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Abstract The local behavior of the lowest order boundary element method on quasi-
uniform meshes for Symm’s integral equation and the stabilized hyper-singular integral
equation on polygonal/polyhedral Lipschitz domains is analyzed. We prove local a
priori estimates in L> for Symm’s integral equation and in H' for the hyper-singular
equation. The local rate of convergence is limited by the local regularity of the sought
solution and the sum of the rates given by the global regularity and additional regularity
provided by the shift theorem for a dual problem.

Mathematics Subject Classification 65N38

1 Introduction

The boundary element method (BEM) for the discretization of boundary integral
equations is an established numerical method for solving partial differential equations
on (un)bounded domains. As an energy projection method, the Galerkin BEM is, like
the finite element method (FEM), (quasi-)optimal in some global norm. However,
often the quantity of interest is not the error on the whole domain, but rather a local
error on part of the computational domain. For the FEM, the analysis of local errors
goes back at least to [18]; advanced versions can be found in [10,30]. For the Poisson
problem, the local error estimates typically have the form

B Markus Faustmann
markus.faustmann @tuwien.ac.at

Jens Markus Melenk
melenk @tuwien.ac.at

Institute of Analysis and Scientific Computing (Inst. E 101), TU Wien, Wiedner Hauptstral3e 8-10,
1040 Vienna, Austria

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-018-0975-1&domain=pdf

594 M. Faustmann, J. M. Melenk

flu — uh”Hl(BO) S inf flu — Xh||1—11(131) + R flu — uh||L2(Bl) ) (1.1)
Xn€Xn

where u is the exact solution, uj, the finite element approximation from a space X, of
piecewise polynomials, and By € Bj are open subsets of §2 with R:=dist(Byp, dB1).
Thus, the local error in the energy norm is bounded by the local best approximation
on a larger domain and the error in the weaker L?-norm. The local best approxima-
tion allows for convergence rates limited only by the local regularity; the LZ-error is
typically controlled with a duality argument and limited by the regularity of the dual
problem as well as the global regularity of the solution. Therefore, if the solution is
smoother locally, we can expect better rates of convergence for the local error.

Significantly fewer works study the local behavior of the BEM. The case of smooth
two dimensional curves is treated in [5,21,28], in [27] three dimensional screen prob-
lems are studied, and [14] discusses local error estimates on polygons. [19,20] provide
estimates in the L°°-norm on smooth domains. Local error estimators for the BEM
are presented in [23]. However, for the case of piecewise smooth geometries such
as polygonal and polyhedral domains, sharp local error estimates that exploit the
maximal (local) regularity of the solution are not available. Moreover, the analyses
of [14,21,27,28] are tailored to the energy norm and do not provide optimal local
estimates in stronger norms, whereas [5] imposes additional global regularity.

In this article, we obtain sharp local error estimates for lowest order discretiza-
tions on quasi-uniform meshes for Symm’s integral equation in the L?-norm and
for the (stabilized) hyper-singular integral equation in the H'-seminorm on polygo-
nal/polyhedral domains. Structurally, the local estimates are similar to (1.1): The local
error is bounded by a local best approximation error and a global error in a weaker
norm. More precisely, our local convergence rates depend only on the local regularity
and the sum of the rates given by the global regularity and the additional regularity
of the dual problem on polygonal/polyhedral domains. Numerical examples show the
sharpness of our analysis. As discussed in Remark 2.5 below, our results improve
[21,27,28] as estimates in L? (for Symm’s equation) and H' (for the hyper-singular
equation) are obtained there from local energy norm estimates with the aid of inverse
estimates, thereby leading to a loss of #~!/2. In contrast, we avoid using an inverse
inequality to go from the energy norm to a stronger norm.

The paper is structured as follows. We start with some notations and then present
the main results for both Symm’s integral equation and the hyper-singular integral
equation in Sect. 2. In Sects. 3 and 4 we are concerned with the proofs of these results.
First, some technical preliminaries that exploit the additional regularity on piecewise
smooth geometries to prove some improved a priori estimates for solutions of Poisson’s
equation as well as for the boundary integral operators are presented. Then, we prove
the main results, first for Symm’s equation, then for the stabilized hyper-singular
equation. In principle, the proofs take ideas from [30], but important modifications of
the arguments are necessary due to the nonlocal character of the integral operators. As
in [30] a key ingredient are interior regularity estimates, which were provided recently
in [11,12], and to exploit some additional smoothing properties of commutators that
arise in a localization step. Finally, Sect. 5 provides numerical examples that underline
the sharpness of our theoretical local a priori estimates.
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1.1 Notation on norms

For domains w C R?, we define the integer order Sobolev spaces H k(w), k € Ny,
in the standard way [15, p. 73ff]. The fractional Sobolev spaces H ks (w), k € Np,
s € (0, 1) are defined by the Slobodeckii norm as described in [15, p. 73ff]. For open
sets = U/ w; consisting of finitely many components of connectedness w;, the
Sobolev spaces H k+s (w) are understood in a piecewise way with norm |ju ||§{k ro) =
> ||u||ilk ()" The spaces H* (w), s > 0, consist of those function whose zero
extension to R? is in HS (R?). The spaces H*(w), s > 0, are taken to be the dual
space of H° (). We will make use of the fact that for bounded Lipschitz domains

HS(0) = H (w) Vs €[0,1/2). (1.2)

For Lipschitz domains £2 ¢ R? with boundary I":=3$2, we define Sobolev spaces
H*(I') with s € [0, 1] as described in [15, p. 96ff] using local charts. For s > 1, we
define the spaces H*(I") in a non-standard way: H®(I") consists of those functions
that have a lifting to H'!/2*$(R%), and we define the norm | - || s by

lallgsry = inf{llvll gizesgay @ v e HPP R vlp =u). (13)
Correspondingly, for s > 1 there is a lifting operator
L: H(I') — HY?TRY) (1.4)

with the lifting property (Lu)|r = u, which is bounded by definition of the norm
(1.3). The spaces H™*(I"), s > 0, are the duals of H*(I"). Their norm is defined as

(u, v)
lullg=sry:= sup ———.
vers(ry Illas )

Remark 1.1 (equivalent norm definitions)

(i) For s > 1 an equivalent definition of the norm || - || gs¢ry in (1.3) would be to
replace || - || gs+1/2ray With || - [| gs+1/2(y, 1.€.,

lull sy = inf{lloll grzes gy = v € H2H(2), 0] = ul.

This follows from the existence of the universal extension operator E
L%(£2) — L*(R?) described in [25, Chap. VI.3], which asserts that E is also a
bounded linear operator H k($2) > H*RY) for any k > 0.

(ii) The trace operator yg : H sH/2(RAy - HS(I') is a continuous operator for 0 <
s < 1(cf. [15, Thm. 3.38], [22, Thm. 2.6.8], [17, Thm. 2.3]). [22, Thm. 2.6.11]
(cf. also [15, Thm. 3.37], [17, Lem. 2.6]) assert the existence of a continuous
lifting £ in the range 0 < s < 1 as well so that (1.3) is an equivalent norm for
0 <s < 1aswell.
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596 M. Faustmann, J. M. Melenk

(iii) For polygonal (in 2D) and polyhedral (in 3D) Lipschitz domains the spaces
H*(I') in the range s € (1, 3/2) can be characterized alternatively as follows:
Let I7,i = 1,..., N, be the affine pieces of I, which may be identified with
an interval (for the 2D case) or a polygon (for the 3D case). Then

weH (') < ulpe€HI}) Vie{l,...,N} andue C’I). (1.5)

The equivalence (1.5) gives rise to yet another norm equivalence for the space
H*(I'), namely, [lullgsry ~ SN, lullgsr;). The condition u € CO(I') is a
compatibility condition. More generally, for s > 3/2 similar, more complicated
compatibility conditions can be formulated to describe the space H* (") in terms
of piecewise Sobolev spaces. O

We will also need local norms on the boundary. For an open subset Iy C I" ands > 0,
we define local negative norms by

(u, w)

cw e HY(IN), supprFo}. (1.6)
lwll gsry

lull s ) = sup {

In the following, we write )/ém for the interior trace operator, i.e., the trace operator from
the inside of the domain and yg"“ for the exterior trace operator. For the jump of the trace
of a function u we use the notation [you]:=y§*'u — y)"u. In order to shorten notation,
we write yg for the trace, if the interior and exterior trace are equal, i.e., [you] =
0. We denote the interior and exterior conormal derivative by ylimu::yémVu - n,

Y u:=y§*Vu - n, where n denotes the normal vector pointing into R?\ £2. The jump

of the normal derivative across the boundary is defined by [8,u]:=y*'u — ylimu, and
we write 0, u for the normal derivative if [0,,u] = 0.

We will call axis-parallel squares/cubes “boxes”.

2 Main results

We study bounded Lipschitz domains £2 ¢ R?, d > 2 with polygonal/polyhedral
boundary I' := 052.

2.1 Symm’s integral equation

The elliptic shift theorem for the Dirichlet problem is valid in a range that is larger than
for general Lipschitz domains. We characterize this extended range by a parameter
ap € (0, 1/2) that will pervade most of the estimates of the present work. It is defined
by the following assumption:

Assumption 2.1 2 C R¢, d > 2, is a bounded Lipschitz domain whose boundary
consists of finitely many affine pieces (i.e., £2 is the intersection of finitely many
half-spaces). R > 0 is such that the open ball Bg, (0) C R of radius Ry that is
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Local convergence of the boundary element method 597

centered at the origin contains £2. The parameter ap € (0, 1/2) is such that for every
¢ € (0, ap] there is C, > 0 such that the a priori bound

WTf N 3r2ve gy, o0y < Celfllu=12+egp,onry VS € H™'2 (Bry (0\I)
2.1
holds, where u:=Tf € H'(B R (0)\I") denotes the solution of

—Au=f in Bro(O\I, yu=0 on I UdBg,(0). 2.2)

Recall that the norms ||| g5 (5 ko O\ S > 0 are understood as the sum of the norm
on §2 and Bg, (O)\E, ie.,

2 R 2 2
||u||H‘Y(BRQ O\ "= ||u||HS(_Q) + “u||HS(BRQ O\D) *

Remark 2.2 The condition on the parameter «p in Assumption 2.1 can be described
in terms of two Dirichlet problems, one posed on 2 and one posed on B, (0)\S2.
For each of these two domains, a shift theorem is valid, and «p is determined by the
more stringent of the two conditions. It is worth stressing that the type of boundary
condition on dBg, (0) is not essential in view of the smoothness of dBg, (0) and
dist(I, 9Bg,, (0)) > 0.

In the case d = 2 the parameter «p is determined by the extremal angles of the
polygon £2. Specifically, let 0 < w; < 27, j =1, ..., J, be the interior angles of the
polygon £2. Then, Assumption 2.1 is valid for any ap > 0 that satisfies

11 n . | 7T |
—<—-4ap< mn mny—, ——¢ < .
2 2 L w;j 2w — w;

(Note that w; # m for all j so that the right inequality is indeed strict.) O

We consider Symm’s integral equation in its weak form: Given f € H'/?>(I") find
¢ € H~'2(I") such that

(Vo W2y = (L) 2y YU € HTV2D). (2.3)
Here, the single-layer operator V is given by

Vo(x) = /F G(x, )¢ (y)dsy, xel,

where, with the surface measure |S?~!| of the Euclidean sphere in R?, we set

—ﬁlog|x—y|, ford =2,

(2.4)
+ﬁ Ix —y|"@=2  ford > 3.

Gx,y) = {
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598 M. Faustmann, J. M. Melenk

The single layer operator V is a bounded linear operatorin L(H ~'/>*s(I"), HY/*+5(I"))
for |s| < %, [22, Thm. 3.1.16]. It is elliptic for s = 0 with the usual proviso for d = 2
that diam(§2) < 1, which we may assume by scaling.

Let 7, = {Ty, ..., Ty} be a quasi-uniform, regular and y -shape regular triangula-
tion of the boundary I" with mesh-width # := maxrc7, diam(T). By SOO(T):={u €
LX) :u |7, is constant VT € Tr} we denote the space of piecewise constant func-
tions on the mesh 7;,. The Galerkin formulation of (2.3) reads: Find ¢, € $%°(7;,)
such that

(Vb Yn)2ry = (fo Wby YW € S*0(Th). 2.5)

The following theorem is one of the main results of this paper. It estimates the
Galerkin error in the L?-norm on a subdomain by the local best approximation error
in L? on a slightly larger subdomain and the global error in a weaker norm.

