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Danke Caro, Lia, Ivanna und Lili für das durchhalten und die gemeinsame Stu-
dienzeit.

2



Abstract

The potential impact of macroeconomic developments and crises scenarios on credit
risk is not only from regulatory perspective, but also from an entrepreneurial point of
view crucial for a rigorously and sales-oriented risk management. Basis of this thesis
is a logistic regression model for the probability of default (PD) of a retail portfolio.
The PD model on product level is evaluated and improved in terms of robustness
and information criterion. The effect of different macroeconomic scenarios on the
estimated PD is evaluated, using multivariate regression. The aim of the thesis is
to identify and interpret macroeconomic risk drivers to recognize and manage credit
risk in a timely manner.
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Zusammenfassung

Sowohl aus aufsichtsrechtlicher, als auch aus unternehmerischer Sicht ist die Auswir-
kung makroökonomischer Szenarien auf das Kreditrisiko einer Bank wesentlich für
ein gründliches Risikomanagement. Basis dieser Arbeit ist ein logistisches Regres-
sionsmodell für die Ausfallwahrscheinlichkeit (PD1) eines Retail Portfolios. Das PD-
Modell wird auf Produktebene hinsichtlich seiner Robustheit und Informationskri-
terien untersucht und optimiert. Mittels multivariater Regression wird anschließend
die Auswirkung verschiedener makroökonomischer Szenarien auf die geschätzte PD
analysiert und interpretiert. Ziel ist es die makroökonomischen Treiber zu erken-
nen und mit Hilfe dieser Information das Risiko frühzeitig erkennen und steuern zu
können.

1Probability of Default
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1 Introduction

1.1 Default, defaulted, has been defaulted...

Cheap money. It is the outcome from the low interest rate environment in which we
operate at the moment and at the same time it is the cause of the financial crisis we
are still fighting our way out. Eight years and more than 3 trillion euro later it can
be said that the latest crisis of the financial markets wasn’t a liquidity crisis, but
rather the result of aggravated credit risk and misjudgment of counterparty risk.
Due to the low interest rate policy pursued by the US FED it was possible to take
out a loan for low-income households with poor credit rating. The effects are now
known: an oversupply of money and finally an economic misery.

The financial industry and especially the banking authorities drew their conclu-
sions and turned the focus to credit ratings and counterparty risk. Assessing the
creditworthiness and the models in connection with it have become considerably
more importance. The models used have to be more reliable than ever, which makes
the probability of default (PD) a key indicator not only within the credit approval
process but for the assessment of survivability of a bank. Meanwhile, credit in-
stitutions owe almost ninety percent of the deposited equity to credit risk thus a
significant part to counterparty risk.

A further consequence was implemented by the European Banking Authority (EBA).
124 of the major European banks were committed to participate in a EU-wide stress
test, where the effect of macro economic stress scenarios on capital thresholds and
related key figures was investigated and verified. On the test stand: the PD. From
this obvious and right consequence can therefore be concluded that the reliability of
the data and the resulting models are of central significance for the banking industry
and everything or everyone it effects.

Since models and data play a major role for business decisions and their conse-
quences, the assumptions and limitations under which statistical models evolve
must not be made injudicious. Even if a model performs the most complex cal-
culations, misguided assumptions lead to wrong results. Despite the fact that the
applicable legislative texts and regulations contain hundreds of articles concerning
the development and the validation of the applied methods and models, the problem
of robustness is not attended and certainly not overcome. The consequences are not
negligible, as the sensitivity to outliers affects the ability of a model to resist the
modifications and adjustments of the initially stable structure. The question is, how
reliable can a result be if the calculation is not robust?

1.2 What would we like to know?

The EBA stress test is no longer just a compulsory exercise. It developed into a fixed
component of the modern risk management. In the performance, PD’s resulting from
existing models are exposed to prescribed macroeconomic stress scenarios. Using
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PD’s deriving from models which aren’t robust gives rise to the assumption that the
stress test results forfeit reliability - which leads to the following question:

How does the application of robust estimation affect the influence of
macroeconomic risk factors on the PD of a specific Austrian retail

portfolio during a stress test?

1.3 The journey is the reward

The generous provision of real anonymized data containing the private customer
segment of a portfolio, by BAWAG P.S.K. makes it possible to base the analyses
and conclusions in this thesis on genuine values. The aim is to develop a robust
model for forecasting the probability of default with practically applied methods of
the banking industry. Building on that, a robust approach should demonstrate an
appropriate alternative for estimating a stressed PD with macroeconomic risk fac-
tors. The profound theoretical basics in conjunction with the results of the practical
application should give information on the implementation of robust estimators.

1.4 The methodological approach and the structure of the
thesis

In the second chapter the used methods are worked up theoretically.

The topic of modeling the probability of default is handled in subsection 2.1 with
the concept of default risk and a description of developing a scoring model. The
section containing the regulatory requirements shows the delimitation of the topic
within the regulatory framework.

Section 2.2 explains the requirements and preconditions of the EBA stress test and
how macroeconomic variables can define a specific scenario.

In Section 2.3 the used methods are described in theoretical context with the help
of some very general examples. References to practical applications which don’t
derive from the stated literature, can be attributed to the business applications and
methodological guidelines of BAWAG P.S.K.

The third chapter shows the described methods applied to a real data sample pro-
vided by BAWAG P.S.K. The data underly real-life restrictions and are therefore
not the ideal choice for the applied methods. Nevertheless, the most significant dif-
ferences between the evaluated methods can be seen.

Chapter 4 gives a short conclusion of the results from the previous chapter. The
applied R-Codes are provided in the Appendix.
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2 Modeling the probability of default

One key growth area of the last 30 years, both in science and management is the
prediction of financial risk and thus the default risk. In consumer lending this
forecasting is applied in the form of credit scoring. This chapter should give an
overview of the basic terms in conjunction with the probability of default as a ratio
in risk management and as target variable of the underlying models in consumer
lending.

2.1 Default risk - definition and concept

Generally, default risk describes the risk that a consumer is not able to meet his
obligation of paying his debts. The risk management is interested in measuring and
steering this hazard. To do so, a precise definition of ”defaulting” is necessary.

Let

c= (c1, . . . , cn)

be the vector of the customers of the considered portfolio with n describing the
number of all customers. The customer ci is part of the portfolio, if he has at least
one product pij with i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} at the considered point in
time. The vector

pi= (pi1, . . . , pim)

therefore contains all products of customer i. The products can be of different types,
but all of them are credit products, i.e. loans, credit cards or current accounts.
ci and pi can change throughout the time as if a customer doesn’t have a credit
product he is not part of the portfolio and every customer can change his product
range from time to time. t = (t1, . . . , tk) is the vector of points in time the portfolio
is observed. Figure 1 is an example for the portfolio composition of the customers
c1, c2 and c3 at t1, . . . , t4.

A customer is defined by his products on the one hand, that means the number
of his products overall, the different types of products, the number of different prod-
uct types, the number of products within the types, how often these combinations
change and the lifetime of his products. On the other hand, these products and
therefore the customer is defined by his limit and his exposure. Let (li1, . . . , lim) be
the vector containing the limits for each product pij of the customer ci with

li =
∑m

j=1 lij

the total limit that customer ci has. Thus li consists of all account limits, credit
card limits and loan sums ci can use.

The exposure of a product is the maximum of the actual utilized amount and the
total limit. For a current account or a credit card, the utilized amount is the debit
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Figure 1: Example for the portfolio composition

balance. For a loan, the exposure is the loan sum minus the already repaid amount.
Analogous to the notation for the limit is (ei1, . . . , eim) the vector of the exposure
for each product pij and

ei =
∑m

j=1 eij

the total exposure of ci. For defining the default scenario, one must be mindful
of the fact that eij can be greater than lij for any product. The event of default
describes the point in time from which a customer is not able to pay his debts.
When is this moment? Based on the legal situation and the methods of practice,
this event is subject to materiality thresholds to the time aspect as well as the level
of debt. Thus the default relates to the following variables:

• ci – as stated in the previous sentence

• pi – a customer is defined by the products he owns

• li – the sum of the limits is the financial scope in which a customer can move

• ei – compared to the limit, this variable provides information if the customer
is within his scope or not

• th – the time component is substantial in many respects as the default event
has a beginning and an end and the customer is observed over the time at
different points th with h ∈ {1, . . . , k}

9



Summarized this means that a customer is in default, if the following two conditions
are fulfilled:

1. ci is past due more than d days on a significant obligation.

2. The significant obligation exceeds the customer’s total limit by q euros and p
percent of the total limit.

Since the total limit is the permitted scope in which a debtor can move, the signifi-
cant obligation is the exceeding amount ei − li > 0. The begin of the default for ci
is defined as follows:

Definiton 2.1

i) ei − li >q

ii) ei−li
li

>p

iii) i) and ii) are satisfied for d consecutive days

The date of day d is then defined as the beginning of the default. The end of the de-
fault is dependent from a lot of regulatory requirements and internal bank processes
(dunning system, operations, payment plan, prolongation, etc.) and not relevant
for the further discussions of this thesis except for the fact that the default period
extends from the beginning to the end of the default.

During the modeling of the PD, the customers are regarded at the times t1, . . . , tk.
The default date gives a ”natural” reference date for the choice of t=(t1, . . . , tk) in
the data history. Based on the forecast horizon the time lag of the data history
is chosen accordingly for the estimation. As is usual, the probability of defaulting
within one year is considered in this thesis.

Thus a customer is identified as a default in the data history, if he defaults within
365 days from the reference date. In Figure 2 for example, c1, . . . , c4 are regarded
at two reference dates.

• c1 is not defaulted at all

• c2 has its default event after the 365 days and is therefore not considered as
default at reference date 1

• c3 defaulted at reference date 2 and is consequently a default in the data
history

• c4 is obviously a default, as the customer defaulted between reference date 1
and 2
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default 

default 

default 

reference date 1 reference date 2 
365 days forecast horizon 

C1	  

C2	  

C4	  

C3	  

Figure 2: The forecasting horizon for the PD

2.2 Development of a scoring model

The determination of the PD is the basis for credit decisions and an appropriate
pricing on the one hand and for a regular evaluation of the customer’s behavior thus
its rating on the other hand. The PD as a target figure forms the prerequisite for
the sense of a rating model.

The development of an empirical, statistical model for the PD happens in three
basic steps:

1. generation of the historical data base

2. selection of the variables

3. determination of the scoring function

In the following the individual steps are described.

2.3 Generation of the historical data base

An on empirical basis developed rating can only be as good as the underlying
database.

For the data collection, the relevant segments and the level of consideration have to
be defined. This thesis investigates a portfolio consisting of private customers. As
described in Section 2.1, a customer owns credit products of different types. This
view questions whether to model the PD for a customer or to build a model on
product level. The aim is to evaluate the PD out of the customer’s behavior. Be-
cause a customer is defined by his products, his behavior can be observed on these
products. Building a model on product level for each type of products is well-suited
for this purpose.
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Time is a significant factor in the generation of the historical data base. The fol-
lowing questions have to be answered in this context:

What is the forecast horizon for the PD?
On which reference dates are the data observed?
How are the chronological layers defined?
How long is the development period?

The forecast horizon can be selected differently. If it is not specified, the model
calculates the probability, that a customer ever defaults. Considering a mortgage
loan with a maturity of 20 years, the necessary data might not be available since
the model is based on historical data.

For determining the forecasted PD, one has to look as far into the future as the
forecast horizon prescribes from a certain reference day.

time 
day 1 

reference date 
day 180 day 365 maturity 

Figure 3: Necessary data history for the corresponding forecast horizon

In Figure 3 it is shown how the data history is dependent from the forecast horizon.
Day 1 is the considered reference date in the past. Having a forecast horizon of 6
months (or 180 days) needs available data from 6 months before the beginning of
the default event. A forecast horizon of the maturity dates needs, depending on the
different maturities, available data from up to 20 years before the beginning of the
default.

Within 20 years the processes in a bank might change. It is possible that these
data weren’t even recorded at that time. For a reliable and representative data base
a forecast horizon of one year (i.e. 365 days) appears appropriate and is considered
in the following analyses.

The choice of the reference dates is dependent from the availability of the data
and what distance between the points in time makes sense for observing the desired
effects. The various intervals have different advantages and disadvantages.

Insofar as monthly data are available, this interval seems as the most appropriate
as monthly data contain sufficient genuine information.
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interval advantages disadvantages

annually

- data sets only appear once
within the forecast horizon

- no need to consider chrono-
logical layers

- a lot of information isn’t rec-
ognized

- accounts that only exist for 11
months aren’t in the database

quarterly

- contains more information
than annually data

- considers the economic cycle
partially

- effects could be distorted
(e.g.: holiday pays and
bonuses)

- chronological layers have to
be defined

monthly

- corresponds to the interval
of loan pay offs, salary pay-
ments, etc.

- considers the economic cycle
partially

- sufficient number of data sets

- chronological layers have to
be defined

daily
- information is considered

completely

- sufficient number of data sets

- there is no daily activity on
every account (inconsistent
information for one client)

- chronological layers have to
be defined

Table 1: Differences in the choice of the time horizon

As already shown in Figure 2, a customer is identified as a default in the data
history, if he defaults within 365 days from the reference date. For determining
defaults for the total set of data, the data set has to be considered for each reference
date. In the total data set, all those cases are included which can be allocated to the

default 

default 

reference date 1 + 365 days 
365 days forecast horizon 

C1	  

C2	  

C4	  

C3	  

Figure 4: Chronological layers

relevant portfolio at the specific reference date. For the example shown in Figure 4,
the following setting applies:

- c1 is part of the portfolio at reference date 1 and not defaulted

- c2 is part of the portfolio and also a ”good”-case

- c3 is not relevant, as the customer doesn’t exist at reference date 1

- c4 is relevant and a ”bad”-case or default
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The development period corresponds to the period of time within which the obser-
vations for modeling are collected. For the retail segment, a time series of at least
one year and at most five years is provided. In terms of timeliness and to avoid
process related changes within the data base, a period of one year is well suited.

Since the target value is the default, there is a minimum requirement for the number
of defaults within the data base. The supervision provides at least 100 defaults in
the modeling data base for the retail segment.

Another condition for the afterwards applied methods is the independence of the
datasets. A customer may only be once in the modeling sample, otherwise the de-
faults may not be independent. To fulfill this condition, a random drawing is done,
so that each customer is in the sample once over the time, with one product. This
condition is another argument for modeling on product level and not on customer
level.

For a reliable backtesting, the modeling sample is divided into a training (70%)
and a test sample (30%) . The division is performed randomly. To ensure that the
default rate in the training and the test sample is comparable, a stratification by
the number of defaults is done. That means:

modeling sample = training sample + test sample

2.3.1 Selection of the variables

At the beginning of the development of a rating model, a catalog of the criteria that
need to be analyzed has to be specified (see Nösslinger and Thonbauer, 2004). For
the analysis of the long list the previously determined modeling sample is used. With
the help of single factor analysis (see Hosmer and Lemshow, 2000), the variables are
tested for selectivity and significance. The result of the single factor analysis is a
short list containing variables which are suitable for modeling. This variables are
customer- and product-related ratios such as the number of dunnings a client got in
the last six months or the number of months since the account opening.

In the first step of the variables selection, a complete list of all available variables
is constituted. In conjunction with rating models, these variables usually contain
information about the financial situation of the customer, turnover information of
the considered account, dunning information and other product characterizations
such as maturity, loan sum, etc.

The first check is for missing values and implausible values (e.g.: dummy values,
values in different units, etc.). Missings or implausible values could occur due to
technical reasons, for example if something goes wrong during the collection or the
loading of the data. If it is possible the implausible values should be corrected.

To ensure an undistorted estimation, the missing values have to be handled neutral
and be replaced by appropriate values:

a) for metrically scaled variables the missings can be replaced by a neutral value
b) for ordinally scaled variables the mode could be used or an extra category

could be defined for the missing values
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Nevertheless a threshold for a reasonable amount of missing values has to be defined.
If a variable isn’t determinable in 80% of all cases, the statistical valid handling of
missing values can not be ensured and it has to be excluded from the data base.

In the next step of the univariate analyses the course of the variables is examined,
i.e. the distribution of the defaults along the characteristics. For continuous variable
a classification is done in order to get a comprehensible representation. Consider
the integer variable ”months since account opening” (MON OPEN) for a sample
containing 4000 data sets. A classification into percentile could look like this:

class range

1 0-9

2 10-19

3 20-27

4 28-36

5 37-46

6 47-54

7 55-64

8 65-72

9 73-82

10 83-91

11 92-99

12 100-108

13 109-118

14 119-127

15 128-136

16 137-146

17 147-153

18 154-163

19 164-171

20 > 171

Table 2: Classification of a variable

For each category a default rate of the historical data is calculated and it is checked
if the distribution reasonable concerning the processes. For example, if a customer
has lots of dunnings it is expected that the default rate is higher than for little or
no dunnings. The qualitative assessment of the frequency distribution is one of the
minimum conditions for the variables of the shortlist.

