Modeling of Biogas Formation and Utilization using Aspen Plus

Elke Hilby
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften

Technische Universität Wien

ausgeführt zum Zwecke der Erlangung des akademischen Grades einer Diplom-Ingenieurin

unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Anton Friedl und
Univ.Ass. Dipl.-Ing. Dr.techn. Walter Wukovits

Wien, März 2014
Contents

1 Introduction 6

2 Biogas formation and utilization 10
 2.1 Microbiology of anaerobic digestion 10
 2.1.1 Hydrolysis 13
 2.1.2 Acidogenic phase 13
 2.1.3 Acetogenic phase 13
 2.1.4 Methanogenic phase 13
 2.2 Physiology and environmental influences 14
 2.3 Biogas yields and composition 16
 2.4 Upgrading and utilization of biogas 18

3 Modeling of anaerobic digestion and biogas utilization 24
 3.1 Simulation tool Aspen Plus 24
 3.2 Components and properties 25
 3.3 Model development 27
 3.4 Modeling of biogas formation 28
 3.4.1 Chemical Oxygen Demand COD 30
 3.4.2 Buswell’s equation 32
 3.4.3 Stoichiometric reactions 35
 3.5 Modeling of biogas utilization 36
 3.5.1 Combustion 39
 3.5.2 Cogeneration - gas engine 39

4 Model evaluation and results 42
 4.1 Model evaluation 42
 4.1.1 Validation modeling approach of biogas model 42
 4.1.2 Identification of biogas model limits 44
 4.1.3 Validation of utilization model 47
 4.2 Model results 48
Summary and Outlook

Appendix

A.1 Input data barley straw and molasses
A.2 Efficiency data provided by GE Jenbacher
A.3 Model evaluation
 A.3.1 Input evaluation
 A.3.2 Input data - Validation modeling approach of biogas model
 A.3.3 Input data - Identification of biogas model limits
A.4 Input summary Aspen Plus
List of Figures

1.0.1 Scheme of complied biogas generation and -utilization model in Aspen Plus 8
2.1.1 Carbon conversion of aerobic and anaerobic digestion . 10
2.1.2 Mass and energy dissipation during anaerobic fermentation of glucose at pH 7 11
2.1.3 Scheme of multistage anaerobic digestion process . 12
2.4.1 Utilization options and processing routes of raw biogas . 18
2.4.2 Biogas treatment routes . 20
2.4.3 Schematic implemenetion of CHP unit in a biogas process . 21
2.4.4 Heat exchanger water circuit of CHP unit . 22
3.3.1 Hierarchies of the total flowsheet in Aspen Plus . 28
3.3.2 BIOGAS hierarchy . 29
3.4.1 COD hierarchy . 31
3.5.1 UTILIZE hierarchy . 38
3.5.2 Temperature - entropy diagram of an idealized Otto - process 40
4.1.1 Scheme of biohydrogen process . 44
List of Tables

1.0.1 Difference between simple and comprehensive models for anaerobic digestion ... 7
2.2.1 Environmental requirements .. 16
2.3.1 Biogas yields of different organic components .. 16
2.3.2 Biogas yields stemming from various substrate matter ... 17
2.3.3 Average biogas composition and heating value .. 18
3.2.1 Component list .. 26
3.2.2 Extended component list ... 26
3.2.3 Included property-sets .. 27
3.4.1 Stoichiometric reactions included in block B-S01 .. 35
3.4.2 Additional stoichiometric reactions .. 36
3.5.1 Oxidation reactions implemented in calculator block AIR .. 37
3.5.2 Biogas model features .. 41
4.1.1 Maximum biogas flow rate and composition of model A and B (dry basis) ... 43
4.1.2 Model limits - Biogas flow rates and compositions (dry basis) .. 45
4.1.3 Model limits - Maximum biogas flow rates and compositions (dry basis) .. 45
4.1.4 Comparison of utilization model results (molasses and barley straw) with literature data 47
4.2.1 Biogas hierarchy simulation results .. 48
4.2.2 Utilization hierarchy simulation results ... 50
4.2.3 Comparison of biogas model results (molasses and barley straw) with literature data 51
A.1.1 Input data molasses ... 1
A.1.2 Input data barley straw .. 1
A.3.1 Density literature data of biogas and flue gas components at standard conditions III
A.3.2 Input data - Validation modeling approach of biogas model .. III
A.3.3 Model validation - stoichiometric reactions and fractional conversion factors IV
A.3.4 Input data PSP, barley straw and thick juice - Identification of biogas model limits V
A.3.5 Model validation - additional stoichiometric reactions ... V
Listings

3.4.1 FORTRAN code of COD calculator block .. 31
3.4.2 Additional definitions and FORTRAN code of adapted COD calculator block 32
3.4.3 FORTRAN code of BUSWELL calculator block ... 33
3.4.4 Additional definitions and FORTRAN code of adapted BUSWELL calculator block 34
3.5.1 FORTRAN code of AIR calculator block .. 37
3.5.2 Design specification - RELHUM .. 37
3.5.3 FORTRAN code of ENGINE calculator block .. 41
A.3.1 Additional thermodynamic settings of validation modeling approach of biogas model . IV
A.4.1 Input Summary Aspen Plus .. VI
Kurzfassung

Abstract

A flexible model for biogas generation and utilization was developed using simulation tool Aspen Plus. It is based on two interacting submodels, describing the process of biogas generation via anaerobic digestion and biogas utilization. Three possible approaches to model biogas production have been employed - calculation via chemical oxygen demand (COD), calculation according to Buswell’s equation, and implementing stoichiometric reactions. For purpose of biogas utilization three paths are included - combined heat and power generation (CHP) by means of a gas engine, a second path which could further be used for biogas upgrading, and adiabatic combustion of generated biogas.

The model can be used for a rough estimate whether integration of a biogas process with systems processing organic waste material streams is beneficial or not. An economic approach is no target of this work. This model simply calculates how much biogas can maximal be obtained out of a specific organic feedstock and how much heat and power can be generated by the use of a gas engine or a simple combustion process. Because of its flexible and simple configuration, the model can be adapted to various types of substrate with respect to model setup. The difference between the calculation methods used have been discussed. The model was evaluated in terms of comparing with results from literature, comparing the results of the model with results of a model from literature, and sensing potential limits by applying several kinds of input data.
Chapter 1

Introduction

Environmental and resource conservation are increasingly interesting at a time in which natural resources are scarce, since they are limited determined by nature. The topic ‘waste management’ is closely tied to responsibility for resources and the environment. Guiding principle for the treatment of waste and material flows, written in the Waste Management act [BMLFUW] 2006, implies that avoidance is preferred over material and energy recovery, which is preferred over disposal of waste. Material recovery describes the principle of waste management, which present work is subject to. In making use of the material recovery task, engineering processes are extended and optimized in order to achieve greater material utilization rates. This optimization also provides economic benefits, since disposal costs can be avoided and heat and power can be generated.

However, process optimization necessitates additional investment costs which have to be balanced against financial savings. Waste is a valuable raw material which is, among other possibilities, convertible to useful energy carriers/forms such as biogas, heat, and electrical energy which are high-quality energy sources [Kirchmeyr and Anzengruber 2008] and [Helwig et al. 2002]. Since present thesis deals exclusively with renewable organic raw materials, generated energy in the form of heat and power is CO₂-neutral which points out an additional advantage of the ‘waste to energy’ concept. In order to prevent emissions of greenhouse gases (GHG) it is important to apply optimal recycling measures. Anaerobic digestion provides a great opportunity for converting waste material to a valuable energy carrier, since biogas can be produced from nearly any kind of biological feedstock [Holm-Nielsen et al. 2009]. In order to achieve a responsible management of natural resources and environment, attainment of optimal material utilization rates of (natural) resources cannot be avoided.

The intention of this thesis is to present a simple and flexible model for anaerobic digestion in order to generate biogas, and for biogas utilization. In this context, flexible is meant in terms of the variety of the input data. Most prior research has concentrated on building comprehensive models of anaerobic digestion, and little attention has been paid to coupled physical models for biogas generation and utilization. Comprehensive models are sophisticated since an increasing degree of detail of modeling increases needed input information [Pröll 2013]. However, in this way also a higher extent of output information is obtained. Contrary to sophisticated models, simple models are based on a manageable quantity of data.
Buswell and Müller [1952] and Baserga [1998] are good examples for simple, time-independent ways to calculate biogas production [Gerber and Span, 2008]. This models are based on a simple approach, which only take the elemental composition [Buswell and Müller, 1952] or the class of substrate [Baserga, 1998] into account in order to predict quantitative biogas yields. Comprehensive biogas models are best exemplified by Batstone et al. [2002], and Mather [1986]. The model presented in Batstone et al. [2002] tries to be as widely applicable as possible. It is limited to the main relevant processes occouring during anaerobic digestion, in order to make it more applicable. However, the amount of required input data is extensive since equillibrium and kinetic processes are considered. The work of Mather [1986] describes a mathematical model of anaerobic digestionon on the basis of laboratory tests with acidic acid. Table 1.0.1 indicates main differences between simple and comprehensive physical models of anaerobic digestion according to Gerber and Span [2008]. Comprehensive models usually contain unknown parameters which have to be estimated from experimental data. Also, models published in literature do not supply a clear procedure for modeling anaerobic digestion. Published literature data rarely show thorough analysis of paramater accuracy, which severely restricts application of published information Donoso-Bravo et al. [2011].

<table>
<thead>
<tr>
<th></th>
<th>SIMPLE MODEL</th>
<th>COMPREHENSIVE MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>input requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>substrate composition</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>restriction to adapted substrate</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>kinetic parameters</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>yield coefficients</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>physio-chemical constants</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>conversation factors</td>
<td>rarely</td>
<td>x</td>
</tr>
<tr>
<td>considered parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>temperature conditions</td>
<td>-</td>
<td>rarely</td>
</tr>
<tr>
<td>inhibition processes</td>
<td>-</td>
<td>rarely</td>
</tr>
<tr>
<td>growth rate of microorganisms</td>
<td>-</td>
<td>rarely</td>
</tr>
<tr>
<td>death rate of microorganisms</td>
<td>-</td>
<td>mostly</td>
</tr>
<tr>
<td>stages of anaerobic digestion</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>stoichiomertic equations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>various bacteria groups involved</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>pH or ionic equillibrium</td>
<td>-</td>
<td>mostly</td>
</tr>
<tr>
<td>gas-liquid equillia</td>
<td>rarely</td>
<td>x</td>
</tr>
<tr>
<td>output information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_4$ yield</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CO$_2$ yield</td>
<td>mostly</td>
<td>mostly</td>
</tr>
<tr>
<td>H$_2$S yield</td>
<td>mostly</td>
<td>mostly</td>
</tr>
<tr>
<td>NH$_3$ yield</td>
<td>mostly</td>
<td>mostly</td>
</tr>
<tr>
<td>H$_2$O yield</td>
<td>mostly</td>
<td>mostly</td>
</tr>
<tr>
<td>time-dependent parameters</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>yield of substrate to microorganisms</td>
<td>-</td>
<td>mostly</td>
</tr>
<tr>
<td>yield of substrate to energy</td>
<td>-</td>
<td>rarely</td>
</tr>
</tbody>
</table>

Table 1.0.1: Difference between simple and comprehensive models for anaerobic digestion
The major disadvantage of simple physical models is that no prediction of time-dependent parameters such as required retention time is possible. Conversely, the major advantage of simple models is the higher flexibility in utilization, which means flexible application on various substrates. A simple anaerobic digestion model is appropriate for almost any kind of substrate, whereas a comprehensive model is tied to a certain kind of substrate since it is adapted properly [Gerber and Span, 2008]. Figure 1.0.1 sketches the biogas generation and utilization model of present work.

Present model for biogas generation and utilization does not consider any kinetics, processes of inhibition, and effects of pH or temperature. Neither the biological and chemical stages of anaerobic digestion are considered. Degradable substrate components are interpreted as soluble. At some points vapor-liquid-equilibrium is considered which is influenced by temperature. The model is time-independent and is a collection of simple models from literature. It includes stoichiometric reactions, conversion factors, and distinguishes between degradable and nondegradable components. Biogas utilization model does not picture desulphurization and dehumidification properly, since physiochemical processes aren’t considered. However, biogas combustion models are modeled in more detail, including humidity of combustion air, excess air ratio, and Gibbs free energy minimization. Since the model neglects several aspects, present model provides results which must be considered as maximum possible biogas, heat, and energy yields. The question which will be answered in this thesis is whether or not created model pictures biogas formation and utilization properly.

Figure 1.0.1: Scheme of complied biogas generation and utilization model in Aspen Plus
Model results can be applied to make a rough estimate whether biogas generation out of waste material streams is advantageous or not, in order to cover heat and power demand of an overall process. However, it is important to notice that no economic aspects are taken into account and investment costs have to be balanced against financial savings during process integration. The study of [Wukovits et al., 2013] applied present biogas and utilization model in order to investigate whether or not implementing anaerobic digestion into a two-step biohydrogen process, presented in [Foglia et al., 2011], is beneficial.

The thesis begins by briefly reviewing theoretical aspects of biogas generation and utilization in chapter 2. Section 2.1 introduces the term anaerobic digestion and goes on describing the microbiology, physiology, and environmental influences of anaerobic digestion in section 2.2. Section 2.3 goes on to discuss the biogas potential of various substrates and also defines the term biogas. In section 2.4, various pretreatment and utilization possibilities of biogas are itemized. Also a briefly review on combined heat and power generation units (CHP) is given. Chapter 3 is divided into five sections, starting with section 3.1 which is shortly introducing the simulation tool Aspen Plus. Section 3.2 goes on describing required settings, such as property method, component list, component parameters, etc. Section 3.3 depicts the model development and gives an overview on the implemented calculation routes of the two hierarchies biogas and utilization. In sections 3.4 and 3.5 the modeling of biogas formation and utilization is described in detail, which includes theoretical aspects and implementation procedures of each calculation path. Chapter 4 addresses the model evaluation and the results. Section 4.1 presents evaluation of the present biogas generation and utilization model by making use of different evaluation strategies. Also a systematic and clear procedure for implementing additional substrate components is described. Section 4.2 presents simulation results when applying data provided by project partners of HYVOLUTION project [EU, 2010] and comparing them with literature data which are summarized in section 2.3. Evaluation and the results of the biogas generation and utilization model are discussed at this point. Finally, chapter 5 summarizes the present work and gives an outlook.
Chapter 2

Biogas formation and utilization

2.1 Microbiology of anaerobic digestion

Microorganisms have, like every living organism, the endeavor to maintain life functions and to reproduce. Therefore energy and build-up material is needed, which is provided by organic material. The degradation of organic material by microorganisms into smaller low-energy molecules releases energy in form of ATP and heat. ATP stands for adenosine triphosphate which is the essential energy carrying form for all microorganisms. Gibbs free energy ΔG° [kJ/mol] characterizes the amount of energy released at the breakdown process of the macromolecules which is usable for the synthesis of ATP. A chemical reaction can only take place when ΔG° approaches negative values. The larger the value, the more rapidly the reaction will take place.

The essential difference between aerobic and anaerobic degradation of organic material is the amount of energy released, by means of change in metabolism [Bischofsberger et al., 2009]. Change in metabolism consequences a change in carbon conversion according to figure 2.1.1 [Jördening and Winter, 2005] and subsequently changes in energy conversion release.

![Diagram of carbon conversion of aerobic and anaerobic digestion]

Figure 2.1.1: Carbon conversion of aerobic and anaerobic digestion

Anaerobic digestion describes the complete breakdown of organic material in the absence of oxygen to CO_2 and H_2O (biogas formation), illustrated in the simplified reaction 2.1.1. Aerobic digestion is simplified in reaction 2.1.2 where cell mass is built up by respiration forming products CO_2 and H_2O. Both processes
are exothermic, but aerobic degradation releases more heat energy than anaerobic degradation. However, the heat released during anaerobic digestion does not cover the heat demand of the process when operating at constant temperature conditions. Therefore process energy from external sources has to be supplied in order to maintain a constant (mesophilic) temperature level [Jördening and Winter, 2005].

\[
\text{organic material} \rightarrow \text{CH}_4 + \text{CO}_2 + \text{H}_2 + \text{NH}_3 + \text{H}_2\text{S} + \text{heat energy (2.1.1)}
\]

\[
\text{organic material} \rightarrow \text{cell mass} + \text{CO}_2 + \text{H}_2\text{O} + \text{heat energy (2.1.2)}
\]

\[
\text{CH}_4 + 2 \text{O}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O} + \text{heat energy } \Delta G^o (-891.6 \text{ kJ/mol CH}_4) \quad (2.1.3)
\]

During anaerobic degradation approximately 6.9 % of the combustion energy is available for growth and maintenance, and only 4.6 % are lost during anaerobic metabolism. The remaining 88.5 % are bonded to the produced biogas which can further be used as fuel for gas engines to generate electric power and heat related to equation 2.1.3. During aerobic degradation of 1 mol glucose via glycolysis, approximately 69 % of the combustion energy is available for growth and maintenance. Approximately 31 % is lost in form of heat during respiration forming CO\(_2\) and H\(_2\)O.

Above observed facts represent the main differences between anaerobic and aerobic degradation, whereby only anaerobic digestion produces biogas. Figure [2.1.2] pictures mass and energy dissipation during anaerobic digestion of glucose according to [Jördening and Winter, 2005].

![Diagram](image)

Figure 2.1.2: Mass and energy dissipation during anaerobic fermentation of glucose at pH 7

The anaerobic digestion process involves a complex consortium of microorganisms. According to present state of knowledge, anaerobic digestion processes are performed in four biological and chemical stages: hydrolysis, acidogenesis, acetogenesis, and methanogenesis [Bischofsberger et al., 2009], [Kaltschmitt et al.].
However, some authors (namely Evans and Furlong [2003], Antranikian et al. [2006], Jördening and Winter [2005], Braun [1982], Klass [1998], and Jung et al. [2000]) combine acidogenesis and acetogenesis. Subdividing these two processes highlights the importance of acetic acid, which accounts for approximately 75% of the produced methane [Evans and Furlong 2003]. The biogas that has its source in anaerobic digestion is mainly consisting of methane and carbon dioxide. Biological gasification is usually incomplete, which points out the major limitation of anaerobic digestion. Depending on the type of substrate, up to 50% of the organic matter remains unconverted [Chynoweth et al. 2001]. Degradation during a multistage anaerobic digestion process is pictured in figure 2.1.3 according to Bischofsberger et al. [2009].

Microorganisms involved in the process of anaerobic digestion form a microbial anaculture which have strong mutual influences among themselves. Jördening and Winter [2005] names hydrogen partial pressure as most sensitive switch of the carbon flow of substrates to biogas. Hydrogen, an intermediate product of acetogenesis, inhibits at the same time growth of the acetogenic microorganisms. However, hydrogen is a basic material for methanogenesis. It is for this reason very important to spacially couple acetogenesis and methanogenesis, so that formed hydrogen is simultaneously consumed. Hydrogen partial pressure limits the area where both processes simultaneously can take place. As this area is very small concerning degradation of propionic

Figure 2.1.3: Scheme of multistage anaerobic digestion process
acid to acetic acid, propionic acid metabolism (a subprocess of acetogenesis) is frequently referred to as limiting step of anaerobic digestion [Thome-Kozmiensky and Beckmann, 2011], [Ziganshin et al., 2011] and [Bischofsberger et al., 2009]. At the same, [Watter, 2009] states hydrolysis as rate-determining step, when sparingly degradable substances occur. Methanogenesis of acetic acids is also stated as rate-limiting step [Jördening and Winter, 2005]. Hence, it can be supposed that the rate-limiting step depends on compounds of the feedstock which is utilized in the process [Weiland, 2010].

2.1.1 Hydrolysis

During hydrolysis insoluble biopolymers such as carbohydrates, fats and proteins are broken down into water-soluble monomeric fragments by exoenzymes [Jördening and Winter, 2005]. The high molecular weight components of the input biomass are decomposed into low molecular weight components. Hydrolytic exoenzymes are for instance cellulase, cellobiase, xylanase, amylase, lipase, and protease which are excreted by hydrolytic microorganisms [Weiland, 2010]. Carbohydrates are decomposed to oligo- and monosaccharides, fats to their monomeric fragments fatty acids and glycerol, and proteins to peptides and amino acids [Watter, 2009]. Hydrolysis is inhibited by lignocellulose-containing materials, which are decomposed incompletely or very slowly [Jördening and Winter, 2005].

2.1.2 Acidogenic phase

During acidogenesis, hydrolysis products are transformed into hydrogen, carbon dioxide, acetic acid, various other organic acids (including volatile fatty acids VFA), and alcohols. Only the intermediate products hydrogen, carbon dioxide, and acetic acid can be transformed into carbon dioxide and methane by methanogenic microorganisms [Bischofsberger et al., 2009]. Hydrolysis and acidogenesis form together the initial stages of anaerobic digestion, which are usually combined in one stage and separated from the acetogenesis/methanogenesis stage [Ziganshin et al., 2011].

2.1.3 Acetogenic phase

The fermentation products of acidogenesis which cannot directly be decomposed by methanogenic microorganisms, namely volatile fatty acids and alcohols, are further converted by acetogenic bacteria to mainly acetic acid [Ziganshin et al., 2011]. Therefore acetogens represent the connection between fermentative and methanogenic microorganisms. Since acetogenesis can only take place at low hydrogen partial pressure, the acetogenic phase has to be coupled with methanogenesis due to interspecies hydrogen transfer [Mudhoo, 2012]. Methanogenic microorganisms consume the hydrogen which acetogenic microorganisms produce.

