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Abstract

Over the last decade, regeneration of derelict and underused sites with

varying degrees of contamination (also known as Brownfield sites) has

gained popularity as a sustainable land use strategy. However, redevelop-

ment of contaminated fields is a complex and multidimensional problem

that entails many risks and uncertainties. The objective of this thesis

is to construct, calibrate and validate a risk assessment model that can

assist investors and decision-makers in evaluating and classifying brown-

field sites to two categories : suitable for redevelopment / not suitable for

redevelopment. The three-step model building process is adopted from

the methodology of credit risk modeling used in banks and credit rating

agencies. The proposed models utilize two machine learning algorithms,

namely Classification And Regression Trees (CART), and Random Forest

algorithms. The first part of the thesis provides a point of reference in

brownfield regeneration risk modeling and describes the current research

gaps in this field. The following chapter describes the credit risk model

building methodology. Finally, Chapter 4 describes the implementation of

risk model building methodology in the field of brownfield risk modeling

using programming language R. Appendix A includes the commented R-

code for interested readers and can serve as a guideline in implementing

the Classification And Regression Tree, and Random Forest algorithms in

various fields of study.
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Chapter 1

Introduction

Over the last several decades, extensive de-industrialization and land use changes of

former military, industrial, and commercial sites across Europe have resulted in a

large number of derelict and underutilized lands with varying degrees of contamina-

tion also known as Brownfields [37]. On the other hand, high demands for land in and

around cities has caused urban sprawl to become one of the major challenges facing

Europe [36]. During the last decade, brownfield site remediation and revitalization

has gained increasing attention as a sustainable land use strategy to combat urban

sprawl [6]. Several brownfield risk assessment tools and prioritization models have

been suggested in the literature in order to help stakeholders evaluate the inherent

risks involving brownfield regeneration with the main focus on various aspects of it,

such as uncertainty assessment, environmental and health risk assessment, remedia-

tion cost assessment, etc. [4, 15, 40]. However, all the models are either developed on

a case-by-case basis or lack a multidisciplinary approach [15] and further, all fail to

assess their predictive power based on the goodness of the model outcomes against

realizations of brownfield regeneration in a model-validation step.

One major project that merges most existing models into one and follows a multi-

disciplinary approach is the Tailored Improvement of Brownfield Regeneration in

Europe (TIMBRE), which assists stakeholders to rank brownfield sites based on

their redevelopment potential by using multi-criteria decision analysis methodology

by computing a proritization or ranking score, through a hierarchical structure, which

includes dimensions, factors and indicators [40]. Until now, however, the validity and
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the prediction accuracy of the suggested model has not been reported in the liter-

ature. The validation step according to Gass (1983, p.11) refers to “all activities

that establish how closely the model mirrors the perceived reality of the model”. In

this case, validation of the risk model assesses how accurately the prioritization tool

forecasts the successful regeneration of brownfield sites. The lack of empirical evalua-

tion of existing models in brownfield regeneration is the missing link in risk modeling

studies that needs to be addressed.

The aim of this thesis is to use the TIMBRE scoring model as the reference point,

as it is the state of the art in the field of brownfield regeneration risk models, and

develop and validate a risk model for brownfield regeneration. By following the three

step Construction-Calibration-Validation model building process proposed and imple-

mented by Altman (1968), which is now widely practiced in the field of financial risk

management, we attempt to bridge the gap between brownfield regeneration scoring

models and risk assessment models [1]. Our goal here is to construct new brownfield

regeneration risk classification models by using the decision tree analysis methodology

and its extension to random forest algorithm, and later validate them with historical

data on redevelopment of brownfield sites is Austria. The main aim of scoring and

rating models is to act as a classification tool by assigning a score that best sepa-

rates the ”good” candidates (within the scope of this work: successful regeneration

of brownfield sites) from the ”bad” (not regenerated sites) in a procedure commonly

known as classification. Assessing the predictive power of the scoring model and its

calibration is a major task of the validation step. By incorporating different con-

struction, calibration and validation methods we close the missing link in brownfield

regeneration tools, where mostly heuristic and semi-quantitative risk models have

been taken into account without validating the model results. The produced models

can further serve as a guideline in risk model building using the classification and

regression tree and random forest algorithms in different fields of study. The broader

aim of using the CART and random forest algorithms within the framework of three-

step risk model building in a new field of research is to illustrate the capability of

implementation of such risk models in diverse branches of industry and fields of study.
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The remaining thesis consists of the following parts. Chapter 2 continues by in-

troducing the existing TIMBRE scoring model as the state of the art in brownfield

regeneration scoring models, followed by the existing research gaps and limitations

of the TIMBRE model. Chapter 3 offers a broad review of the state of the art and

methodologies commonly used in credit risk scoring field. It further describes the

tree decision analysis method and its extension, namely the random forest algorithm,

in detail. Credit risk modeling process described in Chapter 3 follows the three-

step credit risk model-building methodology which is widely practiced in the banking

sector, first introduced by Altman (1968) [1]. In Chapter 4, following the three Con-

struction, Calibration, Validation steps, we develop three new classification models

in brownfield regeneration, based on the machine learning methods in credit scoring

models, namely the decision tree analysis and random forest algorithm with the help

of dataset describing brownfield sites in Austria. We follow by assessing the models’

predictive power and accuracy and provide a brief comparison of the developed clas-

sification models. Finally, Chapter 5 summarizes the thesis findings and conclusions

of the thesis. The commented R-code used for the three-step model building process

is further attached in Appendix A to guide interested readers and researchers with

the implementation of the CART and random forest algorithms within the risk model

building framework.

The extensive dataset used in this thesis is gathered and provided by the Federal

Environmental Agency of Austria (Umweltbundesamt - UBA) and Statistik Austria

for the ENTEKER (ENTwicklung Eines Kostenlosen ERkundungsservice) project,

funded by Klima - und Energiefonds within the framework of “SMART CITIES -

FIT for SET“ program. All the statistical computing within this thesis is performed

with the aid of programming language R.
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Chapter 2

TIMBRE Brownfield Prioritization Model

For decades, there has been a trend toward de-industrialization of industrial, military

and mining sites across Europe and North America, which has lead to large number

of derelict and unused sites with real or perceived degrees of contamination. Such

sites are commonly referred to as Brownfield Sites in the literature [37]. As of 2013,

the European Environment Agency (EEA) estimated that there are up to 3 million

brownfield sites across Europe, mostly located within urban boundaries [12], while

the United States Environmental Protection Agency (EPA) estimated somewhere be-

tween 500,000 to 1 million brownfields, typically in urban areas [2]. Redevelopment

of brownfield sites has become a common practice within the last decade, particularly

in areas close to city centers [15]. The reason on one hand is free and undeveloped

sites (also called greenfields) are limited and becoming more and more scarce and on

the other hand, environmental policies, particularly in Europe, encourage the regen-

eration processes through various grant systems.

However, the inherent risks involved with revitalization of brownfield sites necessi-

tates the use of risk assessment tools that help to evaluate the various aspects of the

uncertainties. Some notable brownfield regeneration risks include: risk of liability

claims, investment, usability, and marketability risk and stigma surrounding contam-

inated fields. Such risks affect the potential revitalization of brownfield sites from

various fronts such as environmental, social, and economic levels [4]. The following

sections provides a brief overview of existing risk assessment models and tools.
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2.1 Brownfield Regeneration Background

The first step towards developing a brownfield risk assessment model is to identify

factors that determine successful brownfield regeneration. Thornton, Franz, Edwards,

Pahlen, and Nathanail (2007) investigate the advantages and deficiencies of the cur-

rent financial, fiscal, legal, regulatory and policy incentives regarding the sustainable

brownfield redevelopment and find that the incentives alone to be only partially effec-

tive in the brownfield regeneration process [46]. Dixon (2007) analyses the importance

of property development industry in the sustainable regeneration of brownfield sites.

His findings show that as much as the attitude of the property development industry

affects the process, it is significantly more critical to interact with various stakehold-

ers in order to achieve successful regeneration of brownfield sites [16]. Frantal, Kunc,

Klusacek, and Martinat (2015) aim to identify and classify success factors by con-

ducting an international comparative survey [19]. They find that there are ”common

themes” that drive the successful regeneration of brownfield sites, such as site, local,

and economic factors , but any ”universal” solution might be too general to function

on an international level. Based on the identified success factors, prioritization tools

and methodologies have been proposed in the literature. Majority of these tools are

based on a case-by-case approach and focus solely on one of the following aspects:

health and environment, financial incentives, uncertainty assessment, geology, past or

present use, etc. [15].

One assessment tool that adopts a multi-disciplinary approach to brownfield site

remediation is the Tailored Improvement of Brownfield Regeneration in Europe

(TIMBRE), which is a European Union funded project within the 7th Framework

Programme (FP7) aimed to support the end-users in overcoming existing problems.

The projct has resulted in developing a prioritization tool that helps to rank brown-

field sites in a portfolio based on their relative redevelopment potential [40]. Following

sections present an overview of state of the art TIMBRE prioritization model in the

brownfield risk assessment field.
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2.2 TIMBRE Model Framework

The TIMBRE prioritization model utilizes a Multi-Criteria Decision Analysis (MCDA)

methodology in order ”to assist stakeholders to identify which brownfield sites should

be preferably considered for redevelopment or further investigation, taking into ac-

count a set of success factors properly identified through a systematic stakeholder

engagement procedure” [40]. The model incorporates the three main pillars of sus-

tainability, i.e. economic, social and environmental dimensions. The risk assessment

model is developed by constructing a hierarchical structure in order to enumerate a

prioritization or ranking score for the redevelopment potential of a brownfield and

calibrating the model with expert-estimated weights. In the following subsections

the TIMBRE ranking methodology proposed by Pizzol, Zabeo, Klusáček, Giubilato,

Critto, Frantál, Martinát, Kunc, Osman, and Bartke (2016) is described further in

detail.

2.2.1 TIMBRE Model-Building Methodology

The construction of the TIMBRE model is based on a hierarchical structure, depicted

in Figure 1, that includes dimensions, factors, indicators, and their respective weights.

On the highest level, dimensions account for specific aspects of brownfield redevel-

opment potential, such as ”local development potential, site attractiveness and mar-

ketability, environmental risks, and/or other specific criteria” [40]. Each dimension is

explained through one or several factors that characterize conditions, circumstances,

actors, etc. that significantly affect the successful regeneration of a brownfield site.

On the lowest level, indicators are used to quantify the factors through measurable

(continuous, discrete, ordinal, and/or categorical) variables. Furthermore, weights,

determined by experts, are assigned to each of the dimensions, factors, and indicators,

denoting their relative importance.

After assigning the relative weights by the experts, indicators are aggregated into fac-
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Figure 1: Hierarchical structure at the basis of the MCDA methodology applied in the TIMBRE.

CC stands for Convex Combination and OWA for Ordered Weighted Average [40].

tors by the convex combination, which is a specific type of weighted average where the

sum of all weights are equal to 1, which are then aggregated once again into dimen-

sions with respect to their relative weights, and finally the dimensions are aggregated

to a final prioritization score representing the redevelopment potential of a brownfield.

2.2.2 Identification of Relevant Variables

A significant step in the TIMBRE prioritization model is identifying the essential di-

mensions, factors, and indicators that play a role in successful regeneration of brown-

field sites. However, the model does not require a predetermined set of variables, and

takes the following points into account when identifying the model variables:

1. Explanatory variables proposed in the literature from previous studies, projects,

interviews and surveys with stakeholders and experts from different countries and

regions, and statistical data analysis;
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2. Availability and comparability of data from existing databases, inventories, regis-

ters of brownfield sites and other statistical databases;

3. Measurability of data of known quality, updated at regular intervals in accordance

with reliable procedures.

The above-mentioned points allow the model a certain degree of freedom and thus,

render a more user-friendly assessment tool. However, this flexibility can lead to con-

siderable variations in model outputs, depending on the variables used. This lack of

objectivity in variable selection process could affect the performance of the model.

2.2.3 Normalization of Selected Variables

The selected variables, discussed in the previous section, can be of different orders

of magnitude. In order to allow a sensible comparison and usage of data, the indi-

cators and variables need to be comparable, which can be achieved by re-scaling the

variables into a common numerical range. This procedure is commonly referred to

as Normalization [50]. The TIMBRE approach proposes the closed interval [0, 1] as

the normalization domain for all variables. That includes all numerical, ordinal,

and categorical data. Before describing normalization methods for each data type,

the difference between the three data types need to be shortly explained. The value

for each ordinal or categorical variable is selected from a finite number of categories.

