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ABSTRACT 

3D city models have turned out to be an important dataset over the past few years and have been 

widely used in various applications such as city planning, traffic control, disaster management 

and so forth. Efficient visualization of 3D city models in different levels of detail (LODs) is one 

of the pivotal technologies to support these applications. Today there exist a number of software 

tools with different levels of features that make creating 3D city models possible, which in turn 

can be used for numerous applications within the fields of visualization, communication, and 

analysis. Each software shows different strengths and weaknesses. This thesis attempts to test and 

compare the performance and capability of a selection of software packages in 3D City Modeling 

using real world spatial data. 

The individual modeling procedures for each software, which are necessary for the generation of 

3D city model, are shown and assessed in detail.  The three software packages are assesed in 

respect to the resulting model generation, the amount of manual effort required and the time 

consumed as well as the easiness of handling the software. The following software packages have 

been evaluated: CityGRID® Modeler from UVM Systems, SketchUp from Trimble and 3D 

Editor from Hexagon. The outcomes of this thesis besides model generation provides a thorough 

and extensive comparison of existing tools for generation of 3D city models. 

KURZFASSUNG 

3D Stadtmodelle wurden im Laufe der letzten Jahre zu wichtigen Datensätzen und werden 

vielfach in verschiedenen Anwendungsbereichen, wie etwa Stadtplanung, Verkehrsüberwachung, 

Katastrophen-Management und vieles mehr, eingesetzt. Die effiziente Visualisierung der 3D 

Stadtmodelle in unterschiedlichen Detailierungsgraden (Levels of Detail = LODs) ist eine der 

zentralen Technologien, um diese Anwendungsbereiche zu unterstützen. Heutzutage gibt es eine 

Reihe von Computerprogrammen mit unterschiedlichen Merkmalen, welche für die Erstellung 

von 3D Stadtmodellen verwendet werden können, die dann wiederum für eine Vielzahl an 

Anwendungen in den Bereichen Visualisierung, Kommunikation und Analyse genutzt werden. 

Jedes Programm zeigt andere Stärken und Schwächen. Diese Arbeit versucht die 

Leistungsfähigkeiten und die Möglichkeiten einer Auswahl von Programmen für 3D 

Stadtmodellierung zu testen und zu vergleichen, indem reale räumliche Daten eingesetzt werden. 

Die einzelnen Vorgehensweisen für die Modellierung, welche für die Erstellung von 3D 

Stadtmodellen notwendig sind, werden für jedes der Programme gezeigt und detailliert beurteilt. 

Die drei Computerprogramme werden in Bezug auf die erhaltenen Ergebnisse, auf den 

notwendigen Arbeits- und Zeitaufwand und schließlich auf die Handhabbarkeit evaluiert. Die 

folgenden drei Programme wurde beurteilt: CityGRID von UVM Systems, SketchUp von 

Trimble und 3D Editor von Hexagon. Neben der Modellentwicklung werden in dieser Arbeit 

verschiedene Programme zur Erstellung von 3D Stadtmodellen einem gründlichen Vergleich 

unterzogen.
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CHAPTER 1 

1. INTRODUCTION 

1.1. Background 
Recent studies have shown that “54 percent of the world’s population lives in urban areas, a 

proportion that is expected to increase to 66 percent by 2050. Projections show that urbanization 

combined with the overall growth of the world’s population could add another 2.5 billion people 

to urban populations by 2050” (News article based on the World Urbanization Prospects – 2014 

Revision by the UN Department of Economic and Social Affairs, United Nations 2014: 

http://www.un.org/en/development/desa/news/population/world-urbanization-prospects-

2014.html). Urban areas are continuously changing due to construction and extension of features 

such as buildings (Morgan & Habib, 2002).  Hence, it is critical to develop efficient techniques to 

assist the management of modern cities, which requires a platform that is capable of integrating 

city information from different resources.  

Most of the current urban developments are based on using 2D mapping models. However, 

interest in 3D models is rapidly increasing for various application such as urban planning and 

design, pre-visualisation of new developments and utility service planning, microclimate 

investigation, telecommunication, noise simulation (Zhou et al., 2004), urban regeneration, 

tourism and visualisation of the urban environment (Baltsavias & Gruen, 2003; Vosselman, 

2002). Stadler and Kolbe define (2007) a 3D City Model as a digital representation of Earth’s 

surface and its related spatial objects within urban areas such as building, tree, vegetation and 

some other manmade features. The realization of 3D city model brings the user considerable new 

advantages such as moving interactively within the model, creating animation or performing the 

analysis. Many companies utilize 3D city models to attract more users by enhancing 

expressiveness and simplifying the operations of their applications (Mao, 2011). Research on 3D 

city models is becoming a hotter topic in both academia and industry. Many algorithms and 

methods are developed to deal with challenges of 3D city models, and efficient visualization is 

one of the most critical issues. 

The automatic reconstruction of urban 3D models became an important part of photogrammetric 

research almost two decades ago (Grün et al., 1995, 1997).The recent development of software 

packages makes the generation of 3D city models possible. However, there is still need for 

improvement of existing software in order to reduce the human interaction and increase the 

accuracy. This master thesis reviews a selection of software packages by carrying out an 

exemplary 3D city model in to give an overview of the current state of the art of 3D city model 

generation. 

1.2. Scope of the research  
In the context of the thesis, it is intented to get a comparative assessment (in a disinterested way) 

for the performance and capability of a selection of existing software packages for 3D city 

modeling using existing spatial data. In these days, there are plenty of methods and commercial 

software available in the market to create 3D city models. Each software has some advantages as 
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well as limitations. The main purpose of this thesis is to find out  the suitable software based on 

the need of 3D city model project. In order to achieve this, predefined basic tasks are to be 

carried out for each software, such as: 

 modeling roof overhangs and related geometric properties above given building 

footprints, 

 automatic and interactive texturing of roofs and facades.  

It is also important to put together and compare the functionality of these software tools, such as 

the approaches to modeling; data requirements; import and export possibilities from or to 

different file formats; and eventually their strengths and limitations as far as certain tasks are 

concerned. The following software packages will be compared, and their performance must be 

analyzed: 

 CityGRID® Modeler by UVM Systems, 

 SketchUp® by Trimble and 

 Tridicon® 3D Editor and TextureMapper by 3DCon GmbH , a subsidiary company of 

Hexagon Europe   

The evaluation process will take into consideration both the resulting models as well as the 

process itself. The outcomes of this thesis besides model generation provides a thorough and 

extensive comparison of existing tools for generation of 3D city models. 

1.3. Relation to other projects 
The aim of the thesis is to give a comparative assessment for 3D city model software packages. 

Some related works are given below: 

Bratfisch et al. (2014) explained a comparative study of different software packages based on the 

3D model of city landmarks. In their study, four software tools have been assessed: CityEngine 

from Esri, CityGRID Modeler from UVM Systems, SketchUp from Trimple and tridicion 

Architecture from 3DCon GmbH. 

A good comparative study of different image-based approaches for 3D city models can be found 

in Singh et al.`s study (2014). In the study, four image-based approaches  have been defined and 

compared. Those approaches are Sketch-based modeling, Procedural grammar based modeling, 

Close range photogrammetry based modeling 

Rothe and Janne (2009) explained the usage of the 3D Models by comparing tridicon®  

CityDiscoverer und Autodesk® LandXplorer software packages.  

Qiming and Wenjiang (2004) presented a preliminary review on three-dimensional city model. 

This study was based on the comparison of three 3D data model of GIS: 3D Formal Data 

Structure (3D FDS), a hybrid data structure (V3D) and objected-oriented geo-database kernel 

system (GeoToolKit). 
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CHAPTER 2 

2. FUNDAMENTALS OF 3D CITY MODEL  
The purpose of this chapter is to establish the basis of knowledge of 3D model representation, 

generalization, and visualization.  

2.1. Definition  
Computer Graphics utilize geometrical information such as position, shape, and size of an object 

that is stored in the computer. The product of the process is called 3D model. There are three 

common types of 3D models, (i) wireframe model that stores edge information, (ii) surface model 

that stores surface information, and (iii) solid model that identifies inside and outside of volumes 

(Huang, 2008). 

3D city models represent spatial and geo-referenced urban data by means of 3D geovirtual 

environments that basically include terrain models, building models, vegetation models as well as 

models of roads and transportation systems (Döllner et al., 2006). There are different expressions 

used for 3D city models such as “Virtual City,” “Cybertown,” “Cybercity,” and “Digital City” 

(Sadek et al., 2002). 

Theoretically, all objects located within a city can be integrated into a 3D city model if they are 

capturable with any method. However, the most important objects of 3D city model are 

constructions (i.e. buildings, landmarks), roads, vegetation, and terrain. Depending on the 

application type, a 3D city model can consist of geometry (i.e. location, shape), texture 

(i.e.colors, images), and semantic information.   

Building Reconstruction  

The buildings are the most important component in a 3D city model. There are two main 

paradigms for reconstruction of 3D building models: Model-driven and Data-driven. Model-

driven modelling approach consists of searching the most appropriate model among basic 

building models contained in a models library (Tarsha-Kurdi et al., 2007). A model library 

consists of building primitives. Building primitives are a number of building models with 

different roof structure that can be represented by a set of parameter or topographical expression 

(Figure 2.1) 

 
Figure 2.1: Different expression of building primitives (a) Parameter definitions (Image source: Maas, 

1999) (b) Topographical &Topological definition (Image source: Verma et al. 2006), (Heritage & Large, 

2009) 



 

 4  

 

The data-driven approach usually assumes that a building is a polyhedral model. It analyzes the 

building point cloud as a unity, without relating it to a set of parameters (Tarsha-Kurdi et al., 

2007). The most common method is to detect various segments of planes and group them all the 

segments that have similar features (e.g. slope, orientation) (Heritage & Large, 2009). For 

instance, Schwalbe et al. (2005) use the data-driven approach in ALS data to generate 3D 

buildings. Firstly, it detects the line in 2D in order to find the lines that represent roof faces 

(planes) and then combine the individual planes to model roof structure (Figure 2.2). 

 

Figure 2.2: 2D Line extraction (left), Lines representing roof faces (middle), Extracted roof planes (right), 

(Image source: Schwalbe et al., 2005) 

Building Texturing  

Aside from a correct geometric generation, the texture reconstruction of the buildings has become 

an essential component of 3D city modeling for better visualization. Besides resulting in a photo-

realistic look, texture also creates the false impression of a higher level of geometric detail, a fact 

that is exploited in image-based rendering (Frueh et al., 2004). 

3D buildings can be textured by using synthetic or digital images (i.e. aerial, terrestrial). 

Synthetic textures are artificial generated textures that are often stored in texture library of the 

software packages. They may be just solid colors or certain pattern like stone, brick or fences 

(Figure 2.3).  

The actual texturing of the buildings can be achieved with the use of acquired imagery (Figure 

2.3). Roof surfaces are often textured by using aerial images. For the texturing of the building 

facades, aerial images may not always be optimal as all side of the buildings are sometimes not 

visible in the images. If the aerial images are used for the texturing of the facade, it´s necessary to 

have multiple images from different angles so that the buildings facades can be visible in several 

images. Besides, that oblique aerial images or terrestrial images can be used to texture the 

building facades.  
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Figure 2.3: Different texture types:  Synthetic texture, solid color (left), Synthetic texture with different 

material patterns (middle), Texture with digital image (right)
1
 

Semantic Modelling 

Semantic information can be described as any information that is not visualized as geometry or 

texture, for example, attributes of objects such as the use of a specific building (Uggla, 2015). In 

figure 2.4, a 3D city model of Berlin can be seen, which provides semantic information besides 

the geometry.  