Theorem 2.3 Let Assumption 2.1 hold and let Ty, be a quasi-uniform, y -shape regular
triangulation. Let p € H™V/2(I") and ¢y, € SO0 (Ty,) satisfy the Galerkin orthogonal-
ity condition

(V@ —dn). ¥n)2ry =0 Vi € S"O(Ty). (2.6)

Let I, T be open subsets of I with Iy C r C I' and R:=dist(1y, af) > 0. Let h
be such that 9‘1 D% < % with a fixed constant Cy,, depending only on ap. Assume
that ¢ € L*(I"). Then, we have

— onllr2 <C inf — Xh A+ — Ol y-1-« )
¢ — ¢ ||L (I'y) <Xh€SO’O(Th) lo — x ||L2(F) lp — ¢ HH D(I)
The constant C > 0 depends only on I, I, I.d, R, and the y-shape regularity of
Th.

If we additionally assume higher local regularity as well as some (low) global
regularity of the solution ¢, this local estimate implies that the local error converges
faster than the global error, which is stated in the following corollary.

Corollary 2.4 Let the assumptions of Theorem 2.3 be fulfilled. Let I’ C I bea subset
with rcr and dist(I", d") > R > 0. Additionally, assume ¢ € H~'2T¢(I") N
HP(I) witha > 0, B € [0, 1]. Then, we have

||¢ _ d)h”Lz(['O) S Chmin{l/2+a+ozp,ﬂ}

with a constant C > 0 depending only on I', I, f, F, d, R, «a, B, and the y-shape
regularity of Tj,.

In the results of [18,30] singularities far from the domain of interest still have a
weak influence on the local convergence of the FEM. Corollary 2.4 shows that this
is similar in the BEM: The a priori estimate shows the effect of singularities of the
solution (represented by «) and those induced by the geometry (represented by ap)
affect the local convergence.
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Local convergence of the boundary element method 599

Remark 2.5 In comparison to [27], Corollary 2.4 gives a better result for the rate of
convergence of the local error in the case where the convergence is limited by the
global error in the weaker norm. More precisely, for the case ¢ € H 1/ Z(F )n L2(F ),
[27] obtains the local rate of 1/2, which coincides with our local rate. However, if
¢ cH! (f), we obtain rate 1 in the L2-norm, whereas the rate in [27] remains 1/2. O

Remark 2.6 Even for smooth functions f, the solution ¢ of (2.3) is, in general, not
better than H*(I") with o = % + ap. Recall from Remark 2.2 that ap is determined
by the mapping properties for both the interior and the exterior Dirichlet problem. A
special situation therefore arises if Symm’s integral equation is obtained from refor-
mulating an interior (or exterior) Dirichlet problem. To be specific, consider again the

case d = 2 of a polygon £2 with interior angles w;, j = 1,..., J. We rewrite the
boundary value problem —Au = 0 in £2 with u| = g as the integral equation
1

for the unknown function ¢ = 9,u with the double layer operator K defined by

Ko ()= /F 0, G (x, 1) ()dsy.

Then, ¢ € H*(I") for any o with o < 1/2 + min; a% O

2.2 The hyper-singular integral equation

For the Neumann problem, we assume an extended shift theorem as well.

Assumption 2.7 2 C R4, d > 2, is a bounded Lipschitz domain whose boundary
consists of finitely many affine pieces (i.e., §2 is the intersection of finitely many half-
spaces). R > 0 is such that the open ball Br,, (0) C R4 contains 2. The parameter
ay € (0,ap], where ap is the parameter from Assumption 2.1, is such that for
every ¢ € (0, ay] there is C; > 0 such that for all f € H‘l/”‘?(BRQ (O\I") and
g € He(I') with [, f + [ g = 0 the a priori bound

ITF iy onr = Ce (17 1a1meme onr + Iglmey) @)
holds, where u:=Tf € H! (BRrg (0)\I") denotes the solution of

—Au = f in £2, Vlimbt =g onl, (u, )20y =0,
—Au=f in Bg,(0)\£2, yXMu=g¢ onT, Y =0 on dBg,(0).

The condition on the parameter oy again can be described in terms of two problems,
a pure Neumann problem posed in £2, for which we need a compatibility condition,
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600 M. Faustmann, J. M. Melenk

and a mixed Dirichlet-Neumann problem posed on Bg,, (0)\£2, which is uniquely
solvable without the need to impose a solvability condition for f, g.

The parameter oy again depends only on the geometry and the corners/edges that
induce singularities. In fact, on polygonal domains, i.e.,d = 2,ap = ay, see, e.g., [9].

Studying the inhomogeneous Neumann boundary value problem —Au = 0, d,,u =
g, leads to the boundary integral equation of finding ¢ € H'/?(I") such that Wy = f
with f € H~'/2(I') satisfying the compatibility condition (f, 1);2(r) = 0, and the
hyper-singular integral operator W € L(H'/?(I"), H~'/2(I")) defined by

Wo(x) = —0p, f On, G (x, e(ydsy, xel.
r

We additionally assume that I” is connected, so that the hyper-singular integral oper-
ator has a kernel of dimension one consisting of the constant functions. Therefore,
the boundary integral equation is not uniquely solvable. Employing the constraint
(@, 1) 12(ry = 0 leads to the stabilized variational formulation

(Wo, ¥) 2y + (@, D2y (0, Dz = (F V) 2y Y € H2(D),  (2.8)

which has a unique solution ¢ € H 1/ 2(F ), see, e.g., [26]. For the Galerkin discretiza-
tion we employ lowest order test and trial functions in S (7;,):={(u € H Yy :
u|Tj € P1VT; € 71}, which leads to the discrete variational problem of finding

¥, € SY1(T5,) such that

(Wop, Wh)LZ(p) + (@n, 1)L2(1") (Yn, 1>L2(F) =(f, 1//h>[‘2(1") Vi € Sl’l(lﬁz)- (2.9)

The following theorem is the analog of Theorem 2.3 for the hyper-singular integral
equation. The local error in the H'-seminorm is estimated by the local best approxi-
mation error and the global error in a weak norm.

Theorem 2.8 Let Assumption 2.7 hold and let Ty, be a quasi-uniform, y -shape regular
triangulation. Let ¢ € H 12y and op €8 Ll satisfy the Galerkin orthogonality
condition

(W@ = o). ¥ 2gry + (@ = ons D2y Wns Diagry =0 Yy € SU1(Tp).
(2.10)
Let Iy, I" be open subsets of I' with Iy C I' C I' and R:=dist([p, dI") > 0. Let h
be such that CaN% < % with a fixed constant Cy,, depending only on ay. Assume

that ¢ € Hl(f). Then, we have

lo — onll g SC( inf o —xullg () + e —onlly—e )
@ = @rllH(Iy) S (T @ — Xnllg\(r) @ — Pnllg—n ()

The constant C > 0 depends only on I, I, I.d, R, and the y-shape regularity of
Th.
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Local convergence of the boundary element method 601

Again, assuming additional regularity, the local estimate of Theorem 2.8 leads to a
higher rate of local convergence of the BEM for the stabilized hyper-singular integral
equation.

Corollary 2. 9 Let the assumptions of Theorem 2.8 be fulfilled. Let I' C Tbea
subset with T’ - F dlst(F 8F) > R > 0. Additionally, assume ¢ € H'2T(mn
HYB() witha > 0, B € [0, 1]. Then, we have

”@ - wh”H](FO) < Chmin{1/2+0‘+l¥N,ﬂ}

with a constant C > 0 depending only on I', I, f’, F, d, R, «a, B, and the y-shape
regularity of Tj,.

3 Shift theorems

The following two sections are dedicated to the proofs of Theorem 2.3 and Corol-
lary 2.4 for Symm’s integral equation as well as Theorem 2.8 and Corollary 2.9 for the
hyper-singular integral equation. We start with some technical results that are direct
consequences of the assumed shift theorems from Assumption 2.1 for the Dirichlet
problem and Assumption 2.7 for the Neumann problem. The shift theorem of Assump-
tion 2.1 implies the following shift theorem for Dirichlet problems:

Lemma 3.1 Let the shift theorem from Assumption 2.1 hold and let u be the solution
of the inhomogeneous Dirichlet problem —Au = 0 in Br, (O\I'", you = g on I" U
dBr,, (0) for some g € H'/2(I' U3 Bg,, (0)).

(1) There is a constant C > 0 depending only on §2 and ap such that
||u||H1/27uD(BR9(0)\p) <C ||g||H*0fD(ruaBR_Q ) - (3.1
(ii) Lete € (0,apland B C B’ C Bgy, (0) be nested subdomains with dist(B, dB’) >

0. Let n € C®(RY) be a cut-off function satisfyingn = lon BN I, suppn C B,
and ||T]||Ck(3) < dist(B, dB')~* for k € {0, 1, 2}. Assume ng € H'*¢(I"). Then

lwll gr3rzse gy < € (el grggnry + Imgll e ry) - (3.2)
Here, the constant C > 0 additionally depends on dist(B, 9 B').

Proof: Proof of (i): Let v solve —Av = w in Bg, (0)\I', yov = 0 on I" U dBg,, (0)
for w € H™1/27e>(Bg, (0)\I"). Then, in view of (1.2), we have

{u, w) 25, 00\

lull gir2-ep g, ©OnNry = sup
(Brg OND) weH /2D (B, (O\I) llwll - /24D (Bgg, (O\I")

—{u, Av) 20, 0\

= Sup .
weH /24D (B, (O\I) lwll gg=1/2+ep (Brg (O\I)
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602 M. Faustmann, J. M. Melenk

Integration by parts on £2 and Bg,, (O)\§ and the boundary condition ypv = 0 lead
to

(u, Av) 2 onr) = (AU, V) 125 o) F (Yous [8av]) 2y
+ (vou, ) 1258, (0))
= (8. [0nvD) r2¢r) + (82 0nV) 123 B,y 0)) -

We split the polygonal/polyhedral boundary I" = | Jj_, T into its (smooth) faces I
and prolong each face I'y to the hyperplane I"™°, which decomposes R into two half
spaces .Qgt Let x;, € L%(I") be the characteristic function for I';. Since the normal
vector on a face does not change, we may use the trace estimate (note: 0 < ap < 1/2)
facewise, to estimate

m
100w 011l rem <Z||xz[w ey S D IVl gieen im0
(=1 =1

S ||U||[-13/2+Dt[>(31‘,Q (O\T) * 3.3)
As the boundary 0Bg,(0) is smooth, standard elliptic regularity yields

18n 11 10 2y 01 S 101l r372en (3 0y ) This leads to

)(g, [(0nv])2¢r) + (8, anU>L2(aBRQ(()))‘

Nl g1/2-ep (g O\ S sup
e O weH™'2TeD (Brg (O\I') lwllg=1/2400 (B, 0\1)

el ir-eo (ruameg @y (11001 oy + 100l 015 00))

S sup
weH~ /2D By, (O\T) lwll g=1/2+ep (B, O\

Vil 32+ 8, 0\ 1)

S ”8”1-1*010 r S
~ (I'UdBg, (0))
: weH /2 “D (BRg, (O\TI) flw ”H 12 “D(Brg, (O\I")

Ass. 2.1

S 1gla—en (ruasg, o) -

Proof of (ii): With the lifting operator £ : H'*(I") — H3/>*¢(Bg,(0)\I")
from (1.4), the function @:=n%u — nL(ng) satisfies

— Al = —4nVn - Vu — (An*)u + A(nL(ng)) in Br, (O\T,
you =0 on I' U 3 Bg,, (0).

