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Die Hinterseite des Mondes sieht man meistens nicht. 

One rarely sees the backside of the moon. * 

(Anonymous) 

*It is not known whether this is meant as an allegory for the problem of cognition or whether it refers to 
the issue of occlusions @. 



Abstract 

For the purpose of surface reconstruction from two or more digital photographs, it is necessary 
to determine points in the images that portray the same surface point. The process that seeks 
to retrieve the correspondences is called image matching. For the calculation, one image, 
which may be a virtual image like the orthophoto or the cyclopean image, serves as reference 
domain. Admitting virtual images, it is possible to consider various constellations, such as 
image-to-image matching and surface reconstruction by orthophoto-to-image matching, in a 
common framework. The reference domain serves for the parameterization of the surface, 
abstractly of the geometric connection. An important aspect is, whether it leaves parts of 
the geometric connection unmodeled. Global image matching seeks to calculate maps from 
the reference domain to the image domains. In contrast, local methods consider point-to­
point correspondences only. Parameterizations of the maps by scalar matching functions, e.g. 
disparity or height, are used to enforce geometric constraints. The reference domain serves 
as support for geometric and radiometric properties of the surface model. 

The proposed method is intensity-based. It follows the energy minimization paradigm. 
The energy comprises image energy terms, one for each processed image, and a deforma­
tion energy term, which accounts for the a priori probability of the matching function. In 
the course of modeling, the images are treated as continuous rather than sampled functions. 
The energy terms are integrals and the minimization problem is a variational problem. The 
image energy of a single image, also called similarity measure, indicates the conformance of 
the image with the model in terms of intensity values. The formulation follows the princi­
ple of forward modeling. This means that the similarity measure is based on a model that 
describes the dependency of the image data on the parameters of the model of the surface. 
The resulting similarity measure exhibits the following advantages with respect to related 
approaches: Regions of an image contribute to the similarity measure according to their size 
in image space and not according to their extent in the model. The similarity measure is 
invariant with respect to the choice of reference domain. For multi-image matching, the im­
ages that portray a particular surface area best, that is with best spatial resolution, dominate 
the reconstruction process. The similarity measure supports the modeling in the presence of 
occlusions and ensures continuity in that case. If for the contour lines a regularity assumption 
holds, it is also differentiable. 'freating the images as continuous functions is important in 
order to reveal the structure of the problem. Employing Finite-Elements methods for the 
discretization leads to a high computational effort. Approximation by finite sums and finite 
differences is possible in two variants: using a single grid only or using a pair of dual grids. 

The similarity measure is not sufficient to determine a reasonable matching function, as 
it does not preclude arbitrary irregular solutions. The regularization term or deformation 
energy is used to penalize non-smooth matching functions. Another means is to restrict the 
solution to a subspace of smooth functions. For the optimization, a method, called the Gauss­
Newton-Jacobi method, is proposed, which is closely related to the Gauss-Newton method. 
It resembles a relaxation scheme that is popular in the course of image matching, but it 
exhibits better convergence properties. A coarse-to-fine scheme is employed to enlarge the 
region of convergence. 

An image-to-image matching constellation is successfully used for a measurement system 
for facial surgery. The reconstruction of the shape of a human face from two images takes 3 to 
7 min. on a standard PC. For this application, the matching function is composed of bilinear 
basis elements. 65 x 65 node values covering a region of 513 x 513 pixels are determined 
simultaneously. 

IV 



K urzfassung 

Fiir die Rekonstruktion von Objektoberfiachen aus zwei oder mehreren digitalen Photogra­
phien sucht man Punkte in den Bildern, die dem selben Oberfiachenpunkt entsprechen. Dieser 
Proze£ wird Bildzuordnung genannt. Ein Bild, das auch ein virtuelles Bild sein kann, wie z.B. 
das Orthophoto oder ein Zyklopen-Bild, dient als Referenzbereich. La13t man virtuelle Bilder 
zu, dann kann man unterschiedliche Konstellationen, wie die Bild-zu-Bild Zuordnung oder 
die Oberfiachenrekonstruktion durch Orthophoto-zu-Bild Zuordnung, gemeinsam behandeln. 
Der Referenzbereich dient der Parametrisierung der Objektoberfiache, abstrakt gesprochen 
des geometrischen Zusammenhangs. Entscheidend beziiglich der Wahl des Referenzbereiches 
ist dabei , inwieweit eine vollstandige Parametrisierung erzielt wird. Bei der globalen Bild­
zuordnung wird nach Abbildungen des ganzen Referenzbereichs in die Bildbereiche gesucht. 
Im Gegensatz dazu ermitteln lokale Methoden nur Punkt-zu-Punkt Zuordnungen. Die Abbil­
dungen werden durch skalare Zuordnungsfunktionen, wie etwa durch Parallaxen oder Hohen, 
parametrisiert, urn geometrische Bedingungen in das Modell zu integrieren. Der Referenz­
bereich ist der Definitionsbereich der geometrischen und radiometrischen Eigenschaften des 
Modells. 

Das vorgeschlagene Verfahren ist intensitatsbasiert und stiitzt sich auf das Prinzip der 
Energieminimierung. Der Energieterm umfa13t Beitrage der einzelnen Bilder und einen Regu­
larisierungsterm. Die Bilder werden als kontinuierliche Funktionen behandelt. Die Energie­
minimierung fiihrt auf ein Variationsproblem. Der Energiebeitrag eines Bildes wird als Ahn­
lichkeitsma£ bezeichnet, weil er die Ubereinstimmung von Modell und Bild im Bezug auf die 
Intensitatswerte angibt. Die Formulierung basiert auf dem Prinzip der Vorwartsmodellierung, 
das hei13t auf einem Modell, das die Abhangigkeit der Bilddaten von den Modellparametern 
beschreibt. Gegeniiber anderen Ansatzen ergeben sich folgende Vorteile: Bereiche eines Bildes 
tragen zum Ahnlichkeitsma£ entsprechend ihrer Gro13e im Bildbereich und nicht entsprechend 
ihrer Ausdehnung im Referenzbereich bei. Das Ahnlichkeitsma£ ist invariant im Bezug auf 
die Wahl des Referenzbereichs. Bei der Mehrbildzuordnung dominieren jene Bilder die Re­
konstruktion, die einen bestimmten Teil der Oberfiache mit bester geometrischer Aufiosung 
darstellen. Verdeckungen lassen sich auf natiirliche Weise beriicksichtigen, wobei keine Unste­
tigkeiten des Energiema13es auftreten. Gilt fiir die Konturlinien eine Regularitatsbedingung, 
so bleibt auch die Differenzierbarkeit erhalten. Fiir die Analyse der Problemstruktur ist die 
Modellierung mit Hilfe kontinuierlicher Funktionen vorteilhaft. Die Diskretisierung mit Hilfe 
von finiten Elementen ist rechnerisch sehr aufwendig. Die Approximation mit Hilfe von finiten 
Summen und Differenzen kann mit einem Gitter oder mit einem Paar dualer Gitter erfolgen. 

Das Ahnlichkeitsma£ allein bestimmt die Losung nur ungeniigend, weil beliebig unregel­
ma13ige Losungen nicht ausgeschlossen werden. Der Regularisierungsterm hilft glatte Losun­
gen zu finden , indem diese nur einen kleinen Beitrag zur Gesamtenergie liefern. Eine andere 
Moglichkeit besteht darin, die Losung auf einen Teilraum von glatten Funktionen einzu­
schranken. Fiir die Optimierung wird das Gau£-Newton-Jacobi Verfahren vorgeschlagen, das 
dem Gau£-Newton Verfahren eng verwandt ist. Es ahnelt einem innerhalb der Bildzuordnung 
verbreiteten Relaxationsverfahren, weist aber bessere Konvergenzeigenschaften auf. Bildpy­
ramiden werden verwendet, urn den Konvergenzradius zu vergr613ern. 

Die Methode wird in einem Me13system fiir die Gesichtschirurgie eingesetzt. Es wird eine 
Bild-zu-Bild Zuordnung durchgefiihrt . Die Rekonstruktion eines Gesichtes aus zwei Bildern 
benotigt 3 bis 7 min. auf einem Standard-PC. Dabei wird die Zuordnungsfunktion aus bili­
nearen Elementen zusammengesetzt. 65 x 65 Knoten in einem Gebiet von 513 x 513 Pixel 
werden simultan berechnet. 
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Chapter 1 

Introduction 

The extraction of information from visual stimuli is a task solved by the human vision system 
with superb efficiency and reliability. At the front end, the receptors of the eyes translate the 
incident light into a spatial array of stimuli, an image of the world around us. Subsequently, 
a network of neurons performs a variety of operations such as the fusion of the images of left 
and right eye, the perception of depth and motion, and the recognition of objects. We can rely 
on our ability to perform all these tasks without thinking. Only with the help of experiments 
and optical illusions, we get aware of the rich functionality. Computer Vision is the discipline 
that tries to find methods for performing these vision tasks on computers. This work is 
concerned with one such problem, the reconstruction of the 3D geometry of objects from two 
or more images. Contributions to this topic come from researchers with diverse background. 
The determination of geometrical quantities from photographs is however a central area of 
Photogrammetry. What has been done on analog and analytical plotters using conventional 
photographs, is replaced increasingly by automated digital processes using digital images. 
Applications range from the derivation of terrain models from aerial imagery, to quality 
control tasks in industrial production lines, and medical applications. The results of this 
work are used in a measurement system for facial surgery, which has been developed in the 
course of a collaboration with the University Clinic of Oral and Maxillofacial Surgery at the 
General Hospital of Vienna. The system serves for the determination of the geometric shape 
of human faces. Material from this application is used in Chapter 5 for testing purposes. The 
method has however not been tailored specifically for this particular case, but can be applied 
under other circumstances, too. 

The principle for determining the 3D geometry of objects from images on a computer 
is the same as used by the human vision system. To enable surface reconstruction, the 
images have to portray the object from different viewing angles. The central problem for 
the reconstruction process is the detection of homologous points in the images. Homologous 
points are points in different images that correspond to the same point of the object surface. 
The retrieval problem is called the correspondence problem or image matching problem. 
Given information about the imaging geometry, the positions of homologous or corresponding 
points in the images can be used to infer the 3D coordinates of the respective surface point. 

The human vision system is able to perceive depth and relative distances from monocular 
cues, such as the perceived size of known objects, too. Stereopsis is however the most precise 
tool for the determination of spatial relations and the geometric shape of anything in the sur­
rounding. The well-known example to try touching the tips of two pencils with outstretched 
arms is a perfect demonstration. Doing it with one eye closed is a non-trivial task. Using 
both eyes, the relative depths of the tips of the pencils are clear and the problem is merely 
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2 CHAPTER 1. INTRODUCTION 

physically controlling the arms. 

1.1 Image Matching Methods 

Commonly the methods for image matching are grouped according to the primitives that are 
employed. Primitives are the basic components of an image representation. They constitute 
the language for expressing the correspondence problem. The primary quantities of an im­
age are the intensity values for each pixel1 . Methods that are based on raw intensities are 
called intensity-based. This notion is not meant to preclude calor. The main characteristic 
of intensity-based matching is that no information extraction prior to the matching is per­
formed. These methods aim at the utilization of the full amount of available information. 
The matching algorithm that is considered in this work is intensity-based. More remarks on 
this type of methods are given subsequently. A strategy contrary to intensity-based matching 
is followed by methods that limit the correspondence search to features that promise par­
ticular reliable and accurate matching. Features are groups of intensity values that are well 
distinguished from other parts of an images, for example edges and corners. The respective 
methods are called feature-based. Examples can be found in [17, 42]. The apparent advantage 
is the significant reduction of data size. The benefit causes a disadvantage though, because 
reducing the matching problem to the matching of features reduces also the density of the 
surface description. It is also possible to proceed upwards in the hierarchy of primitives and 
use the spatial relation between features as guideline for the matching process. This leads to 
the concept of relational matching. 

1.1.1 Intensity-Based Matching Methods 

The first step in intensity-based matching is to define a measure that indicates how similar 
two or more images or regions of images are in terms of intensities. The second step is to 
search for optimal similarity with respect to this measure. Some methods base their similarity 
measure on simple derived quantities such as the gradient of the intensity or on wavelet feature 
vectors [43 , 44]. This is not contrary to the principle of intensity-based matching, as the term 
includes no prescription how to compare the intensities. The point is that no extraction of 
salient features or grouping of the intensity values is performed. 

One simple variant is the correlation principle. The strategy is to find maxima of the 
correlation coefficient 

(1.1.1) 

g denotes a template array of intensities of moderate size (e.g. 17 x 17) taken from one image. 
f is a subset of the same size taken from a second image at the position that is to be checked 
for correspondence. /-lg and p,f denote the respective mean values. The template is only 
superposed and shifted in the second image. Geometric distortions , such as foreshortening 
etc., are taken into account by a refined approach. The method proceeds patch by patch 
aiming at the localization of one point per step. The surrounding of each point is included 
within the correlation window, but the eventual result is a single pair of coordinates of the 
corresponding position in the second image. This is the characteristic of local methods, 
whereas global methods aim at retrieving the correspondence for extended patches. 

1Pixel is an acronym for picture element . 
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Searching for maximal correlation of two image patches is very similar to minimizing the 
sum of squared intensity differences, or squared Euclidean distance 

E=llg-JII2 
· (1.1.2) 

Methods following this principle are referred to as least-squares matching methods. The close 
relation of correlation methods and least-squares methods stems from the fact that maximiz­
ing the inner product of two vectors of constant length is the very same as minimizing the 
Euclidean distance. Correlation receivers in digital communication are reasoned by exactly 
this principle [35 , pp. 290]. Least-squares matching methods are easier extended to treat 
enlarged patches. If the template g covers a large part of the second image f , called the 
data image, shifting or affine distortion do not suffice to make it similar to the corresponding 
part of f. The necessity to apply other than affine transformations to the template may be 
viewed as the criterion for a patch to be considered "large". The methods are then called 
global least-squares matching methods. How the template is deformed to become similar to 
the data image is a matter of parameterization. The function that determines the spatial 
relationship is referred to as matching function. For example, parameters of the surface can 
be used directly to specify the relation between template and data image. An advantage of 
correlation methods is that they inherently perform a normalization of the image patches. 
Thereby radiometric differences are factored out automatically. Least-squares methods have 
to explicitly take the radiometry into account. 

The idea of least-squares matching is widely used. The name itself is primarily popu­
lar in photogrammetric research. There least-squares matching is usually introduced in the 
framework of adjustment calculus [16, 50]. Examples of global least-squares matching can 
be found in [22, 23, 25, 61, 58]. The statistical background of adjustment calculus and the 
rich experience in this area has proved valuable for the solution of the matching problem. 
The application of least-squares image matching has so far been strongly linked with the 
Gauss-Newton method, the optimization method commonly used in adjustment calculus. It 
appears that this strategy is indeed well suited for image matching. It has however led to 
an identification of the term least-squares matching not only with the least-squares matching 
criterion, but also with this particular optimization method. For example, it is often stated 
that least-squares matching has a superb accuracy potential. The same is true for the cor­
relation method and virtually any intensity-based method. However, the correlation method 
is often used together with a search strategy, which limits the accuracy to the granularity of 
the search. In the field of Computer Vision very similar and sometimes completely equiv­
alent approaches to global least-squares matching are considered, though commonly under 
different names. Further, other optimization methods such as steepest descent [1, 2], relax­
ation schemes [18, 26, 37, 49], dynamic programming [5, 10], mean field annealing [51], and 
dynamic Monte Carlo methods [2] are used. As image matching is heavily investigated and 
contributions and ideas are added from all directions, it is important to strive for a separation 
of concerns. In particular it is important to keep matching criterion and optimization method 
logically separated. 

The principle of intensity-based matching, namely to search for optimal correspondence 
in terms of a similarity measure, is very simple. However, even without any detailed knowl­
edge, it is not difficult to conclude that the determination of the optimal correspondence 
is demanding. The problem appears to necessitate a search strategy like it is often used 
for correlation methods. Local optimization methods seem to have little chance to succeed, 
because once far away from the correct solution there is no hint in which direction to find 
the corresponding point. Some comments with respect to this topic are given in advance, 
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because the solution of the correspondence problem is tackled only after putting much effort 
into posing it. To keep the aim vivid, it is important to know how the problem is solved 
eventually. 

The proposed strategy uses a local optimization method. These methods are in general 
more efficient than global optimizer. However, their application is possible only, if the initial 
guess of the correspondence is close enough to the correct solution. The region of attraction 
is bounded by half the wavelength of the highest frequency components of the images.2 

This corresponds to a maximal initial deviation of 1 pixel. This limit is shared by all local 
optimization methods. Real imagery is commonly lowpass dominated. The requirements are 
thus not that stringent, enlarging the convergence radius up to 1-3 pixel [22] . In general, 
the actual available information does however not match the required a priori knowledge. 
Hierarchical methods, which are very common in Computer Vision [8, 9, 27], provide a 
workaround. The accuracy of the initial guess has to suffice to start the process at the 
coarsest level of a pyramidal scheme. The result of each layer is used as initial configuration 
for the matching algorithm at the next finer layer. 

1.2 The Proposed Method for Image Matching 

The method proposed herein is intensity-based. It is a global method that is capable of 
processing large subregions of an image simultaneously. The formulation is based on a con­
tinuous model of the images, treating them as continuous rather than sampled functions. 
The major contribution of this work concerns the formulation of the similarity measure. The 
practical implementation is based on a least-squares measure though the theoretical concept 
admits other choices. As a novelty, the principle of forward modeling is applied strictly. For­
ward modeling means that, starting from a parameterized description of a model, measurable 
quantities are derived in a unidirectional way. The input-output dependency is used to infer 
model properties from measurements. Forward modeling is not new, but its application to 
image matching has been done without the necessary rigor or it has led to computationally 
very demanding formulations . The group of Wrobel has followed this idea for a long time 
[29, 58, 61, 62]. Their direct method indeed fulfills the requirements offorward modeling. The 
computational effort is however considerable. The new results uncover the impact of forward 
modeling on the matching problem. The eventual similarity measure looks quite similar to 
alternatives that are more common. The properties demonstrate however that the similar­
ity measure is more in line with the physical image formation process. The computational 
burden is not increased. 

The theoretical results have been used for the implementation of the measurement system 
for facial surgery. They show the applicability of the new similarity measure. The examples do 
however not reveal the superiority of the similarity measure with respect to other modeling 
alternatives. This is due to the fact that only a very simplified image-to-image matching 
constellation is used. Under these circumstances the capabilities of the new technique are 
not unfolded. Further, the treatment of occlusions, which are taken into account by the 
similarity measure in a natural way, requires a visibility analysis and a significantly increased 
programming effort. As the aim of this work is to setup solid fundamentals, topics, such as 
the proper discretization of the similarity measure and the theoretical analysis of the impact 
of occlusions, are assigned a higher priority. This does not mean that practical aspects are 
ignored. A separate chapter considers the modeling of the matching function and the topic 

2 More comments on this aspect can be found in [22). 
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of optimization. For the latter an algorithm is used, which has not been found in any other 
work. The method is closely related to the Gauss-Newton method, but resembles a relaxation 
scheme that is popular in the course of image matching. 

Chapter 2 considers the foundations of the matching algorithm in detail. The geometric 
and radiometric model is explained and the underlying assumptions and simplifications are 
stated explicitly. The mathematical framework of the method is presented. 

Chapter 3 introduces the similarity measure based on the forward modeling principle. 
Derivatives and related quantities, which are used for the optimization, are given. The ba­
sic concept is formulated without restricting to a particular geometric configuration. These 
aspects are considered in a separate section. As the primary formulation is a variational 
problem, the similarity measure and all related quantities have to be discretized. The new 
similarity measure necessitates a more detailed consideration of the discretization. The last 
section of this chapter concerns the modeling of occlusions. The current state of implementa­
tion does not support the treatment of occlusions. The theoretical properties of the similarity 
measure in the presence of occlusions are however interesting. 

Chapter 4 provides the remaining components that are required to construct a matching 
algorithm. This comprises the modeling of the matching function and the topic of optimiza­
tion. 

In Chapter 5 a collection of examples is presented. The emphasis is on the measurement 
system for facial surgery. Practical aspects of the measurement setup, such as the design of 
a projection pattern for texture enhancement, are provided as well. 

In Chapter 6 the results are summarized and the challenges for future developments are 
mentioned. 



Chapter 2 

Foundations of the Matching 
Algorithm 

This chapter introduces the modeling concept, its underlying assumptions, and the general 
framework of the matching algorithm. It is a preparation for the discussion of a specific 
component of the model, the forward modeling similarity measure, in Chapter 3. The follow­
ing considerations comprise two distinct aspects, the geometric model and the radiometric 
model, which together form a complete description of the imaging process. To cover a broad 
class of geometric configurations a rather generic concept of correspondence is introduced. 
It extends the commonly used set of notion, aiming at a precise definition of occluded and 
unmodeled regions. The terminology however covers situations, whose complexity exceeds 
the capabilities of the matching algorithm. Occlusions for example are part of analysis only, 
but not subject of practical treatment so far. With respect to radiometry, the basic concept 
and assumptions are listed. Finally, the general outline of the matching principle, which is 
posed as a variational problem , is given. 

2.1 The Input Data 

The input data for the matching problem are digital images. Generically an image is formed 
by a set of sites S and labels from a set of labels £ corresponding to each site. This is precisely 
what is called a mapping or function in mathematics. Digital images generated by CCD based 
cameras or scanners are commonly defined on rectangular lattices. For monochrome images 
the labels are usually scalar values from the set £ = { 0, ... , 2b - 1}, also called greyval ues or 
image intensities, 

fd : [0, M - 1] x [0, N - 1] I-+ £ . (2.1.1) 

To have the images defined on a discrete domain is often appropriate for applications such as 
edge detection, filtering, region labeling etc. Performing Fourier analysis and convolution is 
possible without referring to a continuous reference space. In contrast, algorithms that need 
to interpolate between pixel positions inherently take into account that the discrete data 
values are samples of a continuous function. Formulating the matching problem with images 
defined on a continuous domain :F, 

f::F..-+JR , (2.1.2) 

6 
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avoids mixing the model up with considerations about interpolation kernels and grid spacing. 
If properly acquired , i.e. if the Shannon theorem holds , fd represents f within a certain 
frequency range in a one-to-one manner. 

2.2 The Geometric Model 

2.2.1 The Notion of Correspondence 

According to the above, an image is a function. However, the term image emphasizes a 
special property of these functions , being a "view" of something. To think of an image this 
way is not necessarily appropriate for all images in all possible applications, but for the case 
of stereo matching it is crucial that a notion of correspondence exists, a term closely related 
to the "view property". The term correspondence may refer to different though interrelated 
situations. One may talk about a point in an image corresponding to a point in an other 
image, to a point on the surface of an object, or to a point in the XY plane of a surface 
represented by heights Z(X, Y). This enumeration already contains three domains or domain 
types that are used in image matching algorithms. Examples will refer to the following, non­
comprehensive list of domains: 

- the surface, 

- the orthophoto domain, 

- the images, and 

- virtual images (e.g. the cyclopean view). 

When referring to geometrical aspects , the term image is used for brevity instead of the 
more precise formulation image domain. All of the above listed domains may be considered 
image domains in a generic sense, a definition follows. Any point of the imaged surface can 
have a counterpart in any other of these domains. In order to be able to describe different 
constellations of matching algorithms in a common framework, a clarification of the term 
correspondence is given. The aim is to define the notion of correspondence independent of the 
image content and to rationalize that correspondence is inherently unique or unambiguous. 
This means that for one point in an image there is at most one corresponding point in an 
other image. There may be two points with the same local texture, so that it is impossible 
to distinguish which one is the correct, but there are never two corresponding points. The 
term correspondence covers essentially the geometric relationship between points. Conflicting 
situations to the uniqueness of correspondence are diffusely reflecting or semi-transparent 
objects. The term correspondence, as it is used herein, simply does not cover such situations. 
They are precluded within the context of this work. Notably, this concept of correspondence 
is not suitable for images defined on a discrete domain only, because in this case almost 
inevitable two object points will correspond to one image point. 

Abstractly we define a relation between a point P in a point set F and point Q in g 
and write P ~ Q if the two points correspond. The sets F or g may be any of the above 
listed domains . If there are many images of the same scene there may be many corresponding 
points, one in each image. For images of 3D objects the points on the object surfaceS have a 
distinctive role in that two points can correspond only if both correspond to the same object 
point. Nevertheless, for the pure notion of correspondence the relation between corresponding 
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points is symmetric, 

(2.2.1) 

When dealing with multiple images F i, trivially for points Pi E Fi transitivity is required, 

(2.2.2) 

Correspondence clearly is defined reflexive. In fact, it is an equivalency relation on the set 
1Ui F i , defining equivalence classes of points [P] . The set of all correspondences captures the 

geometric relation between all domains. 

Definition 1. The geometric connection C of domains Fi is given by an equivalency relation 
P ~ Q of corresponding points P, Q E Ui Fi . C is defined as the set of all equivalence classes 
of corresponding points, 

(2.2.3) 

Again the domains Fi may include any domains of interest. The term uniqueness of 
correspondence is , strictly speaking, a property of the image domains. 

Definition 2. A domain F is an image domain, if the back-projection p : F f--t C, P f--t [P] 
is an injection. 

There is no need that every class in C contains a member of every image, but by the 
required uniqueness there is at most one point of every image domain in an equivalency class. 
The set C is closely related to the surface S, as the latter may be considered the origin of 
the correspondences. C is also equipped with a topology, inherited in a natural way from S . 
Most equivalence classes [P] will contain a surface point. The remaining classes will contain 
image points with no corresponding surface point. This is primarily a model artifact, and is 
not considered relevant for the moment. It may in fact be easier to think of [P] as a label 
attached to every surface point, which contains all corresponding image points. The surface 
S obviously plays an outstanding role in the geometric model. For image-to-image matching 
constellations, it does however not appear in the model explicitly. The set of correspondences 
is defined without problem, not necessitating the definition of a reference image, or to make 
the surface an explicit part of the mode. 

An example is depicted in Fig. 2.1. The surface is denoted by S, the orthophoto domain by 
Fo and the images by F 1 , F2, and F3 . Consider the region between P!s and Pg on the surface. 
With respect to images 0, 2, and 3 everything is well behaved. Examples of correspondence 
classes are [P!sJ = {P!s,P~ , P~,PH and [Pg] = {P!;,P~',P~',P~'}. With respect to image 1 the 
considered region is occluded. In the case of occlusions the closure of the region, i.e. the region 
including its boundary, is considered (cf. [5]). Consequently P1 is neither in [P!sJ nor in [Pg] . 
This decision has not much impact on the modeling anyway, since P1 is an isolated point 
and thus has a Lebesgue measure of zero. The argument applies also to the 2D case, where 
the boundary of the occluded region is a curve. The imaging process of a digital camera is 
essentially an integrating process. This justifies that sets of vanishing measure are ignored. 
As will be shown later, the similarity measure is also an integral. Finitely many points or 
reasonable curves respectively do not contribute to the integral. 

1 The equivalency class [x] is the set of all elements that are equivalent to x. Denoting the equivalency 
relation by x =y , it is given by [x] :={yE X: x =y} . One representative can be chosen to denote the whole 
set. (63, p . 936]. 
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Figure 2.1: Example of an imaging configuration with multiple corresponding points. 
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Definition 3. The occluded part 0;: E C of a geometric connection C with respect to an 
image domain F is the closure of all points in C that have no counterpart in F, 0;: = C\p(F). 
The visible part V;: E C is the complement of the occluded part, V;: = C\0;:. 

Using this definition, the image-projection is given by 

~ : V;: r-t F, [P] r-t [P] n F . (2.2.4) 

As ~ is the inverse function of the back-projection p, properly restricted to the visible regions, 
it is an injection, too. 

For the reconstruction of the correspondences, a reference domain is chosen, which is 
always denoted by 9. It satisfies the requirements of Definition 2. Accordingly, for every 
point in g there is at most one corresponding point in each considered domain Fi. Let 
gv; = ~g(Vg n Vi) be the visible part of 9, for which there is exactly one corresponding point 
in a particular Fi.2 The relation between corresponding points can thus be written by a 
function 

(2.2.5) 

The same arguments apply to the opposite direction. It is possible to restrict the range of 
mi to a subset Fr ~ Fi so that it is bijective. Fr = ~i(Vg n Vi) = mi(Yv;) is the part that 
is modeled by the reference domain g. A definition of the modeled part follows. 

During the matching process the maps mi are unknown and subject of iterative refinement. 
Commonly the mi 's are parameterized in order to incorporate geometrical constraints that 
are known a priori. For example in the case of image-to-image matching of normal case stereo 
images3 , the map is parameterized by the disparity to enforce the epipolar line constraint. 
For the case of multiple images, the maps are parameterized consistently, e.g. by a surface 
representation. The above notions allow considering image-to-image matching by disparity 
recovery, surface reconstruction from possible multiple images, and a variety of constellations 
in a common framework. 

