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Abbreviations
ANN ... Artificial Neuronal Network

ED ... Eulerian description

LD ... Lagrangian description

RVE ... Representative Volume Element

DOF ... Degree(s) of Freedom

FEM ... Finite Elemente Methods

Notation
0 ... index for initial condition
or onset of a certain material
behaviour

˙ ... time derivative d
dt

∗ ... effective material parameter
during damage evolution

max ... index for maximum value

a ... amplitude

a, ai ... original/reference position

A ... cross-section area

AD ... effective area of all micro-
cracks and -cavities

A∗ ... effective undamaged area

A, Aij ... Almansi-Euler strain tensor

Alin,Alin
ij ... linearised Almansi-Euler

strain tensor

b ... rate at which the size of
the yield surface changes during
isotropic hardening

bj ... bias of ANN

b ... Burger’s vector

B ... Right Cauchy-Green deforma-
tion tensor

c ... constant

cd ... dilatation wave speed

C,Ck ... initial kinematic hardening
modulus/i

C, Cijkl ... material elasticity tensor

{C} ... material elasticity matrix
Cep ... tangential stiffness matrix

(plasticity)
C ... Left Cauchy-Green deforma-

tion tensor
d1, d2 ... diameter

D ... damage variable
D1c ... corresponding critical damage

variable
ej ... absolute error

E ... Young’s modulus
EMSE ... mean squared error
ELOG ... logarithmic error

ESR ... square root of the mean
squared error function

ESSE, E ... sum of squared error function
f ... yield function

flin ... purely linear transfer function
flog ... logistic sigmoid transfer

function
ftan ... tan-sigmoid transfer function
ftf ... transformation function

ftrans ... transfer function
f1 ... force component in 1-direction
f ... force vector

F, Fij ... deformation gradient

g ... plastic potential function
gin ... function to evaluate the inputs

of a neuron
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g, gj ... gradient of the error with
respect to the weight

G ... shear modulus

Gf ... dissipated fracture energy per
unit area

G, Gij ... Green-Lagrange strain tensor

Glin, Glin
ij ... linearised Green-Lagrange

strain tensor

h ... constant for the linear
isotropic hardening function

HED ... Hencky or logarithmic strain
tensor in ED

HLD ... Hencky or logarithmic strain
tensor in LD

I ... unit matrix

J, Jij ... displacement gradient in LD

J2 ... second invariant of the stress
deviator tensor

k ... shakedown safety coefficient

K ... bulk modulus

K, Kij ... displacement gradient in ED

L ... characteristic element length

M ... number of output nodes

n ... normal vector

oj ,opj ... target value of ANN

p ... training pattern

P ... number of training pattern
IP, IIP ... 1st and 2nd Piola-Kirchhoff

stress tensor

q ... hydrostatic pressure

Q ... saturated value of r

r ... isotropic hardening function

r1, r2 ... radius

R ... rotation tensor

s ... pseudo-time
s1 ... thickness
S ... deviatoric stress tensor
t ... time
t1 ... time of the onset of shakedown

∆tstable ... stable time increment
t ... Cauchy stress vector

It, IIt ... 1st and 2nd Piola-Kirchhoff
stress vector

u, ui ... displacement vector

uN , uNi ... displacement of node N
udeform ... displacement due to deforma-

tion
urigid ... displacement due to rigid body

motion
ūp

D ... equivalent plastic displace-
ment after the onset of damage

ūp
f ... equivalent plastic displace-
ment at failure

U ... right stretch tensor
vj ... induced local field of ANN

V ... volume
V ... left stretch tensor
wD ... state variable for damage

initiation
wji ... weight of ANN

W p ... plastic work
W ... Jacobian matrix with the first

derivatives of the absolute error
with respect to the weights

xj ... input of ANN

X, Xi ... current position
yj ,ypj ... output of ANN

ααα ... backstress
αααdev ... deviatoric backstress
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γ,γk ... rate(s) at which kinematic
hardening modulus/i decrease(s)

δj ... local gradient

εεε ... Hencky or logarithmic strain
tensor in ED

{ε} ... strain vector

εeij , ε
p
ij ... elastic log. strain, plastic log.

strain

ε̄p ... effective or accumulated
plastic strain

ε̄p
D ... effective plastic strain after the

onset of damage

ε̄p
f ... effective plastic strain at
failure

εG, εGlin ... Green-Lagrange strain, lin-
earised Green-Lagrange strain

εHED , ε ... Hencky or logarithmic strain
in ED

εHLD ... Hencky or logarithmic strain
in LD

εεεdev ... deviatoric strain tensor

εvol ... volumetric strain

η ... learning rate

κi ... extension ratio

λ ... plastic multiplier

µ ... stress triaxiality

ν ... Poisson ratio

ρ ... density

σσσ ... Cauchy stress tensor

σf ... stress at material failure

σi ... principal stress components

σij ... stress components

{σ} ... stress vector

σσσel ... fictitious elastic stress

σσσr(X, t) ... residual stress dependent on
space and time

σ̄σσr(X) ... residual stress dependent on
space, independent on time

σM
e , σe ... equivalent tensile stress of the

von Mises yield criterion

σT
e ... equivalent tensile stress of the

Tresca yield criterion

σsat ... stress threshold of saturation
during isotropic or mixed harden-
ing

σy ... yield stress

τ ... shear component of the
logrithmic stress tensor

φ ... physical property

ϕ ... angle
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Kurzfassung

Das Ziel dieser Diplomarbeit ist es, ein Materialmodell mit künstlichen Neuronalen
Netzen (”artificial neural networks”, ANN) zu entwickeln und seine Effizienz zu
bewerten. In [22] wurde bereits ein Materialmodell für ein zweidimensionales Konti-
nuumselements (ebener Verzerrungszustand) mit elasto-plastischem Materialverhal-
ten und isotroper Verfestigung untersucht. Nun stellt sich die Frage, ob es auch
möglich ist, ausreichend genaue Ergebnisse für ein Materialmodell eines dreidimen-
sionalen Kontinuumselements mit elasto-plastischem Materialverhalten und kom-
binierter isotroper und kinematischer Verfestigung, duktiler Schädigung und Material-
versagen zu erzielen.
Die ersten beiden Kapitel geben einen Überblick über die Theorie des verwende-
ten Materialmodells und die Anwendung von ANN. Das letzte Kapitel handelt
von der Entwicklung und Bewertung des verwendeten Materialmodells mit ANN.
Zuerst werden die benötigten Daten für das Training, die Validation and das Testen
der ANN mit dem Finite Elemente (FE) Programm ABAQUS/Explicit generiert.
Die verwendeten Materialeigenschaften, Randbedingungen und Lastfälle werden im
Detail beschrieben.
Als nächstes werden die Architektur, der Lernprozess und andere Kenngrößen der
ANN vorgestellt. Um die Spannungsantworten des ANN-basierenden Material-
modells zu optimieren werden ANN mit einer variierenden Anzahl von Neuronen und
”hidden layers” und verschiedene Kombinationen von Eingangs-, Ausgangssignalen
und Lastfällen als Trainingsdaten getestet. Die Spannungsantworten der ANN auf
die verschiedenen Lastfälle werden verglichen und bewertet. Die Ergebnisse zeigen,
dass ANN im Allgemeinen komplexes Materialverhalten erlernen können, aber der
Fehler und die Generalisierung für die verschiedenen Lastfälle und auch für einzelnen
Spannungskomponenten für die untersuchten Netze von einander abweichen. Daraus
kann man schließen, dass es notwendig ist, weitere Untersuchungen durchzuführen
um das Ergebnis zu verbessern. Mögliche Lösungsansätze werden im letzen Ab-
schnitt vorgestellt.
Zusätzlich wurde eine ABAQUS/Explicit User-Subroutine, VUMAT, für das ANN-
Materialmodell implementiert. Auftretenden Probleme werden ebenfalls beschrieben.
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Abstract

The goal of this master’s thesis is to develop and evaluate the performance of a
material model using artificial neural networks (ANN). In [22] a material model of a
two dimensional solid element (plain strain) with elasto-plastic material behaviour
with isotropic hardening properties was studied. The question is if it is also possible
to obtain suitable results for a material model for three dimensional solid elements
with elasto-plastic material behaviour with mixed hardening properties, ductile
damage and material failure.
The first two chapters give an overview of the theory concerning the applied material
model and the use of ANN. The final chapter deals with the actual development and
evaluation of the proposed ANN-based material model. First the necessary data for
training, validation and testing of the ANN are generated with the help of the Finite
Element (FE) program ABAQUS/Explicit. The used material properties, boundary
conditions and applied load cases are discussed in detail.
Next the architecture, learning algorithms and other properties of the ANN are
presented. To optimize the stress responses of the ANN-based material model ANN
with varying numbers of nodes and hidden layers and different sets of inputs, outputs
and load cases for the training data were tested. The stress responses of the ANN
for different load cases are compared and evaluated. The obtained results show that
the ANN can in general learn complex material behaviour, but for the considered
ANN the error and the generalization differ for the various load cases considered as
well as for the stress components. This suggests that further studies are necessary to
improve the results. Possible solutions and ideas are presented in the final section.
In addition an ABAQUS/Explicit user-subroutine, VUMAT, for the ANN material
model was implemented. The occurring issues are presented.
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1 Continuum Mechanics and
Damage Modelling

In engineering applications the relationship between forces and deformations, or
between stresses and strains are essential. Therefore, the mechanical behaviour of
a vast range of different materials has been studied and many theories have been
developed to describe the occurring phenomena. In this thesis we take a look at the
behaviour of metals since the aim of this study is to describe the material behaviour
of aluminium with the help of artificial neuronal networks (ANN).
To provide an overview of the general material behaviour of a ductile metal, we use
StE690, which shows qualitatively similar behaviour as aluminium, and examine the
results of a punch test taken from the literature [2]. During the punch test specimens
with a diameter of d1 = 8mm and a thickness of s1 = 5mm are clamped on a die
with a bore diameter of d2 = 4mm and an edge radius of r1 = 0.5mm. The punch,
with a punch head radius of r2 = 1.25mm is moved downward with a velocity of 0.5
mm/min (cp. fig. 1.1).
The resulting load-displacement curve is shown in Fig. 1.1. The material behaviour
can be divided into elastic behaviour (Part I), plastic behaviour (Part II, Part
III), damage (Part IV, V) and failure (Part VI). In Part I we can observe the
elastic material behaviour, in Part II the transition between elastic and plastic
behaviour occurs, in Part III the hardening behaviour of plasticity sets in, in Part
IV geometrical softening and damage follow, in Part V a crack, which is detected by
CCD-camera monitors, initiates and grows and in Part VI the specimen is finally
punched through. [2]
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Fig. 1.1: left: Principal sketch of a small punch test. right: Resulting load-displacement
curve with load f1 and displacement u in 1-direction (Part I: Elasticity, Part
II: Transition Elasticity-Plasticity with the yield load fy, Part III: Plasticity -
Hardening, Part IV: Damage - Geometrical Softening with the maximal load
fmax, Part V: Damage - Crack Initiation and Growth, Part VI: Failure) [2]

1.1 Strain and Stress Tensors

To describe the relationship between displacement and force two quantities are
established, strain and stress. The theory of continuum mechanics states that a
body can be subdivided into infinitesimal elements, called material points. The
position vector of a material point P in the three dimensional Euclidean space is
a in the reference configuration at time t0 and X in the current configuration at
time t (cp. fig. 1.2 ). There are two different ways of describing the position and
physical properties of a material particle. We can either describe them in terms of
time and the reference configuration (Lagrangian description, LD) or the current
configuration (Eulerian description, ED). A physical property φ like the density ρ,
or the Cauchy stress tensor σσσ can be described as

LD : φ=φ(a, t) (1.1)

ED : φ=φ(X, t) (1.2)

In the LD an observer would follow a material point and measure the change of
the physical properties of the material point, while in the ED an observer would
be standing at a fixed place observing the passing of different material points and
measuring the change of the physical properties at this position. The LD is often

4



used in solid mechanics while the ED is usually used in fluid mechanics, but also for
plasticity.
The displacement of a material point P can now be described as

LD : u(a, t) = X(a, t)−a (1.3)

ED : u(X, t) = X−a (X, t) (1.4)

Fig. 1.2: Original and current configurations of a body with the position vectors a and X
of the material point P at the time t0 and t and the displacement u(a, t) in the
LD. [9]

The displacement of a material point consists of contributions due to deformation
and rigid body motion like translation or rotation. Since we want to investigate
the material behaviour we have to establish a quantity that describes only the
deformation of the material. Therefore we define the deformation gradient F as

LD : F = [∇a ·X]T Fij = ∂Xi

∂aj
(1.5)

ED : F−1 = [∇X ·a]T F−1
ij = ∂ai

∂Xj
, (1.6)

and the displacement gradients J in the LD and K in the ED as

LD : J = [∇a ·u]T Jij = ∂ui
∂aj

(1.7)

