
Web Accessibility for the Blind
Through Visual Representation

Analysis
DISSERTATION

zur Erlangung des akademischen Grades

Doktor/in der technischen Wissenschaften

eingereicht von

Ruslan Fayzrakhmanov
Matrikelnummer 0728003

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Prof. Dr. Reinhard Pichler

Diese Dissertation haben begutachtet:

(Prof. Dr. Reinhard Pichler) (Prof. Dr. Alessandro Provetti)

Wien, 03.12.2013
(Ruslan Fayzrakhmanov)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Web Accessibility for the Blind
Through Visual Representation

Analysis
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor/in der technischen Wissenschaften

by

Ruslan Fayzrakhmanov
Registration Number 0728003

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Prof. Dr. Reinhard Pichler

The dissertation has been reviewed by:

(Prof. Dr. Reinhard Pichler) (Prof. Dr. Alessandro Provetti)

Wien, 03.12.2013
(Ruslan Fayzrakhmanov)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Ruslan Fayzrakhmanov
Favoritenstraße 9-11/184-2, A-1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

This thesis would not have been possible without the support and encouragement of many people,
who I would like to acknowledge in this section:

I am very thankful to Prof. Thomas Eiter for giving me the unique opportunity to undertake
my Ph.D. studies at the Vienna University of Technology.

My sincere thanks to Katrin Seyr for her unceasing support and attention during my work on
the thesis.

I am very grateful to my advisor, Prof. Reinhard Pichler who helped me to systematize the
results of my research, ameliorate presentation of the material, and who also endeavored to ensure
the completion of this work.

I would like to express my deepest gratitude to my second advisor, Dr. Robert Baumgartner
who gave me invaluable suggestions on my own scientific research and thanks to whom, I was
able to attain practical experience by participating in scientific projects and conferences.

I would also like to mention Prof. Georg Gottlob, who always encouraged me to pursue this
creative work.

I very much appreciate the scientific experience and practical knowledge which I acquired
through all the productive and dynamic work alongside my inspirational colleagues and friends
from the DBAI group. I am particularly grateful to Bernhard Krüpl-Sypien, Wolfgang Holzinger,
and Max Christopher Göbel. It was a lot of fun to work with them. The contributions which are
included and discussed within this thesis are mainly based on cooperative work with our research
projects.

I very much appreciate the recommendations provided by Prof. Yevgen Borodin regarding
this thesis as they were extremely helpful in improving my work.

Many thanks to Alexey A. Viktorov and Jürgen Schwingshandl, who helped me in conducting
a survey of users who are blind and evaluating the proposed approaches.

I would like to thank Stephen Longley for proofreading this thesis and ensuring its readability.
Last but by no means least, I am very thankful to my wonderful, loving and understanding

parents and brother who by their example, advice and continuous support inspired me in my
research.

This thesis has been supported by the Erasmus Mundus External Cooperation Window
Programme of the European Union, by the Austrian Forschungsförderungsgesellschaft FFG under
grants 819563 (ABBA project) and 829614 (TAMCROW project), and by the Austrian Science
Fund (FWF) under grant P25207-N23.

iii

Abstract

One of the most important attributes of a civilized society is based on the principle of equal op-
portunities for self-development and self-actualization within one’s life. In today’s contemporary
information society, this principle can be realized by enhancing the accessibility of information
resources for various groups of the population. Information is an inalienable part of today’s
life. This fact is clearly evident in the ongoing development and expansion of the World Wide
Web (the Web)—a huge information platform that has provided vast opportunities for people
by making it possible to effectively solve various tasks in business, education, science, and our
everyday lives. With the help of the Web, a person can pay bills, buy products and services,
complete university degrees online, search for and read articles, keep contact with their friends
and so much more.

However, these opportunities are not available for everybody. For example, people who
are blind encounter a lot of problems surfing the Web. This is a direct result of the majority
of web pages being orientated at sighted users and not taking into account users who are blind.
Blind users perceive the world differently and therefore need effective mechanisms for navigation
through the elements on a web page and the thorough understanding of their semantic role in
order to obtain an overview of a page in a few moments and perform a search. Current approaches
provide us with limited solutions in the pursuit of particular goals such as web page segmentation
or text summarization. Moreover, most approaches consider non-visual web page representations,
such as source code (X/HTML and XML) and tree representations (the tag tree and DOM tree)
which do not reflect the semantics that is analyzed by sighted users and posed exclusively on the
rendered web page. This fact explains the limitations of such methods.

The goal of this thesis is to enhance the accessibility of web pages for blind users. In
order to achieve this goal, we propose a complex solution covering the problems of automatic
understanding of a web page’s functional elements on the rendered web pages and navigation.
Firstly, we provide the means for web page analysis and understanding on the visual level which
carries the main information presented not only by the textual content, but also by the layout,
styles and other visual characteristics perceivable by sighted users. Secondly, the challenges in
improving web mobility of blind users based on the recognized logical elements of a web page
are considered in detail and solutions are proposed.

Considering the complexity in the analysis of visual characteristics, close attention is payed to
the modeling of a web page’s visual features defined in the Unified Ontological Model (UOM) as
well as developing methods and techniques for querying the model and approaches for realizing
methods for web page understanding and information extraction. The uniqueness of the Unified
Ontological Model (UOM) is based on its integration of different aspects of a web page in one

v

consistent model, such as geometry of the layout with quantitative and qualitative characteristics,
interface with different functional elements and structures, and the DOM tree. The proposed
cross-platform framework, Web Page Processing System (WPPS), ensures an efficient generation
of the UOM according to the provided configuration and conveys an application programming
interface (API) for developing methods and algorithms of web page processing. The WPPS
demonstrated its effectiveness in developing methods of web page segmentation, web object
identification and information extraction. For enhancing web accessibility based on the identified
web page elements, the Multi-Axial Navigation Model (MANM) and navigation methodology are
proposed in this thesis. Blindzilla, a cross-platform system which demonstrated its effectiveness
in an evaluation with blind users, implements these concepts.

Kurzfassung

Chancengleichheit bei selbständiger Entwicklung und Aktualisierung für alle ist ein wichti-
ges Merkmal zivilisierter Gesellschaften. In der heutigen Informationsgesellschaft findet dieser
Aspekt eine seiner Umsetzungen in der Verbesserung des Zugangs verschiedener Bevölkerungs-
gruppen zu Informationsressourcen. Information ist ein unabdingbarer Teil des heutigen Lebens.
Diese Tatsache verdeutlicht die laufende Entwicklung und Expansion des World Wide Web (des
Internets) – einer riesigen Informationsplattform, die für Menschen große Chancen eröffnet hat,
indem sie die effiziente Lösung von Aufgaben im Geschäftsleben, in der Bildung, der Wissen-
schaft und in unserem täglichen Leben ermöglicht. Mit Hilfe des Internets kann man Rechnungen
bezahlen, Produkte und Dienstleistungen kaufen, an einer Fernuniversität studieren, nach Artikeln
suchen und sie lesen, Kontakt mit FreundInnen halten und vieles mehr.

Diese Möglichkeiten stehen jedoch nicht allen offen. Zum Beispiel sind blinde Menschen
beim Surfen im Internet mit vielen Problemen konfrontiert. Dies liegt an der Orientierung der
überwiegenden Mehrheit von Webseiten an sehenden BenutzerInnen, ohne Berücksichtigung von
blinden BenutzerInnen. Blinde BenutzerInnen nehmen die Welt anders wahr und benötigen daher
effiziente Mechanismen zur Navigation durch die Elemente einer Webseite und zum Verstehen von
deren semantischer Rolle, um in kurzer Zeit einen Überblick über eine Seite zu bekommen und
diese durchsuchen zu können. Aktuelle Zugänge bieten eingeschränkte Lösungen, die bestimmte
Ziele verfolgen, seien diese die Segmentierung von Webseiten oder Textzusammenfassungen
etc. Zudem muss erwähnt werden, dass die meisten Zugänge sich auf nichtvisuelle Webseiten-
darstellungen wie den Quellcode (X/HTML und XML) und Baumdarstellungen (Tag-Baum
oder DOM-Knotenbaum) beziehen, die nicht die Semantik wiederspiegeln, die von sehenden
BenutzerInnen analysiert und ausschließlich auf der dargestellten Webseite abgebildet wird. Diese
Tatsache erklärt die begrenzten Möglichkeiten derartiger Methoden.

Das Ziel dieser Dissertation ist es, die Zugänglichkeit von Webseiten für blinde BenutzerIn-
nen zu verbessern. Um dieses Ziel zu erreichen, schlagen wir eine komplexe Lösung vor, die
alle Probleme des automatischen Verstehens der funktionalen Elemente einer Webseite auf den
dargestellten Webseiten und ihrer Navigation abdeckt. Zunächst stellen wir Mittel zur Analyse
und zum Verstehen einer Webseite auf der visuellen Ebene zur Verfügung, die die Hauptin-
formation transportieren, die nicht nur durch den Textinhalt, sondern auch durch Layout, Stile
und andere Eigenschaften, die von sehenden BenutzerInnen wahrgenommen werden können,
vermittelt wird. Zweitens werden die Probleme bei der Verbesserung der Internetmobilität von
blinden BenutzerInnen auf der Basis der erkannten logischen Elemente einer Webseite im Detail
untersucht und Lösungen vorgeschlagen.

vii

Angesichts der Komplexität der Analyse der visuellen Eigenschaften liegt ein Hauptaugen-
merk dieser Dissertation auf der Modellierung der visuellen Merkmale einer Webseite nach dem
Unified Ontological Model (UOM) und der Entwicklung von Methoden und Techniken zum
Abfragen des Modells und von Zugängen zur Realisierung von Methoden für das Verstehen von
Webseiten und der darauf basierenden Extraktion von Informationen. Die Einzigartigkeit des
UOM besteht in der Integration verschiedener Aspekte einer Webseite, wie etwa der Geometrie
des Layouts mit quantitativen und qualitativen Eigenschaften, Schnittstellen mit verschiedenen
funktionellen Elementen und Strukturen und dem DOM-Knotenbaum in einem konsistenten Mo-
dell. Der vorgeschlagene plattformübergreifende Rahmen, Web Page Processing System (WPPS),
sichert eine effiziente Generierung des UOM laut der spezifizierten Konfiguration und stellt dem
Programmierer eine Schnittstelle zur Anwendungsprogrammierung (Application Programming
Interface – API) zur Entwicklung von Methoden und Algorithmen der Webseitenverarbeitung zur
Verfügung. Das WPPS hat seine Effizienz bei der Entwicklung von Methoden zur Webseitenseg-
mentierung, Webobjektidentifikation und Informationsextraktion bewiesen. Zur Verbesserung des
Internetzugangs auf der Basis von identifizierbaren Webseitenelementen schlägt diese Dissertati-
on das multiaxiale Navigationsmodell (MANM) und die multiaxiale Navigationsmethode vor.
Ein plattformübergreifendes System, Blindzilla, das seine Effizienz in der Evaluation mit blinden
BenutzerInnen gezeigt hat, setzt diese Konzepte um.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The State of the Art: Challenges . 2
1.3 Aim and Objectives of this Thesis . 4
1.4 Theoretical Contribution . 6
1.5 Practical Contribution . 7
1.6 Publications . 8
1.7 Structure of the Thesis . 9

2 State of the Art and Related Work 11
2.1 Web Accessibility for the Blind . 12

2.1.1 Standards and Guidelines . 12
2.1.2 Hardware . 13
2.1.3 Software . 14

2.2 Web Page Navigation . 18
2.2.1 Contemporary Realized Navigation Approaches 18
2.2.2 Metaphor of Spatial Navigation . 19
2.2.3 Conclusion on Web Page Navigation 20

2.3 Web Page Processing . 22
2.3.1 Web Information Extraction . 22
2.3.2 Web Page Understanding . 24

2.4 Web Page Representations . 24
2.4.1 Standard Forms of Web Page Representation 25
2.4.2 Source code . 26
2.4.3 Textual representation . 27
2.4.4 Tree representation . 28
2.4.5 CSS Specifications for Rendering Web Pages 30
2.4.6 Quantitative Visual Representation . 35
2.4.7 Qualitative Visual Representation . 36
2.4.8 Analysis of the Considered Models 43

2.5 Semantic Web Approach . 46
2.6 Ontology and Logical Inference . 47

2.6.1 Ontology Languages . 49

ix

2.6.2 Inference Rules . 54
2.6.3 Standard Ontology Reasoning Services 57
2.6.4 SPARQL . 57

2.7 Discussion . 58

3 Modeling the Geometric Structure of a Web Page 61
3.1 Existing Geometric Structures . 62
3.2 Quantitative and Qualitative Models . 63
3.3 Web Page Canvas and Unit of Measure . 65
3.4 A Web Page Structure, Geometric Object and its Attributes 66
3.5 Spatial Relations . 68
3.6 Topological Relations . 68

3.6.1 RCC8 . 69
3.6.2 Refinement of the RCC for Blocks . 71

3.7 Direction Relations . 74
3.7.1 Quantitative Direction . 74
3.7.2 Qualitative Direction . 75

3.8 Distance Relations . 77
3.8.1 Quantitative Distance . 77
3.8.2 Qualitative Distance . 79

3.9 Alignment Relations . 79
3.10 Interval Relations . 81

3.10.1 Main Concepts . 82
3.10.2 Fuzziness in Interval Relations . 82
3.10.3 Centering Relation . 86
3.10.4 Two-Dimensional Interval Relations And Centering 86

3.11 Analysis of the Spatial Relations and Visibility of CSS Boxes 91
3.11.1 WPPS-HTML-DS1 Dataset . 91
3.11.2 RCC8 . 91
3.11.3 Quantitative Direction . 94
3.11.4 Quantitative Distance . 95
3.11.5 Alignment relations . 96
3.11.6 CSS Box Visibility . 96

3.12 Discussion . 97

4 The Unified Ontological Model of a Web Page 101
4.1 Web Page Authoring and Visual Representation 102
4.2 Overview of the Unified Ontological Model for the Web Page Processing . . . 104
4.3 Properties of Relations . 108
4.4 The Physical Model of a Web Page . 109

4.4.1 Extended DOM . 110
4.4.2 Block-based Geometric Model . 113
4.4.3 Interface Model . 123

4.5 The Logical Model of a Web Page . 127

x

4.6 Discussion . 127

5 Web Page Processing 129
5.1 A Principle of Web Page Processing based on the Unified Ontological Model . 129
5.2 An Object-Oriented Abstraction for the Unified Ontological Model 131

5.2.1 Declarative and Imperative Approaches 131
5.2.2 A Required Abstraction . 132
5.2.3 Ontology in Object-Oriented Applications 134
5.2.4 A Bridged Adapter . 135

5.3 WPPS: A System for Web Page Processing 138
5.3.1 Architecture . 138
5.3.2 WPPS Configuration . 140
5.3.3 Physical Model Instantiation . 150
5.3.4 WPPS API . 155
5.3.5 WPPS GUI . 158

5.4 Developing Methods by Means of the WPPS Framework 158
5.4.1 WPPS Methods Development Life Cycle 158
5.4.2 Basic Examples of WPPS Methods 161

5.5 WPPS Evaluation . 166
5.5.1 Goal and Objectives . 166
5.5.2 WPPS Parameters and Queries . 167
5.5.3 Evaluation Wrappers . 168
5.5.4 Performance Analysis . 171
5.5.5 Conclusions on the WPPS Evaluation 188

5.6 WPPS in the Problem of Basic Web Object Identification 190
5.7 Discussion . 194

6 Web Accessibility: A Multi-Axial Navigation 197
6.1 Ameliorating Blind Users’ Mobility . 198

6.1.1 Navigable Web Page Objects . 199
6.1.2 Web Page Mobility . 201

6.2 The Multi-Axial Navigation Model . 203
6.2.1 Main Concepts . 203
6.2.2 Example of a Navigation Model . 204
6.2.3 Formal Presentation of Axes . 208
6.2.4 Ontology . 211

6.3 Building the Multi-Axial Navigation Model 211
6.4 Methodology of Navigation . 213

6.4.1 Observation . 213
6.4.2 Locomotion . 215

6.5 Blindzilla: Implementation . 218
6.5.1 System Architecture . 218
6.5.2 Model Generation Component . 220
6.5.3 Navigation Component . 221

xi

6.6 Blindzilla: Evaluation . 223
6.7 Discussion . 226

7 Conclusion and Future Work 229
7.1 Results . 229

7.1.1 Web Page Processing . 229
7.1.2 Web Accessibility . 232

7.2 Future Work . 233
7.2.1 Web Page Processing . 233
7.2.2 Web Accessibility . 234

A Queries for Spatial Relations Analysis 237
A.1 RCC8 . 237
A.2 Quantitative Directions . 241
A.3 Quantitative Distances Between Border Projections 241
A.4 Alignment relations . 242

B A Survey of Blind Users of the Web 247
B.1 Demographics of Respondents . 248
B.2 Expertise and Preferences . 249
B.3 Becoming Familiar with New Web Pages . 251
B.4 General Navigation . 253
B.5 Navigation Through Tables and Lists . 255
B.6 Accessibility of Web Pages by Genres . 257

B.6.1 Information Search . 258
B.6.2 Social Media . 259
B.6.3 News Websites . 260
B.6.4 Web Forums . 261
B.6.5 On-line Shops . 262
B.6.6 Weblogs . 263

Bibliography 265

Acronyms 281

xii

CHAPTER 1
Introduction

The power of the Web is in its universality. Access by
everyone regardless of disability is an essential
aspect.
— Tim Berners-Lee, W3C Director and inventor of

the World Wide Web

1.1 Motivation

The World Wide Web (the Web) plays a crucial role in the development of a modern information
society [119, 298]. The Web is a vast repository of information formed mainly by the huge set of
interconnected web pages. The peculiarities of web resources, such as presenting information
in semistructured or unstructured forms and orientation on the average sighted user, defined a
number of problems related to providing a resource in the required form. One such problem
consists of accessibility and perception simplicity of web resources for the end user, which became
the main reason for originating a theoretical and practical area of research—web accessibility.
Web accessibility is aimed at resolving the problem of providing information in convenient forms
for various segments of the population and different age categories. However, the main target
group consists of people with auditory, cognitive, neurological, physical, speech, and visual
impairments [56, 113, 230]. Enhancing the accessibility of web resources for disabled individuals
can greatly improve their quality of life and enable them to be more integrated into society. The
accessible part of the Web provides numerous possibilities for disabled people such as on-line
shopping, on-line and self-education, and participation in various communities via the Internet.
In addition, it can ensure the availability of various occupations where work can be performed
remotely [212, Ch. 2].

The decision to focus on blind users of the Web as a target group was based on the number of
reasons related to the inaccessibility of the most important constituent of a web page—visual.
It is commonly known that web pages are oriented at sighted users (X/HTML was designed

1

as a visual formatting language). Thus, visual characteristics along with textual content carry
essential information about the web page’s logical structure and functional roles of elements [111].
As discovered by H. Petrie, F. Hamilton, and N. King [193] during their analysis of groups of
individuals with different impairments (physically impaired, dyslexic, hearing impaired, partially
sighted, and blind), blind users encountered more problems than the other groups during their
work on the Web.

1.2 The State of the Art: Challenges

The problem of web accessibility is addressed in the works of R. Baguma, J.P. Bigham, Y. Borodin,
T. Comber, C. Goble, F. Hamilton, V.L. Hanson, S. Harper, N. King, J.T. Lubega, J.R. Maltby,
P. Neha, H. Petrie, T.V. Raman, J.T. Richards, M.A. Roschina, O.V. Shevkun, H. Simon,
V.I. Shvetsov, H. Takagi, and Y. Yesilada.

There are two main directions for approaching the enhancement of web accessibility: 1) by
means of developing standards and guidelines which lead to the creation of more accessible
content for specific groups of users and corresponding assistive technology that provides easier
access to the accessible content; 2) by means of developing approaches and tools for making
inaccessible content accessible.

There are several standards and guidelines, such as WAI (Web Accessibility Initiative) guide-
lines [238], Section 508 guidelines [233], RNIB (Royal National Institute of Blind People)
guidelines [208], AFB (American Foundation for the Blind) guidelines [8], and IBM guide-
lines [130], which describe in detail the requirements for creating content by web authors and
accessing it by different groups of users (adults, visually impaired users, deaf, etc.) [113]. How-
ever, the most comprehensive ones are WAI guidelines provided by the W3C organization [239].
The development of standards is an important factor in the evolution of the Web, particularly in
the inalienable aspiration to create a universally accessible platform. Unfortunately, this method
of enhancing web accessibility experiences serious difficulties because an overwhelming amount
of web resources do not follow any of the specified standards. This fact was discovered in the
work of J.P. Bigham [29, 30], H. Takagi [226], and T. Watanabe [292]. Most web authors lack
the time or knowledge of existing guidelines [137]. Moreover, it is worth mentioning that web
accessibility standards always tend to be a step behind rapidly changing technologies.

Access to web page content is realized by the use of screen readers (e.g., JAWS [90],
Window-Eyes [178], Apple’s VoiceOver [11], NVDA [188], SuperNova [60]) and specialized
browsers (e.g., PWWebspeak, BrookesTalk [303], Home Page Reader [13]), which can also be
used along with Braille display [56]. These technologies allow blind users to read information
represented on the display via a speech synthesizer [113, 201]. Based on the DOM tree and
dependent on accessibility guidelines, these technologies are extremely limited by the huge
amount of inaccessible web resources. Furthermore, the guidelines remain limited based on their
comprehension of accessibility problems [31, 56]. In contrast, specialized browsers, such as
Emacspeak [202] and HearSay [36,222], utilize additional processing methods of the web page to
enhance its accessibility. For example, HearSay together with its extensions, such as CSurf [171]
and Dynamo [35], conduct an analysis for detecting a web page’s logical structure and ameliorate
user interaction with the web page.

2

The additional analysis of a web page considerably improves its accessibility. It can also be
met in applied research such as Web Adaptation and task specific automation. Web Adaptation
is aimed at transforming web pages into more accessible forms according to the user’s needs
and hardware used, and ultimately to make the use of standard screen readers more acceptable.
Examples include SADIe [24], AxsJAX [48], and transcoding based on the Spatial Graph
Grammar (SGG) [144]. Task specific automation makes it possible to accompany and support a
blind user in specific tasks on some website, such as buying a new product, searching for a flight,
or writing a post in a web forum. Automation is realized in solutions such as CoScripter [159],
TrailBlazer [31], Ubiquity [65], and CoCo [157].

Existing web accessibility approaches and tools target the analysis of two main components:
web page logical structure and navigation [225]. Providing blind users with the correct log-
ical structure of a web page’s content gives them the possibility to build an adequate mental
model [226] as well as the possibility to understand the content of a web page. Most existing
methods and tools (e.g., JAWS [90], NVDA [188], and WebAnywhere [33]) consider DOM tree
or source code represented by the use of X/HTML to provide access to the content for blind
users. These approaches are quite limited due to the fact that in regards to current web pages,
these forms of representations are not the main information carriers of a web page’s layout and
its visual characteristics. A web page’s visualization (which reflects web page semantics) is
defined increasingly by CSS rules. Therefore, these methods are often ineffective and inaccurate.
Moreover, a conceptual gap between the source code (i.e., XML and X/HTML code and thus the
DOM tree) and layout structure is growing even larger [190]. In contrast, consideration of visual
characteristics provides an opportunity to develop more effective and robust methods. This is
due to the fact that there is a considerably smaller set of design patterns for representing various
objects and data structures as opposed to the source code. Furthermore, methods based on a web
page’s visual representation can leverage principles that underlie the process of human object
recognition (e.g., Gestalt theory) [142, 151] and which provides an opportunity to develop more
robust approaches. The advantage of considering visual cues is also cited by P.S. Hiremath, S.P.
Algur, E. Oro, M. Ruffolo, et al. in [123, 189].

Unfortunately, there is no standardized visual model suitable for automatic analysis. The CSS
style sheets [260] are able to define rules for visual formatting of a web page but are useless in
developing algorithms for the layout analysis. Computed CSS attributes along with DOM tree
also provide limited possibilities for the analysis, especially making it impossible to do automatic
spatial reasoning and making it more difficult to consider different spatial configurations of
web objects. The issue of modeling a web page’s visual representation is not studied in the
works dedicated to web accessibility. Other research directions (e.g., Web Data Extraction, Web
Personalization, Web Form and Web Page Understanding) related to web page analysis also
do not pay enough attention to this problem. Existing models and structures reflecting a web
page’s visual characteristics are intended for solving specific problems. For instance, graph-based
structure [144] used for transforming web pages for mobile devices and SDOM [190] underlying
SXPath language (extension of XPath 1.0) for selecting DOM nodes based on a small set of
spatial relations. Web authors have to model new web page representation, features and relations
every time they develop a new method for solving a specific problem because the model already
developed is usually not suitable. As such, there is no universal extensible model of a web page’s

3

visual representation which can be used for a wide range of tasks related to the analysis of a web
page’s visual representation. Therefore, one of the main objectives of this thesis is to develop this
type of model.

Navigation is another important aspect that was mentioned earlier. Most of existing works
which address the challenge of navigation for blind users within a web page [29,97,112,207,226]
consider this problem from the perspective of both navigation according to the depth-first traversal
over a DOM tree and spatial navigation on a two-dimensional web page’s canvas [33]. In the
absence of a proper visual model of a web page, the navigation methods based on visual features
target interactions with CSS boxes which have their counterparts in the corresponding DOM
tree. Thus, these approaches provide blind users with limited navigation possibilities based on
different HTML tags which are very often misused.

It is important to note that in the absence of visual channel of perception, blind users generally
receive information from web pages aurally via speakers and tactually via Braille displays that
defines their one-dimensional sense of derivable information. Unfortunately, one-dimensional
navigation according to high-dimensional information space of web resources is not considered
in the literature. These issues clearly necessitate the development of new navigation methods
which take into account both one-dimensional perception of information by blind users and
consideration of efficient navigation through multi-dimensional information space of web pages.

1.3 Aim and Objectives of this Thesis

The aim of this research is to enhance web page accessibility based on the analysis of a web page’s
visual representation and its logical structure and providing navigation means by considering the
semantics of a web page’s elements. In order to achieve this goal, the following objectives were
formulated:

1. Elaborate a unified extensible metamodel of web pages reflecting their quantitative and
qualitative visual (e.g., layout, spatial features and relationships, color characteristics) and
functional (e.g., types of logical elements, their features, role) characteristics. The metamodel
should be applicable for a wide range of tasks related to the analysis of a web page’s visual
representation.

This objective allows the presentation of a web page’s semantics perceived by the sighted user
in one consistent model.

2. For the model proposed in the objective 1:

a) Develop an approach to generate the model for specified web pages according to the
provided requirements and methods for simplifying the model. The requirements defining
a configuration of a web page’s model include types of ontological concepts and roles
which should be instantiated within the model, whereas the model simplification refers
to removing elements which are not perceptible by sighted users and therefore should
not be considered.

4

Figure 1.1: A schematic representation of the objectives and results

The objective permits the transfer of semantics perceived by the sighted user into the
proposed model. Furthermore, this task is necessary for building a model of optimal
configuration with the required elements. This ensures faster interaction with the model.

b) Design an approach that allows the application of declarative and object-oriented pro-
gramming principles in creating methods of a web page’s visual representation analysis.
An interface provided to the object-oriented methods operating on the web page model
should be robust against various valid configurations of the web page’s model. (This
objective provides a possibility not only to create or apply various existing declarative
and imperative approaches to web page layout analysis, but also to develop new methods
with the combined usage of both paradigms while considering the advantages of both of
them.)

The objective 2 provides developers with methods for developing approaches that en-
hance the accessibility of web pages and leveraging a semantically rich web page model.

3. Implement a framework to confirm the feasibility and efficiency of the approaches proposed
in objectives 1 and 2.

4. Elaborate a general navigation model which provides the necessary constructs for building
structures convenient for one-dimensional navigation; such a model should reflect both
semantic and spatial relations between a web page’s logical objects.

5. Develop methods for efficient navigation via the navigation model proposed to ensure fast
information searches and to assist blind users in building adequate mental models.

6. Implement a prototype for the proof of concepts realized in this thesis and confirmation of the
feasibility and effectiveness of the overall approach.

The objectives specified are schematically illustrated in Figure 1.1.

5

1.4 Theoretical Contribution

This work is the result of research focusing on the problem of enhancing accessibility that is con-
sidered for the first time from the viewpoint of understanding a web page’s visual representation
and creating a navigation methodology to ensure quick access to required information [71]. The
following results were achieved according to the objectives specified:

• In order to model a web page’s visual representation that is suitable for developing methods
in the fields of Web Accessibility, Web Page Understanding, and Information Extraction, the
Unified Ontological Model (UOM) [73, 82, 151] was developed. The UOM is a domain
ontology for describing web pages consisting of the Physical Model (PM), which expresses
its aspects such as layout, interface, visual characteristics, and DOM trees, and the Logical
Model (LM), which provides a semantic description of a web page’s elements. The UOM
excels in providing rich vocabulary to describe different aspects of a web page, uniting them in
one consistent model. It is a convenient form for automatic web page processing. Ontological
concepts and roles (reflecting quantitative and qualitative information) have been adopted from
different theoretical and practical fields of research including document processing, interface
design, topology, spatial reasoning and geographic information systems. [Objective 1]

• The automatic creation of the UOM with necessary configurations is required both for the effi-
ciency of model generation with a predefined set of elements and efficient querying. Generation
of the PM of the UOM is performed during depth-first traversal over DOM trees of a selected
web page, rendered by the web browser engine. Corresponding CSS boxes are considered
together with their computed CSS attributes during this phase. Based on the data collected,
necessary elements of the PM are automatically created together with features, relationships
and reasoner applied. The LM is built later as a result of the application of web page processing
methods. [Objective 2.a] [76, 77]

A bridged adapter software design pattern proposed in this thesis makes it possible to apply
the object-oriented paradigm regardless of a certain configuration of the UOM as well as
declarative methods (for instance, SPARQL queries together with logical rules). The bridged
adapter allows computation of different qualitative features and relations (linguistic variables)
by request taking into consideration various predefined fuzzinesses. The application of different
paradigms increases the efficiency in developing new approaches and methods for Web Page
Understanding and Web Information Extraction. [Objective 2.b] [76, 77]

In addition, an application programming interface (API) was designed for the purpose of
applying various selective queries on the model and processing the results acquired. The
functions of the API are grouped into three categories: selectors, processing functions and
statistical functions. Selectors are used for selecting certain subsets of objects from the
UOM by the object type, some predicate specified, or from the predefined area on a web
page’s canvas (in this case R-trees are involved for efficiency). Processing and statistical
functions are intended for grouping, filtering results of query evaluation and statistical analysis.
[Objective 2.b] [76, 77]

6

• The Multi-Axial Navigation Model (MANM) [21, 151] was developed according to objec-
tive 4. The MANM is a domain ontology and intended for establishing various orderings
(serializations) of the subsets of objects from the UOM as well as necessary semantic and
spatial relations for navigation. Thus, the MANM does not only contain information about
possible reading orders but possible transitions from one order to another according to their se-
mantic or spatial closeness as well. The MANM is the first attempt to provide a universal means
for building structures which allow one-dimensional navigation through multi-dimensional
information space. This approach is fully compatible with aural and tactual perception of a
web page’s content which is one-dimensional compared to visual perception. [Objective 4]

• Navigation methods were designed on the basis of the MANM [83, 85]. They are based on the
investigation of blind people’s mobility [38, 112] and cognitive approach to navigation [132,
194], and provide the necessary means for efficient navigation through logical objects. In
contrast, most existing solutions are based on the DOM tree and consider navigation as a
traversal through the DOM elements or elements of the same type according to the depth-first
traversal. These approaches not only limit users in the variety of navigation locomotion, but
also in the lack of necessary information of the logical structure of a web page. [Objective 5]

1.5 Practical Contribution

• The Web Page Processing System (WPPS) was developed [76] to create new methods for
web page processing (e.g., web data extraction or web object identification). WPPS, a highly
configurable cross-platform Eclipse RCP-based application with Firefox (XULRunner v.1.9.2)
integrated, is the first framework which allows an implementation of a wide range of methods
adopted from the fields of Web Information Extraction, Document Understanding and Web
Page Accessibility. It automatically generates an instance of the PM for a web page according
to the provided configuration and builds the LM as a result of applying processing methods
(e.g., wrappers) on the instance of the PM. The framework allows the developer to use
both declarative and object-oriented paradigms due to the bridged adapter software design
pattern realized. In addition, the framework makes it possible to control the topological
organization of the UOM sub-models, modes of creating objects, their attributes and relations.
The configuration of the UOM and the framework enable developers to control the execution
of their implemented method. The developed API provides the necessary functionality for
querying the UOM, processing the results and building the LM. The framework integrates R-
trees for querying spatial objects efficiently. WPPS showed its efficiency during its application
in the ABBA [236] and TAMCROW [237] projects of TU Vienna. [Objective 3]

• A cross-platform Eclipse RCP-based tools (referred to as Blindzilla prototypes) were developed
to evaluate the overall methods assuring enhancement of web page accessibility and mobility
of blind users. This prototype is an implementation of the proposed approaches with the
MANM and navigation methods as the most important components [236]. Based on the
WPPS framework, it performs a segmentation and analysis of web pages for building the
corresponding MANM. The blind user is provided with keystrokes to navigate through the
MANM, where navigation is implemented according to the methodology developed. The

7

system is equipped with speech synthesizers such as Free TTS and ESpeak. Blindzilla proved
its effectiveness during an evaluation by a small group of users who were able to perform a
predefined set of tasks more than 3 time faster on average compared to other contemporary
screen readers such as JAWS, Window-Eyes, and FireVox. [Objective 6]

1.6 Publications

The results of this research have been published at international conferences and journals.

• Web object identification for web automation and meta-search.
I. Kordomatis, C. Herzog, R.R. Fayzrakhmanov, B. Krüpl-Sypien, W. Holzinger, and R.
Baumgartner.
The 3rd International Conference on Web Intelligence, Mining and Semantics (WIMS’13),
Madrid, Spain, 12–14 June, 2013, article No. 13, New York, 2013. ACM.
• Feature-based object identification for web automation.

C. Herzog, I. Kordomatis, W. Holzinger, R.R. Fayzrakhmanov, and B. Krüpl-Sypien.
The 28th Annual ACM Symposium on Applied Computing (SAC’13), Web Technologies
Track, Coimbra, Portugal, 18–22 March, 2013, pages 742–749, Coimbra, 2013. ACM.
• WPPS: A framework for web page processing.

R. R. Fayzrakhmanov.
The 13th International Conference on Web Information Systems Engineering (WISE’12),
Demo Session, Paphos, Cyprus, 28–30 November, 2012, pages 800–803. Springer, 2012.
• A blocks-based geometric model of web pages for automatic processing and informa-

tion extraction.
R. R. Fayzrakhmanov.
Science and Business: Development Ways, 9(15):56–64, 2012.
• WPPS: A novel and comprehensive framework for web page understanding and in-

formation extraction.
R. R. Fayzrakhmanov.
The International Conference IADIS WWW/Internet, Madrid, 18–21 October, 2012, pages
19–26, Madrid, 2012. IADIS Press.
• A versatile model for web page representation, information extraction and content

re-packaging.
B. Krüpl-Sypien, R.R. Fayzrakhmanov, W. Holzinger, M. Panzenböck, and R. Baumgartner.
The 11th ACM Symposium on Document Engineering (DocEng2011), Mountain View, USA,
19–22 September, 2011, pages 129–138, New York, 2011. ACM.
• Information extraction from web pages based on their visual representation.

R.R. Fayzrakhmanov.
The 11th International Conference on Web Engineering (ICWE’11), PhD Symposium,
Paphos, Cyprus, 20–24 June, 2011, pages 342–346, Heidelberg, 2011. Springer.
• Multiaxial navigation system for improving web accessibility.

R.R. Fayzrakhmanov, B. Krüpl, and W. Holzinger.

8

The 2nd International Internet Conference on Innovative Technologies: Theory, Tools,
Implementation (INNOTECH’2010), Perm, Russia, 2010, pages 130–136, Perm, 2010.
Perm State Technical University.

• Web 2.0 vision for the blind.
R. Baumgartner, R.R. Fayzrakhmanov, W. Holzinger, B. Krüpl, M.C. Göbel, D. Klein, and
R. Gattringer.
Web Science Conference 2010 (WebSci’10), Raleigh, USA, 26–27 April, 2010, pages 1–8,
2010.

• Modelling web navigation with the user in mind.
R.R. Fayzrakhmanov, M.C. Göbel, W. Holzinger, B. Krüpl, A. Mager, and R. Baumgartner.
The International Cross Disciplinary Conference on Web Accessibility (W4A’2010), Raleigh,
USA, 26–27 April, 2010, article No. 14, New York, 2010. ACM.
• A unified ontology-based web page model for improving accessibility.

R.R. Fayzrakhmanov, M.C. Göbel, W. Holzinger, B. Krüpl, and R. Baumgartner.
The 19th International Conference on World Wide Web (WWW’2010), Raleigh, USA, April
26–30, 2010, pages 1087–1088, New York, 2010. ACM.

1.7 Structure of the Thesis

This thesis is structured as follows:
Chapter 2 discusses the state of the art in the field of Web Accessibility, existing approaches,

tools, and relevant issues. We highlight the importance of analyzing and processing web pages
for providing necessary semantics and effective navigation methods. We consider web page
processing from the viewpoint of the well developed areas of Web Information Extraction and Web
Page Understanding. This chapter also describes different models for web page representations
analyzing literature in the fields of Web Accessibility, Web Information Extraction, Document
Understanding, and Web Page Understanding. In addition, it gives a brief overview of ontology
languages and technology within the context of the Semantic Web. [71]

In Chapter 3, we introduce the main concepts and definitions which underlie the models,
approaches, and tools presented in this thesis. In particular, we give definitions of quantitative
and qualitative models as well as define a canvas, geometric objects, their attributes and relations.
We specify the main spatial relations such as topological, direction, distance, alignment and those
based on the Allen’s interval relations which are expressly or by implication used in different
areas related to web page processing and document understanding. We propose the refinement
of RCC8 relations while considering peculiarities of the rectangular shape of geometric objects.
Furthermore, we introduce fuzzy equality relation which takes into account inaccuracies on
a web page canvas. All the relations introduced are expressed via Two-Dimensional Interval
Relations with Centering (2DIRC) which provides a possibility to eliminate invalid combinations
of different types of spatial relations between geometric objects. The chapter concludes with
the presentation of various statistical characteristics of the introduced spatial relations and their
analysis. [73, 81]

9

Chapter 4 mainly focuses on developing and defining the UOM, in which a web page’s
visual representation plays a crucial role. This chapter also presents a web page’s conceptual
model reflecting its different representations and aspects and which was used in formalizations of
the UOM. [77, 82, 151]

In Chapter 5, we discuss a web page processing which results in instantiating the LM. We
introduce a bridged adapter software design pattern to provide an object-oriented abstraction of
the ontology and the WPPS framework which implements the proposed UOM and principles of
web page processing. We also propose an approach providing interface for developing methods
based on declarative and object-oriented paradigms. [76, 77, 84, 121, 145]

In Chapter 6, we introduce the main approaches to overcome challenges that blind users
encounter when they utilize the Web. In particular, we discuss issues related to building a mental
model relevant to a web page and blind users’ mobility. We specify the MANM together with a
navigation methodology that presents the possibility of more conscious and efficient navigation
on web pages. [21, 74, 83, 85, 151]

Chapter 7 summarizes the results achieved and provides an outlook for possible research
directions in the future.

10

CHAPTER 2
State of the Art and Related Work

Disability is a complex phenomenon, reflecting the
interaction between features of a person’s body and
features of the society in which he or she lives.
Overcoming the difficulties faced by people with
disabilities requires interventions to remove
environmental and social barriers.

— World Health Organization, 2013
(http://www.who.int/topics/disabilities/en/)

In this chapter, we present the state of the art in the field of Web Accessibility referring to users
who are blind and consider the advantages and disadvantages in existing standards, methods, and
tools (see Section 2.1). The crucial aspect in the accessibility of information resources is related to
their navigation characteristics and the means realizing navigation functionality, that is discussed
in Section 2.2, where we identify the main issues related to web navigation. Furthermore, we
consider the challenge of enhancing web page accessibility from the viewpoint of Web Page
Understanding (WPU) and Web Information Extraction (WIE), presented in Section 2.3. These
fields of research are rich in different methods of web page processing and identifying various
patterns and regularities on a web page. In Section 2.4, we for the fist time conduct a survey and
comparative analysis of different models and web page representations used in research areas such
as Web Accessibility, Web Information Extraction and Web Page and Document Understanding.
We also highlight the importance of considering visual cues, effectiveness of methods analyzing
visual features, and identify the main challenges regarding web page representations which
we resolve within the scope of this thesis. In Section 2.5, we pay particular attention to the
importance of considering technologies of the Semantic Web, a unified platform for building
accessible and effective information resources. Section 2.6 discusses ontology and automatic
reasoning from the viewpoint of its application in the Semantic Web and as a modeling language,
which we leverage for modeling the unified representation of the web page. Section 2.7 concludes
this chapter.

11

http://www.who.int/topics/disabilities/en/

2.1 Web Accessibility for the Blind

Web accessibility refers to the practice of making pages on the Web accessible to all users,
especially to those with disabilities [113,230]. There are plenty of different approaches developed
so far for enhancing web page accessibility, however, the best practice has not yet been achieved.
This is due to the constant application of new technologies and evolution of the Web, that in turn
requires the development of new approaches and tools in making the Web an accessible platform.

Several main aspects need to be considered to ensure web accessibility: standards and
guidelines (see Section 2.1.1), hardware (see Section 2.1.2), and software (see Section 2.1.3).
Specialized hardware and software are usually called assistive technology [113] or by the more
precise term typhlotechnology [212] (from the Greek word “τυϕλóς”—blind).

2.1.1 Standards and Guidelines

The importance of incorporating web accessibility was highlighted by the World Wide Web
Consortium (W3C) which established relevant department for the Web Accessibility Initiative
(WAI) [238]. The latter proposes corresponding guidelines and specifications addressing people
of different age and disabilities (visual, auditory, physical, speech, cognitive, and neurological
disabilities):

• Web Content Accessibility Guidelines (WCAG) [258] describe techniques for developing
web pages accessible for a wide range of people with disabilities.

• Authoring Tool Accessibility Guidelines (ATAG) [265] provide recommendations for
designing web content authoring tools that are both more accessible to authors with disabil-
ities and designed to support the production of more accessible web content according to
WCAG.

• User Agent Accessibility Guidelines (UAAG) [284] specify recommendations for develop-
ing accessible web agents taking into account WCAG. User agents include web browsers,
media players, and other types of software that retrieve and render web pages.

• Accessible Rich Internet Applications (WAI-ARIA) [259] is a specification for enhancing
accessibility of contemporary interactive web pages—web applications—which distinguish
by relatively complex interface and dynamic content. The WAI-ARIA recommendation
defines a set of attributes for HTML elements which provide assistive technology (ty-
phlotechnology) with information of a web page’s logical structure, types of interface
elements, their behavior, and state.

The web accessibility guidelines of WAI are recognized as world-wide standards. They are
constantly improved by W3C and supplemented in accordance to investigated shortcomings
and development of new technologies. One of the advantage of W3C standards is the active
participation in their specification by various organizations, people with disabilities, government,
and research laboratories from all over the world. For example, IBM introduced a checklist1

which is compliant with WCAG.
1http://www-03.ibm.com/able/guidelines/web/accessweb.html

12

http://www-03.ibm.com/able/guidelines/web/accessweb.html

An increasing number of countries considers web accessibility as a necessity, incorporating
it into their regulations. In Austria, for instance, government websites are required to follow
accessibility standards such as WAI. In the USA, the rights of people with disabilities are protected
by Section 508 [233], which requires USA government websites to be accessible to all according
to the amendments performed in 1998. In Russia, government standard GOST P 52872-2007 [86],
enacted in 2009, defines the rules which should be taken into account to make web pages more
accessible. The newly introduced regulations also forced companies to form divisions to monitor
their compliance with the accessibility standards and to consider accessibility as an important
aspect. For further information regarding the accessibility guidelines and standards, the interested
reader may refer to [113, P. II, Web Accessibility and Guidelines].

Existing accessibility standards help web authors (content creators) and developers of web
agents and assistive technology to provide convenient access to web resources for various groups
of the population (including people who are blind). However, regardless of the significance of
the accepted standards, they possess a number of shortcomings. For instance, in [137], B. Kelly
et al. analyzed W3C WAI guidelines and identified some weaknesses such as: ambiguities
in formulations, no mentioning of widely used Web technologies such as PDF and Flash, un-
reasonable complexity and much more. Furthermore, in their research [193], H. Petrie et al.
collected home pages from 100 different websites for detailed evaluation by 50 people with a
variety of disabilities. It was discovered by the authors that the participants encountered 585
identified problems, and among the identified problems, 45% of them were not in violation of
any checkpoints listed by WAI. Inaccessibility of technically accessible web pages is also studied
in [297].

In addition, there were several reproves done regarding the GOST P 52872-2007, in particular,
unreasonable use of quantitative characteristics [213] (e.g., content of popular web pages should
be in its size less than two-three screens of text; number of links on a web page should be less
than 15) and incorrect use of some terms and concepts [196].

Accessibility of a web page can be automatically checked by the Web Accessibility evaluation
tools, such as A-Checker2 and WAVE3. It is worth mentioning that most of today’s web pages
do not follow accessibility guidelines and standards [137]. This is due to the fact that the vast
majority of developers and managers are not experts in web accessibility technologies [137], and
making web resources more accessible requires additional time and money. Therefore, in spite of
the experimentally proven effectiveness of using header tags <H1-6> [226, 292], less than a half
of web pages actually introduce them [29]. Also, according to [29], only 56.9% of images on the
web pages visited by the participants of the experiment had properly assigned alternative text.
Thus, the Disability Rights Commission conducted an extensive user evaluation and reported that
most websites (81%) fail to satisfy basic accessibility requirements [113, p. 63].

2.1.2 Hardware

Hardware used by people who are blind or visually impaired is mostly represented by keyboard,
microphone, speakers and Braille display. A keyboard is used for interaction with the computer:

2http://checker.atrc.utoronto.ca/
3http://wave.webaim.org/

13

http://checker.atrc.utoronto.ca/
http://wave.webaim.org/

Figure 2.1: Braille Edge 40 with 40 cells (http://www.hims-inc.com/products/
braille-edge-40/)

typing text, sending commands. It plays the role as a tactile input. A microphone (aural/speech
input) is also used for the same function as a keyboard, when a speech recognition software is
applied (e.g. Sphinx, Microsoft Tellme speech engine, Dragon Dictate). Providing aural output,
speakers are used for listening to audio information including the textual information which is
transformed into speech by means of text-to-speech engines (e.g. FreeTTS, eSpeak, Festival).
The work with Braille display (see Figure 2.1) requires knowledge of Braille code. This hardware
establishes tactile output and therefore enables a blind person to read information thanks to the
tactile perception.

Thus, there are two main information channels used by the blind user during her interaction
with the computer: aural-speech and tactile. Their mutual use increases the effectiveness and
efficiency of the user compared to work without Braille display (tactile channel) [56]. Braille
display is mostly helpful while reading complex text, special characters, formulae, and for spell
checking. Sometimes blind users use only Braille devices when they are tired of listening to their
screen readers [56, p. 20]. This fact was also confirmed by one of the cooperators of the ABBA
project [236], of which the author of this thesis took part.

Taking into account various output devices, W3C provides standards which enable developing
web documents for various media types [276] (e.g. Braille display) [260, Sec. 7] and interfaces
(e.g. speech interface [253, 272]).

It is worth mentioning that according to the inquiry conducted by WebAIM in 2012 [296],
72% of respondents do not use Braille display and mainly rely on the audio output4.

2.1.3 Software

Typhlotechnology software includes screen readers, specialized browsers, web adaptation and
transcoding systems, speech recognition systems, optical character recognition systems, spelling
and grammar checkers, etc. Most of these technologies are integrated in contemporary operating
systems by default (e.g. Windows 7, Ubuntu 13.04, OS X 10.9). Of particular interest is Vinux,
a specialized operating system based on Ubuntu, optimized for the needs of blind and partially
sighted users. However, integrated typhlotechnologies provided together with operating systems
out of the box are usually quite limited.

4Similar results are acquired in the survey conducted by the author of this thesis, see Section B.2.

14

http://www.hims-inc.com/products/braille-edge-40/
http://www.hims-inc.com/products/braille-edge-40/

Figure 2.2: “Which of the following desktop/laptop screen readers do you commonly use?”. The
inquiry conducted by WebAIM in 2012 [296]

In this section, we consider technologies and products most relevant to this thesis. Other
surveys of existing assistive technologies can be found in [35, 113].

Screen Readers

A screen reader is a computer software that enables a visually impaired user to read the contents
of a visual display thanks to the provided spoken feedback [201]. These systems have been
developed since the 1980s and are oriented on various information representations (Word, PDF,
X/HTML, DOM, etc.) and operating systems. Two main modes of operation can be distinguished
for the screen readers: view mode (for the navigation through the elements on the screen) and
edit mode (for the interaction with elements on the screen, e.g. filling the forms). In this work,
we consider screen readers that provide access to the web page content. Among them, there
are desktop screen readers such as JAWS5 [90], Window-Eyes [178], Apple’s VoiceOver [11],
NVDA [188], COBRA [20], SuperNova [60], Fire Vox [47] (Firefox browser extension), and
web screen readers (which have their main functionality implemented by the corresponding web
services) such as System Access to Go [210] and WebAnywhere [32]. The most commonly used
tools6 are illustrated in Figure 2.2 according to the inquiry performed by WebAIM in 2012 [296].
These systems are primarily based on the analysis of the DOM trees (or source code) of a web
page without providing information about the logical structure. This binds blind users to navigate
web pages based on the concepts tied to the HTML tags, for instance, H1-6, TABLE, P, A, which
are very often misused or not used at all [29, 30, 137, 226, 292]. For example, tables are very
often (about 88% of the cases) used to organize the layout of a web page and the alignment of
web page elements, but not to organize tabular data [146]. Therefore, web pages not compliant
with accessibility standards are not accessible even via contemporary screen readers. Thus,
supplementary analysis of the web page layout is required.

Due to this fact, VoiceOver performs some limited analysis of web pages with their Web
Spots technology. It considers visual design of a web page and conveys additional virtual tags
(web spots) which can be used as landmarks to make navigation on a web page more convenient
and effective. VoiceOver also provides visual references to enable blind and sighted users to work

5JAWS uses term “virtual cursor mode” for the view mode and “forms mode” for the edit mode.
6Commonly used screen readers are also presented in a survey conducted by the author of this thesis in Section B.2.

15

together. For instance, the blind user can navigate a web page using the touch-sensitive trackpad
which reflects its visual formating (layout). The current focus is highlighted on the screen.

Most of the contemporary screen readers handle CSS 3 Speech Properties [272] as well as
WAI-ARIA markup for AJAX live regions [259]. However, Fire Vox goes beyond that with its
support of AxsJAX scripts [48] which enable injection of WAI-ARIA-based accessibility into
AJAX applications.

In spite of the fact that screen reading technology aspires to incorporate the latest standards
introduced by W3C, they are still lagging behind [67, 158]; this obliges developers of web pages
to take into account not only accepted guidelines, but also the ability of contemporary screen
readers.

Specialized Browsers and Browser Augmentation

“A specialized browser is one which is designed to render Web pages in a non-visual form” [113,
p. 153], therefore they are also called non-visual browsers. These web browsers analyze loaded
web pages and provide an interactive interface to the blind user with audio output. The first
specialized web browsers that spoke web content emerged in early 1995. In contrast to the
screen reading technologies which are limited by the application programming interface (API)
provided by the web browser, specialized browsers have more control over web page rendering
and representing it in a more convenient form for the end user. These results can also be achieved
via browser augmentation. For example, by the browser extensions, add-ons, or bookmarklets,
which also have access to a rich API of the web browser. Similar to screen readers, specialized
browsers and browser augmenting software provide two modes of operation: view and edit.

Examples of the earlier systems are PWWebspeak (add-on for the Netscape browser),
BrookesTalk [303], Lynx, Home Page Reader (plug-in to Internet Explorer) [13]. Examples
of the later specialized browsers are Emacspeak [202], Goal-oriented web browser [66], and
HearSay [36,222] together with its extensions, such as CSurf [171] and Dynamo [35]. Emacspeak
is more than a browser, it is a speech interface and an audio desktop. It provides task specific
interfaces, for instance, for making search queries in the Web, checking a Google calender,
weather, etc. A goal-oriented web browser enables a user to automate its browsing interaction.
HearSay together with its extensions interacts with the web browser, such as Firefox and Internet
Explorer, via corresponding extensions and conducts an automatic analysis based on the DOM
tree and computed CSS attributes. The analysis comprises web page segmentation, capturing
dynamic changes on a web page, identifying relevant context on a new web page based on the
link activated, recommendation of labels for the web form elements, and so on. A user dialog
interface is provided based on vxmlSurfer which utilizes VoiceXML [253].

A detail survey of specialized browsers can be found in [113, P. III, Specialized Browsers].

Web Adaptation and Transcoding

In the field of Web Accessibility, web adaptation is aimed at transforming a web page into
accessible representation according to the user’s needs and abilities [5, 223]. The automatic
modification of the original content before it reaches the end user, performed “on-the-fly,” is

16

usually called transcoding. This technology with its application to web accessibility has matured
from circa 1992 [113, P. III, Transcoding].

Some representative examples of transcoding systems include Dante [302] (annotation-based
transcoding system which is characterized by a methaphor for non-visual physical navigation in
space [97]), eAccessibilityEngine [5] (user-adaptable system which takes into account personal
disabilities and enables application of corresponding sequence of transformations over web
pages for ameliorating their accessibility), WebInSight [30] (automatically adds alternative text
to images based on the context analysis, optical character recognition techniques and manual
labeling), SADIe [24] (rule-based and annotation-based transcoding system which utilizes CSS
style sheets for distinguishing semantics of partial contents on a page), transcoding based on the
Spatial Graph Grammar (SGG) [144] (grammar-based approach with its application for web page
adaptation for mobile devises), and AxsJAX [48, 168] (a framework which allows transcoding
web pages by injecting them with ARIA metadata).

Most of the specialized browsers, such as HearSay and Lynx, perform a procedure of web
page transcoding. For example, as stated in [35, p. 6], HearSay algorithms can also be used on a
transcoding proxy.

Web Automation

Web automation is “a technology that reduces the human effort necessary to perform typical web
browsing activities such as form filling and clicking links, by performing these actions on behalf
of the user” [198]. Web automation is usually performed by manual invocation of the necessary
script, presented as a sequence of actions, or by a certain event. A script can be written manually
or automatically derived, for instance, with a technique such as programming by example (PBE).

Some representative examples are Creo [66] (PBE module integrated into Goal-oriented
web browser which allows users to generate a general-purpose script with a single example),
CoScripter [159] (PDE-based system which enables users to record, play back, edit, and share
generated scripts; the latter are both human- and machine-understandable), TrailBlazer [31] (it
assists blind users in performing certain web-based tasks while dynamically generating non-
visual interface based on the database of scripts provided by CoScripter and a relevant script is
suggested to the user based on a provided short task description), Ubiquity [65] (a multilingual
textual interface for the Firefox browser enabling rapid information retrieval and task execution),
CoCo [157] (framework which provides the user with necessary scripts and assists her with web
tasks, utilizing ActionShot and shared database of CoScripter; the scripts are provided according
to the short textual commands of the user), etc.

In [199], Y. Puzis et al. introduce a model-based approach that can predict the next browsing
action of the user taking into account her browsing behavior.

It is worth mentioning that navigation and navigation interface are crucial functional compo-
nents of the contemporary Web-oriented typhlotechnology. In the next section, we will consider
concepts of web navigation, primarily, web page navigation, briefly mention the main approaches
and principles, and describe the essential problems resolved in this thesis.

17

2.2 Web Page Navigation

Navigation is the most important aspect in Web Accessibility and requires special attention.
According to the theory of cognitive walkthrough for the Web [34] (a general-purpose usability
inspection method for websites), the navigation actions of the sighted user within the web page
can be divided into the following two steps and represented as processes: “Step one is an attention
process that (visually) parses a web page into subregions and attends to the subregion of the page
that is semantically most similar to the user goal. Step two is an action selection process that
selects and acts on a widget from the attended-to subregion, the widget semantically most similar
to the user goal” [226, p. 2–3]. Thus, navigation actions of the sighted user on a web page is
mainly based on a hierarchical nature. Sequential access to the information usually takes place
when regions cannot be further split (for instance, a paragraph of the textual content).

In contrast, due to the peculiarities of the aural information perception and the technologies
used (see Sections 2.1.2 and 2.1.3), web page navigation has a one-dimensional (sequential)
character for the blind. This fact is also mentioned in [226]. Thus, sequential navigation is realized
in contemporary screen readers and specialized browsers as the main navigation method. Braille
display also contributes to the sequential navigation and usually exposes the text corresponding
to the current focus on a web page.

2.2.1 Contemporary Realized Navigation Approaches

For efficient navigation, contemporary screen readers and specialized browsers follow the acces-
sibility guidelines (see Section 2.1.1) which force web developers to expose semantics of a web
page’s elements within the source code (using HTML tags and attributes properly, leveraging
ARIA roles). Regarding the source code of a web page, screen reading technologies usually
serialize a DOM tree representation according to the tree order [260, App. E] (corresponding to
the depth-first traversal) and provide an access to web page content for blind users based on this
serialization. The user is also provided with relevant navigation API which can be accessed via
the keyboard short keys (e.g. for NVDA, JWAS), trackpad (e.g. for VoiceOver) or microphone
(e.g. Microsoft Tellme speech engine). Commands of the view mode include navigation based on
the element type (defined by the name of HTML tags, attributes and their ARIA roles), possibility
to jump across the text lines (e.g. reading every tenth line of the text) and text-level navigation
(e.g. for reading sentences, words, and letters).

In [226], H. Takagi et al. propose an “ideal mental model” of the blind user, which can be
formed if a web page is authored according to the accessibility standards, and if the blind user
applies corresponding navigation commands. For instance, with the sequential representation
of web page elements, a proper use of heading tags can help the blind user to navigate among
subregions and build an adequate logical model of a web page. As shown in Figure 2.3, thanks
to the heading tags, a blind user can easily recognize boundaries of web page fragments and
navigate through them. Thus, in contrast to visual navigation, non-visual navigation is an effort
to derive a fragmented (possibly hierarchical) representation of a web page from its sequential
representation.

Contemporary screen readers also have a possibility to navigate tables row by row, column by
column, and cell by cell as well as lists, item by item. This navigation is also provided according

18

Figure 2.3: Mental model of a web page and models of scanning navigation [226]

to the source code of a web page. That is, locomotion is done over HTML tables and HTML lists.
There are technologies which give the visually impaired user a possibility to investigate

spatial allocation of various elements on a rendered web page. For instance, as was mentioned in
Section 2.1.3, VoiceOver additionally provides a possibility to navigate through the web page via
a touch-sensitive trackpad which reflects visual formating (layout) of a web page. W3C provides
a specification of the focus navigation in its working draft [267, Sec. 9.2.2]; it enables establishing
four main navigation directions for each element: up, right, down, and left.

We would like to mention the work of Y. Borodin et al. [37], where the authors survey various
screen reader browsing strategies.

2.2.2 Metaphor of Spatial Navigation

Regarding the spatial allocation of objects, it is important to note works which consider web page
navigation from the viewpoint of spatial navigation. Regardless of the disability, A. Dieberger [59]
proposes the use of a city metaphor to support navigation in complex information spaces. In
the workshop report [132] of CHI’97, the authors clarify definitions of navigation in electronic
information environments and consider such a navigation from the viewpoint of the psychology
of navigation in the real world. In [97, 112], C. Goble, S. Harper, and R. Stevens draw a similar
analogy between navigation in the Web and navigation in the real word for visually impaired
people. The authors introduce the main mechanisms and principles in web navigation as well as
describe problems which blind users face. A general travel model presented by the authors and
which can be applied for web navigation is presented in Figure 2.4. In [97,112], the authors utilize
the term mobility which “is defined as the confident ease of movement within the environment
and the accuracy of navigation.” “Environment is the context that the traveler travels through and
includes the way the landscape is rendered and perceived.” Navigation “suggests an ability to

19

move within the local environment from point A to point B, either by the use of pre-planning
using maps or fore knowledge, or by navigating “on-the-fly.” The authors also present concepts
such as mobility techniques, mobility objects, and mobility principles (see Figure 2.5). Mobility
techniques refer to main actions performed by the blind users when navigating a web page.
Mobility objects are various web page elements which play different role in the process of
interaction of the user with the web page. Mobility principles represent the application of
principles of real word mobility of blind users to the information space. The authors also make
a comparative analysis of web navigation by the sighted user and the blind user and highlight
the main principles which should be taken into account by the designers of hypermedia and user
agents. These principles of web mobility are incorporated in corresponding guidelines [112]
which mainly require web developers to explicitly expose landmarks and navigation cues which
can be further used by the blind for efficient navigation through the web page content according
to its logical structure.

2.2.3 Conclusion on Web Page Navigation

In spite of the fact that a lot of effort was made in the area of web accessibility, contemporary
screen reading technologies are still not efficient and satisfactory enough. As shown in [226],
blind users are more than ten times slower than sighted users. Shortcomings of the screen readers
are also investigated in [29].

Thus, based on the analysis of the modern typhlotechnology and approaches of navigation,
we distinguish three crucial groups of problems within the area of Web Accessibility, with which
we propose some solutions relative to the scope of this thesis:

I. Information Perception Technology. One of the issues includes information flow for blind
users, since listening to text is slower than scanning it visually [97]. We believe that this problem
could be rectified in the future by introducing new technologies which could leverage aural and
tactile perception more effective, however it is out of the scope of this thesis.

II. Semantic Metadata. Another factor is the lack of semantic information about objects read
and their functional role. This is a problem not only because the majority of web pages do
not follow accessibility guidelines (see Section 2.1.1) [29, 113, 137], but also because current
accessibility standards do not provide the possibility to express semantics of complex web objects
and their semantic relationships in a form convenient for the blind user.

A challenge of converting inaccessible web pages into accessible ones compliant with accessi-
bility guidelines relates to web adaptation and transcoding technologies (see Section 2.1.3). This
process includes analysis of a web page, identification of inaccessible patterns to be corrected,
and annotation or transformation of the inaccessible content (content re-packaging). Problems
of analysis of a web page, its understanding, and identification of various design patterns are
mainly addressed in the areas of WPU and WIE (see Section 2.3). In this thesis, we consider
problems of enriching web page content with semantics from the viewpoint of WPU and WIE
applied for different representations of the web page. We also pay a great deal of attention on

20

Figure 2.4: A flow-based travel model [97]

Figure 2.5: Combined techniques, objects, and principles enhancing web page mobility [112]

21

various representation models which can be suitable for web page processing and enhancing web
accessibility (see Section 2.4).

We consider the challenge of providing semantically rich information for web page content
as a problem related to Semantic Web technology (see Section 2.5). In particular, providing
vocabularies with semantic metadata and materializing corresponding ontological concepts and
relations (see Section 2.6). Ontology enables the presentation of information in a form accessible
both for humans and computer.

In regards to these issues, Chapter 3 is dedicated to modeling a web page layout, Chapter 4
introduces a unified ontological model describing a visual appearance of the web page, and Chap-
ter 5 presents a WPPS framework for web page processing which is also used for ameliorating
web page accessibility.

III. Navigation. As was mentioned, a model used for navigation in contemporary screen readers
is in general represented by the serialized sequence of readable DOM nodes. Therefore, such a
navigation does not reflect web page logical models established primarily by the web page layout,
that causes incorrect understanding of a web page content by the user of a screen reader. Current
navigation methods provide a sequential access to various types of HTML elements, which is
realized by a rich set of commands. However as practice shows, average users use a small set of
functions of their screen reader, since the mental load of using a browser together with assistive
technology and forming relevant mental model of the web page is very high [226, 234].

Navigation models and methods play an important role in quick and correct understanding of
a web page logical model and information search. We believe that navigation processes should
be further investigated and enhanced as well as integration of the one-dimensional navigation
with the principles of spatial perception. Thus, we develop an alternative advanced navigation
model and navigation methodology introduced in Chapter 6.

2.3 Web Page Processing

In this section, we introduce the umbrella term “web page processing” for Web Information
Extraction (WIE) and Web Page Understanding (WPU). This concept was loosely inspired by
Document Understanding [2,110,116,141,228], a field of research where the term “document pro-
cessing” is related to the analysis and understanding of mainly raster (scanned) documents (other
formats, such as formatted textual and PDF, are also considered). Web Page Processing (WPP)
plays an important role in research fields such as Information Search [19, 187], Web Data Min-
ing [124, 163], Web Adaptation [102], Web Accessibility [113, 171], Business Intelligence [23],
Information Integration [28], and so on [87].

In Section 5.1, we give a definition of WPP in the application to the Unified Ontological
Model (UOM) developed and proposed in this thesis.

2.3.1 Web Information Extraction

Web Information Extraction (WIE) is related to the identification of the relevant facts on a web
page and their representation in the structured form. The problem of information extraction

22

can be considered as a problem of querying unstructured information resources and acquiring
the structured results. The main means of assessing the effectiveness of a WIE system are
precision and recall [177], adopted from Information Retrieval. Thus, the challenge of developing
WIE, which within the required time interval extracts information from certain sources, with the
required precision and recall is of high concern. For realizing WIE, researchers and developers
apply different methods and approaches, including data mining and machine learning [164],
logic programming [22], automaton-based methods [128], various heuristics [6, 169], as well
as approaches based on Natural Language Processing (NLP) [55] and ontologies [126, 185].
Overview of various WIE and primarily Web Data Extraction (WDE) methods, approaches, and
tools can be found in [45, 87, 152, 156, 209].

WIE refers to the well-known fields of research such as Information Extraction (IE) and WDE.
Examples of IE tools are NoDoSE [1], RAPIER [44], and Crystal [218]. IE methods extract
relevant facts, such as events, appointments, and quotations, from textual content presented in
natural language [179]. It is worth mentioning that classical methods of IE, which are mainly
dedicated to the analysis of plain text and based on NLP techniques, cannot be directly applied to
a web page. This is due to the fact that web pages usually have a complex structure with elements
possessing various semantic roles (e.g. navigation menu, table, main content, link, button) and
providing different functionality (e.g. calendar, link, button, element with drag-and-drop function).
Furthermore, contemporary web pages are web applications with rich interface and thus cannot
be treated as formated textual documents. Therefore, IE methods applied to web pages require a
supplementary analysis of the web page structure. Due to the presence of multi-media content, IE
from web pages can be accompanied with the application of OCR (optical character recognition)
methods. The structure of a web page can be presented by its source code, DOM tree or visual
representation. Various web page representations leveraged in WPP are considered in Section 2.4.

WDE targets data to be identified on a web page, for example, the name and price of a
product, timetable of a flight, or opening hours. WDE methods mainly analyze the structure
of a web page operating over source code, DOM tree or visual representation (see Section 2.4)
and have very limited analysis of textual content which usually boils down to the application of
regular expressions. The majority of contemporary web pages and mainly those from the Deep
Web [25] are generated by the user request (“on-the-fly”) based on the data stored in the back-end
databases. These systems are usually called web content management systems. Thus, the problem
of extracting web data is very often considered as an issue of data records extraction from a
certain database with unknown schema and mapping it into the database with a known schema.
Examples of tools realizing this approach are IEPAD [46], ExAlg [12], and DEPTA [304].

WIE consists of two main phases: wrapper induction and direct information extraction (or
wrapper application). A wrapper is a template, description, or program for extracting relevant
data or information. A wrapper is created during the first phase. It can be performed manually, in
semi-automatic, or automatic manner [45]. Wrappers reflect intrinsic (e.g. color, part of speech,
HTML tag) and relative (e.g. alignment, sequence of elements within the source code, position in
the DOM tree) features of information to be identified. However, the most common techniques
are based on absolute or relative position of the required information object within some structural
representation of a web page (i.e. source code [57], DOM tree [98], graph-based structure [309],
etc.). In the second phase, the wrapper is applied for the certain set of web pages. Extracted

23

structured information as the result of this phase is then integrated into other applications.

2.3.2 Web Page Understanding

Web Page Understanding (WPU) is related to understanding the logical structure of a web
page and its elements. The most common challenges include segmentation of the web page on
logically consistent blocks [41, 95, 104, 300], search form understanding [62, 91, 138, 305], and
web page labeling [187]. All these methods are used for improving effectiveness of information
search [118, 187] and enhancing web accessibility [104]. Very often a web page understanding
process is incorporated into the information extraction methods. For example, L. Li et al. in [160]
and also W. Liu et al. in [166] adapt VIPS, a web page segmentation algorithm, for data records
extraction. Moreover, metrics such as precision and recall used in WIE are also applied in
WPU [163, 169, 305]. Regarding Web Accessibility, we would like to note the work of H. Guo et
al. [104], in which the authors introduce a web page segmentation algorithm to make web pages
more accessible for the blind [171]. Y. Yesilada et al. [301] leverage VIPS-based segmentation
algorithm in transcoding web pages based on the eye-tracking data for the users of small screen
devices and disabled people. The importance of the correct fragmentation of a web page for its
accessibility is indicated in [112].

WPU has a relation to Document Understanding, which has a similar goal but a different
object of research—raster document. Some techniques applied for scanned documents can
also be applied for web pages after certain necessary modifications. For instance, the XY-cut
algorithm [106,176,182] invented for document segmentation was adapted for web pages [95,150].
Moreover, some table recognition algorithms for web pages are based on the knowledge acquired
from the field of Document Understanding [94,95,117]. Certain methods are also applicable both
for scanned documents and web pages [144]. These facts are also confirmed by using similar
structures both for scanned documents and web pages (see Section 2.4.7).

