2 und 3 beschäftigen wir uns mit der steinschen Methode und
der Asymptotik zufälliger Reihen. Kapitel 4 widmet sich dem Konzept der Stichproben-
verzerrung. Ziel der Kapitel 2 bis 4 ist es, einen Grundstein für Teil II zu legen. Kapitel 5
motiviert die in Teil II ausgeführte Forschung.

Mit Kapitel 6 wechseln wir das Thema und präsentieren ein heuristisches Argument
zugunsten eines ZGWS für eine Klasse stetiger Semimartingale. Kapitel 7 greift diese
Fragestellung auf und motiviert die in Teil III ausgeführte Forschung.

Teil II, Analyse von Zufallssummen poissonscher Mischverteilungen mittels steinscher
Methode: Mithilfe der steinscher Methode geben wir Abschätzungen für die Wasserstein-
und die Kolmogorov-Distanz zwischen Zufallssummen poissonscher Mischverteilungen und
ihren Grenzverteilungen. Beachtenswert ist wie die steinsche Methode zur Anwendung
kommt. Durch stochastisches Bedingen ist es möglich, den Fall einer gaußschen Varianz-
Mischverteilung auf den Fall einer Normalverteilung zurückzuführen, wodurch man die
Analyse einer unhandlichen Stein-Gleichung umgehen kann.

Teil III, Zentrale Grenzwertsätze für Semimartingale für kurze Zeiten: Wir zeigen einen
ZGWS sowie einen funktionalen ZGWS für stetige Semimartingale für kurze Zeiten. Wir
verallgemeinern diese Resultate für Semimartingale mit Sprüngen. Als Anwendungen in
der Finanzmathematik besprechen wir die Bepreisung digitaler Optionen am Geld für kurze
Zeiten und geben eine Abschätzung für die Asymptotik erster Ordnung der implied vola-
tility skew am Geld.
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Abstract

This dissertation is focused on the theory and applications of central limit theorems (CLTs)
and non-central limit theorems (NCLTs). Part I has preliminary character. In Part II, we
deal with the limit behavior of random sums. We prove a NCLT and rates of convergence.
In this part, our primary emphasis is the new method of proof we propose. In Part III, we
study the limit behavior of semimartingales for small times. We prove CLTs and extend
these to functional CLTs on the process level. Subsequently, we show applications in math-
ematical finance. Part II and Part III are independent of each other.

Part I, Preliminaries: In Chapter 1, which is the foundation of Part II and Part III, we
recapitulate classical CLTs. In Chapters 2 and 3, we introduce the reader to the rudiments
of Stein’s method and review parts of the asymptotic theory of random sums. Chapter 4
deals with the concept of size biasing. The knowledge of Chapters 2 to 4 is essential for
Part II. Chapter 5 motivates the research which is carried out in Part II.

In Chapter 6 we change the subject and give a heuristic argument in favor of a small-
time CLT for a class of continuous semimartingales. Chapter 7 seizes this idea and further
motivates the research in Part III.

Part II, Analysis of Poisson Mixture Sums via Stein’s Method : By using Stein’s method,
we study the Wasserstein, as well as the Kolmogorov distances of Poisson mixture sums
and their limit distributions. The primary focus is laid on how Stein’s method is applied.
By stochastic conditioning, it is possible to work with Stein’s equation of the Gaussian
distribution instead of a more complex Stein equation.

Part III, Small-Time Central Limit Theorems for Semimartingales: We prove a CLT,
as well as a functional CLT on the process level for continuous semimartingales for small
times. These results are extended to semimartingales with jumps. As an application to
mathematical finance, we discuss the pricing of at-the-money digital options with short
maturities and the asymptotics of at-the-money short time implied volatility skews.
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Preliminaries

1





Chapter 1

Classical Central Limit Theorems

We state classical central limit theorems (CLTs), which we will continue to use freely

thereafter.

Since [Pól20], the name central limit theorem is used when the limit distribution of a
statistical model is Gaussian. The history of CLTs, portrayed in [Fis11], begins with de
Moivre’s paper on the normal approximation of the binomial distribution in 1733 [Smi59].
In 1774, de Moivre’s work was improved by Laplace [Sti86] and the result became known
as the de Moivre–Laplace theorem. Laplace developed the characteristic function as a
tool and presented the first general CLT in [Lap95], admittedly with an incomplete proof.
According to Kallenberg [Kal02], the first rigorous proof was given in 1901 by Lyapunov
[Lya01]. Between 1920 and 1922, Lindeberg proved sufficient conditions for a CLT in [Lin20;
Lin22a; Lin22b], which later also turned out to be essentially necessary. In 1927, Bernstein
obtained the first extension to higher dimensions [Ber27]. A more quantitative version,
known as the Berry–Esseen theorem, was independently established by Berry [Ber41] and
Esseen [Ess42] in 1941 and 1942, respectively. It specifies the rate at which the convergence
to a Gaussian distribution takes place by giving a bound on the maximum error. In 1972, a
whole new chapter of the theory of CLTs was opened by Stein [Ste72]. He introduced a new
technique involving a differential operator to deliver explicit estimates of the approximation
error. That the heart of this method does not rely on independence has led to a wide range
of applications of Stein’s method. Consequently, Stein’s method was further developed
by several mathematicians, see the monographs [BC05; CGS11; NP12] and the references
therein.

Let X = {Xi}i∈N be a sequence of independent random variables, with

E[Xi] = 0, 0 < σi :=
√

V(Xi) <∞, i ∈ N.

For n ∈ N, we define

Sn :=

n∑
i=1

Xi, Σn :=
√

V(Sn) =
( n∑
i=1

σ2
i

) 1
2
, Sn :=

Sn
Σn

.

Theorem 1.1 (CLT). Let Z ∼ N(0, 1) be a standard Gaussian random variable on a
probability space (Ω′,F′,P′) and let X = {Xi}i∈N be a sequence of independent, square-
integrable random variables with zero mean and positive standard deviation on a probability
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Chapter 1. Classical Central Limit Theorems

space (Ω,F,P). If the Lindeberg condition

lim
n→∞

1

Σ2
n

n∑
i=1

E
[
X2
i ; |Xi| ≥ εΣn

]
= 0, ε > 0, (1.2)

holds, then
lim
n→∞

EP[ϕn(Sn)] = EP′ [ϕ(Z)],

where {ϕi}i∈N ⊂ C(R;C) satisfies

sup
n∈N

sup
x∈R

ϕn(x)

1 + |x|2
<∞,

and converges to ϕ uniformly on compacts. Moreover, if −∞ ≤ a < b ≤ ∞, then

lim
n→∞

P
[
a ≤ Sn ≤ b

]
=

1√
2π

∫ b

a
e−

s2

2 ds.

Proof. See [Str11, Theorem 2.1.8, p. 64].

Remark 1.3. If the random variables {Xi}i∈N are identically distributed, then

lim
n→∞

1

σ2
1

E
[
X2

1 ; |X1| ≥ ε
√
nσ1

]
= 0, ε > 0,

meaning that the Lindeberg condition (1.2) holds.

Remark 1.4. The Lindeberg condition (1.2) is a sufficient condition for

lim
n→∞

EP[ϕ(Sn)] = EP′ [ϕ(Z)] (1.5)

to hold for all ϕ ∈ Cb(R;C).
Feller proved that (1.5) for all ϕ ∈ Cb(R) and

lim
n→∞

max
1≤i≤n

σi
Σn

= 0

imply that Lindeberg’s condition (1.2) holds. These two results combined are known as the
Lindeberg–Feller theorem, see [Str11, p. 62].

Theorem 1.6 (Berry–Esseen). Let X = {Xi}i∈N be a sequence of independent random
variables on the probability space (Ω,F,P), with

E[Xi] = 0, 0 < V(Xi) <∞, ξi :=
(
E
[
|Xi|3

]) 1
3 <∞, i ∈ N.

Then, for n ∈ N,

‖Fn − Φ‖∞ ≤ 10

∑n
i=1 ξ

3
i

Σ3
n

,

where
Fn(x) := P

[
Sn ≤ x

]
, x ∈ R,

and Φ is the cumulative distribution function of a standard Gaussian random variable.
In particular, if

V(Xi) = 1, i ∈ {1, . . . , n},
then

‖Fn − Φ‖∞ ≤ 10

∑n
i=1 ξ

3
i

n
3
2

≤ 10
maxi∈{1,...,n} ξ

3
i√

n
.
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Proof. See [Str11, Theorem 2.2.17, p. 77 et seqq.] for a proof via Stein’s method based on
the work by Bolthausen [Bol84].

Theorem 1.7 (Multivariate CLT). For m ∈ N, let {Xi}i∈N be a sequence of independent,
square-integrable, Rm-valued random vectors on a probability space (Ω,F,P). Further, as-
sume that for i ∈ N, E[Xi] = 0 and that the covariance matrix Cov(Xi) of each Xi is strictly
positive definite. Let n ∈ N, then we define

Sn :=
n∑
i=1

Xi, Cn := Cov(Sn) =
n∑
i=1

Cov(Xi), Σn := (det(Cn))
1

2m , Sn :=
Sn
Σn

.

Assume that the limit

C := lim
n→∞

Cn
Σ2
n

exists and that the Lindeberg condition

lim
n→∞

1

Σ2
n

n∑
i=1

E
[
|Xi|2; |Xi| ≥ εΣn

]
= 0, ε > 0,

holds. Then, for every sequence {ϕi}i∈N ⊂ C(Rm;C) that satisfies

sup
n∈N

sup
x∈Rm

|ϕn(x)|
1 + |x|2

≤ ∞, (1.8)

and converges uniformly on compacts to ϕ,

lim
n→∞

EP[ϕn(Sn)] = EP′ [ϕ(Z)],

where Z ∼ N(0, C) is a random vector on a probability space (Ω′,F′,P′). In particular, when
the random vectors {Xi}i∈N are uniformly square-integrable with zero mean and common
covariance C, then

lim
n→∞

EP

[
ϕn

( Sn√
n

)]
= EP′ [ϕ(Z)].

Remark 1.9. The case m = 1 is consistent with Theorem 1.1.

Proof. See [Str11, Theorem 2.3.8, p. 85 et seqq.].
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Chapter 2

Introduction to Stein’s Method

We illustrate Stein’s method on which the results in Part II are built.

Let P and Q be probability measures on a measurable space (Ω,F), then it is natural to
ask how close P and Q are in the following sense,

d(P,Q) := sup
h∈H

∣∣∣ ∫
Ω
hdP−

∫
Ω
hdQ

∣∣∣,
where H is a set of F-measurable, P- and Q-integrable functions. A typical choice is

HTV := {1A : A ∈ F},

when

dTV(P,Q) := sup
h∈HTV

∣∣∣ ∫
Ω
hdP−

∫
Ω
hdQ

∣∣∣ = sup
A∈F

∣∣P[A]−Q[A]
∣∣

is called total variation distance of P and Q. When (Ω,F) is given by (R,B(R)), the choice

HK := {1(−∞,z] : z ∈ R}

defines the Kolmogorov distance

dK(P,Q) := sup
h∈HK

∣∣∣ ∫
R
hdP−

∫
R
hdQ

∣∣∣ = sup
x∈R

∣∣P[(−∞, x]]−Q[(−∞, x]]
∣∣,

whereas
HW := {h : R→ R : |h(x)− h(y)| ≤ |x− y|, ∀x, y ∈ R}

defines the Wasserstein distance

dW(P,Q) := sup
h∈HW

∣∣∣ ∫
R
hdP−

∫
R
hdQ

∣∣∣,
in case the integrals are well-defined1.

Given two probability measures P and Q and a distance d, Stein’s method addresses the
question of calculating d(P,Q). In the special case where the distribution of P is a standard
Gaussian distribution, we make the following observation. Let

Z ∼ N(0, 1)

1For x ∈ R, let the probability density function with respect to the Lebesgue measure be given by
f(x) := x−21[1,∞)(x) and consider the Lipschitz function h(x) := x, then

∫
R h(x)f(x) dx =

∫∞
1
x−1 dx =∞.

7



Chapter 2. Introduction to Stein’s Method

and f : R → R be a continuous and piecewise continuously differentiable function, such
that E[|f ′(Z)|] <∞. Then

E
[
f ′(Z)

]
− E[Zf(Z)] = 0, (2.1)

since by partial integration

1√
2π

∫
R
f ′(s) e−

s2

2 ds =
1√
2π

∫
R
sf(s) e−

s2

2 ds.

Even more is true, the Gaussian distribution can be characterized by equation (2.1)2. In-
spired by (2.1), it is plausible that the expression∣∣E[f ′(W )

]
− E[Wf(W )]

∣∣
is small, whenever W is a random variable close to Z. More concretely, if∣∣E[h(W )]− E[h(Z)]

∣∣
is small for all h ∈H, the expression∣∣E[f ′(W )

]
− E[Wf(W )]

∣∣
should be small for all f in a certain H′.

We now describe how H and H′ are related. For bounded g, the ordinary differential
equation (ODE)

f ′(x)− xf(x) = g(x), lim
x→−∞

f(x) e−
x2

2 = 0, (2.2)

called Stein’s equation, has the solution3

f(x) = e
x2

2

∫ x

−∞
g(s) e−

s2

2 ds, x ∈ R.

Thus, if for a particular bounded h ∈H we define

g(x) := h(x)− E[h(Z)] , x ∈ R (2.3)

then

fh(x) := e
x2

2

∫ x

−∞

(
h(s)− E[h(Z)]

)
e−

s2

2 ds, x ∈ R, (2.4)

solves

f ′h(x)− xfh(x) = h(x)− E[h(Z)] , lim
x→−∞

fh(x) e−
x2

2 = 0.

Substituting a random variable W for x and integrating leads to

E[h(W )]− E[h(Z)] = E
[
f ′h(W )

]
− E[Wfh(W )] .

Thus, instead of analyzing the desired

sup
h∈H

∣∣E[h(W )]− E[h(Z)]
∣∣ (2.5)

2See [BC05, Lemma 2.1, p. 9 et seq.]
3See [BC05, p. 3 et seq.]
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it is possible to analyze
sup
h∈H

∣∣E[f ′h(W )
]
− E[Wfh(W )]

∣∣, (2.6)

although it is not obvious what is gained by that. Notice that (2.5) directly depends on Z,
whereas (2.6) depends on Z indirectly via fh. The following example illustrates how the
terms in (2.6) might be analyzed.

Example 2.7. For n ∈ N, let X = {Xi}i∈{1,...,n} be independent and identically distributed
(i.i.d.), with

E[X1] = 0, E
[
X2

1

]
= 1, E

[
|X1|3

]
<∞,

and

W :=
1√
n

n∑
i=1

Xi.

According to Theorem 1.6, the distribution ofW is close to a standard Gaussian distribution
whenever n is large. According to our understanding

E
[
Wf(W )− f ′(W )

]
should be small for a reasonable large class of functions. For example, let f ∈ C2(R) be
such that E[Wf(W )] and E[f ′(W )] exist and

W ′ :=
1√
n

n∑
i=2

Xi.

Since X is i.i.d. and by Taylor’s theorem we get

E[Wf(W )] = nE
[ 1√

n
X1f(W )

]
=
√
nE
[
X1f

( 1√
n
X1 +W ′

)]
=
√
nE
[
X1

(
f(W ′) +

1√
n
X1f

′(W ′)
)]

+R1,

where

|R1| ≤
‖f ′′‖∞
2
√
n

E
[
|X1|3

]
.

Furthermore, by the same arguments

E
[
f ′(W )

]
= E

[
f ′
( 1√

n
X1 +W ′

)]
= E

[
f ′(W ′)

]
+R2,

where

|R2| ≤
‖f ′′‖∞√

n
E[|X1|] .

Since W ′ and X1 are independent, E[X1] = 0 and E
[
X2

1

]
= 1, we have

∣∣E[Wf(W )− f ′(W )
] ∣∣ ≤ ‖f ′′‖∞√

n

(
1 +

1

2
E
[
|X1|3

])
.

9



Chapter 2. Introduction to Stein’s Method

As we see, analyzing E[Wf(W )] and E[f ′(W )] can be rewarding. Thus, to get an upper
bound for |E[Wf(W )− f ′(W )] | in Example 2.7, it is essential to control ‖f ′′‖∞. If we start
with suph∈H |E[h(W )]− E[h(Z)] |, we have to analyze E[Wfh(W )] and E[f ′h(W )], where

fh(x) = e
x2

2

∫ x

−∞

(
h(s)− E[h(Z)]

)
e−

s2

2 ds, x ∈ R.

Hence, it is desirable to get estimates for ‖f ′′h‖∞ in terms of h ∈ H. However, f ′′h not
necessarily exists for every choice of H, which is the case when the function space HK lacks
regularity. Under such circumstances, one has to apply a more sophisticated analysis to
E[Wf(W )] and E[f ′(W )] than the one carried out in Example 2.7.

Remark 2.8. This chapter is based on [BC05].
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Chapter 3

A Non-Central Limit Theorem

We give examples of random sums similar to those we analyze in Part II and present

a non-central limit theorem (NCLT) that describes their asymptotic behavior.

Example 3.1 (Finance). The two standard assumptions for the increments of a stock
price process S = {St}t∈[0,T ] are independence and stationarity. These two assumptions led
Bachelier [Bac00] to discover the stochastic process now called Wiener process. If we divide
the interval [0, T ] into sufficiently many subintervals, the increments St−Ss, 0 ≤ s < t ≤ T ,
can be represented as a sum of increments on subintervals. Since we assumed independence,
according to CLTs the distribution of St − Ss converges to a Gaussian distribution, for
example if the Lindeberg condition (1.2) is satisfied. If the subintervals have identical
length, the assumption of stationarity implies that the distributions of the subintervals are
identical. In this case, the Lindeberg condition is reduced to the requirement of finiteness of
variances of the elementary increments. However, statistical analysis shows that a Wiener
process seems to be a questionable model for the stock price increments, since in practice
they are more leptokurtic.

An attempt to explain the observed leptokurtosis without giving up the assumptions of
the model, independence and stationarity of increments, was made by Mandelbrot [Man63;
Man69; Man09]. The deviation from the Gaussian distribution means that CLTs are not
applicable. The assumption that the variances are not finite forces the use of NCLTs, leading
to stable distributions as limit laws for the sums of identically distributed summands.
However, the infiniteness assumption about the variances of price increments of arbitrary
small time intervals appears to be impossible in practice.

According to [GK96], Clark [Cla70; Cla73] was the first who tried to explain the lep-
tokurtosis of the increment distributions by investigating the heterogeneity of the time of
trades. According to Clark, it is not the finiteness of the variances of elementary incre-
ments that becomes violated, but rather the assumption of non-randomness of the number
of summands. Let the variation of the stock price during the considered time interval be
described by (ti, Si)i∈N, where ti is the time of the ith trade and Si is the price of the ith

deal. Hence, St = Si, ti ≤ t < ti+1. Let Nt be the number of deals concluded by time t.
Then for S0 ≥ 0,

St − S0 =

Nt∑
i=1

(Si − Si−1), t ∈ [0, T ].

