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Abstract

The quality of in situ soil moisture data is of high importance since it is still the
most trusted source for satellite data validations. An erroneous behavior of in situ soil
moisture data is very difficult to detect, due to annual and daily changes and most
significantly the high influence of precipitation and snow melting processes. The Inter-
national Soil Moisture Network (ISMN) provides in situ soil moisture data sets from
all around the world, from different data providers, observed with different sensors
in different depths. The data processing routines of the ISMN already contain very
sophisticated algorithms for the detection of erroneous data. Since the development
of these algorithms, many more data sets were added to the ISMN and new types
of erroneous observations could be identified. Thus, a revision and extension of the
existing algorithms became necessary. For this thesis the algorithms for the error de-
tection were adapted and additionally, new methods of error detection were developed.
To evaluate the revised automated quality control system many in situ soil moisture
timeseries were chosen and manually validated to be compared to the existing quality
control procedures and the new algorithms. Improvements of the new algorithms will
be shown to provide a valuable quality assessment of the ISMN data sets, which are
the foundation of many scientific publications.
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Kurzfassung

Die Qualitätskontrolle von ISMN Bodenfeuchtedaten ist von hoher Bedeutung, da sie
noch immer als hoch vertrauenswürdige Basis für Validierungen von Satellitendaten
gelten. Fehlerhafte Bodenfeuchtedaten sind äußerst komplex zu detektieren, da sie eine
hohe Variation aufgrund von Tages und Jahreszyklen, aber vor allem durch Regenfälle
und Schneeschmelze, aufweisen. Das International Soil Moisture Network (ISMN) bi-
etet weltweite in situ Bodenfeuchte Daten von verschiedenen Datenanbietern, die mit
verschiedenen Sensoren, in diversen Tiefen beobachtet wurden. Die Routinen zur Har-
monisierung der verschiedenen Datensätze des ISMN beinhalten bereits höchst durch-
dachte Algorithmen zur Detektierung verdächtiger Daten. Seit der Entwicklung dieser
Algorithmen wurde die Datenbank des ISMN um sehr viele Datensätze erweitert und
zusätzliche Arten von Fehlern wurden identifiziert. Deshalb wurde eine Überarbeitung
der existierenden Qualitätskontrolle notwendig. Im Rahmen dieser Arbeit wurden die
Algorithmen zur Fehlerdetektion adaptiert und neue Methoden der Fehlererkennung
entwickelt. Für die Evaluierung der überarbeiteten automatisierten Fehlerkontrolle
wurden viele Datensätze gewählt und händisch validiert, um diese mit den Ergebnis-
sen der existierenden und neuen Algorithmen zu vergleichen. Verbesserungen durch
die adaptierten und neuen Algorithmen für eine wertvolle Qualitätsprüfung der ISMN
Datensätze, die Grundlage vieler wissenschaftlicher Arbeiten sind, werden zu sehen
sein.
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1 Introduction

This thesis is based on the existing work of Angelika Xaver [8], who developed a very
innovative automated quality control system for ground based (in situ) soil moisture
data provided by the International Soil Moisture Network (ISMN) [2] [3]. The ISMN
was initiated by the European Space Agency (ESA) in 2010 to share soil moisture data
from different data providers all over the world in one consistent format, retrievable
in one data portal.

Erroneous behavior of in situ soil moisture data sets are very difficult to detect, due
to annual and daily variations and most significantly the high influence of precipita-
tion events and snow melting processes. Only few of the ISMN data providers have
their own quality control system. These Quality assessments from different providers
are also based on different methods and lead to inhomogeneous notations, which are
complex to adapt for the user. Therefore, advanced quality control procedures were
developed for the whole ISMN. A quality control system for data sets from places all
around the world, with different land cover and climate classes, observed with different
soil moisture sensors is especially complex, because of different soil moisture charac-
teristics and therefore a large variety of data errors. Since the development of the
automated quality control system, the ISMN became very popular and evolved very
quickly. More and more people are willing to share their in situ soil moisture data
with the ISMN and thus, making it available for a wide public and scientific studies.
Therefore, the reliability of the ISMN quality assessment can now be tested on many
more various data sets than at the time of their development. In addition, the avail-
able information of the quality assessment of the data providers will be analyzed, to
find advantages that can be brought to use for the ISMN.

The main content of this thesis is parted in six chapters. The chapter ’Data’ includes
a description of in situ soil moisture behavior and measure methods, followed by
an introduction of the ISMN. The chapter ’Existing Methods’ consists of a detailed
functional description of the current ISMN algorithms used for error detection. Some of

1



1 Introduction

the data providers of the ISMN also have their own quality control systems, which are
integrated in the ISMN as so-called original quality flags. Those will also be discussed
in the ’Existing Methods’ chapter. In chapter ’New Methods’ the new quality control
methods will be introduced. In the chapter ’Evaluation’ the performance of the new
methods will be evaluated and compared to the existing algorithms. The last chapter
’Conclusion’ will recap how the error detection could be enhanced with the revised
algorithms and which further improvements might still be possible.
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2 Data

2.1 Soil Moisture Dataset Characteristics

A soil moisture timeseries has a very typical spectrum. Since it is mostly affected by
precipitation events it can rise very quickly within one hour, but the drying process
may continue over a much longer time period of multiple hours or even days (Figure
2.1).

Figure 2.1: typical soil moisture data set without errors

During summer daily variations are often higher due to a higher variation of air
temperature. When the soil is frozen in winter the data series shows a more constant
signal.

Typical algorithms for outlier detection can not be used for soil moisture data sets.
The difficulty in detecting erroneous data is to differentiate between a severe rise of
soil moisture due to precipitation events and an arbitrary sensor malfunction that
results in an unpredictable value variation. Therefore some correct measurements
are marked as erroneous observations, when automated quality control procedures
are applied. The goal is to find a balance between "under flagged" erroneous data
sets and "over flagged" correct data sets. To exclude a correct data set based on
the quality assessment might seem unadvised, but when validating soil moisture data
retrieved from satellite data one erroneous measurement does more harm than one
missing correct observation.

3



2 Data

2.2 Soil Moisture Sensors

Soil moisture data is retrieved by many different methods. Hence, data sets measured
with different sensors, show various acts of behavior. Additionally, the accuracy of
in situ soil moisture sensors highly varies, depending on the method and quality of
a sensor. There are different techniques of soil moisture retrieval introduced in [11],
e.g. gravimetric, electromagnetic and remote sensing. Very accurate results can be
achieved by gravimetric measurements. A soil sample is removed and weigh before and
after a drying process. While the calculation is very simple and accurate, this method
cannot be used for automated hourly measurements. That is why electromagnetic
techniques are mostly common. An electromagnetic sensor is installed and provides
periodical measurements. Electromagnetic sensors are distinguished into resistive and
capacitive sensors and Time-Domain Reflectometer (TDR). With a resistive sensor
the resistivity is measured, which depends on the moisture concentration as well as
the ion concentration. Therefore a accurate calibration is essential, which is not con-
stant. For the capacitive sensor two electrodes are installed and the capacitive between
those is measured, and the dielectric constant calculated. The dielectric constant is
directly proportional, but not linear to the soil water content. A calibration, consider-
ing temperature as well as soil type is needed. A TDR determines the propagation of
electromagnetic waves. The propagation parameters, such as velocity and attenuation,
depend on soil moisture and electrical conductivity. A TDR is a very reliable source,
independent of soil texture and temperature, but comes with high cost. The network
COsmic ray Soil Moisture Observing System (COSMOS) included in the ISMN pro-
vides soil moisture data derived from cosmic ray, reflected by the soil and measured
above ground [12] [13]. This type of measure results in very noisy data. Another
ISMN network Plate Boundary Observation (PBO_H2O) uses the picked up signal of
Global Positioning System (GPS) receivers to calculate soil moister data [5].

With remote sensing data, which covers continuously large areas, soil moisture can
be derived. It is calibrated and validated with in situ data sets. Therefore a quality
assessment to exclude suspicious data sets is important to assure appropriate data sets
to correlate with.

In [4], where the spatial representation of in situ observations were discussed, also
the relation between sensors and specific types of errors was analyzed. The results
were not distinct enough to undermine the assumption.

4



2.3 ISMN - International Soil Moisture Network

2.3 ISMN - International Soil Moisture Network

The operation of the ISMN started in 2010. The purpose of the ISMN is to provide in
situ soil moisture data from data collectors all over the world in one single data portal
(Figure 2.2). The data portal includes a data viewer for each station to show plots
of data set timeseries, and a download center to retrieve data sets in one harmonized
format, Coordinated Universal Time (UTC) and consistent units [2].

Figure 2.2: ISMN data portal

Nearly two thousand users are registered with the ISMN. All data sets of the ISMN
are available to registered users, who also have the opportunity to share their ex-
perience with the ISMN data sets with other users and data providers in an online
forum.

Several variables can be integrated in the ISMN, if the network provider measured
and shared these data sets. Additional to soil moisture data the following variables
can be included in the ISMN database:

� air temperature (ta)

� precipitation (p)

5



2 Data

� snow depth (sd)

� snow water equivalent (sweq)

� soil suction (su)

� soil temperature (ts)

� surface temperature (tsf)

All data sets of a single data provider measured at various in situ stations are
combined to a so called network. Each network includes a specific amount of stations,
between one and over four hundred, and includes data sets in various time ranges of
different variables in varying depth layers (Table 2.1).

