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Abstract:
The gravitational field in four dimensional spacetime may be described using free initial
data on a pair of intersecting null hypersurfaces swept out by the future null normal
geodesics to their two dimensional intersection surface.

A Poisson bracket on such initial data was calculated in [32][33]. The expressions
obtained are tractable but still rather intricate, and it is not at all obvious how this
bracket might be quantized. A change of variables that simplifies the bracket would thus
be desirable.

The bracket does have the feature (reflecting causality) that it is non-zero only between
data lying on the same generating null geodesic, and that it only depends on the data
on this generator. That is, the data on each generator forms an essentially autonomous
Poisson algebra. The limited role of the two transverse dimensions suggests that the
Poisson algebra would remain substantially the same in a symmetry reduced model in
which the transverse dimensions have been eliminated.

Here this expectation is confirmed in the context of cylindrically symmetric gravita-
tional waves. Specifically, the Poisson algebra of the metric variables in free null initial
data for cylindrically symmetric gravitational waves is obtained, and it is found to be es-
sentially identical to the bracket on the metric sector of the initial data found in [32][33].
Then, using the integrability of the dynamics of cylindrically symmetric gravitational
waves an explicit transformation from metric data on a null hypersurface to so called
“monodromy data”, a one parameter family of unimodular matrices, is obtained. The
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Poisson brackets of the monodromy data are then obtained from that of the null data.
These have been obtained earlier via another route in [24] in a slightly more restricted con-
text. They are quite simple, and what is more, a unique preferred quantization is known
[24]. It is also demonstrated that the transformation to monodromy data is invertible.

Aside from these original results extensive background material is presented, including
a review of the Geroch group of symmetries in cylindrically symmetrical gravity.

The original results presented here are joint work with Michael Reisenberger.
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Introduction

Canonical formulations of general relativity most commonly use initial data on spacelike
hypersurfaces to parametrise the space of solutions of Einstein’s equations. In spite of the
advantage of comforting familiarity and similarity to successful approaches in other field
theories, the complexity of the resulting structure—in particular the non-linearity of the
constraints on such initial data—led to difficulties when trying to pass from the Poisson
structure to an algebra of quantum operators. Some, but not all, of these difficulties have
been overcome with the discovery of loop quantum gravity [34][37].

An alternative approach is to formulate canonical general relativity using initial data
on piecewise null hypersurfaces. One advantage of null initial data is that it is easy
to solve all the constraints explicitly and identify free initial data (see discussion and
references in [32][33]). In [32][33], Reisenberger calculated the Poisson bracket on free
initial data on a certain class of piecewise null hypersurfaces. More precisely he found a
Poisson bracket on the free data which reproduces Peierls’ form of the Poisson bracket on a
“sufficiently rich family of sufficiently nice” observables of the spacetime geometry [32][33].
The initial data surface used is the union of a pair of intersecting null hypersurfaces swept
out by the future null normal geodesics (called the generators) emerging from the two
dimensional intersection surface. The data consist of some quantities specified only on
the intersection surface, and the main datum, which describes the induced metric on the
null hypersurfaces. The generators are both tangent and normal to the hypersurfaces
they sweep out. Therefore, in a suitable chart, the induced 3-metric consists of a 2-
metric of signature (+,+) and zeros. The determinant of this 2-metric can be used as
a coordinate along the generators and the main part of the initial data becomes the
unimodular 2-metric, the 2-metric divided by the square root of its determinant.

The Poisson bracket between these metric data obtained in [32][33] is elegant, but
nevertheless somewhat intricate, and it is by no means obvious how it might be quantized.
Can it be simplified by a change of variables, or be put into a form that has already been
studied? In the present work steps are taken in this direction.

The Poisson brackets vanish between data at points that cannot be connected by
a causal curve, a fact that reflects causality — one cannot act on fields outside one’s
lightcone. On a null hypersurface this means that it vanishes unless both points lie on
the same generator. Furthermore, the bracket only depends on data on that generator.
The Poisson algebra thus essentially decomposes into autonomous Poisson algebras on
each generator. (This is not quite correct because the brackets are distributions over the
coordinates transverse to the generators, so there is no Poisson algebra literally on only
one generator, one always has to work with a congruence of generators.)

This observation gave birth to the idea of the present work: If the transverse dimen-
sions have such a limited role then perhaps in a symmetry reduced model in which the
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dependence of the fields on the transverse coordinates has been eliminated the Poisson
brackets would be essentially the same, but could be studied more easily.

This turns out to be true. In the present work we study cylindrically symmetric gravi-
tational waves, that is vacuum gravitational fields that are invariant under rotation about
a symmetry axis and under translations along the symmetry axis. More technically, they
have two commuting, hypersurface orthogonal Killing fields, a feature which is captured
in the little acronym EG2CHSKF (Einstein gravity with two commuting, hypersurface
orthogonal Killing fields). One of the Killing fields vanishes on the symmetry axis, and
we will assume that the metric is regular on the axis. Cylindrically symmetric fields can
be described as fields on a two dimensional spacetime, obtained from the full spacetime
by factoring the Killing orbits. Initial data can be set on a null hypersurface consisting
of the Killing orbit of a null geodesic emerging from a point on the symmetry axis at
a given instant of time. In the two dimensional quotient spacetime this hypersurface is
represented by a null curve emerging from the timelike worldline of the symmetry axis.
All the generators have been collapsed to one.

By restricting the Einstein-Hilbert action functional to cylindrically symmetric fields
an action is obtained that correctly describes the dynamics of these symmetric fields, and
defines Poisson brackets. We evaluate the Poisson bracket on the main (metric) free null
initial datum in the symmetry reduced theory by a procedure similar to that employed
in [32][33], and obtain a bracket that is virtually identical to that found in [32][33] for
the full theory. Specifically, the bracket on the lone generator in the symmetry reduced
theory is just the bracket of the full theory stripped from the transverse delta function.

Cylindrically symmetric gravitational waves and EG2CHSKF more generally, has been
studied intensively in the past because the class of solutions is large enough to include
many interesting situations and yet the field equations are solvable. If one of the Killing
fields is timelike, the solutions are the stationary and axially symmetric gravitational
fields. If both are spacelike and one Killing field vanishes on a spacelike curve then they
correspond to colliding gravitational plane waves or Gowdy universes. Finally, if both
Killing fields are spacelike and one vanishes on a timelike curve, then the solutions are
the cylindrical gravitational waves [18]. For a related subject, the Hamiltonian treatment
of plane waves in terms of evolution along a null direction see [4].

The field equations can be solved basically because cylindrically symmetric gravita-
tional waves (or indeed any class of spacetimes described EG2CHSKF) form an integrable
system. Roughly speaking, this means that there exist sufficiently many Poisson commut-
ing conserved quantities to form a complete set of canonical momenta. This is associated
with the existence of a very large symmetry group, called the Geroch group, on the space
of solutions. Indeed this group is transitive — it can be used to map any solution to any
other [9][17].

Integrability makes the theory unusually manageable and also makes available several
useful tools from the general theory of integrable systems [2]. Using precisely such tools
Korotkin and Samtleben (KS) were able to construct in [24] a quantization of cylindrically
symmetric gravitational waves that are asymptotically flat in a suitable sense. To arrive
at this result they calculate the Poisson bracket on spacelike initial data. Then they
define two one complex parameter families of conserved quantities T±(w) in terms of
these data and compute their Poisson brackets. They note that the resulting Poisson
algebra is a modification of a semi-classical Yangian double, a Poisson algebra which has
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a well known quantization. Incorporating the modification at the quantum level they
are able to define a *-algebra that quantizes the Poisson algebra of the T±(w). Finally,
they argue that the T±(w) constitute complete data to describe the field, as follows: A
so called monodromy matrix M(w) may be constructed from the T±(w). For real w
the monodromy matrix M(w) is closely related to the metric on the symmetry axis at
an instant of time determined by w — M is its Kramer-Neugebauer transform, which
corresponds to a metric not regular on the axis. Korotkin and Samtleben argue that the
monodromy matrix M determines the field on all of spacetime.

The monodromy matrix is a very interesting object. Classically KS find that it has a
simple, closed and elegant Poisson algebra, and the quantization of the T±(w) determines
a similarly closed and elegant quantization of this Poisson algebra. But what makes it
especially interesting for null canonical gravity is that it may be defined without reference
to what happens at infinity. Although it is defined in [21] in terms of the asymptotic
quantities T±(w), this is not necessary. In particular, suppose N is a compact null line
segment in the symmetry reduced spacetime that meets the worldline of the symmetry
axis. (This worldline forms a boundary of the symmetry reduced spacetime which consists
of only the radial and time dimensions of the original spacetime.) Then data on N
determines the metric and its Kramer-Neugebauer transform on the symmetry axis at
times lying within the domain of dependence of N . It thus determines M(w) on an
interval W of real values of w. This is important because in general for gravitational
fields, without Killing vectors there usually are no smooth and infinitely extended null
hypersurfaces, because the generators inevitably form caustics, and so it is convenient to
formulate the canonical theory in terms of data on compact, truncated null hypersurfaces.

Here an explicit expression for M(w) in terms of initial data on N is found, and it is
proved that the null initial data may in turn be recovered fromM(w) on the interval W.
Thus what has been found is a (non-local, non-linear) change of variables: M(w) on W
can be used to describe the gravitational field in the domain of dependence of N . The
Poisson bracket ofM(w) is then calculated from the Poisson brackets on the data on N .
As expected it coincides with the bracket found in [24], but our derivation is somewhat
more widely applicable; since it involves only fields in the domain of dependence of N it
is not necessary to assume asymptotic flatness or anything else about the behaviour at
infinity.

Finally, as a further check, the matrices Tu/d(w), the analogues of T±(w) in [24], are
defined in terms of null initial data in the asymptotically flat context, and their Poisson
bracket is calculated from that on the null initial data. Again the result of [24] is recovered.

This work is divided into two main parts. The first part, encompassing chapters 1 to
4, is devoted to reviewing the existing theory of cylindrically symmetrical gravitational
waves. In chapter 1, starting with Einstein’s equations, we derive an action for general
relativity. In Chapter 2, the independence of the fields of two of the coordinates is used
to perform a Kaluza-Klein reduction and introduce two interrelated formulations of the
theory as a non-linear sigma model. Chapter 3 covers the basics of symplectic geometry,
integrability, the role of initial data and symmetries. Chapter 4 introduces the auxiliary
linear system which will be the basis of all our work. In Chapter 4 it is used to construct
an infinite dimensional algebra of symmetries of the theory — the algebra of generators
of the Geroch group. Another part of the chapter is dedicated to the analytic properties
of solutions to the linear system.
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In the second part, consisting of chapter 5, we calculate the symplectic 2-form on null
initial data and derive a Poisson bracket. This expression is shown to be analogous to the
bracket obtained in [32]. A change of variables to the monodromy matrix is proposed and
the inverse of this transformation is shown to exist. We then show that our bracket yields
the same Poisson algebras for the conserved quantities and the monodromy matrix found
in [24]. This provides a cross-check and indicates that the expressions for the bracket on
null initial data in [33] and in this work are correct.

The original results presented in this thesis are the result of a collaboration with
Michael Reisenberger. I am very grateful for all his feedback, comments, explanations
and contributions. Also, I thank Herbert Balasin from the Technische Universität Wien
for making possible my stay in Uruguay and initiating our collaboration.
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Part I
The state of the art of Einstein gravity with

two commuting, hypersurface orthogonal, spacelike

Killing fields
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Chapter 1

The Action of General Relativity

In this section we derive the Einstein-Hilbert-Hawking action for general relativity in-
cluding the boundary term starting from Einstein’s equations for vacuum. This action
will be the starting point for section 2.1, where we will use two coordinate independences
induced by two commuting Killing fields in order to reduce the action integral and obtain
an effectively 2-dimensional theory.

Einstein’s equations in vacuum are

Gµν = 0 with Gµν = Rµν −
1

2
gµνR being the Einstein tensor. (1.1)

Rµν and R are the Ricci tensor and scalar respectively.
What we are looking for, is a functional S[g] of the metric tensor such that

δgS[g] = ∫
D
δg[εg L(g)] = c∫

D
εgG

µνδgµν with c = const. (1.2)

because then the requirement that the action be stationary under a variation δgµν will
yield the field equations (1.1). D ⊂ M is some domain in spacetime M such that ∂D
is spacelike, εg is the volume element associated with the metric g (see also appendix
E). The variation δgµν is required to vanish on the boundary ∂M of M , hence also the
derivative in any direction along the boundary, but not necessarily the derivative in the
direction normal to the boundary. This last fact will produce the “Hawking”-boundary
term.

Let us pause for a moment to look at the variation from the viewpoint of differential
geometry. We may view δg as a derivative operator acting on functionals on the space C of
field configurations, which in this case of a field theory is an infinite-dimensional manifold,
a function space or “function manifold”. “Functions” on C are called functionals and
taking derivatives of them is called functional derivation. The application of a tangent
vector field such as δg on a functional F [g] on C at an element g0 ∈ C may be realized by
first evaluating the functional along the integral curve g(λ) through g0 = g(λ)∣λ=0 of the
vector field δg with parameter λ and then taking the ordinary derivative with respect to
the parameter λ of F [g(λ)] at the value λ = 0.

(δgF )[g0] =
d

dλ
∣
λ=0

F [g(λ)], g(0) = g0.
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When dealing with the relation of the equations of motion to the action functional the
exact form of δg is not so important. Only some general characteristics of δg such as the
vanishing on the boundary of some domain are fixed. In these situations it is sometimes
useful to imagine a curve g(λ) in C having the desired properties and then applying
d
dλ

∣
λ=λ0

.

What about the object δg(x)µν? For a fixed point x and a fixed pair of numbers (µ, ν)
with 0 ≤ µ, ν ≤ 3, gµν(x) can also be regarded as a functional on C - it maps an element g
of C to its value of the component (µ, ν) at the point x. For different points x and values
of (µ, ν) we get a family of functionals, parametrized by x,µ and ν. δg(x)µν is just the
result of applying the tangent vector δ to the functional g(x)µν . The set of functionals

{g(x)µν ∣ x ∈M, 0 ≤ µ, ν ≤ 3}

may be viewed as a basis set of functionals. Any other functional F may be expressed as
a function of elements of this set.

Let us continue with (1.2). We start the computation trying to invert the chain rule in
order to find the appropriate L(g). What we certainly have to know, is the variation of
the volume element

δεg = δ
√

det gµν dx
0 ∧ ... ∧ dx3 =

δ det gµν

2
√

det gµν
dx0 ∧ ... ∧ dx3.

gµν is a symmetric matrix and can thus be brought to diagonal form by a similarity
transformation g = A ⋅ diag(λ1, ..., λ4) ⋅A−1, λi being the eigenvalues. The determinant of
a matrix doesn’t change under similarity transformations and so is equal to the product
of the eigenvalues. We get

δ det g = δ exp ln det g = δ exp ln∏
i

λi = δ exp∑
i

lnλi =

= ∑
i

δλi
λi

det g = gµνδgµν det g

⇒ δεg =
1

2
εgg

µνδgµν .

The variation δ is defined on the metric with two covariant indices. The variation of the
inverse, contravariant metric can be computed in the following way:

δδµν = 0 = δ(gµρgρν) = δg
µρgρν + g

µρδgρν ⇒ δgµν = −gµρgνσδgρσ . (1.3)

Considering (1.1) and (1.3) we obtain

δ(εgR) = εg (
1

2
gµνR −Rσρg

σµgρν) δgµν + εgg
µνδRµν = −εgG

µνδgµν + εgg
µνδRµν .

The variation of εgR gives us the desired Einstein tensor, but also one term we don’t
want, so we may consider taking the Ricci scalar R(g) as one part of the Lagrangian
density L and adding another term compensating the variation of the Ricci tensor. To
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this end we will further differentiate δRµν . As explained before, we imagine a curve g(λ)
giving us a λ-dependent family of Ricci tensors R(λ)µν . In this picture

δRµν =
d

dλ
∣
λ=0

[∇ρC(λ)ρµν −∇νC(λ)ρµρ +C(λ)ρρσC(λ)σµν −C(λ)ρνσC(λ)σµρ],

where we have expressed the covariant derivative ∇λ associated to g(λ) using the covariant
derivative ∇ associated to g(0) and the corresponding difference tensor

C(λ)µνρ =
1

2
g(λ)µσ[∇νg(λ)σρ +∇ρg(λ)σν −∇σg(λ)ρν]. (1.4)

At λ = 0 they vanish because the covariant derivative ∇ annihilates g(0). Consequently
the derivatives of the terms quadratic in Cµ

ρσ will vanish because the one factor not
differentiated will always be 0 when evaluated at λ = 0. A similar thing happens when
d
dλ acts on the first factor in (1.4). The terms ∇g evaluated at λ = 0 all vanish. In δC we
are left with terms of the form ∇δg yielding

gµνδRµν =
1

2
gµνgρσ∇ρ(∇µδgσν +∇νδgµσ −∇σδgµν)−

−
1

2
gµνgρσ∇ν(∇µδgρσ +∇ρδgσµ −∇σδgρµ) =

=∇ρ∇µδgρµ −∇
2δgµµ = ∇ρ(∇

µδgρµ −∇
ρδgµµ).

This divergence gives us a boundary term, that is we have

δ∫
D
εgR = −∫

D
εgδgµνG

µν + ∫
∂D
εhnρ(∇

µδgρµ −∇
ρδgµµ), (1.5)

where h is the induced metric on the boundary, εh the corresponding volume form and nµ
the unit normal to the boundary implying gµν = hµν − nµnν . In the following we assume
that on the boundary in δg = δh − δnn − nδn the terms δn and δh are each 0.
The integrand in the boundary term of (1.5) simplifies as follows:

nρ(hµν − nµnν)(∇νδgρµ −∇ρδgνµ) =

= nρhµν(∇νδgρµ −∇ρδgνµ) = −n
ρhµν∇ρδgνµ (1.6)

since δg = 0 on the boundary and therefore also the derivative hµν∇νδgρσ along it.
The boundary is a 3-dimensional submanifold of spacetime. A natural measure for how
much it is “curved” in the surrounding spacetime is the exterior curvature

Kµν = h
ρ
µ ∇ρnν .

It measures the lack of parallel transport of the normal vector nµ as one moves along the
boundary.
The variation of the curvature scalar is

δK = δ(hµν∇µnν) = −h
µνδCρ

µνnρ =
1
2h

µνnρ∇
ρδgµν .

The variation of εh also vanishes

δεh =
1

2
εhh

µνδhµν .
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Taking a look at (1.6) and (1.5), we finally arrive at the complete action functional

S =
κ

2 ∫D
εg R + κ∫

∂D
εh K. (1.7)

The factor κ
2 is convention. We keep it to allow comparison of our results e.g. with the

ones obtained in [32], [33] and [24] at different stages.
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Chapter 2

The action of vacuum Einstein
gravity with two commuting,
hypersurface orthogonal, spacelike
Killing fields (EG2CHSKF)

In this chapter we restrict our attention to the class of spacetimes, which respect the
symmetries corresponding to two commuting, hypersurface orthogonal, spacelike Killing
fields. Using the method of Kaluza-Klein dimensional reduction we adapt the quantities
in the action (1.7) to these symmetries. The resulting reduced action will be defined on
the subspace of solutions to Einstein’s equations, which respect our symmetries. In order
not to leave this subspace when considering variations of the fields, variations will also
have to respect these symmetries.

2.1 Dimensional reduction

2.1.1 General procedure

Kaluza and Klein developed a technique, which in the situation of independence of the
metric of a coordinate xn+1 or equivalently existence of a Killing field ∂

∂xn−1 , effectively
reduces the dimension of the problem by interpreting the (n+1)-dimensional vielbein

ğµν = η̆ăb̆ĕ
ă
µ ĕ

b̆
ν with ĕ ă

µ ∈ GL(n + 1) , η = diag(−1,1, ...,1) (2.1)

as a compound of an n-dimensional vielbein e a
µ , two scalar fields ψ and φ, and a 1-form

Aµ. The factorization (2.1) is locally invariant under

ĕ ă
µ ↦ Lă

b̆
ĕ b̆
µ , L ∈ SO(1, n + 1), (2.2)

because SO(1, n + 1) is the isometry group of η̆. We deal with spacelike Killing vectors.
Thus, by exploiting the freedom of local Lorentz transformations and thereby partially
fixing the corresponding gauge, we can achieve that ĕ 1

µ is the timelike basis element,

ĕ 1
µ , ..., ĕ

n
µ are perpendicular to the spacelike Killing vector ∂

∂xn+1 while ĕ n+1
µ has a com-

ponent in the direction of the Killing vector. The (n + 1)-dimensional vielbein can then

15



be related to the n-dimensional vielbein e a
µ and the fields ψ,φ,A by

⎛
⎜
⎜
⎜
⎝

ĕ 1
1 ⋯ ĕ n

1 ĕ n+1
1

⋮ ⋱ ⋮ ⋮

ĕ 1
n ⋯ ĕ n

n ĕ n+1
n

0 ⋯ 0 ĕ n+1
n+1

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

ψe 1
1 ⋯ ψe n

1 φA1

⋮ ⋱ ⋮ ⋮

ψe 1
n ⋯ ψe n

n φAn
0 ⋯ 0 φ

⎞
⎟
⎟
⎟
⎠

. (2.3)

Note that this equation determines φ completely to φ = ĕ n+1
n+1 , while it determines ψ and

e a
µ only up to multiplication by a scalar factor and its inverse respectively

ψe a
µ = ψςς−1e a

µ = (ψς)(ς−1e a
µ ) = ψ′e′ aµ . (2.4)

Here and in the following we use the following index convention: Latin indices from the
beginning of the alphabet (a, b, c, ...) will range from 1 to n, if they carry a ˘ (ă, b̆, c̆, ...)
they will range from 1 to n+1. In general quantities carrying a ˘ will be (n+1)-dimensional
while those without a ˘ will be n-dimensional. Accordingly, spacetime indices µ, ν, ... on
(n + 1)-dimensional (n-dimensional) quantities will range from 1 to n + 1 (1 to n).

The question now arises if the fields ψ, φ and Aµ really transform as scalar fields and a
one form respectively. We consider an infinitesimal coordinate transformation generated
by a tangent vector field ξ̆µ(x) independent of xn+1. The infinitesimal change of the
vielbein is given by the Lie derivative along ξ̆

δĕ ă
µ = Lξ̆ ĕ

ă
µ = ξ̆ν ∂̆ν ĕ

ă
µ + ∂̆µξ̆

ν ĕ ă
ν .

Denoting the first n components of ξ̆µ by ξµ and using (2.3), we have

δĕ =
⎛

⎝

δψe a
µ + ψδe a

µ δφAµ + φδAµ

0 δφ

⎞

⎠
,

Lξ̆ ĕ =
⎛

⎝

ξν∂νψe a
µ + ψLξ e a

µ ξν∂νφAµ + φ(LξAµ + ∂µξn+1)

0 ξν∂νφ

⎞

⎠
.

Comparing the two expressions, we see that ψ and φ really transform as scalars and Aµ
transforms like a U(1) gauge potential in electrodynamics, ∂µξn+1 plays the role of the
u(1)-valued one-form, the difference between two equivalent gauge potentials. Below we
will see that only the field strength tensor F = dA, which is independent of this gauge,
will appear in the action integral.

For the metric ğµν = η̆ăb̆ĕ
ă
µ ĕ

b̆
ν we get

ğµν = (
ψ2gµν + φ2AµAν φ2Aµ

φ2Aν φ2 ), ğµν = (
ψ−2gµν −ψ−2Aµ

−ψ−2Aν φ−2 + ψ−2A2 ). (2.5)

The task now is to reexpress the quantities built out of the (n + 1)-dimensional vielbein
appearing in the action integral in terms of the n-dimensional metric and the new fields
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Aµ, φ, ψ. We will apply the Kaluza-Klein reduction twice, once for each of our commut-
ing Killing fields, ending up with a new, symmetry reduced model on a 2-dimensional
Lorentzian spacetime. In the sequel we show the necessary calculations to reduce the
action from n + 1 to n dimensions as indicated in (2.3). The main quantity we have to
reexpress is the Ricci scalar. The others will behave quite simply. An introduction to the
vielbein formalism we will use is provided in appendix A.

According to (2.3)
ĕa = ψea, ĕn+1 = φA + φdxn+1. (2.6)

The corresponding covielbein is

Ĕa = ψ
−1Ea −Aaψ

−1∂n+1, Ĕn+1 = φ−1∂n+1. (2.7)

We will frequently use the notation

∂a ∶= E
µ
a∂µ and more generally va ∶= E

µ
a vµ (2.8)

for a covector vµ. Following (A.3), we compute

dĕa = ψdea + ∂bψe
b ∧ ea = ψdea + ψ−2∂bψĕ

b ∧ ĕa, (2.9)

dĕn+1 = ∂aφe
a ∧A +

1

2
φFabe

a ∧ eb + ∂aφe
a ∧ dxn+1 = (2.10)

= ψ−1φ−1∂aφĕ
a ∧ ĕn+1 +

1

2
ψ−2φFabĕ

a ∧ ĕb. (2.11)

(2.12)

Since
dĕn+1 = ĕa ∧ ω̆n+1

a,

we can read off

ω̆n+1
a = ψ

−1φ−1∂aφĕ
n+1 +

1

2
ψ−2φFabĕ

b,

ω̆an+1 = − ψ−1φ−1∂aφĕn+1 −
1

2
ψ−2φF a

bĕ
b.

This implies that

dĕa = ĕb ∧ ω̆ab + ĕ
n+1 ∧ ω̆an+1 = ĕ

b ∧ ω̆ab −
1

2
ψ−2φF a

bĕ
n+1 ∧ ĕb.

But by (2.9)
dĕa = ĕb ∧ ωab + ψ

−2∂bψĕ
b ∧ ĕa. (2.13)

Thus because of the antisymmetry condition (A.5), we have

ω̆ab = ω
a
b + ∂bψψ

−2ĕa − ∂aψψ−2ĕb −
1

2
ψ−2φF a

bĕ
n+1.
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Now that ω̆ has been found we may begin to evaluate the Riemann tensor by computing

dω̆ab = dω
a
b − ψ

−4∂cψ∂bψĕ
c ∧ ĕa + ψ−4∂aψ∂cψĕ

c ∧ ĕb+

+ ψ−3∂c∂bψĕ
c ∧ ĕa − ψ−3∂c∂

aψĕc ∧ ĕb + ψ
−1∂bψde

a − ψ−1∂aψdeb−

− 1
4ψ

−4φ2F a
bFcdĕ

c ∧ ĕd + ĕn+1 ∧ ĕc (...)abc,

dω̆an+1 = (ψ−3φ−1∂bψ∂
aφ − ψ−2φ−1∂b∂

aφ)ĕb ∧ ĕn+1 + ĕ
d ∧ ĕf (...)adf .

The Riemann tensor is

R̆a
b = dω̆

a
b + ω̆

a
c ∧ ω̆

c
b + ω̆

a
n+1 ∧ ω̆

n+1
b =

= dωab − ψ
−4∂cψ(∂bψĕ

c ∧ ĕa − ∂aψĕc ∧ ĕb) + ψ
−3(∂c∂bψĕ

c ∧ ĕa−

− ∂c∂
aψĕc ∧ ĕb) + ψ

−2(∂bψĕ
c ∧ ωac − ∂

aψĕc ∧ ωbc) −
1
4ψ

−4φ2F a
bFcdĕ

c ∧ ĕd+

+ ωac ∧ ω
c
b + ψ

−2ωac ∧ (ĕc∂bψ − ĕb∂
cψ) + ψ−2(∂cψĕ

a − ∂aψĕc) ∧ ω
c
b+

+ ψ−4(∂cψĕ
a − ∂aψĕc) ∧ (∂bψĕ

c − ∂cψĕb) −
1
4φ

2ψ−4F a
dFbcĕ

d ∧ ĕc+

+ ĕn+1 ∧ (...)ab ,

R̆a
n+1 = dω̆

a
n+1 + ω̆

a
b ∧ ω̆

b
n+1 =

= (ψ−3φ−1∂bψ∂
aφ − ψ−2φ−1∂b∂

aφ)ĕb ∧ ĕn+1 − ψ
−1φ−1∂bφωab ∧ ĕ

n+1−

− ψ−3φ−1∂bψ∂
bφĕa ∧ ĕn+1 + ψ−3φ−1∂aψ∂bφĕb ∧ ĕ

n+1+

+ 1
4ψ

−4φ2F a
bF

b
cĕ
n+1 ∧ ĕc + ĕb ∧ ĕc(...)abc .

The Ricci tensor is

R̆b = Ĕa ⌟ R̆
a
b + Ĕn+1 ⌟ R̆

n+1
b =

= ψ−1Ea ⌟ dω
a
b − ψ

−4∂cψ(∂bψ(1 − n)ĕ
c − ∂cψĕb + ∂bψĕ

c)+

+ ψ−3∂c∂bψĕ
c(1 − n) − ψ−3∂a∂

aψĕb + ψ
−3∂c∂bψĕ

c − ψ−3∂bψ(Ea ⌟ ω
a
c)ĕ

c−

− ψ−2∂aψωba + ψ
−3∂aψ(Ea ⌟ ωbc)ĕ

c + ψ−1Ea ⌟ (ωac ∧ ω
c
b)+

+ (Ea ⌟ ω
a
c)ψ

−3(ĕc∂bψ − ĕb∂
cψ) + ωbcψ

−2∂cψ + n∂cψψ
−2ωcb−

− ∂cψψ
−2ωcb − (Ea ⌟ ω

c
b)ψ

−3(∂cψĕ
a − ∂aψĕc)−

− 1
2ψ

−4φ2F a
bFadĕ

d + ψ−4∂cψ(n − 1)(∂bψĕ
c − ∂cψĕb)−

− ψ−4(∂cψĕ
a − ∂aψĕc)(∂bψδ

c
a − ∂

cψηab)+

+ 1
4φ

2ψ−4F a
dFbaĕ

d + ψ−3φ−1∂cψ∂bφĕ
c − ψ−2φ−1∂c∂bφĕ

c−

− ψ−1φ−1∂cφω
c
b −

− ψ−3φ−1∂cψ∂
cφĕb −

1
4ψ

−4φ2FbcF
c
dĕ
d + ∂bψψ

−3φ−1∂cφĕc =

= ψ−1Ea ⌟ dω
a
b + ψ

−4∂cψ∂bψ2(n − 2)ĕc − (n − 2)ψ−4∂cψ∂
cψĕb+

+ ψ−3∂c∂bψĕ
c(2 − n) − ψ−3∂a∂

aψĕb + ψ
−1Ea ⌟ (ωac ∧ ω

c
b)−

− (Ea ⌟ ω
a
c)ψ

−3ĕb∂
cψ + (n − 1)ψ−2∂cψω

c
b − (Ea ⌟ ω

c
b)ψ

−3∂cψĕ
a+

+ ψ−4∂cψ∂
cψĕb + ψ

−3φ−1∂cψ∂bφĕ
c − ψ−2φ−1∂c∂bφĕ

c − ψ−1φ−1∂cφω
c
b −

− ψ−3φ−1∂cψ∂
cφĕb + ψ

−3φ−1∂bψ∂cφĕ
c − 1

2ψ
−4φ2F a

bFadĕ
d,

R̆n+1 = Ĕa ⌟ R̆
a
n+1 =

= (2 − n)ψ−3φ−1∂aψ∂
aφĕn+1 − ψ−2φ−1∂c∂

cφĕn+1−

− ψ−2φ−1∂bφ(Ea ⌟ ω
a
b)ĕ

n+1 − 1
4ψ

−4φ2F a
bF

b
aĕ
n+1.
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Finally, the Ricci scalar is

R̆ = Ĕb ⌟ R̆
b + Ĕn+1 ⌟ R̆

n+1 =

= ψ−2R − ψ−4∂bψ∂
bψ((n − 2)2 − n) + 2(1 − n)ψ−3∂c∂

cψ+

+ 2(1 − n)ψ−3∂cψ(Ea ⌟ ω
ac) − 2ψ−2φ−1∂b∂

bφ−

− 2ψ−2φ−1∂cφ(Ea ⌟ ω
ac)+

+ 2(2 − n)ψ−3φ−1∂cψ∂
cφ − 1

4ψ
−4φ2F abFab.

Considering (A.2), we have for an arbitrary covector vµ

∇avµ = E
ν
a∇ν(vbe

b
µ) =E

ν
a(∂νvbe

b
µ − vbω

b
νce

c
µ) =

=(∂avb − (Ea ⌟ ω
c
b)vc)e

b
µ = (∇avb)e

b
µ.

The volume element simply transforms as

εğ =
√
−det ğ dx1 ∧ ... ∧ dxn+1 = det ĕ dx1 ∧ ... ∧ dxn+1 = ψnφ εg ∧ dx

n+1,

eventually yielding

κ

2 ∫D
εğR̆ =

κ

2 ∫D
εg ∧ dx

n+1ψnφ{ψ−2R − ψ−4∂bψ∂
bψ((n − 2)2 − n)+

+2(1 − n)ψ−3∇c∇
cψ − 2ψ−2φ−1∇b∇

bφ + 2(2 − n)ψ−3φ−1∂cψ∂
cφ −

1

4
ψ−4φ2F abFab}. (2.14)

Note that in Fab we do not have to substitute partial derivatives by covariant derivatives
in order to get a covariant quantity because Fab = Eb⌟(Ea⌟dA) and the exterior derivative
d is independent of the connection used.

Let us now look at the behaviour of K under the reduction:
For the induced metric h̆ on the boundary ofD we have h̆µν = ğµν+n̆µn̆ν with ğµνn̆µn̆ν = −1.
It follows that n̆µ∇̆νn̆µ =

1
2∇̆ν(n̆µn̆µ) =

1
2∇̆ν(−1) = 0 and hence

K̆ = h̆µν∇̆µn̆ν = ğ
µν∇̆µn̆ν = ğ

ăb̆∇̆ăn̆b̆ = η̆
ăb̆(∂̆ăn̆b̆ + Ĕă ⌟ ω̆

c̆
b̆
n̆c̆).

We assume that n̆ is orthogonal to the dimension being reduced, that is n̆n+1 =
∂

∂xn+1⌟n̆ = 0.
Note that

η̆ab = ηab, ∂n+1n̆b̆ = 0, ∂̆a = Ĕ
µ
a∂µ = e

b
µĔ

µ
a∂b = ψ

−1∂a, n̆a = na. (2.15)

The last equation comes from the fact that if n̆ = n̆aĕa has norm −1 w.r.t. ğ then
n = naea = n̆aea has norm −1 w.r.t. g:

−1 = ğµνn̆µn̆ν = η
abĔµ

a Ĕ
ν
b ĕ

c
µĕ
d
νn̆cn̆d = η

abEµ
aE

ν
b e

c
µe
d
νn̆cn̆d = g

µνnµnν .
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Now let us reduce

K̆ = ψ−1ηab∂anb − Ĕa ⌟ (ωba + ψ−2∂aψĕb − ψ−2∂bψĕa)nb+

+ Ĕn+1 ⌟ (ψ−1φ−1∂bφĕn+1)nb

= ψ−1∂ana − ψ
−1Ea ⌟ ω

banb − ψ
−2∂aψna + nψ

−2∂aψna+ (2.16)

+ ψ−1φ−1∂aφna =

= ψ−1∇ana + (n − 1)ψ−2na∂
aψ + ψ−1φ−1na∂

aφ,

κ∫
∂D
εh̆K̆ =

= κ∫
∂D
εh ∧ dx

n+1{ψn−2φ∇ana + (n − 1)ψn−3φna∂
aψ + ψn−2na∂

aφ}. (2.17)

If we integrate the third and the fourth term in the right hand side of (2.14) partially,
the boundary terms exactly cancel the second and third term of (2.17). We are thus left
with

κ

2 ∫D
εğR̆ + κ∫

∂D
εh̆K̆ =

=
κ

2 ∫D
εg ∧ dx

n+1{ψn−2φR − ψn−4φ(∂ψ)2((n − 2)2 − n)−

− 2(1 − n)∂a(ψ
n−3φ)∂aψ + 2∂aψ

n−2∂aφ + 2(2 − n)ψn−3∂cψ∂
cφ−

−
1

4
ψn−4φ3F abFab} + κ∫

∂D
εh ∧ dx

n+1ψn−2φK = (2.18)

=
κ

2 ∫D
εg ∧ dx

n+1{ψn−2φR + ψn−4φ(∂ψ)2(n2 − 3n + 2)+

+ 2(n − 1)ψn−3∂aφ∂
aψ −

1

4
ψn−4φ3F abFab} + κ∫

∂D
εh ∧ dx

n+1ψn−2φK. (2.19)

We are going to reduce the dimension twice, so in the second step we will have to reduce
terms involving inner products in the action, in particular Făb̆F

ăb̆ and ∂ăs∂ăt, s and t
being scalars. These can be expanded in terms of lower dimensional fields via identities
much like those of (2.15):

Făb̆Fc̆d̆η
ăc̆ηb̆d̆ = ψ−4FabFcdη

acηbd + 2ψ−2φ−2Fan+1Fbn+1η
ab

and ∂ăs∂b̆tη
ăb̆ = ψ−2∂as∂btη

ab. (2.20)

We have now reduced all the quantities we need. The coordinate xn+1 can simply be
integrated over its domain because the integrand is independent of it. This integration
gives a constant factor, which we will drop, since it cannot influence the equations of
motion.

2.1.2 Applying the reduction process twice

In our situation of Einstein gravity with two commuting, hypersurface orthogonal, space-
like Killing fields the coordinates and the vierbein may be chosen so that the vierbein is
independent of two of the coordinates (see e.g. chapter 7.1. of [39]):
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Commutativity of the two Killing fields, let’s call them ξ and χ, implies by Frobenius’s
theorem that coordinates xµ can be found such that

ξ =
∂

∂x2
and χ =

∂

∂x3
. (2.21)

The Killing fields are assumed to be spacelike, which is why we called these coordinates
x2 and x3, and none of them x0, which we want to reserve for a timelike coordinate.
Using these coordinates, Killing’s equation takes the simple form

0 = Lξgµν =
∂

∂x2
gµν , 0 = Lχgµν =

∂

∂x3
gµν , (2.22)

which tells us that the metric is independent of x2 and x3. We are in a situation where
we may apply the Kaluza Klein reduction technique twice to reduce first from 4 to 3
and then from 3 to 2 dimensions. Each time we will choose the functions ψ and φ in a
convenient way.

In the first step (n = 3) we choose ψ−1 = φ and call φ “∆1/2”, and we name the one-form
Bµ, that is

(4)e ă
µ = (

∆−1/2 (3)e a
µ ∆1/2Bµ

0 ∆1/2 ).

We get

(3)S =
κ

2 ∫(3)D
ε(3)g{

(3)R − 1
2∆−2(∂∆)2 − 1

4∆2F (B)2} − κ∫
∂(3)D

ε(3)h
(3)K, (2.23)

where we have denoted the induced metric and exterior curvature on the 2-dimensional
boundary ∂(3)D of (3)D by (3)h and (3)K respectively.

Now we invoke the hypersurface orthogonality of the Killing fields. This implies that
the coordinates x2 and x3 may be chosen to be constant on hypersurfaces orthogonal to
the Killing fields, and thus ∂x0 and ∂x1 are orthogonal to ∂x2 and ∂x3 . In other words, the
metric is block diagonal, having two 2 × 2 blocks. The vierbein may then also be chosen
to be block diagonal in the same way, with the consequence that B0 = 0 = B1 and hence
F01 = 0.

Remark: The requirement of hypersurface orthogonality may also be derived from two
alternative conditions:

� One of the Killing fields vanishes at one point in spacetime.

� Rµν = 0.

See again [39] for details.

In the second step (n = 2) we call ψ “λ” and φ “ρ”, and the Kaluza-Klein one-form will
be denoted by Aµ. Thus

(3)e ă
µ = (

λ (2)e a
µ ρAµ

0 ρ
).
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For the treatment of the terms in (2.23) involving the fields ∆ and Bµ let’s take a look
at (2.20) and remember F01 = 0 = F10. This together with (2.19) now tells us that

(2)S =
κ

2 ∫(2)D
ε(2)gρ{

(2)R + 2λ−1∂aλρ
−1∂aρ − 1

4λ
−2ρ2F (A)2 − 1

2∆−2(∂∆)2+

− 1
2ρ

−2∆2(∂B2)
2} + κ∫

∂(2)D
ε(2)hρK. (2.24)

Again for hypersurfaceorthogonality A must be zero. The 4-dimensional vielbein now has
the form

(4)e ă
µ =

⎛
⎜
⎝

∆−1/2λ (2)e a
ν 0 0

0 ∆−1/2ρ ∆1/2B2

0 0 ∆1/2

⎞
⎟
⎠

(2.25)

and the metric is

gµν =
⎛
⎜
⎝

∆−1λ2 (2)gστ 0 0
0 ρ2∆−1 +∆(B2)

2 ∆B2

0 ∆B2 ∆

⎞
⎟
⎠
. (2.26)

The field ∆ is the squared norm of the Killing vector ∂
∂x3 , ∆B2 is the inner product of

the two Killing vectors, and ρdx2dx3 is the area element on the Killing orbits. Note that
λ is not determined by the metric, only the combination λ2 (2)g is. Later, in subsection
2.3.3, we will see that one of the field equations requires ρ to be a harmonic function with
respect to λ2 (2)g (or (2)g, it makes no difference). Thus if ρ and it’s harmonic conjugate
are taken as coordinates on the two dimensional quotient manifold then λ2 (2)gµν becomes
proportional to diag(−1,1). Setting (2)gµν equal to diag(−1,1) then gives an unambiguous
value to λ, determined by the 4-metric.

This parametrization (2.26) of the metric is well adapted to the cylindrically symmetric
context if we take x2 to be the azimuthal angle θ, and x3 the axial coordinate z. We
will demand of our cylindrically symmetric spacetime that it contains the symmetry axis
ρ = 0, and that the metric is regular at the axis in a certain coordinate system X, Y , Z,
T about the axis constructed from the fields.

The three spatial coordinates X, Y , Z are constructed from ρ, θ, z just like Cartesian
coordinates are constructed from cylindrical coordinates in Euclidean space: X = ρ cos θ,
Y = ρ sin θ, and Z = z. (The fact that ρdθdz is the area element on the Killing orbits
makes ρ a curved spacetime analog of the cylindrical radius.) The time coordinate T is
then chosen so that the equal T hypersurfaces are orthogonal to the curves of constant
X,Y,Z. That this is possible is a consequence of the field equations, which, as already
mentioned, require ρ to be harmonic on the quotient spacetime. The requirement is
fulfilled if and only if T is the harmonic conjugate ρ̃ of ρ, or a function of it only.

The components of the metric in these coordinates are easily worked out1 and they
are regular at the axis iff ∆, B2, λ, and (2)g are regular functions of xµ and, as ρ→ 0

1

ds2 = −∆−1λ2dT 2 +∆−1λ2(cos2 θdX2 + sin2 θdY 2 + 2 cos θ sin θdXdY )

+(∆−1 +∆
B2

2

ρ2
)(sin2 θdX2 + cos2 θdY 2 − 2 cos θ sin θdXdY )

+∆dz2 + 2∆
B2

ρ
(cos θdY dZ − sin θdXdZ).
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1. ∆ has a non-zero limit,

2. B2/ρ→ 0,

3. λ→ 1 (if (2)g is set to diag(−1,1) in the coordinates ρ, ρ̃).

Condition 2. is equivalent to requiering that that B2 and its gradient dB2 on the quotient
spacetime vanish at ρ = 0.

2.2 The Kramer-Neugebauer transformation

EG2CHSKF possesses a remarkable discrete symmetry, the symmetry under the so called
Kramer-Neugebauer transformation. Because of this symmetry the solutions may be
obtained as stationary points of two distinct actions, an action S and another action S̃
obtained from S by replacing the fields by their Kramer-Neugebauer transforms. The
two actions thus have exactly the same form in their respective field variables, but these
are defined differently in terms of the 4-metric.

Here the symmetry will be demonstrated, basically following [9], by obtaining the two
actions. We begin with S̃ which is identical to the action (2)S given in (2.24), but will
be expressed in terms of different variables. Taking into account that the hypothesis of
hypersurface orthogonality implies that F (A) = 0, the action (2)S becomes

(2)S =
κ

2 ∫(2)D
ε(2)gρ{

(2)R − 1
2∆−2(∂∆)2 − 1

2ρ
−2∆2(∂B2)

2+

+ 2λ−1∂aλρ
−1∂aρ} + κ∫

∂(2)D
ε(2)hρK, (2.27)

Suppose we rewrite the two terms −1
2∆−2(∂∆)2 + 2λ−1∂aλρ−1∂aρ, in terms of ∆̃ = ρ/∆.

The result is

−1
2∆̃−2(∂∆̃)2 + ∆̃−1∂a∆̃ρ

−1∂aρ − 1
2ρ

−2(∂ρ)2 + 2λ−1∂aλρ
−1∂aρ.

It is clear that the second and third terms can be absorbed in the fourth by a suitable
redefinition of λ, yielding an expression of the same form as we started with: With
λ̃ = ∆̃1/2ρ−1/4λ = ∆−1/2ρ1/4λ one obtains −1

2∆̃−2(∂∆̃)2 + 2λ̃−1∂aλ̃ρ−1∂aρ. The action can
thus be rewritten as

S̃ =
κ

2 ∫(2)D
ε(2)gρ{

(2)R − 1
2∆̃−2(∂∆̃)2 − 1

2∆̃−2(∂B̃)2+

+ 2λ̃−1∂aλ̃ρ
−1∂aρ} + κ∫

∂(2)D
ε(2)hρK. (2.28)

Here B2 has been named B̃, and the action has been named S̃, because it involves the ∼

fields. It is precisely the action (2)S though.
Now we find another action equivalent to (2)S. Define the field B “conjugate” to B̃

by the differential equation
∂aB = ρ−1∆2∂bB̃εab, (2.29)

or equivalently
∆−1∂aB = ∆̃−1∂bB̃εab. (2.30)
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This equation has solutions because by virtue of the equation of motion for B̃, easily
obtained from (2.28),

∇a(ρ∆̃−2∂aB̃) = 0.

Equation (2.29) defines B up to the addition of a constant. We will leave this constant
undetermined, as the results obtained are valid for any value.

Note that ∆−2(∂B)2 = ∆̃−2∂bB̃∂dB̃εabεcdηac = −∆̃−2(∂B̃)2 so (2)S written in terms of
B, ∆ and λ takes almost the same form as the same action written in terms of B̃, ∆̃,
and λ̃:

(2)S =
κ

2 ∫(2)D
ε(2)gρ{

(2)R − 1
2∆−2(∂∆)2 + 1

2∆−2(∂B)2+

+ 2λ−1∂aλρ
−1∂aρ} + κ∫

∂(2)D
ε(2)hρK. (2.31)

It differs in form only in the sign in front of the B term.
Now consider variations of (2)S. If only B is varied then

δ (2)S = −
κ

2 ∫(2)D
ε(2)g∇a(ρ∆−2∂aB)δB +

κ

2 ∫∂(2)D
ε(2)hnaρ∆−2∂aBδB, (2.32)

where n is the normal 1-form to the boundary. At solutions (2)S is stationary with
respect to variations that leave the original fields in the expression (2.27) invariant on
the boundary. In particular, B̃ = B2 must be invariant on the boundary. This does not
imply that B is invariant on the boundary. Thus under the variations in question the
boundary term in δB does not in general vanish.

But suppose we add (κ2 times)

Bεab∇a∂bB̃ = 0,

to the Lagrangean density. It is identically zero, so it does not change the action at all.
This term may be expressed as

∇a(Bε
ab∂bB̃) − ∂aBε

ab∂bB̃

or, using (2.29),
∇a(ρ∆−2B∂aB) − ρ∆−2∂aB∂

aB.

Therefore
(2)S = S +

κ

2 ∫∂(2)D
ε(2)hnaρ∆−2B∂aB,

with

S =
κ

2 ∫(2)D
ε(2)gρ{

(2)R − 1
2∆−2(∂∆)2 − 1

2∆−2(∂B)2+

+ 2λ̃−1∂aλρ
−1∂aρ} + κ∫

∂(2)D
ε(2)hρK. (2.33)

Notice that S is of precisely the same form as S̃, even the B term now has the same sign.
The variation of S under a variation B is minus the variation (2)S given in (2.32). The
variation of the boundary term is

κ

2 ∫∂(2)D
ε(2)hnaρ∆−2(δB∂aB +B∂aδB) =

κ

2 ∫∂(2)D
ε(2)h{naρ∆−2δB∂aB + naBε

ab∂bδB̃}.
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When δB̃ = 0 on the boundary then also naεab∂bδB̃ = 0 since this is a tangential derivative
along the boundary of δB̃. Thus, when B̃ is fixed on the boundary the variation of the
boundary term precisely cancels the boundary term in the variation of S. It follows that
(2)S = S̃ is stationary under variations of B that fix B̃ on the boundary iff ∇a(ρ∆−2δaB) =

0, or equivalently iff S is stationary under variations B that fix B on the boundary.
There are thus two actions for the system, S and S̃, where both S̃ and the corre-

sponding boundary conditions on the variations are obtained from the action S and its
associated boundary conditions by the substitution

λ↦λ̃ = λρ1/4∆−1/2,

∆↦∆̃ =
ρ

∆
, (2.34)

B ↦B̃, with ∆̃−1∂aB̃ = ∆−1∂bBεab.