 
Figure 2.4: A semantic 3D city model of the German capital Berlin 

(http://www.3dcitydb.org/3dcitydb/VisualizationBerlin/,last access December 2016) 

2.2. Level of Detail 
The level of detail (LOD) of a 3D city model is one of its most important characteristics. It 

denotes the adherence of the model to its real-world counterpart, and it has implications on its 

usability (Biljecki et al., 2014). The CityGML 2.0 standard from the Open Geospatial Consortium 

                                                      
1
 The building model in the figure is freely downloadable via 

https://3dwarehouse.sketchup.com/model.html?id=82e4379f93e135cf3d02d646860fb5fe; last access February 2017 

https://3dwarehouse.sketchup.com/model.html?id=82e4379f93e135cf3d02d646860fb5fe
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(2012) classifies digital city model by level of detail (LOD) regard with both geometry and 

semantics. There are five different categories of LODs from LOD0 to LOD4 (Figure 2.5).  

 

Figure 2.5: Level of Detail from LoD0 to LoD4 (Kolbe, 2005) 

LOD0 is essentially a 2.5D Digital Terrain Model (DTM) over which an aerial image or a map 

may be draped and is separated from LOD1-4 (Figure 2.6) as it does not contain any separately 

modeled buildings. The building is represented by either the building footprint or the roof outline.  

LOD0 is used for regional and landscape applications. LOD1 is a volume that can be 

distinguished as a building with flat roof structures (without any semantically structuring). This 

level is used for both city and region coverage.  In contrast, LOD2 is a model with a simplified 

roof shape, and where the object’s parts can be modeled in multiple semantic classes (e.g. roof, 

wall). This level is used for city and region coverage. LOD3 are architectural models with 

detailed wall and roof structures potentially including doors and windows. LOD4 completes an 

LOD3 model by adding interior structures for buildings. 

 

Figure 2.6: The five LODs of CityGML 2.0. The geometric detail and the semantic complexity increase, 

ending with the LOD4 containing indoor features. 

Each level of detail necessitates a different type of data collections. Models with LOD0 to LOD2 

can be produced from aerial images whereas interior structures, for example, depend on the 

availability of either derailed surveys or architectural document (Navratil et al.,2010).  
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2.3. Generation Methods 
A number of generation methods are available for 3D city models related to the available dataset. 

Depending  on the application, budget  and  accuracy requirements, different data types and 

technologies can offer the right solution (Marre, 2011). Singh et. al(2013) categorized the 3D city 

modeling into the following approaches: 
Based on Automation: 

 Automatic  

 Semi-automatic  

 Manual 

Based on Data input techniques:  

 Photogrammetry based methods 

 Laser Scanning based methods 

Photogrammetry based methods for 3D City Model generation: 

 Aerial Photogrammetry based model 

 Satellite Photogrammetry based model 

 Close Range Photogrammetry based model 

LASER scanning based model: 

 Aerial Laser based model 

 Terrestrial laser based model 

Hybrid methods:  

 The combination of these methods is also a method to create virtual 3D City model. 

 

Today, the most commonly used data acquisition methods for the generation of 3D city models 

are aerial photography and airborne laser scanning. Those methods will be further explained in 

the next section.  

2.3.1 Laser-Based Method 

Airborne Laser Scanning or also known as LIDAR has been used for various 3D mapping 

application including 3D city modeling project for over two decades.  LIDAR mapping is an 

accepted method of generating precise and directly georeferenced spatial information about the 

shape and surface characteristics of the real world (Carter et al., 2012).  

The main units of LIDAR systems are a global positioning system (GPS), an inertial navigation 

system (INS), GPS base station and laser scanning system (Figure 2.7).  
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Figure 2.7: LIDAR system component (Stadtvermessung Wien)  

The position and orientation (roll, pitch, and heading) of LIDAR sensor are ensured by INS and 

GPS. The laser scanning system is installed on a platform (e.g. plane, helicopter, satellite) and 

emits pulses to earth´s surface. The pulses are reflected off the earth´s surface or objects on it and 

return to the receiver. High-speed counter measures the time of flight from the start pulse to the 

return pulse (Moskal, 2008). By accurate time measurement, the range between sensor and target 

can be calculated using following formula: 

𝑅 =  
𝑣. 𝑡

2
 

R is the range, v is the speed of light and t is the time measurement. Combined with position and 

orientation of the laser sensor, the range between sensor and target can be transformed to the 

precise three-dimensional coordinates of the target.  
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Characteristics of LIDAR Data 

An emitted laser pulse may return to LIDAR sensor as one or multiple returns (Figure 2.8).  

 
Figure 2.8: LIDAR Laser pulse return 

(http://www.coastalwiki.org/wiki/Use_of_Lidar_for_coastal_habitat_mapping) 

 

The first returned pulse (first echo) is the highest feature above the ground surface and it can be 

used to create digital surface model (DSM), whereas last pulse (last echo), in general, returns 

from impenetrable surface and it makes creation of digital terrain model (DTM) possible (Figure 

2.9). An emitted pulse can be recorded as separate pulse or as one continuous wave, which is 

called full-waveform.  

  
Figure 2.9: DSM computed from all LIDAR point (0.5m) (left), Final DTM (0.5 m) (right) 

 (Rottensteiner, 2002) 
 

Besides recording the time of a return pulse,  LIDAR systems record the intensity, or the 

magnitude, of the return pulse; in other words, they not only measure the fact that there is a return 

pulse, but they also measure the strength of the return (Schuckman, 2014). 

 
 
 
 
 

http://www.coastalwiki.org/wiki/Use_of_Lidar_for_coastal_habitat_mapping
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2.3.2 Photogrammetry-Based Method 

“Photogrammetry is the art, science, and technology of obtaining reliable information about 

physical objects and the environment through processes of recording, measuring and interpreting 

photographic images and patterns of recorded radiant electromagnetic energy and other 

phenomena” (Wolf and Dewitt, 2000). Photogrammetry requires overlapping images from a 

different position in order to determine the size, shape and the position of the object (Figure 

2.10).  

 
Figure 2.10: Stereo pair of Tongerlo, Belgium, 17-05-1999. The red rectangles indicate overlapping areas 

(Source: http://www.seos-project.eu/modules/3d-models/3d-models-c02-p04-s01.html, last access January 

2017) 

Figure 2.11, below, shows the image-taking process of aerial photogrammetry. Images must have 

an overlapping between consecutive images. Through the mathematical and geometrical relations 

between the overlapping images, the position of the object can be derived.  

 

Figure 2.11: Aerial photography from above. Strips indicate the overlapping areas. (Source: 

http://www.seos-project.eu/modules/3d-models/3d-models-c02-p04-s01.html, last access January 2017 

http://www.seos-project.eu/modules/3d-models/3d-models-c02-p04-s01.html
http://www.seos-project.eu/modules/3d-models/3d-models-c02-p04-s01.html
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Figure 2.12 illustrates the principle of photogrammetry. 3D ground coordinates of point P  can be 

calculated from 2D image coordinates of p1 and p2. To do so, point P must be visible at least in 

two images and exterior, and interior orientation of the camera must be known. The exterior 

orientation parameters indicate the location and rotation of the camera in space at the time of 

exposure, whereas interior orientation parameters define the internal geometry of the camera such 

as principle point, focal length, projection center. With knowledge of interior and exterior 

parameter, 3D coordinates of an object in space can be calculated through the collinearity 

equation, as a focal point, image point and imaged object lie on the same line. As indicated in 

Figure 2.12, the vector from focal point 𝑂1 to imaged object P and image point 𝑝1 to imaged 

object P are collinea, as well as the vector from 𝑂2 to P and 𝑝2 to P. In addition to this, 

coplanarity applies.  

 

Figure 2.12: Principle of photogrammetry 

The images for the photogrammetric measurement can be taken from a ground based stations so 

called ( terrestrial photogrammetry) or airborne platforms ( aerial photogrammetry). In the frame 

of 3D city modeling, the main advantages of the aerial-based method are to make possible to 

cover large areas using  fewer images and in a shorter time. For instance, A 3D model of the 

Turkish city Konya has been generated by 42000 oblique aerial images which cover over 300000 

buildings (Ozerbil, 2015). The terrestrial acquisition has the major advantage for LOD3 and 

LOD4 projects and texturing.  

2.4. Data Formats 
In this chapter, the of most commonly used 3D city model data formats have briefly been 

introduced.  

CityGML 

CityGML is a common information model and XML-based encoding for the representation, 

storage, and exchange of digital 3D city and landscape models (Kolbe, 2012). It was proposed in 

August 2008 by the Open Geospatial Consortium (OGC) which is the most important 

standardization  in the field of geospatial information technologies.   
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CityGML provides a model and mechanism for describing 3D objects with respect to their 

geometry,  semantics, and their relations. Therefore, it  supports 3D content for visualization but 

goes far beyond that point to support manifold analytical capacity. Unlike the Keyhole Markup 

Language (KML) used in the context of Google Earth, Collada or X3D, for instance, it 

distinguishes real world features providing 98 classes with 372 well-defined attributes in total. 

These classes may have geometrical properties or not.  (Löwner et al., 2013For instance, the 

different classes of a building object in CityGML can be seen in figure 2.13. The classes 

differentiate depending on the level of detail of the model.   

 

Figure 2.13: Examples of boundary surfaces for a building in LOD2 in CityGML (Löwner et al., 2013) 

CityGML is highly scalable (extensible with respect to a theme) through CityGML Application 

Domain Extensions (ADE), and datasets can include different urban entities supporting the 

general trend toward modeling not only individual buildings but also wider sites, districts, cities, 

regions, and countries (Biljecki, 2013). 

KML/KMZ 

Keyhole Markup Language (KML) is a standard format recognized by OGC and developed by 

Google Inc. KML is a file format used to display geographic data in an Earth browser such as 

Google Earth. KML uses a tag-based structure with nested elements and attributes and is based 

on the XML standard (https://developers.google.com/kml/documentation/kml_tut, last access 

January 2017). KMZ is a compressed version of KML.  

COLLADA  

Collaborative Design Activity (COLLADA) is an exchange file format for 3D application, developed by 

Sony Computer Entertainment. The format is widely used by game developers.  

https://developers.google.com/kml/documentation/kml_tut
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VRML  

Virtual Reality Modeling Language (VRML) a text file
2
 format for representation of 3D objects. 

It´s the first ISO-standard format for 3D browsing. With a plugin, 3D objects in VRML format 

can be open in very internet web browser.  

3DS  

3DS is a binary file format, used by Autodesk 3ds Max (formerly 3D Studio MAX). 

DXF 

Drawing Interchange Format or Drawing Exchange Format (DXF) is a file format developed by 

Autodesk. DXF file format enables data interchange between AutoCAD and other software. DXF 

can be either ASCII or binary formats.  

OBJ 

Object files define the geometry and other properties for objects in Wavefront's Advanced 

Visualizer. Object files can also be used to transfer geometric data back and forth between the 

Advanced Visualizer and other applications (http://paulbourke.net/dataformats/obj/, last access 

November 2016). The file format is open and has been adopted by other 3D graphics application 

vendors. 

2.5. Application of 3D City Models 
3D models are employed in increasing number of  application, and some of those key application 

with examples have been listed in this section.  

Planning application  

The most common use case of 3D city model is currently in the planning application. 3D city 

models are improving the practice of urban environmental planning and design and help planning 

authorities to illustrate explicit photo-textured information of what the city environment will look 

like after a proposed change (Sadek, 2005).  

Disaster management and emergency response applications 

LOD2 and LOD3 city model can be highly useful in a state of emergency, as the details of the 

building are known i.e. the location of the entries, balconies, etc. It is also helpful in the disaster 

management, as the realistic effect of the disaster can be simulated.  

Energy demand analysis 

3D city models aid to evaluating any kind of energy demand Previtali et al. (2014) note the use of 

3D city models to assess the cost of retrofitting of a building. In combination with other data, 3D 

city models may be used for thermal assessment, and to determine thermal bridges and heat 

losses from the building envelope and estimation of potential for exploration of solar energy 

(Biljecki et al., 2015) (Figure 2.14).  

                                                      
2 Text file is a computer file that is structured as a sequence of lines of electronic text 

(https://en.wikipedia.org/wiki/Text_file, last access November 2016) 

http://paulbourke.net/dataformats/obj/
https://en.wikipedia.org/wiki/Text_file
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Figure 2.14: Results of the estimation of the heat demand of buildings (Bahu,2013) 

Decision support system applications 

3D city model can help planners and managers to answer informative decision as the result of the 

decision can be simulated using interactive models. As the example in Figure 2.15, a 3D noise 

simulation can be used to find out the most needed place to place noise barriers.  