2.1.4 Methanogenic phase

Methanogenic microorganisms are accountable for forming biogas after organic feedstock is degraded via fermentation. Methanogens are strictly anaerobic microorganisms classified as archaea, a group very similar to bacteria. Some major differences between bacteria and archaea can be found in [Wang et al., 2010].
Archaea were split off from other life forms during evolution very early, thus they have very unique properties [Bischofsberger et al. 2009]. Owing to their proximity to the origin of life, they require anaerobic conditions. Some of them require temperatures near water’s boiling point, low pH values, and high salt concentrations for optimal growth [Antranikian et al. 2006]. Archaea also are able to grow under ’normal’ conditions. Methanogenic microorganisms are usually divided into acetoclastic methanogens which strictly metabolize acetate or formiate, and hydrogenotrophic methanogens which use hydrogen and carbon dioxide for their metabolism [Mudhoor 2012]. During methanogenesis mainly biological conversion of acetic acid, hydrogen, and carbon dioxide into methane takes place. According to [Roedinger et al. 1990], approximately 70% of the methane formed stems from the decomposition of acetic acid and about 30% is formed via redox reaction of hydrogen and carbon dioxide [Speece 1983].

2.2 Physiology and environmental influences

Microorganisms involved in the anaerobic digestion process steps (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) have various physiology and nutrient requirements. However, in a stable operated process all kinds of microorganisms participating anaerobic digestion are well balanced [Jung et al. 2000]. They require certain nutrients, trace elements, and vitamins for metabolism and maintenance. The limiting concentration depends on species specific requirements. If there are too few nutrients available, the assessible carbon can not be converted entirely. In the opposite position, an excess of nutrients can induce the formation of potentially inhibiting substances [FNR 2006]. Essential nutrients, such as nitrogen-, phosphorus-, and sulfur compounds, are considered in relation to available carbon (so-called carbon source), in order to set minimum requirements. [FNR 2006] recommends a nutrient requirement ratio C:N:P:S of 600:15:5:1, [Kaltschmitt et al. 2009] a C:N:P ratio of 100-200:4:1, [Ammary 2004] a C:N:P ratio of 250:5:1, and [Deublein and Steinhauser 2011] a C:N:P:S ratio of 500-600:15:5:3. In order to compensate low nitrogen and/or phosphorous concentrations, nitrogen (in the form of urea (NH$_2$)$_2$CO) and/or phosphorous (in the form of phsophoric acid H$_3$PO$_4$) can be added to obtain the minimum nutrient ratio, if neccesary [Jördening and Winter 2005].

Besides other factors affecting methane production (e.g. temperature, mixing, type of substrate, etc.), the value of pH plays a central role. The pH of fermentation results mainly from alkaline or acidic products of metabolism and a natural buffer system. Anaerobic digestion is sensitive to both, low and high pHs. If the pH value of acetogenenis/methanogenesis sinks below pH value 4.5, the production of organic acids leads to a further decrease of the pH value by the hydrolytic microorganisms. Values of pH > 10 in a reactor leads to an irreversible loss of activity of the microorganisms. However, the pH value is held within the neutral range by natural buffering procedures in the fermenter [Deublein and Steinhauser 2011]. The most significant buffer system in anaerobic digestion is represented by CO$_2$ - HCO$_3$ - system [Braun 1982]. The optimal pH ranges widely and varies with substrate and digestion technique [Liu et al. 2008].
In hydrolysis/acidogenesis phase, the optimal pH range is 4.5 - 6.3 according to \cite{FNR2006}, and 5.7 - 5.9 according to \cite{Klass1998}. The optimum range of pH (to obtain maximal biogas yield) in aceto-
genic/methanogenic phase is 6.5 - 7.5 according to \cite{Liu2008, Weiland2010, Wang2011, Braun1982, vanLier2001, Deublein2011}. The study of \cite{Liu2008} focuses on increasing the methane production by adjusting the optimal pH (which is predicted by a computer circulation program). Results show that the methane production has an average increase of about 35% operating at optimal pH, which brings out the pivotal influence of an optimal pH.

In principle, the higher the temperature, the faster a chemical reactions takes place. However, biological systems do not necessarily follow this rule. Various groups of microorganisms involved in anaerobic digestion processes have various temperature optima. Exceedance or undercut can result in inhibition or irreversible damage of the participating microorganisms \cite{FNR2006}. According to \cite{Batstone2002}, temperature affects biochemical reactions in several ways. When increasing the temperature up to the temperature optimum of the involved organisms, the reaction rates are increasing according to Arrhenius equation. However, when the temperature exceeds the optimum, the reaction rate decreases rapidly down to zero. There are three operation temperature ranges in accordance with the optimal temperature range of the different groups of microorganisms - physiophilic (up to 25\degree C), mesophilic (30 to 40\degree C) and a moderate thermophilic temperature range (50 to 60\degree C) \cite{vanLier2001}. At physiophilic temperature conditions, the degradation capacity and biogas production is strongly limited. The majority of methanogens have their optimum temperature for growth at mesophilic conditions, which results in high biogas yields. Thermophilic operation mode is appropriate when there is a need for killing pathogens by hygienization \cite{FNR2006}.

Inhibition of biogas formation or anaerobic digestion process can have several reasons. Firstly, operational parameters such as mixing or residence time have to be followed in order to ensure smooth operation. Secondly, inhibitors can delay progress in biochemical process of biogas formation. Small amounts of inhibitors can be acutely toxic and hamper the degradation process. It is useful to differentiate between inhibitors entering the system via substrate, and inhibitors emerging from different degradation steps as intermediate products. It is important to understand that any compound of substrate can harm the biochemical system, since an excessive concentration can inhibit fermentation. This is pariculary true for antibiotics, disinfectants, solvents, herbicides, salts, and heavy metals. Even small amounts of these substances have toxic effects on microorganisms \cite{FNR2006}. Mechanism and the controlling factors of inhibition are identified and investigated in \cite{Chen2008}, whereby inhibitors include ammonia, sulifides, light metals (Na, K, Mg, Ca, and Al), heavy metals, and organics. Identifying the inhibiting concentration limits is very challenging, since a variety of factors (pH, temperature, presence of other substances/ions, acclimation, etc.) influences inhibition. \cite{Braun1982} and \cite{Bischofsberger2009} investigated this complexity of inhibition extensively.
Optimal environmental conditions for all microorganisms participating anaerobic degradation of a two-stage plant can only be set in one stage for hydrolysis/acidogenesis and one stage for acetogenensis/methanogenesis [Deublein and Steinhauser, 2011]. Table 2.2.1 summarizes microbial process parameters according to [Deublein and Steinhauser, 2011], which have to be taken into account in order to ensure an optimum fermentation process. Environmental requirements of fermentative microorganisms of hydrolysis/acidogenesis differ from methane-forming microorganisms in acetogenensis/methanogenesis.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Hydrolysis/acidogenesis</th>
<th>Acetogenensis/methanogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>25 - 35 °C</td>
<td>Mesophilic: 32 - 42 °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thermophilic: 50 - 58 °C</td>
</tr>
<tr>
<td>pH value</td>
<td>5.2 - 6.3</td>
<td>6.7 - 7.5</td>
</tr>
<tr>
<td>C:N ratio</td>
<td>10 - 45</td>
<td>20 - 30</td>
</tr>
<tr>
<td>DM content</td>
<td>< 40% DM</td>
<td>< 30% DM</td>
</tr>
<tr>
<td>Required C:N:P:S ratio</td>
<td>500 : 15 : 5 : 3</td>
<td>600 : 15 : 5 : 3</td>
</tr>
<tr>
<td>Trace elements</td>
<td>No special requirements</td>
<td>Essential: Ni, Co, Mo, Se</td>
</tr>
</tbody>
</table>

Table 2.2.1: Environmental requirements (DM = dry matter)

2.3 Biogas yields and composition

Anaerobic degradation of different feedstocks provides various amounts of biogas and biogas yields. Studies of [Roedinger et al., 1990] (a), [Linke et al., 2006] (b), [Baserga, 1998] (c), [Jördening and Winter, 2005] (d), [FNR, 2006] (e), [Bischofsberger et al., 2009] (f), [Weissbach, 2009] (g), [Weiland, 2010] (h), and [Hornbachner et al., 2005] (i) published maximum biogas yields stemming from anaerobic degradation of simple carbohydrates, fats, and proteins as listed in table 2.3.1.

<table>
<thead>
<tr>
<th>biogas yields [m3/kg ODM]</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>(g)</th>
<th>(h)</th>
<th>(i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbohydrates</td>
<td>0.79</td>
<td>0.75</td>
<td>0.79</td>
<td>0.79</td>
<td>0.70 - 0.80</td>
<td>0.79</td>
<td>0.79 - 0.80</td>
<td>0.79 - 0.80</td>
<td>0.70 - 0.80</td>
</tr>
<tr>
<td>fats</td>
<td>1.27</td>
<td>1.39</td>
<td>1.25</td>
<td>1.27</td>
<td>1.00 - 1.25</td>
<td>1.27</td>
<td>1.34 - 1.36</td>
<td>1.20 - 1.25</td>
<td>1.00 - 1.25</td>
</tr>
<tr>
<td>proteins</td>
<td>0.70</td>
<td>0.79</td>
<td>0.70</td>
<td>0.70</td>
<td>0.60 - 0.70</td>
<td>0.70</td>
<td>0.71 - 0.88</td>
<td>0.70</td>
<td>0.60 - 0.70</td>
</tr>
</tbody>
</table>

Table 2.3.1: Biogas yields of different organic components (ODM = organic dry matter)

Since the feedstock consists of a multitude of compounds besides carbohydrates, fats, and proteins, a biogas yield prediction requires fermentation experiments. Biogas yields of different substrates (organic residue, animal manure, and energy crops) have been investigated in [Görisch and Helm, 2007] (a), [Kaiser, 2007] (b), [Linke et al., 2006] (c), [Braun, 1982] (d), [IFA-Tulln and GERBIO, 2009] (e), [FNR, 2006] (f), [Wetter and Brügging, 2008] (g), and [Deublein and Steinhauser, 2011] (h). Parts thereof are summarized in table 2.3.2. The studies of [Gunaseelan, 1997], [Weiland, 2010], [Amon et al., 2007], and [Braun et al., 2009]...
provide comprehensive biogas yield data on various substrates related to m3 biogas/kg VS (volatile solids). Test results for specific biogas yields out of renewable raw material are subject to wide fluctuations due to incomparable factors such as fermentation conditions and point of harvest. Therefore a large range of variation of biogas outcome and methane yield has to be expected \[Kaiser, 2007\].

<table>
<thead>
<tr>
<th>organic residue</th>
<th>biogas yield [m3/kg ODM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>clover</td>
<td>(a) 0.50-0.65 (b) 0.50-0.66 (c) - (d) 0.45 (e) - (f) - (g) - (h) 0.60-0.80</td>
</tr>
<tr>
<td>potato peels</td>
<td>- (a) - (b) 0.88 (c) - (d) - (e) - (f) - (g) - (h) 0.30-0.90</td>
</tr>
<tr>
<td>molasses</td>
<td>0.45 (a) - (b) 0.51 (c) - (d) 0.36-0.49 (e) 0.36-0.49 (f) - (g) 0.30-0.70</td>
</tr>
</tbody>
</table>

farm fertilizer	
cow manure	
potato peels	

energy crops	
sugar beet	
grass sillage	0.60-0.60 (a) 0.50-0.60 (b) 0.54 (c) 0.56 (d) 0.55-0.62 (e) 0.55-0.62 (f) - (g) 0.60-0.70
wheat sillage	0.40-0.50 (a) - (b) - (c) - (d) - (e) - (f) - (g) 0.50 (h)
rye sillage	- (a) 0.79 (b) 0.73 (c) - (d) - (e) 0.17-0.22 (f) 0.56 (g) - (h)
corn sillage	0.59-1.13 (a) 0.68-0.81 (b) 0.45-0.70 (c) 0.45-0.70 (d) 0.54 (e) 0.60-0.70
barley sillage	- (a) - (b) 0.92 (c) - (d) - (e) - (f) - (g) 0.61 (h)
crop straw	0.25-0.35 (a) - (b) - (c) - (d) - (e) - (f) - (g) - (h)
corn straw	0.50 (a) 0.50-0.66 (b) - (c) - (d) - (e) - (f) - (g) 0.40-1.00
wheat straw	- (a) 0.34 (b) 0.48 (c) 0.37 (d) - (e) - (f) - (g) - (h)
oat straw	- (a) 0.33 (b) - (c) 0.40 (d) - (e) - (f) - (g) - (h)
rye straw	- (a) 0.28 (b) - (c) 0.34 (d) - (e) - (f) - (g) - (h)
barley straw	- (a) 0.25-0.35 (b) - (c) 0.39 (d) - (e) - (f) - (g) - (h)

Table 2.3.2: Biogas yields stemming from various substrate matter (ODM = organic dry matter)

Biogas consists mainly of CH$_4$ and CO$_2$ besides typical impurities as H$_2$O, H$_2$S, NH$_3$, and N$_2$. Each gas component has its impact on the gas quality. CO$_2$ lowers the calorific value of the biogas, causes corrosion if the gas is wet, and it (as well as N$_2$ and NH$_3$) increases anti-knock properties of engines. H$_2$O causes corrosion in condensed state. H$_2$S spoils catalysts and also has a corrosive effect, wherefore many manufacturers of engines set upper limits of 0.05 vol-% \[Deublein and Steinhauser, 2011\]. Table 2.3.3 lists average biogas compositions from anaerobic digestion and heating values H$_u$ according to \[FNR, 2006\] (a), \[Scharf, 2007\] (b), \[Deublein and Steinhauser, 2011\] (c), \[Braun, 1982\] (d), \[Cimochowicz-Rybicka, 2013\] (e), \[Zahoransky et al., 2010\] (f), \[Thome-Kozmiensky and Beckmann, 2011\] (g), and \[Bischofsberger et al., 2009\] (h). The work of \[Lehtomäki et al., 2008\], \[Ward et al., 2008\], \[Vintila et al., 2012\], \[Bischofsberger et al., 2009\], \[FNR, 2006\], \[Weiland, 2003\], and \[IFA-Tulln and GERBIO, 2009\] additionally provides data concerning CH$_4$ yields on various substrates, which are in the range of approximately 45 - 75 vol-% methane.
<table>
<thead>
<tr>
<th>comp. [vol-%]</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
<th>(g)</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_4)</td>
<td>50 - 75</td>
<td>55 - 75</td>
<td>45 - 75</td>
<td>52 - 85</td>
<td>55 - 75</td>
<td>50 - 75</td>
<td>45 - 70</td>
<td>60 - 70</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>2 - 7 *</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2 - 7</td>
<td>3 **</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H(_2)S</td>
<td>< 2</td>
<td>0 - 3</td>
<td>-</td>
<td>0.08-6</td>
<td>0.01-1</td>
<td>-</td>
<td>< 1</td>
<td>0 - 0.7</td>
</tr>
<tr>
<td>N(_2)</td>
<td>< 2</td>
<td>0 - 0.3</td>
<td>0.01 - 5</td>
<td>0.6 - 8</td>
<td>2 - 6</td>
<td>-</td>
<td>0 - 4</td>
<td>0 - 0.2</td>
</tr>
<tr>
<td>O(_2)</td>
<td>< 2</td>
<td>0.1 - 0.5</td>
<td>0.01 - 2</td>
<td>0 - 1</td>
<td>-</td>
<td>-</td>
<td>0 - 1</td>
<td>-</td>
</tr>
<tr>
<td>H(_2)</td>
<td>< 1</td>
<td>1 - 5</td>
<td>0.5</td>
<td>0 - 5</td>
<td>0.1 - 2</td>
<td>< 1</td>
<td>< 0.1</td>
<td>0 - 0.2</td>
</tr>
<tr>
<td>H(_2)O (\text{d}) [MJ/kg]</td>
<td>18.00-18.60</td>
<td>-</td>
<td>15.00-23.28</td>
<td>-</td>
<td>-</td>
<td>> 15.00</td>
<td>-</td>
<td>18.00-24.83</td>
</tr>
</tbody>
</table>

Table 2.3.3: Average biogas composition and heating value (* at 20 - 40 °C; ** at 25 °C)

2.4 Upgrading and utilization of biogas

The high-quality energy carrier biogas can be utilized in several ways. Depending on further usage opportunities, different processing steps are necessary. The minimum pretreatment procedure of biogas is dehumidification and desulphurization. Figure 2.4.1 gives an overview on common utilization options of biogas and their needful pretreatment steps according to [Linke et al., 2006]. Various utilization paths require different processing efforts. [TUV, 2013] provides a tool for calculating biomethane formation based on different feedstock including the technologic and economic aspects of upgrading raw biogas to produce biomethane.

Hydrogen sulphide is formed during anaerobic digestion. H\(_2\)S reacts to sulphurous acid during combustion, which has strongly corrosive properties [Linke et al., 2006]. For desulphurization three principles are available [FNR, 2006]: Biological desulphurization removes sulphur via sulphur-oxidizing microorganisms (under
aerobic conditions). Desulphurization via absorption works through katalytic oxidation for instance on iron ore. During chemical desulphurization trivalent iron salts are added to the fermenter where sparingly soluble iron sulphide is formed. None of these processes removes the entire H_2S and up to 100 ppm may remain in the biogas. Water vapor is removed via a cooling system which is either consisting of pipelines that are laid underground or by using an external cooling aggregat. Investment costs, operating costs, and installation size decide which dehumidification option is used [Linke et al., 2006].

Figure 2.4.2 gives an overview of various biogas treatment processes in order to remove undesired biogas compounds such as CO_2, H_2O, H_2S, NH_3, oxygen, and nitrogen [Hornbachner et al., 2005]. Since CO_2 amounts about 50 % of the raw biogas, technologies for CO_2 removal possess a high level of interest. Conventional processes are pressurized water scrubbing, pressure swing adsorption (PSA), cryogenic-, and membrane processes, in which pressurized water scrubbing and PSA are most common at present. All these processes result in purified biogas of a methane content of up to 98 % [Linke et al., 2006].

Pressurized water scrubbing is a simple process and it is for this reason one of the most frequent used principles for biogas upgrading. The easy handling, simple regeneration, and the low price of the washing agent water are major advantages of this principle. Pressurized water scrubbing provides the opportunity for simultaneous separation of H_2S and CO_2. Pressure Swing Adsorption (PSA) is the second most employed techniques for biogas upgrading. The adsorbent is a porous solid with a high surface area. Carbon molecular sieves (CMS) but also activated carbons or zeolites are applied as adsorbent. Through PSA, biogas can be upgraded (via CO$_2$ separation) to a quality similar to natural gas. An overview on possible biogas upgrading technologies in order to produce biomethane is given in [TUV, 2012], [Deublein and Steinhauser, 2011], and [Thran, 2012]. Reformig of biogas leads to generation of syngas which can further be used in fuel cells.
METHODS OF BIOGAS TREATMENT

- Ammonia
 - Presurized water scrubbing
 - Adsorption on activated carbon
 - Adsorption by gas scrubbing

- Hydrogen
 - Activated carbon
 - Membrane absorption
 - Chemical/Physical adsorption

- Sulphide
 - Biological
 - In situ external

- Oxygen, Nitrogen
 - Membrane separation

- Water
 - Adsorption by gas scrubbing
 - Glycol scrubbing
 - Membrane separation

- Carbon dioxide
 - Physical scrubbing
 - Pressure swing adsorption (PSA)
 - Membrane separation

- Cryogenic devices

Figure 2.4.2: Biogas treatment routes
Since combined heat and power (CHP) generation represents the most common application of biogas, further details are given in this section. Figure 2.4.3 offers an overview on implementing a CHP unit to a biogas process [Elsenbruch, 2011]. After pretreatment, the biogas is converted to electrical and thermal energy in CHP unit which is consisting of an internal combustion engine, a generator for electrical power generation, and a heat carrier system which cools the engine. Several heat carrier media are interconnected to a global cooling circuit which is sketched in figure 2.4.3.

Figure 2.4.3: Schematic implementation of CHP unit in a biogas process.

Figure 2.4.4 illustrates the cooling circuit forming a global hot water circuit, according to [Jenbacher, 2005], which is at a temperature level of approximately 90 °C and can for instance be used for district heating or for heat integration in a global process (such as it is discussed in [Wukovits et al., 2013]).

The heat exchangers (biogas/air mixture, oil, engine, and flue gas) are built-in components of the CHP unit. The thermal output of these heat exchangers amounts 13 % (biogas/air mixture heat exchanger), 10 % (oil heat exchanger), 26 % (engine heat exchanger), and 51 % (flue gas heat exchanger) of the total thermal output [Jenbacher, 2005].
Figure 2.4.4: Heat exchanger water circuit of CHP unit
Chapter 3

Modeling of anaerobic digestion and biogas utilization

3.1 Simulation tool Aspen Plus

Aspen Plus (Advanced System for Process Engineering) is a steady state flowsheeting tool for process simulation which is used to quantitatively model characteristic equations of a particular (chemical) process. Therefore mass and energy balances, equilibrium relationships, and rate correlations for chemical reactions or mass- or heat transfer are linked. The balancing results in prediction of stream attributes (flow rates, compositions, properties), operation conditions, and equipment size. Concerning solution strategy Aspen Plus provides both, an equation-oriented (EO) and a modular-sequential (SM) approach, which is the default setting and further used in this work.