Together with the texture g, which will be explained in more detail, the maps mi form 
the model (mi, g) for the imaging process. An important issue is the selection of the reference 
domain g. In principle, it only serves as the parameterization of the set of correspondences C , 
loosely speaking of the surface S. Importantly, the proposed similarity measure is independent 
of the chosen reference domain (cf. Chapter 3). Shortcomings of the parameterization do 
however affect the performance. Direct modeling of the surface is the most rigorous approach. 
Nevertheless , simplified constellations are considered, e.g. it is quite common to choose one 
of the images as reference domain. Depending on the surface geometry, these approaches do 
not always perform a complete parameterization of C, leaving parts unmodeled. In that case 
g and C are not topologically equivalent. Consider the case of ID matching as it is depicted 
in Fig. 2.2. The domain g is the reference domain and F is the domain of some image, it is 
therefore a given quantity. The interval [Q', Q"] is an example of an occlusion with respect 
to F. Similarly, the interval [P', P"] is occluded with respect to domain 9. The situation 
is however not as symmetric as it might look. Recall the different roles , g is subject of 
model choice whereas F can not be changed. Mathematically the two situations are distinct 

2 Quantities related to :F; are denoted with the subscript i rather than the subscript :F;. Quantities related 
to g are denoted with the subscript (]. 

3 Two images form a stereo pair in normal case arrangement if they were taken by cameras whose camera 
axes are perpendicular to the baseline. The baseline is the line that connects the projection centers of the 
cameras. 
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Figure 2.2: lD matching configuration showing unmodeled and occluded regions. 

too. The interval [Q' , Q"] has no corresponding image. Graphically this is depicted by a 
constant value of m over that interval. Though this is intuitive, it is misleading in that there 
is no mapping from g to :F for that part. At point P the map m is discontinuous. The 
interval [ P' , P"] is simply not captured by the model (m , g) , hence this domain is said to be 
unmodeled. 

Definition 4. With respect to the reference domain g , the visible part of a geometric con­
nection C is called modeled part, and the occluded part is called unmodeled part. 

Trivially, anything outside the boundaries m(O) and m(R) is also unmodeled , but bound­
aries are inevitable, since for most objects it will not be possible to cover them completely. 
If the reference domain g is chosen such that it coincides with the surface S of the imaged 
3D object and if the description of the surface permits enough flexibility, it is in principle 
possible to avoid unmodeled regions. Occlusions of course can not b e avoided. The dis­
tinction between unmodeled and occluded regions is also of interest when considering the 
discretized formulations of the matching algorithm. Assume that the reference domain g is 
covered by an isotropic grid of sampling points (cf. Section 3.4.2). Regions in :F, where the 
corresponding points are distributed very sparsely, are essentially those that are unmodeled 
or "badly" modeled. This will affect the performance of the matching algorithm. For oc­
cluded regions no problems of that kind are encountered. In [5] also a formal concept of 
occlusion and visibility is introduced. The presented definitions are given with respect to an 
image-to-image matching constellation that uses a virtual cyclopean image (cf. Section 2.2.2) 
as reference domain. The notion of unmodeled regions is not part of the concept. By virtue 
of construction, unmodeled regions either are half-occluded or are not taken into account. 

As mentioned, the uniqueness of correspondence grants that the maps mi are bijective, if 
the image range is properly restricted. Ambiguities do not have to b e feared , only occlusions 
have to be dealt with. Based on the bijectivity, the existence of the inverse mappings mi1 
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is granted. The reversibility is of great importance for the conceptual development . For the 
computations, the inversion has to be avoided because of the involved complexity. In order to 
enable an efficient and well structured implementation, all computations are eventually done 
in the reference domain. The maps m i are used to translate quantities of other domains, 
such as the images h, to the reference domain by h o mi. However , the reference domain 
serves only as the parameterization of the geometric connection and thus has no intrinsic 
relevance. Obviously, some choices for the reference space are more natural than others. For 
example, assigning one image of a multi-image setup a special role, by using it as the reference 
image, is somewhat unsatisfying. Theoretically this choice is not worse or better than using 
the orthophoto domain for example. Both domains are topologically equivalent so that none 
has a superior capability with respect to modeled and unmodeled regions. The results of a 
matching algorithm should ideally be independent of the particular reference space. 

The map m is either a mapping between 2D domains or ID domains. The extension to 
the multi-dimensional case is possible, but is considered not relevant. For the most parts of 
this work no distinction is made between points and coordinates . This is hardly a restriction. 
When working with multiple resolutions of the images, it may be convenient to use different 
coordinates for the same point. This seems more an implementation detail, and does not 
justify an additional burden for the notation. The symbol x is reserved to denote a vector 
of coordinates, respectively a point in the reference domain g. Boldface notation is used 
for vector-valued quantities. Corresponding to x the components are given by x1 and x2 . 

Many considerations take only a single image :F into account . y is used to denote a vector of 
coordinates in :F. If m is considered a mapping of vector-valued quantities it is denoted by 
m. 

2.2.2 Basic Matching Configurations 

The above concept is very general. Nevertheless a couple of matching configurations are of 
primary importance. The proposed method is intended to be applicable for the reconstruction 
of object surfaces from images taken by photographic cameras. The typical case is that the 
imaging relation is given by a central perspective. Distortions of the ideal perspective and 
other cases than the central perspective are possible. If concrete examples are considered, the 
standard cases without distortions are used. The parameters of the orientation are assumed 
known as far as needed. No attempt is made to estimate any of these parameters. 

For the 2D case, the map m is vector-valued and thus has two degrees of freedom at every 
point. For the case of surface reconstruction, m 1 and m 2 are commonly not considered to be 
free quantities. The map m is usually parameterized by a scalar function . In a generic setup 
this function is called matching function and is denoted by u. The important configurations 
are 

- image-to-image matching, 

- 2.5D surface reconstruction, and 

- 3D surface reconstruction. 

There are a couple of variants for image-to-image matching. Basically, one image serves 
as the reference domain g and the corresponding locations in a second image :F are searched. 
If the imaging geometry is known, the search can be restricted to a line. Given a point x E g, 
all points that possibly correspond to x can be found on the associated epipolar line in :F. 
For the normal case arrangement, the epipolar lines are parallel. Commonly, they are taken 
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to be parallel to the x1 and y1 direction of the image coordinate systems. The position along 
the epipolar line is determined by the disparity d. Thus, the map m is parameterized by the 
disparity function 

m(x) = ( x1 + d(x) ) . (2.2.6)
X2 

For other than normal case configurations, generalizations of the disparity can be used, but 
research in Computer Vision is mainly targeted at the normal case. In order to achieve sym­
metry, some authors introduce a fictitious cyclopean image, which is located symmetrically 
between the left and right camera of a normal case arrangement [5, I8 , 26]. This domain 
serves as the reference domain Q. As it is a fictitious image domain, no intensity values are 
available. In such a case, the radiometric properties of the model have to be estimated from 
the available intensity values of the images. This will be reconsidered later. The mappings 
to the images are given by 

ffi£(X) = ( 
+ d(x)) 

Xl X2~ (2.2.7a) 

and 

d(x))
mR(x) = (x l ~2~ . (2.2.7b) 

Another class of models directly seeks to retrieve the Z coordinate or height of the surface 
for every point of an (X,Y) plane [22 , 23, 58] . In this context we call the (X, Y) plane the 
orthophoto domain. It serves as the reference domain g. The maps m i to the various images 
are consistently parameterized by the surface height Z(X,Y) by means of the well-known 
equations [3I , 32] . Again the texture is commonly unknown and has to be estimated. 

The third mentioned constellation is that a full 3D representation of the surface is used 
for the modeling. This is an ambitious task and so far no implementation is known. It 
is important for the simple reason that it is obviously the most rigorous approach to the 
problem. It may be expected that it will be approached one day. It is for that reason that it 
makes sense to check the applicability of methods to this case. 

When analyzing modeling properties such as the continuity of similarity measures, the 
behavior in the presence of occlusions, discretization schemes etc., the full variability and 
generality of the concept are a heavy burden. It is however in many cases possible to consider 
ID constellations instead. For image-to-image matching the correspondence search occurs 
along a pair of epipolar lines, this is essentially a ID problem. In the case of 2.5D surface 
reconstruction, all possibly matching candidates for a point (X, Y) E g are located along 
the Vertical Line Locus (VLL). This line is the image of the line X = const , Y = const and 
arbitrary Z values. In turn, for a fixed point y E Fi, all possible corresponding points in 
the orthophoto domain are located along a line that runs through the nadir point of the 
i'th camera4 . Again, this is a ID correspondence problem. The situation in the 3D case 
is different, depending on how the surface is adapted to achieve good correspondence. It 
may however be assumed locally similar to the 2.5D case. This is not to say that matching 
in two dimensions is completely analogous to the one-dimensional case, but considering the 
one-dimensional problem often suffices to derive properties that hold for general cases. 

4 The nadir point lies in the (X ,Y) plane. It is located vertically below the projection center of the camera. 
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2.3 The Radiometric Model 

So far we have been concerned with the correspondences of images in a geometrical sense only. 
Of course, the correspondences are reflected by the relationship of the labels of corresponding 
points, which provides the bases of the possibility of image matching. The relationship 
between the labels is caused by the imaging process, which relates imaging labels to object 
properties. These properties are labels attached to the surfaceS. For the matching algorithm, 
the labels are required for every point for which the correspondence is to be recovered. The 
object properties are hence formulated as a function 

g: (}HL. (2.3.1) 

The domain g is the reference domain, as already used in Section 2.2.1. By the uniqueness 
of correspondence, there is no danger that this assigns two different labels to the same point 
of the surface. 

Many constellations are imaginable, for example to match a SAR5 image with a digital 
photograph. It would however be difficult, if not impossible, to relate the properties of matter 
within such differing frequency bands. Of interest are images taken by photographic devices. 
The content of an image, i.e. the value f(y) for each point y, is a measure for the radiation 
received by the camera from the direction associated with that point. What is relevant of a 
generic radiometric model depends on the considered frequency range of the radiation. For 
imaging devices working with visible light, the following aspects are relevant: 

- the surface, reflecting incident light towards the camera, 

- the atmosphere, attenuating the radiation and adding scattered radiation, and 

- the imaging device, which translates incident radiation into image intensities. 

A strict forward modeling is prohibited because of the complexity of the phenomena. Actual 
radiometric models for the matching problem use a mix of modeling considerations based on 
physical insight and empirical mechanisms that compensate for unmodeled aspects. From 
the viewpoint of correspondence recovery, it would be optimal, if the labels of corresponding 
points Yi :;::::= Yj were identical, fi(Yi) = fj(Yj) , coinciding with the expectation that the calor 
or brightness of a surface does not (significantly) vary with the viewing direction. Exact 
equality may surely not be assumed, though everyday experience reveals that object surfaces 
look rather similar if viewed from different viewing angles. Among the three listed mecha­
nisms the reflectance properties of the surface appear to be the most critical. The impact 
of the atmosphere is negligible for close range applications and the sensor characteristics are 
amenable to calibration. Given a certain constellation of illumination, the amount of radi­
ation reflected in direction of the camera by a small surface element is determined by the 
properties of the surface matter and the orientation of the surface element. Denoting the 
radiance ( = power per area and tetrahedral angle, m\j'sr) incident upon the surface element 
from direction ei by Li(ei), the radiance reflected in direction er is given by [33, p. 41] 

(2.3.2) 

The function f is called the bi-directional reflectance distribution function. It depends on 
the material and on the structure of the surface, e.g. the surface roughness. Commonly 

5 Synthetic Aperture Radar 



15 2.3. THE RADIOMETRIC MODEL 

neither the material of the surface nor its reflectance properties are known in advance. For 
the formulation of the matching algorithm we do, like many others, resort to the model of 
Lambert reflection, i.e. uniform reflection in all directions. The radiometric properties of 
the surface are described by a brightness or calor label g. It is commonly not calibrated 
to represent a physical property of matter in a quantifiable way. The nomenclature with 
respect to the brightness label g is not uniform. In [22, 23, 58] it is called object greyvalue or 
object intensity value. We will also call it texture, although this term is used with different 
meaning in Computer Vision applications. According to (2.3.1) , g is an image conforming to 
Definition 2, hence there is not much difference between this image of brightness labels, or 
whatsoever, and any other image. The transfer functions T establish the relation between 
surface brightness labels and image brightness for corresponding points y ;::::= x 

ideal(y) = T(g(x)) . (2.3.3) 

The superscript "ideal" indicates that this quantity is not equal to the eventually obtained 
image f. Yet to be explained mechanisms cause the images f to deviate from !ideal. For 
multiple images fi, a separate transfer function has to be used for each image. 

The transfer functions are bijective. This is used to invert the above relation and perform 
the radiometric adaptation on the images directly. T may be assumed spatially uniform or 
dependent on the position x. It compensates for many effects, such as the camera trans­
fer charact~ristic of the imaging device and the atmospheric influences. A spatial varying 
characteristic has to be used to reduce the influence of non-isotropic reflectance distribution 
functions. Simple methods, like the one that is used for the practical examples of this work , 
just perform a global histogram equalization of the images. In [18] a more elaborate treatment 
is proposed. Inspired by the physics of radiometry, a spatially varying multiplicative factor 
is used, which is adapted throughout the iterative matching process. In [58] parameters of 
a shading model, which includes also specular reflections, are recovered during the matching 
procedure. The transfer function is very often not mentioned in the literature, or a simple 
global adaptation is used [1, 5, 10, 37, 49, 51]. The further sections will omit T from explicit 
considerations. 

The eventual measured image intensities f deviate from !ideal by two important mech­
anisms. Firstly, any imaging device has only a limited spatial resolution. The intensity at 
point y E F is not caused by the contribution of a single point x , but is an integral of the 
contributions of a certain neighborhood of x . Mathematically this can be formulated by a 
convolution integral. In this specific context, it is called blurring operation. Including this 
operation in the model leads to interesting properties of the matching algorithm. However, 
no computationally feasible structure has been found so far. We know of no approach to 
image matching that includes the blurring operation as an integral part of the model. It is 
left aside within this work. 

The second source that causes f to deviate from !ideal is the stochastic component of the 
imaging process. The CCD-sensor of a camera or the scanning device will inevitably corrupt 
the data by some random components, like sensor noise or quantization noise. Considerations 
about the probability distribution of the underlying processes directly influence the similarity 
measure. The by far most popular modeling assumption is that the ideal image intensities 
are corrupted by additive white Gaussian noise,6 

f(y) = T(g(x)) + n1. (2.3.4) 

6No notational distinction is made between stochastic functions and "ordinary" functions . 
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2.4 Formulation of the Matching Principle 

2.4.1 Stochastic Modeling 

The stochastic properties of the image data lead to a formulation of the matching principle in 
a natural way. For the treatment of uncertainties and stochastic influences, which are major 
topics in many Computer Vision applications , theoretical frameworks exist . Markov random 
fields and their representations provide a means to specify probabilities and probability dis­
tributions for quantities defined on discrete sets of sites [36, 60]. The probability density 
functions (PDF) of a Markov random field is usually specified via its Gibbsian form, 

1 
p(x) = z exp(-E(x)) . (2.4.1) 

E(x) is called the energy of the configuration x. Z is a normalization constant. Solving for 
maximum probability thus is equivalent to minimizing the energy function E(x). 

As stated above, Markov random fields are usually defined on a finite domain. If contin­
uous representations are used, this requirement is not fulfilled. From the textbooks [36, 60] 
it is not clear how to proceed in such a case. It is also characteristical that in [57] stochas­
tic processes, unlike n-dimensional random variables, are defined via a family of probability 
distributions. Obviously, it is difficult to talk about probability distributions on non-finite 
dimensional spaces. It is however possible without difficulties to rely on the energy minimiza­
tion paradigm, which applied to function spaces leads to variational problems. It is for this 
reason that we will talk about energy functionals rather than probability distributions. Once 
methods have to be implemented, the restriction to a finite dimensional problem is enforced. 
Though the model is formulated in a continuous setup, the methods from the Markov random 
field framework, such as sampling or simulated annealing, are applicable. Despite all theoret­
ical troubles, some explanations, such as the following, refer to the concept of PDF. In these 
cases a restriction of the underlying configuration space to a finite dimensional subspace is 
understood, thus essentially !Rn random variables are considered. 

Let the model be given by the radiometric component g and a generic matching function u. 
The stochastic aspects of the imaging process are captured by the conditional PDF p(fi lu, g). 7 

The corresponding energy term is called the image en ergy Efmg· Another name is similarity 
measure, since it indicates the conformance of the image fi with the template image g subject 
to the correspondence induced by u. The conditional probability density is definitely not a 
complete description of the model. It has to be complemented by the a priori model, 

p(u, g) = p(glu)p(u) . (2.4.2) 

The energy term associated with the a priori PDF p(u) is called deformation energy Edef · 

Other notions, which are frequently used in the course of variational modeling, are regular­
ization term or stabilizing functional. Using Bayes theorem, the a posteriori distribution of 
(u,g) is given by 

_ p(glu)p(u) I1~1 PUilu,g)
P(U, gIf1, · · · , f N ) - (f j ) · (2.4.3) 

P 1,. · ·, N 

7It would be more exact to write Pr;iu,g(f;lu, g) [57], which denotes the PDF of the random variable f ; at 
f; conditioned on the random variables u, g that have the realizations u and g. It should however be clear 
what is meant . 
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The corresponding composite energy term is given by 

E(u, g) = L E{mg(filu , g) + Eder(u) . (2.4.4) 

Within this work no a priori information for the texture g is used, thus the term E(glu) is 
omitted. 

Performing maximum a posteriori (MAP) estimation is equivalent to the minimization of 
E with respect to g and u , 

E(u*, g* ) = min!. (2.4.5) 

g* and u * denote the quantities for which the composite energy assumes its minimum. If 
g and u are functions on a continuous domain , this leads to a variational problem. The 
simultaneous optimization with respect to g and u is seldom performed. For image-to-image 
matching, one of the images may be taken as the (fixed) template image g. This is evidently 
not a rigorous approach. If the texture g is modeled as unknown quantity, the following 
principle can be employed. g* is determined as the minimum of E for a particular u , which 
is kept fixed , 

g* (u) = argminE(u, g) , (2.4.6) 
9 

and u* is found as the minimum of E(u,g*(u)). The minimization with respect to g is 
often trivial. Many authors apply this principle implicitly. The above method is applied in 
[5, 10, 22, 58], though in different settings. 

2.4.2 Variational Modeling 

As already explained, for modeling purposes all functions, especially the images ]i, the texture 
g, and the maps m i are assumed on a continuous domain. This significantly facilitates the 
treatment and avoids premature determination of the discretization scheme. On the other 
hand, this requires caution, as already became apparent in the previous section. Without 
further restrictions , there are infinitely many linear independent basis functions for spaces of 
functions, i.e. the dimension of the spaces is not finite. Many concepts familiar from problems 
in !Rn can not be carried over to infinite dimensional spaces without further prerequisites. 
The continuous model is used only as a practical tool to treat a family of problems. The 
discretization will eventually lead back to spaces with a possible high, but finite number of 
dimensions. Of course, this does not sidestep the problem entirely. Neither is it the purpose 
to provide a primarily mathematical focussed treatment nor would this coincide with the 
author 's competence. Therefore, a lack of mathematical rigor is accepted. Wherever it 
appears necessary and feasible comments are added. 

Optimality criterions for functions lead to variational problems, i.e. optimization prob­
lems whose underlying parameter space is a space of functions .8 Of interest are variational 
problems for functions on a two-dimensional domain. Let u be a scalar function on g and 
the functional be given by 

E(u) = [ L(x ,y,u , ux, uy)dxdy. (2.4.7) 

8 See [48 , 63 , 64) on the calculus of variations. Examples of the application of variational principles in 
Computer Vision can be found in [53 , 55) especially for image matching in [1 , 18, 26). 
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The variational problem is stated as 

E(u* ) = min! . (2.4.8) 

Commonly for variational problems the first variation is considered. The variation of a 
function is defined as the derivative with respect to a particular direction h, 

snE(u; h):= anE~un+ th) I ' (2.4.9) 
t t=O 

wherein t E llt This effectively reduces the problem to the differentiation of a function in 
llt A necessary condition for u* to be a minimizing function for E is that the first variation 
vanishes with respect to any function or direction h, 

8E(u*; h)= 0, Vh . (2.4.10) 

This leads to the Euler-Lagrange equation of the problem 

8Lux OLuy _ L _ O (2.4.11)ox + [)y u- . 

The Euler-Lagrange equation is a necessary, but not sufficient condition for some function 
u* to be a mil).imizer of E. Boundary conditions can be prescribed and incorporated in the 
framework. 

For image matching, the solution of the variational problem can be obtained numerically 
only. Some methods start from the discretized Euler-Lagrange equation, others apply op­
timization methods directly to the discretized functional. In all cases a problem in !Rn is 
solved. It has been found more intuitive to formulate the variational problem analogous to 
the .!Rn problem. In particular not the variation is considered , but the derivative E'. The 
Euler-Lagrange equation is written in the form E'(u*) = 0. The underlying concept is a 
generalized notion of differentiation extendible to functionals, the Fn§chet derivative [3], [64, 
p. 463]. Let F be an operator 

F: U(uo) ~X MY, (2.4.12) 

which is defined on some neighborhood of ua. X and Y are Banach spaces, i.e. linear spaces 
which are complete with respect to some norm. F has a Fn§chet derivative at uo if and only 
if there is a continuous linear operator F' (uo) : X M Y such that 

F (uo + h) - F (uo) = F' (uo) h + E(h) 11 h 11 (2.4.13) 

for all hE X , with llhll <rand t:(h) -+ 0 in Y for h-+ 0. 
Clearly, the Frechet derivative is related with the variation (2.4.9) . If F' (uo) exists then 

8F(uo; h)= F'(uo)h. (2.4.14) 

Practically the variation is computed and then assumed equal to the derivative by (2.4 .14) . 
This requires existence of F'. The existence proofs are considered beyond the scope of 
what is presented herein and thus are omitted. The way we treat variational problems is 
readily recognized as a notational style. A high level mathematical concept is used to treat 
functionals and !Rn problems in the same fashion, though without proof. The benefit is that 
the relationship between the continuous and the discrete problem is more easily seen. The 
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reader familiar with optimization in ~n will find the same methods applied to the discretized 
variational problem. 

E' is a linear functional on the space U, the space of all possible solutions u, and its 
values are in~. E' is therefore an element of the dual space U* . For optimization purposes 
it is convenient to view E' as an element of U itself. If U is assumed a Hilbert space, then 
by the theorem of Riesz [64, p. 381] there is exactly one element \1E E U such that 

E'h =(\lE, h), Vh E U. (2.4.15) 

\1E is called the gradient. In this context the inner product is assumed to be given by 

(\lE, h)= [\lE hdA. (2.4.16) 

The symbol dA denotes the differential element of area. It indicates that the integration 
extends over a two-dimensional domain. Assuming that (x, y) are components of a vector in 
a Cartesian coordinate system, dA = dx dy. 

For what is required herein, the distinction between derivative and gradient is not that 
critical. If the derivative is considered a function in U, for example to formulate recurrence 
formulas for optimization or simply for graphically illustrations, it is sounder to use the 
gradient \1E. 



Chapter 3 

A Similarity Measure Based on 
Forward Modeling 

A similarity measure, as the term is used herein, is an indication how well an image f conforms 
to a model (m, g). The name indicates that good conformance with the model commonly 
involves that the transformed image f o m is similar to the texture image g, or vice versa f 
is similar to g o m -l. g may be thought of as a template for the image f . The similarity 
is indicated by an energy value, which is low if the similarity is high. The notion energy or 
image energy is used because the quantity is the Gibbs energy of a random field describing 
the image formation process. We will use the terms image energy and similarity measure 
interchangeably. One has to be aware that this may be misleading in that high similarity is 
achieved for low energy values. The discrepancy stems from the fact that mathematical opti­
mization usually focuses on function minimization. This also concerns optimal configurations 
of Gibbs random fields . Contrary, the term similarity measure expresses the objective in a 
positive way rather than stating what is considered undesirable and has to be minimized. 
Maybe due to this situation, no standard notions have come up so far. 

First, the concept is introduced without restricting to a particular geometric setup, i.e. 
the map m is not parameterized and directly serves to establish the correspondence. Param­
eterizations that enforce particular geometric constraints are treated in Section 3.3. Only a 
single image f is considered. The resulting energy term is a basic component of the matching 
algorithm. It can be used to perform image-to-image matching using one image as the model 
or template for the other. In a multi-image constellation the conformance with the model is 
indicated by the sum of single image energies. It is thus easily constructed from the basic 
energy term: Details will be briefly mentioned. 

First, the similarity measure based on the forward modeling principle is introduced. 
Derivatives and other quantities relevant for the optimization are given in a separate sec­
tion. Afterwards particular geometric constellations and the discretization of the similarity 
measure are considered. The last section provides some analysis on the modeling in the 
presence of occlusions. 

3.1 The Similarity Measure 

For the sequel, the following setup is assumed. The model domain is denoted by g as usual, 
and the domain of image f by F. The mapping m is defined as 

m: g H ;:M~ F, y = m(x) . (3.1.1) 

20 
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If necessary, coordinates in g are denoted by x and coordinates in F by y. We either use the 
symbol FM to denote the model part ofF or write explicitly m(g). g is assumed entirely 
visible with respect to F. 

The formulation of a similarity measure is based on physical insight into the image for­
mation process as well as on practical considerations. Two important assumptions are made. 
Firstly, the blurring effect is left untreated, thus the image intensity f (y) at a particular 
point y depends solely on the surface texture g(x) at the corresponding location x ~ y. 
Secondly, the stochastic components of the image f are assumed uncorrelated. f (y) and 
f CY) are thus mutually independent if y =/:- y and if conditioned on a particular model (m, g). 
First , the similarity measure is given for the case of Gaussian noise. Subsequently, the results 
are extended to cover general situations. 

3.1.1 The Similarity Measure in the Case of Gaussian Noise 

Based on the model (2.3.4) , but disregarding the transfer function T , the PDF of f(y) is 
given by a Gaussian distribution for a scalar random variable, 

The first equality is a consequence of neglecting the blurring operation of the image formation 
process. The quadratic argument expression for the exp function is readily identified as the 
contribution of a single point to the image energy. By the noise n f is uncorrelated, summing 
over all modeled points leads to the image energy 

1E(m) = ~ { If-go m- 1 
2 dA. (3.1.3) 

2rJn } :FM
1 

dA denotes integration over a two dimensional domain. Subscripts are used if two area 
measures dA of different domains might be confused. Otherwise the subscripts are omitted. 

The imaging process takes place in F and hence the stochastic corruption of the image 
data happens in F . Therefore a statistical measure for the probability of a configuration is 
inherently linked with this domain. The consideration leading to (3.1.3) are based on a model 
describing the image formation process. Starting from the quantities (m,g), which capture 
the properties of the surface, the image intensities f are derived. This is called forward 
modeling, as the deduction proceeds from the model to the data. For that reason we refer to 
the energy term (3.1.3) as forward modeling similarity measure or forward modeling image 
energy. It indicates the conformity of the data with the model. As both terms a rather long, 
short forms, such as forward similarity or forward energy, are used. 

Many authors [1, 2, 22, 23 , 49, 51] use a different type of image energy. It is a quadratic 
measure, too, but the contributions are calculated and summed in the reference domain g, 

Er(m) = ~ { lfom-gl 2 dA. (3.1.4) 
2rJng }g 

Evidently this is a valid similarity measure in that low energy values indicate that f and 
g are similar at corresponding positions. The analogue to (2.3.4) for this type of modeling 
could be formulated by 

g = f om+n9 • (3.1.5) 
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Since (3.1.4) actually measures the conformity of the model with the data, it is herein called 
reverse modeling similarity measure. 

The distinction between forward and reverse modeling takes the different roles of g and 
f into account . It is easy to confuse shortcomings of a particular model choice with short­
comings of the concept of forward and reverse modeling. In a simplified constellation for 
image-to-image matching, it may be appropriate to use one image as the template for the 
other. Forward and reverse similarity appear equally justified in such a situation. The reason 
is the arbitrary assignment of the roles of the two images. From such an example it is not 
possible to conclude that forward and reverse similarity are just two sides of the same thing. 
The principal difference between forward and reverse similarity is that the first is capable 
of measuring the similarity with respect to the metric of the image f. To see the point, 
it is helpful to consider multiple images fi, each defined on a different image domain F i of 
the same geometric connection C. The forward similarity compares image and model with 
respect to the individual metric of each image. Regions of an image contribute to the simi­
larity measure according to their size in image space and not according to their extent in the 
model. For the reverse similarity, the comparison happens in reference space. Independent 
of the size a region of the model takes in an image , the weight is determined by the extent 
in the model domain. In the form (3.1.3) the forward similarity is computationally costly, 
an aspect, which has to be overcome. Before going into detail, generalizations of the above 
energy terms are introduced. 