 
Figure 2.15:3D noise modeling using 3D City Model (Kurakula, 2007) 

Navigational applications 

Navigation system, which includes 3D city model, may enhance the visual depiction and help the 

driver to identify real environment easily (Figure 2.16).  
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Figure 2.16: Demonstration of a 3D navigation system by Garmin Ltd 
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CHAPTER 3 

3 SOFTWARE PACKAGES FOR 3D CITY MODELING  

The aim of the thesis is to compare and assess different tools for 3D city models generation. For 

this purpose, three tools, which have diverse methods for model generation, have been chosen. In 

this chapter, the characteristics and functionalities of those tools have been described. 

3.3 Tridicon® 3D Editor  

Tridicon® 3D Editor is a software product developed by 3DCon GmbH (formerly by GTA 

Geoinformatik), a subsidiary company of Hexagon Europe
3
. The product offerings of tridicon® 

are quite comprehensive and provide solutions for building modeling, integration, and 

visualization of three-dimensional digital point clouds and further processing of point clouds for 

3D City models and landmarks. 

 

The program 3D Editor, which is aimed to be used in this thesis, is a digital photogrammetric 

workstation for aerial and satellite photogrammetry. The basic task of photogrammetry is the 

accurate mapping of  the real world by deriving its 3D coordinates (X,Y,Z) from 2D coordinates 

(x,y) measured in overlapping aerial photographs. Basically, the 3D Editor is specifically 

designed for generating building models from aerial photographs. It is assumed that the 

orientations of the aerial images are known, for instance from an aerial triangulation carried out 

in advance, in order to provide the geometric relationship between the images and the real world. 

For the evaluations in this thesis, the software version 15.06 has been used. 

In the real world, the shape of the buildings reveals a huge diversity. Thus the automated 

generalization of 3D city model from aerial images is still a challenging task. There are different 

approaches in order to simplify the automatical acquisition of 3D building models. One may be a 

restriction to a lower level of detail. In visualizations, the resulting lack of 3D details may, to a 

certain extent, be compensated by applying texture mapping techniques.  Another approach may 

be the introduction of a catalog of permitted building shapes also known as building primitives. 

Both approaches reduce the number of shapes and details to be modeled. 3D Editor makes use of 

a predefined building primitives. Since each building is assumed to be limited by vertical walls 

along their boundaries, building primitives can be characterized by roof type, such as flat roof, 

lean-to roof, gable roof, tower, wall, etc. Each predefined object type has a constructional order 

which means the objects have a fixed order of nodes and straight connecting lines from the very 

beginning.  Tough a new building has to be created by using the primitives, there is the 

possibility of augmenting already existing models by adding details such as dormers, chimneys, 

and other roof structures so that even more complex and refined building model can be created.  

                                                      
3
 Tridicon has become part of the new product line HxMap, the High-Performance Multisensor Workflow by Leica-

Geosystems. In this context Tridicon 3D Editor and TextureMapper, as part of the module HxMap 3D Modeller 

Basic, has been renamed to HxMap 3D Editor and HxMap TextureMapper (see http://leica-

geosystems.com/products/airborne-systems/software/leica-hxmap/leica-hxmap-3d-modeller-basic; last access 

November 2016). 
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User interface  

The Graphic User Interface consists of the typical elements of a window-oriented software 

(Figure 3.1). The main window contains the title bar, menu, and toolbars, image windows and 

status bar. The title bar shows the name of the project as well as the name of an open data file. 

The largest part of the program window is occupied by image windows of the used images. 

Several images may be opened simultaneously, where each is displayed in its own image 

window. The status bar contains the X, Y, Z coordinates of the node, the selected layer (e.g. 

“Buildings”) and as well as the property of the selected objects (e.g. “hip roof”).  The status bar is 

important when an object needs to be redefined. One can easily see which primitive has assigned 

a certain roof and one can start to convert the roof type to another desired roof type.  

 

 
Figure 3.1: Main Window of the 3D Editor 

Image Preparation  

3D Editor can read the following image formats vit, tiff, raw, tld and bmp.  It also supports 

automatic reading of orientation data. Therefore, the images and corresponding orientation data 

must be stored in the same directory. The required orientation parameter can also be inserted 

manually from the menu. The program also offers different options in order to enhance images by 

applying basic image processing algorithms, such as brightness and contrast enhancement, 

application of lookup tables and similar. 
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Mapping Functions 

The predefined building primitives can be accessed by means of a list of mapping functions. For 

each mapping function, the user must, in addition to the number code, primarily predetermine the 

object type, its associated color, line type, and width. For instance, as shown in Figure 3.2, the 

object type “gable roof” has been assigned to mapping function 6. If a user wants to model an 

object, the mapping function must be activated via the number code in a toolbar. The mapping 

function toolbar can be seen in figure 3.3.           

                                       
Figure 3.2: Mapping function settings 

Modeling a single building  

Modeling of an object requires at least two images (Figure 3.3). To model an object, x, y image 

coordinates of the object must be measured in both images, and then the digital workstation 

applies the projection transformation in the background and calculates X, Y, Z coordinates which 

are displayed in Current Coordinates toolbar (Figure 3.3).  In order to simplify the measuring 

process for the user, the measurement is split up into two step. As described by the 3D Editor’s 

User Manual, first in one image the cursor is set onto the point to be measured (the so-called X,Y 

measurement according to the manual), and then in the other image by initiating the Z 

measurement the cursor is set onto the homologous point. In this way the respective point’s 3D 

object coordinates X, Y, Z can be determined. 
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Figure 3.3: Image windows and Mapping functions toolbar 

The desired mapping function number must be activated in the toolbar before modeling starts.  

For instance, mapping function 6 („Gable roof“) is active in figure 3.4. Each object type has a 

constructional order, which can be seen by the operator in a line sketch where the object points 

are assigned an ordinal number. The user must follow this given order by measuring only the 

numbered points in the right sequence. Points without a number are created automatically thereby 

completing the respective building model.  

 

Figure 3.4. Constructional Order of Gable Roof  

For better understanding, this measuring principle should be explained with the help of a gable 

roof, one of the 3D object types in the object catalogue of the 3D Editor (Figure 3.4). The 

footprint (i.e. eave line) of a gable roof is a rectangle, for whose construction only 3 points are 

required a fourth point is necessary to define the height and the central location of the ridge. The 

measurement starts at one corner of the eave line at Point 1. Point 2 is a neighboring corner on 
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the eave line in the direction of the ridge. The corner point next to Point2, i.e. Point 3, is required 

for defining the other side of the rectangle. Now the rectangle can be completed automatically. 

Point 4 needs to be measured to define the ridge. Finally, Point 5 needs to be measured to define 

the building height. Figure 3.5 shows a practical example. As the just mentioned constructional 

order of the gable roof indicates, the modeling starts by choosing the first (eave point). Then the 

second point is measured parallel to the ridge, and the third point lies on the eave corner adjacent 

to the second point.  

 
Figure 3.5: Measuring eave points of object with respect to constructional order 

The fourth eave point will be set automatically. The first ridge points need to be manually 

measured, and the other one will be measured automatically. The fifth point must be determined 

by help of the second image which can be easily accomplished by using the mouse wheel.  After 

all points are measured as the constructional order regulates, the model looks as in Figure 3.6. If 

the model is not accurate enough, the position of the object can be changed by dragging the 

object or object part onto the correct position or moving the object or object part by a defined 

distance.  In addition to this, there are other editing options such as changing only height, 

rotating, scaling or inserting a point. 

The ground height can also be measured automatically from a digital terrain model (DTM).  A 

direct display in a 3D window (City DiscovererLight
4
) allows the control of the model from all 

viewing directions.  

 

                                                      
4
 City DiscovererLight  (by 3DCon) is a viewer for visualizing digital 3D city models 

1 

2 

3 

1 

2 

3 
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Figure 3.6: Model of a building with gable roof 

3.4 CityGRID® Modeler  

The CityGRID® Software-Suite was developed by UVM System for the acquisition and 

management of 3D city models. It consists of several modules for data collection, modeling, 

managing, visualizing and administration (Figure 3.7). 

 
Figure 3.7: CityGRID® Products 

CityGRID® Manager is a management system that is responsible for maintaining the model of 

the building on a database. The Manager stays in the background and provides functionalities for 

all CityGRID® modules. All modules of CityGRID use a common relational database (Oracle or 

SQL Server), where the models are stored as wire-frames (e.g. ridge lines, eave lines). The 

boundary representation can be automatically created from wire-frame model (Figure 3.8). The 

core of CityGRID is the triangulation algorithm. 

 
Figure 3.8: Wire-Frame model (left), the triangulated surface model (middle), the textured model (right) 
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CityGRID® Builder enables planers to integrate their drafts into the existing city model to 

generate visualizations of different planning variants and to create scenes optimized for 

CityGRID® Scout  which provides a real-time visualization and simulation with the highly 

realistic appearance of urban models (Manual CityGRID Basics, 2015, S. 15).  

CityGRID® Modeler is the second tool, which has been assessed in this master thesis. The 

Modeler a construction tool for creating,editing and texturing building model. It uses a line-

oriented approach that generates 3D surface based on roof lines. Each roof or facade surface are 

derived by specially developed the triangulation algorithms. The prerequisite for the creation of 

such a model is knowledge of the lines (roof lines, building edges, floor plan) of a building 

(Kerschner, 2004) 

The Modeler consists of available in three different modules, namely Inspector, Editor, and 

Texture. Inspector provides base functionality such as visualization and exporting of the model, 

whereas Editor includes editing tools and face generation algorithms. The module Texture is 

dedicated to texturing of the model.  

Photogrammetric restitution  

The initial tasks of the Modeler are editing of roof lines and modeling the roof surface from lines 

as well as adding texture to the facades and roofs. For this purposes, the Modeler uses specially 

developed algorithms that create 3D surfaces in boundary representation
5
 based on the roof lines 

given in wire frame representation
6
 that is extracted from the photogrammetric restitution 

method.  

The algorithm requires well-defined roof structures in order to create 3D surfaces correctly. The 

most important roof structure, that face generation algorithm recognizes, is eave line (outer 

boundary of the roof). The eave line is demonstrated by blue lines in figure 3.9. The eave line 

often breaks in the vertical direction, so the special lines like upper and lower break edges have to 

be introduced into the mapping model (Franic et al., 2009). Violet lines in figure 3.9 show the 

upper and lower break edges.  

                                                      
5
 Boundary representation is method for representing solid objects based on vertices, edges and faces. (See 

https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/b-rep.html, last access November 2016) 
6
 Wire frame is a method that represents a solid object with lines and point ( See 

https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/wireframe.html, last access November 2016) 

https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/b-rep.html
https://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/wireframe.html
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Figure 3.9: Mapping of roof structures.  

General roof line classes, which are recognized by the face generation algorithm, are eave lines, 

ridge lines, upper break edge, lower break edge, dormer windows, facade lines, chimneys, and 

terrace.  

Data structure 

In CityGRID® buildings are organized in a multi-level hierarchy (Figure 3.10). “Model” appears 

at the top of this data structure hierarchy, which contains from any number of “Units”. A group of 

buildings (“Objects”) that belong together from an administrative point of view (e.g. the main 

building together with its garage) are represented as one “Unit” which is saved with a unique ID 

(Kerschner, 2004) (Figure 3.10).  

 
Figure 3.10:  Data structure hierarchy - Unit and Objects (Manual CityGRID Basics, 2015, S. 10)     

Objects symbolize a single building which consists of “Element Complex” and “Elements”. An 

Element Complex is a group of Elements (i.e. roof, facade, protrusion, or floor)) and each 

Element Complex is a part of an Object (Figure 3.11). There are two types of Element Complex 

such as Main Element Complex (main solid of an Object) and Detail Element Complex (e.g. 

dormer, chimney) (Figure 3.11). Detail Element Complex can be considered as a child of its 

corresponding Main Element Complex.  