2.4 Web Page Representations

In this section, we focus on various web page representations established by W3C standards
as well as models and structures used in various tasks within the fields of WIE and WPU (see
Section 2.3). We also give an answer to the question: “are there any universal models suitable
for developing various methods for web page processing?” Thus, such a model should have a
versatile character, providing the developer with the possibility to investigate various peculiarities
of a web page to be able to develop effective and efficient methods for various purposes such as
WIE, WPU, and Web Accessibility.

In Section 2.4.1, we discuss the standard forms of web page representation introduced by
W3C and actively used in web technologies. In Section 2.4.2, the most popular methods which
work on the source code level are discussed. Section 2.4.3 pays attention to some of the prominent
approaches which consider a textual content of the web page and ignore tags. Section 2.4.4
presents tree-based models of a web page and gives examples of methods which operate on these
representations. Section 2.4.5 describes CSS 2.1 [260], a W3C standard defining a rendering
process in the web browser, and the CSS Object Model (CSSOM), the main visual component of

24

the rendered web page. Section 2.4.5 provides us with information necessary for the analysis
conducted in Chapter 3 and the development of the UOM introduced in Chapter 4. Section 2.4.6
and Section 2.4.7 discuss the main quantitative and qualitative characteristics of the web page
and corresponding models of the web page leveraged in different works. In Section 2.4.8, we
conduct an analysis of existing models and substantiate the necessity of developing a new unified
model (see Chapters 3 and 4) and a web page processing system (see Chapter 5).

2.4.1 Standard Forms of Web Page Representation

We distinguish the three main representations of a web page which are considered suitable for
analysis and information processing: source code, DOM tree, and visual representation.

Each of these representations has a certain purpose. Source code is a convenient form for
preserving web pages in the file systems and transferring it through the Web. It is specified by the
following W3C standards:

• HTML [241]—the HyperText Markup Language for authoring web pages;

• XML [256]—the Extensible Markup Language (XML), a subset of the Standard Gener-
alized Markup Language (SGML), for representing structural information in the form of
XML documents which are both machine-readable and human-readable.

• XHTML [246]—the Extensible HyperText Markup Language, a family of XML markup
languages, which represent HTML in the form of valid XML Documents.

A web page in the form of source code is created by the web developers manually or automatically
with the help of web authoring tools, such as KompoZer7, Adobe Dreamweaver8, and Amaya9.
Methods applied to this form of web page representation are described in Section 2.4.2.

The DOM tree is essentially used for the automatic processing and querying with the help
of existing XML technologies, such as XPath, XSLT, and XQuery. This representation is
standardized by the W3C specification:

• DOM [247]—the Document Object Model (DOM), cross-platform and language-
independent interface for accessing, manipulating, and representing HTML, XHTML
and XML documents.

The salient methods corresponding to this presentation are presented in Section 2.4.4.
Visual representation enables the sighted end user to see a web document in the convenient

form. It contains the most valuable information defined by the web designer, and it is oriented on
the end user. W3C provides the following standard for this representation:

• CSS10 [260]—the Cascading Style Sheets, is a style sheet language used for describing the
presentation semantics of a document written in a markup language.

7http://kompozer.net
8http://www.adobe.com/products/dreamweaver.html
9http://www.w3.org/Amaya/

10All CSS specifications are presented at http://www.w3.org/Style/CSS/Overview.en.html

25

http://kompozer.net
http://www.adobe.com/products/dreamweaver.html
http://www.w3.org/Amaya/
http://www.w3.org/Style/CSS/Overview.en.html

Figure 2.6: Data flow in the generalized representation of the process of querying a web page by
the user

Section 2.4.5 gives a detailed description of this standard. Section 2.4.6 does a brief survey of
existing methods that take into account quantitative visual and spatial characteristics. Section 2.4.7
discuss methods and various qualitative models of the rendered web page presented by different
researchers.

These standardized representations play an important role when the user surfs the Web.
Figure 2.6 illustrates the process of the user request of a web page. 1. The request can be initiated
by entering a URL explicitly in the web browser, clicking a link, or by sending the request via
web forms (for instance accessing information in the Deep Web). 2. Then, the web browser sends
the request to the Web. 3. A target web server received the request returns the web page in the
form of source code (i.e. X/HTML, XML). The client (the web browser) in turn acquires the web
page and sends additional requests to get files linked with the current web page: multimedia files,
CSS style sheets, scripts, other web pages (e.g. related via frames), etc. 4. Based on the files
received, the web browser builds a DOM tree, or DOM trees if there are other web pages related
to the requested one. (The number of trees corresponds to the number of web pages downloaded.)
For the constructed DOM trees, a web browser applies all necessary program scripts, which in
turn can change the generated DOM trees as well as request for uploading supplementary web
documents. 5. For the DOM tree generated, a web browser visualizes web page elements. It is
worth mentioning that contemporary web browsers (e.g. Firefox, Safari, Internet Explorer, Opera)
visualize a web page in conjunction to uploading web resources and generating DOM trees.

2.4.2 Source code

The source code of a web page is usually represented by HTML [241] and XHTML [246], and
less often by XML [256]. These forms of web page representation are convenient for preserving
them on the web servers and transferring them through the Web. These languages are used to
mark a text with the specific tags which can posses certain semantics and functional roles. XML
is dedicated to structural formating information and constructing structured documents, whereas
HTML and XHTML with their predefined set of tags, are utilized for semi-structural formating
and their main application is authoring a web page. Thus, tags defined in X/HTML have specific
presentation semantics and interface related functional roles. For instance, TABLE tag is used
for forming a table layout, A tag denotes a hyperlink. In contrast to X/HTML, XML tags do not
possess such a semantics, however, it can be additionally defined, for example, by means of XML

26

Schema, CSS style sheets and JavaScript.
IEPAD [46] developed by Ch.-H. Chang operates on the source code level for HTML web

pages. It implements automatic approach which does not need training examples. The approach
is based on the fact that the repetitive logical structures, web objects (such as lists of products
on a web page of an on-line shop, list of posts in the forum, etc.), in most cases have repetitive
structural elements in the source code. The reason for this is that they are generated with the use
of the same template. Thus, wrapper generation in IEPAD is based on the analyses of repetitions
in the sequence of tags. IEPAD uses PAT tree for pattern discovery and center star approximation
algorithm for multiple string alignment in the process of extraction pattern generalization.

RoadRunner [57] introduced by V. Crescenzi et al. is another automatic extraction system.
In contrast to IEPAD, RoadRunner discovers regularities analyzing several data-intensive web
pages, for instance, web pages of the same website. During the wrapper generation, the tool
compares pairs of web pages for detecting similarities and differences in their structure. For the
matching process, the authors of this system introduce ACME (Align, Collapse under Mismatch)
technique. The extraction mechanism is based on a union-free regular expressions. RoadRunner
is able to handle optional attributes and variety in the sequence order of attributes.

A. Arasu et al. [12] describe the process of generating a web page on the server side as a
process of encoding the data selected from a database, with the application of a certain template.
Thus, the authors give a formal definition to the structured data and propose a model for page
creation that describes how data is encoded using a template. The model requires attributes to
appear in the same relative position with respect to the values of other attributes in a tuple (data
record). The authors also introduce concepts such as equivalence classes and differentiating
roles which are utilized in the wrapper generation process. The approach is realized in the tool
ExAlg [12].

It is also worth mentioning the following WIE tools operating on the source code level:
WIEN [153], SoftMealy [128], DEByE [155], which are supervised wrapper induction systems,
in addition to WebL [140], and TSIMMIS [109], which are frameworks for building web wrappers
manually.

2.4.3 Textual representation

Textual representation is one of the forms of web page representation. By this form we mean a
textual content of a web page. Examples of tools which build this representation are specialized
web browsers such as Lynx11, W3M12, Links13, and Elinks14. These applications are sometimes
used by blind users due to the accessibility of the textual content.

Textual representation is usually generated by the analysis of the source code. All markup is
removed, and all textual content is laid out according to the presentation semantics of X/HTML
tags itself (without consideration of the corresponding CSS style sheets). For instance, for the
TABLE tag, space symbol and tabulation can be used for formatting table content as well as
symbols like “|” and “–” to depict a table border.

11http://lynx.isc.org/
12http://w3m.sourceforge.net/
13http://links.sourceforge.net/
14http://elinks.or.cz/

27

http://lynx.isc.org/
http://w3m.sourceforge.net/
http://links.sourceforge.net/
http://elinks.or.cz/

This representation is considered in the IE systems analyzing plain or formated text and
extracting facts (e.g. events, assertions) [19, Sec. 3.2], [55]. Wrappers of these systems can be
represented in the form of logical rules, automaton, or templates. Most famous techniques for
information extraction are based on regular languages, for example, regular expressions [45, 68].
They can be used for extracting date, time, prise, etc. Information extraction systems have a
direct relation to NLP [179]. Thus, the analysis of text can include techniques such as sentence
splitting, part-of-speech tagging, named entity recognition, etc.

RegExpTokenizer developed by R.R. Fayzrakhmanov [69], [68, Sec. 2.7, Sec. 3.2] is an
information extraction tool which leverages regular expressions and requires a user to manually
define a wrapper. RegExpTokenizer provides the user with additional constructs which extend
expressiveness of regular expressions. Thus, the user can impose additional constraints for the
length and value (string or numerical) of the returned string. It is also possible to define new
concepts specified by the extended language as well as use them in the definition of other concepts.
Thus, a wrapper can be defined by the set of interdependent definitions which form a graph of
dependencies, however, only an acyclic graph is allowed. All concepts defined earlier in wrappers
can be reused in the definitions of new wrappers.

GATE15 [58] is a development environment for implementing and applying methods of NLP.
It can work with various formats such as X/HTML, XML, RTF, and SGML which are converted
into textual representation. GATE conveys the user with JAPE (a Java Annotation Patterns
Engine), which allows the user to apply regular expressions over annotations in documents.
GATE has a set of predefined methods for sentence splitting, part of speech tagging, named
entity recognition, etc. It also supports ontologies, provides means for machine learning and web
crawling.

Other noteworthy NLP tools include LAPIS16, The Dragon Toolkit17, MontyLingua18,
RAPIER [44], NoDoSE [1], Crystal [218], and OpenCalais19 web service.

Textual representation of a web page is out of the scope of this thesis, due to its orientation
on the analysis of a web page’s structural characteristics reflecting the logical structure. Various
logical objects of a web page can possess different functional roles and contain text of different
genre and topic. Thus, we are convinced that text analysis should be performed rather on the level
of logical objects than the whole web page.

2.4.4 Tree representation

When referring to tree representation, we mean tree-like structures which are directly built based
on the source code (markup), for instance, a DOM tree or a tag tree. A DOM tree is a tree
which reflects the structure of the source code spelled in X/HTML or XML, and it is compliant
with Document Object Model (DOM) [247] specified by W3C. DOM is a cross-platform and
language-independent interface which conveys an API for accessing and interacting with valid
HTML and well-formed XHTML and XML documents. In the DOM tree, nodes can be of

15http://gate.ac.uk/
16http://groups.csail.mit.edu/uid/lapis/
17http://dragon.ischool.drexel.edu/
18http://web.media.mit.edu/~hugo/montylingua/
19http://www.opencalais.com/

28

http://gate.ac.uk/
http://groups.csail.mit.edu/uid/lapis/
http://dragon.ischool.drexel.edu/
http://web.media.mit.edu/~hugo/montylingua/
http://www.opencalais.com/

Figure 2.7: Unranked finite trees for web page representation [98]

different types including document (which is the root of the tree), element (which corresponds to
tags in the source code), comment, and attribute. Usually for web pages, the majority of nodes are
elements and text nodes. DOM can be accessed both by procedural and object-oriented languages.
In the web browser, the DOM tree is built by the rendering engine (or layout engine), which also
can deal with invalid HTML (for example, in case of the absence of required closing tags, or if
the order of opening and closing tags is wrong). Thus, bijection between the source code and the
DOM tree is only possible for valid well-defined source code and without application of scripts
which can modify the DOM tree generated. Also of interest is Tidy20, a specialized tools which
deals with invalid code.

Tag tree is usually represented in the form of unranked finite trees, with the example illustrated
in Figure 2.7. Nodes of such a tree usually correspond to tags in the source code (or element
nodes in the DOM tree).

Lixto Visual Wrapper [23, 98] developed by R. Baumgartner et al. is a visual and interactive
wrapper generation and data extraction tool. It enables the user to generate a wrapper by means of
visual interactions indicating those web page elements which should be extracted. The user can
additionally set constraints on HTML attributes and the position of the element to be extracted
within the HTML table or HTML list. It is also possible to specify relations such as “before,”
“after,” “contains” between elements. Based on the examples and constraints provided by means
of interaction with graphical user interface (GUI), Lixto Visual Wrapper translates specification
into ELog program which operates over the DOM tree. Thus, all relations and constraints are
defined over the DOM tree. For example, relations “before” and “after” are computed according
to the depth-first traversal over the DOM tree. Elog [22] is a logic-based declarative extraction
language with Datalog-like syntax and semantics. It is an essential part of Lixto Visual Wrapper.

FiVaTech [135] developed by M. Kayed and Ch. H.Chang is dedicated to extracting objects
with repetitive structure. The system analyzes a set of web pages represented by their DOM
trees and builds a generalized model—fixed/variant pattern tree—proposed by the authors. This
structure reflects the main interrelations between elements recognized during the analysis of
the DOM trees. The authors propose methods for deriving from the fixed/variant pattern tree a
template which underlies the corresponding web pages generated on the server side. A derived
template is used further as a wrapper for the web pages generated according to this template.

20http://tidy.sourceforge.net

29

http://tidy.sourceforge.net

The authors combine several techniques: alignment, pattern mining as well as the idea of tree
templates for solving the problem of page-level [45] template construction. It is experimentally
shown that FiVaTech has a precision much higher than ExAlg [12] (analyzing the source code,
see Section 2.4.2) and is comparable with other record-level extraction systems like ViPER [214]
(analyzing the DOM tree together with spatial characteristics expressed quantitatively, see Sec-
tion 2.4.6) and MSE [307] (taking into account the DOM tree together with quantitative visual
characteristics as well as interval relations, see Section 2.4.7).

The method proposed by B. Liu et al. in [164] and realized in the MDR tool is based on two
assumptions: first, data records are usually presented in contiguous region (data region) of a web
page and encoded using similar HTML tags; second, data records of the same contiguous region
usually have the same parent node. The authors experimentally prove that MDR is more effective
than IEPAD [46] (which analyzes the source code) and Omini [39] (which operates on a tag tree
of a web page).

OXPath [92] is an efficient language for WDE and interaction with web pages. It extends
XPath 1.0 and supplements it with additional functionality which enables it to specify various
interactions with DOM elements. For instance, it is possible with OXPath to fill out the forms
and navigate through the web pages. OXPath has additional axes such as web form elements axis
and links axis. OXPath also provides an access to the computed CSS attributes.

It is also worth mentioning WDE tools such as DeLa [290] and Thresher [125] as well as the
method for record extraction presented in [177].

2.4.5 CSS Specifications for Rendering Web Pages

Cascading Style Sheets (CSS)21 [211] developed by the W3C organization [239] is a style sheet
language used for describing the presentation semantics of a document written in a markup
language, such as HTML, XHTML, or XML. Thereby, CSS is aimed at different types of
documents [260, Sec. 3], media types (e.g. “screen,” “print,” “braille” [260, Sec. 7], “3d-
glasses” [276]), and user agents (“programs that interpret a document written in the document
language and applies associated style sheets according to the terms of this specification” [260,
Sec. 3]). However, according to the aim and objectives of this work (see Section 1.3), we consider
CSS with regard to a web page as a document, screen as a media type, and a web browser as a
user agent.

CSS is designed both for the developers of web browsers and creators of websites (web
authors). It allows the potential to develop and convey a web resource to the user in the form
which looks and behaves the same on different platforms and web browsers. This language gives
the web author a possibility to control the process of visualizing the elements of a DOM tree
with the web browsers. It is known to be good practice to separate document content from the
document presentation, a CSS style sheet—collection of the CSS rules. It makes web authoring
and maintenance of websites more efficient and simple. The presentation semantics of this
language covers elements such as layout, colors, and fonts.

Currently, there are four levels of CSS. Each CSS level builds upon the last, typically
extending it with additional features and concepts. In this work, we refer to the most recent

21http://www.w3.org/Style/CSS/Overview.en.html

30

http://www.w3.org/Style/CSS/Overview.en.html

CSS recommendation of level 2 revision 1 (CSS 2.1) from the 7th of June 2011 [260] which is
implemented in most contemporary web browsers. It is based on CSS 2 which in turn is based
on CSS 1. CSS 2.1 is an improved version of CSS 2; it does not contain unsupported or not
fully interoperable features and additionally covers already implemented browser extensions. In
contrast to CSS 1, CSS 2.1 supports media-specific styles that allow web authors to tailor the
presentation of their documents to visual browsers, aural devices, printers, braille devices, etc. It
also supports positioning of the content, table layout, lists, and internationalization. Most of the
specifications of level 3 and all of level 4 are drafts and can become a W3C recommendation in
the future. In contrast to “CSS Level 2” which is represented as one document, CSS 3 and CSS 4
consist of several modules which address functional aspects of document rendition and layout.
Work of W3C on CSS 4 address future problems which are not covered by CSS 3.

We give some definitions according to the CSS 2.1 specification, which is important for this
thesis.

A CSS style sheet is a set of statements that specify presentation of a document.
The rendering of a web page is performed on the canvas. The term canvas describes “the

space where the formatting structure is rendered” [260, Sec. 2]. It represents the space where all
elements of the DOM tree are visualized. The canvas is infinite for each dimension of the space,
however the rendition of the web page is performed according to the size of a viewport.

A viewport is an important component of the web browser for viewing web resources. A
viewport is a viewing (rectangular, as is usual in practice) area on the screen through which users
consult a document [260, Sec. 9]. If the user changes the size of the viewport, a web browser’s
engine may change the document’s layout. Moreover, if the size of the viewport is smaller then
the canvas of a web page, the web browser should offer a scrolling mechanism.

There are various units of measure which can be applied for the elements of a web page [275]:
distance units (relative and absolute lengths), angles, times, frequencies, and resolutions. However,
for the identification of boxes’ location on the rendered web page, absolute length units, such as
centimeters, millimeters, inches, pixels, points, and picas, are important. For most web browsers,
a pixel is a common unit of measure which can be represented by the real number.

In the recommendation [260, Sec. 4.3.2] of CSS 2.1 and candidate recommendation [275,
Sec. 5.2] of CSS 3, a pixel unit is related to the reference pixel. It is the visual angle of one pixel
on a device with a pixel density of 96 dpi and a distance from the reader of an arm’s length. For a
nominal arm’s length of 71 cm (28 inches), the visual angle is therefore about 0.0213 degrees.
For reading at arm’s length, 1 px thus corresponds to about 0.26 mm (1/96 inch) [275].

Other basic concepts and definitions can be found in [260, Sec. 3].

Visual Box Model

The CSS box model [260, Sec. 8] describes the rectangular boxes that are generated for elements
of the DOM tree and laid out according to the visual formatting model. Boxes consist of four
main components such as 1) a content, 2) padding, 3) border, and 4) margin areas. Each of the
box’s areas comprise the four segments: top, right, bottom, and left. Figure 2.8 illustrates box
model and the terminology used to refer to pieces of margin, border, and padding, for instance,
top margin (TM), right border (RB), and left padding (LP). The perimeter of each of the four
areas is called an edge. The areas can be degenerated into the empty region.

31

Figure 2.8: CSS box model

The content has a rectangular shape. It carries the main meaning and can contain textual,
multi-media information as well as other boxes. The main spatial parameters of the content are
width and height. Background of the content can be transparent, of some specific color or
presented by image. The padding is an area which is laid out inside the box and wraps the content.
It has a background of the box. The border serves as the visual framing of the content and possess
the properties such as border-width, border-style, and border-color. The margin is a
transparent area which makes a standoff with other adjacent boxes.

Figure 2.9 illustrates an example of the box model for the inline block of the visual formatting
model. A block of this type can span several rows and respectively form so called client
rectangles [264, 286] which are also CSS boxes. As we can see, top and bottom margins are
absent for the inline box. The distance between lines for the inline box is controlled by the
parameter line-height of the containing block box [245].

It is essential to note that the box has an additional component, an outline (see [260, Sec. 18.4]
and [267, Sec. 7]) that is intended for establishing a visual focus on the element. The outline is
mostly represented by the rectangle (however, it may be non-rectangular) with a border which
in turn has the same configurable attributes as the border of the corresponding box. The outline
in contrast to box’s border is not divided on the top, right, bottom, or left components. It also
separates from the corresponding box in terms of the visual formatting model. The outline is
drawn on top of the box and does not influence the position or size of the box, or of any other
boxes [260, App. E].

W3C extends box model in their candidate recommendations and working drafts dedicated to
the “CSS Level 3.” For instance, a working draft [254] introduces extensions such as compact
boxes which gives a developer additional means for placing boxes on a web page’s canvas. A
candidate recommendation [266] and working draft [267, Sec. 6] extend concepts of a background
and border with various possibilities of positioning background image, rounding the corners of

32

Figure 2.9: CSS box model for the inline block

a box’s border, using images as a border, and so on. Moreover, a working draft [273] specifies
various types of transformation (translation, rotation, and scaling) of boxes in two- and three-
dimensional space.

Visual Formatting Model

Visual formating of elements of the DOM tree is performed by the user agent (a web browser’s
engine in this case) which renders a document (a web page) according to the visual formatting
model [260, Sec. 9,10], CSS rules of a document, and the position and size of a viewport.

To be precise, the following are concepts that underlie the visual formatting model:

• box model [260, Sec. 8] and types of boxes (block box, inline box, etc.),

• positioning scheme (normal flow, float, and absolute positioning),

• relationships between elements in the document tree (DOM tree),

33

• external information (e.g., viewport size, intrinsic dimensions of images, etc.).

We would like to focus on the types of boxes and positioning scheme, since these concepts
are the most important in understanding the principle of rendering the layout for elements of the
DOM tree; the box model is presented in Section 2.4.5.

There are two main groups of box’s types (the type of a box is specified by the display
property):

1. block-level elements,

2. inline-level elements.

Block-level elements are those elements of the DOM tree which are formatted visually as
blocks—rectangular regions (e.g., paragraphs, headers). The following values of the display
property make an element block-level: block, list-item, and table. Inline-level elements
are those elements of the DOM tree which do not form new blocks of content; the content
is distributed in lines (e.g., emphasized pieces of text within a paragraph, inline images; see
Figure 2.9). The following values of the display property make an element inline-level:
inline, inline-table, and inline-block. There are also terms such as anonymous block
boxes and anonymous inline boxes that correspond to the visualized leaves of the DOM tree
which have siblings and participate in the block or inline formatting contexts respectively. For
other types of boxes, we refer interested readers to [260].

Elements in the DOM tree may generate more than one box, as in the case of tables (generate
table wrapper box which contains table box and any caption boxes) [260, Sec. 17] and list items
(generate principal block box and marker box) [260, Sec. 12].

There are three main positioning schemes which define a lay out of boxes:

1. normal flow,

2. floats,

3. absolute positioning.

Normal flow includes block formatting of block-level elements, inline formatting of inline-
level elements, and relative positioning of block-level and inline-level elements. All boxes are
placed one after another at the top of a containing block during the depth-first traversal over a
DOM tree. In the block formatting contexts, boxes are laid out vertically, whereas, in the inline
formatting, they are laid out horizontally (as the letters in words in text) one after another until
there is no more room, then starting a new line below. Every line in the inline formatting context
of the corresponding containing block is a line box. When an inline box exceeds the width of a
line box, it is split into several boxes and these boxes are distributed across several line boxes
(see Figure 2.9) [260, Sec. 9.4.2]. Once a box has been placed according to the normal flow or
floated, it may be shifted relative to its position according to the relative positioning schema.
The value relative of the attribute position enables such positioning. A float is a box that
is shifted to the left or right on the current line of the corresponding normal flow context until
its outer edge touches the containing block edge or the outer edge of another float. The most

34

important characteristic of a float is that the content of the containing block may flow along its
side. Attribute float controls the floating. In the absolute positioning model (with position

attribute value equal to absolute or fixed), a box does not have a relation to the normal flow
and it is assigned a position with respect to a containing block. An absolutely positioned box
establishes a new containing block.

It is also worth mentioning specifications, where other layout models and boxes’ types are
introduced, such as:
• “CSS Flexible Box Layout Module” [270],
• “CSS Multi-Column Layout Module” [262],

which are W3C’s candidate recommendations, and
• “CSS Basic Box Model” [254],
• “CSS Regions Module Level 3” [271],
• “CSS Grid Positioning Module Level 3” [255],
• “CSS Template Layout Module” [263],
• “CSS Lists and Counters Module Level 3” [261],
• “CSS Exclusions and Shapes Module Level 3” [269],
• “CSS Box Alignment Module Level 3” [268],
• “CSS Basic User Interface Module Level 3,” where the additions to the box model are

specified [267, Sec. 6],
which are working drafts that represent an on-going work of the W3C.

Working draft “CSS Transitions” specifies various means for animating a document’s con-
tent [274].

2.4.6 Quantitative Visual Representation

Quantitative information in the description of spatial, visual characteristics of web pages is utilized
in various works dedicated to the problems in the fields of WIE and WPU [123, 200, 214, 299].
The major quantitative information considered is coordinates of the CSS boxes, their width and
height, and color encoded in RGB. Thus, the quantitative visual representation of the web page is
defined by the set of elements with attributes and relations expressed quantitatively (e.g. distance
in pixels). Further, we give a brief survey of works that leverage this representation. A relation of
the works into this group of web page representation is conditional due to the fact that quantitative
visual and spatial features are usually used together with tree representation (DOM or tag tree).

P.S. Hiremath et al. propose an automatic approach VSAP, in which quantitative information
is analyzed for mining data regions [124], data records and data attributes [122, 123]. The
authors experimentally show the effectiveness of their heuristic method in contrast to the purely
DOM-based MDR [164] and NET [165], which additionally takes into account some spatial
attributes (e.g. width).

G.M. Atiqur Rahaman et al. [200] present the method MDRMTA for structured object
mining based on maximum text content comparison. The proposed method operates over tag
tree and considers spatial extension of visualized nodes. The method introduced by the authors
outperforms MDR [164].

35

H. Zhao et al. introduce ViNTs [306], a system for automatic wrapper generation for any
given search engine. The tool analyzes regularities on a visual level considering the left indent of
elements and the shapes formed by their left border as well as regularities in the HTML tag tree.

K. Simon et al. introduce ViPER [214], an automatic web data extraction tool specializing
on data records. It analyzes regularities within the DOM tree together with quantitative visual
features, such as position, height, width, and distance. The distinguishing features of this
approach are an application of general suffix trees as an alternative to edit-distance algorithms
and consideration of projection profiles of elements to enhance the data record separation process.
ViPER, as well as ViNTs mentioned earlier, outperforms MDR [164]. ViPER also shows results
better than ViNTs for data records with relatively complex structure.

Y.-F. Tseng et al. [235] aim at finding regular patterns for data objects extraction. The authors
analyze DOM tree as well as spatial extension of web page elements. In particular, they introduce
entropy-based method for regular pattern mining.

P. Lou et al. [169] from HP Laboratories introduce heuristics for article extraction (i.e. news
stories, encyclopedia entries, or a single blog post).

In [219], Spengler et al. consider both tag tree and visual representations of a web page for
the automatic content extraction with examples of news articles. The problem is formulated as a
classification task, where every region of web page layout is associated with the respective label
from a predefined set. The authors apply loopy conditional random field and represent a web
page as a graph, which reflects a sequence of leaf nodes according to depth-first traversal over a
tag tree, and relations between neighboring regions that have similar visual features, such as size,
color, and style.

2.4.7 Qualitative Visual Representation

The term “qualitative” is widely used in the spatial cognition community, for example, with
E. Clementini [50], A.G. Cohn [51], A.U. Frank [89], and J. Kong [144]. Qualitative character-
istics posses a number of advantages over quantitative. In particular, they are used to provide
information in the form understandable both for human and computer. This fact is a basis for
conducting automatic spatial reasoning which is in some sense an analogy of the human reasoning.
Interested readers are encouraged to refer to [3] for details of spatial reasoning and spatial logics.

We distinguish four main groups of web page representations which are used in WPU,
Document Understanding (DU), and WIE, and which are further described:

• Models based on inclusion relationship,

• Models based on direction and alignment relationships,

• Models based on interval relations,

• Models rich with variety of spatial relationships.

It is worth mentioning that methods utilizing web page models based on the qualitative
features usually do not operate over DOM tree.

36

Models Based on Inclusion Relationship

A model of a document based on the inclusion relationship can be represented as a tree, where
a child node that corresponds to the element on a document canvas is topologically inside its
parent node. Visualized elements of the document are usually modeled by the minimum bounding
rectangles. For the web page, the nodes and mainly leaf nodes are associated with CSS boxes,
and this representation can partially coincide with the structure of a DOM tree, especially for
the non-positioned inline-level elements from the normal flow of the same stacking context
(see Section 2.4.5) [260, Sec. 9]. This representation reflects a web page’s logical structure
incorporated within its layout. It is usually acquired by applying segmentation algorithms related
to WPU and DU (see Section 2.3.2) and which has a so-called segmentation tree as the output.
The most well-known algorithms for getting this representation of a web page are XY-cut and
VIPS.

XY-Cut Algorithm was originally developed for scanned (raster) documents; it is a top-down
segmentation technique which decomposes a page recursively into a set of rectangular blocks
based on the analysis of the projection profiles [106, 182]. XY-Cut also has some modifications,
for instance, one optimized for detecting reading order for scanned pages [176]. XY-Cut and its
modifications are applicable both for raster documents [63, 106, 148, 176, 182] and web pages
[61, 95, 150, 311]. For example, XY-cut algorithm is used in the approaches of identifying [150]
and extracting [95] table data from web pages in the meta-search systems.

VIPS Algorithm was developed by D. Cai et al. [40,41]; it analyzes DOM tree and some visual
features. The algorithm segments web page according to the size of the gaps between adjacent
objects and additional heuristic rules. VIPS is leveraged for enhancing efficiency of information
search [42], it is applied in the problems of data record [160, 166] and attribute [310] extraction
and for automatic wrapper generation [167]. R.R. Mehta et al. [175] extend this algorithm with
naive Bayes classifier for segmenting web page taking into account topical similarity of segments.

Algorithm similar to VIPS, but with simpler heuristics, was introduced earlier by X.-D. Gu
et al. [102] with its application in the area of web adaptation. Later, P. Zhong et al. [308] use
this method together with a proposed approach based on a generalized hidden Markov model to
attach semantic labels to the tree structure of a web page and thus ameliorate efficiency of WIE.

H. Guo et al. [104] propose alternative techniques for web page segmentation which leverages
geometric characteristics. A formed segmentation tree is used in CSurf [171], an extension of
specialized browser HearSay [36, 222] for blind users (see Section 2.1.3).

E. Oro et al. [189] represent a web page in a tree-like structure PDOM with containment
relation reflecting spatial allocation of web page elements. A PDOM also stores certain computed
CSS attributes. The authors propose an approach SILA for data record extraction which leverages
this structure. The authors show that their solution outperforms web information extraction sys-
tems such as MDR [164] (analyzing tag tree) and ViNTs [306] (analyzing tag tree in conjunction
with some quantitative visual and spatial characteristics).

37

Figure 2.10: Illustration of example model based on direction relationships

Figure 2.11: Object block representation [309]

Models Based on Direction and Alignment Relationships

Models Based on Direction Relationships can be represented on the whole as a set of visual
objects with direction relationships defined between them, where every value of qualitative
relationships is a value of corresponding linguistic variable. The most widely used relationships
are “north” (or “top”), “south” (or “bottom”), west (or “left”), east (or “right”), presented in
Figure 2.10. A similar model is described by T. Hassan in [114,116] reflecting geometric structure
of PDF documents in the form of adjacency graph, where four orthogonal direction relations
are defined between adjacent objects. This structure is used for the data extraction from PDF
documents. J. Zhu et al. [309] represent a region of a web page to be extracted (so-called object
block) as a grid, where nodes correspond to basic elements of a web page within the region (see
Figure 2.11). Several nodes can correspond to the same web page element for consistency. This
can happen if an object has more than one element of the same direction (e.g. y1,1 can have
y1,2, y2,2, and y3,2 to the right). This representation is used for WIE based on two-dimensional
conditional random fields. X. Li et al. [161] model scanned documents in the form of directed
labeled graph, where vertexes are rectangular areas (blocks) that correspond to text, graphics
and other basic objects. Arcs define relations between adjacent blocks. There are four relations
including “horizontal,” “vertical,” “diagonal-left,” “diagonal-right.” This graph is used by the

38

Figure 2.12: Illustration of example model based on direction and alignment relationships

authors in the task of document classification.

Models Based on Direction and Alignment Relationships can be symbolically illustrated as
in Figure 2.12. There are two types of alignment in accordance with the Cartesian axes: horizontal
(“left aligned,” “right aligned,” “centered vertically”) and vertical (“top aligned,” “bottom aligned,”
“centered horizontally”). For example, M. Kovacevic et al. [146] represent a web page as an
adjacency multigraph, where every node represents a basic HTML objects (text, images, form
controls, etc.), and every edge represents relationships between the adjacent HTML objects such
as “immediately before,” “immediately after,” “mmediately left to,” and “immediately right to.”
It is a weighted graph where, for every arc, distance between corresponding objects is assigned
in pixels as well as a boolean value which indicates a presence of alignment. The authors use
this representation for the analysis of various basic patterns (e.g. vertical and horizontal link lists,
paragraphs) in the task of web page classification.

Models based on direction and alignment relations can be applied both for raster documents
and web pages for solving various challenges including analysis [114] and classification [146,161]
of documents, information extraction [115, 116, 309], table identification [117, 149], table data
extraction [93, 94], and web form understanding [305].

Models Based on Interval Relations

Temporal Interval Relations. In 1983, J. F. Allen introduced in his work [7] an interval-
based temporal logic with a computationally effective reasoning algorithm based on constraint
propagation. For the temporal intervals, the author presented 13 jointly exhaustive and pairwise
disjoint (JEPD) relations (see Figure 2.13): “before,” “equal,” “meets,” “overlaps,” “during,”
“starts,” “finishes” and six inversions of them.

Model of Walischewski. In his works [288,289], H. Walischewski describes a geometric model
of a document by means of the interval relations applied to the two-dimensional rectangular
objects and inclusion relations acquired after document analysis. The model is realized as
attributed directed graph. A set of vertexes V represents a set of basic layout objects such as page,

39

Figure 2.13: The thirteen Allen’s interval relations [7]

bounding block, line, word, and character. The vertex attributes are pairs AV = 〈l, c〉, where l
denotes a type of the basic layout object, c holds a logic label of the object. Edges are set between
a child and its parent as well as between siblings in the tree reflecting the inclusion relation.
Each edge attribute AE = 〈~h,~v〉 with ~h,~v ∈ {0, 1}13, where each dimension corresponds to a
certain interval relation. ~h represents the interval relations between projections on axis x and ~v
is on axis y. Numbers 0 and 1 in the dimensions of the vectors denote absence or presence of
the corresponding interval relation between the projections respectively. This representation of
the scanned documents is used by the author for document understanding and was evaluated by
examples of envelopes.

Model of Aiello. In [2], Aiello et al. propose a consideration of a document as a set of its
possible layout (geometric) G and logical L structures. Each layout structure gi ∈ G consists of a
set Oig of geometric objects and a setRig of geometric relations among them. The set of logical
structures is defined in a similar way. Each logical structure li ∈ L consists of a set Oil of logical
objects, which are set in correspondence to geometric objects from Oig, and a setRil of logical
relations among them. The logical structure is proposed to be represented as a weighted graph.
According to this approach, the authors model geometric objects (picture and text blocks) as a
rectangle with attributes such as aspect ratio, font style, and number of lines. Between geometric
objects, the authors set thick boundary rectangle relations which are JEPD (see Figure 2.14).
These relations are based on interval relations and additionally take into account width of the
boundary of the rectangular objects. This representation is used for document understanding and
reading order detection [2, 4].

In [307], H. Zhao et al. introduce wrapper generation algorithm MSE for extracting query
results from the search engines. In contrast to their previous approach with ViNTs [306] (where
DOM tree and some quantitative visual attributes are taken into account), MSE enables identifica-
tion of multiple sections (dynamically generated in response to a user query) and more effective
differentiation of sections and records. The authors analyze DOM tree, position and attributes of
elements expressed quantitatively, and some interval relations.

40

Figure 2.14: Thick boundary rectangle relations [2]

Thus, geometric models based on the interval relations are used for the analysis and under-
standing of graphical representation of scanned documents [2, 4, 141, 288, 289], layout template
generation [215], web page classification [54], and web data extraction [307]. There are several
works dedicated to the interval algebra [7, 154, 162, 184], its tow-dimensional extension [15], and
n-dimensional [17]. Interval algebra is also used for the interpretation of space relationships and
automatic logical reasoning [3, 181].

Models Rich With Variety of Spatial Relationships

There are other models which incorporate various types of relationships adopted from the area
of spatial logics and spatial cognition. The most prominent are representations used in a spatial
graph grammar and spatial document object model.

Graph representation for the spatial graph grammar. J. Kong et al. introduce spatial graph
grammar (SGG) [144] with its application in adaptive web design (see Section 2.1.3). The
SGG incorporates spatial notions into the abstract syntax and takes both the connectivity and

41

Figure 2.15: Rewriting rules in SGG and their application [144]

spatial relationships among objects as the precondition of a graph transformation. It allows
one to specify visual languages as well as GUI. The authors leverage four groups of spatial
relationships: topological Top (“touch,” “in,” “cross,” “overlap,” and “disjoint”), direction Dir
(eight cone-based directions such as “north,” ”north-east,” “east,” etc.), distance Dis (e.g. “close”
and “far”), and alignment Align .

The SGG is defined for a marked graph G = 〈NG, EG, sG, tG, gG,markG〉, where NG

is the set of nodes, EG is the set of edges, NG.V G is the set of vertexes constructing NG,
sG : EG → NG.V G and tG : EG → NG.V G are two functions that specify the source and
target points of an edge, gG is the spatial signature defined on the node set NG, markG is a
marking function for vertexes used in the rewriting rules for preserving context information.
A spatial signature is a function gG : NG × NG → Top × Dir × Dis × Align . Figure 2.15
illustrates a rewriting rule and example of its application. Pic,Pics1,Pics2 represent nodes;
D:1,N:2,N,P are vertexes; numbers 1 and 2 in the vertexes are labels according to the marking
function.

Spatial Document Object Model (SDOM). In [190], E. Oro et al. introduce SXPath language
which extends XPath 1.0 [243] and allows for navigating DOM structures as well as for exploiting
the spatial layout of DOM nodes of a rendered web page. The authors propose this language,
which maintains polynomial time combined complexity, for use in the problems of WDE. SXPath
is evaluated over a spatial document object model (SDOM) which extends DOM with additional
spatial relations. In particular, SDOM is defined as a node labeled sibling ordered tree enriched
with relations of rectangular algebra (interval relations applied for two-dimensional space). It
is described formally as SDOM = 〈V,R⇓, R⇒, A, fs〉, where V is the set of labeled DOM
nodes; R⇓ is the firstchild relation; R⇒ is the nextsibling relation; A ⊆ Vv × Vv is the set of
arcs that represent spatial relations between pairs of nodes in Vv ⊆ V , visualized on screen;
fs : A→ Rrec is the function that assigns to each element in A a relation of rectangular algebra
in Rrec. There are also three order relations between nodes: document total order according
to the XPath specification [243], directional total orders which reflect four direction relations,
and containment partial order. By means of SXPath, the authors provide spatial axes which

42

Figure 2.16: Survey of contemporary tools and techniques applied for different web page
representations

reflect directions (based on Rectangular Cardinal Relations (RCR)) and topology of the elements,
expressed by means of rectangular algebra. Relations from Region Connection Calculus (RCC)
such as “contained,” “container,” and “equivalent” are used in the capacity of topological relations.

In contrast to XPath, SXPath enables creation of queries independent from DOM tree, based
on spatial relations (direction and topological). Thus, SXPath gives a possibility of creating
wrappers more robust and more independent from changes on the source code level. Moreover,
query expressions based on the spatial relations are more intuitive for the user than expressions
based on the relations defined in the DOM.

2.4.8 Analysis of the Considered Models

We distinguish four main web page representations: textual, source code, tree, and visual. The
latter we divide into quantitative and qualitative. Figure 2.16 schematically gives a general
overview of various methods and techniques applied for different web page representations.

A textual representation (see Section 2.4.3) is considered in classical tasks of IE, such as
event extraction and named entity recognition [179], and thus has a direct interest of the NLP
community. Information extraction from one-dimensional text usually includes grammatical and
syntactic analysis. However, due to the fact that a text file can also contain data structures, such

43

as lists and tables, there are also techniques which process a two-dimensional representation of a
text. The textual representation is out of the scope of this thesis which is dedicated to the analysis
of structural characteristics of a web page, established by the source code, DOM tree and visual
formatting.

A source code (see Section 2.4.2) of a web page written in X/HTML or XML is a marked text
which reflects the structural characteristics of the content. Most of the relevant WIE techniques
are based on regular expressions and string alignment with string edit distance metrics utilized.

A tree structure (see Section 2.4.4) is generally presented by DOM tree or tag tree (usually
modeled as an ordered unranked labeled tree) based on the source code. A tree structure is
isomorphic to the source code if the latter is valid and well-defined, and scripts which can change
the tree are not applied. DOM tree is an internal representation of a web page within the web
browser. Therefore, in terms of contemporary interactive web applications that also leverages
scripts (e.g. JavaScript) which can change the DOM tree, an analysis of the tree structure is more
relevant than an analysis of the source code. Most of the well-known techniques which operate
on this representation are distinguished by using XML technologies (e.g. XPath), tree alignment,
and tree edit distance.

A quantitative visual representation (see Section 2.4.6) is usually leveraged together with
tree representation. Therefore, it is usually represented as a tree enriched with data acquired from
the CSSOM computed by the web browser engine.

A qualitative visual representation (see Section 2.4.7) is usually modeled as a graph which
reflects a set of elements of different types with different relations defined on this set. The
relations specified for the rendered web page are mainly spatial relationships between web page
elements, such as topology (e.g. based on RCC), distance and direction (e.g. based on RCR)
expressed qualitatively [3]. The analysis of the rendered web page mainly boils down to the
analysis of its spatial characteristics (its layout), and has a direct relation to spatial reasoning.

As it is symbolically depicted in Figure 2.16, complexity of the web page representation
increases from the textual representation to the qualitative visual, however robustness of the
methods greatly rises for the textual and the quantitative visual representations. We confirm this
tendency by the fact that textual and visual representations are the natural forms of information
representation for the human being. Therefore, methods operating on these views often reflect and
simulate some processes which the human being uses, for example, part of speech recognition,
sentence splitting, entity recognition for the text, and analysis of relative spatial allocation of
elements including their size, color, and typographical characteristics for the rendered web page.
Also important is the Gestalt theory [143, 291] which investigates the peculiarities of human
perception. Gestalt theory is mentioned in [151] as an important means for the analysis of the
web page visual representation. Some aspects of Gestalt theory are also used in the analysis of
the quantitative spatial characteristics presented in [299]. From the source code to the visual
representation, the graph of robustness is also related to the change frequency and number of
corresponding design patterns. The source code and DOM tree are prone to greatly more frequent
changes compared to the visual representation. Furthermore, the number of various visual design
patterns and corresponding ways of spatially arranging information objects is greatly less than
the set of various ways of coding them.

44

The superiority of methods based on the DOM tree over methods based on the source code
is mainly confirmed in [135] (where the authors claim that FiVaTech is more effective than
ExAlg [12]) and [164] (where the authors demonstrate that MDR outperforms IEPAD [46]).
Furthermore, in [23, 98] the authors demonstrate an effectiveness of leveraging the DOM tree in
contrast to the source code by example of Lixto Visual Wrapper. Effectiveness of the methods
which additionally analyze quantitative spatial characteristics in contrast to the methods merely
based on the treelike structure is proved in [123, 200, 214, 306], where the authors compare their
approaches (VSAP, MDRMTA, ViPER, and ViNTs respectively) to MDR [164]. The superiority
of the methods considering qualitative spatial characteristics against methods considering quanti-
tative spatial characteristics is demonstrated in [189], where the authors compare their approach
SILA to ViNTs [306]. SILA also outperforms tree-based MDR.

In [304], the authors introduce MDR-2, a more robust approach relative to the MDR, con-
sidering additionally certain quantitative spatial characteristics. In [307], the authors introduce
more advanced method MSE than earlier developed ViNTs [306], in addition to leveraging some
interval relations.

In general, all of the mentioned web page representations are still actively used for WPP
(see Section 2.3). A representation can be chosen based on the task and the type of information
to be extracted or analyzed. For example, if a web page mainly contains textual information
(e.g. a monologic text) and the task of IE is posed, the textual representation is the most suitable.
The source code and DOM tree (or tag tree) are best for the WDE from the web pages which
change relatively seldom, have relatively simple structures (e.g. the source code reflects the
structure of web objects), or have regularities in their structures which can be mined and reflect
features of the object to be extracted (e.g. web page of the Deep Web generated with the specific
template from the back-end database). The source code and DOM tree are well-studied, have
corresponding standards, and plenty of various approaches and tools. Rendered (visualized) web
pages are considered if the analysis of spatial configuration or visual characteristics is required,
for example, table recognition, product list extraction, web page segmentation. Unfortunately,
there is no common model of the visual representation of a web page suitable for WPP and
relatively few methods are developed. Targeting the visual representation, the developers always
face the problem of acquiring visual characteristics and developing an appropriate structure or
model which can reflect the necessary information used for the specific problem in a convenient
form.

Thus, in regards to the conducted analysis, we single out two main challenges which we aim
to solve in this thesis:

• In contrast to the source code and DOM tree, there is no unified model or standard for
visual representation of the web page suitable for WPP. In developing new methods, the
researcher always encounters the problem of designing a new model or structure which can
hold all the necessary features and relationships. Therefore, we pose a goal of developing a
unified model which reflects basis visual, spatial, and functional characteristics of a web
page. Moreover, due to the fact that quantitative visual features are used in conjunction
with the DOM tree, we believe that it is important to additionally integrate the DOM tree
model. If there is a need to apply methods which operate on the source code level, DOM
tree can be trivially serialized into this representation.

45

Chapters 3 and 4 are dedicated to this challenge.

• There is a relatively small amount of methods leveraging visual cues. Various visual features
and relationships are used in different methods, and therefore the issue of discovering
the appropriate visual cues which will favour the development of efficient approaches of
WPP is of paramount concern. Thus, we pose the challenge of developing a framework
for investigating and developing effective and efficient methods operating over the visual
representation (see Chapter 5). Moreover, due to the presence of declarative and imperative
approaches in the area of WPP, we consider the possibility of applying them within the
framework presented in this thesis.

2.5 Semantic Web Approach

The Semantic Web [27] is a proposal to build an infrastructure of machine-readable semantics
for the data on the Web [229, p. 159]. The development of the Semantic Web is based on the
multi-disciplinary approach, applying knowledge from different research fields and technologies,
including artificial intelligence, database and content management systems, as well as knowledge-
based systems, machine learning, natural language processing, distributed computing, service-
oriented architecture, agents, and grid computing. The Semantic Web can be viewed from
two main perspectives reflecting its information and computational aspects [134, Sec. 1.2].
The information aspect, which includes the problems of information representations, relates to
the Semantic Web Content molded primarily by data and metadata. Data can be presented in
structured (e.g., relational), semi-structured (e.g. RDF, XML), and unstructured forms (e.g. plain
text) with embedded metadata descriptions. Metadata descriptions are used to annotate data on the
Web, whereas the ontologies and schemata provide the underlying vocabulary and semantics for
the metadata annotations. Ontologies play an important role in the Semantic Web, providing well-
defined knowledge and means for reasoning to materialize implicit knowledge as well as create
domain- and application-specific views on the underlying content. The computational aspect of
the Semantic Web relates to the complexity of computing infrastructures and communication
between computational entities.

The overall architecture of the Semantic Web proposed by Tim Berners-Lee is depicted in
Figure 2.17. RDF(S) layer refers to RDF and RDFS languages, where RDF enables making
statements about web resources, and RDFS provides modeling primitives for organizing web
resources into hierarchies. RDFS can be viewed as a primitive language for building ontologies.
Ontology layer provides rich ontological language for representing more complex relationships
between web resources. Logic layer is intended to enhance the ontology language and allow
the writing of application-specific declarative knowledge. The Proof layer involves the actual
deductive process as well as the representation of proofs in web languages and proof validation [9,
Sec. 1.4]. The Trust layer refers to the digital signature and recommendations by trusted agents
and rating agencies. This layer is also related to the web of trust concept.

46

Figure 2.17: The layer model of the Semantic Web architecture (http://www.w3.org/2001/
09/06-ecdl/slide17-0.html)

2.6 Ontology and Logical Inference

Historically, the term “ontology” (from the Greek word Oντoλoγια) originated in philosophy
and is traditionally listed as a part of metaphysics—the major branch of philosophy. An ontology
is a particular theory about the nature of being or the kinds of existence. It deals with questions
concerning what entities exist or can be said to exist, and how such entities can be related
to each other, either grouped or subdivided according to their similarities and differences. In
the application to Information Science, ontology is a formalism whose purpose is to support
humans or machines in sharing some common knowledge in a structured way [229, p. 255]. This
knowledge is represented as a set of concepts within a domain and relationships between pairs of
concepts providing a support for reasoning about entities within the domain modeled. The most
famous definition is the following:

An ontology is a formal, explicit specification of a shared conceptualization.
(T.R. Gruber [101], R. Studer et al. [224])

We illustrate this definition in Figure 2.18. A conceptualization is an abstract representation
of some aspect of the world which is of interest to the users of the ontology. The conceptualization
defines the main concepts, entities and relationships between them reflecting the spatial, temporal,
and logical interrelations on a domain space. The term “explicit” in the definition refers to the fact
that constructs used in the specification must be explicitly defined and the users of the ontology
must agree on them. Formal means that the specification is encoded in a precisely defined
language whose properties are well-known and understood. Examples can be the languages used
in the fields of Knowledge Representation and Artificial Intelligence. Shared means that the
ontology is meant to be available for the group of people and various applications. [229, p. 256]

A detailed definition of a formal ontology is given by N. Guarino:

An ontology is a logical theory accounting for the intended meaning of a formal
vocabulary, i.e. its ontological commitment to a particular conceptualization of
the world. The intended models of a logical language using such a vocabulary

47

http://www.w3.org/2001/09/06-ecdl/slide17-0.html
http://www.w3.org/2001/09/06-ecdl/slide17-0.html

Figure 2.18: Gruber’s and Studer’s ontology definition

are constrained by its ontological commitment. An ontology indirectly reflects this
commitment (and the underlying conceptualization) by approximating these intended
models. (N. Guarino [103])

It is important to note that an ontology is language-dependent, while a conceptualization is
language-independent. Thus, a vocabulary (represented by the set of concepts, relationships, and
their features) and formal language are important attributes of the ontology.

We give the following formal definition of the ontology O, that underlies the UOM (see
Section 4.2) and the Multi-Axial Navigation Model (MANM) (see Section 6.2):

Definition 2.1 (Ontology). Ontology O is a tuple 〈C,HC ,RC ,HR, I, ι,RI ,A〉 that consists
of the following elements: The set of ontological concepts C is arranged in a subsumption lattice
HC . The set of relationshipsRC defines various relations on the set of conceptsRC–C ⊆ RC

and between the set of concepts and a set of various data types RC–D ⊆ RC (RC–C ∩
RC–D = ∅). HR is a disjoint subsumption hierarchies of the relations in RC–C and RC–D.
Elements C,HC ,RC ,HR correspond to the schema of the ontology O, whereas I,RI are
the instantiations of the corresponding concepts and relationships. I is a set of instances of
corresponding concepts in C, where ι : Ii → 2C sets such a correspondence. RI–I ⊆ RI is a
set of triples of type 〈Ij , Rk, Il〉,RI–D ⊆ RI is a set of triples of type 〈Ip, Rq, Dr〉 where Ij , Il,
and Ip are instances of concepts inC, Rk ∈ RC–C , and Rq ∈ RC–D. A set of axioms defined in
A specifies additional constraints and dependencies, that can be used to infer implicit knowledge.

An ontology, as a specification of a certain conceptualization of a domain of interest, provides
the mechanisms for modeling the domain leveraging the ontology modeling languages (see
Section 2.6.1) and reasoning [170] upon it (see Section 2.6.2). Furthermore, there are query
languages available for retrieving certain individuals, concepts, and relations that satisfy specific
conditions, e.g. HiLeX [173], nRQL [107], OWL-QL [88], RQL, and SPARQL (see Section 2.6.4).

48

Figure 2.19: Knowledge base from the perspective of Description Logics (DL)

Focusing on web-oriented problems, such as web accessibility, web page understanding, and web
information extraction, we consider ontologies from the perspective of the Web and the Semantic
Web in particular, while playing attention to languages such as RDF(S), OWL, and SPARQL.

2.6.1 Ontology Languages

Ontologies offer the provision of rich semantics that is accessible both by human and machine
and enables them to automatize the process of reasoning. In this section, we consider ontology
languages from the perspective of their application for modeling the UOM, which describes the
web page representation, and the MANM, enhancing navigation characteristics of web pages, as
well as their integration into the Semantic Web.

Description Logics

Description Logics (DL) [14] is one of the most widespread formal knowledge representation
language used for specifying ontologies and knowledge bases by means of terminological (TBox)
and assertional (ABox) components. A basis of a DL is the description language which allows
its users to build complex concepts and roles out of atomic ones. These descriptions are used
in the TBox and introduce the terminology (vocabulary) of an application domain, imposing
additional non definitional constraints on the concepts’ and roles’ interpretation. According to
the Definition 2.1, the TBox describes the schema of the ontology O with concepts from C and
roles fromRC , whereasHC ,HR represent subsumption latices (taxonomy) based on concept
and role inclusions; and A defines supplementary constraints which can also contribute to the
subsumption latices. In the assertional component, ABox, facts about a specific application
situation are stated by introducing named individuals (from I) and relating them to concepts (by
ι) and roles (fromRI). Thus, in terms of DL, an ontology as a knowledge base is a pair 〈T ,A〉
with ABox A compliant with TBox T (see Figure 2.19). Reasoning then over ABox and TBox
allows us to derive implicit knowledge from the explicitly represented one [229, p. 5]. For the
ontology O, the reasoning mostly concerns axioms and statements introduced in A as well as
inHC andRC . DL has two important features: it does not make the unique name assumption
(UNA) and the closed world assumption (CWA). Absence of UNA means that two concepts or
roles with different names may be allowed by some inference to be equivalent. Absence of CWA,
and thus presence of the open world assumption (OWA), means that lack of knowledge of a fact
does not immediately imply knowledge of the negation of that fact.

49

Table 2.1: Syntax and semantics of ALC

Constructor Syntax Semantics
top > >I = ∆I

bottom ⊥ ⊥I = ∅
atomic concept A AI ⊆ ∆I

atomic role R RI ⊆ ∆I ×∆I

For C, D concepts and S a role name
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
negation ¬C ∆I \ CI
universal (value) restriction ∀S.C {x ∈ ∆I |∀y[〈x, y〉 ∈ SI → y ∈ CI]}
existential restriction ∃S.C {x ∈ ∆I |∃y[〈x, y〉 ∈ SI ∧ y ∈ CI]}

Table 2.2: TBox and ABox additional constructors

Constructor Syntax Semantics
Terminological axioms
equality C ≡ D (S ≡ R) CI = DI (SI = RI)
inclusion C v D (S v R) CI ⊆ DI (SI ⊆ RI)
Assertional axioms
concept assertion C(a) aI ∈ CI
role assertion R(a, b) 〈aI , bI〉 ∈ RI

There are several dialects of description language, where ALC is one of the basics. In
Table 2.1, we introduce syntax and semantics of the main constructors of ALC. The semantics of
concept descriptions is given using the notion of interpretation I, which assigns sets to concepts
and binary relations to roles. An interpretation is a pair I = 〈∆I , ·I〉, where the domain ∆I is a
non-empty set and ·I is a function that assigns to every constructor (concepts and roles) elements
from the domain ∆I . There are many other constructors which are introduced in different dialects
of languages in DL, e.g. (ref R) for reflexive role, (irr R) for irreflexivity, (sym R) for symmetry,
(asy R) for assymetry, (trans R) for transitivity, and (func R) for functional role. Supplementary
constructs of TBox and ABox are introduced in Table 2.2. It is worth mentioning that for most
DLs, the basic inference problems (see Section 2.6.3) are decidable, with complexities between P
and ExpTime.

In Example 2.1, we demonstrate the use of DL on some abstract example.

Example 2.1. Statements such as “Alice is a blind user; a blind user is the user who is sightless.
All blind users use assistive technology.” Can be expressed in DL in the following way:
BlindUser ≡ User u Sightless,
BlindUser v ∃use.AssistiveTech,

50

BlindUser(alice).
Applying the reasoner, one can derive the subsumption lattice HR of the ontology O and

infer that a concept BlindUser is subsumed by the concepts User and Sightless, as well as
that Alice is a user and she is sightless. Moreover, having the assertions User(cheshireCat)
and Sightless(cheshireCat) in ABox, a reasoner will infer that cheshireCat is also a blind
user: BlindUser(cheshireCat).

RDF and RDFS

If HTML and the Web made all the online documents
look like one huge book, RDF, schema, and inference
languages will make all the data in the world look
like one huge database.

— Tim Berners-Lee, Weaving the Web, 1999

The Resource Description Framework (RDF) [250] is a data model for representing informa-
tion about resources in the Web. The first recommendation that specified metadata model and
language (based on XML) of RDF was introduced in 1999 by the W3C [242]. RDF conveys a
common framework for expressing information that can be shared among different applications
without loss of meaning. This representation is required for the application of the automatic
processing than for the users. RDF corresponds to one of the layers in the multi-layered model
of the Semantic Web stack; it underlies the ontological (Web Ontology Language (OWL) and
Rules) and logical (Logic framework and Proof) layers. RDF follows the W3C design principles
of interoperability, extensibility, evolution and decentralization. Particularly, it was designed to
have a simple model, with a formal semantics and provable inference, as well as an extensible
vocabulary based on Uniform Resource Identifiers (URIs)—a compact string of characters for
identifying an abstract or physical resource [26]. RDF allows anyone to make statements about
any resource. In the RDF model, the universe to be modeled is a set of such resources that are
essentially anything that can have a URI [229, p. 159]. However, RDF also supports anonymous
resources which do not have a URI, known as blank nodes. A blank node can be used to represent
a resource which either has no URI or for which no URI is known.

Information in the RDF model defines relations on the set of resources and data by means
of statements which are triples of the form subject-predicate-object. Predicate is a binary
relation between subject and object which are resources, however, the object can also be a literal
representing atomic values. Literals represent data that is serialized into the string for which the
data type can be explicitly specified, for instance, by means of XML Schema datatypes [285].
The RDF model can be represented as a labeled, directed multi-graph (i.e. graph which has pairs
of vertexes interconnected by several arks), where nodes represent subject and object and whereas
arcs are predicates.

The RDF specification includes a set of reserved words—RDFS [251] vocabulary—which
are used to specify a type system (vocabulary) for the domain of discourse. Thus, RDF Schema
(RDFS) introduces some simple ontological concepts, such as class (C) and concepts of subclass
and subproperty, enabling the description of hierarchies of classes (HC) and properties (HR).

51

An RDF property is a predicate in RDF triples, while a class represents a collection of resources
(I ,ι). With RDFS one can also define the range and domain of the property.

There are several possible serializations of RDF, such as Notation 3, Turtle, and N-Triples,
however the RDF/XML is most widespread due to its integration with the Semantic Web technol-
ogy. Example 2.2 shows the main syntactic elements of RDF/XML, and also demonstrates some
limitations of RDF(S) as a metadata model.

Example 2.2. Statements presented in Example 2.1 can be represented in pure RDF(S), serialized
into RDF/XML, as follows:

1 <rdf:Property rdf:ID="use"/>
2 <rdfs:Class rdf:ID="AssistiveTech"/>
3 <rdfs:Class rdf:ID="BlindUser">
4 <rdfs:subClassOf rdf:resource="#Sightless"/>
5 <rdfs:subClassOf rdf:resource="#User"/>
6 </rdfs:Class>
7 <rdfs:Class rdf:ID="Sightless"/>
8 <rdfs:Class rdf:ID="User"/>
9 <rdf:Description rdf:ID="alice">

10 <rdf:type rdf:resource="#BlindUser"/>
11 </rdf:Description>

As can we see, RDF(S) is not expressive enough to specify that the BlindUser class is equal
(not a subclass) to the intersection of classes Sightless and User. It is also impossible to state
that all blind users use assistive technologies.

The expressive power of RDF and RDFS is deliberately very limited. RDF is only capable
of representing binary predicates (RI), while expressiveness of RDFS is limited to a subclass
hierarchy (HC) and a property hierarchy (HR) [174].

Web Ontology Languages

OWL is an important step for making data on the
Web more machine processable and reusable across
applications.
— Tim Berners-Lee, 08/19/2003 W3C press release

The Web Ontology Language (OWL) was developed by W3C to satisfy the requirements
for a language which supports the Semantic Web. OWL corresponds to the ontology layer in
the Semantic Web’s architecture and utilizes the features (semantics and syntax) of RDF(S). In
contrast to RDF(S), OWL is an ontology language which provides a richer set of constructs for
building complex ontologies. OWL introduces the term “OWL class” which is a subclass of
“RDFS class.” Furthermore, there is a distinction between object properties defined in the set of
resources and data properties that set a correspondence between resources and literals. Taking
into account an incompleteness of information on the Web, OWL makes open world assumption
(OWA) and does not make unique name assumption (UNA) the same as DL. There are two main
editions of the family of OWL: OWL 1 [248] and OWL 2 [279]. OWL 2 was developed later
and extends the expressiveness of OWL 1. It includes additional syntactic sugar, introduces
extended data type capabilities and constructs for properties, such as self-restriction (“local

52

reflexivity”), reflexive, irreflexive, and asymmetric object properties, disjoint properties, property
chain inclusion, property qualified cardinality restrictions, etc. The detailed list of innovations
can be found in [99, 278].

OWL provides three sublanguages: OWL Full, OWL DL, and OWL Lite. OWL Full is
upward-compatible with RDF, both syntactically and semantically. It uses all the OWL language
primitives and also allows the combination of these primitives in arbitrary ways with RDF and
RDFS. This includes the possibility of changing the meaning of the predefined primitives. For
example, in OWL Full, one could impose a cardinality constraint on the class of all classes,
essentially limiting the number of classes that can be described in any ontology [220, Sec. 4.1].
Furthermore, a class can be treated simultaneously as a collection of individuals and as an
individual in its own right [249]. It is important to note that the reasoning (see Section 2.6.3) over
OWL Full ontologies is undecidable.

OWL DL is a sublanguage of OWL Full and conceptually based on DL. Every legal OWL DL
document is a legal RDF document but not vice versa. OWL 1 DL corresponds to SHOIN (D)
DL, while OWL 2 DL corresponds to SROIQ(D) DL. In contrast to OWL Full, OWL DL per-
mits efficient reasoning support: OWL DL provides the maximum expressiveness possible while
retaining computational completeness, decidability, and the availability of practical reasoning
algorithms. It has various reasoners available, such as Jena, Pellet, FaCT++, and HermiT. The
reasoning (see Section 2.6.3) over OWL DL is N2ExpTime hard.

OWL Lite further restricts OWL Full, being a subset of OWL DL. For example, it excludes
enumerated classes, disjointness statements, and arbitrary cardinality. OWL 1 Lite corresponds to
the SHIF(D) DL. The reasoning over OWL Lite is in PTime.

In addition, OWL 2 has three main language profiles such as OWL 2 EL, OWL 2 QL, and
OWL 2 RL which provide various expressiveness of OWL 2 and are designed to be implementable
in PTime. In order to guarantee scalable reasoning, these profiles share some limitations regarding
their expressiveness. In general, they disallow negation and disjunction, as these constructs
complicate reasoning and have proved to be only rarely needed for modeling [279]. OWL 2 EL
is based on DL EL++ and is designed for ontologies that contain a large number of classes or
properties; OWL 2 QL is aimed primarily at query answering; OWL 2 RL is aimed at applications
that require quite a bit of the expressivity provided by OWL 2 DL but also require scalable
reasoning.

The OWL family of languages supports a variety of syntaxes (see Figure 2.20). It in-
cludes abstract syntaxes, such as Functional Syntax, and exchange syntaxes, such as RDF/XML,
OWL/XML, Manchester Syntax, and Turtle [277], where RDF/XML is the primary exchange
syntax that provides interoperability among OWL 2 tools. In Example 2.3, we demonstrate the
serialization of an OWL ontology by means of RDF/XML syntax.

Example 2.3. The expressiveness of OWL DL is enough to represent the statements introduced
in Example 2.1. Translated into RDF/XML syntax, the corresponding ontology looks as follows:

1 <owl:ObjectProperty rdf:ID="use"/>
2 <owl:Class rdf:ID="AssistiveTech"/>
3 <owl:Class rdf:ID="BlindUser">
4 <owl:equivalentClass>
5 <owl:Class>
6 <owl:intersectionOf rdf:parseType="Collection">

53

Figure 2.20: Syntax and Semantic layers of OWL 2 [277]

7 <rdf:Description rdf:about="#Sightless"/>
8 <rdf:Description rdf:about="#User"/>
9 </owl:intersectionOf>

10 </owl:Class>
11 </owl:equivalentClass>
12 <rdfs:subClassOf>
13 <owl:Restriction>
14 <owl:onProperty rdf:resource="#use"/>
15 <owl:someValuesFrom rdf:resource="#AssistiveTech"/>
16 </owl:Restriction>
17 </rdfs:subClassOf>
18 </owl:Class>
19 <owl:Class rdf:ID="Sightless"/>
20 <owl:Class rdf:ID="User"/>
21 <owl:NamedIndividual rdf:ID="alice">
22 <rdf:type rdf:resource="#BlindUser"/>
23 </owl:NamedIndividual>

2.6.2 Inference Rules

The languages of RDF and OWL can be viewed as specializations of predicate logic. In particular,
OWL Lite and OWL DL correspond roughly to a DL, a subset of predicate logic for which efficient
proof systems exist. Another subset of predicate logic with efficient proof systems comprises the
so-called rule systems (also known as Horn logic or definite logic programs) [9, Sec. 5.1].

54

A rule has the form A1, A2, . . . , An → B, where Ai form the body (premises) of the rule
and B is the head; both Ai and B are atomic formulas. Depending on the interpretation of the
rule, it can be either deductive or reactive. In case of a deductive rule, if the body is known to be
true then the head is inferred as true. For a reactive rule, B represents an action which should
be carried out if body is true. All the variables introduced in the rules are implicitly universally
quantified. There are two main types of inference rules: monotonic and non-monotonic.

Monotonic rules (see Example 2.4) do no utilize negation (e.g. negation as failure or true
negation). “The definite clause logic is monotonic in the sense that anything that could be
concluded before a clause is added can still be concluded after it is added; adding knowledge
does not reduce the set of propositions that can be derived” [195, Sec. 5.5.1].

Non-monotonic rules (see Example 2.5) use negation as failure or true negation and, as a
result, some conclusions can be invalidated by adding more knowledge while applying inference
rules. These rules are called defeasible because they can be defeated by other rules. Non-
monotonic rules introduce additional complexity and the corresponding logic and logic programs
are of high interest in the Artificial Intelligence community.

Example 2.4 (Monotonic Rules). Continuing our discussion regarding the Example 2.1, for the
imaginary world where all blind users use Blindzilla22, the following statement expressed in
terms of Horn logic will hold: BlindUser(X)→ use(X, blindzilla).

The statement “If blind users bought the same assistive technology then they are cus-
tomers of the same company” can be written accordingly as BlindUser(X),BlindUser(Y), X 6=
Y, bought(X,Z), bought(Y, Z),AssistiveTech(Z) → customersOfSameCompany(X,Y). (The
instance “blindzilla” and the predicates “bought” and “customersOfSameCompany” should be
specified in the ontology).

Example 2.5 (Non-monotonic Rules). Using true negation we can express the example statement
“If an assistive technology is expensive and not multifunction then it is not acceptable” as follows:
AssistiveTech(X),Expensive(X),¬Multifunction(X)⇒ ¬Acceptable(X).

A mapping between ontology and declarative rule-based languages such as RuleML and
Semantic Web Rules Language (SWRL) is important for many aspects of the Semantic Web, and
in particular for the language layering: “A key requirement for the Semantic Web architecture is
to be able to layer rules on top of ontologies to create and reason with rulebases that mention
vocabulary specified by ontology-based knowledge bases and to do so in a semantically coherent
and powerful manner” [134, p. 122]. Furthermore, rule-based languages allow integrating
additional expressivity into the ontology-based systems which is not covered by the ontology
language.

Multiple approaches and languages have been developed to integrate rules- and DL-based
ontologies. As we know, Horn logic and DL are orthogonal. One of the approaches to achieve their
integration in one framework is to consider the intersection of both logics. Such an intersection
is called Description Logic Programs (DLP); it is the Horn-definable part of OWL or, in other
words, the OWL-definable part of Horn logic. DLP captures a significant fragment of OWL DL,
including the whole OWL DL fragment of RDF(S). Therefore, DLP has certain advantages, for

22Assistive technology introduced in Chapter 6

55

instance: 1) there is freedom for the ontology modeler to use either OWL DL or rules; 2) from
the implementation perspective, either DL reasoner or deductive rule systems can be used, that
ensures interoperability with a variety of tools.

OWL 2 RL [280], the language profile of OWL 2, represents a rule subset of OWL 2. Its
design was mainly inspired by DLP. The standard reasoning in OWL 2 RL is PTime-complete
and can be implemented using DLP. Among the reasoners available for this profile language,
there are OWLIM, Jena, Oracle OWL Reasoner, etc.