For Xi := Si−Si−1, i ∈ N, we assume that X = {Xi}i∈N are independent random variables
and that X and N = {Nt}t∈[0,T ] are independent. Then the asymptotic theory of random

11



Chapter 3. A Non-Central Limit Theorem

summation tells us that if the number of deals concluded in [0, T ] is sufficiently large and
the price variations X satisfy the conditions of a CLT, then for some non-negative random
variable U

P[St − S0 < x] ≈ P[UZ < x] = E
[
Φ(xU−1)

]
, x ∈ R,

where Φ(xu)
∣∣
u=0

:= 1(0,∞)(x), Z ∼ N(0, 1), and Z and U are independent. Thus, the dis-
tributions of stock price increments should be searched for among normal variance mixture
distributions1, see Theorem 3.6. Furthermore, normal variance mixture random variables
are always more leptokurtic than the Gaussian random variable itself.2

Remark 3.2. The example above is given in [GK96, p. 77 et seqq.].

Example 3.3 (Actuarial Science). Let X = {Xi}i∈N be a sequence of i.i.d. random vari-
ables, with E[X1] = µ ∈ R and 0 < σ2 := V (X1) < ∞. Let N = {Nt}t∈R+ be a homoge-
neous Poisson process with intensity λ > 0, independent of X. The surplus of an insurance
company is typically modeled by

St := ct−
Nt∑
i=1

Xi, t ∈ R+, (3.4)

where c > 0 is the intensity of insurance premiums, Nt is the number of insurance payments
during time (0, t] and X are the claims. Then the classical risk process is asymptotically
normal

lim
t→∞

P
[
St − t(c− µλ)√
tλ(µ2 + σ2)

< x

]
= Φ(x), x ∈ R.

However, when the conditions are weakened, the limit behavior is described by a NCLT.

Remark 3.5. This example is given in [GK96, p. 67 et seqq.].

We now proceed towards a NCLT for random sums. Let X = {Xi}i∈N be a set of
independent random variables, a = {ai}i∈N and b = {bi}i∈N, bi > 0, i ∈ N, sequences of
real numbers, and

Sn :=

n∑
i=1

Xi, Yn :=
Sn − an
bn

, n ∈ N.

Let {Ni}i∈N be a sequence of N0-valued random variables, independent of X, c = {ci}i∈N
and d = {di}i∈N, di > 0, i ∈ N, sequences of real numbers, and

Zn :=
SNn − cn

dn
, n ∈ N.

Theorem 3.6 (NCLT). Let the sequences a, b, c, d be such that

lim
n→∞

bn = lim
n→∞

dn =∞,

and
Yn

d−→ Y,

1For a definition see Definition 1.9 in Part II.
2Let X and U be independent random variables with finite fourth moments, with E[X] = 0 and

P[U > 0] = 1. Then the excess coefficient kurtosis κ(UX) ≥ κ(X). Furthermore, κ(XU) = κ(X) if
and only if (iff) P[U = c] = 1, c > 0. See [GK96, p. 82 et seq.] for a proof.

12



as n→∞ with

F (x) := P[Y < x] , x ∈ R.

Furthermore, let (bNn
dn

,
aNn − cn

dn

)
d−→ (U, V )

as n→∞, for some random variables U, V . Then

lim
n→∞

P[Zn < x] = E
[
F
(x− V

U

)]
, x ∈ R,

where F (x−vu )|u=0 := 1(v,∞)(x).

Proof. See [GK96, Theorem 3.1.2, p. 47 et seqq.].

Remark 3.7. If Z is a random variable with distribution function E
[
F
(
x−V
U

)]
, then

Z
d
= UY + V,

where Y and (U, V ) are independent.

Remark 3.8. Theorem 3.6 also holds for arbitrary sequences Sn, n ∈ N, which are not
necessarily cumulative sums of independent random variables, see [Kor92].

Remark 3.9. For necessary and sufficient conditions in the special case Y ∼ N(0, 1), see
[GK96, Theorem 3.3.2., p. 64].

Remark 3.10. Let U, V, Y, Z be random variables and

V(Z) := {(Y,U, V ) : Z
d
= UY + V ; Y and (U, V ) are independent}.

Then the set V(Z) is not empty, since (Y, 0, Z) ∈ V(Z), where Y is an arbitrary random
variable independent of Z. Further, the random variables U and V are not determined
uniquely by the distribution of Z. For example, let

Z
d
= G1 −G2,

whereG1 andG2 are independent random variables carrying a gamma distribution3 G1, G2 ∼
Γ(α, β), α, β > 0. Then (1, G1,−G2), (G1, 1,−G2), (Y, 0, G1−G2) ∈ V(Z). Moreover, also

(Y,
√
G, 0) ∈ V(Z),

where Y ∼ N(0, 1) independent of

G ∼ Γ
(
α,

1

2
β2
)
, α, β > 0.

To see this, we consider the characteristic function of G1 −G2,

E
[
eit(G1−G2)

]
=

1(
1− it

β

)α 1(
1 + it

β

)α =
( β2

β2 + t2

)α
, t ∈ R.

3See Appendix B.
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Chapter 3. A Non-Central Limit Theorem

On the other hand, for µ = 1
2β

2 and t ∈ R,

E
[
eit
√
GY
]

=E
[
E
[
eit
√
GY
∣∣G]] = E

[
ϕY (t

√
G)
]

=
µα

Γ(α)

∫ ∞
0

e−s(
1
2
t2+µ) sα−1 ds

=
µα

Γ(α)(1
2 t

2 + µ)α

∫ ∞
0

e−s sα−1 ds =
( 2µ

2µ+ t2

)α
=
( β2

β2 + t2

)α
.

(3.11)

Note that for α = 1, equation (3.11) shows that
√
GY carries a Laplace distribution with

parameters 0 and 1/β. This remark is based on [GK96, p. 50].

Example 3.12. We now give an application of Theorem 3.6. Let X = {Xi}i∈N be a
sequence of independent random variables with E[Xi] = 0 and E

[
X2
i

]
= 1, i ∈ N, such that

the Lindeberg condition (1.2) holds. Furthermore,

Λ ∼ Γ(1, β), Nλ ∼ NB
(
1,

λ

β + λ

)
, Z ∼ N(0, 1), β, λ > 0,

where NB stands for the negativ binomial distribution4, and let Λ, Nλ, X, Z be independent,
then as λ→∞,

Zλ :=
1√
λ

Nλ∑
i=1

Xi
d−→
√

ΛZ ∼ L
(

0,
1√
2β

)
.

By Remark 3.10,
√

ΛZ ∼ L
(

0,
1√
2β

)
.

Since by Theorem 1.1

1√
n

n∑
i=1

Xi
d−→ Z as n→∞,

by Theorem 3.6 we have to show√
Nλ

λ

d−→
√

Λ, as λ→∞. (3.13)

The characteristic function of Λ is given by

ϕΛ(t) =
β

β − it
, t ∈ R.

On the other hand, the characteristic function of Nλ/λ is given by

ϕNλ
λ

(t) =

(
1− λ

β+λ

)
eit/λ

1− λ
β+λ eit/λ

=
β eit/λ

β − λ(eit/λ−1)

λ→∞−−−→ β

β − it
= ϕΛ(t), t ∈ R.

Thus, by Lévy’s continuity theorem (3.13) follows and by Theorem 3.6

Zλ
d−→
√

ΛZ, as λ→∞.

4See Appendix B.

14



Chapter 4

The Concept of Size Biasing

We introduce the concept of size biasing, which we will use frequently in Part II.

We begin with an illustration given in [AG10]. Imagine the following situation: In a room,
20% of people sit at a table alone, 30% sit in pairs, 30% in groups of three, and 20% in
groups of four. Of course this does not mean 20% of occupied tables are occupied by only
one person. If there are 100 people and 50 tables in this room, 20 people sit alone, they
occupy 20 tables, 30 people sit in pairs, they occupy 15 tables, 30 people sit in pairs of
three, they occupy 10 tables, 20 people sit in pairs of 4, they occupy 5 tables. Thus, on
40% of the tables there sits one person, on 30% of the tables there sit two people, on 20%
of the tables there sit three people and on 10% of the tables there sit four people. Hence,
there is a difference if we randomly pick a table and record X, the number of people sitting
there, e.g. P[X = 1] = 0.4. Or if we randomly pick a person and record X∗, the number of
people sitting at her table, e.g. P[X∗ = 1] = 0.2. Apparently, the probability P[X∗ = n] is
proportional to nP[X = n], that is (i.e.)

P[X∗ = n] = cnP[X = n] , n ∈ {1, 2, 3, 4},

where c > 0. Then,

1 =
4∑
i=1

P[X∗ = i] = c
4∑
i=1

iP[X = i] = cE[X] ,

which implies c = 1
E[X] . Hence,

P[X∗ = n] =
nP[X = n]

E[X]
, n ∈ {1, 2, 3, 4},

which leads us to the following definition.

Definition 4.1 (X-size bias distribution). Let X be a non-negative random variable with
0 < E[X] < ∞. Then X∗ has the X-size bias distribution if for all f : R → R, such that
E[Xf(X)] exists,

E[Xf(X)] = E[X]E[f(X∗)] .

In Example 4.2 we calculate X∗ of a Poisson random variable X. The result will be
used extensively in Part II.
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Chapter 4. The Concept of Size Biasing

Example 4.2. Let the random variable X be Poisson distributed,

X ∼ P(λ), λ > 0,

then
X∗ = X + 1,

since

E[Xf(X)] =
∞∑
i=0

if(i)
λi

i!
e−λ =

∞∑
i=0

(i+ 1)f(i+ 1)
λi+1

(i+ 1)!
e−λ

= λ
∞∑
i=0

f(i+ 1)
λi

i!
e−λ = E[X]E[f(X + 1)] .

In order to sharpen our intuition about size biasing, we finish this chapter with a classic
example.

Example 4.3 (Waiting time paradox). Buses arrive at the bus station in accordance with
a Poisson process, the expected waiting time between consecutive busses is thus 1/α, α > 0.
If we arrive at an arbitrary time t > 0, how long do we expect to wait? More concretely,
let X = {Xi}i∈N be i.i.d. random variables with X1 ∼ Exp(α) and α > 0. Let S0 := 0 and

Sn :=
n∑
i=1

Xi, n ∈ N.

The time of arrival of the nth bus is modeled by

Sn ∼ Γ(n, α),

the successive waiting time between arrivals of the ith and the (i+ 1)th bus, i ∈ N0, is given
by

Xi+1 ∼ Exp(α).

For t > 0, we define the random variable Nt as the number of indices i ∈ N, such that
Si ≤ t. Then {Nt = n} iff Sn ≤ t and Sn+1 > t. The number of arrivals within [0, t] is thus
modeled by

Nt ∼ P(αt).

We now pick an arbitrary t > 0 and ask what is our expected waiting time, if we arrive at
the bus stop at time t? Two reasonable answers are:

• The lack of memory of the exponential distribution, i.e. P[Xi > s+ t |Xi > t] =
P[Xi > s], s > 0, i ∈ N, suggests our waiting time does not depend on our arrival.
Thus, the average waiting time equals 1/α.

• Since the average time between arrivals equals 1/α and our arrival is arbitrary, by
symmetry our expected waiting time is 1/2α.

To decide which answer is correct, a closer look is necessary. Let t > 0 be the time of
arrival, then the waiting time is given by

Wt := Si − t,

16



if Si−1 < t ≤ Si, i ∈ N. For x > 0,

P[Wt ≤ x] = P[t < S1 < x+ t] +
∞∑
i=1

P[0 < Si < t, t− Si < Xi+1 < t− Si + x]

= e−αt− e−α(x+t) +
∞∑
i=1

∫ t

0

∫ t−λ+x

t−λ
α

(αλ)i−1

(i− 1)!
e−αλ α e−αµ dµ dλ

= e−αt− e−α(x+t) +
∞∑
i=1

∫ t

0
α

(αλ)i−1

(i− 1)!
e−αλ

(
e−α(t−λ)− e−α(t−λ+x)

)
dλ

= 1− e−αx,

which means Wt ∼ Exp(α). Thus, the average waiting time equals 1/α and the first answer
is correct. However, the symmetry consideration also contains some truth. The mistake in
reasoning is just that longer intervals simply have a better chance to cover the point t > 0
of our arrival than shorter ones. More concretely, the length of intervals that we arrive at

Lt := Si − Si−1,

if Si−1 < t ≤ Si, i ∈ N, is not exponentially distributed. The random variable Lt has the
density1

ft(x) =

{
α2x e−αx for 0 < x ≤ t,
α(1 + αt) e−αx for t < x.

As it can be veryfied by direct calculation,

E[Lt] =
2− e−αt

α
, t > 0,

which converges to 2/α for t → ∞. By symmetry the waiting time is thus again approxi-
mately 1/α for large enough t.

Remark 4.4. This example is given in [Fel71, p. 11 et seqq.]

Remark 4.5. In [AG10], size biasing is discussed extensively.

1For a proof see [Fel71, p. 11 et seqq.].
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Chapter 5

Motivation for the Research in
Part II

We present the research of several authors concerning the limit behavior of random

sums and describe how we contribute to it in Part II.

Let X = {Xi}i∈N be a sequence of independent (not necessarily identically distributed)
random variables and let the random variable Np be geometrically distributed1

Np ∼ Geom(p), 0 < p < 1,

independent of X. Toda [Tod12] studies the limit behavior of the geometric sum

Zp :=
√
p

Np∑
i=1

Xi as p↘ 0, (5.1)

and identifies it to be the Laplace distribution. As we show in Example 3.6 (with differ-
ent notation), this follows directly from Theorem 3.6. However, Toda proves a NCLT by
adapting Lindeberg’s method of proving a CLT for a fixed number of independent random
variables, see [Tod12; EL14].

Theorem 5.2 (Toda). Let X = {Xi}i∈N be a sequence of independent random variables,
such that

E[Xi] = 0, σi :=
√

V(Xi) <∞, i ∈ N.

Let
Np ∼ Geom(p), 0 < p < 1,

independent of X and suppose that

1. limn→∞ n
−ασ2

n = 0 for some 0 < α < 1 and σ2 := limn→∞
1
n

∑n
i=1 σ

2
i > 0 exists,

2. for all ε > 0 the Lindeberg condition

lim
p→0

∞∑
i=1

(1− p)i−1pE
[
X2
i ; |Xi| ≥ ε/√p

]
= 0

holds.
1Note that we distinguish between Geom and G, see Appendix B.
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Chapter 5. Motivation for the Research in Part II

Then, as p↘ 0,

√
p

Np∑
i=1

Xi
d−→ Y ∼ L

(
0,

σ√
2

)
. (5.3)

Proof. See [Tod12, Theorem 2.1, p. 3 et seqq.].

Remark 5.4. In [Tod12], the Theorem 5.2 is stated in slightly more general terms.

As we will see, the limit behavior in (5.3) was further analyzed by several authors.
Pike and Ren [PR14] study a Stein operator (5.6) that characterizes the centered Laplace
distribution and establish a rate of convergence in the bounded Lipschitz metric as an
application, see Theorems 5.5 and 5.9.

Theorem 5.5 (Pike, Ren). Let f ∈ C(R), such that f and f ′ are locally absolutely contin-
uous and

(Af)(x) := f(x)− f(0)− σ2f ′′(x), x ∈ R. (5.6)

Let X ∼ L(0, σ), then
E[(Af)(X)] = 0,

if E[f ′(X)], E[|f ′′(X)|] < ∞. Conversely, if X is a random variable with E[(Af)(X)] = 0
for every f ∈ C2(R), with ‖f‖∞, ‖f ′‖∞, ‖f ′′‖∞ <∞, then X ∼ L(0, σ).

Proof. See [PR14, Theorem 1.1, p. 3 et seqq.].

Remark 5.7. Compare the second order Stein operator for the Laplace distribution (5.6)
with Stein’s first order equation for the standard Gaussian distribution (2.2).

Definition 5.8. Let X,Y be random variables, then the bounded Lipschitz distance is
defined by

dBL(X,Y ) := sup
h∈HBL

|E[h(X)]− E[h(Y )] |,

with
HBL := {h ∈ C(R) : ‖h‖∞ ≤ 1 and |h(x)− h(y)| ≤ |x− y| for x, y ∈ R}.

Theorem 5.9 (Pike, Ren). Let X = {Xi}i∈N be a sequence of independent random variables
with, i ∈ N,

E[Xi] = 0, 0 < σ :=
√

V(Xi), ρ := sup
i∈N

E
[
|Xi|3

]
<∞.

Let
Np ∼ Geom(p), 0 < p < 1,

independent of X and

Z ∼ L
(

0,
σ√
2

)
.

Then,

dBL(Zp, Z) ≤ √pσ + 2
√

2

σ

(
σ +

ρ

3σ2

)
.

Proof. See [PR14, Theorem 1.3, p. 3 et seqq.].

Remark 5.10. Instead of analyzing Stein’s operator for the Laplace distribution (5.6), Gaunt
[Gau14] studies Stein’s equation of variance-gamma distributions, which contain normal,
gamma and Laplace distributions as special cases.
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Döbler [Doe12] provided (5.3) with Berry–Esseen bounds, see Theorem 5.11 and The-
orem 5.12 and further continued his work on this topic in [Doe15], see Theorem 5.15 and
Theorem 5.17.

Theorem 5.11 (Döbler). Let X = {Xi}i∈N be a sequence of i.i.d. random variables with

E[X1] = 0, 0 < σ :=
√

V(X1) <∞, ξ := E
[
|X1|3

]
<∞.

Let

Np ∼ Geom(p), 0 < p < 1,

independent of X and

Z ∼ L
(

0,
σ√
2

)
,

then

dK(L(Zp),L(Z)) ≤ 2CKξ

σ3

√
p+ 12p,

with 0 < CK ≤ 0.56.

Proof. See [Doe12, Theorem 3.4, p. 13.].

Theorem 5.12 (Döbler). Let X = {Xi}i∈N be a sequence of independent random variables
with,

E[Xi] = 0, 0 < σi :=
√

V(Xi) <∞, ξi := E
[
|Xi|3

]
<∞, i ∈ N,

with

ξ̂n :=
1

n

n∑
i=1

ξi, n ∈ N.

Assume for

σ̂2
n :=

n∑
i=1

σ2
i , n ∈ N,

that

0 < σ̂2 := lim
n→∞

1

n
σ̂2
n <∞.

Let

Np ∼ Geom(p), 0 < p < 1,

be independent of X and let

Z ∼ L
(

0,
σ̂√
2

)
.