 

 25  

 

 

 
Figure 3.11:  Data structure hierarchy – Element and Element Complex (Manual CityGRID Basics, 2015, 

S. 10)     

User interface 

The Modeler is a licensed plug-in Autodesk 3ds Max. Therefore Autodesk 3ds Max needs to be 

installed to work with CityGRID® Modeler.  

Once the Modeler Plugin-in is started, a number of additional buttons and windows are appeared 

(Figure 3.12). The viewer contains three windows, which are 3D View, Top View, and Texture 

Dialog. 3D View shows the activated elements and Top View allows the user to see the model in 

the vertical direction from the top. Texture Dialog shows both texture image and the projected 

geometry for the interactive texturizing.  

Next to the viewer, Main Window is located. Main Window consists of Main Dialog, Hierarchy 

Dialog, Layer Dialog and Properties Dialog. Main Dialog enables loading single units and 

multiple units. Hierarchy Dialog displays loaded units in hierarchy tree form. Layer Dialog shows 

the layers of the element complex which is selected in the Hierarchy Dialog. Finally, Properties 

Dialog shows information about selected element properties such as face generation type, default 

color.  

 
Figure 3.12: the User interface of CityGRID® Modeler. 



 

 26  

 

Modeling a single building  

As it has been mentioned before, modeling buildings with the Modeler are based on face 

generation algorithm. The face generation algorithm generates the roof by triangulation inside of 

its eave lines where ridge or other roof lines are used as constraint edges (Figure 3.13). 

  
Figure 3.13: Roofline structure (e.g. Blue lines are eave lines, red lines are ridge lines, and yellow lines 

are general roof line) 

In some cases, the Modeler can be used to correct the dataset that derived from photogrammetric 

restitution. Typical editing actions include moving lines into the proper layers, close topological 

connections, insert further roof edges and so on (Figure 3.14). The aim is to edit lines until the 

derived roof faces are correct (Kerschner, 2004). 

  
Figure 3.14: The correction of the error on the ridge line 

Every time the geometry of an object is edited and triangulated, which is necessary to perform the 

changes on the faces, the system creates a new version of the model and stores it in the database 

providing the editing history (Figure 3.15).  
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Figure 3.15: Basic working principle of CityGRID Modeler  

The faces of the facade are generated by extruding the roof outer eave lines to the ground till it 

intersects with the lowest point of the terrain model Figure 3.16.  In order to bring the model to a 

higher level of detail, the roof detailed such as dormer windows, terrace and chimneys can also 

model by face generation algorithm.  

 
Figure 3.16: Building model with dormer windows, terrace, and chimneys 

 

3.5 SketchUp by Trimble 

In 2000, SketchUp was introduced by Last Software as a 3D modeling software which is widely 

used in various fields of architecting, modeling and designing like medical simulation, robotics, 

civil, mechanical, film, video, and game designing. Google bought the company in 2006 and that 

brought a new dimension to the software, which enables placement of the models into Google 

Earth. In 2012, SketchUp has been acquired by Trimble Inc., a provider of location-based 

solutions. 

SketchUp features a sketch-based modeling approach which means the user can quickly draw a 

2D shape and convert it to 3D model. This approach makes use of SketchUp easy for the users 

with no experienced in 3D modeling software.  
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In SketchUp, edges and faces are fundamental geometry type for modeling. Each object in a 

model is constructed by edges and faces. For instance, the basic cube on the left top in figure 

3.17, which is modeled in SketchUp, consists of 12 edges and 6 faces. Edges are always straight 

lines in SketchUp. Even arcs and circles are composed of small straight lines. Faces are the 

surface of the model. A face in SketchUp is constructed by at least three coplanar edges that 

surround it. Faces in SketchUp are always flat. Curved or no coplanar faces are created by 

multiple faces.   

SketchUp has an inference engine, which streamlines generating accurately and quickly models. 

The inference engine basically finds out the consequential relationship between points, line, 

edges, and surfaces. As its name suggests, it infers and gives cues and hints to the user by 

tooltips, when it finds a consequential relationship in the surrounding of the cursor. Figure 3.17 

shows examples of tooltips. 

 

Figure 3.17: Some of the inference engine of SketchUp
7
 

SketchUp is very versatile in modeling. Both, modelling the outside of buildings and their 

interior is possible. All possible objects such as vehicles, animals, furniture and lot of other can 

be modeled by mean of SketchUp (Figure 3.18).  

                                                      
7
 Source of the figure: http://www.sketchup-ur-space.com/2013/april/SketchUp-interference.html; last access 

November 2016. 

http://www.sketchup-ur-space.com/2013/april/SketchUp-interference.html
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Figure 3.18: Different modeled objects by SketchUp

8
 

There are two versions of SketchUp, “Make” and “pro” versions. SketchUp Make is a free 

downloadable version for non-commercial purposes. SketchUp pro is a professional/commercial 

version. Therefore, it has advanced features. The significant difference between two versions is 

import and export options.SketchUp Make version can export the models in kmz and collada  

while SketchUp Pro version can export the models in  3ds, wrl, xsi, dwg, dwf, fbx, and obj file 

formats.Add-on programs can be created by using Ruby programming language, or various types 

of the plugin can be freely downloaded via 3D Warehouse of SketchUp. In the thesis, SketchUp 

Pro 2015 version has been used  as well as the different plugins which will be explained in 

Chapter 5.  

User interface 

Most functions and toolbars can be found via the menu bar (Figure 3.19). Two main toolbars are 

Getting Start Toolbar and Large Tool Set that consist of the following functions: drawing, 

editing, moving, rotating, scaling and other construction tools as well as camera tools. 

                                                      
8
 The objects in the figure are freely downloadable via https://3dwarehouse.sketchup.com; last access November 

2016. 

 

https://3dwarehouse.sketchup.com/
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Figure 3.19: User interface SketchUp Pro 2015 

The other practical tools are view and style. The view enables the change the prefixed camera 

position quickly as iso, top, front, right, back and left. While modeling, the mesh structure can be 

very important, and the style tool allows to change it easily.  

The modeling window consists of a 3D space environment, in which the objects are created or 

edited. The 3D coordinate system is identified by three axes which have different colors (Figure 

3.20). The ground plane is defined by the red and green axes and the intersection of three lines 

define the origin. 

 
Figure 3.20:  SketchUp X-Y-Z coordinate system 

Modeling a single building  

In this chapter, the modeling of a building with basic tools of SkecthUp is demonstrated. The 

modeling of the building is started by drawing two rectangular faces (2D shape) by using 
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Drawing tools (Figure 3.21).  The intersected line can be deleted if one wants to obtain only one 

faces. 

 

 
Figure 3.21: Sketching 2D Objects 

By means of the Push/Pull tool, the L-Shaped faces are converted to building block (from 2D to 

3D) (Figure 3.22). On the top of the block, the ridge lines and valley are drawn in order to form 

the roof. The ridge lines are selected and moved up with the Move tool and hereby the gable roof 

is generated (Figure 3.23). 

 
Figure 3.22: Converting from  2D Object to 3D 
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Figure 3.23: Modeling  the roof form 

Roof details can be modeled with a combination of the tool sets – Offset and Push/Pull. Tape 

measure tool can be used to measure the thickness of the roof (Figure 3.24) and Offset and 

Push/Pull enables modeling the roof overhang (Figure 3.25). 

 

 
Figure 3.24: Measuring the roof thickness 
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Figure 3.25: Modeling  the roof overhang 

 

The door, windows, and chimney are created by drawing rectangle faces and using Push/Pull 

tools to convert rectangle faces to 3D block. The model can be further detailed with other basic 

tools of SketchUp as well as commercial /non-commercial plugins.  

 
Figure 3.26: Final 3D Model 

The objects, which require being modeled multiple times (e.g. fences of the garden door), can be 

modeled as a component. A component can be copied, and the copies will be linked to the 

original component that is called instances. If the original component is changed, then all 

instances will be changed.  
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CHAPTER 4 

4 STUDY AREA AND DATA DESCRIPTION 
A case study in this thesis has been performed with the intention to assess the afore mentioned 

three different software packages for creating 3D city model. In this chapter, the datasets, which 

have been used by the software, and study area are presented.  

4.3 Study Area 

The geographic area used in this case study is Marktplatz, Reutlingen (Figure 4.1), which is a city 

in Baden-Württemberg, Germany and lies in the Southwest corner of Germany. The city is circa 

87.06 km² and has circa 12,500 inhabitants (2014).  

 

Figure 4.1: Case Study Area – Marktplatz, Reutlingen 

 

4.4 Data 

4.4.1 Aerial Imagery  

In the case study, 17 nadir aerial images have been used. The images were captured by UltraCam 

Eagle camera from Vexcel Imaging GmbH (located in Graz, Austria) on 5 August 2013. It 

delivers large frame format (20010 pixels across-track and 13080 pixels long track) panchromatic 
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images and simultaneously recorded four channels (red, green, blue and NIR) at a frame format 

of 4360 pixels across-track and 6670 pixels long track. For both the panchromatic and the color 

images the physical pixel size is  5.2 µm by 5.2 µm. The radiometric resolution of the sensor in 

each channel is  >12-bit, the analog-to-digital conversion works at 14-bit and the digital format of 

the entire processing makes use of the 16-bit data format. 

Each image overlaps the next image within a flight strip by 60% (forward overlap or longitudinal 

overlap) and adjacent strips overlap by 60% (lateral overlap) (Figure 4.2).The 60/60 overlapping 

imagery enables to get a view from four different perspectives. This is essential for texturing 

purposes, as every facade is visible at least in one image.  

 
Figure 4.2: Block of aerial photographs of the study area. Green color indicates longitudinal overlap and 

red indicates lateral overlap   

4.4.2 Roof lines  

The roof lines (ridge, eave lines, break lines or other roof lines) have been determined through 

photogrammetric restitution of aerial images by GEOGIS Trade Inc. (located Ankara, Turkey) 

and corrected by UVM Systems GmbH (located in Klosterneuburg, Austria) in spring 2015. 

(Figure 4.3). The dataset has not only the geometry of the roof structure but also the semantics of 

roof structure. The layer window in Figure 4.3 shows all roof lines types of the dataset. The dataset is 

obtained in dwg format.  
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Figure 4.3: Roof lines dataset visualization in AutoCAD   

4.4.3 Footprint 

Quite often the building footprint (building ground plan) outlines the building structure and is 

identical to the precise location of the exterior walls. In the case of a simple roof shape (like a flat 

roof), the building footprint can also be an indicator for the boundary of the roof face. Hence, 

building footprints dataset are combined with other data source to improve the reconstruction of 

the 3D building model. The corresponding footprints are provided in shp format by Amtliche 

Liegenschaftskatasterinformationssystem (ALKIS®), year N/A (Figure 4.4). 

 
Figure 4.4: Footprints of the buildings in the case study area 

4.4.4 Digital Terrain Model  

The digital terrain model of the case study area is obtained from City Reutlingen in both TIN and 

XML format (Figure 4.5). 
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Figure 4.5: Digital terrain model  
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CHAPTER 5 

5 EXEMPLARY 3D CITY MODELING 

In the following the focus will be laid on 3D modelling in practice. With the help of each 

modelling tool, a 3D city model has been created as detailed as (Figure 5.1) the tool allows and 

the model has been texturized with aerial images. Each tool requires different processes and 

utilizes a different combination of data. In this chapter, those different processes will be 

presented.  

 

Figure 5.1  Roof components which should be reconstructed for the highest roof LODs (Nex and 

Remondino, 2012) 

5.3 3D City Modeling with 3D Editor 

The primary aim of the case study with 3D Editor was utilizing the combination of roof lines, 

footprint, and DTM datasets in order to create a 3D City model. However, the processing of roof 

lines in dxf format by means of 3D Editor was not possible. Tridicon data format (tdc/op3d) 

contains not only geometry but also information regarding roof types such as roof surface, wall 

surface or gable roof surface. Since such information was not stored in the roof line dataset as 3D 

Editor requires, another process follows in order to create 3D city model (Figure 5.2).  