With the shift theorem from Assumption 2.1 we get
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Local convergence of the boundary element method 603

2
el gr32+emrry < H” ”H H3/2+(B\T")

= ”i”HW“(BRQ o\ T ||’75(778)||H3/2+5(BRQ O\
< H4nVn -Vu + (An2)u‘

e onry H IA@EG 12ty o)

+ 1L 37242 (B, 0\ 1)
S lullargnry + 1@ e e, onry S Nullmianry + Ingllmery

which proves the second statement. O

The following lemma collects mapping properties of the single-layer operator V
that exploits the present setting of piecewise smooth geometries:

Lemma 3.2 Define the single layer potential 1% by
V(ﬁ(x)::/ G(x, )¢ (y)dsy, X € Rd\f‘. (3.4)
r

(1) The single layer potential V is a bounded linear operator from H=/215(I") to
H'"(Br, (O\I) for —1/2 < s < 1.
(ii) The single-layer operator V is a bounded linear operator from H~'/>%5(I") to
HY2H(D) for —1/2 <5 < 1.
(iii) The adjoint double-layer operator K' is a bounded linear operator from
H=124(y to HV2H5(D) for —1/2 < s < 1.
Proof: Proof of (i): The case s € (—1/2,1/2) is shown in [22, Thm. 3.1.16], and
for s = —% we refer to [29]. For the case s € [1/2, 1), we exploit that I" is piece-
wise smooth. We split the polygonal/polyhedral boundary I" = | J;_, Ty into its
(smooth) faces I'. Let x, € L2(F ) be the characteristic function for I';. Then, for
¢ € HV/2+s(I"), we have V(p = V(ngo) We prolong each face I to the
hyperplane I'°, which decomposes R into two half spaces .Qi Duetos < 1, we
have xpp € H™ 1/24s (ry >°). Since the half spaces SZ have smooth boundaries, we
may use the mapping properties of V on smooth geometries, see, e.g., [15, Thm. 6.13]
to estimate

hE

H V(pHHI‘H(BRQ O\T) < HV(XW) ”H1+S(.Qf)

=1

S

M=

Ixe@ll g=172+s (rpey S l@llg=112+5(ry -

~
Il

1

Proof of (ii): The case —1/2 < s < 1/2 is taken from [22, Thm. 3.1.16]. For s €
(1/2, 1) the result follows from part (i) and the definition of the norm || - || gs () given
in (1.3).

Proof of (zu) The case —1/2 < s < 1/2 is taken from [22, Thm. 3.1.16]. With
K = 8nV — —Id the case s € (1/2,1) follows from part (i) and a facewise trace
estimate (3.3) since

@ Springer



604 M. Faustmann, J. M. Melenk

” an";@HH—l/2+x([') S H V(p||Hl+.v(Q) S ||¢||H71/2+S(1")~
O

In addition to the single layer operator V, we will need to understand localized
versions of these operators, i.e., the properties of commutators. For a smooth cut-off
function n, we define the commutators

(Cyd)(x):=(V () — 1V ($))(x) = /F G(x, y)((x) — ()P (dsy, (3.5)

(C19)(x):=(Cy(nh) — nCy(@)) (x) = /F G(x, »)(n(x) = (1)) (y)dsy. (3.6)

Since the singularity of the Green’s function at x = y is smoothed by n(x) — n(y), we
expect that the commutators C,,, C, have better mapping properties than the single-
layer operator; this is stated in the following lemma.

Lemma 3.3 Let ) € C°(RY) be fixed.

(i) Let s € (=1/2,1/2). The commutator C, can be extended in a unique way
to a bounded linear operator C, : H='(I') — H'*(I"). The continuity
constant depends only on ||n|ly1.cay, §2, and s. Furthermore, the operator is
skew-symmetric (with respect to the L*(I")-inner product).

(i1) The commutator C,;’ is a symmetric and continuous mapping C ,;’ cH- 1=y -
H'*ep(I"). Here, the continuity constant depends only on 71l w.c0 ray, 2, and
the constants appearing in Assumption 2.1.

Proof: Proof of (i): 1. step: We show the boundedness for the case 0 < s < 1/2. Let
¢ € H~'15(IM), and set

u=Cyp:=Vng) — nV(@). (3.7)

Since the volume potential Va  is harmonic and in view of the jump relations [yo \7¢] =
0, [0, V¢] = —¢ satisfied by V, cf. [22, Thm. 3.3.1], we have

—Au=2Vy-VVé+ AnVeé inRIA\T,
[youl =0, [0,u] =0 onrl.

We may write u = N'(2V7p - vx7$+ An V(lﬁ) with the Newton potential
N f(x):= /Rd G(x,y)f(ydy, (3.8)

since u and N (2V 7 - V\7$+ An \75) have the same decay for |x| — oco. The mapping
properties of the Newton potential (see, e.g., [22, Thm. 3.1.2]), as well as the mapping
properties of V of Lemma 3.2, (i) provide
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lll s g onry S 1290 VVO + A0V i, onr)

5 H VEEH}L]'/HA(BR(2 O)\I") 5 ”EEHH—]‘*‘S(F)‘ (3.9)

The definition of C,, and the definition of the norm |-|| HI+s (I from (1.3) prove the
mapping properties of C;, for 0 < s < 1/2.

The mapping properties of the Newton potential ( see, e.g., [22, Thm. 3.1.2]) also
lead to

[ G’Ia”Hl/ZH(BRQ(O)\F) = llull g1/2+s ey, 0\ S| V‘;;” H=1/245(Bg, (O\I') *
(3.10)

2. step: Since V is symmetric, we have for arbitrary a, v e HV2(IN)
(Chd, ¥) = (Vnd) =V (@), ) = (&, nV (@) — V(1)) = = (8, Cyv).

With the mapping property C,, : H~'T5(I") — H'*$(I") for 0 < s < 1/2, we see
that the right-hand side of this equation extends to a bounded linear functional on
H~'=5(I"), which proves the mapping properties for the case —1/2 < s < 0.
A similar computation proves the symmetry of the commutator C ,'77 asserted in (ii).
3. step: We have C,, : H™'"*(I") — H'YS(I') for s € (—1/2,1/2)\{0}. An
interpolation argument extends the boundedness to the remaining case s = 0.
Proof of (ii): Let e
vi=Cp¢ = Cy(ng) — nCyo. (3.11)

Since
AC,(n§) —nACyp = —2Vn - VCyd — AnCrp —2|Vn|* Vg,
the function v solves

—Av =4V -VCyo +2A7C,¢ +2|Vn* Vo inRI\T, (3.12)
[vov] =0, [d,v] =0 onrl. (3.13)

Again, the function v and the Newton potential of the right-hand side of (3.12) have
the same decay for |x| — oo, and the mapping properties of the Newton potential as
well as the previous estimate (3.10) for C,¢ provide
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11l 3724 B, o\ 1) S |4Vn - VCy +2AnCy + 21V V(PHH*I/H“D(BRQ O\

< ananm/mnwm onm T [ V$}|H"/2+°‘D(BRQ ON\T) (3.14)

(310) Ot[)<1/2

S }“75”}1*1/2”0(3@(0)\1“) S ”‘7$HH1/2’°‘D(BRQ(O)\I‘)'

We apply Lemma 3.1 to \7$ Since dist(I", d B, (0)) > 0, we have that \7$is smooth
on d B, (0), and we can estimate this term by an arbitrary negative norm of ¢ on I”
to obtain

— 3.D R
Ve e (Brg, ONF) [0Vl y-an (I'U3Bgg, (0))
< ” Vo ”H—au(r) + ||¢||H"_‘"D(F) :

The mapping properties of V of Lemma 3.2, (ii) and the symmetry of V imply

~ <V$ w>L2(1") (a Vw)L2(F)
Vv —a = su - =) — e
Vel b weH"‘g(l‘) lwlgenry  wenenary lwlaenr)

< ||$||H*1*“D(1") va”HH'“D(p)

<ol i )
weHD (I') ”w”HO‘D([‘) ~ H¢”H 1 D(I')

Inserting this in (3.14) leads t0 [[vll 32+ g onry S 8] y-1-ap )+ Which,

together with the definition of the H 1+¢p (M)-norm in (1.3), proves the lemma. O

The shift theorem for the Neumann problem from Assumption 2.7 implies the
following shift theorem.

Lemma 3.4 Let Assumption 2.7 be valid, and let u be the solution of the inhomoge-
neous problems

—Au=0 in$2, ylimu =gn onl, (u, 1) 1200y =0,
—Au=0 inBr,(O\2, yXu=gy onl', y™u=gp ondBr,(0),

where gy € H™'/2(I") with (gn . 1) 12y = 0, and gp € H'?(3Bg,(0)).

(1) There is a constant C > 0 depending only on §2 and an such that

||M||Hl/2—dN(BRQ (O\T) <C (”gN”H_l_O‘N(F) + ”gD”H—“N(aBRQ (()))) . (3.15)

(i) Let ¢ € (0,an]. Let B C B’ C Bg,(0) be nested subdomains with
dist(B, 3B') > O and let n € C{°(RY) satisfy n = 1on BN T, suppn C B', and
Inllck gy S dist(B, dB") K fork € {0, 1,2). Assume ngy € H®(I"). Then
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lll garzee gy < € (Il oy + Ingnlecry) - (3.16)
Here, the constant C > 0 depends on 2, ay, and dist(B, dB’).

Proof: Proof of (i): For w € H™'/2+%N (Bg_ (0)\I") and w := ﬁ (w, 1) 12, let v
solve

int

—Av=w—w in$2, vy v=0 onl, (v, )12y =0,
—Av =w in Bg,(0)\£2, yi*v=0 onTr, y(i)mv =0 ondBg,(0).

Then, with (u, 1)Lz(9) = 0, we have

w1208, , 00\ 1)

Nl gir2-an (g oy = sup
o O weHV2ax (B o) W =124 By, o1\

(u, w — E)LZ(Q) + (u, w)LZ(BR_Q (O\D)

= sup
weH=V2 N (Bro (O\) Wil gr-1/2+ew (5, o0\ 1)
= u, Av) 2, 00\1)
= sup .

weH /2N (Brg, (O\I) Wil gy=1/2+en (B, )

Integration by parts on £2 and Bg,, (0)\ 2 and the boundary conditions of v lead to

(1, AV) 128, 001y = (At V) 2085 op\ ) — (Bntt, [Y0V]) 12(r)
+ (vou, dnv) 123 B, (0))
= —{gn, [vovD z2(r) + (8D> 3V} 12(3 B, 0)) -

The definition of the norm (1.3) implies

int

H Y0 S ||v||H3/2+‘1N(BRQ (O\T) »

H Hten ()

and the same estimate holds for yoe’“v. Since d B, (0) is smooth, we may estimate

with the trace inequality

”anv”H"‘N(BBRQ(O)) S ||v||H3/2+aN(BRQ(0)\F)'

This leads to
ul < (gn, [}’OU])LZ(I‘) — (gD, 3nU>L2(33RQ 0))
Ul g1/2=an (Bg,, (O\I) ~ sup
ro O weH /24N (B, (O\I) ”w”H’”“”N(BRQ (O\I)
< llgn ”H’l"’N ) ”[)/OU]HHH’“N () + llgpllg-eay (9Bgg, (0) 100 vl e (9Brg (0)
= sup
weH=1/2+aN (Bye (O\) Nl =172y (3, o1
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IVll 32+ i, O\ 1)

S (NeW l=r-sw (1 + 18Dl 1o 35, 0 ) s e
~ H=1=n (I) 8D H=N (9Bg,, (0))
( fa weH V2N (B, (O\I) w172+ (Brg (O\I)

Ass. 2.7

S llgn Il g—1-ay oy T llgnll g (9BRrg (0))

Proof of (ii): Since n = 0 on 9 Bg,, (0), the function u:=nu satisfies

—All = =2V - Vu — (Ap)u in Bgg, (O\T,
VM = ()™ u + ngn onT,

Y = (@m)y u + ngn onT,

Y =0 on 8 Bg,, (0).

The shift theorem from Assumption 2.7 and the trace inequality || (0nm) yému || HI2(I) <
|| u || H! (B'\I") prOVide

flu ||H3/2+6(3\1*) = ||f"7||1-13/2+£(3R_(2 (O\I)

S 112V - Vu + (Aﬂ)UHH(BRQ(o)\r) + H (&z’?))’(imu”

HE(T)
+ [ @) ys u| wery T I8Nl r)
S ”u”Hl(B’\F) + ||778N||H8(1“) )
which proves the second statement. O

The following lemma collects mapping properties of the double-layer operator K
and the hyper-singular operator W that exploit the present setting of piecewise smooth
geometries:

Lemma 3.5 Define the double layer potential K by
E¢(x):=/ O, G(x, y)p(y)dsy, x€ RAT. (3.17)
r

(1) The double layer potential K is a bounded linear operator from HY*+S(I") to
H'(Br, (O\I) for —1/2 < s < 1/2 4+ ay.
(ii) The double layer operator K is a bounded linear operator from H 17245 (") to
HY2S(I) for —1/2 < s < 1/2 + ay.
(iii) The hyper singular operator W is a bounded linear operator from H'/?*5(I")
to H-V2H(I) for —1/2 —ay < s < 1/2 + ay.