Then,

dK(L(Zp),L(Z)) ≤ 12p+ p

∞∑
i=1

(1− p)i−1 min
(∣∣1− σ̂2

σ̂2
i

∣∣, ∣∣1− σ̂2
i

σ̂2

∣∣)+ CK E
[ 1√

Np

ξ̂N
σ̂3
N

]
,

with 0 < CK ≤ 0.56.

Proof. See [Doe12, Theorem 3.5, p. 14.].
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Chapter 5. Motivation for the Research in Part II

Assumption 5.13. Let X = {Xi}i∈N be a sequence of i.i.d. random variables, with

E
[
|X1|3

]
<∞.

Let N be a N0-valued random variable, such that

E
[
N3
]
<∞,

independent of X. Furthermore,

α := E[N ] , β :=
√
E[N2], γ :=

√
V(N), δ3 := E

[
N3
]
,

a := E[X1] , b :=
√

E
[
X2

1

]
, c :=

√
V(X1), d3 := E

[
|X1 − E[X1] |3

]
.

Let

S :=

N∑
i=1

Xi,

then by Wald’s equation and the Blackwell–Girshick equation

µ := E[S] = αa, σ2 := V(S) = αc2 + a2γ2.

According to [Rob48], under the assumption that

σ2 = αc2 + a2γ2 →∞,

there are three situations in which

W :=
S − µ
σ

=
S − αa√
ac2 + aγ2

(5.14)

is asymptotically normal:

1. c 6= 0 6= a and γ2 = o(α) for α→∞,

2. a = 0 6= c and γ = o(α) for α→∞, and

3. N is asymptotically normal and at least a or c is different from zero.

In case c 6= 0 6= a and γ2 = o(α), for α → ∞, N tends to infinity in a certain sense, but
such that it only fluctuates slightly around its mean α and thus behaves more or less like a
constant α tending to infinity. If c = 0 and a 6= 0, then we have S = aN a.s. and asymptotic
normality of S is equivalent to that of N .

Theorem 5.15 (Döbler). Let X and N be like in Assumption 5.13 and let W be given by
(5.14). Let

Z ∼ N(0, 1)

and let (N,N∗) be a coupling, where N∗ has the N -size biased distribution, independent of
X, and D := N∗ −N . Then

dW(W,Z) ≤ 2c2bγ2

σ3
+

3αd3

σ3
+
αa2

σ2

√
2

π

√
V(E[D |N ])+

2αa2b

σ3
E
[
1{D<0}D

2
]
+
α|a|b2

σ3
E
[
D2
]
.
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Additionally, if D ≥ 0 then we also have

dK(W,Z) ≤(
√

2π + 4)bc2α

4σ3

√
E[D2] +

d3α(3
√

2π + 4))

8σ3
+
c3α

σ3
+
(7

2

√
2 + 2

)√αd3

cσ2

+
c2α

σ2
P[N = 0] +

d3α

cσ2
E
[
N−

1
2 1{N≥1}

]
+
α|a|b2

√
2π

8σ3
E
[
D2
]

+
αa2

σ2

√
V(E[D |N ]) +

α|a|b2

2σ3

√
E
[
E[D2 |N ]2

]
+
α|a|b
σ2

√
P[N = 0]

√
E[D2]

+
α|a|b2

cσ2
√

2π
E
[
D21{N≥1}N

− 1
2
]

+
(d3α|a|b

σ2
+

αbc

σ2
√

2π

)
E
[
D1{N≥1}N

− 1
2
]
.

Proof. See [Doe15, Theorem 2.5., p. 8 et seqq.].

Remark 5.16. Assume that the index N is a positive constant, then

dW(W,Z) ≤ 3d3

c3
√
N
,

and

dK(W,Z) ≤ 1√
N

(
1 +

(7

2
(1 +

√
2) +

3
√

2π

8

)d3

c3

)
.

This is the optimal convergence rate for sums of i.i.d. random variables with finite third
moments, although with non-optimal constants, see [Doe15, Corollary 2.10, p. 11. et seq.].

Theorem 5.17 (Döbler). Let X and N be like in Assumption 5.13 with a = E[X1] = 0
and let W be given by (5.14) and let

Z ∼ N(0, 1).

Then,

dW(W,Z) ≤ 2γ

α
+

3d3

c3
√
α
,

and

dK(W,Z) ≤(
√

2π + 4)γ

4α
+
(d3(3

√
2π + 4)

8c3
+ 1
) 1√

α
+
(7

2

√
2 + 2

) d3

c3α

+ P[N = 0] +
(d3

c3
+

γ
√
α
√

2π

)√
E
[
1{N≥1}N−1

]
.

Proof. See [Doe15, Theorem 2.7, p. 10 et seqq.].

Remark 5.18. According to [Doe15, Remark 2.8 (d), p.11], it is possible to drop the as-
sumption that the summands are identically distributed.

Now we summarize this chapter so far. Several authors have studied the limit behavior
of the geometric sum (5.1). However, they essentially differed in their method of attack:
Toda [Tod12] adapted Lindeberg’s method, Pike and Ren [PR14] analyzed Stein’s equation
of the Laplace distribution, and Döbler [Doe12] applied conditioning on the value of the
index Np and used known error bounds for sums of a fixed number of independent random
variables, like the classical Berry–Esseen theorem. In [Doe15], Döbler studied a slightly
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Chapter 5. Motivation for the Research in Part II

different problem and combined Stein’s method for normal approximation with coupling
constructions and conditional independence to prove his results.

In Part II, we present our analysis of the limit behavior of (5.1). We now give a sketch
of our ansatz. Let {Xi}i∈N be a sequence of independent random variables and Λ be an a.s.
positive random variable. Let Nλ be a N0-valued random variable which is conditionally
Poisson distributed2 given Λ, meaning L(Nλ |Λ)

a.s.
= P(λΛ) and assume that (Nλ,Λ) is

independent of {Xi}i∈N. We apply Stein’s method in the spirit of Chapter 2 to prove upper
bounds of the Wasserstein and Kolmogorov distances between the random sums

Zλ :=
1√
λ

Nλ∑
i=1

Xi, λ > 0,

and

Z :=
√

ΛX, (5.19)

where X ∼ N(0, 1), independent of (Nλ,Λ, {Xi}i∈N). A byproduct is the NCLT

1√
λ

Nλ∑
i=1

Xi
d−→
√

ΛX as λ→∞. (5.20)

For example, when Λ is gamma distributed, Nλ has a negative binomial distribution and in
a special case a geometric distribution, see Example 1.5 in Part II. In this case, Z carries
the Laplace distribution, see Remark 3.10 as well as Example 1.13 in Part II. Thus, with a
change of notation (5.20) resembles (5.3).

However, instead of analyzing a cumbersome Stein operator, like for example (5.6), by
conditioning we reduce the problem to the well understood case of (2.2). For a suitable
function h and random variable X ∼ N(0, 1), the function

fσ2(x) := e
x2

2σ2

∫ x

−∞
h(s)− E[h(σX)] e−

s2

2σ2 ds, x ∈ R,

solves Stein’s equation

f ′σ2(x)− x

σ2
fσ2(x) = h(x)− E[h(σX)] , lim

x→−∞
fσ2(x) e−

x2

2 = 0, x ∈ R.

Substituting a random variable Zλ for x, a positive random variable Λ for σ2, and taking
the conditional expectation E[ · |Λ], leads to

E
[
f ′Λ(Zλ) |Λ

]
− E

[Zλ
Λ
fΛ(Zλ)

∣∣∣Λ] = E[h(Zλ)|Λ]− E
[
h(
√

ΛX) |Λ
]
.

Thus, to estimate

sup
h∈H

(
E[h(Zλ)|Λ]− E

[
h(
√

ΛX)
∣∣Λ])

for an appropriate set of functions H, it is possible to analyze the terms

E
[
f ′Λ(Zλ) |Λ

]
and E

[Zλ
Λ
fΛ(Zλ)

∣∣∣Λ]. (5.21)

2For the definition of a Poisson mixture random variable see Definition 1.1 in Part II.
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It is well known how to handle the expression (2.6) and the terms therein in the case of
the Wasserstein or Kolmogorov distances. As a result, the analysis of (5.21) can be tracked
back to the analysis of (2.6), once it is realized that size biasing, e.g. in the form

E[Nλ]E[f(Zλ)|Λ] = E
[
Nλf

( 1√
λ

Nλ−1∑
i=1

Xi

)∣∣∣Λ],
allows us to connect our ansatz with the existing theory.
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Chapter 6

A Heuristic Argument for a
Small-Time Central Limit
Theorem

We give a heuristic argument for a small-time CLT for a class of Itō diffusions. It raises

the question for which class of processes a small-time CLT holds. This is addressed in

Part III.

Suppose that X = {Xt}t∈R+ satisfies a one-dimensional stochastic differential equation
(SDE)

Xt = x0 +

∫ t

0
σ(Xs) dBs, t ≥ 0,

where x0 ∈ R, σ is bounded, bounded away from zero, and Lipschitz continuous. Further-
more, for δ > 0 let Xδ = {Xδ

t }t∈R+ be the solution of the SDE

Xδ
t = x0 +

√
δ

∫ t

0
σ(Xδ

s ) dWs, t ≥ 0.

Then, according to [Øks10, Theorem 8.5.1, p. 148], the distributions of the random variables
Xδ and Xδ

1 coincide.

By [DZ10, Remark of Theorem 5.6.7, p. 214], the processes Xδ satisfy a large deviation
principle (LDP) in C([0, 1]) as δ ↘ 0, with rate function

Ĩ(f) :=

{
1
2

∫ 1
0

f ′(s)2

σ(f(s))2
ds if f ∈ H1([0, 1]), f(0) = x0,

∞ otherwise,

where H1([0, 1]) denotes the space of absolutely continuous functions on [0, 1] with square-
integrable derivatives. By the contraction principle [DZ10, Theorem 4.2.1, p. 126]), applied
to the evaluation map C([0, 1])→ R, f 7→ f(1), we conclude that the random variables Xt

satisfy an LDP as t↘ 0 with rate function

I(x0 + y) = inf{Ĩ(f) : f ∈ C([0, 1]), f(1) = x0 + y}

=
1

2
inf
f∈H

∫ 1

0

f ′(s)2

σ(f(s))2
ds,

(6.1)
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Chapter 6. A Heuristic Argument for a Small-Time Central Limit Theorem

where H := {f ∈ H1([0, 1]) : f(0) = x0 and f(1) = x0 + y} and y > 0. In other words, for
y > 0 we have the asymptotics

P[Xt ≥ x0 + y] ' e
−I(x0+y)

t , t↘ 0, (6.2)

where ' stands for exponential equivalence.
Let Σ be an antiderivative of the function 1/σ. By the assumptions on σ, the function

Σ(f(·)) belongs to H1([0, 1]) iff the function f belongs to H1([0, 1]). Hence, the latter
infimum in (6.1) can be rewritten as

inf
v∈H′

1

2

∫ 1

0
v′(s)2 ds,

where H′ := {v ∈ H1([0, 1]) : v(0) = Σ(x0) and v(1) = Σ(x0 + y)}. Due to Jensen’s
inequality, the infimum is reached when v is the affine function connecting Σ(x0) and
Σ(x0 + y). Thus,

I(x0 + y) =
1

2
[Σ(x0 + y)− Σ(x0)]2 =

1

2

(∫ x0+y

x0

ds

σ(s)

)2
. (6.3)

We now formally apply the LDP (6.2) with a time-dependent y = z
√
t, where z > 0. Since

I(x0) = I ′(x0) = 0, we have

I(x0 + z
√
t) = 1

2I
′′(x0)z2t+ o(t), t↘ 0,

and

P
[Xt − x0√

t
≥ z
]
' e
− z2

2σ(x0)
2 +O(1)

, t↘ 0,

which suggests a Gaussian limit law (the case z < 0 is similar).

Remark 6.4. This example is given in [Ger+15, Remark 6, p. 730 et seq.].
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Chapter 7

Motivation for the Research in
Part III

We describe the research question of Part III and show how the results can be applied.

Limit theorems for finite-dimensional stochastic processes as time goes to infinity have
been a classical object of study in probability theory. Many results on the existence and
uniqueness of invariant distributions, the convergence of the processes to the latter, and the
limiting behavior of the fluctuations around the limiting distributions have been obtained,
see e.g. [Has80; JS03; MT92; MT93a; MT93b] and the references therein. More recently,
small-time asymptotics of finite-dimensional continuous time stochastic processes have at-
tracted attention. Apart from the theoretical interest, these have become important in
various applied fields such as mathematical finance, where the increasingly high frequency
of trades in financial markets requires pricing models behaving reasonably both on very
short and on long time horizons.

In the works [ALV07; BGM09; BC12; BBF04; FFF10; FLH09; Jac07] and the references
therein, the authors study the behavior of the random variables E[f(Xt0+δ)|FX

t0 ] for small
values of δ > 0. In this case, X is a finite-dimensional (jump-) diffusion process, a Lévy
process or more generally a semimartingale, (FX

t )t≥0 is the filtration generated by X, and
f is taken from a space of suitable real-valued test functions. In [BC12], this program is
carried out for general finite-dimensional semimartingales. Under appropriate continuity
assumptions on the characteristics of X, as well as smoothness assumptions on the function
f , the a.s. limit

lim
δ↘0

δ−1
(
E[f(Xt0+δ)|FX

t0 ]− f(Xt0)
)

(7.1)

is determined.
We are interested in small-time CLTs for finite dimensional semimartingales; this means,

instead of the a.s. limit (7.1) we are concerned with the limit

lim
t↘0

t−
1
2
(
f(Xt)− f(X0)

)
(7.2)

in distribution. We give sufficient conditions on the semimartingale X under which, for
every suitable test function f , the limit (7.2) exists and is given by a centered normal random
variable (whose variance depends on the particular choice of the function f). The most
closely related result in literature seems to be by Doney and Maller [DM02, Theorem 2.5],
which characterizes the Lévy processes that satisfy a small-time CLT.
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Chapter 7. Motivation for the Research in Part III

In addition to the just described CLTs, we prove functional CLTs on the process level
and give two applications of our results in the field of mathematical finance: first to the
pricing of digital options and second to the asymptotics of implied volatility skews. To
outline the first of the two applications, we recall that the price of a digital option with
strike K and maturity t on an underlying security with price process X in the presence of
a constant interest rate r > 0 is given by the formula

E[e−rt 1{Xt>K}] = e−rt P[Xt > K] . (7.3)

For short maturities, i.e. for t ↘ 0, this price tends to zero if K > X0 (out-of-the-money)
and to 1 if K < X0 (in-the-money) as soon as X has right-continuous sample paths. The
evaluation of the limit in the case K = X0 (at-the-money options) is much trickier and, as
we show, the limit can take all values in the interval [0, 1], see Examples 2.13 and 2.17 in
Part III. Nevertheless, if a CLT of the type described above holds for the semimartingale
X and the limit law is non-singular, then the limit must be given by 1/2. Moreover, in a
special case the price in (7.3) is bounded for any fixed value of t > 0 from above and below
by explicit functions tending to 1/2 in the limit t ↘ 0. By a well known relation between
digital prices and implied volatility skews, we deduce bounds on the latter in certain models
with stochastic interest rates.

Remark 7.4. This chapter was taken from [Ger+15].
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Part II

Analysis of Poisson Mixture Sums
via Stein’s Method
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Chapter 1

The Setting

We introduce Poisson mixture distributions and normal variance mixture distributions

on which the research in Chapter 2 and Chapter 3 is based.

Definition 1.1 (Poisson mixture distribution). Let Λ be a random variable satisfying

P[Λ > 0] = 1,

and for λ ≥ 0 let Nλ be a N0-valued random variable which is conditionally Poisson dis-
tributed given Λ,

P[Nλ = n |Λ]
a.s.
=

(λΛ)n

n!
e−λΛ, n ∈ N0. (1.2)

Then the random variable Nλ is said to have a Poisson mixture distribution with mixing
variable Λ.

Remark 1.3. Note that if the random variableNλ carries a Poisson mixture distribution with
mixing variable Λ, then E[Nλ |Λ]

a.s.
= λΛ and hence E[Nλ] = E

[
E[Nλ |Λ]

]
= λE[Λ] ∈ [0,∞].

Remark 1.4. Poisson mixture distributions are applied in actuarial science. In contrast to a
Poisson random variable N , where V(N) = E[N ], Poisson mixture random variables show
over-dispersion, i.e. V(N) > E[N ], if the mixing variable is non-singular. This behavior is
often encountered in count data. See [MFE05, Section 10.2.4, p. 482 et seqq.].

Example 1.5 (Gamma distribution for Λ). Suppose that Λ has a gamma distribution

Λ ∼ Γ(α, β), α, β > 0,

with density

fα,β(x) =
βα

Γ(α)
xα−1 e−βx, x > 0.

For γ ∈ (−α,∞) and z ∈ (−∞, β),

E[Λγ ezΛ] =

∫ ∞
0

xγ exz
βα

Γ(α)
xα−1 e−βx dx

=
Γ(α+ γ)

Γ(α)

βα

(β − z)α+γ

∫ ∞
0

(β − z)α+γ

Γ(α+ γ)
xα+γ−1 e−(β−z)x dx

=
Γ(α+ γ)

βγ Γ(α)
(1− z/β)−(α+γ)

∫ ∞
0

fα+γ,β−z(x) dx

=
Γ(α+ γ)

βγ Γ(α)
(1− z/β)−(α+γ),

(1.6)
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Chapter 1. The Setting

which extends to all z ∈ C with Re(z) < β. For γ = 1 and z = 0 this implies E[Λ] = α/β
by the functional equation Γ(α+ 1) = αΓ(α) of the gamma function. Combining (1.2) and
(1.6) with γ = n and z = −λ shows that the unconditional distribution of Nλ is

P[Nλ = n] = E
[
P[Nλ = n |Λ]

]
=
λn

n!
E
[
Λn e−λΛ

]
=

Γ(α+ n)

n! Γ(α)

λn

βn(1 + λ/β)α+n

for all n ∈ N0. Using n times the functional equation of the gamma function and the
abbreviation

pλ :=
λ

β + λ
∈ [0, 1)

for the success probability yields

P[Nλ = n] =

(
α+ n− 1

n

)
(1− pλ)αpnλ, n ∈ N0, (1.7)

thus, Nλ carries the negative binomial distribution

Nλ ∼ NB(α, pλ).

In case α = 1, Nλ carries the geometric distribution1

Nλ ∼ G(pλ).

Remark 1.8. Similar calculations are carried out in [MFE05, Proposition 10.20, p. 483].