One key task of rating models is to separate the good cases from the bad ones.
Statistically this means that the model has to have a strong discriminatory power. In
order to ensure a good selectivity of the multivariate scoring function, the individual
variables have to demonstrate a certain degree of discriminatory power. A measure
for this characteristic is the Gini-coefficient (GINI):

GINI = 2 ∗ AUC − 1 (2.1)
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AUC is the ”Area-under-Curve”, a graphical measure for selectivity, derived from
the ROC-curve. The Receiver-Operating-Characteristic-curve is a common
form for presenting the discriminatory power of rating models and visualizes the
dependence of the efficiency and the error rate. For each variable the frequency dis-
tributions in form of sensitivities (i.e. the right-positive-rate) and the false-positive-
rate are determined. The cumulative frequencies of the ”bad” cases (false-positive)
are displayed on the Y-axis and the ”good” cases (sensitivities) on the X-axis of the
diagram. An example for the ROC-curve is shown in Figure 5.

Let us assume that each section of the ROC-curve represents one rating class, start-
ing with the worst class in the origin.The gradient demonstrates the relation of the
defaults to the non-defaults in each rating class. Since this relation is increasing
normally, the ROC-curve has a concave course. If neighboring classes do not differ
significantly concerning their default rate, this condition is violated. The ROC-curve
for the perfect rating system would run vertically upwards to the point (0,100) and
then straight to the right. If a system couldn’t select between ”good” and ”bad”
cases, its ROC-curve would correspond to the diagonal line.

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  
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Figure 5: Example for the ROC-curve

In the univariate analysis, the ROC-curve is not determined for the different rating
classes, but for the categories of a variable. Consider the variable ”months since
account opening” which is a positive integer. The categories could then be:
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category range
1 0-6
2 7-15
3 16-27
4 28-42
5 > 42

Table 3: Categories for the determination of the ROC-curve

The AUC is an aggregated key figure taking values from 0 to 1, which is derived
directly from the ROC-curve. As the name says, this figure is the area under the
ROC-curve and summarizes the discriminatory power of a rating system or a variable
in one number. The AUC can be calculated with the trapezoidal method, which
calculates the area as the sum of individual trapezoids under the ROC-curve.

AUC =
K∑
k=1

(ERk − ERk−1)
HRk +HRk−1

2
(2.2)

with

ER . . . the error rate (values from Y-axis)
HR . . . the hit rate (values from X-axis)
K . . . number of categories or rating classes

For the end points applies:

ER0 = HR0 = 0
ERK = HRK = 1

An AUC with a value near to 1 refers to a very selective rating system, while a
value of 0,5 equals a random experiment.

The univariate discriminatory power of a variable is no indication for its contribu-
tion for the selectivity of the multivariate rating model. Still a minimum separation
efficiency must be given. For this, the GINI is calculated for the training sample on
the one hand and for each year of the total time series on the other hand. For each
variable the GINI is available as follows:

If one of the following criteria for the GINI is satisfied, the variable should be
excluded from the shortlist:

• the training-GINI of a variable is < 5%

• the difference between the total-GINI and the mean-GINI of all years is > 10%
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variable 2010 2011 2012 2013 2014 mean total training

MON OPEN 19% 17% 21% 24% 18% 20% 21% 19%

TURNOVER 10% 11% 9% 12% 11% 11% 12% 12%

NR DUNNINGS -2% 4% 7% -4% 6% 2% 6% 5%
...

...
...

...
...

...
...

...
...

Table 4: GINI-coefficients for the selection of the variables

• the GINI changes the sign over the years

This would only leave the variable MON OPEN from the given variables of the ex-
ample above.

For the remaining variables, the linearity of the logit-PDs has to be verified. The
basis for the verification is the logit model which will be explained more precisely
in Section 4.1. Summarized, the logit model can be written as

Pi = P(yi = 1) = F (β′ · xi) =
eβ

′·xi

1 + eβ
′·xi

, (2.3)

with

yi . . . the binary default variable of data set i
xi . . . the expression of data set i of the considered independent variable
β . . . the parameter which captures the impact of a change in the characteristic on yi
F . . . the unknown distribution function

A linear relationship between the independent variable and the log odd is implied:

log odd = ln

(
Pi

1− Pi

)
= β′ · xi (2.4)

The linearity assumption can be tested graphically by classifying the variable into
equal groups as already done in Table 2. Then the historical default rate, i.e. the
empirical log odd for each group is calculated in order to estimate a linear regression
of the log odds on the mean values of the variable for each group. The result for the
variable MON OPEN is shown in Figure 6.

A non graphical way of testing the linearity assumption is the Box-Tidwell test
which can be performed for each variable. In this case a logistic regression is per-
formed with the binary default as dependent variable and the considered indepen-
dent variable.
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Additionally, an interaction term of the independent variable of the form

x · ln(x)

is regarded in the logistic regression. In the next step the significance of the in-
teraction term is verified. If the interaction is significant, the linearity assumption
is not fulfilled and the variable needs to be transformed. If the interaction is not
significant, it can be concluded that the variable behaves linear and can therefore
be taken in the shortlist.
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Figure 6: Relationship between log odd and MON OPEN

Ultimately the expected dependence between the explanatory variables and the de-
fault probability has to be determined. The hypothesis could be:

1. an increase in the explanatory variable leads to an increase in the default
probability

2. an increase in the explanatory variable leads to a decrease in the default prob-
ability

For the variable MON OPEN, the second hypothesis would be formulated. This can
be verified in Figure 6 as well. It can be seen that the behavior of the variable is as
expected.

Summed up, the following minimum requirements have to be fulfilled by a vari-
able of the shortlist:

• amount of missing values ≤ 20%

• plausible frequency distribution
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• adequate GINI-coefficient

• linearity of the log odds

• working hypothesis satisfied

These criteria reduce the number of eligible variables significantly. The remaining
ratios have a more or less marked similarity or correlation with each other. High
correlation can lead to problems concerning the stability in the determination of
the scoring function and the computing algorithm is not able to clearly determine
the coefficients in the linear combinations of a variable. Therefore it is necessary to
avoid high correlations between the variables in the model. Variable pairs with a
correlation coefficient greater than 0.3 should rather not be combined in a model,
as a rule of thumb. For the analysis of the correlation a hierarchical cluster analysis
and Spearman’s rank correlation are used.

The hierarchical cluster analysis combines variables into blocks. The blocks are
formed so that the correlations within the cluster are very high and between the
different clusters they are very low. As correlation measure, Spearman’s rank cor-
relation is suitable, as the determination is made along the ranks of the variable,
not on the values. Besides, Spearman provides appropriate results for variables that
aren’t normally distributed and for small data samples. Therefore this method is
applicable to not uniformly scaled data as well.

For the calculation the expressions of the variables need to be converted into rank-
ings. The correlation coefficient results from the direct application of the linear
correlation coefficient for metrical variables on the rank number (see Behr, 1999).
For two variables let ri be the rank of the observation i from Xi and si from Yi. The
difference of the ranks for observation i is

di = ri − si.

The definition of the linear correlation coefficient r implies for the rank correlation
coefficient rs the following definition:

rs =
cov(r, s)

std(r) · std(s)
=

n∑
i=1

(ri − r̄)(si − s̄)√
n∑
i=1

(ri − r̄)2
√

n∑
i=1

(si − s̄)2
= 1−

6
n∑
i=1

d2i

(n+ 1)(n− 1)n
(2.5)

with

−1 ≤ rs ≤ 1.

With r̄ and s̄, the mean value of ri resp. si, i ∈ {1, . . . , n}. A value close to 0 means
very low correlation between two variables.
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2.3.2 Model construction

Different methods are used in modeling the PD. Basically there is a distinction
between 3 different types of models in practice:

• heuristic models

• causal-analytical models

• empiric-statistical models

Heuristic models are rather qualitative systems like expert rating or fuzzy-logic-
models. They can be applied to all rating segments and don’t need an extensive
data base.

Causal-analytical models like option-pricing-models and cash-flow-simulation-models
are suitable for special lendings and listed companies as a data base. These models
are not equally appropriate for all rating segments.

Empiric-statistical models need a sufficiently large data base in the development, es-
pecially concerning the defaults. Thus a considerably greater discriminatory power
than heuristic models can be achieved. These models include methods like multi-
variate discriminant analysis, artificial neural networks, and regression models. The
different approaches have various advantages and disadvantages. The suitability
is closely related to the data requirements for the rating systems (qualitative and
quantitative) and the different segments (e.g. retail or corporates segment).

In this thesis logistic regression models are considered and analyzed. They have
the advantage that both quantitative and qualitative creditworthiness characteris-
tics can be processed. Furthermore, the model results are mapped directly as a
PD. This property facilitates the calibration in practice and allows to model binary
dependent variables.

The defined shortlist in the variables selection is the starting basis for the logistic re-
gression model. In general, a regression model contains 5 to 15 different explanatory
variables. The estimated regression coefficients need to be statistically significant
different from 0, i.e. a p-value < 5%. Furthermore, the coefficients must have a
sign appropriate to the working hypothesis.

The valuation of the different models is carried out with the test sample by the
following criteria:

• discriminatory power (GINI-coefficient)

• distribution of the observations over the score values

• stability of the model (comparison of the results with the training sample)

A precise description with preconditions and the methodology is found in Section 4.1.
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2.4 Regulatory requirements

The framework decided through the Basel Committee for Banking Supervisory
(BCBS) ”Basel II” and additional ”Basel III” concerning the equity requirements
form the basis for the regulation, the supervision and the risk management of a bank.
Amongst others, these directives are found in the in Austria obligatorily applicable
Capital Requirement Regulations (CRR) published by the European Commission.

The CRR regulates inter alia the standards for the default definition, the minimum
requirements concerning the estimation of the PD, data requests and the conditions
for the determination of the Risk Weighted Assets (RWAs) and consequently the
allocation of equity. The legislative texts include numerous paragraphs and articles.
This section summarizes some parts in conjunction with the estimation of the PD.

As already described in Section 2.1, a clear definition of the default event is nec-
essary for modeling the probability in this context. Article 178 of Section 6 of the
CRR describes the requirements to the default event. The following criteria have to
be fulfilled to be defaulted:

• the obligor is past due more than 90 days on any credit obligation, which is
not secured by some specified property

• the underlying amount is material

• materiality of a credit obligation past due shall be assessed against a threshold,
defined by the competent authorities

The materiality refers to the thresholds p and q from Definition 2.1.

According to Article 4 of the CRR, the PD means the probability of default of a
counterparty over a one-year period and institutions should estimate PDs by obligor
grade from long run averages of one-year default rates2. As already elucidated in
Section 2.3, a forecasting horizon of one year is appropriate and corresponds to the
regulatory requirement.

One of a banks main goal of the PD estimation, is the allocation of capital for
each outstanding claim. If the probability that a customer is going to default high,
then more capital has to be allocated than for a customer who might not default
with a strong probability. That means that a good forecast of the default risk is not
only a supervisory regulation, but from a portfolio perspective it is much more the
basis for the survival of a bank.

Basis for the equity requirement are the risk weighted assets (RWAs). Accord-
ing to Article 154 of the CRR, the RWAs for retail exposures should be calculated
as follows:

RWAij = RWj· eij
2 CRR: Section 6, Article 180
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with

eij . . . the exposure for product j from customer i
RWj. . . the risk weight of the claim

For the determination of the risk weight it has to be distinguished between the values
of the PD. If the PD=1, i.e. for already defaulted exposures:

RW= max{0;12,5 · (LGD - ELBE)}

ELBE is the best estimate of the expected loss for the defaulted exposure (see CRR:
article 181(1)). For not defaulted exposures or 0 < PD < 1 the risk weight is
depending on the probability that a customer will default, as well3:

RW =
(
LGD ·N

(
1√
1−R ·G(PD) +

√
R

1−RG(0, 999)
)
− LGD · PD

)
· 12, 5 · 1, 06

with

N(x) . . . the distribution function for a standard normal distributed random
variable (i.e. the probability that a random variable with mean= 0 and
variance= 1 is ≤ x)

G(z) . . . the inverse of the standard normal distribution function
R . . . the correlation coefficient defined as

R = 0, 03 · 1−e−35·PD

1−e−35 + 0, 16 ·
(

1− 1−e−35·PD

1−e−35

)

As it can be seen, the PD makes a substantial contribution to the determination of
the RWAs. The calculation is on the level of claims, that means for every product
with exposure. The main recommendation of the Basel framework is, that the bank
has to provide at least 8% of the RWAs as core capital.

Of course the supervisory regulations concerning default and the PD is much more
extensive than the elaborated points of this section. The aim was it to receive an
assessment of the regulatory importance of the PD estimation.

3 CRR: Section 1 (ii), Article 154
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3 Stress testing

The CRR doesn’t only regulate the capital allocation and PD estimation on a mi-
croeconomic level. The crisis has taught us, that an economic collapse can come
very quickly and even worse: without announcement. It is for this reason, that an
annually supervisory stress test on banking institutes is prescribed by law.

3.1 The EBA stress test
In order to guarantee a strong common equity tier 1 (CET1 ratio) the European
Banking Authority (EBA) performs a regular stress test with more than one hun-
dred European banks. The test contains a baseline scenario which describes the
expected economic developments and an adverse scenario that simulates the partial
default of European government bonds. These scenarios should clarify the effects
on capital requirements and the underlying estimated risk parameters such as the
PD.

The stress test verifies if a bank is well enough equipped with equity. This im-
plies that the CET1 ratio is the key indicator in this exercise. The ratio measures
which proportion of the risk weighted assets needs to default until the liable equity
of a credit institution is completely absorbed and consequently the risk of insolvency.

As already mentioned in the former section, the minimum requirement for the CET1
ratio is at 8%. In the stress test thresholds are defined for both scenarios. A bank
passed the stress test4 if the following limits were achieved (concerning the CET1
ratio):

• baseline scenario: CET1 ratio ≥ 8, 0%

• adverse scenario: CET1 ratio ≥ 5, 5%

The specified methodology of the European Banking Authority uses the following
hierarchy.

As initial values the PDs resulting from the bank’s internal models are considered.
That means, the estimated probabilities which arise from the models specified in
Section 2.3.2. It has to be determined on which level the starting values are re-
quired, i.e. if the stress test is performed on product level or customer level and how
the database and consequently the starting values are defined regarding the segmen-
tation, reference dates, etc. In Section 3.4 we amplified what has to be considered
in particular concerning the starting values for estimating a stressed PD.

The second step of the hierarchy requires the application of the macroeconomic
stress scenarios on the starting values. To make it clear: the estimation of a stressed
PD. The objective is to find a model, that describes the impact of macro variables
on probabilities of default.

4 thresholds according to the EU-wide stress test in 2014
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Figure 7: Methodological hierarchy of the EBA stress test

The determination of the stress-add-on means unequivocally the calculation of the
difference between the predicted PD resulting from the banks internal models and
the respective scenario (baseline and adverse). The difference should be added to
the predicted PD in form of a margin. In this context it is assumed that an economic
downturn leads to a higher PD.

Ultimately it is a matter of costs and how the stress scenarios influence the CET1-
ratio. Initially the stressed PD is used as input parameter for the RWA calculation
instead of the predicted PD from the internal models.

This hierarchy describes the procedure in the stress test roughly. This thesis doesn’t
deal with the last step of the hierarchy shown in Figure 7. The focus is on the es-
timation of the stressed PD. In the empirical part an example for a stressed PD
model is shown.

3.2 Macroeconomic variables as risk factors

For predicting the creditworthiness or the probability of default of a borrower, cer-
tain risk factors are considered. Irrespective of which model is used for the estima-
tion, the variables which are eligible as risk factors, have an explanatory function.
This means that the probability of default should be dependent from the informa-
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tion such a variable contains.

In paragraph 402 of the capital framework it is stated which risk factors should
be used in a scoring model at minimum:

• Borrower risk characteristics

• Transaction risk characteristics

The borrower risk characteristics could be the borrower type and demographic in-
formation such as the age, the occupation or the marital status. Transaction risk
characteristics include product information such as the product type or the number
of months since the account opening and as well information like the loan value, the
account balance or limit increases.

In the stress test it is assessed which influence macro economic variables have on the
PD of a borrower. According to the Basel framework, the essential characteristic
of the procedure of stress testing is the change of the risk factors for predicting the
PD. Instead of borrower or transaction risk characteristics, macro economic factors
represent the explanatory variables.

Since the choice of the variables for the short long list is greatly dependent on
the design of the baseline and the adverse scenario, the following selection arises
from the EU wide stress test in 2014:

• Real Gross Domestic Product (GDP): The GDP is the aggregated na-
tional demand of a country. It is evaluated at market prices and is related
to the sales of companies. A low GDP means it is harder for companies to
generate income through sales. It is a measure of the macroeconomic activity.

• Consumer Price Index (CPI): The CPI is the average price of all consumed
goods. It must be noted that the number of consumed goods is not identical
with the number of produced goods.

• Unemployment Rate (UR): The UR is closely related to the GDP and CPI.
The harder it is for companies to generate income, the greater the possibility
to lose the job and with little or without income, the number of consumed
goods declines.

• Residential Property Prices (RPP): Increasing RPPs cause a higher in-
debtedness of the private households and weaken the purchasing power.

• Equity Prices (EP): Fluctuations on the equity market relate to the asset
price index and the consumer behavior. The symptoms are not only concerns
of consumers, but much more a change of the economic activity.

These variables were not only chosen because they are comparable for different
countries with different economic environments, but also because they give rise to
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particular concerns, if they develop into a certain direction.

One main advantage of using macroeconomic variables for modeling is, that the
data history is completely available for a long time. Usually the variables are stated
quarterly. Since the data history of the PD is available on a monthly basis and in
order to get more data sets for the estimation, the time series of the macro economic
variables can be disaggregated. This is a possibility of interpolating a high frequency
series, where the average corresponds to the low frequency time series.

