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Abstract

This thesis is dedicated to computational micromagnetics, where several new numerical meth-
ods are developed. All concepts rely, at some point, on representation of the macroscopic
magnetization on tensor grids. In this context, the data-sparse representation or approximation
via tensor formats serves as a key motivation.
Much attention is paid to the computation of the stray field. A novel method determines the
demagnetizing field on a tensor grid with help of data-sparse tensor format representation of
magnetization components. Kronecker product structure of the demagnetizing field operator is
shown. Also, the Hessian of the discretized total magnetic Gibbs free energy permits a Kro-
necker product form. This allows cheap and efficient evaluation of the energy and computation
of the gradient for tensor structured input. Furthermore, the described method is even acceler-
ated with help of fast Fourier transform.

A detailed overview of micromagnetic energy minimization is given, including a new method
that is a variation of steepest descent. On this basis, energy minimization with structured tensor
magnetization is considered. A sublinearly scaling low-rank algorithm is introduced, which
relies on successive rank-k updates. The approach addresses the computation of equilibrium
states and hysteresis of large ferromagnetic particles on rectangular grids.
In order to address micromagnetic simulations on unstructured finite element meshes, a further
novel demagnetizing field method, based on non-uniform fast Fourier transform, is developed.
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Kurzfassung

In dieser Arbeit werden einige neue numerische Methoden für mikromagnetische Simulationen

entwickelt. Die vorgestellten Konzepte basieren alle auf der Darstellung der makroskopischen
Magnetisierung auf Tensorgittern. Dabei dient die datenschwache Darstellung oder Approxi-
mation mittels Tensor Formate als Hauptmotiv.
Viel Aufmerksamkeit ist der Berechnung des Streufeldes gewidmet. Eine neuartige Meth-
ode bestimmt das Demagnetisierungsfeld auf Tensorgittern mit datenschwacher Tensor For-
mat Darstellung der Magnetisierungskomponenten. Kronecker Produkt Struktur des Streufel-
doperators und der Hessematrix der totalen magnetischen freien Gibbs Energie wird gezeigt.
Dies erlaubt die billige und effiziente Auswertung der Energie und des Gradienten für tensor-
strukturierten Input. Desweiteren wird die beschriebene Methode mit Hilfe von Schneller

Fourier Transformation beschleunigt.
Ein detailierter Überblick über mikromagnetische Energieminimierung wird gegeben, welcher
auch eine neue Variante der Methode des steilsten Abstiegs enthält. Darauf aufbauend wird
Energieminimierung mit niedrig-rang Magnetisierung betrachtet. Ein sublinear skalierender
Algorithmus wird vorgestellt, welcher auf Rang-k Updates beruht. Der Zugang adressiert
die Berechnung von Gleichgewichtszuständen und Hysterese von großen ferromagnetischen
Teilchen auf Tensorgittern.
Um mikromagnetische Simulationen auf unstrukturierten finite Elemente Gittern zu adressieren,
wird ein weiterer Streufeldalgorithmus vorgestellt, welcher auf nicht-uniformer Schneller Fourier

Transformation beruht.
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Chapter 1

Introduction

Many applications which we use in our everyday life rely on magnetism, for instance electric

motors and generators, hard-disk drives, or wind turbines. The last one is a typical application
of permanent magnets, where the most common consist of rare-earth elements, like samarium-

cobalt or neodymium-iron-boron magnets. Energy application and the quest for rare-earth free
or rare-earth reduced permanent magnets [1, 2] renewed the interest in micromagnetics of per-
manent magnets [3]. The continuum theory of micromagnetism intends to bridge the gap be-
tween the phenomenological Maxwell theory (macroscopic dimensions) of electromagnetism
and quantum theory (atomistic level). It yields reliable models on the micron scale. Due to
the rise of computational power in the last decades, the field of computational micromagnetics
evolved as a powerful tool for solving the non-linear micromagnetic equations [4]. Moreover,
micromagnetics gives good approximations on length scales where magnetic ab-initio calcu-
lations would simply be too fundamental and expensive. Important quantities of permanent
magnets, like the coercive field and remanence, can be determined by calculating hysteresis.
Hysteresis in non-linear ferromagnetic materials results from the path formed by subsequent
local minima. For instance, Kinderlehrer and Ma [5] computed hysteresis loops in ferromag-
nets from the continuation of solutions for decreasing and increasing applied fields. Most
state-of-the-art micromagnetic solvers implement the Landau-Lifshitz Gilbert (LLG) equation
of motion. However, the accessible time scale of LLG simulations is the range of nanoseconds.
This time scale is not always relevant, e.g. the measurement time for hysteresis loops of per-
manent magnets is in the range of seconds. Thus, energy minimization can be applied for such
applications where the extra information due to time evolution is not important.
In this work the focus is on the development and analysis of methods to address the non-linear
and non-convex micromagnetic constrained energy minimization problem on so-called tensor
grids.
In the last few years much research was done on problems and applications where tensors ap-
pear as data or solutions. Some ideas were developed to calculate so-called low-rank solutions
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[6]. In this thesis some of the existing ideas and also novel approaches are applied to computa-
tional micromagnetics.
The thesis starts with background information on the theory of micromagnetics in Ch. 2. The
micromagnetic energy minimization problem is addressed in Ch. 3, where it is formulated as
constrained optimization problem in the continuous and the discrete setting. Several algorithms
which address this problem are analyzed. A new variant of the steepest descent method, a semi-

implicit scheme, is also introduced. Moreover, penalty approaches from non-linear program-
ming are applied to micromagnetics, as well as, Newton’s method to the Karush-Kuhn-Tucker

(NKKT) conditions. In order to minimize the energy on large tensor grids, the data-sparse tensor
formats are introduced. A detailed description of tensor formats and approximation of tensors
is given in Ch. 4. Incidentally, a FFT-based method to apply filtering of disturbed multi-way
data is found.
A tensor grid method for computing the stray field for tensor structured input is described and
mathematically analyzed in Ch. 5. Kronecker product structure of the demagnetizing operator
is proven, which later gives rise to a similar structure for the Hessian of a second order dis-
cretization of the total magnetic energy. This structure allows the efficient evaluation for tensor
structured input. Later, the tensor grid stray field method is even accelerated by means of FFT,
cf. Sec. 5.4.
Chapter 6 is dedicated to approximation of magnetization configurations by the so-called Tucker
format with no applied field and during demagnetization. The Tucker format allows adaptive
rank determination by an algorithm based on singular value decomposition, cf. Ch. 4. The
micromagnetic energy minimization problem subject to low-rank tensors is investigated and
analyzed in Ch. 7. An algorithm is introduced, which is based on low-rank updates and mini-
mization within the canonical tensor representation. In principal, this method allows applying
large grids due to the sublinear scaling in the volume size. This is useful for large ferromagnetic
particles which demand a high resolution due to constraints related to the exchange length or
domain wall width.
The final section is dedicated to a novel finite element/boundary element (FEM/BEM) algo-
rithm, which benefits from non-uniform FFT, which is especially adapted to the case of bound-
ary integrals. The method scales quasi optimal in the number of volume and surface elements.
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Chapter 2

Micromagnetic Background

The beginning of micromagnetism was a paper by Landau and Lifshitz in 1935 on the structure
of the wall between two antiparallel domains and the works of W.F. Brown, Jr. in 1940-41, who
also gave the name micromagnetism or micromagnetics [7]. This theory intended to bridge the
gap between the phenomenological Maxwell theory (macroscopic dimensions) of electromag-
netism and quantum theory (atomistic level) [4]. However, the term is somewhat misleading,
because the microscopic details of the atomic structure are ignored, and the material is consid-
ered from a macroscopic point of view by taking it to be continuous [8]. The classical approach
which leads to micromagnetics is to replace the magnetic moments by a classical vector field as
well as the quantum-mechanical exchange interaction (by Heisenberg, Dirac 1928) [8]. There
were several papers by Stoner-Wohlfarth, Néel, Aharoni, Strikman, Treves and Brown in the
1950s, who established micromagnetics as an efficient theory to describe magnetization pro-
cesses and characteristic properties of the hysteresis loop, see [4] and references therein. The
recent developments of numerical micromagnetics allows the solution to the nonlinear micro-
magnetic equations also for non-classical problems, see [9] and references therein.
In micromagnetics a state is fully described if for given temperature, applied field and elastic
stresses the (spontaneous) polarization J(x) = µ0 M(x) ((spontaneous) magnetization M(x)) is
known, where µ0 is the vacuum permeability. The magnetization can be seen as the (average)
magnetic moment density [10] or magnetic moment per unit volume [11]. Its magnitude is
fixed, i.e. ‖M(x)‖ =: Ms such that the state is described by the direction cosines m(x), i.e.
M(x) = Ms m(x), where ‖m(x)‖ = 1. See Sec. 2.2 concerning units.
Magnetization dynamics is not treated in the following work, but static energy minimization.
However, for the sake of completeness it is shortly mentioned here that the equation of motion,
which is also widely used in micromagnetics, is the Landau-Lifshitz-Gilbert (LLG) equation,
i.e.

∂tm = −γ′m× He f f − α
′m× (m× He f f ), (2.1)
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where He f f is the so-called effective field (cf. Sec. 2.4), γ′ and α′ can be expressed in terms of
the electron gyromagnetic ratio and the Gilbert damping parameter [4]. The first term on the
right hand side of Eqn. (2.1) is a torque (or precessional) term, whereas the second term causes
damping towards the effective field. In Ch. 3.3 the connection between energy minimization
with steepest descent directions and LLG without precessional term is discussed.
In the following the components of the magnetic Gibbs free energy are described.

2.1 The Magnetic Gibbs Free Energy

The total magnetic Gibbs free energy is the sum of exchange, anisotropy, stray field and external
energy. Magnetostrictive energy is not considered here, see e.g. [4]. Equilibrium configurations
are local minima of this total energy. The exchange and anisotropy term in the energy have
a quantum mechanical origin and hence, their continuum formulation in micromagnetics is
phenomenological. The magnetostatic terms (stray field and Zeeman energy) have classical
descriptions and are derived from electromagnetism.

2.1.1 Exchange Energy

When the quantum mechanical spin operators are approximated by classical vectors Si = S si

with ‖si‖ = 1 the ’classical’ exchange energy turns out to be

Eex = −
∑

i, j
i, j

Ji j S 2 sT
i s j = −2JS 2

∑
i

∑
j∈next-neighbor(i)

cos ^(si, s j), (2.2)

where Ji j is the exchange integral, which is assumed to be nonzero only for neighbors (and
therefore denoted as J) [8]. This expression is now taken for the continuous magnetization m
and further approximation is done, i.e.

cos ^
(
m(xi),m(x j)

)
= 1 − 1

2‖m(xi) − m(x j)‖2 + O(‖m(xi) − m(x j)‖4), (2.3)

where cos x = 1−x2/2+O(x4) was used for small angles ^(si, s j) = ‖m(xi)−m(x j)‖+O(‖m(xi)−
m(x j)‖3). Now the first order expansion in the position x

m(x j) ≈ m(xi) + Jm(xi)(x j − xi), (2.4)

12



with the Jacobian Jm(xi) yields

‖m(xi) − m(x j)‖2 ≈
3∑

p=1

(
(x j − xi)T∇m(p)(xi)

)2
. (2.5)

In analogy to (2.2) this all together gives an expression for the ’(classical) micromagnetic’

exchange energy

Eex = Ere f
ex + JS 2

∑
i

∑
j∈next-neighbor(i)

3∑
p=1

(
(x j − xi)T∇m(p)(xi)

)2
, (2.6)

where Ere f
ex is the energy of the reference state where the magnetization is uniform. Usually this

term is omitted, which means that the exchange energy is measured with respect to the uniform
state. Also note that constants in energies are not interesting for determining equilibrium.
The continuous expression for the exchange energy of a cubic and isotropic ferromagnetic body
Ω (which is usually taken in micromagnetics) is

Eex = A
∫

Ω

3∑
p=1

‖∇m(p)(x)‖2 dx, (2.7)

where A is called the exchange constant, which is determined experimentally for different ma-
terials. Eqn. (2.7) can be derived from (2.6) by assuming a cubic lattice with constant lattice
spacings and changing the sum over i in (2.6) into an integral [8].
The energy (2.7) is minimized for uniform magnetization and, in the general case, is lower
when the configuration varies only slowly.

2.1.2 Anisotropy Energy

The crystal structure of a ferromagnetic material causes certain preferred axes (easy axes) for
the magnetization. The easy axes are not directed, hence an expression for the anisotropy
energy has to give the same value for the configurations ±m (even function). For uniaxial
(only one easy axis) magnetic materials (e.g. Nd2Fe14B) a general expression of the anisotropy
energy is given as

Ean =

∫
Ω

K1 sin2 θ + K2 sin4 θ + . . . , (2.8)

where θ is the angle between m and the easy direction a (unit vector) and the K1,K2, . . . are
called magnetocrystalline anisotropy constants. In the following only the second order expan-
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sion

Ean =

∫
Ω

K1(1 − cos2 θ) =

∫
Ω

K1(1 − (a · m)2) dx, (2.9)

is used.

2.1.3 Zeeman Energy

The energy of a ferromagnetic body in an applied/external field Hext, also called Zeeman en-

ergy, is given as

Eext = −

∫
Ω

J · Hext dx. (2.10)

It is minimized if the magnetization is aligned along the external field. .

2.1.4 Stray Field and Energy

The stray field Hd can be derived from the magnetostatic Maxwell equations without current
[10], i.e.

∇ · (Hd + M) = 0

∇ × Hd = 0.
(2.11)

Let the magnetization M be defined inside a magnetic body Ω. From interface conditions
[10, 11] one recognizes that the normal component of Hd at the boundary of Ω has a jump,
whereas the tangential component is continuous, i.e. there holds on the boundary

(Hext
d − Hint

d ) · n = M · n

(Hext
d − Hint

d ) × n = 0,
(2.12)

where n is the outer unit normal. Moreover, the second equation in (2.11) gives rise to a
scalar potential φ with Hd = −∇φ and therefore (2.11) reduces to a set of equations for φ,
see Sec. 2.3.1. The solution of this equations has the integral representation (2.23) given in
Sec. 2.3.1. The stray field as a function of the magnetization is linear.
The stray field energy is

Ed(M) = −
µ0

2

∫
Ω

M · Hd(M) dΩ. (2.13)

This energy is lower the more the magnetization avoids volume and surface charges, cf. Sec. 2.4
and (2.23).
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2.2 Reduced Energy and Units

The magnetization is denoted with M = Msm, ‖m‖ = 1, where Ms is the saturation magneti-

zation and m the unit vector of the magnetization. In the following m is often also called mag-
netization where this does not lead to any confusion. In SI-units one has [M] = [Ms] = A/m.
The magnetic polarization is J = µ0 M = µ0Msm = Jsm, with SI-units [Js] = [µ0]A/m =

J/(A2m)A/m = J/(Am2) = Tesla, where µ0 = 1.256637 e-06 Tm/A is the vacuum permeability.
The demagnetizing field (stray field) Hd is a linear function of the magnetization M, its units are
A/m. It is convenient for future purpose to define the scaled field hd = hd(m) = Hd(M/Ms) =

Hd/Ms (dimensionless).
For the description of the total magnetic energy one may introduce the exchange constant A in
units of J/m, and K1, the first magnetocrystalline anisotropy constant, in units of J/m3.
Let further Ω ⊂ R3 be an open subset of the three-dimensional space.
The magnetic Gibbs free energy is the sum of exchange-, demagnetizing-, (uniaxial/first order)

anisotropy- and external energy, given by

Etot(m) = Eex(m) + Ed(m) + Ean(m) + Eext(m)

=

∫
Ω

A

 3∑
p=1

∥∥∥∇m(p)
∥∥∥2

 − 1
2

J · Hd(M) + K1(1 − (a · m)2) − J · Hext dΩ,
(2.14)

where a is the unit vector parallel to the easy axis and Hext the external field in units of A/m.
Clearly, one has [Etot] = J. For future purpose it is convenient to define the scaled energy

etot(m) = Etot(m)/(µ0M2
s ), which then has units of a volume, i.e. [etot] = m3,

etot(m) =

∫
Ω

A
µ0M2

s

 3∑
p=1

∥∥∥∇m(p)
∥∥∥2

 − 1
2

m · hd(m) +
K1

µ0M2
s
(1 − (a · m)2) −

1
Ms

m · Hext dΩ.

(2.15)

One therefore defines the reduced units [12] with help of the energy density Km := µ0M2
s =

J2
s/µ0 (units of J/m3):

Q := K1/Km, Ã := A/Km, (2.16)

where lengths are usually given in units of the exchange length lex =
√

2A/Km =
√

2Ã, e.g. if a
cubic particle has the length L then the reduced length λ = L/lex (dimensionless) is introduced.
Below the exchange length twisting of the magnetization is energetically unfavorable, which
imposes a constraint on the mesh size, i.e. discretization of the domain Ω should be finer than
this critical length [13]. Usually for Q > 1/2 the magnetic material is called hard magnetic,
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whereas for Q ≤ 1/2 one calls it soft magnetic. In the hard magnetic case the so-called domain

wall width or wall width parameter
√

A/K1 =
√

A/(KmQ) ≤ lex plays the important role and
calls for an even finer discretization [14].
For the purpose of converting reduced units to SI units one has to choose Ms or Js to calculate
Km.

The scaled energy from Eqn. (2.15) has the dimensionless form

ψt :=
etot

|Ω|
=

1
|Ω|

(
Ã eex + ed + Q ean + eext

)
, (2.17)

with

eex(m) :=
∫

Ω

3∑
p=1

∥∥∥∇m(p)
∥∥∥2

= −

∫
Ω

3∑
p=1

m(p)∆m(p), (2.18)

ed(m) := −
1
2

∫
Ω

m · hd(m), (2.19)

ean(m) :=
∫

Ω

(1 − (a · m)2), (2.20)

eext(m) := −
∫

Ω

m · hext, (2.21)

where hext = Hext/Ms. The equality in (2.18) (cf. [13]) comes from the vector identity∥∥∥∇m(p)
∥∥∥2

= ∇·(m(p)∇m(p))−m(p)∆m(p) together with the fact that ‖m‖ = 1 implies
∑3

p=1 m(p)∇m(p) =

0.
In the special case of a cube with side-length L, i.e. |Ω| = L3, the constant in the exchange
energy can be expressed via the relation L = λlex = λ

√
2Ã. Nevertheless, from a numerical

point of view, grid spacings used in finite differences for the exchange energy discretization
should have orders of magnitudes near 1, instead of 1e-9 (nanometers). Thus, it is better to
scale the domain, e.g. lengths could be measured as fractions of 1. In the case of a cube one
would have the relation 1 = λ l′ex, with l′ex = lex/L (dimensionless). In this case, the coefficient
in front of eex is given as Ã = (l′ex)2/2 = 1/(2λ2), whereas Ω is scaled to the unit cube.

2.3 Stray Field Computation

Portions of this section were previously submitted for publication as [15] and have been repro-

duced here with permission of the co-authors. Content which was not generated by the author

of this thesis is explicitly denoted.
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2.3.1 Problem Formulation

The micromagnetic demagnetizing or stray field is given as hd = −∇φ, where the scalar poten-

tial φ for a given magnetization m ∈
(
C1(Ω)

)3
∩

(
C0(Ω)

)3 1, Ω ⊂ R3 bounded and open, fulfills
the interface problem [7, 9–11] (also compare with Sec. 2.1.4)

−∆φ = −∇ · m in Ω,

−∆φ = 0 in Ω
c
,[

φ
]

= 0 on ∂Ω, (2.22)[
∂φ

∂n

]
= −m · n on ∂Ω,

φ(x) = O( 1
‖x‖ ) as ‖x‖ → ∞,

where
[
f
]

:= f ext − f int stands for the jump of a function f at the boundary. The asymptotic
decay (regularity at infinity) is stated for the sake of solvability and uniqueness of the solution
[8, 11]. The classical solution of (2.22) has to be determined in whole space and is at least two
times continuously differentiable in Ω and the exterior region Ω

c
.

For a so-called weak solution we further assume that Ω is a Lipschitz domain with polyhedral
boundary ∂Ω. One reformulates the set of equations (2.22), [16]:

For given m ∈
(
H1(Ω)

)3 the micromagnetic scalar potential φ := (φint, φext) ∈ H1(Ω)×H1
loc(Ω

c
)

is the solution to (2.22), where −∆φint = −∇ · m in Ω and −∆φext = 0 in Ω
c

holds in a varia-
tional sense.

Hereby, H1(Ω) denotes the usual Sobolev space, i.e. H1(Ω) := {u ∈ L2(Ω) | weak derivatives ∂qu ∈

L2(Ω), q = x, y, z} and H1
loc(Ω

c
) := {u ∈ H1(C) | C ⊂ Ω

c
compact}. The jump [.] is determined

by taking the corresponding trace operators. Within this setting the existence of a unique so-
lution to (2.22) has been proved. For details the reader is referred to [16, 17] and references
therein.

An integral representation of the scalar potential is given by [9, 10]

φ(x) = −
1

4π

( ∫
Ω

∇ · m(y)
‖x − y‖

dy −
∫
∂Ω

m(y) · n(y)
‖x − y‖

dσ(y)
)
. (2.23)

The expressions ∇ ·m and m · n are also called volume and surface charge density, respectively.

1Here Cq(Ω) is the space of q times continuously differentiable functions defined on Ω, Ω means closure of Ω

and (.)c stands for complement.
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2.3.2 Overview of Existing Methods

In order to compare micromagnetic methods in terms of storage and complexity it is important
to mention the possibility to precompute certain quantities that do not depend on the magneti-
zation m, e.g. only rely on the geometry of the problem, see for instance [18], where several
methods were compared. Thus, in asymptotic operation counts, one neglects the effort for com-
puting these steps and, instead, often refers to as precomputation or setup phase.

Several methods address the approximation of the solution to the set of equations (2.22) that
define the scalar potential. Integral methods with a regular discretization of the domain Ω aim
to directly compute the integral representation (2.23) of the solution inside the magnetic body
Ω. A widely used method aims to calculate the stray field inside the magnetic region by using
the (cell-averaged) gradient of (2.23), also referred to as demagnetizing tensor method [13, 19].
Discretization on an equispaced grid built of rectangular computational cells allows applying
fast Fourier transform (FFT) techniques, making this methods quasi-optimal, i.e. the costs are
O(N log N) for N grid points [9, 18, 19].

Also the fast multipole method and combination with FFT has been applied to compute the
magnetostatic field and energy [20–22], as well as a nonuniform grid (NG) algorithm [23].

Within the framework of integral approaches also tensor grid methods were developed, which
make further assumptions on the representation of the magnetization field by tensor formats,
but then can even gain sub-linear complexity [24–26]. Chapter 5 is dedicated to this topic.

A method that uses non-uniform FFT from [27] on the quadrature approximation of the integral
representation (2.23) discretized on unstructured 2-dimensional FE grids has been reported in
[28]. To the authors knowledge, this method would scale O(Q + N + nd log n) in the general
case of d dimensions for Q = qL quadrature points in total, where q quadrature points are
used for each of the L computational domains (tetrahedrons for volume and triangles for sur-
face integrals), N mesh-nodes and an auxiliary parameter n, which comes from the FFT. This
auxiliary parameter is of the same order as in the BEM-NFFT method in section 8.5, which
basically leads to the same complexity for a prescribed accuracy but requires only a pre-factor
q = 1. This is achieved by the usage of integrated window functions, hence, performing the
integration in a setup phase.

Moreover, shell transformation techniques on a finite element mesh containing Ω were applied
to address unbounded problems like (2.22), [29]. The discrete formulation of (2.22) translates
to only one sparse linear system, which, however, tends to be very ill-conditioned due to the
transformation. Algebraic multigrid preconditioners were successfully applied to address this
issue [18].

On the other hand, the well-known hybrid FEM-BEM coupling by the ansatz of Fredkin and

Koehler [30] aims to solve (2.22) by the splitting φ = φ1 + φ2, where φ1 is determined by

18



a Poisson equation with Neumann boundary conditions and φ2 by a Laplace equation where
the Dirichlet data are computed by the values of φ1 through a boundary integral representa-
tion of the potential φ2. Hereby, the calculation of the boundary values of φ2 leads to a dense
matrix-vector product which scales O(N2

b ) for Nb boundary nodes. Compression techniques
were introduced to reduce this complexity and storage requirements [31].

In chapter 8 a first order polynomial (P1) finite element method is presented that solves (2.22)
by the ansatz of García-Cervera and Roma [32], where a fast evaluation technique for the
single layer potential is developed [15].

2.4 Brown’s Equilibrium Equations

The condition of zero first variation (see Sec. 3.1 for a definition) of the total energy (2.15) sub-
ject to the unit norm constraint leads to necessary conditions for a magnetization configuration
in equilibrium [7]. These conditions are

m× he f f = 0 in Ω

m× ∂nm = 0 on ∂Ω,
(2.24)

where

he f f := −
δetot

δm
= 2Ã ∆m + hd + hext −

δeani

δm
, (2.25)

is the (reduced) effective field. The second equation in (2.24) implies Neumann conditions
∂nm = 0 due to the unit norm constraint.
The next chapter is dedicated to the numerical aspects of finding equilibrium magnetization
configurations.
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Chapter 3

Methods for Energy Minimization

Portions of this chapter were previously submitted for publication as [33] and have been repro-

duced here with permission of the co-authors. Content which was not generated by the author

of this thesis is explicitly denoted.

Probably one of the first numerical methods for the purpose of minimizing the total Gibbs free
energy was introduced by LaBonte [34]. This method was supposed to solve Brown’s equilib-
rium equation, i.e. he f f × m = 0, by a finite difference scheme for the Gibbs free energy of
a Bloch-wall in a ferromagnetic film. For that reason, in each step of an iterative procedure
the normalized effective field defines the new magnetization. This corresponds to a steepest
descent step with certain step length, cf. section 3.3. Kosavisutte and Hayashi [35] showed
that, in analogy with the SOR (Successive Over-Relaxation) method, LaBonte’s method can be
accelerated.
Cohen and co-workers [36] introduced a projected non-linear conjugate gradient method for
the computation of molecular orientation of liquid crystals. The orientation vectors in liquid
crystals have a fixed lengths similar to the magnetization in ferromagnets. In micromagnetics
a similarly conjugate gradient method has been applied, [37, 38]. Further, Alouges and co-
workers [39] computed equilibrium configurations and switching fields of small ferromagnetic
particles.

In the following the micromagnetic energy minimization problem is defined and the Karush-
Kuhn-Tucker (KKT) conditions are derived. In the remaining chapters several numerical meth-
ods for calculating local solutions are introduced.
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3.1 Problem Formulation in the Continuous Setting

Brown’s equilibrium equation is equivalent to the problem of finding a magnetization configu-
ration m in such a way that the variational derivative of h := ψt ◦ g with g : m 7→ m/ ‖m‖ (the
map onto the unit sphere) is zero:
The variational (or functional) derivative of h is given as

δ

δm
h(m) = JT

g (m)
δ

δm
ψt

(
g(m)

)
=

δ

δm
ψt(m) −

(
m ·

δ

δm
ψt(m)

)
m,

(3.1)

where Jg(m) is the Jacobian of g at m.
Remember that the variational (or functional) derivative of a functional h, denoted by δ

δmh(m),
is defined by

δh(m)(δm) =

∫
δ

δm
h(m) δm := lim

ε→0

h(m + ε δm) − h(m)
ε

, (3.2)

where the first equality holds in terms of distributions. The differential δh(m)(δm) is also
denoted as first variation of h. If the functional h is defined on a Banach space, then the
definition of the variational derivative coincides with that of a Fréchet derivative. In most
micromagnetic settings the magnetization is either assumed to be smooth up to e.g. second
derivatives or element of a Sobolev space. Hence, in those cases one would deal with Fréchet
derivatives of functionals defined on Banach or even Hilbert spaces.
For normalized m Eqn. (3.1) corresponds to the orthogonal projection of δ

δmψt(m) onto the
orthogonal complement of m, as can be easily seen by multiplication with m. Incidentally, a
generalization to non-normalized m would therefore be

δ

δm
ψt(m) −

m · δ
δmψt(m)

‖m‖2
m. (3.3)

Now, Brown’s equilibrium equation he f f × m = 0, cf. Sec. 2.4, means that an equilibrium state
m is parallel to the effective field, i.e.

−
δ

δm
ψt = λm, (3.4)

where multiplying with m and the constraint ‖m‖ = 1 gives for the multiplier λ = −δψt/δm · m
and hence

−
δ

δm
ψt − (−

δ

δm
ψt · m)m = 0. (3.5)
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Comparing Eqn. (3.5) with (3.1) yields

δ

δm
h(m) = 0. (3.6)

Thus, configurations m which fulfill he f f × m = 0 and ‖m‖ = 1 are critical points of h and vice
versa.
Since the micromagnetic energy minimization problem

minψt(m) subject to ‖m‖ = 1, (3.7)

has the unconstrained form

min h(w) = (ψt ◦ g)(w), (3.8)

the necessary first order optimality condition for normalized magnetization m := g(w) is given
by Eqn. (3.6), where in the following the quantity

δ

δm
h(m) =

δ

δm
ψt(m) −

(
m ·

δ

δm
ψt(m)

)
m = m× (−m×

δ

δm
ψt(m)), (3.9)

is denoted as projected variational derivative of the energy, where Lagrange’s formula

a × (b × c) = (a · c)b − (a · b)c, (3.10)

was used.

3.2 Problem Formulation in the Discrete Setting

Consider now a discrete setting, i.e. a discretized version of the total magnetic Gibbs free
energy, which we denote with capital letter, i.e. Ψt shall be a discrete realization of ψt cf.
(2.17). If not explicitly denoted as tensor, the magnetization is assumed as discrete (mesh)
vector m = (m(1)T

,m(2)T
,m(3)T )T ∈ R3N×1, where m(p) ∈ RN×1, p = 1, 2, 3 are the vectors of

x, y and z components with N degrees of freedom. For instance, imagine a Cartesian grid with
N = n1n2n3 nodes and magnetization defined on the centers of a computational cell, compare
with section 5.1.4. Alternatively, the reader can also think of a finite element discretization
where the degree of freedom N depends on the order of elements and the mesh size. For P1
(first order) N is equal to the number of nodes in the FE mesh.
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The problem of discussion is

min
m∈R3N

Ψt(m) subject to
∥∥∥mj

∥∥∥2

2
:= (m(1)

j )2 + (m(2)
j )2 + (m(3)

j )2 = 1, j = 1 . . .N (3.11)

where the (discretized) total energy Ψt consists of stray field, exchange, anisotropy and external
energy. Note that in general only local solutions to (3.11) can be derived numerically, which is,
however, enough for fulfilling Brown’s equilibrium condition, cf. Sec. 3.1.
In the following the index in ‖.‖2 is omitted. By the definition

a j :=
(
a(1)

j , a
(2)
j , a

(3)
j
)
, (3.12)

for a (mesh) vector a = (a(1), a(2), a(3))T ∈ R3N×1, the quantity ∇ΠΨt(m) ∈ R3N×1 with entries(
∇ΠΨt(m)

)
j

:=
(
∇Ψt(m)

)
j
−

(
mj ·

(
∇Ψt(m)

)
j

)
mj = mj ×

(
− mj ×

(
∇Ψt(m)

)
j

)
, (3.13)

for
∥∥∥mj

∥∥∥ = 1 (feasible), is the discrete analogue of the projected first variation of the energy
(3.9), and can therefore be denoted as projected gradient of the (discretized) energy. The dis-
crete version of the equilibrium condition (3.6) is therefore

∇ΠΨt(m) = 0 for m feasible. (3.14)

Also note that Eqn. (3.14) follows from the Lagrange multiplier theorem applied to problem
(3.11): By defining the Lagrangian function

L(m; λ) := Ψt(m) − λT c(m), (3.15)

with the multiplier vector λ ∈ RN×1 and c(m) ∈ RN×1 with c j(m) = 1
2

(
(m(1)

j )2 + (m(2)
j )2 + (m(3)

j )2−

1
)
, the first order (KKT) conditions

∇mL(m; λ) = 0,

∇λL(m; λ) = 0,
(3.16)

yield λ j = mT
j
(
∇Ψt(m)

)
j, which again substituted into the first equation in (3.16) gives the

condition (3.14). The Karush-Kuhn-Tucker (KKT) conditions for problem (3.11) are therefore
given by Eqn. (3.14), namely the configuration has to be feasible and the projected gradient at

this configuration has to be zero.
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3.2.1 Discretization of the Energy and Gradients

In this section and for the most part in this thesis the domain Ω is cubic and discretized on a
Cartesian grid with N = n3 nodes (more general N =

∏3
p=1 np) and the magnetization supposed

to be defined on the centers of a computational cell, also compare with section 5.1.4.
The exchange energy part is (cf. section 2.2)

eex = −

∫
Ω

3∑
p=1

m(p)∆m(p). (3.17)

In this thesis the second derivatives in (3.17) are discretized by symmetric finite differences,
i.e.

f ′′(x) =
1
h2 ( f (x − h) − 2 f (x) + f (x + h)) + O(h2), (3.18)

for f ∈ C4[x − h, x + h] and Neumann boundary conditions are considered, i.e.

f ′′(xk) =
1
h2 ( f (xk + h) − f (xk)) + O(h) (3.19)

for a node xk at the boundary. Together with midpoint integration for the integral in (3.17), this
yields a second order approximation on regular Cartesian grids to the exchange energy term
[40].
Since for the tensor grid methods (except the stray field method introduced in chapter 8) the
magnetization and the stray field (cf. chapter 5) are assumed to be constant in each cell (or are
defined in the centers of computational cells, respectively), midpoint integration of this terms
also yields second order approximations. In this context a term like the stray field energy gets a
sum of inner products of mesh vectors or tensors (cf. with the previous section and Eqn. (5.28)
in chapter 5)

ed ≈ −
1

2n1n2n3

3∑
p=1

(m(p))T h(p)
d , (3.20)

and similar for external and uniaxial anisotropy energies.
The gradients of the discretized energies can be derived by standard calculus. Depending on
the underlying discretization scheme (rectangular grid with midpoint integration with/without
tensor quantities used; finite elements cf. section 8.8, etc.) also compact (tensor) matrix ex-
pressions can be derived. Alternatively, the continuous (integral) form of an energy can be
investigated in terms of variational derivatives. For example, the reciprocity theorem gives for
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the first variation of the demagnetizing energy [7]

δed(m)(δm) = −
1
2

∫
hd(m) · δm + hd(δm) · m = −

∫
hd(m) · δm. (3.21)

For a certain discretization the first variation becomes an expression of the total differential of
the discretized energy. E.g. in the case of cell-wise constant magnetization mj and stray field
(hd) j one gets

ded =
∑

j

−|Ω j| (hd) j · dmj, (3.22)

where Ω j is the j−th discretization cell. Hence, in this case, the gradient of the demagnetizing
energy ∇ed(m) ∈ R3N×1 is simply given as

(
∇ed(m)

)
j :=

∂ed

∂mj
= −|Ω j| (hd) j. (3.23)

The same result can be derived from Eqn. (3.20) if the discrete stray field is assumed to be
calculated from a symmetric linear operator H (e.g. the demagnetizing tensor [13]), i.e. hd =

Hm.