Definition 1.9. [Normal variance mixture distribution] A random variable Z has a normal
variance mixture distribution with parameters µ ∈ R and σ ∈ R, if there exists a standard
Gaussian random variable X ∼ N(0, 1) and a random variable Λ ≥ 0, independent of X,
such that

Z
d
= µ+ σ

√
ΛX.

Remark 1.10. Normal variance mixture distributions are applied in financial modeling, see
e.g. Example 3.1 in Part I and [MFE05, Chapter 3.2., p. 73 et seqq.].

Lemma 1.11. Let Λ be an a.s. positive random variable independent of X ∼ N(0, σ2).
Then the characteristic function of Z :=

√
ΛX is given by

E
[
eitZ
]

= E
[
e−

σ2t2

2
Λ
]
, t ∈ R. (1.12)

Proof. Conditioning on Λ and using the independence of Λ and X yields

E
[
eitZ
]

= E
[
E
[
eit
√

ΛX
∣∣Λ]] = E

[
e−

σ2t2

2
Λ
]
, t ∈ R.

Example 1.13 (Gamma distribution for Λ). Let Λ be a gamma distributed random variable

Λ ∼ Γ(α, β), α, β > 0,

1See Appendix B.

34



as in Example 1.5, let X ∼ N(0, σ2), σ > 0, and let Z =
√

ΛX. Then (1.6) with γ = 0 and

z = −σ2t2

2 and (1.12) imply

E
[
eitZ
]

= E
[
e−

σ2t2

2
Λ
]

=
(

1 +
σ2t2

2β

)−α
, t ∈ R.

In case α = 1, Z carries a centered Laplace distribution

Z ∼ L
(

0,
σ√
2β

)
.

Note, this was also established in Remark 3.10 in Part I.

Example 1.14 (Inverse gamma distribution for Λ). Let Λ have an inverse gamma distri-
bution

Λ ∼ Ig(α, β), α, β > 0,

meaning that 1/Λ ∼ Γ(α, β) and

P[ Λ ≤ y ] =
βα

Γ(α)

∫ y

0
x−α−1 e−β/x dx , y ≥ 0.

If α = β = ν/2 with ν > 0 and X ∼ N(0, 1), then the corresponding normal variance
mixture distribution of

√
ΛZ is the Student’s t-distribution t(ν) with ν > 0 degrees of

freedom. The special case ν = 1 yields the Cauchy distribution. As a reference, see
[MFE05, Example 3.7, p.75 and Section A.2.6, p. 497].

Example 1.15 (Tempered α-stable distribution for Λ). Suppose that Λ has a τ -tempered
α-stable distribution with index α ∈ (0, 1), scale parameter ρ > 0 and tempering parameter
τ ≥ 0, which means its Laplace transform is given by

E
[
e−sΛ

]
= exp(−γα,ρ

((
s+ τ)α − τα

))
, s ≥ −τ,

where γα,ρ = ρα

cos(απ/2) . Then (1.12) evaluates to

E
[
eitZ
]

= exp
(
−γα,ρ

((σ2t2

2
+ τ
)α
− τα

))
, t ∈ R. (1.16)

The special case α = 1/2 and τ = 0 is the Lévy distribution with scale parameter ρ > 0, for
which

f(x) =
( ρ

2πx3

)1/2
e−

ρ
2x , x > 0,

is a density and (1.16) simplifies to

E
[
eitZ
]

= e−
√
ρσt, t ∈ R.

As a reference, see [GSW10].
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Chapter 2

Upper Bounds for the Wasserstein
Distance

We prove an upper bound for the Wasserstein distance between Poisson mixture sums

and their related normal variance mixture distributions; a NCLT follows as a byproduct.

Let {Xi}i∈N be a sequence of independent (but not necessarily identically distributed),
real-valued square-integrable random variables with

E[Xi] = 0, V(Xi) = 1, E
[
|Xi|3

]
<∞ i ∈ N.

Furthermore, let the random variable Nλ have a Poisson mixture distribution1

Nλ ∼ P(λΛ), λ > 0,

with a.s. positive mixing random variable Λ and assume that (Nλ,Λ) is independent of
{Xi}i∈N.

We apply Stein’s method to prove an upper bound for the Wasserstein distance between
the distributions of the random sums

Zλ :=
1√
λ

Nλ∑
i=1

Xi, λ > 0,

and the normal variance mixture random variable2

Z :=
√

ΛX,

where X ∼ N(0, 1), independent of (Nλ,Λ, {Xi}i∈N). A byproduct is the NCLT

Zλ
d−→ Z as λ→∞,

see Corollary 2.12.
We define

%(λ) := e−λ
∞∑
n=1

λn−1

n!

n∑
i=1

E
[
|Xi|3

]
, λ > 0, (2.1)

1See Definition 1.1.
2See Definition 1.9.
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Chapter 2. Upper Bounds for the Wasserstein Distance

which is allowed to be infinite and which can be seen as an average of the third absolute
moments with Poisson weights. If Pλ ∼ P(λ), then E[Pλ] = λ and

%(λ) =
1

E[Pλ]
E
[ Pλ∑
i=1

E
[
|Xi|3

]]
. (2.2)

Note that
%(λ) ≤ sup

i∈N
E[|Xi|3], λ > 0.

Theorem 2.3. Define Yλ := Zλ/
√

Λ; on the set {%(λΛ) < ∞} the conditional expecta-
tion E

[
|Yλ|

∣∣Λ] is a.s. finite, the Wasserstein distance of L(Yλ |Λ) to the standard normal
distribution L(X) = N(0, 1) is a.s. well defined, and

dW

(
L(Yλ |Λ),L(X)

)
≤ 4 + 2%(λΛ)√

λΛ
a.s. (2.4)

If E[%(λΛ)] <∞, then

sup
b>0

sup
h∈Hb

E[h(Zλ)− h(Z)] ≤ 4 + 2E[%(λΛ)]√
λ

, (2.5)

where Hb denotes the set of all absolutely continuous functions h: R → R with ‖h‖∞ ≤ b
and Lipschitz constant Lip(h) ≤ 1.

Remark 2.6. Note that Zλ and Z are coupled through their joint dependence on Λ. This
makes the bound (2.5) possible even when Zλ and Z are not integrable. Also note that due
to this coupling we do not need a special Stein equation for the limiting normal variance
mixture distribution, as it is enough to have the Stein equation for N(0, 1).

Remark 2.7. Note that the assumptions on %(λΛ) in Theorem 2.3 and the three corollaries
below are trivially satisfied if supi∈N E[|Xi|3] < ∞. See Example 2.25 below for a more
elaborate case with absolute third moments increasing to infinity.

Corollary 2.8. If E[
√

Λ] < ∞, then Z is integrable. If additionally E[%(λΛ)] < ∞ for
some λ > 0, then Zλ is integrable too, the Wasserstein distance of L(Zλ) and L(Z) is
well defined, and

dW(L(Zλ),L(Z)) := sup
h∈H

E[h(Zλ)− h(Z)] ≤ 4 + 2E[%(λΛ)]√
λ

, (2.9)

where H denotes the set of all h: R→ R with Lip(h) ≤ 1.

Proof. Note that E[|Z|] = E[
√

Λ]E[|X|] and E[|X|] =
√

2/π. If in addition E[%(λΛ)] <∞,
then (2.5) implies that

E[min(b, |Zλ|)] ≤ E[min(b, |Z|)] +
4 + 2E[%(λΛ)]√

λ
,

and integrability of Zλ follows by sending b → ∞ and using the monotone convergence
theorem. For h ∈H and b > 0, the function hb(x) := max(−b,min(b, h(x))) for x ∈ R is in
Hb and the upper bound in (2.5) applies. Since

|hb(x)| ≤ |h(x)| ≤ |h(0)|+ |h(x)− h(0)| ≤ |h(0)|+ |x|, x ∈ R, (2.10)

E[hb(Zλ)− hb(Z)] converges to E[h(Zλ)− h(Z)] by the dominated convergence theorem as
b→∞. This proves (2.9).
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Corollary 2.11 (NCLT). If E[%(λΛ)] = o(
√
λ) as λ → ∞, then Zλ converges weakly to

Z.

Proof. Consider a bounded g: R → R with Lip(g) < ∞. Then there exists a bounded
h: R→ R with Lip(h) ≤ 1 and g = Lip(g)h. By (2.5),

E[g(Zλ)]→ E[g(Z)] as λ→∞.

This implies the corollary, see [EK86, Theorem 3.1, proof of (c) implies (d)].

Corollary 2.12. Suppose that E[
√

Λ] < ∞. Let {λn}n∈N ⊂ (0,∞) be a sequence with
λn → ∞ as n → ∞. If E[%(λnΛ)] = o(

√
λn) as n → ∞, then {Zλn}n∈N is uniformly

integrable.

Proof. For b > 0 we define

hb(x) = max
(
0, |x| −max(0, b(b− |x|))

)
, x ∈ R.

Then hb(x) = |x| for |x| ≥ b, hb(x) = 0 for |x| ≤ b2/(b+ 1) and linear for the remaining |x|,
in particular Lip(hb) = b+ 1. Furthermore

|x|1[b,∞)(|x|) ≤ hb(x) ≤ |x|, x ∈ R,

and
lim
b→∞

hb(x) = 0, x ∈ R.

Fix ε > 0; since Z is integrable by Corollary 2.8, by dominated convergence there exists
bε > 0, such that E[hbε(Z)] ≤ ε/2. By assumption, there exists nε ∈ N, such that

Lip(hbε)
4 + 2E[%(λnΛ)]√

λn
≤ ε/2.

Hence, by (2.9)

E[|Zλn|1{|Zλn |>bε}] ≤ E[hbε(Zλn)] ≤ E[hbε(Z)] + Lip(hbε)
4 + 2E[%(λnΛ)]√

λn
≤ ε

for all n > nε. Since Zλ1 , . . . , Zλnε are integrable by Corollary 2.8, by dominated conver-
gence (possibly for a larger bε) also E[|Zλn|1{|Zλn |>bε}] ≤ ε for every n ∈ {1, . . . , nε}. This
proves supn∈N E[|Zλn|1{|Zλn |>bε}] ≤ ε.

Proof of Theorem 2.3. Let us first prove that E[%(λΛ)] < ∞ and (2.4) imply (2.5). Using
the scaling property of the Wasserstein metric and L(Z/

√
Λ |Λ)

a.s.
= L(X), it follows for

every b > 0 and h ∈Hb that

E[h(Zλ)− h(Z)] = E
[
E[h(Zλ)− h(Z)|Λ]

]
≤ E

[
dW

(
L(Zλ |Λ),L(Z |Λ)

)]
= E

[√
Λ dW

(
L(Yλ |Λ),L(X)

)]
.

Plugging in (2.4) gives the upper bound (2.5).
To prove (2.4), consider h ∈Hb. The function

f(x) := e
x2

2

∫ x

−∞

(
h(y)− E[h(X)]

)
e−

y2

2 dy, x ∈ R,
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Chapter 2. Upper Bounds for the Wasserstein Distance

where we dropped the dependence on h in the notation, satisfies the corresponding Stein
equation for the centered normal distribution with variance 1, i.e.

h(x)− E[h(X)] = f ′(x)− xf(x), x ∈ R.

Note that ‖f‖∞ ≤ 2 and ‖f ′‖∞ ≤
√

2/π by [CGS11, (2.13) of Lemma 2.4]. Therefore,
E[|Yλf(Yλ)|] ≤

√
2/π + 2b <∞, hence Yλf(Yλ) is integrable and

E[h(Yλ)|Λ]− E[h(X)]
a.s.
= E

[
f ′(Yλ)− Yλf(Yλ)

∣∣Λ]. (2.13)

To estimate the right-hand side of (2.13), we follow the standard procedure (see [CGS11,
Section 1.3]) combined with size biasing of a Poisson random variable. Define

Y ′λ :=
1√
λΛ

Nλ−1∑
i=1

Xi and Yλ,n :=
1√
λΛ

Nλ∑
i=1,i 6=n

Xi (2.14)

and note that

Y ′λ − Yλ,n =
1√
λΛ

(Xn1{Nλ≥n} −XNλ), n ∈ N. (2.15)

We first rewrite the term E[f ′(Yλ)|Λ] from (2.13). By size biasing,

E
[
f ′(Yλ) |Λ

] a.s.
= E

[Nλ

λΛ
f ′(Y ′λ)

∣∣∣Λ] a.s.
= E

[ 1

λΛ

Nλ∑
n=1

f ′(Y ′λ)
∣∣∣Λ]. (2.16)

By the trivial identity f(Y ′λ) =
(
f(Y ′λ)− f(Yλ,n)

)
+ f(Yλ,n),

E
[
f ′(Yλ) |Λ

] a.s.
= I1 + E

[ 1

λΛ

Nλ∑
n=1

f ′(Yλ,n)
∣∣∣Λ]

with

I1 := E
[ 1

λΛ

Nλ∑
n=1

(
f ′(Y ′λ)− f ′(Yλ,n)

)∣∣∣Λ].
By the independence of Xn from Λ, Nλ, and {Xi}i∈N\{n}, it follows that

E
[
g(Xn)

∣∣Λ, Nλ, {Xi}i∈N\{n}
] a.s.

= E[g(Xn)] (2.17)

for every measurable g: R → R with E[|g(Xn)|] < ∞. Using (2.17) for g(x) = x2 and the
assumption E[X2

n] = 1, we see that

E
[X2

n1{Nλ≥n}

λΛ
f ′(Yλ,n)

∣∣∣Λ] a.s.
= E

[1{Nλ≥n}

λΛ
f ′(Yλ,n)

∣∣∣Λ], n ∈ N,

hence

E
[
f ′(Yλ)|Λ

] a.s.
= I1 + E

[ 1

λΛ

Nλ∑
n=1

X2
nf
′(Yλ,n)

∣∣∣Λ]. (2.18)

Next, we rewrite the term E[Yλf(Yλ)|Λ] from (2.13). By the fundamental theorem of
calculus we get

f(Yλ) = f(Yλ,n) + (Yλ − Yλ,n)

∫ 1

0
f ′(Yλ,n + t(Yλ − Yλ,n)) dt, n ∈ N. (2.19)
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Using (2.17) for g(x) = x and the assumption E[Xn] = 0, it follows that

E
[Xn1{Nλ≥n}√

λΛ
f(Yλ,n)

∣∣∣Λ] a.s.
= 0.

Hence, multiplying (2.19) by Yλ − Yλ,n = Xn1{Nλ≥n}/
√
λΛ and taking conditional expec-

tations, it follows that

E
[Xn1{Nλ≥n}√

λΛ
f(Yλ)

∣∣∣Λ] a.s.
= E

[X2
n1{Nλ≥n}

λΛ

∫ 1

0
f ′(Yλ,n + t(Yλ − Yλ,n)) dt

∣∣∣Λ],
and summation over n ∈ N shows that

E
[
Yλf(Yλ)

∣∣Λ] a.s.
= E

[ 1

λΛ

Nλ∑
n=1

X2
n

∫ 1

0
f ′(Yλ,n + t(Yλ − Yλ,n)) dt

∣∣∣Λ].
Subtracting this equality from (2.18) shows that

E
[
f ′(Yλ)− Yλf(Yλ)|Λ

] a.s.
= I1 + I2 (2.20)

with

I2 := E
[ 1

λΛ

Nλ∑
n=1

X2
n

∫ 1

0

(
f ′(Yλ,n)− f ′(Yλ,n + t(Yλ − Yλ,n))

)
dt
∣∣∣Λ].

To control I1 and I2, we use additional information about the derivative of f , namely
Lip(f ′) <∞. Then by (2.15),∣∣f ′(Y ′λ)− f ′(Yλ,n)

∣∣ ≤ Lip(f ′)
∣∣Y ′λ − Yλ,n∣∣ =

Lip(f ′)√
λΛ

∣∣Xn1{Nλ≥n} −XNλ

∣∣ (2.21)

and ∣∣f ′(Yλ,n)− f ′(Yλ,n + t(Yλ − Yλ,n))
∣∣ ≤ Lip(f ′)t

∣∣Yλ − Yλ,n∣∣
≤ Lip(f ′)√

λΛ
t |Xn|1{Nλ≥n}.

for every n ∈ N and t ∈ [0, 1]. Since L(Nλ |Λ)
a.s.
= P(λΛ),

E
[ Nλ∑
n=1

1{Nλ≥n}

∣∣∣Λ] a.s.
= E[Nλ |Λ]

a.s.
= λΛ.

Hence, using (2.17) for g(x) = |x|3, as well as
∫ 1

0 tdt = 1/2, it follows that

|I2| ≤
Lip(f ′)

2
√
λΛ

E
[ 1

λΛ

Nλ∑
n=1

|Xn|31{Nλ≥n}

∣∣∣Λ]
=

Lip(f ′)

2
√
λΛ

E
[ 1

λΛ

Nλ∑
n=1

E
[
|Xn|3

]∣∣∣Λ] ≤ Lip(f ′)

2
√
λΛ

%(λΛ) a.s.

(2.22)

Estimating I1 using (2.21),

|I1| ≤
Lip(f ′)√

λΛ
E
[ 1

λΛ

Nλ∑
n=1

(
|Xn|+ |XNλ |

)∣∣∣Λ] a.s.
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Chapter 2. Upper Bounds for the Wasserstein Distance

Using (2.17) for g(x) = |x| and recalling that E[|Xn|] ≤ E[X2
n] = 1 for every n ∈ N by

Jensen’s inequality and our assumption,

E
[ Nλ∑
n=1

(
|Xn|+ |XNλ |

)∣∣∣Λ] =
∞∑
m=1

m∑
n=1

E
[
(|Xn|+ |Xm|)1{Nλ=m}

∣∣Λ]
=

∞∑
m=1

E
[
1{Nλ=m}

∣∣Λ] m∑
n=1

(E[|Xn|] + E[|Xm|])

≤ 2E[Nλ |Λ] = 2λΛ a.s.

Hence,

|I1| ≤
2 Lip(f ′)√

λΛ
a.s. (2.23)

Note that Lip(f ′) ≤ 2 by [CGS11, (2.13) of Lemma 2.4], because Lip(h) ≤ 1 by assumption.
Thus, the combination of (2.13), (2.20), (2.22), and (2.23) shows that

E[h(Yλ)|Λ]− E[h(X)] ≤ 4 + 2%(λΛ)√
λΛ

a.s. (2.24)

On the set {%(λΛ) <∞}, for b > 0, estimate (2.24) applied to h(x) := min(b, |x|) for x ∈ R
implies that

E
[
min(b, |Yλ|)

∣∣Λ] ≤ E[|X|] +
4 + 2%(λΛ)√

λΛ
a.s.,

so E[|Yλ||Λ] <∞ a.s. by conditional dominated convergence as b→∞.
For general h ∈ H and b > 0 define hb ∈ Hb by hb(x) = max(−b,min(b, h(x))) for

x ∈ R. By (2.10) and the conditional dominated convergence theorem, it follows that
E[hb(Yλ) |Λ]−E[hb(X)] converges a.s. on the set {%(λΛ) <∞} to E[h(Yλ) |Λ]−E[h(X)] as
b→∞, therefore (2.24) holds for h a.s. on the set {%(λΛ) <∞}, and (2.4) is proven.

