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Abstract 

One of the most causes of blindness in the world, particularly in the elderly, is glaucoma [1]. 
The term "glaucoma" is a heterogeneous group of ocular diseases. Glaucoma is a disease that 
affects the optic nerve. The retina serves the function of light perception. For this, the light is 
absorbed by photoreceptors. The light pulses are converted into nerve signals and transmitted 
via the optic nerve; progressive damage of the optic nerve fibres leads to visual field defects 
with loss of visual function [2]. Early detection is one of the essential factors for preventing 
optic nerve damage and blindness caused by glaucoma. Periodic check-ups and early 
diagnosis of the disease can prevent blindness. If the treatment starts early enough, it is 
possible to avoid loss of vision. Periodic check-ups, including imaging systems like OCT and 
image analysis by experts, check for rapid changes in the pattern of blood vessels and the 
development of different changes in the retina. This examination method is very time 
consuming, expensive and requires qualified personnel. Automated systems for the detection 
of glaucoma are necessary. However, problems such as lack of good quality retinal images, 
prevent a completely automated screening system. This is because the elements of anatomy 
and lesions in the retina are not visible on the poor-quality images. Optical coherence 
tomography (OCT) has become the golden standard in ophthalmic imaging and diagnostics 
capable to acquire tissue volume data non-invasively and with high resolution close to the level 
of histopathology. An important functional extension of OCT is OCT-angiography (OCTA), 
which enables display of retinal microvasculature without need of injecting contrast agents. 
Those angiographic maps introduce novel and promising biomarkers for early disease 
diagnostics including glaucoma.  OCTA is naturally co-registered with OCT, since the OCTA 
vascular contrast is calculated directly from the OCT intensity images. The main goal of this 
thesis, is to develop or improve a way of detecting glaucoma faster and earlier based on OCT 
images by applying advanced image processing methods. The aim of this work is to implement 
a segmentation algorithm for OCT angiography, which allows a proper extraction of different 
microvascular beds from the OCT tomogram. For the segmentation, the intensity tomogram is 
used to find the different retinal layers. This information will be transferred to the OCT 
angiography to extract the corresponding layers. Furthermore, a review of quantification and 
analysis of the de-noising algorithms for the OCT-angiography images will be performed. This 
should lead to the identification of biomarkers, based on the vascular structure for various eye 
diseases, which effect the micro vascular structure in the human eye. 
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Kurzfassung 

Eine der weltweit häufigsten Ursachen für Blindheit, insbesondere bei älteren Menschen, ist 
der Grüne Star (Glaukom). Der Begriff „Glaukom“ beschreibt eine heterogene Gruppe von 
Augenkrankheiten. Ein Glaukom ist eine Krankheit, die den Sehnerv schädigt. Die Netzhaut 
dient der Funktion der Lichtwahrnehmung. Hierzu wird das Licht von Fotorezeptoren 
absorbiert. Die Lichtimpulse werden in Nervensignale umgewandelt und über den Sehnerv 
übertragen. Eine fortschreitende Schädigung der Sehnervfasern führt zu Sehfeldstörungen mit 
Verlust der Sehfunktion. Eine Früherkennung ist einer der wesentlichen Faktoren um 
Sehnervschäden und durch Glaukom verursachte Blindheit zu vermeiden. Regelmäßige 
Kontrolluntersuchungen und eine Früherkennung der Krankheit können eine Erblindung 
verhindern. Wenn eine Behandlung früh genug beginnt, ist es möglich einen Sehverlust zu 
verhindern. Kontrolluntersuchungen umfassen bildgebende Systeme wie OCT und eine von 
Experten durchgeführte Bildanalyse, sowie eine Überprüfung auf Musterveränderungen der 
Blutgefäße und die Entstehung von verschiedenen Ablagerung in der Netzhaut. Diese 
Untersuchungsmethode ist sehr zeitaufwendig und teuer. Außerdem wird dafür qualifiziertes 
Personal benötigt. Automatisierte Systeme zur Glaukomerkennung wären wünschenswert. 
Allerdings verhindern Probleme wie das Fehlen von hochqualitativen Netzhautbildern, ein 
komplett automatisiertes Erkennungssystem. Dies weil die Elemente der Anatomie und 
Läsionen in der Netzhaut nicht auf Bildern mit schlechter Qualität erkennbar sind. Das 
Hauptziel dieser Diplomarbeit ist es einen Weg zu finden ein Glaukom schneller und früher 
durch eine auf Bildverarbeitung basierende Methode zu erkennen. Ziel dieser Arbeit ist es, 
einen Segmentierungsalgorithmus für die OCT-Angiographie zu implementieren, der eine 
korrekte Extraktion verschiedener Schichten innerhalb des OCT-Tomogramms ermöglicht. Für 
die Segmentierung wird das Intensitätstomogramm verwendet, um die verschiedenen 
Schichten der Netzhaut zu finden. Diese Informationen werden auf die OCT-Angiographie 
übertragen, um die entsprechenden Schichten zu extrahieren. Des Weiteren wird eine 
Quantifizierung und der Analyse des Rauschreduktionsalgorithmus für OCT-
Angiographiebilder durchgeführt. Dies ermöglicht die Identifizierung von Biomarkern, die auf 
der Gefäßstruktur verschiedener Augenerkrankungen beruhen, welche die Mikrogefäßstruktur 
im menschlichen Auge verändern. 
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1 Introduction 
A whole series of imaging procedures have been developed for scientific and medical use over 
the last century, covering individual areas. These range from X-ray diffraction analysis, to the 
determination of the structure of biomolecules and computer and magnetic resonance 
tomography for the representation of organisms. A special role for medical diagnostics is 
provided by methods that enable in vivo and on-site diagnostics of morphological structures of 
about μm to mm. 

Among the advances in science and technology involving high computational efficiency, 
medical imaging is most obvious because of its high appeal in showing the structure of the 
human body. The techniques and methods are used for making images of the human body (or 
its parts and functions) for clinical purposes (medical methods that recognize, treat and 
examine diseases), or medical sciences (including anatomical and physiological studies). 
Medical imaging is a mixture of several branches of science, such as medical physics, medical 
technology, biology and optics [3]. 

Medical image processing has opened up a multitude of new possibilities for medical 
diagnostics and therapy. Innovations in the field of medical imaging provide new insights into 
the morphological, functional and molecular structure of the human body, with increased 
resolution, quality and accuracy. Through this development, computer support is becoming 
increasingly important in the evaluation and interpretation of complex image information. 

At the Center for Medical Physics and Biomedical, Medical University of Vienna, a number of 
different methods of medical imaging system and image processing are researched and new 
methods are developed. This work is performed to the researches and investigations on OCT 
imaging system based on SS-OCT and image processing of OCT images in the Prof. Leitgeb-
laboratory. 

According to the research title, which is one of the important methods for the imaging and 
diagnosis of diseases based on medical images, it is necessary to explain the development of 
medical imaging of the eye.  

1.1 Motivation 
Medical imaging is in fact the technique and process used to create images of the human body 
(or parts and functions thereof), for clinical (medical procedures analysis, recognition and 
treatment of diseases) or medical (including anatomical and Physiological studies) purposes. 
Medical imaging is a combination of several branches of science, such as medical physics, 
medical engineering, biology, and optics. 

Although no history of medical imaging has been written, one can still consider the role of 
physicists and engineers in a historical context. The first modern imaging technique and 
modality goes back to the discovery of X-rays by William Roentgen in 1895. However, the 
interesting thing is, that changes and improvements in imaging of diseases have been 
developed more due to the creativity of the laboratories, than by physicists and engineers. 
Various methods have been developed to capture selected obscured areas. 

Therefore, radiologists when faced by the operational limitations of the devices they designed 
used different, sometimes invasive methods, to facilitate detection of invisible organs. From 
the early 1950s to the 1970s, a revolution took place in diagnostic imaging systems. New 
systems were developed for the non-invasive anatomical and functional imaging (disease 
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process). In this, physicists and engineers played a dominant role. The revolution began with 
nuclear imaging and ultrasound, which detected disease progression despite the serious 
limitations of the image. Until then, this had not been possible without these methods. 
Computer tomography was another field of medical imaging, introduced in the early 1970s. In 
this technique, good cross-sectional images were produced that provided the same information 
as from exploratory surgery. Devices were developed rapidly and standardized techniques 
were introduced for various methods. Revolutions and developments continued in the field of 
imaging. These developments are not limited to a profound improvement in existing systems, 
but also include the development of new imaging modalities. Different categories for medical 
imaging are presented, which are further categorized according to the origin of the image [3].  

Similarly, various methods for the analysis and development of medical images, especially for 
eye diseases, were investigated and developed. One of the most important diagnostic tools in 
ophthalmology is optical coherence tomography (OCT). Alongside the further development of 
software systems and diagnostic techniques in diseases, this progress in the field of 
ophthalmology was also impressive. Its prototype is an OCT machine that vectorises different 
parts of the eye (cornea and retina). Until recent years, due to lack of this technology, there 
was very little information about many eye diseases, especially in the field of retinal diseases. 
But now, due this device, which is based on low-coherence interferometry, even the tissue and 
the cellular planes of the different layers of the eye, especially the retina, can be examined 
contact-free and with resolution close to the level of histopathology.  

The aim of this study is to provide an automatic method based on the principles of image 
processing to ultimately support image based diagnosis of eye diseases in the retina [3]. The 
manual segmentation of layers of retina is very time consuming, complicated, and can lead 
to erroneous results. By an automated segmentation can save in the time and effort. An 
automated algorithm can provide better segmentation results than manual segmentation by 
experts. On the other hand, improving the quality of images can leads to better results. 
Therefore, the noise of images are also removed to achieve better results for the Feature 
Extraction. 

1.2 Aims and objectives 
Several studies have been conducted in the field of medical signal processing. One of the most 
attractive areas in the signal processing of ophthalmic medical images, is to process medical 
images in the eye, obtained with OCT. As described above, OCT is one of the most popular 
visual imaging techniques among ophthalmologists, which helps them to diagnose and prevent 
many diseases. The great technological advantage of the OCT, apart from being contact-free 
as opposed to ultrasound imaging, is the decoupling of the depth resolution from the transverse 
resolution. Depth resolution is obtained through depth localized interference of the back-
reflected sample light with an external reference beam. The result is virtually thin sections as 
used in microscopy, which allows images of microscopic images of living tissue (in vivo) to be 
taken. The high sensitivity detects very small signals (with light intensities below nW) and 
detects the specified depth structures with low input power. Therefore, this is a good way to 
study light-sensitive tissue. The use of OCT is limited in depth of the penetration by the 
electromagnetic wavelength-dependence of scattering within the object to be inspected, and 
the axial resolution is determined by the spectral bandwidth of the light source.  