ED : K = [∇X ·u]T Kij = ∂ui
∂Xj

, (1.8)
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where ∇a and ∇X are the nabla operators, which denote the standard derivatives
with respect to the original and current position, a and X, and a superscript T
denotes the transpose of a vector or matrix.
Due to equations (1.3) and (1.4) follows

LD : F = I + J (1.9)

ED : F−1 = I + K , (1.10)

where I is the unit tensor of order 2.
Although we have already eliminated the rigid body translation, the deformation
gradient can still be split into rigid body rotation and deformation. The polar
decomposition of the deformation gradient F results in

F = RU = VR , (1.11)

with
U =

(
FTF

) 1
2 , V =

(
FFT

) 1
2 (1.12)

The rigid body rotation is described by R and the deformation by the right or left
stretch tensor U and V.
We can now define the left Cauchy-Green deformation tensor C and right Cauchy-
Green deformation tensor B as

C = U2 = FTF, B = V2 = FFT (1.13)

Finally we get the Green-Lagrange strain tensor G and the Almansi-Euler strain
tensor A

LD : G = 1
2 (C− I) (1.14)

= 1
2
(
FTF− I

)
(1.15)

= 1
2
(
J + JT + JJT

)
(1.16)

LD : Gij = 1
2

[
∂ui
∂aj

+ ∂uj
∂ai

+ ∂uk
∂ai

∂uk
∂aj

]
(1.17)
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ED : A = 1
2
(
I−B−1

)
(1.18)

= 1
2

(
I−

(
FFT

)−1)
(1.19)

= 1
2
(
K + KT−KTK

)
(1.20)

ED : Aij = 1
2

[
∂ui
∂Xj

+ ∂uj
∂Xi
− ∂uk
∂Xi

∂uk
∂Xj

]
(1.21)

The Green-Lagrange strain tensor G is usually used in finite strain theory. However,
within the small strain approximation the relationships (1.14) to (1.21) can be
linearised if ∂ui

∂aj
� 1 and ∂ui

∂Xj
� 1. Then we can assume that X≈ a and ∇a ≈∇X,

so that

Glin ≈Alin = 1
2
(
FT + F

)
− I (1.22)

= 1
2
(
J + JT

)
(1.23)

Glin
ij = 1

2

[
∂ui
∂aj

+ ∂uj
∂ai

]
≈ 1

2

[
∂ui
∂Xj

+ ∂uj
∂Xi

]
= Alin

ij (1.24)

For plastic behaviour, however, the logarithmic or Hencky strain tensor is often
used:

LD : HLD (a, t) = lnU (1.25)

= 1
2 ln

(
FTF

)
(1.26)

= 1
2 ln(I + 2G) (1.27)

(1.28)

ED : HED (X, t) = lnV (1.29)

= 1
2 ln

(
FFT

)
(1.30)

=−1
2 ln(I−2A) (1.31)
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It is advantageous that consecutive strains can be summed up directly 1. Further-
more it is possible to split the tensor into a volumetric and a deviatoric strain tensor,
which will be discussed later.
If we deform an element in only one direction i (uniaxial tensile strain), we can
now summarize and compare the different strain measures in LD: Green-Lagrange
strain εG

i , linearised Green-Lagrange strain εGlin and Hencky strain εHLD
i with the

extension ratio κi = |dXi|
|dai| of the original and current element length |dXi|, |dai| as

εG
i =1

2
(
κ2
i −1

)
(1.32)

εGlin
i =1

2 (κi−1) (1.33)

εHLD
i =ln(κi) (1.34)

In the following we will always use the Hencky strain in ED, HED = εεε, because it is
the logarithmic strain measure used in ABAQUS for the single-element tests.
[3], [10], [17]

If forces are acting on a body and we imagine cutting it into two parts, there must
be forces of equal magnitude but opposite direction acting on the dividing surfaces
to keep the equilibrium (cp. fig. 1.3 left). We can now calculate the stress vector t
in a point P at the position X on the resulting section plane as

t(X,n, t) = lim
dA→0

df
dA

, (1.35)

f stands for the current force vector, A for the current cross-section area, n is the
normal vector of the surface at the point P and t is the time.
If we imagine that the body is subdivided into infinitesimal cuboid volume elements
with edges parallel to the chosen coordinate-system, stresses act on their surfaces
which are the components of the Cauchy-stress-tensor σσσ (cp. fig. 1.3 right). The
relationship between the stress vector t and the Cauchy-stress-tensor is

t = n ·σσσ (1.36)

1lin. Green-Lagrange strain: εGlin = l−l0
l = ∆l

l0
, εC

1 +εC
1 = ∆l1

l0
+ ∆l2

l0+∆l1
6= ∆l1+∆l2

l0
= εC

1+2

Hencky Strain: εHLD = ln
(

l
l0

)
, εHLD

1 +εHLD
2 = ln

(
l1
l0

)
+ ln

(
l2
l1

)
= ln

(
l2
l0

)
= εHLD

1+2

with li ... length, l0 ... initial length
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For describing elastic material behaviour the 1st and 2nd Piola-Kirchhoff-stress-
tensor IP, IIP are often used. With the help of the corresponding stress vectors It,
IIt and the index 0 denoting the initial state they are defined as

It = lim
dA0→0

df
dA0

, It = n0 ·I P (1.37)

IIt = lim
dA0→0

df0
dA0

, IIt = n0 ·II P (1.38)

In the following we will always use the Cauchy-stress vector and tensor, t and σσσ,
[1], [3], [10], [17].

Fig. 1.3: left: Resulting inner force df on the cross-section area dA of a body with external
loading [3], right: stress components σij of the Cauchy stress tensor σσσ on the
surface of a cuboid volume element with the resulting stress vectors t(i) and the
normal vectors n(i) [17]

1.2 Elasto-Plastic Material Behaviour

We stated that Part I of the stress-strain curve displayed in fig. 1.1 shows elastic
behaviour. This means that if we remove the applied force the deformation will
recover. We can also see that for small deformations the relationship between applied
force f and displacement2 u is linear, as well as that between stress σσσ and strain εεε.
This relationship can be described by Hooke’s law

σij = Cijklεkl σσσ = C : εεε , (1.39)

2During the punch test the rigid body motion urigid = 0. Therefore the displacement
u = urigid +udeform is equal to the deformation udeform

9



where Cijkl is the material elasticity tensor. For an isotropic, linear elastic material
Cijkl can be built from two independent material constants. Usually the Young’s
modulus E and the Poisson ratio ν or the shear modulus G and the bulk modulus K
are used. The relationship between these two sets of independent material constants
are

G= E

2(1 +ν) (1.40)

K = E

3(1−2ν) (1.41)

We can now write Hooke’s law in matrix form as

{σ}= {C}{ε} , (1.42)

with the stress and strain vectors

{σ}={σ11 σ22 σ33 σ12 σ23 σ31}T (1.43)

{ε}={ε11 ε22 ε33 2ε12 2ε23 2ε31}T , (1.44)

and the elastic moduli matrix {C}

{C}= E

(1 +ν)(1−2ν)



1−ν ν ν 0 0 0
1−ν ν 0 0 0

1−ν 0 0 0
Sym. 1−2ν

2 0 0
1−2ν

2 0
1−2ν

2


(1.45)

{C}=



K+ 4
3G K− 2

3G K− 2
3G 0 0 0

K+ 4
3G K− 2

3G 0 0 0
K+ 4

3G 0 0 0
G 0 0

Sym. G 0
G


, (1.46)

[12],[23], [6].

10



In Fig. 1.1 we can see that the elastic behaviour is followed by plastic behaviour,
which means that the removal of the applied force results in permanent deformation.
Part II of the force-displacement curve describes the transition from elastic to plastic
behaviour. The gradual change from elastic to plastic behaviour is typical for many
metals and alloys like aluminium. In these cases there is no clear threshold for the
onset of yielding. The yield stress σy can, for example, be defined as the stress that
causes a permanent strain of ε= 0.2‰, [23], [12], [9].
The reason for the change from elastic to plastic behaviour of crystalline materials
is crystal slip. Most metals are polycrystalline, which means that they consist of
many crystallites in which the atoms are placed in a fixed order in a lattice. Two
common lattice structures would be the face centered cubic (cp. fig. 1.4 top), where
the atoms are placed at the corners and the centers of the faces of the cube and
the body centered cubic (cp. fig. 1.4 bottom), where the atoms are centered at
the corners and the center of the cube. During elastic deformation the interatomic
bonds are not broken and the atoms stay at their original places in the lattice.
However, during plastic deformation interatomic bonds are broken and reformed,
which results in the motion of atomic planes relative to another (cp. fig. 1.5). This
motion is called crystal slip. It preferentially occurs on certain planes and directions
of crystals, so called slip systems (cp. fig. 1.4), which are usually the most densely
packed planes and directions. If a critical shear stress acts upon such a slip system
slip occurs. However, a critical load normal to the slip plane would result in a crack,
if there are no other slip systems with an appropriate orientation. Therefore only
shear loads at crystal level contribute to plastic deformation.
Since the lattices of metals are usually not perfect, the necessary shear stress to
cause yielding of a metal is many orders of magnitude smaller than the theoretical
shear strength of a crystal. There are two main types of line defects, so called
dislocations, which contribute to the yielding of polycrystalline materials (cp. fig.
1.6). One is the edge dislocation, the other the screw dislocation. Their unit of slip
displacement is described by the Burger’s vector b, [9], [23].
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Fig. 1.4: top: Face centered cubic lattice, bottom: Body centered cubic latice; arrows and
grey planes denote different slip systems [9]

Fig. 1.5: Crystal slip during plastic deformation with acting shear load τ [9]

Fig. 1.6: left: Edge dislocation before and after deformation b, right: Screw dislocation
with acting shear load τ and the Burger’s vector b [23]

To describe elasto-platic material behaviour it is useful to separate the strain tensor
εεε into elastic and plastic strains, εεεe and εεεp. If the strains are small this takes the
form

εεε= εεεe+ εεεp (1.47)

Since we have established that only shear stress contributes to yielding of crystalline
metals and plastic slip doesn’t lead to volume change, it is logical that hydrostatic
stress has no influence on the yielding of such materials. Therefore, it is also useful
to establish the terms of volumetric and deviatoric strain and stress. The volumetric
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strain εvol and the deviatoric strain tensor εεεdev are

εvol = tr(εεε) (1.48)

εεεdev = εεε− 1
3εvolI , (1.49)

and the hydrostatic pressure q and the deviatoric stress tensor S (with the volumetric
stress tensor qI) are

q =−1
3tr(σσσ) (1.50)

S = σσσ+ qI , (1.51)

[1], [9], [17].

1.2.1 Yield Criteria for Metals

Determining the onset of yielding for a uniaxial tensile load case in 11-direction
would be straightforward. If the measured stress in 11-direction is smaller than the
yield stress, σ11 < σy, the material behaviour is elastic, otherwise (σ11 ≥ σy) the
material behaviour is plastic. However, for a multiaxial stress state a suitable yield
criterion must be found.
For isotropic yielding independent of hydrostatic stress we introduce two common
yield criteria, the Tresca yield criterion and the von Mises yield criterion.
The Tresca yield criterion states that yielding occurs when the maximum shear stress
at a point reaches a critical value. For principal stress σi the equivalent tensile stress
σT

e is
σT

e = 2τmax = max(| σ1−σ2 |, | σ2−σ3 |, | σ3−σ1 |) (1.52)

The von Mises yield criterion also considers the influence of the intermediate prin-
cipal stresses. Its equivalent tensile stress σM

e = σe in terms of principal stresses σi
and in terms of direct and shear stresses σij is

σe =
[1
2
(
(σ1−σ2)2 + (σ2−σ3)2 + (σ3−σ1)2)] 1

2
(1.53)

=
[1
2
(
(σ11−σ22)2 + (σ22−σ33)2 + (σ33−σ11)2 + 6

(
σ2

12 +σ2
23 +σ2

31
))] 1

2
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It is also possible to write the von Mises equivalent stress in terms of the deviatoric
stress tensor S or the second invariant of the stress deviator tensor J2

σe =
(3

2S : S
) 1

2
=
√

3J2 (1.54)

If the von Mises criterion is applied, the plastic behaviour is also referred to as J2-
plasticity. In analogy to the effective Mises stress σe we can also define an effective
plastic strain increment dε̄p

dε̄p =
(2

3dε
εεp : dεεεp

) 1
2

(1.55)

We can now define a yield function f as

f(σσσ) = σe−σy , (1.56)

which describes the yield condition as

elastic behaviour: f < 0 (1.57)

plastic behaviour: f = 0 (1.58)