Proof: Proof of (i): With the mapping properties of the single layer potential Ve
L(H™'2*+5(I), H'#S (B, (0)\I")) from Lemma 3.2, the mapping properties of the
solution operator of the Dirichlet problem from Assumption 2.1 (T : H'/?*5(I") —
H'*(B ro (0)\I")),and the assumptionay < o p, the mapping properties of K follow
from Green’s formula by expressing K interms of V, T, and the Newton potential \V.
For details, we refer to [22, Thm. 3.1.16], where the case s € (—1/2, 1/2) is shown.
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Proof of (ii): The case —1/2 < s < 1/2 is taken from [22, Thm. 3.1.16]. For
s € (1/2,1/2 + ay] the result follows from part (i), the definition of the norm
I+ | gs+1/2(y given in (1.3), and K = yi™K + 11d.

Proof of (iii): The case —1/2 < s < 1/2 is taken from [22, Thm. 3.1.16]. Since
W = —8,11? , we get with a facewise trace estimate as in the proof of Lemma 3.1,
estimate (3.3), that

IWelly-120sry = 00K 0] oy S 1K0] gvsay S Il -

which finishes the proof for the case s € (1/2, 1/2 4+ ay]. With the symmetry of W,
the case s € [—1/2 — an, —1/2) follows. O

For a smooth function 1, we define the commutators

Ch@ := Wnp) —nWg, (3.18)
Cl(@) = Cy(n@) — nCy(@) = Wn*9) —2W (@) + n*W(@).  (3.19)

By the mapping properties of W, both operators map H'/?(I") — H~'/2(I"). How-
ever, Cy, is in fact an operator of order 0 and Cg is an operator of positive order:
Lemma 3.6 Fixn € C°(RY).

(i) Lets € (—1/2,1/2). Then, the commutator Cy can be extended in a unique way
to a bounded linear operator H*(I") — H*(I"), which satisfies

IChellesry < Cllellusary Vo € H(I). (3.20)

The constant C depends only on ||n|ly1.0c(ra), §2, and s. Furthermore, the operator

is skew-symmetric (with respect to the extended L*-inner product).

(i1) The commutator C,'; is a symmetric and continuous mapping C,? cH™N() —
H*N(I"). The continuity constant depends only on |1y 1.0 (ga), §2, and the con-
stants appearing in Assumption 2.7.

Proof: Proof of (i): 1. step: We show (3.20) for the range 0 < s < 1/2. For ¢ €
HY 2(F), consider the operator

Cop:=K (n9) — nK (9) — V((@0,m)¢) 3.21)

with the single layer potential V and the double layer potential K from (3.17). Using
the jump conditions [yy V¢] =0, [0, V(])] = —¢ for V and additionally the jump
relations [ yoK¢] ¢,L8 K¢] = 0 satisfied by K from [22, Thm. 3.3.1], we observe
that the function u := C; ¢ solves

—Au=2Vn- VK¢ + (AnKe in RA\ T,
[youl =0, [8yu]l = —8,nlyoK @] — [8,V (3,m¢)] = O onT.
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The decay of u - the dominant part is the single-layer potential - and the Newton
potential N'(2Vn - VKq) + (An)Kq)) for |x| — oo are the same, which allows us to
write u = N(2Vy - VK o+ (A r;)K ®). With the mapping properties of the Newton
potential and the standard mapping properties of K from [22, Thm. 3.1.16], we get

el 372+ (B O\ 1) S [Vn-VKe+ AnK¢||H—l/2+s(BRQ O\T)
S} ”K(p”Hl/ZH(BRQ(O)\r) 5 ||§0||HX([‘) . (322)

The trace estimate applied facewise as in the proof of Lemma 3.1, and estimates (3.3),
(3.22) lead to

I 3ncn¢”HS(p) = l0null gscry S Mell r3rzes gy, oy S N@lascry - (3.23)
Similarly, we obtain with Lemma 3.2, (i)
13,V )l msry < ||V(n¢)||H3/2+v(BRQ(o)\r) S el asry- (3.24)

Next, we identify 3,C;. With W = —3,K, K’ = 8,V — 1 1d, and K = 1 1d +yi" K,
we compute

0.Cyp = nWe — W(ng) — K'(3,m)@) — @ K .

Recalling the mapping properties K', K : H*(I") — H*(I") and the relation 9, V=
$1d —K’, we get with the aid of (3.23), (3.24)

IWe) —nWellasary S lellas - (3.25)

2. step: Since H'/?>(I') is dense in H*(I'), s € (0, 1/2), the operator Cy can be
extended (in a unique way) to a bounded linear operator H*(I") — H*(I").

3. step: The operator C, is skew-symmetric: The operator W maps H 2(ry —»
H~'2(I") and is symmetric. The skew-symmetry of C, then follows from a direct
calculation.

4. step: The skew-symmetry of C, allows us to extend (in a unique way) the operator
as an operator H *(I") - H™5(I") for 0 < s < 1/2 by the following argument: For
@, ¥ € H'2(I") we compute

(Cop, V) = — (0. Cy¥). (3.26)

Since C, : H*(I') — H*(I') for 0 < s < 1/2, we see that ¢ +— (¢, Cyyr) of the
right-hand side of (3.26) extends to a bounded linear functional on H ~*(I"). Hence,
Chp :H(I') - H(I') for 0 < s < 1/2.

5.step: Wehave C, : H*(I") — H*(I") fors € (—1/2, 1/2)\{0}. An interpolation
argument allows us to extend the boundedness to the remaining case s = 0.
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Proof of (ii): Let ¢ € H~*V(I"). The argument leading to the first inequality in
(3.22), i.e., the mapping properties of A/, also shows

1Co @l 124 (8, on ) S 1K@ 17240 3, o0 1) (3.27)
Since
AC, (1) — nAC,§ = =2V - VC,§ — AnCy@ — 2 |Vn* K& — AV (8,19)).
the function v := 8777 ’(p\::(ffv,7 np) — 775,7?5 solves

—Av =4V - VC o +2AnC, 7+ 2|Vn> Kg + AV (3,m9))  inRA\T,
[yovl =0, [0,v]=0 onrl.

Again, the decay of v and the Newton potential applied to the right-hand side of the
equation are the same. Hence, the mapping properties of the Newton potential provide

ol g3/2+an (B, 0\ 1)

S [490- V8@ + 2800, + 21901 Ko + AT @angn |

~1/2HON (B, (O\I)
S ”CUa”Hl/ZJrO‘N(BRQ (O\I") + || K?ﬁ”Hrl/?ﬂw(/z;RQ (O\I")
+ V@9 HY24eN (Bg, (O\T)
3271 R
N HK@“H’V”"N(BRQ onry T 1@l g-1+an )
ay<l1/2 ~ N
SJ HK(p||H1/2""N(BRQ(O)\I") + ||¢||H*H""N(]") . (328)

We apply Lemma 3.4 to K¢ — K@, with ?@:ZIQZ_I (K9, 1)L2(.(2)‘ Since we assumed

dist(I', 9B, (0)) > 0, we have that E@is smooth on d B, (0), and we can estimate
this term by an arbitrary negative norm of @ on I" to obtain

N I 3.15) ~
~ T < ~ _~
HKQD K§0HH1/2—‘¥N (BRQ ON\D) ~ ||W<P||H—1—aN ) + || VOKQU”H—aN(aBRQ (0))

S ||Wa||H*1*0tN o T ||$||H*°f1v -
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The mean value K @ can be estimated with r=|x |2, the observation Ar? = 2d, and
integration by parts by

Xol <R3, A 2> < ( ngs g 2> ( int g 5
’ wﬂw‘( CAT) | S |0 K@ drT) T K

)
LX)

LX)

~ / 2 -~ 2

s ‘(w (K' = 1/2)3,r )Lz(m‘ + ‘(Wgo, )
S ”a”H*O‘N(F) + ||Wa||H*1*aN(r) > (3.29)

where the last step follows since K’ is a bounded operator mapping HN (I") —

H*N(I") by Lemma 3.2. Using the mapping properties of W of Lemma 3.5, (iii) and
inserting (3.29) in (3.28) leads together with a facewise trace estimate to

”anv”HaN ) ,S ”v”H3/2+°‘N(BRQ (O\I) ,S ”anl—[—“N -
The computation
—C1% = 0,C1 + K' (@@ — nK' (@@ + 2@ 10Cy (@) + @am)V (321)P).

the mapping properties of V' and the commutator of K " (as normal trace of the com-
mutator C;, from Lemma 3.3, cf. (3.9)) prove the lemma. O

4 Proof of main results
With the consequences of the shift theorems from the previous section, we can prove

our main results, the local error estimates for Symm’s integral equation and the hyper-
singular integral equation.

4.1 Symm’s integral equation (proof of Theorem 2.3)

The main tools in our proofs are the Galerkin orthogonality

(V($ —bn), ¥n) =0 Yy, € S0(Tp) 4.1

and a Caccioppoli-type estimate for discrete harmonic functions that satisfy the orthog-
onality
(vov. ¥i) =0 Vi € S"O(Th), supp Y C DN T 4.2)

More precisely, we employ the space of discrete harmonic functions on an open set
D C R? defined by

Hp(D):={v € HI(D\I"): v is harmonic on D\ T,
W € SP9T) s.t. [0pv]lpAr = Vlpar, v satisfies (4.2)}.  (4.3)
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Proposition 4.1 [11, Lemma 3.9] For discrete harmonic functions u € Hy(B’), the
interior regularity estimate

1
IVull 2pry + > lull2pr) (4.4)

=

IVull 28 <

holds, where B and B’ are nested boxes and d:= dist(B, dB’) > 0 satisfies 8h < d.
The hidden constant depends only on §2, d, and the y -shape regularity of Tj,.

As a consequence of this interior regularity estimate and Lemma 3.1, we get an
estimate for the jump of the normal derivative of a discrete harmonic single-layer
potential.

Lemma 4.2 Let Assumption 2.1 hold and B C B’ C Bg,(0) be nested boxes with
d= dist(B, dB’) > 0. Let h be sufficiently small so that the assumption of Proposi-
tion4.1 holds. Letu::V{h with¢y € SO’O(’E) and assumeu € Hy(B'). LetT’ ¢ BNl
and n € C3° (RY) be an arbitrary cut-off function satisfying n = 1 on B’ N\ I". Then,

I[8n2elll 27y < € (h"‘D/“”"’D’ In¢all 2y +h~" 10V Enll gen ry + 12n ||H71/z(p)) :
4.5)

The constant C > 0 depends only on 2.d,d, the y-shape regularity of Tp,
171l w1.00(ra), and the constants appearing in Assumption 2.1.

Proof: We split the function u = ugyy + Upear, Where the near field upeor and the far
field ug,, solve the Dirichlet problems

—Alpear =0 in BRQ O\, Yol near = NV &p onl" U aBR_q 0),
~Augg =0 in Bro O\, your = (1 — V&, onI" UdBry (0).

We first consider ylimunear - the case yf’“unear is treated analogously.