The space of solutions is therefore invariant under this transformation. This is the
Kramer-Neugebauer (KN) transformation. Note that it is its own inverse.

The KN transformation will play an important role in chapter 4 when we derive the
Geroch group of symmetries of cylindrically symmetric gravitational waves. By itself it
is not, however, a symmetry of the space of such waves, because it does not preserve the
regularity of the metric on the symmetry axis: From the discussion after equation (2.26)
we know that regularity requires that ∆ have a non-zero limit on the axis ρ = 0. But in
the KN transformed spacetime ∆ is replaced by ∆̃ = ρ/∆ which tends to 0 if ∆ had a
non-zero limit. The KN transform of a metric regular on the axis is not regular there.

2.3 Formulation of EG2CHSKF as a model on a sym-

metric space

2.3.1 The action

EG2CHSKF can be reformulated as a σ-model; it can be described by a field taking values
in the symmetric space G/H = SL(2)/SO(2) and some further fields. Equivalently, it
can be described in terms of a field taking values in the group G = SL(2), and additional
fields, with an H = SO(2) gauge invariance. There are two ways to do this, using SL(2)
valued fields V and Ṽ related by the Kramer-Neugebauer transformation.

We will begin with Ṽ defined to be the lower right 2 × 2 block of the vierbein (2.25)
divided by the square root of its determinant:

Ṽ ∶= (
(
ρ
∆)1/2 (∆

ρ )
1/2B2

0 (∆
ρ )

1/2 ) = (
∆̃1/2 ∆̃−1/2B̃

0 ∆̃−1/2 ) . (2.35)

Ṽ is a matrix of determinant 1, and thus an element of SL(2). It is upper triangular,
but this is only a convenient choice. General relativity formulated in terms of a vierbein
has an SO(3,1) gauge invariance, corresponding to a local Lorentz transformation of the
vierbein. Since the internal index is the second index in the vierbein (2.25) local Lorentz
transformations are realized by left multiplication by the corresponding SO(3,1) matrix.
In the process of dimensional reduction this gauge freedom was fixed, and so we ended
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up with a definite vierbein (2.25), however it is useful to restore an SO(2) subgroup of
the local Lorentz gauge freedom, the subgroup that rotates in the tangent plane to the
Killing orbits. It acts as

Ṽ ↦ Ṽh, (2.36)

with h ∈ SO(2). With this additional gauge freedom Ṽ can be any SL(2) element.
Put another way, any SL(2) matrix can be put into upper triangular form by right
multiplication with a suitable SO(2) element h. Then ∆̃ and B̃ can be read off the
triangular matrix.

There is a unique representative of the form (2.35) in each equivalence class of SL(2)
matrices under the gauge action (2.36) of SO(2): It is easy to check that there are pre-
cisely two upper triangular matrices in each equivalence class, differing only by overall
sign. If one also requires that the 11 matrix element be positive, as is the case in (2.35),
then the matrix becomes unique. (This matrix element cannot vanish since the determi-
nant is 1.) Thus the fields ∆̃ and B̃ are uniquely defined by the gauge equivalence class
of Ṽ , and of course vice versa. The gauge equivalence classes, which are the elements of
SL(2)/SO(2), thus represent the fields.

The KN dual of Ṽ ,

V ∶= (
∆1/2 ∆−1/2B

0 ∆−1/2 ), (2.37)

and its SO(2) equivalence class represent the fields ∆ and B in the same manner.
In the context of cylindrically symmetric gravitational waves the description in terms

of V has an important advantage over that in terms of Ṽ : The 4-metric on the axis is
regular iff V and λ are regular on the axis. Regularity of the 4-metric requires regularity
of ∆, λ and B2, and moreover that B2 and its gradient vanishes on the axis ρ = 0. (This
is discussed after (2.26).) The conditions on B2 = B̃ can be satisfied by setting B2 = 0 at
a point on the axis iff B and ∆ are regular at the axis, as can be seen immediately from
(2.29). This demonstrates the claim.

For this reason we will usually use the field V . Let us express S in terms V (and ρ, λ,
and the metric (2)g on the symmetry reduced spacetime). We need

Jµ ∶= V
−1∂µV =

1

2
(

∆−1∂µ∆ 2∆−1∂µB
0 −∆−1∂µ∆

), (2.38)

and its symmetric part is

Pµ ∶=
1

2
(

∆−1∂µ∆ ∆−1∂µB
∆−1∂µB −∆−1∂µ∆

).

We denote its antisymmetric part by Qµ. Note that

Tr(P 2) =
1

2
(∆−2(∂∆)2 +∆−2(∂B)2) =

1

2
((ρ−1∂ρ −∆−1∂∆)2 +∆2ρ−2(∂B2)

2) (2.39)
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so (2.24) can be cast in the form

S =
κ

2 ∫(2)D
ε(2)gρ{

(2)R − Tr(P 2) + 2λ−1∂aλρ
−1∂aρ} + κ∫

∂(2)D
ε(2)hρK . (2.40)

Obviously

S̃ =
κ

2 ∫(2)D
ε(2)gρ{

(2)R − Tr(P̃ 2) + 2λ̃−1∂aλ̃ρ
−1∂aρ} + κ∫

∂(2)D
ε(2)hρK. (2.41)

By construction these actions ought to depend only on the gauge equivalence class of
V or Ṽ . Let us verify this directly. Under the gauge action (2.36)

P = 1
2(J + J

T ) ↦1
2
[h−1V−1d(Vh) + d(hTVT )V−1Th−1T ] = (2.42)

= 1
2h

−1(J + JT )h + 1
2(h

−1dh + dh−1h) = h−1Ph, (2.43)

since SO(2) elements satisfy h−1 = hT . It follows that Tr(P 2) is unaffected by the SO(2)
action.

2.3.2 Facts about symmetric space models

It is useful to understand the σ model structure found in the last subsection from a wider
perspective. Here we present some facts about symmetric spaces and theories modelled on
them, as well as the notation that we will use to describe both. For details on Lie-groups
and Lie-algebras see [38][29][5].

The definition of a globally symmetric space has a priori nothing to do with the quotient
of a Lie group by a compact subgroup. But as shown in chapter 4 of [19] the two concepts
are closely related and basically equivalent. We are confronted with the quotient of the
non-compact Lie group G = SL(2,R) by the compact subgroup H = SO(2,R) and by
the above equivalence, this quotient may be called a symmetric space as e.g. in [20]. We
denote the Lie algebra of G by g, that of H by h and the orthogonal2 complement of h
in g by k

h⊕ k = g, (2.44)

⊕ denoting the direct sum of vector spaces. The projections onto the subspaces k and h
will be denoted by ∣

k
and ∣

h
respectively or sometimes simply by subscripts k and h. What

about the various commutators of elements of the subspaces? Since H is a subgroup, h
is a Lie subalgebra and so [h,h] ∈ h.

As explained in [19], a maximal compact subgroup H of a semisimple Lie Group G
can be characterised as the fixed points of an involutive3 automorphism η on G called
Cartan involution,

H = {h ∈ G ∣ η(h) = h}

It should always be clear from the context whether we talk about η = diag(−1,1...1) or
this involution η and this double use of the symbol η sticks best with the conventions of
our most important references.

2Orthogonal with respect to the Cartan-Killing form given by the trace of the adjoint representation.
3Involutive means η2 = id.
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Since η is an automorphism η(id) = id, id being the identity element of the group.
Consequently the differential of η at id maps g (linearly) to g. We use the same symbol
η for this differential map on g. It is an automorphism of g since

etη(A)+tη(B)+ t
2

2 η([A,B])+O(t3)
= η (etA+tB+

t2

2 [A,B]+O(t3)
) = η(etAetB) =

= η(etA)η(etB) = etη(A)etη(B) = etη(A)+tη(B)+ t
2

2 [η(A),η(B)]+O(t3).

Differentiating with respect to t twice and evaluating at t = 0, we get that

η([A,B]) = [η(A), η(B)].

η2 = id and so η can only have the two eigenvalues +1 and −14. The eigenspace for the
eigenvalue +1 (−1) is h (k). For the various commutators we have

η([h,h]) = [η(h), η(h)] = [h,h] ⊂ h,

η([h, k]) = [η(h), η(k)] = −[h, k] ⊂ k, (2.45)

η([k, k]) = [η(k), η(k)] = [k, k] ⊂ h.

Given a Lie group valued field V one may define the Lie algebra valued one-form J =

V−1dV . This is a flat connection because the curvature vanishes:

d ∧ J + J ∧ J = −V−1dVV−1 ∧ dV + V−1dV ∧ V−1dV = 0. (2.46)

It can be decomposed according to (2.44)

Jµ = Pµ +Qµ with Pµ ∈ k, Qµ ∈ h.

Using (2.45) the k and h components of the (vanishing) curvature may be expressed in
terms of Q and P , yielding the equations

∂µPν − ∂νPµ + [Qµ, Pν] − [Qν , Pµ] =0, (2.47)

∂µQν − ∂νQµ + [Qµ,Qν] + [Pµ, Pν] =0. (2.48)

As mentioned above we want to consider fields taking values in the quotient space G/H
or equivalently we want a theory which is (gauge) invariant under the right multiplication
of the G-valued field V(x) by an H-valued field h. How does J transform under V(x) ↦
V(x)h(x)?

V−1dV ↦ h−1V−1(dVh + Vdh) = h−1V−1dVh + h−1dh = h−1Jh + h−1dh.

Note that since η is an automorphism

η(h−1Jh) = η(h−1)η(J)η(h) = h−1η(J)h

4If it had only +1 or −1 and not both it would be the identity map or minus the identity map
respectively.
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so h−1Ph ∈ k and h−1Qh ∈ h. Clearly h−1dh ∈ h, so

P ↦ h−1Ph, (2.49)

Q↦ h−1Qh + h−1dh.

We see that P transforms in the adjoint representation of H, while Q transforms as an
H connection. We can use this connection to construct a covariant derivative

Dµ = ∂µ + adQµ (2.50)

on fields in the adjoint representation. This allows us to rewrite (2.47) as

DµPν −DνPµ = 0.

2.3.3 Equations of motion

We will now derive the equations of motion from the action (2.40)

S =
κ

2 ∫D
εgρ{R − Tr(P 2) + 2λ−1∂aλρ

−1∂aρ} + κ∫
∂(2)D

εhρK

for V , ρ, λ and the metric g (from now on we drop the superscript (2)). We are working
with an adapted action and fields restricted to satisfy the symmetries invoked by the
two Killing fields. Variations of these fields will therefore also belong to a restricted
class satisfying the symmetries. When deriving the equations of motion by considering
corresponding variations of the action, we might miss some equations, which would only
appear if more general variations were considered. A comparison of our equations with
the ones derived in [39] directly from Einstein’s equations without the detour of a reduced
action shows that this is not the case — our set of equations is complete.

We start with a variation δV such that 0 = δVλ = δVρ = δVg, but δVV arbitrary, except
on the boundary where we require it to vanish. This gives

0 = δVS = −κ∫
D
εgρTr{PµδVPν}g

µν =

= −κ∫
D
εgρTr{Pµ(−V

−1δVV−1∂νV + V
−1∂νδV)}g

µν =

= −κ∫
D
εgTr{ − ρJνPµV

−1δV + ρPµJνV
−1δV −∇ν(ρPµ)V

−1δV}gµν =

= κ∫
D
εgTr{(∇µ(ρP

µ) + [Jµ, ρP
µ])V−1δV}.

As explained in chapter 1 and section 2.3.2, for fixed x, δV(x) is a tangent vector in
TV(x)G and V−1(x)δV(x) is its pullback (by the left group action) to TidG = g, the Lie
algebra. Letting x vary V−1δV therefore is a g-valued field. According to g = k ⊕ h we
can consider variations for which V−1δV ∈ k or V−1δV ∈ h. Using the orthogonality of the
inner product Tr and (2.45) we get from the first case (with (2.50))

0 = (∇µ + adQµ)(ρP
µ) =Dµ(ρP

µ) (2.51)
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and from the second case just [Pµ, P µ] = 0 which is an identity. Stationarity with respect
to variations of λ requires

0 = δλS = κ∫
D
εg∂µ (

δλ

λ
)∂µρ = −κ∫

D
εg
δλ

λ
∇2ρ.

Thus
∇2ρ = 0. (2.52)

Now we vary w.r.t. the metric gµν . As explained in chapter 1

δg(
κ

2 ∫D
εgR + κ∫

∂M
εhK) = −

κ

2 ∫D
εgρG

µνδgµν

and so

δgS =
κ

2 ∫D
εgρδgµν{ −G

µν + ρ−1∇µ∇νρ − ρ−1gµν∇2ρ + Tr(P µP ν)−

−2λ−1∂µλρ−1∂νρ − 1
2g

µνTr(P 2) + gµνλ−1∂σλρ
−1∂σρ}.

(2.53)

Therefore

Gµν =Tr(P µP ν) − 2λ−1∂(µλρ−1∂ν)ρ − 1
2g

µνTr(P 2) + gµνλ−1∂σλρ
−1∂σρ+

+ρ−1∇µ∇νρ − ρ−1gµν∇2ρ. (2.54)

Finally, varying ρ yields

0 = δρS =
κ

2 ∫D
εg{R − Tr(P 2) − 2∇µ(λ

−1∂µλ)}δρ + κ∫
∂D
εhKδρ, (2.55)

so stationarity with respect to variations of ρ vanishing on the boundary requires

0 = 2∇2 lnλ −R + Tr(P 2) (2.56)

This last equation can be simplified using the freedom to make a local rescaling ψ = λ↦ Ωλ
and a compensating rescaling of the zweibein eµa ↦ Ω−1eµa in the decomposition (2.25)
or, equivalently, a rescaling g ↦ Ω−2g of the 2-metric. Since any 2-metric is conformally
flat this allows us to make g flat, and thus remove the Ricci scalar term in (2.56):
In two dimensions the rescaling of the metric has the effect R ↦ Ω−2(R − 2∇2 ln Ω) on
the Ricci scalar [39], so if Ω is chosen to satisfy R = 2∇2 ln Ω then the Ricci scalar of
the rescaled metric vanishes. (The disappearance of the R term is compensated by the
change in the λ term 2∇2 lnλ ↦ 2∇2 ln(Ωλ) = 2∇2 lnλ + 2∇2 ln Ω.) Furthermore, in two
dimensions the Riemann tensor is proportional to the Ricci scalar: Ra

bµν = Re[µaeν] b, so
the rescaled metric is flat.

All this can be seen quite easily in the null coordinates defined in appendix B. In
these coordinates gµνdxµdxν = 2g+−dx+dx−. That is, g = Ω2η̃ with Ω2 = −2g+−. Rescaling
by the conformal factor Ω reduces the metric to the Minkowski metric. Letting σ ∶= lnλ
the field equation (2.56) becomes

∂+∂−σ = −1
2Tr(P+P−). (2.57)
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The other field equations also take simple forms in null coordinates and with the metric
flat: The +− and −+ components of (2.54) become the identity 0 = 0, the ±± components
are

∂±σ∂±ρ =
1
2ρTr(P±P±) +

1
2∂±∂±ρ. (2.58)

Equation (2.51) takes the form

D+(ρP−) +D−(ρP+) = 0, (2.59)

and equation (2.52) becomes
∂+∂−ρ = 0. (2.60)

This equation can be solved immediately. Its general solution is

ρ(x) =
1

2
(ρ+(x+) − ρ−(x−)). (2.61)

The factor 1
2 as well as the minus sign is convention. We shall also define

ρ̃ ∶=
1

2
(ρ+(x+) + ρ−(x−)). (2.62)

ρ is a harmonic function and ρ̃ is clearly also harmonic, it is the harmonic conjugate to
ρ, defined (up to a constant) by ∇µρ̃ = ε ν

µ ∇νρ: In null coordinates this equation becomes

∂±ρ̃ = ±∂±ρ,

which is solved by (2.62).
More can be said about ρ and ρ̃. We are considering cylindrically symmetric gravita-

tional fields, so there is a symmetry axis where the rotation Killing field has magnitude
zero, and increases linearly in distance away from this axis to lowest order. This axis has
a worldline in the dimensionally reduced spacetime, a timelike curve on which ρ = 0, but
dρ ≠ 0. See the discussion at the end of subsection 2.1.2.

The conjugate function ρ̃ must increase (or decrease) monotonically along this curve.
If it did not there would be a point on the worldline at which the derivative of ρ̃ along
the tangent t to the worldline vanishes: 0 = t⌟dρ̃ = tµε ν

µ ∇νρ. But since t is timelike tµε ν
µ

is linearly independent of t, so this could only be the case if dρ = 0 at this point, which
we require not to be the case. ρ̃ can therefore be used as a time coordinate.

Equation (2.57) is actually not an independent equation, but rather a consequence of
the other equations. In fact only one of the two equations (2.58) is needed. To prove this
claim note first the identity [D∓P±]k = [D±P∓]k:

[∂∓P±]k = [∂∓(V
−1∂±V)]k = [−J∓J± + V

−1∂∓∂±V]k,

so
[∂∓P± − ∂±P∓]k = [J±, J∓]k = [Q±, P∓] − [Q∓, P±],

which establishes the identity.
Now we take the derivative ∂− of the ++ component of (2.58). The derivative of the

left side is ∂−(∂+σ∂+ρ) = ∂−∂+σ∂+ρ by (2.60). That of the right side is

1
2Tr{∂−(ρP+)P+ + ρP+∂−P+} =

= 1
2Tr{D−(ρP+)P+ + ρP+D−P+ − 2ρ[Q−, P+]P+}.
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But the commutator terms have vanishing trace, so, invoking the recently demonstrated
identity, the preceding expression is seen to equal

1
2Tr{D−(ρP+)P+ + ρP+D+P−} =

= 1
2Tr{P+[D−(ρP+) +D+(ρP−)]} −

1
2∂+ρTr{P+P−} =

= −1
2∂+ρTr{P+P−}

by (2.59).
To establish (2.57) it suffices to show that ∂+ρ is non-zero at every point. But if ∂+ρ = 0

at a point p of the reduced spacetime then ∂+ρ = 0 also at the point on the axis with the
same x+, that is where the future directed null geodesic through p cuts the axis world
line. But ∂+ is not parallel to the axis worldline, since it is null instead of timelike, so
this would imply that dρ = 0 there, contrary to our hypothesis. The claim that (2.57) is
not an independent field equation is thus established.

But this is not all. The function ρ+(x+) and the ++ component of (2.58) provide an
expression for ∂+σ which can be integrated along constant x− curves to determine σ up
to a function of x−. Similarly ρ−(x−) and the – component determines σ up to a function
of x+. Our calculation allows us to show that these determinations are consistent, and
thus that both equations (2.58) may be solved.

Exchanging + and − in the calculation we see that (when (2.59) and (2.60) hold) the ∂+
derivative of the −− component of (2.58) is equivalent to (2.57). Thus, if (2.59), (2.60),
and the ++ component of (2.58) hold on all of the 2-d spacetime, and the – component
of (2.58) holds on a constant x+ curve, then all the field equations hold everywhere.

This implies that given a solution of (2.59), the equations (2.58) can be integrated
as follows: The value of σ is fixed at one point. Then the −− component of (2.58) is
integrated along the constant x+ curve through this point. Finally the ++ component is
integrated along all the constant x− curves through the constant x+ curve. This deter-
mines σ and, according to our argument, assures that all the field equations hold. Solving
the field equations thus requires only solving (2.59).
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Chapter 3

Integrability, symmetries and
conserved quantities

In this chapter we try develop an understanding of integrable classical systems and its con-
nection with symmetries and conserved quantities. For finite dimensional systems there is
a well developed theory on integrable systems which allows to exploit the symmetries and
conserved quantities to solve the equations of motion and/or to lay the foundations for a
possible quantization. In the infinite dimensional cases much more effort has to be made
to develop a general theory of integrable systems — even the definition of integrability
cannot simply be adopted. Still, the basic mechanism and ideas seem to be the same as
for finite dimensional systems. The symmetry algebra is related to a subalgebra of the
Poisson algebra, namely to the algebra of conserved charges, which may be a convenient
algebra to quantize. In this chapter we stay at the purely classical level and give the above
mentioned connection between integrability, symmetries and conserved quantities in the
finite dimensional context. From time to time we will hint at a possible generalization to
field theories.

3.1 Basics of symplectic geometry

Symplectic geometry is the framework for Hamiltonian mechanics. An understanding
of the tools that it provides us with is therefore essential. In this section we give a
brief review of symplectic manifolds, Hamiltonian vector fields, and Poisson brackets and
introduce our sign conventions.

A (finite dimensional) symplectic manifold is a pair (M,ω) consisting of a differentiable
manifold M and a closed, nondegenerate1 2-form ω. In any coordinate system we can
compute

detω = det(−ωT ) = (−1)n detωT = (−1)n detω ≠ 0,

with n = dimM . It follows that M has to be even dimensional.
The most prominent example for a symplectic manifold is the cotangent bundle T ∗Q

of some manifold Q. Choosing coordinates qi on Q we can coordinatize the cotangent

1by nondegenerate we mean that at every point x ∈M ω viewed as a linear map from TxM to T ∗x M
has kernel {0}.
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spaces by pi(α) ∶=
∂
∂qi

⌟ α, α ∈ T ∗Q. As a symplectic 2-form ω we take

ω = dqi ∧ dpi = −d(pidq
i) ∈ T (0,2)(T ∗Q).

Since pidqi transforms covariantly under coordinate changes on Q this is well defined.
Locally on any symplectic manifold M it is possible to find coordinates (qi, pi) (a “sym-
plectic chart”) such that

ω = dqi ∧ dpi.

This is the content of Darboux’s theorem (see e.g. [40]). The symplectic form in this
coordinate system is called the canonical 2-form. It can also be written as ω = dθc with
θc ∶= qidpi the canonical 1-form. This construction is only local, still it shows that locally
every symplectic manifold is diffeomorphic to a subset U of a cotangent bundle. Similarly
we can only locally conclude from dω = 0 that ∃θ, a symplectic potential, such that ω = dθ.
Note that the canonical 1-form is only one particular symplectic potential.

At a fixed point x ∈M we can view ω as a linear map from TxM to T ∗x M , X ↦ ωx(X, ⋅).
Since it is nondegenerate its inverse exists — we call it Πx, which can consequently be
viewed as bilinear antisymmetric map from T ∗x M ⊗ T ∗x M to R, i.e.

Π(ω(X, ⋅), ⋅) = id. (3.1)

This can be done at every point to define it on the whole of M .

A locally Hamiltonian vector field X on M is defined by

LXω = 0. (3.2)

For forms the Lie derivative can be expressed by the exterior derivative d and the dual
pairing ⌟ of a vector with a form

LXω =X ⌟ (dω) + d(X ⌟ ω) = d(X ⌟ ω)

since dω = 0. The condition for a vector field X to be locally Hamiltonian is thus

d(X ⌟ ω) = 0.

From this it follows that again locally X ⌟ ω = ω(X, ⋅) = df for some function f . If
X ⌟ ω = df holds globally we say that X = Xf is globally Hamiltonian and generated by
f . In this case we can use the inverse Π to write Xf = Π(df, ⋅).

Now let us consider a one parameter family of transformations ρλ of M depending
differentiably on the parameter λ. We say that it is a canonical transformation if the
associated pull-back ρ∗λ of ω satisfies

ρ∗λω = ω.

The infinitesimal transformation is induced by the vector field ∂λρλ∣λ=0
and the infinites-

imal condition of invariance of ω is then

L∂λρλ∣λ=0
ω = 0. (3.3)
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This is just the condition for this vector field to be locally Hamiltonian. Hamiltonian
vector fields thus correspond to generators of canonical transformations.

For two functions f and g we define their Poisson bracket by

{f, g} ∶= ω(Xf ,Xg) =Xg ⌟ df = Π(dg, df) = −Π(df, dg). (3.4)

Clearly this bracket is antisymmetric.
In a symplectic chart where ω = dqi ∧ dpi we have

Xf ⌟ ω = ((Xf)
i
q

∂

∂qi
+ (Xf)

p
i

∂

∂pi
) ⌟ ω = −(Xf)

p
i dq

i + (Xf)
i
qdpi =

∂f

∂pi
dpi +

∂f

∂qi
dqi

⇒Xf = −
∂f

∂qi
∂

∂pi
+
∂f

∂pi

∂

∂qi

{f, g} =Xg ⌟ df =
∂f

∂qi
∂g

∂pi
−
∂f

∂pi

∂g

∂qi
. (3.5)

This also shows that the Poisson bracket is a bi-derivation and satisfies the Leibniz rule.
Let X and Y be two locally Hamiltonian vector fields. Since L[X,Y ] = [LX , LY ], [X,Y ]

is also locally Hamiltonian. It is even globally Hamiltonian

[X,Y ] ⌟ ω = LX(Y ⌟ ω) − Y ⌟LXω = (3.6)

=X ⌟ d(Y ⌟ ω) + d(X ⌟ (Y ⌟ ω)) = −dω(X,Y ). (3.7)

For two globally Hamiltonian vector fields Xf and Xg generated by f and g respectively
we get

[Xf ,Xg] = −X{f,g}. (3.8)

The Poisson bracket defined in this way satisfies the Jacobi relation:
Using the general formula2 for an (n − 1)-form α and n vector fields X1, ...,Xn (see [26])

dα(X1, ...,Xn) =X[1(α(X2, ...,Xn])) −
n − 1

2
α([X[1,X2],X3, ...,Xn]) (3.9)

we get, using the closedness of ω, that

0 =X[f1
(ω(Xf2 ,Xf3])) − ω([X[f1

,Xf2],Xf3]) =

= Cyc 2Xf1(ω(Xf2 ,Xf3)) − 2ω([Xf1 ,Xf2],Xf3) =

= −Cyc 2{f1,{f2, f3}} + 2{f3,{f1, f2}} =

= −Cyc 4{f1,{f2, f3}} ,

the Jacobi relation.
(3.4) shows that the object {⋅, g} for some function g ∈ F(M) is a tangent vector field.

Take another tangent vector field δ, then because of (3.1)

ω({⋅, g} , δ) = δg (3.10)

2This formula can actually be used to define the exterior derivative, also for infinite dimensional
manifolds.
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at least if ω is nondegenerate. If it is degenerate, the relation remains valid for non-
degeneracy vectors δ.

Now suppose we have a dynamical system with n degrees of freedom described by a
Hamiltonian H(qi, pi) of the position and the momentum coordinates. If we construct a
symplectic manifold with the canonical 2-form ω where the qi and pi form a symplectic
chart, the differential equations for the flow of the associated Hamiltonian vector field
XH (check (3.5)),

q̇i =XH(qi) ={qi,H} =
∂H

∂pi
,

ṗi =XH(pi) ={pi,H} = −
∂H

∂qi
,

are identical to Hamilton’s equations of motion (where the role of time is now played by
the parameter of the flow). Picking a point (q0, p0) on M and considering the integral
curve passing through this point corresponds to giving initial data for a “trajectory” of
whatever dynamical system is considered. In general, if the dynamics of a system are
given by a Hamiltonian, the evolution of an observable A ∈ F(M) is given by

Ȧ = {A,H} .

In particular if {A,H} = 0 then A is constant along trajectories.
Since for any function f ∈ F(M) { , f} is a tangent vector, namely the Hamiltonian

vector field generated by f , any function in this way induces a canonical transformation
by (3.3).

We will now introduce the concepts of generating functions of canonical transformations
and polarizations. These will help us understand the geometry of the Hamilton Jacobi
equation and the motivation for the definition of (Liouville) integrability given below.

A submanifold N of a symplectic manifold M is said to be Lagrangian if at any point
x ∈ N and for all Y ∈ TxM we have

ωx(X,Y ) = 0 ∀X ∈ TxN, Y ∈ TxM ⇒ Y ∈ TxN. (3.11)

More generally, we can define the complement S⊥ of a subspace S of TxM at some point
x by

S⊥ ∶= {Y ∈ TxM ∣ ωx(X,Y ) = 0 ∀X ∈ S}.

(3.11) then takes the form
(TxN)⊥ = TxN ∀x ∈ N.

Also generally from the nondegeneracy of ω we have that

dimS⊥ = dimTxM − dimS

and thus the dimension of a Lagrangian submanifold is 1
2dimM .

A (real) polarization of a symplectic manifold M is a foliation of M by Lagrangian
submanifolds. An example is the “vertical polarization”, the sets of points where qi =
const., of a cotangent bundle. It can be shown [40] that if P is a real polarization
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of a symplectic manifold (M,ω) then one can find a symplectic chart (qi, pi) in some
neighbourhood of any x ∈ M such that the leaves of P coincide locally with the level
surfaces of the qi. In other words a polarization can be used to locally endow a symplectic
manifold with the structure of a cotangent bundle3.

Now let Q be a manifold, then the graph Λ of a 1-form α,

Λ = {(q, p) ∣ p = αq},

is a submanifold of T ∗Q. It is of dimension 1
2dimT

∗Q. If additionally ω∣Λ = 0, we know
that Λ is Lagrangian (taking ω to be the canonical 2-form on T ∗Q). α can be interpreted
as a map from Q to T ∗Q, α ∶ q ↦ (q,αq). Therefore ω∣Λ = 0 iff α∗ω = 0. We have

α∗ω = α∗dΘ = d(α∗Θ) = dα

and therefore Λ is Lagrangian iff α is closed. Furthermore, if this is the case, then locally
on Q we find a function S such that α = dS. S is then called the generating function of
Λ, dS = ∂S

∂qi
dqi = α = pidqi and Λ can (locally) directly be given by

Λ = {(qi, pi) ∣ pi =
∂S
∂qi

}. (3.12)

It is clear that if we have not only one such generating function, but a family of func-
tions depending differentiably on n parameters, which we shall call q′i, then this family
generates a (local) polarization if the leaves fill out at least an open subset of T ∗M .
Since in (3.12) the qi don’t depend on S and consequently not on the q′i, only the pi-part
of the points on Λ can change when varying q′i. We should be able to move them in n
different directions in order to really fill out an open subset of T ∗M . Infinitesimally these
variations are given by the vectors ∂pi

∂q′j =
∂2S

∂qi∂q′j . If they are linearly independent, i.e. if

det
∂2S

∂qi∂q′j
≠ 0,

we can be sure that we indeed get a polarization. Furthermore, we can use qi and q′i

as local coordinates on T ∗M . In these coordinates the canonical 1-form and 2-form are
given by

Θ = −pidq
i = −

∂S

∂qi
dqi and ω = −

∂2S

∂qi∂q′j
dq′jdqi.

If we define

p′i ∶= −
∂S

∂q′i
, (3.13)

then we get

ω = dqi ∧ dpi =
∂

∂q′j
∂S

∂qi
dqi ∧ dq′j =

∂

∂qi
∂S

∂q′j
dqi ∧ dq′j =

= −
∂

∂qi
p′jdqi ∧ dq′j = dq′i ∧ dp′i.

We have constructed a canonical transformation to coordinates (q′, p′) adapted to the
polarization generated by S, adapted in the sense that the leaves q′i = const are the
leaves of the polarization.

3From Darboux’s theorem we already know that this is possible, but a polarization can be used to
construct such coordinates.
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3.2 Integrability

Integrability
A dynamical system with n degrees of freedom described by a Hamiltonian H is said to be
(Liouville) integrable iff there exist n independent functions Fi in involution {Fi, Fj} = 0,
which are also invariant under the flow generated by H, {Fi,H} = 0. [2]

The term independent means that at any point the gradients of the functions are linearly
independent or more geometrically that their level surfaces are mutually nowhere tangent
to each other. The invariance under the flow of XH means constancy along solution curves
and thus the Fi are conserved quantities. Note that it is an additional requirement that
these quantities Poisson commute. Furthermore by (3.4) we have

0 = {Fi, Fj} = −Π(dFi, dFj). (3.14)

Π is nondegenerate and therefore we can view the Π(⋅, dFj) as n linearly independent
vectors. Looking for a vector v satisfying

Π(v, dFj) = 0

amounts to requiring v to lie in the intersection of the kernels of n linearly independent
linear functionals. In an m-dimensional space the intersection of these kernels is (m−n)-
dimensional. In (3.14) we are even looking for n linearly independent such vectors. Thus
the intersection of the kernels mus be at least n-dimensional and we get that m − n ≥ n
or n ≤ m

2 . Therefore, on a 2n-dimensional symplectic manifold there cannot exist more
than n such functions, in particular H has to be a function of the Fi.
We motivate the above definition of (Liouville) integrability for finite dimensional systems
by the following (see again [2])

Liouville theorem
The equations of motion for a Liouville integrable system are obtained by performing an
integral.

In the previous section we showed how a real polarization could be used to perform a
canonical transformation. Since we have the n independent functions Fi we could try to
use them as one half of the new coordinates. As they are conserved in time we would
then have

Ḟi = 0 (3.15)

and, since H is a function of the Fi only, for the evolution of the corresponding momenta
piF (the other half of the symplectic chart, not yet defined) we would get

p̈iF = {{piF ,H} ,H} = −{
∂H

∂Fi
,H} = 0. (3.16)

The solutions of these equations are straight forward.
So let’s us try to do such a transformation:
For the submanifolds of the foliation we take the

Λ{fj} ∶= {(qi, pi) ∣ Fj(q
i, pi) = fj ∀j},
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with {fj} being constant and in the image of Fj. Assuming that the relations Fi(qj, pj) =
fj can be solved for the pi, Λ{fj} is given by the graph of the one form

α = pi(fj, q
j)dqi.

As shown in the previous section, these submanifolds are Lagrangian iff dα = 0 or equiv-
alently iff ω∣

Λ{fj}
= 0. Now the vector fields {⋅, Fi} are linearly independent and tangent

to Λ{fj} and thus span the tangent space. They vanishing of ω on these vector fields

ω({⋅, Fi} ,{⋅, Fj}) = {⋅, Fi} ⌟ dFj = {Fj, Fi} = 0

thus implies ω∣
Λ{fj}

= 0.

We can define the generating function S of the polarization via the path independent
integral

S(fi, q
i) = ∫

q

qo
α

and the momenta piF by

piF =
∂S

∂fi
.

The transformation is canonical and the equations of motion are (3.15) and (3.16). The
only trivial step is the computation of the integral above.

Having developed the tools of generating functions of polarizations, we can understand
the Hamilton-Jacobi-equation

H (qi,
∂S

∂qi
) = const. (3.17)

from a geometrical point of view. It is a partial, nonlinear differential equation for the
function S(qi). One looks for a generating function of a Lagrangian submanifold on which
H is constant, i.e. which is tangent to XH . If one has a solution S one knows explicitly a
submanifold on which the motion takes place and it is no more necessary to consider the
whole of M . The equations of motion are no longer 2n equations for 2n variables, but n
equations for n variables:

q̇i =
∂H

∂pi
∣
pi= ∂S

∂qi

.

Having an n-parameter family of such solutions S, as explained above, allows to introduce
new coordinates and trivialize the equations of motion by a canonical transformation.

3.3 3 more symplectic manifolds

The cotangent bundle of a manifold is the most prominent and easiest to handle example
of a symplectic manifold. We also mentioned that locally any symplectic manifold has
the structure of a cotangent bundle. Still it is not always useful to exploit this fact
and actually perform the Legendre transformation, as it is called in classical mechanics.
Especially when one deals with a presymplectic manifold, a pair (M,ω) consisting of
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manifold M and a closed, possibly degenerate 2-form ω, this transformation can become
tedious, although it has been well analysed [12].

In most physical theories an action, from which the equations of motion can be derived,
is known. In this section we briefly show how in these cases the tools of symplectic
geometry can be applied to dictate the dynamics, basically following [40]. We give two
examples of (pre)symplectic manifolds for finite dimensional systems and then generalize
one of them to describe field theories.

3.3.1 The tangent space

Consider a dynamical system with a finite number of degrees of freedom qi ∈ Q, the
dynamics of which can be described by Hamilton’s principle:
There exists a Lagrangian function L(qi, vi), (qi, vi) ∈ T Q, and the corresponding action

I01 = ∫

t1

to
L(qi(t), vi = q̇i(t))dt (3.18)

being a functional4 on the space of all possible curves qi(t) with (qi(t), q̇i(t)) ∈ T Q. The
principle states that the physical trajectories are the points (in that space of curves)
which are stationary under variations vanishing on the endpoints q(t0) and q(t1). This
gives us the famous Lagrange’s equations

d

dt
(
∂L

∂vi
) ∣

vi=q̇i
−
∂L

∂qi
∣
vi=q̇i

= 0. (3.19)

Now we are looking for a 2-form ωL and a function H such that the integral curves of
XH , the Hamiltonian vector field of H defined by

XH ⌟ ωL = dH, (3.20)

are the solutions of (3.19). In the previous section we had the Hamiltonian of classical
mechanics as a function on T ∗Q as the generating function of XH . Remembering the
definition of the Hamiltonian function in classical mechanics

H(qj, pj) = v
i(qj, pj)pi −L(q

i, vi(qj, pj)) with pi(q
j, vj) =

∂L

∂vi

as a function of (qi, pi) ∈ T ∗Q, it is only natural to consider the same function on T Q

H(qj, vj) = vi
∂L

∂vi
−L(qj, vj). (3.21)

Again on T ∗Q we had
ω = −d(pidq

i),

so we attempt

ωL = −d(
∂L

∂vi
dqi) =

∂2L

∂qj∂vi
dqi ∧ dqj +

∂2L

∂vi∂vj
dqi ∧ dvj. (3.22)

4Originally L(qi, vi) is a function on T Q. In many situations we will use L on different spaces, such as
the space of curves or solutions qi(t), where we have L = L(qi = qi(t), vi = q̇i(t)). In those situations the
evaluation of L in this different manner will not always be explicitly mentioned. e.g. ∂L

∂q̇i(t)
= ∂L

∂vi ∣vi=q̇i(t)
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Let us check if this yields what we want:
If (qi, vi) = (q(t), q̇i(t)) is an integral curve of XH and a solution to (3.19), then

XH = q̇i
∂

∂qi
+ q̈i

∂

∂vi

and so

XH ⌟ ωL = 2
∂2L

∂q[j∂vi]
q̇idqj +

∂2L

∂vi∂vj
(q̇idvj − q̈jdqi). (3.23)

On the other hand

dH = vi
∂2L

∂vi∂qj
dqj + vi

∂2L

∂vi∂vj
dvj −

∂L

∂qi
dqi. (3.24)

Considering again solution curves (qi, vi) = (q(t), q̇i(t)), using the expressions (3.23) and
(3.24), (3.20) becomes

−q̇i
∂2L

∂vj∂qi
dqj −

∂2L

∂vi∂vj
q̈jdqi = −

∂L

∂qi
dqi,

or
⎛

⎝

d

dt

⎛

⎝

∂L

∂vi
∣
vi=q̇i

⎞

⎠
−
∂L

∂qi
⎞

⎠
dqi = 0,

which is identically satisfied because qi(t) is a solution of (3.19).
The trajectories of a dynamical system described by an action integral (3.18) are the

integral curves of the Hamiltonian vector field on M = T Q generated by the Hamiltonian
(3.21) and 2-form (3.22).

Note that we haven’t made use of the nondegeneracy of ωL. In fact ωL is only nonde-
generate if

det(
∂2L

∂vi∂vj
) ≠ 0.

A degenerate ωL has the following consequences5

1) The equations of motion and the initial data do not determine a solution uniquely.
Instead one can consider equivalence classes of solutions to the same initial data. This is
generally referred to as gauge freedom. Observables must then be functions independent
of the representative of the equivalence class.
2) The Legendre transformation from T Q to T ∗Q is singular. The treatment of such
singular cases was examined by P. Dirac [12] and generally leads to constraints.
3) The definition of the Poisson bracket as the inverse of ωL does no more make sense.
Only an inverse on gauge invariant functions can be defined (which on the other hand
should be sufficient).

EG2CHSKF formulated as a nonlinear σ-model on a symmetric space can be described
by a presymplectic manifold, as we will see later.

5A manifold equipped with a degenerate 2-form ω is called presymplectic.

41



3.3.2 The space of solutions

The action functional of a dynamical system is a functional on the space of all possible
curves connecting an initial state with a final state. We now consider a similar but of
course not equivalent and much smaller space M , the space of curves qi(t), which are
actually solutions to the equations of motion. The values of qi(t0) and q̇i(t0) at some
specific value t0 can be used as coordinates on that space if ωL is nondegenerate6. We
will now construct a closed 2-form on this space and thereby give it the structure of a
(pre)symplectic manifold. The definition of a Hamiltonian vector field whose integral
curves are solutions will be straightforward. Although of course this space is also finite
dimensional if the system has a finite number of degrees of freedom conceptually it is a
space of functions. We are therefore looking for a Hamiltonian functional and tangent
vectors regarded as operators on F(M) are represented by functional derivatives.

As Hamiltonian we take, similar to before,

H(q(t)) = (vi
∂L

∂vi
−L(qj, vj)) ∣

qi=qi(t0)
vi=q̇i(t0)

.

The equations of motions can again be interpreted as equations for a curve in M , since
the curve qi(t, s) = qi(t + s) parametrized by s solves

d

ds
(
∂L

∂vi
) ∣

vi= dds q
i

−
∂L

∂qi
∣
vi= dds q

i

= 0 (3.25)

and may be considered a solution passing through qi(t) for fixed t.
We proceed analogously as before. If qi(t, s) is a solution of (3.25) and an integral curve
of XH , then

XH = ∫ ds′ q̇i(s′)
δ

δqi(s′)
. (3.26)

More generally, the components of a tangent vector to the space of solutions can be
characterised in the following way:
We consider a curve of solutions qi(t;λ) parametrized by λ. The tangent vector ui(t) to
this curve at λ = λ0 is then given by

ui(t) =
dqi(t;λ)

dλ
∣
λ=λ0

.

For any λ, qi(t;λ) must satisfy (3.25). Differentiating (3.25) with respect to λ, we get a
relation for ui(t)

d

dt

⎛

⎝

∂2L

∂vi∂vj
∣
vi,j=q̇i,j(t;λ0)

u̇j(t) +
∂2L

∂vi∂qj
∣
vi=q̇i(t;λ0)

uj(t)
⎞

⎠
−

−
∂2L

∂qi∂vj
∣
vj=q̇j(t;λ0)

u̇j(t)−
∂2L

∂qi∂qj
∣
λ=λ0

uj(t) = 0.

6If it is degenerate, they can still be used to label the gauge equivalence classes.

42



The components of tangent vectors are solutions of the linearised equations of motion.
A natural 2-form ω on M can be obtained in the following way. The action integral

I01 (3.18) is primarily a functional on the space of all curves connecting two points q(t0)
with q(t1). But of course it can be considered on the smaller space of solutions. We can
then compute its derivative along a tangent vector U

U ⌟ dI01 =

= ∫ ds ui(s)
δI01

δqi(s)
= ∫ ds∫

t1

t0
(

∂L

∂qi(t)
ui(s)δ(t − s) +

∂L

∂q̇i(t)

d

dt
δ(t − s)ui(s))dt =

= ∫

t1

t0
(

∂L

∂qi(t)
ui(t) +

∂L

∂q̇i(t)
u̇i(t))dt =

= (
∂L

∂q̇i(t)
ui) ∣

t=t1

t=t0
+ ∫

t1

t0
(

∂L

∂qi(t)
−
d

dt
(

∂L

∂q̇i(t)
))uidt = (

∂L

∂q̇i(t)
ui) ∣

t=t1

t=t0

since qi(t) satisfies (3.19). Defining for each t a 1-form Θt by

U ⌟Θt =
∂L

∂q̇i(t)
ui(t),

we get
dI01 = Θt1 −Θt0 .

Thus
ω ∶= −dΘt1 = −d(Θt0 + dI01) = −dΘt0 = −dΘt

is independent of t and can be well defined at every point of M (a point of M is an entire
solution qi(t) and ω has to be independent of t in order to be well defined). The minus
sign is convention and will assure that the analogue of (3.20) holds.

Now for any tangent vector U and XH as in (3.26) we get, using (3.9),

ω(XH , U) = −XH ⌟ d(U ⌟Θt0) +U ⌟ d(XH ⌟Θt0) + [XH , U] ⌟Θt0 =

= −XH ⌟ d(
∂L

∂q̇i(t0)
ui(t0)) +U ⌟ d(

∂L

∂q̇i(t0)
q̇i(t0))−

−XH ⌟ dui(t0)
∂L

∂q̇j(t0)
+U ⌟ dq̇i(t0)

∂L

∂q̇j(t0)
=

= −∫ ds(
∂2L

∂q̇i(t0)∂qj(t0)
δ(t0 − s) +

∂2L

∂q̇i(t0)∂q̇j(t0)

d

dt0
δ(t0 − s))u

i(t0)q̇
j(s)+

+∫ ds(
∂2L

∂q̇i(t0)∂qj(t0)
δ(t0 − s)u

i(t0) +
∂2L

∂q̇i(t0)∂q̇j(t0)

d

dt0
δ(t0 − s)u

i(t0)) q̇
i(s)uj(s) =

= 2
∂2L

∂q̇[i(t0)∂qj](t0)
uj(t0)q̇

i(t0) −
∂2L

∂q̇i(t0)∂q̇j(t0)
(ui(t0)q̈

j(t0) − q̇
i(t0)u̇

j(t0)).

On the other hand

U ⌟ dH = q̇i(t0)
∂2L

∂q̇i(t0)∂qj(t0)
uj(t0) + q̇

i(t0)u̇
j(t0)

∂2L

∂q̇i(t0)∂q̇j(t0)
−

∂L

∂qj(t0)
uj(t0).
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As before

ω(XH , U) −U ⌟ dH = (−
d

dt
(

∂L

∂q̇i(t)
) +

∂L

∂qi(t)
)ui(t) = 0. (3.27)

We see that although conceptually this (pre)symplectic manifold is quite different to the
tangent bundle T Q covered in the last section, formally there are many similarities and
again we have found a Hamiltonian H and a symplectic form ω such that H generates
the dynamical flow via the Poisson structure.

3.3.3 The space of solutions for fields

The preceding example allows for an easy generalization to fields, which is eventually what
we need. In this case also the space S of solutions is generally an infinite dimensional
manifold. For the theory of infinite dimensional manifolds see e.g. [26].

We consider maps from an n-dimensional base manifold Q equipped with a metric g
to some other space F , possibly a vector space or a group,

φα ∶ Q ∋ x↦ φα(x) ∈ F,

α labelling the degrees of freedom in F . These maps form the space C of field configura-
tions. Equivalently we can consider the fields to be sections of the fibre bundle E

π
Ð→ Q

with typical fibre F , which we denote by Φα

Φα ∶ Q ∋ x↦ (x,φα(x)) ∈ E.

The metric g may also be the dynamical field itself, as in general relativity.
The dynamics shall be determined by an action of the form

ID = ∫
D
L(φα,∇µφ

α, xν)εg, (3.28)

where D ⊂ Q, the Lagrangian density L being a function on the first jet bundle J1(E).
In the case of general relativity, the volume element contains the dynamical field, the
metric g. In a coordinate system, it can be written as

εg =
√

∣g∣dx0 ∧ ... ∧ dx3 =
√

∣g∣ε.

In this case we agree to include the square root of the determinant into L. As before
ID can be considered on the space of all field configurations C or on the smaller space of
solutions S. The field equations are derived by setting

δID = 0

for variations δ vanishing on the boundary of D. This yields

∫
D
ε [(

∂L

∂φα
−∇µ

∂L

∂∇µφα
) δφα +∇µ (

∂L

∂∇µφα
δφα)] = 0. (3.29)

Here we used that [δ,∇µ] = 0. This can be understood as follows: What we do is we
choose a field configuration φα(x) and then consider arbitrary variations δφα of the values
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φα(x) at every point x, subject to the condition that δφα∣
∂D

= 0. Viewing the field as the

section Φα(x) of the fibre bundle E
π
Ð→ Q, the variations at a point x happen inside of

the fibre π−1(x). On the contrary taking the gradient ∇µ means considering variations of
this section along the base manifold Q. We think of [δ,∇µ]φα as the infinitesimal version
of the change of φα along the curve

(x,λ = 0) → (x + ε,0) → (x + ε, λ) → (x,λ) → (x,0),

where x ∈ Q and λ parametrises the integral curve of δ. On E this gives the curve

φα(x;λ = 0) → φα(x + ε; 0) → φα(x + ε;λ) → φα(x;λ) → φα(x; 0),

which is a closed curve and therefore [δ,∇µ]φα = 0.
In (3.29) the total divergence gives a boundary term, which vanishes since δφα∣

∂D
= 0.

