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Abstract

Automation of buildings in the commercial but also the residential sector is on the rise, not
least because of advanced opportunities developing from the integration of a multitude of de-
vices into a single control system. While home automation thereby promises improved personal
comfort and the optimized operation of the so-called smart home, these goals are currently only
partly reached with regard to energy consumption. Mostly, configuration and monitoring of the
building are in the responsibility of the home owners often leaving them overwhelmed with the
amount and variety of influencing parameters and control options.
One solution is to hand over control of a residential building to an autonomous system. For
such a system, an unambiguous view of the environment is indispensable. In this regard, one
major challenge is to address yet unconsidered factors that can be taken into account for the opti-
mized control of a dwelling. The integration of these additional parameters into building control
strategies allows the realization of advanced use cases such as proactive control that consider the
current and future state of the building. In this context, highly heterogeneous domains need to
be combined to reach an accurate representation of the building and its surroundings which is
mandatory when an intelligent and optimized operation is desired.
This dissertation presents an ontology that comprehensively models the smart home environment
in order to provide the foundation for autonomous control of user comfort and energy efficiency.
Using the Web Ontology Language (OWL) as knowledge representation formalism thereby fa-
cilitates the semantic description of terms and their interconnections. In this respect, one of the
main problems addressed in this work is the abstraction from reality while still providing all
major influencing factors to a building control system. It is shown how capabilities of OWL like
subtle reasoning can be optimally utilized when creating a knowledge base for a smart home.
The designed model is furthermore evaluated against competency questions retrieved from a set
of advanced smart home use cases to demonstrate its suitability for this domain. One of the
major benefits of the resulting ontology is the formal description of a large variety of parameters
which is accessible through a well-defined interface yet at the same time independent from the
actual implementation of the control mechanism. Although the focus is the residential sector,
the created conceptualization is to a great extent also useful for commercial buildings. While the
application of the ontology is demonstrated for an individual building, as a shared vocabulary it
may also be the basis for the integration of multiple building control systems in the context of a
smart city by providing a unified view of the world.
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Kurzfassung

Gebäudeautomation im Zweck- sowie Wohnbau gewinnt zunehmend an Popularität, nicht zu-
letzt aufgrund einer Vielzahl von Möglichkeiten, die sich durch die Integration unterschiedlichs-
ter Komponenten ergeben. Heimautomation stellt in diesem Zusammenhang mit dem Schlag-
wort “Smart Home” generell einen höheren persönlichen Komfort bei gleichzeitiger Optimie-
rung des Energiebedarfs in Aussicht. Meist bleibt jedoch trotz einer hoch technologisierten Um-
gebung, die Verantwortlichkeit für Konfiguration, Überwachung und optimierten Betrieb des
Gebäudes beim Bewohner. Eine mögliche Lösung dieser Problematik ist, die Kontrolle des
Wohngebäudes (teilweise) an ein autonomes System abzugeben, das Routineaufgaben im Auf-
trag des Benutzers durchführt. Eine Herausforderung hierbei ist unter Anderem die Berücksich-
tigung neuer, bisher außer Acht gelassener Einflussfaktoren. Eine Integration dieser zusätzlichen
Parameter in Kontrollstrategien eines intelligenten Gebäudesystems ermöglicht die Umsetzung
von zukunftsorientierten Anwendungsfällen, wie beispielsweise proaktiver Kontrolle. Um eine
möglichst akkurate Abbildung des Gebäudes zu erreichen, müssen höchst unterschiedliche Be-
reiche berücksichtigt und entsprechend in einem grundlegenden Modell verknüpft werden. In
diesem Zusammenhang wird im Rahmen dieser Arbeit ein umfassendes Wissensmodell präsen-
tiert, welches die Umgebung eines Smart Homes möglichst vollständig abbildet, um eine we-
sentliche Grundlage für die autonome Schaffung von Benutzerkomfort sowie optimierter Ener-
gieeffizienz zu liefern. Als Formalismus der Wissensrepräsentation wurde die Web Ontology
Language (OWL) gewählt, die eine semantische Beschreibung von Begriffen ermöglicht. Eines
der Hauptprobleme in diesem Zusammenhang ist die Abstraktion von der Wirklichkeit, um ei-
ne effiziente Steuerung des Gebäudes zu gewährleisten, ohne dabei wichtige Einflussfaktoren
zu verlieren. Zur Demonstration der Eignung des erstellten Modells für die genannte Domä-
ne werden aus einer Reihe von Anwendungsfällen Kompetenzfragen generiert, die notwendige
Eigenschaften einer derartigen Wissensbasis widerspiegeln und zur Evaluierung herangezogen
werden. Die Ontologie stellt eine formale Beschreibung einer großen Anzahl unterschiedlicher
Parameter dar, die unabhängig von der Umsetzung des Kontrollmechanismus entwickelt wird.
Wenngleich die Wissensbasis im Zuge dieser Arbeit für ein Wohngebäude definiert wird, ist ein
Großteil der Konzepte auch für den Einsatz im Zweckbau geeignet. Die Ontologie wird anhand
eines einzelnen Gebäudes demonstriert, ist jedoch als verteiltes Vokabular insbesondere für die
Anwendung in mehreren intelligenten Gebäudesystemen im Rahmen einer Smart City sinnvoll.
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CHAPTER 1
Introduction

The deployment of automation technology in the home offers several attractive benefits, among
them most prominently increased energy (or even resource) efficiency, improved residential
comfort and peace of mind for the home owner. In the last decade, the term smart home has
emerged as the keyword for automated dwellings of any form. The vision of a smart home is a
house populated by a multitude of devices (actuators and sensors) that cooperate in an intelligent
way to process the main control tasks relevant in building automation such as lighting/shading
and heating/ventilation/air conditioning (HVAC). Recently, smart homes gather momentum as
more and more residential buildings are equipped with building networks and become capable
of offering advanced services to their users. From a high-level viewpoint, good performance of a
smart home can be abstracted to two main goals: on the one hand, with ever rising energy costs,
generally the energy efficiency of buildings should be improved. On the other hand, user com-
fort may be seen as one of the necessary objectives, as user satisfaction about a smart system’s
performance is a main acceptance factor for controlled buildings in general and especially those
that involve the private area such as residential homes.
With the residential sector forming the second largest part of energy consumption in the Euro-
pean Union [29], there naturally exists a lot of optimization potential, particularly when it comes
to energy-intensive building processes such as heating, cooling and ventilation as well as light-
ing. Efforts of the European Union in this respect involve the extensive deployment of smart
meters facilitating real-time monitoring of a building’s energy consumption through operators
and further giving feedback to the customers about their energy expenditure [119]. Apart from
measuring energy consumption and giving feedback to residents, a smart building further has to
be aware of the current situation and assess the interior and exterior environment as whole in
order to autonomously identify and exploit energy saving potentials. It is obvious that the more
services are available in a residential home, the more parameters need to be calibrated either by
experts or, more likely, by the inhabitants themselves. In the second case, residents often become
overwhelmed with the multitude of different settings and parameters that influence building con-
trol. This may lead to the situation that default parameters of a smart control system are kept
unchanged. However, each building as well as the behavior of people living in it are different,
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and as such, pre-defined parameter settings are hardly ever optimal for a particular building or
group of occupants. Therefore, what the residents and in this sense the users expect from a truly
“smart” home is more that the building learns from their behaviors and detects habits that may
subsequently be used to improve building performance.
Considering these challenges, it becomes clear that for a future smart home an intelligent soft-
ware framework has to be created which operates the environment according to its current and
near-future state and is capable of addressing the interrelations existing in the complexity of a
residential building. In addition to a concept capable of addressing these challenges, a sophisti-
cated representation of reality is vital due to the enormous amount of parameters from different
domains influencing building operation: in this respect, the parameter model may take away
some complexity from the intelligent smart home control system by explicitly and unambigu-
ously representing the real world and dependencies existing in the domain of interest, i.e., the
smart home, its surroundings and inhabitants. With regard to a real-world representation for a
smart home system, the central question that needs to be addressed can be phrased as follows:

“How can a comprehensive and sophisticated representation of environmental pa-
rameters support intelligent behavior in future smart home systems?”

This dissertation presents a parameter model for an autonomous smart home system and illus-
trates how to achieve a comprehensive view of the environment which is machine-interpretable
and facilitates logical reasoning. The thesis focuses on knowledge representation and demon-
strates how the inherent capabilities of the used representation language may be used to create a
knowledge base supporting the advanced operation of an automated residential building through
an autonomous control system.

1.1 State of the Art in Home and Building Automation

1.1.1 Building Automation

The automatic control, management and monitoring of various facilities to adjust indoor environ-
mental parameters is already widespread in large functional buildings [141]. Different domains
may be involved when considering building automation, with the field of heating, ventilation
and air conditioning being the most common field to be automated for the longest time. One of
the reasons for this traditional field of automation is that the tasks covered by this domain (i.e.,
heating, cooling, humidification) are among the main energy consuming tasks in the building
for which depending on the size of the building often a huge amount of facilities are necessary.
Building automation can in this case to a great extent support human operators to find optimiza-
tion potentials and possible problem areas in the building. Building automation systems however
often go much further than controlling HVAC and also integrate lighting and shading devices,
safety, security and automatic energy management to name but a few. This variety of domains
usually involves a highly heterogeneous device landscape often communicating through differ-
ent protocols. In the past, this lack of interoperability often led to the situation that a single
system operator had to cope with several systems each being responsible for a single task not ca-
pable of exchanging information between the systems and often remaining isolated. In the past
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few years, therefore, the focus lay on the integration of systems from different domains into one
single building automation system. This integration is mainly realized through a decentralized
architecture where control of the environment is accomplished through communication between
devices on different layers. Generally, three layers can be distinguished which are the field, the
automation and the management layer [141] (cf. Figure 1.1): the field level includes actuators
and sensors and the methods of how to access, alter or read their states. Devices at this level are
used to sense the actual state of the physical world or perform actions that may alter the state of
the environment. The automation level includes control tasks and is used to communicate with
devices on the field level as well as to other controllers at the automation level. These two types
of communication are used to on the one hand aggregrate information coming from the field level
for access through the management level (vertical) while on the other hand directly exchange
data of global interest between controllers (horizontal) [140]. The management level embraces
information from the whole building automation system and may visualize it to an operator via
a single interface or implement global tasks such as alarm collection or task scheduling. Also
the interfacing with other dedicated systems is realized at this level.
As there exist various of different technologies and standards for building automation systems
the comprehensive integration at the device level still remains a challenging task [141]. Different
building automation networking technologies like KNX [136], BACnet [134] or LonWorks [77]
traditionally use diverging field bus networks which mainly need to be integrated with each other
through an IP-based network often used as system backbone. In this case, the integration over
management-level gateways interfacing with all building automation subsystems becomes nec-
essary. This integration however firstly tends to be problematic because of the high overhead
of mapping multiple technologies to each other and further almost always results in the loss of
information specific to single technologies. An abstracted view on field-level devices and their
capabilities through a sophisticated model is therefore urgently needed to take away complexity
from this task.
Recently, especially with the increasing affordability of high processing power the introduced
hierarchy tends to flatten. Often the tasks of the automation level can to some parts be adopted
by powerful microprocessor-enhanced sensors and actuators. Further, devices traditionally po-
sitioned at the automation level can through more advanced networking capabilities often be
positioned at the management level. Also with respect to networks it is nowadays often only
distinguished between backbone networks and field-level networks. The backbone that arranges
the communication at the management level is mostly implemented through an IP network while
on the field level the different technologies communicate via their open or proprietary field bus
network. For communication between field bus networks and the backbone network special
devices that facilitate tunneling of data packets may be used [75]. In current building automa-
tion therefore often only the field level and the management level are distinguished, while the
automation level is split among these two layers.

1.1.2 Home Automation & Smart Homes

Building automation is currently becoming more attractive for the residential domain and the
home of the future is filled with devices helping the resident to control the environment accord-
ing to personal comfort and needs [206]. The interoperability of appliances in residential homes
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connected via some fieldbus network. While the first variant requires relative closeness of the devices and 
is very cheap, the latter approach allows for spatially distributed devices and provides more flexibility.

The data point values provided by the field level (sensor values, subsystem status information) are 
communicated to a server station (building controller) that also serves as a central point of integration. 
Process data from the (sub)system is collected as well as integrated with data from other traditionally 
stand-alone building systems such as safety alarm or access control systems. As a result all those data 
points are accessible in the building controller. This unified view allows a transparent access to all build-
ing operation data, which primarily functions as input for an integrated visualization as well as auto-
mation functions. Hence, integration across different application domains is possible and frequently 
implemented. Also, building automation functions often supervise electrical circuits and provide super-
visory control of central plants such as hot water production and air handling units. Especially the latter 
allows to influence the amount of energy consumed considerably, for example, automatically based on 
calendar data.

Furthermore, the building controller allows to automate sequences that involve multiple, heteroge-
neous systems, and also provides the interface to facility management systems. This building manage-
ment infrastructure is typically known as the building management system (BMS). The user interface is 
displayed on local workstations, which establish a connection to the server mostly via the office network 
infrastructure. Using technologies from the IT domain, remote access to the building controllers is 
provided.

Progress in computer engineering has led to new perspectives in building automation. Until recently, 
the model described just above had to be considered no more than a rough guide. However, with ever 
increasing processing power and available memory as well as the overall size and cost of end devices 
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Figure 1.1: Three classical layers of the building automation architecture [141]. For each level,
respective devices are shown.

that is recently discussed in numerous projects (e.g., [159, 33]) may in further consequence
lead to ample energy-saving possibilities that have so far just been thoroughly investigated for
commercial buildings. The inclusion of security and safety devices into the domotic system
guarantees peace of mind of the residents what in turn can be seen as greater comfort. While in
home automation the amount of appliances to be controlled as well as the size of the premises
is usually an order of magnitude smaller than in classical (functional) building automation, the
complexity of the domain remains high. This is not least due to the fact that a large amount
of heterogeneous devices from different domains need to be integrated in an automated home.
Further, some application domains which are prevalent in building automation do not take an
important role in home automation while others not considered in functional buildings emerge
in the residential sector due to the different field of application. Viewing the residential home as
comprehensive building automation system, the following areas for appliances to be integrated
can be identified [199] (cf. Figure 1.2): building automation (i.e., domotics) as first domain only
covers parts of the field. In this area, the classic services also relevant for functional building au-
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tomation like HVAC, lighting/shading as well as safety and security services are summarized. To
obtain a comprehensive system that supports the occupants in day-to-day household activities,
it is further necessary to integrate household appliances into the system. This domain comprises
facilities commonly known as white goods like dishwasher, washing machine and refrigerator
and allows the user to control and monitor them. To increase personal comfort the integration of
consumer electronics (brown goods) is another area not to be neglected. In this case, for example
facilities like TV, home theater, hi-fi equipment or generally entertainment devices need to be
integrated into the system. Ambient Assisted Living (AAL) is a field that can be defined as the
assistance of elderly people by a ubiquitous environment to live an autonomous life while the
building system assists them in several tasks concerning day-to-day life and health issues. As
this field is becoming more popular not least because of demographic developments in industrial
countries [141], it is necessary for a home automation system to integrate devices and appliances
that are not necessarily associated with the building or white and brown goods however specifi-
cally tailored to elderly people (e.g., blood pressure monitors, glucometers).
When these domains are integrated into one single home server, the monitoring and control of
all necessary parameters becomes possible through a single user interface. Facilitating a user to
start/stop devices, define schedules or change setpoints through one device that communicates
with the home server (e.g., smart phone) assures comfortable control as well as supervision of
setpoints and values. A uniform user interface further allows the fast propagation of possible
alarm scenarios to the user assuring security and life safety in case of threatening situations. Of
course, in this respect it needs to be considered that other than in functional buildings the peo-
ple operating the environment are not necessarily familiar with the backgrounds of the different
integrated domains. This naturally needs to result in interfaces that have to be tailored to the
users’ needs and state of knowledge, thus ensuring usability.
Considering the last presented domain AAL, it can be seen that simple integration of devices is
often not sufficient. In this case, more complex tasks need to be solved by the home system to
detect possibly hazardous situations or health concerns. Therefore, a more intelligent manage-
ment system has to be introduced that plays the role of a virtual house keeper and supports the
user in activities of daily living. Also, when looking at tasks like optimizing energy consump-
tion or automatically establishing user comfort, an adaptive approach is necessary so that the
system can cope with interchanging situations in the building. With the maturing of technical
capabilities thus the vision of a so-called smart home can be considered more realistic. A smart
home is a system that usually resides on the management layer of the building automation hi-
erarchy and controls the devices at the field layer to combine different building services to an
integrated responsive environment. The vision of the future smart home is that a system intel-
ligently manages the environment on behalf of the user and takes care of routine tasks as well
as optimizations optimally without user intervention. At the same time, the system has to re-
main intuitive and easy to control also for non-experts in case manual adjustments are necessary.
While this vision already exists for some time, current smart home systems are not yet ready for
all of these tasks as again a great complexity arises through pervasive control of the environment
on behalf of the user.
Looking at current demonstration buildings as reviewed in [47] and research projects discussed
in [199], it becomes clear that the development of intelligent buildings is still in its infancy. Four
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major trends can be identified in this context which are integration, assistance, efficiency and
comfort. The majority of todays demonstration projects and buildings are concerned with the
integration of the devices from different domains. A building is considered a smart home if it
integrates a variety of building services and appliances into one system and make them available
to the resident through a unified interface (cf. Figure 1.2). When looking beyond integration of
the heterogeneous building landscape, a lot of research projects are devoted to create assistive
buildings. The building system is in this case designed to allow the self-determined life of elders
by informing them about situations out of the norm and actively act on behalf of the resident
if dangerous or health-critical situations are detected. An active and proactive behavior is also
needed when the focus lies on efficient homes. Often persuasion of occupants through appropri-
ate reporting of the current state of the environment is a suitable mean to teach the home owner
to behave energy efficiently. The author of [133] even proposes that persuasion of the occupant
is the superior strategy to proactive control. While it is undoubtedly true that a system seldom
adjusts the environment as perfectly as the user, the ordinary home owner often does not want to
be responsible for all optimization tasks but desires the building to carry out tasks for him or her.
In this case, it is of importance to detect the usual behavior of residents and act accordingly in
order to save energy. With the advent of smart metering and Demand Side Management (DSM)
for residential buildings [247], some recent projects also cover the integration of the smart home
into the upcoming smart grid. A smart energy grid manages distributed energy production and
consumption and smart grid-enabled smart homes may actively contribute to the optimization
of these important tasks. Again focusing on the individual smart home and its users, the relief
of responsibility to carry out tasks manually in the intelligent building in turn leads to a com-
fortable environment. However, comfort for a resident is not only to have the environment to be
controlled on his or her behalf, but also to stay in control of the system and its actions in the case
the system does not perform as desired [59]. In this case, the focus on providing appropriate
interfaces for the predominantly non-expert users is a major field of research.
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1.1.3 Challenges for Smart Home Automation