In this work, the segmentation of the retinal layers is aimed first. The goal of the segmentation 
is to achieve various aspects of the diagnosis of glaucoma as described below: 
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 The thickness of the retinal nerve fiber layer as the most important prognostic 
biomarker for glaucoma 

 Assessment of the integrity of the capillary bed in the ganglion cell layer to detect the 
loss of ganglion cells earlier 

 Segmentation of the inner retinal vessels against the choroidal vessels can identify 
signs of proliferative age-related macular degeneration when identifying abnormal 
vessel growth from the choroid to the retina 

In this research, we are also trying to resolve the important problem of noise reduction, with 
the help of previous research, in view of the urgent need for doctors to be able to use this 
technology for improved diagnosis.  

The OCT uses a movement contrast to image the blood flow and thereby image the 
vasculature. Therefore, occurrence of artifacts are more common and may affect the OCTA 
images. These artifacts are due to various reasons such as patient movement due to 
heartbeats, trigger issues of OCT systems or scanner synchronization errors and may lead to 
a wrong interpretation of OCT angiography images. To prepare the image data for better 
quality and efficient feature extraction, the artifacts are reduced in OCTA en-face images [4]. 

The practical part of this work is explained as follows: 

 OCT intensity image pre-processing to obtain the data in correct structure  
 Layer segmentation to extract the features of the retina within tomograms 
 Applying the segmentation to OCTA tomograms to extract specific microvascular beds 
 Noise reduction on OCTA en-face projections to prepare the data for further feature 

extraction 

1.3 Outline of the thesis 
This thesis is structured as follows: 

Chapter 1: describes the research question and the objective of this project. 

Chapter 2: describes the physical structure of the human eye, the retinal layers, and their 
functions 

Chapter 3: describes the optical methods and different retinal imaging techniques and 
presents an overview of past research into different methods used for retina segmentation. 

Chapter 4: describes the image processing and the implemented algorithms. 

Chapter 5: provides results and discussion. 

Chapter 6: gives conclusions. 
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2 Background 
2.1 Eye  
The eye is the most important sensory organ. Only with the help of the eye, we are able to 
recognize images. More specifically, the eye perceives visual stimuli from outside and 
transforms them into electrical impulses. Subsequently, the information is passed on to the 
brain through the optic nerve.  

The following section describes the parts or components of the eye and their functions, and 
the next section will illustrate the most common eye diseases, such as glaucoma and diabetic 
eye disease. 

2.2 Physical structure of the eye 
The components of the eye and their functions are briefly described in the following section. 

 

 

Figure 1: Human Eye Structure [5] 

 

A cross-section of a human eye is presented in Figure 1.  

As the light comes into the eye, it first comes into contact with the cornea. The task of the 
cornea is to filter the light and direct it, so that the image can converge in the eye following the 
path of the iris and pupil. By narrowing or dilating, the iris adjusts the pupil size to regulate the 
amount of light that can enter the eye. With the help of auxiliary muscles, the lens can change 
its shape and focus on objects, it also improves the already refined image from the cornea and 
projects it onto the retina [6]. 

 

Eye components Function 

Sclera Maintains shape of eye; protects eyeball; 
site of eye muscle attachment 

Eyelids Eye protection 



6 
 

Cornea Refracts incoming light; focuses light on the 
retina 

Iris Regulates amount of incoming light 

Pupil Admits light 

Lens Refracts and focuses light rays using 
accommodation 

Aqueous humor Helps maintain shape of eye; maintains 
intraocular pressure; nourishes and 
cushions cornea and lens 

Vitreous humor Maintains intraocular pressure; transmits 
light to retina; keeps retina firmly pressed 
against choroids 

Choroid Absorbs stray light; nourishes retina 

Retina Absorbs light; stores vitamin A; forms 
impulses which are transmitted to brain 

Optic nerve Transmits impulses to the brain 

Table 1: Eye components and functions 

 

The most important parts which are considered in this study are the retina, choroid and optic 
nerve, which are explained in detail in the following section: 

Choroid:  

The choroid is one of the layers of the eye that lies between the sclera and the retina. This 
granular layer contains many capillaries that feed the iris and retinal light receptor cells. This 
layer is located below the retina pigmented epithelium or RPE [7].Several diseases, such as 
choroidal polyps, choroidal tumours, age-related degeneration, capillary arteriosclerotic 
changes and hereditary diseases of the retina, change the structure of this layer, so the 
separation of this layer is important [8, 9, 10]. There are a limited number of non-invasive 
techniques for examining the choroid. Today, the methods for evaluating the choroid are the 
carotid ultrasound, magnetic imaging and histological studies [11, 12]. Contact ultrasonic can 
produce an internal image of the choroid, but the accuracy of the image is low, and accurate 
measurement of the position is difficult. Imaging of the choroid using an OCT device is 
challenging due to the difficulty of transmitting the signal through the RPE layer and increasing 
the depth of imaging. With spectrometer, based 800nm OCT an enhanced depth imaging 
mode has been introduced (EDI-OCT) to better visualise the choroid layers [13]. With the rise 
of swept source OCT at 1060nm center wavelength, the choroid can now be better visualized 
as opposed to 800nm center wavelength and became the focus of many studies [14]. 

Because a large amount of information is contained in such images, it is not possible for the 
ophthalmologist to analyse this data without a automatically system and over-dimensioned. 
However, because of the heterogeneity in the choroid layers, the methods previously used in 
segmentation of the retina layers are not suitable for the heterogeneous structure of choroid 
layers. In several studies, EDI-OCT was used to measure the thickness of the choroid to 
examine the association with retinal diseases and to consider the treatment process [15].  
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In this research, swept source OCT at 1060nm is used, and measurements are based on 
manual labelling, which is a lengthy and time-consuming process. This is a particularly acute 
problem when the number of people to be examined is high. Kajic et al. designed a two-step 
statistical model that automatically finds the layers of the choroid in the OCT images recorded 
at 1060nm in a healthy and diseased eye [16].However, the model requires extensive training. 
In 2012, an automatic method for measuring the thickness of the choroid was introduced by 
Tian et al., by finding the shortest path of the graph, which was used on 10 images to check 
their efficiency. But this method needed much more data. Regarding what has been said about 
making EDI-OCT a useful medical tool, the need for the development and improvement of the 
automatic segmentation algorithm is required. 

Retina: 

Retinal tissue is a multilayer structure that contains multiple layers including the posterior 
part of the eye  cavity and is responsible for the transformation of the light energy into 
neuronal signals for final analysis by the brain [17].  

The retina can be divided into many distinguishable layers as shown in Figure 2. 

 

Figure 2: Different layers of retina 

 
“The different layers of retina are organized as follows [18]: 
 

1. The Inner Limiting Membrane (ILM) is the boundary between vitreous body and the 
retina. 

2. Ganglion Cell Layer (GCL) encompasses the cell bodies and axons of the ganglion 
cells. 

3. Inner Plexiform Layer (IPL) comprises the synapses between bipolar, amacrine, and 
ganglion cells.  

4. Inner Nuclear Layer (INL) involves bipolar cell, horizontal and amacrine cell bodies.  
5. Outer Plexiform Layer (OPL) consists of bipolar cells, horizontal and receptor 

synapses. 
6. Outer Nuclear Layer (ONL) contains the nuclei of photoreceptor. 
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7. Outer Limiting Membrane (OLM) comes into contact with the base of the inner 
segments of photoreceptor. 

8. Photoreceptor Layer contains the inner and outer segments of photoreceptors.  
9. The Pigment Epithelium Layer is the outermost layer of the retina be composed of 

pigmented cuboidal cells that contain Melanin. Melanin is the black pigment, which 
absorbs any excess light that is not captured by the retina and prevents it from 
reflection back to the retina. Thus, protects the photoreceptors from damaging level of 
light. The pigment epithelium cells provide nutrition such as glucose, and essential 
ions to photoreceptors.” 

 

Two of the most important retinal diseases are glaucoma and diabetic retinopathy [19]. A 
detailed examination of the retina for the recognition of these diseases requires a detailed 
representation of the layers of the retina. Since the eighteenth century, a large number of 
imaging devices such as x-ray imaging and MRI have been essential tools in the field of 
medicine and biology. However, tomography machines have problems, such as high prices, 
aggressiveness of ionizing radiation and low resolution. Therefore, to eliminate these 
problems, many researchers have introduced optical coherence imaging or OCT. This optical 
technology creates two-dimensional or three-dimensional images with high resolution of 
anatomical tissues [20].   

An early diagnosis of these diseases provides a good opportunity for treating these diseases. 
An early diagnosis of early-stage disease is difficult for a number of reasons: 

‐ Sensitivity of the field-of-view test for detecting damage 
‐ Insufficient sensitivity of imaging tools for detecting structural changes  
‐ Variable measurable parameters in persons requiring diagnosis [21]. 
‐ Motion artifacts during in-vivo assessment due to involuntary eye motion, fixation 

loss, or heart beat. 

Because most organs in the body are symmetrical, asymmetry analysis can help physicians 
to diagnose diseases earlier and faster. The limit of the asymmetry parameters is a good 
measure for the early diagnosis of diseases. One of their applications is asymmetry analysis 
in the diagnosis of cancers, such as breast cancer, in its early stages [22]. In addition, 
asymmetry analyse is used in the brain hemisphere to identify people with multiple sclerosis 
or the early stages of psychosis and in the diagnosis of eye diseases. In 2005, asymmetrical 
analysis data about the thickness of the retinal neural fibre layer was obtained comparing the 
left and right eyes of healthy people in the area of the optical disc. However, it should be noted 
that the asymmetry limit was not calculated in this research [23]. Subsequently, the posterior 
pole symmetry analysis was used to detect early glaucoma. This study was limited to one layer 
and the asymmetric threshold was not calculated [21]. The asymmetric analysis examined the 
thickness of the nerve fibre between the left and right eyes of healthy people. This study was 
limited to the retinal nerve fibre layer [24].  

In the macula region, there are several layers of ganglion cells, even if only one layer of the 
cells remains due to the disease, the visual field test is normal (i.e. with the loss of five of these 
cell layers, about 30 micrometres, it is still within normal limits). It should be considered that 
healthy people have many variations in the thickness and as a result, of the change from the 
cup to the disc ratio [21]. Asymmetry analysis of the total thickness of the retina in the macula 
region can help physicians to diagnose the disease at an earlier stage. Therefore, achieving a 
threshold for thickness change could be an important step in this direction. 
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Optic nerve: 

For the complete transmission of the visual information from the retina to the opticum brain, 
the visual tract that begins in the retina and runs above the optic nerve, optic chiasm, optic 
tract, lateral geniculate nucleus and optic radiation to the visual cortex are needed. The optic 
nerve is the only structure of the central nervous system, which can be directly visualized 
clinically. It represents the accumulation of ganglion cell axons, which converge on the optic 
disc. Both optic nerves end in the optic chiasma, which again has the optic tract as 
posteroventral origin. More than a million neurons, arranged together in a series of strands, 
form the optic nerve. The optic nerve, fixes the retina, to the brain like a thin, light-sensitive 
screen in the back of the spinal cord. For good vision, a healthy nerve is essential [25]. 