We can now imagine that the yield function describes a surface in the principal stress
space, called the yield surface. The space enclosed by the yield surface is the elastic
region. In the Tresca criterion the yield surface is the surface of a hexagonal prism
and in the von Mises criterion it is the surface of a circular cylinder in the principal
stress space (cp. fig. 1.7). The axes in both criteria are along the line σ1 = σ2 = σ3,
also called the hydrostatic axis. If we look at these criteria in a deviatoric plane
π and in a two-dimensional principal stress space with σ3 = 0, the Tresca criterion
describes a regular hexagon or a distorted hexagon and the Mises criterion describes
a circle or an ellipse respectively (cp. fig. 1.8), [9], [1], [6], [12].
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Fig. 1.7: Tresca and von Mises yield surfaces in the principal stress space [6]

Fig. 1.8: Tresca and von Mises yield surfaces in left: a deviatoric plane π and right: a
two-dimensional principal stress space with σ3 = 0 [6]

1.2.2 Flow Rule, Normality Hypothesis, Drucker’s Stability
Postulate

If yielding is initiated, a point in stress space reaches the yield surface. Continuing
the loading results in plastic flow, which leads to an increase in the plastic strain
tensor. The plastic strain increment can be written in terms of the plastic potential
function g(σσσ) as

dεεεp = dλ
∂g

∂σσσ
(1.59)

For metals the yield function usually equals the plastic potential function f = g,
which leads to the associated flow rule 3

dεεεp = dλ
∂f

∂σσσ
(1.60)

3f 6= g ... nonassociated flow rule
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For this condition the normality hypothesis is true. According to [9] the normality
hypothesis states "[...] that the increment in the plastic strain tensor is in a direction
[...] which is normal to the tangent to the yield surface at the load point." (cp. fig.
1.9). The direction of the strain is given by ∂f

∂σσσ and the magnitude by the plastic
multiplier dλ≥ 1.
Furthermore the yield surface must be convex, since Drucker’s stability postulate
states, that the increment of plastic work dW p must be positive for plasticity with
work hardening or zero for ideal plasticity. This also shows the irreversible character
of plastic deformation

dW p = dσσσ : dεεεp ≥ 0 (1.61)

Combining eqn. (1.55) for the effective plastic strain and eqn. (1.60) for the
associated flow rule we get

dλ= dε̄p (1.62)

Using eqn. (1.62) and the von Mises criterion, eqns. (1.53), (1.54), for the yield
function f , eqn.(1.56), the flow rule can be written as

dεεεp = 3
2dε̄

p S
σe

, (1.63)

[9], [6], [17], [1].

Fig. 1.9: Increment of the plastic strain tensor dεεεp in a load point of a von Mises yield
surface for plane stress condition [9]

1.2.3 Consistency Condition and Ideal Plastic Behaviour

We have already established that yielding occurs as soon as the load point reaches
the yield surface. The consistency condition states, that the load point remains on
the yield surface during further plastic deformation and the yield stress σy remains
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constant for ideal plastic behaviour (cp. fig. 1.10). Since the yield function f for a
load point on the yield surface must be zero we can write

f (σσσ+dσσσ) = f (σσσ) +df = f (σσσ) = 0 (1.64)

Therefore the consistency condition for ideal plastic behaviour follows as

df = ∂f

∂σσσ
: dσσσ = 0 (1.65)

If we now combine Hooke’s law, eqn. (1.39), the equation for strain separation, eqn.
(1.47) and the flow rule (1.60) we get

dσσσ = C : (dεεε−dεεεp) = C :
(
dεεε−dλ ∂f

∂σσσ

)
(1.66)

Substituting eqn. (1.66) into the consistency condition (1.65) leads to the equation
for dλ

dλ=
∂f
∂σσσ : C

∂f
∂σσσ : C : ∂f∂σσσ

: dεεε (1.67)

Inserting this result into eqn. (1.66) we finally get the incremental relationship
between stress and strain with the tangential stiffness matrix Cep

dσσσ =
C− C : ∂f∂σσσ : ∂f∂σσσ : C

∂f
∂σσσ : C : ∂f∂σσσ

 : dεεε= Cep : dεεε , (1.68)

[6], [9], [17].

Fig. 1.10: Ideal plastic behaviour of a material under uniaxial tensile loading, left: load
point on the von Mises surface, right: stress-strain relationship [9]
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1.2.4 Isotropic hardening

For many metals the yield stress σy increases with further plastic deformation. This
is called work hardening. During isotropic hardening the yield surface expands
uniformly in all directions in stress space. The surfaces subsequent to the initial yield
surface are also called loading surfaces. Additionally to the established relationships
for ideal plasticity, a hardening rule is necessary to describe the evolution of the
yield surface. Furthermore, the yield function becomes dependent on the effective
or accumulated plastic strain ε̄p, which can be deduced from its incremental form
(cp. eqn. (1.55)) by appropriate integration or summation. We can write the yield
function for isotropic hardening as

f (σσσ, ε̄p) = σe−σy (ε̄p) , (1.69)

with
σy (ε̄p) = σy0 + r (ε̄p) , (1.70)

σy0 is the initial yield function and r(ε̄p) is the isotropic hardening function, which
describes the expansion of the yield surface. Some common approaches for r(ε̄p)
would be a linear hardening function (cp. fig. 1.11)

dr (ε̄p) = h dε̄p r (ε̄p) = h ε̄p , (1.71)

or an exponential hardening function with saturation (cp. fig. 1.12).

dr (ε̄p) = b(Q− r)dε̄p r (ε̄p) =Q
(
1− e−bε̄

p)
, (1.72)

h is a constant, Q is the saturated value of r which leads to a stress threshold of
σsat = σy0 +Q and the constant b is the rate at which the size of the yield surface
changes. The initial condition for the integration is r(0) = 0.
The consistency condition can be written as

df = ∂f

∂σσσ
: dσσσ+ ∂f

∂ε̄p dε̄p (1.73)

The equivalent strain ε̄p, eqn. (1.55), can also be written as

ε̄p =
(

2
3dλ

∂f

∂σσσ
: dλ∂f

∂σσσ

) 1
2

(1.74)
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In analogy to section 1.2.3 the relationship between the stress and strain increments,
dσσσ and dεεε, can be found with Hooke’s law (1.66), the consistency condition (1.73)
and equation (1.74) for the effective strain ε̄p, [1], [9], [6].

Fig. 1.11: Isotropic hardening with a linear hardening function, an initial yield stress σy0,
the decomposition of the strain into elastic and plastic components εe and εp

and the Young’s modulus E [9]

Fig. 1.12: Isotropic hardening with an exponential hardening function r with saturation
and the initial yield stress σy0 [9]
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1.2.5 Kinematic Hardening

Let’s assume that a material with isotropic hardening deforms plastically under
tensile loading until the load is reversed. The material deforms elastically until
the load point reaches the yield surface again. Due to the expansion of the yield
surface during the isotropic hardening of the material the elastic region increases
(cp. fig. 1.13 top). However, experiments show that this load case doesn’t usually
result in an increased elastic region for metals. To avoid the expansion of the elastic
region the yield surface is translated in the stress space, which is called kinematic
hardening. The resulting increase of yield strength in the direction of plastic flow
and its decrease in the opposite direction is also referred to as Bauschinger effect
(cp. fig. 1.13 bottom).
The yield function with the von Mises yield criterion can be written as

f (σσσ−ααα) =
[3
2
(
S−αααdev

)
:
(
S−αααdev

)] 1
2
−σy0 , (1.75)

with the so-called back stress ααα, which describes the translation in the stress space
and its deviatoric part αααdev. For our following calculation we will use the evolution
equation of the kinematic hardening component defined by ABAQUS as

dαααk = Ck
(σσσ−ααα)
σy0

dε̄p−γkαααk dε̄p (1.76)

ααα =
N∑
k=1

αααk (1.77)

This gives the option to define and superpose several backstresses αααk for complex
kinematic material behaviour. The first term in equation (1.76) is the linear Ziegler
hardening law, a purely kinematic term with the initial kinematic hardening moduli
Ck and the second additive term is the recall term which describes relaxation with
the rate γk at which the kinematic hardening moduli decreases. With the consistency
condition

df = ∂f

∂σσσ
: dσσσ+ ∂f

∂ααα
: dααα , (1.78)

the relationship between stress and strain increment can be found in analogy to
sections 1.2.3 and 1.2.4, [1], [9], [6].
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Fig. 1.13: top: Material behaviour of an isotropically hardening material with increase
of the elastic region during reverse loading. bottom: Bauschinger effect of
a kinematically hardening material with the backstress ααα results in a smaller
elastic region during unloading [9]

1.2.6 Mixed Mode Hardening

For the material behaviour of metals it is sometimes useful to combine isotropic
and kinematic hardening behaviour. This results in the following yield function and
consistency condition

f (σσσ−ααα, ε̄p) = σe (σσσ−ααα)− r (ε̄p)−σy0 (1.79)

df = ∂f

∂σσσ
: dσσσ+ ∂f

∂ααα
: dααα+ ∂f

∂ε̄p dε̄p , (1.80)

[9], [6].
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1.2.7 Shakedown and Ratchetting

If a solid yields under some variable load, such as plastic cyclic loading, two alter-
native responses may be observed over time. One is that the plastic strain increases
with every cycle until the material fails. This phenomenon is called ratchetting.
On the other hand, the plastic strain may saturate towards a constant c

lim
t→∞

εεεp(t) = c , (1.81)

which means that after a time t1 no further plastic strain is accumulated and the
behaviour of the material becomes purely elastic. This is referred to as shakedown
and occurs if the strain amplitude is small enough or the hardening effect is strong
enough.

Fig. 1.14: left: Ratchetting (increase of the plastic strain during every load cycle), right:
Shakedown (plastic strain saturates after a number of load cycles and the
material behaviour becomes purely elastic) [20]

To describe shakedown we introduce the relationship

σσσ(X, t) = σσσel(X, t) +σσσr(X, t) (1.82)

The actual stress tensor σσσ is split into a fictitious elastic stress tensor σσσel, which
depicts the stress response of a purely elastic material under the actual load, and a
self-stress or residual stress tensor σσσr.
For perfect plasticity the classical static theorem or Melan’s theorem [19] states, that
shakedown occurs if there exist a residual stress field σσσr(X, t), a safety coefficient
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k > 1 and a time t1 for which the yield function is

f
(
kσσσr(X, t) +σσσel(X, t),σy

)
≤ 0 ∀X,∀t > t1 (1.83)

If we assume that t > t1 and therefore shakedown has already occurred the plastic
strain field εεεp is constant over time resulting in a residual stress field σ̄σσr(X), which
is independent of time. If we use the yield function defined in eqn. (1.56) we get

σe
(
kσ̄σσr +σσσel

)
−σy ≤ 0 (1.84)

Since a purely isotropic hardening material cannot account for the Bauschinger
effect, we consider kinematic or mixed hardening for further shakedown theorems.
We can adopt the static shakedown theorem for kinematic hardening and the yield
function (1.56) by simply including the backstress ααα(X, t)

σe
(
kσ̄σσr +σσσel−ααα

)
−σy ≤ 0 (1.85)

If the kinematic hardening has an upper stress limit σsat we can either use equation
(1.85) or

σe
(
kσ̄σσr +σσσel

)
−σsat ≤ 0 (1.86)

σe (ααα)− (σsat−σy)≤ 0 (1.87)

For mixed hardening the yield stress σy also depends on the accumulated plastic
strain ε̄p.
For some applications also a kinematic shakedown theorem or Koiter’s thoerem [13]
is used. It states that shakedown occurs if the dissipation σσσ : ε̇εεp of a solid of the
volume V exceeds the fictitious elastic dissipation σσσel : ε̇εεp

k
∫ T

0
dt
∫
V
σσσel : ε̇εεpdV ≤

∫ T

0
dt
∫
V
σσσ : ε̇εεpdV (1.88)

Again a safety coefficient k > 1 is established. The kinematic theorem can also be
extended to work hardening materials. In some applications a combination of the
static theorem for the lower bound and the kinematic theorem for the upper bound
of shakedown is used, [20], [21], [8], [14], [7].
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1.3 Damage and Material Failure

The phenomenon of damage can be described on different length scales. On the
microscopic scale we can observe two main damage mechanisms in metals. During
cold deformation decohesion between inclusions or second-phase particles and the
matrix occurs, which is also called ductile fracture. Since dislocations wander
through the lattice structure of metals during plastic deformation, they can be
stopped at microdefects, which results in the growth of microcracks or microvoids.
During deformation at temperatures greater than about half the melting temp-
erature, the main cause of damage development is intergranular damage.
On the mesoscale we introduce a Representative Volume Element (RVE) for which
the damage discontinuities, like microcracks and microvoids, are small enough to
be continuously distributed within the material. For metal its size would be about
0.1mm3. On this scale the constitutive equations for the damage continuum me-
chanics are formulated.
The macroscale is the scale of the engineering structures. The limit of damage
continuum mechanics is reached, when macrocracks appear. To describe the growth
of macrocracks and structural failure the theory of fracture mechanics is applied.
In fracture mechanics the macrocracks are treated as discontinuities with stress
singularities at the crack tips.
In this chapter we will focus on the material model for damage and material failure
provided by ABAQUS, [15], [16], [28].