While there exist a huge amount of smart home projects in the scientific literature and also some
demonstration buildings show the technical feasibility of smart homes, a widespread adaptation
to smart homes is still to come. Reasons for this are manifold, however, there exist certain
challenges that can be seen universally valid and have to be solved for smart homes to reach a
breakthrough on the market.

Cost of Adaptation: Most of the demonstration objects nowadays are specifically built for the
purpose to exhibit possibilities of automation in the future home. However, virtually all of the
existing residential buildings are not designed for the integration of home automation technology
and thus have to be retrofitted to accommodate home automation. In this respect, the authors of
[70] speak of the “accidentally” smart home, a residential building that contains home automa-
tion but has initially not been intended for its implementation. In this case, the acquisition of
home automation systems usually takes time as technology is costly and often limited to a single
purpose. Apart from the relatively high initial investment, retrofitting existing houses is usually
more expensive than equipping a home that is currently being built with automation technology
[113]. This leads to a relatively slow adoption of smart technologies in the residential sector.
For that reason, it is further likely that in existing residential buildings automation technology is
introduced piece by piece, eventually leading to a highly heterogeneous system landscape. As
already mentioned in Section 1.1, this integration challenge has to be met by a system operating
the smart home regardless if the building is specifically designed for or retrofitted with home
automation technology.

Domestic Routines: Residential life is often organized around relatively stable routines, like
always getting up at the same time during workdays. One challenge for future smart homes is
to detect such routines and optimize the building behavior accordingly. If, for example, in the
morning the resident usually takes a shower before dressing, the building can prepare hot water
for this activity in advance, knowing the usual time an inhabitant gets up. After the resident left
the home for work it may then be safe to turn off the boiler as the system knows from the usual
routine that the occupant only returns in the evening after work. In [59], it is observed that the
times of waking up and returning home are main areas for optimization in the smart home. One
particular challenge regarding this topic is further the common case that more than one occupant
is living in the building and as such multiple routines are often interlaced.

Occupancy Recognition: As occupancy is one of the main influence factors when it comes to
smart home control, special focus has to be put on this subject. While instantaneous occupancy
can be sensed quite easily, it is a more complex challenge to exactly locate a person in a particu-
lar part of the building. In this respect, it would be desirable for the system to automatically infer
a particular activity from a person’s position. This however is a non-trivial task which is cur-
rently addressed in research literature (e.g., [217]) and no solution outside of testbed buildings
is available so far. The differentiation between various residents is another challenge that needs
to be solved in the context of occupancy recognition. While approaches using radio-frequency
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identification (RFID) or near field communication (NFC) are possible means to address this
challenge, they cannot be seen as a perfect solution. One major drawback of this approach is
that humans tend to forget to put on these targets obfuscating their movements in the house. A
solution on how to follow a person through a building which does not involve specific items or
targets that need to be put on by the inhabitant still remains to be found.

User/System Interaction: In current residential homes due to missing visualization mecha-
nisms it often remains unclear to the occupant where most energy is consumed. For example, the
fact that electric devices consume a considerable amount of energy in stand-by mode is gener-
ally not realized. As studies show (e.g., [28]), a considerable amount of hidden energy is wasted
by devices that stay in stand-by mode unutilized during long intervals although they could be
taken off the power supply safely. Feedback is therefore important to make energy more visible
to the user and allow him or her to adjust behaviors or the environment accordingly [58]. Many
times, it is even necessary to provide the inhabitant with feedback on energy consumption to ini-
tiate beneficial changes in daily routines. Through an appropriate, timely feedback mechanism
thus the inhabitants’ behavior can be optimized [133]. When it comes to automated control, the
system engineer further has the tendency to abstract from the occupant only focusing on system-
driven optimizations. However, also with an automated environment the inhabitant wants to be
capable of expressing his or her wishes to the system in form of preferences or manually de-
fined schedules. These control capabilities have to be easily comprehensible as other than in
functional buildings where the automation system is usually controlled and maintained by an
expert (i.e., system administrator), the operators of an automation system in the residential area
are mainly non-experts, i.e., the occupants themselves. The design of the user interface is a topic
that is certainly of importance in this case. The occupant usually wants an interface that allows
the easy access to simple system functions leaving the more complex tasks to expert users [18].
In future buildings, the role of the expert user may be taken over by an intelligent smart home
system.

Predictive Control: In order to achieve a significant additional value in comparison with non-
automated homes, smart homes have to provide an environment that responds to internal and
external influences and anticipates future activities. While occupancy recognition and domes-
tic routines have already been discussed, further information about the building, its embedded
devices as well as inside and outside environmental conditions must be made available. Offer-
ing broad information about influencing parameters to an intelligent system, it becomes capable
of computing better or even optimal solutions with respect to energy efficiency and user com-
fort. Obviously, the vast amount of information available about devices, sensors and actuators
at hand in a fully equipped smart home enormously increases the effort for computing the best
control choices for any given problem which poses a significant challenge to intelligent build-
ings. Another aspect that needs to be taken into account is that a control system has to adjust
the environment unobtrusively according to inhabitants’ needs while still giving them enough
freedom to manually adapt the control of the building if necessary.

8



Energy Efficiency: To reach comfortable conditions in a smart home always goes hand in
hand with the general building energy consumption. While in some smart buildings already
a more or less intelligent system helps the user to reach personal comfort or increase energy
efficiency seldom all possibilities are exploited. Many times, energy-intensive tasks such as
temperature control are realized by simple two-level controllers, solely attempting to reach a
certain pre-defined setpoint, leaving the operating environment and building conditions uncon-
sidered. In case the control system optimizes energy efficiency, the general focus often lies on
improving the consumption of the associated devices (e.g., [137]) more than the global building
situation. While this is unquestionably an important step when coping with energy optimization,
there are also other factors that need to be considered when trying to obtain a global view of the
environment. The orchestration of devices in the home in order to reach an optimal behavior is
an active field of research and can be seen as one major challenge not least because of the huge
amount of energy consuming facilities. A further topic in this context is the integration of energy
supply into smart home control with regard to different providers and tariffs as well as the future
integration of the automated home into a smart grid. These influencing factors not only have to
be considered for the energy demand optimization of the building itself but also to achieve an
energy-optimal behavior in the broader context of a smart city.
Summarizing, two main general challenges can be identified: firstly, there exists the need for
an integrated and predictive system environment that operates unobtrusively on behalf of the
resident to automatically achieve comfortable conditions in the home. Still, such a system has
to provide feedback and possibilities to manually adjust the environment so that the user does
not feel patronized by the control system. All involved challenges with these tasks can be sum-
marized under the common goal user comfort. Further, the usually high density of appliances
in a smart home and the associated energy consumption need to be addressed by a future smart
home. Also energy production and scheduling of specific operations with regard to the current
energy supply situation can be seen as important in this context. Challenges involved with these
objectives can be summarized under the goal energy efficiency. There exists the need for an
integrated smart home system in which all facilities can equally participate and control tasks are
executed autonomously operating on a comprehensive information representation comprising all
kinds of data originating from appliances, the building its tenants and many more.

1.2 An ontology-based multi-agent-controlled Smart Home System

Regarding the challenges defined in the previous section, a future smart home is considered to
be an intelligent building that acts on behalf of the users and is capable of optimizing energy
efficiency as well as providing user comfort. However, the state-of-the-art smart home is much
inferior to that vision. At the moment what is considered to be smart is often not more than a cen-
tral access of different appliances. Frankly speaking, smart home systems of today allow some
facilities of home automation and leisure to be controlled, for example, via a central infoscreen
or PDA. Randall in his study introduced a categorization of smart houses into five categories with
respect to the complexity of the system [194]: Houses that contain intelligent objects, houses that
contain intelligent communicating objects, connected homes, learning homes and alert homes.
Considering this classification, the most common type of smart homes nowadays can be seen
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as connected home. While there exist certain projects to extend capabilities of current smart
homes to learning homes (e.g., [170]) and alert homes (e.g., [55]), a comprehensive coverage of
the environment is not yet reached. There are some projects which emphasize the importance
of context awareness (e.g., [272]) however, the involved environmental influences are seldom
observed comprehensively. According to [194], an alert home has to anticipate users’ needs and
therefore has to be aware of the internal and external conditions of the building at any point in
time. An efficient operation of the building is dependent on a variety of parameters in addition
to already proposed influences and classical building automation. The future smart home has to
consider the whole environment completely and can be seen as adaptive system, supporting the
residents in their aim of saving energy and at the same time not losing their personal comfort.
This is the approach of the ThinkHome system [202], a comprehensive system for smart home
control. In this system, a knowledge base in form of an ontology forms the base for an intelligent
multi-agent system striving for the energy efficient operation of a smart residential home.
Realizing improved energy performance in the smart home first of all requires to intelligently
control the smart home services and devices with respect to the current situation and context.
The task of controlling and improving various devices and building services can be taken over
by a dedicated smart home system. The smart home system shall be able to automatically con-
trol its environment, working under the constraints of guaranteeing user comfort at any time, yet
operating as energy efficient as possible towards this task. Therefore, a lot of information must
firstly be made available to the smart home system and, secondly, be analyzed and interpreted
by it in order to derive appropriate control decisions. The first statement implies the availability
of a multitude of information about the smart home environment in a machine-processable form.
This can be achieved by designing an extensive knowledge base for smart homes which is also
the focus of this thesis. The second characteristic demands the control system to exhibit at least
some kind of artificially intelligent behavior. In Figure 1.3, an overview of such a combined
system architecture is shown. The “ThinkHome” system framework has been conceptualized
and designed in the course of an Austrian research project at Vienna University of Technology,
Automation System Group from 2009 until 2012. It was funded by the Austrian research pro-
motion agency FFG under the contract P822 170.
To cope with the complexity of the system at hand, the different parts have been assigned to
three PhD students, each responsible for a particular system component. The design and imple-
mentation of a comprehensive software framework and multi-agent system is presented in [199].
Further, as context recognition is of major concern in a smart home system, a predictive control
mechanism was created, that enables the system to perceive human behavior. In [129], research
results regarding profile-based context recognition are comprehensively covered. Finally, it was
necessary to define and implement a comprehensive knowledge base which allows to fully rep-
resent the environment of the system in a way that it can act as a basis for the other developed
parts of the framework. This dissertation represents an exhaustive coverage of the findings in
this respect.
The system concept was designed as team and therefore, naturally there exist overlaps in the
three doctoral theses with respect to the description of the ThinkHome system. Certainly, the
same set of use cases had to be applied in order to assure that all components base their func-
tionality on the same set of requirements. Therefore, some contents regarding system design and
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Figure 1.3: ThinkHome System Architecture Overview

requirements analysis in this thesis may be similar to explanations in the other dissertations that
emerged from this project. It is however explicitly stated and emphasized in case content from
the other theses is directly used. Nevertheless, the main part of this thesis, the definition of an
ontology for smart homes, was done independently, and parts that may be similar to the other
two mentioned theses only serve the purpose to put the presented developments into context with
the designed system.
The following section discusses related works regarding multi-agent systems in the area of smart
homes. The conceptual design of the ThinkHome system is presented afterwards.

1.2.1 Related Work

As research in the area of intelligent home automation is growing, there already exist some
preliminary works on the use of multi-agent systems in automation systems. In the MavHome
project, Cook et al. [55] propose using a multi-agent system in the home that is capable of
learning inhabitant behavior. Methods such as data mining and event sequencing (episodes) are
employed. Data is gathered using agents that communicate with the help of the Common Object
Request Broker Architecture (CORBA). Actions are triggered based on hierarchic Markov mod-
els. Similar tasks are distributed to agents in the MASBO project [192]. Also Davidsson and
Boman [61] proposed a multi-agent system in which different agents pursue the goal of energy
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efficiency. They specified Personal Comfort Agents representing the inhabitants, Badge System
Agents for user tracking, and, Environmental Parameter Agents to control the indoor conditions.
A rudimentary evaluation is given based on a simplified room model. In [157], Liang et al.
describe a basic agent based framework for smart homes. Five agents are differentiated: Space
Agents interface with devices, Function Agents shall guarantee the realization of global goals,
Personal Preference Agents make use of user preferences when executing control strategies, Re-
source Access Right Control Agents provide a lookup service, and, an Environment Variable
Server Agent supports data acquisition over the Internet. While the approach seems feasible, it
misses details on agents and their interactions and probably requires additional components to
work. Also no prototype implementation can be verified. Zhang et al. [273] rely on the OSGi
(formerly Open Services Gateway initiative) platform to implement an agent based framework.
The approach targets the integration of different heterogeneous domotic devices and supports
remote device control and fault diagnosis. UPnP (Universal Plug and Play) in combination with
an agent framework is used for device discovery, registry, and management. Possibilities for the
use of Artificial Intelligence (AI) in the home are described by Augusto and Nugent [10]. Sim-
ilar to MavHome, the detection of discrete events is of importance. Event sequences are then
derived using machine learning mechanisms such as decision trees and case based reasoning.
All projects listed above have in common that they describe similar approaches on how to use
agents for different tasks in buildings. Still, none of them proposes a comprehensive strategy
how knowledge is managed in the system. Also, most approaches lack details on control strat-
egy parameters and or focus on particular sub-challenges only, e.g., MavHome specializes on
context awareness.
However, also preliminary work that proposes agent systems in combination with ontologies
can be found. In [49], Chen et al. propose an ontology-based system for a smart meeting room.
They introduce several use cases for a meeting room and employ context reasoning. Another
approach for ontology-based context reasoning is taken in [74]. The suggested system uses the
OWL for context modeling. Benta et al. [22] describe a multi-agent system working with an on-
tology mapping of the environment. The work also focuses on context awareness as well as user
tracking and especially user behavior. Although these articles show some promising approaches
in the field of context modeling and context awareness, architectural or energy efficiency con-
siderations are not sufficiently considered.
Retkowitz in his work [204] describes a possibility to integrate heterogeneous services in smart
homes with the help of an ontology. It is based on an ontology mapping for semantically equiv-
alent service interfaces. In [205], the respective system architecture is specified in more detail.
Different service layers are exemplified with the help of use cases. Main achievement are the
unified service interfaces that enable a continuous specification, configuration and deployment
process. The SOPRANO project [266] deals with the application of intelligent systems in the
domain of Ambient Assisted Living. In the article, the authors stress that ontologies are not a
perfect choice for reasoning on complex activities and conflicted data. Therefore, they propose
their own approach where with the help of an context manager the services of the sensor layer
are mapped to a user-service level. The authors of [120] propose a system which is based on
J2EE and also uses multiple agents in combination with an ontology. The focus of their sys-
tem is put on the industrial sector, in particular targeting logistics and scheduling applications.
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Nevertheless, their study is a rare example of the practical application of an ontology-based
multi-agent approach in a large real-world system. As shown in the previous paragraphs, none
of the previously proposed work fulfills all the demands we stated. Nevertheless, the related
work has been a valuable starting point for the ThinkHome project.