There are particular advantages of modular-sequential approaches, namely easily comprehensible calculation, an easily localisation of errors/problems, low requirements for the computer (memory- and computing capacity), and powerful unit-operation models [Friedl et al., 2010]. In order to translate a process into an Aspen Plus simulation model, the following procedure has to be performed [AspenTech, 2001c]. First, the process flowsheet has to be defined, which includes unit operations and process streams. Then chemical components in the process have to be determined. Components have specific thermodynamic properties which have also to be set. After specifying both, component flow rates and operating conditions of unit operations, a simulation can be performed. All specifications can interactively be changed.

At this point some useful Aspen Plus features are explained only shortly. Property sets are a collection of several properties (thermodynamic, transport, and others) that can be used to access obtained properties in stream reports, physical property tables, unit operation models, and in design specifications and calculator blocks. Aspen Plus provides several built-in property sets, which are usually sufficient for many applications [AspenTech, 2001c]. Examples for property sets used in this work are listed in table 3.2.3. A calculator block provides the possibility to insert FORTRAN statements or excel spreadsheets into flowsheet computations to perform user-defined tasks [AspenTech, 2013]. Calculator blocks are used in order to implement
calculations which manipulate process streams and unit operation blocks. A design specification allows to set a process variable that is normally calculated during simulation [AspenTech, 2013].

3.2 Components and properties

It is important to choose a suitable property method properly. Aspen Plus provides a large range and recommends property methods for different applications. According to [AspenTech, 2001e] and [AspenTech, 2001b] the activity coefficient model NRTL (non-random two-liquid model) has been chosen. NREL (National Renewable Energy Laboratory) [Aden et al., 2002] developed a Aspen Plus model including an anaerobic digestion unit based on NRTL property method, which correlates the activity coefficients of a component with its mole fractions in the liquid phase.

Table 3.2.1 lists the components used in the developed biogas model, whereby marked components (*) are considered as degradable. The input data originate from project partners of HYVOLUTION project [EU, 2010]. The exact elemental composition of component LIGNIN is C_{7.3}H_{13.9}O_{1.3}, of component BIOMASS is CH_{1.64}O_{0.39}N_{0.23}S_{0.0035}, and of CELLULAS is CH_{1.57}O_{0.31}N_{0.29}S_{0.0035} [Wooley and Putsche, 1996]. The component list includes components for an input of molasses and barley straw, which have been the basis for the model development. A summary of the input data of the two possible feedstocks are listed in Appendix A.1. NREL provides a comprehensive Aspen Plus model describing the chemical conversion process and its economic consideration of the conversion of biomass to ethanol [Aden et al., 2002]. This model includes a physical property database for biofuels components [Wooley and Putsche, 1996] developed in a former work of the NREL. This database is now integrated in Aspen Plus, namely NREL_DB INHSPCD, and is further used upon others in this work.

In order to evaluate the developed model in chapter 4.1 the original component list has therefore to be extended to include components listed in table 3.2.2. The marked components (*) represent degradables. According to [Wooley and Putsche, 1996] the exact elemental composition of component ZYMO is CH_{1.8}O_{0.5}N_{0.2}.

25
<table>
<thead>
<tr>
<th>Component ID</th>
<th>Type</th>
<th>Component name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2</td>
<td>CONV</td>
<td>HYDROGEN</td>
<td>H2</td>
</tr>
<tr>
<td>O2</td>
<td>CONV</td>
<td>OXYGEN</td>
<td>O2</td>
</tr>
<tr>
<td>CO2</td>
<td>CONV</td>
<td>CARBON-DIOXIDE</td>
<td>CO2</td>
</tr>
<tr>
<td>H2O</td>
<td>CONV</td>
<td>WATER</td>
<td>H2O</td>
</tr>
<tr>
<td>*GLUCOSE</td>
<td>CONV</td>
<td>GLUCOSE</td>
<td>C6H12O6</td>
</tr>
<tr>
<td>*SUCROSE</td>
<td>CONV</td>
<td>SUCROSE</td>
<td>C12H22O11</td>
</tr>
<tr>
<td>NH3</td>
<td>CONV</td>
<td>AMMONIA</td>
<td>H3N</td>
</tr>
<tr>
<td>*HAC</td>
<td>CONV</td>
<td>ACETIC-ACID</td>
<td>C2H4O2-1</td>
</tr>
<tr>
<td>ASH-WS</td>
<td>SOLID</td>
<td>CALCIUM-OXIDE</td>
<td>CAO</td>
</tr>
<tr>
<td>CALDI</td>
<td>SOLID</td>
<td>BIOMASS</td>
<td>CHXNXOXSX-1</td>
</tr>
<tr>
<td>RHODO</td>
<td>SOLID</td>
<td>BIOMASS</td>
<td>CHXNXOXSX-1</td>
</tr>
<tr>
<td>KOH</td>
<td>CONV</td>
<td>POTASSIUM-HYDROXIDE</td>
<td>KOH</td>
</tr>
<tr>
<td>*PECTINE</td>
<td>SOLID</td>
<td>CELLULOS</td>
<td>C6H1005</td>
</tr>
<tr>
<td>*PROTEIN</td>
<td>SOLID</td>
<td>CELLULAS</td>
<td>CHXNXOXSX-2</td>
</tr>
<tr>
<td>HCL</td>
<td>CONV</td>
<td>HYDROGEN-CHLORIDE</td>
<td>HCL</td>
</tr>
<tr>
<td>K2HPO4</td>
<td>CONV</td>
<td>DIPOTASSIUM-PHOSPHATE</td>
<td>K2HPO4</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>CONV</td>
<td>POTASSIUM-DIHYDROGEN-PHOSPHATE</td>
<td>KH2PO4</td>
</tr>
<tr>
<td>CH4</td>
<td>CONV</td>
<td>METHANE</td>
<td>CH4</td>
</tr>
<tr>
<td>H2S</td>
<td>CONV</td>
<td>HYDROGEN-SULFIDE</td>
<td>H2S</td>
</tr>
<tr>
<td>*XYLOSE</td>
<td>CONV</td>
<td>XYLOSE</td>
<td>C5H1005</td>
</tr>
<tr>
<td>*GALACTOS</td>
<td>CONV</td>
<td>GLUCOSE</td>
<td>C6H12O6</td>
</tr>
<tr>
<td>*ARABINOS</td>
<td>CONV</td>
<td>XYLOSE</td>
<td>C5H1005</td>
</tr>
<tr>
<td>*GLUCAN</td>
<td>SOLID</td>
<td>CELLULOS</td>
<td>C6H1005</td>
</tr>
<tr>
<td>*XYLAN</td>
<td>SOLID</td>
<td>XYLAN</td>
<td>C5H804</td>
</tr>
<tr>
<td>*GALACTAN</td>
<td>SOLID</td>
<td>CELLULOS</td>
<td>C6H1005</td>
</tr>
<tr>
<td>N2</td>
<td>CONV</td>
<td>NITROGEN</td>
<td>N2</td>
</tr>
<tr>
<td>NO2</td>
<td>CONV</td>
<td>NITROGEN-DIOXIDE</td>
<td>NO2</td>
</tr>
<tr>
<td>O2S</td>
<td>CONV</td>
<td>SULFUR-DIOXIDE</td>
<td>O2S</td>
</tr>
<tr>
<td>*ARABINAN</td>
<td>SOLID</td>
<td>XYLXAN</td>
<td>C5H804</td>
</tr>
<tr>
<td>LIGNIN</td>
<td>SOLID</td>
<td>LIGNIN-1</td>
<td>CXHXXOX-1</td>
</tr>
</tbody>
</table>

Table 3.2.1: Component list (* degradables)

<table>
<thead>
<tr>
<th>Component ID</th>
<th>Type</th>
<th>Component name</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>*ETHANOL</td>
<td>CONV</td>
<td>ETHANOL</td>
<td>C2H6O-2</td>
</tr>
<tr>
<td>*FURFURAL</td>
<td>CONV</td>
<td>FURFURAL</td>
<td>C5H4O2</td>
</tr>
<tr>
<td>*GLYCEROL</td>
<td>CONV</td>
<td>GLYCEROL</td>
<td>C3H8O3</td>
</tr>
<tr>
<td>CELLULOS</td>
<td>CONV</td>
<td>CELLULOS</td>
<td>C6H1005</td>
</tr>
<tr>
<td>*GLUTARIC</td>
<td>CONV</td>
<td>XYLXAN</td>
<td>C5H804</td>
</tr>
<tr>
<td>*DXYLOSE</td>
<td>CONV</td>
<td>XYLOSE</td>
<td>C5H1005</td>
</tr>
<tr>
<td>*DEXTROSE</td>
<td>CONV</td>
<td>GLUCOSE</td>
<td>C6H12O6</td>
</tr>
<tr>
<td>ENZYMES</td>
<td>CONV</td>
<td>ZYMO</td>
<td>CHXOXNX</td>
</tr>
<tr>
<td>SILICON</td>
<td>CONV</td>
<td>SILICON-DIOXIDE</td>
<td>SI02</td>
</tr>
<tr>
<td>*EXTRACT</td>
<td>CONV</td>
<td>LINOLEIC-ACID</td>
<td>C18H32O2</td>
</tr>
<tr>
<td>*PROT</td>
<td>CONV</td>
<td>L-GLUTAMIC-Acid</td>
<td>C5H9NO4</td>
</tr>
<tr>
<td>*C3H6O</td>
<td>CONV</td>
<td>PROPIONIC-Acid</td>
<td>C3H6O2-1</td>
</tr>
<tr>
<td>*FURFURAL</td>
<td>CONV</td>
<td>FURFURAL</td>
<td>C5H4O2</td>
</tr>
<tr>
<td>ENZYMES</td>
<td>CONV</td>
<td>ZYMO</td>
<td>CHXOXNX</td>
</tr>
<tr>
<td>H2SO4</td>
<td>CONV</td>
<td>SULFURIC-Acid</td>
<td>H2SO4</td>
</tr>
<tr>
<td>CA(OH)2</td>
<td>CONV</td>
<td>CALCIUM-HYDROXIDE</td>
<td>CA(OH)2</td>
</tr>
<tr>
<td>*NON-VOL</td>
<td>CONV</td>
<td>OLEIC-Acid</td>
<td>C18H34O2</td>
</tr>
</tbody>
</table>

Table 3.2.2: Extended component list (* degradables)
Aspen Plus requires the *pure component parameters* DHFORM (standard free energy of formation of ideal gas at 298.15 K [J/kg mole]) and DGFORM (standard heat of formation of ideal gas at 298.15 K [J/kg mole]) for the components CALDI, RHODO, PROTEIN, LIGNIN, XYLOSE, and ARABINOS, which can be found in listing A.4.1 in lines 108 to 120. The *pure component parameters* PLXANT (extended Antoine vapor pressure parameters) for the components CALDI, RHODO, PROTEIN, LIGNIN, ARABINAN, XYLAN, and GALACTAN are also required for calculation. The adjusted parameters can be found in listing A.4.1 in lines 127 to 136. The *pure component parameter* CPIG (ideal gas heat capacity coefficients) of the component LIGNIN, in listing A.4.1 in Appendix A.4 in lines 122 to 125, has to be added to complete the required pure component input data. Parameters regarding to *binary interaction* (lines 138 to 229 in listing A.4.1) of the components, for instance the HENRY coefficients, need to be determined too. Aspen Plus provides a large collection of Henry’s law constants, which are generated automatically when the appropriate property methods are used [AspenTech, 2001a]. The following *property-sets* (provided by Aspen Plus), listed in table 3.2.3 were selected for further calculations in the developed model.

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD</td>
<td>chemical oxygen demand for a pure component</td>
<td>[-]</td>
</tr>
<tr>
<td>CODMX</td>
<td>chemical oxygen demand for a mixture</td>
<td>[-]</td>
</tr>
<tr>
<td>MASSFRC</td>
<td>mass fraction of carbon atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>MASSFRH</td>
<td>mass fraction of hydrogen atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>MASSFRN</td>
<td>mass fraction of nitrogen atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>MASSFRO</td>
<td>mass fraction of oxygen atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>MASSFRS</td>
<td>mass fraction of sulfur atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>MOLEFRC</td>
<td>mole fraction of carbon atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>MOLEFRH</td>
<td>mole fraction of hydrogen atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>MOLEFRN</td>
<td>mole fraction of nitrogen atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>MOLEFRO</td>
<td>mole fraction of oxygen atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>MOLEFRS</td>
<td>mole fraction of sulfur atoms</td>
<td>[-]</td>
</tr>
<tr>
<td>QVALNET</td>
<td>net heating value</td>
<td>[kJ/kg]</td>
</tr>
<tr>
<td>RELHUMID</td>
<td>relative humidity</td>
<td>[%]</td>
</tr>
</tbody>
</table>

Table 3.2.3: Included property-sets

3.3 Model development

A scheme of the compiled anaerobic digestion and biogas utilization model is depicted in figure 3.3.1 The model consists of two main hierarchies, first is the biogas generation hierarchy, second the biogas utilization hierarchy. When the input stream enters the model, the biogas generation is calculated in three ways, namely via COD (chemical oxygen demand), stoichiometric reactions, and Buswell’s equation. Further calculations of biogas utilization only follow the stoichiometric pathway. Three possible ways for utilization are considered, combined heat and power generation (CHP) via a gas engine, combustion at adiabatic conditions, and biogas upgrading (only minimum pretreatment of drying and desulphurization is implemented). After passing the gas engine, the output streams (heat, power, and flue gas) can further be used by integrating heat.
and power output into a specific process. In this way it can be assessed whether or not an integration of the biogas process (for heat recovery and power generation) into an existing process is beneficial (as shown in Wukovits et al., 2013). The simulation of the biogas combustion ends when the adiabatic flame temperature is calculated. The parameter adiabatic flame temperature offers the opportunity to compare this parameter with other biogas types. After the utilization steps, figure 3.3.1 shows the outcome at the exit of the biogas model. The remaining paths are residue streams as fermentation residues, water, separated sulphur, etc.

![Biogas Model Flowchart](image)

Figure 3.3.1: Hierarchies of the total flowsheet in Aspen Plus

3.4 Modeling of biogas formation

Literature provides some useful approaches for modeling biogas formation. As the aim of this thesis is to build a simple and flexible model, no chemical kinetics were included. Chemical kinetics would require informations concerning reactor design and dimension Pröll, 2013, Serrano, 2011, Gerber and Span, 2008, and Donoso-Bravo et al., 2011 give an overview of the latest models for anaerobic digestion. Most of them are very comprehensive, like ADM1 (anaerobic digestion model no.1) Batstone et al., 2002, Lidholm and Ossiansson, 2008, Kiely et al., 1997, or the model presented in Mather, 1986. The following sections present some fundamental and steady state approaches for biogas calculation.
Figure 3.3.2: BIOGAS hierarchy
One approach for calculating biogas generation is via COD (chemical oxygen demand), where it is possible to calculate the amount of methane, but not the composition of biogas. Buswell’s equation \[Buswell \text{ and } Müller, 1952\] allows to calculate the amount and composition of biogas, but only for an overall stream not considering the degradability of the components. Via stoichiometric reactions the amount and composition of the biogas, by definition of fractional conversion factors of different components, can be obtained. Fractional conversion factors for anaerobic biodegradation are listed in \[J. B. Healy and Young, 1979\] and \[Aden et al., 2002\]. Conversion data of the second study were implemented in the biogas model of \[Lassmann, 2012\]. Since 92 % of all biogas plants operate at mesophilic temperature conditions \[Deublein and Steinhauser, 2011\], the temperature of the biogas model is set to 35°C. Figure 3.3.2 illustrates the Aspen Plus model of the biogas hierarchy. The input stream \(B-01\) is tripled, thus streams \(B-B01\), \(B-S01\), and \(B-C01\) are identical with the global input stream \(01\). The model runs for both substrates, molasses and barley straw, whose exact compositions are listed in Appendix A.1. After that, each stream follows its calculation path described in detail below.

3.4.1 Chemical Oxygen Demand COD

Due to the fact, that the exact chemical composition of a feedstock is rarely known, the expected methane yield can be calculated via degradation of the COD of a substrate while biogas is formed \[Linke et al., 2006\] and \[Bischofsberger et al., 2009\]. Since COD calculation does not distinguish between degradable and non-degradable components, it has to be handled with particular caution. However, Aspen Plus provides a property set called \(CODMX\) (chemical oxygen demand of a mixture) which calculates the theoretical oxygen demand (kg \(O_2\)/kg feedstock; equal to the chemical oxygen demand) of a chemical substance \(C_xH_yCl_zN_aNa_bO_cP_dS_e\) or stream of molecular weight MW with a defined composition \[AspenTech, 2013\].

The mass flow of methane can be easily obtained from equation (3.4.1) based on COD, the mass flow of feedstock and a stoichiometric factor of 0.25 obtained from oxygen demand of chemical oxidation of methane (0.25 kg \(CH_4\) are oxidized by 1 kg \(O_2\) \[Wang et al., 2010\]). The calculator block of the COD based biogas model can be easily connected to any process stream to analyze its biogas potential.

\[
\text{mass flow}(CH_4) = 0.25 \cdot \text{mass flow(feedstock)} \cdot CODMX
\]
(3.4.1)

As mentioned before, in the Aspen Plus model for biogas production only degradable components are considered to be converted to methane. Therefore, a split unit \(B-C01\) is used to separate degradable (stream \(B-C02\)) from non-degradable components (stream \(B-C03\)). COD calculation is implemented with a FORTRAN code in calculator block COD. The methane calculation on basis of COD is situated in the \COD-HIERARCHY\ depicted in figure 3.4.1. The fact that the COD calculator block can calculate methane output at any point of the flowsheet is based on the prerequisite that the input stream (into COD
calculator) only contains degradable components. Otherways, methane calculation would be incorrect, as described earlier.