Table 2.1: ISMN networks
network country stations variables (layer) time range

AACES Australia 49 p(1) sm(3) ts(5)
2005/05/09

-2010/09/24

AMMA-CATCH Benin, Niger, Mali 7 sm(12)
2006/01/01

-2014/12/31

ARM USA 29 p(1) sm(10) ta(1) ts(10)
1993/06/29

-2015/03/26

AWDN USA 50 sm(4)
1997/12/31

-2010/12/30

BIEBRZA_S-1 Poland 30 p(1) sm(4) ta(1) ts(4)
2015/04/23

-2016/06/24

BNZ-LTER Alaska 12
p(1) sd(1) sm(4) sweq(1) 1988/06/01
ta(6) ts(9) tsf(1) -2013/01/01

CALABRIA Italy 5 p(1) sm(3) ta(1)
2001/01/01

-2012/12/31

CAMPANIA Italy 2 p(1) sm(1) ta(1)
2000/07/27

-2012/12/31

CARBOAFRICA Sudan 1 p(1) sm(7) ta(1) ts(2)
2002/02/08

-2010/01/20

CHINA China 40 sm(11)
1981/01/08

-1999/12/28

COSMOS USA 109 sm(41)
2008/04/28

-2017/01/17

CTP_SMTMN China 57 sm(4) ts(4)
2010/08/01

-2013/01/01

DAHRA Senegal 1 p(1) sm(5) ta(1) ts(6)
2002/07/04

-2016/01/01

FLUXNET-AMERIFLUX USA 2 p(1) sm(8) ta(1) ts(5)
2000/10/22

-2013/01/01

FMI Finland 27 sm(7) ta(2) ts(7)
2007/01/25

-2017/01/14

6
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GTK Finland 7 sm(5) ta(1) ts(6)
2001/05/16

-2012/05/29

HOBE Denmark 32 sm(3) ts(3)
2009/09/08

-2014/02/03

HSC_SELMACHEON Korea 1 sm(1)
2008/01/01

-2009/01/01

HYDROL-NET_PERUGIA Italy 2 p(1) sm(4) ta(1) ts(2)
2010/01/01

-2013/12/31

HYU_CHEONGMICHEON Korea 1 sm(1)
2011/08/25

-2011/09/20

ICN USA 19 p(1) sm(11) ts(6)
1983/01/03

-2010/11/21

IIT_KANPUR India 1 sm(4)
2011/06/16

-2012/11/22

IOWA USA 6 sm(12)
1972/04/04

-1994/11/15

iRON USA 6 p(1) sm(3) ta(1) ts(1)
2012/08/21

-2016/01/01

KHOREZM Uzbekistan 7 sm(1) ta(1) ts(5) tsf(1)
2010/04/17

-2011/09/10

LAB-net Chile 1 p(1) sm(2) ta(1) ts(1)
2014/07/18

-2016/01/08

MAQU China 20 sm(1) ts(1)
2008/06/30

-2010/07/31

METEROBS Italy 1 sm(5)
2011/10/23

-2012/05/09

MOL-RAO Germany 2 p(1) sm(9) ta(2) ts(12)
2003/01/01

-2014/01/01

MONGOLIA Mongolia 44 sm(10)
1964/04/08

-2002/10/18

ORACLE France 6 p(1) sm(26) ta(2) ts(2)
1985/10/18

-2013/09/09

OZNET Australia 38 p(2) sm(7) su(5) ts(6)
2001/09/12

-2011/05/31

PBO_H2O USA 161 p(1) sd(1) sm(1) ta(1)
2004/09/27

-2017/01/14

REMEDHUS Spain 24 sm(1) ts(1)
2005/03/15

-2017/01/01

RSMN Romania 20 p(1) sm(1) ta(1) ts(1)
2014/04/09

-2016/12/31

RUSWET-AGRO Former Soviet Union 212 sm(2)
1958/04/08

-2002/06/28

RUSWET-GRASS Former Soviet Union 122 sm(2)
1952/06/08

-1985/12/28

RUSWET-VALDAI Former Soviet Union 3 p(1) sm(3) ta(1) ts(3)
1960/01/15

-1990/12/15

SASMAS Australia 14 sm(2) ts(1)
2005/12/31

-2007/12/31

SCAN USA 232
p(1) sd(1) sm(25) sweq(1) 1996/01/01
ta(1) ts(25) -2017/01/17

SKKU Korea 5 sm(4)
2014/05/08

-2014/11/19

SMOSMANIA France 21 sm(4) ts(4)
2007/01/01

-2016/01/01

SNOTEL USA 441
p(1) sd(1) sm(16) sweq(1) 1980/10/01
ta(1) ts(16) -2017/01/17

SOILSCAPE USA 171 sm(28) ts(1)
2011/08/03

-2016/11/01
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SWEX_POLAND Poland 6 p(1) sm(10) ts(8)
2000/01/01

-2013/05/06

SW-WHU China 7 p(1) sm(1) ta(1) ts(1)
2014/01/12

-2015/06/03

TERENO Germany 5 p(1) sm(3) ta(1) ts(3)
2009/12/31

-2017/01/05

UDC_SMOS Germany 11 sm(5)
2007/11/08

-2011/11/18

UMBRIA Italy 13 p(1) sm(5) ta(1)
2002/10/09

-2014/08/01

UMSUOL Italy 1 sm(7)
2009/06/12

-2010/09/30

USCRN USA 115
p(1) sm(5) ta(1) ts(5) 2000/11/15
tsf(1) -2017/01/16

USDA-ARS USA 4 sm(1) ts(1)
2002/06/01

-2009/07/31

VAS Spain 3 sm(1) ta(2) ts(10)
2010/01/01

-2012/01/01

WEGENERNET Austria 12 p(1) sm(2) ta(1) ts(2)
2007/01/01

-2016/12/22

WSMN UK 8 sm(3) ts(3)
2011/09/02

-2016/02/29

Total: 55 2226
1952/06/08

-2017/01/17

Since the start of the ISMN 55 data providers shared their data. In total there are
2226 in situ stations, where soil moisture and optionally other variables in different
depth layers are measured. These data sets come in varying file formats. They not
only differ in format, time and units, which is edited to be consistent by the ISMN
processing chain, but also use different sensor types, which leads to diverging data
behaviors. Data sets in the ISMN are normally integrated as hourly data. If the
measurements are more frequent than once per hour only the observation, nearest to
the full hour is taken. In rare cases the measurement frequency is lower than one hour.
(e.g. daily data sets from the network PBO_H2O)
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The automated quality control system of the ISMN is very innovative and advanced.
It is not common use to provide data sets with an appropriate quality assessment.
Only 5 of the 55 data providers of the ISMN have their own quality control system.
Also the North American Soil Moisture Databse (NASMD), a project similar to the
ISMN for the United States only, has a flagging systems for which they refer to the
methods of the ISMN [9].

The automated quality control procedure of the ISMN is a system, within the data
processing chain, that checks every data value that is integrated in the ISMN database
for its correctness, or rather its reasonableness, and appends one or more appropriate
letter coded quality flag to the measurement. The flags are letter coded according to
the Code of Practice (CEOP) standard
(https://www.eol.ucar.edu/projects/ceop/dm/documents/refdata_report/).

The ISMN quality flags are parted in three categories: exceeding boundary values,
geophysical consistency checks and a spectrum based approach (Table 3.1).

Table 3.1: ISMN quality flag categories

flag category

C01 - C03 reported value exceeds output format field size
D01 - D05 questionable/dubious - geophysical based
D06 - D10 questionable/dubious - spectrum based

The C flags trigger, if a value exceeds a boundary minimum or maximum. These
boundaries are defined for each variable respectively and are rather tolerant, since the
ISMN includes data from all around the world, measured at different land cover and
climate classes (Table 3.2).

The D flags are only implemented for soil moisture values. Geophysical reasons are
defined as inconsistencies with other variables, like soil temperature or precipitation.

9
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Table 3.2: ISMN quality flags that represent an exceeding boundary error

variable flag condition

air temperature C01 air temperature < -60◦C
C02 air temperature > 60◦C

precipitation C01 precipitation < 0 mm/h
C02 precipitation > 100 mm/h

snow depth C01 snow depth < 0 mm
snow water equivalent C01 snow water equivalent < 0mm
soil moisture C01 soil moisture < 0.0 m3/m3

C02 soil moisture > 0.6 m3/m3

C03 soil moisture > staturation point
(derived from HWSD parameter values)

soil suction C01 soil suction < 0 kPa
C02 soil suction > 2500 kPa

soil temperature C01 soil temperature < -60◦C
C02 soil temperature > 60◦C

surface temperature C01 surface temperature < -60◦C
C02 surface temperature > 60◦C

Those data sets are retrieved from either the same in situ station or the Global Land
Data Assimilation System (GLDAS) data sets, a data model provided by National
Space Agency (NASA). The focus of this thesis will be on algorithms for the detection
of spectrum based data errors, which were specifically developed for the ISMN. Spec-
trum based flags are applied, if the soil moisture timeseries itself shows dubious effects
at one observation or over a series of measurements (Table 3.3). A certain time range of
the soil moisture timeseries and its first and second derivative are therefore examined
for a certain suspicious behavior. These methods will be analyzed for their reliability,
meaning if they miss erroneous observations or falsely flag correct measurements.

Only five data providers, contributing to the ISMN, provide their own automated
flagging system and deliver their data sets with a corresponding flag for each data
value. These quality control systems are called original quality flags for the ISMN.
They also use letter or number coded quality flags for their assessment. These networks
will be introduced and their provided quality flags will be compared to those of the
ISMN. The goal is to learn from those other system and integrate their ideas into the
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Table 3.3: ISMN quality flags that represent a geophysical or spectrum based error

variable flag condition

soil moisture D01 in situ soil temperature < 0◦C
at corresponding depth layer

D02 in situ air temperature < 0◦C
D03 GLDAS soil temperature < 0◦C

at corresponding depth layer
D04 soil moisture shows peaks without in situ

precipitation event in preceding 24 hours
D05 soil moisture shows peaks without GLDAS

precipitation event in preceding 24 hours
D06 a spike in soil moisture spectrum
D07 a negative jump in soil moisture spectrum
D08 a positive jump in soil moisture spectrum
D09 low constant values (minimum 12 hours)

in soil moisture spectrum
D10 saturated plateau (minimum 12 hours)

in soil moisture spectrum

algorithms of the ISMN, if they are a valuable addition.
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3.1 Flagging Statistics for the ISMN

Data sets that are shared with the ISMN by different network providers go through
a long processing chain to harmonize the format. At the end of this chain each value
receives a letter coded quality flag. For each flag several conditions have to be met to
add the specific letter to the value. If no flag is triggered the value receives the flag G
for ’Good’. The behavior of the in situ soil moisture data sets and their quality vary
highly per network, due to the use of different sensors and various climate and land
cover classes. Therefore the percentages of triggered quality flags per network are also
very diverse (Figure 3.1).

The table shows that exceeding boundary and geophysical flags occur more often
than spectrum based flags. Since those errors rely on facts, e.g. air temperature is
below zero degrees or they exceed a boundary value, they are much easier detected
than errors in the spectrum. Spectrum based errors on the other hand are detected
with conditions that have to fit every occurrence of the error in various spectra. An
important goal for the improvement of the existing algorithms for the spectrum based
flags is, to improve the detection rate of the algorithms. For the validation of satellite
data, for example, a bad observation that was not excluded is much more severe for
a correlation than a good measurement that is missing. Therefore also more over
flagged correct data sets can be accepted to improve the detection rate of erroneous
observations.
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Figure 3.1: ISMN flagging statistic for each network
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3 Existing Methods

3.2 ISMN Algorithms for the Detection of Spectrum
Based Errors

Spectrum based errors are sudden unnatural changes in a soil moisture timeseries.
Those errors are detected by examining the shape of a soil moisture timeseries and its
first and second derivative. The spectrum based flags are developed for hourly data
sets, since the integrated data sets in the ISMN are mostly hourly.