1.2.2 ThinkHome System Concept
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Figure 1.4: Smart Home System Components

Thinking of a future smart home, one key requirement is to provide a proactive system that is
capable of acting on behalf of the user. While this is mandatory in the domain of Ambient As-
sisted Living to actively support impaired individuals, this characteristic is seen as desirable in
any future smart home. In particular, it may support the occupant in different day-to-day activi-
ties concerning energy-efficient building operation while ensuring a maximum of user comfort.
In this respect, intelligent control promises considerable benefits, especially if tailored scenarios
and associated use cases are equally developed.
As pointed out in [201], the distributed nature of a typical smart home system in combination
with a dynamic and inherently complex environment calls for a control software that is sophis-
ticated and capable of handling these requirements sufficiently. The author furthermore states
that a traditional, object-oriented approach may not be appropriate in this case and other, more
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flexible software engineering paradigms have to be considered. These can readily be extended
and are then capable of adapting to unexpected situations like spontaneous occupancy, inexact
sensor readings or even temporal and permanent subsystem failures.

1.2.2.1 Multi-agent-based smart home control

With respect to the just mentioned challenges, a number of projects (e.g., [55], [22], [165])
identify an agent-oriented design methodology as an appropriate paradigm and framework for
a smart home system architecture. The agent paradigm promotes the use of loosely coupled
software entities designed to take over well-defined parts of the system’s functionality while
collectively implementing a sound system behavior [201]. In the building control domain, the
implementation of a multi-agent system may especially aid in overcoming conflicting situations
arising between different inhabitants, but also when concurrently striving for competing goals
like optimized energy consumption versus individual comfort [165]. By definition, a multi-agent
system can be seen as a group of software components where each entity has one or more spe-
cific tasks within the overall system. These components in further consequence interact with
each other to overcome the complexity of a specific environment in order to reach previously
defined goals. An autonomous agent in this respect generally perceives the environment and acts
on it so that the environment’s state is altered in a way that the agent’s proclaimed goals can be
reached [86].
Coming back to the previously described three-tier architecture of building automation, a multi-
agent system may be seen as an additional, abstracted layer above the management level that
learns from the situation in the building by means of sensors and accordingly performs inter-
related tasks to reach designated global goals. In this context, intelligent agents are considered
components that show features reflecting human behavior such as reactivity, proactiveness and
social ability [267]. In [268], further the distinction between reactive, deliberative and hybrid
agents is made. The choice between one of these types determines how powerful the capabilities
of the multi-agent system are with respect to internal reasoning as well as how flexible the agents
can react to changes in the environment.
For the envisioned field of application in a smart home, deliberative agents have been argued to
be most appropriate as they can be seen the most flexible incarnation of intelligent agents [199].
Agents of this type on the one hand keep an internal model of the world while on the other
hand are capable of autonomously following their own goals and may eventually also abandon
or switch goals in case of changes in the environment. In other words, deliberative agents are
capable of making decisions based on the knowledge available to them. For this reason, the
smart home multi-agent system of the ThinkHome system is effectively composed of intelligent
deliberative agents. The design and implementation of the multi-agent framework is extensively
described in [199] and the interested reader is referred to this work for further details.

1.2.2.2 A knowledge base as foundation of advanced control

The construction of a world model in each agent of the envisioned multi-agent system is strongly
supported by knowledge represented in a dedicated knowledge repository. The design and dis-
cussion of such a knowledge base (KB) is the main focus of this dissertation. The KB, in the
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present case realized as ontology, most importantly represents a source of common knowledge
shared between different agents, providing an unambiguous view of the operable world while
describing the entities of interest for a particular application [103]. To define a shared ontol-
ogy in the building automation sector, several different domains need to be covered (cf. Figure
1.4). The identification of these domains and the appropriate representation of associated con-
cepts relevant for the autonomous control of a building constitutes one of the main contributions
of this work. If, like in the ThinkHome system, the optimization of energy efficiency and the
concurrent maximization of comfort are main goals, the inclusion of models about the building
architecture and building physics properties, facilities and their current energy consumption or
production, exterior influences like the current and future weather, building processes as well as
user habits and preferences are valuable to reach the proclaimed goals. As the broad definition of
these domains leads to a massive amount of associated concepts and relationships, it is the aim
of this work to determine which parts need to be covered and are relevant for the operation of
a building while also investigating whether information of a particular domain can be automat-
ically retrieved. With a concise representation of knowledge, the multi-agent system can take
several influencing factors into account to, for example, optimize the start/stop time of energy
intensive tasks like heating and cooling. Another advantage of a knowledge base for a smart
home system is that it facilitates the definition of relationships of sufficiently high complexity to
generate a sophisticated view of the world the multi-agent system operates on. The inherent rep-
resentation capabilities of an ontology allow to model the environment in a sophisticated way,
taking away complexity from the software system and leading to a disconnection of information
representation from the control logic. With other words, an ontology permits the separation of
domain and operational knowledge [179] which in turn results in a clearer system design as well
as portability and reusability. Reasoning as integral feature of the operation on ontologies can
in this case be used to complete the perception of the environment considerably supporting the
multi-agent system in the achievement of its objectives. For the successful autonomous opera-
tion of a smart home, an extensive knowledge base therefore provides the mandatory foundation
for a multitude of use cases and application scenarios.
Obviously, an isolated design of the knowledge base may not allow a smart home system to
yield the expected benefits to full extent as decision processes in the control system (e.g., which
cooling strategy should be applied) are based on extensive information. Therefore, the modeling
of the knowledge base is done with the future application in mind. During the operation of the
smart home system, further a close interaction and cooperation between the multi-agent system
and knowledge base needs to be considered. As the focus of this dissertation lies on the repre-
sentation of relevant domains, it only gives an outline of the interaction with the knowledge base
leaving out advanced topics regarding the communication (e.g., time constraints). By represent-
ing knowledge about the building in a machine-interpretable way it is ensured that necessary
information can be accessed from and exploited by a smart home system that automatically
executes control strategies in the residential home.
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CHAPTER 2
Knowledge and its Representations

Storing data for processing by computational programs can be done at various levels of com-
plexity. To one extreme, an application may extract the desired data from a simple list of terms.
While this sort of data-keeping does not imply any structure, it however tends to become prob-
lematic as soon as the amount of information to be processed increases. On the other side,
data may be highly structured and enhanced with semantic annotations grounded in formal logic
describing its characteristics and applications and making reasoning and automatic inferences
possible. In this case, one may safely talk about knowledge. In order to discuss different data
structuring possibilities, first of all it is important to clearly define the different terms data, in-
formation and knowledge.

2.1 Data, Information, Knowledge, Wisdom

When designing a knowledge-based system, it is necessary to have a clear vision of the depen-
dencies between data, information and knowledge. With such a definition, it becomes compre-
hensible which advantages arise through the definition of a knowledge base, and what its benefits
are compared to classical relational database systems. In the article [1], the author was the first
to present a hierarchical model relating the terms of data, information, knowledge and wisdom
to each other. Figure 2.1 shows a further developed version of the original model, omitting the
additional level “understanding” that exists in the original model. According to [20] the level of
“understanding” is merely a process that facilitates a transition between individual levels of the
pyramid, meaning that a transition can only happen if understanding is present. Data as such are
symbols that can be read, stored and processed however do not have any associated meaning.
When data is described in a certain context and thus a meaning is added, it becomes informa-
tion. Different interpretations may exist for specific data and for each of these interpretations a
model can be defined that represents information. Knowledge builds on data and information,
and facilitates reasoning to infer additional information. Wisdom at the top of the pyramid can
solely be reached with understanding the rest of the world, setting the known knowledge in con-
text with the world and involves some kind of assessment of what is right or wrong or good or
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Figure 2.1: Data, Information, Knowledge and Wisdom pyramid, based on [1] and [20]

bad in this world. Wisdom can generally not be reached by a simple transformation process,
and thus perhaps has more to do with human intuition, understanding, interpretation and actions
than with systems [208]. For this reason, the following elaborations abstract from wisdom, and
lay the main focus on the three levels data, information and knowledge, that are significant for
an autonomous computer system.

Data

In a way, every simple statement in form of characters, digits or terms can be named data. Terms
on this level come without attached semantics or any particular interpretation, they do not have
a meaning attached. For manipulation in a computer system, simple data is not sufficient, as
to process terms without a meaning is infeasible. As an example consider Table 2.1: Without
further explanation, these data are meaningless as it could for example denote an identifier, a
temperature value or a paper size. This means, data cannot be interpreted by a computer system
without further structure, however, it can be seen as the basic building block for information and
knowledge and thus represents the lowest level of the pyramid.

Table 2.1: Some data

22 C

Information

Information is organized data with a meaning in a particular interpretation. Data is therefore
connected via relations and structured with definitions. This means, through relational modeling
it becomes visible to a system what a given datum represents. In current software systems,
the most common way to structure data is as relational database, which organizes information
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in tables and a set of different relations. For the aforementioned data a simple explanation
like “room temperature”, with the fields “value” and “unit” (Table 2.2) makes it clear for the
processing program how to interpret the given data, and further to relate the value to other
known values.

Table 2.2: Data extended to information

Room Temperature
Value Unit (C/F)

22 C

Knowledge

“Knowledge is information that is put into action” is a definition that can be found in [63], and
describes the connection between information and knowledge. This means, information may be
interpreted by a human or computational inference mechanism that reasons on available infor-
mation, infers new facts from it, and thus generates knowledge. A logical reasoner may interpret
the information that it receives through a formal knowledge definition. This means, data that
is received is interpreted in the context in which it is used and through this context-based use
becomes knowledge. Considering the definition of a temperature sensor shown in Listing 2.1,
this device can be described as any sensor that has a relationship to a temperature value via the
senses relation. Such definitions may be part of a system’s knowledge base while similar state-

2.1: Axiom describing a temperature sensor in Description Logic

TemperatureSensor ≡ Sensor u ∃ senses.TemperatureV alue (2.1)

ments will be necessary for Sensor and TemperatureValue respectively. If a new element
showing these characteristics is added to the knowledge base, with the right kind of inference
mechanism the system may infer, that the added element is of type TemperatureSensor.
This means, the inference on basis of the logical definition may produce additional informa-
tion about a specific item. One main quality of knowledge is therefore the inferability of new
information out of existing facts. Different processes that convert information into knowledge
include among others [208]:

• Synthesis of multiple sources of information over time

• [A sort of] belief structuring

• Study and experience

Further, in [208] some important points that differentiate knowledge from information are iden-
tified, while the two most relevant in the present context are:
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• [Knowledge is] a mix of contextual information, values, experience, and rules

• [Knowledge is] information, expert opinion, skills and experience

Most of the mentioned points depend directly on the expertise of the knowledge engineer or do-
main expert in a particular field. The designed knowledge models in Chapter 4 do consider these
points when representing knowledge and they acted as a kind of guideline of how knowledge
can be obtained.
Considering intelligent agents as protagonists in an intelligent building, we can further differen-
tiate between knowledge and beliefs: Knowledge represents information about a domain, and
can be seen as true and justified belief [189]. While this distinction is necessary for definitional
purposes, in Artificial Intelligence they are not necessarily distinguished in a strict manner. In
this work, knowledge can be seen as generally accepted information and is represented in a
knowledge base, while belief is the subjective view on the world of each agent, that can change,
the more information it gathers.

2.2 Forms of Knowledge

Considering knowledge representation in computerized information systems, a distinction be-
tween different forms of knowledge needs to be given. Types of knowledge may be identified in
various ways in philosophy, religion or engineering. This section introduces different classifica-
tions of knowledge that are important for the representation of a specific domain in knowledge-
based computer systems.

Qualitative and Quantitative Knowledge

Qualitative knowledge is a type of knowledge that describes features of an entity in the envi-
ronment that can be observed. The article [87] defines qualitative knowledge as “any kind of
knowledge that does not always allow a correct and consistent match between the represented
objects and the real world, but can nevertheless be used to get approximate characterizations
of the behavior of the modeled domain”. As such, qualitative knowledge is fuzzy and allows
a general description of a situation or entity. An example would be a weather service that re-
ports a “rainy” weather condition: while in this case, precipitation can be expected it is however
not clear how intense the expected precipitation is going to be. The counterpart, quantitative
knowledge describes knowledge about an object that can be measured, like exact dimensions of
a window or the amount of access points of a specific building automation device.
While quantitative knowledge is explicitly recorded in a knowledge base, qualitative knowledge
may be derived from the context in which a specific item is used. For example, the exact dimen-
sions of a window could be used by the knowledge base to derive if the window is large, small
or medium in relation to other windows in the building. Both types of knowledge have to be
represented, as they are both needed in order to reach a thorough understanding of a domain.
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Procedural and Declarative Knowledge

The distinction between procedural and declarative knowledge is essential for any computer-
based information and knowledge procession. Procedural knowledge can therefore be seen as
“knowledge of how things are done” [53]. Classic computer programs mainly hold procedural
knowledge, which is stored in their statements and procedures. However, procedural knowledge
may hardly be used for making statements about a domain or entity. As such it is the proposi-
tional or declarative knowledge that describes properties of an object with the help of assertions
[239]. Declarative assertions may be either true or false and as such represent facts that are
known about a specific entity in the domain of interest. Clearly, in a knowledge base depicting
a model of reality, the type that can be found is propositional knowledge, as the main purpose
is to describe the world of interest by facts and logical rules. It is however also possible that
procedural knowledge is described with the help of declarative knowledge in a knowledge base
(e.g., building processes, cf. Section 4.4). In a knowledge-based system, procedural knowledge
is however for the greater part being found in the software or agents that operate on knowledge,
for example, in the execution plans of BDI-Agents [199].

Explicit and Tacit Knowledge

In literature about knowledge management, it is further sometimes distinguished between knowl-
edge that is assertively stated, and such knowledge that is “hidden” in the mind of an expert.
These two types of knowledge are on the one side known as conscious or explicit and on the
other side as tacit knowledge. Explicit knowledge can be seen as knowledge that is formally
described in a document, database or similar storage system and thus directly available to a pro-
cessing program. Tacit knowledge, on the other hand, is harder to comprehend: it represents
specific know-how of an expert or belief of an agent that is not being held in explicit form.
Therefore, it is relatively difficult to express tacit knowledge for a computer system.
In order to represent tacit knowledge, it may be modeled as facts into a knowledge base by the
particular person that holds the tacit knowledge, again transferring it to explicit knowledge. Ac-
cording to [208], however, there is no difference between explicit knowledge and information,
which is to some extent true, as everything that is explicitly stated may be stored and processed
in an information system just as it is. In [93], tacit knowledge is further described as “what
an agent obtains when it observes its environment and makes internal representations of what
it perceives”. When the environment of the agent is described in a logically sound form in a
knowledge base, the explicitly stated tacit knowledge codified by a human expert can be utilized
to supply the agent with a complete view of the environment including knowledge that may not
be explicitly stated, i.e., which is only available implicitly. In a knowledge-based system there-
fore, a kind of reasoning mechanism is necessary which is capable of evaluating explicitly stated
facts to retrieve knowledge that is only implicitly present [12].