In contrast to DLP, the Semantic Web Rules Language (SWRL) [252] combines OWL DL
with function-free Horn logic, written in Datalog RuleML [283]. A rule in SWRL has the form
A1, A2, . . . , An → B1, B2, . . . , Bm, where the commas denote conjunction, and every atom
(Ai and Bj) in the rule can be an OWL descriptor, OWL property, and every atom is either a
variable, OWL individual, or OWL data value. An empty antecedent (premises, body) of the rule
is treated as trivially true (i.e. satisfied by every interpretation), so the consequent (head) must
also be satisfied by every interpretation; an empty consequent is treated as trivially false (i.e. not
satisfied by any interpretation), so the antecedent must also not be satisfied by any interpretation.
SWRL allows property chains which are only available in OWL 2 DL, and directly using the
OWL expressions in the body or head of the rule. The latter enables seamless integration of rules
and ontologies. Example 2.6 demonstrates the application of SWRL by example of the ontology
introduced in Example 2.3.

Example 2.6. Statement “If a blind user uses assistive technology then she is efficient” in SWRL
XML Concrete Syntax is presented as follows:

1 <ruleml:imp>
2 <ruleml:_body>
3 <swrlx:classAtom>
4 <owlx:IntersectionOf>
5 <owlx:Class owlx:name="BlindUser" />
6 <owlx:ObjectRestriction owlx:property="use">
7 <owlx:someValuesFrom owlx:class="AssistiveTech" />
8 </owlx:ObjectRestriction>
9 </owlx:IntersectionOf>

10 <ruleml:var>efficient</ruleml:var>
11 </swrlx:classAtom>
12 </ruleml:_body>
13 <ruleml:_head>
14 <swrlx:classAtom>
15 <owlx:Class owlx:name="Efficient"/>
16 <ruleml:var>efficient</ruleml:var>
17 </swrlx:classAtom>
18 </ruleml:_head>
19 </ruleml:imp>

It is essential to note F-logic [139] as a knowledge representation and ontology language. It
stands in the same relationship to object-oriented programming as classical predicate calculus
stands to relational database programming [134, Sec. 5.3.2].

A Rule Markup Language (RuleML) [283] is an important standardization effort for
markup of rules on the Web. It is a family of rule markup languages that corresponds to different
kinds of rule languages, e.g. derivation rules, integrity constraints, reaction rules. Datalog
(function-free Horn logic) is the core of the RuleML. The RuleML Initiative also supports the

56

development of Rule Interchange Format (RIF) [287], a format proposed by W3C that allows
logic rules to be exchanged between rule systems. We also want to note that despite the fact that
RDF is not an ontology language, there are inference systems which are sound and complete
for RDF semantics. The reasoning mainly focuses on the class-subclass, property-subproperty
relations.

2.6.3 Standard Ontology Reasoning Services

There are four main reasoning services provided by reasoners [221, Sec. 3.2]:
Consistency checking. The reasoner checks if a given ontology O is consistent, i.e. if there

exists a model (a model-theoretic instance) for O.
Satisfiability checking. The reasoner finds all unsatisfiable concepts in a given ontology O. A

concept is unsatisfiable if it cannot be instantiated.
Classification. The classification service returns for a given ontology O and individual I a set

of concepts which contain the individual.
Subsumption. The subsumption checking service checks whether the interpretation ofA (the set

of individuals contained in A) is a subset of the interpretation of B for a given ontology O.
Among the reasoning tools it is worth mentioning FaCT++23, Racer24, Pellet25, and

Jena26 [10].

2.6.4 SPARQL

SPARQL is the standard language for querying RDF documents. It provides a basic ontology
query service. It is a W3C Recommendation [257] which consists of three separate specifications
which describe a query language, a data access protocol which uses WSDL 2.0 for querying
remote databases, and query result formatting based on XML. In this section we focus on the
SPARQL query language. It consists of the following components [134, Sec. 4.3.2]:

Graph Patterns: The SPARQL query language is based on matching graph patterns. The
simplest graph pattern is the triple pattern with the possibility of a variable instead of an RDF
term in the subject, predicate, or object position. A combination of triple patterns gives a basic
graph pattern that is utilized to identify a subset of the RDF graphs to be retrieved.

RDF Dataset: SPARQL can be executed against multiple RDF graphs, that allows an
application to make queries which involve information from more than one graph.

Solution Modifiers: Query patterns matched generate an unordered collection of solutions
which are then treated as a sequence, initially in no specific order. Sequence modifiers are then
applied to specify a sequential order and information to be included in the result.

Query Form: The final sequence generated from the solution modifiers is used to present a
query result. There are four query forms SELECT, CONSTRUCT, ASK, and DESCRIBE.

23http://owl.man.ac.uk/factplusplus/
24http://www.racer-systems.com/
25http://clarkparsia.com/pellet/
26http://jena.apache.org/

57

http://owl.man.ac.uk/factplusplus/
http://www.racer-systems.com/
http://clarkparsia.com/pellet/
http://jena.apache.org/

SPARQL is considered as one of the key technologies of the Semantic Web. It allows for a
query to consist of triple patterns, conjunctions, disjunctions, and optional patterns. SPARQL
provides an efficient query answering, while the evaluation of general SPARQL patterns is
PSPACE-complete [192]. It is well supported by various applications including Jena, Pellet,
Bigdata, and Sesame.

Example 2.7 demonstrates the use of SPARQL language.

Example 2.7. For the ontology presented in Example 2.3, the SPARQL query “Get all users who
use assistive technology but are not blind” will look like this:

1 SELECT DISTINCT ?user
2 WHERE {
3 ?user rdf:type :User.
4 ?user :use ?soft.
5 ?soft rdf:type :AssistiveTech.
6 MINUS { ?user rdf:type :Sightless }
7 }

2.7 Discussion

In this chapter, we presented the state of the art in the field of Web Accessibility (Sections 2.1
and 2.2) and Web Page Processing (Sections 2.3 and 2.4). We also mention Semantic Web
technologies as an important aspect of the accessible Web (Sections 2.5 and 2.6).

Among the issues concerning web accessibility, the crucial ones include: 1) absence of
semantic description of the content of web pages and 2) insufficient investigation of various
possibilities of navigation over the logical structure of a web page.

1. Providing the web pages with semantically rich content can give the blind user a possibility
to understand the functional role of elements of the web page interface. For instance, to recognize
navigation menu, title of the article, search field and know how to interact with them. Due to the
fact that most of web pages do not follow W3C accessibility guidelines (see Section 2.1.1) and do
not provide necessary semantic labels, automatic enhancement of accessibility for inaccessible
web pages becomes a necessity. It is also confirmed by the active development of the specialized
web browsers, transcoding technologies, and screen readers (see Section 2.1.3). We consider a
problem of web page analysis for enhancing its accessibility from the viewpoint of WPU and
WIE (see Section 2.3). Investigating various methods of WPP, we came to the conclusion that
it is important to consider visual characteristics of the web page for developing robust methods
(see Section 2.4). Due to the absence of a common model for representing rendered web pages
convenient for WPP, we found the importance of developing the unified model of a web page.
Thus, in Chapter 3, we formally describe geometric characteristics of web page elements taking
into account fuzziness for different spatial relationships. In Chapter 4, we introduce the Unified
Ontological Model (UOM) dedicated to the WPP and describing various aspects of the web page,
including the visual, functional, and structural represented by the DOM trees. For the analysis
of a web page based on the model proposed, we developed a WPPS framework presented in
Chapter 5. It enables the development of WPP methods and enriching the web page with semantic
labels.

58

2. Investigating different contemporary methods of web page navigation (Section 2.2), we
came to the conclusion that contemporary methods and tools do not pay enough attention to
the navigation (Section 2.2.3). In particular, we propose to consider the navigation not from
the viewpoint of locomotion through the elements of the DOM tree as the contemporary screen
readers do, but as a problem of one-dimensional navigation through the multi-dimensional logical
structure of a web page. The one-dimensional character of navigation is unfortunately conditioned
by the use of an aural perceptional channel with Braille display and speakers, and the absence of
the visual perception. The enhancement of web page navigation is proposed in Chapter 6, where
we introduce a Multi-Axial Navigation Model (MANM) together with a navigation methodology.

59

CHAPTER 3
Modeling the Geometric Structure of

a Web Page

Fundamental to this development is the analysis of
geometrical structures in relation to the formal
languages used to describe them, and the recognition
of the special mathematical challenges—and
opportunities—which such an analysis presents.

— Marco Aiello, Ian Pratt-Hartmann, Johan van
Benthem, Handbook of Spatial Logics, 2007

In this chapter, we conduct an analysis of web pages’ layout to identify the main features and
spatial relationships which are further used to define a web page’s geometric structure and which
underlie the Block-based Geometric Model (BGM) (see Section 4.4.2). A geometric structure
defines spatial configurations of elements that can be used for the object identification and web
page understanding, which in turn plays an important role in enhancing the accessibility of web
pages [83, 87, 121].

Section 3.1 provides a brief overview of various geometric representations of electronic
documents and the relationships used. Then we specify terms such as quantitative and qualitative
models (see Section 3.2). In Section 3.3, we introduce the concepts of web page canvas and
discuss the utilized units of measure. In Section 3.4, we empirically define a concept of geometric
object together with its attributes, and in Section 3.5, perform the analysis of various spatial
relationships expressed quantitatively or qualitatively, in particular: topological (see Section 3.6),
direction (see Section 3.7), distance (see Section 3.8), alignment (see Section 3.9), interval
relations, and Two-Dimensional Interval Relations (2DIR) (see Section 3.10). In Section 3.10, we
also introduce a fuzziness in the interval relations which is used to reflect peculiarities of human
perception; furthermore, we express a major part of introduced qualitative relations via 2DIR,
taking into account fuzziness. 2DIR give us the possibility to dramatically decrease the amount
of possible contradictions in the mutual application of various types of spatial relationships.

61

In Section 3.11, we evaluate main spatial relations on the WPPS-HTML-DS1 dataset [72].
Section 3.12 concludes the chapter.

3.1 Existing Geometric Structures

A geometric model of an electronic document defines its structure, layout and plays an important
role in research fields such as Document Understanding [227], Web Data Extraction [122, 288],
and Document Classification [54]. In some ways, a geometric model is an abstraction of the
original format of an electronic document, which allows the consideration of only the necessary
information like spatial relations and geometric configurations. Thus, some forms of document
layout representations are suitable for different types of documents, be it a scanned (raster)
document, a PDF document, or a web page.

A significant amount of work is dedicated to representing a geometric structure of scanned
documents [110, 227, 288]. However, this question is not usually addressed specifically to a web
page. Web authors often confine themselves to the aspects of web page layout that are necessary
for solving some particular problems; be it the extraction of web articles [169] or relatively
simple objects [309] or web page classification [146] with the use of four direction relations
between adjacent CSS boxes (see Section 2.4.7). Examples of works which address the problem
of modeling web page layout as a whole are [144, 190].

The most widespread representation of a document layout is based on an inclusion relation,
which makes it possible to represent the document structure as a tree. This representation can be
acquired via document segmentation (e.g. X-Y cut algorithm [182] and its modifications [176],
or the VIPS algorithm [41, 42]). It is used both for web pages and for scanned documents,
playing an important role in tasks such as document understanding [63,118] and web information
extraction [308]. Inclusion relations provide an opportunity to operate “top-down,” analyzing
smaller visual elements included in larger ones step by step [95]. Another way for geometric
structure representation is mainly based on direction relationship, which is established between
neighboring elements and represented as an adjacency graph [116, 309]. This representation—in
conjunction with alignment—is used in different tasks including web page classification [146]
and web form understanding [305]. In [288], Walischewski uses Allen’s interval relations [7]
between x and y projections of geometric objects for document interpretation. Aiello et al. [2]
introduce their modification of interval relations,TBRR, for tasks of document understanding
and, in particular, for reading order detection. Models, based on interval relations and direction,
allow the use of so-called “bottom-up” approaches which also give quite promising results. More
complex geometry of electronic documents, which was applied to the web page and used for
web adaptation tasks, is presented by J. Kong et. al. in the Spatial Graph Grammar (SGG)
formalism [144]. The authors use various spatial relationships: certain topological relations,
distance notion, alignment and direction. In [190], E. Oro et al. enrich DOM tree of a web page
with additional relations adopted from rectangular algebra.

Some methods do not utilize relations mentioned above (which qualitatively describe geomet-
ric structure) and mainly use quantitative visual characteristics (e.g. coordinates of a web page’s
elements) along with DOM tree (e.g. extraction of data records [122] and web articles [169], see
Section 2.4.6). Therefore, both quantitative and qualitative information are important.

62

A web page’s layout differs from a scanned document’s layout. Besides the main content
(textual and multimedia), a web page includes a variety of web objects that have some semantic
roles (e.g. navigation menu, web form elements, posts in a web forum). This fact defines web
pages not only as resources of textual or multimedia information, but also as web applications.
Moreover, the layout of web pages comply with the CSS specifications [260] that define a dynamic
behavior of the layout which depends on the CSS rules of the web page, a web browser and the
size of a viewport. In contrast to scanned documents, a web page provides some granularity, which
is limited by CSS boxes [260, Sec. 8]. Information such as text and computed CSS attributes
can be acquired from the web browser. CSS rules of a web page along with its Document
Object Model (DOM) tree are used by the browser’s layout engine merely for generating the
visual representation of a web page. CSS rules are not able to describe qualitatively spatial
configurations and qualitatively express positional information of visual elements. In some sense,
a CSS-based representation of a web page with computed attributes of the laid out CSS boxes
is the original representation of a web page, in the same way as a raster image for a scanned
document.

These peculiarities define a necessity of developing a specific web pages’ geometric model
(i.e. the BGM) that can be utilized in various fields of research such as Web Page Understanding
(WPU) and Web Information Extraction (WIE). Thus, we are intending to consider various spatial
attributes and relationships in quantitative and qualitative representation (including the relations
mentioned by J. Kong et. al. and E. Oro et al.), and introducing it in one formalism. We are
interested in modeling various spatial and geometric characteristics which are adequate to the
CSS [260] standards, reflect peculiarities of human perception of the layout and convenient for
the web page processing.

3.2 Quantitative and Qualitative Models

Modeling different geometric structures of the web pages, we distinguish between quantitative and
qualitative information, and between quantitative and qualitative models accordingly. Quantitative
information provides us with exact information using specific units of measure. When considering
the distance between geometric objects of a web page, it can be measured in pixels while for
direction it is measured in angles. Precise information is used in various quantitative methods
(some of them are listed in Section 2.4.6). In contrast, qualitative information is more natural for
human perception and can be used in the automatic logical inferences. A statement that an image
is far from the button (instead of specifying a distance in pixels, for instance, 2858px), or saying
that a caption is under the image (instead of asserting that the angle between geometric centers of
the caption and the image is 78.4◦) is cognitively more eloquent and immediate; it is perceived
more natural by humans. Regarding the reasoning, if we have the image far to the east of the
button and radio button to the east of the image, one can infer that the radio button is also far
to the east of the button. Methods which use qualitative visual characteristics are presented in
Section 2.4.7.

In Definition 3.1 and Definition 3.2, we formally specify concepts of “quantitative” and
“qualitative” models which underlie the BGM (see Section 4.4.2)— a metamodel of a web page’s
layout. An object is the main element for both models. For the layout, it is a geometric object

63

(see Section 3.4 and 4.4.2). In the definitions, we do not take various types of objects and their
taxonomy into account.

Definition 3.1 (Quantitative Model). A quantitative model is a tripleMqnt = 〈Θ, Aqnt, Bqnt〉.
Θ is a set of objects in the modelMqnt. Aqnt = {αqnt

1 , . . . , α
qnt
n }, where αqnt

i : Θ → tαi defines
values of the objects’ attributes, tαi is a range of the attribute αqnt

i . Bqnt = {βqnt
1 , . . . , β

qnt
m },

where βqnt
j : Θ × Θ → tβj defines quantitatively expressed relations between objects; tβj is a

range of the quantitative relation βqnt
j .

Example of the attribute inMqnt can be position αqnt
pos in pixels with range tαpos ∈ R× R (see

Section 3.4). Example of the quantitative relation can be direction βqnt
dir defined as an angle in

degrees tβdir ∈ [0; 360) (see Section 3.7).
In the definition of a qualitative model, we do not mention the ordering of qualitative values

as well as the frame of reference.

Definition 3.2 (Qualitative Model). A qualitative model is a triple Mqlt = 〈Θ,ΦI,ΦII〉. Θ
is a set of objects in the modelMqlt. ΦI = 〈Aqlt, V, ψI, αqlt〉 defines attributes of the objects.
Aqlt = {a1, . . . , an} is a set of attributes; V is a set of qualitative values of the attributes;
ψI : Aqlt → 2V defines the range for each attribute ai; αqlt : Θ × Aqlt → 2V assigns sets of
values for the attributes of the objects. ΦII = 〈Bqlt, R, ψII, βqlt〉 defines qualitative relationships
on the set Θ. Bqlt is a set of various types of qualitative relations; R is a set of binary relations
which can be defined between objects; ψII : Bqlt → 2R defines a set of relations for each type of
relations; βqlt : Θ×Θ×Bqlt → 2R defines binary relations between objects.

A necessary properties: Strictly one attribute and only one type of relation should be set in
correspondence to every value of an attribute an for every relation respectively, i.e.

∀ai ∈ Aqlt, aj ∈ Aqlt[ai 6= aj → ψI(ai) ∩ ψI(aj) = ∅],
∀bi ∈ Bqlt, bj ∈ Bqlt[bi 6= bj → ψII(bi) ∩ ψII(bj) = ∅].

(3.1)

If an object in the qualitative model has more than one value for an attribute (i.e.
∃θ ∈ Θ, a ∈ Aqlt[‖αqlt(θ, a)‖ > 1]) or if a pair of objects has more than one relation of the
same type (i.e. ∃θi ∈ Θ, θj ∈ Θ, b ∈ Bqlt[‖βqlt(θi, θj , b)‖ > 1]), then the model has uncertainty.

a ∈ Aqlt and b ∈ Bqlt can be interpreted as linguistic variables, whereas ψI(a) and ψII(b) as
their values respectively. Example of the attribute can be “width” awidth ∈ Aqlt of an objects with
values such as “small,” “commensurate,” and “big” defined in V and related to awidth by ψI (see
Section 3.4). Example of a relation can be relationship such as “alignment” balign ∈ Bqlt with
values “left aligned,” “right aligned,” “centered vertically,” etc. defined in R and related to balign
by ψII (see Section 3.9). The number of possible values for each attribute and relation is defined
by the chosen level of granularity (e.g. for the example with “width” it is 2).

In this chapter, we introduce different qualitative relationships and relate them to the quantita-
tive data. In general, for the system of linguistic terms with a predefined order, such as width (see
Section 3.4) or distance (see Section 3.8), we give the following definition:

Definition 3.3. System of qualitative values is a triple 〈Rqlt,Dqlt, νqlt〉, where Rqlt =
{ρ1, ρ2, . . . , ρn} is a set of qualitative symbols (or linguistic terms) which form a complete

64

lattice with ρ1 ≺ ρ2 ≺ · · · ≺ ρn;Dqlt = {Dρ1 , Dρ2 , . . . , Dρn} is a set of fuzzy sets, where, for
every ρi, Dρi = {〈x, µρi〉|x ∈ [0,+∞)} with the membership function µρi : [0,+∞)→ [0, 1];
νqlt : [0,+∞)→ 2R

qlt
maps quantitative data to the qualitative symbols. νqlt(x) = {ρi|µρi(x) >

ε}, where 0 < ε ≤ 1 is a predefined threshold value which used to define a crisp mapping νqlt.
This system has the following necessary properties:

1. Every qualitative symbol ρi has at least one quantitative value which corresponds only to
it, i.e. ∀ρi∃x[νqlt(x) = {ρi}];

2. Every quantitative value corresponds to at least one qualitative symbol, i.e.
∀x ≥ 0[max(µρ1(x), µρ2(x), . . . , µρn(x)) > ε];

3. The order of quantitative values correspond to the order of qualitative symbols, i.e.
∀x1, x2, ρi, ρj [0 ≤ x1 ≤ x2 →

(
ρi ∈ νqlt(x1) \ νqlt(x2) ∧ ρj ∈ νqlt(x2) \ νqlt(x1) →

ρi ≺ ρj
)
];

4. For every quantitative value x ≥ 0, there exists one or several qualitative symbols which
correspond to one interval without holes in the ordered sequence of qualitative symbols,
i.e. ∀ρi ∈ νqlt(x), ρj ∈ Rqlt[ρj 6= ρi → (ρj ≺ ρi ∨ ρj � ρi)]

One of the peculiarities of this definition is that it specifies relation between qualitative
and quantitative values in terms of fuzzy sets [96]. For µρi with i = 2, 3, . . . , n − 1 a Π-like
membership function is recommended. Examples of the Π-like functions are trapezoidal or
triangular functions, bell-shaped function, normalized Gaussian function, etc. [131]

3.3 Web Page Canvas and Unit of Measure

Definition 3.4 (Web Page Canvas). A web page canvas (or document canvas, see Section 3.4) is
a plane with Euclidean metric space defined on it and pixels as a unit of measure. A canvas lies
in the plane of screen with Cartesian coordinate system, abscissa is directed from left to right
and ordinate from top to bottom. The top-left corner of the top level page from the page hierarchy
specifies the origin of coordinates (see Figure 3.1).

We also differ a page canvas (see Section 3.4) which has similar specification of its coordinate
system, however, it is mainly referred to a specific page from the page hierarchy of a web page.
The first quadrant of a page canvas is a visible part of a canvas. Our definition of a canvas
correlates with the definition provided by the W3C in [260, Sec. 2.3.1] (see Section 2.4.5).

In this thesis, we make a distinction between a pixel as a unit of measure and a pixel as a region
which corresponds to the smallest addressable element in a display device. We adopt pixel unit of
measure presented by the web browsers according to the W3C recommendation [260, Sec. 4.3.2].
The coordinates of the rendered elements on a web page canvas can be fractional. The task of
the web browser layout engine is to map coordinates of elements to particular pixels of a screen
according to the chosen level of magnitude. Consideration of this problem is out of the scope of
this thesis. We focus on the geometry of objects on the canvas instead of the problem of their
visualization on the discrete screen.

65

Figure 3.1: Web page structure

3.4 A Web Page Structure, Geometric Object and its Attributes

We distinguish five main types of structural elements of a web page (see Figure 3.1): document,
page, viewport, visualized element, and box.

A document is a web page rendered by the web browser’s engine. It is formed by the set of
X/HTML or XML files connected with each other by means of inclusion (e.g. by elements with
the names FRAME, or IFRAME, or OBJECT). Width and height of the document correspond to
the dimensions of a minimum bounding rectangle wrapping corresponding rendered files—pages.
A page is a single rendered X/HTML or XML file of a document, which can be modeled as a
rectangle. It refers to the DOM window in the Browser Object Model (BOM) and CSS Object
Model (CSSOM). A set of pages make a hierarchy of pages through the inclusion relations. From
another point of view a page is a DOM-tree together with computed CSS attributes; it has the
counterpart Window in the BOM [136]. By the term viewport, we mean both viewport of the web
browser [260, Sec. 9.1.1] and viewport rendered by the web browser to view child pages (see
Figure 3.1).

According to the CSS 2.1 specification (see Section 2.4.5) [260], a CSS box is the mini-
mum visual formatting object which corresponds to the visualized node of the DOM. From the
viewpoint of visual perception of the CSS boxes (see Figure 2.8 on page 32, [260, Sec. 8]), the
observer can see only the border area of the CSS box model and its inner area which is formed
by the conjunction of the padding and content areas. The model of a visualized element, the
counterpart of the CSS box, is presented in Figure 3.2. It is important to note that CSS box in
general is a complex object which can span through several lines forming sequence of client
rectangles [264, 286] which are also CSS boxes. In terms of a geometric model of a web page,
these client rectangles are referred to as boxes. For the analysis, it is reasonable to simplify the
box as a geometric object, and represent it as a union of two rectangular areas (which are also
geometric objects): outer and inner blocks. This description of the box is used in the BGM, see

66

Figure 3.2: Model of the CSS box in the Block-based Geometric Model (BGM) with quantitative
positional information

Section 4.4.2).
A geometric (layout) object is an element of the specific geometric structure of a document

[228]. In general, a geometric object can be of different shapes [110], such as circle, ellipse,
square, rectangle, polygon, but rectangles are more widespread [227]. Thus, different structural
elements of a web page, which are geometric objects, we model by minimum bounding rectangle—
a block.

Definition 3.5 (Block). A block is a rectangular region with the nonzero area which lies on
the web page canvas and is defined by its extreme points: top-left (x−, y−) and bottom-right
(x+, y+) corners.

Considering a geometry of the block as part of the BGM, we define the following quantitative
attributes (see Section 3.2): 1) position (αqnt

pos): (x−, y−), 2) width (αqnt
width): x+ − x−, 3) height

(αqnt
height): y

+ − y−, and 4) draw id (αqnt
draw id ∈ N). The draw id is a sequence number which

corresponds to the order of painting blocks by the web browser engine on the canvas.
For the qualitative representation (see Section 3.2) of the width (awidth ∈ Aqlt) and height

(aheight ∈ Aqlt) of the block, we can use linguistic terms such as “very small,” “small,” “commen-
surate,” “big,” “very big” with their natural order (e.g. “very small” ≺ “small” ≺ · · · ≺ “very
big”) according to the systems of qualitative values (see Definition 3.3 on page 64). According
to Definition 3.2 and the necessary property of the system of qualitative values (3.1), symbols
referring to corresponding linguistic terms should differ for the width and height. For example,
we can use value vbig width for the width and vbig height for the height of the block. The position
and draw id can be specified qualitatively relative to other objects via various types of spatial
relations.

It is to be noted that a CSS box can have an outline which is drawn separately from it [260,
App. E]. This object is perceived visually as a separate CSS box and thus it can also be replaced
by the inner and outer blocks in the BGM.

67

3.5 Spatial Relations

There are several types of spatial relationships, such as topological (see Section 3.6), direction
(see Section 3.7), distance (see Section 3.8), alignment (see Section 3.9), interval relations and the
relations based on them (see Section 3.10) widely applied in the fields of spatial cognition [181],
Geographical Information Systems (GIS), Computer-Aided Design (CAD) [50], graphical user
interfaces design [108, 144, 206] and also the web page layout analysis [94]. Distance and
direction can be expressed either quantitatively or qualitatively, while the rest only represents
relationships qualitatively. These peculiarities of different types of relationships define their
relation to either quantitative or qualitative models (see Section 3.2). This set of relationships
provides us with sufficient information about spatial configuration and position of objects on the
web page canvas.

When introducing various spatial relationships, it is worth mentioning concepts such as a
primary, reference objects, and a frame of reference. These three terms are important for the
identification of spatial allocation of the objects. A primary object is an object which spatial
location and orientation we would like to identify. A reference object is used to specify position
of the primary object relative to it. A frame of reference is used for defining spatial relations. For
example, for the quantitative distance, we specify the frame of reference by the coordinate axes
of the web page canvas (see Section 3.3).

3.6 Topological Relations

Topology is one of the fundamental aspects of space. It defines qualitative relations between
geometric objects and forms a fundamental basis of qualitative spatial reasoning [52]. Topological
relations are able to describe all aspects of the scene which are invariant with respect to common
linear transformations (translation, rotation, rubber sheeting) [50]. One of the most common
topological relations which are suitable for our needs are from the mereotopology of the Region
Connection Calculus (RCC), a first-order formalism [53, 203]. It is the region-based approach [3,
Sec. 3.1.2]. The fundamental relation which underlie it is a connection relation. We give the
following definition for this term, which correlates with definition given by B.L. Clarke [49].

Definition 3.6 (Connection). A relation C(r, s) (read as “r connects with s”) is defined on the
set of regions (spatial or temporal) between those pairs whose topological closures share a
common point.

Connection relation is reflexive and symmetric, i.e. ∀r[C(r, r)] and ∀r, s[C(r, s)→ C(s, r)].
In addition to Definition 3.5, we define a block taking into account mereotopology.

Definition 3.7 (Block). A block is a non-empty connected closed region without holes which lies
on the web page canvas.

A region r is connected if for every pair of points in r there exists a line (not necessarily a
straight one) joining the two points such that all the points on the line are also in r. The property
of connectedness prevents a region from having disjoint parts [216]. It is important to note that a

68

topological space defined by the set of blocks is not a topology (the union and intersection of any
closed/open rectangle is not in general a closed/open rectangle).

Considering the mereotopological definition of C(r, s) and the spatial expansion of the blocks
r and s in the Euclidean metric space, C(r, s) can be defined as follows1:

C(r, s) = x+r ≥ x−s ∧ x−r ≤ x+s ∧ y+r ≥ y−s ∧ y−r ≤ y+s . (3.2)

Concerning the blocks, we use RCC8 which was introduced in the area of GIS [64, 217] and
as a decidable subset of Region Connection Calculus (RCC) [203, 204].

3.6.1 RCC8

RCC8 is able to represent relation between pair of regions and it does not distinguish between
connected and disconnected regions or regions with and without holes [3, p. 513]. It has eight
jointly exhaustive and pairwise disjoint (JEPD) dyadic relations (see Figure 3.3) which are defined
purely by means of connection relation C(r, s) (3.3):

1) EQUAL(r, s) or r = s: r is identical to s,
2) EC(r, s): r is externally connected with s,
3) DC(r, s): r is disconnected from s,
4) PO(r, s): r partially overlaps s,
5) TPP(r, s): r is tangential proper part of s,
6) NTPP(r, s): r is nontangential proper part of s,
7) TPP-(r, s): inverse of TPP(r, s),
8) NTPP-(r, s): inverse of NTPP(r, s).

Listed JEPD relations can be subsumed into more general relations (see Figure 3.3) which
are also defined by means of C(r, s) (3.3):

1) PP(r, s): r is a proper part of s,
2) P(r, s): r is a part of s,
3) O(r, s): r overlaps s,
4) DR(r, s): r is discrete from s,
5) PP-(r, s): inverse of PP(r, s),
6) P-(r, s): inverse of P(r, s).

For the topological relations, we use notations ∗(r, s) and τ∗(r, s) interchangeably, where ∗
is a placeholder; for instance, C(r, s) and τC(r, s).

It is worth mentioning that all the relations except P, PP, TPP, NTPP, and their inverses
are symmetric. Moreover, these relations can be embedded in a relational lattice based on
the subsumption relation. This is given in Figure 3.3, where the symbol “>” is interpreted as

1This definition gives one a possibility to relate all qualitative relations based on this to the quantitative values in
metric space.

69

Figure 3.3: A lattice defining the subsumption hierarchy of the dyadic relations defined solely in
terms of the basic relation C(r, s)

tautology and the symbol “⊥” as contradiction. The partial order based on the subsumption
(inclusion relation) is set in such a way that a weaker (more general) relation is always above a
stronger (more specific) one. The definitions of the set of RCC8 relations is presented in (3.3),
where they are expressed by means of C(r, s). The analysis of the RCC8 JEPD applied to the
web page layout can be found in Section 3.11.2.

70

DC(r, s) ≡def ¬C(r, s),

P(r, s) ≡def ∀z[C(z, r)→ C(z, s)],

PP(r, s) ≡def P(r, s) ∧ ¬P(s, r),

EQUAL(r, s) ≡def P(r, s) ∧ P(s, r),

O(r, s) ≡def ∃z[P(z, r) ∧ P(z, s)],

PO(r, s) ≡def O(r, s) ∧ ¬P(r, s) ∧ ¬P(s, r),

DR(r, s) ≡def ¬O(r, s),

EC(r, s) ≡def C(r, s) ∧ ¬O(r, s),

TPP(r, s) ≡def PP(r, s) ∧ ∃z[EC(z, r) ∧ EC(z, s)],

NTPP(r, s) ≡def PP(r, s) ∧ ¬∃z[EC(z, r) ∧ EC(z, s)],

P-(r, s) ≡def P(s, r),

PP-(r, s) ≡def PP(s, r),

TPP-(r, s) ≡def TPP(s, r),

NTPP-(r, s) ≡def NTPP(s, r).

(3.3)

3.6.2 Refinement of the RCC for Blocks

Taking into account the peculiarities of the rectangular shape of the block, we can refine RCC8
by introducing additional topological relationships of the higher level of granularity. The new
relations are illustrated in Figure 3.4. EC can be further refined by seven corresponding relations,
introduced in (3.4). All these relations except EC3, EC4, and their inverses are symmetric. DC
subsumes eight relations defined in (3.5). All these relations except DC4, DC5, and their inverses
are symmetric. PO can be split on ten relations specified in (3.6), where all the relations are
symmetric except PO2, PO3, PO6, and their inverses. The refinement of TPP is presented in
(3.7), where all the eight relations are asymmetric. These 33 specific relations together with
NTPP, NTPP-, and EQUAL are jointly exhaustive and pairwise disjoint (JEPD). All 36 basic
relations enable describing exhaustive set of spatial configurations of blocks merely based on C.

71

Figure 3.4: Pictorial representation of the additional topological relations between blocks which
extend RCC8

72

EC1(r, s) ≡def EC(r, s) ∧ ∃z1, z2[EC(z1, r) ∧ EC(z1, s)

∧EC(z2, r) ∧ EC(z2, s) ∧ EC(z1, z2)],

EC2(r, s) ≡def EC(r, s) ∧ ∀z1∃z2[EC1(z2, s) ∧ PO(z2, r)

∧(EC1(z1, s) ∧DC(z1, z2)→ DC(z1, r))],

EC3(r, s) ≡def EC(r, s) ∧ ∃z1[EC1(z1, s) ∧ EC(z1, r)]

∧∃z2[EC1(z2, r) ∧ PO(z2, s)],

EC4(r, s) ≡def EC(r, s) ∧ ∀z[EC1(z, s)→ DC(z, r)],

EC5(r, s) ≡def EC(r, s) ∧ ∃z1, z2[EC1(z1, s) ∧ EC(z1, r)

∧EC1(z2, s) ∧ EC(z2, r) ∧DC(z1, z2)],

EC−3 (r, s) ≡def EC3(s, r),

EC−4 (r, s) ≡def EC4(s, r).

(3.4)

DC1(r, s) ≡def DC(r, s) ∧ ∀z[EC5(z, s)→ DC(z, r)],

DC2(r, s) ≡def DC(r, s) ∧ ∃z[EC5(z, s) ∧ EC1(z, r)],

DC3(r, s) ≡def DC(r, s) ∧ ∃z[EC5(z, s) ∧ EC2(r, z)],

DC4(r, s) ≡def DC(r, s) ∧ ∃z[EC5(z, s) ∧ EC3(r, z)],

DC5(r, s) ≡def DC(r, s) ∧ ∃z[EC5(z, r) ∧ EC4(z, s)],

DC6(r, s) ≡def DC(r, s) ∧ ∃z[EC5(z, r) ∧ EC5(z, s)],

DC−4 (r, s) ≡def DC4(s, r),

DC−5 (r, s) ≡def DC5(s, r).

(3.5)

PO1(r, s) ≡def PO(r, s) ∧ ∃z1[EC1(z1, r) ∧ PO(z1, s)]

∧∃z2[EC1(z2, s) ∧ PO(z2, r)],

PO2(r, s) ≡def PO(r, s) ∧ ∃z1[EC1(z1, s) ∧ EC(z1, r)]

∧∃z2[EC1(z2, r) ∧ PO(z2, s)],

PO3(r, s) ≡def PO(r, s) ∧ ∃z1, z2[EC1(z1, r) ∧ PO(z1, s)

∧EC1(z2, r) ∧ PO(z2, s) ∧DC(z1, z2)],

PO4(r, s) ≡def PO(r, s) ∧ ∃z1, z2, z3[EC5(z1, r) ∧ EC5(z2, s)

∧EC5(z3, z1) ∧ EC5(z3, z2)],

PO5(r, s) ≡def PO(r, s) ∧ ∃z[EC1(z, r) ∧ EC1(z, s)],

PO6(r, s) ≡def PO(r, s) ∧ ∃z[EC5(z, r) ∧ EC4(z, s)],

PO7(r, s) ≡def PO(r, s) ∧ ∀z1[EC1(z1, r)→ DC(z1, s)]

∧∀z2[EC1(z2, s)→ DC(z2, r)],

PO−2 (r, s) ≡def PO2(s, r),

PO−3 (r, s) ≡def PO3(s, r),

PO−6 (r, s) ≡def PO6(s, r).

(3.6)

73

TPP1(r, s) ≡def TPP(r, s) ∧ ∃z1, z2[EC1(z1, r) ∧ EC1(z1, s)

∧EC1(z2, r) ∧ PO(z2, s)],

TPP2(r, s) ≡def TPP(r, s) ∧ ∀z1∃z2[EC5(z2, s) ∧ EC(z2, r)

∧(EC5(z1, s) ∧DR(z1, z2)→ DC(z1, r))],

TPP3(r, s) ≡def TPP(r, s) ∧ ∃z1, z2[EC1(z1, r) ∧ EC1(z1, s)

∧EC1(z2, r) ∧ EC1(z2, s) ∧DC(z1, z2)],

TPP4(r, s) ≡def TPP(r, s) ∧ ∀z1[EC1(z1, s)→ DC(z1, r)]

∧∀z2[EC1(z2, r)→ EC(z2, s)],

TPP−1 (r, s) ≡def TPP1(s, r),

TPP−2 (r, s) ≡def TPP2(s, r),

TPP−3 (r, s) ≡def TPP3(s, r),

TPP−4 (r, s) ≡def TPP4(s, r).

(3.7)

Topological relations also play an important role in Gestalt theory and pertain to different
Gestalt laws; we refer interested readers to [143, 291].

3.7 Direction Relations

Direction relation plays an important role in spatial orientation which in turn describes where the
objects are placed relative to one another according to the frame of reference. Thus orientation of
spatial entities is a ternary relationship (with primary and reference objects and frame of reference
as parameters), where the frame of reference can be specified either by a third object or by a
given direction [3, Sec. 4.3.2] (see Section 3.5). Moreover, frame of reference can be extrinsic
(external factors impose an orientation on the reference object), intrinsic (the orientation is given
by some inherent property of the reference object), or deictic (the orientation is imposed by the
point of view from which the reference object is seen) [50,205]. For the analysis of orientation of
the blocks in a web page’s layout, it is reasonable to consider directions within the scope of the
extrinsic frame of reference. This gives us a possibility to have a contextual factor independent
from the particular cases and to be tied to the geometric space defined for the web page canvas
rather then concrete elements of a web page’s layout.

From the viewpoint of Gestalt theory [143, 291], direction partially refers to the law of
continuity, law of closure and law of common fate [151].

For the spatial orientation, we distinguish between quantitative and qualitative directions.
The former refers to the quantitative model, whereas the latter relates to the qualitative one (see
Section 3.2).

3.7.1 Quantitative Direction

For the quantitative direction relations, we use abscissa of the web page canvas as a frame of
reference and angle to specify direction. This approach has a qualitative counterpart with the

74

Figure 3.5: Nine main segments (tiles) for the block

cone-based method that divides space at the specific reference point on the set of cones by
crossing it with the set of straight lines [89].

Definition 3.8 (Quantitative direction relation). Quantitative direction relation between primary
r and reference s blocks is a binary relation γqnt(r, s) ∈ [0; 360) expressed by the clockwise
angle in degrees between abscissa and a vector connecting geometric center of the reference
block c(s) with geometric center of the primary block c(r).

The analysis of quantitative directions applied to web pages can be found in Section 3.11.3.

3.7.2 Qualitative Direction

Taking into account peculiarities of the blocks, it makes sense to use projection-based method [89]
to define qualitative direction relations. Following this method, we define for a block s nine main
segments (tiles) such as Ns, NEs, Es, SEs, Ss, SWs, Ws, NWs, and Bs which are formed
by the orthogonal lines ζx2 , ζx4 , ζy2 , and ζy4 bounding the corresponding (reference) block (see
Figure 3.5). These tiles are semi-open infinite regions containing points of the corresponding
bounding lines ζx2 , ζx4 , ζy2 , and ζy4 of the block s.

We distinguish between three types of direction relationships: O-direction, P-direction, and
center direction relations. O-direction relation is defined based on the types of tails overlapped
(see Definition 3.9); P-direction requires a containment of the primary block within only one
tail of the reference block (see Definition 3.10); a center direction specifies the containment
of the geometric center of the primary block within one of the tails of the reference block (see
Definition 3.11). In their definitions, we use symbols ρ and ρ′ as placeholders for directions, for

75

example, N, NE, or E; and ρs and ρ′s as placeholders for the tiles of the block s, for example, Ns,
NEs, or Es.

O-direction relation is a type of direction relationship which is defined between primary and
reference blocks as follows.

Definition 3.9 (O-direction Relation). Primary block r has O-direction relation
ρ = N,NE,E,SE,S,SW,W,NW,B with the reference block s (denoted as ρ(r, s) or γρ(r, s))
iff τO(r, ρs) where ρs is a ρ-th tail of the block s.

τO denotes the RCC8 relation O (see Section 3.6).

Definition 3.10 (P-direction Relation). Primary block r has P-direction relation ρ̃ with the
reference block s (denoted as ρ̃(r, s) or γ̃ρ(r, s)) where ρ ∈ {N,NE,E,SE,S,SW,W,NW,B}
iff τP(r, ρs) where ρs is a ρ-th tail of the block s.

τP denotes the RCC8 relation P (see Section 3.6).

Definition 3.11 (Center Direction Relation). Primary block r has center direction
relation ρ̇ with the reference block s (denoted as ρ̇(r, s) or γ̇ρ(r, s)) where ρ ∈
{N,NE,E,SE,S,SW,W,NW,B} iff the following conditions are satisfied:

• For ρ′ ∈ {NE,SE,SW,NW}, ρ̇′(r, s) is hold iff c(r) ∈ ρ′s ∧ c(r) /∈ ρs \ ρ′s.

• For ρ′ ∈ {N,E,S,W}, ρ̇′(r, s) is hold iff c(r) ∈ ρ′s ∧ c(r) /∈ Bs.

• B(r, s) is hold iff c(r) ∈ Bs.

(c(r) and c(s) denote geometric centers of the blocks r and s respectively.)

O-direction relation is weaker than P-direction and occurs when the primary block overlaps
with a certain tail of the reference block. For instance, if a block r is in relation τO with the
tail Ns of the block s, we say that r is north of s and write N(r, s) or γN(r, s). P-direction is
valid if a primary block is equal or contained within the certain tail of the reference block. For
instance, if a block r is in relation P with the tail Ns of the block s, we say that r is strictly
north of s and write Ñ(r, s) or γ̃N(r, s). Moreover, O-direction relations are jointly exhaustive
(∀r, s∃γi[γi(r, s)]) covering all possible spatial configurations of blocks but are not pairwise
disjoint (∃r[γi(r, s) ∧ γj(r, s) ∧ i 6= j]). In contrast, P-direction relations are pairwise disjoint
but are not jointly exhaustive.

For the arbitrary blocks r and s, there can be several O-direction relations defined regard-
ing the tiles being overlapped. Making a closed world assumption (CWA), there are 36 valid
combinations of O-direction relations for the blocks, which we denote as R∗O-dir36. For exam-
ple, γNW(r, s) ∧ γN(r, s) ∧ γB(r, s) ∧ γW(r, s) or γNW(r, s) ∧ γW(r, s) ∧ γNE(r, s). A valid
combination of O-direction relations between primary block r and reference block s is formed
according to the formula (3.8):

γij(r, s) ∧ γkl(r, s) ∧min(i, k) ≤ p ≤ max(i, k)
∧min(j, l) ≤ q ≤ max(j, l)→ γpq(r, s),

(3.8)

76

where i, j, k, l, p, q ∈ R denote tails according to Figure 3.5. For instance, γ11 corresponds to
γNW , γ23 corresponds to γE .

It is worth mentioning that in contrast to Rectangular Cardinal Relations (RCR) [216], O-
direction and P-direction relations convey necessary minimum of basic orientation relations for
the web page’s blocks without additional complexity. For example, it is not necessary for us
to specify atomic direction relations defined on the unions of tails; it is more suitable to use
expression NW(r, s) ∧N(r, s) instead of defining additional atomic relation NW : N(r, s). This
fact is also considered in the development of the corresponding ontological model: the BGM.

In contrast to O-direction and P-direction relations, center direction relations are JEPD. If
the geometric center of a block r belongs to the tail Ns and does not belong to any other tail of
the reference block s, we say that the center of the r is north of s and write Ṅ(r, s) or γ̇N(r, s).

3.8 Distance Relations

Distance and direction are the main types of spatial relationships necessary to specify positional
information. From the visual perception point of view, distance implicitly reflects the strength
of the connection between objects. The less the distance the stronger the relation between the
objects. This fact has a direct relation to the Gestalt principles [143, 291] and in particular, to the
law of proximity: we perceive close objects as grouped together [151].

We single out quantitative and qualitative distances which refer to the quantitative and
qualitative models respectively (see Section 3.2).

3.8.1 Quantitative Distance

The Cartesian coordinate system where ordinate is directed from top to bottom (see Definition 3.4)
is a frame of reference in Euclidean metric space for the quantitative types of distances. For the
points p1 and p2 in a metric space, the following axioms hold for a distance function dist [50]:

dist(p1, p1) = 0 (reflexivity) (3.9)

dist(p1, p2) = dist(p2, p1) (symmetry) (3.10)

dist(p1, p2) + dist(p2, p3) ≥ dist(p1, p3) (triangle inequality) (3.11)

The distance between points p1 and p2, where pi = (xi1, xi2, . . . , xin), of an n-dimensional
vector space can be expressed in terms of the Minkowsky Lp-metric:

distp(p1, p2) =

(n∑
j=1

|x1j − x2j |p
)1/p

.

Conventional Euclidean distance is defined by the L2-metric, whereas the city block (or
Manhattan) distance is defined by the L1-metric.

For the blocks in the BGM, we define three main metrics: 1) distance between borders
of blocks (see Definition 3.12), 2) distance between geometric centers (see Definition 3.13),
and 3) distance between border projections (see Definition 3.14). These types of relations are
illustrated in Figure 3.6.

77

Figure 3.6: Quantitative distances between primary r and reference s blocks

Definition 3.12. Quantitative distance between borders of the primary r and reference s blocks
is a distance δ̊qnt(r, s) with L2-metric in two-dimensional Euclidean vector space which equals
inf(dist2(pr, ps)), where pr ∈ r, ps ∈ s.

According to the definition, for the blocks r and s in RCC8 relation O the distance δ̊qnt(r, s)
is equal to 0. δ̊qnt possess a property of reflexivity and symmetry but not a triangle inequality.
It is the main type of relations for the blocks in the BGM which allows considering blocks as
regions in metric space.

Definition 3.13. Quantitative distance between geometric centers c(r) and c(s) of primary r
and reference s blocks is a distance δ̇qnt(r, s) with L2-metric in two-dimensional vector space.

In other words, δ̇qnt(r, s) = dist2((
x−r +x+r

2 , y
−
r +y+r
2), (x

−
s +x+s
2 , y

−
s +y+s
2)).

δ̇qnt has a property of reflexivity (3.9), symmetry (3.10) and triangle inequality (3.11). This
approach can be the case for the complicated non-Manhattan layout (for instance, elements of
Scalable Vector Graphics (SVG)).

Definition 3.14. Quantitative distance between border projections of primary r and reference s
blocks is a distance δ̄qnt

ij (r, s) = pr − ps, where ij ∈ {LL,RR,LR,RL, TT,BB, TB,BT}, L
corresponds to the left border (pk = x−k) of the block k = r, s, R to the right border (pi = x+i),
T to the top (pi = y−i), and B to the bottom (pi = y+i).

For instance, quantitative distance between left border projection of the primary block r
and right border projection of a reference block s is δ̄qnt

LR(r, s) = x−r − x+s . δ̄qnt
ij possess the

property of reflexivity and triangle inequality but not symmetry. It is to be noted that δ̄qnt
ij (r, s)

can be negative if the vector connecting certain borders and parallel to the corresponding axis
is opposite to this axis. Moreover, there are inversions such as δ̄qnt

LR(r, s) = −δ̄qnt
RL(s, r) and

δ̄
qnt
TB(r, s) = −δ̄qnt

BT (s, r). This type of spatial relationships allows one to estimate a degree of
alignment between blocks and their borders. For instance, for the multicolumn layout right
borders of the blocks from the first column has relatively the same distance to the left border of
the blocks from the second column.

78

An evaluation of δ̄qnt
LL relation on the set of outer and inner blocks of the boxes is presented in

Section 3.11.4.

3.8.2 Qualitative Distance

Qualitative expression of different values of distances gives both person and computer the
possibility to abstract from the concrete numbers and provides them with concepts which can
be used in spatial logical reasoning. For the qualitative distances, there are various levels of
granularity and corresponding sets of naming distances (linguistic term). For instance, the first
level of granularity distinguishes between “close” and “far.” These two relations divide the plane
in two regions centered around the reference object, where the outer region goes to infinity. In a
similar way, higher levels of granularity can be defined. For every level of granularity in isotropic
space, qualitative distance relations partition the physical space in circular regions of different
sizes [50, 120].

For the BGM, we leverage the fourth level of granularity with the terms R∗dist5 =
{very close, close, commensurate, far, very far} (see Section 4.4.2, page 115) with their natu-
ral order (e.g. very close ≺ close ≺ · · · ≺ very far) according to the system of qualitative values
presented in Definition 3.3 on page 64 (R∗dist5 stands for Rqlt). These relations are qualitative
representations of the quantitative distance between borders of blocks (see Definition 3.12 on
page 78). Based on the definition of the system of qualitative values, we define a function
qualitative distance between blocks as δ̊qlt : B × B → 2R

∗
dist5 , where B is a set of blocks on a

web page canvas; particularly, δ̊qlt(r, s) = νqlt(µ(̊δqnt(r, s))), where δ̊qnt(r, s) is a quantitative
distance between borders of blocks. ρi ∈ R∗dist5 has a property of symmetry, moreover, all the
relations except very close are irreflexive. Thus, qualitative distance relations convey a qualitative
characteristic of the quantitative data, where the connection between them is realized by the
membership functions.

3.9 Alignment Relations

Alignment is a significant supplement to topological, direction and distance relations. This type
of spatial relationships plays an important role in laying out objects in physical space [181],
documents [2, 129], electronic presentations [108], and graphical user interface (GUI) [144, 180].
Alignment brings out the structure into space of various objects. In the document layout, it can be
used to emphasize the border of elements. For instance, it can be used for the main textual content
which is distinguished by its left and right alignments and its central position on a document.
Alignment is also used for presenting various data structures such as a list, a tree, or a table.
According to the Gestalt laws [143,291], the use of alignment corresponds to the law of continuity:
oriented parts are integrated into a perceived whole if they are aligned with each other [151].

For the documents, alignment relation is based on the comparison of the projections of
geometric objects on abscissa and ordinate. There are two groups of alignment in respect
to the projections: horizontal and vertical. Regarding the horizontal alignment of a block
r relative to s, we single out relations such as “left aligned” (LA(r, s) or ζLA(r, s)), “right
aligned” (RA(r, s) or ζRA(r, s)), “centered vertically” (CV(r, s) or ζCV(r, s)), and “horizontally

79

not aligned” (HNA(r, s) or ζHNA(r, s)), which are jointly exhaustive for the intervals formed
by the vertical projection on abscissa. Regarding the vertical alignment, blocks can be “top
aligned” (TA(r, s) or ζTA(r, s)), “bottom aligned” (BA(r, s) or ζBA(r, s)), “centered horizon-
tally” (CH(r, s) or ζCH(r, s)), and “vertically not aligned” (VNA(r, s) or ζVNA(r, s)), which
are jointly exhaustive for the intervals formed by the horizontal projection on ordinate. Thus
there are 8 jointly exhaustive basic alignment relations Ralign8 = {LA(r, s),RA(r, s),CV(r, s),
HNA(r, s),TA(r, s),BA(r, s),CH(r, s),VNA(r, s)}. All the basic relations except HNA and
VNA are reflexive, transitive and symmetric. HNA and VNA are symmetric. There are more
general relations such as “horizontally aligned” HA(r, s), “vertically aligned” VA(r, s), “aligned”
A(r, s), and “not aligned” NA(r, s) defined in (3.12) which are symmetric; HA(r, s), VA(r, s),
and A(r, s) are also reflexive. A and NA are JEPD.

HA(r, s) ≡def LA(r, s) ∨ RA(r, s) ∨ CV(r, s),

VA(r, s) ≡def TA(r, s) ∨ BA(r, s) ∨ CH(r, s),

A(r, s) ≡def HA(r, s) ∨VA(r, s),

NA(r, s) ≡def HNA(r, s) ∧VNA(r, s).

(3.12)

All the basic alignment relations together with generalized relations can be ordered in the
form of a lattice presenting a subsumption hierarchy as it is shown in Figure 3.7. Every block can
have more than one basic alignment for every projection (e.g. LA(r, s) ∧RA(r, s)). Moreover,
the same spatial configuration of the projections can be expressed by different combinations of
basic relations, e.g. LA(r, s) ∧ RA(r, s) ↔ LA(r, s) ∧ CV(r, s) ↔ RA(r, s) ∧ CV(r, s). To
eliminate such cases, we introduce two groups of JEPD alignment relations: for vertical pro-
jections Rhalign5 = {LA∗(r, s),RA∗(r, s),LRA(r, s),CV∗(r, s),HNA(r, s)} defined in (3.13)
and horizontal projections Rvalign5 = {TA∗(r, s),BA∗(r, s),TBA(r, s),CH∗(r, s),VNA(r, s)}
defined in (3.14). The corresponding lattice is presented in Figure 3.8. Relations in Rhalign5 and
Rvalign5 except HNA(r, s) and VNA(r, s) are reflexive, symmetric, and transitive. HNA(r, s)
and VNA(r, s) are symmetric. Leveraging these groups of JEPD alignment relations defined
for the blocks’ projections, we introduce a set of 25 JEPD combined alignment relations:
R∗align25 = Rhalign5 ×Rvalign5.

LA∗(r, s) ≡def LA(r, s) ∧ ¬RA(r, s),

RA∗(r, s) ≡def RA(r, s) ∧ ¬LA(r, s),

LRA(r, s) ≡def LA(r, s) ∧ RA(r, s),

CV∗(r, s) ≡def CV(r, s) ∧ ¬LRA(r, s).

(3.13)

TA∗(r, s) ≡def TA(r, s) ∧ ¬BA(r, s),

BA∗(r, s) ≡def BA(r, s) ∧ ¬TA(r, s),

TBA(r, s) ≡def TA(r, s) ∧ BA(r, s),

CH∗(r, s) ≡def CH(r, s) ∧ ¬TBA(r, s).

(3.14)

The necessary constraint for utilizing R∗align25 is absence of uncertainty in the corresponding
qualitative model (see Section 3.2). In contrast to the basic alignment relations, R∗align25 with the
open world assumption (OWA) ensures a precise specification of the alignment relation between

80

Figure 3.7: A lattice defining the subsumption hierarchy based on the basic alignment relations
Ralign8

Figure 3.8: A lattice defining the subsumption hierarchy of the dyadic relations based on the
alignment relations Ralign10

the blocks. Thus there is always only one relation from Rhalign5 and Rvalign5 between any pair of
blocks.

An analysis of the alignment relations is presented in Section 3.11.5.

3.10 Interval Relations

In this section, we introduce interval relations (see Section 3.10.1) and express them by means of
fuzzy sets and fuzzy relations (see Section 3.10.2) to capture peculiarities of human perception
and errors in rendering a web page. Fuzzy interval relations together with centering relation
(see Section 3.10.3) are used to express relations in Two-Dimensional Interval Relations with
Centering (2DIRC) (see Section 3.10.4). 2DIRC enable us to provide a common framework for
expressing spatial relationships such as topological, direction, and alignment, that enables an
elimination of corresponding contradictions.

81

Figure 3.9: Distributive lattice of interval relations [15]

3.10.1 Main Concepts

In [7], Allen defines 13 binary interval relations RIR that play an important role in temporal [184]
and spatial reasoning [181]. We split the relations in two groups: 1) main, such as before ι<, meets
ιm, overlaps ιo, starts ιs, during ιd, finishes ιf, and equals ι=, and 2) inversions, such as after
ι>, met by ιm− , overlapped by ιo− , started by ιs− , contains ιd− , and finished by ιf− . Table 3.1
gives their detailed description. These relations are JEPD and form a distributive lattice 〈RIR,�〉
with a partial order � defined on it (see Figure 3.9) [15, 162]. The partial order corresponds to
appearance of the interval relations between two intervals during the movement of one relatively
to another from left to right, starting with relation ι<.

3.10.2 Fuzziness in Interval Relations

Qualitative information gives a possibility to apply automatic reasoning that tends to be infeasible
for a person if the amount of information is big. Thus, definition of qualitative information and its
properties should correspond to the peculiarities of human perception. One of these peculiarities
is inaccuracy which should be taken into account. Regarding the interval relations, a person
cannot definitely say in some cases whether two points are coincide with each other, and as a
result sometimes two different interval relations between intervals can be perceived as valid at
the same time (for instance, before and meet relations). Thus, we clarify the concept of equality
between endpoints of the intervals.

Setting the origin of coordinates into the necessary endpoint of the reference interval, we
specify an equality to the corresponding endpoint of the primary interval in terms of fuzzy sets (a
0-neighborhood) as follows.

Definition 3.15 (0-neighborhood). A 0-neighborhood E0, a fuzzy set of points in the one-
dimensional Euclidean space equal to 0, is a pair 〈x, µ0(x)|x ∈ R〉, where µ0 has the following
properties:

1. µ0 is a function of a Π-like shape, and min(µ0(x)) = 0, µ0(0) = 1;

2. x1 ≤ x2 ≤ 0→ µ0(x1) ≤ µ0(x2) and 0 ≤ x1 ≤ x2 → µ0(x1) ≥ µ0(x2).

82

Table 3.1: Interval relations RIR defined by endpoints according to Allen’s definition

Name Denotation Pictorial example
Equivalent
relations on
endpoints

before ι<(a, b)
a+ < b−

after ι>(b, a)

meets ιm(a, b)
a+ = b−

met by ιm−(b, a)

overlaps ιo(a, b) a− < b−∧
a+ > b−∧
a+ < b+overlapped by ιo−(b, a)

starts ιs(a, b) a− = b−∧
a+ < b+

started by ιs−(b, a)

during ιd(a, b) a− > b−∧
a+ < b+

contains ιd−(b, a)

finishes ιf(a, b) a− > b−∧
a− < b+∧
a+ = b+finished by ιf−(b, a)

equals ι=(a, b) a− = b−∧
a+ = b+

In the following definition, we specify a concept of system of equality relations between two
endpoints. This system requires the presence of two membership functions (µ−0 (x) and µ+0 (x)) of
the 0-neighborhoods (E−0 and E+

0 respectively) for the first and second endpoints of the interval.
Furthermore, the center ξ ∈ (0; 1) and the threshold values ε− ∈ [0; ξ) and ε+ ∈ [0; 1 − ξ),
which are used to map fuzzy equality relations to a crispy equality relation in terms of ternary
logic, should be provided (see Figure 3.10).

83

Figure 3.10: Some concepts of the system of equality relations between two endpoints

Definition 3.16. A system of equality relations between two endpoints of intervals is a triple
〈S, µ=, ν=〉. S = R × {+,−} refers to the set of endpoints; the first component determines
the set of coordinates, and the second component denotes the type of an interval’s endpoint
(“−” is the first, and “+” is the second endpoints); membership function µ= : S× S→ [0; 1]

defines a fuzzy equality relation between endpoints. µ=(s1, s2) = max
(
µ
π2(s1)
0 (π1(s2) −

π1(s1)), µ
π2(s2)
0 (π1(s1)− π1(s2))

)
, where π1(s1) and π1(s2) refer to the first component of s1

and s2 respectively, defining their coordinates, whereas π2(s1) and π2(s2) refer to the second
component of s1 and s2 respectively, defining the sign “−” or “+.”

Membership functions µ−0 (x) and µ+0 (x) belong to the corresponding 0-neighborhoods
E−0 = {〈x, µ−0 (x)|x ∈ R〉} and E+

0 = {〈x, µ+0 (x)|x ∈ R〉} of the first and second endpoints
respectively. µ−0 (x) and µ+0 (x) have a necessary property µ+0 (x) = µ−0 (−x), that ensures a
symmetry of the membership functions in respect to the geometric center of the interval.

ν= : [0, 1]→ {0, 1,#}, for the value µ=, determines an equality in terms of ternary logic,
where “0” is interpreted as false, “1” is true, and “#” is both.

ν=(x) =

0, if x < ξ − ε− ∧ ε− > 0 ∨ x ≤ ξ ∧ ε− = 0,

#, if (ξ − ε− ≤ x ≤ ξ + ε+ ∧ ε− > 0) ∨ (ξ < x ≤ ξ + ε+ ∧ ε− = 0),
1, if x > ξ + ε+,

where ξ ∈ (0; 1) defines the required center in the range of µ±0 (x) (thus, preferably ξ = 0.5),
and ε− ∈ [0; ξ) and ε+ ∈ [0; 1− ξ) are predefined threshold values.

ν= has the following properties:

1. There is a partial order defined on the domain of ν=: 0 ≺ # ≺ 1;

2. y1 ≤ y2 → ν=(y1) � ν=(y2), where y1, y2 ∈ [0; 1];

3. ∃x ∈ a[ν=(µ−0 (x)) = ν=(µ+0 (x)) = 0], this ensures a discernibility of endpoints.

84

Thus, the membership functions µ±0 (x1 − x2) defines a closeness of a point x1 to the
corresponding endpoint x2 of certain intervals. ν= gives a possibility to switch from the fuzzy
relation represented by µ= to the crisp relations.

Based on the fuzzy equality relation introduced in Definition 3.16, we specify the following
binary predicates:

xs ≺ yt ≡def xs < yt ∧ ν=
(
µ=(〈xs, s〉, 〈yt, t〉)

)
= 0,

xs � yt ≡def xs ≤ yt ∨ ν=
(
µ=(〈xs, s〉, 〈yt, t〉)

)
6= 0,

xs ≈ yt ≡def ν=
(
µ=(〈xs, s〉, 〈yt, t〉)

)
6= 0,

xs � yt ≡def yt ≺ xs,
xs � yt ≡def yt � xs,

(3.15)

where s, t = +,− and xs, yt ∈ R.
To take into account fuzzy equality relation which reflects the specificity of human perception,

we redefine interval relations by means of binary relations introduced in (3.15) as follows:

ι<(a, b) ≡def a+ ≺ b−

ι>(a, b) ≡def ι<(b, a)

ιm(a, b) ≡def a− ≺ b− ∧ a+ ≈ b−

ιm−(a, b) ≡def ιm(b, a)

ιo(a, b) ≡def a− ≺ b− ∧ a+ � b− ∧ a+ ≺ b+

ιo−(a, b) ≡def ιo(b, a)

ιs(a, b) ≡def a− ≈ b− ∧ a+ ≺ b+

ιs−(a, b) ≡def ιs(b, a)

ιd(a, b) ≡def a− � b− ∧ a+ ≺ b+

ιd−(a, b) ≡def ιd(b, a)

ιf(a, b) ≡def a− � b− ∧ a− ≺ b+ ∧ a+ ≈ b+

ιf−(a, b) ≡def ιf(b, a)

ι=(a, b) ≡def a− ≈ b− ∧ a+ ≈ b+

(3.16)

A definition of the interval relations will be equal to the Allen’s definition if we use

µ−0 (x) = µ+0 (x) =

{
0, if x 6= 0,
1, if x = 0.

Considering an equality relation between two endpoints as a containment relation within
some interval, we define

µ−0 (x) =

{
0, if x < σ− ∧ x > σ+,
1, if σ− ≤ x ≤ σ+, (3.17)

where σ− ≤ 0 corresponds to the outer part and σ+ ≥ 0 to the inner part of an interval.
This definition correlates with the definition of Thick Boundary Rectangle Relations (TBRR)
introduced in [2].

85

3.10.3 Centering Relation

Considering the peculiarities of the intervals, we introduce additional interval relation, a centering
relation ιc(a, b), which refers to ζCV(r, s) and ζCH(r, s) alignment relations for the blocks r and
s (see Section 3.9). ιc(a, b) has the following necessary properties:

∀a, b[ιc(a, b)→ ιd(a, b) ∨ ιd−(a, b) ∨ ι=(a, b)], (3.18)

∀a, b[ι=(a, b)→ ιc(a, b)]. (3.19)

For the intervals a and b, centering relation ιc(a, b) = νc
=(µc

0(|(a−+a+)/2−(b−+b+)/2|)),
where µc

0 : [0; +∞) → [0; 1] is a membership function of the 0-neighborhood of an interval’s
geometric center (see Definition 3.15 on page 82).

νc
= : [0, 1]→ {0, 1,#}, for the corresponding value µc

=, determines an equality in terms of
ternary logic (similar to Definition 3.16 on page 84), where “0” is interpreted as false, “1” is true,
and “#” is both.

νc
=(x) =

0, if x < ξc − εc− ∧ εc− > 0 ∨ x ≤ ξc ∧ εc− = 0,

#, if (ξc − εc− ≤ x ≤ ξc + εc+ ∧ εc− > 0) ∨ (ξc < x ≤ ξc + εc+ ∧ εc− = 0),
1, if x > ξc + εc+,

where ξc ∈ (0; 1) defines the required center in the range of µc
0, and εc− ∈ [0; ξc) and εc+ ∈

[0; 1− ξc) are predefined threshold values.
νc
= has the following properties:

1. There is a partial order defined on the domain of νc
=: 0 ≺ # ≺ 1;

2. y1 ≤ y2 → ν=(y1) � ν=(y2), where y1, y2 ∈ [0; 1];

3. ∀x
[(

0 ≺ νc
=(µc

0(x))
)
→
(
ν=(µ−0 (x)) = ν=(µ+0 (x)) = 0

)]
, this ensures a discernibility

of endpoints from the geometric center.

We denote the set of interval relations together with centering relations as RIRC:

RIRC = RIR ∪ {ιc}.

3.10.4 Two-Dimensional Interval Relations And Centering

Crisp Two-Dimensional Interval Relations (2DIR) (also known as block relations [16] or bidimen-
sional temporal relations [15]) between rectangular geometric objects are based on the Allen’s
interval relations [7] for the projections of the blocks on abscissa and ordinate. Crisp 2DIR
have 169 JEPD pairs of interval relations (see Figure 3.11). They are used in the automatic
document understanding [4, 288], reading order detection [2], and for the spatial reasoning [17].
In Figure 3.12, the reference block is depicted; vertical ζxk and horizontal ζyl straight lines define
the main qualitatively distinguishable locations for the corner points of a primary block. The
lines with even i (or j) are fixed whereas the lines with odd i (or j) can be drawn through any

86

Figure 3.11: Pictorial representation of Two-Dimensional Interval Relations (2DIR) and corre-
sponding Rectangular Cardinal Relations (RCR) [183]

point between neighboring even lines. Depending on the chosen pairs of projection lines ζxi and
ζyj for the primary block’s corner points, certain 2DIR can be set.

In this thesis, we define 2DIR as follows: R2IR = {〈ιi, ιj〉|ιi, ιj ∈ RIR}, taking into account
the fuzzy equality relation between endpoints of the blocks’ projections (see Definition 3.16 on
page 84). This allows uncertainty in the corresponding qualitative model where these relations are
defined (presence of more than one relation of the same type between objects, see Section 3.2),
that makes R2IR pairwise not disjoint in contrast to the crisp 2DIR.

87

Figure 3.12: Borderlines for the block’s corner points

A necessity of introducing fuzziness in the 2DIR is due to the peculiarities of both visual
information perception by humans and rendering by the web browser’s engine. For instance, in
some cases a person cannot give a definite answer regarding an existence of either alignment
relation between blocks without a consideration of quantitative information of their positions. On
the other hand, according to the Gestalt principles [143, 291], humans tend to pay more attention
on those features which correspond to the familiar spatial configuration, for example, be it table
or list. Thus, in case when the web author positions elements in a table-like or list-like structure,
making some slight errors in their quantitative spatial characteristics, the user has the tendency to
perceive certain qualitative features correctly. Moreover, the web browser’s rendering engine can
make some errors that should be taken into account during the analysis of a web page’s layout:
it can place CSS boxes regardless of the CSS specifications. For example, it happens that the
non-positioned inline-level elements from the normal flow of the same stacking context overlap
with each other (see Figure 3.13), which is not compliant with [260, Sec. 9.4.2]. Furthermore, an
inline-level element with borders defined can have the client rectangles overlapping with each
other (see Section 2.4.5).

Considering various spatial relations between blocks, we discovered the sufficiency of using
2DIR together with centering relations (introduced in Section 3.10.3) for expressing topological
(e.g. RRCC8, see Section 3.6), direction (e.g. R∗O-dir36, see Section 3.7), and alignment (e.g.
R∗align25, see Section 3.9) relations [73]. Thus, we introduce Two-Dimensional Interval Rela-
tions with Centering (2DIRC) R2IRC = {〈ιi, ιj〉|ιi, ιj ∈ RIRC} which also have the necessary
properties of fuzzy interval relations (see Section 3.10.2) and centering (see Section 3.10.3).

For all possible valid relations RRCC8, R∗O-dir36, and R∗align25 in case there is no un-
certainty, i.e. ∀xgr , yhs [ν=(µ=(〈xgr , g〉, 〈yhs , h〉)) 6= #], we have |RRCC8,O-dir36,align25| =
|RRCC8 × R∗O-dir36 × R∗align25| = 8 × 36 × 25 = 7200 various jointly exhaustive
combinations which are not pairwise disjoint. It is also worth mentioning that there
are invalid combinations, such as

〈
τEQUAL(r, s), γE(r, s), 〈ζLRA(r, s), ζTBA(r, s)〉

〉
or〈

τNTPP(r, s), γB(r, s), 〈 ζLA∗(r, s), ζCH∗(r, s)〉
〉
. In contrast, if there is no uncertainty, jointly

88

Figure 3.13: Example of overlapping between non-positioned inline-level elements from the
normal flow of the same stacking context in Firefox v.19.0.2, http://www.dbai.tuwien.ac.
at/staff/index.html

exhaustive 2DIRC contains 225 valid relations:

∣∣((RIR \ {ι=, ιd, ιd−})× {¬ιc} ∪ {ι=} × {ιc} ∪ {ιd, ιd−} × {ιc,¬ιc}
)2∣∣=

(10 + 1 + 4)2 = 225.

