
Dissertation

Geometric Optimization in Minkowski Space

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

Ao.Univ.Prof. Dr. Martin Peternell
Institut für Diskrete Mathematik und Geometrie (E104)

eingereicht an der Technischen Universität Wien,
Fakultät für Mathematik und Geoinformation,

von

Mag. Bernhard Blaschitz
Matr.Nr.: 0201684

Tamariskengasse 28, 1220 Wien

Wien, am 11.11.2013

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Kurzfassung

Für eine 1-parametrige Menge von Kreisen F (t): (x − m(t))2 = r2(t) ist die Hüll-
kurve gegeben durch F (t) ∩ Ft(t) mit Ft(t): (x − m(t))ṁ + rṙ = 0. Es ist in
diesem Zusammenhang vorteilhaft, ein Punktmodell der Menge der Kreise der euklidi-
schen Ebene zu studieren. Dabei wird jedem Kreis ein Punkt im R2,1 so zugeordnet, dass
die ersten beiden Koordinaten der Mittelpunkt und die dritte der Radius ist. Jede Kurve
l : p(t) = (p1, p2, p3)(t), ṗ(t) 6= 0 im R2,1 definiert eine 1-parametrige Menge von Kreisen,
ihre Hüllkurve ist die Spurkurve der Böschungstorse Γl. Diese Spurkurve besteht üblicher-
weise aus zwei Kurvenzweigen und ist reell für 〈ṗ, ṗ〉L ≥ 0 und die Zweige sind verschieden
für 〈ṗ, ṗ〉L > 0, wobei 〈x,y〉L = x1y1 + x2y2 − x3y3 das pseudoeuklidische Skalarpro-
dukt in R2,1 ist. Das heißt, dass Kurven, deren Ableitungen steiler als π

4
sind, keine reelle

Spurkurven besitzen.
Angenommen, man hat eine diskrete Menge von Kreisen pi in der Ebene und sucht eine
reelle Hüllkurve. In der Literatur werden dafür Heuristiken verwendet, die z.B. die Tan-
gentenpaare zweier benachbarter Kreise verbinden, wodurch sich eine Einhüllende ergibt,
die aus Kreissegmenten und Geraden besteht und bestenfalls C1 ist.
Ein anderer Zugang besteht darin, die Bilder der pi im R2,1 zu betrachten und einen beliebig
glatten B-Spline b mittels einer quadratischen Optimierung zu fitten. Das gewährleistet

aber nicht, dass
〈
ḃ, ḃ

〉
L
> 0, also die Hüllkurve reell ist, weshalb in der Literatur z.B.

Hermite-Interpolationen mit flachen Kurvenstücken oder mit Biarcs durchgeführt werden.
Der neue Zugang dieser Arbeit ist eine Umformulierung des Problems in ein Optimierungs-
problem unter Nebenbedingungen: Die quadratische Zielfunktion minimiert die Distanz
zwischen den zyklographischen Bildern der Kreise pi und dem kubischen B-Spline b unter
Berücksichtigung des Fußpunktproblems, d.h. in einem itertativen Prozess wird die Kurve
auch umparametrisiert, was eine bessere Näherung bewirkt.
Die Nebenbedingung der Realität der Hüllkurve liefert eine quadratische, nichtkonvexe Gle-
ichung, sodass das gesamte Problem nur mit Hilfe einer Linearisierung der Nebenbedingung
gelöst werden kann. Das Problem wird mittels der Interior Point Methode gelöst, wobei
auch Regularisierungen und andere Optimierungsdetails besprochen werden, insbesondere
in Bezug auf die Nichtkonvexität des Raumes R2,1. Die hier beschriebene Fragestellung
wird auch auf Kugeln, die durch Punkte im R3,1 repräsentiert werden, angewandt; im 1-
parametrigen Fall ergibt sich somit eine Methode zur Interpolation mit Kanalflächen, im
2-parametrigen allgemeine Kugelhüllflächen, die in dieser Form bisher nie untersucht wur-
den. Hierfür wurde ein Kalkül entwickelt, der sich mit der Frage der Steilheit von 2-Ebenen
im R3,1 auseinandersetzt.

ii

Abstract

The envelope of a 1-parameter family of circles F (t): (x −m(t))2 = r2(t) is given as
F (t)∩Ft(t) with Ft(t): (x−m(t))ṁ + rṙ = 0. We will study the set of circles in the plane
in a point set model : Every circle is assigned to a point in R2,1 such that the first two coordi-
nates are its center and the third is its radius. Every curve l : p(t) = (p1, p2, p3)(t), ṗ(t) 6= 0
in R2,1 defines a 1-parameter set of circles, their envelope is the intersection of a torsal sur-
face of constant slope Γl with the xy-plane. This intersection is a curve and usually consists
of two branches, which are real for 〈ṗ, ṗ〉L ≥ 0 and do not coincide for 〈ṗ, ṗ〉L > 0, where
〈x,y〉L = x1y1 + x2y2 − x3y3 is the pseudo Euclidean inner product in R2,1. Therefore,
the images of curves, whose derivative is steeper than π

4
, are not real.

Assuming a discrete set of circles pi in the plane, a real envelope is looked for. There
exist different heuristics in the literature, e.g. the two common tangents of two neighbor-
ing circles, which results in envelopes consisting of circular arcs and line segments; their
connection is C1 at best.
Another approach is to fit an arbitrarily smooth B-Spline b to the images of the pi in

R2,1 via a quadratic optimization. That does not ensure that
〈
ḃ, ḃ

〉
L
> 0, e.g. that the

envelope is real, so some authors use a Hermite interpolation with flat curve segments or
biars.
The new approach of this work is reformulating the original problem as a constrained
optimization: the quadratic objective function minimizes the distance between the cyclo-
graphic images of circles pi and a cubic B-Spline b by observing the footpoint problem,
i.e. the curve is reparametrized in an iterative procedure, which brings a better fit.
The reality of the envelope results in a quadratic, but non convex constraint, which can
be linearized. This linearization is discussed in detail, as its formulation is central to this
work.
The optimization problem is solved with an Interior Point Method, and regularizations and
other details of optimization are discussed, especially the non-convexity of the space R2,1.
The problems discussed for circles are also generalized for spheres; in the 1-parameter case
that leads to a new method for interpolation points in R3,1 by curves, which translates to
interpolation of spheres by canal surfaces. Approximating 2-parameter sets of points by
surfaces in R3,1 gives rise to general envelope surfaces of 2-parameter families of spheres,
that have not been studied before in this generality. For this, a calculus was developed,
that classifies 2-planes in R3,1 according to their steepness.

iii

Acknowledgments

I want to thank all the people from the Geometric Modeling and Industrial Geometry group
at the Technical University of Vienna, my advisor Martin Peternell, and all the colleagues I
got to know over my three and a half years of work as a teaching assistant there, especially
Simon Flöry and David Gruber.
A good part of this thesis was written during my four months stay at Freie Universität
Berlin, where Konrad Polthier was kind enough to invite me, another part during my
parental leave in 2012.
None of this work would have been possible without the loving support of my wife, who
always believed in this project.
To you all, thank you!

iv

Contents

1 Introduction 1
1.1 Skinning, sweeping and envelopes . 2

1.1.1 Skinning . 2
1.1.2 Sweeping . 2
1.1.3 Envelopes . 3

1.2 Applications . 3
1.2.1 Error bound paths . 3
1.2.2 Gently inclined roads . 3
1.2.3 Medial axis transform . 4
1.2.4 Offset curve approximation for varying distance 4

1.3 Thesis overview . 4

2 Minkowski space 6
2.1 Minkowski geometry . 6

2.1.1 Lorentz inner product . 6
2.1.2 Types of vectors . 8
2.1.3 Lorentz cone Γ . 10
2.1.4 Lorentz transformations . 11

2.2 Cyclography . 11
2.2.1 Laguerre geometry in R2 . 11
2.2.2 Laguerre geometry in R3 . 12
2.2.3 Laguerre transformations . 12
2.2.4 Offsets and the connection to Minkowski sums 13
2.2.5 Distances . 14

2.3 Curves in Minkowski space . 14
2.3.1 Offsets and distance function . 14
2.3.2 Cyclographic image of curves in R2,1 16
2.3.3 Cyclographic image of curves in R3,1 17

2.4 Surfaces in Minkowski space . 18

3 B-Splines 19
3.1 Interpolation and approximation . 19

3.1.1 Curve interpolation . 20
3.1.2 Curve approximation . 21
3.1.3 B-Spline surfaces . 21

v

3.2 Measuring distances . 22
3.2.1 Footpoint problem . 22
3.2.2 Distance function . 23

3.3 Geometric regularization . 24
3.3.1 Tikhonov regularization . 25
3.3.2 Curves . 25
3.3.3 Surfaces . 26

4 Envelopes of Circles 27
4.1 Introduction . 27

4.1.1 Overview of this chapter . 28
4.1.2 Previous Work . 28

4.2 Problem Statement . 30
4.2.1 Objective function . 32
4.2.2 Quadratic Constraint . 34
4.2.3 Optimization procedure . 35

4.3 Linearizing the quadratic constraint . 36
4.3.1 Local linearization of Γ . 36
4.3.2 Projection orthogonal to Γ . 37
4.3.3 Matrix formulation of the linearization 38

4.4 Solving the Optimization . 38
4.4.1 Algorithm for Interior Point Method 39
4.4.2 Initial position . 40
4.4.3 Iteration of the Interior Point Algorithm 42
4.4.4 Computed examples . 44

4.5 Testing the results . 44

5 Envelopes of Spheres 45
5.1 Canal surfaces . 45

5.1.1 Optimization formulation . 46
5.1.2 Objective function in R3,1 . 46
5.1.3 Steepness constraint in R3,1 . 47
5.1.4 Solving the optimization for canal surfaces 48

5.2 2-planes in R3,1 . 48
5.2.1 Wedge product in 3-space . 48
5.2.2 Wedge product in 4-space . 50
5.2.3 Classification of 2-planes in Minkowski space 51

5.3 Hyperbolic paraboloids in R3,1 . 52
5.3.1 Tangent planes of HP surfaces . 54
5.3.2 Computing Φ3,1 for HP surfaces in R3,1 57

5.4 Surface optimization in R3,1 . 58
5.4.1 Objective function and collocation matrices 60
5.4.2 Notation for B-spline surfaces . 60

vi

5.4.3 Constraints for surface optimization 61
5.4.4 Ruled surface optimization . 64
5.4.5 Hyperbolic paraboloidal surface optimization 65
5.4.6 Footpoints and Regularization . 66

5.5 Optimization framework . 66
5.5.1 Variables of the optimization . 67
5.5.2 Initial values . 68

6 Examples 70
6.1 Envelopes of circles . 71

6.1.1 General Strategy . 71
6.1.2 Effects of the steepness constraint 76

6.2 1-parameter envelopes of spheres . 77
6.3 2-parameter envelopes of spheres . 79

6.3.1 Wave example . 79
6.3.2 Sine cylinder . 80
6.3.3 Peaks example . 80

List of Figures 87

References 88

vii

1 Introduction

Figure 1.1: left: Given a set of circles (black), what is the optimal envelope (green and
red curves)? Or equivalently (right) given a set of spheres (black) what is the
optimal canal surface enveloping them?

The main question motivating this work is as follows: Given a set of circles in R2, how
can we find an optimal envelope? Equivalently for R3: Given a set of spheres, what is
the optimal envelope? To further narrow down the question, the input circles in R2 are
a one-parameter family and prescribe an ordering. In R3 we want to consider one- and
two-parameter families of spheres, but we always assume either a linear ordering or a setup
on a grid.
Of course there are many curves/surfaces enveloping the input circles/spheres and hence
optimality can only be stated with respect to certain criteria. If we take one of the two
envelope curves in R2, we could ask for the shortest one, but in curve fitting there is
always a trade off between the length of a curve and its smoothness, e.g. the shortest
curve interpolating a given set of points is the polyline consisting of all the line segments
connecting the points (remember we have a predefined ordering, otherwise we would also
have to solve the much harder problem of the traveling salesperson). As smoothness, we
aim for C2, i.e. twice differentiable, which we can achieve with cubic B-splines (if there are
no cusps or trimmings).

1

1.1 Skinning, sweeping and envelopes

Related topics in computer graphics and computational geometry are described in the
following sections. We point out that different words are used for the same process. We
will call the process of finding a smooth geometric object that approximates circles/spheres
enveloping and that this geometric object shall be called envelope.

1.1.1 Skinning

The term skinning seems to convey different meanings:

1. In computer graphics, see e.g. [21], (character) skinning refers to finding 1.) a
skeleton structure that gives a good shape approximation, i.e. a meaningful simplifi-
cation of a surface and 2.) a correspondence between the skin/mesh/shape and the
skeleton. The general assumption is that any movement of the shape only needs to
be computed on the skeleton, if correspondences are known.

2. In computer aided geometric design (CAGD), see e.g. [34], it refers to connecting
curves in R3 to a surface, such that the original curves lie on the surface.

The papers [44] (sec. 4.1.2) and [25] (sec. 4.1.2) refer to ball skinning as the process of finding
an envelope for a discrete set of circles in R2, but actually they use the circles to compute
points and tangents and interpolate these, which is closer to the CAGD meaning. [45] is
about ball skinning in R3 and again, spheres are intersected by planes, thus giving circles,
which are then interpolated by a surface, hence returning to the original CAGD meaning
of skinning (see above).
On the other hand, Cheng and Shi [6], Edelsbrunner [9] and Kruithof and Vegter [24]
consider the following problem: given a set of balls (=atoms), find the envelope of their
union (=molecule).

1.1.2 Sweeping

Volume sweeping, as for example shown in [49] (envelopes, Minkowski sums), deals with
(one-parameter families of) motions of some volumes. Thus the size of the object is always
the same, which is just a special case of our problem, but the types of objects it applies to
are more general. Overview of methods and many applications in [1].

2

1.1.3 Envelopes

We mention two survey papers on (smooth) envelopes by Pottmann&Peternell, namely [39]
and [40]. The first one finds envelopes for smooth families of spheres and planes, the latter
(and the numerous references mentioned therein) describes how to approximate lines, planes
and spheres.
More on this subject can be found in section 4.1.2, where we discuss previous work.

1.2 Applications

m̃

∂D
m

Figure 1.2: Applications of this work in different fields. left: The medial axis transform via
cyclography (by courtesy of the authors of [22]); middle: error bound paths,
i.e. the gray areas are positions of control points that are not known exactly,
intermediate discs of the de Casteljau algorithm in orange, the corresponding
B-Spline curve is shown in red ; right: a road (blue curve) that can not have
steeper inclination than a certain angle (by courtesy of the authors of [33]).

The applications of this work could be found in skinning of a family of spheres or sweeping
spheres, as described in section 1.1, as well as some less obvious ones, which we want to
present here.

1.2.1 Error bound paths

Imagine a set of control points bi in R2 for a B-spline curve, whose position is known up to
an (varying) error εi. The boundary of all the paths defined by these disks (bi, εi) ∈ R2,1

is precisely the cyclographic preimage of the curve in R2,1, see also [27], [48] and [11] and
Fig. 1.2, left.

1.2.2 Gently inclined roads

As we will see in chapter 4, we solve the problem of finding envelopes of circles by optimizing
a curve that is constrained to be inclined only a certain angle with the xy-plane. We assume

3

this angle to be π
4
, but actually it could be any predefined value. Note also that roads need

a sloping foundation, and that this slope is a constant of the underlying material. This
application was inspired by [33], which can be seen as the special case with zero inclination
- c.f. Fig. 1.2, middle.

1.2.3 Medial axis transform

The medial axis m of a planar domain D is the set of the centers of the maximal inscribed
discs, see [7], [11] and [38]. If the boundary ∂D of D is well-behaved, we can search for a
space curve m̃, whose cyclographic image is ∂D and then the (trimmed) projection of m̃ is
m, see also Fig. 1.2, right. For a discrete set of circles, finding the envelope thus also gives
the medial axis as a by-product.

1.2.4 Offset curve approximation for varying distance

Computing the offset of a curve can be seen as intersecting certain developable surfaces, see
sec. 2.3.1, which are already given if cyclographic images are used, thus the computation
of offsets of an envelope of circles is trivial. If the curve has to be approximated, different
methods can be used, see [26] and the references cited therein.
A slight change of view brings the following: Assume a given curve c and one wants to
compute an offset where the distance function d is not constant, but varies. The compu-
tation of cd is then the same as computing the envelopes of circles with centers on c and
radii given by d.

1.3 Thesis overview

We use topics and techniques in this thesis from three different fields of mathematics:
sphere-geometry, CAGD and optimization. For all terms used in later chapters, we will
give explanations and point to further literature, but we believe that this thesis is self-
contained and can be read without consulting other books.

Circles/spheres can be represented by points

Chapter 2 introduces cyclography or Laguerre geometry, which is a field in non-Euclidean
geometry that has a long tradition in Vienna, see Blaschke [4]. Basically, (oriented) circles
(spheres in higher dimensions) are represented as points in Minkowski space R2,1, curves
between them are then envelopes of circles in R2. As we will see, the tangents of these
curves in R2,1 have to fulfill certain constraints in order to give real envelopes.

4

Points are connected by curves/surfaces . . .

Computer aided geometric design or CAGD is addressed in chapter 3; it subsumes the
theory of freeform curves and surfaces (see Farin [10] or Piegl and Tiller [34]) and introduces
methods to interpolate and approximate points by continuous objects, which in turn depend
on control points.

Envelopes of circles

As it turns out, the task of finding envelopes of circles (spheres) is a constrained, quadratic,
non-convex problem in R2,1 (R3,1) and approximation by general curves/surfaces can be
solved by primal-dual interior point optimization algorithms. The reader familiar with
these fields can go directly to chapter 4, where the findings of this thesis for curves in R2,1

are presented. We discuss previous work in detail, point to the key challenges, that are the
non-convexity of Minkowski space and the resulting non-convex quadratic constraints and
show how to overcome them. Special attention is paid to the constraints of the optimization,
ways to linearize them, initial positions, as well as questions of numerics and stability.

Envelopes of spheres

Chapter 5 extends the optimization framework to dimension R3,1, considering 1-parameter
families of spheres, which lead to canal surfaces, and 1-parameter families, which give rise
to general envelope surfaces. We will see that the constraint of having Euclidean tangent
planes requires special attention as R3,1 \ Γ (the Minkowski space without the convex
Lorentz cone) is not a vector space.

Images and algorithm analysis

Finally, chapter 6 shows and discusses examples for curves and surfaces in R2,1 and R3,1

and compares methods, as well as numerical convergence.

5

2 Minkowski space

The four-dimensional real vector space with the signed metric (1, 1, 1,−1) originates from
(at least) two sources: It appears as the setting of Special Relativity and is there called
Minkowski space R3,1 and will be described in section 2.1; its transformations are called
Lorentz transformations.
Independently, this vector space appears as a point model space for spheres in the setting
of Laguerre geometry, is usually called R4

1 and will be explained in section 2.2; we refer to
its transformations as Laguerre transformations.
Since Minkowski geometry can be generalized (for General Relativity) to Lorentz geometry
and is much wider known, we will use this notation throughout this work.
Lorentz and Laguerre transformations are identical up to translations, but when acting
on oriented circles and lines, resp. oriented planes and spheres, we will speak of Laguerre
transformations, see sec. 2.2.3 for details.

2.1 Basics of Minkowski geometry

For references to Special Relativity, consult the book [5], our notation will follow Jüttler’s
works [22] and [23].

2.1.1 Lorentz inner product

An inner product is a map on the product space 〈·, ·〉 : V × V → F of a vector space V
over its scalar field F , such that the following properties hold

1. conjugate symmetry 〈x,y〉 = 〈y,x〉

2. linearity in the first argument 〈a · x,y〉 = a · 〈x,y〉
〈x + y, z〉 = 〈x, z〉+ 〈y, z〉

3. positive definiteness 〈x,x〉 ≥ 0 with equality only for x = o

If the third condition is replaced by

3. nondegeneracy if 〈x,y〉 = 0 ∀y ∈ V then x = o

6

we call the map 〈., .〉L an indefinite inner product. Note that positive definiteness implies
nondegeneracy. A prominent example is the Lorentz or pseudo-Euclidean inner product,
which we define as

〈a,b〉L := aT ·


1

. . .

1

−1


︸ ︷︷ ︸

Epe

·b for a,b ∈ Rn (2.1)

the subindex pe stands for pseudo-Euclidean and Epe is sometimes called Minkowski tensor.
This symmetric bilinear form has a signature (n − 1, 1) (=eigenvalues of the Minkowski
tensor) and is thus a Lorentzian metric. A real four-dimensional vector space with inner
product (2.1) shall be called four-dimensional Minkowski space and denoted R3,1. Anal-
ogously we define a real three-dimensional Minkowski space and write R2,1. Sometimes,
the wider class of signed metric spaces are called pseudo-Euclidean spaces, but we will use
these terms synonymously.