While ordinal variables represent a numerical increase or decrease between their dis-

crete values by ordering the values, different categories of categorical variables do not

represent any specific numerical significance. An instance for an ordinal variable can

be the level of pain a patient is feeling, scaled from 1 to 10. Here, the order of values

matter and not the actual value or the difference between the values. Categorical

data can have two or more classes that do not have any inherent ordering. An exam-

ple of categorical data is gender with two classes (male and female) with no intrinsic

ordering. Numerical data, as can be expected, represent actual numbers (discrete

or continuous) where both the actual value and difference between the values have
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significant meaning, for example, area of a site in [m2].

The normalization method used for numerical data varies from the method utilized

for ordinal and/or categorical variables. For ordinal and categorical data, the normal-

ization is performed by an expert through associating a value from the closed interval

[0, 1] to each category of data. The category that most likely leads to the successful

regeneration of a brownfield site is set equal to 1, and the least likely category equal

to 0, all other categories are given values based on the perception of the expert with

regard to the successful brownfield regeneration. Two or several categories can share

the same value.

Normalization of numerical data is slightly more complex and can be achieved in two

steps. In the first step, experts indicate whether the variable has a descending or

ascending effect on the successful brownfield regeneration. An ascending relationship

means that an increase in the value of the variable leads to a higher potential for suc-

cessful regeneration of brownfield, and a descending relationship implies that with the

increase of the variable, the success potential decreases. After assessing the relation-

ship by experts, the variable is normalized by utilizing a linear interpolation between

its minimum and maximum values. The normalization functions can be described as:

Xi =


xi − imin
imax − imin

, ascending

imax − xi
imax − imin

, descending

(1)

where xi and Xi denote the value of variable i before normalization and after nor-

malization, respectively. imin and imax further represent the minimum and maximum

values of variable i. The described normalization process is straight-forward and easy

to implement. However, similar to the previous step, the need for experts’ assess-

ment of normalization of categorical and ordinal variables, as well as the ascending

or descending influence of the variable on brownfield regeneration potential can lead
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to variations in model outputs, due to subjectivity of experts’ judgment.

2.2.4 Aggregation of Variables into a Final Ranking Score

After normalizing the selected indicators, the last step in computing the final brown-

field prioritization score can be performed. As described in Section 2.2.1, the TIM-

BRE model consists of a hierarchical structure, illustrated in Figure 1, with the

measurable indicators at the lowest level of the structure. This final step relies on

expert estimations for the relative importance of the indicators that fall under the

same factor in the hierarchical structure. These estimations are given as weights to

each of the indicators, such that each weight must be in the [0, 1] closed interval, and

sum of all weights for each factor should be exactly equal to 1. A convex combination

of the indicators results into the factor they describe with a value between 0 and 1.

The relation is described in Eq. 2.

fi =
∑
j∈fi

wjXj (2)

where wj is the relative weight of the normalized variable Xj and fi is the resulting

factor. The convex combination of each factor only includes the indicators that de-

scribe that specific factor. The same procedure is then executed for all factors.

Similarly, the same process is utilized again in order to compute the values of dimen-

sions dk by aggregating the factors belonging to each one through a convex combina-

tion, weighted by experts based on their relative importance through Wl.

dk =
∑
l∈dk

Wlfl (3)

At this point, the values of each dimension represents the prioritization score of

brownfield sites in the dimension’s specific aspect, e.g., local development potential,
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site attractiveness, or environmental risk. Nevertheless, since the purpose of the

TIMBRE methodology is to develop a risk assessment model based on Multi-Criteria

Decision Analysis (MCDA), the dimensions need to be aggregated again into one

final ranking score that incorporates all the dimensions. In their paper, Pizzol et

al. (2016) propose two methods to compute the final ranking score [40]. The first

approach is to use the convex combination once again with the expert-estimated

weights for each dimension. The second approach is referred to as Ordered Weighted

Average (OWA), first introduced by Yager in 1988 [49]. The aggregation technique,

first, orders the dimensions based on their importance in a descending order. Using

a set of predefined weights, ωi, the ordered dimensions are then aggregated to a final

score. The predefined weights for the TIMBRE model is selected such that as the

value to be aggregated decreases, its weight is divided by two. As before, each weight

must be in the [0, 1] closed interval, and the sum of all weights must be exactly equal

to 1, i.e. for a model with three dimensions, the predefined weights are: ω1 = 0.571,

ω2 = 0.286, and ω3 = 0.143. By incorporating the predefined weights, ωi, with the

weights estimated by experts for each dimension based on their relative importance,

wi, a new set of weights can be calculated such that:

Wi = wi.ωi (4)

W ′
i =

Wi∑
Wi

(5)

Eq. 5 is utilized in order to normalize the weights and forcing their sum to be

equal to one. Finally, using the weights W ′
i , the prioritization score, representing the

redevelopment potential of a brownfield site can be computed using Eq. 6.

S =
n∑
i=1

di.W
′
i (6)

where di denotes the value of ith dimension of the brownfield site. Since all indicator,
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factor, and dimension values as well as their respective weights are between 0 and 1,

the final ranking score will also be a number in the [0, 1] closed interval. The higher

the brownfield prioritization score is, the more likely it is for the brownfield site to

be successfully redeveloped in the future. The aim of the TIMBRE prioritization

tool is to assess the brownfield sites in a portfolio and rank the sites based on their

relative attractiveness using a score value. The model does not define a cut-off value

for redevelopment of the brownfield sites, such that if the score is higher than the

cut-off value, the site is suitable for redevelopment and if not, the site should not be

considered for redevelopment. Instead, TIMBRE model provides a ranking of sites

relative to one another in a portfolio of brownfield sites at hand.

Up to now, the hierarchical structure of the TIMBRE brownfield prioritization model

and its properties have been described as the state of the art in brownfield risk assess-

ment modeling. The following section briefly describes the limitations of the model

and the research gaps in the existing literature related to the TIMBRE methodology,

and brownfield assessment models in general, that need to be addressed.
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2.3 Research Gaps and Limitations of TIMBRE Model

The TIMBRE prioritization tool makes a significant contribution to the previous liter-

ature in brownfield regeneration risk assessment models by adopting a Multi-Criteria

Decision Analysis (MCDA) approach and summarizing the findings of previous stud-

ies, surveys and interviews with stakeholders from various regions in one single model

[40, 50]. Moreover, the method proposed is user-friendly with a straight-forward im-

plementation and easy interpretation of model outcomes. The assessment tool further

avoids setting strict requirements on model inputs (dimensions, factors, and indica-

tors, as well as their respective weights). Such characteristics allow the model to have

the flexibility to be utilized by a wide range of end users form field owners, to land

developers, or even government agencies.

The TIMBRE model is, however, susceptible to several issues in different model build-

ing steps. In the process of the TIMBRE model building, variable identification and

selection is set as the foundation, upon which the model structure is built later. The

model’s authors take data availability and measurability, as well as personal judg-

ment of stakeholders and experts into account and therefore, do not require a fixed,

predetermined set of variables to be used in the model. The problem with such a vari-

able selection method is that no statistical measures are used to test the significance

of relationship between the predictor variables the response variable. For instance,

among a large dataset of available variables, not all variables necessarily demonstrate

a significant effect on the output variable, which is brownfield regeneration potential.

These relationships need to be tested before the variables are selected to be used in

the model. Some methods of variable selection include the Gini Coefficient, Akaike

Information Criterion (AIC), as well as the Bayesian Information Criterion (BIC)

[7, 14]. Lack of a statistical test for variable selection in TIMBRE model is regarded

as a research gap in the existing model building methodology.

Moreover, each indicator, factor, and dimension receives a relative weight estimated

by experts based on their respective importance for the hierarchical structure of the

13



model. The final brownfield prioritization score depends on the values of the weights,

and is therefore susceptible to experts subjectivity. Depending on the areas of expre-

tise of the decision-makers, widely different weights can be assigned to the variables,

which can change the model outcomes as a result. Here again, the model building

process needs to include statistical tests such as Maximum Likelihood Estimation in

order to estimate model coefficients accurately and objectively [30].

Last but not least, until now the evaluation of model’s predictive power has not been

reported in any study. The model performance evaluation is achieved through vali-

dation of model outcomes against realizations of successful brownfield regeneration.

According to Gass (1983) validation refers to “all activities that establish how closely

the model mirrors the perceived reality of the model” [21]. In this case, TIMBRE

model validation assesses how accurately the prioritization tool forecasts the success-

ful regeneration of brownfield sites. Pizzol et al. (2016) perform four case-studies

of the TIMBRE model in the Czech Republic, Germany, Poland and Romania to

rank the brownfield sites listed in the regions’ databases [40], but fail to test the

model outputs against realizations of brownfield redevelopment with an in-sample

or out-of-sample validation. The validation step is essential for achieving and later

maintaining a certain level of prioritization and predictive quality over time [32]. The

lack of validation measures for the existing model is another research gap in brown-

field regeneration risk modeling studies that should be addressed.

The following chapter continues with an overview of credit risk model building method-

ology. Since one of the major activities of banks and credit rating agencies is to classify

their customers based on their creditworthiness in order make decisions whether to

grant or reject loans to them, a variety of classification models have been proposed

in the literature, and many have been used and continuously improved in practice

over time in the banking sector. Thus, we use this opportunity and refer to credit

risk model building methodology in order to obtain a generic classification model

methodology that can be implemented in a new field of research, which is brownfield

regeneration risk assessment.
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Chapter 3

Credit Risk Modeling

This chapter is concerned with the credit risk model building methodology used in the

banking industry and credit rating agencies as a cornerstone of their risk management

practice. Since one of commercial banks’ main business activities is to grant loans to

individuals and businesses, they depend on credit scoring and classification techniques

to assess the credit risk, depending on the type of borrower (private individual, Small

and Medium sized Enterprise, corporate, etc.). There are several advantages to using

credit scoring models: First, credit scoring models provide an objective assessment

and evaluation of credit risk, since they are based on statistical techniques and not

opinions. Second, the credit scoring models can be validated, which allows banks and

credit rating agencies to assess the accuracy snd predictive power of their models and

predictions. Furthermore, continuous validation with the help of new data collected

over time allows the model to maintain a certain level of quality over its life cycle.

In the following sections, a brief overview of relevant research literature in the banking

sector is presented that includes several commonly used methods and techniques in

this field, followed by the methodology used in the three-step process-based credit risk

model building (Model-Construction, Model-Calibration, Model-Validation), which

was first proposed and implemented by Altman (1968) and is now widely practiced

in the industry. After providing a brief description of most commonly used statistical

models, we focus on two machine learning techniques in this thesis, i.e. decision tree

analysis and random forest machine learning algorithms.
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3.1 Review of the Relevant Research Literature

The concept of using statistical techniques for credit risk scoring originated in the

1930s and 1940s when Fisher (1936) first introduced linear discriminant analysis in

an effort to discriminate between two groups in a population [17]. Prior to that, banks

and financial institutes relied on credit analysts to make decisions for credit manage-

ment purposes solely based on their subjective judgment. However, as the number of

private individuals and businesses applying for loans and credit cards increased, the

need for an automated and standardized procedure free of personal subjectivity of an

analyst became apparent. William Fair and Earl Isaac founded the first consultancy

firm in 1956 to assist banks and financial companies measure the creditworthiness of

their customers based on divergence statistics [18].

Over the last several decades, various quantitative methods and techniques have been

proposed for credit risk scoring and classificaion in the literature based on the concept

of classification of several groups in a data sample [43]. These methods can be divided

into parametric and non-parametric or data mining models. The construction step

of parametric models involves developing a mathematical formalization with explicit

functional specification based on sound assumptions as the theoretical foundation of

the model. Non-parametric models on the other hand, do not rely on mathematical

relations based on assumptions made about the type of mapping functions. Instead,

they use training datasets in order to find less structured, data-driven relations among

the observations in a dataset [26]. In the following section, some of the most com-

monly used methods in credit risk scoring literature are discussed briefly.