3.3 Steepest Descent Method and Variations

Assume the non-linear optimization problem (3.11).
By the definition

(
H(m)

)
j := −mj ×

(
∇Ψt(m)

)
j, (3.24)

a steepest descent method would calculate a new iteration mn+1 from a given normalized ap-
proximation mn by

mn+1
j = mn

j − τn mn
j ×

(
H(mn)

)
j, j = 1 . . .N (3.25)

for a certain step size τn.
Note, that the steepest descent scheme (3.25) can be seen as the explicit Euler rule for the flow
equation

∂tm = −m×
(
m× he f f (m)

)
, (3.26)
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which is, up to constants, the Landau-Lifshitz equation (2.1) with only damping, since the
(discretized) effective field is proportional to ∇Ψt(m).
The new approximation mn+1

j in (3.25) is not normalized to 1. Therefore, one can introduce a
renormalization step, i.e.

mn+1
j (τn) =

1√
1 + τ2

n A2
j,n

(
mn

j − τn mn
j ×

(
H(mn)

)
j

)
, j = 1 . . .N, (3.27)

where
∥∥∥mn+1

j

∥∥∥ =
√

1 + τ2
n A2

j,n, A j,n :=
∥∥∥(H(mn)

)
j

∥∥∥ was used. This is equivalent to (̃τn :=

τn/
√

1 + τ2
n A2

j,n)

mn+1
j (̃τ) =

√
1 − τ̃2

n A2
j,n mn

j − τ̃n mn
j ×

(
H(mn)

)
j, j = 1 . . .N. (3.28)

For determining the step τn or τ̃n one could approximately solve either the one-dimensional
problem

min
τn>0

Ψt

(
mn+1

j (τn)
)
, (3.29)

or

min
τ̃n∈[0,1/A j,n]

Ψt

(
mn+1

j (̃τn)
)
, (3.30)

by inexact line search, see e.g. [41] or by the so-called Barzilai-Borwein (BB) rule [42].
Nevertheless, steepest descent performs very poor in practice. Therefore, two alternatives are
introduced in the following, which can be viewed as significant improvements over steepest
descent.

LaBonte’s original method replaced the magnetization by the normalized gradient, i.e. for the
new iterate holds

(
∇Ψt(mn)

)
j × mn+1

j = 0, j = 1 . . .N. (3.31)

Locally (fixed j) this is a steepest descent step with step length τ = −
(
(mn

j)
T (∇Ψt(mn)

)
j

)−1
(if

mn
j and

(
∇Ψt(mn)

)
j not perpendicular), as can be recalculated for mn+1

j = mn
j − τmn

j ×
(
H(mn)

)
j.
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3.3.1 A Semi-Implicit Scheme

Replace the steepest descent direction by

−
mn

j + mn+1
j

2
×

(
H(mn)

)
j, (3.32)

which yields the iteration scheme

mn+1
j (τ) = mn

j − τ
mn

j + mn+1
j

2
×

(
H(mn)

)
j j = 1 . . .N. (3.33)

This update scheme preserves the length of the iterates, i.e.
∥∥∥mn+1

j

∥∥∥ =
∥∥∥mn

j

∥∥∥, which can be easily
checked by multiplying Eqn. (3.33) by mn

j + mn+1
j . An advantage is the fact that the new state

mn+1
j can be computed by explicit formulas [43], so no system of equations has to be solved

each step, i.e.

d = 4u + 4τbw − 4τcv − τ2b2u + τ2a2u − τ2c2u + 2τ2abv + 2τ2acw,

e = 4v + 4τcu − 4τaw + τ2b2v − τ2a2v − τ2c2v + 2τ2cbw + 2τ2abu,

f = 4w + 4τav − 4τbu − τ2b2w − τ2a2w + τ2c2w + 2τ2bcv + 2τ2acu,

mn+1
j (τ) = (d, e, f )T/N;

(3.34)

where the abbreviations
(
H(mn)

)
j = (a, b, c)T and mn

j = (u, v,w)T are used and N := 4 + τ2(a2 +

b2 + c2).
The update scheme (3.33) can be seen as an implicit integration rule for the flow equation
(3.26). In [33] this method was compared to a state-of-the-art adaptive time integration scheme
for (3.26), where for a hard magnetic sample the scheme based on (3.33) outperformed the time
integrator.
The first step size τ0 is calculated by an inexact line search and all subsequent steps τn by the
so-called Barzilai-Borwein (BB) rule [42]:
Define

gn :=∇h(mn) = mn × (−mn × ∇Ψt(mn))

sn−1 := mn − mn−1

yn−1 := gn − gn−1.

(3.35)

The step size τn is determined such that Dn := τ−1
n I is an approximation of the Hessian of h at

mn, i.e. the secant equation Dnsn−1 = yn−1 holds. By multiplying this equation with (sk−1)T and
(yk−1)T one finds the two possible solutions

τ1
n =

(sn−1)T sn−1

(sn−1)T yn−1 , τ2
n =

(sn−1)T yn−1

(yn−1)T yn−1 . (3.36)
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Indeed, in one dimension the condition Dnsn−1 = yn−1 yields the ’secant approximation’ to the
second derivative, i.e. 1/τk = (h′k − h′k−1)/(mk − mk−1) ≈ h′′k .
One possibility is to alternately switch between τ1

n and τ2
n. However, in the algorithm presented

in Alg. 2 the more elaborate strategy proposed for step selection in gradient projection methods
[44] is used, see Alg. 1. In the numerical tests τmax = 1e+6 and τmin ∼ stopping tolerance was
used.
Note that the BB rule yields a non-monotonic method, thus, as globalization strategy, an inexact
line search (simple backtracking) [41] is used if the new computed energy is still larger than the
maximum of the previous (e.g.) 20 energies. Alg. 2 summarizes the method where a p−norm is
used for the stopping criteria, e.g. p = ∞ for maximum norm, or p = 2 for l2-norm (Euclidean
norm)

Algorithm 1 Barzilai-Borwein switch; BBswitch(τmin, τmax, τ
1
n, τ

2
n, α)

Require: τmin, τmax > 0, τ1
n, τ

2
n, α ∈ [0, 1]

Ensure: τ, α
1: if τ1

n ≤ 0 then . (sn−1)T yn−1 ≤ 0
2: τ← τmax

3: else
4: τ1 ← max

(
τmin,min(τ1

n, τmax)
)

5: τ2(n mod 2)← max(τmin,min
(
τ2

n, τmax)
)

6: if τ1/τ2 ≤ α then
7: τ← min τ2

8: α← 0.9α
9: else

10: τ← τ1

11: α← 1.1α
12: end if
13: end if

3.3.2 Limited Memory Quasi Newton Scheme

Limited memory quasi Newton methods are efficient methods for unconstrained numerical op-
timization. The Hessian of the objective function is approximated using the vectors (3.35) from
a few previous iterations, i.e. the Hessian is approximated by low rank updates (dyadic prod-
ucts), see [41] for a detailed description and analysis of limited memory quasi Newton methods.
This yields in the n-th iteration the quasi Newton step

pn = −Q−1
n gn, (3.37)

where Qn is the approximate Hessian and gn the gradient of the objective at the current iterate
mn. The limited memory variant of the BFGS formulas (lBFGS) allow the direct calculation of
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Algorithm 2 Semi-implicit steepest descent scheme; SemiImplSD(m0,tol)

Require: m0 ∈ R3N , tol> 0
Ensure: m ∈ R3N

1: m← Calculate steepest descent step from initial state m0 with (inexact) line search ensur-
ing (at least) (3.39)

2: Set n← 1, α← 0.5
3: while ‖∇ΠΨt(m)‖p > tol do
4: if Ψt(mn) ≤ emax then . emax maximum value of energy of last (e.g.) 20 iterations
5: τ1

n, τ
2
n ← calculate BB steps from (3.36)

6: τ, α← BBswitch(τmin, τmax, τ
1
n, τ

2
n, α)

7: m← m(τ) calculated using formulas (3.34)
8: else
9: τ← arg minτ Ψt

(
m(τ)

)
calculated by (inexact) line search ensuring (at least) (3.39)

10: m← m(τ)
11: end if
12: n← n + 1
13: end while

the quasi-Newton direction pn by a 2−loop recursion without inversion of Qn [41]. In their lim-
ited memory variants they have about the same computational costs as well as storage demands
as the steepest descent method of the previous section. In addition, quasi Newton methods also
carry information of the curvature of the problem.
The problem which is suited for lBFGS is the unconstrained version of problem (3.11)

min h(m), (3.38)

with the gradient (3.13) if the mj are normalized. As a step length selection, Alg. 3 uses simple
backtracking (like in Alg. 2), which ensures the sufficient decrease condition, i.e.

h(mn + τpn) ≤ h(mn) + c1τ∇
(
h(mn)

)T pn, (3.39)

with c1 = 1e-4 and τ0 = 1 is tried first. A more elaborate line search strategy would also try to
ensure a curvature condition, but this is not considered here, see [41] for more information.

3.3.3 Comparison

A good starting point for comparison of the performance of the two methods Alg. 2 and Alg. 3
is the calculation of a flower state in a soft ferromagnetic cube near the single domain limit, i.e.
L ∼ 8lex. More precise the parameters λ = 8.4515 and Q = 0.05 are chosen. Both methods
measure the maximum norm of the projected gradient. Table 3.1 shows the number of itera-
tions and function evaluations (energy and gradient are evaluated simultaneously) for different
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Algorithm 3 Limited memory Quasi Newton; lBFGS(m0,tol)

Require: m0 ∈ R3N , tol> 0
Ensure: m ∈ R3N

1: m← Calculate steepest descent step from initial state m0 with (inexact) line search ensur-
ing (at least) (3.39)

2: Set n← 1
3: while ‖∇ΠΨt(m)‖p > tol do
4: pn ← lBFGS quasi Newton direction from 2-loop recursion [41] using limited memory

parameter M.
5: τ← arg minτ h

(
m + τpn) calculated by (inexact) line search ensuring (at least) (3.39)

6: m← m + τpn

7: mj ← mj/
∥∥∥mj

∥∥∥
8: n← n + 1
9: end while

Table 3.1: The number of iterations and function evaluations (energy and gradient are evaluated
simultaneously) for different mesh-sizes (N = n3) and tolerance tol= 1e-7 of Alg. 2 and Alg. 3
for cube with λ = 8.4515 and Q = 0.05. Initial state is always uniform magnetization in
z-direction. M denotes the limited memory parameter in Alg. 3.

Alg. evaluations iterations
n = 30 SemiImplSD 87 81

lBFGS (M = 16) 42 41
lBFGS (M = 8) 42 41

n = 50 SemiImplSD 182 167
lBFGS (M = 16) 59 58
lBFGS (M = 8) 68 66

mesh-sizes and tolerance 1e-7. Initial state is always uniform magnetization in z-direction.
The limited memory Quasi Newton solver outperforms the (semi-implicit) steepest descent
solver in this test, especially for larger grids. Increasing the number of dyadic products in
the low-rank approximation of the Hessian (i.e. limited memory parameter) improves the per-
formance in terms of needed iterations and function evaluations. Nevertheless, the storage
requirements increase linearly with M. The second test is the calculation of a demagnetizing
curve of a 70nm Nd2Fe14B cube. The material parameters are chosen as following: uniaxial
anisotropy axis in z-direction, Js = 1.61T, K1 = 4.3e+6 J/m3 and A = 7.3e-12J/m. The mesh
size is n = 50, which yields a grid spacing of about the wall width parameter. The field is
applied parallel to the (1, 0, 1)−axis and is decreased by steps of ∆h = 5e-3 from 1 to −2, when
the relative l2-norm (‖.‖2 /(3N)) of the projected gradient is smaller than 1e-11. The previous
final (relaxed) magnetization state is taken as the new initial state; the first initial state is paral-
lel to the field axis. Hence, the test involves 601 subsequent minimization problems. Tab. 3.2
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Figure 3.1: Demagnetizing curve of 70nm Nd2Fe14B cube, i.e. projection of magnetization onto
field axis (1, 0, 1)T (|m|) as function of external field h. Uniaxial anisotropy axis is (0, 0, 1)T ,
∆h = 0.005, opt-tol (rel. l2) = 1e-11.

Table 3.2: The number of function evaluations (energy and gradient are evaluated simultane-
ously) of Alg. 2 and Alg. 3 for calculation of the demagnetizing curve in Fig. 3.1.

Alg. evaluations
SemiImplSD 6162
lBFGS (M = 8) 3555

shows the number of function evaluations of the two algorithms for the whole simulation.

3.4 Miscellaneous Approaches for Micromagnetic Energy Min-
imization

The variations of the steepest descent method, introduced in the previous section, represent fast
and storage-friendly numerical methods for standard spacial discretizations of the total energy
(finite differences, finite elements). However, within the scope of this work, particular ten-
sor structured magnetization configurations will be considered. In this case, the generalization
of Alg. 2 and 3 demands for truncation of certain tensor representations whose storage re-
quirements would increase significantly otherwise. However, these generalizations of standard
algorithms via so-called approximate tensor arithmetics turns out to yield serious limitations
in practice due to possible rapid storage (and computational) demands, cf. Ch. 6 and 7. Alter-
natively, the micromagnetic energy minimization problem subject to structured tensors can be
formulated in a penalty framework, which incorporates the constraint into the problem formu-
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lation, cf. Sec. 7.4. In the following such inexact methods are formulated for micromagnetics.
The chapter starts with penalty methods and then describes Newton’s method on the KKT con-
ditions. Alouge’s method for energy minimization [39] can be considered as a special case of
the latter one.

3.4.1 Penalty Methods

The quadratic (l2-) penalty function for problem (3.11) is

Qµ(m) := Ψt(m) +
µ

2

N∑
j=1

( 1
2 (‖mj‖

2 − 1)︸         ︷︷         ︸
=:c j(m)

)2
= Ψt(m) +

µ

2
‖c(m)‖2 , (3.40)

where µ > 0 is the penalty parameter. In general, a penalty term [squared norm term in (3.40)]
is a function of the constraints that is greater than zero iff the constraints are not fulfilled and
therefore ’penalizes’ this violation. Penalty methods are in the class of so-called infeasible,
inexact or exterior methods because iterates do not fulfill the constraints. Instead, the aim is
to approach an optimal solution for the constrained problem from the infeasible region. A
general penalty method framework, cf. [41], is summarized in Alg. 4. The penalty parameter
has to tend to infinity. A practical strategy is to leave µ unchanged if the previous minimization
caused a sufficient decrease of the constraint violation, and increase it otherwise. Hence, in
the description of Alg. 4 the scaling factor Mn is assumed to be determined accordingly on
run time, e.g. Mn = 1 or 5. The final termination condition in Alg. 4 has do be safeguarded
by e.g. a maximum allowed iteration number or some condition that checks if the iteration is
converging to a stationary point of ‖c(.)‖2, see the remark after Th. 1 for a short discussion in
the case of the unit-norm constraint. The reason is the following theorem:

Algorithm 4 Quadratic penalty method; qPM(m0,tol,µ0,τn → 0)
Require: m0 ∈ R3N , tol> 0, µ0 > 0,τn → 0 (nonnegative)
Ensure: m ∈ R3N

1: m← m0, µ← µ0, n← 0
2: while

∥∥∥∇mQµ(m)
∥∥∥

p
> tol do

3: Find approximate solution x to the sub-problem min Qµ(.) starting at m and ensure∥∥∥∇mQµ(x)
∥∥∥ ≤ τn

4: µ← Mn µ (Mn ≥ 1)
5: m← x
6: n← n + 1
7: end while

Theorem 1 ([41] Th.17.2). Let µ→ ∞ and τn → 0 in Alg. 4. Then for a limit point m∗ holds:

• If m∗ is infeasible (constraint is violated), it is a stationary point of ‖c(.)‖2.
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• If m∗ is feasible , then m∗ is a KKT point for problem (3.11), i.e. (3.16) holds.

Remark 1. In the original theorem from [41] in the feasible case of m∗ the additional condition

that D(m∗) := [∇c1(m∗), . . . ,∇cN(m∗)] has full rank has to be satisfied.

Since for the micromagnetic side constraints holds

D(m) =


m1

. . .

mN

 ∈ R3N×N , (3.41)

the required condition is fulfilled automatically whenever m is non-degenerate (particularly the

case if m is feasible).

On the other hand, if m∗ in Th. 1 is infeasible (c(m∗j) , 0) it follows that c(m∗) ∈ ker
(
D(m∗)

)
,

i.e.

D(m∗)c(m∗) = 0. (3.42)

This is equivalent to the ’complementarity’ condition

c j(m∗)m∗j = 0 for all j = 1 . . .N. (3.43)

Hence, the first case in Th. 1 can be identified by checking the condition (3.43), e.g. if
∣∣∣‖mj‖

2 − 1
∣∣∣

is greater some tolerance tol2 := 1 − ε > 0 check if ‖mj‖
2 < ε. �

An inherent problem of the quadratic penalty method is the ill-conditioning in the Hessian
∇2

mmQµ as µ increases: The Hessian is given as

∇2
mmQµ(m) = ∇2Ψt +

N∑
j=1

µc j(m)∇2c j(m) + µD(m)D(m)T . (3.44)

From Th.17.2 in [41] (feasible case) one gets near the minimizer

∇2
mmQµ(m) ≈ ∇2

mmL(λ∗) + µD(m)D(m)T , (3.45)

which is a sum of a part that is independent of µ (the first one of (3.45) which contains
the Hessian of the Lagrangian function L) and a rank N matrix whose nonzero eigenval-
ues are of order µ. Hence, the Hessian of the penalty function has some eigenvalues ap-
proaching a constant, while others are of order µ. Since µ → ∞, the condition number
κ
(
∇2

mmQµ(m)
)

= |λmax/λmin| → ∞. Nevertheless, there exists a well-conditioned reformula-
tion of the linear system which determines a Newton step in the unconstrained subproblems of
Alg. 4, [41].
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Moreover, so-called exact penalty methods do not require the penalty parameter to approach in-
finity due to the fact that there exists a finite value µ∗ for which the local minima of the penalty
functions with µ > µ∗ coincide with the solution (KKT point) of the constrained problem [41].
Such penalty functions use for instance the l1-norm, l2-norm (not squared) or l∞-norm, which
are non-smooth functions.
Another penalty-like method is the augmented Lagrangian method, which consists of uncon-
strained subproblems for the augmented Lagrangian function

LA(m, λ, µ) := Qµ(m) − λT c(m), (3.46)

where the penalty parameter µ and the vector λ are fixed. Near the solution one gets λ∗ ≈
λ − µc(m), which gives rise to the updating scheme in the n-th iteration: λn+1 = λn

− µnc(mn).
Conditions for convergence of the augmented Lagrangian method [41] do not require µ to
approach infinity, which makes ill-conditioning of this method less a problem than for the
quadratic penalty method.
The l2-penalty method (as well as the augmented Lagrangian method) needs several hundred
function evaluations for the flower state example of Sec. 3.3.3 and can be considered to be
inferior to the previous introduced methods. Nevertheless, the l2-penalty method represents a
suitable way to treat the point-wise unit norm constraints when dealing with structured tensors
as magnetization, Ch. 7.

3.4.2 Newton’s Method on the KKT Conditions

The KKT conditions (3.16) are a set of 4N non-linear equations

F(m, λ) =

 ∇Ψt(m) − D(m)λ
c(m)

 = 0, (3.47)

where D is defined in (3.41). Solving this set of equations by Newton’s method requires the
Jacobian matrix of F

F′(m, λ) =

 ∇2Ψt − Λ −D(m)

D(m)T 0

 , (3.48)

where Λ ∈ R3N×3N is a diagonal matrix consisting of the diagonal blocks Λ j = λ jI3 ∈ R
3×3.

Alg. 5 summarizes the Newton procedure for (3.47). The linear system (3.49) has a unique
solution if the Hessian matrix ∇2

mmL(λ) = ∇2Ψt −Λ is positive definite on, at least, the tangent
space of the unit norm constraints, that is dT

∇2
mmL(λ)d > 0 for all d , 0 with D(m)T d = 0

(means d j ⊥ mj, j = 1 . . .N), cf. Lemma 16.1 [41]. Under this condition Alg. 5 converges
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Algorithm 5 Newton’s method for KKT system; NKKT(m0,λ0,tol)

Require: m0 ∈ R3N , λ0
∈ RN , tol > 0

Ensure: m ∈ R3N

1: m← m0, λ← λ0

2: while ‖F(m, λ)‖p > tol do
3: Solve the linear system

F′(m, λ)[δmT , δλT ]T = −F(m, λ). (3.49)

4: [mT , λT ]T ← [mT , λT ]T + [δmT , δλT ]T

5: end while

quadratically provided that the initial guess is close enough to the solution.
The linear system (3.49) can also be seen as the KKT conditions of a quadratic program, i.e.
quadratic expansion of the Lagrangian function at the current iterate m subject to linearized
constraints, [41]. This allows one to apply ideas from quadratic programming on the subprob-
lems (3.49) (so-called sequential quadratic programming (SQP)), e.g. Null-space methods,
projected CG, (reduced Hessian) quasi-Newton, etc. [41].
As a numerical test the flower state example of Sec. 3.3.3 is chosen. The subproblems in Alg. 5
are solved with a GMRES algorithm where the action of the Hessian ∇2Ψt is computed with the
help of the gradient, i.e. (∇2Ψt)x = ∇Ψt(x) + 1/n3hext. As the stopping criterion the projected
gradient is measured in the maximum norm like in Sec. 3.3.3. For the case n = 30 the number
of function evaluations were 67 (those for the Hessian evaluation included) and 6 iterations in
the outer loop, which is comparable with the corresponding amount of evaluations that were
needed for the gradient based methods in Sec. 3.3.3. However, further numerical tests show
that the Newton-KKT (NKKT) algorithm Alg. 5 strongly depends on the initial state. Further,
iterative solution of the systems (3.49) would need preconditioning for large system sizes. In
reference [45] a block preconditioner is suggested for the reduced Newton system arising from
liquid crystal modeling which is a similar problem like the micromagnetic energy minimization
problem.

Relation to Alouge’s method:

Alouge and co-workers proposed an update scheme [39] (for a finite element discretization of
the energy) where in each step a quadratic program has to be solved, i.e.

min
δm

Ψt(m + δm) s.t. D(m)Tδm = 0. (3.50)

Since Ψt is quadratic the objective in (3.50) is

Ψt(m + δm) = Ψt(m) + (∇Ψt(m))Tδm + 1
2δmT∇2Ψt δm. (3.51)

35



The first order optimality conditions for (3.50) lead to a linear system like (3.49) but with Λ = 0
and c(m) = 0. The updated solution in the algorithm proposed in [39], i.e. m+τnδm for suitable
τn, is normalized afterwards, hence, m is always normalized. This justifies c(m) = 0 in the
linear system. However, the choice Λ = 0 is somehow questionable. Numerical tests also show
slow convergence, respectively, serious problems near a solution. Moreover, the linear system
is solvable if ∇2Ψt is positive definite which does not have to be the case. Nevertheless, since
m is normalized any matrix of the type of Λ can be added to the Hessian of Ψt, e.g. constructed
from an estimate of the Lagrange multiplier vector (to the original unit norm constraint) λ =

D(m)T∇Ψt(m) cf. (3.16).
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Chapter 4

Tensor Formats

Portions of this chapter were previously published as [25] or submitted for publication as [26]

and have been reproduced here with permission of the co-authors. Content which was not gen-

erated by the author of this thesis is explicitly denoted.

Most of the computational schemes developed in this thesis rely on, or at least give the possi-
bility to make use of, structured tensor representation, so called tensor formats. The following
chapter is dedicated to data sparse formats for multidimensional data.

4.1 Motivation

In the following the term tensor is understood as multidimensional array (’high dimensional
matrix’). Most of the time three dimensions are enough for the purpose of the following dis-
cussion.
Let the set of (order-3) tensors 1 with mode sizes n = (n1, n2, n3) over the field K = R or C be
denoted with

⊗3
p=1K

np and the set of matrices of size n1 × n2 as usual with Kn1×n2 . The tensor
space

⊗3
p=1K

np is the vector space generated by linear combinations of so-called rank-1 ten-
sors (elementary tensors), e.g. §3.2.6.1 in reference [47] and Sec. 4.2.

In the last few years much research was done on problems and applications where tensors ap-
pear as data or solutions. There are two basic distinctions in principle:
First, there are many problems where tensors arise as multidimensional (observed) data sets,
e.g. psychometrics, data mining, neuroscience, image compression and classification, see [46]
references therein.
Secondly, those problems where tensors come from an underlying multivariate function, like
for instance if one discretizes a Poisson equation −∆u = f on Ω = [0, 1]3 on a regular Cartesian
grid (tensor grid) in, e.g., three spacial dimensions. A tensor grid method would aim to approx-

1Another common notation is KI where I = I1 × I2 × I3 and Ip = {1 . . . np}, see [46]
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imate the solution u∗ = u∗(x1, x2, x3) on a tensor grid of size n = (n1, n2, n3) (mode-sizes) by a
tensor U ∈

⊗3
p=1 R

np with entries ui1i2i3 ≈ u∗(X(i1),Y(i2),Z(i3)), where X,Y,Z is meant to be
the lists of x, y and z coordinates of grid points, respectively. Thus, the tensor U contains the
(approximate) function values of the solution sampled on the grid. In this context, U is called
a function-related tensor.
In general, the explicit storage of the

∏d
q=1 nq (complex) numbers in the case of d � 2 dimen-

sions or large mode-sizes is not possible anymore, similar difficulties arise in the context of
computational cost; from Beylkin-Mohlenkamp [48]:

’When an algorithm in dimension one is extended to dimension d, in nearly every case its

computational cost is taken to the power d. This fundamental difficulty is the single greatest

impediment to solving many important problems and has been dubbed the curse of dimension-

ality.’

To break this curse, an approach based on separated representation of functions and operators
in higher dimensions was discussed [48], i.e.

f (x1, . . . , xd) =

r∑
l=1

αl f (1)
l (x1) f (2)

l (x2) . . . f (d)
l (xd). (4.1)

The discrete representation of the function in (4.1) on a d-dimensional rectangular domain (ten-
sor product grid) is called a canonical tensor, see section 4.2. Also approximation schemes for
compressed format of dense discrete (tensor) representation of multidimensional data or so-
lutions/operators of high dimensional problems, e.g. by low-rank decomposition, were devel-
oped, see for example [46, 47] or [6] for a literature survey on low-rank tensor approximation
techniques.

The following sections are brief introductions into the widely used tensor formats, i.e. canon-

ical tensors, Tucker tensors and Tensor Trains, but also aspects like (best) approximation from
a theoretical and practical point of view are discussed. For an extensive review on structured
tensors and some algorithms to compute structured tensor approximations the reader is referred
to the work [46] and references therein. The most common arithmetic operations on Tucker
and canonical tensors are presented in [49]. Those for tensor trains can be found in [50].
The following definitions are fundamental for the further discussion.
Let X,Y ∈

⊗3
p=1 R

np . The Frobenius norm is defined as

‖X‖F :=

√√ n1∑
i1=1

n2∑
i2=1

n3∑
i3=1

x2
i1i2i3

, (4.2)
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which is associated with a scalar product

〈X,Y〉 :=
n1∑

i1=1

n2∑
i2=1

n3∑
i3=1

xi1i2i3 yi1i2i3 , (4.3)

with ‖X‖2F = 〈X,X〉.
For a matrix U ∈ Rm×n j the j-mode matrix product X × j U of the tensor X with U is defined
element-wise in the following way. E.g. for j = 1,

(X ×1 U)i1 i2 i3 :=
n1∑

i′=1

xi′ i2 i3 ui1 i′ , (4.4)

i.e., the resulting tensor X ×1 U ∈ Rm×n2×n3 is obtained by right-multiplication of the mode-1
fibers (columns) of X by U. Analogously for j = 2, 3; the cost for the computation of X × j U
is O(m

∏3
q=1 nq) operations in general. In the forthcoming text the following definitions are

useful.

Definition 1 (Tensor outer product). Let a(p) ∈ Rnp , p = 1 . . . d. Then the outer product of the

vectors a(p) is a tensor X ∈
⊗d

p=1 R
np given via

X = a(1) ◦ a(2) ◦ . . . ◦ a(d),

xi1i2...id = a(1)
i1

a(2)
i2
. . . a(d)

id
.

(4.5)

Definition 2 (Kronecker product). For two matrices A ∈ RI×J and B ∈ RK×L the Kronecker

product is defined by

A ⊗ B =


a11B a12B . . . a1JB
a21B a22B . . . a2JB
...

...
. . .

...

aI1B aI2B . . . aIJB


∈ RIK×JL. (4.6)

Definition 3 (Khatri-Rao product). Given two matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-

Rao product is defined by

A � B = [a1 ⊗ b1 a2 ⊗ b2 . . . aK ⊗ bK] ∈ RIJ×K . (4.7)
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4.2 Canonical Tensors

Definition 4. A tensorX ∈
⊗3

p=1 R
np is said to be in canonical format [CANDECOMP/PARAFAC

(CP) decomposition] with (outer product) rank R, if

X =

R∑
r=1

λr u(1)
r ◦ u(2)

r ◦ u(3)
r , (4.8)

with λr ∈ R, and (unit) vectors u( j)
r ∈ R

n j .

Abbreviating notation as in [46], a tensor in CP format is written as

X ≡ ~λ; U(1),U(2),U(3)�, (4.9)

with weight vector λ = [λ1, . . . , λR] ∈ RR and (factor) matrices U( j) =
[
u( j)

1 | . . . |u
( j)
R

]
∈ Rn j×R.

The storage requirement for the canonical tensor format amounts to R
∑3

j=1 n j.
In the following Cn,r denotes the set of canonical tensors with mode sizes n = (n1, n2, n3) and
rank r, and simple Cn,r, when the mode sizes are equal.
The inner product for two canonical tensors A ∈ Cn,r1 and B ∈ Cn,r2 , as well as other opera-
tions, can be performed with reduced complexity [for the inner product operation it amounts to
O(r1r2

∑
q nq) ], see e.g. [49].

In general, element-wise operations (element-wise multiplication, evaluation of a function on
the entries, etc.) for structured mathematical objects (matrices, tensors) are difficult to perform
within the format in terms of preserving the structure and not destroy it. The element-wise
product of CP tensors is a good example for this issue; it can be performed within the format
but increases the rank:
For two canonical tensors X = ~ λ; U(1),U(2),U(3) � ∈ Cn,r and Y = ~µ; V(1),V(2),V(3) � ∈ Cn,r′

of equal mode sizes the Hadamard product (element-wise product) is

(
X • Y

)
IJK =

∑
i

∑
j

λi µ j
(
u(1)

Ii v(1)
I j

) (
u(2)

Ji v(2)
J j

) (
u(3)

Ki v
(3)
K j

)
≡ ~ ν; W(1),W(2),W(3) � ∈ Cn,rr′ , (4.10)

where ν = [λ,µ] and W(p) =
[
u(p)

1 • v(p)
1 | . . . |u

(p)
1 • v(p)

r′ | . . . |u
(p)
r • v(p)

r′

]
∈ Rnp×rr′ . The cost

for forming (4.10) is of order O(rr′
∑3

p=1 np). The new CP tensor has rank r r′. Direct re-
compression can be considered e.g. by optimization [51].

The tensor (outer-) product rank, i.e. the minimal number of rank-1 terms in a representation
like (4.8) for a tensor X, is an analogue of the matrix rank. However there are major differ-
ences between those two [46]. The product rank of a tensor might be different over R and C; in
principle there is no easy algorithm to determine the tensor rank since this is an NP-complete
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problem [52]. In fact, there are several specific examples of tensors where only bounds exist
for their ranks. Moreover the tensor rank is not upper semi-continuous, e.g. there exist se-
quences of tensors of rank ≤ r converging to a tensor of rank greater than r [53]. There is no
Eckart-Young Theorem available, i.e. a CP decomposition can not be computed via the singu-

lar value decomposition (SVD), indeed, it is possible that the best rank-r approximation of a
tensor of order greater than two may not even exist for the case r > 1, [53]. Hence, the set
Cn,r ⊂

⊗d
p=1 R

np is not closed for r > 1 and d > 2. In fact, the best approximation problem
minX∈Cn,r ‖X − Y‖ is unsolvable if and only if infimum sequences are unstable, i.e. their rank-1
terms get unbounded, see §9.4 and §9.5.3 in reference [47]. Hence, closed subsets of canonical
tensors are those with terms bounded by a constant c > 0, i.e.