To illustrate the balance between third absolute moments of the sequence {Xn}n∈N
increasing to infinity and the corresponding moments of Λ required for Theorem 2.3 and
Corollaries 2.8, 2.11, and 2.12 we give the following example.

Example 2.25. Given γ > 0, consider a sequence of independent random variables {Xn}n∈N
with P[Xn = eγn] = P[Xn = − eγn] = e−2γn /2 and P[Xn = 0] = 1− e−2γn for every n ∈ N.
Then E[Xn] = 0, E[X2

n] = 1, and E[|Xn|3] = eγn for every n ∈ N. For λ > 0 let Pλ ∼ P(λ).
Summing the first Pλ terms of a geometric progression with factor eγ shows that

Pλ∑
n=1

E[|Xn|3] =
eγPλ −1

1− e−γ
,

hence by the definition of %(λ) in (2.2)

%(λ) =
E[eγPλ ]− 1

λ(1− e−γ)
=

exp(λ(eγ −1))− 1

λ(1− e−γ)
≤ eγ exp(λ(eγ −1)),

where the estimate (ex−1)/x ≤ ex for x > 0 was used. Therefore, %(λΛ) < ∞ for ev-
ery (0,∞)-valued random variable Λ. If Λ has a gamma distribution Γ(α, β) with shape
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parameter α > 0 and inverse scale parameter β > 0 as in Example 1.5, then using (1.6)
yields

E[%(λΛ)] ≤ eγ E[exp(λΛ(eγ −1))] = eγ
( β

β − λ(eγ −1)

)α
for λ < β/(eγ −1). Thus, the estimate (2.5) applies for 0 < λ < β/(eγ −1) and also
Corollary 2.8, because E[

√
Λ] = Γ(α + 1/2)/(

√
βΓ(α)) < ∞ by (1.6). However, the third

absolute moments are increasing too fast to make Corollary 2.11 applicable. This is no
surprise, because the expected number of non-zero terms in Zλ is bounded above, i.e.

E
[ Nλ∑
n=1

1{Xn 6=0}

]
≤
∞∑
n=1

P[Xn 6= 0] =
1

e2γ −1
, λ > 0,

for every distribution of the (0,∞)-valued Λ.

Remark 2.26. This chapter is based on so far unpublished research by P. Eichelsbacher, P.
Porkert, and U. Schmock.
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Chapter 3

Upper Bounds for the Kolmogorov
Distance

We prove an upper bound for the Kolmogorov distance between Poisson mixture sums

and their related normal variance mixture distributions.

As in Chapter 2, let {Xi}i∈N be a sequence of independent (but not necessarily identically
distributed), real-valued square-integrable random variables with

E[Xi] = 0, V(Xi) = 1, E
[
|Xi|3

]
<∞ i ∈ N.

Furthermore, let the random variable Nλ have a Poisson mixture distribution1

Nλ ∼ P(λΛ), λ > 0,

with a.s. positive mixing random variable Λ and assume that (Nλ,Λ) is independent of
{Xi}i∈N.

We apply Stein’s method to prove an upper bound for the Kolmogorov distance between
the distributions of the random sums

Zλ :=
1√
λ

Nλ∑
i=1

Xi, λ > 0,

and the normal variance mixture random variable2

Z :=
√

ΛX,

where X ∼ N(0, 1), independent of (Nλ,Λ, {Xi}i∈N).

In analogy to (2.1), we define

ψ(λ) := e−λ
∞∑
n=1

λn−1

n!

n+1∑
i=1

E
[
|Xi|3

]
, λ > 0.

1See Definition 1.1.
2See Definition 1.9.
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Chapter 3. Upper Bounds for the Kolmogorov Distance

Theorem 3.1. Under the above conditions an upper bound for the Kolmogorov distance
between the conditional distributions is given by

dK

(
L(Zλ|Λ),L(Z|Λ)

)
≤ Cψ(λΛ) +D√

λΛ
a.s.

where

C =
4 + 52

√
6 +
√

2π

8
≈ 16.7, D = 2 +

√
6 +

√
π

2
≈ 5.7.

Remark 3.2. Let c := supi∈N E
[
|Xi|3

]
<∞, then

ψ(x) ≤ c
(

1 +
1− e−x

x

)
≤ 2c, x > 0.

Since

F (x) := x
∞∑
n=1

xn

n!
= x(ex−1), x ∈ R,

and

F ′(x) =

∞∑
n=1

(n+ 1)
xn

n!
= x ex + ex−1, x ∈ R,

for x > 0,

ψ(x) = e−x
∞∑
n=1

xn−1

n!

n+1∑
i=1

E
[
|Xi|3

]
≤ c e−x

x
F ′(x),

which proves the claim.

Corollary 3.3. Under the conditions of Theorem 3.1, an upper bound for the Kolmogorov
distance between Zλ and Z is given by

dK

(
L(Zλ),L(Z)

)
≤ E

[Cψ(λΛ) +D√
λΛ

∧ 1
]
. (3.4)

If the deterministic condition

lim
x→∞

ψ(x)√
x

= 0

is satisfied, the right-hand side of (3.4) converges to zero for λ→∞. If

c := sup
i∈N

E
[
|Xi|3

]
<∞,

dK

(
L(Zλ),L(Z)

)
≤ 2cC +D√

λ
E
[
Λ−

1
2
]
.

Example 3.5. Let
Λ ∼ Γ(α, β), α > 1/2, β > 0,

then by equation (1.6) in Example 1.5, with γ = −1/2 and z = 0,

E
[
Λ−

1
2
]

=

√
β Γ(α− 1/2)

Γ(α)
.
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Proof of Theorem 3.1. Given σ > 0 and z ∈ R as well as the indicator function

hz := 1(−∞,z],

a solution fσ2,z of the Stein equation

hz(x)− gz(σ2) = f ′(x)− x

σ2
f(x), x ∈ R, (3.6)

with gz(σ
2) := E[hz(σX)] is given by

fσ2,z(x) = σ e
x2

2σ2

∫ x/σ

−∞

(
hz(σs)− gz(σ2)

)
e−

s2

2 ds, x ∈ R, (3.7)

where we consider f ′ as the left-sided derivative and

P[Zλ ≤ z |Λ]− P
[√

ΛX ≤ z
∣∣Λ] a.s.

= E
[
hz(Zλ)

∣∣Λ]− gz(Λ). (3.8)

For every λ > 0 and n ∈ N, we define various variants of Zλ where one or two terms are
missing, namely

Z ′λ :=
1√
λ

Nλ−1∑
i=1

Xi, Zλ,n :=
1√
λ

Nλ∑
i=1
i 6=n

Xi and Z ′λ,n :=
1√
λ

Nλ−1∑
i=1
i 6=n

Xi,

as well as auxiliary function

Kλ,n(t) := E
[
Yλ,n(1{0≤t≤Yλ,n} − 1{Yλ,n≤t≤0})

]
, t ∈ R,

where

Yλ,n :=
Xn√
λ
. (3.9)

Notice that∫
R
Kλ,n(t) dt = E

[
Y 2
λ,n

]
=

1

λ
and

∫
R
|t|Kλ,n(t) dt =

1

2
E
[
|Yλ,n|3

]
. (3.10)

By size biasing, see (2.16), and (3.10),

E
[
hz(Zλ)− gz(Λ)

∣∣Λ] a.s.
= E

[Nλ

λΛ

(
hz(Z

′
λ)− gz(Λ)

)∣∣∣Λ]
a.s.
=

1

Λ
E
[ Nλ∑
n=1

∫
R

(
hz(Z

′
λ)− gz(Λ)

)
Kλ,n(t) dt

∣∣∣Λ] a.s.
= A+B

with

A :=
1

Λ
E
[ Nλ∑
n=1

∫
R

(
hz(Z

′
λ)− hz(Zλ,n + t)

)
Kλ,n(t) dt

∣∣∣Λ] (3.11)

and

B :=
1

Λ
E
[ Nλ∑
n=1

∫
R

(
hz(Zλ,n + t)− gz(Λ)

)
Kλ,n(t) dt

∣∣∣Λ]. (3.12)
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Chapter 3. Upper Bounds for the Kolmogorov Distance

First we treat B from (3.12). Of course, we will use the Stein equation (3.6), but since
the (left-hand side) derivative of fΛ,z given by (3.7) jumps at z, we do not have a good
control for its changes. Therefore, this derivative needs to be removed form the estimates,
which explains the introduction of the remainder A given in (3.11).

We keep the slightly cumbersome notation fΛ,z to emphasize that the Stein solution is
random. Note that

ZλfΛ,z(Zλ) =

Nλ∑
n=1

Yλ,nfΛ,z(Zλ).

For every n ∈ N, by the fundamental theorem of calculus,

1{Nλ≥n}Yλ,nfΛ,z(Zλ) = 1{Nλ≥n}Yλ,n

∫ Yλ,n

0
f ′Λ,z(Zλ,n+ t) dt+1{Nλ≥n}Yλ,nfΛ,z(Zλ,n), (3.13)

where we can rewrite the integral as

Yλ,n

∫ Yλ,n

0
f ′Λ,z(Zλ,n + t) dt =

∫
R
f ′Λ,z(Zλ,n + t)Yλ,n (1{0≤t≤Yλ,n} − 1{Yλ,n≤t≤0}) dt.

Note that we use the notion of conditional expectation for random variables, which are
σ-integrable with respect to a σ-algebra (see [HWY92, Chapter 4]). This is useful when
considering conditional expectations involving fΛ,z, because by Lemma A.1 the function is
bounded on events where Λ is bounded.

Note that since Yλ,n and (Λ, Nλ, Zλ,n) are independent and E[Yλ,n] = 0,

E
[
1{Nλ≥n}Yλ,nfΛ,z(Zλ,n)

∣∣Λ, Nλ

]
= 0, n ∈ N,

for the last term of (3.13). Similarly, for every σ(Λ)-measurable event E where Λ is
bounded, n ∈ N, t ∈ R,

E
[
1E f

′
Λ,z(Zλ,n + t)Yλ,n (1{0≤t≤Yλ,n} − 1{Yλ,n≤t≤0})

]
= E

[
1E f

′
Λ,z(Zλ,n + t)

]
Kλ,n(t).

By the Stein equation (3.6) with x = Zλ,n + t and σ2 = Λ,

hz(Zλ,n + t)− gz(Λ) = f ′Λ,z(Zλ,n + t)−
Zλ,n + t

Λ
fΛ,z(Zλ,n + t).

Substituting this into (3.12) and combining it with the above results shows that

B
a.s.
=

1

Λ
E
[
ZλfΛ,z(Zλ)

∣∣Λ]− 1

Λ2
E
[ Nλ∑
n=1

∫
R

(Zλ,n + t)fΛ,z(Zλ,n + t)Kλ,n(t) dt
∣∣∣Λ]. (3.14)

By size biasing and (3.10),

E
[
ZλfΛ,z(Zλ)

∣∣Λ] a.s.
=

1

λΛ
E
[
NλZ

′
λfΛ,z(Z

′
λ)
∣∣Λ]

a.s.
=

1

Λ
E
[ Nλ∑
n=1

∫
R
Z ′λfΛ,z(Z

′
λ)Kλ,n(t) dt

∣∣∣Λ].
Substitution into (3.14) and rearrangement leads to

B
a.s.
=

1

Λ2
E
[ Nλ∑
n=1

∫
R

(
Z ′λfΛ,z(Z

′
λ)− (Zλ,n + t)fΛ,z(Zλ,n + t)

)
Kλ,n(t) dt

∣∣∣Λ].
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We have the representations

Z ′λ = Z ′λ,n + Yλ,n1{Nλ≥n+1} and Zλ,n + t = Z ′λ,n + t+ Yλ,Nλ1{Nλ 6=n}.

Hence, by the last item of Lemma A.1 we get

∣∣Z ′λfΛ,z(Z
′
λ)−(Zλ,n+t)fΛ,z(Zλ,n+t)

∣∣ ≤ (|Z ′λ,n|+√πΛ

2
√

2

)(
|t|+|Yλ,n|1{Nλ≥n+1}+|Yλ,Nλ |1{Nλ 6=n}

)
.

Since Yλ,n and (Λ, Nλ, Z
′
λ,n) are independent and since Yλ,Nλ and (Λ, Nλ, Z

′
λ,n) are condi-

tionally independent given Nλ,

|B| ≤ 1

Λ2
E
[ Nλ∑
n=1

(
|Z ′λ,n|+

√
πΛ

2
√

2

)
Cn

∣∣∣Λ] a.s.

with

Cn :=

∫
R

(
|t|1{Nλ≥n} + E[|Yλ,n|] 1{Nλ≥n+1} +

∞∑
l=n+1

E[|Yλ,l|] 1{Nλ=l}

)
Kλ,n(t) dt

for each n ∈ N. Using (3.10) and E[|Yλ,l|] ≤
√
E[Y 2

λ,l] = 1/
√
λ for all l ∈ N,

Cn ≤
1

2
E
[
|Yλ,n|3

]
1{Nλ≥n} +

2√
λ3

1{Nλ≥n+1}.

By (3.9) and (2.2),

|B| ≤ 1

2Λ2
√
λ3

E
[ Nλ∑
n=1

|Z ′λ,n|E
[
|Xn|3

]∣∣∣Λ]+

√
π

4
√

2λ3Λ3
E
[ Nλ∑
n=1

E
[
|Xn|3

]∣∣∣Λ]
+

2

Λ2
√
λ3

E
[Nλ−1∑
n=1

|Z ′λ,n|
∣∣∣Λ]+

√
π√

2λ3Λ3
E
[
Nλ

∣∣Λ]
=

1

2Λ2
√
λ3

E
[ Nλ∑
n=1

E
[
|Z ′λ,n|

∣∣Λ, Nλ

]
E
[
|Xn|3

]∣∣∣Λ]+

√
π

4
√

2λΛ
%(λΛ)

+
2

Λ2
√
λ3

E
[Nλ−1∑
n=1

E
[
|Z ′λ,n|

∣∣Λ, Nλ

]∣∣∣Λ]+

√
π√

2λΛ
a.s.

By the conditional Jensen inequality, for each n ∈ N,

E
[
|Z ′λ,n|

∣∣Λ, Nλ

] a.s.
= E

[
|Z ′λ,n|

∣∣Nλ

] a.s.
=
√
E
[
(Z ′λ,n)2

∣∣Nλ

]
and

E
[
(Z ′λ,n)2

∣∣Nλ

] a.s.
= V

(
Z ′λ,n |Nλ

) a.s.
=

1

λ

Nλ−1∑
i=1,i 6=n

V(Xi)

=
Nλ − 1{Nλ≥1} − 1{Nλ≥n+1}

λ
≤ Nλ

λ
,
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hence

|B| ≤ %(λΛ)

2λΛ
E
[ √Nλ

λΛ%(λΛ)

Nλ∑
n=1

E
[
|Xn|3

]∣∣∣Λ]+
√
π

4 + %(λΛ)

4
√

2λΛ

+
2

Λ2λ2
E
[
Nλ

√
Nλ − 1{Nλ≥1}

∣∣Λ] a.s.

(3.15)

Note that

E
[ 1

λΛ%(λΛ)

Nλ∑
n=1

E
[
|Xn|3

]∣∣∣Λ] a.s.
= 1

by (2.2), hence by the conditional Jensen inequality

E
[ √Nλ

λΛ%(λΛ)

Nλ∑
n=1

E
[
|Xn|3

]∣∣∣Λ] ≤ (E[ Nλ

λΛ%(λΛ)

Nλ∑
n=1

E
[
|Xn|3

]∣∣∣Λ]) 1
2

a.s.

Due to size-biasing and (2.2),

E
[ Nλ

λΛ%(λΛ)

Nλ∑
n=1

E
[
|Xn|3

]∣∣∣Λ] a.s.
= E

[ 1

%(λΛ)

Nλ+1∑
n=1

E
[
|Xn|3

]∣∣∣Λ] a.s.
=

λΛψ(λΛ)

%(λΛ)

and

E
[Nλ

λΛ

√
Nλ − 1{Nλ≥1}

∣∣∣Λ] = E
[√

Nλ

∣∣Λ] ≤√E[Nλ |Λ] =
√
λΛ a.s.

Since %(λΛ) ≤ ψ(λΛ),

|B| ≤ 1

2
√
λΛ

(√
%(λΛ)ψ(λΛ) +

√
π

4 + %(λΛ)

2
√

2
+ 4
)

a.s.

≤ 1

2
√
λΛ

(
ψ(λΛ) +

√
π

4 + %(λΛ)

2
√

2
+ 4
)

a.s.

We now study (3.11). To this end, for n ∈ N, k ∈ {1, . . . , n− 1}, t ∈ R,

Ek,n(t) :=
{√

λz −max(Xk, Xn +
√
λt) <

n−1∑
j=1
j 6=k

Xj ≤
√
λz −min(Xk, Xn +

√
λt)
}
,

and in case k = n,

En,n(t) :=
{√

λz −max(0,
√
λt) <

n−1∑
j=1

Xj ≤
√
λz −min(0,

√
λt)
}
.

Then
1Ek,Nλ (t) =

∣∣1{Z′λ≤z} − 1{Zλ,k+t≤z}
∣∣, (3.16)

P[Ek,Nλ(t) |Nλ = n] = P[Ek,n(t)] , (3.17)

and
P[Ek,Nλ(t) |Nλ,Λ] = P[Ek,Nλ(t) |Nλ] , (3.18)
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where the last equation can be shown by a monotone class argument. By (3.16), the tower
property of the conditional expectation, the conditional Fubini Theorem, (3.18), and (3.17),

|A| ≤ 1

Λ
E
[ Nλ∑
k=1

∫
R

∣∣1{Z′λ≤z} − 1{Zλ,k+t≤z}
∣∣Kλ,k(t) dt

∣∣∣Λ]

=
1

Λ
E
[ Nλ∑
k=1

∫
R

1Ek,Nλ (t)Kλ,k(t) dt
∣∣∣Λ]

=
1

Λ
E
[
E
[ Nλ∑
k=1

∫
R

1Ek,Nλ (t)Kλ,k(t) dt

∣∣∣∣Nλ,Λ

]∣∣∣Λ]

=
1

Λ
E
[ Nλ∑
k=1

∫
R
P[Ek,Nλ(t)|Nλ]Kλ,k(t) dt

∣∣∣Λ]

=
1

Λ
E
[ Nλ∑
k=1

∫
R
E[P[Ek,Nλ(t)|Xk, XNλ ]|Nλ]Kλ,k(t) dt

∣∣∣Λ].