1.3.1 Damage Initiation

In the ABAQUS manual [1] the equivalent plastic strain at damage initiation ε̄p =
ε̄p
D0 is assumed to be a function of stress triaxiality µ and equivalent plastic strain
rate ˙̄εp, which can be found from experiments, for a crystalline metal. The stress
triaxiality is defined as the negative ratio of the hydrostatic pressure q and the von
Mises equivalent stress σe

µ=− q

σe
(1.89)

We can now define a damage indicator wD for the onset of damage

wD =
∫ dε̄p

ε̄p
D0(µ, ˙̄εp) , (1.90)

which increases monotonically with plastic deformation (0 ≤ wD < 1 no damage)
and meets the threshold for damage initiation if wD = 1, [1].
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1.3.2 Damage Variables and Effective Stress

To describe damage evolution we have to establish a variable that captures the
state of damage during the loading process. Since ductile damage is the result of
microcracks and microcavities it is reasonable to define a variable comparing the
area of planes intersecting the RVE, δA, with the effective area of all microcracks
and microcavities δAD on this intersection. For a plane with the normal n the
damage variable would be

D(n) = δAD
δA

(1.91)

For isotropic damage the dependence on the normal vector n disappears and we get
with the effective undamaged area A∗ = A−AD (for simplicity we drop δ)

D = AD
A

= 1− A
∗

A
(1.92)

The effective stress in a damaged case can be deduced from the the damage variable
D. Since the internal forces acting on a damaged section must equal the forces on
the undamaged section we get

A n ·σσσ = A∗ n ·σ∗ = (1−D) A n ·σσσ∗ , (1.93)

which results in the effective stress σσσ∗

σσσ∗ = σσσ

1−D (1.94)

In addition to the definition of the damage variable D in eqn. (1.92) other equations
have been established to estimate the evolution of the damage variable. ABAQUS
uses an approach for the evolution of the ductile damage variable, considering the
equivalent plastic strain (cp. eqn. (1.55)). The equivalent plastic strain at failure
ε̄p = ε̄p

f is dependent on the characteristic element length L. This leads to a mesh
dependency of the result, such that a refined mesh results in a decrease of dissipated
energy. To reduce the mesh dependency the equivalent plastic displacement ūp

D is
used instead of equivalent plastic strain. Once the damage initiation criterion wD = 1
and ε̄p = ε̄p

D0 have been reached the equation

˙̄up
D = L ˙̄εp

D , (1.95)
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is used, where the index D stands for damage, and D0 for the onset of damage. Now
the damage variable can be defined directly as a function of the equivalent plastic
displacement ūp

D (with ūp
f at failure) or in term of the dissipated fracture energy per

unit area Gf

Gf =
∫ ε̄p

f

ε̄p
D0
Lσy dε̄

p =
∫ ūp

f

0
σy dū

p (1.96)

In this thesis an exponential evolution law of the damage variable is used, which is
based on the dissipated fracture energy

D = 1− exp
(
−
∫ ūp

D

0

σ∗y ˙̄up
D

Gf

)
, (1.97)

where σ∗y denotes the effective yield stress (cp. eqn. (1.94)), [1], [16],[28], [15].

1.3.3 Hypothesis of Strain Equivalence for Elastic and Plastic
Material Behaviour

As we can see in fig. 1.1 the load increases more slowly with respect to the applied
displacement than before in region IV and eventually decreases in regions V and
VI, though the displacements keep increasing. Moreover, if we decrease the load
once damage initiation has occurred, the Young’s modulus for elastic behaviour has
a smaller value. These two phenomena are known as softening and degradation of
elasticity and can be described with the hypothesis of strain equivalence (cp. fig.
1.15). According to [28] we can assume that " [...] the strain associated with a
damaged state under the applied stress is equivalent to the strain associated with its
fictitious undamaged state under the effective stress."
This leads to the equations

σσσ = C∗ εεε (1.98)

σσσ∗ = C εεε

Using eqn. (1.94) we get
C∗ = (1−D) C , (1.99)

for the effective material elasticity tensor C∗. We can now write for the effective
Young’s modulus E∗ and the effective Poisson ratio ν∗

E∗ = (1−D) E, ν∗ = ν (1.100)
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In analogy to the hypothesis of strain equivalence other hypotheses have been
formulated, like the hypotheses of stress, elastic strain energy or complementary
energy equivalence. One should be aware that for the elastic energy equivalence
hypotheses the degradation of the Young’s modulus follows a quadratic law E∗ =
(1−D)2E and the Poisson ratio equals the effective Poisson ratio as before.
For plasticity with mixed hardening we can derive the yield function f for a damaged
state from eqn. (1.79) and the effective stress (1.94) as

f (σσσ∗−ααα, ε̄p) = σe

(
σσσ

1−D −α
αα
)
− r (ε̄p)−σy0 , (1.101)

[1], [16],[28], [15].

Fig. 1.15: Hypothesis of strain equivalence: the strain ε in a damaged state under the stress
σ and in an undamaged fictitious state under the effective stress σ∗ is equal [28]

1.3.4 Material Failure

Material failure for ductile materials occurs, when the damage variable reaches a
value of D = 1. This can be interpreted as a crack occupying the whole surface of
the volume element, which means the effective undamaged area A∗ = 0. However,
for many materials the critical damage variable is set from D = 0.2 to 0.5 and for
brittle fracture to D= 0. The critical value of the damage variable can be estimated
experimentally in a pure monotonic tensile test with the relation

D1c = 1− σf
σmax

, (1.102)

and is called corresponding critical damage D1c. σf is the stress at material failure
and σmax is the maximum stress value.
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In ABAQUS a solid element is removed from the mesh if its damage variable reaches
its critical value. However, it is also possible to keep the element throughout the
simulation, its residual stiffness being set to at least 1% of its original stiffness to
avoid numerical issues, [1], [15].
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2 Artificial Neural Networks

The original idea of Artificial Neural Networks (ANN) was to design a model capable
of simulating the information processing of the nervous system. An ANN is basically
a nonlinear mapping system consisting of connected processing units. The modelling
of a system with a behaviour close to the real process in the nervous system is quite
complex and requires a high number of units. In this thesis a simpler approach
will be used. The goal is to design an ANN capable of learning a specified material
behaviour by training it with a data set of corresponding inputs and outputs, [24],
[26].

2.1 Weighted Networks

Every ANN consists of a number of processing units, so called neurons (cp. fig. 2.1).
Each neuron j has a number of inputs xi which are multiplied with a weight wji,
where the first index indicates the number of the neuron an the second index the
number of the input. Often an internal bias bj is introduced, by adding a channel
with a constant input value x0 leading to bj =wj0x0. The inputs are evaluated with
a suitable function gin to obtain a scalar value. Usually gin is simply the addition
function

gin(wj1xj1, ...,wjmxjm, bj) =
m∑
i=1

wjixi+ bj =
m∑
i=0

wjixi (2.1)

The result of the integration function gin is the induced local field vj , which is
evaluated with a non-linear transfer function ftrans to get the final output yj of the
neuron j.

yj = ftrans(
m∑
i=0

wjixi) = ftrans(vj) (2.2)
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Fig. 2.1: In the neuron j the inputs xi, multiplied with weights wji, and the bias bj,
represented by a constant input x0, are reduced with the integration function gin
to a scalar value, the induced field vj, and passed through the transfer function
ftrans to obtain the output yj [24]

Some commonly used transfer functions would be the logistic sigmoid function flog,
the tan-sigmoid function ftan or a linear funtion flin

flog(vj) = 1
1 + e−cvj

(2.3)

ftan(vj) = e cvj − e−cvj

e cvj + e−cvj
(2.4)

flin(vj) = cvj +d , (2.5)

where c and d are constants. In fig. 2.2 the above three transfer functions are
depicted with different values of c [5], [11], [24], [26].

An ANN consists of many connected neurons. The architecture of the ANN and the
values of the weights and biases are responsible for correctly implementing different
functions. Furthermore the connection of the neurons is linked to the used learning
algorithms, which will be discussed in the next section.
The structure of ANN can be arbitrary, but a layered structure is conventionally
used, where the neurons are organized in different connected layers. The most com-
mon structures are single-layer and multi-layer feedforward or recurrent networks.
A single-layer network consists of an input and an output layer, while a multi-layer
network has additional layers between the input and output layers, which are called
hidden layers (cp. fig. 2.3).
In a feedforward network the inputs of a layer are equal to the outputs of the layer
in front of it. This means that there are no feedback loops, which would allow to
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feed outputs of a layer back as inputs for neurons of the same layer or layers before.
Networks with feedback loops are referred to as recurrent networks. They can have
one or several feedback loops. If all nodes of a layer are connected to all nodes of the
next layer the network is fully connected, otherwise it is called partially connected,
[11], [24].
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Fig. 2.2: Transfer functions: logistic sigmoid function flog, tan-sigmoid function ftan and
the purely linear function flin with different constants
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Fig. 2.3: Multi-layered, fully connected feedforward network with an input, two hidden and
an output layer. [24]

2.2 Learning Algorithms

To find the proper weights and biases of the ANN a learning algorithm must be
used. In general one can distinguish between supervised and unsupervised learn-
ing. During supervised learning the training data consists of inputs xi and desired
outputs or targets o. We can now apply an error-correction learning rule, which
compares the actual computed outputs y with the desired targets o by estimating
the error with the help of an appropriate objective function. Some common objective
function are the sum of the squared error ESSE, the mean squared error EMSE and
the logarithmic error function ELOG

ESSE =
P∑
p=1

M∑
j=1

(opj−ypj)2 (2.6)

EMSE = ESSE
PM

(2.7)

ELOG =
P∑
p=1

M∑
j=1

opj lnypj + (1−opj) ln(1−ypj) , (2.8)

where p is the index and P the number of training patterns and j is the index and
M the number of the output nodes. A control mechanism is activated to reduce the
error by adjusting the weights and biases between training cycles, called epochs, to
minimise the objective function.
During unsupervised learning there are no target values. Special learning rules are
used. In this thesis we will only use supervised learning algorithms, [5], [11], [24].

32



2.2.1 The Back Propagation Algorithm

A common algorithm for training multilayered feedforward networks is back prop-
agation. This algorithm consists of two passes. The first pass is called forward
propagation, during which the ANN simply computes the outputs according to its
current inputs following eqn. (2.2). Now we can compare the results with the desired
outputs and calculate the error with an appropriate objective function. We use the
sum of the squared error function E = ESSE and write eqn. (2.6) for a single pattern
p as

E(p) = 1
2
∑
j

(oj(p)−yj(p))2 = 1
2
∑
j

e2
j(p) , (2.9)

where the factor 1/2 cancels out a factor 2 in eqn. (2.12) and (2.19), j stands for
the neurons of the output layer, and ej = oj−yj is the error between the targets oj
and computed outputs yj .
During the second pass, called back propagation, the weights are adjusted to min-
imize the calculated error E(p). To do so it is necessary to compute the derivative
of the error with respect to the weights

∂E(p)
∂wji(p)

= ∂E(p)
∂vj(p)︸ ︷︷ ︸
δj(p)

∂vj(p)
∂wji(p)︸ ︷︷ ︸
xi(p)=yi(p)

(2.10)

∂E(p)
∂wji(p)

= δj(p) yi(p) , (2.11)

where δj is the local gradient and xi are the inputs of node j, which equal the
outputs yi of node i.
We now have to distinguish between a node in the output or in a hidden layer. For
an output node its error ej is determined with the given target values oj and we can
write

∂E(p)
∂vj(p)

= ∂E(p)
∂ej(p)︸ ︷︷ ︸
ej(p)

∂ej(p)
∂yj(p)︸ ︷︷ ︸
−1

∂yj(p)
∂vj(p)︸ ︷︷ ︸

∂ftrans
∂vj

=f ′
trans(vj)

(2.12)

δj(p) =−ej(p) f
′
trans(vj(p)) (2.13)
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For a hidden node we have to consider that the error ej has to be determined
recursively. It depends on all nodes k to which it feeds information. We can write

∂E(p)
∂vj(p)

= ∂E(p)
∂yj(p)

∂yj(p)
∂vj(p)︸ ︷︷ ︸
f

′
trans(vj)

(2.14)

∂E(p)
∂yj(p)

=
∑
k

ek(p)
∂ek(p)
∂vk(p)︸ ︷︷ ︸
−f ′

trans(vk)︸ ︷︷ ︸
δk

∂vk(p)
∂yj(p)︸ ︷︷ ︸
wkj

(2.15)

δj(p) = f
′
trans(vj(p))

∑
k

δk(p)wkj(p) (2.16)

We can see now that the second pass starts at the output layer of the ANN and
recursively determines the derivative ∂E

∂wji
for every node of the different layers, [11],

[24].
To minimize the error E over a number of epochs, we have to correct the weights by
adding the correction term ∆wji(p)

wji,new = wji,old + ∆wji (2.17)

∆wji(p) =−η ∂E(p)
∂wji(p)

=−η δj(p) yi(p) , (2.18)

where η is the learning rate which represents the gradient descent in weight space
and usually ranges between 0.05 < η < 0.75. This method is also called steepest
descent algorithm, [11], [24].
MATLAB [18] offers a number of different training functions for the weight update.
Since we achieved the best results with the Levenberg-Marquardt algorithm [18], we
will only discuss this algorithm.
The gradient gj = ∂E(p)

∂wij(p) can also be written as (cp. eqn. (2.9))

gj = ∂E(p)
∂wji(p)

=
∑

ej(p)
∂ej(p)
∂wji(p)

(2.19)

g = WT e , (2.20)

using the Jacobian matrix W of the first derivatives of the absolute errors ej with
respect to the weights wji and the vectors of the gradient g and of the absolute
errors e. In the Levenberg-Marquardt algorithm the vector of correction terms ∆w
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is calculated as follows

∆w =−[WTW + θI]−1WTe (2.21)

It can be interpreted as a combination of the Gauss-Newton method (θ = 0), which
converges quickly near a minimum but can diverge, if the starting values are too far
off the minimum, and the steepest descent algorithm (θ is large), whose convergence
is slow but independent of the starting values, [24], [18].