Cc
n,r := {X =

r∑
j=1

u(1)
r ◦ u(2)

r ◦ u(3)
r ∈ Cn,r :

r∑
j=1

∥∥∥u(1)
r ◦ u(2)

r ◦ u(3)
r

∥∥∥2
=

r∑
j=1

3∏
q=1

∥∥∥u(q)
r

∥∥∥2
≤ c}. (4.11)

Nevertheless, a broad community uses canonical decomposition, e.g. psychometrics, data min-

ing, neuroscience, image compression and classification, see [46] references therein.
Algorithms for computing canonical decompositions are mostly based on optimization, e.g. al-

ternating least squares [46], gradient based or nonlinear least squares methods [51] or Gauss-

Newton [54].
Also black-box approximation using fibre-crosses was considered [55, 56]. This method is also
based on an optimization approach but the cost function only requires the evaluation of the
original tensor on small sets of indices.
Approximation of operators like the multi-particle Schrödinger operator [48] or Newton po-
tential [57] can also be achieved by using the canonical tensor format in order to overcome the
curse of dimensionality. For matrices A ∈ R

(∏3
i=1 ni

)
×
(∏3

i=1 ni

)
, typically arising from discretized

operators, the canonical format is usually given in Kronecker product form [58]

A =

r∑
j=1

α j U(1)
j ⊗ U(2)

j ⊗ U(3)
j , (4.12)

with matrices U(q)
j ∈ R

nq×nq , scalars α j and ⊗ equals Kronecker product. Due to the relation
vec

(
vec(U(3)) ◦ vec(U(2)) ◦ vec(U(1))

)
= vec(U(1))⊗ vec(U(2))⊗ vec(U(3)), the form (4.12) can be

identified with (4.8), where the vectorization vec(.) is understood as in [46].
Storage and tensor operations for the canonical format scale linearly in the dimension d, rather
than exponentially as for dense tensors. However, the above mentioned drawbacks (instability,
lack of robust algorithms) have led to the development of other (stable) formats that scale
linearly or polynomially in the dimension, such as H-Tucker [59] which relies on hierarchical
tree structure, or the Tensor Train format [50], which is briefly discussed in Sec. 4.4.
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4.3 Tucker Tensors and Quasi-Best Approximation

Definition 5. A Tensor X ∈
⊗3

p=1 R
np is said to be represented in Tucker format if

X = C ×1 U(1) ×2 U(2) ×3 U(3) ≡ ~C; U(1),U(2),U(3) �, (4.13)

with the so-called core tensor C ∈
⊗3

p=1 R
rp and (factor) matrices U( j) ∈ Rn j×r j .

The storage requirement for (4.13) is
∏3

j=1 r j +
∑3

j=1 n jr j, which is smaller than
∏3

j=1 n j if
r j � n j.
The j-rank of a tensor X is the rank of the unfolding ( j-mode matricization) X( j), [46]. By
setting r j = rank(X( j)), the tensor X is usually referred to as rank-(r1, r2, r3) tensor. Of course
r j ≤ n j holds.
In the following the set of Tucker tensors with mode sizes n = (n1, n2, n3) and ( j-) ranks r =

(r1, r2, r3) is denoted with Tn,r and with Tn,r if r ≡ r j. In fact, Tn,r contains all tensors with
mode-size n and j-ranks smaller or equal r j, [47]. There also holds Cn,r ⊆ Tn,r since a canonical
tensor can be identified with a Tucker tensor which has a diagonal core tensor. Hence, the
’Tucker-rank’ is smaller or equal the ’CP-rank’.
Many algebraic operations for Tucker tensors, like inner product, mode-multiplication, etc.,
can be performed with reduced complexity, see e.g. [49]. Again, the elemet-wise evaluation of
Tucker tensors is non-trivial in general. The element-wise product is described in detail:
For two Tucker tensors X = ~C; U(1),U(2),U(3) � ∈ Tn,r and Y = ~D; V(1),V(2),V(3) � ∈ Tn,r′

of equal mode sizes the Hadamard product (element-wise product) is

(
X • Y

)
IJK =

∑
i, j,k

∑
l,m,n

ci jk dlmn
(
u(1)

Ii v(1)
Il

) (
u(2)

J j v(2)
Jm

) (
u(3)

Kkv
(3)
Kn

)
. (4.14)

The Hadamard product (4.14) can be written in compact form with the Khatri-Rao product.
It is straight forward to show

X • Y = ~E;
(
V(1)T

� U(1)T )T
,
(
V(2)T

� U(2)T )T
,
(
V(3)T

� U(3)T )T
� ∈ Tn,r•r′ , (4.15)

where E is the reshaped tensor product of C andD, i.e. e(il)( jm)(km) = ci jk dlmn. The costs for com-
puting (4.15) are thereforeO(

∑3
p=1 nprpr′p+

∏3
p=1 rpr′p). The new Tucker tensor has ranks r•r′. It

is therefore practical to re-compress the original cores before building the tensor-product; also
re-compression of (4.15) is highly recommended if further operations with X • Y are planned.
Indeed, in practice often very effective re-compression of the core E and/or Hadamard product
itself is observed. Nevertheless, compression of the cores beforehand may lead to loss of accu-
racy.
Another possibility to compute element-wise operations on Tucker tensors is the use of approx-
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imate iterations [60, 61]. For instance, the element-wise reciprocal of each entry of a tensor
could be calculated by a Newton-Schultz iteration [converges in exact arithmetics for entries in
(0, 2)]

Y j+1 = T
(
Y j + T

(
Y j • (1 − X • Y j)

))
, (4.16)

with Y0 = 1 the tensor with all entries equal to one, and T a truncation operator realized e.g.
by the HOOI algorithm (Alg. 6) if X is in Tucker format.

In contrast to canonical tensors the existence of a solution to the Tucker tensor approximation
problem can be ensured:

Definition 6. Let (V, d) be a metric space and ∅ , U ⊆ V. A best approximation of v ∈ V in U

is an element u∗ ∈ U such that

d(u∗, v) = d(U, v) := inf{d(u, v) : u ∈ U}, (4.17)

i.e. the infimum is attained in U.

If V is a normed vector space the condition (4.17) reads: ‖ v − u∗ ‖ ≤ ‖ v − u ‖ for all u ∈ U.

Lemma 2. Let (V, ‖ . ‖) be a normed vector space with dim(V) < ∞ and ∅ , U ⊆ V a closed

subset. Then, for all v ∈ V there exists an element ubest ∈ U with ‖ v − ubest ‖ ≤ ‖ v − u ‖ for all

u ∈ U.

Proof. Let v ∈ V and ũ ∈ U and define D := U ∩ {u ∈ V : ‖v − u ‖ ≤ ‖ v − ũ ‖} ⊆ U. Since D

is non-empty (̃u ∈ D), bounded (triangle inequality) and closed (D is intersection of two closed

sets) and hence compact, the continuity of the function f : D → R, f (u) := ‖ v − u ‖ together

with the extreme value theorem2 ensures that f attains its minimal value at ubest ∈ D ⊆ U. �

The set Tn,r is closed 3 due to the fact that the set of matrices of rank ≤ r is closed, i.e. for a
sequence of matrices (Un)n∈N with ranks ≤ r one has limn→∞Un =: U has rank ≤ r. Thus, if a
sequence (Xn)n∈N ⊂ Tn,r ⊂

⊗3
p=1 R

np is assumed, one gets limn→∞ rank(Xn( j)) ≤ r j.
In finite dimension, the closedness of the subsetTn,r of a normed vector space, e.g. (

⊗3
p=1 R

np , ‖ . ‖F),
ensures the existence of a best-approximation Xbest ∈ Tn,r of an element in X ∈

⊗3
p=1 R

np , i.e.

‖X − Xbest ‖F ≤ ‖X − Y ‖F ∀Y ∈ Tn,r, (4.18)

see Lemma 2.
An approximation of a given tensor to prescribed j-ranks r was investigated in [62], where

2The image of compact sets under continuous functions is compact.
3This also holds for order-d tensors where d > 3 and can be proved along the same lines.
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the described algorithm to compute such an approximation (Higher Order Singular Value De-

composition [HOSVD]) works by truncating the SVD of the j-mode unfoldings. The resulting
tensor is an approximation to the best-approximation in Tn,r. Indeed, due to Property 10 in
[62] one has for the HOSVD approximation XHOSVD of a tensor X with j-ranks R j and the
descending ordered singular values of the j-th unfolding of X denoted with σ( j)

k , k = 1 . . .R j

(here formulated for order-3 tensors)

‖X − XHOSVD ‖F ≤

√√√√ 3∑
j=1

R j∑
k=r j+1

σ
( j)
k

2
≤
√

3 ‖X − Xbest ‖F , (4.19)

where Xbest is the best approximation of X in Tn,r, cf. [59].
Existence of the Tucker approximation was also investigated in [63], as well as alternating least
squares methods (ALS) for the fitting problem

min
C,U(1),U(2),U(3)

∥∥∥X − ~C; U(1),U(2),U(3) �
∥∥∥2

F
s.t. U(p) column-wise orthonormal, (4.20)

where X ∈
⊗3

p=1 R
np is given and C ∈

⊗3
p=1 R

rp , U(p) ∈ Rnp×rp to be computed.
For three dimensions Tucker approximation by a black-box cross 3d algorithm was reported in
[64]. There it was shown that the reconstruction of Tucker tensors with low core rank can be
achieved in linear time, i.e. O(nr), and with complexity O(nr3) in many other cases.
Another algorithm is the so-called higher order orthogonal iteration (HOOI), an ALS algo-
rithm, [46], which can also be used for the purpose of re-compression (namely computing a
quasi-optimal Tucker approximation of lower rank to a given Tucker tensor). Algorithmic vari-
ants of the HOOI were investigated in [65].
The HOOI is based on the following reformulation of the optimization problem (4.20):

Using the orthonormality of the factor matrices and rewriting the objective in (4.20) gives∥∥∥X − ~C; U(1),U(2),U(3) �
∥∥∥2

F
= ‖X‖2F + ‖C‖2F − 2

〈
X ×1 U(1)T

×2 U(2)T
×3 U(3)T

, C
〉
. (4.21)

Its gradient w.r.t. to C is given as

∂C
∥∥∥X − ~C; U(1),U(2),U(3) �

∥∥∥2

F
= 2(C − X ×1 U(1)T

×2 U(2)T
×3 U(3)T ), (4.22)

which attains zero for

C = X ×1 U(1)T
×2 U(2)T

×3 U(3)T
, (4.23)

giving a necessary condition for the optimal choice of the core.
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By inserting (4.23) into (4.21) problem (4.20) can be re-casted as a maximization problem [46],
[66], i.e.

max
U(1),U(2),U(3)

∥∥∥∥X ×1 U(1)T
×2 U(2)T

×3 U(3)T
∥∥∥∥2

F
s.t. U(p) column-wise orthonormal. (4.24)

An alternating least squares approach for solving (4.24) can easily be derived by alternately fix-
ing all but one factor matrix and solving for the remaining by an SVD-approach, see [46] and
Alg. 6. In the description of Alg. 6 assume the (common) convention of descending ordered

Algorithm 6 HOOI (ALS); HOOI(X, r0, ε)

Require: X ∈
⊗3

p=1 R
np , ε > 0, rp,0 ∈ N>1, p = 1 . . . 3 (initial guesses for j-ranks)

Ensure: C ∈
⊗3

p=1 R
rp , U(p) ∈ Rnp×rp , p = 1 . . . 3

1: Initialize U(p) ∈ Rnp×rp0 , p = 1 . . . 3 e.g. by HOSVD or random
2: repeat
3: for p = 1 . . . 3 do
4: Y ← X ×3

j=1
j,p

U( j)T

5: (U,Σ)← svd(Y(p)) (where Rnp×
∏

i,p ri 3 Y(p) = UΣV)

6: rp ← min{r |
√∑

i>r σ
2
i <

ε
√

3
‖Σ‖F}

7: U(p) ← U(:, 1 : rp) = [u1, . . . ,urp]
8: end for
9: until fit ceases to improve

10: C ← X ×1 U(1)T
×2 U(2)T

×3 U(3)T

singular values. It is enough to compute the so-called economic sized svd, namely, in the case∏
i,p ri < np only the first

∏
i,p ri columns of U have to be computed and Σ ∈ R

∏
i,p ri×

∏
i,p ri;

analog for the case
∏

i,p ri ≥ np.
The SVD is truncated in such a way that the relative error in the Frobenius norm is smaller than
the given tolerance of ε/

√
3.

The mode multiplications in Alg. 6, namely X ×3
j=1
j,p

U( j)T , need most of the computing time,

since they scale with O(rn3), whereas the SVD needs O(r2n) (here nq ≡ n and rq ≡ r is as-
sumed).
HOOI converges to a solution where the objective function of (4.21) ceases to decrease; in fact,
the convergence of HOOI to a global optimum is not guaranteed, not even to stationary points,
[66],[63]. Nevertheless, to the author’s experience Alg. 6 works well in practice and most of
the time yields better results than HOSVD (even for random initialization).
An efficient generalization of Alg. 6 to re-compression, i.e. the case where X is already
in Tucker format, is straight forward and can be realized by using the formulas for mode-
multiplication and matricization within the Tucker format from [49].
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HOOI can also be used for approximate addition of Tucker tensors. Assume X is a sum of two
Tucker tensors with equal mode sizes (Block CP [BCP], [46],[67]), i.e.

X = ~D; V(1),V(2),V(3) � + ~E; W(1),W(2),W(3) �. (4.25)

Mode multiplications and matricization have to be performed with respect to the BCP format,
which can be done element-wise (summand by summand).

The main advantage of the Tucker decomposition over the CP format is the available SVD-
based quasi best approximation. At least in three dimensions the exponential scaling of the
dimension in the storage of the core tensor plays a secondary role. If, though, a canonical
decomposition is needed, the 2-stage approximation ’Tucker to CP’ might be considered:
Assume the core tensor in (4.13) is approximated in the canonical tensor format, i.e.

C = ~λ; V(1),V(2),V(3)� ∈ Cr,R, (4.26)

with V( j) ∈ Rr j×R. Then, one can easily transform Eq. (4.13) into CP format for a cost of
O(R

∑3
j=1 r j n j) operations by

A = ~λ; U(1)V(1),U(2)V(2),U(3)V(3)� ∈ Cn,R. (4.27)

4.4 Relation between Tucker Tensors and Tensor Trains (TT)
in 3 Dimensions

Definition 7. A tensor X ∈
⊗d

p=1 R
np is called a Tensor Train (TT) [50] if its entries are given

as

xi1i2...id = G1(i1)G2(i2) . . .Gd(id), (4.28)

where Gk(ik) is an rk−1 × rk matrix with r0 = rd = 1.

The Gk are actually three dimensional arrays with sizes rk−1 × nk × rk. Writing out the products
in (4.28) leads to

xi1i2...id =
∑

α1,...,αd−1

G1(i1, α1) G2(α1, i2, α2) . . . Gd−1(αd−2, id−1, αd−1) Gd(αd−1, id). (4.29)

For dense tensors X there exists quasi-best approximation in TT format due to best rank-rk

approximation of the unfolding matrices of X [50]. Re-compression (rounding) and ’canonical
tensor to tensor train’ (CP2TT) is also possible [50], as well as black-box approximation by
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ACA type algorithms [68].
In three dimensions (4.29) reduces to

xi1i2i3 =
∑
α1,α2

G1(i1, α1)G2(α1, i2, α2)G3(α2, i3). (4.30)

From (4.30) one concludes

X = G ×1 G1 ×3 GT
3 ≡ ~G; G1, id,GT

3 �, (4.31)

where G denotes the 3-tensor G2 ∈
⊗3

p=1 R
mp , where mp = rp, p , 2 and m2 = n2. Re-

compression of (4.31) leads to a (r′1, r
′
2, r
′
3)-Tucker tensor. The representation (4.31) is also

known as Tucker2 decomposition of an order three tensor [46].
On the other hand a Tucker tensor can also be easily converted to a tensor train, i.e. by mode-
multiplication of one factor matrix (e.g. the second factor) one immediately gets the form
(4.31). Re-compression by TT-rounding can be done afterwards. The Hadamard product (as
well as many other arithmetic operations) can be carried out efficiently in TT-format, [50].

4.5 Discrete Fourier Transform for Structured Tensors

Again, the following is presented for the case of order-3 tensors, although everything is also
valid for the general case of order-d.
For a given tensor X ∈

⊗3
p=1 R

np the 3-d discrete Fourier Transform (DFT) results in the
complex tensor X̂ ∈

⊗3
p=1 C

np and is defined as

x̂k1k2k3 =

n1∑
j1=1

ω(k1−1)( j1−1)
n1

n2∑
j2=1

ω(k2−1)( j2−1)
n2

n3∑
j3=1

ω(k3−1)( j3−1)
n3

x j1 j2 j3 , (4.32)

where ωkp jp
np = e−2πi

kp jp
np .

The inverse discrete Fourier Transformation (IDFT) is given by

x j1 j2 j3 =
1

n1n2n3

n1∑
k1=1

ω−(k1−1)( j1−1)
n1

n2∑
k2=1

ω−(k2−1)( j2−1)
n2

n3∑
k3=1

ω−(k3−1)( j3−1)
n3

x̂k1k2k3 . (4.33)

FFT variants are commonly used because of their almost linear scaling, i.e. O(
∑3

p=1 log(np)
∏3

q=1 nq).
The convolution theorem holds, i.e. in multi-index notation and using the operator symbols F
and F −1 for the DFT and IDFT respectively

X ∗ Kn = F −1(F (X) • F (K)
)
, (4.34)
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where the subscript denotes the n- shift and • the element-wise product (Hadamard product).
The following is straight forward to show.

Lemma 3. For a canonical tensorX = ~ λ; U(1),U(2),U(3) � ∈ Cn,r, x j1 j2 j3 =
∑r

l=1 λ j u(1)
j1l u(2)

j2l u(3)
j3l

the DFT is given by

X̂ = ~ λ; F1d
(
U(1)),F1d

(
U(2)),F1d

(
U(3)) �, (4.35)

where the (1-d) Fourier transform F1d is only taken along each column of a factor matrix.

The IDFT is given as

X = ~ λ; F −1
1d

(
U(1)),F −1

1d
(
U(2)),F −1

1d
(
U(3)) �. (4.36)

Proof.

x̂k1k2k3 =

r∑
l=1

λr

( n1∑
j1=1

ω(k1−1)( j1−1)
n1

u(1)
j1l

)( n2∑
j2=1

ω(k2−1)( j2−1)
n2

u(2)
j2l

)( n3∑
j3=1

ω(k3−1)( j3−1)
n3

u(3)
j3l

)
(4.37)

and analog for the IDFT. �

Lemma 4. For a Tucker tensor X = ~C; U(1),U(2),U(3) � ∈ Tn,r,

x j1 j2 j3 =
∑r1,r2,r3

j′1, j
′
2, j
′
3=1 c j′1 j′2 j′3

u(1)
j1 j′1

u(2)
j2 j′2

u(3)
j3 j′3

the DFT is given by

X̂ = ~C; F1d
(
U(1)),F1d

(
U(2)),F1d

(
U(3)) �, (4.38)

where the (1-d) Fourier transform F1d is only taken along each column of a factor matrix.

The IDFT is given as

X = ~C; F −1
1d

(
U(1)),F −1

1d
(
U(2)),F −1

1d
(
U(3)) �. (4.39)

Proof.

x̂k1k2k3 =

r1,r2,r3∑
j′1, j
′
2, j
′
3=1

c j′1 j′2 j′3

( n1∑
j1=1

ω(k1−1)( j1−1)
n1

u(1)
j1 j′1

)( n2∑
j2=1

ω(k2−1)( j2−1)
n2

u(2)
j2 j′2

)( n3∑
j3=1

ω(k3−1)( j3−1)
n3

u(3)
j3 j′3

)
(4.40)

and analog for the IDFT. �

The DFT as well as the IDFT for structured tensors is therefore basically 1-dimensional, more
precise, assuming FFT and IFFT implementations, the costs areO(R

∑
p np log np) for canonical

tensors and O(
∑

p rpnp log np) for Tucker tensors respectively. This matches asymptotically the
costs for 1-dimensional (I)FFT times the rank constants.
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4.6 Approximation of Disturbed Data

Assume a tensor R ∈
⊗3

p=1 R
np that is composed by a Tucker tensor X ∈ Tn,r and an additive

noise N ∈
⊗3

p=1 R
np , i.e.

R = X +N . (4.41)

The problem of approximating X in Tucker format is also referred to as ’tensor filtering prob-

lem’ [69]. Note that, in general, the disturbed data tensor R can have full mode ranks, although
X has ranks r <c n. A method for Tucker approximation which seeks an approximation with
a prescribed error bound of magnitude of the noise, like for instance the HOOI Alg. 6, would
approximate the full-rank tensor R, i.e. one would fail to derive a lower rank approximation.
Here, an algorithm is introduced that first filters the noise and then approximates the filtered
tensor, i.e. a low rank approximation of the given tensor R is achieved with accuracy in the
order of the noise. The method uses the Fourier approach of the previous section and has the
same complexity as Alg. 6. To the author’s knowledge the proposed method has not been in-
troduced in the literature yet.

For the sake of simplicity, Gaussian functions serve as filters for the method, i.e.

g(q)
b (x) =

1
√
πb

exp
(
−

(x − nq/2)2

b

)
, b :=

2am
π(2a − 1)

, m ≥ 1, a ∈ N (a ≥ 2) (4.42)

where a is an over-sampling factor and m a cut-off parameter. A rank-1 tensor is now defined
by the tensor product of g, i.e.

Gb := g(1)
b ◦ g(2)

b ◦ g(3)
b , (4.43)

where g(q) = (gq(i))i=1...nq . Also other fast decaying functions could be considered, e.g. Kaiser-

Bessel functions, see section 8.5.2.
The simple idea is now summarized in Alg. 7. Due to the fast decaying Gaussians, the convolu-
tion in Alg. 7 can be performed locally by only using neighboring data points, see section 8.5.1
for a detailed description of the more general case of gridding unstructured data onto a tensor
grid. The complexity of this step is therefore linear in the tensor grid size. The 1-d FFTs are
performed with zero-padding to the size an. Also note that the Hadamard product with the
rank-1 tensor Ĝ−1 can be performed without increasing the rank of R̃. Overall, the dominating
complexity of Alg. 7 is the HOOI part, see Alg. 6.
Tab. 4.1 shows results for Alg. 7 for the case of max j |n j| =: ‖N‖∞ = 1e-06 and ε = 1e-08. X

was chosen randomly with ranks rq ≡ 10, whereas nq ≡ 40. A direct approximation by HOOI
leads to full ranks, i.e. rq ≡ 40; HOOId, on the other hand, yields lower rank approximations.
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Algorithm 7 HOOI (ALS) for disturbed data; HOOId(R, r0, ε, b)

Require: R ∈
⊗3

p=1 R
np , ε > 0, rp,0 ∈ N>1, p = 1 . . . 3; b > 0

Ensure: R̃ ∈ Tn,r
Precompute:
Ĝb ← FFT of Gb using Lemma 3
Compute:
• Convolve (locally): R̃ ← R ∗ Gb

• Approximate: R̃ ← HOOI(R, r0, ε)

• Compute the FFT: R̃ ← F (R̃) using Lemma 4

• Deconvolve: R̃ ← R̃ • Ĝ−1
b

• Compute IFFT: R̃ ← F −1(R̃) using Lemma 4

Table 4.1: Results for Alg. 7 for the case of max j |n j| =: ‖N‖∞ = 1e-06 and ε = 1e-08. X
was chosen randomly with ranks rq ≡ 10, whereas nq ≡ 40. The over-sampling parameter was
a = 2. The first column gives the parameter m from (4.42).

m (r1, r2, r3)
∥∥∥∥R̃ − R∥∥∥∥

F
/ ‖R‖F

∥∥∥∥R̃ − R∥∥∥∥
∞

3 (26, 30, 31) 1.0e-7 2.0e-6
5 (19, 21, 21) 1.3e-7 3.0e-6
8 (14, 15, 16) 1.6e-7 4.9e-6

12 (11, 12, 11) 2.6e-7 9.4e-6
18 (10, 10, 10) 5.5e-7 3.2e-5
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Chapter 5

Stray Field Computation on Tensor Grids

Portions of this chapter were previously published as [25] or submitted for publication as [26]

and have been reproduced here with permission of the co-authors. Content which was not

generated by the author of this thesis is explicitly denoted.

In this chapter a method is introduced and mathematically analyzed that allows computing
the stray field for given magnetization configuration on a tensor grid. The described method
is capable to efficiently use/profit from structured tensor representation of the magnetization
components, e.g. CP, Tucker or TT formats, see section 4. The resulting complexity strongly
depends on the format and, within this, of the ranks of the representation. Also it makes a
difference whether the result itself is stored in a (data sparse) structured format or as full/dense
tensor. In the tensor structured case, the method scales below linear in the tensor grid size
N = n3 with a constant that depends on the format and rank(s). In the case of re-conversion into
full format the method scales linear in the grid size. A Fast Fourier transform (FFT) variant that
even accelerates the method is also discussed. In the degenerated case of dense magnetization
component tensors the costs are O(N4/3), slightly above the optimal linear scaling.
Section 5.1 is meant to be an easily readable description of the method, which is numerically
tested in section 5.2. Moreover, the method is mathematically analyzed in detail in section 5.3.
The FFT version is presented in section 5.4.

5.1 Description of the Method

It follows the principal description of the stray field method, while a detailed mathematical
analysis is performed in section 5.3.
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5.1.1 Separable Representation of Multivariate Functions

Assume a multivariate function f = f (ρ) : Rd → R where ρ = ‖x‖2 ∈ [a, b] ⊂ R and the
integral representation

f (ρ) =

∫
R

g(τ) eρh(τ) dτ. (5.1)

If quadrature with nodes and weights (tk, ωk), k = 1 . . .R is applied to (5.1), one obtains a
separable representation of f , i.e.

f (ρ) ≈
R∑

k=1

ωk g(tk) eρh(tk) =

R∑
k=1

ωk g(tk)
d∏

p=1

ex(p)2h(tk). (5.2)

The quadrature order R refers to the separation rank of (5.2).

The following methods makes use of this observation. So called sinc-quadrature is used, see
section 5.1.3 and 5.3.3.

5.1.2 Analytical Preparations

Integration by parts of the integral representation of the scalar potential, see section 2.3.1
Eqn. (2.23), yields

φ(x) = −
1

4π

∫
Ω

m(y) ·
x − y
‖x − y‖3

dy. (5.3)

This expression makes sense in micromagnetics due to the constraint ‖m‖ = 1 a.e. in Ω [7],
which implies m ∈ L∞(Ω). Since the kernels κ(q)(x) := x(q)/ ‖x‖3 ∈ Lp(BR(0)

)
for balls BR(0)

centered in 0 with R > 0 and p ∈ [1, 3/2), Hölder’s inequality ensures that (5.3) is well-defined.

Next, denote the three volume integrals in Eqn. (5.3) by

I(p)(x) =

∫
Ω

m(p)(y)
x(p) − y (p)

‖x − y‖3
dy, (5.4)

for each of the components m(p), p = 1 . . . 3, of the magnetization m. Thus, Eqn. (5.3) reads

φ(x) = −
1

4 π

3∑
p=1

I(p)(x). (5.5)

The crucial step is to represent the integral kernel in (5.4) as an integral of a Gaussian function
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by the formula

1

ρ
3
2

=
2
√
π

∫
R

τ2 e−τ
2ρ dτ. (5.6)

So one has, for ρ = ‖x − y‖2,

I(p)(x) =
2
√
π

∫
R

τ2
∫

Ω

e−τ
2 ‖x−y‖2m(p)(y)(x(p) − y (p)) dy dτ. (5.7)

Eqn. (5.7) reduces the computation to independent integrals along each principal direction,
because the integrand is a separable function, i.e.

e−τ
2 ‖x−y‖2 =

3∏
q=1

e−τ
2 (x(q)−y(q))2

. (5.8)

As will be seen later, this results in a reduction of computational effort from O(N2) to O(N4/3),
where N = n3.
However, in order to be able to use Eqn. (5.7), one first has to apply stable quadrature for the
τ−integration.

Remark 2. In general, there holds the formula∫ ∞

0
xne−ρx2

dx =
Γ(n+1

2 )

2ρ
n+1

2

, ρ > 0, n > −1. (5.9)

Thus, for the kernel 1/ ‖x‖k , k ∈ N∪{0} the choice n = k−1 leads to a separable representation

after the substitution ρ = ‖x − y‖2.

5.1.3 τ-Integration

Although the singularity is gone, the numerical treatment of (5.7) is not straightforward. Small
values of ρ have a dispersive effect on the integrand in (5.6), so one has to distribute the quadra-
ture nodes over a wide range for accurate approximation of the kernel function 1/ρ3/2. These
values of ρ correspond to a small grid size, which is again essential for an accurate approxima-
tion of the magnetic scalar potential. Therefore one has to use a quadrature rule that is robust
with respect to small values of ρ.

For Gaussian quadrature, weights and nodes can be computed by solving an eigenvalue prob-
lem of symmetric tridiagonal type. For a larger number of quadrature points one uses the QR
algorithm, which scales linearly in the number of quadrature terms. On the other hand, using
Gaussian quadrature formulas on a finite subinterval [0, A], or Gauss-Laguerre quadrature over
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the infinite interval in (5.6), fail in terms of achieving a sufficiently good representation of the
kernel function for small values of ρ.

In [70] an integral representation for the Newton potential 1/ ‖x‖ was used to compute the elec-
trostatic potential for given Gaussian distributed charges in whole space. The τ - integration
was performed using the Gauss-Legendre formula on logarithmically scaled blocks of the in-
terval [0, 104] using a total of 120 quadrature points. Due to geometrical refinement against
zero, the functional 1/ρ is well described in this region.

Here we use the exponentially convergent Sinc-quadrature for numerical integration of the
integral [57]. This method shows better approximation properties than the Gauss-Legendre
formula for much fewer quadrature terms. See Fig. 5.1, where Sinc-, Gauss-Laguerre- and
Gauss-Legendre - quadrature are compared for the integration of (5.6).

Abbreviating notation and exploiting symmetry in τ, the I(p) take the form

I(p)(x) =
2
√
π

∫ ∞

0
τ2 2 F(p)(x, τ) dτ, (5.10)

where F(p) stands for the Ω - integral in (5.7). In order to guarantee the above mentioned ex-
ponential convergence rate one has to perform an integral transform (also see section 5.3) on
Eq. (5.10), i.e. τ = sinh(t), and apply numerical integration afterwards, which gives

∫ ∞

0
τ2 2 F(p)(x, τ) dτ ≈

R∑
l=1

ωl sinh(tl)2 G(p)(x, tl), (5.11)

where (tl, ωl) are the nodes and weights of the underlying quadrature, and

G(p)(~x, t) = 2 F(p)(x, sinh(t)). (5.12)

To apply Sinc-quadrature one uses the R + 1 nodes and weights given by

tl = lhR (5.13)

and

ωl =

 hR l = 0,

2 hR cosh(tl) l > 0,
(5.14)
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Table 5.1: Average abs./rel. errors of sinc-quadrature on ρ-interval [5e − 05, 1e − 02]. Left:
c0-dependence of approximation of (5.6) (R = 50). Right: R-dependence of approximation of
(5.6) (c0 = 1.85).

c0 abs. error rel. error R abs. error rel. error
1.70 8.3 e−01 3.4 e−07 35 1.6 e+00 6.5 e−07
1.75 8.4 e−03 3.3 e−09 40 7.4 e−03 2.9 e−09
1.80 8.5 e−06 3.3 e−12 45 4.7 e−06 3.2 e−12
1.85 3.4 e−09 1.2 e−13 50 3.4 e−09 1.2 e−13
1.90 7.8 e−09 3.0 e−13 55 2.8 e−10 1.1 e−14
1.95 1.7 e−08 6.7 e−13 60 2.5 e−11 9.5 e−16
2.00 3.9 e−08 1.5 e−12 65 3.3 e−12 1.2 e−16
2.05 8.2 e−08 3.0 e−12 70 4.4 e−12 8.9 e−17
2.10 1.7 e−07 6.3 e−12 75 2.3 e−12 9.3 e−17
2.15 3.2 e−07 1.2 e−11 80 2.4 e−12 9.1 e−17

with hR = c0 ln(R)/R for some appropriate c0, see theorem 6 in section 5.3. For the sake of
completeness, the algorithm for Sinc-quadrature for approximation of an integral

I( f ) :=
∫
R+

f (ξ) dξ =

∫
R+

cosh (ξ) f
(

sinh (ξ)
)

dξ (5.15)

is summarized in Alg. 8, i.e.

I( f ) ≈
R∑

j=0

ω j f (sinh (τ j)). (5.16)

Tab. 5.1 shows the average absolute and relative errors due to Sinc-quadrature approximation

Algorithm 8 Sinc-Quadrature for (5.15); sinc(R, c0)
Require: R ∈ N, c0 > 0
Ensure: τ, ω ∈ RR+1

+

1: h← c0 ln (R)/R
2: for j = 0 . . .R do
3: τ j ← jh
4: ω j ← 2h cosh ( jh)
5: end for
6: ω0 ← h

of the functional (5.6) for 105 equidistantly chosen ρ-values of the interval [5e − 05, 1e − 02].
The left three columns show accuracy for different values of the parameter c0 and R = 50, right
columns show dependence of the number of quadrature terms and c0 = 1.85.
For the numerical experiments in section 5.2, c0 = 1.85 was used, which gives a sufficiently
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Figure 5.1: Comparison of three quadrature methods for Eq. (5.6) with ρ = x2: Block-Gauss-
Legendre on 10 logarithmically scaled subintervals of the interval [0, 210] = [0, 2] ∪ [2, 4] ∪
. . . ∪ [29, 210] with q = 4 and 6 quadrature nodes each, respectively; the Sinc-quadrature with a
total of 40 nodes and c0 = 1.85 and Gauss-Laguerre quadrature with 40 nodes.

good description of the functional (5.6).

5.1.4 Description of the Magnetization on a Tensor Grid

Assume for instance a 200nm × 100nm × 10nm magnet and a grid that consists of 100 × 80 ×
20 cuboids, that arise from a (not necessarily equidistant) partition of the x-, y- and z-axis
respectively. In general one has n1 × n2 × n3 cuboids that define the grid together with three
vectors hp ∈ R

np , p = 1 . . . 3 which consist of the grid spacings along each axis (see Fig. 5.2).
The tensor grid is described by the vectors hp in the general case or by the grid-size vector

n = (n1, n2, n3) in the equispaced case.
For the proposed method the magnetization is assumed to ’live’ on the center points of the
cuboids, which means the magnetization is assumed to be constant in each cell. Thus, the
magnetization is given as three 3-tensors (one for each component of the magnetization), i.e.

m(p) =
∑

j

m(p)
j χΩj , M(p) ≡

(
m(p)

j
)

j∈×3
q=1{1,...,nq}

∈

3⊗
q=1

Rnq , p = 1 . . . 3, (5.17)
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where χΩj = χΩ j1
χΩ j2

χΩ j3
is the 3-d characteristic function1 of the subcube Ωj = Ω j1 ×Ω j2 ×Ω j3

and m(p)
j the components of the p-component magnetization tensorM(p).

grid spacing

midpoint spacing

Figure 5.2: Vector of tensor grid spacings, i.e. hp

5.1.5 Computation on a Tensor Grid

The computational realization of the quadrature approximation (5.11) to Eq. (5.7) requires
evaluation of the scalar potential at the center point xc

i = (xc
i1
, xc

i2
, xc

i3
) of each field cell. To this

end one substitutes Eqn. (5.17) into the function G(p) of Eq. (5.11). This leads to

G(p)(xc
i , tl) =

∑
j

m(p)
j

3∏
q=1

∫
Ω

g(q)(xc
iq , x

′, tl) χΩ jq
(x′) dx′, (5.18)

where

g(q)(α, α′, τ) :=

 exp(− sinh(τ)2 (α − α′)2) q , p,

(α − α′) exp(− sinh(τ)2 (α − α′)2) q = p.
(5.19)

The three integrals in Eq. (5.18) define (nq × nq) - matrices, i.e.

d l
iq, jq :=

∫
Ω jq

g(q)(xc
iq , x

′, tl) dx′,

D l
q :=

(
d l

iq jq

)
.