Linear Discriminant Analysis (LDA)

Beaver (1966) proposed using a uni-variate model in order to discriminate between

failing and non-failing companies based on a single financial factor [5]. Altman (1968)

further developed the concept by using a set of financial ratios in multivariate discrim-

inant analysis (MDA) in order to classify businesses to two groups (failing/non-failing)
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and produced the so-called z-score [1], described as:

Z = α + β1X1 + β2X2 + ..+ βpXp (7)

where Z represents the z-score, α is the intercept, X is the matrix of explanatory vari-

ables, and β is the vector of coefficients. The concept behind the linear discriminant

analysis is basically to find a linear combination of explanatory variables that best

separates the subsets (or classes of data) within a dataset. In the case of bankruptcy

prediction, for example, the goal is to separate failing from non-failing obligors by

finding a linear combination of explanatory variables such that the difference in the

means of the two subsets are maximized. Initially, the following assumption were

made for the analysis (1) the covariance matrices must be equal for both subgroups

in the data. (2) Each classification subgroup must be normally distributed. These

assumptions have been relaxed over time as the computation capability has increased

dramatically. However, the model can only handle numerical data, and not cate-

gorical or ordinal data. Over the years, multivariate discriminant analysis has been

widely used in financial sector in order to predict defaults and further used by many

researchers.

Although many statistical models have been introduced ever since Altman proposed

LDA that are more flexible and require less strict assumptions, the foundation for

credit risk model building methodology that has been widely used ever since in prac-

tice still remains the one implemented by Altman in 1968. The methodology proposed

consists of a process-based structure for credit risk model building, that starts with

mathematical model specification as model-construction, afterwards, with the help

of historical or current data, the key model parameters are estimated within model-

calibration, and finally, the accuracy of the model is tested in order to evaluate the

model quality and potentially improve its predictive power in a model-validation

step. As the computing power has improved drastically over time, many statistical

and machine learning methods have been developed for credit risk modeling that
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perform much better than previous mathematical methods including linear discrimi-

nant analysis, but the underlying methodology used in credit risk models remain the

three-step process proposed by Altman [1].

Linear Regression

The linear regression model is commonly used to investigate the relationship between

several explanatory variables and a specific response variable and to find significant

explanatory variables related to the response variable by using a linear relationship

between the explanatory set of variables, X = X1, ..., Xp, and the outcome variable,

Y, as depicted,

Z = β0 + β1X1 + β2X2 + ..+ βpXp + ε (8)

where ε represents the random error and β is the vector of coefficients estimated by

using the method of ordinary least squares [35]. Many authors have proposed utilizing

linear regression models for credit scoring [3, 23, 35]. The model is specially suitable

when the response variable is continuous numerical. Since the regression outcomes

are not limited to a range, i.e. x′β ∈ [−∞,∞], the values cannot be interpreted as a

probability.

Logistic Regression

Ohlson (1980) made an extension to the existing linear regression models by using con-

ditional logit models to predict corporate bankruptcy by predicting a binary depen-

dant outcome, Y = {y1, y2}, based on a set of independent variables, X = {X1, ..., Xp}
[38]. With the help of Maximum Likelihood Estimation method a linear combination

of X is estimated based on logit transformation of Y , such that

πi = P (Yi = y1|Xi) =
exp{Xiβ}

1− exp{Xiβ}
(9)
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where 0 ≤ πi ≤ 1 represents the probability that instance i belongs to category y1

conditional to Xi, and β represents the vector of estimated coefficients [30]. Un-

like multivariate discriminant analysis, logit regression methodology does not require

many restrictive assumptions initially assumed for the linear discriminant analysis.

Moreover, categorical data can also be used as dummy variables for each category

of data in this method. Since the dependent variable is dichotomous (default/non-

default), the use of logit regression is apt for bankrupcy classification. Due to its

flexibility and advantages, the logit regression remains as one of the most widely used

methodologies in credit scoring to this day [43].

Artificial Neural Networks

An artificial neural network (ANN) is a non-linear machine learning model that has

been increasingly used in credit scoring models. The data mining technique attempts

to mimic the decision process of the human brain, which functions by sending elec-

tronic signals between a large number of neurons [42]. The structure of a network

contains one input layer (explanatory variables), one or several hidden layers, and

one output layer, consisting of several neurons on each level. Neurons on the input

layer receive a certain amount of stimuli from the input variables, process them and

subsequently generate output values that are transmitted to the neurons in the fol-

lowing layer. Various types of networks differ based on the number of hidden layers

and the activation functions applied to them [35, 48].

k-Nearest Neighbor Classifier

The k-nearest neighbor algorithm is a non-parametric classification model, which ex-

amines the similarities between the identified patterns of the training set and the

input [25]. Based on the metric chosen, k-nearest neighbor from the input data are

chosen, such that they are nearest considering the specified metric. Classification of
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a new applicant takes place by finding the class that the majority of its neighbors

belong to [48]. The choice of the metric, and the number of nearest neighbors signif-

icantly affect the performance of the model [25, 24].

Decision Tree Analysis

Decision tree analysis refers to a non-parametric classification method which uses

historical data in order to develop decision rules which have a tree-like structure,

as the name suggests [8]. The general aim of this approach is to construct a set

of if-then logical conditions so that predictions or classification of instances can be

made. There are different types of decision trees, based on the criterion used to build

the tress. Generally, all tree models attempt to minimize the impurities in their leaf

nodes [8, 22]. The Classification And Regression Tree methodology (CART), first

introduced by Breiman, Friedman, Olshen, and Stone (1984) is a type of decision tree

that utilizes binary trees and separates a dataset into a finite number of classes by

using the Gini index, which makes the model suitable for credit scoring where the

task is to classify default and non-default cases contained in the data. The logical

relationships derived with the CART method are easy to interpret and quite flexi-

ble. Moreover, decision trees are ideal for dealing with big datasets, containing large

number of variables, since the method inherently performs variable selection [31].

Random Forests

A single Classification and Regression Tree uses a specific and fixed training set to

formulate decision rules that best separate classes of data in the training set. The

same rules are then applied to new observations in order to assign a class to each

new observation. However, the CART trees can be quite unstable and sensitive to

changes in the dataset, such that if the training set used to construct and calibrate

the model changes, the resulting decision tree can also drastically change. As an ex-

tention to this machine learning algorithm, Ho (1995) proposed developing multiple
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trees from randomly selected subsets of the data training sets [27]. Breiman (2001)

further expanded the concept of ensemble learning, which is referred to a machine

learning technique that is based on utilizing a set of individual classifiers which are

viewed as ”weak learners” and combining them to a single, more accurate classifier

referred to as a ”strong learner” with higher predictive power [10, 39].

Breiman (2001) proposed random forests based on the concept of generating several

classification decision trees and aggregating their outcomes to a final classifier [10].

For construction of the random forest, ntree single maximum (unpruned) decision trees

are generated by randomly selecting samples of data out of the original dataset, and

mtry variables from the matrix of the explanatory variables. The model predicts the

response variable by majority vote of the single decision trees for classification and

averaging the regression values for regression models. Each time a decision tree is

constructed, the remaining observations are used to assess the predictive power of the

model by obtaining a measure called out-of-bag (OOB) error estimate [9, 10], which

is the aggregate of the single error estimates of the decision trees.

The predictive power of the random forest algorithm is unexcelled among current

machine learning algorithms and has gained increasing attention over the past years

as a classification and/or regression algorithm. Furthermore, the technique does not

overfit the data, as single decision trees tend to do, and easily handles large datasets.

The existence of missing values and outliers in the data does not impede the perfor-

mance of the model, either.

In this thesis, we focus on the CART method and Random Forest algorithm, currently

used in commercial banks and credit rating agencies for credit scoring purposes. The

following sections explain the steps for building a credit risk scoring model with the

help of Classification And Regression Tree methodology and its extension to random

forests.
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3.2 Credit Risk Model-Building Methodology

This section presents the process of Risk Model Building through model-construction,

model-calibration and model-validation, first proposed and implmented by Altman

(1968) in the field of credit risk models and later adopted by the Basel Committe

on Banking Supervision (BCBS) [1]. The three step process allows attaining a de-

sired level of predictive quality of the risk model and provides feedback infromation of

model performance, which is essential for maintaining its performance quality over its

life cycle [32]. The generic model building process discussed here is specified utilizing

the Classification And Regression Tree methodology and Random Forest algorithm

[8, 9, 10].

3.2.1 Model-Construction

The first step in building a risk assessment model is model-construction. A generic risk

model M maps risk factors Xi,t to a grade Ci,t+h that describes the creditworthiness

of an obligor, represented by:

M : Xi,t → Ci,t+h. (10)

The creditworthiness Ci,t+h can represent a relative or absolute risk measure. In the

case of classification models, the main function is to act as a sorting tool that best

separates the ”good” candidates that are liable to pay back their financial obligation

from the ”bad”, who should be rejected due to high probability of defaulting in a

classification procedure, and thus the model maps risk factors or explanatory vari-

ables to a specific class from two or several categories, which the applicant belongs to.

Decision trees are powerful learning techniques that are used for the purpose of clas-

sification in many fields of research, including but not limited to credit scoring. In

essence, decision trees are a learning method that approximates discrete-valued target

functions. The model utilizes binary trees and separates a dataset into a finite num-
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ber of classes by constructing a set of if-then logical conditions so that predictions or

classification of candidates can be made [20].

Decision Tree Fundamentals

Suppose a dataset contains information of several credit applicants. Each applicant

is described through a set of explanatory variables (attributes) X = {X1, X2, ..., Xn},
as well as a binary dependent variable Y ∈ {y1, y2}, describing the category the ap-

plicant belongs to (defaulting/non-defaulting). The algorithm starts at a root node,

which contains the dataset with applicants from both classes. By going through all

attributes and possible cut-off values, the algorithm attempts to find the binary split,

or a so-called splitting rule, that best separates the dataset to two subsets with one

with most defaulting applicants and the other with most non-defaulting, or in other

words, such that the two subsets are as homogeneous as possible. Once the root node

is split, the same process takes place for the child nodes in a recursive partitioning

procedure until a certain criterion is satisfied for the decision tree [20].

Figure 2 schematically illustrates a simple decision tree flow chart that contains both

numerical and categorical explanatory variables, since categorical and ordinal at-

tributes can be handled by the decision trees, as well. For such variables the al-

gorithm splits the sample depending on which elements of the categorical attribute

best separate the sample data. For categorical variables, the algorithm goes through

all possible combinations of classes of the categorical data in order to find the two

subsets of classes that best separate the dataset, meaning that if the variable con-

tains k classes, the algorithm considers all 2k−1− 1 possible binary splits. For ordinal

variable, the tree takes the order into account as well, meaning that an attribute with

k states will have k − 1 possible binary splits to consider. For numerical variables

the tree algorithm finds the best cut-off value ci and splits the dataset depending on

whether the value of the attribute is larger or smaller than ci [45].
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Figure 2: Decision Tree Flow Chart.

The final nodes of the tree, where no more partitioning takes place, are called leaf

nodes. The algorithm reaches a leaf node when a certain criterion is satisfied. The

criterion used to determine the decision or splitting rules is based on the impurity

(level of inhomogeneity) of the child nodes versus the parent nodes. Various impu-

rity measures have been proposed to evaluate a decision tree, with the three most

commonly used defined as:

Gini(t) = 1−
c−1∑
i=0

[p(i|t)]2, (11)

Entropy(t) = −
c−1∑
i=0

p(i|t)log2p(i|t), (12)

Classification error(t) = 1−maxi[p(i|t)], (13)

such that p(i|t) denotes the fraction of cases belonging to class i at a given node t

[45]. In order to determine the splitting rule, a comparison needs to be made between

the impurity of a parent node before splitting with the sum of the impurities of the
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child nodes after splitting. The gain, ∆, is a function that is used to measure the

change in impurity values:

∆ = I(parent)−
k∑
j=1

N(vj)

N
I(vj) (14)

where I(·) denotes the impurity measure of a given node, N is the total number of

instances at the parent node, k is the number of classifications, and N(vj) is the

number of instances in the child node, vj. The principle of decision tree algorithms is

to determine a splitting condition that maximizes the gain ∆. Since I(parent) is the

equal for all splitting conditions, maximizing the gain means minimizing the weighted

average impurity measures of the child nodes [45]. Figure 3 compares the values of

the three impurity measures for a binary classification.

Figure 3: Comparison of impurity measures for binary classification [45].

In Figure 3, p refers to the fraction of applicants belonging to one of the two cate-

gories. As can be expected, all three impurity measures reach their maximum value

when p = 0.5, meaning that there are exactly the same number of records from both

categories and thus, the classification algorithm cannot separate the classes at all and

the leaf nodes are impure. The minimum values for the measures are attained when
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all the records belong to the same category, meaning that p is equal to either 0 or 1

and the tree algorithm has fully separated the classes.