3.2.1 Savitzky-Golay Filter

The savitzky-golay filter was used to calculate the first and second derivative of a soil
moisture timeseries [7]. The savitzky-golay filter calculates a regression of discrete
data values to provide a smoothed data set. The savitzky-golay filter does not cut
off high frequencies, but considers all data values in its calculation. It takes data
observations, the range of data points that should be considered for the filtering and
the degree of the polynomial as input values. For the purpose of the ISMN also the
optional argument of a derivative was used. For spikes and breaks the filter range is
set to three observations and for plateaus it is set to 25. In all cases a polynomial of
degree two was chosen.

3.2.2 Spikes

A spike is an event that lasts only for one measurement and differs noticeable from the
values before and after. The outlier can point in a positive or negative direction and
mostly represents a sensor malfunction or energy supply shortage. The first derivative
shows a positive and a negative peak and the second derivative a very high peak and
two smaller peaks before and after. For a positive spike the big peak is negative and
the smaller ones are positive. In the ideal case the big peak is twice as high as the
smaller ones (Figure 3.2). In the figures xt represents the soil moisture timeseries, the
gray x ′t the actual first derivative, x̃ ′t the rounded first derivative that is used for the
calculations and x ′′t the second derivative.

To mark an observation as a spike three conditions have to be met.

1. The increase or decrease of soil moisture amounts to 15%, which typically rep-
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Figure 3.2: data set xt with a spike and its first derivative x̃ ′t and second derivative x ′′t

resents three times the maximal sensor uncertainty.

xt

xt−1
> 1.15 or

xt

xt−1
< 0.85 (3.1)

2. To distinguish between a soil moisture rise due to a precipitation event and a
spike, the values before and after the spike have to be approximately the same.
A positive/negative spike results in a very high negative/positive peak and a
small positive/negative peak before and after, in the second derivative. The
small peaks are compared to be nearly equal in the second condition.

0.8 <
∣∣∣∣x ′′t−1

x ′′t+1

∣∣∣∣ < 1.2 with x ′′t+1 6= 0 (3.2)

3. To avoid over flagging of noisy data the third condition requests the coefficient
of variation to be less than one. This coefficient is a typical proportion, used as
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an order for a relative spreading of data values.∣∣∣∣σ2([xt−12, xt+12]\xt)

µ([xt−12, xt+12]\xt)

∣∣∣∣ < 1 (3.3)

The observation xt is flagged as a spike if all three conditions are met.

3.2.3 Breaks

A break is a noticeable rise or fall in a soil moisture timeseries, compared to the
measurement before. The spectrum before and after the break would seem continuous
without the erroneous event.

Negative Breaks

The negative break shows a peak at the first derivative and alternating peaks in the
second derivative (Figure 3.3).
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0 0

-10

0 0x ′t 0 0

-5 -5

0 0
x̃ ′t
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0 0
x ′′t

Figure 3.3: data set xt with a negative break and its first derivative x̃ ′t and second
derivative x ′′t
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1. The first condition states that the soil moisture drop has to be at least 10 percent.
The absolute difference in m3/m3 between the values was defined to avoid over
flagging at low soil moisture readings.∣∣∣∣xt − xt−1

xt

∣∣∣∣ > 0.1 with xt 6= 0 and |xt − xt−1| > 0.01 (3.4)

2. The second condition represents the negative peak in the first derivative, which
was defined to be at least ten times smaller than the 12 hour spectrum before
and after the break.

x ′t < −10 · 1
25
·

∣∣∣∣∣
12∑

k=−12

x ′t+k

∣∣∣∣∣ (3.5)

3. The third condition includes characteristics of the second derivative. The values
at the break and before the break should be equal and very high compared to
the value after the break.∣∣∣∣ x ′′tx ′′t−1

∣∣∣∣ = 1 with x ′′t−1 6= 0 and
∣∣∣∣ x ′′tx ′′t+1

∣∣∣∣ > 10 with x ′′t+1 6= 0 (3.6)

Positive Breaks

The positive break is the complement to the negative break (Figure 3.4), but it is much
harder to detect due to the natural characteristics of soil moisture readings. Even
more difficult is the prevention of over flagging precipitation events. Nevertheless, the
formulas are similar to those of the negative break.

1. Analog to the negative break the soil moisture rise must be higher than 10
percent. ∣∣∣∣xt − xt−1

xt

∣∣∣∣ > 0.1 with xt 6= 0 and |xt − xt−1| > 0.01 (3.7)

2. For the positive break the first derivative at the break has to be at least ten
times bigger than the spectrum before and after.

x ′t > 10 · 1
25
·

∣∣∣∣∣
12∑

k=−12

x ′t+k

∣∣∣∣∣ (3.8)
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Figure 3.4: data set xt with a positive break and its first derivative x̃ ′t and second
derivative x ′′t

3. The last equation is the same as for the negative break.∣∣∣∣ x ′′tx ′′t−1

∣∣∣∣ = 1 with x ′′t−1 6= 0 and
∣∣∣∣ x ′′tx ′′t+1

∣∣∣∣ > 10 with x ′′t+1 6= 0 (3.9)

In most of the cases one cannot tell whether the values before or after the break are
suspicious. Therefore only the break itself is flagged.

3.2.4 Plateaus

Plateaus are defined as ongoing relatively constant values. There are low level and
high level plateaus, which vary in their characteristics and therefore the algorithms
are different. For the error detection of the ISMN a plateau was defined to last at least
12 hours, even though the figures suggest otherwise for simplification.
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Low Constant Values

Low constant values are primarily the result of an energy supply shortage. They follow
a negative break with unfitting low soil moisture readings (Figure 3.5). There are only
two conditions for a low level plateau.
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Figure 3.5: data set xt with a low level plateau and its first derivative x̃ ′t and second
derivative x ′′t

1. A negative break was detected as the start of the plateau.

2. The coefficient of variation is again used to guarantee a very constant progression
of the plateau. It must be smaller than 1.∣∣∣∣σ2([xt, xt+n])

µ([xt, xt+n])

∣∣∣∣ < 1 with n > 12 and t = tpl_start (3.10)

Saturated Plateaus

Saturated plateaus are often the result of a sensor malfunction due to values above the
saturation point (Figure 3.6). Again, a plateau was defined to last at least 12 hours
to avoid over flagging.
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Figure 3.6: data set xt with a saturated plateau and its first derivative x̃ ′t and second
derivative x ′′t

1. The values of the saturated plateau must only vary very little. As boundary 1
percent of the the typical sensor variation at 5 percent, was chosen, which results
to 0.05 percent volume soil moisture variation.

σ2([xt−n, xt+n]) < 0.05 with n > 6 and t = tpl_start (3.11)

2. A saturated plateau often appears after a heavy precipitation event. Therefore
it follows a soil moisture rise and is followed by a drop of soil moisture, when
the sensor reacts to lower values again. These rises and drops do not have to be
exactly at the beginning or end of the plateau, because the sensor reaction may
stop at a time stamp after a big rise and start again slowly afterwards. They are
defined to happen in a spectrum 12 hours before or after the beginning and the
end of the plateau.

max([x ′t−n−12, x
′
t−n+12]) > 0.25 with t = tpl_start (3.12)

min([x ′t−n−12, x
′
t−n+12]) 6 0 with t = tpl_end (3.13)
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3. Since saturated plateaus only appear at very high soil moisture values the third
condition states that the mean value of the plateau must be in the upper 5
percent of all observations of the timeseries.

µ([xpl_start, xpl_end]) > max([xt0, xtend
]\{xt > 100}) · 0.95 (3.14)

3.3 Problems with the Existing ISMN Quality Flags

Since the start of the ISMN, its database grew very quickly. More and more data
providers want to make their data available for other scientific research through the
ISMN. Therefore also more erroneous measurements were identified, since the devel-
opment of the automated quality control system in 2013. For every spectrum based
flag an under flagging of erroneous measurements as well as an over flagging of correct
observations was identified. In many cases various thresholds of conditions are too
tight and avoid the flagging of erroneous data values (Figure 3.7).

Figure 3.7: under flagged data set due to tight threshold conditions

3.3.1 Spikes

The threshold of the first condition (Equation 3.1), which compares the relation be-
tween the spike and the values before and after respectively, and the second condition
(Equation 3.2) for the second deviation are very tight. Thus, many spikes are not
flagged as such, because the specific values cannot meet those boundaries. A der-
estriction to looser values of those boundaries would result in an over flagging of
correct values. Thus, new additional conditions would have to be introduced.
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3.3.2 Breaks

A reason why some breaks are still not detected is the third condition (Equation 3.6),
where x ′′t+1 is the denominator, which is zero in the ideal case. An inversion of this
division would fix the problem. In equation 3.5 the rounding of the first derivative was
not considered. x ′t and x ′t−1 always have to be treated equally. Otherwise the negative
breaks are well detected by the existing algorithms. A very complex problem is the
over flagging of correct data sets with positive breaks. While a sudden drop in a soil
moisture spectrum is a very suspicious event, a positive rise occurs naturally due to
a precipitation event or snow melting process. More conditions especially for positive
breaks are necessary. Additionally, the thresholds of the first conditions (Equation 3.4
and 3.7) can be loosened to avoid the under flagging of erroneous observations.

3.3.3 Plateaus

Plateaus are under flagged by the existing methods. A negative break as the start of
constant values is the first condition of a low level plateau. Hence, if the detection
rate of negative breaks would be improved, also low level plateaus that failed only this
first condition would be flagged. A rise of soil moisture values due to natural events
and a following slow drying process is often mistaken for a positive plateau. Therefore
the conditions are chosen very tight and many saturated plateaus are not detected. A
better balance between under and over flagging has to be found.

3.3.4 Errors that are not Covered by the ISMN Quality Flags

Other errors than those described by the ISMN quality flags were visually identified
since their development. Data values before or after a period of missing values are
often outliers. Since there is no spectrum available during the interrupted time, the
erroneous value cannot be detected with the existing methods. Constant values in a soil
moisture spectrum are very suspicious, since it is effected by many factors. Constant
values are mostly the result of frozen soil or a battery shortage. The former should be
covered by the geophysical flags that respond if the air or soil temperature is below
zero degree. Those often do not work in spring when the sensor needs time to recover
from the freezing soil. A very specific erroneous behavior of soil moisture values that
is not covered by the ISMN quality control methods, is jumping between two data
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values over a specific time period. Finally, if a data value lies within a spectrum where
many other data values before and after are flagged, it is very unlikely that the certain
value is correct, since the sensor is malfunctioning. Often scattered values within
an erroneous spectrum cannot be detected by algorithms, because of the arbitrary
variation in such time periods.