3.1.2 Generalized Formulation of the Similarity Measure 

Inspired by (3.1.3) , the global energy indicating the similarity between two images is based 
on a local measure 

V:Qx:FMIR. (3.1.6) 

It is defined on the space of all possible correspondences g x :F, indicating the fidelity of the 
correspondence between two points x and y. Obviously this will involve the comparison of 
the values off and g at the respective positions. The classical choice for the local measure, 
conforming with (3.1.3), is the local least-squares measure 

1
V(x, y) = 21f(y)- g(x)l2 . (3.1.7) 

It is no problem to incorporate parameters for the radiometric correction into V or to add 
an adaptive weight to increase the robustness with respect to outliers. In this case V does 
not only depend on f and g but maybe on some other functions. An important property of 
V is that, by its definition , it takes only a single pair of points as argument, in contrast to 
the global measure E, which takes the mapping m as argument. Using the concept of a local 
energy measure appeared to be practical firstly for the compactness of notation and secondly 
to cover variations of the standard local measure (3.1. 7). To keep things intuitive it is always 
justified to replace V by the more concrete local least-squares measure. 

The global energy measure is the integral over the local contributions V, which like 
(3 .1.3) is an integral over the domain :FM. For a point y E :FM the local energy measure 
at (m-l, id.F)(y) = (m-1 (y),y) has to be evaluated. id denotes the vector-valued identity 
mapping on the respective domain. For an overview of the mappings between the various 
domains see Fig. 3.1. The set C is defined by C = {(x,y): x E Q, y = m(x)}. It is a subset 
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Figure 3.I: Mappings between the domains 9, FM and C 

Figure 3.2: Graphical representation of the local energy measure for an artificially generated 
ID constellation. 

of the space of all possible correspondences. Apart of unmodeled regions, C is equivalent to 
the set C in (2.2.3). The generalization of (3.1.3) is given by 

E(m) = f V o (m-1, id.r) dA . 
l.rM 

(3.1.8) 

The corresponding reverse modeling similarity measure is given by 

Er (m) = hV o ( idg , m) dA . (3.1.9) 

Forward and reverse similarity are both based on the local measure. Obviously, the local 
measure does not uniquely define the global measure. This suggests a review of the role of the 
local measure. It is defined as a scalar function on the space g x F. For 2D constellations, 
g x F is a domain in IR4 . To grasp the essence and keep things intuitive we will restrict 
to a ID constellation. In this case V is a function of IR2 . It can be illustrated graphically. 
Fig. 3.2 shows an artificially generated ID example. The ideal mapping m is shown on the 
right side. V is assumed to be given by the local least-squares measure (3.1.7). Its values 
on g x F are represented by an image, showing large values bright and low values dark. 
For the graphical representation the brightness has been adapted nonlinearly, otherwise the 
bright and dark spots would appear rather unbalanced . The ideal map m . is seen as an 
elongated minimum of the same shape as m , indicating the optimal correspondence. Both 
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global measures are computed upon integrating over an intersection of the space g x :F. For 
the integral (3.1.8) V is evaluated at {(m-1 (y),y): yE :FM}. This is exactly the set C, which 
for a 2D constellation is a 2D face embedded in JR4. In a similar way, the integral (3.1.9) 
involves all values of the local measure at C, which in this case is parameterized over the 
reference domain g. For 1D constellations the integrals are computed along lines embedded 
in ~2 . The reason that the forward and reverse energy generally yield different values is due 
to the different area measures dA.r and dAg . The integrals thus must not be interpreted as 
integrals of scalar density functions but as integrals of differential forms [14], in particular of 
1- or 2-forms respectively. Using integration theory for differential forms the energy terms 
can be written as 

E= fcv (3.1.10) 

and 

ET= 1VT. (3.1.11) 

This way, the difference between forward and reverse modeling is reflected by the global 
and the local measures. We will not use this concept, as knowledge about it is not that 
widespread. What has to be kept in mind is that the local energy measure must not naively 
be interpreted as a density function. The graphical depiction of V suggests itself as a tool for 
understanding the performance of matching algorithms. Though the local energy measure 
is not a new concept, for it is closely related to Gibbs potentials, the interpretation as a 
function on ~2 or higher dimension respectively, might provide a means to better understand 
the convergence properties of optimization methods. In particular, the region of attraction 
of local optimization algorithms is influenced by the distribution of minima and maxima of 
the local measure. 

An immediately apparent demerit of the forward energy term (3.1.8) is that it involves 
the inverse map m-1 . Utilizing the bijectivity of m, variable substitution can be employed 
and (3.1.8) written as an integral over g, 

E(m) = [V o (idg, m) det m' dA. (3.1.12) 

Explicitly the Jacobi matrix m' is given by 

(3.1.13) 

Symbolically the transformation of the domain of integration is done by relating the area 
measures of g and :F by 

dA.r = det m' dAg . (3.1.14) 

The determinant det m' is commonly referred to as Jacobian. In geodesy it is known as the 
area distortion. The form (3.1.12) is called the reference space formulation of the forward 
energy, whilst (3.1.8) is the image space formulation. It follows the principle to perform all 
calculations with respect to the reference space. The consistency of model and underlying 
physics does not have to be sacrificed to achieve this computationally favorable structure. 
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Comparing (3.1.12) and (3.1.9) reveals that they differ by the weighting factor det m'. In 
(3.1.12) regions of g that are visible in F with bad spatial resolution receive a low weight 
and vice versa. This also grants that regions of an image contribute to the similarity 
measure according to their size in image space and not according to their extent in the 
model. Another way to see the desirable consequences of the weighting factor is by means 
of the multi-image case, which is considered in the next section. As a limiting case the 
weighting by the Jacobian det m' leads to the modeling of occlusions. Mathematically the 
Jacobian may vanish at isolated points only, since otherwise the variable substitution is not 
admitted. This will also be the underlying assumption for the next sections. We will also 
require the inverse mapping of m to exist. The case of occlusions is treated separately in 
Section 3.5. Nevertheless, considering the limiting case that the Jacobian approaches zero, 
reveals much of the difference between forward and reverse modeling approach. 

One of the important characteristics of the forward modeling similarity measure is its 
independence of the particular reference domain, which can be seen directly from (3.1.8). 
Changing the reference domain to Q, the integrand at position y is given by V(m-1 (y),y). 
The value remains unchanged, only the coordinates of m.- 1(y) are different. If m(Q) = m(9), 
that is if the model scope remains the same, nothing changes. This is referred to as the 
invariance principle. It is a consequence of the fact that g is used only to parameterize 
the geometric connection C. In as far as the discretization is affected by the change of the 
reference domain, the numerical behavior will be obviously affected, too. Altogether, the 
forward modeling paradigm is more in line with the physical image formation. 

3.1.3 Multi-Image Constellations 

Estimating the texture g by means of (2.4.6) is easily done if the image energy terms are 
integrals of local contributions. We restrict to the case that the similarity measure of indi­
vidual images is based on the local least-squares measure (3.1.7). All energy terms receive 
the same overall weighting. The plausibility of the weighting factor det m' is easily seen from 
this example. The composite energy term is given by 

Emulti = ~ L r lh 0 mi- gl 2 det~dA. (3.1.15)
2 . }g

t 

For fixed maps mi the estimate according to (2.4.6) is easily evaluated to 

* 1""!g = - ~ i o mi det ~1 

w . 
t (3.1.16) 

The applied weighting is very intuitive. It effects that the images that portray a particular 
surface area best, that is with best spatial resolution , dominate the reconstruction process. 
In the limiting case of occlusions, the contributions of the respective image parts are auto­
matically eliminated. 

The above principle may be used in different settings. For image-to-image matching, one 
image may serve as the template for the other. More in line with the imaging physics is to 
assume both images modeled by a common model. To that end, the above scheme can be 
applied using only two images. A simple example is the matching of two normal case images 
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using the cyclopean domain as reference domain (Section 2.2.2). The maps fiR and ffi£ are 
given by (2.2.7). Determining 9* according to (3.1.16) and inserting it into (3.1.15) leads to 

(3.1.17) 

If the derivative of the disparity d' assumes one of the values ±2 the Jacobian of mL or fiR 

vanishes, indicating an occlusion. The local contributions are again properly weighted. 
The above matching scheme for two images works for normal case arrangements. For 

other constellations, there is no equivalent to the cyclopean domain. However, as mentioned 
repeatedly, the similarity measure is not affected by the choice of reference domain. The same 
principle as above can be employed for other reference domains, too. Consider two image fo 
and h and let the reference domain 9 coincide with the domain :Fo. The composite energy 
term comprises the similarity measure for both images. A simplification is that, by virtue of 
construction, m 0 is the identity mapping. It hence does not need to be taken into account 
explicitly. Writing m instead of m 1 , we have 

E(m,9) = ~ { lh o m- 91 2 det(m') dA + ~ { lfo- 912 dA (3.1.18)
2}:Fo 2 } :Fo 

The estimated texture evaluates to 

*(m)= fo + h o mdet(m')
9 (3.1.19)

1 + det(m' ) ' 

and thus 

* 2 det(m')11
E(m) =E(m,9 (m))=- lfiom-fol d ( ') dA. (3.1.20)

2 ;:0 et m + 1 

We refer to this setup as the symmetric variant of image-to-image matching. Intuitively the 
symmetry is violated by taking one image as reference domain. Nevertheless, both images fo 
and h are treated equally. Changing the domain of integration from :Fo to :F1 by variable 
substitution leads to an expression that is completely analogous to (3 .1.20), only the indices 
are interchanged and m is replaced by m-1 . The fact that mo is the identity mapping 
involves a couple of simplifications, for example for the calculation of the derivative of the 
energy term. Altogether, the effort is increased only moderately in comparison with the basic 
constellation that uses one image as template, e.g. 9 = fo. 

3.1.4 Remarks on the Continuity of the Similarity Measure 

Only a few remarks concerning the continuity of the similarity measure are given. For prac­
tical purposes, continuity of the discretized similarity measure, as well as differentiability, is 
interesting as it influences applicability and performance of optimization algorithms. If the 
Finite-Sums approach (cf. Section 3.4.2) is used for the discretization, the conditions for con­
tinuity and differentiability are obtained straight forward. Prior to the discretization, that 
is for the similarity measure as it is presented in this section, the general conditions are not 
that easily shown. The following comments are actually rather limited, demonstrating only 
some principles. 

One important point of continuity concerns the norm to be used for the map m. Conti­
nuity is a concept linked to the topology of a space, which in the case of Banach spaces is 
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defined by some norm. In view of (3.1.12), it is clear that for E(m) to be close to E(m) it 
is not sufficient that m(x) is close to m(x) for all x. It is required that the partial deriva­
tives ~";'; and ~r;;; are close, too. For infinite dimensional spaces of functions, these two 

J J 

requirements are not equivalent. More precisely, we assume m E C1 (9) x C1 (9) and base 
our considerations on the following norm of m 

0 0
llm/h,oo = L (max /mi/ +maxI 0mi I +maxI 0mi I) (3 .1.21) 

. 12 g g Xl g X2
t E , 

Whether less restrictive norms are sufficient, is not clear. 
First, note that this norm ensures that if the Jacobian det m' is positive, which has been 

one of the underlying assumptions so far, then this is valid for a certain neighborhood of the 
map, too. More precisely, there is a neighborhood N8(m) = {m: //m- m// < 8, 8 > 0}, such 
that for m E N8(m) it follows that Idet m'- det m' / < ~- This is simply a consequence of 
the continuity of the determinant and the fact that the above defined norm ensures uniform 
convergence of all first order partial derivatives of m. Consequently, if det m' > c then 
det m' > ~- This result is important, as it grants the existence of a neighborhood of m for 
which the energy term is defined without complications. 

Continuity of the similarity measure is established very easily if V is assumed continuous 
and bounded. Consider the difference of the energy for two mappings m and m, 

/E(m)- E(m)/ = ll V 0 (idg, m) det m' dA- [V 0 (idg, m) det m' dAI (3.1.22) 

Trivially, 

/E(m)- E(m)/ :::; [/V o (idg, m) det m'- V o (idg, m) det m'/ dA. (3.1.23) 

As the norm of m enforces uniform convergence of m including all first order partial deriva­
tives, the integrand, which is continuous by assumption, converges uniformly to zero for 
8 M 0. The domain 9 may be assumed bounded, causing also no complications. 

Requiring V to be continuous matches the expectations. The condition is however not 
generic. Let V be given by the local least-squares measure. Assuming f and g piecewise 
constant still leads to a continuous similarity measure. This is supported by practical tests 
and theoretical considerations as well. The principle is very similar to a well-known property 
of convolution: Convolving two piecewise constant functions leads to a continuous result. 
A mathematical simple argument to establish the general conditions of continuity for the 
forward similarity has not been found . Further investigations have not been considered 
worthwhile, as the are of limited value for the practical implementation. In their generality 
they can not be used in the discrete context. The condition that V be continuous is relevant 
for the discretized problem, too. 

3.1.5 Related Approaches 

The first and so far only application of the forward modeling principle to image matching 
is due to the gToup of Wrobel [29, 58, 61 , 62]. The formulation is based on the concept of 
nonlinear adjustment calculus following physical arguments as far as feasible . The set of equa­
tion and the thereof-derived optimality principle corresponds to the image space formulation 
(3.1.8). The resulting algorithm is called the direct method. The indirect method targeted at 
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a formulation in the domain of g is not equivalent to the reference space formulation (3.1.12). 
The reason is that the concept treats the images as a discrete set of measurements rather 
than continuous functions. The image data as acquired by scanners or CCD-cameras are 
indeed a discrete set of measurements. The continuous approach however proved to be very 
valuable, as it supports the use of variable substitution and partial integration, which help 
to uncover the structure of the problem. 

The matching algorithms utilizing the reverse energy or close relatives are numerous 
[1 , 2, 22, 23, 49 , 51]. Since a couple of algorithms uses symmetric similarity measures the 
forward or reverse modeling property is not easily identified. In [5, 18, 26] two normal case 
stereo images are matched using a cyclopean image and a energy term of the following type 

(3.1.24) 

The definitions of mR and m£ are given by (2.2. 7). The measure lacks the characteristics of 
forward modeling, which for the particular setup leads to (3.1.17). 

3.2 Derivatives of the Similarity Measure 

Derivatives are needed for optimization purposes. In particular the first derivative E' is 
needed by many algorithms to determine and find the optimum m* for which E assumes its 
minimum. The other quantity that is required for the practical implementation is the Gauss­
Newton term EGN. For quadratic error measures the Gauss-Newton term is an approximation 
of the second derivative (cf. Section 4.2.3) . The name Gauss-Newton term is however not a 
standardized notion. In adjustment calculus EGN is referred to as the matrix of the normal 
equation. 

In this section only derivatives with respect to m are considered. If the map is parame­
terized by some matching function u, the chain rule has to be applied to get the derivative 
with respect to u (cf. Section 3.3). The texture g is assumed to be known or to be estimated 
according to (2.4.6) . This has no consequence for the results. Note that 

dE(g* (u), u) aE(g* (u), u) ag* (u) aE(g* (u), u) 
----~--~ - + --~~~~ (3.2.1)

du - ag au au . 

By (2.4.6) , the partial derivative with respect to g vanishes, presuming di:fferentiability with 
respect to g. The first derivative as well as the Gauss-Newton term are based solely on first 
order approximations, thus whether g is known or estimated has no influence. 

The reference space formulation suggests that the forward energy can be treated as a 
weighted least-squares problem. It is indeed possible to ignore the dependency of the weight­
ing factor det m' on the mapping m when calculating derivatives. Practical matching results 
obtained by this method have been found satisfactory. However, not the original problem 
is solved but some neighboring problem, because for most optimization algorithms the first 
derivative is used not only to find but also to determine the minimum. The principle is sim­
ilar to the iterated reweighted least-squares problem for robust estimation (e.g. [66 , p . 70]), 
which however, in its particular setup, does not change the problem. This line is not pursued. 
The required results are obtained easily from Section 3.2.4 upon incorporating the weighting 
factor det m' . The exact derivative of the forward energy is not easy to compute. It is given 
in the next section. Again the dual role of forward and reverse modeling similarity measure 
is revealed. 
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3.2.1 First Derivative of the Similarity Measure 

The calculation of the first derivative can be done using either of the two formulations of 
the forward energy (3.1.8) and (3.1.12). In this section the image space formulation (3.1.8) 
is taken as the starting point. This facilitates the geometric understanding. In Section B.1 
an alternative calculation starting from the reference space formulation (3.1.12) is given. It 
has two advantages: Firstly, it is more mathematical. In particular, the necessary steps 
are the same as needed to establish the Euler-Lagrange equation (2.4.11). Secondly, the 
numerical implementation is based on the reference space formulation, too. Differentiating 
the discretized energy term yields completely analogous results. The calculation however 
faces obstacles , because partial integration and variable substitution can not be carried over 
to the discrete case adequately. Having the corresponding results from the continuous case 
at hand facilitates the treatment. 

The first step to obtain the derivative of the energy term is to replace the map m by a 
slightly altered map 

m= m+ tJL. (3 .2.2) 

This is inserted into one of the expressions for the global measure. Differentiating with 
respect to t yields the first variation of the image energy term. More precisely, the variation 
is calculated by 

. 1
8E(m;JL) = hm -(E(m + tJL)- E(m)) . (3.2.3)

t-+0 t 

The result is linear with respect to JL· It is taken as the derivative of the image energy 
(without proof), E ' (m)JL = 8E(m; JL) . 

Inserting the modified map (3.2 .2) into (3 .1.8) yields 

E(m) = { V o (m-1, id.r) dA . (3.2.4) 
lm(Q) 

The modification of the map does not only change the single point correspondences , but also 
results in a modified image domain m(g). Parts of :F that contribute to E(m) are no longer 
taken into account by E(m), whilst other regions provide additionally contributions. This 
shift of the boundary gives rise to a boundary term. The situation is depicted in Fig. 3.3. 

To apply (3.2.3), we calculate the difference 

E(m)- E(m) = { V o (m-1 , id.r) dA- { V o (m-1 , id.r) dA. (3.2 .5) 
lm(Q) lna(Q) 

This expression is rearranged to facilitate the separation of boundary and interior terms, 

E(m)- E(m) = 

= { Vo(m- 1,id.r)-Vo(m-1,id.r)dA (3.2 .6a) 
lm(Q) 

+ { V o (m-1, id.r) dA- { V o (m-1, id.r) dA. (3 .2.6b) 
lm(Q)\na(Q) lna(Q)\m(Q) 

(3.2.6a) captures the changes in the interior of m(g). The fact that the integration ex­
tends over m(g) shall not be reason of confusion. If t --+ 0, it follows that m(g) --+ m(g). 
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Figure 3.3: The image of domain g under the mapping m = m+ tJ.L. 

Furthermore, V may be assumed bounded, thus 

lim ~ { V o (m.-I, id.r)- V o (m- 1 , id.r) dA = 
HOt lm(Q) 

{ lim ~(Vo (m- 1,id.r)- Vo (m- I,id.r)) dA (3.2.7) 
lm(Q) HOt 

Consequently, the differentiation has to take only the integrand into account. It is however 
not performed straight forward, as the integrand depends on the inverse map. For every 
point y E m(9), the change of its corresponding partner in 9 caused by the change of the 
map is needed. Based on simple geometric considerations, a first order approximation of the 
inverse map m.- 1 is given by 

m.-1(y) := x- t(m'(x)f 1J.L(x). (3.2.8) 

Plugging this into (3.2.7) leads to 

- { V[m'- 1J.LdA. (3.2.9) 
Jm(Q) 

Vx denotes the column vector ( g~ ,g~) T. We have tacitly not included the proper trans­

formations to the domain m(9) as they significantly clutter the formula. 
(3.2.6b) accounts for the boundary term. The differential element of area dA.r for the 

boundary regions m(9)\m(9) and m(9)\m(9) can be approximated by dA.r = tJ.L x ds.r, 
as illustrated in Fig. 3.3. The sign of this expression is correct for regions that are in m(9) 
but not in m(9) , which therefore have to be counted positively, as well as for the reverse 
situation. Computing limHo t ( ... ) for the boundary term (3.2.6b) leads to 

{ V J.L X ds . (3.2.10) 
lam(Q) 
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Again a shorthand notation is employed. 
(3.2.9) and (3.2.10) are not in a computationally favorable form, since they require inte­

gration in the image domain F, whilst we are striving to have all computations done in the 
model domain g. Accordingly, the next step is to perform variable substitution to change 
the domain of integration from m(9) to g. This is the very same as has been done to derive 

1(3.1.12) from (3.1.8). First, note that the inverse Jacobi matrix can be written as

m'-1 = __1_mtad (3.2.11)
detm' 

Consequently, the Jacobian det m' cancels when performing variable substitution for (3.2.9). 
Explicitly, m 'ad is given by 

(3 .2.12) 

Variable substitution for the boundary term is performed by means of the relation 

ds.r =m' dsg. (3.2.13) 

Further p, x (m' dsg) = ( m'ad p,) x dsg , so that stacking all the results together leads to 

E'(m)p, = r Vo (idg ,m) (m'ad p,) X ds- rv; 0 (idg ,m)m'adp,dA . (3.2.14)
l ag }g 

A graphical illustration of the derivative is given for the 1D case (Section 3.2.3). 

3.2.2 The Gauss-Newton Term 

The assumption that errors of various kinds obey a Gaussian distribution is very common. 
The corresponding estimation problems lead to minimization problems of quadratic expres­
sions, commonly referred to as least-squares problems. These problems have an advantageous 
structure with respect to optimization, causing them to be favored even in cases in which the 
theoretical justification is not stringent . In the particular case the problem is of least-squares 
type if the local measure V is a quadratic expression, 

1 
V(x,y) = 2 1N(x, y)l 2 

. (3.2.15) 

The considerations are based on the image space formulation (3.1.8), because with respect 
to domain m(9) the energy is a pure quadratic expression. Explicitly it can be written as 

(3.2.16) 

or using the L2 norm 

E(m) = ~IIN o (m- 1 ,id.r)ll~,m(Q). (3.2.17) 

1 According to (13, p. 508], the matrix elements of A ad at the i'th row and j'th column are the algebraic 
complements for the i'th column and j 'th row (sic!) of the determinant of A. A a d is called (German) "ad­
jungiert" which is ambiguous because this term is usually used for the adjoint matrix. In (63 , p. 632) it is 
called the adjunct matrix. We will not assign it any specific name. 
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Based on this structure, it is possible to apply the Gauss-Newton algorithm for the optimiza­
tion, the standard algorithm in adjustment calculus. The procedure is to linearize the inner 
expression N o (m- 1 , id.r) with respect to the parameter, m in the particular case, and use 
the resulting quadratic problem to approximate the original problem (see also Section 4.2.3). 
Assuming m= m+ J.J-, this leads to 

- 1E(m) ~ E(m) + E'(m)J.J- + 2,EGN(m)J.J-J.J-. (3.2.18) 

EGN is a bilinear operator that approximates the second derivative E" (cf. Section 4.2 .3). 
We employ the same notation as used in [64, pp. 464] for the second derivative and write the 
arguments of the bilinear form without brackets. 

The forward similarity is however not a standard situation. In particular it is unclear how 
to treat the boundary. There is no simple recipe how to obtain the Gauss-Newton term in 
this situation. The conclusion of the following arguments is that the boundaries are ignored. 
The linearization of N o (m- 1 , id.r) is performed according to 

T ,-1 ( ) 
-1 ·d ) ,...., N ( -1 .d ) + Nx m J.J- m(Y) n m gN o (m -

,1 .r _ o m ,1 .r . (3.2.19)
{ 0 else 

In the interior region m(Y) n m(Y) the ordinary linearization is applied. Adding the linear 
term in the boundary region leads to expressions of higher than quadratic order. This is 
taken as the reason to omit them in the boundary region. (3.2.19) is inserted into (3.2.16), 

E(m) ~ E(m) 

+ { NN'[m'-
1 
J.J,dA (3.2.20a) 

lm(Q)nm(Q) 

+ ~ r INI 2 dA- ~ r INI 2 dA (3.2.20b) 
2 Jm.(Q) \m(Q) 2 Jm(Q) \m(Q) 

+ ~ r IN'[m'-
1 

J.J-12 dA . (3.2.20c) 
2 Jm(Q)nm(Q) 

The approximation is to be valid for small increments J.J-. If IIJ.J-11 -+ 0 for example for the 
norm (3.1.21) or if J.J- is replaced by tJ.J, and t -+ 0 then m(Y) -+ m(Q) . Accordingly, for 
(3.2.20a) and (3.2.20c) the domain of integration is replaced by m(Y). The boundary term 
(3.2.20b) is treated like in Section 3.2.1. By means of variable substitution, (3.2.20a) and 
(3.2.20b) lead to the interior and boundary terms of the first derivative, but specialized to 
the local measure (3.2.15). (3.2.20c) leads to the Gauss-Newton term 

1
EGN(m)J.J-J.J- = rIN'[ 0 (idg ,m) m'adJ.J-1 2-ddA. (3.2.21)

}g etm 
I 

The above arguments are not compelling. The essential consequence is that no boundary 
term is obtained for the Gauss-Newton term. The situation is not entirely satisfactory. The 
Gauss-Newton algorithm relies on both quantities E' and EGN. Since the boundary term 
of the derivative has no analogue in the quadratic term, the computed iterative update is 
unbalanced. Practical experience shows that the performance near the boundary is sometimes 
not optimal and that omitting the boundary term of E' improves convergence. The method 
though lacks theoretical justification, as it concerns not only the optimization method but 
changes also the solution m* for which E' (m*) = 0. 



33 3.2. DERIVATIVES OF THE SIMILARITY MEASURE 

A point to note about the Gauss-Newton term (3.2.2I) is the inverse Jacobian in the 
integrand. In the case of small Jacobian det m', i.e. in the neighborhood of an occlusion, 
the quadratic term given by the Gauss-Newton method gets excessively large. As will be 
shown in Section 3.5, the forward energy is not differentiable if the Jacobian vanishes , i.e. 
at the point of transition from visible to occluded. Clearly, if the linear approximation fails, 
because of lacking differentiability, there is little hope that a quadratic term is meaningful. 
A possibility to cross validate (3.2.2I) is based on the fact that, for vanishing local measure 
No (idg, m) = 0, the Gauss-Newton term should be equal to the second derivative. This is 
indeed the case. The details are however omitted. 

Yet another thing to note about (3.2.2I) is that it is a "diagonal" bilinear operator. This 
is due to the fact that the values off are assumed independent, if conditioned on the model 
(m,g), and that the blurring effect has been neglected. The discretized form of EGN is a 
diagonal matrix. The diagonal form is however destroyed once the similarity term is combined 
with a stabilizing functional or if the matching function is composed of basis functions. 

3.2.3 Specialization to lD Constellations 

The ID case provides a means for easy to implement testing routines and facilitates analysis. 
Therefor the results of the preceding section are given for this special case. The reference 
domain is assumed an interval [x0 , x1], thus the energy is given by 

Xl 

E(m) = V o (id.r , m)m' dx. (3.2.22)J 
xo 

The derivative evaluates to 

JX l 
1 

E'(m)f..L =V o (id.r, m)f..Lix - Vx o (id.r, m)f..L dx. (3.2.23) 
xo xo 

and the Gauss-Newton is given by 

(3.2.24) 

xo 

For the ID case a graphically illustration of the derivative is easily possible. The following 
example (Fig. 3.4) is, as always, based on the local least-squares measure. The template g 

and the data f are assumed Gaussian functions. We adopt the viewpoint of optimization 
and consider the mapping m(k) as the state of the k'th iteration step. The best match, 
i.e. minimal image energy, is achieved for a mapping m * that perfectly aligns template and 
data, f o m * =g. To improve the similarity f o m(k+l) should be closer to g than f o m(k) , 
in particular it should be situated left off o m(k)_ This requires m(k+ll(x) > m(k)(x), \fx . 
Gradient descent like optimization method use the negative gradient to compute reasonable 
directions for minimizing the image energy. The gradient is easily derived from (3.2.23), 

\7E(m) =-V(xo, m(xo))o(.- xo)- Vx o (id.r, m)+ V(x1, m(xl))o(.- xi) . (3.2.25 ) 

The Dirac functions o(.- xo) and o(.- Xl) account for the boundary terms. For the simple 
example of Fig. 3.4 the interval is assumed to extend to infinity, thus no boundary terms are 
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Figure 3.4: The negative gradient -V'E for a 1D constellation. 

included. Together with the particular local measure this leads to 

V'E (m) = (f o m - g)g' . (3.2.26) 

The negative gradient is depicted in the lower part of Fig. 3.4. Clearly -V'E points dom­
inantly to the correct direction. The magnitude depends on the slope at the respective 
position. Regions with steep slopes, the "edges" , are not only used for feature-based match­
ing, but also provide the main clue for intensity-based matching algorithms. Outside the 
central region, where g and f o m(k) decay to zero, no matching information is available and 
the gradient decays to zero, too. A small part, near the maxima of the two functions, is noted 
where -V'E points to the "wrong" direction. It is clear that the image energy can not be 
used alone to perform successful matching. Its gradient is nevertheless the driving force for 
a large class of matching algorithms. Additional modeling assumptions (cf. Section 4.1) are 
used to prevent each value m(x) from proceeding independently of its neighbor values. These 
mechanisms grant that m keeps in a reasonable shape throughout an iterative optimization 
procedure. 