(3.19)

We now analyze
E[P[Ek,n(t) |Xk, Xn]] . (3.20)

For n ≥ 3 and k ∈ {1, . . . , n− 1},

(n− 2)−1
n−1∑
j=1
j 6=k

E
[
X2
j

]
= 1,

and we apply the concentration inequality (A.3) to (3.20) for

(n− 2)−
1
2

n−1∑
j=1
j 6=k

Xj ,

with

γ̄n := (n− 2)−
3
2

n−1∑
j=1
j 6=k

E
[
|Xj |3

]
.

For n ≥ 3 and k = n

(n− 1)−
1
2

n−1∑
j=1

E
[
X2
j

]
= 1,

and we apply the concentration inequality (A.3) to (3.20) for

(n− 1)−
1
2

n−1∑
j=1

Xj ,

with

γ̃n := (n− 1)−
3
2

n−1∑
j=1

E
[
|Xj |3

]
.
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Hence, for n ≥ 3, k ∈ {1, . . . , n},

E[P[Ek,n(t) |Xk, Xn]] ≤ (n− 2)−
1
2 E
[√
λ|t|+ |Xk −Xn|

]
+ 2γn, (3.21)

with

γn := (n− 2)−
3
2

n−1∑
j=1

E
[
|Xj |3

]
.

Plugging (3.21) into (3.19), applying (3.10) and Jensen’s inequality we get a.s.

|A| ≤ 1

Λ
E
[
1{Nλ=1}

∫
R
Kλ,1(t) dt

∣∣∣Λ]+
1

Λ
E
[
1{Nλ=2}

∫
R

(Kλ,1(t) +Kλ,2(t)) dt
∣∣∣Λ]

+
1

Λ
E
[
1{Nλ≥3}(Nλ − 2)−

1
2

Nλ∑
k=1

∫
R
Kλ,k(t)

(√
λ|t|+

√
2
)

dt
∣∣∣Λ]

+
2

Λ
E
[
1{Nλ≥3}γNλ

Nλ∑
k=1

∫
R
Kλ,k(t) dt

∣∣∣Λ]
≤ 1

λΛ
E
[
1{Nλ=1} |Λ

]
+

2

λΛ
E
[
1{Nλ=2} |Λ

]
+

√
3

2λΛ
E
[
1{Nλ≥3}

1√
Nλ

Nλ∑
k=1

E
[
|Xk|3

]∣∣∣Λ]+

√
6

λΛ
E
[√

Nλ

∣∣Λ]
+

2

λΛ
E
[
1{Nλ≥3}γNλNλ |Λ

]
≤ 13

√
3

2λΛ
E
[
1{Nλ≥1}

1√
Nλ

Nλ∑
k=1

E
[
|Xk|3

]∣∣∣Λ]+

√
6√
λΛ

.

By size biasing,

E
[
1{Nλ≥1}

1√
Nλ

Nλ∑
k=1

E
[
|Xk|3

]∣∣∣Λ] = E
[
1{Nλ≥2}

Nλ

λΛ
√
Nλ − 1

Nλ−1∑
k=1

E
[
|Xk|3

]∣∣∣Λ]

≤
√

2E
[√Nλ

λΛ

Nλ∑
k=1

E
[
|Xk|3

]∣∣∣Λ],
which can be analyzed like the first term on the right hand side in (3.15), thus

|A| ≤ 13
√

6

2
√
λΛ

ψ(λΛ) +

√
6√
λΛ

.

Putting everything together results in

|A+B| ≤ 1√
λΛ

(4 + 52
√

6 +
√

2π

8

)
ψ(λΛ) + 2 +

√
6 +

√
π

2
.

Remark 3.22. This chapter is based on so far unpublished research by P. Eichelsbacher, P.
Porkert, and U. Schmock.
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Part III

Small-Time Central Limit
Theorems for Semimartingales
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Chapter 1

The Setting

We now lay down the setting for the following chapters.

Assumption 1.1. Let m ∈ N, T > 0, x0 ∈ Rm. Let X = (X1
t , . . . , X

m
t )>t∈[0,T ] be an

Rm-valued continuous semimartingale with canonical decomposition1

X − x0 = M +A,

where M is a continuous local martingale, A has locally finite variation, and M0 = A0 = 0.
Assume that

1. X0 = x0 a.s.,

2. there exists an a.s. positive stopping time τA such that a.s.

Ajt =

∫ t

0
bjs ds, t ∈ [0, τA], j ∈ {1, . . . ,m},

for an adapted process b,

3. there exists a random variable Cb, such that |bjt | ≤ Cb < ∞ for a.e. t ∈ [0, τA] a.s.,
j ∈ {1, . . . ,m},

4. there exists an a.s. positive stopping time τM such that the covariation is a.s.

〈M j ,Mk〉t =

∫ t

0

m∑
l=1

σjls σ
kl
s ds, t ∈ [0, τM ], j, k ∈ {1, . . . ,m},

for a progressive process σ,

5. there exists a deterministic constant Cσ <∞, such that |σjkt | ≤ Cσ for a.e. t ∈ [0, τM ]
a.s., j, k ∈ {1, . . . ,m}, and

6. as t↘ 0, σt → L a.s., where L is a deterministic m×m-matrix.

1See e.g. [Kal02, p. 337].
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Remark 1.2. Let X be a weak solution of the m-dimensional SDE, j ∈ {0, . . . ,m}, d ∈ N,

Xj
t = x0 +

∫ t

0
bj(s,Xs) ds+

d∑
k=1

∫ t

0
σjk(s,Xs) dBk

s , t ≥ 0,

where B is a standard d-dimensional Brownian motion, x0 ∈ Rm,

b : [0, T ]× Rm → Rm,

is uniformly bounded in a neighborhood of (0, x0), and

σ : [0, T ]× Rm → Rm×d,

is continuous in (0, x0). Then X satisfies Assumption 1.1.

Assumption 1.3. For m ∈ N, T > 0, let X = (X1
t , . . . , X

m
t )>t∈[0,T ] be an Rm-valued càdlàg

semimartingale with decomposition X = Xc + J , such that

1. Xc is a continuous semimartingale satisfying Assumption 1.1,

2. the process J is given by

Jt =

∫ t

0

∫
B1

ψ(s, z)
(
Π(ds, dz)− µ(ds, dz)

)
+

∫ t

0

∫
Rm\B1

ϕ(s, z) Π(ds, dz),

where B1 denotes the unit ball in Rm, Π is a Poisson random measure on [0, T ]×Rm
with compensator µ; the Rm-valued processes ψ, ϕ are predictable with respect to the
filtration generated by Π, and

E
[∫ T

0

∫
B1

|ψ(s, z)|2 µ(ds, dz)
]
<∞,

3. there exists an a.s. positive stopping time τJ , such that

E
[∣∣Π− µ∣∣([0, t ∧ τJ ]×B1

)]
= O

(√
t
)

as t↘ 0. (1.4)

Remark 1.5. Note that compound Poisson processes are covered by these assumptions. In
this case the left-hand side of (1.4) is O(t) as t↘ 0.
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Chapter 2

Central Limit Theorems for
Continuous Semimartingales

We prove a small-time CLT which we support with a theorem on higher order asymp-

totics, as well as a functional CLT for a class of continuous semimartingales.

Theorem 2.1 (CLT). Let X satisfy Assumption 1.1. Then for every f : Rm → Rn such
that there exists an open neighborhood U of x0 with f ∈ C2(U ;Rn), we have

1√
t
(f(Xt)− f(x0))

d−→ Nf as t↘ 0,

where Nf is a normal random vector with mean zero and covariance matrix

V = (Df)(x0)L(Df(x0)L)>.

Here (Df)(x0) stands for the Jacobian of f at x0.

Proof. We first suppose that m = n and f = id; then the general case follows by the
delta method, see the end of the proof. Let Nid be an N(0, LL>) random vector on some

probability space (Ω̃, Ã, P̃). We need to show

lim
t↘0

E
[
g
(Xt − x0√

t

)]
= EP̃

[
g
(
Nid

)]
, g ∈ Cb(Rn;R). (2.2)

To this end, we fix a function g ∈ Cb(Rn). Then with

τ := τA ∧ τM ,

we have

∣∣∣E[g(Xt − x0√
t

)]
− EP̃[g(Nid)]

∣∣∣ ≤ ∣∣∣E[g(Xt − x0√
t

)
− g
(Xt∧τ − x0√

t

)]∣∣∣
+
∣∣∣E[g(Xt∧τ − x0√

t

)]
− EP̃[g(Nid)]

∣∣∣. (2.3)

Hence, in order to show (2.2) it is sufficient to prove that the two summands in the latter
upper bound tend to zero as t ↘ 0. Since the event {τ = 0} has probability zero, the
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first summand converges to zero by the dominated convergence theorem. Moreover, the
convergence of the second summand to zero will follow, if we can show

Xt∧τ − x0√
t

d−→ Nid, t↘ 0. (2.4)

In order to prove (2.4), we first note that Doob’s Integral Representation Theorem, see e.g.
[Kal02, Theorem 18.12, p. 358], in combination with part (4) of Assumption 1.1 implies the
existence of an m-dimensional Brownian motion B (possibly on an extension of the primary
probability space) such that a.s.

M j
t∧τ =

m∑
k=1

∫ t∧τ

0
σjks dBk

s , t ∈ [0, T ], j ∈ {1, . . . ,m}. (2.5)

By part (2) of Assumption 1.1 and (2.5) we therefore have a.s.

Xj
t∧τ = x0 +

∫ t∧τ

0
bjs ds+

m∑
k=1

∫ t∧τ

0
σjks dBk

s , t ∈ [0, T ], j ∈ {1 . . . ,m}. (2.6)

In addition, we recall that by the Cramér–Wold Theorem, (2.4) holds iff for every s =
(s1, . . . , sm)> ∈ Rm

m∑
j=1

sj
Xj
t∧τ − x

j
0√

t

d−→
m∑
j=1

sj N
j
id (2.7)

as t↘ 0. To show this, we fix s = (s1, . . . , sm)> ∈ Rm. By (2.6), the left-hand side of (2.7)
equals

1√
t

m∑
j=1

sj

∫ t∧τ

0
bjs ds+

1√
t

m∑
j=1

sj

m∑
k=1

∫ t∧τ

0
σjks dBk

s . (2.8)

By part (3) of Assumption 1.1, the terms t−1/2
∫ t∧τ

0 bjs ds converge to zero a.s. Before
examining the Itō integrals in (2.8) we observe that for every t ∈ [0, T ] the random vector

Nt := (N1
t , . . . , N

m
t ) :=

( 1√
t

m∑
k=1

LjkB
k
t

)
1≤j≤m

is N(0, LL>) distributed. In particular, the distribution of Nt is independent of t and

Nt
d
= Nid for every t > 0. We then have for all h ∈ Cb(R):∣∣∣E[h( 1√

t

n∑
j=1

sj

m∑
k=1

LjkB
k
t∧τ

)]
− EP̃

[
h
( n∑
j=1

sjN
j
id

)]∣∣∣
=
∣∣∣E[h( 1√

t

n∑
j=1

sj

m∑
k=1

LjkB
k
t∧τ

)]
− E

[
h
( 1√

t

n∑
j=1

sj

m∑
k=1

LjkB
k
t

)]∣∣∣
≤
∣∣∣E[(h( 1√

t

n∑
j=1

sj

m∑
k=1

LjkB
k
t∧τ

)
− h
( 1√

t

n∑
j=1

sj

m∑
k=1

LjkB
k
t

))
1{τ>t}

]∣∣∣
+
∣∣∣E[(h( 1√

t

n∑
j=1

sj

m∑
k=1

LjkB
k
t∧τ

)
− h
( 1√

t

n∑
j=1

sj

m∑
k=1

LjkB
k
t

))
1{τ≤t}

]∣∣∣∣
≤ 2‖h‖∞ P[τ ≤ t]→ 0
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as t↘ 0. Therefore, the random variables

1√
t

m∑
j=1

sj

m∑
k=1

∫ t∧τ

0
Ljk dBk

s =
1√
t

m∑
j=1

sj

m∑
k=1

Ljk B
k
t∧τ (2.9)

converge in distribution to
∑m

j=1 sjN
j
id as t ↘ 0. Next, we show that the difference be-

tween (2.9) and the second term in (2.8) converges to zero in L2, i.e. the limit law can be
recovered by freezing the integrand at zero. By Itō’s isometry and the Cauchy–Schwarz
inequality we have

E
[( m∑

j=1

sj

m∑
k=1

1√
t

∫ t∧τ

0
(σjks − Ljk) dBk

s

)2]
= E

[ m∑
k=1

1

t

( m∑
j=1

sj

∫ t∧τ

0
(σjks − Ljk) dBk

s

)2]
≤
( m∑
j=1

s2
j

) m∑
k,j=1

E
[1

t

(∫ t∧τ

0
(σjks − Ljk) dBk

s

)2]
=
( m∑
j=1

s2
j

) m∑
k,j=1

E
[1

t

∫ t∧τ

0
(σjks − Ljk)2 ds

]
≤
( m∑
j=1

s2
j

) m∑
k,j=1

E
[ t ∧ τ

t
max

s∈[0,t∧τ ]
(σjks − Ljk)

]
,

which indeed converges to zero as t↘ 0 by the dominated convergence theorem. The just
established L2 convergence implies convergence in distribution. By Slutsky’s theorem, (2.7)
readily follows.

Finally, consider an arbitrary f as in the statement of the theorem. Then the desired
CLT essentially follows from a Taylor expansion; this procedure is well known in statistics
as the delta method [Dav03]. We choose an open ball B such that B ⊂ U and define the
stopping time

τ̂ := τA ∧ τM ∧ τBc , (2.10)

where τBc denotes the hitting time of B
c

for X. Analogously to the case f = id (re-

call (2.3)), it suffices to show convergence in distribution of t−1/2(f(Xt∧τ̂ ) − f(x0)). The
Taylor expansion yields

1√
t
(f(Xt∧τ̂ )− f(x0)) =

1√
t
Df(x0)(Xt∧τ̂ − x0)

+
1

2
√
t

(
(Xt∧τ̂ − x0)>Hfj (ξt)(Xt∧τ̂ − x0)

)>
1≤j≤n

, (2.11)

where Hfj denotes the Hessian of fj and ξt is a random vector with ‖ξt−x0‖ ≤ ‖Xt∧τ̂−x0‖.
The first term on the right-hand side of (2.11) converges in distribution to a Gaussian
random vector with mean zero and covariance matrix V , by the first part of the proof
(viz. (2.4), with τ replaced by τ̂) and Slutsky’s theorem. Now consider the second term on
the right-hand side of (2.11). The vector t−1/2(Xt∧τ̂ − x0) converges in distribution to a
normal random vector. By Slutsky’s theorem, we are done if we can show that the vector
Hfj (ξt)(Xt∧τ̂ − x0) converges to zero in L2. But, since

‖Hfj (ξt)(Xt∧τ̂ − x0)‖2 ≤ ‖Hfj (ξt)‖F‖Xt∧τ̂ − x0‖2,
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where ‖ · ‖F denotes the Frobenius norm, this easily follows from Assumption 1.1 and (2.6).

If a semimartingale X satisfies Assumption 1.1 and the limit law in Theorem 2.1 is
non-singular, we clearly have

lim
t↘0

P[Xt > x0] = 1/2. (2.12)

We now give examples where the value of this limit is not 1/2.

Example 2.13. Let us consider the squared Brownian motion B2 in one dimension (no
confusion with our superindex convention should arise). Then clearly limt↘0 P

[
B2
t > 0

]
= 1,

which does not contradict Theorem 2.1. Indeed, the martingale part in the canonical
decomposition of B2 is B2

t − t = 2
∫ t

0 Bs dBs, which leads to

〈B2
t − t〉 = 4

∫ t

0
B2
s ds→ 0 as t↘ 0 a.s. (2.14)

Since all items of Assumption 1.1 are satisfied, Theorem 2.1 tells us that
B2
t√
t

converges in

distribution to a singular Gaussian random variable.

Example 2.15. Denoting by Φ the standard normal cumulative distribution function, we
see that for any p ∈ (0, 1) and a standard Brownian motion B, the continuous process Xt =
Bt + Φ−1(p)

√
t satisfies P[Xt > 0] = p for all t ≥ 0. (Although not related to the present

topic, we recall that the process Xt = Bt+
√
t occurs in Delbaen and Schachermayer [DS95,

Example 3.4]. They show that when used as the price process of a financial security, Xt

(and also exp(Xt)) allows for immediate arbitrage; the arbitrage disappears if proportional
transaction costs are introduced [Gua06, Example 4.1]).

Example 2.16. The non-continuous martingale {t−Pt}t∈R+ , where {Pt}t∈R+ is a Poisson
process with parameter 1, satisfies

lim
t↘0

P[t− Pt > 0] = 1.

Example 2.17. For δ ≥ 0, we consider the SDE

Xδ
t = δt+ 2

∫ t

0

√
Xδ
s dBs, t ≥ 0. (2.18)

The standard existence and uniqueness results for SDEs do not apply, since x 7→ 2
√
x is

not Lipschitz continuous. However, by the Yamada–Watanabe uniqueness result for one-
dimensional SDEs [AS16; WY71], there exists a unique, strong solution Xδ = {Xδ

t }t∈R+

of the SDE (2.18), called squared Bessel process of dimension δ. Furthermore, the process
{Xδ

t − δt}t∈R+ is a continuous martingale. We claim that for every p ∈ [0, 1) there exists a
δ ∈ R+, such that

lim
t↘0

P
[
Xδ
t − δt > 0

]
= p.

The case p = 0 is trivial, since for δ = 0, we have Xδ
t ≡ 0, thus

lim
t↘0

P
[
Xδ
t − δt > 0

]
= 0. (2.19)
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We now consider the case p ∈ (0, 1/2). By the scaling property of squared Bessel pro-
cesses [RY99, Proposition 1.6, p. 443]

lim
t↘0

P
[
Xδ
t − δt > 0

]
= P

[
Xδ

1 > δ
]
. (2.20)

By [RY99, Corollary 1.4, p. 441] the random variable

Xδ
1 ∼ Γ(δ/2, 1/2), δ > 0,

in particular E
[
Xδ

1

]
= δ and V(Xδ

1) = 2δ. Let ε > 0, then by Chebyshev’s inequality

P
[
Xδ

1 > δ + ε
]
≤ 2δ

ε2
,

and so limδ↘0 P
[
Xδ

1 > δ + ε
]

= 0. Therefore, since for any fixed 0 < δ ≤ 2, the density of
Xδ

1 is a strictly decreasing function

lim
δ↘0

P
[
Xδ

1 > δ
]

= lim
δ↘0

P
[
δ + ε > Xδ

1 > δ
]

≤ ε lim
δ↘0

2−δ/2Γ(δ/2)−1δδ/2−1 e−δ/2

=
ε

2
lim
δ↘0

δδ/2(2 e)−δ/2Γ(1 + δ/2)−1 =
ε

2
.