3.4 Other Flagging Systems

3.4.1 Original Quality Flags of ISMN Networks

Flagging systems of ISMN network providers that are integrated in the ISMN data
base are defined as original quality flags within the ISMN. Five of the ISMN networks
provide their own quality assessment. The flags of all data sets of those networks were
compared to those of the ISMN.

The ISMN quality control system has a higher detection rate than any of the
providers. In the following this will be analyzed in detail. The reason for the dif-
ferences is primarily that not every provider has a quality control procedure for every
variable, but only for some of them. The available research material of the providers
will be analyzed to find other explanations of the differences. Of special interest are
those data values that are flagged by the providers and not by the ISMN to expand
the quality control system of the ISMN.

Bonanza Creek Long-Term Ecological Research (BNZ-LTER)

The BNZ-LTER network is located in Alaska and consists of 12 station.
The operation started in 1987 and is managed by the Institute of Arctic Biology,

University of Alaska Fairbanks. The data sets included in the ISMN range from 1988
to 2012. The BNZ-LTER project provides experimental and observational research
designed to understand the dynamics, resilience, and vulnerability of Alaska’s boreal
forest ecosystems. Their also letter coded flagging system includes four flags:

� G - Good,

� Q - Questionable,

� M - Missing, and
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Figure 3.8: stations of the BNZ-LTER network

� E - EstimatedMissing.

Unfortunately no publication is available for a detailed description of their flagging
system. It could not be determined, if the flags are designated for all variables. Table
3.4 shows that not a single data value, except for surface temperature, was flagged.

Table 3.4: comparison of ISMN and BNZ-LTER flagging statistics
flagged by ... [absolute number | % of datasets]

variable datasets either both ismn provider ismn only provider only

p 389,454 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
sd 185,965 55 0.03 0 0.00 55 0.03 0 0.00 55 0.03 0 0.00
sm 4,058,604 1,752,304 43.18 0 0.00 1,752,304 43.18 0 0.00 1,752,304 43.18 0 0.00
sweq 119,700 194 0.16 0 0.00 194 0.16 0 0.00 194 0.16 0 0.00
ta 3,553,801 12 0.00 0 0.00 12 0.00 0 0.00 12 0.00 0 0.00
ts 10,896,930 8 0.00 0 0.00 1 0.00 7 0.00 1 0.00 7 0.00
tsf 345,972 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

total 19,550,426 1,752,573 8.96 0 0.00 1,752,566 8.96 7 0.00 1,752,566 8.96 7 0.00

The network however shall be mentioned for completeness anyway and hopefully
information about their system will be available in the future.
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Lindenberg Meteorological Observatory - Richard Aßmann Observatory
(MOL-RAO)

The MOL-RAO network is located in Germany and consists of two stations, one located
in grass land and the other in a pine forest (Figure 3.9).

Figure 3.9: stations of the MOL-RAO network

The operation started in 2003 by the German Meteorological Service. The data sets
included in the ISMN range from 2003 to 2013. For the network MOL-RAO there
exist six different, also letter coded, quality flags:

� G - Good,

� B - Bad,

� D - Dubious,

� M - Missing,

� I - Interpolated, and

� U - Unchecked.

The original measurements, observed with a sampling frequency of 10 minutes, are
averaged to a 30 minute interval for all variables. The flags of those observations are
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then combined to one flag depending on their amount of occurrences defined by a look
up table.

Similar to the C flag methods of the ISMN, data values are checked for exceeding
a certain threshold. If they do they are transformed to Not a Number (NaN) values
(-9999.99) and get the missing flag M. The two stations are not far from each other.
Hence, the boundaries are tighter than those of the ISMN, because they soil and
climate properties are as diverse as for all ISMN stations. For soil moisture values the
boundaries are from 3% to 50%.

Flag D of the MOL-RAO quality system is automatically appended if auxiliary mea-
surements or physical arguments are inconsistent with the measured variable. There is
a test for air temperature, soil temperature and soil moisture. For air temperature the
measurements of two different sensors are compared and if the exceed a difference of 1
K the measurements fail the test. The soil temperature values are compared to other
depths and flagged if the difference is higher than a certain threshold depending on the
depth difference. The soil moisture measurements are compared to the neighboring
values in depth and time and only pass the test if they do not exceed 5% or 50% of
the measured value. D flags are controlled manually and are either transformed to a
G or B flag or in case of doubt left as a D flag. If a flag is not checked, an U flag is
appended to the D flag.

The delivered measurements of the MOL-RAO network are every 30 minutes. Since
the ISMN only includes hourly data, the flags may not always be optimal for the whole
hour.

Table 3.5 shows that a lot less soil moisture values are flagged than by the ISMN,
but also a lot of values only by the provider.

Table 3.5: comparison of ISMN and MOL-RAO flagging statistics
flagged by ... [absolute number | % of datasets]

variable datasets either both ismn provider ismn only provider only

p 189,485 8,632 4.56 0 0.00 0 0.00 8,632 4.56 0 0.00 8,632 4.56
sm 916,944 169,624 18.50 22,718 2.48 153,140 16.70 39,202 4.28 130,422 14.22 16,484 1.80
ta 192,651 1,204 0.62 0 0.00 0 0.00 1,204 0.62 0 0.00 1,204 0.62
ts 1,787,951 16,473 0.92 0 0.00 0 0.00 16,473 0.92 0 0.00 16,473 0.92

total 3,087,031 195,933 6.35 22,718 0.74 153,140 4.96 65,511 2.12 130,422 4.22 42,793 1.39

Analyzing those data sets showed that those are highly over flagged. A rise in soil
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moisture can easily be over absolute 5 % or relative 50 % after a precipitation event.
All those rises are flagged as erroneous data even if they follow a natural event (Figure
3.10). The original quality flags are indicated by a vertical red line.

Figure 3.10: over flagged MOL-RAO data set

In the other direction however, it seems appropriate to flag such a high soil moisture
drop.

SOIL moisture Sensing Controller And oPtimal Estimator (SOILSCAPE)

The SOILSCAPE network is located in the United States, including 136 stations, piled
in the mid and western USA. The operation started in 2011 and is managed by the
USC (University of Southern California) [6]. Their quality assessment includes six
flags that are number and letter coded for soil moisture data observations:

Figure 3.11: stations of the SOILSCAPE network

� 0 - (G) Good (Standard for all data),
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� 1 - (D) Dubious (automatically flagged, spikes etc.),

� 2 - (I) Interpolated / Estimated,

� 3 - (B) Bad (Manually flagged),

� 4 - (M) Missing, and

� 5 - (C) Exceeds field size (Negative SM values, fixed at 0.1 percent).

Table 3.6: comparison of ISMN and SOILSCAPE flagging statistics

flagged by ... [absolute number | % of datasets]

variable datasets either both ismn provider ismn only provider only

sm 4,233,386 260,306 6.15 42 0.00 257,025 6.07 3,323 0.08 256,983 6.07 3,281 0.08
ts 84,279 194 0.23 0 0.00 194 0.23 0 0.00 194 0.23 0 0.00

total 4,317,665 260,500 6.03 42 0.00 257,219 5.96 3,323 0.08 257,177 5.96 3,281 0.08

For the network SOILSCAPE also no detailed information was available. An ana-
lyzing of the data sets showed that the soil moisture values were very under flagged,
which is also indicated in Table 3.6. Where they have more success in flagging erro-
neous data than the ISMN is at continuous dubious data sets over a very long time
period. Those series seem to be flagged manually, since they perfectly fit and the area
and don’t seem to be possibly detected by any algorithm.

TERENO

The Terrestrial Environmental Observatories (TERENO) network is located in Ger-
many and consists of five stations [10]. Their flags are number coded:

� 4_2 - good or acceptable data,

� 4_15 - irregular data,

� 4_18 - isolated spike, and

� 4_19 - sensor is out of order or implausible data.

28



3.4 Other Flagging Systems

Figure 3.12: stations of the TERENO network

Figure 3.13: correctly flagged TERENO data set

The results (Table 3.7) for TERENO are very similar to those of SOILSCAPE.
There are many single under flagged erroneous data values and perfectly, probably

manually flagged, timeseries, where suspicious observations continue over a very long
time period (Figure 3.13).

Table 3.7: comparison of ISMN and TERENO flagging statistics

flagged by ... [absolute number | % of datasets]

variable datasets either both ismn provider ismn only provider only

sm 283,628 8,209 2.89 11 0.00 7,909 2.79 311 0.11 7,898 2.78 300 0.11
ta 49,894 6 0.01 0 0.00 0 0.00 6 0.01 0 0.00 6 0.01
ts 285,239 3,563 1.25 0 0.00 0 0.00 3,563 1.25 0 0.00 3,563 1.25

total 618,761 11,778 1.90 11 0.00 7,909 1.28 3,880 0.63 7,898 1.28 3,869 0.63

Unfortunately there also was no detailed information available.
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USCRN

The station of the network U.S. Climate Reference Network (USCRN) are spread all
around the United States. The USCRN network has only two number coded flags:

Figure 3.14: stations of the USCRN network

� 0 - good, and

� 3 - erroneous.

According to [1] there are also checks, if a value exceeds predefined boundaries. The
boundaries and measurements of soil temperature by the USCRN network confirm
the proper picked upper boundary of the ISMN, since the maximum value of stations
located in the dessert was 57.0 ◦C. For soil moisture the lower boundary is 0.1 % and
the upper boundary 70 %. they also check if the corresponding soil temperature value
is below freezing point. Also values below 0.5 ◦C are flagged, since the dielectric value
can be impacted of ice crystals formed around the instrument. These control method
is similar to the geophysical flags of the ISMN. Also values from a known faulty sensor
are flagged manually until they are replaced. Table 3.8 shows that there wasn’t a
single soil moisture value flagged, which contradicts their writing.

The comparison with other flagging systems was not very successful. The analyzed
quality control systems are either highly over or under flagging in comparison to the
ISMN. They only succeed the flagging of the ISMN, if manual flagging comes in play,
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Table 3.8: comparison of ISMN and USCRN flagging statistics
flagged by ... [absolute number | % of datasets]

variable datasets either both ismn provider ismn only provider only

p 11,508,551 1 0.00 0 0.00 1 0.00 0 0.00 1 0.00 0 0.00
sm 24,226,741 4,561,049 18.83 0 0.00 4,561,049 18.83 0 0.00 4,561,049 18.83 0 0.00
ta 11,593,484 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
ts 26,840,301 1 0.00 0 0.00 1 0.00 0 0.00 1 0.00 0 0.00
tsf 11,634,593 24,176 0.21 1,638 0.01 12,280 0.11 13,534 0.12 10,642 0.09 11,896 0.10

total 85,803,670 4,585,227 5.34 1,638 0.00 4,573,331 5.33 13,534 0.02 4,571,693 5.33 11,896 0.01

which is simply not possible for the huge amount of data the ISMN has to offer. The
positive outcome to gain from this evaluation is, that the quality control system of the
ISMN is in fact very advanced and innovative.