Theoretical and Practical Knowledge

Another distinction that can be drawn is one between theoretical and practical knowledge. Refer-
ring to the philosopher Kant, the article [78] describes that “theoretical knowledge is knowledge
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of what is, or of what exists whereas practical knowledge is knowledge of what ought to be, or
of what ought to exist”. Theoretical knowledge therefore gives an exact definition of the reason
why a specific concept exists in the described domain and as such is responsible for creating the
context for a particular object. At the same time practical knowledge leads to a deeper under-
standing of an entity and its connections through experiencing and learning how the object reacts
to specific relations. Practical knowledge can therefore be seen as an important requirement for
deliberate actions of autonomous agents.
Theoretical knowledge allows a generalized view and therefore is applicable to various types
of interaction with an object. Then again, practical knowledge describes the ability to apply
knowledge in specific circumstances [109]. In this context, theoretical knowledge is therefore
the foundation to automatically apply knowledge, hence to exercise practical knowledge. Ac-
cording to [109], practical knowledge further has an explicit and tacit dimension and can be
seen as a conglomeration of these two forms of knowledge. What can be seen through this ex-
ample is that the discussed knowledge categories do not have strictly defined borders and may
be explained by one another or be merged into each other. The two dimensions of theoretical
and practical knowledge are also reflected in a knowledge base: theoretical knowledge about
an entity in the domain of discourse is represented in its axiomatic description which is spec-
ified using axioms satisfying specific logical rules. Further, practical knowledge is how these
rules and axioms are applied by agents and what is the outcome of the knowledge application in
different contexts and situations.

Syntactic and Semantic Knowledge

For computer systems, the phrase syntactic knowledge describes the knowledge about the struc-
ture of the used terms and language. Syntactic knowledge about a programming language for
example is which terms are allowed in this particular language and in which sequence these
terms may be used to generate a valid program structure. The test for syntactic correctness of a
computer program is generally carried out by the parsing mechanism of a compiler. Also within
databases and knowledge bases, there exist syntactic rules according to which information is rep-
resented. As such, syntactic knowledge is important to recognize the structure of the knowledge
store and in further consequence to determine the meaning of a term or sentence, hence, its se-
mantics. Semantic knowledge therefore is the knowledge about the meaning of terms. Semantics
of terms always involve an objective and systematic discourse of the treated term, its referenced
object and the environment (i.e., reality) in which it exists. While syntactic knowledge does
describe the term itself, semantics create a connection between the term and the concrete object
in the world that is portrayed by this term. When it comes to the representation of knowledge in
AI and general in computer programs, the concept of semantics is deemed to be one of the most
important.
The semiotic triangle (Figure 2.2) as defined in [182] is a foundational description for the con-
nection between symbols or terms, concepts and reality. A symbol (or term) in this case stands
for a specific object in the real world. However, without interpretation of the term and the cre-
ation of a relation to an entity in the real world through an observer, the term and object do not
have a direct connection, which is indicated by the dashed line in Figure 2.2. The interpretation
of the term as a conceptual notion therefore needs to be used to connect it with the actual object.
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There may exist more than one interpretation of a term and as such, the meaning of a term may
be ambiguous when viewed from different observers in different angles and in different contexts.
As the relation between terms, concepts and objects tend to fuse in the mind of a human observer
[231], the semiotic triangle can be seen as fundamental for a knowledge base to relate terms and
objects in reality and describe their meaning in form of logical concepts.

Symbol Object

Concept

Stands for

Refers to

Sy
m

bo
liz

es

Figure 2.2: The semiotic triangle [182].

2.3 Knowledge Representation

Generally speaking, knowledge representation is a crucial field in Artificial Intelligence [87]
and nowadays also has grown in appeal to web-based solutions in the context of the Semantic
Web [27]. A knowledge representation formalism roughly needs to be able to create a declara-
tive, semantic description of a particular domain and provide a mechanism that is able to deduce
knowledge implicitly available in the representation [12]. While implicit and explicit knowledge
has to be represented in a formal way by logical dependencies and deduction rules, a reasoning
mechanism has to be capable of making the implicit relations visible to the human user or soft-
ware that operates on and manipulates data in the knowledge store. Another attempt to generally
describe the concept behind knowledge representation and the underlying formalisms is taken in
[62] where five different roles are introduced:

• Surrogate: Above all, a knowledge representation is a substitute for reality and as such
describes a more or less accurate picture of the world. An agent (e.g., in a multi-agent
system), basing its beliefs on a knowledge base becomes capable of reasoning about the
world and making decisions already before taking actions. This can be accomplished
with the help of a concise description of objects in the world through logically defined
terms. The conciseness or “fidelity” in this respect means that it is necessary to represent
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dependencies in the world in a way that its representation is sufficiently rich in detail for
the agents’ needs while abstracting from other parts not being of further interest for the
system or agent operating on it.

• Set of ontological commitments: To limit the complexity of the knowledge base when
representing reality it is necessary to abstract from certain parts of the world. In this
case, the definition of a set of ontological commitments means to create a model of the
world and select the parts that need to be represented. As described in [103], ontological
commitment in the case of a knowledge base describes an agreement about objects and
relationships between them. The ontological commitment for an object in the domain
of discourse therefore covers all objects and relationships that are needed to completely
define the entity with respect to the application domain.

• Fragmentary theory of intelligent reasoning: As a further requirement, a knowledge
representation needs to entail intelligent reasoning which involves the fundamental defini-
tion of intelligent inference through a set of permitted and recommended inferences. Intel-
ligent reasoning through a knowledge representation is furthermore usually fragmentary
as with the help of this reasoning only a part of human intelligent reasoning is covered.

• Medium for pragmatically efficient computation: To facilitate efficient reasoning with
the help of a computational inference mechanism, a knowledge representation has to de-
fine a structure as framework for the organization of information. This frame may not be
too expressive in order to ensure computational efficiency, however at the same time needs
to provide enough logical power to make intelligent reasoning possible and thus represent
knowledge in a sufficiently rich form.

• Medium of human expression: A knowledge description is also a way to model the
world as it is seen by a human observer to communicate its dependencies to either a
machine or another observer. Among other things, with respect to this role it is necessary
to evaluate how well a specific type of knowledge representation is capable of describing
the world as well as to assess the expressive capabilities of the representation with respect
to simplicity.

It is argued in [62] that all five roles have to be considered to provide a practicable and powerful
knowledge representation formalism.
Summarizing, knowledge representation for computer systems thus is about focusing on impor-
tant aspects of the world to be expressed, omitting unnecessary details. In this way, a specific
domain representation does not have to model the world to every detail, as every model to be
used for describing a certain part of reality may be seen an abstraction from the world it repre-
sents to the parts that are interesting for a particular domain or application. An adequate level
of detail has to be chosen in order to represent knowledge for a software system: while a high-
level description may be easier to comprehend for humans, a low-level description brings more
information, at the same time complicating the reasoning mechanism [189]. In this respect, the
universe of discourse is defined to be the accumulation of terms which are relevant in the cov-
ered domain. This domain representation, which is created from domain knowledge retrieved
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through an expert, must further be encoded in a specific knowledge representation formalism or
language in order to make the knowledge machine-interpretable [265].

2.3.1 Knowledge Representation Formalisms

Knowledge representation formalisms in Artificial Intelligence have a long history, starting in
the 1970s with approaches on the one hand evolving from trying to represent human memory in
a machine-readable form (i.e., non-logical approaches) while on the other hand embracing pure
logic (cf. [172]). One of the main requirements for a knowledge formalism is that it is capable
of representing the knowledge that is relevant for a particular application [12]. As such, it neces-
sarily has to satisfy the five roles of a knowledge representation introduced before. While there
were attempts to find one single knowledge representation valid for all application domains,
there also arise certain benefits from a diversity regarding formalisms [220]: Firstly, different
formalisms can support varying inference processes. Further, there may exist the need for dif-
ferent representations with respect to the field of application that they are applied to.
Considering formalisms relevant for ontologies, the non-logical formalisms semantic networks,
taxonomies, and frame-based systems need to be mentioned. The first concept of semantic
networks was already published in the 1960s [193], and it is broadly used in various fields of
application in the AI. Semantic networks model knowledge with the help of directed graphs, this
means, as basic elements it differentiates between nodes and edges. With respect to knowledge
representation, nodes may be seen as terms that are described, and edges are the connection
between the terms in the domain. With the help of different relation types, miscellaneous as-
sociations between the terms may be defined, facilitating the modeling of knowledge about a
domain. The weighing of edges and the distance between two objects in the graph can further
be used to express a measure for their relationship [232]. Generally, the definition of a semantic
network is logically unrestricted, however, different restrictions may identify sub-categories. In
this respect, a taxonomy may be seen as a special form of semantic network, describing a sub-
type where associations between nodes are limited to “is-a” relations. In this case, an inheritance
structure between concepts can be realized. As a semantic network is usually purpose-built, it
can be customized regarding the application that it is applied. This leads to a highly special-
ized knowledge representation that may support tailored reasoning. However, the application
of semantic networks in a general context is not easily achieved, mainly due to the lack of de-
fined semantics [172]. Further, in semantic networks, many nodes and directions are needed for
relatively simple knowledge representations. Therefore, relatively easy dependencies tend to be-
come complex and use many nodes. Another drawback of this type of knowledge representation
is, that querying a semantic network is relatively inefficient, as many nodes and relationships
need to be searched to gather full knowledge about a represented concept [63].
Frame-based models (cf. [164]) can be seen as another example for a non-logical knowledge
representation formalism. Introduced in the early 1980s, they were initially intended to repre-
sent a non-logical alternative for knowledge representation to more rigid logical approaches. In
frame systems, frames are used to describe objects while slots represent properties of frames.
Additionally, there may exist facets that are identified for frame slots and may include statements
that, for example, are executed in case a value is written to a slot. This way it becomes possible
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to integrate simple type checking in a frame-based model. From the general structure, a frame-
based knowledge representation is comparable to object-oriented programming [94]: similar to
the distinction between classes and objects in object-oriented programming, in frame systems a
differentiation between a class frame and an instance frame is possible. Usually frames are con-
nected to each other through a network-like structure and therefore, frame models and semantic
networks can be associated with the same class of network-based knowledge representation for-
malisms. With respect to reasoning it becomes possible to conduct a mapping of more specific
frames into more general ones and inferring slot fillers [213].
Continuing with logic-based knowledge representation formalisms, for years, classical logic
has been considered as one possible knowledge representation formalism for computer science
mainly because logic can be seen as a concise and clear way to infer new information from a
set of formal statements through evaluating them to true or false values. Two important types
of classic logic are first-order predicate logic and propositional logic. As a functional subset of
first-order logic (FOL), propositional logic is a basic form of logic and as such may be used
to represent facts. While its decidability and simplicity are certainly advantages of this logic, it
however lacks of certain qualities classifying it as a competitive choice for realizing a knowl-
edge base in a computer system. One of the main disadvantages is its limited expressivity:
propositional logic allows a basic representation of facts that may be related to the states “true”
or “false”, as well as combinations of facts, however it is not possible to express more advanced
concepts like relations between objects or to define variables.
Considering first-order predicate logic, or shortly first-order logic as second example of classic
logic, it can be seen, that this form of logic is much more suitable for knowledge representation
in computer systems, basically because of two facts: on the one hand it can express predicates,
that may be translated to one or multi-dimensional relations. These predicates can be defined
on variables, which significantly raises the expressiveness of the language when compared to
propositional logic. On the other hand, a further extension of the language compared to propo-
sitional logic are quantifiers that facilitate statements about all or some objects in the universe
described through a set of logical statements. While these extensions allow the creation of ex-
tremely powerful logical expressions that can successfully be used to describe relations in the
real world, they also make unrestricted FOL undecidable with respect to reasoning. This means,
an automated reasoning mechanism deducing inferences from a FOL-based knowledge repre-
sentation would not always come to a conclusion whether a particular statement can be inferred
or not. Another difficulty appears with respect to the representation structure: because of its
lack of a concise structuring mechanism, classic logic is just in particular situations useful for
a practical knowledge representation. A problem that develops in this respect is that if knowl-
edge is to be represented with the help of propositional or predicate logic, an exponential growth
known as “combinatorial explosion” can be observed [60], leading to overly complex descrip-
tions of domain concepts. Another fact is that this growth significantly slows down reasoning on
represented knowledge. Because of these deficiencies, especially in Artificial Intelligence often
representations that are different from classical logic are used.
Conceptual graphs (cf. [226]) are a logical derivative from semantic networks and frame-based
systems. This formalism can be used as a graphical knowledge representation, however, the
graphs can also be represented as FOL formulas facilitating logical reasoning on the graphs. As
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such, this representation mechanism is the first of the mentioned formalisms that defines logi-
cal reasoning on the basis of first-order predicate logic: on the one hand it can be inferred if a
graph is valid, hence, if the corresponding logical formula is sound. On the other hand, logical
reasoning on conceptual graphs can perform subsumption reasoning, which means that it can be
deduced if a formula representing a given graph can be implied from another formula describing
a different graph [213]. As previously mentioned, reasoning on unrestricted first-order predicate
logic is undecidable, and therefore, the restriction of the conceptual graph to conjunctive queries
is necessary to ensure termination of a reasoning algorithm.
In the past decades, research was focused on finding other, more suitable forms of logic for
knowledge representation in information systems, not only because of deficiencies in classical
logic regarding structure and decidability. Hereby, Description Logic gained importance in re-
cent times and eventually became the prevalent logic when representing knowledge as ontology.

2.3.2 Description Logic

In the mid 1980s, it was recognized that semantic networks and frame-based systems essentially
describe fragments of predicate logic [63]. This discovery led to the development of a family of
logics named Description Logics (DL). Basically, DL developed from the system KL-ONE (cf.
[39]) which was realized to confront ambiguities of semantic networks and frame-based systems
[14]. Description Logic adds logic-based semantics and a formal description to this system. As
a formal language, most DL dialects can on the one hand be seen as decidable fragments of
first-order logic (cf. [13]) while on the other hand it was also shown that a basic version of
Description Logic may be considered a variant of modal logic (cf. [213]). One of the great
advantages of DL is therefore that through decidability also efficient reasoning mechanisms can
be defined which is one of the prerequisites for an intelligent system.
In Description Logic, a terminology is a possibly hierarchical structure used to represent the
knowledge of an application domain [172]. The logic in this case strictly separates between the
description of general concepts and concrete instantiations. All logical statements that concern
concepts and their definition are commonly known as terminological box or TBox. Otherwise,
the assertions that are made for individuals of the particular domain to be represented and re-
lationships between them are known as assertional box, hence, ABox. The TBox differentiates
between concepts and roles to describe the domain. A concept can in this respect group sets of
individuals and this way achieve a classificiation of terms in the modeled domain. With respect
to concepts, simple names denote atomic concepts, while complex concepts can be built using
atomic (or complex) concepts combined with certain logical constructs. Roles further allow the
definition of relationships between individuals. Also for roles, names are used to describe the
elements that can be used to connect individuals with each other. Further, the ABox uses the
definitions in the TBox to associate a specific individual with a concept, which is similar to the
previously described relationship between classes and individuals of frame-based systems. In
an ABox again two different types of elements can be expressed: unary predicate symbols are
used to describe the relationship between an individual and a concept (i.e., concept assertions)
while binary predicate symbols can further be defined to associate two individuals with each
other through a particular role (i.e., role assertions).
What can be noted is that the TBox in a Description Logic model is generally variable-free,
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however concepts and roles may still be described using other elements of the TBox as well as a
set of logical operators available in the respective Description Logic making the language family
capable of describing the semantic structure of a particular domain.
As a general extension, logical rules may be defined for some languages of the Description Logic
family to enhance the knowledge representation capabilities of the vocabulary. Rules in this case
may be used on the individuals that are defined in the ABox to additionally infer dependencies
between them which in turn can be added to the vocabulary description in an intelligent system
operating on a knowledge base [94].
The reasoning tasks related with the TBox in Description Logic are satisfiability, subsumption,
equivalence and disjointness. The article [14] shows that for basic Description Logics all of the
reasoning tasks can be reduced to satisfiability. Satisfiability means that with a reasoning proce-
dure it becomes possible to determine if the TBox is satisfiable, hence, if the model is defined in
a way that it is noncontradictory [94]. This form of reasoning is mainly used in the development
stage of a vocabulary, giving feedback about problems with definitions of certain concepts in the
TBox. Concept satisfiability in this respect can be seen as a form of satisfiability test which can
be used to determine if it is possible for a particular concept in the TBox to have members of a
general ABox. If it is not the case, this concept is unsatisfiable, this means that regardless of the
ABox it will not possibly contain any members because of its concept definition. The second
form of reasoning on the TBox, subsumption reasoning, further may be used to determine if a
particular concept can be inferred to be more general than another concept. This way, a hierar-
chical conceptualization of terms can be automatically created. With respect to the ABox, two
more reasoning tasks can be identified which are consistency checking and instance reasoning.
Consistency reasoning validates if the assertions in an ABox are consistent with respect to a
particular TBox [14]. Finally, instance reasoning may be used to infer if an instance is member
of a particular concept.
The complexity of a language from the Description Logic family depends on the use of certain
logical constructs and therefore can serve as measurement of its expressiveness. Complexity in
this respect is important considering reasoning on a Description Logic-based vocabulary: a log-
ical reasoning algorithm has to support the expressiveness of the model to be able to deduce all
possible inferences. Further, with a more complex Description Logic, naturally the reasoning al-
gorithm that operates on the logic also becomes more complex and in turn takes longer to finish
its deduction tasks. For a complete coverage of Description Logic complexities and associated
constructs the interested reader is referred to [14].