Minkowski-orthogonal and cross product

Figure 2.1: left : Three types of lines - Euclidean (green), isotropic (black) and pseudo-
Euclidean (red). The red and green lines are Minkowski-orthogonal, mid-
dle: front view; note that Minkowski-orthogonal lines are conjugate w.r.t the
Lorentz cone and that isotropic lines are orthogonal to themselves, right : the
blue line is the cross product in R2,1 of the orthogonal lines red, green, thus the
three form a pseudo-Euclidean basis

Two vectors a,b are called Minkowski-orthogonal if 〈a,b〉L = 0. Clearly, an isotropic line
(Fig. 2.4) is orthogonal to itself, see Fig. 2.1. The pseudo-Euclidean normal of a plane
ε : ax + by + cz = 0 has thus coordinates n = (a, b,−c) (see [22]). The cross-product in
Minkowski is also slightly different from the Euclidean case; for two vectors u = (u1, u2, u3)
and v = (v1, v2, v3) it is given as

w = u×L v = (u2v3 − u3v2, u3v1 − u1v3,−u1v2 + u2v1)

7

Pseudo-Euclidean basis

A set of vectors {b1,b2,b3|bi ∈ R2,1} satisfying

〈b1,b1〉L = 〈b2,b2〉L = 1, 〈b3,b3〉L = −1 and 〈bi,bj〉L = 0, i 6= j (2.2)

is called pseudo-Euclidean basis of the vector space R2,1, see Fig. 2.1, right.

Minkowski norm

The Lorentz inner product (2.1) induces a Minkowski norm

‖x‖L =
√
| 〈x,x〉L |, (2.3)

which is not a norm in the regular sense, because it is not subadditive, e.g. the triangle
inequality does not (always) hold, but its opposite is true

‖x + y‖L ≥ ‖x‖L + ‖y‖L,

if the last component (that causes the degeneracy) is > 0. According to [5], this is also
the reason for the famous twin paradox, which is not actually a paradox, but very counter-
intuitive.

2.1.2 Types of vectors

Through (2.1) we can define three different kinds of vectors (see Figures 2.1 and 2.4):

1. 〈a, a〉L > 0⇔ a is space-like or Euclidean

2. 〈a, a〉L = 0⇔ a is light-like or isotropic

3. 〈a, a〉L < 0⇔ a is time-like or pseudo-Euclidean

If two vectors a,b are Minkowski-orthogonal and a is space-like, then b must be time-like
(and vice versa). If a is light-like, so is its orthogonal vector.

Hyperplanes

The extension of the classification of vectors from sec. 2.1.2 to hyperplanes ε in Rn−1,1 is
straightforward, if we denote its normal vector by nε

1. 〈nε,nε〉L < 0⇔ ε is space-like or Euclidean

2. 〈nε,nε〉L = 0⇔ ε is light-like or isotropic

3. 〈nε,nε〉L > 0⇔ ε is time-like or pseudo-Euclidean

8

Figure 2.2: Three different types of planes in R2,1: left : pseudo-Euclidean, i.e. angle > π
4

(yellow) and two families of isotropic lines (blue), middle: isotropic plane, i.e.
angle = π

4
carrying one family of isotropic lines, right : Euclidean, i.e. angle < π

4
.

The blue lines are isotropic. The same classification is true for hyperplanes in
R3,1.

In general, a vector or hyperplane is

1. space-like ⇔ its angle with the plane xn = 0 is less than π
4

2. light-like ⇔ its angle with the plane xn = 0 is equal to π
4

3. time-like ⇔ its angle with the plane xn = 0 is more than π
4

The connections between hyperplanes and the kind of lines they carry is answered in the
following two statements:

Proposition 1. • Assume a hyperplane is Euclidean ⇐⇒ its normal is pseudo-
Euclidean. Then it contains only Euclidean lines.

• Assume a hyperplane is isotropic ⇐⇒ its normal is isotropic. Then it contains
Euclidean and isotropic lines.

• Assume a hyperplane is pseudo-Euclidean ⇐⇒ its normal is Euclidean. Then it
contains Euclidean, isotropic and pseudo-Euclidean lines.

Corollary 1. • A pseudo-Euclidean line can only lie in a pseudo-Euclidean hyper-
plane.

• A Euclidean hyperplane only contains Euclidean lines.

Following the paper [35], we state that if all objects in R3,1 under consideration lie in a
Euclidean hyperplane H, we can map H via a Laguerre transformation (see sec. 2.1.4) to
the plane x4 = 0, i.e. envision H as Euclidean R3.

9

2.1.3 Lorentz cone Γ

When describing different vectors in Minkowski space, see especially Fig. 2.1, we encoun-
tered the Lorentz cone Γ, which we want to define rigorously in this section.

Definitions

We call a set C ⊆ Rd convex if

(1− λ)x+ λy ∈ C for x, y ∈ C, 0 ≤ λ ≤ 1

A function f : C → R is called convex if C is convex and

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) for x, y ∈ C, 0 ≤ λ ≤ 1 (2.4)

A function is strictly convex if we substitute ≤ by < in the above equation.

Norms

For a vector space V over K, a mapping ‖.‖ : V → R is called a norm, if

1. ‖v‖ ≥ 0 ∀v ∈ V and ‖v‖ = 0 if and only if v = 0

2. ‖αv‖ = |α|‖v‖ ∀α ∈ K, ∀v ∈ V (positive homogeneity)

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖, ∀v,w ∈ V (triangle inequality)

Properties 2. and 3. imply that every norm is a convex function.

Let C ⊆ Rd be a set and f : C → R. The epigraph of f is the set

epi(f) = {(x, t) ∈ Rd × R : x ∈ C, t ≥ f(x)} ⊆ Rd × R ∼= Rd+1

It can be shown, that f being a convex function is equivalent to epi(f) being a convex set
(cf. [14]). We conclude that the epigraph of any norm is a convex set, so if

‖(x1, x2)‖2 =
√
x2

1 + x2
2 ⇒ epi(‖.‖) = {(x1, x2, x3) ∈ R2 × R : x2

3 ≥ x2
1 + x2

2} (2.5)

We call epi(‖.‖) the Lorentz cone and denote it by Γ, see also section 2.1. Clearly, the
complement of epi(‖.‖) is not convex and thus any function defined on it cannot be convex
by Definition (2.4). Strictly speaking, (2.5) defines Γ in R2,1, but it should be obvious
how to carry this definition over to Rn−1,1. Henceforth, we will not bother denoting the
dimension and always assume the correct Γ to be used.

We conclude our definitions with an important theorem:

Lemma 1. Let C be open and f : C → R of class C2. Then the following are equivalent:
1. f is convex.
2. For any x ∈ X the Hessian of f is positive semi-definite.

10

Proof: see [14].

2.1.4 Lorentz transformations

We follow the outline of [22]: A linear transform A : Rn−1,1 → Rn−1,1 is called Lorentz
transform if it preserves the Minkowski inner product 2.1, i.e.

〈Au,Av〉L = 〈u,v〉L ∀u,v ∈ Rn−1,1. (2.6)

The group of all Lorentz transforms is the (homogeneous) Lorentz group O(n−1, 1), which
is the indefinite orthogonal group of signature (n− 1, 1).

2.2 Cyclography

a = ζ(A)

b = ζ(B)

Bd
A

`
`

A
B

`
`

Figure 2.3: Distances of two circles, from left to right: positive, zero, negative

Minkowski space as introduced in section 2.1 can also be seen as a point model space for
the space of circles (sec. 2.2.1) and spheres (sec. 2.2.2). Among the three classical circle and
sphere geometries named after A.F. Möbius, E. Laguerre and S. Lie, which are discussed
in detail in the books by Blaschke [4] and Müller & Krames [28], we want to focus on
Laguerre geometry.

2.2.1 Laguerre geometry in R2

The fundamental objects of Laguerre geometry in Euclidean R2 are oriented lines and
oriented circles, the latter are also called cycles. If a circle is traversed counter-clockwise, we
assume the radius to be positive. We define the cyclographic mapping ζ to be a one-to-one
correspondence between the set of cycles in R2 and the points {x} of the three-dimensional
Minkowski space R2,1 defined in sec. 2.1.1, such that the first two coordinates of x are a
cycles’ midpoint and the third coordinate is its radius, so ζ : R2 → R2,1.
This cyclographic model of Laguerre geometry is a classical point space model, where each

11

Figure 2.4: Cyclographic images of three different types of lines. left : an Euclidean line lE
(blue) maps to two oriented lines (green and red) which are tangent to all the
cones representing lE, middle: an isotropic line li maps to two identical lines
and right : a pseudo-Euclidean line lpe does not have a real image under the
cyclographic mapping

geometric object is assigned a point in some space. The fact that R2,1 is also a well-studied
object in Special Relativity is a lucky coincidence.
One can also envision the cyclographic mapping by embedding R2 into R2,1 (set third
coordinate to zero) and erecting a right circular cone through each cycle c. Since by
construction the height of this cone equals c’s radius, the cone’s apex is ζ(c). Note that
the axis of such a cone is parallel to the z-axis and thus all information is contained in the
apex.

2.2.2 Laguerre geometry in R3

The definition of the cyclographic mapping from the set of oriented spheres and oriented
planes in R3 to points in four-dimensional Minkowski space R3,1 is analogously to sec. 2.2.1.
As suggested in [35] and already pointed out in sec. 2.1.2, one can also consider hyperplanar
sections of R3,1 and identify them with Euclidean R3, isotropic I3 or pseudo-Euclidean R2,1,
depending on the hyperplane H being Euclidean, isotropic or pseudo-Euclidean.

2.2.3 Laguerre transformations

A pseudo-Euclidean (pe) similarity is an affine mapping of the form

x′ = a + λA · x (2.7)

with a constant λ 6= 0 and a pseudo-Euclidean orthogonal matrix A that preserves the
Lorentz inner product. Note that the condition (2.6) is equivalent to

AT · Epe ·A = Epe (2.8)

where Epe is the diagonal matrix defined in (2.1). One could also define pe congruences
to be the group of affine maps that preserve pe bases (2.2). For |λ| = 1 we call (2.7) a
pe congruence.

12

Obviously, the pe similarities (2.7) are not homogeneous transformations, i.e. the origin is
not fixed. Therefore, pe congruences are the same as Lorentz transformations up to the
choice of an origin. When mapping a difference vector of two points, they are the same
anyways, because then the translational component (a in (2.7)) cancels out. Blaschke [4],
p.141 and p.270 defines Lorentz transformations through (2.7) and (2.8).
If we map the points which are acted upon by pe similarities via the cyclographic image
to Rn−1, we want to speak of Laguerre transformations and keep in mind that the latter
also include translations. Thus, Lorentz and Laguerre transformations induced by pe sim-
ilarities are identical up to translations, but when acting on oriented circles / spheres and
oriented lines / planes, we will speak of Laguerre transformations henceforth. Strictly
speaking, the set of oriented spheres and the set of oriented planes are disjoint and stay
disjoint under Laguerre transformations, so to treat them rigorously, one would have to
define them on each of these sets, but we will leave such proofs to the book [4].
Note that a Laguerre transformation is a (bijective) map on the set of spheres and planes
respectively in Rn−1 and as such preserves oriented contact and noncontact between ori-
ented spheres and hyperplanes, but does not preserve points (they might map to spheres).
A oriented hyperplane h can be interpreted as the set of all oriented spheres that are in
oriented contact with h, and in general this is true for oriented hypersurfaces.

Properties of Laguerre transformations

• oriented circles/spheres map to oriented circles/spheres (always including points as
spheres with radius zero)

• oriented lines/hyperplanes map to oriented lines/hyperplanes

• oriented contact between circles/circles and circles/lines is an invariant property (pro-
jective map)

• pseudo-Euclidean lines map to pseudo-Euclidean lines (analogously isotropic to isotropic
and Euclidean to Euclidean), so the type of lines (and hyperplanes) stays invariant.

2.2.4 Offsets and the connection to Minkowski sums

For some surface h ∈ R3, a simple example of a pe similarity γ in R3,1 is a dilatation of
ζ(h), i.e. adding a constant a 6= 0 to the 4th component of ζ(h), which means increasing
the radii of oriented spheres in R3, that envelope some surface h, see also section 2.4 on
surfaces. Thus γ(h) is an offset of h. Note that we would have received the same result
by taking the Minkowski sum (see e.g. Gruber [14]) of h and the sphere with radius a.

13

2.2.5 Distances

The circles A,B corresponding to two points a = ζ(A), b = ζ(B) on an isotropic line
are tangent, see Fig. 2.3. If a,b lie on a Euclidean line, d =

√
〈a− b, a− b〉L is the

tangential distance of the two circles.

Notice that the tangential distance of two circles is not transitive. If pe-dist(A,B) = 0 and
pe-dist(B,C) = 0 it does NOT follow that pe-dist(A,C) = 0. That is why [40] introduce
a new metric.

2.3 Curves in Minkowski space

l1

p

l2

Figure 2.5: Cyclographic image l1,2 (red and green) of a curve p (black). left: The tangents
of l1,2 and p all meet in a point, which is the main idea behind the construc-
tion (2.12), right : the curve p and more cones representing the cyclographic
mapping.

Now that we know the fundamentals of Minkowski space and its transformations, we will
introduce its curves and their images in sections 2.3.2 and 2.3.3. But before looking at
cyclographic images of curves in R2,1, we state some well-known facts about planar curves
in sec. 2.3.1, see e.g. [8].

2.3.1 Offsets and distance function

For a parametrized curve c the offset curve or parallel curve is given by

cd(t) = c(t) + d · n(t)

‖n(t)‖

where d is fixed and n = (−ċ2, ċ1) denotes an oriented normal. The parallel curve can have
cusps, which occur whenever cd intersects the evolute of c, defined by

c∗ = c + n
ċ · ċ

det(ċ, c̈)
, (2.9)

14

Figure 2.6: left: a curve (green) and two offset curves (blue). The inner offset curve has the
cusps according to the intersection with the evolute c∗ (red). Right : a devel-
opable surface of constant slope Dc (black) as a model of the signed distance
function to the curve (green). The evolute is the projection of the curve of
regression β(t) (red) of Dc.

see Fig. 2.6. This can be explained as follows (see also [41]): The parallel curves of a planar
curve are the level sets of its distance function.

If we assume the distance function to have a sign, e.g. the distance is negative on the right
side of a curve (for simple closed curve like an ellipse, that’s ”outside”) we can model it as
a developable surface Dc of constant slope with the curve’s plane π:

Dc(t, v) = c(t) + v · 1√
2

(
−ċ2

‖n‖
,
ċ1

‖n‖
, 1)︸ ︷︷ ︸

:=w

(2.10)

Dc has a curve of regression β(t) for v = − ċ·ẇ
ẇ·ẇ , which if projected to π, is the evolute of

c (and thus of cd, cf.(2.9) and Fig. 2.6). The parallel curves cd are planar intersections of
Dc, β is its singular curve, which explains why and where the singularities of the parallel
curves appear.
An idea on how to trim the parallel curve’s self-intersections was presented in [33].

15

Figure 2.7: The two developable surfaces of constant slope Dp (magenta and yellow)
through a curve p (blue) intersect the xy-plane in two curves l1,2 (red and
black)

2.3.2 Cyclographic image of curves in R2,1

Let p be a C2 curve in R2,1 with parametrization p(t) = (p1, p2, p3)(t), t ∈ I and ṗ(t) 6= 0
in I. The inverse cyclographic image ζ−1(p) of p is the envelope of the family of circles

ζ−1(p) : (x− p1(t))2 + (y − p2(t))2 − (z − p3(t))2 = 0 (2.11)

which is parametrized as (see Fig. 2.5)

l1,2 =

(
p1

p2

)
− p3ṗ3

ṗ1
2 + ṗ2

2

(
ṗ1

ṗ2

)
±
p3

√
〈ṗ, ṗ〉L

ṗ1
2 + ṗ2

2

(
−ṗ2

ṗ1

)
(2.12)

These curves are real for 〈ṗ, ṗ〉L ≥ 0 and non-identical for 〈ṗ, ṗ〉L > 0. The centers of
the circles (2.11) are of course the projection of the curve p onto R2, which we denote
by π(p(t)) = (p1, p2). It is also the bisector of the curves l1,2. Note that π(.) denotes a
projection to the xy-plane, while in other cases π is used to describe the xy-plane itself.
Hopefully, this ambiguity of notation will not lead to confusion.

Eq. (2.12) can be derived as follows: For each point on p take the right circular cone.
This family of cones is enveloped by two developable surfaces of constant slope Dp. Their
intersections with the xy-plane are the inverse cyclographic images l1,2 of p, see Fig. 2.7.

If p is entirely contained in a plane parallel to the xy-plane π with distance d, we are
precisely in the situation described in section 2.3.1 and the cyclographic images are simply
parallel curves of p at distance d, see Fig. 2.6.

16

2.3.3 Cyclographic image of curves in R3,1

Figure 2.8: Canal surfaces as cyclographic image of a curve c ⊂ R3,1: each point of c
corresponds to a sphere (gray) in R3 that touches the envelopes (light blue)
along a circle (blue) with centers N(t) on spine curve (black).

The cyclographic image of curve c ⊂ R3,1 in R3 is the envelope of a one-parameter family
of spheres, i.e. a canal surface (for constant radius, or equivalently constant c4, it is a pipe
surface, see Fig. 2.8. The projection π(c) is the spine curve of the canal surface. Special
cases include: cones of revolution (image of a space-like line), cylinders of revolution (line
with c4 =const), Dupin cyclides (cyclographic image of a pe-circle with space-like tangents,
see also [38])

In the smooth case, [40] shows how to derive a parametrization of a canal surface: Given
a one-parameter family of spheres in R3 with centers M(t) = (m1,m2,m3)(t) and radii
r(t), or, equivalently, a curve c = (m1,m2,m3, r)(t) ⊆ R3,1, the envelope consists of a
one-parameter family of circles with centers N(t) and radii r1(t)

N(t) = M(t)− r(t)ṙ(t)

‖ ˙M(t)‖2
Ṁ(t), r1(t) =

r(t)

‖Ṁ(t)‖

√
‖ ˙M(t)‖2 − ṙ(t).

With the curve’s Frenet frame

T (t) =
Ṁ(t)

‖Ṁ‖
, E(t) =

Ṫ

‖Ṫ‖
=

Ṁ(t)× (M̈(t)× Ṁ(t))

‖Ṁ(t)× (M̈(t)× Ṁ(t))‖
and F (t) = T (t)× E(t)

the parametrization of the canal surfaces is given by

X(t, u) = N(t) + r1(t) cos(u)E(t) + r1(t) sin(u)F (t).

17

Figure 2.9: Inverse cyclographic image Φ ⊂ R3 of a surface S in Minkowski space R3,1

consists of two surfaces L1,2(u, v) (red and blue). The projection M = π(S) is
the middle surface (gray) on which the centers of the spheres lie.

2.4 Surfaces in Minkowski space

The inverse cyclographic image Φ ⊂ R3 of a surface S = f(u, v) ⊂ R3,1, (u, v) ∈ R2 is the
envelope L = L1 ∪ L2 of the spheres f(u0, v0) for (u0, v0) fixed parameters. The centers of
these spheres lie on the bisector (surface) M, which we obtain from S by projecting it via
x4 = 0 onto R3. This is the same top view projection we have used in 2.3.2 and thus we
write M = π(S). We see that M is to L what the medial axis is to the curves l1,2, and we
call the single spheres of ζ−1(S) the middle spheres of L, see also Fig. 2.9. Thus, S is the
medial axis transform of L1 ∪ L2.

Parametrization

A parametrization of the inverse cyclographic image of a surface Φ is straight forward:
Intersecting the surface S and its two partial derivatives for each parameter pair (u0, v0)

S : (x−M)2 − r2 = 0

Su : (x−M)T ·Mu + rru = 0

Sv : (x−M)T ·Mv + rrv = 0

yields two points L1,2(u0, v0) which are precisely the contact points of the sphere
(M1,M2,M3, r)(u0, v0) with the envelope L1,2(u0, v0), see also Fig. 2.9.

18

3 B-Splines

In this chapter we want to introduce the basics of Computer Aided Geometric Design
(CAGD), as can be found in standard text books like Piegl & Tiller [34], Farin [10] or
Hoschek & Lasser [18]. It is about fitting curves and surfaces to a given set of points,
which can either be done by interpolation, see sec. 3.1.1, or approximation (sec. 3.1.2).

Figure 3.1: Examples for basis functions; left : cubic B-spline basis functions over the knot
vector {0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5} (uniform knot spacing), right : basis func-
tions over the knot vector {0, 0, 0, 1, 1, 2, 2, 2, 2, 5, 5, 5}

3.1 Interpolation and approximation

Let U = {u0, . . . , um} be a non-decreasing sequence of real numbers, the ui are called knots
and each knot’s maximum multiplicity is p+ 1, U is the knot vector. The ith B-spline basis
function of degree p (order p+ 1), denoted by Ni,p (see Fig. 3.1) is defined recursively as

Ni,0(u) =

{
1 if ui ≤ u ≤ ui+1

0 otherwise
(3.1a)

Ni,p(u) =
u− ui
ui+p − ui

Ni,p−1(u) +
ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u), (3.1b)

19

thus Ni,p is piecewise polynomial. Note that fractions in (3.1b) can become 0
0
, in which

case it is set 0. The B-spline curve is given as

c(u) =
n∑
i=0

Ni,p(u)Pi (3.2)

and the Pi are called control points.