The procedure can be split into two different steps. The first step is the determina-
tion of a preliminary high frequency time series. The approach of Denton-Cholette,
which will be used for the estimation, applies a single indicator as preliminary series.
This could be a series consisting of only 1s.

The second step is to distribute the differences between the low frequency values
of the preliminary series and the observed low frequency series among the high fre-
quencies of the preliminary series. This is done by minimizing the squared absolute
or relative deviations from the preliminary series.

3.3 Stress scenarios

In order to put the financial institutions into hypothetical stress, different scenarios
are defined by the European Banking Authority. As already mentioned in Section
3.1, the following situations are simulated:

• The baseline scenario should constitute the expected economic develop-
ment. It serves to compare the results of the ”stressed” scenario. At the same
time it is a good indicator for the development and the stability of the bank
under the assumption that there are no economic shocks. Besides that it would
be unrealistic to assume that the macroeconomic situation is stationary.

• The adverse scenario should simulate a ”stressed” situation and is derived
from systemic risks assessed by the European Systemic Risk Board (ESRB).
Originating from different sources of risk, the financial and economic shocks
are translated into the change in different key figures.

According to the European stress test of 2014 the following potential risks and
damages were identified by the ESRB:

The table and a detailed explanation can be read in the publication about the design
of the macroeconomic adverse scenario of the 2014 stress test, available on the EBA
web page.

According to those risk indicators, the following rates were defined for the above
mentioned variables:
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Source of risk Financial and economic shocks

Increase in global bond yields
amplified by an abrupt reversal
in risk assessment, including
towards emerging-market-
economies (EMEs), and pockets
of market liquidity

• worldwide financial market shocks
• demand shocks in EMEs
• EU countries: foreign demand shocks via a

decline in world trade
• currency depreciation and funding stress

affecting Central and Eastern European
economies

Further deterioration of credit
quality in countries with feeble
demand, with weak fundamentals
and still vulnerable banking sec-
tors

• EU country−specific aggregate demand
shocks (via fixed capital formation and pri-
vate consumption)

• EU country−specific aggregate supply
shocks (via shock on user cost of capital,
nominal wages)

• EU country-specific house price shocks
Stalling policy reforms jeopardis-
ing confidence in the sustainabil-
ity of public finances

• EU country specific sovereign bond spread
shocks

Lack of necessary bank balance
sheet repair to maintain afford-
able market funding

• EU-wide shock to short-term interbank in-
terest rates
• EU country−specific shocks to borrowing

costs for households (via shocks to household
nominal wealth and user cost of capital)

Table 5: ESRB mapping of financial stability risks to shocks

Figure 8: Scenarios defined for 2014s stress test

These scenarios were forecasts for the future and available in this form for every
European Country that took part in the stress test.

3.4 The stressed PD

The goal of the stress test is, among other things, to estimate a stressed PD, which
operates as an input factor for the RWA calculation. The model should evaluate,
how the customer characterized PD behaves under the assumptions made for the
macroeconomic variables in Figure 8.
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The approach of using increased risk parameters, in this case the PD, for the calcu-
lation of the required equity is called Uniform Stress Test. There are several ways
of performing this kind of stress test. In this thesis one way is presented.

In order to make a forecast in consideration of the future stress scenarios, the infor-
mation of the past is used. The macroeconomic variables can be regarded over their
historical course of time as shown in Figure 9.

Figure 9: Part of the time series of the macroeconomic variables

In accordance with the hierarchy shown in Figure 7, the starting values are estimated
PDs for each customer. As a customer ci can own products pij from the type loan
(L), credit card (CC) or current account (CA), the starting values are PDs estimated
on product level for each product of a customer. For simplification it is assumed
that every customer owns maximally one product of each type. This results in the
following data base with one data set for every customer at every point in time a
PD was calculated:

Jan 2008 c1 PDL1 PDCC1 PDCA1

Feb 2008 c1 PDL1 PDCC1 PDCA1

... c1 PDL1 PDCC1 PDCA1

Oct 2013 c1 PDL1 PDCC1 PDCA1

Mar 2009 c2 PDL2 PDCC2 PDCA2

Apr 2009 c2 PDL2 PDCC2 PDCA2

...
...

...
...

...

Dec 2013 cn PDLn PDCCn PDCAn

Table 6: Example for the data base of customers
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In order to consider the PD in dependency from the explanatory variables in the
form of the macro-economic key figures, the temporal component has to be taken
into account. To accomplish this, the mean PD of every product type for each
specific point in time is calculated.

PDLt =
1

n

n∑
i=1

PDLi , t = 1, . . . , T (3.1)

PDCCt =
1

n

n∑
i=1

PDCCi , t = 1, . . . , T (3.2)

PDCAt =
1

n

n∑
i=1

PDCAi , t = 1, . . . , T (3.3)

t ∈ {1, . . . , T} is the specific point in time and i ∈ {1, . . . , n} a customer. Together
with the macroeconomic variables, the following historical data base of starting
values would be given.

t Date GDP CPI UR RPP EP PDLt PDCCt PDCAt
1 Jan 2008 0,6 3,7 4,1 0,3 2,5 1,09 2,21 0,87

2 Feb 2008 1,7 3,2 4,5 5,6 6,8 1,14 1,19 1,11

3 Mar 2008 2,3 3,8 3,7 4,2 1,3 1,25 1,75 0,91
...

...
...

...
...

...
...

...
...

...

Table 7: Example for the historical data base of starting values

In the next step a multivariate regression model can be used to estimate the stressed
PD (the methodology and the preconditions are discussed in the next chapter).
Thereby a coefficient β for every explanatory variable on each dependent variable
is estimated.

Figure 10: Coefficients are estimated for every dependent variable
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The coefficient describes the effect of the macroeconomic variable on the dependent
PD, whereby the effect is specifically for the particular component. The output of
the multivariate regression for one component (i.e. the PD for one product type) is
an equation of the following form.

yi = β0 + βi,1x1 + βi,2x2 + · · ·+ βi,nxn (3.4)

with

yi . . . the respond variable, in this case the PD for product type i ∈ {1, 2, 3}
xj . . . the jth explanatory variable, e.g. the GDP
βi,j. . . the parameter which captures the effect of xj on yi
βi,0. . . the intercept resulting from the regression

Equation (3.4) makes it possible to forecast a stressed PD with the specified scenarios
by simply inserting the adverse scenario values (marked with adv in the equation). If
we assume, that the regression provided estimates for every macroeconomic variable,
the stressed PD would be the result of:

PDstress
L = β0 + β1GDP

adv + β2CPI
adv + β3UR

adv + β4RPP
adv + β5EP

adv + ε

ε is the error of the estimation. The evaluation of the PD for the baseline scenario
and the other product types works analogous. Through the comparison of PDstress

L

and PDbase
L an add-on for the PD of each customer could be derived.
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4 Regression models

Financial institutions in the evaluation, whether a customer is able to pay his debts
or not, the grocer round the corner when ordering his goods just like everyone in
his or her everyday life is reliant on recognizing interrelationships and much more
to assess them.

If we buy bread at the bakery, we know that the amount payable (y) results from
the product of the price of one loaf and the number of loaves (x) purchased. This
accords to the linear function

y = β0 + β1x,

where y is the amount payable, β1 is the price of one loaf and x is the number of
loaves we bought. The intercept β0 would in this case be 0, because we wouldn’t
have to pay anything for bread if x = 0. If we buy more bread, the amount payable
increases as well.
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Figure 11: Exact relation between the amount payable and the number of loaves

This example shows, that exact relations can be described in the form of a function
very easily. A lot of interrelationships aren’t exact but apply approximately. If we
examine for example how the amount of income depends on the number of working
hours, a positive relation is expected indeed, but this relation can’t be valid exact
as the income depends on numerous factors, not just the number of working hours.
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Figure 12: Relation between the amount of income and the number of working hours

As Figure 12 shows, normally people have a higher income with more working hours.
But to describe this approximate relation a certain deviation or error has to be taken
into account. In the equation

yi = β0 + β1xi + εi

this error is described through the disruptive term εi, where i is the ith observation of
the data sample. Since the relation between the amount of income and the number
of working hours can’t be described in a single function for all observations, each of
the n considered person would need a separate function.

y1 = β0 + β1x1 + ε1

y2 = β0 + β1x2 + ε2
... =

...
...

...

yn = β0 + β1xn + εn

This approach is not only confusing, but also inexpedient as each of the n different
functions would again describe the relation for just one observation. In this case the
regression models provide remedy. There are several ways of describing relations
between variables, since there are several types how variables can relate to each
other (linear, exponential, . . . ). This chapter will focus on logistic regression and
multivariate linear regression.

The basis for every regression is

• the dependent or response variable (y - according to the example above)

• the explanatory variables, also called regressors (x in the example)
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The objective is to find a function of the form

y = β0 + β1x1 + β2x2 + · · ·+ βmxm + ε (4.1)

with the smallest possible ε (in this case the indexes don’t refer to the number of
observations, but to the number of explanatory variables). Thereby the coefficients
β1, . . . , βm and an intercept β0 are estimated to describe the relation. The output
contains those coefficients, that minimize the disruptive term ε. Different types of
regressions use different methods for minimizing the error term.

In conjunction with PD modeling and stress testing, regression models are used
for forecasting. If there are additional observations for x = (x1, . . . , xk) without
knowing y, the values can be imputed into the regression function to predict y.

4.1 Multiple logistic regression

4.1.1 Binary response

What differentiates the logistic regression model from usual linear regression model
the most, is the type of the response variable y. While the dependent value in the
linear regression is continuous, the logistic regression model requires a binary re-
sponse. That leads to the following definition for yi (i denotes the ith observation
of the sample with i ∈ {1, . . . , n})

yi =

{
1, default

2, non− default

Let the vector

xi
′ = (xi,1, . . . , xi,k)

be the collection of independent, explanatory variables (e.g. product risk charac-
teristics). The key figure of every regression problem is the conditional expected
value

E(yi|xi),

i.e. the mean of the outcome variable yi given the independent variables xi,1, . . . , xi,k.
In linear regression it is assumed, that this mean can be written as

E(yi|xi) = β0 + β1xi,1 + · · ·+ βkxi,k,

which is linear in xi. This allows any value for E(yi|xi) ∈ (−∞,+∞). For binary
variables applies:

xi
′ = (1, xi,1, . . . , xi,k)

This requires a cumulative distribution, such as the logistic distribution. A trans-
formation function F is needed, which ensures that
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F (β′xi) ∈ [0, 1]

with β′ = (β0, β1, . . . , βk) and β′xi = β0 + β1xi,1 + · · · + βkxi,k. The logit transfor-
mation is based on the distribution function of the logistic distribution:

P(yi = 1) = Λ(β′xi) =
exp(β′xi)

1 + exp(β′xi)
(4.2)

Λ is the distribution function of the standard-logistic distribution with mean 0 and
variance π2

3
. Thus the transformation function is Λ, which implies:

P(yi = 1|xi) = F (β′xi)

and

P(yi = 0|xi) = 1− F (β′xi)

With an independent data sample, the joint probability is

P(y1, y2, . . . , yn|X = (x1, . . . ,xn)′) =
∏
yi=0

[1− F (β′xi)]
∏
yi=1

[F (β′xi)]

For simplification of the notation:

exp(β′xi)

1 + exp(β′xi)
=: π(xi) (4.3)

This means that the transformation function F is equivalent to π(xi).

4.1.2 The disruptive term

One assumption for the logistic regression model is aimed at the disruptive term.
Let E(yi|xi) + ε be the observation of the outcome variable with the error ε, which
can take two possible values:

1. ε = 1− π(xi) if yi = 1

2. ε = −π(xi) if yi = 0

Possibility 1 has probability π(xi) and the second possibility has probability 1 −
π(xi). This implies, that ε has a distribution with mean 0 and variance π(xi) · [1−
π(xi)], and thus is described by the binomial distribution.
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4.1.3 Fitting the model

Let’s consider a sample of n independent observations of both, the explanatory
variables xi and the binary response variable yi. The variables are defined as above.
Fitting the logistic regression model of Equation 4.3 to the given set of data means
estimating the values of the unknown parameters

β0, β1, . . . , βm.

Linear regression uses the method of least squares (LS) for estimating parameters.
The result are βj’s that minimize the sum of squared deviations of the observed
values from the predicted values resulting from the model.

Estimators with a number of statistical properties are received. The estimators
loose those properties if LS is applied to a model with binary response. Therefore
we assume a more general approach, that leads to the LS function on the one hand
and to the specific method used for logistic regression models on the other hand,
the maximum likelihood (ML) estimation.

Very roughly, the ML estimation provides values for β0, . . . , βm, that maximize the
probability of obtaining the observed set of data. Therefore the so called likelihood
function is constructed, which depicts the probability of the observed data. The
likelihood function is a function from the unknown parameters and the maximum
likelihood estimators of the parameters are those values, that maximize the ML func-
tion.

Equation (4.3) provides the conditional probability for yi = 1 given xi, i.e. P(yi =
1|xi). Thus 1− π(xi) is analogously P(yi = 0|xi). Therefore:

• the contribution to the likelihood function is π(xi) for those observations
(yi,xi), where yi = 1

• the contribution to the likelihood function is 1− π(xi) for those observations
(yi,xi), where yi = 0

Thus the contribution to the likelihood function for the observation (yi,xi) can be
summarized as

π(xi)
yi · [1− π(xi)]

1−yi (4.4)

Now the independence of the observations comes into play, which allows the outlining
of the likelihood function as follows:

l(β) =
n∏
i=1

π(xi)
yi [1− π(xi)]

1−yi (4.5)

This function is maximized in dependence of β. If l is differentiable, the maximum
can be obtained by forming the first derivative after β and equate it to 0. Since this
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procedure can get very complex for density functions with intricate exponents, the
logarithmized likelihood function is used.

L(β) = ln l(β) =
n∑
i=1

{yi ln π(xi) + (1− yi) ln [1− π(xi)]} (4.6)

In order to find the β that maximizes L(β) the function is differentiated with respect
to β0, . . . , βm and equated to 0. The first order conditions are:

∂ lnL

∂β
=

n∑
i=1

[
yi
πi
· dπi
d(β′xi)

+
(1− yi)
πi

·
(
− dπi
d(β′xi)

)]
xi
′ !
= 0 (4.7)

The values of β0, . . . , βm, thus the maximum likelihood estimators are then given by
the solution to (4.7) and are referred to with β̂0, β̂1, . . . , β̂m. Those values are the so
called coefficients or the intercept of the logistic regression.

Summarized the model can be written as

ln

(
P(yi = 1)

1− P(yi = 1)

)
= β0 + β1xi,1 + · · ·+ βmxi,m

4.1.4 Interpretation of the model

Interpreting a logistic regression model leads to the question: Is the outcome de-
scribed better by a model including those variables, than a model not including those
variables? In order to answer this question, the outcome has to be compared with
the observed value for the model including the questioned variables and the model
that doesn’t include the questioned variables.

The interpretation of the estimators for a logistic regression model is not as easy
as for a linear model. Since the function is not linear, no direct claims can be
made about the relation between the dependent and the explanatory variables (see:
example from above). It is for this reason, that the coefficients aren’t considered
directly for interpretation, but the so called odds are analyzed. The odds describe
the relation between the probability of occurrence (yi = 1) to the probability that
it does not occur (yi = 0).

odds(yi = 1) =
P(yi = 1)

1− P(yi = 0)
(4.8)

For the logistic regression, the following correspondence applies:

Logit = ln(odds)

That means, the logits of a logistic regression model are the logarithmized odds. The
odds ratio (OR) is the relation between the odds, i.e. how strongly the presence or
absence of an explanatory variable is in conjunction with the presence/absence of
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another explanatory variable. Let’s assume that xi is coded as either 0 or 1. Then
it applies:

OR =
π(1)/[1− π(1)]

π(0)[1− π(0)]

For the logistic regression model is then obtained:

Figure 13: Values of the logistic regression

It follows for the OR:

OR =

(
eβ0+β1

1+eβ0+β1

)
/
(

1
1+eβ0+β1

)
(

eβ0

1+eβ0

)
/
(

1
1+eβ0

)
=
eβ0+β1

eβ0

= e(β0+β1)−β0

= eβ1

From that follows that the relationship between the regression coefficient and the
odds ratio is

OR = eβ1

In other words, the odds ratio approximates how much more likely it is for the
outcome to be present among those with x = 1 to those with x = 0. For example, if
x denotes whether the borrower is a new client (x = 1) or not (x = 0), then ÔR = 2
estimates, that it is twice as likely to default as a new client, then it is as a regular
customer. This simple relationship is one reason, why logistic regression is such an
efficient analytical tool.

4.1.5 The significance of the coefficients

After fitting the model, it has to be tested on significance. The Wald test statistic
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(W ) is used to assess the significance of each coefficient on its own. This univariate
statistic is:

Wj =

(
β̂j

ŜE(β̂j)

)2

for the jth explanatory variable with the univariate standard error ŜE(β̂j) of β̂j.
Under the null hypothesis that the coefficients β0, . . . , βm of the model are equal to
0, the distribution of the statistic W is χ2 with n− 1 degrees of freedom. This leads
to the p-value:

P[χ2(m) > W ] =: p− value

The null hypothesis, that the coefficient equals zero is rejected in the case of

p− value < α

for a specified level α > 0. Normally α is set equal to 0, 05.