Relations in 2DIRC are able to express all valid triples in RRCC8,O-dir36,align25, that we prove
expressing RCC8 RRCC8 (3.20), O-directions RO-dir9 (3.21), P-directions RP-dir9 (3.22), and
alignment relations Ralign8 (3.23).

τEQLUAL(r, s) = ιx=(r, s) ∧ ιy=(r, s),

τEC(r, s) =
(
ιxm(r, s) ∨ ιxm(s, r)

)
∧ ¬ιy<(r, s) ∧ ¬ιy>(r, s)

∨
(
ιym(r, s) ∨ ιym(s, r)

)
∧ ¬ιx<(r, s) ∧ ¬ιx>(r, s),

τDC(r, s) = ιx<(r, s) ∨ ιx>(r, s) ∨ ιy<(r, s) ∨ ιy>(r, s),

τPO(r, s) =
(
ιxo (r, s) ∨ ιxo (s, r)

)
∧¬ιy<(r, s) ∧ ¬ιym(r, s) ∧ ¬ιym(s, r) ∧ ¬ιy>(r, s)

∨
(
ιyo(r, s) ∨ ιyo(s, r)

)
∧¬ιx<(r, s) ∧ ¬ιxm(r, s) ∧ ¬ιxm(s, r) ∧ ¬ιx>(r, s),

τTPP (r, s) =
(
ιxs (r, s) ∨ ιxf (r, s) ∨ ιx=(r, s)

)
∧
(
ιys (r, s) ∨ ιyd(r, s) ∨ ιyf (r, s)

)
∨
(
ιys (r, s) ∨ ιyf (r, s) ∨ ιy=(r, s)

)
∧
(
ιxs (r, s) ∨ ιxd (r, s) ∨ ιxf (r, s)

)
,

τNTPP (r, s) = ιxd (r, s) ∧ ιyd(r, s).

(3.20)

89

http://www.dbai.tuwien.ac.at/staff/index.html
http://www.dbai.tuwien.ac.at/staff/index.html

γN (r, s) =
(
ιxs (r, s) ∨ ιxd (r, s) ∨ ιxf (r, s) ∨ ιx=(r, s)

)
∧
(
ιy<(r, s) ∨ ιym(r, s) ∨ ιyo(r, s) ∨ ιyf (s, r) ∨ ιyd(s, r)

)
,

γNE(r, s) =
(
ιx<(s, r) ∨ ιxm(s, r) ∨ ιxo (s, r) ∨ ιxs (s, r) ∨ ιxd (s, r)

)
∧
(
ιy<(r, s) ∨ ιym(r, s) ∨ ιyo(r, s) ∨ ιyf (s, r) ∨ ιyd(s, r)

)
,

γE(r, s) =
(
ιx<(s, r) ∨ ιxm(s, r) ∨ ιxo (s, r) ∨ ιxs (s, r) ∨ ιxd (s, r)

)
∧
(
ιys (r, s) ∨ ιyd(r, s) ∨ ιyf (r, s) ∨ ιy=(r, s)

)
,

γSE(r, s) =
(
ιx<(s, r) ∨ ιxm(s, r) ∨ ιxo (s, r) ∨ ιxs (s, r) ∨ ιxd (s, r)

)
∧
(
ιy<(s, r) ∨ ιym(s, r) ∨ ιyo(s, r) ∨ ιys (s, r) ∨ ιyd(s, r)

)
,

γS(r, s) =
(
ιxs (r, s) ∨ ιxd (r, s) ∨ ιxf (r, s) ∨ ιx=(r, s)

)
∧
(
ιy<(s, r) ∨ ιym(s, r) ∨ ιyo(s, r) ∨ ιys (s, r) ∨ ιyd(s, r)

)
,

γSW (r, s) =
(
ιx<(r, s) ∨ ιxm(r, s) ∨ ιxo (r, s) ∨ ιxf (s, r) ∨ ιxd (s, r)

)
∧
(
ιy<(s, r) ∨ ιym(s, r) ∨ ιyo(s, r) ∨ ιys (s, r) ∨ ιyd(s, r)

)
,

γW (r, s) =
(
ιx<(r, s) ∨ ιxm(r, s) ∨ ιxo (r, s) ∨ ιxf (s, r) ∨ ιxd (s, r)

)
∧
(
ιys (r, s) ∨ ιyd(r, s) ∨ ιyf (r, s) ∨ ιy=(r, s)

)
,

γNW (r, s) =
(
ιx<(r, s) ∨ ιxm(r, s) ∨ ιxo (r, s) ∨ ιxf (s, r) ∨ ιxd (s, r)

)
∧
(
ιy<(r, s) ∨ ιym(r, s) ∨ ιyo(r, s) ∨ ιyf (s, r) ∨ ιyd(s, r)

)
,

γB(r, s) = ¬ιx<(r, s) ∧ ¬ιxm(r, s) ∧ ¬ιx<(s, r) ∧ ¬ιxm(s, r)

∧¬ιy<(r, s) ∧ ¬ιym(r, s) ∧ ¬ιy<(s, r) ∧ ¬ιym(s, r).

(3.21)

γ̃N (r, s) =
(
ιxs (r, s) ∨ ιxd (r, s) ∨ ιxf (r, s) ∨ ιx=(r, s)

)
∧
(
ιy<(r, s) ∨ ιym(r, s)

)
,

γ̃NE(r, s) =
(
ιx<(s, r) ∨ ιxm(s, r)

)
∧
(
ιy<(r, s) ∨ ιym(r, s)

)
,

γ̃E(r, s) =
(
ιx<(s, r) ∨ ιxm(s, r)

)
∧
(
ιys (r, s) ∨ ιyd(r, s) ∨ ιyf (r, s) ∨ ιy=(r, s)

)
,

γ̃SE(r, s) =
(
ιx<(s, r) ∨ ιxm(s, r)

)
∧
(
ιy<(s, r) ∨ ιym(s, r)

)
,

γ̃S(r, s) =
(
ιxs (r, s) ∨ ιxd (r, s) ∨ ιxf (r, s) ∨ ιx=(r, s)

)
∧
(
ιy<(s, r) ∨ ιym(s, r)

)
,

γ̃SW (r, s) =
(
ιx<(r, s) ∨ ιxm(r, s)

)
∧
(
ιy<(s, r) ∨ ιym(s, r)

)
,

γ̃W (r, s) =
(
ιx<(r, s) ∨ ιxm(r, s)

)
∧
(
ιys (r, s) ∨ ιyd(r, s) ∨ ιyf (r, s) ∨ ιy=(r, s)

)
,

γ̃NW (r, s) =
(
ιx<(r, s) ∨ ιxm(r, s)

)
∧
(
ιy<(r, s) ∨ ιym(r, s)

)
,

γ̃B(r, s) =
(
ιxs (r, s) ∨ ιxd (r, s) ∨ ιxf (r, s) ∨ ιx=(r, s)

)
∧
(
ιys (r, s) ∨ ιyd(r, s) ∨ ιyf (r, s) ∨ ιy=(r, s)

)
.

(3.22)

90

ζLA(r, s) = ιxs (r, s) ∨ ιxs (s, r) ∨ ιx=(r, s),

ζRA(r, s) = ιxf (r, s) ∨ ιxf (s, r) ∨ ιx=(r, s),

ζCV (r, s) = ιxc (r, s),

ζTA(r, s) = ιys (r, s) ∨ ιys (s, r) ∨ ιy=(r, s),

ζBA(r, s) = ιyf (r, s) ∨ ιyf (s, r) ∨ ιy=(r, s),

ζCH(r, s) = ιyc (r, s).

(3.23)

Presented 2DIRC allows us to take into account peculiarities of human perception and web
page engine as well as use it as a main framework for topological, direction and alignment relations
giving us the possibility to dramatically decrease the amount of various invalid combinations of
relations and different ways of expressing equal spatial configurations.

3.11 Analysis of the Spatial Relations and Visibility of CSS Boxes

In this section, we consider a statistical picture of spatial relations, such as topological (see
Section 3.6), direction (see Section 3.7), distance (see Section 3.8), and alignment (see Sec-
tion 3.9), between elements of web pages’ layouts [73]. We also investigate the relative amount of
visualized elements of the DOM tree (see Section 3.11.6) and relevant statistical characteristics.
The analysis was conducted over web pages from the WPPS-HTML-DS1 dataset.

For the WPPS-HTML-DS1 dataset, 650 RDF-based models that contains blocks (outer and
inner areas of the CSS boxes corresponding to visualized elements, see Figure 3.2 on page 67)
and coordinates of their extreme points were generated. Data was acquired from the Gecko
engine (version 1.9.2) with viewport size of 1024× 768 pixels. Java along with Jena [10] were
used to generate and maintain these experimental geometric models while the SPARQL query
language (version 1.1 [282]) was applied for querying the models and providing necessary data
for the analysis [100]. The list of SPARQL queries is presented in Appendix A.

3.11.1 WPPS-HTML-DS1 Dataset

A WPPS-HTML-DS12 [72] dataset was built to conduct the analysis of spatial relationships
between geometric objects of web pages (in particular, outer and inner blocks of CSS boxes).
WPPS-HTML-DS1 contains web pages of CNN and Amazon websites, some subset of the RISE3

corpus which is used for comparing and testing information extraction systems, and a collection
of web forums provided by Big Boards4.

3.11.2 RCC8

Topological relations provide us with a conceptual description of the spatial configuration of
blocks. For instance, location of the block inside another block (PP) means that the former is a

2http://www.dbai.tuwien.ac.at/staff/fayzrakh/wpps/datasets/WPPS-HTML-DS1.tar.gz
3http://www.isi.edu/info-agents/RISE/repository.html
4Web pages of web forums were collected by Wolfgang Holzinger from

http://rankings.big-boards.com/?p=all.

91

http://www.dbai.tuwien.ac.at/staff/fayzrakh/wpps/datasets/WPPS-HTML-DS1.tar.gz
http://www.isi.edu/info-agents/RISE/repository.html
http://rankings.big-boards.com/?p=all

Figure 3.14: RCC8 relations. The ordinate represents average quantity of relations (without
symmetric counterparts) of particular type from the set RCC8 defined on web pages from the
WPPS-HTML-DS1 dataset, and 95% confidence interval.

part of the latter; if two blocks are externally connected (EC), then an associative relation can be
defined between them, e.g. relationship between adjacent cells in a table or between adjacent
items in a list.

RCC8 relations are widely used for the connected regions and provide a small set of quite
expressive mereotopological relations. In this analysis we consider RCC8 relations, such as DC,
EC, PO, TPP,NTPP, and EQUAL to complement Section 3.6.

Evaluation 1. We consider the main RCC8 relations, such as DC, EC, PO, TPP, NTPP,
and EQUAL, between outer blocks of visible CSS boxes (boxes with a nonzero area from the
visible parts of page canvases). Symmetric counterparts were omitted, for instance DC(s, r) for
DC(r, s), EQUAL(s, r) for EQUAL(r, s). The result of the analysis of the RCC8 topological
relations between the blocks from the set of web pages of the WPPS-HTML-DS1 dataset is
depicted in Figure 3.14. SPARQL queries used for the analysis can be found in Section A.1.

As we can see, DC relation is significantly predominant (92.66%), giving reason for using
additional relations, such as distance and direction, to specify relative position of remote blocks
more precisely. NTPP is the second relation by the frequency of appearance (3.60%). For
qualifying a relative position of the blocks with NTPP relation, notions such as distance between
blocks’ borders and centering can be utilized. The former is actively used for modeling a
segments’ layout of presentations [108]. Presence of TPP relation (1.93%) provides a clue about
the existence of alignment between contained and containing blocks, which is a motivation for
using the alignment relations supplementary to specify coincident borders. There are 0.87% pairs
of blocks which are in equality relation EQUAL with each other. At least one of the blocks in
the pair is invisible. This fact gives a possibility for reducing the complexity of the model of
web page layout by removing such invisible objects. Blocks with relations TPP and NTPP also

92

Figure 3.15: Correspondence between number of elements and relative amount of DR relations
for web pages from the WPPS-HTML-DS1 dataset and randomly generated trees that serve as a
model of a randomly generated web page

can be canceled by the corresponding containing block if it was drawn latter [260, Sec. 9.9]. A
relative position of the blocks which are in EC relation (0, 72%) can be qualified by the means
of direction relation to express the border of contact. Some pairs of blocks are in PO relation
(0.23%). Therefore, traditional approaches of document segmentation (e.g. XY-cut [106,176,182]
and VIPS [40, 41]) cannot be leveraged if overlapped objects should be considered as separate
objects. A relative position of the blocks which are in PO relation can be specified with distance
relation between their borders, combination of distance and direction, or by the ratio of the
intersection area to the area of the intersecting block.

Evaluation 2. This experiment gives us an intuition about average difference between authored
web page and randomly generated web page. In this evaluation, we analyzed a relative amount of
DR relations (without symmetric counterparts) between visible outer blocks of web pages from
the WPPS-HTML-DS1 dataset and randomly generated trees where a relationship between child
and parent elements was considered as P. These trees model randomly generated web pages and
model relations such as P and DR. Thus, these models neglect PO relations that however do not
affect the results of the analysis since we are only interested in DR and O relations.

The result of the analysis is illustrated in Figure 3.15. Polynomial approximation with inverse
third order represents averaged functional dependency between number of visualized blocks
and relative quantity of DR relations based on the data from the WPPS-HTML-DS1 dataset.

93

Figure 3.16: Quantitative direction relations. Averaged quantity of directions and 95% confidence
within the interval [−3◦; 177◦) split into groups of the length 6◦ for the web pages from the
WPPS-HTML-DS1 dataset

Experimental standard represents an average relative quantity of elements with DR relation in
the random trees. For every number of nodes from interval [2, 3500] 100 generated tree were
considered. As we can see, almost all values corresponding to the dataset are below the computed
standard that tells us that web authors and authoring tools tend to nest elements that makes
segmenting tree more narrow and deeper than average randomly generated tree with the same
amount of nodes.

3.11.3 Quantitative Direction

Evaluation. For the quantitative direction relations defined in Section 3.7, we carried an experi-
ment. For the web pages of the WPPS-HTML-DS1 dataset, we computed quantitative directions
between outer blocks which are positioned at a distance δ̊qnt not exceeding 50px from each other.
Moreover, we defined 30 groups of quantitative directions within the interval [−3◦; 177◦), where
every group corresponds to the interval of the length 6◦. The aggregated data is depicted in
Figure 3.16. A SPARQL query used for aggregating specified groups of directions is presented in
Section A.2. As was expected most of the directions are either horizontal or vertical. It is due to
the fact that most of the web pages follows Manhattan [110] or near-Manhattan layout [116].

This evaluation practically confirms the importance of applying projection-based method [89]
with cardinal directions introduced in Section 3.7.

94

Figure 3.17: Quantitative distance relations. Quantity of various distances between left borders
of the blocks for CNN web page http://edition.cnn.com/ from the WPPS-HTML-DS1
dataset

3.11.4 Quantitative Distance

Considering the quantitative directions between blocks (see Section 3.8), one can find out various
regularities which reflect peculiarities of the web page’s layout (some values of distances occur
more often). These peculiarities are associated with the presence of various alignments between
blocks that is necessary, for instance, for making multicolumn layout, tables and lists.

Evaluation. To confirm an existence of regularities in distances between blocks, we consider
CNN web page (http://edition.cnn.com/) and positive quantitative distances between
left borders both of outer and inner blocks (see Figure 3.17). For the sequence of number of
repetitions of various distances between left borders with ascending order, the ninth decile 141.25
times more than the first. This supports the fact that some distances occur much more often then
the other. A distance of 7 px from the ninth decile appears 45 924 times and corresponds to the
distance between title of the category and list of news titles. The most frequent is distance 250 px,
which is met 71 908 times. It corresponds to the distance between left borders of elements of

95

http://edition.cnn.com/
http://edition.cnn.com/

Figure 3.18: Alignment relations. The ordinate represents average quantity of the various
alignment relations (without symmetric counterparts) defined on web pages from the WPPS-
HTML-DS1 dataset, and 95% confidence interval.

different columns in the multi-column layout of the CNN web page.
Section A.3 presents a SPARQL query used for computing the aggregated values illustrated

in Figure 3.17.

3.11.5 Alignment relations

Alignment relations described in Section 3.9 play an important role in web page visual formatting.
They are also an important attribute of Manhattan layout [110].

Evaluation. In this experiment, we consider an existence of various alignment relations
between elements on a web page canvas. The SPARQL queries which were used for querying the
experimental geometric model are presented in Section A.4. As was discovered (see Figure 3.18),
more than 60% of blocks are aligned. The left alignment relations (LA = 25.07%) occur more
often than any other relations; this is due to the fact that most of the web pages in the WPPS-
HTML-DS1 dataset are with languages written from left to right. Horizontal alignment exceeds
vertical alignment which is related to the vertical orientation of web pages where enumeration
from top to bottom dominates over horizontal enumeration. Among the vertical alignment, all
relations occur almost similarly often (4.5%− 4.81%). It is due to the fact that very often blocks
are aligned on their top and bottom borders at the same time.

Predominance of alignment relationships reflect an existence of a common practice to follow
Manhattan or near-Manhattan layout in web page authoring.

3.11.6 CSS Box Visibility

We define the following concepts:

96

• A visible CSS box is a CSS box, which has nonzero area, computed CSS properties
display6=none and visibility=visible, and overlaps with the first quadrant of the
relevant page canvas (see Section 3.3).

• An invisible CSS box is a CSS box, which has computed CSS properties display6=none

and visibility=visible and does not overlap with the first quadrant of the relevant
page canvas or has a zero area.

• A nonempty text node is a text node of the DOM tree, which is not empty and is not
presented by only whitespace symbols.

• A visible nonempty text node is a nonempty text node which overlaps with the first
quadrant of the relevant page canvas and its nesting element node is a visible CSS box.

• An invisible nonempty text node is a nonempty text node which does not overlap with the
first quadrant of the relevant page canvas and its nesting element node is a visible CSS box.

We distinguish three types of DOM elements by their visibility from the viewpoint of the
CSSOM:

1. Visible visualized elements5 are visible CSS boxes and visible nonempty text nodes.

2. Invisible visualized elements are invisible CSS boxes and invisible nonempty text nodes.

3. Unvisualized elements are element nodes and nonempty text nodes which are not visible
visualized elements and not invisible visualized elements.

Visible visualized elements are the most important elements since they can be perceived by the
user.

Evaluation. To evaluate the relation between three types of DOM elements, we considered
web pages from the WPPS-HTML-DS1 dataset [72]. The results are depicted in Figures 3.19
and 3.20. As was discovered, among all DOM nodes of the three types presented, 84.15% are
visible visualized elements, 9.31% are invisible visualized elements, and 6.54% are unvisualized
elements. Therefore, identification and elimination of invisible visualized and unvisualized
elements can reduce the amount of objects in the relevant model (i.e. BGM, see Section 4.4.2) in
average by 15.85%.

Furthermore, the following statistical characteristics of visible visualized elements in the
WPPS-HTML-DS1 dataset were computed: mean 1105.01, standard deviation 1177.87, maxi-
mum value 16631, minimum value 2, median 807, first decile 193, ninth decile 2444.8.

3.12 Discussion

In this chapter, we provided an exhaustive analysis of web pages formatting, presenting concepts
such as qualitative and quantitative model, introducing a geometric object and its attributes,

5We do not single out visualized elements which can be hidden by another element which was rendered later.

97

Figure 3.19: Relation between visualized and whole elements of web pages from the WPPS-
HTML-DS1 dataset [72]

Figure 3.20: Average amount of visible and invisible web page elements from the WPPS-HTML-
DS1 dataset [72]

98

conducting analysis of their spatial relations. Definitions given in this chapter underlie the Block-
based Geometric Model (BGM) (see Section 4.4.2) and considered in the process of building the
Physical Model (PM) of a web page (see Chapter 5).

The main idea of this chapter is tackling a problem with peculiarities of human percep-
tion and web browser engine by means of fuzziness which relate quantitative data to the
qualitative information. A Two-Dimensional Interval Relations with Centering (2DIRC) in-
troduced in this chapter enable us to unite relationships such as topological, direction and
alignment under one framework. This allows us to eliminate contradictory combinations such
as
〈
τEQUAL(r, s), γE(r, s), 〈ζLRA(r, s), ζTBA(r, s)〉

〉
. If the qualitative model forbids an uncer-

tainty, all triples of relations number of combinations of relations RRCC8, R∗O-dir36, and R∗align25
equals 7200, whereas 2DIRC contains 225 relations which are able to express all the valid com-
binations |RRCC8 ×R∗O-dir36 ×R∗align25|. An evaluation presented in Section 3.11 demonstrates
various statistical characteristics regarding their presence on various web page canvas.

99

CHAPTER 4
The Unified Ontological Model of

a Web Page

A new form of Web content that is meaningful to
computers will unleash a revolution of new
possibilities.

— Tim Berners-Lee, The Semantic Web, 2001

This chapter is dedicated to the development of the Unified Ontological Model (UOM) [80]
whose purpose is to represent a web page in a form convenient for automatic processing (i.e. web
page understanding and web information extraction) and seamless integration with technologies
of the Semantic Web. The UOM underlies the Web Page Processing System (WPPS) introduced
in Chapter 5 and intended for the development of web page processing methods. It is also used in
Chapter 6 for building the Multi-Axial Navigation Model (MANM) to provide effective access to
web page content for blind users. In this chapter, we first consider the process of web authoring
and reading web pages by the sighted user (see Section 4.1) to demonstrate the importance of
visual representation in the understanding of web pages. Such representation is the main modeled
object in this thesis. As was discussed in Section 2.4.8, methods based on visual representation are
more robust and effective. In Section 4.2, we represent the UOM as a conjunction of the Physical
Model (PM) (see Section 4.4) and the Logical Model (LM) (see Section 4.5). It is modeled by
means of OWL 2 DL (with RDF-based semantics [281]), and serialized using RDF/XML syntax;
some inference rules are additionally applied (e.g. for irreflexive transitivity, see Section 4.3). We
focus on modeling a web page’s layout that can be realized by the Block-based Geometric Model
(BGM), which is a sub-model of the PM. The BGM is compliant with the concepts introduced in
Chapter 3, as it enables an analysis of various spatial configurations of web page elements. In
Section 4.3, we introduce the main properties of relations in ontological models while Section 4.6
concludes the chapter.

101

Figure 4.1: Web authoring and reading processes: author’s and user’s viewpoints

4.1 Web Page Authoring and Visual Representation

Web pages are oriented on sighted users (X/HTML was designed as a visual formatting language).
Thus, web pages’ visual representation along with the textual content carry essential information
about their logical structure and functional roles of elements [111]. To provide access to a web
page’s content for blind users, we need to analyze processes of authoring and reading web pages
by sighted users. These processes are in some sense inverse: If the task of the web page author
is to represent all necessary information on a web page’s canvas, reflecting functional roles and
semantic relationships by means of graphical elements (various shapes, colors, relative position,
size, etc.), then the task of the user is to analyze this representation in order to obtain interesting
information.

The web authoring process can be represented by the following stages (see Figure 4.1):
1. Modeling: According to her aim, the author forms a mental model of what she wants to

place on a web page together with the main concepts, features, and relationships between them.
2. Designing: At this stage, the author projects the mental model on a web page’s canvas. The

model is reflected by the design patters chosen including page formatting, color palette, and font
styles. Some web objects can have conventional representations1, be it web forum post, navigation
menu, or flight search form. This fact is leveraged in different works focused on challenges within
the field of Web Page Understanding (WPU), for example, [91, 189, 305] (see also Sections 2.3.2,
2.4.6, and 2.4.7), and in the recent works of the author of this thesis: [121, 145]. Some web page
objects can also be mapped into particular data structures and have corresponding representations,
such as a table or tree (e.g., hierarchy of sections and subsections in the news article). Peculiarities
of information visualization and its perception are studied in Gestalt theory [291] in detail.

1Examples of design patterns can be found at http://www.welie.com and http://patterntap.com.

102

http://www.welie.com
http://patterntap.com

3. Coding: It is a realization of the designed web page by means of X/HTML, CSS, JavaScript
and other web languages and web technologies (see Sections 2.4.1 and 2.4.2). Various web
authoring tools can be used at this stage (e.g. Dreamweaver, Amaya, HTML-Kit). In contrast to
the visual representation, source code has incomparably more various way of representing the
same information (see Section 2.4.8). For example, a table can be encoded using HTML tags
such as TABLE, TR, TD, or only by DIV tags [150].

The process of reading a web page by the sighted user can be represented as follows:
1. Rendering: It is the visualization of a web page performed by the web browser according

to the URL specified (by the user). The web browser engine visualizes a web page according to
its source code provided in the coding phase.

2. Scanning: It includes navigating, reading, scrolling and interacting with the web page
leveraging visual cues.

3. Web page understanding: It is a mental process of building the mental model adequately
to the scanned web page. It is performed jointly with the scanning procedure and involves the
analysis of a web page layout, spatial configuration of a web page’s objects, color, font, and other
visual characteristics engaged in the designing phase. A mental model of a user can include an
understanding of a web page’s logical structure, its web objects (e.g. navigation menu, main
content, article, list of products) and textual content. The model should be coherent with the
mental model of the web author. It is worth mentioning the vision of a web page publication as a
communication process from the author to the user presented in [150].

The spatial configuration of the objects on a web page’s canvas and their spatial expansion
play an important role in the process of web page understanding. For instance, a horizontal
navigation menu is very likely to be presented as a horizontally oriented list of textual elements
which are also links on the top of a web page’s canvas, and as such, this is how the navigation
menu can be identified. There are different types of spatial relationships which form various
spatial configurations perceived by the user and recognized as web objects: topology (“overlaps,”
“part of,” “externally connected with;” see Section 3.6), direction (see Section 3.7), relative
distance (see Section 3.8), and alignment (see Section 3.9). For example, alignment is used
to represent data structures such as lists and tables, to make multicolumn layout, and mold a
group of elements, such as vertical list of radio buttons related to the same group of controls.
Furthermore, features of web page elements may also influence their perception as a group. For
example, elements with the same color or font type may be perceived as a group [291].

In contrast to the sighted user, the blind user cannot reap the benefits of the visual representa-
tion and has to use assistive technology to get access to the web page content. Due to the fact
that common screen reading technologies (e.g., JAWS, NVDA, Windows-Eyes) do not take into
account peculiarities of visual characteristics and do not apply analysis on the visual level, blind
users encounter difficulty in navigating and understanding the web pages [21] (see Section 2.2.3).
Thus, their mental model is often is not compliant with the mental model both of the author and
sighted user. This issue is attentively studied in Chapter 6.

In this chapter, by modeling web page visual representation, we mainly focus on aspects such
as web page formatting (layout) and functional roles of elements established by the DOM and
CSSOM (e.g., button, link, and table). Once again we shall note that an enhancement of a web
page’s accessibility is considered in this work from the viewpoint of WPU and Web Information

103

Extraction (WIE).

4.2 Overview of the Unified Ontological Model for the Web Page
Processing

As was discussed in Section 2.4.8, the source code of the web pages and DOM trees are not enough
for developing effective methods for web page understanding and web information extraction.
Furthermore, these forms of web page representation do not carry substantial information that
can be perceived and analyzed by the user. In addition, the conceptual gap between the source
code and visual representation is getting even bigger [190] due to the new technologies (e.g.
AJAX, Google Web Toolkit, ASP.NET), and new web authoring techniques supported by the
web authoring tools (e.g. Dreamweaver, Amaya, HTML-Kit) that have emerged. The need for a
thorough analysis of rendered web pages, their layout and visual characteristics for developing
more effective and robust methods is highlighted by different researchers [6, 189, 306]. However,
there is no model of the rendered web pages suitable for WIE and WPU. Indeed, there are three
main groups of standards proposed by W3C for web page representation: 1) source code, specified
by X/HTML, 2) DOM tree, which is built based on the source code and JavaScript applied, and
3) CSS, which defines rules for visualizing DOM elements (CSS boxes) on a web page’s canvas.
CSS does not describe the visual appearance of a web page itself, but rather defines the rules
that influence the rendering process. Moreover, current web pages do not provide semantics of
the content understandable by computers, which is an essential issue in the development of the
Semantic Web and providing an accessible content for both humans and computers.

The goal of developing the Unified Ontological Model (UOM) is to provide visual represen-
tation and content semantics in a form convenient for the automatic processing of web pages.
Thus, the UOM’s purpose is to make web pages accessible and understandable for computers.
The UOM is built upon so called Gestalt Ontology (see Figure 4.2) for web pages, proposed by
W. Holzinger and B. Krüpl-Sypien in 2009 [127]. The Gestalt Ontology is intended for applying
the concepts and features as well as principles of visual perception introduced in the Gestalt
theory [143, 291] for WIE. The model is also briefly mentioned in [82, 151]. The main concepts
of the Gestalt Ontology are ding (object, entity), which refers to all perceivable elements and
features on a web page (be it image, text, or action, such as page load), and principle of figure and
ground, which enables it to make a distinction between elements of the foreground (e.g. text, web
form elements, and pop-up window) and elements of the background (e.g. background image and
background of the CSS boxes). Gestalt Ontology distinguishes some web form elements, enables
specification of the size and the absolute quantitative position of dings as well as alignment and
direction relationships between adjacent dings. N. Prangnawarat [197] used this ontology in the
analysis of functional elements of the grocery web sites, making the latter more accessible for
blind users.

The UOM is a formalization of the web page conceptualization (i.e., web page conceptual
model2), suitable for automatic processing. Figure 4.3 illustrates current generic conceptual

2The conceptual model as a sequence of layers of web page representation and understanding is mentioned
in [151] for the first time.

104

Ding

Image

Pageload

Action

Select
FormElement

Popup

Shape

LineBox

Borderline

TextFont

Colour

hasFont

Size

Position

neighbor
Of

northOf

southOf

westOf

eastOf

above

below

overlaps

owl:inverseOf

owl:inverseOf

owl:inverseOf

Figure

Gestalt

aligned
With

leftAligned
With

rightAligned
With

topAligned
With

bottomAligned
With

horizontalCenter
AlignedWith

verticalCenter
AlignedWith

TextInput

SubmitButton

RadioButton

Checkbox

hasColour

hasPosition

hasShape

hasSize

hasAction

z

y
x

width

height

fontCode

colourCode

stringValue

xsd:string

xsd:string

xsd:string

xsd:float

xsd:float

xsd:float

xsd:float

xsd:float

LeftBorder RightBorder

@prefix : <http://www.dbai.at/Gestalt#>

rdfs:Class rdfs:Property rdfs:subClassOf

rdfs:subPropertyOf

rdf:type

owl:Symmetric
Property

rdfs:Datatype

rdfs:range rdfs:domain

owl:Functional
Property

Figure 4.2: Main concepts and features of the Gestalt Ontology for web pages [127]

105

Figure 4.3: Layered conceptual model of the web page

model of the web page. We represent web page conceptual model consisting of nine abstraction
layers, where every layer has its intention and can be used for specific tasks:

1. Source code layer: This layer is presented by the HTML, XHTML, or XML source code
in conjunction with JavaScript code, CSS style sheets, and additional objects such as Java applets,
Flash, Silverlight applications, etc. The source code is suitable for transferring in the Web and
standardized by the W3C. There are methods which work on this level, such as parsers, textual
web browsers, and WIE tools, mainly based on the regular expressions (see Sections 2.4.2 and
2.4.3).

2. Web page rendering layer: This layer consists of the DOM tree generated by the web
browser engine, with CSS rules and JavaScript code applied. This layer refers to the web page
visualized by the web browser. The existing methods which work on this level make use of DOM
tree and computed CSS attributes to localize the visualized DOM elements (see Sections 2.4.4
and 2.4.6). Most of the existing wrappers operate on this level by mainly leveraging XPath.

3. Geometric Layer: This is the result of an analysis of the web page layout and, in particular,
spatial characteristics of the DOM elements visualized by the web browser engine. This layer
describes a geometry of the web page layout expressing information mainly in a qualitative form
(see Section 2.4.7). It plays an important role in the analysis of the spatial configurations of
the web page and detecting the objects corresponding to particular spatial pattern. This layer
also enables the application of methods from Document Understanding field, such as document
segmentation and table recognition, to a certain extent.

4. Interface Layer: This layer provides information regarding the functional role of the
elements on a web page, defining functionality of the graphical user interface (GUI). The elements

106

are web forms elements, such as buttons, text fields, selection lists, check boxes, and radio buttons,
as well as links, images, and HTML5 elements, such as article, section, canvas, and data.

5. Gestalt layer: This is intended for reflecting the process of human visual perception
according to Gestalt theory [143, 291]. This layer allows the possibility to investigate such a
process and its use in the problem of web page understanding. A Gestalt layer is based on the
geometric and interface layers also taking into account different visual features. The ongoing
development of the Gestalt Ontology is primarily oriented on this layer.

6. Data structure layer: It uses data structures to model various logical objects on a web
page. For instance, a navigation menu can be represented as a list or tree and article with sections
and subsections can be represented as a tree while data visually arranged in the from of a table
can be mapped into their logical counterpart, i.e. a table.

7. Layer of web specific objects: Web specific objects correspond to those which are
commonly used on web pages regardless of their genre, e.g. navigation menu, header, footer, and
main content.

8. Layer of domain specific objects: Domain specific objects refer to a particular genre
of a web page. For example, for the web forum genre, these are forum thread, topic, post, and
reply. A news web page can have a news article with its title, sections, and comments. This layer
represents a set of domain specific ontologies which can be used to model web pages of a certain
genre.

9. Layer of textual content semantics: This layer is dedicated to representing meaning of
the textual content, its linguistic characteristics and logical (semantic) structure. The layer is
formed as the result of applying techniques from the field of Natural Language Processing (NLP).

We call the first two layers technical layers (see Figure 4.3), as they represent a web page
in forms suitable for transferring through the Web and refer to the inner model of the web page
rendered by the web browser engine. Most of the languages and models that correspond to these
layers are standardized by W3C. Layers 3–5 are visual layers and reflect information acquired
due to the analysis of the rendered state of the web page. The analysis of design patters, spatial
configurations, and other visually perceivable features (Gestalt concepts) can be performed on
these layers. A variety of existing methods from Document Understanding field can be naturally
or with certain adaptation applied for these layers. We name layers 2–4 as physical layers; they
possess basic information regarding geometric characteristics and interface elements as well
as the DOM and the CSSOM. Layers 6–9 are logical layers and reflect logical structure and
semantics of the web page. They are a result of information extraction or web page understanding
together with linguistic analysis of the textual content. Layers 6–8 represent the structural logical
model of the web page. This structural logical model is closely linked with layout, the functional
role of interface elements, and their visual features. We associate structural layers with the result
of pattern identification. Layer 9 represents semantics of the textual content, which is formed
due to the application of methods from the field of NLP. While each layer addresses a different
level of abstraction, all of them serve the same purpose in the spirit of the Semantic Web: a
more precise and machine-understandable semantic description of a web page. As mentioned
in Section 6.2, this conceptualization is leveraged for building the MANM that provides an
accessible representation for blind users.

107

In this work, we formalize the conceptualizations of layers 2–4 and 6 and represent them
in the form of the UOM. Thus, we primarily consider the semantics of rendered web pages,
established by its layout, structural characteristics of the visualized elements, and their functional
roles as well as DOM trees.

Definition 4.1 (Unified Ontological Model). A Unified Ontological Model (UOM) Y is a meta-
model of web pages, it consists of the Physical Model (PM) P (see Section 4.4) and the Logical
Model (LM) L (see Section 4.5): Y = 〈P,L〉.

Thus, the domain ontology UOM provides the necessary modeling primitives for reflecting
physical and logical aspects of web pages. The UOM can be seen as a metamodel for modeling
web pages for automatic processing.

Definition 4.2 (Physical Model). A Physical Model (PM) P is a set of domain ontologies
which correspond to the physical layers of the conceptual representation of the web page; it
is a conjunction of the Extended DOM D (or DOM*; see Section 4.4.1), corresponding to
the web page rendering layer, the Block-based Geometric Model (BGM) G (see Section 4.4.2),
corresponding to the geometric layer, and the Interface Model I (see Section 4.4.3) of the
interface layer: P = 〈D,G, I〉.

Definition 4.3 (Logical Model). A Logical Model (LM) is a set of domain ontologies which
model certain aspects of logical characteristics of the web page, such as data structures, web
specific and domain specific objects, reflecting its layout and functionality, as well as semantics
of the textual content (see Section 4.5). The LM corresponds to the layers 6–9.

Regardless of the definition given, in this thesis, we only formalize data structure layer and
consider other logical layers as external ontologies which can be utilized and integrated into the
UOM if necessary. Thus, the LM is used in conjunction with PM as an annotation of certain
objects of the PM and serves as an interpretation of the physical objects. The understanding of the
ontology is compliant with Definition 2.1 on page 48. For modeling the UOM, we use OWL 2 DL
(with RDF-based semantics [281]), which provides us with necessary expressive power.

4.3 Properties of Relations

Ontological relations defined on the set of individuals (object properties in OWL, see Section 2.6)
can possess different properties.

1. Being defined on the set X a relation R ⊆ X ×X can have properties of the following
types:

• reflexive ∀x ∈ X[ρ(x, x)].

• irreflexive ∀x ∈ X[¬ρ(x, x)].

• symmetric ∀x, y ∈ X[ρ(x, y)→ ρ(y, x)].

• antisymmetric ∀x, y ∈ X[ρ(x, y) ∧ x 6= y → ¬ρ(y, x)]

108

Figure 4.4: Ontology files of the PM [80]

• asymmetric ∀x, y ∈ X[ρ(x, y)→ ¬ρ(y, x)]; this property is stronger than antisymmetry.

• transitive ∀x, y, z ∈ X[ρ(x, y) ∧ ρ(y, z)→ ρ(y, z)].

• intransitive ¬∀x, y, z ∈ X[ρ(x, y) ∧ ρ(y, z)→ ρ(y, z)].

• antitransitive ∀x, y, z ∈ X[ρ(x, y) ∧ ρ(y, z) → ¬ρ(y, z)]; this property is stronger than
intransitivity.

Additionally, we introduce irreflexive transitivity which is defined as ∀x, y, z ∈ X[ρ(x, y) ∧
ρ(y, z) ∧ x 6= z → ρ(y, z)].

2. Being defined on the distinct sets X and Y (X 6= Y) a relation (correspondence) R ⊆
X × Y can have properties of the following types:

• functional ∀x ∈ X, y, z ∈ Y [ρ(x, y) ∧ ρ(x, z)→ y = z.

• injective (inverse functional) ∀x, z ∈ X, y ∈ Y [ρ(x, y) ∧ ρ(z, y)→ x = z.

For object properties, assuming an incompleteness in the ontology, we do not consider
relations’ properties such as total and correspondences’ totality properties, such as left-total and
surjective (right-total).

4.4 The Physical Model of a Web Page

The Physical Model (PM) P (see Definition 4.2 on page 108) is an ontological model which
corresponds to the physical layers of the web page’s conceptualization introduced in Section 4.2
and consists of the Block-based Geometric Model (BGM) (see Section 4.4.2), Interface Model
(see Section 4.4.3) and Extended DOM (see Section 4.4.1). Files with schemata of the sub-
models of the PM and their dependencies are depicted in Figure 4.4. Thus, the BGM is
mainly represented by struct-block-geometric-model.owl, qnt-block-model.owl,
qlt-block-model.owl, and block.owl. The Interface Model is mainly based on
interface-model.owl, and the Extended DOM is defined in dom.owl. An instance of
the PM is a result of the analysis of a web page’s DOM trees and its CSS Object Models (CS-
SOMs) (see Section 5.1) which correspond to the technical layers of the web page’s conceptual
model.

109

The PM is realized in OWL 2 DL for the seamless integration with the Semantic Web and
serialized by means of RDF/XML syntax [277]. Also, it is important to note that OWL 2 has
some restrictions, for instance, it is only possible to set constraints for the object properties such
as functional, inverse functional (injective), transitive, symmetric, asymmetric, reflexive, and
irreflexive (see Section 4.3). Furthermore, transitivity cannot be used together with asymmetry
and irreflexivity, and it is forbidden to define a transitivity together with disjointness between
properties. The PM is optimized for needs of the web page processing, and due to this fact we
distinguish between intrinsic properties («I»), which the relation naturally has and properties
introduced in the ontology («O»). For instance, we omit the reflexivity, and use irreflexive
transitivity in stead of transitivity to avoid reflexivity in the ontology. The irreflexive transitivity
is realized by applying inference rule («R»). Due to the fact that the information necessary for
particular tasks should be generated, we also try to avoid use of disjointness and cardinality in
the ontologies. Ontologies of different sub-models of the PM are represented by means of Class
Diagrams. Antisymmetric and intransitive properties are sometimes omitted in the diagrams
when their value is obvious; for instance, if an object property is asymmetric then it is also
antisymmetric.

Furthermore, in the DOM* and BGM, we allow realization of the one-to-many rela-
tions both as a set of assertions in the form of RDF triples (e.g. VisualizedElement

hasClientRectangle Box, see Figure 4.8 on page 114) and via RDF containers, such as
sequence (e.g. VisualizedElement hasClientRectangles RDF:Seq, see Figure 4.8). RDF
sequence gives a possibility to take into account sequential order of elements which was formed
during the model generation. In particular, when using sequences, boxes (i.e. CSS client rect-
angles) in a visualized element of the PM are ordered according to the sequence of CSS client
rectangles in corresponding CSS box, and the sequence of visualized elements on a page of the
PM is ordered according to the depth-first traversal over the DOM tree.

The object is the most generic type of the element in the PM which subsumes all others, such
as Node of the DOM*, Block of the BGM, and WPBIElement of the Interface Model.

4.4.1 Extended DOM

The Extended DOM D (or DOM*) conveys necessary vocabulary to describe the DOM trees
of a web page in the form of one consistent model. It also enables representing computed
CSS attributes (datatype property hasComputedCssCode). DOM* corresponds to the SHIF
Description Logics (DL) and introduces all the node elements (see Figure 4.5) and necessary
relations realized as data (see Figures 4.6) and object properties (4.7) according to the W3C
specifications [247]. In contrast to the DOM, the DOM* models the whole web page with its
frame hierarchy as one single DOM* tree, where a document node (Document) of the frame
is connected with its parent frame via descendantOf, childOf and their inverses (childOf
relates instance of Document to the corresponding framing element). Based on the DOM
specifications [247], we define traversal and non-traversal nodes, where the former represents
vertexes of the DOM* tree connected by the parentOf relation. The non-traversal nodes do not
represent vertexes of the DOM* tree and refer to the corresponding traversal nodes, for instance,
attribute nodes correspond to the elements, and notation nodes correspond to the document
type nodes [244, Sec. 1.2]. According to [240, Sec. 1.1.1], every node type can have certain

110

Figure 4.5: Classes of the Extended DOM

set of node types as children. For example, Document can have ProcessingInstruction,
Comment, DocumentType, and at most one Element. This fact is properly reflected in the
ontology (e.g. Document v ∀parentOf.ProcessingInstruction t ∀parentOf.Comment t
∀parentOf.DocumentType t (≤ 1parentOf.Element)).

Additionally, we define a root element of the DOM* tree as follows: Root v Document u
¬∃descendantOf.TraversalNode; and leaf node Leaf v Nodeu¬∃ancestorOf.Node. Sev-
eral roots are allowed in the instance of the DOM*; it can happen, for instance, when the DOM
tree of the parent frame has not been materialized in the ontology while the DOM trees of its
child frames have been materialized. The subsumption is used instead of the equality to void
inconsistency in case more assertions are added later into the ontology during the process of
web page analysis. Roots and leafs can be identified after a completion of the model generation
process. By definition, a leaf concept subsumes non-traversal nodes such as CDATASection,
Comment, DocumentType, Notation, ProcessingInstruction, Text and thus restricts their
use. Every node is identified by its XPath (hasPreciseXPath), and additionally every traversal
node is specified by its sequential number (dfsId) in the depth-first traversal over a tree of the

111

Figure 4.6: Datatype properties of the Extended DOM

Figure 4.7: Object properties of the Extended DOM

112

DOM trees of a web page.
A disjointness of the concepts is illustrated in Figure 4.5.

4.4.2 Block-based Geometric Model

The Block-based Geometric Model (BGM) [73], which is the main sub-model of the PM,
describes the layout and geometric structure of a web page, and it is based on the work presented
in Chapter 3. It plays an important role in the analysis of various spatial configurations of objects
for web data extraction and web page understanding. The BGM comprises three main sub-models:
the Structural Block-based Geometric Model (StrBGM), Quantitative Block-based Geometric
Model (QntBGM), and Qualitative Block-based Geometric Model (QltBGM).

Structural BGM

The Structural Block-based Geometric Model (StrBGM) represents the main geometric and
constituent objects of the web page (see Figures 4.8 and 4.9). Some of these objects are
described in Section 3.4. The StrBGM corresponds to ALCIFH(D) DL. The most abstract
object in this model is block that conforms with Definition 3.5 on page 67. There are two main
types of blocks: basic block and composite block. A basic block corresponds to a rectangular
area on the web page canvas (see Definition 3.4 on page 65) and can relate to some particular
visual element (e.g. a CSS box or a set of CSS boxes). If the visual element cannot be represented
by a block (e.g. in case of rotated CSS box, or some non-rectangular glyph of an image), its
outline can be considered, which serves as its substitution. The composite block corresponds to a
rectangular area on the web page canvas and contains either one or several basic or composite
blocks.

There are six main types of a composite block in the current version of the BGM: document
block, page block, viewport block, visualized element, box, and bounding block (see Figure 4.8). A
document block represents a whole web page rendered by the web browser’s engine together with
its frames—a document. A document is formed by the set of X/HTML or XML files connected
with each other by means of their inclusion (e.g. by elements with the names FRAME, or IFRAME,
or OBJECT). A page block corresponds to a single rendered X/HTML or XML file of a document—
page—and relates to the document element of the DOM*. A page block contains all the visualized
elements of the corresponding DOM tree through the containsBlock relation. A set of pages
make a hierarchy of pages by means of hasChildPage relation. (A page has the counterpart
Window in the Browser Object Model (BOM) [136]). A viewport block represents a viewport
of a web browser [260, Sec. 9] (see Section 2.4.5) as well as a viewport corresponding to the
embedded web page (frame). A viewport block uses containsBlock relations for the visualized
DOM tree elements that topologically are inside or equal (P). The visualized element corresponds
to the visualized DOM element and is compliant with box model and visual formatting model
specified by the W3C (see Section 2.4.5) [260]. A visualized element consists of the client
rectangles which are part of the CSS line box [260, Sec. 9.4.2], whereas every client rectangle
is a box (see Section 3.4). As a composite block, a box consists of components such as outer
and inner blocks, where the latter is drawn on top of the former. A bounding block is used as a
container to wrap other blocks.

113

Figure 4.8: Classes of the Structural Block-based Geometric Model (StrBGM)

An inner block, outer block and outline are basic blocks. Inner block corresponds to the
content of a box, while outer block includes the entire box (content and border). Outline wraps
some arbitrary part of a web page and can have no correspondence to any DOM elements.

The containment of blocks can be realized as a set of RDF triples (e.g. utiliz-
ing object properties containsBlock, hasChildPage, containsVisualizedElement, and
hasClientRectangle) or as a triple with RDF sequence for object (e.g. utilizing ob-
ject properties containsBlocks, hasChildPages, containsVisualizedElements, and
hasClientRectangles, see Figure 4.9).

Quantitative BGM

The Quantitative Block-based Geometric Model (QntBGM) refers to the definition of the quan-
titative model introduced in Section 3.2 and corresponds to ALCFH(D) DL. The QntBGM
enriches the StrBGM with quantitative information describing the location, spatial expansion (see
Section 3.4), direction (see Section 3.7.1) and distance (see Section 3.8.1) between blocks. The
QntBGM is illustrated in Figure 4.10.

For simplicity, reification was not used and all the quantitative relations are presented by
means of Relation class, which has corresponding object properties hasPrimaryObject and
hasReferenceObject and datatype property hasFloatValue with xsd:float data type.

114

Figure 4.9: Object properties of the Structural Block-based Geometric Model (StrBGM)

Qualitative BGM

The Qualitative Block-based Geometric Model (QltBGM) enriches the StrBGM with qualitative
information, such as the topology (see Figure 4.11 and Section 3.6), direction (see Figures 4.12,
4.13, 4.14, and Section 3.7.2), distance (see Figure 4.18 and Section 3.8.2), alignment (Figure 4.19
and Section 3.9), and interval relations which form Two-Dimensional Interval Relations with
Centering (2DIRC) (Figure 4.20 and Section 3.10). The QltBGM also enables developers to
express relations such as neighborhood (see Figure 4.15) and orthogonal visibility [84, p. 12]
(see Figure 4.16 and 4.17). The QltBGM is compliant with the definition of qualitative model
presented in Section 3.2 and corresponds to ALIFH(D) DL.

We do not use disjointness for the qualitative relationships, even for those which originally are
pairwise disjoint, for example, topological relations RCC8. This fact is due to the use of 2DIRC

115

Figure 4.10: Classes and datatype properties of the Quantitative Block-based Geometric Model
(QntBGM)

for representing most of the qualitative relations according to Section 3.10.4, and the definition of
2DIRC in terms of fuzzy sets and fuzzy relations. Thus, in the corresponding qualitative model,
the presence of more than one relation of the same type between certain pair of objects is allowed.

In the QltBGM we do not leverage a refinement of RCC8 introduced in Section 3.6 for
the blocks. The main goal of this model is to convey the developer with the most useful and
simple spatial relations with minimal complexity. Thus, RCC8 with eight topological relations
provides one with the most important relationships, in contrast to 36 more specialized relations.
Moreover, the former can be expressed by means of Two-Dimensional Interval Relations (2DIR)
(see Section 3.10.4).

116

Figure 4.11: RCC8 relations in the Qualitative Block-based Geometric Model (QltBGM)

117

Figure 4.12: Center direction relations in the Qualitative Block-based Geometric Model (Qlt-
BGM)

Figure 4.13: P-direction relations in the Qualitative Block-based Geometric Model (QltBGM)

118

Figure 4.14: O-direction relations in the Qualitative Block-based Geometric Model (QltBGM)

Figure 4.15: Neighborhood relations in the Qualitative Block-based Geometric Model (QltBGM)

119

N

S

EW

NW

SW SE

NE

(x r
– , yr

–
)

(x r
+ , yr

+
)

r

2
x

4
x

2
y

4
y

Orthogonally visible objects

Orthogonally invisible objects

Figure 4.16: Orthogonal visibility

Figure 4.17: Orthogonal visibility relations in the Qualitative Block-based Geometric Model
(QltBGM)

120

Figure 4.18: Distance relations in the Qualitative Block-based Geometric Model (QltBGM)

Figure 4.19: Alignment relations in the Qualitative Block-based Geometric Model (QltBGM)

121

Figure 4.20: Interval relations in the Qualitative Block-based Geometric Model (QltBGM) for
the x-projection (on abscissa)

122

4.4.3 Interface Model

The Interface Model (see Figures 4.21, 4.22, and 4.23) represents the functional elements of a
web page (e.g. links, buttons, images) and basic structures (e.g. lists, tables), with complexity
comparable toALCINH(D) DL. This model can be formed mainly based on the DOM* model
(see Section 4.4.1) taking into account elements’ names, values, and CSS attributes. The main
element of the model is WPBIElement which is a subclass of Object. This class is an abstract
element of a web page’s interface, and together with other subclasses, whose name starts with
“WPBI” (see Figure 4.21), represents elements of an interface independent from the source code
and mostly defined by the computed CSS attributes. Thus, some elements independent from the
source code reflect the layout of a web page, for example, WPBITable and WPBIList.

Considering a web page encoded in X/HTML, HtmlElement is the most abstract element
(see Figure 4.22), which is a subclass of WPBIElement and defines the X/HTML specific objects.
These objects are mainly defined by the information acquired from the DOM trees regardless
of the CSSOM. Thus, source code dependent elements mostly define different types of DOM
tree elements, default representation and spatial allocation which can be changed by the CSS
style sheets [150]. Due to this fact, these elements should be considered with caution in terms of
information extraction and web page understanding methods.

Based on information considered in the DOM*, we distinguish three main groups of elements:

• Elements defined by the name of the DOM* element (datatype property hasNodeName).
For instance, HtmlLink is defined by the element with name A, HtmlImage corresponds
to the element’s name IMG, HtmlTable corresponds to TABLE.

• Elements defined by the value of an attribute of the DOM* element (class Attribute). For
instance, elements such as WPBICheckBoxGroup, WPBIRadioButtonGroup are identified
by the hasNodeName attribute of the corresponding check boxes and radio buttons in the
DOM*; elements such as HtmlTextInput, HtmlSubmitButton, HtmlPasswordInput,
HtmlRadioButton are defined based on the value of the attribute type of the element
input.

• Elements defined by the value of a CSS attribute (datatype property hasComputedCssCode).
For instance, WPBIImage can be defined by the CSS attribute background-image,
WPBITable is defined by display with values table or inline-table,
WPBIListItem is defined by display with value list-item.

The Interface Model provides us with necessary information regarding the functional compo-
nents provided by the web page.

123

Figure 4.21: Main classes of the Interface Model representing abstract interface elements

124

Figure 4.22: Classes of the Interface Model representing HTML-based interface elements

125

Figure 4.23: Object properties of the Interface Model

126

4.5 The Logical Model of a Web Page

The Logical Model (LM) corresponds to the logical layers of the conceptual model of a web
page (see Section 4.2) and is used to model semantics of a web page. This model is intended for
integration with the Semantic Web and providing human- and machine-readable representation
for integration with external systems. Using various vocabularies and domain-specific ontologies,
one can model different web specific (e.g., navigation menu, main content, header, and footer) and
domain specific objects (e.g., web forum post, news article and corresponding users’ comments).
Objects instantiated in the LM can be also integrated into datasets such as DBpedia3, UMBEL4,
GeoNames5, YAGO6, and WordNet7 by means of the Linked Data and thereby extending the
semantics of the entities recognized on a web page as well as their seamless integration with
the Semantic Web technologies. It is important to note that the LM can be represented by other
formalisms different from OWL, for example, Datalog± [43] and HιLεX [173] used in the
problems of WIE.

In this thesis, we do not focus on modeling various web page objects and only represent the
main data structures that relate to the data structure layer of the conceptual representation of a web
page (see Section 4.2). ABox (schema) of the ontology is presented in the logical-model.owl
file (see Figure 4.24) and corresponds to ALUIFH(D) DL. The ontology has RDF-based-
semantics [281] and is serialized using RDF/XML syntax. There are four main data structures in
the LM: node, sequence, tree, and grid (see Figure 4.25). A node is basic data structure which
can be used to represent simple objects on a web page such as author name, price, and date. A
sequence can be used to represent lists, such as a simple navigation menu as a sequence of items,
product list, search results, etc. A tree can be used for hierarchical navigation menus, to represent
a tree of replies in the web forum, or a tree of comments for the article. A grid is used to model
basic tables on a web page.

Data structures, mainly treelike structures, are commonly used in representing logical structure
of a document in the field of Document Understanding [161, 228] and Web Page Understand-
ing [41, 104, 300]. These data structures are used in this thesis for building the MANM which
requires such strict definitions of the logical objects (see Chapter 6).

4.6 Discussion

In this chapter, we have introduced the Unified Ontological Model (UOM) and its main component,
Physical Model (PM) and Logical Model (LM), represented by means of OWL 2 DL (mainly with
RDF-based semantics [281]), and thus it is serialized using RDF/XML syntax. The corresponding
ontologies of the UOM are illustrated with Class Diagrams. The UOM formalizes some layers of
the conceptual model of a web page that represent various levels of a web page’s abstractions. The
PM is the result of web page analysis (see Chapter 5). It models a web page’s layout in the form

3http://dbpedia.org
4http://umbel.org/
5http://www.geonames.org/
6http://www.mpi-inf.mpg.de/yago-naga/yago/
7http://wordnet.princeton.edu/

127

http://dbpedia.org
http://umbel.org/
http://www.geonames.org/
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://wordnet.princeton.edu/

common.owl

logical-model.owl

Figure 4.24: Ontology files of the LM [80]

Figure 4.25: Main data structures of the Logical Model (LM)

of Block-based Geometric Model (BGM), Interface Model, and DOM* (a structure established by
the DOM trees). The information necessary to represent the PM can be acquired from the analysis
of DOM trees and CSSOM of a web page. The LM is the result of analysis of a web page’s PM
(see Chapter 5), and corresponds to the higher layers of a web page’s conceptualization. The LM
can be used to provide the user and computer with semantically rich information that describes
logical structures and meaning of a web page’s content. Furthermore, users can utilize Linked
Data approach to enrich the LM.

128

CHAPTER 5
Web Page Processing

A new kind of document often means a complete
development of a new recognition system. This is a
real lost of energy which can be avoided by defining
a generic system: a generator of recognition systems
for structured documents.

— Bertrand Coüasnon, International Journal of
Document Analysis 8(2), 2006

In Section 5.1 we discuss the process of web page processing (WPP), presented in Section 2.3,
from the viewpoint of the application of the Unified Ontological Model (UOM) (see Chapters 3
and 4). As presented in Section 5.2, this vision, as well as the presence of declarative and
imperative approaches for web page understanding and web information extraction, motivated us
to design and implement an abstraction method which makes the application of both paradigms
possible. This ontology abstraction, the UOM, and the proposed concept of WPP were realized in
the Web Page Processing System (WPPS) presented in detail in Section 5.3. Taking into account
different aspects of web page representation, the WPPS is a basis for developing effective and
robust methods. Principles and examples of realizing WPP methods by means of WPPS are
discussed in Section 5.4. An evaluation of the efficiency of WPPS is conducted in Section 5.5. In
Section 5.6, we consider the challenge of web object identification as well as the use of WPPS as
a framework for rapid application development. Section 5.7 concludes the chapter.

5.1 A Principle of Web Page Processing based on the Unified
Ontological Model

Within the scope of this thesis, web page processing (see Section 2.3) is referred to different
methods which are leveraged within the fields of Web Page Understanding (WPU) and Web
Information Extraction (WIE). As applied to the UOM (see Chapter 4), we present WPU and

129

Figure 5.1: Data flow diagram of the process of WIE and WPU

WIE processes consisting of three main phases (see Figure 5.1): 1) Physical Model instantiation
(analysis of a web page’s technical representation), 2) web page understanding and direct web
information extraction, 3) information transformation and integration.

Physical Model instantiation is based on the data models (i.e., DOM trees and CSSOMs)
provided by the web browser engine (see Section 5.3.3). This process can be controlled by the
specified configuration which defines necessary constraints (i.e., what should be modeled and
materialized in the certain instance of the Physical Model (PM)). In turn, WPU and direct WIE
are performed leveraging the PM. The aim of these two processes from the viewpoint of the
UOM is to provide an interpretation in the form of the Logical Model (LM) for the concepts of
the PM by means of domain ontologies and Linked Data technology (see Section 4.5). Thus, we
represent WIE as a process of the PM analysis performed according to the query specified. A
query can be represented by the wrapper which defines the necessary information to be extracted
as well as its main characteristics. It can be realized as an algorithm, template or a query over
ontology, for instance, SPARQL query. In contrast, from the viewpoint of the UOM, methods of
WPU operate over the PM mainly targeting the whole web page. The main goal of WPU methods
is to derive semantics of a web page hidden in the materialized PM according to the viewpoint
indicated. The viewpoint defines the necessary granularity which is required for describing the
web page semantics and realizing it in the materialized LM. For example, WPU can be limited to
the web page segmentation and building a segmentation tree in the LM, or it can consider more
web specific objects such as a navigation menu, main content, header, or footer. Information
transformation is a process aimed at providing information in the form appropriate for external
applications. It can be represented as XML document, tuples in the relational database, or
assertions in the knowledge base. In this work, we transform the UOM into the Multi-Axial
Navigation Model (MANM) (see Chapter 6), an ontological model that provides a navigation

130

means for blind users and ultimately making the Web more accessible.

5.2 An Object-Oriented Abstraction for the Unified Ontological
Model

An application of the UOM in the web page processing requires a presence of mechanisms which
enable leveraging both declarative and imperative (procedural) approaches. This necessity is
related to the active development of various methods of web page processing which are mainly
implemented using imperative languages (see Section 2.3 and 2.4). In this section, we place
emphasis on both approaches. However, we discuss the challenge of using imperative methods
on the UOM, particularly the object-oriented, in more detail.

5.2.1 Declarative and Imperative Approaches

Ontology provides great opportunities of applying various declarative approaches which enable
automatic reasoning and logical deduction as well as querying (see Section 2.6). Declarative
languages provide an elegant way of writing programs by describing what should be accomplished
rather than specifying how it should be realized. This allows the development of compact
programs. Declarative languages also have a correspondence to formal logic. In addition, a
declarative program is considered as a theory whereas computation is a deduction from this
theory. The disadvantages of the declarative approach includes limited expressive power and
limited means for program optimization. Examples of such languages, which are used for Web
Data Extraction (WDE) from the ontology, are Datalog± [43], HιLεX [173], and simplified web
pattern matching language (SWPML) [151].

Datalog± [43] is a family of languages which are extensions of Datalog. It allows features
such as existential quantifiers, the equality predicate, and the truth constant false to appear in rule
heads. Thus, Datalog±, in contrast to Datalog, are richer languages in modeling TBox. However,
these languages are syntactically restricted, so as to achieve decidability and in some cases even
tractability. Datalog± can also be applied for the WDE tasks from the UOM, which in turn should
be spelled into Datalog± program consisting of the intensional and extensional components. The
former represents TBox of the materialized UOM (i.e., statements regarding the domain of web
pages) according to its own expressive power, while the latter models ABox of the materialized
UOM (i.e., facts regarding the relevant web page).

HιLεX [173] language is dedicated to information extraction from the non-structured docu-
ments which are represented as the OntoDLP ontology. This ontology is dedicated to describing
certain linguistic and structural characteristics (e.g., tabular structures) of a web page. In general,
the ontology can be formed as a result of applying NLP techniques, such as part of speech tagging
and entity recognition as well as a result of a certain analysis of the layout (e.g., table recognition).
Thus, HιLεX ontology can be used to represent a layer of textual content semantics and data
structure layer of the LM of the UOM respectively (see Section 4.2). In addition, HιLεX query
language represented by the semantic rules can be applied for querying the model.

Simplified web pattern matching language (SWPML) [151] is a domain specific language
based on Java for information extraction from the ontology. The language was designed and

131

approbated on one of the earlier versions of the UOM. It provides the ability to describe a pattern
which is evaluated over RDF graphs. The concept of SWPML is loosely inspired by regular
expressions. Thus, patterns can be repeated, marked optional and grouped to more complex
patterns. In contrast to regular expressions, patterns are evaluated over two-dimensional space,
and therefore SWPML has relevant constructs for connecting different sub-patterns which are
evaluated over different spatial dimensions. Implementation of the SWPML works in conjunction
with SPARQL for evaluating simple queries over ontology for the objects required within the
pattern.

In contrast to the declarative approach, within an imperative approach, a computation process
is described in terms of instructions or commands which change the state of the program. Among
imperative languages, structured (e.g., C, Cobol, Basic) and object-oriented (e.g., Java, C#) are
distinguished. There are also procedural languages which realize object-oriented paradigm, such
as C++, Perl, and Python. Imperative languages are leveraged for implementing algorithms, for
instance, those mentioned in Sections 2.3 and 2.4 for WIE and WPU. However, object-oriented
paradigm is the most suitable for representing certain aspects of the ontology. For instance, it
introduces concepts of class and object (as instance of certain class), its attributes (data fields)
and associated procedures (methods). Thus, a class can be associated with the class in the OWL
ontology and the concept in Description Logics (DL) while an object can be associated with the
object in OWL and the instance in DL and data fields can be represented by the properties in
OWL and roles in DL. Also in contrast to the declarative approach, the imperative allows ample
possibilities for program optimization. However, disadvantages include the fact that programs are
more cumbersome and usually not as intuitive as declarative programs.

Therefore, in terms of developing efficient and effective methods for WIE and WPU for the
UOM, both paradigms should be considered.

5.2.2 A Required Abstraction

To provide an access to the instances of the UOM for both declarative and object-oriented
approaches, we need to develop a certain level of abstraction (see Figure 5.2).

For declarative languages such as SPARQL [257] and SWPML [151], this abstraction is not
necessary. This is due to the fact that the UOM and, in particular, the PM, can be easily spelled
into the RDF syntax which is a target ontology representation for leveraging these languages.
In contrast, Datalog± [43] and HιLεX [173] require certain transformations which enable their
straightforward applications. For example, Datalog± [43] requires representation of the UOM in
Datalog± style with intensional and extensional databases for ABox and TBox respectively. For
HιLεX, the ontology should be represented in terms of OntoDLP. This transformation is out of
the scope of this thesis. Thus, when considering declarative approaches in this thesis, we focus
primarily on SPARQL-based queries and Jena-based inference rules and reasoning [10].

In turn, object-oriented languages are related to object-oriented domain models. Such models
are much less expressive than ontology languages (e.g., RDF(S), OWL or DL). In addition, they
have methods implementing certain functionality and algorithms with side effects (i.e., dependent
on any hidden or external information which can change the behavior of the program). Thus, a
difference in the nature of ontological and object-oriented languages demands a creation of an
object oriented abstraction over the UOM.

132

Figure 5.2: A required abstraction from the ontology for applying methods based on the object-
oriented paradigm

We specify four main requirements:

Req. 1 There should be an option to choose a necessary reasoner for the UOM from the pre-
defined set. Furthermore, different instances of the UOM (i.e., ABox) can have different
requirements for the reasoner. Reasoners can only differ on the totality of considered
axioms in TBox of the UOM and the set of considered inference rules.

Req. 2 A set of available classes and properties to be instantiated for the UOM should be specified
by the developer. Thus, various instances of the UOM generated for the same web page can
have different types of instances and properties instantiated. Moreover, different properties
can be used for specifying one-to-many relation between individuals. For example, in the
Structural Block-based Geometric Model (StrBGM) (see Section 4.4.2), relation between
a page and a collection of the visualized elements can be specified either by the set of
assertions with property containsVisualizedElement or by means of RDF container,
carrying a collection of the visualized elements and is related to the page via property
containsVisualizedElements (see Figure 4.8 on page 114).

Req. 3 There should exist the possibility to specify which properties and class taxonomies, based
on the information contained in the ontology, should be computed on the object-oriented
level by request (i.e., “on-the-fly”), as well as which of them should be computed within
the ontology by the indicated reasoner (according to Req. 1).

Req. 4 Modifications which were done on the ontology level in ABox and the results of reasoning
should be available in the object-oriented level and vice versa.

Thus, when an abstraction satisfies the specified requirements it provides the developer
of web page processing methods the possibility of working on the object-oriented level to

133

leverage the same application programming interface (API) regardless of various valid substantial
modifications within the instances of the UOM. Further more, these requirements allow the
developer to leverage the benefits of declarative (e.g., with SPARQL querying and automatic
logical reasoning) and object-oriented approaches and have the possibility to investigate various
features of a web page to develop effective algorithms and approaches. For example, Req. 1
enables the developer to choose a necessary reasoner for the UOM. The reasoning can be
performed over subsumptions of classes (class-subclass) and properties (property-subproperty)
according to the RDF or OWL semantics. Also, various property and class constraints can be
taken into account. In addition, the developer should have the option to select a set of inference
rules from the ones available for the UOM to be applied for the ontology; for example, inference
rules which derive topological RCC8 relations on the set of blocks from their quantitative position
and spatial extension (see formulas (3.2) on page 69 and (3.3)). Req. 2 allows the developer to
choose relevant classes and properties which should be instantiated in the ontology. It allows her
to avoid an exhaustive instantiation of the whole ontological model and the ability to concentrate
on the relevant aspects of the model. Req. 3 provides the developer with the possibility to control
which computations should be done on the object-oriented level. It allows taking into account
fuzzy relations with the inaccuracy specified in the configuration. Collections can be utilized if the
order of elements is important. Req. 4 ensures the connection of ontology with the object-oriented
abstraction.

5.2.3 Ontology in Object-Oriented Applications

In this section, we consider only approaches which provide high-level API reflecting relevant
application domains. Therefore, Semantic Web frameworks such as Jena [10] and OWL API1

with low-level API for managing the ontology are omitted.
One of the main challenges considered in model-driven engineering includes the problem

of providing object-oriented representation of the application domain for a given ontology. We
only mention the approaches which aim at tackling this problem that are in accordance with our
objectives and requirements (see Section 5.2.2).

A. Kalyanpur et al. [133] introduce a method of representing certain ontological ABox
assertions of OWL in terms of object-oriented paradigm by example of Java. In particular,
the authors introduce guidelines of how various class definitions in OWL (i.e., sub-classes,
enumerations, unions, intersections, disjoint classes, etc.) can be modeled by means of interfaces
and classes of Java. The authors also describe how various OWL property constraints (i.e.,
symmetry, transitivity, equivalence, cardinality, etc.) can be ensured in Java. P. Bartalos at al. [18]
extend this solution with algorithms for providing mapping between ontology and Java objects.
Thus, these approaches separate object-oriented representation from the ontology. The authors
provide limited methods of keeping the two models synchronized. As such, the issue of collisions,
when both models were modified, is not considered. It partially satisfy Req. 4. Furthermore,
Req. 1–3 are not considered in these approaches.

À gogo [191] is a domain specific language which enables automatic generation of an
API intended for instantiating object-oriented model and mapping it back into the ontology.