 

Figure 5.2: Implementation process 
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5.3.1 Generation LOD2 by mean of City Modeller   

The CityModeller is developed by 3DCon GmbH as a solution for the automatic derivation of 3D 

city model in Level of Detail 2. The software uses aerial images as well as the building footprints 

to generate LOD2 building. Furthermore, digital terrain or point clouds may be added (Figure 

5.3).  

 
Figure 5.3: Working principle of CityModeller 

The software generates 3D point clouds from aerial images and uses a detailed roof library 

(pattern recognition) in order to automatically extract LOD2 models (Figure 5.4 & 5.5).  

 
                           Figure 5.4: Gable roof                                                Figure 5.5: Hipped-gable roof 

To accomplish the aim of the case study, the process has started by creating LOD2 by mean of 

CityModeller. The process starts with data preparation and import. Aerial images, building 

footprint, and DTM have been imported respectively. For the automatic derivation of 3D 

buildings, the program needs image pyramids and per image an orientation file in indigenous gori 

format (CityModeler Manual, 2009 -2015, S. 20). As there was no orientation file in gori format 
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available, they have been created by GoriCreator, which CityModeller provides for this purpose 

(Figure 5.6). Required information for the orientation was provided by the camera calibration 

report (by Vexcel Imaging GmbH, Feb 2013).The program creates the orientation files for the 

standard rotation angles and for the horizontal and vertical arrangement of lines and sample. 

Afterward, the orientation preview window opens in which the orientation model can be selected 

that matches the input data  (CityModeler Manual, 2009 -2015, S. 23). 

 
Figure 5.6: Creating orientation file in GORI format 

The accepted image formats are vit and tif. The data import process was completed by adding 

DTM in las format. Before the project is executed, the further function can preferably be set in 

order to optimize the model. Those functions are RoofSplitter, Roof Options, and Buildings 

Adjustment.  

In the case study, in order to get better roof detection, RoofSplitter has been activated, which 

allows the footprint split into individual parts, and the algorithm detects the roof type based on 

those smaller parts of the footprint. RoofSplitter let users choose between three different 

operation modes: automatically, interactively or pre-processing. The interactive and pre-

processing operation modes allow users to check and adapt the footprint splitting whereas the 

automatic operation mode splits the building footprint automatically. In order to avoid any 

manual interaction, Roof Splitter operation mode has chosen automatically in the case study. 

After all, the program has been executed. 

According to the log file, the automatic derivation has successfully completed in 53minutes and 4 

seconds, and 149 roof forms were detected (Table 5.1). The footprint dataset has initially 81 

objects, which are split during the roof detection that the eventual number of individual objects 

yields 149. The visualization of the result can be seen in Figure 5.7 and 5.8.  
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Figure 5.7: Visualization of LOD2 Model 

 
Figure 5.8: Visualization of LOD2 Model  
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Roof form  Number 

      Lean-to roof

  

4 

Gable roof 41 

Hip roof 3 

Gable and hip roof 6 

Cut gable roof 2 

Flat roof 87 

Flat roof (LOD1)   6 

Not found  0 

Sum 149 

 

Table 5.1: Result of the automatic derivation of roof form 

As it can be seen in figure 5.9, the result of the automatical detection is colored depending on 

how certainty the automatism has detected the correct roof. The quality value is measured in 

percent and describes the percentage of all points within a footprint which contribute to the 

detected roof shape. For instance, if 100 of the point cloud fall into a certain footprint and 70 of 

these describe a certain roof form, the quality value of this roof form within this footprint will be 

70% (CityModeler Manual, 2009 -2015, S. 94).  

 
Figure 5.9: Recognition certainty of LOD2 Buildings, visualization by CityModeller 

The color profile of the recognition certainty of detected roofs as well as the color of roofs and 

the walls of the displayed building may be set by the user in advance (Figure 5.10).  
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Figure 5.10: Color profile of recognition certainty  

 

5.3.2 Editing LOD2 Building Models with 3D Editor 

The model, which is automatically created in the previous step, consists of building models with 

standard roof structures (LOD2).  In this step, the 3D Editor has been used to correcting LOD2 

model where editing is required.  Roof details such as a dormer, chimney, terrace into the model 

in order to get closer to reality. In addition to this, the roof overhang extraction has been 

accomplished for the couple buildings.  
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CORRECTING ROOF TYPES   

The building in figure 5.11 has been generated by City Modeller as a building with flat roof type. 

In the reality, the building has cut gable roof with terrace. The generated model has been split 

into two parts so that each part can separately be modeled by selecting different predefined object 

types. One part has been regenerated as a terrace. So the roof type remained as the flat roof but 

the height of the roof has been changed. The second part has been converted to cut gable roof. 

Finally, the chimney has been modeled in order to get closer to as close to reality as possible. The 

result of the adjustment can be seen in figure 5.12.

 
                               Figure 5.11: Building with flat roof is generated by City Modeller 

 
 Figure 5.12:  The model after adjustment   



 

 46  

 

ROOF DETAILS GENERATION 

The roof type of the building in Figure 5.13 is generated correctly. However, the outlines (eave 

lines) of the roof were shifted.  Hence, the locations of the eave lines have been corrected and 

afterwards, the roof details has been generated by using different available object types such as 

lean-to roof, gable roof (Figure 5.14).  

 
Figure 5.13: Building with gable roof generated by City Modeller 

 
Figure 5.14:  The model after adjustment  
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IRREGULAR BUILDINGS 

Pattern recognition of CityModeller software is having difficulty with irregular buildings. The 

building in Figure in 5.15 has a roof type which is a combination of tent roof and irregular 

gambrel roof.  CityModeller accomplished to split to the roof where two different roof types 

apply. However, the roof types could not be generated correctly. The front part of the building 

has been initially generated as a flat roof and it has been corrected by converting the flat roof into 

the polytent roof and the back part of the roof has been also converted from gable roof to gambrel 

roof (Figure 5.16). As the building has an irregular gambrel roof, all eave points in the 

constructional order of the object must be measured manually.  

 
Figure 5.15: Building with flat roof and gable roof by CityModeller 

 
Figure 5.16: The model after adjustment 
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ROOF OVERHANG GENERATION 

In the aerial images, roof overhangs are often obscured by the roof. Thus, 3D Editor cannot 

generate the overhangs from aerial images.  

Export software, which is further explained in next section, has a component that enables 

exporting the model from op3d/tdc to CityGML. This component gives the possibility of 

intersecting 3D buildings with a 2D data source such as footprint. Footprints indicate the legal 

border of the outer walls of the building. CityGML Export module utilizes this information to 

generate roof overhang. If the roof outlines are bigger than the building footprints, the module 

cuts off the roof faces during intersection and generates the roof overhang (Figure 5.17). 

  
Figure 5.17:  The building in op3d format (left), The building in CityGML format after interesting with 

footprint (right) 

 

5.3.3 Texture Generation  

The generated 3D city model is texturized by TextureMapper. TextureMapper is software that 

automatically textures the 3D building models from nadir or oblique aerial images.  

The automatic texturing process of with the TextureMapper is divided into two sub-processes: 

occlusion calculation and determination of the texture. In the first subprocess, the program 

detects how much of which faces of the loaded 3D model is visible in which image. 

(TextureMapper Manual, 2006 -2015, S. 11). The program firstly eliminates the images on which 

the faces are visible at all and then beyond the images on which the faces are visible, the program 

calculates how many pixels of the image show a particular face and the incidence angle at which 

light strikes on the face of the model. In the second subprocess, textures for the faces are 

determined with respect to the result of occlusion calculation.  
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Figure 5.18: User Interface of the TextureMapper 

The texturing process starts by loading the required datasets to the program. As shown in figure 

5.18, the path to the 3D building model file and to images with the orientation file must be 

provided. The following images formats are supported: tiff, tif, vit, tga, png, jpg, jpeg, tdci, bmp, 

ads, jpe, psi, pmi, ljpg, dib, and img. Additionally, digital terrain data may be added. The 

occlusion files and the folder for texture are created automatically where the model is stored. 

Initially, the default values for different parameters are set in the user interfaces. Depending on 

the used images, the parameters such Minimum number of pixels for a face, Texture Resolution or 

Maximum incidence angle can be changed. TextureMapper allows separate texturing of walls and 

roof surfaces as well. Therefore, the parameter can also be set differently for the roof and wall. 

In the case study, the default values of the parameter are used, as they are often the optimal 

values. As first occlusion calculation has been completed and then textures have been created in 

png format. Some results of occlusion calculation can be seen in Figure 5.19. The column Image 

is the name of the images, ID is the id of the faces to be textured. NumberOfPixel indicates how 

many pixels of the images are visible on the face and Angle refers to the incident angle.  
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Figure 5.19: Example results of occlusion calculation  

In addition to this, another file (ID2ObjectFace.dat), which shows the generated texture for every 

face of the model, is created (Figure 5.20). ID column of this file enables to communicate with 

OcclusionAnalysis.dat file (Figure 5.19), GUID columns refer the corresponding building, and 

Face column is the identifier for the face in a particular building. The file name of the textures 

contains both parts of GUIDs and the Face number. By looking at those both files, one can see, 

which face will be textured by which image. As an example, the building with GUID 

1440243644865_288943 has 5 faces.The face number ID 1 is visible in the image 

1052_31_7402_13_RGB.tif. The face is covered by 14755 pixels of this image. Therefore, a 

texture is created by those pixels and is named as 1440243644865_288943_1.png. 

 
Figure 5.20: Example results of occlusion calculation 

The quality of texturing is highly dependent on both qualities of the images and orientation 

parameter. For instance, the wall faces can better be textured with oblique images or high 

overlapping images.  

TextureMapper offers to work in batch process when series of the model need to be texturized.  

5.3.4 Model Export 

3D Editor generates the 3D building models in op3d/tdc format and enables exporting them as 

dxf, vrml 97 and shp format.  

Furthermore, the Export software makes possible the exporting of the data format op3d/tdc into 

various formats. The software consists of following export components:  
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 tdc2CityGML: Exports the model to CityGML format. The program also allows 3D 

building models to intersect with the 2D data source and a terrain model. Export of 

textured model is also supported. If there is no texture available, the model can be 

exported with synthetic solid colors. tdc2CityGML component enables working with 

batch mode.  

 tdc2Collada: Exports the model to collada format. 

 tdc2EsriGDB: Exports the model to Esri Geodatabase format. Both 32-bit and 64-bit 

version are available. The exporter allows specifying wall and roof color or searching for 

textures. 

 tdc2KML: Exports the model to kml format. 

 tdc2KMZ: Exports the model to kmz format. The model can be exported with natural 

colors.  

 tdc2myVR: Exports the model to myVR format. 

 tdc2OBJ: Exports the model to obj format. The model can be exported with natural 

colors. 

 tdc2Shape: Exports the model to shp format. The model can be exported both as 3D or 2D 

shp file. Export with natural colors is available.  

 tdc2VRML: Exports the model to VRML format.The model can be exported with textures. 

If there is no texture available, export of the model is possible with natural colors or 

random colors.  
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5.3.5 Results 

The following sequence of figures (Figure 5.21 to 5.32) shows visualizations of  the modelling results 

from CityModeller and 3D Editor. 

 
Figure 5.21: LOD2 Model generated by City Modeller and texturized by TextureMapper 

Figure 5.22 LOD2 Model generated by City Modeller and texturized by TextureMapper 
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Figure 5.23: The modeled buildings in case study, visualization in City Modeller    

 
Figure 5.24:  The modeled buildings in case study, visualization in City Modeller    
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Figure 5.25: The modeled buildings in case study, visualization in CityDiscoverer 

 
5.26: The modeled and texturized buildings in case study, visualization in CityDiscoverer 
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Figure 5.27: The modeled buildings in case study, visualization in CityDiscoverer 

 
Figure 5.28: The modeled and texturized buildings in case study, visualization in CityDiscoverer 
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Figure 5.29: The modeled buildings in case study, visualization in CityDiscoverer 

 
Figure 5.30: The modeled and texturized buildings in case study, visualization in CityDiscoverer 
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Figure 5.31: The modeled buildings in case study, visualization in CityDiscoverer 

 
Figure 5.32: The modeled and texturized buildings in case study, visualization in CityDiscoverer 
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5.4 3D City Modeling with CityGRID® Modeler 

In this section, the implementation process to generate a city model with CityGRID Modeler is 

described (Figure 5.33).  