3.4.2 Quality Control Systems from Other Soil Moisture Data
Providers

The only data portal with an automated quality control system that could be found
was the NASMD, a project quite similar to the ISMN, but for the United States only
[9]. Their approach references to the ideas for the geophysical flags of the control
system of the ISMN. For the control system of NASMD instead of GLDAS data sets,
North American Land Data Assimilation System (NLDAS)
(https://disc.sci.gsfc.nasa.gov/uui/datasets?keywords=NLDAS) data sets, which are
only available for the unitetd states, are used. The system includes tests all soil
moisture values to lie within a specific boundary and checks the corresponding porosity
and soil temperature. Including the soil porosity in the quality assessment is a new
approach for the ISMN for the geophysical flags, but their improvement would exceed
the boundaries of this thesis. The quality control system of the NASMD does not
follow a spectrum based approach.
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All aspects of the existing quality control methods were taken into account. The
existing spectrum based flags of the ISMN were revised and six new flags were de-
veloped. Since the number of publications on quality control for soil moisture data
is very sparse and therefore the ideas for new approaches were limited, a lot of effort
was put in the revision of the existing spectrum based flags. For the revised and
new quality flags a data viewer, with the option to show specific quality flags of the
current algorithms and the new ones, was developed. Therefore the edited algorithms
have a much higher impact of visual analysis for the adaption of conditions for various
data sets. Six new flags could be added with ideas of the author and the ISMN data
providers, who developed their own quality assessment.

4.1 Revised Algorithms

To improve the existing spectrum based algorithms boundary thresholds of most of
the conditions for the error detection were loosened, because they prevented flagging
of some bad data sets. Therefore other conditions were added to avoid the resulting
over flagging.

4.1.1 Spikes

For the spike some conditions were added, but the initial ideas are still the foundation
of this flag.

1. Since a spike is defined as a single measurement that differs significantly from
the observations xt−1 before and xt+1 after xt, the condition to also change
noticeable to the next measurement was added. The thresholds of the formula
concerning the value xt−1 were untightened, since this condition prevented many
spikes from being flagged (Equation 4.1). The thresholds for the comparison of

33



4 New Methods

xt with xt+1 were chosen equally (Equation 4.2). A minimum of 0.5 % change
in soil moisture was added to both equations to avoid an over flagging of low
values.

xt

xt−1
< 0.95 or

xt

xt−1
> 1.05 with xt−1 6= 0 and |xt−1 − xt| > 0.5 (4.1)

xt

xt+1
< 0.95 or

xt

xt+1
> 1.05 with xt+1 6= 0 and |xt+1 − xt| > 0.5 (4.2)

2. In the first derivative the value before and after the spike are equal in the ideal
case, but one in negative and one in positive direction. This equality is not given
in real soil moisture observations and varies due to a constant rise or fall in the
spectrum. Therefore it must only be about one (Equation 4.3). In the second
derivative the same condition must hold. Both conditions seem redundant, but
since the first derivative is rounded and takes the neighboring values into account
both conditions avoid different cases of over flagging.

x ′t−1

x ′t+1
≈ −1 with x ′t+1 6= 0 (4.3)

x"t−1

x"t+1
≈ 1 with x"t+1 6= 0 (4.4)

3. The third condition represents that the spikes in the second derivative are twice
as big as the smaller spike at the flagged measurement. (Figure 3.2). Since a real
soil moisture measurement varies a lot, the bigger spikes only have to be larger
than the smaller spike.

x"t
x"t−1

< −1 with x"t−1 6= 0 (4.5)

x"t
x"t+1

< −1 with x"t+1 6= 0 (4.6)

4. The coefficient of variation was replaced with the mean value of the spectrum of
the first derivative without the value to be flagged itself and the value before and
after. It was replaced to avoid the under flagging of noisy low level soil moisture
data. ∣∣µ([x ′t−6, x

′
t+6]\{x

′
t−1, x

′
t, x
′
t+1})

∣∣ < 0.5 (4.7)
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4.1.2 breaks

The ideas for the improvement of the breaks are quite similar to those of the spike.
Thresholds were loosened and more conditions were added. Especially for the positive
break, where over flagging is a huge problem, because of the similarity to natural soil
moisture rises after precipitation events.

Negative breaks

1. The threshold of the relation of the value xt and the value xt−1 was reduced to
avoid under flagging. An absolute minimum difference was added to avoid over
flagging of low values.

xt

xt−1
< 0.9 with xt−1 6= 0 and xt − xt−1 < −0.5 (4.8)

2. In the rounded first derivative the value to be flagged and the value before are
equal in the ideal case. Since they vary in reality those values must be about
the same for this condition. In the second derivative the same condition must
hold, but x ′′t−1 must be negative. Those conditions would be equal if the first
derivation was not rounded. Because it is rounded both conditions complete one
another, because the first derivative takes its neighboring values into account
and the second derivative does not.

x ′t
x ′t−1

≈ 1 with x ′t−1 6= 0 (4.9)

x ′′t
x ′′t−1

≈ −1 with x ′′t−1 6= 0 (4.10)

3. The first formula of the third condition was already used for the existing flagging
method (Equation 4.11). Since the same condition must hold after the break
it was also added (Equation 4.11). The division was inverted, since x ′′t−1 and
x ′′t should not be zero anyway and x ′′t−2 and x ′′t+1 are often zero. Again, the
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thresholds were loosened.∣∣∣∣x"t−2

x"t−1

∣∣∣∣ < 0.15 with x"t−1 6= 0 (4.11)∣∣∣∣x"t+1

x"t

∣∣∣∣ < 0.15 with x"t 6= 0 (4.12)

4. The spectrum before and after the break must be rather smooth to avoid over
flagging. This condition replaces the coefficient of the variance since the bound-
ary was too big for high level soil moisture values and too small for low level
values. Furthermore the first derivative serves a good purpose, because it is
rounded and a single outlier is smoothed.∣∣µ([x ′t−6, x

′
t+6]\{x

′
t−1, x

′
t})

∣∣ < 0.5 (4.13)

5. The last equation only differs from the existing methods by adding the value
before x ′t, to consider that the first derivative is rounded.

x ′t + x
′
t−1 < −10 ·

∣∣µ([x ′t−6, x
′
t+6]\{x

′
t, x
′
t−1})

∣∣ (4.14)

Positive Breaks

The positive break does not differ much from the negative break. One condition was
added since the positive break is much more difficult to detect, due to its similarity
to a natural rise caused by a precipitation event. The other formulas are similar, but
some are altered for the positive direction of the break and are listed for completion.

1. For the positive break the relation between xt and xt−1 must be higher than a
certain threshold. Also the same absolute difference as for the negative break
must hold.

xt

xt−1
> 1.1 with xt−1 6= 0 and xt − xt−1 > 0.5 (4.15)
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2. The second condition is exactly the same as for the negative break.

x ′t
x ′t−1

≈ 1 with x ′t−1 6= 0 (4.16)

x"t
x"t−1

≈ −1 with x ′′t−1 6= 0 (4.17)

3. The third condition is also the same. Again, it is essential to put x ′′t−1 and x ′′t as
the denominator, since x ′′t−2 and x ′′t+1 are often zero.∣∣∣∣x"t−2

x"t−1

∣∣∣∣ < 0.15 with x"t−1 6= 0 (4.18)∣∣∣∣x"t+1

x"t

∣∣∣∣ < 0.15 with x"t 6= 0 (4.19)

4. The spectrum around the break must also be very smooth.∣∣µ([x ′t−6, x
′
t+6]\{x

′
t−1, x

′
t})

∣∣ < 0.5 (4.20)

5. For the positive break the addition of x ′t and x ′t−1 must be ten times bigger than
the spectrum of the first derivative.

x ′t + x
′
t−1 > 10 ·

∣∣µ([x ′t−6, x
′
t+6]\{x

′
t, x
′
t−1})

∣∣ (4.21)

6. The last condition was added to avoid the over flagging of natural precipitation
events or snow melting processes. After a break soil moisture stays at a rather
constant level. Due to an ongoing natural event the soil moisture often either
rises further, because of a continuing rain fall, or drops due to drying processes.
These situations are mostly excluded by the following formulas.

xt

xt+1
> 0.99 and

xt

xt+1
< 1.01 with xt+1 6= 0 (4.22)

xt+1

xt+2
> 0.99 and

xt+1

xt+2
< 1.01 with xt+2 6= 0 (4.23)
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4.1.3 Plateaus

Low Level Plateaus

The naming of this flag was changed from "low constant values" to "low level plateau"
to avoid a confusion with a new flag called "constant values", which will be described
in section 4.2.

1. The first condition for a low level plateau is still a negative break as the plateau
start xt with t = tpl_start.

2. The coefficient of variation was replaced with the variance itself, since low level
plateaus mostly occur at a low level of soil moisture observations. The coefficient
of variation is a relation that allows a higher variation at higher data reading.
With the variance itself more low level values and less high level values will be
flagged. The boundary was also loosed, because the over flagging of low level
plateaus was never a problem, but the under flagging was.

σ2([xt, xt+n]) < 0.01 with n > 12 and t = tpl_start (4.24)

3. A third condition was added to assure a soil moisture rise at the end of the
plateau to avoid the over flagging of natural drying process that are rather slow.

x ′t > 0 with t = tpl_end (4.25)

Saturated Plateaus

Saturated Plateaus are very easily mistaken for natural slow drying process. The
conditions were much adapted with the result of a much higher detection rate, but
also an increasing but acceptable over flagging.

1. As before a soil moisture rise must have occurred for a saturated plateau (Equa-
tion 3.12), but in the new method it has to happen in the previous three hours
and the rise has to be higher than for the current quality flags. It is varying
when the actual plateau starts after a heavy rain fall, but visual inspection of
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many timeseries showed that it does not lie back more than three hours.

3∑
i=0

(xt−i−1 − xt−i) > 0.5 and xt − xt−1 > 0.1 with t = tpl_start (4.26)

2. The variance of the plateau is now considered relative with the coefficient of
variation, because low soil moisture readings were highly over flagged and very
high saturated plateaus, which show a high variation could not be detected.
The variance of the whole plateau and every twelve hour part are calculated
separately. The additional boundary variance for the whole plateau avoids over
flagging of drying process, but if the plateau lasts over a long time period an
appended value would not have much influence. Therefore both boundaries are
valuable assets.

