
On the Effects of Permanent Faults in QDI Circuits
- A Quantitative Perspective

Raghda El Shehaby and Andreas Steininger
TU Wien, Institute of Computer Engineering, Vienna, Austria

relshehaby@ecs.tuwien.ac.at, steininger@ecs.tuwien.ac.at

Abstract—With their event-driven nature, quasi-delay-
insensitive (QDI) asynchronous circuits offer a compelling
fail-stop behavior along with an inherent 100% permanent
fault detection coverage. In fact, permanent faults break the
handshake, pushing the circuit into deadlock. In this paper
we give quantitative results for the relative occurrence of the
different effects that can manifest in a QDI circuit due to
permanent faults. We study in which and how many cases the
state of the circuit gets corrupted before reaching the deadlock.
This behavior diagnosis enables us to identify the cases in which
the circuit can go back to operating normally if a (self-) repair
process were to take place. This investigation is conducted
through extensive fault injection experiments in a chosen circuit
simulation. Stuck-at faults are injected on a gate-level VHDL
model of the circuit, with a wide coverage of parameters.

Index Terms—permanent faults, QDI circuits, fault injection

I. INTRODUCTION

Synchronous designs follow a rigid time grid dictated by a
global periodic clock signal, where data validity is considered
at specific clock ticks. Even though asynchronous circuits are
more difficult to design than their synchronous counterparts,
they have a lot to offer because their functional insensitivity
to layout and parametric variations makes them correct by
design. Quasi-delay-insensitive (QDI) circuits exhibit a natural
resilience against delay variations, making them immune to
delay faults [1], while still being vulnerable against value
faults, which can either be transient or permanent.

In asynchronous circuits operation is driven by a causal
chain of events, i.e., a transition on one signal causes a next
one, and so on. The indication principle in addition requires
each transition issued by a sender to be acknowledged by the
receiver – a handshake typically implemented by some kind of
request/acknowledge protocol – which yields a feedback loop
that enables a self-oscillating behavior. Due to this property
asynchronous circuits exhibit an inherent fail-stop behavior
whenever physical damage causes a change in the structure of
the circuit. A single permanent fault can break the handshake
protocol and cause deadlocks [2]. The circuit stops operating
in the absence of transitions needed to trigger further activity,
and simply waits until the expected transition finally occurs,
even if that should take very long and involve repair actions.
In this ideal picture recovery is not needed; as soon as the
repair is finished, the circuit continues operating properly.

This research was partially supported by the project ENROL (grant I 3485-
N31) of the Austrian Science Fund (FWF) as well as the Doctoral College
on Resilient Embedded Systems (DC-RES)

Unfortunately, there are cases in which the circuit’s state
does get polluted or incorrect outputs are produced as a
consequence of the defect. Such cases have already been
reported in the literature, but their relative occurrence rate has,
to the best of our knowledge, not yet been fully explored, at
least quantitatively. In this paper we will explore the possible
behaviors of a QDI circuit under permanent defects, and we
will associate probabilities with each of these.

II. RELATED WORK

While most research focuses on transient faults, relatively
little light is shed on the effects of permanent faults. In [3],
the authors show that a stuck-at fault in a delay-insensitive
(DI) circuit could either be inhibiting, preventing a transition
from taking place, or stimulating, causing a transition to occur
prematurely, or both. The analysis of the effects of stuck-
at faults in [4] leads to the conclusion that DI circuits are
always self-checking under the stuck-at fault model, while a
QDI model can not be totally self-checking [5]. The latter
work identifies possible fault effects in a QDI circuit as late
detection, invalid transitions and premature completion. In [1],
the authors additionally classify errors on a high level in
terms of deadlock, synchronization failure, token generation
and token consumption in QDI circuits.

Apart from some initial results in [6], we could not identify
any quantitative statements on the behavior of QDI circuits
under faults. In case of permanent faults, it has been identified
in [1], [5], [7] that some type of fail-safe deadlocking behavior
is preferable over a continued, erroneous circuit operation.
However, it has remained unclear so far, with which prob-
ability an (unprotected) QDI circuit exhibits such behavior.

III. PERMANENT FAULT EFFECTS IN QDI CIRCUITS

QDI circuits operate correctly with positive, but unbounded,
delays in gates and wires, while only imposing the isochronic
fork restriction: a signal must arrive at all ends of the fork
at the same time [8]. A QDI circuit will always eventually
deadlock in reaction to a permanent fault [1], [9]. This is due
to the indication principle which forces it to stop unless it
receives an acknowledge for its previous signal transition.

A. User’s Perspective

Based on this precondition, we classify the possible be-
haviors from a user’s perspective, regardless of the circuit’s
internal operation.