![Figure 3.4.1: COD hierarchy](image)

In Appendix A.4 lines 786 to 829 show variable definitions and lines 830 to 850 the FORTRAN code, which is also depicted in listing 3.4.1. In order to fulfill mass balance, all components have to be set to zero at the output (stream B-C04) of calculator block B-C02. Calculation of the CO2 flow (stream B-C05) is a fake stream which stands for all biogas components except CH4. It is splitted off from the methane flow (stream B-C06) and further not taken into account.

```
830  F O2BEDARF = CODMX*MASSFLOW
     F CH4 = O2BEDARF*0.25
835  F GLUCOSE = 0
     F SUCROSE = 0
     F HAC = 0
     F PECTINE = 0
     F PROTEIN = 0
     F XYLOSE = 0
840  F GALACTOS = 0
     F ARABINOS = 0
     F GLUCAN = 0
     F XYLAN = 0
     F ARABINAX = 0
845  F GALACTAN = 0
     F ASH = 0
     F LIGNIN = 0
     F WATER = 0
850  F CO2 = MASSFLOW - CH4
```

Listing 3.4.1: FORTRAN code of COD calculator block

In order to evaluate the developed model in chapter 4.1 the original FORTRAN code has therefore to be extended to include components listed in table 3.2.2 according to listing 3.4.2.
3.4.2 Buswell’s equation

If the chemical composition of a degradable steam is known, [Buswell and Müller, 1952] provide a formula for calculating methane and carbon dioxide yield with a uncertainty of about 5 %. The empirical equation 3.4.2 takes only carbon, hydrogen, and oxygen atoms into account.

\[
C_cH_hO_o + \left(c - \frac{h}{4} - \frac{o}{2} \right) H_2O \rightarrow \left(\frac{c}{2} - \frac{h}{8} + \frac{o}{4} \right) CO_2 + \left(\frac{c}{2} + \frac{h}{8} - \frac{o}{4} \right) CH_4
\] (3.4.2)

A more comprehensive approach based on Buswell’s equation was published by [Boyle, 1976] and can also be found in [Jördening and Winter, 2005]. This approach additionally includes nitrogen and sulphur atoms and will further be used for calculation.

\[
C_cH_hO_oN_nS_s + \left(c - \frac{h}{4} - \frac{o}{2} + \frac{3n}{4} + \frac{s}{2} \right) H_2O \rightarrow \left(\frac{c}{2} - \frac{h}{8} + \frac{o}{4} + \frac{3n}{4} + \frac{s}{4} \right) CO_2 \\
+ \left(\frac{c}{2} + \frac{h}{8} - \frac{o}{4} - \frac{3n}{8} - \frac{s}{4} \right) CH_4 + n \cdot NH_3 + s \cdot H_2S
\] (3.4.3)

[Weissbach, 2009] gives a review on stoichiometric gas production potentials of a multitude of compounds calculated according to Buswell’s equation, assuming total degradation. When dealing with 1 mole of a pure component - like for instance glucose - equation 3.4.3 is easy to handle, due to stoichiometric coefficients c, h, o, n, and s are defined and known. When dealing with more than 1 mole (mole flow in this models case), this is taken into account by multiplying the stoichiometric coefficients with the mole flow. Since the input stream is a combination of pure components, an overall pseudo-component can be formed. The difficulty is to create pseudo stoichiometric coefficients. Therefore a complex calculation, considering the mole flows and the stoichiometric coefficients of the individual components, has to be performed. These calculations are implemented with a FORTRAN code in a calculator block BUSWELL. In Appendix A.4 lines 644 to 730 show variable definitions and lines 731 to 778 the FORTRAN code, which is also pictured in listing 3.4.3.
CALCULATION OF THE COEFFICIENT FOR CHEMICAL FORMULA OUT

\[F \]

CALCULATION OF THE EMPIRICAL FORMULA

\[F \]

\[XXC = 5*GLU + 12*SUC + 2*HA + 6*PEC + PRO + 5*XYL + 6*GAL + 5*ARA + 6*GLN \]

\[FXC = (XXC + 5*XYN + 6*GAN + 5*ARN)*0.95 \]

\[XXH = 10*GLU + 22*SUC + 4*HA + 10*PEC + 1.57*PRO + 10*XYL \]

\[FXH = XXH + 12*GAL + 10*ARA + 10*GLN + 8*XYN + 10*GAN + 8*ARN \]

\[XXO = 5*GLU + 11*SUC + 2*HA + 5*PEC + 0.31*PRO + 5*XYL + 6*GAL \]

\[FXO = XXO + 5*ARA + 5*GLN + 4*XYN + 5*GAN + 4*ARN \]

\[XN = 0.29*PRO \]

\[XS = 0.007*PRO \]

\[F \]

MOLE = XC+XH+XO+XN+XS

FACTOR = MOLE/(GLU+SUC+HA+PEC+PRO+XYL+ARA+GLN+XYN+GAN+ARN)

CALCULATION OF MOLE FLOWS OF THE BIOGAS

\[F \]

\[CMOL = MOLEFRC*MOLEFLOW*FACTOR \]

\[HMOL = MOLEFRH*MOLEFLOW*FACTOR \]

\[OMOL = MOLEFRO*MOLEFLOW*FACTOR \]

\[NMOL = MOLEFRN*MOLEFLOW*FACTOR \]

\[SMOL = MOLEFRS*MOLEFLOW*FACTOR \]

MASS BALANCE

\[F \]

\[GLUCOSE = 0 \]

\[SUCROSE = 0 \]

\[HAC = 0 \]

\[PECTINE = 0 \]

\[PROTEIN = 0 \]

\[XYLOSE = 0 \]

\[GALACTOS = 0 \]

\[ARABINDS = 0 \]

\[GLUCAN = 0 \]

\[XYLXAN = 0 \]

\[ARABINAN = 0 \]

\[GALACTAN = 0 \]

\[H2O = MASSFLOW -(CO2*MWCO2 -(CH4*MWCH4 -(NH3*MNH3 -(H2S*MH2S)))) \]

FORMATION OF BIOMASS

\[F \]

\[CALDI = CALDIMOL*1.05 \]

\[RHODO = RHODOMOL*1.05 \]

Listing 3.4.3: FORTRAN code of BUSWELL calculator block

In listing 3.4.3 lines 733, 735, 737, 738, and 739 relate stoichiometric coefficients with the mole flows of the pure components. Line 741 summarizes all moles and line 742 devides this moles by the sum of all moleflows, by forming the so-called FACTOR. In order to finally create the pseudo stoichiometric coefficients (CMOL, HMOL, OMOL, NMOL, and SMOL in lines 746 to 750), this FACTOR has to be multiplied with the mole fractions of the individual atoms and the mole flow of the dry stream of degradable components (stream B-B03).

In order to evaluate the developed model in chapter 4.1, the original FORTRAN code has therefore to be extended to include components listed in table 3.2.2 according to listing 3.4.4.

33
C CALCULATION OF THE COEFFICIENT FOR CHEMICAL FORMULA OUT
C OF EMPIRICAL FORMULA
765 F XXXC = 5*GLU +12*SUC +2*HA +6*PEC +PRO +5*XYL +6*GAL +5*ARA +6*GLN
770 F X = (XXXC +5*XYN +6*GAL +5*GGA +5*ARN)*0.95
775 F X = XXXH +12*GAL +10*ARA +10*GLN +8*XYN +10*GGA +8*ARN
780 F X = XXXO + ETO +2*FUR +3*GOL +4*GRC +5*DXY +6*DEX +2*EXT +4*PRO +3*PRO
785 F X = 0.29*PRO + POT
790 F MOLE = XC+XH+XO+XN+XS
795 F SUM1 = GLU + SUC + HA + PEC + PRO + XYL + GAL + ARA + GLN + XYN + GAN + ARN
800 F SUM = SUM1 + ETO + FUR + GOL + GRC + DXY + DEX + EXT + POT + C3H
805 F FACTOR = MOLE / SUM
810 F C CALCULATION OF MOLEFLOWS OF THE BIOGAS
815 F CMOL = MOLEFRC*MOLEFLOW*FACTOR
820 F HMOL = MOLEFRH*MOLEFLOW*FACTOR
825 F OMOL = MOLEFRO*MOLEFLOW*FACTOR
830 F NMOL = MOLEFRN*MOLEFLOW*FACTOR
835 F SMOL = MOLEFRS*MOLEFLOW*FACTOR
840 F C MASS BALANCE
845 F GLUCOSE = 0
850 F SUCROSE = 0
855 F HAC = 0
860 F PECTINE = 0
865 F PROTEIN = 0
870 F XYLOSE = 0
875 F GALACTOS = 0
880 F ARABINOS = 0
885 F GLUCAN = 0
890 F XYLAN = 0
895 F ARABINAN = 0
900 F GALACTAN = 0
905 F ETOR = 0
910 F FURFURAL = 0
915 F GLYCEROL = 0
920 F GLUTARIC = 0
925 F DXYLOSE = 0
930 F DEXTROSE = 0
935 F EXTRACT = 0
940 F PROT = 0
945 F C3H6O = 0
950 F H2O = MASSFLOW -(CO2 * MWCO2) -(CH4 * MWCH4) -(NH3 * MWNH3) -(H2S * MWH2S)
955 F C FORMATION OF BIOMASS
960 F CALDI = CALDIMOL * 1.05
965 F RHODO = RHODOMOL * 1.05

Listing 3.4.4: Additional definitions and FORTRAN code of adapted BUSWELL calculator block
After creating this pseudo stoichiometric coefficients, calculation of amount and composition of the biogas according to equation 3.4.3 can be performed. In order to fulfill mass balance, all components have to be set to zero at the output (stream B-B07) of calculator block B-B04. Calculator block B-B04 includes in line 733, 775, and 776 carbon conversion of anaerobic digestion. According to Jördening and Winter, 2005, 1 unit of substrate carbon is used to form 0.95 units of CH₄ and CO₂. Only 0.05 units of substrate carbon is converted to biomass. Section 2.7 describes this occurrence in detail. The calculation of biogas includes, as told before, mole fractions of the individual atoms which are considered in equation 3.4.3. The mole fractions are provided by the property sets called MOLEFRC, MOLEFRH, MOLEFRO, MOLEFRN, and MOLEFRS. In order to calculate these mole fractions properly, all non-degradable components inclusive water have to be splitted off in block B-B01. The mole fractions refer to stream B-B04. Since Buswell’s equation involves water for biogas formation, component H₂O is conducted back after the mole fraction calculation via block B-B02. After bringing together all streams in block B-B05, the biogas is separated from the liquid residues by a flash-unit (block B-B06) which operates at 10 °C, separating biogas from residues. The buswell model pathway is depicted in figure 3.3.2.

3.4.3 Stoichiometric reactions

Calculating the amount and composition of biogas via stoichiometric reactions is represented by degradation reactions for each component of the feedstock. The chemical reactions of the stoichiometric model are based on Buswell’s equation 3.4.3. There is also the option of implementing stoichiometric reactions from literature like Deublein and Steinhauser, 2011, Gavala et al., 2003, and Aden et al., 2002 (as was the case in Lassmann 2012). Fractional conversion factors for each component can be defined, considering input from experiments or literature. In order to keep the model simple, no fractional conversion factors are implemented in this model. Aden et al., 2002 provides comprehensive data according to reactions and fractional conversions in fermentation. Based on the reactions defined in table 3.4.1, it is possible to calculate the amount and composition of a biogas stream.

<table>
<thead>
<tr>
<th>Rxn #</th>
<th>Stoichiometry</th>
<th>fractional conversion of component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GLUCOSE → 3 CO₂ + 3 CH₄</td>
<td>1 GLUCOSE</td>
</tr>
<tr>
<td>2</td>
<td>SUCROSE + H₂O → 6 CO₂ + 6 CH₄</td>
<td>1 SUCROSE</td>
</tr>
<tr>
<td>3</td>
<td>HAC → CO₂ + CH₄</td>
<td>1 HAC</td>
</tr>
<tr>
<td>4</td>
<td>PECTINE + H₂O → 3 CO₂ + 3 CH₄</td>
<td>1 PECTINE</td>
</tr>
<tr>
<td>5</td>
<td>PROTEIN + 0.6735 H₂O → 0.4918 CO₂ + 0.5083 CH₄ + 0.29 NH₃ + 0.007 H₂S</td>
<td>1 PROTEIN</td>
</tr>
<tr>
<td>6</td>
<td>XYLOSE → 2.5 CO₂ + 2.5 CH₄</td>
<td>1 XYLOSE</td>
</tr>
<tr>
<td>7</td>
<td>GALACTOS → 3 CO₂ + 3 CH₄</td>
<td>1 GALACTOS</td>
</tr>
<tr>
<td>8</td>
<td>ARABINOS → 2.5 CO₂ + 2.5 CH₄</td>
<td>1 ARABINOS</td>
</tr>
<tr>
<td>9</td>
<td>GLUCAN + H₂O → 3 CO₂ + 3 CH₄</td>
<td>1 GLUCAN</td>
</tr>
<tr>
<td>10</td>
<td>XYLAN + H₂O → 2.5 CO₂ + 2.5 CH₄</td>
<td>1 XYLAN</td>
</tr>
<tr>
<td>11</td>
<td>GALACTAN + H₂O → 3 CO₂ + 3 CH₄</td>
<td>1 GALACTAN</td>
</tr>
<tr>
<td>12</td>
<td>ARABINAN + H₂O → 2.5 CO₂ + 2.5 CH₄</td>
<td>1 ARABINAN</td>
</tr>
</tbody>
</table>

Table 3.4.1: Stoichiometric reactions included in block B-S01

35
In order to evaluate the developed model in chapter 4.1, the original stoichiometric reactions have therefore to be extended to include components listed in table 3.2.2 according to table 3.4.2.

<table>
<thead>
<tr>
<th>Rxn #</th>
<th>Stoichiometry</th>
<th>fractional conversion</th>
<th>of component</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>ETHANOL → 5 CO₂ + 1.5 CH₄</td>
<td>0.9</td>
<td>ETHANOL</td>
</tr>
<tr>
<td>14</td>
<td>FURFURAL + 3 H₂O → 2.5 CO₂ + 2.5 CH₄</td>
<td>0.9</td>
<td>FURFURAL</td>
</tr>
<tr>
<td>15</td>
<td>GLYCEROL → 1.25 CO₂ + 0.5 H₂O + 1.75 CH₄</td>
<td>0.9</td>
<td>GLYCEROL</td>
</tr>
<tr>
<td>16</td>
<td>GLUTARIC + H₂O → 2.5 CO₂ + 2.5 CH₄</td>
<td>0.5</td>
<td>GLUTARIC</td>
</tr>
<tr>
<td>17</td>
<td>DXYLOSE → 2.5 CO₂ + 2.5 CH₄</td>
<td>0.9</td>
<td>DXYLOSE</td>
</tr>
<tr>
<td>18</td>
<td>DEXTROSE → 3 CO₂ + 3 CH₄</td>
<td>1</td>
<td>DEXTROSE</td>
</tr>
<tr>
<td>19</td>
<td>EXTRAKT + 9 H₂O → 5.5 CO₂ + 12.5 CH₄</td>
<td>0.5</td>
<td>EXTRACT</td>
</tr>
<tr>
<td>20</td>
<td>PROT + 1.5 H₂O → 2.75 CO₂ + 2.25 CH₄</td>
<td>0.9</td>
<td>PROT</td>
</tr>
<tr>
<td>21</td>
<td>C3H₆O + 0.5 H₂O → 1.25 CO₂ + 1.75 CH₄</td>
<td>1</td>
<td>C3H₆O</td>
</tr>
</tbody>
</table>

Table 3.4.2: Additional stoichiometric reactions

This pathway for calculating biogas is very simple, because no non-degradable components have to be splitted off. However, the reaction has to be defined for each degradable component. The input stream B-S01 enters the stoichiometric reactor block B-S01 (represented by RStoic unit operation model supplied by Aspen Plus). After reacting to biogas according to table 3.4.1, biogas and fermentation residue enter a flash unit (block B-S02) which operates at 10 °C, separating biogas from liquid fractions. Stream B-S03 has been selected for further calculations in hierarchy UTILIZATION. The stoichiometric model pathway is depicted in figure 3.3.2.

3.5 Modeling of biogas utilization

For the purpose of biogas utilization three paths are included into the biogas utilization model, namely biogas combustion forming hot flue gas, combined heat and power generation by means of a gas engine, and a third path which could further be used for biogas upgrading. Figure 3.5.1 pictures the biogas utilization hierarchy. The cogeneration calculation route (gas engine) ends with the output streams of heat, power, and flue gas. These streams can further be used by integrating heat and power output into a specific process. In this way it can be assessed whether or not an integration of the biogas process (for heat recovery and power generation) into an existing process is beneficial (as shown in Wukovits et al., 2013). The simulation of combustion ends when the adiabatic flame temperature is calculated. The parameter adiabatic flame temperature offers the opportunity to compare this parameter with other biogas types.

Stream 04 turns into U-01 by entering the UTILIZE hierarchy. The biogas has to be at least drained, cooled, dried and cleared from the content of H₂S before utilization Holm-Nielsen et al., 2009, because sulfur would harm the engine. At a first step H₂S is removed via a split unit U-01 (modeled by a separator unit in Aspen Plus). A realistic desulfurization process is not implemented into this model. In a next step in block U-03 a flash model is implemented (at temperature level of 10 °C) to adjust an appropriate dew point. After that pretreatment of the biogas, the stream U-07 is multiplied in order to calculate the two
possible pathways. For both utilization routes, combustion and cogeneration an air stream is required. The combustion air in this model is consisting of 79 mole % N\textsubscript{2} and 21 mole % O\textsubscript{2}, whereby N\textsubscript{2} is treated as inert. Gaseous fuels burn at near stoichiometric conditions, therefore a low excess air is required. According to [Lehmann, 2000] an excess air ratio \(\lambda \) of 1.1 is common and sufficient. Since mole flow of the combustion air is built upon the input of biogas, calculation is implemented with a FORTRAN code in the calculator block AIR based on reactions listed in table 3.5.1.

\[
\begin{align*}
1 \text{ CH}_4 + 2 \text{ O}_2 & \rightarrow 1 \text{ CO}_2 + 2 \text{ H}_2\text{O} \\
1 \text{ NH}_3 + 1.75 \text{ O}_2 & \rightarrow 1 \text{ NO}_2 + 1.5 \text{ H}_2\text{O} \\
1 \text{ H}_2\text{S} + 1.5 \text{ O}_2 & \rightarrow 1 \text{ SO}_2 + 1 \text{ H}_2\text{O}
\end{align*}
\]

Table 3.5.1: Oxidation reactions implemented in calculator block AIR

Appendix A.4, lines 619 to 630 show variable definitions and lines 631 to 640 the FORTRAN code, which is also pictured in listing 3.5.1. Line 628 indicates the implementation of reactions in table 3.5.1 and lines 633 and 634 the calculation of O\textsubscript{2} and N\textsubscript{2} flow forming the stream of combustion air.

\[
\begin{align*}
F\ O_2 &= (CH_4\text{FLOW}*2+NH_3\text{FLOW}*1.75+H_2S\text{FLOW}*1.5) \\
F\ N_2 &= O_2*(0.79/0.21) \\
F\ O_2\text{FLOW} &= O_2*1.1 \\
F\ N_2\text{FLOW} &= N_2*1.1
\end{align*}
\]

Listing 3.5.1: FORTRAN code of AIR calculator block

Combustion air also includes water in form of vapor water expressed by relative humidity. In order to meet realistic conditions, the relative humidity is set to 30 % via design specification RELHUM presented in listing 3.5.2. 30 % relative humidity corresponds to standard reference conditions [Jenbacher, 2006]. Listing 3.5.2 is an extract from the input summary in Appendix A.4 lines 608 to 608.

```
DESIGN - SPEC RELHUM
DEFINE RELHUM STREAM = PROP STREAM = "UTILIZE.U - 04" &
PROPERTY = RELHUM
SPEC "RELHUM" TO "30"
TOL - SPEC "0.3"
VARY STREAM - VAR STREAM = "UTILIZE.U - 03" SUBSTREAM = MIXED &
VARIABLE = MASS - FLOW
LIMITS "0.000000001" "1"
```

Listing 3.5.2: Design specification - RELHUM
Figure 3.5.1: UTILIZE hierarchy
3.5.1 Combustion

In order to calculate the combustion process of biogas, two possible unit operation models are available. Since Aspen Plus provides two options for simulating combustion, both were used. Unit operation model R_{Gibbs} calculates the combustion processes by minimizing the total Gibbs free energy, which proceeds without determining stoichiometric reactions. This method was used in [Khoshnoodi, 1995] and will also be used in section 3.5.2 for modeling cogeneration. Aspen Plus also provides the unit operation model R_{Stoic} including the setup-sheet combustion to be used for calculating combustion reactions [AspenTech, 2001d]. Aspen Plus recommends this method in [AspenTech, 2010] for modeling volatile combustion, and also in the work of [Ahrens and Weiland, 2007] R_{Stoic} unit operation model was selected to simulate a volatile combustion process. Hence, it is further used to model the combustion process at adiabatic conditions in order to calculate the adiabatic flame temperature. This approach also has no need to specify stoichiometry for chemical reactions, since combustion routines are generated automatically. Advantages and disadvantages of both unit operation models (R_{Gibbs} and R_{Stoic}) regarding applicability for this particular work are discussed in chapter 4.

Figure 3.5.1 pictures the combustion pathway in the biogas utilization hierarchy. The combustion air (stream $U-C01$) and the pretreated biogas (stream $U-C02$) enter the combustion unit $U-C01$ where the combustion takes place. N_2 stemming from combustion air is treated as inert, but nitrogen stemming from biogas (in form of NH_3) is oxidized to NO_2. The calculation of combustion takes place at adiabatic conditions, since no heat is supplied or discharged.

3.5.2 Cogeneration - gas engine

A gas engine is an internal combustion engine and works on the principle of the Otto Cycle. The process is described by the cyclic steps pictured in the temperature - entropy diagram 3.5.2 and also represented in the Aspen model in figure 3.5.1.

An ideal Otto cycle starts at point 1 in figure 3.5.2 where the cylinder is filled up with a combustible mixture at ambient conditions. The mixture is compressed along an isentropic line reaching point 2. By electric ignition the pressure increases until reaching point 3. This combustion process happens very rapidly, whereby it can be treated as an isochoric process. In order to simplify the system, it is assumed that the properties of the gas are not changing and the heat created by combustion stems from an external source. At point 3 the gas expands along an isentropic line until reaching point 4, from where the heat exchange at isochoric conditions takes place until reaching point 1 [Mollenhauer and Tschöke, 2005].
Figure 3.5.2: Temperature - entropy diagram of an idealized Otto-process

Process (1 - 2) in figure 3.5.2 is represented in the Aspen Plus model by a compressor/turbine unit operation model in compressor mode (block U-GE02), whereby the specifications are simply initial values. Block U-GE03 represents the combustion process (2 - 3), which is consisting of a RGibbs reactor unit operation model supplied by Aspen Plus. RGibbs minimizes Gibbs free energy, depending on atom balance constraints. Since this model does not require reaction stoichiometry, RGibbs can determine phase equilibrium without chemical reaction [AspenTech, 2001a]. Reactor block U-GE03 considers all components (defined in components - specifications) as products, which is set in product - specification section of a RGibbs reactor. Process (3 - 4) appears in the Aspen Plus model as compressor/turbine unit operation model in turbine mode (block U-GE04). The specifications are, as in block U-GE02, initial values. The input data are required but are however irrelevant for the process. Heat exchange is described by process (4 - 1), represented by stream U-GE07. Heat exchange is calculated via calculator block ENGINE, same with units compressor U-GE02 and turbine U-GE04.