Let 77 be another cut-off function satisfying 7 = 1 on I and supp7 C B. The
multiplicative trace inequality, see, e.g., [16, Thm. A.2], implies for any ¢ < 1/2 that

int int -~
H Vlm Unear 5 H Vlm (Mutnear)

L2(T) L2(BNI)

~ 2¢e/(142. ~ 1/(142.
SV Gtnea) 1750 IV Gtnear) | 17552 1,

—~ 2e/ (142, ~ 1/(1+2
SV @tnead 7457 Tttnearl e, - 4.6)

Since upear € Hp(B'), we use the interior regularity estimate (4.2) for the first term
on the right-hand side of (4.6), and the second term of (4.6) can be estimated using
(3.2). In total, we get for e < ap < 1/2 that
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o~ 2e /(142 ~ 1/(142
IV @tncar) 17,5, Wttnear e s,

2e/(142¢)
< (M 1 Vitnearll 125y + ltnearll 2c5) >

1/(142
 (Netnearll 1 51y + 10V Ehll e ry) /2

2e /(142 2e /(142 1/(1+2
Sh e/ +2e) ||unear||111(5/) + ||unear||L52/((B/) ! ||unear||h{1((3/)5)

2e/(142 1/(1+2 2e/(1+2 1/(1+2
o+ Ntnear 4y IV SRl + 12002 | Vtnear 35502 IV a7

=T +T+ T3+ 14 “4.7)

Let Z, : C(I') — S"!(7},) be the nodal interpolation operator. The mapping proper-
ties of V from Lemma 3.2, (ii), the commutator C,, from (3.5) as well as an inverse
inequality, see, e.g., [13, Thm. 3.2, Thm. 3.6], lead to

IVl givery S IV EN ey + chfh ||Hl+e([‘) S m&nllmery + 18nll -1y
SMNZuenllgery + 100 = Zum)nll gery + Wnll 142
S BTENTR Gl 2y + B Gl ey + R0 2y + 1hll-rve oy
S B (Il = Znm)én 22y + Ingn ||L2(F)) + 18nll g-1+e )
S (Ingull 2y + 18nll 1)) - (4.8)

With the classical a priori estimate for the inhomogeneous Dirichlet problem in the
H!'-norm, the commutator Cy, and Lemma 3.3, we estimate

T = W/ unearll i gy S B2/ IV Sl ey

< p2e/(4e) (||V(n§h)||H1/z(p) +|Cytn ”HI/Z(F))

< p0Fe (nnzhan(m + 12all yy-1-ap (m) , 4.9)
2e /(142 1/(142
Ty = W22 | Vapeqe |25 52 IV anl 20
(4<8) 2¢/(1+42¢) 2e/(142¢) (7 —¢ —e 1/(1+2¢)
S h letnearlly1 (R~ ngnll 2y + b~ Wnllg-1r))
“4.9) 1428)
S R (gl 2y + 16nll-1cmy) - (4.10)

We apply (3.1), (since n = 0 on dBg,, (0) only the boundary terms for I" appear)
together with Young’s inequality ab < a”/p + b /q applied with p = (1 + 2¢)/2e,
q = 1 4 2¢ to obtain

2¢e/(142. 1/(142.
T = lttnearl 355 > IV Gl 1)

3.1),4.8) e /(140
S IVl s (T Imgallagry + Nl

)1/(1+25)
S Vel g-en (ry + B Imgnll 2y + N8l -1y -
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Local convergence of the boundary element method 615

Similarly, we get for the second term in (4.7)

2e/(142 1/(1+42
T = ”Unear”ng/((B/) ® ”unear”H/l((B/)E)
3.1
_ 2e/(142 1/(142
S RO v g N W funearlg
4.9)

S R mVanllg-an iy + B Ingull 2y + B2 160l g-1-an ) -
Inserting everything in (4.7) and using & < 1 gives

I an”mear”]}(]’*)
SR (gl 2y + Wnlg-1my) + R 10V &l g-an oy -

Applying the same argument for the exterior Dirichlet boundary value problem leads
to an estimate for the jump of the normal derivative

I3nttnearlll 27y S B2 (Il 2y + Nanllg-10r)) + 2 10Vl gan oy -

It remains to estimate the far field ug,r, which can be treated similarly to the near field
using a trace estimate and Lemma 3.1. Applying Lemma 3.1 with a cut-off function
7 satisfying 77 = 1 on BN I" and supp7j C B’, the boundary term in (3.2) disappears
since 77(1 — n) = 0, which simplifies the arguments:

”[8nufar]||L2 = ”[an(ﬁufar)]”L2 2l 5 ||ufar||1-13/2+8 B)
) ) (

3.2)

S Nutarll gy + 100 =V Enll rvery = Ntgarll o

Sha- 77)V§h||Hl/2(1"u313R_(2 0)) N ||§h||H—1/2(r),

which proves the lemma. O
We use the Galerkin projection [Ty : H_I/Z(F) — SO'O(’]Z), which is defined by
(V@ —1v). yn) =0 Yy € S*(Tp). (4.11)
We denote by I, the L?(I")-orthogonal projection given by
(Ihu, Uh>L2(r) = (u, Uh>L2(r) Y, € SO’O('EJ
The operator I, has the following super-approximation property, [ 18]: For any discrete

function ¥, € $%°(7,) and a cut-off function n, we have (with implied constants
depending on ||7]|y1.00)

In¥n = ) 2y S B D V@YD 2y S B I - 412)
TeT),
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616 M. Faustmann, J. M. Melenk

The following lemma provides an estimate for the local Galerkin error and includes
the key steps to the proof of Theorem 2.3.

Lemma 4.3 Let the assumptions of Theorem 2.3 hold. Let 1/“\0 be an open subset of I’
with Iy C Iy € I' and R:=dist(Iy, dIp) > 0. Let h satisfy % < ﬁ Assume that
¢ e Lz(ﬁ)). Then, we have for the Galerkin error ¢ — ¢y, = ¢ — [y ¢

¢ — énll2 SC< inf ¢ — xull2my + 10— Inllg-12F7
L2(IY) eS0T L2(Ty) H-12(Ty)

4 pen/(42ap) g Sull 2y + P — ¢h||H10‘D(1")> :

The constant C > O depends only on I', I, d, R, and the y-shape regularity of T,.

Proof: We define e:=¢ — ¢, open subsets Iy C I'1 C I»--- C I5 C I,;o, and
volume boxes By C By C By--- C Bs C R4, where B; N fo = [;. Throughout
the proof, we use cut-off functions n; € C(‘)>o (]Rd), i=1,...,5,satisfying n; = 1 on
[ty suppni C Bi,suppni NI C I and | Vigill oo,y S - We write

€12y = Imelagry = (e, me) = (e, nte). (4.13)

With the Galerkin projection /1y from (4.11), we obtain

Iniel7a gy = (e, n%e> = <nse, n%e>

= <17v(7756)» rﬁe> + <n5e — Iy (nse), n%e). (4.14)

With an inverse inequality and the L?-orthogonal projection I, which satisfies the
super-approximation property (4.12) for ns¢y, we get

Insén — v (sémllL2cry S WInsén — Inmsd)ll 2y + 1n(sén) — My 1s@n)ll 2y
Shlgnll 2 + 02 1 nGisgn) — Ty isdi) -2
Shlonll 2y + 02 1 nGisdn) — nsdull g-12r)
+ ™ s — v (som) | g-12 )
Shllgnll gy (4.15)

where the last estimate follows from Céa’s lemma and super-approximation. The same
argument leads to

Ins¢ — v sl 2y S lnsd — nsd) 2y + i (sd) — v (sl 2
S Ansoll 2y +h~ 2 1 (nse) — Ty isd)ll g-172 1
< Inséll 2y - (4.16)
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Local convergence of the boundary element method 617

In fact, this argument shows L>-stability of [Ty
1Tyl S W2y Y9 € LAD). (4.17)

The bounds (4.15), (4.16) together imply

‘<775€ — Iy (nse), 77%€>‘

Ins¢ — Iy (7)5¢)||L2(r) + Insdn — HV(’ISQ”h)”H(r))

< |2 ‘
= Hnle LZ(F)(
< Imellzary (Ins@lzgry + 1 ldnl 2
< Imellagry ((U+ 1) 18l 2y + B llell 2 -
(4.18)

For ~the first term on the right-hand side of (4.14), we want to use Lemma 4.2. Since
10, Ven] = —¢n € S%0(7;,) for any discrete function ¢, € S%9(7;,), we need to
construct a discrete function satisfying the orthogonality condition (4.2). Using the
Galerkin orthogonality with test functions v, with support supp 3, C I'4 and noting
that ns = 1 on supp v, we obtain with the commutator C,); defined in (3.5)

0= (Ve,nsym) = (nsVe, yn) = (V(nse) — Cyse, ¥in)
= (V1se) = n5Cose, yn) = (Vnse = V= (15Cose)), vi)

= (Vv (se) = v (V= 15Cose)), i) (4.19)
Thus, defining
=My (nse) — & with &:=ITy (V"' (15Cyse)), (4.20)
we get on the volume box By C RY a discrete harmonic function
u:=Veyn € Hu(By).

The correction &, can be estimated using the L>-stability (4.17) of the Galerkin pro-
jection, the mapping properties of V=, Cys. C,’7755 from Lemma 3.3 by

168120y = | TV (v sCoe)|

< [v-ascye)|

L2(I") g ”nscn5e”Hl(1—‘)

LX)
S ”775€||H*1(1") + ”e”[-]*lfotr)(p) .

421

SJ ||C775(T]56)||H1(F) + HC:;SSe ‘Hl([*)
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618 M. Faustmann, J. M. Melenk

We write

(v (rse), nie) = (Mvnse) — &, nie) + (. nte)

= (1. ne) + (&, nie) . (4.22)

For the second term in (4.22) we estimate

(0. nie)| < Nenllzcr | ie]

.21
S (Imsell-icry + lellg-i-an ) ) Imel 2y - (4.23)

L2(I)

We treat the first term in (4.22) as follows: We apply Lemma 4.2 with the boxes B3
and B3 (note that, since we assumed 124 < R, the COIldition 8h < dist(By, dB3) can
be fulfilled) to the discrete harmonic function u := V¢;, € Hy(B4) and the cut-off
function n4. The jump condition [d,u] = —¢j, leads to

NSl 22 (supp )y < MBnulll 2y
< pop/(+2ap) Imagnll 2y + h! 14V Enll g=en (ry + WSl g-12(ry - (4.24)

The definition of ¢, the bound (4.21), and the H ~!/?-stability of the Galerkin projec-
tion lead to

ISnll 120y < lmsell =12y + 1€l -172(r)
S lnsellg-12¢y + llell g=1-ap (- (4.25)

With the L2-stability (4.17) of the Galerkin projection and (4.21) we get

Enll 2y < Imsell 2ory + Wnll2r
S lnsell 2oy + llell g=1-ap ) - (4.26)

We use the orthogonality (4.19) satisfied by ¢, on I', the L?-orthogonal projection 7,
and the properties of the commutator C;,; given by Lemma 3.3 to arrive at

(Vn, naw) (Vin, naw — In(naw))
a4Vl g—enry= s ——— = su
weH*D (I') ”w”H"D(F) weHYD (I") ”w”HO‘D([‘)
- Im5V nll gy Inaw — In(maw)ll g1y
~ weHD (I') ”w”HO‘D(F)
S 4 (Inséall 2y + |Coséil iy )
SR (IInscallzcry + Il g-1ry) - (4.27)
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Inserting (4.25)—(4.27) in (4.24) and using & < 1, we arrive at

haD/(l+2aD) + hoc/_))

a2 uppy S ( Inseull 2y + 18l -y

S P20 insell 2y + IInsell g-12cry + llell g-1-ap () - (4.28)

Combining (4.14), (4.22) with (4.18), (4.23), (4.28), and finally (4.13), we get

2
||771€||L2(p)

S (16125, + el -2y + 2 AF20) el 2 ) + Nell y-1-ap 1y ) el 2y -

Since we only used the Galerkin orthogonality as a property of the error ¢ — ¢y, we
may write ¢ — ¢y, = (¢ — xn) + (xn — ¢p) for arbitrary x, € 59.9¢7,), and we have
proven the inequality claimed in Lemma 4.3. O

In order to prove Theorem 2.3, we need a lemma:

Lemma 4.4 For every 6 > 0 there is a bounded linear operator Js : H™! (ry —
L2(I") with the following properties:

(1) (stability): For every —1 < s <t < 0 there is Cs; > 0 (depending only on s, t,
2) such that || Jsull iy < 8° 7' Cs || Jsull sy for allu € H(I').
(ii) (locality): for o C I the restriction (Jsu)|, depends only on u|,; with
ws:=Uyep Bs(x) N T
(iii) (approximation): For every —1 <t < s <1 there is C5; > 0 (depending only
ons, t, 2) such that |\u — Jsull gty < Cy, 8l sy for allu € HS(I').

Proof: Operators with such properties are obtained by the usual mollification proce-
dure (on a length scale O (§) for domains in Rd). This technique can be generalized to
the present setting of surfaces with the aid of localization and charts. We also mention
[1,7] where similar operators mapping into S (7;,) are constructed. O

We are in position to prove our main result, a local estimate for the Galerkin-
boundary element error for Symm’s integral equation in the L?-norm.

Proof (of Theorem 2.3): Starting with Lemma 4.3, it remains to estimate the two terms
hep/(1+2ap) lell ;27 and llell 127> Where e:=¢ — ¢p.