Andreas Steininger
Textfeld
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Stuck-at Faults

Inhibiting Stimulating

Fail-Stop (FS)
Correct Circuit State

Immediate Detection

Latent State Corruption (LSC)
Silent Data Corruption (SDC)

Faulty/Corrupted Circuit State

Deadlock

Late Detection

Token Modification

Token Generation

Token Consumption

High-level Effects
(User's Perspective)

Low-level Effects
(Circuit's Perspective)

Fig. 1. Stuck-at Fault Effects Classification

• Silent Data Corruption (SDC): The output latch captures
incorrect data before the operation stops.

• Fail-stop behavior (FS): The circuit deadlocks without
deviating from its fault-free operation until then. Recov-
ery is not required: after a repair of the physical defect,
the circuit simply continues with its operation correctly.
This is an attractive property for self-repair.

• Latent State Corruption (LSC): The circuit stops operat-
ing without issuing erroneous data at its output, but not
without corrupting its internal state.

B. Circuit’s Perspective

• Inhibited transition: In the most beneficial case the fault
ties a signal to its current logic state and prohibits a
further transition. Consequently, predecessor and/or suc-
cessor stages endlessly wait for the inhibited transition,
and no state corruption or incorrect output must be feared.
While this can prevent the current handshake cycle from
completing (immediate detection), it may as well be that
a couple of computation cycles are (properly) finished
without the need for the inhibited transition to take place,
as in the case of a late detection.

• Stimulated transition: In the more adverse scenario the
permanent fault causes an extra signal transition. This
extra transition resembles the firing of a signal at an im-
proper (too early) point in time, which is called premature
firing (PF). While DI logic is resistant against delays,
i.e., late transitions, early transitions can do harm, by e.g.,
causing the capturing of invalid data. This is because they
violate the causality chain of events.

Figure 1 summarizes and visualizes our analysis.

IV. FAULT INJECTION EXPERIMENTS SETUP

A. Fault Model

The fault model that most accurately illustrates our targeted
permanent faults is the stuck-at fault (SAF) model: a signal
can be permanently stuck at a fixed logic value during system
operation, either at logic high (stuck-at-1 or SA1) or at logic

C
C

C

C

C

Target Latch

Victim Stage
S2

LCD RCD

Register

Control

C

≥1

≥1
C

≥1

≥1
C

≥1

≥1
C

≥1

≥1
Half Adder

D1.T

D1.F

D2.T

D2.F

ACK

Sink
S3

Source
S1

Fig. 2. Target Circuit

low (stuck-at-0 or SA0) [10]. We assume an input, or output,
of a function block gets stuck rather than the whole net of a
signal, which maps to the transistor getting defective and not
the wires. Modeling the behavior of our system at a gate level,
we further restrict ourselves to single faults.

B. Target Circuit

Our target pipeline is composed of 3 stages, with the one in
the middle, S2, representing our victim stage which we assume
to be affected by permanent faults. S1 represents the upstream
environment of S2 and is connected to an ideal data source, and
S3, the downstream environment, is connected to an ideal data
sink. The circuit follows a 4-phase communication protocol
with dual-rail one-hot data encoding (like NCL [11]) and
completion detection to indicate the validity of data. Figure
2 shows the details of the circuit. It is based on the locally-
opened normally-closed QDI return-to-zero latch from [12],
where it is identified as robust against glitches.

For the logic function of our pipeline we chose a half adder,
since adder structures have been considered representative in
many other works as well [1], [6], [7], with a 2-bit datapath,
to keep the simulation efforts in our validation manageable.
It follows the delay-insensitive minterm synthesis (DIMS)
implementation [13], [14]. This is a first attempt to represent
some logic function, and it remains open for future work to
analyze the influence of the logic function on the behavior.

Our register is formed by Muller C-elements (MCEs)1, one
for each signal rail: the control logic’s output arms them for
the expected next phase of the input, ‘1’ for DATA and ‘0’
for a NULL token.

Our completion detector (CD) is composed of an array of
OR gates (two in our case) joining the two rails of each signal,
and one MCE for joining the OR outputs.

As in [12], our latch consists of two completion detectors
per stage, one left of the register (LCD) whose output switches

1The Muller C-element (MCE) is a fundamental gate in asynchronous
circuits. It sets its output to high (low) if both its inputs are high (low).
The output retains its value for non-matching inputs. It can be viewed as an
AND gate with hysteresis.



from ‘0’ to ‘1’ to indicate valid NULL or DATA tokens,
respectively, to be captured; and one right of the register
(RCD) which generates an acknowledge signal to the upstream
stage, to indicate whether the consumed token was NULL or
DATA. The CDs feed the control logic unit – in our case
another MCE. Its purpose is to trigger the register for capturing
data when (1) the LCD indicates that the next DATA (NULL)
token is available and (2) the ACK signal received from the
downstream stage’s RCD indicates that the previous NULL
(DATA) token has been processed and captured.