In order to obtain power and heat output of the gas engine, mean values of the efficiency data provided in table A.2 (electric and thermic efficiency), supplied by [Jenbacher and IWK, 2007], were calculated. This data connect energy input data of biogas with heat/power output data of the gas engine, which were implemented in calculator block ENGINE. Appendix A.4 lines 856 to 865 show variable definitions and lines 866 to 880 the FORTRAN code of ENGINE calculator block, which is also pictured in listing 3.5.3. Line 881 sets the temperature of the output stream U-GE09 of the combustion unit to the minimum of 180 °C, which is required due to acid dew point of biogas [Jenbacher, 2006].
Mittelwert von elektrischem und thermischen Wirkungsgrad über Leistungsbereiche von 249 - 2425 kW_el:

\[\eta_{\text{el}} = 40.35\% \]
\[\eta_{\text{th}} = 43.85\% \]

aus IWK&Jenhacher Datenblatt für Gasmotoren BHKW Module für Biogas

\[\eta_{\text{EL}} = 0.4035 \]
\[\eta_{\text{TH}} = 0.4385 \]

\[\text{BE} = HU \times \text{MASSFLOW} \times 1000 \]
\[\text{CHPWORK} = \eta_{\text{EL}} \times \text{BE} \]
\[\text{CHPHEAT} = \eta_{\text{TH}} \times \text{BE} \]
\[\text{CHPFLUE} = 453.15 \]

Listing 3.5.3: FORTRAN code of ENGINE calculator block

The biogas generation and utilization model includes features which are listed in table 3.5.2. Since Aspen Plus requires chemical component specifications, all three biogas generation routes have chemical composition as input requirement. Buswell and COD calculation path additionally require information about whether a component is degradable or not. Since stoichiometric reactions have to be defined in stoichiometric reactions calculation route, degradability information is integrated in this route indirectly. Conversion factors of carbon/components may be integrated in Buswell/stoichiometric reactions calculation route, but are not obliged. Utilization output data are accessible for stoichiometric reactions calculation route only, since solely this route is connected to utilization hierarchy.

<table>
<thead>
<tr>
<th></th>
<th>STOIC.</th>
<th>COD</th>
<th>BUSWELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>substrate chemical composition</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>component degradability information</td>
<td>(x)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>carbon conversion factors</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>component conversion factors</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>biogas flow rate/composition</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>methane flow rate/composition</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>heat/power output</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flue gas composition/temperature</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.5.2: Biogas model features
Chapter 4

Model evaluation and results

4.1 Model evaluation

Three different strategies for model evaluation are selected. On the one hand, two individual models (the model presented in this work and a model from literature) are applied to the same data set. This method provides a quantitative tool for model evaluation with respect to biogas results (see section 4.1.1). On the other hand, various feedstocks at various component concentrations are applied to this model in order to sense potential limits for biogas calculation. Since the first two strategies don’t include the evaluation of the model of biogas utilization, the third one compares the model results of the utilization hierarchy with literature data.

4.1.1 Validation modeling approach of biogas model

In order to analyse the plausibility of the developed model, data of [Lassmann, 2012] were used to compare biogas yield and composition. [Lassmann, 2012] developed a model for anaerobic digestion which is based on stoichiometric reactions and includes fractional conversion factors according to [Barta et al., 2010] listed in table A.3.3. The model splits the anaerobic digestion process into fermentation and methanogenesis. In the block fermentation the steps hydrolysis, acidogenesis, and acetogenesis are included. In this step intermediate products as propionic acid, acidic acid and hydrogen are formed, in the methanogenesis step only methane and carbon dioxide are taken into account as reaction products. Table A.3.2 shows the input data used for the calculation, which is a residual stream of an ethanol production process from lignocellulosic residues, such as wheat straw.

Since an extended component list affects biogas calculation, several additional settings have to be determined. They thermodynamic adjustments are summarized in listing A.3.1. After adapting each individual split-unit to the new component list, the new components need to be included in calculator blocks COD and BUSWELL and in the stoichiometric calculations (in form of additional stoichiometric reactions listed in table 3.4.2). The adjustments result in a comparability of the model described in [Lassmann, 2012] (hereinafter referred to as model B) and the model presented in present work (hereinafter referred to as model A). Two runs were performed, one without taking the fractional conversion factors into account, which means all
fractional conversion factors equal 1, and one where they were included. Table 4.1.1 compares biogas yield and composition of model A and B by applying the same data set, with and without considering fractional conversion factors according to A.3.3. Therefore fractional conversion factors are only taken into account in the stoichiometric calculation path, (see CASE B respectively CASE G), because individual fractional conversion factors can only be implemented in stoichiometric reactors (R_{Soic}) in Aspen Plus software. No biogas composition is listed in CASE E, since COD calculation path only calculates CH$_4$ flow rates (see CASE J).

<table>
<thead>
<tr>
<th>model</th>
<th>fractional conversion</th>
<th>CH$_4$</th>
<th>CO$_2$</th>
<th>H$_2$S</th>
<th>NH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>model B</td>
<td>acc. table 2</td>
<td>0.53</td>
<td>0.45</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>model A</td>
<td>acc. table 2</td>
<td>0.54</td>
<td>0.46</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>model A 1</td>
<td>(Stoichiometric)</td>
<td>0.56</td>
<td>0.43</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>model A 1</td>
<td>(Buswell)</td>
<td>0.57</td>
<td>0.41</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>model A 1</td>
<td>(COD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>model</th>
<th>fractional conversion</th>
<th>CH$_4$</th>
<th>CO$_2$</th>
<th>H$_2$S</th>
<th>NH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>model B</td>
<td>acc. table 2</td>
<td>7100.86</td>
<td>16640.30</td>
<td>0.00</td>
<td>300.50</td>
</tr>
<tr>
<td>model A</td>
<td>acc. table 2</td>
<td>7099.20</td>
<td>16642.80</td>
<td>0.00</td>
<td>302.40</td>
</tr>
<tr>
<td>model A 1</td>
<td>(Stoichiometric)</td>
<td>9698.21</td>
<td>20122.10</td>
<td>0.00</td>
<td>305.74</td>
</tr>
<tr>
<td>model A 1</td>
<td>(Buswell)</td>
<td>9705.60</td>
<td>20098.80</td>
<td>0.00</td>
<td>324.00</td>
</tr>
<tr>
<td>model A 1</td>
<td>(COD)</td>
<td>9702.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4.1.1: Maximum biogas flow rate and composition of model A and B (dry basis)

Results from model evaluation based on comparison with Lassmann 2012 (table 4.1.1) show that different models (A and B) used for determining biogas composition and maximum biogas flow rate are in a good agreement with each other. Both models give comparable results for the same feedstock. Biogas flowrate obtained from model A (CASE G) and B (CASE F) are in good agreement for all biogas components. Model B is built up as a detailed two stage process which includes stoichiometric reactions and degradation of intermediate products as propionic acid, acidic acid, and hydrogen. Although biogas composition slightly varies depending on yields of individual biogas components, composition is situated in an average range according to table 2.3.3. However, attention is focused on methane, with regards to heat and power generation. The biogas model presented in this work provides comparable results in terms of methane yield and composition. Differences in results of model A and B stem from diverse stoichiometric reactions, whereby such good match in methane yields was unexpected. Since the degree of the correspondence between the results of model A and already evaluated model B is satisfying, it is assumed that present model describes the real process in a sufficient way. Since Lassmann 2012 does not provide any model for heat and power generation, only biogas generation model can be evaluated with this data set.
4.1.2 Identification of biogas model limits

[Foglia et al., 2011] provides data of a two-step fermentation process in order to produce biohydrogen from various biomass feedstock, which consist of four main steps: pretreatment (PTR), thermophilic fermentation (TH-FERM), photoheterotrophic fermentation (PH-FERM), and gas upgrading (GAS-UPG) as depicted in figure 4.1.1.

Figure 4.1.1: Scheme of biohydrogen process

Residual streams of this biohydrogen process are used to evaluate the model by applying differing feedstocks and component concentrations. Table A.3.4 summarizes the obtained residues from the biohydrogen process based on feedstock barley straw, potato steam peels (PSP), and thick juice, which each consist of streams SOLID, TH-CELL, PH-CELL, and TOT-OUT. The biohydrogen process is designed to produce 2 MW thermal power (in form of biohydrogen), by an energy input of 0.92 MW for barley straw and PSP and 0.74 MW for thick juice [Foglia et al., 2011]. In a first step the residues of this biohydrogen process are applied to present biogas generation and utilization model in order to sense potential calculation limits. After that, the present model is used to calculate whether or not the heat and power demand of the biohydrogen process can be covered by utilization of produced biogas.

The original component list has therefore be extendend to include additional components listed in table 3.2.2. Since an extended component list affects biogas calculation, some additional settings have to be determined. The thermodynamic settings when applying data from [Foglia et al., 2011] are equal to the changes when applying data from [Lassmann, 2012], which are summarized in listing A.3.1. Furthermore, each individual split-unit has to be adapted to the new component list. Finally, the new components need to be included to the calculator blocks COD and BUSWELL, what is exemplarily implemented in listing 3.4.2 and 3.4.4. Also stoichiometric reactions have to be extended according to table A.3.5.
<table>
<thead>
<tr>
<th></th>
<th>P S P</th>
<th>B A R L E Y</th>
<th>S T R A W</th>
<th>T H I C K</th>
<th>J U I C E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas Flow Rate [kg/hr]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_4$</td>
<td>384</td>
<td>221</td>
<td>5</td>
<td>33</td>
<td>0.00</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>102</td>
<td>0.00</td>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P S P</th>
<th>B A R L E Y</th>
<th>S T R A W</th>
<th>T H I C K</th>
<th>J U I C E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas Flow Rate [m3/hr]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_4$</td>
<td>326</td>
<td>188</td>
<td>4</td>
<td>29</td>
<td>0.00</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>94</td>
<td>0.00</td>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>0.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P S P</th>
<th>B A R L E Y</th>
<th>S T R A W</th>
<th>T H I C K</th>
<th>J U I C E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Biogas Flow Rate [m3/hr]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas</td>
<td>239</td>
<td>6</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P S P</th>
<th>B A R L E Y</th>
<th>S T R A W</th>
<th>T H I C K</th>
<th>J U I C E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas Yield [m3/kg ODM]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas</td>
<td>0.15</td>
<td>0.002</td>
<td>0.005</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 4.1.2: Model limits - Biogas flow rates and compositions (dry basis) (* calculated manually)

<table>
<thead>
<tr>
<th></th>
<th>P S P</th>
<th>B A R L E Y</th>
<th>S T R A W</th>
<th>T H I C K</th>
<th>J U I C E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas Flow Rate [kg/hr]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_4$</td>
<td>384</td>
<td>221</td>
<td>5</td>
<td>33</td>
<td>0.00</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>102</td>
<td>0.00</td>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P S P</th>
<th>B A R L E Y</th>
<th>S T R A W</th>
<th>T H I C K</th>
<th>J U I C E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas Flow Rate [m3/hr]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_4$</td>
<td>326</td>
<td>188</td>
<td>4</td>
<td>29</td>
<td>0.00</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>94</td>
<td>0.00</td>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>0.1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P S P</th>
<th>B A R L E Y</th>
<th>S T R A W</th>
<th>T H I C K</th>
<th>J U I C E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Biogas Flow Rate [m3/hr]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas</td>
<td>627</td>
<td>656</td>
<td>103</td>
<td>106</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P S P</th>
<th>B A R L E Y</th>
<th>S T R A W</th>
<th>T H I C K</th>
<th>J U I C E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas Yield [m3/kg ODM]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biogas</td>
<td>0.77</td>
<td>0.52</td>
<td>0.46</td>
<td>0.47</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 4.1.3: Model limits - Maximum biogas flow rates and compositions (dry basis) (* calculated manually)
Table 4.1.2 represents the results of the performed calculations when applying the three feedstocks potato steam peals, barley straw, and thick juice in sense of biogas flow rate, composition (dry basis), and yields. Since simulation software Aspen Plus has difficulties in dealing with density calculations, volume flow rate calculations were avoided during simulation. Results including volume flow rates were performed manually via recalculation of mass flow rates (calculated by Aspen Plus) by applying density data from literature (see A.3.1). Average biogas density data at standard conditions are provided by Deublein and Steinhauser 2011, Jensen and Jensen 2000, and FNR 2006. Volume flow rates in tables 4.1.2 and 4.1.3 are marked (*), since they are calculated manually. The biogas density lies in the area of 1.16 - 1.20 kg/m3. The maximum biogas flow rates and relating compositions (dry basis) are summarized in table 4.1.3. Therefore calculation is interrupted before flash separation B-B06 and B-S02 of vapor/liquid mixture in Buswell and Stoichimetric calculation path pictured in figure 3.3.2. Since COD calculation path only calculates a methane flow rate, no flash unit is required and COD’s methane flow rate in table 4.1.2 represents already maximum achievable flow rate. Compared to the maximum biogas flow rate, the actual biogas flow rate is reduced by the amount of biogas which is absorbed due to vapor-liquid equilibrium. In the case where substrate is extensively diluted, vapor-liquid equilibrium has a strong influence. That’s why maximum biogas flow rate is calculated. For a comparison with literature data in 4.2 the maximum biogas flow rate has to be used, since literature does not consider strong diluted substrates.

As it can be seen, biogas compositions obtained from the different calculation routes are in good agreement with each other. In all cases almost equimolar amounts of CH$_4$ and CO$_2$ are obtained. Compared to the other feedstock options PSP shows a considerable high NH$_3$ content. No H$_2$S formation is observed. However, mole fractions of CH$_4$ are relatively low, especially when compared to barley straw in table 4.2.1. Since applied feedstock represents a mixture of residual streams of the originally feedstock, a comparison with literature data makes no sense.

The model evaluation applying data from Foglia et al. 2011 is supposed to sense potential calculation limits of the described biogas model. As can be seen in table 4.1.2 the dilution rate of feedstock thick juice is too high in order to obtain any vapor fraction after the flash unit. Also the other feedstocks obtain only fractional amounts of the maximum achievable flow rates listied in table 4.1.3. It is shown that the flash unit marks a limit of this biogas model. The solubility of the product gas components CO$_2$, H$_2$S, or NH$_3$ are significantly higher than solubility of CH$_4$, which effects the enrichment of methane in vapor phase Antranikian et al. 2006. According to Ahrens and Weiland 2007 methane solubility in water at atmospheric pressure and 10°C amounts 0.04 L$_N$ CH$_4$/kg H$_2$O, which is equivalent to about 3E-5 kg CH$_4$/kg H$_2$O. Carbon dioxide solubility is listed at 1.16 L$_N$ CO$_2$/kg H$_2$O, amounting approximately 2.3E-3 kg CO$_2$/kg H$_2$O. This data are approved by NIST 2013. Apart from flash separation, no other limit of presented model was detected so far.
In the work of [Wukovits et al., 2013], the utilization of process residual streams of the biohydrogen process, published in [Foglia et al., 2011], were investigated in order to cover the heat demand of the overall process via heat and power generation out of biogas. The analyses showed that residuals from barley straw and PSP seem to be promising in terms of producing additional heat from biogas and its integration with a total process. For the process with thick juice, the heat output is not sufficient to cover the total heat input in the process and additional solutions should be investigated.

4.1.3 Validation of utilization model

Since efficiency data of the simulation were set according to literature data (see [Jenbacher and IWK, 2007]), the adiabatic flame temperature, the heating value, and the flue gas composition were the only factors to consider when comparing the model to literature data. Table 4.1.4 compares utilization hierarchy results presented in [Table 4.2.2] with literature data according to [Khoshnoodi, 1995] (a) and [Gaydon and Wolfhard, 1979] (b) in order to evaluate the biogas utilization hierarchy of the present model. Adiabatic flame temperature of a CH₄/air mixture is calculated at a stoichiometric ratio [Khoshnoodi, 1995].

<table>
<thead>
<tr>
<th></th>
<th>SIMULATION</th>
<th>LITERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>molasses</td>
<td>barley straw</td>
</tr>
<tr>
<td>adiabatic flame temp. [K]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>biogas/air</td>
<td>1953 - 2014</td>
<td>2028 - 2084</td>
</tr>
<tr>
<td>CH₄/air</td>
<td>2224</td>
<td>2224</td>
</tr>
<tr>
<td>flue gas composition [mol frac]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>0.00 - 0.0003</td>
<td>0.00 - 0.001</td>
</tr>
<tr>
<td>O₂</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.17</td>
<td>0.17 - 0.18</td>
</tr>
<tr>
<td>N₂</td>
<td>0.66</td>
<td>0.67</td>
</tr>
<tr>
<td>NO₂</td>
<td>0.00 - 0.003</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 4.1.4: Comparison of utilization model results (molasses and barley straw) with literature data

The reaction of biogas and air in equilibrium at appropriate adiabatic flame temperature (at excess air ratio of 1.1) is compared with the reaction of CH₄ and air at stoichiometric conditions. Also the reaction of CH₄ and air at stoichiometric conditions is calculated with Aspen Plus. The adiabatic flame temperature of CH₄/air combustion is higher than at biogas/air combustion since CO₂, which represents the largest fraction of biogas besides CH₄, lowers heating value and thus the adiabatic flame temperature. Taking this into account, adiabatic flame temperatures go well together. The CH₄/air combustion fits perfectly with literature data. Although literature characterizes stoichiometric combustion of a CH₄/air mixture, the flue gas composition of simulation and literature are in good agreement with each other. It can be noted that created biogas utilization model pictures the real process more than sufficient.
4.2 Model results

The intention of this thesis is to present a simple and flexible model for anaerobic digestion in order to generate biogas, and for biogas utilization. For the development of the present model, two typical input compositions for the thermophilic section of a biohydrogen process have been provided. The two types of input are molasses and barley straw. Table 3.2.1 lists the components, whereby marked components (*) are considered as degradable. Input data originate from project partners of HYVOLUTION project [EU 2010], which are in comparison to validation data in 4.1.2 no process residues but untreated molasse and pretreated barley straw.

<table>
<thead>
<tr>
<th>Calculation model</th>
<th>M O L A S S E S</th>
<th>B A R L E Y S T R A W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block designation</td>
<td>B-S01 B-C02 B-B04</td>
<td>B-S01 B-C02 B-B04</td>
</tr>
<tr>
<td>Max. biogas yield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[kg/kg ODM]</td>
<td>1.10 - 1.06</td>
<td>0.50 - 0.43</td>
</tr>
<tr>
<td>[m3/kg ODM]</td>
<td>0.94 * - 0.90 *</td>
<td>0.42 * - 0.37 *</td>
</tr>
<tr>
<td>Max. CH$_4$ yield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[kg/kg ODM]</td>
<td>0.29 0.29 0.30</td>
<td>0.18 0.20 0.17</td>
</tr>
<tr>
<td>[m3/kg ODM]</td>
<td>0.25 * 0.25 * 0.25 *</td>
<td>0.16 * 0.17 * 0.15 *</td>
</tr>
<tr>
<td>Heating value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total biogas output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[kg/hr]</td>
<td>1230 - 1185</td>
<td>1458 - 1275</td>
</tr>
<tr>
<td>[m3/hr]</td>
<td>1043 * - 1065 *</td>
<td>1236 * - 1081 *</td>
</tr>
<tr>
<td>COD [kg COD/kg input]</td>
<td>0.78</td>
<td>0.14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biogas composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[mol fraction]</td>
</tr>
<tr>
<td>CH$_4$</td>
</tr>
<tr>
<td>CO$_2$</td>
</tr>
<tr>
<td>H$_2$S</td>
</tr>
<tr>
<td>NH$_3$</td>
</tr>
<tr>
<td>H$_2$O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max biogas flow rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>[kg/hr]</td>
</tr>
<tr>
<td>CH$_4$</td>
</tr>
<tr>
<td>CO$_2$</td>
</tr>
<tr>
<td>H$_2$S</td>
</tr>
<tr>
<td>NH$_3$</td>
</tr>
<tr>
<td>H$_2$O</td>
</tr>
<tr>
<td>[m3/hr]</td>
</tr>
<tr>
<td>CH$_4$</td>
</tr>
<tr>
<td>CO$_2$</td>
</tr>
<tr>
<td>H$_2$S</td>
</tr>
<tr>
<td>NH$_3$</td>
</tr>
<tr>
<td>H$_2$O</td>
</tr>
</tbody>
</table>

Table 4.2.1 summarizes results from biogas hierarchy of the model described above. As discussed in 4.1.2
results including volume flow rates were performed manually via recalculation of mass flow rates (calculated by Aspen Plus) by applying density data from literature. Flue gas density of the streams U-GE09 and U-C03 for molasses and barley straw (listed in table 4.2.2) is calculated using density data listed in table A.3.1. Density of flue at standard conditions were taken from [Brandt, 1999] and [Cerbe, 2008]. Since the flue gas outlet temperature of the adiabatic combustion block is equal to the adiabatic temperature, no heat and power output can be calculated. The heat and power output in table 4.2.2 marked with (**), are estimated assuming flue gas output temperature is set to 453.15 K. The amount by which the flue gas outlet temperature of the CHP calculation is decreased (in comparison to the adiabatic flame temperature) is considered in the power output.