 

 

Figure 3: Parts of Optic Nerve [26] 

 

2.3 Eye diseases 
Blurred vision, floaters, flashes, spots, light sensitivity, these are frequent eye problems that 
cause discomfort and are the primary symptoms of eye disease. The eye has many diseases. 
Each of them has its own way of being identified, investigated and prevented. Currently, 
glaucoma is one of the most important diseases in the eye. 

They will be explained in the following section: 

2.3.1 Glaucoma 
Glaucoma is a chronic degeneration of the nerve plexus. An example of it is vascular 
neuropathy. Patients with this particular type of glaucoma lose their peripheral vision and if 
they are not treated, can lose vision completely [27]. The types of glaucoma are: open angle, 
closed angle and advanced types, which are themselves classified into primary and secondary 
types. The most important clinical characteristics of primary open-angle glaucoma are cup-
shaped optic nerves combined with visual field loss. Although high intraocular pressure cannot 
be considered as a clinical feature of this disease, there are indications that black race, old 
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age, family history of glaucoma, angioedema, short-sightedness and low diastolic pressure are 
risk factors for primary open glaucoma [28]. 

The term "glaucoma" refers to a group of diseases that can affect the visual acuity and cause 
loss of the visual field. Nerve damage dependent on glaucoma is associated with a progressive 
decrease in the axons of retinal ganglion cells (RGC) and also with the reformation of two optic 
nerve head and troughs optic disc [29]. Two basic hypotheses which were described by the 
pathology of this disease, are the mechanical hypothesis and the vascular hypothesis 
(ischemic) [30]. The mechanical hypothesis asserts the importance of direct compression of 
the axons and supporting structures of the front of the optic nerve, as well as the leaf of lamina 
scapular and break of axoplasmic flow, which leads to the death of RGC. The vascular 
hypothesis (ischemic) affirms the development of neuronal anaemia and thus the reduction of 
perinatal nerve perfusion. This reduction in blood flow can be due to the effect of intraocular 
pressure on the optic nerve with effects on the processes of the optic nerve [29]. 

2.3.1.1 Effect of glaucoma on the optic nerve 

Many factors are responsible for the development of glaucoma. Increased intraocular pressure 
is the most important risk factor for glaucoma damage, in addition to a disturbed blood flow to 
the optic nerve. A certain pressure in the interior of the eye is necessary so that the eye retains 
its spherical shape. The so-called aqueous humour is responsible for maintaining the pressure. 
This is a clear fluid circulating in the anterior eye segment between the cornea, iris and lens. 
The aqueous humour is formed in the ciliary body, which is located behind the iris. Through a 
fine canal system (trabecular meshwork), it can be transported out of the eye after a certain 
time. In the healthy eye, there is a balance between production and outflow of the aqueous 
humour, which leads to a relatively constant eye pressure. This equilibrium may be disturbed 
in glaucoma. Either too much aqueous humour is produced or too little chamber fluid flows out 
because the drain path is clogged. The eye pressure rises. The creeping pressure increase 
over months and years at first causes no symptoms. Due to the constantly increased pressure 
on the optic nerve, however, depending on its pressure sensitivity, there may be a slow, 
progressive decrease in visual performance. The patient does not notice this for a long time. 

 

 

Figure 4: Healthy Optic Nerve and with Glaucoma [31]  
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2.4 Diagnosis of glaucoma 
Many people think that they are only affected by glaucoma if they have high pressure in their 
eyes. But this is not always the case. The high pressure in the eye increases the risk of 
glaucoma. Nevertheless, this is not an unconditional cause of this disease. The risk of 
glaucoma due to high pressure in the eye depends on the amount of high pressure that the 
optic nerve can withstand and this varies from person to person. The normal pressure is 
generally between 12 and 21 mm Hg, but also at this pressure, a person may have anaemia, 
which indicates that the eye examination is very important. 

Regular examinations by the ophthalmologist are therefore important. The patients’ individual 
pressure sensitivity plays an important role in the development of glaucoma. Some patients 
react to relatively low intraocular pressure values with glaucoma damage, while others do not 
develop glaucoma even at much higher-pressure levels. Up to now, an eye pressure between 
10 and 21 mmHg was considered normal. In recent years, however, only about 50 percent of 
open-angle glaucoma cases have been diagnosed by eye pressure, and only about 1/3 of 
patients with a pressure of 20-30 mmHg develop glaucoma damage. Furthermore, 30-50% of 
patients with typical visual defects have an intraocular pressure below 21 mmHg [32]. 

The following image shows an example of this disease. 

 

 

Figure 5: Normal Vision and with Glaucoma [33] 

 

There are several tests for the detection of glaucoma such as: 

 Manometer: Pressure measurement 
 Gonioscopy: Evaluating the internal drainage system of the eye 
 Ophthalmoscopy: looking at the retina and optic nerve head 
 Perimeter: Visual field testing [34]  

A Goldmann tonometer provides the golden standard for the measurement of intraocular 
pressure [35]. 
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3 Optical methods 
The word “light” in engineering sciences is often used for the visible spectrum, infrared and 
ultraviolet. Because light is an electromagnetic wave, it shows a similar behaviour to other 
electromagnetic waves (like X-ray, microwave). Near-infrared-spectrum -emitters and -lasers 
are one of the most widely used resources in this imaging technique.  

The theory of optical imaging is based on the absorption of photons by the elements in the 
human body. Through various mechanism and events, higher resolution images are produced 
to display the different parts of the body. Because the resolution depends especially on the 
spectral bandwidth of the light source. 

Significant optical absorbers in the human body are oxygenated-haemoglobin 
(oxyhaemoglobin) and deoxygenated haemoglobin (haemoglobin).  In addition, there are other 
absorbers in most tissues, such as melanin and water, which have absorption at visible and 
near infrared wavelengths. The maximum penetration of light into the tissue can be achieved 
in a certain area where the absorption and scattering of light through tissue is at least. This 
area is called “optical window”, which is shown in Figure 6 for the absorption and scattering of 
light by haemoglobin and water. [36] 

 

 

Figure 6: Tissue optical window (Water, Hb) [36] 

 

3.1 Optic Coherence Tomography OCT 
As currently defined, tomography is a method to extract the maximum information required 
from the environment in depth. This extracted information may be a two-dimensional in depth 
or three-dimensional image of the targeted environment. The extraction of information takes 
place by the processing of raw data, which is derived from the boundaries of the object. 
Angiographic systems are mainly used for the contrasting of body tissues vasculature in 
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medicine. Angiography systems, such as OCTA, are expensively used in medical imaging, 
especially in ophthalmology and retinal imaging with a high resolution of about 10µm [37]. The 
measurement and imaging of surface morphology, including optical surfaces, etc, is very 
important in science and engineering and is an essential tool in production. Interferometric 
systems are one of the effective methods for measuring various levels of profiles [38]. One of 
the important problems of measurement in interferometric systems is the relatively high 
sensitivity of the system to motion and noise. 

 

Light source

Sam
p
le

 
Figure 7: Michelson´s Interferometry 

 

Optical coherence tomography (OCT) has revolutionized the representation of retinal 
structures and the diagnosis of pathological changes in the fundus of the eye in recent years. 
Before the introduction of OCT, no in-vivo representation of the layer structure of the retina 
was possible. In principle, three-dimensional imaging is faced with the challenge of not only 
imaging surfaces, but also assigning the image information to a depth or preventing the 
superposition of images or scattered radiation from different depths. Light cut illumination, e.g. 
used in the slit lamp, uses different directions between illumination and observation for depth 
selection. Confocal microscopy forms a focal point in the tissue on a matched aperture to 
eliminate blurred images from higher and lower layers. In both methods, the lateral resolution 
depends on the angular range that can be used for imaging. When the retina is imaged, the 
usable angular range is limited by the iris. In the case of imaging methods, which, as in the 
case of ultrasound diagnostics, evaluate wave propagation times, the depth resolution is 
independent of the focusing angle. Ultimately, the OCT also uses run-time measurements to 
achieve the depth resolution required for a three-dimensional retina display [39]. Today, OCT 
systems have a depth resolution in the range of 1 - 10 μm, and it is possible to make images 
of the sample in real-time in situ and in vivo. The position of the OCT with regard to other 
medical imaging systems is shown in the diagram "Resolution depth of the penetration" in 
Figure 8.  
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Figure 8: Resolution depth of the penetration 

 

OCT is based on the physical phenomenon of white light interferometry and detects small 
refractive index differences within the sample. The light, which is used for OCT imaging, is 
used instead of the audio signal in ultrasound imaging, and the image formation depends on 
the optical properties of the tissue structure. Due to the high speed of light, a direct 
measurement of the echo signal delay is not possible. For this reason, OCT systems work 
based on interferometry with low coherence. Typical light sources with low temporal coherence 
are super-luminescence diodes or femtosecond lasers, which have very short pulses. In OCT 
imaging, light is irradiating the sample and the backscattered light is superimposed to a 
reference beam using an interferometer. The contrast in the tissue originates from scattering 
processes at structural boundaries, which represent a transition in the optical refractive index, 
e.g. the transition from tissue to cell (cell membrane) or the transition from cell plasma to 
mitochondria. Light is also scattered at such scattering centres, to a small extent, exactly 
opposite to the direction of incidence. In order to allow light to penetrate so far into the tissue 
at all, a wavelength, which is in the near infrared range of 800 nm-1350 nm, is preferably 
selected. The average free path length between two scattering processes in optically opaque 
fabrics lies in this wavelength range, in the order of magnitude of a few 100 μm up to 
millimetres. The absorption by water or other tissue absorbers is less severe than the losses 
due to scattering. The transparent part of the eye (cornea, pre-chamber, lens, glass body) can 
be completely captured, the relatively thin and complex layer of the retina is also very 
impressive. 

3.1.1 Interferometric measuring principle of OCT 
The light of a spectrally broadband light source is divided in amplitude. One part traverses 
the optical path of a reference arm, the other part is applied to the sample and reflected back 
from there. Both parts are superimposed at the exit of the interferometer. The reference light 
and the sample light interfere with each other if the relative path length matches to within the 
short temporal coherence length. The interferometric evaluation can be realized in various 
ways. Two fundamental types can be distinguished: Time Domain OCT and Spectral Domain 
OCT. One of the important problems of measurement in interferometric systems is the 
relatively high sensitivity of the system to motion and noise [40]. 



16 
 

 

 

 

Figure 9: TD-OCT and SD-OCT 

 

3.1.2 Time Domain OCT (TD-OCT) 
The light of the two arms is temporally correlated with each other. For this purpose, the 
reference arm is shifted in length and the runtime in this arm is thus changed. If the running 
time corresponds to the running time of a reflection from the sample, the reference arm wave 
and sample arm wave are in phase and the electric field strengths are added for all the 
wavelengths contained in the spectrum. Even a distortion of the arms of half the central shaft 
length causes a mutual extinction. A further shift causes constructive interference. The further 
one is from the exact coordination of the path lengths, the flatter the expression of the waves 
and valleys is - the interference contrast decreases. This is because there is a different 
distance between the central interference maxima and the next minimum for each wavelength 
contained, and, of course, the electric field strength of all wavelengths is added up at each 
point. The more wavelengths are contained, the more the interference amplitude decreases 
by the exact tuning point. The 1/݁ଶ  width of the envelopes of the interferogram is the temporal 
coherence length of the light. It is inversely proportional to the spectral bandwidth of the light 
source. However, exactly the envelope is the decisive measurement value of the OCT and is 
obtained from the interferogram by a filtering method. The course of these envelopes in a 
multilayer sample results in a depth profile of the sample, also called A-scan. Measuring 
several A-scans at successive lateral points comprises then an OCT tomogram or B-scan [41]. 