4.1.6 Preconditions

The logistic regression has less preconditions than the linear regression. Still there
are some facts that have to be considered for applying a logistic regression model.
Most of the issues were discussed in the previous sections.

• The inclusion of all relevant variables and at the same time the exclusion of the
irrelevant variables are important for a good fit. Otherwise the model could
be under fitted or over fitted.

• The disruptive terms need to be independent.

• The amount of missing values should be small.

• Linearity and additivity of the explanatory variables with the logit.

• Multicollinearity between the explanatory variables should be avoided, other-
wise the standard errors of the coefficients get too big.

• A large sample to improve the significance and the discriminatory power of
the model.

• Independence of the data sets for the preconditions of the maximum likelihood
estimation.

• No outliers, which will be discussed in the next section.
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4.2 Outliers and robustness

Estimations can be strongly influenced by just a few data sets. In this case, the
result of the estimation is biased as it doesn’t fit the largest part of the data. When
such a problem occurs, it has to do with outliers.

In the data of financial institutions, which are used for estimating PDs, phenomena
appear sometimes, which lead to the occurrence of outliers. The cause often lies in
the careless data collection (e.g. manual entries, process work-arounds, . . . ). How-
ever, it is possible that some observations really are that different from the greatest
part of the observations. Considering the variable months since account opening it
is possible, that for some few customers, who opened their accounts decades ago,
the value of the variable is very high. In this case the fitting of the model has to be
adjusted.

For the identification of outliers, a clean definition is necessary. In general it can be
said, that an outlier is an observation that strongly deviates from the other obser-
vations. This can be on univariate, as well as on multivariate level.

Outliers on univariate level

In the context of PD modeling, the outlier detection on univariate level is performed
for each of the explanatory variables. In the following a data set of n observations
for the variable x is considered.

x1
x2
...
xn

In general, outliers can be detected graphically or computationally. One possibil-
ity of doing this, is the application of the frequency distribution. The edges of
the distribution should not be classified in this case. A weakness of this method is,
that the decision, whether an observation is an extreme value or not is discretionary.

A very common way for a graphical detection of outliers is the box plot, which
illustrates the homogeneity as well as the range of the considered variable. In Fig-
ure 14 an example is given.

For the characterization of the homogeneity, the first and third quartile is used.
The 50% of the observations, that lie between the first and the third quartile are
represented by a box. The interquartile range (IQR) is illustrated by the lines at
the edges of the box. The outliers are defined as the points right from the upper
whisker which corresponds to the third quartile + 1.5· IQR (see Tukey, 1977).
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Figure 14: Box plot of the variable x
One way of detecting outliers is with the help of test procedures. One precondition
for the implementation of such tests is set to the underlying distribution.

Usually it is required that the data follow at least approximately a normal dis-
tribution. One of the most common tests of this kind is the outlier test by Grubbs.

Outliers on multivariate level

For multivariate analyses like the multiple logistic regression, the problem of outliers
gets much more complex.

1. A potential outlier doesn’t only distort the location and dispersion parameters,
but also the correlation between the variables can be affected.

2. While a univariate outlier is located at the edges of the distribution, the mul-
tivariate outliers position is not restricted in its location.

The consideration of the frequency distribution alone is not sufficient, as in this case
outliers refer to a whole data set, not only a point.

The basis for the multivariate outlier detection is a data set of n observations for m
different variables x1, . . . , xm.

x1,1, x1,2, · · · x1,m
x2,1, x2,2, · · · x2,m

...
... · · · ...

xn,1, xn,2, · · · xn,m

The probably most obvious way of detecting outliers is to calculate the Euclidean
distance for each observation and compare it to the central point of the data.

For simplification and in order to allow a graphical representation, consider two-
dimensional observations (xi,1, xi,2) =: xi with the central point x := (x1, x2). Then,
the Euclidean distance d(·, ·) of xi to the central point x is defined as:

d(xi,x) =
√

(xi,1 − x1)2 + (xi,2 − x2)2 (4.9)
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An example should demonstrate, that the Euclidean distance is not reasonable in
this case. Consider the two-dimensional data set, each consisting of 22 observations.
The central point of the sample is (4, 8; 3, 5).

i xi,1 xi,2 d(xi;x)
1 2, 3 2, 2 2, 4
2 3, 1 4, 5 1, 7
3 2, 7 2, 6 1, 9
4 3 2, 6 1, 6
5 3, 5 2, 8 1, 1
6 4 3 0, 6
7 4, 2 3, 2 0, 3
8 4, 5 3, 3 0, 1
9 4, 5 2, 9 0, 5
10 4, 6 3, 5 0, 2
11 4, 7 2, 6 0, 8
12 4, 8 3, 7 0, 5
13 4, 9 3, 1 0, 6
14 5 4 0, 8
15 5, 3 3, 5 0, 9
16 5, 6 3, 2 1, 2
17 5, 9 4, 2 1, 7
18 6, 2 3, 9 1, 8
19 6, 5 4, 7 2, 5
20 6, 8 4, 9 2, 8
21 7 4, 6 2, 8
22 5, 8 3, 8 1, 4

The average Euclidean distance lies at 1, 3. This suggests that observation 2 with
an Euclidean distance of 1, 7 is located nearby the central point of the sample. As
it can be seen in Figure 15, this precise observation is the only one which does not
lie in the general direction of the scatter.

2,0	  

2,5	  

3,0	  

3,5	  

4,0	  

4,5	  

5,0	  

5,5	  

2,0	   3,0	   4,0	   5,0	   6,0	   7,0	   8,0	  

Figure 15: Example for the approach of the Euclidean distance

This example should demonstrate, that the detection of multivariate outliers is not
only dependent from the distance to one ”point” of the sample. Other tools than the
Euclidean distance are necessary. One common measure for identifying multivariate
outliers is the so called Mahalanobis distance. This quantity is a distance measure
between points in a multidimensional vector space. This quantity measures the
similarity of the observations to the sample mean with regard to the dependencies
of the m different variables, i.e. the covariances.

42



The classical Mahalanobis distance is given by

MDi =
√

(xi − x)′Σ−1(xi − x), ∀i = 1, . . . , n (4.10)

with
xi . . . the tuple (xi,1, xi,2)
i . . . the index of the ith observation of the sample
n . . . the number of observations in the sample
x . . . the mean value (x1, x2)
Σ−1 . . . the inverse covariance matrix of the independent variables

For demonstrating the idea of the Mahanlanobis distance, consider a bivariate nor-
mally distributed sample of 500 observations (x1, x2) with x1 = (x1,1, . . . , xn,1) and
x2 = (x1,2, . . . , xn,2).

Figure 16: Example of a bivariate normally distributed sample

The points P1 = (xi1,1, xi1,2) and P2 = (xi2,1, xi2,2) in Figure 16 are at different
distances from the central point of the sample. This is shown clearly by the inter-
section lines. The difference is even more notable through the distribution along the
intersection lines P1M and P2M .

Figure 17: Distribution along the intersection lines
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The probability of an observation at position P1 equals 0, 1% and at position P2 it
is at 0, 4%. This confirms that the points don’t have the same distance to the origin
with regard to the dependencies of the variables, i.e. the distribution of the sample.

The Euclidean distance corresponds to drawing a circle around the origin. Ac-
cording to this the points would have the same distance, although the Mahalanobis
distances in Figure 17 differ from each other. The correct approach is to draw
curves with the same probability, i.e. ellipses so that the points at curves have the
same probability of occurrence. This method considers the multivariate standard
deviation and the ellipses with constant probabilities correspond to the constant
Mahalanobis distance.

Figure 18: Graphical depiction of the Mahalanobis distance

If the sample mean and the sample variance are used as estimators of x and Σ−1

for calculating the Mahalanobis distance, the values could be biased due to out-
liers. To avoid this problem more robust estimators are necessary like the minimum
covariance determinant estimators (MCD) (see Rousseeuw and Van Driessen, 1999).

In this context xMCD is the arithmetic mean of those h observations that have
the smallest possible determinant of the classical covariance matrix. Σ−1MCD results
from the sample covariance of the same h observations.

This rises the question to what extent contaminated data sets or outliers are al-
lowed so that the estimator still provides reliable information about the underlying
variable. In other words, what is the breakdown value? As a measure for robustness,
the breakdown value of a location estimator determines the smallest amount m

n
of

data sets, whose replacement leads to an unlimited change of the estimation. n is
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the number of all observations and m is the number of replaced observations.

ε∗(x) := min
m

{
m

n
; sup
x̃i

‖x(x̃i)− x(xi)‖ =∞
}
, (4.11)

where x(xi) denotes the mean value of the whole data sample including all outliers
and x(x̃i) is the mean value of the respective comparative sample (see Hubert and
Debruyne, 2010).

The breakdown value of Σ−1 is defined as the smallest amount m
n

of data sets that
with one of the following characteristics:

• For the largest eigenvalue: λ1(Σ)→∞

• For the smallest eigenvalue: λp(Σ) → 0 (in this case p is the number of con-
sidered variables =̂ m in Equation (4.10))

For the breakdown values of MCD estimates it applies

ε∗(x)MCD = ε∗(Σ)MCD ≈
n− h
n

with a maximum value of ε∗ = 50% for h ≈ n
2
.

As the quadratic Mahalanobis distances MD2
i are χ2

p distributed under multivari-
ate normally distributed data, a limit for the number of expected outliers can

be found with
√
χ2
p;1−α as threshold. This threshold identifies all data sets with

MDi >
√
χ2
p;1−α as outliers.

4.3 Robust logistic regression

The main target of a regression is to find a curve that fits into a given cloud of
points. The most intuitive and common approach is to search for the curve with
the minimum distance to the data points. This method is called least-square and
minimizes the sum of the squares of errors for the choice of the parameters of the
regression function. Larger deviations have a stronger weight in the calculation,
which leads to distortions if the underlying data contain outliers.

The effects reach from changes in the significance or the sign of individual parame-
ters up to deterioration of the model accuracy. Either way, to guarantee a reasonable
risk assessment and valid results, robust methods have to be applied.

In Section 4.1 it was described how parameters were estimated with the help of
the maximum likelihood method. This method is not steeled against outliers as the
breakdown value equals 1

n
which doesn’t leave much room for deviations. Robust al-

ternatives have been constructed based on the ML-estimation, which are elucidated
in this section.
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Figure 19: Fitted curve with residuals

Let Yi with 1 ≤ i ≤ n be independent Bernoulli variables and X1, . . . , Xn the
p-dimensional explanatory variables that fulfill:

P(Yi = 1|Xi = xi) = F (α + β′xi)

with the cumulative distribution function F . The robustness is analyzed on the
basis of logistic regression, therefore it applies

F (u) =
1

1 + e−u

The ML-estimator can be written as

γ̂ML
n = argmax

γ
logL(γ;Xn) = argmin

γ

n∑
i=1

d(z′iγ; yi) (4.12)

with

γ . . . the parameters (α, β′)′

zi . . . (1, x′i)
′ for all 1 ≤ i ≤ n

n . . . the number of observations in the sample
Xn . . . the sample {(x1, y1), . . . , (xn, yn)}
logL(γ;Xn) . . . the log-likelihood function in γ
d(z′iγ; yi) . . . the deviance function given by

d(z′iγ; yi) = −yi logF (z′iγ)− (1− yi) log{1− F (z′iγ)}

In the ML-estimation the function d(z′iγ; yi) is minimized in dependence of γ. The
idea of a more robust estimator is based on a generalization of Equation (4.12). The
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concept of M -type estimators, to which the generalization of the ML estimation
refers, uses the approach of replacing the deviance function by a function ϕ, which
is not that sensitive against outliers.

γ̂n = argmin
γ

n∑
i=1

ϕ(z′iγ; yi) (4.13)

ϕ satisfies ϕ(s; 0) = ϕ(−s; 1) for any score s, with si = z′iγ. For simplification, the
univariate function φ(s) = ϕ(s; 0) is considered, which describes the impact of a
specific score s on the value of the target function in the Equation (4.13) for an
observation that corresponds to a null y. For φ(s) it applies:

• φ(s) is non-decreasing

• lim
s→∞

φ(s) = 0

The task is to minimize
n∑
i=1

ϕ(z′iγ; yi) in dependence of γ or equivalently to solve

1

n

n∑
i=1

Ψ(z′iγ; yi)zi = 0 (4.14)

with

Ψ(s; 0) = ∂ϕ(s;0)
∂s

and Ψ(s; 1) = −Ψ(−s; 0)

For ψ(s) = Ψ(s; 0) follows ψ(s) = ϕ′(s). The solution of (4.14) is the so called
M-estimator.

Considering the deviance function of the log-likelihood function, the ML estima-
tor apparently belongs to the class of M-estimators with

ϕML = − ln (1− F (s))

By introducing a bounded function ρ and a bias correction term C(·; ·), Bianco and
Yohai (1996) constructed a robust and consistent estimator (BY estimator), which
belongs to the M-estimators as well:

γ̂BYn = argmin
γ

n∑
i=1

{ρ(d(z′iγ; yi)) + C(z′iγ; yi)} (4.15)

with

C(s, y) = G(F (s)) +G(1− F (s)) and G(t) =
∫ ′
0
ρ′(− lnu)du

and the univariate function

φBY (s) = ρ(− ln (1− F (s))) +G(F (s)) +G(1− F (s))−G(1) (4.16)
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(4.16) shows that the result depends on the selection of ρ. According to Bianco and
Yohai (1996), an appropriate choice would be

ρ(t) =

{
t− t2

2c
t ≤ c

c
2

otherwise
(4.17)

with the tuning parameter c. The benefit of using robust estimators such as the
BY estimator is that with φBY , large but bounded values are gained for very large
scores > 0 while φML probably leads to unlimited high values for such scores.

As the construction, also the conditions of existence for M-estimators can be de-
rived from the ones for the ML-estimator, which leads to the following Proposition:

Proposition 4.1

1. There is overlap of the data points.

2. ψ is increasing on (−∞,∞) or ∃ k > 0 with ψ =

{
increasing on (−∞, k]
decreasing on [k,∞)

3. lim
s→∞

ψ(st)
ψ(−s) =∞,∀t > 0

If these conditions are fulfilled, γ̂n exists with finite norm.

Condition 1 can be traced back to Albert and Anderson (1984), who proved that
the ML estimator exists if the space of the explanatory variables can’t be separated
into groups with yi = 0 and yi = 1.

With ρ as defined in Equation (4.17), condition 3 doesn’t hold for γ̂BYn as the deriva-
tive ρ′(t) vanishes for large t. As an alternative, for which the condition holds, a
function with a derivative of the following form is recommended:

ρ′(t) =

{
e−
√
d t ≤ d

e−
√
t otherwise

(4.18)

Proof.
In order to prove the existence of γ̂n it is shown that the function

S : γ 7→ 1

n

n∑
i=1

ϕ(γ′zi; yi)

has a minimum inside a sphere with radius <∞. Define

λ∗ = max
ξ∈Sp−1

λ(ξ)

with
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λ(ξ) = inf{λ ≥ 0|dKξ(λ̃
dλ

> 0,∀λ̃ ≥ λ} and Kξ : λ 7→ 1
n

n∑
i=1

ϕ(λξ′zi; yi)

and the surface

S = {ξ ∈ Rp|g(ξ) = 0}, where g : (u, λ) 7→ dKu(λ)

dλ

The function ξ 7→ λ(ξ) is continuous, λ∗ is well defined. According to the definition
of λ(ξ) it follows that the minimum of the function S is always inside the compact
set {γ : ‖γ‖ ≤ λ∗}. The continuity of S guarantees that its minimum will always
be reached for a γ̂n with ‖γ̂n‖ < λ∗.

�

Croux and Haesbroeck developed an algorithm for the logistic regression under appli-
cation of the BY-estimator. They split the problem of optimizing (4.15) by defining
the parameter vector as γ = ξ

σ
with ‖ξ‖ = 1 and σ = 1

‖γ‖ ≥ 0. This leads to:

(σ̂, ξ̂) = argmin
(σ,ξ)∈R+×Sp−1

1

n

n∑
i=1

ϕ(
z′iξ

σ
; yi) (4.19)

The estimation is performed by alternately optimizing (4.19) over σ and ξ. For
the optimization over ξ, (4.19) can be written as function from ξ with a secondary
condition:

min f(ξ) =
1

n

n∑
i=1

ϕ(
z′iξ

σ
; yi) with g(ξ) = ξ′ξ − 1 = 0 (4.20)

f can be approximated by f(ξ̂0 + h) ≈ f(ξ̂0 + gradf(ξ̂0)
′h close to the initial solu-

tion ξ̂0 for (4.20). With gradg(ξ̂0) = 2ξ̂0 and h = −gradf(ξ̂0) + |ξ̂′0gradf(ξ̂0)|ξ̂0 the
updated estimate ξ̂1 equals ξ̂0 + εh

‖h‖ with ε > 0.

Overall, the following steps are performed in order to find the BY-estimators.

1. Selection of a subset with exclusion by means of the robust Mahalanobis dis-
tance.

2. Determination of the starting values γintercept0 , γ
(1)
0 , . . . , γ

(p)
0 for the coefficients

by applying logistic regression on the ”robust” subset.

3. The initial values σ0 = 1√
p∑
i=0

(γ
(i)
0 )2

and ξ
(i)
0 = γ

(1)
0 · σ0 for i = 0, . . . , p (i = 0 is

for the intercept) are calculated.

4. Calculation of the initial value of the objective function γ̂BYn according to 4.15

with score0 =
z′iξ0
σ0

.