Aspen Plus provides two unit operation models to simulate a combustion process, which have both been used in this model. $RStoic$ is less demanding, since $RGibbs$ can have convergence problems if defined components are insufficient in order to meet equilibrium. Comparing flue gas composition of calculation route adiabatic combustion and CHP of molasses respectively barley straw, similar results are achieved in table 4.2.2. However, flue gas flow rates vary in terms of NO$_2$. This can be attributed to the difference in calculation (stoichiometric reactions versus total Gibbs free energy minimization). Also the heat an power output of the two calculation routes go well together.
<table>
<thead>
<tr>
<th>Calculation model</th>
<th>Molasses</th>
<th>Barley Straw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block designation</td>
<td>adiabatic combustion</td>
<td>CHP</td>
</tr>
<tr>
<td>U-C01</td>
<td>U-GE03</td>
<td>U-C01</td>
</tr>
<tr>
<td>Total flue gas output
[kg/hr]</td>
<td>7588</td>
<td>7588</td>
</tr>
<tr>
<td>[m³/hr]</td>
<td>9794 *</td>
<td>9779 *</td>
</tr>
<tr>
<td>Adiabatic flame temperature
[K]</td>
<td>1953</td>
<td>2014</td>
</tr>
<tr>
<td>Flue gas outlet temperature
[K]</td>
<td>1953</td>
<td>453.15</td>
</tr>
<tr>
<td>Heat output
[MW]</td>
<td>1.94 **</td>
<td>2.01</td>
</tr>
<tr>
<td>Power output
[MW]</td>
<td>1.78 **</td>
<td>1.85</td>
</tr>
<tr>
<td>Flue gas density
[kg/m³]</td>
<td>1.29 *</td>
<td>1.29 *</td>
</tr>
<tr>
<td>Total flue gas output
[kg/hr]</td>
<td>7588</td>
<td>7588</td>
</tr>
<tr>
<td>[m³/hr]</td>
<td>9794 *</td>
<td>9779 *</td>
</tr>
<tr>
<td>Flue gas composition
[mol fraction]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>0.00</td>
<td>0.0003</td>
</tr>
<tr>
<td>O₂</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>N₂</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>NO₂</td>
<td>0.003</td>
<td>0.00</td>
</tr>
<tr>
<td>Flue gas flow rates
[kg/hr]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>O₂</td>
<td>134</td>
<td>159</td>
</tr>
<tr>
<td>CO₂</td>
<td>1776</td>
<td>1776</td>
</tr>
<tr>
<td>H₂O</td>
<td>805</td>
<td>804</td>
</tr>
<tr>
<td>N₂</td>
<td>4838</td>
<td>4849</td>
</tr>
<tr>
<td>NO₂</td>
<td>35</td>
<td>0.02</td>
</tr>
<tr>
<td>[m³/hr]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>0 *</td>
<td>2 *</td>
</tr>
<tr>
<td>O₂</td>
<td>94 *</td>
<td>112 *</td>
</tr>
<tr>
<td>CO₂</td>
<td>897 *</td>
<td>897 *</td>
</tr>
<tr>
<td>H₂O</td>
<td>1007 *</td>
<td>1005 *</td>
</tr>
<tr>
<td>N₂</td>
<td>3870 *</td>
<td>3879 *</td>
</tr>
<tr>
<td>NO₂</td>
<td>17 *</td>
<td>0 *</td>
</tr>
</tbody>
</table>

Table 4.2.2: Utilization hierarchy simulation results (* calculated manually)

Table 4.2.3 summarizes simulation results and literature data according to various sources of table 2.3.2 (a), (Bischofsberger et al., 2009) (b), (FNR) 2006 (c), (Vintila et al., 2012) (d), (Fang, 2010) (e), (Satyawali and Balakrishnan, 2008) (f), (Zeng, 2010) (g), and (Jördening and Winter, 2005) (h) in order to give an overview. The different methods (COD, Buswell, and stoichiometric reactions) used for determining biogas outcome in the biogas hierarchy are in good agreement with each other. Therefore, the results of all three
calculation routes are combined to one overall range in the following discussion, in order to compare them with literature data.

<table>
<thead>
<tr>
<th>SIMULATION</th>
<th>LITERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLES</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>49 - 51</td>
</tr>
<tr>
<td>CO₂</td>
<td>47 - 48</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.01</td>
</tr>
<tr>
<td>NH₃</td>
<td>0.01 - 0.02</td>
</tr>
<tr>
<td>H₂S</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BARLEY STRAW</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H₄</td>
<td>13.46 - 14.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAX. BIOGAS YIELD</th>
<th>[m³/kg ODM]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLES</td>
<td>0.88 - 0.95</td>
<td>-</td>
</tr>
<tr>
<td>BARLEY STRAW</td>
<td>0.36 - 0.43</td>
<td>0.25 - 0.39 (a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAX. CH₄ YIELD</th>
<th>[m³/kg ODM]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLES</td>
<td>0.24 - 0.25</td>
<td>-</td>
</tr>
<tr>
<td>BARLEY STRAW</td>
<td>0.15 - 0.17</td>
<td>0.29 (d)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COD</th>
<th>[kg COD/kg input]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLES</td>
<td>0.78</td>
<td>0.06 - 0.99 (e) (f) (g)</td>
</tr>
<tr>
<td>BARLEY STRAW</td>
<td>0.14</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4.2.3: Comparison of biogas model results (molasses and barley straw) with literature data

Biogas composition (except the water content) lies within the average values obtained from literature. The low H₂O value stems from bypassing the flash units, since maximum biogas outcome is discussed. Biogas yields of molasses are somewhat higher than literature data, but barley straw lies right in the same area as literature data. Methane yield of molasses a comparable to literature data. Because input data for barley straw stem from a process where a pretreatment step is located upstream, this does not apply for barley straw. However, the lower heating value of both substrates are slightly lower than the literature data. This may be because formed biogas contains a relatively high share of CO₂ which lowers the heating value of formed biogas and rises the biogas yield. The CH₄ yield of molasses fit very well with literature data. Considering the fact that barley straw is pretreated, barley straw is in good agreement with unpretreated CH₄ yield from literature. It is difficult to make any statement on COD, since appropriate literature data are rare and diverge widely.
Chapter 5

Summary and Outlook

The intention of this thesis is to present a simple and flexible model for anaerobic digestion in order to generate biogas, and for biogas utilization. Furthermore, it should be possible to use this model to decide whether or not a process integration of a biogas process and, for instance, a biohydrogen process is beneficial in order to cover heat and power demand. It is important to notice that an economic approach is no target of this work. This model should simply calculate how much biogas out of a specific organic feedstock can be obtained at maximum and how much heat and power can be generated by the use of a gas engine or a simple combustion step. The question which is answered in this thesis is whether or not the created model pictures biogas formation and utilization properly.

In order to achieve this target, a model for biogas generation and utilization without considering any kinetics, processes of inhibition, effects of pH or temperature, and physiochemical processes as desulphurization and dehumidification was built up. In doing so, the model keeps simple enough to meet flexibility and simplicity targets. Including these excluded effects would guide to an increase of input data that are required to run the model [Pröll 2013]. Additionally, these data are difficult to obtain. In order to model the biological process of anaerobic digestion and utilization, two time-independent interacting submodels, describing the process of biogas generation and biogas utilization, are created.

The biogas model, which is a collection of simple models from literature, includes three paths - calculation via chemical oxygen demand (COD), calculation according to Buswell’s equation, and implementing stoichiometric reactions. For the development of the present model, two typical input compositions for the thermophilic section of a biohydrogen process have been provided. The two types of input are molasses and barley straw (provided by [EU 2010]). The biogas utilization model is located downstream the biogas generation model. For the purpose of biogas utilization three paths are included - combined heat and power generation (CHP) by means of a gas engine, a second path which could further be used for biogas upgrading, and adiabatic combustion of the generated biogas. Aspen Plus provides two unit operation models to simulate a combustion process, which have both been used in this model in order to compare them. The biogas generation model includes stoichiometric reactions, conversion factors, and distinguishes between degradable and non-degradable components. The biogas utilization model includes humidity of combustion...
air, excess air ratio, Gibbs free energy minimization, and efficiency data for the gas engine. Since the model neglects several aspects, the present model provides results which must be considered as maximum possible biogas, heat, and energy yields.

For **model evaluation**, three different strategies are selected. On the one hand, two individual models (the model presented in this work and a model from literature according to Lassmann [2012]) are applied to the same data set. On the other hand, various feedstocks at various component concentrations (provided by Foglia et al. [2011]) are applied to this model in order to sense potential limits for biogas calculation. The scenarios are calculated with process residues of a two-stop fermentation process. Since the first two strategies don’t include the evaluation of the utilization model, the third one compares the model results of the utilization hierarchy with literature data.

Results from model evaluation based on the first **evaluation method** show that both models give comparable results (in terms of methane) for the same feedstock. Biogas composition varies depending on yields of individual biogas components, but composition is situated in an average range according to table 2.3.3. However, this method can only be used to evaluate the biogas generation model, since heat and power generation is not considered in the model from literature.

Residual streams of a biohydrogen process (see figure 4.1.1) are used to evaluate the model (according to the second **evaluation method**) by applying differing feedstock (barley straw, potato steam peels, and thick juice) and component concentrations. In a first step the residues of this biohydrogen process are applied to the present biogas generation and utilization model in order to sense potential calculation limits. After that, the present model is used to calculate whether or not the heat and power demand of the biohydrogen process can be covered by a biogas process. It was established that the dilution rate of the applied feedstocks is too high in order to obtain the maximum achievable flow rates after the flash units (see figure 3.3.2). Hence, the flash unit marks a limit of this biogas model (when dilution rate is too high). This bottleneck can be avoided by bypassing the flash units in order to achieve maximum biogas yields. Apart from flash separation, no other limit of the presented model was detected so far. The utilization of process residual streams of the just discribed biohydrogen process in order to cover the heat demand of the overall process via heat and power generation out of biogas was established und published in Wukovits et al. [2013]. The analyses showed that residuals from barley straw and PSP seem to be promising in terms of producing additional heat from biogas and its integration with a total process. For the process with thick juice, heat output is not sufficient to cover total heat input in the process and additional solutions should be investigated.

In order to evaluate the biogas utilization model according to the third **evaluation method**, very limited options are available. Since efficiency data of the simulation were set according to literature data (see Jenbach and IWK [2007]), the adiabatic flame temperature, the heating value, and the flue gas composition were the only factors to consider when comparing the model to literature data. The adiabatic flame temperature of CH\textsubscript{4}/air combustion is higher than at biogas/air combustion since CO\textsubscript{2}, which represents the largest
fraction of biogas besides CH₄, lowers the heating value and thus the adiabatic flame temperature. Taking this into account, adiabatic flame temperatures go well together. Comparing the flue gas compositions of the combustion of CH₄/air mixture of simulation and literature show that they are in good agreement with each other.

Comparing the results of the different methods (COD, Buswell, and stoichiometric reactions) used for determining the biogas outcome in the biogas hierarchy show that they are in good agreement with each other, which leads to the conclusion that biogas generation is modeled properly. In comparison with barley straw, the biogas outcome from feedstock molasses is comparable to literature data, since no pretreatment step is located upstream. However, the biogas composition of both feedstocks (except the water content) lies within the average values obtained from literature. The CH₄ yield of molasses fits very well with literature data. Considering the fact that barley straw is pretreated, barley straw is in good agreement with CH₄ yield from literature. As the aim of this thesis is to present a simple and flexible physical model, the simulation of the biogas process has achieved this target.

Results show, that comparing the two unit operation models to simulate a combustion process in the biogas utilization hierarchy, leads to the conclusion that RStoic is less demanding, since RGibbs can have convergence problems if defined components are insufficient in order to meet equilibrium. Flue gas composition of calculation route adiabatic combustion and CHP of molasses respectively barley straw, show according to table 4.2.2 that similar results are achieved. However, flue gas flow rates vary in terms of NO₂, which comes from the difference in calculation (stoichiometric reactions versus total Gibbs free energy minimization). Also the heat and power output of the two calculation routes go well together.

It can be noted that the created biogas formation and utilization model pictures the real process more than sufficient. The model appears to be appropriate for a rough estimation, which was the main objective of present study. However, limitations pointed out by evaluation need to be taken into consideration and results have to be interpreted with caution.

Although the presented model provides a tool for estimating maximal biogas, heat, and power outcome out of organic feedstock, the flexibility should be improved. Up to now, for each new component (means not included to the component list of the model), a list of settings have to be placed. The model could be improved when a comprehensive component list would be implemented (including all the settings) in order to avoid this procedure for the user. Furthermore, the flash units have to be improved, since bypassing is not the proper way.
References

Appendix A

A.1 Input data barley straw and molasses

<table>
<thead>
<tr>
<th>Feedstock; Stream: TH-FEED</th>
<th>molasses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substream: MIXED</td>
<td></td>
</tr>
<tr>
<td>Substream: CISOLID</td>
<td></td>
</tr>
<tr>
<td>Temperature C</td>
<td>12.62</td>
</tr>
<tr>
<td>Pressure bar</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mole Flow</th>
<th>Mass Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmol/hr</td>
<td>kg/hr</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Total Flow</td>
<td></td>
</tr>
<tr>
<td>23.93</td>
<td>1204.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mole Flow</th>
<th>Mass Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmol/hr</td>
<td>kg/hr</td>
</tr>
<tr>
<td>H2O</td>
<td>21.51</td>
</tr>
<tr>
<td></td>
<td>387.48</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>13.00</td>
</tr>
<tr>
<td>SUCROSE</td>
<td>2.35</td>
</tr>
<tr>
<td></td>
<td>804.26</td>
</tr>
<tr>
<td>ASH-WS</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>PECTINE</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>PROTEIN</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Table A.1.1: Input data molasses (* factored in ODM)

<table>
<thead>
<tr>
<th>Exit PRT; Stream: TH-FEED</th>
<th>barley straw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substream: MIXED</td>
<td></td>
</tr>
<tr>
<td>Substream: CISOLID</td>
<td></td>
</tr>
<tr>
<td>Temperature C</td>
<td>50.00</td>
</tr>
<tr>
<td>Pressure bar</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mole Flow</th>
<th>Mass Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmol/hr</td>
<td>kg/hr</td>
</tr>
<tr>
<td>Total Flow</td>
<td></td>
</tr>
<tr>
<td>1817.77</td>
<td>33768.73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mole Flow</th>
<th>Mass Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>kmol/hr</td>
<td>kg/hr</td>
</tr>
<tr>
<td>H2O</td>
<td>1811.13</td>
</tr>
<tr>
<td></td>
<td>32627.93</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>4.72</td>
</tr>
<tr>
<td></td>
<td>849.66</td>
</tr>
<tr>
<td>XYLOSE</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>245.67</td>
</tr>
<tr>
<td>GALACTOS</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>11.60</td>
</tr>
<tr>
<td>ARABINOS</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>33.89</td>
</tr>
<tr>
<td>GLUCAN</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.83</td>
</tr>
<tr>
<td>Xylan</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1.80</td>
</tr>
<tr>
<td>GALACTAN</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>ARABINAN</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>LIGNIN</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6.14</td>
</tr>
<tr>
<td>PROTEIN</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>19.07</td>
</tr>
</tbody>
</table>

Table A.1.2: Input data barley straw (* factored in ODM)
Technical Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[kW] 1</td>
<td>[kW] 2</td>
<td>[kW] 3</td>
<td>[kW] 4</td>
<td>mechanic</td>
</tr>
<tr>
<td>JMS 208 GS-B.LC</td>
<td>259</td>
<td>249</td>
<td>295</td>
<td>637</td>
<td>40.66</td>
</tr>
<tr>
<td>JMS 208 GS-B.LC</td>
<td>342</td>
<td>330</td>
<td>400</td>
<td>852</td>
<td>40.14</td>
</tr>
<tr>
<td>JMS 312 GS-B.LC</td>
<td>544</td>
<td>526</td>
<td>558</td>
<td>1301</td>
<td>41.81</td>
</tr>
<tr>
<td>JMS 312 GS-B.LC</td>
<td>646</td>
<td>625</td>
<td>680</td>
<td>1563</td>
<td>41.32</td>
</tr>
<tr>
<td>JMS 316 GS-B.LC</td>
<td>725</td>
<td>703</td>
<td>744</td>
<td>1735</td>
<td>41.79</td>
</tr>
<tr>
<td>JMS 316 GS-B.LC</td>
<td>861</td>
<td>834</td>
<td>910</td>
<td>2089</td>
<td>41.08</td>
</tr>
<tr>
<td>JMS 320 GS-B.LC</td>
<td>1095</td>
<td>1063</td>
<td>1088</td>
<td>2607</td>
<td>42</td>
</tr>
<tr>
<td>JMS 412 GS-B.L</td>
<td>871</td>
<td>844</td>
<td>854</td>
<td>2019</td>
<td>43.14</td>
</tr>
<tr>
<td>JMS 416 GS-B.L</td>
<td>1161</td>
<td>1131</td>
<td>1138</td>
<td>2689</td>
<td>43.18</td>
</tr>
<tr>
<td>JMS 420 GS-B.L</td>
<td>1451</td>
<td>1415</td>
<td>1421</td>
<td>3361</td>
<td>43.17</td>
</tr>
<tr>
<td>JMS 612 GS-B.LC</td>
<td>1497</td>
<td>1458</td>
<td>1648</td>
<td>3664</td>
<td>40.86</td>
</tr>
<tr>
<td>JMS 616 GS-B.LC</td>
<td>1966</td>
<td>1946</td>
<td>2196</td>
<td>4885</td>
<td>40.86</td>
</tr>
<tr>
<td>JMS 620 GS-B.LC</td>
<td>2405</td>
<td>2425</td>
<td>2746</td>
<td>6106</td>
<td>40.86</td>
</tr>
</tbody>
</table>

1) ISO standard performance ICFN at 1500 min⁻¹ and standard conditions according to ISO 3046/1-1991 per unit
2) at cos-phi = 1.0 according to VDE 0530 REM with a corresponding tolerance
3) total power with a tolerance of +/-8%; exhaust gas cooling down to 120°C, exhaust gas cooling down to 180°C
 at biogas operation mode
4) according to ISO 3046/1-1991 with a tolerance of +5%

Table A.2.1: Extract from delivery program 2007 Jenbacher gas engines
A.3 Model evaluation

A.3.1 Input evaluation

Average biogas density data at standard conditions are provided by Deublein and Steinhauser 2011, Jensen and Jensen 2000, and FNR 2006. Density of flue gas at standard conditions were taken from Brandt 1999 and Cerbe 2008.

<table>
<thead>
<tr>
<th>biogas components</th>
<th>CH₄</th>
<th>0.72 kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂</td>
<td>1.98 kg/m³</td>
</tr>
<tr>
<td></td>
<td>H₂S</td>
<td>1.53 kg/m³</td>
</tr>
<tr>
<td></td>
<td>NH₃</td>
<td>0.85 kg/m³</td>
</tr>
<tr>
<td></td>
<td>H₂O</td>
<td>0.80 kg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>flue gas components</th>
<th>H₂</th>
<th>0.09 kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O₂</td>
<td>1.43 kg/m³</td>
</tr>
<tr>
<td></td>
<td>CO₂</td>
<td>1.98 kg/m³</td>
</tr>
<tr>
<td></td>
<td>H₂O</td>
<td>0.80 kg/m³</td>
</tr>
<tr>
<td></td>
<td>N₂</td>
<td>1.25 kg/m³</td>
</tr>
<tr>
<td></td>
<td>NO₂</td>
<td>2.05 kg/m³</td>
</tr>
</tbody>
</table>

Table A.3.1: Density literature data of biogas and flue gas components at standard conditions

A.3.2 Input data - Validation modeling approach of biogas model

In order to analyse the plausibility of the developed model (chapter 4.1.1), data of Lassmann 2012 were used to compare biogas yield and composition.