3.1.3 Fourier Domain OCT (FD-OCT) 
OCT systems of the 4th generation measure with a non-movable reference mirror using the 
Fourier transformation. This measuring principle is referred to as Frequency Domain or 
Spectral-domain OCT. In the case of the Fourier Domain OCT, the light paths from and to the 
eye, as well as to the reference mirror, are like the time domain. However, the reference mirror 
is fixed after positioning.  

The interference is evaluated spectrally, i.e. the superimposition of the reference arm light and 
the sample light is evaluated at each wavelength. This can be done by means of a downstream 
spectrometer or by temporally spectrally determined laser light sources (Swept Source OCT). 
In both cases, the spectroscopic interferogram is recalculated to wave numbers and Fourier 
transformed. The Fourier transform of the power spectrum with respect to wavenumber 
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translates the spectral coordinate to the adjoint temporal or depth coordinate. Thus, an A-scan 
is again obtained from the spectrum and again the axial resolution is inversely proportional to 
the spectral bandwidth of the light source. In addition, there is the finite resolution of the 
spectrometer or the instantaneous line width of the tuned laser. They have an effect on the 
possible measuring depth range. The finer the spectrometer resolution or the instantaneous 
laser linewidth of the swept laser, and the smaller the possible distance between the sampling 
points in the spectrum is, the measuring range is larger. Overall, the retinal layers can be better 
represented in the FD-OCT systems due to the faster acquisition and the resulting higher 
lateral sampling. However, retinal diseases strongly affect the visibility of different layers or 
their configuration, e.g. in CNV (Choroidal Neovascularization) or retinal oedema the structure 
is disturbed to such an extent that the reflection behaviour becomes untypical and thus the 
corresponding layer can no longer be recognized. The volume representation of the FD-OCT 
systems usually allows scrolling through the scans in the form of a small film retrospectively, 
whereby viewing from different positions is possible. This allows a rapid qualitative assessment 
of the retinal structures [42].  

3.1.4 Spectral Domain OCT (SD-OCT) 
The reference arm is fixed slightly longer or longer than the sample arm. The two waves from 
the sample and reference arm are combined, interfere and are then directed to a spectrometer. 
This is equipped with a diffraction grating. As a result, the wave packets are spatially separated 
according to their optical frequencies and the spectral interference pattern is then registered 
by a CCD detector. After reading the individual CCD cells, further processing by ADC 
converters and Fourier transform (FT), the known A-scan is again obtained as in TD-OCT [41].  

3.1.5 Swept-Source-OCT (SS-OCT) 
Another method also measuring in the Fourier domain, is the so-called SweptSource (SS) -
OCT. Instead of a broadband light source, a monochromatic light source is used, the 
wavelength of which can be changed periodically over a certain range. The intensity at the 
output of the interferometer is detected with a photodiode. The difference to spectral domain 
OCT is that this is now no longer spatially resolved with spectrometer, but the spectral 
interference pattern is recorded over time. A spectral decomposition with a monochromator is 
therefore not necessary. This makes the construction of the system much easier. At the same 
time, the complexity of the light source increases. While simple semiconductor light sources 
are used in the spectral radar, the SSOCT requires a complex laser light source. Their 
properties also define the essential characteristics of the complete OCT system [43].  

3.1.6 A-scan and B-scan image 
If the sample is scanned with a light beam, a depth profile along the light beam for each 
screen point is obtained either by scanning the reference arm mirror as in TD-OCT or by 
Fourier transform of the spectral interference pattern as in FD-OCT. The corresponding 
representation of a depth profile is called the amplitude scan (A-scan). The conversion of the 
depth profile into brightness and the representation of many adjacent depth profiles along a 
screen path as brightness values, results in a tomogram or so-called brightness mode image 
(B-Scan). If two layers are close to each other, they can still be resolved if their distance in 
depth is greater than the coherence length of the light. The transverse resolving power 
depends on the focusing of the light beam. The shorter the focal distance is, the more 
accurate is the resolution in the focal plane; but the best resolution decreases with increasing 
distance in front of and behind this selected focal plane according to Gaussian beam optics. 
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According to Gaussian optics the lateral spot size is given as where  is the central 
wavelength, f is the focal length, and d is the beam waist diameter at the focusing lens. The 
confocal range, being the range of optimal lateral resolution, is related to the lateral spot size 
as . Obviously the better the lateral resolution the worse the confocal depth range. A 
compromise is to use low lateral resolution or spot size, which in retinal imaging is usually 
about 10 μm-20 μm in diameter. If the focus spot size is about 1µm and less, you are no 
longer talking about OCT but of optical coherence microscopy [41].  

3.1.7 OCT-Angiography 
OCT-angiography (OCTA) is a novel, non-invasive imaging technique that enables imaging of 
different retinal and choroidal vascular networks with high resolution, based on motion 
contrasts. It allows visualization of the microperfusion of retinal and choroidal vessels without 
the use of an intravenously administered dye. This enables an examination of vascular 
changes in retinal diseases at the time of diagnosis and under therapy process. The OCTA 
allows precise, three-dimensional visualization, whereby leakage, pooling and staining 
phenomena or inflow behaviour is not detectable [44].  

OCTA utilizes a high OCT scanning speed and performs repeated scans at the same location, 
and then identifies blood vessels by detecting red blood cell flow. In this way, OCTA can be 
used to construct a 3D dataset to represent the vascular portion of the scanned tissue and 
automated or semi‐automated segmentation boundaries. Accurate depth segmentation of the 
structural tomogram provides efficient evaluation of retinal and choroidal vasculature to 
differentiate between healthy and diseased retinas [45] [46]. 

3.1.7.1 Clinical applications of OCTA 

Optical Coherence Tomography (OCT) is a success story in the scientific and technological 
field. The spatial resolution of 3 microns or even less, allows the tissues to be studied almost 
at the cellular level. OCT is an invaluable assistant in the diagnosis of many diseases of the 
anterior and posterior segments of the eye. OCT has revolutionized the sensitivity and 
specificity of diagnosis, tracking and response to treatment in almost all areas of clinical 
practice with primary eye pathologies and secondary eye features in systemic disorders such 
as diabetes mellitus, hypertension, vascular and neurological disorders. OCT is proven to be 
a helpful tool for the early diagnosis of diseases of the eye, such as glaucoma and retinopathies 
caused by early changes in the morphology of the retina and especially of the nerve fibre layer 
[47].  

The application fields for OCTA are diverse and include, a. neovascular age-dependent 
macular degeneration (AMD), diabetic retinopathy, retinal vascular occlusions, inflammatory 
diseases and telangiectasia of various aetiology. The results of the imaging and their 
interpretation are, in part, different from those of classical fluorescein and indocyanine green 
angiography. Knowledge of these differences as well as limitations of the method of 
investigation, are important for clinical application and interpretation [48]. 

  

3.2 A review of past research 
In 2016, Huang, together with his colleagues, conducted a study on the investigation of 
dynamic imaging by using an OCT angiography method of retinal imaging. The purpose of this 
research was to finally provide a solution for patients by preventing chronic ocular diseases. 
In this study, they responded to the problems of eye pressure measurement by OCT 
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angiography and Doppler. In this research, the Doppler values are corrected based on the 
angle extracted from the OCT and a 3D- algorithm or -method based on dynamic programming, 
is proposed to extract the 3D boundaries of the veins. The accuracy of blood pressure, which 
was diagnosed with pressure phantoms, was examined, and is confirmed by the proposed 
method [49].  

In another study, conducted in 2016, the aim of the study was to provide a method for 
researching and working on eye tumours in patients. In fact, the problem of noise reduction for 
OCT angiography images was presented. Finally, the research was presented for removing 
noise from angiographic images used to identify and detect ocular tumours. In this research, 
the accuracy of the presented results is reliable [50].  

Liu, along with other colleagues, in an interesting study which was completed in 2015, used 
OCT images to investigate CNV. In fact, the determination and detection of the CNV area is 
very important. This paper presents an automatic method for the detection of the CNV region. 
The results of this study were compared with the results from the manual diagnosis of CNV. 
The results of the automatic examinations were adequate and precise [51]. 

In 2015, Varga and colleagues, presented a study of OCT images from MS patients. The aim 
of this study was to identify anatomical difference and achieve visualization of the retina layer 
in patients with MS, as well as assessing the utility of neurological changes with OCT image 
segmentation [52].  In this study, the proposed method was used on 38 patients with MS, who 
were evaluated by OCT. The method presented in this study uses image processing 
techniques to extract the desired texture using OCTRIMA software. The OCTRIMA software 
enables the segmentation of the various cellular layers of the retina. The results obtained in 
this study were also confirmed by laboratory tests on the patients. But the main target of this 
study was to find a solution for identifying patients with MS by using OCT images.  

Tang, along with other colleagues in 2017, presented a study of diabetics, based on OCT 
images. Damaged capillaries were studied in diabetics. Capillary tissue was damaged by many 
factors. In this study, 434 patients were examined. The main outcome of the study, based on 
OCT images, was a solution for the treatment of diabetics [53]. 

In 2017, Munk has proposed a quality survey of four OCT imaging techniques [54]. The 
purpose of this research is to provide a way to review or research study series in this field. The 
purpose of this research, is to identify and investigate OCT image processing methods in a 
way that is based on the devices referred to in this research, such as through trials, and finally, 
result in the introduction of a method.   

Huang Huang with his colleagues in 2016, conducted a study on the determination of the CNV 
area, based on OCT images. The main problem faced by the researchers in this study was the 
question of noise-reduction of OCT images used to determine the CNV region [55].  

Yang, together with his colleagues in 2014, published a study about the recording of OCT 
images or adaptation of the OCT images. In fact, the main problem addressed by these 
researchers was eye movement during imaging. The solution proposed in this study is a two-
part solution using a comparison stabilizer for the optical component and the digital images. In 
this study, the mirror is slowly reflected by two axes to stabilize and adjust the images. One of 
the most important results of this study was the reduction of eye movements due to the use of 
the stabilizer, which was improved about 10-15 times [56].  

Zaki with his colleagues in a study of 2017, has researched the removal of noise from OCT 
images. In this research, the relationship between the signal detection of noise spectra is 
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determined to eliminate the noise in the OCT images, based on the width of the violet 
thresholds, which clearly results in the noise removal, in particular in the case of sharp noise. 
The proposed method in this research is based on noise reduction by using the violet method 
[57]. 