1http://owlapi.sourceforge.net/

134

http://owlapi.sourceforge.net/

Unfortunately, there are no full specifications of the à gogo syntax and semantics at the time
this thesis was written. Therefore, we cannot check this approach. À gogo language is to be
implemented in TwoUse2 toolkit. TwoUse provides graphical user interface (GUI) for modeling
ontology leveraging UML notations. It is also worth mentioning the work [221], in which the
authors of à gogo and TwoUse give a detailed survey of the use of ontology technologies for
software modeling in model-driven development.

The work of P. Kremen et al. [147] is the most relevant to the specified requirements. The
authors propose a methodology for designing ontology-backed software applications that ensures
the evolution of the ontology while being exploited by one or more applications at the same time.
The methodology relies on integrity constraints defined between the ontology and the application.
Violation of such constraints explicitly signal that the current modification cannot be used in the
operable applications. The solutions introduced in the paper [147] are implemented in a Java
library JOPA3. They are compliant with Req. 2 and Req. 4. Req. 1 also can be relatively simple to
realize in the architecture proposed by P. Kremen et al. However, the approach introduced by the
authors do not take into account Req. 3. Object-oriented model, automatically generated based
on the ontological model, contains Java beans modeling OWL classes. This enables directly
accessing and modifying fields of Java beans without additional computations, which complicates
synchronization between ontological and object-oriented models. The synchronization is to be
explicitly invoked by the developer whenever it is required. As such, this certainly complicates
the mutual application of declarative and imperative approaches.

5.2.4 A Bridged Adapter

Regarding the requirements on the object-oriented ontology abstraction specified in Section 5.2.2,
we decided to consider this issue from a practical point of view. Thus, we have developed a
design pattern which incorporates the introduced requirements.

We propose an object-oriented abstraction to be represented by three main components:
implementations, adapters and ontology generator (see Figure 5.3). The adapters represent
classes of the ontology and properties related to them. Thus, this component represents the main
elements of the ontology on the object-oriented level. The ontology generator provides the main
functionality for instantiating the ontology. In cases of the UOM, it is the PM generated within
the process of web page analysis. The implementations provide an API for interacting with
the objects of the ontology and their properties according to the ontology configuration. This
component is used both by the adapters and the ontology generator. The implementations ensure
certain independence from the concrete realizations of the instances of the UOM. The adapters
and implementations play an important role in providing the developer with object-oriented
abstraction and API independent from the ontology configurations. For the realization of these
components, we introduce bridged adapter.

A bridged adapter software design pattern [76, 77] is based on patterns such as adapter,
bridge, and factory method. This pattern is recommended if we need to provide access to a certain
adapted object (adaptee) which has an interface or structure different from what is required, and

2http://code.google.com/p/twouse/
3http://krizik.felk.cvut.cz/km/jopa/

135

http://code.google.com/p/twouse/
http://krizik.felk.cvut.cz/km/jopa/

Figure 5.3: Main components of the object-oriented abstraction

where the adaptee either does not have a strictly defined interface (behavior) or its structure is
not permanent. For instance, an individual of the OWL ontology representing a block in the
Block-based Geometric Model (BGM) can have some subset of relevant datatype and object
properties materialized, while some subset of other properties is taken to be computed upon
request with parameters of fuzziness specified, and which can also be changed. In this case, an
interaction with such an object and its use in algorithms can be problematic. Furthermore, it
can lead to the so-called problem of boilerplate code. As a solution to this issue, the pattern
proposed allows the developer to have the same adapter for the ontological object (individual)
while implementations, which map different interfaces, are selected according to the specification
of the object (ontology configuration corresponding to class Configuration).

In Figure 5.4, a class diagram depicts the proposed design pattern. Adaptee represents an
adapted object (in our case, an individual of the ontology) and has a predefined configuration
represented by the class Configuration. An interface AbstractAdapter is instantiated by
the AdapterFactory and is a representation of the Adaptee required by the Client. An
Adapter class implements the interface AbstractAdapter mapping it into the Adaptee by
means of the AbstractImplementor provided by the ImplementorFactory during the in-
stantiation of the Adapter. The ImplementorFactory dynamically creates an implementation
of the AbstractImplementator interface, which corresponds to the object wrapped (adaptee)
and its configuration. Library contains all necessary implementations for various valid con-
figuration parameters of the adapted object. In terms of the UOM, a library should have an
implementation of all necessary basic queries.

Thus, a bridged adapter pattern can be applied to certain classes in the ontology providing
the developer with required adapters whose implementations correspond to the ontology con-

136

Figure 5.4: Software design pattern “bridged adapter”

figuration. The Adaptee can represent certain classes provided by the ontology frameworks
with low-level API, such as Jena and OWL API. Adapters, symbolically represented by the
AbstractAdapter interface and the Adapter class, can form a taxonomy of interfaces and
classes reflecting a subsumption of classes within the ontology. For instance, for ontological asser-
tions subclassOf(Button, WebFormElement), subclassOf(TextField, WebFormElement),
and subclassOf(WebFormElement, WebForm), the corresponding Java classes Button and
TextField can be used for adapting different adaptees forming two disjoint sets, whereas a
WebFormElement represents both types of adaptees. When designing the taxonomy of adapters,
we recommend to follow the guidelines presented by A. Kalyanpur et al. in [133]. Also,
JOPA [147] can be used for generating the taxonomy and basic functionality of adapters. Thus,
the problem of type casting can be solved either on the ontology level or the abstraction level.

The introduced bridged adapter pattern allows the possibility to implement a solution satisfy-
ing the requirements listed in Section 5.2.2. According to the ontology configuration in particular,
the developer can define which reasoners should be applied and which objects and properties
can be instantiated, as well as how they should be computed in compliance with Req. 1–3. This
approach does not make a strict separation between object-oriented model and ontology. All
object fields are not stored within the object-oriented model but are acquired or computed based
on the information stored in the ontology. Modification of object fields is also immediately
reflected in the ontology. This ensures the possibility of conjunctive utilization of declarative
methods provided by the ontology framework and object-oriented program and satisfies Req. 4.
The bridged adapter software design pattern plays an important role in WPPS.

137

5.3 WPPS: A System for Web Page Processing

In this section we present WPPS [75–77], a Web Page Processing System designed and realized
by the author of this thesis for the purpose of developing effective, efficient, and robust web
page processing methods based on the UOM introduced in Chapter 4 and definitions given in
Chapter 3.

WPPS is intended for: 1) the rapid development of new methods for web page understand-
ing and information extraction tasks; 2) leveraging benefits of declarative and object-oriented
approaches in accordance with the bridged adapter design pattern introduced in Section 5.2.4;
3) investigating the abundant forms of web page representations, relations and features formalized
with the UOM for detecting those most appropriate for solving specified problems.

The framework provides various parameters for configuring ontological models and modes of
their generation (see Section 5.3.2). Thus, the developer can specify a set of models, attributes,
and relations the WPPS framework should instantiate in the UOM as well as methods for their
computation (e.g., whether to store attributes and relations in the ontology or compute them
“on-the-fly” based on the quantitative or basic qualitative relations). WPPS makes it possible to
control a level of fuzziness for computing attributes and relations and provides a unified access
interface via a WPPS API independent from a particular configuration of the UOM. Moreover,
an integrated R-tree which also takes into account fuzziness specified makes the queries to the
geometric space of a web page (i.e., the BGM introduced in Section 4.4.2) more efficient (with
the complexity of search between O(logmN) and O(N) in contrast to the exhaustive search
provided by the abstraction mechanisms with the time complexity O(N)). The application of the
R-tree shows good results in practice, see Section 5.5.4. All these factors contribute to the novelty
of the WPPS framework and its effectiveness in developing new web page processing methods.

5.3.1 Architecture

The WPPS framework is an Eclipse (Indigo) RCP based cross-platform application implemented
in the Java language (JDK 1.7.0). It was successfully tested on different operating systems, such
as Ubuntu, Mac OS X, Windows XP, and Windows 7. WPPS has XULRunner (version 1.9.2
corresponding to Firefox of the version 3.6) integrated for rendering web pages. XULRunner is
a platform introduced by Mozilla for building rich Internet applications and has Gecko layout
engine as its basis. It provides us with rich functionality which Firefox possesses and can be
integrated into Java applications by means of the SWT libraries and plug-ins. WPPS also utilizes
the ATF project plug-ins of the version 0.3.0, which enables seamless integration of XULRunner
within the Eclipse RCP platform and conveys additional graphical components and widgets for
interacting with the web browser (i.e., XULRunner).

The general architecture of the Blindzilla prototypes is illustrated in Figure 5.5. It consists of
several components:

1. UOM manager: realizes the UOM by means of the Jena ontology framework [10] and
applies required reasoners. It also provides access to the ontologies by means of API and
SPARQL engines mainly implemented by Jena. It is allowed to apply external ontologies
for describing individuals within the LM.

138

Figure 5.5: Architecture of the WPPS framework

2. Configuration manager: is responsible for configuring the WPPS framework; it controls
settings of an instance of the UOM and modes of computing features and relations (see
Section 5.3.2).

3. Core: provides the basic functionality to interact with an instance of the UOM via the
UOM manager. As such, it possesses a collection of different implementations relevant to
various valid configurations of the WPPS and allows the application of SPARQL queries
and logical inference rules, which are handled by Jena. The core is also responsible for
processing different inaccuracies (fuzziness) while computing qualitative attributes and
relations, for example, as it is defined in Section 3.10.2 for spatial relationships.

4. Adapter layer: implements the bridged adapter software design pattern providing an
object-oriented abstraction for classes and individuals of the ontologies according to their
configurations. It enables the application of heuristics over the ontologies. Thus, the use of
the adapter layer enables leveraging both declarative and object-oriented paradigms.

5. Physical model generator: is responsible for generating the PM of the UOM relevant to
a certain web page and a configuration provided. It leverages Firefox 3.6 (XULRunner
v.1.9.2) web browser integrated into the WPPS framework to obtain all necessary infor-
mation (presented in the DOM trees and CSSOMs) for building the physical model (see
Section 5.3.3). This component is easily extensible for other web browsers and sources
(for example, PDF document).

6. WPPS API: is based on the adapter layer and provides the main functionality necessary for
developing web page processing methods (see Section 5.3.4). It is designed for querying

139

Figure 5.6: Implementation of the bridged adapter software design pattern in WPPS

the UOM, processing the information acquired, building the LM, and further integration
of the LM with external systems (e.g., leveraging Linked Data and external ontologies).
A WPPS API uses R-tree [105] for indexing two-dimensional objects (i.e., blocks) and
performing efficient spatial querying.

7. WPPS GUI: a convenient interface for invoking developed methods, applying different
configurations by the user and investigating various aspects of web page representation
(see Section 5.3.5).

8. Web page processing methods: a set of methods with predefined configurations designed
for solving specific problems (see Section 5.4.2). The collection is managed by the
developer. Each method is primarily represented as Eclipse’s plug-in fragment.

Different components of the WPPS platform are also illustrated in Figure 5.6.

5.3.2 WPPS Configuration

Configuration of the WPPS framework is represented by an XML file which allows the developer
of a new method to control the process of model generation including the computation of attributes
and features, speeding up the process of building an instance of the PM and ensuring efficient
interaction via the WPPS API provided. Although it is out of the scope of this thesis, WPPS
configuration can be translated into the Datalog program and checked for the correctness. All

140

Figure 5.7: Main topological configurations of sub-models in a web page’s Unified Ontological
Model

the configuration parameters can be grouped into several categories: 1) models configuration,
2) objects configuration, 3) properties configuration, 4) fuzziness, 5) relevant web page area, and
6) simplification.

Models Configuration

When configuring the ontological models, the developer defines parameters such as:
A) topology of the ontological models,
B) URI of ontologies’ name spaces,
C) realization of the ontology in Jena either based on the RDF graph or a set of statements in

Jena OWL model,
D) location of the relevant schemata of sub-models which mainly contain TBox,
E) the use of the schemata of sub-models in corresponding ontology instances,
F) reasoners to be utilized,
G) inference rules which should be applied over the relevant ontology.

A) Topology of the ontological models defines which sub-models of the UOM are to be created
and which of them should share the same name space and therefore the reasoner and a set
of logical inference rules to be applied. The sub-model is an instance of certain schemata
corresponding to particular ontologies of the UOM and mainly conveying TBox. Of all possible
topological configurations for an instance of the UOM, we would like to highlight the following
examples (see Figure 5.7):

141

1. All the sub-models are in the same ontology sharing the same ontological name space.
This configuration is suitable in cases when there is no reasoner applied or when a set of
inference rules is generic enough to be applicable over different sub-models.

2. All sub-models in a separate ontology configuration is recommended when using different
sets of inference rules for different sub-models. This topological configuration allows
the reasoner to only consider statements of the relevant sub-models, which decreases
computation time.

3. Grouping by the type of a sub-model enables instantiation of four separate ontological
models corresponding to the LM, BGM, Interface Model, and Extended DOM. This topo-
logical configuration is efficient for the application of varying methods oriented to different
sub-models. For example, the BGM can be used for layout analysis (table identification or
main content discovery) and the Interface Model can be used for investigating a functional-
ity provided by a web page. This grouping can also correspond to the groups of inference
rules applied to different types of sub-models.

A topology can be specified by the element ontology, which denotes an ontological model
created in Jena by the WPPS framework. As well, it is specified by its sub-elements with the
name sub-model, which specifies a set of sub-models to be materialized in the ontology. An
example of grouping sub-models by the their type is presented in Listing 5.1. Each sub-model
can be instantiated exactly in one ontological model.

Listing 5.1: Example of grouping sub-models by their type in the WPPS configuration file
1 <wpps-config>
2 <ontology>
3 <type>OWL</type>
4 <load-schemata>true</load-schemata>
5 <reasoner-type>JENA_REASONER</reasoner-type>
6 <jena-reasoner>OWL_MEM</jena-reasoner>
7 <sub-model>STRUCT_BLOCK_GEOM_MODEL</sub-model>
8 <sub-model>QNT_BLOCK_MODEL</sub-model>
9 <sub-model>QLT_BLOCK_MODEL</sub-model>

10 <rules>
11 <relative-uri>config/symInverse.rul</relative-uri>
12 <ruleMode>FORWARD</ruleMode>
13 </rules>
14 </ontology>
15 <ontology>
16 <type>OWL</type>
17 <load-schemata>false</load-schemata>
18 <reasoner-type>JENA_REASONER</reasoner-type>
19 <jena-reasoner>OWL_MEM</jena-reasoner>
20 <sub-model>INTERFACE_MODEL</sub-model>
21 </ontology>
22 <ontology>
23 <type>OWL</type>
24 <load-schemata>true</load-schemata>
25 <reasoner-type>JENA_REASONER</reasoner-type>
26 <jena-reasoner>OWL_DL_MEM_RDFS_INF</jena-reasoner>
27 <sub-model>DOM</sub-model>
28 </ontology>
29 <ontology>

142

30 <type>RDF</type>
31 <load-schemata>true</load-schemata>
32 <reasoner-type>JENA_REASONER</reasoner-type>
33 <jena-reasoner>RDFS_DEFAULT</jena-reasoner>
34 <sub-model>LOGICAL_MODEL</sub-model>
35 </ontology>
36 ...
37 </wpps-config>

B) A Uniform Resource Identifier (URI) of the instantiated ontological model can be specified
in one of two ways: with the element uri (a child element of ontology) or with the element
ontology-instance-ns-gen-base (a child element of the root element wpps-config).
For example:

<ontology-instance-ns-gen-base>http://www.dbai.tuwien.ac.at/proj/wpps/ontologies/
inst-</ontology-instance-ns-gen-base>

or
<uri>http://www.dbai.tuwien.ac.at/proj/wpps/ontologies/bgminst1#</uri>

In the former case, the developer should specify a prefix which is supplemented with the random
UUID (a universally unique identifier) and the symbol “#” at the end by WPPS. Thus, each
ontological model will have a name space with a unique URI.

C) The developer should also specify the type of ontology instantiated in Jena: RDF or OWL.
In spite of the fact that Jena is fundamentally an RDF platform [231], it provides numerous
possibilities in realizing various ontology formalisms including OWL sublanguages (i.e., OWL
Lite, OWL DL, and OWL Full to some extent). Representations of ontologies in Jena either as
RDF graph or as OWL statements supported by the RDF graph differ from each other mainly by
the API which Jena conveys for these types of ontologies and a set of applicable standard Jena
reasoners. A type of the Jena ontology model is specified by the element type which can have
either the value OWL or RDF.

D) The location of the schemata of the ontologies can be specified by the use of either elements:
alt-uri or alt-relative-uri. For example:

1 <wpps-config>
2 <schemata>
3 <alt-load>
4 <schemata-name>STRUCT_BLOCK_GEOMETRIC_MODEL_ONT</schemata-name>
5 <alt-relative-uri>/ont/struct-block-geometric-model.owl</alt-relative-uri>
6 </alt-load>
7 </schemata>
8 ...
9 </wpps-config>

An alt-relative-uri parameter is defined relative to the root directory of the
tuwien.dbai.wpps.core plug-in of WPPS. A schemata element is a child element of
wpps-config and wraps all definitions of alternative locations of the ontology schemata
(i.e., TBox of the ontologies) defined by parameter alt-load which in turn contains
schemata-name and an alternative location.

143

E) A parameter load-schemata (see Listing 5.1), nested by the ontology element, contains
the value of boolean type and defines a necessity to load relevant schemata (i.e., TBox) into
memory and consider them in reasoning procedures.

F) In order to define the reasoner that should be applied to the ontology, the developer should
specify a tool providing reasoning mechanisms using the tag reasoner-type. Presently, the
WPPS framework only supports Jena reasoners. Therefore, the developer is required to assign

<reasoner-type>JENA_REASONER</reasoner-type>

and specify one of the standard reasoners Jena possesses by the parameter jena-reasoner (see
Listing 5.1). Jena has two different sets of standard reasoners relevant to OWL- and RDF-based
ontological models4. For example, there are reasoners such as RDFS_SIMPLE, RDFS_DEFAULT,
and RDFS_FULL for RDF. As for OWL, they are mainly OWL_DL_MEM_RDFS_INF (a specifica-
tion for OWL DL models that are stored in memory and require inference over RDFS statements),
OWL_DL_MEM_RULE_INF (a specification for OWL DL models that are stored in memory and re-
quire the OWL rules inference engine for additional entailments), and OWL_DL_MEM_TRANS_INF
(a specification for OWL DL models that are stored in memory and require the transitive inference
for additional entailments). All standard Jena reasoners differ in the set of inference rules they
use and optimization mechanisms applied for the derivation of new ontological statements. An
OWL-based ontology model can also have jena-reasoner with the value OWL_MEM, which
denotes that no reasoning mechanisms should be applied.

G) WPPS additionally supports the application of Jena inference rules [232]. Listing 5.2
demonstrates an example of Jena rules.

Listing 5.2: Example of Jena forward inference rules for symmetric and inverse object properties
1 @prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
2 @prefix owl: http://www.w3.org/2002/07/owl#
3 [symProp: (?sp rdf:type owl:SymmetricProperty), (?a ?sp ?b)
4 -> (?b ?sp ?a)]
5 [inverseProp1: (?a ?sp1 ?b), (?sp1 owl:inverseOf ?sp2)
6 -> (?b ?sp2 ?a)]
7 [inverseProp2: (?a ?sp1 ?b), (?sp2 owl:inverseOf ?sp1)
8 -> (?b ?sp2 ?a)]

Rules should be placed into a separate file and referenced in the configuration file as it is demon-
strated in Listing 5.1, lines 10–13. A maximum of one rules element is allowed in the ontology
element. It specifies rule execution strategy (ruleMode) and location of the file with rules, which
can be either absolute (uri) or relative (relative-uri) to the tuwien.dbai.wpps.core

plug-in. There are four reasoning modes: FORWARD, FORWARD_RETE (forward reasoning using
the standard RETE algorithm), BACKWARD, and HYBRID (which operates over forward, backward,

4WPPS supports reasoners listed in http://jena.apache.org/documentation/javadoc/jena/
com/hp/hpl/jena/vocabulary/ReasonerVocabulary.html for RDF graphs and those mentioned
in http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/ontology/
OntModelSpec.html for the OWL-oriented representation.

144

http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/vocabulary/ReasonerVocabulary.html
http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/vocabulary/ReasonerVocabulary.html
http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/ontology/OntModelSpec.html
http://jena.apache.org/documentation/javadoc/jena/com/hp/hpl/jena/ontology/OntModelSpec.html

and hybrid rules). In the forward modes, the rule engine evaluates all the rules as soon as the
underlying ontology is queried. The inference process stops when there is no rule which can be
matched to the ontology. In the backward chaining mode, the rule reasoner uses a strategy similar
to Prolog engines. Thus, when the ontology model is queried then the query is translated into a
goal and the engine attempts to satisfy that goal by matching the backward chaining rules to any
stored triples and by goal resolution against them. In the hybrid mode, the rule engine operates
with all types of rules. The interested reader may refer to [232].

When using inference rules, WPPS forms a cascade of two reasoners where the rule reasoner
corresponds to the top layer, whereas the standard reasoner provided by Jena refers to the bottom
layer. Thus, the rule reasoner operates over the ontology incorporating the results of the standard
reasoner [232, Sec. 6.9].

Objects Configuration

WPPS requires the developer to explicitly specify which types of objects are automatically
instantiated by the framework and which are manually created in web page processing meth-
ods. Automatic generation is controlled by the parameter create-in-ontology, in which
the developer lists relevant types of objects. These are mainly objects of the PM which are
created together with their attributes and relevant relations during the PM instantiation phase by
WPPS (see Section 5.3.3). Manually created objects are listed in the support-in-ontology
parameter. In regards to these types of objects, WPPS creates all the necessary implementations,
such as implementation providers for ontology instances, ontology instances implementations,
instances adapters and adapters factories (see Figure 5.6). An example of configuring the objects
instantiation is demonstrated in Listing 5.3.

Listing 5.3: Example of the configuration of objects, their attributes and relations in the WPPS
configuration file

1 <wpps-config>
2 <create-in-ontology>
3 <!-- Instances in the BGM -->
4 <item>DOCUMENT_BLOCK</item>
5 <item>PAGE_BLOCK</item>
6 <item>VIEW_PORT_BLOCK</item>
7 <item>BOX</item>
8 <item>QNT_BLOCK</item>
9 <item>QLT_BLOCK</item>

10 <!-- Attributes in the QntBGM-->
11 <item>X_MIN</item>
12 <item>X_MAX</item>
13 <item>DRAW_ID</item>
14 <!-- Instances in the Interface Model -->
15 <item>HTML_IMAGE</item>
16 <item>HTML_TEXT</item>
17 <item>HTML_LINK</item>
18 <item>HTML_WEB_FORM</item>
19 <item>HTML_CHECKBOX</item>
20 <item>IM_CHECKBOX_GROUP</item>
21 <!-- Attributes in the Interface Model -->
22 <item>IM_TEXT_VALUE</item>
23 <item>IM_FONT_SIZE</item>
24 <item>IS_IM_CHECKED</item>

145

25 <!-- Relations in the Interface Model -->
26 <item>HAS_HTML_LINK</item>
27 <item>HAS_HTML_WEB_FORM_ELEMENTS</item>
28 </create-in-ontology>

30 <support-in-ontology>
31 <!-- Instances in the LM -->
32 <item>SEQUENCE</item>
33 <item>SEQUENCE_ITEM</item>
34 <item>TREE</item>
35 <item>TREE_NODE</item>
36 <!-- Relations in the QltBGM-->
37 <item>RCC8</item>
38 <item>OrthogonallyVisibleBlock</item>
39 </support-in-ontology>

41 <compute-by-request basis="quantitative">
42 <!-- Attributes in the QntBGM-->
43 <item>QNT_WIDTH</item>
44 <item>X_CENTER</item>
45 <!-- Relations in the QntBGM-->
46 <item>QNT_DISTANCE</item>
47 <item>QNT_DIRECTION</item>
48 <item>QNT_BORDER_DISTANCE_BB</item>
49 <!-- Relations in the QltBGM-->
50 <item>IR2D</item>
51 <item>PDirection</item>
52 </compute-by-request>

54 <composite-basic-dependence>
55 <!-- Relations in the QltBGM-->
56 <item>RCC8</item>
57 <item>OrthogonallyVisibleBlock</item>
58 </composite-basic-dependence>
59 ...
60 </wpps-config>

It is important to note that only basis classes (i.e., leaf elements in the class hierarchy) can be
listed in these parameters.

Properties Configuration

For the object generated and supported by the WPPS platform, the developer can specify a set of
attributes (datatype properties) and relevant relations (object properties) that should also be in-
stantiated (see Listing 5.3). Relations mentioned in the parameter create-in-ontology
are materialized during the physical model generation process. Usually, relations in the
support-in-ontology parameter are either manually created by the user in WPP methods
or instantiated due to the invocation of corresponding enriching procedures (enrichers) in WPP
methods.

Instead of storing properties (attributes and relations) in the ontology, they can be computed
“on-the-fly” each time the user requests them. A parameter compute-by-request defines a
set of such properties. This possibility mainly concerns properties of the BGM. Quantitative
properties assigned to compute-by-request can be computed based on other quantitative
properties. For example, the width of the block is acquired form the endpoints of its vertical
projection on abscissa and the distance between blocks is calculated based on the extreme points

146

Figure 5.8: Two realizations of the “one-to-many” relationship

of blocks. Basic properties, for example, X_MIN, X_MAX, and DRAW_ID, cannot be computed
based on other properties in the UOM and have to be computed during the PM generation based
on the DOM tree and the CSS Object Model (CSSOM).

Qualitative properties computed upon request can be acquired in one of three ways: 1) based
on quantitative information, 2) based on fundamental qualitative information, and 3) in cases of
composite relations based on basic relations.

Qualitative properties dependent on quantitative properties require relevant information to be
available in WPPS. For example, properties of the BGM can be computed based on the coordinates
and spatial extension of blocks that require properties such as X_MIN, X_MAX, Y_MIN and Y_MAX
to be stored in the ontology. The dependency on quantitative properties is denoted by the
attribute basis="quantitative" of the compute-by-request parameter. A dependency
on fundamental information is not implemented in WPPS. An example of this dependency is
a definition of spatial relations presented in the UOM via Two-Dimensional Interval Relations
with Centering (2DIRC) (see Section 3.10.4). In cases when composite properties are to be
computed based on basic properties, the latter should be presented in the ontology or computable
upon request. Whereas the basic property is a leaf node, we refer to the composite property as a
non-leaf node in the tree of subsumption hierarchy of the same type of properties. For instance,
examples of composite RCC8 relations (see Figure 3.3 on page 70 and 4.11 on page 117) are PP,
P-, and C, and examples of basic ones are PO, EQUAL, and TPP-. This dependency can be
specified with the element composite-basic-dependence.

A “one-to-many” relationship can be presented in the UOM as a set of statements in the form
of subject-predicate-object or by means of an RDF container, such as a sequence. These two
cases are illustrated in Figure 5.8, and can be specified in the WPPS configuration file by means
of the struct-one-to-many-relation parameter as follows:

1 <wpps-config>
2 <struct-one-to-many-relation sub-model="STRUCT_BLOCK_GEOM_MODEL">

SEPARATE_STATEMENTS</struct-one-to-many-relation>
3 <struct-one-to-many-relation sub-model="DOM">IN_COLLECTION</struct-one-to-many-

relation>
4 ...
5 </wpps-config>

147

This configuration parameter is mainly related to instances of the BGM (its sub-models) and
Extended DOM. For example, WPPS will use relationship containsBlock to relate a bound-
ing block to the blocks contained in it for the BGM when using a set of statements and
containsBlocks when utilizing an RDF container. Although the order of adding blocks into
the bounding block is not important for the developer in the former case, it is very important in
the latter case.

Fuzziness of Spatial Relationships

WPPS implements all the relations mentioned in Section 3.5. Consideration of the uncertainty
in computing qualitative relations based on quantitative information in WPPS is compliant with
the definitions presented in Section 3.10.2 for intervals and Section 3.10.3 for the geometric
centers of intervals. Thus, relationships between blocks (be it topological, direction, or alignment
relations) are translated into the relationships between their projections on abscissa and ordinate.
This technique supports the proposition presented in Section 3.10.4 of using 2DIRC as a basis for
computing the other spatial relations. Therefore, for the sake of the efficiency, WPPS computes
qualitative spatial relations mainly based on the endpoints of the projections and geometric
centers taking into account equations (3.20) for topology, (3.21) for the O-direction, (3.22) for
the P-direction, and (3.23) for alignment.

In order to ensure the convenience in specifying fuzziness of spatial relationships by the
developer, we decided to define membership function µ−0 (x) as presented in (3.17) (on page
85) for endpoints of the intervals and the central point5. This approach also avoids the mutual
presence of different disjoint relations in spite of the fact that the WPPS framework can deal
with them (for example, with the disjoint qualitative relations stored in the instance of the UOM
created manually or by the use of another tool). WPPS utilizes the same membership functions
for both interval projections. Thus, when specifying the membership functions, the developer
should only specify the endpoints (i.e., σ− and σ+, of the equality intervals for the endpoints and
geometric center of the block’s projections).

For the σ± = ±0.4 for all extreme points, ξ = 0.5, and ε± = 0, the relevant configuration in
the WPPS file will look as follows:

1 <wpps-config>
2 <qltbm-border-mu-type>INTERVAL</qltbm-border-mu-type>

4 <qltbm-left-border-mu>
5 <left-point>-0.4</left-point>
6 <right-point>0.4</right-point>
7 </qltbm-left-border-mu>

9 <qltbm-right-border-mu>
10 <left-point>-0.4</left-point>
11 <right-point>0.4</right-point>
12 </qltbm-right-border-mu>

14 <qltbm-center-mu>
15 <left-point>-0.4</left-point>
16 <right-point>0.4</right-point>
17 </qltbm-center-mu>

5It is important to note that according to Definition 3.16 (on page 84), µ+
0 (x) = µ−

0 (−x).

148

19 <qltbm-border-nu>
20 <center>0.5</center>
21 <delta>0</delta>
22 </qltbm-border-nu>
23 ...
24 </wpps-config>

It is important to note that ξ and ε± are not relevant at the moment due to the use of the mem-
bership functions of 0-neighborhoods with values {0, 1}, which represents the 0-neighborhoods
(fuzzy sets) into crisp sets.

In spite of the limitations imposed upon the WPPS configuration file, the WPPS framework
fully supports definitions of fuzziness in relations presented in Sections 3.10.2 and 3.10.3.

Relevant Web Page Area

The developer can define the area for CSS boxes of all pages of a document (i.e., a web page),
relevant to the area specified which will be considered in the process of instantiating the PM.
The area is chiefly determined by the parameter location, which can correspond to different
structural elements and segments of a web page. The location parameter can have the value
ALL and thus refer to the whole web page and all CSS boxes within it. It can also be related to
the web browser’s viewport and relevant CSS boxes either contained within the viewport (value
INSIDE_VIEW_PORT) or overlapping with it (value OVERLAPS_VIEW_PORT). Furthermore, the
location parameter can refer to an arbitrary area and therefore CSS boxes either contained
within the specified area (value INSIDE_AREA) or overlapping with it (value OVERLAPS_AREA).
An arbitrary area is defined with additional parameter area, which enables setting top-left
and bottom-right points of the required segment according to coordinate system of a web page
specified in Section 3.3.

An example below demonstrates a configuration of an arbitrary instantiation area in which all
the CSS boxes contained in it will be considered by WPPS for their instantiation within the PM.

1 <wpps-config>
2 <location>INSIDE_AREA</location>

4 <area>
5 <top-left-x>80</top-left-x>
6 <top-left-y>200</top-left-y>
7 <bottom-right-x>1024</bottom-right-x>
8 <bottom-right-y>768</bottom-right-y>
9 </area>

10 ...
11 </wpps-config>

For the efficient generation of the PM, it is preferable to set the instantiation area with the smallest
size possible.

Simplification

A simplification procedure is part of the PM generation process presented in Section 5.3.3 and
activated by the boolean parameter simplification, which accordingly allows either values

149

Figure 5.9: Web page instantiation operating over rendered DOM trees with computed CSS
attributes

true or false. It removes those visible visualized elements (see Section 3.11.6) from the PM,
which are fully overlapped and hidden by other visualized elements on a web page canvas and
therefore are not visible by the user. Thus, a simplification parameter enables removing elements
which do not play any role in the process of scanning and understanding a web page by the
sighted user and therefore are not important in developing WPP methods based on visual cues.

5.3.3 Physical Model Instantiation

The process of Physical Model (PM) instantiation is applied for the rendered web page visualized
on a web page canvas for the end user. Symbolically, we represent this procedure as a depth-first
traversal over rendered DOM trees taking into consideration CSS attributes computed by the
web browser engine (see Figure 5.9). Thus, for instantiating the PM (see Section 4.4) for a
certain web page, the procedure analyses both DOM tree structures, types and attributes of
elements and computed CSS attributes providing mainly quantitative information reflecting the
position and size of CSS boxes, color, and font parameters for example [260]. The process of the
PM instantiation has a linear time complexity that was practically confirmed in the experiment
presented in Section 5.5 (see also Figure 5.22 on page 179). It is a procedure primarily dependent
on the quantity of nodes populating DOM trees of a web page.

WPPS instantiates the UOM in two phases (see Figure 5.10): In the first phase, WPPS creates
Jena ontology models with the required topology and reasoners applied and generate relevant
implementors in accordance to the WPPS configuration. On the second phase, WPPS populates
ontologies with relevant individuals (instances), attributes (datatype properties) and relations
(object properties).

According to the WPPS configuration (see Section 5.3.2), the framework instantiates models
such as the Extended DOM (or DOM*), Interface Model, the Structural Block-based Geometric

150

Figure 5.10: Diagram of classes used in the physical model instantiation process

Model (StrBGM), Quantitative Block-based Geometric Model (QntBGM), and Qualitative Block-
based Geometric Model (QltBGM). Instantiation of the DOM* reflects structures of DOM
trees, types of their elements, attributes of DOM elements and rendered CSSOM representing
them in the form of one model as described in Section 4.4.1. Sub-models of the BGM are
presented in Section 4.4.2. For building the StrBGM, the DOM tree along with the Browser
Object Model (BOM) [136] are analyzed to identify the main structural elements of a web page
mentioned in Section 3.4. For the quantitative description of the layout, objects of the CSSOM
and the BOM such as client rectangle and window are leveraged. A coordinate system with
the unit of measure are defined according to the Section 3.3. Furthermore, the block with its
attributes is specified as presented in Section 3.4 (in particular, in Definition 3.5 on page 67).
For the sake of efficiency, qualitative information is not instantiated during the process of PM
instantiation and mainly generated in the QltBGM by means of enrichers which can be invoked in
the WPPS methods. The block in the QltBGM is compliant with Definition 3.7 on page 68. Thus,
generation of quantitative and qualitative spatial attributes and relationships are in accordance
with the definitions presented in Chapter 3. During the instantiation of the Interface Model (see
Section 4.4.3), information such as names of element nodes and their attributes as well as certain
computed CSS attributes (e.g., display) are used to identify basic functional roles of interface
objects and their types of layout described both by the markup language (e.g., UL elements are
used to form unordered lists and TABLE elements are applied for table layouts) and CSS style
sheets (e.g., an attribute display=list-item forms the list layout while display=table

and display=inline-table are utilized for the table layout). It is important to note that
the DOM* contains all the necessary information for materializing the StrBGM, QntBGM, and
Interface Model, and therefore can be used as a source for instantiating these models.

151

Figure 5.11: Web page objects in the process of the Physical Model (PM) instantiation

Algorithms 5.1, 5.2, and 5.3 corresponding to the second phase of the PM instantiation
describe the process of the PM instantiation in more detail. They take into account CSS specifi-
cations and some peculiarities of the Java language leveraged to develop the WPPS framework.
Some variables used in the generic algorithms are explained in Figure 5.11. In particular,
wCoords are coordinates of the current page w (i.e., DOM window of the CSSOM and BOM).
The variable chW is a child page (DOM window of the BOM) relative to the current one and
chWCoords is its global coordinates (relative to the coordinate system of the top page topW). The
variable area specifies an instantiation area. CSS boxes relevant to this area are considered to be
instantiated in the UOM in accordance with the WPPS configuration. chArea is an instantiation
area for the child page. Global coordinates of the extreme points of a CSS box are stored in
the variable elBBox referring to the minimum bounding block. In the algorithms, the variable
locObj defines a type of the instantiation area which can correspond to the whole web page
(i.e., document), viewport, or specific area as well as relation of the CSS boxes to this area (i.e.,
overlapping or containment).

The algorithm PMGenerationMain is applied for empty instances of sub-models of the PM
generated according to a specific WPPS configuration (see Section 5.3.2) and contains four main
procedures:

1. Instantiation of the R-tree according to the fuzziness introduced in the WPPS configuration file.
Leveraging dynamically generated implementations (for the R-tree) which, in particular,

152

Algorithm 5.1: PMGenerationMain
Input : A top DOM window (topW), i.e., page.

A type of the object which defines the instantiation area (locObj).
An instantiation area for the current DOM window (area).

1 rTree← InitRTree();
2 �Instantiate document based on topW in the instance of the BGM�;
3 DOMTreeTraversal(topW, [0; 0], locObj, area, rTree); // see Algorithm 5.2
4 �Compute painting order and layers�;

Algorithm 5.2: DOMTreeTraversal
Input : A current DOM window (w).

Coordinates of the top-left corner of the DOM window (wCoords).
A type of the object which defines an instantiation area (locObj).
An instantiation area for the current DOM Window (area).
A spatial index (rTree).

1 �Instantiate w in the instance of the BGM as a page�;
2 �Instantiate viewport of w in the instance of the BGM�;
3 docN← GetDOMDocumentNode(w);
4 �Instantiate docN in the instance of the DOM*�;
5 WrapTextNodes(docN);
6 walker← GetDOMWalker(docN, SHOW_ELEMENT);
7 DepthFirstTraversal(walker, w, wCoords, locObj, area, rTree); // see Algorithm 5.3

specify RCC8 relations P and O necessary for the index.

2. Instantiation of the document corresponding to the top page (DOM window).

3. Invocation of the procedure DOMTreeTraversal to iterate over DOM trees of the current
web page.

4. Computation of the painting order according to [260, App. E] and layers by means of the
algorithm implemented in [70]. Instantiation of the painting order as attributes (i.e.,
datatype properties) drawId for blocks in the instance of the QntBGM.

The procedure DOMTreeTraversal recursively operates over DOM trees of a web page in
the depth-first order and contains seven main procedures:

1–2. Instantiate the current DOM window as a page block and corresponding viewport in the
instance of the BGM according to the WPPS configuration.

3–4. Instantiate a document node docN of the current DOM tree (which corresponds to the DOM
window w) in the instance of the DOM* model.

5. When given the DOM tree with a document node docN, wrap all nonempty text nodes
specified in Section 3.11.6 by supplementary elements with the name WPPS-TEXTELEMENT.
However, certain types of web form elements such as INPUT and TEXTAREA are exceptions
in this case. This procedure gives us a possibility to create an element node in the DOM

153

Algorithm 5.3: DepthFirstTraversal
Input :A TreeWalker of the Document Object Model Traversal (walker).

A current DOM window (w).
Coordinates of the top-left corner of the DOM window (wCoords).
A type of the object which defines an instantiation area (locObj).
An instantiation area for the current DOM window (area).
Spatial index (rTree).

1 n← GetCurrentNode(walker);
2 if IsElement(n) then
3 el← ToElement(n);
4 elBBox← GetBoundingBox(el, w, wCoords);
5 if IsAcceptableElement(el, elBBox, area, locObj) then
6 �Instantiate el in the instance of the BGM, DOM*, and Interface Model�;
7 IndexInRTree(GetInstanceFromBGM(el), elBBox, rTree);
8 if IsAcceptableFrame(el, elBBox, area, locObj) then
9 chW← GetChildDOMWindow(el);

10 chWCoords← GetChildDOMWindowCoordinates(chW, elBBox);
11 chArea← GetChildArea(area, chWCoords);
12 DOMTreeTraversal(chW, chWCoords, locObj, chArea, rTree); // see

Algorithm 5.2

13 if IsAcceptableChildren(el) then
14 foreach chN ∈ GetChildNodes(walker) do // go through all child elements

utilizing the API of walker
15 DepthFirstTraversal(walker, w, wCoords, locObj, area, rTree); // direct

recursion

16 SetCurrentNode(walker, el);

tree which serves as minimum bounding blocks and thus, obtain precise coordinates of text
nodes. This is a practical solution for XULRunner 1.9.2 and this version of the Firefox
platform does not provide coordinates for text nodes.

6–7. Initialize the DOM walker traversing over element nodes and invoke the procedure
DepthFirstTraversal with specified parameters.

The DepthFirstTraversal procedure populates the ontologies with relevant objects and
contains the following main procedures:

1–2. Acquiring a current node from the DOM walker and considering only those which are
element nodes (a DOM walker provided by the Mozilla XULRunner 1.9.2 also navigates
through document elements).

3–4. Obtain an element node specific interface for a given node n and acquire global coordinates
elBBox of its minimum bounding block. Leveraging the XULRunner, the variable elBBox
is computed based on the bounding client rectangle (which contains coordinates relative
to the viewport and acquired by means of the interface nsIDOMNSElement of the current
element el), the local position (relevant to the current DOM Window, i.e., page block)

154

of the relevant viewport (acquired by means of the interface nsIDOMWindow), and global
coordinates wCoords of the current DOM window w.

5. Check if the element is located on the first quadrant of the page canvas and whether it is
relevant to the instantiation area according to the WPPS configuration.

6–7. Instantiation of the element el in the PM and indexing it in the R-tree.

8. Check if a current element el is a frame and if it overlaps with the instantiation area.

9–10. Acquisition of the child DOM window chW related to the frame element el (interface
nsIDOMNSHTMLFrameElement of XULRunner is used by WPPS for this) and its global
coordinates (chWCoords). The position of the child page block is computed based on the
global position elBBox of the element el and local position of the viewport formed by the
frame element el within the child page chW.

11–12. Compute child area relevant to the child page, and for the acquired child window invoke
DOMTreeTraversal in recursion.

13. Check if the child elements can be visible (i.e., a CSS attribute display6=none); the current
element should be a document or element node.

14–15. Walk through the child elements of el and invoke DepthFirstTraversal for each of
them.

16. Set the el element as a current node for the DOM walker.

The PM instantiation also includes the process of the model simplification which is invoked
according to the WPPS configuration. It removes all elements which are in relation P (see
Section 3.6) with other elements and have smaller draw id (i.e., were drawn earlier) while
primarily leveraging SPARQL.

Considering various web pages from the WPPS-HTML-DS1 dataset [72], the reduction in
object amounts in the instance of the PM due to the “simplification” procedure is 26% on average,
whereas the first quartile is 22% and the third quartile is 31%.

5.3.4 WPPS API

The API of the WPPS framework provides all the necessary functionalities for the developer in
realizing web page processing (WPP) methods. It is implemented on top of the adapter layer
(see Section 5.3.1), treating ontological concepts as Java objects and being independent from
particular configurations of the UOM.

When realizing WPP methods, a developer has access to instances of class WPUMethodState,
which contains all information relevant to the current state of the WPPS framework. She also has
access to IEAPI which provides the necessary objects for querying and enriching an instance of
the UOM. A Java object of type WPUMethodState gives access to relevant ontologies (which
can be queried by means of Jena API and SPARQL), the web browser (i.e., Firefox 3.6) and
therefore rendered DOM trees and CSSOMs, as well as current WPPS configuration. By crawling

155

web pages and applying certain methods, the developer can obtain different states which can
be accessed by these methods and thus, conduct comparative analysis of different web pages.
An object IEAPI available for the developer can be used for acquiring integrated enrichers and
basis API, represented by the interface IIEBasisAPI. The latter is the most important Java
object implementing different functions for interacting with the UOM according to the WPPS
configuration.

The functions of the basis API can be split into 3 main groups: 1) selectors, 2) processing
functions, and 3) statistical functions.

1. Selectors are those functions that allow the selection of a specified subset of objects from the
instance of the UOM. Extracted ontological individuals are adapted by the corresponding Java
objects by the use of the bridged adapted design pattern and wrapped by a Java object of type
IResults representing them as a sequence. Selection can be performed based on the type of
object (e.g., “image,” “box,” or “html link”), predicate specified, or SPARQL query. Listing 5.4
demonstrates the use of a selector with a predicate specified targeting objects of specific types.
Furthermore, the object contained or intersecting specified area can be selected; in this case R-tree
is involved for efficiency. Listing 5.5 presents an example of a selector which extracts objects
contained within the specific area and satisfying the specific predicate.

Listing 5.4: Example of using a selector function for extracting images and text elements from
the instance of the UOM and which has a width longer than x

1 IResults rez = api.getObjectsByType(// select all blocks which are images and
text elements satisfying the predicate specified

2 new IIEPredicate() {
3 @Override public Boolean apply(IInstanceAdp avar) {
4 return avar.as(IQntBlock.class).getWidth()>x; // request the interface of

the ’quantitative’ block and check the width
5 } }
6 , IHtmlImage.class
7 , IHtmlText.class);

Listing 5.5: Example of using a selector function for extracting blocks contained within the
specific rectangular region region by means of R-tree and which has an area larger than x

1 IResults rez = api.getObjectsContainedInArea(region // the containments is tested
by means of the R-tree

2 , new IIEFilter() {
3 @Override public EFilterResult apply(IQntBlock avar) {
4 return (Rectangle2DUtils.area(avar.getArea())>x) // check area
5 ?EFilterResult.ACCEPT:EFilterResult.REJECT;
6 } });

2. Processing functions were designed to process objects acquired from the instance of the
UOM by means of selector functions. The following functions are available when treating a result
collection of objects as a set: intersection, union (see line 11 in Listing 5.7), and filtering by the
predicate. Moreover, functions of this group make it possible to order elements as well as group
result objects into subsets (see Listing 5.6), split the result into sequences (see Listing 5.7), and
form trees and grids using the predicates specified by the developer.

156

Listing 5.6: Example of using a processing function for grouping results rez1 into sets with
similar foreground color

1 IResults rezSameFGColorGroups = api.groupInSets(rez1
2 , new IIEPredicate2() {
3 @Override public Boolean apply(IInstanceAdp avar1, IInstanceAdp avar2) {
4 // cast types of avar1 and avar2 to IHtmlElement and compare foreground colors

:
5 return avar1.as(IHtmlElement.class).getForegroundTColor()
6 .equals(avar2.as(IHtmlElement.class).getForegroundTColor());
7 } });

Listing 5.7: Example of using a processing function for grouping results into sequences according
to the order of elements in the result rez1; each pair of adjacent elements in the acquired sequences
are in relation EAST_ORTHOGONAL_VISIBLE_BLOCK_OF with each other

1 IResults rezSameHorizontalDirectionGroups = api.groupInSeq(rez1
2 , new IIEPredicate2() {
3 @Override public Boolean apply(IInstanceAdp avar1, IInstanceAdp avar2) {
4 IQltBlock qltb1 = avar1.as(IQltBlock.class); // cast the type of avar1 into

the ’quantitative’ block
5 IQltBlock qltb2 = avar2.as(IQltBlock.class);
6 // check presence of relation EAST_ORTHOGONAL_VISIBLE_BLOCK_OF between qltb2

and qltb1:
7 return qltb2.hasRelation(qltb1
8 , EBlockQltRelation.EAST_ORTHOGONAL_VISIBLE_BLOCK_OF);
9 } });

11 IResults rez2 = api.union(rezSameHorizontalDirection, rezSameVerticalDirection);

3. Statistical functions provide means for computing aggregated values, such as mean, median,
variance, minimal and maximal value, over a set of objects and set of pairs of adjacent objects in
the result sequence. The latter is useful for computing some characteristics regarding relationships
between adjacent objects in the result collection, such as average spatial distance between
neighboring elements.

Listing 5.8: Example of using a simple statistical function for computing average distance
between pairs of adjacent objects in the horizontally oriented sequences from Listing 5.7

1 final List<Double> distAvgArr = new ArrayList<Double>(
rezSameHorizontalDirectionGroups.size()); // array of distances

3 api.forEach(rezSameHorizontalDirectionGroups // iterate over the horizontally
oriented sequences of objects

4 , new IIEProcedure() {
5 @Override public void apply(IInstanceAdp avar) {
6 distAvgArr.add(
7 api.avgSeqPairs(avar.as(IResults.class) // get average distance between

pairs of adjacent objects in avar
8 , new IFunction2<IInstanceAdp, Double>() {
9 @Override public Double apply(IInstanceAdp avar1,

10 IInstanceAdp avar2) {
11 // cast the type of avar1 into the ’quantitative’ block and request

distance between avar1 and avar2:
12 return avar1.as(IQntBlock.class)
13 .getRelationAsDouble(avar2, EBlockQntRelationType.QNT_DISTANCE);
14 } })

157

15);
16 } });

It is also important to mention class ObjectsPublicFactory providing methods for in-
stantiating objects within the UOM (and particularly within the LM).

5.3.5 WPPS GUI

A GUI of WPPS (see Figure 5.12) enables users and developers to apply different web page
processing methods and visualize results. A WPPS GUI contains versatile visual components,
provided by the ATF project, for visualizing and modifying the DOM tree and CSSOM. It also
contains a component (Ontologies Graph view) for visualizing the UOM by means of graph
diagrams (see Figure 5.13) and interactive visual synchronization with a web page rendered
within the web browser.

5.4 Developing Methods by Means of the WPPS Framework

Leveraging the API provided by the WPPS framework, the developer can realize methods for
web objects identification, web page understanding, and web information extraction. We believe
it is important to take into account activities proposed in Section 5.4.1 which help in structuring
the process of developing Web Page Processing (WPP) methods. In Section 5.4.2, we also give
some example of wrappers developed within the WPPS framework.

5.4.1 WPPS Methods Development Life Cycle

When developing a WPP method, the developer can follow any software development model she
finds the most appropriate, be it waterfall model or spiral model. This is dependent both on the
habit and the complexity of a method to be implemented. In spite of this, we find it important to
consider the following sequence of phases in the WPPS methods development life cycle:

1. Analysis of relevant features: The objective of this phase is to conduct an analysis of
features of the object to be identified or processed (e.g., in case of web page segmentation)
and features of relevant objects of a web page while taking into account different aspects
of web page representation, (i.e., the DOM* reflecting the structure of a web page’s source
code), BGM (describing spatial configurations and relationships between blocks), and
Interface Model (introducing different functional roles of web page elements). For example,
in regards to the main content identification, it is usually located in the middle of a web
page and occupies the majority of the web page canvas. Furthermore, the major part of the
text has the same font, style, color, and so on.

2. Design: This consists of specifying configuration of the WPPS framework (see Sec-
tion 5.3.2) and defining the approach for web page processing. The WPPS configuration is
provided to the framework as an XML file listing all necessary features which should be
supported by the system and modes of their computation.

158

Figure 5.12: Screenshot of the WPPS GUI. The figure demonstrates the result of applying a
wrapper “Cathegory” for a web page edition.cnn.com

Figure 5.13: Screenshot of the Ontologies Graph view of the WPPS GUI. The figure shows the
result of instantiating the PM for a web page www.dbai.tuwien.ac.at

159

edition.cnn.com
www.dbai.tuwien.ac.at

3. Development: This is an implementation of the proposed approach in the WPPS frame-
work using the WPPS API (see Section 5.3.4).

4. Testing: In this phase, effectiveness, efficiency, and robustness of the method are evaluated.
The most common metrics used in the field of Web Page Processing (see Section 2.3) are
precision and recall [68, 163, 169, 177, 305] adopted from the area of Information Retrieval.

5. Integration: At this stage, the method is integrated into other external systems. This
integration primarily refers to providing the external system with understandable represen-
tation of a web page’s LM. It can be achieved, for example, by leveraging the Linked Data
approach and annotating objects of the UOM with concepts known by the external system.
In this thesis, the integration is mainly concerned with modeling the structural data within
the instance of the LM (see Section 4.5), which is used together with the PM to instantiate
the MANM for enhancing accessibility of a web page (see Section 6.3).

6. Maintenance: This phase is related to correcting the developed method when it is neces-
sary to improve its productivity or in case of deterioration of its effectiveness. The latter
can be due to substantial changes within the interface of target web pages and their design
and therefore an unexpected presence of different spatial configurations and features which
were not taken into account during the analysis phase.

In regards to the design phase, we need to distinguish rule/heuristics-based approaches [62,91,
305] and machine learning approaches [138, 186]. The first group depends on a set of predefined
rules which can be web- or domain-specific. These manually constructed rules and heuristics
usually reflect semantics hidden in spatial relationships between web page elements (e.g., [305]).
Machine learning approaches focus on automatically deriving a model which describes specific
aspects or features of web pages (e.g., [121, 138, 145, 186]). WPPS does not provide any specific
interface for building rules or classifiers. Instead, the framework provides the interface for
interacting with the UOM as well as querying and populating it with relevant objects. Examples
in Section 5.4.2 demonstrate the use of the WPPS API for realizing heuristic-based approaches.
Section 5.6 describes the use of WPPS in the development of a feature computation tool ObjIdent
in the approach based on machine learning for basic web object identification.

Regarding the development phase, a method realizing a certain approach proposed dur-
ing the design phase should be declared in the file wpps-methods-config.xml and imple-
mented in the Java language in the corresponding plug-in fragment hosted by the WPPS plug-in
tuwien.dbai.wpps.core according to the Eclipse RCP architecture. The XML file with
method declarations should contain the following information (see example in Listing 5.9):

• An id of the method should be specified; it is a string for the unique identification (and
can be a universally unique identifier, UUID).

• gen-type=INTERNAL denotes that a WPP method is either part of the WPPS framework
(i.e., provided by default with the release of WPPS) or provided by means of a plug-in
fragment. At the moment, only this value of the parameter is allowed.

160

• A parameter type specifies the type of method consisting of either WRAPPER, ENRICHER,
or CRAWLER. A wrapper is a WPP method which populates an instance of the LM with
assertions based on a web page’s PM (where the PM is automatically instantiated by WPPS,
see Section 5.3.3). An enricher gives the possibility to enrich the PM with additional
information necessary for the analysis. A web crawler in WPPS is a WPP method which
can navigate through web pages and conduct a cross-page analysis.

• major-name, minor-name, and description convey a generic name (or category) of
the method, its precise name, and description respectively.

• A parameter java-class has a full name of a Java class implementing the WPP method.
Thus, whether integrated into the system by default or by means of a plug-in fragment, a
corresponding WPP method can be found by WPPS using this parameter.

Listing 5.9: An example of a method declaration in the file wpps-methods-config.xml
1 <wpps-methods-config>
2 <method id="horNavMenu"
3 gen-type="INTERNAL"
4 type="WRAPPER"
5 major-name="Navigation menu"
6 minor-name="Horizontal navigation menu"
7 description="Extraction of basic horizontally oriented navigation menu">
8 <java-class name="tuwien.dbai.wpps.exmplmethods.navmenu.BasicHorNavMenuWrapper

"/>
9 </method>

10 ...
11 </wpps-methods-config>

A web crawling is currently limited in the WPPS and will be developed in further work on
WPPS. A comparative analysis of web pages will be possible due to the generation and full control
over different states of instances of the UOM provided by Java objects of type WPUMethodState
(see Section 5.3.4).

Java classes implementing certain WPP methods should subclass specific classes pro-
vided by WPPS. For example, a method of type “wrapper” (i.e., type=WRAPPER) should be
a subclass of AWPUWrapper and implement class methods with signatures and return types
List<IResults> _extractResults() and void _dumpIntoLM(List<IResults>).
The former class method is used for realizing an extraction mechanism for the PM and rep-
resenting the acquired results in a collection of type List<IResults>. The latter class
method is leveraged to serialize the acquired results within the instance of the LM by
means of a class ObjectsPublicFactory and a method <U extends IInstanceAdp>

U convertTo(Class<U>) of the class IResults.

5.4.2 Basic Examples of WPPS Methods

By leveraging the WPPS API and adapters, one can query the UOM and treat individuals as
Java objects abstracting from the ontologies and reasoners. In this section, we consider two
examples of wrappers in detail: extraction of the horizontal navigation menu (see Example 5.1)
and extraction of images with their captions (see Example 5.2). As we can see, both examples

161

operate merely on a web page’s visual representation and with visually perceptible features while
taking into account assertions in the instances of the BGM and Interface Model.

Example 5.1 (Extraction of the horizontally oriented navigation menu). To demonstrate, we
present a wrapper for extracting a horizontally oriented navigation menu. The wrapper is
implemented using the WPPS API, and its source code demonstrating the extraction process
(a class method _extractResults()) and instantiation of the acquired results in the LM (a
class method _dumpIntoLM(List<IResults>)) is presented in Listing 5.10. We define a
navigation menu as a sequence of menu items (line 44) with spatial relations “east-orthogonal-
visible-block-of” (lines 11–13 and 35) and “bottom-aligned-with” (line 36) defined between them
(lines 31–37). Each menu item is a link (line 24) containing nonempty textual elements (line 25).
The expected location is on the top of a web page in a rectangular area with the height of 250 px
(lines 17–18).

Listing 5.10: The source code (in the Java language) of a WPPS-based wrapper for identifying a
horizontally oriented navigation menu

1 public class BasicHorNavMenuWrapper extends AWPUWrapper {

3 public BasicHorNavMenuWrapper(AWPUMethodDescription description) {
4 super(description);
5 }

7 @Override protected List<IResults> _extractResults() {
8 final IIEBasisAPI api = super.getIEAPI().getIEBasisAPI(); // get basis WPPS API

10 // 1. enrich a web page’s PM with a supplementary relation
EAST_ORTHOGONAL_VISIBLE_BLOCK_OF only for html links

11 AsymmetricOrthogonalVisibilityEnricher e = getIEAPI().getEnricher(
AsymmetricOrthogonalVisibilityEnricher.class);

12 e.init(IHtmlLink.class, EBlockQltRelation.EAST_ORTHOGONAL_VISIBLE_BLOCK_OF);
13 e.enrich();

15 // 2. get all links, which contain nonempty textual elements, from the top part of
a web page

16 IWebDocumentBlock doc = api.getObjectByType(IWebDocumentBlock.class); // get
document block

17 Rectangle2D area = doc.getTopWebPage().as(IQntBlock.class).getArea(); // get top
page block and request for the occupied area on a web page canvas

18 area.yMax = 250; //px

20 IResults res = api.getObjectsContainedInArea(area // leverage R-tree to get
objects from the top area of a web page

21 // consider only those elements which are links containing nonempty text elements
22 , new IIEFilter() {
23 public EFilterResult apply(IQntBlock v) {
24 if (v.canAs(IHtmlLink.class)
25 && v.as(IHtmlLink.class).getString().length() > 0)
26 return EFilterResult.ACCEPT;
27 else return EFilterResult.REJECT;
28 } }); // apply, new IIEFilterm, getObjectsContainedInArea

30 // 3. join objects by relations EAST_ORTHOGONAL_VISIBLE_BLOCK_OF and
BOTTOM_ALIGNED_WITH

31 res = api.groupInSeq(res, new IIEPredicate2() {
32 public Boolean apply(IInstanceAdp v1, IInstanceAdp v2) {

162

33 IQltBlock b1 = v1.as(IQltBlock.class);
34 IQltBlock b2 = v2.as(IQltBlock.class);
35 return b2.hasRelation(b1, EBlockQltRelation.EAST_ORTHOGONAL_VISIBLE_BLOCK_OF)
36 && b2.hasRelation(b1, EBlockQltRelation.BOTTOM_ALIGNED_WITH); // these

relations are acquired by WPPS according to its configuration
37 } }); // apply, new IIEPredicate2, groupInSeq

39 return (List) res.getResultContent(); // return list of sequences of objects (i.e
., navigation menus) formed by the method ’groupInSeq’

40 } // _extractResults

42 @Override protected void _dumpIntoLM(List<IResults> results) {
43 for(IResults r :results) {
44 ISequence seq = r.convertTo(ISequence.class); // instantiate an identified

navigation menu as a sequence in a web page’s LM
45 addLogicalStructure(seq); // report to the framework and other WPPS methods that

this wrapper has created an object
46 // make a sequence of navigation items to highlight in the WPPS GUI
47 r.convertTo(IBoundingBlock.class); // instantiate navigation menu object as a

bounding block
48 r.convertTo(IQntBlock.class); // compute coordinates for the bounding block

which is minimum bounding block for the contained elements
49 } } // for, _dumpIntoLM

51 } // BasicHorNavMenuWrapper

In the implementation presented in Listing 5.10, we invoke a default enricher for the
relation EAST_ORTHOGONAL_VISIBLE_BLOCK_OF (lines 11–13), but do not apply it for
BOTTOM_ALIGNED_WITH. This fact requires the developer to specify corresponding settings
in relevant WPPS configuration file. Regarding the former relation in particular, the relation type
OrthogonallyVisibleBlock should be defined in the parameter support-in-ontology
(which means that WPPS should generate necessary implementors to support this type of relations).
However, the relation BOTTOM_ALIGNED_WITH and corresponding relation type Alignment

should be set in the parameter compute-by-request with attribute basis="quantitative"
(which means that relations of this type should be computed “on-the-fly” utilizing quantitative
information) as it is described in Section 5.3.2.

To obtain better precision, the wrapper presented in Example 5.1 can have additional con-
straints regarding the distance between menu items (e.g., the maximum distance between menu
items should be less than the width of the widest menu item and should not differ much), number
of items (e.g., from 3 to 20), font similarity, and number of lines (e.g., at most two lines). Results
of applying such an enhanced wrapper in WPPS is presented on the screenshots in Figure 5.14.

Example 5.2 (Extraction of images with their captions). To demonstrate, we represent a caption
as a textual element (line 18 in Listing 5.11) which overlaps with the area of an image (line 18)
extended downward (lines 16–17) and has the biggest font size among the candidates (lines
23–27). Example of the application of the wrapper presented in Listing 5.11 is demonstrated on
screenshots in Figure 5.15.

163

Figure 5.14: Screenshots of results of identifying a horizontally oriented navigation menu with
the use of WPPS

Listing 5.11: The source code (in the Java language) of a class method _extractResults

of a WPPS-based wrapper for identifying images with their captions. (imageMinArea=5000,
captionIndent=20)

1 final IIEBasisAPI api = getIEAPI().getIEBasisAPI();
2 final List<IResults> rez = new LinkedList<IResults>();

4 // 1. get all images with the area at least ’imageMinArea’ (px^2)
5 IResults imgRes = api.getObjectsByType(
6 new IIEPredicate() {
7 @Override public Boolean apply(IInstanceAdp avar) {
8 return Rectangle2DUtils.area(avar.as(IQntBlock.class).getArea())>=

imageMinArea;
9 } } // apply, new IIEPredicate

10 , IHtmlImage.class);

12 //2. find relevant caption for each image
13 api.forEach(imgRes, new IIEProcedure() {
14 @Override public void apply(IInstanceAdp img) {
15 // 2.1 get all text elements which intersect a specific area
16 Rectangle2D area = img.as(IQntBlock.class).getArea();
17 area.yMax+=captionIndent; // increase the area changing the yMax by ’

captionIndent’(px)
18 IResults txts = api.getObjectsIntersectingArea(area, null, IHtmlText.class);

// use R-tree to get text elements intersecting the specific area; null --
additional filter is not used

20 // 2.2. find a caption (text element with the biggest font size)
21 if (txts.size()>0) { // if at least one text element was selected
22 // order a list of the acquired text elements by their font size in the

descending order
23 txts = api.orderBy(txts, new IFunction<IInstanceAdp, Comparable<?>>() {
24 @Override public Comparable<?> apply(IInstanceAdp avar) {
25 return avar.as(IHtmlText.class).getFontSize();
26 }}, -1); // <0 is descending order, >=0 is ascending order
27 rez.add(api.toResults(Lists.newArrayList(txts.get(0), img))); // add the

first element from the list of text elements (caption) and an image into

164

Figure 5.15: Screenshots of results of extracting images with relevant captions with the use of
WPPS

the result list
28 }
29 else
30 rez.add(api.toResults(Lists.newArrayList(img))); // add only image into the

result list
31 } }); // apply, new IIEProcedure, forEach
32 return rez;

To present the possibility of applying methods from the field of Document Processing in the
field of Web Page Processing that was noted in Section 2.3.2, we implemented segmentation
algorithms presented in [106] based on the XY-cut technique and intended for document images
in the WPPS framework. The results of applying this method on contemporary web pages is
demonstrated in Figure 5.16.

The developer, when leveraging WPPS, has the possibility to take into account spatial
configurations and different geometric peculiarities of web page elements. This permits her to
create methods which are applicable on a significantly wider range of web pages in contrast
to methods operating on the technical level of a web page (i.e., on the source code and DOM
tree levels). This supports our findings regarding the properties of different forms of web page
representation presented in Section 2.4.8.

165

Figure 5.16: Screenshots of results of leveraging a web page segmentation based on the XY-cut
algorithm presented in [106] with the use of WPPS

5.5 WPPS Evaluation

In this section, we conduct a comparative analysis of the efficiency of leveraging different WPPS
configurations and joint application of declarative and object-oriented approaches by example of
basic interactions with the instance of the UOM. The intention of this experiment is to demonstrate
the feasibility of the approach integrating declarative and object-oriented paradigms by example
of WPPS framework as well as to consider different aspects of this approach in its application to
web page processing.

5.5.1 Goal and Objectives

The goal of this empirical research is to study the efficiency of the WPPS framework for different
configurations related to the object-oriented abstraction (see Section 5.2) as well as to provide
the developer, based on the data acquired from the experiment, with information necessary for
choosing the most appropriate configuration for realizing a web page processing method.

According to the aim specified, we pose the following objectives:

• Select the most relevant WPPS parameters for the analysis and specify their values (see
Section 5.5.2).

• Choose representative basic queries for the UOM (see Section 5.5.2).

• Develop corresponding wrappers according to the identified configurations and queries
specified (see Section 5.5.3).

166

• Collect data related to the performance of different wrappers and conduct their analysis
(see Section 5.5.4).

• Form conclusions regarding different configurations and their purpose (see Section 5.5.5).

5.5.2 WPPS Parameters and Queries

Parameters to be Considered

According to the goal specified, we consider WPPS parameters which define a realization of the
UOM and influence the modes of interacting with the UOM and methods of acquiring required
information worthy of leverage in the experiment (Detailed description of the WPPS parameters
can be found in Section 5.3.2.) These are mainly:

• A parameter type specifying a realization of the ontology in Jena either based on the RDF
graph (type=RDF) or a set of statements in Jena OWL model (type=OWL).

• A type of the standard reasoner provided by Jena which is set by the parameter
jena-reasoner. We believe it is important to consider both RDFS and OWL DL reason-
ers, such as Jena’s RDFS_SIMPLE (with simplified, high performance rules) for reasoning
over RDF(S) model and OWL_DL_MEM_RULE_INF for reasoning over OWL statements
grasping the full expressive power of the UOM [231, 232].

• Inference rules which should be applied over the relevant ontology and which are deter-
mined by the parameter rules.

• Parameters configuring the mode of instantiating information in the UOM. Mainly, we refer
to the parameter create-in-ontology (which requires information such as objects, their
attributes, and relations to be automatically instantiated in the UOM during the Physical
Model generation phase by WPPS) and the parameter support-in-ontology (which
requires manual instantiation of relevant information in the web page processing methods,
for example, by means of so called enrichers).

• Parameters identifying the mode of acquiring information from the UOM. For the
dynamic computation “on-the-fly,” it is compute-by-request with the attribute
basis="quantitative" (i.e., computation of specified attributes of objects and re-
lations based on basis quantitative information) and composite-basic-dependence

(i.e., computation of the specified composite relations based on basic relations).

Basic Queries to be Evaluated

Based on the WPPS API proposed (see Section 5.3.4), it is important to consider the following
two basic queries:

Definition 5.1 (Query Q1). Given ontology O = 〈C,HC ,RC ,HR, I, ι,RI ,A〉 as it is spec-
ified in Definition 2.1 (on page 48), object b∗ ∈ I (a set of objects, i.e., instances of classes),
and relation ρ ∈ RC (a set of relations), a query Q1(ρ, b

∗) returns the set B such that
∀bi ∈ I[ρ(b∗, bi)→ bi ∈ B].

167

Algorithm 5.4: A generic algorithm for the scenario realizing the query Q1 (see Defini-
tion 5.1)

Input :API of the WPPS framework (wppsAPI).
Output :Blocks from the central area of a web page (blocks).

1 area← ComputeArea(wppsAPI);
2 EnrichPMWithRCC8(wppsAPI);
3 blocks← SelectBlocks(area, wppsAPI);

Algorithm 5.5: A generic algorithm for the scenario realizing the query Q2 (see Defini-
tion 5.2)

Input :API of the WPPS framework (wppsAPI).
Output :Blocks from the central area of a web page (blocks).

1 EnrichPMWithRCC8(wppsAPI);
2 blocks← SelectBlocks(area, wppsAPI);

Definition 5.2 (Query Q2). Given ontology O = 〈C,HC ,RC ,HR, I, ι,RI ,A〉 as it is speci-
fied in Definition 2.1 (on page 48) and relation ρ ∈ RC , a query Q2(ρ) returns the set B such
that ∀bi ∈ I, bj ∈ I[ρ(bi, bj)→ 〈bi, bj〉 ∈ B].

In general, with the use of the exhaustive search and ignoring the complexity of relevant
reasoning mechanisms, the time complexity of the query Q1 can be described by O(n) and the
time complexity of the query Q2 by O(n2).

5.5.3 Evaluation Wrappers

Based on the queries presented and the parameters determined, we define two main scenarios
for the experiment. The first scenario for the query Q1 consists of extracting blocks (mainly
visualized elements, viewport blocks, page blocks and a document block, see Section 4.4.2) of the
BGM (see Section 4.4.2) from the area which is located in the center of the web page (a document
block). Its width and height take 50% of the width and height of the web page respectively. The
containment of a block within the specific area is defined by means of the topology of blocks such
as RCC8 relations. A generic procedure is presented in Algorithm 5.4. It includes three main
operations: 1) computing the required area (ComputeArea), 2) enriching the PM with basic
RCC8 relations (optional procedure EnrichPMWithRCC8 which enables instantiation of the
topological relationships between blocks, see Section 3.6), and 3) selecting blocks from the area
acquired (SelectBlocks). The second scenario for the query Q2 is related to the extraction of
pairs of blocks with topological relation P between them. A generic algorithm for this scenario
is presented in Algorithm 5.5. It has the same procedures as the algorithm of the first scenario
except for computation of the required area.