3.2.4 Derivatives of the Reverse Modeling Similarity Measure 

Calculating the derivative of the forward energy requires some intermediate steps. For the 
reverse energy (3.1.9) the situation is much simpler because the integrand depends on m only 
and contains no derivatives of m. The first derivative is given by 

(3.2.27) 

The Gauss-Newton term evaluates to 

ErGN (m)p,p, = ~ INJ o (idg, m) p,l 2 dA. (3.2.28) 

Comparing these results with those obtained for the forward similarity reveals the fol­
lowing differences. (3.2.14) includes a boundary term due to the fact that the modeled part 
of the image changes. This happens because the reference domain, which parameterizes the 
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part of the model that is to be recovered, is kept fixed. The relevant part ofF, the modeled 
part FM, is not known a priori. For the reverse similarity the roles ofF and 9 are reverted. 
The "data" domain g is fixed and no boundary term results. The derivative VIm'ad J.L in 
(3.2.14) translates to V{ J.L in (3.2.27). The relation of the Gauss-Newton terms (3.2.21) and 
(3.2.28) is similar. For the case of the reverse similarity measure the differentiation of the 
local measure, V or N respectively, is performed in the image domain, with respect to y , for 
the forward similarity the differentiation is done in the reference domain, with respect to x. 
Note that the expression for the forward similarity can not be of the form VI J.L· The terms 
Vx and J.L do not match because x and J.L are quantities of different domains specified with 
respect to different coordinate systems. The matrix m'ad performs the necessary translation. 

3.3 Examples of Particular Geometric Constellations 

So far the similarity measure has been considered without restricting to a particular geometry. 
For every point x E 9, both coordinates of the map, m 1 (x) and m2(x), have been considered 
as free quantities. In the course of surface reconstruction, this flexibility is not needed. Usu­
ally m does not serve as the matching parameter itself, but depends on some scalar-valued 
function. The parameterization of the map m provides a means to incorporate knowledge 
about the geometry, the orientation, of the imaging constellation. In a generic setting the 
matching function will be denoted by u. It extends the pair (x1, x2) to the triple (x1, x2, u(x)), 
which encodes the position of the corresponding point in the 3D object space. The geometric 
relationships considered in this section are always local, i.e. m(x) := m(x, u(x)). In that 
case it is still easy to use the results of the previous section. Much the same way as when 
differentiating composite functions according to the chain rule, the increments J.L in the ex­
pressions forE' and EGN depend on the increment of u denoted by v, J.L(x) ~ ~7:c~/v(x). 
Consequently, when considering particular matching configurations not m'ad is needed but 
m'ad a;:. Care has to be taken, since for the general case this applies to the first derivative 
E' only. When translating higher order derivatives E" etc., and the dependency of m on u 
is not linear, mixed terms will appear. From the current perspective, the use of higher order 
terms has minor relevancy. It is therefore not considered separately. The Gauss-Newton term 
EGN is based solely on first order derivatives and the principle can be applied unaltered. A 
straightforward calculation of m'ad ~7: is rather laborious for some cases. Taking the special 
structure into account simplifies the matter significantly, 

8m1 8m1 8m1 )T8u 8x1 8u (3.3.1)
8m2 8m2 8m2 
8u 8x1 8u 

Most importantly, the quantity depends on the "location" (x, u(x)) only. All terms containing 
derivatives of u cancel independent of the type of mapping, as long as the map is parameter­
ized by a scalar function. As can be seen from (3.2.14), the components of the vector (3.3.1) 
enter the formulation of the similarity measure as coefficients of partial derivatives O andx1 

Ox2 respectively. Hence, the above vector is essentially used to perform derivation in a par­
ticular direction. For the common case of perspective imagery, the search for corresponding 
points can be confined to epipolar lines, nadir lines, or vertical locus lines. m'ad ~7: is a vector 
tangential to these lines, thus the derivation is performed in the direction of these lines. Note 
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however that the derivative is taken in the reference domain rather than the image domain. 
We denote the components of (3.3.1) by -p1 and -P2· The minus signs are inserted to be 
compati~le with (3.3.4), it is however a matter of subjective taste how to include them. The 
symbol d is used to denote the derivative 

- T tadam 
dug = 9x m - = -Pl9x1 - P29x·> · (3.3.2)

8u ­

The other quantity frequently used in the course of this work is the Jacobian or area 
distortion det m' . T_he following identity reveals the natural connection between the Jacobian 
and the derivative du, 

(3.3.3) 

If the Jacobian and the derivative du are expressed in a compatible way, computational effi­
ciency can be gained by factoring out common parts. The connection can also be employed to 
find suitable expressions for (p1 , P2). It is much more likely to find formulas for the local area 
distortion det m' of a particular mapping m in the literature than for the coefficients (p1,p2). 
The coefficients Pi can be deduced directly from any formulation of the area distortion. To 
fully uncover the regularity of (3.3.3), it will be written in yet another way, 

8m1 8m1 8m1 
OX! OX2 ou 
8m2 8m2 8m2detm' = (3.3.4)OX! OX2 ou 
ou ou 1-OX! - OX2 

It appears that p 1 and P2 are the algebraic complements of the third row of the above matrix. 
The third component of this triple of algebraic complements is the determinant in (3.3.3). 
The pair (pl,P2) may thus be extended to the triple (p1,p2,p3) with P3 given in (3.3.3) . 

Using a scalar matching function u in combination with the reverse modeling similarity 
measure follows the same principles, i.e. 1-" is again replac~d by ~r::v. The results are obtained 
easily. The equivalent to the reference space derivative du is simply 

8f o m_ JT8m _ 8m1f 8m2f (3.3.5)8u - y 8u - 8u Yl + 8u y2 • 

Obviously this derivative is evaluated in image space. The extra effort that has to be paid 
using the forward or reverse modeling depends on the type of parameterization. For the 
DLT configuration (cf. Section 3.3.3) the difference concerns the paper work , but not the 
computational complexity. 

In the sequel the following sample configurations are considered, 

- image-to-image mapping for normal case constellations, using the ordinary disparity as 
matching function, 

- image-to-image mapping for general constellations, using the generalized disparity as 
matching function , and 

- orthophoto-to-image mapping, using the height Z(X, Y) as matching function . 
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The purpose of this section is primarily to serve as reference for the implementation. This 
is necessary mainly because the quantity m ' ad and combinations including it are unusual 
and most likely will be hard to find in the literature. As a side effect, the particular simple 
matching by disparity may be viewed as an example facilitating the understanding of the 
method. 

A remark on notation: It is common practice to denote coordinates in object space by 
(X,Y, Z). Similarly for image coordinates some choices are more usual then others. Despite 
of that , we stay with the convention to denote the coordinates of the target domain by y and 
the coordinates of the source domain by x . When comparing different schemes in succession, 
that choice has been found to b e more transparent . 

3.3.1 Normal Case Image-to-Image Mapping by Disparity 

The normal case arrangement is surely the most often used configuration for matching al­
gorithms (e.g. [5 , 10, 18, 19, 26, 37, 51]). It can be handled easily due to the fact that the 
epipolar lines are parallel. Given an image point x the corresponding point y = m(x) in the 
other image is determined by the disparity d, 

m(x) = ( XI ::(x) ) (3.3.6) 

We follow the common practice to have the XI- and YI-axis parallel to the epipolar lines. The 
structural properties mentioned above are not necessary, as the results are obtained without 
complication anyway. The Jacobi matrix is given by 

) 0 
(3.3.7) 

Noting that p, = (o,O)T , because there is no increment of the second coordinate, we have 

,adorn= (1) (3.3.8)m ad 0 

The Jacobian is almost trivially given by 

det m' = 1 + dx1 • (3.3.9) 

This corresponds to a coefficient vector p = (-1, 0, 1) . 
Plugging the results into the first derivative of the similarity measure (3.2.14) results in 

E'(d)o = { Vodx2 - { Vx 1 odA. (3.3.10) 
Jag }g 

Combining this with the local least-squares measure yields 

(3.3.11) 

The close relation to the ID case (cf. Section 3.2.3) is obvious. 
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3.3.2 Image-to-Image Mapping by Generalized Disparity 

The normal case constellation is particularly simple for the application of image matching 
algorithms. Unfortunately, real imaging configurations seldom conform to the rather stringent 
requirements. Having only two images, it is possible to artificially generate a pair of normal 
case images. Nevertheless, such preprocessing steps are not satisfactory though sometimes 
inevitable. Another possibility is to use a generalized concept of disparity [39]. We assume 
that the two cameras C and C' are specified by the matrices of intrinsic camera parameters 
C and C' , as defined by 

(3.3.12)c := ( ~ ~ =~~ )
0 0 -c 

(h1, h2) are the coordinates of the cardinal point and c is the camera constant . The rotation 
matrices R and R' are given with respect to some reference coordinate system, which may 
coincide with one of the camera coordinates systems to cover the case of pure relative ori­
entation. A vector n has to be specified that indicates the direction in which the depth z 
relative to the projection center of C is to be measured. The homogeneous coordinates xh 
and Yh of corresponding image points are related by [39] 

Yh <X (R'C')-1(1- z (~) bnT)RCxh . (3.3.13) 

b denotes the basis vector from camera C to camera C' and I is the 3 x 3 identity matrix. The 
symbol <X indicates proportionality by a factor. We define the generalized disparity d to be 
inversely proportional to the depth z. The proportionality factor may be chosen according 
to convenience. Setting d = ~ is conform with the ordinary disparity. (3.3.13) can be 
rewritten in condensed form 

Yh <X H(x)xh = (V - d(x)K)xh . (3.3.14) 

H(x), V and K are each 3 x 3 matrices. From (3.3.13), it follows that K has rank one. For 
d -+ oo or equivalently depth z = 0, the dominant term is -dKxh. Due to rank(K) = 1 
and since homogeneous coordinates may be scaled arbitrarily, all values -dKxh correspond 
to the same point. This point is the epipolar point of camera C'. y h <X V xh is obtained if 
z -+ oo or d = 0. The corresponding point y is the vanishing point of the ray associated with 
x. Using the abbreviations 

(3.3.15) 
V3(x) 1 V31X1 + V32X2 + V33

(~~~:~) =V (~~) = (~~~~: ~~~~~: ~~:) ' 

ki(x) defined analogously, and hi= Vi- dki the map m is equal to 

Vi (x)-d(x)ki (x)) 
_ v3(x)-d(x)k3(x)( ) - (~~~~~) (3.3.16) m x - h2(x) - v2 (x)-d(x)k2(x) · (

h3(x) v3 (x)-d(x)k3(x) 

The coefficient vector p is evaluated to 

( k1 H12 h1 Hn k1 h1 Hn1 
P = k2 H22 h2 H21 k2 h2 H21 (3.3.17)h3

3 k3 H32 h3 H31 k3 h3 H31 
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hi(x) and ki(x) are a byproduct of the evaluation of m(x). The chosen notation emphasizes 
the regularity of the expressions. Computational efficiency is increased if h3 (x) and k3 (x) 
are factored out and if certain sub-determinants are calculated in advance. Recall that 
k (x) k (x)
k~(x) = const and k~(x) = const 'ix. The case that the depth z (x) is chosen as the matching 
parameter can be handle very similarly, because the structure of (3.3.14) and (3.3 .16) is 
retained if d is replaced by ~. 

Despite all attempts to calculate (3.3 .17) efficiently, a large number of additions and 
multiplications remains to be performed. A significant reduction of the computational burden 
is achieved if the vector n coincides with the axis of the reference camera C. The advantage 
stems from the fact that in this case, the matrix K contains nonzero elements in the third 
column only. Consequently, the map m can be written in a DLT style , 

Vu x1 +V12X2-K13d(x)+V13 ) 
( ) _ V31X1+V32X2-I<33d(x)+V33 (3.3.18)m X - V21x1+V22X2-K23d(x)+V23 .( 

V31x1 + V32x2-I<33d(x)+ V33 

This type of map is considered in the next section for the case of orthophoto-to-image map­
ping. The results directly apply to the mentioned special case. It is interesting to note 
that using a generalized concept of disparity leads to equations familiar from object-space­
to-image mapping. Naively one would expect that this, if possible at all, could be achieved 
upon utilizing the depth z as the third coordinate. As it seems, using depth as matching 
parameter an analogue to (3 .3.18) can not be found . 

3.3.3 Orthophoto-to-Image Mapping by DLT 

The case that the model domain is the XY -plane of some 3D object coordinate system is 
rather important, especially when considering multi-image matching. The geometric rela­
tionships are well known and available from many textbooks [31, 32] . We may directly start 
by writing the imaging equations in a DLT style, 

(3.3.19) 

The matrix A has 3 X4 entries. xh is a 4 element vector' xh <X (Xl' X2' z (X)' 1). Explicitly 
the map reads 

(3.3.20) 

(3.3.21) 

The ai are defined similar to Vi and ki in the previous section, ai = Ail x1 +Ai2x2 +A i3 Z (x) + 
A i4 · For the implementation, it is advantageous to evaluate certain sub-determinants in 
advance. Let ai be the sub-determinant of A, calculated by omitting the i'th column and 
additionally including a factor ( -1)i, e.g. a 1 = (-1) 11A *,2 A*,3 A*,4 I, then (3.3.21) can 
be written as 

(3.3.22) 
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The a i are characteristic quantities for the map m that can be precomputed. A computational 
effort like for the evaluation of (3.3.22) has to be expected for any comparable method. It 
seems unlikely that it can be reduced any further. 

3.4 Discretization of the Similarity Measure and its Deriva­
tives 

The variational problem of finding an optimal matching function , be it the mapping m 
between two images, the disparity d, the surface height Z(X, Y) etc. , is a problem with 
infinitely many degrees of freedom. Solving it on a computer requires a restriction to finite 
dimensional approximations, with the aim of converting the problem into an optimization 
problem in IR?.n. Two basic choices to come up with a finite dimensional model are considered, 

- replacing integrals by sums and derivatives by differences utilizing only samples of the 
underlying functions (Finite-Sums approach) , or 

- using finite dimensional approximations for the functions and performing integration 
and differentiation analytically(Finite-Elements, Ritz approach). 

These steps are carried out at the finest modeling level, essentially treating the problem at 
pixellevel. This might be misunderstood as being contrary to other approaches. In [22, 23, 58] 
the matching function is the surface height Z(X, Y). It is composed of quadratic bilinear 
Finite-Elements. These elements cover a couple of surface texture cells, which are defined 
on a finer grid. A typical order of magnitude for the number of contained cells is 8 x 8. 
The support of this surface model elements can not be compared with the granularity of 
the discretization. The formulation of the mentioned approaches starts from a finite number 
of points. Hence the problem of discretization never occurs. For the presented continuous 
formulation, the problem to be solved first is the conversion to a problem in IR?.n with some 
possible very large n. Issues are the interrelation between the discretized and the continuous 
formulation and the resulting error of approximation. Afterwards, as part of a strategic 
decision, the problem dimension can be reduced further by using p < n basis functions in IR?.n . 

The formulations obtained by the two discretization methods differ in the required style 
of implementation and in the mathematical properties. The Finite-Elements method uses 
parameterized approximations of functions to perform integration and differentiation ana­
lytically. As it turns out, this approach has to be discarded for 2D constellations since it 
requires an extreme computational effort. The Finite-Sums approach assumes only samples 
of functions to be given, utilizing approximation rules for carrying out numerical quadrature 
and differentiation. These rules are themselves based on assumptions about the functions in 
that many rules in numerical analysis are based on considerations about polynomials. The 
characteristic of this method is nevertheless completely different. One consequence of the 
Finite-Sums approach is that, if the image energy E and its derivative E' are discretized in­
dependently, the discrete formulation of E' is not necessarily the derivative of the discrete for­
mulation of E. From principles, this situation can not be encountered if the Finite-Elements 
approach is used. Of course, the discretized similarity measure is amenable to differentiation. 
In case of the forward modeling similarity measure, the result however lacks structure. The 
section on the Finite-Sums approach will establish the relationship between the discretized 
energy E its derivative and the approximation of E'. First, the Finite-Elements or Ritz 
approach is considered. 
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Figure 3.5: Cell structure for an superposition of an irregular gird over an regular grid. 

3.4.1 Finite-Elements, Ritz Approach 

The Ritz method [64, p. 411] is applicable to variational problems and to differential equations 
that can be converted to variational formulations. The problem 

F (u) = min ! u E M , (3.4.1) 

with M ~ X and X an infinite dimensional Banach space, is solved for a finite dimensional 
subspace Xn, 

F(un)=min! UnEXnUM. (3.4.2) 

Choosing a basis e1, ... , en in Xn and defining Un = L~=l c;ei yields an optimization problem 
in Rn for the coefficients c1 , .. . , Cn· The Finite-Elements method may be interpreted as Ritz 
method with special narrow supported functions ei.2 

The tractability of this approach relies on the fact that the functional (3.4.2) or the 
derivative with respect to the coefficients 

oF(un) _ F'( ) . 
!l - Un e~ (3.4.3) 
uc; 

is computable. For the matching problem this is not easily accomplished. Just consider the 
simple case that all functions are interpolated from samples at regular grid locations with 
some narrow supported interpolation kernel. For example, let the two functions f and g be 
constructed by bilinear interpolation from samples on grids gF and gc respectively. Assume 
that m is specified by its values on grid gc also using bilinear interpolation between the 
grid points. m will map the quadratic grid cells of gc to quadrangles in F. Overlaying the 
irregular grid with the regular grid gF results in a very complicate structure of grid cells, see 
Fig. 3.5. Some grid cells will contain multiple cells of the other grid, other cells will overlap 
only partially. The expressions for the functions f and g have local validity only and thus 
every sub region bounded by vertices of gF and gG has to be analyzed and treated separately. 
Consequently, the integration involves considerable effort. 

The situation appears different for the 1D case, Fig. 3.6. Overlaying the irregular 1D 
2The usage of Finite-Elements is not limited to the Ritz-Method. They are also used with the Galerkin­

Method [63 , pp. 1169], which is applicable to differential equations for which the exact variational formulation 
is not known. A weighted residual formulation is used instead. 
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Yo 

Figure 3.6: A ID matching configuration using piecewise linear Finite-Elements for f , g , and 
m . 



3.4. DISCRETIZATION OF THE SIMILARITY MEASURE AND ITS DERIVATIVES 43 

grid of points mi over the regular, i.e. equidistant, lD grid of points Yi yields a succession 
of intervals with varying length. This structure can be analyzed with reasonable effort. 
Considering only samples within the model scope [mo, m4], the series of interval boundaries 
is given by (mo, Y2, y3, m1 , ... , Ys, m4) for the example. A piecewise linear interpolation is 

1assumed for j, g, and m. Fig. 3.6 also depicts the difference f- go m- . It is easily seen 
that every interval has to be treated separately. Interestingly, for approaches of Ritz type the 
image space formulation of the similarity measure plays an important role. The map m(x) 
is not used to "pull back" the function f by f o m, but to "push forward" the function g to 
the domain :F by g o m - 1 . 3 It is also possible to use other than piecewise linear interpolation 
kernels, e.g. with increased smoothness, for any of the involved functions. The effort however 
rises significantly. For the map m, using anything but piecewise linear interpolation is not 
recommendable. Recall that the scope of the current considerations is the pixel level. It is 
doubtful if it makes sense to allow distortions of individual pixels other than linear. 

According to the above, the usability of Finite-Elements for the discretization of the 
similarity measure is limited. The method is applicable for the lD case and thus can be used 
for matching normal case stereo images by plugging several lD constellations in parallel. 
The advantage with respect to the Finite-Sums approach is that the integrals are computed 
exactly. For the Finite-Sums approach only a finite set of sampling points of the reference 
domain 9 is taken into account. This bears the danger that, if the m' is very large, the 
function f o m is sampled with insufficient density. In the discrete case a region of the image 
domain :F can not only be unmodeled, but also more or less badly modeled. For the Finite­
Elements approach, a large Jacobian will cause a single basis element to cover a large part 
of F This reduces the flexibility of the model, but contrary to the Finite-Sums approach 
all values of f are taken into account and no undersampling can happen. When working 
with Finite-Elements, the approximation only concerns the representation of the functions, 
leading to a better predictability of the performance. It thus can be used for comparison 
with other approaches. 

3.4.2 The Finite-Sums Approach 

Under the term Finite-Sums approach a method is considered that replaces the integral 
for the global similarity measure by a sum over a finite set of points employing numerical 
quadrature. Derivatives are approximated by finite differences. Both steps follow standard 
numerical methods [24, 59 , 63]. Commonly the performance of these methods is studied with 
respect to the difference between the exact value and the numerical result. We are however 
not interested in the precise value of the energy functional. The critical point is that the 
computed energy E(m) remains a good measure for the global similarity of the intensity 
values and thus favors the corresponding mappings m. 

The setup for the formulation is the following. It is assumed that it is possible to compute 
values of f at any desired location. Practically, f will be given by samples on a grid and 
an appropriate interpolation kernel has to be chosen. Interesting aspects of the functional 
description of f are the spectral properties, the number of continuous derivatives, and the 
effort of computing single function values f(y) . Contrary to the Ritz approach the analytical 
integration is avoided and accordingly the details of the shape of the function f do not affect 
the formulation. The values of m are assumed to be given on a grid Yh with isotropic spacing 

3 0n the notions pull back and push forward for tensor fields see [64, pp. 596]. 
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h. For the 2D case it is given by 

(3.4.4)Yh = { Xk ,l = ( ~~: ~~ ) : (k, l) E I} , 
with the set of indices 

I= {(k , l): 0 _:::; k _:::; M , O _:::; k _:::; N , k , l E Z } . (3.4.5) 

The specialization to 1D is obvious. If it is necessary to use single coordinates of a grid point 
xk ,l, superscripts denote the coordinate indices xl,1, x~ , l to avoid confusion with the grid 
index. To reduce the number of subscripts, vector-valued indices i E I are preferably used. 
Some formulas however necessitate the use of the standard double subscripting. The node 
values are denoted by 

(3.4.6) 

The vector of grid samples is denoted by m1. Assuming only isotropic spacing does not limit 
the generality of the considerations, but the grid setup itself is a restriction for some cases. 
If the model (m, g) is to represent a 3D object with full flexibility, it might be appropriate 
to have it defined on a triangulated set of points. No practical experience in that direction 
is available in the course of this work, hence the restriction to the grid setup. 

The values for the function g can be specified either on the same grid Yh or on the dual 
grid 

(3.4.7)Yh = { Xk,l = ( ~~: ~~ ) : (k , l) E J*} , 
with the set of indices I * given by 

I* = { ( k + ~ ' l + ~) : 0 _:::; k _:::; M- 1, 0 _:::; k _:::; N- 1, k , l E Z } (3.4.8) 

The dual grid nodes correspond to the centers of the square faces formed by the edges 
of the primary grid gh . According to whether one or two grids are used, we talk about 
single grid discretization or double grid discretization. Using two grids is advantageous when 
approximating derivatives or related quantities like the Jacobian det m'. For example consider 
the estimation of the first derivative from samples at a 1D grid. The simplest method is to 
use the symmetric difference 

I 1 
9 (xk) = 2h (9k+l - 9k-l) + R 

(3.4.9)h2 
[RI::; 6 [g"'(x k + '!?) [, -h < '!9 <h . 

The error of this approximation depends on the grid spacing h, but using finer grids is not 
really an option because that would increase the size of the data to be processed, which is large 
anyway. Using two mutually displaced grids provides an improvement , as most derivatives 
are needed at the respective other grid. The approximation of the derivative between grid 
positions, i.e. at the dual grid, is done by 

g'(xk+ ~ ) = A(9k+l-9k) +R 
(3.4.10) h2 

[RI ::; [g"'(x k + '!?) [, o< '!9 < h
24 
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The error of the approximation tends to be smaller by a factor of i than for the symmetric 
difference. Another viewpoint to gain insight on this, is by means of Fourier analysis. Both 
difference operators are linear and shift invariant (LSI) and can be characterized in terms of 
Fourier spectra, 

~(9k+l ­ 9k-l) ~ i sin(Ol)G(iO) (3.4.11) 

9k+l- 9k ~ 2iei~ sin(~) G(iO) . (3.4.12) 

G(iO) denotes the spectrum of g. Differentiation corresponds to a multiplication of the 
spectrum by iO. For the symmetric difference this is approximated by i sin( 0). This is 
acceptable for e < 1r /2. For higher frequencies the sine function drops of and therefore 
performs rather badly for these components. The forward difference does not exhibit such a 
behavior though obviously the performance for higher frequencies is not perfect. 

When working with two grids, (ih is referred to as the primary or geometry grid and 9'h 
is called the dual or texture grid. Duality though is a concept that requires some kind of 
symmetry. Strictly speaking, it is misleading to talk about a primary grid and a dual grid, 
because the primary grid is the dual of the dual grid. The grids form a pair. In order to 
completely reveal the duality of the grids in a topological sense an artificial point, which is 
connected to all boundary points, has to be added to the grid 9'h. It forms the closure of the 
grid. Practically, we will nevertheless use the terms primary grid and dual grid. It should 
be clear what is meant. Working with two grids comes close to working with only one grid, 
but with the grid spacing reduced to h/2. Indeed the values of g and m are needed at the 
respective other grid. They have to be interpolated, which when working with one grid only 
is not necessary. The better performance is thus paid for with a higher number of operations. 
When using the disparity d for matching, it might also be advantageous to consider a grid 
for the texture that is shifted in one direction only. This is a little bit to be specific to be 
considered separately. It is not difficult to grasp the characteristic of such a setup from the 
presented cases. It can be generated from switching multiple 1D constellations in parallel. 

The considerations so far have been focused on the reference domain 9. The texture grid 
and the geometry grid are rigidly linked and the performance of difference and interpolation 
operations is easily predictable. The distribution of sampling points with respect to the image 
domain F depends on the samples mk. There is no guarantee that the sampling density 
suffices to retain the essential characteristics of f. This is the already mentioned problem of 
badly modeled regions. Commonly the grid spacing h is chosen, such that on average grid 
cells in 9 are mapped to approximately the size of grid cells in F (cf. recommendations in 
[22, 23, 58]). As low frequencies dominate the spectrum of real imagery, the choice of h is 
not entirely critical. 

The results of the discretization are denoted with the symbol h attached, indicating the 
dependency on the grid spacing h. The discretized form of E' is denoted by E'h to make 
clear that the discretization is performed onE' and to distinguish it from (Eh)'. As already 
mentioned interchanging the order of operations yields different results in case of the forward 
similarity. For the following, we will assume only scalar-valued matching functions u. The 
vector of samples UJ is an element of the (M+ 1) x (N + 1) dimensional vector space JR1 . 

The derivative of the energy term E'h is a linear form on that vector space. We write 

E'h '"""E'hV[=~ i Vi. (3.4.13) 
iE/ 
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Similarly the bilinear form EGNh is determined by its coordinates E8Nh. 
The results for the 1D case are given at first, simply for the reason that some properties of 

the method become rather lengthy when formulated for the 2D case. For the reverse modeling 
similarity measure only the 2D case is briefly considered. 

The Finite-Sums Approach for the ID Case 

The grid setup for the 1D case is the very same as in the 2D case, hence parts of the notation 
which are already obvious are skipped. 

Single Grid Discretization The discretization of (3.2.22) requires two steps: the ap­
proximation of the derivative and the approximation of the integral. The complexity of the 
formulas, especially considering the extension to the 2D case, necessitates the introduction of 
some notation. The derivative m' is approximated by the symmetric difference in the interior 
of I and the singles sided differences at the boundaries. Using the notation4 

m1- mo i=O 

ami= !(mi+1- mi-1) 1:Si:SM-1, (3.4.14)
{ 

mM-mM-1 i=M 

we can write 

k E I. (3.4.15) 

The approximations used throughout this section are all based on first order neighborhoods. 
Thus always the outermost grid positions receive a special treatment. The set of boundary 
indices is denoted by ai = {0, M}. 