Derivatives of B-Splines

The derivative of a basis function is given by

N ′i,p =
p

ui+p − ui
Ni,p−1(u)− p

ui+p+1 − ui+1

Ni+1,p−1(u).

3.1.1 Curve interpolation

Suppose a given set of points Q = {Qk}, k = 0, . . . , n that have to be interpolated by a
pth-degree B-Spline curve. We have to find

• parameter values uk for each Qk

• a knot vector U = {u0, . . . , um}.

For the uk, we choose chord length parameters, i.e. if we set

d =
n∑
k=1

|Qk −Qk−1|, thenu0 = 0 andun = 1

uk = uk−1 +
|Qk −Qk−1|

d
, k = 1, . . . , n− 1 (3.3)

The uniformly distributed knots can be found by an averaging method :

u0 = · · · = up = 0, um−p = · · · = um = 1

uj+p = j
n−p+1

, j = 1, . . . , n− p

The interpolation for each uk becomes (3.2), i.e.

Qk = c(uk) =
n∑
i=0

Ni,p(uk)Pi, k = 0, · · · , n

for every k. If we write all these equations at once, i.e.

Q =


N0,p(u0) . . . Nn,p(u0)

...
. . .

...

N0,p(un) . . . Nn,p(un)


︸ ︷︷ ︸

N

·P, (3.4)

20

for each coordinate. Here Q is the vector containing the points Qk, P is the vector of
the control points and N is called collocation matrix. Note that it is a sparse and banded
matrix by (3.1).

The existence and uniqueness of the solution of (3.4) is given by the following, see [10]:

Lemma 2 (Schoenberg-Whitney Condition). Let u0 < u1 < · · · < un. For arbitrary Qk

there exists exactly one spline c(u) of degree p with knot vector {u0, . . . , um}, such that
Qk = c(uk) if and only if uk ≤ uk ≤ uk+p+1 for k = 0, . . . , n with equality only if the knot
has multiplicity p+ 1.

3.1.2 Curve approximation

Interpolation has, among others, the disadvantage that the number of points m to be
interpolated determines the number of control points n + 1 of the interpolation curve
uniquely. Now we seek a pth-degree B-Spline curve c(u), u ∈ [0, 1] with fixed knots, such
that Q0 = c(0), Qm = c(1) and for the remaining Qk the sum

m−1∑
k=1

dist2(c(u), Qk) + λfs (3.5)

is minimized, where fs is a regularization term (see sec. 3.3) and λ is a positive weight. The
main challenge is how to define the distance dist2(c(u), Qk) between a curve and a point.
The term dist(., .) is, in general, highly nonlinear and not even differentiable everywhere,
see sec. 3.2.2. Usually (3.5) is solved iteratively with the help of a footpoint (see sec. 3.2),
that is a point c(uk) on the curve that is in some sense closest to Qk. Thus

1. for each Qk find a footpoint ci(uk), i is the iteration counter

2. approximate the squared distance function dist2(ci(uk), Qk)

3. minimize the approximation error and generate a new curve ci+1(u).
If the error is too large, repeat 1.

Since this algorithm utilizes two nested iterations (the outer one for updating the control
points and an inner one for finding the footpoints), this is sometimes called a variable-
separation method, see [2], which also gives examples for global algorithms, i.e. ones that
do not have separated minimizations.

3.1.3 B-Spline surfaces

We will exclusively consider tensor product B-spline surfaces and leave out e.g. triangular
patches. For parameters u and v and two appropriate knot vectors, we define a B-Spline

21

surface,

f(u, v) =
n∑
k=0

m∑
j=0

Nd1
k (v)Nd2

j (u)dkj,

where dkj are the control points on a (topologically) regular grid and Nd1
k (v),Nd2

j (u) are
B-Spline basis functions of degrees d1, d2 as in (3.1), which - after choosing parameters
(uk, vk) - lead to the collocation matrices Nu and Nv.
We will skip interpolation with tensor product B-spline functions and look directly at
approximation, e.g. a least-squares minimization like (3.5),

m−1∑
k=1

dist2(f(uk, vk), Qk) + λfs

which is very similar to the curve case as discussed in sec. 3.1.2. We will iteratively solve
this non-linear optimization via a footpoint f(uk, vk) (see sec. 3.2) and an approximation
to the distance function, as described in section 3.2.2. The collocation matrices in the
surface case are much bigger and worse conditioned than for curves and thus regularization
fs (sec. 3.3) plays a bigger role. In fact, since we do not assume the data points to lie on a
regular1 grid, as is done e.g. in [34], we will convolute the two collocation matrices into one
(see especially sec. 5.4.1), following the example of Farin [10] and thus sometimes speak of
the collocation matrix.

3.2 Measuring distances

This section is concerned with measuring the distance to a curve or a surface, both in
theory and in algorithmic practice. We will only state the basic notation and point to
literature for details.

3.2.1 Footpoint problem

If one wants to approximate points {Qi} with a curve c(u) and minimize the approximation
error, each point Qi is assigned a parameter value u∗, such that c(u∗), the footpoint, is the
closest point on the curve, see Hoschek & Lasser [18] for details. In other words, one wants
to find a value u∗, such that

g(u∗i) = (c(u∗i)−Qi)
2

is minimal.

22

Newton iteration

This minimization is carried out via Newton iteration ui+1 = ui + ∆ui and a second-order
Taylor approximation of g in u:

g̃(ui) = g(ui) +∇g(ui)
T (u− ui) +

1

2
(u− ui)T∇2g(ui)(u− ui) +O(u3).

Thus for g(ui) to be minimal, the gradient ∇g̃(ui) has to be zero. The update can hence
be given as

∆ui = − ∇g(ui)

∇2g(ui)
= − (c(ui)−Qi) · ċ(ui)

ċ2(ui) + (c(ui)−Qi) · c̈(ui)
. (3.6)

Geometrically, the line connecting Qi and the footpoint c(u∗i) is perpendicular to the curve,
i.e. one minimizes the distance between the point Qi and the curve’s tangent (see Fig. 3.2,
left).
A good initial value for this iteration can be found by (coarsely) sampling the curve and
taking the nearest neighbor.

Footpoints on surfaces

Given a surface f(u, v) Hoschek & Lasser [18] give a formula for finding an update in the
Newton iteration (ui+1, vi+1) = (ui, vi) + (∆ui,∆vi), again using a second-order Taylor
approximation similar to (3.6):

∆ui = − (Qi − f(ui, vi)) · fu(ui, vi)
(Qi − f(ui, vi)) · fuu(ui, vi)− fu(ui, vi)2

∆vi = − (Qi − f(ui, vi)) · fv(ui, vi)
(Qi − f(ui, vi)) · fvv(ui, vi)− fv(ui, vi)2

,

where fu is the partial derivative w.r.t. u and analogously the other derivatives. Another
approach is shown in [19]. Similar to the curve case, an initial guess is found by sampling
an initial surface position and taking nearest neighbors. The iteration is continued until
some user-specified threshold is found.

3.2.2 Distance function

Given a curve c(u) : I → Rn, the distance function

dist(x, c(u)) = min
p∈c(u)

‖p− x‖ (3.7)

assigns a value to each point x ∈ Rn, i.e. the shortest distance from the point to the curve.
Due to the absolute value in the definition of the distance function, it is not differentiable

23

along the curve c(u). This problem can be overcome by introducing a signed distance
function d(x), which is defined as the viscosity solution of the Eikonal equation, see [47]:

∇d2 = 1 or ‖∇d‖ = 1.

For given boundary data, which is, up to a sign, the distance function (3.7), and we will
skip the term ”signed” from now on. For a planar curve, the graph of the distance function
is a torsal surface of constant slope π

4
against the plane, see [33]. The level sets of the

distance function are its offsets and as we have seen in sec. 2.3.1, the the distance function
has singular values along the evolute of the curve. Furthermore, it is singular along the
medial axis of the curve, see sec. 1.2.3 for a definition.
For a surface, the distance function is not differentiable on its focal surfaces, see sec. 2.4,
which includes spatial curves as a special case if seen as canal surfaces with radius zero.

b
c(ui)

Qi

ċ(ui)

Figure 3.2: left : A footpoint is computed via a Newton iteration, such that the connect-
ing line from c(ui) to the input point Qi is perpendicular to the curve’s tan-
gent ċ(ui), left : level sets of the point distance, i.e. the distance to a point is
minimized.

Point distance minimization (PDM)

Point distance minimization first addressed in Hoschek [16], refined by Saux [43], proposes
to compute the distance between a point Qk and a point on the curve c(uk), where uk,i
is the parameter of the footpoint that is updated at iteration step i, see Fig. 3.2. If
the collocation matrix at step i is Ni, the vector containing all the {Qk} is Q, then the
displacement vector ∆Pi is obtained by solving the linear system

NT
i Ni∆Pi = NT

i (Q−NiPi). (3.8)

3.3 Geometric regularization

In this section we want to focus on the shape of the solution of a system of equations.
Numerically speaking, more equations are added to a given system, which also improves
the condition number of a linear system.

24

3.3.1 Tikhonov regularization

For regularization of discrete ill-posed problems and their solution’s implementation we
refer to Hansen [15]. Assume we want to solve the linear least-squares problem

min
x
‖Ax− b‖2, A ∈ Rm×n, m > n (3.9)

where the matrix A is ill-conditioned, which means the solution x can not be trusted. If
an initial estimate x∗ for the solution is given, we will ask for the constraint

Ω(x) = ‖L(x− x∗)‖2 (3.10a)

otherwise Ω(x) = ‖Lx‖2 (3.10b)

to be minimal, where L is usually either the identity matrix In (”standard form”) or a
discrete approximation of the derivative operator, see [15], given by

L1 =


1 −1

.

1 −1

 ∈ R(n−1)×n,L2 =


1 −2 1

.

1 −2 1

 ∈ R(n−2)×n.

(3.11)
We will mostly assume (3.10b), especially because we are using an iterative scheme.
As the objective function (3.9) and the constraint (3.10) might interfere, one introduces
the Lagrange function

xλ = argmin{‖Ax− b‖2
2 + λ2‖L(x− x∗)‖2

2} (3.12)

where the choice of the regularization parameter λ obviously has a big impact on the
solution of the Tikhonov regularized solution xλ. As the solution of the quadratic problem
(3.12) is straight-forward, this means that Tikhonov regularization of a possibly ill-posed
linear least-squares problems means adding λLTL to the normal equations

(ATA + λ2LTL)x = ATb, (3.13)

so the solution is given via the Tikhonov regularized inverse A†λ = (ATA + λ2LTL)−1AT .

3.3.2 Curves

Constraints on the flexibility of the curve have to be used, i.e. smoothing and regularization,
see [17]. Assume a curve c(t), we define the energy term

F1 =

∫
‖c′(t)‖2dt,

25

which minimizes the arc length.

Secondly the second derivate,

F2 =

∫
‖c′′(t)‖2dt,

sometimes called bending energy, can be minimized, see also [50]. If the curve c(t) is
parametrized by arc length (which is generally not the case for B-Splines), F2 is a lin-
earization of the curvature.Formulations of the above functionals in matrix notation were
already given as eq. 3.11, which are used as practical implementations.

3.3.3 Surfaces

Regularization of surface approximation usually means adding an energy functional, see
[18], like that for thin plate splines

Fs =

∫∫
(fuu)

2 + 2(fuv)
2 + (fvv)

2du dv

We write this term into a matrix MFs and apply it to eq. (3.8), so that we arrive at

(NT
i Ni + λMFs)Pi+1 = NT

i Q− (NT
i Ni + λMFs)Pi

for the point distance minimization, compare to the Tikhonov regularized inverse (3.13).
The regularization parameter λ is user specified and changes during the iteration, see
sec. 3.3.1.

26

4 Envelopes of Circles

Figure 4.1: Given a set of circles in R2, its envelope (curves in red and green) can be found
as the inverse cyclographic image of an interpolating curve c(u) (purple) in
Minkowski space R2,1 through points Qk (red dots) representing the circles.
The envelopes are real if and only if c(u) has no pseudo-Euclidean tangents,
which is guaranteed through a constraint of the curve fitting.

We come to the main chapters of this thesis; a reader familiar with cyclography, spline
fitting and optimization can start directly here. We try to make them self contained and
only point to the theory of the first three chapters for detailed reference.

4.1 Introduction

Circles in R2 can be represented by points in Minkowski space R2,1. In order to find
envelopes for the circles, we have to approximate the corresponding points by curves in
R2,1, see Fig. 4.1. This would be a standard quadratic approximation problem if reality of
envelopes would be ignored.
Due to this geometric constraint, the tangents of these curves have to enclose an angle less
than or equal to π

4
with the plane x3 = 0. One can reformulate this constraint by saying

that the hodograph (derivative curve) has to stay outside the Lorentz cone Γ; it follows
that this constraint is quadratic and non-convex.

In this chapter we show methods which carry out this optimization in 3-dimensional
Minkowski space through several intermediate steps.

27

4.1.1 Overview of this chapter

We discuss related work of other authors in sec. 4.1.2. In section 4.2 we rigorously define
the problem we are about to solve, i.e. finding an envelope to a set of circles and state
all assumptions. We have a look at all parts of the optimization separately, that is the
objective function as well as the constraints and all their ingredients. Reformulating the
optimization in matrix notation proves once more that the quadratic constraint is non-
convex. A general outline of an iterative optimization procedure is developed.
Section 4.3 shows that the constraint is in close relationship with the geometry of Minkowski
space R2,1 itself and carries out a linearization of this constraint.
The core of this chapter, albeit rather technical, is section 4.4, which presents - in great
detail - an interior point algorithm that solves the challenge of finding an envelope to circles
in R2.
Finally, section 4.5 states an independent method to verify the results of the optimization.

4.1.2 Previous Work

The problem of finding envelopes of circles has been dealt with before, but not in this
generality as we will see in a quick literature overview.

Pottmann and Peternell

Pottmann & Peternell 1998 [38] consider curves c in R3,1 and interpret them as canal sur-
faces. If c is a NURBS curve, its (convex hull, variation diminishing) properties translate
into certain properties for the rational canal surfaces. Only curves with Euclidean tangents
are considered, i.e. the question of reality of envelopes is not touched. The paper gives a
full description of Dupin cyclides as images of intersections of three cones in R3,1. They
also define pe circular splines and pe biarcs.

The same authors presented in 2000 [40], where a wider class of approximation problems
is addressed, one of them is in the space of spheres and concerns canal surfaces. They
introduce a new distance measure for spheres, which turns out to be the Euclidean distance
of points in R4, see Theorem 1.

There they also show that any canal surface can be represented as a B-Spline curve, because
in their earlier paper [32] it is shown for any envelope of spheres. For canal surfaces they
require that the radii of spheres form a monotonous sequence, which is the only constraint
(and not really necessary for general canal surfaces) they impose on the approximation; no
reality-problems are considered.

Peternell, Odehnal & Sampoli [31] consider continuous one- and two-parameter families
of spheres and their envelopes. They build the connection to offset curves and construct
quadratic triangular Bézier surfaces in R3,1 and show the connection to rational envelopes

28

of spheres.

Slabaugh

Slabaugh et al. have published the work [44] in 2008 about envelopes of 1-parameter families
of circles and the paper [45] in 2010 as a direct extension to 1-parameter families of spheres.

Their 2D method is to look at the two envelope curves separately and choose a point of
contact Si for every circle, which automatically gives a tangent direction (=the tangent
of the circle) Ti. Given the circles, these points of contact can be coded as an angle αi.
For two consecutive circles, a cubic Hermite interpolation with data Si(αi), Si+1(αi+1),
Ti(αi) and Ti+1(αi+1) is computed. This interpolation is then set up as an unconstrained
quadratic optimization in the unknown αi with minimization of arc length and curvature
as objective function.

In 3D the points of contact are substituted by circles of contact, the rest extends straight
forward.

The drawback of this method is that the curves are only C1 and the knot vector of the
piecewise cubic spline is determined by the rules of Hermite interpolation, thus the shape
is not very flexible. It can also be doubted that circles that are close together or very
different in size can be interpolated very well.

Kunkli and Hoffmann

Kunkli and Hoffmann [25] presented a work in 2010 that does a G1 interpolation of circles
via the circle of Apollonius: for three consecutive circles S1, S2, S3 two other touching circles
A1, A2 are constructed and the points of contact with A1 are used for one envelope and
the ones with A2 for the other. Then, for two consecutive circles, tangents at the points of
contact are computed and a Hermite interpolation is performed.

Their extension for spheres is to take the plane ε through the centers of three consecutive
spheres Si, thus get three circles and once again apply Apollonius’ method. Through two
touching points a plane orthogonal to ε intersects Si in a circle, which is used for another
Hermite interpolation.

This method is claimed to work well in practice, but the result is C1 at best and as with [44]
the shape is not flexible and the knot sequence is predetermined. Also, the set of admissible
circles is very restrictive.

A special case without parametrization

We can solve simple special cases through the methods proposed by Flöry [12]: Assume
the circles lie in positions similar to Fig. 4.2, i.e. we can distinguish an ”interior” and an
”exterior” region (=topology of disc with one hole) or the circles cover a region that has

29

Figure 4.2: Assume these special cases: left: the circles allow to determine an interior and
an exterior region, i.e. they have the topology of a disc with one hole right: the
region that the circles cover has the topology of a disc. We sample the points
and apply the B-Spline curve fitting as proposed in [12].

the topology of a disc, i.e. the boundary of the region is simply connected. This allows us
to circumvent the parametrization problem (cf. [37]) and seems to be standard with active
contours (cf. [3]). We then sample the circles densely and apply the routines that give
us (interior and exterior) contours/envelopes. This method only works if there is a high
density of circles, i.e. they overlap significantly.

4.2 Problem Statement

Finding an envelope of an ordered set of circles in R2 can be translated by cyclography
into the following task: Given a set of points Qk in R2,1, find a curve c(u) that interpolates
these. The inverse cyclographic mapping maps c(u) to the two branches of the circles’
envelope.

Preliminary remarks

Before we discuss the hidden challenges, let us note a slight misuse of notation. Remember
that the cyclographic mapping is actually defined on cycles, which are circles with an
orientation (clockwise or counter-clockwise), so for n circles, there are actually 2n cycles
and thus (at least) 2n different envelopes. So strictly speaking, we are looking for envelopes
of cycles in R2. So much for the translation between circles and their corresponding points
in R2,1.

Next, the set of circles is ordered, meaning we have defined which circle comes first and
there is a unique successor for every circle except the last - and this ordering does not
change. Differently put, the parameter value uk for every point Qk satisfies uk ≤ uk+1

30

throughout the optimization we are about to define, even though uk itself may vary.

There are as many different envelopes to a set of circles as there are different curves
through the points Qk. From now on, we will restrict our attention to cubic B-splines.
Approximation with these is a well-studied subject in computer aided geometric design
(see chapter 3) and many algorithms are known.

A first look at the objective function

For given points Qk, we want to

minimize
n−1∑
k=0

|Qk − c(u)|2, (4.1)

which means solving a least squares problem for unknown control points of a cubic B-spline
curve c(u). In fact, this approximation uses a footpoint, i.e. a point c(uk) which changes
in an iterative sub-routine, thus making (4.1) non-linear. Note that the norm in eq. (4.1)
is the Euclidean norm, because the Minkowski norm of eq. (2.3) can become zero even for
isotropic vectors, which is impractical for this curve fitting.

Figure 4.3: left : a cubic Bézier curve (green) and its control polygon, right : the hodograph
(blue) is the curve of the first derivatives, which is a quadratic Bézier curve in
the legs (black), i.e. the difference vectors. They originate at the origin of the
Lorentz cone Γ (turquoise).

Introducing the constraint

The main challenge is that not every curve c through points Qk maps to a real envelope.
As we have seen in chapter 2, this is only satisfied if

c′21 + c′22 ≥ c′23 , (4.2)

31

where ∂c
∂u

= c′ = (c′1, c
′
2, c
′
3) ∈ R2,1 is called hodograph. Wherever (4.2) is strictly >, the

envelopes do not coincide. The condition (4.2) is equivalent to saying

⇔ 〈c′, c′〉L ≥ 0 by using the Lorentz inner product of eq. (2.1), i.e. the derivative vectors
are Euclidean everywhere.

⇔ the angle between c′ and the xy-plane is ≤ π
4
,

⇔ that the hodograph has to stay outside the Lorentz cone Γ, see Fig. 4.3.

This quadratic constraint is in fact non-convex as we will see shortly, thus standard op-
timization algorithms can not be applied. We will present a possibility to linearize it in
sec. 4.2.2.

4.2.1 Objective function in detail

In this section, we want to give specifics on how to formulate the objective function (4.1)
in matrix notation, how to take into account changing parameter values and which regu-
larizations are necessary.
But first we shall give a rough sketch of the overall optimization routine:

Overview of the unconstrained optimization procedure

Fitting a curve to a set of points Qk translates into minimizing the sum of distances from
points to a curve. For that, one usually follows this procedure:

(1) Assume a given starting position for the curve c0.