Different types of decision trees are defined depending on the impurity measures used

as the criterion for the splitting decision. CART algorithm uses the gini measure

(Eq. 11) as the metric used for its splitting decisions. ID3, C4.5 and C5.0 are other

type of decision trees that use the entropy measure (Eq. 12) as their splitting function.

Classification And Regression Trees (CART)

Classification and Regression Tree is a type of decision tree used for predictive mod-

elling [8]. One major advantage of the CART algorithm is that the response variable

Y , as well as the explanatory variables X can be categorical, nominal, or continuous,

making the algorithm incredibly versatile in predictive modeling. If the dependent

variable Y is of categorical nature, the tree is referred to as a Classification Tree

and the model outputs predict discrete values or classes of data, similar to classes of

Y . If the model’s response variable Y takes continuous numerical value, the model

predicts numerical values for the records and the algorithm is referred to as a Regres-

sion Tree. The splitting criterion used or nominal or categorical dependent variable

(classification tree) is the gini index, introduced earlier in Eq. 11. For continuous re-

sponse variable, the algorithm (regression tree) utilizes Least Squares Deviation (LSD)

method as the impurity measure [34]. Another advantage of the CART method is

its robustness to outliers. The splitting decision usually isolates outliers in individual

node(s). Moreover, the structure of the tree is such that it is invariant to monotone

transformations, such as logarithm, or square root of explanatory variables.

Developing a CART tree can be summed up in the following three steps:

1. Construction of the maximum tree.

2. Optimizing the the number of nodes by tree-pruning.

3. Classification of new data with the constructed tree.
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The first step, the construction of the maximum tree is the most time consuming step

of the model development. In this step, the classification algorithm maximizes the

gain function depicted in Eq. 14 for each binary split using the gini index, defined in

Eq. 11. Substituting the gini index in the gain function results in:

∆i(t) = −
c−1∑
i=0

[p(i|tp)]2 +
k∑
j=1

N(vj)

N

c−1∑
i=0

[p(i|tc)]2 (15)

where tp and tc denote parent and child nodes, respectively. Thus, the algorithm

needs to solve the following maximization problem at each step :

arg max
xk<x

R
k ,j=1,...,p

[
−

c−1∑
i=0

[p(i|tp)]2 +
k∑
j=1

N(vj)

N

c−1∑
i=0

[p(i|tc)]2
]

(16)

where xk refers to the explanatory variables, xRk the best splitting or cut-off value of

xk, and k = 1, ..., p is the number of explanatory variables [47]. Other splitting rules

have also been proposed in the literature such as Twoing splitting rule. Breiman et

al. (1984) show that the maximum tree is insensitive to the choice of the splitting rule

criterion, and thus, we use the splitting rule described above. However, tree-pruning

procedure, unlike the splitting rule criterion, plays a significant role in the predictive

ability of the classification and regression tree model [8].

Random Forests

Up to now, the main focus has been on constructing single Classification and Re-

gression Trees. Each tree uses a specific and fixed training set to formulate decision

rules that best separate classes of data in the training set. The same rules are then
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applied to new observations in order to assign a class to each record. However, the

CART trees developed can be rather unstable and sensitive to changes in the dataset,

such that if the training set used to construct and calibrate the model changes, the

resulting decision tree can also drastically change. On the other hand, no methods

are known that can increase the classification accuracy both on training and test

sets. As a solution to the this problem, Ho (1995) proposes developing multiple trees

from randomly selected subsets of the data training sets [27]. Breiman (2001) further

expands the concept of ensemble learning, which is referred to a machine learning

technique that is based on utilizing a set of individual classifiers which are viewed as

”weak learners” and combining them to a single, more accurate classifier referred to

as a ”strong learner” with higher predictive power [10, 39]. Breiman (2001) proposes

random forests based on the concept of generating several classification decision trees

and aggregating their outcomes to a final classificaier [10].

The algorithm of a random forest for classification and regression based on Breiman

(2001) is as follows [33]:

• First, ntree bootstrap sub-samples are drawn form the original dataset.

• For each bootstrap sub-sample an unpruned maximum tree is generated. How-

ever, at each splitting node, instead of selecting a variable from all the explana-

tory variables in the dataset, a random sample of mtry is selected and then the

splitting variable is selected from the random sample of predictors.

• The final step in predicting the response of an observation is aggregating the

prediction of the ntree trees by using the majority vote of the respinse variable

for classification models and average value of response for regression models.

Random forests differ based on the number of bootstrap samples ntree, and the pre-

dictor sample mtry. A special case can be viewed when mtry = p, the number of

explanatory variables, which is referred to as tree bagging [9]. Tree bagging includes
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only one random sampling of the dataset for the number of decision trees generated,

as apposed to two sampling (bootstrap samples of dataset, and random sampling of

the explanatory variables) in the random forest method.

3.2.2 Model-Calibration

The initial or maximum trees are usually highly complex and consist of a large num-

ber of branches on different levels. Decision trees that are too large are usually a

result of overfitting the data. In the presence of noise in the training sample, a com-

plex model overreacts to any fluctuations in the training data that are not necessarily

underlying patterns in the data. As a result, the predictive ability of the model can

be undermined when using the model to classify new, previously unseen observations

[34]. On the other hand, trees that are not developed sufficiently are susceptible to

underfitting, meaning that the algorithm cannot fully capture the trends in the data.

Therefore, optimizing the size of the decision trees is an important and necessary step

in building a classification model with a high predictive power. The optimization of

a decision tree is usually referred to tree-pruning. There are two methods, commonly

used in decision tree algorithms, described in the following paragraphs, to prune the

tree model: 1. Optimizing size of the tree 2. Cross-validation [47]. Cross-validation

per se is not a tree-pruning method, but rather a measure used to compare the pre-

dictive power of the model in order to choose the best decision tree among a set of

trees.

Random forests, on the other hand, do not need tree-pruning or cross-validation, since

the classifier, by Breiman’s account does not overfit the data [10]. By aggregating

several trees, each containing a different set of variables, the chances of overfitting is

reduced tremendously. The forest algorithm inherently computes an error measure

referred to as out-of-bag (OOB) error estimate, which will be further described in

detail in Section 3.2.2.
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Optimizing Size of the Tree

The maximum tree branches out by default until the impurity in the leaf nodes is

either zero or cannot be reduced any further. That leads to the number of cases in

each leaf node to be small or equal to one, and the decision tree to be extremely large

and difficult to comprehend. One method to prune the maximum tree and optimize

the tree structure is to set a minimum number of cases, Nmin, for each leaf node. As

expected, the smaller Nmin is, the more complex the pruned tree will be. As a rule

of thumb, Nmin can be set to 10% of the training set [34]. For an optimal tree size,

the trade-off between predictive power of the model on the test set and impurity of

the leaf nodes, which is basically the error on the training set, should be taken into

account. Cross validation can be used as a method to quantify the trad-off problem,

thus, can be used as a measure for tree optimization.

Cross-Validation

Cross-validation deals with the problem of finding the optimum of the trade-off be-

tween misclassification error (impurity in leaf nodes) also called training error versus

the predictive power of the model on a test set, disjoint from the training set, or the

so-called generalization error [34]. A highly complex tree has lower misclassification

of records in training set until the maximum tree is reached, where the training error

is equal to zero. However, highly complex trees perform poorly on disjoint datasets

(high generalization error) that the algorithm has not seen before. The following

equation describes this optimization problem:

Rα(T ) = R(T ) + α(T ′)→ minT (17)

where R(T ) denotes the misclassification or training error of the decision tree T ,

α(T ′) is a complexity measure, which is a function of the number of leaf nodes T ′ and
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denotes the generalization error based on in-sample cross-validation [47].

The cross-validation procedure takes place by partitioning the training dataset to k

equal-sized subsets. Each time, the algorithm takes k−1 subsets in order to construct

a tree and uses the last subset for testing and evaluating the misclassification error.

This process is repeated k times until each subset is used for testing exactly once. The

total error is then calculated by aggregating the error of all k runs. The total error can

be used as a measure to find the optimal tree size by comparing the error value of dif-

ferent trees. Minimizing the generalization error leads to finding the optimal tree size.

3.2.3 Model-Validation

The final step in credit risk model building process is validation of the model. The

validation step according to Gass (1983) refers to “all activities that establish how

closely the model mirrors the perceived reality of the model” [21]. Assessing the

predictive power and overall accuracy of a classification model is essential in main-

taining a desired level of quality over the life time of the risk model by providing

feedback information that can be used to optimize the performance of the model [32].

Backtesting and benchmarking are two validation approaches that can be employed

depending on the existence of historical data. Backtesting is a retrospective approach

that is based on statistical tests of historical realizations of data against model out-

comes. Benchmarking on the other hand, is a prospective approach that is based on

comparing different risk estimates of various models.

In decision tree analysis, backtesting takes place by classifying a new, previously un-

seen and disjoint set of observations (test dataset) with the help of the constructed

and calibrated tree model and comparing them to the actual classes of data, which

the observations belong to. There are various methods to measure the accuracy and

predictive power of a tree model. Two common approaches, namely the Receiver

Operating Characteristics (ROC) and the confusion matrix are described in the fol-
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Table 1: Confusion Matrix

Prediction

{Class 1 (P)} {Class 2 (N)}

True Values
{Class 1 (P)} TP FN PPV

{Class 2 (N)} FP TN NPV

SEN SPE Total

lowing subsections.

Confusion Matrix

The task of a classification model is to predict the class of response, which an ob-

servation in the data sample belongs to. If the true classes of the observations are

known in the historical dataset, a comparison of the predicted response by the model

and the actual categories can be performed. By setting the model predictions against

the actual classes from the test dataset the confusion matrix can be created. Table

1 illustrates the common structure of a confusion matrix and the measures that are

commonly obtained with the help of the matrix for a binary classification model.

The terms TN, FP, TP, and FN used in Table 1 are defined as True Negative, False

Positive, True Positive, and False Negative, based on whether class 1 (Negative class)

and class 2 (Positive class) of data are accurately (True) or not (False) predicted

by the model. The sum of all for subgroups is equal to the number of observations

in the dataset. With the help of the confusion matrix, various measures for the

performance of the predictive model can be defined, such as accuracy, specificity,

sensitivity, positive predictive value, and negative predictive value.
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Accuracy (ACC) =
TP + TN

TP + TN + FN + FP
(18)

Specificity (SPE) = True Negative Rate =
TN

TN + FP
(19)

Sensitivity (SEN) = True Positive Rate =
TP

TP + FN
(20)

Positive Predictive V alue (PPV ) =
TP

TP + FP
(21)

Negative Predictive V alue (NPV ) =
TN

TN + FN
(22)

Other measures for credit scoring analysis have also been proposed in the literature,

such as F-measure, which are out of scope of this thesis, and thus we do not go further

into detail.

Receiver Operating Characteristics (ROC)

Receiver Operating Characteristics (ROC) is a visualization method, utilized to illus-

trate the predictive or discriminatory power of classification models [51]. The ROC

curve is obtained such that the x-axis of the ROC curve illustrates 1 − specificity
and the y-axis depicts sensitivity of the model.

Figure 4 depicts three different models, namely a perfect classification model, a ran-

dom model, and an arbitrary classification model. The perfect classification model

is illustrated with the horizontal line with sensitivity equal to 1. Since the model

predicts the class of all records accurately, sensitivity of the model, calculated by Eq.

20, is exactly equal to 1. On the other hand, the random model has no discriminatory

power as it just randomly guesses the classes. Thus, the sensitivity increases equally

with 1 − specificity, meaning for each correct prediction, there is exactly 1 wrong

prediction. The diagonal depicts a random classification model. For any arbitrary
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Figure 4: Receiver Operating Characteristics (ROC) Curve.

classification model, the closer the curve is to the perfect model, the higher the dis-

criminatory power of the model will be. Different models can be visually compared

with the help of ROC curve.

Furthermore, measures such as Accuracy Ratio, Area Under the ROC curve (AU-

ROC), and Gini Coefficient (not to be confused with the Gini index of the decision

tree criterion, defined in Eq. 11) are used to quantify the discriminatory power of

the model. The computation of these measures are based on the two areas A and B

depicted in Figure 4, such that:

Accuracy Ratio (AR) =
A

A+B
(23)

Area Under the ROC Curve (AUROC) = 0.5(AR + 1) (24)

Gini = 2A (25)
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The Accuracy Ratio and the Gini coefficient can take a value in [0, 1] closed inter-

val, where the random model has AR = 0 and Gini = 0, and for the perfect model

AR = 1 and Gini = 1. AUROC values range from 0.5 to 1. For all three measures,

higher values demonstrate higher predictive power of a classification model.