Thus, by taking the limit ε↘ 0,

lim
δ↘0

P
[
Xδ

1 > δ
]

= 0. (2.21)

On the other hand, according to [JKB94, p. 340]

Xδ
1 − δ√

2δ

d−→ X ∼ N(0, 1),

for δ →∞, which implies

lim
δ→∞

P
[
Xδ

1 > δ
]

=
1

2
. (2.22)

By (2.20), (2.21), (2.22), and the intermediate value theorem for every p ∈ (0, 1/2) there
exists a δ ∈ R+ such that

lim
t↘0

P
[
Xδ
t − δt > 0

]
= p.

By (2.19) and by considering the martingales δt − Xδ
t , δ ∈ R+, we see that all values

p ∈ [0, 1) can be achieved
Thus, there exist continuous martingales X = {Xt}t∈R+ starting in zero, such that

lim
t↘0

P[Xt > 0] = p,

for every p ∈ [0, 1).

We now take a look at higher order terms beyond the limit in (2.12). If Xt = Bt + bt is
a one-dimensional Brownian motion with drift b ∈ R, we have P[Xt > x0] = 1/2 + O

(√
t
)
.

Theorem 2.23, which we prove now, shows that this estimate persists for a larger class of
Itō processes.
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Theorem 2.23. Suppose that the process X solves the SDE

dXt = b(t, ·) dt+ σ(t) dBt, (2.24)

X0 = x0,

where b : [0,∞) × Ω → Rm is a bounded predictable process, σ : [0,∞) → Rm×m is a
locally square-integrable function taking values in the set of invertible matrices such that
the smallest eigenvalue of σ(·)>σ(·) is uniformly bounded away from 0 and B is a standard
m-dimensional Brownian motion. Then the bounds

ef1(t) ≤ P
[
X1
t > X1

0

]
≤ ef2(t), t > 0 (2.25)

apply. Here the functions f1, f2 are given by

f1(t) = −
(

1 +

√
‖σ−1b‖22,∞ t

2 log 2

)(
log 2 +

√
‖σ−1b‖22,∞ t log 2

2

)
,

f2(t) = −
(√

2 log 2

‖σ−1b‖22,∞ t
− 1

)(√‖σ−1b‖22,∞ t log 2

2
− 1

2
‖σ−1b‖22,∞ t

)
,

where ‖σ−1b‖2,∞ = supt,ω ‖σ−1(t)b(t, ω)‖2. Moreover, in the limit t↘ 0, the functions ef1,

ef2 admit the series expansions

ef1(t) =
1

2
−
√

log 2

2
‖σ−1b‖2,∞

√
t+ O(t), (2.26)

ef2(t) =
1

2
+

√
log 2

2
‖σ−1b‖2,∞

√
t+ O(t). (2.27)

Remark 2.28. The term ‖σ−1b‖2,∞ in (2.26) and (2.27) has a clear interpretation: A small
drift favors symmetry of the law of Xt, whereas a small volatility destroys the symmetry,
leading to a larger error term.

Proof. Fix a t > 0 and make a change of probability measure according to the Girsanov
Theorem, with the corresponding density being given by

dQ
dP

:= Z−1
t := e−Nt−

1
2
〈N〉t := e−

∫ t
0 σ(s)−1b(s,·) dBs− 1

2

∫ t
0 ‖σ(s)−1b(s,·)‖22 ds .

Under Q, the process X solves the equation

dXs = σ(s) dBQ
s (2.29)

on [0, t] with initial condition X0 = x0 and where BQ is a standard Brownian motion under
Q. Thus, Q[X1

s > X1
0 ] = 1/2 for all s ∈ (0, t]. Moreover,

P
[
X1
t > X1

0

]
= EQ

[
Zt 1{X1

t>X
1
0}
]
. (2.30)

To obtain upper and lower bounds on the latter expression, we fix numbers p, q > 1 such
that p−1 + q−1 = 1 and apply Hölder’s inequality to deduce

Q
[
X1
t > X1

0

]
= EQ

[
1{X1

t>X
1
0}Z

1
p

t Z
− 1
p

t

]
≤ EQ

[
1{X1

t>X
1
0}Zt

] 1
p EQ

[
Z
− q
p

t

] 1
q
.
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Taking the p-th power and rearranging, we get

Q
[
X1
t > X1

0

]p EQ

[
Z
− q
p

t

]− p
q ≤ EQ

[
1{X1

t>X
1
0}Zt

]
≤ Q

[
X1
t > X1

0

] 1
q EQ

[
Zpt
] 1
p ,

where the last upper bound follows again by Hölder’s inequality. This can be simplified to

2−p EQ
[
Z
− q
p

t

]− p
q ≤ P

[
X1
t > X1

0

]
≤ 2

− 1
q EQ

[
Zpt
] 1
p ,

or

2−p EP

[
Z
− q
p
−1

t

]− p
q ≤ P

[
X1
t > X1

0

]
≤ 2

− 1
q EP

[
Zp−1
t

] 1
p . (2.31)

To estimate the bounds further, we note that

Z
− q
p
−1

t = e
−( q

p
+1)Nt− 1

2
( q
p

+1)2〈N〉t e
1
2

(
q
p

+1
)
q
p
〈N〉t

≤ e
−( q

p
+1)Nt− 1

2
( q
p

+1)2〈N〉t e
1
2

(
q
p

+1
)
q
p
t ‖σ−1b‖22,∞ (2.32)

and

Zp−1
t = e(p−1)Nt− 1

2
(p−1)2〈N〉t e

1
2

(p−1)p 〈N〉t

≤ e(p−1)Nt− 1
2

(p−1)2〈N〉t e
1
2

(p−1)p t ‖σ−1b‖22,∞ . (2.33)

The first factors in (2.32) respectively (2.33) are P-martingales, since Novikov’s condition
is satisfied by our assumptions on b and σ. Therefore, by inserting these estimates into
(2.31), we obtain

sup
1
p

+ 1
q

=1

p>1

2−p e
− 1

2

(
q
p

+1
)
t ‖σ−1b‖22,∞ ≤ P

[
X1
t > X1

0

]
≤ inf

1
p

+ 1
q

=1

p>1

2
− 1
q e

1
2

(p−1) t ‖σ−1b‖22,∞.

It can be easily seen that the lower bound is maximized by

p = 1 +

√
‖σ−1b‖22,∞ t

2 log 2
,

whereas the upper bound is minimized by

p =

√
2 log 2

‖σ−1b‖22,∞ t
,

which together give (2.25). Finally, the expansions given in the statement of the theorem
can be computed by Taylor expansions of the explicit functions in the lower and upper
bounds.
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Chapter 2. Central Limit Theorems for Continuous Semimartingales

Theorem 2.34 (Functional CLT). Let X satisfy Assumption 1.1. Then for every f :
Rm → Rn such that there exists an open neighborhood U of x0 with f ∈ C2(U ;Rn), the
processes

Y f,u :=
(f(Xut)− f(x0)√

u

)
t∈[0,T ]

, u ∈ (0, 1),

converge in law to a Gaussian process with variance-covariance matrix

V = (Df)(x0)L(Df(x0)L)>

as u↘ 0.

Proof. Let B̃ be a Brownian motion with variance-covariance matrix V and let (ul)l∈N be
a sequence with elements in (0, 1) such that ul ↘ 0 as l →∞. It is sufficient to verify the
convergence of the finite-dimensional distributions

(Y f,ul
t1

, . . . , Y f,ul
tw )

d−→ (B̃t1 , . . . , B̃tw), t1, . . . , tw ∈ [0, T ], w ∈ N, (2.35)

and the tightness condition

lim
δ↘0

lim
l→∞

P
[

sup
|s−t|≤δ

|Y f,ul
s − Y f,ul

t | > ε
]

= 0, ε > 0. (2.36)

By [SV06, Theorem 1.3.2], condition (2.36) implies the tightness of the laws of Y f,ul , l ∈ N.
Moreover, the convergence (2.35) allows to identify the limit points with the law of B̃.

First, we focus on (2.35). Fix t1, . . . , tw ∈ [0, T ] for some w ∈ N; then by the Cramér–
Wold theorem it suffices to show

w∑
d=1

n∑
j=1

sdj(Y
f,ul
td

)j
d−→

w∑
d=1

n∑
j=1

sdjB̃
j
td

for all s ∈ Rw×n as l → ∞. Let τ be defined as τ̂ in (2.10). Arguing as in the proof of
Theorem 2.1, we see that it is enough to demonstrate

w∑
d=1

n∑
j=1

sdj(Y
f,ul
td∧τ )j

d−→
w∑
d=1

n∑
j=1

sdjB̃
j
td

as l→∞. However, this can be proved analogously to (2.7).

To show (2.36), note that we may work with the stopped processes Y f,ul
t∧τ , l ∈ N. Indeed,

since τ is a.s. positive, we have

lim
l→∞

P
[

sup
t∈[0,T ]

|Y f,ul
t − Y f,ul

t∧τ | > ε
]

= 0, ε > 0.

By the triangle inequality, equation (2.36) is implied by

lim
δ↘0

lim
l→∞

P
[

sup
|s−t|≤δ

|(Y f,ul
s∧τ )j − (Y f,ul

t∧τ )j | > ε
]

= 0, ε > 0, j ∈ {1, . . . , n}. (2.37)
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By Itō’s formula, we have

fj(Xt∧τ )− fj(x0) =

∫ t∧τ

0
(Lsfj)(Xs) ds+

m∑
k,l=1

∫ t∧τ

0

∂fj
∂xl

(Xs)σ
lk
s dBk

s , t ≥ 0, (2.38)

where

(Lsfj)(u) =
1

2

m∑
k,l=1

ψkls
∂2fj
∂xk∂xl

(u) +
m∑
k=1

bks
∂fj
∂xk

(u), u ∈ U, s ∈ [0, τ ],

with Ψt = (ψjkt )1≤j,k≤m := σtσ
>
t for all j ∈ {1, . . . , n}. From (2.38) we get

P
[

sup
|s−t|≤δ

|(Y f,ul
s∧τ )j − (Y f,ul

t∧τ )j | > ε
]
≤ P

[
sup
|s−t|≤δ

1
√
ul

∫ ul(t∧τ)

ul(s∧τ)
|(Lrfj)(Xr)|dr >

ε

2

]
+ P

[
sup
|s−t|≤δ

∣∣∣ m∑
k,v=1

∫ ul(t∧τ)

ul(s∧τ)

∂fj
∂xv

(Xr)σ
vk
r dBk

r

∣∣∣ > ε
√
ul

2

]
. (2.39)

By Part 3 and Part 5 of Assumption 1.1 and the choice of B there exists a random variable
C < ∞ a.s. such that supu∈B |(Lsfj)(u)| ≤ C a.s. for s ∈ [0, τ ], j ∈ {1, . . . , n}. Thus, we
have

P
[

sup
|s−t|<δ

1
√
ul

∫ ul(t∧τ)

ul(s∧τ)
|(Lrfj)(Xr)| dr >

ε

2

]
≤ P

[
C
√
ul δ >

ε

2

]
l→∞−−−→ 0, ε > 0.

We now investigate the second term on the right-hand side of (2.39). After fixing δ, j and
l, we define the process

Ft :=
m∑

k,v=1

∫ ul(t∧τ)

0

∂fj
∂xv

(Xr)σ
vk
r dBk

r , t ∈ [0, T ].

In addition, we introduce the processes

Git := Fiδ+t − Fiδ, t ∈ Ii := [0, δ], i ∈ {0, . . . , bT/δc − 1},

and for i = bT/δc,

G
bT/δc
t := FbT/δcδ+t − FbT/δcδ, t ∈ IbT/δc := [0, T − bT/δc].

These are continuous local martingales and thus, each of them can be represented as a time
changed Brownian motion (see e.g. [Kal02, Theorem 18.4, p. 352]): Git = W i

〈Gi〉t . Moreover,

the quadratic variation of Gi can be bounded according to

〈Gi〉t ≤ γ C2
σ ul δ, t ∈ Ii, i ∈ {0, . . . , bT/δc},

where 0 < γ <∞ only depends on m and the Jacobian of f on the ball B (see the paragraph
preceding (2.10) for the definition of the latter). Now, consider the event {sup|t−s|<δ |Ft −
Fs| >

ε
√
ul

2 }. Clearly, on this event there exist s0, t0 ∈ [0, T ] such that |s0 − t0| ≤ δ and

|Ft0 − Fs0 | >
ε
√
ul

2 . Without loss of generality we may assume that 0 ≤ s0 < δ ≤ t0 < 2δ
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Chapter 2. Central Limit Theorems for Continuous Semimartingales

(the other cases can be dealt with in the same manner). Then, either |Fδ −Fs0 | >
ε
√
ul

4 , or

|Ft0 − Fδ| >
ε
√
ul

4 . In the first case we get

ε
√
ul

4
< |Fδ − Fs0 | ≤ |Fs0 − F0|+ |Fδ − F0| ≤ 2 sup

r∈[0,δ]
|Fr − F0|. (2.40)

In the second case we have

ε
√
ul

4
< |Ft0 − Fδ| ≤ sup

r∈[0,δ]
|Fδ+r − Fδ|. (2.41)

These considerations show that on the event {sup|t−s|<δ |Ft − Fs| >
ε
√
ul

2 } there exists an

index i ∈ {0, . . . bT/δc} such that supt∈Ii |G
i
t| >

ε
√
ul

8 . Putting everything together we
obtain

P
[

sup
|s−t|<δ

∣∣∣ m∑
k,v=1

∫ ul(t∧τ)

ul(s∧τ)

∂fj
∂xv

(Xr)σ
vk
r dBk

r

∣∣∣ > ε
√
ul

2

]
≤ P

[
sup
t∈Ii
|Git| >

ε
√
ul

8
for at least one i

]

≤
bT/δc∑
i=0

P
[

sup
t∈Ii
|Git| >

ε
√
ul

8

]
≤
(T
δ

+ 1
)
P
[

sup
0≤r≤γ C2

σ ul δ

|W i
r | >

ε
√
ul

8

]
≤
(T
δ

+ 1
)

e
− ε2

128 γ C2
σ δ

δ→0−−−→ 0.

The last estimate follows from Bernstein’s inequality [RY99, Exercise 3.16, p. 153]. We have
established (2.37), which finishes the proof.

Remark 2.42. This chapter was taken from [Ger+15].
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Chapter 3

Central Limit Theorems for
Semimartingales with Jumps

This chapter is devoted to extensions of Theorems 2.1, 2.23, and 2.34 to semimartin-

gales with jumps.

Theorem 3.1 (CLT with jumps). Let X satisfy Assumption 1.3. Then for every f : Rm →
Rn such that there exists an open neighborhood U of x0 with f ∈ C2(U ;Rn), we have

1√
t
(f(Xt)− f(x0))

d−→ Nf as t↘ 0,

where Nf is a normal random vector with mean 0 and covariance matrix

V = (Df)(x0)L(Df(x0)L)>.

Proof. Let r > 0 be such that the closed ball Br(x0) with radius r around x0 is contained
in U . Further, we denote by Br/2(x0) the closed ball with radius r/2 around x0 and define
the hitting time τ := τBr/2(x0)c for X, which is a stopping time by [Pro05, Theorem 3, p.4].

Finally, we introduce the stopping time

τ := τ ∧ τA ∧ τM ∧ τJ (3.2)

and notice that τ a.s. positive. Therefore, by the same argument as in the proof of Theorem
2.1, it suffices to show

1√
t
(f(Xt∧τ )− f(x0))

d−→ Nf as t↘ 0.

By Itō’s formula in the form of [CT04, Proposition 8.19], we have for all j ∈ {1, . . . , n}
and t ∈ [0, T ]:

fj(Xt∧τ )− fj(x0) =

∫ t∧τ

0
(Lsfj)(Xs) ds+

m∑
k,l=1

∫ t∧τ

0

∂fj
∂xl

(Xs)σ
lk
s dBk

s (3.3)

+

∫ t∧τ

0

∫
B1

(
fj(Xs− + ψ(s, z))− fj(Xs−)

) (
Π(ds, dz)− µ(ds, dz)

)
(3.4)

+

∫ t∧τ

0

∫
Rm\B1

(
fj(Xs− + ϕ(s, z))− fj(Xs−)

)
Π(ds, dz). (3.5)
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Chapter 3. Central Limit Theorems for Semimartingales with Jumps

Arguing similarly to the proof of Theorem 2.1, we see that the vector of terms on the right-
hand side of (3.3), rescaled by 1/

√
t, converges in distribution to Nf as t ↘ 0. Thus, the

theorem will follow if we can show that the terms (3.4) and (3.5), rescaled by 1/
√
t, converge

to zero in probability as t↘ 0.

The term (3.4), rescaled by 1/
√
t, can be decomposed into a sum T 1

t +T 2
t of the following

two terms:

1√
t

∫ t∧τ

0

∫
B1

(
fj(Xs− + ψ(s, z))− fj(Xs−)

)
1{|ψ(s,z)|<r/2}

(
Π(ds, dz)− µ(ds, dz)

)
,

1√
t

∫ t∧τ

0

∫
B1

(
fj(Xs− + ψ(s, z))− fj(Xs−)

)
1{|ψ(s,z)|≥r/2}

(
Π(ds, dz)− µ(ds, dz)

)
.

Then:

E
[
|T 1
t |
]
≤

2‖f |Br(x0)‖∞√
t

E
[∣∣Π− µ∣∣([0, t ∧ τJ ]×B1

)]
,

which converges to zero as t↘ 0 by part (3) of Assumption 1.3. Moreover, since J a.s. has
only finitely many jumps of absolute size greater than r/2 on every finite time interval, T 2

t

converges to 0 a.s. as t↘ 0.

Lastly, the term (3.5), rescaled by 1/
√
t, converges to zero a.s. as t↘ 0, since J a.s. has

only finitely many jumps of absolute size greater than 1 on every finite time interval. �

As in the case of continuous semimartingales, the CLT can be strengthened to a Func-
tional CLT, which in the presence of jumps reads as follows.

Theorem 3.6 (Functional CLT with jumps). Let X satisfy Assumption 1.3. Then for every
f : Rm → Rn, such that there exists an open neighborhood U of x0 with f ∈ C2(U ;Rn), the
processes

Y f,u :=
(f(Xut)− f(x0)√

u

)
t∈[0,T ]

, u ∈ (0, 1),

converge in law to a Brownian motion with variance-covariance matrix given by

V = (Df)(x0)L(Df(x0)L)>

as u↘ 0.