If m and g are given on the same grid, it will obviously be easiest to compute samples of 
the local measure V at (xk. mk)· Accordingly the integral expression (3.2.22) is approximated 
by 

M 

Eh(mi) = LakV(xk ,mk)amk. (3.4.16) 
k=O 

The weights ak are determined by the trapezoidal rule for numerical quadrature, 

I\aI 
(3.4.17)aI 

To some extent the weighting is a subjective matter, corresponding to the decision where 
to place the boundaries of the integration domain. If the outermost positions xo and x M 

of the grid are assumed the interval end points, the weighting according to (3.4.17) follows. 
In principle uniform weighting is equally justified. The underlying assumption is that the 
sample positions are located in the middle of pixels and that the integration area extends 
over all pixels. The associated interval of integration is [xo- ~' XM + ~] extending effectively 

4 The notation follows (63 , p. 1167]. We do however define the symmetric difference as an operator defined 
for sequences, thus the factor k is taken into account separately. No adequate standard notation has been 
found . Other possibilities found are J.LO (24, p. 225] orb (63, p . 1123). As it is a fundamental operation, it has 
been found more convenient and more intuitive to use a single symbol instead of a composite symbol. 
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a width of half a pixel beyond the outermost grid locations. It has to be emphasized that 
the first choice is judicious with respect to consistency with the double grid discretization 
and with respect to simplicity of the results. Performing the following considerations using 
uniform weighting immediately reveals the assertion. 

Importantly, the grid spacing h does not appear in (3.4.16) , as it would be expected from 
the trapezoidal rule. The factor h cancels with the factor kfrom the numerical approximation 
of m' . This is by no accident. The invariance property of the forward similarity implies 
that it is invariant with respect to the coordinate system used for the domain (} and thus 
independent of the unit of length. Fixing the grid and choosing a new unit of length (e.g. 
centimeters instead of pixels) does not change anything. This must not be confused with the 
following. For a fixed unit of length reducing the grid spacing h increases the number of grid 
cells that cover a fixed area. Consequently, (3.4.16) becomes a better approximation of the 
integral value. It is for this reason that the grid spacing h is not entirely omitted from the 
formulation. 

Differentiating (3.4.16) with respect to an interior node value mi yields 

(3.4.18) 

This looks somewhat different from the expression in the continuous case (3.2.23) , it is an 
ID analogue of (B.1.3). In the discrete case we do not have partial integration at hand to 
proceed exactly as in the continuous case. The method to establish the relation to (3.2.23) 

is to expand ~!~ into a power series of the grid spacing h. Defining the function 

cp(x, h) = V(x + h, m(x +h))- Vy (x, m(x)) (m(x +h)- m(x)) (3.4.19) 

we can rewrite (3.4.18) in the form 

(3.4.20) 

This expression is antisymmetric in h, hence if the Taylor series of cp(x, h) is inserted all terms 
of even order, importantly the quadratic terms, cancel. The first derivative of the discretized 
energy functional is approximated by omitting all terms of higher than linear order. For that 
purpose, the first derivative of the helper function cp is needed, 

(3.4.21) 

Consequently, the derivative of E , including also the boundary elements, is given by 

i=O 

I\81 (3.4.22) 

i=M 

The explicit part is equal to Eih, as it would have been obtained by a direct discretization of 
(3.2.23). The error introduced by terminating the Taylor series is hidden behind the Landau 
symbol 0. This is the discrepancy between the exact derivative of the discretized similarity 
measure and Eih. The error of approximating E' by E'h is an related though . distinguished 
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quantity. The difference between E:h and ~!: can be roughly estimated upon using the third 
derivative of <p at position h = 0, which evaluates to 

03 'P I V 3V 3(V V ") 13 3lT 11I 12 T T Iah3 = XXX + xxym + x yym + x ym + Vyyym + Vyym m . (3.4.23) 
h=O 

Ideally, one would like to consider 
03 ~~~,h) and utilize the mean value theorem, yielding 

an exact error bound. The corresponding expression firstly is rather lengthy and secondly 
it is rather cumbersome to draw any conclusions from it directly. (3.4.23) is primarily of 
value for the comparison with the double grid discretization. The estimate for the error of 
approximation is given by 

E:h - [)Eh I~ h31[)3~ I (3.4.24) 
I ami 6 oh h=O 

The prerequisite is that <p(x , h) is three times continuously differentiable with respect to h. 
This condition will hardly be fulfilled in practice. For the case of the local least-squares 
measure (3.1. 7), this would imply that j E C3 . Practically, f is often constructed using 
piecewise linear interpolation (or bilinear interpolation for the 2D case) clearly violating the 
condition. As already mentioned, (3.4.24) may be used for comparison purposes, provided 
one is aware of its limitations. 

Remark. Improving the asymptotic behavior of the error of approximation (3.4.24) can be 
done by using a higher order approximation of m ' , 

m' (xk) = h L dk-jmk + O(hP+l) . (3.4.25) 
j 

Special boundary treatment is necessary for the numerical differentiation as well as for the 
quadrature formula. The error in (3.4.22) will be of order O(hP+l ). Such approximations 
of derivatives can be constructed based on Lagrange polynomial interpolation for each point 
and p/2 neighbors to either side [24]. The classical symmetric difference has one neighbor on 
either side, corresponding top= 2. The filter taps are given by d_j = [-1 , 0, 1]/2. For p = 4 
the taps are d_j = [1 , -8, 0, 8, -1]/12. It has to be noted that the improvement concerns the 
asymptotic behavior only, providing merely theoretical insight. It is not clear whether this is 
of practical value. 

The inexact pairing of Eh and E'h has been found important for the performance of op­
timization methods. Some algorithms try to solve for E(m*) = min! without using gradient 
information, others try to solve for vanishing derivative E'(m*) = 0 without ever computing 
the objective function E itself. Methods using both quantities may be affected by the discrep­
ancy between Eh' and E'h. An example is the Powell-Wolfe rule (Section 4.2.2). This justifies 
the lengthy treatment of that aspect . The discretization of the Gauss-Newton (3.2.24) term 
is not that critical. In optimization it is, like the Hesse matrix, used to improve the search 
direction, aiming at rapid convergence [30, 45] . Shortcomings will thus affect only the conver­
gence rate, but not the result. For the Gauss-Newton term the same order of approximation 
and the same weighting is applied. The discretization of a bilinear operator yields a bilinear 
operator in JR1 , i.e. a matrix. In the particular case the matrix has nonzero entries only along 
the diagonal. The diagonal elements are given by 

(3.4.26) 
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The diagonal property is a consequence of the fine granularity of the discretization. The 
method mentioned in Section 4.1.1 provides a reduction of the parameter space. Thereby a 
coupling between the samples of m is introduced, causing off-diagonal elements in the matrix. 

For the evaluation of (3.4.22) a local similarity measure has to be provided. A complete 
list of results for the local least-squares measure (3.1.7) is given in Section A.O.l. So far 
the considerations have been focussed on the influence of the grid layout on the numerical 
integration and the approximation of m'. (3.4.22) contains the derivative of the local measure 
Vx, which again necessitates numerical differentiation. Using the local least-squares measure 
the required quantity is 

(3.4.27) 

thus the derivative of the texture g has to be approximated. In particular, hg'(x k) >::::: 8gk, 
is chosen. The grid arrangement again plays a crucial role. According to the introductory 
section, the symmetric difference performs rather badly for highly oscillatory components. 
Since the first derivative is the driving force for a broad class of optimization algorithms, this 
might diminish the performance. Using higher order differentiation schemes will mitigate 
this aspect only partially. In the extreme case, if 9k = (-1)k, no approximation of whatever 
order will enable a successful matching. As experience shows, real imagery is low frequency 
dominated ensuring the applicability of the single grid discretization despite of theoretical 
drawbacks. 

Double Grid Discretization If the node values of g are given on the dual grid the approx­
imation of (3.2.22) is advantageously based on evaluations of V at the dual grid positions. 
The derivative m' at the dual grid positions is approximated utilizing the central difference 
operator [24, p. 225] 

k E I*, (3.4.28) 

leading to 

k E I*. (3.4.29) 

Evaluating V at (xk, mk) fork E J* requires mk to be interpolated from neighborhood values, 
as already mentioned in the introductory section. Defining 

k E I*. (3.4.30) 

we can write 

k E I* . (3.4.31) 

None of the above requires a special boundary treatment because the grid locations of the 
dual grid are located in the interior of the domain covered by the primary grid. Equipped 
with these definitions , the discretized form of the energy functional is given by 

Eh(mi) = L V (xk , mk) Smk . (3.4.32) 
kEl* 
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This corresponds to the midpoint rule of numerical quadrature. The derivative with respect 
to the node values is easily computed. For an interior index i E I\ai 

aEh 1 ( mi+1 + m i ) ( mi+1 + m i ) -a = - Vy x i+l ' (mi+1- m i)- V xi+l' --'-------'­
mi 2 2 2 2 2 

(3.4.33) 
1 ( mi + m i-1 ) ) ( mi + m i-1 )+ 2Vy xi-~ ' (mi - mi- 1 +V xi-~ ' 2 2 

We follow a similar procedure like in the previous case. By means of the function 

YJ ( x, ~) =V ( x + ~, m(x + h~ + m(x) ) 

(3.4.34) 
-~Vy ( x+ ~, m(x+h~ +m(x)) (m(x+h) -m(x)), 

(3.4.33) can be rewritten in the form 

(3.4.35) 

Expanding this into a power series of h and omitting all terms of order higher than linear again 
leads to (3.4.22). The difference between the single grid and the double grid discretization is 
hidden behind the Landau symbol 0. The error of approximation is of course different. The 
error estimate is again based on the third derivative of YJ at h = 0 

a3YJ I v 3V 2T T 13 6TT " (3.4.36)ah3 = xxx - xxymI - vyyym - vyymI m , 
h=O 

leading to 

E~h- aEhl ;S h31a3~~ . (3.4.37)
ami 24 ah h=OI 

Comparing (3.4.37) and (3.4.24) and inserting (3.4.36) and (3.4.23) respectively reveals that 
for the double grid discretization, not surprisingly, the error tends to be smaller by a factor 

of~ · 
The style of grid arrangement also affects the computation of the derivative of the local 

similarity measure. The list of results as obtained for the local least-squares measure (3.1.7) 
is given in (A.0.2). We will give some explanatory remarks in the following. To compute 
(3.4.22) in the double grid setup the same quantity (3.4.27) is needed. A difference is that 
g(xk) fork E I is not directly available, but has to be interpolated from neighborhood values. 
Advantageously, the approximation of the derivative 9x(xk) is needed between the samples 
of the dual grid, i.e. at the primary grid locations, which is possible with higher accuracy. 
The operations are quite the same as defined in (3.4.28) and (3.4.30). This time they are 
applied to calculate quantities at the primary grid from samples at the dual grid. A special 
treatment of the boundary is necessary. For the interpolation operation there is essentially 
one choice, 

i = 0 

I\aI (3.4.38) 

i=M 
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For the difference operator the choice is not that obvious. The following observation serves as 
guideline. In case of the local least-squares measure the considered double grid discretization 
has an interesting equivalent within the Finite-Elements method. The derivative (A.0.2b) is 
exactly the same as would have been obtained with the Finite-Elements method assuming 
m piecewise linear and g to be piecewise constant. Equivalence, including the equivalent 
treatment of boundary nodes , is reached in using the following definition 

i=O 

I\8I (3.4.39) 

i=M 

As already has been stressed in the introductory section, approximating the derivative 
between grid nodes can be done with higher accuracy, circumventing some demerits of what 
is encountered in the single grid approach. For the double grid setup the limiting case 
gk = (-l)k is no problem. Very high frequency components are nevertheless delicate with 
respect to the convergence of the matching algorithm. 

The Finite-Sums Approach for the 2D Case 

The principles of the discretization have already been given in the previous section. They 
apply to the 2D case as well. All considerations from the ID case can be carried over. The 
notational effort is however in some cases more than doubled. Pretty much is obvious from the 
preceding and does not have to be repeated. Some remarks are however added. Only the case 
that m is parameterized by a scalar function u is considered. This captures all that is needed 
herein. It is understood that the samples of the map are given by mk = m(xk, uk) k E I. 
The collected results for the local least-squares measure can be found in Appendix A. 

Single Grid Discretization The definitions introduced for the ID case are used exten­
sively in the 2D case because the number of indices otherwise covers the essential results. at 
denotes the weighting according to (3.4.17) for the i'th coordinate direction. The trapezoidal 
rule for the 2D case uses the tensor product weighting ak,l = alat. Consequently, the corners 
are weighted by t, the edges by ~ and the interior by 1. The integral (3.1.12) is approximated 
by the sum 

Eh(ui) = h2 LakV(xk,mk)Ak. (3.4.40) 
kEJ 

The quantity Ak denotes the approximation of the Jacobian det m'(xk)· Again the difference 
operator 8 is used, extended by an index to denote the coordinate direction. Ak is thus given 
by 

(3.4.41) 

In contrast to the ID case, the independence with respect to the unit of length of h is not 
clearly apparent. Changing the unit of length, for example to ensure that h = 1, will not 
only affect the value of h, but also the components of p. Effectively Ak is proportional to -b· 
The invariance property of the similarity measure is thus not violated. The discretization of 
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PI -pi 

PI -pi 

PI -pi 

PI -pi 

P2 t(-p1+pJ 

Figure 3. 7: The weighting factors for the boundary term according to (3.4.42). 

the first derivative of the forward similarity leads to . 

i = 1 

i=M (3.4.42) 

j = 1 

j=N 

The relation to g~h follows a similar line as in the 1D case. The weights of the boundary
t,J 

term are depicted in Fig. 3.7. The values have to be multiplied by hV(xk, mk)· The boundary 
term takes plenty of room in (3.4.42). A compact notation is possible using the normal vector 
n at the boundary. It is defined by 

1 -al k=O 
n
k,l-

- { 
+a? 

2 
k=M 

(3.4.43) 
2 -ak l=O 

n - { 1 
k,l- +al l =N 

By means of this definition, the boundary term is simply given by -hn · pV. 

Double Grid Discretization It is pretty obvious how the discretization of the particular 
terms is performed for the double grid setup. An implementation detail concerns the compu­
tation of differences . Assume values given on one of the grids and an approximation of the 
derivative at the respective dual grid to be required. The difference operator that is employed 
is a generalization of (3.4.28), 

(3.4.44) 
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and similar for the second coordinate direction. It is always used in combination with the 
derivative du. An example is the approximation of the Jacobian det m'. Explicitly it is given 
by 

1 
Ak l = --hpl(xk l , Uk L)(uk+ll+l- uk-l l+l + uk+ll _l- uk-l l_l ) 

, ' ' 2' 2 2' 2 2' 2 2' 2 

1 
--hp2(xk,l , uk ,L)(uk+l l+l + uk-ll+l ­

2' 2 2' 2 
uk+l l-l ­

2' 2 
uk-ll_l)

2' 2 

(3.4.45) 

+p3(xk ,l , Uk ,l) · 

Expressions of that type appear more than once. It is possible to reduce the number of 
required algebraic operations for some constellations. Each term uk±ll±l enters twice. De­

2' 2 

pending on how the Pi are calculated , a rearrangement of the expression can reduce the com­
putational effort. What effectively can be done is that a second coordinate system, which 
is rotated by 45°, is used. The Pi for the rotated coordinate system have to be provided. 
The derivatives of u with respect to the coordinate directions of the rotated system are the 
derivatives in the diagonal directions of the grid. They require less operations than (3.4.44). 
The Jacobian hence can also be evaluated by 

1 
Ak,l = --hPl(xk,l, Uk,L)(uk+ll+l- uk-ll_l)

2' 2 2 ' 2 

1 - (3.4.46)
--hp2(xk,ll Uk,l)(uk-ll+l - uk+ll_l)

2, 2 2' 2 

+P3(Xk,l, Uk ,l) . 

This principle has been used for the practical implementations of the DLT configuration. The 
benefit of that strategy however depends on the circumstances. 

Discretization of the Reverse Modeling Similarity Measure 

Lastly, we add some comments on the discretization of the reverse modeling similarity mea­
sure, which is performed straight forward. Importantly, a double grid discretization does 
not make sense, as no derivatives in the reference space are required. Applying the same 
weighting as in the single grid approach leads to 

2Eh(ui) = Lakh V(xk,mk). (3.4.47) 
k Ef 

The weighting is applied for consistency reasons. The results of this section are not affected 
by the type of weighting. The derivative is easily evaluated to 

aEh ami -a = aih
2Vy(Xi, mi)-a . (3.4.48) 

Ui Ui 

This is equal to the direct discretization of (3.2.27) , but specialized to a scalar matching 
function. The Gauss-Newton term is given by 

GN h 2 ami 2
Eii = aih INy(Xi,mi)-aI . (3.4.49) 

Ui 

All derivatives are computed in the image domain F. They are carried out analytically, 
because the image function f is not specified by samples only, but by some analytical function 
representation. 
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N K o(K) 

m'>O m'>O 

Figure 3.8: Example of an occlusion for a ID orthophoto-to-image matching configuration. 

The results specialized to the local least-squares measure can be found in Appendix A. 
For this particular setup the discrete formulation is equivalent to the nonlinear adjustment 
problem 

(3.4.50) 

with the unknowns Uk and the residuals Vk (cf. [22, 23]). 

3.5 Modeling in the Presence of Occlusions 

Occlusions are a delicate matter in the course of image matching. One must not expect an in 
depth treatment, because too little practical experience is available until now. On the other 
hand, the forward modeling similarity measure covers the case of occlusions in a natural way 
so that it seems worthwhile to extend the results to that case. 

Occlusions arise if along an imaging ray multiple surface elements are located. A ID 
sketch of an orthophoto-to-image matching configuration involving occlusions is depicted in 
Fig. 3.8. The occluded surface regions can be divided in two classes. Surface elements not 
visible may have a surface normal vector pointing away from the camera, det m' :::; 0. For ID 
constellations the condition is given by m' :::; 0. These regions are easily found to be invisible. 
An example is the backside of a sphere with respect to some viewing direction. The other 
case is that the surface element is oriented towards the camera, det m' > 0, but that there 
is something in front . Both types of regions can easily be seen in Fig. 3.8. The boundary 
[)()0 of the occluded region can be divided in two classes, too. Parts of the boundary are 
locations where the Jacobian det m' changes its sign. These points form the contour line K 
of an object. From the viewpoint of the camera, the remainder of 8(}0 is located behind 
those contour points. They constitute what herein is called the shadow line. The function 
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that associates to every point of a contour line its corresponding point of the shadow line is 
defined by 

o : JC f-7 o(JC) c 8g0 . (3.5.1) 

We write o(JC) for the shadow line. With respect to domain :F the images of JC and o(JC) 
coincide. The boundary of the occluded part can be written as 

-8g0 = JC - o(JC) . (3.5.2) 

The minus signs are included because it is convenient to have JC consistently oriented with the 
boundary of the reference domain 8g. The case that parts of the boundary {)g are occluded 
is not considered. There is nothing special about that situation. It just makes the notation 
a little bit uncomfortable. The boundary of the visible part is given by 

8gv = {)g + JC- o(JC) . (3.5.3) 

For simplicity reasons the following considerations will be argued, at least partially, based 
on the 1D case. Consider the constellation depicted in Fig. 3.8 and some point x of the 
reference domain located to the right of the nadir point N. To determine whether it is visible 
or occluded, it suffices to consider the surface points, respectively the map m, to the left 
of x . For the particular situation a point x is visible if and only if m(x) > m(~) for all 
~ < x. For 1D constellations it is always simple to determine the occlusions. Depending 
on the circumstances, either all points ~ < x or all points ~ > x have to be considered, but 
this has no influence on the principle. For the examples the first case is assumed. The point 
where m assumes its maximum to the left of an occluded region is the contour point. As 
will become apparent from the following, the case that the contour point (or the contour line 
for the 2D case) is not clearly defined, most importantly if m' = 0 for a whole interval, is a 
rather troublesome situation. 

3.5.1 The Similarity Measure in the Presence of Occlusions 

The formulation of the similarity measure strongly depends on the definition of the map m 

as the mapping from x E g to the corresponding point y E F. The map m can be defined 
only for the visible part gv (cf. (2.2.5)). For a point in the occluded part g0 , there is no 
corresponding point in the image domain. So far we have assumed that the reference domain 
is entirely. visible. Obviously, if occlusions come into play, this has to be dropped. The image 
space formulation (3 .1.8) can be used unaltered. However, the inversion of the map m-1 has 
to take the occlusions into account . For the reference space formulation (3.1.12) , the integral 
has to be restricted to the visible part, 

E(m) = { V o (idg, m) det m' dA. (3.5.4)}gv 

If the occluded regions are known a priori, no problem arises. In the course of optimization, 
the visible part of the reference domain is , in connection with the map m, subject of iterative 
refinement. This complicates the matter significantly, as shown in Section 3.5.2, where the 
derivative of the image energy in the presence of occlusions is considered. 

An alternative, but equivalent way to treat occlusions is to mask out occluded regions by 
some visibility indicator. The method is supported by the fact that the similarity measure 
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Figure 3.9: No occlusion. Figure 3.10: Transition Figure 3.11 : Occlusion, K 
from visible to occluded. is a regular contour point. 

(3 .1.12) already includes , as a limiting case, the situation that parts of the model are not 
visible , if the Jacobian det m ' -+ 0. We write 

E(m) = [V o (idg , m) vism dA. (3.5 .5) 

The visibility indicator is given by 

. ( ) { det m'(x) \fx E gv (3.5.6)VlSm X = O \fx E gO 

This definition ensures that vism(x) ~ 0. The extension is by no means sophisticated and 
follows neatly from the considered concept. The problem that the map m is not defined for 
occluded regions is not solved by the introduction of the visibility indicator. However, based 
on (3.5.5) the occluded areas do not contribute to the global similarity measure. We are free 
to define m in these regions according to convenience. In [5] a normal case configuration 
is considered. The disparity and the thereof-derived map are explicitly defined for occluded 
regions, 

m(x) = max m(e) . (3.5.7) 
~1 ::;x 1 
6 =x2 

The definition ensures that the new map m has vanishing Jacobian det m' in the occluded 
regions . Such a concept may be used for the easier mathematical treatment of the problem. 
Usually there exists some natural definition of m in the occluded regions. 

The visibility indicator is defined to be a non-negative , but otherwise continuous quantity. 
It is neither bounded to the interval [0, 1] nor a simple indicator variable with values in {0, 1}, 
like in [37, 51J. Some approaches [5, 10] omit the use of an indicator variable. However, any 
model that takes occlusions into account inevitable has to distinguish between points being 
in the visible part gv and points being in the occluded part go . Whether this is modeled 
by an indicator variable or not, it is always a binary decision . The concept of visibility, as 
introduced herein, grants a smooth transition between occlusion and visibility. Consider the 
dependency of E on the map m. The critical point with respect to continuity is that an entire 
part of g disappears simultaneously. This eliminates the contributions to the integral of the 
whole part. As will be shown, it is of less impact if the area of the occluded part is increased 
or reduced continuously. The effect is explained by means of the three lD situations depicted 
in Fig. 3.9-3.11. m is assumed to be parameterized by the nodes of a piecewise linear function. 
Starting from the situation depicted in Fig. 3.9 and shifting the node m i in the positive y 
direction leads to the transition state Fig. 3.10. Shifting the node further causes an occlusion 
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Fig. 3.11. The graph of m is plotted as dotted line within the occluded part. The contour 
point JC coincides with the node. At the transition state Fig. 3.10, a binary indicator variable 
abruptly switches off the contributions of the entire interval, which leads to a discontinuity 
of the similarity measure. (3.5.6) ensures that this does not happen. Starting from the 
situation depicted in Fig. 3.9 and shifting the node mi in the positive y direction, the interval 
receives a lower and lower weight m' (~ det m') the closer mi gets to the transition point. 
At the transition the Jacobian vanishes completely, m' = 0. Proceeding to case Fig. 3.11 the 
weight remains zero by (3.5.6), because the interval is now occluded. The forward energy 
is thus continuous in the presence of occlusions. A discontinuity of the first derivative E' is 
encountered however (cf. Section 3.5.2). It will not be mentioned further, but evidently this 
concerns the impact of occlusions only. The influence of the local measure V on continuity 
and differentiability is not considered explicitly. 

The symbol vism encodes a complex phenomena and it shall not give reason to overlook the 
theoretical and practical complications. First, note that the visibility is inherently connected 
to the imaging geometry. Evaluating the Jacobian det m' of a map is always possible, provided 
the map is differentiable. Distinguishing between visible and occluded points is possible 
only based on detailed knowledge about the imaging geometry. In particular the relative or 
absolute orientation is needed. For applications such as the one presented in [1], where X-ray 
images of a hand, taken at different times, are compared, the concept of visibility, as used 
herein, can not be carried over. The second important point is that the visibility indicator 
depends on the whole map m. The knowledge of m for some part of g is not sufficient to 
determine whether some point of that part is visible or occluded. In contrast det m' can be 
evaluated at every position where m can be differentiated. This has to be kept in mind for 
the mathematical treatment. Last, the computational complexity of the visibility analysis 
should not be forgotten. For the case of matching normal case stereo images, determining 
the occluded regions is almost trivial. If the model is a true 3D model, the visibility analysis 
is rather time consuming. 

3.5.2 First Derivative of the Similarity Measure in the Presence of Occlu­
sions 

Using derivatives of the similarity measure in the presence of occlusions has to be done very 
carefully. Consider the map m composed of a finite number of basis functions (cf. Section 
4.1.1). For that case, theoretical considerations and practical experiments reveal that the 
derivative of the image energy term is piecewise continuous only. If the map m is assumed 
an element of an infinite dimensional space, discontinuities that are more severe have to be 
expected. So far, the results have not been used for the practical implementation and thus 
they have to be viewed with criticism. 

For the differentiation, the effect of small changes of the map m on the forward modeling 
similarity measure is considered. The easiest and most intuitive method uses the image do­
main formulation (3.1.8). This is done by looking at the resulting changes from the viewpoint 
of the image domain F, as it has been done in Section 3.2.1. The explanations favor intuition 
over mathematical rigor. Applying a small change J.L to the map m will, aside of the already 
considered effects, shift the image of the contour line m(JC) to a new location. The new 
image of the contour line is shifted for two reasons. Firstly, modifying the map m will change 
the location of the contour line in g to a new position fC. Secondly, the map itself changes, 
hence the new image is given by (m+ J.L)(K). We base our considerations on the regularity 
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F 

Figure 3.12: The image of domain g under the mapping m+ p,, in the presence of occlusions. 

assumption that 

(m+ p,)(JC)::: (m+ J-£)(K) (3.5.8) 

holds up to first order. An illustration is depicted in Fig. 3.12. The regularity assumption 
does neither imply that K = fc nor that K ::: fc up to first order. Nevertheless, fc is not 
plotted in Fig. 3.12, as it is not needed in the following. 

The regularity assumption is not valid under all circumstances, but it is justified for 
some relevant cases. Consider again Fig. 3.9-3.11. Fig. 3.11 shows a situation involving an 
occlusion. The contour point K coincides with the node. mi remains the contour point also 
if it is shifted a small amount in either direction. Thus (3.5.8) holds strictly. The critical 
situation is the transition between the two cases, Fig. 3.10. Moving the node downwards 
leads to the situation depicted in Fig. 3.9, which involves no occlusion. Moving the point 
upwards generates an occlusion. At the transition the regularity assumption is violated. 

The reg~larity assumption also holds if m and p, are continuously differentiable in a 
neighborhood of K and if the contour is a regular contour. We again argue based on the ID 
case. The contour point m'(xK) = 0 is said to be regular if for some neighborhood N of XK, 
lm'(x) l 2: t: lx- XK I for some E > 0. This condition expresses the fact that the solution of 
m'(x) = 0 is well defined and thus not very sensible to perturbations. Denoting by 'T/ the 
supremum 'T/ = supN J.L 1 

, the following holds 

lm'(x) + J.L
1(x)l 2: t: lx- XK I- 'T/, \fx EN. (3.5.9) 

From this follows that the shifted contour point xK, satisfying m' (xK) + J.L 1 
( xK) = 0, is in 

the interval XK E [xK- ;, XK + ;J. Consequently, if the derivative of J.L 1 converges uniformly 
to m', XK converges to XK with the same rate. Now, since m'(x) = 0 by assumption 

(3.5.10) 
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thus (3.5.8) holds. We do not claim that these considerations cover all details. Nevertheless, 
the regularity of a contour is an important property. 