Out-of-Bag (OOB) Error Estimate

As mentioned previously, the random forest algorithm does not require a tree-pruning

or cross-validation step, as the model inherently calculates a measure for classification

error, referred to out-of bag (OOB) error estimate by Breiman [10]. The calculation

of the random forest involves sampling the training set ntree times. Each time, the

remaining observation, not included in the bootstrap sample (thus, ”out-of-bag” ob-

servations), can be used as a test set to predict the response variable, and compare to

the actual response variable. The next step is to aggregate the error estimates of the

OOB predictions, referred to as OOB error estimate, which is regarded as an accurate

estimate of the generalization error, if enough trees are generated in developing the

forest [11]. Using the OOB estimates helps to remove the need for a disjoint and

independent test set.

The three Model-Construction, Model-Calibration, and Model-Validation steps, as well

as the literature review, described in this chapter, provides a brief description of risk

modeling methodology commonly used in the field of credit risk scoring in the banking

sector. The next chapter continues with the implementation of the Classification

And Regression Tree, as well as random forest algorithms in brownfield regeneration

risk assessment field by following the three step Construction-Calibration-Validation

modeling methodology discussed in Chapter 3.
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Chapter 4

CART Analysis in Brownfield Regeneration

In this chapter, three new classification models for successful brownfield regeneration

are proposed based on the Classification and Regression Tree (CART) and Random

Forest machine learning techniques [8, 9, 10, 27]. In order to develop a valid risk clas-

sification model that can attain a desired level of predictive capability and maintain

it over time, we follow the three step Model-Construction, Model-Calibration, Model-

Validation process, described in detail in Chapter 3. Our model aims to bridge the

research gaps and limitations in the existing brownfield redevelopment risk assess-

ment models, as indicated in Section 2.3 and further serve as a guideline for future

implementations of CART and random forest algorithms in diverse fields of research

within the framework of risk model building. The commented R-code developed and

described in this chapter is attached in Appendix A.

Before implementing the CART and random forest algorithms in brownfield regen-

eration risk classification models, it is important to note some of characteristics and

advantages of the two methodologies over other statistical classification methods,

briefly discussed in Section 3.1.

• CART is a non-parametric model. Thus, it does not require any mathe-

matical formalization for the classification model, which allows more flexibility,

as apposed to a linear combination of variables used in LDA, linear regression,

or convex combination used in TIMBRE model.
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• CART inherently performs variable selection. The existing TIMBRE

model does not propose any objective methods for selecting variables from large

databases, instead it merely depends on experts’ suggestions and data availabil-

ity and includes all available variables in the model. The CART method as well

as the Random Forest algorithm intrinsically find the most effective variables

through maximizing the gain function, defined in Eq. 14. Adding variables

that are insignificant to successful brownfield regeneration does not change the

structure or the splitting-rules of the algorithms.

• CART handles numerical, ordinal, and categorical data. Since the

model does not depend on a functional specification, existence of categorical

and ordinal variables with several classes of data does not cause any limitations.

Moreover, the model does not make any restrictive assumptions regarding the

distribution of variables or the variance/covariance matrices of the classes of the

data. However, up to now, due to limitations on computing power, categorical

variables with large number of classes cannot be analyzed.

• CART method is invariant to monotonic transformations of the ex-

planatory variables. Using the logarithm, square root or any other sort of

normalization function does not affect the structure of the tree. It can lead to

different cut-off values for the splitting-rules but the variables selected for each

binary split, as well as the overall tree structure do not change with variable

transformation.

• CART is not sensitive to outliers in explanatory variables. By isolating

the outliers in a separate node, CART algorithm easily handles noisy data.

Moreover, CART can automatically handle missing data.

• CART can easily be adjusted over time. With new observations, the

model can be continuously re-calibrated over time in order to adjust to the

current conditions and maintain a high level of predictive power.
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As noted in Section 3.2.1, there are disadvantages to using the CART algorithm. For

one, decision trees can be unstable and quite sensitive to changes in the training set,

meaning that if observations are added to the training set or omitted from it, the tree

structure can change drastically. The CART algorithm also tend to be susceptible to

overfitting and overreacting to noisy datasets. The random forest algorithm, on the

other hand, covers those issues and has the following features and advantages:

• Random Forests generally do not overfit. Aggregating several single decision

trees, and sampling the predictors significantly reduces the chances of overfit-

ting the data. This is an important advantage compared to the decision tree

algorithm, which has a habit of overfitting the training data.

• It is unparalleled in predictive power and classification accuracy among current

algorithms. At the same time, the computation time is relatively short.

• The algorithm easily handles large datasets, consisting of thousands of obser-

vations and hundreds of explanatory variable.

• The model computes estimates of importance for the explanatory variables.

• Random forest internally computes error estimates (OOB estimate) of the model

without needing a disjoint test dataset. Also, there is no need to perform cross-

validation or tree-pruning, since the model inherently selects bootstrap samples

from dataset for tree calibration and the remaining records for validation.

• The algorithm handles outliers and missing data with ease.

The following sections describe the decision tree and random forest classifiers devel-

oped for brownfield regeneration classification. All three models follow the three-step

credit risk model building methodology, proposed by Altman (1968) [1].
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4.1 Model Data Specification

4.1.1 Data Sample

In this thesis, the CART and Random Forest methods are used to develop brown-

field regeneration classification models using dataset provided for ENTEKER (EN-

Twicklung Eines Kostenlosen ERkundungsservice) project, within the framework of

“SMART CITIES - FIT for SET“ program. The extensive dataset was created by

combining several separate datasets. The base of the data sample was provided by

the Federal Environmental Agency of Austria (Umweltbundesamt), which includes all

brownfield sites listed in Austria. The records are limited to sites, where the previous

industry in the field was founded before and up to 1989, meaning that if an industry

was registered after 1989 and the site has turned into a brownfield, the site is not

included in this database. The brownfield dataset provided by Umweltbundesamt

(UBA) contains the following attributes:

Table 2: Brownfield Dataset

Attribute Type of Variable

Geometry continuous numerical [m] (
Area

Circumference
)

Area continuous numerical [m2]

Circumference continuous numerical [m]

Distance to City Center categorical {< 1km, 1− 5km, 5− 10km,> 10km}
Period of Industry Operation continuous numerical [years]

Contamination Level ordinal {1, 2, 3}a

Industry Size categorical {small,medium, large}
Current Usage categoricalb

a1, 2, and 3 denote high, medium, and low contamination level, respectively.
bCategories for current usage include residential, industrial, agriculture, train station, etc.
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All the attributes listed in Table 2 describe the brownfield sites. The items are se-

lected based on the proposed variables in TIMBRE model, previous studies in the

field, and the availability of data in the UBA database. Variables area and circumfer-

ence describe the size of the brownfield, and geometry denotes its shape. The more

compact the brownfield site is (round shapes), the smaller the value of geometry will

be. An increase in length to width ratio (extended rectangular shapes) increases the

geometry. Geometry, area, circumference, period of industry operation, contamina-

tion level, and industry size are regraded as explanatory variables (independent) that

are brownfield-specific.

The last variable, current usage, is regarded as the response variable (dependent).

Within the scope of this project, successful regeneration of a brownfield is regarded

as redevelopment of a brownfield for residential purposes. In order to use this vari-

able in the analysis, current usage is transformed to a binary variable by splitting all

categories into two groups: 1. residential, 2. other. For the remainder of this work,

residential category (redeveloped for our purpose) is set equal to 1, and all other

categories (not redeveloped as residential) are set to 0. In total, the dataset includes

over 46.000 brownfield sites in Austria. By excluding the industrial sites that remain

partially in business, which can distort the model outcomes, the final dataset includes

25.324 brownfield sites.

As explained in Chapter 2, local and regional characteristics where the brownfield

is located plays an important role in the redevelopment potential of the site, as

well. TIMBRE model includes these attributes within the local development poten-

tial dimension. Thus, our dataset was extended in order to include attributes that

describe the municipality and region of the brownfield sites. The main data source

is Statistik Austria, which is the Austrian statistical office. Another source used is

the open.data.gv, which provides public records of open government data. Other data

sources include GIS, and Wikipedia. The data covers various characteristics of the
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regions, from spacial features of a municipality such as transport connections, number

of train stations, and availability of different categories of road transport infrastruc-

ture. Socioeconomic features such as real estate prices, population growth, and share

of graduates in the municipality are included, as well. Table 3 describes the variables

obtained, as well as their respective data type and unit of measurement.

Unlike the brownfield attributes, the municipality variables are repeated through the

dataset depending on the location of the brownfield. The municipality with lowest

number of brownfield sites contains only 1 site, while the largest municipality has

1819 records of brownfield sites registered. From the beginning of the project, it was

decided that Municipality of Vienna should be separated from the rest of the dataset,

since the infrastructure and characteristics of this federal state is fundamentally dif-

ferent from the rest of the registered municipalities, and thus, can distort the overall

predictive performance of the model. In order to account for geographical and infras-

tructural differences between the eight federal states of Austria, a categorical variable

indicating the state of the brownfield site is included in the analysis, as well.

In total, the dataset includes 49 explanatory variables, 4 of which are categorical, 1

ordinal, and the remaining 44 variables are numerical. The response variable is a cat-

egorical variable with two classes, {1, 0} for developed, and not developed brownfield

sites as residential area.

4.1.2 Data Splitting

Based on the three-step risk modeling methodology used in this thesis, the dataset

for the CART tree needs to be split to two subsets: training set used to construct

the maximum tree and calibrate the optimized or pruned tree and test set used for

validating the final model in order to evaluate its predictive power. Given that the

dataset available is large enough, the two training and test sets can be easily created.

By randomly selecting records of data and not replacing the record in the dataset, the

training subset is created. The remaining records make up the test set. Normally, 60%
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Table 3: Municipality Dataset

Attribute Type of Variable

Road Transportation Infrastructure continuous numerical [m]

Area of the Municipality continuous numerical [m2]

Municipal Taxes continuous numerical [e]

Real Estate Prices continuous numerical [e/m2]

Trend of Real Estate Prices categorical {ascending, descending}
Average Household Size continuous numerical

Number of Families discrete numerical

Number of Private Households discrete numerical

Number of Residential Houses discrete numerical

Number of Bureaus discrete numerical

Number of Workplaces discrete numerical

Number of Employees discrete numerical

Number of Train Stations discrete numerical

Number of Traffic Lights discrete numerical

Number of Hotels discrete numerical

External Migration discrete numerical

Internal Migration discrete numerical

Share of Academics continuous numerical

Population Density continuous numerical (
Population

AreaofRegion
)

Population Growth discrete numerical (BirthRate−MortalityRate)

Federal State categorical {B,K,N,O, Sa, St, T, V }a

aFederal State of Vienna is excluded from the dataset, due to fundamental differences with the

rest of the dataset.
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to 80% is used for construction and calibration of the model, and the remaining 40% to

20% is used for validation of the model performance. For this thesis, we use 25%/75%

splitting ratio for calibration and validation of the CART models, respectively.

4.1.3 Data Exploring

Before constructing the analysis, it is helpful to provide descriptive statistics for the

explanatory variables, such as mean, median, standard deviation, and range of val-

ues. Table 4 offers a great insight to the attributes used to describe the brownfield

sites and their distributions. Since many variables in our dataset are used to describe

another attribute further in detail, (for instance, total number of residential apart-

ments, buildings with 1− 2 apartments, buildings with 3 or more apartments), only

the total numbers are listed in Table 4.

4.2 Model-Construction

In this section, we describe the methodology used in order to construct the decision

trees and random forest. The partykit package is used in this thesis for construction

of the maximum classification tree and the pruned trees in the following sections. Var-

ious packages are available to use in programming language R in order to construct

decision trees. The superiority of the partykit package lies in the permutation tests

implemented in the algorithm in order to statistically determine the most important

variables and splitting rules [44].