On the other hand, inside of D δφα is arbitrary and therefore

∂L

∂φα
−∇µ

∂L

∂∇µφα
= 0. (3.30)

Now we consider two (n− 1)-dimensional hypersurfaces Σ and Σ′ such that first Σ∩Σ′ =
∂Σ = ∂Σ′ and such that secondly both can be used to pose an initial value problem
for some region in spacetime. We call two hypersurfaces with this property equivalent.
Furthermore let us assume that at every point p ∈ Σ or ∈ Σ′ there exists a vector transverse
to Σ or Σ′, which is future directed. The region in between Σ and Σ′ we call DΣΣ′ . Let
further U be a tangent vector to the space of solutions with components uα. We again
compute

U ⌟ dIDΣΣ′ = ∫
DΣΣ′

(
∂L

∂φα
uα +

∂L

∂(∇µφα)
∇µu

α) ε = ∫
∂DΣΣ′

∂L

∂(∇φα)
uα ⌟ ε =

= ∫
Σ′

∂L

∂(∇φα)
uα ⌟ ε + ∫

Σ

∂L

∂(∇φα)
uα ⌟ ε = ±U ⌟ΘΣ′ ±U ⌟ΘΣ.

The signs have to be chosen in the following way. First Stokes theorem asks us to orient
the boundary positively w.r.t. an outward pointing transverse vector (see appendix E for
explanations). So the signs of the integrals over Σ and Σ′ depend on which one lies to
the future of the other one. Secondly we define ΘΣ, analogously to the previous example,
by

U ⌟ΘΣ ∶= ∫
Σ

∂L

∂(∇φα)
uα ⌟ ε. (3.31)

Here, in the definition of Θ we define the orientation to be positive w.r.t. a future directed
vector.

Again, for such equivalent initial value surfaces Σ and Σ′, the 2-form

ω = −dΘΣ

will not depend on the choice of surface Σ.
If we wanted to continue analogous to the previous example, we would have to find again
a Hamiltonian H and then show that XH ⌟ω = dH. This is what is done in the canonical
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treatment of field theories. It requires a choice of “time”, along which the evolution with
H takes place. But actually we don’t really need such a Hamiltonian. We got the field
equations directly from the action (3.28) via Hamilton’s principle and we also already
have a closed 2-form ω, which can be used to calculate Poisson brackets (with the above
restrictions coming from a possible degeneracy of ω).

3.4 Symmetries of the e.o.m.

In this section we define symmetries of the equations of motion and study their connection
to conserved quantities. Since symmetries are very important in EG2CHSKF a detailed
treatment seams reasonable.

Everything will be done for the case of a field theory since it is more general.

A symmetry of the equations of motion is a vector field δs on C, the flow of which leaves
invariant its subspace S of solutions. It maps solutions to solutions. Let

σ ∶ R × C → C

(λ,φα) ↦ σ(λ,φα)

be such a flow. Then at a solution φα ∈ S, σ(λ,φβ) = φα(λ) has to satisfy (3.30) for every
value of λ. Differentiating at λ = 0 we get the linearised field equation

∂2L

∂φα∂φβ
δsφ

β +
∂2L

∂φα∂∇µφβ
δs∇µφ

β −∇µ (
∂2L

∂∇µφα∂φβ
δsφ

β +
∂2L

∂∇µφα∂∇νφβ
∇νδsφ

β) .

We allow δsφα(x) to depend on the value of φα(x′) where x′ is infinitesimally close to x,
that is on the value of ∇µφα(x). Since the equations of motion can be derived from the
Lagrangian it is natural to look for a condition for δsI such that δs be a symmetry if this
condition holds. If φα(x;λ) is the flow of δs with parameter λ, then for infinitesimal λ
we can write

I[φα(x;λ)] = I[φα(x;λ = 0)] + λδsI. (3.32)

If φα(x;λ) is a solution for every λ if φα(x; 0) is a solution (δs is a symmetry), then
infinitesimally we must have

0 = δI[φα(x;λ)] = λ∫ εδδsL = λ∫ ε(
∂δsL

∂φα
−∇µ

∂δsL

∂∇µφα
) δφα

for arbitrary variations δ vanishing on the boundary. δsL must satisfy the Euler-Lagrange
equations.

We will now proof the following Lemma: The Euler-Lagrange equations hold for a quan-
tity A = A(φα(x),∇µφα(x), x) iff A is locally a total divergence A = ∇µaµ for some vector
aµ.
Proof: We follow [6]. “⇒” Suppose that φα takes values in a vector space. Then for λ ∈ R

A(λφα(x), λ∇µφ
α(x), x)
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is well defined. We now calculate

d

dλ
A(λφα(x), λ∇µφ

α(x), x) =
∂A

∂φα
φα +

∂A

∂∇µφα
∇µφ

α = ∇µ (
∂A

∂∇µφα
φα) = ∇µa

µ
I

A(φα,∇µφ
α, x) −A(0,0, x) = ∫

1

0
dλ

d

dλ
A(λφα(x), λ∇µφ

α(x), x).

A(0,0, x) is a function of x only, independent of φ. We locally choose a coordinate system
xµ and define

a1
II = ∫

x1

x1
0

A(0,0, x′)dx′1 and 0 = aiII for i ≠ 1

Then locally A(0,0, x) = ∇µa
µ
II . Hence locally

A(φα,∇µφ
α, x) = ∇µ(a

µ
I + a

µ
II) = ∇µa

µ.

“⇐” Suppose that A is locally a divergence. Then we split the region D in (3.28) into
regions Ui such that A = ⋃iUi and such that in every Ui A = ∇µa

µ
i . Then for every Ui

and all variations δ vanishing on ∂Ui

δ∫
Ui
εgA = ∫

Ui
εg∇µδa

µ
i = ∫

∂Ui
(εg)µδa

µ
i =

= ∫
∂Ui

(εg)µ [(
∂aµi
∂φα

−∇ν

∂aµi
∂∇νφα

) δφα +∇ν (
∂aµi
∂∇νφα

δφα)] = ∫
∂Ui

(εg)µ
∂A

∂∇µφα
δφα.

On the other hand

δ∫
Ui
εA = ∫

Ui
ε(

∂A

∂φα
−∇µ (

∂A

∂∇µφα
)) δφα + ∫

∂Ui
(ε)µ

∂A

∂∇µφα
δφα

⇒
∂A

∂φα
−∇µ

∂A

∂∇µφα
= 0. ▲

Since neither L nor δsφα depends on higher derivatives of φα and therefore also δsL does
not, we can apply the result just obtained to conclude that

δs is a symmetry⇔ locally ∃aµ such that δsL = ∇µa
µ

Remark: We assumed that φα takes values in a vector space. In EG2CHSKF we deal
with group-(SL(2))-valued fields V(x) (Ṽ(x)). Nevertheless, the conclusion remains valid
because in (2.41) the Lagrangian depends on V(x) (Ṽ(x)) only via Pµ(x) (P̃µ(x)), which
is Lie algebra-valued and therefore an element of a vector space. Actually one could even
use the J1 (J̃1) instead of the V (Ṽ) as configuration variables as it is done e.g. in [24].

3.5 Noether’s theorem

In this section we treat Noether’s theorem, which in many cases enables one to easily
calculate conserved quantities from symmetries of the equations of motion.
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For a symmetry δs defined on C we had that δsL = ∇µaµ in some domain U . For any
DΣΣ′ ⊂ U being a region bounded by two Cauchy surfaces Σ and Σ′ we have

δsIDΣΣ′ = ±∫
Σ
(ε)µa

µ ± ∫
Σ′
(ε)µa

µ,

but also on S

δsIDΣΣ′ = ±∫
Σ
(ε)µ

∂L

∂∇µφα
δsφ

α ± ∫
Σ′
(ε)µa

µ.

Varying Σ and Σ′ such that their boundaries are kept fix and such that DΣΣ′ ⊂ U stays
valid, but otherwise arbitrarily, we conclude that on S

∫
Σ
(ε)µ (a

µ −
∂L

∂∇µφα
δsφ

α) = const., (3.33)

where “const.” means independent of Σ. This is actually necessary if (3.33) with Σ
“arbitrary” (in the sense defined above) wants to define a functional on S. A functional
on S must map an entire point, a solution, to one value. If we define the functional to be
the integral over an “arbitrary” Cauchy surface, it has to be independent of the choice
of Cauchy surface. A field theory can be given a dynamical interpretation if we foliate
(a subset of) spacetime into Cauchy surfaces and consider the evolution of the field in
time as the change of the field from one surface to another. In this picture (3.33) can be
called a conserved quantity (conserved in time).

Rewriting (3.33) in the form of an integral over DΣΣ′ , we have

∫
DΣΣ′

ε∇µ (a
µ −

∂L

∂∇µφα
δsφ

α) = 0.

Making DΣΣ′ arbitrarily small, we conclude

∇µ (a
µ −

∂L

∂∇µφα
δsφ

α) = 0, (3.34)

which is a continuity equation. We therefore call

aµ −
∂L

∂∇µφα
δsφ

α

a conserved current. Clearly linear combinations of conserved currents are again con-
served.

3.6 Symmetry groups and algebras

It is intuitively clear that finite symmetry transformations form a group, continuous sym-
metry transformations form a Lie group and the infinitesimal symmetry transformations
δs treated above form a Lie algebra. Suppose that we have

δ1L = ∇µa
µ
1 in U1 ⊂ Q, δ2L = ∇µa

µ
2 in U2 ⊂ Q.
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Then [δ1, δ2] is also a symmetry since

[δ1, δ2]L = ∇µ(δ1a
µ
2 − δ2a

µ
1) in U1 ∩U2 and again on S

[δ1, δ2]L =
∂2L

∂φα∂φβ
δ2φ

αδ1φ
β +

∂2L

∂∇µφα∂φβ
∇µδ2φ

αδ1φ
β +

∂2L

∂φα∂∇νφβ
δ2φ

α∇νδ1φ
β+

+
∂2L

∂∇µφα∂∇νφβ
∇µδ2φ

α∇νδ1φ
β +

∂L

∂φα
δ1δ2φ

α +
∂L

∂∇µφα
∇µδ1δ2φ

α − (δ1 ↔ δ2) =

= ∇µ (
∂L

∂∇µφα
[δ1, δ2]φ

α)

and

∫
Σ
(εg)µ (δ1a

µ
2 − δ2a

µ
1 −

∂L

∂∇µφα
[δ1, δ2]φ

α)

is a constant of motion.
We might not know the entire symmetry group and algebra from the beginning. But
having found two symmetries δ1 and δ2, we know that [δ1, δ2] is also a symmetry. If
{[δ1, δ2], δ1, δ2} are linearly independent the commutator constitutes a new symmetry.
Higher commutators might give even more symmetry generators. We will later see how
in EG2CHSKF these repeated commutators of initially only 6 generators will give us an
infinite dimensional symmetry algebra.

3.7 Symplectic, Poissonian and Lie Poisson actions

of symmetry groups and algebras

The notion of a symmetry of the equations of motion does not yet specify how it acts on
the symplectic structure of the manifold under consideration. In this section we present
two distinct ways, which cover many examples.

Let G be a Lie group acting on a symplectic manifold M by symmetry transformations
on points and on functions by

sG ∶ G ×M →M G × F(M) → F(M)

(g, x) ↦ s(g, x) =∶ gx (g, f(⋅)) ↦ f ○ s(g−1, ⋅) =∶ gf(⋅)

and let G be its Lie algebra acting on functions by

sG ∶ G × F(M) → F(M) (X,f(⋅)) ↦
d

dt
∣
t=0

f(e−tX ⋅) =∶X ⋅ f(⋅).

An action of G is said to be symplectic if

{f1(gx), gf2(gx)} = {f1, f2} (gx) (3.35)

or in terms of G if

{X ⋅ f1(x), f2(x)} + {f1(x),X ⋅ f2(x)} =X ⋅ {f1(x), f2(x)} . (3.36)
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One essentially demands that the symplectic form not change under the flows generated
by G. A sufficient condition for (3.36) to be satisfied is that locally there are functions
h such that the action of G on functions f can be realized by the locally Hamiltonian
vector fields Xh. Then

X ⋅ f = {f, h}

and (3.36) is satisfied by virtue of the Jacobi relation of the Poisson bracket. This
condition is also necessary (for the proof see [2], p. 526).

A symplectic action of G on M is said to be Poissonian7 if it satisfies (3.36) and
additionally G acts by globally Hamiltonian vector fields X ⌟ ω = dHX , the HX depend
linearly on X and

H[X,Y ] = {HX ,HY } .

In this case one can define a moment µ

µ ∶ M → G∗

such that for X ∈ G

µ(x) ⋅X =HX .

The action of X can then simply be written as

X ⋅ f =X ⋅ {f, µ}.

The µ are conserved quantities (see [1], p. 277).

Another natural (and more general) condition for the behaviour of the symplectic 2-
form under symmetry transformations can be given if the Lie group itself is equipped
with a Poisson structure. For example, if the manifold M and the lie Group G are in fact
identical, one has a Poisson structure on both spaces. To analyse this case we note that,
functions on the Cartesian product of two sets X and Y can be written as

f(x, y) = ∑
i

f
(X)
i (x)f

(Y )
i (y) x ∈X,y ∈ Y, f

(X)
i ∈ F(X), f

(Y )
i ∈ F(Y ),

where the sum is in general infinite and requires some topology on F(X) × F(Y ). If X
and Y are Poisson manifolds the product Poisson structure on X × Y is

{f(x, y), g(x, y)}X×Y ∶=

= ∑
i,j

{f
(X)
i (x), g

(X)
j (x)}

X
f
(Y )
i (y)g

(Y )
j (y) +∑

i,j

f
(X)
i (x)g

(X)
j (x) {f

(Y )
i (y), g

(Y )
j (y)}

Y
.

This allows to define the notion of a Poisson Lie group. A function f on a Lie group
evaluated at a point gg′, a product, can be viewed as a function on G×G. Now suppose
G is equipped with a Poisson structure. We call G a Poisson Lie group [2] if the Poisson
structure is compatible with the multiplication of the group in the sense that

{f1(gg
′), f2(gg

′)}G×G = {f1, f2}G (gg′). (3.37)

7[40] for example uses the term Hamiltonian
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Similarly, suppose we are given a manifold M and the action of a Poisson Lie Group
G. We can view the expression f(gx) as a function on G ×M . Since now G and M
are equipped with a Poisson structure, compatibility of the respective Poisson structures
with the action of the group reads

{f1(gx), f2(gx)}G + {f1(gx), f2(gx)}M =∶ {f1(gx), f2(gx)}G×M = {f1, f2}M (gx). (3.38)

If this condition is satisfies, we say that the actions is a Lie Poisson action. Note that it
reduces to (3.35) if the Poisson bracket on G is trivial (vanishes).

While symplectic actions are always generated locally Hamiltonian vector fields, this
is not true for Lie Poisson actions. Instead, con can construct so-called non-Abelian
Hamiltonians. To this end consider a Poisson Lie group G. Then on G∗ one can introduce
a Lie algebra structure with the following idea (chapter 14.5 of [2] ):
Choose a basis Ea of G. Then the vector fields ∇E

a defined by

∇E
a f(g) =

d

dt
∣
t=0

f(etEag)

form a basis of TgG at any point g. Since a Poisson bracket is a biderivation we can define
ηab(g) by

{f1(g), f2(g)}G = ηab(g)∇E
a f1(g)∇

E
b f2(g).

Then η(g) ∶= ηab(g)Ea⊗Eb ∈ G⊗G for every g. It is just the Poisson bivector Π introduced
in (3.1) in a specific basis given by the Ea. Consequently, dη(e) ∈ G∗ ⊗G ⊗ G and we can
use dη(e) to define a multiplication on G∗. Denoting by {Ea} the basis dual to {Ea},
then

[Ea,Eb]G∗ ∶= (dη(e)) ab
c Ec

defines a Lie algebra structure (Antisymmetry is clear, the Jacobi relation holds because
it holds for { , }G, (3.37) ensures that for f ∈ F(G), def ∈ G∗ one can actually define
[def1, def2]G∗ = de {f1, f2} because η(e) = 0).

This allows us to formulate the infinitesimal version of (3.38) in a compact way. We
put g = e−tX and differentiate w.r.t. t at t = 0

−{X ⋅ f1(x), f2}M − {f1(x),X ⋅ f2}M −X ⌟ [def1, def2]G∗ = −X ⋅ {f1(x), f2(x)} . (3.39)

The Lie algebra structure on G∗ represents the Poisson structure on G. If G∗ is abelian,
that is if the Poisson structure on G is trivial, we get a symplectic action. We cannot
expect that a Lie Poisson action is generated by local Hamiltonians. But luckily there is
a generalization:
Introduce Darboux coordinates (qi, pi). The action of X ∈ G is a vector field on M .
We can expand it as X = Xqi ∂

∂qi
+Xpi ∂

∂pi
. Define the 1-form ΩX = Xqidpi −Xpidqi and

Ω = EaΩEa . Then (3.39) is equivalent to

dΩ + [Ω,Ω]G∗ = 0

Hence, locally Ω = Γ−1dΓ and

X ⋅ f =X ⌟ (Γ−1 {f,Γ}) (3.40)

The symmetry group of EG2CHSKF will act via a Lie Poisson action as we will see.
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Chapter 4

The Symmetry Algebra of
EG2CHSKF

In this section we derive the subalgebra of the full symmetry algebra of EG2CHSKF,
which acts on the field V . The central extension of the group corresponding to this
subalgebra is what is known as the Geroch group [9]. The central element can be shown
to act on the conformal factor λ. In [20] the Geroch group is further extended and
transformations of the dilaton field ρ are introduced.

4.1 The SL(2)×SL(2) Symmetry

In section 2.3 we saw that there were two ways to formulate EG2CHSKF on a symmetric
space, (2.40) and (2.41). As explained in section 2.3.3 the metric on the two dimensional
symmetry reduced spacetime can always be chosen to be flat, so the Ricci scalar vanishes.
Furthermore, the boundary term is irrelevant for the upcoming discussions. It does not
influence the symmetries of the matter sector. (2.40) and (2.41) then become

κ

2 ∫
εgρ{−Tr(P

2)+2λ−1∂aλρ
−1∂aρ} and

κ

2 ∫
εgρ{−Tr(P̃

2)+2λ̃−1∂aλ̃ρ
−1∂aρ}. (4.1)

One sees directly from (2.49) and by invariance of the trace under similarity transforma-
tions that the first action integral is invariant under transformations

V(x) ↦ gV(x)h(x) g ∈ G = SL(2), h(x) ∈H = SO(2). (4.2)

The right multiplication by the H group valued field h is a remnant of the internal Lorentz
transformations of the vierbein. (To reduce the vierbein to the form (2.25) the internal
Lorentz transformation freedom was partly fixed, leaving only internal boosts of the
zweibein of the reduced spacetime, and the right action of h on V .) On the other hand the
left multiplication by the constant G element g changes the 4-metric. It maps a solution
to another solution with a distinct geometry. These will be the important, physical,
transformations that generate the Geroch group of symmetries. The h transformation
will be used to maintain V always in upper triangular form, with V11 > 0. This can always
be done and determines h completely.
The same transformation of Ṽ ,

Ṽ(x) ↦ g̃Ṽ(x)h̃(x) g̃ ∈ G = SL(2), h̃(x) ∈H = SO(2) (4.3)
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leaves the second action in (4.1) invariant, and thus also maps solutions to solutions.
Here h̃ does not have an obvious interpretation in terms of internal local Lorentz trans-
formations, but the Kramer-Neugebauer transformation maps triangular V with V11 > 0
to triangular Ṽ with Ṽ11 > 0 (indeed we have only defined Ṽ in this triangular frame) so,
in the same manner as in (4.2), h̃ is completely determined by the requirement that the
transformation preserves the triangularity of Ṽ and the positivity of its 11 component.
Note that although (4.3) has the same form as (4.2), Ṽ is not V . The transformations are
in fact generally distinct. We have therefore two SL(2) symmetries, that is, transforma-
tions that map solutions to solutions. But as we shall see, this is much more than it seems
at first, because applying several g and g̃ transformations in succession one obtains new
symmetries, and ultimately an infinite dimensional and transitive group of symmetries,
the Geroch group.

The generators of the transformations (4.2) read

δV = δgV + Vδh(V , δg). (4.4)

The corresponding conserved Noether current is

jµδ = 2ρ Tr[P µV−1(δgV + V δh)]. (4.5)

The generators of the ∼ transformations (4.3), and the corresponding Noether current are
of course analogous.

As a basis of g = sl(2,R) we use the set of the elements

δg1 = (
−1 0
0 1

) , δg2 = (
0 1
0 0

) , δg3 = (
0 0
−1 0

) . (4.6)

The h = so(2) transformations are generated by

δh = (
0 1
−1 0

) = δg2 + δg3. (4.7)

Let us calculate how these symmetry transformations act on (V , λ), i.e. on the fields ∆
and B contained in V (2.37) and the conformal factor λ.

δV = (
1
2∆−1/2δ∆ −1

2∆−3/2δ∆B +∆−1/2δB
0 −1

2∆−3/2δ∆
)

δg1V = (
−∆1/2 −∆−1/2B

0 ∆−1/2 ) ⇒ δ1∆ = −2∆, δ1B = −2B

δg2V = (
0 ∆−1/2

0 0
) ⇒ δ2∆ = 0, δ2B = 1

δg3V + Vδh(δg3,V) = (
∆1/2B −∆3/2

0 −∆−1/2B
) ⇒ δ3∆ = 2∆B, δ3B = B2 −∆2

The conformal factor λ is invariant under δ1, δ2, δ3. The corresponding generators of the
˜ transformations δ̃1, δ̃2, δ̃3 act in precisely the same way on (Ṽ , λ̃), i.e. on the fields B̃, ∆̃
and λ̃. The currents (4.5) corresponding to these generators are easily calculated from

P µV−1 =
1

2
(

∆−3/2∂µ∆ −∆−3/2B∂µ∆ +∆−1/2∂µB
∆−3/2∂µB −∆−3/2B∂µB −∆−1/2∂µ∆

) .
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They are

jµδ1 = −2ρ∆−1∂µ∆ +∆−2B∂µB,

jµδ2 = ∂
µBρ∆−2, (4.8)

jµδ3 = 2ρ∆−1∂µ∆B + ∂µBρ∆−2(B2 −∆2).

The currents corresponding to δ̃1, δ̃2, δ̃3 are given by the same expressions in terms of ∆̃
and B̃, which in turn can be expressed in terms of ∆ and B using the Kramer-Neugebauer
transformation (2.34). The result is

jµ
δ̃1
= 2ρ(∆−1∂µ∆ − ρ−1∂µρ −∆2ρ−2B̃∂µB̃),

jµ
δ̃2
= ∂µB̃∆2ρ−1, (4.9)

jµ
δ̃3
= −2ρB̃(∆−1∂µ∆ − ρ−1∂µρ) + ∂µB̃∆2ρ−1 (B̃2 −

ρ2

∆2
) .

The action of the generators δ̃i on (Ṽ , λ̃) can be transferred to an action on (V , λ) using
the Kramer-Neugebauer transformation:

δ̃∆

∆
= −

δ̃∆̃

∆̃
(4.10)

δ̃λ

λ
= −

1

2

δ̃∆̃

∆̃
(4.11)

εµν∂ν δ̃B = ρ (∆̃−2∂µδ̃B̃ − 2∆̃−3δ̃∆̃∂µB̃) . (4.12)

Note that the last equation does not determine δ̃B in terms of δ̃B̃ and δ̃∆̃ uniquely,
but only up to the addition of a constant. This reflects a freedom in the choice of
basis in the symmetry algebra: Consider δ2. It leaves invariant ∆ and λ, while δ2B = 1.
Constant multiples of δ2 yield a constant δB. Thus, the fact that the Kramer-Neugebauer
transformation defines the action of δ̃ on B only up to constants amounts to the freedom
to add multiples of δ2 to δ̃ thereby shifting δ̃B by a constant. In other words, we may
choose the constants in δB̃ and δ̃B in a convenient way without altering the space of
symmetries as a whole.

At this point, we have six symmetry generators δ1, δ2, δ3, δ̃1, δ̃2, δ̃3 acting on both (V , λ)
and (Ṽ , λ̃). We will now investigate their linear dependence. Explicitly, for the action of
δ̃1, δ̃2, δ̃3 on (V , λ) from (4.10) - (4.12) we get

δ̃1 ∶ δ̃1∆ = 2∆, δ̃1λ = λ, εµν∂ν δ̃1B = 2ρ−1∆2∂µB̃ = 2εµν∂νB,

δ̃2 ∶ δ̃2∆ = 0, δ̃2λ = 0, εµν∂ν δ̃2B = 0,

δ̃3 ∶ δ̃3∆ = −2∆B̃, δ̃3λ = −B̃λ, εµν∂ν δ̃3B = −2ρ(ρ−1∂µρ −∆−1∂µ∆ +∆2ρ−2B̃∂µB̃).
(4.13)

The equations on the right are always well defined because taking the divergence ∂µ gives
εµν∂µ∂νδB̃ = 0 on the left sides whereas the right sides are always linear combinations of
the conserved currents (4.9) and their divergences are thus also 0. For easy comparison
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we again state the action of δ1, δ2, δ3 on (V , λ)

δ1 ∶ δ1∆ = −2∆, δ1λ = 0, δ1B = −2B,

δ2 ∶ δ2∆ = 0, δ2λ = 0, δ2B = 1,

δ3 ∶ δ3∆ = 2∆B, δ3λ = 0, δ3B = B2 −∆2. (4.14)

We see that δ2 is a constant multiple of δ̃2. Apart from the action on λ, δ1 up to constant
multiples of δ2 equals −δ2. But their actions on the conformal factor λ are clearly not
opposite. Taking a look at the equation of motion (2.58) for λ, we see that in the case of
δ1, the rescaling δλ = λ amounts to a shift in the integration constant of σ = lnλ, δσ = 1.
δ̃3 is also linearly independent. Its action on ∆, λ and B can certainly not be expressed
as linear combinations of the actions of the other generators. δ̃3 acting on (V , λ) is an
independent symmetry and calling it δ4 it may be added to the sl(2,R) algebra generated
by δ1, δ2, δ3. Analogously, the action of δ3 can be transferred to act on (Ṽ , λ̃) giving rise
to a new symmetry δ̃4.

In contrast to δiB (i = 1,2,3) the expression for δ4B is not an algebraic combination of
the fields ∆, ρ, B. It has to be computed from a differential equation. We could though
simply define a new field φ, a potential [9], up to the addition of a constant by

εµν∂νφ ∶= ε
µν∂νδ4B = 2ρ(ρ−1∂µρ −∆−1∂µ∆ +∆2ρ−1B̃∂µB̃). (4.15)

In a first step, forgetting about the definition of φ and considering it an independent field
makes δ4B resemble the δiB (i = 1,2,3) in the sense that it is an algebraic expression in
the fields. In a second step imposing the equation (4.15) recovers the original situation.
(As always we also get a φ).

In section 3.6 we showed that the commutator of any two symmetries is again a sym-
metry. In the beginning we had only the action of g, which was spanned by δ1, δ2, δ3.
Having now also δ4 at our disposal we don’t know yet, if we won’t get even more symme-
tries by building commutators such as [δi, δ4] and again transferring the actions between
V and Ṽ . In principle we could do this and would see that the process never stops. We
would get more and more symmetries and, insisting on algebraic relations of the form
δiB = f(φj), more and more potentials φj. Trying to calculate this is of little use because
it is first very tedious, second not instructive and third the algebra is infinite dimensional,
hence we would never come to an end. As explained in the next section there is a more
practical way to implement and expose this infinite dimensional symmetry algebra.

4.2 The Linear System

In the previous section we saw that the action of the symmetries δi, i > 3 on the orig-
inal fields ∆, B are defined via differential equations, but can be turned into algebraic
transformations if extra fields, the potentials, are introduced, e.g. (4.15). Furthermore,
commutators of symmetries such as [δ1, δ4] are also symmetries, and in these commuta-
tors expressions like δ1φ appear — the potentials are also acted upon by the δi. It turns
out that the original fields and the additional potentials can be organized into matrices
which are the coefficients of a G valued power series

V̂(γ) = V + γV̂1 + γ
2V̂2 + ... (4.16)
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in a complex parameter γ, called the spectral parameter, such that the full infinite di-
mensional symmetry algebra g∞ acts in a more or less manageable way on V̂(γ).

Here we will not define V̂ via a direct specification of the coefficients in the power
series, but rather from another point of view, namely as the central object in a complete
reformulation of cylindrically symmetric gravity which will be essential to the remainder
of the present work. The action of the symmetry algebra g∞ on V̂ will then be developed
in section 4.6.

In the reformulation of cylindrically symmetric gravity V̂ will be determined by a linear
system of field equations

V̂−1∂µV̂ = Ĵµ, (4.17)

which has a solution if and only if V = V̂∣γ=0 satisfies its (non-linear) field equation (2.51),
Dµ(ρP µ). That is, (2.51) is the integrability condition of the linear system. This is

achieved by choosing Ĵµ to be a suitable function of Jµ = V−1∂µV and of γ.
Let us find this function. As an ansatz we adopt some reasonable restrictions on the

form of Ĵµ. Firstly we would like V̂ to transform in the same way under H = SO(2)

transformations as V does, and this implies that that the projections of Ĵ onto h and k
must transform as Q and P do, according to (2.49). This is the case if Ĵµ is the sum of
Qµ and a linear combination of the components of P :

Ĵµ = Qµ +A
ν
µ (γ)Pν . (4.18)

Furthermore, we require V̂ to be a spacetime scalar like V , so Ĵ must be a 1-form, like Q
and P . Admitting that A depends on the metric, and spacetime area form, ε, this still
requires that A be invariant under Lorentz transformations. That is, A = ΛAΛ−1, with

Λ = [(
1 β
β 1

)] ,

in an orthonormal spacetime basis. Equivalently

0 = [A,Λ] = [(
a b
c d

) ,(
1 β
β 1

)] = β (
b − c a − d
d − a c − b

) ⇒ b = c, a = d.

Note that

(
0 1
1 0

)

ν

µ

= εµρη
ρν .

Thus
Ĵµ = Qµ + a(γ)Pµ + b(γ)εµνP

ν . (4.19)

The linear system (4.17) indicates that Ĵ is a flat SL(2) connection. It is precisely
the connection obtained from the zero connection by rotating the gauge by V̂(x) at each
point x. The linear system can also be regarded as the statement that V̂ is constant with
respect to the SL(2) covariant derivative with connection Ĵ : dV̂ − V̂ Ĵ = 0, or equivalently
dV̂−1 + Ĵ V̂−1 = 0. Thus V̂(x) is the parallel transport of V̂ at a reference point along
any path to x. The necessary and sufficient condition for parallel transport to be path
independent is that the curvature of the connection vanishes. In other words

∂ν Ĵµ − ∂µĴν + [Ĵν , Ĵµ] = 0. (4.20)
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Since the spacetime is two dimensional it is equivalent to require that the contraction of
the curvature with εµν vanishe. Substituting the form (4.19) into this contraction one
obtains

εµν(∂µĴν − ∂ν Ĵµ + [Ĵµ, Ĵν]) =

= 2εµν {∂µQν +
1
2[Qµ,Qν] + ∂µaPν + a(∂µPν + [Qµ, Pν]) +

+ ∂µbενρP
ρ + bενρ(∂µP

ρ + [Qµ, P
ρ]) + 1

2[Pρ, Pσ](δ
ρ
µδ

σ
νa

2 + b2ε ρ
µ ε

σ
ν + 2abδ ρ

µ ε
σ
ν )} . (4.21)

But the curvature of J = Q+P ∶= V−1dV is always zero, which implies (2.48), ∂µQν−∂νQ̂µ+

[Qµ,Qν] + [Pµ, Pν] = 0, and (2.47), ∂µPν − ∂νP̂µ + [Qµ, Pν] + [Pµ,Qν] = 0. Substituting
these relations into (4.21) one obtains

2εµν∂µaPν + 2∂µbP
µ + 2b(∂µP

µ + [Qµ, P
µ]) + [Pρ, Pσ](ε

ρσ(a2 − 1 − b2) + 2abηρσ) =

= 2(ενµ∂
νa + ∂µb − bρ

−1∂µρ)P
µ + 2bρ−1(ρDµP

µ + ∂µρP
µ) + [Pµ, Pν]ε

µν(a2 − 1 − b2) =

= 2(∂µb − εµ
ν∂νa − bρ

−1∂µρ)P
µ + [Pµ, Pν]ε

µν(a2 − b2 − 1) + 2bρ−1Dµ(ρP
µ). (4.22)

The third term vanishes for V satisfying the e.o.m. The first term is in k, the second term
in h. Hence, their scalar coefficient functions of a and b have to vanish separately:

⇒ ∂µb − ε
ν
µ ∂νa = bρ

−1∂µρ, (4.23)

⇒ a2 − b2 = 1. (4.24)

The algebraic equation can be satisfied by setting

a(γ) =
1 + γ2

1 − γ2
, b(γ) = −

2γ

1 − γ2
.

This defines the parameter γ. It is by no means the only good way to parametrize the
one dimensional set of solutions to (4.24). (Indeed we shall make extensive use of another
parameter u = a + b). Different parametrizations lead to equivalent formulations of the
theory. The γ parameter is the one used in [9, 20, 30, 24].1 Note, a and b are only defined
for γ ≠ ±1. Thus at present, the curvature can only be required to vanish for γ ≠ ±1. In
section 4.4 we analyse more carefully what happens at these values.

In terms of γ the linear system becomes

V̂−1∂µV̂ = Qµ +
1 + γ2

1 − γ2
Pµ −

2γ

1 − γ2
εµνP

ν . (4.25)

This is seen to agree with the form of the system used in [30, 24] once the fact that their
metric has the opposite sign is taken into account.

Substituting the γ parametrization into the differential equation (4.23) one obtains

2(1 + γ2)

(1 − γ2)2
∂µγ + ε

ν
µ ∂νγ

4γ

(1 − γ2)2
=

2γ

1 − γ2
ρ−1∂µρ. (4.26)

1The first two of these references call it t instead of γ.
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The only constant solution is γ = 0, and with this solution Ĵ = J , and the linear system is
integrable identically even when V does not satisfy the field equations. To obtain a linear
system that implies the field equation of V we must admit a spacetime dependent spectral
parameter γ. The x dependence of γ is the essential difference between cylindrically
symmetric gravity and the principal chiral model (see e.g. [35]). Multiplying (4.26) by
1+γ2

2γ yields

(1 + γ2)2

(1 − γ2)2
γ−1∂µγ + 2ε ν

µ ∂νγ
1 + γ2

(1 − γ2)2
=

1 + γ2

1 − γ2
ρ−1∂µρ.

On the other hand, multiplying (4.26) by −ε µ
ρ and renaming indices gives

−2ε ν
µ ∂νγ

1 + γ2

(1 − γ2)2
−

4γ2

(1 − γ2)2
γ−1∂µγ = −

2γ

1 − γ2
ρ−1ε ν

µ ∂νρ.

Addition of the two previous relations yields

γ−1∂µγ =
1 + γ2

1 − γ2
ρ−1∂µρ −

2γ

1 − γ2
ε ν
µ ρ

−1∂νρ (4.27)

(an equation that is remarkably similar to (4.25)). This equation can be solved in closed

form. Multiplying it by ρ1−γ2

2γ it becomes

−ρ
1

2
∂µ (γ +

1

γ
) =

1

2
(γ +

1

γ
)∂µρ − ε

ν
µ ∂νρ.

Taking into account that ∂µρ̃ = ε ν
µ ∂νρ this is equivalent to

0 = ∂µ (
1

2
ρ(γ +

1

γ
) − ρ̃) . (4.28)

Thus
1

2
ρ(γ +

1

γ
) − ρ̃ = w, (4.29)

a complex constant. w is called the constant spectral parameter and will play a central
role in the sequel. The solution of (4.29) is

γ(x,w) =
1

ρ
(w + ρ̃ −

√
(w + ρ̃)2 − ρ2) =

=

√
w + ρ̃ + ρ −

√
w + ρ̃ − ρ

√
w + ρ̃ + ρ +

√
w + ρ̃ − ρ

=

√
w + ρ+ −

√
w + ρ−

√
w + ρ+ +

√
w + ρ−

.

(4.30)

To obtain all solutions for γ both branches of the square root must be admitted. However,
in the second line a+ ∶=

√
w + ρ+ and a− ∶=

√
w + ρ− must take the same values in the

denominator and the numerator.
We have now achieved our aim of formulating a linear system which is integrable

(for all values of the constant spectral parameter w) iff V satisfies its field equation, for
∂µĴν − ∂ν Ĵµ + [Ĵµ, Ĵν] = εµν

2γ
1−γ2ρ−1Dσ(ρP σ). This formulation of the field equation is

certainly rather roundabout, but it offers great advantages which will become clearer in
the sequel. Reformulation of the field equations or equations of motion in terms of a
linear system is one of the central tools in the theory of integrable systems. (See e.g. [2]).
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The linear system for V̂ takes an especially simple form in null coordinates (B.1). In
null coordinates the only non-zero components of εµ̃ν̃ are ε ±

± = ±1, and therefore

V̂−1∂±V̂ = Ĵ± =Q± +
1 ∓ γ

1 ± γ
P± (4.31)

=Q± + u
±1P±, (4.32)

where

u(x,w) ∶=
1 − γ

1 + γ
=

√
w + ρ−

√
w + ρ+

=
a−

a+
. (4.33)

(u is the parameter a + b mentioned earlier, and we could have obtained its dependence
on ρ± and w directly from (4.23), without passing through γ.) The differential equation
for γ takes the form

γ−1∂±γ = u
±1ρ−1∂±ρ. (4.34)

The solution to the linear system (4.25) is a path ordered exponential

V̂(x,w) = V̂(x0,w)Pe∫
x
x0
Ĵ , (4.35)

where V̂(x0,w) is the value of V̂ at an arbitrarily chosen reference point x0 in spacetime.
V̂(x0,w) is not restricted by (4.25), V̂ is thus defined by the linear system only up to a
left multiplication by a w dependent group element S(w) ∈ G.

Originally the idea was that V̂ be a power series from which all the physical fields and
potentials can be recovered. In particular V was to be the order zero term in the series.
With a little care we can ensure that this is the case. Recall that γ(x) = 0 is a possible
γ field (corresponding to w = ∞). When γ = 0 the connection Ĵ reduces to just J , so

V̂(x,w) = V̂(x0,w)V(x0)
−1V(x). (4.36)

Thus V(x) = V̂(x) when γ = 0, or equivalently w = ∞, provided V̂(x0,w = ∞) = V(x0).
We will in fact choose V̂ = V for all w at a point on the axis ρ = 0. With this choice (and
with many others) V̂ turns out to be analytic in γ in a neighbourhood of 0 for a large
and reasonable class of solutions V , so V̂ is indeed a power series in γ. It will also often
be convenient to put V̂ in upper triangular form, by means of a local H transformation
V̂(x,w) → V̂(x,w)h(x) with h(x) ∈H.

Following [9] we denote these conditions, analyticity in γ about 0 and triangularity of
V = V̂(γ = 0), as the triangular gauge.2

4.3 The analytical properties of γ(x,w)

4.3.1 The complex square root and its Riemann surface

The variable spectral parameter γ contains square roots of the constant spectral param-
eter w. Here we elaborate some details about the complex square root function and the
Riemann surface associated to it.

2In Chapter 5 the H transformations are shown to be true gauge transformations. It less clear in
what sense the analyticity condition is a gauge condition. Nevertheless we will keep using this already
established terminology.
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Consider the equation
v2 = z. (4.37)

For fixed z ≠ 0 this equation for v has two solutions differing by a sign. If we want to
define the square root such that

√
z

2
= z, (4.38)

then it is not uniquely defined, but a multi-valued function. Setting z = r eiφ and v = s eiψ

in (4.37) then

(s eiψ)
2
= s2 ei2ψ = r eiφ ⇔ s2 = r, 2ψ = φ + 2nπ ⇔ s =

√
r, ψ =

φ

2
+ nπ n ∈ Z,

with
√
r being the real (positive) square root of r. Therefore

√
z =

√
r eiφ = ±

√
reiφ/2 (4.39)

When writing a complex number in its polar form we always have the freedom of adding
2nπ, n ∈ Z, to the argument φ

z = r eiφ = r ei(φ+2nπ).

If we agree that we always take the positive sign in s = ±
√
r, then the sign in (4.39)

corresponds to our choice of n when writing z in its polar form. If n is even (odd), the
sign is + (−). This already suggests that we define the square root function not as a
bi-valued function on the complex plane, but as a single-valued function on two copies of
the complex plane where

z1 = r e
iφ and z2 = r e

i(φ+2π)

are no longer coinciding points, but merely equivalent points on different copies of the
complex plane.

By analysing continuity properties of the square root (4.39) on the complex plane we
will see how two copies of the complex plane appropriately cut and glued together will
give a single-valued continuous function on what is called a Riemann surface.

First note that we can construct two single-valued functions each mapping C to C by
requiring that the argument of a complex number be in a certain interval

z = r eiφ φ ∈ [a, a + 2π[, a ∈ R (4.40)

(for example [−π,π[). Then (4.39) defines two single-valued functions differing by a sign.
Now we consider a small loop

c ∶ [0,1] ⊂ R→ C
t↦ ε ei(φ+2tπ) = ε ei(φ+2tπ+2nπ) (4.41)

around 0, choose an interval for the argument3 and evaluate the functions (4.39) on this
curve. Denote by t0 the value of t where

lim
ε→0

{φ + 2π[t0 − ε + n(t0 − ε, a, φ)]} = a + 2π,

3In this step n in (4.41) becomes a function of t, a and φ
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which is the parameter value of the curve where according to our prescribed interval we
have to shift the argument:

φ + 2π(t + n(t, a, φ)) ∈ [a, a + 2π[ ∀t

lim
ε→0

{φ + 2π[t0 + ε + n(t0 + ε, a, φ)] − φ + 2π[t0 − ε + n(t0 − ε, a, φ)]} = −2π.

The square root functions are discontinuous at c(t0). Since the argument jumps by −2π,
we have that

lim
ε→0

√
c(t0 + ε) = − lim

ε→0
c(t0 − ε). (4.42)

The functions change its sign.
We call a point with the property that

√
cannot be defined continuously on an arbitrarily

small loop around it a branch point. The “point at infinity” is also a branch point. This
can be seen as follows. We substitute y = 1

z . Then “z=∞” corresponds to y = 0 and

√
z =

1
√
y
.

We consider again a loop (4.41) around y = 0. Then again at t0 the argument jumps and
the functions change its sign.

It is clear that the square root functions will be discontinuous along any loop around
0 or ∞ - the number of points of discontinuity on a particular loop will depend on how
often the argument of the curve jumps between the boundaries of the interval (4.40). The
choice of a corresponds to a straight line in the complex plane connecting the two branch
points where the square root functions are discontinuous. We could even construct a
curved line by making a a continuous function of r in (4.40) or, even more generally,
choose any line connecting the two branch points and make the square root functions
discontinuous along this line. This line is called the branch cut.

By (4.42)
√

changes by a factor of −1 when crossing the branch cut. The two square
root functions (4.39) also differ by factor of −1. So we consider two copies of the complex
plane C1,2. We chooses an a, i.e. we define a branch cut for C1,2. On C1 (C2) we define
(4.39) with the positive (the negative) sign. Now we agree that every time we cross the
branch cut on C1 we jump to the corresponding point behind the branch cut on C2 and
vice versa. Then we have one continuous single-valued function defined on two copies of
the complex plane cut along a branch cut and glued together alternately. This surface is
called the Riemann surface of the complex square root. For a fixed complex number z
the choice of sign of

√
z amounts to the choice on which of the two sheets of the Riemann

surface we choose this number to be. Pictures of this and Riemann surfaces of other
functions can be found in abundance on the internet.

4.3.2 γ and its Riemann surface

From (4.30) we see that γ(x,w) contains a square root. We will thus need a Riemann
surface to continuously define γ on. In the previous section we showed that the Riemann
surface of the function

√
z consists of two copies of the complex plane, cut along a line

connecting the two branch points 0 and ∞ and glued together such that every loop around
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0 (or ∞) encircles this point an even number of times. We look for branch points of γ.
In the expression for γ(x,w), w is mapped to the value

(w + ρ̃)2 − ρ2 = (w + ρ̃ + ρ)(w + ρ̃ − ρ)

before taking the square root. This expression is 0 at w = −ρ̃ ± ρ. An arbitrarily small
loop

c ∶ [0,1] ⊂ R→ C
t↦ −ρ̃ ± ρ + ε ei(φ+2tπ) = −ρ̃ ± ρ + ε ei(φ+2tπ+2nπ) (4.43)

in the w plane is mapped to

(±2ρ + εei(φ+2π(n+t))) εei(φ+2π(n+t)) = ±2ρεei(φ+2π(n+t)) + ε2ei(2φ+4π(n+t))

before the square root is taken. Since ε is arbitrarily small, this is a loop encircling 0
once in the (w + ρ̃)2 − ρ2 = (w + ρ̃ + ρ)(w + ρ̃ − ρ)-plane. The points w = −ρ̃ ± ρ are branch
points of γ. What about the point at infinity? Again we set w = 1

w′ , ρ̃ ± ρ = ±
1

2ρ′± . Then

(w + ρ̃ + ρ)(w + ρ̃ − ρ) = (
1

w′ +
1

2ρ′+
)(

1

w′ −
1

2ρ′−
) = (1 +

w′

2ρ′+
)(1 −

w′

2ρ′−
)

1

w′2 .

We consider an arbitrarily small loop around 0, w′ = ε ei(φ+2tπ+2nπ). Then we may write

(1 +
ε ei(φ+2tπ+2nπ)

2ρ′+
) = r1(t) e

iψ1(t),

(1 −
ε ei(φ+2tπ+2nπ)

2ρ′−
) = r2(t) e

iψ2(t),

1

(ε ei(φ+2tπ+2nπ))2
=

1

ε2
e−i(2φ+4tπ+2nπ)),

(1 +
w′

2ρ′+
)(1 −

w′

2ρ′−
)

1

w′2 = r1(t)r2(t)
1

ε2
ei(ψ1(t)+ψ2(t)−2φ−4tπ−4nπ).

Since ε is arbitrarily small there will surely exist a value of a such that r1(t), r2(t),
ψ1(t), ψ2(t) vary continuously, arbitrarily little and have the same values for t = 0 and
t = 1. ei(−2φ−4tπ−4nπ) describes 2 complete circles. Hence when doing a single loop around
“∞” in the w-plane we do a double loop in the (w + ρ̃)2 − ρ2-plane. We can define γ on
this loop continuously and therefore ∞ is not a branch point.

As a branch cut connecting our two branch points w = −ρ̃ ± ρ we may choose the
segment of the real line between w = −ρ̃ ± ρ. Then the Riemann surface of γ consists of
two copies of the complex plane cut and glued together along the ρ- and ρ̃-dependent
branch cut. Using the figure used in [24], but with a different notation, we label the two
sheets of the Riemann surface by W+ and W−. If we need to distinguish between their
upper and lower half planes, we write W+u,W+d,W−u,W−d (see figure 4.1).
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4.3.3 Properties of γ

Finally we work out some properties of γ also mentioned in the appendix of [24]. We had

γ(x;w) =
1

ρ
(w + ρ̃ −

√
(w + ρ̃)2 − ρ2) =

√
w + ρ + ρ̃ −

√
w + ρ̃ − ρ

√
w + ρ + ρ̃ +

√
w + ρ̃ − ρ

. (4.44)

This relation can be inverted for γ ≠ 0 to express w as a function of γ:

w =
ρ

2
(γ +

1

γ
) − ρ̃. (4.45)

For now let 0 < ρ < ∞ and ρ̃ be finite.

1) γ is obtained from 1
γ by changing the sign of the square root in (4.44).

We set y ∶= w+ρ̃
ρ . Then

γ = y −
√
y2 − 1

and so
1

γ
=

1

y −
√
y2 − 1

=
y +

√
y2 − 1

y2 − (y2 − 1)
= y +

√
y2 − 1.