<table>
<thead>
<tr>
<th>Component Mass Flow</th>
<th>KG/HR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O</td>
<td>220907.31</td>
<td></td>
</tr>
<tr>
<td>HAC</td>
<td>1965.79</td>
<td></td>
</tr>
<tr>
<td>CALDI</td>
<td>86.98</td>
<td></td>
</tr>
<tr>
<td>LIGNIN</td>
<td>648.97</td>
<td></td>
</tr>
<tr>
<td>ETHANOL</td>
<td>2.90</td>
<td></td>
</tr>
<tr>
<td>FURFURAL</td>
<td>926.99</td>
<td></td>
</tr>
<tr>
<td>GLYCEROL</td>
<td>264.67</td>
<td></td>
</tr>
<tr>
<td>CELLULOS</td>
<td>89.82</td>
<td></td>
</tr>
<tr>
<td>GLUTARIC</td>
<td>42.84</td>
<td></td>
</tr>
<tr>
<td>DXYLOSE</td>
<td>14558.76</td>
<td></td>
</tr>
<tr>
<td>ENZYMES</td>
<td>561.53</td>
<td></td>
</tr>
<tr>
<td>SILICON</td>
<td>216.33</td>
<td></td>
</tr>
<tr>
<td>EXTRACT</td>
<td>5768.37</td>
<td></td>
</tr>
<tr>
<td>PROT</td>
<td>2884.50</td>
<td></td>
</tr>
</tbody>
</table>

Table A.3.2: Input data - Validation modeling approach of biogas model
Reaction Stoichiometry and Fractional Conversion Factors

<table>
<thead>
<tr>
<th>Rxn #</th>
<th>Stoichiometry</th>
<th>frac.conv</th>
<th>of component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PROTEIN + 2 H₂O → 2 CO₂ + C₃H₆O + NH₃ + 2 H₂</td>
<td>0.9</td>
<td>PROTEIN</td>
</tr>
<tr>
<td>2</td>
<td>2 ETHANOL + 2 H₂O → 2 ACETAT + 4 H₂</td>
<td>0.9</td>
<td>ETHANOL</td>
</tr>
<tr>
<td>3</td>
<td>GLYCEROL → 1.25 CO₂ + 0.5 H₂O + 1.75 CH₄</td>
<td>0.9</td>
<td>GLYCEROL</td>
</tr>
<tr>
<td>4</td>
<td>CO₂ + 4 H₂ → 2 H₂O + CH₄</td>
<td>1</td>
<td>H₂</td>
</tr>
<tr>
<td>5</td>
<td>0.5 H₂O + C₃H₆O → 1.25 CO₂ + 1.75 CH₄</td>
<td>1</td>
<td>C₃H₆O</td>
</tr>
<tr>
<td>6</td>
<td>ACETAT → CO₂ + CH₄</td>
<td>0.9</td>
<td>ACETAT</td>
</tr>
<tr>
<td>7</td>
<td>2 XYLOSE → 5 CO₂ + 5 CH₄</td>
<td>0.9</td>
<td>XYLOSE</td>
</tr>
<tr>
<td>8</td>
<td>FURFURAL + 3 H₂O → 2.5 CO₂ + 2.5 CH₄</td>
<td>0.9</td>
<td>FURFURAL</td>
</tr>
<tr>
<td>9</td>
<td>GLUCOSE → 3 CO₂ + 3 CH₄</td>
<td>0.9</td>
<td>GLUCOSE</td>
</tr>
<tr>
<td>10</td>
<td>EXTRAKT + 9 H₂O → 5.5 CO₂ + 12.5 CH₄</td>
<td>0.5</td>
<td>EXTRAKT</td>
</tr>
<tr>
<td>11</td>
<td>XYLAN + H₂O → 2.5 CO₂ + 2.5 CH₄</td>
<td>0.5</td>
<td>XYLAN</td>
</tr>
</tbody>
</table>

Tables

Table A.3.3: Model validation - stoichiometric reactions and fractional conversion factors

<table>
<thead>
<tr>
<th>#</th>
<th>PROP-DATA PURE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>IN-UNITS MET MOLE-ENTHALP='kcal/mol'</td>
</tr>
<tr>
<td></td>
<td>PROP-LIST DHFORM</td>
</tr>
<tr>
<td></td>
<td>PVAL LIGNIN -217</td>
</tr>
<tr>
<td></td>
<td>PVAL ENZYMES -217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>PROP-DATA PURE-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>IN-UNITS MET</td>
</tr>
<tr>
<td></td>
<td>PROP-LIST DGFORM</td>
</tr>
<tr>
<td></td>
<td>PVAL CALDI -200</td>
</tr>
<tr>
<td></td>
<td>PVAL RHODO -200</td>
</tr>
<tr>
<td></td>
<td>PVAL PROTEIN -200</td>
</tr>
<tr>
<td></td>
<td>PVAL ENZYMES -200</td>
</tr>
<tr>
<td></td>
<td>PVAL DXYLOSE -200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>PROP-DATA DHVLWT-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>IN-UNITS SI TEMPERATURE=C</td>
</tr>
<tr>
<td></td>
<td>PROP-LIST DHVLWT</td>
</tr>
<tr>
<td></td>
<td>PVAL SILICON 502 24.85 0 0 -73.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>PROP-DATA PLXANT-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>IN-UNITS MET</td>
</tr>
<tr>
<td></td>
<td>PROP-LIST PLXANT</td>
</tr>
<tr>
<td></td>
<td>PVAL ENZYMES -1E20</td>
</tr>
</tbody>
</table>

Listings

Listing A.3.1: Additional thermodynamic settings of validation modeling approach of biogas model

IV
A.3.3 Input data - Identification of biogas model limits

In order to sense potential limits for biogas calculation, data of resides of a two-step fermentation process of [Foglia et al., 2011] were used.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mass Flow</th>
<th>PSP</th>
<th>Barley straw</th>
<th>Thick juice</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>KG/HR</td>
<td>0.110</td>
<td>0.110</td>
<td>0.100</td>
</tr>
<tr>
<td>CO₂</td>
<td>KG/HR</td>
<td>215.07</td>
<td>220.21</td>
<td>197.71</td>
</tr>
<tr>
<td>H₂O</td>
<td>KG/HR</td>
<td>90623.65</td>
<td>91546.49</td>
<td>80697.45</td>
</tr>
<tr>
<td>GLUCOSE *</td>
<td>KG/HR</td>
<td>86.92</td>
<td>99.07</td>
<td>0</td>
</tr>
<tr>
<td>SUCROSE *</td>
<td>KG/HR</td>
<td>0</td>
<td>0</td>
<td>24.07</td>
</tr>
<tr>
<td>XYLOSE *</td>
<td>KG/HR</td>
<td>0</td>
<td>36.18</td>
<td>0</td>
</tr>
<tr>
<td>GALACTOS *</td>
<td>KG/HR</td>
<td>0</td>
<td>12.21</td>
<td>0</td>
</tr>
<tr>
<td>ARABINOS *</td>
<td>KG/HR</td>
<td>0</td>
<td>22.00</td>
<td>0</td>
</tr>
<tr>
<td>HAC *</td>
<td>KG/HR</td>
<td>55.93</td>
<td>105.30</td>
<td>50.13</td>
</tr>
<tr>
<td>KOH</td>
<td>KG/HR</td>
<td>0</td>
<td>0</td>
<td>302.94</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>KG/HR</td>
<td>152.45</td>
<td>155.79</td>
<td>140.78</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>KG/HR</td>
<td>119.12</td>
<td>121.72</td>
<td>110.00</td>
</tr>
<tr>
<td>GLUCAN *</td>
<td>KG/HR</td>
<td>583.20</td>
<td>122.63</td>
<td>0</td>
</tr>
<tr>
<td>XYLAN *</td>
<td>KG/HR</td>
<td>51.62</td>
<td>174.42</td>
<td>0</td>
</tr>
<tr>
<td>GALACTAN *</td>
<td>KG/HR</td>
<td>0</td>
<td>13.36</td>
<td>0</td>
</tr>
<tr>
<td>LIGNIN *</td>
<td>KG/HR</td>
<td>256.50</td>
<td>444.84</td>
<td>0</td>
</tr>
<tr>
<td>ASH-WS</td>
<td>KG/HR</td>
<td>299.26</td>
<td>175.59</td>
<td>20.59</td>
</tr>
<tr>
<td>CALDI *</td>
<td>KG/HR</td>
<td>55.56</td>
<td>59.03</td>
<td>58.47</td>
</tr>
<tr>
<td>RHODO *</td>
<td>KG/HR</td>
<td>38.70</td>
<td>46.27</td>
<td>46.51</td>
</tr>
<tr>
<td>ENZYME</td>
<td>KG/HR</td>
<td>0.81</td>
<td>688.72</td>
<td>0</td>
</tr>
<tr>
<td>KOH</td>
<td>KG/HR</td>
<td>332.71</td>
<td>340.46</td>
<td>0</td>
</tr>
<tr>
<td>PECTINE *</td>
<td>KG/HR</td>
<td>47.74</td>
<td>40.97</td>
<td>0</td>
</tr>
<tr>
<td>PROTEIN *</td>
<td>KG/HR</td>
<td>396.06</td>
<td>40.97</td>
<td>0</td>
</tr>
<tr>
<td>NH₃</td>
<td>KG/HR</td>
<td>0.003</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ARABINAN *</td>
<td>KG/HR</td>
<td>0.277</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GALACTOS *</td>
<td>KG/HR</td>
<td>0.108</td>
<td>24.50</td>
<td>0</td>
</tr>
<tr>
<td>HCL</td>
<td>KG/HR</td>
<td>0.005</td>
<td>0.752</td>
<td>0.0004</td>
</tr>
<tr>
<td>NON-VOL *</td>
<td>KG/HR</td>
<td>0</td>
<td>9.76</td>
<td>0</td>
</tr>
<tr>
<td>FURFURAL *</td>
<td>KG/HR</td>
<td>0</td>
<td>60.40</td>
<td>0</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>KG/HR</td>
<td>0</td>
<td>20.53</td>
<td>0</td>
</tr>
<tr>
<td>CA(OH)₂</td>
<td>KG/HR</td>
<td>0</td>
<td>34.06</td>
<td>0</td>
</tr>
</tbody>
</table>

Table A.3.4: Input data PSP, barley straw and thick juice - Identification of biogas model limits (* factored in ODM)

<table>
<thead>
<tr>
<th>Rxn #</th>
<th>Stoichiometry</th>
<th>fractional conversion of component</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>FURFURAL + 3 H₂O → 2.5 CO₂ + 2.5 CH₄</td>
<td>1 FURFURAL</td>
</tr>
<tr>
<td>14</td>
<td>NON-VOL + 3 H₂O → 5.25 CO₂ + 12.75 CH₄</td>
<td>1 NON-VOL</td>
</tr>
</tbody>
</table>

Table A.3.5: Model validation - additional stoichiometric reactions
A.4 Input summary Aspen Plus

DYNAMICS
DYNAMICS RESULTS=ON

TITLE 'biogas + utilization'

IN-UNITS SI

DEF-STREAMS CONVEN ALL

SIM-OPTIONS
IN-UNITS MET VOLUME-FLOW='cum/hr' ENTHALPY-FLO='Gcal/hr' &
HEAT-TRANS='C' kcal/hr-sqm-K' PRESSURE=bar TEMPERATURE='C &
VOLUME='cum' DELTA-T='C' HEAD=bar MOLE-DENSITY='kmol/cum' &
MASS-DENSITY='kg/cum' MOLE-ENTHALP='kcal/mol' &
MASS-ENTHALP='kcal/kg' HEAT='Gcal' MOLE-COND='mol/l' &
PDROP=bar

SIM-OPTIONS PARADIGM=SM OLD-DATABANK=NO

DATABANKS 'NREL_DB INHSPCD' / 'APV72 PURE24' / 'APV72 PURE24' / &
'APV72 SOLIDS' / 'APV72 INORGANIC' / 'APV72 PURE20' &
'APV72 PURE13' / 'APV72 COMBUST' / 'NISTV72 NIST-TRC' &
'APV72 AQU92' / 'APV72 ASPENPCD' / 'APV72 ELECPURE' &
'APV72 EDS-LIT' / 'APV72 ETHYLENE' / 'APV72 INITIATO' &
'APV72 HRTL-SAC' / 'APV72 PC-SAFT' / 'APV72 POLYMER' &
'APV72 POLYPCSF' / 'APV72 PURE10' / 'APV72 PURE11' &
'APV72 PURE12' / 'APV72 PURE22' / 'APV72 PURE856' &
'APV72 PURE93' / 'APV72 SEGMENT' / 'FACTV72 FACTPCD'

PROP-SOURCES 'NREL_DB INHSPCD' / 'APV72 PURE24' / &
'APV72 AQUEDUS' / 'APV72 SOLIDS' / 'APV72 INORGANIC' &
'APV72 PURE20' / 'APV72 PURE13' / 'APV72 COMBUST' &
'NISTV72 NIST-TRC' / 'APV72 AQU92' / 'APV72 ASPENPCD' &
'APV72 ELECPURE' / 'APV72 EDS-LIT' / 'APV72 ETHYLENE' &
'APV72 INITIATO' / 'APV72 HRTL-SAC' / 'APV72 PC-SAFT' &
'APV72 POLYMER' / 'APV72 POLYPCSF' / 'APV72 PURE10' &
'APV72 PURE11' / 'APV72 PURE12' / 'APV72 PURE22' &
'APV72 PURE856' / 'APV72 PURE93' / 'APV72 SEGMENT' &
'FACTV72 FACTPCD'

COMPONENTS
H2 H2 /
O2 O2 /
CO2 CO2 /
H2O H2O /
GLUCOSE C6H12O6 /
SUCROSE C12H22O11 /
NH3 NH3 /
HAC C2H4O2-1 /
ASH-WS CAO /
CALDI CHXNXOXSX-1 /
RHODO CHXNXOXSX-1 /
KOH KOH /
PECTINE C6H10O5 /
PROTEIN CHXNXOXSX-2 /
HCL HCL /
K2HP4 K2HP4 /
K2HP4 K2HP4 /
CH4 CH4 /
H2S H2S /
XYLOSE C5H10O5 /
GALACTOS C6H12O6 / ARABINDS C5H10O5 /
GLUCAN C6H10O5 / XYLAN C5H8O4 /
GALACTAN C6H10O5 / N2 N2 /
NO2 NO2 /
O2S O2S /
ARABINAN C5H8O4 /
LIGNIN C6H10O5-1

HENRY-COMPS H2 O2 CH4 H2S N2 NO2 O2S

MOIST-COMPS N2 O2S N2 CH4 H2S CO2 O2 N2

SOLVE

PARAM

FLOWSHEET

HIERARCHY BIODIGS

CONNECT $C-1 IN=01 OUT="BIOGAS.B-01"
CONNECT $C-3 IN="BIOGAS.B-B09" OUT=02
CONNECT $C-11 IN="BIOGAS.B-S04" OUT=06
CONNECT $C-7 IN="BIOGAS.B-S03" OUT=04
CONNECT $C-13 IN="BIOGAS.B-B10" OUT=05
CONNECT $C-2 IN="BIOGAS.B-C06" OUT=03

HIERARCHY UTILIZE

CONNECT $C-4 IN=04 OUT="UTILIZE.U-01"
CONNECT $C-8 IN=07 OUT="UTILIZE.U-02"
CONNECT $C-9 IN="UTILIZE.U-C03" OUT=11
CONNECT $C-5 IN="UTILIZE.U-U01" OUT=12
CONNECT $C-6 IN="UTILIZE.U-U06" OUT=14
CONNECT $C-10 IN="UTILIZE.U-U08" OUT=13
CONNECT $C-16 IN="UTILIZE.U-GE10" OUT=08
CONNECT $C-15 IN="UTILIZE.U-GE09" OUT=10
CONNECT $C-14 IN="UTILIZE.U-GE07" OUT=09

PROPERTIES NRTL

PROPERTIES PENG-ROB / PR-BM / STEAMNBS

PROP-DATA PURE-1

IN-UNITS MET MOLE-ENTHALP='kcal/mol'
PROP-LIST DHFORM
PVAL CALDI -217
PVAL RHODO -217
PVAL PROTEIN -217

PROP-DATA PURE-1

IN-UNITS MET
PROP-LIST DGFORM
PVAL LIGNIN -200
PVAL XYLOSE -200
PVAL ARABINOS -200

PROP-DATA CPIG-1

IN-UNITS SI
PROP-LIST CPIG
PVAL LIGNIN 207

PROP-DATA PLXANT-1

IN-UNITS MET
PROP-LIST PLXANT
PVAL CALDI -1E20
PVAL RHODO -1E20
PVAL PROTEIN -1E20
PVAL LIGNIN -1E20
PVAL ARABINAN -1E20
PVAL XYLAN -1E20
PVAL GALACTAN -1E20

PROP-DATA HENRY-1
BPVAL NH3 H2O -.2589000000 0.0 0.0 -273.1500000 & 726.8500000
BPVAL H2O H2S .0400000000 0.0 0.0 -273.1500000 726.8500000
BPVAL H2S H2O .0400000000 0.0 0.0 -273.1500000 726.8500000
BPVAL H2 N2 .1030000000 0.0 0.0 -273.1500000 726.8500000
BPVAL CO2 N2 -.0170000000 0.0 0.0 -273.1500000 726.8500000
BPVAL NH3 N2 .2193000000 0.0 0.0 -273.1500000 726.8500000
BPVAL CH4 N2 .0311000000 0.0 0.0 -273.1500000 726.8500000
BPVAL H2S N2 .1767000000 0.0 0.0 -273.1500000 726.8500000
BPVAL N2 CH4 .0311000000 0.0 0.0 -273.1500000 726.8500000
BPVAL O2S CH4 .1356000000 0.0 0.0 -273.1500000 726.8500000
BPVAL N2 O2S .0800000000 0.0 0.0 -273.1500000 726.8500000
BPVAL O2S N2 .0800000000 0.0 0.0 -273.1500000 726.8500000

PROP-SET COD
IN-UNITS MET
PROPNAME-LIS COD UNITS='fraction' SUBSTREAM=MIXED

PROP-SET CODMX
IN-UNITS MET
PROPNAME-LIS CODMX UNITS='fraction' SUBSTREAM=MIXED

PROP-SET MOLEFRC
IN-UNITS MET
PROPNAME-LIS MOLEFRC SUBSTREAM=MIXED

PROP-SET MOLEFRH
IN-UNITS MET
PROPNAME-LIS MOLEFRH SUBSTREAM=MIXED

PROP-SET MOLEFRN
IN-UNITS MET
PROPNAME-LIS MOLEFRN SUBSTREAM=MIXED

PROP-SET MOLEFRO
IN-UNITS MET
PROPNAME-LIS MOLEFRO SUBSTREAM=MIXED

PROP-SET MOLEFRS
IN-UNITS MET
PROPNAME-LIS MOLEFRS SUBSTREAM=MIXED

PROP-SET QVALNET
QUALNET UNITS='kJ/kg' SUBSTREAM=MIXED

PROP-SET RELHUM
IN-UNITS MET
STREAM 01
SUBSTREAM MIXED TEMP=35. <C> PRES=1. <bar>
BLOCK B-B05 MIXER
IN-UNITS MET
PARAM PRES=0. <bar>

BLOCK B-B01 SEP
IN-UNITS MET
PARAM
FRAC STREAM=B-B03 SUBSTREAM=MIXED COMPS=H2 O2 CO2 H2O &
GLUCOSE SUCROSE NH3 HAC ASH-WS CALDI RHODO KOH &
PECTIKE PROTEIN HCL K2HP04 KH2PO4 CH4 H2S XYLOSE &
PECTINE GALACTOS GLUCAN XYLAN GALACTAN N2 NO2 O2S &
ARABINAN LIGNIN FRACS=0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

BLOCK B-B02 SEP
IN-UNITS MET
PARAM
FRAC STREAM=B-B04 SUBSTREAM=MIXED COMPS=H2 O2 CO2 H2O &
GLUCOSE SUCROSE NH3 HAC ASH-WS CALDI RHODO KOH &
PECTIKE PROTEIN HCL K2HP04 KH2PO4 CH4 H2S XYLOSE &
PECTINE GALACTOS GLUCAN XYLAN GALACTAN N2 NO2 O2S &
ARABINAN LIGNIN FRACS=0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

BLOCK B-B04 HEATER
IN-UNITS MET
PARAM TEMP=35. <C> PRES=0. <bar> NPHASE=2
BLOCK-OPTION FREE-WATER=NO

BLOCK B-B06 FLASH2
IN-UNITS MET
PARAM TEMP=10. <C> PRES=0. <bar>

BLOCK B-S02 FLASH2
IN-UNITS MET
PARAM TEMP=10. <C> PRES=0. <bar>

BLOCK B-S01 RSTOIC
IN-UNITS MET
PARAM TEMP=35. <C> PRES=0. <bar>
STOIC 1 MIXED GLUCOSE -1. / CO2 3. / CH4 3.
STOIC 2 MIXED SUCROSE -1. / H2O -1. / CO2 6. / CH4 &
6.
STOIC 3 MIXED HAC -1. / CO2 1. / CH4 1.
STOIC 4 MIXED PECTIKE -1. / H2O -1. / CO2 3. / CH4 &
3.
STOIC 5 MIXED ARABINAN -1. / H2O -1. / CO2 2.5 / CH4 &
2.5
STOIC 7 MIXED PROTEIN -1. / H2O -0.6735 / CO2 0.49175 / &
CH4 0.50825 / NH3 0.29 / H2S 0.007
STOIC 8 MIXED XYLOSE -1. / CO2 2.5 / CH4 2.5
STOIC 9 MIXED GALACTOS -1. / CO2 3. / CH4 3.
STOIC 10 MIXED ARABINAN -1. / CO2 2.5 / CH4 2.5
STOIC 11 MIXED GLUCAN -1. / H2O -1. / CO2 3. / CH4 &
3.
STOIC 12 MIXED XYLAN -1. / H2O -1. / CO2 2.5 / CH4 &
2.5
STOIC 13 MIXED GALACTAN -1. / H2O -1. / CO2 3. / CH4 &
3.
STOIC 5 MIXED ARABINAN -1. / H2O -1. / CO2 2.5 / CH4 &
2.5
CONV 1 MIXED GLUCOSE 1.
CONV 2 MIXED SUCROSE 1.
CONV 3 MIXED HAC 1.
CONV 4 MIXED PECTIKE 1.
CONV 7 MIXED PROTEIN 1.
CONV 8 MIXED XYLOSE 1.
CONV 9 MIXED GALACTOS 1.
CONV 10 MIXED ARABINOS 1.
CONV 11 MIXED GLUCAN 1.
CONV 12 MIXED XYLAN 1.
CONV 13 MIXED GALACTAN 1.
CONV 5 MIXED ARABINAN 1.

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 & TRUE-COMPS=YES

HIERARCHY COD

DEF-STREAMS CONVEN ALL

SOLVE
PARAM METHOD=SM
RUN-MODE MODE=PAR

FLOWSHEET

BLOCK B-C01 IN=B-C01 OUT=B-C02 B-C03
BLOCK B-C02 IN=B-C02 OUT=B-C04
BLOCK B-C03 IN=B-C04 OUT=B-C06 B-C05

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES
PROPERTIES PENG-ROB / PR-BM / STEAMNBS

BLOCK B-C01 SEP
IN-UNITS MET
PARAM
FRAC STREAM=B-C02 SUBSTREAM=MIXED COMPS=H2 O2 CO2 H2O &
GLUCOSE SUCROSE NH3 HCL CALDI RHODO KOH &
PECTINE PROTEIN HCL K2HP04 KH2P04 C14 H2S XYLLOSE &
GALACTOS ARABINOS GLUCAN XYLAN GALACTAN N2 NO2 O2S &
ARBANIAN LIGNIN FRACS=0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. &
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 1. 0. 0.