(2) Choose parameters uk, such that the footpoint ci(uk) is close to Qk for every k.

(3*) Minimize an approximation to the distance function between ci(uk) and Qk to get a
new curve ci+1.

Repeat (2) and (3*) until an optimum is reached.

We will specify details on how to find a good starting position (1) for a cubic B-Spline curve
in sec. 4.4.2. We will not discuss it here, because the constraint also plays an important
role in this matter.
Step (3*) as described here considers no constraint; for the sake of a clearer exposition of
the objective function, we will leave it like that for the time being. We will however alter
it and present a new procedure in sec. 4.2.3, that takes care of Euclidean tangents.

For the remainder of this section, we want to focus on footpoints (2) and the objective
function (3*).

32

Footpoint makes objective function non-linear

How to find a footpoint c(uk) for Qk was explained in sec. 3.2, so we will only sketch
it here: Find an initial parameter value uk corresponding to Qk through chord length
parametrization. Vary this point until its tangent is perpendicular to the line connecting
c(uk) and Qk. This is done through a Newton iteration and stops at some threshold or
after a certain number of iterations.

As was pointed out in sec. 3.2.2, the distance function is highly non-linear and not dif-
ferentiable in some areas, so usually an approximation is used: We will only consider the
square of the Euclidean distance from c(uk) to Qk.
Because the footpoints are changing in step (2) of the algorithm, the minimization of the
distance function in step (3) is not a linear least squares problem in the control points.
Therefore, it needs to be solved iteratively and stops after the change in control points is
smaller than some threshold.

Block diagonal matrix notation

Let us write n 3-dimensional curve points in a n× 3-matrix c̄. Assuming we have already
found parameter values in a footpoint routine and a fixed knot vector, the collocation matrix
for this cubic B-spline is N and has dimensions n×m, if the control points b̄ = [b1|b2|b3]
are m×3. We always assume coordinate vectors bi and ci, i = 1, 2, 3 to be column vectors.
We can thus write the interpolation as a matrix multiplication

[c1|c2|c3] = N · [b1|b2|b3] (4.3)

For reasons explained later, we want to write the n×3-matrix c̄ as a 3n×1-matrix (vector)
c = [cT1 |cT2 |cT3]T by simply adjoining the columns; analogously b̄ is reshaped into a 3m× 1-
vector b. We will write the points Qk as a vector q, i.e. the coordinate column vectors are
adjoined. Eq. (4.3) is therefore rewritten as

c =

 N

N

N

 · b.
Quadratic objective in matrix notation

The objective function eq. (4.1) can be written as (cT − qT) · (c− q)→ min, thus

f(b) = (bT · blkdiag(NT ,NT ,NT)− qT) · (blkdiag(N,N,N) · b− q)

= bT ·

 NTN

NTN

NTN


︸ ︷︷ ︸

:=G

·b− 2 · bT ·

 NT

NT

NT

 · q
︸ ︷︷ ︸

:=e

+qT · q︸ ︷︷ ︸
:=d∈R

(4.4)

33

Obviously, G is a symmetric block-diagonal matrix and f(b) is a convex function in the
control point coordinates b. The value of f(b) is referred to as error measure in chapter 6
on Examples; its graph against the number of iterations will then be called numerical
convergence rate.

Solution via a linear system

To solve (4.4) iteratively, one writes bi+1 = bi + ∆bi and arrives at an optimum for

∇bf = G · (bi + ∆bi)− e = 0

⇔ G ·∆bi = e−G · bi,

which is a linear system in ∆bi for fixed parameters uk. Note that this is exactly the
update formula for the Point Distance Minimization (3.8). We will assume to have found
an optimum, whenever the absolute value of the change in error measure ‖∇f‖ is smaller
than some threshold.

Regularizing the linear system

In an actual optimization routine, the Hessian G will be regularized by adding scalar mul-
tiples of different matrices like the identity matrix (Tikhonov regularization, cf. sec. 3.3.1)
or discrete approximations of the derivative operators. This serves two purposes: numerical
stability and smoother shapes.

4.2.2 Non-convex quadratic constraint

The curve c ∈ R2,1 shall be constrained to have only Euclidean tangents, or equivalently,
its cyclographic preimage shall be a real envelope to circles ζ−1(Qk). The derivative curve
or hodograph is given as

[c′1|c′2|c′3] = N′ · [b1|b2|b3],

with the same control points b̄ = [b1|b2|b3] as the curve itself, and N′ denoting the collo-
cation matrix of the derivatives of the basis functions. Then the constraint (4.2) can be
reformulated as

bT1 N
′TN′b1 + bT2 N

′TN′b2 − bT3 N′TN′b3 ≥ 0

⇔ [bT1 |bT2 |bT3]︸ ︷︷ ︸
bT

 N′TN′

N′TN′

−N′TN′


︸ ︷︷ ︸

:=A

 b1

b2

b3


︸ ︷︷ ︸

b

≥ 0 (4.5)

Note that the collocation matrix of the curve’s derivative N′ does not need to be given
at the same parameter values uk as in section 4.2.1, and the uk do not need to change at

34

every iteration.
It is advantageous to have the derivatives evaluated at a dense sampling of c′(u).

Nevertheless, matrix A is indefinite by construction, so methods like Quadratically con-
strained quadratic program (QCQP) cannot be applied. Note that since A stems from
evaluating basis functions at finitely many points, this condition is necessary, but not
sufficient to satisfy the constraints.

4.2.3 Optimization procedure

Now that we have defined the matrices representing both objective function and the con-
straint in eq. (4.4) and (4.5) respectively, we can restate the original problem:

minimize bT ·G · b − 2 · bT · e + d (4.6a)

subject to bT ·A · b ≥ 0, (4.6b)

where G is positive definite and A is indefinite (both by construction).

Due to the indefiniteness of the constraint, (4.6) is a non-convex problem. If we take
reparametrizations into account, which are necessary in order to include footpoints, the
objective function is nonlinear.

Outline of the optimization procedure

To overcome these challenges, we will follow a procedure, which enhances the one outlined
in sec. 4.2.1, where step (2) was explained; (1) will have to wait until sec. 4.4.2:

(1) Start with a good initial position b0 for the curve’s control polygon.

(2) Choose footpoints ci(uk).

(3) Compute a linearization Di of the quadratic constraint depending on the current
control points bi.

(4) Minimize the distance from ci to Qk while staying feasible w.r.t Di and update the
control points.

Repeat (2) - (4) until an optimum is reached.

We will make sure that the error introduced in (3) stays small by iteratively adapting
the linearization in (2) and (3). Therefore, step (4) turns the non-convex, quadratically
constraint problem (4.6) into a Quadratic Program. This important linearization will be
carried out in the next section 4.3.

35

4.3 Linearizing the quadratic constraint

In the last section 4.2.2 we saw that the constraint for real envelopes is quadratic and non-
convex. It guarantees that for each sample of the hodograph c′(uk), the form 〈c′(uk), c′(uk)〉L
stays positive.

In this section we will present a local linearization and proceed in three steps:

• Show in sec. 4.3.1 that bounding the samples of the hodograph away from the Lorentz
cone can locally be accomplished through Γ’s tangent planes.

• Present a routine that computes the corresponding tangent plane for each sample in
sec. 4.3.2 with the help of a projection

• Give a matrix formulation of the linearized constraint that only depends on the
control points of the last iterate in sec. 4.3.

4.3.1 Local linearization of Γ

As was said in the introduction of sec. 4.2, the quadratic constraint is equivalent to the
hodograph c′ staying outside the Lorentz cone Γ. Note that the space R2,1 \ Γ is not a
vector space; a linear combination of two Euclidean vectors is not necessarily Euclidean.
So rather than giving a condition on the control polygon of the hodograph, we look at
sampling points c′(uk).

The linearization for condition ”c′(uk) must stay outside Γ” will be ”c′(uk) must stay on
the positive side of a tangent plane of Γ”. The former can be written as c′21 + c′22 − c′23 ≥ 0,
the latter as p̄1c

′
1 + p̄2c

′
2 − p̄3c

′
3 ≥ 0 for p̄ = (p̄1, p̄2, p̄3) on the cone.

This connection comes naturally when looking at the equation for Γ: We gave a definition
of the Lorentz cone via the norm in sec. 2.1.3. Here we only consider the border of the
Lorentz cone ∂Γ, which is given by

∂Γ : x2 + y2 − z2 = 0 (4.7)

thus the normal vector of its (isotropic) tangential plane ε is

∇(x2 + y2 − z2) = (2x, 2y,−2z) = (x, y,−z).

Therefore, given a point p̄ on the cone it is contained in the plane

ε : p̄1x + p̄2y − p̄3z = 0 (4.8)

For this tangent plane, the normal is pointing away from Γ and thus the linear form 〈p̄,x〉L
derived from eq. (4.8) is positive for x close to p̄ and outside Γ. This linear form is also a
good local approximation of the quadratic form 〈x,x〉L for a suitable p̄.

36

4.3.2 Projection orthogonal to Γ

We have seen in the last section that a local linearization of Γ depends on the choice of
a suitable point p̄ = (p̄1, p̄2, p̄3) on the cone for a point p = (p1, p2, p3), such that 〈p̄,p〉L
is positive/negative/zero for a Euclidean/pseudo-Euclidean/isotropic point. Keep in mind
that these ”points” are actually derivative vectors and hence belong to the tangent space
of R2,1.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

p∗r
@
@@rpε

r̄p

Γ

Figure 4.4: Illustration of the projection orthogonal to cone Γ, left: the point p is projected
orthogonal to the cone Γ onto point p̄, through the help of an auxiliary point
p∗, which in turn defines a tangent plane ε of Γ. (right:) Axonometric view of
a set of points, original points in blue, projected ones in red.

If we project p onto Γ orthogonal to the xy-plane, we get the point p∗ = (p1, p2,±
√
p2

1 + p2
2),

the sign of the third coordinate is set to be the sign of p3. According to eq. (4.8) the tangent
plane ε at p∗ is given by

ε : p1 · x+ p2 · y ∓
√
p2

1 + p2
2 · z = 0

We get the distance λ to the closest point p̄ of p on Γ by taking the Hesse normal form of
ε and inserting p, so

p̄ = p− λ · nε
‖nε‖

, λ =
p2

1 + p2
2 ∓ p3

√
p2

1 + p2
2√

2(p2
1 + p2

2)
=

nTε p

‖nε‖
, (4.9)

for the smaller of the two λ’s. See Fig. 4.4 for an illustration.

37

4.3.3 Matrix formulation of the linearization

We are now ready to write the linearization of the quadratic constraint (4.5) in a matrix
formulation that can be used in an optimization algorithm.

We have seen in sec. 4.3.1 that for a derivative vector dk = c′(uk) = N′(uk)·b̄ the quadratic
constraint 〈dk,dk〉L ≥ 0 can be linearized as

〈
d̄k,dk

〉
L

= [d̄k1, d̄k2, d̄k3] ·

 1

1

−1

 ·
 dk1

dk2

dk3


= [d̄k1 ·N′(uk), d̄k2 ·N′(uk), −d̄k3 ·N′(uk)] · b ≥ 0,

with d̄k the projection of dk onto Γ as described in eq. (4.9), N′(uk) one row of the
collocation matrix of the hodograph c′ and b the 3m× 1-vector of the m control points of
c.

If we want to carry out this operation for all dk with a single matrix multiplication, we
have to write the d̄k coordinate-wise in diagonal matrices and multiply these with the
n×m-matrix N′:

D :=




d̄11 0
. . .

0 d̄1n

 ·N′,


d̄21 0
. . .

0 d̄2n

 ·N′, −


d̄31 0
. . .

0 d̄3n

 ·N′


and get the matrix (=linear form) linearizing the quadratic form (4.6b) of the constraint

D · b = [
〈
d̄1,d1

〉
L
, . . . ,

〈
d̄n,dn

〉
L
]T . (4.10)

Remember that an entry
〈
d̄k,dk

〉
L

in (4.10) is actually the signed distance for a point
c′(uk) to a certain (closest) tangent plane of Γ. Also keep in mind that even though N′

might remain unchanged throughout the iteration, Di depends on the control points bi−1

of the last iterate, because c′i = N′ · bi−1.

4.4 Solving the Optimization

This section will detail the optimization procedure as outlined in sec. 4.2.3. First we restate
the KKT conditions for our problem in sec. 4.4.1, give some definitions as well as an outline
of an interior point algorithm. We will then initialize the control polygon and define the
derivative’s collocation matrix N′ in sec. 4.4.2. In the main section 4.4.3 we describe all
steps of the iteration that are to be repeated until an optimum is found.

38

4.4.1 Algorithm for Interior Point Method

We will briefly restate some definitions for the interior point algorithm and highlight the
important steps as they appear in our problem. The general theory can be found in Nocedal
& Wright [29].

KKT conditions

We have defined the positive semidefinite Hessian matrix G and the vector e in eq. (4.4)
and the linearized constraint D in eq. (4.10). The Karush-Kuhn-Tucker conditions for the
quadratic problem (4.6) can thus be stated as

Gb−DTλk + e = 0 (4.11a)

Db− y = 0 (4.11b)

y ≥ 0 (4.11c)

λk ≥ 0 (4.11d)

yiλi = 0, i = 1, 2, . . . ,m, (4.11e)

with slack variables y and the Lagrange multipliers λ. We call the left hand side of
eq. (4.11a) the dual residual rd and accordingly the left hand side of eq. (4.11b) the primal
residual rp. As is proved in [29] that the KKT conditions (4.11) are not only necessary,
but also sufficient.

Put differently, we want to iteratively solve the system of equations

F (b,y,λ) = [rd, rp,YΛe]T = 0

with Y = diag(y1, y2, . . . , ym), Λ = diag(λ1, λ2, . . . , λm), and e = (1, 1, . . . , 1)T using New-
ton’s method.

Affine scaling step

The solution of the linear system G 0 −DT

D −I 0

0 Λ Y


 baff

yaff

λaff

 = −F (b,y,λ), (4.12)

is called affine scaling direction and the matrix on the left hand side Jacobian J(b,y,λ)
of F . [baff,yaff,λaff]T can violate (4.11e), so a line search parameter α > 0 is needed to
guarantee that (baff,yaff,λaff) + α(∆baff,∆yaff,∆λaff) is feasible.

Center step

As this step length α might be too short, one introduces the duality measure as µ = yTλ/m
and tries to find a point which gradually reduces µ by a centering parameter σ ∈ [0, 1], i.e.

39

solve
J(b,y,λ) · [∆b,∆y,∆λ]T = [−rd,−rp,−YΛe+ σµe]T (4.13)

After that, another step length selection is carried out to find the optimal step size α̂.

Summary of the Interior Point Method algorithm

After computing a feasible starting position (x0,y0,λ0) with (y0,λ0), the general algorithm
follows these steps:

1. Set (x,y,λ) = (xk,yk,λk) and solve (4.12) with σ = 0 to obtain (∆xaff,∆yaff,∆λaff)

2. calculate duality measure µ = yTλ/m and affine step length α̂aff = max{α ∈
(0, 1]|(y,λ) + α(∆yaff,∆λaff) ≥ 0} and set µaff = (y + α̂aff∆yaff)T (λ + α̂aff∆λaff)/m

3. set centering parameter σ = (µaff/µ)3 and solve (4.13) for full step (∆x,∆y,∆λ)

4. choose τk ∈ (0, 1) → 1 as k increases and set α̂ = min(αpri
τk
, αdual

τk
), see (4.14)

5. (xk+1,yk+1,λk+1) = (xk,yk,λk) + α̂(∆x,∆y,∆λ), continue with (1).

This iteration is repeated until no further increases in x can be obtained.

The step length α̂ is the minimum of the step lengths of the primal and dual variable,
which are defined dependent on τ ∈ (0, 1):

αpri
τ = max{α ∈ (0, 1] | y + α∆y ≥ (1− τ)y}

αdual
τ = max{α ∈ (0, 1] | λ + α∆λ ≥ (1− τ)λ}

(4.14)

4.4.2 Initial position

We would like to have a much bigger number m of control points b than the number n of
points Qk ∈ R2,1 representing the circles in order to have more flexibility in optimization.
Trying to solve this directly would lead to a rank-deficient linear system whose solution b
can, of course, not be trusted.
To circumvent this problem, we introduce an auxiliary cubic B-spline curve caux, interpo-
lating the input Qk with a minimal knot vector and ignoring the steepness constraint, see
Fig. 4.5.

We take m1 > m+ 4 equally spaced auxiliary parameter values vi, a knot vector of length
m+ 4 (multiplicity 4 at the beginning and the end, m− 4 equally spaced in between) and
compute thus the collocation matrix Naux of rank m.

The z-coordinates of the control points baux of caux are then moved half the way to the
mean value of the z-coordinates of theQk, calledmean(Qk,z). Should caux still have pseudo-

40

Qk

Ri

caux

baux

b

Figure 4.5: Procedure to find the initial position of the control polygon: Compute auxiliary
curve caux (blue curve) with control polygon baux (blue lines) through input
points Qk (red dots). Move this control polygon toward the mean of the z-
coordinates of the Qk until no steep tangents appear, then sample points Ri

(green dots). A finer control polygon b (black) for approximating those is found
via a linear system.

Euclidean tangents, repeat this scaling; sample the final Euclidean curve Ri = caux(vi).
The initial control polygon b for the optimization procedure is the least squares fit of the
over-determined system Naux · b = Ri. It is Euclidean by construction and the number of
control points m is a user-specified number.
Note that due to the repeated scaling of the z-coordinates of caux, the B-Spline defined by
b can be quite far from the Qk (only in z-direction); in the worst case, it is approximating
the top view projection of the Qk in the plane z = mean(Qk,z).

Initializing the derivative’s collocation matrix N′

Set the number h for which the hodograph c′(ui) shall be guaranteed to be Euclidean.
Let these h equally-spaced divisions of the unit interval as parameter values and the knot
vector as before define the collocation matrix of the derivatives N′, i.e. c′(ui) = N′ · b.

Initializing the Lagrange multipliers λ

Initialize the vector of Lagrange multipliers as λ = (1, · · · , 1). This value will be changed
drastically again in the first iteration, before being regularly updated with all the other
variables during the following iterations.

41

4.4.3 Iteration of the Interior Point Algorithm

We have presented the general strategy of the Interior Point algorithm in use in sec. 4.4.1
and gave initializations for the control points and other important variables in sec. 4.4.2.
Here we will show the updates of all variables that occur during the iteration in detail. The
numbering (1), (2), . . . is independent of other sections; note that the paragraphs marked
(*) only occur in the first iteration after initialization.
Usually this iteration runs until either the change in the control points is less than a
threshold or until a maximum number of iterations is reached.

(1) Collocation matrix Ni

The control points bi found in the last iteration define the curve’s current position ci, so
we need to update the parameter values ci(uk) for input points Qk. Explicit formulas for
this footpoint routine were given in sec. 3.2.
The parameter values together with the knot vector give rise to a new collocation matrix
Ni. The matrix NT

i Ni is regularized as NT
i Ni + λ1L1 + λ2L2 + λT In where L1 and L2

are discrete approximations of the derivative operator and In is the identity matrix, see
sec. 3.3.1 on Tikhonov regularization.
At this point we can also return value of the objective function or error measure f(bi) =
(Ni · bi − q)2, which will be the value of the numerical convergence rate in chapter 6.

(2) Matrix Di of the linearized constraint

In section 4.3.3 we have defined the matrix D of the linearized constraint, which apart from
N′ contains projections d̄ of derivatives d = N′(uk) · b̄i onto Γ. Remember that an entry
in the vector Di ·bi = [

〈
d̄1,d1

〉
L
, . . . ,

〈
d̄n,dn

〉
L
]T is greater than zero if the corresponding

derivative vector d is Euclidean.
This vector is almost (up to the linearization error) the vector of slack variables yi in the
KKT-conditions as introduced in sec. 4.4.1 and should stay positive during the optimiza-
tion.

(*) Further variable initializations in the first iteration

The first run in the iteration is different from all the following as it is used to further
initialize variables: the vector of slack variables is introduced as y1 = D1 ·b1 and updated
again before iteration number 2, as we will see shortly.

42

(3) Affine scaling step

At this point, all the matrices needed to compute the affine scaling direction of equa-
tion (4.12) are available, so we can solve G 0 −DT

D −I 0

0 Λ Y


 ∆baff

∆yaff

∆λaff

 = −

 Gb−DTλ + e

Db− y

ΛYe

 .
Note that the Jacobian J (matrix on the left-hand side) is sparse and especially for small
slack variables y ill-conditioned, so a Tikhonov regularization is usually carried out, which
means adding a scalar multiple of the identity matrix to J.

(*) Special case for the first iteration

Only in the first iteration, the slack variables y are slightly corrected by redefining y :=
max(10−5,y + 10−4∆yaff); the Lagrange multipliers (which were initialized to be one ev-
erywhere) are also updated as λ := 10−3 min(max(0,λ + ∆λaff), 1), which works very well
in practice and differs from [29].

The first iteration ends here; the second starts again at (1).