5. Optimization of the objective function over σj.
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6. Setting of γ
(i)
j =

ξ
(i)
j−1

σj
, scorej =

z′i
σj

and the objective function with scorej−1 =
z′iξj−1

σj
.

7. Determination of h = −gradf(ξj−1) + |ξ′j−1gradf(ξj−1)|ξj−1, ξj and scorej.

8. Update of the average of the objective function with scorej.

9. Comparison of the mean values. If the update is greater than the average
of the objective function with scorej−1, convergence is achieved, i.e. a local

minimum has been reached at (σj, ξ̂j−1). If this inequality is not fulfilled, the
procedure is repeated from step 5 to step 8 with the updated values.

10. If steps 5-8 were repeated for a predetermined maximum number of iterations
(e.g. 1000) and convergence has failed, no estimators could be found.

4.4 Comparison of the approaches

The fitted models can be compared with the help of a coefficient of determination.
McKelveys and Zavoinas pseudo R2 is a measure for the explanatory power of a
model fit.

R2 =
var(ŷ)

var(ŷ) + var(e)
∈ [0, 1], (4.21)

with the error e. The greater R2, the better is the explanatory power of the model.
It can be said, that the model with the larger R2 is ”better”.

An additional key figure for comparing models of the Probability of default con-
sider the discriminatory power: the Gini coefficient.

For this the Gini coefficient is calculated, as described in Section 2.3.1 with the
difference, that the ROC curve is not determined for the expressions of a variable
but for the vector of the fitted values.

fitted values =


1

1+e
−(β0+β1·x11+···+βm·xm1 )

1

1+e
−(β0+β1·x12+···+βm·xm2 )

...
1

1+e−(β0+β1·x1n+···+βm·xmn )


The model with the greater Gini coefficient has a better discriminatory power and
thus can differentiate better between ”good” and ”bad” customers.

4.5 Multivariate regression

In contrast to the univariate regression, the multivariate regression bears partial
correlations between the response variables Y given X. These are equivalent to
the correlations between the random errors E and can be seen in their covariance
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matrix. It measures to what extent the prediction error E(j) of the jth model can
be predicted from the error E(k) from the kth model through X and vice versa.

For estimating the impact of macroeconomic variables on different PDs a multi-
variate regression model is needed. The multivariate regression differs from the
univariate, in that the respond is multidimensional, so that not only one variable y
is considered, but q variables.

Yi = (Y
(1)
i , Y

(2)
i , . . . , Y

(q)
i ), 1 ≤ i ≤ n (4.22)

where n is the number of observations in the sample. The explanatory p variables
are given by Xi = (X

(1)
i , X

(2)
i , . . . , X

(p)
i ), with 1 ≤ i ≤ n.

The multivariate regression describes the relation or the impact of X on each of
the responding variables. With the methods described in the previous sections, p · q
parameters B are estimated at the same time, which leads to the following models:

Y = XB +E (4.23)

With Y ∈ Rn×q, X ∈ Rn×(p+1), B ∈ R(p+1)×q and E ∈ Rn×q. The single models are
obtained by regarding the jth column of Y , B and the error E with j ∈ {0, . . . , q}:

Y
(j)
i = XB(j) +E(j), i = 1, . . . , n
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5 Empirical estimation

The generous provision of data by BAWAG P.S.K. made it possible to apply the
described methods to a portfolio of private customers of an Austrian bank. In order
to do justice to data protection and the banking secrecy the provided data were
anonymized in advance and the original variable names were substituted by neutral
designations (like var1, var2, . . . ).

5.1 Procedure

The aim was to try out the methods on real-life data and compare results for the
stressed PD. This was realized in the following manner.

As described in Section 2.1, three types of products (loans, credit cards and cur-
rent accounts) are provided in the available data. The mentioned analyses where
implemented for all of the three types, but to avoid repetition the results of the PD
estimation are only shown for loans.

The first step is the development of a PD model on product level by means of
the following procedure:

1. Preparation of the available data, including the definition of the regarded
period of time and the quantitative description.

2. Definition of the long list of variables.

3. Univariate analyses and variables selection.

4. Multivariate analyses and model fitting, both ”classical” and robust.

5. Comparison of PDclas and PDrob.

The next step is the definition of the macro variables for the stress test and the
preparation of the historical data. This also includes the calculation of the average
PDs for the available points in time of the data history.

In the last step the stress test model is estimated for both, the PDclas and the
PDrob as an input for the response. Finally the results can be compared.

5.2 Data preparation

As time horizon for the modeling sample a period of one year was chosen. In order
to comply with the forecasting horizon of 365 days, the data were selected from the
year 2014.

In total the raw data contain 1.233.015 data sets, i.e. loans, at 12 different point
in times. The loans are considered at every month-end of the year and therefore
contains duplicates for most of the data sets. In order to counteract the autocorre-
lation, each loan was drawn once from the sample, giving priority to the defaults.
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Since it is possible that a customer has more than one loan, for each customer,
the more current data set was chosen. After that the sample was unique per cus-
tomer with 116.403 data sets. This sample forms the basis for the univariate and
multivariate analyses and is distributed as follows.
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Figure 20: Distribution of the analysis-sample

The long list originally contains 23 variables, with product related information like
dunnings, redemptions or arrears. The following issues were analyzed for those
variables:

• missing values

• default values

• GINI coefficient

• distribution along the course of the variable

• linearity in the log odds

• working hypothesis

• outliers

The data preparation and the univariate analyses were performed in the program
IBM SPSS Modeler 16.05 and in R6. First, all variables were checked for missing
values and default values in order to exclude affected variables from further analyses.

5 Data mining tool by IBM Corp., URL http://www-
01.ibm.com/software/analytics/spss/products/modeler

6 R Development Core Team (2008). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org
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missing	  
values	  

default	  
values	  

var1	   0%	   0%	  

var2	   0%	   0%	  

var3	   0%	   0%	  

var4	   0%	   21%	  

var5	   0%	   0%	  

var6	   0%	   0%	  

var7	   0%	   0%	  

var8	   0%	   0%	  

var9	   0%	   0%	  

var10	   0%	   0%	  

var11	   0%	   0%	  

var12	   30%	   -‐	  

var13	   0%	   0%	  

var14	   0%	   27%	  

var15	   0%	   0%	  

var16	   0%	   0%	  

var17	   0%	   0%	  

var18	   0%	   0%	  

var19	   0%	   0%	  

var20	   0%	   0%	  

var21	   0%	   0%	  

Figure 21: Missing values and default values

As it can be seen in Figure 21, var12 has an amount of > 20% of missing values and
is therefore excluded from the long list. var4 and var14 aren’t filled meaningful for
more than 20% and therefore excluded as well. In total, 18 variables are left for the
analysis of the discriminatory power.

The GINI coefficient was calculated for the whole sample. Since the database con-
tains data from one year, the comparison of the GINI coefficients over the time is
not conclusive. The GINI coefficient was calculated as described in Section 2.3.1.
The verification was, if the absolute value of the GINI < 0, 05, this was an indication
for the exclusion of the variable.

In this context the variables var3, var10, var11 and var18 were excluded. For the
leftover variables, the distribution of the default rate along the course of each variable
was analyzed. For this, the variable was classified into vingtiles. For each class the
default rate was calculated. As an example, Figure 23 shows the distribution of the
default rate of var1.
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	  	   total	  GINI	   abs(GINI)	  <	  5%	  

var1	   -‐11%	   no	  

var2	   -‐5%	   no	  

var3	   3%	   yes	  

var5	   -‐5%	   no	  

var6	   -‐5%	   no	  

var7	   -‐4%	   yes	  

var8	   -‐5%	   no	  

var9	   -‐5%	   no	  

var10	   -‐4%	   yes	  

var11	   -‐4%	   yes	  

var13	   -‐56%	   no	  

var15	   32%	   no	  

var16	   15%	   no	  

var17	   5%	   no	  

var18	   1%	   yes	  

var19	   -‐8%	   no	  

var20	   -‐6%	   no	  

var21	   -‐6%	   no	  

Figure 22: Total GINI coefficient

Figure 23: Distribution of the default rate along the course of var1
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It can be seen that the trend of the default rate decreases with a higher value of
var1 which corresponds to the working hypothesis of the variable. Still the course
of the variable shows some peaks and troughs, for example in the 3rd, the 6th, the
13th and the 16th and 17th vingtile. This could mean that the variable has to be
transformed in order to fulfill the precondition of linearity in the log odds.

The linearity assumption was examined graphically and with the Box-Tidwell test
(see Menard, 2002).For the graphical test var1 was classified into vingtiles and plot-
ted against the log odds.

Figure 24: Vingtiles of var1 against log odds

As already assumed in Figure 23, the peak and the trough distorts the course of
var1 and probably as well the linearity. The presumption is confirmed by the Box-
Tidwell test. Performing the Box-Tidwell test with the approach of Bianco-Yohai
leads to significant results as well.
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> box_tidwell_test_var1<-glm(y~x1+x1_ln_x1,family="binomial") 
> summary(box_tidwell_test_var1) 
 
Call: 
glm(formula = y ~ x1 + x1_ln_x1, family = "binomial") 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.3071  -0.2993  -0.2790  -0.2532   2.8229   
 
Coefficients: 
                          Estimate  Std. Error  z value 

 Pr(>|z|)     
(Intercept)  -2.960097    0.040365  -73.334   < 2e-16 *** 
x1           -0.015629    0.004513   -3.463  0.000534 *** 
x1_ln_x1      0.004974    0.002052    2.424  0.015361 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
Null deviance: 37378  on 116402  degrees of freedom 
Residual deviance: 37230  on 116400  degrees of freedom 
AIC: 37236 
 
Number of Fisher Scoring iterations: 6 

> box_tidwell_test_rob_var1 
$convergence 
[1] TRUE 
 
$objective 
[1] 0.4358217 
 
$coefficients 
 Intercept          x1   

 x1_ln_x1  
-2.5574792  -0.0637659   0.0261462  
 
$cov 
              [,1]          [,2]          [,3] 
[1,]  9.635119e-04 -7.872713e-05  3.159717e-05 
[2,] -7.872713e-05  9.195936e-06 -3.791916e-06 
[3,]  3.159717e-05 -3.791916e-06  1.575616e-06 
 
$sterror 
[1] 0.031041   0.003032480  0.001255235 
 
$iter 
[1] 2 
 
> p-value 
    x1_ln_x1  
3.491362e-96  

In order to fulfill the linearity assumption, the variable needs to be transformed. As
suitable transformation, the following function was determined:

var1trafo = 0.5 · ln(var10.5)

The Box-Tidwell test, both with the Maximum-Likelihood and the Bianco-Yohai
approach confirm the linearity assumption for the transformation of var1.

> summary(box_tidwell_test_var1_trafo) 
 
Call: 
glm(formula = y ~ x1 + x1_ln_x1, family = "binomial") 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.3160  -0.2991  -0.2727  -0.2517   2.7508   
 
Coefficients: 
             Estimate Std.  Error  z value  Pr(>|z|)     
(Intercept)   -2.8304      0.3524   -8.031  9.65e-16 *** 
x1            -1.8017      0.1587  -11.356   < 2e-16 *** 
x1_ln_x1      -1.5118      2.4405   -0.619     0.536     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 37378  on 116402  degrees of freedom 
Residual deviance: 37226  on 116400  degrees of freedom 
AIC: 37232 
 
Number of Fisher Scoring iterations: 6 

> box_tidwell_test_rob_var1_trafo 
$convergence 
[1] TRUE 
 
$objective 
[1] 0.4357155 
 
$coefficients 
Intercept         x1   x1_ln_x1  
-2.148093   -1.705603   3.191111  
 
$cov 
           [,1]       [,2]      [,3] 
[1,] 0.10708780 0.01104141 0.7293526 
[2,] 0.01104141 0.02241358 0.1237327 
[3,] 0.72935260 0.12373274 5.0884407 
 
$sterror 
[1] 0.3272427 0.1497117 2.2557572 
 
$iter 
[1] 17 
 
> significance 
 x1_ln_x1  
0.1571733  
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Also graphically the linearity is confirmed.
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Figure 25: Vingtiles of var1trafo against log odds

This test of the linearity assumption and probably a transformation was performed
for the other variables as well. Table 26 shows the final selection of the variables
and the corresponding transformation.

In a next step the correlation between the transformed variables, remaining in the fi-
nal selection, was examined. As it can be seen in the correlations matrix, there is no
correlation between the variables, except for var20 and var21. Those two variables
should not be together in one model, which leads to the following combinations as
first tries for a model:

• var1, var2, var8, var13, var15, var19, var20

• var1, var2, var8, var13, var15, var19, var21
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	  	   working	  hypothesis	   hypothesis	  
fulfilled	  

linearity	  
assump6on	   transforma6on	  

var1	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   0.5*ln(var1^0.5)	  

var2	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   sin(0.5*var2^5)	  

var5	   the	  bigger,	  the	  be*er	   no	   n.r.	   n.r.	  

var6	   the	  bigger,	  the	  be*er	   no	   n.r.	   n.r.	  

var8	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   sin(-‐0.5*var8^3)	  

var9	   the	  bigger,	  the	  be*er	   no	   n.r.	   n.r.	  

var13	   the	  smaller,	  the	  be*er	   yes	   not	  fulfilled	   sin(-‐8*var13)	  

var15	   the	  smaller,	  the	  be*er	   yes	   not	  fulfilled	   sin(2*var15)	  

var16	   the	  smaller,	  the	  be*er	   no	   n.r.	   n.r.	  

var17	   the	  smaller,	  the	  be*er	   no	   n.r.	   n.r.	  

var19	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   var19^2	  

var20	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   sin(-‐var20)	  

var21	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   sin(-‐var21)	  

Figure 26: Final variable selection with transformations

	  	   var1	   var2	   var8	   var13	   var15	   var19	   var20	   var21	  
var1	   100%	   -‐1%	   0%	   11%	   -‐18%	   4%	   0%	   0%	  
var2	   -‐1%	   100%	   0%	   0%	   0%	   0%	   -‐1%	   0%	  
var8	   0%	   0%	   100%	   0%	   1%	   0%	   0%	   0%	  
var13	   11%	   0%	   0%	   100%	   -‐14%	   2%	   0%	   0%	  
var15	   -‐18%	   0%	   1%	   -‐14%	   100%	   -‐1%	   0%	   0%	  
var19	   4%	   0%	   0%	   2%	   -‐1%	   100%	   0%	   0%	  
var20	   0%	   -‐1%	   0%	   0%	   0%	   0%	   100%	   61%	  
var21	   0%	   0%	   0%	   0%	   0%	   0%	   61%	   100%	  

Figure 27: Spearmans rank correlation

Since the variables influence the PD multivariate, the data set is tested for multivari-
ate outliers. With the approach of the Mahalanobis distance multivariate outliers
were determined and excluded from the sample which reduces the sample to 115.106
data sets.

Again, the linearity assumption was proofed for the reduced data sample without
the multivariate outliers with the following result:
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	  	   working	  hypothesis	   hypothesis	  
fulfilled	  

linearity	  
assump6on	   transforma6on	  

var1	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   ln(var1)	  

var2	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   sin(var2^2)	  

var8	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   sin(var8)	  

var13	   the	  smaller,	  the	  be*er	   yes	   not	  fulfilled	   wasn‘t	  found	  

var15	   the	  smaller,	  the	  be*er	   yes	   not	  fulfilled	   sin(var15^3)	  

var19	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   ln(var19^+1)	  

var20	   the	  bigger,	  the	  be*er	   yes	   not	  fulfilled	   (-‐var20)^5	  

Figure 28: Final variable selection with transformations after excluding multivariate
outliers

Compared to Figure 26 the transformations are different. This might lead to totally
different models. Also the correlations changed as var1 and var15 aren’t correlated
anymore. Instead the correlation of var1 and var20 increased.

	  	   var1	   var2	   var8	   var15	   var19	   var20	  
var1	   100%	   0%	   1%	   -‐1%	   4%	   20%	  
var2	   0%	   100%	   0%	   0%	   0%	   5%	  
var8	   1%	   0%	   100%	   1%	   0%	   1%	  
var15	   -‐1%	   0%	   1%	   100%	   -‐1%	   0%	  
var19	   4%	   0%	   0%	   0%	   100%	   0%	  
var20	   -‐20%	   0%	   0%	   1%	   5%	   100%	  

Figure 29: Spearmans rank correlations after excluding multivariate outliers

5.3 The PD-model

In a first step all the final variables included into the model with the expectation,
that not all the variables will be significant.