The algorithm functions as follows: first, a global null hypothesis is set and tested for

independence of explanatory variables and the response variable. If the hypothesis

cannot be rejected the algorithm stops, meaning that a significant decision tree can-

not be constructed with the set of explanatory variables. Otherwise, the explanatory

variable with strongest association to the response variable is selected. The asso-
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ciation is computed by the p-value of the partial null hypothesis test of the single

explanatory variable and the response. The type of the test can also be specified for

the model construction. After determining the variable, a binary split is executed for

the variable, such that the impurity measure of the leaf nodes are minimized, using

the Gini index as defined in Eq. 11. The binary split involves finding the cut-off

value for the splitting rule. This procedure is then recursively repeated. The per-

mutation tests, implemented in the algorithm were first developed by Strasser and

Weber (1999) [44, 28, 29]. Function partykit :: ctree is used to develop the initial

tree. No control parameters are used for the maximum tree in order to allow the

extension of tree branches until the algorithm stops.

Other tree structures can also be developed and optimized by using the partykit ::

ctree control command to set various types of control parameters, such as minimum

number of observations in leaf nodes, minimum number of observations in splitting

nodes, the type of the statistical test executed, the significance level for the statis-

tical test used, etc. In the following section, we develop and calibrate the unpruned

maximum tree, and a pruned tree based on optimizing the tree size using the training

dataset.

The final step is to develop a random forest based on a set of unpruned maximum trees

on bootstrap samples of the dataset. Unlike the two previous single trees (maximum

and pruned), the random forest algorithm does not require two disjoint datasets,

one for calibration of the model, and one for validation of the model’s predictive

power. The only parameters needed to develop the random forest classifier is the

number of maximum trees generated ntree and the number of explanatory variables

mtry, which are randomly selected from the set of predictors each time for the tree

to be constructed. The algorithm further computes the OOB error estimate that can

be viewed as the generalization error of the model and demonstrates its predictive

power. For this purpose, we use the randomForest package in R, which implements

Breiman’s random forest algorithm [33]. Function randomForest :: randomForest

generates the random forest. Control parameters can further be set for the forest,
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such as setting number of observations in leaf nodes of each decision tree and defining

a vector of importance for the predictor variables. For our random forest model, we

follow the parameters originally proposed by Breiman (2001) in his original paper [10].

4.3 Model-Calibration

4.3.1 Maximum Tree Calibration

In this section, the maximum tree is created using the training dataset, which con-

tains 18.739 records of brownfield sites, described through 49 explanatory variables.

Function partykit :: ctree is used as previously described for the construction and

calibration of the model, with no control parameters set for the model. The maximum

tree for the CART model branches out until the Gini index, define in Eq. 11 cannot

be reduced any further with no control parameters to stop the algorithm beforehand.

The resulting tree for this dataset consists of 44 inner nodes and 45 leaf nodes. Figure

5 illustrates the complex structure of the maximum tree. The tree begins at the root

node, and with each indentation the tree branches to child nodes. The nodes are

numbered in order to ease comprehension of the tree. For each node, the splitting

rule is indicated with the variable selected, and the cut-off value used for the binary

split. The recursive partitioning progresses until the algorithm reaches a leaf node.

The leaf nodes are indicated by the class of response (0/1), number of observations

in the nodes (n), and the misclassification error (err). The class of the leaf node is

decided by the majority of observations (class 0 or 1) in the node.
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Figure 5: Maximum Tree for Classification of Brownfield Regeneration

As mentioned previously, the partykit package uses statistical tests in order to choose

the explanatory variable for each splitting rule. The p-value associated with the tests

are provided as an output of the model. For all binary splits in our maximum tree, the

p− value < 0.001, and thus the the choice of variables are statistically significant. It

is clear based on Figure 5 that the CART algorithm has selected the most important

explanatory variables for the tree structure, and has omitted the rest altogether. This

is a direct result of the variable selection process inherently performed in the CART

method.

A brief overview of the misclassification error shows that the error rates in the leaf

nodes range form 0.0%−50.0%, indicating a range from perfect classification in some

nodes to random classification in others. Overall, the misclassification rate of the max-

imum tree (Eq. 18) for this training set amounts to 31.44% (Accuracy = 68.56%).

Moreover, the true positive rate, or sensitivity (Eq. 20) is equal to 0.81156 and true

negative rate or specificity (Eq. 19) is 0.5189. The values show that the maximum
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tree has high discriminatory power when it comes to developed brownfield sites (class

1 of response), but when it comes to not developed brownfield sites (class 0) the max-

imum tree is close to a random classification model with low discriminatory power.

4.3.2 Pruned Tree Calibration

The next step after constructing and calibrating the maximum tree is to optimize

the tree size in order to ease comprehension of the model and avoid overfitting the

data, which the decision tree tend to do. A quick look at the nodes of the maximum

tree shows that some leaf nodes contain as little as 9 observations. Such a fine and

complex tree construction is susceptible to overfitting the data, which causes overre-

action to the noise in the data and fluctuations that do not necessarily represent the

underlying drivers of brownfield regeneration. Overfitting can reduce the predictive

power of the tree model on previously unseen observations. A simple method used to

optimize the tree structure and increase the generalization capability of the model is

to set a minimum number of observations Nmin in the leaf nodes. As a rule of thumb,

many authors suggest using 10% of total number of observations in the training data

as Nmin [34].

The optimization method is implemented in R by defining the control parameters

through restricting the minimum ”bucket” size Nmin in ctree control. The resulting

calibrated tree is depicted in Figure 6. The pruned tree now consists of 7 internal

nodes and 8 leaf nodes, which is considerably smaller than the maximum tree, and

hence, much easier to interpret and visualize. Similar to the maximum tree, all the

variables selected for splitting rules are statistically significant. Moreover, the min-

imum number of observations in a node is 1816, which satisfies the 10% rule. The

general expectation is that the misclassification or training error should increase with

the tree-pruning step. Construction of the confusion tree for the training set shows

that the training error is 33.93% (Accuracy = 66.07%). Compared to the maximum

tree the training error has increased only slightly ( 3.6%). The sensitivity of the
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Figure 6: Tree Model 1 optimized through minimum number of observations Nmin.
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calibrated tree is equal to 0.8126, which means that the pruned tree can classify the

developed brownfield sites with high precision and just as well as the maximum tree.

The specificity, however, is equal to 0.4594, which shows a 11.5% decrease compared

to the maximum tree. This means that the pruned tree performs worse than a ran-

dom model when it comes to classifying the not developed brownfield sites.

4.3.1 Random Forest Calibration

In this section, the final brownfield regeneration classification model, which is the

random forest is calibrated using the entire dataset. As previously mentioned, cali-

bration and validation of the random forest can be achieved using a single dataset,

since each time the model uses a bootstrap sample for the calibration of the single de-

cision trees, and the remaining observations for estimating the predictive power of the

model, also known as the OOB error estimate. For calibration of the random forest,

two values need to be selected, which are the number of maximum trees generated

for the forest, ntree, and the number of variables sampled from the entire predictor

matrix, mtry. Generally, there are no rules for selecting the number of decision trees

used for a random forest. Increasing ntree results in higher model performance and

predictive power, but increases the computation time, on the other hand. As long as

the processor can handle the computation, it is generally better to increase ntree as

much as possible. For this thesis, we set ntree = 500.

For the selection of the number of features sampled, mtry, there are several suggestions

in the literature, but no strict rules. A special case of random forest is the Braiman’s

tree baging algorithm, which is when the number of selected features is equal to the

number of predictors. Breiman (2001) later uses the first integer less than log2p+ 1,

where p is the number of explanatory variables [10]. Other suggestions include square

root of number of variables, (
√
p), or 20% of all predictors, etc. There is, however,

no clear advantage in using any of the values mentioned. Using a fraction of the

predictors allow an increase in individuality of the generated trees, but decreases the
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overall predictive accuracy of the model. Selecting the number of variables can thus

be viewed as an optimization process. For our model, we select the value proposed

by Breiman, which equals int(log2p + 1) = 5 based on our dataset. We do not set

any further controls in construction and calibration of the random tree and follow the

methodology used by Breiman [9, 10]

Figure 7: Variable Importance Measures Obtained by the Random Forest Classifier.

Generally, since the random forest consists of an ensemble of decision trees, the model

structure cannot be plotted in a similar fashion to single decision trees. Function

randomForest :: getTree plots a specifically selected tree from the random forest,

but the benefits of plotting a single tree from the algorithm are rather limited, and

thus, we leave out the visualization of the last model. However, the varImpP lot
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plots a dotchart of variable importance as measured by a random forest. The random

forest developed in this section is constructed and calibrated based on the following

variable importance measures, depicted in Figure 7.

The next and final section of this chapter evaluates the predictive power of the two

trees developed earlier by utilizing an independent validation dataset. For the random

forest model, out-of-bag (OOB) error estimate of the random forest classifier will be

computed and discussed.

4.4 Model-Validation

The final stage in risk model building process is the validation of the constructed and

calibrated model. This step helps to evaluate the predictive power of the model by

using a disjoint set of observations, which the model has not seen before in order to

predict the classes of response the new observations belong to. This procedure helps

to assess the model performance, and further provide feedback information needed to

maintain and improve a certain level of quality for the model.

We start by validating the maximum tree, developed in Section 4.3.1. As previously

described, 75% of the dataset is used as the training set to construct the models. The

remaining 25% of the dataset (test set) is used for validation and is entirely disjoint

from the training set. The test set includes over 6, 580 observations from both classes

combined. We use the predict {stats} function in R, which is a generic function that

can be used to make predictions based on the results of model fitting functions [41].

Here, the function predicts the classes of response (0 or 1) for the test set based on

the results of the tree model algorithms.
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4.4.1 Maximum Tree Validation

The first method used to illustrate the predictive power of the maximum tree is to set

the model predictions against the actual classes of response variable from the test set

with the confusion matrix. Table 5 illustrates the results of validating the maximum

tree with the help of the confusion matrix.

Table 5: Confusion Matrix of the Maximum Tree

Prediction

{Class 0 (NDa)} {Class 1 (Db)}

True Values
{Class 0 (ND)} 1492 780 NPV = 0.6567

{Class 1 (D)} 1384 2929 PPV = 0.6791

SPE = 0.5188 SENc = 0.7897

aND stands for Not Developed Brownfield Sites.
bD stands for Developed Brownfield Sites for residential purposes.
cPPV, NPV, SPE, and SEN, are acronyms for Positive Predictive Value, Negative Predictive

Value, Specificity, and Sensitivity, respectively.

Based on the confusion matrix the following measures can be computed. The overall

accuracy of the model, computed with Eq. 18, is equal to 0.6714, meaning that the

maximum tree classifies 67.14% of the new observations correctly based on the class

they belong to. The sensitivity (or the true positive rate) of the maximum tree is

0.7897, which indicates that from all the brownfield sites predicted as developed as

residential area in the test set, the maximum tree model has detected 78.97% of them

correctly. This high detection rate for the developed sites in the test data set shows

that the maximum tree has identified the underlying patterns of developed sites. On

the other hand, the positive predictive value of the model, calculated in Eq. 21, is

equal to 0.6791. PPV indicates that from all the sites that are actually developed for

residential purposes, more that 2
3

are predicted accurately and 1
3

are predicted falsely.
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Figure 8: Receiver Operating Characteristics (ROC) Curve of the Maximum Tree.

The specificity (true negative rate) of the model is equal to 0.5188. The low true

negative rate implies that the maximum tree model can identify the not developed

brownfield sites (class 0) only slightly more than 50% of the time, which is basically

similar to a random model. The negative predictive value, furthermore indicates that

from all the brownfield sites that the model has predicted as not developed, around

66% are not developed in reality and 33% are predicted falsely, meaning they are ac-

tually regenerated and used as residential area, even though our model classifies them

as not developed. The above-mentioned figures imply that the model faces difficulty

in detecting the negative class compared to the developed fields. One reason could

be that from the many brownfield sites listed as not developed in our dataset, many

still have the potential to be regenerated, but up to the time of data collection, no
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one has seized the opportunity to revitalize the sites.

The second approach used to evaluate and visualize the predictive power of a classifi-

cation model is the ROC curve. Figure 8 plots the Sensitivity against 1−Specificity
of the maximum tree model. Since the maximum tree is a binary classification model

that predicts discrete values for the response outcome, the ROC curve consists of two

straight lines for the two classification categories. The area under the curve (AU-

ROC), a measure commonly used to evaluate the predictive power of the model as

defined in Eq. 24 is equal to 1 for a perfect classification model and equal to 0.5 for

a random model. The AUROC measure computed for the maximum tree is equal to

0.6542, which is consistent with the results from the confusion matrix and implies

that the overall predictive power of the model is average.