(4) Center step

The duality measure µ = yTλ/m is computed. Then find the biggest α1 and α2 such that

y + α1∆yaff ≥ 0, and λ + α2∆λaff ≥ 0.

and define

α̂aff := min(α1, α2), µaff := (y + α̂aff∆yaff)T (λ + α̂aff∆λaff)/m, σ := µaff/µ.

Next compute the center step

J(x,λ, s) · [∆b,∆y,∆λ]T = [−rd,−rp,−YΛe+ σµe]T .

If mean(|∆b|) < 10−5, the optimum (”KKT point”) is reached and the iteration ended.

Else, the step length α̂ is defined to be the minimum of the step lengths of the primal and
dual variable:

αpri
τ = max{α ∈ (0, 1] | y + α∆y ≥ (1− τ)y}

αdual
τ = max{α ∈ (0, 1] | λ + α∆λ ≥ (1− τ)λ}

,

which are defined dependent on τ ∈ (0, 1); we chose this heuristically to be (i − 2)/i for
the number of iteration i.

43

(5) Updating the variables

We end the iteration by updating the variables:

bi+1 = bi + α̂∆b

yi+1 = yi + α̂∆y

λi+1 = λi + α̂∆λ.

4.4.4 Computed examples

The iterative algorithm as explained in detail over the course of the last section was applied
to all the examples in ch. 6. We will show a computed example in section 6.1.1 that specifies
the numeric value of every variable given here as well as showing figures of the initialization,
during the iteration and for the result.

4.5 Testing the tangents algebraically

Once we have arrived at a result through optimization as presented in the previous sections,
we need to check whether these results actually satisfy the steepness constraint.

Given a B-spline curve c(u), u ∈ [0, 1] of degree n, its collocation matrix N and its control
points bk, there is an algebraic test to make sure that c′ is always Euclidean: Establish the
derivative function f(u) = c′x

2 + c′y
2 − c′z

2. Clearly f is a piecewise polynomial of degree
2(n− 1), its roots correspond to the isotropic tangents of c(u). If f has no roots in [0, 1],
then all tangents are Euclidean.

Since f(u) is a polynomial, one can check with Descartes’ rule of signs (see [42]) how many
zeros to expect; if all coefficients have the same sign, f(u) has no real zeros.

The zeros of the derivative function f(u) = a0 + a1u+ · · ·+ a2n−1u
2n−1 + a2(n−1)u

2(n−1) can
also be computed via its companion matrix

A(f) =


0 · · · 0 −a0

1 · · · 0 −a1

...
. . .

...
...

0 · · · 1 −a2(n−1)

 ,

see [20]. The roots of f(u) are the eigenvalues of A(f), standard techniques for the esti-
mation of these suffice.

44

5 Envelopes of Spheres

This chapter extends the theory of chapter 4 to the 4-dimensional R3,1 in two different ways.
In section 5.1 we will look at curves in this Minkowski space, which represent envelopes of
1-parameter families of spheres, i.e. canal surfaces. Basically, the theory stays the same as
in chapter 4 and we will not bother repeating the general optimization framework or issues
of initial position, only point to the formulas that have to be adapted due to the higher
dimension.
The major contribution of the chapter lies with surfaces in R3,1, whose inverse cyclographic
image are envelopes of 2-parameter families of spheres. The constraint of having real en-
velopes means that the tangent planes of these surfaces have to stay Euclidean. In fact,
we are talking of 2-planes in 4-space and section 5.2 introduces a calculus that allows to
classify such planes through a bilinear form.
In section 5.3 we will take a closer look at hyperbolic paraboloids in R3,1 and state an
algorithm that ensures that they stay Euclidean, which is based on projective geometric
considerations.
All definitions for the surface optimization, as well as the proper linearizations for the
quadratic constraint, are carried out in sec. 5.4. Finally, in section 5.5 the actual optimiza-
tion of surfaces in R3,1 is described in all detail, including the initialization.

Previous work

A look at previous work has already been carried out in sec. 4.1.2, which includes the case
of 1-parameter families of spheres, i.e. canal surfaces and Dupin cyclides as special cases.
As we will see in section 5.1, they are direct extensions of the lower dimensional circle
approximation. To our knowledge, the case of 2-parameter families of spheres has not yet
been considered.

5.1 Canal surfaces

In chapter 4 we mostly spoke of curves in R2,1, their inverse cyclographic image being
envelopes of circles, and how to solve the optimization for those. In this section we will
provide the necessary changes to the formulas in order to extend our code to R3,1. The
inverse cyclographic images of these are envelopes of 1-parameter families of spheres, i.e.
canal surfaces.

45

5.1.1 Optimization formulation

Given a set of spheres, we want to find an envelope for these, i.e. find the interpolating canal
surface. Each of these spheres can be represented by a point Qk ∈ R3,1; an interpolating
curve c(u) maps to the canal surface via the inverse cyclographic mapping.
Exactly like in the lower dimension, if c(u) has tangents, which are steeper than π

4
against

the x4 = 0-hyperplane, the corresponding canal surface is not real locally. Therefore, we
introduce a quadratic constraint, which is a direct extension of the lower dimensional case.

5.1.2 Generalization of the objective function to R3,1

The objective function (4.1) stays the same, apart from the fact that given points Qk are
in R3,1, so

minimize
n−1∑
k=0

|Qk − c(u)|2, (5.1)

where we will understand c(u) to be a cubic B-spline. The distance is the Euclidean
distance in R4, because for a distance based on the Minkowski norm of eq. (2.3), distances
measured in isotropic direction are zero, which causes ambiguities which we want to avoid.

Footpoints

The footpoints for a curve c(u) in R2,1 were introduced in sec. 3.2, where we gave a definition
that works for curves in any dimension. The challenges explained in sec. 4.2.1 are therefore
the same in R3,1: because of changing footpoints, the objective function becomes a non-
linear least squares problem, which has to be solved iteratively.

Block-diagonal matrix formulation

The formulation of the quadratic objective function with block-diagonal matrices is - in
principle - the same in R3,1 as for the lower dimensional case of sec. 4.2.1. One only extends
eq. (4.3) by one dimension to get [c1|c2|c3|c4] = N · [b1|b2|b3|b4].

We can thus restate the objective function (4.4) as

bT ·


NTN

NTN

NTN

NTN

 · b− 2 · bT ·


NT

NT

NT

NT

 · q + qT · q,

and call the block-diagonal matrix on the left side the Hessian G. All empty blocks are
filled with zero matrices, thus these two matrices are very sparse.

46

Regularization

As before, the Hessian G will be Tikhonov regularized by adding scalar multiples of the
identity matrix or discrete approximations of the derivative operators, see sec. 3.3.1. The
magnitude of the factor for Tikhonov regularization is usually depending on a rough esti-
mation of G’s condition number and stays in the magnitude of 10−5. As before, this helps
with numerical stability and brings smoother shapes.

5.1.3 Generalization of the steepness constraint to R3,1

In sec. 4.2 we introduced the quadratic constraint (4.2) for curves c(u) ∈ R2,1, which
translates to

c′21 + c′22 + c′23 ≥ c′24 (5.2)

for curves in R3,1. As before, one can give three equivalent formulations for this equation:

⇔ The Lorentz inner product 〈c′, c′〉L of eq. (2.1) has to be ≥ 0, i.e. the derivative
vectors c′ are Euclidean everywhere.

⇔ The angle between c′ and the x4 = 0-hyperplane has to be ≤ π
4
.

⇔ The hodograph has to stay outside the Lorentz cone Γ.

Especially by the last condition we can see that this quadratic constraint is in fact non-
convex, thus we have to linearize it in order to solve the optimization by a quadratic
program.

Linearization

We can transfer almost all of section 4.3 on the linearization of the constraint in R2,1 to
the 4-dimensional Minkowski space verbatim. As the Lorentz cone was defined without
specifying the dimension in sec. 2.1.3, we want to redefine (4.7), the border of the Lorentz
cone ∂Γ by

x2 + y2 + z2 − w2 = 0.

Thus a point p̄ on Γ is contained in the plane

ε : p̄1x + p̄2y + p̄3z − p̄4w = 0,

and p̄ is defined through a projection onto the cone as was explained in sec. 4.9.

The matrix D essential to the linearization of the quadratic steepness constraint thus
changes to D :=

[diag(d̄11 · · · d̄1m1) ·N′|diag(d̄21 · · · d̄2m1) ·N′|diag(d̄31 · · · d̄3m1) ·N′|−diag(d̄41 · · · d̄4m1) ·N′].

D will change iteratively during the optimization as dk = c(uk) is the curve’s derivative
and d̄k its projection; the derivatives’ collocation matrix N′ changes as well.

47

5.1.4 Solving the optimization for canal surfaces

In sec. 5.1.3 we have successfully transferred the non-linear quadratic optimization problem
(5.1) with quadratic non-convex constraint (5.2) into a non-linear quadratic program

minimize bT ·G · b − 2 · bT · e + d

subject to D · b ≥ 0,

by linearizing the constraint. We will solve it with the help of an interior point algorithm,
which was described in great detail in sec. 4.4.
Other than the change from three to four coordinates in the control points b and thus the
increased size of matrices G and D, everything stays the same and we will not restate the
whole procedure here.

Initial position

Note that the initial position for the control points b can be computed exactly as in
sec. 4.4.2 through auxiliary points on a spline that is not subject to the constraint and
then lower the last coordinate.

5.2 2-planes in Minkowski 4-space

The aim of this section is to find a classification of planes through the origin (linear ho-
mogeneous subspaces of dimension 2) in Minkowski space R3,1 via a bilinear form. We
use this in sec. 5.4 for approximating points in R3,1 by flat surfaces, i.e. surfaces that have
Euclidean tangent planes.
As a motivation, we show a similar construction in R3 and 3-dimensional Minkowski space
R2,1 via the wedge product of two vectors, which belong to an exterior algebra.

5.2.1 Wedge product in 3-space

Before defining the wedge product in Minkowski space, we recall some facts from Euclidean
R3. This serves both as example and guideline for similar constructions in 4-space. We will
then introduce a bilinear form Φ2,1, which is basically the Minkowski norm for the cross
product of two vectors and gives a number that is used to classify planes. Again, this helps
to generalize such a classification of 2-planes in R3,1 later on.

Wedge product in R3

For two vectors u = (u0, u1, u2),v = (v0, v1, v2) in R3 the cross product is defined as

u× v = (u1v2 − u2v1,−u0v2 + u2v0, u0v1 − u1v0),

48

which again is a vector in R3. This cross product is a special case of the wedge product
u ∧ v, see [8]. As we will see in sec. 5.2.2, the fact that the wedge product of two vectors
is again a vector is only true in dimension 3.

The inner product on R3 is defined as

〈u,v〉 = u0v0 + u1v1 + u2v2.

and the following is true for all u,v,x,y ∈ R3, as a simple calculation shows:

〈u ∧ v,x ∧ y〉 = det

(
〈u,x〉 〈v,x〉
〈u,y〉 〈v,y〉

)
, (5.3)

with the same inner product as before. For u = x and v = y this brings

〈u ∧ v,u ∧ v〉 = 〈u,u〉 · 〈v,v〉 − 〈u,v〉2, (5.4)

which is 0 if and only if either u = λv, λ ∈ R or u = o or v = o.

Wedge product in R2,1

In 3-dimensional Minkowski space R2,1 the inner product of two vectors u,v ∈ R2,1 has
been defined in sec. 2.1.1 as

〈u,v〉L = u0v0 + u1v1 − u2v2;

remember that it is < 0 / = 0 / > 0 for Euclidean/isotropic/pseudo-Euclidean vectors.

Also in sec. 2.1.1, the pseudo-Euclidean cross product has been defined as

u×L v = (u1v2 − u2v1,−u0v2 + u2v0,−u0v1 + u1v0); (5.5)

note that only the third coordinate is different from the Euclidean case. (The formulation
with wedge products would be the same, as it does not depend on chosen basis vectors.)

Two linearly independent vectors u,v ∈ R2,1 span a plane ε and define the plane’s normal
as nε = u ×L v. We use this notation to reformulate the characterization of hyperplanes
in Minkowski space that was given in sec. 2.1.2:

Proposition 2. 〈u×L v,u×L v〉L is


< 0

= 0

> 0

⇔ ε is


Euclidean

isotropic

pseudo-Euclidean

.

Note that the proposition leaves it open whether or not u or v are Euclidean/isotropic/pseudo-
Euclidean. It is possible for two Euclidean lines to span all three types of planes, see Prop. 1
on page 8.

49

The bilinear form Φ2,1

For four vectors u,v,x,y ∈ R2,1 we define a bilinear form Φ2,1 :
∧2 R2,1 ×

∧2 R2,1 ≡
R2,1 × R2,1 → R by

Φ2,1(u ∧ v,x ∧ y) = −〈u×L v,x×L y〉L .
It follows that the pseudo-Euclidean cross product eq. (5.5), which defines the normal vector
of the plane ε spanned by u and v has the coordinates u×L v = (l12,−l02,−l01) ∈

∧2 R2,1,
thus

Φ2,1(u ∧ v,u ∧ v) = l201 − l202 − l212.

With this definition, we reformulate Prop. 2 as:

Φ2,1(u ∧ v,u ∧ v) is


> 0

= 0

< 0

⇔ ε is


Euclidean

isotropic

pseudo-Euclidean

 .

According to [41], Th.2.2.4, there can not be an equivalent to the Plücker identity eq. (5.6)
in this space.

5.2.2 Wedge product in 4-space

We want to define the wedge product x∧ y of two vectors x,y ∈ R4 (or R3,1; as we saw in
sec. 5.2.1 the differences between those two exterior algebras solely depend on the choice
of basis), which is a vector in the

(
4
2

)
= 6-dimensional vector space

∧2 R4.

Let (e0, e1, e2, e3) be a basis of R4, then a basis of
∧2 R4 is given as (e0 ∧ e1, e0 ∧ e2, e0 ∧

e3, e2 ∧ e3, e3 ∧ e1, e1 ∧ e2). This linear space is the set of all 2-spaces (=planes through
the origin) in 4-space.

Thus for two vectors x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) the coefficients of the wedge
product x ∧ y are given by the numbers lij = xiyj − xjyi for i, j = 0, . . . , 3, i 6= j, and the
coordinates of the plane through the origin spanned by x ∧ y ∈

∧2 R4 are
L = (l01, l02, l03, l23, l31, l12). Note that a vector L satisfies the Plücker identity

Ωq(L) = l01l23 + l02l31 + l03l12 = 0, (5.6)

if and only if it represents a 2-plane in R4; see [41] and the use of this formalism in line
geometry. We heavily rely on the fact that (projective) lines in projective three-space P3

are isomorphic to 2-planes through the origin in R4.

The bilinear form Φ3,1

We want to calculate the equivalent of eq. (5.3), which relates inner and wedge product for∧2 R4.

50

Lemma 3. The Plücker coordinates of a plane u ∧ v be lij for u,v ∈ R3,1 and those of
x ∧ y be mij. The following holds

det

(
〈u,x〉L 〈v,x〉L
〈u,y〉L 〈v,y〉L

)
= l01m01 + l02m02 + l12m12 − l03m03 − l13m13 − l23m23

Proof: Elementary calculation.

In eq. (5.3) this determinant is equal to an inner product of two wedge products - this
is only possible, because

∧2 R3 is isomorphic to R3. Thus, we define a bilinear form
Φ3,1 :

∧2 R3,1 ×
∧2 R3,1 → R by setting

Φ3,1(u ∧ v,x ∧ y) = l01m01 + l02m02 + l12m12 − l03m03 − l13m13 − l23m23,

where lij are the Plücker coordinates of a plane u∧v and mij those of x∧y as in Lemma 3.

Note that for u = λv, λ ∈ R, the determinant in Lemma 3 evaluates to 〈λu, λu〉L ·〈v,v〉L−
〈λu,v〉2L = 0 and for u = o holds u ∧ x = o ∀x , which is reminiscent of eq. (5.4) and the
comment underneath.

Corollary 2. For dimension i = 2 or 3 let u,v ∈ Ri,1 be two vectors. Then

Φi,1(u ∧ v,u ∧ v) = 〈u,u〉L · 〈v,v〉L − 〈u,v〉
2
L .

We saw on page 50 that this number determines the steepness of the planes in R2,1; in the
next subsection, we want to extend this to R3,1.

5.2.3 Classification of 2-planes in Minkowski space

We have seen in sec. 5.2.1 that the pseudo-Euclidean cross product together with the inner
product can be used to classify planes in R2,1. To carry these ideas to 4-space, we have
introduced the wedge product in R3,1 and the bilinear form Φ3,1 on these products in
sec. 5.2.2.
In this section we present a classification of 2-planes in R3,1 that fits consistently into this
framework, and extends proposition 2 on the classification of planes in lower dimensional
Minkowski space.

This important result is formulated as the following theorem:

Theorem 1. The bilinear form Φ3,1 allows for classification of 2-planes in R3,1:

1. u∧v is an Euclidean plane ⇔ Φ3,1(u∧v,u∧v) > 0 ⇔ l201 + l202 + l212 > l203 + l213 + l223

2. u∧v is an isotropic plane ⇔ Φ3,1(u∧v,u∧v) = 0 ⇔ l201 + l202 + l212 = l203 + l213 + l223.

51

3. u ∧ v is a pseudo-Euclidean plane ⇔ Φ3,1(u ∧ v,u ∧ v) < 0 ⇔ l201 + l202 + l212 <
l203 + l213 + l223

Proof. For a 2-plane spanned by u,v ∈ R3,1, any vector w contained in u∧v can be written
as w = t · u + (1 − t) · v, t ∈ R. To check whether w is Euclidean, pseudo-Euclidean or
isotropic, we have to compute 〈w,w〉L, which is a quadratic equation in t:

〈w,w〉L = 〈t · u + (1− t) · v, t · u + (1− t) · v〉L , (5.7)

whose discriminant is 〈u,v〉2L − 〈u,u〉L · 〈v,v〉L = −Φ3,1 by Cor. 2.
If and only if the discriminant of eq. (5.7) is negative, i.e. Φ3,1 > 0 does u∧v contain only
Euclidean vectors w, which characterizes Euclidean planes by Prop. 1.
If and only if Φ3,1 = 0, there exists exactly one real root of eq. (5.7), i.e. exactly one
isotropic vector in u ∧ v, which means u ∧ v is isotropic.
Finally, only for Φ3,1 > 0 there are two distinct roots of eq. (5.7), which correspond to
isotropic vectors in u∧ v. Therefore, 〈w,w〉L can be positive, negative or zero, thus u∧ v
is pseudo-Euclidean by Prop. 1.

We will use this classification of 2-planes in sec. 5.4 to ensure that a tangent plane to a
surface in R3,1 is Euclidean in an optimization routine.

5.3 Hyperbolic paraboloids in R3,1

The aim of this section is to establish a criterion which helps to classify hyperbolic para-
boloids (also HP surfaces) in 4-dimensional Minkowski space R3,1 with respect to their
steepness. In order to achieve this, we will first give a simple algebraic criterion to classify
hyperplanes, then investigate the tangent planes of HP surfaces in sec. 5.3.1. After studying
the situation at the plane at infinity, an actual algorithm will emerge, whose specifics we
will compute in the final subsection 5.3.2.

Types of hyperplanes of R3,1

As was stated many times already, there are three types of hyperplanes in R3,1: Euclidean,
isotropic and pseudo-Euclidean. Four points a,b, c,d ∈ R3,1 in general position span such
a hyperplane.
Via the wedge product notation one can define a ”vector” (actually this object is an element
of
∧3 R3,1, which we identify with R3,1 - see sections 5.2.1 and 5.2.2 for more detail) that

serves as a normal vector to this hyperplane.

Choose one of the four points, or instance a, and define the difference vectors c − a,b −

52

a,d− a, whose wedge product is

(c− a) ∧ (b− a) ∧ (d− a)

= (c ∧ b− c ∧ a− a ∧ b + 0) ∧ (d− a) = · · · = (5.8)

= a ∧ b ∧ c− a ∧ b ∧ d + a ∧ c ∧ d− b ∧ c ∧ d.

This computation shows that the choice of a has no effect on the outcome, ie. taking
difference with any of the four points leads to the same result.

The coefficients of the ”normal vector” in eq. (5.8) can be computed via the following
determinant:

c1 − a1 b1 − a1 d1 − a1 e1

c2 − a2 b2 − a2 d2 − a2 e2

c3 − a3 b3 − a3 d3 − a3 e3

c4 − a4 b4 − a4 d4 − a4 e4

 =

= e1 ·

 c2 − a2 b2 − a2 d2 − a2

c3 − a3 b3 − a3 d3 − a3

c4 − a4 b4 − a4 d4 − a4

− e2 ·

 c1 − a1 b1 − a1 d1 − a1

c3 − a3 b3 − a3 d3 − a3

c4 − a4 b4 − a4 d4 − a4

 (5.9)

+ e3 ·

 c1 − a1 b1 − a1 d1 − a1

c2 − a2 b2 − a2 d2 − a2

c4 − a4 b4 − a4 d4 − a4

− e4 ·

 c1 − a1 b1 − a1 d1 − a1

c2 − a2 b2 − a2 d2 − a2

c3 − a3 b3 − a3 d3 − a3

 =

= e1 · λ1 + e2 · λ2 + e3 · λ3 + e4 · λ4,

ie. the λi are the sub determinants (with sign) defined above and hence the four components
of the normal vector of the hyperplane spanned by the four points a,b, c,d ∈ R3,1. A simple
calculation shows that eq. (5.9) is independent of the choice a and actually leads to the
same result as eq. (5.8).