2.4 Ontologies

Ontology in philosophy is known as the science that describes objects, their definition and rela-
tionships between them, hence, the science of being. In the field of philosophy, Ontology1 may
therefore be seen as a research field that strives for a description of reality which is universally
valid and correct (cf. [63]). In information science, a slightly different approach is taken. As
not everything has to be represented in one single Ontology, multiple ontologies may describe

1In this case Ontology is capitalized to denote that in philosophy there can only be one single ontology that
describes the world “as it is”.

27



particular parts or views of reality. In this case, an ontology can merely be viewed as conceptual
model of a particular domain rather than a complete description of reality. The most commonly
cited definition for an ontology in information science is found in [103]:

“An ontology is an explicit specification of a conceptualization.”

This quotation characterizes an ontology as a description and classification of terms. A concep-
tualization in this case can be seen as abstraction from reality to terms that are of interest and
useful in a particular application domain. Hereby, an ontology usually only partially describes
terms and dependencies in reality through its ontological commitment. It is not necessary and in
general with respect to computing capacities also not feasible to capture reality as whole.
The explicit specification is commonly represented using a declarative formalism that in turn
allows the sharing of knowledge between different agents. In this respect, the universe of dis-
course is the set of objects that are described in a particular ontology [103]. Considering multiple
agents operating on a mutually agreed ontology, this conceptualization can further be used as a
kind of shared vocabulary, leading to a common understanding of the domain. A definition that
particularly puts ontologies into context with the field of Artificial Intelligence while also taking
into account the meaning of terms can be found in [108]:

“[...]in AI, an ontology refers to an engineering artifact, constituted by a specific
vocabulary used to describe a certain reality, plus a set of explicit assumptions
regarding the intended meaning of the vocabulary words.”

According to this definition, it is not sufficient to solely provide a classification of terms, how-
ever, it is usually also necessary to describe the relationships between terms using explicit state-
ments and thus specify their meaning. Especially when agents with different views of the world
communicate with each other this explicit definition of the meaning of terms is useful: it needs
to be possible to relate terms in the vocabulary to objects in reality (cf. Figure 2.2) and the
common ontology in this case needs to include the meaning of the term so that it is clear to all
communicating agents, which real-world item a particular term refers to. In other words, with
respect to Figure 2.2 the representation of meaning in an ontology facilitates the transition from
symbol (i.e., term) to object (i.e., item).
In this context, also the term ontological commitment again needs to be mentioned [103]: onto-
logical commitment describes how terms in the ontology are related to each other and this way
can be used to express the meaning of terms in the ontology. The ontological commitment may
be viewed as constraints that are imposed on a concept in the ontology necessary to identify it
as a representative for a particular thing in the world. It is desirable to use the least ontological
commitment possible to support knowledge sharing between the associated actors to assure the
broad applicability of the definitions in the ontology [103].
The article [118], finally gives a definition that puts the term ontology in relation to the Semantic
Web (cf. Section 2.4.1), one of the application areas that significantly contributed to the recent
popularity of ontological knowledge representation:

“Ontology is a set of knowledge terms, including the vocabulary, the semantic in-
terconnections, and some simple rules of inference and logic for some particular
topic.”
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When it comes to the realization of ontologies, there exist several, mainly logical, languages
that can be used. The reason for the prevalence of logical languages lies in their unambiguity,
what leads to a simpler exchange of models and the possibility for logical inference [232]. One
example of a logical ontology language is the Knowledge Interchange Format (KIF) which has
its basis in predicate logic and was created to exchange knowledge between computer systems
in a machine-readable format. With respect to ontologies it is mainly used as SUO-KIF in the
context of IEEE Standard Upper Ontology (SUO) [227]. Another language for representation
of knowledge in ontologies is Frame Logic (F-Logic). F-Logic also bases on predicate logic
but extends it with constructs that facilitate the representation of object-oriented concepts (e.g.,
classes, inheritance) [232]. Finally, also the family of Description Logics can be used to define
ontology languages. As already mentioned in Section 2.3, Description Logic can be seen as
subset of predicate logic and as such achieves computational decidability with respect to logical
reasoning. DL further provides a strict separation of classes and objects (i.e., terminological
and assertional knowledge) and thus can be regarded as fitting for representing knowledge in
ontologies, where also a separation of general and instance knowledge is needed. Nowadays,
one of the most popular ontology languages that is capable of representing knowledge with the
help of Description Logic is the Web Ontology Language (OWL) which is one of the languages
defined for the so-called Semantic Web (cf. Section 2.4.1).
The author of [102] further describes the difference between an ontology and a knowledge base:
the purpose of a shared ontology is usually to describe the vocabulary of a domain while a
knowledge base may include more information about solving problems or answering queries.
This means, usually a knowledge base is built for a particular application and often exclusively
useful in the context of this very application. An ontology otherwise should be defined so that it
describes things in reality in a more general way, making its definitions as general as possible.
With the broad adaptation of ontologies in the Semantic Web, they are increasingly specified
for particular applications and as such are too detailed with respect to this definition [216]. In
this context, a classification of ontologies into different types has been identified in [107] which
is further discussed in Section 4.1. As the ontology designed in this work is mainly focused
on a particular application domain, the terms knowledge representation, knowledge base and
ontology are subsequently used interchangeably.

2.4.1 Semantic Web

To describe knowledge as ontology in an information system is gathering importance in infor-
mation science and Artificial Intelligence not least because of its application in the upcoming
Semantic Web. The vision of a Semantic Web was first defined by Tim Berners Lee as a web
in which computers become capable of analyzing content, relationships and actions between
people and between computers [26]. As such, it may be seen as an extension of the World Wide
Web (WWW) in a way that the information stored on the web can be annotated with metadata
describing the meaning of the represented data in a machine-readable form. Available informa-
tion should be equally interpretable for humans and machines and allow software agents to carry
out sophisticated tasks on behalf of users on the web [27]. To realize the vision of the Semantic
Web it is therefore necessary to build models that describe relationships between terms. Several
standards have been developed by the World Wide Web Consortium (W3C) to facilitate the for-
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mal description of information, and thus the generation of such models. Each standard defines
a set of properties which can be used to structure and give a meaning to relations between data.
With a grounding in computational logic and defined standard relationships, further, automated
reasoning may be performed on the metadescription of data and thus an understanding of con-
text as well as relations between information sources can be reached. Ontologies are used in the
Semantic Web to describe relationships between data and as such represent knowledge.
Concerning information, one can generally distinguish between complete and incomplete knowl-
edge about the described domain. A relational database usually adopts the closed-world assump-
tion: Any data, that is not explicitly mentioned in the database is supposed to be not existing and
thus a query for information that is not existing in the database evaluates to false. In contrast,
there exists the concept of the open-world assumption (OWA): using this principle, if data is
not explicitly mentioned, it may not be derived that it does not exist, however, its existence is
merely unknown. This assumption is also used in the Semantic Web and the underlying De-
scription Logic. Especially considering the World Wide Web as open and distributed system
this assumption is reasonable, as new, yet unknown items may emerge anytime. A knowledge
formalism used to describe an ontology in this context cannot expect all entities that exist to also
be actually available and needs to facilitate inferences based on incomplete knowledge. On that
account, if some element or relationship is not available in a particular vocabulary, it cannot be
safely inferred that this statement does not exist at all: it could be possible that it is only not
known to the current model at the present point in time, however is still present in another part
of the web.
The Semantic Web stack as shown in Figure 2.3, pictures different languages for semantic
knowledge representation on the World Wide Web. As a basis for the Semantic Web it shows a
layer consisting of Uniform Resource Identifiers (URI) and Unicode. A URI is a global refer-
ences to a resource on the web and provides unique naming and identifiers for resources on the
web while Unicode assigns a unique number to every character making it possible to express
the character regardless of the used system or language. Similar to the concept of primary keys
in conventional databases, the URI as name of an entity on the web facilitates the unique iden-
tification of a resource in the Semantic Web. The XML language bases on URIs and as a very
popular data-exchange language of the web is considered to represent the Semantic Web on the
syntax level. XML can therefore be seen as one of the possible serializations of higher-level
Semantic Web languages while XML namespaces are adopted to abbreviate names of resources
and facilitate easier management of resource names. The first layer that adds meaning to the
description of data on the Semantic Web is the RDF Core layer basically including the Resource
Description Framework (RDF) language. A schema as well as an ontologies layer further repre-
sent standards that are used to describe the semantics of data on the web. The rules layer includes
logical rules and the definition of a uniform rule format that needs to be defined in order to reach
more semantic expressivity as well as higher levels such as trust and proof. As addition to the
original Semantic Web stack attention also needs to be given to the associated query layer which
builds on top of the RDF Core layer and defines how to extract information from the Semantic
Web. The higher layers of the Semantic Web stack, trust and proof are still an active field of
research and no recommendations by the W3C exist to date.
It is vital for the understanding of this work to provide a short overview of existing W3C stan-
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Figure 2.3: Semantic Web stack by the W3C [255], originally proposed in [25]

dards, and the type of information and knowledge these standards can express. The following
sections describe technologies for different semantic layers based on information found in the
standards’ documents as well as the books [116], [4], [94], [63]. The focus of the language fea-
ture elaborations only lies on constructs relevant for the created ontologies presented in Chapter
4. A thorough description of all language capabilities can be found in the corresponding W3C
standards.

RDF - Resouce Description Framework

When looking at the Semantic Web stack in Figure 2.3, the first and basic layer with respect to
semantic interoperability is the Resource Description Framework. Originally RDF was designed
to model metadata for XML documents (i.e., web resources), however, it was discovered very
suitable for modeling real world relationships soon thereafter [236]. The RDF standard [249]
was then developed to structure information and represent knowledge on the World Wide Web.
As such, basically, RDF may be seen as data modeling language.
When breaking down a graph to its atomic elements, the basic building blocks are nodes and
edges. Two nodes connected via an edge can in further consequence be interpreted as triples.
RDF is designed to represent information in triples that follow an subject-predicate-object scheme
(cf. Figure 2.4): A subject (rdf:subject) in this case is the entity that is being described.
This resource is connected to an object (rdf:object) via a relation known as predicate
(rdf:predicate). If several triples are connecting elements, an RDF instantiation may be
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Figure 2.4: Example of an RDF triple

viewed as directed and linked graph. RDF differentiates between two types of elements, that
can be connected via predicates which are resources and literals. RDF resources defined by the
element rdf:resource are items in the world of interest, which may be web resources, but
may also be things in the real world. Literals are lexical representations of values and may be
plain strings with an optional language tag or typed, i.e., combined with a datatype URI [252].
Nodes in RDF are identified using URIs (cf. Figure 2.4) which facilitates the unique identifica-
tion of a resource on the WWW. For that reason, other than in XML, the nodes referred in RDF
triples do not necessarily have to be within the same document but may be located elsewhere on
the WWW. A connection between different RDF graphs can this way be accomplished by refer-
ring to common elements identified through a single URI [4]. This way, an RDF triple graph
may be seen as a special case of a semantic network. Further, agents operating on RDF may
refer to the same resource by simply agreeing on a common URI for that resource. Anonymous
nodes, hence, resources without associated URI are called blank nodes. For illustration purposes
and brevity, XML namespaces are usually utilized to create a concise representation of resource
URIs.
RDF defines a property for describing relationships named rdf:type which can be used to
group entities that belong to the same type. For example, with respect to the example shown in
Figure 2.4, it would be possible to describe concrete sensor values with a triple connecting them
to the TemperatureValue resource element through the rdf:type property (cf. Listing
2.1).

Listing 2.1: Example of an RDF triple modeling a specific temperature value to be of type
swo:TemperatureValue.
swo:TVal_20131127_0803h rdf:type swo:TemperatureValue

There exist different formats to represent the RDF language, so-called serializations. A com-
monly used form to describe RDF in the context of web-based applications is the RDF/XML
syntax [251] which makes RDF readable for XML parsers. The popularity of this RDF seriali-
sation stems from the intrinsic feature of most web-based systems to support the read or write of
XML syntax. A disadvantage of this syntax is however, that RDF/XML is verbose and therefore
the structure of the underlying RDF graph is often obfuscated and difficult to comprehend for
the human observer. Otherwise, human-readable RDF serialization is the RDF/N3 notation: this
format is a more compact way to represent RDF than the RDF/XML while still relying on the
same abstract RDF model and therefore remaining machine processable. While the possibilities
of N3 surpass the capabilities of RDF, there exists a subset of this language, the Terse RDF
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Triple Language (Turtle) which is a popular format to express RDF models in a concise and
readable form. Turtle is currently a Candidate Recommendation of the W3C (cf. [264]) and is
expected to become a fully accepted standard in the near future. In this work, the RDF code
examples are usually illustrated using Turtle while falling back on RDF/XML in some cases.
Physically, an RDF graph may be represented as a single file, or kept in an RDF triple store
which is used to manage a great amount of triples. With this respect, a triple store can most
likely be compared with a Relational Data Base Management System (RDBMS) while however
information representation in a triple store is usually optimized for RDF data. Additionally to
the capability of storing RDF data, triple stores often also provide the possibility to query for
data through a query interface or support reasoning on information in case a more expressive
form of RDF is stored. As a backend, a triple store may use a conventional RDBMS, however,
by this time also storage backends tailored to the representation of RDF triples are available2.
Summarizing, RDF may be seen as the syntax for the meaningful description of resources on
the web. To interpret this syntax, it is necessary to further define a set of rules of how these
resources may be combined with the help of a common vocabulary for logical dependencies.
With such an extension of the RDF vocabulary, an ontology of resources throughout the World
Wide Web may be created. To describe ontologies based on RDF, therefore, more expressive
languages are needed, defining additional relationships and providing advanced possibilities to
characterize resources. The W3C standardized ontology languages for this task are entitled Re-
source Description Framework - Schema (RDFS) and Web Ontology Language and the main
language features necessary to create formal and expressive conceptualizations are elaborated in
the following sections.