Since exchanging the sign of the square root means exchanging the two sheets, this means
that for a complex number w corresponding to two different points on the two sheets of
the Riemann surface the value of γ at one of the points is the reciprocal of the value of
γ at the other point. This is also mirrored in (4.45). γ and 1

γ are mapped to the same
number w (again corresponding to two points on the two sheets of the Riemann surface).
2) w ∈ R (y ∈ R) implies that either γ ∈ R/{0} or ∣γ∣ = 1:

w ∈ R⇔ γ +
1

γ
∈ R⇔ 0 = γ +

1

γ
− γ̄ −

1

γ̄
= 2i Im(γ) −

2i Im(γ)

∣γ∣2
= 2i Im(γ)(1 −

1

∣γ∣2
)⇔

⇔ ( γ ∈ R/{0} ∨ ∣γ∣ = 1 )

3) γ ∈ R/{0} ⇒ (y ∈ R ∧ ∣y∣ ≥ 1):

From 2) we already know that γ ∈ R/{0} ⇒ y ∈ R.
Consider the two polynomials γ2 ± 2γ + 1 with γ ∈ R. Each has only one zero at ∓γ = 1.
These are also the global minima. Hence

γ2 ± 2γ + 1 ≥ 0 ⇒ γ2 + 1 ≥ ∓2γ ⇒ ∣γ +
1

γ
∣ ≥ 2 ⇒ ∣y∣ ≥ 1 for γ ∈ R/{0}.

4)∣γ∣ = 1 ⇒ (y ∈ R ∧ ∣y∣ ≤ 1)

Again from 2) we know that ∣γ∣ = 1⇒ y ∈ R. Furthermore if ∣γ∣ = 1 we can write γ = eiφ.
Then γ + 1

γ = 2 Reγ = 2 cos(φ) and so

∣y∣ = ∣ cos(φ)∣ ≤ 1
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For the specific value4 y = R
√

2, γ(y) = R
√

2−
√

1 = R
√

2∓1. We now specify that if y denotes
the point with value R

√
2 on W+ = W+u ∪W+d we choose the value R

√
2 − 1 while for the

corresponding point on W− = W−u ∪W−d we choose R
√

2 + 1. By continuity real points
y ∈W+ with y > 1 get mapped to points γ ∈ R with 0 ≤ γ < 1 and the corresponding points
on W− get mapped to points γ ∈ R with γ > 1. What about the real negative points in
the γ-plane. Since

2y = γ +
1

γ
,

a negative and real γ implies a negative and real w. Now we think of a path in W+
connecting a positive real point to a negative real point without crossing the branch cut.
This path in the γ-plane will then not cross the unit circle and hence when arriving at a
point y ∈W+, real and y < −1, in the γ-plane we arrive somewhere on the segment of the
negative real axis inside the unit circle. So real y ∈ W+ with y < −1 are mapped to real
negative γ with 0 ≥ γ > −1. By the same arguments real y ∈W− with y < −1 are mapped
to real negative γ with γ < −1.
Now for a fixed real number y0 (corresponding to two points) with ∣y0∣ > 1 we consider
the curve y(t) = y0 + it. At t = 0 the tangent to the curve γ(y(t)) is

d

dt
∣
t=0

γ(y(t)) = i −
2y0i

2
√
y2

0 − 1
= i

⎛

⎝
1 −

y0
√
y2

0 − 1

⎞

⎠
, (4.46)

which vanishes only if y0 = ∞. Hence crossing the real line without the branch cut in W+
or W− means crossing (and not only touching) the real line in the γ plane.
Finally, if we set y0 =

R
√

2, y ∈W+, we have

d

dt
∣
t=0

γ(y(t)) = i(1 −
R
√

2
√

1
) = i(1 −

R√
2),

which is purely imaginary and “negative” because we fixed that the sign of the square
root for real points y > 1, y ∈W+ is positive. So moving from W+d to W+u in the γ-plane
corresponds to moving from Γ+u to Γ+d (see figure 4.1). If we then cross the branch cut
to get to W−d in the γ-plane, we cross the unit circle 5 and enter the region Γ−d. Finally,
if we then move to W−u in the γ-plane, we arrive at Γ−u, which completes this analysis.
Under the map γ

W+u → Γ+d, W+d → Γ+u, W−u → Γ−u, W−d → Γ−d. (4.47)

5) The point γ = 0 is reached in the limit w →∞ on W+
The point γ = ∞ is reached in the limit w →∞ on W−

lim
w→∞

γ = lim
y→∞

1 −
√

1 − y−2

y−1

4 R
√

denotes the positive real square root function.
5(4.46) can also be used for ∣y0∣ < 1 to show that indeed we cross the unit circle and do not only touch

it
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Figure 4.1: On the properties of γ

Depending on the sign of the square root in the limit, this is an expression of the form 0
0

or it is ∞. In the former case we continue

lim
w→∞

γ = lim
y→∞

−1
2

2y−3
√

1−y−2

−y−2
=

y−1

√
1 − y−2

= 0.

Taking into account (4.47), we know which case belongs to which sheet.
6) γ(x,w = −ρ̃ ± ρ) = ±1 is obvious.

7) limρ→0 γ = 0 or ∞ depending on the sheet

ρ→ 0 means that y →∞. From 5) we know what happens in this case.
9) limρ→∞ γ = ±i ρ →∞ corresponds to y → 0 and so γ → −

√
−1 = ±i again depending on

the sheet.

4.4 The analytical properties of V̂(x,w)

In this section we investigate the analytical properties of V̂(x,w). It is obtained from
V(x) by solving the linear system (4.25) for some initial condition. Since the Ĵ(x,w)

appearing in this linear system is singular along the lines ρ± = −w, a detailed treatment
of the behaviour of V̂(x,w) near these singular points seems necessary.

Throughout this section, we assume that J(x) = V−1∂V is continuous on the closed
subset D

D ∶= {(x−, x+) ∣ x+0 ≤ x
+ ≤ x+1 , x

−
0 ≤ x

− ≤ x−1 , x
+ ≥ x−} (4.48)

and that furthermore the mixed partial derivatives ∂+J− and ∂−J+ exist and are contin-
uous. For real w, we define the line segments `±w to be the intersections of D with the
lines x± = −w. If x+0 < −w < x−1 , these line segments separate D into regions DI , DII and
DIII illustrated in figure 4.2. We define, that these regions contain those points of their
boundary, which are also points of the boundary of D, but which do not lie on `±.

4.4.1 Continuity with respect to spacetime-coordinates

We start with the easy part, namely the properties of the solution V̂ to the linear system
in the domains where the connection Ĵ is non-singular.
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Figure 4.2: The domain D where J is assumed to be continuous.

Proposition 4.4.1. If the imaginary part of w is non-zero or if w is real, but such that
`±w are empty, then the solution of the linear system with initial condition V̂(x0,w) = 1 is
given by the path ordered exponential

V̂(x,w) = Pe∫
x
x0
Ĵ , (4.49)

where x0 as well as the entire path connecting x0 to x must lie in D. This solution is
continuous in x, analytic in w and independent of the path chosen.

Proof. For such w, the connection Ĵ is non-singular in all of D. In particular, along a
specific curve it is continuous with respect to the parameter of the curve and analytic
in w. By theorem (10.3) in chapter II of [27], the solution is therefore analytic in w.
Since the curvature (4.22) of the connection Ĵ is identically zero for those w considered
in the proposition, the solution is independent of the path. By the properties of the path
ordered exponential (see appendix D) it is clear that (4.49) solves the linear system and
satisfies V̂(y,w) = 1.

If w is real, the lines `±w may or may not separate D into two or three regions, depending
on the value of w. In any case, we denote these regions by Di, where i may take values
I, II, III. Ĵ(x,w) is then non-singular in these regions Di. An analogue of the above
proposition holds with D replaced by Di and w real.

In the following, for real w with x+0 < −w < x+1 , step by step we define a function on the
lines `±w, which are the limiting values of the solutions of the linear system in the regions
Di. Note that although the linear system in the form (4.25) and the curvature (4.22) is
singular on the lines `±w, parts of these singularities may be removed by considering the
±-components (4.31). In that expression, Ĵ− is singular only on `−w and Ĵ+ is singular only
on `+w. We will see, that the function we define on `±w is differentiable along these lines
and satisfies the corresponding components of (4.31).

For x+0 < −w < x+1 , let I ⊂ R by any real, closed interval such that points (x−,−w) with
x− ∈ I lie on `+ and not on the axis ρ = 0 (this means that I ∋ x− < −w). We start with
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the region DI . Choose a point xi = (x−i , x
+
i ) in DI , such that the points xm ∶= (x−, x+i ),

x− ∈ I, all lie in DI . We proof the following propositions

Lemma 4.4.1. The improper integral

∫

−w

x+i

Ĵ+(x
−, z+,w)dz+ = ∫

−w

x+i

{Q+(x
−, z+,w) +

√
w + x−

√
w + z+

P+(x
−, z+,w)}dz+ (4.50)

and its derivative with respect to x− exist for all x− ∈ I. The derivative is given by the
improper integral over the derivative of the integrand.

Proof. We introduce the sequence of functions (an(x−))n∈N of x− ∈ I given by

an(x
−) = ∫

−w−χn

x+i

{Q+ +

√
w + x−

√
w + z+

P+}dz
+, (4.51)

where χ > 0 is such that −w − χ > x+i . For two integers m < n

∥an − am∥ ≤ ∫

−w−χn

−w− χm

⎧⎪⎪
⎨
⎪⎪⎩

∥Q+∥ +

√
∣w + x−∣

√
∣w + z+∣

∥P+∥

⎫⎪⎪
⎬
⎪⎪⎭

dz+ ≤

≤ ∣χ/m − χ/n∣ max
z+∈[x+i ,−w]

∥Q+∥ +
√

∣w + x−∣ max
z+∈[x+i ,−w]

∥P+∥2∫

√
χ/n

√
χ/m

d(∣
√
w + z+∣) =

= ∣χ/m − χ/n∣ max
z+∈[x+i ,−w]

∥Q+∥ +
√

∣w + x−∣ max
z+∈[x+i ,−w]

∥P+∥2 ∣
√
χ/n −

√
χ/m∣ ,

which by the assumed regularity of Jµ becomes arbitrarily small for sufficiently high m,n.
The sequence converges pointwise, that is the improper integral exists for every x− ∈ I.

Now to the statement about its derivative: By a standard theorem on sequences of
functions (see e.g. [16]) we need to prove that the sequence of derivatives, (∂x−(an))n∈N,
converges uniformly on I. Then

∂x−( lim
n→∞

an) = lim
n→∞

(∂x−an).

The sequence of derivatives is

∂x−an(x
−) = ∫

−w−χn

x+i

{∂x−Q+ + ∂x− (

√
w + x−

√
w + z+

P+(x
−, z+))}dz+.

For m < n we get

∥∂x−an(x
−) − ∂x−am(x−)∥ ≤ ∣χ/m − χ/n∣ max

z+∈[x+i ,−w]
∥∂x−Q+∥+ (4.52)

+ ∥
1

2
√
w + x−

∫

−w−χ/n

−w−χ/m

P+(x−, z+)
√
w + z+

dz+ + ∫
−w−χ/n

−w−χ/m

√
w + x−

√
w + z+

∂x−P+(x
−, z+)dz+∥ ≤

≤∣χ/m − χ/n∣ max
z+∈[x+i ,−w]

∥∂x−Q+∥ +
∣
√
χ/n −

√
χ/m∣

∣
√
w + x−∣

max
z+∈[x+i ,−w]

∥P+∥+

+ 2∣
√
w + x−∣ ∣

√
χ/n −

√
χ/m∣ max

z+∈[x+i ,−w]
∥∂x−P+∥, (4.53)
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which again becomes arbitrarily small for sufficiently high m,n. This proves pointwise
convergence: For every x− ∈ I, the improper integral

∫

−w

x+i

∂x− Ĵ+(x
−, z+)dz+

exists. Now let α < β be the endpoints of I, I = [α,β]. Then we furthermore have

sup
x−∈I

∥∂x−an(x
−) − lim

m→∞
[∂x−am(x−)]∥ = sup

x−∈I
∥∫

−w

−w−χn
∂x− Ĵ+(x

−, z+)dz+∥ ≤

≤∣
χ
n ∣ max

x−∈I
z+∈[−w−1/n,−w]

∥∂x−Q+∥ +
∣
√

∣w∣ −
√

∣w + χ/n∣∣
√

∣w + β∣
max
x−∈I

z+∈[−w−χ/n,−w]

∥P+∥+

+ 2
√

∣w + α∣ ∣
√
w −

√
∣w + χ/n∣∣ max

x−∈I
z+∈[−w−χ/n,−w]

∥∂x−P+∥,

which goes to zero as n goes to infinity. Hence, (∂x−an)n∈N converges uniformly on I and
the proposition is proved.

Let w, I, xi and χ be as above.

Lemma 4.4.2. The multiple integral

∫

−w

x+i

dz+1 ∫
z+1

x+i

dz+2 ...∫
z+k−1

x+i

dz+k Ĵ+(x
−, z+k )...Ĵ+(x

−, z+1 ) (4.54)

and its derivative with respect to x− exist for all x− ∈ I and k ∈ N with k ≥ 2. The
derivative is given by taking the multiple, improper integral over the derivative of the
integrand.

Proof. Throughout this proof, we write simply

Ĵi ∶= Ĵ+(x
−, z+i ), Ĵ = Ĵ+(x

−, z+).

We consider the sequence (an(x−))n∈N with

an(x
−) =

1

k! ∫
−w−χ/n

x+i

dz+1 ∫
−w−χ/n

x+i

dz+2 ...∫
−w−χ/n

x+i

dz+kP[Ĵk...Ĵ1],

where the path ordering operator P orders the factors of the product such, that factors
with lower values of z+ are to left of factors with higher values of z+ (see also appendix
D). By the properties of the norm ∥ ⋅ ∥ we have

∥P[AB]∥ ≤ ∥A∥∥B∥

and thus for m < n

∥an(x
−)∥ ≤

1

k!
(∫

−w−χ/n

−w−χ/m
dz+∥Ĵ∥)

k

≤
Ak(mn)(x

−)

k!
, (4.55)
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with

A(mn)(x
−) ∶= ∣

χ
m −

χ
n ∣ max
z+∈[x+i ,−w]

∥Q+∥ +
√

∣w + x−∣ max
z+∈[x+i ,−w]

∥P+∥2 ∣
√
χ/n −

√
χ/m∣ . (4.56)

A(mn)(x−) becomes arbitrarily small for sufficiently high m,n. The sequence converges
pointwise.

We now consider the sequence of derivatives. The path ordered product can be ex-
pressed as a sum of normal products multiplied by Θ-distributions6. Thus ∂x− commutes
with the path ordering operator P and for m < n we have

∥∂x−an(x
−) − ∂x−an(x

−)∥ ≤

≤
1

k!
∥∫

−w−χ/n

−w−χ/m
dz+1 ∫

−w−χ/n

−w−χ/m
dz+2 ...∫

−w−χ/n

−w−χ/m
dz+kP[∂x−{Ĵk...Ĵ1}]∥ ≤ (4.57)

≤
1

(k − 1)!
(∫

−w−χ/n

−w−χ/m
dz+∥Ĵ∥)

k−1

∫

−w−χ/n

−w−χ/m
∥∂x− Ĵ1∥dz

+
1 ≤

Ak−1
(mn)(x

−)B(mn)(x−)

(k − 1)!
,

where

B(mn)(x
−) ∶=∣ χm −

χ
n ∣ max
z+∈[x+i ,−w]

∥∂x−Q+∥ +
∣
√
χ/n −

√
χ/m∣

∣
√
w + x−∣

max
z+∈[x+i ,−w]

∥P+∥+

+ 2∣
√
w + x−∣ ∣

√
χ/n −

√
χ/m∣ max

z+∈[x+i ,−w]
∥∂x−P+∥. (4.58)

Once again, the right hand side of (4.57) becomes arbitrarily small for m,n high enough,
which implies pointwise convergence.

To prove uniform convergence of the sequence of derivatives, we note that

sup
x−∈I

∥ lim
m→∞

[∂x−am(x−)] − ∂x−an(x
−)∥ =

= sup
x−∈I

∥∫

−w

−w−χ/n
dz+1 ∫

z+1

x+i

dz+2 ...∫
z+k−1

x+i

dz+k∂x− [Ĵk...Ĵ1]∥ ≤

≤
supx−∈I
(k − 1)! ∫

−w

−w−χ/n
dz+1 ∥Ĵ1∥∫

z+1

x+i

dz+2 ...∫
z+1

x+i

dz+k ∥P [∂x−{Ĵk...Ĵ2}] ∥+

+
supx−∈I
(k − 1)! ∫

−w

−w−χ/n
dz+1 ∥∂x− Ĵ1∥∫

z+1

x+i

dz+2 ...∫
z+1

x+i

dz+k ∥P [Ĵk...Ĵ2] ∥ ≤

≤
supx−∈I
(k − 2)! ∫

−w

−w−χ/n
dz+1 ∥Ĵ1∥ sup

x−∈I
(∫

z+1

x+i

dz2∥Ĵ2∥)

k−2

∫

z+1

x+i

dz+3 ∥∂x− Ĵ3∥+

+
supx−∈I
(k − 1)! ∫

−w

−w−χ/n
dz+1 ∥∂x− Ĵ1∥ sup

x−∈I
(∫

z+1

x+i

dz2∥Ĵ2∥)

k−1

≤

≤
1

(k − 2)!
sup
x−∈I

(∫

−w

−w−χ/n
dz+1 ∥Ĵ1∥) sup

x−∈I
Ak−2(x−) sup

x−∈I
B(x−)+

+
1

(k − 1)!
sup
x−∈I

(∫

−w

−w−χ/n
dz+1 ∥∂x− Ĵ1∥) sup

x−∈I
Ak−1(x−),

6unambiguously except on sets of measure zero
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where

A(x−) ∶= ∫
−w

x+i

∥Ĵ∥dz, B(x−) ∶= ∫
−w

x+i

∥∂x− Ĵ∥dz. (4.59)

From the previous proposition and its proof we know that the integrals over dz1 from
−w −χ/n to −w will go to zero for n→∞ while the other factors remain finite. Thus the
sequence of derivatives converges uniformly on I and again by the standard theorem on
the derivative of the limit of a sequence [16], the proposition is proved.

We arrive at the proposition, which allows us to define the continuous extension to `+

of a solution to the linear system.

Proposition 4.4.2. Define

V̂`+w(x
−) = Pe∫

x−
x−
i
Ĵ−(z−,x+i )dz−Pe∫

−w
x+
i
Ĵ+(x−,z+)dz+

, (4.60)

where

Pe∫
−w
x+
i
Ĵ+(x−,z+)dz+

= lim
n→∞

n

∑
k=0

1

k!
lim
m→∞∫

−w−χ/m

x+i

dz1...∫
−w−χ/m

x+i

dzkP[Ĵ1...Ĵk]. (4.61)

Then

1. V̂`+w exists (is finite),

2. the two limits in its definition (4.61) may be interchanged,

3. its x−-derivative exists for all x− ∈ I and

4. it satisfies the x−-component of the linear system (4.31).

Proof. 1. The first factor in (4.60) exists by the results in appendix D. For the second
factor, we consider the sequence of partial sums

n

∑
k=0

1

k!
lim
m→∞∫

−w−1/m

x+i

dz1...∫
−w−1/m

x+i

dzkP[Ĵ1...Ĵk],

where Ĵk ∶= Ĵ+(x−, z+k ) as before. We know from the previous propositions and proofs
that the limit m → ∞ may be taken — the multiple integrals exist. Furthermore,
for m < n

∥
n

∑
k=m

1

k! ∫
−w

x+i

dz1...∫
−w

x+i

dzkP[Ĵ1...Ĵk]∥ ≤

≤
∞
∑
k=m

1

k! ∫
−w

x+i

dz1...∫
−w

x+i

dzk∥P[Ĵ1...Ĵk]∥ ≤

≤
∞
∑
k=m

1

k!
Ak(x−) = eA(x−) −

m−1

∑
k=0

1

k!
Ak(x−), (4.62)

where A(x−) is given by (4.59). Since (4.62) is arbitrarily small for sufficiently high
m,n, the path ordered exponential as an infinite series converges pointwise for all
x− ∈ I.
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2. We write the infinite sum as a Lebesgue-integral: Consider the natural numbers as
a measurable space by taking the set of all subsets as sigma-algebra Σ. On this
measurable space we define the counting measure µN by

µN(X) = ∣X ∣, if X is finite, where ∣X ∣ is the number of elements of X and

µN(X) = ∞, if X is infinite.

Now consider

fm(k) =
1

k! ∫
−w−η/m

x+i

dz1...∫
−w−η/m

x+i

dzkP[Ĵ1...Ĵk]

a sequence, indexed by m, of functions of the natural numbers (k acts as the vari-
able). Then we may write

∞
∑
k=0

1

k! ∫
−w−χ/m

x+i

dz1...∫
−w−χ/m

x+i

dzkP[Ĵ1...Ĵk] = ∫
N
fmdµN.

We have

∥fm(k)∥ ≤
1

k!
Ak(x−) =∶ g(k) (4.63)

for all m. g(k) is integrable over the natural numbers and thus by the Lebesgue
dominated convergence theorem7 we have

lim
m→∞∫N

fmdµN = ∫
N

lim
m→∞

fmdµN,

or equivalently

lim
m→∞

∞
∑
k=0

fm(k) =
∞
∑
k=0

lim
m→∞

fm(k).

There is one more subtlety: the theorem is stated for real valued functions and
fm(k) is an SL(2,C)-valued function. But fm(k) in (4.63) may be replaced by the
real or imaginary part of any of its components, which are real-valued and so the
theorem may applied separately to them.

3. Concerning its x−-derivative, once again we consider the sequence of derivatives of
the partial sums. By the previous propositions we have for m < n

∥
n

∑
k=m

1

k!
∂x− ∫

−w

x+i

dz1...∫
−w

x+i

dzkP[Ĵ1...Ĵk]∥ ≤

≤
n

∑
k=m

1

(k − 1)!
Ak−1(x−)B(x−) ≤

≤ {eA(x−) −
m−2

∑
k=0

1

k!
Ak(x−)}B(x−),

7see theorem 5.6 in [3]
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which becomes arbitrarily small for sufficiently high m,n. The limit n → ∞ of the
sequence of derivatives exists and it convergences uniformly for x ∈ I because

sup
x−∈I

∥
∞
∑

k=n+1

1

k!
∂x− ∫

−w

x+i

dz1...∫
−w

x+i

dzkP[Ĵ1...Ĵk]∥ ≤

≤ ∣{esupx−∈I A(x−) −
n

∑
k=0

supx−∈I A
k(x−)

k!
} sup
x−∈I

B(x−)∣

becomes arbitrarily small if n is sufficiently high.

4. Together with the previous lemmas, we have all the necessary permissions to cal-
culate

∂x−Pe
∫ −wx+
i
Ĵ+(x−,z+)dz+

= ∂x− lim
n→∞

n

∑
k=0

1

k!
lim
m→∞∫

−w−1/m

x+i

dz1...∫
−w−1/m

x+i

dzkP[Ĵ1...Ĵk] =

= lim
n→∞

n

∑
k=0

1

k!
∂x− lim

m→∞∫
−w−1/m

x+i

dz1...∫
−w−1/m

x+i

dzkP[Ĵ1...Ĵk] = (4.64)

= lim
n→∞

n

∑
k=0

1

k!
lim
m→∞

∂x− ∫
−w−1/m

x+i

dz1...∫
−w−1/m

x+i

dzkP[Ĵ1...Ĵk].

Applying again the dominated convergence theorem to the sequence of functions
∂x−fm(k) with

∥∂x−fm(k)∥ = ∥
1

k! ∫
−w−η/m

x+i

dz1...∫
−w−η/m

x+i

dzk∂x−P[Ĵ1...Ĵk]∥ ≤

≤
1

(k − 1)!
Ak−1(x−)B(x−) =∶ g′(x−)

allows to exchange the two limits in the last line of (4.64) and we get

∂x−Pe
∫ −wx+
i
Ĵ+(x−,z+)dz+

= lim
m→∞

∞
∑
k=0

1

k!
∂x− ∫

−w−1/m

x+i

dz1...∫
−w−1/m

x+i

dzkP[Ĵ1...Ĵk]. (4.65)

Similar to the calculations in the appendix D, (4.65) is

∂x−Pe
∫ −wx+
i
Ĵ+(x−,z+)dz+

= (4.66)

= lim
m→∞∫

−w−1/m

x+i

Pe∫
z+
x+
i
Ĵ+(x−,z+1 )dz+1∂x− Ĵ+(x

−, z+)Pe∫
−w−1/m
z+ Ĵ+(x−,z+2 )dz+2dz+.

The integrand is evaluated on points off `+ only, where the zero-curvature equation
(4.22) is valid and tells us that

∂x− Ĵ+(x
−, z+) = ∂z+ Ĵ−(x

−, z+) + [Ĵ+(x
−, z+), Ĵ−(x

−, z+)].

Also, since the path ordered exponential solves the linear system (4.25) we have

∂z+Pe
∫ z

+
x+
i
Ĵ+(x−,z+1 )dz+1 = Pe∫

z+
x+
i
Ĵ+(x−,z+1 )dz+1 Ĵ+(x

−, z+)
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and
∂z+Pe∫

−w−1/m
z+ Ĵ+(x−,z+2 )dz+2 = −Ĵ+(x

−, z+)Pe∫
−w−1/m
z+ Ĵ+(x−,z+2 )dz+2 .

Thus

∂x−Pe
∫ −wx+
i
Ĵ+(x−,z+)dz+

=

= lim
m→∞∫

−w−1/m

x+i

∂z+ {Pe
∫ z

+
x+
i
Ĵ+(x−,z+1 )dz+1 Ĵ−(x

−, z+)Pe∫
−w−1/m
z+ Ĵ+(x−,z+2 )dz+2dz+} =

=Pe∫
−w
x+
i
Ĵ+(x−,z+1 )dz+1 Ĵ−(x

−,−w) − Ĵ−(x
−, x+i )Pe

∫ −wx+
i
Ĵ+(x−,z+2 )dz+2 .

Finally, since

∂x−Pe
∫ x

−
x−
i
Ĵ−(z−,x+i )dz− = Pe∫

x−
x−
i
Ĵ−(z−,x+i )dz− Ĵ−(x

−, x+i )

the x−-derivative of V̂`+w(x
−), (4.60), is

∂x−V̂`+w(x
−) = V̂`+w(x

−)Ĵ−(x
−,−w) (4.67)

and thus indeed it satisfies the limit of the x−-component of the linear system on
`+.

At this point we introduce the transport matrix

T (y, x;w) ∶= Pe∫
x
y Ĵ(w) (4.68)

for two points y and x inside of DI . It is the solution V̂ of the linear system in DI , which
equals 1 at the point y. By the zero curvature equation (4.22) the transport matrix is
independent of the path chosen. “Transport” because if we know V̂(y,w), then V̂(x,w)

is given by
V̂(x,w) = V̂(y,w)T (y, x;w).

Let w still be real and x+0 < −w < x+1 . The transport matrix may be extended to `+. Let
y ∈ DI and x = (x−,−w) ∈ `+w and define

T (y, x;w) = T (y, xi;w)Pe∫
x−
x−
i
Ĵ−(z−,x+i )dz−Pe∫

−w
x+
i
Ĵ+(x−,z+)dz+

, (4.69)

where, as before, xi must be such that (x−, x+i ) lies inside of DI . Note that at this point,

we have defined that at least the last part of the transport of V̂ to points on `+w must be
along a line of constant x−.

It is pretty clear, that the above procedure can be applied to extend a solution of
the linear system inside of DII to `+w and `−w and a solution in DIII to `−w. The path
ordered exponential along lines with constant x+ or x− from a point in Di to one of the
line segments `±w exists and on these lines satisfies the corresponding components of the
linear system (4.31). If y is in DII and x on `+w we define

T (y, x;w) = T (y, xi;w)Pe∫
x−
x−
i
Ĵ−(z−,x+i )dz−Pe∫

−w
x+
i
Ĵ+(x−,z+)dz+

,
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where now xi ∈ DII must be such that (x−, x+i ) lies inside of DII .
Analogously, for y, xi ∈ DII and x = (−w,x+) on `−w, we define

T (y, x;w) = T (y, xi;w)Pe∫
x+
x+
i
Ĵ+(x−i ,z+)dz+Pe∫

−w
x−
i
Ĵ−(z−,x+)dz−

.

For transport across `±, we set

T (y, x;w) = T (y, z;w)T (z, x;w),

where z ∈ `+w if y ∈ DI and x ∈ DII and z ∈ `−w if y ∈ DII and x ∈ DIII .
As mentioned above, inside of Di, the transport matrices between two points are path

independent and continuous, that is, for fixed y, T (y, x;w) is a continuous function of
x. The continuous extension of the transport matrices to points on `±w was defined along
paths, which near `±w have constant x∓. We now show, that this extension is indeed not
only continuous along these paths, but along any path.

Proposition 4.4.3. For real w with x+0 < −w < x−1 , let y be a point on `+w and Dr be a
disk with radius r centred at y. Then for every ε > 0 there is a value r > 0 such that

∥T (y, x;w) − 1∥ < ε (4.70)

for all points x in Dr.

Proof. We distinguish two cases.

1. First, let x ∈Dr lie in DI or DII , not on `+w. Introduce the point x̃ = (y−, x+). Then
we have

T (y, x;w) = Pe∫
x+
−w Ĵ+(y−,z+)dz+Pe∫

x−
y− Ĵ−(z−,x+)dz−

and

∥T (y, x;w) − 1∥ ≤ e∣ ∫
x+
−w ∥Ĵ+(y−,z+)∥dz+∣e∣ ∫

x−
y− ∥Ĵ−(z−,x+)∥dz−∣ − 1. (4.71)

Since Jµ is assumed to be non-singular throughout D, we define

Q ∶= max
D,µ∈{0,1}

∥Qµ∥, P ∶= max
D,µ∈{0,1}

∥Pµ∥.

For the exponents we get

∣∫

x+

−w
∥Ĵ+(y

−, z+)∥dz+∣ ≤ ∣w + x+∣Q + 2∣
√
w + y−∣ ∣∫

√
∣w+x+∣

0
d(

√
∣w + z+∣)∣P ≤

≤
√
r {Q + 2∣

√
w + y−∣P} , (4.72)

where we assumed r < 1 such that
√
r > r. Furthermore

∣∫

x−

y−
∥Ĵ−(z

−, x+)∥dz−∣ ≤ ∣y− − x−∣Q + P ∣∫

x−

y−

√
w + x+

√
w + z−

dz−∣P ≤

≤
√
r {Q + 2∣

√
w + x+(

√
w + x− −

√
w + y−)∣P} . (4.73)

Hence,

∥T (y, x;w) − 1∥ ≤ e
√
r{Q+2∣

√
w+y−∣P}e

r{Q+P
√
r√

w+y−+r
}
− 1, (4.74)

which, by choosing r sufficiently small, will be smaller than ε.
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2. Now let x ∈ `+w. By the construction of the extension of V̂ to `+, V̂ at a point
x = (x−,−w) on `+ is obtained by integrating the linear system to a point (x−,−w−ε)
and then taking the limit ε→ 0. We have proofed above that V̂ defined in this way
satisfies the x−-component of the linear system. On the other hand, for two points
(x−,−w) and (y−,−w) on `+, consider

ˆ̃
V(x−,−w,w) ∶= V̂(y−,−w,w)Pe∫

x−
y− Ĵ−(z−,−w,w)dz.

This matrix also satisfies

∂x−
ˆ̃
V(x−,−w,w) =

ˆ̃
V(x−,−w,w)Ĵ(x−,−w,w)

and for y = x is equal to V̂ . Hence the two are equal. For the transport matrices,
this means that for two points x and y on `+w, we can transport V̂ directly along
`+w using the path ordered exponential and get the same result as we get when
transporting as in (4.69). For x, y ∈ `+w ∩Dr we thus get

T (y, x;w) = Pe∫
x−
y− Ĵ−(z−,−w)dz−

= Pe∫
x−
y− Q−(z−,−w)dz− ,

because Ĵ−(z−,−w) = Q−(z−,−w)dz− and

∥T (y, x;w) − 1∥ ≤ e∣ ∫
x−
y− Q−(z−,−w)dz−∣

− 1 ≤ erQ − 1, (4.75)

which will also be arbitrarily small for r sufficiently small and the proposition is
proofed.

An analogous proposition holds for `−w. Thus, also for real w, we can construct a
solution V̂(x,w), continuous in x for x ∈ D/(`+w ∩ `

−
w), which satisfies the (components of

the) linear system everywhere, where it is valid. If we set

V̂(x,w) = T (y, x;w),

it satisfies the initial condition V̂(x,w) = 1. A different initial condition would be for
example to set V̂(y,w) = V(y) by

V̂(x,w) = V(y)T (y, x;w).

In section 5 we will use such an initial condition to define V̂0 to be the solution, which
equals V on a point on the axis ρ = 0.

Our last task is an analysis of the behaviour of V̂ near the point yax ∈ (`+w ∩ `
−
w) on the

axis8. First, we note that at all other points on the axis, by the results of section 4.3.3,
we have γ = 0 or γ = ∞, depending on the sheet and thus

Ĵµ(ρ = 0, ρ̃,w) = Jµ(ρ = 0, ρ̃) or Ĵµ(ρ = 0, ρ̃,w) = −JTµ (ρ = 0, ρ̃) for ρ̃ ≠ −w. (4.76)

8if there is such a point
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Thus along the axis ρ = 0, the connection is not singular, but simply has a discontinuity
at yax. For the transport matrices, this means that for points x on the axis approaching
yax,

lim
x→yax

T (y, x;w),

certainly exists. Similar as before, we define the transport matrix to the point yax to use
a path, which at least in its last part is along the axis ρ = 0. Then continuity can be
proofed as before. One can make the radius of a half-disc Dr of radius r around yax so
small, that for every point x in Dr the norm ∥T (x, yax;w)−1∥ < ε. The upper bounds for
the integrals (4.73) and (4.72) are valid in all of D.
Thus finally, we have proofed that for every w, there exists a matrix V̂(x,w), which is
continuous on all of D and satisfies the linear system or one of its components everywhere,
where they can be defined.

4.4.2 Continuity with respect to the spectral parameter

Above we kept w fixed and investigated the properties of a solution V̂ of the linear system
with respect to spacetime points x, in particular near the the points where the connection
Ĵ is singular. Now we keep x fixed and study continuity and analyticity properties with
respect to w. V̂(x) is obtained from V̂(x0) by integration of the linear system along a
suitable path connecting the two points. It turns out that if V̂(x0) = V for all w on the
first sheet W+ of the Riemann surface (i.e. ∣γ∣ ≤ 1), then for fixed x (and x0) V̂(x,w)

is analytic on that entire sheet of the Riemann surface excluding the branch cut, the
segment of the real axis corresponding to ∣γ∣ = 1, where it is still has continuous limits.

The domain of analyticity

We have already mentioned in proposition 4.4.1 that, separately, in the upper and lower
half plane of any of the sheets of the Riemann surface without the real line the solution
V̂ is analytic in w, if the constants of integration do not introduce singularities. This
follows from theorem (10.3) in chapter II of [27] because for such w the connection Ĵ is
analytic in w. For real w, the theorem has to be applied with more care.

Fix a point x0, where the initial condition for V̂ is posed for all ∣γ∣ ≤ 1, and a point x,
and consider a smooth curve x(t) such that x(0) = x0 and x(1) = x. The curve defines a
pull-back of Ĵµ to the real interval [0,1] by

Ĵ(t,w) = ẋµ(t)Ĵµ(x(t),w).

A solution V̂(t,w) along this curve must satisfy

∂tV̂(t,w) =V̂(t,w)ẋµ(t)Ĵµ(x(t),w) =

=V̂(t,w)ẋµ(t)(Qµ(t) +
1 + γ2(t,w)

1 − γ2(t,w)
Pµ −

2γ(t,w)

1 − γ2(t,w)
εµνP

ν(t)) .

The right hand side depends analytically on V̂ , continuously on t and analytically on w as
long as w does not lie on the branch points corresponding to t, i.e. as long as x±(t) ≠ −w.
Denote by D the subset of the product of the real interval [0,1] with the sheet W+,
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where Ĵ is regular, i.e. those pairs (t,w),w ∈W+ for which x±(t) ≠ −w. Theorem (10.3)
in chapter II of [27] now tell us that the solution V̂ will depend analytically on w for
those points w, for which (0,w) ∈D and that this solution can be extended to the value
t = 1 if

{(t,w) ∣ t ∈ [0,1]} ⊂D.

In other words, for fixed x (and x0), the solution V̂(x,w) is analytic in w for those points
w, for which a curve connecting x and x0 and avoiding the singularities at the branch
points can be found.

Of course, for a fixed curve the possibilities for avoiding the singularities are very
limited. As t goes from 0 to 1, the movements of the branch points on the real axis of
W+ cover at least the intervals [−x+0 ,−x

+] and [−x−0 ,−x
−]. The only thing one can do is

to avoid detours enlarging those intervals. A straight line segment is optimal.
Thus the solution V̂(x,w) is analytic on W+ without the segment of the real axis

corresponding to the intervals [−x+0 ,−x
+] and [−x−0 ,−x

−].

The domain of continuity

Above we have seen that V̂(x,w) is analytic for w ∈W+ except at some parts of the real
axis. We now give a sketch of the proof that V̂ can be extended continuously to these
segments from W+u and W+d. A more detailed proof can be found in various parts in [18].

First, to get a solution V̂(x,w) one can always choose a curve in D, which consists of
two null pieces, i.e. with x+ = const. and x− = const., respectively, on the curve. If we
use the initial condition V̂(x0,w) = V then V̂(x,w) can be written as the product

V̂(x,w) = V(x0)T (x0, z;w)T (z, x;w). (4.77)

Denote by T±(y, ỹ;w) the transport matrix along that piece of the curve, for which x∓ =
const., that is y∓ = ỹ∓. Then T±(y, ỹ;w) satisfies the differential equation and initial
condition

∂±T = T Ĵ±, T (y, y;w) = 1,

except, if w is real and −w ∈ [y±, ỹ±], at the point x± = −w, where it is continuous in ỹ
(see section 4.4.1). This is equivalent to the integral equation

T±(y, ỹ;w) = 1 + ∫

ỹ±

y±
dz±T±(y, z;w)Ĵ±(z,w). (4.78)

We now give a useful lemma and the sketch of its proof.

Lemma 4.4.3. Let g(x, y,w) be a continuous complex valued function defined for arbi-
trary x and y, and for all w ∈W+u/d. Define

f(x, y,w) ∶= ∫

y

x

1
√
w + z

g(x, z,w)dz. (4.79)

Then f exists and is continuous in w for W ∈W+u/d.
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Proof. First take w ≠ ∞.
From lemma 4.4.1 we know that the integral exists, even if −w ∈ [x, y] and the integrand

is thus singular at z = −w. We now proof continuity with respect to w. By the multi-
variable Weierstrass approximation theorem [36], g being a continuous function can be
represented as the limit of a uniformly convergent sequence (gn) of polynomials in z and
w for z ∈ [x, y] and w in a compact rectangular subspace, R ⊂ W+u/d, of the Riemann
surface. Analogously, define the sequence of integrals

fn(x, y,w) ∶= ∫

y

x

1
√
w + z

gn(x, z,w)dz. (4.80)

Then by the uniform convergence of the sequence of polynomials, for every ε > 0 there is
an N(ε) such that for all n > N and points (x, z,w) ∈ {x} × [x, y] ×R we have

∣g − gn∣ < ε.

Therefore, for all n > N and w ∈ R

∣f(x, y,w) − fn(x, y,w)∣ ≤sign(x − y)∫
y

x

1

∣
√
w + z∣

∣g(x, z,w) − gn(x, z,w)∣dz ≤

≤εsign(x − y)∫
y

x

1

∣
√
w + z∣

dz ≤ εD,

with D some positive constant, which is finite due to the integrability of the inverse power
of the square root. Thus, on R fn converges uniformly to f . Now, fn can be written as

fn(x, y,w) = ∫

y

x

1
√
w + z

[gn(x, z,w) − gn(x,w,w)]dz + 2[
√
w + y −

√
w − x]gn(x,w,w) =

= ∫

y

x

√
w + z

gn(x, z,w) − gn(x,w,w)

w + z
dz + 2[

√
w + y −

√
w − x]gn(x,w,w).

The quotient in the second line is a polynomial because the division can be carried out
without remainder:

zn −wn = (zn−1 −wzn−2 +w2zn−3 − ... + (−1)nwn−2z −wn−1)(z +w).

Thus, the singularity can been removed, fn is a sum of terms continuous in w for w ∈ R

and since a uniformly convergent sequence of continuous functions is continuous, f is
continuous.

Now, for continuity at w = ∞, introduce w̃ = w−1. Then

fn(x, y, w̃) = ∫

y

x

√
w̃

√
1 + zw̃

gn(x, z, w̃)dz.

Clearly, the integrand is continuous at w̃ = 0. Therefore also fn(x, y, w̃) is continuous at
w̃ = 0 and fn(x, y,w) is continuous at w = ∞.

We are now in a position to proof

Proposition 4.4.4. The solution of the integral equation (4.78) is continuous in w for
w ∈W+u/d.
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Proof. One tries to iterate the solution by a sequence defined recursively

T
(0)
± (y, ỹ;w) = 1, T

(n+1)
± (y, ỹ;w) = 1 + ∫

ỹ±

y±
dz± T

(n)
± (y, z;w)Ĵ±(z,w). (4.81)

If the integrand is regular, that is if −w ∉ [y±, ỹ±] the limit of the sequence is just the
path ordered exponential, see appendix D. If −w ∈ [y±, ỹ±] the integration domain can
be split into two intervals [y±,−w] and [−w, ỹ±]. T (n) is then just the product of two
factors, where each factor is of the form of the n-th partial sum in (4.61). In proposition
4.4.2 we showed that the sequence of partial sums converges uniformly. Therefore also
the sequence of products of two partial sums of that kind converges uniformly and thus
the sequence (4.81) converges uniformly.

Furthermore, since T (0) = 1 is continuous, repeated application of the above lemma
4.4.3 yields that every element T (n) is continuous in w. And since T (n) converges uni-
formly, also the limit limn→∞ T (n) is continuous.

Clearly, limn→∞ T (n) satisfies the integral equation (4.78).

Therefore, all the factors in (4.77) are continuous in w for w ∈ W+u/d. Together with

the analyticity properties we have showed: V̂(x,w) is analytic on W+ without the real
line segments corresponding to the intervals [−x+0 ,−x

+] and [−x−0 ,−x
−] where it is has

continuous limits. Now consider any point p on these line segments, which does not lie
on the branch cut, and an open disc Dr centred at p with radius r so small that the
branch points do not lie in Dr. Denote by s the intersection of the real line with Dr.
Now take an arbitrary triangle ∆ ⊂Dr and consider the contour integral

∫
∂∆
V̂(x,w)dw. (4.82)

If ∆ is such that s does not split ∆ into two halves, then V̂ is holomorphic in ∆ and the
integral vanishes. If s splits ∆ into two triangles ∆1 and ∆2, the integral can be written
as

∫
∂∆1

V̂(x,w)dw + ∫
∂∆2

V̂(x,w)dw,

because in this expression the integrals over s contained in ∂∆1 and ∂∆2 cancel. But
these two integrals also vanish because V̂ is holomorphic inside of ∆1 and ∆2. Hence,
(4.82) vanishes for all triangles ∆ ∈ Dr and by Morera’s theorem [16], V̂ is analytic in Dr.
Since there is such a Dr for any point not on the branch cut, V̂ is analytic on the entire
real line except on the branch cut, and thus it is analytic on W+ except on the branch
cut corresponding to ∣γ∣ = 1.

4.4.3 A Hölder condition for V̂

We state without proof that for real w the transport matrices T (x, y(w);w) with y(w) =

(−w, y+), x = (x−, y+) or y(w) = (y−,−w), x = (y−, x+) satisfy a Hölder condition of index
1/2 in w on any closed subinterval of the segments of the real axis corresponding to
[−x−0 ,−x

−
1] or [−x+0 ,−x

+
1], that is

∥T (x, y(w);w) − T (x, y(v); v)∥ ≤ C ∣w − v∣1/2, (4.83)

C being a constant.
This it theorem 4F.5 in [18], which is also where the proof can be found.
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4.5 The extended Kramer-Neugebauer transforma-

tion

We now proceed with the revelation of the Geroch group. In section 2.3 we introduced the
Kramer-Neugebauer transformation (2.34), which enabled us to transform V to Ṽ and vice
versa. Following [9] we will now look for an extended version K∞ of this transformation

that transforms V̂ to ˆ̃
V and vice versa.

We shall work in triangular gauge. Recall that V̂ is said to be in triangular gauge iff it
is regular in γ at γ = 0, i.e. at W+ ∋ w = ∞, and V = V̂∣γ=0 is upper triangular. The form

(
a +O(γ) b +O(γ)
cγ +O(γ2) d +O(γ)

) (4.84)

for V̂ assures that in the limit W+ ∋ w → ∞ (γ → 0), V̂ is upper triangular. We will now

compute the components of V̂(x, γ) and ˆ̃
V(x, γ) to the order indicated in (4.84) to get

an idea what K∞ might look like.
The coefficient of P± on the right hand side of the linear system in null coordinates, (4.31),
is

1 ∓ γ

1 ± γ
= 1 ∓ 2γ +O(γ2),

so the right hand side is
Ĵ± = J± ∓ 2γP± +O(γ2).

The left hand side may be obtained to the desired order by expanding V̂ in γ:

V̂ = V + γV̂1 +O(γ2) ⇒ V̂−1 = V−1 − γV−1V̂1V
−1 +O(γ2).

The linear system (4.31) to the order γ2 thus becomes

V̂−1∂±V̂ =(V
−1 − γV−1V̂1V

−1)(∂±V + ∂±γV̂1 + γ∂±V̂1) + O(γ2) =

=J± + γρ
−1∂±ρV

−1V̂1 + γV
−1∂±V̂1 − γV

−1V̂1J± +O(γ2),

where we have used

γ−1∂±γ =
1 ∓ γ

1 ± γ
ρ−1∂±ρ, (4.85)

which is a consequence of (4.27). This implies that

∂±γ = γρ
−1∂±ρ +O(γ2).

Hence, the first order term of (4.31) is

∓2P± = ρ
−1∂±ρV

−1V̂1 + V
−1∂±V̂1 − V

−1V̂1J±,

or equivalently
∓2ρVP±V

−1 = ∂±(ρV̂1V
−1). (4.86)

If we want to compute V̂ to the order given in (4.84), then we are only interested in
the 21-component, c, of V̂1. By the triangularity of V−1 the 21-component of (4.86) only
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contains c and no other components of V̂1. Using the definition of V and the explicit
expression for P given in section 2.3, we get

2VP±V
−1 = (

∗ ∗

∆−2∂±B ∗
) .

The 21-component of (4.86) becomes

∓ρ∆−2∂±B = ∂±(ρ∆−1/2c)

or, using (2.30) and (B.4),

−∂±B̃ = ∂±(ρ∆−1/2c) ⇒ c = −∆1/2ρ−1B̃,

where we absorbed the integration constant into B̃. Remember, B̃ is determined by
(2.29) only up to constant shifts. Therefore,

V̂ = (
∆1/2 +O(γ) ∆−1/2B +O(γ)

−ρ−1∆1/2B̃γ +O(γ2) ∆−1/2 +O(γ)
) . (4.87)

The expression for ˆ̃
V can be obtained using the Kramer-Neugebauer transformation (2.34)

ˆ̃
V = (

∆̃1/2 +O(γ) ∆̃−1/2B̃ +O(γ)

−ρ−1∆̃1/2Bγ +O(γ2) ∆̃−1/2 +O(γ)
) .

Now we introduce the matrix

K(x) ∶= (
0 −ix−1/2

ix1/2 0
)

and compute

K (
γ
ρ) V̂K(γ) =

= (
0 −iγ−1/2ρ1/2

iγ1/2ρ−1/2 0
)(

∆1/2 +O(γ) ∆−1/2B +O(γ)

−ρ−1∆1/2B̃γ +O(γ2) ∆−1/2 +O(γ)
)(

0 −iγ−1/2

iγ1/2 0
) =

=
⎛
⎜
⎝

√
ρ
∆ +O(γ)

√
∆
ρ B̃ +O(γ)

−
γ√
ρ∆
B +O(γ2)

√
∆
ρ +O(γ)

⎞
⎟
⎠
= (

∆̃1/2 +O(γ) ∆̃−1/2B̃ +O(γ)

−ρ−1∆̃1/2Bγ +O(γ2) ∆̃−1/2 +O(γ)
) =

ˆ̃
V .

(4.88)

To the order given in (4.84) V̂ gets mapped to ˆ̃
V .