Jahromi and his colleagues also conducted a study on the segmentation of OCT images in 
2017. In the study, researchers found that corneal disease has a direct correlation with the 
measurement and calculation of corneal thickness in several layers Although precise 
segmentation of corneal borders is unavoidable, manual measurement is time consuming and 
inaccurate. In this research, the Gaussian mixed model is presented for the automation of the 
segmentation of the three important parts of the corneal horn skin based on OCT images. The 
method proposed for this research, presented by Jahromi and colleagues, is based on two 
parts. First, the GMM (Gaussian mixed model) is used on the original images for the purpose 
of locating the beginning and end of the boundaries. Ultimately, the test will be performed to 
determine the exact secondary border. The proposed method was compared with the 
boundaries identified using the manual extraction method which showed that the results 
presented from the researched automated method were reliable and promising [58].  

In 2016 the problem of noise due to moving patients was investigated in a study by Lezama 
and colleagues. In fact, such noise is detected in situations where the visual field is too large. 
One of the best ways to overcome this problem is to make images in 2 vertical vectors. 
However, the image matching in this situation is very complicated, with long-term data 
transmission and noise. In practice, the gap between the imaging and the eye movement, as 
well as the fast movement of the eyes while focusing, does not provide us with proper 
information, so the problem of image matching is critically examined. In this research, 
researchers have approached the problem of OCT image adaptation in the process of 
automatically correcting the patient's eye movement. Their proposed method is also performed 
when the patient has a retinal detachment. The results presented in this study clearly 
demonstrate that the proposed method has a good ability to deliver results [59]. 

In 2016, Dascal also presented an overview of OCT images. In this study, the application of 
the proposed method was based on X-ray images. In the method proposed in this paper, image 
adjustment of vascular tree patterns is illustrated on x-ray images. The same method would 
also apply to OCT images [60]. 

In 2017 Baghaie introduced a study together with other colleagues. In this study, the method 
proposed was for avoiding noise caused by eye movement, on OCT images. In this study, 
noise reduction techniques are divided into two parts because of the eye movements [61].  

‐ Methods based on hardware-related techniques  
‐ Methods based on software techniques. 
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4 Methodology 
This practical part of this work is divided into two different parts. First, the OCT B-scan images 
are segmented. Secondly, the OCT angiography images are denoised. 

The proposed method for the segmentation is based on the graph theory approach to 
automatically segment the different retina layers on the OCT B-Scan images.  

The second algorithm is also implemented to reduce the noise in the angiography input 
images. After trying different methods for the noise reduction, the Fixed-pattern noise (FPN) 
method was chosen. 

Flowchart 1 below, briefly presents the general methodology. 

 

Segmentation
(dijkstra´s algorithm)

OCT B-Scan 
Input

Image 
Output

OCT-A Input
Image 
Output

Denoising FPN
(FFT)

 

Flowchart 1: General methodology 

 

A detailed explanation of the algorithms is given in Section 4.3. for segmentation, and in 4.4. 
for noise-reduction. 

4.1 Image Processing Algorithm and analysis 
Digital images consist of individual pixels (picture elements) with discrete brightness or colour 
values. They can be efficiently processed and objectively evaluated. This opens the door to an 
entire spectrum of methods of digital image processing in medicine. The current term "medical 
image processing" thus means the availability of digital image processing for medicine. Medical 
image processing also includes four large areas Flowchart 2. Image capture includes all steps 
from capture to the digital image matrix. Image representation includes all manipulations on 
this matrix, which are used for the optimized output of the image. Sub-image storage can be 
used to sum up all the techniques used for the efficient communication, archiving and retrieval 
of the data [3]. 
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Flowchart 2: Stages of the medical image processing [62] 

 

The important tasks of diagnosis and therapy-supporting image processing systems consist of 
the largely automated segmentation, analysis, identification and visualization of medical image 
objects (tissue, tumours, lesions, vascular systems, etc.). The development and design of such 
image processing systems is characterized by the integration of algorithms, methods and 
techniques from the fields of medical image registration, segmentation, image analysis, pattern 
recognition, visualization and virtual reality [63].  

4.2 Image recording system 
Generally, image processing systems consist of a recording unit, e.g. a camera, an image 
memory, devices and methods for manipulating / processing the information and presentation 
devices for output.  

The dataset that we have used in this work and have processed with the proposed algorithm, 
was recorded with a device, which was built for research in the field of OCT at the Centre for 
Medical Physics and Biomedical Engineering at the Medical University of Vienna. The image 
dataset is anonymized and used for research purposes. 

A brief overview of how this device is constructed is given here: 

The system is based on the generally available swept-source technology. This system has 
been further developed to speed up the OCT-Angiography system. Two interleaved sources 
of laser are used. Each of these sources operates at 100 kHz and a total of 200 kHz is 
achieved. The split spectrum was developed by Ginner et al [64] and works specifically for 
swept source OCT by lateral scanning during wavelength sweep. Each lateral point sees only 
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part of the spectrum. By using this approach, doubling the FOV from 8 ° (100 kHz) to 16 ° (400 
kHz) is achieved without increasing the recording time. 

4.3 Proposed segmentation method 
The method used to segment the SS-OCT B-Scan images is based on the method proposed 
by Chiu et al. [65]. This method automatically extracts and differentiates the different layered 
structures of the retina. It is based on graph theory and dynamic programming to reduce the 
processing time for segmenting and extracting features. 

 In the flowchart below, the general steps for the implementation of the segmentation algorithm 
are shown, which are described in detail in the following sub-sections. 

 

OCT B-Scan 
Input

Image pre-processing 
(Smoothing)

Layer segmentation 
(dijkstra´s algorithm)

Image 
Output

 
Flowchart 3: Segmentation general steps 

 

4.4 Image segmentation 
The purpose of this section is the separation and segmentation of images (OCT-B-Scan). 
There are already many methods that have been used for the segmentation process of the 
retina. The main purpose of this section is to perform the segmentation, which is shown in 
Figure 10 automatically. 
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Figure 10: Target retinal layers of a cross-sectional SDOCT image (B-scan) centered at the 
macula [65] 

 

4.4.1 General description of the algorithm 
The general steps for implementing the algorithm are as follows: 

 

Original
Image

Calculate 
Weights

Initilize 
Layer 

Endpoints

Limit Search
Region

Find Shortest 
Path

Final 
Segmented 

Image  
Flowchart 4: Segmentation algorithm 

 

First, the graph weights must be calculated. Here the gradient of image is used because each 
pixel of the image is a node on the graph. The connection between two nodes are the edges. 
A path consists of a set of connected edges and only pixels (nodes) with 8 adjacent paths are 
considered. In other words, distant pixels (outside the neighbourhood) have a weight equal to 
infinity and no access to each other. Thus, the number of graph nodes is equal to the number 
of pixels in each image, and the nodes in the neighbourhood are edges and connected.  

Figure 11 shows an example of three connected nodes. For the search for minimally weighted 
path with Dijkstra's algorithm, the weights must be both positive and between ሼ0,1ሽ. An edge-
weight of zero indicates an unconnected node pair. The table of graph weights is an adjacency 
matrix. One axis represents the start node and the other axis represents the end node. 
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Figure 11: Example graph weights (adjacency matrix) [65] 

 

To passing from a start node to an end node, the path with the minimum weight is preferred. 
These paths are in fact the borders/ boundaries between the areas. The weight between the 
two neighbouring pixels is correlated with the gradient of the two pixels and the gradient is 
normalized between ሼ0,1ሽ. 

 

௔௕ݓ (1) ൌ 2 െ	ሺ݃௔ ൅	݃௕ሻ ൅ 	݊݅݉_ݓ

 

 ,௔௕ is the weight assigned to the edge connecting nodes a and bݓ ‐
‐ ݃௔ is the vertical gradient of the image at node a, 
‐ ݃௕ is the vertical gradient of the image at node b, 
 is the minimum weight in the graph, a small positive number added for system ݊݅݉_ݓ ‐

stabilization. 

Where ݃ 	represents the gradient of each pixel. Note that two graphs are made to identify areas. 
One graph is obtained using the absolute magnitude of the negative numbers of the gradient 
image and to find areas that change from light-to-dark (such as the border between the choroid 
region and the RPE) and the second graph is constructed from the positive numbers of the 
gradient and is suitable for locating regions where the dark-to-light transition occurs (like the 
NFL region).  

In the next section of the algorithm, to avoid manual selection of start- and endnodes, we use 
an automatic initialization method to select the start and end nodes. In the Dijkstra-routing-
algorithm, a node as the start point, and a node as the end node are given to the algorithm, 
and the output is the best and the least weighty path between the two nodes. Here, after adding 
two columns with the lowest value (closest to zero) to the sides of the image, pixel ሺ1,	1ሻ is 
given as the starting point and the last image pixel (right bottom) as the end point to the 
Dijkstra’s algorithm.  

The following Figure 12 shows an example of this automatic initialization technique. Two 
vertical columns with the least amount added to the sides of the image [65]. In addition, the 
start-and end-points in the upper left and lower right corners are initialized. The edges are 
used as a function of pixel intensity. The darker pixels result in a lower weight. The red route 
shows the path with the lowest weight or the highest gradient value. 
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Figure 12: Automatic endpoint initialization 

 

After adding these two columns to the gradient image, areas such as (NFL) and (RPE) can be 
easily found with the Dijkstra-routing-algorithm. Because the border between the regions is 
more specific in these areas, consequently the image has a higher gradient value and the 
weight between the two adjacent nodes in the numerical boundary zones is close to zero. Once 
these areas have been identified, we know that the rest of the area is between them and we 
can narrow down the search area, so the rest of the borders can be found easily and quickly. 
So, finding a new area restricts the search area for the next area. This helps to find the exact 
location and to execute the algorithm in a shorter time. Finally, the image with separate regions 
is captured. 

4.4.1.1 Dijkstra’s algorithm 

This algorithm is one of the graph search algorithms, which solves the problem of finding the 
shortest path from the single source for weight graphs without negative edge weights. This is 
achieved by creating the shortest path tree structure, which yields the shortest path from the 
start-node to all end-nodes of the graph. This algorithm can also be used to find the shortest 
path from the start-node to the destination-node. This starts at a starting node and selects, 
step-by-step, the currently lightest paths through the next available nodes. This algorithm do 
this process as long as all nodes are visited and no better way to the nodes are found.  

Processes of Dijkstra’s algorithm: 

‐ To execute the algorithm, a queue ሼܵሽ is needed. Initially, this set is empty and with the 
progress of the algorithm, contains the nodes for which the shortest path has been found. 
The node with currently lightest weight from the start node is at the front of this queue. 

‐ Initialization: The way to the start-node costs 0 because its distance to itself is 0. For nodes 
outside of ሼܵሽ, there is no known way to the other nodes, so their costs are initially 
evaluated at infinity. In the process of the algorithm, these costs should be improved, 
whereby the algorithm always remembers the hitherto lowest weight path found to each 
node. Then, the start-node with the index zero is added to this queue ሼܵሽ. 