As assumed not all variables are significant. For both, the Maximum Likelihood
(ML) and the Bianco Yohai (BY) approach var2, var8, var19 and var20 aren’t signif-
icant in this combination. The next step was to exclude the less significant variable
from the model and perform the regression again. In total the logistic regression
was performed for about 30 different combinations of variables. The result of the
first model from Figure 30 was confirmed in every try, as var1, var13 and var15 were
always significant.
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	  	   COEFF_ML	   ERROR_ML	   t-‐VAL_ML	   SIG_ML	   COEFF_BY	   ERROR_BY	   t-‐VAL_BY	   SIG_BY	  

Intercept	   0,1022	   0,0027	   38,2860	   0,0000	   -‐2,3039	   0,0817	   -‐28,2037	   0,0000	  

var1	   -‐0,1081	   0,0067	   -‐16,1300	   0,0000	   -‐1,5685	   0,1975	   -‐7,9432	   0,0000	  

var2	   -‐0,0004	   0,0009	   -‐0,4660	   0,6410	   -‐0,0043	   0,0273	   -‐0,1588	   0,8738	  

var8	   0,0008	   0,0009	   0,9010	   0,3670	   0,0341	   0,0269	   1,2670	   0,2052	  

var13	   0,0415	   0,0011	   37,5900	   0,0000	   0,8219	   0,0261	   31,4953	   0,0000	  

var15	   0,0104	   0,0011	   9,2920	   0,0000	   0,2497	   0,0332	   7,5106	   0,0000	  

var19	   0,0000	   0,0000	   -‐1,2930	   0,1960	   -‐0,0021	   0,0150	   -‐0,1378	   0,8904	  

var20	   -‐0,0012	   0,0009	   -‐1,2330	   0,2170	   -‐0,0375	   0,0272	   -‐1,3774	   0,1684	  

Figure 30: Coefficients of the first model

	  	   COEFF_ML	   ERROR_ML	   t-‐VAL_ML	   SIG_ML	   COEFF_BY	   ERROR_BY	   t-‐VAL_BY	   SIG_BY	  
Intercept	   0,1021	   0,0027	   38,2680	   0,0000	   -‐1,8233	   0,0693	   -‐26,3260	   0,0000	  
var1	   -‐0,1082	   0,0067	   -‐16,1480	   0,0000	   -‐3,0019	   0,1904	   -‐15,7635	   0,0000	  
var13	   0,0415	   0,0011	   37,5700	   0,0000	   0,8514	   0,0256	   33,2292	   0,0000	  

var15	   0,0104	   0,0011	   9,2860	   0,0000	   0,2087	   0,0344	   6,0636	   0,0000	  

Figure 31: Coefficients of the final model for loans

It is conspicuous, that although both approaches select the same variables as sig-
nificant, the BY-estimates have a much bigger influence but also bigger standard
errors. Still the ranking of the variables concerning the influence, is the same except
the intercept.

In order to compare the models, McKelvey and Zavoinas Pseudo R2 was calculated
as well as the Gini coefficient.

	  	   ML	   BY	  
PseudoR2	   0,0002	   0,0953	  
Gini	   0,3829	   0,3758	  
PseudoR2_Test	   0,0002	   0,0942	  
Gini_Test	   0,3527	   0,3527	  

Figure 32: Comparison of the models for loans

Both performance indicators were calculated for the training sample (70% of the the
whole sample - 81.569 data sets) and the test sample (30% of the the whole sample
- 34.834 data sets) separately. Figure 32 shows that both indicators are very similar
for the training and the test sample. This is an indication for the stability of the
model since the partition into training and test sample was done randomly.

Since the Gini coefficient considers the rank of a variable and the related default
rates, the results are comparable for the ML and the BY approach. Matters are
quite different when it comes to the Pseudo R2. As McKelvey and Zavoina use
the variance, which is a measure that is very sensitive to outliers, the R2 of the
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ML model is significantly smaller than the one of the BY model. The results are
comparable for the other products.

	  	   COEFF_ML	   ERROR_ML	   t-‐VAL_ML	   SIG_ML	   COEFF_BY	   ERROR_BY	   t-‐VAL_BY	   SIG_BY	  
Intercept	   0,0020	   0,0004	   4,8630	   0,0000	   -‐6,3610	   0,2256	   -‐28,1968	   0,0000	  
var1	   0,0000	   0,0000	   -‐5,3450	   0,0000	   -‐0,0072	   0,0016	   -‐4,5402	   0,0000	  

var4	   -‐0,0025	   0,0003	   -‐7,6610	   0,0000	   -‐1,0323	   0,2328	   -‐4,4350	   0,0000	  

Figure 33: Coefficients of the final model for credit cards

	  	   ML	   BY	  
PseudoR2	   0,0000	   0,1152	  
Gini	   0,3090	   0,3095	  
PseudoR2_test	   0,0000	   0,1168	  
Gini_test	   0,2428	   0,2388	  

Figure 34: Comparison of the models for credit cards

	  	   COEFF_ML	   ERROR_ML	   t-‐VAL_ML	   SIG_ML	   COEFF_BY	   ERROR_BY	   t-‐VAL_BY	   SIG_BY	  
Intercept	   0,0412	   0,0025	   16,6110	   0,0000	   -‐3,8276	   0,0563	   -‐67,9997	   0,0000	  
var2	   -‐0,0188	   0,0011	   -‐16,3420	   0,0000	   -‐0,3390	   0,0235	   -‐14,4368	   0,0000	  
var4	   0,0564	   0,0007	   79,3380	   0,0000	   1,3596	   0,0209	   64,9949	   0,0000	  

var5	   0,0072	   0,0014	   5,1630	   0,0000	   -‐0,1622	   0,0293	   -‐5,5384	   0,0000	  

Figure 35: Coefficients of the final model for current accounts

	  	   ML	   BY	  
PseudoR2	   0,0008	   0,2720	  
Gini	   0,5494	   0,5335	  
PseudoR2_Test	   0,0008	   0,2718	  
Gini_Test	   0,5443	   0,5482	  

Figure 36: Comparison of the models for current accounts

5.4 The stress test model

The stress test model is based on the idea of including macro economic factors for
the prediction of the probability of default. The data base consists of the following
historical Austrian macro economic factors:

• Real Gross Domestic Product (GDP)

• Consumer Price Index (CPI)

• Unemployment Rate (UR)

• Residential Property Prices (RPP)

• Equity Prices (EP)
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The information is available on a quarterly basis and is considered from the begin-
ning of 2006, which makes 36 data points in total.

Figure 37: Historical macro economic factors

In order to get more data sets for the regression model a disaggregation of the time
series is performed from quarterly data to monthly data. This increases the number
of observations to 108 data sets.
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date	   GDP	   CPI	   UR	   RPP	   EP	  
31.01.06	   3,8	   1,29	   5,3	   4,7	   827	  
28.02.06	   3,7	   1,40	   5,2	   4,6	   823	  
31.03.06	   3,6	   1,60	   5,1	   4,5	   815	  
30.04.06	   3,5	   1,92	   4,9	   4,3	   804	  
31.05.06	   3,5	   2,08	   4,8	   4,4	   793	  
30.06.06	   3,5	   2,09	   4,7	   4,8	   783	  
31.07.06	   3,7	   1,94	   4,6	   5,5	   773	  
31.08.06	   3,8	   1,80	   4,5	   5,4	   779	  
30.09.06	   3,9	   1,66	   4,4	   4,4	   800	  
31.10.06	   4,1	   1,51	   4,4	   2,6	   836	  
30.11.06	   4,2	   1,47	   4,4	   1,9	   866	  
31.12.06	   4,3	   1,52	   4,4	   2,1	   890	  
31.01.07	   4,4	   1,67	   4,4	   3,3	   906	  
28.02.07	   4,4	   1,78	   4,4	   4,2	   929	  
31.03.07	   4,4	   1,86	   4,4	   4,8	   957	  
30.04.07	   4,3	   1,90	   4,5	   5,1	   992	  
31.05.07	   4,1	   1,89	   4,6	   5,3	   995	  
30.06.07	   3,8	   1,82	   4,7	   5,5	   968	  
31.07.07	   3,5	   1,70	   4,7	   5,5	   911	  
31.08.07	   3,2	   1,84	   4,6	   5,4	   876	  
30.09.07	   3,0	   2,25	   4,5	   5,0	   865	  
31.10.07	   2,9	   2,91	   4,2	   4,6	   877	  
30.11.07	   2,9	   3,29	   4,1	   4,0	   858	  
31.12.07	   2,9	   3,40	   4,0	   3,4	   806	  
31.01.08	   3,0	   3,22	   4,0	   2,8	   724	  
29.02.08	   2,9	   3,18	   3,9	   1,9	   688	  
31.03.08	   2,8	   3,29	   3,8	   0,8	   700	  
30.04.08	   2,6	   3,53	   3,6	   -‐0,5	   758	  
31.05.08	   2,3	   3,72	   3,5	   -‐1,2	   776	  
30.06.08	   1,9	   3,85	   3,5	   -‐1,2	   752	  
31.07.08	   1,4	   3,93	   3,6	   -‐0,6	   687	  
31.08.08	   0,7	   3,78	   3,7	   0,2	   602	  
30.09.08	   -‐0,2	   3,39	   3,8	   1,3	   499	  
31.10.08	   -‐1,2	   2,77	   4,0	   2,5	   377	  
30.11.08	   -‐2,2	   2,24	   4,1	   3,4	   298	  
31.12.08	   -‐3,2	   1,80	   4,2	   3,9	   262	  
31.01.09	   -‐4,1	   1,43	   4,3	   4,1	   269	  
28.02.09	   -‐4,8	   1,07	   4,4	   4,4	   282	  
31.03.09	   -‐5,2	   0,70	   4,5	   5,0	   301	  
30.04.09	   -‐5,3	   0,33	   4,7	   5,8	   327	  
31.05.09	   -‐5,1	   0,07	   4,8	   5,9	   355	  
30.06.09	   -‐4,7	   -‐0,10	   4,9	   5,4	   386	  
31.07.09	   -‐4,0	   -‐0,16	   5,1	   4,1	   420	  
31.08.09	   -‐3,2	   -‐0,11	   5,1	   3,1	   442	  
30.09.09	   -‐2,4	   0,06	   5,1	   2,3	   452	  
31.10.09	   -‐1,5	   0,34	   4,9	   1,7	   449	  
30.11.09	   -‐0,7	   0,61	   4,8	   1,9	   449	  
31.12.09	   -‐0,2	   0,85	   4,7	   3,0	   451	  
31.01.10	   0,2	   1,08	   4,6	   4,8	   456	  
28.02.10	   0,6	   1,30	   4,5	   5,9	   457	  
31.03.10	   1,0	   1,51	   4,5	   6,2	   455	  
30.04.10	   1,4	   1,71	   4,5	   5,7	   449	  
31.05.10	   1,7	   1,80	   4,5	   5,5	   445	  
30.06.10	   2,0	   1,80	   4,5	   5,6	   443	  

date	   GDP	   CPI	   UR	   RPP	   EP	  
31.07.10	   2,1	   1,69	   4,5	   5,9	   442	  
31.08.10	   2,3	   1,65	   4,4	   6,3	   449	  
30.09.10	   2,5	   1,68	   4,3	   6,8	   462	  
31.10.10	   2,6	   1,78	   4,2	   7,4	   483	  
30.11.10	   2,9	   1,97	   4,2	   7,5	   501	  
31.12.10	   3,2	   2,26	   4,2	   7,0	   516	  
31.01.11	   3,7	   2,64	   4,3	   6,0	   527	  
28.02.11	   4,1	   2,98	   4,3	   4,7	   533	  
31.03.11	   4,2	   3,29	   4,3	   3,1	   536	  
30.04.11	   4,2	   3,56	   4,2	   1,1	   534	  
31.05.11	   4,0	   3,73	   4,1	   0,7	   520	  
30.06.11	   3,5	   3,81	   4,0	   2,1	   494	  
31.07.11	   2,9	   3,79	   3,9	   5,1	   455	  
31.08.11	   2,4	   3,79	   3,9	   6,5	   421	  
30.09.11	   1,9	   3,82	   4,0	   6,4	   391	  
31.10.11	   1,6	   3,87	   4,1	   4,8	   365	  
30.11.11	   1,3	   3,76	   4,2	   4,5	   357	  
31.12.11	   1,1	   3,47	   4,2	   5,7	   367	  
31.01.12	   0,9	   3,01	   4,1	   8,3	   395	  
29.02.12	   0,8	   2,66	   4,1	   10,7	   407	  
31.03.12	   0,7	   2,42	   4,1	   13,1	   404	  
30.04.12	   0,5	   2,28	   4,3	   15,4	   386	  
31.05.12	   0,5	   2,21	   4,4	   16,1	   375	  
30.06.12	   0,5	   2,20	   4,5	   15,3	   370	  
31.07.12	   0,6	   2,25	   4,5	   12,8	   373	  
31.08.12	   0,7	   2,38	   4,5	   11,5	   380	  
30.09.12	   0,8	   2,57	   4,5	   11,4	   393	  
31.10.12	   0,8	   2,83	   4,5	   12,5	   412	  
30.11.12	   0,7	   2,95	   4,6	   12,0	   427	  
31.12.12	   0,6	   2,92	   4,7	   10,0	   439	  
31.01.13	   0,4	   2,75	   4,9	   6,4	   449	  
28.02.13	   0,3	   2,59	   4,9	   4,3	   452	  
31.03.13	   0,2	   2,46	   4,9	   3,7	   449	  
30.04.13	   0,1	   2,33	   4,7	   4,6	   440	  
31.05.13	   0,1	   2,22	   4,7	   5,1	   435	  
30.06.13	   0,1	   2,13	   4,7	   5,3	   436	  
31.07.13	   0,2	   2,06	   4,9	   5,0	   441	  
31.08.13	   0,3	   1,97	   5,0	   4,7	   450	  
30.09.13	   0,4	   1,87	   5,1	   4,4	   462	  
31.10.13	   0,6	   1,76	   5,0	   4,1	   478	  
30.11.13	   0,7	   1,66	   5,0	   4,0	   487	  
31.12.13	   0,8	   1,58	   4,9	   4,1	   490	  
31.01.14	   1,0	   1,52	   4,9	   4,4	   487	  
28.02.14	   1,0	   1,47	   4,9	   4,7	   482	  
31.03.14	   1,0	   1,43	   5,0	   5,0	   475	  
30.04.14	   0,9	   1,40	   5,1	   5,2	   466	  
31.05.14	   0,9	   1,40	   5,1	   5,3	   462	  
30.06.14	   0,9	   1,43	   5,0	   5,2	   461	  
31.07.14	   1,1	   1,50	   4,8	   4,9	   465	  
31.08.14	   1,1	   1,51	   4,6	   4,8	   471	  
30.09.14	   1,1	   1,47	   4,7	   4,9	   477	  
31.10.14	   1,0	   1,37	   4,9	   5,2	   485	  
30.11.14	   1,0	   1,31	   5,0	   5,4	   491	  
31.12.14	   1,0	   1,28	   5,1	   5,5	   494	  

Figure 38: Disaggregated time series of macro economic factors

In Figure 38 the high frequency time series of all macro economic factors can be seen.
The interpolation of the values was performed with the approach of Denton-Cholette,
as described in Chapter 3.2. These time series will represent the independent vari-
ables in the stress test model.

The dependent variables for the stress test model equate the estimated PDs re-
sulting from the PD models. In order to get PDs for every month, the average
values of the input variables of each model were considered, leading to the following
input:
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date	   var1	  
(loans)	  

var13	  
(loans)	  

var15	  
(loans)	  

var1	  
(cards)	  

var4	  
(cards)	  

var2	  
(accounts)	  

var4	  
(accounts)	  

var5	  
(accounts)	  

31.01.06	   64,2	   96,5	   98,1	   88,3	   10,2	   84,5	   30,5	   60,9	  
28.02.06	   47,5	   95,9	   100,0	   88,2	   8,0	   74,4	   29,2	   43,2	  
31.03.06	   47,3	   95,2	   95,8	   83,4	   10,8	   82,1	   33,4	   48,1	  
30.04.06	   38,4	   99,9	   101,6	   82,6	   10,1	   85,4	   36,0	   42,8	  
31.05.06	   46,7	   100,4	   102,4	   85,9	   10,6	   80,7	   33,0	   55,9	  
30.06.06	   44,9	   93,2	   95,9	   87,7	   9,4	   80,2	   32,0	   45,1	  
31.07.06	   50,8	   98,7	   99,3	   91,8	   10,3	   89,0	   36,1	   62,4	  
31.08.06	   47,3	   89,7	   97,0	   96,2	   7,6	   72,1	   33,8	   49,3	  
30.09.06	   50,1	   91,1	   100,9	   82,2	   9,1	   70,3	   33,3	   55,3	  
31.10.06	   47,2	   88,1	   96,2	   97,9	   10,1	   88,1	   35,6	   60,6	  
30.11.06	   51,4	   98,9	   102,5	   98,2	   10,6	   76,7	   32,3	   64,1	  
31.12.06	   36,4	   91,4	   95,5	   86,1	   8,5	   81,7	   37,0	   60,3	  
31.01.07	   50,4	   98,6	   101,2	   94,0	   10,4	   71,8	   33,3	   57,7	  
28.02.07	   51,5	   98,7	   101,3	   82,7	   9,4	   87,0	   32,2	   51,8	  
31.03.07	   49,2	   93,8	   99,0	   82,9	   8,5	   71,1	   33,0	   57,6	  
30.04.07	   36,8	   91,5	   97,7	   92,0	   9,4	   86,8	   30,6	   60,7	  

...	   ...	   ...	   ...	   ...	   ...	   ...	   ...	   ...	  
30.06.14	   48,3	   96,6	   100,1	   93,2	   9,2	   84,2	   30,9	   48,3	  
31.07.14	   47,6	   96,4	   99,7	   92,2	   8,8	   85,2	   30,5	   49,4	  
31.08.14	   45,2	   96,7	   99,9	   92,3	   9,2	   86,3	   30,5	   43,8	  
30.09.14	   43,5	   96,9	   100,2	   92,5	   9,5	   84,5	   29,8	   43,9	  
31.10.14	   41,0	   97,0	   99,8	   91,1	   9,4	   82,4	   30,7	   53,5	  
30.11.14	   38,7	   97,1	   100,0	   90,0	   9,6	   76,4	   30,5	   40,6	  
31.12.14	   33,9	   97,2	   100,2	   85,7	   9,3	   71,8	   31,5	   94,1	  

Figure 39: Section of the time series of input values for the PD models

To get the final dependent values for the estimation, the variables in Figure 39 were
transformed in accordance with the transformations mentioned above. Inserting
into the following equation leads to the estimated PDs for each model.