 

Figure 5.33: Implementation process 

5.4.1 Preparation of the dataset  

The core of CityGRID Modeler is the triangulation algorithm, which requires well-defined roof 

structures in order to create 3D surfaces correctly. Therefore, photogrammetric interpretation 

operator should consider of not only the geometry of the roof structure but also the semantics of 

roof structure. By taking this criterion into account, the roof line data set has been generated in 

dwg format with the help of photogrammetric compilation as it has been mentioned in Chapter 4. 

The basic data format in CityGRID is xml, hence the dwg format has been converted into in xml 

by use of CityGRID Converter. CityGRID Converter software helps to convert cad format into 

xml format. During the conversion, the Converter organizes each object semantically and 

hierarchically. For instance, outer eave, general roof lines, ridge, break line, dormer window or 

chimney are assigned to roof element whereas facade lines are assigned to facade element (Figure 

5.34).   

 
Figure 5.34: Visualization and hierarchic structure of the model after conversion to xml format 

The Converter can also import a terrain model concurrently so that the buildings can get real 

height after the triangulation algorithm has been executed.  



 

 59  

 

5.4.2 Model Generation  

The surface of the models has been derived automatically from the lines by Triangulate tool in 

the Modeler (Figure 5.35). The tool triggers the 3D triangulation algorithm for generating face 

generation. Different face generation rules are applied to the roof, the facade, the protrusion, to 

detail elements and to overbuild objects of a building (i.e. roof details)  (Systems, UVM, 2015, p. 

12). The faces of the roof are generated by triangulation inside eave lines (outer boundary of roof 

shape). The eave lines must be a close polygon.  

   
Figure 5.35: Roof and facade face generation from roof lines  

The face of the facade of the buildings is generated horizontally from eave lines with a height of 

50 m (default value). If the building model lies on a terrain model, the faces can be generated 

from eave lines to the lowest intersection point with the terrain.  

EDITING THE GEOMETRY 

Triangulation algorithm may generate faces incorrectly as a consequence of geometry error of 

building lines (Figure 5.36). According to the Modeler Manual, typical editing tasks are to merge 

non-snapped vertices, adjust intersection lines, complete missing lines and detach lines to Detail 

elements. If a loaded unit has such geometry error, a warning window comes out after the unit is 

triangulated. The warning window indicates geometry errors and possible solutions.  

The buildings in case study have been checked against such error. Lines with error have been 

edited in such cases until the face generation algorithm creates correct faces. For instance, the 

upper break line does not end in yellow colored roof line in figure 5.37, therefore the roof surface 

has a gap. The problem has been solved by moving the end point of the upper break lines. The 

editing the process finishes by triangulating the building (Figure 5.38). 
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Figure 5.36: Incorrect roof face                          Figure 5.37: Geometry error of roof lines 

 

  
Figure 5.38: The building model after correction  

  

ROOF DETAILS GENERATION 

The special editing tool “Detach new complexes” allows generating roof details such as dormers, 

chimney. The lines, which are to be detached as roof details, must have a closed outline, as the 

automatic algorithm searches for closed polygons in the given layer or selected lines (Figure 

5.39). The lines, which lie on those closed polygons, are suggested as Detail Element Complex. If 

suggested closed polygon is reasonable, the faces of the roof details can be generated by 

Triangulate tool. The triangulation algorithm extrudes facade down to the corresponding roof. In 

Figure 5.40 and 5.41, the buildings before and after roof detail generation can be seen. 

Upper break 

lines 
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Figure 5.39: Detach new complexes properties windows. In blue highlighted layers, the closed polygons 

are searched.  

  
Figure 5.40: The building before and after roof detail generation  

  
Figure 5.41: The building before and after roof detail generation  
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ROOF OVERHANG GENERATION 

Roof Protrusion Tools enables to separate eave lines and the upper edge of the wall so that roof 

overhangs can be generated. The tool offers different methods for calculation of roof overhangs 

(Figure 5.42). Horizontal Protrusion is the first method which the selected line segments will be 

shifted respectively the given amount. The second method is Intersection Roof/Facade. The 

methods shift the selected segment with respective to the given amount and intersect vertically 

with the roof. The last method is Taking over the 2D ground sketch. The method intersects the 

given 2D line information, that is stored as a separate layer, with a roof, where it´s lying inside of 

the eave line.  

 
Figure 5.42: Roof Protrusion Tools Windows and the offered methods 

Taking over 2D ground sketch method has been carried out in the case study to generate roof 

overhang (Figure 5.43, 5.44). In order to accomplish this method, the footprint as 2D ground 

information had to correctly be matched with 3D buildings. This process requires further 

software to handle such as Feature Manipulation Engine (FME) software
9
.  

  
Figure 5.43: The building before and after roof overhang generation 

                                                      
9
 FME software is a data manipulation and transformation tool. (See http://www.safe.com/; last access December 

2016). 

Footprint 
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Figure 5.44: The building before and after roof overhang generation 

5.4.3 Texture Generation 

CityGRID Administrator has been utilized to automatically texturize the model. CityGRID 

Administrator is a UVM product for data administration. The program establishes a connection to 

a database (MS SQL or Oracle), which enables to import the models into database and export the 

data in various format. Furthermore, automatic building texturing is introduced by this program 

(Figure 5.45). The pre-requisites for automatic texturing are geo-referenced aerial images that are 

captured at the high overlap. Throughout, the program searches ideal aerial image for a specific 

polygon to texturize. It is done for roof and wall element separately.  

Texturing has been started by importing the building model into the database via CityGRID 

Administrator. The images are not directly stored in the database but in specified texture folder. 

An xml file has been created, which refer to the path to aerial images as well as their inner and 

outer orientation parameter. Based on the parameter, the program finds automatically faces with 

corresponding parts of aerial images. The result of the automatically texturing process can be 

seen in Section 5.2.5.  



 

 64  

 

 
Figure 5.45: Automatic Texturizing Window of CityGRID Administrator 

There are two other possibilities for texturing the model directly in CityGRID Modeler: 

interactively texturing via freely-taken picture and semi-automatically texturing via oriented 

images. 

For interactively texturing, the face to be texturized as well as the images to be mapped must be 

selected. In the texture window (yellow window in Figure 5.46), the mesh of the geometry of the 

face and texture image will be combined with selection.  

 
Figure 5.46: Interactive Texturizing in CityGRID Modeler 

The mesh always has four points which represent the vertices of the selected face. In the texture 

window, the points of mesh should be dragged to the corresponding positions in the texture 
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image and the final positions of the points should be saved so that the texture coordinates will be 

saved in the data source.    

For the semi-automatically texturing approach, the images that will be used for the texture must 

be imported with their perspective orientation parameter and/ or with their geo-reference. Based 

on this,selected faces will be mapped semi-automatically with oriented images.  

5.4.4 Model Export 

The models are generated in xml format by CityGRID. However, the program enables exporting 

the model into followings formats: wrl, dxf, kml, and CityGML. If the model is stored in the 

database, there is a possibility to export model directly from the database into wrl, dxf, kml, and 

CityGML format via CityGRID Administrator.  
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5.4.5 Results 

The following sequence of figures (Figure 5.47 to 5.54) shows visualizations of the modelling results from 

CityGRID Modeler. 

 
Figure 5.47: The modeled buildings in case study, visualization in Autodesk 3ds Max     

 
Figure 5.48: The modeled and texturized buildings in case study, visualization in Autodesk 3D Max     
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Figure 5.49: The modeled buildings in case study, visualization in Autodesk 3D Max     

 
Figure 5.50: The modeled and texturized buildings in case study, visualization in Autodesk 3D Max     
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Figure 5.51: The modeled buildings in case study, visualization in Autodesk 3D Max     

 
Figure 5.52: The modeled and texturized buildings in case study, visualization in Autodesk 3D Max     
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Figure 5.53: The modeled buildings in case study, visualization in Autodesk 3D Max     

 
Figure 5.54: The modeled and texturized buildings in case study, visualization in Autodesk 3D Max     
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5.5 3D City Modeling with SketchUp 

The general idea for the generation of a detail 3D model with SketchUp was combining the three 

datasets which are roof lines, footprints, and DTM. The roof surfaces are created by using roof 

lines, and the intersection of the roof surface with DTM gives the real height of the buildings. 

Additionally, the footprints information is utilized to extract the roof overhang.  

The followed process with SkecthUp is shown in figure 5.55 and will be explained in detail in 

this chapter. 

 
Figure 5.55: Implementation process with SketchUp 

5.5.1 Data Preparation and Import 

The first task of data preparation step is combining the datasets from different source and 

formats. The first challenge was converting the different formats into a format which SketchUp 

Pro enables to import. The roof line dataset is provided in dwg, which can be imported without a 

problem into SketchUp, yet DTM is in xml and footprints in shp format, which SketchUp is not 

able to import. Hence both datasets were converted into dxf format by the help of Autodesk 3ds 

Max software
10

 (Figure 5.56, 5.57).The other approach would be using CityEdior, which is a 

commercial SketchUp plugin developed by3D Information Systems 

(http://www.3dis.de/loesungen/3d-stadtmodelle/cityeditor/, last access November 2016). 

CityEdior enables importing various formats as well as editing and exporting. As the plugin is not 

freely available, the formats have to be changed with Autodesk 3ds Max. 

 

 

 

                                                      
10

 Autodesk 3ds Max software offers free education license for 3 years.  
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Figure 5.56: Roof lines and Footprint in SkecthUp after format conversion  

 
Figure 5.57: Roof lines, DTM and Footprint in SkecthUp after format conversion 
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5.5.2 Model Generation  

                        The model generation begins by generating roof surface from roof lines. For this purpose, the 

basic tools which are explained in the third chapter can be used. However, as the intention is to 

make generation less time-consuming and more automatic, different plugins have been tried out. 

Firstly, s4u Make Face plugin, which generates automatically faces from coplanar line segments, 

was utilized. As it can be seen in Figure 5.58, most of the faces have been not created by the 

plugin. The main reason for that is non-coplanar lines. 

 
Figure 5.58: The result of the Make Face Plugin  

Another reason for the failure of the plugin is open ends of roof lines (Figure 5.59). By mean of 

Edge Tools, not connected edges have been found out. Those lines have been manually corrected, 

and the faces have been created by s4u Make Face plugin. 

 
Figure 5.59: Example of open ends  
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The faces of non-coplanar lines have been generated by Sandbox Tools plugin (Figure 5.610). 

The plugin transforms roof lines into TINs. The tool requires selecting the edges of the object to 

be modeled. Otherwise, it triangulates through all objects. Therefore, the lines of each roof must 

be chosen separately in order to create independent faces.  

  
Figure 5.60: Creating the roof and dormer face with Sandbox Tools 

The results after face generation can be seen in Figure 5.61. 

 
Figure 5.61: Roof surfaces  

For the creation of the vertical walls, Extrusion Tools have been used (Figure 5.62). Building 

walls have been modeled by creating vertical walls by the plugin from footprint to the associated 

roof surface. With this method, both vertical walls and roof overhang have been modeled. 

Extrusion Tools also requires manual selection of each individual object, from where the vertical 

wall is to be created. As it can be seen in Figure 5.63, the edges of a footprint have been selected 

in order to create vertical walls. This process has been repeated for each and every building 

footprint that is to be modeled.  
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Figure 5.62: Creating Vertical Walls from building footprint with Extrusion Tools 

After vertical walls are modeled, the buildings are intersected with DTM in order to obtain the 

real height of the buildings.  

As a final point, the vertical walls of roof details such as dormer, windows, and chimney have 

been generated by Extrusion Tools. The vertical walls of roof details have been created from the 

roof detail to associated roof surface. The Extrusion Tools cut the vertical walls where the 

vertical meet with any surface. The results can be seen in Figure 5.63 and 5.64. 