‐ The first node is selected from the queue. At the beginning, this can only be the starting 
node. Afterwards all neighbouring nodes of the removed node are considered with the 
respective edges. Then the algorithm checked whether this node is in the queue and the 
cost over the new edge are less than the previous cost. 
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‐ If this is the case, the cost of this node is reduced to the new value. Otherwise, it is checked 
for another condition if the nodes are not yet been visited. If so, it will be added to the 
queue, so that edges that go away from this node can be later considered. In addition, this 
node has the cost resulting from the sum of the costs to its predecessor node and the cost 
of the newly discovered edge to itself. 

‐ Nodes are selected from this queue until there are no more nodes in the queue. Then, the 
algorithm is finished and has found already from the start-node to all other nodes the lowest 
weight path [66].  
 

Here is an example of a Dijkstra’s algorithm for a graph with five nodes [67]: 
 

 

Figure 13: A graph example for Dijkstra’s algorithm 

 

Initially: 
S = {1}, D[2] = 10, D[3] = ∞, D[4] = 30,  D[5] = 100 
 
Iteration 1: 
Select w = 2, so that S = {1, 2} 
D[3] = min(∞, D[2] + C[2, 3]) = 60 
D[4] = min(30, D[2] + C[2, 4]) = 30 
D[5] = min(100, D[2] + C[2, 5]) = 100 
   
Iteration 2: 
Select w = 4, so that S = {1, 2, 4} 
D[3] = min(60, D[4] + C[4, 3]) = 50 
D[5] = min(100, D[4] + C[4, 5]) = 90   
 
Iteration 3: 
Select w = 3, so that S = {1, 2, 4, 3} 
D[5] = min(90, D[3] + C[3, 5]) = 60   
 
Iteration 4: 
Select w = 5, so that S = {1, 2, 4, 3, 5} 
D[2] = 10 
D[3] = 50 
D[4] = 30 
D[5] = 60 
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This algorithm is a relatively greedy method with a relatively high time requirement. In this 
project, since the number of image pixels (graph nodes) is high, the time needed to find each 
path will inevitably be too long. However, since the direction of the path is usually from the left 
of the image to the right (depending on the starting point and the end point), we can prevent 
movements in the wrong direction, which leads to an increase in the speed of the algorithm. 
Also, to reduce the processing time, since our path is largely uncomplicated and has a less 
curve, we can examine only n (about 1000) of newly added nodes to the queue and the last 
weight and the next path to one of these n nodes is selected. This also increases the speed. 
An example of Input-Image is shown in Figure 14. All the steps of these algorithms, which are 
shown in this thesis as figures, are processes on this Input-image. 

 

 

Figure 14: Input Image 

 

4.4.1.2 Implementation and details of the algorithm 

The details for implementing the algorithm are as follows: 

 

INPUT: OCT B-Scan Image flattening Weight Calculation Find Choroid Boundary Find NFL and IS-OS

Find RPE Boundray Find ONL-IS Boundray Find OPL Baoundray
Find GCL and INL 

Boundray
Results: OUTPUT Image

 

Flowchart 5: Detailed segmentation algorithm 

 

Pre-Processing/ Smoothing the boundaries of areas in the image 

In this thesis, it is assumed that the RPE region has the highest brightness in each column of 
the image. Therefore, we can find the location of each pixel with the highest brightness, and 
assign it to the RPE as shown in Figure 15, witch smoothed with a Gaussian filter. The kernel 
size that we are using here is a 3x3 kernel.  



30 
 

 
     

 

Figure 15: RPE Boundary 

 
Then the deviated data is removed from the points and a second-degree curve  
is fitted to the rest of the data. In the next step, it is assumed that the node is a constant and 
the remaining points in each column are shifted downward as far as its height difference with 
the parabolic space. In this way, each column will have different motions. 

Graph weight calculation 

At this point, two graphs having the number of nodes equal to the number of pixels in the 
original image, plus the number of two pixels added to the sides of the image, are generated. 
For this purpose, the image is smoothed with a median filter. Then gradients are determined 
in the y-direction and the values obtained are normalized with thresholds to {1, 1}. The numbers 
in interval {1, 0} are used to construct the dark-to-light graph to find the boundaries of areas 
that change from darkness to the brightness, and numbers in the range {0, 1} to get the light-
to-dark graph and to find the boundaries of the areas that change from brightness to darkness 
(such as the boundary between the RPE and the choroid).  

It has to be considered that each node has eight edges equal to 	
௔௕ݓ ൌ 2 െ	ሺ݃௔ ൅	݃௕ሻ ൅  and ݃௕ are the gradients of the two nodes ܽ, ܾ. The	and ݃௔ , ݊݅݉_ݓ
starting point is always the top left of the image and the end point is the bottom right of the 
image. So, in the first and last two columns, only vertical movement is allowed, and other 
movements will surely dissipate the Dijkstra’s algorithm. Therefore, the weight at the edges for 
the nodes in the first and second columns, is set so that only vertical movement (i.e. downward) 
is allowed. 

4.5 Layer detection 
Finding the boundary of Choroid and IS_OS, NFL 

As already mentioned, regions with a clear border can easily be distinguished. So, we start by 
finding these borders. First, the boundary between the choroid and RPE is found by using the 
light-to-dark graph and the Dijkstra’s algorithm, and with it, the approximate location of the 
RPE. Because the approximate height of the RPE is known, the starting point in the first column 
can be adjusted to ensure that the movement in the first and last nodes goes vertically and 
straight down. The resulting path can only be the boundary between the RPE and the choroid. 
The resulting choroid is indicated in the Figure 16 (obtained border is recognized as choroid). 

RPE Choroid 
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Then the boundary between the ONL-IS and the OS (called the ‘ONL-IS boundary’) is located 
and the boundary between NFL and the vitreous (called the ‘NFL’) is located by using the light-
to-dark graph. 

Since the choroid border has already been calculated, the search can be restricted, because 
it is already known that there is no range below the choroid border. First, the NFL border is 
determined. To ensure that the boundary is the NFL, the weight of the graph edges in nodes 
that are lower than the (choroid border minus 30) pixels is maximized. It is known that the ONL-
IS margin is less than 30 pixels (based on the basic data and the size of the images) from the 
Choroid boundary, it is determined that the path being extracted is the NFL boundary (this is 
the limit of the strongest gradient in the image, in the transition from darkness to brightness). 
After finding the NFL, the search range for the ONL-IS boundary can also be reduced (for 
example, to the range between the choroid edge and 50 pixels above the choroid). This limit 
is also obtained by using the dark-to-light graph and the Dijkstra’s algorithm, as shown in 
Figure 16.  

 

 

Figure 16: NFL boundaries 

 

Finding the boundary of OS and RPE 

To find the boundary between the RPE and OS (known as RPE), the dark-to-light diagram is 
used. Finding this limit is restricted to the choroid and ONL-IS boundaries, which have less 
range and are easily accessible. To limit the search location, as already mentioned, the graph 
weights outside of range are set to the maximum. 

 

NFL 
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Figure 17: RPE OS boundaries 

 

Finding other boundaries 

In this paper, to find the location of the remaining areas, one attempt to find the approximate 
location of each region, and then, by limiting the search areas, identify them exactly by 
starting at the borders of the previously calculated graphs and using the Dijkstra’s algorithm. 
To do this, the image is first smoothed in the x-direction with a Median filter with 5 x 5 kernel 
size and the pixels that are less bright than the median is set to zero in each column. From 
the image obtained, the second derivative is taken in each column [68]. Then, a pilot binary 
mask is generated by thresholding the edge-enhanced image at zero. All non-null clusters 
that are less than 5 pixels tall will be set to zero and join the remaining clusters that are 
closer than 3 pixels from each other to remove the outliers in each column. Then, from that 
obtained image, parts with less than 500 pixels are removed, thereby giving a binary image 
with nearly separate boundaries for each region. Then, in each column from top to bottom, a 
number and colour is given for each part. Each colour gives the approximate location of an 
area. 

After finding the approximately location of layers, extraction of the exact location of the other 
boundaries can begin. But the output image is not always in the same form and there are areas 
where there is a lot of curves or discontinuity. In this paper, in which an algorithm was used to 
segment the regions, a set of morphological operations were used to overcome and greatly 
reduce this problem. But in practice, these morphological operations (e.g. erode, dilate, 
opening, closing process) are not the same for each image, and different operations are 
required for different images. These steps were performed on our data, and it was observed 
that this part of the process poses many problems with different images. 

To solve this problem, because the boundary between NFL and IS_OS has already been 
found, a derivation from the original image within the remaining regions and normalization is 
performed again. Since the remaining regions do not have a clear boundary, the normalization 
of the gradient has to be more precise (with a lower threshold), so that these boundaries are 
also observed somewhere in the gradient image. So, in these areas, the weight of the graphs 
is recalculated and the graph weight is maximized for areas outside the range.  

Beyond the IS_OS border is the ONL-IS, which is almost the darkest area of all. Thus, the 
boundary between ONL-IS and OPL (the boundary named ONL-IS) can be found by using the 
light-to-dark graph. To ensure that the boundary is the same as the ONL-IS, the gradient image 

RPE-OS 
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in the pixels closest to IS_OS, which themselves have a certain gradient, is increased again 
(e.g., twice).  Then Dijkstra’s algorithm is applied to the newly calculated graph for this range 
and the resulting output path is the same as the ONL-IS limit. See the Figure 18 below. 

 

 

Figure 18: ONL-IS boundary 

 

To find the boundary of the OPL (the boundary between the INL and OPL lines), the range is 
again limited to the NFL and the ONL-IS limit. 

The search for this border begins with the help of the dark-to-light graph, which is recalculated 
for this area. This border is the only border between the remaining areas where there is a 
change from dark to light and it is one of the hardest boundaries to find because the boundaries 
are usually not quite clear, especially in our database and therefore the border found for this 
area is less accurate. 

Now there are only two remaining boundaries and the search range is more limited. These two 
borders are INL (the boundary between INL and GCL) and GCL (the boundary between the 
GCL and NFL regions) and they are located by using the light-to-dark graph. 

First, the GCL boundary is found. This limit is close to the NFL border and the brightness of 
the NFL area is always greater than the brightness of the other areas. By using these two 
properties, the approximate location of the GCL boundary is identified. Then, the gradient of 
the image at this boundary is increased, to ensure that the output of the Dijkstra’s algorithm is 
that boundary. After finding the GCL, it will be easy to find the INL because the search area is 
very limited and there is only one more boundary with a strong gradient.  

Finally, the two-dimensional image with the five founded layers, as shown in Figure 19. 

 

ONL-IS 
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Figure 19: Segmented image 

 

Note that the overall accuracy of the algorithm is dependent on the image itself (the contrast 
between the regions) as well as the values of the threshold levels for normalizing the gradient 
image.  

The results show that this algorithm works. The processing time is high, but this can be reduced 
by GPU acceleration.  

Indeed, this segmentation algorithm can identify layers of interest. These found layers are then 
applied to the OCTA movement contrast volumes to extract the vascular beds. 

OCTA calculates maximum intensity projections to produce OCTA-En-face images. These en-
face images often suffer from noise mainly due to motion artifacts, as well as slight 
synchronization errors of scanner driving with the detection system. Those artefacts appear 
typically as lines [4].  