For the purpose of the evaluation, we prepared 28 wrappers (14 wrappers for each scenario)
realizing the specified algorithms. Table 5.1 presents 14 types of wrappers’ configurations
independent from the scenarios and 6 main dimensions of these configurations reflecting the
implementation of corresponding wrappers and their WPPS parameters. Thus, dimensions 3, 5,

168

and 6 are realized by the wrappers, whereas dimensions 1, 2, and 4 reflect the WPPS parameters
that can be specified in the configuration file (see Section 5.5.2). In particular, the first dimen-
sion defines a standard reasoner used (i.e., the jena-reasoner parameter) and realization of
the ontology (i.e., the type parameter for the ontology) accordingly. Thus, the value “RDFS”
in this dimension corresponds to jena-reasoner=RDFS_SIMPLE and type=RDF, whereas
the value “OWL” refers to jena-reasoner=OWL_DL_MEM_RULE_INF and type=OWL. The
second dimension determines the set of rules to be additionally applied (i.e., the rules pa-
rameter). We present four types of rules capturing different TBox statements of the UOM
(see Section 4.3) such as property (relation) subsumption, symmetry and inversion which are
required for some wrappers to realize relevant queries. In the evaluation, we use the forward
chaining rule engine provided by Jena [232] (i.e., ruleMode=FORWARD). The third dimension
defines the need to invoke enricher to instantiate basic RCC8 relations (i.e., topological rela-
tions) in the ontology (procedure EnrichPMWithRCC8 in Algorithms 5.4 and 5.5). We use
the enricher BasicSpatialRelationsEnricherBasedOnQntInfo integrated into WPPS
and instantiating basic qualitative relations of a certain type (e.g., RCC8, O-direction relation,
distance, and alignment) in the ontology. The enricher has two modes which differ in that one
mode does not materialize relations between objects which are symmetric or inverse to the
materialized ones. Thus, the enrichers add n(n − 1)/2 or n(n − 1) assertions depending on
the mode of enrichment forming the complete graph (n is the number of the blocks consid-
ered). Therefore, the enriching procedure should at least consist of the quadratic complexity,
such as O(g(n2)). The fourth dimension refers to the property (relation) configuration (see
Section 5.3.2). If RCC8 relations should be computed “on-the-fly” by the WPPS framework
and their computation is “based on quantitative information,” we assume RCC8 to be mentioned
in the compute-by-request parameter with attribute basis="quantitative" within the
WPPS configuration file. If relations (i.e., basic RCC8 relations in our case) are presented in
the ontology due to the enriching procedures and can be queried by WPPS without additional
computations (value “select from the PM” in this dimension), the value RCC8 should be specified
in the WPPS parameter support-in-ontology. If relations are presented in the ontology
and composite ones should be computed “on-the-fly” by WPPS based on the basic ones (value
“composite rel. are based on the basic” for the dimension), the value RCC8 should also be assigned
to the parameter composite-basic-dependence within the WPPS configuration file. The
fifth dimension defines topological relations which should be considered by the wrapper for
querying the UOM. The sixth dimension defines a method used in the wrapper for implementing
relevant query (i.e., Q1 or Q2). Thus, we distinguish thee of such methods: 1) the application
of the R-tree, 2) traversing all blocks from the PM (“exhaustive search”) with the use of the
WPPS interface providing the abstraction from the UOM realization, and 3) directly querying the
model (in this case, the user’s query is translated by WPPS into the Jena API without the use of
SPARQL).

According to the configurations presented in Table 5.1, we name the corresponding wrappers
as the following: 〈config. name〉(〈query type〉). For example, a wrapper with configuration
8DExhSearchBasicRel implementing the second scenario is named as 8DExhSearchBasicRel(Q2).

The specified dimensions enable different ways of implementing the defined scenarios. For
example, wrappers 1ARTree(Q1, Q2) query WPPS for the containment relation P by means of

169

Table 5.1: Configurations of wrappers evaluating WPPS regardless of the implemented scenario

Wrapper 1. Stan-
dard rea-
soner

2. Rules 3. RCC8
relations
enricher

4. Computa-
tion of the
relations

5. Con-
sidered
rela-
tions

6. Blocks
selection

1ARTree — — — based on
quantitative
information

P R-Tree

2BExhSearchQntRel — — — based on
quant.
inform.

P exhaustive
search

3CExhSearchBasicRel — — with
symmetric
and inversive
relations

select from
the PM

NTPP,
TPP,
EQUAL

exhaustive
search

4CExhSearchCompRel — — with sym.
and invers.
rel.

composite
rel. are based
on the basic

P exhaustive
search

5CQueryBasicRel — — with sym.
and invers.
rel.

select from
the PM

NTPP,
TPP,
EQUAL

query the
PM

6CQueryRDFSCompRel RDFS — with sym.
and invers.
rel.

select from
the PM

P query the
PM

7CQueryCompRelPRules — property
subsumption

with sym.
and invers.
rel.

select from
the PM

P query the
PM

8DExhSearchBasicRel — — without sym.
and invers.
rel.

select from
the PM

NTPP,
TPP,
EQUAL,
NTPP-,
TPP-

exhaustive
search

9DExhSearchBasicRelSIRules — symmetry
and inversion

without sym.
and invers.
rel.

select from
the PM

NTPP,
TPP,
EQUAL

exhaustive
search

10DQueryBasicRel — — without sym.
and invers.
rel.

select from
the PM

NTPP,
TPP,
EQUAL,
NTPP-,
TPP-

query the
PM

11DQueryBasicRelSIRules — symmetry
and inversion

without sym.
and invers.
rel.

select from
the PM

NTPP,
TPP,
EQUAL

query the
PM

12DQueryDLCompRel OWL DL — without sym.
and invers.
rel.

select from
the PM

P query the
PM

13DQueryRDFSCompRelIRules RDFS inversion without sym.
and invers.
rel.

select from
the PM

P query the
PM

14DQueryCompRelSIPRules — prop.
subsump.,
sym.,
inversion

without sym.
and invers.
rel.

select from
the PM

P query the
PM

170

the R-tree, which in turn uses quantitative information (coordinates of blocks) for this purpose.
2BExhSearchQntRel(Q1,Q2) with the “exhaustive search” approach requests the WPPS framework
for the composite relation P (between blocks) which the framework also computes “on-the-fly”
based on quantitative information. 13DQueryRDFSCompRelIRules(Q1, Q2) utilizes RDF graph
to instantiate the ontology and standard RDFS reasoner together with supplementary inference
rules for inverse relations. It enriches the ontology with basic RCC8 relations without symmetric
and inverse counterparts and applies direct queries regarding P relations to the ontology. These
queries are feasible due to the automatic reasoning over the property subsumption by the RDFS
reasoner, which derives P and P- relations, and the subsequent application of inference rules for
the inverse relations. These inference rules provide the possibility of obtaining P for identified P-

relations (see the subsumption hierarchy for RCC8 in Figure 3.3 on page 70 and Figure 4.11 on
page 117).

Considering the sixth dimension in more detail, it is important to note that different config-
urations and implementations possess different efficiencies. For example, the R-tree ensures
the time complexity of search between O(logmn) and O(n). Therefore, a blocks selection
procedure (SelectBlocks) implementing the query Q1 of the wrapper 1ARTree(Q1) should
have similar time complexity, whereas the queryQ2, a SelectBlocks procedure of the wrapper
1ARTree(Q2) should have the time complexity between O(n logm n) and O(n2) since the R-tree
is queried for each block. For the wrappers which do not have logical reasoning in the back-
ground, an “exhaustive search” method should correspond to the linear time complexity for the
query Q1 (e.g., wrappers such as 2BExhSearchQntRel(Q1), and 3CExhSearchBasicRel(Q1)) and
quadratic complexity for the query Q2 (e.g., wrappers such as 4CExhSearchCompRel(Q2) and
8DExhSearchBasicRel(Q2)). The time complexity of selecting blocks with the use of reasoners
(e.g., wrappers such as 9DExhSearchBasicRelSIRules(Q1, Q2)) mainly depends on the considered
properties of the UOM (i.e., TBox). The time complexity of direct queries to the ontology
depends both on query optimization realized by Jena and applied reasoners (e.g., wrappers such
as 5CQueryBasicRel(Q1, Q2) and 13DQueryRDFSCompRelIRules(Q1, Q2)).

5.5.4 Performance Analysis

Although all the wrappers were evaluated over a relatively small subset of web pages from
the WPPS-HTML-DS1 [72] dataset, it was sufficient in obtaining a conclusion regarding the
time complexity of different WPPS configurations and implementations. Section 3.11 conveys
general statistical characteristics of WPPS-HTML-DS1 and Section 3.11.6 in particular reports
the average amount of visualized elements in web pages.

We collected data on the performance of different procedures relevant to the scenarios given
(see Algorithms 5.4 and 5.5): generation of the PM, computation of the required area (the
procedure ComputeArea of the first scenario), enriching the ontology with basic RCC8 rela-
tions (the procedure EnrichPMWithRCC8), and selection of the required blocks (the procedure
SelectBlocks). Due to the fact that the wrappers of both scenarios implement procedures such
as generation of the PM and enriching the PM (EnrichPMWithRCC8), each pair of wrappers
with the same configuration (but implementing different scenarios) have the same performance
characteristics of such procedures. Therefore, it is sufficient to consider only wrappers from one
of the scenarios. Based on this knowledge, we mainly focus on the wrappers of the first scenario

171

and consider differing procedures of the wrappers of the second scenario separately.
For a detailed illustration of the efficiency of different wrappers, we generated the following

graphs based on the data acquired: Figures 5.17, 5.18, and 5.19 reflect the overall time complexity
of wrappers. Figures 5.20 and 5.21 profile wrappers demonstrating the average efficiency of the
realized procedures. Figure 5.22 reflects the complexity of the process of instantiating the PM.
Figures 5.23, 5.24, and 5.25 describe in detail the performance of computing the required area
on a web page canvas. Processes of enriching the PM with basic RCC8 relations is presented in
Figures 5.26 and 5.27. The final blocks selection procedure is illustrated in Figures 5.28, 5.29,
5.30, and 5.31 in detail.

It is worth mentioning that the results of the experiment can differ to some extent depending
on certain wrappers when using other ontology frameworks (e.g., OWL API). This specifically
refers to the application of the standard reasoner (e.g., RDFS and OWL DL) and supplementary
inference rules. Due to the limitations of the Jena framework, for example, with the mutual use
of a standard reasoner and custom inference rules WPPS cascades relevant reasoners building
two “layers” as suggested in [232, Sec. 6.9] (i.e., a reasoner leveraging custom inference rules
operates over the results of the standard reasoner). When interacting with the ontology, this
approach ensures sequential application of the standard reasoner and the reasoner for custom
inference rules. This fact explains the higher complexity of 13DQueryRDFSCompRelIRules, using
both RDFS reasoner and logical rules for inverse relations, in contrast to 12DQueryDLCompRel
leveraging solely integrated OWL DL reasoner. Furthermore, we did not apply WPPS parameter
PROPenableTGCCaching passed to Jena in the experiment, requiring the Jena reasoner to cache
transitive closures (e.g., for the subproperty and subclass lattices). According to our additional
experiments, its use may boost up the performance of the reasoner by 5–10%.

Overall Evaluation

The measurement of the time complexity of the wrappers is illustrated in Figures 5.17, 5.18,
and 5.19, in which the dependency between quantity of blocks (such as visualized elements,
viewport blocks, page blocks and a document block) and time required for wrappers is reflected.
Figures 5.20 and 5.21 represent program profiling for the wrappers. It is important to note

that certain pairs of wrappers with the same WPPS configuration but implementing different
scenarios have similar overall time complexity, for example, 5CQueryBasicRel(Q1) and 5CQuery-
BasicRel(Q2). This fact is highlighted in the figures.

Most of the wrappers are between quadratic and exponential complexity (see Figures 5.17
and 5.18). (In this thesis we do not conduct a formal analysis of the complexity of different
wrappers.) Based on the illustrations, we can distinguish several principal groups of wrappers
with similar time complexity characteristics:

• 1ARTree(Q1, Q2) and 2BExhSearchQntRel(Q1, Q2) are the most efficient evaluation wrap-
pers. They do not need any logical inference and are purely based on the quantitative
information, in particular, coordinates of blocks stored in the instance of the QntBGM.
2BExhSearchQntRel(Q1) has the complexity close to the linear (see Figures 5.19a), that is
mainly ensured by the PM instantiation procedure (see Figure 5.20b), and requires less
than two seconds for web pages with less than 2000 visualized elements (average web

172

Figure 5.17: Overall evaluation of wrappers implementing the first scenario, leveraging different
WPPS configurations and methods of querying the PM. Estimations of the time complexity of
some wrappers of the first scenario are similar to the wrappers of the second scenario, as specified
on the graph

page in the WPPS-HTML-DS1 dataset has 1105 visualized elements, see Section 3.11.6).
2BExhSearchQntRel(Q2) in turn reflects the quadratic complexity of the query Q2 (see
Figure 5.18) that, in contrast, is mainly ensured by the blocks selection procedure (see
Figure 5.21b). Wrappers 1ARTree(Q1, Q2) have surprisingly good performance (see Fig-
ure 5.19) and outperforms all the others. This fact is also supported by Figures 5.20a and
5.21a, where it is evident that the blocks selection procedure is dramatically more efficient
than other procedures (i.e., the PM instantiation) in the wrappers.

173

Figure 5.18: Overall evaluation of distinct wrappers implementing the second scenario, leveraging
different WPPS configurations and methods of querying the PM

• 8DExhSearchBasicRel(Q1) and 10DQueryBasicRel(Q1, Q2) query basic relations in the
instance of the PM which is enriched with RCC8 relations without symmetric and inverse
counterparts. 8DExhSearchBasicRel(Q1) realizes queries via WPPS API providing the
object-oriented abstraction over the ontology. Wrappers 10DQueryBasicRel(Q1, Q2) in turn
leverage direct queries to the instance of the PM (particularly, the instance of the BGM
without the abstraction mechanisms). The complexity is mainly caused by the enriching
procedure (see Figure 5.20).

• In contrast, 9DExhSearchBasicRelSIRules(Q1) and 11DQueryBasicRelSIRules(Q1,Q2) apply
inference rules for deriving symmetric and inverse relations for basic RCC8 relations
instantiated in the ontology. It permits us to consider only three basic topological relation-
ships (i.e., NTPP, TPP, and EQUAL) when selecting relevant blocks. The complexity
is mainly ensured by the enricher and partially by the blocks selection procedure (see
Figure 5.20).

• 8DExhSearchBasicRel(Q2) is less efficient than 8DExhSearchBasicRel(Q1) due to the im-
plementation of the query Q2 through the “exhaustive search.” This fact is supported in
Figures 5.20h and 5.21e, where we can see that the SelectBlocks procedure takes 48% of
the run time for 8DExhSearchBasicRel(Q2) and only 0.21% for 8DExhSearchBasicRel(Q1).

174

(a) Overall evaluation of wrappers 1ARTree(Q1) and 2BExhSearchQntRel(Q1) im-
plementing the first scenario

(b) Overall evaluation of wrappers 1ARTree(Q2) and 2BExhSearchQntRel(Q2) im-
plementing the second scenario

Figure 5.19: Overall evaluation of wrappers with configurations 1ARTree and 2BExhSearchQntRel

175

(a) 1ARTree(Q1) (b) 2BExhSearchQntRel(Q1) (c) 3CExhSearchBasicRel(Q1)

(d) 4CExhSearchCompRel(Q1) (e) 5CQueryBasicRel(Q1) ≈ (Q2) (f) 6CQueryRDFSCompRel(Q1) ≈
(Q2)

(g) 7CQueryCompRelPRules(Q1)
≈ (Q2)

(h) 8DExhSearchBasicRel(Q1) (i) 9DExhSearchBasicRelSI-
Rules(Q1)

(j) 10DQueryBasicRel(Q1) ≈ (Q2) (k) 11DQueryBasicRelSIRules(Q1)
≈ (Q2)

(l) 12DQueryDLCompRel(Q1) ≈
(Q2)

(m) 13DQueryRDFSCompRelI-
Rules(Q1) ≈ (Q2)

(n) 14DQueryCompRelSIP-
Rules(Q1) ≈ (Q2)

(o) Legend

Figure 5.20: Profiling the evaluation wrappers: average values of the performance

176

(a) 1ARTree(Q2) (b) 2BExhSearchQntRel(Q2) (c) 3CExhSearchBasicRel(Q2)

(d) 4CExhSearchCompRel(Q2) (e) 8DExhSearchBasicRel(Q2) (f) 9DExhSearchBasicRelSI-
Rules(Q2)

(g) Legend

Figure 5.21: Profiling the wrappers implementing the second scenario with exhaustive search:
average values of the performance

• 3CExhSearchBasicRel(Q1), 4CExhSearchCompRel(Q1, Q2), 5CQueryBasicRel(Q1, Q2), and
6CQueryRDFSCompRel(Q1, Q2) leverage the enricher materializing RCC8 relations with
their symmetric and inverse counterparts. This enricher is the main time-consuming
procedure in these wrappers (see Figures 5.20 and 5.21). It makes them less efficient
in comparison with wrappers of the groups mentioned earlier. Wrappers within this
group select relevant relations from the instance of the PM. For 4CExhSearchCompRel(Q1,
Q2), WPPS provides composite relations computing them based on the basic ones. For
6CQueryRDFSCompRel(Q1, Q2), WPPS utilizes the RDFS reasoner for deriving P. We
also refer 9DExhSearchBasicRelSIRules(Q2) (which uses custom inference rules to derive
symmetric and inverse relations) to this group. This adds supplementary complexity to the
procedure of querying the ontology and makes the wrapper less efficient than its counterpart
in the first scenario.

• 3CExhSearchBasicRel(Q2) is more time-consuming than 3CExhSearchBasicRel(Q1) only
due to the additional complexity introduced by the blocks selection procedure realizing the
query Q2.

177

• 7CQueryCompRelPRules(Q1, Q2), 12DQueryDLCompRel(Q1, Q2), and 14DQueryCompRel-
SIPRules(Q1, Q2) apply enrichers and directly query the PM regarding the P relation. All
of these wrappers leverage automatic reasoning to derive queried composite relationship
P from the basic ones acquired by means of enrichers. Performance of the wrappers
12DQueryDLCompRel(Q1, Q2) and 14DQueryCompRelSIPRules(Q1, Q2) is mainly ensured
by the blocks selection procedure which operates in conjunction with reasoning process
performed within the WPPS framework (see Figures 5.20l and 5.20n). Efficiency of
7CQueryCompRelPRules(Q1, Q2) is defined both by the enriching ontology and blocks
selection processes with automatic reasoning applied (see Figure 5.20g). The enricher in
this case, in contrast to other wrappers in this group, instantiates symmetric and inverse
pairs of relations. This influences the overall performance of this wrapper.

• 13DQueryRDFSCompRelIRules(Q1, Q2) are the most expensive wrappers (see Figure 5.17)
utilizing both the RDFS reasoner and custom inference rules for inversions (see Table 5.1
on page 170). The blocks selection procedure contributes to the complexity of wrappers
(see Figure 5.20m). This example reveals the inefficiency in the joint use of the standard
and custom rule-based reasoners in WPPS.

Instantiation of the Physical Model

The efficiency of the process of PM instantiation (described in Section 5.3.3) is illustrated in
Figure 5.22. As we can see, the performance of the process does not depend on the configuration.
This is mainly due to the fact that WPPS does not invoke a procedure of automatic reasoning
during the PM instantiation and thus, the time complexity is almost the same for different
wrappers. The graph reflects the linear complexity which primarily depends on the number of
nodes in DOM trees of a web page.

Computation of the Required Area for the First Scenario

The efficiency of the procedure ComputeArea of the first scenario is illustrated in Figures 5.23,
5.24, and 5.25 according to different scales. This procedure includes querying the ontology for
the document block, acquiring its coordinates, and calculating the coordinates of the required
area. Thus, querying the ontology causes the underlying Jena to invoke relevant reasoners if they
are present. This explains the complexity of wrappers which use reasoners.

The most time-consuming wrappers within the ranges considered are 12DQueryDLCompRel(Q1)
with OWL DL reasoner and 13DQueryRDFSCompRelIRules(Q1) which mutually leverages
RDFS and custom rule reasoners (see Figure 5.23). 7CQueryCompRelPRules(Q1) and
14DQueryCompRelSIPRules(Q1) differ due to their use of custom inference rules for reasoning
over (transitive) property (relation) subsumption. Interestingly, the 6CQueryRDFSCompRel(Q1)
wrapper with RDFS reasoner used for computing property subsumption is more efficient than
9DExhSearchBasicRelSIRules(Q1) and 11DQueryBasicRelSIRules(Q1) taking into account symme-
try and inversions by means of corresponding custom rules (see Figure 5.24). In contrast, the
absence of reasoning ensures relatively efficient performance (see Figure 5.25).

178

Figure 5.22: Instantiation of the PM in different evaluation wrappers implementing the first
scenario (performance characteristics are the same for wrappers of the second scenario)

Enrichment of the Physical Model with RCC8 Relations

The process of enriching the ontology (a procedure EnrichPMWithRCC8) includes instantia-
tion of the area required for the first scenario and application of the enricher BasicSpatial-
RelationsEnricherBasedOnQntInfo. Figures 5.26 and 5.27 show the performance of
different wrappers. As was expected, the enriching process in its practical application has a
quadratic complexity and consideration of inverse and symmetric relations makes the method
more time-consuming.

179

Figure 5.23: Computation of the required area by the evaluation wrappers implementing the first
scenario

180

Figure 5.24: Computation of the required area by the evaluation wrappers implementing the first
scenario (a 100 times larger scale on ordinate)

181

Figure 5.25: Computation of the required area by the evaluation wrappers implementing the first
scenario (a 2500 times larger scale on ordinate)

182

Figure 5.26: Enriching the PM with basic RCC8 relations between blocks by the wrappers
implementing the first scenario (performance characteristics are the same for wrappers of the
second scenario)

183

Figure 5.27: Enriching the PM with basic RCC8 relations between blocks without symmetric and
inverse counterparts by the wrappers implementing the first scenario (performance characteristics
are the same for wrappers of the second scenario)

184

Selection of Blocks

Among other wrappers realizing the “exhaustive search” for selecting the required blocks,
9DExhSearchBasicRelSIRules(Q1,Q2) are the only wrappers which additionally utilize a rea-
soner (see Table 5.1 on page 170). Therefore, their implementation of the blocks selection
procedure (SelectBlocks) is the most time-consuming, as we can see in Figures 5.28 and 5.30.
Although 3CExhSearchBasicRel(Q1,Q2) and 8DExhSearchBasicRel(Q1,Q2) are more efficient
wrappers, they are inferior to wrappers 4CExhSearchCompRel(Q1,Q2) respectively. This is due
to the fact that the former conducts more interactions with the UOM (by the use of the method
hasRelation of the interface IQltBlock) querying for basic RCC8 relations and makes more
type casts in contrast to the latter. As was expected, 2BExhSearchQntRel(Q1,Q2) are the most
efficient among those leveraging the “exhaustive search” approach and have the time complexity
close to the linear and quadratic respectively.

It is worth mentioning that the SelectBlocks procedure of the wrappers with direct queries
to the instance of the PM such as 5CQueryBasicRel(Q1,Q2) and 10DQueryBasicRel(Q1,Q2) (which
do not use additional reasoning) as well as 6CQueryRDFSCompRel(Q1,Q2) (which utilizes the
RDFS reasoner) is more efficient than in 2BExhSearchQntRel(Q1,Q2), which is in compliance
with the scenario (see Figures 5.28 and 5.29 demonstrating the query Q1 of the first scenario,
5.30 and 5.31 for Q2 of the second scenario). In practice, the efficiency of a SelectBlocks
procedure leveraging the R-tree is comparable with corresponding procedures which leverage
direct queries to the ontology without the application of reasoners.

Predictably, wrappers, leveraging direct queries to the instance of the PM are significantly
more efficient then those which have similar configurations and use “exhaustive search.” For ex-
ample, 5CQueryBasicRel(Q1,Q2) and 3CExhSearchBasicRel(Q1,Q2), 10DQueryBasicRel(Q1,Q2)
and 8DExhSearchBasicRel(Q1,Q2), 11DQueryBasicRelSIRules(Q2) and 9DExhSearchBasicRelSI-
Rules(Q2) in accordance with their respective scenarios (see Table 5.1 on page 170 presenting
wrappers’ configurations). However, this is not the case for 11DQueryBasicRelSIRules(Q1) and
9DExhSearchBasicRelSIRules(Q1), which have almost the same performance results due to the
application of automatic reasoning (for symmetric and inverse relations) which takes the majority
of the run time.

It is important to note that the time necessary for direct queries to the instance of the PM
does not differ as much in cases of the “exhaustive search” for pairs of wrappers with the same
parameters and within different scenarios. For example, for 1036 visualized elements and for
the configuration 10DQueryBasicRel, the query Q2 takes 35ms (see Figure 5.31) which is 17.5
times longer than the time required for the query Q1 (2ms, see Figure 5.29). Meanwhile, for the
configuration 2BExhSearchQntRel, this ratio is 421.22 (with an accuracy of two decimal places)
and the time necessary for the queryQ2 amounts to 41280ms (see Figure 5.30) in contrast to 98ms
for the query Q1 (see Figure 5.28). Furthermore, pairs of wrappers with the same configuration
while performing direct queries to the PM and leveraging supplementary reasoning procedures,
such as 7CQueryCompRelPRules(Q1,Q2), 11DQueryBasicRelSIRules(Q1,Q2), 12DQueryDLComp-
Rel(Q1,Q2), 13DQueryRDFSCompRelIRules(Q1,Q2), and 14DQueryCompRelSIPRules(Q1,Q2),
do not differ much in their efficiency. This is due to the fact that, in regards to the SelectBlocks
procedure, the reasoner occupies the major part of the run time and operates over the same subset
of assertions in ABox considering the same subset in TBox for both scenarios. However, the

185

Figure 5.28: Application of the “exhaustive search” in the evaluation wrappers implementing the
first scenario

186

Figure 5.29: Direct querying the PM in the evaluation wrappers implementing the first scenario

187

Figure 5.30: Application of the “exhaustive search” in the evaluation wrappers implementing the
second scenario

situation is different for the couple 6CQueryRDFSCompRel(Q1,Q2), where the optimized RDFS
reasoner is used ensuring good performance characteristics.

Another important fact is that instantiation of relevant statements in ABox is performed
once by means of Jena. Thus, in cases where all the statements relevant to the query are
materialized, it performs with the same efficiency as a query applied to the ontology without
the use of reasoning. As such, in regards to the second and successive application of the
queries of wrappers 6CQueryRDFSCompRel, 7CQueryCompRelPRules(Q1,Q2), 11DQueryBasic-
RelSIRules(Q1,Q2), 12DQueryDLCompRel(Q1,Q2), 13DQueryRDFSCompRelIRules(Q1,Q2), and
14DQueryCompRelSIPRules(Q1,Q2), their efficiency becomes comparable with the queries of
wrappers 5CQueryBasicRel(Q1,Q2) and 10DQueryBasicRel(Q1,Q2) according to their respective
scenario (i.e., type of query). Moreover, the second application of the query in wrapper 11D-
QueryBasicRelSIRules(Q1) will be more efficient than in 9DExhSearchBasicRelSIRules(Q1).

5.5.5 Conclusions on the WPPS Evaluation

It is important to note that WPPS is a prototype implementing the proposed object-oriented
abstraction for the UOM and therefore, the framework can be optimized in the sequel according
to the results of this experiment.

188

Figure 5.31: Direct querying the PM in the evaluation wrappers implementing the second scenario

189

The experiment confirms the feasibility of the mutual application of the declarative and
object-oriented approaches with the use of the ontological model (see Section 5.2). Furthermore,
it is evident procedures enriching the ontology with additional information as well as processes of
automatic reasoning are quite time-consuming in general (see Figures 5.20 and 5.21). However,
the application of direct queries to the ontology without the use of reasoners as well as the
subsequent (not the first) application of direct queries over the materialized assertions with the
use of reasoners is distinguished by the significant efficiency in contrast to the computation of the
required information “on-the-fly” based on quantitative information or querying the model via the
abstraction mechanisms using the “exhaustive search” approach. As was noticed in Section 5.5.4,
the automatic reasoning is mainly applied to instantiate relevant ontology statements. Therefore,
further queries that do not require consideration of additional assertions (i.e., when all relevant
statements were instantiated) will perform as fast as queries which do not use any reasoner
(logical inference). Furthermore, the presence of materialized statements (acquired by the use of
enrichers and reasoners) presents great potential for the efficient application of different direct
queries to the ontology by means of Jena API and SPARQL. Thus, in spite of the fact that
wrappers leveraging the computation of qualitative information “on-the-fly” based on quantitative
information revealed significant efficiency in single queries, their use tends to be unfavorable for
complex and versatile analysis.

For example, we considered application of the queryQ2 for wrappers 2BExhSearchQntRel(Q2)
(which does not require application of the enricher), 6CQueryRDFSCompRel(Q2) (which enriches
the ontology with basic RCC8 relations), and 10DQueryBasicRel(Q2) (which enriches the ontology
without symmetric and inverse counterparts, see Table 5.1 on page 170). Taking into account
the time required for the enriching procedure and the run time of the SelectBlocks procedure
of 2BExhSearchQntRel(Q2), we can calculate that for 511 blocks, for example, application of
the configuration 2BExhSearchQntRel is profitable relative to 6CQueryRDFSCompRel if there
are at most 10 queries of type Q2. In addition, it is profitable if there are at most 26 queries
for the configuration 10DQueryBasicRel. The values are 15 and 45 respectively in regards to
1036 visualized blocks. Thus, we recommend the developer to estimate the efficiency of the
potential configuration taking into account graphs presented in this evaluation as well as illustrated
estimating interpolations.

It is worth mentioning that the efficiency of the R-tree is practically similar to direct queries
to the ontology without automatic reasoning. Therefore, it is recommended to use the integrated
R-tree index for spatial queries related to the containment and intersection relationships.

5.6 WPPS in the Problem of Basic Web Object Identification

The problem of identifying basic web objects was posed and defined by the author of this thesis
during his work in the TAMCROW project [237]. This challenge is related to the web automation
(one of the main focuses of the project) intended for automating an agent’s interaction with
web pages, where the agent is represented by the sighted user, blind user, mobile (phone) user,
and web spider. Web automation as a technology for ameliorating accessibility of web pages is
considered in Section 2.1.3 (page 17).

190

It is well known that the majority of existing solutions related to the web object identification
problem operates on technical layers (see Figure 4.3 on page 106) which are prone to frequent
changes and do not reflect semantics (e.g., the logical structure) formed by the visual representa-
tion [121, 145]. Consideration of a web page’s visual representation enables the development
of significantly more robust and effective approaches which can be applied on a wider range
of web pages. (This aspect is discussed in Section 2.4.8 in detail.) Thus, the relevant goal was
specified as following: Develop a generic approach for identifying basic web objects, such as
departure input fields, forum threads, and menu items leveraging those features which are visually
perceivable by the sighted user. The following objectives were specified to achieve this goal:
1. Specification of an object’s basic features of the visual layers which can be used to determine
similarity between objects of the same category or genre. 2. Development of metrics to estimate
the similarity of objects. 3. Development of an approach for identifying a basic web object of
a certain category or genre on different web pages with different visual characteristics (layout,
color, font, etc.). Realization of the objectives posed was conducted in collaboration with the
TAMCROW team [237].

1. In the collaborative work, we identified 49 different features potentially important in the
recognition of basic web objects of a certain genre [84] (see Table 5.2). These features refer
to different aspects of web page representation (see Sections 2.4 and 4.2), in particular, the
interface, spatial configurations, visual characteristics and text. We also distinguish between
inherent and relative features. The former describes the characteristics of the web page elements
themselves (e.g., of the selected object, context, or page) and are computed independently from
other structural elements. Examples include font color, tag name, height, or font size. Relative
features in turn reflect mutual characteristics of several structural elements, such as the number of
web objects in the context or the average color distance between the selected object and all other
objects within the context. Thus, relative features are considered for a pair of structural elements,
such as a selected object and its context or a selected object and the document (where a context
is a surrounding area of a selected object as it is illustrated in Figure 5.32). To compute these
features and generate a feature matrix for basic web objects, the author developed an interactive
annotation tool ObjIdent which is based on the WPPS framework and extensively uses the WPPS
API (see Section 5.3.4). A screenshot of ObjIdent is illustrated in Figure 5.32. By means of
WPPS API, ObjIdent query instances of the BGM and Interface Model providing all necessary
information for computing the required features.

2. To estimate the similarity between objects, we introduced metrics for estimating the similar-
ity between corresponding features (from the feature matrices) of relevant objects. This is based
on the notion feature distance quantitatively expressing the similarity between corresponding
features of objects. We distinguish seven types of distances dependent on the type of compared
features: absolute and relative distances for numeric values, boolean distance, equality distance
for nominal features, string edit distance, color distance, and grid overlap distance [84, 145].
The computed distances are represented in the so-called distance matrix.

3. Web object identification approach was realized by means of machine learning, where
distance matrices were used as an input. Thus, trained classifiers were able to determine similarity
or dissimilarity between objects based on feature distances provided. Different classification
techniques were evaluated for building a classifier with the highest accuracy. These include

191

Table 5.2: Object features and distances in the problem of basic web object identification [84,145]

Data Type (T): real (R), integer (I), enumeration (E), boolean (B), RGBA color (C), bitmap (M), string (S). Feature groups:
interface feature (IF), spatial feature (SF), visual perception feature (VPF), textual feature (TF). Distance type (Dist.): absolute
distance (Abs.), relative distance (Rel.), boolean distance (Bool.), equality distance (Equ.), string edit distance (Edit), color distance
(Color), grid overlap distance (Grid).

192

Figure 5.32: Screenshot of ObjIdent, the feature extraction tool

logistic regression, C4.5 for the decision tree, RPart for building regression trees, M5P, and
SVM with linear, polynomial, radial, and sigmoid kernels. In [121], we applied some of these
techniques taking into account certain features from Table 5.2. The approach was evaluated in
different scenarios such as identification of forum threads, items of the navigation menu, and
elements of the login web form. The classification rate was achieved up to 90% with the use
of regression tree. In [145], we present the problem of identifying the most similar object to
the required one. This approach also includes a post-processing of the classifiers’ output. In
this procedure, we count the number of times an object was affiliated with the class “similar”
by the classifier and compare it with original examples. Thus, only one object with the highest
score is selected. Different machine learning techniques with 50 different feature distances (see
Table 5.2 [84]) in their input were applied for three scenarios such as bus search, flight search, and
train search. Each scenario includes the identification of main controls such as departure location,
arrival location, dates, and submit button. The classification rates achieved by combining the
logistic regression with the sigmoid kernel of the SVM resulted in the highest scores which were
more than 90% for each scenario. For further details, we refer interested readers to [84, 121, 145].

It is possible to find the application of this approach in different areas, be it web page
processing, web automation, or annotation-based web transcoding.

In turn, the WPPS framework demonstrated its effectiveness and efficiency in the rapid
development of applications for the web page analysis. ObjIdent was developed as Eclipse RCP
based application. It integrates plug-ins provided by WPPS, which enable utilizing the integrated
web browser, ontology graph visualization, and widgets from the ATF project. Thus, ObjIdent
was leveraged by the TAMCROW team as a reliable features provider.

193

5.7 Discussion

In this chapter, we presented the prototype Web Page Processing System (WPPS) which pro-
vides the developer with all the necessary means for developing effective and robust web page
processing methods (see Section 5.3). Based on the Unified Ontological Model (UOM), the
WPPS framework realizes a web page processing as a process of building the logical model
based on the analysis conducted over a web page’s physical model (see Section 5.1). This
provides additional possibilities for the analysis of different aspects of web page representation,
such as layout, different spatial configurations, interface with different basic visual features,
and DOM trees in particular. WPPS also eliminates elements which are invisible or visually
not perceptible by the user and therefore do not play any important role in the analysis of web
page appearances. Thus, taking into account these elements (i.e., 15.85% which are invisible
visualized and unvisualized elements specified in Section 3.11.6 and 26% which are removed
during the simplification procedure), WPPS in general removes about 37.7% elements, which
makes interaction with an instance of the UOM more efficient. Furthermore, ontological rep-
resentation of information enables seamless integration with ontology-based external systems
and Semantic Web technologies. In terms of efficiency, WPPS realizes a bridged adapter design
pattern to form an object-oriented abstraction for the UOM (see Section 5.2.4). This abstraction
provides the developer the possibility to build methods, leveraging the object-oriented paradigm
which are independent from certain realization of the underlying ontologies. Therefore, with the
WPPS configuration provided (see Section 5.3.2), the framework realizes the relevant strategy for
providing a method developed with the required information, be it objects (individuals), attributes
(datatype properties), or their relations (object properties). Utilizing WPPS configuration, it is
possible to control the information handling by WPPS as well as processes which should be
performed on the declarative level and those which should be performed on the object oriented
level. The former includes the application of reasoners specified by the user and SPARQL queries,
whereas the latter ensures the imperative approach by computing the requested information
primarily “on-the-fly.” Thus, WPPS provides the opportunity to benefit from both declarative and
object-oriented approaches. An evaluation presented in Section 5.5 demonstrates the feasibility
of the solution proposed as well as advantages and disadvantages of different configurations. It is
worth noting the efficiency of leveraging the R-tree integrated into the framework for querying the
containment and overlap spatial relationships. Furthermore, WPPS enables leveraging fuzziness
in spatial relations. Realization of the UOM in WPPS, computations and queries as well as API
(see Section 5.3.4) are compliant with definitions introduced in Chapters 3 and 4.

As was demonstrated in Section 5.4.2, the use of visual cues enables the development of more
robust methods which can be applied on a significantly wider range of web pages, in contrast
to approaches leveraging only the technical layers (i.e., the source code and DOM tree). This
is mainly due to the fact that there are less design patterns and spatial configurations used to
represent different web objects than various possible implementations (i.e., codings and tag trees)
on the technical level. Furthermore, when leveraging visual features, developers primarily make
use of the same lexicon and concepts which are used explicitly or by implication by sighted users
familiarizing themselves with web pages. For example, distance, alignment, containment, color,
type of element (image, text field, button, etc.) and layout (list, table). This can provide better

194

understanding about how sighted users perceive and recognize web pages. Interestingly, in the
work [121, 145] mentioned in Section 5.6, we concluded that all 49 specified visual features
were significant in the challenge of web object identification and obtained a surprisingly high
accuracy of more than 90%. Moreover, there were no such subsets of the defined features which
gave us similar scores. Within the scope of this research, the WPPS framework was used for
the development of a relevant feature extraction tool confirming its effectiveness in the rapid
application development.

Thus, WPPS proposed in this chapter demonstrated the feasibility of the proposed web page
model (the UOM) and approach integrating declarative and object-oriented paradigms for web
page processing. WPPS is an important tool for enhancing web accessibility. In particular, it
can be used in annotation-based transcoding (providing the transcoding algorithm with required
labels of recognized web objects) and web automation (improving the accuracy of the scripts
interacting with different web page elements on behalf of the user). Within this thesis, WPPS is
proposed as a web page understanding tool providing necessary information regarding the logical
structure of a web page and its elements by means of the Logical Model for instantiating the
Multi-Axial Navigation Model (MANM) used for effective and efficient web navigation.

195

CHAPTER 6
Web Accessibility:

A Multi-Axial Navigation

Representation is in the mind of the beholder.
— Winograd & Flores, Understanding Computers

and Cognition, 1986

Page mobility is by far the hardest issue to address,
due to the normally high complexity of visual
information found in a hypermedia page or
document.

— Simon Harper, Carole Goble & Robert Stevens,
Journal of Research and Practice in Information

Technology, 2001

It is commonly known that web pages are primarily authored with the sighted user in mind
and X/HTML was designed as a visual formatting language. Therefore, navigation on the Web
typically boils down to user interactions within the browser and in regards to sighted users,
navigation is primarily defined as hypertext navigation by selecting hyperlinks. While this
is acceptable for the click-and-drag paradigm of modern graphical user interfaces, navigation
interactions are very costly for the blind user who does not have access to a mouse-centred
interface. Navigation for blind users primarily depends on both hypertext navigation and scanning
navigation, which corresponds to eye movements for the sighted [226]. Eye movements for
“scanning” pages including peripheral vision enable sighted users to be able to quickly familiarize
themselves with web pages in addition to perceiving and analyzing text by the use of skimming,
various visual features, and spatial configurations. In contrast, blind users scan web pages by the
relatively small chunks of text which they obtain by means of typhlotechnology (e.g., a screen
reader and Braille display) and navigation commands (mainly keystrokes). Moreover, navigation
and understanding of a web page is greatly exaggerated by the dependency of commonly used
screen readers on the technical layers of web pages which often do not reflect the logical structure

197

of a web page. Thus, blind users have to grasp the content solely based on HTML tags provided
by web authors.

In this chapter, we consider the challenge of enhancing web page accessibility by taking
into account the peculiarities of contemporary typhlotechnology, which merely conveys one-
dimensional navigation with aural and tactile output, as well as the recent developments of the
author presented in this thesis by focusing specifically on the Unified Ontological Model (UOM)
(see Chapter 4) and Web Page Processing System (WPPS) (see Chapter 5).

In Section 6.1, we identify the main types of objects within the UOM which should be
accessible for blind users and describe the main peculiarities of blind users’ web navigation in
addition to the aspects of blind users’ mobility which should be considered for enhancing web
accessibility. The enhancement is related to the development of the Multi-Axial Navigation Model
(MANM) (one of the main contributions of this thesis) providing various content serializations
and transitions which is discussed in Section 6.2. Section 6.3 presents the main procedure and
principles which should be taken into account for instantiating the MANM. Section 6.4 presents
another important contribution for ameliorating web accessibility: the methodology of navigation
over the MANM. The proposed solutions are realized in Blindzilla prototypes which are presented
in Section 6.5 and evaluated in Section 6.6. The experiment provides evidence of the efficiency
and effectiveness of the proposed concepts. Section 6.7 concludes the chapter.

The development of the MANM and navigation methodology proposed by the author of this
thesis is based on the cooperative work within the scope of the ABBA project [236] and survey
presented in Appendix B. The most significant studies which build the foundation of the research
presented in this chapter include [21, 83, 85, 151]. For the state of the art within the field of Web
Accessibility and relevant works, we refer the interested reader to Sections 2.1 and 2.2.

6.1 Ameliorating Blind Users’ Mobility

To recap, we described the main methods and approaches of web page navigation available in
contemporary screen readers (see Section 2.2.1) and also considered prominent works analyzing
the application of the metaphor of spatial navigation in physical space to the information space
of electronic documents (see Section 2.2.2). We also highlighted the main shortcomings of the
contemporary implementations (see Section 2.2.3). Thus, among the existing issues of web
accessibility, the most important and relevant to this thesis include the absence of semantically
rich content annotations and the insufficient effectiveness of navigation methods in contemporary
screen reading technology.

As we can see in the example illustrated in Figure 6.1, screen readers provide quite limited
descriptions of web page elements mainly relying on HTML (e.g., tag A is interpreted as link, IMG
as graphic, and TABLE as table). Thus, it is more difficult to navigate and understand web pages
not compliant with accessibility guidelines (for example, HTML tags are misused and ARIA
roles [259] are not applied). Unfortunately, most of today’s web pages do not follow accessibility
guidelines and standards [29, 137] which determines the importance of developing transcoding
technologies (see Section 2.1.3) to transform web pages into more accessible representations.
It is important to note that WPPS introduced in Chapter 5 can also be utilized as a transcoding
system providing the blind user with a rich web page model.

198

Figure 6.1: Visual perceptions of a web page and aural perception with the use of a typical screen
reader reading through the page

6.1.1 Navigable Web Page Objects

The application of web page processing (WPP) methods implemented in the WPPS framework
results in instantiating the UOM comprising various constructs for describing different aspects of
a web page. Figure 6.2 illustrates an example of various functional and structural elements of a
web page and some geometric relationships which can be recognized by the use of WPPS and
expressed by means of the UOM.

We distinguish the following types of objects of the UOM which we believe should be
accessible for blind users and used in navigation when it is necessary: geometric, interface,
and logical objects, which we in turn divide into data structures, web and domain specific
objects as well as textual objects. All of them correspond to different layers of the web page
conceptualization introduced in Section 4.2 (see Figure 4.3 on page 106). Geometric objects
are part of the Block-based Geometric Model (BGM) (see Section 4.4.2) [73] and refer to the
geometric layer of the conceptual model of a web page. They represent various visible elements
of a web page modeling them by the minimum bounding rectangle (block, see Definition 3.5 on
page 67). There are several types of spatial relationships defined on the set of blocks: topological,
direction, distance, alignment relationships, and so on (see Sections 3.5 and 4.4.2). Interface
objects are elements of the Interface Model (see Section 4.4.3) and refer to the interface layer of

199

Figure 6.2: Semantic annotation of a web page content for enhancing its accessibility

the web page conceptualization. It represents various basic functional objects derived due to the
analysis of the DOM tree and CSSOM, for example: web forms, text input fields, buttons, links,
images, lists, tables and so on. Logical objects in turn correspond to the relevant logical layers
and are modeled by the Logical Model (LM) (see Section 4.5). Logical data structures, such as
sequence, tree and table grid, can be used for representing the structure of the relevant objects
recognized on a web page. For example, a navigation menu can be represented as a sequence,
and a news article with its sections and subsections, can be mapped into the tree. In regards to
web accessibility, these mappings of web objects into the data structures enable intuitive ways of
navigating them. According to the survey presented in Appendix B, most screen reader users are
familiar with table and list navigation (see Section B.5). Web specific and domain specific objects
model various logical objects (e.g. logotype, navigation menu, authorization form, etc.) of a web
page by means of domain ontologies relevant to specific genres. Textual objects correspond to
the layer of textual content semantics and in regards to navigation, are represented by named
entities, sentences, tokens, and letters. The importance of considering “word-level design of
content” is discussed in [226, page 29].

Regarding geometric objects and visual features (e.g., foreground and background colors,
font style and size from the interface layer), we believe that they should be only used by blind
users in exceptional cases, for example, to interact with the sighted assistant. As was discovered

200

in B.3, many blind people (40%) assert that familiarizing themselves with new websites with the
aid of a sighted assistant is not easier than independent learning. This is mainly due to operating
with different representations of a web page (i.e., the visual and aural) and using dissimilar
terminology. We demonstrate this difference in Figure 6.1. Thus, blind users do not use visual
cues and mainly leverage various serializations of a web page content which screen reading tools
convey. Therefore, geometric features can be applied to reduce this semantic gap.

Some aspects of these accessible types of objects (navigable objects) can be expressed using
W3C guidelines. For example, contemporary screen readers support various HTML types of
elements with their properties (e.g. images with alternative text, web form elements with labels
attached) and inner structures (e.g. HTML tables, HTML lists, HTML forms, etc.). Furthermore,
the logical structure of a web page with various data structures (such as tree, table, and list) can be
to some extent described by means of ARIA roles presented in [259, Sec. 5.3]. As reported in the
inquiries conducted by WebAIM [293, 295, 296], most sightless users are aware of ARIA-based
accessibility (e.g. landmarks) and can leverage it. However, these common standards are quite
limited. They are not able to express various semantic relations between elements (e.g., semantic
relation between a news article and comments relevant to it). Moreover, they are integrated
into the source code of a web page as HTML attributes and thus dependent on the semantics
established by the DOM tree structure. This limits automatic annotating web pages and is the
reason why we propose a separate model (the UOM) as well as modeling a whole web page
together with its different aspects, but which can still be incorporated into the web page source
code by means of RDFa.

From the mobility point of view, the main goal of introducing these types of objects, which
are also mobility objects, is to decrease the amount of obstacles and increase the amount of cues.
As it is defined in [112], obstacles are primarily “objects that inhibit a users onward journey,”
whereas cues are “objects or combinations of objects that a traveller actively uses to facilitate
their onward journey.” Furthermore, providing the user with logical objects reflecting both web
page structure (with logical data structures and web specific objects) and its domain (with domain
specific objects) can help to understand the role of considered objects as well as remember and
distinguish them from the rest.

6.1.2 Web Page Mobility

With the exception of mobility objects, the mobility of blind users is defined by the set of
possible interactions as well as leveraged mobility techniques [97, 112]. Due to the aural output,
contemporary screen reading technologies provide sequential (one-dimensional) access to the web
page content (see Section 2.1.3) and therefore primarily one-dimensional character of navigation
through various serializations of the content. These serializations generally correspond to the
depth-first traversal over the DOM tree and can be represented, for example, by the list of
links, headings, paragraphs, or web form elements. Navigation mainly comprises locomotion
through different types of basic web page elements (primarily, HTML elements) going forward
or backward to the object of the required type. Observation mainly includes obtaining the type of
current web page element, probing (making a few locomotions), and obtaining some statistics
regarding the number of objects of different HTML types presented on a web page. Thus, we can
assert that the mental load of sightless users is mainly related to building a mental model of a

201

web page from its source code using HTML-based navigation.
In contrast, we focus on utilizing navigable objects introduced in Section 6.1.1 as a basis for

building different serializations. As such, we believe it is important to switch from HTML-based
or layout-based navigation to navigation through the logical model of a web page reducing the
mental load of users. Furthermore, taking into account the metaphor of spatial navigation, we
found it important to consider the problem of user mobility from the viewpoint of one-dimensional
navigation through multidimensional information space (i.e., set of mobility objects with different
attributes and relationships). Therefore, it is important to consider various serializations of the
page content as certain mobility objects which can be used for orientation and in the selection of
the most relevant path to the interesting content.

In addition, utilizing a concept of web mobility introduced in [97,112] (see Section 2.2.2), the
enhancement of web accessibility both from the viewpoint of interaction and underlying model
should concern the following aspects:
Mobility objects:

(Cues, obstacles, memories) Incorporate types of navigable objects introduced in Sec-
tion 6.1.1.

(Out-of-view) Decrease the amount of objects which cannot be reached within the short
time interval (i.e., so-called out-of-view objects).

Mobility techniques:
(Preview and Probing) Provide effective techniques for the preview and probing by the

blind user to obtain information regarding the surrounding content and be able to
correctly choose the next locomotion according to the task fulfilled or aim posed.

(External Memory) A navigation model should provide blind users with easily memo-
rable and recognizable objects and landmarks which can be used to both understand
the current position and plan further navigation without probing.

Mobility principles:
(Information flow) Information flow formed during the interaction of a blind user with a

web page should be detailed enough to understand the current context (i.e., what is
read and which logical structure it has).

(Granularity) Landmarks should be easy to find and close enough together.
(Egocentricity) Anytime a sightless user has the possibility to obtain feedback regarding

her position and be able to orient herself relative to her current position. In other
words, the user should be able to obtain orientation by means of deictic frame of
reference [50, 205].

(Memory) A blind user should be able to build a mental model relevant to a web page.
(Regularity) Mobility objects should be deployed in a regular manner.
(Spatial) A sightless user should be able to leverage its skills of navigating in physical

space.

202

Semantic
neighborhood

Spatial
neighborhood

Semantic
neighborhood

News article

News title

News content

Paragraph

Table

Comment

News count axis

News title axis

News axis

Comment axis

Concepts

Axis types

Figure 6.3: Example of the navigation model for a news web site

6.2 The Multi-Axial Navigation Model

The Multi-Axial Navigation Model (MANM) [79] realizes aspects and requirements highlighted
in Section 6.1 for enhancing web page accessibility and a blind user’s mobility. It corresponds to
the upper level of the conceptual model of web pages presented in Section 4.2 (see Figure 4.3 on
page 106) providing an accessible representation [21, 74, 83, 85, 151]. Furthermore, the MANM
is built on top of what we call the Unified Ontological Model (UOM) (see Section 4) and from
the viewpoint of WPP, it is a result of the transformation of an instance of the UOM, as presented
in Section 5.1.

6.2.1 Main Concepts

The MANM provides necessary constructions for modeling navigable objects (i.e., geometric,
interface, and logical objects) and their different serializations represented by axes and their types.
An axis type represents the abstract rule for reading certain concepts of the underlying model
(i.e., the UOM) and thus defines a rule for ordering particular concepts. We distinguish four main
types of axes: an interface axis (it mainly goes through interface objects), structural (logical)
axis (it mainly includes logical objects), content axis (it mainly comprise textual objects), and
basis axis which serializes all elements on a web page. An axis is an instance of an axis type and
therefore serializes a certain subset of relevant objects. Serializations take into account various
aspects of a web page representation provided by the UOM including visual and logical features.

In Figure 6.3, we give an abstract example of navigational axes within a hypothetical news site.
The depicted model represents the main concepts (logical objects) of the news domain such as
“news article,” “news title,” “content,” and “comment.” As part of a logical representation of web

203

pages, these concepts can have a complex structure on their own and include further sub-concepts
such as news articles that can contain sections, paragraphs, tables, and figures. Spatial and
semantic neighborhoods which define relationships between navigable objects including axes are
also two important concepts. The model illustrated in the figure also contains four types of axes:
“news title axis,” “news axis,” “comment axis,” and “news count axis.” Axes types applied for the
model can have one instance (e.g., “news title axis”) or several (e.g., “comment axis”), or not at
all. An axis can have arbitrary quantity of elements.

There are two types of relations which define the neighborhood in the multi-axial model:
spatial and semantic. A spatial relation is based on relative distance between objects and defined
in the UOM. The example can be the spatial relation between news title and a paragraph which is
the first paragraph of the news article (see Figure 6.3). Semantic relations can be set either for
objects in the underlying model or for axis types in an instance of the MANM. For the semantic
relation defined between the axis types, the semantically nearest object of the particular axis
will be the object of another axis which is spatially nearer than other ones of the same axis. For
instance, a relation between “news axis” and “comment axis,” and a relation between news title
and news content is an example of semantic relations.

To reflect the geometric allocation of objects, the MANM also supports non-symmetric rela-
tions based on the orthogonal visibility [84, p. 12] (see Figure 4.16 on page 120 and Figure 4.17)
such as: “up” (leftmost north orthogonally visible object), “right” (topmost east orthogonally
visible object), “down” (leftmost south orthogonally visible object), and “left” (topmost west
orthogonally visible object).

6.2.2 Example of a Navigation Model

To illustrate an example of applying a navigation model for a web page, we considered different
relevant navigation trails which can be provided for a news page by example of a CNN web page
and presented them in Figures 6.4 and 6.5. We can see different structural axes going through
different web page elements (i.e., navigable objects). For example: “navigation menu 1” and
“navigation menu 2” which go through items of navigation menus; “categories 1” and “categories
2” which comprise news categories; “news list 1” and “news list 2” ordering news headlines.
Aside from logical objects, we can see interface objects such as an image, button, and link. In
addition, there are objects defining a certain layout such as a list and table which in turn should be
accessible for navigation by means of functions similar to that provided by contemporary screen
readers (e.g., JAWS, NVDA, and Window-Eyes). Thus, we distinguish between navigation with
the use of axes and according to a certain data structure of an object (i.e., table, tree, and list).

Figure 6.6 illustrates the presented example regardless of web page layout. It is evident that
the order of elements of provided navigation trails for the consistency should correspond to a
serialization set by the basis axis. We also illustrated similarity relation between unrecognized
segments presenting akin information (about the weather). We also reflected similarity relation
between logical objects of navigation menu and news categories with the same name.

204

unrecognized segments, 1

navigation menu, 2:
editor's choice

navigation menu, 1

top news, 1

categories, 1

table, 1

table, 2

search, 1

login, 1

news list, 5:
read this, watch that

li
st

,
3
-6

news list, 1

news list, 2:
global economy

news list, 3:
more news

news list, 4:
opinion and analysis

list, 7

list, 1

list, 2

news list, 6:
travel today

top news titles, 1

Figure 6.4: Example of the Multi-Axial Navigation Model of a CNN web page visualized on a
web page canvas (part 1)

205

search, 2

categories, 2

news list, 8:
business

news list, 9:
world sport

news list, 10:
daily snapshot

news list, 11:
most popular

news list, 12:
video highlights

news list, 13:
on china

news list, 14:
travel

news list, 15:
popular on
facebook

news list, 16:
davos 2013

news list, 17:
environment

news list, 18:
ireport

news list, 7

table, 3

list, 8

list, 9

list, 19

list, 10
list, 11

list, 12 list, 13 list, 14

list, 15 list, 16 list, 17

list, 18

Figure 6.5: Example of the Multi-Axial Navigation Model of a CNN web page visualized on a
web page canvas (part 2)

206

categories, 1

categories, 2

Basis axis (Z)

U.S. TV Video U.S.
Business

World Sport

Travel

iReport

news list, 4:
opinion and analysis

login, 1 search, 1
navigation menu, 1

navigation menu, 2:
editor's choicetop news, 1

top news titles, 1

news list, 1

news list, 2:
global economy news list, 3:

more news

news list, 5:
read this, watch thatnews list, 6:

travel today

news list, 7

news list, 8:
business

news list, 9:
world sport

news list, 10:
daily snapshot

news list, 11:
most popular

news list, 12:
video highlights

news list, 18:
ireport

news list, 17:
environment

news list, 14:
travel

news list, 13:
on china

news list, 15:
popular on
facebook

news list, 16:
davos 2013

BusinessWorld Sport

Video

Travel

iReport

search, 1

unidentified segments, 1

Weather

Weather

TV

si
m

ila
r

Asia
Europe

U.S.EuropeAsia

Figure 6.6: Example of the Multi-Axial Navigation Model of a CNN web page

207

6.2.3 Formal Presentation of Axes

An axis A ∈ A is a sequence (a1, a2, . . . , an) of basic navigable objects of the UOM, where
n ≥ 0 is the length of the axis A andA is a set of all axes instantiated in the MANM [21,85,151].
If n = 0 thenA is empty. A(i) is the i-th element ofA. |A|− is a set of elements ofA. |A|+ ≡ |A|
is a multiset of elements of A. Thus, in the realization of the navigation model in the form of the
MANM, we consider axis items as basic objects. An axis type T refers to the set of axes which
share the same semantics or are generated using the same algorithm. The axis type represents an
abstract rule for reading certain concepts of the underlying model. There is a functional relation
between axis and axis type. T is a set of all axes types in the instance of the MANM. Axis type
should have a meaningful name which reflects its purpose or name of corresponding navigable
objects. An axis A is identified by the pair 〈T, id〉 of its type T and its sequence number id in the
sequence of all axes of the same type: ∀B ∈ A : type(B) = type(A) ∧ id(B) = id(A)→ B =
A.

Base axis Z is an axis which order all basic navigable objects of the instance of the LM.

Features of Axes

We define the following features of axes in the MANM: lenght, location, coverage, direction, and
global direction.

Length n = ‖A‖ = | |A|+| of an axis A is a quantity of elements in corresponding sequence
subject to repetitions. Length gives an estimation of the axis extent which corresponds to the
time needed to read an axis. We also utilize features such as ‖A‖word and ‖A‖sent which define
quantity of words and sentences within the axis A respectively. If an axis corresponds to a certain
logical object, length gives an estimation of its size from the viewpoint of the time required for
reading it.

Location of an axis A in the MANM is a sequence number of the first occurrence of its
first element A(1) on the base axis Z: pos1Z(A(1)). Location can also be a relative value:
(pos1Z(A(1))− 1)/(‖Z‖ − 1) for ‖Z‖ ≥ 2, 0 otherwise.

Coverage of axis A is the ratio of the quantity of unique navigable objects of A against the
quantity of all navigable objects of a web page (of the instance of the UOM). It gives one an
estimation of the amount of information contained within the axis relative to all information on a
web page.

Spatial direction (direction) defines a prevail direction relationship between pairs of suc-
cessive elements. If the direction relation is “east-of” or “west-of,” the spatial direction of
an axis is horizontal (“left-to-right” or “right-to-left” respectively); if the direction relation is
“south-of,” “north-of,” the spatial direction is vertical (“top-down” or “bottom-up” respectively).
These directions are the most ubiquitous relationships in practice due to the peculiarities of
information organization, web page layout (which in most cases is kept to “Manhattan” [110] or
“near-Manhattan” [116, p. 19] layouts), and reading order. Employing quantitative information
we define axis direction as an angle between abscissa and straight line interpolating locations of
geometric centers of objects and averaging existing directions between successive objects of an
axis. If this interpolation is impossible and directions are too diverse, an axis does not pose any
spatial direction—it has an undefined direction.

208

a) b)

c) d)

Figure 6.7: Main global directions of axes: a) horizontal, b) vertical, c) horizontal with deviation,
d) vertical with deviation

Spatial global direction (global direction) defines a predominant direction of sub-sequences
of an axis (see Figure 6.7). Considering the huge amount of various layouts of web pages, we
single out four main global directions: horizontal, vertical, horizontal with deviation, and vertical
with deviation. Together with these features, we define concepts such as amount of columns and
rows. Horizontal and vertical global directions have a layout similar to homonymous directions
with deviations. The only difference is that the latter allows elements to deviate from the current
direction. The horizontally-oriented relations imply the presence of several objects in each line
of a column while the vertically-oriented imply the presence of several objects in each vertical
traversal of a row. Global direction reflects a spatial configuration of elements and their layout.
For instance, directions in Figure 6.7a (e.g., axes “news list 5” in Figure 6.4 and “categories
2” in Figure 6.5 forming one column) and Figure 6.7c usually correspond to the multicolumn
layout, while directions in Figure 6.7b (e.g., axis “categories 1” in Figure 6.4 forming one row)
and 6.7d can be associated with a reading order for vertical lists. Also, all these directions can
define a reading order for a tabular layout. Thus, axis and layout are interrelated: an axis gives
one information about layout, while the layout affects the global direction of axes.

For an analysis of the MANM, we propose the following statistical characteristics: set of
repetitive elements ρ1(A), the most frequent repetitive elements ρmax1 (A), repetitive sequences
of the length n ρn(A), the most frequent repetitive sequences of the length n ρmaxn (A), the
longest repetitive sequences ρmax(A), and the most frequent repetitive sequences ρmax(A).
These characteristics give information about structural singularity of an axis, particularly about
repetitions and cycles. Repetitions of elements are features dual in nature. On the one hand, these
reflect the importance of certain elements since axes with repetitions of items can be used for
content difficult to understand or for learning. On the other hand, these statistical characteristics
can be used to check the correctness of an axis and the generation process. For example, if a
certain axis is not allowed to have repetitions of elements, than their presence will signal the
incorrectness of the algorithm generating this axis accordingly.

The basis axis Z should not have any repetitions: ρ1(Z) = ∅.

209

Relations of Axes and Functions

For the objects a and b from the UOM, we define a closeness relationship which reflects the
similarity of objects relative to some particular feature or set of features. Examples of these
relationships expressed via quantitative characteristics are spatial d(a, b) ≥ 0 and semantic
closeness 0 ≤ w(a, b) ≤ 1. A spatial closeness of objects is expressed by their spatial distance.
A relation of semantic closeness of objects is defined based on the LM.

According to these relations, we define concepts (functions) of neighborhood ν(a, ε) and
particularly spatial νsp(a, εsp) and semantic νsem(a, εsem) neighborhoods for an element a
respectively:

ν(a, ε) ≡def {b| ε(a, b)},

where ε(a, b) is a predicate which reflects a closeness relationship between elements,

νsp(a, εsp) ≡def {b| d(a, b) ≤ εsp},

νsem(a, εsem) ≡def {b| w(a, b) ≥ εsem}.

We also define functions such as set of corresponding axes ax(a) for an element a and set of
positions pos(a,A) of an element a within the axis A:

ax(a) ≡def {A| A ∈ A ∧ a ∈ A},

pos(a,A) ≡def {i| 1 ≤ i ≤ ‖A‖ ∧A(i) = a}.

Furthermore, posj(a,A) denotes position of the j-th occurrence of a in A.
Given the axis A and element index i, a general concept of neighborhoods and a spatial and

semantic neighborhoods, which correspond to the aforementioned homonymous concepts, are
defined respectively as follows:

νax(A, i, ε) ≡def {< B, j > |B ∈ A ∧B 6= A ∧ 1 ≤ j ≤ ‖B‖ ∧B(j) ∈ ν(A(i), ε)},

νaxsp (A, i, εsp) ≡def {< B, j > | B ∈ A ∧B 6= A ∧ 1 ≤ j ≤ ‖B‖ ∧B(j) ∈ νsp(A(i), εsp)},

νaxsem(A, i, εsem) ≡def {< B, j > |B ∈ A∧B 6= A∧1 ≤ j ≤ ‖B‖∧B(j) ∈ νsem(A(i), εsem)}.

A relationship of semantic closeness for axes types T1 and T2 is expressed quantitatively as
0 ≤ w(T1, T2) ≤ 1 and defined in the MANM. A concept of semantic neighborhood of an axis
type T with a threshold εsem is as follows:

νsem(T, εsem) ≡def {T ′|T ′ ∈ T ∧ T ′ 6= T ∧ w(T, T ′) ≥ εsem}.

Spatial axial intersection (axial intersection) for i-th element of axis A is a set of pairs
< B, j > with intersecting axis B and an index j of the equivalent element:

χ(A, i) ≡def {< B, j > |B ∈ A ∧B 6= A ∧ 1 ≤ j ≤ ‖B‖ ∧B(j) = A(i)}.

χ(A, i) = νax(A, i, ε), where ε(a, b)← a = b.

Axial concatenation (concatenation) of axes A and B is an operation which joins them into
the new axis C such that the first element of B is a successor of the last element of A, C = A ·B.

210

Algorithm 6.1: Process of building the MANM
Input :The instance of the WPPS framework (wppsFramework).

Configuration of the MANM (manmConfig).
A set of types of HTML tags which are considered as readable (readableTypes).

Output :An instance of the Multi-Axial Navigation Model (manm)

1 manm← BuildEmptyMANM(manmConfig);
2 wppsAPI← GetAPI(wppsFramework);

3 segmentationTree← Segmentation(wppsAPI, readableTypes);
4 BuildBasisAxis(segmentationTree, manm);

5 AddSpatialNeighbors(wppsAPI, readableTypes, manm);
6 AddLogicalObjects(wppsFramework, manm);
7 AddSemanticNeighbors(wppsAPI, manm);

8 AddInterfaceAxes(manm);
9 AddStructuralAxes(manm);

6.2.4 Ontology

The ontological representation of the MANM [79] is compliant with the description presented in
Section 6.2.3. Classes and object properties are presented in Figures 6.8 and 6.9. There are four
functional types of axes: basis, interface, structural and content which is used to order named
entities (NEAxis) and sentences (SentenceAxis). Set of axes are grouped into corresponding
axis types. An axis is identified by the name of the corresponding axis type and sequence number
of the axis within the group of axes of the same type. Additionally, we distinguish two types of
axes depending on which type of element of the visual formatting model [260, Sec. 9] constitutes
an axis; block-level elements form block axis, whereas inline-level elements form inline axis.

Furthermore, the ontology supports three functional types of objects of a web page content
building the similarly named axes: interface (a superclass of an element of the Interface Model,
see Section 4.4.3), structural and content elements, where the latter is subdivided into named
entities (NE) and sentences (Sentence). A basic object represents navigable object forming
axes of the MANM (i.e., structural element forming a basis axis should be a basic object).
Elements have corresponding data properties which specify their type (e.g., interfaceType,
structuralType, neType) and textual content (e.g., stringContent). A basic object also has
an id within the basis axis (zId).

6.3 Building the Multi-Axial Navigation Model

The process of building the instance of the MANM is given in Algorithm 6.1. It requires
the following objects to be provided: a) an instance of the WPPS framework which conveys
functionality necessary for interacting with generated UOM, b) configuration of the MANM (e.g.
how the model should be represented in the Jena ontology framework [10]), and c) a set of types
of HTML tags which should be considered as readable (i.e., elements which can be represented
by text which describe their content). It mainly consists of elements of a web form, alternative
text of images, and visible textual content.

211

Figure 6.8: Classes of the Multi-Axial Navigation Model

Figure 6.9: Object properties of the Multi-Axial Navigation Model

212

The first two procedures are building the empty MANM (line 1), which is filled later with
assertions corresponding to a certain web page, and acquiring a WPPS API for querying the
UOM (line 2). For building the basis axis Z, we propose the use of a segmentation algorithm
(e.g., XY-cut [106, 176, 182], VIPS [40, 41], or [104]) to segment a web page based on visual
cues on logically consistent parts (line 3) and, in the next procedure, to serialize a segmentation
tree reflecting the correct reading order (line 4) [2, 172, 197]. Various experiments by example of
Blindzilla2 (see Section 6.5) and interviews of sightless users show the effectiveness of such an
approach. Readable elements of this serialization represent the basis axis. Identification of spatial
neighbors (line 5) is performed for every readable element based on the value of spatial closeness
provided (see Section 6.2.3). It has general complexity O(n2) which can be improved by the
application of R-Tree integrated into WPPS. Leveraging predefined wrappers, different objects
on a web page can be identified and annotated, providing the user with information regarding
the logical objects and logical structures on a web page (line 6). The wrappers applied are also
responsible for defining semantic closeness between logical objects which is materialized in the
MANM as a relationship of semantic neighbor (line 7). Identified elements are then serialized by
means of axes. Interface axes (line 8) order different types of interface objects, whereas structural
axes (line 9) order logical (structural) objects of a web page. As it was experimentally confirmed,
interface and structural axes should correspond to the reading order established by the basis axis.

6.4 Methodology of Navigation

“Begin at the beginning,” the King said gravely,
“and go on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

Operations from Relational Algebra, First-Order Logics, and functions presented in Sec-
tion 6.2.3 are used in this section for the sake of formal representation of navigation commands.