 
Figure 5.63:  The model after roof overhang creation  
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Figure 5.64: Wireframe of the model  

 

5.5.3 Texture Generation 

SketchUp enables texturing the existing model. The first step for that, the images will be used for 

the texturing must be added into SketchUp Material Libraries. The images with extension of .jpg, 

.png, .psd, .tif, .tga and .bmp can be used for the texturing. In the Material Libraries, each picture 

is considered as a material palette.  

With Paint Bucket tool, the image can directly be projected into chosen face. The position of the 

texture image must be determined manually. Therefore four pins help the user to match the 

picture with the appropriate angle of incidence and perspective (Figure 5.65 and 5.66). If a face is 

divided into more than one neighbor faces, the positioning of one image is sufficient as the 

texture of the other neighbor face can be projected from the first face with Sample Paint tool. 

Texturing models with SketchUp is a completely manual process. There is no automatic 

matching option. Therefore user has to decide which picture, the model needs to be textured. In 

the case study, the images have been cropped building by building as the aerial images were 

rather large, which makes texturing the images with pins harder and slower.   
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Figure 5.65: Texturing the building facade with SkecthUp 

 
Figure 5.66: Texturing the roof with SkecthUp 

5.5.4 Model Export  

SketchUp allows export of the model to 3DS, AutoCAD DWF, AutoCAD DXF, COLLADA, 

FBX, IFC, Google Earth File, OBJ, VRML and XSI file. The model can also be exported as 2D 

Graphic as JPEG Image, PDF File or Tagged Image File. In addition, the Plugin CityEditor, 

which has been mentioned before, allows an export of SketchUp models to CityGML and 3D-

PDF documents.  
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5.5.5 Results   

The following sequence of figures (Figure 5.67 to 5.74) shows visualizations of the modelling results from 

SkecthUp. 

 
Figure 5.67: The modeled buildings in case study, visualization in SkecthUp     

 
Figure 5.68: The modeled and texturized buildings in case study, visualization in SkecthUp     
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Figure 5.69: The modeled buildings in case study, visualization in SkecthUp     

 
Figure 5.70: The modeled and texturized buildings in case study, visualization in SkecthUp     
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Figure 5.71: The modeled and texturized buildings in case study, visualization in SkecthUp     

 
Figure 5.72: The modeled and texturized buildings in case study, visualization in SkecthUp     
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Figure 5.73: The modeled and texturized buildings in case study, visualization in Google Earth  

Figure 5.74: The modeled and texturized buildings in case study, visualization in SkecthUp 
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CHAPTER 6 

The comparative assessment (using some 20 buildings) of the selected software is based on 

mainly the results of the exemplary 3D city model, as well as its process of generating and 

texturing. Additionally, other criteria have been taken into consideration such as import and 

export options, easiness, required effort and ability to update. By doing so, the requirement and 

the process to generate an entire city model with selected software packages could be estimated. 

In this section, the results of the case study are discussed and compared to each other.   

6 RESULTS AND DISCUSSION 

The needs for each 3D city modeling project vary depending on the aim of the model, size, and 

composition of the city, the budget of the project as well as at what detail the model will be. 

Same sort of 3D city model may not be feasible for different applications. For instance, an LOD2 

city model for the purpose of noise protection is not feasible for the use of a real estate property 

project, which requires LOD. Because of this reason, this criterion has also been taken into 

account during the assessment of the suitability of the software for a 3D city modeling project. 

Figures of the models by each software can be seen in Chapter 5 as well as in Figure 6.1, 6.2 and 

6.3.  

 
Figure 6.1: Model 1 is generated by 3D Editor  

https://www.seslisozluk.net/de/was-bedeutet-suitability/
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Figure 6.2: Model 2 is generated by CityGRID Modeler  

 
Figure 6.3: Model 3 is generated by SketchUp  
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6.3 Comparison of Basic Working Principle  

Each software package assessed in this thesis allows the user to interactive edit and model 3D 

building with different methods.  

3D Editor works mainly on the principle of photogrammetric interpretation. Therefore, the 

program requires aerial images for the modeling. Without data, the modeling is not possible. 3D 

Editor enables modeling the buildings based on predefined building primitives. These predefined 

building primitives are the main limitation of the. In cases with many irregular buildings, as they 

can be found in historic cities or in small villages, the adaptability very soon reaches its definite 

limit 

To model a building with CityGRID Modeler, input data requires either as XML or available in 

the database. The program has a line-oriented approach. Hence, input data must have a line 

structure which is mostly extracted from photogrammetric restitution.  

SketchUp works mainly on the principles of sketch-based modeling. There is no special tool for 

the modeling of a 3D building but through the combination of a number of tools.  In contrast to 

3D Editor and City Modeler, SketchUp does not require data for modeling. In another word, 

SketchUp can create both existing building and proposed buildings.  

CityGRID Modeler and 3D Editor are more specific for a modeling of ensembles of 3D  building 

whereas SketchUp is a 3D modeling software for a wide range of applications with a focus more 

on individual objects rather than huge arrangements. 

The interface of 3D Editor and CityGRID Modeler allows the user to see the model both in 2D 

and 3D. However, the model in SketchUp cannot be simultaneously seen in 2D. The user 

interface enables only 3D view. 

6.4 Comparison of Import & Export Capacity  

3D Editor´s initial file format is op3d/tdc, and it also allows importing file in dxf and shp file. 

However, one can work with dxf only if it fulfills the requirement of the program (See Chapter 

5.1). 3D Editor cannot export the model as CityGML. However, the Export software ofby 

Hexagon enables conversion of op3d/tdc into CityGML. 

As already mentioned, CityGRID Model requires an input file either in XML format or an 

available data set in the database. If the input data is a CAD format such as dwg, it must be 

converted to xml format through CityGRID Converter. Working directly with CityGML format is 

not possible. A CityGML file can be converted through FME into an xml file, and then the 

program can work with it.  

In contrast to other assed software, SketchUp provides larger import and export capacity (Table 

6.1). Through various purchasable and costless plug-ins, import and export capacity of SkecthUp 
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increases. For instance, City Editor
11

 plug-in, which is a charged plug-in, allows importing, 

editing and exporting CityGML file.  

In summary, apart from 3D Editor, both assessed software packages requires either a plug-in or 

additional software to work with CityGML. The only difference between them is the cost factor. 

SketchUp plug-ins are generally more convenient compared to that for FME software.   

 Import Export 

3D Editor   Vector file: dxf, shp 

 

dxf, vrml 

 

via Export software:  

CityGML,Collada, EsriGDB, kml, 

kmz, myVR, obj, shape 

DEM  file:  asc, dtm 

Image file: vit, tiff, raw, tld, bmp  

CityGRID Vector file:  xml, from database (Oracle und 

MSSQL) 

 

 

 

vrml, dxf, xml, kml,CityGML  

DEM  file:  xml, from database (Oracle und                                                         

MSSQL)  

Image file: bmp, gif, jpg, png, tga, tif  

SketchUp Vector data: : dwg, dxf, 3ds, dae, kmz, fbx 

 

 

dae, kmz, 3ds, dwg, dxf, fbx, obj, 

wrl, xsi DEM file: dem, ddf 

Image file: jpg, png, psd, tif, tga, bmp, eps, pdf 

Table 6.1: Comparison of Import and Export Capacity 

6.5 Comparison of Modeling Process   

By the help of each assessed software packages in this thesis, a 3D building model can be 

generated, an existing 3D building can be edited, and the model can be enriched by adding roof 

details such as dormers, chimneys, and other superstructures. The main difference between 

software is the process of the modeling. 

As a digital photogrammetric workstation, 3D Editor can generate 3D building models with 

predefined building primitives. This process requires manual afford for each and every building 

to be modeled. Depending on the complexity of the building and roof type, the time required for 

modeling of one building changes from 2 up to 10 minutes. It can be longer if one wants to add 

more details on the roof. In the case study, an LOD2 city model has been automatically created 

through CityModeller in order to avoid manual generation of 3D buildings with 3D Editor. By 

using 3D Editor, buildings have been edited and enriched with roof details. 3D Editor has no 

special tool for the generation of the roof detail. Therefore, roof details are also generated 

manually by using buildings primitives. There exist no additional building primitives that are 

special for roof or facade details.  

                                                      
11

 CityEditor (see https://extensions.sketchup.com/de/content/cityeditor-2; last access December 2016) 

https://extensions.sketchup.com/de/content/cityeditor-2
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CityGRID Modeler generates faces of 3D buildings by the help of triangulation algorithm. 

Among the assessed software packages, only the Modeler provides special tools for the creation 

of roof details (i.e. dormer, chimney, roof window). It does not require any manual effort and 

enables to generate so many roof details at once. For instance, the roof details of 18 buildings 

have been generated all together by using “Detach new complexes” tool. CityGRID Modeler 

enables to detach tunnels and building passage to the buildings.  

Each building block in SkecthUp is composed of edges and faces. A face is a closed coplanar 

spatial polygon of any number of lines (minimum is three). However, in the case study, all lines 

that belong to one roof, except the triangular ones, were not always coplanar. In non-coplanar 

cases, a face needs to be composed of multiple faces (Figure 6.4). 

SketchUp and 3D Editor model 3D buildings individually. Contrary to SketchUp and 3D Editor, 

simultaneous modeling of several buildings is possible only with CityGRID Modeler.  

 

 
Figure 6.4: The multiple faces of roofs in SkecthUp 

Each assessed software packages in this thesis can generate a 3D building seamlessly with a 

standard roof type such as gable roof, hip roof or gambrel roof (Figure 6.5).  
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Figure 6.5: A 3D Building model with gable roof by 3D Editor (left), by CityGRID Modeler (middle), by 

SketchUp (right) 

The generation of a 3D building with a standard roof requires manual afford for both 3D Editor 

and SketchUp, whereas CityGRID Modeler accomplishes it automatically by triangulation 

algorithm. As long as the input data has no geometrical error, the user does not need to interfere 

with CityGRID Modeler while modeling.  

Roof details can be generated manually by mean of 3D Editor and SketchUp as well. With 

CityGRID Modeler, this task can be completed automatically by using a special tool. As it can be 

seen in Figure 6.5, the building model with CityGRID Modeler and SketchUp are fairly similar, 

while the roof detail of the building model with a 3D editor has smaller roof details.  

In Figure 6.6, another 3D building model, which has been correctly generated by each software 

package, can be seen. The building originally has two-pieces gable roof type, a terrace and a 

winter garden on the terrace. 3D Editor does not have such a building primitives. Therefore, the 

building had to be split into three parties, where the roof type changes and each part has been 

modeled individually. The roof type of the winter garden on the terrace cannot be generated by 

any building primitives in 3D Editor. Hence, it has also been by generated by a combination of 

gable and flat roof. Combined building primitives approach helps the user to model also irregular 

building. However, it requires more time to model such buildings more accurately. For 

CityGRID, the same automatic process has been pursued as for the previous example in Figure 

6.2. With SketchUp, the building and roof details have been mainly modeled manually.  
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Figure 6.6: A 3D Building model with terrace and winter garden by 3D Editor (left), by CityGRID 

Modeler (middle), by SketchUp (right) 

The building model in Figure 6.7 has a less common roof type and building structure. With 3D 

Editor, it has been modeled by combination gambrel roof and tent roof. The model with 3D 

Editor is less realistic than the models with CityGRID Modeler and SkethUp. The results of with 

CityGRID Modeler and SkethUp are quite similar. However, SketchUp necessitates more time 

than CityGRID Modeler.  

Figure 6.7: A 3D Building model with irregular roof type by 3D Editor (left), by CityGRID Modeler 

(middle), by SketchUp (right) 

The building with terrace in Figure 6.8 can be successfully modeled only by CityGRID Modeler 

and SketchUp. The part of the roof, where the balcony is located in the building, has been 

modeled as the flat roof in 3D Editor as predefined building primitives of 3D Modeler do not 

contain a balcony or terrace type. However, if it´s required, 3D Editor can also accomplish 

modelling the terrace. For that, first one flat roof must be generated, and on the top of it, side 

terrace parapets can be modeled on the flat roof by creating a very tiny flat roof. Side terrace 

parapets must be located in a way that the outline of the flat roof under terrace parapets and the 

outlines of the terrace parapets must overlap. Because of that, it´s rather tedious work and 

requires high attention.   
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Figure 6.8: A 3D Building model with terrace by CityGRID Modeler (left) and by SketchUp (right) 

3D Editor does not allow the generation of the roof overhang. It can only be accomplished by 

CityGML Export tool of Hexagon for single buildings while exporting the model. The roof 

overhang generation is possible for both CityGRID Modeler and SketchUp. The comparison of 

the software packages regarding other building components can be seen in Table 6.2. 