Finally, our source providing data to the input of S1 is
considered ideal, just characterized by the delay Tsrc between
reception of ACK and generation of the next data token,
whereas our ideal sink at the output of S3 specifies the delay
between reception of a data token and activation of ACK with
Tsnk.

C. Measures
Our experiments involve injecting faults into a VHDL model

of the system shown in figure 2, that is executed in Mentor
Graphics’ ModelSim HDL simulator. More specifically we
used a behavioral simulation, however with a timing derived
by the logical effort method [15]. This allows us to remain
(largely) technology-independent. We injected faults into our
victim stage S2, systematically and exhaustively covering the
whole space spanned by:

• Fault Polarity: We inject both, SA0 and SA1.
• Fault Location: We cover all inputs and outputs of the

gates of the target stage, namely 22 locations in the half-
adder, and 33 in the latch

• Speed of Source: To cover both a fast and slow source,
we vary Tsrc.

• Speed of Sink: We apply the same variation to Tsnk.
• Time of Injection: To make sure we hit all possible time

intervals where a fault might have an effect, the injection
time is incremented between experiments with a step
smaller than the smallest gate delay used in our circuit.
In this fashion, we have the same regular time grid for
all experiments2.

We only begin injecting a fault after the first token has
entered the pipeline, and we always stop before the last one
was sent in, to allow for the fault to manifest in the circuit.

For categorization of the fault effect we recorded the cir-
cuit’s observed reactions along the propagation path, using the
following observations:

• Correctness of State: After a fault is injected, we let
the system stabilize, then remove the fault and let the
system run to completion. We use a second, identical but
fault-free, pipeline as a golden reference for the correct
behavior.

• Output Traces: We collect a trace of all signal transitions
produced by the system at the sink and compare it with
the trace of the golden reference.

2This means that for different settings of Tsrc and Tsnk we get differing
numbers of faults injected. This, however, corresponds well to reality, where
longer phases are more prone to be affected by a fault.

• Pipeline Activity: We monitor whether the injection of
the fault (a) creates an extra (non-causal) transition, (b)
prevents the circuit from reaching the next phase, or (c)
allows a move into the next phase.

For each injected fault we record event-traces of all these
observations, along with the fault parameters, to a database
and investigate the results by means of appropriate queries, to
get detailed information about the internal dynamic behavior
of the system.

We consider our experiments to have 2 different (essentially
independent) dimensions: (1) fault effect (pipeline activity), (2)
state corruption before deadlocking (correctness of state).

V. RESULTS & ANALYSIS

A. Possible Effects of a SAF in QDI Logic

For our analysis we identify the following possible effects:
immediate freeze (IF) conveying when the pipeline freezes
without moving to a subsequent phase, be it DATA after NULL
or NULL after DATA. This still means that the circuit can
be polluted in its respective current phase. Late detection
(LD) signifies that some tokens keep moving forward in the
pipeline before the circuit comes to a halt. Premature firing
(PF) means the fault causes a transition to occur before it
is scheduled and that it might have a malicious effect. In all
cases, the circuit deadlocks and does not continue operation.

Figure 3 shows the rate of occurrence of each of the
aforementioned effects. LD is the dominant effect ranging
from 64.8% to 92.7%. IF and PF follow ranging from 7.3% to
25.1% and from less than 1% up to 10.1%, respectively. This
constitutes the whole space: the pipeline always deadlocked
and there were no other effects than anticipated.

Furthermore, figure 3 illustrates the effect of varying the
delays for sink and source. As the source becomes faster than
the sink (Tsnk > Tsrc) (bubble-limited), the probability of
the LD effect occurring gets higher. On the other hand, when
the sink becomes faster (Tsrc > Tsnk) (token-limited), IF and
PF’s rates of occurrence increase.

B. State Pollution before Deadlock

Our next experiment attempted to quantify how many cases,
with respect to the different effects, resulted in polluting the
state of the circuit. As already mentioned above, we inspected
the correctness of the system outputs when compared to their
counterparts in the golden run. We evaluated this correctness
by unfreezing the pipeline after it was given sufficient time
for the fault to have manifested, by removing it and letting it
run to completion. Table I shows the statistics of the incorrect
cases that were observed during simulations, along with the
distribution of the different effects. The former percentages,
shown in the bottom row, ranged from 13.2%, to 29.8% (with
16.4% being the most occupied value) with respect to the total
number of injections. All other effects are calculated on the
basis of their contribution to this incorrect behavior.