An instance of the MANM generated for a web page provides a graph-based structure
which comprises necessary information about elements of the model (axes, navigable objects,
attributes and relations) ensuring a stable and efficient navigation (see Section 6.2). Taking into
account Information Foraging theory [194], cognitive approach to navigation [112, 132, 226],
and principles of the user mobility [97, 112], we single out two main concepts: observation and
locomotion.

6.4.1 Observation

Observation plays an important role in the process of orientation. It helps users to recognize
their location based on information about surrounding objects. In this case, well-known and
recognizable objects (referred to as landmarks) are the main reference objects for understanding
the user’s whereabouts and planning a navigation path. We define two main types of observation:
in-axial and inter-axial.

In-axial observation allows one to obtain information within the scope of one axis. It includes:

213

• axis type, axis identifier;

• quantity of passed and residuary items of the axis;

• sequential number of the current item and its type according to the LM;

• features of an axis such as, length, location, coverage, direction, etc. (see Section 6.2.3).

Inter-axial observation supports a user with general information about a relevant web resource
(its logical structure, size with the time estimation based on the selected axis, available navigations,
etc.) and information about a user’s location based on the neighboring axes. The following is
information available for a user:

• set of all global axes created for a certain web resource;

• set of all types of global axes created for a certain web resource;

• set of axes within the neighborhood of the current object, and its special cases such as:

– set of axes intersecting the current axis item A(i): π1(χ(A, i)). (A neighborhood
here is defined as the equality to the axis item A(i).) For example, for the second
item of the axis “top news titles 1” in Figures 6.4 and 6.6, it is axis “top news 1” and
the basis axis;

– set of axes within the spatial neighborhood of the axis item A(i) with the radius εsp:
π1(ν

ax
sp (A, i, εsp)). For example, (considering only axes going through basic objects

in Figure 6.3) for the second object of the news axis this is represented by news title
axis;

– set of axes within the semantic neighborhood of the axis item A(i) with the threshold
εsem: π1(νaxsem(A, i, εsem)). For example (considering only axes going through basic
objects in Figure 6.3) for the first item of the comment axis which contains three
objects this is represented by news title axis and news axis;

• set of axes within the neighborhood of the current axis, and its particular cases:

– set of axes X within the semantic neighborhood of the current axis A /∈ X with a
threshold εsem: σπ1 6=Aπ2(νsem(T, εsem) ./ πtypeOfAxis,1(A)) or {B|B ∈ A∧B 6=
A ∧ type(B) ∈ νsem(T, εsem)};

– set of axes of the same type as the current axis A: {B|B ∈ A∧B 6= A∧ type(B) =
type(A)}. (Neighborhood here is defined as an equality to the axis type of A.) For
example, for the axis “navigation menu 1” in Figures 6.4, it is axis “navigation menu
2”;

– set of axes which share the same feature or set of features, for instance, with the same
global direction or similar length, etc.;

• set of axes types related to each other by a certain feature or relationship, and its special
case:

214

– set of axis types within the semantic neighborhood of a type of the current axis A
with a threshold εsem: νsem(type(A), εsem).

6.4.2 Locomotion

Locomotion is a process of navigation in some environment according to a particular goal and
some level of orientation. As in the case of observation, there are two types of locomotion in the
MANM: in-axial and inter-axial.

In-axial locomotion is designed for navigation within one axis. It includes the following
operations: go to

• next item (go to the next object of current axis);

• previous item (go to the predecessor of the current object on the current axis);

• first item;

• last item;

• item with specified index (sequential number).

Before presenting operations utilized for the inter-axial locomotion, we give definitions to the
following concepts. We define the term setting new axis as a movement from the current element
to the first element of another axis. The term changing the axis within the neighborhood is
defined as a locomotion from the current element to its nearest element of another axis. The term
nearest in this thesis is associated with geometric space and particularly with a spatial closeness
defined in Section 6.2.3; in general, this term can be related to other spaces, for instance, feature
spaces.

We single out the following abstract inter-axial movements:

1. Locomotion from the i-th element of axis A to axis B, which splits on:

a) Setting a new axis: it is a transition to B(1).

b) Changing the axis within the neighborhood (see Figure 6.10): it is a transition to
j-th element of the axis B 6= A which has at least one element contained in the
neighborhood of A(i) specified by some closeness function ε at that, and B(j) with
minimum j is also not farther to A(i) than any other items of axis B. In other
words, it is a transition to j = Q∗(A, i,B, I) = inf(σd(A(i),B(π1))=M (I)), where
I = π2(σπ1=B(νax(A, i, ε))) and M = Gmin(d(A(i),B(π1)))(I).

2. Locomotion from the i-th element of axis A to another axis from the neighborhood ε(A)
of A, where ε(A), which differs by:

a) Setting a new axis (see Figure 6.11): it is a transition to the 1-th element of some
axis B ∈ ε(A), where the element B(1) is not farther to A(1) than the first item of
any other axis from the neighborhood. Formally speaking, B ∈ Q∗∗(A, i, ε) =
σd(A(1),π1(1))=M (J), where J = ε(A)) and M = Gmin(d(A(1),π1(1)))(J). If there

215

A

B

i

neighborhood
of i

j

d dtransition

Figure 6.10: Operation of changing axis to the specific axis within the neighborhood of the
current item—Inter-axial locomotion from element A(i) with changing the axis A to axis B
within the neighborhood of element A(i), where B(j) is chosen as a target element

A
i

d2

d1 transition B
1

C

d1 < d2in
 t

h
e
 n

e
ig

h
b
o
rh

o
o
d

o
f

A ...1

1

Figure 6.11: Operation of setting a new axis within the neighborhood—Inter-axial locomotion
from the axis A to another axis within the neighborhood of A, where B(1) is chosen as a target
element

transition

d3 d3

A
i

d2

d1 B
j

C

d1 < d2in
 t

h
e
 n

e
ig

h
b
o
rh

o
o
d

o
f

A

...1

1

1

...

Figure 6.12: Operation of changing axis within the neighborhood—Inter-axial locomotion from
the axisA to another axis within the neighborhood of A, where B(j) is chosen as a target element

are several candidate axes X , the one with minimum pos1(Y (1), Z), where Y ∈ X ,
is chosen.

b) Changing the axis within the neighborhood (see Figure 6.12): it is a transition to
j-th element of some axis B ∈ ε(A), where the element B(1) is not farther to A(1)
than the first item of any other axis from the neighborhood; B(j) has the minimum
j and is not farther to A(i) than any other items of axis B. To define formally,
j = Q∗(A, i,B, I), where I = ‖B‖, and B ∈ Q∗∗(A, i, ε). If there are several
candidate axes X ∈ ε(A), the one with minimum pos1(Y (1), Z), where Y ∈ X , is
chosen.

Inter-axial locomotion corresponds to the main movements of a blind user through the axes
and comprises the following operations:

• corresponding to the first group of abstract inter-axial locomotions:

216

– set/change axis on the intersection, for changing the axis
j = inf(π2(σπ1=B(χ(A, i)))).
(This requires consideration of the set of axes intersecting the current axis item);

– set/change axis in the spatial neighborhood of an object, for changing the axis
νax(A, i, ε) = νaxsp (A, i, εsp).
(This requires consideration of the set of axes within the spatial neighborhood of the
current axis item);

– set/change axis in the semantic neighborhood of an object, for changing the axis
νax(A, i, ε) = νaxsem(A, i, εsem).
(This requires consideration of the set of axes within the semantic neighborhood of
the current axis item);

• corresponding to the second group of abstract inter-axial locomotions:

– set/change axis in the semantic neighborhood of axis type,
ε(A) = instances(νsem(type(A), εsem)).

It is important to note that a blind user can move to any axis she can obtain via observation
operations presented in Section 6.4.1.

The inter-axial navigation (possibility to change axis at the particular object in its spatial or
semantic neighborhood) is an important new concept and one of the benefits of our navigation
model. It includes both inter-axial observation and locomotion. The reason for changing an axis
can be the result of finding an item with stronger information scent and willingness to change
the axis from a more generic to a more specific one. For example, changing an axis which goes
through top news titles to the axis with top news at some relevant object (see Figure 6.4), or from
axis of news categories to the news list axis (see Figure 6.5). In contrast, locomotion from a more
specific axis to a more generic one could be caused by very low information scent of objects of a
current axis. A user’s transitions through axes in either spatial or semantic neighborhoods could
mean that a blind user tries to find serialization which better suits her goals and has stronger
information scent according to the current position.

The inter-axial navigation allows the user to explore the structure of a document quickly
with different contexts and goals and without losing orientation. Since the axis model is a stable
network the user can go astray and backtrack to a more familiar location (landmark) at any point.
This principle of “no surprises” encourages users to explore freely and without fear of getting
lost, while the coarse grain nature of some of the axes also makes it a less time-consuming and
therefore less painful experience.

Thus, observation and locomotion are interconnected and provide a basis for scanning and
becoming familiar with a web page while ensuring a user’s mobility. For example, to read news
headlines of the environment category on the main CNN web page by means of the MANM
illustrated in Figures 6.4, 6.5, and 6.6, the user can perform the following operations (without the
use of the keyword search):

• obtain all types of global axes on a web page,

• choose the navigation axis “categories 1” and read it through,

217

• choose the navigation axis “categories 2” and read it through until the required category is
found,

• read the set of axes within the spatial neighborhood of the current axis item,

• choose the navigation axis “news list 17” and read it through.

It is worth mentioning that instead of switching from “categories 2” to “news list 17,” a blind
user can also choose the basis axis and read relevant news headlines. We have demonstrated an
example of navigation by means of the MANM without the use of the keyword search to show its
effectiveness and general principle of navigation as well as to reflect the reasoning involved.

In contrast, a user’s navigation by means of common screen readers is less intuitive and
mainly based on the use of heading tags (if they are provided), links, and linear navigation through
DOM tree elements.

6.5 Blindzilla: Implementation

For the approbation of the concepts and methods introduced in this chapter, particularly the
MANM (see Section 6.2) and the methodology of navigation (see Section 6.4), and to prove their
feasibility and effectiveness, we developed Blindzilla, a set of prototypical tools based on the
WPPS framework. All components of Blindzilla are cross-platform and mainly written in Java
(JDK 1.7.0); they are plug-ins of the Eclipse RCP (Indigo) framework. The Blindzilla prototypes
were successfully tested on different operating systems, such as Ubuntu, Mac OS X, Windows XP,
and Windows 7.

6.5.1 System Architecture

We present two main Blindzilla implementations: Blindzilla1 and Blindzilla2. Both of them
realize the MANM and the navigation methodology conveying an accessible interface due to
the use of SWT/JFace libraries. The latter utilizes components of the local operating system for
graphical user interfaces that makes them accessible by common screen reading technologies.
Blindzilla1 and Blindzilla2 have a Firefox 3.6 (XULRunner of the version 1.9.2) integrated which
enables web surfing and interaction with web pages. For interaction with the blind user, the
prototypes have speech synthesizers integrated (e.g., FreeTTS, eSpeak, Festival). The general
architecture of the Blindzilla prototypes is illustrated in Figure 6.13.

Blindzilla1 operates with the earlier versions of the MANM and was used for the investigation
of the navigation model and navigation as well as for their successive amelioration. The improve-
ments were performed according to the recommendations acquired from blind users during the
ABBA [236] and the TAMCROW [237] projects. Furthermore, it is based on the earlier version
of WPPS (version 1) and integrates different algorithms and approaches developed by a team of
the ABBA project [236] for web page analysis, in particular, algorithms for generating different
versions of the Physical Model (PM) and the Gestalt Ontology (see Section 4.2). Blindzilla1
comprises three general plug-ins: at.dbai.blindzilla.builder (a MANM builder from
the PM or the Gestalt Ontology), at.dbai.blindzilla.navigator (a navigator through the

218

SWT/JFace org.eclipse.atf
(v. 0.3.0)

XULRunner
(1.9.2.21)

at.dbai.blindzilla.builder

at.dbai.blindzilla.ui

Eclipse RCP
Framework (Indigo)

Blindzilla1

WPPS

MANM Builder

MANM Navigator

at.dbai.blindzilla.navigator

version 1 version 2

tuwien.dbai.manm.model

Blindzilla2

Figure 6.13: Main components of Blindzilla

Figure 6.14: Graphical user interface of Blindzilla1

instantiated MANM), and at.dbai.blindzilla.ui (an SWT/JFace graphical user interface,
based on the Eclipse RCP platform). As demonstrated in Figure 6.14, it has relatively simple
interface which is fully accessible with keyboard.

Blindzilla2 realizes the latest version of the MANM and navigation methodology introduced
in this thesis and was used in the evaluation presented in Section 6.6. It has full integration with the
latest version of the WPPS framework (version 2) and is represented by two prototypes: MANM

219

Figure 6.15: Graphical user interface of MANM Builder

Builder (for building the MANM of a web page, see screen shot in Figure 6.15) and MANM
Navigator (for navigating through the instance of the MANM). Both prototypes are dependent
on the at.dbai.manm.model library conveying classes and application programming interface
(API) necessary for interacting with the MANM. Like Blindzilla1, a MANM Builder is Eclipse
RCP based application, integrating XULRunner and leveraging ATF plug-ins. In contrast,
MANM Navigator is Java tool only based on at.dbai.manm.modelwith accessible SWT/JFace
graphical user interface. This interface listens to the keystrokes and enables opening serialized
MANMs.

6.5.2 Model Generation Component

In the Blindzilla1 prototype, the MANM is instantiated by the at.dbai.blindzilla.builder
plug-in. This process is automatically executed as soon as the web page, requested by the blind
user through the integrated web browser, is loaded and rendered. Blindzilla1 generates basis
axis mainly relying on the DOM tree, serializing web page elements according to the depth-first
traversal. This specialized web browser generates various axes, including the HTML-based (e.g.,
headings, links, images, web form elements) and those serializing different types of recognized
logical objects (e.g., lists of visually ordered elements, navigation menu, sections).

Blindzilla2 has a dedicated tool called the MANM Builder for building an instance of the
MANM for a given web page (see Figure 6.15). This application allows the developer to
instantiate the model for the rendered web page according to the method presented in Section 6.3.
With the graphical user interface (GUI) of MANM Builder, the developer can annotate a web page
manually and create axes. WPPS API is extensively used in MANM Builder. The basis axis Z

220

Player
Speaker

Navigator
Key Listener

FreeTTS Speaker

eSpeak Speaker

Console Speaker

Festival Speaker

Axis Navigator

Orthogonal Navigator

Dialog Builder

Figure 6.16: Main components of the navigator

with readable elements (i.e. web form elements, alternative text of images, and visible textual
content) is generated based on the serialization of leafs of a segmentation tree according to the
depth-first traversal. The tree is acquired by the application of the adapted XY-cut algorithm over
the web page canvas. By means of an integrated core of the WPPS framework, MANM Builder
also enables automatic enrichment of the MANM with spatial neighbors and identification of
different logical objects. Information regarding the spatial neighbors of each element of the axis Z
as well as recognized interface and logical (structural) objects are materialized in the MANM
instance. Extraction of logical objects on a web page is performed by means of invocation of
different wrappers leveraging WPPS API. Also, recognized interface and structural (logical)
objects are ordered by means of automatically created interface and structural axes respectively.

6.5.3 Navigation Component

The main aspects of the navigation methodology introduced in Section 6.4 are implemented
in at.dbai.blindzilla.navigator plug-in of Blindzilla1 and in MANM Navigator of
Blindzilla2. Available keystrokes are presented in Appendix ??. In contrast to Blindzilla1,
MANM Navigator does not generate the MANM “on-the-fly” and does not have a web browser
integrated. It is purely a navigation system which operates with the MANM built by the MANM
Builder. The MANM Navigator is an enhanced version of at.dbai.blindzilla.navigator
with optimized dialogs and algorithms.

In the implementations proposed, we distinguish five main objects (see Figure 6.16):
Navigator, Dialog Builder, Speaker, Key Listener, and Player.

There are two types of navigators in Blindzilla: axis navigator and orthogonal navigator. An
axis navigator conveys functions necessary for in-axial observation and locomotion, for example,
to get axis length, quantity of passed items, go to the next item, etc. Orthogonal navigator walks
over a labeled planar graph with arcs connecting each readable elements on a web page canvas
with the four nearest orthogonally visible elements (to the north, east, south, and west). Dialog
Builder provides all the necessary dialogs and textual representations of web page elements.
Speaker is responsible for the interaction between computer and the user. It provides the user
with necessary audio or textual information according to her interaction leveraging the Dialog
Builder. Blindzilla realizes four types of speakers: FreeTTS Speaker, Festival Speaker, eSpeak
Speaker, and Console Speaker. The first three speakers generate audio output utilizing different

221

Figure 6.17: The main states of the navigation components

speech synthesizers, whereas the Console Speaker outputs textual information. The FreeTTS
Speaker leverages FreeTTS1 system to render speech and is written entirely in Java and supports
only English. Interaction with the system is conducted via Java Speech API, providing a unified
interface for text-to-speech engines that implement it. Thus, FreeTTS Speaker has complete
integration with FreeTTS and is cross-platform. Festival Speaker using Festival2 and eSpeak
Speaker operating with eSpeak3 have relatively limited integration with the corresponding text-
to-speech engines. This is due to the fact that the utilized engines are written in C++ and C
respectively and therefore are invoked outside the Java virtual machine. It is worth mentioning
that Festival and eSpeak are cross-platform and support multiple languages including English,
German, and Russian. Console Speaker outputs relevant information into the application console
that allows the blind user to use their customary screen reader for synthesizing speech. Key
Listener is a “mediator” between the user and Player; it intercepts key press events and translates
them into the commands for Player. Player is a central element in the navigation system. It is
responsible for realizing the navigation methodology with the help of navigators, for generating
textual dialog and textual serialization of the elements to be read by means of Dialog Builder,
and for interacting with the user leveraging a certain speaker.

Objects such as Key Listener, Player, and Speaker have states which are worth mentioning.
Figure 6.17 depicts the main states of the objects and possible transitions. Key Listener has two
main states: “command mode” and “text input mode.” In the command mode, Key Listener
interprets key presses into commands passed to Player. In text input mode, Key Listener does
not interact with Player and is used to allow the user to interact with a web page, for example,
to type text into the editable elements. The transition between these states is performed by the
user request. Player in turn has three main states: “ready for commands,” “paused,” and “waiting
for text input.” In the first state, Player reacts on user commands and carries out corresponding
operations (e.g. reads next element on a certain axis, gives an overview of the neighboring
axes within the spatial neighborhood). In the pause mode, Player holds its current state and
does not perform any operations. For instance, if the player was playing through the items of a

1http://freetts.sourceforge.net/
2http://www.cstr.ed.ac.uk/projects/festival/
3http://espeak.sourceforge.net/

222

http://freetts.sourceforge.net/
http://www.cstr.ed.ac.uk/projects/festival/
http://espeak.sourceforge.net/

certain axis, then when switching into the pause mode by the user, it will discontinue to read any
further, and will resume its activity after the transition from this state to the “ready for commands”
state. Transition between the first two modes is directly controlled by the user. The third state is
activated when the player requires additional parameters from the user, for example, to specify the
number of the axis which the user switches to. Speaker has three main states: “speak,” “paused,”
and “stopped.” In the speak state, Speaker is synthesizing speech according to the text provided
and outputting into the relevant device (i.e. speakers or console). Transitions between these states
are controlled by Player. Pause mode interrupts the current audio stream and resumes it when
the speaker switches into the speak state. This procedure (i.e. pause-resume) only functions
properly for FreeTTS Speaker due to its complete integration with FreeTTS speech synthesizer.
The speaker goes into the stop state if either the audio output is complete or if it was forcibly
stopped by Player. The latter can happen when the user activates command when audio output is
still going, and as a consequence, Player interrupts Speaker.

Figure 6.18 demonstrates an example interaction scenario. For the sake of simplicity, Dialog
Builder is not shown on the diagram. However, it is utilized every time Player sends text to
Speaker. In the example scenario, Key Listener sends three commands to Player by the user
request: set new axis, play axis items, and go up. Reacting on the commands received, Player
interacts with Speaker and with one of the navigators available.

6.6 Blindzilla: Evaluation

To evaluate the effectiveness of the proposed MANM (see Section 6.2) and navigation methodol-
ogy (see Section 6.4), we conducted a user study with five participants who are blind, comparing
contemporary screen readers with Blindzilla2 (see Section 6.5) [74]. Each of the volunteers
had a certain amount of experience working with screen readers such as JAWS [90], Window-
Eyes [178], and Fire Vox [47] at the time of the experiment. These tools have different levels
of popularity among the blind community [296]. Presented in Section B.2, JAWS is the most
commonly used software according to different inquiries, for example, [296]. Although Window-
Eyes provides similar functionality, it is used less often. In general, the cross-platform Fire Vox
is used quite seldom and is most popular among Linux users. For the purpose of the evaluation,
the volunteers also learnt the API of MANM Navigator and where able to use it.

We defined a set of navigation scenarios that we believe capture a realistic range of typical
usage behavior within varying levels of complexities. As such, web pages of different genres
such as weblog, on-line shops, news, and search engines were considered. Overall, we defined
six tasks4 and presented them to the testing group. These tasks are as follows: For a given page5

• Dog blog: Find and read the latest blog post;

• Cat blog: Find and read the second newest blog post;

• Amazon 1: Find the cheapest book listed on the web page;

4The tasks given to the blind users were formulated together with the participants of the ABBA project [236].
5http://www.dbai.tuwien.ac.at/staff/fayzrakh/blindzilla/ds/blindzillaEval2012.zip.

223

http://www.dbai.tuwien.ac.at/staff/fayzrakh/blindzilla/ds/blindzillaEval2012.zip

Figure 6.18: Sequence diagram of the navigation component of Blindzilla demonstrating an
interaction example

• Amazon 2: Find and read the first customer review;

• CNN: Find and read the news teasers in the “business” category;

• Google: Read the titles of web resources on the result page.

Dog blog and cat blog are web pages of a weblog genre, rich with images which are not compliant
with the accessibility standards. Amazon 1 and 2 are web pages of the popular on-line shop,
CNN is a popular news website, and all of them have relatively complex interfaces with the active
use of AJAX technology. Google is a good example of the search engine.

224

Figure 6.19: Results of the evaluation of the efficiency of using the proposed Multi-Axial
Navigation Model and navigation methodology relative to contemporary screen readers

For each web page considered, the main HTML-based axes available in today’s screen readers
(e.g., axes of headers, links, images) were automatically generated in the MANM Builder, as well
as certain axes serializing various types of logical objects recognized on a web page (such as titles,
categories, sections, dates, prices, etc.). Some of the logical objects were manually annotated
on a web page, for example, list of products on Amazon 1 page or sections on Amazon 2. A
generated basis axis Z reflects the layout of a web page leveraging the adapted XY-cut algorithm
for the content segmentation.

Before the experiment, each participant was asked to choose one of the proposed screen
readers they were familiar with and would use during the entire study. Since the participants were
not familiar with the user interface of the MANM Navigator, we suggested to two participants
that they should use it for the experiment. At the end, their average results were estimated. The
testing group was also asked to avoid using keyword searches. All the screen reading tools had
the voice rate equal to 200 words per minute. We chose time spent for fulfilling a task as the basis
for evaluating the efficiency of the navigation model and the methodology proposed. The results
of the experiment are summarized in Figure 6.19.

Depending on the task, the quantitative results show that the various screen reading systems
have different efficiency. In particular, the participants encountered severe obstacles on the
Amazon 1 task, which took them on average from 7 to 19 minutes to complete with the use of
third-party tools. The reason for this poor performance is that the Amazon 1 web page contains a
lot of elements of different types, and it was difficult for the blind users to distinguish products
with the price located in different parts of the web page content from the rest. Furthermore, all the
web pages except Google are not compliant with the accessibility guidelines. For example, they
do not provide alternative text for images, they use table tags for molding the web page layout,

225

and they misuse HTML paragraphs and HTML headings. Blind users are quite sensitive to these
issues due to the fact that most of them prefer to have images properly described [29] and the
structure of a web page well organized with HTML headings [292–294]. Thus, the participants
used different navigation strategies [37] (except keyword search). However, the most common
were heading, list, table and paragraph navigation as well as sequential navigation with reading
the text line by line. Due to the misuse of HTML tags the participants had to use sequential
navigation reading through the page quite often, which explains why some tasks (especially
Amazon 1 and Amazon 2) took them so much time to complete. The Blindzilla2 prototype
fared better due to the possibility of navigating through the logical elements of a web page, in
particular, the web and domain specific. This important advantage enables the user to think in
terms of logical representation and logical objects instead of the various serializations of a web
page’s source code and HTML elements.

In general, the Blindzilla2 prototype yielded the best performance across all tasks. On average,
tasks with the use of the Blindzilla2 prototype were carried out 3.61 times faster than with the use
of other screen readers, and 2.74 times faster than JAWS 13.0. The average value is computed
according to the following formula:∑N

i=1

∑
j∈S ti,j/(‖S‖ · ti,blindzilla)

N
,

where N = 6 is the number of tasks, S is a set of the screen readers compared against Blindzilla2,
ti,j is a time spend for the task i using the screen reader j.

In the interview, the participants shared their opinion regarding the navigation system and the
Blindzilla2 API provided. The models built by the Blindzilla2 corresponded to the domain of
the web page, and this factor was crucial in the success of the users of Blindzilla2. Furthermore,
some of the axes went through logical objects. Using the keystrokes, the participants were able to
acquire a list of available structural (logical) axes and thus, obtain an overview of a web page
and choose an axis most relevant to the current task. We would like to note that for the inter-axis
navigation, users mainly used the operation of changing axis on the intersection. This operation
was leveraged, for example, when the users navigated through more general axis (or so-called
“faster” axis, for example, which goes through titles of blog posts) and after finding the required
element or element with stronger information scent, they changed it to the more detailed (or
so-called “slower” axis, for example, which goes through all elements of the blog content). While
carrying out the CNN task, for instance, one of the users, after choosing axis of news categories
and moving to the required category, changed it to the basis axis for reading the relevant news
titles of the current category. Thus, the MANM together with the navigation methodology allows
the user to navigate the content more adequately within their goals and web page domain. We
believe this factor is crucial for ensuring user mobility [97].

6.7 Discussion

In this chapter, we presented the Multi-Axial Navigation Model (MANM) (see Section 6.2),
navigation methodology (see Section 6.4) and Blindzilla prototypes (see Section 6.5) imple-
menting them. The effectiveness of the proposed models and methods was demonstrated in the

226

evaluation conducted with a small group of blind users utilizing examples of several web pages
with predefined axes (see Section 6.6). Blindzilla proved its efficiency in contrast to the common
screen readers and yielded the best performance across all tasks. On average, tasks with the use
of Blindzilla were carried out more than 3 times faster than with the use of other screen readers
and this confirms the importance of further research necessary in this direction.

Our main goal is to maximize the benefits from the one-dimensional navigation within the
multidimensional information space of a web page. Blind users lack visual cues which enable
sighted users to almost instantly build a relevant mental model of a web page and thus, easily find
and read interesting information. Blind users always lack the context and more generic picture of
a web page content. Therefore, MANM, which can be built both automatically and by means
of manual annotations, provides blind users with source code independent serializations and
navigation mechanisms for getting overview, context, and various trails for effective and efficient
navigation.

The MANM and navigation methodology improve a blind user’s mobility in the following
aspects introduced in [97, 112] (see Section 6.1.2):
Mobility objects:

(Cues, obstacles, memories) The MANM incorporates different types of objects adopted
from the Unified Ontological Model (UOM) and thus, reduces the number of “obsta-
cles” and increases the number of “cues”. The presence of various types of objects
describing interface and logical components of a web page helps to identify various
landmarks which support orientation within the web page environment.

(Out-of-view) The presence of various navigation axes covering different parts of a web
page content ensure more efficient access to different navigable objects and therefore
enables a decrease in the amount of “out-of-view” objects.

Mobility techniques:
(Preview and Probing) This aspect is accessible by various navigation methods which

a blind user can perform including observation and locomotion. For example, to
obtain objects and axes within semantic and spatial neighborhoods, the user can
utilize in-axial and inter-axial navigations as well as orthogonal two-dimensional
navigation (based on orthogonal visibility of objects, see Figure 4.16 on page 120
and Figure 4.17).

(External Memory) A variety of different ways of navigation over an instance of the
MANM as well as regularity and static character of the network of axes enable a
blind user to remember and easily recognize her whereabouts and therefore be able to
plan further navigation without probing.

The proposed concepts also ensure effective application of the mobility principles. Regarding the
information flow, for example, different axes with different levels of refinement of the web page
content (e.g., axes connecting news groups, news headlines, or news content) provide a blind user
with different speed and information details in reading a relevant web page. This provides the
possibility to choose a certain axis detailed enough to understand the current context. Granularity
is related to the regularity and static character of the network of axes (principle of regularity)
which enable a blind user to easily find familiar objects and whereabouts. This also provides the

227

opportunity to build a mental model relevant to a web page (principle of memory). Furthermore,
egocentricity and spatial principles are also taken into account providing sightless users with a
deictic frame of reference [50, 205] which gives her the possibility to orient herself relative to her
current position, which is very natural in real word navigation.

228

CHAPTER 7
Conclusion and Future Work

Accessibility of web resources for different groups of people in society is a very important aim
which has been addressed within the field of Web Accessibility. In this thesis however, we
specifically focus on the challenges of sightless people who encounter numerous problems while
interacting with web pages due to a lack of the most important constituent of a web page—visual
presentation.

When investigating contemporary approaches, methods, and tools ameliorating accessibility
of web pages for blind users, we realized the inalienability of Web Accessibility within the
research fields of Web Page Understanding (WPU) and Web Information Extraction (WIE), which
are both referred to as Web Page Processing (WPP). Therefore, the aim and objectives posed
within this thesis are directly related to the aforementioned areas of research (see Section 1.3).

7.1 Results

We divide the results obtained in this thesis into those making a direct contribution to WPP and
those enhancing accessibility of a web page.

7.1.1 Web Page Processing

A. The extensive analysis, conducted in Section 2.4 of various models and structures for
document representation used in WPP, indicated the importance of considering the rendered
state of a web page for developing effective and robust web page processing (WPP) methods.
In particular, the consideration of qualitative visual features on a web page canvas provides
the developer with broader opportunities of applying methods of different fields of study, be
it Document Understanding (DU), spatial reasoning, spatial cognition, Computer Graphics, or
Computer Vision. Furthermore, in contrast to various ways of spelling the visual representation
into X/HTML, the presence of a greatly smaller amount of different spatial configurations of web
objects and visual design patterns ensures the robustness of methods operating on the rendered
web page (see Sections 2.4.8 and 5.4.2). Consequently, the effectiveness is ensured by the analysis

229

of semantically relevant features of a web page which are considered by sighted users when
reading a web page. It is also important to note that the semantic gap between source code and
visual representation is growing even larger over time due to the constant development of new
technologies. Unfortunately, methods leveraging visual cues are less efficient due to the time
required for rendering the DOM tree together with CSS Object Model (CSSOM) as well as
generation of the required web page model. Thus, the developer has to find a trade-off between
robustness and effectiveness on the one hand and efficiency on the other hand.

Therefore, this analysis provides us with necessary knowledge regarding the existing web
page representations and relevant WPP methods as well as conclusions which underlie the models
and WPP approaches proposed within this thesis.

B. Based on the extensive analysis of web page representations, we investigated and identified
various spatial relations and features of elements populating pages’ canvases (see Chapter 3) and
gave them qualitative and quantitative expressions. The most commonly used qualitative spatial
relations were specified and expressed by means of Two-Dimensional Interval Relations with
Centering (2DIRC) (see Section 3.10.1). This ensures the elimination of invalid combinations of
basic relations between elements within the relevant qualitative model and dramatical decrease of
various combinations of pairwise joint basic relations (by the factor of 32). Due to the peculiarities
of the rectangular shape of basic web page elements, the RCC8 topology was refined with 33
supplementary relations (see Section 3.6.2). These 33 specific relations together with NTPP,
NTPP-, and EQUAL are jointly exhaustive and pairwise disjoint (JEPD) and thus, enable the
description of all possible spatial configurations of blocks merely based on the connection relation
C. Another important innovation is a fuzziness in the interval relations which is able to deal
with certain peculiarities and inaccuracy in the arrangement of elements on a web page canvas
(see Section 3.10.2). Furthermore, assorted identified spatial relations were evaluated over the
WPPS-HTML-DS1 dataset [72] presented in this thesis (see Section 3.11). Various statistical
characteristics acquired during the evaluation reflect different features of web pages, such as
regularities in the layout and the presence of Manhattan or near-Manhattan layouts and therefore
the predominance of orthogonal directions. In addition, there is the presence of more than 15%
of elements which are not rendered on the relevant page’s canvas and should be eliminated from
the visual-based WPP methods. [73, 81]

All the concepts mentioned are used for modeling a web page structure and layout by means
of both quantitative and qualitative characteristics reflecting correspondence between them.

C. We proposed a web page conceptualization which represents various aspects of a web page
in the form of layers considered in different processes and tasks (see Figure 4.3 on page 106). To
benefit from visual (i.e., layout, interface objects, font and other visual features) and technical
(i.e., the source code, CSSOM, and DOM tree) layers of a web page, we have elaborated the
Unified Ontological Model (UOM) [77, 80, 82, 151] (see Chapters 3 and 4). The UOM is based
on the models used within the fields of WPP and DU and consists of two main sub-models: the
Physical Model (PM) and Logical Model (LM). The former also consists of sub-models which
provide relevant constructs for modeling technical, geometric and interface layers of web pages.
Specifically, the Block-based Geometric Model (BGM) [73, 81] (see Section 4.4.2), sub-model

230

of the PM, representing the geometric layer models various spatial relations between structural
web page elements introduced in Chapter 3. By means of domain ontologies, the LM can be
used to interpret knowledge acquired during WPP. In particular, it allows developers to model
different data structures of logical objects as well as web specific and domain specific objects. In
its practical application within the scope of the ABBA [236] and TAMCROW [237] projects, the
UOM demonstrated its sufficient expressiveness in describing different aspects of a web page
used in various tasks of web page analysis.

D. We also introduced the following concepts in this thesis:

• The WPP was defined as a process of gradual generation of different models of web
page representation: first, the instantiation of the PM according to the DOM trees and
CSSOMs; second, instantiation of the UOM as a process of WPU and WIE; and third,
its transformation into other representations required for the integration into external
systems [71, 76, 77] (see Section 5.1).

• There are declarative (e.g., the Datalog±, HιLεX, and simplified web pattern matching
languages) and imperative approaches (e.g., languages such as Java, C#, C++, and Perl)
used in the implementation of WPP methods. Each of these approaches has its advantages
and disadvantages. Thus, to benefit from both approaches we proposed a bridged adapter
software design pattern [76, 77] (see Section 5.2.4) for implementing object-oriented ab-
straction for ontological modes. It also enables the development of the software which can
automatically adapt its implementation according to certain modifications within the subja-
cent model and modes of computing the required information. All operations performed
on the object-oriented level are transmitted into the ontology and all the modifications on
the ontology level are accessible for the object-oriented abstraction.

Leveraging these concepts and approaches, we developed a Web Page Processing System
(WPPS) [75–77] (see Section 5.3) which demonstrated the feasibility and effectiveness of the
UOM proposed as well as its relevant concepts and methods. In particular, WPPS performs
the analysis of a web page according to the proposed workflow for the WPP. Furthermore, by
utilizing the bridged adapter design pattern, it supports various configurations of the UOM which
specify types of objects, attributes, and relations to be automatically instantiated in the PM, modes
of obtaining the requested information (e.g., querying the ontology or computing “on-the-fly”
based on other information presented in the ontology), inference rules to be applied, consideration
of the fuzziness, fragment of a web page which should be considered for the analysis, the use
of RDF containers (when it is required to take into account the order of objects), and much
more (see Section 5.3.2). The WPPS demonstrated its effectiveness and efficiency in developing
wrappers (see Section 5.4) and was also used as a framework for developing other systems [145]
(e.g., ObjIdent, a web page annotation tool for computing features [84] relevant for the basic web
object identification, see Section 5.6). In the detailed evaluation of WPPS in Section 5.5, we
demonstrated different configurations by example of two queries and discussed efficiency and the
use of relevant wrappers, providing the developer with the necessary information for choosing
the most appropriate configuration for WPP.

231

It is important to note that the WPPS leverages an R-tree index for querying the contain-
ment and intersection relationships. Furthermore, as we found out in practice, during the PM
instantiation WPPS omits about 37.7% of web page elements on average, which are invisible or
not visually perceptible by the user. This makes interaction with an instance of the UOM more
efficient.

7.1.2 Web Accessibility

E. We conducted a survey of 95 participants who are blind. As discussed in Appendix B, this
survey reflects the present state and relevant problems within the field of Web Accessibility. We
believe that this survey could also motivate researchers of web accessibility and web authors who
work collaboratively to focus on resolving the problems that have been identified. In particular,
this survey has revealed that there is poor accessibility of websites in certain genres and a huge
discrepancy between the perception of a web page by sighted and sightless users and their mental
models respectively.

F. During the analysis of various typhlotechnology tools (see Section 2.1) as well as blind users’
interaction with them (see Section 2.2), we identified two main problems: 1) most web pages
do not follow accessibility standards and lack semantic annotations, which is crucial for the
DOM tree based screen reading technologies; 2) navigation is mainly represented by locomotions
through DOM tree elements of a certain type. In some senses, this approach forces blind users to
grasp the logical structure of a web page and the role of different elements based on the DOM
tree serialized by the screen reading tool. Thus, scanning and understanding a web page becomes
quite a difficult process for blind users.

The first problem is addressed within this thesis as a web page processing problem, which
can be approached by means of relevant tools, methods, and models developed in this thesis
(see Section 7.1.1). The second problem is considered from the viewpoint of one-dimensional
navigation, caused by the use of aural channel and Braille display, through the multidimensional
information space of a web page (see Section 6.1).

G. The Multi-Axial Navigation Model (MANM) [21, 83, 85, 151] proposed in this thesis pro-
vides blind users with different serializations (referred to as axes) of the web page content,
reflecting spatial and semantic relationships on the set of navigable objects and axes (see Sec-
tion 6.2). The MANM conveys yet another representation of a web page (independent from the
DOM tree and visual representation) which can be used for modeling effective navigation trails
with annotated logical and interface objects to help blind users to easily and correctly understand
the content. The MANM incorporates objects from the UOM provided by methods implemented
in the WPPS framework and utilizes orthogonal visibility relations from the BGM for orthogonal
navigation. We also presented various characteristics and features of axes which can be used to
assess the correctness of the access generated as well as the corresponding generation algorithm.

H. For the MANM proposed, we developed a navigation methodology [21,74,83,85] specifying
basic interactions which can be performed with the MANM (see Section 6.4). Navigation methods

232

were defined in accordance to principles presented in Information Foraging theory, cognitive
approach to navigation, and principles of user mobility. As such, they ensure efficient and
deliberate navigation relevant to the web page’s logical structure.

I. The feasibility of the proposed model and methodology is demonstrated by the Blindzilla
prototypes which were developed based on the WPPS framework. Blindzilla implements a set of
WPP methods to identify certain types of objects and build different navigation axes. [74]

Thus, the MANM and navigation methodology proposed are used to obtain maximum
performance from interaction with the computer by blind users who are limited due to an absence
of visual perception.

J. The proposed model, navigation methodology and tools were evaluated with the help of
a small group of blind users. Blindzilla proved its effectiveness in contrast to common screen
readers and yielded the best performance across all tasks. On average, tasks with the use of
Blindzilla were carried out more than 3 times faster than with the use of other screen readers. [74]

7.2 Future Work

The results acquired in this thesis as well as the concepts and lines of research introduced deserve
further studies. In line with the results discussed in Section 7.1, we believe that future work
should focus mainly on Web Page Processing and Web Accessibility.

7.2.1 Web Page Processing

Unified Ontological Model of a Web Page

The UOM formalizes certain aspects of web pages reflected in the web pages’ conceptual model.
This ensures the possibility of applying different methods of fields of research and conducting an
exhaustive analysis of different representations. Thus, the UOM should be studied further and
other layers of the web page conceptual model should be incorporated. Among the visual layers,
the most interesting layer is the Gestalt layer which refers to various Gestalt laws such as law of
proximity, similarity, closure, and symmetry. These laws and concepts such as ding, saliency,
foreground and background give additional meaning to web page elements. They provide the
ability to distinguish more important elements which require a user’s attention and to identify
different groups of elements and their relation with other groups. The formalization of the Gestalt
layer can be a big step towards the development of more robust algorithms reflecting certain
mental processes performed by humans during pattern recognition. Thus, visual layers should be
further researched as well as their relation to Computer Vision.

We believe it is very important that the logical layers be further investigated and various web
specific and domain specific objects be defined in publicly available ontologies. The use of such
datasets with Linked Data technology can dramatically improve accessibility of web pages both
for humans and computers.

233

Object-Oriented Abstraction for Ontological Models

The problem of providing object-oriented representation of the application domain for a given
ontology is one of the most important challenges considered in model-driven engineering. Un-
fortunately, contemporary approaches do not satisfy the requirements presented in Section 5.2.2
which are necessary for a seamless integration of declarative and object-oriented paradigms. The
solution to this problem, represented by the bridged adapter software design pattern, requires
the developer to manually define class interfaces, hierarchies, and constraints as well as the
application programming interface (API) for interaction with individuals within the ontology.
In order to make substantial contributions to model-driven engineering, further research should
target the challenge of automatic generation of the object-oriented abstraction and relevant API
according to the requirements defined in this thesis. For example, to be adaptive to 1) different
inference rules and reasoning mechanisms applied, 2) different sets of concepts instantiated
in the ontology, and 3) different modes of obtaining the required information. Moreover, the
object-oriented abstraction should be always synchronized with the ontology. This research
should also consider problems of instantiating a model which is unknown in advance but is
compliant with certain requirements or possess certain properties.

This research study can dramatically increase the efficiency of model-driven engineering and
the robustness of developed software.

WPPS

Further enhancement of the WPPS framework should include the optimization of selector and
processing functions of the WPPS framework and introduction of more class methods which will
make interaction with the UOM and development of WPP methods even more efficient. It is
important to integrate other ontology frameworks to have a possibility to choose the most efficient
for the specific WPPS configuration and web page processing method developed. Furthermore, the
WPPS configuration file can be amplified by the specification of different membership functions
(e.g., triangular function, trapezoidal function, and Gaussian function) as well as application of
the concept of uncertainty to different features including color, font, and text content.

Another interesting challenge consists of the integration of knowledge bases represented by
means of formalisms differing from RDF and OWL, for example, Datalog± [43] or HιLεX [173].
This will allow the application of alternative approaches for WPP.

Furthermore, limitations of the application of various membership functions (reflecting
inaccuracies on a web page layout) for computing qualitative spatial relations and R-tree should
be further investigated.

7.2.2 Web Accessibility

Multi-Axial Navigation Model and Navigation

The MANM enables navigation through basic navigable elements providing the user with different
paths and transitions. We see the potential development of the MANM in building axes through
complex objects and dynamically generating axes for reading their content. These aspects and
transitions should be well specified, intuitive for blind users, and not complicate their navigation.

234

One promising solution includes the generation of web pages’ abstractions which consist of
different granularity. For example, the most abstract representation will generate axes which
go through the most salient and important elements, such as titles and subtitles. Another more
detailed abstraction will possess axes which cover certain parts of a web page consisting of
content with relatively higher information gains. The most detailed abstraction will possess axes
which contain items corresponding to tokens of a relevant object. Research on this aspect will
provide blind users with different representations and gives them the opportunity to choose the
most convenient and relevant representations for a certain task.

To optimize information search on a web page, we also see further research opportunities in
developing summary generation methods taking into account peculiarities of a web page layout or
methods eliminating part of the content, and thus imitating a skim reading. The first approach is
directly related to methods introduced within the field of Natural Language Processing, whereas
the second approach requires a detailed analysis of a web page layout and identification of the
most prominent structural parts of a web page which should be read. In regards to the second
approach, for example, skimming a table entails reading only the most important and salient parts
according to specified constrains (e.g., time or number of items).

Blindzilla

Further work on the Blindzilla prototypes should include the development of the end-to-end solu-
tion for blind users with different collections of WPP methods corresponding to certain website
genres and tasks as well as methods for genre identification. Another functional enhancement
should be related to the possibility of sharing both instances of the MANM and navigation trails
with a certain web community and be able to replay these navigation trails.

235

APPENDIX A
Queries for Spatial Relations Analysis

This section provides a list of SPARQL queries which were used in the analysis of spatial relations
between elements of web pages’ layout—blocks (see Section 3.11). Types of spatial relationships,
such as topological, direction, distance, and alignment, are considered (see Sections A.1, A.2,
A.3, and A.4). SPARQL queries were evaluated against ontologies generated for web pages from
the WPPS-HTML-DS1 dataset [72]. The schematic representation of the experimental ontology
is illustrated in Figure A.1. A block has a nonzero area and corresponds to the Definition 3.5 on
page 67. For querying the ontologies Jena [10] and SPARQL 1.1 [282] were used.

Figure A.1: Concepts and properties of the experimental ontology used in the analysis of web
pages’ spatial relations

A.1 RCC8

For the analysis of topology of the web page layout, the RCC8 relations, such as DC, EC, PO,
TPP, NTPP, and EQUAL, between outer blocks were considered (see Listings A.1, A.2, A.3,
A.4, A.5, and A.6).

237

Listing A.1: Number of DC relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # block is on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 (?xMaxPrim < ?xMinRef || ?xMinPrim > ?xMaxRef
22 || ?yMaxPrim < ?yMinRef || ?yMinPrim > ?yMaxRef)
23)
24 }

Listing A.2: Number of EC relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # block is on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 ((?xMaxPrim = ?xMinRef
22 && ?yMaxPrim >= ?yMinRef && ?yMinPrim <= ?yMaxRef)
23 || (?xMinPrim = ?xMaxRef
24 && ?yMaxPrim >= ?yMinRef && ?yMinPrim <= ?yMaxRef)
25 || (?yMaxPrim = ?yMinRef
26 && ?xMaxPrim >= ?xMinRef && ?xMinPrim <= ?xMaxRef)
27 || (?yMinPrim = ?yMaxRef
28 && ?xMaxPrim >= ?xMinRef && ?xMinPrim <= ?xMaxRef))
29)
30 }

238

Listing A.3: Number of PO relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # blocks are on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0

21 &&
22 # primary and reference blocks should have common points
23 ?xMinPrim < ?xMaxRef && ?xMaxPrim > ?xMinRef
24 && ?yMinPrim < ?yMaxRef && ?yMaxPrim > ?yMinRef
25 # primary block should have points outside the reference block
26 && (?xMinPrim < ?xMinRef || ?yMinPrim < ?yMinRef
27 || ?xMaxPrim > ?xMaxRef || ?yMaxPrim > ?yMaxRef)
28 # reference block should have points outside the primary block
29 && (?xMinPrim > ?xMinRef || ?yMinPrim > ?yMinRef
30 || ?xMaxPrim < ?xMaxRef || ?yMaxPrim < ?yMaxRef)
31)
32 }

Listing A.4: Number of TPP relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 ?prim != ?ref
16 # blocks are on the visible part of the canvas
17 && ?xMaxPrim >0 && ?yMaxPrim > 0
18 && ?xMaxRef >0 && ?yMaxRef > 0
19 &&
20 # primary block inside reference block or equal
21 ?xMinPrim >= ?xMinRef && ?yMinPrim >= ?yMinRef
22 && ?xMaxPrim <= ?xMaxRef && ?yMaxPrim <= ?yMaxRef
23 # one of the border should coincide
24 && (?xMinPrim = ?xMinRef || ?yMinPrim = ?yMinRef
25 || ?xMaxPrim = ?xMaxRef || ?yMaxPrim = ?yMaxRef)

239

26 # reference block should have points outside the primary block
27 && (?xMinPrim > ?xMinRef || ?yMinPrim > ?yMinRef
28 || ?xMaxPrim < ?xMaxRef || ?yMaxPrim < ?yMaxRef)
29)
30 }

Listing A.5: Number of NTPP relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 ?prim != ?ref
16 # blocks are on the visible part of the canvas
17 && ?xMaxPrim >0 && ?yMaxPrim > 0
18 && ?xMaxRef >0 && ?yMaxRef > 0
19 &&
20 # primary block inside reference block
21 ?xMinPrim > ?xMinRef && ?yMinPrim > ?yMinRef
22 && ?xMaxPrim < ?xMaxRef && ?yMaxPrim < ?yMaxRef
23)
24 }

Listing A.6: Number of EQUAL relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # blocks are on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 # primary block equals reference block
22 ?xMinPrim = ?xMinRef && ?yMinPrim = ?yMinRef
23 && ?xMaxPrim = ?xMaxRef && ?yMaxPrim = ?yMaxRef
24)
25 }

240

A.2 Quantitative Directions

Listing A.7 presents a SPARQL query used in the analysis of quantitative directions between outer
blocks. QntDirection was defined between the blocks which were positioned at a distance not
exceeding 50px from each other.

Listing A.7: Number of different groups of quantitative directions on a web page
1 SELECT ?anglrnd (count(?anglrnd) as ?cnt)
2 WHERE {
3 ?dir com:hasPrimaryObject ?prim.
4 ?dir com:hasReferenceObject ?ref.
5 ?dir rdf:type qntb:QntDirection.
6 ?prim rdf:type go:OuterBlock.
7 ?ref rdf:type go:OuterBlock.
8 ?dir com:hasFloatValue ?anglvalGroup.

10 ?prim qntb:xMin ?xMinPrim.
11 ?prim qntb:yMin ?yMinPrim.
12 ?prim qntb:xMax ?xMaxPrim.
13 ?prim qntb:yMax ?yMaxPrim.

15 ?ref qntb:xMin ?xMinRef.
16 ?ref qntb:yMin ?yMinRef.
17 ?ref qntb:xMax ?xMaxRef.
18 ?ref qntb:yMax ?yMaxRef.
19 LET (?anglrnd := fn:round(?anglvalGroup))
20 FILTER (
21 # block is on the visible part of the canvas
22 && ?xMaxPrim >0 && ?yMaxPrim > 0
23 && ?xMaxRef >0 && ?yMaxRef > 0
24)
25 }
26 GROUP BY ?anglrnd
27 ORDER BY ?anglrnd

A.3 Quantitative Distances Between Border Projections

Listing A.8 illustrates a SPARQL query applied in the analysis of quantitative distances by
example of a distance between left border projections of the blocks.

Listing A.8: Number of different groups of quantitative distances between blocks’ left borders
1 SELECT ?dif (count(?dif) as ?cnt)
2 WHERE {
3 ?prim qntb:xMin ?xMinPrim.
4 ?prim qntb:yMin ?yMinPrim.
5 ?prim qntb:xMax ?xMaxPrim.
6 ?prim qntb:yMax ?yMaxPrim.

8 ?ref qntb:xMin ?xMinRef.
9 ?ref qntb:yMin ?yMinRef.

10 ?ref qntb:xMax ?xMaxRef.
11 ?ref qntb:yMax ?yMaxRef.
12 LET (?dif := fn:abs(fn:round(?xMinPrim - ?xMinRef)))
13 FILTER (
14 # block is on the visible part of the canvas

241

15 && ?xMaxPrim >0 && ?yMaxPrim > 0
16 && ?xMaxRef >0 && ?yMaxRef > 0
17 &&
18 ?dif > 0 # exclude aligned elements
19)
20 }
21 GROUP BY ?dif
22 ORDER BY DESC(?cnt)

A.4 Alignment relations

For the analysis of geometry of the web page layout, alignment relations, such as LA, CV, RA,
TA, CH, and BA, between outer blocks were considered (see Listings A.9, A.10, A.11, A.12,
A.13, and A.14).

Listing A.9: Number of LA relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # block is on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 ?xMinPrim = ?xMinRef
22)
23 }

Listing A.10: Number of CV relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (

242

15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # block is on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 ((?xMaxPrim + ?xMinPrim) / 2) = ((?xMaxRef + ?xMinRef) / 2)
22)
23 }

Listing A.11: Number of RA relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # block is on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 ?xMaxPrim = ?xMaxRef
22)
23 }

Listing A.12: Number of TA relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # block is on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 ?yMinPrim = ?yMinRef
22)
23 }

243

Listing A.13: Number of CH relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # block is on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 ((?yMaxPrim + ?yMinPrim) / 2) = ((?yMaxRef + ?yMinRef) / 2)
22)
23 }

Listing A.14: Number of BA relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # block is on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 ?yMaxPrim = ?yMaxRef
22)
23 }

Listing A.15: Number of NA relations on a web page
1 SELECT (count(*) as ?qnt)
2 WHERE {
3 ?prim rdf:type go:OuterBlock.
4 ?prim qntb:xMin ?xMinPrim.
5 ?prim qntb:yMin ?yMinPrim.
6 ?prim qntb:xMax ?xMaxPrim.
7 ?prim qntb:yMax ?yMaxPrim.

244

9 ?ref rdf:type go:OuterBlock.
10 ?ref qntb:xMin ?xMinRef.
11 ?ref qntb:yMin ?yMinRef.
12 ?ref qntb:xMax ?xMaxRef.
13 ?ref qntb:yMax ?yMaxRef.
14 FILTER (
15 # do not consider symmetric relations
16 xsd:string(?prim) > xsd:string(?ref)
17 # block is on the visible part of the canvas
18 && ?xMaxPrim >0 && ?yMaxPrim > 0
19 && ?xMaxRef >0 && ?yMaxRef > 0
20 &&
21 !(
22 ?xMinPrim = ?xMinRef
23 ||
24 ((?yMaxPrim + ?yMinPrim) / 2) = ((?yMaxRef + ?yMinRef) / 2)
25 ||
26 ?xMaxPrim = ?xMaxRef
27 ||
28 ?yMinPrim = ?yMinRef
29 ||
30 ((?xMaxPrim + ?xMinPrim) / 2) = ((?xMaxRef + ?xMinRef) / 2)
31 ||
32 ?yMaxPrim = ?yMaxRef
33)
34)
35 }

245

APPENDIX B
A Survey of Blind Users of the Web

There is no typical screen reader user... but we can
learn much about typical behavior.
— Jared Smith & Jonathan Whiting, The Legend of

the Typical Screen Reader User, WebAIM, 2009

This survey, which can also be found in [78], was produced and conducted by the author
of this thesis from June 1, 2013 to August 31, 2013. Questions were formulated based on the
research of the ABBA [236] and TAMCROW [237] projects of TU Vienna, of which the author
was also involved in. Moreover, some important aspects which served as preconditions for
carrying out this inquiry are mentioned in our previous work [21, 83]. The survey reflects the
present state and relevant problems within the field of Web Accessibility along with major works
(with subjective and objective evaluations) such as [29, 56, 212, 226, 292–296]. In contrast to
existing inquiries, we highlight the problem of blind users familiarizing themselves with new
web pages and the accessibility of web pages of different genres. It is worth mentioning that the
majority of questions are subjective and thus reflect the personal opinions of blind users regarding
relevant issues. As a result of the responses acquired, we believe that this survey could motivate
the researchers of web accessibility and web authors who work collaboratively to be able to
resolve the problems that have been identified.

In the questionnaire provided to the sightless web users, we first asked them general questions
regarding their gender, age, and blindness (see Section B.1). Then we asked respondents
about using computer and assistive technology and their opinion regarding the complexity
of contemporary web pages (see Section B.2). We also posed questions about visiting new
web pages and the difference between becoming familiar with new web pages independently
versus with assistance (see Section B.3). We emphasized the main challenges of navigating
a web page’s content and identification of its main logical components such as the navigation
menu and main content (see Sections B.4 and B.5). Furthermore, we are concerned with the
accessibility of contemporary web pages of different genres which provide different services,
such as: search engines (see Section B.6.1), social media websites (see Section B.6.2), news

247

websites (see Section B.6.3), web forums (see Section B.6.4), on-line shops (see Section B.6.5),
and weblogs (see Section B.6.6).

B.1 Demographics of Respondents

A total of 95 participants who are blind took part in the survey. The majority of participants are
from Russia, Austria, and Ukraine (see Figure B.1). Most of the respondents attend different
organizations such as Russian Community of Blinds1 Blinden- und Sehbehindertenverband
Österreich2 (BSVÖ), and different community groups with support from the local libraries, for
example, Saint Petersburg State Library for the Blind3 and Perm Krai Library for the Blind4 in
Russia.

Country % of Respondents
Russia 53.7%

Austria 27.4%

Ukraine 14.7%

Kazakhstan 2.1%

Denmark 1.1%

Italy 1.1%

Figure B.1: Country of respondents

Gender % of Respondents
Male 69.5%

Female 22.1%

— 8.4%

Figure B.2: Gender of respondents

1http://www.vos.org.ru/
2http://www.blindenverband.at/, http://www.braille.at/
3http://gbs.spb.ru/
4http://permksbs.ru/

248

http://www.vos.org.ru/
http://www.blindenverband.at/
http://www.braille.at/
http://gbs.spb.ru/
http://permksbs.ru/

Age (years) % of Respondents
<20 6.3%

[20, 30) 24.2%

[30, 40) 25.3%

[40, 50) 14.7%

≥50 21.1%

— 8.4%

Figure B.3: Age of respondents

Response (years) % of Respondents
<5 4.2%

[5, 10) 8.4%

≥10 81.1%

— 6.3%

Figure B.4: For how many years have you been
blind (or unable to see text and graphics on web
pages)?

The participants are comprised of a variety of ages (see Figure B.3), from 15 to 79. An
overwhelming majority have been blind for more than ten years (see Figure B.4) while 33.7% of
respondents are blind from birth and 40.0% lost their vision before the age of five.

B.2 Expertise and Preferences5

All the respondents are computer-literate and the majority (82.1%) have been using the computer
for at least five years (see Figure B.5). This allows us to consider them as intermediate or
even advanced users. Furthermore, 89.5% use the computer every day. Windows (94.3%)
and therefore Windows-based screen readers, such as JAWS (71.6%) and NVDA (50.5%), are
extremely popular among blind users (see Figures B.6 and B.7). It is important to note that the
users surveyed are satisfied with the screen reader of their choice (see Figure B.8). The necessity
of good audio output is confirmed by the fact that 72.6% of users exclusively rely on the screen
reader and do not use a Braille display (see Figure B.9). This is mainly due to the high cost of the
Braille display.

73.7% of participants have been using the Web for at least five years (see Figure B.10), 78.9%
surf the Web every day, and 13.7% using the Web a few times a week but not every day. The
complexity of web pages is primarily assessed as average by respondents (rate 3 within the
interval [1, 5], see Figure B.11). We believe that this rate should not differ much from the opinion
of sighted users due to the presence of differing complexities of web pages in general.

5Some questions presented in this section are similar to the questions presented by WebAIM in [296]. The results
acquired by us do not contradict the results reported by WebAIM.

249

Response (years) % of Respondents
<2 0%

[2, 5) 15.8%

[5, 10) 33.7%

≥10 48.4%

— 2.1%

Figure B.5: How many years have you been
using the computer being blind?

Response % of Respondents
Windows 8 1.9%

Windows 7 54.3%

Windows XP 33.3%

Windows X (version
was not specified)

4.8%

GNU/Linux 1.9%

Mac OS X 1.9%

— 1.9%

Figure B.6: Which operating system do you
mostly use?

Response % of Respondents
JAWS 71.6%

NVDA 50.5%

VoiceOver 5.3%

COBRA 5.3%

Orca 3.2%

Others 4.2%

— 2.1%

Figure B.7: Which screen reader do you mostly
use? Specify several screen readers if you use
them equally as often

Response % of Respondents
1 2.1%

2 1.1%

3 24.2%

4 51.6%

5 14.7%

— 6.3%

Figure B.8: How satisfied are you with the
screen readers you mostly use? (Choose from 1
to 5: 1 if you are absolutely not satisfied with
the screen reader, 5 if you are completely satis-
fied.)

250

Response % of Respondents
Yes 24.2%

No 72.6%

— 3.2%

Figure B.9: Do you use a Braille display with
your screen reader?

Response (years) % of Respondents
<2 2.1%

[2, 5) 20.0%

[5, 10) 36.8%

≥10 36.8%

— 4.2%

Figure B.10: How many years have you been
using the Web being blind?

Response % of Respondents
1 2.1%

2 17.9%

3 48.4%

4 17.9%

5 5.3%

— 8.4%

Figure B.11: What is your general opinion regarding the complexity of web pages? (Choose from
1 to 5: 1 if web pages are very easy to understand in general, 5 if web pages perceptually are very
complicated.)

B.3 Becoming Familiar with New Web Pages

As Figures B.12 and B.13 show, 43.2% of respondents get to know new websites independently
on a daily basis, and only 4.2% navigate through the content of early unseen websites with the
help of a sighted assistant on a daily basis. Interestingly, only 23.2% of respondents assert that
familiarizing themselves with new websites with sighted assistant is easier than independent
learning while 28.4% have the opposite opinion (see Figure B.14). According to our interview of
individual respondents, the assistant can explain to the blind user the logical structure of a web
page, its content, and help to find necessary information. On the other hand, the assistant relies

251

on visual cues and uses terms related to the description of visual and spatial characteristics of a
web page’s elements and its layout, which is neither accessible nor useful for blind users. A blind
user’s mental model, defined as a result of the screen reader operating mainly over the DOM tree,
differs greatly from the mental model of a sighted user. Thus, information about spatial allocation
of web objects and visual features (for example, that relevant text is to the right of an image with
a certain content) is not useful for the blind or its use is quite limited (some screen readers, like
JAWS, can provide information based on the computed CSS attributes, e.g., color of the text and
background, font style, size). As one of the respondents explained, the best assistance a blind
user can obtain in searching for necessary information on a web page is from another blind user,
who knows the web page well and uses the same software.

There were many people who did not answer the questions in this section. Afterwards, it
was discovered that some respondents were not able to choose a specific answer while others,
unfortunately, did not understand the question.

Response % of Respondents
Every day 43.2%

A few times a week but
not every day

20.0%

Several times a month 18.9%

Fewer than several
times a month

6.3%

Never 1.1%

— 10.5%

Figure B.12: How often do you familiarize your-
self with new websites (unaided)?

Response % of Respondents
Every day 4.2%

A few times a week but
not every day

1.1%

Several times a month 11.6%

Fewer than several
times a month

30.5%

Never 31.6%

— 21.1%

Figure B.13: How often do you familiarize your-
self with new websites with the assistance of a
sighted person?

252

Response % of Respondents
1 23.2%

2 5.3%

3 16.8%

4 11.6%

5 11.6%

— 31.6%

Figure B.14: To what extent is familiarizing yourself with new websites with the help of your
preferred sighted assistant easier than independent learning? (Choose from 1 to 5: 1 if independent
learning is greatly easier than learning with your assistant, 5 if familiarizing yourself with new
websites with the assistant is greatly easier than independent learning.)

B.4 General Navigation

67.4% of respondents report that it is not easy to find relevant information on a web page (see
Figure B.15), highlighting the weak accessibility of contemporary web pages. According to
results illustrated in Figure B.16, there are different opinions regarding the images and their
influence on web page navigation. This is due to the fact that, on the one hand, today’s web pages
have a lot of images without properly assigned alternative text and thus cannot be understood and
leveraged by sightless users (this fact is also confirmed in [29]), making web pages even more
cumbersome. However, on the other hand, images with alternative text can be used by blind users
as landmarks and thus speed up the navigation on a web page, especially during the next visit.
For example, blind users can often find the main navigation menu near the logotype. For specific
web forums, blind users can also remember that a content of the post is close to the profile picture
with a specific title attached. Thus, these images can be used later for fast access to relevant
content. Images are also used to figure out the boundaries of the target content.

Regarding Figures B.17 and B.18, sightless users can identify navigation menus and main
content, however, they have to use much more effort than sighted persons. Blind people usually
define navigation menus as a certain list of links which allows them to go through the main
sections of a website and they expect to find it at the beginning of the web page serialized by
the screen reader. Therefore, if such a list is located quite far away from the beginning of the
serialized sequence of web page elements, it is very likely to not be found.

The main content of a web page is usually searched by the blind via navigation through the
HTML heading tags and, if there is no such tags or they are misused, blind users mainly have to
read through the page and rely on the textual content.

253

Response % of Respondents
1 6.3%

2 17.9%

3 43.2%

4 11.6%

5 12.6%

— 8.4%

Figure B.15: How difficult is it for you to find
desired information on a typical web page that
contains it? For example, to find the price of a
book on a web page which has the list of books
with prices. (Choose from 1 to 5: 1 if to find
such information is very easy, 5 if to find such
information is very difficult.)

Response % of Respondents
1 13.7%

2 20.0%

3 18.9%

4 13.7%

5 18.9%

— 14.7%

Figure B.16: How complicated do images make
navigation on a web page in general? (Choose
from 1 to 5: 1 if image content does not disturb
the navigation at all, 5 if it is hard to navigate
when image content occurs on a web page.)

254

Response % of Respondents
1 18.9%

2 16.8%

3 26.3%

4 15.8%

5 7.4%

6 0.0%

— 14.7%

Figure B.17: How difficult is it for you to dis-
tinguish an area with the navigation menu on
a typical web page from the rest during your
navigation on the page? (Choose from 1 to 5: 1
if it is very simple, 5 if it is very difficult, 6 if it
is impossible or almost impossible.)

Response % of Respondents
1 15.8%

2 25.3%

3 25.3%

4 10.5%

5 5.3%

6 3.2%

— 14.7%

Figure B.18: How difficult is it for you to dis-
tinguish the main content on a typical web page
from the rest during your navigation on the
page? (Choose from 1 to 5: 1 if it is very simple,
5 if it is very difficult, 6 if it is impossible or
almost impossible.)

B.5 Navigation Through Tables and Lists

Most of the respondents use table and list navigations and are quite satisfied with their simplicity
(see Figures B.19, B.20, B.21, and B.22). However, it is worth mentioning that screen readers
navigate through HTML tables and HTML lists, which, unfortunately, are very often used to lay
out a web page’s content [146].

255

Response % of Respondents
Yes 71.6%

No 17.9%

— 10.5%

Figure B.19: Do you use navigation through the
content of a table? For example, to go from row
to row, from column to column, or from cell to
cell

Response % of Respondents
1 32.6%

2 17.9%

3 17.9%

4 14.7%

5 6.3%

— 10.5%

Figure B.20: What is the level of difficulty
in navigating through the content of a table?
(Choose from 1 to 5: 1 if it is very simple, 5 if
it is very difficult.)

Response % of Respondents
Yes 69.5%

No 21.1%

— 9.5%

Figure B.21: Do you use navigation through the
content of a list? For example, to go from item
to item of the list

Response % of Respondents
1 44.2%

2 17.9%

3 15.8%

4 6.3%

5 4.2%

— 11.6%

Figure B.22: What is the level of difficulty
in navigating through the content of a list?
(Choose from 1 to 5: 1 if it is very simple, 5 if
it is very difficult.)

256

B.6 Accessibility of Web Pages by Genres

Search engines are the most essential component of web surfing. The survey concluded that
63.2% of respondents use search engines every day (see Figure B.23) and 76.8% of users are
satisfied with their simple (or very simple) interface (see Figure B.24). Several cooperators of the
ABBA project [236], who are blind, primarily use Wikipedia6 for information search and will
refer to search engines only if required information cannot be found there. This is because all
web pages of Wikipedia have a unified and relatively simple interface that allow blind users to
easily find and navigate to the relevant content on the target web page of Wikipedia. According
to our survey, Wikipedia is not as popular as search engines. Only 24.2% of respondents use it
several times a week (or every day, see Figure B.25) while 54.7% use only search engines for
their information search (see Figure B.27). However, most of the respondents (62.1%) report that
the interface of Wikipedia is simple to use (or very simple, see Figure B.26). We believe these
results are due to the fact that search engines, in contrast to Wikipedia, can answer more complex
and diverse requests and index a much bigger set of information resources. Wikipedia, in turn,
mainly conveys encyclopedia knowledge and requires the user to set more precise definition of
the query string.

A total of 27.4% use social media websites every day and 50.5% use it several times a week
(or every day, see Figure B.28), regardless of the complexity of their interface (40.0% believe that
it is complex, see Figure B.29). News websites are also quite popular among blind people: 22.1%
visit them every day and 46.3% visit them several times a week (or every day, see Figure B.30).
However, not many people report any difficulties with the interface of news web pages (27.4%
believe that it is difficult or very difficult and 50.5% believe that it is at least not simple, see
Figure B.31). The use of web forums, on-line shops, and weblogs are less common in the blind
community. For example, 9.5% of respondents informed us that they visit web forums every day
and 27.4% visit them several times a week (or everyday, see Figure B.32). 34.7% report that
navigation through the post on web forums is difficult (or very difficult) and 51.6% believe that
it is at least not simple, see Figure B.33. Only 6.3% visit on-line shops several times a week
(or everyday, see Figure B.34). The biggest group of respondents (26.3%) believe that the task
of finding a desired product is of average complexity (see Figure B.35). A small minority of
respondents (3.2%) visit weblogs several times a week (or everyday, see Figure B.36) and the
biggest group of respondents who replied assert that it is very difficult to navigate through posts
in weblogs (11.6%, see Figure B.37). In addition, 18.9% say that it is difficult (or very difficult)
to navigate through posts while 61.1% did not answer this question.

It is important to note that for some questions the biggest group of respondents did not provide
any answer. We ascertained two main reasons for this: One is that some participants did not have
enough time to answer all the questions of the questionnaire and another reason is that some
people did not understand certain terminology, such as weblogs or web forum, and thought that it
would be reasonable to skip the question.

6http://www.wikipedia.org/

257

http://www.wikipedia.org/

B.6.1 Information Search

Response % of Respondents
Every day 63.2%

A few times a week but
not every day

26.3%

Several times a month 6.3%

Fewer than several
times a month

1.1%

Never 0.0%

— 3.2%

Figure B.23: How often do you use search en-
gines like Google, Yahoo or Bing?