2.2.2 Training, Testing and Validation

Let us now summarize the outline of an ANN. An ANN consists of a number of
neurons, which are usually grouped in layers starting with the input layer, followed
by hidden layers and ending with the output layer.
The inputs of a neuron are multiplied with weights and reduced to a scalar value,
called induced field, with the help of a suitable function, which is commonly the
addition function. The induced field is evaluated with a proper transfer function
and results in an output, which either acts as input for another neuron or as actual
output of the network.
During the training process a set of input and output data is presented to the ANN.
For the applied back propagation algorithm it is necessary to evaluate the error of
the computed and the target outputs. The goal of the training is to minimize the
error by adjusting the weights.
Besides the architecture, the function to evaluate the inputs, the transfer and
error functions and the learning algorithm some other crucial questions concern the
training data, its selection and preparation, and the stopping criteria and evaluation
of the ANN’s performance.
Usually the provided data is split up into training, validation and test data. Only
the training data is presented to the ANN to adjust the weights. The validation set
is used to control the performance of the ANN during the learning process and to
help establishing a proper stopping criteria, which will be discussed later. The test
data is unknown to the ANN and is used to finally validate the trained ANN.
But before any data is presented to the ANN it is necessary to perform data scaling.
During the training process data with large magnitude can override data with small
magnitude. To prevent this from happening, data normalization is applied within a
specified interval.
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In advance data mining is also useful and necessary. Since the data may contain
errors or may be superimposed with perturbations, its quality is a factor. Moreover
the complexity of the ANN design depends on the quantity of available data and
the problem to be solved. The tricky question is to find an ANN, which is complex
enough, and combine it with the right set of training data, which captures all
significant features of the target function and is appropriate in quality and quantity.
As already mentioned the goal of the training process is to minimize the error of the
computed output y with respect to the desired output o, which may be interpreted as
an optimization process. However, it is possible that the back propagation converges
to a local minimum instead of a global minimum (cp. fig. 2.4). One way of dealing
with this problem is to train ANN with different sets of initial weights, [5],[24].

Fig. 2.4: Example of the error E over a number of epochs showing a local minimum and
maximum as well as a global minimum. [5]

However, a minimum of the error function doesn’t guarantee good generalization.
This means that it is possible to find a function that minimizes the error but doesn’t
represent the general behaviour of the training data and therefore can’t give the
correct outputs for new patterns. Two possible reasons for bad generalization are
over- and underfitting. Overfitting occurs if the number of hidden nodes, training
data or training cycles is too high, while underfitting occurs at the exact opposite
condition (cp. fig. 2.5). To avoid overfitting due to a high number of training cycles
an early stopping criterion based on a validation set can be used to stop the training
process (cp. fig. 2.6). The samples of the training data are split into a training set,
used to modify the weights, and a validation set, to control the performance of the
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ANN towards unknown data, without changing the ANN itself. After a number of
training cycles the error per sample on the validation set is estimated. If the error
of the validation set increases the training is stopped. Unfortunately, an increase
of the validation error can also be due to surpassing a local minimum of the error
space (cp. fig. 2.6). Other stopping criteria could be determined with thresholds of
the error function, the number of training cycles or the calculation time, [5], [24].

Fig. 2.5: The dots represent the given data set and the full line the response of the ANN.
left: underfitting of the desired function, middle: well fitted function, right:
overfitting of the desired function [24]

Fig. 2.6: top left: due to overfitting the error of the testing data increases while the error
of the training data decreases, top right: the training is stopped when the error
of the validation data starts increasing bottom right: error of the validation data
over epochs can have local minima [5]
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3 Development of a Material Model
with Artificial Neural Networks

The development of ANN-based material models can be divided into several steps.
First it is necessary to generate a set of data which can be used to train the ANN and
evaluate its performance. For this step we use the Finite Element Method (FEM)
program ABAQUS/Explicit [1].
For the training and the validation of the ANN we use the numerical computing
environment MATLAB NN toolbox plus additional tools for ANN programming,
Stipulator & Brainer, provided by the engineering company ANDATA [18].
In addition an implementation of the ANN material model for the FEM program
ABAQUS/Explicit was coded as a VUMAT user-subroutine.

3.1 Numerical Generation of Load Cases with
ABAQUS

For the training of an ANN we need a set of training data. In our case this
would be the correlated time histories of the strain and stress components resulting
from an ABAQUS analysis. To produce the necessary information, we use a single
element model with a deterministic elasto-plastic material behaviour with damage
as provided by the FEM program ABAQUS.
For the single element a three dimensional solid element (C3D8R, 8-node linear
brick) with reduced integration (one integration point) and hourglass control was
chosen. To avoid rigid body motion it is necessary to constrain the degrees of
freedom (DOF). Therefore the following constraints were applied (cp. fig. 3.1 blue)

node 1 − fixed DOF : 1, 2, 3, i.e. : u1
1 = u1

2 = u1
3 = 0

node 2 − fixed DOF : 2,3, i.e. : u2
2 = u2

3 = 0 (3.1)

node 4 − fixed DOF : 3, i.e. : u4
3 = 0
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Displacements were applied to the master nodes 2,4 and/or 5 as required (cp.
fig. 3.1). The other degrees of freedom were controlled by periodicity boundary
conditions, which ensure that pairs of initially parallel, homologous faces deform in a
compatible way (cp. fig. 3.2). The displacements of the master nodes fully determine
the displacements of the coupled slave nodes. In Fig. 3.2 the displacements u2 and
u4 of the unit cell are applied at the corresponding master nodes 2 and 4, which
result in the displacement u3 = u2 + u4 of the slave node 3. Since we use a single
element with linear interpolation the surfaces will stay plane. The equations for the
periodic boundary conditions of a three-dimensional single element can be written
as

u8
i −u5

i −u4
i = 0

u3
i −u2

i −u4
i = 0 (3.2)

u6
i −u2

i −u5
i = 0

u7
i −u2

i −u4
i −u5

i = 0

The displacement uNi denotes the displacement of the node N in the direction i =
1,2,3. [1], [4]
Due to the periodic coupling conditions (3.2) and the boundary conditions (3.1) only
the displacement components u2

1, u
4
1, u

4
2, u

5
1, u

5
2 and u5

3 are potential active degrees
of freedom in this system. For any of these six displacement components some time
dependent behaviour uNi = uNi (t) (with the special case uNi = 0) may be specified or
it may be left free to be evaluated by the program. The latter case is identified as
uNi =free.

Fig. 3.1: 3-dimensional solid element (C3D8R) with node numbers (black), fixed DOF to
avoid rigid body motion (blue) and applied displacements uN

i (green)
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Fig. 3.2: 2-dimensional unit cell with periodic boundary conditions to ensure that parallel
faces in the undeformed state deform equally. The displacement u3 of the slave
node 3 results from the applied displacement u2 and u4 of the master nodes 2
and 4. (dashed line: undeformed state, solid line: deformed state) [4]

The used material behaviour combines elasticity, plasticity with mixed mode hard-
ening properties (cp. section 1.2) and material damage resulting in final material
failure (cp. section 1.3). The material parameters are chosen to approximate the
behaviour of aluminium. Whereas the properties for elasticity and damage were
obtained from [1], the material characteristics for plasticity were extracted from
[27], the damage behaviour was modified in order to achieve a later onset of damage
and a slower damage evolution.
The properties used for the elasto-plastic material behaviour are listed in tab 3.1 (cp.
eqn. (1.72) and (1.76) ). According to [1] a ductile damage initiation criterion is used
and the onset of damage is defined in a table correlating the equivalent plastic strain
at damage initiation ε̄p

D0, the stress triaxiality µ and the equivalent plastic strain rate
˙̄εp (cp. fig. 3.3). A stress triaxiality of µ= 1/3 would be a uniaxial tensile load case,
µ < 0 would be the compressive loading region, in which no ductile failure occurs,
and µ > 1.5 would describe behaviour dominated by hydrostatic tensile loading.
The evolution of the damage parameter D is defined by an exponential equation (cp.
eqn. 1.97). The dissipated fracture energy per unit area Gf is set to 1 · 107 J/m2.
Material failure occurs if the damage variable reaches the value D = 1.
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Tab. 3.1: Used elasto-plastic material properties for aluminum in SI units

Density ρ 2700 kg/m3

Young’s Modulus E 7×1010 N/m2

Poisson ratio ν 0.33 -

Initial yield stress σ0 1.54×108 N/m2

Max. change in the size of the yield surface Q 1.402×108 N/m2

Rate at which the yield surfaces changes b 7.094 -

initial kinematic hardening modulus C 7.019×109 N/m2

rate at which C decreases γ 118.6 -
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Fig. 3.3: Equivalent plastic strain at damage initiation ε̄p
DO as a function of stress

triaxiality µ and equivalent plastic strain rate ˙̄εp
DO [1].
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Several typical load cases were applied, e.g., uniaxial and biaxial tensile and com-
pressive loading, cyclic, ”butterfly” and random load cases. In tab. 3.2 the load
cases with their applied displacements, their number and the number used in the
training of the ANN are listed. The resulting strain and stress components of several
different load cases will be presented later.
In the tensile, compressive and hydrostatic load cases displacements were only
monotonically applied in the principal directions, the active components being u2

1,
u4

2 and/or u5
3 (while the other possible displacement components were free). For

the random load cases all six possible displacement components were prescribed
and for the other load cases we differentiate between cases where all six possible
displacement components, displacement components u2

1, u
4
2, u

4
1, u

5
2 (”free”) and

only displacement components u2
1, u

4
2 (”free free”) were prescribed.

The cyclic load cases can be split into load cases with increasing displacement ampli-
tudes over every cycle (”Cyclic”), with constant displacement amplitudes (”Constant
Cyclic”) and with constant displacement amplitudes leading to shakedown behaviour
(”Shakedown”). Plotting the displacements u2

1 over u4
1, u4

2 over u5
2 or u5

3 over u5
1

results in straight lines, which can be defined by amplitude a and angle ϕ in the
corresponding displacement planes (cp. fig. 3.4). We determine the displacement
components by choosing these amplitudes and angles. The rate of the applied
displacement components is constant and the number of cycles are chosen for a total
time of one second. To achieve load cases with increasing displacement amplitudes
(cp. fig. 3.5) we use the following equation

a(tn+1) = c ·a(tn) with c > 1 (3.3)

The amplitudes a, accordingly, form a geometric series, where tn is the discrete time
and c > 1 a constant .
For the butterfly load cases the displacement components uNi are applied over time
t according to the following equations

uNi = a1 cosϕ−a2 sinϕ for u2
1, u

4
2, u

5
3 (3.4)

uNi = a1 sinϕ+a2 cosϕ for u4
1, u

5
2, u

5
1 (3.5)

a1 =−1 + exp(c1 sin(2π t)) (3.6)

a2 =−1 + exp
(√

3 c1 sin(4π t)
)

(3.7)

Plotting the displacements u2
1 over u4

1, u4
2 over u5

2 or u5
3 over u5

1 results in a butterfly
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like shape (cp. fig. 3.6), where c1 is a constant, which can be compared with
the amplitude a in the cyclic load cases, and ϕ is an angle in the corresponding
displacement plane.