We start with the latter. Let 77 € C*®(R?) be a cut-off-function with 7 = 1 on
o, suppi € Bpl, = {x € R : dist({x}, [0) < 5} and [VAll,~ < %. Let i be

anothir cu’t\-off function with 7 = 1 on B};‘;Z N Tandsuppp NI C I, where
dist(/0,9I1) = R. Select 8 = ch with a constant ¢ = O(1) such that the operator
Jen of Lemma 4.4 has the support property supp Jer () C B};}z +5,- We will employ

the operator 1, o Jop, : H=Y(I") - $%0(I") with the L2—0rth0g0nal projection Ij,. It
is easy to see that we may assume that
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620 M. Faustmann, J. M. Melenk

supp(l o Jen (@) C Byl - (4.29)

Concerning the approximation properties, we have

lu —1Ip o JchM”H—l(r) < lu— Jchu||1-1—l(1") + [ Jenut — Ip o Jch””[-[—l(r)
S e Plull g2y + Al Tenull 2y S B2 1l g2y (4.30)

With the definition of the commutators C3, Cg, the Galerkin orthogonality satisfied
by e, and the fact that V : H~Y/2(I") — H'/?(I") is an isomorphism, we get

N (e, w) (e, Vr)
Imell g-12(0y = su 3 § T
weH!/2(I") ||w||1~1|/2(r) weH=/2(I) ”WHH*UZ(F)
B (Ve n¥) + (Cae, ¥) ap VO Y — In o Jen (M) + (Cre, )
,/,EH—I/Z([‘) H‘/f”Hfl/Z(r) 11,61.171/2([*) H‘/fHHfl/Z(r)
@2 o (Ve 0y — In o Ja(MY)) + (Cre, ¥)
weH-1/2(I") ”w”H*I/Z([')
B (V(e). iy — Iy o Jen (@) — (Cie. Y — I o Jen () — (e, Cqvy)
1/,5[-1*1/2(1") H‘/fHH—l/l(r)
g (WiTell oy + el g-1-en () ) 179 = I © Jen a1y + el g-1em iy 11 =150y
S sup
YyeH-/2(I) H‘/fHHfl/l(r)
Sh llell 2y + el g-1-ap (- 4.31)

The first term on the right-hand side of (4.31) can be treated in the same way
as the term h%p/(1+2ep) ||e||Lz(ﬁ) on the right-hand side of Lemma 4.3, which is

treated by iterating the L2-estimate of the statement of Theorem 4.3. That is, we

set m::(%l The assumption Cy D% < % allows us to define m nested

domains ﬁ-, i =0,...,m — 1 such that dist(fi, 8ﬁ+1) > R, ﬁn C I". Since the
term hop/(+2ep) [lell L2(T)) again contains a local L2-norm, we may use Lemma 4.3

and (4.31) again on the larger set D C I’ to estimate

heo 20 e 2 <h“0/<‘+2°‘n>( inf o= xull 2
LX) ~ 0 eSO0(T) L2 ()

+ hau/(l-i-ZGtD) ||e||L2(f;) + ”e”H—]—aD(]—v)) .
Inserting this in the initial estimate of Lemma 4.3 (using 2 < 1) leads to
el = €(inf 116 = a2
Fw xn€SOO(T;) ¢ anlm

+h2010F290) I — gy | ) + 16 = Gl ey )-

Now, the L2-term on the right-hand side is multiplied by h?*2/U0+2¢D) je  the
square of the initial factor. Iterating this argument m — 2-times, provides the fac-
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Local convergence of the boundary element method 621

tor h™«p/(1+2¢0) "and by the choice of m, we have h!1*p < pmen/(1+2¢D) Together
with an inverse estimate, we obtain

R0 lell 2 py < R Nlg — xnll 2y + 1T g — xnll 27
S g — xull 27 + ldn = xnll g-1-on 1)
ST N — xnll 27 + llell =1-ap 2y + 19 — xall g=1-0n (1)
S N6 — xnll2cpy + llell g-1-ap (1)

which proves the theorem. O

Proof (of Corollary 2.4): The assumption ¢ € H~2t(ryn HA (f) leads to

inf o — xullap S AP 1Sl ys ) »
eSO (Th) LA HED)

el g-172(ry S h® ol g-172+a(ry

where the second estimate is the standard global error estimate for the BEM, see [22].
It remains to estimate e y-1-«p Iy which is treated with a duality argument: We
note that Assumption 2.1 and the jump relations imply the following shift theorem for
V:Ifw e H'**>(I") and ¢ solves Vi = w € H'70(I"), then v € H*>(I") and
1Yl gen oy S llwll ui+ep (- Hence, with the Galerkin projection /Ty, we estimate

ew) I{e, V)l
lell g-1-ep (ry = sup ~ su
weH ™D (1) ”w”HH""D(F) YyeHYD (I') “I/’”H"‘D(F)
Ve, — Iy y)|
= sup
vereory W lgenry
IVellgizgry I =Tyl g-12¢p
< sup &) ¢ )§h1/2+an lell g-12¢ry
WeHD (I 1V N gen (ry

5 h1/2+0t+OtD ||¢||H*1/2+0‘(F) .

Therefore, the term of slowest convergence is of order O(hmi““/ 2+atap.p }), which
proves the corollary. O

Remark 4.5 The term of slowest convergence in the case of high local regularity is the
global error in the negative H ~!~%? (I")-norm, which is treated with a duality argument
that uses the maximum amount of additional regularity on the polygonal/polyhedral
domain. Therefore, further improvements of the convergence rate cannot be achieved
with our method of proof. In fact, the numerical examples in the next section con-
firm the sharpness of this observation, i.e., that the best possible convergence is
O(h]/eraJraD).

The trivial estimate ||nel| H-12(I) < lInell L2(I) immediately implies that the local
convergence in the energy norm is at least of order O(h!/2TeFep) a5 well. Again,
analyzing the proof of Lemma 4.3, we observe that an improvement is impossible,
since the limiting term is once more the error in the negative H~!=? (I")-norm. O
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622 M. Faustmann, J. M. Melenk

Remark 4.6 Remark 4.5 states that the local rate of convergence is limited by the shift
theorem of Assumption 2.1. If the geometry £2 is smooth, then elliptic shift theorems
for the Dirichlet problem hold in a wider range, e.g., if f € H'/?(£2), we may get
u € HY?(82). It can be checked that in this setting, an estimate of the form

¢ —Pnll2ry S inf Ml — xllp2py + 19 — Pnllg—
RSN P L2(F) H=2(I")

is possible since the commutator CZ; in (4.21) then maps H “2(I'y > HY(I"). Ifan
even better shift theorem holds, then the H ~2-norm can be further weakened by using
commutators of higher order. The best possible achievable local rates are then O (hf)
in L2(Iy) for ¢ € HP(I), B € [0, 1] and O (h'/>*#) in the H~1/2(I)-norm.

O
4.2 The hyper-singular integral equation (proof of Theorem 2.8)
We start with the Galerkin orthogonality
(W@ —on). i) + {9 —on. D) (i, 1) =0 ¥y, € SV1(Ty) (4.32)

and a Caccioppoli-type estimate on D C R for functions characterized by the orthog-
onality

(@i, ) + 1 (Wi 1) =0 Vo € SYN(Tp), suppy, € DN T (4.33)

for some u € R. Here, we define the space of discrete harmonic functions Hﬁ[ (D, )
for an open set D C R and 11 € R as

Hz\/—(D, w:={v e HI(D\F): v is harmonic on D\ T, [d,v] = 0,
W e SUNT) st [yovllpar = Vlpar, v satisfies (4.33)]. (4.34)

Proposition 4.7 [12, Lemma 3.8] For discrete harmonic functions u € 'Hilv (B, ),
we have the interior regularity estimate

h 1
IVullz23\ry S = IVullp2gnry + > Nl L2\ ry + 1l (4.35)

where B and B’ are nested boxes and d:= dist(B, dB') satisfies 8h < d. The hidden
constant depends only on 2, d, and the 'y -shape regularity of Tj,.

We use the Galerkin projection ITy : H'/2(I') — SY1(7},), now defined by

(W(p — Owe), ¥u) + (¢ — Owe, 1) (Y, 1) =0 Vi € SY1(Tp).  (4.36)

The following lemma collects approximation properties of the Galerkin projection
that will be applied in both Lemmas 4.10 and 4.11 below.
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Lemma 4.8 Let ITy be the Galerkin projection defined in (4.36), and let n, 1 €
Cgo(Rd) bewithiy=1on|\J{T € T : T Nsuppn # 0). For ¢ € H'(I'), we have
fors € [1/2,1]

Ing — ITw @) | gs(ry = C nlgsry - (4.37)

For gy, € SY1(T3), we have for s € [1/2,1]

Inon — Ow (e s (ry < Chnenll gsry - (4.38)

The constant C > 0 depends only on §2, the y-shape regularity of T, and
||77||W2-00(]Rd)~

Proof: Let J), be a quasi-interpolation operator with approximation properties in the
H?-seminorm, e.g., the Scott-Zhang-projection, [24]. We use super-approximation

similarly to (4.12). Since ¢, € S L1(T73,), we have to use the piecewise H 2_porm, and
an inverse inequality leads to

Inen = TuolTary SBE Y Inenliper,

TeTy,
T Nsupp n#P
SHY D Inlyase gy Ionl 3oy + 101500 ey 101172,
TeTy,
T Nsupp n#P
SHYY T enl ey AR Menlis iy S B IRen s )
TeTy,
T Nsupp n#YP

where, in the last step, the assumption on 77 was used. Similarly, the H '-norm estimate
Inen — Tn el S B menll grs (r holds. Interpolation finally leads to a super-
approximation result in H*

Inen — Tnen) sy S 7 enll s ry -

With an inverse inequality, see, e.g., [ 13, Thm. 3.2], as well as Céa’s lemma this implies

nen — w e s ry S e — Tnmem sy + 1Tn(en) — Tw en) | gs oy
S hlenll sy + Y275\ Thren) — Tw o) g2y
S hlGenll gs oy + 127 1T en) — nenl gz
+ 127 gy — Mw nen) | ey
S hlaenl gsry + 1275\ Then) = nenl ey S 0 enllgsr) -

A similar argument leads to
Ing — IIw @) s (ry S MPlusry »

and consequently to the H !-stability of the Galerkin-projection. O
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In the following, we need stability and approximation properties of the Scott-Zhang
projection 7}, in the space H TV (I") provided by the following lemma.

Lemma 4.9 Let J), be the Scott-Zhang projection defined in [24]. Then, for s €
[0, 3/2) we have

ITnullgsry < Csllullgsry  Yu € HY(I'), (4.39)
and therefore, for every 0 <t <s <3/2
lu = Tnullmrery < Cs.oh® " ull gscry.- (4.40)

The constants Cg, Cs s > 0 depend only on 2, the y-shape regularity of Tp, and s, t.

Proof: We start with the proof of (4.39). The stability for the case s = 11is givenin [24]
and the stability for the case s = 0 (note that I is a closed surface without boundary)
is discussed in [3, Lemma 7]. By interpolation, (4.39) follows for 0 < s < 1. The
starting point for the proof of (4.39) for s € (1, 3/2) is that, by Remark 1.1, (iii),
we may focus on a single affine piece I; of I and can exploit that the notion of
H*(I) coincides with the standard notion on intervals (in 1D) and polygons (in 2D).
In particular, H*(I;) can be defined as the interpolation space between H L(I7) and
H?*(I}). Since Jpu € CO(I"), Remark 1.1, (iii) implies for s € (1,3/2)

N N
I Twullmscry ~ > N Twullasry  and  lulasary ~ Y lulasa.

i=1 i=1

It therefore suffices to show || Jnu|l gs(r;y < Cllullgs(ryy. Since H*(I7}) is an inter-
polation space between H L(ry) and H2(I7), we can find (cf. [4]), for everyt > 0, a
function u; € H 2(F,~) with

-2
luell g2y S0 Nullscy, Nuellasany < lullasan

lu =il S 0 s (4.41)
Let I; be an approximation operator with the simultaneous approximation property
lur = Lyl sy + b~V lluy = Budllgi ) S B Nudll gz, (442)

see, e.g., [4], [6, Thm. 14.4.2]. With an inverse inequality, cf. [8, Appendix], the
H !-stability of the Scott-Zhang projection, and (4.41), (4.42), we estimate

lu — Tnullmscr)
Sllu— wellaseryy + llue — Lyuell msryy + W Tn (L (ue) — u) las
+ 1\ Tn(u — u)llmscry

5 flu — ut||HS(F,-) + lluy — I;/Lut”Hf(Fi) + h_(s_l)”'fit - I/i“t”[-[l(r[)
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+ h_(s_l)“l/i — ut”Hl(F,)
4.42) - 1)
S M —wllmsay + 2 Nl gary + 1 lu —wellgrry

(4§1) ) h27s s—=2 hf(sf]) s—1 )
S Nullgsany + " Nullgsry + 7 ullgs -

Choosing t = O(h), we get the H([;)-stability of 7, and thus also the H*(I")-
stability of J}.

We only prove the approximation property (4.40) for s € (1,3/2) as the case
s € [0, 1] is covered by standard properties of the Scott-Zhang operator.