Based on the regularity assumption, the situations is much the same as encountered for 
the boundary terms in Section 3.2.1. Recall that the shift of the image of the boundary 
m(89) results in a boundary term of the first derivative. The boundary 89 is a curve. By 
the properties of integration, values at non-pathological curves do not contribute to an area 
integral. The values of V at 89 do however contribute to E' J-t by a curve integral. They 
receive a special weight according to whether J-t causes the image of the reference domain 
m(9) to grow or shrink lo cally. Shifting a contour line has the same effect. However, as the 
contour line is shifted, the corresponding parts of the shadow line are shifted, too. From the 
viewpoint of the image domain F the contour line and the shadow line are the same line, as 
can be seen from Fig. 3.12. A shift of m(JC) does not cause the extent of the modeled part 
to be changed. Loosely speaking, what is taken away on one side of m(JC) is added on the 
other side. 

A simple example shall illustrate the situation. Consider looking at a book with one eye 
only. The eye takes the role of the imaging device (image domain F!). At the inner side 
of the contour of the book appears the texture of the book, at the outer side the texture of 
the background, maybe a table. Recall that the contour is consistently oriented so that it is 
possible to talk about the inner and outer side. If the shape or position of the book is changed 
a little bit, it suffices to shift the book a little bit, then, depending on the direction of the 
movement of the contour, there will be locally more texture of the book and less texture of 
the table or vice versa. 

The boundary term of E' , which is calculated in the reference domain 9 , has to take the 
values of the local measure at the contour line JC and at the shadow line o(JC) , i.e. at the 
entire boundary of the occluded part 89° (cf. Fig. 3.12), into account. The position of JC in 
the image F is determined by the values of the map m at JC. Consequently, the derivative 
E' comprises an additional curve integral over the contour line JC. The further details are 
omitted, as the argumentation is completely the same as in Section 3.2.1 leading to 

E' (m)J-t = r V 0 (idg ' m) (m'ad J-t) X ds - r vi 0 (idg' m) m'ad J-t dA
Jag }gv 

(3.5.11) 
+l (Vo (idg,m)- Vo (o,m)) (m'adJ-t) x ds. 

The integral over JC also includes the values of the local measure V at (o(JC) , m(JC)) , i.e. at 
the shadow line. It otherwise is treated like the boundary 89 . 

As occlusions cause an additional curve integral for the derivative of the similarity mea­
sure, it has to be expected that the derivative is discontinuous if parts of 9 are in a transition 
state between occluded and visible. Under these circumstances the regularity assumption 
is violated. Whether there is a possibility to circumvent the discontinuity, for example by 
means of additional smoothness requirements for m , is not clear. Anyway, violations of the 
regularity condition indicate problematic situations. An example shall demonstrate the be­
havior of the similarity measure in the presence of occlusions, Fig. 3.13 and 3.14. It is based 
on a very simple setup. The texture g consists of a single bright spot with a linear drop off 
to either side. The map m is assumed piecewise linear and the node value, whose position 
coincides with the center of the bright spot, is shifted in both directions. This leads to a series 
of maps md parameterized by the disparity d of the central node. mo is equal to the identity 
mapping. As this is a trivial case it is not depicted in Fig. 3.13. For each map md the image 
go m;t 1 of the texture g is portrayed. A physical interpretation of each situation is also given 
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Figure 3.13: The texture 9 mapped to the image domain by 9 o m-;; 1 for a series of maps md. 
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Figure 3.14: The variation of the image energy for the occlusion example. Left and right side 
tangents are plotted for the critical positions d = -1 and d = 1. 

in Fig. 3.13. These are only a sketches because the disparity and the height are inversely 
proportional, thus a piecewise linear height does not exactly correspond to a piecewise linear 
disparity. The image function is assumed to equal f = g and thus E(mo) = 0, as can be seen 
in Fig. 3.14. The similarity measure is based on the local least-squares measure (3.1.7). For 
negative values of d , the central node is shifted in the negative y-direction, which corresponds 
to deforming the surface downwards. This will lead to the critical situation m-1 · Shifting the 
node further , the left slope of the surface and the point of maximum brightness disappear. 
The brightness stripe indicating the intensity of go m=~ therefore lacks the region of maxi­
mum brightness. Shifting the node in the positive y-direction will cause the right slope of the 
surface to disappear. The critical state is m 1 , at which the transition from visible to invisible 
happens. The similarity measure Fig. 3.14 exhibits the expected discontinuities of the first 
derivative. Though without proof, we claim that the fact that f and g are assumed piecewise 
linear, resulting in only piecewise continuous differentiability of V, has no consequence for 
the differentiability of the similarity measure. This is ascertained by the fact that the corners 
of the graph of E appear only at the critical positions. 



Chapter 4 

Practical Aspects of the Matching 
Algorithm 

The similarity measure constitutes a criterion for good correspondence with respect to inten­
sity values. This chapter introduces the remaining components that are required to construct 
a matching algorithm. Firstly, there is no doubt that the similarity measure only incompletely 
specifies what is expected as the outcome of the matching algorithm. This issue is addressed 
by the modeling of the matching function. Secondly, an appropriate optimization algorithm 
has to be selected to determine the optimal configuration. All three components, the similar­
ity measure, the modeling of the matching function , and the optimization method determine 
the eventual performance of the matching algorithm. It is important to separate these is­
sues as clear as possible. The modeling of the matching function has however a significant 
influence on the performance of the optimization algorithm. In particular, it plays a role 
for the algorithms ability to avoid suboptimal local minima. The issues of modeling and 
optimization are thus not that clearly separated. Further, often no quantitative information 
about the properties of the matching function is available. The parameters of the model are 
thus adapted heuristically to achieve a reasonable output. 

4.1 Modeling of the Matching Function 

Intuitively it is clear that the similarity measure does not completely define optimal corre­
spondence, as it is based on the comparison of single intensity values only. Some degree 
of coupling between the values m(x) and m(x) at neighboring positions x and :X has to be 
introduced, as arbitrary irregular maps m can not be accepted as solution. Just consider 
that the forward similarity measure even requires the Jacobian to exist almost everywhere. 

For the following, it is assumed that the correspondence problem is formulated within a 
particular geometric context, so that the matching function can be assumed of scalar type. 
The problem, as stated based on the similarity measure only, is given by 

Eimg(u*) = min! . (4.1.1) 

The usual notation of optimization, to denote the optimal configuration u * with an attached 
asterisk, is adopted. The subscript "img" distinguishes the similarity measure from the 
regularization term, which is also referred to as deformation energy Edef· In its particular form 
the problem (4.1.1) is under-constrained. Two methods are used to incorporate additional 
information about the solution: 

62 
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- restricting th e space of solutions to a subspace of smooth functions and 

- regularization, that is the p enalization of non-smooth behavior of the solution. 

They are both applicable to the variational formulation directly, as well as to the discretized 
analogue. In case of the forward similarity, it has b een helpful to consider the continuous 
formulation in detail and to transfer the structure to the discretized case. For the modeling 
of the matching function the continuous formulation can b e largely skipped. 

4.1.1 Restricting the Space of Solutions 

Restricting the space of solutions is simply done by composing u of, not necessarily orthogonal, 
basis functions bi such as wavelets , B-splines, bilinear kernels etc. Examples of that strategy 
can b e found in [22 , 23 , 58] . In [1] the method is considered as part of the optimization 
algorithm. In this approach, the number of basis functions is increased during the matching 
process to finally cover the whole space. 

The mapping from the coefficient space to U, the space of all possible matching functions 
u , is a linear mapping denoted by B , 

u = Be= L Ci bi . (4.1.2) 

The coefficients are denoted by Ci and are assumed to be real. The basis functions bi are 
selected to exhibit some reasonable behavior, specifically they are selected to cover a subspace 
of "smooth" functions. Smoothness in this case refers to the resolution of the smallest details 
that are capture by the basis functions. Taking the familiar bilinear kernels , the resolution of 
u is controlled by the node spacing. The function will not be smooth in a mathematical sense, 
as it will always exhibit discontinuities of the first derivative. The principle is nevertheless 
the same as when using the Fourier basis and controlling the properties of the function u by 
the number of admitted frequencies. In this case , the effect is more in line with the intuitive 
notion of smoothness. 

In the following we consider u on a grid (h with the index set I. In this case U = !RI 
and (4.1.2) is essentially a mapping W t--7 !RI. Thus the linear operator B can b e identified 
with a matrix, B = (b1 , b2, . .. , bp) . The basis functions bi are elements of !RI . If considered 
without an additional regularization functional , the dimension of the coefficient space should 
be smaller than #I, the dimension of U. Otherwise (4.1.2) will just rotate the coordinate 
system of the problem to a new position leaving the problem unaltered. 

For optimization purposes, the influence of the basis functions on the derivatives is of 
interes t. Differentiating the similarity measure with resp ect to coefficient Cj leads to 

Using a matrix style notation 

(4.1.3) 

(4.1.4) 

BT is the transposed operator of B.l The Gauss-Newton matrix transforms according to 

(4.1.5) 

10n the general notion of transposition of linear operators see [4]. 
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Figure 4.1: The smoothed negative gradient -±BBT\7Eimg for the lD example depicted in 
Fig. 3.4. The piecewise linear basis functions are plotted above. 

The gradient with respect to the coefficient space is not easily interpreted. Mapping it to U 
by 

(4.1.6) 

reveals the influence of the basis functions on the gradient of the image energy term. If 
the basis consists of orthonormal components, the above equation describes the orthogonal 
projection of 'VEimg onto the range of B . This operation essentially smoothes the gradient. 
Employing for example the Fourier basis, BBT is the matrix form of the ideallowpass filter. 
The smoothing is not a consequence of the orthonormality of the basis functions, but is 
effected by other choices for the basis, too. The smoothed negative gradient -±BBT'VEimg, 
as obtained using a piecewise linear basis for the example depicted in Fig. 3.4, is portrayed 
in Fig. 4.1. The basis functions are plotted in the upper part of the figure. The factor ±is 
introduced to obtain a result comparable to -'VEimg· This is necessary because the broader 
the basis functions are, the stronger is their influence on the matching function u and the 
larger is the gradient 'VcEimg · Dividing by L compensates for this effect. Clearly, the region 
where -'VEimg points to the wrong direction is smoothed out. The consequence is a more 
stable performance of the matching algorithm. Of course, the missing matching information 
outside the central region, where -'VEimg rapidly decays to zero, can not be compensated. 

An important subclass of the considered method uses shifted versions of a prototype 
kernel, such as the bilinear kernel, or B-splines, as basis functions. Ignoring the treatment of 
boundaries, the parameter function can be written as 

Uj = L bi-LjUj . (4.1.7) 
j 

The relation to the above defined basis functions is given by bj(xi) = bi-Lj· The coefficients 
c are renamed to u to reflect the fact that they are given on a grid related to (h the domain 
of u. The domain of u has a reduced resolution. In particular using bilinear basis functions 
has quite the same effect as if the discretization had been based on samples of u on a coarser 
grid 9Lh· 
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4.1.2 Regularization 

Regularization is done by penalizing solutions that exhibit a non-smooth behavior. Instead 
of solving the original problem (4.1.1) the modified problem 

E(u* ) = Eimg(u*) + aEcter(u*) = min! (4.1.8) 

is solved. Ectef ( u) is large for functions u that exhibit strong irregularities. It expresses 
the notion of what is assumed a reasonable solution and which solutions are unlikely. a 

determines the relative weight of the deformation energy. A meaningful specification of the · 
amount of regularization has to take the magnitude of the image energy into account. This is 
the reason why we will usually express it in multiples of the variance a] of the image function 
f. 

The regularization method has already been mentioned in Section 2.4.1. In the framework 
of Markov random fields Ectef specifies the a priori probability of u according to a Gibbs 
distribution (2.4.1). The concept is used in different contexts under different names. In 
adjustment calculus the concept is referred to as fictitious observations. The Markov random 
field framework is however more flexible. Regularization is the term that is commonly used 
together with ill-posed problems. 

A particular important class of regularization terms are the Tikhonov regularizers and 
generalizations thereof [55 , 56]. Some prominent examples are the membrane functional 

(4.1.9) 

and the thin plate functional 

(4.1.10) 

A third popular variant is the squared Laplacian, which is closely related to (4.1.10) [18]. 
The above measures are the ones widely used for the problem of stereo correspondence and 
surface reconstruction [1, 2, 18, 26, 37, 40, 41] . 

Like the similarity measure these functionals have to be discretized for the implemen­
tation. For the standard regularizers the discrete analogues are well known. The desired 
properties are easily transferred to the discrete case. As an example the discretized version 
of the membrane functional (4.1.9) reads (cf. [54, pp. 197]) 

(4.1.11) 

The 1D analogue is called the string functional. It is used for 1D test configurations. 
The great benefit of this type of models is that the smoothness constraint is imposed by 

means of local only interactions. Only pair cliques are used in the case of the membrane 
functional, yet a far range coupling is achieved. This coupling is undesired at edges and 
discontinuities as it leads to oversmoothing. Modifications of the above regularization terms 
are primarily targeted at an improvement of this behavior. The advantage of the local 
coupling is that the interaction can be weakened very easily by changing the weight of clique 
potentials along discontinuities in depth or slope. This method is used to adapt the a priori 
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model to fit the particular situation or even to formulate the model such that it is self­
adaptive. In [55] continuity control functions are introduced to weaken the constraints where 
necessary. For a comprehensive overview on discontinuity adaptive models see [36]. 

The fact that regularizers based on quadratic forms are easier to handle than more general 
expressions has led to their widespread use. The discretized form of the deformation energy 
can be written in a matrix style, 

(4.1.12) 

For a quadratic Gibbs energy the associated probability distribution (2.4.1) is of Gaussian 
form with R denoting the inverse covariance kernel. This interpretation has to be viewed 
with criticism in that usually R has a non-trivial nullspace and thus is not invertible. For 
example in the case of the membrane functional the nullspace is the space of all functions 
u = const. This is actually a desired property, since certain simple functions should be left 
unpenalized. Practically the deformation measure is never used alone, but together with data 
driven quantities, such as the similarity measure Eimg· Together these terms determine the 
solution appropriately. 

The simple quadratic structure (4.1.12) is of special benefit for optimization purposes. 
The matrix R directly provides the Hesse matrix of the regularization functional and the first 
derivative is obtained easily as well, 

aEdef = 2:R··IU·' (4.1.13)au· 11 1 
1 

i' El 

a2Ectef = R .., (4.1.14)aUj aUj' 
11 • 

The regularization method is also applicable in connection with basis functions. For 
bilinear basis elements it is quite natural to impose the regularization directly in terms of u 
on the reduced grid. The combination of both methods might provide a compromise between 
reducing the problem dimension on the one hand and providing a means to steer the amount 
of smoothness locally on the other hand. However, the local adaptation of the smoothness can 
be done with the reduced resolution only. In [1] the Fourier basis or alternatively Daubechies 
wavelets [12] are used. The standard regularizers are related to the Sobolev norms and 
equivalent formulations with respect to the Fourier or Daubechies basis exist. The matrix R 
is diagonal with respect to these bases. Using the Fourier basis, the interactions are however 
not local. Accordingly, it is difficult to perform a local adaptation of the smoothness. 

It has to be kept in mind that both methods, the restriction to a subspace of smooth func­
tions and the regularization, follow the same aim. They determine the amount of smoothness 
of the final solution and thus the amount of information extracted from the correspondence 
problem. Using no regularization whilst employing basis elements with coarse resolution is 
not necessarily better than retaining the full resolution of the matching function but imposing 
a strong regularization and vice versa. 

4.2 Optimization Methods 

Posing the correspondence problem as an optimization problem, an appropriate algorithm 
has to be selected to find the minimum. There exists a variety of methods for the solution 
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of optimization problems. For an overview of algorithms used in Computer Vision see [36] . 
Each method imposes requirements on the type of objective function. Some are amenable to 
combinatorial optimization, i.e. each variable may assume values from a finite set only, others 
require the objective function to be differentiable. The similarity measure can be adapted 
to most requirements. Specifically, the derivative and the Gauss-Newton term have been 
computed to support efficient local optimization algorithms [30, 45]. Of course, we can not 
hope that the objective function is convex, rather multiple suboptimal local minima have 
to be expected. The standard paradigm when using local optimization methods for image 
matching is to imbed them in a multiresolution scheme [18, 22, 23, 37, 40, 41, 49]. There is 
no theoretical guarantee to find a global optimum by that strategy, as for global optimizers 
like simulated annealing. Nevertheless , the multiresolution approach has proven to effectively 
solve the problem of the limited region of convergence [22, 23]. In this section, we concentrate 
on the convergence properties of local methods. It is assumed that a sufficiently good initial 
approximation is supplied, either from prior knowledge or from the matching result of a lower 
layer of a multiresolution scheme. Other sources for an initial guess are global optimization 
algorithms like dynamic programming or simulated annealing. These methods are amenable 
to combinatorial optimization. If applied to continuous problems, the range of possible values 
has to be discretized. This has the disadvantage that the computational effort rises with the 
density of the discretization. Combining these methods with local optimization methods 
might be an effective way to avoid convergence problems and to achieve high accuracy at a 
reasonable computational cost. 

The methods proposed in the following sections are not special purpose optimizers. The 
formulation is however adapted to the particular problem of image matching. The problem 
to be solved is 

E(u* ) = Eimg(u*) + aEder(u* ) = min! . (4.2.1) 

This expresses that the energy assumes its minimum for the optimal matching function u *. 

u * is a vector in IR.1 , with I the index set of some rectangular grid. Local optimization 
methods determine the solution iteratively. Starting from an initial guess u(0) a sequence 
u(k) is computed that converges to u*. This commonly calls for the repeated evaluation of 
the derivative at the sequence of intermediate results u(k). For the first derivative of the 
image energy term at u(k) a shorthand notation is used, 

L~k) = aEimg(u(k)) 
(4.2.2)

1 OUi . 

The quadratic approximation of the similarity measure is based on the Gauss-Newton term. 
Analogously to the above we write 

Q~~) = gGN ..,(u(k)) . (4.2.3)n 1mgn 

The matching function may be composed of bilinear basis functions. In that case the index 
set I refers to the coarse grid. It is assumed that the derivatives take the basis functions into 
account by (4.1.4) and (4.1.5). If it is convenient to use a concrete example for the image 
energy, the single grid discretization using the local least-squares measure is used (A .0.1), 
(A.1.1) . For the regularization term only quadratic expressions (4.1.12) are considered. This 
conforms to what is practically used in this work. Additionally, it facilitates the notation. The 
derivatives are given by (4.1.13) and (4.1.14). If a concrete model is needed, the membrane 
or string functional is used. 
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In the sequel two optimization methods are considered: the steepest descent method 
and the Gauss-Newton method, including a computationally less expensive variant. The In­
teractive Data Language IDL has been used to practically implement the algorithms . IDL 
performs most effectively if operations are performed in a vector style. This induces a ten­
dency towards parallel schemes like the Jacobi iteration. It should be no problem to adapt 
the proposed methods to suit different situations. 

4.2.1 The Method of Steepest Descent 

A rather broad class of local minimization algorithms can be decomposed into two steps: the 
specification of a search direction p(k), and the determination of the step size tk > 0. The 
recurrence formula is given by 

(4.2.4) 

The direction p(k) is required to be a descent direction, which necessitates that the variation 
with respect to p(k) is negative, 

(4.2.5) 

By means of the gradient, the above condition can be written in the form 

(4.2.6) 

Using the method of steepest descent (SD) or gradient method, the search direction is chosen 
to equal the negative gradient, p(k) = -\1E(u(k)) . With respect to the Euclidean norm in 
the parameter space, this direction has the steepest slope. For the reference problem, the 
recursion is given by 

(k+l) _ (k) _ t (L(k) + ~ R-· (k))ui - ui k i a ~ u' ui, . (4.2.7) 
i'El 

As can be seen from Fig. 3.4, the gradient of the image energy term dominantly points to a 
direction which is considered reasonable. For some regions the indicated direction is however 
wrong. Additionally, the absolute value of the gradient exhibits strong variations. Both 
mechanisms described in Section 4.1 provide a means to incorporate a priori knowledge about 
reasonable solutions and help to stabilize the performance of the optimization algorithm. 
The regularization term helps to find the correct solution by providing a force that keeps 
the parameter function u in a smooth shape. The requirements for optimization purposes 
are however more stringent than those for modeling are. For images with little corruption 
by noise, a weak regularization will ensure that the global optimum of the energy function 
does satisfy the expectations with respect to smoothness of the solution. For optimization 
purposes, it is often required that the a priori model also helps to avoid local minima. Similar 
to Graduated Non-Convexity (GNC) [7, 36], it should be possible to start with rather strong 
regularization, facilitating convergence, and to relax the requirements during an iterative 
process. 

The use of basis functions stabilizes the performance of the matching algorithm, too. Like 
the regularization term, it introduces a coupling between neighboring values of the matching 
function u. The estimates of the values Ui thus depend on intensity values of an enlarged 
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neighborhood. ( 4.1.6) reveals that the introduction of basis functions essentially leads to 
a smoothing of the gradient. In view of Fig. 4.1, it is plausible that the search direction 
gets more robust. Similar as above, the requirements of optimization and those to obtain a 
good solution are different on principle. Amit [1J suggested to use a hierarchical basis and 
a coarse-to-fine strategy. He proposes to use the Fourier basis or some wavelet basis and to 
successively increase the number of basis functions. The method starts with a collection of 
coarse resolution basis functions and adds higher frequency elements during the process. In 
contrast to the common pyramidal schemes, the resolution of the images is kept fixed. The 
motivation is not to loose important matching information by resorting to coarse resolutions. 
The coarse-to-fine strategy is applied to the matching function only. As it turns out, Amit 
has to use coarse level images, too, to ensure convergence of the algorithm. 

The influence of the modeling of the matching function is in any case twofold. Firstly, it 
affects the performance of the optimization algorithm. Secondly, it accounts for the proper 
balancing between the matching information provided, determined by the resolution of the 
input images, and the information extracted, determined by the amount of smoothing of the 
matching function. We have not addressed this problem separately. When working with 
different levels of a pyramid, the relative weighting of data term and regularization term is 
kept constant. Likewise, the resolution of the matching function relative to the resolution of 
the images is left unchanged for all levels. 

The gradient direction plays an outstanding role for all considered optimization meth­
ods. Algorithms that are more elaborate modify the gradient direction to achieve faster 
convergence. If the gradient points to a "wrong" direction, problems will arise for any of 
the considered methods. Using bilinear basis functions with a node spacing of 8 and a weak 
regularization of typically a = 0.1aJ has been found sufficient to achieve a rather stable 
convergence to a reasonable solution in many cases. As the use of basis functions leads to 
a smoothing of the gradient, a previous work [40 , 41J proposed to replace the smoothing 
operation by a positive semi-definite convolution operator. The motivation is that bilinear 
basis functions introduce a location dependency of the result. The outcome depends on the 
positioning of the grid of the basis function relative to the grid of the discretization. Convo­
lution operators are shift invariant, thus every pixel in the reference space is treated equally. 
However, the convergence properties have been found not convincing for some situations. 
As the efficient optimization is still considered a non-trivial topic , it has been found conve­
nient to resort to situations that are more standard. Further, the convolution approach is 
computationally more expensive. The idea is not pursued herein. 

4.2.2 The Powell-Wolfe Stepsize Rule 

For the gradient descent method, appropriate stepsizes tk have to be selected. The gradient 
itself gives no hint how to determine the stepsize. tk can either be chosen based on problem 
specific considerations or using a stepsize strategy. See [30] for a couple of possible stepsize 
rules. The strategies usually can be used to determine a reasonable stepsize for any search 
direction p(k). Their applicability is not limited to the gradient direction. The criterion used 
herein is the Powell-Wolfe rule. The stepsize tk is chosen such that for some a E]O, ~ [and 
f3 E]a, 1[ the following conditions hold (cf. also [45]) : Firstly, 

(4.2.8) 
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the decrease of the objective function is within a certain range of what is predicted by means 
of the linearization. This prevents too large values for tk. Secondly, 

(4.2.9) 

which prevents too small stepsizes tk. In [30] an algorithm for finding a stepsize that matches 
the above condition is given. A flowchart is shown in Fig. 4.2. It requires the specification 
of a reduction/magnification factor a E]O, 1[ and an initial guess to of the stepsize. a = 0.5 
has been used in this work. The subprocedures too_large and too_sma ll check the conditions 
(4.2.8) and (4.2.9) respectively. For the Powell-Wolfe rule to be realizable, the derivative 
has to be continuous and furthermore exactly known. As stressed in Section 3.4.2, E{~g 

is not the exact derivative of EGng · It nevertheless is used for the practical computations. 
Problems are encountered near the optimum solution. The stepsize search has to be checked 
for convergence and terminated if necessary. This aspect is not considered by the flowchart. 

The gradient method is known for its sometimes slow convergence. If the optimization 
problem is quadratic j(x) = ~xTAx+bTx+c, the ratio of the largest and smallest eigenvalues 
of the matrix A determines the speed of convergence. The larger ~max the slower proceeds the 
algorithm. Very different eigenvalues indicate that the objective fu~~tion varies rapidly along 
certain directions whilst varying relatively slowly along others. In this case, the level curves 
of the objective function are elongated ellipses. Provided the second derivative is continuous, 
general optimization problems are similar to quadratic problems in the neighborhood of 
the optimum solution, thus the reasoning can be carried over to the general case. For the 
matching problem, the texture of the images predominately determines the shape of the 
objective function. For highly textured areas with steep slopes of the intensity function, 
small stepsizes suffice to achieve a good reduction of the image energy and to reach the 
minimum fast. For areas with poor texture, an acceleration by using larger stepsizes is 
necessary. For images containing highly and poorly textured parts, the stepsize strategy 
leads to a compromise. It is observed that the updates tkp(k) show oscillatory behavior for 
highly textured areas whilst little progress is made for poorly textured areas. The methods 
described in the next section do not exhibit this behavior, or at least mitigate it. 

4.2.3 The Gauss-Newton Method 

The Gauss-Newton (GN) [6, 30] method may be considered "the" method to solve all kinds 
of overdetermined systems in geodesy. The basic concept is briefly reviewed in the following. 
Though app.licable to general error norms [52], the Gauss-Newton method for the Euclidean 
norm is considered only. The traditional setup in adjustment calculus is given by a set of 
equations 

f(x) =I+ v . (4.2.10) 

x E JRm are the unknown parameters of the system model f. The observations are denoted 
by I E JRn, n > m, and v E JRn accounts for the discrepancies of the overdetermined system. 
An estimate of x is obtained as the minimum solution x* of the least-squares problem, 

~vTv =~Ill- f(x*) ll 2 = min!, (4.2.11) 

with 11.11 denoting the Euclidean norm. Whilst given by a set of equations, the mathematical 
problem is eventually an optimization problem. Nonlinear systems are linearized at an initial 



71 4.2. OPTIMIZATION METHODS 

too_large(s) 

too_small(s) 

tO initial guess for stepsize 
s,r test stepsizes 
t final stepsize 
a reduction/magnification factor O<a<1 

too_small(s) 

t- (r+s)/2 

ltoo_large(s) 
/~o_small(r) 

too_small(r) 

Figure 4.2: Flowchart for the realization of the Powell-Wolfe stepsize rule. 
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guess x(O) of the solution. The resulting overdetermined linear system leads to a quadratic 
optimization problem according to the same principle as above. It is solved to obtain a 
hopefully better approximation of the solution. This procedure is applied repeatedly until 
convergence is achieved subject to some termination criterion. Let the Jacobian matrix off 
at x(k) be denoted by A (k) , A~Jl = &J;J:;kl). The linearized system is given by 

(4.2.12) 

The objective function is approximated by 

(4.2.13) 

More explicitly, 

~Ill- f(x)ll 2 ~~ Ill - f(x(k))ll 2 

2 2 
- (1- f(x(kl)fA(k)(x- x(k)) (4.2.14) 

+ ~(x- x(k)fA(k)TA(k)(x- x(k))2 . 

The minimum is taken as the next value x(k+l) of the iteration, 

x(k+l) = x(k) + (A (k)TA (k)) -1 A (k)T (l- f(x(k))) . (4.2.15) 

This is the update rule for the Gauss-Newton method. Relating the terms in the formula 
with the derivatives of the objective function ~ Ill - f(x) 11 2 , 

( ~ 111- f(x)ll 2 
)' = -AT(l- f(x)) (4.2.16) 

and 

(4.2.17) 

reveals the analogy with other optimization methods. The first derivative (4.2.16) appears 
in the linear part of (4.2.14), just as it would in a Taylor polynomial. The quadratic term of 
(4.2 .14) only incompletely uses the second derivative ( 4.2.17). In contrast the Newton method 
for function minimization is based on the complete quadratic term of the Taylor polynomial. 
The Gauss-Newton step (4.2.15) may thus be interpreted as Newton step with "incomplete" 
second derivative. Herein we referred to ATA as Gauss-Newton term. Commonly it is easier 
to calculate than the Hesse matrix. If the residuals li- h are small, the Gauss-Newton term 
dominates ( 4.2.17). If they are zero at x*, quadratic convergence of the algorithm is achieved 
[30, 52]. 