RDFS - Resource Description Framework Schema

The RDF Schema standard [250], can be seen as framework that adds capabilities to express
the meaning of resources in an RDF graph. For that reason, this language defines concepts to
describe the semantics of the subject-predicate-object triples of the RDF language. The defi-
nition of the schema itself is again realized as RDF graph, hence, no additional representation
format is needed: metainformation for single RDF elements is simply added through triples
using standardized relations and definitions from the RDFS vocabulary postulating a specific
meaning. The language elements are described thoroughly in the RDFS standard which, as a
common, standardized vocabulary allows a first set of inferences about relationships between
RDF resources contributing to the understanding of the intent of a particular RDF element.
Most importantly, RDFS defines constructs to structure RDF triples in a hierarchical way and
form a taxonomy. Therefore, it firstly provides the class rdfs:Resource which may be seen
as the class of all things that are represented in the schema. Each RDFS class is connected to
this class either directly or indirectly via a rdfs:subClassOf relation. To define a class, the
RDF Schema provides the rdfs:Class element. A class in this respect can be seen as a set of
instances which are rdf:resources of the same type. This class-to-instance relation is rep-
resented with an RDF triple connecting the class name with the resource through an rdf:type
relation. Further, RDFS allows to define properties of classes which can be seen as instances of

2Jena TDB: http://jena.apache.org/documentation/tdb/
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Table 2.3: Summary of important RDFS Language Constructs (excerpt)

RDFS construct Description
rdfs:Resource Class of all resources described in an RDFS vocabulary.
rdfs:Class Class of all RDF classes.
rdf:Property Class of all properties.
rdfs:Literal Class of all literal values.
rdfs:Datatype Class of datatypes.
rdfs:subClassOf Subclass relationship between two classes.
rdfs:subPropertyOf Subproperty relationship between two properties.

rdfs:range
Describes the type of the object in the triple connecting two
resources through a property.

rdfs:domain
Describes the type of the subject in the triple connecting two
resources through a property.

rdfs:label A human-readable short description of a resource
rdfs:comment A human-readable long description of a resource

a class rdf:Property [249]. Like classes, properties again can be related with each other by
the rdfs:subPropertyOf relation: subproperties can be seen as specializations of super-
properties and allow to represent more complex, hierarchically ordered relationships between
classes. Properties can describe instances of an RDFS class in more detail and for this reason
may have a domain and a range restriction, another important mechanism introduced by the
RDFS vocabulary. The rdfs:domain restriction can be used to define a set of classes for a
property. Each resource being at the subject position and using this property can then be inferred
to be a member of these classes. The rdfs:range further describes the type of the values of
a property: as with the domain statement, the range of a property allows to infer the type of
resources connected through this property while being at the object position of the triple. RDFS
further defines a class to describe simple literal values, rdfs:Literal, whose elements may
be plain values or typed by being members of the rdfs:Datatype class. A summary of the
most important language constructs of RDFS can be seen in table 2.3. Summarizing, RDFS al-
lows the definition of a simple ontology providing different types of relationships among terms.
With the application of the RDFS language, also first logical inference (reasoning) becomes
possible.

OWL - Web Ontology Language

If more complex relations like existential and universal restrictions between classes or cardinal-
ities of relations need to be expressed, the schema of RDFS does not suffice as this language
only provides a limited set of constructs to semantically describe the concepts of a domain. To
further detail classes and relations defined in RDFS, therefore its extension the Web Ontology
Language [258] can be used. OWL is defined as a description language to represent meanings
of resources on the World Wide Web and facilitates information integration and sophisticated
reasoning on represented knowledge. Based on RDF and RDFS, OWL again uses triples for
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data representation and supports the whole RDF/RDFS vocabulary, while extending it to model
expressive semantic descriptions of concepts. The following paragraphs explain the different ad-
ditional constructs and their relationships according to elaborations in the W3C OWL language
reference (cf. [258]).
Also in OWL, there exists the concept of classes for which the owl:Class construct is pro-
vided. Members of an OWL class are entitled individuals and the group of individuals belonging
to a specific class can be described by class descriptions that are used as basic building blocks
to form a class axiom. OWL differentiates between necessary and sufficient restrictions that can
be used to describe a class axiom. A necessary class restriction is a restriction that may be used
to further describe the properties of individuals stated to belong to this class. This means, that
members of the class have to fulfill the necessary restrictions so that the modeled ontology re-
mains consistent. Otherwise, sufficient class restrictions may be used to determine membership
of a class and in this respect to assign individuals to classes according to their properties and
relationships to other classes. Necessary restrictions are modeled by an rdfs:subClassOf
relation: this way, the class axiom allows to define the described class as subclass of the anony-
mous class of individuals identified by the necessary class axiom. Sufficient constraints are
defined by the owl:equivalentClass construct, and as such all members of the anony-
mous superclass represented through the equivalence constraint can also be seen members of the
defined class. These relations can be used to apply automated class membership reasoning for
individuals which becomes possible for classes described with the help of a class axiom includ-
ing at least one sufficient class restriction. This distinction mainly leads to two different types of
classes in an OWL ontology, primitive and defined classes [125]: a primitive class is described
by subclass axioms that may be used to manually create hierarchies or specify property relations
of the particular class. The specification of a defined class otherwise includes an equivalence
axiom and allows the reasoner to classify other concepts as subclasses as well as to reason about
individual membership.
In contrast to RDFS, in OWL a class may be represented in several ways. According to the
W3C OWL standard, there exist six types of class descriptions [248]: firstly, a class identi-
fier can explicitly name a class by URI, the same way as a class is identified in RDFS. Fur-
ther, a class can be described using an exhaustive enumeration (owl:oneOf) of instances
of a class, thereby explicitly stating the individuals that belong to it. Another possibility is
to describe a class by property restrictions, i.e., the membership of an individual to a spe-
cific class is defined by limiting relations to other classes and datatypes. Possible restric-
tions are firstly split into value and cardinality restrictions. Value restrictions can be realized
by the constraints owl:someValuesFrom, owl:allValuesFrom and owl:hasValue
and generally allow to restrict the relationship to individuals of other classes. In this case,
owl:someValuesFrom represents the relation where each individual belonging to the de-
scribed class needs to have a relation to at least one member of the connected class. This
statement therefore represents the existential quantifier in predicate logic. The second value con-
straint is the owl:allValuesFrom construct: it denotes that all relations modeled with such a
restricted property have to link to a particular class. For example, if an individual of the described
class (subject) has a relation through the restricted property (predicate), the associated individual
(object) has to be of the class type that is described in the owl:allValuesFrom relation. On
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that account, this OWL statement is the equivalent of the universal quantifier in predicate logic.
Cardinality constraints in OWL allow to restrict the relations of a described class with respect
to how many relations are allowed through a particular OWL property. Cardinality in OWL
can be described using three special statements: firstly, there is the owl:maxCardinality
constraint, describing that there exist no more than the stated relations to individuals of the re-
ferred class. Further, the owl:minCardinality construct may represent the minimum of
relations needed to a certain class and its individuals. Lastly, the owl:cardinality con-
straint is the combination of the two aforementioned cardinality restrictions and may be used to
describe an exact amount of individuals connected to a class member via one specified property.
Finally, logical intersection (owl:intersectionOf), union (owl:unionOf) and comple-
ment (owl:complementOf) of classes may also be used to define new classes.
Although the unique name assumption is often postulated in logical programs, OWL like De-
scription Logics assumes a non-unique name assumption, what means that two different names
do not necessarily imply two different individuals. For this peculiarity, OWL includes special
constructs to express the relationship between items with same names which are owl:sameAs
and owl:differentFrom. Also class descriptions may be explicitly stated distinct with the
help of the owl:disjointWith statement. This way it becomes possible to represent that for
the described domain no individual in the ontology may be member of the two disjoint classes
at the same time.
OWL also provides a finer description of properties than is possible in RDF Schema by intro-
ducing a distinction between object and datatype properties. Object properties which are defined
using the owl:ObjectProperty statement in this respect are used for relating different in-
dividuals while datatype properties identified through owl:DatatypeProperty describe
relationships between individuals and data values. Also for properties connecting individuals
there are specific constructs defined in OWL allowing to logically restrict the way individuals
can be connected via the particular property. A list of these constructs together with a short
description is presented in Table 2.4. Another special relation between properties that is sup-
ported in the OWL 2 standard [258] is the chaining of properties. These so-called property
chains may be used to connect individuals via more than one property in a row. A simple prop-
erty chain can be seen in Listing 2.2: the elements of this chain are the three object properties
producesEnergy, ofEnergyType and producesEnergyType. Assuming three indi-
viduals X, Y and Z in the ontology related through the properties in a way that X is connected to
Y through the producesEnergy property and Y is connected to Z via the ofEnergyType
property, a reasoner can infer the third relation producesEnergyType, connecting the indi-
viduals X and Z directly.
The presented general information on OWL 2 reflects its utilization in this dissertation and high-
lights the constructs and statements that are needed to model the created ontologies. As OWL is
a very powerful language it certainly has more capabilities than the ones mentioned at this point
and an exhaustive discussion of the language can be found in the OWL 2 specification document
of the W3C [258].

Listing 2.2: Example property chain in Manchester Syntax for OWL 2 [259]
ObjectProperty: producesEnergyType

SubPropertyChain: producesEnergy o ofEnergyType
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Table 2.4: Summary of property characteristics in OWL (excerpt)

OWL construct Description

owl:inverseOf
The subject of this statement describes the
same relation as the object only with
interchanged subject and object individuals.

owl:FunctionalProperty

A property defined with this statement can be
used to connect an individual in the subject
slot to only one single individual in the
object slot.

owl:InverseFunctionalProperty

A property defined with this statement can be
used to connect an individual in the object
slot to only one single individual in the
subject slot.

owl:TransitiveProperty
This statement describes a transitive
relationship.

owl:SymmetricProperty
This statement describes a symmetric
relationship.

Manifestations of OWL

Observing the functions provided by OWL it can be seen that the language is designed to be
mapped to a type of predicate logic. As already mentioned, OWL is an extension of the RDF
and RDFS vocabularies and as such is capable of representing any model defined in one of these
two languages. However, using OWL with no restrictions makes reasoning on this language
undecidable. Therefore, it is necessary to define subsets of the complete language so that de-
cidability is assured and automated reasoning is enabled. For this reason, the simple extension
of the RDF(S) vocabularies termed OWL Full is usually not used. For OWL 1, the initial Web
Ontology Language recommendation of the W3C [248], two sublanguages of OWL Full are
defined, OWL DL and OWL Lite (cf. Figure 2.5). OWL DL can be seen as the most popular
incarnation of OWL which essentially constrains the language to a form of Description Logic.
This restriction brings about some essential qualities: while the limitation to FOL implies the
exclusive usage of unary and binary functions, the limitation of OWL to DL restricts it to a
decidable fragment of first-order logic and as such facilitates logical reasoning over explicitly
modeled facts with the help of automated DL reasoning engines. A stricter sublanguage than
OWL DL is OWL Lite: as a subset of OWL DL it is optimized for data processing. While OWL
DL supports all constructs defined in OWL Full however restricts their usage, OWL Lite requires
to only use specific functions in order to remain lightweight with low computational complexity
and thus provide efficient means to operate on large bulk of data. However, mainly because of
its limitations, OWL Lite is not widely used [114].
The current version of the Web Ontology Language is OWL 2 [258]. This language extends
the original OWL 1 standard with additional constructs which among other things allow the
construction of more complex logical statements resulting in the capability of describing more
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expressive forms of Description Logic than OWL 1. This latest version of the OWL standard
further defines different profiles on OWL DL to create logical subgroups of the language and
allow efficient reason on the modeled ontologies (cf. Figure 2.6). While the new version of
OWL omits the definition of OWL Lite, the sublanguages of the initial standard OWL 1 DL and
OWL 1 Lite may also be seen as profiles of the OWL 2 DL vocabulary [260]. All of these pro-
files put syntactic restrictions on OWL 2 DL to lower the computation complexity and this way
make the language more suitable for certain applications. The OWL EL profile, for example,
is appropriate whenever an ontology includes very large class and role hierarchies however the
amount of used OWL features is limited [122]. This profile is especially useful in the biomedical
domain where ontologies often span several thousands of concepts and properties. Further, OWL
QL is designed for applications involving large amounts of data. Therefore this sublanguage is
especially suitable for tasks involving the representation of data that has originally been stored
in databases or the integration with conventional relational database systems. As a third variant,
OWL 2 provides the profile OWL 2 RL which is especially designed for further knowledge de-
scription and reasoning with a rule language. This way, it should become possible to use OWL
also in systems with rule-based inference and furthermore facilitate the interoperability between
knowledge representation languages [122]. As such, this profile puts additional syntactical re-
strictions on OWL DL to be as expressive as possible while allowing inference to be realized
with a rule processing system (i.e., a rule-based reasoning mechanism) [116]. The ontologies
constructed in this work are OWL 2 DL ontologies that are not restricted to a particular profile
in order to use the full expressivity of the language. Therefore, whenever OWL is mentioned, it
is actually referred to the OWL 2 DL vocabulary.

Semantic Web Rules Support

While using OWL for description of content on the Semantic Web leads to a significant im-
provement of machine-interpretability and machine-independent formulation through an expres-
sive logic-based language, there still exist limitations. For that reason, rules may be seen as a
complementary addition to the constructs of the OWL standard to overcome limitations in ex-
pressivity and make the language more versatile, especially with regard to describing properties
and their characteristics [126]. A rule extension of OWL can further be seen as bridge towards
F-Logic-based ontology languages [121] supporting the integration of ontologies described in
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either of these approaches.
Although there exists a variety of different rule language incarnations for OWL, one of the most
important and widely used is the Semantic Web Rule Language (SWRL) [253]. An example of
an SWRL rule is illustrated in Listing 2.33. The example rule is a simple chaining rule which
similarly to a property chain allows the reasoner to infer the isParameterOf relationship
found in the rule head in case restrictions in the rule body are met. Statements like ?a describe
variables which can be seen as placeholders for concrete individuals. According to [126], SWRL
rules are an addition to OWL based on OWL DL and Horn clauses extending OWL in a syntac-
tically and semantically coherent manner by describing rules as additional OWL axioms. Horn
clauses represent implication rules consisting of a rule head and body [116]: the rule body in
this case is the condition that needs to be met so that the implication modeled by the rule can
be drawn. The rule head further describes the conclusion that can be inferred. An SWRL rule
may thus be seen as a simple ”if“ statement in a programming language. In order to preserve
the quality of automated reasoning, a logical rule system for OWL DL naturally also needs to
take decidability into account. So-called DL-safe rules allow the description of complex rela-
tionships between entities in the ontology without losing the property of decidability [169].

Listing 2.3: Example SWRL rule which has a number of statements in the rule body and a single
property as rule head.
isParameterOf:

Absorptance(?a1), Building(?b1),
Construction(?c1), Space(?sp1),
Surface(?su1),
containsSpace(?b1, ?sp1),
hasDefinedAdjacentSurface(?sp1, ?su1),
hasDefinedConstructionType(?su1, ?c1),
containsAbsorptance(?c1, ?a1) -> isParameterOf(?a1, ?b1)

Because of the variety of different logical rule languages for the Semantic Web and no fully
agreed-upon standard, recently the Rule Interchange Format (RIF) has been developed: RIF is
proposed by the W3C as standard to exchange logical rules between different rule systems and
languages [262]. As such, RIF may be seen as a part of the rule layer in the Semantic Web stack
(cf. Figure 2.3) describing interoperability for Semantic Web implementations using different
rule languages. RIF covers production rules and logical rules at the same time and as such
facilitates the modeling of business processes in combination with OWL ontologies. Although
this layer of the Semantic Web stack is not yet as thoroughly researched, developed and accepted
as the other described W3C standards, it is expected to gain importance in the future.

Reasoning and Inference in the Semantic Web

Reasoning with respect to knowledge representation allows extending explicitly stated informa-
tion with knowledge that is implicitly found in the semantic description of modeled facts. While
in conventional database systems, the implicit relations between elements in the database are

3In this work, the syntax presented in [96] is used for illustration of rules. This syntactic model is an extension
of the Manchester Syntax for OWL 2 [259] and allows the concise presentation of SWRL rules.
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extracted with complex queries representing a lot of the elements’ semantic interrelation, in the
Semantic Web there exists the possibility of representing this information already in the knowl-
edge store and use reasoning to make it accessible. What can be accomplished as a result is the
more expressive representation of data, information and ultimately knowledge using reasoning
to infer new dependencies between data out of a pile of explicitly stated facts. The restrictions
that are imposed on basic RDF through the ontology language levels RDFS and OWL allow rea-
soners to infer additional knowledge of entities through their definition in the ontology language.
Therefore, in order to draw logical conclusions, a richly axiomatized knowledge base is indis-
pensable. As OWL DL builds on Description Logic, reasoning can be used to make inferences
possible that are stipulated through this logic like subsumption reasoning, consistency checking,
satisfiability and class membership but also class disjointness and equality (cf. Section 2.3). A
logical reasoner in this case is a piece of software that implements algorithms which can perform
the mentioned reasoning task on the logic automatically and can in further consequence be used
to infer additional dependencies between triples in the knowledge store. Today, several different
implementations of semantic reasoners for OWL DL exist, with FaCT++ [237], Pellet [219] or
RacerPro [111] being some very well known examples. A comprehensive list of currently avail-
able OWL reasoners can be found in [261]. Most of the current Description Logic reasoners
are based on tableaux algorithms which are very successful for Description Logic reasoning.
Because of the wide variety of implementations, it differs from reasoner to reasoner which in-
ferences, hence, expressivity of DL is supported and, for example, if additionally reasoning for
rules or datatypes is available. On that account, it is highly dependent on the problem at hand as
well as the complexity of the ontology to operate on, which reasoner is most appropriate. In the
current work, the Pellet reasoner [219] is used. There were several factors that led to the choice
of this reasoner: firstly, the reasoning engine supports OWL 2 reasoning including all avail-
able constructs which is not necessarily the case for other implementations. Further arguments
for this reasoner are that Pellet provides reasoning for DL-safe SWRL Rules and is available
through an open source license4.