Case 1 <t < s < 3/2: we observe with the stability properties of .7, and the
approximation properties of 1;

N
lu — Tnullgery ~ Z lu — Tnullgery S h' tz Nl sy ~ Bl s oy
i=1 i=1
(4.43)

Case t = 0: we observe with the stability properties of J;, and the approximation
properties of I,

N N

e — Tnull 2y ~ Y M= Tntellzoery S0 ullasry ~ Bl gs -
i=1 i=1

(4.44)

Case 0 < t < 1: The remaining cases are obtained with the aid of an interpolation
inequality:
lu — Tnullgery < llu — Jhulle(mll = Tnullyr
4.44),4.43) (1t} 5 (o1t »
N O T  ull gsory = 1 ull gs oy,

which concludes the proof. O

The following lemma is similar to Lemma 4.2. Here, we obtain an estimate for the
jump of the trace of a discrete harmonic double-layer potential.

Lemma 4.10 Let Assumption 2.7 hold and let B C B’ C B” be nested boxes
with d:=dist(B, dB") = dist(B’, 3B") > 0. Let h be sufficiently small so that the
assumption of Proposition 4.7 holds. Let u: =K Cp with ¢, € S 1 1(Th) and assume
ue HN(B” W) for the box B” C Bg,, (0) and some . € R. Let I c BN T. Then,

Ilvoudl g1 7y < € (RN 1gnl iy + 1l gy + |1al) - (4.45)

The constant C > 0 depends only on S2, d, the y-shape regularity of T, and the
constants appearing in Assumption 2.7.
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626 M. Faustmann, J. M. Melenk

Proof: Step 1 (Splitting into near and far-field): Let n € Cgo(Rd) satisfy n = 1
on B’ N I and suppn C B”. Define the near-field une,r and the far field ug, as

potentials unearzzl?vh — I?vh with I’(Vvh::ﬁ fﬂ Evh and MfaI::EVh — Evh, where
v, vy, € SE1(T;,) are BEM solutions of

(Wop, ¥n) = MWen —nz, Y)Yy € SY1(Th),
(W, i) = (1 — W& +nz, ) Y € SUH(Ty),

with (vj,, 1) = 0 = (v, 1). Here, z is a function with z = u on I" N B’ such that the
compatibility condition (nW¢, —nz, 1) = ((n — HDW¢, — nz, 1) = 0 holds. Since
(W¢p, 1) = 0 such a function exists. More precisely, we choose z € L?(I') to be the
piecewise constant function

onl"NB,

122
= Wiy, 1)— / .
z M OtherWISC.

f(B”\B/)mr n
The function vy, + vp solves
(W (on + ), Yn) = (W, ) Vo € SVN(Th),

which implies v, + vy = &, + ¢ for a constant c. Therefore, vi=upear + Ugar =
u+Ke— I?(vh + vp). Since [yofc] = ¢ this implies

|[VO”]|H1(f) = |[VOU]|H1(F) < |[V0’/lnear]|1-11(f) + |[V0Mfar]|Hl(f) .

The definition of z and n = 1 on B’ N I" lead to

2
Wen, 1) — /1
InGz = W32, =/ 0’ Jros -
(B//\B/)mr f(B//\B/)m[‘ n

2
/ o [ (W& — ), 1)
= n —_—m
(B\BHNI' f(B”\B’)ﬂI" n

S In(We, — w), DI

Consequently, we obtain

ln(z— M)”LZ(F) SImWe —w), DI S In(We, — M)”H—l—aN(r)
SN (\Wenll 2oy + ) - (4.46)

The last inequality follows from the orthogonality of W ¢, to discrete functions in
S11(7;,) on B” and the arguments shown in (4.47) below (specifically: go through the
arguments of (4.47) with z = ).
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Local convergence of the boundary element method 627

Step 2 (Approximation of the near field):
Let J denote the Scott—Zhang projection. The ellipticity of W on H 172(r)/R and
the orthogonality (4.33) of W¢, = —0, K¢, imply

MWgn —nz, w)
lorll gy S MWen —nzllg-12gry = sup  ———
weH/2(I") ||w”1-11/2(1*)

(Wen, nw — Th(mw)) — (nz, w) + p (Th(qw), 1)

sup

weH/2(I) ||wHHl/2(1")
- sup Wi, nw = Tn(qw)) — (n(z — @), w) — p {nw — Jp(qw), 1)
weH2(I) lwll g2
< (W&l z2cry + 1) llnw = Tn )l 2y + 110G = =120y 1wl g2y
™ weH2(r) lwl g2y
SH P (IWeanl 2y + 1) + 0@ = )l g-12r)
4.46)
S R (Wl + Iul) - (4.47)

With the same arguments and Lemma 4.9 we may estimate

W en —nzll g-1-an ry S BTN (Wl 20y + 1el) + 0@ = w1 g-1-ay 1y -
(4.48)

Let ¢ solve Wy = w — w for w € H*N(I'). Then v € H'**N(I"). Together with
the mapping properties of W from Lemma 3.5, (vj, 1) = 0, the definition of v, and
the stability and approximation properties of 7, from Lemma 4.9, we obtain

(vp, w) (vp, w — W)

IWopll g-1-« Slonllg-en gy = sup  ————
" AR o weHN (I") ||w\|1-1“N(r) weHN (I") ”wHH"‘N(F)

- [{vn, Wir)| [{(Wor, ¥ = Tn¥h) + (Wop, Tn)l
= sup _— = sup

YeHTN (I ”wHHH“N () WGHH”‘N o) ”‘/f”HH“N(]")
s [(Wup, ¥ = Tnp) + n(Win — 2), Tn)l

weH!FeN (IN) ||¢HH1+“N ()
< sup ”th”H*l/Z(r) IW - %1//”1-11/2(1“) + ”U(W{h - Z)H[-]*'*an(r) H%II/”HHWI)(F)
~ YeH" N (I) ”W”HHUN(r)
(4.47),(4.48),(4.46) |

< RN (IWenll 2y + |al) - (4.49)

With the mapping properties of W from Lemma 3.5, an inverse estimate, and (4.47)
we obtain for 0 < & < ay

IWorllgecry S lnllgivery S 07572 onll gz
@.47)
5 h~* (”W{h”LZ(r) + |M|) 5 h™* (”fh”[ﬂ(r) + |,U«|) . (4.50)

We first consider y&“‘unear; the case yg’“unear is treated analogously. By construction
of Unear, we have
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628 M. Faustmann, J. M. Melenk

<anunearq 1z/fh) = <_th5 I//h) = <_77W§h + nz, wh)
= (Buut, Yu) + 1 (Yn, 1) =0 Vi, € SYN(T), suppy, € B'N T
4.51)

since z = u, n = 1 on supp V. Therefore, upear € Hﬁ/ (B, Q).
Let 77 be another cut-off function satisfying 7 = 1 on I and suppn C B. The
multiplicative trace inequality, see, e.g., [16, Thm. A.2], implies for any ¢ < 1/2 that

i ~ o~ 2e/(142 o~ 1/(1+2
‘V(})munear HU(P) S Hv(n”near)HLz(BﬁF) ,S Hv(nunear)Hng/((Q) ° ”V(nunear)”fl/l(/zﬂf;)
~ 2e/(142¢) |~ 1/(1+2¢)
5 ‘|V(77unear)“Lz/(B) ¢ ”nunear”H/s/zHiB) . (452)

Since Upear € H{,\/ (B’,0), we may use the interior regularity estimate (4.35) with
u = 0 for the first term on the right-hand side of (4.52). The second factor of (4.52)
can be estimated using (3.16) of Lemma 3.4. In total, we get for ¢ < oy < 1/2 that

~ 2e /(142 ~ 1/(1+2
IV @unear) 17555y 1 Atnearll 312y

)28/(14’25).(' )1/(1+2s)

[tnear|l g1 (B") + ||8nunear||H€(F)

2e /(142 1/(1+2
() + Nttnearll 35552 Natnear g

2e /(142 1/(142 2¢e/(142 1/(142
+ lttnear 32 ot IW ORI 4 B2 2 Va3 552 W ol 1 15

=T+ 1T+ T;+ Ty. (4.53)

< (n I Vunearll 27y + lunearll 125
2¢e/(142
S P e

The mapping properties of K imply with (4.47) and (4.50)

T = W2/ upeaell i gy S P22 ol ey

4.47)
< RO (o gy + D)

2e/(142 17142
Ty = 121002 Ve |35 2 Wl gt 5

@20 2e/(142¢)
S h (el gy + l) - (4.54)

We apply (3.15) (note Unear has mean zero) and since K vy is smooth on 9 Bg, (0),
we can estimate || Ky || H=N (3B, (0) ~ < |lvp ||H—otN(1-) Together with (4.50), (4.49),

and Young’s inequality this leads to

2e/(142 1/(1+2
Ty = lttnearll g > W ORI

3.15),4.50)
<

h—a/(l+2£) (| )28/(1+28)

|th||H—1—aN(1“) + ”Evh ”H"’N(BBRQ )

1/(142
- (0all gy + 1ual) T2
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Local convergence of the boundary element method 629

S h! (”W‘U/’l”H*I*O‘N([‘) + ||Uh||H*0‘N(F)) + h* (”fh“Hl(I‘) + |H|)

4.49)
S (Y 1) (enll gy + |l) -

Similarly, with (4.54) we get for the second term in (4.53)

2e /(142 1/(142
T = ||Mnear||;2/((1_l;/) g ””near”lﬁ(B/)S)

3.15

.15 ~ 2¢e/(142¢)
s pe/(1+28) (”th”H_]_aN & + ”th HH )

N (3 BRg, (0))

. pe+1/2)/(1+2¢) (”Ch”[-]l )1/(1+28)

ary tlul
Sk (||th||H-.-aN(m - ||vh||H—aN(p>) + 2T (Wl gy + Ll)

< (B2 B2 (g oy + L)
Inserting everything in (4.53) and choosing ¢ = a gives

int
‘ Yo Unear

< (hZOtN/(1+2aN)+1/2 +h1/2+0£}v +h0!}v
H\(D) ™

+ RPNy (g [y + el
S (Il ry + i)

Applying the same argument for the exterior trace leads to an estimate for the jump
of the trace

|[V0Mnear]|[—1l(f) S Y (”é‘h”Hl(F) + |M|) .

Step 3 (Approximation of the far field):
We define the function v € H'/2(I") as the solution of

Wv=(>1-nWe& +nz, (v,1)=0.

Then, we have

(W —vp), yn) =0 Vi € SV1(Tp).
Let far:=Kv - Kv where Ev::ﬁ (Ev, 1>L2(9)
with7 = 1 on I" and supp7 C B. Then, with the Galerkin projection [Ty, the triangle
inequality and the jump conditions of K imply

and 7 be another cut-off function

|[)/0Mfar]|H1(f) = |77\Vh|H1(F) =< |ﬁvh - HW(;/\V”HI(]:) + |HW(77\V)|H1(1:) . (4.55)

The smoothness of K v on dBg,, (0) and the coercivity of W on H 172(I")/R lead to

Kv— KVH < v < [[Woll - .
H Hl/z(aBRQ(O)) S ||H1/2(F) S ||1-1 1/2(rm)
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630 M. Faustmann, J. M. Melenk

We apply Lemma 3.4 with a cut-off function 7 satisfying 7 = 1 on B N I" and
supp? C B’.Thenn=1and z = pwon B’ N I imply 7(1 — ) = 0 and 5jnz = L.
The H !-stability of the Galerkin projection from Lemma 4.8, a facewise trace estimate,
and similar estimates as for the near field imply

|HW(ﬁV)|H1(F) N |77\V|H1(1") < ||il\far||H3/2+‘¥N(B\1")

(3.16)
S Wttarll grgn oy + 10 =W En + n2)ll gew ()

S ||ﬁfar||Hl(3/\r) + |l ||ﬁ||H“N(1“)

L ) .
S =mWen+nella-rzey + HKV KUHm/z(aBm(o»HM|

SN =mWen +nzllg-12¢r) + 1l
,S ||§h||H1/2(1“) + ln(z — ,U«)”H—l/z(r) + |l

4.46)
S nllgacry + 1l (4.56)

It remains to estimate the first term on the right-hand side of (4.55). With an inverse
estimate and Lemma 4.8 we get
[on — Tw G| g1 7y S [vn — Tw @)l g ) + 02 1w Gow = 70) gy
5 h |Vh|H1(r) + h71/2 |HW(77\Vh - ﬁV)|H1/2(r)
SHP ol gy + B2 1w Gon =) g2 - (4.57)

We use the abbreviation e,:=v — v,. The ellipticity of W on H'/2(I")/R and the
definition of the Galerkin projection [Ty imply

1T Glen) 131y S (W UTw Gen)), Mw (en)) + (T (ey), DI
= (W(ITw (fey) — Tey), Mw ([ey)) + (W (Te,), My Gey)) + |(Mw (Gey), 1)

4.36 e — Y —
G20 W e,). ITw Gew)) + (Rey. 1) (M (ey)., 1)
S W Gew), Ty Geu)| + Ieul -1 1w Ge)ll g -

With the commutator C; we get
(W(@en), w (fey)) = (AW (ev) + Ciev, Mw (ev)). (4.58)

The definition of the Galerkin projection and the super-approximation properties of
the Scott-Zhang projection 7 lead to

(W(ew), nlTw (ey)) = (W(ey), nlTw (ey) — Tn (1w (1ey)))
S MW el g2y IMw (ey) — TnTw Geo) | g2 r
S kv = vl g2y 1w el gy -
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Local convergence of the boundary element method 631

For the term involving G5 in (4.58), we get with Lemma 3.6

(Cien), Tw Gen)| < G0 = v | 1oy 17w e L2

Slv— Uh”H‘“N(F) ||HW(77\€1))||HI/2(1*) .