Taking the classification of hyperplanes given in prop. 2 one dimension higher yields:

Proposition 3. The hyperplane spanned by four points a,b, c,d ∈ R3,1 in general position
is Euclidean/isotropic/pseudo-Euclidean if an only if the number λ2

1 + λ2
2 + λ2

3 − λ2
4 is

< 0 / = 0 / > 0.

Proof: The construction of the normal vector was given above, the classification via the
inner product is by definition.

HP surfaces in different hyperplanes

Proposition 3 states which type of hyperplane four points a,b, c,d ∈ R3,1 span. From
Prop. 1 we know that only pseudo-Euclidean hyperplanes can contain pseudo-Euclidean

53

2-planes. It follows that a 2-surface in R3,1 can only have pseudo-Euclidean tangent planes
if it is contained in a pseudo-Euclidean hyperplane.
This general statement is especially true for a hyperbolic paraboloid; it can only have
pseudo-Euclidean tangent planes if its four corners a,b, c,d ∈ R3,1 span a pseudo-Euclidean
hyperplane.

5.3.1 Tangent planes of HP surfaces

H
HH

H
HH�

�
�
�
�
�
��a

d

c

b

f(u, v)

Let a,b, c,d ∈ R3,1 be points in general position and u, v ∈ [0, 1] parameters, then the
hyperbolic paraboloid is defined as

f(u, v) = uv · a + u(1− v) · b + (1− u)v · c + (1− u)(1− v) · d. (5.10)

If we take partial derivatives we get

∂f

∂v
= u · a− u · b + (1− u) · c− (1− u) · d = u · (a− b) + (1− u) · (c− d),

∂f

∂u
= v · a + (1− v) · b− v · c− (1− v) · d = v · (a− c) + (1− v) · (b− d). (5.11)

These partial derivatives can be seen as the directions of a general tangent plane of f(u, v).

According to sec. 5.2.2, if we want to define the tangent plane at position (u, v), we have
to take the wedge product of the vectors of eq. (5.11):

∂f

∂v
∧ ∂f

∂u
=u · (a− b) ∧ v · (a− c) + u · (a− b) ∧ (1− v) · (b− d)

+ (1− u) · (c− d) ∧ (1− v) · (b− d) + (1− u) · (c− d) ∧ v · (a− c)

=uv · (b− a) ∧ (c− a)− u(1− v) · (a− b) ∧ (d− b) (5.12)

+ (1− u)(1− v) · (c− d) ∧ (b− d)− (1− u)v · (d− c) ∧ (a− c)

=uv · (b− a) ∧ (c− a) + u(1− v) · (d− b) ∧ (a− b)

+ (1− u)(1− v) · (c− d) ∧ (b− d) + (1− u)v · (a− c) ∧ (d− c)

=uv ·T(a) + u(1− v) ·T(b) + (1− u)v ·T(c) + (1− u)(1− v) ·T(d),

where T(a) := (b − a) ∧ (c − a) is the tangent plane at corner a and analogously for the
other corners. We also write T(f) := ∂f/∂v ∧ ∂f/∂u.

54

Hence, for a bilinear Bézier surface f(u, v) as given in (5.10), the general tangent plane
T(f)(u, v) is a bilinear combination of the tangent planes T(a),T(b),T(c) and T(d) as
stated in eq. (5.12). Note that these tangent planes are not linearly independent, but span
a 3-space:

T(a)−T(b) + T(c)−T(d) = 0,

as can be checked by an elementary calculation.

Situation at infinity

ω

a− c
T(c)

c− d

b− d
T(b)

T(d)

T(f)

a− b

T(a)

H

GΓ ∩ ω

Figure 5.1: At the plane at infinity ω, the directions of the HP surface’s edges are points
and the planes they span are represented by lines. A general tangent plane
T(f) of the HP surface can be visualized as a line connecting two points G∩ω
and H∩ ω. This plane T(f) is pseudo-Euclidean, if the line T(f)∩ ω intersects
Γ∩ω for any v ∈ [0, 1], u ∈ [0, 1]. Note that for brevity, there is a slight misuse
of notation in this sketch.

In order to understand the criterion we want to give in Prop. 4 for a general tangent plane
T(f) of a HP surface to be pseudo-Euclidean, we make a sketch of the situation at infinity,
see Fig. 5.1. We will denote the ideal plane of the carrier 3-space of f by ω.

55

The directions of the HP’s edges are (a− c) ∩ ω, (c− d) ∩ ω, (a− b) ∩ ω and (b− d) ∩ ω
and thus the intersection of tangent plane T(a) and the plane at infinity ω is a line at
infinity connecting the points (a−b)∩ω and (a− c)∩ω (For brevity of notation, this line
is simply called T(a) in Fig. 5.1 and the segment from (a− b) ∩ ω and (a− c) ∩ ω is not
drawn in order to keep the figure simple.).

The intersection of the quadratic cone Γ and the plane at infinity ω is a conic. By construc-
tion, we assume that the hyperplane in R3,1 spanned by a,b, c and d is pseudo-Euclidean.
We also assume that the difference vectors a− c, c−d, a−b and b−d are outside Γ∩ω,
hence Euclidean. The main question is: How can we ensure that the hyperbolic paraboloid
with these four corners points has only Euclidean tangent planes on the inside patch?

We have seen in eq. (5.11) that the partial derivatives ∂f
∂u

and ∂f
∂v

(their intersections with
ω are denoted G = u(a − b) + (1 − u)(c − d) and H = v(a − c) + (1 − v)(b − d) in
Fig. 5.1 respectively) are convex combinations of two difference vectors, so they are points
on a line segment at infinity. Therefore, a general tangent plane T(f) of the HP surface,

which is spanned by ∂f
∂u

and ∂f
∂v

, intersects ω along the line connecting H and G. T(f)
is Euclidean/isotropic/pseudo-Euclidean if and only if T(f) ∩ ω have zero/one/two (real)
intersections with Γ ∩ ω.

Note that the sketch in Fig. 5.1 depicts only one of the possible configurations of a−c, c−
d, a−b and b−d; their relative positions could change, e.g. a−b and b−d could change
position, which would not change much about the figure. One could also remark that
statements such as ”G is always between a − b and c − d” are meaningless in projective
geometry and that one would have to check different possible combinations of G and H
as well. Just keep in mind that Fig. 5.1 is a motivation for Prop. 4 and observe the sound
proof by algebra there.

A necessary condition for T(f) to be pseudo-Euclidean

Looking at Fig. 5.1, the tangent planes T(a),T(b) and T(d) enclose a convex area (the
gray area in the upper half of the figure). Similarly, the tangent planes T(a),T(c) and
T(d) enclose another convex area (the gray area in the lower half of the figure). If Γ ∩ ω
would lie inside either of these convex areas, there could not be a real intersection with
T(f)∩ω, because H is always between a−c and b−d and G is always between a−b and
c− d, as we are only interested in the surface patch f(u, v) for which u, v ∈ [0, 1]× [0, 1].

Proposition 4. A general tangent T(f) of a HP surface in R3,1 is pseudo-Euclidean if at
least one of the following is true:

1. At least one plane in the pencil of planes spanned by c−d and H is pseudo-Euclidean.

2. At least one plane in the pencil of planes spanned by a−b and H is pseudo-Euclidean.

3. At least one plane in the pencil of planes spanned by b − d and G, u ∈ [0, 1] is
pseudo-Euclidean.

56

4. At least one plane in the pencil of planes spanned by a−c and G is pseudo-Euclidean,

where H = v(a−c)+(1−v)(b−d), v ∈ [0, 1] and G = u(a−b)+(1−u)(c−d), u ∈ [0, 1].

Proof: 1st proof by projective geometry:
The four cases listed above are precisely the four pencils of lines from the corners of the
(white) non-convex area of the plane at infinity ω to the opposite line segment, see Fig. 5.1.
For each point in this non-convex area there is at least one line of these pencils intersecting
it.

2nd proof by algebra:
As was stated in sec.5.3.1, the general tangent plane T(f) is a bilinear combination of
the four tangent planes in the corners. The four cases above mean setting u = 0, u =
1, v = 0, v = 1 in eq. 5.12. The first case can hence be rephrased to ”At least one of the
tangent planes to the HP surface along the edge from c to d, ie. at least one of the convex
combinations of T(c) and T(d) is pseudo-Euclidean.” and the others accordingly.
We have thus used special properties of the tangent planes of a hyperbolic paraboloid to
look at four linear combinations instead of one bilinear one.

5.3.2 Computing Φ3,1 for HP surfaces in R3,1

To see whether a general tangent plane is pseudo-Euclidean, we have to compute

Φ3,1(
∂f

∂v
∧ ∂f

∂u
,
∂f

∂v
∧ ∂f

∂u
) =

= Φ3,1(uv · (b− a) ∧ (c− a) + u(1− v) · (d− b) ∧ (a− b)

+ (1− u)(1− v) · (c− d) ∧ (b− d) + (1− u)v · (a− c) ∧ (d− c), · · ·),

but we know from Prop. 4 that it suffices to set u and v to 0 and 1. Hence the resulting
quadratic polynomial in v resp. u become

u = 0 : Φ3,1((1− v) · (c− d) ∧ (b− d) + v · (a− c) ∧ (d− c), · · ·) =

=Φ3,1((c− d) ∧ ((1− v) · (b− d) + v · (a− c)), · · ·)
u = 1 : Φ3,1(v · (b− a) ∧ (c− a) + (1− v) · (d− b) ∧ (a− b) =

=Φ3,1((b− a) ∧ (v · (c− a) + (1− v) · (d− b)), · · ·)
v = 0 : Φ3,1(u · (d− b) ∧ (a− b) + (1− u) · (c− d) ∧ (b− d) =

=Φ3,1((d− b) ∧ (u · (a− b) + (1− u) · (c− d)), · · ·)
v = 1 : Φ3,1(u · (b− a) ∧ (c− a) + (1− u) · (a− c) ∧ (d− c), · · ·) =

=Φ3,1((a− c) ∧ (u · (b− a) + (1− u) · (d− c)), · · ·).

57

If we substitute according to the following scheme:

x y z

u = 0 c− d b− d a− c

u = 1 a− b b− d a− c

v = 0 b− d a− b c− d

v = 1 a− c a− b c− d,

(5.13)

these four quadratic equations are all of the general typology

Φ3,1(x ∧ ((1− t) · y + t · z),x ∧ ((1− t) · y + t · z)) = · · · =
=(1− t)2Φ3,1(x ∧ y,x ∧ y) + t2Φ3,1(x ∧ z,x ∧ z)

+2t(1− t) (〈x,x〉L 〈y, z〉L − 〈x,y〉L 〈x, z〉L)︸ ︷︷ ︸
=:e

.

Therefore their solution for t is always

t1,2 =
Φ3,1(x ∧ y,x ∧ y)− e±

√
∆

Φ3,1(x ∧ y,x ∧ y) + Φ3,1(x ∧ z,x ∧ z)− 2e
,

and the discriminant is

∆ = (〈x,x〉L 〈y, z〉L − 〈x,y〉L 〈x, z〉L)2 − Φ3,1(x ∧ y,x ∧ y) · Φ3,1(x ∧ z,x ∧ z). (5.14)

Remember that Φ3,1(x∧y,x∧y) and Φ3,1(x∧z,x∧z) are the expressions for the steepness
of the tangent planes at the two corners of the edge on which we look for a steep tangent
plane, so these are known values and by assumption > 0.

In conclusion, we have reduced the problem of finding a steep tangent plane for a gen-
eral point on an HP surface to calculating the four numbers that we get from combining
eqs. (5.13) and (5.14). We just have to check whether any of these four numbers ∆ is bigger
than zero in order to know that there is in fact such a steep plane T(f).

5.4 Formulating the surface optimization in R3,1

In chapter 4 on the optimization of curves in R2,1 and in section 5.1 on curves in R3,1 we
were concerned with the optimization of envelopes for one-parameter families of circles or
spheres.
For the rest of this chapter, we want to turn our attention to surfaces in R3,1, e.g. the
optimization of envelopes for 2-parameter families of spheres.

58

Problem Statement for Surfaces

The optimization problem thus becomes

minimize
k∑
i=1

|Qi − f(u, v)|2 (5.15a)

subject to ζ−1(f(u, v)) is real, (5.15b)

and the distance in the objective function (5.15a) is the Euclidean distance, rather than
the distance based on the Minkowski norm of eq. (2.3). In the latter case we would run
into all sorts of problems with isotropic directions as described in sec. 5.1.2, which we want
to avoid altogether. We give a matrix formulation for the objective function sec. 5.4.1.

The constraint (5.15b) means that the inverse cyclographic image of the surface parametriza-
tion in R3 stays real, or, equivalently, that the tangent planes of f(u, v) ⊂ R3,1 stay Eu-
clidean. The formulation of this constraint is more involved than in the curve case and we
will explain it in several steps in sec. 5.4.3.

Computation and parametrization

We have introduced a formalism in sec. 5.2 that allows us to check whether a 2-plane in
R3,1 is pseudo-Euclidean, isotropic or Euclidean; here we want to apply it to tangent planes
of a surface. We must therefore choose a parametrization f(u, v) and for practical reasons
we restrict our attention to tensor product B-spline surfaces. More on the computational
details for such surfaces can be found in sec. 5.4.2.

Handling the constraint - 3 levels of rigidity

The tangent planes of f(u, v) are spanned by the partial derivatives fu and fv. We give the
specifics in sec. 5.4.3, where we present matrices in eq. (5.18) that linearizes this constraint.

For three different classes of surfaces we will present three levels of rigidity for the steepness
constraint:

1. The most general class of surfaces we will look at are bicubic tensor product B-spline
surfaces f(u, v), ie. the parameter lines in u- and v-direction are all cubic B-spline
curves. On these, we use a sampling of the surface and can only guarantee that the
tangent planes are Euclidean at each sampling point, which means that the envelope
of a 2-parameter family of spheres ζ−1(f(u, v)) is real at a discrete number of points.
This general approach, which is the foundation of all three, will be explained in
sec. 5.4.3.

2. If we consider tensor product B-splines surfaces of bidegree (3, 1), ie. strips of ruled
surfaces, one direction of parameter lines, say u-lines, will be cubic B-splines and the
other direction linear B-splines, ie. polylines. We will sample the cubic u-parameter

59

lines and given that they are Euclidean (on a sampling), the tangent planes along the
rulings (= the v-parameter lines) can be guaranteed to be Euclidean - without the use
of a sampling - by an algorithm presented in sec. 5.4.4. The theoretical background
for this algorithm was presented in sec. 5.2.

3. If both directions are linear, the single patches of the tensor product surface are
hyperbolic paraboloids in R3,1, which were investigated in sec. 5.3. For this class of
surfaces, we can even guarantee Euclidean surfaces without the need of a sampling,
as we will see in sec. 5.4.5.

5.4.1 Objective function and collocation matrices

We are ready to state a matrix formulation of the objective function. Remember that we
approximate a set of points Qk ∈ R3,1 by a tensor product B-spline surface.

We have already extended the objective function (4.1) to R3,1 for curves in sec. 5.1.2, now
we want to expand the surface analogue (5.15a) into matrix notation as

(fT − qT) · (f− q)→ min

= (bT · (blkdiag(MT , . . . ,MT)− qT) · blkdiag(M, . . . ,M) · b− q)

= bT ·


MTM

MTM

MTM

MTM


︸ ︷︷ ︸

=:G

·b− (5.16)

− 2 · bT ·blkdiag(MT ,MT ,MT ,MT) · q︸ ︷︷ ︸
=:e

+qT · q,

where blkdiag means a block diagonal matrix like in the Hessian G that is very sparse,
especially because the blocks themselves consist of sparse matrices. It follows that this
matrix has to be Tikhonov regularized, precisely as we have seen in sec. 4.4.

5.4.2 Notation for B-spline surfaces

Tensor product B-spline approximation was briefly introduced in sec. 3.1.3, our matrix
formulation for surfaces (the 2-parameter analogue of (4.3)) in R3,1 needs some explanation.

Assume control points to be given on a regular m by n grid in u and v-direction respectively.
Thus the matrix Bx (Farin [10] calls it the geometry matrix) containing all the x-coordinates

60

is n×m and the x-coordinates of the evaluated surface are given as

Fx(u, v) = Nv ·Bx ·NT
u , (5.17)

and equivalently for the other coordinates Fy,Fz,Fr. Nu and Nv are the collocation
matrices in u- and v-direction, whose number of rows is k. To clarify, the first row
of control points in the regular grid are [Bx(1, 1),By(1, 1),Bz(1, 1),Br(1, 1)] ∈ R3,1 to
[Bx(1, n),By(1, n),Bz(1, n), Br(1, n)] ∈ R3,1 and the kth row of Nu and Nv are the B-
spline basis functions (3.1) in u- and v-direction of the kth point.

The x-coordinates of the partial derivatives in u and v-direction, respectively, are then
given by

∂

∂u
Fx(u, v) = Nv ·Bx ·

∂

∂u
NT
u ,

∂

∂v
Fx(u, v) =

∂

∂v
Nv ·Bx ·NT

u ,

with ∂
∂u
Nu and ∂

∂v
Nv the collocation matrices of the first partial derivatives, i.e. the matrices

collecting the derivatives of the basis functions in u- and v-direction and analogously for
the other coordinates.

2-parameter collocation matrices

If we reshape the matrix BT
x into a column vector bx and FT

x into a column vector fx, we
can rewrite (5.17) as fx = M · bx, with

M =


Nv(1, 1)Nu(1, 1) . . . Nv(1, 1)Nu(1,m) Nv(1, 2)Nu(1,m) . . . Nv(1, n)Nu(1,m)

...
...

Nv(k, 1)Nu(k, 1) . . . Nv(k, 1)Nu(k,m) Nv(k, 2)Nu(k,m) . . . Nv(k, n)Nu(k,m)


= [diag(Nv(1 . . . k, 1)) ·Nu| . . . |diag(Nv(1 . . . k, n)) ·Nu],

where Nu(i, j) means the matrix’ entry in row i, column j. Therefore, M is the 2-parameter
analogue of the curve’s collocation matrix N, c.f. Farin [10]. We also define the collocation
matrices of the partial derivatives

Mdu := [diag(Nv(1 . . . k, 1)) · ∂
∂u

Nu| . . . |diag(Nv(1 . . . k, n)) · ∂
∂u

Nu],

Mdv := [diag(
∂

∂v
Nv(1 . . . k, 1)) ·Nu| . . . |diag(

∂

∂v
Nv(1 . . . k, n)) ·Nu].

5.4.3 Constraints for surface optimization

Analogously to sec. 4.3, we have to give a linearized version of the quadratic constraint
(5.15b), which in the surface case is actually slightly more involved. The constraint should

61

be, that for a surface f(u, v) its tangent planes stay Euclidean everywhere. We will sample
the parameter lines to check the steepness of the partial derivatives.

We describe this constraint in the following steps:

1. We ensure Euclidean tangents in the direction of the parameter lines, i.e. the con-
straint shall be fulfilled for a sampling of the partial derivatives fu(ui, vj) and fv(ui, vj).

2. If both fu(ui, vj) and fv(ui, vj) are Euclidean, we test if the tangent plane at f(ui, vj)
is Euclidean by computing Φ3,1(fu ∧ fv, fu ∧ fv)(ui, vj). We give a matrix formulation
for constraining the tangent plane of a surface in R3,1 to be Euclidean.

A summary of this algorithm can be found at the end of this section on page 63.

If we restrict our algorithm to only use strips of ruled surfaces, i.e. tensor product B-
spline surfaces of bidegree (3, 1), we can even guarantee more. For the purposes of this
derivation, we can assume that the parameter lines in u-direction are cubic curves and those
in v-direction are straight line segments; obviously, the sampling in u-direction should be
denser in that case.

3. We extend the constraint along the ruling between f(ui, vj) and f(ui, vj+1) and can
thus constrain the ruled surface between f(u, vj) and f(u, vj+1), u ∈ [0, 1] to be
Euclidean (given that the cubic curves are Euclidean). More on that in section 5.4.4
and especially in the algorithm on page 65.

For hyperbolic paraboloids (HP) in R3,1, we will employ a similar algorithm that is de-
scribed in sec. 5.4.5. For that, we only need a sampling of f(u, v) at the intersections of the
parameter lines, thus if f(u, v) would consist of a single HP surface, we would need only
the values at the four corners.