Tab. 3.2: Applied Load Cases

Load Case Applied Displacements Number Used in Training 4

Uniaxial Tensile Strain u2
1 10 5/3

Biaxial Tensile Strain u2
1,u

4
2 10 2/3

Uniaxial Compressive Strain u2
1 10 4/1

Biaxial Compressive Strain u2
1,u

4
2 10 2/4

Hydrostatic Load u2
1,u

4
2,u

5
3 20 4/5

Cyclic all 5 64 23
Cyclic free u2

1,u
4
2,u

4
1,u

5
2 64 22

Cyclic free free u2
1,u

4
1 60 19

Constant Cyclic all 81 21
Constant Cyclic free u2

1,u
4
2,u

4
1,u

5
2 108 25

Constant Cyclic free free u2
1,u

4
1 60 21

Shakedown all 6 0
Shakedown free u2

1,u
4
2,u

4
1,u

5
2 7 0

Shakedown free free u2
1,u

4
1 7 0

Butterfly all 135 29/26
Butterfly free u2

1,u
4
2,u

4
1,u

5
2 432 25

Butterfly free free u2
1,u

4
1 100 23/20

Random 1 all 180 36/35
Random 2 all 180 26

In total: 1544 287/279

4 first number: number of load cases for ANN of normal stress components, second number:
number of load cases for ANN of shear stress components; only one number: same
number of load cases for all ANN

5all pertinent displacement components, i.e.,: u2
1, u

4
1, u

4
2,u

5
2, u

5
3, u

5
1
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Fig. 3.4: Displacements u2
1 and u4

1 of a cyclic load case. left: displacement components
over time t, right: straight line in displacement plane with amplitude a and angle
ϕ

0 5 ·10−3 1 ·10−2 1.5 ·10−2 2 ·10−2
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2 1
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Fig. 3.5: Displacements u2
1 of a cyclic load case with increasing amplitude over time t

Fig. 3.6: Displacements u2
1 and u4

1 of a butterfly load case. left: displacements over time
t, right: butterfly shape in displacement plane with constant c1 and angle ϕ
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There are two sets of random load cases. In set ”Random 1” the displacement
component uNi at time tn is determined by adding up the random displacement
steps ∆uNi in the pertinent direction

uNi (tn) = ∆uNi (t1) + ∆uNi (t2) + ...+ ∆uNi (tn) (3.8)

In ”Random 2” a random displacement component uNi is introduced for every,
discrete time tn. In fig. 3.7 we can see that both sets of random load cases could
produce equal displacement paths over time. The advantage of using two different
methods is to determine different thresholds. In ”Random 1” we chose a maximum
displacement step ∆uNi,max and in ”Random 2” a maximum displacement uNi,max .

Fig. 3.7: Example of a random load case generated in set ”Random 1” (left) by adding
up displacement steps ∆uN

i (tn) and in set ”Random 2” (right) by introducing
displacement components uN

i (tn) for every discrete time tn

3.2 Development and Training of an Artificial Neural
Network

The generated data sets of strain-stress relationships have to undergo further signal
processing before they can be used for the training of an ANN. During the FEM
simulation in ABAQUS the current stress state σσσ(tn) is evaluated from the previous
strain state εεε(tn−1), the current strain state εεε(tn) = εεε(tn−1) + ∆εεε and the previous
stress state σσσ(tn−1) at discrete time steps tn. Once yielding or damage occurs
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the current stress state also depends on the previous stress and strain states for a
time t < tn−1. This information is provided via state variables like the equivalent
plastic strain or damage variables. The current state variables do not depend on
the physical time when first yielding or damage initiation occurred and only their
value is of importance. It is useful to describe the history of the strain and stress
state not over the time, but, as introduced in [22], via the arc length along the
strain dimensions, which may be referred to as pseudo-time sn, by adding up the
incremental strain components ∆εij(ti) as follows

sn(tn) =
n∑
i=0

(√
∆ε2

11(ti) + ∆ε2
22(ti) + ∆ε2

33(ti) + ∆ε2
12(ti) + ∆ε2

23(ti) + ∆ε2
31(ti)

)
(3.9)

The stress and strain curves are reparameterized with the inverse function t−1
n (sn)

of sn(tn) as follows

εεε(sn) = εεε
(
t−1
n (sn)

)
(3.10)

σσσ(sn) = σσσ
(
t−1
n (sn)

)
(3.11)

In the following we will use εεε(sn) = εεε(n).
The next question is what inputs for the ANN are required for correctly predicting
the stress outputs. In [22] two approaches were suggested. The first one is a
recurrent parametrization where previous stress and strain states are used to predict
the current stress state for a given strain state

εεε(n), εεε(n−1),σσσ(n−1)→ σσσ(n) (3.12)

The indices n and n− 1 represent the current and the previous state. The second
approach is a filter-based parametrization, where a window integral ε̂εε over previous
strain states is used. For a window length of lw we get

ε̂ij =
∫ sn

sn−lw
εij(ξ) dξ (3.13)

The input-output relationship of the ANN is

εεε(n), ε̂εε(n)→ σσσ(n) (3.14)

Considering these recommendations several different combinations of input sets were
tested to obtain the best prediction of the current stress state. Previous strain and
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stress states as well as previous window integrals where used at n− 0.01 and n−
0.005. Window integrals with a window length lw of 0.001, 0.002, 0.003, 0.005, 0.01, 0.05
and 0.1 were considered. The best results were achieved with the following sets of
inputs for the ANN

εεε(n), ε̂εε
(n)
lw=0.01, ε̂εε

(n)
lw=0.05, ε̂εε

(n)
lw=0.1, ε̂εε

(n−0.01)
lw=0.01 , ε̂εε

(n−0.01)
lw=0.05 , ε̂εε

(n−0.01)
lw=0.1 (3.15)

Another question was how many ANN are necessary for the prediction of the stress
components. Options of one ANN for all six stress components, two ANN for the
three normal stress and the three shear stress components, three ANN for the stress
components (σ11, σ12), (σ22, σ23) and (σ33, σ31) as well as six ANN, one for each
stress component, were tested. The best results were obtained with six individual
ANN.
The architecture of the ANN itself was another important aspect. In the tests, the
number of nodes in the hidden layers ranged from 10 to 180 and the number of
hidden layers from 1 to 5. The finally chosen ANN have four hidden layers with 25
nodes each.
For the transformation of the input and output data a linear transformation of the
form

ftf = a1ζ+a2
b

(3.16)

and the interval [−0.5,0.5] was chosen, where ζ is substituted with the input or
output data and a1, a2 and b are coefficients to fit the data onto the used interval.
As transfer functions for the hidden layers the tan-sigmoid function ftan (cp. eqn.
(2.4)) was used and for the output layer the chosen transfer function was the linear
function flin (cp. eqn. (2.5)).
Furthermore all training algorithms provided by Matlab were considered. The best
results were obtained by the Levenberg-Marquardt algorithm and the Bayesian
regularization, which enhances the Levenberg-Marquardt algorithm by minimizing a
linear combination of squared errors and weights to obtain a good generalization [18].
Although the resulting error of the Bayesian Regulation was slightly smaller, the
Levenberg-Marquardt algorithm was preferred due to its computational efficiency.
The mean squared error EMSE was used as error function. As stopping criterion the
error was not used directly but minimum thresholds of its performance gradient were
set to 1×10−5 and 1×10−4 for normal and shear stress components, respectively.
Another essential part is the selection of the training and validation data. From
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the selected data 70% of the samples are used for training, 15% for validation and
15% for testing. Three different strategies were tested, based on separating the
load cases into random and deterministically defined load cases. If only load cases
from the random or deterministically defined set were used, the performance in the
other set was found to be bad. Therefore load cases from both sets were used to
train the ANN. The training procedures started with a set of arbitrarily chosen load
cases representing all types of load cases listed in tab. 3.2 except uniaxial tensile,
hydrostatic, compressive and shakedown loads. If the generalization of certain load
cases was particularly bad, they were added to the training set. This is the reason
why uniaxial tensile, compressive and hydrostatic loads had to be included. The
goal was to achieve a wide representation of all possible load cases.

3.3 Performance and Validation

The six ANN used in the following have four hidden layers with 25 neurons each,
42 inputs consisting of current strain components, window integrals of the strain
components at the current and previous states as defined in eqn. (3.15) and one
output, which is one of the stress components. Using a recurrent ANN with previous
stress states led to high offsets and noisy oscillating stress responses. In fig. 3.8 the
stress response σ12 of a recurrent network is depicted over the pseudo-time s. We
can see oscillating behaviour at approximately 0.3≤ s≤ 0.6 and s > 1.6 and an offset
at approximately 1.2 ≤ s ≤ 1.6. Therefore recurrent networks were excluded from
further studies.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
−3

−2

−1

0

1

2 ·109

s [-]

σ
12

[N m
2
]

σ12
σ12 of the ANN

Fig. 3.8: Stress response σ12 of a recurrent ANN showing offsets and noisy oscillating
behaviour.
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To train the ANN we used the mean squared error EMSE (cp. eqn. (2.7)). In order
to deduce values, that can be compared more easily with the output of the stress
components we calculate

ESR =
√

EMSE (3.17)

It should be noted that with one neuron in the output layer and a number of P
patterns, the error includes a factor of

√
P accounting for the number of patterns.

In table 3.3 the error ESR is listed for different load cases and in table 3.4 the
absolute maximum values of the stress components |σij, max| are listed for the load
cases from figs. 3.9 to 3.14. If we compare the values of these two tables, we can
observe that the absolute maximum stress values are of the same magnitude or one
magnitude smaller than the error ESR. We can also see that the error in the shear
stress components is much smaller than in the normal stress components, and that
the error for a certain load case can vary for the different stress components.

Tab. 3.3: Square Root of the Mean Squared Error of the Stress Components for Different
Load Cases

Constant Cyclic Cyclic Shakedown Butterfly Tensile Strain

σ11 8.049×108 6.753×108 1.004×108 4.277×109 1.076×108

σ22 3.610×108 7.404×108 1.313×108 2.925×109 1.214×108

σ33 4.426×108 5.955×108 1.458×108 3.451×109 1.805×108

σ12 1.4057×107 1.064×107 1.359×107 2.315×107 2.174×106

σ23 1.131×107 8.263×106 9.824×106 2.318×107 1.046×106

σ31 9.063×106 2.306×106 1.050×107 1.513×107 4.858×105

Compressive Strain Hydrostatic Load Random All Loadcases

σ11 1.290×108 9.922×108 2.026×109 3.103×109

σ22 9.552×107 8.602×108 2.836×109 2.317×109

σ33 1.770×108 1.203×109 2.428×109 2.588×109

σ12 1.800×106 1.532×106 2.989×107 2.066×107

σ23 1.226×106 1.278×106 3.829×107 2.206×107

σ31 5.728×105 1.752×106 2.814×107 1.542×107
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Tab. 3.4: Absolute Maximum Values of the Stress Components for Typical Load Cases
Depicted in Figs. 3.9 to 3.14

Shakedown Random Butterfly Tensile
Strain

Tensile
Strain

|σ11, max| 9.761 ×107 1.770 ×108 5.223 ×109 5.923 ×108 2.332 ×108

|σ22, max| 1.185 ×108 1.801 ×108 3.243 ×109 2.879 ×108 8.570 ×107

|σ33, max| 1.481 ×108 2.442 ×108 5.550 ×109 2.429 ×108 1.611 ×108

|σ12, max| 2.893 ×107 3.646 ×107 1.457 ×108 4.479 ×106 5.338 ×106

|σ23, max| 2.457 ×106 3.432 ×107 1.663 ×108 3.638 ×106 1.154 ×106

|σ31, max| 2.181 ×105 1.595 ×107 9.595 ×107 6.767 ×105 3.363 ×105

If we look at the stress response plot of the shakedown load case (cp. fig. 3.9)
driven by all pertinent displacement components u2

1, u
4
1, u

4
2,u

5
2, u

5
3 and u5

1, we can
see that though the stress component σ31 is not zero, the stress response is three
magnitudes smaller in comparison to the normal stress components and therefore
acceptable. The stress components σ11, σ12, σ23 and σ31 were well reproduced by the
ANN, though shakedown load cases were not included in the training set. This is an
indication that the ANN have actually learned the material behaviour. However, the
performance for the stress components σ22 and especially σ33 is poor in comparison.
This coincides with the observation from the mean squared errors (which, however,
covers a number of shakedown load cases), that the performance in the shear stress
components is better than in the normal stress components and that the performance
for the same load case can vary in the different stress components, since they were
trained in different ANN. Furthermore it should be noted that load cases with ”free”
and ”free free” displacements show zero-stress responses in the stress components
σ33, σ31 and/or σ22, σ23. This means that the ANN for these stress components
have seen fewer non-zero stress responses. For example 25 ”Constant Cyclic free”
load cases were used in training. Therefore the ANN for σ11 would be trained
with 25 load cases showing a stress response with cyclic behaviour, while the ANN
for σ33 was trained with 25 load cases with a zero-stress response due to the ”free”
displacement in this direction. This could also explain the drop in the generalization
quality. Moreover it seems difficult to reproduce a perfect zero-stress response, thus
a small stress response in comparison with the non-zero-stress responses would be
sufficient.