σ2([xt, xt+n])

µ([xt, xt+n])
< 0.0075 with n > 12 and t = tpl_start (4.27)

σ2([xt−12, xt])
µ([xt−12, xt])

< 0.005 ∀ {t | tpl_start + 12 6 t 6 n} (4.28)

3. To detect high soil moisture differences of two neighboring values, which should
not occur within a plateau, a new condition was added. The relative difference
also helps to avoid under flagging of high soil moisture plateaus and over flagging
of correct low level data.

xi − xi−1

µ([xt, xt+n])
< 0.01 ∀ xi ∈ [xt+1, xt+n] with n > 12 and t = tpl_start

(4.29)

4. The last condition is still the same as for the existing methods. Plateaus are
only flagged as such if they are at the upper five percent of the soil moisture
readings of a timeseries

µ([xpl_start, xpl_end]) > max([xt0 , xtend
]\{xt > 100}) · 0.95 (4.30)
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4.2 New Algorithms

The new algorithms are based on observations during the revision of the existing flags
or ideas of network providers for their on quality control system. They are a valuable
addition to avoid undetected erroneous data sets (Table 4.1).

Table 4.1: additional spectrum based ISMN quality flags

variable flag condition

soil moisture D11 suspicious value before NaNs
D12 suspicious value after NaNs
D13 severe soil moisture drop
D14 alternating values
D15 constant values
D16 highly flagged spectrum

4.2.1 Suspicious Values Around Missing Values

Values before or after a sensor failure are often outliers. Especially after long time
periods of a sensor drop out.

Suspicious Values Before Missing Values

The first and second derivatives are quite similar to those of breaks (Figure 4.1).

1. A sensor failure for a few measurements normally does not lead to suspicious
values before or after this occurrence. To avoid over flagging a minimum of a 3
hour sensor drop out is necessary.

@ [xt+1, xt+n] with n > 3 (4.31)

2. The difference to the value before the suspicious value must be higher than a
certain relative boundary, which was defined to be more than 5 %.

xt

xt−1
< 0.95 or

xt

xt−1
> 1.05 with |xt − xt−1| > 0.5 and xt−1 6= 0 (4.32)
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Figure 4.1: data set xt with a suspicious value before missing values and its first deriva-
tive x̃ ′t and second derivative x ′′t

3. The spectrum before the suspicious value has to be smooth to differ between
natural soil moisture varieties and dubious values.

x ′t−1 < −10 ·
∣∣µ([x ′t−2, x

′
t−6])

∣∣ with
∣∣µ([x ′t−2, x

′
t−6])

∣∣ < 1 (4.33)

4. As for a break, the first derivative at the suspicious value must be much higher
than the past spectrum.

x ′t−1 + x
′
t > 10 ·

∣∣µ([x ′t−2, x
′
t−6])

∣∣ with
∣∣µ([x ′t−2, x

′
t−6])

∣∣ < 1 (4.34)

Suspicious Values After Missing Values

The algorithms for suspicious values after NaN-Values (Figure 4.2) are analog to those
for suspicious values before NaN-Values.
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Figure 4.2: data set xt with a suspicious value after missing values and its first deriva-
tive x̃ ′t and second derivative x ′′t

4.2.2 Severe Soil Moisture Drop

Due to the slow soil moisture drying process it seems apparent to introduce a flag
that triggers, if a negative soil moisture change within one hour is beyond a certain
threshold. Compared to a negative break there are no other conditions to be full filled,
but the drop must be much higher. To avoid over flagging of high soil moisture values
and under flagging of low values, a relative boundary was set that muss be succeeded.
It was set to be more than 25 %. A minimum absolute boundary was defined to avoid
the under flagging of low soil moisture values.

xt

xt−1
< 0.75 with xt−1 6= 0 and xt − xt−1 < −0.5 (4.35)

4.2.3 Alternating Values

In some soil moisture timeseries a sensor malfunction occurs that results in alternat-
ing values. The readings constantly switch between rather high and rather low soil
moisture readings. Five conditions have to be met to flag such alternating values.
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Figure 4.3: alternating values

1. The upper and lower soil moisture readings are parted in two sets, which both
have to include at least three measurements their union is the whole erroneous
data period with at least thirteen values.

∃{X} : |X| > 3 and ∃{Y} : |Y| > 3 and X ∪ Y = [xt, xt+n] with n > 12
(4.36)

2. Each group must include a value that has a predecessor and a successor in time
of the other group.

∃x ∈ X : ty1 < tx < ty2 y1,y2 ∈ Y (4.37)

∃y ∈ Y : tx1 < ty < tx2 x1, x2 ∈ X (4.38)

3. The variance of each group must be less than 0.5%.

σ2(X) < 0.5 ∧ σ2(Y) < 0.5 (4.39)

4. The relative difference between the sets must be at least 25%.

µ(X)

µ(Y)
< 0.75 ∨

µ(X)

µ(Y)
< 1.25 (4.40)

5. Each value of each set must differ from the mean of the set by at most 1 %
to avoid outliers that should not occur in such a set and therefore avoid over
flagging.

|µ(X) − x| < 1 ∀x ∈ X (4.41)

|µ(Y) − y| < 1 ∀y ∈ Y (4.42)
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4.2.4 Constant Values

Soil moisture values are highly variable. Even if there occurs no precipitation event,
they are not only influenced by a yearly cycle, but also by daily radiation and tem-
perature variations. Therefore it is very unlikely for soil moisture readings to remain
constant for more than 24 hours.

The only condition for constant values is that the measured value does not change
by any digit over at least three days, where three daily cycles should be visible.

∀x ∈ [xt, xt+n−1] : x = x+1 with n > 72 (4.43)

4.2.5 Highly Flagged Spectrum

There were many random erroneous observations detected that can not be detected by
specified algorithms. This often concerns data values that lie within a spectrum were
already most of the data sets are flagged. Therefore a flag is introduced that triggers,
if more than half of the data sets within 24 hours before and after are already detected
as suspicious values.
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5 Evaluation

For the evaluation of the revised and new algorithms for the quality control system
many test data sets were chosen and manually flagged to be compared against the
existing and the new methods. Many examples will be discussed why the improved
algorithms result in a better flagging statistic and why some methods fail at specific
data sets.

5.1 Results

From each network one timeseries of one year was chosen as a test data set, to assure
various sensors, depths and climate and land cover classes. Ten networks AACES,
AWDN, CHINA, ICN, IOWA, KHOREZM, MONGOLIA, PBO_H2O, RUSWET-AGRO,
RUSWET-GRASS and RUSWET-VALDAI, were excluded since their observations are
not hourly. Therefore 44 data sets were used for the validation (Table 5.1). The cho-
sen data sets were not used for developing the algorithms. Every test data set was
manually flagged and afterwards compared to the existing and the new quality flags
by calculating an error matrix for both, the existing and the new flags respectively.

The error matrix for the existing quality flags shows that many erroneous data sets
were not detected as such (Table 5.2). The error matrix of the edited and new methods
shows a much higher detection rate (Table 5.3).
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Table 5.1: test data sets for the evaluation of the existing and new ISMN quality flags
network station sensor depth [m] year error types

AMMA-CATCH Belefoungou-Mid CS616 0.40 - 0.40 2010 D06 D12
ARM Hillsboro Water Matric Potential Sensor 0.60 - 0.60 1997 D06 D15
BIEBRZA_S-1 grassland_soil_2 GS-3 0.05 - 0.05 2016 D10
BNZ-LTER HELMERS CS615 0.20 - 0.20 2001 D06 D10 D13 D14 D15
CALABRIA Chiaravalle Centrale ThetaProbe ML2X 0.30 - 0.30 2008 D06 D07 D09 D15
CAMPANIA Bagnoli ThetaProbe ML2X 0.30 - 0.30 2011 D06 D11 D12 D13
CARBOAFRICA SD-DEM CS615 0.30 - 0.30 2003 D07 D08 D09
COSMOS Shale Hills Cosmic-ray Probe 0.00 - 0.16 2016 D06 D07
CTP_SMTMN L01 EC-TM 0.00 - 0.05 2011
DAHRA DAHRA ThetaProbe ML2X 0.10 - 0.10 2005
FLUXNET-AMERIFLUX Tonzi Ranch ThetaProbe ML2X 0.20 - 0.20 2012 D08 D10
FMI SOD101 5TE 0.05 - 0.05 2016 D10
GTK Porill CS616 0.70 - 0.70 2009 D07 D10
HOBE 1.07 Decagon 5TE 0.50 - 0.55 2010 D10
HSC_SELMACHEON Selmacheon HydraProbe Analog 0.00 - 0.10 2008 D06 D07 D08 D10 D13
HYDROL-NET_PERUGIA WEEF 2 TRASE-BE 0.25 - 0.25 2013 D06 D07 D08 D14
HYU_CHEONGMICHEON Suresan HydraProbe T100A 0.00 - 0.10 2011 D13
IIT_KANPUR ITTK_Airstrip Water Scout SM100 0.50 - 0.50 2012 D07 D08 D12
iRON Brush Creek 10HS 0.20 - 0.20 2015 D07 D09
LAB-net Oromo Calibration Site Sensor CS650 0.07 - 0.07 2014 D15
MAQU NST_05 ECH20 EC-TM 0.05 - 0.05 2009 D11
METEROBS Monte Pino EnvironSCAN 0.30 - 0.30 2011
MOL-RAO Falkenberg TRIME-EZ 0.60 - 0.60 2008 D06
ORACLE SUIZY TRASE 16 0.70 - 0.70 2011 D07 D09
OZNET Alabama HydraProbe 0.00 - 0.05 2010 D11 D13
REMEDHUS El Tomillar HydraProbe 0.00 - 0.05 2015 D07 D13
RSMN Banloc 5TE 0.00 - 0.05 2016 D06 D11 D13
SASMAS Brunbrae HydraProbe 0.00 - 0.30 2007
SCAN Kemolche Gulch HydraProbe Analog 0.10 - 0.10 2012 D06 D07 D08 D13
SKKU SKKU_Jinwicheon_6 5TM 0.10 - 0.10 2014 D06 D07 D08 D10 D13
SMOSMANIA Carbieres dAvignon ThetaProbe ML2X 0.20 - 0.20 2015 D06 D07 D08
SNOTEL WHISKEY CK HydraProbe Analog 0.50 - 0.50 2016 D06 D13
SOILSCAPE node1019 EC5 0.42 - 0.42 2014 D12 D10
SWEX_POLAND P1 D-LOG-mpts 0.10 - 0.10 2012 D07 D08 D13 D14
SW-WHU BoaxieBDS-RSoilMoisture SoilMoisture-AverageSensor 0.10 - 0.10 2015 D06 D11
TERENO Selhausen Hydraprobe II SDI-12 0.20 - 0.20 2014 D12
UDC_SMOS Erlbach IMKO TDR 0.05 - 0.05 2010 D06 D07
UMBRIA Monterchi EnviroSCAN 0.15 - 0.25 2011 D11
UMSUOL San Pietro Capofiume TDR 100 0.45 - 0.45 2009 D06 D07 D08 D15
USCRN Dinosaur_2_E HydraProbe II SDI-12 0.10 - 0.10 2011 D06 D07 D08 D10
USDA-ARS Little River HydraProbe Analog 0.00 - 0.05 2003
VAS MelbexI HydraProbe 0.00 - 0.05 2010 D11
WEGENERNET 15 pF-Meter 0.30 - 0.30 2016 D06 D10
WSMN WSMN_4 CS615 0.03 - 0.03 2015 D06 D07 D08 D09
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Table 5.2: error matrix of 244502 data values for the existing quality flags