From (4.29) we see that

s ∶=
1

2w
=

γ

ρ(γ2 + 1) − 2γρ̃
=
γ

ρ
+O(γ2). (4.89)

We may thus suspect that the transformation

K∞ ∶ V̂ ↦K(s)V̂K(γ) (4.90)
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maps V̂ corresponding to a solution V to ˆ̃
V corresponding to the solution Ṽ to all orders

of γ. We verify this:

[K(s)V̂K(γ)]
−1
∂± [K(s)V̂K(γ)] =K(γ)V̂−1∂±[V̂K(γ)] =

=K(γ)Ĵ±K(γ) +K(γ)∂±K(γ).
(4.91)

We wish to show that this is equal to ˆ̃J±. From (2.38) we see that

Ĵ± =
1

2
(

u±1∆−1∂±∆ ∆−1∂±B(u±1 + 1)
∆−1∂±B(u±1 − 1) −u±1∆−1∂±∆

) .

Thus

K(γ)Ĵ±K(γ) =

(
0 −iγ−1/2

iγ1/2 0
)

1

2
(

u±1∆−1∂±∆ ∆−1∂±B(u±1 + 1)
∆−1∂±B(u±1 − 1) −u±1∆−1∂±∆

)(
0 −iγ−1/2

iγ1/2 0
) =

=
1

2
(

−u±1∆−1∂±∆ −γ−1∆−1∂±B(u±1 − 1)
−γ∆−1∂±B(u±1 + 1) u±1∆−1∂±∆

) .

Furthermore

∂±K(γ) = (
0 1

2iγ
−1/2 1∓γ

1±γρ
−1∂±ρ

1
2iγ

1/2 1∓γ
1±γρ

−1∂±ρ 0
) ,

so the second term is

K(γ)∂±K(γ) =
1

2
(
u±1ρ−1∂±ρ 0

0 −u±1ρ−1∂±ρ
)

and (4.91) becomes

[K(s)V̂K(γ)]
−1
∂± [K(s)V̂K(γ)] =

=
1

2
(
u±1(ρ−1∂±ρ −∆−1∂±∆) −∆−1∂±B(u±1 − 1)γ−1

−∆−1∂±B(u±1 + 1)γ u±1(∆−1∂±∆ − ρ−1∂±ρ)
) .

Using ∆̃ = ρ/∆ and ∆̃−1∂±B̃ = ±∆−1∂±B to write this in terms of ∆̃ and B̃, and the
identities

(u±1 − 1)γ−1 =
∓2

1 ± γ
= ∓(u±1 + 1)

(u±1 + 1)γ =
2γ

1 ± γ
= ∓(u±1 − 1),

we see that indeed
[K(s)V̂K(γ)]

−1
∂± [K(s)V̂K(γ)] = ˆ̃J±. (4.92)

By (4.88), if V̂ is in triangular gauge, then K(s)V̂K(γ) will also be in triangular gauge.

K∞ maps a triangular V̂ to a triangular ˆ̃
V and thereby a solution V of the equations of

motions to the corresponding solution Ṽ . As will be made clear in the next section, the
big advantage over the original Kramer-Neugebauer transform is that K∞ is linear. The
price we had to pay was that we had to introduce the w-dependent quantities V̂ .
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4.6 Using K∞ to generate the symmetry algebra

In section 4.1 we encountered the g symmetry (4.4)

δV = V + δgV + Vδh(V , δg) δg ∈ g, δh ∈ h.

The action of g on the left is combined with an h-action on the right, which maintains the
γ triangular form. If V̂ is in γ triangular form, with V = V̂∣γ=0, then this transformation

of V implies a transformation of V̂ of exactly the same form:

δV̂ = δgV̂ + V̂δh(V , δg) (4.93)

The w-independence of δg and δh assure regularity of V̂ ′ at γ = 0.
Another type of g symmetry transformation, δ̃, acts according to an expression of the

form (4.93) on ˆ̃
V and Ṽ .

We can use K∞ to obtain the action of δ̃ on V̂ :

δ̃V̂ = δ̃(K(s) ˆ̃
VK(γ)) =K(s)δ̃ ˆ̃

VK(γ) =

=K(s)(δ̃g̃ ˆ̃
V +

ˆ̃
V δ̃h̃)K(γ) =K(s)δ̃g̃K(s)V̂ + V̂K(γ)δ̃h̃K(γ) =

= δ̃g(s)V̂ + V̂ δ̃h(γ),

with

δ̃g(s) =K(s)δgK(s)

δ̃h(γ) =K(γ)δhK(γ).
(4.94)

The action of δ̃ on V̂ is similar in form to (4.93). It is the sum of a left and a right
action, and the generator of the left action, δ̃g(s), is an element of g = sl(2,C) since
Tr(δ̃g(s)) = Tr(K2(s)δg) = Tr(δg) = 0. There are however differences. δ̃g(s) is not
constant, it depends on s = (2w)−1, and the generator of the right action, δ̃h(γ), need

not even lie in h. δ̃ does preserve the γ triangularity of V̂ , because it preserves that of ˆ̃
V ,

and K∞ ∶
ˆ̃
V ↦ V̂ also preserves γ triangular form.

Let us work out δ̃g(s) and δ̃h(γ) explicitly. First let’s consider the transformation

δ̃g̃ = (
1 0
0 −1

) , δ̃h̃ = 0

The V̂ transformation differs only by a sign: δ̃g(s) = −δg, δ̃h(γ) = 0. We combine the
action of the other two generators. Thus

δ̃g̃ = (
0 a
b 0

) , δ̃h̃ = (
0 c
−c 0

) ,

with c = bṼ11

Ṽ22
=
bρV22

V11
so that triangularity is maintained.9 We get

δ̃g(s) = (
0 −bs−1

−as 0
) , δ̃h(γ) = (

0 cγ−1

−cγ 0
) . (4.95)

9Note that since V is triangular and det(V) = V11V22 = 1, so both V11 and V22 are non-zero. The same
can be said of Ṽ.
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Note that δh(γ) does not lie in h, because it is not antisymmetric (unless γ = ±1). It
does, however, lie in g = sl(2,C), since it is trace free, and it has a generalized antisym-
metry η∞(δh(γ)) = δh(γ), where

η∞(a(γ)) ∶= η(a) ( 1
γ) = −a

T ( 1
γ) ∀a ∈ g = sl(2,C). (4.96)

The γ independent h elements δh acting from the right in (4.93) of course also have these
properties, since h is the subalgebra of g characterized by η(a) ∶= −aT = a. The map η∞

is called the extended involution, being an extension to g valued functions of γ of the
involution η on g. The analogous extension to G valued functions of γ is

η∞(g(γ)) = η(g) ( 1
γ) = (gT )−1 ( 1

γ) .

It will be important in the following.
Just as in section 4.1 we can take commutators of the transferred symmetries (4.94)

and the original ones (4.93). Let us examine these. The action on V̂ of the commutator
of two symmetries, δ1 and δ2, is

[δ1, δ2]V̂ =δ1gδ2gV̂ + δ1gV̂δ2h + δ2gV̂δ1h + V̂δ2hδ1h + V̂δ1(δ2h) − (1↔ 2)

=[δ1g, δ2g]V̂ + V̂ {[δ2h, δ1h] + δ1(δ2h) − δ2(δ1h)} , (4.97)

where δ1(δ2h) = ∂δ2h
∂Vij δ1Vij is the variation of δ2h under δ1 due to V dependence of δ2h.

Thus the action of a commutator takes the same basic form as (4.93), consisting of a
(possibly w dependent) left g action which is simply the commutator of the g actions of
δ1 and δ2, and a right action generated by the matrix

δ[1,2]h ∶= [δ2h, δ1h] + δ1(δ2h) − δ2(δ1h). (4.98)

It is easy to see from this last formula that commutators preserve certain properties: If
both δh1 and δh2 take values in g, then so does δ[1,2]h. If both are Laurent polynomials
in γ, (and of course also functions of V) then so is δ[1,2]h. If both are invariant under η∞,
then δ[1,2]h is also.

For now we concentrate only on the left g action. Later we will analyse the right action
and its task to maintain the γ triangular form. We have at our disposal the following five
generators

t
(0)
3 ∶= (

1 0
0 −1

) , t
(0)
+ ∶= (

0 1
0 0

) , t
(0)
− ∶= (

0 0
1 0

) ,

t
(1)
− ∶= s t

(0)
− , t

(−1)
+ ∶= s−1 t

(0)
+ .

Using the commutation relations

[t
(0)
3 , t

(0)
± ] = ±2t

(0)
± , [t

(0)
+ , t

(0)
− ] = t

(0)
3 ,

we can construct

t
(1)
3 = [t

(0)
+ , t

(1)
− ] = st

(0)
3 , t

(−1)
3 = [t

(−1)
+ , t

(0)
− ] = s−1t

(0)
3 .
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Taking further commutators one obtains the infinite collection of symmetry generators

t
(n)
± = [ad±1

2 t
(1)
3

]
n

t
(0)
± , t

(−n)
± = [ad±1

2 t
(−1)
3

]
n

t
(0)
± ,

t
(±n)
3 = [t

(±n)
+ , t

(0)
− ], n any positive integer.

In all cases
t
(±n)
i ∶= s±n t

(0)
i i ∈ {+,−,3}.

(The generators t
(1)
− and t

(−1)
+ have of course been defined twice, but clearly the definitions

are consistent). The commutation relations between these generators are

[t
(m)
i , t

(n)
j ] = f k

ij t
(m+n)
k m,n ∈ Z,

f k
ij being the structure constants of g.

The t
(±n)
i generate the algebra of g valued Laurent polynomials in s, that is, the loop

algebra of g [9],[21], which we shall denote g∞ (or g∞x if we refer to a realization by
Laurent polynomials in the variable x).

We admit as symmetries only transformations that preserve the γ triangularity of V̂ .
In the transformations (4.93) this was ensured by a suitable right h action. Also the
transformations (4.95) contain a suitable right (not necessarily h) action so that they

too preserve γ triangularity. Since the symmetries associated with the generators t
(±n)
i

are commutators of the symmetries (4.93) and (4.95) they also preserve γ triangularity.
The matrices δh(V , γ) acting from the right in each transformation can be calculated
from (4.98). Thus there certainly is a whole loop algebra worth of symmetries. However
calculating the right actions this way is quite tedious. Moreover, there are several ways to
obtain the same g∞ elements as commutators, but it is not immediately obvious that all
lead, via (4.98), to the same right action. In other words, it is a priori conceivable that
several different symmetry transformations correspond to the same left g∞ action. This
is in fact not the case. The left action defines a unique right action, and the symmetry
group generated by the commutators is precisely g∞. In the following a more direct
way of constructing γ triangularity restoring right actions will be presented, and their
uniqueness demonstrated.

Recall that γ triangularity requires that δV̂ be regular at γ, and that V = V̂∣γ=0 is upper
triangular. We already have right actions that restore γ triangularity for each of the five
left action generators t

(0)
i , t

(1)
− and t

(−1)
+ . Let us examine the cases t

(1)
− and t

(−1)
+ explicitly.

For

δg(s) = (
0 −bs−1

−as 0
) (4.99)

the generator of the right action is

δh(V , γ) = (
0 cγ−1

−cγ 0
) , (4.100)

with

c =
bṼ11

Ṽ22

=
bρV22

V11

.
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This δh(γ) was obtained in section 4.1 from the requirement that the transformation
preserve the triangularity of Ṽ . Let us see how in the present context of a transformation
of V̂ the right action by δh(γ) assures the γ triangularity of V̂ .

First, c does not depend on a, which means that for δg(s) = t
(1)
− δh(γ) = 0. γ Trian-

gularity is preserved because by (4.89) no poles at γ = 0 are introduced and V̂ ∣γ=0 is left

unchanged. (In fact this makes t
(1)
− a trivial symmetry generator in the sense that it does

not affect the physical field V = V̂∣γ=0.)

In the case δg(s) = t
(−1)
+ , we have δh(γ) = ρV22

V11
(γt

(0)
− − γ−1t

(0)
+ ). Since

s−1 = 2w = ρ(γ +
1

γ
) − 2ρ̃, (4.101)

δg(s) introduces a pole at γ = 0. But this pole is cancelled by the δh(γ) term: Using the
Taylor expansion V̂ = V + γV̂1 +O(γ2) we find that

δV̂ =t
(−1)
+ V̂ + V̂

ρV22

V11

(γt
(0)
− − γ−1t

(0)
+ ) = (

ρ

γ
− 2ρ̃)(

0 V22

0 0
) + ρ(

(V̂1)21 (V̂1)22

0 0
)+

+
ρV22

V11

(
0 −V11γ−1

0 0
) +

ρV22

V11

(
0 −(V̂1)11

0 −(V̂1)21

) +O(γ) =

=(
ρ(V̂1)21 −2ρ̃V22 + ρ(V̂1)22 −

ρV22

V11
(V̂1)11

0 −
ρV22

V11
(V̂1)21

) +O(γ).

The right action by δh(γ) indeed cancels the γ−1-term introduced by δg(s).

The example of t
(1)
− makes it clear that more generally for the generators t

(n)
i with

n > 0 no compensating δh(γ) is needed and the physical fields are not transformed at all

(s = O(γ)). On the other hand, the t
(−n)
i with n > 0 introduce poles at γ = 0, which have

to be cancelled by suitable δh(γ) s. Suppose

δg(s) = s−kδg, k > 0, δg(s) ∈ g.

s−k may be written as a Laurent polynomial in γ with coefficients sn (see (4.101))

s−k = (ρ(γ +
1

γ
) − 2ρ̃)

k

=
k

∑
n=−k

γnsn.

We also write δh(γ) in the form of a Laurent polynomial

δh(γ) =
l

∑
n=−k

γnδhn, (4.102)

where the lowest order −k is so that the poles of order k coming from δg(s) may be
cancelled, but no higher order poles are introduced. The highest order l is not specified
yet. Finally, we write the Taylor expansion of V̂ as before:

V̂ =
∞
∑
n=0

γnV̂n V̂0 = V .
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With this notation

δV̂ =δg(s)V̂ + V̂δh(γ) =

=
k

∑
n=−k

γnsnδg
∞
∑
m=0

γmV̂m +
∞
∑
m=0

γmV̂m
l

∑
n=−k

γnδhn.

Requiring that the coefficients of negative powers of γ vanish determines the δhn for
negative n:

γ−k ∶ 0 =s−kδgV + Vδh−k

⇒ δh−k = − s−kV
−1δgV

γ−k+1 ∶ 0 =s−k+1δgV + s−kδgV̂1 + V̂1δh−k + Vδh−k+1

⇒ δh−k+1 = − V
−1(s−k+1δgV + s−kδgV̂1 + V̂1δh−k)

⋮

γ−k+i ∶ 0 =
i

∑
m=0

s−k+i−mδgV̂m +
i

∑
m=0

V̂mδh−k+i−m (4.103)

⇒ δh−k+i = − V
−1(

i

∑
m=0

s−k+i−mδgV̂m +
i

∑
m=1

V̂mδh−k+i−m)

⋮

γ−1 ∶ 0 =
k−1

∑
m=0

s−1−mδgV̂m +
k−1

∑
m=0

V̂mδh−1−m

⇒ δh−1 = − V
−1(

k−1

∑
m=0

s−1−mδgV̂m +
k−1

∑
m=1

V̂mδh−1−m).

In this way the δhn, −k ≤ n ≤ −1 can be used to cancel the singularities. The next
coefficient, δh0, may be used to preserve the triangularity of V .

δV21 = (
k

∑
m=0

s−mδgV̂m +
k

∑
m=0

V̂mδh−m)
21

This determines the 21-component of δh0.

V22(δh0)21 = (Vδh0)21 =(
k

∑
m=0

s−mδgV̂m +
k

∑
m=1

V̂mδh−m)
21

(δh0)21 =
1

V22

(
k

∑
m=0

s−mδgV̂m +
k

∑
m=1

V̂mδh−m)
21

.

Now let us demonstrate the uniqueness of the right actions: We have noted earlier that
the matrices δh(V , γ) corresponding to the five fundamental left action generators t

(0)
i ,

t
(1)
− and t

(−1)
+ are g valued Laurent polynomials in γ and are invariant under the extended

involution η∞, they satisfy η∞(δh) = δh. We have also noted that these properties are
preserved by commutators: if the right action generators of two transformations have
these properties then so does the generator of the right action of the commutator. Since
our algebra of symmetries is the span of the symmetries generated by the five fundamental
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generators and their commutators, it follows that all right actions are generated by η∞

invariant g valued Laurent polynomials in γ.
This implies the uniqueness of the right action, for as we have seen, the preservation

of γ triangularity determines all the coefficients of negative powers of γ in δh and also
the component (δh0)21 of the γ independent term. The invariance δh(γ) = η∞(δh)(γ) =
η(δh( 1

γ )) determines all the remaining coefficients in (4.102):

δhn = η(δh−n) for n > 0,

δh0 = η(δh0) ⇒ δh0 ∈ so(2) ⇒ (δh0)12 = −(δh0)21, (δh0)11 = 0 = (δh0)22.

Let us summarize what we have found: The algebra of (infinitesimal) symmetries we
have found is isomorphic to the infinite dimensional loop group g∞. The symmetries act
in a relatively simple way on the field V̂ , related to the physical field V by

V̂−1∂±V̂ = Q± +
1 ∓ γ

1 ± γ
P±, Q± = (V−1∂±V)∣h, P± = (V−1∂±V)∣k.

The variations of V̂ under the symmetry transformations take the form

V̂ → V̂ ′ = V̂ + δV̂ , (4.104)

δV̂ = δg(s)V̂ + V̂δh(γ, x), δg ∈ g∞s , δh(x) ∈ h
∞
γ . (4.105)

Here
h∞γ ∶= {h ∈ g∞γ ∣ η∞(h(γ)) = h(γ)}.

is the subalgebra of g∞γ which is invariant under η∞. Note that δh depends on x not

only via γ, but also via its dependence on V̂ (see (4.103)). δh maintains the γ triangular
gauge. Therefore we may extract the variation of the physical field V

δV = δV̂(γ = 0). (4.106)

The physical field V does not determine V̂ uniquely, but only up to a transformation

V̂ → S(w)V̂ , (4.107)

with S(w) being an SL(2) valued function such that S(w = ∞) = 1. This freedom intro-
duces no ambiguity in the definition of the symmetry algebra, since the transformations
(4.107) are generated by a subalgebra of the symmetry algebra.

4.7 Example: δg(s) = s−1δg

In this section we explicitly calculate δh(γ) and δĴ for the case δg(s) = s−1δg. We con-
centrate on the γ-dependent terms of δh(γ) — the way how δh0 maintains triangularity
is obvious and so we set it to zero for now. This computation gives an impression of how
the form (4.31) is maintained.

s−1 = ρ(γ +
1

γ
) + 2ρ̃ ⇒ s1 = ρ = s−1, s0 = 2ρ̃
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δh−1 = −ρV
−1δgV =∶ −ρδg′

δh1 = η(δh−1) = −ρη(δg
′)

δĴ± =[Ĵ±,−ρδg
′γ−1 − ρη(δg′)γ] − ∂±ρ(δg

′γ−1 + η(δg′)γ)+

+ [J±, ρδg
′γ−1] + [η(J±), ρη(δg

′)γ] + u±1∂±ρ(δg
′γ−1 − η(δg′)γ)

− γ−1Ĵ± + γ
−1J± = γ

−1(1 − u±1)P± =
±2

1 ± γ
P±

− γĴ± + γη(J±) = γ(−1 − u±1P±) =
−2γ

1 ± γ
P±

δĴ± =[P±,
±2ρ

1 ± γ
δg′ −

2γρ

1 ± γ
η(δg′)] + ∂±ρ(

∓2δg′

1 ± γ
−

2γη(δg′)

1 ± γ
) =

= ±4ρ[P±, δg
′∣k] ± 4ρu±1[P±, δg

′∣h] ∓ 4∂±ρ(u
±1δg′∣k + δg

′∣h) =

= ±4ρ[P±, δg
′]∣

h
± 4ρu±1[P±, δg

′]∣
k
∓ 4∂±ρ(u

±1δg′∣k + δg
′∣h) =

= ±4ρ[P±, δg
′ ∓ 4∂±ρδg

′]∣
h
+ u±1 (±4ρ[P±, δg

′] ∓ 4∂±ρδg
′) ∣

k

Including a γ-independent δh0 would simply add a term

[Q± + u
±1P±, δh0] + ∂±δh0 = ([Q±, δh0] + ∂±δh0) + u

±1[P±, δh0]

4.8 M(w) and its symmetry transformation behaviour

We conclude this chapter by introducing the function

M(x,w) ∶= V̂η∞ (V̂−1) , (4.108)

which in the literature is often called the monodromy matrix associated with V̂ [30],[9]
(see [2] for a more general treatment of the role of M(w) in integrable systems). By
continuity of V̂ on the closed γ-unit disc, M(w) is well defined at least for pairs (x,w),
such that w lies on the branch cut dependent on x.

Because of the invariance of Ĵ under η∞, we have

∂M(x,w) = V̂(x,w)Ĵ(x,w)η∞(V̂−1(x,w)) − V̂(x,w)Ĵ(x,w)η∞(V̂−1(x,w)) = 0, (4.109)

so M(x,w) = M(w) is constant w.r.t. x. Under a transformation (4.105) M(w) trans-
forms as

δM(w) = δg(s)M(w) −M(w)δg(s). (4.110)

This action is quite simple. It involves only the algebra g∞s . This fact is quite valuable
because we saw earlier that the computation of δh(γ) can be very tedious if δg(s) contains
high negative powers s−k.
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4.9 Finite transformations

Since the infinitesimal action (4.105) of the Geroch group is quite intricate due to its
nonlinearity, exponentiation of this action seems to be out of reach. In contrast, the
transformation (4.110) of M(w) is linear. It can be exponentiated to

Mg(w) = g(s)M(w)g−1(s), (4.111)

with g(s) being members of the Geroch group. Viewing elements of g∞s as functions from
the complex plane into the algebra g, pointwise exponentiation will lead to maps from
the complex plane into the complexified group G.

From an solution V̂ one can use (4.108) to get M(w) and then use the simple trans-
formation behaviour (4.111) to get the finitely transformedMg(w). In order to get back

to V̂g one has to factoriseMg(w) into two functions, one analytic around γ = 0, the other
one analytic around γ = ∞. This factorisation is called Birkhoff [14] or (Riemann-)Hilbert
factorization [28]. It is discussed in section 5.5.
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Part II
Null canonical formulation
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Chapter 5

Null initial data for EG2CHSKF
versus null canonical gravity

In this chapter we investigate the possibility of profiting from the machinery and ideas
developed for EG2CHSKF, an integrable system, even for the far more general theory,
canonical gravity with no Killing fields using a null initial data surface. In section 5.1 we
review the relevant results of [32] and explain how an aspect of the full theory of gravity
formulated with null initial data resembles the situation where two Killing fields are
present. We show how the role of the complex fields µ and µ̄ used in [32] to parametrise
the degenerate 3-metric on a null initial data surface is quite similar to the role of the
field V of EG2CHSKF in view of the Poisson structure of µ and µ̄. In section 5.2 we
compute the symplectic 2-form for the V-sector of EG2CHSKF, in 5.3 we derive a Poisson
bracket of the field V on a null initial data surface and in section 5.4 we fix the gauge of
V by parametrising it by complex fields µ, µ̄. This allows to derive a bracket of µ and
µ̄ from the bracket of V and compare it with the bracket obtained in [32]. It turns out
that the expression is completely analogous. In a next step, in section 5.5, we investigate
in detail how the monodromy matrix M(w) can be used as initial data instead of V .
In [24] it is shown, using an infinitely extended spacelike initial data surface, that the
monodromy matrix forms a quite simple Poisson algebra and even a quantization of this
algebra is proposed. In section 5.7 we derive this Poisson algebra and in section 5.8 also
the Yangian algebra of conserved charges found in [24] using our Poisson structure on
a null initial data surface. This provides a check that our bracket of null initial data is
correct.

5.1 Motivation

The initial data hypersurface Ñ defined in [32] consists of two null hypersurface branches
ÑL and ÑR, which are joined on a spacelike 2-surface S0. Each branch is swept out by a
congruence of null geodesics emerging normally from S0. The geodesic congruences and
thus ÑL and ÑR generically have to be truncated at spacelike discs SL and SR before
caustics form. As a consequence, Ñ in general supports initial data only for a bounded
region of spacetime.

Denote by ÑA one of the branches ÑL and ÑR. The tangent vectors nA to the geodesic
congruences sweeping out ÑA are null by definition and thus not only tangent, but also
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orthogonal to ÑA. Hence the 3-metric on ÑA must be degenerate. In a basis, where nA
forms the first basis vector, the 3-metric is thus of the form

⎛
⎜
⎝

0 0 0
0 h11 h12

0 h21 h22

⎞
⎟
⎠
. (5.1)

The 2-metric hij measures the distance between points on neighbouring generators and by
the degeneracy with respect to nA, this distance does not depend on the separation of the
points along the generators, but only on the separation of the corresponding generators
themselves. By the Raychaudhuri focussing equation [39], if the expansion rate of the
geodesic congruence is negative (positive) in one direction of the generators at one point,
then it must remain negative (positive). Thus, the cross sectional area may be used as a
coordinate r along the generators. To be precise, the definition of r introduced in [32] is

r(p) =
√
ρ(p)/ρ̄(γ),

where
ρ =

√
det(hij) (5.2)

and ρ̄(γ) is the value ρ has at the point on SA where the generator, on which p lies,
meets SA. The requirement that ÑA be truncated before neighbouring generators form
caustics may now be satisfied by demanding that ρ be greater or equal to zero. To label
the different generators two more coordinates, ỹ1 and ỹ2, are used. Since the information
about the determinant of the 2-metric hij is now contained entirely in the coordinate r,
the remaining freedom of hij is the unimodular metric

eij = hij/ρ. (5.3)

It may be conveniently parametrised by the complex field µ as

eij =
1

1 − ∣µ∣2
(
∣1 + µ∣2 µ−µ̄

i
µ−µ̄
i ∣1 − µ∣2

) . (5.4)

For points x and y lying on the same generator of the same branch ÑA of Ñ the bracket
of the field µ and its complex conjugate µ̄ is then calculated to be

{µ(x), µ̄(y)} = 2πG sign(x, y) [
1 − ∣µ∣2
√
ρ

] ∣
x

[
1 − ∣µ∣2
√
ρ

] ∣
y

e∫
y
x
µ̄dµ−µdµ̄

1−∣µ∣2 , (5.5)

where sign(x, y) is 1 (−1) if y is further (closer) from S0 along the generator than x.
If x and y lie on different generators the bracket vanishes. Also {µ(x), µ(y)} = 0 =

{µ̄(x), µ̄(y)}.
We complete this review by noting that the three coordinates r, ỹ1 and ỹ2 on ÑA may

be supplemented by a fourth one. At every point on ÑA, there exists a transverse normal
null geodesic. The above three coordinates may be convected along these geodesics and
the parameter u of these geodesics, normalized such that ∂r ⋅ ∂u = −1 and u = 0 on ÑA,
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may be used as a fourth coordinate for a neighbourhood of ÑA. In these coordinates the
full 4-metric g̃µν on ÑA has the form

g̃µν =

⎛
⎜
⎜
⎜
⎝

0 −1 0 0
−1 0 0 0
0 0 h11 h12

0 0 h21 h22

⎞
⎟
⎟
⎟
⎠
µν

=

⎛
⎜
⎜
⎜
⎝

0 −1 0 0
−1 0 0 0
0 0 ρe11 ρe12

0 0 ρe21 ρe22

⎞
⎟
⎟
⎟
⎠
µν

. (5.6)

We compare this expression with (2.26),

gµν =

⎛
⎜
⎜
⎜
⎝

∆−1λ2 (2)g00 ∆−1λ2 (2)g01 0 0
∆−1λ2 (2)g10 ∆−1λ2 (2)g11 0 0

0 0 ρ2∆−1 +∆(B3)
2 ∆B3

0 0 ∆B3 ∆

⎞
⎟
⎟
⎟
⎠
µν

, (5.7)

the 4-metric of EG2CHSKF in coordinates x0, x1, y1, y2, where ∂y1 and ∂y2 are the two
Killing fields: Both expressions are block-diagonal. In both cases the determinant of the
lower right 2×2-block is ρ2. In the former case, the unimodular part of this block is eij,
in the latter, in view of the definition (2.35) of Ṽ , it is ṼṼT . The upper left 2×2-block of
(5.6) seems simpler than the corresponding block in (5.7). But this is only a matter of
choice of coordinates. The 2-metric (2)g can be brought to conformally flat form

(2)g = −2λ′dx+dx− (5.8)

at least locally in null coordinates x±. The 4-metric g̃µν is of the form (5.6) only on ÑA,
i.e. on the surface where u = 0. For EG2CHSKF analogous hypersurfaces NA would be
the surfaces of constant x+ (NL) or x− (NR). Consider the surface x+ = x+0 . We may
rescale

x+ = x̃+
∆(x+0)

λ′(x+0)λ
2(x+0)

.

Then, using x̃+ instead of x+, the 4-metric on the surface x+ = x+0 is of the form

gµν =

⎛
⎜
⎜
⎜
⎝

0 −1 0 0
−1 0 0 0
0 0 ρ2∆−1 +∆(B3)

2 ∆B3

0 0 ∆B3 ∆

⎞
⎟
⎟
⎟
⎠
µν

, (5.9)

just like g′. The last difference of the two expressions, which at the same time is the most
important difference, is that all the quantities in g̃µν depend on ỹ1 and ỹ2, while in gµν
they are all independent of y1 and y2. But, as far as the Poisson structure of the lower
right 2×2-block is concerned, i.e. the bracket of µ and µ̄ on the one side and the bracket
of the components of the matrix Ṽ on the other side, the special form of (5.5) suggests
that this difference not influence the Poisson structure. Whether the bracket vanishes
for points on different generators of the hypersurface ÑA and is nonzero only for points
on the same generator or whether the bracket is the same for all pairs of points, which
have the same x+ (x−) coordinate, but possibly different y1 and y2 coordinates, might not
matter.
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In the next sections, this question is answered. We derive a Poisson bracket for V , the
Kramer-Neugebauer transform of Ṽ , parametrise V by a complex field µ, similar to (5.4),
and deduce a bracket of this field µ with its complex conjugate µ̄, which is completely
analogous to (5.5). Since Ṽ has a completely analogous Lagrangian density, all the results
on the Poisson structure are equally valid for Ṽ . The advantage of V over Ṽ is, that it is
regular at the axis.

5.2 The symplectic potential Θ and symplectic 2-

form ω

As mentioned in section 2.3.3 the dynamics of the G = SL(2,R)-valued field V is the most
difficult part of the equations of motion. A solution for ρ is any function of the form

ρ =
1

2
ρ+(x+) +

1

2
ρ−(x−)

and λ can be obtained by integration once a solution for V is known. We therefore
concentrate on the part

IV = −
κ

2 ∫D
εgρTr(P

2) (5.10)

of the action (2.40). It is the only one containing V . The factor κ
2 is a normalization,

which doesn’t affect the e.o.m.. We keep this factor to allow easy comparison of our
results with those of [32] and [24]. Proceeding as explained in section 3.3.3 we compute
δIV on the space of solutions S for a vector δ with δρ = 0 = δg. (This restriction on δ will
be assumed throughout this chapter.)

δIV = − κ∫
DΣΣ′

εgρTr {P
µ(−V−1δVJµ + V

−1∇µδV)} =

=κ∫
DΣΣ′

εgTr {(∇µ(ρP
µ) + [Qµ, ρP

µ])V−1δV} − κ∫
∂DΣΣ′

(εg)µ⋅ρTr {P
µV−1δV} .

The dot in (εg)µ⋅ refers to the uncontracted index. Therefore

δ ⌟ΘΣ = −κ∫
Σ
(εg)µ⋅ρTr {P

µV−1δV} = −κ∫
Σ
(εg)µ⋅ρTr {J

µ(V−1δV)∣
k
} . (5.11)

For two vectors δ1, δ2 the symplectic 2-form ω = −dΘ is then

ω(δ1, δ2) = − δ1(δ2 ⌟Θ) + δ2(δ1 ⌟Θ) + [δ1, δ2] ⌟Θ =

= − κ∫
Σ
(εg)µ⋅ρTr {δ2P

µV−1δ1V − P
µV−1δ2VV

−1δ1V} − (1↔ 2)

= − κ∫
Σ
(εg)µ⋅ρTr {δ2P

µV−1δ1V + P
µ[V−1δ1V ,V

−1δ2V] − δ1P
µV−1δ2V} .

But

Tr {P µ[V−1δ1V ,V
−1δ2V]} =

=Tr {P µ[(V−1δ1V)∣k, (V
−1δ2V)∣h] + P

µ[(V−1δ1V)∣h, (V
−1δ2V)∣k]} =

=Tr {(V−1δ1V)∣k[(V
−1δ2V)∣h, P

µ]} − (1↔ 2)
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and so

ω(δ1, δ2) = − κ∫
Σ
(εg)µ⋅ρTr {(δ2P

µ + [(V−1δ2V)∣h, P
µ])V−1δ1V} − (1↔ 2).

We are now in the position to examine the degeneracy of ω. When formulated in terms
of the SL(2) group elements V the theory possesses a local H = SO(2) symmetry (2.49).
This is a gauge symmetry: The corresponding infinitesimal transformations are degen-
eracy vectors of the symplectic 2-form. If δ is an infinitesimal H transformation, i.e.
δV = Vδh with δh ∈ h = so(2), then V−1δV ∈ h, (V−1δV)∣

h
= V−1δV and (V−1δV)∣

k
= 0.

Recall that k = g/h = sl(2,R)/so(2) is identified with the orthogonal complement of h in
g. We introduce the two distributions in the tangent bundle of the space of solutions S

H ∶= {δ ∣ V−1δV ∈ h} ⊂ T S,

K ∶= {δ ∣ V−1δV ∈ k} ⊂ T S.

An arbitrary δ can be decomposed according to

V−1δV = (V−1δV)∣
k
+ (V−1δV)∣

h

into an so(2) transformation and an orthogonal remainder. We denote the orthogonal
remainder of δ by ∆:

V−1∆V ∶= (V−1δV)∣
k
= V−1δV − (V−1δV)∣

h
. (5.12)

Obviously

∆ =δ if δ ∈ K,

∆ =0 if δ ∈ H.

How does this decomposition translate to variations of Pµ?

∆Pµ = ∆ (Jµ∣k) = (∆Jµ)∣k = (−V−1∆VJµ + V
−1∇µ∆V)∣

k
=

= (−V−1δVJµ + (V−1δV)∣
h
Jµ + V

−1∇µ(δV − V(V
−1δV)∣

h
)) ∣

k
=

= (δJµ + [(V−1δV)∣
h
, Jµ] − ∇µ(V

−1δV)∣
h
) ∣

k
= δPµ + [(V−1δV)∣

h
, Pµ] ∈ k.

With this definition we get

ω(δ1, δ2) = κ∫
Σ
(εg)µ⋅ρTr {∆2P

µV−1∆1V} − (1↔ 2). (5.13)

If δ1 ∈ H, then V−1δ1V ∈ h, ∆1 = 0 and ω(δ1, δ2) vanishes for all δ2. The same is of course
true for δ2. Thus vectors in H are indeed degeneracy vectors.

As mentioned in 2.3.3 the 2-dimensional metric locally can be brought to conformally
flat form in coordinates (x0, x1) and by absorbing the conformal factor in λ we can
actually make it flat. In these coordinates (5.13) takes the form

ω(δ1, δ2) = −κ∫
Σ
dxνεµνρTr[∆2P

µV−1∆1V] − (1↔ 2). (5.14)
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5.3 Poisson bracket on a truncated light cone

For the null initial data surface N we choose the set

N = NR ∪NL = {(x−0 , x
+
0 + s) ∣ s ∈ [0, a]} ∪ {(x−0 + t, x

+
0) ∣ t ∈ [0, b]}, (5.15)

with a, b > 0. In [32] it is explained that this is a Cauchy surface for a diamond shaped
region in the future of N , such as D considered section 4.4. As initial data the V on
N suffice. No derivative is needed to coordinatize S up to gauge equivalence. We have
to orient N coherently and choose to orient it positively with respect to the future,
as explained in appendix E. On the reduced spacetime we define the chart (x0, x1)

to be positively oriented. Then also (x−, x+) is positively oriented (see appendix B for
definitions). So εg =

1
2dx

−∧dx+. On NL, ∂x+ is future directed, ∂x+⌟(dx−∧dx+) = −dx−. So
−x− is a future oriented chart onNL. OnNR, ∂x− is future directed, ∂x−⌟(dx−∧dx+) = dx+.
So x+ is a future oriented chart on NR. Hence, when evaluating integrals over N we have
to integrate from smaller to greater x+, but from greater to smaller x−. (5.14) further
turns into

ω(δ1,δ2) =

= −
κ

2 ∫
a

0
dx+ε−+ρTr[∆2P

−V−1∆1V] −
κ

2 ∫
0

b
dx−ε+−ρTr[∆2P

+V−1∆1V] − (1↔ 2) =

= κ∫
a

0
dx+ρTr[∆2P+V

−1∆1V] + κ∫
b

0
dx−ρTr[∆2P−V

−1∆1V] − (1↔ 2).

Expressing ∆Pµ in terms of ∆V

∆Pµ = (−V−1∆VJµ + V
−1∂µ∆V)∣

k
= (∂µ(V

−1∆V) + [Jµ,V
−1∆V]) ∣

k
=Dµ(V

−1∆V),

the first integral becomes

∫

a

0
dx+ρTr {D+(V

−1∆1V)V
−1∆2V} − ∫

a

0
dx+ρTr {(−V−1∆2VJ+ + V

−1∂+∆2V)V
−1∆1V} =

= ∫

a

0
dx+ρTr{D+(V

−1∆1V)V
−1∆2V + V

−1∆2VJ+V
−1∆1V − J+V

−1∆2VV
−1∆1V+

+V−1∆2V∂+(V
−1∆1V) + ρ

−1∂+ρV
−1∆2VV

−1∆1V} − [ρTr {V−1∆2VV
−1∆1V}] ∣

a

0
=

= ∫

a

0
dx+2

√
ρTr {D+(

√
ρV−1∆1V)V

−1∆2V} − [ρTr {V−1∆2VV
−1∆1V}] ∣

a

0
.

With the second integral we do the exact same thing, but with the roles of δ1 and δ2

exchanged, giving us an additional minus sign by the antisymmetry of the integral w.r.t.
δ1 ↔ δ2. We get

−2∫
a

0
dx−

√
ρTr {D−(

√
ρV−1∆2V)V

−1∆1V} + [ρTr {V−1∆2VV
−1∆1V}] ∣

a

0
.

Adding the two cancels the boundary term at 0 (the point (x−0 , x
+
0) where Nl and NR

meet). We are left with

ω(δ1, δ2) =2κ∫
a

0
dx+

√
ρTr {D+(

√
ρV−1∆1V)V

−1∆2V}−

− 2κ∫
a

0
dx−

√
ρTr {D−(

√
ρV−1∆2V)V

−1∆1V}−

− [ρTr {V−1∆2VV
−1∆1V}] ∣

(x−0 ,x+0+a)

(x−0+a,x+0)
.
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Following [32], we will now use (3.10) to calculate the Poisson bracket on N as a gener-
alized inverse of ω

ω({⋅, φ} , δ) = δφ (5.16)

for φ a gauge invariant function on phase space. By the term generalized we mean the
following: The ultimate goal of a Poisson bracket should be the computation of the
bracket of observables, which carry the physically relevant content of the theory. In [32]
it is suggested that one take as observables functions on phase space that are gauge
invariant and such that the support of the functional gradient

δφ

δV

is compact and disjoint from the boundary. Then in an expression such as

{φ,ψ} = ∫
N
dx∫

N
dy

δφ

δV(x)ij

δψ

δV(y)kl
{V(x)ij,V(y)kl}

the value of the Poisson bracket on the boundary ∂N will not contribute. We therefore
drop the boundary terms at a ((x−0 + b, x

+
0) and (x−0 , x

+
0 + a)). Although in the sequel

we will calculate brackets between functions, which are not 0 on ∂N , particularly the
V , at the end of the day this should not make a difference. Furthermore, two points
x ∈ NR/{(x+0 , x

−
0)} and y ∈ NL/{(x+0 , x

−
0)} cannot be causally connected. Therefore we set

{V(x),V(y)} = 0 for such points (see [32] for a more rigorous justification of this step).
The two integrals separately define the Poisson bracket on their domain. For δφ

δV having
support only in NR/{(x+0 , x

−
0)} and δ and thus ∆ vanishing on the boundary ∂NR, we

thus have

δφ = ω({⋅, φ} , δ) = 2κ∫
a

0
dx+

√
ρTr [D+(

√
ρV−1 {V , φ})V−1∆V] . (5.17)

We are interested in the Poisson bracket of V with V in the following sense: The matrix
V contains the original fields ∆ (not the variation, but the field introduced in section
2.1) and B. The Poisson bracket between any two elements Vij(x) and Vkl(y) at points
x and y will certainly be sufficient to determine the bracket between the original fields.
In index notation the expression

{Vij(x),Vkl(y)}

is an element of the tensor space TxG⊗ TyG and when pulled back to TeG = g

V−1
ij (x)V−1

lm(y) {Vjk(x),Vmn(y)}

is an element of TeG⊗ TeG = g⊗ g. We introduce the notation

i

A

for a g-valued field A living in the i-th copy of g in the tensor product of sufficiently
many copies of g. Usually 2 copies will be sufficient. Then

(
1

A)ijkl = (
1

A⊗ 1)ijkl = Aijδkl and (
2

A)ijkl = (1⊗A)ijkl = δijAkl.

98



Analogously
i

Tr

denotes the trace taken only in the i-th copy.
We have the expression (5.17) for δφ, but by the chain rule we also have

δφ = ∫
a

0
dy+

δφ

δVij(y)
δVij(y) = ∫

a

0
dy+

δφ

δVij(y)
Vik(y)V

−1
kl (y)δVlj(y). (5.18)

Since φ is an observable this expression must vanish for all gauge transformations δ ∈ H by
(5.17). The gauge generators are degeneracy vectors of the symplectic form by definition
and hence

δφ

δVij
Vik ∈ k

∗.

δ can be substituted by ∆ in (5.18).
Subtracting (5.17) from (5.18) and using the chain rule once more in {V , φ} in (5.17), we
have

0 = ∫
a

0
dy+

2∗

δφ

δV(y)
V(y)

2
⌟

2
⌟(2κ∫

a

0
dx+

√
ρ(x)

1

Tr [
1

Dx+(
√
ρ(x)

1

V−1(x)
2

V−1(y){
1

V(x),
2

V(y)})
1

V−1(x)∆
1

V(x)]− (5.19)

−
2

V−1(y)∆
2

V(y)).

Here ⌟ denotes the dual pairing between k∗ and k. Now,
2∗

δφ
δV(y)V(y) can be any element

of k∗ and so

2κ∫
a

0
dx+

√
ρ(x)

1

Tr [
1

Dx+(
√
ρ(x)

1

V−1(x)
2

V−1(y){
1

V(x),
2

V(y)})∣
2

k

1

V−1(x)∆
1

V(x)] =

=
2

V−1(y)∆
2

V(y).

(5.20)

We see that only the K⊗K-part of the Poisson bracket1 is specified by this equation.
We have to choose the bracket such that

1

D+(
√
ρ

1

V−1(x)
2

V−1(y){
1

V(x),
2

V(y)})
1⊗2

∣
k⊗k

1) transfers
1

V−1∆2

1

V to the second copy of the tensor product via the Trace operation,
2) cancels the factor 2κ

√
ρ and 3) eats up the integral and evaluates the remaining V−1∆V

at y. This can be achieved by

1

D±(
√
ρ

1

V−1(x)
2

V−1(y){
1

V(x),
2

V(y)})
1⊗2

∣
k⊗k =

δ(x − y)

2κ
√
ρ

Ωk, (5.21)

where Ωk is an element of g ⊗ g which takes care of 1 above. What exactly is Ωk? Note
that the trace in the fundamental 2×2-representation of gl(2,R), which enters the integral
(5.20), defines a symmetric, invariant 2, and non-degenerate inner product < a, b >= Tr[ab]

1Or equivalently the k⊗ k-part of
1

V−1(x)
2

V−1(y){
1

V(x),
2

V(y)}
2invariant under the adjoint action in the sense that < [x, y], z > + < y, [x, z] >= 0.
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on g. So

< Ω,
1

A >=
2

A ∀A ∈ g (5.22)

defines Ω uniquely. In a basis {ei} of g the form < ⋅, ⋅ > has components κij =< ei, ej >.
The set {ei} defined by eiκij = ej is basis for g∗ because of the assumed non-degeneracy
of < ⋅, ⋅ >. Then

<
1
ei ⊗

2

ei,
1
ej >=

2
ej ∀j

and so
1
ei ⊗

2

ei fulfils all the requirements on Ω and so is equal to Ω since they define it
uniquely.
We now work out another property of Ω, which will be of use later on. We assumed
invariance of < ⋅, ⋅ >. This implies

− < [
1

B,Ω],
1

A >=< Ω, [
1

B,
1

A] >= [
2

B,
2

A] = [
2

B,< Ω,
1

A >] =< [
2

B,Ω],
1

A > ∀A,B ∈ g

⇒ < [
1

B +
2

B,Ω],A >= 0 ∀A,B ∈ g ⇒ [
1

B +
2

B,Ω] = 0 ∀B ∈ g

and for a group element in the vicinity of the identity

d

dt
(

1

etB
2

etBΩ
1

e−tB
2

e−tB) =
1

etB
2

etB[
1

B +
2

B,Ω]
1

e−tB
2

e−tB = 0

and

(
1

etA
2

etAΩ
1

e−tA
2

e−tA)∣
t=0

= Ω

⇒
1

etA
2

etAΩ
1

e−tA
2

e−tA = Ω. (5.23)

Ω is invariant under the adjoint action of G.
Ω, defined in this way, is almost what we need. “Almost” because since the left hand

side of (5.21) is in k⊗k, the right hand side also has to be in k⊗k, which is why we use only
the part of Ω which is in k⊗ k, namely Ωk ∶= Ω∣

k⊗k. Note that Ωk is not invariant under the
adjoint action of the whole of G because the projection onto k does not commute with it.
It is though invariant under the action of H ⊂ G, which preserves the subspaces. Finally,
we mention that if we use κ =< ⋅, ⋅ > as a metric on g, then Ω is the inverse metric. Just
like in differential geometry using abstract indices a, b, c, ... (5.22) would be

κabA
bΩac = Ac ∀Ab ⇒ κabΩ

ac = δcb .

As mentioned above only the k⊗ k-part of
1

V−1
2

V−1{
1

V ,
2

V} is specified by (5.17). We denote
this part by Akk

3 and the other parts by

1

V−1
2

V−1{
1

V ,
2

V} =
12

Agg =
12

Akk +
12

Akh +
12

Ahk +
12

Ahh. (5.24)

Let us now solve equation (5.21) for Akk. Suppose we choose the gauge Q+ = 0 and thus
D+ = ∂+. Then

Akk(x, y) =
sign(x − y)

4κ
√
ρ(x)

√
ρ(y)

Ωk +
1

4κ
√
ρ(x)

√
ρ(y)

C,

3We hope not to confuse by omitting dependences on spacetime coordinates and numbers indicating
in which copies of g an object lies in situations where this should be clear.
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where C ∈ k ⊗ k is independent of x and y, would do the job. We chose the sign(x − y)-
function as antiderivative of the δ(x− y) because it is antisymmetric. Since the left hand
side of the equation and the first term on the right hand side are antisymmetric w.r.t.
the simultaneous interchange of x and y and spaces 1 and 2 the last term on the right
hand side must be also. C is thus independent of y as well as x, and antisymmetric with

respect to interchange of
1

k and
2

k. Since k is 2-dimensional this implies

C = c(e1 ⊗ e2 − e2 ⊗ e1) =∶ c εk,

where c is a constant. The value of c is the only free parameter in the solution (5.21). εk
is “the volume element on k”. In terms of an arbitrary basis {t1, t2} we could write

εk =
√

∣det(g)∣ (t1 ⊗ t2 − t1 ⊗ t2) ,

where g is the component matrix of the metric on k w.r.t. the ti. Since the adjoint action
of an element of H preserves k and the metric we have

1

h
2

hεk
1

h−1
2

h−1 = εk h ∈H,

just as it is the case for Ωk.
(5.24) is the result of integrating the differential equation (5.21) for the gauge Q+ = 0. In
an arbitrary gauge, where Q+ in general does not vanish, the covariant derivative D+ in
the differential equation (5.21) contains an additional, adjoint action of the Lie algebra
element Q+(x). For the integral we thus need the integrated version of this action, which
is the adjoint action of the path ordered exponential, a Lie group element and its inverse
acting from the right and and left respectively,

1

Pe
∫ xx0

Q+

and
1

Pe
∫ x0
x Q+

,

where Pe denotes the path ordered exponential. Definitions and conventions are given
in appendix D. In general such a path ordered exponential depends on the path and is
related to the holonomy of the connection used. In our case, modulo reparametrisation,
which of course does not change the integral, there is only one path since the light cone
in our case is only one dimensional. Therefore this expression really is a function of x
(and the initial point x0) only. In order to keep antisymmetry we also include the factors

2

Pe
∫ yx0

Q+

and
2

Pe
∫ x0
y Q+

arriving at

Akk(x, y) =
1

4κ
√
ρ(x)

√
ρ(y)

1

Pe
∫ x0
x Q+ 2

Pe
∫ x0
y Q+

(sign(x − y)Ωk +C)
2

Pe
∫ yx0

Q+ 1

Pe
∫ xx0

Q+

.