4.4.2 Pruned Tree Validation

After constructing the maximum tree, the pruned tree was constructed and calibrated

in Section 4.3.2 in order to avoid the overfitting phenomenon that tends to happen in

model construction step of decision trees. The validation approaches described above

are calculated again for the pruned tree model in order to be able to compare the

predictive capabilities of the two models. The confusion matrix for the test set of the

pruned tree is illustrated in Table 6.

Table 6: Confusion Matrix of the Pruned Tree

Prediction

{Class 0 (ND)} {Class 1 (D)}

True Values
{Class 0 (ND)} 1349 720 NPV = 0.6520

{Class 1 (D)} 1527 2989 PPV = 0.6619

SPE = 0.4691 SEN = 0.8059
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The values illustrated in Table 6 show that the sensitivity of the pruned tree is 0.8059,

which is slightly higher than the maximum tree (2% increase), but the positive pre-

dicted value decreases around 2.5% and is equal to 0.6619. Moreover, the specificity

of the pruned tree has decreased to 0.4691 from 0.5188. The pruned model now de-

tects less than half of the negative class (not developed sites) accurately, which is

worse than a random binary classifier. The negative predicted value remains almost

constant with the tree-pruning step with 0.6520 from previous value 0.6567. The

overall accuracy of the model is also slightly less than the maximum tree and is equal

to 0.6588. In general, the pruned tree model has a marginally lower predictive power

compared to the previous model, but the model structure is substantially smaller and

easier to comprehend.

Finally, the ROC curve of the pruned tree is plotted for visualization of the model

performance. At first glance, the curve looks quite similar to that of the maximum

tree. The AUROC of the curve is equal to 0.6375, which is 2.6% lower than the

maximum tree.

Both the confusion matrix and the Receiver Operating Characteristics approach indi-

cate that the pruned tree model not only does not have a higher predictive power than

the maximum tree, it actually performs slightly worse than the original model. The

tree-pruning step is included in the model development process in order to enhance

the generalization capability of the decision tree model and avoid overfitting the data.

But in our case, tree-pruning negatively affects the model performance. Since the only

measure used to optimize the tree structure for this model is the tree size through set-

ting a minimum number of observations in leaf nodes (Nmin ∼ 10%of thetrainingset),

the predictive power of the model did not improve with the tree-pruning step. How-

ever, it is worth mentioning that the model structure of the pruned-tree is much more

simple, easier to comprehend and utilize for new observations in the data.
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Figure 9: Receiver Operating Characteristics (ROC) Curve of the Pruned Tree.

4.4.3 Random Forest Validation

The final model to be validated in this thesis is the random forest classification model.

Validation of this model is slightly different form the two previous models, since the

random forest algorithm intrinsically obtains a classification error estimate and does

not require an independent set of observations for validation. Each time the algo-

rithm randomly selects samples from the main dataset to generate decision trees, the

remaining observations (or the ”out-of-bag” data) are used for predictions and error

estimation. The aggregation of all sample errors results in the Out-Of-Bag (OBB)

error estimate. The OOB can be regarded as an accurate generalization error [11].

The first approach to measure the predictive power of the random forest is construc-
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tion the confusion matrix, depicted in Table 7.

Table 7: Confusion Matrix of the Random Forest

Prediction

{Class 0 (ND)} {Class 1 (D)}

True Values
{Class 0 (ND)} 6480 4458 NPV = 0.6516

{Class 1 (D)} 3465 10921 PPV = 0.7101

SPE = 0.5924 SEN = 0.7591

The general measure used to assess the predictive power of the model is the accuracy

measure, as defined in Eq. 18, is equal to 0.6871, which is higher than both previous

tree models. Moreover, specificity of the classifier is now much higher than both tree

models and equal to 0.5924. Although this value is still rather low, the detection

of the negative class is now better than a random classifier. The positive predictive

value (PPV) has significantly increased in comparison to the other models, but the

negative predictive value (NPV) has remained more or less similar to the previous two

tree models. The next method used to illustrate the predictive power of the random

forest model is the Receiver Operating Characteristics (ROC) curve. The area under

the ROC curve (AUROC), depicted in Figure 10, for the random forest is equal to

0.6809, which demonstrates a 4% increase from the maximum tree and a 7% increase

from the pruned tree.

For the construction and calibration of the random forest, the number of generated

decision trees for the development of the random forest, nmin, is set to 500. The se-

lection of the number is arbitrary and set as an initial guess that could be optimized

later. After constructing, calibrating and validating the model, we can assess the ef-

fect of ntree on model error rates. Figure 11 demonstrates the change in three different

error rates, namely random forest’s OOB error estimate, error rate of the developed
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Figure 10: Receiver Operating Characteristics (ROC) Curve of the Random Forest.

brownfield sites (class 1), and error rate of the un-developed brownfield sites (class 0).

As seen all throughout this section, the error rate of the negative class is the highest

of the three error rates, and error rate of the positive class is the lowest, meaning

that regardless of the number of trees used, all single models and combinations of

single trees face difficulty when detecting the not-developed brownfield sites. The

OOB error estimate, which can be viewed as the generalization error of the model, is

the average of the two previous error rates. As demonstrated in Figure 11, all three

rates decrease drastically as the number of trees increase to around 100. An increase

to 200 trees for the construction of the random forest slightly improves model perfor-

mance. After that, all three error rates converge to specific values and do not change

as the number of trees increase. If computation time is relevant in the model building

process and needs to be reduced, the number of trees can be reduced to 200 in the fu-
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Figure 11: Effect of Number of Decision Trees on the Error Rates of the Random Forest.

ture models in order to save computation time without sacrificing model performance.

4.5 Model Comparison

In the final section of Chapter 4, a brief summary of the performance of the three

developed models, namely the maximum tree, the pruned tree, and the random forest,

is conducted. The aim of this section is to ease comparison of the models. The

following figure, Figure 12, plots the ROC curves of all three developed models. As

mentioned previously, the random forest demonstrates the highest predictive power,

and has the largest area under the ROC curve. The maximum and the pruned tree

follow by a margin, respectively. As previously described, since the nature of the

classifiers are binary, the ROC curve consists of two straight lines. Table 8 further

provides a figurative comparison of all relevant measures of the models, calculated

throughout this chapter.
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Figure 12: Comparison of Receiver Operating Characteristics (ROC) Curves of All Models.

Table 8: Comparison of Maximum Tree, Pruned Tree & Random Forest.

Performance Measure Maximum Tree Pruned Tree Random Forest

Accuracy 0.6714 0.6588 0.6871

Sensitivity 0.7897 0.8059 0.7591

Specificity 0.5188 0.4691 0.5924

PPV 0.6791 0.6619 0.7101

NPV 0.6567 0.6520 0.6516

AUROC a 0.6542 0.6375 0.6809

aPPV, NPV, and AUROC are acronyms for Positive Predictive Value, Negative Predictive Value,

and Area Under ROC curve, respectively.
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Chapter 5

Discussions and Conclusions

Over the last several decades, brownfield site redevelopment and regeneration has re-

ceived widespread attention as a sustainable land use strategy to fight urban sprawl,

which has become a major issue facing Europe [6]. Brownfield sites are defined as

former military, industrial, and commercial sites, which are currently derelict and

underutilized with varying degrees of contamination [37]. Although public interest

in revitalizing brownfield sites has increased over the past several years, due to the

various types of risks involved with brownfield regeneration, such as social, environ-

mental, and economic dimensions, risk assessment tools are needed in order to assist

stake-holders and decision makers with prioritizing and classifying the suitable brown-

field sites that have high potential to be redeveloped for various purposes, such as

residential, business and operational, schools and playgrounds, etc.

For this purpose, several assessment tools and prioritization models have been sug-

gested in the literature in order to forecast the potential of a ceratin site and evaluate

the inherent risks of brownfield regeneration with their main focus on various aspects

of it, such as uncertainty assessment, environmental and health risk assessment, re-

mediation cost assessment, etc. [4, 15, 40]. However, all the proposed models are

either developed on a case-by-case basis or lack a multidisciplinary approach needed

for regeneration assessment [15] and further, all models fail to assess their predictive

power based on the goodness of the model outcomes against realizations of brownfield

regeneration in a procedure referred to as validation. The validation process is an es-

sential step in risk model building methodology that is executed in order to assess

64



the performance of the model and used to maintain a desired level of model quality

over its life cycle.

One major project that merges most existing models into one and utilizes a multidisci-

plinary approach is the Tailored Improvement of Brownfield Regeneration in Europe

(TIMBRE), which assists stakeholders to rank brownfields based on their redevelop-

ment potential by using multi-criteria decision analysis methodology by computing a

proritization or ranking score, through a hierarchical structure, which includes dimen-

sions, factors and indicators [40]. Until now, however, the validity and the predictive

power of the suggested model has not been reported in the literature. The lack of

empirical evaluation of existing state of the are model in brownfield regeneration is

the missing link in risk modeling studies that needs to be addressed.

This thesis aims to use the TIMBRE scoring model as the reference point and de-

velop and validate a risk model for brownfield regeneration. By following the three

step Construction-Calibration-Validation model building process, widely practiced in

the field of financial risk management, the attempt is to bridge the gap between

brownfield regeneration scoring models and risk assessment models. Our goal is to

construct a new brownfield regeneration risk model using the decision tree analysis

methodology, and validate it with historical data on redevelopment of brownfield sites

is Austria. The main function of our model is to act as a classification tool by as-

signing a class to each brownfield that best separates the ”good” candidates (within

the scope of this work: successful regeneration of brownfield sites) from the ”bad”

(not regenerated sites) in a procedure commonly known as classification. Assessing

the predictive power of the classification model and its calibration is a major task of

the validation step. By incorporating different calibration and validation methods we

close the missing link in brownfield regeneration tools.

We first construct the initial decision tree known as maximum tree with the help of

a training set within the Classification and Regression Tree (CART) methodology

[8]. The partykit package in programimng language R is used for construction of the
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maximum classification tree, which functions by selecting the explanatory variable

with strongest association to the response variable out of the explanatory variable

matrix and computing the corresponding p-value of the partial null hypothesis test.

After selecting the variable, a binary split is executed for the variable and the proce-

dure is then recursively repeated [44, 28, 29]. No control parameters are used for the

maximum tree in order to allow the extension of tree branches until the algorithm

stops. The resulting maximum tree consists of 44 inner nodes and 45 leaf nodes as

depicted in Figure 5. The overall accuracy of the model is equal to 68.56% on the

training set and 67.14% on the test set. The fact that the predictive power of the

model on training and test sets are so close shows that the generalization capability

of the model through the splitting decisions are high and the overfitting phenomenon

does not play a significant role on the model predictive power. Moreover, the sensitiv-

ity of the model both on training and test sets are much higher (0.81156, and 0.7897,

respectively) than the specificity measures (0.5189 and 0.4691 for training and test

set), meaning that the model detects the positive class of data (developed brownfield

sites) much better than the negative class (not developed sites).

The second step is optimizing the size of the tree in order to boost the predictive

power of the model and avoid overfitting the data that is prevalent in maximum tree

construction. As a rule of thumb, the size of the leaf nodes is set to 10% of the train-

ing set, which helps to avoid overreaction of the model to noisy data. The resulting

optimized tree is depicted in Figure 6, which now consists of 7 internal nodes and 8

leaf nodes, and shows an classification accuracy of 66.07% on the training set, which is

a 3.6% decrease from the maximum tree. The optimized tree is validated with a test

set with an accuracy equal to 65.88% and a sensitivity equal to 0.8059, which means

that the pruned tree can classify the developed brownfield sites with high precision

and just as well as the maximum tree. The specificity, however, is equal to 0.4691,

which shows a 10% decrease compared to the maximum tree. This means that the

pruned tree performs worse than a random model when it comes to classifying the

not developed brownfield sites. Overall the maximum tree tree performs slightly bet-

ter than the pruned tree, which means that the tree-pruning step does not help to
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increase generalization capability of the tree model. However, the model structure of

the pruned tree is much more simple and comprehensible compared to the complex

maximum tree.

The final step in brownfield risk classification model is developing the random forest,

which was developed as an extension to decision tree analysis in order to remove

some of the problems prevalent in CART algorithm, such as overfitting the data and

instability of the model in existence of noisy data [9, 10, 27]. We adopt the method-

ology proposed by Breiman (2001) and implemented in R in randomForest package

[10, 33]. The random forest classifier is developed by aggregating ntree single maxi-

mum (unpruned) trees, generated on bootstrap samples of the original dataset, and

randomly selected mtry predictors. The response is predicted by majority vote of the

single classification trees. The out-of-bag data observation are used to compute the

OOB error estimate, which can be regarded as the generalization error.