The constraint on parameter lines

We assume f(u, v) is parametrized as a bicubic tensor product B-spline surface, hence the
parameter lines in u and v-direction are cubic B-spline curves. We will not go into the
problem of finding such a parametrization for a pointclound in R3,1.
Therefore, constraining them to have only Euclidean tangents is exactly constraint (5.2),
i.e. the constraint for a curve in R3,1 to have only Euclidean tangents.
The difference to the constraint (5.2) for curves in R3,1 is that for parameter lines on
a surface, we need the definitions of sec. 5.4.2, where we explained among others the
collocation matrix of the partial derivatives Mdu and Mdv.

Then, for k sample points on the surface f(u, v), the k × 4-matrix of partial derivatives
w.r.t. u is given as fu = Mdu ·b and we define f̄u to be the projection - again a k×4-matrix

62

- of fu onto Γ as defined in sec. 4.3.2 and carried over to R3,1 in sec. 5.1.3. Then

Du := [diag(f̄u(1 . . . k, 1)) ·Mdu| . . . |diag(f̄u(1 . . . k, 3)) ·Mdu| − diag(f̄u(1 . . . k, 4)) ·Mdu]
(5.18a)

Dv := [diag(f̄v(1 . . . k, 1)) ·Mdv| . . . |diag(f̄v(1 . . . k, 3)) ·Mdv| − diag(f̄v(1 . . . k, 4)) ·Mdv]
(5.18b)

and Du · [bTx |bTy |bTz |bTw]T =
〈
fu, f̄u

〉
L

is a vector, whose kth entry is less than zero if and
only if fu(uk, vk) is pseudo-Euclidean.

The matrix Du thus linearizes the quadratic constraint that the angle between the partial
derivatives w.r.t u, fu(uk, vk), and the hyperplane x4 = 0 is less than π

4
for a sampling of

all parameter lines in u-direction. Analogous statements hold for Dv and fv(uk, vk).

The constraint for a discrete sampling of the surface

Analogously to what we have seen in sec. 4.4.1 on the KKT conditions, Du ·[bTx |bTy |bTz |bTw]T

is precisely the vector of slack variables yu and Dv · [bTx |bTy |bTz |bTw]T = yv. We already
know that tangent planes at points f(ui, vj) for which either entry yu,i or yv,j is ≤ 0 cannot
be Euclidean; the optimization algorithm will take care of those, we can concentrate on
the others.

Knowing that the partial derivatives fu(ui, vj) and fv(ui, vj) are Euclidean does not neces-
sarily mean that the tangent plane at f(ui, vj) is Euclidean. We thus employ the calculus
summarized in Theorem 1: Compute Φ3,1(fu ∧ fv, fu ∧ fv)(ui, vj); if it is ≤ 0, the tangent
plane at fv(ui, vj) is isotropic or pseudo-Euclidean, even though yu,i > 0 and yv,j > 0 by
assumption. We hence change the sign of ∆yv,j and thus activate this constraint. We could
have done the same to ∆yu,i, but we want to reserve this possibility for a similar idea with
ruled surfaces, see sec. 5.4.4.

Algorithm for constraining the tangent planes of a surface

Let us summarize the ideas of this section as an algorithm:

1. For a sampling of a B-spline surface f(ui, vj), compute the matrices Du and Dv of
the linearized constraint (5.18).

2. For index pairs (̄i, j̄) for which the slack variables yu,̄i > 0 and yv,j̄ > 0, compute the
bilinear form Φ3,1(fu ∧ fv, fu ∧ fv)(uī, vj̄).

3. For those (̄i, j̄) for which Φ3,1 ≤ 0, change the sign of ∆yv,j̄ to be minus.

With the simple trick in 3., we have activated the constraint with the help of Φ3,1, even
though both partial derivatives are Euclidean. This way, isotropic or pseudo-Euclidean
tangent planes enter the optimization.

63

In summary, we have given a linearization of the quadratic constraint (5.15b) on a discrete
number of sampling points f(uk, vk).

5.4.4 Constraints for ruled surface optimization

We have presented two matrices Du and Dv in equations (5.18) that represent the linearized
constraint for surface fitting in R3,1. Together with the bilinear form Φ3,1(fu ∧ fv, fu ∧ fv) it
can guarantee that a discrete sampling of tangent planes to f(u, v) stays Euclidean.
In this section we want to show a stricter constraint for the special case of tensor product
B-spline surfaces of bidegree (3, 1), i.e. strips of ruled surfaces.

We do not go into all the details of ruled surface fitting, which is usually carried out in R3

(but the extension to R3,1 is straightforward); they can be found in [30], [36] or [13] and
the vast number of references therein. Suffice it to say that initialization, which we will
address in sec. 5.5.2, is of great importance.

A ruled surface strip of f(u, v)

Let f(u, v) be a tensor product B-spline surfaces of bidegree (3, 1) in R3,1, i.e. the u-
parameter lines are cubic curves and the parameter lines in v-direction are line segments.
Let g(u, v̄) be the ruled surface strip between f(u, vj) and f(u, vj+1), u ∈ [0, 1] and v is
normalized such that v̄ ∈ [0, 1], then

g(u, v̄) = (1− v̄) · f(u, vj) + v̄ · f(u, vj+1).

It follows that the strip’s partial derivative w.r.t. u is

gu(u, v̄) = (1− v̄) · ∂f(u, vj)
∂u

+ v̄ · ∂f(u, vj+1)

∂u

and for any u0 we set a := ∂f
∂u

(u0, vj) and b := ∂f
∂u

(u0, vj+1). Hence, a and b are the
directions of the parametrized curves defining the ruled surface g(u, v̄) at a common ruling
r := g(u0, v̄).

The constraint between two u-parameter lines

Since we are building on the theory of sec. 5.4.3, we can assume that the tangent planes
at f(u0, vj) and f(u0, vj+1) are made Euclidean with the help of matrices Du and Dv of
eq. (5.18). However, the tangent planes along the ruling r change their direction and we
want to show how to constrain them to be Euclidean as well.

A tangent plane along the ruling is spanned by the constant direction ∂f
∂v

(u0, vj) of the
ruling r, and a linear combination of the directions a and b. To see if and where this linear

64

combination is an isotropic or pseudo-Euclidean direction, we calculate the two roots of
the quadratic equation

〈gu(u0, v̄),gu(u0, v̄)〉L = 〈(1− v̄)a + v̄b, (1− v̄)a + v̄b〉L = 0

⇔ v̄12 =
〈a, a〉L − 〈a,b〉L ±

√
〈a,b〉2L − 〈a, a〉L · 〈b,b〉L

〈a− b, a− b〉L
. (5.19)

The discriminant equals −Φ3,1(a ∧ b, a ∧ b). According to Theorem 1, it is > 0 whenever
the plane a∧b is pseudo-Euclidean. We can use this knowledge to construct an algorithm
that keeps the tangent planes of a ruled surface Euclidean.

Algorithm for ruled surfaces approximation

For ruled surfaces, we can extend the algorithm of section 5.4.3 on page 63, such that not
only tangent planes on a sampling of a surface are guaranteed to be Euclidean, but also
all tangent planes along the ruling of a ruled surface.

4. For index triples (i, j, j+1) for which the slack variables yu,i > 0, yv,j > 0 and yv,j+1 >
0, compute the bilinear form Φ3,1(fu(ui, vj) ∧ fu(ui, vj+1), fu(ui, vj) ∧ fu(ui, vj+1)).

5. For those (i, j, j + 1) for which Φ3,1 ≤ 0, compute the roots of eq. (5.19). If there are
any in the interval [vj, vj+1], change the sign of ∆yu,i to minus.

In step 5., we have used a similar trick to the one in 3., with the difference that we also
have to compute roots of the quadratic equation (5.19). Again, this allows to incorporate
a family of tangent planes into the linearized constraint of eq. (5.18).

In conclusion, we have given a special linearization of the quadratic constraint (5.15b) for
tensor product B-spline surfaces of bidegree (3, 1) that not only works on a discrete number
of sampling points f(uk, vk), but also for all planes along a ruling f(u0, v).

5.4.5 Constraints for hyperbolic paraboloidal surface optimization

Here we want to state an algorithm for ensuring that a bilinear tensor product surface
f(u, v) in R3,1 stays Euclidean. We will rely heavily on the findings of section 5.3 on
hyperbolic paraboloids in R3,1.

For two pairs of neighboring parameter lines of f(u, v), let a := f(u0, v0),b := f(u1, v0), c :=
f(u0, v1) and d := f(u1, v1). If we reparametrize u and v such that they are in [0, 1]× [0, 1]
on this patch, we can write f(u, v) exactly as in eq. (5.10) as a bilinear combination of these
four corner points.

65

Algorithm for constraining the tangent planes of a HP surface

1. At the corners a,b, c,d of a bilinear B-spline surface f(u, v), compute the matrices
Du and Dv of the linearized constraint (5.18).

2. Index pairs (̄i, j̄) for which the slack variables yu,̄i > 0 and yv,j̄ > 0 are precisely the
corners for which the directions a−b, c−d, a−c and b−d of the partial derivatives
are Euclidean.
For those, compute the bilinear forms Φ3,1((b−a)∧(c−a), (b−a)∧(c−a)),Φ3,1((d−
b) ∧ (a − b), (d − b) ∧ (a − b)),Φ3,1((c − d) ∧ (b − d), (c − d) ∧ (b − d)) and
Φ3,1((a − c) ∧ (d − c), (a − c) ∧ (d − c)), ie. compute the steepness of the tangent
planes T(a),T(b),T(c) and T(d).

3. For those (̄i, j̄) for which Φ3,1 ≤ 0, ie. for which a tangent plane is pseudo-Euclidean,
change the sign of ∆yu,̄i to be minus.

4. Compute the four discriminants of eq. (5.14), ∆ = (〈x,x〉L 〈y, z〉L−〈x,y〉L 〈x, z〉L)2−
Φ3,1(x∧y,x∧y) ·Φ3,1(x∧ z,x∧ z), using the substitution list (5.13) and change the
sign of ∆yv,j̄ to minus, whenever a discriminant is negative.

With the simple trick in 4., we have activated the constraint with the help of Φ3,1, even
though both partial derivatives are Euclidean. This way, isotropic or pseudo-Euclidean
tangent planes enter the optimization.

5.4.6 Footpoints and Regularization

In order to get a good approximation of the parameter values of closest points, the com-
putation of footpoints is central, see sec. 3.2. The 2-parameter case is explained there in
detail and the fact that we work in R3,1 instead of R3 makes no mentionable difference.
Geometric regularizations (see sec. 3.3) is more important in the surface than in the curve
case, as matrices tend to be more sparsely filled and therefore optimization is less flexible
to outliers.

5.5 Optimization framework for surfaces in R3,1

In this section we give a detailed explanation of how to use the primal-dual interior point
algorithm of sec. 4.4.1 to optimize surfaces in R3,1.

Same as in section 4.4.1, we will use Newton’s method to solve a system of equations. We

66

can thus restate the full Newton step as G 0 −DT

D −I 0

0 Λ Y


 ∆b

∆y

∆λ

 = −

 Gb−DTλ + e

Db− y

ΛYe+ ∆Λaff∆Yaffe− σµe

 . (5.20)

This system is almost the same for surfaces in R3,1 as it is for curves in R2,1 except for
the sizes of matrices. The dimension of the Hessian G has changed as we have seen in
sec. 5.4.1, as have all variables whose size depend on the size of the control point vector b.

Remember that Y and Λ are diagonal matrices containing the slack variables y and the
Lagrange multipliers λ respectively; we have used the notation yu and yv in sec. 5.4.3 for
the slack variables of the constraint in u- and v-direction and simply concatenate these
vectors to form y.
I is the identity matrix, e is a vector of ones. The first block of entries in the column vector
on the right-hand side of eq. (5.20) is called dual residual and the vector e it contains was
defined in (5.16).
For duality measure µ and centering parameter σ we mostly followed Nocedal & Wright [29]
and could not see grave changes by deviating from the standard values as explained in
sec. 4.4.3 for the curve case.

5.5.1 Variables of the optimization

As mentioned above, the interior point formulation for optimizing surfaces in R3,1 solemnly
depends on the definitions of some key ingredients, which we want to discuss in this section.

The Hessian matrix G

The matrix G or Hessian of the objective function was defined in eq. (5.16). Similar to
the curve case we regularized it with Tikhonov, first and second derivative regularization
(see sec. 3.3) by adding the identity matrix I, L1 and L2 of eq. (3.11) with factors in the
magnitude 10−4 to 10−2, depending on the example. Very often the whole matrix on the
left-hand side of eq. (5.20) (the Jacobian of the Newton-KKT system) was also Tikhonov
regularized depending on its condition number.

The matrices of the linearized constraint D

In a practical implementation, f(u, v) is sampled k-times, the matrices Du and Dv of
eq. (5.18) representing the linearized steepness constraint are computed and subsumed as
the matrix of linear constraints D.
Section 5.4.3 is devoted to explain the construction of these matrices of the linear constraint.
The algorithm on page 63 describes how the information of tangent planes rather than

67

partial derivatives is incorporated into these matrices by using the bilinear form Φ3,1(fu ∧
fv, fu ∧ fv), which classifies 2-planes in R3,1.

If one wants to approximate a set of points Qk ∈ R3,1 by a ruled surface in R3,1, sec. 5.4.4
shows that the matrix of the linearized constraint can be adapted to also include tangent
planes along the surface’s rulings. Furthermore, in sec. 5.4.5 we explain how to use these
matrices to optimize for Euclidean hyperbolic paraboloidal surfaces in R3,1.

Lagrange multipliers λ and slack variables y

The vector Du · [bTx |bTy |bTz |bTw]T =
〈
fu, f̄u

〉
L

is actually the vector y of slack variables in the
KKT-conditions. We already know that this vector is less than zero for pseudo-Euclidean
partial derivatives, thus causing the tangent plane to be pseudo-Euclidean.
We make use of the slack variables to encode the steepness of tangent planes, as was
explained in great detail in sec. 5.4.3, 5.4.4 and 5.4.5: If partial derivatives w.r.t u and v are
Euclidean at a point f(ui, vj), but the tangent plane is not, the sign of the corresponding
slack variable difference is changed. This has great effect on the choice of the step size
parameter αpri.

5.5.2 Initial values

For our interior point optimization, the vector of control points are the primal variables,
whose initialization is of foremost importance. Initializing the slack variables as well as the
Lagrange multipliers (the dual variables) is important as well.

Initializing the net of control polygon while ignoring the constraint

For the examples of sec. 6.3, we only used data for which the points Qk to be interpolated
lie on a rectangular grid in x1- and x2-direction. We then triangulated this area and made
independent scattered data interpolations for the x3- and x4-coordinates. This gave a good
initialization for the net of control points b0.

Finding feasible starting positions for the control polygon

The trivial initialization, i.e. projection to the x4 = 0-hyperplane, or, equivalently, setting
all spheres’ radii to zero always works, but this starting position is potentially far from the
optimum. Even though that is not a restriction in theory, a practical algorithm might fail
to converge, especially when facing a non-convex constraint.

Therefore, we first approximated the points Qi ∈ R3,1 with a surface in R3,1 while ignoring
the steepness constraint. We then locally reduced the spheres’ radii until reality of the
envelope surface was reached, very similar to what was done in the curve case, see sec. 4.4.2.

68

Initializing the slack variable y and the Lagrange multipliers λ

We initialized the slack variables as yu := Du · b0 and yv = Dv · b0 for a feasible starting
position of the control polygon b0, and the Lagrange multipliers λ to be identical to one.

Only in the first iteration, the slack variables y are slightly corrected by first computing
the affine scaling step and then redefining y := max(10−5,y + 10−4∆yaff); the Lagrange
multipliers are also updated as λ := 10−3 min(max(0,λ+∆λaff), 1), which works very well,
see a similar construction in the curve case of sec. 4.4.3.

69

6 Examples

In the final chapter of this work, we want to present examples for our optimization, which
is an implementation of the interior point algorithm of Nocedal & Wright [29]. As we
have seen in chapters 4 and 5, the main challenge was to formulate a linearization of
the quadratic, non-convex constraint that tangents (for curves) and tangent planes (for
surfaces) should stay Euclidean.
We implemented all the code for the algorithms in Matlab [46] without the use of external
libraries or optimization solvers. After all, all that is needed are solvers for systems of
linear equations, for which we relied on Matlab’s built-ins.

Figure 6.1: The original points in R2,1 in red and their connecting lines in blue - note that
the blue line in the middle has an angle of π

4
with the xy-plane by construction.

The final curve (purple) avoids steep tangents, as can be seen by the final
control polygon in green. Right the inverse cyclographic image of the curve in
green and red, as well as the curve’s top view in black.

Chapter Overview

The order of this chapter follows the order of the previous chapters. In sec. 6.1 we prescribe
a set of ordered points Qk in R2,1, through which we fit a cubic B-spline curve c(u) in R2,1.

70

The inverse cyclographic image of this curve ζ−1(c(u)) are the two branches of the envelopes
of the circles ζ−1(Qk).

Sec. 6.2 is already one dimension higher, i.e. the 1-parameter set of points Qk is in R3,1

and so is its interpolating curve. Translating this information via the inverse cyclographic
mapping, we find canal surfaces that interpolate a set of spheres in R3.

Finally, section 6.3 is dedicated to 2-parameter families of spheres in R3, which is by the
cyclographic mapping a 2-parameter set of points Qk ∈ R3,1. These Qk are interpolated by
a surface f(u, v). We show an example for the interpolation with a bicubic tensor product
B-spline surfaces, as well as for the case of piecewise ruled surfaces.

6.1 Examples for envelopes of circles

Here we see examples of our algorithms in 2D, e.g. we are given an ordered set of oriented
circles or, equivalently, an ordered set of points in R2,1. These points are approximated
with a curve that has tangents no steeper than π

4
, see Fig. 6.1.

We will start of with some examples that work very well due to the setting of the circles
and gradually introduce challenges.

6.1.1 General Strategy explained by the example of Figure 6.2

We have given a step-by-step description of the interior point algorithm for curves in R2,1

in section 4.4.3; here we want to show an example that follows this iteration.

The points Qk, k = 0, . . . , 18 in R2,1 that are to be approximated are given by (3, 6.8, 0.13),
(2.5, 7.1, 0.25), (1.5, 7.5, 0.8), (0.5, 7.5, 0.5), (0.1, 6.85, 0.4), (0.5, 6, 0.5), (1.2, 5, 1.1), (1.5, 4, 1.25),
(1.2, 2.75, 0.85), (0.95, 2, 0.45), (0.95, 1.5, 0.42), (1.2, 0.9, 0.35), (1.6, 0.4, 0.3), (2.2, 0.3, 0.2),
(2.6, 0.7, 0.2), (2.7, 1, 0.18), (2.5, 1.4, 0.18), (2.2, 1.6, 0.15) and (1.9, 1.5, 0.13). Initial param-
eter values are chosen by chord length parametrization (3.3).
In order to have enough flexibility for the curve, we want a cubic curve consisting of n = 100
segments, which would lead to a rank deficient system, see sec. 3.1.1 for terminology.

We thus first compute a auxiliary spline curve via a least squares approximation, which
ignores any constraints of steepness or self intersections. 81 = 100 − 19 auxiliary points
are computed on this auxiliary curve and the number of equally spaced knots is chosen to
be n−

√
n+ 3, which works fine for all examples.

For this simple example, the auxiliary spline is feasible everywhere, so the steps described
in sec. 4.4.2 are unnecessary, i.e. we do not have to lower the z-coordinates of the control
points.

71

Entering the iteration, parameter values for the 19 Qk are computed via footpoints (see
sec. 3.2) and thus the collocation matrix, which is enhanced or stabilized by regularization
terms, the Lagrange factors for which depend on some heuristic, start at 10−4 and decrease
exponentially.
The matrix D of sec. 4.3 representing the linearized steepness constraint is established.

Then the Newton steps are computed, following the Interior Point algorithm of sec. 4.4.1.
Fig. 6.2, bottom left shows the convergence rate, which reaches an error of magnitude 10−7

after about 30 iterations. This error is always meant to be the value of the objective
function (4.1). Fig. 6.2, bottom right gives the curve in R2,1 at different stages of the
algorithm. Remember that the steepness at sample points (black dots) has be fulfilled at
all times. The top row shows the envelopes at different stages of the algorithm; in the
following examples we will only show this situation in R2, as visual inspection is much
easier there.

72

Figure 6.2: An example of envelopes using the Interior Point algorithm at different stages,
top from left to right : fifth iteration after initialization with a flat curve, after
ten iterations, after 15 iterations, final result after 30 iterations. bottom left
convergence rate for interior point; bottom right : curves in R2,1 for the first 15
iterations.

73

Figure 6.3: Initialization is carried out by first approximating the points Qk ∈ R2,1 by a
cubic B-spline curve while ignoring the steepness constraint, then lowering the
z-coordinate until a feasible starting position has been reached; (top left), after
10 iterations of the interior point algorithm (top right), final result (bottom left)
and convergence rate.

Figure 6.4: Two examples of envelopes using the Interior Point algorithm. Note that the
choice of regularization factors λ1 and λ2 that govern the weights of the added
derivatives operators (see sec. 3.3.1) has to be chosen for every example sepa-
rately, but is usually between 10−6 and 10−4.