This indeed satisfies (5.21).

∂x+ (
√
ρ(x)Akk(x, y)) =

δ(x − y)

2κ
√
ρ(y)

1

Pe
∫ x0
x Q+ 2

Pe
∫ x0
x Q+

Ωk

2

Pe
∫ xx0

Q± 1

Pe
∫ xx0

Q+

−

⎡
⎢
⎢
⎢
⎢
⎣

Q+(x),
1

2κ
√
ρ(y)

1

Pe
∫ x0
x Q+ 2

Pe
∫ x0
y Q+

(sign(x − y)Ωk +C)
2

Pe
∫ yx0

Q+ 1

Pe
∫ xx0

Q+⎤⎥
⎥
⎥
⎥
⎦

.
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In the first term on the right hand side the δ(x − y) allows us to evaluate both the
1

Pe

and the
2

Pe factor at x. Because of the invariance of Ω and Ωk (5.23), this term is just the
right hand side of (5.21). The commutator is [Q+,

√
ρAkk], just the term which makes a

covariant derivative D+ out of the partial derivative ∂+. We get

1

V−1(x)
2

V−1(y){
1

V(x),
2

V(y)} =

=
1

4κ
√
ρ(x)ρ(y)

1

Pe
∫ x0 −xQ+ 2

Pe
∫ x0
y Q+

(sign(x − y)Ωk +C)
2

Pe
∫ yx0

Q+ 1

Pe
∫ xx0

Q+

. (5.25)

As mentioned above, Ωk and εk are invariant under the simultaneous adjoint action of H
on both spaces. This fact allows us to write

{
1

V(x),
2

V(y)} =

=
1

4κ
√
ρ(x)ρ(y)

1

V(x)
2

V(y)
1

Pe
∫ yx Q+

(sign(x − y)Ωk + cεk)
1

Pe
∫ xy Q+

(5.26)

{
1

V(x),
2

V(y)} = 0 for x,y on different branches of Σ, (5.27)

where we set C = cεk. (5.26) shows the independence of x0. We see that as opposed to
Poisson brackets on spacelike Cauchy surfaces, our bracket {V(x),V(y)} is no longer 0
for x ≠ y. This result reflects the fact that points on the same generator of the light cone
are causally connected (see also [32]).

5.4 Gauge fixing and relation to the bracket of the

variables µ, µ̄ in [32]

In this section we fix the gauge corresponding to the local h = so(2)-symmetry of V . A
computation of the Dirac bracket on the constraint surface defined by the gauge fixing
condition will allow us to fix the parts of Agg not determined by the symplectic 2-form.
In the gauge we choose, the entries of V are especially simple functions of the variables µ
and µ̄ used in [32] to parametrise the unimodular metric on the initial data surface used
there. Note that our initial data surface (a part of the light cone) is a special form of
the surface used in [32] when two commuting, spacelike, hypersurface orthogonal Killing
fields are present.

We recall that in the Hamiltonian treatment4 of a theory with possibly singular La-
grangian one is typically left with the cotangent bundle and canonical 2-form as a sym-
plectic manifold, first class constraints corresponding to gauge symmetries and possibly
second class constraints (see [12]). One may then introduce a gauge fixing condition of
the type

C(q) = 0 (5.28)

4We use the terms Hamiltonian and Langrangian formulation to distinguish between models using
the cotangent and the tangent bundle respectively as symplectic manifolds.
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q being the dynamical fields. If such a condition is to fix the gauge under consideration
uniquely, then the surface defined by (5.28) must intersect each gauge orbit exactly once.
This gauge fixing condition is another constraint which, together with the previously first
class constraint generating the gauge transformation in question, forms a pair of second
class constraints. One first class constraint is replaced by two second class constraints. As
explained by Dirac, second class constraints are generically a problem when one wants to
use the canonical Poisson structure to quantize the system. This is because by definition
the Poisson bracket of a second class constraints φ2(q) with at least one other constraint
φo(q) does not vanish weakly (that is does not vanish when the constraints are imposed).
For example one might have

{φ2, φo} = c

c being a non-zero constant. In a quantization one would want to turn φ2 and φo into
operators φ̂2 and φ̂o obeying

φ̂2ψ = 0 φ̂oψ = 0 [φ̂2, φ̂o]ψ = ih̵cψ,

ψ being the wave function, which is not possible ([φ̂2, φ̂o]ψ = φ̂2φ̂oψ − φ̂oφ̂2ψ = 0 ≠ ch̵ψ if
φ̂2ψ = 0 and φ̂oψ = 0). Dirac proposed to solve this problem by introducing a new bracket,
which satisfies

{q, φi2}∗ = 0 (5.29)

for all the second class constraints φi2. This bracket, called the Dirac bracket, is the inverse
of the symplectic 2-form pulled back to the gauge fixed constraint surface. One may say
that it is permissible to impose the second class constraints already before computing the
bracket. Variations generated by phase space functions via the Dirac bracket do not take
the system out of the constraint surface. If the second class constraints arose from gauge
fixing then it is the bracket on the gauge fixed constraint surface.
Although we do not use a Hamiltonian formulation EG2CHSKF, we are in a similar
situation. We have an h gauge symmetry, the freedom to locally rotate the zweibein.
(3.10) can be used to determine the Poisson bracket by the symplectic 2-form only for
gauge invariant functions, while there remains some freedom, Akh,Ahk and Ahh, in the
bracket of functions not gauge invariant. In the Hamiltonian treatment this corresponds
to the fact that one may actually change the Poisson bracket from the canonical Poisson
bracket to the Dirac bracket without altering the dynamics, the essential content of the
theory. The condition (5.29) may be imposed on any Poisson manifold, not only on a
cotangent bundle with canonical symplectic and Poisson structure, in order to consistently
fix the gauge. This is what we will do now. We will impose a gauge condition and use
(5.29) in order to fix Agg completely.

5.4.1 A different group structure

Up to now the fields V were SL(2,R)-valued (SL(2,R) ⊂ SL(2,C)). In this subsection
we will introduce a different subgroup of SL(2,C), which is convenient for the purpose
of this section. First we remember how we obtained these group valued fields. We used
the two Killing vectors to perform two Kaluza-Klein reductions to obtain an effectively
two dimensional problem. This resulted in a two dimensional metric in the remaining
dimensions, which we could choose to be flat. The remaining fields were ρ, λ and V or
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dually ρ, λ̃ and Ṽ . Ṽ was simply the lower right 2 × 2 block in (2.25) divided by its
determinant. Although V (Ṽ) was introduced in a triangular gauge, we later spoke of V
(Ṽ) simply as an SL(2,R)-valued field. The triangular gauge is in no way mandatory.
Thinking of Ṽ as a unimodular zweibein, we may regard it simply as a collection of the
components of two one-forms in our preferred coordinate system, given by the parameters
of the integral curves of the Killing fields. We denote the two coordinates given by the
Killing vectors {Θ1,Θ2}. From this point of view the two indices of V are quite different
in their nature. One is an external one-form index and one is an internal index. Still V is
a real SL(2,R)-matrix. If we call the unimodular metric e (as it is called in [32]), then
we may write

eσν = Ṽ
i
σ δij(Ṽ

T )jν . (5.30)

The same can be said about the Kramer-Neugebauer transform V with the difference that
it does not correspond to a unimodular metric regular on the axis. From now on we state
everything in terms of V . But all the results, in particular those of this section, which do
not require regularity at the axis, are also valid for both V and Ṽ .

Let’s now try to find a relation between this SL(2,R)-valued field V and the fields µ
and µ̄ used in [32]. There the metric is factorised in the following way:

z ∶= Θ1 + iΘ2 α ∶=
dz + µdz̄
√

1 − µµ̄
=∶ v1 + iv2,

v1 and v2 being real one-forms. µ and µ̄ are related to the unimodular metric by

e =
1

2
(αᾱ + ᾱα) =

1

2
((v1 + iv2)(v1 − iv2) + (v1 − iv2)(v1 + iv2)) = v1v1 + v2v2

or in components
eσν = v

i
σ δij(v

T )jν .

We see that w.r.t. the Θ1,Θ2-coordinate system the component matrix v i
σ defined in this

way is used in the exact same way as V i
σ . It is also real and has unit determinant. In

terms of µ and µ̄

α =
(1 + µ)dΘ1 + i(1 − µ)dΘ2

√
1 − µµ̄

,

so

v1 = Re(α) = Re(
dz + µdz̄
√

1 − µµ̄
)

v2 = Im(α) =
(1 + µ)dΘ1 + i(1 − µ)dΘ2

√
1 − µµ̄

,

or in components

v i
ν =

1
√

1 − µµ̄
(
Re(1 + µ) Im(µ)
Im(µ) Re(1 − µ)

)

i

ν

. (5.31)

If we interpret v as V , then it is in the symmetric gauge. We could now proceed as
follows: Formulate a condition for the symmetric gauge (actually an x-dependent family
of conditions), compute the Dirac bracket using {V(x),C(z)} = 0 and relate the bracket
of the V to the bracket of the µ and µ̄ by using (5.31) and the chain rule. But a slightly
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different approach is instructive and somewhat easier to handle:
Instead of using as V i

µ the components w.r.t. the real coordinates Θ1, Θ2 we introduce
new, complex conjugate coordinates

Z1 ∶= z ∶=
1

√
2
(Θ1 + iΘ2), Z2 ∶= z̄ ∶=

1
√

2
(Θ1 − iΘ2),

Θ1 =
1

√
2
(Z1 +Z2), Θ2 =

−i
√

2
(Z1 −Z2).

The Jacobians for this transformation are

u σ
ν ∶=

∂Zσ

∂Θν
=

1
√

2
(

1 1
i −i

)

σ

ν

,

(u−1) ν
σ =

∂Θν

∂Zσ
=

1
√

2
(

1 −i
1 i

)

ν

σ

.

This transformation acts on the one-form index of V . We now do a second transformation
acting on the internal index. For this second transformation we use the same matrix u
defined above

V i
σ ↦ V

j
σ u

i
j .

The combination of these transformations yields

V i
σ ↦ (u−1) ν

σ V
j
ν u

i
j

or explicitly

1
√

1 − µµ̄
(
Re(1 + µ) Im(µ)
Im(µ) Re(1 − µ)

) ↦
1

2
√

1 − µµ̄
(

1 −i
1 i

)(
Re(1 + µ) Im(µ)
Im(µ) Re(1 − µ)

)(
1 1
i −i

) =

=
1

2
√

1 − µµ̄
(

1 + µ̄ −i(1 − µ̄)
1 + µ i(1 − µ)

)(
1 1
i −i

) =
1

√
1 − µµ̄

(
1 µ̄
µ 1

) .

We see that this transformed V contains the fields µ and µ̄ in a simple way. Again, from
now on, when talking about V we mean this transformed V

V i
ν =

1
√

1 − µµ̄
(

1 µ̄
µ 1

)

i

ν

. (5.32)

What about the group structure? Before the transformation V was a real matrix of
determinant 1, that is, an element of SL(2,R). The Lie algebra sl(2,R) consists of the
real traceless matrices and is thus spanned by the basis

e1 = σz = (
1 0
0 −1

) , e2 = σx = (
0 1
1 0

) , e3 = iσy = (
0 1
−1 0

) .

Alternatively we may say that sl(2,R) is spanned by the Pauli matrices themselves, but
the coefficients of σx and σz have to be real while the coefficients of σy have to be purely
imaginary.
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Our new V matrices will also be members of a group because they are related to the old
V by an adjoint action of the matrix u, which does not affect the group property. The
new V will certainly also have unit determinant and, by their relation to SL(2,R), can
be characterized as the subgroup of SL(2,C), we call it G̃, of matrices V for which

V̄ = u−1Au = u−1Aū = u−1uVu−1ū = σxVσx, A ∈ SL(2,R).

The Lie algebra g̃ of G̃ can be characterized as follows

V−1δV = u−1A−1uu−1δAu = u−1A−1δAu, A ∈ SL(2,R).

The adjoint action of u translates directly from the group level to the Lie algebra level

g̃ = u−1sl(2,R)u.

For the Pauli matrices we have

u−1σxu = σy, u−1σyu = σz, u−1σzu = σx. (5.33)

g̃ is also spanned spanned by σx, σy, σz, but now the coefficients of σx and σy have to be
real while those of σz have to be imaginary.
The maximal compact subgroup H = SO(2,R) of G = SL(2,R) gets mapped to H̃ and
is generated by u−1iσyu = iσz.

H̃ = {eitσz , t ∈ R} = {(
eit 0
0 e−it

) , t ∈ R}

Finally note that the metric on the Lie algebra is not altered (the trace is invariant under
the adjoint action).
This completes our analysis of the new group structure.

5.4.2 Derivation of {µ(x), µ̄(y)} from Akk

We will now formulate a gauge fixing condition of the form C(V) = 0 which restricts
V ∈ G̃ to the form (5.32). We found out that G̃ can be characterized as the group of
SL(2,C)-matrices, which satisfy

V̄ = σxVσx.

Solving this relation, we find for the components

(
0 1
1 0

)(
p q
r s

)(
0 1
1 0

) = (
s r
q p

) = (
p̄ q̄
r̄ s̄

) ⇒ p̄ = s, q̄ = r.

If we define
µ′ =

r
√

1 + rr̄

then

r =
µ′

√
1 − µ′µ̄′
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and the condition for unit determinant takes the form

pp̄ −
µ′µ̄′

1 − µ′µ̄′
= 1

pp̄ =
1

1 − µ′µ̄′
.

Therefore V is of the form

1
√

1 − µ′µ̄′
(
e−it µ̄′

µ′ eit
) , t ∈ R. (5.34)

This can indeed be reduced to the form (5.32) via the gauge transformation V → Vh, with
h = eitσz ∈ H̃ and µ = eitµ′.

If we impose the condition p = s then the matrices (5.34) are precisely those of the
form (5.32) (with µ = µ′). Our gauge condition will therefore be

C(V) = Tr(σzV) = Tr (
p q
−r −s

) = p − s = 0. (5.35)

Let us now impose (5.29).

0 =
1

V−1{
1

V ,C(
2

V)}∗ =
1

V−1{
1

V ,
2

Tr[
2
σz

2

V]}∗ =
2

Tr[
2
σz

2

V
12

Agg], (5.36)

where
12

Agg is now defined using the Dirac bracket. The Dirac bracket may be obtained
directly from this equation, sidestepping the calculation of the Poisson brackets of the
constraints. Since V−1∆V = V−1δV∣̃k is gauge invariant, Akk calculated with the Dirac
bracket and with the original Poisson bracket is the same. The equation (5.36) then
determines the remaining components of Agg, Akh, Ahk and Ahh, in terms of Akk. For Akk

we use (5.26) with c still undetermined. We introduce a useful parametrisation5

12

Agg =
12

Akk +
1
σz

2

β(x, y) +
1
γ(x, y)

2
σz + ξ(x, y)

1
σz

2
σz.

Antisymmetry implies
γ(x, y) = −β(y, x).

Using (5.33) we may transform Akk, which we computed in the SL(2,R) structure, to our
new G̃ structure.

Ωk =
1
2(σxσx + σyσy) =

1
4[(σx − iσy)(σx + iσy) + (σx + iσy)(σx − iσy)] = (σ−σ+ + σ+σ−),

where σ+ =
1
2(σx + iσy) = (

0 1
0 0

) and σ− =
1
2(σx − iσy) = (

0 0
1 0

).

εk =
1
2(σxσy − σyσx) =

i
4[(σx + iσy)(σx − iσy) − (σx − iσy)(σx + iσy)] = i(σ+σ− − σ−σ+)

5In our new group structure h̃ is spanned by σz.
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Q = (V−1dV)∣
h̃

V−1dV =
1

√
1 − µµ̄

(
1 −µ̄
−µ 1

)d [
1

√
1 − µµ̄

(
1 µ̄
µ 1

)] =

=
1

2

d[µµ̄]

1 − µµ̄
(

1 0
0 1

) +
1

1 − µµ̄
(
−µ̄dµ dµ̄
dµ −µdµ̄

) =

=
1

1 − µµ̄
(

1
2[µdµ̄ − µ̄dµ] dµ̄

dµ −1
2[µdµ̄ − µ̄dµ]

) (5.37)

Q =
1

2

µdµ̄ − µ̄dµ

1 − µµ̄
σz (5.38)

Pe∫
y
x Q = e

1
2ασz α ∶= ∫

y

x

µdµ̄ − µ̄dµ

1 − µµ̄

Pe∫
y
x Qσ±Pe∫

x
y Q = e

1
2ασzσ±e

−1
2ασz = e±

1
2ασ±e

±1
2α = e±ασ±

Akk in our new group structure is thus

Akk(x, y) =
1

4κ
√
ρ(x)ρ(y)

((sign(x − y) + ic)e−α(x,y)σ+σ− + (sign(x − y) − ic)eα(x,y)σ−σ+)

With this knowledge we continue with (5.36). Projecting onto k̃ in the first space gives

0 =
2

Tr[
2
σz

2

V(z)
2
σz]

1
γ(x, z) +

2

Tr[
2
σz

2

V(z)
12

Akk(x, z)]

σzV =
1

√
1 − µµ̄

(
1 µ̄
−µ −1

)

Therefore

0 =
2γ(x, y)

√
1 − µ(y)µ̄(y)

+
1

√
1 − µ(y)µ̄(y)

1

4κ
√
ρ(x)ρ(y)

×

× (−µ(y)(sign(x − y) − ic)e−α(x,y)σ− + µ̄(y)(sign(x − y) + ic)e
α(x,y)σ+)

γ(x, y) =
1

8κ
√
ρ(x)ρ(y)

(µ(y)(sign(x−y)− ic)e−α(x,y)σ− − µ̄(y)(sign(x−y)+ ic)e
α(x,y)σ+)

β(x, y) = −γ(y, x) =

=
1

8κ
√
ρ(x)ρ(y)

(µ(x)(sign(x − y) + ic)eα(x,y)σ− − µ̄(x)(sign(x − y) − ic)e
−α(x,y)σ+),

while projection of (5.36) onto h̃ gives

0 =
2

Tr(
2
σz

2

V(z)
2
σz)

1
σzξ(x, z) +

2

Tr(
2
σz

2

V(z)
2

β(x, z))
1
σz

0 =
2ξ(x, y)

√
1 − µ(y)µ̄(y)

+
1

√
1 − µ(y)µ̄(y)

1

8κ
√
ρ(x)ρ(y)

(µ(y)µ̄(x)(sign(x − y) − ic)e−α(x,y)+

+ µ̄(y)µ(x)(sign(x − y) + ic)eα(x,y))
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ξ(x, y) =
−1

16κ
√
ρ(x)ρ(y)

(µ(y)µ̄(x)(sign(x − y) − ic)e−α(x,y)+

+ µ̄(y)µ(x)(sign(x − y) + ic)eα(x,y)).

The final result can be written in a factorized form

Agg(x, y) =
1

4κ
√
ρ(x)ρ(y)

⎡
⎢
⎢
⎢
⎢
⎣

(sign(x − y) − ic)e−α(x,y)(σ− −
µ̄(x)

2 σz) ⊗ (σ+ +
µ(y)

2 σz)+

+ (sign(x − y) + ic)eα(x,y)(σ+ +
µ(x)

2 σz) ⊗ (σ− −
µ̄(y)

2 σz)

⎤
⎥
⎥
⎥
⎥
⎦

.

(5.39)

To derive {µ(x), µ̄(y)} we note that for any variation δ, just like in (5.37) above, we have

V−1δV =
1

1 − µµ̄
(

1
2(µδµ̄ − µ̄δµ) δµ̄

δµ −1
2 (µδµ̄ − µ̄δµ)

) =

=
1

1 − µµ̄
(δµσ− + δµ̄σ+ +

1
2(µδµ̄ − µ̄δµ)σz) =

=
1

1 − µµ̄
(δµ[σ− −

µ̄

2
σz] + δµ̄[σ+

µ

2
σz])

and thus

1

V−1
2

V−1{
1

V ,
2

V} =
1

1 − µ(x)µ̄(x)

1

1 − µ(y)µ̄(y)
×

× [{µ(x), µ(y)} (
1
σ− −

µ̄(x)
2

1
σz) (

2
σ− −

µ̄(y)
2

2
σz)+

+ {µ̄(x), µ(y)} (
1
σ+ +

µ(x)
2

1
σz) (

2
σ− −

µ̄(y)
2

2
σz)+

+ {µ(x), µ̄(y)} (
1
σ− −

µ̄(x)
2

1
σz) (

2
σ+ +

µ(y)
2

2
σz)+

+ {µ̄(x), µ̄(y)} (
1
σ+ +

µ(x)
2

1
σz) (

2
σ+ +

µ(y)
2

2
σz) ].

Equating this with (5.39) yields

{µ(x), µ(y)} =0

{µ̄(x), µ̄(y)} =0

{µ̄(x), µ(y)} =
1

4κ
(

1 − µµ̄
√
ρ

) ∣
x

(
1 − µµ̄
√
ρ

) ∣
y

(sign(x − y) + ic)eα(x,y)

{µ(x), µ̄(y)} =
1

4κ
(

1 − µµ̄
√
ρ

) ∣
x

(
1 − µµ̄
√
ρ

) ∣
y

(sign(x − y) − ic)e−α(x,y)

(5.40)

in accordance with [32] for κ = (8πG)−1. Note that

{µ̄(x), µ(y)} = {µ(x), µ̄(y)} (5.41)

only for c real.
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5.4.3 The Jacobi relation for brackets of the µ and µ̄ fields

We define the Jacobi sum J(x, y, z) to be

J(x, y, z) ={{µ(x), µ̄(y)}, µ(z)} + {{µ̄(y), µ(z)}, µ(x)} + {{µ(z), µ(x)}, µ̄(y)} =

={{µ(x), µ̄(y)}, µ(z)} − {{µ(z), µ̄(y)}, µ(x)}. (5.42)

The Jacobi relation holds if
J(x, y, z) = 0.

For an arbitrary variation δ we find

δ{µ(x), µ̄(y)} =
1

4κ
(sign(x − y) − ic)e−α(x,y)×

×

⎧⎪⎪
⎨
⎪⎪⎩

(
−δµµ̄ − µδµ̄

√
ρ

)

RRRRRRRRRRRx

(
1 − µµ̄
√
ρ

)

RRRRRRRRRRRy

+ (
1 − µµ̄
√
ρ

)

RRRRRRRRRRRx

(
−δµµ̄ − µδµ̄

√
ρ

)

RRRRRRRRRRRy

−

− (
1 − µµ̄
√
ρ

)

RRRRRRRRRRRx

(
1 − µµ̄
√
ρ

)

RRRRRRRRRRRy

(∫

y

x

δµdµ̄ + µdδµ̄ − δµ̄dµ − µ̄dδµ

1 − µµ̄
+ ∫

y

x

µdµ̄ − µ̄dµ

(1 − µµ̄)2
δ(µµ̄))

⎫⎪⎪
⎬
⎪⎪⎭

.

We intend to substitute {⋅, µ(z)} for δ so we set δµ = 0 and keep only terms with δµ̄. The
two integral terms above become

∫

y

x

(µdδµ̄ − δµ̄dµ)(1 − µµ̄) + (µdµ̄ − µ̄dµ)µδµ̄

(1 − µµ̄)2
= ∫

y

x

µdδµ̄

1 − µµ̄
+ ∫

y

x

−δµ̄dµ + µ2δµ̄dµ̄

(1 − µµ̄)2
=

= [
µδµ̄

1 − µµ̄
] ∣

y

x

+ ∫

y

x

−δµ̄(1 − µµ̄)dµ − µδµ̄d(µµ̄) − δµ̄dµ + µ2δµ̄dµ̄

(1 − µµ̄)2
=

= [
µδµ̄

1 − µµ̄
] ∣

y

x

− ∫

y

x

2dµ

(1 − µµ̄)2
δµ̄

δ{µ(x), µ̄(y)} =
1

4κ
(

1 − µµ̄
√
ρ

) ∣
x
(

1 − µµ̄
√
ρ

) ∣
y
(sign(x − y) − ic)e−α(x,y)×

×

⎧⎪⎪
⎨
⎪⎪⎩

(
−2µδµ̄

1 − µµ̄
) ∣
y
+ ∫

y

x

2dµ

(1 − µµ̄)2
δµ̄

⎫⎪⎪
⎬
⎪⎪⎭

{{µ(x), µ̄(y)}, µ(z)} =
1

8κ2
(sign(x − y) − ic)e−α(x,y) (

1 − µµ̄
√
ρ

) ∣
x
(

1 − µµ̄
√
ρ

) ∣
y
(

1 − µµ̄
√
ρ

) ∣
z
×

×

⎧⎪⎪
⎨
⎪⎪⎩

−µ(y)
√
ρ(y)

(sign(y − z) + ic)eα(y,z) + ∫
y

x
(

∂sµ
√
ρ(1 − µµ̄)

)

RRRRRRRRRRRs

(sign(s − z) + ic)eα(s,z)ds

⎫⎪⎪
⎬
⎪⎪⎭

=

=
1

8κ2
(

1 − µµ̄
√
ρ

)

RRRRRRRRRRRx

(
1 − µµ̄
√
ρ

)

RRRRRRRRRRRy

(
1 − µµ̄
√
ρ

)

RRRRRRRRRRRz

×

×

⎧⎪⎪
⎨
⎪⎪⎩

µ(y)
√
ρ(y)

(sign(x − y) − ic)(sign(z − y) − ic)eα(y,z)eα(y,x)+

+ ∫

y

x
(

∂sµ
√
ρ(1 − µµ̄)

)

RRRRRRRRRRRs

(sign(x − y) − ic)(sign(s − z) + ic)eα(s,z)eα(y,x)ds

⎫⎪⎪
⎬
⎪⎪⎭

.
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To get the complete Jacobi sum (5.42) we have to antisymmetrize w.r.t. x and z. Since
the first term is symmetric w.r.t. x and z we only have to worry about the integral term.

J(x, y, z) =
1

8κ2
(

1 − µµ̄
√
ρ

) ∣
x
(

1 − µµ̄
√
ρ

) ∣
y
(

1 − µµ̄
√
ρ

) ∣
z
eα(y,z)eα(y,x)×

×

⎧⎪⎪
⎨
⎪⎪⎩
∫

y

x
(

∂sµ
√
ρ(1 − µµ̄)

)

RRRRRRRRRRRs

(sign(x − y) − ic)(sign(s − z) + ic)eα(s,y)ds−

− ∫

y

z
(

∂sµ
√
ρ(1 − µµ̄)

)

RRRRRRRRRRRs

(sign(z − y) − ic)(sign(s − x) + ic)eα(s,y)ds

⎫⎪⎪
⎬
⎪⎪⎭

(5.43)

We introduce the function

f(s) ∶= (
∂sµ

√
ρ(1 − µµ̄)

)

RRRRRRRRRRRs

eα(s,y)

and note that for an arbitrary locally integrable function g

∫

b

a
g(s)sign(s − t)ds = (∫

t

a
+∫

b

t
) g(s)sign(s − t)ds =

= ∫

t

a
g(s)sign(a − t)ds + ∫

b

t
g(s)sign(b − t)ds.

Denoting by P the factor

P =
1

8κ2
(

1 − µµ̄
√
ρ

) ∣
x
(

1 − µµ̄
√
ρ

) ∣
y
(

1 − µµ̄
√
ρ

) ∣
z
eα(y,z)eα(y,x),

which is nonzero if ρ is finite at all points x, y, z, we continue with (5.43)

P−1J(x, y, z) =

= ic∫
y

x
fsign(x − y)ds + c2

∫

y

x
fds + ∫

z

x
f(sign(x − y) − ic)sign(x − z)ds+

+ ∫

y

z
f(sign(x − y) − ic)sign(y − z)ds − ic∫

y

z
fsign(z − y)ds − c2

∫

y

z
fds−

− ∫

x

z
f(sign(z − y) − ic)sign(z − x)ds − ∫

y

x
f(sign(z − y) − ic)sign(y − x)ds =

=∫

z

x
f [c2 − sign(z − x)sign(x − y) − sign(x − y)sign(y − z) − sign(y − z)sign(z − x)]ds.

If all points are distinct, define

M ∶=max(x, y, z) m ∶=min(x, y, z) n ∈ {x, y, z}/{M,m},

then the second factor in the integrand of the Jacobi sum is

c2 − sign(z − x)sign(x − y) − sign(x − y)sign(y − z) − sign(y − z)sign(z − x) =

=c2 − sign(M −m)sign(m − n) − sign(m − n)sign(n −M) − sign(n −M)sign(M −m) =

=c2 + 1 − 1 + 1 = c2 + 1.

111



The vanishing of the Jacobi sum J(x, y, z) = 0 implies

J(x, y, z) = P ∫
z

x
f(c2 + 1) = 0. (5.44)

Since in general P ≠ 0 and f ≠ 0, this implies

c = ±i.

We see that if we want the Jacobi relation to hold, then (5.41) does not hold or vice
versa. This issue is addressed in [33].
Remark: The bracket {µ(x), µ̄(y)} is a bidistribution. It is characterized by the action on
test functions via smearing by integration. As long as it does not have singular support
at x = y, the value we assign the bracket at x = y is irrelevant. The same is true for
the Jacobi sum. It is a function of x, y, z, i.e. it does not have singular support at any
triple of points (x, y, z). Hence, it is sufficient to assume that x, y, z are all distinct when
investigating under which condition the Jacobi relation holds.

5.5 The transformation of the field V to the mon-

odromy matrix M(w)

In the previous sections, we have discovered that indeed the Poisson bracket of the field
µ and its complex conjugate µ̄ computed via the bracket of the field V in the context
of EG2CHSKF is analogous to the bracket of the field µ and µ̄ found in [32]. While we
have seen that the V-bracket as well as the µ-bracket are quite complicated expressions,
in [24] it is shown that the monodromy matrix M(w) already introduced in 4.8 satisfies
a quite simple Poisson algebra and even a quantization of this algebra is proposed. Thus
it is desirable to use the monodromy matrix M(w) as initial data instead of V or µ. To
this end in this section we will

� find a transformation, which expresses the monodromy matrix M(w) in terms of
initial data V on a truncated light cone N .

� show that this transformation is invertible, that V can be recovered from M(w).

In section 5.7 we will then use our V-bracket on N to derive the Poisson algebra of the
monodromy matrix. As expected the algebra of [24] is obtained. Note however that unlike
the derivation presented in [24] our calculation does not involve points infinitely far from
the axis, it involves only the fields in a bounded region, so it is valid in a somewhat wider
range of situations. In a further calculation we do assume that the field equations hold on
a space that extends infinitely far from the axis, and also that the fields obey asymptotic
conditions, to rederive the semi-classical Yangian algebra of conserved charges found in
[24] from the perspective of our null canonical theory.

As was already done before, throughout this section we adopt ρ as a spacelike coordi-
nate and ρ̃ as a timelike coordinate, that is x1 = ρ, x0 = ρ̃.
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5.5.1 Getting to know the monodromy matrix M(w)

Recall that at a given spacetime point x the function γ(w) is two valued, γ and 1/γ
correspond to the same value of w. γ defines a Riemann surface which is just the Riemann
sphere. We call it the γ plane. Via the projection

γ ↦ w(γ) = 1
2ρ(γ +

1

γ
) − ρ̃ (5.45)

the γ plane covers the complex w plane twice.6 This gives us a second representation of
the γ-plane: two copies of the w-plane, or “sheets”, W+ and W−, joined together on a
branch cut. Specifically, the first sheet W+, the image of the unit disc ∣γ∣ ≤ 1, is joined to
the second sheet W−, the image of ∣γ∣ ≥ 1, along the segment [−ρ+,−ρ−] = [−ρ̃ − ρ,−ρ̃ + ρ]
of the real w axis, the image of the circle ∣γ∣ = 1. See figure 4.1 and subsections 4.3.2 and
4.3.3.

Let us define two single valued inverses to (5.45), γ+ that maps w ∈W+ to the unit disc
in the γ-plane, and γ− that maps w ∈W− to the complement of the disc. More precisely, if
w is off the real axis ∣γ+(w)∣ < 1 and ∣γ−(w)∣ > 1, while if w lies on the branch cut ∣γ±∣ = 1
and Imγ+(w) ≥ 0 and Imγ−(w) ≤ 0.

The linear system (4.25) thus admits two versions, one in which γ = γ+, and one in
which γ = γ− = 1/γ+ (γ(x,w) being a solution to the differential equation (4.27) must
be continuous in x). Let V̂+(x,w) and V̂−(x,w) be solutions to + and − versions of the
linear system respectively. The two versions of the linear system are gathered together
in the single linear system (4.25) parametrized by the value of γ at some reference point
in spacetime. The + system is then the restriction of the system to the first sheet of the
Riemann surface of γ, and the − system the restriction to the second sheet. The functions
V̂±(x, γ) ∶= V̂±(x,w(γ)) are solutions to this combined system restricted to their respective
sheets, or equivalently to γ in the ranges of γ+ and γ− respectively.

Because the connection Ĵ± = Q± +
1∓γ
1±γP± is invariant under the extended involution η∞

Ĵ(γ) = η∞(Ĵ(γ)) = η(Ĵ) ( 1
γ) ,

there is a simple relation between the linear system on the two branches:
Recall that η∞ is defined on the loop group G∞

γ by (4.96). At a given value of w

V̂−1
− dV̂− = Ĵ(γ−) = η(Ĵ(1/γ−)) = η(Ĵ(γ+)) = η(V̂+)

−1dη(V̂+).

Thus if V̂+(x,w) is a solution of the linear system on the first branch, then η(V̂+(x,w)) is
a solution on the second sheet. Note that in terms of γ this solution on the second sheet
can be written as η(V̂+(x,1/γ)) = η∞(V̂+)(γ). Of course this is not the only solution to
the linear system on the second branch: C(w)η(V̂+(w, t)) is a solution for any function
C of w, but independent of spacetime position.

Taken together the pair of solutions V̂+(x, γ) and η∞(V̂+)(x, γ) do not in general form
a continuous function on the γ plane. There is a discontinuity at the unit circle. How are
the limiting values there related? First, these limiting values exist by the results of 4.4.
More, V̂+ extends to a continuous function on the whole closed unit disc ∣γ∣ ≤ 1, which

6The w-plane is actually also a Riemann sphere since it includes ∞.

113



satisfies the linear system everywhere, except at γ = ±1 where the one component of the
linear system is singular. Then

V̂+(γ) =M+(γ)η
∞(V̂+)(γ), (5.46)

where

M+ = V̂+(γ)[η
∞(V̂+(γ))]

−1 = V̂+(γ)[η(V̂+)(1/γ)]
−1 = V̂+(γ)V̂

T
+ (1/γ) (5.47)

is nothing but the monodromy matrix calculated from V̂+.
Since V̂+ is only defined on the unit disc, M+ is only defined on the unit circle ∣γ∣ = 1,

or equivalently on the branch cuts of the w planes W±, corresponding to a spacetime
position dependent interval of real values of w. The unit circle corresponds to two copies
of this interval, one corresponding to the upper semicircle, with Imγ ≥ 0, and one to the
lower semicircle.

Now recall that although built out of fields depending on both w and x, the monodromy
matrix actually depends only on w. Consider the point γ+(w) corresponding to a value of
w on the branch cut but not at either branch point, so γ+(w) ≠ ±1 and the linear system
(4.25) is well defined. The spacetime gradient of the monodromy matrix at constant w
is then

dM+ = V̂+Ĵ(η
∞(V̂+))

−1 − V̂+η
∞(Ĵ)(η∞(V̂+))

−1,

which vanishes because Ĵ = η∞(Ĵ). That, is M(x, γ+(x,w)) depends only on w.
The values of the monodromy matrix on the upper semi-circle at a given spacetime

point x revealsM+(w) for w in the branch cut corresponding to x, i.e. the open interval
] − x+,−x−[. The monodromy matrices at all spacetime points define a single universal
function M+(w) for all real w, for the real axis can be covered with open intervals each
corresponding to the branch cut at some spacetime point, and should w lie in the branch
cut of two spacetime points then M+(w) at both points must be the same. It is also
clear that M+(w) must be continuous, since M+(γ) is continuous along the circle. For
this reason M(γ+(w)) = M+(w) also at the endpoints γ+(w) = ±1: By continuity in γ
M+(γ = ±1) is the limiting value of M+(γ) as γ → ±1, by continuity in w this is the
limiting value of M+(w) as w approaches the corresponding branch point.

The same argument can be repeated using the lower semi-circle, that is, using γ =

γ−(w) = 1/γ+(w). The monodromy matrix V̂+(γ)(η∞[V̂+(γ))]−1 is again given by a uni-
versal function of w, M′

+. Since

M′
+(w) = V̂+(γ−(w))V̂T+ (1/γ−(w)) = V̂+(1/γ+(w))V̂T+ (γ+(w))

it is just the transpose of M+(w). Furthermore, at branch points, where γ−(w) = ±1,
γ+ = 1/γ− = γ−. Thus M′

+(w) = M+(w) at such points. But any w can be put at a
branch point by a suitable choice of spacetime point (x+ = −w for instance), soM′

+(w) =

M+(w) =∶ M(w) for all real w and M(w) is a symmetric matrix. In sum, at any x and
any γ on the unit circle, the monodromy matrix for the solution V̂+ is M(w(γ)) where
M is a symmetric matrix depending continuously on w and nothing else.
V̂0 is defined by the condition V̂0+(x,w) = V(x) for all w ∈ W+ at a point x on the axis

ρ = 0. (This implies that V̂0+(x,w) = V(x) on all of the axis, see section 5.5.2) In section
4.4 it is demonstrated that V̂0 is a solution to the linear system (4.25) for all ∣γ∣ ≤ 1 except
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at the singular values γ = ±1, where it still satisfies the non-singular component of the
linear system. Moreover, it is continuous in γ throughout the closed disc in the topology
of the disc. (That is, it is continuous on any continuous curve contained entirely in the
closed disc.) Thus the hypothesis of our analysis apply, and V̂0 is continuous in γ (in the
topology of the γ plane) at all points of the closed unit disc.

Because of continuity at the unit circle we may write the monodromy matrix associated
to V̂0 as simply

M= V̂0(γ)[η
∞(V̂0(γ))]

−1 = V̂0(γ)V̂
T
0 (1/γ). (5.48)

Note that it may be defined on a larger region of the γ plane than just the unit circle,
if V̂0(γ) can be defined on a region larger than the unit disc. (On the other hand note
that V̂0 need not be analytic, or even continuous, on the whole γ plane. That depends
on M(w). η∞(V̂+) is analytic outside the unit disc, but V̂0 is equal to Mη∞(V̂+) in this
region.)

5.5.2 The monodromy matrix on the axis

The monodromy matrix M(w) of the solution V̂0 has a simple physical interpretation
for real w. It is the Kramer-Neugebauer transform of the unimodular metric on the axis
ρ = 0 at ρ̃ = −w.

Let us demonstrate this. Recall that V̂0 is determined in the first branch, γ = γ+(w), by
the linear system (4.25) and the requirement V̂0(x0,w) = V(x0) for all w at some reference
point x0 on the ρ = 0 axis. First let us show that this means that V̂0(x0,w) = V(x0) on
the whole ρ = 0 axis.

For ρ→ 0 we have

lim
ρ→0

γ+(ρ̃, ρ,w) = 0 ⇒ lim
ρ→0

Ĵ(ρ̃, ρ,w) = J(ρ̃, ρ = 0),

unless ρ̃ = −w. In this latter case the limit of γ+ is undefined. On the axis ρ = 0, the
connection Ĵ of V̂ is the same as the connection J = V−1dV for V . Hence, if we set V̂0 = V

at one point x0 on the axis, then V̂0 = V on the whole axis if w is not real, and at all
points on the axis that are not separated from x0 by ρ̃ = −w if w is real. At points on the
other side of ρ̃ = −w, for real w, V̂0(ρ̃, w) = F (w)V(ρ̃) for some matrix F depending only
on w. But in subsection 4.4.1 it was demonstrated that V̂0 is continuous at ρ̃ = −w, so
in fact F = 1 and V̂0 = V along the whole axis. (This is of course also what is necessary
in order that V̂0 be continuous in w at the real w axis.) Note that V̂0 at ρ̃ = −w on the
axis has really been defined to be the limiting value of V̂0 as this point is approached
from elsewhere. What has been established in subsection 4.4.1 is that this can be done
consistently, so the resulting function is continuous.

Now let us return to M. At the point yax on the axis at ρ̃ = −w, where we would like
to evaluate

M(w) = V̂0(x, γ+(w))V̂T0 (x,1/γ+(w)),

we cannot, because γ+(w) is not unambiguously defined. However we can define it
everywhere else, and then express the result in terms of V̂0 at this singular point. Recall
thatM(w) is independent of position at any x where the linear system holds. For w real
M(w) is thus constant at least everywhere off the lines x+ = −w and x− = −w where the
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linear system becomes singular. But at these lines (but off the axis)M(w) is continuous,
so in fact it is constant on all spacetime except at yax. To see this note that in the region
x+ ≥ −w, x− ≤ −w, x ≠ yax real w correspond to γ on the unit circle, so

V̂0(x,1/γ+(w)) = V̂0(x, γ̄+(w)) =
¯̂
V0(x, γ+(w)).

The continuity in spacetime of V̂0(x,1/γ+(w)) at x+ = −w and x− = −w thus assures
thatM(w) is continuous there with its value in the region between these lines. Because V̂0

is continuous in γ at ∣γ∣ = 1 the monodromy matrixM(w) = V̂0(x, γ+(w))V̂T0 (x,1/γ+(w))

approaches V̂0(x,±1)V̂T0 (x,±1), the expression for M(w) on the lines.
Now consider the expression for M(w) on x− = −w,

M(w) = V̂0(x, γ = 1)V̂T0 (x, γ = 1) = V̂0(x,w)V̂T0 (x,w).

As the axis ρ = 0 is approached the left side is constant, while the right side approaches
V(yax)VT (yax). Thus

M(w) = V(yax)V
T (yax). (5.49)

Recall that ρ1/2V is the Kramer-Neugebauer transform of the zweibein on the Killing
orbits in the Killing coordinates x2, x3 defined in (2.21). See (2.37). ρṼṼT is the metric in
these coordinates. This metric of course vanishes on the axis, but this is to be expected,
since the Killing coordinates together with ρ form essentially cylindrical coordinates.
The Killing coordinates are not necessarily the cylindrical coordinates constructed from
Riemann normal coordinates about the axis, but a rather linear combinations of these.

5.5.3 The definition of the monodromy matrix used in [24]

In [24]M(w) is defined in a slightly different manner than we have defined it. Since it is
not so straightforward that the two definitions are equivalent, here we explain how they
are related.
We start with the definition (5.48)

M(w) = V̂(x,w)η∞(V̂−1(x,w)).

Since η∞ exchanges the two sheets of the Riemann surface, we have

η∞(V̂(x,w)) = η(V̂(x, η∞(w)),

and thus
M(w) = V̂(x,w)η(V̂−1(x, η∞(w))). (5.50)

The monodromy matrix is independent of x. Provided that the domain of definition of V̂
extends to infinity, we may set the ρ-coordinate to infinity. Then the branch cut covers
the entire real axes on W+ and W−. Then, for real w and ε ∈ R, we have

lim
ε→0

(w − iε) = lim
ε→0

η∞(w + iε) ∀w.

We may thus write (5.50) as

M(w) = lim
ε→0

[V̂(ρ̃, ρ = ∞,w + iε)η(V̂−1(ρ̃, ρ = ∞, η∞(w + iε)))] =

= lim
ε→0

[V̂(ρ̃, ρ = ∞,w + iε)η(V̂−1(ρ̃, ρ = ∞,w − iε))] . (5.51)
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Above we have shown thatM(w) is the same on both W+ and W−. We may thus restrict
w to lie in W+ in (5.51). Furthermore, in [24], they define7

Tu/d(ρ̃, w) = V(ρ̃,0)V̂−1(ρ̃,0,w) lim
ρ→∞
V̂(ρ̃, ρ,w), w ∈W+u/d. (5.52)

In section 5.8, we will see that they are conserved in time for solutions V constant at
spatial infinity. Using our definition of V̂0, V̂0 = V on the axis, we simply have

Tu/d(w) = lim
ρ→∞
V̂0(ρ̃, ρ,w), w ∈W+u/d, (5.53)

and so (5.51) may be written as

M(w) = lim
ε→0

(Tu(w + iε)η(T −1
d (w − iε)) , (5.54)

in accordance with [24].

5.5.4 Relating the monodromy matrix to null initial data V

If we want to replace null initial data V on a truncated light cone by the monodromy
matrix with its nice Poisson algebra, we must relate these data. The expression (5.47)
uses V̂ evaluated at γ and γ−1 with ∣γ∣ = 1. On the Riemann surface, these points are
the two points on the two branch cuts corresponding to the same value w. In section 5.7
when we calculate the Poisson algebra of the monodromy matrix, it will be necessary to
evaluate both factors at the same point w. Looking for such an expression, we remember
that at the branch points γ = ±1 = γ−1. Since M(w) is x-independent, for given real w,
we may choose x such that w corresponds to one of the branch points. That is, w = −x+

or w = −x−. Then we get

M(w) =V̂+(x
−, x+ = −w,w)V̂T+ (x−, x+ = −w,w),

or (5.55)

M(w) =V̂+(x
− = −w,x+,w)V̂T+ (x− = −w,x+,w),

respectively. For fixed w and x+ = −w, the relation

M(w) = V̂(x−, x+ = −w,w)V̂T (x−, x+ = −w,w)

indeed is valid for arbitrary x−-coordinate. This is because

u−1(x−, x+,w) =

√
w + x+

√
w + x−

⇒ u−1(x−, x+ = −w,w) = 0 ⇒

⇒ Ĵ−(x
+ = −w,w) = Q− + u

−1(x−, x+ = −w,w)P− = Q−.

Along the line x+ = −w, the connection Ĵ− only has a gauge component, Q−. If x and y
are points on this line with different x−-coordinate, for V̂ at these points we have

V̂(x,w) = V̂(y,w)Pe∫
x
y Q−

7They use the indices + and − to distinguish between w ∈ W+u and w ∈ W+d. We use the indices u
and d.

117



and thus

V̂(x,w)V̂T (x,w) = V̂(y,w)Pe∫
x
y Q− (Pe∫

x
y Q−)

T
V̂T (y,w) =

= V̂(y,w)Pe∫
x
y Q−Pe−∫

x
y Q−V̂T (y,w) = V̂(y,w)V̂T (y,w).

Analogously on the line x− = −w.
The relation (5.55) is a big step in the right direction, it relates M(w) with V̂(w)

evaluated at a point where x+ = −w or x− = −w. Again, w is taken to be real, as for the
rest of this chapter. In figure 5.1 for two values of w, the corresponding lines x± = −w are
illustrated.

Now suppose we know V and thus, after integration of the linear system (4.25), V̂ on
the null initial data surface

N = NR ∪NL = {(x−0 , x
+
0 + s) ∣ s ∈ [0, a]} ∪ {(x−0 + t, x

+
0) ∣ t ∈ [0, b]}, (5.56)

with a, b real and b ≤ 2x1
0, introduced already in section 5.3, being an initial data surface

for the region D (see section 4.4). Then we get M(w) for those w, for which there is an
x+ or x− on N such that x± = −w. These values are

x+ ∈ [x+0 , x
+
0 + a] on NR,

x− ∈ [x−0 , x
+
0 + b] on NL

and so we get M(w) for the subset W =WL ∪WR consisting of the two intervals

WR = [−x+0 − a,−x
+
0], (5.57)

WL = [−x−0 − b,−x
−
0]. (5.58)

For b < 2x0, these intervals are disjoint as can be seen in figure 5.1, where they are
depicted as parts of the x0 = ρ̃ axis.

We select a special form of initial data surface N , which allows for the recovery of V
in the domain of dependence of N fromM(w) on W in a convenient way. This choice is
not mandatory and there are other more general choices (see [18]). We define the initial
data surface N to consist of only one branch NR touching the axis

N = {(x−0 , x
+
0 + s) ∣ s ∈ [0, a]}, (5.59)

with x−0 = x+0 . Also, we use x0 as our reference point for V̂ (and thus call it V̂0). That is

we define V̂0(x0,w) = V(x0). With this choice, we can computeM(w) for all real w with

w ∈ W = [−x+0 − a, x
+
0].