The developed random forest for brownfield regeneration classification demonstrates

a predictive accuracy of 68.71%, which is greater than the two previous models. Upon

closer inspection, it is clear than the random forest performs much better than the

other two models in detecting the negative class of data (not developed brownfields),

(SPE = 59.24% ), but preforms slightly worse than the other two in classifying the

positive class (SEN = 75.91). Overall the random forest model performs better than

the other two decision tree models. The predictive accuracy of the three models

differ slightly and ranges from 65% to 68%, which is generally regarded as average

in predictive modeling. All three models demonstrate higher sensitivity than speci-

ficity, meaning that the detection of the positive class is executed better in all three

models compared to the negative class. Since the results are consistent in various

models, the limited accuracy can be a direct result of the dataset used to train the

algorithms. A possible explanation can be as follows: the developed brownfield sites

follow the underlying patterns detected by the algorithms, and thus, their detection

rate is quite high. The brownfield sites not developed, on the other hand, are de-

tected accurately with a much lower rate, not necessarily because of the algorithm,
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but actually because many of the brownfield sites remain to be developed and at the

time of data collection, they have not been revitalized, or because the brownfields

have been developed in spite of low success potential of the site potentially due to

lack of wide-spread knowledge in this field. Alternatively, there could be other drivers

that are not included in our dataset.

In summary, by developing three different brownfield regeneration risk classification

models, following the three step Model-Construction, Model-Calibration, and Model-

Validation proposed and implemented initially by Altman (1968) in the credit risk

modeling sector, we have attempted to bridge the missing gaps in the literature in the

field of brownfield regeneration risk assessment modeling. The models are developed

by utilizing two machine learning algorithms that are currently viewed as two of the

most popular and powerful algorithms, namely Classification And Regression Tree

(CART) and Random Forest algorithms. The Random Forest demonstrates higher

predictive accuracy, and is quite fast, flexible, and easy to use for predictive model-

ing, and can handle large datasets containing various types of explanatory variables

(continuous, discrete, ordinal, categorical). Moreover, the chances of ovefitting the

data is reduced by including and aggregating several individual decision trees. The

only disadvantage to the random forest model is that the response values from the

algorithm are incomprehensible compared to single decision trees. The structure of

CART trees along with the set of decision rules are easy to illustrate and compre-

hend. The lack of visualization opportunity can be regarded as a disadvantage of the

random forest algorithm.

The next step in improving the predictive performance of the model is updating the

dataset, where the response variable (status of brownfield regeneration) and the pre-

dictors (explanatory variables) are collected contemporaneously. Furthermore, clas-

sification of brownfield sites can be collected more in detail, in order to distinguish

successful regeneration of brownfield sites from unsuccessful with a finer distinction

than whether or not the site is now being utilized as a residential area to improve the

predictive power of the model.
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Appendix A

l ibrary ( caTools )

l ibrary ( grid )

l ibrary ( pa r tyk i t )

l ibrary (MASS)

l ibrary (pROC)

l ibrary ( c a r e t )

l ibrary (ROCR)

l ibrary ( randomForest )

l ibrary ( r e p r t r e e )

# Dataset i s the s e t o f v a r i a b l e s which i n c l u d e s a l l dependent and

# independent parameters .

# Set . seed f u n c t i o n i s used so t h a t sample . s p l i t f u n c t i o n produces

# the same s u b s e t s each time the program i s run .

set . seed (120)

# Sample . s p l i t i s used to s p l i t data from d a t a s e t i n t o two s u b s e t s

# ( t r a i n and t e s t ) in p r e d e f i n e d r a t i o , s e t by S p l i t R a t i o w h i l e

# p r e s e r v i n g r e l a t i v e r a t i o s o f d i f f e r e n t l a b e l s in d a t a s e t .

sample <− sample . sp l i t ( dataset , S p l i t R a t i o = 0 . 75 )

t r a i n <− subset ( dataset , sample == TRUE)

t e s t <− subset ( dataset , sample == FALSE)
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# Ctree f u n c t i o n performs r e c u r s i v e p a r t i t i o n i n g f o r nominal ,

# ordered , continuous , and m u l t i v a r i a t e response v a r i a b l e s

# in a c o n d i t i o n a l i n f e r e n c e framework . The t r a i n s e t i s

# used c o n s t r u c t and c a l i b r a t e the C l a s s i f i c a t i o n and

# Regress ion Tree (CART) . The dependent v a r i a b l e ( Usage )

# i s p a r t i t i o n e d a g a i n s t the independent v a r i a b l e s e t .

# The r e s u l t i n g CART i s then p l o t t e d . In t h i s s tep , the

# maximal t r e e i s produced wi thout any trimming .

CART <−c t r e e ( Usage˜ . , data = t r a i n )

plot ( as . s impleparty (CART) )

# After the c o n s t r u c t i o n and c a l i b r a t i o n o f the maximum

# tree , CART, i t i s v a l i d a t e d us ing the t e s t s u b s e t .

# P r e d i c t i s a g e n e r i c f u n c t i o n f o r p r e d i c t i o n s from the

# r e s u l t s o f model f i t t i n g f u n c t i o n s , namely CART.

# Table f u n c t i o n produces the con fus ion matrix f o r the

# v a l i d a t i o n procedure r e s u l t s and the o v e r a l l accuracy .

CART. predict = predict (CART, newdata=t e s t )

Conf Mat CART<−table ( predict=(CART. predict ) , a c tua l=t e s t $Usage )

CART Acc<−(1−mean(CART. predict == t e s t $Usage ) )

# An approach used to v i s u a l i z e the p r e d i c t i v e power

# of a c l a s s i f i c a t i o n model i s the ROC curve . Roc f u n c t i o n

# from the pRoc package b u i l d s a ROC curve .

CART ROC <−roc ( as . numeric (CART. predict ) , as . numeric ( t e s t $Usage ) )

plot (CART ROC)
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# The second model i s the pruned−t r e e . Ctree f u n c t i o n i s

# u t i l i z e d s i m i l a r to the p r e v i o u s model . However , c t r e e c o n t r o l

# i s used , which i n c l u d e s v a r i o u s parameters t h a t c o n t r o l

# a s p e c t s o f the t r e e c o n s t r u c t i o n and t r e e pruning .

c <−c t r e e control ( t e s t s t a t = c ( ”max” ) ,

t e s t t y p e = c ( ” Univar ia te ” ) ,

m i n c r i t e r i o n = 0 .95 , minbucket = 1800L ,

minprob = 0 . 1 , stump = FALSE, mtry = Inf ,

maxdepth = Inf , multiway = FALSE,

s p l i t t r y = 2L , major i ty = FALSE)

CART Pruned <−c t r e e ( Usage˜ . , data = tra in , control = c )

# Test s u b s e t i s used to v a l i d a t e the pruned−t r e e .

# Confusion matrix d e p i c t s the v a l i d a t i o n r e s u l t s .

# ROC curve f u r t h e r v i s u a l i z e s the r e s u l t s .

Pruned . predict <− predict (CART Pruned , newdata=t e s t )

Conf Mat CART Pruned <−table ( predict= ( Pruned . predict ) ,

a c tua l= t e s t $Usage )

CART Pruned Acc <−(1−mean( Pruned . predict == t e s t $Usage ) )

CART Pruned ROC <−roc ( as . numeric (CART. predict ) ,

as . numeric ( t e s t $Usage ) )

plot (CART Pruned ROC)

# Random f o r e s t i s c o n s t r u c t e d us ing the randomForest

# f u n c t i o n randomForest package , which implements

# Breiman ’ s random f o r e s t a l gor i thm f o r c l a s s i f i c a t i o n

# and r e g r e s s i o n . n t ree s e t s the number o f t r e e s to grow .
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# This shou ld not be s e t to too sma l l to ensure t h a t

# every input row g e t s p r e d i c t e d at l e a s t a few t imes .

# mtry i s the number o f v a r i a b l e s randomly sampled as

# c a n d i d a t e s at each s p l i t .

Rand Forest <− randomForest ( Usage ˜ . , da ta se t , n t r ee =500 ,

mtry=5, importance=TRUE, do . trace=100)

print (Rand Forest )

Rand For CM <− confus ionMatr ix (data=Rand Forest$pred ic ted ,

r e f e r e n c e=datase t$Usage , p o s i t i v e = ”1” )

# Fol lowing graph d e p i c t s the e f f e c t o f number o f d e c i s i o n

# t r e e s on the error r a t e s o f the random f o r e s t .

layout (matrix ( c ( 1 , 2 ) ,nrow=1) , width=c ( 4 , 1 ) )

par (mar=c ( 5 , 4 , 4 , 0 ) )

plot (Rand Forest , log=”y” )

par (mar=c ( 5 , 0 , 4 , 2 ) )

plot ( c ( 0 , 1 ) , type=”n” , axes=F, xlab=”” , ylab=”” )

legend ( ” top” , colnames (Rand Forest$ e r r . r a t e ) , col =1:4 ,

cex =0.8 , f i l l =1:4)

# varImpPlot v i s u a l i z e s v a r i a b l e importance measures

# ob ta ined by the random f o r e s t c l a s s i f i e r .

varImpPlot (Rand Forest )

# ROC curve o f a l l t h r e e models d e p i c t e d f o r b e t t e r

# comparison in one graph .
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C p <− predict (CART, newdata=( t e s t ) , type=” response ” )

C pred <− p r e d i c t i o n ( as . numeric (C p ) , as . numeric ( t e s t $Usage ) )

C Perf <− performance (C pred , measure = ” tpr ” , x . measure = ” fp r ” )

plot (C Perf , x lab=”1− S p e c i f i c t y ( Fa l se P o s i t i v e Rate ) ” ,

ylab=” S e n s i t i v i t y ( True P o s i t i v e Rate ) ” , col=” red ” )

l ines ( c ( 0 , 1 ) , c ( 0 , 1 ) , col=” grey ” )

par (new = TRUE)

P p <− predict (CART Pruned , newdata=( t e s t ) , type=” response ” )

P pred <− p r e d i c t i o n ( as . numeric (P p ) , as . numeric ( t e s t $Usage ) )

P Per f <− performance (P pred , measure = ” tpr ” , x . measure = ” fp r ” )

plot (P Perf , x lab=”1− S p e c i f i c t y ( Fa l se P o s i t i v e Rate ) ” ,

ylab=” S e n s i t i v i t y ( True P o s i t i v e Rate ) ” , col=” green ” )

l ines ( c ( 0 , 1 ) , c ( 0 , 1 ) , col=” grey ” )

par (new = TRUE)

R pred <− p r e d i c t i o n ( as . numeric (Rand Forest$pred i c t ed ) ,

as . numeric ( datase t$Usage ) )

R Perf <− performance (R pred , measure = ” tpr ” , x . measure = ” fp r ” )

plot (R Perf , x lab=”1− S p e c i f i c t y ( Fa l se P o s i t i v e Rate ) ” ,

ylab=” S e n s i t i v i t y ( True P o s i t i v e Rate ) ” , col=” blue ” )

l ines ( c ( 0 , 1 ) , c ( 0 , 1 ) , col=” grey ” )

legend (0 , 1 , c ( ”Random Forest ” , ”Maximum Tree” , ”Pruned Tree” )

, cex =0.8 , l t y=c ( 1 , 1 ) , lwd=c ( 2 . 5 , 2 . 5 ) , col=c ( ” blue ” , ” red ” , ” green ” ) )

# Area under the curve f o r a l l t h r e e models i s c a l c u l a t e d .

#For a c l a s s i f i c a t i o n model 1 r e p r e s e n t s a p r e f e c t c l a s s i f i c a −
#t i o n model and 0.5 i s a random model .
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Max Tree auc <− performance (C pred , measure = ”auc” )

Max Tree auc <− auc@y . va lue s [ [ 1 ] ]

Max Tree auc

Pruned Tree auc <− performance (P pred , measure = ”auc” )

Pruned Tree auc <− auc@y . va lue s [ [ 1 ] ]

Pruned Tree auc

Rand Forest auc <− performance (R pred , measure = ”auc” )

Rand Forest auc <− auc@y . va lue s [ [ 1 ] ]

Rand Forest auc
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