 

Software Roof 

Details 

Roof 

Overhang 

Facade 

Details 

Balcony, 

Terrasse 

Building 

passage, 

Tunnel 

Tower Interior 

features 

3D Editor  yes no no no no yes no 

CityGRID 

Modeler  

yes yes yes yes  yes yes no 

SketchUp  yes yes yes yes yes yes yes 

Table 6.2: Comparison of the modeling capability of the software 

In terms of level of detail, the resulting model with SketchUp and CityGRID Modeler are richer 

than the model with 3D Editor. The model with SketchUp has same content regarding modeled 

building, roof details and roof overhang as the model with CityGRID Modeler.  

SketchUp enables also modeling the interior features of the building. Therefore, SketchUp is one 

of the assets software packages that it is capable of generating LOD4 building models (Table 

6.3).  

 

 

Software  Level of Detail Capacity   

3D Editor  LOD2 
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CityGRID Modeler  LOD2, LOD3 

SketchUp  LOD1, LOD2, LOD3, LOD4  

Table 6.3: Comparison of Level of Detail Capacity 

 

6.6 Comparison of Required Time  

The time spent on generation of a 3D city model is an important factor that needs to be taken into 

consideration when deciding which 3D city modeling software package to use.  

Provided one wants to generate a highly detailed model the most amount of time is required with 

3D Editor and SketchUp, as the most of the work has been done manually throughout the case 

study.  

There is little manual work associated with creating the model with CityGRID Modeler. It does 

not require active interference of an operator and batch mode while modeling is possible. 

Therefore, the computer can be left over to work on generation the model. However, one should 

not forget that CityGRID Modeler requires input data that must have a line structure which is 

mostly extracted from photogrammetric restitution. Extracting of line structure of roof and roof 

details is the most time-consuming step during photogrammetric restitution. According to 3D 

City Modeling Project for Konya Metropolitan Municipality, an experienced photogrammetric 

interpretation operator has digitized an average of 60-80 building roofs per day for the Konya 

project. But this amount can change according to the complexity of the roof structure (Özerbil, 

2015). Therefore, CityGRID Modeler requires long and expensive pre-processing before the 

modeling can start.  

6.7 Comparison of Easiness of software  

Modeling with 3D Editor is not easy and requires an understanding of photogrammetry as well 

as a lot of practices. SketchUp is understandable and easy to use. Therefore, the users can learn 

very quickly on their own. CityGRID Modeler is much harder to understand than SketchUp. 

Training is, therefore, mandatory to create 3D city models from CityGRID Modeler. Compared 

to CityGRID Modeler and 3D Editor, SketchUp provides a short learning curve for 3D modeling.  

6.8 Comparison of Texturing Process 

Texturing highly enhances the visual impression of 3D city model. For texturized building 

modeling, each building facade requires a realistic texture. Therefore, mapping texture onto roofs 

and facades of the building model is very time-consuming, and it may take days depending on the 

size of the city. Texturing can be based on different principles such as by color or pattern libraries 

or photographs.  

3D Editor itself does not offer texturing functionality. TextureMapper software from Hexagon, 

which has been used in the case study, takes over the texturing task from 3D Editor. CityGRID 

Modeler enables texturing directly through CityGRID Modeler both semi-automatically and 
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manually (see 5.2.4). However, CityGRID Administrator has been used for texturing purposes in 

the case study in order to accomplish the task completely automatically.  

The precondition for automatic texturing with TextureMapper and CityGRID Administrator are 

geo-referenced aerial images with high overlap. TextureMapper does not allow editing texture of 

the building. As it can be seen in Figure 6.9, the results of the texture processing are quite good. 

The correct texture images have been assigned to correct surfaces with both software as long as 

proper images are available.  

According to the log file of TextureMapper, the texturing duration is 2 hours and 21 minutes. 

TextureMapper offers the possibility to work in batch process when series of the model need to 

be texturized.  

  
Figure 6.9: Output of case study by TextureMapper Modeler (left) and by CityGRID Administer (right) 

With SketchUp, models cannot be texturized automatically. It does not require geo-referenced 

aerial images. As the texturizing is possible only with manual effort, the quality of the texture is 

not advanced. Unlike the other software packages, SketchUp allows the user to texture the model 

with the artificial material (e.g. color or material library). Additionally, it can obtain texture 

images directly from Google Earth or Google Street View.  

Software Automatic 

Texturing of 

Roof  

Automatic 

Texturing of 

facade  

Texturing with 

non- oriented 

images  

Texturing with 

other material  

3D Editor  yes yes no no 

CityGRID Modeler  yes yes yes no  

SketchUp  no no yes yes 

Table 6.4: Comparison of Texturing Capacity  

6.9 Comparison of Updating Process   

Nowadays, the cities grow rapidly. Consequently, 3D city model must be periodically maintained 

and updated with new data.  
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3D Editor and SketchUp do not a special tool for an update process and require manual work for 

updating. Neither software offers any possibility to manage the different versions of the models.  

CityGRID Modeler allows managing the complete history of building models. Several versions 

of the model are accessible through the database. Older version can be loaded and compared to 

the actual version. Modeler also enables the model to load and export at created historic version. 

Figure 6.10 shows an example of a version history of a model. The version is listed with respect 

to creation date. There are two different classes of versions: Working versions and Historical 

versions. Working versions may be created for backup purposes while modeling. Version 2 to 5 

in figure 6.10 comprise modeling step and hence are assigned as working versions. A historical 

version is often created when a modeling comes to an end. Creation and termination date are 

assigned to this version. This gives the possibility to question the model at a specific date. For 

instance, querying the database for the data 10.01.2017 returns the version 6 of the model to the 

user. A historical version is technically a working version and can be further edited if it requires.   

 
Figure 6.10: Version History window of CityGRID Modeler  
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CHAPTER 7 
The thoughts and conclusion regarding the practical experience and the result of case study have 

been presented in this chapter.  

7 CONCLUSIONS   

The thesis aimed to explore, asses and compare the potential and performance of selected 3D city 

modeling software packages, which have different approaches and methods for 3D city modeling. 

In order to achieve the goal, a case study has been carried out on a small area in the city 

Reutlingen, Germany, which has been considered as a prototype of a large city.  

In chapter 2, the fundamentals of 3D modeling have been surveyed. The necessity and 

importance of 3D model generation of real objects have been described, and the representative 

methods for the generation of 3D city model have been presented. Furthermore, the mainly used 

3D city model formats have been presented.  

In chapter 3, the software packages, which are aimed to be used in this thesis have been 

introduced. The requirements for each and every software explained. Besides this, their strengths 

and weaknesses in 3D city modeling have been pointed out.  

The subsequent steps for the generation of exemplary 3D city model for each and every software 

packages have been described in chapter 5. Data requirements of the software packages have 

been explained in order to accomplish the predefined tasks. Furthermore, the difficulties during 

the modeling process have been pointed out.  

In chapter 6, the results of the case study have been discussed, and the models have been 

compared. The results show that all three software packages are suitable for the generation of 3D 

city model. CityGRID Modeler and SketchUp make possible 3D city model with LOD3, whereas 

3D Editor can generate a 3D model with LOD2 including roof details. The model with 

CityGRID Modeler has the highest potential and details, which requires least manual effort. 

CityGRID Modeler provides the best solution when a large city with a high level of details is 

planned to be modeled. The drawback of the software, it requires well-defined roof structures as 

an input, which makes the pre-processing longer than SketchUp and 3D Editor.  

The model with 3D Editor has a lower potential in terms of building details compared to other 

models. The main reason for that is the model-driven approach of 3D Editor is, which makes 

model dependent on the building primitives that are in available in the building library. However, 

the benefit of the software is the straight forward production. It gives a good result for not 

complex buildings. Particularly, an LOD2 city model can be modeled very fast by using a 

combination of City Modeller and 3D Editor with minimum manual effort, and the results can be 

easily exported to many formats. Hence, the model is suitable for applications, which do not 

require a high level of detail and fulfills the intention of the software developers. In addition to 

this, the lack of details may then be compensated by the 3D impression of the texture. 
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TextureMapper enables texturing the generated LOD2 models highly automatically and thus 

provides results which are best suited for medium scale visualization. 

The model with SketchUp looks as good as the model CityGRID Modeler. The benefit of the use 

of SketchUp is an easy tool and very flexible in terms of the level of detail. However, it is only 

useful for very small areas, preferably for individual buildings as all work requires manual effort 

including texturing process. The cost of SketchUp is significantly lower than CityGRID Modeler 

and 3D Editor. Therefore, if 3D city modeling project has a limited budget, SketchUp may be the 

optimal choice. However, it should be taken consideration that SketchUp may not be preferable 

for GIS as well as surveying applications, as the coordinate reference system may not always be 

preserved while importing and exporting the models.  

In summary, the case study has indicated that each and every software package has advantages as 

well as drawbacks dependent on the point view from which expectations have been defined. If 

one clearly sticks to the intended sort of application, the severeness of disadvantages may 

decrease significantly, while the advantages rise. A software package may give sufficient results 

for a specific project, and the same product may not be financially achievable for other 3D city 

modelling projects. For the determination of an optimal software package for a certain 3D city 

model project, at first the requirements of the project and the composition of the city must be 

defined, the feasibility seriously analyzed by taking into consideration the composition and 

complexity of the city. By keeping in mind those general conditions, this study does not dare to 

categorize the software packages into winners and losers.  

Eventually, there are two issues which have to be mentioned. Firstly, the assessment has been 

carried out by an operator who was not expert in any of the three software packages. A skilled 

operator might have come to one or the other different conclusion. The more complicated the 

tools are, the more expertise is needed to optimally and efficiently obtain a high quality result. 

Secondly, it should be emphasized that approaches to 3D city modelling are still in the focus of 

ongoing development and research. The selection of software concentrated on available 

commercial tools rather than pure research activities. Since companies provide more or less 

frequent updates to their products when new theoretical ideas, new algorithms, new data sources, 

new user requirements, or more convenient user interfaces are available, the assessments carried 

out in this work may just be seen as a kind of snapshot of the time when this evaluation 

commenced. Still, the selection of software packages has also been a selection of basic 

approaches and, therefore, the assessment is able to show the shortcomings and advantages of the 

different approaches in a more general way, thus providing longer lasting validity 
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APPENDIX A: Supported Object Type by Tridicon® 3D Editor  

The following object types can be supported at present
12

: 

 Point 

 Line (one start and one end point) 

 Polyline (consists of at least three points, maximum number is variable) 

 Polygon (always closed, maximum number is variable) 

 Circle (construction with center/radius or with three points) 

 Text 

 Symbols (for insertion of symbols: 

The following objects are only available as 3D objects 

 Flat roof with quadrangular ground plane 

 Flat roof with polygon as ground plane (polyflat roof) 

 Lean-to roof 

 Tent roof with quadrangular ground plane 

 Tent roof with polygon as ground plane (polytent roof) 

 Gable roof 

 Hip roof 

 Hipped gable roof 

 Combination Gable/Hip roof 

 Combination Gable/Hipped gable roof 

 Combination Hip/Hipped gable roof 

 Cut gable roof 

 Cut hip roof 

 Combination Cut gable / Cut hip roof 

 Gambrel roof 

 Gambrel hip roof 

 Combination Gambrel hip / Gambrel roof 

 Barrel roof 

 Tower (circular ground and cover plane; different diameters possible) 

 Tower roof (consist of a cylindric tower with conic roof) 

 Dome roof 

 Wall 

 Extruded Polyline 

 Extruded Polygon 

                                                      
12

 Source: [CityModeler Manual, 2009 -2015, S. 44-45]. 