PD =
1

1 + e−(β0+β1x1+···+βmxm)
(5.1)

date	   PD	  -‐	  ML	  
(loans)	  

PD	  -‐	  BY	  
(loans)	  

PD	  -‐	  ML	  
(cards)	  

PD	  -‐	  BY	  
(cards)	  

PD	  -‐	  ML	  
(accounts)	  

PD	  -‐	  BY	  
(accounts)	  

31.01.06	   52,377%	   9,025%	   50,114%	   0,931%	   50,636%	   1,463%	  
28.02.06	   50,978%	   3,120%	   50,111%	   0,885%	   50,176%	   0,888%	  
31.03.06	   50,161%	   1,631%	   50,115%	   0,908%	   51,124%	   2,411%	  
30.04.06	   50,241%	   1,767%	   50,114%	   0,893%	   51,418%	   2,837%	  
31.05.06	   52,224%	   8,286%	   50,114%	   0,921%	   51,105%	   2,213%	  
30.06.06	   52,108%	   7,610%	   50,113%	   0,913%	   50,829%	   2,235%	  
31.07.06	   52,578%	   10,634%	   50,114%	   0,956%	   51,370%	   2,987%	  
31.08.06	   50,321%	   1,851%	   50,111%	   0,929%	   51,243%	   2,410%	  
30.09.06	   51,438%	   4,485%	   50,113%	   0,871%	   51,205%	   2,302%	  

...	   ...	   ...	   ...	   ...	   ...	   ...	  
30.06.14	   51,835%	   6,107%	   50,113%	   0,945%	   50,729%	   1,625%	  
31.07.14	   52,667%	   11,416%	   50,112%	   0,929%	   50,677%	   1,434%	  
31.08.14	   50,921%	   2,990%	   50,113%	   0,937%	   50,593%	   1,505%	  
30.09.14	   51,052%	   3,333%	   50,113%	   0,945%	   50,395%	   1,252%	  
31.10.14	   52,008%	   7,052%	   50,113%	   0,935%	   50,575%	   1,696%	  
30.11.14	   52,493%	   10,200%	   50,113%	   0,930%	   50,540%	   1,682%	  
31.12.14	   52,657%	   11,618%	   50,113%	   0,896%	   50,859%	   1,902%	  

Figure 40: Section of the time series of final PD’s for the stress test model
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Figure 40 shows a part of the PD’s for both, the ML estimation and the BY estima-
tion for each product. It is conspicuous, that the PDs of the models applying the
ML estimation vary widely from the BY-PDs. These differences can be lead back
to the results in Section 5.3. As indicated in the comparison of each model, the
Pseudo-R2, thus the percentage of variance explained by the model is significantly
lower for the models with the Maximum Likelihood approach.

For estimating stressed PDs, a linear regression was performed with the macro eco-
nomic factors as independent variables and the respective PD as dependent variable.
For every of the six dependent variables, different constellations of predictors were
tried as input for the regression. The following models were the most significant
results.

In every model only one macro variable could be identified as significant for the
prediction of the respective PD. The adjusted R2 was again very low for each model
but comparable for the ML-PD and the BY-PD. The coefficients of the variables
are, as in the logistic regression models, more influential for the robust PDs than
for the non-robust ones.

Figure 41: Stress test models for the PD of the loans

Figure 42: Stress test models for the PD of the credit cards
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Figure 43: Stress test models for the PD of the current accounts

Since the scenarios for the respective years are very similar, the PDs are as well.
The results vary the same as for the initial models.

Finally the models were applied to the scenarios indicated in Figure 8, resulting
in the following stressed PDs:

loans	  
PD	  -‐	  ML	  (loans)	   PD	  -‐	  BY	  (loans)	  

2014	   2015	   2016	   2014	   2015	   2016	  
baseline	  scenario	   51,533%	   51,533%	   51,533%	   5,681%	   5,681%	   5,680%	  
adverse	  scenario	   51,534%	   51,534%	   51,534%	   5,684%	   5,684%	   5,685%	  

	  	  

cards	  
PD	  -‐	  ML	  (cards)	   PD	  -‐	  BY	  (cards)	  

2014	   2015	   2016	   2014	   2015	   2016	  
baseline	  scenario	   50,117%	   50,117%	   50,117%	   0,927%	   0,927%	   0,927%	  
adverse	  scenario	   50,117%	   50,117%	   50,117%	   0,927%	   0,927%	   0,927%	  

	  	  

accounts	  
PD	  -‐	  ML	  (accounts)	   PD	  -‐	  BY	  (accounts)	  

2014	   2015	   2016	   2014	   2015	   2016	  
baseline	  scenario	   50,921%	   50,920%	   50,920%	   2,248%	   2,248%	   2,246%	  
adverse	  scenario	   50,927%	   50,926%	   50,921%	   2,263%	   2,260%	   2,249%	  

Figure 44: Final stressed PDs for the different scenarios
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6 Conclusion

Section 5.2 shows how modeling is dependent from the underlying data. Although
the preconditions of logistic regression are by far not as restrictive as they are for
other methods, the eligible variables and therefore possible models were reduced to
very small selection. Especially the linearity assumption is challenging in conjunc-
tion with the used data sample.

The difference of the reduced sample without multivariate outliers is not significant
concerning the selection of the variables. Noticeable are the different transforma-
tions for fulfilling the linearity assumption and the changing correlations. Since the
Mahalanobis distance is a multivariate measure for outliers, it is not surprising that
this effects the correlations on a multivariate level.

As the data preparation, also the modeling itself confirms that the different methods
don’t differ in the selection of the variables within the model but the contribution of
each variable to the model. The ranking of the contributions is comparable for the
the logistic regression with the approach of Maximum Likelihood and the approach
of Bianco Yohai, but with Bianco Yohai a much bigger contribution was achieved
as the estimated coefficients have bigger values.

When comparing the models with the help of the Gini coefficient, no significant
difference was visible, as the Gini coefficient considers the ranking of a variable and
the respective defaults. Regarding the Pseudo-R2 the differences in the used meth-
ods become obvious. Since the variables make a bigger contribution when using
BY-estimation, the explained variance is bigger as well.

Still both models could be improved even more by optimizing the data sample (e.g.
by expanding the period of time) or by constructing more variables.

The differences of the two approaches became really obvious when regarding the
fitted values of the times series for the stress test models, as the values PDs vary
enormously for the Maximum Likelihood estimators and the Bianco Yohai estima-
tors. This difference is due to the impact of the variables to the estimation of the
coefficients. This effect finds itself again in the result of the stress test models, as
the adjusted R2 is bigger for the model with the BY-PD as dependent variable.

Also the stress test models could be improved by decomposing the macro variables,
using time lags or other economic indicators for predicting the PD.
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Appendix

Time series of input values for the PD models (compare Figure 39):

date var1(
(loans)

var13(
(loans)

var15(
(loans)

var1(
(cards)

var4(
(cards)

var2(
(accounts)

var4(
(accounts)

var5(
(accounts)

31.01.06 64,2 96,5 98,1 88,3 10,2 84,5 30,5 60,9
28.02.06 47,5 95,9 100,0 88,2 8,0 74,4 29,2 43,2
31.03.06 47,3 95,2 95,8 83,4 10,8 82,1 33,4 48,1
30.04.06 38,4 99,9 101,6 82,6 10,1 85,4 36,0 42,8
31.05.06 46,7 100,4 102,4 85,9 10,6 80,7 33,0 55,9
30.06.06 44,9 93,2 95,9 87,7 9,4 80,2 32,0 45,1
31.07.06 50,8 98,7 99,3 91,8 10,3 89,0 36,1 62,4
31.08.06 47,3 89,7 97,0 96,2 7,6 72,1 33,8 49,3
30.09.06 50,1 91,1 100,9 82,2 9,1 70,3 33,3 55,3
31.10.06 47,2 88,1 96,2 97,9 10,1 88,1 35,6 60,6
30.11.06 51,4 98,9 102,5 98,2 10,6 76,7 32,3 64,1
31.12.06 36,4 91,4 95,5 86,1 8,5 81,7 37,0 60,3
31.01.07 50,4 98,6 101,2 94,0 10,4 71,8 33,3 57,7
28.02.07 51,5 98,7 101,3 82,7 9,4 87,0 32,2 51,8
31.03.07 49,2 93,8 99,0 82,9 8,5 71,1 33,0 57,6
30.04.07 36,8 91,5 97,7 92,0 9,4 86,8 30,6 60,7
31.05.07 48,4 91,6 98,9 83,4 10,6 74,3 33,4 50,7
30.06.07 51,1 92,5 99,4 81,5 9,5 79,5 31,6 41,0
31.07.07 50,2 93,5 96,2 95,7 10,1 80,0 34,4 56,5
31.08.07 43,3 95,0 95,2 97,7 10,2 73,1 31,7 51,0
30.09.07 35,8 98,2 100,6 85,9 9,2 79,1 35,2 60,2
31.10.07 48,0 96,2 97,9 81,3 11,0 80,1 29,9 45,3
30.11.07 44,9 88,6 98,7 95,6 9,4 79,4 35,3 48,6
31.12.07 47,5 98,2 100,3 89,1 6,6 70,7 34,7 64,4
31.01.08 36,6 87,8 96,2 95,5 8,7 82,6 31,0 46,0
29.02.08 40,5 97,3 97,9 96,5 6,7 81,9 35,3 57,2
31.03.08 41,0 91,4 96,7 80,4 8,8 74,2 32,0 63,2
30.04.08 37,5 98,3 101,8 90,8 7,0 81,4 31,9 58,6
31.05.08 46,8 95,2 101,5 95,6 6,1 84,0 32,7 53,0
30.06.08 38,6 90,7 96,8 90,6 7,2 75,5 30,5 43,4
31.07.08 41,8 89,4 101,2 86,9 6,2 81,2 32,5 61,9
31.08.08 38,9 89,5 95,3 83,5 6,6 76,9 33,3 64,2
30.09.08 49,6 96,8 102,4 80,9 8,9 72,0 29,9 52,2
31.10.08 37,0 95,2 96,1 93,9 9,5 78,1 34,2 63,8
30.11.08 46,2 95,4 100,3 91,5 7,3 78,2 33,9 41,7
31.12.08 41,6 87,1 95,8 90,2 6,5 80,2 36,2 53,9
31.01.09 39,3 87,7 99,8 86,3 7,8 71,7 34,9 61,5
28.02.09 36,7 98,1 100,4 85,4 9,2 74,6 33,2 55,4
31.03.09 41,5 89,0 95,0 89,5 10,5 72,1 33,7 46,2
30.04.09 50,8 93,2 97,8 97,7 9,7 74,2 30,2 52,9
31.05.09 38,2 91,9 98,7 98,3 10,8 77,5 35,9 52,7
30.06.09 48,1 92,9 95,5 95,8 6,2 84,5 33,0 62,6
31.07.09 49,0 95,6 99,7 96,1 10,0 72,9 30,0 54,9
31.08.09 41,5 97,0 97,2 97,1 7,8 81,9 34,2 62,4
30.09.09 40,3 92,9 95,3 94,9 9,9 88,6 30,2 51,1
31.10.09 47,4 98,8 101,8 89,5 8,3 85,0 30,3 47,1
30.11.09 48,3 96,3 99,8 94,1 10,0 84,0 33,3 64,2
31.12.09 51,1 92,7 99,7 85,5 10,3 87,9 32,3 61,3
31.01.10 34,8 97,0 97,2 88,7 9,9 71,2 31,2 60,9
28.02.10 39,3 90,0 101,5 85,6 8,6 85,4 33,9 53,7
31.03.10 42,0 92,6 101,6 89,7 10,4 74,2 37,0 54,8
30.04.10 39,0 96,5 98,6 92,6 9,0 83,2 32,7 54,4
31.05.10 42,6 96,2 96,6 93,6 9,2 80,9 35,0 50,0
30.06.10 50,0 95,0 102,7 93,8 6,3 80,5 35,6 56,8
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date
var1(

(loans)
var13(
(loans)

var15(
(loans)

var1(
(cards)

var4(
(cards)

var2(
(accounts)

var4(
(accounts)

var5(
(accounts)

31.07.10 45,2 96,1 100,2 87,3 9,2 83,9 33,1 48,5
31.08.10 40,2 90,0 98,6 89,7 7,3 85,7 30,4 57,5
30.09.10 42,6 96,6 99,9 97,1 7,5 77,2 29,5 61,2
31.10.10 43,6 97,8 99,1 96,7 9,9 81,7 34,0 63,1
30.11.10 38,9 88,7 101,3 95,0 6,8 71,6 36,2 52,7
31.12.10 50,0 93,9 97,4 80,2 7,8 75,5 33,9 51,4
31.01.11 49,5 100,3 101,9 81,9 9,5 88,1 36,5 64,2
28.02.11 47,0 92,1 102,7 95,5 9,2 85,8 35,8 57,2
31.03.11 50,5 94,6 99,5 88,0 8,4 80,7 33,5 46,3
30.04.11 51,2 88,9 98,6 91,9 8,9 70,9 35,1 44,5
31.05.11 51,2 90,5 101,7 90,5 7,7 73,3 34,6 56,8
30.06.11 54,0 95,6 98,5 93,0 7,5 70,2 36,9 41,5
31.07.11 47,3 92,1 99,0 95,9 10,0 83,3 33,0 42,1
31.08.11 34,2 94,3 99,7 80,2 9,3 84,1 33,5 41,3
30.09.11 43,7 88,7 98,7 89,5 10,8 71,1 35,9 63,7
31.10.11 46,0 89,2 99,7 82,0 11,0 88,4 30,0 52,8
30.11.11 38,1 88,0 101,6 85,9 8,6 81,5 31,2 56,6
31.12.11 48,4 91,2 100,9 80,9 8,2 87,2 32,1 60,5
31.01.12 46,4 96,1 100,4 94,2 10,1 75,5 30,8 46,4
29.02.12 42,5 93,8 101,6 93,3 10,4 71,3 30,0 62,9
31.03.12 36,5 94,2 100,2 82,0 9,4 74,9 30,0 48,6
30.04.12 36,7 93,7 96,9 92,4 10,3 74,7 33,2 48,0
31.05.12 39,3 92,7 99,8 95,5 10,2 88,3 33,3 56,1
30.06.12 39,0 100,0 100,6 94,8 7,4 79,4 32,1 46,3
31.07.12 46,8 91,2 100,1 98,3 7,5 77,7 30,5 49,5
31.08.12 39,6 88,5 98,5 80,7 9,8 72,0 29,7 45,7
30.09.12 43,1 87,5 95,1 96,6 6,4 71,8 30,2 42,7
31.10.12 48,2 96,8 99,2 96,9 10,7 75,1 29,5 61,3
30.11.12 45,7 95,2 99,0 86,7 7,2 79,5 35,8 59,2
31.12.12 45,3 92,4 97,5 92,5 6,4 79,7 30,3 59,2
31.01.13 49,7 93,1 102,2 86,5 10,0 70,6 30,4 44,7
28.02.13 39,1 90,6 95,7 98,3 10,3 70,7 31,7 46,9
31.03.13 36,4 93,6 100,5 85,0 10,1 76,8 34,1 42,7
30.04.13 39,8 90,8 96,8 93,9 9,8 74,6 29,6 58,3
31.05.13 47,0 88,2 100,7 88,4 10,9 71,6 30,1 49,1
30.06.13 52,0 93,7 98,0 86,8 10,7 74,0 30,0 62,7
31.07.13 46,6 87,3 96,3 81,5 6,5 88,1 35,2 57,5
31.08.13 34,2 96,6 98,9 93,8 6,9 74,1 33,3 59,3
30.09.13 47,2 97,2 102,6 81,8 6,6 74,6 33,7 57,0
31.10.13 36,8 97,4 102,2 88,4 7,7 71,4 36,1 50,8
30.11.13 35,0 92,7 99,5 90,8 8,8 88,5 35,4 56,1
31.12.13 43,5 93,6 100,2 90,0 9,7 78,2 34,4 41,6
31.01.14 53,0 95,0 101,3 89,4 9,5 71,1 35,5 48,8
28.02.14 51,6 96,0 100,6 91,5 9,5 87,6 32,7 44,0
31.03.14 50,5 96,2 100,8 91,3 9,2 86,6 33,8 58,2
30.04.14 50,0 96,2 100,1 92,0 9,5 87,7 31,2 64,9
31.05.14 49,1 96,4 100,0 92,2 9,0 86,1 31,5 55,8
30.06.14 48,3 96,6 100,1 93,2 9,2 84,2 30,9 48,3
31.07.14 47,6 96,4 99,7 92,2 8,8 85,2 30,5 49,4
31.08.14 45,2 96,7 99,9 92,3 9,2 86,3 30,5 43,8
30.09.14 43,5 96,9 100,2 92,5 9,5 84,5 29,8 43,9
31.10.14 41,0 97,0 99,8 91,1 9,4 82,4 30,7 53,5
30.11.14 38,7 97,1 100,0 90,0 9,6 76,4 30,5 40,6
31.12.14 33,9 97,2 100,2 85,7 9,3 71,8 31,5 94,1
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Time series of final PD’s for the stress test model (compare Figure 40):

date	   PD	  -‐	  ML	  
(loans)	  