5.5.5 Preliminaries for the inverse transformation

With our choice of N and x0, and for w ∈ W the monodromy matrix is

M(w) = V̂0(x,λ)V̂
T
0 (x,λ−1). (5.60)

Here and from now on, λ (and later also σ) will always denote a point on the unit circle
∣λ∣ = 1, while γ can be any point in the complex plane. Consequently, equations involving
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Figure 5.1: Left: The lines ρ± = −w for two values of w. Right: The intervals WL and
WR of real values w, for which M(w) can be constructed from V̂ on N .

λ are only valid on the unit circle, while those involving γ are valid inside, outside of the
unit circle or both.
M(w) corresponds to the product of the limiting values V̂0(x,λ) and V̂T0 (x,λ−1) of

the function V̂(x, γ) holomorphic inside the unit circle and having continuous limit on
the unit circle. Cauchy’s theorem tells us [22] that a holomorphic function, continuous
on the boundary, is determined by the values it has on the boundary. Thus the task of
the inverse transformation for a given M(w) with w ∈ W is to find a function Û(x, γ)
holomorphic in γ inside the unit circle and such that its boundary value on the unit circle
satisfies

M(w(x,λ)) = Û(x,λ)ÛT (x,λ−1) (5.61)

and such that Û(x, γ = 0) = U(x), where U(x) solves the equations of motion.
In order to be able to perform the inverse transformation, x must be such, that the

interval [−x+,−x−] is a subset of W . Because then we know M(w) on the entire branch
cut and thus M(x,λ) on the entire unit circle. The equation (5.61) as a relation of the
boundary value of Û is then given on the entire unit circle. Those points are exactly the
points in the domain of dependence D of N

D = {(x−, x+) ∣ x−0 ≤ x
− ≤ x+ ≤ x+0 + a}.

For all these points, the negative interval corresponding to the branch cut can be illus-
trated by extending the coordinate lines x± = const. through x to the axis. The segment
of the axis between the points of intersection with these coordinate lines corresponds to
the branch cut.
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Before we continue, let us collect some properties M(w) has. First, it should be a
symmetric SL(2) matrix defined for w ∈ W . Second, with our choice of initial data
surface, for w ∈ W Ĵ(w) is real along the entire line of integration from the point x0 to
the point (x−0 ,−w). Thus we require M(w) to be real. Third, by (4.83) V̂(x−,−w,w),
being a product of V and the transport matrix of the form considered there, satisfies a
Hölder condition of index 1/2. In chapter 1 of [28] it is shown that product of two such
matrices will also satisfy the Hölder condition of the same index. Thus, we requireM(w)

to satisfy a Hölder condition. We require one additional property, namely thatM(w) be
differentiable (at least twice) in w. Then of course M(w(x, γ)) is differentiable in x.

Summarizing, we say that M(w) is admissible if it is symmetric, real, SL(2)-valued,
defined on W differentiable in w and satisfies a Hölder condition of index 1/2.

5.5.6 The inverse transformation

We now investigate if an admissible matrix M(w) can be factorized such that we can
recover a function Û(x, γ) with the same properties of V̂(x, γ). For now we shall assume
that there is a factorization of M(w) in the following sense. The proof will be given in
the next subsection.

Proposition 5.5.1. The Hilbert factorization problem
Let M(w(x,λ)) be admissible. Then there exist two matrices Z−(x, γ) and Z+(x, γ)
holomorphic in γ outside and inside the unit circle respectively, having continuous limits
thereon, and satisfying

M(w(x,λ)) = Z+(x,λ)Z−(x,λ) (5.62)

on the unit circle. This factorization is unique if we prescribe a value for Z−(x, γ = ∞).
Furthermore, for the same M(w) a different value for Z−(x, γ = ∞) yields the solutions

Z ′+(x, γ) = Z+(x, γ)Z
−1(x), Z ′−(x, γ) = Z(x)Z−(x, γ). (5.63)

Now, M(w(x,λ)) has a special form. Its dependence on λ via w implies invariance
under the replacement of λ by λ−1. And it is symmetric. Therefore,

M(w(x,λ)) =MT (w(x,λ)) =MT (w(x,λ−1)).

Hence, (5.62) can also be written as

M(w(x,λ)) = ZT− (x,λ−1)ZT+ (x,λ−1). (5.64)

Both, (Z+(x, γ),Z−(x, γ)) and (ZT− (x, γ−1),ZT+ (x, γ−1)) are factorizations of M. By
uniqueness of the solution, they thus have to satisfy relations of the form (5.63):

Z+(x, γ) = Z
T
− (x, γ−1)Z−1(x), Z−(x, γ) = Z(x)ZT+ (x, γ−1)). (5.65)

Expressing Z in both of these equations and restricting to values on the unit circle yields

Z−1
+ (x,λ)ZT− (x,λ−1) = Z(x) = Z−(x,λ)Z

T
+
−1
(x,λ−1) = Z−(x,λ

−1)ZT+
−1
(x,λ), (5.66)

where in the last step we used that λ and λ−1 could be exchanged by the independence of
Z(x) of γ. Since the left side is the transpose of the right side, Z(x) is a symmetric matrix.
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The second equation in (5.65) can now be used to express the original factorization (5.62)
in the form

M(w(x,λ)) = Z+(x,λ)Z(x)ZT+ (x,λ−1). (5.67)

The special form of M(w(x,λ)) tells us that there is one function, Z+(x,λ), which
determines the holomorphicity properties of both factors in the Hilbert problem. We
now interpret (5.67) as a Hilbert problem, the two factors being as indicated by the
brackets,

M(w(x,λ)) = [Z+(x,λ)Z(x)] [ZT+ (x,λ−1)] (5.68)

and require the function whose boundary values are given by the second factor to be
equal to the identity matrix at γ = ∞, equivalently Z+(x,0) = 1. Then the first factor
evaluated at γ = 0 gives the symmetric matrix Z(x). This product may be factorized into
Z = V V T uniquely up to right multiplication of V (x) by SO(2) elements h(x). Now we
define

Û(x, γ) = Z+(x, γ)V (x), (5.69)

and (5.68) takes the form

M(w(x, γ)) = Û(x,λ)ÛT (x,λ−1) (5.70)

where Û(x,λ) are the boundary values of a function Û(x, γ) holomorphic inside the unit
circle, just like (5.61). In the next section we show that such a solution for admissible
M(w) exists. In section 5.5.8, we will show that Û−1∂Û indeed has the form

Û−1∂±Û = (U−1∂±U)h + u
±1(U−1∂±U)k,

where U = Û(γ = 0) and thus that U satisfies the equations of motion.
Note also, that suppose we are given a V̂ constructed from a solution V corresponding

to some initial data on N and build the monodromy matrix M. Factorising this M
according to the Hilbert problem we recover V̂ up to right multiplication of an SO(2)
element, corresponding to the local Lorentz gauge freedom in the planes spanned by the
Killing fields, which may be fixed requiring V to be in triangular gauge. That we indeed
recover V̂ and not some other solution is due to the uniqueness of the factorisation for
prescribed behaviour at γ = ∞.

5.5.7 The Hilbert problem

We now prove that for admissible M(w), the Hilbert factorization problem as stated in
5.5.6 has a unique solution for a prescribed value of Z− at γ = ∞.

For now, we look for vectorial solutions, that is two vectors Φ+(γ) and Φ−(γ) holo-
morphic inside and outside of the unit circle with limits on the unit circle such that

Φ+(λ) =M(λ)Φ−(λ), (5.71)

Φ− such that Φ−(∞) = v, where v is some finite vector. Again, λ always lies on the unit
circle C. The integral over C is to be taken in such a direction that the interior C+ of the
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circle is to left when λ increases, while the exterior C− is to the right. Note that once we
have found Φ−(λ), Φ−(γ) and Φ+(γ) are given by

Φ−(γ) = −
1

2πi ∫C

Φ−(λ)dλ

λ − γ
+ v, γ ∈ C−,

Φ+(γ) =
1

2πi ∫C

M(λ)Φ−(λ)dλ

λ − γ
, γ ∈ C+.

(5.72)

Following chapter 18 of [28] we now derive a singular Fredholm integral equation of the
second kind equivalent to (5.71). First, we state the necessary and sufficient condition
for the vector Φ+(λ) to be the boundary value of a vector Φ(γ) holomorphic in C+ is

0 = −1
2Φ+(σ) +

1

2πi ∫C

φ+(λ)dλ

λ − σ
. (5.73)

Similarly, the necessary and sufficient condition for the vector Φ−(λ) to be the boundary
value of vector Φ(γ) holomorphic in C− and behaving at infinity as

Φ(γ) = v +O(γ−1)

is

0 = 1
2Φ−(σ) +

1

2πi ∫C

Φ−(λ)dλ

λ − γ
− v. (5.74)

Now we bring into the play the Hilbert problem. We require the boundary values Φ− and
Φ+ to be related by (5.71). Inserting this into equation (5.73) gives us two equations for
the boundary value φ−(λ)

1
2Φ−(σ) +

1

2πi ∫C

Φ−(λ)dλ

λ − γ
= v, (5.75)

−1
2M(σ)Φ−(σ) +

1

2πi ∫C

M(λ)Φ−(λ)dλ

λ − σ
= 0. (5.76)

These are just the Plemelj formulae applied to (5.72). Multiplying the second of these
equations from the left byM−1(σ) (the inverse exists because detM= 1) and subtracting
it from the first equation gives

Φ−(σ) −
1

2πi ∫C

M−1(σ)M(λ) − 1

λ − σ
Φ−(λ)dλ = v. (5.77)

This is a Fredholm equation of the second kind. It is well posed because M is required
to satisfy a Hölder condition, which guarantees the existence of the integral.

The first question is now, are there (unique) solutions to the Fredholm equation (5.77)?
The second question is, supposing that a solution to (5.77) exists, does it automatically
satisfy both equations (5.75) and (5.76), from which it was derived, and thereby the
homogeneous Hilbert problem? The second question has been analysed in chapter 18 of
[28] and the answer is positive. Thus, we know that every solution of (5.77) corresponds
to a solution of (5.71) behaving at infinity as v +O(γ−1).

We turn to the first question. Define a Fredholm operator K acting on continuous
functions φ(λ) on C by

Kφ = φ −
1

2πi ∫C

M−1(σ)M(λ) − 1

λ − σ
φ(λ)dλ. (5.78)
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It is a linear operator on the space of continuous functions satisfying a Hölder condition.
Now, the space of Hölder continuous functions on a closed interval form a Banach space
with respect to the maximum norm [15]. The functions on the circle can be represented
as the subset of functions on a closed real interval, whose values agree at the endpoints.
This subset is clearly closed, because the limit of a sequence of functions whose values at
the endpoints agree, converging with respect to the maximum norm, will also have this
property. Thus, the space of Hölder functions on the circle also form a Banach space.

For a Fredholm operator K, one has the simple formula [28]

dim kerK = codim range K.

Since K in our case is injective, the kernel has dimension zero, and thus the codimension
of the image is also zero. Hence, K is also surjective and thus invertible.

Our Fredholm equation (5.77) can then be compactly written as

KΦ− = v.

In general, there is a theorem on Fredholm operators [28], called the Fredholm alternative,
which basically states, that a Fredholm operator is the sum of an invertible operator and
a compact operator. A quite vague but illustrative picture is: The compact operator can
destroy the invertibility of the invertible operator in only a finite number of dimensions.
The compact part of K is the integral operator while the invertible operator is simply
the identity in (5.78). The precise statement is that the kernel of a Fredholm operator is
finite dimensional.

In chapter 18 of [28], a fundamental system of solutions to the homogeneous Fredholm
equation

Kφ = 0,

deduced from (5.77) by setting v = 0, is constructed. In the general case, the fundamen-
tal system for a homogeneous Fredholm equation in n dimensions is a set of n vectors
{χ1, ..., χn}, which have the degrees −ς1, ...,−ςn at infinity, meaning that χj behaves as
O(γ−ςj) at infinity and whose boundary values on C satisfy the integral equation. The
general solution to the Hilbert problem is then given by linear combinations of these χj,
where the coefficients are polynomials. Now, the sum ς of the degrees ςj can be computed
from M by the formula [28]

ς1 + ... + ςn = ς =
1

2π
[arg detM(λ)]C, (5.79)

where the subscript C denotes the increment when moving along the circle once. But in
our case detM(λ) = 1 and thus ς = 0. If this sum is to vanish, then either one of the
summands, say ς1, has to be negative, or they are all zero. But functions with degree
lesser or equal than zero do not vanish at infinity and thus they cannot be solutions of the
homogeneous equation Kχ1 = 0. Thus there cannot be any such solutions. The kernel of
K is empty and so K is injective. But it is also surjective because for The solution Φ to
the Hilbert problem is uniquely determined by the inhomogeneous equation (5.77) and
we have

Φ = K−1v.
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We remember that v determines the behaviour of Φ at infinity.
Up to now, we have only considered vectorial solutions to the Hilbert problem. If v1, v2

are linearly independent vectors, then clearly the corresponding solutions Φ1,Φ2 are also
linearly independent. If they weren’t, their difference would lie in the kernel, which is
empty. Hence, the matrix Z− with columns Φ1,Φ2 uniquely solves the matrix form of
Hilbert problem (5.62) for a given matrix with columns v1, v2 determining the behaviour
at infinity. For the solution of (5.68) we need in particular Z−(x, γ = ∞) = 1. Û is then
recovered as explained in the previous section.

The operator K is invertible at least on the class of Hölder continuous vectors. Consider
a family parametrised by x of vector valued functions f(x,λ) on C. If f has any of the
properties continuity, differentiability in x, Hölder, then since we we required M(w) to
have them, by theorems 6C.2 and 6C.3 of [18] the integral term of Kf and thus Kf as a
whole also has these properties. Thus K maps an element with the desired properties to
an element with the same properties.

It seams very likely that the inverse K−1 also maps vectors v with these properties to
vectors f having them, but we have not succeeded to prove it. We assume it to be true.
A proof that in the case of analytic or smooth M, the solutions will also be analytic or
smooth, is given in [31]. Note that actually, if M(w) is analytic, Û holomorphic in the
disc, can be holomorphically extended to a disc C+ε of radius 1 + ε, because M(w) may
be extended to an annular region containing the unit circle. One simply sets

Û , for γ ∈ C+

Mη∞(Û), for γ ∈ C+ε /C
+.

By the very definition ofM, (5.47), on C, the values agree, the function is thus continuous
across C and therefore analytic in all of C+ε , in particular on C.

5.5.8 Properties of Û

We have at our disposal a function Û(x, γ), holomorphic in C+, continuous on C, and
differentiable in x and along C. Û(x, γ−1) has the same properties except that it is
holomorphic in C−. The boundary values of these functions satisfy

M(w(x,λ)) = Û(x,λ)ÛT (x,λ−1) on C.

Now, the spacetime differential operator with w held fix may be also be written as

∂±∣w = ∂±∣γ +
γ

2ρ

1 ∓ γ

1 ± γ
∂γ (5.80)

and has simple poles at γ = ±1. We first consider only the +-component. Define the
operator

D ∶= (1 + γ)∂±∣w = (1 + γ)∂+∣γ +
γ

2ρ
(1 − γ)∂γ. (5.81)

D is analytic in the finite complex plane. Note, that D may also act on functions defined
only on C, because when varying x, γ on the unit circle moves along the unit circle and
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does not leave it. Û(x, γ) is defined by its boundary values Û(x,λ) on C by

Û(x, γ) =
1

2πi ∫C

Û(x,λ)dλ

λ − γ
, γ ∈ C+, (5.82)

and, by Cauchy’s theorem, for γ ∈ C−

Û(x, γ) =
1

2πi ∫C

Û(x,λ)dλ

λ − γ
= 0, γ ∈ C−. (5.83)

∂+∣γÛ(x, γ) is given by

∂+∣γÛ(x, γ) =
1

2πi ∫C

∂+Û(x,λ)dλ

λ − γ
for γ ∈ C+,

which exists and is thus also holomorphic in C+. Therefore, DÛ will also be holomorphic
in C+.

We define the function
Ξ(x, γ) ∶=DÛ(x, γ),

holomorphic in C+ and vanishing on C−, because by (5.83) Û vanishes identically on C−.
On the other hand, we can apply the differential operator D to the boundary values
Û(x,λ). This defines a continuous function on C. Now consider the integral

ψ(γ) =
1

2πi ∫C

DÛ(x,λ)dλ

λ − γ
, γ ∈ C+ ∪ C−. (5.84)

ψ(x, γ) is a holomorphic function of γ in C+ and C−. We now compute the difference
ψ −Ξ. For ψ, we get

ψ(x, γ) =
1

2πi ∫C

(1 + λ)∂+Û(x,λ)dλ

λ − γ
+

1

2πi ∫C

∂λÛ(x,λ)

λ − γ

λ

2ρ
(1 − λ) = I1 + I2.

In the second integral, I2, we may integrate partially to get

I2 =
1

2πi ∫C

V̂(x,λ)

(λ − γ)2

1

2ρ
(λ2 + γ − 2λγ)dλ.

Thus ψ is

ψ(x, γ) =
1

2πi ∫C

∂+Û(x,λ)

λ − γ
(1 + λ)dλ +

1

2πi ∫C

V̂(x,λ)

(λ − γ)2

1

2ρ
(λ2 + γ − 2λγ)dλ. (5.85)

On the other hand, Ξ(γ) is

Ξ(γ) =
1

2πi ∫C

∂+Û(x,λ)

λ − γ
(1 + γ)dλ +

1

2πi ∫C

V̂(x,λ)

(λ − γ)2

1

2ρ
(γ − γ2).

Then the difference ψ −Ξ is

ψ(x, γ) −Ξ(x, γ) =
1

2πi ∫C
∂+Û(x,λ)dλ +

1

2πi ∫C

V̂(x,λ)

2ρ
= 0, (5.86)
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because both integrands are the boundary values of functions holomorphic in C+. So,
since Ξ and ψ are equal and Ξ vanishes in C−, so does ψ

ψ(x, γ) =
1

2πi ∫C

DÛ(x,λ)dλ

λ − γ
= 0, γ ∈ C−.

But this is the necessary and sufficient condition for DÛ(x,λ) to be the boundary value
of DÛ(x, γ) as γ approaches C from inside (see [28]). Consequently Φ(λ) = Û−1(λ)DÛ(λ)
is the boundary value of Φ(γ) = Û−1(γ)DÛ(γ), analytic in C+, and, save at λ = −1,

Î ′(λ) ∶= Û−1(λ)∂+∣wÛ(λ) =
1

1 + λ
Φ(λ) (5.87)

is the boundary value of

Î ′(γ) = Û−1(γ)∂+∣wÛ(γ) =
1

1 + γ
Φ(γ). (5.88)

It follows that away from λ = −1 the function η∞(Î ′)(λ) is the boundary value of
η∞(Î ′)(γ), which is analytic in C−.

Now, Î ′ and η∞(Î ′) are in fact the same on the unit circle: The monodromy data M
are given as a function of w only. Thus by construction M(x,λ) = M(w(x,λ) satisfies
∂+∣wM(w) = 0. But

∂+M∣
w
= ∂+Û(λ)∣wÛ

T (λ−1) + Û(λ)∂+∣wÛ
T (λ−1)∣

w
= Û(λ) {Î ′(λ) − η∞(Î ′)(λ)} ÛT (λ−1),

(5.89)
so

Î ′(λ) = η∞(Î ′)(λ). (5.90)

The two functions Î ′(γ) and η∞(Î ′)(γ) together define a single function Î(γ) on the
whole Riemann sphere except γ = −1 defined by

Î(γ) = Î ′(γ), for γ ∈ C+ ∪ C/{−1},

Î(γ) = η∞(Î ′)(γ), for γ ∈ C− ∪ C/{−1}.

Î is analytic in C+ ∪ C− and continuous on C except the point γ = −1. By Morera’s
theorem, Î is therefore analytic in all of C/{−1}.

It is perhaps surprising, but these facts suffice to determine the dependence of Î on γ
almost completely. Consider the function (1 + γ)Î. It is analytic throughout C/{−1,∞},
and, it is continuous at γ = −1 because it coincides with Φ(γ) in C+ and this function
tends to a finite boundary value b ∶= Φ(−1) at γ = −1. (Note however, that it also
coincides with (1 + γ)η∞(Î ′) = γη∞(Φ) in C−, and this function has the boundary value
−η(Φ)(−1) = −η(b). Thus we also know that b = −η(b), in other words b ∈ k.)

Consider again Î. When γ equals neither −1 nor ∞

Î =
Φ

1 + γ
=

Φ − b

1 + γ
+

b

1 + γ
. (5.91)

Rearranging we have

Î −
b

1 + γ
=

Φ − b

1 + γ
. (5.92)
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The left side is analytic on the whole Riemann sphere, save perhaps at γ = −1. The
right side is analytic on the whole Riemann sphere except perhaps at γ = ∞, because the
numerator vanishes at the zero of the denominator. The equality tells us that both sides
are analytic on the entire Riemann sphere, and are thus independent of γ:

Î = a +
b

1 + γ
. (5.93)

where a and b depend only on spacetime position x, but not γ.
Let us return to the condition (5.90). First, it is convenient to rewrite Î as

Î = A +
1 − γ

1 + γ
B. (5.94)

where A = a + b/2 and B = b/2. (5.90) requires that at the unit circle

A +
1 − λ

1 + λ
B = Î = η∞(Î) = η(A) −

1 − λ

1 + λ
η(B). (5.95)

Since this must hold for all λ on the circle (except λ = −1) it implies that

A = η(A), B = −η(B).

The first equation states that A ∈ h, the second that B ∈ k (which we already knew).
This suffices to show that the field U(x) obtained by evaluating Û(x, γ) at γ = 0

satisfies the field equations. At γ = 0

Î = Û−1∂+Û ∣w = Û−1∂+Û ∣γ=0
= U−1∂+U . (5.96)

because at γ = 0 differentiating at constant w is the same as differentiating at constant
γ, since there

∂+γ∣w =
γ

2ρ

1 − γ

1 + γ
= 0.

On the other hand Î = A +B at γ = 0. Thus

A = (U−1∂+U)∣h, B = (U−1∂+U)∣k. (5.97)

A completely analogous calculation for the x− derivative yields

Û−1∂−Û ∣w = (U−1∂−U)∣h +
1 + γ

1 − γ
(U−1∂−U)∣k

The field Û therefore satisfies the linear system

∂±Û ∣w = Û [A± +
1 ∓ γ

1 ± γ
B±]

at all γ ∈ C+, with A± = (U−1∂±U)∣h and B± = (U−1∂±U)∣k. Of course it then must also

satisfy the integrability conditions of this linear system, which are precisely the field
equations applied to U . See (4.22).
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5.6 Poisson Bracket of V̂0(x,w)

In sections 5.3 and 5.4 we calculated the Poisson brackets of the V on a null initial
data surface and compared it to [32] and [33]. In section 5.5 we have discussed the
transformation from V to the monodromy matrixM(w) and its inverse. We saw that the
transformation is invertible, if we use a hypersurface N touching the axis ρ = 0, which
consists of only one branch, NR. In this section, we use our brackets of the V on the
initial data surface N to compute the bracket of the V̂0 for w ∈ W+, which will be the
starting point for the Poisson algebra of the monodromy matrix M(w) in section 5.7
and, following the ideas of [24], the Poisson algebra of conserved charges in section 5.8.

5.6.1 Notation and strategy

V̂0(y,w) is related to V by

V̂0(y,w) = V(x0)T (x0, y;w) = V(x0)Pe∫
y
x0

Ĵ(w), (5.98)

where x0 is a point on the axis and we introduced the transport matrix

T (x, y;w) ∶= Pe∫
y
x Ĵ(w) = V̂−1(x,w)V̂(y,w). (5.99)

Let y = (x−0 , y
+) be a point8 on N and fix x0 = (x−0 , x

+
0) to be the point where N meets

the axis ρ = 0. Then V̂0(y,w) may be expressed entirely by V(z) with z ∈ N by

V̂0(x
−
0 , y

+,w) = V(x0)T (x0, y;w) = V(x−0 , x
+
0)Pe

∫ y
+

x+
0

Ĵ+(x−0 ,z+,w)dz+
. (5.100)

We shift the coordinate x+ such that x+0 = 0. Since in this section we exclusively deal
with points on N with the same x−-coordinate, from now on we omit the x−-dependence.
Furthermore, instead of x+, y+, z+, ... we simply write x, y, z, and we do not write the
subscript + on one-forms to indicate that we refer to the +-component. Furthermore,
obvious w-dependences will be omitted. In this simplified notation, we have

V̂0(y) = V(0)T (0, y) = V(0)Pe∫
y

0 Ĵ(z)dz. (5.101)

The Poisson bracket of the V̂0 is related to the bracket of the V by the chain rule

1

V̂−1(y1)

2

V̂−1(y2){

1

V̂0(y1,w1),
2

V̂0(y2,w2)} =

∫

∞

0
dx3∫

∞

0
dx4

1⊗3∗

(V̂−1(y1)
δV̂0(y1)

δV(x3)
V(x3))

2⊗4∗

(V̂−1(y2)
δV̂0(y2)

δV(x4)
V(x4))

3
⌟

4
⌟ (5.102)

3
⌟

4
⌟

3

V−1(x3)
4

V−1(x4){
3

V(x3),
4

V(x4)},

where the superscript i⊗ j∗ over V̂−1
0 (yi)(δV̂0(yi)/δV(xj))V(xj) means that it lies in the

tensor product of the i-th copy of g with the j-th copy of the dual g∗ of g (the notation
is analogous to (5.19)). In a first step we calculate V̂−1

0 (y)δV̂0(y) for a generic variation
δ in terms of δV . From that we then extract the functional gradient and calculate the
Poisson bracket (5.102).

8The x−-coordinate of all points on N is x−0 .
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5.6.2 The variation of V̂0

From (5.101) we get

δV̂0(y) = δV(0)T (0, y) + V(0)∫
y

0
T (0, z)δĴ(z)T (z, y)dz. (5.103)

We express the variation δĴ by δV .

δĴ = δQ + uδP = δJ ∣
h
+ uδJ ∣

k

and

δJ =δ(V−1∂V) = −V−1δVV−1∂V + V−1δ∂V =

= −V−1δVV−1∂V + V−1∂VV−1δV + ∂(V−1δV) =

= ∂(V−1δV) + [J,V−1δV] =D(V−1δV) + [P,V−1δV].

Therefore

δĴ =D(V−1δV)∣
h
+ [P, (V−1δV)∣

k
] + uD(V−1δV)∣

k
+ u[P, (V−1δV)∣

h
]. (5.104)

At this point we introduce the action of “hatting” and “unhatting” of g-valued elements.
Motivated by the relation between J = Q + P and Ĵ = Q + uP , for a g-valued field X we
define

X̂(w) ∶=Xh + u(w)Xk, (5.105)

where here and from now we simply use subscripts h and k instead of ∣h and ∣k to denote
projections onto h and k respectively. The “unhatting”-operation is denoted by

X
*
(w) ∶=Xh +

1

u(w)
Xk =∶Xh

*
+Xk

*
. (5.106)

Later we will also need an extension of the “unhatting”-operation to the tensor product
of the Lie algebra. For a g⊗g-valued field, we specify the factor, on which the unhatting
operation acts, e.g.

Agg
*
(x1, x2,w2) = Agh(x1, x2) +

1

u(x2,ww)
Agk(x1, x2),

if it only acts on the second factor of the spaces in the tensor product, or

Ag
*
g
*
(x1, x2,w1,w2) =

=Ah
*
h
*
(x1, x2,w1,w2) +Ak

*
h
*
(x1, x2,w1,w2) +Ah

*
k
*
(x1, x2,w1,w2) +Ak

*
k
*
(x1, x2,w1,w2) =

=Ahh(x1, x2) +
1

u(x1,w1)
Akh(x1, x2) +

1

u(x2,w2)
Ahk(x1, x2)+

+
1

u(x1,w1)u(x2,w2)
Akk(x1, x2)
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if it acts on both factors.
In this notation we may write (5.104) as

δĴ =D(V−1δV)h + [uP,u−1(V−1δV)k] + uD[u(u−1V−1δV)k] + [uP, (V−1δV)h] =

=D(V−1δV)h
*
+ [P̂ , (V−1δV)k

*
] + uD[u(V−1δV)k

*
] + [P̂ , (V−1δV)h

*
] =

=D(V−1δV)h
*
+ [P̂ , (V−1δV)g

*
] + uD[u(V−1δV)k

*
]. (5.107)

The last term may be modified. We have

uD(uXk
*
) −DXk

*
= uDXk −D ( 1

uXk) = (u −
1

u
)DXk − ∂ (

1

u
)Xk.

On N , x− = ρ− = const.. Defining w0 ∶= w + ρ− and using (4.33) and (2.61) on N we have

u =

√
w0√

w0 + 2ρ
, u −

1

u
=

√
w0

√
w0 + 2ρ

−

√
w0 + 2ρ
√
w0

=
−2ρ

√
w0(w0 + 2ρ)

,

∂
1

u
=

∂ρ
√
w0(w0 + 2ρ)

, − ∂
1

u
= (u −

1

u
)

1

2
ρ−1∂ρ = (u −

1

u
)ρ−1/2∂ρ1/2 (5.108)

⇒ uD(uXk
*
) =

(u − 1
u
)

√
ρ

D(
√
ρXk) +DXk

*
.

Hence, (5.107) is

δĴ = [D + adP̂ ](V
−1δV)g

*
+

(u − 1
u
)

√
ρ

D[
√
ρ(V−1δV)k]. (5.109)

For the variation of V̂0 we thus have

δV̂0(y) =δV(0)T (0, y) + V(0)∫
y

0
T (0, z){[D + adP̂ ](V

−1δV)g
*
}T (z, y)dz+

+ V(0)∫
y

0
T (0, z)

⎧⎪⎪
⎨
⎪⎪⎩

(u − 1
u
)

√
ρ

D[
√
ρ(V−1δV)k]

⎫⎪⎪
⎬
⎪⎪⎭

T (z, y)dz.
(5.110)

Now, for any g-valued field Y we have

∂z [T (0, z)Y (z)T (z, y)] =T (0, z) [Ĵ(z)Y (z) − Y (z)Ĵ(z) + ∂zY ]T (z, y) =

=T (0, z) {[D + adP̂ ]Y (z)}T (z, y). (5.111)

Therefore, the second term in (5.110) may be integrated and we get

δV̂0(y) =δV(0)T (0, y) + V(0) [T (0, z)(V−1δV)g
*
(z)T (z, y)]

y

0

+

+ V(0)∫
y

0
T (0, z)

⎧⎪⎪
⎨
⎪⎪⎩

(u − 1
u
)

√
ρ

D[
√
ρ(V−1δV)k]

⎫⎪⎪
⎬
⎪⎪⎭

T (z, y)dz.

(5.112)

On the axis, at z = 0, we have for w ∈W+ that u(0) = 1, and thus Xg
*
(0) = Xg(0). So the

first term above cancels with the second term evaluated at z = 0. Multiplying from the
left with V̂−1

0 (y), we are finally left with

V̂−1
0 δV̂0(y) = (V−1δV)g

*
(y) + ∫

y

0
T (y, z)

⎧⎪⎪
⎨
⎪⎪⎩

(u − 1
u
)

√
ρ

D[
√
ρ(V−1δV)k]

⎫⎪⎪
⎬
⎪⎪⎭

T (z, y)dz. (5.113)
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5.6.3 Computation of the Poisson bracket

Following the idea presented in subsection 5.6.1, for the Poisson bracket of the V̂0 we get

1

V̂−1
0 (y1)

2

V̂−1
0 (y2){

1

V̂0(y1),
2

V̂0(y2)} =
12

Ag
*
g
*
(y1, y2)+ (5.114)

+ ∫

y1

0
∫

y2

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
1
u − 1

1
u
)

√
ρ

⎤
⎥
⎥
⎥
⎥
⎥
⎦z1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
2
u − 1

2
u
)

√
ρ

⎤
⎥
⎥
⎥
⎥
⎥
⎦z2

1

T (y1, z1)
2

T (y2, z2)×

×
1

Dz1

2

Dz2[
√
ρ(z1)ρ(z2)

12

Akk(z1, z2)]
1

T (z1, y1)
2

T (z2, y2)dz2dz1+

+ ∫

y1

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
1
u − 1

1
u
)

√
ρ

⎤
⎥
⎥
⎥
⎥
⎥
⎦z1

1

T (y1, z1)
1

Dz1[
√
ρ(z1)

12

Akg
*
(z1, y2)]

1

T (z1, y1)dz1+

+ ∫

y2

0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
2
u − 1

2
u
)

√
ρ

⎤
⎥
⎥
⎥
⎥
⎥
⎦z2

2

T (y2, z2)
2

Dz2[
√
ρ(z2)

12

Ag
*
k(y1, z2)]

2

T (z2, y2)dz2,

where it is understood that
i

V̂0,
i
u,

i

T depend on wi, xi, i ∈ {1,2}, and that
i

V̂0,
i

T lie in the
i-th copy of the tensor product. In the last to terms we may use (5.21),

1

D [
√
ρ(z1)

12

Akk(z1, z2)] =
δ(z1 − z2)

2κ
√
ρ

12

Ωk,
2

D [
√
ρ(z2)

12

Akk(z1, z2)] = −
δ(z1 − z2)

2κ
√
ρ

12

Ωk, (5.115)

to solve those parts of the integrals, which contain Akk. The term in the second and third
line requires more work to be done. Let us give the integrand without the transport
matrices T a name

K =
(

1
u − 1

1
u
) (

2
u − 1

2
u
)

√
ρ1ρ2

1

D
2

D(
√
ρ1ρ2Akk).

First we can again use (5.115). This gives

K = −
(

1
u − 1

1
u
) (

2
u − 1

2
u
)

√
ρ1ρ2

1

D (
δ(z1 − z2)

2κ
Ωk) =

= −
1

D
⎛
⎜
⎝

(
1
u − 1

1
u
) (

2
u − 1

2
u
)

√
ρ1ρ2

δ(z1 − z2)

2κ
Ωk

⎞
⎟
⎠
+

1

∂
⎛
⎜
⎝

1
u − 1

1
u

√
ρ1

⎞
⎟
⎠

(
2
u − 1

2
u
)

√
ρ2

δ(z1 − z2)

2κ
Ωk =

= −(
1

D +
1

adP̂ )(...) +
1

∂
⎛
⎜
⎝

1
u − 1

1
u

√
ρ1

⎞
⎟
⎠

(
2
u − 1

2
u
)

√
ρ2

δ(z1 − z2)

2κ
Ωk +

(
1
u − 1

1
u
) (

2
u − 1

2
u
)

√
ρ1ρ2

δ(z1 − z2)

2κ

1

adP̂ Ωk.

By (5.111), if the first term in the last line is again sandwiched with the transport
matrices, it is a total derivative of a term containing a δ(z1 − z2) by construction and the
two integrals can be solved — one, because it is a total derivative, the other one using the
δ(z1−z2). The rest of the last line is not a total derivative. Two things that are obviously
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missing for it to also be a total derivative, are an adQ Ωk-term and a ∂z1δ(z1 − z2)-term.
Remembering the invariance of Ωk under the adjoint action of H, we note that both terms
could be “created” in a form symmetric in 1 and 2 because

δ(z1 − z2)(
1

adQ +
2

adQ)Ωk = 0 and (
1

∂ +
2

∂)δ(z1 − z2) = 0. . (5.116)

But because of the antisymmetry of the Poisson bracket, and thus Akk, K is antisymmetric
w.r.t. 1 and 2. Is it possible to express the antisymmetric K as a product of a scalar
antisymmetric term and a symmetric term containing Ωk? Then we might try to use the
relations (5.116) to create the missing terms9. First we try an ansatz of the form

δ(z1 − z2)[

1

P̂ −

2

P̂ ,Ωk] = δ(z1 − z2)a(z1, z2)[

1

P̂ +

2

P̂ ,Ωk] with a an antisymmetric scalar.
(5.117)

Note again the intention of the ansatz: Like K, the left hand side is antisymmetric with
respect to the exchange of the two factors of the tensor product and symmetric with
respect to z1 and z2. On the right hand side, symmetry and antisymmetry is reversed.
But (5.117) does not have a solution for a. By using only the vector space structure of k,
we will not succeed. So let’s try to use the algebra structure to find an additional term,
which could be used in the ansatz (5.117). When z1 = z2 we have

[
1

P ,Ωk] = ∑
i,j∈k

P i[
1
ei,

1
ej]

2

ej = ∑
i,j∈k
k∈h

P ifijk
1

ek
2

ej = − ∑
i,j∈k
k∈h

P ifikj
1

ek
2

ej = − ∑
i,j∈k
k∈h

P i[
2
ei,

2
ek]

1

ek = −[
2

P ,Ωh],

Thus

−

2
u
1
u
[

1

P̂ ,Ωk] = [

2

P̂ ,Ωh], −

1
u
2
u
[

2

P̂ ,Ωk] = [

1

P̂ ,Ωh].

We enhance the ansatz (5.117)

δ(z1 − z2)[

1

P̂ −

2

P̂ ,Ωk] =δ(z1 − z2)a(z1, z2)[

1

P̂ +

2

P̂ ,Ωk] + δ(z1 − z2)b(z1, z2)[

1

P̂ +

2

P̂ ,Ωh] =

=δ(z1 − z2)a(z1, z2)[

1

P̂ +

2

P̂ ,Ωk] − δ(z1 − z2)b(z1, z2)

⎡
⎢
⎢
⎢
⎢
⎣

2
u
1
u

1

P̂ +

1
u
2
u

2

P̂ ,Ωk

⎤
⎥
⎥
⎥
⎥
⎦

,

(5.118)

with a, b antisymmetric scalars. This time a solution exists. For z1 = z2

⇒ 1 = a − b

2
u
1
u
, − 1 = a − b

1
u
2
u
,

b =
2

1
u
2
u
−

2
u
1
u

, a =

1
u
2
u
+

2
u
1
u

1
u
2
u
−

2
u
1
u

.

9Of course this still would not guarantee that we can integrate, but these terms are surely necessary.
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Although we have set z1 = z2, this definition of a, b may also be used for z1 ≠ z2 by letting
1
u depend on z1 and

2
u on z2. Substitution according to (5.118) yields

12

K(z1, z2;w1,w2) =
1

2
(

12

K(z1, z2;w1,w2) −
21

K(z2, z1;w2,w1)) =

=
−

1

D −
1

adP̂ +
2

D +
2

adP̂
2

⎛
⎜
⎝

(
1
u − 1

1
u
) (

2
u − 1

2
u
)

√
ρ1ρ2

δ(z1 − z2)

2κ
Ωk

⎞
⎟
⎠
+

+
1

∂
⎛
⎜
⎝

1
u − 1

1
u

√
ρ1

⎞
⎟
⎠

(
2
u − 1

2
u
)

√
ρ2

δ(z1 − z2)

4κ
Ωk −

2

∂
⎛
⎜
⎝

2
u − 1

2
u

√
ρ2

⎞
⎟
⎠

(
1
u − 1

1
u
)

√
ρ1

δ(z1 − z2)

4κ
Ωk+

+
(

1
u − 1

1
u
) (

2
u − 1

2
u
)

√
ρ1ρ2 (

1
u
2
u
−

2
u
1
u
)

δ(z1 − z2)

4κ

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

1
u
2
u
+

2
u
1
u

⎞

⎠
[

1

P̂ +

2

P̂ ,Ωk] + 2[
1

P̂ +

2

P̂ ,Ωh]

⎤
⎥
⎥
⎥
⎥
⎦

.

What we want, in order to be able to perform the integral ∫ ∫ TTKT
−1T −1, is that the

last two lines be of the form

(
1

∂h +
2

∂h + h
1

adP̂ + h
2

adP̂ )
δ(z1 − z2)

4κ
Ωk+

+ (
1

∂f +
2

∂f + f
1

adP̂ + f
2

adP̂ )
δ(z1 − z2)

4κ
Ωh.

Then, according to (5.116), we may simply add the terms (
1

∂ +
2

∂)δ(z1 −z2) and
1

adQ +
2

adQ
and cast them into the form

(
1

D +
1

adP̂ +
2

D +
2

adP̂ ) (
δ(z1 − z2)

4κ
[hΩk + fΩh]) . (5.119)

Since K does not contain a term of the form δ(z1 − z2)(
1

∂ +
2

∂)fΩh, we need to have

δ(z1 − z2)(
1

∂ +
2

∂)f = 0.

For z1 = z2 and using the explicit form of u we get

f =
(

1
u

2

− 1)(
2
u

2

− 1)

ρ(
1
u

2

−
2
u

2

)

u2 − 1 =
w + ρ−

w + ρ+
− 1 =

−2ρ

w + ρ+

f =

4ρ2

(w1+ρ+)(w2+ρ+)

ρ(w1+ρ−
w1+ρ+ −

w2+ρ−
w2+ρ+ )

=

4ρ2

(w1+ρ+)(w2+ρ+)

ρ 2ρ(w1−w2)
(w1+ρ+)(w2+ρ+)

=
2

w1 −w2

.

The factor f is indeed independent of z1 and z2 and thus the term containing Ωh has the
right form to be integrated twice. The last task is now to verify whether the derivative
of the scalar factor of the Ωk-term matches the given term, concretely if for z1 = z2

∂
⎛
⎜
⎝

1
u − 1

1
u

√
ρ1

⎞
⎟
⎠

(
2
u − 1

2
u
)

√
ρ2

− ∂
⎛
⎜
⎝

2
u − 1

2
u

√
ρ2

⎞
⎟
⎠

(
1
u − 1

1
u
)

√
ρ1

?
=

2

w1 −w2

⎛

⎝
(

1

∂ +
2

∂)
⎛

⎝

1
u
2
u
+

2
u
1
u

⎞

⎠

⎞

⎠

RRRRRRRRRRRz1=z2

. (5.120)
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By (5.108) we have

∂ (
u − 1

u
√
ρ

) =
∂u
√
ρ
−

1
√
ρ
∂

1

u
− 1

2ρ
−3/2∂ρ (u − 1

u
) =

∂u
√
ρ

and so the left hand side of (5.120) is

⎛
⎜
⎝

∂
1
u

1
u − 1

1
u

−
∂

2
u

2
u − 1

2
u

⎞
⎟
⎠

2

w1 −w2

⎛

⎝

1
u
2
u
−

2
u
1
u

⎞

⎠
.

Using

⎛

⎝
(

1

∂ +
2

∂)
⎛

⎝

1
u
2
u
+

2
u
1
u

⎞

⎠

⎞

⎠

RRRRRRRRRRRz1=z2

= ∂
1
u
⎛

⎝

1
2
u
−

2
u

1
u

2

⎞

⎠
+ ∂

2
u
⎛

⎝

1
1
u
−

1
u

2
u

2

⎞

⎠
=
⎛

⎝

1
u
2
u
−

2
u
1
u

⎞

⎠

⎛

⎝

∂
1
u
1
u
−
∂

2
u
2
u

⎞

⎠
,

the right hand side of (5.120) is

2

w1 −w2

⎛

⎝

1
u
2
u
−

2
u
1
u

⎞

⎠

⎛

⎝

∂
1
u
1
u
−
∂

2
u
2
u

⎞

⎠
.

But

⎛
⎜
⎝

∂
1
u

1
u − 1

1
u

−
∂

2
u

2
u − 1

2
u

⎞
⎟
⎠
=

1

2
∂ln(

1
u

2

− 1) −
1

2
∂ln(

2
u

2

− 1) =
1

2
∂ln(

1
u

2

(1 −
1
u
−2

)) −
1

2
∂ln(

2
u

2

(1 −
2
u
−2

)) =

=
1

2
∂ln(

1
u

2

) +
1

2
∂ln(−

2ρ

w1 + ρ−
) −

1

2
∂ln(

2
u

2

) −
1

2
∂ln(−

2ρ

w2 + ρ−
) =

=
1

2
∂ln(

1
u

2

) −
1

2
∂ln(

2
u

2

) =
∂

1
u
1
u
−
∂

2
u
2
u

and hence the left hand side of (5.120) is equal to its right hand side. Therefore

K =
(−

1

D −
1

adP̂ +
2

D +
2

adP̂ )

w1 −w2

⎛

⎝

⎛

⎝

1
u
2
u
−

2
u
1
u

⎞

⎠

δ(z1 − z2)

2κ
Ωk

⎞

⎠
+

+
(

1

D +
1

adP̂ +
2

D +
2

adP̂ )

w1 −w2

⎛

⎝

⎛

⎝

1
u
2
u
+

2
u
1
u

⎞

⎠

δ(z1 − z2)

2κ
Ωk

⎞

⎠
+

+
(

1

D +
1

adP̂ +
2

D +
2

adP̂ )

w1 −w2

δ(z1 − z2)

κ
Ωh =

=κ−1

1

D +
1

adP̂
w1 −w2

⎡
⎢
⎢
⎢
⎢
⎣

δ(z1 − z2)
⎛

⎝

2
u
1
u

Ωk +Ωh

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ κ−1 (
2

D +
2

adP̂ )

w1 −w2

⎡
⎢
⎢
⎢
⎢
⎣

δ(z1 − z2)
⎛

⎝

1
u
2
u

Ωk +Ωh

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.
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Eventually, the integrand of the second term in (5.114) may also be written entirely as a
sum of total derivatives of terms containing δ-distributions

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
1
u − 1

1
u
)

√
ρ

⎤
⎥
⎥
⎥
⎥
⎥
⎦z1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(
2
u − 1

2
u
)

√
ρ

⎤
⎥
⎥
⎥
⎥
⎥
⎦z2

1

T (y1, z1)
2

T (y2, z2)×

×
1

Dz1

2

Dz2[
√
ρ(z1)ρ(z2)

12

Akk(z1, z2)]
1

T (z1, y1)
2

T (z2, y2) = (5.121)

= κ−1 1

w1 −w2

⎧⎪⎪
⎨
⎪⎪⎩

1

∂z1

⎡
⎢
⎢
⎢
⎢
⎣

1

T (y1, z1)
2

T (y2, z2)δ(z1 − z2)
⎛

⎝

2
u
1
u

Ωk +Ωh

⎞

⎠

1

T (z1, y1)
2

T (z2, y2)

⎤
⎥
⎥
⎥
⎥
⎦

+

+
2

∂z2

⎡
⎢
⎢
⎢
⎢
⎣

1

T (y1, z1)
2

T (y2, z2)δ(z1 − z2)
⎛

⎝

1
u
2
u

Ωk +Ωh

⎞

⎠

1

T (z1, y1)
2

T (z2, y2)

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

.

This second term is of the form

∫

y1

0
∫

y2

0
{∂z1[a(z1, z2)δ(z1 − z2)] + ∂z2[b(z1, z2)δ(z1 − z2)]}dz2dz1, (5.122)

where a and b are g⊗ g-valued functions depending on z1 and z2. Noting that

a(z1, z2)δ(z1 − z2) = a(z1, z1)δ(z1 − z2) and ∂z1δ(z1 − z2) = −∂z2δ(z1 − z2),

we have
∂z2[b(z1, z2)δ(z1 − z2)] = −b(z1, z1)∂z1δ(z1 − z2)

and the integrand may be written as

∂z1[aδ(z1 − z2)] + ∂z2[bδ(z1 − z2)] = ∂z1{[a − b]δ(z1 − z2)} + ∂z1b(z1, z1)δ(z1 − z2). (5.123)

The integral (5.122) becomes

∫

y1

0
∫

y2

0
{∂z1b(z1, z1)δ(z1 − z2) + ∂z1[(a − b)δ(z1 − z2)]}dz2dz1 =

=∫

min(y1,y2)

0
∂z∂zb(z, z)dz + ∫

y2

0
{(a − b)(y1)δ(z2 − y1) − (a − b)(0)δ(z2)}dz2.

Since u(0,w) = ±1 for all w, a(0) = b(0), the last term vanishes and we get

b(min(y1, y2)) − b(0) +Θ(0, y1, y2)(a − b)(y1) = {
a(y1) − b(0) if y1 < y2,
b(y2) − b(0) if y1 > y2,

(5.124)

where

Θ(0, y1, y2) = {
1 if 0 < y1 < y2,
0 otherwise.