Response % of Respondents
1 51.6%

2 25.3%

3 13.7%

4 2.1%

5 4.2%

— 3.2%

Figure B.24: How difficult is it for you to use
search engines? (Choose from 1 to 5: 1 if it is
very simple, 5 if it is very difficult.)

Response % of Respondents
Every day 8.4%

A few times a week but
not every day

15.8%

Several times a month 38.9%

Fewer than several
times a month

23.2%

Never 4.2%

— 9.5%

Figure B.25: How often do you visit Wikipedia?

Response % of Respondents
1 34.7%

2 27.4%

3 11.6%

4 4.2%

5 5.3%

— 16.8%

Figure B.26: How difficult is it for you to use
Wikipedia? (Choose from 1 to 5: 1 if it is very
simple, 5 if it is very difficult.)

258

Response % of Respondents
1 54.7%

2 17.9%

3 18.9%

4 2.1%

5 0.0%

— 6.3%

Figure B.27: For information searches, do you use a search engine or Wikipedia more often?
(Choose from 1 to 5: 1 if you only use a search engine, 3 if you use a search engine and Wikipedia
equally often, 5 if you only use Wikipedia.)

B.6.2 Social Media

Response % of Respondents
Every day 27.4%

A few times a week but
not every day

23.2%

Several times a month 9.5%

Fewer than several
times a month

10.5%

Never 21.1%

— 8.4%

Figure B.28: How frequently do you visit social
media websites (for example, Facebook, VKon-
takte, or Twitter)?

Response % of Respondents
1 5.3%

2 7.4%

3 22.1%

4 16.8%

5 23.2%

— 25.3%

Figure B.29: How difficult is it for you to work
with the interface of a typical social media web-
site? (Choose from 1 to 5: 1 if it is very simple,
5 if it is very difficult.)

259

B.6.3 News Websites

Response % of Respondents
Every day 22.1%

A few times a week but
not every day

24.2%

Several times a month 16.8%

Fewer than several
times a month

14.7%

Never 8.4%

— 13.7%

Figure B.30: How often do you read news arti-
cles on news websites?

Response % of Respondents
1 12.6%

2 11.6%

3 23.2%

4 23.2%

5 4.2%

— 25.3%

Figure B.31: How well are news web pages
structured from your point of view? For exam-
ple, can you distinguish different categories of
news (such as business or sport) on the main
web page and navigate through the categories?
Can you distinguish a content of the news ar-
ticle from the rest? (Choose from 1 to 5: 1 if
a typical news web page provides quite a poor
structure, 5 if a typical news web page has quite
a convenient structure.)

260

B.6.4 Web Forums

Response % of Respondents
Every day 9.5%

A few times a week but
not every day

17.9%

Several times a month 20.0%

Fewer than several
times a month

13.7%

Never 13.7%

— 25.3%

Figure B.32: How often do you visit web fo-
rums?

Response % of Respondents
1 4.2%

2 8.4%

3 16.8%

4 18.9%

5 15.8%

— 35.8%

Figure B.33: How difficult is it to navigate
through the posts on a typical web forum?
(Choose from 1 to 5: 1 if navigation on the
typical web forum is straightforward, 5 if navi-
gation is very complicated.)

261

B.6.5 On-line Shops

Response % of Respondents
Every day 2.1%

A few times a week but
not every day

4.2%

Several times a month 22.1%

Fewer than several
times a month

38.9%

Never 20.0%

— 12.6%

Figure B.34: How often do you visit on-line
shops?

Response % of Respondents
1 9.5%

2 11.6%

3 26.3%

4 16.8%

5 5.3%

— 30.5%

Figure B.35: How difficult is it to find the de-
sired product in a typical on-line shop? (Choose
from 1 to 5: 1 if it is very simple, 5 if it is very
hard.)

262

B.6.6 Weblogs

Response % of Respondents
Every day 2.1%

A few times a week but
not every day

1.1%

Several times a month 6.3%

Fewer than several
times a month

24.2%

Never 36.8%

— 29.5%

Figure B.36: How often do you visit weblogs?
(For example, Live Journal.)

Response % of Respondents
1 3.2%

2 8.4%

3 8.4%

4 7.4%

5 11.6%

— 61.1%

Figure B.37: How difficult is it for you to nav-
igate through the posts in a typical weblog?
(Choose from 1 to 5: 1 if navigation on the typi-
cal weblog is straightforward, 5 if navigation is
very complicated.)

263

Bibliography

[1] B. Adelberg. NoDoSE—a tool for semi-automatically extracting structured and semistructured data from text
documents. ACM SIGMOD Record, 27(2):283–294, June 1998.

[2] M. Aiello, C. Monz, L. Todoran, and M. Worring. Document understanding for a broad class of documents.
International Journal on Document Analysis and Recognition, 5(1):1–16, Nov. 2002.

[3] M. Aiello, I. E. Pratt-Hartmann, and J. F. van Benthem, editors. Handbook of spatial logics. Springer, Dordrecht,
The Netherlands, 2007.

[4] M. Aiello and A. M. W. Smeulders. Thick 2D relations for document understanding. Information Sciences,
167(1-4):147–176, Dec. 2004.

[5] C. Alexandraki, A. Paramythis, N. Maou, and C. Stephanidis. Web accessibility through adaptation. Computers
Helping People with Special Needs, 3118:302–309, 2004.

[6] S. P. Algur and P. S. Hiremath. Visual clue based extraction of web data from flat and nested data records.
In Proceedings of International Conference on Management of Data (COMAD 2006), pages 207–210, Dehli,
India, 2006.

[7] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–843,
Nov. 1983.

[8] American Foundation for the Blind. American Foundation for the Blind (AFB). http://www.afb.org. Date
accessed: 10.12.2012.

[9] G. Antoniou and F. van Harmelen. A semantic web primer. The MIT Press, London, second edition, 2008.
[10] Apache. Jena, version 2.7.4. http://jena.apache.org/, 2012.
[11] Apple. VoiceOver, version 3. http://www.apple.com/accessibility/voiceover/, 2010.
[12] A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In Proceedings of the 2003 ACM

SIGMOD International Conference on Management of Data, pages 337–348, New York, 2003. ACM.
[13] C. Asakawa and T. Itoh. User interface of a home page reader. In Proceedings of the Third international ACM

Conference on Assistive Technologies (Marina del Rey, California, United States, April 15 - 17, 1998), pages
149–156, New York, NY, 1998. ACM Press.

[14] F. Baader, I. Horrocks, and U. Sattler. Description Logics as Ontology Languages for the Semantic Web.
Mechanizing Mathematical Reasoning, 2605:228–248, 2005.

[15] P. Balbiani, J.-F. Condotta, and L. F. n. Del Cerro. A model for reasoning about bidimensional temporal
relations. In A. G. Cohn, L. Schubert, and S. C. Shapiro, editors, In Proceedings of the Sixth International
Conference on Principles of Knowledge Representation and Reasoning (KR’98), pages 124–130. Morgan
Kaufmann, 1998.

[16] P. Balbiani, J.-F. Condotta, and L. F. n. Del Cerro. A new tractable subclass of the rectangle algebra. In
Proceedings of the 16th international joint conference on Artifical intelligence (IJCAI-99), volume 1, pages
442–447, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[17] P. Balbiani, J.-F. Condotta, and L. F. n. Del Cerro. Tractability Results in the Block Algebra. Journal of Logic
and Computation, 12(5):885–909, Oct. 2002.

[18] P. Bartalos and M. Bielikova. An approach to object-ontology mapping. In Proceedings of the 2nd IFIP Central
and East European Conference on Software Engineering Techniques (CEE-SET 2007), pages 9–16. Slovak

265

University of Technology, 2007.
[19] A. Bashmakov and I. Bashmakov. Intelligent information technologies (Russian). Bauman MSTU, Moscow,

2005.
[20] BAUM Retec AG. COBRA, version 10. http://www.baum.de/cms/en/cobra10/, 2013.
[21] R. Baumgartner, R. R. Fayzrakhmanov, W. Holzinger, B. Krüpl, M. C. Göbel, D. Klein, and R. Gattringer. Web

2.0 vision for the blind. In Proceedings of Web Science Conference 2010 (WebSci’10), Raleigh, USA, 26–27
April, 2010, pages 1–8, 2010.

[22] R. Baumgartner, S. Flesca, and G. Gottlob. The Elog Web Extraction Language. In R. Nieuwenhuis and
A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2001), volume
2250, pages 548–560, Havana, Cuba, 2001. Springer.

[23] R. Baumgartner, O. Frölich, and G. Gottlob. The Lixto systems applications in business intelligence. The
Semantic Web: Research and Applications, 4519:16–26, 2007.

[24] S. Bechhofer, S. Harper, and D. Lunn. SADIe: Semantic Annotation for Accessibility. The Semantic Web,
4273:101–115, 2006.

[25] M. K. Bergman. The Deep Web: Surfacing hidden value. Journal of Electronic Publishing (JEP), 7(1):1–17,
2001.

[26] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic Syntax: RFC 2396.
Rfc 2396, RFC Editor, 1998.

[27] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284(5):34–43, May 2001.
[28] P. A. Bernstein and L. M. Haas. Information integration in the enterprise. Communications of the ACM -

Enterprise Information Integration and Other Tools for Merging Data, 51(9):72–79, 2008.
[29] J. P. Bigham, A. C. Cavender, J. T. Brudvik, J. O. Wobbrock, R. E. Lander, and R. E. Ladner. WebinSitu: A

comparative analysis of blind and sighted browsing behavior. In Proceedings of the 9th international ACM
SIGACCESS conference on Computers and accessibility (Assets ’07), pages 51–58, New York, 2007. ACM.

[30] J. P. Bigham, R. S. Kaminsky, R. E. Ladner, O. M. Danielsson, and G. L. Hempton. WebInSight: Making Web
Images Accessible. In Proceedings of the 8th international ACM SIGACCESS conference on Computers and
accessibility (Assets ’06), pages 181–188, New York, NY, 2006. Acm.

[31] J. P. Bigham, T. Lau, and J. Nichols. Trailblazer: enabling blind users to blaze trails through the web. In
Proceedings of the 13th International Conference on Intelligent User Interfaces, volume 09, pages 177–186,
Sanibel Island, Florida, USA, 2009. ACM: New York, NY, USA.

[32] J. P. Bigham, C. M. Prince, and R. E. Ladner. Addressing performance and security in a screen reading web
application that enables accessibility anywhere. 2008 Eighth International Conference on Web Engineering,
pages 273–284, July 2008.

[33] J. P. Bigham, C. M. Prince, and R. E. Ladner. WebAnywhere: a screen reader on-the-go. In Proceedings of the
2008 International Cross-Disciplinary Conference on Web Accessibility, pages 73–82, New York, 2008. ACM
Press.

[34] M. H. Blackmon, P. G. Polson, M. Kitajima, and C. Lewis. Cognitive walkthrough for the web. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’02), pages 463–470, New York,
2002. ACM.

[35] Y. Borodin. Bridging the Web Accessibility Divide. Phd thesis, Stony Brook University, 2009.
[36] Y. Borodin, F. Ahmed, M. A. Islam, Y. Puzis, V. Melnyk, S. Feng, I. V. Ramakrishnan, and G. Dausch. Hearsay:

a new generation context-driven multi-modal assistive web browser. In Proceedings of the 19th international
conference on World wide web (WWW’10), pages 1233–1236, Raleigh, NC, USA, 2010. ACM New York, NY,
USA.

[37] Y. Borodin, J. P. Bigham, G. Dausch, and I. Ramakrishnan. More than meets the eye: A survey of screen-
reader browsing strategies. In Proceedings of the 2010 International Cross Disciplinary Conference on Web
Accessibility (W4A ’10), page Article No. 13. ACM, 2010.

[38] M. Brambring. Mobility and orientation processes of the blind. In D. H. Warren and E. R. Strelow, editors,
Electronic Spatial Sensing for the Blind, pages 493–508, Lancaster, 1984. Nijhoff.

266

[39] D. Buttler, L. Liu, and C. Pu. A fully automated object extraction system for the World Wide Web. Proceedings
21st International Conference on Distributed Computing Systems, pages 361–370, 2001.

[40] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Extracting content structure for web pages based on visual represen-
tation. In Proceedings of the 5th Asia-Pacific web conference on Web technologies and applications, pages
406–417, Xian, China, 2003. Springer-Verlag.

[41] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. VIPS : A vision-based page segmentation algorithm. Technical report
msr-tr-2003-79, Microsoft Research Asia, Beijing, 2003.

[42] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Block-based web search. In Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 456–463,
Sheffield, United Kingdom, 2004. ACM.

[43] A. Calì, G. Gottlob, T. Lukasiewicz, and A. Pieris. Datalog+/-: A family of languages for ontology querying.
Datalog Reloaded, 6702:351–368, 2011.

[44] M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for information extraction. In Pro-
ceedings of the sixteenth national conference on Artificial intelligence and the eleventh Innovative applications
of artificial intelligence conference innovative applications of artificial intelligence (AAAI ’99/IAAI ’99), pages
328–334, Menlo Park, 1999. American Association for Artificial Intelligence.

[45] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A Survey of Web Information Extraction Systems.
IEEE Transactions on Knowledge and Data Engineering, 18(10):1411–1428, Oct. 2006.

[46] C.-H. Chang and S.-C. Lui. IEPAD: information extraction based on pattern discovery. In V. Y. Shen, N. Saito,
M. R. Lyu, and M. E. Zurko, editors, Proceedings of the 10th international conference on World Wide Web,
pages 681–688, Hong Kong, Hong Kong, 2001. ACM.

[47] C. L. Chen. Fire Vox. http://www.firevox.clcworld.net/, 2013.
[48] C. L. Chen and T. V. Raman. AxsJAX: a talking translation bot using google IM: bringing web-2.0 applications

to life. In Proceedings of the 2008 international cross-disciplinary conference on Web accessibility (W4A),
pages 54–56, New York, New York, USA, 2008. ACM Press.

[49] B. L. Clarke. A calculus of individuals based on connection. Notre Dame Journal of Formal Logic, 22(3):204–
218, July 1981.

[50] E. Clementini, P. Di Felice, and D. Hernández. Qualitative representation of positional information. Artificial
Intelligence, 95(2):317–356, 1997.

[51] A. G. Cohn. Qualitative spatial representation and reasoning techniques. In G. Brewka, C. Habel, and B. Nebel,
editors, KI-97: Advances in Artificial Intelligence, volume 1303, pages 1–30. Springer Berlin, Berlin, Germany,
May 1997.

[52] A. G. Cohn and S. M. Hazarika. Qualitative spatial representation and reasoning: An overview. Fundamenta
Informaticae, 46(1-2):1–29, 2001.

[53] A. G. Cohn and J. Renz. Qualitative spatial representation and reasoning. In F. Harmelen, V. Lifschitz, and
B. Porter, editors, Handbook of Knowledge Representation, chapter Chapter 13, pages 551–596. Elsevier,
London, UK, first edit edition, 2008.

[54] M. Cosulschi, N. Constantinescu, and M. Gabroveanu. Classification and comparison of information structures
from a web page. Annals of University of Craiova, Math. Comp. Sci. Ser., 31:109–121, 2004.

[55] J. Cowie and W. Lehnert. Information Extraction. Communications of the ACM, 39(1):80–91, 1996.
[56] K. P. Coyne and J. Nielsen. Beyond alt text: Making the web easy to use for users with disabilities. Nielsen

Norman Group, Fremont, 2001.
[57] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards automatic data extraction from large web sites.

In Proceedings of the 27th International Conference on Very Large Data Bases, pages 109–118, Rome, Italy,
2001. Morgan Kaufmann Publishers Inc.

[58] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, C. Ursu, M. Dimitrov, M. Dowman, N. Aswani,
I. Roberts, Y. Li, A. Shafiri, and A. Funk. Developing language processing components with GATE version 5
(a user guide). A user guide Gate 2, The University of Sheffield, 2009.

[59] A. Dieberger. A city metaphor to support navigation in complex information spaces. Spatial Information
Theory. A Theoretical Basis for GIS, 1329:53–67, Dec. 1997.

267

[60] Dolphin. SuperNova Screen Reader, version 13.02. http://www.yourdolphin.com/, 2012.
[61] T. Dönz. Extracting Text Coordinates and Segmenting Tables in the Visual Representation of Web Pages.

Bachelor thesis, Vienna University of Technology, 2006.
[62] E. C. Dragut, T. Kabisch, C. Yu, and U. Leser. A hierarchical approach to model web query interfaces for web

source integration. In Proceedings of the VLDB Endowment, pages 325–336. VLDB Endowment, 2009.
[63] P. Duygulu and V. Atalay. A hierarchical representation of form documents for identification and retrieval.

International Journal on Document Analysis and Recognition, 5(1):17–27, Nov. 2002.
[64] M. J. Egenhofer and R. D. Franzosa. Point-set topological spatial relations. International Journal of Geograph-

ical Information Systems, 5(2):161–174, 1991.
[65] M. Y. Erlewine. Ubiquity : Designing a Multilingual Natural Language Interface Features of a Natural Syntax.

In SIGIR Workshop on Information Access in a Multilingual World, page 4, Boston, Massachusetts USA, 2009.
[66] A. Faaborg and H. Lieberman. A goal-oriented web browser. Proceedings of the SIGCHI conference on Human

Factors in computing systems - CHI ’06, page 751, 2006.
[67] S. Faulkner. WAI ARIA landmark role tests. http://www.html5accessibility.com/tests/landmarks.html. Date

accessed: 15.05.2013, 2011.
[68] R. R. Fayzrakhmanov. Development of ontology-based web form recognition methods in meta-search systems

(Russian). Master thesis, Perm State Technical University, 2008.
[69] R. R. Fayzrakhmanov. RegExpTokenizer. http://code.google.com/p/reg-exp-tokenizer/, 2008.
[70] R. R. Fayzrakhmanov. Css drawing order detection. https://code.google.com/p/css-drawing-order-detection/,

2011.
[71] R. R. Fayzrakhmanov. Information extraction from web pages based on their visual representation. In A. Harth

and N. Koch, editors, Proceedings of the 11th International Conference on Web Engineering (ICWE’11), PhD
Symposium, Paphos, Cyprus, 20–24 June, 2011, pages 342–346, Heidelberg, 2011. Springer.

[72] R. R. Fayzrakhmanov. WPPS-HTML-DS1 dataset. http://www.dbai.tuwien.ac.at /staff/fayzrakh/wpps/datasets
/WPPS-HTML-DS1.zip, 2011.

[73] R. R. Fayzrakhmanov. A blocks-based geometric model of web pages for automatic processing and information
extraction. Science and Business: Development Ways, 9(15):56–64, 2012.

[74] R. R. Fayzrakhmanov. A new approach for ensuring web accessibility for the sightless users based on enhancing
navigation characteristics of web pages (Russian). Ingenerniy Vestnik Dona, 23(4-2):10, 2012.

[75] R. R. Fayzrakhmanov. Web Page Processing System. http://www.dbai.tuwien.ac.at/staff/fayzrakh/wpps/, 2012.
[76] R. R. Fayzrakhmanov. WPPS: A framework for web page processing. In X. S. Wang, I. Cruz, A. Delis,

and G. Huang, editors, In Proceedings of the 13th International Conference on Web Information Systems
Engineering (WISE’2012), Demo Session, Paphos, Cyprus, 28–30 November, 2012, pages 800–803. Springer,
2012.

[77] R. R. Fayzrakhmanov. WPPS: A novel and comprehensive framework for web page understanding and
information extraction. In B. White and P. Isaías, editors, Proceeding of the International Conference IADIS
WWW/Internet, Madrid, Spain, 18–21 October, 2012, pages 19–26, Madrid, 2012. IADIS Press.

[78] R. R. Fayzrakhmanov. A Survey of Blind Users of the Web 01.06.2013–31.08.2013
(http://www.dbai.tuwien.ac.at/staff/fayzrakh/wa/survey2013/), 2013.

[79] R. R. Fayzrakhmanov. The Multi-Axial Navigation Model for Improving Web Page Accessibility
(http://www.dbai.tuwien.ac.at/staff/fayzrakh/wa/MANM2.zip), 2013.

[80] R. R. Fayzrakhmanov. The Unified Ontological Model (UOM2) formalizing some aspects of the web page
conceptualization (http://www.dbai.tuwien.ac.at/staff/fayzrakh/wpps/UOM2.zip), 2013.

[81] R. R. Fayzrakhmanov, E. V. Dolgova, and R. A. Fayzrakhmanov. Modeling of Information Representation
in the Tasks of Web Page Processing and Web Information Extraction (Russian). Vestnik of the Izhevsk State
Technical University, (2):176–179, 2011.

[82] R. R. Fayzrakhmanov, M. C. Göbel, W. Holzinger, B. Krüpl, and R. Baumgartner. A unified ontology-based
web page model for improving accessibility. In Proceedings of the 19th international conference on World
Wide Web (WWW’2010), Raleigh, USA, April 26–30, 2010, pages 1087–1088, New York, 2010. ACM.

268

[83] R. R. Fayzrakhmanov, M. C. Göbel, W. Holzinger, B. Krüpl, A. Mager, and R. Baumgartner. Modelling web
navigation with the user in mind. In Proceedings of the International Cross Disciplinary Conference on Web
Accessibility (W4A’2010), Raleigh, USA, 26–27 April, 2010, pages 1–4, New York, 2010. ACM.

[84] R. R. Fayzrakhmanov, C. Herzog, and I. Kordomatis. Web objects identification for web automation: Objects
and their features. Technical report (dbai-tr-2013-80), Institute of Information Systems, Vienna University of
Technology, Vienna, 2013.

[85] R. R. Fayzrakhmanov, B. Krüpl, and W. Holzinger. Multiaxial navigation system for improving web accessibil-
ity. In Proceedings of the 2nd International Internet Conference on Innovative Technologies: Theory, Tools,
Implementation (INNOTECH’2010), Perm, 2010. Perm State Technical University.

[86] Federal Agency on Technical Regulation and Metrology. GOST P 52872-2007. Internet resources. Accessibility
requirements for the visually handicapped. National Standard of Russian Federation. Gost, Federal Agency on
Technical Regulation and Metrology, 2007.

[87] E. Ferrara, P. D. Meo, G. Fiumara, and R. Baumgartner. Web data extraction, applications and techniques: A
survey. CoRR, abs/1207.0(June):20, 2012.

[88] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL — A language for deductive query answering on the semantic.
KSL Technical Report 03-14. Ksl technical report 03-14, Knowledge Systems Laboratory, Stanford University,
Stanford, CA, 2003.

[89] A. U. Frank. Qualitative spatial reasoning about cardinal directions. In Proceedings of the 7th Austrian
Conference on Artificial Intelligence, pages 157–167, 1991.

[90] Freedom Scientific. JAWS for Windows Screen Reading Software, version 14.
http://www.freedomscientific.com/products/fs/jaws-product-page.asp, 2012.

[91] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, and C. Schallhart. OPAL: Automated form understanding
for the deep web. In Proceedings of the 21st international conference on World Wide Web, pages 829–838,
New York, 2012. ACM.

[92] T. Furche, G. Gottlob, G. Grasso, C. Schallhart, and A. Sellers. OXPath: a language for scalable, memory-
efficient data extraction from Web applications. In Proceedings of the VLDB Endowment, pages 1016–1027.
VLDB Endowment, 2011.

[93] W. Gatterbauer and P. Bohunsky. Table extraction using spatial reasoning on the CSS2 visual box model. In
Proceedings of the 21st National Conference on Artificial Intelligence, volume 2, pages 1313–1318, Boston,
Massachusetts, USA, 2006. AAAI Press.

[94] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and B. Pollak. Towards domain-independent information
extraction from web tables. In Proceedings of the 16th international conference on World Wide Web - WWW

’07, pages 71–80, Banff, Alberta, Canada, 2007. ACM Press.
[95] W. Gatterbauer, B. Krüpl, W. Holzinger, and M. Herzog. Web information extraction using eupeptic data in

web tables. In Proceedings of the 1st International Workshop on Representation and Analysis of Web Space
(RAWS 2005), pages 41–48, Prague, Czech Republic, 2005. VSB - Technical University of Ostrava.

[96] A. Geyer-Schulz. Fuzzy rule-based expert systems and genetic machine learning. Physica-Verlag, Heidelberg,
1995.

[97] C. Goble, S. Harper, and R. Stevens. The travails of visually impaired web travellers. In Proceedings of the
Eleventh ACM on Hypertext and Hypermedia (HYPERTEXT ’00), pages 1–10, New York, New York, USA,
2000. ACM Press.

[98] G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca. The Lixto data extraction project: Back
and forth between theory and practice. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems (PODS ’04), pages 1–12, New York, 2004. ACM.

[99] B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler. OWL 2: The next step for
OWL. Web Semantics: Science, Services and Agents on the World Wide Web, 6(4):309–322, 2008.

[100] M. Grobe. RDF, Jena, SparQL and the ’Semantic Web’. In Proceedings of the 37th Annual ACM SIGUCCS
Fall Conference (SIGUCCS ’09), pages 131–138, St. Louis, MO, 2009. ACM.

[101] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2):199–220,
1993.

269

[102] X.-D. Gu, J. Chen, W.-Y. Ma, and G.-L. Chen. Visual based content understanding towards web adaptation.
Adaptive Hypermedia and Adaptive Web-Based Systems, 2347:164–173, 2002.

[103] N. Guarino. Formal ontology and information systems. In Proc. of International Conference On Formal
Ontology In Information Systems, pages 3–15, Trento, Italy, 1998. IOS Press; Amsterdam.

[104] H. Guo, J. Mahmud, Y. Borodin, A. Stent, and I. V. Ramakrishnan. A general approach for partitioning web
page content based on geometric and style information. Ninth International Conference on Document Analysis
and Recognition (ICDAR 2007), 2:929–933, Sept. 2007.

[105] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings ACM SIGMOD
Conference on Management of Data, pages 47–57, Boston, Massachusetts, USA, 1984.

[106] J. Ha, R. M. Haralick, and I. T. Phillips. Recursive X-Y cut using bounding boxes of connected components. In
Proceedings of the Third International Conference on Document Analysis and Recognition, volume 2, pages
952–955, Montreal, Canada, 1995. IEEE Computer Society.

[107] V. Haarslev, R. Möller, and M. Wessel. Querying the Semantic Web with Racer + nRQL. In S. Bech-
hofer, V. Haarslev, C. Lutz, and R. Moeller, editors, Proceedings of the KI-2004 International Workshop on
Applications of Description Logics (ADL’04), pages 1–10. CEUR, 2004.

[108] V. Hakkoymaz. A specification model for temporal and spatial relations of segments in multimedia presentations.
Journal Of Digital Information Management, 8(2):136–146, 2010.

[109] J. Hammer, J. Mchugh, and H. Garcia-Molina. Semistructured data: the TSIMMIS experience. In In
Proceedings of the 1st East-European Symposium on Advances in Databases and Information Systems (ADBIS),
pages 1–8, St. Petersburg, Russia, 1997.

[110] R. M. Haralick. Document image understanding: geometric and logical layout. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’94), pages 385 – 390.
IEEE Computer Society, 1994.

[111] S. Harper, C. Goble, and R. Stevens. A pilot study to examine the mobility problems of visually impaired users
travelling the Web. ACM SIGCAPH Computers and the Physically Handicapped, 1(68):10–19, Sept. 2000.

[112] S. Harper, C. Goble, and R. Stevens. Web mobility guidelines for visually impaired surfers. Journal of Research
and Practice in Information Technology, 33(1):30–41, 2001.

[113] S. Harper and Y. Yeliz, editors. Web accessibility: A foundation for Research. Springer, London, 2008.
[114] T. Hassan. Object-level document analysis of PDF files. In Proceedings of the 9th ACM symposium on

Document engineering - DocEng ’09, pages 47–55, New York, New York, USA, 2009. ACM Press.
[115] T. Hassan. User-guided wrapping of PDF documents using graph matching techniques. In Proceedings of the

2009 10th International Conference on Document Analysis and Recognition, pages 631–635. IEEE Computer
Society, July 2009.

[116] T. Hassan. User-guided information extraction from print-oriented documents. Phd thesis, Vienna University
of Technology, 2010.

[117] T. Hassan and R. Baumgartner. Table recognition and understanding from PDF files. In Proceedings of the
Ninth International Conference on Document Analysis and Recognition, volume 2, pages 1143–1147, Paraná,
Argentina, 2007. IEEE Computer Society.

[118] X. He, D. Cai, J.-R. Wen, W.-Y. Ma, and H.-J. Zhang. Clustering and searching WWW images using link
and page layout analysis. ACM Transactions on Multimedia Computing, Communications, and Applications,
3(2):1–33, May 2007.

[119] J. Hendler, N. Shadbolt, W. Hall, T. Berners-Lee, and D. Weitzner. Web science: an interdisciplinary approach
to understanding the Web. Communications of the ACM, 51(7):60–69, 2008.

[120] D. Hernández, E. Clementini, and P. Di Felice. Qualitative distances. Spatial Information Theory. A Theoretical
Basis for GIS. LNCS, 988:45–57, 1995.

[121] C. Herzog, I. Kordomatis, W. Holzinger, R. R. Fayzrakhmanov, and B. Krüpl-Sypien. Feature-based object
identification for web automation. In Proceedings of the 28th Annual ACM Symposium on Applied Computing
(SAC’ 13), pages 742–749, Coimbra, 2013. ACM.

[122] P. S. Hiremath and S. P. Algur. Extraction of data from web pages: a vision based approach. International
Journal of Computer and Information Science and Engineering, 3:50–59, 2009.

270

[123] P. S. Hiremath and S. P. Algur. Extraction Of flat and nested data records from web pages. International
Journal on Computer Science and Engineering, 2(1):36–45, 2010.

[124] P. S. Hiremath, S. S. Benchalli, S. P. Algur, and R. V. Udapudi. Mining data regions from web pages.
In Proceedings of the International Conference on Management of Data (COMAD 2005), pages 130–138,
Hyderabad, India, 2005.

[125] A. Hogue and D. Karger. Thresher: automating the unwrapping of semantic content from the World Wide Web.
In A. Ellis and T. Hagino, editors, Proceedings of the 14th international conference on World Wide Web, pages
86–95, New York, 2005. ACM.

[126] W. Holzinger, B. Krüpl, and M. Herzog. Using ontologies for extracting product features from web pages. In
Proceedings of the 5th International Conference on The Semantic Web (ISWC’06), pages 286–299. Springer,
2006.

[127] W. Holzinger and B. Krüpl-Sypien. Gestalt Ontology. Personal communication, 2009.
[128] C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for semi-structured data extraction from the

Web. Information Systems, 23(8):521–538, Dec. 1998.
[129] N. Hurst, W. Li, and K. Marriott. Review of automatic document formatting. In Proceedings of the 9th ACM

symposium on Document engineering (DocEng ’09), pages 99–108, Munich, Germany, 2009. ACM Press.
[130] IBM. IBM developer guidelines. http://www-03.ibm.com/able/guidelines/. Date accessed: 10.12.2012.
[131] J.-S. R. Jang, C.-T. Sun, and E. Mizutani. Neuro-fuzzy and soft computing: A computational approach to

learning and machine intelligence. Prentice Hall, first edit edition, 1997.
[132] S. Jul and G. W. Furnas. Navigation in electronic worlds. ACM SIGCHI Bulletin, 29(4):44–49, 1997.
[133] A. Kalyanpur, D. J. Pastor, S. Battle, and J. Padget. Automatic mapping of OWL ontologies into Java. In

Proceedings of the 16th International Conference of Software Engineering and Knowledge Engineering, pages
98–103, 2004.

[134] V. Kashyap, C. Bussler, and M. Moran. The Semantic Web. Semantics for data and services on the Web.
Springer, Berlin, 2008.

[135] M. Kayed and C.-H. Chang. FiVaTech: page-level Web data extraction from template pages. IEEE Transactions
on Knowledge and Data Engineering, 22(2):249–263, Feb. 2010.

[136] J. Keith. DOM Scripting: Web design with JavaScript and the Document Object Model. Springer, New York,
the USA, 1st edition, 2005.

[137] B. Kelly, D. Sloan, L. Phipps, H. Petrie, and F. Hamilton. Forcing standardization or accommodating diversity?
A framework for applying the WCAG in the real world. In Proceedings of the 2005 International Cross-
Disciplinary Workshop on Web Accessibility (W4A), pages 46–54. ACM Press, 2005.

[138] R. Khare and Y. An. An empirical study on using hidden markov model for search interface segmentation. In
Proceedings of the 18th ACM conference on Information and knowledge management (CIKM ’09), page 17,
New York, 2009. ACM Press.

[139] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages. Journal of
the ACM (JACM), 42(4):741–843, 1995.

[140] T. Kistler and J. Marais. WebL—a programming language for the Web. In Proceedings of the seventh
international conference on World Wide Web, pages 259–270. Elsevier, 1998.

[141] S. Klink, A. Dengel, and T. Kieninger. Document structure analysis based on layout and textual features. In In
Proceedings of International Workshop on Document Analysis Systems (DAS2000), pages 99–111. IAPR, 2000.

[142] J. Kocibova, K. Klos, O. Lehecka, M. Kudelka, and V. Snasel. Web page analysis: experiments based on
discussion and purchase web patterns. In 2007 IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology Workshops (WI-IATW ’07), pages 221–225, Washington, Nov. 2007. IEEE
Computer Society.

[143] K. Koffka. Principles of Gestalt psychology. Harcourt, Brace & Co., New York, 1 edition edition, 1935.
[144] J. Kong, K. Zhang, and X. Zeng. Spatial graph grammars for graphical user interfaces. ACM Transactions on

Computer-Human Interaction, 13(2):268–307, June 2006.
[145] I. Kordomatis, C. Herzog, R. R. Fayzrakhmanov, B. Krüpl-Sypien, W. Holzinger, and R. Baumgartner. Web

271

object identification for web automation and meta-search. In Proceedings of the 3rd International Conference
on Web Intelligence, Mining and Semantics (WIMS ’13), pages 1–12, New York, 2013. ACM.

[146] M. Kovacevic, M. Diligenti, M. Gori, and V. Milutinovic. Visual adjacency multigraphs – a novel approach
for a web page classification. In In Proceedings of the Workshop on Statistical Approaches to Web Mining
(SAWM’2004), pages 38–49, Pisa, Italy, 2004. University of Pisa.

[147] P. Kremen and Z. Kouba. Ontology-driven information system design. IEEE Transactions on Systems, Man,
and Cybernetics. Part C: Applications and Reviews, 42(3):334–344, 2012.

[148] M. Krishnamoorthy, G. Nagy, and S. Seth. Syntactic segmentation and labeling of digitized pages from
technical journals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(7):737–747, 1993.

[149] B. Krüpl and M. Herzog. Visually guided bottom-up table detection and segmentation in web documents. In
Proceedings of the 15th international conference on World Wide Web - WWW ’06, pages 933–934, New York,
New York, USA, 2006. ACM Press.

[150] B. Krüpl, M. Herzog, and W. Gatterbauer. Using visual cues for extraction of tabular data from arbitrary HTML
documents. In Special Interest Tracks and Posters of the 14th International Conference on World Wide Web,
pages 1000–1001, Chiba, Japan, 2005. ACM.

[151] B. Krüpl-Sypien, R. R. Fayzrakhmanov, W. Holzinger, M. Panzenböck, and R. Baumgartner. A versatile model
for web page representation, information extraction and content re-packaging. In M. Hardy and F. W. Tompa,
editors, In Proceedings of the 11th ACM Symposium on Document Engineering (DocEng2011), Mountain View,
USA, 19–22 September, 2011, pages 129–138, New York, 2011. ACM.

[152] S. Kuhlins and R. Tredwell. Toolkits for generating wrappers. Objects, Components, Architectures, Services,
and Applications for a Networked World, 2591/2003:184–198, 2003.

[153] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper induction for information extraction. In Proceedings of
the 15th International Conference on Artificial Intelligence (IJCAI), pages 729–735. University of Washington,
1997.

[154] P. Ladkin. Models of axioms for time intervals. In Proceedings of the 6th National Conference on Artificial
Intelligence, volume 1, pages 234–239. Morgan Kaufmann, 1987.

[155] A. H. F. Laender, B. Ribeiro-Neto, and A. S. da Silva. DEByE - Data extraction by example. Data & Knowledge
Engineering, 40(2):121–154, 2002.

[156] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and J. S. Teixeira. A brief survey of web data extraction
tools. ACM SIGMOD Record, 31(2):84, June 2002.

[157] T. Lau, J. Cerruti, G. Manzato, M. Bengualid, J. P. Bigham, and J. Nichols. A conversational interface to web
automation. In Proceedings of the 23nd annual ACM symposium on User interface software and technology
(UIST ’10), pages 229–238. ACM, 2010.

[158] B. Leporini. Google news: how user-friendly is it for the blind? In Proceedings of the 29th ACM International
Conference on Design of Communication (SIGDOC ’11), pages 241–248. ACM, 2011.

[159] G. Leshed, E. M. Haber, T. Matthews, and T. Lau. CoScripter: automating & sharing how-to knowledge in the
enterprise. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08),
pages 1719–1728, Florence, 2008. ACM Press.

[160] L. Li, Y. Liu, A. Obregon, and M. Weatherston. Visual segmentation-based data record extraction from web
documents. In Proceedings of 2007 IEEE International Conference on Information Reuse and Integration,
pages 502–507, Las Vegas, IL, Aug. 2007. IEEE.

[161] X. Li and P. A. Ng. A document classification and extraction system with learning ability. In Proceedings of
the Fifth International Conference on Document Analysis and Recognition, pages 197–200, Bangalore , India,
1999. IEEE Computer Society.

[162] G. Ligozat. A new proof of tractability for ORD-Horn relations. In Proceedings of the 13th National Conference
on Artificial Intelligence, volume 1, pages 395–401. AAAI Press and MIT Press, 1996.

[163] B. Liu. Web data mining. Springer, Berlin, 2nd edition, 2008.
[164] B. Liu, R. Grossman, and Y. Zhai. Mining data records in Web pages. In L. Getoor, T. Senator, P. Domingos,

and C. Faloutsos, editors, Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 601 – 606, New York, NY, USA, 2003. ACM.

272

[165] B. Liu and Y. Zhai. NET - a system for extracting web data from flat and nested data records. Web Information
Systems Engineering - WISE 2005, 3806:487–495, 2005.

[166] W. Liu and X. Meng. Vision-based web data records extraction. In In Proceedings of the 9th SIGMOD
International Workshop on Web and Databases (SIGMOD-WebDB2006), page 6, Chicago, Illinois, USA, 2006.
ACM.

[167] W. Liu, X. Meng, and W. Meng. ViDE: A Vision-Based Approach for Deep Web Data Extraction. IEEE
Transactions on Knowledge and Data Engineering, 22(3):447–460, Mar. 2010.

[168] D. Lunn, S. Harper, and S. Bechhofer. Combining SADIe and AxsJAX to improve the accessibility of web
content. In Proceedings of the 2009 International Cross-Disciplinary Conference on Web Accessibililty (W4A),
pages 75–78, New York, 2009. ACM Press.

[169] P. Luo, J. Fan, S. Liu, F. Lin, Y. Xiong, and J. Liu. Web article extraction for web printing: a DOM+visual
based approach. In Proceedings of the 9th ACM Symposium on Document Engineering, pages 66–69, New
York, NY, USA, 2009. ACM.

[170] C. Lutz, F. Baader, E. Franconi, D. Lembo, R. Möller, R. Rosati, U. Sattler, B. Suntisrivaraporn, and S. Tessaris.
Reasoning support for ontology design. In B. C. Grau, P. Hitzler, C. Shankey, and E. Wallace, editors,
Proceedings of the Second International Workshop OWL: Experiences and Directions, pages 1–10, 2006.

[171] J. U. Mahmud, Y. Borodin, and I. V. Ramakrishnan. Csurf: A context-driven non-visual web-browser. In
Proceedings of the 16th international conference on World Wide Web, pages 31–40, New York, New York,
USA, 2007. ACM Press.

[172] D. Malerba and M. Ceci. Learning to order: A relational approach. Mining Complex Data, 4944:209–223,
2008.

[173] M. Manna, E. Oro, M. Ruffolo, M. Alviano, and N. Leone. The HiLeX system for semantic information
extraction. Transactions on Large-Scale Data- and Knowledge-Centered Systems (TLDKS), 7100:91–125,
2012.

[174] B. McBride. The Resource Description Framework (RDF) and its Vocabulary Description Language RDFS. In
S. Staab and R. Studer, editors, The Handbook on Ontologies in Information Systems. Springer, 2003.

[175] R. R. Mehta, P. Mitra, and H. Karnick. Extracting semantic structure of web documents using content and
visual information. In Special Interest Tracks and Posters of the 14th International Conference on World Wide
Web, pages 928–929, Chiba, Japan, 2005. ACM.

[176] J.-L. Meunier. Optimized XY-cut for determining a page reading order. In Proceedings of the Eighth
International Conference on Document Analysis and Recognition, volume 1, pages 347–351. IEEE Computer
Society, 2005.

[177] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E. Moser. Extracting data records from the web using
tag path clustering. In Proceedings of the 18th international conference on World Wide Web - WWW ’09, pages
981–990. ACM, 2009.

[178] G. Micro. Window-Eyes, version 8.0. http://www.gwmicro.com/window-eyes/, 2012.
[179] R. Mitkov, editor. The Oxford handbook of computational linguistics. Oxford University Press, New York,

New York, USA, 2005.
[180] T. Miyoshi and A. Murata. A method to evaluate properness of GUI design based on complexity indexes of

size, local density, aliment, and grouping. In Proceedings of 2001 IEEE International Conference on Systems,
Man and Cybernetics, volume 1, pages 221–226, Tucson, AZ , USA, 2001. IEEE.

[181] A. Mukerjee and G. Joe. A qualitative model for space. In In proceedings of the Eight National Conference on
Artificial Intelligence (AAAI’90), volume 2, pages 721–727, New York, NY, USA, 1990.

[182] G. Nagy and S. Seth. Hierarchical representation of optically scanned documents. In In Proceedings of the 7th
International Conference on Pattern Recognition, pages 347–349, Montreal, Canada, 1984. IEEE Computer
Society.

[183] I. Navarrete and G. Sciavicco. Spatial Reasoning with Rectangular Cardinal Direction. In Proceedings of the
ECAI 2006 Workshop on Spatial and Temporal Reasoning, pages 1–9, 2006.

[184] B. Nebel and H.-J. Bürckert. Reasoning about temporal relations: a maximal tractable subclass of Allen’s
interval algebra. Journal of the ACM (JACM), 42(1):43–66, 1995.

273

[185] C. Nédellec and A. Nazarenko. Ontology and information extraction: A necessary symbiosis. In P. Buitelaar,
P. Cimiano, and B. Magnini, editors, Ontology Learning from Text: Methods, Evaluation and Applications,
pages 155–170. IOS Press, 2005.

[186] H. Nguyen, T. Nguyen, and J. Freire. Learning to extract form labels. Proceedings of the VLDB Endowment,
1(1):684–694, 2008.

[187] Z. Nie, J.-R. Wen, and W.-Y. Ma. Webpage understanding: beyond page-level search. ACM SIGMOD Record,
37(4):48–54, 2008.

[188] NV Access. NVDA, version 2012.3. http://www.nvda-project.org/, 2012.
[189] E. Oro and M. Ruffolo. SILA: A spatial instance learning approach for deep web pages. In Proceedings of the

20th ACM international conference on Information and knowledge management (CIKM ’11), pages 2329–2332,
New York, 2011. ACM.

[190] E. Oro, M. Ruffolo, and S. Staab. SXPath: Extending XPath towards spatial querying on web documents.
Proceedings of the VLDB Endowment, 4(2):129–140, 2010.

[191] F. S. Parreiras, C. Saathoff, T. Walter, T. Franz, and S. Staab. APIs à gogo: Automatic Generation of Ontology
APIs. In 2009 IEEE International Conference on Semantic Computing (ICSC ’09), pages 342–348. Ieee, Sept.
2009.

[192] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM Transactions on Database
Systems (TODS), 34(3), 2009.

[193] H. Petrie, F. Hamilton, and N. King. Tension, what tension?: Website accessibility and visual design. In
Proceedings of the 2004 International Cross-Disciplinary Workshop on Web Accessibility (W4A ’04), pages
13–18. ACM Press, 2004.

[194] P. Pirolli and S. K. Card. Information foraging. Psychological Review, 106(4):1–84, 1999.
[195] D. Poole and A. Mackworth. Artificial intelligence: Foundations of computational agents. Cambridge

University Press, New York, 2010.
[196] A. Popko and A. Kamynin. On Russian GOST of the accessibility of Internet resources for visually impaired

people (Russian). Information Society, 1(1):73–79, 2010.
[197] N. Prangnawarat. Realizing web accessibility based on understanding the visual structure of grocery web

portals. PhD thesis, Vienna Ubiversity of Technology, 2009.
[198] Y. Puzis, Y. Borodin, F. Ahmed, and I. V. Ramakrishnan. An intuitive accessible web automation user interface.

In Proceedings of the International Cross-Disciplinary Conference on Web Accessibility (W4A ’12), page
Article No. 41, New York, New York, USA, 2012. ACM Press.

[199] Y. Puzis, Y. Borodin, R. Puzis, and I. Ramakrishnan. Predictive web automation assistant for people with vision
impairments. In Proceedings of the 22nd international conference on World Wide Web (WWW ’13), pages
1031–1040. ACM, 2013.

[200] G. M. A. Rahaman, M. M. Hossain, M. A. Arif, E. Chowdhury, and S. Debnath. Mining structured objects
(data records) based on maximum region detection by text content comparison from website. International
Journal of Electrical and Computer Sciences (IJECS-IJENS), 10(02):22–28, 2010.

[201] T. V. Raman. Emacspeak—a speech interface. In Proceedings of the SIGCHI conference on Human factors in
computing systems common ground (CHI ’96), pages 66–71, New York, 1996. ACM Press.

[202] T. V. Raman. Emacspeak, version 38.0. http://emacspeak.sourceforge.net/, 2013.
[203] D. A. Randell, Z. Cui, and A. G. Cohn. A Spatial Logic based on Regions and Connection. In B. Nebel, C. Rich,

and W. Swartout, editors, Proceedings of the Third International Conference on Principles of Knowledge
Representation and Reasoning, pages 165–176, Los Altos, 1992. Morgan Kaufmann.

[204] J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the
region connection calculus. Artificial Intelligence, 108(1-2):69–123, 1999.

[205] G. Retz-Schmidt. Various views on spatial prepositions. AI Magazine, 9(2):95–105, 1988.
[206] J. Roach. The Rectangle Placement Language. 21st Design Automation Conference Proceedings, pages

405–411, 1984.
[207] P. Roth, L. Petrucci, T. Pun, and A. Assimacopoulos. Auditory browser for blind and visually impaired users.

274

In CHI ’99 Extended Abstracts on Human Factors in Computing Systems, Pittsburgh, Pennsylvania, pages
218–219, New York, 1999. ACM.

[208] Royal National Institute of Blind People. Royal National Institute of Blind People (RNIB).
http://www.rnib.org.uk. Date accessed: 10.12.2012.

[209] S. Sarawagi. Information Extraction. Foundations and Trends in Databases, 1(3):261–377, 2008.
[210] Serotek. System Access To Go. http://www.satogo.com/en/, 2013.
[211] D. Shea and M. E. Holzschlag. The Zen of CSS Design: Visual Enlightenment for the Web. Peachpit Press,

USA, 2005.
[212] V. I. Shvetsov and M. A. Roschina. Computer typhlotechnology in social integration of people with deep visual

impairments (Russian). State University of Nizhny Novgorod, Nizhny Novgorod, 2007.
[213] V. I. Shvetsov and M. A. Roschina. Accessibility of Internet resources for sightless users as a factor for

providing them with access to the open education (Russian). Open Education, 1(1):124–128, 2010.
[214] K. Simon and G. Lausen. ViPER: augmenting automatic information extraction with visual perceptions. In

Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pages
381–388, Bremen, Germany, 2005. ACM New York, NY, US.

[215] R. Singh, A. Lahoti, and A. Mukerjee. Interval-algebra based block layout analysis and document template
generation. In Workshop on Document Layout Interpretation and its Applications, page 4, 1999.

[216] S. Skiadopoulos and M. Koubarakis. Composing cardinal direction relations. In C. S. Jensen, M. Schneider,
B. Seeger, and V. J. Tsotras, editors, Advances in Spatial and Temporal Databases, pages 299–317. Springer,
2001.

[217] T. R. Smith and K. K. Park. Algebraic approach to spatial reasoning. International Journal of Geographical
Information Systems, 6(3):177–192, 1992.

[218] S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. Crystal: Inducing a conceptual dictionary. In C. Mellish,
editor, Proceedings of the 14th international joint conference on Artificial intelligence (IJCAI’95), pages
1314–1319, San Francisco, 1995. Morgan Kaufmann.

[219] A. Spengler and P. Gallinari. Document structure meets page layout: loopy random fields for web news
content extraction. In Proceedings of the 10th ACM symposium on Document engineering (DocEng ’10), pages
151–160, Manchester, United Kingdom, 2010. ACM: New York, NY, USA.

[220] S. Staab and R. Studer, editors. Handbook on Ontologies. Springer, Berlin, Germany, 2004.
[221] S. Staab, T. Walter, G. Gröner, and F. S. Parreiras. Model driven engineering with ontology technologies.

Reasoning Web. Semantic Technologies for Software Engineering, 6325:62–98, 2010.
[222] A. Stent, I. V. Ramakrishnan, and G. Yang. Hearsay: enabling audio browsing on hypertext content. In

Proceedings of the 13th international conference on World Wide Web (WWW’2004), pages 80–89. ACM: New
York, NY, USA, 2004.

[223] C. Stephanidis. Adaptive techniques for universal access. User Modeling and User-Adapted Interaction,
11(1-2):159–179, 2001.

[224] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: Principles and methods. Data & Knowledge
Engineering, 25(1–2):161–197, 1998.

[225] H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda. Accessibility designer: visualizing usability for the blind. In
Proceedings of the 6th international ACM SIGACCESS conference on Computers and accessibility (Assets ’04),
pages 177–184, New York, 2004. ACM.

[226] H. Takagi, S. Saito, K. Fukuda, and C. Asakawa. Analysis of navigability of Web applications for improving
blind usability. ACM Transactions on Computer-Human Interaction (TOCHI), 14(3):37, Sept. 2007.

[227] Y. Y. Tang, M. Cheriet, J. Liu, J. N. Said, and C. Y. Suen. Document analysis and recognition by computers. In
C. H. Chen, L. F. Pau, and P. S. P. Wang, editors, Handbook of Pattern Recognition and Computer Vision, pages
579–612. World Scientific Publishing Company, Singapore, Republic of Singapore, 2 sub edit edition, 1999.

[228] Y. Y. Tang, S.-W. Lee, and C. Y. Suen. Automatic document processing: A survey. Pattern Recognition,
29(12):1931–1952, Dec. 1996.

[229] S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh, M.-C. Rousset, and R. A. Schmidt, editors.

275

Reasoning Web. Semantic technologies for information systems. Springer, Berlin, 2009.
[230] J. Thatcher, P. Bohman, M. Burks, S. L. Henry, B. Regan, S. Swierenga, M. D. Urban, and C. D. Waddell.

Constructing accessible web sites. Glasshaus, 2002.
[231] The Apache Software Foundation. Jena Ontology API. http://jena.apache.org/documentation/ontology/. Date

accessed: 15.12.2012, 2013.
[232] The Apache Software Foundation. Reasoners and rule engines: Jena inference support.

http://jena.apache.org/documentation/inference/. Date accessed: 15.12.2012, 2013.
[233] The United States Government. Section 508: The Road to Accessibility. Rehabilitation Act.

http://www.section508.gov. Date accessed: 05.03.2012, 1998.
[234] M. F. Theofanos and J. Redish. Bridging the gap: Between accessibility and usability. Interactions, 10(6):36–51,

2003.
[235] Y.-F. Tseng and H.-Y. Kao. The mining and extraction of primary informative blocks and data objects

from systematic web pages. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web
Intelligence, pages 370–373. IEEE Computer Society, 2006.

[236] TU Wien. ABBA — Advanced barrier-free browser accessibility. FFG Fit-IT Project 819563, 2009–2010.
http://www.dbai.tuwien.ac.at/proj/ABBA/.

[237] TU Wien. TAMCROW — Task mining and crowd sourcing. FFG Fit-IT Project 829614, 2011–2012.
http://www.dbai.tuwien.ac.at/proj/tamcrow/.

[238] W3C. Web Accessibility Initiative (WAI). http://www.w3.org/WAI/. Date accessed: 10.12.2012.
[239] W3C. World Wide Web Consortium (W3C). http://www.w3.org/. Date accessed: 10.12.2012.
[240] W3C. Document Object Model (DOM) Level 1 Specification (Version 1.0). W3C Recommendation 1 October

1998. Recommendation, W3C, 1998.
[241] W3C. HTML 4.01 Specification. W3C Recommendation 24 December 1999. Recommendation, W3C, 1999.
[242] W3C. Resource Description Framework (RDF) Model and Syntax Specification. W3C Recommendation 22

February 1999. Recommendation, W3C, 1999.
[243] W3C. XML path language (XPath) version 1.0. W3C Recommendation 16 November 1999. Recommendation,

W3C, 1999.
[244] W3C. Document Object Model (DOM) Level 2 Traversal and Range Specification (Version 1.0). W3C

Recommendation 13 November 2000. Recommendation, W3C, 2000.
[245] W3C. CSS3 Module: Line. W3C Working Draft 15 May 2002. Working draft, W3C, 2002.
[246] W3C. XHTML 1.0 The Extensible HyperText Markup Language (Second Edition). A Reformulation of HTML

4 in XML 1.0. W3C Recommendation 26 January 2000, revised 1 August 2002. Recommendation, W3C, 2002.
[247] W3C. Document Object Model (DOM) Technical Reports. http://www.w3.org/DOM/DOMTR. Date accessed:

05.03.2012, 2004.
[248] W3C. OWL Web Ontology Language Guide. W3C Recommendation 10 February 2004. Recommendation,

W3C, 2004.
[249] W3C. OWL Web Ontology Language Overview. W3C Recommendation 10 February 2004. Recommendation,

W3C, 2004.
[250] W3C. RDF Primer. W3C Recommendation 10 February 2004. Recommendation, W3C, 2004.
[251] W3C. RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation 10 February 2004.

Recommendation, W3C, 2004.
[252] W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission 21

May 2004. Member submission, W3C, 2004.
[253] W3C. Voice Extensible Markup Language (VoiceXML) Version 2.0. W3C Recommendation 16 March 2004.

Recommendation, W3C, 2004.
[254] W3C. CSS Basic Box Model. W3C Working Draft 9 August 2007. Working draft, W3C, 2007.
[255] W3C. CSS Grid Positioning Module Level 3. W3C Working Draft 5 September 2007. Working draft, W3C,

2007.

276

[256] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation 26 November 2008.
Recommendation, W3C, 2008.

[257] W3C. SPARQL Query Language for RDF. W3C Recommendation 15 January 2008. Recommendation, W3C,
2008.

[258] W3C. Web Content Accessibility Guidelines (WCAG) 2.0. W3C Recommendation 11 December 2008.
Recommendation, W3C, 2008.

[259] W3C. Accessible Rich Internet Applications (WAI-ARIA) 1.0. W3C Candidate Recommendation 18 January
2011. Candidate recommendation, W3C, 2011.

[260] W3C. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C Recommendation 07 June
2011. Recommendation, W3C, 2011.

[261] W3C. CSS Lists and Counters Module Level 3. W3C Working Draft 24 May 2011. Working draft, W3C, 2011.
[262] W3C. CSS Multi-Column Layout Module. W3C Candidate Recommendation 12 April 2011. Candidate

recommendation, W3C, 2011.
[263] W3C. CSS Template Layout Module. W3C Working Draft 29 November 2011. Working draft, W3C, 2011.
[264] W3C. CSSOM View Module. W3C Working Draft 4 August 2011. Working draft, W3C, 2011.
[265] W3C. Authoring Tool Accessibility Guidelines (ATAG) 2.0. W3C Working Draft 10 April 2012. Working

draft, W3C, 2012.
[266] W3C. CSS Backgrounds and Borders Module Level 3. W3C Candidate Recommendation 24 July 2012.

Candidate recommendation, W3C, 2012.
[267] W3C. CSS Basic User Interface Module Level 3 (CSS3 UI). W3C Working Draft 17 January 2012. Working

draft, W3C, 2012.
[268] W3C. CSS Box Alignment Module Level 3. W3C Working Draft 12 June 2012. Working draft, W3C, 2012.
[269] W3C. CSS Exclusions and Shapes Module Level 3. W3C Working Draft 3 May 2012. Working draft, W3C,

2012.
[270] W3C. CSS Flexible Box Layout Module. W3C Candidate Recommendation, 18 September 2012. Candidate

recommendation, W3C, 2012.
[271] W3C. CSS Regions Module Level 3. W3C Working Draft 23 August 2012. Working draft, W3C, 2012.
[272] W3C. CSS Speech Module. W3C Candidate Recommendation 20 March 2012. Candidate recommendation,

W3C, 2012.
[273] W3C. CSS Transforms. W3C Working Draft 11 September 2012. Working draft, W3C, 2012.
[274] W3C. CSS Transitions. W3C Working Draft 3 April 2012. Working draft, W3C, 2012.
[275] W3C. CSS Values and Units Module Level 3. W3C Candidate Recommendation 28 August 2012. Candidate

recommendation, W3C, 2012.
[276] W3C. Media Queries. W3C Recommendation 19 June 2012. Recommendation, W3C, 2012.
[277] W3C. OWL 2 Web Ontology Language Document Overview (Second Edition). W3C Recommendation 11

December 2012. Recommendation, W3C, 2012.
[278] W3C. OWL 2 Web Ontology Language New Features and Rationale (Second Edition). W3C Recommendation

11 December 2012. Recommendation, W3C, 2012.
[279] W3C. OWL 2 Web Ontology Language Primer (Second Edition). W3C Recommendation 11 December 2012.

Recommendation, W3C, 2012.
[280] W3C. OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation 11 December 2012.

Recommendation, W3C, 2012.
[281] W3C. OWL 2 Web Ontology Language RDF-Based Semantics (Second Edition). W3C Recommendation 11

December 2012. Technical report, W3C, 2012.
[282] W3C. SPARQL 1.1 Query Language. W3C Proposed Recommendation 08 November 2012. Proposed

recommendation, W3C, 2012.
[283] W3C. The Rule Markup Initiative, http://ruleml.org/. (Accessed April 13, 2013), 2012.
[284] W3C. User Agent Accessibility Guidelines (UAAG) 2.0. W3C Working Draft 23 May 2013. Working draft,

277

W3C, 2012.
[285] W3C. W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. W3C Recommendation 5 April

2012. Recommendation, W3C, 2012.
[286] W3C. WebDriver. W3C Working Draft 10 July 2012. Working draft, W3C, 2012.
[287] W3C. RIF Basic Logic Dialect (Second Edition). W3C Recommendation 5 February 2013. Recommendation,

W3C, 2013.
[288] H. Walischewski. Automatic knowledge acquisition for spatial document interpretation. In Proceedings of

the Fourth International Conference on Document Analysis and Recognition (ICDAR’97), pages 243–247,
Washington, DC, USA, 1997. IEEE Computer Society.

[289] H. Walischewski. Learning and interpretation of the layout of structured documents. In G. Brewka, C. Habel,
and B. Nebel, editors, KI-97: Advances in Artificial Intelligence. 21st Annual German Conference on Artificial
Intelligence, volume 1303, pages 409–412, Freiburg, Germany, 1997. Springer.

[290] J. Wang and F. H. Lochovsky. Data extraction and label assignment for web databases. In G. Hencsey, B. White,
Y.-F. R. Chen, L. Kovács, and S. Lawrence, editors, Proceedings of the 12th international conference on World
Wide Web, pages 187–196, New York, 2003. ACM.

[291] C. Ware. Information visualization: perseption for design. Morgan Kaufmann Publishers Inc., San Francisco,
2nd editio edition, 2004.

[292] T. Watanabe. Experimental evaluation of usability and accessibility of heading elements. Disability and
Rehabilitation. Assistive Technology, 4(4):236–247, 2009.

[293] Web Accessibility in Mind (WebAIM). Screen Reader User Survey #2 Results
(http://webaim.org/projects/screenreadersurvey2/), 2009.

[294] Web Accessibility in Mind (WebAIM). Survey of Preferences of Screen Readers Users
(http://webaim.org/projects/screenreadersurvey/), 2009.

[295] Web Accessibility in Mind (WebAIM). Screen Reader User Survey #3 Results
(http://webaim.org/projects/screenreadersurvey3/), 2010.

[296] Web Accessibility in Mind (WebAIM). Screen Reader User Survey #4 Results
(http://webaim.org/projects/screenreadersurvey4/), 2012.

[297] M. Weisen, N. King, and H. Petrie. The accessibility of museum web sites: Results from an English Investigation
and international comparisons. In J. Trant and D. Bearman, editors, Proceedings of Museums and the Web
2005, page 9, Vancouver, British Columbia, Canada, 2005. Archives & Museum Informatics.

[298] B. White. The Implications of Web 2.0 on Web Information Systems. Web Information Systems and Technolo-
gies, 1:3–7, 2007.

[299] P. Xiang, X. Yang, and Y. Shi. Web page segmentation based on Gestalt theory. In IEEE International
Conference on Multimedia and Expo, pages 2253–2256. IEEE, July 2007.

[300] Y. Yesilada. Web page segmentation: A review. Technical Report March, University of Manchester and Middle
East Technical University Northern Cyprus Campus, Nicosia, Cyprus, 2011.

[301] Y. Yesilada, S. Harper, and S. Eraslan. Experiential transcoding: an EyeTracking approach. In Proceedings of
the 10th International Cross-Disciplinary Conference on Web Accessibility, page 4. ACM, 2013.

[302] Y. Yesilada, S. Harper, C. Goble, and R. Stevens. DANTE: annotation and transformation of web pages for
visually impaired users. In S. Feldman and M. Uretsky, editors, Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, pages 490–491. ACM, 2004.

[303] M. Zajicek, C. Powell, C. Reeves, and J. Griffiths. Web browsing for the visually impaired. In Computers and
assistive technology ICCHP ’98 Vienna, Budapest, 31 August - 4 September 1998), pages 161–169, Vienna,
1998. OCG.

[304] Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. In Proceedings of the 14th international
conference on World Wide Web (WWW ’05), pages 76–85, Japan, 2005. ACM Press.

[305] Z. Zhang, B. He, and K. C.-C. Chang. Understanding web query interfaces: best-effort parsing with hidden
syntax. In A. C. König, S. Dessloch, P. Valduriez, and G. Weikum, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 107–118, Paris, France, 2004. ACM.

278

[306] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully automatic wrapper generation for search engines. In
Proceedings of the 14th international conference on World Wide Web - WWW ’05, page 66, New York, New
York, USA, 2005. ACM Press.

[307] H. Zhao, W. Meng, and C. Yu. Automatic extraction of dynamic record sections from search engine result pages.
In Proceedings of the 32nd international conference on Very large data bases (VLDB ’06), pages 989–1000.
VLDB Endowment, 2006.

[308] P. Zhong and J. Chen. A generalized hidden Markov model approach for web information extraction. In
Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, pages 709–718. IEEE
Computer Society, Dec. 2006.

[309] J. Zhu, Z. Nie, J.-R. Wen, B. Zhang, and W.-Y. Ma. 2D conditional random fields for web information extraction.
In Proceedings of the 22nd International Conference on Machine learning (ICML ’05), pages 1044–1051,
Bonn, Germany, 2005. ACM Press.

[310] J. Zhu, Z. Nie, J.-R. Wen, B. Zhang, and W.-Y. Ma. Simultaneous record detection and attribute labeling in web
data extraction. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD ’06), volume 1, pages 494–503, Philadelphia, PA, USA, 2006. ACM.

[311] J. Zou, D. Le, and G. R. Thoma. Combining DOM tree and geometric layout analysis for online medical
journal article segmentation. In Proceedings of the 6th ACM/IEEE-CS joint conference on Digital libraries
(JCDL ’06), page 119, Chapel Hill, NC, USA, 2006. ACM Press.

279

Acronyms

2DIR Two-Dimensional Interval Relations
2DIRC Two-Dimensional Interval Relations with Centering

API application programming interface
ATAG Authoring Tool Accessibility Guidelines

BGM Block-based Geometric Model
BOM Browser Object Model

CAD Computer-Aided Design
CSS Cascading Style Sheets
CSSOM CSS Object Model
CWA closed world assumption

DL Description Logics
DLP Description Logic Programs
DOM Document Object Model
DU Document Understanding

GIS Geographical Information Systems
GUI graphical user interface

IE Information Extraction

JEPD jointly exhaustive and pairwise disjoint

LM Logical Model

MANM Multi-Axial Navigation Model

281

NLP Natural Language Processing

OWA open world assumption
OWL Web Ontology Language

PM Physical Model

QltBGM Qualitative Block-based Geometric Model
QntBGM Quantitative Block-based Geometric Model

RCC Region Connection Calculus
RCR Rectangular Cardinal Relations
RDF Resource Description Framework
RDFS RDF Schema
RIF Rule Interchange Format
RuleML Rule Markup Language

SGG Spatial Graph Grammar
StrBGM Structural Block-based Geometric Model
SVG Scalable Vector Graphics
SWRL Semantic Web Rules Language

TBRR Thick Boundary Rectangle Relations

UAAG User Agent Accessibility Guidelines
UNA unique name assumption
UOM Unified Ontological Model
URI Uniform Resource Identifier

W3C World Wide Web Consortium
WAI Web Accessibility Initiative
WAI-ARIA Accessible Rich Internet Applications
WCAG Web Content Accessibility Guidelines
WDE Web Data Extraction
WIE Web Information Extraction
WPP Web Page Processing
WPPS Web Page Processing System
WPU Web Page Understanding

282

283

	Introduction
	Motivation
	The State of the Art: Challenges
	Aim and Objectives of this Thesis
	Theoretical Contribution
	Practical Contribution
	Publications
	Structure of the Thesis

	State of the Art and Related Work
	Web Accessibility for the Blind
	Standards and Guidelines
	Hardware
	Software

	Web Page Navigation
	Contemporary Realized Navigation Approaches
	Metaphor of Spatial Navigation
	Conclusion on Web Page Navigation

	Web Page Processing
	Web Information Extraction
	Web Page Understanding

	Web Page Representations
	Standard Forms of Web Page Representation
	Source code
	Textual representation
	Tree representation
	CSS Specifications for Rendering Web Pages
	Quantitative Visual Representation
	Qualitative Visual Representation
	Analysis of the Considered Models

	Semantic Web Approach
	Ontology and Logical Inference
	Ontology Languages
	Inference Rules
	Standard Ontology Reasoning Services
	SPARQL

	Discussion

	Modeling the Geometric Structure of a Web Page
	Existing Geometric Structures
	Quantitative and Qualitative Models
	Web Page Canvas and Unit of Measure
	A Web Page Structure, Geometric Object and its Attributes
	Spatial Relations
	Topological Relations
	RCC8
	Refinement of the RCC for Blocks

	Direction Relations
	Quantitative Direction
	Qualitative Direction

	Distance Relations
	Quantitative Distance
	Qualitative Distance

	Alignment Relations
	Interval Relations
	Main Concepts
	Fuzziness in Interval Relations
	Centering Relation
	Two-Dimensional Interval Relations And Centering

	Analysis of the Spatial Relations and Visibility of CSS Boxes
	WPPS-HTML-DS1 Dataset
	RCC8
	Quantitative Direction
	Quantitative Distance
	Alignment relations
	CSS Box Visibility

	Discussion

	The Unified Ontological Model of a Web Page
	Web Page Authoring and Visual Representation
	Overview of the Unified Ontological Model for the Web Page Processing
	Properties of Relations
	The Physical Model of a Web Page
	Extended DOM
	Block-based Geometric Model
	Interface Model

	The Logical Model of a Web Page
	Discussion

	Web Page Processing
	A Principle of Web Page Processing based on the Unified Ontological Model
	An Object-Oriented Abstraction for the Unified Ontological Model
	Declarative and Imperative Approaches
	A Required Abstraction
	Ontology in Object-Oriented Applications
	A Bridged Adapter

	WPPS: A System for Web Page Processing
	Architecture
	WPPS Configuration
	Physical Model Instantiation
	WPPS API
	WPPS GUI

	Developing Methods by Means of the WPPS Framework
	WPPS Methods Development Life Cycle
	Basic Examples of WPPS Methods

	WPPS Evaluation
	Goal and Objectives
	WPPS Parameters and Queries
	Evaluation Wrappers
	Performance Analysis
	Conclusions on the WPPS Evaluation

	WPPS in the Problem of Basic Web Object Identification
	Discussion

	Web Accessibility: A Multi-Axial Navigation
	Ameliorating Blind Users' Mobility
	Navigable Web Page Objects
	Web Page Mobility

	The Multi-Axial Navigation Model
	Main Concepts
	Example of a Navigation Model
	Formal Presentation of Axes
	Ontology

	Building the Multi-Axial Navigation Model
	Methodology of Navigation
	Observation
	Locomotion

	Blindzilla: Implementation
	System Architecture
	Model Generation Component
	Navigation Component

	Blindzilla: Evaluation
	Discussion

	Conclusion and Future Work
	Results
	Web Page Processing
	Web Accessibility

	Future Work
	Web Page Processing
	Web Accessibility

	Queries for Spatial Relations Analysis
	RCC8
	Quantitative Directions
	Quantitative Distances Between Border Projections
	Alignment relations

	A Survey of Blind Users of the Web
	Demographics of Respondents
	Expertise and Preferences
	Becoming Familiar with New Web Pages
	General Navigation
	Navigation Through Tables and Lists
	Accessibility of Web Pages by Genres
	Information Search
	Social Media
	News Websites
	Web Forums
	On-line Shops
	Weblogs

	Bibliography
	Acronyms