Proof. For each f and u as in the statement of the theorem, we write Qf,u for the law of
the process Y f,u on D([0, T ];Rn), the space of right-continuous functions on [0, T ] having

left limits; we denote by Qf,uc the law of the continuous part of Y f,u on C([0, T ];Rn). We
claim first that the family (Qf,u)u∈(0,1) is tight on D([0, T ],Rn) if and only if the family

(Qf,uc )u∈(0,1) is tight on C([0, T ];Rn) and moreover that the limit points of the two families
are the same.

To prove the claim, it suffices to show that for every ε > 0 and j ∈ {1, . . . , n}:

P
[

sup
t∈[0,T ]

|(Jf,ut )j | > ε
]
→ 0 as u↘ 0, (3.7)

where Jf,u denotes the jump part of Y f,u. Indeed, if this is the case, then every converging
subsequence of (Qf,u)u∈(0,1) in D([0, T ],Rn) corresponds to a converging subsequence of
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(Qf,uc )u∈(0,1) in C([0, T ];Rn) and the limits of the two subsequences have to coincide. Now,
since the stopping time defined in (3.2) is a.s. positive, (3.7) is implied by

P
[

sup
t∈[0,T ]

|(Jf,ut )j | > ε, τ > uT
]
→ 0 as u↘ 0. (3.8)

Furthermore, by Itō’s formula in the form of [CT04, Proposition 8.19], we have on the event
{τ > uT}:

(Jf,ut )j =
1√
u

∫ ut

0

∫
B1

(
fj(Xs− + ψ(s, z))− fj(Xs−)

) (
Π(ds, dz)− µ(ds, dz)

)
(3.9)

+
1√
u

∫ ut

0

∫
Rm\B1

(
fj(Xs− + ϕ(s, z))− fj(Xs−

))
Π(ds, dz). (3.10)

As in the proof of Theorem 3.1, we decompose the integral on the right-hand side of (3.9)
according to whether |ψ(s, z)| < r/2, or |ψ(s, z)| ≥ r/2 and call the two resulting processes
(Jf,u,1)j and (Jf,u,2)j . Since the process (Jf,u,1)j is obtained by integrating a predictable
process with respect to a compensated Poisson random measure, it is a square-integrable
martingale. Thus, by Doob’s maximal inequality, we have

P
[

sup
t∈[0,T ]

|(Jf,u,1t )j | > ε

2
, τ > uT

]
≤ 2

ε
√
u
E
[∣∣∣ ∫ (uT )∧τ

0

∫
B1

(
fj(Xs− + ψ(s, z))− fj(Xs−)

)
1{|ψ(s,z)|<r/2}Π(ds, dz)

∣∣∣],
where we write Π for Π − µ. Moreover, the same argument as in the proof of Theorem
3.1 shows that the latter upper bound tends to zero as u ↘ 0 (by virtue of part (3) of
Assumption 1.3). Finally, since a.s. the process Jf,u has finitely many jumps of size greater

than r/2 on every finite time interval, the random variables supt∈[0,T ] |(J
f,u,2
t )j | converge

to zero a.s. as u ↘ 0. In addition, by the same reasoning, the supremum over t ∈ [0, T ]
of (3.10) tends to zero a.s. as u↘ 0 as well. Putting everything together, we end up with
(3.8), finishing the proof of the claim.

Lastly, one can proceed as in the proof of Theorem 2.34 to first show the tightness of
the family (Qf,uc )u∈(0,1) on C([0, T ];Rn) and to subsequently identify each of its limit points
with the law of a Brownian motion with variance-covariance matrix V . In view of the claim
above, this finishes the proof. �

We conclude this section by stating and proving the analogue of Theorem 2.23 in the
presence of jumps.

Theorem 3.11. Suppose that the process X solves the SDE

dXt = b(t, ·) dt+ σ(t) dBt +

∫
Rm

ψ(t, y) Π(dt,dy), (3.12)

X0 = x0,

where b : [0,∞)× Ω→ Rm is a bounded predictable process with respect to the filtration of
the standard m-dimensional Brownian motion B, σ : [0,∞) → Rm×m is a locally square-
integrable function taking values in the set of invertible matrices such that the smallest
eigenvalue of σ(·)>σ(·) is uniformly bounded away from 0, and ψ is a predictable process
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Chapter 3. Central Limit Theorems for Semimartingales with Jumps

with respect to the filtration of the Poisson random measure Π. Suppose further that Π
is symmetric with respect to y (so that, in particular, its compensator vanishes) and that
ψ1(t, y) = −ψ1(t, y) for all t ≥ 0 and y ∈ Rm with probability 1. Then the bounds

ef1(t) ≤ P
[
X1
t > X1

0

]
≤ ef2(t), t > 0, (3.13)

of Theorem 2.23 apply with the same functions f1, f2 as there.

Proof. We start by fixing a t > 0 and changing the underlying probability measure P to an
equivalent probability measure Q according to

dQ
dP

= e−
∫ t
0 σ(s)−1b(s,·) dBs− 1

2

∫ t
0 ‖σ(s)−1b(s,·)‖22 ds . (3.14)

Then in view of the independence of the continuous and the jump parts of X under P and
the Girsanov Theorem, the process X solves the SDE

dXs = σ(s) dBQ
s +

∫
Rm

ψ(s, y) Π(ds, dy), s ∈ [0, t] (3.15)

with a standard Brownian motion BQ under Q and initial condition X0 = x0. Moreover,
the random variables

U
(1)
t :=

(∫ t

0
σ(s) dBQ

s

)
1

and U
(2)
t :=

∫ t

0

∫
Rm

ψ1(s, y) Π(ds, dy)

are independent under Q and their distributions η(1) and η(2) are symmetric. Hence,

Q[X1
t > X1

0 ] = Q
[
U

(1)
t + U

(2)
t > 0

]
=

∫ ∞
0

Q
[
U

(1)
t > −c

]
η(2)(dc) +

∫ 0

−∞
Q
[
U

(1)
t > −c

]
η(2)(dc)

=

∫ ∞
0

Q
[
U

(1)
t > −c

]
η(2)(dc) +

∫ 0

−∞

(
1−Q

[
U

(1)
t > c

])
η(2)(dc)

=
1

2
.

From now on, one can follow the lines of the proof of Theorem 2.23 to finish the proof. �

Remark 3.16. This chapter was taken from [Ger+15].
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Chapter 4

Applications to Digital Options
and the Implied Volatility Skew

We give applications to mathematical finance, concretely to the pricing of at-the-money

digital options with short maturities and the asymptotics of at-the-money short time

volatility skews.

Digital Options

Suppose that the one-dimensional, positive process S models the price of a financial asset
and that P is the pricing measure. The riskless rate is r > 0. The holder of a digital
call option with maturity T and strike K receives the payoff 1{ST>K} at maturity. Digital
options are peculiar in that the owner receives the full payoff as soon as they are only slightly
in the money, as opposed to call options which kick in gradually. By the risk-neutral pricing
formula, the value of the digital call at time zero is

D(K,T ) := e−rT E[1{ST>K}] = e−rT P[ST > K] .

There exists considerable literature on short-maturity approximations for option prices. For
out-of-the-money (S0 < K) or in-the-money (S0 > K) digitals, the first order approxima-
tion is clear: As soon as the underlying S is a.s. right-continuous at t = 0, the dominated
convergence theorem yields

lim
T↘0

D(K,T ) =

{
0 if S0 < K,

1 if S0 > K.

Finer information on the out-of-the-money decay (which trivially also covers the in-the-
money behavior) comes from small-time large deviations principles for the underlying. See
e.g. Forde and Jacquier [FJ09] for the case of the Heston model and references about other
diffusion processes. Our CLT-type results are useful in the at-the-money case (S0 = K).
As an immediate consequence of our limit theorems, we get:

Theorem 4.1. If the process S satisfies the assumptions of Theorem 3.1 (in particular, if
it satisfies those of Theorem 2.1 or Remark 1.2) and the limit law is non-singular, then the
limiting price of an at-the-money digital call is 1/2:

lim
T↘0

D(S0, T ) =
1

2
. (4.2)
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This (intuitive) result captures virtually all diffusion-based models that have been con-
sidered (e.g. Black-Scholes, constant elasticity of variance, Heston, Stein-Stein). Although
it seems to be new in its generality, in particular for jump processes, some special cases can
be inferred from literature.

The jump processes used in financial modeling are often Lévy processes. It is clear that
a compensated compound Poisson process will yield an (unrealistic) at-the-money digital
price limit of either zero or one, see Example 2.16. As for the infinite activity case, limit
laws are not the appropriate way to get a result like (4.2). Doney and Maller [DM02] have
determined all Lévy processes that admit a short-time CLT, with a criterion involving the
tail of the Lévy measure. While there do exist infinite activity Lévy processes that satisfy
a CLT [DM02, Remark 9], the Lévy processes that have been considered in mathematical
finance are typically not of this kind. For instance, it is easy to see from the characteristic
function that the variance gamma process [MCC98] does not admit any non-singular limit
law for t↘ 0 for any normalization. These issues are further discussed in [GGP16].

Implied Volatility Skew

Finally, we discuss the implied volatility skew. Suppose that the underlying S generates
the call price surface

C(K,T ) = e−rT E[(ST −K)+], K, T > 0.

Then the implied volatility for strike K and maturity T is the volatility σimp(K,T ) that
makes the Black-Scholes call price equal to C(K,T ),

CBS(K,σimp, T ) = C(K,T ),

see e.g. [Lee05]. The map K ↘ σimp(K,T ) is called the volatility smile for maturity T . It is
also called the volatility skew, because it is often monotone instead of smile-shaped, but we
will reserve the term volatility skew for the derivative ∂Kσimp(K,T ). If C(K,T ) is smooth
in K, it equals

∂Kσimp = −∂KCBS − ∂KC
∂σCBS

.

Under mild assumptions (e.g., if the law of ST is absolutely continuous), we have

∂KC = − e−rT P[ST ≥ K] = −D(K,T ), (4.3)

from which we deduce the well-known connection between the volatility skew and the price
of a digital call

∂Kσimp = −D(K,T ) + ∂KCBS

∂σCBS
,

see e.g. [Gat06]. Inserting the explicit Black-Scholes vega and digital price, we obtain

∂Kσimp =
−D(K,T ) + Φ(−σimp

√
T/2)

K
√
T n(σimp

√
T/2)

,

see e.g. [MR05], with Φ and n denoting the standard Gaussian cumulativ distribution
function and density, respectively. For T ↘ 0, we have σimp

√
T = o(1) under the following
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mild assumptions [RR09, Proposition 4.1]:

(S0 −K)+ ≤ C(K,T ) ≤ S0 (no arbitrage bounds), (4.4)

lim
T↘0

C(K,T ) = (S0 −K)+, (4.5)

T 7→ C(K,T ) is non-decreasing. (4.6)

Therefore,

∂Kσimp ∼
√

2π

K
√
T

(1

2
−D(K,T )− σimp

√
T

2
√

2π
+ O((σimp

√
T )3)

)
, T ↘ 0. (4.7)

We notice that the small-time behavior of the skew is related to that of the digital price. At
the money, the latter will typically tend to 1/2 for continuous models (see Theorem 4.1) and
so higher order estimates are needed to get the first order asymptotics of the at-the-money
skew ∂Kσimp|K=S0 . To this end, we apply Theorem 2.23 and compare our findings with the
standard model free slope bounds [FPS00, p. 36]

−
√

2π

S0

√
T

(1− Φ(d2)) e−rT+
d21
2 ≤ ∂σimp

∂K
≤
√

2π

S0

√
T

Φ(d2) e−rT+
d21
2 , (4.8)

where

d1 =
log(S0/K) + (r + 1

2σ
2
imp)T

σimp

√
T

, d2 = d1 − σimp

√
T .

Such bounds can give guidance on model choice; recall that the market slope seems to
grow like T−1/2 for short maturities [Alò+08]. Note that the following result accommodates
stochastic interest rates and remember that we assume in this section that the dimension
is m = 1 . Under stochastic interest rates, the digital call price is

D(K,T ) = E
[

e−
∫ T
0 r(s) ds 1{ST>K}

]
. (4.9)

To calculate the implied volatility, a deterministic rate r has to be chosen, e.g. by e−rT =

E
[

e−
∫ T
0 r(s) ds

]
. However, this choice is irrelevant for Theorem 4.10.

Theorem 4.10. Assume that the price process satisfies the SDE

dSt
St

= r(t) dt+ σ(t) dBt

with the stochastic short rate process (r(t))t≥0 and that the log-price X = logS, whose drift
is b(t) = r(t) − 1/2σ2(t), satisfies the assumptions of Theorem 2.23. Further assume that
∂KC(K,T ) = −D(K,T ) holds (see (4.3)) and that (4.5) and (4.6) are satisfied. Then we
have the at-the-money slope bounds

∂Kσimp|K=S0 ≥
√

2π

K
√
T

(
− C
√
T − σimp

√
T

2
√

2π
+ O(T ) + O

((
σimp

√
T
)3))

,

∂Kσimp|K=S0 ≤
√

2π

K
√
T

(
C
√
T − σimp

√
T

2
√

2π
+ O(T ) + O

((
σimp

√
T
)3))

,

where

C =

√
log 2

2
‖σ−1b‖2,∞.
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Proof. According to (4.9), the at-the-money digital price equals

D(S0, T ) = E
[

e−
∫ T
0 r(s) ds 1{XT>x0}

]
.

The discount factor is 1 + O(T ) for T ↘ 0, so we can apply Theorem 2.23 to conclude

1

2
− C
√
T + O(T ) ≤ D(S0, T ) ≤ 1

2
+ C
√
T + O(T ).

Now, the result follows from (4.7). Note that σimp

√
T = o(1) by [RR09, Proposition 4.1],

since we assume (4.5), (4.6), and (4.4) is satisfied in our setup.

The bounds in Theorem 4.10 are asymptotically stronger than the general estimate (4.8),
which is of order O(T−1/2), since σimp

√
T = O(1). If the Berestycki–Busca–Florent for-

mula [BBF02] holds, then implied volatility tends to a constant. Therefore, our bounds
are considerably stronger than (4.8) in this case, namely of order O(1). Thus, the models
covered by Theorem 4.10 do not match the empirical slope behavior T−1/2, similarly to
stochastic volatility models [Lew00], whose slope also behaves like O(1).

To conclude our discussion of at-the-money digitals and the implied volatility skew, note
that for some diffusion processes the result in Theorem 4.1 is implicitly in literature. To
wit, by (4.7) a non-exploding at-the-money slope requires a limit price of 1/2 of the digital.
See Durrleman [Dur04, p. 59] for a general expression for the implied volatility slope that
shows that it does not explode, e.g., in the Heston model.

Remark 4.11. This chapter was taken from [Ger+15].
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Appendix A

Auxiliary Results

Lemma A.1. Given σ > 0 and z ∈ R, the Stein solution

fσ2,z(x) = σ e
x2

2σ2

∫ x/σ

−∞

(
hz(σs)− gz(σ2)

)
e−

s2

2 ds, x ∈ R,

has the following properties for u, v, w ∈ R :

1. x 7→ xfσ2,z(x), x ∈ R is increasing,

2. |wfσ2,z(w)| ≤ σ2 and |wfσ2,z(w)− ufσ2,z(u)| ≤ σ2,

3. |f ′σ2,z(w)| ≤ 1 and |f ′σ2,z(w)− f ′σ2,z(v)| ≤ 1,

4. 0 < fσ2,z(w) ≤ min(
√

2πσ2/4, σ2/|z|),

5. |(w + u)fσ2,z(w + u)− (w + v)fσ2,z(w + v)| ≤ (|w|+
√

2πσ2/4)(|u|+ |v|);

Proof. The proof is analog to [BC05, Proof of Lemma 2.2, p. 54].

Lemma A.2 (Concentration inequality). For n ∈ N, let X1, X2, . . . , Xn be independent
square-integrable random variables with zero means such that

∑n
i=1 E[X2

i ] = 1. Then, for
all real a < b,

P
[
a ≤

n∑
i=1

Xi ≤ b
]
≤ b− a+ 2

n∑
i=1

E
[
|Xi|3

]
, (A.3)

Proof. See [CGS11, Proposition 3.1, p. 57].
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Appendix B

Symbols and Notation

a.s. Almost sure
e.g. For example
i.e. Id est
iff If and only if
i.i.d. Independent and identically distributed
CLT Central limit theorem
LDP Large deviations principle
NCLT Non-central limit theorem
ODE Ordinary differential equation
SDE Stochastic differential equation
N {1, 2, 3, . . . }
N0 {0, 1, 2, . . . }
R+ [0,∞)∑0

i=1Xi Zero per definition
C(A;B) Continuous functions f : A→ B
C(A) Continuous functions f : A→ R
Cn(A) n times continuously differentiable functions f : A→ B
Cb(A) Set of bounded, continuous functions f : A→ B
D(A) Set of right-continuous functions on [0,T] having left limits
H1(A) Absolutely continuous functions on A with a square-integrable derivative
L2(A) Set of square-integrable functions on A
‖ϕ‖∞ supx∈A |ϕ(x)|
‖x‖2 Euclidean distance
‖ϕ‖2,∞ supx∈A ‖ϕ(x)‖2
‖x‖F Frobenius norm
E[X] Expectation of X
E[X;A]

∫
AX dP

E[X |F] Conditional expectation of X with respect to F
V(X) Variance of X
B(R) Borel sets of R
d−→ Convergence in distribution
d
= Equal in distribution
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L(X) Distribution of X
B(n, p) Binomial distribution
Exp(λ) Exponential distribution
G(p) Geometric distribution, P[X = n] = (1− p)pn, n ∈ N0

Geom(p) Geometric distribution, P[X = n] = (1− p)n−1p, n ∈ N
L(µ, σ) Laplace distribution
N(µ,C) Gaussian distribution

NB(α, p) Negative binomial distribution, P[X = n] =
(
α+n−1

n

)
(1− p)αpn, n ∈ N0

P(λ) Poisson distribution

Γ(α, β) Gamma distribution with density fα,β(x) = βα

Γ(α)x
α−1 e−βx, x > 0

dBL Bounded Lipschitz distance
dK Kolmogorov distance
dW Wasserstein distance
Φ(x) Standard Gaussian cumulative distribution function
ϕX(t) Characteristic function of the random variable X
〈M,N〉t Covariaton of the stochastic processes M and N
〈M〉t Quadratic variation of the process M
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Research Unit of Financial and Actuarial Mathematics
Vienna University of Technology

Teaching Experience

 –  L I M (Exercise Session)
Vienna University of Technology

 –  R  R T (Exercise Session)
Vienna University of Technology

 S A  (Exercise Session)
Vienna University of Technology

 –  S A  (Exercise Session)
Vienna University of Technology

 S A  (Exercise Session)
Vienna University of Technology
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