The Gauss-Newton Method for Image Matching 

For the reference problem, the quadratic approximation (4.2.14) of the energy function is 
given by 

,...., (k) ~ (k) (k) 1 ~ (k) (k) (k) a ~ 
E (u ) ,...., E(u ) + L.,; Li (ui- ui ) + 2 L.,; (ui- ui )Qii, (ui' - ui, ) + 2 L.,; uiRii'ui' . 

iEl i,i' El i' El 

(4.2.18) 
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The minimum condition for the approximated problem is given by 

i E I. (4.2.19) 
i' El i' El 

This is the Gaussian normal equation for the matching problem, which is obviously a linear 
equation. The matrix of the system is sparse. For typical grid sizes, the dimension of the 
problem #I will easily reach ranges that preclude the use of direct matrix solvers. There exist 
effective iterative solvers for high dimensional sparse systems, such as the well known Jacobi 
and Gauss-Seidel relaxation. See [21] for a comprehensive treatment. If the linear system is 
solved by an iterative procedure, the optimization effectively consists of two cascaded itera­
tions. The system of equations is subject of iterative refinement as the procedure approaches 
the minimum and the system of equations is solved iteratively itself. This rises questions on 
how to effectively interleave the two procedures. It hardly makes sense to solve (4.2.19) with 
extreme precision, considering that the next linearization step will change the equation to be 
solved. A particular simple strategy is to interleave every linearization step with only one 
Jacobi step for the linear system. The concept is very similar to the SOR-Newton method 
described in [63, p. 1140]. The second derivative is however replaced by the Gauss-Newton 
term. Further we use a Jacobi like iteration rule, but that primarily facilitates analysis and 
is not fundamental to the concept. The strategy is to keep all values Ui, but one, fixed to 
the current state of iteration u(k)_ (4.2.19) is then a one-dimensional linear equation. The 
solution is taken as the next value of the iteration. This recipe is applied to all values Ui, 

i E I. Including a relaxation parameter this leads to 

(k+1) _ (k) _ 1 (L (k) + "'R·· (k))ui - ui w (k) i a L u'ui, (4.2.20) 
Qii + aRii i'EI 

Herein we call this recursion the Gauss-Newton-Jacobi (GNJ) method. Setting w = 1 yields 
the results according to the above description. The relaxation parameter is selected either to 
accelerate the method or to avoid oscillations. If R is determined by the membrane functional 
(4.1.11) , w = ! ensures convergence. w serves as stepsize parameter for the method. The 
selection of the stepsize is less difficult than for the steepest descent method. w primarily 
corrects the stepsize, which is intrinsically computed by Newton like methods. The steepest 
descent method in contrast gives no hint how to choose the stepsize, necessitating a stepsize 
strategy or additional knowledge about the problem. Further, a comparison with (4.2.7) 
reveals that in ( 4.2.20) the global stepsize tk is replaced by a spatially varying factor. As can 

be seen from Section A, Q~t) = E~ii(u(k)) is proportional to the squared image derivative. 
Accordingly, the update is adapted to the local texture. An implementation detail concerns 
the boundary terms of the first derivative of the forward similarity. As already indicated in 
Section 3.2.2, if the GN or GNJ method are used in connection with the forward similarity, 
it is recommendable to omit the boundary terms of the first derivative from L~k). 

The GNJ method has an interesting relation with a rather popular method for solving 
matching problems, which for example can be found in [18, 26, 37]. The argumentation 
commonly starts from the discrete Euler-Lagrange equation, which is written more explicitly 
for the purpose, 

8Eimg(u*) ( * * * * * )--::-"-'---'-+a4U· · -U · 1 ·-U· · -U· ·+1 -U · · =0 . (4.2.21)au . . t,J t+ ,J t- 1,J t,J t,J- 1 
t ,J 
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Figure 4.3: A trivial 1D matching constellation. 

This is used to construct the following recurrence formula. Given a state of iteration u(k), 

u~~+l) is determined by 

(4.2.22) 

Similar expression are found for other regularizing functionals. The fix point of this system 
of equations is obviously a solution of (4.2.21) . Variations exist in the way the update is per­
formed . Parallel for all indices I , corresponding to the Jacobi iteration, or sequentially like 
the Gauss-Seidel iteration. Despite its popularity and the obviously interesting results ob­
tained, the justification of this method is very questionable. Using the abbreviated notation, 
the update rule can be written as 

(k+l) - - (k))(k) _1_ (L(k) + L R··u. - u. . a 
11

tU., . ( 4.2.23) 
1 1 1 1aR·· 

11 
i' El 

Taking into account that Rii is constant in the interior of the grid, the recursion is readily 
identified as gradient update equation ( 4.2. 7) with stepsize tk = c.k.· . The method thus 
proceeds along the gradient direction. It has to be emphasized that linking the stepsize with 
the regularization parameter a has no justification. The effect is most likely that a has to be 
adjusted to achieve convergence, which in turn will influence the smoothness of the matching 
function u. Comparison with ( 4.2.20) reveals that the term Q~~), which locally adapts the 

11 

stepsize, is missing. In other words, the quadratic term of the image energy term is ignored 
in (4.2.18). The introduction of a relaxation parameter w in (4.2.23) loosens the coupling 
between the weight of the regularization term and the stepsize. The resulting method is 
equivalent to the steepest descent method ( 4.2. 7). The following example demonstrates the 
difference between the GNJ method and (4.2.23). 

Example. We assume the trivial 1D constellation f(x) = sx and 9i = si (Fig. 4.3). The 
graphs f(x) and 9i are straight lines with slope s. The best match is found if every point 
x E g is mapped toy= x E F. The map mi is parameterized via the disparity, m i = i + di, 



75 4.2. OPTIMIZATION METHODS 

thus for di =0 perfect matching is achieved. Starting from d~o) =d(o) , the GNJ method 

and ( 4.2. 23) both produce a sequence d~k) = d(k) , i.e. the disparity is constant for all indices 
at each stage of iteration. The linear and quadratic terms are given by (A.O.l). For the 
particular constellation, 

L~k) = (f(i + d~k) )- gi)8gi = s2d(k) (4.2.24) 
2 

Q(k) = (8gi ) = 2
8 (4.2.25)

22 ami . 

As regularization functional the string functional is chosen, 

I:~i~d~~) = 2d~k)- d~~l- d~~l = o ( 4.2.26) 
i' EI 

~i =2 . ( 4.2.27) 

As usual, boundaries are not considered explicitly. For the particular simple situation, the 
relaxation parameter can be assumed w = 1. Defining 'Y = ~:, the sequence generated by 
the GNJ method is given by 

d(k+l) = _l_d(k) (4.2.28)
l+'Y ' 

whereas ( 4.2 .23) will produce 

(4.2.29) 

Obviously, the GNJ method produces a convergent sequence for all a > 0, whilst the sequence 
generated by ( 4.2.23) converges only if a > s; .Clearly, the second method forces a minimum 
on the regularization parameter a, no matter how much regularization is actually needed 
to achieve a "smooth" result. By the way, the GN method solves this problem in one step, 
simply because the functions f and g are assumed linear and the problem thus is a linear 
least-squares problem. 

The above example demonstrates the advantage of the GNJ method compared with the 
relaxation scheme ( 4.2.23) . Examples for real imagery are not given, because the conver­
gence of the latter method has been found too problematic. Using the membrane functional 
(4.1.11) and typical values of a, the Powell-Wolfe rule produces stepsizes for the steepest 
descent method that are much smaller than ak;;. Thus for the relaxation scheme ( 4.2.23) 
convergence is impossibly achieved. Further, the range of a, for which the method performs 
well, is influenced by the width of the bilinear basis functions. The average magnitude of the 
derivative L~k) rises with the node spacing L. Therefore, reasonable stepsizes for the steepest 
descent method do depend on the width of the basis functions, which in turn has influence 
on the selection of a, as the stepsize is linked to a in (4.2.23). However , it is not necessary to 
adapt a to the grid spacing hL in order to keep the relative weighting of regularization term 
and image energy unchanged. The formula of the membrane functional (4.1.11) is indepen­
dent of the grid spacing. Altogether, the properties of the relaxation scheme (4.2.23) have 
not been found promising so that further experiments have not been considered worthwhile. 



76 CHAPTER 4. PRACTICAL ASPECTS OF THE MATCHING ALGORITHM 

4.2.4 Numerical Tests and Remarks on Performance 

It is difficult to judge the performance of matching algorithms on a theoretical basis only. 
Practical testing and theoretical explanations of the observed behavior complement each 
other. 1D constellations are particularly useful for numerical testing. They are not only easier 
and faster implemented, they also do facilitate analysis, generation, and manipulation of data. 
Using artificially generated data, the influence of certain parameters on the matching result 
and on the convergence properties can be investigated. In the following , different optimization 
strategies and different variants of the similarity measure are considered. An exhaustive test 
series that comprises all permutations of possible arrangements is however not provided. The 
purpose is twofold. Firstly, some general observations concerning the performance of the 
matching algorithms are mentioned. Secondly, we want to raise confidence in the proposed 
matching algorithm, which uses the forward modeling similarity measure. The analysis of the 
forward similarity requires more effort, in comparison with the reverse similarity. The latter 
can be formulated in the classical adjustment setup (cf. Section 3.4.2), which may be more 
familiar to some researchers. Both variants are however very closely related. With respect 
to the performance of optimization algorithms, comparable results are achieved. 

For the 1D case, it is no problem to apply the Gauss-Newton method involving the direct 
solution of the Gaussian normal equation (4.2.19). As the GNJ method has been rationalized 
as Gauss-Newton method interleaved with one Jacobi step, shortcomings may be attributed 
either to the approximation (4.2.18) or to the Jacobi iteration. Solving (4.2.19) directly 
separates these aspects. The following tests take three optimization methods into account: 
the Steepest-Descent method in combination with the Powell-Wolfe stepsize rule (SD-PW), 
the Gauss-Newton method (GN), and the Gauss-Newton-Jacobi method (GNJ). The different 
variants of the similarity measures are all based on the local least-squares measure. See 
Appendix A for detailed formulas. Three kinds of discretizations of the forward energy 
are considered: single and double grid discretization, and a Finite-Elements (FE) variant 
assuming m, f, and g piecewise linear, as described in Section 3.4.1. The reverse similarity is 
used as an additional possibility. For the tests, a random function f with standard deviation 
normalized to rJf = 1 has been generated and the template has been derived by g = f o m, as 
depicted in Fig. 4.4. Choosing m equal to the identity map has been considered too special. 
The particular m deviates from identity map by a weak cosine shaped modulation. The 
selection of m is not immaterial, in particular it is not for the forward modeling similarity 
measure. The dominant aspect for the performance of the matching algorithm is however the 
starting value or initial guess m(o). It is set to m(o) = m + 1 corresponding to a shift of 1 
sampling interval or 1 pixel. This appears to be rather conservative. Fig. 4.4 shows the initial 
alignment of g and f o m(o). It also illustrates the high frequency variations of the intensity 
functions. In fact, m(o) is located near the extremum of the pull in range of the matching 
algorithm. Choosing the initial shift to equal ±2 pixel results in divergence, independent of 
the optimization method and similarity measure used. The properties of the map m are left 
unaltered for the tests. It is parameterized via the disparity, which is composed of piecewise 
linear elements with node spacing 8. The string functional (1D membrane functional) is used 
to impose a weak regularization (a= 0.05) . All tests in this section concern the convergence 
behavior of specific constellations. To that end the distance of m(k) to the final solution m * is 
measured by llm(k)- m* Iloo· The solution m * that is obtained by the matching procedure can 
not be assumed equal to the map m used to artificially generate the image g. m* deviates 
from m because of the influence of the discretization and the regularization. It has to be 
determined numerically with sufficient accuracy allowing the comparison with the k'th state 
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Figure 4.4: An artificially generated ID matching example, g = f o m . The initial map mC0) 

and the initial alignment of g and f o mC0) are plotted, too. 
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Figure 4.5: Convergence behavior for dif­ Figure 4.6: Convergence behavior using the 
ferent similarity measures using the GN single grid discretization together with differ­
method. ent optimization methods. 

of the iteration m(k). 

Fig. 4.5 illustrates the convergence behavior of the Gauss-Newton method for different 
variants of the similarity measures . For the reverse similarity and the FE discretization of the 
forward similarity, rapid convergence can be observed. The slow initial progress for the reverse 
similarity is an indication of the unstable performance for the particular setup. Enlarging the 
initial offset m(o) -m* to approximately 1.5 pixel already causes the algorithm to converge 
to an erroneous solution. Once near the solution, the minimum is reached quickly. For single 
and double grid discretization the initial convergence is fast. The final settling of the iteration 
is not that rapid. As has to be expected, the double grid discretization performs better than 
the single grid discretization. The required subpixel precision is in both cases reached within 
few iterations. In particular one is content with a precision of 0.1 pixel. The single grid 
discretization is the one which has the highest relevancy for the practical applications. In 
Fig. 4.6 it is used to illustrate the performance of different optimization algorithms. The 
GNJ method achieves the same initial progress as the GN method, though the eventual rate 
is smaller. The SD-PW method reaches the range of 0.1 pixel deviation within 10 iterations. 
This can still be considered reasonable. The tests correctly reveal the relative performance, 
though for real imagery the convergence is strongly influenced by problem areas causing the 
performance to deteriorate. 

The configuration, which has been considered so far, involves no corruption by noise 
or other disturbances. Fig. 4.7 and 4.8 demonstrate the influence of a constant offset o. 
Image f is replaced by f + o. This test focuses on the influence of the residuals f o m* - g, 
which are enlarged by the offset. Two different values o = 0.05 and o = 0.1 are used. For real 
imagery, the residuals are enlarged by noise , outliers, untreated occlusions, or uncompensated 
radiometric differences. The GN method is used together with the single grid discretization 
(Fig. 4.7) and with the reverse similarity (Fig. 4.8). For the single grid discretization the 
performance slightly deteriorates , whereas using the reverse similarity the iteration does not 
converge. Two effects play a role. Increasing the residuals causes the Gauss-Newton term 
to be a worse approximation of the second derivative and the convergence properties to get 
worse (cf. (4.2 .17) and the subsequent explanations). This can b e seen from Fig. 4.7. It is 
more clearly observed for the 2D implementations described in Chapter 5. Especially large 
areas with enlarged residuals have a dominant influence on the convergence behavior. An 
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Figure 4. 7: Convergence behavior using the Figure 4.8: Convergence behavior using the 
single grid discretization and the GN method. reverse similarity and the GN method. The 
The residuals are enlarged by replacing f by residuals are enlarged by replacing f by f +o. 
f+o . 

example is given below. The same behavior, as for the forward modeling similarity measure , 
has to be expected for the reverse similarity (Fig. 4.8) . Another effect however dominates 
the convergence properties. The reason that the algorithm fails to converge is the lack of 
differentiability of the reverse modeling similarity measure , which is caused by the piecewise 
linear interpolation ofimage f. The situation is depicted in Fig. 4.9. The algorithm essentially 
tries to find a position m i E :F for every texture value 9i such that 9i = f(mi )· The model of 
m will prevent that this can be reached exactly, but that does not affect the principle. Fig. 4.9 
illustrates how the GN algorithm determines the next value m~k+ 1 ) of the iteration based on 

local linearization at state m~k). If f is linear, the GN method succeeds within one step, 
since in that case the problem is a linear least-squares problem. For the example depicted 
in Fig. 4.9, the values mf oscillate between the two solutions guessed from the locally valid 
linear models. If 9i is small enough to be situated beyond the peak of f , the solution depends 
on the initial guess , but no convergence problems arise, as the support of the local model 
is not left. The same problems are observed also for the GNJ method. Clearly, choosing a 
different interpolation type for J, which ensures differentiability, will sidestep the problem. 
The computational effort is however increased. The forward similarity does not involve the 
linearization of f. The effect is thus not encountered. Possible difficulties may however arise 
for multi-'image matching, if g is estimated from piecewise linear (bilinear) images k 

As mentioned, areas with large residuals can cause slow convergence of the matching 
algorithm. Fig. 4.10 shows an image with two different regions indicated. It is taken from 
a configuration that is further explained in Section 5.3.2. Both regions are used as reference 
domains to recover the respective part of the surface. In Table 4.1 and Figure 4.11 the 
convergence b ehavior of the GNJ method, embedded in a multiresolution setup working from 
coarse (level4) to fine (level 0) , is given. The iteration at each layer is terminated if lld(k+1) ­

1d(k) 11 < 6 • d denotes the generalized disparity. For region 1 a rather good convergence 1 
b ehavior is achieved. Region 2 is larger and contains some problem areas. The small shadow 
area in the upper left corner has no corresponding part in the second image (Fig. 5.18). This 
is not only cause of a wrong matching result , but also of very slow convergence. This section 
concentrates on the performance of optimization methods. Clearly, it has to be expected 
that problem areas caused by untreated occlusions, uncompensated radiometric differences , 
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Figure 4.9: Illustration of the oscillation effect for the reverse similarity in connection with 
the G N method. 
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Figure 4.11: Number of iterations for region 
1 and region 2 using the GNJ method. 

Figure 4.10: 
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region 2 
Level 

region 1 
GNJ GNJ 

4 7 9 
3 7 6 
2 5 20 
1 5 38 
0 12 27 

GNJ-PW 
6 (10) 
6 ( 6) 
11(17) 
11(20) 
19(28) 

Table 4.1: Number of iterations for region 1 and region 2 of Fig. 4.10. For the GNJ-PW 
method, the values in brackets include the intermediate steps for the realization of the stepsize 
rule. 

and the like affect the matching result. An example is given in Section 5.3.1. The essential 
observation is however that these areas do affect the convergence behavior , too. This may 
be expected, though it is by no means self-evident . Detailed analysis reveals that the GNJ 
method performs too small steps for the problem areas. The current implementation of 
the matching algorithm achieves a slightly better convergence behavior by combining the 
GNJ method with the Powell-Wolfe stepsize rule (GNJ-PW). For region 2 the number of 
iterations, as required by the GNJ-PW method for each pyramid layer, are given in Table 
4.1. Additionally, the number of iterations including also the intermediate steps for the 
realization of the Powell-Wolfe rule are given in brackets. The intermediate steps neutralize 
the benefit of the stepsize rule to some degree. It may be speculated that the problem can not 
only be addressed by more elaborate optimization algorithms, but also by a refined modeling, 
for example by incorporating techniques of robust estimation [36 , 66] to reduce the influence 
of outliers. 



Chapter 5 

A Measurement System for Facial 
Surgery 

In collaboration with the University Clinic of Oral and Maxillofacial Surgery at the General 
Hospital of Vienna a measurement system for the determination of the shape of human faces 
has been developed. The geometric information is needed by the surgeon for the planning 
phase and for the comparison of pre- and postoperative state. The aim is to provide an easy 
to handle measurement system. The images are acquired by four video cameras connected to 
a standard PC by a frame grabber card. The camera configuration is shown in Fig. 5.1. The 
cameras are arranged so that each side of the face is covered by two cameras with vertical 
baseline. The application of automatic matching algorithms for images of human faces is 
difficult , as the skin exhibits relatively less texture. No type of matching algorithm is able 
to perform satisfyingly under these circumstances. It is quite common to circumvent this 
by applying additional texture by means of a projected light pattern [11 , 34, 38] . For close 
range applications, this is unproblematic. It requires no special technical effort as long as 
the knowledge about the pattern content is not used as additional input information for the 
matching algorithm. Two projectors are used , one for each side of the face , centered between 
the two respective cameras, Fig. 5.1. Fig. 5.2 depicts the frame that carries the cameras and 
the projectors mounted on a theodolite tripod. Fig. 5.3 portrays the measurement system in 
operation during the image acquisition phase. 

5.1 Random Projection Pattern 

The projection pattern is used to substitute missing matching information. To that end, it has 
to provide many edges. In terms of frequency content, it should cover a rather broad frequency 
range. The natural choice is to use a random black and white pattern. Using greyvalues other 
than black or white makes sense only if the knowledge about the content of the pattern is used 
for the matching algorithm. The proposed algorithm does not distinguish between natural 
and artificial texture. Accordingly, the pattern is designed to increase the variance of the 
texture as much as possible. Another question concerns the spectral distribution of the power 
density. The highest frequency components of the pattern should match the resolution of the 
imaging system. Signal power in a frequency range that is filtered by the cameras is wasted. 
A random pattern consists of pixels like any other image. The pattern pixels, once projected 
and imaged, should have at least the size of the pixels of the camera. With respect to the low 
frequency range, at least in principle, no enhancement is needed, because the power density 

82 
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Figure 5.1: 

Figure 5.2: 

Figure 5.3: 
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Figure 5.4: Low frequency Figure 5.5: High frequency Figure 5.6: Composite pat­
pattern l. pattern h. tern p. 

spectrum of natural texture usually exhibits a strong lowpass characteristic. On the other 
hand, it might be useful to enhance the low frequency contributions to grant unproblematic 
initial convergence of the hierarchical matching algorithm. We propose a simple two level 
pattern. It enhances the texture in the high frequency range and provides the possibility of 
an additionally increase in the low frequency range. Bandwidth and relative weighting of 
high and low frequency components are steered by two parameters. The shaping of spectra 
of random processes is rather trivial if the range of admitted pattern values is JR. If the 
patter is required to be binary, the matter is more complicate. A general theory seems 
not worthwhile for the purpose. The problem is considered in more detail in [15] for the 
design of 1D sequences as needed for communication applications. The proposed pattern is 
composed of a low frequency pattern l and a high frequency pattern h. We treat them on the 
discrete domain Z 2 . The translation to a stochastic process defined on JR2 is straightforward. 
Both patterns are binary black and white patterns. For the calculation of autocorrelation 
functions and power density spectra we assign black the value 0 and white the value 1. The 
low frequency pattern consists of L x L square areas with homogenous color (Fig. 5.4) . Black 
and white are distributed equally and are chosen independently for each square area. The 
values hk of the high frequency pattern are assumed statistically independent, but not equally 
distributed, P(hk = 0) = 1;J.L and P(hk = 1) = 1tJ.L (Fig. 5.5). Note that the term high 
frequency pattern does not mean that it has a highpass characteristic, but that it extends 
to "high" frequencies . Apart of the mean, it is a spectral white pattern with homogeneously 
distributed power density. The process h is used to introduce additional matching information 
into the lowpass pattern l. This is done by flipping those pixels of l where h is 1 or white, 
which is equivalent to a XOR(U) operation. The new pattern p thus is given by 

(5.1.1) 

The effect of this operation is easily analyzed. If black is mapped to -1 rather than to 
0, which is only a linear transformation, the new pattern is simply the product -hl. The 
spectrum is the convolution product of the spectra of hand l. From (5.1.1), it is clear why 
the pixels of the high frequency pattern are generally not equally distributed. If J.l = 0, each 
pixel of l is flipped independently and the structure of l is lost, resulting in a spectral white 
pattern p. Fig. 5.7 depicts the autocorrelation function of the composite pattern p 

(5 .1.2) 
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Figure 5.7: Autocorrelation function of the 
composite pattern, L = 8, f-L 2 = 0.2. 

The pattern is not stationary because of the square patches of l. The autocorrelation function 
is calculated as usual for cyclostationary processes [35 , pp. 66]. The power density spectrum 
of p is the Fourier transform of Rp 

Figure 5.8: Power density spectrum of the com­
posite pattern, L = 8, J-L 2 = 0.2. A Dirac impulse 
of weight ~ is located at () = 0. 

(5.1.3) 

It is depicted in Fig. 5.8. The Dirac impulse at () = 0 is a consequence of the mean of p. 
The two parameters J-L 2 and L determine the shape of the spectrum. J-L 2 E [0, 1] controls the 
relative weight of the lowpass contributions. For J-L 2 = 0 the spectrum is white, for J-L 2 = 1 it is 
completely low frequency dominated. The length of side L of the square patches determines 
the bandwidth of the lowpass pattern l. Projected on a surface, the resulting texture is again 
a product-like combination of the natural texture and the light pattern. 

More elaborate schemes of creating patterns may be found. For example the low frequency 
pattern can be replaced by realizations of Pickard random fields [46 , 47], which are stationary 
and have a geometric correlation structure. The XOR combination of patterns is also a flexible 
tool for designing special purpose patterns. The proposed two parameter family of patterns 
by far covers what is needed for the presented application. 

5.2 Implementation of the Algorithm 

The matching algorithm presented in this work is an integral part of the measurement sys­
tem for facial surgery. The algorithm is currently implemented in IDL (Interactive Data 
Language by Research Systems Inc.). The interactive environment proved to be useful for 
testing purposes and for the analysis of the algorithm performance. It however puts some lim­
itations on the implementation, because operations are performed efficiently only if specified 
for whole arrays of data. Using loops like in compiled languages (Pascal, C etc.) diminishes 
the performance significantly. Some routines have been outsourced to C++. Nevertheless, 
the style of implementation is similar to parallel processing. As the system is currently in pro­
totype state, modularity and ease of testing have been favored over efficiency. There should 
be enough space for improvements in speed. The current implementation of the matching 
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algorithm does not use the full strength of the concept. Only image-to-image matching is 
performed, using the generalized disparity d (cf. Section 3.3.2) as matching parameter. For 
the basic constellation one image serves as template image g and the other as data image 
f. The symmetric variant of image-to-image matching as given by (3 .1.18)-(3.1.20) is im­
plemented, too. It is theoretical more founded. However, more experience is available for 
the basic constellation. The matching is performed for each side of the face independently. 
The fusion of the two data sets is not done within this work. From the preceding sections, it 
is clear that configurations that are more elaborate could be used. In particular processing 
multiple images simultaneously is frequently reported to enhance the robustness of the algo­
rithm [10 , 22, 23, 37, 49]. The current implementation nevertheless suffices to perform first 
test runs. 

The following parameters are required as input to the matching algorithm: 

- the images and the regions that are to processed, 

- the orientation parameters, 

- the pyramid levels that are to be used, 

- the initial guess of the solution for the lowest pyramid layer, 

- the node spacing for the bilinear facets, and 

- the amount of regularization. 

Further decisions concern 

- the type of discretization, 

- the optimization method, and 

- whether basic or symmetric image-to-image matching is used. 

The parameters of the orientation are determined in advance using the hybrid photogrammet­
ric adjustment program ORJENT [28, 32]. In a preprocessing step the nonlinear geometric 
distortions are removed from the images. This necessitates resampling of the images, which is 
commonly considered undesirable. The effort of taking the nonlinear distortions into account 
throughout the whole iterative process is however too high. After the rectification, the image 
pyramids are generated. If the double grid discretization is used, the image pyramid should 
be of even type. For the single grid discretization it should be of odd type. This way a correct 
alignment of the samples dk of the matching function is granted across pyramid layers. For 
both pyramids a filter kernel composed in a tensor manner from binomial distributions is 
used. In detail, the kernel k(l, 3, 3, 1) is used for the even pyramid and 1~ (1, 4, 6, 4, 1) (cf. 
[22]) for the odd pyramid. They come close to Burt's most Gaussian like filters [8]. Single 
and double grid discretization are both implemented. Unlike the experimental setup for the 
ID case, the particular application did not profit from the double grid discretization, thus the 
single grid discretization is commonly used. For the initial guess of the matching function, 
specifying a plane in object space has been found sufficient. The approximate distance be­
tween the face and the camera yields enough information to start successful matching. This 
depends to some extent on the patch size, as it will enforce a limit on the coarsest layer of 
the pyramid that can be used. The properties of the surface are determined by the node 
spacing and the regularization parameter a. A node spacing of 8 has been found appropriate 
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for most applications. The regularization is based on the membrane functional ( 4.1.11). A 
typical value for a is 0.1o} Though some authors claim that the bias of the membrane func­
tional towards d = const is not adequate for image matching [18, 26], we have encountered 
no problems so far. Refinement of this aspect is possible though. 

Three different optimization algorithms are available. A steepest descent algorithm using 
the Powell-Wolfe stepsize rule, the GNJ optimizer with fixed stepsize, and the GNJ optimizer 

1with Powell-Wolfe stepsize control. The iteration is terminated if lld(k+l)- d (k) Iloo < 1 • The6 
convergence of neither method is entirely satisfying. There are always some problem areas in 
an image that cause a high number of iterations. An example of the influence of problem areas 
has already been given in Section 4.2.4. For the following examples, the GNJ-PW method 
is used , since it has been found to terminate after an acceptable number of iterations. The 
complexity of a single step of the GNJ-PW optimizer is however high. In some cases the 
algorithm terminates because the stepsize strategy fails to find a suitable stepsize. This can 
be accepted for two reasons: Firstly, the behavior is encountered only near the solution. 
Secondly, as the convergence is dominated by problem areas, the termination happens when 
the majority of values di has settled with high precision. For the problem areas, the quality 
of the result is doubtable anyway. 