(5.20)

Thus, one has a Tucker representation of the function G(p) (cf. section 4.3), i.e.,

G(p)(xc
i , tl) =

∑
j

m(p)
j1 j2 j3

d l
i1 j1 d l

i2 j2 d l
i3 j3

=M(p) ×1 D l
1 ×2 D l

2 ×3 D l
3,

(5.21)

with the core tensorM(p).

1Also other tensor product basis functions could be used here.
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Alg. 9 summarizes the computation of the ’Gaussian matrices’ in (5.20), where Alg. 10 gives
the computational scheme for computing the scalar potential for dense (unstructured) magneti-
zation.

Algorithm 9 Gaussian matrices; gaussmat(τl, p, h1, h2, h3)

Require: τl ∈ R, p ∈ {1, 2, 3}, hp ∈ R
np (p = 1 . . . 3)

Ensure: Dq ∈ R
nq×nq (q = 1 . . . 3)

1: Preallocate Dq ∈ R
nq×nq for q = 1 . . . 3

2: for q = 1 . . . 3 do
3: for i = 1 . . .Nq do
4: for j = 1 . . .Nq do
5: if p = q then
6: (dq)i, j ← approximation of

∫
Ω jq

g(q)(xc
i , x
′, τl) dx′ using second

7: expression in (5.19) via Gauss-Legendre quadrature or analytical formulas
8: else
9: (dq)i, j ← approximation of

∫
Ω jq

g(q)(xc
i , x
′, τl) dx′ using first

10: expression in (5.19) via Gauss-Legendre quadrature or analytical formulas
11: end if
12: end for
13: end for
14: end for

For full micromagnetic simulations (e.g. energy minimization) the Gaussian matrices have to
be stored only once (3R matrices), since they only carry geometrical information. Instead of
line 5 of Alg. 10 (computation of the Gaussian matrices in the inner loop) it is therefore better
to compute them separately in the beginning of the simulation and use them as input in Alg. 10.

Algorithm 10 Scalar potential; scpot(M(1),M(2),M(3), h1, h2, h3, R, c0)

Require: M(p) ∈
⊗d

q=1 R
nq , p = 1 . . . 3, hp ∈ R

np (p = 1 . . . 3), R, c0 > 0

Ensure: Φ ∈
⊗d

q=1 R
nq

1: (τ, ω)← sinc(R, c0)
2: Preallocate Φ with zero entries
3: for p = 1 . . . 3 do
4: for l = 1 . . .R do
5: D1, D2, D3 ← gaussmat(τl, p, h1, h2, h3) . Alg. 9
6: Φ← Φ + ωl sinh (τl)2M(p) ×1 D1 ×2 D2 ×3 D3

7: end for
8: end for
9: Φ← −1/(2π3/2)Φ

The complexity of Alg. 10, assuming the Gaussian matrices are already precomputed, is that of
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R mode multiplications with the tensorsM(p) for p = 1 . . . 3, followed by tensor addition, i.e.

O
(
3RN(1 +

3∑
p=1

np)
)
, (5.22)

where N =
∏3

q=1 nq.

If magnetization components are given in a particular tensor format, line 6 in Alg. 10 changes
accordingly. In the case of the Tucker format, i.e. M(p) = ~C(p); U(p)

1 ,U(p)
2 ,U(p)

3 � ∈ Tn,r, line 6
reads

6 : Φ← Φ + ωl sinh (τl)2 C(p) ×1 D1U(p)
1 ×2 D2U(p)

2 ×3 D3U(p)
3 . (5.23)

The complexity for the matrix products V(p)
q = DqU(p)

q ∈ R
nq×rq is O(rqn2

q), whereas the mode-
multiplications C(p) ×1 V1 ×2 V2 ×3 V3 costs O(n1r1r2r3 + n1n2r2r3 + n1n2n3r3). Note that the
mode-multiplications can also be performed in a different order, which might be advantageous
if there is a great difference in the magnitude between the mode sizes or the ranks.
Alternatively, subsequent summands in line 6 of Alg. 10 or all summands at once can be added
approximately in Tucker format using Alg. 6 from section 4.3. This reduces the costs (the mode
multiplications in Alg. 6 can be carried out efficiently within the Tucker format), whereas the
result Φ is a Tucker tensor. Fig. 5.3 compares those two variants of dealing with magnetization
in Tucker format. Approximate summation is done with accuracy 1e-8, which yields an error in
the Frobenius norm of less than 5e-7 for the scalar potential in all computations of the experi-
ment. One observes linear scaling in N = n3 for the full computation, whereas the approximate
computation does not depend on n in this test. However, one can expect a scaling of at least
n2 for larger mode sizes, where the costs for mode multiplication in (5.23) (n2-scaling) get sig-
nificant in comparison to the costs of Alg. 6 (basically linear in n). Moreover, this experiment
was done for constant ranks of the magnetization component tensors. In realistic simulations
the ranks would also (more or less) depend on the grid size. Furthermore, the separation rank
R was constant, rather than the more realistic assumption of weak dependence on the mesh
parameter h = 1/n, i.e. R = O(log h−1), compare with Fig. 5.5 in section 5.3.5 and also note
that the considerations in section 8.7 are related to this discussion.

Furthermore, in the case where the magnetization components are tensor trains computational
considerations like in the Tucker case are valid. Also, representation as Tucker tensor is possi-
ble, see section 4.4.

Finally, if the magnetization is given as canonical tensor, line 6 of Alg. 10 also reduces to
multiplications of the factor matrices. This is again of n2-complexity, see Fig. 1 in [25]. The
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Figure 5.3: Computation time for the scalar potential by Alg. 10 for given magnetization in
Tucker format (ranks constant ≡ 10); R = 30. ’Tucker full’ indicates full (’exact’) compu-
tation for Eqn. (5.23), whereas ’Tucker approx’ are the times for approximately calculating
Eqn. (5.23) within the Tucker format using Alg. 6 with eps= 1e-8 for approximate summation.
Precomputation of the ’Gaussian matrices’ is excluded.

resulting scalar potential can be stored as canonical tensor with rank R′ = R
∑3

p=1 rp, where
rp, p = 1 . . . 3 are the ranks of the canonical representation of the magnetization components.
If the full tensor is formed, additional R′N operations have to be performed. An approximate
summation, like in the Tucker or TT case, is not advisable, since there are no stable algorithms
with error control available.

Once the potential has been computed, one has to perform discrete differentiation to obtain the
field −∇φ. This can be done by q-mode sparse matrix multiplication, which scales linearly in
N = n3 for dense potential and below linear (n2) for tensor structured potential. Here a sparse
finite-difference matrix is used which corresponds to a three-point finite-difference approxima-
tion of order 2 for the first derivative. Assuming a (not necessarily uniform) mesh in one spatial
direction p, e.g., with mesh sizes h j, j = 1 . . . n, one has to use general finite-difference approx-
imations. Let h̃ j := (h j + h j+1)/2, j = 1 . . . n− 1 be the distance between successive midpoints.
For interior points the corresponding second order centered finite-difference approximations
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are given by

αk,l
0 f (x − h̃k) + αk,l

1 f (x) + αk,l
2 f (x + h̃l) = f ′(x) + O(h̃k h̃l), with

αk,l
0 = −

h̃l

h̃k(h̃k + h̃l)
, αk,l

1 =
h̃l − h̃k

h̃k h̃l
, αk,l

2 =
h̃k

h̃l(h̃k + h̃l)
, (5.24)

where h̃k, h̃l are the distances to the left and right neighbor of a midpoint x, respectively. For
the boundaries the analogous one-sided scheme is used:

βk,l
0 f (x) + βk,l

1 f (x + h̃k) + βk,l
2 f (x + h̃k + h̃l) = f ′(x) + O(h̃k(h̃k + h̃l)), with

βk,l
0 = −

2 h̃k + h̃l

h̃k(h̃k + h̃l)
, βk,l

1 =
h̃k + h̃l

h̃k h̃l
, βk,l

2 = −
h̃k

h̃l(h̃k + h̃l)
. (5.25)

The resulting finite-difference matrix with respect to the p - th spatial direction is then given by

Jp
n :=



β1,2
0 β1,2

1 β1,2
2

α1,2
0 α1,2

1 α1,2
2

α2,3
0 α2,3

1 α2,3
2

. . .
. . .

. . .

αn−3,n−2
0 αn−3,n−2

1 αn−3,n−2
2

αn−2,n−1
0 αn−2,n−1

1 αn−2,n−1
2

−βn−1,n−2
2 −βn−1,n−2

1 −βn−1,n−2
0



∈ Rn×n. (5.26)

The tensor Φ representing the scalar potential on the center points of the field cells, is given
by the entries φi1 i2 i3 ≈ φ(xc

i ), and the stray field can now be computed by evaluating the 3-
component tensor

Hd = (H (1)
d ,H (2)

d ,H (3)
d )T = (−Φ ×1 J1

n1
,−Φ ×2 J2

n2
,−Φ ×3 J3

n3
)T . (5.27)

Furthermore, the demagnetizing energy can be approximated (second order) using midpoint
integration

ed = −
1
2

3∑
p=1

〈V ·M(p),H
(p)
d 〉. (5.28)

where the rank-1 tensor V = ~h1, h2, h3� ∈ Cn,1 contains the volumes of the computational
cells. In the tensor structured case the element-wise multiplication V ·M(p) can be done effi-
ciently without increasing the ranks, see section 4. Moreover, the inner products in Eqn. (5.28),
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Table 5.2: Comparison of accuracy of Eqs. (5.29) and Alg. 10 (R = 50). Absolute (Err10/50) and
relative (Relerr10/50) l2-errors for a N = 103 (exact errors) and N = 503 (errors for 200 randomly
chosen mesh-points) tensor product grid, gten indicates the order of Gaussian quadrature used
for the integrals in (5.20), the integrals in (5.29) are evaluated exactly.

gten Err10 Relerr10 Err50 Relerr50

4 2.31 e−04 4.52 e−04 1.59 e−05 4.45 e−04
8 1.13 e−07 2.21 e−07 7.77 e−09 2.17 e−07

16 4.34 e−14 8.55 e−14 5.85 e−14 1.64 e−12
32 1.29 e−14 2.52 e−14 5.86 e−14 1.64 e−12

i.e. 〈V ·M(p),H
(p)
d 〉, can be computed efficiently for structured tensors [49].

5.2 Accuracy Tests

First Alg. 10 is compared to direct integration, i.e.

φ(x) = −
1

4π

3∑
p=1

∑
j

m(p)
j

∫
Ωj

x(p) − y (p)

‖x − y‖3
dy. (5.29)

The absolute and relative l2-errors are used as measurements for the accuracy, i.e.

Errn =

√∑
j

(φdir
j − φ

ten
j )2 ≡

∥∥∥Φdir − Φten
∥∥∥

F
, (5.30)

Relerrn =
∥∥∥Φdir − Φten

∥∥∥
F
/
∥∥∥Φdir

∥∥∥
F
, (5.31)

where Φdir and Φten are the tensors representing the potential at the center points of the compu-
tational cells obtained by the direct formula (5.29) and the tensor approach in Alg. 10, respec-
tively.
Tab. 5.2 shows the relative and absolute errors for a N = 103 and N = 503 grid, where the
integrals in (5.29) were evaluated exactly by using the formulas from [13].

Now, the proposed tensor scheme of this section is compared to the finite element simulation
package FEMME [71] in the case of uniform magnetization where no discretization error for
the magnetization arises. The used FEM/BEM implemention solves the weak formulation of
the magnetostatic Poisson equation. Dense boundary element matrices are approximated in the
H-matrix format, see [72].
From Tab. 5.3 one can see that the FEM/BEM algorithm approximates, in the case of uniform
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Table 5.3: Absolute error in the energy between results for direct tensor integration algorithm
and FEM/BEM for uniform magnetization distribution in the unit cube. N indicates the num-
ber of total nodes in the mesh. In the fourth column the rel. deviation of the energy values
computed by the two numerical schemes is given; percentage is based on the true value, i.e.
ed = 1/6 [µ−1

0 M−2
s ].

N error (tensor) error (FEM/BEM) deviation [%]
153 1.38 e−04 1.55 e−03 8.50 e−1
303 8.19 e−05 4.51 e−04 3.20 e−1
603 3.98 e−05 3.47 e−04 2.32 e−1

Table 5.4: Absolute and relative deviation in the energy between results for direct tensor inte-
gration algorithm and finite element reference-value for magnetization distribution of a vortex
in the unit cube given by Eqs. (5.32). In order to resolve the vortex, a non-uniform grid (geo-
metrically refined towards the center of the cube) is used. The columns to the right show the
minimal grid size, i.e. min h j, in the center of the cube and respectively the maximal value, i.e.
max h j, next to the boundaries.

n abs. deviation rel. deviation [%] grid-min grid-max
10 2.02 e−04 9.32 e−01 8.9 e−02 1.1 e−01
20 1.61 e−04 7.42 e−01 3.3 e−02 7.2 e−02
30 5.58 e−05 2.58 e−01 1.3 e−02 6.6 e−02
40 6.65 e−06 3.07 e−02 5.5 e−03 6.6 e−02
50 1.78 e−06 8.23 e−03 2.8 e−03 6.4 e−02

magnetization configuration, about one order of magnitude worse than the direct tensor inte-
gration algorithm.

Now, a vortex-like state in a 200 nm3 - cube is used, which is described by the model in [73],
i.e.

Mx(r) = −
y
r
(
1 − exp

(
− 4 r2

r2
c

)) 1
2 ,

My(r) =
x
r
(
1 − exp

(
− 4 r2

r2
c

)) 1
2 , (5.32)

Mz(r) = exp
(
− 2 r2

r2
c

)
,

where r =
√

x2 + y2. The radius of the vortex core is chosen to be rc = 28 nm. The vortex
center coincides with the center of the cube, and the magnetization is assumed to be rotation-
ally symmetric about the x = y = 100 nm axis and translationally invariant along the z - axis.
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Table 5.5: Absolute and relative deviation between results for direct tensor integration algo-
rithm and finite element reference-value for magnetization distribution in the unit cube given
by Eqs. (5.33).

n abs. deviation rel. deviation [%]
20 3.42 e−04 2.24 e−01
30 2.83 e−04 1.85 e−01
40 2.43 e−04 1.59 e−01
50 2.18 e−04 1.43 e−01
80 1.83 e−04 1.20 e−01

For the above configuration (5.32) and an amount of 503 nodes and about 5 · 503 tetrahedral
elements, FEMME finds ed/µ0 = 2.16185 e−02, which is taken as reference value. This value
is compared with computations using the direct tensor integration algorithm of Alg. 10 on an
adaptive mesh refined geometrically, in each spatial direction, towards the vortex center of the
cube, see Tab. 5.4.

Finally, the algorithm is compared with FEMME for a flower-like state of the cube in the
previous example. The main magnetization direction is taken to be along the z - axis, and
the flower is obtained through an in-plane perturbation along the y - axis and an out-of-plane
perturbation along the x - axis. Assuming polynomial expressions for the perturbations, as in
[74], the flower is the normalized version of

Mx(r) = 1
a (x − xm)(z − zm),

My(r) = 1
c (y − ym)(z − zm) + 1

b3 (y − ym)3(z − zm)3, (5.33)

Mz(r) = 1,

where xm, ym and zm are the coordinates of the center of the cube. For the experiment the
parameters in Eqn.(5.33) are set a = c = 1 and b = 2. Using the same finite element mesh as
in the previous example, FEMME now finds ed/µ0 = 1.52653 e−01. Tab. 5.5 shows absolute
and relative deviations, in this case on a uniform grid used for the direct tensor integration
algorithm. One can observe a similar difference like in Tab. 5.3.
More accuracy tests were performed in [18, 25].
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5.3 Mathematical Analysis of the Method

A detailed mathematical analysis of the method of the previous sections will lead to a so-called
Kronecker product approximation [cf. (4.12)] of the ’potential operator’ (5.3).
The underlying collocation scheme is proved to be quadratically convergent, see Lemma 5.
Furthermore, exponential convergence in the separation rank of the approximation is shown,
see Corr. 8.

5.3.1 Notation

Let Ω =
�3

p=1 Ω(p) ⊂ R3 with Ω(p) = [αp, βp] ⊂ R and assume for p = 1 . . . 3 a partition of Ω(p)

into np sub-intervals I(p)
i , i = 1 . . . np. On the resulting tensor grid T := W (1) ×W (2) ×W (3) of

Ω where W (p) =
�np

i=1 I(p)
i sets of collocation points {ξ(p)

i ∈ I(p)
i : i = 1 . . . np}, p = 1 . . . 3 are

defined (for ease of presentation, one collocation point per sub-interval, e.g. midpoints).
Further, the number of collocation points ξi = (ξ(1)

i1
, ξ(2)

i2
, ξ(3)

i3
), i = (i1, i2, i3) is denoted with

N :=
∏

p np.

5.3.2 The Collocation Scheme

Using the tensor product basis functions (e.g. ψ(p)
i := χI(p)

i
indicator function of sub-interval

I(p)
i )

ψi1i2i3(x) =

3∏
p=1

ψ
(p)
ip

(x(p)), (5.34)

and the ansatz cf. [25] [m(q)
j = m(q)(ξ j), j = ( j1, j2, j3)]

m(q)(x) =
∑

j

m(q)
j ψ j(x) (5.35)

the collocation scheme for (5.3) takes the form [i = (i1, i2, i3), j = ( j1, j2, j3)]

φi = −
1

4π

3∑
q=1

∑
j

m(q)
j

∫
Ω

g(q)(ξi, y)ψ j(y) dy, (5.36)

where

g(q)(x, y) :=
x(q) − y(q)

‖x − y‖3
. (5.37)
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Lemma 5. Let m ∈ C2(Ω). Then the collocation scheme (5.36), where ξ(p)
i are the midpoints of

I(p)
i i = 1 . . . np, converges quadratically.

Proof. Assume (w.l.o.g) uniform spacings in each dimension, i.e. hp := 1/np, and use the

notation h := maxp=1...3 hp. Furthermore, let Ω j :=
�3

p=1 I(p)
jp

.

The local error e(ξi) = |φi − φ(ξi)| (cf. (5.36) and (5.3)) will be estimated for each fixed i and q

in (5.36) separately, i.e. define

eq(ξi) :=

∣∣∣∣∣∣∣∑j

m(q)
j

∫
Ω

g(q)(ξi, y)ψ j(y) dy −
∑

j

∫
Ω

m(q)(y) g(q)(ξi, y)ψ j(y) dy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∑j

∫
Ω

(
m(q)

j − m(q)(y)
)

g(q)(ξi, y)ψ j(y) dy

∣∣∣∣∣∣∣ .
(5.38)

By using Taylor expansion for m(q) at ’source’ points ξ j, i.e.

m(q)(y) = m(q)(ξ j) +
〈
∇m(q)(ξ j), y − ξ j

〉
+ O(

∥∥∥y − ξ j

∥∥∥2
), (5.39)

one obtains (C1 > 0 independent of h)

eq(ξi) ≤
∑

j

∣∣∣∣∣∫
Ω

〈
∇m(q)(ξ j), y − ξ j

〉
g(q)(ξi, y)ψ j(y) dy

∣∣∣∣∣ + C1

∣∣∣∣∣∫
Ω

∥∥∥y − ξ j

∥∥∥2
g(q)(ξi, y)ψ j(y) dy

∣∣∣∣∣ .
(5.40)

It can easily be seen that g(q)(ξi, .) ∈ Lp(Ω j) for all j and 1 ≤ p < 3/2.

Hence, the second term in (5.40) allows the estimate∑
j

∣∣∣∣∣∫
Ω

∥∥∥y − ξ j

∥∥∥2
g(q)(ξi, y)ψ j(y) dy

∣∣∣∣∣ ≤∑
j

∥∥∥g(q)(ξi, .)
∥∥∥

L1(Ω j)

∫
Ω

∥∥∥y − ξ j

∥∥∥2
ψ j(y) dy

≤
∥∥∥g(q)(ξi, .)

∥∥∥
L1(Ω)

∑
j

∫
Ω j

∥∥∥y − ξ j

∥∥∥2
dy ≤

∥∥∥g(q)(ξi, .)
∥∥∥

L1(Ω)
|Ω| h2 = O(h2).

(5.41)

For the first term one has to distinguish between the diagonal (i = j) and non-diagonal (i , j)
case. The kernel g(q)(ξi, .) is analytic in the case i , j and thus allows Taylor expansion, i.e.

g(q)(ξi, y) = g(q)(ξi, ξ j) + O(
∥∥∥y − ξ j

∥∥∥). (5.42)

The constant term in the expansion does not contribute to the first term in (5.40) since y − ξ j is
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odd w.r.t. ξ j in Ω j. Thus, one gets (C2 > 0 independent of h)

∑
j,i

∣∣∣∣∣∫
Ω

〈
∇m(q)(ξ j), y − ξ j

〉
g(q)(ξi, y)ψ j(y) dy

∣∣∣∣∣ ≤ ∥∥∥∇m(q)(ξ j)
∥∥∥ ∑

j,i

∫
Ω j

O(
∥∥∥y − ξ j

∥∥∥2
)

≤ C2 |Ω| h2 = O(h2).

(5.43)

In the case i = j there holds for the first term in (5.40)∣∣∣∣∣∫
Ω

〈
∇m(q)(ξi), y − ξi

〉
g(q)(ξi, y)ψi(y) dy

∣∣∣∣∣ ≤ ∥∥∥∇m(q)(ξi)
∥∥∥ ∫

Ω

∥∥∥y − ξi

∥∥∥ ∣∣∣g(q)(ξi, y)
∣∣∣ ψi(y) dy

≤ C2 (I1 f )(ξi),
(5.44)

where (I1 f )(ξi) :=
∫
R3

| f (y)|

‖ξi−y‖
2 dy with f (y) = (ξ(q)

i − y(q))ψi(y) ∈ Lp(Ω), p ≥ 1 with compact

support Ωi. Since 1/ ‖x‖2 ∈ Lp(Ω), 1 ≤ p < 3/2, one proceeds with

(I1 f )(ξi) ≤
∫

Ωi

hq∥∥∥ξi − y
∥∥∥2 dy ≤ h

∫
Bh(0)

1
‖x‖2

dx = 4π h2, (5.45)

which completes the proof. �

Fig. 5.4 shows the quadratic convergence of the error of the collocation scheme (5.36) compared
to (5.3) evaluated at the origin2 for the radial symmetric function m(x) = exp(− ‖x‖2).
The evaluation of the potential φ on T by abbreviating notation for the matrices G(q)

∈ RN×N

n

ab
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 e
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r

20 40 80 160
10

-7
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10
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10
-4

computed

order O(h2)

Figure 5.4: Absolute error of collocation scheme (5.36). Reprinted from [26].

2Maple 14 was used for evaluating the expression (5.3) at the points ξi = 1/2(h, h, h) with h = 1/n.
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with entries

G(q)
i j =

∫
Ω

g(q)(ξi, y)ψ j(y) dy (5.46)

and the grid-sampled magnetization components m(q) ∈ RN is given as

φ ≈ −
1

4π

3∑
q=1

G(q) m(q), (5.47)

yielding computational effort O(N2) if no special structure on G(q) can be imposed.
The term (potential) operator will be used for

P : RN × RN × RN → RN , (m(1),m(2),m(3)) 7→ −
1

4π

3∑
q=1

G(q) m(q). (5.48)

In the following Gauss-Transform (cf. [25]) and sinc-quadrature [75] will be used to construct
a Kronecker product structure for (5.48) with an asymptotically optimal approximation error
yielding a ’tensor’ version P of (5.48) that can operate on structured tensors.

5.3.3 Sinc Quadrature

Here, some basic facts from the theory of sinc function based approximation are stated, see
[75],[57].
The sinc function sinc(x) := sin(πx)

πx is an analytic function which is 1 at x = 0 and zero at
x ∈ Z \ {0}. Sufficiently fast decaying continuous functions f ∈ C(R) can be interpolated at the
grid points x = kϑ ∈ ϑZ, ϑ > 0 (step size) by functions S k,ϑ(x) := sinc(x/ϑ − k), i.e.

fϑ(x) =
∑
k∈Z

f (kϑ)S k,ϑ(x). (5.49)

Since
∫
R

sinc(t) dt = 1, the interpolatory quadrature for
∫
R

f (t) dt leads to∫
R

f (t) dt ≈ ϑ
∑
k∈Z

f (kϑ), (5.50)

which can be seen as infinite trapezoidal rule. Truncation to k = −R . . .R of the infinite sum in
(5.50) leads to the sinc quadrature rule with 2R+1 terms with the truncation error ϑ

∑
|k|>R f (kϑ)

that obviously depends on the decay-rate of f on the real axis.
For functions f ∈ H1(Dδ), δ < π/2 (Hardy space), i.e. which are holomorphic in the strip
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Dδ := {z ∈ C : |= z| ≤ δ} with

N( f ,Dδ) :=
∫
∂Dδ

| f (z)| |dz| =
∫
R

(
| f (t + iδ)| + | f (t − iδ)|

)
d t < ∞, (5.51)

and in addition to f ∈ H1(Dδ) have double exponential decay on the real axis, the following
exponential error estimate for the sinc quadrature holds (cf. [57], Proposition 2.1), which is
stated here for the sake of completeness.

Theorem 6 ([57]). Let f ∈ H1(Dδ) with some δ < π/2. If f satisfies the condition

| f (t)| ≤ C exp(−bea|t|) ∀t ∈ R with a, b,C > 0, (5.52)

then the quadrature error for the special choice ϑ = log(2πaR
b )/(aR) satisfies∣∣∣∣∣∣∣

∫
R

f (t) dt − ϑ
∑
|k|≤R

f (kϑ)

∣∣∣∣∣∣∣ ≤ C N( f ,Dδ) exp
( −2πδaR
log(2πaR/b)

)
. (5.53)

Remark 3. In the case f (ρ) as in (5.1) the constants in (5.53) depend on ρ. For some fixed ρ,

an accuracy of ε > 0 can be achieved with R = O(| log ε | · log | log ε |).

Remark 4. Instead of using sinc quadrature like in [25], one could use the best approximation

of ‖x − y‖−3 in a specified interval. Here, better error estimates are obtained [76]. Note that

this approach is used in the recent work [15], see section 8.

5.3.4 Separable Approximation

The Gaussian transform

1
ρ3/2 =

2
√
π

∫
R

τ2 e−τ
2ρ dτ, (5.54)

is used to obtain for ρ =
∥∥∥ξi − y

∥∥∥2
and q = 1 . . . 3 the new representation for (5.46)

G(q)
i j =

2
√
π

∫
R

τ2
3∏

p=1

h(p)
ip jp

(τ) dτ ≡
2
√
π

∫
R

f (τ) dτ, (5.55)

with

h(p)
ip jp

(τ) =


∫

I(p)
jp

e−τ
2(ξip−y)2

dy p , q,∫
I(p)

jp
(ξip − y) e−τ

2(ξip−y)2
dy p = q.

(5.56)
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Lemma 7. After applying the substitution τ = sinh(t) the transformed integral (5.55) with

integrand f̃ (t) := cosh(t) f
(

sinh(t)
)

allows an exponentially convergent sinc quadrature, cf.

Theorem 6, where the constants in (5.53) depend on the parameters in (5.56).

Proof. Assume w.l.o.g. q = 1 and (5.56) to be transformed to integrals over intervals [ap, bp],
i.e. ap := ξip − jphp and bp := ξip − ( jp − 1)hp, where hp is the length of the interval I(p)

jp
, which

w.l.o.g. is assumed to be constant on the p-th axis. Set C :=
∏3

j=1[a j, b j] ⊂
∏3

j=1[h j/2, β j − α j]
(assume midpoints as collocation points); then the transformed integrand in (5.55) reads

f̃ (t) =

∫
C

x(1) cosh(t) sinh2(t) exp
(
− sinh2(t)

3∑
j=1

x( j)2)
d
(
x(1), x(2), x(3)). (5.57)

One obtains analytically up to constants

f̃ (t) ∝
cosh(t)
sinh2(t)

(
e−a2

1 sinh2(t) − e−b2
1 sinh2(t)

)(
erf

(
b2 sinh(t)

)
− erf

(
a2 sinh(t)

))
×(

erf
(
b3 sinh(t)

)
− erf

(
a3 sinh(t)

))
,

(5.58)

where the so-called error function is defined as

erf(x) :=
2
√
π

∫ x

0
e−τ

2
dτ. (5.59)

The functions erf
(

sinh(z)
)
/ sinh(z), exp

(
− sinh2(z)

)
and cosh(z) are all entire functions, hence,

f̃ is holomorphic over C.

Moreover, there holds (a > 0)

exp
(
− a2 sinh2(t)

)
= O

(
exp(−a2

4 e2|t|)
)

as |t| → ∞ (5.60)

and using asymptotic expansion for the error function 3 gives (a, b > 0, a , b)

erf
(
b sinh(t)

)
− erf

(
a sinh(t)

)
= O

(exp
(
− a2 sinh2(t)

)
− exp

(
− b2 sinh2(t)

)
sinh(t)

)
as |t| → ∞,

(5.61)

which shows the required double exponential decay for f̃ .

It remains to show that N( f̃ ,Dδ) < ∞. For z = t ± iδ, H :=
∑3

j=1 h2
j/4 and C0 =

∏3
j=1[h j/2, β j −

3erf(x) ≈ 1 − exp(−x2)
√
πx

(
1 − 1

2x2 + 3
(2x2)2 −

15
(2x2)3 ± . . .

)
, x � 1
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α j] one gets

∫
R

∣∣∣∣∣∣∣
∫

C
x(1) cosh(t ± iδ) sinh2(t ± iδ) exp

(
− sinh2(t ± iδ)

3∑
j=1

x( j)2)
d
(
x(1), x(2), x(3))∣∣∣∣∣∣∣ dt ≤

|C0|

∫
R

|cosh(t ± iδ)|
∣∣∣sinh2(t ± iδ)

∣∣∣ ∣∣∣exp
(
− sinh2(t ± iδ)H

)∣∣∣ dt < ∞,

(5.62)
since the remaining integrand is a smooth function in t with (double) exponential decay as

|t| → ∞.

This completes the proof. �

Remark 5. Since in an estimate for N( f ,Dδ) a term like

| exp
(
− a2 sinh2(t ± iδ)

)
| = exp

(
− a2

2

(
cos(2δ) cosh(2t) − 1

))
,

can have positive exponent (e.g. t close to zero), the norm cannot be estimated uniformly in hp,

prohibiting an exponentially convergent sinc quadrature for hp → 0.

Nevertheless, for the grid assumed to be fixed, Lemma 7 gives a Kronecker product approxima-

tion of the operator (5.48) with separation rank R, see Cor. 8, where R = O(| log ε | · log | log ε |)
for a prescribed accuracy ε.

Corollary 8. The operator (5.48) admits a Kronecker product approximation of the form (4.12)
with rank R, where R = O(| log ε | · log | log ε |) for a prescribed accuracy ε.

Proof. The substitution τ = sinh(t) preserves the symmetry in the integrand (5.54), leading to

a R + 1-term sinc quadrature after applying Lemma 7. Omitting the first term, which is zero,

leads to the R-term representation for the potential operator P :
�3

q=1

⊗3
p=1 R

np →
⊗3

p=1 R
np

(cf. (5.48) and (5.55)) with 4

P(q) = −
1

2π
3
2

R∑
k=1

αk D(q3)
k ⊗ D(q2)

k ⊗ D(q1)
k , (5.63)

with

(
D(qp)

k

)
ip jp

= h(p)
ip jp

(
sinh(tk)

)
and αk = cosh(tk) sinh2(tk), (5.64)

where tk = kϑ for ϑ = c0 log(R)/R and appropriate c0 > 0 cf. Theorem 6. �

The evaluation of one component ofP (cf. (5.63)) for a rank−1 tensor, i.e. X = v(3)⊗v(2)⊗v(1) ≡

4One notes that with I = i1 + (i2 − 1)n1 + (i3 − 1)n2
2 and J = j1 + ( j2 − 1)n1 + ( j3 − 1)n2

2 the entries of a matrix
A ∈ R

∏3
p=1 np×

∏3
p=1 np given by aIJ = a(1)

i1 j1
a(2)

i2 j2
a(3)

i3 j3
correspond to the (I, J)-entry of A(3) ⊗ A(2) ⊗ A(1).
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~v(3), v(2), v(3)� ∈ Cn,1, is given as

P(q)X = −
1

2π
3
2

R∑
k=1

αk
(
D(q3)

k v(3)) ⊗ (
D(q2)

k v(2)) ⊗ (
D(q1)

k v(1)), (5.65)

and amounts in a computational cost of O(R
∑3

p=1 n2
p).