BLOCK B-C03 SEP
IN-UNITS MET
PARAM
FRAC STREAM=B-C06 SUBSTREAM=MIXED COMPS=H2 O2 CO2 H2O &
GLUCOSE SUCROSE NH3 HCL CALDI RHODO KOH &
PECTINE PROTEIN HCL K2HP04 KH2P04 C14 H2S XYLLOSE &
GALACTOS ARABINOS GLUCAN XYLAN GALACTAN N2 NO2 O2S &
ARBANIAN LIGNIN FRACS=0. 0.

BLOCK B-C02 HEATER
IN-UNITS MET
PARAM TEMP=35. <C> PRES=0. <bar> NPHASE=2
BLOCK-OPTION FREE-WATER=NO

ENDHIERARCHY COD

ENDHIERARCHY BIOGAS
DEF-STREAMS CONVEN ALL

SOLVE
 PARAM METHOD=SM
 RUN-MODE MODE=SIM

FLOWSHEET

BLOCK U-01 IN=U-01 OUT=U-05 U-06
BLOCK U-TRIPLE IN=U-07 OUT=U-U01 U-C02 U-GE02
BLOCK U-03 IN=U-05 OUT=U-07 U-08
BLOCK U-GE03 IN=U-GE04 OUT=U-GE06 U-GE07
BLOCK X2 IN=U-04 OUT=U-C01 U-GE01
BLOCK U-GE01 IN=U-GE01 U-GE02 OUT=U-GE03
BLOCK U-GE02 IN=U-GE03 OUT=U-GE04 U-GE05
BLOCK U-GE04 IN=U-GE06 OUT=U-GE09 U-GE08
BLOCK U-GE05 IN=U-GE08 U-GE05 OUT=U-GE10
BLOCK U-C01 IN=U-C02 U-C01 OUT=U-C03

BLOCK U-02 IN=U-02 U-03 OUT=U-04

PROPERTIES NRTL FREE-WATER=STEAM-TA SOLU-WATER=3 TRUE-COMPS=YES
PROPERTIES PENG-ROB / PR-BM / STEAMNBS$

STREAM U-02
 IN-UNITS MET
 MOLE-FRAC O2 0.21 / N2 0.79

STREAM U-03
 SUBSTREAM MIXED TEMP=25. <C> PRES=1. <bar> & MASS-FLOW=0.1 <kg/hr>
 MOLE-FRAC H2O 1.

DEF-STREAMS HEAT U-GE07
DEF-STREAMS WORK U-GE05
DEF-STREAMS WORK U-GE08
DEF-STREAMS WORK U-GE10
BLOCK U-02 MIXER
BLOCK U-GE01 MIXER
BLOCK U-GE05 MIXER

BLOCK U-01 SEP
 IN-UNITS MET
 PARAM PRES=0. <bar>
 FRAC STREAM=U-05 SUBSTREAM=MIXED COMPS=N2 O2 CD2 H20 &
 GLUCOSE SUCROSE NH3 HAC ASH=W3 CALDI RHODO K2HPO4 K2HPO4 CH4 &
 GALACTOS ARABINOS GLUCAN Xylan GALACTAN N2 OD2 O2S &
 ARABINAN LIGNIN FRACs=1. 1. 1. 1. 1. 0. 0. 1. 0. 0. 0. 0. 0. &
 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. &
 0. 1. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. &

BLOCK U-03 FLASH2
 IN-UNITS MET DENSITY='kg/cum' ENERGY='kJ' ENTHALPY='J/kmol-K' &
 ENTRPY='J/kmol-K' VOLUME='cum/hr' ENTHALPY-FLOW='kJ/kmol' &
 FORCE='Newton' MOLE-HEAT-CA='kJ/kmol-K' &
 HEAT-TRANS='kJ/sqm' PRESSURE='bar' TEMPERATURE='C' &
 THERMAL-COND='kJ/m-K' TEMPERATURE='C' HEAD=meter &
 MOLE-DENSITY='kmol/cum' MASS-DENSITY='kg/cum' &
 MOLE-ENTHALPY='kJ/kmol' MASS-ENTHALPY='kJ/kg' &
 MOLE-ENTROPY='kJ/kmol-K' MASS-ENTROPY='kJ/kg-K' &
 MOLE-VOLUME='cum/kmol' MASS-HEAT-CA='kJ/kg-K' UA='kJ/sec-K' &
PARAM TEMP=10. PRES=0.

BLOCK U-C01 RSTOIC
PARAM PRES=0. <bar> DUTY=0. HEAT-OF-REAC=NO COMBUSTION=YES & PROD=NOX=N02

BLOCK U-GE03 RGIBBS
PARAM PRES=0. <bar> CHEMEQ=YES DUTY=1. <kW> HYDRATE=RIGOROUS

BLOCK U-GE02 COMPR
PARAM TYPE=ISENTROPIC PRES=2. <bar> NPHASE=2 BLOCK-OPTION FREE-WATER=NO

BLOCK U-GE04 COMPR
PARAM TYPE=ISENTROPIC PRES=1. <bar> NPHASE=2 & MODEL-TYPE=TURBINE

BLOCK U-TRIPLE DUPL
IN-UNITS MET DENSITY='kg/cum' ENERGY='kJ' ENTHALPY='J/kmol' & ENTRAPY='J/kmol-K' VOLUME-FLOW='cum/hr' ENTHALPY-FLD='kW' & FORCE=Newton MOLE-HEAT-CA='kJ/kmol-K' & HEAT-TRANS='kJ/sqm-K' PRESSURE=bar TEMPERATURE=C & THERMAL-COND='kJ/m-K' VOLUME='cum' DELTA-T='C' HEAD=meter & MOLE-DENSITY='kmol/cum' MASS-DENSITY='kg/cum' & MOLE-ENTHALPY='kJ/kmol' MASS-ENTHALPY='kJ/kg' & MOLE-ENTROPY='kJ/kmol-K' MASS-ENTROPY='kJ/kg-K' & MOLE-VOLUME='cum/kmol' MASS-ENTHALPY='kJ/kg' UA='J/kj/sec-K' & WORK='kJ' HEAT='kJ' MOLE-COND='mol/l' & MASS-TRANS='kJ/kg/sqm-k' PDROP=bar & VFLOW-LENGTH='sqm/hr' INVERSE-HT='sqm-K/kW' & VOL-ENTHALPY='kJ/cum' MASS-VOLUME='cum/kg'

BLOCK X2 DUPL
ENDHIERARCHY UTILIZE

DESIGN-SPEC RELHUM
DEFINE RELHUM STREAM-PROP STREAM="UTILIZE.U-04" & PROPERTY=RELHUM
SPEC "RELHUM" TO "30"
TOL-SPEC "0.3"
VARY STREAM-VAR STREAM="UTILIZE.U-03" SUBSTREAM=MIXED & VARIABLE=MASS-FLOW
LIMITS "0.000000001" "1"

CALCULATOR AIR
IN-UNITS MET
DEFINE CH4FLOW MOLE-FLOW STREAM="UTILIZE.U-C02" & SUBSTREAM=MIXED COMPONENT=CH4
DEFINE NH3FLOW MOLE-FLOW STREAM="UTILIZE.U-C02" & SUBSTREAM=MIXED COMPONENT=NH3
DEFINE H2SFLOW MOLE-FLOW STREAM="UTILIZE.U-C02" & SUBSTREAM=MIXED COMPONENT=H2S
DEFINE N2FLOW MOLE-FLOW STREAM=07 SUBSTREAM=MIXED & COMPONENT=N2
DEFINE O2FLOW MOLE-FLOW STREAM=07 SUBSTREAM=MIXED & COMPONENT=O2
F O2 = (CH4FLOW*2+NH3FLOW*1.75+H2SFLOW*1.5)
F N2 = O2*(0.79/0.21)
C Luftüberschuss von 1.1 nach Dampferzeugerpraxis - Grundl.&Betrieb

XIV
vereinfachte Luftzusammensetzung: 21% O₂ + 79% N₂; Luft: N₂/O₂ = 0.79/0.21
READ-VARS CH4FLOW NH3FLOW H2SFLOW
WRITE-VARS N2FLOW O2FLOW
CALCULATOR BUSWELL
IN-UNITS MET
DEFINE MOLEFRC STREAM-PROP STREAM="BIOGAS.B-B03" & PROPERTY=MOLEFRC
DEFINE MOLEFRH STREAM-PROP STREAM="BIOGAS.B-B03" & PROPERTY=MOLEFRH
DEFINE MOLEFRO STREAM-PROP STREAM="BIOGAS.B-B03" & PROPERTY=MOLEFRO
DEFINE MOLEFRN STREAM-PROP STREAM="BIOGAS.B-B03" & PROPERTY=MOLEFRN
DEFINE MOLEFRS STREAM-PROP STREAM="BIOGAS.B-B03" & PROPERTY=MOLEFRS
DEFINE CH4 MOLE-FLOW STREAM="BIOGAS.B-B07" SUBSTREAM=MIXED & COMPONENT=CH4
DEFINE CO2 MOLE-FLOW STREAM="BIOGAS.B-B07" SUBSTREAM=MIXED & COMPONENT=CO2
DEFINE NH3 MOLE-FLOW STREAM="BIOGAS.B-B07" SUBSTREAM=MIXED & COMPONENT=NH3
DEFINE H2S MOLE-FLOW STREAM="BIOGAS.B-B07" SUBSTREAM=MIXED & COMPONENT=H2S
DEFINE GLUCOSE MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=GLUCOSE
DEFINE SUCROSE MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=SUCROSE
DEFINE HAC MOLE-FLOW STREAM="BIOGAS.B-B07" SUBSTREAM=MIXED & COMPONENT=HAC
DEFINE PECTINE MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=PECTINE
DEFINE PROTEIN MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=PROTEIN
DEFINE H2O MASS-FLOW STREAM="BIOGAS.B-B07" SUBSTREAM=MIXED & COMPONENT=H2O
DEFINE XYLOSE MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=XYLOSE
DEFINE GALACTOS MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=GALACTOS
DEFINE ARABINOS MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=ARABINOS
DEFINE GLUCAN MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=GLUCAN
DEFINE XYLAN MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=XYLAN
DEFINE GALACTAN MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=GALACTAN
DEFINE ARABINAN MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=ARABINAN
DEFINE GLU MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=GLUCOSE
DEFINE SUC MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=SUCROSE
DEFINE HA MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=HAC
DEFINE PEC MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=PECTINE
DEFINE PRO MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=PROTEIN
DEFINE XYL MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=XYLOSE
DEFINE GAL MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=GALACTOS
DEFINE ARA MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED COMPONENT=ARABINOS
DEFINE GLN MOLE-FLOW STREAM="BIOGAS.B-B07" & SUBSTREAM=MIXED &
COMPONENT=GLUCAN

DEFINE XYN MOLE-FLOW STREAM="BIOGAS.B-B03" SUBSTREAM=MIXED & COMPONENT=XYLAN

DEFINE GAN MOLE-FLOW STREAM="BIOGAS.B-B03" SUBSTREAM=MIXED & COMPONENT=GALACTAN

DEFINE ARN MOLE-FLOW STREAM="BIOGAS.B-B03" SUBSTREAM=MIXED & COMPONENT=ARABINAN

DEFINE CALDIMOL MOLE-FLOW STREAM="BIOGAS.B-B02" & SUBSTREAM=MIXED COMPONENT=CALDI

DEFINE RHODOMOL MOLE-FLOW STREAM="BIOGAS.B-B02" & SUBSTREAM=MIXED COMPONENT=RHODO

DEFINE MOLEFLOW STREAM-VAR STREAM="BIOGAS.B-B03" & SUBSTREAM=MIXED VARIABLE=MOLE-FLOW

DEFINE MASSFLOW STREAM-VAR STREAM="BIOGAS.B-B06" & SUBSTREAM=MIXED VARIABLE=MASS-FLOW

DEFINE CALDI MOLE-FLOW STREAM="BIOGAS.B-B08" SUBSTREAM=MIXED & COMPONENT=CALDI

DEFINE RHODO MOLE-FLOW STREAM="BIOGAS.B-B08" SUBSTREAM=MIXED & COMPONENT=RHODO

DEFINE MWCH4 UNARY-PARAM VARIABLE=MW ID1=CH4 ID2=1

DEFINE MWCO2 UNARY-PARAM VARIABLE=MW ID1=CO2 ID2=1

DEFINE MWNH3 UNARY-PARAM VARIABLE=MW ID1=NH3 ID2=1

DEFINE MWH2S UNARY-PARAM VARIABLE=MW ID1=H2S ID2=1

DEFINE MW UNARY-PARAM VARIABLE=MW ID1=H2O ID2=1

C CALCULATION OF THE COEFFICIENT FOR CHEMICAL FORMULA OUT OF EMPIRICAL FORMULA

\[F_{XXC} = 5*GLU + 12*SUC + 2*HA + 6*PEC + PRO + 5*XYL + 6*GAL + 5*ARA + 6*GLN \]

\[F_{XC} = (F_{XXC} + 5*XYN + 6*GAN + 5*ARN) * 0.95 \]

\[F_{XXH} = 10*GLU + 22*SUC + 4*HA + 10*PEC + 1.57*PRO + 10*XYL \]

\[F_{XH} = F_{XXH} + 12*GAL + 10*ARA + 10*GLN + 8*XYN + 10*GAN + 8*ARN \]

\[F_{XXO} = 5*GLU + 11*SUC + 4*HA + 5*PEC + 0.31*PRO + 5*XYL + 6*GAL \]

\[F_{XO} = F_{XXO} + 5*ARA + 5*GLN + 4*XYN + 5*GAN + 4*ARN \]

\[F_{XN} = 0.29*PRO \]

\[F_{XS} = 0.007*PRO \]

\[F_{MOLE} = F_{XC} + F_{XH} + F_{XO} + F_{XN} + F_{XS} \]

\[F_{FACTOR} = \frac{F_{MOLE}}{GLU + SUC + HA + PEC + PRO + XYL + GAL + ARA + GLN} \]

C CALCULATION OF MOLEFLOWS OF THE BIOGAS

\[F_{CMOL} = \frac{F_{MOLEFRC} \times F_{MOLEFLOW} \times F_{FACTOR}}{} \]

\[F_{HMOL} = \frac{F_{MOLEFRH} \times F_{MOLEFLOW} \times F_{FACTOR}}{} \]

\[F_{OMOL} = \frac{F_{MOLEFRO} \times F_{MOLEFLOW} \times F_{FACTOR}}{} \]

\[F_{NMOL} = \frac{F_{MOLEFRN} \times F_{MOLEFLOW} \times F_{FACTOR}}{} \]

\[F_{SMOL} = \frac{F_{MOLEFRS} \times F_{MOLEFLOW} \times F_{FACTOR}}{} \]

\[F_{CD2} = \left(\frac{(F_{CMOL}/2) - (F_{HMOL}/8) + (F_{OMOL}/4) + (3/8) \times F_{NMOL} + (F_{SMOL}/4)}{} \right) \]

\[F_{CH4} = \left(\frac{(F_{CMOL}/2) - (F_{HMOL}/8) - (F_{OMOL}/4) - (3/8) \times F_{NMOL} - (F_{SMOL}/4)}{} \right) \]

\[F_{N3} = F_{NMOL} \]

\[F_{H2S} = F_{SMOL} \]

C MASS BALANCE

\[F_{GLUCOSE} = 0 \]

\[F_{SUCROSE} = 0 \]

\[F_{MAC} = 0 \]

\[F_{PECTINE} = 0 \]

\[F_{PROTEIN} = 0 \]

\[F_{XYLOSE} = 0 \]

\[F_{GALACTOS} = 0 \]

\[F_{ARABINOS} = 0 \]

\[F_{GLUCAN} = 0 \]

\[F_{XYLAN} = 0 \]

\[F_{ARABINAN} = 0 \]

\[F_{GALACTAN} = 0 \]

\[F_{H2O} = \text{MASSFLOW} - (F_{CD2} + F_{MWCD2}) - (F_{CH4} + F_{MWCH4}) - (F_{N3} + F_{MWN3}) - (F_{H2S} + F_{MWH2S}) \]

C FORMATION OF BIOMASS

\[F_{CALDI} = \frac{F_{CALDIMOL} \times 1.05}{65} \]
F RHODO = RHODOMOL*1.05
READ-VARS MOLEFRB MOLEFRN MOLEFRR MOLEFRW MOLEFLOW &
 MASSFLOW WMCH4 WMCO2 WMNH3 WMH2S WMW GLU SUC HA PEC &
 PRD XYL GAL ARA GLN XYN GAN CALDIMOL RHODOMOL ARN
WRITE-VARS CH4 CO2 NH3 H2S GLUCOSE SUCROSE HAC CALDI &
 RHODO PECTINE PROTEIN H2O XYLOSE GALACTOS ARABINOS &
 GLUCAN XYLAN GALACTAN ARABINAN

CALCULATOR COD
IN-UNITS MET
DEFINE CODMX STREAM-PROP STREAM="BIOGAS.COD.B-C02" &
 PROPERTY=CODMX
DEFINE MASSFLOW STREAM-VAR STREAM="BIOGAS.COD.B-C02" &
 SUBSTREAM=MIXED VARIABLE=MASS-FLOW
DEFINE CH4 MASS-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=CH4
DEFINE GLUCOSE MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=GLUCOSE
DEFINE SUCROSE MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=SUCROSE
DEFINE HAC MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=HAC
DEFINE CALDI MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=CALDI
DEFINE RHODO MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=RHODO
DEFINE PECTINE MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=PECTINE
DEFINE PROTEIN MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=PROTEIN
DEFINE CO2 MASS-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=CO2
DEFINE ARABINAN MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=ARABINAN
DEFINE XYLOSE MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=XYLOSE
DEFINE GALACTOS MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=GALACTOS
DEFINE ARABINOS MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=ARABINOS
DEFINE GLUCAN MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=GLUCAN
DEFINE XYLAN MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=XYLAN
DEFINE GALACTAN MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=GALACTAN
DEFINE ASH MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=ASH-WS
DEFINE LIGNIN MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=LIGNIN
DEFINE WATER MOLE-FLOW STREAM="BIOGAS.COD.B-C04" &
 SUBSTREAM=MIXED COMPONENT=H2O
F O2BEDARF = CODMX*MASSFLOW
F CH4 = O2BEDARF*0.25
F GLUCOSE = 0
F SUCROSE = 0
F HAC = 0
F PECTINE = 0
F PROTEIN = 0
F XYLOSE = 0
F GALACTOS = 0
F ARABINOS = 0
F GLUCAN = 0
F XYLAN = 0
F ARABINAN = 0
F GALACTAN = 0
F ASH = 0
F LIGNIN = 0
F WATER = 0
\[\text{CO}_2 = \text{MASSFLOW} - \text{CH}_4 \]

READ-VARS CODMX MASSFLOW
WRITE-VARS CH4 GLUCOSE SUCROSE HAC CALDI RHODO PECTINE & PROTEIN CO2 ARABINAN XYLOSE GALACTOS ARABINOS GLUCAN & XYLAN GALACTAN ASH LIGNIN WATER

CALCULATOR ENGINE
DEFINE CHPWORK INFO-VAR INFO=WORK VARIABLE=POWER & STREAM="UTILIZE.U-GE10"
DEFINE CHPHEAT INFO-VAR INFO=HEAT VARIABLE=DUTY & STREAM="UTILIZE.U-GE07"
DEFINE CHPFLUE STREAM-VAR STREAM="UTILIZE.U-GE09" & SUBSTREAM=MIXED VARIABLE=TEMP
DEFINE HU STREAM-PROP STREAM="UTILIZE.U-07" PROPERTY=QVALNET
DEFINE MASSFLOW STREAM-VAR STREAM="UTILIZE.U-07" & SUBSTREAM=MIXED VARIABLE=MASS-FLOW

C Mittelwert von elektrischem und thermischen Wirkungsgrad über Leistungsbereiche von 249 - 2425 kW_el:
C \(\eta_{\text{el}} = 40.35\%\)
C \(\eta_{\text{th}} = 43.85\%\)
aus IWK&Jenhacher Datenblatt für Gasmotoren BHKW Module für Biogas
F \(\eta_{\text{el}} = 0.4035\)
F \(\eta_{\text{th}} = 0.4385\)
F \(\text{BE} = \text{HU} * \text{MASSFLOW} * 1000\)
F \(\text{CHPWORK} = \eta_{\text{el}} * \text{BE}\)
F \(\text{CHPHEAT} = \eta_{\text{th}} * \text{BE}\)
F \(\text{CHPFLUE} = 453.15\)
READ-VARS HU MASSFLOW
WRITE-VARS CHPWORK CHPHEAT CHPFLUE
CONV-OPTIONS
PARAM TEAR-VAR=YES
REPORT INPUT
STREAM-REP MOLLEFLOW MASSFLOW MOLEFRAC MASSFRAC PROPERTIES=COD & CODMX MOLEFRAC MOLEFRH MOLEFRN MOLEFRO MOLEFRS QVALNET & RELHUM
PROPERTY-REP PCES
Listing A.4.1: Input Summary Aspen Plus