Querying for Data: SPARQL Protocol And RDF Query Language

Although reasoning already takes a large part of query answering from the query language, apart
from the inherent logical possibilities of the different layers of the Semantic Web stack, it is still
needed to query and aggregate data and information from triple stores, as not all facts may be
directly modeled into the knowledge store either because of brevity or because of limitations in
expressivity of the used language. To effectively extract information from an RDF triple store,
a query language is needed that is capable of querying RDF. Therefore, the SPARQL Protocol
And RDF Query Language [256] has been developed which in short is the same for an RDF
triple store as the SQL language for relational databases or XQUERY to an XML database: It
facilitates the selection of a specific group of triples from the entirety of the stored RDF triples.
As in RDF information is stored using a directed graph, SPARQL is obviously a graph-based
query language. As such it allows the definition of graph patterns that should be searched in
the graph. SPARQL provides two necessary keywords which are SELECT and WHERE: the

4Project homepage: http://clarkparsia.com/pellet
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Table 2.5: Syntactic query elements in SPARQL (excerpt)

SPARQL element Description
PREFIX Declares the namespace for elements in the query.
SELECT Determines which elements should be returned.
WHERE Query including combinations of triple patterns.

OPTIONAL
Includes further triple patterns in the query that may be optionally
available.

FILTER Allows the definition of filter conditions for the defined query.

BIND
Makes the association of a variable with a (manually defined) value
possible.

GROUP BY
Enables the grouping of result sets and the application of aggregate
functions.

ORDER BY Facilitates the ascending or descending ordering of the result.

CONSTRUCT
May be used instead of the SELECT statement to generate an RDF
graph as result.

ASK
May be used instead of the SELECT statement to return a boolean
answer as result.

SELECT statement allows to define which elements should be returned by a query while the
graph pattern itself is defined in a WHERE clause that may be extended with an optional part
indicated by the element OPTIONAL. This pattern is then searched in a given graph. Among
other functions, SPARQL may construct a sub-graph of the knowledge base as answer for which
the CONSTRUCT element is available. It is further possible to use SPARQL in order to query
multiple triple stores at once, which can be expressed in the query via the PREFIX element. As
representation syntax, SPARQL uses the Turtle [264] RDF serialization syntax.
The SPARQL query language is available in Version 1.0 and 1.1 with the newer edition signif-
icantly raising the expressivity of the language with additional keywords and capabilities. In
this work, SPARQL Version 1.1 is used to retrieve shorter queries and to also exploit newer
capabilities of the query language. Table 2.5 summarizes the most important SPARQL con-
structs that are used in this work. Initially, SPARQL was designed only for querying an RDF
store, while updating the RDF store has only been added later through SPARQL Update: this
extension provides possibilities to also update the triple store adding a vital functionality of any
query language. While the SPARQL query language has already been a W3C recommendation
for quite a while [256] the SPARQL Update extension just became a recommendation recently
[263]. Anyway, a full coverage of SPARQL would go beyond this work and the reader is re-
ferred to [116] and [68] for more information about the syntax and the usage of this Semantic
Web query language.
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2.4.2 Ontology Design Methodologies

Evaluation DocumentationIdentify purpose Building the ontology

Ontology capture Ontology coding
Integrating existing 

ontologies

Figure 2.7: Methodology of Uschold & King [242]

The design of an ontology can be supported by several methodologies while there however does
not exist a single ontology methodology at the moment which is commonly agreed. The article
[84] gives an overview of the most prominent approaches that can be found today. Among the
methodologies reviewed in this article, two are considered relevant for the present work, which
are the methodology by Uschold and King [242] and the methodology by Grüninger and Fox
[104]. Uschold and King provide guidelines for the creation of an ontology that is split into four
main steps (cf. Figure 2.7). Mainly, the presented framework organizes the ontology design
and creation process by defining a stage where requirements are captured, an ontology construc-
tion phase and evaluation as well as documentation step. Regarding the method described by
Grüninger and Fox, six stages can be identified for the specification of an ontology (cf. Fig-
ure 2.8). Ontology development is firstly motivated by scenarios described as stories or usage

Motivating scenarios
Informal competency 

questions
First-order logic: 

terminology

Formal competency 
questions

First-order logic: 
axioms

Completeness 
theorems

 

Figure 2.8: Methodology of Grüninger & Fox [104]

examples. From these examples, in a second stage informal competency questions are derived.
These competency questions are in a further step formalized with the respective logic underlying
the chosen ontology representation language to retrieve formal competency questions that can
in turn be used to define formal ontology axioms and concepts for the defined ontology. Finally,
the methodology provides an evaluation stage for the ontology specification in which the scope
and completeness of created axioms are tested with the help of completeness theorems.
At this point, also the Ontology Development 101 process [179] has to be mentioned as it pro-
poses another simple ontology-development methodology (cf. Figure 2.9). The described guide-
line is targeted at declarative frame-based systems and again describes several steps that should
be followed to successfully design and develop an ontology. While it widely follows the first
two approaches, it provides a more practical approach, describing guidelines for the actual im-
plementation of an ontology.
Although not directly used in this work, METHONTOLOGY [83] can be identified as another
popular ontology development methodology. The procedure identifies different states and activ-
ities that are to be carried out when building an ontology: as observed in [84] it differentiates be-
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tween project management activities like planning, control and quality assurance, development-
oriented activities like the specification, conceptualization, formalization, implementation and
maintenance of an ontology, and supportive activities such as knowledge acquisition, evaluation,
integration and documentation. As before, several stages are run through during ontology im-

Enumerate important 
terms

Define classes and 
class hierarchy

Ontology domain & 
scope

Reuse existing 
ontologies

Define facets of 
properties

Create instances
Define properties of 

classes

Figure 2.9: Methodology of Noy & McGuinness [179]

plementation covering certain activities. The methodology follows a life cycle centered around
evolving prototypes, facilitating the growth of the ontology according to its needs [83].
As none of the just mentioned methodologies is predominantly used for the development of on-
tologies, often also methodologies covering different aspects are combined to fully describe the
ontology design and construction process [43]. This dissertation follows an approach combining
ideas and elaborations from several mentioned approaches. The process generally follows the
guidelines described in [242] and therefore the shown workflow of the first mentioned source
(cf. Figure 2.7) is used as a framework for the following ontology development process:

• Identify Purpose: Firstly, as already mentioned, it is typically necessary to motivate the
creation of the ontology and describe its future use. As the ontology is created in the
context of a smart home system, its purpose can straightforwardly be retrieved from an
initial requirements analysis of the system. For this reason, the use cases discussed in this
chapter are identified as the first stage of the followed ontology development methodol-
ogy. Corresponding stages from the methods described in [104] and [179] are taken into
account as well and informal competency questions are extracted from the initial smart
home use cases that further can be used to identify the purpose and determine domain and
scope of the created ontology.

• Building the Ontology: The second stage in this methodology is concerned with the
creation of the ontology, and according to [242] is split into the three subgroups ontol-
ogy capture, ontology coding and integrating existing ontologies. In the ontology capture
phase the identification of key concepts, their description, associated terms and the rela-
tionships between different concepts have to be defined. Further, the step ontology coding
is related to the representation of these identified concepts in a concrete ontology lan-
guage, e.g., the Web Ontology Language. The last part of this methodology phase is the
integrating existing ontologies step which is concerned with the evaluation of different al-
ready defined ontologies for reuse and integration in the newly created conceptualization.
In this dissertation all three substeps of this phase are covered in Chapter 4.

• Evaluation: In [242] not much information is given about the evaluation step. In the
present work, evaluation is based on requirements and competency questions. Compe-
tency questions may act as frame of reference to assess the capabilities of the created
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ontology [98]. For this task, the questions that are identified in the requirements analysis
are classified according to their generality (i.e., stratified [104]). As a further evaluation
step, the natural language competency questions are represented formally with the help
of Description Logic queries and the SPARQL query language and it is shown how these
questions can be answered with constructs defined in the created ontology. A detailed
analysis is provided in Chapter 5 which corresponds to the evaluation phase of the pur-
sued methodology.

• Documentation: This final step is also covered in Chapter 4: besides describing design
decisions and the detailed analysis of the concepts and their relationships it also highlights
the usage of the main concepts of created ontologies and gives examples of possible fields
of application. Therefore, the documentation step is implicitly provided by the exten-
sive description of the ontologies’ main elements and relationships in the part covering
ontology specification.
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CHAPTER 3
Ontology Requirements Analysis

In order to identify the requirements of the envisioned smart home system, it is necessary to
capture its functionality. In complex technical systems, use cases are common means to gather
information about requirements and functionality. In [52], the following definition of a use case
can be found: “A use case is a description of the possible sequences of interactions between the
system under discussion and its external actors, related to a particular goal”. Used as a first
concrete document of a project, a use case therefore creates a clear and concise view of a system
and its functions without explicitly defining the internal structure. It thus allows to describe the
system for a variety of stakeholders and other interested parties that do not necessarily need an
extensive technical background in order to understand the dependencies and scenarios described
in the use case. The focus of these documents further lies on specifying the behavior of a system
with regard to actions executed by an actor. After definition and implementation of the system
under discussion, previously defined use cases may additionally be utilized to validate it and
ensure that the system meets the postulated requirements.
Considering the smart home system including the multi-agent system and the knowledge base
as system under discussion, the actor that interacts with it may certainly be human. However,
when particularly focusing on the smart home knowledge base, often another subsystem like the
agent system or also time may be identified as actor. This peculiarity regarding use cases results
from the system’s proclaimed autonomous and proactive behavior.
According to [214], there are different presentation styles for use cases that reach from informal
textual descriptions to pseudocode form. In [52], two styles are especially emphasized, termed
as “casual” and “fully dressed” use cases. Casual style use case descriptions are written in sim-
ple paragraphs and describe the dependencies in full sentences allowing to easily read through
the use case descriptions written as continuous text. While the casual style may not completely
present all conditions that need to be taken care of, it generates a general definition of a use
case’s focus and usage. On the other hand, fully dressed use case descriptions illustrate the use
case in a more rigorous way using formal templates for use case description and pointing out
trigger conditions, pre-conditions and other template header information [52]. The author of
[52] does not favor one over the other description and presents both types of use case represen-
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tations as equally reasonable depending on the situation in which they are used: while the size of
the project may indicate one particular form also the stage of project development may advocate
one representation over the other.
Regarding ontology development, use cases may be compared to the initial step of the method-
ology described in [104], i.e., motivating scenarios. These scenarios clarify why an ontology
is needed in the described context and allows the definition of a set of queries that need to be
answered by the ontology. These queries that can be found as initial step of most reviewed ontol-
ogy design methodologies (e.g., [104, 242, 179]) are termed competency questions. According
to a definition provided in [241], competency questions may be considered expressiveness re-
quirements in the form of questions that are derived from motivating scenarios, i.e., use cases.
In other words, the motivating scenarios are broken down to a set of questions that the defined
ontology needs to be able to answer. On these grounds, competency questions denote valuable
means of evaluation prior a system’s complete implementation to assess that an ontology satis-
fies the requirements of a particular operational area.
The method described in [104] further suggests a layered approach when defining compe-
tency questions with lower-level questions acting as foundation for higher-level questions. The
methodology described in [179] also proposes competency questions as a starting point when
developing a new ontology. According to this approach, competency questions do not have to
completely cover the domain to be modeled and mainly serve as a pointer to important concepts
that need to be described in order to cover a particular field.
As a first step to describe the requirements of a smart home knowledge base, therefore, general
use cases for a smart home system are considered. In further consequence, from general smart
home use case scenarios, competency questions are obtained that are considered a first require-
ments description for the ontology to be defined. In Chapter 5, these competency questions are
then again used to evaluate the designed ontology and ensure that the postulated requirements
for a smart home knowledge base are met. The following sections list the derived questions
with the respective use cases they can be associated with. Afterwards, a grouping of identified
questions into particular domains of interest is presented in Section 3.2. This grouping can be
seen as the first step of the ontology development process determining the domain and scope of
an ontology, as described in [179].

3.1 Use Case Scenarios

The general smart home use cases presented in this chapter have to a large extent been devel-
oped as a requirements analysis for the ThinkHome project (cf. Section 1.2). Other works that
emerged from that project, particularly [199], already extensively cover this general set of smart
home use cases with respect to general system functionality. As this analysis was jointly con-
ducted with the author of the present dissertation, in this respect necessarily some content of the
two works overlaps. However, while in [199] the use cases are presented as “fully dressed” rep-
resentation, in the work at hand that level of detail is not necessarily needed. Therefore, to keep
the elaborations concise, the “casual style” describing single use case scenarios as paragraph
style textual descriptions is used in the following sections. This type of presenting the scenarios
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is also consistent with the initial step of describing usage examples as proposed in the ontology
development methodology of [104]. The scenarios are further used to identify competency ques-
tions in order to specify an ontology as knowledge base for the envisioned smart home system.
The concise description just outlined is sufficient for the creation of a knowledge base, as the
focus is the representation of knowledge for a smart home system rather than a steady system
operation that has to cope with different error scenarios. The main outcome from the require-
ments analysis for an ontology are therefore the competency questions which particularize its
needed functionality and can be directly retrieved from the described scenarios. For a detailed
smart home use case discussion in the context of the ThinkHome system architecture focusing
on a multi-agent-based control system, the reader is referred to [199].
The casual use case type described in [52] provides use case name, scope, level, context and
primary actor as main fields. The name of the use case describes what has to be accomplished
and as such can be seen as the goal to be reached. At the start of every use case investigation
stands the scope analysis that describes what is inside the system and needs to be cared about
and what is outside of the system and has to be interfaced with [214]. These boundaries can be
found when actors in the system are identified. Therefore, as a first reference point a primary
actor needs to be provided. There may be additional stakeholders and actors apart from the
primary actor, which are however not necessary for the interaction of the knowledge base with
the multi-agent system. Actors may be anything that interfaces with a system and as such can be
people, other software or hardware devices as well as networks or data stores [214]. As already
pointed out in the introduction of the ThinkHome project (cf. Section 1.2) the system is split
into two main system parts, the multi-agent and the knowledge base system. Both parts can be
seen as “system actors” while also other system and non-system actors (e.g., actuators, sensors,
inhabitants, time) may exist. According to the proposed system architecture, the only part that
interfaces with the ontology is the multi-agent system and therefore can be seen as primary actor
for the knowledge base with regard to the presented use cases. The context of a use case further
describes its usual function and occurrence in the process flow of the system and how the partic-
ular case contributes to the achievement of global system goals.
The goals of use cases may be ordered on different levels: the level defines where the present
scenario can be found with respect to its generality or detailedness. Three different goal levels
are identified in [52], which are subfunction, user goal and strategic level. Use cases found at the
subfunction level involve goals that lead to the achievement of a more complex user-goal-level
use case. In this respect, competency questions may be seen as subfunction-level use cases as
they represent requirements for the knowledge base that need to be fulfilled to reach a particular
user goal. Further, a user goal is an elementary task that the primary actor wants to be performed
by the system. A sufficiently large number of user-goal-level use cases can be seen satisfactorily
to fully describe the functionality of a system. Higher level use cases are called strategic use
cases and are composed of several user-level goals. Strategic use cases mainly show the context
in which system services have to operate while representing an outline for lower-level use cases
[52].
For the present purpose, user-goal-level use cases are of main interest in order to describe mo-
tivating scenarios for the development of a smart home ontology. While in the course of the
requirements analysis for the ThinkHome system also two strategic use cases have been defined
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(i.e., assure energy efficiency and user comfort, cf. [199]), in the context of accumulating re-
quirements for a smart home knowledge base, these use cases are not of immediate importance
as no additional competency questions arise from the consolidation of user-goal-level use cases.
For this reason, only user-level use cases are discussed at this point.
The following definitions of scope, level and primary actor are generally valid for all presented
use cases and therefore mentioned only once:

Scope: Knowledge base (KB) subsystem
Level: User-goal level
Primary Actor: Smart home system/multi-agent system (SHS)

The use cases are consecutively numbered with the prefix TH standing for ThinkHome. Com-
petency questions are listed in the order they can be extracted from the use case description.