It is not far to seek a reduction of this complexity by reducing the cost for the matrix-vector
product (cf. Sec. 5.4) or reduction of the separation rank R (cf. Sec. 5.3.5).
By using the relations5 [49] (assume appropriate dimensions for the involved matrices)

(
A1 ⊗ A2

) (
B1 � B2

)
= A1B1 � A2B2 (5.66)(

A1 ⊗ A2
) (

C1 ⊗ C2
)

= A1C1 ⊗ A2C2, (5.67)

and

vec
(
~λ; V(1),V(2),V(3)�

)
=

(
V(3) � V(2) � V(1))λ, (5.68)

respectively

vec
(
~C; V(1),V(2),V(3)�

)
=

(
V(3) ⊗ V(2) ⊗ V(1))vec(C), (5.69)

one gets for the evaluation of (5.63) for X ∈ Cn,r (also compare with Alg. 10 and [25])

P(q)X = −
1

2π
3
2

R∑
k=1

αk ~λ; D(q1)
k V(1), D(q2)

k V(2), D(q1)
k V(3)�, (5.70)

respectively for X ∈ Tn,r the formula

P(q)X = −
1

2π
3
2

R∑
k=1

αk ~C; D(q1)
k V(1), D(q2)

k V(2), D(q1)
k V(3)�. (5.71)

For unstructured tensors X ∈
⊗3

p=1 R
np formula (5.69) gives

P(q)X = −
1

2π
3
2

R∑
k=1

αk ~X; D(q1)
k , D(q2)

k , D(q1)
k �. (5.72)

5The symbol � stands here for the Khatri-Rao product, cf. Sec. 4.3
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5.3.5 Some Practical Issues

Here the question is briefly addressed how to choose the rank R.
If one applies sinc quadrature to the Gaussian transformed kernel (5.54), one can adaptively de-
termine the rank by controlling the relative error of the quadrature in an interval ρ ∈ [ρmin, ρmax]
corresponding to the mesh size parameter h by the relation ρ =

∥∥∥ξi − y
∥∥∥2
≥ 3h2/4 [cf. proof

of Lemma 7 Eq. (5.57)]. One can scale the computational domain to unity, hence, in Fig. 5.5
ρmax ≤ 3 was considered, which corresponding to Ωscaled = [0, 1]3. One observes a uniform
relative error bound for h greater some hmin. Also compare with section 8. Moreover, one can
see from Fig. 5.5 the exponential decay of the error with respect to the rank (the logarithmic
error is a decreasing affine function of the rank).
The separation rank could also be reduced by applying re-compression of the CP representa-
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Figure 5.5: Relative error for sinc quadrature of (5.54) with substitution τ = sinh(t). c0 = 2.15.
Reprinted from [26].

tion (cf. Sec. 4.2) corresponding to (5.63). This can be done by compressing (5.63) as Tucker
tensor by Alg. 6 and subsequent approximation of the resulting core to CP.6 This yields a canon-
ical tensor with smaller rank. The resulting CP representation again corresponds to a Kronecker
product representation.

6E.g. by optimization based algorithms [51] or direct CP approximation to a smaller rank.
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5.4 FFT Acceleration

Here the question is addressed how to use FFT in order to reduce computational costs for eval-
uating the operator P, cf. Corr. 8 Eqn (5.63). The evaluation of this operator for rank−1 tensors
[cf. (5.65)] scales quadratically in the number of collocation points in one dimension. Even
though this is super-optimal, also referred to as sub-linear [cf. [25] or (slightly misleading) as
super-linear (cf. [24])], one can still reduce this complexity (on uniform grids) by observing a
convolution in (5.3) and using the properties of DFT for structured tensors of Lemma 3 and 4.
Assume that the grid spacing, i.e. hp, is constant for each p and the collocation points to be the
midpoints of the intervals I(p)

jp
≡ I(p).

By applying the substitution used in the proof of Lemma 7 one gets for the functions in (5.56)

h(p)
ip− jp

(τ) = h(p)
ip jp

(τ) =


∫ bip− jp

aip− jp
e−τ

2 x2
dx p , q,∫ bip− jp

aip− jp
x e−τ

2 x2
dx p = q,

(5.73)

where aip− jp = (ip − jp)hp −
hp

2 and bip− jp = (ip − jp)hp +
hp

2 .
For ip, jp = 1 . . . np these are 2np−1 different integrals. Therefore, set ip− jp = Jp = 1 . . . 2np−1
and identify the convolution kernel G(q)

i− j ∈
⊗3

p=1 R
2np−1 with entries

G(q)
J1 J2 J3

=
2
√
π

∫
R

τ2
3∏

p=1

h(p)
Jp

(τ) dτ. (5.74)

Lemma 7 also holds for (5.74) [after the substitution τ = sinh(t)] and hence one can apply sinc
quadrature leading to [cf. (5.48) and (5.55)] the canonical representation

P(q) = −
1

2π
3
2

~ λ; D(q)
1 , D(q)

2 , D(q)
3 � ∈ C2n−1,R, (5.75)

with

(
D(q)

p
)

Jp k = h(p)
Jp

(
sinh(tk)

)
and λk = cosh(tk) sinh2(tk), (5.76)

where tk = kϑ for ϑ = c0 log(R)/R and appropriate c0 > 0 cf. Theorem 6.
By denoting the element-wise product (Hadamard product) for tensors with • and using DFT,
the evaluation of one component ofP [cf. (5.75)] for a tensorX ∈

⊗3
p=1 R

np with (zero-padded)
Fourier transform X̂ ∈

⊗3
p=1 C

2np−1 reads

P(q) ∗ X = F −1
(
−

1

2π
3
2

~ λ; D̂
(q)
1 , D̂

(q)
2 , D̂

(q)
3 � • X̂

)
. (5.77)
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The complexity of FFT-based convolution in (5.77) with an unstructured tensor X is dominated
by the costs for the FFT of X, and amounts in a complexity of O(R

∑3
p=1 log np

∏3
q=1 nq), which

is comparable with usual FFT-based computation of the scalar potential (except the constant R,
the order of sinc quadrature), cf. [18], [77]. However, the storage for the kernel is lower, see
remark below.
For structured tensors X the complexity of FFT-based convolution with (5.75) scales like
np log np in the mode sizes due to the Lemmas 3 and 4 of Sec.4.5, i.e. if X is a Tucker ten-
sor one has complexity O(R

∑3
p=1 rpnp log np) and O(Rr

∑3
p=1 np log np) for canonical tensors,

respectively. Of course, the Hadamard product in (5.77) gives additional costs, see section 4.
One can think of re-compression of (5.75), e.g. efficient compression of a CP tensor to a Tucker
tensor by Alg.6 or to the Tensor Train format (TT) 4.4, if the magnetization itself is represented
in Tucker representation. The (complex) Hadamard product in Fourier space can be performed
with the techniques described in section 4, depending on the structure of the magnetization
component tensors. Alternatively, one could use a black-box approximation of the result of the
Hadamard product by means of adaptive cross approximation. For more details on that, the
reader is referred to the corresponding remarks in section 4 and the given references. Recently,
a related idea was used in the context of the Poisson equation arising in the Stokes problem and
experimentally tested for the two dimensional case [78].
In the FFT variant described in this section, choosing a large number of sinc-quadrature terms
(∝ rank R) becomes a feasible option, which results in an accurate representation of the oper-
ator (5.48). Since the computation and the re-compression of the discrete kernels (5.75) are
done in a setup-phase in a micromagnetic simulation, the higher amount of work due to higher
ranks does not significantly influence the overall computing time.

Alg. 11 describes the FFT-based procedure for computing the scalar potential for Tucker mag-
netization. Fig. 5.6 shows results on complexity and accuracy using Alg. 11 for the case of
uniform magnetization (means constant ranks ≡ 1), cf. [25]. One can observe the quasi-linear
complexity (n log n), while the relative error in the energy decreases with order about 1.5. The
discretization for the energy and the stray field calculation from the potential were carried out
second order. Fig. 5.7 shows logarithmic rank-grows for the stray field (averaged over modes)
induced by a non-trivial (flower-like) magnetization state [18], while using an accuracy of 1e-12
in Alg. 11.

Remark 6. A version of Alg. 11 for CP magnetization without representing the corresponding

CP tensors as Tuckers (which is of course also possible) is straightforward, i.e. in the setup the

CP kernel is not compressed in Tucker format and the Hadamard product is performed within

the CP format. The result is a CP tensor.

Remark 7. A version of Alg. 11 for dense magnetization has the same computational complex-

75



Algorithm 11 Scalar potential DFFT; scpotDFFT(M(1),M(2),M(3), h, R, c0, tol > 0)
Require: M(p) ∈ Tn,r(p) , hp > 0 (p = 1 . . . 3), R ∈ N, c0 > 0, tol > 0
Ensure: Φ ∈ Tn,r′

Setup
• Compute the CP kernels (5.75)

• Compress the kernels to Tucker tensors with tolerance tol

• Compute DFFT of Tucker kernels by using Lemma 4

Actual computation
for q = 1 . . . 3 do
• Compute DFFT of q-th Tucker magnetization component by using Lemma 4

• Compute Tucker Hadamard products of magnetization component and kernels in
Fourier space using e.g. the tolerance tol

• Compute IDFFT for result of previous step

end for
Perform approximate summation of results in previous step using e.g. the tolerance tol
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Figure 5.6: Complexity and relative error in the energy for Alg. 11 tested for uniform magne-
tization. Reprinted from [26].
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Figure 5.7: Ranks of the computed stray field using Alg. 11 with accuracy 1e-12 and a flower-
like magnetization state. Reprinted from [26].

ity as other FFT based stray field algorithms. However, an advantage of Alg. 11 is the lower

storage requirements for the kernels P(q) from (5.75). It is only O(R
∑3

q=1 nq) since the DFT of

the kernels (5.75) can be carried out by Lemma 3 (Sec. 4.5) and result in CP tensors. This is

much lower than for the demagnetizing-tensor or scalar potential method from [18]. For the

elementwise product in Fourier space, the entries of the kernel have to be re-calculated from

their factorized representations at a cost of O(R) operations.

77



Chapter 6

Approximation of Magnetization in the
Tucker format

An optimization procedure for the total energy that works with structured tensors for the mag-
netization components would benefit from low compression ranks, i.e. the complexity is lower,
and of course also storage is less. On the other hand, the realization of such an algorithm is
not straight forward at all. All the energy and gradient terms have to be calculated with tensor
structured magnetization components, see chapter 5 for the stray field (the most tricky part).
Also, all the operations in an existing minimization algorithm have to be performed within the
tensor structure. Due to rank growing operations (like the Hadamard product), this is often only
possible when approximate tensor arithmetics (truncation) is used, cf. Sec. 7.3. In this context
most attention should be paid to the effective computation of element-wise operations (cf. chap-
ter 4), which certainly plays an important role in any algorithmic realization of the point-wise
constraint on the magnitude of the magnetization. For more information see chapter 7 where
also alternative approaches for ’low-rank’ minimization of the energy are introduced.
This section is dedicated to the question whether there exist ’low rank solutions’ to micromag-
netic minimization problems and especially the investigation of the behavior of the ranks of the
magnetization components while hysteresis.
First, tensor approximation of a function related tensor which corresponds to data in a body
with curved surface is briefly discussed in section 6.1 for the example of a sphere. Apart from
that, Tucker compression for relaxed states1, rank-growth with respect to the compression and
optimization tolerance but also with respect to the applied field during demagnetizing curve
calculation of a cubic (hard and soft) magnetic particle is analyzed in the subsequent sections.

1There holds Cn,r ⊆ Tn,r since a canonical tensor can be identified with a Tucker tensor which has a superdiag-
onal core tensor. Hence, the ’Tucker-rank’ (r ≡ rq) is smaller or equal the ’CP-rank’.
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Table 6.1: Tucker approximation of indicator function of a ’staircase approximation’ of a sphere
by Alg. 6 with tolerance 1e-06.

mode size n (N = n3) 30 50 80 100 140 200
rank r (rq ≡ r) 13 22 37 54 72 100

6.1 Approximation of the Indicator Function of a Sphere

Assume a Cartesian grid. By assigning the value 1 for tensor entries which correspond to grid
points inside a sphere and zero else, one gets a tensor which is a discrete approximation of
the indicator function χ of the sphere, see Fig. 6.1 left. Numerical tests show that a tensor
approximation of a multivariate function with low tensor rank, e.g. something like x2 + y2 + z2,
and defined in a sphere is only as good as the tensor approximation of the indicator function
χ. On the other hand, the tensor approximation of χ in the Tucker format by Alg. 6 yields a
rather bad result, see Tab. 6.1. The approximation ranks are about n/2, which corresponds to
a compression by a factor of about 7 − 8 (about the ratio of the volume of the cube and the
inscribed sphere). This means there is no effective compression possible.

Figure 6.1: Left: ’Staircase approximation’ of a sphere. Right: Approximation on the left but
smoothed by Gaussian filter.

Fig. 6.1 also shows the staircase approximation convoluted with a Gaussian filter like in sec-
tion 4.6. Remarkably enough, the smoothed sphere allows a slightly better Tucker approxima-
tion, e.g. for n = 100 the approximation ranks reduce from 54 to 40, for n = 200 from 100 to
68. This result depends on the parameters in the used filter, i.e. for the Gaussian filter as given
in (4.42) the parameter m has to be large enough (i.e. the convolution result has to be smooth
enough) in order to get a better approximation rank. On the other hand, larger m yields higher
complexity in the (local) computation of the convolution. Fast convolution (using Fast Fourier
transform and convolution theorem) could be considered instead.
Overall, one can not expect ’ε-accurate’ low-rank approximations for function-related tensors
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Table 6.2: Remanent states for uniform initial magnetization. Ranks r (average of ranks, i.e.
1/9

∑3
p=1

∑3
q=1 rq

p) determined with tolerance 1e-14. Q = 1 and n = 2.5λ.

grid size n (N = n3) 30 40 50 60 70 80 100
average rank r 15 20 25 29.3 31 34 35.7

which ’live’ in a body with curved surface. This result is disillusioning, and so, methods de-
scribed in this thesis, which assume discrete representations of magnetization components as
tensors refer to hexahedral magnets. Exceptions are the generic descriptions of minimization
methods of chapter 3 and of course the finite element stray field method in chapter 8.
For the sake of completeness it should be mentioned that, in the special case of a sphere, spher-
ical coordinates would lead to a tensor product domain. In the words of W. Hackbusch [47,
p.464]:
’Tensor applications require a Cartesian grid I := I1 × . . . × Id of unknowns. This does not

mean that the underlying domain Ω ⊂ Rd must be of product form. It is sufficient that Ω is the

image of a domain Ω1 × . . . × Ωd. For instance, Ω may be a circle, which is the image of the

polar coordinates varying in Ω1 ×Ω2.’

6.2 Approximation for zero External Field

In this section initial states in the unit cube are relaxed using the energy minimization algo-
rithm 2 form section 3.3.1 with no external field and anisotropy axis parallel to the z−axis.
Their compression ranks are investigated for given tolerances. First, the initial state is chosen
to be uniform in z-direction, i.e. mx = my = 0, mz = 1. Hard magnetic material is assumed: for
this test Q = 1 (cf. section 2.2), while the length of the cube λ (and so the exchange constant) is
varied. L is set to 1, which corresponds to the unit cube. The number of grid points in one direc-
tion, i.e. n, is varied according to n = 2.5λ. Since λ has units of exchange length lex, this means
that the exchange length is 2.5 times larger than the grid-spacing, cf. section 2.2. Tab. 6.2
shows the results for compression ranks with relative accuracy in the Frobenius norm below
ε = 1e-14. Stopping criterion for the optimization procedure was a maximum norm of the
projected gradient less than 1e-9 (very tight). The relaxed magnetization configurations were
all symmetric flower states [12] with average magnetization 〈mx〉 = 〈my〉 = 0, 〈mz〉 = 0.9981.
From Tab. 6.2 one observes linear rank-growth for small λ and gradually logarithmic increase
for larger cubes. Anyway, it is remarkable that there exists a low-rank approximation with an
accuracy of almost double machine precision (1e-14).
In [18] similar tests were performed for vortex-like magnetization; also rank-growth for in-
creasing λ was observed. Moreover, Tucker compression turned out to be more efficient than
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Table 6.3: Average ranks for Tucker approximation with tolerance ε for remanent states of
randomly disturbed uniform initial magnetization for different stopping tolerance (opt-tol) of
the maximum norm of the projected gradient. Grid size n = 50, λ = 35 and Q = 1/2.

tolerance ε 1e-9 1e-8 1e-7 1e-6 1e-5 1e-4
opt-tol 1e−06 50 50 50 50 48.7 27.7 (average rank r)
opt-tol 1e−08 49 41.3 27 17 6.6 4 (average rank r)
opt-tol 1e−10 47.7 21 11 7 6 4 (average rank r)

using CP format. A canonical ALS approximation of the relaxed magnetization components in
Tab. 6.2 with rank dre yields relative errors in the range of 1e-5 – 1e-7.

The minimization of the energy can regularize initial magnetization, such that the relaxed state
is smooth enough to allow a low rank approximation (even though the initial state does not
allow it). In order to demonstrate this, uniform magnetization, i.e. mx = my = 0, mz = 1,
is disturbed randomly, i.e. random numbers from the interval [−1e-2,1e-2] are added to each
component of the magnetization at each node. Afterwards, this configuration is normalized
and taken as initial state for minimization by Alg 2. Note, that this disturbed magnetization
has full (Tucker) ranks for approximation tolerances much below 1e-2, e.g. for < 1e-5. The
optimization again leads to symmetric flower states, but this time for Q = 1/2 with average
magnetization 〈mx〉 = 〈my〉 = 0, 〈mz〉 = 9.927e-01. Tab. 6.3 shows the (average) rank of the
z-component of the relaxed state for different stopping tolerance of the maximum norm of the
projected gradient. The more relaxed the resulting state is, i.e. tighter stopping criterion in the
optimization, the better Tucker compression for given tolerance is possible. On the other hand,
tighter stopping criteria in an optimization procedure that uses Tucker compressed magneti-
zation components for its internal functions (e.g. gradient calculation, line search) demands
for more accurate compression. For instance, this consideration concerns the stopping criteria
in demagnetizing curve calculations, i.e. the optimization tolerance which has to be reached
before the applied field is reduced by some ∆h. If one feels certain about the choice of the stop-
ping tolerance (together with the decrement value ∆h), only compression tolerances below the
stopping tolerance are valid. Otherwise white noise disturbs the calculation. The next section
is dedicated to this and similar considerations related to calculation of demagnetizing curves
(hysteresis).

6.3 Approximation during Demagnetization

In this section the compression of the magnetization components is determined during demag-
netization through an external field (applied field) that starts with some positive magnitude and
is then gradually decreased, i.e. the states during demagnetization are analyzed regarding their
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(Tucker) compression properties. Alg. 2 is used for optimization, where this algorithm op-
erates on dense/full magnetization component tensors. The relaxed states are compressed by
Alg. 6 and used as new initial states in full tensor format for the minimization of the energy
with reduced external field. Hence, the tensor compression in this section only has the effect
of ’rounding’ the already relaxed states to the prescribed accuracy in HOOI Alg. 6, whereas
the numerical optimitaion is performed in double machine precision (full tensor format). Of
course, this procedure has no computational advantages over the original algorithm , but it may
help one to understand the effect of compression (used as truncation operation) in a minimiza-
tion scheme for the total energy. The Tucker compression accuracy is therefore tighter than the
used stopping criteria in the optimization scheme. Clearly, the opposite case would make no
sense at all. The tests in this section reflect the behavior of a version of Alg. 2 that produces,
up to the compression tolerance, the same results like the original algorithm.

The first test takes a L = 70nm cube with uniaxial anisotropy axis in z-direction, Js = 1.61T,
K1 = 4.3e+6 J/m3 and A = 7.3e-12J/m, which corresponds to Nd2Fe14B [9]. The material
parameter give Q = 2.08 and a wall width parameter of

√
A/K1 ∼ 1.3nm. Since the exchange

length is lex = 2.6nm, larger than the wall width (hard magnetic case), a mesh size parameter
n = 50 is considered to yield a sufficient fine discretization, i.e. grid spacing ∼ 1.4nm about
half of lex and about the wall width. The external field axis is parallel to the vector (1, 0, 10)T ,
so it is nearly parallel to the anisotropy axis. Subsequent equilibrium states are now computed
by Alg. 2 for decreasing external field h = ‖hext‖ ∈ [−3.5, 1], where the value is reduced by
∆h = 5e-3 if the maximum norm of the projected gradient is below 1e-6. Tucker compression
is performed using Alg. 6 with tolerance 1e-7. Fig. 6.3 shows average ranks and errors as a
function of compression tolerance (cf. Alg. 6) for the z-component of different states in the
demagnetizing curve, which itself is shown in Fig. 6.2.

In Fig. 6.3 one clearly recognizes rank-growth as h is approaching the coercive field. Away
form this value only very slow increase with respect to decreasing h is observed. For the rela-
tion between average compression ranks r̃ and the tolerance tol in the compression there holds
approximately r̃ ∼ O(log tol−1) if h is not near the coercive field.
Also note that the maximum observed ranks were r = (50, 25, 50) for all magnetization com-
ponents.
It is not far to seek an application of Tucker compressed magnetization in an optimization
scheme for the purpose of calculating hysteresis, at least for external field values away from
the coercive field. This critical field value could be detected by (exploding) rank-growth, see
Fig. 6.3 and 6.4, but also compare with Fig. 6.5, where the ranks do not grow while approach-
ing the coercive field (only right before, i.e. h ∼ hc) due to a too loose stopping tolerance in the
optimization.
Fig. 6.4 shows average ranks as function of the external field for Tucker compression with tol-
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Figure 6.2: Demagnetizing curve of 70nm Nd2Fe14B cube, i.e. projection of magnetization onto
field axis (1, 0, 10)T (|m|) as function of external field h. The brighter curve is calculated with
Tucker compression with tolerance 1e-7, whereas the dark blue curve uses full magnetization.
The calculated coercive field is in both cases hc = −2.767. Uniaxial anisotropy axis is (0, 0, 1)T ,
∆h = 0.005, opt-tol = 1e-6.

erance 1e-7 in the computation of the demagnetizing curve in Fig. 6.2. Fig. 6.4 shows larger
ranks for the x and y component compared to the z component, which is also true for the most
part in Fig. 6.3. Right before and during switching of the magnetization (i.e. near the coercive
field) the ranks ’explode’ in an oscillating manner.
The choice of a small enough stopping tolerance for given ∆h is important to calculate a good
approximation of the coercive field. Fig. 6.5 shows, in the same case like in Fig. 6.2-6.4
(Nd2Fe14B), the ranks and the demagnetizing curve for a higher stopping tolerance (opt-tol)
of 1e-5. The calculated coercive field is hc = −2.955. Although the Tucker approximation
tolerance can now be increased to e.g. 1e-6, which leads to lower ranks, the calculated value of
the coercive field exceeds that from the previous calculation (opt-tol = 1e-6) by 6.8 %. Also,
the ranks do not grow while approaching the coercive field due to a too loose stopping tolerance
in the optimization. Only right before the switching the ranks grow to saturation.
On the other hand, performing the same test but with a tighter stopping tolerance (opt-tol) of
1e-7 and Tucker approximation tolerance 1e-8 yields the coercive field hc = −2.752 which
differs from that corresponding to opt-tol = 1e-6 by only 0.5 %. Fig. 6.6 shows this test, where
one clearly recognizes high ranks throughout the whole simulation.
A smaller cube with L = 35nm with stopping tolerance (opt-tol) 1e-6 and Tucker approxima-
tion tolerance 1e-7 is shown in Fig. 6.7; still the mesh size is n = 50. Compared to the 70nm
cube in Fig. 6.4 the ranks grow faster.
Interestingly, the opposite seems to be true for a large sample, i.e. for L = 100nm, n = 80 and
the material parameters of Nd2Fe14B. Fig. 6.8 shows, for stopping tolerance (opt-tol) 1e-6 and
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Figure 6.3: Average ranks and corresponding error (maximum- and l2-norm) as a function of
compression tolerance (tol) for the z-component of different states in the demagnetizing curve
(cf. Fig. 6.2) for a 70nm Nd2Fe14B cube. Axis of applied field is parallel to (1, 0, 10)T , uniaxial
anisotropy axis is (0, 0, 1)T , ∆h = 0.005, opt-tol = 1e-6.
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Figure 6.4: Average ranks of the magnetization components in the demagnetizing curve (cf.
Fig. 6.2 bright curve) as a function of external field. Compression tolerance used in HOOI is
1e-7.
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Figure 6.5: Average ranks of the magnetization components in the demagnetizing curve (inset)
of a 70nm Nd2Fe14B cube as a function of external field. Compression tolerance used in HOOI
is 1e-6. The stopping tolerance in the optimization is 1e-5.
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Figure 6.6: Average ranks of the magnetization components in the demagnetizing curve (inset)
of a 70nm Nd2Fe14B cube as a function of external field. Compression tolerance used in HOOI
is 1e-8. The stopping tolerance in the optimization is 1e-7.

85



h
-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

0

10

20

30

40

50
tol = 1e-7 average ranks mx

average ranks my

average ranks mz

h

|m
|

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Nd2Fe14B cube 35 nm

a = (0,0,1)
h-axis || (1,0,10)

opt-tol = 1e-6
Δh = 5e-3

Figure 6.7: Average ranks of the magnetization components in the demagnetizing curve (inset)
of a 35nm Nd2Fe14B cube as a function of external field. Compression tolerance used in HOOI
is 1e-7. The stopping tolerance in the optimization is 1e-6.

Tucker approximation tolerance 1e-7, increasing ranks up to h ∼ −0.8 and smaller ranks after-
wards until h reaches the coercive field (calculated value hc = −2.727). There are similarities
to Fig. 6.5 where the stopping tolerance was too loose.
Fig. 6.9 shows the same as Fig. 6.4 but with different anisotropy Q = 0.05, which corresponds
to a soft magnetic material. One observes rapid rank growth for all components as h approaches
the coercive field.

For different applied field axis, e.g. 45 degree to the anisotropy axis, tests similar to those
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Figure 6.8: Average ranks of the magnetization components in the demagnetizing curve (inset)
of a 100nm Nd2Fe14B cube as a function of external field. Compression tolerance used in HOOI
is 1e-7. The stopping tolerance in the optimization is 1e-6.
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Figure 6.9: Average ranks of the magnetization components in the demagnetizing curve (inset)
of a soft magnetic cube as a function of external field. Compression tolerance used in HOOI is
1e-7. The stopping tolerance in the optimization is 1e-6.

performed in this section show higher and more rapidly increasing ranks.

6.4 Conclusions

The considerations of sections 6.1 indicate difficulties for ’ε-accurate’ low-rank approximations
for function-related tensors which ’live’ in a body with curved surface. Micromagnetic methods
for curved geometries, which assume discrete representations of magnetization components as
tensors, are therefore rather inconceivable. Also the results of the subsequent sections strongly
indicate that ’ε-accurate’ low-rank approximation is absolutely necessary in order to be able
to implement such rounding/truncation in an optimization routine. These methods strongly de-
pend on calculations that are at least as accurate as a stopping tolerance2. On the other hand,
the choice of a small enough stopping tolerance for given ∆h is important to calculate a good
approximation of the coercive field, compare Fig. 6.4, 6.5 and 6.6.
The tests in section 6.2 indicate an asymptotically logarithmic rank-growth with respect to the
side-length of a (rather) hard magnetic cube (with no external field). It is also shown that the
minimization of the energy has a regularizing effect on randomly disturbed initial magnetiza-
tion.
In section 6.3 the compression ranks corresponding to a prescribed tolerance during demagne-
tization are adaptively determined. The dependence of the ranks with respect to the tolerance
tol for the compression is found to be approximately r̃ ∼ O(log 1/tol) if h is not near the
coercive field. Right before and during switching of the magnetization (i.e. near the coercive

2Such a tolerance is usually in the range of 1e-8 - 1e-5 for a maximum norm used
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field) the ranks ’explode’ in an oscillating manner, while for the region away from the critical
field ranks do not grow drastically. Anyway, the field range, where ranks can be small and
do not increase too fast, is large for hard magnetic materials. This gives one the possibility
to apply compressed magnetization in an optimization scheme for the purpose of calculating
hysteresis, at least in the restricted cases where this is possible in principle3. Soft magnetic
material instead shows (as it is well known) a very narrow hysteresis loop and, as shown in the
previous section, rapid rank-growth towards the field value were the magnetization switches.
In the context of optimization methods for ’low-rank tensor magnetization’, this chapter was
dedicated to minimization of the energy with truncated operations; in Ch. 7 also alternatives
are discussed.

3E.g. geometry restriction or storage problem for element-wise operations in Tucker format
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Chapter 7

Energy Minimization with Structured
Tensors

Recall that a stable magnetization configuration m∗ is an isolated local solution to (also com-
pare with Sec. 3.1 and 3.2)

min
m
ψt(m) subject to ‖m‖ = 1 point-wise. (7.1)

In this chapter the focus is on solving (7.1) within either the CP or the Tucker format for low

representation ranks. This is interesting not only for the purpose of accelerating existing meth-
ods like those already introduced in chapter 3, but also to make energy minimization possible
where the degrees of freedom exceed the capacities of state-of-the-art methods. In fact, in the
case of rather small or medium sized systems, methods for structured tensor magnetization can
be expected to be less efficient1 than most of the methods in chapter 3. Reasons for that are
the complications in connection with the additional side constraintM ∈ structured tensor field

and, especially, the fulfillment of the unit norm constraint. This might force one to use the nu-
merically inferior penalty formulation, cf. Sec. 3.4.1. Nevertheless, energy minimization with
structured tensors can yield cheaper iterations and, above all, less storage requirements.
The discrete version of (7.1) for unstructured magnetization is a minimization problem con-
sisting of a quadratic functional with a (point-wise) non-linear and non-convex side constraint.
Inserting a structured tensor magnetization (fixed format) allows one to treat the problem (7.1)
with respect to the parameters of the tensor format. As a consequence the discretized energy
loses the property of being a (simple) quadratic function. The higher degree of non-linearity
makes the numerical optimization more difficult. Moreover, the unit norm constraints can not
be treated directly, e.g. by iterations that make use of re-normalization, but have to be incorpo-
rated into the problem formulation by a penalty term. Also, additional local minima can occur

1In terms of number of iterations, convergence rate or function evaluations.
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which are not local solutions to (the discretized version of) (7.1). In the case of CP tensors for
the parametrization of the magnetization, the non-closedness of Cn,r, r ≥ 2, |n| ≥ 3 might lead
to non-stable iterations. Regularization can be considered to overcome this problem.
A second notion of minimizing (7.1) in a data-sparse fashion is the use of truncated iterations
from optimization methods from Sec. 3. This idea is briefly discussed in Sec. 7.3, however,
some numerical analysis was already done in Ch. 6 in Sec. 6.2 and 6.3.
Both notions of minimizing the energy with structured tensors (within the parameter set or ’ex-
terior’ with truncation) are briefly described in Sec. 7.3 and 7.4. An intermediate procedure
is introduced in Sec. 7.5. Successive rank-k updates within a penalty setup do not suffer too
much from rapid rank growth like truncation methods and the degree of non-linearity in the
optimization is lower than for optimization with fixed prescribed ranks.
In the following section 7.1 the discrete energy on a tensor grid is obtained. Sec. 7.2 discusses
discrete optimization on tensor spaces and subsets.

7.1 Discretization of the Energy on a Tensor Grid

In order to solve the micromagnetic energy minimization problem (7.1) the energy (2.17) has
to be discretized. The magnetization on a tensor grid is generally given as a tensor fieldM =

(M(1),M(2),M(3)) whereM(p) ∈
⊗3

q=1 R
nq , p = 1 . . . 3, also compare with Sec. 5.1.4. For the

sake of simpler notation a uniformly discretized unit cube with subcubes of volume 1/n3 is
assumed. In the more general case of n = (n1, n2, n3) the following definitions and derivations
can be easily adapted.
The energy (2.17) is discretized using the midpoint rule, i.e.

ψt ≈ Ψt(M) = −
Ã
n3

3∑
p=1

3∑
q=1

〈M(p),M(p) ×q Kn〉 −
1

2n3

3∑
p=1

〈M(p),H
(p)
d (M)〉

+ Q
(
1 −

1
n3

3∑
p=1

3∑
q=1

a(p)a(q)〈M(p),M(q)〉
)
−

1
n3

3∑
p=1

〈M(p),H
(p)
ext 〉,

(7.2)

where Kn ∈ R
n×n is the central three-point discretization of the second derivative with Neumann

boundary conditions and a ∈ R3×1 the unit vector of the easy axis. The expression (7.2) is a
second order approximation to (2.17). All operations in (7.2) can be performed efficiently if
the components ofM are structured tensors.
According to Sec. 5.1.5 the stray field components are approximated by

H
(p)
d (M) =

1
2π3/2

3∑
q=1

R∑
l=1

N l
p(M(q)), (7.3)
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with

N l
p(M(q)) =M(q) ×1 D̃

l
1 ×2 D̃

l
2 ×3 D̃

l
3 ×p Jn, (7.4)

and

D̃
l
j :=

(
ωl sinh2 τl

)1/3 Dl
j. (cf. Sec. 5.1.5) (7.5)

Remember that in the case of structured tensors the evaluation ofN l
p simplifies, e.g. forM(q) =

~U(1),U(2),U(3)� ∈ Cn,r and p = 1

N l
1(M(q)) = ~Jn D̃

l
1U(1), D̃

l
2U(2), D̃

l
3U(3)� ∈ Cn,r. (7.6)

Remark 8. The discrete energy (7.2) is a quadratic functional in the sense that there holds

Ψt(m) − Q =
1
2

mT Hm− hT m, (7.7)

where m =
(
vec(M(1))T , vec(M(2))T , vec(M(3))

)T , h = 1/n3(vec(H (1))T , vec(H (2))T , vec(H (3))
)T

and the symmetric (block) Kronecker product structured Hessian

H = −
1
n3

(
ÃK −

1
2

N + 2QA
)
, (7.8)

with the symmetric 3n3 × 3n3 block matrices

K = diag(∆n3 ,∆n3 ,∆n3), ∆n3 = (Kn + KT
n ) ⊗ In ⊗ In + In ⊗ (Kn + KT

n ) ⊗ In + In ⊗ In ⊗ (Kn + KT
n ),

N = [P(q) ×p Jn + (P(p) ×q Jn)T ]p,q=1...3, cf. (5.63),

A = aaT ⊗ In3 ,
(7.9)

where Im ∈ R
m×m is the identity matrix.

As a consequence, the gradient of the discretized energy with respect to m is∇mΨt(m) = Hm−h
and the Hessian is ∇2

mmΨt(m) = H. Hence, the action of the Hessian on a grid vector v is

Hv = ∇mΨt(v) + h, which allows the usage of iterative solvers (e.g. CG or GMRES) for linear

systems containing the Hessian without explicit storage of H. The Kronecker structure of H
can only be exploited if m has a certain separable structure itself, e.g. one of the tensor formats

of Sec. 4. Computational costs for evaluating the energy and its gradient are both dominated

by the costs of the stray field part. However, preconditioning of a structured matrix like H is a

serious task which is by far not trivial if the structure should be preserved. This topic will not

be discussed in this work and therefore left for future research, especially in connection with a
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generalization of the Newton method described in Sec. 3.4.2 to structured tensor magnetization

with help of truncated iterative procedures for solving linear systems in tensor format. �

Often an important ingredient for constraint optimization with tensor structured input is a (l2-)
penalty (or regularization) term (cf. Sec. 3.4.1), which, in the case of the point-wise unit vector
constraint in micromagnetics takes the discrete form

Pn(M) =
1
n3 ‖1n −

3∑
p=1

M(p)2
‖2 =

1
n3

3∑
p=1

‖M(p)2
‖2 +

1
n3

3∑
p=1

3∑
q=1
q,p

〈M(p)2
,M(q)2

〉 −
2
n3

3∑
p=1

‖M(p)‖2 + 1,

(7.10)

where 1n is the tensor with all entries equal to one and the notationM(q)2 stands for element-
wise squaring. For the more general case of n = (n1, n2, n3) the definition of Pn can be easily
adapted.