At the current state, we can not report facts about the final accuracy of the matching re­
sult . For none of the examples have been appropriate reference data available. The proposed 
method falls in the class of least-squares matching methods. The accuracy potential of these 
methods has been well investigated by researchers of the photogrammetric field. There is 
no reason why the herein-proposed variant of global least-squares matching should perform 
significantly better or worse than related approaches. The achievable accuracy is influenced 
neither by the usage of the forward similarity instead of the reverse similarity nor by the 
optimization method. Weisensee [58] claims to reach a standard deviation of 0.2 pixel image 
space equivalent. Heipke [22, 23] obtains a maximum deviation of 0.1 pixel for an artificially 
generated example. The example in Section 5.3.1 demonstrates that the radiometric effects 
can cause deviations up to 1 pixel. This is an extreme case however. It is caused by short­
comings of the radiometric model. Only mean and standard deviation of the two images are 
mutually adjusted by a simple global linear transformation of intensity values. The majority 
of methods uses similar simple strategies. Consequently, before trying to achieve an accuracy 
in the range of 0.1 pixel, the radiometric modeling has to be refined. We are content to reach 
accuracy comparable to other least-squares methods for regions that are unproblematic with 
respect to radiometry. Currently no effort is made to deduce the accuracy from the matching 
result . The method that is used in adjustment calculus to calculate theoretical standard de­
viations of the unknown parameters appears to be computationally very demanding if large 
patches are considered. It should however be possible to judge the obtainable accuracy of the 
matching result , at least qualitatively, from the diagonal terms of the Gauss-Newton term 
and the residuals of the image intensities. 

5.3 Examples 

5.3.1 The Author's Face 

Fig. 5.9 and 5.10 show two images taken with the medical measurement system. They portray 
the author's face with a random pattern texture projected onto the skin. For the determina­
tion of the surface a patch of 513 x 513 pixels was processed simultaneously. The indicated 
region of Fig. 5.9 served as template image. The matching function was parameterized by 
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Figure 5.9: Image of the author's face with 
the reference region indicated. 

Figure 5.10: Image of the author's face, sec­
ond view. 

bilinear facets with node spacing 8. Eventually 65 x 65 nodes were determined. Additionally 
a weak regularization with a= 0.1aJ was applied. The matching was performed using the 
GNJ method together with the Powell-Wolfe stepsize strategy. The computation took about 
3 min. on a AMD-K6 PC with 200MHz and 32Mb memory. The required number of iter­
ations for each level is given in Table 5.1. Additionally the number of iterations, including 
the necessary steps for the realization of the Powell-Wolfe rule, is given in brackets. The 
performance is adversely affected by areas with large residuals. Especially in the occluded 
area to the right of the nose1 , the iteration does settle very slowly. The reconstructed sur­
face is depicted in Fig. 5.11. For the regions outside the face no meaningful matching is 

1 The terms left and right are used with respect to the coordinate system of the head. The right side of the 
face is thus portrayed by the left part of the image. 

Level 
5 
4 
3 
2 
1 
0 

Iterations 
7(7) 
8 ( 8) 
8 ( 8) 
16(20) 
16(24) 
14(22) 

Table 5.1 : Number of iterations for the matching of Fig. 5.9 and 5.10 using the GNJ-PW 
method. The values in brackets include the intermediate steps for the realization of the 
Powell-Wolfe stepsize rule. 
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Figure 5.11: Shaded reconstructed surface. View of left and right side. 

achieved. The dark background regions do however not disturb the algorithm. According 
to the input images, the right side of the face is reconstructed only roughly. At the right 
side of the nose the interpolation enforced by the regularization term is clearly visible. The 
surface exhibits some distortions at the left cheek. As visible from the images, Fig. 5.9 and 
5.10, these correspond to very bright, over-exposed areas. The radiometric model falls short 
of compensating these effects. The consequence are undulations of the reconstructed surface. 
In front of the forehead there are some fringes of hair. They are also visible as distortions in 
the reconstructed surface. 

The effect of uncompensated radiometric differences is illustrated in more detail for a 
128 x 128 region located at the left cheek. The transformed image f o m*, the template g, 
and the absolute value of the difference If o m* - gl are depicted in Fig. 5.12-5.14. From 
the difference image it can be seen that the residuals are not only caused by noise. Some 
bright spots appear because of radiometric effects. Fig. 5.15 shows intersections of the images 
and the disparity function d* along the lines indicated in Fig. 5.12-5.14. Clearly f o m* and 
g are aligned geometrically correctly. There are however areas where the intensity differs 
systematically. These correspond to unnatural deformations of the disparity function d* . 
One unit of disparity corresponds to approximately 1 mm in object space and 1 pixel in 
the domain F. The epipolar direction is approximately parallel to the x2-direction (vertical 
direction in Fig. 5.12-5.14). With respect to the reference domain Q, increasing the disparity 
causes a leftwards shift of f o m *. The figure additionally shows a smoothed version d8 of 

8 8the disparity and the corresponding f o m • Comparing f o m and f o m* reveals how the 
radiometric differences cause the distortions of d*. As the algorithm does not take the source 
of the residuals into account, it tries to compensate the residuals, caused by the oversimplified 
radiometric model, by a geometric correction. The driving force is the negative gradient of the 
image energy term -V'Eimg, which works dominantly at the steep slopes of f. The direction 
of the force imposed by -\7Eimg is indicated by arrows. The resulting deformation of d* is 



90 CHAPTER 5. A MEASUREMENT SYSTEM FOR FACIAL SURGERY 

Figure 5.12: Region of the Figure 5.13: Region of the 
transformed image f o m*. template image g . 

Figure 5.14: Difference im­
age Ifom* - gl. Brightness 
scale differs from Fig. 5.12 
and 5.13. 
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Figure 5.15: Intersections off o m *, g , and 
d* along a line parallel to the x2-direction. 
d8 is a smoothed version of the disparity d*. 
It leads to the transformed image f o m 8 
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Figure 5.16: Intersections of f o m *, g, 
and d* along a line parallel to the X2­
direction for the gypsum face example (Sec­
tion 5.3.2). 
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Figure 5.17: Image of a gypsum face with Figure 5.18: Image of a gypsum face, second 
the reference region indicated. view. 

clearly visibly and is indicated by arrows, too. Fig. 5.16 serves for comparison. It portrays 
the same quantities for an example that uses images of a gypsum face (Fig. 5.17, 5.18). The 
configuration is considered in the next section. A similarly located region of the left cheek is 
used. The radiometric differences are harmless in that case, causing almost no distortions. 

So far no refined radiometric model is implemented. The results show however that an 
improved treatment of the radiometry is necessary. The same relevancy has to be assigned to 
the robustness with respect to outliers. They have a similar influence on the matching result 
like unmodeled radiometric differences. 

5.3.2 Gypsum Face 

Fig. 5.17 and 5.18 portray images of a gypsum model of a face . The model without texture 
is depicted in Fig. 5.19 . The parameters that are used for the reconstruction are the same 
as in the previous section. For this example the basic similarity measure and the symmetric 
variant (3.1.18)-(3.1.20) was tested. The basic image-to-image matching used the region 
indicated in Fig. 5.17 as template image g. The symmetric variant used the same reference 
domain. However , in this case the region served as image fo (cf. Section 3.1.3) and not 
as template image g. The reconstructed surface as obtained by the symmetric variant is 
depicted in Fig. 5.20. The results are almost the same for basic and symmetric constellation. 
For the basic variant, the computation took approximately 7 min. on the same computer 
environment as above. For the symmetric variant, only 4 min. 30 sec. were needed. The 
number of iterations for each pyramid level is given in Table 5.2. The convergence is in 
neither case satisfying. For the basic constellation, about 80% of the time are spent at level 
0 of the hierarchical scheme. For the symmetric constellation, a high number of iterations 
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Figure 5.20: Reconstructed surface. 

Figure 5.19: Gypsum face without artificial 
texture. 

Level 
Itera

basic 
tions 

symmetric 
5 8 ( 8) 8 ( 8 ) 
4 6 ( 6 ) 5 ( 5) 
3 12(24) 11(25) 
2 15(19) 30(44) 
1 18(31) 12(19) 
0 31(56) 15(20) 

Table 5.2: Number of iterations for the matching of Fig. 5.17 and 5.18 for basic and symmetric 
constellation using the GNJ-PW method. The values in brackets include the intermediate 
steps for the realization of the Powell-Wolfe stepsize rule. 
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Figure 5.21: Left image of mountainous Figure 5.22: Right image of mountainous ter­
terrain. rain. Computed map m* plotted as an irregu­

lar grid. 

is necessary at level 2. On lower levels data of smaller size have to be manipulated thus the 
bad convergence at level 2 has less impact on the total computation time. Again the area 
to the right of the nose is problematic and causes rather slow convergence. The influence 
of the shadow areas on the convergence has already been discussed in Section 4.2.4. The 
current experience is insufficient to conclude whether the symmetric constellation involves 
practical benefits, though it is obviously theoretically sounder. In contrast to the example of 
the previous section, no artifacts due to radiometric effects are encountered. Most likely the 
reason is that the reflectance properties of gypsum obey the Lambertian law better than the 
human skin. 

5.3.3 Matching of Aerial Imagery 

To demonstrate the methods capability under varying conditions, the matching of two aerial 
images of mountainous terrain, Fig. 5.21 and 5.22, is presented. The second image, Fig. 5.22, 
is overlaid with the computed map m* plotted as an irregular grid. m * was obtained using 
a very similar setup as in the previous examples, employing the symmetric variant of image­
to-image matching, (3.1.18)-(3.1.20). The image portrayed in Fig. 5.21 is actually a subset 
of a much larger image. It served as image fo. The reference domain coincides with the 
domain of fo, which has a size of 513 x 513 pixels. The image portrayed in Fig. 5.22 was 
used as image h. Again the node spacing of the bilinear basis functions was L = 8 and 
the regularization parameter was set to a = 0.1o} The matching was performed using 
the GNJ method together with the Powell-Wolfe stepsize strategy. The computation took 
approximately 6 min. The number of iterations is given in Table 5.3. At level 0 of the 
pyramidal scheme a high number of iterations was necessary. However, at this level after 
16(21) steps the termination criterion ldik+l)- dik)loo < 1 is fulfilled for 99% of the nodes . 16 
Again a rather small number of points has a strong impact on the convergence behavior. As 
in the previous examples, the generalized disparity was taken as matching parameter. It is 
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Level 
5 
4 
3 
2 
1 
0 

Iterations 
7(7) 
5 ( 5) 
10(11) 
9 ( 9) 
14(15) 
26(33) 

Table 5.3: Number of iterations for the matching of normal case aerial images of mountainous 
terrain using the GNJ-PW method. The values in brackets include the intermediate steps 
for the realization of the Powell-Wolfe step size rule. 

identical to the ordinary disparity for the normal case. It is however possible to reduce the 
effort for the computation by taking advantage of the specific characteristics of the normal 
case arrangement. Orientation parameters (projection center, cardinal point, and camera 
constant) were not available. Fig. 5.23 depicts the surface as reconstructed from the images. 
Because of the lack of orientation parameters, the drawing is not scaled. The surface is 
plotted as graph Z(X, Y). The figure must however not be misunderstood in that the sample 
values in the orthophoto domain (X, Y) do not form a regular grid. 

Reference data were not available. A means to detect errors is the absolute difference 
lh o m- fol,· which is depicted in Fig. 5.24. Some bright spots are apparent. These are 
outliers caused by pollution or other imperfections of either of the photographs. For example, 
a black spot is visible in the upper left part of Fig. 5.21 to the right of the broad vertical 
white stripe. It is also seen in Fig. 5.24. The structure of the original images Fig. 5.21 and 
5.22 is weakly visible in the difference image, because the radiometric correction is not able 
to remove all radiometric differences between the images. Major problem areas or obviously 
false matched points were not found. 
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F igure 5.23: Reconstructed surface. 

Figure 5.24: Absolute difference 1!1 o m- fol · 



Chapter 6 

Summary and Outlook 

This work covers a broad range of topics. Starting from the notion of the geometric connection 
and other foundations, we have discussed the design of a new type of similarity measure. 
Further, the more practical aspects, such as the modeling of the matching function and the 
optimization, have been addressed, and lastly a system for measuring the geometric shape of 
human faces has been presented. Not all aspects have received the same attention. In the 
following a short summary of the achievements is given. A separate section lists aspects that 
could be improved in the further development of the image matching algorithm. 

6.1 Achievements 

Among the foundations presented in Chapter 2 there are some assumptions and modeling 
choices that follow the mainstream of image matching algorithms. Outstanding is the geo­
metric concept based on the definition of the correspondence relationship , as it extends the 
commonly used set of notions. It has been found convenient for treating a whole class of 
problems in a common framework . It clarifies the role of the reference domain and thereby 
supports the concept of forward modeling. The reference domain, though crucially important 
for the computations, is recognized to only serve for the parameterization of the geomet­
ric connection. This eliminates some aspects of the discussion whether object space based 
matching algorithms do have a theoretical primacy with respect to image-to-image match­
ing. Further, the concept leads to the requirement that the similarity measure be invariant 
with respect to the particular choice of reference domain. The forward modeling similarity 
measure indeed has this property. 

In this work, the main emphasis has been laid on derivation and analysis of the forward 
modeling similarity measure. It is a theoretical concept whose translation into practical 
benefits is not completely done so far. The conceptual advantages of the forward similarity 
are however striking. Its properties are considered in contrast to the reverse similarity, as 
the latter is the natural pendant. The forward modeling similarity measure provides the 
following advantages: 

- regions of an image contribute to the similarity measure according to their size in image 
space and not according to their extent in the model, 

- for multi-image matching applications, the images that portray a particular surface 
area best, that is with best spatial resolution, dominate the reconstruction process, 

- it is invariant with respect to the choice of model domain, and 

96 
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- it leads to the modeling of occlusions in a natural way. 

These properties are not independent. They are all caused by weighting the local contri­
butions by the Jacobian det m'. The whole concept can indeed be reduced to this rather 
unspectacular point. Its impact is however significant. Further, it necessitates a much more 
elaborate analysis than the reverse similarity. Without employing continuous functions to 
represent the images, the whole concept could not have been obtained. It would be too dif­
ficult to see the structure behind the problem. Just consider the derivation of (3.4.22) from 
(3.4.16). Without knowledge about the eventual structure of the formula, it is hardly found. 

For the optimization, a method that is referred to as Gauss-Newton-Jacobi method is 
proposed. The recurrence formula resembles a popular relaxation scheme for image match­
ing. However, its theoretical and practical properties have been found much better. The 
convergence properties are convincing for most parts of an image, though problem areas , 
especially the currently untreated occlusions, affect the performance adversely. The efficient 
optimization is still a topic with open questions. 

Lastly, a concrete example, the measurement system for facial surgery, demonstrates that 
the matching algorithm is practically applicable. Experience shows that the system works 
quite stable. Problem areas occasionally cause an increased computation time. The recon­
struction of the complete face from a single stereo pair takes currently 3 to 7 min. U ncom­
pensated radiometric differences have been found to cause distortions of the reconstructed 
surface. The example of matching two aerial images of mountainous terrain demonstrates 
the algorithms ability to perform under various conditions. 

6.2 Future Developments 

A couple of assumptions and simplification have been used to facilitate the theoretical and 
practical treatment of the matching problem. They can be divided into two categories. First, 
those are listed for which improvements and solutions are available and which have been 
omitted primarily for practical reasons. The radiometry is one such aspects, which could and, 
concluding from the practical results, should receive a more refined treatment. Ideas on this 
topic can be found in [18, 58]. Related is the robustness with respect to outliers, as outliers 
result in distortions of the matching function similar to those caused by uncompensated 
radiometric differences. Standard robust estimation techniques may be employed to enhance 
the performance of the matching algorithm (e.g. [36, 65]). Another point is the modeling of 
the matching function , which does not take discontinuities into account so far. The problem is 
encountered in other Computer Vision applications, such as the reconstruction of the visible 
surface from discrete measurements , too. Approaches for the treatment of discontinuities 
can be found in [36, 49 , 53, 55]. Further, only very simplified geometric constellations have 
been considered. Particularly for the measurement system for facial surgery, a better solution 
would use the images from all four cameras simultaneously. The orthophoto domain could 
serve as a more flexible reference domain. Experience with respect to the usage of multiple 
images can be found in [22, 23, 37, 49, 58] . Using the orthophoto domain as reference domain 
is done in [22, 23, 58] . The most rigoros approach, employing a full 3D model, provides also 
no fundamental, but obviously a practical problem. 

In the following two problems are mentioned that may be considered unsolved. The 
first concerns the treatment of occlusions. Occlusions are treated by the forward similarity 
measure in a natural way. The practical aspect, namely how to perform the optimization 
in the presence of occlusions, is however unsolved. Somewhat this problem is linked with 
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the question, what type of optimization algorithm to use for image matching. Using the 
forward similarity in the presence of occlusions together with global optimizers like dynamic 
programming or simulated annealing appears to be unproblematic. Occlusions are treated 
by the approaches in [5] using dynamic programming and in [51] using mean field annealing. 
Both applications handle only normal case stereo images and it is not entirely clear whether 
these methods perform satisfyingly for multi-image constellations with arbitrary mutual ori­
entation. In [37] occlusions are taken into account and a local optimizations algorithm, a 
relaxation scheme, is used. Considering that occlusions cause discontinuities of the reverse 
similarity and discontinuities of the first derivative of the forward similarity, it has to be 
doubted that this strategy is unproblematic. In the course of this work, occlusions have not 
been taken into account by practical experiments. Contrary to the above listed problems, 
it is expected that in this respect results of other authors are not easily integrated with the 
proposed method. The relevancy of this aspect is linked to the question, whether future 
developments use local optimizers or whether they employ other alternatives. 

A definitely unsolved problem is the integration of the blurring operation in the model. 
A motivation is given why this could be important at all. Recall the performance of the 
forward similarity for multi-image matching. According to the results of Section 3.1.3, an 
image contributes to the reconstruction of the correspondence only if the respective part of 
the model is visible in the image at all. The forward similarity automatically weights the 
parts of an image, the spatial components, correctly. With respect to frequency components, 
there is no mechanism to grant such a behavior. Consider two images of an object with 
different spatial resolution, one with fine resolution and a second, which portrays less details 
of the object. There is no reason why these two images should not be used together for surface 
reconstruction, though of course the achievable accuracy is limited by the coarse resolution. If 
the matching is done with any of both similarity measures and any reasonable local similarity 
measure, the algorithm will try to match fine scale details of one image with something that 
is not present in the other image. Like uncompensated radiometric differences, this causes 
distortions of the matching result. The behavior is not a consequence of optimization. It 
will result for arbitrarily good initial guesses of the solution. There is further no theoretical 
justification to increase the requirements on the smoothness of the surface, because the surface 
properties are independent of the images. Obviously, it is possible to smooth the image that 
has better resolution. However, why should a problem be solved better if a part of the 
available information is cut away? 

The solution of the problem is to employ strict forward modeling. Just like the forward 
similarity introduces plausible weighting of the spatial components of an image, including the 
blurring operation into the model leads to reasonable weighting of the frequency components. 
Theoretically, this is no problem. Practically, an efficient structure has to be found. Like for 
the forward similarity, it is desirable to have all computations done in the reference domain. 
This necessitates the translation of the smoothing operator from the image domain to the 
reference domain, which bears considerable complexity. 

6.3 Concluding Remarks 

Image matching is a heavily investigated problem and there is still a tension between theo­
retical concepts and practical requirements. The problem is harder than it appears at first 
glance. It necessitates sound theoretical approaches that keep practical aspects in mind. 
Many ideas have been contributed and have lead to a wide diversity of approaches. Abstrac­
tion has to be employed to factor out common aspects of existing concepts. On the other 
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hand some aspects have not received enough attention. Those require new concepts. From 
the results of this work, we conclude that there is much benefit to be gained from sound 
modeling. Simplifying assumptions are part of virtually any model. Particularly for Image 
Processing and Computer Vision the huge amount of data that have to be dealt with enforces 
a judicious design of the model. It is however utterly important to be aware of the underlying 
assumptions. This might appear self evident for scientific work anyway, but practically the 
impact of some modeling choices is overlooked easily. An example is the reverse modeling 
similarity measure, which is clearly based on a simplification, yet the consequences are not 
apparent immediately. The presented forward modeling similarity measure suggests itself as 
alternative. From the current state of analysis, its benefits do not have to be paid for by 
any disadvantages. Special care has been taken that the improved properties do not increase 
the computational burden. We have referred to the paradigm that led to the similarity mea­
sure as forward modeling principle. From the discussion in the previous section, it may be 
speculated that its capabilities are not yet exhausted, but that it bears potential for other 
aspects of image matching, too. This work has thoroughly investigated theoretical issues of 
the presented approach and has proved practicability as far as both the quality of the results 
and the computational efficiency is concerned. 



Appendix A 

Summary of Discretized Quantities 

This section provides a collection of formulas for the discrete similarity measure and related 
quantities, as needed for experiments and practical implementations. All results are based 
on the local least-squares measure (3.1.7). The discretization is performed using the Finite­
Sums discretization. The diagonality of the Gauss-Newton term is retained , thus only the 
diagonal terms are given. The summary is intended to form a consistent set of equations. 
For example the reverse modeling similarity measure is weighted according to the trapezoidal 
rule in analogy to the forward similarity. The weighting is reasonable though not of intrinsic 
importance. Some formulas for single and double grid discretization essentially look the same , 
they are listed anyway. Some of the differences are hidden behind the operators a and 6. 
Basically the formulas should reveal the important computational steps for each configuration. 
A compromise between explicit notation, e.g. writing out arguments, and compactness has 
to be made however . lD Configurations 

A.O.l Single Grid Discretization 

(A.O.la) 

i=O 
I\81 (A .O.lb) 
i=M 

(A.O.lc) 

A.0.2 Double Grid Discretization 

(A.0.2a) 

(A.0.2b) 

(A.0.2c) 
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A.0.3 Reverse Modeling Similarity Measure 

(A.0.3a) 

(A.0.3b) 

EhGN = a 
t 
·

t (A.0.3c)t ,t 
hj'2(m ·) 

A.l 2D Configurations 

A.l.l Single Grid Discretization 

mk = m(xk, uk) 
1 1 

Ak = -hPI(xk, uk)8luk- hP2(xk , uk)82uk + P3(xk ,uk) k E I 

- 1 1 
du9k = -hpi(xk ,uk)8I9k- hP2(xk, uk)829k 

h 12:::.:: 2 2E = 2 akh (f(mk)- 9k) Ak (A.1.1a) 
kEf 

i E 81Eih = aih2(j(mi)- 9i) du9i + { ~hni. Pi~(j(mi)- 9i) 2 (A.1.1b) 
I\81 

- 2 
E9Nh = aih2 ( dugi) (A.1.1c) 

n Ai 

A.1.2 Double Grid Discretization 

mk = m(xk, uk) 
1 1 

Ak = -hPI (xk , uk)81 uk- hP2(xk , uk)82uk +P3(xk , uk) kEJ 

- 1 1 
du9k = -hPI(xk ,uk)<hgk- hP2 (xk , uk)~gk 

1 1 
Ak = -hPI (xk , uk) 6t uk- hP2(xk ,uk) ~ uk +P3(xk ,uk) kEI* 

Eh = ~ L h2(f(m(xk, uk)) - 9k)2Ak (A.1. 2a) 
kEf * 

i E 81Eih = aih2(j(mi)- ?h) du9i + { ~hni. Pi ~ (J(mi) - 9i) 2 (A.1.2b) 
I\81 

- 2 
E9Nh = aih2 ( dugi) (A.1.2c) 

u Ai 
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A.1.3 Reverse Modeling Similarity Measure 

(A.l.3a) 

8Eh = aih2(f(mi)- 9i) 8j(mi) (A.l.3b)
aui aui 

EGGN = aih2 (af~;::i)) 2 (A.l.3c) 



Appendix B 

Additional Analysis of the 
Similarity Measure 

B.l First Derivative of the Similarity Measure Revisited 

In this section the first derivative of the forward modeling similarity measure is computed 
starting from the reference space formulation (3.1.12). For the Jacobian det m' an alternative 
expression .is used 

(B.l.l) 

Accordingly, the similarity measure is written as 

(B.l.2) 

In this section we adopt a somewhat less precise notation. In particular, the transformation 
of the local similarity measure from 9 x F to 9 by V o (idg, m) is not explicitly denoted. 
The problem is of the same structure as (2.4.7) and the steps to calculate the first derivative 
are the same as needed to establish the Euler-Lagrange equation (2.4.11). The derivative is 
easily computed by means of (3.2.3), 

(B.l.3) 

The goal of the following manipulations is to get rid of the derivatives of J..L· The preferred 
form of E' is that of an inner product. Utilizing a kind of partial integration, the operator V' 
can be shifted away from the increments f..Ll and f..L2· Let u, v, w be scalar fields on 9. Then, 
by Stokes equation the following holds , 

ku\i'v x \i'wdA = [ \i'(uv) x \i'wdA-k\i'u x v\i'wdA 

= [V' x (uv\i'w) dA- k\i'u x v\i'wdA (B.l.4) 

= { uv\i'w · ds- { \i'u x v\i'wdA . 
laQ }g 
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Applying this to the second part of (B.1.3) yields 

hV (V'm1 x \7 J.l2 + \7J.ll x \1m2) dA = 

r V (J.Ll \i'mz - J.l2 V'ml) . ds- r \i'V X (J.Ll \7m2- J.l2 V'ml) dA . 
Jag }g 

(B.1.5) 

Caution is required in that V'V has to be read as \7 (V o (idg , m)) and hence 

(B.1.6) 

Recall that K is the column vector (Vxu Vx2 )T. Inserting this into (B.1.5) , it is easy to 
see that the terms including the partial derivatives Vy; cancel with the first term of (B.1.3) . 
Stacking all results together leads to 

(B.l.7) 

The result is equivalent to (3.2.14), although written in a slightly different form. 



Appendix C 

C.l List of Symbols 

The following list of symbols covers the most important quantities and mathematical expres­
sions, but is not comprehensive. Only symbols that are relevant for more than one section 
are included. Related quantities are grouped and listed roughly in order of appearance in the 
text. 

Point P corresponds to point Q, and vice versa. 
geometric connection 
reference domain 
image domain 
boundary of domain g 
surface texture, surface intensity 
image intensity, image greyvalue 

X coordinate vector in g. Vector-valued quantities are denoted in boldface. 
The usual case for this work is x E ~2 . 

y coordinate vector in :F 
m map from g to :F 
m'ad adjunct Jacobi matrix of m 

vism visibility indicator for the map m 
idg identity mapping on the set g 
u generic matching function , i.e. scalar parameter function of m 

Eimg similarity measure, image energy 
Ectef regularization term, deformation energy 
V local similarity measure 
a regularization parameter, weight of the regularization term 
E'(u)v first derivative of E at u applied to v 
8E(u; v) variation of E at u in direction v 
V'E(u) gradient of E at u 
EGN(u)vv Gauss-Newton term of Eat u, quadratic in v. 
dA differential element of area 
ds differential element of arc length 
< .,. > scalar product X x X t--7 ~, for some vector space X 

ll-llp,.r LP norm on domain :F 
dug reference space derivative of g for the matching function u 

p vector of coefficients for the reference space derivative, dug = -g~p 
h grid spacing h 
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(fh grid with spacing h 
g;; dual grid of gh 
I index set of gh 

I* index set of gh 
f)I boundary elements of index set I 
ak weight of the trapezoidal rule at k 
llk normal vector of the boundary of gh 

agk symmetric difference of g at k 
5gk central difference of g at k 
gk central mean of g at k 
E(u* ) = min! E assumes its minimum at u*. 
u(k) k'th element of a sequence of matching functions , as generated by an iter­

ative optimization method. 
L(k) vector of the linear approximation of Eimg at iteration state k 
Q(k) matrix of the quadratic approximation of Eimg at iteration state k 
R matrix of Edef 

acxb Quantity a is proportional to b by a factor. 
f(x) ~ F(B) f(x) and F(B) form a Fourier pair. 
(\ logical AND 
V logical OR 
u logical XOR (exclusive or) 

C.2 Abbreviations 

CCD Charge Coupled Device 
DLT Direct Linear Transform 
FE Finite-Elements 
GNC Graduated Non-Convexity 
IDL Interactive-Data-Language (by Research Systems Inc.) 
LSI Linear Shift Invariant 
MAP Maximum a Posteriori (estimation) 
PDF Probability Distribution Function 
SAR Synthetic Aperture Radar 
VLL Vertical Line Locus 

Optimization 

GN Gauss-Newton method 
GNJ Gauss-Newton-Jacobi method 
PW Powell-Wolfe stepsize rule 
SD Steepest Descent method 
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