50



In fig. 3.10 we see the stress and strain histories generated within a type 2 random
load case and in fig. 3.11 the same load case is depicted on the interval [0,0.2] of
the pseudo-time s to show its behaviour in more detail. We can observe that the
ANN generally follow the stress responses, but over- or underestimate stress peaks.
In the stress component σ33 we can find an offset in the ANN response similar to
the shakedown load case.
In the stress response plot of a butterfly load case (cp. fig. 3.12) we can see that the
ANN capture the initial material behaviour reasonably well but have problems with
depicting the zero-stress response after material failure, which occurs at a pseudo-
time of approximately s = 0.5. In the random load case the stress responses of the
ANN do not quite follow the actual stress responses, especially σ33, σ12 and σ13 (cp.
fig. 3.10 and 3.11). However, the behaviour in the butterfly load case is too noisy,
especially for the σ12 component. The same holds true for the uniaxial tensile strain
load case depicted in fig. 3.13. An even more extreme behaviour in this respect
is evidenced by the uniaxial tensile load case shown in fig. 3.13, where spurious
excursions at amplitudes exceeding that of the actual signal are present for all three
normal stress components. Figure. 3.14, in contrast, shows another uniaxial tensile
load case which exhibits much better but still not fully satisfactory behaviour. Two
tensile load cases, one with a bad performance (cp. fig. 3.13) and one with a good
performance in the σ11 stress component (cp. fig. 3.14), were chosen to be presented
in this thesis.
These observations lead to the conclusion that the ANN described in section 3.2 have
problems reproducing zero-stress responses. The resulting oscillations can have the
magnitude of the actual stress response in the non-zero stress components (cp. fig.
3.13) which is not an acceptable error. However, especially for random and cyclic
load cases the responses are quite good, though they may vary in the different stress
components, due to the separate training of the corresponding ANN.

51



0
0.

25
0.

5
−

2.
2

−
101

2.
2
·1

0−
3

s
[-]

ε11,ε12[-]

0
0.

25
0.

5
−

1

−
0.

50

0.
51
·1

0−
3

s
[-]

ε22,ε23[-]

0
0.

25
0.

5
−

1

−
0.

50

0.
51
·1

0−
3

s
[-]

ε33,ε31[-]

ε k
k

ε i
j

0
0.

25
0.

5
−

1.
5
−

101
1.

5
·1

08

s
[-]

σ11,σANN
11[

N
m2]

0
0.

25
0.

5
−

1.
5

−
1

−
0.

50

0.
5
·1

08

s
[-]

σ22,σANN
22[

N
m2]

0
0.

25
0.

5
−

0.
20

0.
51

1.
5
·1

08

s
[-]

σ33,σANN
33[

N
m2]

σ
k

k

σ
A

N
N

k
k

0
0.

25
0.

5
−

4

−
2024
·1

07

s
[-]

σ12,σANN
12[

N
m2]

0
0.

25
0.

5
−

5

−
2.

50

2.
55
·1

06

s
[-]

σ23,σANN
23[

N
m2]

0
0.

25
0.

5
−

2

−
10123
·1

05

s
[-]

σ31,σANN
31[

N
m2]

σ
ij

σ
A

N
N

ij

Fi
g.

3.
9:

Sh
ak
ed
ow

n
lo
ad

ca
se

ov
er

ps
eu
do

-t
im

e
s
(a
ll
pe
rt
in
en

td
is
pl
ac
em

en
tc

om
po
ne

nt
s)
;fi

rs
tr

ow
:
so
lid

re
d
lin

es
=

st
ra
in

co
m
po
ne

nt
s

in
no

rm
al

di
re
ct
io
n
ε k

k
,
da

sh
ed

bl
ue

lin
es

=
st
ra
in

co
m
po
ne

nt
s
in

sh
ea
r
di
re
ct
io
n
ε i

j
;
se
co
nd

an
d
th
ird

ro
ws

:
so
lid

re
d
lin

es
=

st
re
ss

co
m
po
ne

nt
s
of

de
te
rm

in
is
tic

m
at
er
ia
lm

od
el
σ

k
k
,σ

ij
,d

as
he
d
bl
ue

lin
es

=
st
re
ss

co
m
po
ne

nt
s
of

A
N
N

m
at
er
ia
lm

od
el
σ

k
k
,

σ
A

N
N

ij
(i
,j
,k

=
1,

2,
3;
i
6=
j)

52



0
0.

2
0.

4
0.

6
0.

7
−

3

−
1.

50

1.
535
·1

0−
3

s
[-]

ε11,ε12[-]

0
0.

2
0.

4
0.

6
0.

7
−

3

−
1.

50

1.
53
·1

0−
3

s
[-]

ε22,ε23[-]

0
0.

2
0.

4
0.

6
0.

7
−

303

6.
5
·1

0−
3

s
[-]

ε33,ε31[-]

ε k
k

ε i
j

0
0.

2
0.

4
0.

6
0.

7
−

2.
5

−
1.

50

1.
53
·1

08

s
[-]

σ11,σANN
11[

N
m2]

0
0.

2
0.

4
0.

6
0.

7
−

3

−
1.

50

1.
53
·1

08

s
[-]

σ22,σANN
22[

N
m2]

0
0.

2
0.

4
0.

6
0.

7
−

2

−
10123
·1

08

s
[-]

σ33,σANN
33[

N
m2]

σ
k

k

σ
A

N
N

k
k

0
0.

2
0.

4
0.

6
0.

7
−

4

−
2023
·1

07

s
[-]

σ12,σANN
12[

N
m2]

0
0.

2
0.

4
0.

6
0.

7
−

4

−
2023
·1

07

s
[-]

σ23,σANN
23[

N
m2]

0
0.

2
0.

4
0.

6
0.

7
−

7
−

5

−
2.

50

2.
55
·1

07

s
[-]

σ31,σANN
31[

N
m2]

σ
ij

σ
A

N
N

ij

Fi
g.

3.
10

:R
an

do
m

lo
ad

ca
se

ov
er

ps
eu
do

-t
im

e
s
(a
ll
pe
rt
in
en

t
di
sp
la
ce
m
en

t
co
m
po
ne

nt
s)
;
fir
st

ro
w:

so
lid

re
d
lin

es
=

st
ra
in

co
m
po
ne

nt
s

in
no

rm
al

di
re
ct
io
n
ε k

k
,d

as
he
d
bl
ue

lin
es

=
st
ra
in

co
m
po
ne

nt
s
in

sh
ea
r
di
re
ct
io
n
ε i

j
;s

ec
on

d
an

d
th
ird

ro
ws

:
so
lid

re
d
lin

es
=

st
re
ss

co
m
po
ne

nt
s
of

de
te
rm

in
is
tic

m
at
er
ia
lm

od
el
σ

k
k
,σ

ij
,d

as
he
d
bl
ue

lin
es

=
st
re
ss

co
m
po
ne

nt
s
of

A
N
N

m
at
er
ia
lm

od
el
σ

k
k
,

σ
A

N
N

ij
(i
,j
,k

=
1,

2,
3;
i
6=
j)

53



0
0.

1
0.

2
−

2.
5

−
1.

50

1.
5

2.
5
·1

0−
3

s
[-]

ε11,ε12[-]

0
0.

1
0.

2
−

3

−
1.

50

1.
53
·1

0−
3

s
[-]

ε22,ε23[-]

0
0.

1
0.

2
−

303

6.
5
·1

0−
3

s
[-]

ε33,ε31[-]

ε k
k

ε i
j

0
0.

1
0.

2
−

2.
5

−
1.

50

1.
53
·1

08

s
[-]

σ11,σANN
11[

N
m2]

0
0.

1
0.

2
−

3

−
1.

50

1.
53
·1

08

s
[-]

σ22,σANN
22[

N
m2]

0
0.

1
0.

2
−

2

−
10123
·1

08

s
[-]

σ33,σANN
33[

N
m2]

σ
k

k

σ
A

N
N

k
k

0
0.

1
0.

2
−

4

−
2023
·1

07

s
[-]

σ12,σANN
12[

N
m2]

0
0.

1
0.

2
−

4

−
2023
·1

07

s
[-]

σ23,σANN
23[

N
m2]

0
0.

1
0.

2
−

7
−

5

−
2.

50

2.
55
·1

07

s
[-]

σ31,σANN
31[

N
m2]

σ
ij

σ
A

N
N

ij

Fi
g.

3.
11

:D
et
ai
l
of

ra
nd

om
lo
ad

ca
se

ov
er

ps
eu
do

-t
im

e
s
(a
ll

pe
rt
in
en

t
di
sp
la
ce
m
en

t
co
m
po
ne

nt
s)
;
fir
st

ro
w:

so
lid

re
d
lin

es
=

st
ra
in

co
m
po
ne

nt
s
in

no
rm

al
di
re
ct
io
n
ε k

k
,d

as
he
d
bl
ue

lin
es

=
st
ra
in

co
m
po
ne

nt
s
in

sh
ea
r
di
re
ct
io
n
ε i

j
;s

ec
on

d
an

d
th
ird

ro
ws

:
so
lid

re
d
lin

es
=

st
re
ss

co
m
po
ne

nt
s
of

de
te
rm

in
is
tic

m
at
er
ia
lm

od
el
σ

k
k
,σ

ij
,d

as
he
d
bl
ue

lin
es

=
st
re
ss

co
m
po
ne

nt
s
of

A
N
N

m
at
er
ia
l

m
od
el
σ

k
k
,σ

A
N

N
ij

(i
,j
,k

=
1,

2,
3;
i
6=
j)

54



0
0.

5
1

1.
3

−
0.

120

0.
12

s
[-]

ε11,ε12[-]

0
0.

5
1

1.
3

−
0.

120

0.
12

s
[-]

ε22,ε23[-]

0
0.

5
1

1.
3

−
0.

120

0.
12

s
[-]

ε33,ε31[-]

ε k
k

ε i
j

0
0.

5
1

1.
3

−
806
·1

09

s
[-]

σ33,σANN
33[

N
m2]

0
0.

5
1

1.
3

−
806
·1

09

s
[-]

σ33,σANN
33[

N
m2]

0
0.

5
1

1.
3

−
806
·1

09

s
[-]

σ33,σANN
33[

N
m2]

σ
k

k

σ
A

N
N

k
k

0
0.

5
1

1.
3

−
0.

50

0.
51

1.
5
·1

08

s
[-]

σ12,σANN
12[

N
m2]

0
0.

5
1

1.
3

−
2

−
101
·1

08

s
[-]

σ23,σANN
23[

N
m2]

0
0.

5
1

1.
3

−
1

−
0.

50

0.
51
·1

08

s
[-]

σ31,σANN
31[

N
m2]

σ
ij

σ
A

N
N

ij

Fi
g.

3.
12

:B
ut
te
rfl
y
lo
ad

ca
se

ov
er

ps
eu
do

-t
im

e
s
(a
ll
pe
rt
in
en

t
di
sp
la
ce
m
en

t
co
m
po
ne

nt
s)
;fi

rs
t
ro
w:

so
lid

re
d
lin

es
=

st
ra
in

co
m
po
ne

nt
s

in
no

rm
al

di
re
ct
io
n
ε k

k
,d

as
he
d
bl
ue

lin
es

=
st
ra
in

co
m
po
ne

nt
s
in

sh
ea
r
di
re
ct
io
n
ε i

j
;s

ec
on

d
an

d
th
ird

ro
ws

:
so
lid

re
d
lin

es
=

st
re
ss

co
m
po
ne

nt
s
of

de
te
rm

in
is
tic

m
at
er
ia
lm

od
el
σ

k
k
,σ

ij
,d

as
he
d
bl
ue

lin
es

=
st
re
ss

co
m
po
ne

nt
s
of

A
N
N

m
at
er
ia
lm

od
el
σ

k
k
,

σ
A

N
N

ij
(i
,j
,k

=
1,

2,
3;
i
6=
j)

55



0
0.

1
0.

2
0.

3
0123
·1

0−
1

s
[-]

ε11,ε12[-]

0
0.

1
0.

2
0.

3
−

1.
5

−
1

−
0.

50

·1
0−

1

s
[-]

ε22,ε23[-]

0
0.

1
0.

2
0.

3
−

1.
5

−
1

−
0.

50

·1
0−

1

s
[-]

ε33,ε31[-]

ε k
k

ε i
j

0
0.

1
0.

2
0.

3
0246
·1

08

s
[-]

σ11,σANN
11[

N
m2]

0
0.

1
0.

2
0.

3
−

2024
·1

08

s
[-]

σ22,σANN
22[

N
m2]

0
0.

1
0.

2
0.

3
−

1.
50

1.
53
·1

08

s
[-]

σ33,σANN
33[

N
m2]

σ
k

k

σ
A

N
N

k
k

0
0.

1
0.

2
0.

3
−

5

−
2.

50

2.
55
·1

06

s
[-]

σ12,σANN
12[

N
m2]

0
0.

1
0.

2
0.

3
−

0.
50

1.
53
·1

06

s
[-]

σ23,σANN
23[

N
m2]

0
0.