7.2 Discrete Energy Minimization Problem on Tensor Spaces
and Subsets

The optimization problem (3.11) from Sec. 3.2 can now be formulated forM = (M(1),M(2),M(3)) ∈(⊗3
q=1 R

nq
)3

, i.e.

min
M∈

(⊗3
q=1 R

nq

)3
Ψt(M) s.t. C(M) :=M(1)2

+M(2)2
+M(3)2

= 1n. (7.11)

This problem formulation is equivalent to (3.11) and can be translated by vectorization, re-
spectively tensorization. If the set of tensors in (7.11) is restricted to a certain tensor format
F ⊂

⊗3
q=1 R

nq the new problem reads

min
M∈F 3

Ψt(M) s.t. C(M) = 1n. (7.12)

In general the fulfillment of the side constraint in (7.12) is not possible explicitly within the
format F , i.e. the ranks are increased. Hence, a penalty formulation might be considered

min
M∈F 3

Ψt(M) + µP(M), (7.13)

for µ > 0 increasing or large enough.
An important condition for the existence of a minimizer of a minimization problem restricted
to a subset is the closedness of this subset. More precise there holds the following statement in
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finite dimension:

Lemma 9. Let V be a normed vector space with dim(V) < ∞ and ∅ , U ⊆ V a closed subset.

Further let J : V → R be a continuous functional, and v∗ a local minimizer of J, i.e. there

exists a bounded neighborhood T ⊆ V containing v∗ with J(v∗) ≤ J(v) for all v ∈ T. Then

minu∈T∩U J(u) exists if T ∩ U , ∅.

Proof. The proof is similar to that of Lemma 2. Define for arbitrary ũ ∈ T ∩ U the set D :=
T ∩ U ∩ {v ∈ V : J(v) ≤ J(̃u)} ⊆ T ∩ U, which is nonempty (̃u ∈ D), bounded (T bounded)

and closed (J continuous) and hence compact (dim(V) < ∞). Due to the continuity, J attains

its minimum in the compact set D ⊆ T ∩ U. By definition of D a minimizer of J over D is also

a minimizer of J over T ∩ U. �

Remark 9. Due to the continuity of J one can assume w.l.o.g. that the neighborhood in the

definition of a local minimizer is closed: For a sequence tn in T one gets J(v∗) ≤ J(tn) for all n

and hence J(v∗) ≤ limn→∞ J(tn) = J(limn→∞ tn).
Moreover, a similar consideration leads to the fact that the set {v ∈ V : J(v) ≤ J(̃u)} is closed.

Of course, one cannot decide beforehand whether the condition T ∩ U , ∅ in Lemma 9 holds,
since T will not be available in general. However, in the case of the minimization of a penalty
formulation (7.13), where V =

(⊗3
q=1 R

nq
)3

and F (q) is either the closure of Cn,rq , i.e. Cn,rq or
a closed subset of the canonical tensors, e.g. Cc

n,rq
(see below), a sufficiently large rank ensures

the existence of a local minimizer in the set ×3
q=1F

(q) ∩ T . For this, consider that by definition
of

⊗3
q=1 R

nq as the vector space generated by all linear combinations of rank-1 tensors2, for

each element v ∈ T ⊆
(⊗3

q=1 R
nq
)3

there exist r(q) ∈ N, q = 1, 2, 3 such that each v(q) has rank
r(q). Thus, one only has to choose some F (q) ⊇ Cn,rq , q = 1, 2, 3.
Note, however, that the optimistic aim is to find an approximation to the micromagnetic energy
minimization problem with low rank.
For the sake of completeness, it is mentioned here that a closed subset of canonical tensors are
those with rank-1 terms bounded by a constant c > 0, i.e.

Cc
n,r := {X =

r∑
j=1

u(1)
j ◦ u(2)

j ◦ u(3)
j ∈ Cn,r :

r∑
j=1

∥∥∥∥u(1)
j ◦ u(2)

j ◦ u(3)
j

∥∥∥∥2
=

r∑
j=1

3∏
q=1

∥∥∥∥u(q)
j

∥∥∥∥2
≤ c}. (7.14)

In fact, the best approximation problem minX∈Cn,r ‖X − Y‖ is unsolvable if and only if infimum
sequences are unstable, i.e. their rank-1 terms get unbounded, see §9.4 and §9.5.3 in reference
[47].

2See e.g. §3.2.6.1 in reference [47].

93



In the context of optimization problems on Cc
n,r, the constraint of bounded terms can be formu-

lated as a regularization/penalty term, i.e.

pCc
n,r (X) =

1
2 ‖X‖2

r∑
j=1

3∏
q=1

∥∥∥u(q)
r

∥∥∥2
, (7.15)

where a constant and moderately sized penalty parameter might be sufficient [79].
Another question is the non-uniqueness of the CP format due to scaling indeterminacy, i.e.
~U(1),U(2),U(3)� = ~ 1

1+ε
U(1), (1 + ε)U(2),U(3)�. In the context of optimization problems this

means that there exists a continuous manifold of equivalent solutions (as opposed to isolated
local solutions). This might cause numerical difficulties, which, however, might be regularized
by a Tikhonov term which is added to the objective function [51]

fR(~U(1),U(2),U(3)�) = f (~U(1),U(2),U(3)�) +
µR

2

3∑
q=1

∥∥∥U(q)
∥∥∥2

F
, (7.16)

where f is an objective function [e.g. (7.13)] and µR > 0 a moderately sized regularization
parameter. The effect of the Tikhonov term is discussed in [51] in the context of optimization
based CP approximation of tensors, which can also be applied to more general problems like
(7.16): If an optimal solution is fixed except for scaling the j-th rank-1 term with constants αq, j

with
∏3

q=1 αq, j =
∏3

q=1 ‖u
(q)
j ‖ =: γ j, i.e.

u(1)
j ◦ u(2)

j ◦ u(3)
j = α1, j

u(1)
j

‖u(1)
j ‖
◦ α2, j

u(2)
j

‖u(2)
j ‖
◦ α3, j

u(3)
j

‖u(3)
j ‖
, (7.17)

the only part which is varying is the regularization term. This leads to r independent problems
of the form

minα2
1, j + α2

2, j + α2
3, j s.t. α1, jα2, jα3, j = γ j j = 1 . . . r. (7.18)

It can be shown that the best solution is given when all u(q)
j have equal norms, i.e.

‖u(1)
j ‖ = ‖u(2)

j ‖ = ‖u(3)
j ‖ = γ j

1/3, for all j = 1 . . . r, (7.19)

which also implies equal Frobenius norms of the factor matrices.
However, µR has to be chosen carefully so that it is small enough not to negatively influence the
optimization. Also, the Tucker format suffers from scaling indeterminacy, which might also be
treated with a Tikhonov regularization.
Furthermore, the canonical format and the Tucker format both have permutation indetermi-
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nacy, which, however, leads to isolated equivalent minimizers in the context of solutions of
optimization problems. Thus, this is not critical.

7.3 Minimization with Truncated Iteration

In principle all the numerical methods of chapter 3 could be adapted to the case where op-
erations are performed in a data sparse format. Operations on structured tensor magnetization
which increase the number of parameters3 have to be ’rounded/truncated’ to a format with fewer
parameters, at least, at some point determined by storage capacity. The necessary truncation
procedure has to be stable and cheap. Hence, Tucker tensors should be considered for truncated
iterations, due to the lack of such stable rounding procedures in the CP case (non-closedness).
Truncation can be performed for fixed format and ranks or adaptively, e.g. by Alg. 6. Re-
normalization steps, which are used in some of the algorithms of Sec. 3 can be formulated as
an optimization problem, which then can be performed for structured tensors. Nevertheless,
the ranks during the optimization procedure (both for the whole energy minimization or only
the re-normalization) can increase very fast and do not allow truncation without significant loss
of accuracy. For instance, the computation of the core of the Hadamard product of Tucker
tensors needs

∏3
j=1 r jr′j stored numbers and the same amount of operations, cf. Sec 4.3. For

squaring a (real double) tensor with rank rq ≡ r = 23 this already exceeds 1GB. This operation
is used for evaluating the unit norm constraint. In order to accomplish such operations one
has to further reduce the degrees of freedom in the core representation of the original Tuckers
before performing e.g. a Hadamard product. This is generally not possible without losing accu-
racy. Together with the results from Sec. 6, this gives a serious limitation for the optimization
approach via truncated iterations. However, the following section describes a possible way to
treat re-normalization in the case where operations are performed within a structured format.
Note that the two algorithms which were introduced in Sec. 3.3 both rely on re-normalization.
In the case of Alg. 2 the normalization is the last step in (3.34).

7.3.1 The Constraint on the Magnitude as Optimization Problem

The re-normalization of structured tensor magnetization is generally not possible in a direct
fashion. Beside the treatment of the micromagnetic side-constraint via a penalty term [cf.
(7.10) and Sec. 3.4.1], one could alternatively make use of the following optimization problem
formulation of the normalization procedure:

3E.g. the ranks of CP tensors get multiplied for the Hadamard product.
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For a = (ax, ay, az)T , 0 find m = (mx,my,mz)T such that

min
m
‖m− a‖2 subject to ‖m‖2 = 1. (7.20)

Setting the gradient of the Lagrange function for the projection problemLP(m; λ) = ‖m− a‖2−
λ(‖m‖2 − 1) with respect to m and λ equal to zero yields the necessary optimality condition
λ∗ = 1 ± ‖a‖ and m∗ = ∓a/ ‖a‖. The Hessian ∇2

mmLP(m∗; λ∗) = ∓‖a‖id is positive definite for
the case m∗ = +a/ ‖a‖, thus, this is the minimizer of (7.20).
Solving (7.20) in a penalty formulation, i.e.

m∗µk
= arg min

m
‖m− a‖2 + µk(‖m‖2 − 1)2 (7.21)

for increasing µk represents an alternative to the normalization procedure, which now can be
performed in tensor format (with truncated iterations), i.e. for tensors (7.21) reads

M∗
µk

= arg min
M

1
n3

3∑
p=1

∥∥∥M(p) −A(p)
∥∥∥2

+ µk Pn(M), (7.22)

cf. (7.10).

7.4 Minimization within the Representation

In this section the discrete optimization problem (7.12) is solved with the additional side-
constraint of tensor structured magnetization components with fixed ranks. Some of the sub-
sections, especially the last one, rely on the canonical tensor format.

7.4.1 Reformulation for Fixed Format

Let F be a tensor format and ρF : P →
⊗3

q=1 R
nq be the corresponding map from a param-

eter set P into the tensor space. For instance, in the case of the canonical format ρCP(p) ≡
ρCP(U(1),U(2),U(3)) := ~U(1),U(2),U(3)�, where the weights are assumed to be absorbed by the
factor matrices.
Problem (7.12) is equivalent to

min
(p1,p2,p3)∈P1×P2×P3

Ψt

((
ρF (p1), ρF (p2), ρF (p3)

))
s.t. C

((
ρF (p1), ρF (p2), ρF (p3)

))
= 1n. (7.23)

The same reformulation can be done for (7.13).
One is interested in the case where the number of parameters is less than the dimension of the
tensor space

⊗3
q=1 R

nq . Clearly, the objective function of (7.23) is more complicated now than
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in (7.12). One gets additional local solutions, which are in the kernel of the Jacobian of the
format. For instance, the simple objective ‖.‖2 minimized for rank-1 tensors has infinite many
equivalent minimizers, i.e. all rank-1 tensors where at least one factor is the zero vector. See
also the discussion about scaling indeterminacy in Sec. 7.2.
One can now apply methods for nonlinear optimization to the penalty formulation of (7.23),
see Sec. 7.4.3. Efficient computation of the gradients is discussed in the next section.

7.4.2 Derivatives involving Tensor Formats

Here it is briefly discussed how to determine gradients of functionals like those coming from
the tensor grid discretization of the energy (7.2) with respect to tensor formats. For the sake
of convenience, the techniques are explained for the case of canonical tensors, whereas gener-
alizations to other formats like Tucker tensors or tensor trains can be derived along the same
lines.
For instance, imagine the functional

f : Cn,r → R, A := ~U(1),U(2),U(3)� 7→ 〈A,B〉, (7.24)

where for the sake of simplicity the weights λ of the format description in (4.9) are assumed to
be absorbed by the factor matrices. The tensor B can be assumed to be represented in canonical
format too. Hence, the CP format is determined by the parameters of the factor matrices, i.e.
A = ρCP(U(1),U(2),U(3)), where ρCP is the map

ρCP(U(1),U(2),U(3)) := ~U(1),U(2),U(3)�. (7.25)

The CP representation is not unique (ρCP is not injective), e.g.
ρCP(U(1),U(2),U(3)) = ρCP( 1

2U(1), 2U(2),U(3)), which implies that the Jacobian of ρCP does not
have full rank. Especially for solutions of optimization problems, this means that there exists
a continuous manifold of equivalent solutions (as opposed to isolated local solutions). This
might cause numerical difficulties, which, however, can be regularized, see Sec. 7.2 for more
details.
Nevertheless, since the canonical format (as well as the other tensor formats introduced in
chapter 4) are multi-linear in the parameters, it is not too difficult to determine the derivative

∂ f
(
ρCP(p)

)
∂p

=
∂ f
∂A

∂ρCP

∂p
, (7.26)

where p :=
(
vec(U(1))T , vec(U(2))T , vec(U(3))T )T .

A practical strategy for calculating the gradient of functionals like f in (7.24) with respect to
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the factor matrices is calculating the Fréchet derivative. E.g. in order to determine the gradient
of f w.r.t. U(1) one writes

f (~U(1) + δ,U(2),U(3)�) − f (~U(1),U(2),U(3)�) = 〈~δ,U(2),U(3)�,B〉. (7.27)

The remaining strategy is to represent the arguments in the inner product as matrices. The
formulas for matricization in [49] are helpful for that purpose. One gets

〈~δ,U(2),U(3)�,B〉 = 〈δ(U(3) � U(2))T ,B(1)〉F = 〈δ,B(1)(U(3) � U(2))〉F . (7.28)

The gradient of f w.r.t. U(1) is therefore

∂U(1) f (A) = B(1)(U(3) � U(2)), (7.29)

which, in the case that B = ~V(1),V(2),V(3)�, simplifies to

∂U(1) f (A) = V(1) (V(3) � V(2))T (U(3) � U(2)) = V(1)(V(3)T U(3) • V(2)T U(2)), (7.30)

where • stands for element-wise multiplication of matrices. The costs for computing (7.30) are
O(3nrArB + rArB), where nq ≡ n and rA, rB are the ranks ofA and B, respectively.
Functionals that arise from the penalty formulation of the discrete energy (see Sec. 7.1) are of
the form

f (A) = 〈Al,Bm〉, l ∈ N,m ∈ N ∪ {0}. (7.31)

g(A) = 〈A ×1 J1 ×2 J2 ×3 J3,A〉. (7.32)

The notationAl stands for l-times element-wise power (tensor Hadamard product). B0 =: 1n =

1n1 ◦1n2 ◦1n3 is therefore understood as the tensor with all entries equal to one, which is a rank-1
tensor. Note that, there hold the useful identities

〈Al,Bm〉 = 〈Al−1,Bm • A〉 (7.33)

〈A ×q J,B〉 = 〈A,B ×q JT 〉, (7.34)

which allows one to express the functionals of Sec. 7.1 in the forms of f and g.
The derivative of f w.r.t. a factor matrix is given as

∂U(p) f (A) = lD(p)(�q,p D(q)) = l D(p)(•q,p D(q)T U(q)) ∈ Rnp×rA , (7.35)
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where D = Al−1 • Bm ≡ ~D(1), D(2), D(3)� ∈ Cn,rl−1
A rm

B
. The symbols �q and •q stand for succes-

sive Khatri-Rao [descending order of indices, cf. (7.29)] and Hadamard products of matrices,
respectively. The costs for calculating the derivative (7.35) are O(3nrl

Arm
B + rl

Arm
B ).

The derivative of g w.r.t. a factor matrix is given as

∂U(p)g(A) = J pU(p)( •q,p U(q)T JT
q U(q)) + JT

p U(p)( •q,p U(q)T Jq U(q)) ∈ Rnp×rA . (7.36)

Calculating (7.36) for Jq ∈ R
nq×nq dense costs O(6n2rA + 6nr2

A + 2r2
A) operations, whereas for

sparse Jq the scaling is (at best) reduced to O(6nrA + 6nr2
A + 2r2

A).

Remark 10. Note that in the case were A is a rank-1 tensor the operation counts for the

derivatives of f reduce to O(3nrm
B + rm

B ) (for all n) and for g to O(6n2 + 6n) and O(12n) in the

dense and sparse case, respectively.

If, on the other hand, one aims to calculate the derivative with respect to a rank-1 update, i.e.

∂E f (Ã + E), with E = ~e(1), e(2), e(3)� ∈ Cn,1, one can use the above formulas (7.35) and (7.36)
withA := Ã + E ∈ Cn,rA by only evaluating the last column. More precise, one gets

∂e(p) f (A) = l D(p)(•q,p D(q)T e(q)) ∈ Rnp×1, (7.37)

and

∂e(p)g(A) = J p

(
U(p)( •q,p U(q)T JT

q e(q))) + JT
p

(
U(p)( •q,p U(q)T Jq e(q))) ∈ Rnp×1. (7.38)

Hence, the costs are O(3nrl−1
A rm

B + rn−1
A rm

B ) in the case of f and O(6n2 + 6nrA + 2rA) and O(6n +

6nrA + 2rA) in the case of g with dense and sparse matrices Jq, respectively.

Similar, in the general case E ∈ Cn,rE with rE ≥ 1 the derivatives with respect to E can be

calculated by using the formulas (7.35) and (7.36) withA := Ã+E by only evaluating the last

rE columns. The computational costs are those for the previous case (rank-1 update) times rE.

Remark 11. For the discretized stray field energy in (7.2) one can also use the functional f

with l = m = 1 and vec(B) = (Nm)(p) cf. Sec. 7.1:

First note that the Kronecker matrix N is symmetric. Furthermore the stray field energy func-

tional is (up to a factor) −1
2 mT Nm where m comes from vectorizations of tensor formats for

the magnetization components. Tensor formats are linear in their parameters (e.g. factor

matrices in the case of CP tensors, or also the core tensor for Tuckers) and hence, the en-

ergy is a quadratic functional with respect to the parameters of the format. Thus, the first

variation with respect to the k-th parameter in the p-th component can be calculated from

−δT Nm = −δ(p)T
(Nm)(p) , where δ(p) is the only non-zero component which arises from the

p-th component of m by substituting the k-th parameter by a variation. E.g. for a canonical x
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componentM(1) = ~U(1),U(2),U(3)� the first variation with respect to the second factor is

−〈ten(δ(2)), ten
(
(Nm)(1))〉 = − 〈~U(1), δ(2,2),U(3)�, ten

(
(Nm)(1))〉 =

−〈~U(1), δ(2,2),U(3)�, ~H(1)
x ,H

(2)
x ,H

(3)
x �〉 = − 〈δ(2,2),H(2)

x
(
H(3)

x
T U(3) • H(1)

x
T U(1))〉F , (7.39)

where B = ~H(1)
x ,H

(2)
x ,H

(3)
x � is the canonical tensor computed by

(Nm)(1) =

3∑
q=1

(
P(q) ×1 Jn + (P(1) ×q Jn)T

)
m(q), (7.40)

cf. Sec. 7.1.

Remark 12. Functionals involving Tucker tensors can be treated along the same lines as in

this section. Matricization formulas for those cases can also be found in reference [49].

7.4.3 Minimization with fixed CP rank

A penalty method is applied to the reformulated problem (7.23) for fixed prescribed CP ranks
rp, p = 1, 2, 3. The penalty function for the subproblems (fixed µ) is given as

Qµ(M) := Ψt(M) + µPn(M), (7.41)

cf. Sec. 7.1. The weights of the CP representations are assumed to be absorbed by the factor
matrices, like in Sec. 7.4.2. In general, it is possible to perform the minimization with respect
to a certain subset of parameters of the CP representation ofM. In the description of Alg. 12
the set of such ’free parameters’ is denoted with p(M). For instance, if one decides to minimize
a subproblem with respect to the last r′p columns of M(p), p = 1, 2, 3, this means solving the
problem

min
p(M)

Qµ(M) = min
D

Qµ(M′ +D), (7.42)

where the factors ofM′ consist of the first rp−r′p columns of the factors ofM(p), p = 1, 2, 3 and
D ∈ ×3

q=1Cn,r′q . In this case one has p(M) = ρCP(D). In the numerical tests below the subprob-
lems are solved with a quasi-Newton method; µ0 = 10 and Mn = 1 or 5. Tab. 7.1 shows results
for a nearly uniform flower in the unit cube as initial magnetization and parameters Q = 0.05
(anisotropy) and λ = 8.45 (units of exchange length), cf. Sec. 2.2. Grid spacing is h = 1/20
and no external field is applied. The parameters are near the so-called single domain limit, also
compare with the µMag standard problem #3 [12]. The initial magnetization is generated as
CP approximation from the formulas (5.33) with a = c = 5 and b = 2. The projected gradients
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Algorithm 12 qPM for CP-magnetization; qPM_CP(M0,p(M0),tol, µ0,τn → 0)
Require: M0 ∈ ×3

q=1Cn,rq , p(M) ⊆ ρCP(M0), tol> 0, µ0 > 0,τn → 0 (nonnegative)
Ensure: M ∈ ×3

q=1Cn,rq

1: p(M)← p(M0), µ← µ0, n← 0
2: while

∥∥∥∇p(M)Qµ(M)
∥∥∥ > tol do

3: p← p(M)
4: Find approximate solution p(X) to the sub-problem minp Qµ(.) starting at p and ensure∥∥∥∇pQµ(X)

∥∥∥ ≤ τn

5: µ← Mn µ (Mn ≥ 1)
6: M← overwrite free parameters inM with p(X)
7: n← n + 1
8: end while

Table 7.1: Minimization w.r.t. fixed CP format with Alg. 12 with µ0 = 10 and Mn = 1 or 5.
For each line in the table 15 loops in Alg. 12 were performed. Results for a nearly uniform
flower (5.33) [a = c = 5, b = 2] in the unit cube as initial magnetization with different CP
ranks. Parameters are Q = 0.05 (z-direction) and λ = 8.45[lex]. Grid spacing is h = 1/200
and no external field is applied. In the first column the ranks are shown, columns 2-5 show the
energies, column 6 shows the average z-component of the magnetization, column 7 shows the
constraint violation measured by the function Pn from (7.10), column 8 shows the 2- norm of
the projected gradient and the last column shows the number of function evaluations (function
and gradient evaluations are counted as one evaluation).

r ≡ rq etot ed eex ean 〈mz〉 Pn(M) ‖∇ΠΨt(M)‖ #evaluations
1 0.1558 0.1518 0.0031 0.0009 0.9906 1.12 e−05 1.47 e−04 139
2 0.1525 0.1454 0.0055 0.0017 0.9828 1.75 e−06 1.34 e−04 176
3 0.1573 0.1541 0.0026 0.0006 0.9938 6.81 e−05 2.16 e−04 118
4 0.1513 0.1404 0.0082 0.0027 0.9721 6.17 e−06 9.63 e−05 152
6 0.1598 0.1587 0.0008 0.0003 0.9975 4.84 e−07 1.57 e−04 155
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are calculated with approximate Tucker arithmetic with Alg. 6, meaning the CP magnetization
is approximated in Tucker format (accuracy 1e-14) and all rank increasing operations for com-
puting the projected gradient are truncated with an accuracy of 1e-09.
Convergence behavior for this example can be observed by the ’opening of the flower’; the
value of the average z-component at the equilibrium is 〈mz〉 = 0.9711. One can clearly observe
that higher ranks do not automatically lead to better convergence. On the contrary, the mini-
mization with r = 3 or 6 almost fails completely, whereas r = 2 leads to good convergence. The
objective functions corresponding to the minimization problems with different ranks have dif-
ferent degree of non-linearity. This and also the non-closedness of the format might be reasons
why the behavior is not comparable or predictable. The attraction to ’artificial’ local minima
can not be excluded either. Furthermore, the prior determination of the ranks is not possible.
In the next section a more sophisticated scheme is developed which is a combination of Alg. 12
and steepest descent.

7.5 Successive Rank-k Update

The approaches of section 7.3 and 7.4 are very different to each other. While minimization
with truncated iterations generalizes ’ordinary’ minimization schemes to structured tensors,
the scheme in Alg. 13 is especially constructed for the CP format. Both approaches have their
weak points. Truncated iterations need a stable and closed format, which allows application
of rank - adaptive rounding. The Tucker format is an example of such a format. Point-wise
operations like the Hadamard product, which occurs in the evaluation of the micromagnetic
side constraint, are a serious stumbling block for any of the introduced formats due to the
rapid increase of rank. The storage requirements for the dense core of the Tucker format limit
the usage of this format in connection with rank increasing operations. In the approach with
truncated operations the amount of rank increasing operations is very large. On the other hand,
the second notion [fixing the format] complicates the optimization problem drastically because
the objective gets more non-linear. The easy test summarized in Tab. 7.1 confirms this.

The following approach can be seen as a beneficial combination of the two approaches which
were introduced in the previous sections of this chapter.

Imagine that for given magnetization a descent direction is calculated. A condition for such a
direction in the case of an at least two times differentiable function h : RN → R can be derived
from Taylor expansion:

h(x + sd) − h(x) = s∇h(x)T d + O(s2), (7.43)
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and therefore d is a direction of descent at the position x iff ∇h(x)T d < 0. Hence, the negative
gradient at non stationary points is always a descent direction, even the steepest. For micro-
magnetic energy minimization this is the negative projected gradient −∇ΠΨt(M). As suggested
in Sec. 7.4.3 the quantity ∇ΠΨt(M) for canonical tensor magnetizationM can be calculated by
approximatingM as Tucker tensor and performing truncated operations with e.g. Alg. 6. For
moderate CP-ranks this can be performed very fast and efficient.
Of course, any other descent direction can be used, it does not have to be the steepest descent,
namely the negative projected gradient. However, the following considerations are restricted to
the steepest descent case.
In order to use this descent direction as an CP update with certain ranks an ALS- or optimization
based CP approximation is performed, see remark 13 for more details. The resulting descent
direction D is used in a backtracking loop to determine a step length s that ensures a decrease
of the energy. Afterwards, Alg. 12 is used with the updated magnetization as initial guess and
p(M) = ρCP(sD). This method is summarized in Alg. 13. It consists of two steps:

1. First, a tensor structured rank-k descent direction is determined.

2. then, the new update is calculated and serves as initial guess for minimization with re-
spect to the new free coordinates.

The ranks of the approximations increase linearly with the number of outer loops. Nevertheless,
a restarted version could be considered. Namely, after a specific amount of iterations the current
iterate is approximated with lower ranks and taken as initial configuration for a restart.
Moreover, in the description of Alg. 13 the initial penalty parameter µ0 is the same for each
outer iteration. Of course, one can increase it from one to the other outer iteration in order to
accelerate convergence.
Tab. 7.2 is the equivalent of Tab. 7.1, where rank-1 updates were used in Alg. 13. Significant
improvements can be recognized. Tab. 7.3 shows the results for the same example like in
Tab. 7.2 but with much smaller grid spacing 1/200. Note that the computation time for function
evaluations scales with O(1/h2)4, which allows computations on large grids.
Tab. 7.4 and 7.5 show analogue tests for a vortex like initial configuration and rank-1 and rank-
2 updates, respectively.
In order to include an external field into the tests, Tab. 7.6 shows the results for uniform initial
magnetization and an applied field in the direction (0.57, 0.57, 0.57). No anisotropy is assumed.
One recognizes quite fast convergence.

Remark 13. The best approximation D(q) of −
(
∇ΠΨt(M)

)(q)
by a rank-rq CP tensor is only

well-defined for the rank-1 case, cf. Sec. 4.2. However, the approximation only has to be an
4For h = 1/200 the Matlab implementation that was used needs about one second for computing the energies,

the penalty term and all the gradients; and about 2.5 seconds for h = 1/300.
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Algorithm 13 Successive rank-k update method; qPM_CP_rk(M0,r,tol1,2, µ0,τn → 0)
Require: M0 ∈ ×3

q=1Cn,rq , r = (r1, r2, r3), tol1,2 > 0, µ0 > 0,τn → 0 (nonnegative)
Ensure: M ∈ ×3

q=1Cn,rq

1: M← qPM_CP(M0,ρCP(M0),tol1, µ0,τn → 0)
2: while ‖∇ΠΨt(M)‖ > tol2 do
3: E ← Ψt(M)
4: D(q) ← Rank-rq CP approximation of −

(
∇ΠΨt(M)

)(q)
, cf. Remark 13.

5: M̃(q) ←M(q) +D(q), q = 1, 2, 3
6: s← 1
7: while Ψt(M̃) > E do
8: s← s/2
9: M̃(q) =M(q) + sD(q), q = 1, 2, 3

10: end while
11: p← ρCP(sD)
12: M← qPM_CP(M̃,p,tol1, µ0,τn → 0)
13: end while

arbitrary descent direction and not the best approximation: In the situation here, the condition

for descent translates to ∑
q

〈D(q),
(
∇ΠΨt(M)

)(q)
〉 < 0, (7.44)

where ‖∇ΠΨt(M)‖ =

√∑
q ‖

(
∇ΠΨt(M)

)(q)
‖2 , 0 is assumed. Hence, if the ordinary rank-rq

approximationsD(q) do not yield a descent directionD, one can force it by claiming (7.44). By

introducing a slack variable S > 0 such that

CS (D) := S +
∑

q

〈D(q),
(
∇ΠΨt(M)

)(q)
〉 = 0, (7.45)

one can treat the side constraint (7.44) in a penalty framework with subproblems

min
D

∑
q

‖D(q) +
(
∇ΠΨt(M)

)(q)
‖2 +

µ

2CS (D)2, (7.46)

for increasing µ. This is equivalent to

min
D

∑
q

‖D(q)‖2 + (2 + µS )
∑

q

〈D(q),
(
∇ΠΨt(M)

)(q)
〉 +

µ

2

(∑
q

〈D(q),
(
∇ΠΨt(M)

)(q)
〉‖2

)2
. (7.47)
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Table 7.2: Minimization with rank-1 update with Alg. 13. Results for a nearly uniform flower
(5.33) [a = c = 5, b = 2] in the unit cube as initial magnetization with different CP ranks.
Parameters are Q = 0.05 (z-direction) and λ = 8.45[lex]. Grid spacing is h = 1/20 and no
external field is applied. The first column gives the iteration number in the outer loop and
the corresponding ranks in the brackets. In each outer iteration 8 iterations in qPM_CP were
performed, while no other stopping criterion was used. The subproblems in Alg. 12 are solved
with a quasi-Newton method; µ0 = 10 and Mn = 1 or 5. In total 350 function evaluations
(function and gradient evaluations are counted as one evaluation) were performed. Columns
2-5 show the energies, column 6 shows the average z-component of the magnetization, column
7 shows the constraint violation measured by the function Pn from (7.10), column 8 shows the
2- norm of the projected gradient.

iteration (r ≡ rq) etot ed eex ean 〈mz〉 Pn(M) ‖∇ΠΨt(M)‖
1 (3) 0.1624 0.1618 0.0001 0.0006 0.9944 1.42 e−04 1.72 e−04
2 (4) 0.1576 0.1553 0.0018 0.0005 0.9947 6.65 e−06 1.62 e−04
3 (5) 0.1520 0.1418 0.0077 0.0025 0.9747 4.23 e−06 9.86 e−05
4 (6) 0.1519 0.1417 0.0077 0.0025 0.9746 3.85 e−06 9.13 e−05
5 (7) 0.1519 0.1417 0.0077 0.0025 0.9745 1.68 e−06 8.85 e−05
6 (8) 0.1514 0.1399 0.0087 0.0028 0.9711 6.38 e−06 8.01 e−05

The optimal solution fulfills

∑
q

〈D(q),
(
∇ΠΨt(M)

)(q)
〉 = −

1 + S µ

2

1 + ‖∇ΠΨt(M)‖2 µ

2

‖∇ΠΨt(M)‖2 < 0. (7.48)

Furthermore, note that if ∇ΠΨt(M)
)(q) is a Tucker approximation (as suggested in Sec. 7.4.3),

the inner product with the canonical tensorsD(q) can be carried out efficiently:

Let X = ~C; V(1),V(2),V(3)� ∈ Tn,r and Y = ~λ; U(1),U(2),U(3)� ∈ Cn,R, then there holds (cf.