(5.125)
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Finally, plugging everything into (5.114) we get

1

V̂−1
0 (y1,w1)

2

V̂−1
0 (y2,w2){

1

V̂0(y1,w1),
2

V̂0(y2,w2)} = Ag
*
g
*
(y1, y2)−

−

(
2
u(y1) −

1
2
u(y1)

)

2κ
1
u(y1)ρ(y1)

Θ(0, y1, y2)
2

T (y2, y1)Ωk

2

T (y1, y2)+

+

(
1
u(y2) −

1
1
u(y2)

)

2κ
2
u(y2)ρ(y2)

Θ(0, y2, y1)
1

T (y1, y2)Ωk

1

T (y2, y1)+

+ κ−1
2

T (y2, y1)

⎛
⎜
⎜
⎜
⎝

2
u(y1)
1
u(y1)

Ωk +Ωh

w1 −w2

⎞
⎟
⎟
⎟
⎠

Θ(0, y1, y2)
2

T (y1, y2)−

+ κ−1
1

T (y1, y2)

⎛
⎜
⎜
⎜
⎝

1
u(y2)
2
u(y2)

Ωk +Ωh

w1 −w2

⎞
⎟
⎟
⎟
⎠

Θ(0, y2, y1)
1

T (y2, y1)+

∓ κ−1
1

T (y1,0)
2

T (y2,0) (
Ωk +Ωh

w1 −w2

)
1

T (0, y1)
2

T (0, y2)+

+ ∫

y2

0
dz2

1

T
2

T (0, z2)
⎛
⎜
⎝

(
2
u − 1

2
u
)

√
ρ2

2

D(
√
ρ2Ahk(y1, z2))

⎞
⎟
⎠

2

T (z2, y2)+

+ ∫

y1

0
dz1

1

T (0, z1)
2

T
⎛
⎜
⎝

(
1
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1
u
)

√
ρ1

1

D(
√
ρ1Akh(z1, y2))

⎞
⎟
⎠

1

T (z1, y1)

⎫⎪⎪
⎬
⎪⎪⎭

,

(5.126)

where the sign in the sixth line is − if w1 and w2 lie on the same sheet of the Riemann
surface and + otherwise.

5.7 The Poisson algebra of the monodromy matrix

M(w)

From section 5.5.4 we remember that M(w) can be related to V̂0 on N by

M(w) = V̂0(x
−
0 , x

+ = −w,w)V̂T0 (x−0 , x
+ = −w,w), (5.127)

where x−0 is the x−-coordinate on N . For the Poisson bracket, we get

{
1

M(v),
2

M(w)} ={

1

V̂0(v),
2

V̂0(w)}

1

V̂T0 (v)
2

V̂T0 (w) +

1

V̂0(v){
1

V̂T0 (v),
2

V̂0(w)}

2

V̂T0 (w)+

+

2

V̂0(w){

1

V̂0(v),
2

V̂T0 (w)}

1

V̂T0 (w) +

1

V̂0(v)
2

V̂0(w){

1

V̂T0 (v),
2

V̂T0 (w)}.

Since k + kT = 2k for k ∈ k and h + hT = 0 for h ∈ h, we may write

{
1

M(v),
2

M(w)} = 4
1

V̂0(v)
2

V̂0(w)
12

Ckk

1

V̂T0 (v)
2

V̂T0 (w),
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with
12

C =

1

V̂−1
0

2

V̂−1
0 {

1

V̂0,
2

V̂0},
12

Ckk =

1

V̂−1
0

2

V̂−1
0 {

1

V̂0,
2

V̂0}∣
1⊗2

k⊗k .

The points y1 and y2, where we have to evaluate Ckk, are

y1 = (x− = x−0 , x
+ = −v) y2 = (x− = x−0 , x

+ = −w)

Hence

1
u(y1) =

√
v − x−0

√
v − v

= ∞
1
u(y2) =

√
v − x−0

√
v −w

2
u(y2) =

√
w − x−0

√
w −w

= ∞
2
u(y1) =

√
w − x−0

√
w − v

and so

12

Ckk =[

1

V̂−1
0 (y1, v)

2

V̂−1
0 (y2,w){

1

V̂0(y1, v),
2

V̂0(y2,w)}] ∣

1⊗2

k⊗k
=

=[Ahh(y1, y2) − κ
−1

1

T (y1,0)
2

T (y2,0)
Ωg

v −w

1

T (0, y1)
2

T (0, y2)+

+ ∫

y2

0
dz2

2

T (y2, z2)
⎛
⎜
⎝

(
2
u − 1

2
u
)

√
ρ2

2

D(
√
ρ2Ahk(y1, z2))

⎞
⎟
⎠

2

T (z2, y2)+

+ ∫

y1

0
dz1

1

T (y1, z1)
⎛
⎜
⎝

(
1
u − 1

1
u
)

√
ρ1

1

D(
√
ρ1Akh(z1, y2))

⎞
⎟
⎠

1

T (z1, y1)]∣

1⊗2

k⊗k
=

=[−κ−1
1

T (y1,0)
2

T (y2,0)
Ωg

v −w

1

T (0, y1)
2

T (0, y2)] ∣

1⊗2

k⊗k
=

=[−κ−1
1

T (y1,0)
2

T (y2,0)
1

V−1(0)
2

V−1(0)
Ωg

v −w

1

V(0)
2

V(0)
1

T (0, y1)
2

T (0, y2)] ∣

1⊗2

k⊗k
=

=

⎡
⎢
⎢
⎢
⎢
⎣

−κ−1
1

V̂0

−1

(y1)

2

V̂0

−1

(y2)
Ωg

v −w
V̂0(y1)V̂0(y2)

⎤
⎥
⎥
⎥
⎥
⎦

∣

1⊗2

k⊗k
=

= −
1

4κ
(

1

V̂−1
0

2

V̂−1
0

Ωg

v −w

1

V̂0

2

V̂0 −

1

V̂−1
0

2

V̂T0
Ωη

g

v −w

1

V̂0

2

(V̂−1
0 )T−

−

1

V̂T0

2

V̂−1
0

Ωη
g

v −w

1

(V̂−1
0 )T

2

V̂0 +

1

V̂T0

2

V̂T0
Ωg

v −w

1

(V̂−1
0 )T

2

(V̂−1
0 )T).

Finally, we get the remarkably simple result

κ{
1

M(v),
2

M(w)} = −
Ωg

v −w

1

M(v)
2

M(w) −
1

M(v)
2

M(w)
Ωg

v −w
+

+
1

M(v)
Ωη

g

v −w

2

M(w) +
2

M(w)
Ωη

g

v −w

1

M(v),

(5.128)

for κ = −1, in accordance with [24]. Note that in contrast to the derivation of this algebra
in (5.135), we did not have to extend N to infinity. It is a local construction as opposed
to the calculation in [24].
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Figure 5.2: The two choices for the a-dependent initial data surfaces for two values a1,a2

5.8 The Yangian algebra of conserved charges

5.8.1 Extending N to infinity

Following [24] we wish to extend our initial data surface,

N = {(x−0 , x
+
0 + s) ∣ s ∈ [0, a]}, x−0 = x

+
0 , (5.129)

“to infinity” and evaluate the algebra of the V̂0(y) with the point y at infinity ρ = ∞.
Two substantially different choices of an infinitely extended surface arise. First we could
simply take the limit a→∞ and keep x0

0 =
1
2(x

+
0 + x

−
0) finite (for example 0). This would

correspond to a light ray starting on the x0 axis (at 0) and extending towards null infinity.
Another choice would be to keep the time coordinate of the future boundary of the surface
finite, i.e. we make x0

0 a-dependent: x00 = −a. Then the line starts at (x1 = 0, x0 = −a)
and ends at (x1 = a, x0 = 0). In the limit a→∞ this line will thus end at spatial infinity.
These two choices Ñ∞ and N∞ are illustrated in 5.2 for two values of a.
As explained in [24] the quantity

V̂1(ρ̃, ρ,w) ∶= V(ρ̃,0)V̂−1(ρ̃,0,w)V̂(ρ̃, ρ,w) with w ∈W+ (5.130)

has time-dependence (x0-dependence)

∂tV̂1(x,w) =V(x0,0)Jt(x
0,0)V̂−1(x0,0,w)V̂(x,w)−

− V(x0,0)Ĵt(x
0,0,w)V̂−1(x0,0,w)V̂(x,w)+

+ V(x0,0)V̂−1(x0,0,w)V̂(x,w)Ĵt(x,w) =

=V(x0,0)V̂−1(x0,0,w)V̂(x,w)Ĵt(x,w),

where in the last equality we used that

lim
ρ→0

γ(x,w) = 0
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for w ∈W+ and so
lim
ρ→0

Ĵ(x,w) = J(x0,0). (5.131)

For solutions constant at spatial infinity, i.e.

lim
ρ→∞

Q(x) = 0 = lim
ρ→∞

P (x) = lim
ρ→∞

J(x) = lim
ρ→∞

Ĵ(x,w),

the quantities
Tu/d(w) ∶= lim

ρ→∞
V̂1(x,w), (5.132)

already encountered in section 5.5.3, are independent of x0 (time independent). Note
that if ρ = x1 goes to infinity then the branch cut blows up and covers the whole real axis.
Therefore, γ and consequently limx1→∞ V̂1(x,w) become discontinuous along the entire
real axis. The index u or d in (5.132) refers to w in W+u or W+d.

It turned out that these conserved quantities Tu/d(w) form a twisted Yangian algebra
with respect to the canonical Poisson structure and generate the action of the Geroch
group [24][23].

We want to make an analogous construction using our Poisson structure on a light
ray. We define a time-dependent family N(t) by: N(0) = N and N(t) is N , translated a
distance t in the x0-direction. We denote by xi(t) the point where N(t) meets the axis
and by xf(t) the endpoint of N(t). On N(t) we define

V̂0(xf(t),w) = V(xi(t))V̂
−1(xi(t),w)V̂(xf(t),w) =

= V(xi(t))Pe
∫
xf (t)
xi(t)

Ĵ+(z,w)dz+
= V(xi(t))T (xi(t), xf(t),w).

Analogously as before, V̂0(xf(t),w) has time dependence

∂tV̂0(x,w) = V(xi(t))V̂
−1(xi(t),w)V̂(xf(t),w)Ĵt(xf ,w).

If we extend N and thereby N(t) to infinity according to N∞(a) and not Ñ∞(a), then
the time dependence of V̂0 will be governed by Ĵt at spatial infinity, which we assume to
vanish, as above, and not by Ĵt at null infinity. For V̂0 on N∞(a), in the limit of a → ∞

we get the conserved quantities corresponding to V̂1 from [24] and therefore the Poisson
bracket of the V̂0 on N∞(a) in the limit a→∞ should form the same Yangian algebra.

5.8.2 Taking the limit

We want to extend N to infinity and evaluate the bracket (5.126) of the V̂(yi,wi), where
y1 and y2 are (ρ̃ = 0, ρ = ∞). We set yi = (ρ = a, ρ̃ = 0) and take the limit a→∞. Although
one might expect that when taking these limits the result depends on whether we first
let ρ(y1) → ∞ and then ρ(y2) → ∞ or vice versa, this is not the case. The result is the
same in any case.

We note that

lim
a→∞

u(yi(a)) = lim
a→∞

√
w − a/2

√
w + a/2

=
√
−1. (5.133)
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Assuming that limρ(y)→∞Agg(x, y) = 0, the first line of (5.126) vanishes.
By (5.133) and as ρ(y(a)) → ∞ the factors in the second and third line in (5.126) go to
0.

In the fourth and sixth line we have

lim
a→∞

j
u(yi(a))
k
u(yi(a))

= lim
a→∞

⎛

⎝

√
wj − a/2

√
wj + a/2

√
wk + a/2

√
wk − a/2

⎞

⎠
=
√
−1

1
√
−1

= ±1,

where the sign is + if both wk and wj are in W+u or in W+d and − if not.
In analogy to [24] we define

Tu/d(w) ∶= lim
a→∞
V̂0(xf(a),w), (5.134)

where the u or d index means w ∈W+u/d.
Then the Poisson bracket of Ts1(w1) and Ts2(w2), where si is u or d, is

{
1

T s1(w1),
2

T s2(w2)} =

=κ−1
1

V
2

V

⎧⎪⎪
⎨
⎪⎪⎩

1

T (0,∞)
2

T (0,∞)(
π[s1s2]Ωk +Ωh

w1 −w2

) − (
Ωk +Ωh

w1 −w2

)
1

T (0,∞)
2

T (0,∞)

⎫⎪⎪
⎬
⎪⎪⎭

=

=κ−1Ts1(w1)Ts2(w2)
π[s1s2]Ωk +Ωh

w1 −w2

− κ−1
1

V
2

V
1

V−1
2

V−1 Ωg

w1 −w2

1

V
2

V
1

T (0,∞)
2

T (0,∞) =

=κ−1Ts1(w1)Ts2(w2)
π[s1s2]Ωk +Ωh

w1 −w2

− κ−1 Ωg

w1 −w2

Ts1(w1)Ts2(w2).

Here, π[s1s2] is 1 if both s1 and s2 are u or d, and −1 if they are opposite.
In accordance with [24] for κ = −1, we have

κ{
1

T u/d(w1),
2

T u/d(w2)} = [
1

T u/d(w1)
2

T u/d(w2),
Ωg

w1 −w2

]

κ{
1

T u/d(w1),
2

T d/u(w2)} =
1

T u/d(w1)
2

T d/u(w2)
Ωη

g

w1 −w2

−
Ωg

w1 −w2

1

T u/d(w1)
2

T d/u(w2),

(5.135)

where Ωη
g ∶= −Ωk +Ωh.

5.8.3 Bracket of the Tu/d and M(w) and the Lie-Poisson action
of the Geroch group

In section 5.7 we mentioned that the calculation of {M(v),M(w)} did not require an
extension of N to infinity, while the computation of {Ts1(v), Ts2(w)} did require this
extension. In this section we are interested in {Tu/d(v),M(w)}, which with our definition
(5.55) ofM(w) is not as straightforward as in [24] because we didn’t defineM(w) directly
via the Tu/d(w). In order to compute a Poisson bracket of Tu/d(w) with anything else we
will have to extend N to infinity by definition (5.134). Remembering the relation (5.55)
of M(w) to the field V̂0, we note that there is no obstacle in taking V̂0 on N∞(a) and
the limit a→∞. In this limit the coordinate x− on N∞(a) will also simply go to (minus)
infinity.
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Let us again be more precise. We want to calculate

{
1

T u/d(v),
2

M(w)} ={
1

T u/d(v),
2

V̂0(x
−, x+ = −w)

2

V̂T0 (x−, x+ = −w)} =

= lim
a→∞

{

1

V̂0(y1(a), v),
2

V̂0(y2(a),w)

2

V̂T0 (y2(a),w)},

with
y1(a) = (x− = −a, x+ = a) y2(a) = (x− = −a, x+ = −w).

In the limit a→∞ this means

1
u(y1) =

√
v − a

√
v + a

→
√
−1

1
u(y2) =

√
v − a

√
v −w

→∞

2
u(y2) =

√
w − a

√
w −w

= ∞
2
u(y1) =

√
w − a

√
w − a

→
√
−1 (5.136)

ρ(y1) →∞ ρ(y2) → ∞

and of course Θ(0, y1, y2) → 0. Note also that
2
u(y2) = ∞ already for finite a if we

understand the limit ρ+(y2) → −w as already taken.
Similar to the previous section we find

{

1

V̂0,
2

V̂0

2

V̂T0 } ={

1

V̂0,
2

V̂0}

2

V̂T0 +

2

V̂0{

1

V̂0,
2

V̂T0 } =

=

1

V̂0

2

V̂0

12

Cgg

2

V̂T0 +

1

V̂0

2

V̂0

12T

C gg

2

V̂T0 =

=2
1

V̂0

2

V̂0

12

Cgk

2

V̂T0 .

We take a look at (5.126) and think about taking the limit. The first line will vanish
because of the factors of 1√

ρ in Agg. The second line will vanish because of (5.136).

The third line vanishes already for finite a because
2
u(y2) = ∞. The fourth line will

vanish because Θ(0, y1, y2) → 0. In the sixth line
1
u(y2)
2
u(y2)

= 0 again already at finite a.

The Ωh factor will not survive the projection ∣
2

k
. In the seventh line we again assume

that
2

D(
√
ρ2Ahk(y1, z2)) contains a factor of δ(y1−z2)√

ρ1
. Then evaluation of the integrand at

z2 = y1 and the limit a → ∞ will kill the term because ρi → ∞ and
2
u(y1) →

√
−1. The

eight line already vanishes when projecting on k. So again we are left with the fifth line
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only.

{
1

T ±(v),
2

M(w)} = lim
a→∞

{

1

V̂0,
2

V̂0

2

V̂T0 } = 2 lim
a→∞

1

V̂0

2

V̂0

12

Cgk

2

V̂T0 =

= − lim
a→∞

κ−12
1

V̂0

2

V̂0(
1

T (y1,0)
2

T (y2,0)
Ωg

v −w

1

T (y1)
2

T (y2))∣
2

k

2

V̂T0 =

= − lim
a→∞

κ−12
1

V̂0

2

V̂0(
1

T (y1,0)
2

T (y2,0)
1

V−1(0)
2

V−1(0)
Ωg

v −w

1

V(0)
2

V(0)
1

T (y1)
2

T (y2))∣
2

k

2

V̂T0 =

= − lim
a→∞

κ−12
1

V̂0

2

V̂0(

1

V̂−1
0

2

V̂−1
0

Ωg

v −w

1

V̂0

2

V̂0)∣
2

k

2

V̂T0 =

= − κ−1 Ωg

v −w

2

M(w)
1

T u/d(v) + κ
−1

2

M(w)
Ωη

g

v −w

1

T u/d(v) =

= − κ−1 (
Ωg

v −w

2

M(w) −
2

M(w)
Ωη

g

v −w
)

1

T u/d(v) (5.137)

Again for κ = −1 in accordance with [24].
One may easily construct the Lie Poisson action ifM(w) is analytic on the entire real

line. Then one can extend it to a strip σ on W+, which contains the real line. Denote by
δg(w) a g-valued function holomorphic in σ and define on M(w) the action

δM(w) = ∫
∂σ
Tr [T −1(v)δg(v){T (v),M(w)}dv] , (5.138)

where one has to substitute Tu/d for T when integrating over the part of ∂σ, which lies
in W+u/d. Due to the Poisson bracket (5.137), (5.138) becomes

δM(w) = δg(w)M(w) −M(w)δg(w). (5.139)

Thus, δM defined by (5.138) corresponds exactly to infinitesimal transformations of the
Geroch algebra (4.110). (5.138) has exactly the form (3.40) of a Lie Poisson action, where
the trace and integral play the role of the inner product between the loop algebra and its
dual [2] and Tu/d are the conserved, non-Abelian Hamiltonians.
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Appendix A

Tetrad formalism

Let (M,g) be an n-dimensional Lorentzian manifold. At any point x we can choose
a basis {Ea, a = 1, ..., n} of the tangent space TxM such that gµν = ηabEµ

aEν
b with η =

diag(−1,1, ...,1). Since the metric varies differentiably from point to point, we get a
set of n differentiable vector fields B = {Ea(x), a = 1, ..., n} (we will generally omit the
x-dependence) called a tetrad.

The covariant derivative ∇ maps TxM to T
(1,1)
x M so we can expand

∇µE
ν
a = ω

b
µaE

ν
b , (A.1)

ω being an (n × n)-matrix of 1-forms. Introduce the basis B∗ = {ea, a = 1, ..., n}, the
cotetrad, of T ∗M dual to B with Ea

µe
µ
b = δ

a
b . We have

0 = ∇µδ
ν
σ = ∇µ(E

ν
ae

a
σ) = ∇µE

ν
ae

a
σ +E

ν
a∇µe

a
σ = ω

b
µaE

ν
b e

a
σ +E

ν
b∇µe

b
σ

⇒ ∇µe
b
σ = −ω

b
µae

a
σ. (A.2)

Similarly for forms and dropping the spacetime indices,

dea = eb ∧ ωab. (A.3)

Furthermore we get an easy formula for the Riemann tensor:

(ddEσ
a )µν = [∇µ,∇ν]E

σ
a = R

σ
ρµνE

ρ
a = R

b
aµνE

σ
b

ddEa = d(ω
b
aEb) = dω

b
aEb − ω

b
a ∧ ω

c
bEc = (dωba + ω

b
c ∧ ω

c
a)Eb

⇒ Rb
a = dω

b
a + ω

b
c ∧ ω

c
a. (A.4)

(A.3) can be used to read off the connection 1-forms ωab, but only modulo terms propor-
tional to eb (with respect to the indices used in (A.3)). In order to determine ωab uniquely
one must take into account that

∇(gνσ) = 0 = ∇(Eν
aE

σ
b η

ab) = ωcaE
ν
cE

σ
b η

ab +Eν
aω

c
bE

σ
c η

ab = (ωcb + ωbc)Eν
cE

σ
b

⇒ ωab = −ωba. (A.5)

(A.4) then allows to more or less rapidly compute the Riemann tensor, Ricci tensor and
Ricci scalar, e.g.

R = Eb ⌟ (Ea ⌟R
ab) = Eν

bE
µ
aR

ab
µν , (A.6)

where ⌟ denotes the dual pairing between a vector and a form “index”.
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Appendix B

Null coordiantes

Here we collect the definitions and conventions concerning light cone coordinates. We
adapt those used in [30] and [24]. Given a flat 2-dimensional manifold M with metric
gµν = ηµν = diag(−1,1)µν in coordinates (x0, x1) we define

x± ∶= x0 ± x1. (B.1)

The differentials and derivatives are

dx∓ = dx0 ∓ dx1, ∂∓ =
1
2(∂0 ∓ ∂1). (B.2)

We take x− to be “the first” coordinate because then the transformation is orientation
preserving:

x0 = 1
2(x

+ + x−) x1 = 1
2(x

+ − x−)

∂(x0, x1)

∂(x−, x+)
=

1

2
(

1 1
−1 1

)

ε̃µ̃ν̃ = (
∂(x0, x1)T

∂(x−, x+)
)

ρ

µ̃

ερσ (
∂(x0, x1)

∂(x−, x+)
)

σ

ν̃

=
1

4
((

1 −1
1 1

)(
0 1
−1 0

)(
1 1
−1 1

))
µ̃ν̃

=
1

2
(

0 1
−1 0

)
µ̃ν̃

µ, ν ∈ {0,1} µ̃, ν̃ ∈ {−,+} i.e. ε−+ =
1

2
.

For the metric in null coordinates we get

η̃µ̃ν̃ =
1

2
(

0 −1
−1 0

) , η±∓ = −
1

2
(B.3)

and

ε̃ ν̃
µ̃ = ε̃µ̃ρ̃η̃

ρ̃ν̃ = (
−1 0
0 1

)

ν̃

µ̃

, ε̃µ̃ν̃ = (
1 0
0 −1

)

µ̃

ν̃

. (B.4)
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Appendix C

An orthonormal basis for sl(2,R)

Sometimes it is convenient to have an orthonormal basis for sl(2,R). Such a basis is for
example

e1 =
1

√
2
(

1 0
0 −1

) , e2 =
1

√
2
(

0 1
1 0

) , e3 =
1

√
2
(

0 −i
i 0

) . (C.1)

e1 and e2 with real coefficients span k ⊂ sl(2,R) and e3 with purely imaginary coefficients
spans h ⊂ sl(2,R). The components of the metric on sl(2,R) given by the trace are, as
already indicated,

Tr(eαeβ) = δαβ, α, β ∈ {1,2,3}.

The structure coefficients are

[e1, e2] = (
0 1
−1 0

) = i2 (
0 −1
1 0

) =
√

2i e3,

[e3, e1] = (
0 i
i 0

) =
√

2i e2

[e2, e3] = (
i 0
0 −i

) =
√

2i e1,

or
[eα, eβ] = f

γ
αβ eγ =

√
2iεαβγ eγ.
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Appendix D

The path ordered exponential Pe

Since we make extensive use of the path ordered exponential of a Lie algebra-valued
one-form A as a solution of a differential equation of the form

d

dt
g(t) = g(t)A(t), g(0) = g0, (D.1)

for a Lie group-valued function g(t), in this section we show that it is well defined and
how Pe∫ A can be interpreted as the limit n → ∞ of n factors of the form exp(Ai) with
exp being the exponential map. We will not explain the basics of Lie groups and algebras.
They are covered very well in [29].

Let Mn
C the set of complex n × n matrices. On Mn

C we define the map

⟨⋅, ⋅⟩ ∶ Mn
C ×M

n
C → C,

(A,B) ↦ ⟨A,B⟩ ∶= Tr(A�B) = ∑
i,j

(A∗)ijBij.

Clearly

⟨A,B⟩ = ¯⟨B,A⟩, ⟨aA,B⟩ = a⟨A,B⟩, ⟨A +C,B⟩ = ⟨A,B⟩ + ⟨C,B⟩,

and since
⟨A,A⟩ = ∑

i,j

(A∗)ijAij = ∑
i,j

∣Aij ∣
2

is a sum of positive real numbers, it is always positive and only zero if all the Aij are zero.
Thus, ⟨⋅, ⋅⟩ satisfies all the properties of an inner product on Mn

C . The norm induced by
this inner product is

∥A∥ ∶=
√

⟨A,A⟩ =
√
Tr(A�A) =

√

∑
i,j

∣Aij ∣2.

In particular, the norm satisfies

∥AB∥2 = ∑
i,j

∣∑
k

AikBkj ∣
2 ≤ ∑

ij

∑
k

∣Aik∣
2
∑
l

∣Blj ∣
2 = ∥A∥2∥B∥2,

∥A +B∥ ≤ ∥A∥ + ∥B∥

(D.2)
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Note also that if ∥A∥ < ∞ then all the entries Aij of the matrix A are finite.
Now let G be a Lie-group of n×n matrices and let g be its Lie algebra. Since elements of
G and g are matrices they are a subset of Mn

C . Let A(t) be a g-valued, bounded function
on the interval [0,1]. In Mn

C , we construct the sequence of functions (ai(t))i∈N

a1(t) = 1 + ∫
t

0
A(t1)dt1

ai(t) = 1 + ∫
t

0
A(t1)dt1 + ... + ∫

t

0
dt1∫

t1

0
dt2...∫

ti−1

0
dti A(ti)...A(t1) ,

where the composition A(t2)A(t1) is simply the matrix multiplication. We define

A ∶= max
t∈[0,1]

∥A(t)∥.

Hence, for fixed t two integers i < j, using the properties (D.2) of the norm we have

∥ai(t) − aj(t)∥ ≤ A
i
∫

t

0
dt1∫

t1

0
dt2...∫

ti−1

0
dti + ... +A

j
∫

t

0
dt1∫

t1

0
dt2...∫

tj−1

0
dtj ≤

≤

j

∑
k=i

Ak

k!
≤ eA −

i−1

∑
k=0

Ak

k!
.

If i (and j) are sufficiently high, the right hand side is arbitrarily small. Hence the
sequence is a Cauchy sequence and converges. The limit of (ai)i∈N exists as a matrix in
Mn

C for every t ∈ [0,1] and thus the sequence of functions (ai(t))i∈N converges pointwise
to a function a(t) = limi→∞(ai(t)). To emphasize the resemblance of the limit a(t) to
the exponential function and the appearance of integrals of A(t), we give the limit the
symbol

Pe∫
t

0 A(t′)dt′ ,

the path-ordered exponential,

Pe∫
t

0 A(t′)dt′ ∶= lim
n→∞

ai =

= 1 + ∫

t

0
A(t1)dt1 + ... + ∫

t

0
dt1∫

t1

0
dt2...∫

ti−1

0
dti A(ti)...A(t1) + ... = (D.3)

= 1 + ∫

t

0
P[A(t1)]dt1 + ... +

1

i! ∫
t

0
dt1∫

t

0
dt2...∫

t

0
dti P[A(ti)...A(t1)] + ...,

where we have introduced the path ordering operator P. It orders the factors A(ti)...A(t1)
according to the values of their respective parameter. Factors with lower t-value are
moved to the left of factors with higher t-value. A path ordered product may always be
expressed as a sum of normal products where each factor is multiplied by appropriate
combinations of Θ-distributions. For example, for two factors we have

P[A(t1)B(t2)] = Θ(t2 − t1)A(t1)B(t2) +Θ(t1 − t2)B(t2)A(t1).

The fact, that this is undefined on the set t2 = t1 of measure zero does not matter under
the integral sign1.

1Actually, if A = B as it is in (D.3), even for t2 = t1 it may be assigned the value A2 = B2 unambigu-
ously.
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Every element of the sequence (ai(t))(i∈N) is by its definition via integrals differentiable.
We now prove that the sequence (a′i(t))(i∈N) convergences uniformly to a function a′(t).
Then according to a standard theorem on the differentiability of power series (see e.g.
[16], Proposition 3.3), a(t) is differentiable and its derivative is a′(t), the limit i → ∞

of a′i(t) — in other words the process of taking the limit and differentiation may be
exchanged.
We have

a′i(t) = ai(t)A(t).

Similar as before, for i < j,

∥a′i(t) − a
′
j(t)∥ ≤ ∥ai(t) − aj(t)∥∥A(t)∥ ≤ (eA −

i−1

∑
k=0

Ak

k!
)A.

Thus
lim
i→∞

∥a′i(t)∥ ≤ Ae
A,

the sequence (a′i(t))(i∈N) convergences pointwise to a function a′(t). Now let ε > 0. Then

∥a′(t) − a′n(t)∥ =∥
∞
∑
i=n+1

1

i! ∫
t

0
dt1...∫

t

0
dtiP[A(t1)...A(ti)]A(t)∥ ≤

≤
∞
∑
i=n+1

1

i!
∥∫

t

0
dt1...∫

t

0
dtiP[A(t1)...A(ti)]A(t)∥ ≤

≤
∞
∑
i=n+1

1

i!
(∫

t

0
dt1∥A(t1)∥)

i

∥A(t)∥ ≤
∞
∑
i=n+1

Ai

i!
A =

=(eA −
n

∑
i=0

Ai

i!
)A.

For n large enough, the right hand side will be arbitrarily small, in particular smaller
than ε for all t ∈ [0,1], which proves uniform convergence. We have established

d

dt
a(t) =

d

dt
[lim
i→∞

ai(t)] = lim
i→∞

a′i(t) = a
′(t)

or using our symbol Pe
d

dt
Pe∫

t
0 A(t′)dt′ = Pe∫

t
0 A(t′)dt′A(t).

Looking back at the differential equation (D.1), its solution is thus

g(t) = g0Pe∫
t

0 A(t′)dt′

because
d

dt
g(t) = g(t)A(t), g(0) = g0.

If we use a different parameter t̃, then g(t̃) satisfies

d

dt̃
g(t(t̃)) =

dt

dt̃

d

dt
g(t) = g(t(t̃))

dt

dt̃
A(t(t̃)) =∶ g(t̃)Ã(t̃).
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We will now show a different construction of Pe∫
t

0 A(t′)dt′ , which relates the path ordered
exponential to the “normal” exponential mapping the Lie algebra to the group.

For a fixed value of t ≠ 0 we can reparametrize such that t̃(t) = 1. This simplifies the
following calculations. So from now on we assume that we are interested in the solution
of (D.1) at the value t = 1.

We divide the interval [0,1] into n intervals of length 1
n . For the i-th interval [ i−1

n ,
i
n
]

we fix an element Ai = A (
i−1/2
n ) ∈ g. The discrete version of (D.1) with initial condition

g(0) = g0 are then n differential equations with n boundary conditions

t ∈ [0, 1
n
] ∶

d

dt
g(t) = g(t)A1 g(0) = g0

t ∈ [ i−1
n ,

i
n
] ∶

d

dt
g(t) = g(t)Ai lim

ε→0
g( i−1

n + ε) = lim
ε→0

g( i−1
n − ε) i ∈ {2, ..., n}.

These equations are just the equations for integral curves of the left invariant vector
fields, which are equal to Ai at TeG. The solution of the n − th equation for t = 1 is

g(1) = g0e
1
nA1 ...e

1
nAn . (D.4)

If G is a matrix group, then

eA =
∞
∑
k=0

Ak

k!
.

Let b̄k = (bi)1≤i≤k be a sequence of length k ∈ N with elements bi ∈ {1, ..., n} such that
bi ≤ bi+1. By Bk we denote the set of all such sequences. On Bk we define the function

f(b̄k) =
k

∏
i=1

(
k

∑
j=i
δbibj)

−1

,

with δmn being the Kronecker delta. For example

f((1,1,4,8,8,8)) =
1

3!2!
.

This allows to rewrite (D.4)

g(1) =g0

n

∏
l=1

⎛

⎝

∞
∑
k=0

( 1
nAl)

k

k!

⎞

⎠
= g0(1 +

n

∑
l=1

1

n
Al +

i

∑
l,m=1
l<m

1

n2
AlAm +

n

∑
l=1

1

2n2
A2
l +

+
n

∑
l,m,n=1
l<m<n

1

n3
AlAmAn +

n

∑
l,m=1
l<m

1

2n3
A2
lAm +

n

∑
l

1

3!n3
A3
l + ...) =

=g0(1 +
∞
∑
k=1

∑
Bk

f(b̄k)
1

nk
Ab1 ...Abk). (D.5)

Now we define the step function An(t) by

An(t) = Ai t ∈ [ i−1
n ,

i
n
]
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and evaluate

∫

1

0
dt1∫

t1

0
dt2...∫

tk−1

0
dtkAn(tk)...An(t1) =

=
n

∑
i1=1

∫

i1
n

i1−1
n

dt1∫
t1

0
dt2...∫

tk−1

0
dtkAn(tk)...An(t2)Ai1 =

=
n

∑
i1=1

∫

i1
n

i1−1
n

dt1
i1−1

∑
i2=1

∫

i2
n

i2−1
n

dt2∫
t2

0
dt3...∫

tk−1

0
dtkAn(tk)...An(t3)Ai2Ai1+

+
n

∑
i1=1

∫

i1
n

i1−1
n

dt1∫
t1

i1−1
n

dt2∫
t2

0
dt3...∫

tk−1

0
dtkAn(tk)...An(t3)Ai1Ai1 =

=
n

∑
i1=1

1

n

i1−1

∑
i2=1

∫

i2
n

i2−1
n

dt2
i2−1

∑
i3=1

∫

i3
n

i3−1
n

dt3∫
t3

0
dt4...∫

tk−1

0
dtkAn(tk)...An(t4)Ai3Ai2Ai1+

n

∑
i1=1

1

n

i1−1

∑
i2=1

∫

i2
n

i2−1
n

dt2∫
t2

i2−1
n

dt3∫
t3

0
dt4...∫

tk−1

0
dtkAn(tk)...An(t4)Ai2Ai2Ai1+

+
n

∑
i1=1

∫

i1
n

i1−1
n

dt1∫
t1

i1−1
n

dt2
i1−1

∑
i3=1

∫

i3
n

i3−1
n

dt3∫
t3

0
dt4...∫

tk−1

0
dtkAn(tk)...An(t4)Ai3Ai1Ai1+

+
n

∑
i1=1

∫

i1
n

i1−1
n

dt1∫
t1

i1−1
n

dt2∫
t2

i1−1
n

dt3∫
t3

0
dt4...∫

tk−1

0
dtkAn(tk)...An(t4)Ai1Ai1Ai1 =

= ∑
Bk

f(b̄k)
1

nk
Ab1 ...Abk .

So for every n ∈ N we can write

g(1) = g0(1 + ∫

1

0
dt1An(t1) + ∫

1

0
dt1∫

t1

0
dt2An(t2)An(t1) + ...+

+... + ∫
1

0
dt1∫

t1

0
dt2...∫

tk−1

0
dtkAn(tk)An(tk−1)...An(t1) + ...).

Now if n → ∞, An(t) will be equal to A(t) and g(t) will be the solution of (D.1). We
may thus view

Pe∫
1

0 A(t′)dt′ = lim
n→∞

e
1
nA1 ...e

1
nAn

as the limit n→∞ of the product of n group elements.
Suppose we are dealing with the Lie group SL(n), the group of n×n matrices with unit
determinant, with Lie algebra sl(n). The determinant is a continuous function on Mn

C
and so for a convergent sequence (ai)i∈N with ai ∈Mn

C

lim
n→∞

det(an) = det( lim
n→∞

an).

Hence, if A(t) ∈ sl(n), then Ai ∈ sl(n) and e
1
nAi ∈ SL(n). So

det Pe∫
t

0 A(t′)dt′ = det( lim
n→∞

e
1
nA1 ...e

1
nAi−1et̃Ai) = lim

n→∞
det(e

1
nA1) ...det(e

1
nAi−1)det (et̃Ai) = 1

150



⇒ Pe∫
t

0 A(t′)dt′ ∈ SL(n),

again showing that the path ordered exponential is a group element.
The second construction makes clear that for 0 < t0 < t we have

Pe∫
t

0 A(t′)dt′ = Pe∫
t0

0 A(t2)dt2Pe∫
t
t0
A(t1)dt1 .

The path ordered exponential is a functional of A(t). The form (D.3) allows us to easily
compute the functional gradient. We define the functional gradient δF

δA of a functional F
of Lie algebra valued functions such that for any Lie algebra valued function B we have,

<
δF

δA
,B >=

d

dε
∣
ε=0

F [A(t) + εB(t)],

where < ⋅, ⋅ > denotes the dual pairing on the g-valued function space. Since these g-
valued functions do not commute as matrices, the ordering is important. We denote by
δg ∈ T g⊗ T ∗g the identity map on g.

δ

δA(t′)
Pe∫

t
0 A(t′′)dt′′ =

= ∫

t

0
dt1δ(t

′ − t1)δg + ∫
t

0
dt1∫

t1

0
dt2(δ(t

′ − t2)δgA(t1) +A(t2)δ(t
′ − t1)δg) + ...+

+ ∫

t

0
dt1...∫

ti−1

0
dti(A(ti)...A(t2)δ(t

′ − t1)δg + ... + δgδ(t
′ − ti)A(ti−1)...A(t1)) + ... =

= Θ(t − t′){δg + δg∫
t

t′
dt1A(t1) + ∫

t′

0
dt2A(t2)δg+

+ ∫

t′

0
dt2...∫

ti−1

0
dtiA(ti)...A(t2)δg + ∫

t

t′
dt1∫

t1

t′
dt2...∫

ti−2

t′
dti−1δgA(ti−1)...A(t1)} =

= Pe∫
t′

0 A(t′′′)dt′′′ δg Pe∫
t
t′ A(t′′)dt′′Θ(t − t′) (D.6)

A differential equation of the form (D.1) can result from considering a more general
equation for Lie group-valued functions on a manifold (e.g. on spacetime) with points x

∂µg(x) = g(x)Aµ(x) (D.7)

along a specific curve x(t). Note that now Aµ is not simply a Lie algebra valued function,
but a Lie algebra valued one-form. For a generic curve x(t) the integrands in the path
ordered exponential are

A(t)dt = Aµ(x(t))
dxµ(t)

dt
dt.

We can now ask whether the solution g(x) is the same when evaluating the path ordered
exponential along two different curves starting and ending at the same points. To inves-
tigate this we take the functional derivative of the path ordered exponential with respect
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to the curve itself. Similar to (D.6) we get

δ

δxρ(t)
Pe∫

1
0 A(t′)dt′ =

= ∫

1

0
dt1

δ

δxρ(t)
{Aµ(x(t1))

dxµ(t1)

dt1
}+

+ ∫

1

0
dt1∫

t1

0
dt2{

δ

δxρ(t)
(Aµ(x(t2))

dxµ(t2)

dt2
)A(t1)+

+A(t2)
δ

δxρ(t)
(Aµ(x(t1))

dxµ(t1)

dt1
)}+

+ ∫

1

0
dt1∫

t1

0
dt2...∫

ti−1

0
dti{

δ

δxρ(t)
(Aµ(x(ti))

dxµ(ti)

dti
)A(ti−1)...A(t1)+

+ ... +A(ti)...A(t2)
δ

δxρ(t)
(Aµ(x(t1))

dxµ(t1)

dt1)
)} + ... .

Using

δ

δxρ(t)
(Aµ(x(t

′))
dxµ(t′)

dt′
) = ∂ρAµ

dxµ(t′)

dt′
δ(t − t′) +Aρ(x(t

′))
d

dt′
δ(t − t′),

we get

δ

δxρ(t)
Pe∫

1
0 A(t′)dt′ =

= [∂ρAµ(x(t)) − ∂µAρ(x(t))] ẋ
µ + ∂ρAµ(x(t))ẋ

µ
∫

1

t
dt1A(t1)+

+Aρ(x(t))A(t) − ∫
1

t
dt1∂µAρ(t)ẋ

µA(t1)+

+ ∫

t

0
dt2A(t2)∂ρAµ(x(t))ẋ

µ −A(t)Aρ(x(t)) − ∫
t

0
dt2A(t2)∂µAρ(x(t))ẋ

µ(t)+

+ ∫

1

t
dt1...∫

ti−2

t
dti−1∂ρAµ(x(t))ẋ

µA(ti−1)...A(t1)+

+ ∫

1

t
dt1...∫

ti−3

t
dti−2Aρ(x(t))A(t)A(ti−2)...A(t1) + ...

+ ∫

t

0
dt2...∫

ti−1

0
dtiA(ti)...A(t2)∂ρAµ(x(t))ẋ

µ−

− ∫

t

0
dt3...∫

ti−1

0
dtiA(ti)...A(t3)A(t)Aρ(x(t))−

− ∫

t

0
dt2...∫

ti−1

0
dtiA(ti)...A(t2)∂µAρ(x(t))ẋ

µ + ... =

= Pe∫
t

0 A(t′)dt′ {∂µAρ(x(t)) − ∂ρAµ(x(t)) + [Aρ(x(t)),Aµ(x(t))]} ẋ
µPe∫

1
t A(t′′)dt′′ .

We see that the quantity
Fµν ∶= ∂µAρ − ∂νAµ + [Aµ,Aν]

measures the path independence of the path ordered exponential. It is called the curva-
ture of A.
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Probably the most elegant interpretation of the path ordered exponential and the dif-
ferential equation (D.7) is in terms of parallel transport on fibre bundles. A detailed
introduction to fibre bundles can be found in chapters 9 and 10 of [29] - we only give a
brief overview.

A differentiable manifold E is called a fibre bundle if E “locally looks like” the product
of a base manifold M and a manifold F called the typical fibre. That is over every point
x ∈M one has a copy of F . The most prominent example of a fibre bundle is the tangent
bundle of a differentiable manifold. Every point has its own copy of a vector space. If F
is a Lie group G, then E is called a principal bundle. A section of E is an assignment
of an element of F to every x ∈ M , sections of fibre bundles are F -valued functions on
M - sections of principal bundles are G-valued functions on M . Just as in the case of
the tangent bundle of a manifold there is no intrinsic way to compare values of sections
at different points x, y ∈ M because the fibres at x and y are merely two copies of the
same manifold. One needs to define the notion of a parallel transport on the bundle.
We are interested in the situation of a principal bundle because we mainly deal with
group-valued fields. Let Aµ(x) be a Lie algebra valued one-form on the base space M .
For a point x0 ∈M and an element g0 in the fibre (a copy of the group) at x0 we define
the parallel transport g(t) ∈ G of g0 along some curve c(t) ∈ M with c(0) = x0 by the
differential equation

dg(t)

dt
= g(t)Aµ(x(t))

dxµ(t)

dt
.

This equation together with g(0) = g0 has a unique solution given by

g(t) = g0Pe∫
t

0 A(t′)dt′ .

The path ordered exponential of A executes the parallel transport of fibre element along
some curve in the base manifold M . We therefore call A a connection. Similarly the
equation

∂µg(x) = g(x)Aµ(x)

defines parallel transport along the coordinate lines. We may also write this as

Dµg(x) = 0,

with Dµ the covariant derivative defined in an obvious way. As mentioned above the
solution of (D.7) in general depends on the curve chosen via the quantity

Fµν ∶= ∂µAν − ∂νAµ + [Aµ,Aν] =DµAν −DνAµ

called the curvature of the connection A. If F ≠ 0, parallel transport along two curves,
which have the same starting- and endpoints, in general gives different results. Equiva-
lently, when parallel-transporting a fibre element with the connection A along a loop will
not return the same element. Only if the curvature is zero, that is if we deal with a flat
connection, will the solution of (D.7) be path independent and we may say that

g(x) = g0Pe∫
t

0 Aµ
dcµ(t′)
dt′ dt′

is the solution of (D.7) where cµ is a curve such that c(t) = x and c(0) is the point where
the solution is to be equal to g0.
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Appendix E

Integration and orientation

Most of the content of this chapter can be found in the appendix of [39].
Suppose that we are given an n-dimensional (pseudo-)Riemannian manifold (M,g)

and a smooth nowhere vanishing n-form field ε on M . Then ε provides an orientation,
that is a notion of right handed and left handed. If in a coordinate system {xi} the
function f(x) in

ε = f(x)dx1 ∧ ... ∧ dxn

is positive (negative), then the coordinate system is right handed (left handed). Any
n-form field ε′ = gε with g > 0 everywhere defines the same orientation while it defines
the opposite orientation if g < 0 everywhere. Consequently given an n-form field ε we
could make a specific coordinate system right handed by using either ε or −ε. This latter
approach can be used if we want to use the metric g to define a volume element by

εµ1...µn
g (εg)µ1...µn = (−1)sn! (E.1)

s being the number of minuses in the signature of g. Note that this definition specifies
the volume element only up to sign. We can choose a coordinate system {xi} and make
it right handed by choosing the sign of εg appropriately. Equivalently we can define εg
by

εg ∶=
√

∣g∣dx1 ∧ ... ∧ dxn,

which is in accordance with (E.1). Furthermore, we say that a nowhere vanishing smooth
n-form field ε is positive (negative) if in a right handed coordinate system {xi} we can
write

ε = fdx1 ∧ ... ∧ dxn,

with f greater (smaller) than 0.
Now let Σ be an (n − 1)-dimensional submanifold of n and let v be a vector field

transverse to Σ that is v ∈ TpM/TpΣ, p ∈ Σ. Then we say that {y1, ...yn−1} is a positively
oriented chart on Σ oriented in the sense of v iff

v ⌟ ε = fdy1 ∧ ... ∧ dyn−1, (E.2)

with f > 0. Also if t is a function on M constant on Σ and the yi extend smoothly off Σ
so that {t, yi} forms a chart of a neighbourhood of Σ then Σ is oriented in the sense of
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∂t iff dt∧ dy1 ∧ ...∧ dyn−1 is a positive n-form on M and dy1 ∧ ...∧ dyn−1 is a positive form
on Σ or both are negative.

In Stokes theorem

∫
M
dα = ∫

∂M
α (E.3)

for example the orientation of the boundary has to be taken positive w.r.t. an everywhere
outward pointing vector field. In the situation of a submanifold Σ of codimension 1,
which is everywhere spacelike or lightlike, one might want to orient Σ positively w.r.t. to
a future directed vector field. Following [39], we define a future directed vector in TpM
to be an element of the future half of the light cone at p ∈M . Since in this case TpM/TpΣ
is 1-dimensional, all its future directed elements differ by a factor of a strictly positive
function. Therefore, the requirement of orientation towards the future of a codimension
1 surface, which is everywhere spacelike or lightlike, via (E.2) fixes the orientation of this
surface uniquely. This is what we want to do in section 5.3. In computations care has to
be taken of whether a coordinate system is left handed or right handed. It has an effect
on the sign of integrals over forms. For example the integral of an (n − 1)-form α over a
subset U of Σ admitting a single chart is defined using a right handed coordinate system
{yi} by

α = α(y)dy1 ∧ ... ∧ dyn

∫
U
α = ∫

y1
b

y1
a

...∫
yn−1
b

yn−1
a

α(y)dy1...dyn,

where yib > yia denote the boundaries of the subset U of Σ under consideration. In a
left handed coordinate system an additional minus would arise or equivalently one could
change the integration direction of an odd number of coordinates.

In the case that α in (E.3) is

α = v ⌟ εg v ∈ TM,

then
dα = (∇µv

µ)εg

and so by Stokes’s theorem

∫
N
(∇µv

µ)εg = ∫
N
d(v ⌟ εg) = ∫

∂N
v ⌟ εg

for N ⊂ M (see [39]). Note that the restriction of the (n − 1)-form v ⌟ εg to T ∂N is
understood. If ∂N is nowhere null, then the induced metric, h, on ∂N is non-degenerate
and we may write

gµν = hµν ± nµnν , (E.4)

where sign is + or − if ∂N is timelike or spacelike respectively. For the volume element
we may then write

εg = n ∧ εh, (E.5)

where n is the outward pointing unit normal to ∂N and εh is the volume element on ∂N
of the form (E.1), but constructed with h and coordinates on ∂N . In this case

(v ⌟ εg)∣∂N = vµnµεh
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and we may write

∫
N
εg(∇µv

µ) = ∫
∂N
εh(nµv

µ).

If ∂N is null at least at one point, then the induced metric is degenerate (see e.g. [39],[32])
and so neither (E.4) nor (E.5) can be valid as stated for the timelike or spacelike case.
Stokes’s theorem of course still applies and so

∫
N
(∇µv

µ)εg = ∫
∂N
v ⌟ εg = ∫

∂N
(εg)µv

µ,

where
(εg)µv

µ ∶= (v ⌟ εg)∣∂N

remains valid.
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1996; Institut für Theoretische Physik, Hamburg, Deutschland 1996, arXiv:hep-
th/9608082

[21] Victor G. Kac Infinite Dimensional Lie Algebras Birkhäuser, Boston, USA 1983,
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