1
0.

2
0.

3
−

7.
5
−

6

−
3036
·1

05

s
[-]

σ31,σANN
31[

N
m2]

σ
ij

σ
A

N
N

ij

Fi
g.

3.
13

:U
ni
ax
ia
lt
en

si
le

st
ra
in

lo
ad

ca
se

in
1-
di
re
ct
io
n
ov
er

ps
eu
do

-t
im

e
s;

fir
st

ro
w:

so
lid

re
d
lin

es
=

st
ra
in

co
m
po
ne

nt
s
in

no
rm

al
di
re
ct
io
n
ε k

k
,
da

sh
ed

bl
ue

lin
es

=
st
ra
in

co
m
po
ne

nt
s
in

sh
ea
r
di
re
ct
io
n
ε i

j
;
se
co
nd

an
d
th
ird

ro
ws

:
so
lid

re
d
lin

es
=

st
re
ss

co
m
po
ne

nt
s
of

de
te
rm

in
is
tic

m
at
er
ia
lm

od
el
σ

k
k
,σ

ij
,d

as
he
d
bl
ue

lin
es

=
st
re
ss

co
m
po
ne

nt
s
of

A
N
N

m
at
er
ia
lm

od
el
σ

k
k
,σ

A
N

N
ij

(i
,j
,k

=
1,

2,
3;
i
6=
j)

56



0
2

4
5.

5
·1

0−
3

−
10135
·1

0−
3

s
[-]

ε11,ε12[-]

0
2

4
5.

5
·1

0−
3

−
2

−
101
·1

0−
3

s
[-]

ε22,ε23[-]

0
2

4
5.

5
·1

0−
3

−
2

−
101
·1

0−
3

s
[-]

ε33,ε31[-]

ε k
k

ε i
j

0
2

4
5.

5
·1

0−
3

−
0.

5012
2.

5
·1

08

s
[-]

σ11,σANN
11[

N
m2]

0
2

4
5.

5
·1

0−
3

−
0.

50

0.
51
·1

08

s
[-]

σ22,σANN
22[

N
m2]

0
2

4
5.

5
·1

0−
3

−
0.

20

0.
51

1.
5

1.
7
·1

08

s
[-]

σ33,σANN
33[

N
m2]

σ
k

k

σ
A

N
N

k
k

0
2

4
5.

5
·1

0−
3

−
20246
·1

06

s
[-]

σ12,σANN
12[

N
m2]

0
2

4
5.

5
·1

0−
3

−
0.

50

0.
51

1.
5
·1

06

s
[-]

σ23,σANN
23[

N
m2]

0
2

4
5.

5
·1

0−
3

−
4

−
3

−
2

−
10

0.
5
·1

05

s
[-]

σ31,σANN
31[

N
m2]

σ
ij

σ
A

N
N

ij

Fi
g.

3.
14

:U
ni
ax
ia
l
te
ns
ile

st
ra
in

lo
ad

ca
se

in
1-
di
re
ct
io
n
ov
er

ps
eu
do

-t
im

e
s
wi
th

go
od

pe
rf
or
m
an

ce
in

th
e
σ

11
st
re
ss

co
m
po
ne

nt
;
fir
st

ro
w:

so
lid

re
d
lin

es
=

st
ra
in

co
m
po
ne

nt
s
in

no
rm

al
di
re
ct
io
n
ε k

k
,d

as
he
d
bl
ue

lin
es

=
st
ra
in

co
m
po
ne

nt
s
in

sh
ea
r
di
re
ct
io
n
ε i

j
;

se
co
nd

an
d
th
ird

ro
ws

:
so
lid

re
d
lin

es
=

st
re
ss

co
m
po
ne

nt
s
of

de
te
rm

in
is
tic

m
at
er
ia
lm

od
el
σ

k
k
,σ

ij
,d

as
he
d
bl
ue

lin
es

=
st
re
ss

co
m
po
ne

nt
s
of

A
N
N

m
at
er
ia
lm

od
el
σ

k
k
,σ

A
N

N
ij

(i
,j
,k

=
1,

2,
3;
i
6=
j)

57



3.4 Implementation of the ANN in a VUMAT

Finally the ANN material model was implemented in a user defined material sub-
routine for ABAQUS/Explicit, a so called VUMAT, which must be written in
FORTRAN. This subroutine is called once per time step and per integration point.
Its parameters used in the implementation of a VUMAT with an ANN based material
model are depicted in fig. 3.15. Essentially, ABAQUS/Explicit provides strain
increments and thus the strain state and the VUMAT has to evaluate the stress
increment from these strain increments, using the old stress state and suitable state
variables. Although the ANN can be exported by MATLAB as FORTRAN code,
suitable interfaces between the variables provided and required by ABAQUS and
the data used by the ANN must be provided. For the present work this was done
in a prototype implementation that uses static structures for processing and storing
state variables such as the window integrals defined in eqn. (3.15).
As before the resulting strain components are sampled over a pseudo-time and the
necessary window integrals are calculated. Two buffers storing the strain compo-
nents and the window integrals over the pseudo-time are necessary for calculating the
window integrals and deducing the previous window integral values. The processed
strain signals act as inputs for the ANN to produce the resulting stress responses,
which are written into the output file by ABAQUS (cp. fig. 3.16).
In the course of the implementation several problems occurred. According to [1] the
stable time increment ∆tstable for ABAQUS explicit analyses is estimated with the
equation

∆t <∆tstable = Lmin
cd

(3.18)

cd =
√
E

ρ

1−ν
(1 +ν)(1−2ν) , (3.19)

where Lmin is the smallest linear element dimension in the mesh, cd the dilatation
wave speed, calculated with the Young’s modulus E, the material density ρ and
the Poisson ratio ν. The initial stable time increment, estimated over the linear
elastic material properties, equals ∆tstable = 8.3×10−5 s for the single element test
and might decrease during the calculation at, e.g., spurious peaks in the material
behaviour. The used time increment ∆t should be smaller than the stable time
increment ∆tstable, to make sure that a correct result is found.
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Fig. 3.15: VUMAT implementation of the ANN based material model.

The maximum window length of the window integrals was chosen to be lw = 0.1 and
the previous window integrals were deduced at a pseudo-time of n−0.01, if n stands
for the current state. These two parameters and the stable time increment influence
the required size of the buffers. The buffer containing the window integrals has a
size of 7000 points and the buffer containing the strain components a size of 20000
points for each stored component, due to the small stable time increment and the
large window length. Since the buffers have to be updated during every step of an
analysis their sizes directly influence the calculation time.
It should be noted that even if the time increment is constant over the whole
calculation, the pseudo-time steps are not, since they are norms of the total strain
components and the material behaviour is nonlinear. Moreover if, due to an in-
stability or other errors, one or several strain components show an unwanted spike
or noisy behaviour over time, the pseudo-time would increase strongly leading to a
severe alteration of the input signals.
In addition an interface problem occurred. In the ABAQUS manual [1] it is stated
that ”[...] the Green-Naghdi stress rate is used in VUMAT. However, the stress
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rate used for built-in material models [...] used with solid (coninuum) elements in
Abaqus/Explicit employ the Jaumann stress rate.”. The stress measure conjugates to
a certain strain measure. This leads to the effect that the strain components deduced
from the strain increments in the VUMAT differ from the strain components written
into the ABAQUS output file if non-linear geometry calculation is activated (cp. fig.
3.16). Since the ANN were trained with inputs deduced from the strain components
evaluated with a built in material model (Jaumann stress), this training is not fully
appropriate for the behaviour they are supposed to reproduce (Green-Naghdi stress).
Accordingly, it would be necessary to employ the Green-Naghdi stress during the
generation of the training data.
If displacements were not applied in all directions, the stress response in the free
direction would naturally be zero. However, the high error of the ANN for zero-
stress responses caused either wrong results or the termination of the calculation
due to element distortion.

Fig. 3.16: Comparison of ε11 from the ABAQUS output-file and from the strain increment
directly in the VUMAT
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4 Discussion and Conclusion

The goal of the present master’s thesis was to develop an ANN which can re-
produce elasto-plastic material behaviour with mixed hardening properties, ductile
damage and finally failure and is capable of handling finite strain. The necessary
data for training, validation and testing were obtained by FEM-calculations with
ABAQUS/Explicit using a single three dimensional solid element, capturing a wide
spread of material responses in six-dimensional stress space.
The search for a proper ANN architecture and suitable parameters lead to six sepa-
rate ANN with current strain components and current and previous window integrals
of strains as the 42 inputs. The inputs over the pseudo-time s are transformed with
a linear transformation function onto the interval [−0.5,0.5] and processed through
four hidden layers with 25 neurons each, using the tan-sigmoid function as transfer
function. The output layer uses a purely linear transfer function and produces, after
the retransformation, the stress response of one stress component. The learning
algorithm in MATLAB was chosen to be the back propagation algorithm, combined
with the mean squared error and the Levenberg-Marquardt algorithm. From the
1544 load cases 287 and 279 load cases were used for the training of the normal and
shear component ANN, respectively, with 70% of the samples used for training.
If we look at the results we can see that cyclic and random behaviour was captured
best, whereas simple tension and pressure load cases show larger errors. Moreover
zero-stress responses could not be reproduced well, with oscillations of considerable
magnitude occurring. Typically, the results of the shear stress components show
a lower error and often a better generalization behaviour than the normal stress
components. Since the stress components were deduced from separate ANN their
performance also varies for the same load case.
Since the goal was to represent the material behaviour as fully as possible, ranging
from uniaxial tensile strain to complex butterfly behaviour, a mayor question was
with which load cases the ANN are to be trained. After testing several different
approaches a basic set of all load cases extended with load cases showing bad
performance was chosen. Since shakedown behaviour was represented quite well,
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without being in the training set, it was not included. However, the question
remains, if certain material behaviour might be over- or under-presented. Since,
especially, cyclic material behaviour was captured well, the number of load cases in
the training set could probably be reduced, while, e.g., an increase in uniaxial tensile
load cases could lead to better performance in the corresponding responses. It is
also possible to add weight factors to ensure that certain ”important” load cases are
actually learned by the ANN.
However, a more detailed choice of training load cases is also limited by other
influencing factors. One problem was the high calculation time for training an
ANN. In the final stage the calculation time was approximately 20 hours for one
ANN, which could be reduced to a few hours by setting a threshold for the target
value of the error gradient.
Looking, e.g., at figs. 3.10 and 3.11 we can see that the stress responses of the
ANN don’t reliably follow the desired stress curves. This could be an indicator for
underfitting. Conversely the oscillating stress responses during, e.g., tensile load
cases or desired zero-stress responses indicate overfitting. Comparing the errors of
cyclic load cases and tensile load cases from two different resulting ANN for the σ11

stress components with the same settings we get the following square roots of the
mean errors for the cyclic load cases: 6.753×108, 2.533×109 and for the tensile load
cases: 1.076×108, 7.048×107. We can see that the error of the cyclic load case is
small, when the error of the tensile load case is large and the opposite way around.
This leads to the conclusion that the responses, which should be reproduced, differ
excessively from each other and that conflicts in the training data may exist.
To obtain ANN with better performance several steps may be taken. One step
would be to perform a more thorough data mining, to select the training data in
more detail, limiting the number of different sets of load cases which should be
reproduced and or estimating data conflicts.
It may be possible to train different ANN for different load cases, but then the
networks would not be applicable for general purpose application, since the load
case must be known a priori or for every combination of load case, where linear
combination of load cases is not an option, a particular ANN would be needed.
Another option is to combine different ANN representing different material be-
haviour. Suitable identifiers must be trained to switch between elastic, plastic and
damage behaviour. Certain parameters like the accumulated plastic strain (ε̄p = 0 for
elasticity, ε̄p 6= 0 for plasticity), the damage indicator (wD = 1 for onset of damage,
else 0 ≤ wD < 1) or the damage variable (D = 1 for failure, else 0 ≤ D < 1) could
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be used. An identifier trained to catch the onset of material failure would solve
the problem of the zero-stress response after failure. Either the stress component
could be set to a certain value or the element deletion option in ABAQUS could
remove the element. However, for load cases with ”free” displacement in certain
direction leading to zero-stress responses the solution is not so easy. In a mesh
used in an FEM calculation the displacement of a node is ”free” in the sense that
no displacement is directly applied. However, constraints and boundary conditions
might lead to non-zero stress responses. Therefore the stress component of a ”free”
direction can not simply be set to zero.
In general it seems possible to train ANN reproducing complex material behaviour.
However, several problems occurred, which could be solved by splitting up the ANN
in smaller ANN reproducing only a certain part of the material behaviour, e.g.,
damage, performing closer data mining, excluding certain load cases from the ANN,
which then unfortunately can’t capture the full material behaviour or choosing the
training data more carefully. These alterations can also make it necessary to adapt
the architecture of the ANN. Another important issue is to reduce the computational
time. To address this problem it might be useful to look further into different
learning algorithms.
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