flagged ... [absolute number | % of datasets]

flag
manual manual ¬ manual ¬ manual

automatic ¬ automatic automatic ¬ automatic
D06 16 11.0 129 89.0 215 0.1 243597 99.9
D07 35 31.0 78 69.0 14 0.0 243798 100.0
D08 23 27.1 61 71.8 44 0.0 243768 100.0
D09 192 5.0 3342 86.9 845 0.4 242967 99.6
D10 1217 24.1 3823 75.9 398 0.2 243414 99.8

any 1563 9.1 15701 90.9 1435 0.6 225113 99.4

Table 5.3: error matrix of 244502 data values for the improved quality flags

flagged ... [absolute number | % of datasets]

flag
manual manual ¬ manual ¬ manual

automatic ¬ automatic automatic ¬ automatic
D06 114 78.6 31 21.4 72 0.0 244430 100.0
D07 63 55.8 50 44.2 19 0.0 244483 100.0
D08 42 49.4 42 49.4 22 0.0 244480 100.0
D09 3020 89.8 344 10.2 48 0.0 244454 100.0
D10 2579 51.2 2461 48.8 1993 0.8 242509 99.2
D11 5 50.0 5 50.0 2 0.0 244500 100.0
D12 16 76.2 5 23.8 0 0.0 244502 100.0
D13 284 94.7 15 5.0 141 0.1 244361 99.9
D14 1143 79.6 293 20.4 1 0.0 244501 100.0
D15 10253 100.0 0 0.0 0 0.0 244502 100.0

any 14326 83.8 2768 16.2 1861 0.8 225547 99.2
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5.2 Discussion

Th under flagging of the existing methods can be explained with the fact that the
algorithms were developed when there were not so many data sets integrated in the
ISMN and the huge variety of sensors, depths, land cover and climate classes was not
given. The revised methods show a higher detection rate and also the over flagging
could be reduced in most cases. Only the saturated plateaus show a higher over
flagging, but that can be justified with the high detection rate of additional over a
thousand flagged data values. For a validation of satellite data thousands of under
flagged erroneous data values would be much more severe than missing good values.

5.2.1 Spikes

Many spikes were not flagged with the existing methods, because the boundaries for
the relation between the value of the spike and the value before was defined very tight
(Equation 3.1). In Figure 5.1 the existing flags are compared to the revised methods
in the plot below.

↓

Figure 5.1: previous under flagged spikes

If only the boundary of the relation would have been loosened many data sets would
have been over flagged. With more conditions this could be avoided and even values
that were over flagged before could be saved from the incorrect assessment. One
important addition is the consideration of the high difference between the spike itself
and the value after, which was not considered for the existing method (Figure 5.2).
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↓

Figure 5.2: previous over flagged spike

If there are two spikes in a row they cannot be flagged due to the revised conditions
for the first and second derivative. Figure 5.3 shows a spike that was flagged and a
spike before and another spike after that both look very alike, but cannot be flagged,
because they follow another smaller spike.

Figure 5.3: example for a spike that is still not flagged

Most of the possibly over flagged spikes of the error matrices of both methods result
from dubious data sets, where the perception of whether a value is a spike or not
was very subjective. In Figure 5.4 for example, the sensor readings are only at a full
percentage. Therefore what seems to be a spike is probably only a rounded value. In
all the example timeseries was no obvious correct data set found that was over flagged.

Figure 5.4: example for a correct value that is still flagged as a spike
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5.2.2 Breaks

Negative Breaks

Many negative breaks were not flagged with the existing methods, because the con-
ditions for the second derivative included a division with a value in the denominator
that is most likely to be zero, especially in ideal cases (Figure 5.5). This problem
was fixed by inverting the division and the corresponding boundary for the revised
methods.

↓

Figure 5.5: previous under flagged negative break

There are some negative breaks that still cannot be detected with both methods,
because the break happens over two steps (Figure 5.6). The first and second derivative
are altered and the conditions do not hold. Also the variance of the spectrum before
the break is often not small enough, because of this intermediate step.

Figure 5.6: example for a negative break that is still not flagged

The over flagging of negative breaks was not a problem with the existing methods.
It was a bit increased with the edited methods to assure the flagging of erroneous data.
This especially applies for noisy data, where the determination of erroneous data is
very subjective (Figure 5.7).
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Figure 5.7: example for a correct value that is still flagged as a negative break

The flagging of negative breaks could also be improved. Nearly twice as much breaks
are now detected. The over flagging of suspicious noisy data, which is suspicious
anyway, was accepted to increase the flagging of erroneous data.

Positive Breaks

Also positive breaks were under flagged with the existing methods, because the division
by zero was not considered. That the first derivative between the discrete points is
rounded had no influence in the conditions as well. When the variance of the first
derivative around the value to be flagged was tested to be much smaller than at xt
the value xt−1 was included (Equation 3.5, which was also high due to the rounding of
the first derivative. Therefore often high breaks were not marked as such, because the
first derivative before the value to be flagged was too high for the variance to be small
enough. With the improved conditions more positive breaks are now flagged (Figure
5.8).

↓

Figure 5.8: previous under flagged positive breaks

A huge problem with positive breaks is the over flagging for both methods. Precip-
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itation events or snow melting processes cause a sever soil moisture rise, which is hard
to separate from sudden positive breaks with automated algorithms. A condition was
added that the difference between the two time steps after the break has to be very
small to reduce the over flagging (Figure 5.9).

↓

Figure 5.9: previous over flagged positive break

With both methods breaks are often not flagged if they occur in a constant rising
spectrum (Figure 5.10). The condition for a small variance does not hold, which is
very important to separate natural events from breaks, especially for positive breaks.

Figure 5.10: example for a positive break that is still not flagged

The over flagging of positive break is still a problem. If the drying process of soil is
very slow or the rain continues to hold soil moisture at a constant level, the difference
between those natural events and a positive break cannot be detected with automated
methods (Figure 5.11). The only obvious solution would be a manual control of those
flags, but the time and effort for a data portal as big as the ISMN cannot be justified.

While negative breaks are easily detected, it is much harder to separate positive
breaks from natural precipitation events. The detection rate of negative breaks was
already very good, but still could be improved. The flagging of positive breaks is still
not optimal, but much better than with the existing methods.
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Figure 5.11: example for a correct value that is still flagged as a positive break

5.2.3 Plateaus

Low Level Plateaus

The under flagging of low level plateaus could be reduced by increasing the allowed
variance over the whole plateau. Also the value for the variance was chosen absolute
instead of relative since low level plateaus occur at low soil moisture readings and a
value relative to the level of soil moisture readings would lead to over flagging at high
readings and under flagging at low values. Figure 5.12 shows an example of a plateau
that was not fully flagged with the existing methods.

↓

Figure 5.12: previous under flagged low level plateau

Because of this relative variance high level soil moisture observations were over
flagged with the existing methods (Figure 5.13). Another reason was the missing
condition for the plateau to end with a rise of soil moisture. With this condition at
least the over flagging of the last plateau could have been avoided.

Very noisy data still cannot be flagged without highly over flagging correct data,
because the boundary for the variance would have to be chosen much to high (Figure
5.14).
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↓

Figure 5.13: previous over flagged low level plateaus

Figure 5.14: example for a low level plateau that is still not flagged

If a timeseries includes alternating positive and negative breaks the incorrect data
level can hardly be detected with algorithms. In Figure 3.5 the lower level is most
likely the correct measurement and the two series at a higher level the erroneous ones.

Figure 5.15: example for correct values that are still flagged as low level plateau

Improving the low level plateau flag was very successful. The percentage of detected
erroneous data could be raised from 5 % to 76 %, while simultaneously even the over
flagging could be reduced.
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Saturated Plateaus

Saturated plateaus are the most difficult suspicious series of measurement to detect.
An ideal saturated plateau is nearly constant, but in real measurements they actu-
ally have a very high variation. For the revised flags the variation boundary was
defined relative to the level of soil moisture, since there are higher variations at higher
soil moisture observations. With this method many more saturated plateaus can be
detected (Figure 5.16).

↓

Figure 5.16: previous under flagged saturated plateau

Like in the existing methods also in the revised methods correct data values are often
mistaken for saturated plateaus. Often other correct values are affected than before
due to completely new conditions, but the problem is still present and according to the
error matrices even more frequent than before. Since the alteration of the condition
had such a positive impact on the missing flagging of erroneous data, the increased
over flagging is acceptable. Figure 5.17 shows a timeseries were the improvement has
a positive affect on the over flagging.

Saturated plateaus at a very high soil moisture level often have variations that
cannot be accepted without over flagging correct data too much. Some plateaus are
therefore only partly flagged where the boundary for the variation holds (Figure 5.18).

The saturated plateaus were most difficult to improve. Much over flagging had
to be accepted to avoid plateaus that are not marked as erroneous, which would be
much more severe for a validation of data sets that were retrieved by other means.
The correlation of the data sets without excluding the plateaus would be wrongly
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↓

Figure 5.17: previous over flagged saturated plateaus

Figure 5.18: example for a saturated plateau that is still not completely flagged

decreased.
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5.2.4 Suspicious Values Around Missing Values

The flag suspicious values around missing values is a valuable addition to the flagging
system. Figure 5.19 shows an example of a timeseries with many of those occurrences.
Those obviously bad data values look similar to spikes, but they cannot be detected
as such because there are no neighboring values they can be compared to. The new
flags solve this problem.

Figure 5.19: example for suspicious values Around missing values

The figure also shows a bit of an under flagging, when the difference to the existing
spectrum is not high enough. The whole data set also shows a continuous drop of
soil moisture, which results in a relatively high gradient, where the boundary variance
sometimes does not hold. Loosening these thresholds would result in an over flagging
of correct data sets.

Over flagging of the new flags could only be detected at rather noisy low soil moisture
readings, where the manual flagging is rather subjective 5.20. Therefore that effect is
acceptable.