74

Figure 6.5: Two examples of envelopes (top row); Bottom row : the graph of convergence
rates, where the y-axis shows the value of the objective function (4.1) on a log-
arithmic scale; the x-axis shows the number of iterations, blue curves represent
the interior point algorithm.

Figure 6.6: An example using the interior point algorithm, left the resulting curve in pink,
the initial curve in blue, right the top view which shows the envelopes of circles.
Note that the green envelope can not be realized without self-intersection. See
Fig. 6.7, left for convergence rates of the interior point algorithm.

75

Figure 6.7: Convergence results: the value of the objective function (4.1) and thus the
point-wise distance from the input points Qk to the curve is the error measure
in blue, given on a logarithmic scale; the x-axis shows the number of iterations.
left is for the example shown in Fig. 6.6 and right the example in Fig. 6.4, right.

6.1.2 Effects of the steepness constraint

Figure 6.8: An example using the interior point algorithm, left the resulting curve in pink,
the initial in blue, right the top view which shows the envelopes of circles. Note
that one small circle is entirely contained in another, so without optimization
the envelope would be imaginary, c.f. Fig.6.9.

As was explained in sec. 2.3.2, the inverse cyclographic image of a curve c(u) is the envelope
of a family of circles, which are two parametrized curves l1,2, defined in eq. (2.12). These
curves are real for 〈ċ, ċ〉L ≥ 0, or equivalently, if the angle between ċ and the xy-plane is
≤ π

4
.

The main concern of this thesis is the steepness constraint, which ensures that this criterion
is met at a dense sampling of the curve c. Therefore, if this constraint is left out from the
optimization, we expect the l1,2 to be imaginary, thus - as the illustrations in this chapter

76

only show the real parts of curves - l1,2 will have visual discontinuities. This effect can be
observed in Fig. 6.9.
Our optimization strategy was outlined in sec. 6.1.1, where the role of a auxiliary spline
for a starting position was explained. This auxiliary spline is a simple least squares ap-
proximation without any constraint, thus in general violating the steepness constraint at
many points - this is the picture shown in Fig. 6.9 for the curves of Fig. 6.8 and Fig. 6.1.
As this auxiliary spline is already very close to the final result in many cases, it would be
a very good starting position, but unfortunately our implementation of the interior point
algorithm needs a feasible starting point, so we lower the z-coordinate until all tangents
are Euclidean, see sec. 4.4.2.

Figure 6.9: When carrying out a curve approximation without the steepness constraint, the
inverse cyclographic images of the examples of Fig. 6.8 (left) and Fig. 6.1 (right)
have partly imaginary curve segments, which explains the visual discontinuities
of the (real) curves shown here.

6.2 Examples for 1-parameter envelopes of spheres

Given a 1-parameter family of spheres in R3, one wants to find the canal surface that
envelopes it, see sec. 2.3.3 for notation. By the cyclographic mapping, this problem can
be transferred to finding a curve c(u) ∈ R3,1 that interpolates points Qk in 4-dimensional
Minkowski space R3,1. If all tangents to c(u) are Euclidean, i.e. all tangents enclose an angle
≤ π

4
with the x4 = 0-hyperplane, then the corresponding canal surface is real everywhere.

We have described an algorithm for carrying out this task in sec. 5.1 and want to show
some examples here. The code to generate the examples of this section is based on the

77

Interior point method for curves in R2,1, whose results we have seen in sec. 6.1. It was
extended to curve fitting in R3,1 without difficulty, as there are only minor adjustments.

Figure 6.10: Two examples of envelopes of spheres using the Interior Point algorithm gener-
alized to R3,1, e.g. canal surfaces. The original spheres are shown in black, the
resulting envelope in turquoise. The curve approximation and the steepness
constraint carry over directly from R2,1 to R3,1.

78

Figure 6.11: Three views of an example of envelopes of spheres using the Interior Point
algorithm. The original spheres are shown in black, the resulting envelope
in turquoise. This is the example shown in Fig. 6.2 with an extra dimension
added, which does not change computation time.

6.3 Examples for 2-parameter envelopes of spheres

In the final section of this work, we will present examples for envelopes of 2-parameter
families of spheres as was explained in sec. 5.4. The first example of sec. 6.3.1 is a bicubic
B-spline surface as explained in sec. 5.4.3.

For the examples of sec. 6.3.2 and 6.3.3, we approximate with tensor product B-Spline
surfaces of degree {3, 1}, i.e. one direction is cubic and the other linear, thus giving a
piecewise ruled surface, see sec. 5.4.4 for algorithmic details.

6.3.1 Wave example

In this example, the points Qi lie on a surface f(u, v) = (u, v, 3 − r
2
, 3 sin(r)

r
), with r =√

u2 + v2 + ε and ε > 0 very small. This surface is symmetric with respect to inter-
changing u, v, i.e. rotational symmetry in the x0x1-plane. The measure of steepness thus
becomes g(u) = 〈fu(u, 0), fu(u, 0)〉L = 5

4
− 9

(u+ε)2
(cos(u+ ε)− sin(u+ε)

u+ε
)2, which is symmetric

in u, i.e. g(−u) = g(u) and negative for u ∈ [1.3472, 2.8423] (numerically determined
roots). The values for which 〈fu, fu〉L < 0, 〈fv, fv〉L < 0, 〈fu + fv, fu + fv〉L < 0 and
〈fu − fv, fu − fv〉L < 0 have been marked red in Fig. 6.12, top row in order to show the
difficulties of this example.
As an initial value, we first approximated the points Qi without any steepness constraint

79

and then scaled the control points in the center by a factor 4
5
, which gives a feasible starting

point. As can be seen in Fig. 6.13 (second row right) the convergence is very fast in the
beginning when the iteration takes big steps toward the points; after about 60 iterations
no significant improvement can be made due to the strict steepness constraint.

6.3.2 Sine cylinder

For the first of the piecewise ruled surface examples the points Qi are regular samples
of a cylinder with the parametrization f(u, v) = (x0, x1, x2, x3) = (u, v, 1, 6

5
sin(u)), u ∈

[0, 2π], v ∈ [0, 4]. The partial derivative ∂f
∂v

= (0, 1, 0, 0) is always Euclidean, but for fu :=
∂f
∂u

= (1, 0, 0, 6
5

cos(u)) it holds that 〈fu, fu〉L = 1 − 36
25

cos2(u) < 0 for u ∈ [0, arccos(5
6
)) ∪

(arccos(−5
6
) + π, 2π].

We started with two different initial values for a ruled surface approximation, once we
shrunk the x3-coordinate by a factor of 5

6
, see Fig.s 6.14 and 6.15, left columns, the other

case was stretching the x0-coordinate by factor 6
5
, see Fig.s 6.14 and 6.15, right columns.

For this simple example, the ruling direction fv is parallel to x2 and has little to no
effect on the outcome, see Fig. 6.14, third row. Therefore, the partial derivative vec-
tors fu(u0, vj) are parallel for fixed u0 and varying vj, thus if the vector fu(u0, v0) is
Euclidean/isotropic/pseudo-Euclidean, so is the tangent plane at f(u0, v0).

6.3.3 Peaks example

This example stems from combining Matlab’s [46] peaks function p(u, v), which is described
to be ”[· · ·] a function of two variables, obtained by translating and scaling Gaussian
distributions, which is useful for demonstrating [· · ·]” as x3-coordinate, and x2 = sin(u),
thus f(u, v) = (u, v, 0.15 · p(u, v), sin(u)), see Fig.s 6.16 and 6.17.

80

Figure 6.12: The surface f(u, v) = (u, v, 3 − r
2
, 3 sin(r)

r
) of sec. 6.3.1 (wave example): top

row left: an axonometric view of the hyperplanar section x3 = 0, right: an
axonometric view of the hyperplanar section x2 = 0; surface evaluated on a
grid, points with pseudo-Euclidean (mixed) partial derivatives in red ; second
row: the cyclographic preimage of an initial value for a bicubic B-spline surface
approximation; last row left : values in the hyperplanar section x3 = 0, right
in hyperplanar section x2 = 0 from start (blue) and intermediates to finish
(black).

81

Figure 6.13: First row: the cyclographic preimage of the resulting bicubic B-spline surface
of the wave example of Fig. 6.12. Numerical analysis, second row left: the
hyperplanar section x2 = 0 of the resulting surface in color, points Qi in black,
footpoints in blue; right: numerical convergence rate on a logarithmic scale
measuring the sums of distances from Qi to its footpoints.

82

Figure 6.14: The sine cylinder example of sec. 6.3.2, top row: projections to the x0x3-
plane left: input points as blue dots, for initial position the x3-coordinate is
shrunk (blue curve), the resulting curve in black. right : for initial position
the x0-coordinate is stretched (blue curve); second row : hyperplanar section
by x2 = 0; initial values in blue, intermediate and final results in black ; third
row : projection to the x0x2-plane; initial values in blue, intermediate and final
results in black - note that the scale on the x2-axis is 105-times smaller than
on the x0-axis; fourth row: the cyclographic preimages have two branches,
input points Qi rendered as gray spheres.

83

Figure 6.15: The analysis of the sine cylinder example of sec. 6.3.2, top row left: projection
of the resulting surface to the x0x3-plane in colors, input points Qi in black,
footpoints in blue; the value of the objective function is the sum of distances
between input and footpoints, second row: the graph of this function versus
the iteration is the numerical convergence rate (on a logarithmic scale) - left
initial position x3-coordinate shrunk, right for initial position x0-coordinate
stretched; third row: the values of the primal stepsize parameter αpri in blue,
the dual αdual in black on a logarithmic scale.

84

Figure 6.16: The surface f(u, v) = (u, v, 0.15 · p(u, v), sin(u)) of sec. 6.3.3 (peaks example):
First row: Starting position in axonometric and top view of the cyclographic
preimage; second row left: hyperplanar section x2 = 0 and right hyperplanar
section x3 = 0 from start (blue) and intermediates to finish (black); third row:
cyclographic preimage of the resulting piecewise ruling surface.

85

Figure 6.17: First row left: hyperplanar section x2 = 0 from start (blue) and intermediates
to finish (black), right: stepsize parameters, αpri in blue and αdual in black
on a logarithmic scale for 200 iterations. Numerical analysis: second row left:
the hyperplanar section x2 = 0 of the resulting surface in color, points Qi in
black, footpoints in blue. Right: numerical convergence rate on a logarithmic
scale measuring the sums of distances from Qi to its footpoints.

86

List of Figures

1.1 Introductory example . 1
1.2 Applications: error paths, gently inclined roads, medial axis transform . . . 3

2.1 Types of lines in Minkowski space . 7
2.2 Types of planes in Minkowski space . 9
2.3 Distances of circles . 11
2.4 Cyclographic images of three different types of lines 12
2.5 Cyclographic image of a curve . 14
2.6 Offsets of curves and distance function . 15
2.7 The two developable surfaces of constant slope Dp 16
2.8 Canal surfaces as cyclographic image of a curve in R3,1 17
2.9 Inverse cyclographic image of a surface in Minkowski space 18

3.1 B-spline basis functions . 19
3.2 Footpoint computation . 24

4.1 An example explaining the task of the optimization 27
4.2 Unparameterized solution of a special case via [12] 30
4.3 Curve and hodograph . 31
4.4 Projection orthogonal to cone Γ . 37
4.5 Procedure to find the initial position of the control polygon 41

5.1 A sketch of the situation at infinity . 55

6.1 Two examples of optimized curves using the interior point algorithm 70
6.2 An example of envelopes using the Interior Point algorithm in 5 steps . . . 73
6.3 Initialization through a cubic B-spline, final result and convergence rate . . 74
6.4 Two examples of envelopes using the Interior Point algorithm 74
6.5 Two examples of envelopes and their convergence rates 75
6.6 Example of optimized curves using the interior point algorithm 75
6.7 Convergence of two examples . 76
6.8 Example of optimized curves using the interior point algorithm 76
6.9 Curve approximation without the steepness constraint 77
6.10 Two examples of envelopes of spheres . 78
6.11 Three views of an example of envelopes of spheres 79
6.12 Wave example, position . 81

87

6.13 Wave example, final position and analysis 82
6.14 Sine cylinder example, positions . 83
6.15 Sine cylinder example, analysis . 84
6.16 Peaks example, starting position . 85
6.17 Peaks example, analysis . 86

88

Bibliography

[1] K. Abdel-Malek, Y. Jingzhou, D. Blackmore, and K. Joy. Swept Volumes: Fundation,
perspectives, and applications. International Journal of Shape Modeling, 12(1):87–127,
2006.

[2] S. J. Ahn. Least squares orthogonal distance fitting of curves and surfaces in space,
volume 3151 of Lectures Notes in Computer Science. Springer-Verlag New York Inc,
2004.

[3] A. Blake and M. Isard. Active contours. Springer London, 2000.

[4] W. Blaschke. Vorlesungen über Differentialgeometrie, volume Bd 3: Differentialge-
omtrie von Kreisen und Kugeln. Springer, 1929.

[5] J. J. Callahan. The Geometry of Spacetime. Springer, 2000.

[6] H. Cheng and X. Shi. Quality mesh generation for molecular skin surfaces using
restricted union of balls. In Visualization, 2005. VIS 05. IEEE, pages 399–405. IEEE,
2005.

[7] H. Choi, S. Choi, and H. Moon. Mathematical theory of medial axis transform. Pacific
Journal of Mathematics, 181(1):57–88, 1997.

[8] M. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, New
Jersey, 1976.

[9] H. Edelsbrunner. Deformable smooth surface design. Discrete and Computational
Geometry, 21(1):87–115, 1999.

[10] G. Farin. Curves and Surfaces for CAGD. A practical guide. Morgan Kaufmann
Publishers, fifth edition edition, 2002.

[11] G. Farin and J. Hoschek. Handbook of computer aided geometric design. North Hol-
land, 2002.

[12] S. Flöry. Fitting curves and surfaces to point clouds in the presence of obstacles.
Computer Aided Geometric Design, 26:192–202, 2009.

[13] S. Flöry. Constrained Matching of Point Clouds and Surfaces. PhD thesis, Vienna
University of Technology, 2010.

89

[14] P. M. Gruber. Convex and discrete geometry. Springer, 2007.

[15] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. Siam, 1998.

[16] J. Hoschek. Intrinsic parametrization for approximation. Computer Aided Geometric
Design, 5(1):27–31, 1988.

[17] J. Hoschek and B. Jüttler. Techniques for fair and shape–preserving surface fitting
with tensor–product B-splines. In Shape Preserving Representations in Computer
Aided Design (J.M. Peña, ed.), pages 163–185. Nova Science publishers, New York,
NY, 1999.

[18] J. Hoschek and D. Lasser. Grundlagen der geometrischen Datenverarbeitung. Teubner,
1988.

[19] S.-M. Hu and J. Wallner. A second order algorithm for orthogonal projection onto
curves and surfaces. Computer Aided Geometric Design, 22(3):251 – 260, 2005.

[20] T. W. Hungerford. Algebra. Springer, 1974.

[21] D. James and C. Twigg. Skinning mesh animations. In ACM SIGGRAPH 2005
Papers, pages 399–407. ACM, 2005.

[22] J. Kosinka and B. Jüttler. G1 hermite interpolation by minkowski pythagorean hodo-
graph cubics. Computer Aided Geometric Design, 23(5):401 – 418, 2006.

[23] J. Kosinka and B. Jüttler. C1 Hermite interpolation by Pythagorean hodograph quin-
tics in Minkowski space. Adv. Comput. Math., 30(2):123–140, 2009.

[24] N. Kruithof and G. Vegter. Envelope surfaces. In Proceedings of the twenty-second
annual symposium on Computational geometry, pages 411–420. ACM, 2006.

[25] R. Kunkli and M. Hoffmann. Skinning of circles and spheres. Computer Aided Geo-
metric Design, 2010.

[26] I. Lee, M. Kim, and G. Elber. Planar curve offset based on circle approximation.
Computer-Aided Design, 28(8):617–630, 1996.

[27] Q. Lin and J. Rokne. Disk bézier curves. Computer Aided Geometric Design,
15(7):721–737, 1998.

[28] E. Müller and L. Krames. Vorlesungen über Darstellende Geometrie II. Deuticke,
Leipzig und Wien, 1929.

[29] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, seond edition edition,
2006.

[30] M. Peternell. Developable surface fitting to point clouds. Computer Aided Geometric
Design, 21(8):785–803, 2004.

90

[31] M. Peternell, B. Odehnal, and M. Sampoli. On quadratic two-parameter families
of spheres and their envelopes. Computer Aided Geometric Design, 25(4-5):342–355,
2008.

[32] M. Peternell and H. Pottmann. Computing rational parametrizations of canal surfaces.
Journal of Symbolic Computation, 23:255–266, 1997.

[33] M. Peternell and T. Steiner. A geometric idea to solve the eikonal equation. In
B. Jüttler, editor, SCCG ’05: Proceedings of the 21st spring conferenceon Computer
graphics, pages 43–48. ACM Press, 2005.

[34] L. Piegl and W. Tiller. The NURBS book. Springer Verlag, 1997.

[35] H. Pottmann, P. Grohs, and B. Blaschitz. Edge offset meshes in Laguerre geometry.
Advances in Computational Mathematics, 33(1):45–73, 2010.

[36] H. Pottmann and S. Leopoldseder. A concept for parametric surface fitting which
avoids the parametrization problem. Computer Aided Geometric Design, 20(6):343–
362, 2003.

[37] H. Pottmann, S. Leopoldseder, and M. Hofer. Approximation with active B-spline
curves and surfaces. In S. Coquillart, S.-M. Hu, and H.-Y. Shum, editors, 10th Pacific
Conference on ComputerGraphics and Applications, pages 8–25. IEEE Press, 2002.

[38] H. Pottmann and M. Peternell. Applications of Laguerre geometry in CAGD. Com-
puter Aided Geometric Design, 15(2):165–186, 1998.

[39] H. Pottmann and M. Peternell. Envelopes-Computational theory and applications.
Proceedings, Spring Conference on Computer Graphics and its Applications, Bud-
merice, Slovakia, 2000.

[40] H. Pottmann and M. Peternell. On approximation in spaces of geometric objects. The
Mathematics of Surfaces IX, R. Cipolla and R. Martin, eds., Springer, London, pages
438–458, 2000.

[41] H. Pottmann and J. Wallner. Computational Line Geometrry. Springer, 2001.

[42] A. Quarteroni, R. Sacco, and F. Salieri. Numerische Mathmatik 1. Springer, 2002.

[43] E. Saux and M. Daniel. An improved Hoschek intrinsic parametrization. Computer
Aided Geometric Design, 20(8-9):513–521, 2003.

[44] G. Slabaugh, G. Unal, T. Fang, J. Rossignac, and B. Whited. Variational skinning of
an ordered set of discrete 2D balls. In Proceedings of the 5th international conference
on Advances in geometric modeling and processing, pages 450–461. Springer-Verlag,
2008.

[45] G. Slabaugh, B. Whited, J. Rossignac, T. Fang, and G. Unal. 3D ball skinning using

91

PDEs for generation of smooth tubular surfaces. Computer-Aided Design, 42(1):18–26,
2010.

[46] The Mathworks, Inc. Matlab (software package), R2010b.
http://www.mathworks.com/products/matlab/, 2010.

[47] Y. Tsai. Rapid and accurate computation of the distance function using grids. Journal
of Computational Physics, 178(1):175–195, 2002.

[48] J. Wallner, R. Krasauskas, and H. Pottmann. Error propagation in geometric con-
structions. Computer Aided Design, 32(11):631–642, 2000.

[49] J. Wallner and Q. Yang. Swept volumes of many poses. In Proceedings of the third
Eurographics symposium on Geometry processing, page 161. Eurographics Association,
2005.

[50] W. Wang, H. Pottmann, and Y. Liu. Fitting B-spline curves to point clouds by
curvature-based squared distance minimization. ACM Transactions on Graphics
(TOG), 25(2):238, 2006.

92

Curriculum Vitæ

Bernhard Blaschitz

Date of Birth January 12th, 1983 in Vienna

Maritial Status Married, one daughter

Nationality Austrian

Address Tamariskengasse 28, 1220 Wien

Email bernhard.blaschitz@waagner-biro.at

Work and Education

since 2012 Advanced Geometry Engineering team at Waagner-Biro Stahlbau AG

2008-2012 University Assistant, Vienna University of Technology
Institute of Discrete Mathematics and Geometry

2011 Visiting Researcher, Freie Universität Berlin,
AG Mathematical Geometry Processing, Prof. Konrad Polthier

09/2010 Summer School on Discretization of Geometry and Dynamics,
by scholarship of and organized by Berlin Mathematical School

2008 Master of Science in Mathematics, University of Vienna
Completed with distinction

2008 Diploma thesis at Technical University of Vienna supervised by Prof. H.
Pottmann; title Discrete Isothermic Surfaces in Isotropic Geometry

04/2006 Spring School on Abelian Varities, Leiden University, Netherlands
by invitation of the Erasmus Mundus program ALGANT

2005/2006 Erasmus stay, University of Padova, Italy

2001 High school diploma with distinction, BG/BRG Krems, Piaristengasse 2

1998/1999 High school exchange year, Essex Junction, Vermont, USA

93