Ch. 4)

〈X,Y〉 = vec(C)T (V(3)T U(3) � V(2)T U(2) � V(1)T U(1)) λ, (7.49)

which needs O(R
∑

q rqnq + R
∏

q rq +
∏

q rq) operations. �
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Table 7.3: Minimization with rank-1 update with Alg. 13. The same configurations as in
Tab. 7.2 but with grid spacing h = 1/200.

iteration (r ≡ rq) etot ed eex ean 〈mz〉 Pn(M) ‖∇ΠΨt(M)‖
1 (3) 0.1613 0.1604 0.0003 0.0006 0.9939 1.97 e−04 6.25 e−02
2 (4) 0.1602 0.1572 0.0026 0.0004 0.9960 1.07 e−05 1.36 e−03
3 (5) 0.1551 0.1508 0.0033 0.0009 0.9807 2.22 e−05 2.68 e−03
4 (6) 0.1530 0.1463 0.0052 0.0015 0.9843 7.72 e−06 1.19 e−04
5 (7) 0.1521 0.1442 0.0060 0.0019 0.9807 5.82 e−06 9.49 e−05
6 (8) 0.1519 0.1421 0.0075 0.0023 0.9746 4.25 e−06 8.36 e−06

Table 7.4: Minimization with rank-1 update with Alg. 13. Results for the vortex configuration
(5.32) [rc = 0.25] in the unit cube as initial magnetization with different CP ranks. Parameters
are Q = 0.05 (z-direction) and λ = 8.45[lex]. Grid spacing is h = 1/20 and no external field
is applied. The first column gives the iteration number in the outer loop and the corresponding
ranks in the brackets. In each outer iteration 8 iterations in qPM_CP were performed, while
no other stopping criterion was used. In total 519 function evaluations (function and gradient
evaluations are counted as one evaluation) were performed. Columns 2-5 show the energies,
column 6 shows the average y-component of the magnetization, column 7 shows the constraint
violation measured by the function Pn from (7.10), column 8 shows the 2- norm of the projected
gradient.

iteration (r ≡ rq) etot ed eex ean 〈my〉 Pn(M) ‖∇ΠΨt(M)‖
1 (2) 0.1610 0.0251 0.1097 0.0262 0.0978 4.32 e−04 2.26 e−04
2 (3) 0.1606 0.0312 0.1031 0.0262 0.2035 8.97 e−06 2.67 e−04
3 (4) 0.1585 0.0316 0.1025 0.0244 0.2034 4.94 e−06 2.13 e−04
4 (5) 0.1570 0.0341 0.0978 0.0250 0.2256 3.86 e−06 1.91 e−04
5 (6) 0.1569 0.0343 0.0974 0.0251 0.2306 2.25 e−06 1.87 e−04
6 (7) 0.1553 0.0322 0.0980 0.0251 0.2271 3.76 e−06 1.80 e−04
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Table 7.5: Minimization with rank-2 update with Alg. 13. Results for the vortex configuration
(5.32) [rc = 0.25] in the unit cube as initial magnetization with different CP ranks. Parameters
are Q = 0.05 (z-direction) and λ = 8.45[lex]. Grid spacing is h = 1/20 and no external field
is applied. The first column gives the iteration number in the outer loop and the corresponding
ranks in the brackets. In each outer iteration 8 iterations in qPM_CP were performed, while
no other stopping criterion was used. In total 309 function evaluations (function and gradient
evaluations are counted as one evaluation) were performed. Columns 2-5 show the energies,
column 6 shows the average y-component of the magnetization, column 7 shows the constraint
violation measured by the function Pn from (7.10), column 8 shows the 2- norm of the projected
gradient.

iteration (r ≡ rq) etot ed eex ean 〈my〉 Pn(M) ‖∇ΠΨt(M)‖
1 (2) 0.1610 0.0251 0.1097 0.0262 0.0978 4.32 e−04 2.26 e−04
2 (4) 0.1573 0.0389 0.0908 0.0275 0.2897 2.10 e−06 2.29 e−04
3 (6) 0.1543 0.0352 0.0916 0.0275 0.2853 4.73 e−06 2.09 e−04
4 (8) 0.1539 0.0364 0.0897 0.0278 0.2968 2.61 e−06 1.77 e−04

Table 7.6: Minimization with rank-1 update with Alg. 13 with external field in direction (1, 1, 1)
with strength ‖hext‖2 = 1. Results for uniform magnetization in z-direction of the unit cube as
initial magnetization with different CP ranks. Parameters are Q = 0 and λ = 11.30[lex]. Grid
spacing is h = 1/40 and no anisotropy field is assumed. The first column gives the iteration
number in the outer loop and the corresponding ranks in the brackets. In each outer iteration
15 iterations in qPM_CP were performed. The final stopping criterion was a projected gradient
norm of less than 1e-5. In total 301 function evaluations (function and gradient evaluations
are counted as one evaluation) were performed. Columns 2-5 show the energies, column 6-8
shows the average x, y, z-component of the magnetization, column 9 shows the constraint vio-
lation measured by the function Pn from (7.10), column 10 shows the 2- norm of the projected
gradient.

iter etot ed eex eext 〈mx〉 〈my〉 〈mz〉 Pn(M) ‖∇ΠΨt(M)‖
1 (2) -0.7628 0.1691 0.0009 -0.9328 0.3666 0.3788 0.8703 7.22 e−03 2.16 e−01
2 (3) -0.8352 0.1638 0.0003 -0.9993 0.5774 0.5761 0.5774 8.27 e−08 2.49 e−04
3 (4) -0.8352 0.1638 0.0003 -0.9993 0.5774 0.5761 0.5774 8.34 e−08 9.36 e−06
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7.6 Summary and Conclusions

The micromagnetic energy minimization problem was investigated with the additional con-
straint of structured tensor magnetization components on a Cartesian grid. For that purpose,
two distinct approaches were described:

1. Truncated iterations [Exterior approach],

2. Minimization within the representation [Interior approach].

Both methods have their weak points. Truncated iterations need a stable and closed format,
which allows application of rank - adaptive rounding. However, the storage requirements
in connection with rank increasing operations limit the usage of such formats. Especially,
element-wise operations on structured tensors are a serious stumbling block. In the exterior
approach the amount of rank increasing operations is very large. On the other hand, the second
concept [fixed format] complicates the optimization problem drastically, because the objec-
tive function gets more non-linear. It turns out that a combination of both approaches yields a
promising scheme, cf. Alg. 13:

3. Successive rank-k update scheme [Combined approach].

This method consists of an ’exterior step’, namely calculating the rank-k update, and an ’interior
step’, minimization with respect to the new free coordinates. The ranks of the approximations
increase linearly with the number of outer loops. Nevertheless, a restarted version could be
considered: After a specific amount of iterations the current iterate is approximated with lower
ranks and taken as initial configuration for a restart.
There is still the question left whether the choice of descent direction can significantly improve
the method. Instead of the projected gradient, one could use the gradient of the penalty function
or variations of it. This directions might be cheaper to determine, since it is a CP tensor output
of the previous iteration.
In any case, larger grids can be used due to the sublinear scaling in the volume size.5 Hence, the
discrete representation of the energy is more accurate. Also, large particles demand for larger
grids due to the required resolution in the order of the exchange length or domain wall width.

5The evaluation of the objective function and the gradient scales with O(1/h2), where h is the grid spacing.
This is sublinear, since the number of total grid points/computational cells is O(1/h3).
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Chapter 8

Non-Uniform FFT for the Finite Element
Computation of the Scalar Potential

Large portions of this chapter were previously submitted for publication as [15] and have been

reproduced here with permission of the co-authors. Content which was not generated by the

author of this thesis is explicitly denoted.

8.1 Introduction and Motivation

From the previous chapters the question is still left whether it is possible to successfully apply
tensor grid techniques to unstructured meshes, e.g. tetrahedral meshes from general geometries
Ω within a finite element (FE) approach.
If the data are not sampled on a structured grid beforehand, the first task would be to get them
on a tensor grid by some gridding procedure. The cost for this step has to be at least linear
in the data-size, since each location (e.g. node in the case of data from a FE-mesh) has to be
considered at least once. A micromagnetic algorithm (e.g. for computing the stray field), which
works with data from unstructured grids and tries to use ideas form tensor methods for func-
tion related (structured) tensors, relies on such gridding in each step of the iterative procedure.
Hence, it will scale at best linear in time.
Nevertheless, the idea of combining finite element computation with methods for structured
grids can be worth being considered. For instance in stray field calculations, one could benefit
from fast Fourier transform acceleration. The combination of gridding and fast Fourier trans-

form (FFT) dates back to the beginning of the so-called non-uniform fast Fourier transform

(NFFT) [80, 81]:

For the sake of brief discussion, assume arbitrarily located data points y j ∈ (−1
2 ,

1
2 )3, j = 1 . . . M

and define for n = (n1, n2, n3): In := {k ∈ Z3 | −n/2 ≤c k ≤c n/2 − 1}.
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The sums

f̂k =

M∑
j=1

f j e−2πi〈k,y j〉, f j ∈ C (NDFT transposed),

g j =
∑
k∈In

f̂k e2πi〈k,y j〉, f̂k ∈ C (NDFT),
(8.1)

are analogues of the discrete Fourier transform (DFT), so-called non-uniform discrete Fourier

transforms (NDFT). Observe, however, that a big difference to ordinary discrete Fourier trans-

form makes the fact that these sums are not inverse or unitary transformations to each other
in general. An exception is the case where the data y j are equispaced on a tensor grid with
M = n, which corresponds to discrete Fourier transform itself. Likewise, the above opera-
tions (8.1) generally have nothing to do with acquisition of data in the Fourier domain [82].
Fast methods have been invented, which break down the quadratic computational complexity
to O(

∏3
q=1 nq log

∏3
q=1 nq + M) in the case of non-uniform fast Fourier transform (NFFT). The

basic idea is to smear the data over a tensor grid by a gridding process and then apply FFT.
The data-smearing is undone afterwards. In the case of convolution with e.g. a Gaussian heat

kernel as gridding procedure, this step is a simple scalar division (deconvolution) in Fourier
space. For a tutorial the reader is referred to [83].
Remarkably enough, the convolution theorem for discrete convolution of equispaced data with
radial kernels generalizes to non-equispaced data [84]. Namely, consider a discrete convolution
of non-equispaced data, i.e.

φ(xi) =

M∑
j=1

α jK(xi − y j), α j ∈ R, xi, y j ∈ (−1
4 ,

1
4 )3, j = 1 . . . M, i = 1 . . .N, (8.2)

whereK is some radial kernel function like, for example, the Newtonian kernelN(x) := 1/ ‖x‖.
Approximation of a smoothed version of the kernel by a Fourier series leads to a computational
scheme similar to that derived from the convolution theorem for equispaced data (convolution
is computed by the inverse Fourier transform of the product of the Fourier transforms of the
data α j and the kernel function), where (inverse) Fourier transform is replaced by the (adjoint)
discrete Fourier transform, also compare with Eqn. (8.21). The application of this idea for the
quadrature approximation of the integral representation of the micromagnetic scalar potential
(compare with Eqn. (2.23)) in two dimensions was reported in the reference [28].

In the following sections a first order polynomial (P1) finite element method is developed that
solves the set of partial differential equations (2.22) for the scalar potential and, which can be
considered as a significant improvement of the method from [28]. This is mainly due to the fact
that all numerical integration is done in a precomputation phase. Thus, all occurring integrals
can be computed numerically up to machine precision without increasing computational costs,
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which makes the method faster and more accurate than the algorithm described in [28].
More precise, a splitting approach from [32] is used to derive two tasks:

• The solution of a Dirichlet problem, and

• The evaluation of the single layer potential.

The Dirichlet problem is solved by a usual Galerkin finite element ansatz. This can be done
in linear time, provided preconditioning of the resulting linear system or a direct solving strat-
egy (LU decomposition in the precomputation phase) is considered. The crucial part is the
evaluation of the single layer potential which is a quadratically scaling task, if done in a naive
way. Approximation of a smoothed version of the Newtonian kernel N(x) = 1/|x| by a Fourier
series leads to a computational scheme which is similar to the convolution theorem used e.g.
in integral methods [77], also compare with section 8.4. Based on FFT for non-equispaced
data (non-uniform FFT, NFFT) [80, 81, 83] and linearly scaling near-field correction, the
single layer potential can be computed efficiently. Subsequently, this solution is combined
with the finite element solution of the Dirichlet problem, yielding, in total, a complexity of
O
(
M + N + (

∏3
q=1 nq)(log

∏3
q=1 nq)

)
for N nodes, M surface triangles and nq being the number

of discretization points of a tensor grid in the q−th direction.
In section 8.7 a closer analysis of the error of the scheme gives rise to the scaling of O(M + N +

N log N) in the case of roughly uniform meshes.

In the last section of this chapter, the idea is briefly discussed of exploiting the structured tensor
representation of the smoothed kernel and to apply tensor compression on certain parts of the
convolution formula (8.21). In principle, in addition to the reduction of storage, this gives one
the opportunity to reduce the costs for the FFT-part, compare with section 8.9.

8.2 Ansatz of García-Cervera and Roma

In the subsequent text H1(Ω) denotes the usual Sobolev space, i.e.

H1(Ω) := {u ∈ L2(Ω) | weak derivatives ∂qu ∈ L2(Ω), q = x, y, z}, (8.3)

and

H1
loc(Ω

c
) := {u ∈ H1(C) | C ⊂ Ω

c
compact}. (8.4)
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Consider the splitting of the potential into φ = φ1 + φ2. Comparing with Eqn. (2.22) results for
φ1 = (φint

1 , φ
ext
1 ) ∈ H1(Ω) × H1

loc(Ω
c
) in

−∆φint
1 = −∇ · m in Ω,

φint
1 = 0 on ∂Ω,

(8.5)

where one sets φext
1 = 0 in Ω

c
. Hence, there holds

[
∂φ1
∂n

]
= −

∂φint
1

∂n .
The second part φ2 = (φint

2 , φ
ext
2 ) ∈ H1(Ω) × H1

loc(Ω
c
) consequently fulfills

−∆φint
2 = 0 in Ω,

−∆φext
2 = 0 in Ω

c
,[

φ2
]

= 0 on ∂Ω, (8.6)[
∂φ2

∂n

]
= −m · n +

∂φint
1

∂n
on ∂Ω,

φext
2 (x) = O( 1

‖x‖ ) as ‖x‖ → ∞,

with solution given by the single layer potential

φ2(x) =

∫
∂Ω

g(y)N(x − y) dσ(y), (8.7)

with the Newtonian potential N(x) = 1
4π‖x‖ and g(y) = m · n− ∂φint

1
∂n .

The advantage of this ansatz is twofold. First, Eqn. (8.5) is a Poisson equation with Dirichlet

data and, therefore, its Galerkin system after FE discretization is symmetric, positive definite
and sparse, and only has to be solved for free nodes, i.e. non-boundary nodes, see Sec.8.3.
Secondly, as pointed out in [32], the single layer potential in Eqn. (8.7) is continuous towards
the boundary and less singular than the double layer potential which arises in the ansatz of

Fredkin-Koehler [30] and hence can be handled numerically more easily, also see Sec. 8.5.4.

The potential (8.7) might be evaluated at boundary nodes, providing the Dirichlet data for
the Laplace equation in (8.6). Thus, an approximation of the solution φint

2 to (8.6) could be
determined by evaluation of the single layer potential at boundary nodes and subsequently
solving a Dirichlet problem −∆φint

2 = 0. In this connection, direct evaluation of the single layer
potential at boundary nodes in a naive way scales quadratically in the number of boundary
nodes.
However, the intention of the forthcoming sections is to evaluate the single layer potential (8.7)
on all nodes of a tetrahedral finite element (FE) mesh within a P1 finite element method. A
non-uniform Fourier approach is used, which yields the complexity O(M + N), i.e. linear in the
number of boundary elements and nodes of the mesh, respectively.
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Without any restrictions, the same idea of the fast evaluation scheme could also be applied for
the above mentioned calculation of the Dirichlet data for (8.6), followed by solving the arising
Dirichlet Galerkin system to obtain an approximation of φ2 at the free nodes.
Furthermore, the author wants to stress that this approach could also be adapted for the ansatz
of Fredkin and Koehler, which, however, will not be further discussed in this thesis.

8.3 FEM for the Dirichlet problem

For the sake of completeness, the finite element method for Dirichlet problems like (8.5) is
briefly described here.
Let H1

0(Ω) denote the Sobolev space with zero boundary condition.

The variational formulation of (8.5) reads:
Find the potential φ1 in the Sobolev space with zero-boundary conditions, i.e. φ1 ∈ H1

0(Ω), such

that ∫
Ω

∇φ1 · ∇v =

∫
Ω

m · ∇v, (8.8)

for all v ∈ H1
0(Ω).

Eqn. (8.8) is now discretized on a tetrahedral mesh T with elements T j, j = 1 . . . M (here M

denotes the number of tet-elements) and nodes xi, i = 1 . . .N, where affine basis functions
ϕ

(T j)
α , α = 1 . . . 4 in each tetrahedron are used. The usual assembly process by local stiffness

matrices and load vectors leads to a linear system of size N × N, i.e. Sx = b. From the local
4 × 4 stiffness matrix S(T j)

loc corresponding to the element T j, i.e.

S(T j)
loc (α, β) = |T j| ∇ϕ

(T j)
α ∇ϕ

(T j)
β , (8.9)

the stiffness matrix is computed by accumulation in a loop over all tetrahedral elements, i.e.

S(k, k) += S(T j)
loc , (8.10)

where k are the global indices of the nodes of element T j.
The stiffness matrix S then has the entries

akm =

M∑
j=1

∫
T j

∇ηm · ∇ηk, (8.11)

where ηk, k = 1 . . .N is the nodal basis (also often called ’the hat functions’) of the space of
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T -piecewise affine, globally continuous functions (a N-dimensional subspace of the Sobolev
space H1(Ω)). In a similar (’local to global’) way, the load vector has the entries

bk =

M∑
j=1

∫
T j

m · ∇ηk, (8.12)

where m itself is assumed to be a T -piecewise affine nodal interpolation. It can be implemented
by a matrix-vector product, where the matrix corresponds to the divergence operator, see [72]
for more details.
Note that, due to the known values of the solution at the boundary nodes (in the case of φ1 this
values are already equal zero) every Dirichlet system can always be rewritten to a system with
homogeneous boundary conditions. Since the nodal basis functions corresponding to free nodes
(non-boundary nodes) form a basis of the space of T -piecewise affine, globally continuous
functions that are zero at the boundary (a finite dimensional subspace of the Sobolev space
H1

0(Ω)), one, hence, only has to solve a subsystem, i.e.

S( f n, f n)x( f n) = b( f n) − (Sxbn)( f n) =: b̃( f n), (8.13)

where fn and bn denote the N f and Nb indices of free nodes and boundary nodes, respectively.
The vector xbn is understood as the vector of Dirichlet data (in the case here discussed equal to
zero, thus b̃( f n) = b( f n) ) extended to length N by zero-padding for indices of free nodes.
For an easily readable Matlab implementation in the 2-dimensional case the reader is referred
to the work [85].
The resulting system is reduced to the size N f × N f and is symmetric, positive definite and
sparse. The solution gives the weights of the nodal basis functions at free nodes. In the nu-
merical tests it is solved by using an ILU-preconditioned CG method, but algebraic multigrid

preconditioned CG or (onetime) LU decomposition with backward substitution and exploiting
the sparsity could be used, which makes the complexity for (8.5) linear in N f .

8.4 Single-Layer Potential

While φ1 is determined in linear time by an ordinary FEM for Dirichlet problems, the direct
evaluation of the single-layer potential, i.e.

φ2(x) =

∫
∂Ω

g(y)N(x − y) dσ(y), (8.14)

at boundary nodes or all nodes of a FE mesh would cost O(N2
b ) or O(NbN) respectively, where

Nb is the number of nodes on the boundary and N the total number of nodes in the discretized
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domain Ω.
In the following an efficient evaluation technique of (8.7) based on Fourier approximation of
the Newton kernel on an auxiliary tensor grid will be introduced.
Before going into detail, the main idea is briefly stated.
Note that in our P1 FE ansatz the first term of the function g = m · n − ∂φint

1
∂n is piecewise

affine, where the second one is constant for each surface triangle. For m · n the L2-orthogonal
projection onto the space of element-wise constant functions is applied by taking the integral
mean over surface triangles, i.e. 1/|S j|

∫
S j

m · n. Thus Eqn. (8.14) in its discretized form reads

φ2(xi) ≈
M∑
j=1

g j

∫
S j

N(xi − y) dσ(y), i = 1 . . .N, (8.15)

where the S j denote the M surface triangles.
Following the idea in [84], the kernel N(x) := N(‖x‖) = 1/x, x := ‖x‖ is split in a singular and
smooth part respectively, i.e.

N(x) =
(

N(x) − Ns(x)︸          ︷︷          ︸
=: NNF

)
+ Ns(x), (8.16)

where Ns(.) is some approximation of N(.) on an interval [ε, β], β > ε > 0 (see Sec. 8.5.3),
which is defined on the whole real axis and entirely smooth. NNF(.), on the other hand, is a
’near field’ correction. The corresponding multivariate functions is denoted byNs(.) := Ns(‖.‖)
and NNF(.) := NNF(‖.‖), respectively.
The approximation scheme (8.15) gets the form

φ2(xi) ≈
M∑
j=1

g j

∫
S j

NNF(xi − y) dσ(y) +

M∑
j=1

g j

∫
S j

Ns(xi − y) dσ(y) =: φNF
2 (xi) + φs

2(xi).

(8.17)

Note that the near field part φNF
2 only has to be computed for elements that have less or equal

distance than ε to the target point xi, i.e. NNF has small support. For the (weakly) singular
cases, i.e. xi ∈ S j, a simple integral transformation is used, see Sec. 8.5.4.
The fast computation of the part φs

2 is achieved by approximation of the smooth kernelNs by a
Fourier series:
For the sake of simpler notation, assume a scaled domain, i.e. Ω ⊂ (−1/4, 1/4)3, such that the
arguments of N lie in T := {x ∈ R3 | −1/2 ≤c x <c 1/2}.
The smooth kernelNs is approximated by its Fourier series on T, where ≤c means component-
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wise ≤, i.e.

Ns(x) ≈ FNs :=
∑
l∈In

cl(Ns) e2πix·l, (8.18)

where In := {l ∈ Z3 | −n/2 ≤c l ≤c n/2 − 1} and the Fourier coefficients

cl(Ns) =

∫
T

Ns(x) e−2πix·l dx. (8.19)

Inserting (8.18) into φs
2 in (8.17) and exchanging summation order yields

φs
2(xi) =

∑
l∈In

cl(Ns)
( M∑

j=1

g j

∫
S j

e−2πiy·l dσ(y)︸                        ︷︷                        ︸
=:bl

)
e2πixi·l =

∑
l∈In

dl︸︷︷︸
:=cl(Ns) bl

e2πixi·l. (8.20)

The latter sum is a non-uniform discrete Fourier transform (NDFT), which can be computed
efficiently using FFT in O(|In| log |In| + N) operations by so-called non-uniform fast Fourier

transform (NFFT), [27].
The efficient computation of the tensor B = (bl)l∈In will be discussed in the next section.

Overall, the approximation scheme for φs
2 has a similar form as the well known convolution

theorem for equispaced data, i.e.

φs
2 = NFFT

((
cl(Ns)

)
l∈In
• B

)
, (8.21)

where • denotes element-wise multiplication and B is some generalization of an adjoint non-

uniform discrete Fourier transform [83] to an ’integrated Fourier basis’, i.e.
∫

S j
e−2πiy·l dσ(y).

Remember that the starting point was the splitting N = NNF + Ns, where, due to the Fourier
series approximation of Ns, i.e. FNs, the splitting of N reads now

N = (N −Ns) + FNs + (Ns − FNs). (8.22)

Only the approximation N ≈ (N − Ns) + FNs = NNF + FNs is taken into account, which
introduces the errorNs−FNs, which, however, can be controlled by the size of the tensor grid,
i.e. n = (n1, n2, n3), and the near field ε, cf. definition of NNF in (8.16). Analysis of the error
in connection with the choice for approximating N by a smooth function Ns in the far field
region, see Sec. 8.5.3, will be given in section 8.7.
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8.5 Non-Uniform FFT for the Single Layer Potential

For the computation of the tensor B with entries bl =
∑M

j=1 g j

∫
S j

e−2πiy·l dσ(y) one goes similar
lines as for the efficient computation of the adjoint non-uniform discrete Fourier transform
(NDFT) [83].
The essential step is a gridding procedure of the data (g j) j=1...M and FFT of the resulting tensor
containing the ’smeared’ source strengths. Hereby, gridding is done by convoluting the data
with localized functions, whereas this is undone in Fourier space. The result is a generalization
of the discrete Fourier transform to non-equispaced data.
First a well-localized univariate window function ϕ is introduced, e.g. a Gaussian function or
Kaiser-Bessel function, see Sec. 8.5.2 for more details, with a uniformly convergent Fourier
series of its 1−periodic extension, i.e.

ϕ̃(x) :=
∑
r∈Z

ϕ(x + r). (8.23)

For 3 dimensions one simply takes the tensor product of the univariate functions to obtain a
multivariate window function, i.e.

Φ̃(x) :=
3∏

q=1

ϕ̃(x(q)). (8.24)

For ease of computation, the truncated version of Φ̃ is introduced with some truncation (or

cut-off) parameter m � minq=1...3 nq, m ∈ N, n = (n1, n2, n3), i.e.

Ψ̃(x) :=
3∏

q=1

ϕ̃(x(q)) χ[− m
nq
, m

nq
](x(q)), (8.25)

where χ is the indicator function 1.
Then an auxiliary tensor A = (ar)r∈Iα n is computed, where α > 1 is an over-sampling factor,
i.e.

ar :=
M∑
j=1

g j

∫
S j

Ψ̃(r • (α n)−1 − y) dσ(y), (8.26)

where • denotes element-wise multiplication and (α n)−1 is meant component-wise and corre-
sponds to the mesh size of the auxiliary tensor grid, see Fig. 8.1.
Formula (8.26) can be seen as gridding of the source strengths g j on an auxiliary tensor grid of
size |Iα n|. The desired tensor B = (bl)l∈In in (8.20) can be computed by the Fourier transform

1χ[a,b](x) = 1 for x in [a, b] and 0 else.
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ofA. More precisely, a function f is defined according to the definition ofA by

f (x) :=
M∑
j=1

g j

∫
S j

Φ̃(x − y) dσ(y). (8.27)

By expressing the Fourier coefficients of f in two different ways, one will end up with a simple
formula for computing the tensor B.
First the Fourier coefficients of f (cf. (8.27)) are approximated by the trapezoidal rule for l ∈ In

and Φ̃ by the truncated version Ψ̃ in (8.25), i.e.

cl( f ) =

∫
T

f (x) e−2πix·l dx ≈
1
|Iα n|

∑
r∈Iα n

( M∑
j=1

g j

∫
S j

Ψ̃(r • (α n)−1 − y) dσ(y)︸                                         ︷︷                                         ︸
=ar

)
e−2πi(r•(α n)−1)·l,

(8.28)

which can be computed by a multivariate FFT of the tensorA.

On the other hand, one also obtains an approximation of cl( f ) by inserting the truncated Fourier
series of Φ̃, i.e.

Φ̃(x) ≈
∑
l∈In

cl(Φ̃) e2πix·l, (8.29)

into the expression for the function f , i.e.

f (x) ≈
∑
l∈In

( M∑
j=1

g j cl(Φ̃)
∫

S j

e−2πiy·l dσ(y)︸                                ︷︷                                ︸
=cl( f )

)
e2πix·l (8.30)

=
∑
l∈In

(
cl(Φ̃)

M∑
j=1

g j

∫
S j

e−2πiy·l dσ(y)︸                        ︷︷                        ︸
=bl

)
e2πix·l. (8.31)

Thus, the following relation holds (l ∈ In):

bl = cl( f )/cl(Φ̃). (8.32)

Overall the computation of B consists of computing the coefficients cl( f ) in (8.28) by a multi-
variate FFT of the gridding tensor A, followed by element-wise division by the precomputed
coefficients cl(Φ̃).
Hence, these two steps together scale O(|Iαn| log(|Iαn|) + |In|). As will be shown in the next
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section, the computation of the gridding tensorA can be done linearly in the number of surface
elements, i.e. O(M). Hence, in total, computing B scales O

(
M + |Iαn| log(|Iαn|)

)
.

Observe that, alternatively to the above procedure for computing the tensor B, one also could
have directly transformed the expression into a discrete sum by using quadrature, i.e

bl =

M∑
j=1

g j

∫
S j

e−2πiy·l dσ(y) ≈
M∑
j=1

Q j∑
s=1

ω j,sg j e−2πiy j,s·l ≡

Q∑
k=1

ω̃k e−2πiyk ·l, (8.33)

where k is a long index, e.g. k = j + (s − 1)M. Eqn. (8.33) could then be computed by a
standard adjoint NFFT [27] in O

(
Q + |Iαn| log(|Iαn|)

)
, Q :=

∑M
j=1 Q j operations, also compare

with [28]. Since the number of quadrature points Q might be very large, this approach is rather
impractical. For that reason, the proposed method uses Eqn. (8.32) for the computation of the
coefficients bl, where the integrals can be precomputed in a setup phase of a micromagnetic
simulation, compare with Alg. 14.
However, at least it gives us a direct analogy to the standard adjoint NFFT. In particular, the
choice of window functions can be justified, since, basically the same error estimates with
respect to the cut-off parameter m and over-sampling factor α hold for the (standard) NFFT
and the proposed method, see Sec. 8.5.2.

8.5.1 Computation of the Gridding Tensor

Remember the computation of the tensorA (compare with (8.26)), i.e.

ar =

M∑
j=1

g j

∫
S j

Ψ̃(r • (α n)−1 − y) dσ(y). (8.34)

The aim is to compute (8.34) through sparse summation by exploiting the locality of the func-
tion Ψ̃.
Assume further that the domain is scaled into the hypercube (−1/4, 1/4)3, hence there also
holds Ω ⊂ T.
A triangle of the surface mesh is given as S j ≡ {y0, j, . . . , y2, j, yk, j , yl, j, for k , l} where

y ∈ S j ⇔ ∃ ξ1, ξ2 ∈ ∆0 : y = y0, j + ξ1(y1, j − y0, j) + ξ2(y2, j − y0, j), (8.35)

where ∆0 denotes the unit triangle in 2d.
In order to achieve linear complexity in M one defines a subset of Iαn for each surface element
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S j that ensures that r • (α n)−1 − y in (8.34) lies in the hypercube
�3

q=1[−mn−1
q ,mn−1

q ], i.e.

Iα n,m(S j) := {l ∈ Iα n | −mn−1 ≤c (α n)−1 • l − y ≤c mn−1, y ∈ S j} (8.36)

= {l ∈ Iα n | y • α n− m1 ≤c l ≤c y • α n + m1, y ∈ S j}. (8.37)

The q−th component of (8.36) is denoted by I(q)
α n,m(S j), where the q−th components of the

vector expressions in the definition is used.
For the sake of computation one may rewrite

I(q)
αn,m(S j) = {lq ∈ I(q)

α n | α nq min
y∈S j

y(q) − m ≤ lq ≤ α nq max
y∈S j

y(q) + m}. (8.38)

From (8.35) it is easily seen that for the expressions y(q), j
min := miny∈S j y(q) and y(q), j

max := maxy∈S j y(q)

in (8.38) simply holds

y(q), j
min = min

k=0,1,2
y(q), j

k (8.39)

y(q), j
max = max

k=0,1,2
y(q), j

k . (8.40)

Due to the assumption Ω ⊂ T, there holds |I(q)
α n,m(S j)| ≤ 2m + 1 +α nq max j=1...M |y

(q), j
max − y(q), j

min | =:
m̃q and |Iα n,m(S j)| ≤

∏
q m̃q =: µ. Fig. 8.1 shows the index set I(q)

αn,m(S j).

The tensorA in (8.34) is now computed by only using the index sets Iαn,m(S j) in O(µM) oper-
ations:

• InitializeA with zeros

• For j = 1 . . . M calculate the vector
(
g j

∫
S j

Ψ̃(l• n−1− y) dσ(y)
)

l∈Iα n,m(S j)
of length at most

µ and add the corresponding components toA.

Here, the integrals are precomputed, since they only depend on the given mesh. One may store
the sparse matrix

A :=
( ∫

S j

Ψ̃(l • n−1 − y) dσ(y)
)

j=1...M, l∈Iα n,m(S j)
. (8.41)

Note that the above procedure for computing the tensor A is nothing else but a transposed
sparse matrix-vector multiplication of A with the (column) vector g = (g j) j=1...M, i.e. vec(A) =(
gT A

)T .
Nevertheless, since the integrals of (8.41) are smooth functions in the parameter l, one can
think of tensor compression for the rows, i.e. A( j, :) ∈

⊗3
q=1 R

I(q)
α n,m(S j), reducing the storage to

µ′M for µ′ < µ depending on the tensor format and the accuracy. Tab. 8.1 shows examples for
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Figure 8.1: The q-th component of the index set Iαn,m(S j) (filled dots). q denotes the space
direction, S j is one surface triangle, n = (n1, n2, n3) the size of the tensor grid, α the over-
sampling factor, m the truncation parameter. y(q), j

min/max is the left and right most corner of the
triangle, respectively. 1/(αnq) is the mesh size of the grid in the q-th direction. Reprinted form
[15]

Table 8.1: Compression of A from surface mesh of a sphere by the Tensor Train format with
accuracy 1e-8 measured in the relative Frobenius norm. nq ≡ 72, α = 2.

# surface elements m full (mb) compressed (mb)
1.3e3 5 48 14
2.6e3 5 77 20
1.3e3 6 73 15
2.6e3 6 120 21

compression rates using tensor train (TT) approximation [68].
A further possibility to reduce storage is the usage of low rank tensor interpolation for a

parameterized version of the integral in (8.41). More precise, the coordinates of the vertices of
a general triangle give nine parameters and l additional three. Allowing this parameters to vary
in an interval, one gets a (smooth) multivariate function defined on a tensor product domain.
Multivariate Lagrange interpolation of this function with (black box) tensor compression for the
coefficient tensor would give one the possibility to efficiently evaluate this interpolation. Hence,
instead of precomputing the sparse matrix A one could precompute the structured coefficent
tensor of the interpolation (e.g. in canonical format this leads to O(Rm) storage costs for m

interpolation points in one dimension and rank R.) and calculate the entries of A on the fly. The
idea of tensor interpolation of parameterized intergrals in connection with fast computation of
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BEM matrices is the core of a recent PhD thesis [86].

8.5.2 Window Functions

In [87, 88] it was shown that, in the case of Gaussian, Sinc, cardinal B-splines or Kaiser-Bessel

window functions, the error for (adjoint) NFFT decays exponentially in the cut-off parameter
m.
Hereby, Kaiser-Bessel functions have the fastest decaying error bound. For n ∈ 2N one defines
the univariate Kaiser-Bessel function

ϕ(x) :=



sinh(b
√

m2−(αn)2 x2)

π
√

m2−(αn)2 x2
, |x| ≤ m

αn

b
π
, |x| = m

αn

sin(b
√

(αn)2 x2−m2)

π
√

(αn)2 x2−m2
, else,

(8.42)

where b := π(2 − 1/α). The Fourier coefficients are given by

c(ϕ)(k) =


1
αn I0(m

√
b2 − (2πk

αn )2), |k| ≤ αn(1 − 1
2α )

0, else,
(8.43)

where I0 is the modified zero order Bessel-function of the first kind.
For the univariate setting a bound for the relative error produced by NFFT is [88]

C(α,m) = 4π(
√

m + m)(1 − 1/α)1/4 exp(−2πm
√

1 − 1/α), (8.44)

which already indicates small errors for m about 4 and α = 2, see Fig. 8.2.
Note that this error bound is independent of n and M.
Since the method for computing B is mathematically equivalent to a NFFT if just accurate
enough quadrature is used (compare with (8.33)), it makes sense to compare with the theoretical
error bound (8.44) for standard NFFT. In this context, also note that the computation of B is
stable regarding round off errors [88]. Fig.8.2 shows the cut-off parameter m versus the relative
error in the maximum-norm, i.e. maxl |B − Bexact|/maxl |Bexact|, for a triangular mesh of the
surface of a sphere, randomly chosen values g j ∈ [−1, 1] and α = 2.