A duality argument implies |[ey || g—ay () < R /2N |y H1/2r)» for details we refer
to the proof of Corollary 2.9. Inserting everything in (4.57) leads to

7w — Tw @) g1y S B2 Wonllgegey + 1Y 00 = vallge gy + B 1l gz
S AV (1 —ﬂ)WCh‘H’IZ”HfW(r) < RN (”Ch ||Hl/2(r)+|M|) .

Finally, this implies with (4.55) and (4.56) that

ottacll g1 7y S (L1 (Il gy + [al)
which proves the lemma. O

Lemma 4.11 Let ¢, ¢, be solutions of (2.8), (2.9) and let Ty, I be subsets of I’
with Iy C I' C I' and R:=dist(Ip, d") > 0. Let h be such that % < 1—12 and let
ne Cgo(Rd) satisfyn =1 on I'y, suppn N I" C . Then, we have

le = enllary = € inf o = xullgr 7y + 5 19 = gnl 7 +
PhllH () eSh (T HY(I) 2 HY(T)

+ 11 = o)l + 10 = onll vy )

with a constant C > 0 depending only on I', Iy, I, d, R, and the y -shape regularity
of T,.

Proof: We define e:=¢ — ¢y, subsets [y C [T C [, C I3 C Iy C f and volume
boxes By C B] C By C B3 C By C R?, where B; N I = I;. Throughout the proof,
we use cut-off functions n; € C(‘)>o (Rd), i = 1,...,4. These smooth functions n;
should satisfy n; = 1on I;—y,suppn; C B, suppn; NI C I and [[Vn;ll g () S %.

We want to use Lemma 4.10. Since [yol?gh] =1y € Sl*l(Th) for any discrete
function ¢, € SU'1(75,), we need to construct a discrete function satisfying the orthog-
onality (4.33). Using the Galerkin orthogonality with test functions with supp ¥, C I3
and noting that n3 = 1 on supp ¥, we obtain with the commutator C,, defined in
(3.18), the abbreviation n3Cye = ﬁ <7]3C,,3e, 1), and the Galerkin projection [Ty
from (4.36)

0= (We,n3vyn) + (e, 1) (¥n, 1) = (mWe, ¥) + (e, 1) (¥, 1)
= (W(nze) — Cye, ¥u) + (e, 1) (Y. 1)
= (W(n3e) — 13Cyse — 13Cze), Yi) — (n3Cse, ¥n) + (e, 1) (Y, 1)
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632 M. Faustmann, J. M. Melenk

= (Wne = W™ n3Cppe = mCrae)). vi)
—% (n3Cise. 1) (m, 1) + (e, 1) i, 1)
= (W(Tw(nse) = My (W (13Cae = 1:C). vi)
mCaes 1) Wi 1)+ (e, 1) (W, 1) = (3 = M (r3e), 1) (i 1)
(4.59)

1
_ﬁ<

Here and below, we understand the inverse W ! as the inverse of the bijective operator
W HY2(Dy={v € HV2(I') : (v, 1) = 0) — H,*(I'):i={v ¢ H-V2(I) :
(v, 1) = 0}. Since W~ maps into Hi/z(l“) no additional terms in the orthogonality
(4.59) appear. Thus, defining

Swi=ITw (13¢) — & with &p:=ITyw (W' (13Cpse — 13Cyz0)).
we get on a volume box B, C R¢ a discrete harmonic function
u:=K¢, € HyY (B, ),

where 11 = (e, 1) — o7 (13Cpse, 1) — (m3e — Mw (nze), 1).
With the Galerkin projection [Ty from (4.36) and n3 = 1 on supp 11, we write

||e||H1(1~0) S ||7719||H1(F)
S Imnse — Owmze) L gy + Iminll gy + Iménllgiry - (4.60)

Lemma 4.8 leads to

Inse — Owmze)ll gy S b linagnll gy + Ina@ll g
S hlmaellgiry + (h+ D lma@ll giry - (4.61)

Using the H !-stability of the Galerkin projection ITy, the mapping properties of W !
and C,, as well as Lemma 3.6, the correction &, can be estimated by

HHW(W_l(%CrBe - ’736—%6))”111@

< H W (13Cy3e — 13Cse) HHI(F)

S ”77307136 - 77367736‘}L2(1")

S InsCel ey S 0ol g + [Ce] .,

S lmsell 2y + lell g=aw (ry - (4.62)
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For the second term on the right-hand side of (4.60) we have |n1&ll H\(I) <

~

17V Ehll 2y + 1801l 2y We apply Lemma 4.10 to u = K¢ € HiY (Bo, p) and
obtain

Im Vel 2oy S 1nlarry = Wroullgimyy
,S RN |§h|H1(1“) + ||§h||H1/2(1") +lul. (4.63)

The H'-stability of the Galerkin-projection from Lemma 4.8 and (4.62) lead to

IEnllgrry S Imsellgiory + llell g=an oy (4.64)

as well as
IEnll oy S Insellgzry + lell g=en (- (4.65)

With the estimate [{e, 1)| < e g—en ) and previous arguments (using (4.62),
Lemma 4.8, and Lemma 3.6), we get

Il < llell g-ean oy + Inzell g2y + Inzell 2y - (4.66)

Inserting (4.64)—(4.66) in (4.63), we arrive at

Im&nll g ry S ImiVenllpzry + 18nllL2 o
S A (”’73€”H1(1‘) + llell g-en ) + llmsell girzry + lell g—an ()
S heN |€|H1(F) + ||774€||H1/2(r) + ”e”H_"‘N(F) . (4.67)

Combining (4.61), (4.62), and (4.67) in (4.60), we finally obtain

||€||H1(r0) Sh ||774€||H1(r) + ||774(P||Hl(r) + h*V |e|Hl(F)
+ lInaell g2cry + llell g—en
S lell g7y + hoN lel gy + lInaell ey + el g-en ry -

Since we only used the Galerkin orthogonality as a property of the error e, we may
write ¢ — @ = (¢ — xn) + (xn — @) for arbitrary x;, € S1(7;,) with supp x, ¢ I
and we have proven the claimed inequality. O

Proof (of Theorem 2.8): Starting from Lemma 4.11, it remains to estimate the terms
hoN | — gothl(f) and ||n(p — goh)IIHl/z(f). The terms are treated as in the proof of
Theorem 2.3. Rather than using the operator I, o J.; we may use the Scott-Zhang
projection. O

Proof (of Corollary 2.9): The assumption ¢ € H'/2t*(I")y N H'*# () leads to

inf o — xullg S AP @l gres 7
westiczy o platady

||3||1-11/2(1") <k ||<P||H1/2+a(r) )
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634 M. Faustmann, J. M. Melenk

where the second estimate is the standard global error estimate for the Galerkin BEM
applied to the hyper-singular integral equation, see [22].

For the remaining term in Theorem 2.8, we use a duality argument. Let v solve
Wi =w—we H*N(I'), (Y, 1) =0, where w = ﬁ (w, 1). Then ¢ € H'Tn (IM),
and since (e, 1) = 0, we get with the Scott-Zhang projection .7, and Lemma 4.9

el (e, w) (e, w —w)
ellgey(ry = SUp e = e
0 weHYN (I') ”w”H"‘N([‘) weHYN (I') ||w||H°‘N(1")

< |{e, W)l [(We, y — Tn)

sup —_— = sup
weHl+aN(F) ||w||H1+aN(F) 1//EH1+°‘N(1") ”I//”HIJFD‘N(]")

IWellg-1200) 1Y = Tu¥llareay A

~

S osup
YeH! N (I ”w”HIJFO‘N([‘)

1/2
S RPN o) ey -

V24N el iy

Therefore, the term of slowest convergence is of order O (hmin{l/2+atay ’/3}), which
proves the corollary. O

5 Numerical examples

In this section we provide numerical examples to illustrate the theoretical results of
Sect. 2 and indicate their sharpness. We only consider Symm’s integral equation on
quasi-uniform meshes. Provided the right-hand side and the geometry are sufficiently
smooth, it is well-known that the lowest order boundary element method in two dimen-
sions converges in the energy norm as O (N >/2), where N denotes the degrees of
freedom. In our examples we will consider problems, where the rate of convergence
with uniform refinement is reduced due to singularities.

In order to compute the error between the exact solution and the Galerkin approxi-
mation, we prescribe the solution u(r, 8) = r® cos(a6) of Laplace’s equation in polar
coordinates. Then, the normal derivative ¢ = 9,,u of u is the solution of

Vo = (K + 1/2)you.

The regularity of ¢ is determined by the choice of «. In fact, we have ¢ €
H-Y2te=e(r) ¢ > 0, and locally ¢ € H'(I") for all subsets I C I that are a
positive distance away from the singularity at the origin.

The lowest order Galerkin approximation to ¢ is computed using the MATLAB-
library HILBERT [2], where the errors in the L2-norm are computed using two point
Gauss-quadrature. The error in the local H~!/?-norm is computed as | x |I§{,1 2y~
(V(xe), xe), where yx is the characteristic function for a union of elements Iy C I".

5.1 Example 1: L-shaped domain

On the L-shaped domain depicted in Fig. 1 (left), the dual problem permits solutions
of regularity H'/6=¢(I") for arbitrary ¢ > 0 that is, we have ap = é —e.
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Fig. 1 L-shaped and Z-shaped domain, local error computed on fat, red part
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Fig. 2 Local and %lobal convergence of Galerkin-BEM for Symm’s equation, L-shaped domain, left:
o= g,nght =1 loc=1 24

Figure 2 shows the global convergence in the energy norm (blue squares) as well
as the local convergence on the fat, red part of the boundary (I7, union of elements)
in the L?-norm (red stars) as well as the H~!/?-norm (brown triangles). The black
dotted lines mark the reference curves of order N —# for various g > 0.

In the left plot of Fig. 2 we chose o = %, whichleadstoa+ap = % —¢ and, indeed,
we observe convergence in the local L2-norm of almost order 1, which coincides with
the theoretical rate obtained in Corollary 2.4. The error in the local H~'/?>-norm is
smaller than the error in the L2-norm, but does converge with the same rate, i.e., an
improvement of Theorem 2.3 in the energy norm is not possible. The right plot in
Fig. 2 shows the same quantities for the choice o = %. Obviously, in this case the
rates of convergence are lower, and the local L2-error does not converge with the best
possible rate of one, but rather with the expected rate of N —19/24 _ N-1/2-a—ap 4
predicted by Corollary 2.4.

5.2 Example 2: Z-shaped domain

We consider the Z-shaped geometry depicted in Fig. 1 (right). Here, the dual problem
permits solutions of regularity H*? (I") with ap = 1—14 — &. Again, we observe the
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Fig. 3 Local and global convergence of Galerkin-BEM for Symm’s equation, Z-shaped domain, left:
o= %,loc: %,right:a = %,loc: %

expected convergence O (N ~%) for the global error in the energy norm in Fig. 3. How-
ever, in contrast to the previous example on the L-shaped domain, we do not obtain

a rate of 1 for the local error in the LZ-norm for the case o = %, but rather a rate of

—19/21, since % +ap +a = % — ¢. For the choice o = %, we observe conver-

gence ON~V2=1/14-1/8y — ©(N—39/36) which once more matches the theoretical
convergence N~ 1/2=¢=ap
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