In the following section, an algorithm is developed to reduce the noise in OCTA images to get 
better image quality for the segmentation, which could make the layers better and easier to 
extract, therefore, solving the problem by reducing the FPN noise was attempted. 

4.6 OCTA en-face Image De-noising 
First, we will briefly explain about noise in imaging systems and afterwards we will consider 
different solutions for noise-reduction to find best technique. 

Noise:  

An unwanted factor with a low amplitude, high frequency (it repeats over a given time 
period), and which, when measured (e.g., in imaging), enters the system. The noise types 
can be distinguished into general noise due to the sensor electronics and noise specific for 
the image processing. 

‐ Noise from optics 
‐ Noise from the detector 
‐ Noise during imaging due to external sources 
‐ Noise from electricity spikes 
‐ Noise due to unwanted patient bulk motion for motion contrasting 
‐ Noise due to trigger synchronization errors for motion contrasting 

ONL-IS INL-GCL NFL RPE-OS RPE
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The main source of noise in OCTA images is from unwanted patient motion and trigger 
synchronization. In this research, we attempt using one of the best methods or filters. The 
artefacts appear in the en-face OCTA images as stripes distributed along the slow scanning 
direction. Hence, this noise can be described as fixed pattern noise. First, a brief explanation 
is given about fixed pattern noise and the different filters, which we used to eliminate the noise, 
then the frequency filter will be considered, and finally we will explain the proposed method, 
which is the Fast Fourier Transformation filter. 

4.6.1 Fixed pattern noise 
Fixed pattern noise appears in image sensors such as CCD cameras or CMOS cameras. The 
response of different pixels in a detector is not always the same for the same radiation. This is 
due to different noise sources in the detector. For example, the radiation ܫ on the pixel ݉ will 
lead to output ܱ௠ and the same radiation on the pixel ݊ to output ௡ܱ. The difference in the 
response of different pixels leads to the generation of a fixed pattern, in the form of noise in 
the image [69]. This problem, especially in medical images, could lead to incorrect diagnosis 
and it can even change the form of complications. The fixed pattern noise in CMOS and CCD 
sensors is shown in Figure 20.  

 

 
Figure 20: Effect of fixed pattern noise in the CCD (left), and in the CMOS (right) [69] 

 

The fixed pattern noise is defined by considering the linear model for the sensor in the form of 
a relation (5). In this definition, the intensity of the output pixel is give by the value ݕ and the 
function of the received light is ݏ. 

 

ݕ (2) ൌ ݏܩ ൅    ௢௙௙௦௘௧ݕ

 

In the above operation, the parameters ܩ and ݕ௢௙௙௦௘௧ are respectively, the gain and the 
intensity offsets per pixel. Ideally, these values are equal to 1 and zero. If we want to express 
the above equation for every pixel of an array ܯ ∗ ܰ , then we have:  

 

,ሺ݉ݕ (3) ݊ሻ ൌ ,ሺ݉ܩ ݊ሻݏሺ݉, ݊ሻ ൅ ,௢௙௙௦௘௧ሺ݉ݕ ݊ሻ 
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4.6.2 Image pre-processing 
An important part of an image processing system or a system that processes activities based 
on visual information, is the pre-processing before the proposed method is performed. Image 
pre-processing is strongly dependent on the problem location and the image data to be 
analysed. For example, special pre-processing objectives can include reducing the influence 
of noise, elimination of artefacts and interferences, improving the image contrast, scaling the 
grey scale range, or normalizing the image size.  

It is necessary to carry out these processes on the images before the implementation of the 
original or proposed method in order to achieve the best results in relation to the aims of the 
research or the project, as well as the definition of the problem. With image pre-processing 
methods, the quality of the medical image and its information content, can be substantially 
increased with regard to subsequent processing processes and the representation of specific 
image structures. [[Heinz Handels, Medizinische Bildverarbeitung].] 

Digital data can be processed and analysed with the computer. This process is implemented 
to enhance and improve the quality of the data and the visual interpretations. Special themes 
or information can also be retrieved from the image. The computer performs all these 
processes automatically.  

Each image consists of many small squares (pixels). Every pixel has a digital number that 
indicates the brightness of that pixel. These pictures are the so-called digital images. Digital 
images have rows and columns [70]. 

 

 

Figure 21: Pixel representation  

 

Image precision: 

The image precision depends on the number of pixels. In the following Figure 22. Figure 22: 
Difference of precision (Left 4Bit, Right 16Bit) 
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Figure 22: Difference of precision (Left 4Bit, Right 16Bit) 

 

An image can be represented by a two-dimensional function: f(x,y). Where X and Y are spatial 
coordinates and the value of f at each point is the intensity of the image at that point. The term 
grayscale is also referred to as a monochrome image. Colour images consist of many two-
dimensional images. When the X and Y values and a value of f (x, y) are discrete and limited 
expressions, the image will be called a digital image. The digitization of the values of X and Y 
is called sampling and digitizing the value of f (x, y) is quantization. 

Application methods for pre-processing: 

‐ Image sharpening 
‐ Histogram adjustment 

The general algorithm in the flowchart (6) shown below, represents the entire process of pre-
processing on the image.  

 

Image sharpening 
(Median filter)

OCT-A Input Histogram adjustment 
Image 
Output

 

Flowchart 6: Pre-processing steps 

 

4.6.3 Image de-noising with median filter 
A median filter is a non-linear filter mainly used to remove impulsive noise from images [71]. 

The images we have for the processing process are often accompanied by unwanted signals 
that are called noise, and which destroy the image information. Although the undesired signals 
do not greatly affect the image, the removal of these interfering signals is essential and 
necessary. Interfering signals in images cause problems in pictures such as medical images, 
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aerial images and satellite-transmitted images. There are different types of noise, the most 
important are:  

‐ Salient noise  
‐ White line dropout noise 
‐ Shadowing noise 
‐ Salt & pepper noise 

Some of these noises can greatly affect the process of the image processing, especially in 
edge detection, segmentation, data compression and object detection [72]. However, the 
median filter which uses masking, begins to scroll through all the pixels. This 3x3 filter works 
based on scrolling and uses the adjacent pixels. A schematic of this filter is shown in Figure 
23 [73].   

 

 

Figure 23: 3x3 spatial filtering 

 

The low-pass filter uses the median of a neighbour ሺ݉ ∗ ݊ሻ. Their method is to arrange all 
neighbour’s pixels in ascending order to select the middle element of the ordered numbers, 
and replace the value of central pixel with this value. The reason for using the low-pass filter 
is that in the process of imaging from the moment of imaging to the moment of displaying the 
final image, the electrical and environmental factors will occur difference noise frequencies 
depending on the nature of the noise. Thus, the noise and the disturbance factor are not 
reflected at low frequencies, but at high frequencies on the image. 

It should be noted that the low-pass filter can be more useful for the removal of salt and pepper 
noise. An example of how this filter works is shown in Figure 24.  

 

 

Figure 24: An example of Median-filter [74] 

 
Value of brightness 

in the 
neighbourhood: 

115, 119, 120, 123, 
124, 125, 126, 127, 

150 
Median value: 

124 
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However, when beginning to process edge pixels, since some of the pixels of the mask 
correspond to the image to the outside, we will encounter a black border after masking. To 
stop this happening, it is possible to copy the border of the original image, place it next to the 
previous frame, and then start to scroll or set the edge values to zero, and then begin 
processing. In the image shown in Figure 26 is a noisy image, a filter programmed with Matlab 
will be applied to this image. Figure 25 shows the image after noise reduction with Median 
filter. 

 

                                                                                                                                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6.4 Histogram equalization  
Changing the histogram is one of the simplest and most useful techniques in image processing. 
In fact, this technique is commonly used to improve the contrast quality of an image. It can be 
predicated that it is a general way to increase the contrast of an image [75].The histogram is 
a graph, which shows the frequencies of the grey values of an image, ordered by brightness. 
Assuming that the input image is a grey scale image with 256 brightness levels, then each 
image pixel can have a value in the interval of [255...0]. To obtain a histogram of an image, it 
will be sufficient to scroll all the image pixels to calculate the number of pixels for each 
brightness level 

The histogram of the image after noise reduction with Median filter is displayed in Figure 27. 

 

Figure 26: Image with salt & 
peppr noise by 0.006 noise 

density 

Figure 25: Image denoised by 
Median filter 
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Figure 27: Histogram of image after de-noising 

 

The normal histogram is also calculated by dividing the histogram values into the total number 
of image pixels. The histogram normalization causes the histogram values to be in the range 
[0.1]. But adjusting the histogram has the effect of increasing the contrast of those pixels of the 
image which have a lower contrast value. If an image has a low contrast, this means that the 
difference between the smallest and the brightest pixels of the image is small. Through 
adjusting the histogram, the contrast of the input image will be increased as much as possible. 
The following algorithm shows the method of adjusting a histogram. The program for the 
histogram calculation and its adjustment is achieved by programming in Matlab.  

In fact, for the image X, if the grayscale is in the range ሾܺ଴, ܺ௅ିଵሿ ,the probability density function 
in equation (1) is equal to: 

 

ሺܺ௞ሻ݌ (4) ൌ 	
௡ೖ
௡

 

 

In this equation, ݊௞ is the frequency of the repetition of the brightness level ܺ௞, and the ܺ௞ is 
the value for the light intensity ݇. We also know that ݇ belongs to the interval ݇ ൌ 0,1, … , ܮ െ 1., 
the cumulative distribution function (CDF) is defined in the form of equation (2): 

 

(5) ܿሺݔሻ ൌ ∑ ሺ݌ ௜ܺሻ
௞
௝ୀ଴  

 

Here for ܿሺܺ௅ିଵሻ ൌ 1 and the function ݂ሺݔሻ the cumulative distribution function (CDF) is 
shown in equation (3): 

 

(6) ݂ሺݔሻ ൌ ܺ଴ ൅ ሺܺ௅ିଵ െ ܺ଴ሻ ∗ ܿሺݔሻ 
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The output image is called after the adjustment of the histogram	ܻ, in which it is defined: ܻ ൌ
ሼ ௞ܻሽ and also ܻ ൌ ݂ሺܺሻ. Thus, in equation (4), ܻ is equal to: 

 

(7) ሼ݂ሺܺ௞ሻ, ∀ܺ௞ ∈ ܺሽ 

 

The main idea is to extend the mapping of grayscale based on the probability distribution of 
the grey input levels [75]. Note that information about the edges of the image must be retained 
during the histogram equalization. In Figure 28, the adjustment of the histogram has been 
performed after the noise reduction. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: OCTA en-face Image and after Histogram equalization 

 

4.6.5 Review of used noise removal techniques 
Before designing a new algorithm to eliminate fixed pattern noise, we first examined the filters 
and algorithms that have been introduced to improve images and remove noise so far, and 
applied them to images of stars.  