PD	  -‐	  BY	  
(loans)	  

PD	  -‐	  ML	  
(cards)	  

PD	  -‐	  BY	  
(cards)	  

PD	  -‐	  ML	  
(accounts)	  

PD	  -‐	  BY	  
(accounts)	  

31.01.06	   52,377%	   9,025%	   50,114%	   0,931%	   50,636%	   1,463%	  
28.02.06	   50,978%	   3,120%	   50,111%	   0,885%	   50,176%	   0,888%	  
31.03.06	   50,161%	   1,631%	   50,115%	   0,908%	   51,124%	   2,411%	  
30.04.06	   50,241%	   1,767%	   50,114%	   0,893%	   51,418%	   2,837%	  
31.05.06	   52,224%	   8,286%	   50,114%	   0,921%	   51,105%	   2,213%	  
30.06.06	   52,108%	   7,610%	   50,113%	   0,913%	   50,829%	   2,235%	  
31.07.06	   52,578%	   10,634%	   50,114%	   0,956%	   51,370%	   2,987%	  
31.08.06	   50,321%	   1,851%	   50,111%	   0,929%	   51,243%	   2,410%	  
30.09.06	   51,438%	   4,485%	   50,113%	   0,871%	   51,205%	   2,302%	  
31.10.06	   50,473%	   2,098%	   50,114%	   0,995%	   51,298%	   2,938%	  
30.11.06	   51,718%	   5,584%	   50,115%	   1,007%	   50,875%	   2,339%	  
31.12.06	   50,499%	   2,185%	   50,112%	   0,882%	   51,390%	   3,382%	  
31.01.07	   51,639%	   5,254%	   50,114%	   0,974%	   51,024%	   2,678%	  
28.02.07	   51,982%	   6,835%	   50,113%	   0,880%	   50,833%	   2,272%	  
31.03.07	   51,595%	   5,050%	   50,112%	   0,864%	   50,990%	   2,577%	  
30.04.07	   51,956%	   6,837%	   50,113%	   0,940%	   50,650%	   1,542%	  
31.05.07	   52,411%	   9,429%	   50,114%	   0,905%	   51,066%	   2,595%	  
30.06.07	   52,569%	   10,560%	   50,113%	   0,874%	   50,788%	   2,053%	  
31.07.07	   51,098%	   3,438%	   50,114%	   0,979%	   51,202%	   2,749%	  
31.08.07	   51,565%	   5,019%	   50,114%	   0,994%	   50,807%	   2,116%	  
30.09.07	   51,253%	   3,971%	   50,113%	   0,896%	   51,251%	   3,007%	  
31.10.07	   51,622%	   5,174%	   50,115%	   0,898%	   50,333%	   1,404%	  
30.11.07	   52,583%	   10,766%	   50,113%	   0,964%	   51,359%	   2,753%	  
31.12.07	   51,065%	   3,347%	   50,109%	   0,856%	   51,173%	   3,095%	  
31.01.08	   52,256%	   8,634%	   50,112%	   0,949%	   50,615%	   1,844%	  
29.02.08	   52,198%	   8,158%	   50,109%	   0,906%	   51,214%	   3,094%	  
31.03.08	   50,897%	   2,971%	   50,112%	   0,854%	   50,884%	   2,175%	  
30.04.08	   50,482%	   2,150%	   50,109%	   0,878%	   50,803%	   2,201%	  
31.05.08	   50,388%	   1,959%	   50,108%	   0,883%	   50,910%	   2,421%	  
30.06.08	   51,329%	   4,202%	   50,110%	   0,881%	   50,677%	   1,482%	  
31.07.08	   51,989%	   6,977%	   50,108%	   0,833%	   51,057%	   2,041%	  
31.08.08	   51,865%	   6,385%	   50,109%	   0,825%	   51,010%	   2,664%	  
30.09.08	   50,158%	   1,622%	   50,112%	   0,859%	   50,361%	   1,440%	  
31.10.08	   50,231%	   1,759%	   50,113%	   0,956%	   51,106%	   2,871%	  
30.11.08	   51,027%	   3,254%	   50,110%	   0,891%	   51,162%	   2,597%	  
31.12.08	   51,579%	   5,091%	   50,109%	   0,863%	   51,325%	   3,265%	  
31.01.09	   52,584%	   10,884%	   50,111%	   0,870%	   51,358%	   2,672%	  
28.02.09	   52,412%	   9,655%	   50,113%	   0,893%	   51,176%	   2,245%	  
31.03.09	   50,345%	   1,909%	   50,114%	   0,944%	   51,059%	   2,785%	  
30.04.09	   52,262%	   8,427%	   50,113%	   0,986%	   50,437%	   1,542%	  
31.05.09	   52,093%	   7,547%	   50,115%	   1,010%	   51,250%	   3,336%	  
30.06.09	   50,238%	   1,733%	   50,108%	   0,888%	   51,058%	   2,280%	  
31.07.09	   52,654%	   11,280%	   50,114%	   0,979%	   50,541%	   1,268%	  
31.08.09	   51,447%	   4,578%	   50,111%	   0,938%	   51,220%	   2,563%	  
30.09.09	   50,229%	   1,744%	   50,114%	   0,969%	   50,433%	   1,516%	  
31.10.09	   52,108%	   7,579%	   50,111%	   0,900%	   50,459%	   1,545%	  
30.11.09	   52,119%	   7,577%	   50,114%	   0,966%	   50,986%	   2,614%	  
31.12.09	   51,576%	   4,969%	   50,114%	   0,914%	   51,008%	   1,968%	  
31.01.10	   51,399%	   4,465%	   50,114%	   0,928%	   50,839%	   1,758%	  
28.02.10	   51,608%	   5,226%	   50,112%	   0,881%	   51,086%	   2,682%	  
31.03.10	   51,925%	   6,646%	   50,114%	   0,943%	   51,499%	   3,173%	  
30.04.10	   52,318%	   8,936%	   50,112%	   0,936%	   51,025%	   2,221%	  
31.05.10	   51,047%	   3,340%	   50,113%	   0,947%	   51,280%	   2,819%	  
30.06.10	   51,770%	   5,826%	   50,108%	   0,877%	   51,277%	   3,103%	  

71



date	   PD	  -‐	  ML	  
(loans)	  

PD	  -‐	  BY	  
(loans)	  

PD	  -‐	  ML	  
(cards)	  

PD	  -‐	  BY	  
(cards)	  

PD	  -‐	  ML	  
(accounts)	  

PD	  -‐	  BY	  
(accounts)	  

31.07.10	   50,566%	   2,255%	   50,113%	   0,906%	   51,119%	   2,252%	  
31.08.10	   52,495%	   10,168%	   50,110%	   0,879%	   50,494%	   1,618%	  
30.09.10	   51,494%	   4,724%	   50,110%	   0,931%	   50,344%	   1,047%	  
31.10.10	   52,011%	   7,024%	   50,114%	   0,983%	   51,123%	   2,693%	  
30.11.10	   51,718%	   5,695%	   50,109%	   0,901%	   51,296%	   3,471%	  
31.12.10	   51,843%	   6,137%	   50,111%	   0,832%	   51,076%	   2,818%	  
31.01.11	   52,153%	   7,820%	   50,113%	   0,876%	   51,275%	   3,435%	  
28.02.11	   50,298%	   1,822%	   50,113%	   0,959%	   51,244%	   3,208%	  
31.03.11	   51,172%	   3,616%	   50,112%	   0,893%	   51,015%	   2,684%	  
30.04.11	   50,682%	   2,444%	   50,112%	   0,930%	   51,235%	   3,085%	  
31.05.11	   50,209%	   1,685%	   50,111%	   0,893%	   51,209%	   2,873%	  
30.06.11	   52,531%	   10,230%	   50,110%	   0,903%	   51,423%	   3,394%	  
31.07.11	   50,684%	   2,463%	   50,114%	   0,979%	   51,088%	   2,227%	  
31.08.11	   51,432%	   4,572%	   50,113%	   0,863%	   51,065%	   2,567%	  
30.09.11	   52,122%	   7,640%	   50,115%	   0,949%	   51,287%	   3,360%	  
31.10.11	   51,967%	   6,771%	   50,115%	   0,902%	   50,341%	   1,423%	  
30.11.11	   50,770%	   2,705%	   50,112%	   0,884%	   50,746%	   1,822%	  
31.12.11	   50,630%	   2,368%	   50,111%	   0,845%	   50,912%	   2,068%	  
31.01.12	   50,604%	   2,321%	   50,114%	   0,969%	   50,598%	   1,806%	  
29.02.12	   50,811%	   2,771%	   50,114%	   0,969%	   50,470%	   1,401%	  
31.03.12	   52,082%	   7,534%	   50,113%	   0,875%	   50,536%	   1,266%	  
30.04.12	   50,546%	   2,263%	   50,114%	   0,961%	   51,093%	   2,429%	  
31.05.12	   51,611%	   5,204%	   50,114%	   0,981%	   51,113%	   2,328%	  
30.06.12	   50,473%	   2,120%	   50,110%	   0,913%	   50,840%	   2,276%	  
31.07.12	   51,118%	   3,492%	   50,110%	   0,938%	   50,678%	   1,442%	  
31.08.12	   52,455%	   9,886%	   50,114%	   0,874%	   50,277%	   1,330%	  
30.09.12	   50,829%	   2,806%	   50,108%	   0,899%	   50,643%	   1,354%	  
31.10.12	   50,693%	   2,477%	   50,115%	   0,999%	   50,339%	   1,030%	  
30.11.12	   50,691%	   2,483%	   50,110%	   0,859%	   51,243%	   3,305%	  
31.12.12	   52,300%	   8,753%	   50,108%	   0,872%	   50,447%	   1,564%	  
31.01.13	   51,346%	   4,188%	   50,114%	   0,915%	   50,521%	   1,613%	  
28.02.13	   50,370%	   1,959%	   50,114%	   1,001%	   50,793%	   2,132%	  
31.03.13	   50,683%	   2,521%	   50,114%	   0,908%	   51,274%	   2,466%	  
30.04.13	   51,775%	   5,937%	   50,114%	   0,962%	   50,212%	   1,252%	  
31.05.13	   50,435%	   2,027%	   50,115%	   0,943%	   50,600%	   1,298%	  
30.06.13	   50,543%	   2,188%	   50,115%	   0,929%	   50,468%	   1,324%	  
31.07.13	   50,569%	   2,267%	   50,108%	   0,808%	   51,181%	   3,103%	  
31.08.13	   52,152%	   7,955%	   50,109%	   0,895%	   51,015%	   2,652%	  
30.09.13	   52,210%	   8,186%	   50,109%	   0,813%	   51,090%	   2,686%	  
31.10.13	   51,282%	   4,072%	   50,111%	   0,880%	   51,318%	   3,344%	  
30.11.13	   51,216%	   3,848%	   50,112%	   0,919%	   51,317%	   2,833%	  
31.12.13	   50,627%	   2,376%	   50,113%	   0,933%	   51,214%	   2,742%	  
31.01.14	   51,139%	   3,536%	   50,113%	   0,924%	   51,410%	   2,812%	  
28.02.14	   50,460%	   2,054%	   50,113%	   0,938%	   50,987%	   2,267%	  
31.03.14	   51,436%	   4,474%	   50,113%	   0,932%	   51,035%	   2,747%	  
30.04.14	   51,635%	   5,215%	   50,113%	   0,943%	   50,656%	   1,923%	  
31.05.14	   52,506%	   10,129%	   50,112%	   0,933%	   50,890%	   1,771%	  
30.06.14	   51,835%	   6,107%	   50,113%	   0,945%	   50,729%	   1,625%	  
31.07.14	   52,667%	   11,416%	   50,112%	   0,929%	   50,677%	   1,434%	  
31.08.14	   50,921%	   2,990%	   50,113%	   0,937%	   50,593%	   1,505%	  
30.09.14	   51,052%	   3,333%	   50,113%	   0,945%	   50,395%	   1,252%	  
31.10.14	   52,008%	   7,052%	   50,113%	   0,935%	   50,575%	   1,696%	  
30.11.14	   52,493%	   10,200%	   50,113%	   0,930%	   50,540%	   1,682%	  
31.12.14	   52,657%	   11,618%	   50,113%	   0,896%	   50,859%	   1,902%	  
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The following codes where implemented for all of the three product types, but to
avoid repetition the results are only shown for loans.

R Code for Section 5.3

#Graphical*depiction*of*the*linearity*of*the*logodds
logodds<5function(x,y,class,title)*{
**nr_class<5floor(length(x)/class)
**x_sort<5sort(x)
**help<5x_sort[min(length(x_sort),nr_class)]
**x_sort<5x_sort[x_sort>help]
**while*(length(x_sort)>0)*{
****help<5c(help,x_sort[min(length(x_sort),nr_class)])
****x_sort<5x_sort[x_sort>help[length(help)]]
**}
**help[length(help)]<5max(x)
**logodd<5numeric(length(help))
**x_class<5numeric(length(help))
**logodd[1]<5mean(y[x<=help[1]])
**logodd[1]<5logoddg(logodd[1]/(15logodd[1]))
**x_class[1]<5mean(x[x<=help[1]])
**for*(i*in*2:length(help))*{
****logodd[i]<5mean(y[x>help[i51]&x<=help[i]])
****logodd[i]<5log(logodd[i]/(15logodd[i]))
****if*(logodd[i]=="5Inf"){logodd[i]<50}
****x_class[i]<5mean(x[x>help[i51]&x<=help[i]])
**}
**lm1<5lm(logodd~x_class)
**plot(x_class,logodd,ylab="Log*Odds",title=title,main=paste("R2*=*",round(summary(lm1)$r.squared,digits=4)),ylim=c(510,0))
**abline(lm1,col="blue",lwd=2)
}

logodds<5(var1,def,20,title="var1")

#Box%Tidwell,test,for,one,of,the,variables
x<%var1
x_ln_x<%x*log10(x)
box_tidwell_test_var1<%glm(def~x+x_ln_x,family="binomial")
summary(box_tidwell_test_var1)

#Transformation,of,the,variables
var1_trafo<%sin(0.5*log10(var1^0.5))
var2_trafo<%sin(0.5*var2^5)
var8_trafo<%sin(%0.5*var8^3)
var13_trafo<%sin(%8*var13)
var15_trafo<%sin(%var15)
var19_trafo<%var19
var20_trafo<%sin(%var20)
var21_trafo<%sin(%var21)
def_trafo<%def
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#Mahalanobis+distance
m1_trafo<6cbind(var1_trafo,var2_trafo,var8_trafo,var15_trafo,var19_trafo,var20_trafo)

m1.mcd=covMcd(m1)
m1.md=sqrt(mahalanobis(m1,m1.mcd$center,m1.mcd$cov))
data1=cbind(def_trafo,var1_trafo,var2_trafo,var8_trafo,var15_trafo,var19_trafo,var20_trafo,m1.md)
write.table(data1,+file+=+"MAH_m1.csv",row.names=FALSE,+na="",col.names=TRUE,+sep=",")

#ML6model
m1_trafo<6cbind(var1_trafo,var2_trafo,var8_trafo,var15_trafo,var19_trafo,var20_trafo)

gl_m1<6glm(def_trafo~m1_trafo)
summary(gl_m1)

#BY6model
m1_trafo<6cbind(var1_trafo,var2_trafo,var8_trafo,var15_trafo,var19_trafo,var20_trafo)

by_m1<6BYlogreg(m1_trafo,+def_trafo)
by_m1

R Code for Section 5.4

pd_kred_gl<*c()
pd_kk_gl<*c()
pd_kto_gl<*c()
pd_kred_by<*c()
pd_kk_by<*c()
pd_kto_by<*c()
for(i4in41:length(gdp))
{
pd_kred_gl[i]<*1/(1+exp(*(int_gl_kred+coeff1_gl_kred*v1_kred[i]+coeff13_gl_kred*v13_kred[i]+coeff15_gl_kred*v15_kred[i])))
pd_kred_by[i]<*1/(1+exp(*(int_by_kred+coeff1_by_kred*v1_kred[i]+coeff13_by_kred*v13_kred[i]+coeff15_by_kred*v15_kred[i])))
pd_kk_gl[i]<*1/(1+exp(*(int_gl_kk+coeff1_gl_kk*v1_kk[i]+coeff4_gl_kk*v4_kk[i])))
pd_kk_by[i]<*1/(1+exp(*(int_by_kk+coeff1_by_kk*v1_kk[i]+coeff4_by_kk*v4_kk[i])))
pd_kto_gl[i]<*1/(1+exp(*(int_gl_kto+coeff2_gl_kto*v2_kto[i]+coeff4_gl_kto*v4_kto[i]+coeff5_gl_kto*v5_kto[i])))
pd_kto_by[i]<*1/(1+exp(*(int_by_kto+coeff2_by_kto*v2_kto[i]+coeff4_by_kto*v4_kto[i]+coeff5_by_kto*v5_kto[i])))
}

#Stress'test'models
mod_gl1<0lm(cbind(pd_kred_gl,pd_kk_gl,pd_kto_gl)~gdp+cpi+ur+rpp+ep)
mod_by1<0lm(cbind(pd_kred_by,pd_kk_by,pd_kto_by)~gdp+cpi+ur+rpp+ep)

summary(mod_gl1)
summary(mod_by1)
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