Figure 5.20: example for a correct value that is flagged as a suspicious value around
missing values

5.2.5 Severe Soil Moisture Drop

This flag is a rather simple, but valuable addition. Many suspicious data series that
cannot be detected with one of the introduced algorithms, which are too specific, are
at least partly flagged with a sever soil moisture drop (Figure 5.21).
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Figure 5.21: sever soil moisture drops in a suspicious data series

Soil moisture drops, which seem very high to an observer that are not flagged as such
mostly occur after a sensor drop out (Figure 5.22). The linear vertical line indicates
that there are no measurements in that time interval. The figure shows that those
readings that exist seem realistic and are most likely connected with a soil moisture
drying process. Therefore such occurrences are not flagged.

Figure 5.22: example for a severe soil moisture drop that is not flagged

The over flagging also only occurs at noisy low level soil moisture readings (Figure
5.23). As they are in any case suspicious, those results are acceptable.

Figure 5.23: example for a correct data set that is flagged with a severe soil moisture
drop

5.2.6 Alternating Values

Alternating values occur due to severe sensor or data logger malfunctions (Figure
5.24). Some parts of such a set of erroneous data values are detected by other flags,
but not the whole spectrum. Such undetected values would have a very bad influence
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on a validation with other data sets. Therefore this flag is a very useful addition for
the quality assessment.

Figure 5.24: example for alternating values

Such a set of erroneous data also occurs within a constant drop or rise of soil moisture
(Figure 5.25). This case is not flagged due to the high variance. Alternating values can
also hardly be detected with the set of high values and the set of low values showing
no significant difference. To allow one of these cases to be flagged would result in a
huge unacceptable over flagging of correct data sets. Therefore this under flagging is
acceptable.

Figure 5.25: example for alternating values that are not flagged

Data sets might seem over flagged if they do not really look similar to the specific
behavior. In Figure 5.26 the lower soil moisture values are possibly correct data sets,
but since there is obviously something suspicious about this timeseries those over
flagging is acceptable.

Figure 5.26: example for correct data values that are flagged as alternating values
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5.2.7 Constant Values

Constant values are very unnatural in soil moisture readings. Soil moisture observa-
tions show yearly variations, influences of radiation, temperature and very high vari-
ations affected by precipitation and snow melting processes. Constant values often
occur in winter when the soil is frozen, but also if the air or soil temperature is al-
ready above zero degrees, which would not be detected by the geophysical based flags.
The sensors often need time to react again and provide reasonable data. Those and
generally suspicious constant data values can be detected with this new flag. (Figure
5.27)

Figure 5.27: example for constant values

5.2.8 Highly Flagged Spectrum

The last flag is an appropriate completion of the ISMN spectrum based quality flags. It
fills gaps of under flagged erroneous observations. In 5.24 some values of the alternating
spectrum were not flagged, because they were not close enough to the mean value of
the others. This problem is fixed with this last flag as it flags values if they lie in a
spectrum were more than half of the datasets in 24 hours before and after are flagged.
(Figure 5.28)
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↓

Figure 5.28: example for a filled flagging gap

5.3 Impact of the Existing and Revised Quality Flags
on Validation Purposes

Soil moisture data derived from satellite data is most commonly validated by calculat-
ing the correlation with in situ measurements. The in situ observations are therefore
taken as reference and for the calculations assumed to be without error, which is not
the case with observed data sets. To reduce the negative impact of erroneous in situ
data on the correlation coefficient the ISMN quality flags can be used to exclude the
detected erroneous in situ data for a validation. Using only the observations that
were found to be good by the ISMN algorithms, the correlation should increase, if the
comparing data set is reasonable.

To test the effect of the ISMN quality flags, all ISMN data sets from table 5.1, which
were also used for the evaluation, were validated with the corresponding GLDAS data.
The GLDAS version 1 data set, provided by NASA, with a spacial resolution of 0.25
degree and temporal resolution of three hours was chosen for the validation. GLDAS
data is a model data set that was selected, because it has been a reliable source for
the geophysical quality flags (Table 3.3).

The correlation was calculated with the Pearson correlation coefficient for three dif-
ferent data set combinations. Once with all in situ measurements, once after excluding
all observations that were flagged with the existing spectrum based methods and once
analog for the revised spectrum based flags. The overall correlation of all 44 data sets
resulted to:
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� using all in situ observations: r = 0.26

� excluding flagged data sets by existing method: r = 0.27

� excluding flagged data sets by revised method: r = 0.30

The overall correlation is rather low, but the specific data sets were chosen, because
they show many erroneous observation. Some of those data sets even showed a negative
correlation and therefore have a very negative influence on the over all correlation. Also
the grid resolution of 0.25 degree of the GLDAS data set is very low and therefore the
data of a specific in situ station is not appropriately represented by with the mean grid
value of the corresponding GLDAS data. More important is the difference between
the correlations, which is a success.

The types of error are also noticeable in the correlation coefficient for specific data
sets. The differences of the correlations are higher for a spectrum with plateaus or
constant values, because more observations are excluded from the data set, e.g. the
network HOBE (Figure 5.29). The graphs show the data set of the network HOBE
that was chosen for the evaluation, with the flagged data set by the existing flags at
the top and the revised flags at the bottom.

↓

Figure 5.29: test data set of the network HOBE

For the chosen data set of the network HOBE, where a saturated plateau and con-
stant values could be detected, the correlation coefficients are:

� using all in situ observations: r = 0.39
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� excluding flagged data sets by existing method: r = 0.39

� excluding flagged data sets by revised method: r = 0.41

In a timeseries with errors that last only for one measurement, e.g. jumps or breaks,
the difference of the correlation coefficients is much smaller.
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6 Conclusion

The existing quality control methods for the ISMN are very sophisticated and espe-
cially the fundamental ideas for the algorithms are very advanced. Nevertheless, there
is much room for improvement, due to the very special behavior of soil moisture data.
Much more data sets are included in the ISMN data base since the development of
the existing algorithms, and it was found that some error definitions need adjustments
and new error types could be identified. It transpired that the best way to improve the
existing algorithms was to loosen the thresholds in most of the formulas, but therefor
use all characteristics the derivatives have to offer to add other conditions to avoid
over flagging.

The original quality flags of the data providers have a more basic approach than
those of the ISMN, but it turned out that this is also a helpful addition to flag erroneous
observations that do not follow conditions of specific algorithms like breaks and spikes,
e.g. a sudden soil moisture drop.

All the spectrum based quality flags could be improved and six new flags were
added based on new ideas of the author and approaches of ISMN data providers. The
improved flags are mostly based on empirical tests and visual inspection with a data
viewer specifically developed for this thesis to examine the effect of conditions for the
error detection. The statistics show that the functionality of the new flags improved
evidently and the new flags are a valuable addition to avoid undetected erroneous
data.

The new flags will be implemented into the ISMN processing chain as soon as
possible.

An idea that was not followed for this thesis is to compare observations of sensors
that are installed at the same place but at different depths, but variation of soil
moisture data is highly reduced at deeper depths. Also, stations that are close to
each other could be compared to examine the reasonableness of the data. For both
approaches an over flagging of good data seems to be unavoidable, since the data sets
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often differ even if they are both correct. Additionally, it would be very complex to
determine the correct and the erroneous observations.
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Glossary

break A significant break in a 12 hour spectrum with elsewise continoues data sets.
14, 16, 67

network All in-situ stations of a single data provider. 6, 8

original quality flags Quality control procedure of ISMN data providers. 1

plateau Minimum 12 hours lasting continues measurements with a break before and
after. 14, 19, 20, 38

savitzky-golay filter A data smoothing filter for data points which may also give a
derivative of the smoothed data set. 14

spectrum Measurements of a timeseries of a specific time range. 33, 61

spike A single measurement that significantly out lies other measurements in a 12
hour spectrum. 14, 15, 33, 34

timeseries Data set with a fixed station, sensor and depth. 3, 4, 9, 14, 16, 20, 28, 38,
39, 42, 45, 49, 53, 57, 59, 63, 67
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Acronyms

AACES Austrialian Airborne Cal/Val Experiment for SMOS.

ARM Atmospheric Radiation Measurement climate Research Facility.

AWDN Automated Weather Data Network.

BIEBRZA_S-1 Instytut Geodezji i Kartografii.

BNZ-LTER Bonanza Creek Long-Term Ecological Research. 23

CEOP Code of Practice. 9

COSMOS COsmic ray Soil Moisture Observing System. 3

CTP_SMTMN Central Tibetan Plateau Soil Moisture and Temperature Monitoring
Network.

ESA European Space Agency. 1

FMI Sodankyla-Pallas Satellite Data Calibration and Validation Site.

GLDAS Global Land Data Assimilation System. 9, 31, 61, 62

GPS Global Positioning System. 3

HOBE Hydrological Observatory.

HSC_SELMACHEON Hydrological Survey Center.

ICN Illinois Climate Network.

IIT_KANPUR Indian Institute of Technology Kanpur.
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Acronyms

in situ ground based. 1, 3, 4, 6, 8, 9, 12, 61, 62

iRON Roaring Fork Observation Network.

ISMN International Soil Moisture Network. xiii, 1, 3, 4, 5, 8, 9, 10, 12, 14, 18, 21, 22,
23, 25, 26, 28, 30, 31, 33, 48, 52, 60, 61, 65, 67

METEROBS Met European Research Observatory.

MOL-RAO Lindenberg Meteorological Observatory - Richard Aßmann Observatory.
24, 25, 26

NaN Not a Number. 26

NASA National Space Agency. 9, 61

NASMD North American Soil Moisture Databse. 9, 31

NLDAS North American Land Data Assimilation System. 31

P precipitation.

PBO_H2O Plate Boundary Observation. 3, 8

RSMN Romanian Soil Moisture Network.

SD Snow Depth.

SM Soil Moisture.

SMOS Soil Moisture and Ocean Salinity.

SNOTEL SNOwpack TELemetry.

SOILSCAPE SOIL moisture Sensing Controller And oPtimal Estimator. 27, 28

ST Soil Temperature.

SU Soil Suction.

SWEQ Soil Water Content.
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Acronyms

SWEX_POLAND Soil Water and Energy eXchange - Poland.

TA Air Temperature.

TDR Time-Domain Reflectometer. 3

TERENO Terrestrial Environmental Observatories. 28

TS Soil Temperature.

TSF Surface Temperature.

UDC_SMOS Upper Danube Catchment SMOS validation side.

UMBRIA "Civil Protection Functional Centre and Research Institute for Geo-Hydrological
Protection.

USCRN U.S. Climate Reference Network. 29, 30

UTC Coordinated Universal Time. 4

VAS Valencia Anchor Station.

WSMN Wales Soil Moisture Network.
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