Fig. 3. Rate of Occurrence of Possible Effects

TABLE I
INCORRECT OPERATION AFTER UNFREEZE

Incorrect Operation Count
Effect Minimum Average Maximum

Immediate Freeze 21.9% 38.5% 82.9%
Late Detection 10.2% 12.5% 29.5%

Premature Firing 1.4% 43.1% 97.0%
Incorrect State 13.2% 16.4% 29.8%

VI. CONCLUSION & FUTURE WORK

We have investigated the ability of QDI circuits to stop op-
eration without state corruption in case of a permanent defect.
This is an important feature for self-repair, as it saves the
need for recovery and allows correctly continuing operation
after removal of the defect. Our analysis has been based on
injection of stuck-at faults in a simulation model of a 3-stage
pipeline, with systematic coverage of the relevant parameter

space. Not surprisingly, we could confirm that a QDI circuit
always deadlocks if affected by a permanent fault. In addition
to an immediate freezing of the operation, we have observed
the effects of late detection, and premature firing known from
the literature, and we have quantified their relative occurrence.
It turns out that late detection is the dominant effect, which
has a higher probability of occurring when the pipeline is
bubble-limited; while immediate freezing is significantly less
frequent, and the most undesired effect of premature firing
is the most rare one, both having higher rates of occurrence
when the pipeline is token-limited. Overall, we observed a
proportion of 13% to 30% of faults (depending on the relative
speed of source and sink) to corrupt the pipeline state in such
a way that continuing operation after fault removal will lead
to incorrect results. This is definitely a non-negligible share,
and so additional provisions (or explicit recovery) will be
necessary.

Our future work will extend the analysis to more complex
target circuits, as well as further pipeline styles and protocols,
while devising provisions to prevent erroneous transitions from
propagating.

REFERENCES

[1] C. LaFrieda and R. Manohar, “Fault detection and isolation techniques
for quasi delay-insensitive circuits,” in International Conference on
Dependable Systems and Networks, 2004. IEEE, 2004, pp. 41–50.

[2] W. Song, G. Zhang, and J. Garside, “On-line detection of the deadlocks
caused by permanently faulty links in quasi-delay insensitive networks
on chip,” in Proceedings of the 24th edition of the great lakes symposium
on VLSI, 2014, pp. 211–216.

[3] A. J. Martin and P. J. Hazewindus, “Testing delay-insensitive circuits,”
California Institute of Technology Pasadena Department of Computer
Science, Tech. Rep., 1990.

[4] H. Hulgaard, S. M. Burns, and G. Borriello, “Testing asynchronous
circuits: A survey,” Integration, the VLSI journal, vol. 19, no. 3, pp.
111–131, 1995.

[5] S. J. Piestrak and T. Nanya, “Towards totally self-checking delay-
insensitive systems,” in Twenty-Fifth International Symposium on Fault-
Tolerant Computing. Digest of Papers. IEEE, 1995, pp. 228–237.

[6] Y. Monnet, M. Renaudin, and R. Leveugle, “Asynchronous circuits
sensitivity to fault injection,” in Proceedings. 10th IEEE International
On-Line Testing Symposium. IEEE, 2004, pp. 121–126.

[7] S. Peng and R. Manohar, “Efficient failure detection in pipelined
asynchronous circuits,” in 20th IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT’05). IEEE, 2005, pp. 484–
493.

[8] P. A. Beerel, R. O. Ozdag, and M. Ferretti, A designer’s guide to
asynchronous VLSI. Cambridge University Press, 2010.

[9] I. David, R. Ginosar, and M. Yoeli, “Self-timed is self-checking,”
Journal of Electronic Testing, vol. 6, no. 2, pp. 219–228, 1995.

[10] M. Yang, G. Hua, Y. Feng, and J. Gong, Fault-tolerance Techniques for
Spacecraft Control Computer. Wiley Online Library, 2017.

[11] K. M. Fant and S. A. Brandt, “Null convention logic/sup tm: A
complete and consistent logic for asynchronous digital circuit synthesis,”
in Proceedings of International Conference on Application Specific
Systems, Architectures and Processors: ASAP’96. IEEE, 1996, pp.
261–273.

[12] W. J. Bainbridge and S. J. Salisbury, “Glitch sensitivity and defense
of quasi delay-insensitive network-on-chip links,” in 2009 15th IEEE
Symposium on Asynchronous Circuits and Systems. IEEE, 2009, pp.
35–44.

[13] D. E. Muller, “Asynchronous logics and application to information
processing,” Switching Theory in Space Technology, vol. 4, 1963.

[14] J. Spars and S. Furber, Principles asynchronous circuit design. Springer,
2002.

[15] I. Sutherland, R. F. Sproull, B. Sproull, and D. Harris, Logical effort:
designing fast CMOS circuits. Morgan Kaufmann, 1999.