The general steps for finding the best method to reduce the noises are as follows: 
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Image denoising 
(Wiener filter)

OCT-A Input
Image denoising 

(Median filter)

Image denoising 
(Average filter)

OCT-A 
Output

OCT-A 
Output

OCT-A 
Output

 

Flowchart 7: Steps to find the best method for De-noising 

 

The first method was to use a Wiener filter, which is an adaptive filter commonly used to 
improve images, especially spatial images. We then examined the performance of middle and 
median filters, which are commonly used in image processing to remove extreme changes 
from pixels. In this section, we first give a brief description of the mechanism of the described 
filters, and then describe an algorithm for removing fixed pattern noise from images. Finally, 
after comparing the methods using MATLAB software, we choose the algorithm with the 
highest reduction of variance in the average response of the pixels in the adjacent rows. All 
the algorithms are first applied to the Figure 32, and after selecting the appropriate algorithm, 
we applied the selected method to a series of images taken by the SS-OCT. It is worth 
mentioning, that in all steps, for the sake of clarity, we define the result of the algorithm in the 
form of the difference between the original image and the modified image.  

4.6.5.1 Wiener filter 

The Wiener filter is a low-pass filter, which calculates the output pixel value in a comparative 
method based on the statistical properties of the neighbouring pixels, such as mean and 
standard deviation.  

ߤ (8) ൌ
ଵ

ேெ
∑ ,ሺ݊ଵߙ ݊ଶሻ௡భ,௡మ∈ఎ   

 
ଶߪ (9) ൌ

ଵ

ேெ
∑ ,ଶሺ݊ଵߙ ݊ଶሻ െ ଶ௡భ,௡మ∈ఎߤ    

 
 

In the above relations, η is a neighbourhood of N × M around each pixel. In this case, the pixel 
value is changed as follows.  

 

(10) ܾሺ݊ଵ, ݊ଶሻ ൌ ߤ ൅
ఙమିఔమ

ఙమ
ሺߙሺ݊ଵ, ݊ଶሻ െ 		ሻߤ

	

In (9), the ߥଶ is the variance of the noise in the image. If ߥଶ is unknown, the mean of estimated 
local deviations is used. We can show the Wiener filter function by assuming a 5 × 5 
neighbourhood on the Figure 29 as shown below. 
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Figure 29: Original image (left), image de-noised by Wiener filter (right) 

 

As has been previously said, the difference between the original and the corrected image is 
equal to the noise in the image, and should be the same as the lines appearing in Figure 32, 
depending on the fixed pattern noise. However, as shown in Figure 29, Wiener's filter failed to 
eliminate these lines perfectly.  

4.6.5.2 Average and Median filter 

As well as other filters used to process images, the average and median filters are used to 
reduce the difference between adjacent pixel values. In both filters, the average and median 
of a window are embedded in the centre of each pixel. (Usually a 3 by 3 window), i.e. for each 
pixel there are eight neighbours. The window is intended to be navigated to all areas of the 
image matrix. In fact, each pixel should be placed once in the centre of the window and the 
corrected value of that area decided based on the values of its neighbouring pixels. In the 
median filter, the average value of the neighbouring pixels of each pixel is considered as the 
new pixel value. In Figure 30, you see the result of applying the median filter. 
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Figure 30: Original image (left), image de-noised by median filter (right) 

 

As can be seen from the above result, the median filter failed to eliminate the fixed pattern 
noise and the result is far worse than that of the Wiener filter. In the average filter, the average 
pixel values of each pixel are averaged and the result is considered as the new pixel value. 
Figure 31 shows the result of applying the average filter on Figure 32. As you can see in Figure 
31, this filter could not eliminate the static pattern noise, and in addition to the undesirable 
noise removal result, the processing time is longer than that of the previous two filters. 

 

 

Figure 31: Original image (left), image de-noised by average filter (right) 

 

In fact, the effect of using these three types of Wiener, median and average filter is to somehow 
normalize the image due to the staining of the original, fixed pattern noise. These three types 
of filters are in fact somehow normalizing the noise in the image if the original image before 
using the three types of filters, is as in Figure 32. 
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Figure 32: Original OCTA en-face image 

 

In this case, if we subtract the original image and noisy image and multiply it 50 times, the 
noise level in the image will be well defined, which is clearly shown in the Figure 33 below. Of 
course, the magnification of this noise is needed to better detect this noise, or if the noise level 
is much smaller than that specified in the image. 

 

 

Figure 33: 50 times noise 

 

In the following section, we will examine the proposed method for eliminating the stripe 
artefacts in OCT-A images due to motion artefacts. As mentioned before, they can be treated 
as fixed pattern noise (FPN) in the image. 
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OCT-A Input
Image 
Output

Denoising FPN
(FFT)

 

Flowchart 8: Steps to reduce the FPN 

 

4.6.5.3 Fast Fourier Transform 

Fast Fourier Transform (FFT) is the name of the algorithm for the fast and efficient execution 
of direct and inverse Fourier transforms. There are many fast differential Fourier transform 
algorithms which cover a huge range of mathematics: from simple calculations of complex 
numbers to number theory. A fast Fourier transform decomposes a string of values into 
components with different frequencies. The calculation of a discrete Fourier transform for n 
points, requires the use of the definition ܱሺ݊ଶሻ of math operations, while the fast Fourier 
transform can calculate the same results in ܱሺ݈݊݃݋௡ሻ operations. This difference in speed can 
be very impressive, especially for a large data set. When ݊ may be thousands or millions of 
operations, the calculation time in some cases can be reduced by several times, and its 
improvement is approximately ܰ/݈݃݋ଶ

௡ [76]. 

 

 
Figure 34: DFT vs. FFT 

 

The Fourier transform is a fundamental method in signal processing. By this method, signals 
from the representation {time, sample value} can be converted into the representation 
{frequency fraction, amplitude, phase}. Many operations, e.g. filters, can be implemented more 
easily in the frequency range. The signal is then transformed back again with the inverse 
Fourier transform. 

 

ሻݑሺܨ ൌ
1
ܯ
෍ ݂ሺݔሻ

ெିଵ

௫ୀ଴

݁ି
௝ଶగ௨௫
ெ 	, ݑ ൌ 0,1,2, ܯ… െ 1 
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To apply a Fourier filter to the image for stripe noise elimination, we used the fast Fourier 
transform filter. For this, see the original image, Figure 35. This image is full of stripe noises. 
The noise in these OCTA images is a fixed pattern noise that is represented in the images as 
horizontal lines, which means that these lines or noise are still present in the image after 
applying the Wiener, median and average filters. The image is only equalized. 

 

 

Figure 35: Original OCTA en-face image with noise 

 

The result after applying a fast discrete Fourier transform (DFT) is shown in Figure 36, above. 

 

 

Figure 36: OCTA en-face after De-noising with FFT 
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To better illustrate the effect of this filter, we used Figure 37, in this figure it is clear that the 
noise has been removed well. 

  

 

Figure 37: Original OCTA en-face image with noise (left), image after De-noising with FFT 

 

The behaviour of this filter was examined several times in a frequency range between 55 and 
65 Hz. Through trial and error method, the answers were examined in this area. This method 
has been shown that the results of used frequencies above or below 62Hz were certainly not 
satisfactory. The filter implemented for this image has a cut-off spatial frequency of 	݂ܿ ൌ
 .that is determined by trial and error, as shown in Figure 38 ݖܪ	62

 

 

Figure 38: A demonstration of low frequency pass filter response to de-noising  
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5 Results and Conclusions 
The goal, which was achieved, was to implement a method that automatically extracts various 
layers of the retina in OCT-tomography images by using graph based medical image 
processing methods. In the chapter on image processing, important information has been 
provided for understanding the image processing techniques that are used to segment the 
images, which are introduced later. In this chapter, a general definition of the image was given. 
The chapter also deals with the pre-processing of OCT tomography images. For this work, an 
in-depth knowledge of OCT images and their digital image processing was required. The 
techniques used for the segmentation and detection of layers in the OCT tomogram images 
were also explained in this chapter, because they allow different layers of the retina to be 
extracted in an automated manner. A definition of noise, particularly about the FPN in OCT 
angiography images, has been provided, and the various methods for removing this noise have 
been explained. The de-noising later turned out to be a very important part of this work. 
Therefore, it was necessary to mention the procedures that can be used for de-noising. 

It was found that the proposed method [65], which was implemented for segmentation and 
tested on a series of OCT B-scan images, is computationally time consuming. Dijkstra's 
algorithm is used in this method to discover the shortest paths in the graphs. Based on the 
dataset which we had and have tested, and the CPU used, the run-time of segmentation-
algorithm of individual images is different. We expect that this could be accelerated by 
employing GPU programming. 

We then tried to eliminate the noise in OCT angiography images. After several attempts, it was 
found that stripe artifacts, which are visible in OCTA images, can be treated as fixed pattern 
noise, which makes the extraction of angiographic features difficult. To reduce this noise and 
eliminate it, we used FFT filtering. The noise is successfully reduced. But, the problem with 
this method was that some very fine details in images along the direction of the stripe artefacts 
e.g. very thin vessels, also became less visible and recognizable. 

In the process of this work, it became clear that the quality of the image processing results 
depended on the medical image processing method, but also on the imaging system, 
techniques and the stability of the target objects. It was also found that the methods and 
algorithms can have different effects on different data.  

The developed tools will nevertheless be important for precise evaluation of distinct vascular 
beds within the retina, which in the future should allow for a better and early diagnosis of retinal 
diseases. 
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 Acronyms 

‐ ADC: Analog Digital Converter 

‐ AMD: Age Dependent Macular Degeneration 

‐ CCD: Charge Coupled Device 

‐ CDF: Cumulative Distribution Function 

‐ CMOS: Complementary Metal Oxide Semiconductor 

‐ CNV: Choroidal Neovascularization 

‐ CPU: Central Processing Unit 

‐ DFT: Discrete Fourier Transform 

‐ EDI-OCT: Enhanced Depth Imaging-OCT 

‐ FD-OCT: Frequency Domain OCT 

‐ FFT: Fast Fourier Transform 

‐ FOV: Field Of View 

‐ FPN: Fixed-Pattern Noise 

‐ FT: Fourier Transform 

‐ GCL: Ganglion Cell Layer 

‐ GMM: Gaussian Mixed Model 

‐ GPU: Graphics Processing Unit 

‐ ILM: Inner Limiting Membrane  

‐ INL: Inner Nuclear Layer 

‐ IPL: Inner Plexiform Layer 

‐ IS: Inner Segment 

‐ MRI: Magnetic Resonance Imaging 

‐ MS: Multiple Sclerosis 

‐ NFL: Nerve Fiber Layer 

‐ OCT: Optical Coherence Tomography 

‐ OCTA: Optical Coherence Tomography Angiography 

‐ OLM: Outer Limiting Membrane 

‐ ONL: Outer Nuclear Layer 
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‐ OPL: Outer Plexiform Layer 

‐ OS: Outer Segment 

‐ RGC: Retinal Ganglion Cells 

‐ RPE: Retinal Pigment Epithelium 

‐ SD-OCT: Spectral Domain-OCT 

‐ SS-OCT: Swept-Source-OCT 

‐ TD-OCT: Time Domain OCT 
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