8.5.3 Kernel Approximation

Focus now on the approximation of the Newtonian kernel N in a region [ε, β], β > ε > 0,
where one sets β = 1/2 due to the scaling convention Ω ⊂ (−1/4, 1/4)3.
As described in [76] the kernel N(x) = 1/|x| can be approximated by exponential sums in an
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Figure 8.2: Relative error for the computation of B using Kaiser-Bessel functions, as defined in
(8.42), on a triangular mesh (M ∼ 3e2) of the surface of a sphere and randomly chosen values
g j ∈ [−1, 1], α = 2 and nq ≡ 32, q = 1 . . . 3. Reprinted form [15]

interval [1,R], i.e.

N(x) ≈ Ns(x) :=
S∑

k=1

ωke−γk x2
≡

S∑
k=1

ωk N(k)
s (x), (8.45)

where the weights ωk and nodes γk were computed for several configurations of the parameters
R, S and uniform absolute error bound err. A simple transformation of the weights and nodes
yields a corresponding approximation on the desired interval [ε, 1/2], i.e.

ωtrans =ω/hmin (8.46)

γtrans = γ/h2
min (8.47)

errtrans = err/hmin, (8.48)

where hmin := 1/(2
√

R).
For the numerical tests the computed values for 1/

√
x with S = 21 and R = 7e4 from [89]

are chosen, yielding a uniform error of 5.79e − 06 in [1.89e − 03, 5.00e − 01]. Depending on
the actual near field ε, the expansion (8.45) is truncated, taking only S ′ ≤ S terms, in order
to have an accurate approximation only in the sub-interval [ε, 1/2]. Fig. 8.3 shows the smooth
approximation Ns(.) for different number of terms in the expansion (8.45). Also see Fig. 8.6 in
section 8.7 for the dependence of ε on S ′.
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Figure 8.3: Approximation of N(x) = 1/|x| by exponential sums. Reprinted form [15]

Note that Ns is a sum of separable functions, i.e.

Ns(x) =

S ′∑
k=1

ωk N(k)
s (x1) N(k)

s (x2) N(k)
s (x3). (8.49)

Thus, the Fourier coefficients of Ns can be computed by the trapezoidal rule, i.e.

cl(Ns) =

∫
T

Ns(x) e−2πix·l dx ≈
1∏3

q=1 nq

∑
r∈In

Ns(r • n−1) e−2πil·(r•n−1)

=

S ′∑
k=1

ωk

3∏
q=1

( 1
nq

∑
rq∈I(q)

n

N(k)
s (rq/nq) e−2πilq rq/nq

)
︸                                   ︷︷                                   ︸

=:̃clq (N(k)
s )

=

S ′∑
k=1

ωk c̃l1(N
(k)
s )̃cl2(N

(k)
s )̃cl3(N

(k)
s ), (8.50)

where the c̃lq(N
(k)
s ) are the approximations (trapezoidal rule) of the Fourier coefficients clq(N

(k)
s ) :=∫ 1/2

−1/2
N(k)

s (xq) e−2πixqlq dxq, which are computed using one-dimensional FFT.
When discretized on a tensor grid, (8.49) and (8.50) are canonical tensors of rank S ′ (previ-
ously denoted as Cn,S ′ , cf. section 4.2). This fact allows one to store only S ′

∑3
q=1 nq complex

numbers, instead of
∏3

q=1 nq for all Fourier coefficients of the multivariate function Ns. How-
ever, additional O(S ′) operations have to be performed on runtime to calculate one entry of the
tensor cl(Ns) from its factorized representation (8.50).
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8.5.4 Near field correction

The near field correction is determined by (cf. (8.17))

φNF
2 (xi) ≈

M∑
j=1

g j

∫
S j

NNF(xi − y) dσ(y). (8.51)

Since NNF has small support, (8.51) only has to be computed for surface elements that have
less or equal distance than ε to the target point xi, i.e. for summation only the index sets

INFε (xi) := { j ∈ {1, . . . ,M} | d(xi, S j) ≤ ε}, (8.52)

are used, i.e.

φNF
2 (xi) ≈

∑
j∈INFε (xi)

g j

∫
S j

NNF(xi − y) dσ(y). (8.53)

It can be verified in a straight forward manner that there holds the following set relation:

N⋃
i=1

INFε (xi) × i =

M⋃
j=1

j × INFε (S j), (8.54)

where

INFε (S j) := {i ∈ {1, . . . ,N} | d(xi, S j) ≤ ε}. (8.55)

By using the relation above, one can sum up (8.51) in a similar way like the gridding tensor in
O(M) operations, cf. Sec. 8.5.1, i.e.

• Initialize φNF
2 with zeros

• For j = 1 . . . M calculate the vector
(
g j

∫
S j
NNF(xi − y) dσ(y)

)
i∈INFε (S j)

and add the corre-

sponding components to φNF
2 .

The integrals are again precomputed and stored in a sparse matrix. For reasonably uniform
distribution of nodes nearby the boundary, one may assume that ν := max |INFε (S j)| is much
smaller than N. The complexity of the calculation of φNF

2 is therefore at most O(νM).
For the (weakly) singular cases in (8.51), i.e. xi ∈ S j, one can use the following substitutions.
Assume S j has the vertices x1, x2 and x3 and one wants to evaluate at x2. The triangle S j is
parameterized by

p : ∆0 → R
3, (s, t) 7→ x2 + s(x1 − x2) + t(x3 − x1), (8.56)
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where ∆0 is the unit triangle in the plane. After the substitution s→ s and t → st with Jacobian
determinant |J| = s the integration domain gets the unit square in the plane and the integral gets
non-singular. Thus, one can treat it by tensor product Gaussian quadrature.
For more information the reader is referred to [90].

8.6 Numerics

The tests were taken on a Linux Workstation with a hexa-core AMD Phenom II X6 1090T
processor and 16 GB RAM. Matlab 7.13.0 and the C library NFFT 3 [27] were used.
Alg. 14 shows a pseudo-code of the described method for solving problem (2.22) by the
ansatz (8.5) and (8.6) using the proposed fast evaluation scheme for the single layer poten-
tial. Whereby, the total algorithm is divided into a setup and a computation phase. In any
micromagnetic solver the computation phase is part of the effective field evaluation, which has
to be done at every step of the iterative solution procedure. The setup phase only depends on
the geometry of the problem and thus has to be done only once for a given problem. In the
following, it is shown that the computational effort for the computation phase scales linearly
with the problem size. In Alg. 14 for computing the magnetic scalar potential the first step of
the computation phase is the solution of a Dirichlet problem for φ1. Since the problem is sparse
and the LU decomposition is done in a setup phase the complexity is linear. The numerical
experiments in this section also show linear complexity for the computation of φ2.
First the method for computing the single layer potential is tested for a cube. Fig. 8.4 shows

the cpu-times in seconds of the different parts of the algorithm for randomly chosen values
g j ∈ [−1, 1]. The parts gridding and fft correspond to the computation of the tensor B, com-
pare with (8.32), where times for the element-wise division with the precomputed Fourier co-
efficients of the window function were included in the times for the FFT. The times for the
element-wise multiplication of the Fourier coefficients of Ns and B are suppressed, since they
are negligible. For the NFFT the C library NFFT 3 was used. Moreover, the setting m = 5,
α = 2 and nq ≡ 48, both, in the gridding method as well as in the NFFT was used. Further,
ε was chosen such that ν in the complexity of the near field correction was below 3e2. The
smooth approximation of N was truncated after S ′ = 6 terms. One can observe linear com-
plexity of all parts except the FFT that is constant for constant nq. Note that the NFFT is linear
in the number of nodes of the mesh.

Next the method is compared for the case of uniform magnetization, i.e. m = (0, 0, 1)T , Ms = 1,
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Algorithm 14 FEM/BEM-NFFT for the scalar potential

Require: m ∈
(
H1(Ω)

)3, mesh T of Ω ⊂ (−1/4, 1/4)3 ⊂ T, n ∈ 2N3, ε > 0, m ∈ N,
α ∈ N, α ≥ 2

Ensure: φint ∈ H1(Ω)
Setup
• Compute the LU decomposition of the stiffness matrix and the linear operator for the

RHS, cf. Sec. 8.3

• Compute the matrix A from (8.41), cf. Sec. 8.5.1

• Compute the Fourier coefficients of the window functions from (8.43), cf. Sec. 8.5.2

• Compute the Fourier coefficients of the Kernel approximation, i.e.
(
cl(Ns)

)
l∈In

,
cf. Sec. 8.5.3

• Compute the integrals of the near field correction, cf. Sec. 8.5.4

Actual computation
• Solve the linear system (8.13) for φint

1

• Compute φs
2:

– Compute the tensorA in (8.34)
– Compute the multivariate FFT of the tensorA, cf. (8.28)
– Compute the tensor B by formula (8.32)
– ComputeD :=

(
cl(Ns)

)
l∈In
• B

– Compute the NFFT ofD to obtain φs
2, cf. (8.21)

• Compute φNF
2 as described in Sec. 8.5.4

φint
2 ← φs

2 + φNF
2

φint ← φint
1 + φint

2
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Figure 8.4: Cpu-times (sec) versus number of surface elements for the calculation of the single-
layer potential in a cube. nq ≡ 48, α = 2 and m = 5. Reprinted form [15]

in a sphere with radius R and center at zero, were the exact solution is given as

φint(x) =
x(3)

3
, (8.57)

φext(x) = R3 x(3)

3 ‖x‖3
, (8.58)

which can easily be verified by inserting into (2.22). The same parameters as in the first ex-
periment were used. Fig. 8.5 shows number of nodes versus the maximum of the point-wise
absolute error at the nodes of the mesh, i.e. l∞-error, of the computed solution in Ω compared
to the analytical value. One observes linear error decay.
Note that φint

1 ≡ 0 (compare with (8.5)), since ∇ · m ≡ 0 in Ω. Hence, this example only tests
the computation of φ2, cf. (8.6).

In order to include the computation of φ1 in the tests, take the example m(x) = x/ ‖x‖ in a
sphere with radius R and center at zero with exact solution

φint(x) = ‖x‖ − R, (8.59)

φext(x) = 0. (8.60)

Since φ is zero at the boundary, there holds φint = φint
1 in (8.5) and [∂φ2

∂n ] = 0, hence φ2 = 0
in (8.6). Nevertheless, in the numerical test also the computation of φ2 through (8.7) were
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Figure 8.5: Maximum of the absolute error for uniform magnetization in a sphere with radius
0.2 and center at zero. Reprinted form [15]

Table 8.2: Errors for magnetization m(x) = x/ ‖x‖ in a sphere with radius 0.2 and center at zero
measured in the L2(Ω)-norm, H1(Ω)-semi-norm and H1(Ω)-norm.

# elements # nodes ‖.‖L2(Ω) |.|H1(Ω) ‖.‖H1(Ω)

3058 678 1.0e-3 9.9e-3 1.0e-2
7188 1490 8.9e-4 7.7e-3 7.7e-3

14169 2232 7.2e-4 3.0e-3 3.1e-3

included. Tab.8.2 shows the errors in the L2(Ω)-norm, H1(Ω)-semi-norm and H1(Ω)-norm, i.e.

∥∥∥φ − φappr

∥∥∥
L2(Ω)

=
( ∫

Ω

(φ − φappr)2(x) dx
)1/2

, (8.61)

|φ − φappr|H1(Ω) =
( 3∑

q=1

∥∥∥∂q(φ − φappr)
∥∥∥2

L2(Ω)

)1/2
, (8.62)

∥∥∥φ − φappr

∥∥∥
H1(Ω)

=
( ∥∥∥φ − φappr

∥∥∥2

L2(Ω)
+ |φ − φappr|

2
H1(Ω)

)1/2
, (8.63)

respectively, which was calculated by taking the nodal interpolations of the exact and computed
solutions. The parameter setting n = 72, α = 2 and cut-off parameters m = 5 was used. Note
that the H1(Ω)-semi-norm and thus the H1(Ω)-norm take the errors of the stray field hs = −∇φ

into account.
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8.7 A Closer Look at Errors and Complexity

Remember that the approximation for the single layer potential (cf. section 8.4) is split into a
near field correction and a smooth part, i.e.

φ2(xi) ≈
M∑
j=1

g j

∫
S j

NNF(xi − y) dσ(y) +

M∑
j=1

g j

∫
S j

Ns(xi − y) dσ(y) =: φNF
2 (xi) + φs

2(xi).

(8.64)

The scheme for the smooth part written in a compact form (also compare with (8.21) and (8.32))
reads

φs
2 ≈ NFFT

((
cl(Ns)

)
l∈In
•
(
FFT(A)/cl(Φ̃)

)
l∈In

)
. (8.65)

As pointed out in section 8.5 and also numerically tested in section 8.5.2, the error that arises
from approximating the tensor B with entries bl =

∑M
j=1 g j

∫
S j

e−2πiy·l dσ(y), i.e.

B ≈
(
FFT(A)/cl(Φ̃)

)
l∈In
, (8.66)

behaves like that for the standard NFFT. The error bound in section 8.5.2 shows that this error
decays exponentially with increasing cut-off parameter m and is independent of the tensor grid
size |In|.

In order to be able to analyze the error dependence on n of the whole scheme (8.64), one has to
look at the kernel splitting in more detail, i.e.

N = (N −Ns) + FNs + (Ns − FNs). (8.67)

In the scheme (8.64) with (8.65) for the smooth part, the contribution ofNs−FNs is neglected.
Thus, the error occurring from the approximation of the smooth kernel approximation Ns by
its Fourier series approximation FNs has to be analyzed. Moreover, in order to get linear
complexity in the near field correction, (N − Ns)(x) = 0 is assumed for ‖x‖ > ε. Due to the
approximation by exponential sums, compare with section 8.5.3, this yields a (uniform) error in
the interval [ε, β], which is denoted as ENF in the following estimate. Overall, for the essential
error arising in the summation in (8.64) holds

|φNF
2 (xi) + φs

2(xi) −
(
φ̃NF

2 (xi) + φ̃s
2(xi)

)
| ≤ |∂Ω| ‖g‖1

(
ENF + max

‖x‖<1
2

|Ns(x) − FNs(x)|
)
, (8.68)
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where φ̃NF
2 (xi) + φ̃s

2(xi) denotes the computed values and ‖g‖1 :=
∑M

j=1 |g j|.
Due to the tensor product structure of the Fourier coefficients ofNs (compare with section 8.5.3),
also the Fourier series approximation has this structure, i.e.

FNs(x) =

S ′∑
k=1

ωk F N(k)
s (x1)F N(k)

s (x2)F N(k)
s (x3). (8.69)

It follows

max
‖x‖< 1

2

|Ns(x) − FNs(x)| =

S ′∑
k=1

|ωk| max
‖x‖<1

2

|N(k)
s (x1) N(k)

s (x2) N(k)
s (x3) − F N(k)

s (x1)F N(k)
s (x2)F N(k)

s (x3)|

≤

S ′∑
k=1

Ck |ωk|

3∑
q=1

max
‖x‖< 1

2

|N(k)
s (xq) − F N(k)

s (xq)|,

(8.70)
where an telescoping sum like abc − ã̃b̃c = (a − ã)bc + (b − b̃)̃ac + (c − c̃)̃ãb was used and Ck

is an upper bound for the products bc, ãc and ã̃b.
Adapting the proof of Th. 3.4 in [91] for the univariate case, the error max

xq<
1
2
|N(k)

s (xq) −

F N(k)
s (xq)| for N(k)

s (xq) = e−γk x2
q can be estimated by

max
xq<

1
2

|N(k)
s (xq) − F N(k)

s (xq)| ≤ A(γk, η
(q)
k ) + B(γk, η

(q)
k ), (8.71)

where η(q)
k := πnq

2
√
γk

and A(γk, η
(q)
k ) ∼ e−(η(q)

k )2
and B(γk, η

(q)
k ) ∼ e−γk/4/η

(q)
k .

The consequences of (8.71) are twofold. First, for small γk the term B(γk, η
(q)
k ) only gets small

for large nq, whereas for large γk this term is negligible. In the first case (small γk) one can use
boundary regularization or further scaling the domain Ω into, e.g., (−0.2, 0.2)3. This reduces
the error N(k)

s − F N(k)
s in general, [91].

On the other hand (8.71) suggests to choose nq in the order of
√
γk, i.e. nq ∼

√
γk, such that

η
(q)
k ≥ 1 and thus A(γk, η

(q)
k ) is small.

By reducing the number of terms in the exponential sum of Ns, one can observe an expo-
nential increase of ε (the left border of the interval of validity for the uniform approximation,
cf. Fig. 8.6), e.g. linear fitting gives, for the certain choice of the coefficients ωk and γk in
section 8.5.3, log ε ∼ −0.28311S ′ − 0.15471. Moreover, γS ′ increases exponentially with in-
creasing S ′; linear fitting gives log γS ′ ∼ 0.57352S ′ + 6.5187. Thus, one gets approximately
γS ′ ∼ 1/ε2.0258. Fitting with coefficients from the precomputed list with S = 28, the same
R = 7e4 (yields the same interval of validity for the uniform approximation as that from sec-
tion 8.5.3 but with the lower error 2.34e-08) gives the similar estimate γS ′ ∼ 1/ε2.0449. Finally,
fitting with coefficients corresponding to lists with different R (means different interval of va-
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Figure 8.6: Dependence of the absolute error on the number of terms of the approximation of
the function 1/|x| by exponential sums with nodes/weights from section 8.5.3.

lidity for the approximation with all S terms) confirm the trend γS ′ ∼ 1/ε2.
This, in connection with nq ∼

√
γk, gives an approximate asymptotic relation between the

tensor grid size nq and the ’near field’ ε which is about

nq = O(ε−1). (8.72)

Now, linear complexity of the near field computation requires that ν := max |INFε (S j)| is much
smaller than the total number of nodes, i.e. N, cf. section 8.5.4. Assuming that the nodes near
the boundary are reasonably uniformly distributed, means that the ’ε−balls’ INFε (S j) contain
about the same number of nodes, namely ν. If the even more idealistic assumption is made that
the whole mesh is roughly uniform, then the volume of an ε-ball is proportional to the ratio
ν/N, i.e. there should hold approximately ε ∼ (ν/N)1/3.
Together with (8.72) this combines to

nq = O(N1/3). (8.73)

Since the complexity of the proposed scheme for (8.64) is O
(
M + N + (

∏3
q=1 nq)(log

∏3
q=1 nq)

)
,

the assumption of a roughly uniform mesh, together with the error investigation above, gives
rise to the scaling

O(M + N + N log N). (8.74)
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8.8 Computing the Stray Field

Here is briefly described how to derive the stray field from the finite element solution of the
scalar potential of the previous sections.

The P1 finite element method yields the approximated values ui of the scalar potential at the
nodes of the mesh. This defines a unique (P1) nodal interpolation, i.e.

φ(x) ≈
N∑

i=1

ui ηi(x), (8.75)

where the ηi are the nodal basis, compare with section 8.3.

From nodal interpolation:

The approximation of the demagnetizing field (stray field) hd = −∇φ is therefore the element-
wise constant function (P0)

hd(x) ≈ −
N∑

i=1

ui ∇ηi(x). (8.76)

Within one tetrahedron T j, the (approximate) scalar potential is the affine function

φ(x) |T j≈

4∑
α=1

uα ϕ
(T j)
α (x), (8.77)

where for the affine element basis functions holds ϕ(T j)
α (xβ) = δαβ (Kronecker-δ). The stray field

approximation in each element has therefore the constant value

hd(x) |T j≈

4∑
α=1

uα ∇ϕ
(T j)
α . (8.78)

From mass-lumping and midpoint rule:

In order to get a P1-approximation of the stray field one can use the approach from [72]: Two
different approximations of the demagnetizing energy

Ed = −
µ0

2

∫
Ω

M2
s m · hd, (8.79)

are compared in order to derive a gradient operator (matrix). Here physical units for the energy
are used (in contrast to reduced units, see Sec. 2.2).The first approximation ansatz is

Ed ≈ −
µ0Ms

2
µT hd, (8.80)
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where hd is assumed to be a vector of length N containing the values of the stray field at
the nodes and µ a vector of length N containing the volume- and spacial averaged magnetic
moments at the nodes. The latter one is assembled in a usual local to global process by a loop
over the elements

µ(k) +=
1
4

M(T j)
s |T j|, (8.81)

where k are the global indices of the nodes of element T j.
This approximation can be rewritten as

Ed ≈ −
µ0Ms

2
mT Lhd, (8.82)

where m = (m(x)
1 ,m(y)

1 ,m
(z)
1 , . . . ,m

(x)
N ,m

(y)
N ,m

(z)
N )T ∈ R3N×1 is the mesh vector of the unit mag-

netization and L a 3N × 3N diagonal matrix which consists itself of 3 × 3 diagonal blocks
diag(µi,µi,µi).
The second approximation is done by midpoint integration of (8.79) over all elements and −∇φ
inserted for the stray field, i.e.

Ed ≈
µ0M2

s

2

∑
T j∈T

∫
T j

m · ∇φ, (8.83)

which yields a similar equation like (8.82), namely

Ed ≈
µ0M2

s

2
mT Gu, (8.84)

where G is a sparse 3N × N matrix (it is the transposed matrix of the divergence matrix which
is used for the right hand side in section 8.3) and u = (ui)i=1...N the vector of node values of the
scalar potential.
Comparing (8.82) and (8.84) yields

hd = −L−1Gu. (8.85)

Table 8.3 shows the errors of the stray field for the flower state in the unit cube in [18] with the
same reference value and computed by (8.85) and (8.82). The scalar potential is calculated by
the FEM/BEM-NFFT algorithm described in this chapter.

From variational formulation
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Table 8.3: Errors of the stray field energy (reduced units) for a flower state in the unit cube
computed by (8.85) and (8.82).

# elements # nodes energy error in percent
6000 1331 0.157 2.4

10368 2197 0.156 2.2
24576 4913 0.155 1.2
93750 17576 0.152 0.7

The method above is a special way to solve the variational (projection) problem∫
Ω

hd · m = −

∫
Ω

∇φ · m, (8.86)

for all m ∈ H1(Ω). Namely, within a P1 discretization of (8.86) the RHS is treated by the
midpoint rule, yielding −mT Gu, where the LHS is approximated using (8.81), yielding mT Lhd.
Alternatively, one can use a different Galerkin FE ansatz (e.g. higher order) and use appropriate
quadrature, for instance by using the finite element package FEniCs [92].

8.9 Summary and Discussion

A P1 finite element method for the computation of the micromagnetic scalar potential was
introduced, which is based on the ansatz of García-Cervera and Roma. The potential is com-
puted by a splitting φ = φ1 + φ2, where φ1 is solved by a Poisson equation with zero Dirichlet
boundary conditions and φ2 by evaluation of the single layer potential. The contribution is the
development of a method to compute the single layer potential at all nodes of a tetrahedral
mesh in linear time (or almost linear, see section 8.7) by means of Fourier approximation of a
smoothed kernel and near field correction.
The discretized integral operator splits into a part with smooth and singular kernel. The latter
one has small support and therefore allows a computation by sparse summation, while for the
smooth part Fourier techniques can be applied. Due to the unstructured FE-mesh, generaliza-
tions of discrete Fourier transforms arise, which can be implemented efficiently.
Overall the method scales both linear in the number of surface elements and nodes, whereas
the usage of an auxiliary tensor grid gives an additional almost linear dependence on the tensor
grid size. The considerations from section 8.7 indicate an almost linear complexity with respect
to the number of nodes of the mesh for this part.
Similar, the storage requirements are linear in the number of surface elements, where further
tensor train compression was introduced in order to reduce the constant in the storage estimate
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for the gridding procedure.
Exponential sums were used to obtain an entirely smooth and separable approximation of the
Fourier coefficients of the Newtonian potential. As a consequence of the above mentioned
splitting, which includes a near field correction, the only essential error of the method (within
the P1 FEM framework) is due to this approximation, cf. section 8.7. Nevertheless, numerical
experiments for test cases with known analytical solutions show accurate approximations.
Future work could deal with a possible extension to higher order finite element and boundary
element methods. Also an application of the proposed method could be used to accelerate a P0
approximation of the integral representation of the potential (2.23), i.e.

φ(x) ≈
∑

T j

∮
∂T j

mj · n(y)
‖x − y‖

dσ(y), (8.87)

Also P1 or higher order approximation for (2.23) itself is conceivable.

An interesting possibility for future work is the parallelization of the scheme (8.89) by the
parallel FFT (PFFT) package [93].

Also the application of the novel sub-linearly scaling sparse FFT [94, 95] could be investigated,
especially in the context of discrete Fourier transform of the gridding tensor (cf. Sec. 8.5.1).

Low-Rank Tensor Version
Here an idea concerning cost-reduction of the FFT in Alg. 14 is briefly discussed, but not fully
analyzed yet. The key point is to use tensor compression for the tensorA ∈ RIαn :=

⊗3
q=1 R

I(q)
α n

in (8.34) followed by FFT and NFFT for structured tensors (compare with section 4.5). Since
the tensor grid parameter n controls the accuracy of the method (amongst others, e.g. cut-off

m or near field ε), it is desirable to choose it as large as possible. On the other hand, also
remember that this parameter has no connection to the underlying problem like geometry or
magnetization. So the choice of n is a trade-off between accuracy and complexity/storage. The
gridding process

ar :=
M∑
j=1

g j

∫
S j

Ψ̃
(
r • (α n)−1 − y

)
dσ(y), (8.88)

smooths the data on a regular tensor grid and constructs the tensor A, compare with section
8.5. It seems (somehow) natural and within the scope of this thesis to ask whether the ’smooth’
tensorA permits a ’low-rank’ tensor representation, if only for certain parameters (e.g. cut-off

m, mesh parameters/properties or variation of the sources g j). In order to see what implications
this would have for the computation of φs

2, the scheme is here rewritten in a compact form (also
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compare with (8.21) and (8.32)), i.e.

φs
2 = NFFT

((
cl(Ns)

)
l∈In
•
(
FFT(A)/cl(Φ̃)

)
l∈In

)
. (8.89)

Remember that
(
cl(Ns)

)
l∈In
∈ Cn,S ′ and

(
cl(Φ̃)

)
l∈In
∈ Cn,1, meaning they are canonical tensors

of rank S ′ and 1, respectively.
Assume now A ∈ Cαn,R. From chapter 4 section 4.5 Lemma 3 one gets FFT(A) ∈ Cαn,R and
hence

(
FFT(A)/cl(Φ̃)

)
l∈In
∈ Cn,R. From the Hadamard product of canonical tensors (compare

with section 4.2) one finally has

If A ∈ Cαn,R =⇒
(
cl(Ns)

)
l∈In
•
(
FFT(A)/cl(Φ̃)

)
l∈In
∈ Cn,S ′R. (8.90)

The costs for forming (8.90) areO(Rα n logα n) for the FFT andO(R n+R S ′n) for the Hadamard
products.
Similar as for FFT for canonical tensors the NFFT for CP tensors is reduced to 1-dimensional
NFFT. Namely, the following statement can be recalculated in a straight forward manner (for
an idea of proof compare with the proof of Lemma 3 and 4).

Lemma 10. For a canonical tensor A = ~ λ; U(1),U(2),U(3) � ∈ Cn,r, al =
∑r

s=1 λs u(1)
l1 s u(2)

l2 s u(3)
l3 s

the NFFT is given by

NFFT(A) =
[
NFFT1d

(
U(1)) • NFFT1d

(
U(2)) • NFFT1d

(
U(3))] λ, (8.91)

where the (1-d) NFFT is only taken along each column of a factor matrix.

The costs for the CP-NFFT in Lemma 8.91 are (nq ≡ n) O
(
r m N + r n log n

)
, compare with

O
(
m3N + n3 log n3) for ordinary NFFT.

Hence, if the gridded tensor A is in canonical form with rank R, the costs for computing φs
2

through (8.89) areO
(
RS ′m N+RS ′ n log n

)
+O(Rα n logα n), compare withO

(
m3N+n3 log n3+

(αn)3 log(αn)3) for denseA.
In addition, one had to add the costs for computing A as a canonical tensor. For that purpose,
one could use black box approximation for canonical tensors [56] or cross approximation for
the TT-format [96, 97] with subsequent conversion to Tucker tensors plus approximation of the
core in the CP format (Tucker to CP approximation) by e.g. an ALS algorithm. These methods
allow approximations without forming the dense/full tensorA explicitly.

Tab. 8.4 shows an example for compression of A in the case of a meshed sphere with ra-
dius 0.5 and center at zero and a flower magnetization [18]. For testing purposes the CP rank
was determined by first pre-calculatingA completely followed by an ALS based Tucker to CP
approximation. The ranks are in the scale of the tensor grid parameter n, whereas the results
indicate lower ranks for the cases where the cut-off m is larger and where the mesh is finer.

137



Table 8.4: CP-compression of A in the case of a meshed sphere with radius 0.5 and center at
zero and a flower magnetization. The over-sampling factor α is 2. The compression error in the
relative Frobenius norm was below one percent.

# surface elements αn m CP-rank R
420 144 5 400
980 144 5 250
980 96 5 60

1794 96 5 50
1794 144 5 110
1794 144 3 250
1794 144 6 95

The same test but carried out with randomly chosen sources g j, instead of those arising from
a (parameterized) flower state, fails in terms of a clear increase of ranks (even a rank of 500
yields an error above one percent). Thus, the ’smoothness’ of the underlying source function is
a crucial factor whether low ranks can be achieved in principle.
A cylinder geometry (basis in the x−y-plane with radius 0.5, height 1) was tested together with
the vortex magnetization from [18]. For the parameters m = 5, αn = 96 and a very coarse sur-
face mesh of only 300 elements the compression rank is 37 (error below one percent). Inserting
the flower magnetization yields a compression rank of 23. It is very likely that the geometry (in
connection with the magnetization configuration) plays an important role. At the current stage
it is unclear whether the compression method yields any advantages over the ’plain’ scheme,
however, further investigations on that have to be done.
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Chapter 9

Conclusions

This thesis starts with a brief summary of background information on micromagnetics. The
micromagnetic energy minimization problem is formulated as constrained optimization prob-
lem in the continuous and the discrete setting. Several algorithms which address this prob-
lem are introduced, including a new variant of the steepest descent method, a semi-implicit

scheme. This method is compared with a quasi Newton method applied to the unconstrained
version of the micromagnetic energy minimization problem. Although the modified steepest
descent method is simple and more efficient than ordinary steepest descent, the quasi Newton
approach outperforms it in two test cases in terms of needed function evaluations. On the con-
trary, the computational costs of both methods are comparable. Moreover, penalty approaches

from non-linear programming are applied to micromagnetics, as well as, Newton’s method to

the Karush-Kuhn-Tucker (NKKT) conditions. Both approaches are less efficient than modified
steepest descent and quasi Newton on the unconstrained problem. Nevertheless, while penalty
methods are re-used later in the context of low-rank energy minimization, the NKKT method
turns out to be a generalization of the widely used method of Alouges.
In order to minimize the energy on large tensor grids, the data-sparse tensor formats are intro-
duced. A detailed description of tensor formats and approximation of tensors is given. Inciden-
tally, a FFT-based method to apply filtering of disturbed multi-way data is found.
A tensor grid method for computing the stray field for tensor structured input is described and
mathematically analyzed. Kronecker product structure of the demagnetizing operator is proven,
which later gives rise to a similar structure for the Hessian of a second order discretization of
the total magnetic energy. This structure allows the efficient evaluation for tensor structured
input. Later, the tensor grid stray field method is even accelerated by means of FFT.
A whole chapter is dedicated to approximation of magnetization configurations by the Tucker
format. The tests indicate an asymptotically logarithmic rank-growth with respect to the side-
length of a (rather) hard magnetic cube (with no external field). In the remanent case it is also
shown that the minimization of the energy has a regularizing effect on randomly disturbed ini-
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tial magnetization. In addition, the compression ranks corresponding to a prescribed tolerance
during demagnetization are adaptively determined. The dependence of the ranks with respect
to the tolerance ε for the compression is found to be approximately r̃ ∼ O(log ε−1) if the ex-
ternal field strength is not near the coercive field. Right before and during switching of the
magnetization the ranks ’explode’ in an oscillating manner, while for the region away from the
critical field ranks do not grow drastically.
Finally, the micromagnetic energy minimization problem subject to low-rank tensors is inves-
tigated and analyzed. An algorithm is introduced, which is based on low-rank updates and
minimization within the canonical tensor representation. In principal, this method allows ap-
plying large grids due to the sublinear scaling in the volume size. This is useful for large
ferromagnetic particles which demand a high resolution due to constraints related to the ex-
change length or domain wall width.
The final section is dedicated to a novel finite element/boundary element (FEM/BEM) algo-
rithm, which benefits from non-uniform FFT, which is especially adapted to boundary inte-
grals. The method, which calculates the scalar potential, scales quasi optimal in the number of
volume and surface elements.
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−^−

Dieser Mythos ist tragisch, weil sein Held bewußt ist.
Worin bestünde tatsächlich seine Strafe, wenn ihm bei
jedem Schritt die Hoffnung auf Erfolg neue Kraft gäbe?
Heutzutage arbeitet der Werktätige sein Leben lang unter
gleichen Bedingungen, und sein Schicksal ist genauso ab-
surd. Tragisch ist es aber nur in den wenigen Augen-
blicken, in denen der Arbeiter bewußt wird. Sisyphos,
der ohnmächtige und rebellische Prolet der Götter, kennt
das ganze Ausmaß seiner unseligen Lage: über sie denkt
er während des Abstiegs nach. Das Wissen, das seine
eigentliche Qual bewirken sollte, vollendet gleichzeitig
seinen Sieg.

Albert Camus, Der Mythos des Sisyphos
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