3.1.1 Use Case: TH01 - Assure Air Quality

Context of Use

The smart home system (SHS) automatically preserves the air-quality in a building.
It periodically receives the current air quality from the automation system and val-
idates it against reference values derived from common standards (e.g., the Amer-
ican Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
[5]). In this context, the SHS also evaluates if user-defined air quality preferences
exist and uses them. When air quality drops below health or manually defined
comfort standards, the SHS retrieves means to reach a better air quality from its
knowledge base (KB). From this variety of facilities and processes, the SHS chooses
the most energy efficient process. The SHS must ensure that the selected process is
executable at the moment concerning the current internal and external world states
of the home. After choosing the best alternative, the smart home system takes care
of the execution of the actions belonging to the selected process.

Use Case Description

To preserve the air quality, the actor, in this case the multi-agent system, has to perceive the
environment. Therefore, the knowledge base needs to provide a possibility to describe sensor
values like current air quality or instantaneous occupancy in the building. After receiving a
new sensor value, the SHS has to store current sensor values in the KB. The KB further needs
to provide an occupancy schedule that informs the SHS about predicted occupancy times in
different parts of the building. For that reason, the KB also needs to model the basic layout of
the building. In case no individual comfort preference schedule exists or an unknown person
(i.e., guest) is present in the building the SHS assures that general guidelines on air quality are
met. Therefore, the KB needs to represent standard profiles and preferences following globally
recognized standards (e.g., ASHRAE Standard 55-2010). The KB further should be able to
represent individual user comfort preferences for air quality. If the SHS detects that air quality
is not within the range described in guidelines or individual comfort preferences, it needs to
choose a process that improves the air quality. The KB in this case needs to provide suitable
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processes. For a process apart from the process type the KB also has to model its associated
facilities. If more than one process to reach a better air quality exists, the SHS needs to be able
to decide which one is the most energy efficient. Therefore, the KB further needs to represent
energy properties of facilities. The SHS needs information if a process is dependent on the
weather state. Further, to let the SHS assess the exterior state, the KB needs to supply the current
weather situation and the knowledge if the sensed situation is suitable for natural ventilation.

Competency Questions

1. What is the current air quality value in room X?

2. What is the current occupancy value of room X?

3. How can a new value for sensor X in room Y be stored?

4. Which occupancy schedules exist for room X in building Y?

5. How is building X divided into spaces/rooms?

6. What is the minimum air quality that has to be assured according to standards?

7. Which user preferences can be obtained?

8. Which user preferences for air quality exist?

9. Which processes can improve air quality in room X?

10. Which facilities are involved with process X?

11. Is process X dependent on the weather situation?

12. What is the current weather situation?

13. Does the current weather situation facilitate natural ventilation?

3.1.2 Use Case: TH02 - Assure Thermal Comfort

Context of Use

The smart home system permanently and automatically aims at ensuring thermal
comfort. Again, optimal thermal comfort conditions may be achieved through con-
sidering user preferences as well as commonly agreed standards on thermal comfort
such as ISO 7730 [135]. According to the mentioned standard, there exist several
prevalent factors that influence thermal comfort, with temperature and relative hu-
midity being the ones that are generally measured and controlled. Processes that
manipulate these thermal comfort parameters like heating, cooling or humidifica-
tion are mainly energy-intensive tasks representing a great part of the entire energy
consumption of residential homes [15]. Comfort conditions are further dependent
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on the actual and scheduled occupancy and the current state of the home or a spe-
cific room. For certain control approaches, it is therefore necessary to take into ac-
count building structure (i.e., thermal inertia) and weather conditions. The Smart
Home System (SHS) periodically monitors the current temperature and humidity of
different parts of a home through the automation system. Under consideration of
current and expected future occupancy and related preferences of occupants, it ini-
tiates actions that influence the temperature or humidity in a room. In particular,
the SHS selects the most appropriate control possibility among a set of different
heating/cooling or humidification options, decides on the most appropriate point
of time to start the selected process and takes care of the execution of the actions
belonging to the selected process.

Use Case Description

When the SHS queries for optimum thermal comfort settings, the KB needs to represent guide-
lines and personal user preferences regarding thermal comfort. The SHS further evaluates at
which times comfort temperature and humidity need to be assured. The KB therefore has to
provide an occupancy schedule that informs the SHS about predicted occupancy times in dif-
ferent parts of the building. For that reason, the KB needs to represent the basic layout of the
building. For calculation of the optimum thermal comfort preparation time of different rooms,
the SHS queries for room characteristics. In this case, the KB has to return properties such as
the metrics of a room (size, volume), adjacent rooms (e.g., to take into account heat exchange),
the U-value of an adjacent wall or alternatively wall materials and wall thickness as well as
how many walls face the exterior. As soon as the preparation time to reach thermal comfort is
known, the SHS schedules the most energy efficient processes to reach the desired state. The KB
therefore needs to model the processes that can be used to change thermal comfort parameters
(i.e., temperature, humidity) in particular areas of the building (e.g., rooms, spaces). If the SHS
considers to schedule passive control strategies that do not rely on energy-intensive facilities and
involve processes like opening the window or raising the shutters it firstly has to assess if these
processes are possible. For the two mentioned processes for example, the KB has to provide the
information if there exist operable windows/shutters in a room. Then, also the representation of
current weather conditions may be necessary for the consideration of particular processes like
opening the window. Further, the orientation of a wall facing the exterior is of importance to
take into account solar heat gain when raising shutters. If the SHS recognizes a room occupancy
value change from occupied to non-occupied, it needs to know which temperature to choose as
setback temperature. In this case, the KB has to store different temperature values depending on
situations and user preferences.

Competency Questions

1. What is the standard comfort temperature/humidity?

2. What is the standard comfort humidity?

3. Which user preferences for comfort temperature exist?

50



4. Which user preferences for comfort humidity exist?

5. Which occupancy schedules exist for room X in building Y?

6. How is building X divided into spaces/rooms?

7. What is the floor area of room X?

8. What is the volume of room X?

9. Which rooms are adjacent to room X?

10. Which walls are adjacent to room Y?

11. What is the U-value of wall X adjacent to room Y?

12. How thick is wall X adjacent to room Y?

13. What are the materials of wall X?

14. Does wall X face the exterior environment?

15. What is the current state of the indoor environment?

16. What is the current temperature value for a room?

17. Which environmental parameters are influenced by process X?

18. Which processes can be used to increase/decrease the temperature of room X?

19. Which processes can be used to increase/decrease the relative humidity of room X?

20. Do current weather situation and room characteristics (i.e., controllable windows, shut-
ters) facilitate passive processes?

21. Which processes are dependent on the weather situation?

22. What are the current and near future weather conditions?

23. Does the current weather situation facilitate natural processes?

24. Does wall X have window openings?

25. Which windows of room X can be controlled by actuators?

26. Do controllable shutters exist for room X?

27. What are the dimensions of window X?

28. What is the orientation of wall X adjacent to room X?

29. What is the current occupancy value of room X?

30. What is the setback temperature for the building/a space/a room?
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3.1.3 Use Case: TH03 - Assure Visual Comfort

Context of Use

The smart home system permanently and automatically aims at ensuring visual
comfort. When rooms are occupied, the SHS compares visual comfort preferences
against the current data retrieved from the automation system and initiates adjust-
ments to lighting/shading equipment if necessary. When rooms are unoccupied,
minimum energy consumption of the lighting system is ensured by the SHS. The SHS
can obtain further information regarding applicable processes and available facili-
ties from the knowledge base (KB). To establish visual comfort, the SHS chooses the
most energy efficient control option and takes care of the execution of the actions
belonging to the selected process via the automation system.

Use Case Description

If no user preferences are defined the SHS queries the KB for recommended lighting levels
retrieved from guidelines or standards (e.g., IES Lighting Handbook [128]). If the SHS detects
the need to influence lighting conditions, the KB further needs to represent processes in the
building that are capable of this task. The SHS chooses the process that minimizes energy
required to illuminate a room for example through utilization of the current weather situation
(e.g., sunlight). If the SHS directly queries the KB for devices (e.g., luminaires, shutter) in case it
already knows the available processes, the KB has to return a facility’s description and its current
and possible states. This way it is possible to, for example, retrieve blind/shutter positions or
artificial lighting sources and their modes of operation. If the SHS directly requests a facility to
change the environmental condition, the KB additionally needs to provide the association of the
facility to a room. Each user in the smart home may have individual preference settings stored
on the facility level. In this context, it is also possible to have time-based preferences defined
for a room (e.g., different lighting scenes for different times of the day or days of the week).
Alongside manual definition it is also possible that the SHS recognizes the schedule through
previously detected user habits. As a consequence, the KB has to be capable of representing
manually defined and automatically retrieved schedules and their association with a particular
room. Occupancy representation on a room level is again necessary, so that the SHS can conduct
its energy efficiency strategies.

Competency Questions

1. Which manually defined visual comfort schedules for room X exist?

2. Which recommended preferences for lighting exist?

3. What is the current value of illuminance sensor X?

4. Which processes can be used to increase/decrease lighting of room X?

5. Which facilities are involved with process X?
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6. What is the maximum amount of energy consumed by facility X?

7. What is the current position of blinds/shutters in room X?

8. What is the current value of artificial lighting source X?

9. Which modes of operation exist for facility X?

10. Which lighting facilities are installed in room X?

11. Which manually defined comfort schedules for facility X exist?

12. Which automatically created visual comfort schedules exist for room X?

13. Which automatically created schedules exist for facility X and day Y?

14. What is the near future state of the indoor environment?

15. When will room X be occupied in the near future?

3.1.4 Use Case: TH04 - Assure Energy Optimized Operation of Household
Appliances and Entertainment Devices (Energy Consumers)

Context of Use

The smart home system optimizes energy consumption of household appliances and
entertainment devices when they are idling or not required immediately. When a
room is unoccupied, the system identifies energy consuming devices, such as hi-fi,
TV, printers that are currently unused. The SHS also verifies the occupancy schedule
of the room in question. When no occupancy is expected in the near future, the
system initiates actions to disconnect selected equipment from the power supply to
save energy. It takes care of the execution of the actions belonging to the selected
process via the automation system.

Use Case Description

Firstly, the SHS detects idle rooms and facilities and assesses if a room is expected to become
occupied in the near future. For this task, again a global notion of occupancy is essential. The KB
in this case has to represent current occupancy as well as predicted future occupancy and user-
defined occupancy schedules. If the SHS retrieves predicted occupancy or a manually entered
schedule from the KB it can assure if it is safe to turn off facilities in a room in order to save
energy. If no occupancy is expected, the SHS can turn off devices provided that they are unused
and do not need permanent power supply. Alternatively, considering energy facility control,
the SHS may use manually entered device schedules to turn on/off devices according to pre-
defined user preferences. For this case, the KB has to be able to provide user-defined schedules
on a device level. Also an automatically created device schedule may exist. If the SHS needs
to calculate the current and future energy consumption of facilities, the KB firstly needs to
provide their possible modes of operation. So that the SHS can perceive the current state of the
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environment and possible future energy savings, the KB further has to model the current state of
a device how much energy it presently consumes and how much it needs in its different modes
of operation. The SHS further needs to get available command options from the KB that realize
state changes at devices. The SHS can use the representation of the devices’ energy demands
in their different states to follow different energy strategies: if the energy demands of different
facility states do not differ too much and the device is needed again in the near future, a facility
may be put into stand-by instead of completely turned off thus ensuring user comfort. Another
precondition for the SHS to consider is if a device needs to be supplied with energy permanently
or if it can be turned off safely. This need for energy supply can be determined by the type of
the device (e.g., refrigerator) or by a previously entered user schedule (e.g., programmed video
recorder). The KB has to provide a representation of energy facilities that is capable of modeling
devices and their characteristics in the necessary granularity.

Competency Questions

1. Is room X currently occupied?

2. Which automatically generated occupancy schedule exists for room X?

3. Which manually defined occupancy schedules exist for room X?

4. Which facilities are currently consuming electric energy?

5. Which facilities can be turned off to save energy?

6. Will facility X be used in the near future?

7. Which manually defined facility/process schedule exists for facility X?

8. Does an automatically generated facility schedule exist for facility X?

9. Which modes of operation exist for an energy consuming facility X?

10. What is the current state of facility X?

11. What is the current energy demand of facility X?

12. What is the energy demand of facility X in operation state Y?

13. What control commands does facility X accept?

14. Which facilities need permanent power supply?
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3.1.5 Use Case: TH05 - Assure the Efficient Integration of Local Energy
Producers (Energy Producers)

Context of Use

The smart home system controls electric consumers in the smart home to use locally
produced energy in the best way. The scheduling process includes weather infor-
mation and required device operations to estimate when enough renewable energy
will be produced and schedules energy-intensive processes accordingly.

Use Case Description

The SHS calculates if energy consumption can be met with locally produced energy. Therefore,
apart from energy consumers, the KB needs to represent energy power plants and facilities (e.g.,
geothermal heat pumps, solar panels) that are locally available and produce renewable energy.
For energy producers, the KB has to model the maximum power output that can be achieved
but also their current energy output. Additionally, it is necessary to store the possible modes of
operation and in that regard if a facility can be turned off. In order to let the SHS calculate a
successful energy strategy, the KB further needs to supply current weather measurements and
also near future weather predictions. With these weather forecasts the SHS can schedule energy-
intensive processes at times when a maximum energy output can be expected from local energy
producers. Weather predictions may in this respect come from a local weather station or an In-
ternet weather service. As weather forecasts for predictive control need to be highly reliable, the
KB should only consider prognoses up to 24 hours into the future. The SHS subsequently can
create an operation schedule for specific devices that adheres to times when most free energy
is available by local renewable energy producers. Therefore, it is again necessary that the KB
represents energy consuming devices and their energy consumption in different states of oper-
ation. If local energy producers do not produce enough renewable energy, the SHS queries the
KB for external energy providers. The KB returns external energy providers and their energy
tariffs to give the SHS a possibility to choose the best variant to purchase energy. If local power
plants produce more energy than can be consumed, e.g., because no energy-intensive processes
are imminent, the SHS assesses possibilities to feed back the surplus on energy into the energy
grid. In this case, the KB also has to take care of recovery tariffs offered by external energy
providers.

Competency Questions

1. Which energy producing facility exist in the building?

2. What type of renewable energy is used as input by energy producing facility X?

3. What is the maximum energy output of energy producing facility X?

4. What is the current energy output of energy producing facility X?

5. Which modes of operation exist for energy producing facility X?
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6. What is the current weather situation?

7. What will the weather situation be like in the next X hours?

8. Can sunny weather be expected in the next X hours?

9. Can strong wind be expected in the next X hours?

10. Which possibilities exist to assess the current and future weather situation?

11. Which local weather stations exist?

12. Which Internet weather services exist?

13. Which modes of operation exist for an energy consuming facility X?

14. What is the energy demand of facility X in operation state Y?

15. Which operation schedule exists for energy consuming facility X?

16. Which external energy providers provide energy type X?

17. Which energy tariffs are offered by energy provider X?

18. Which feedback tariffs exist in the case that excess energy is produced?

3.1.6 Use Case: TH06 - Assure the Optimal Integration of Energy Providers

Context of Use

The smart home system aims at selecting and using energy providers that are sus-
tainable with respect to their energy production and sell energy at the lowest price.
From a range of energy providers, the SHS chooses the provider that has the most
ecological and economical way of producing energy according to its energy mix and
with respect to offered energy tariffs. Energy from this provider is then purchased
in order to satisfy the energy demand of the controlled building.

Use Case Description

The SHS usually acquires energy from a default provider however may switch the energy provider
if a better option to purchase energy is available. In this context, if an energy intensive opera-
tion is imminent and local energy providers do not produce enough renewable energy, the SHS
needs a list of external energy providers that provide the needed energy type. Therefore, firstly,
the KB needs to represent energy providers and the type of energy they provide. In the case of
electricity providers, or more general, providers that supply secondary energy, the KB further
needs to model the energy mix used to provide electric energy. This way, the SHS can choose
the “greenest” energy provider available, hence, the one with the largest percentage of renewable
energy used for secondary energy production. For this selection task, it is certainly necessary
that the KB differentiates between renewable and non-renewable energy forms.
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As a second major influence for the SHS to determine which energy provider is optimal, it is
necessary to be able to represent the most economical option in the KB, hence, the provider
with the best energy selling conditions. For that reason, it needs to cover energy tariffs and their
monetary costs. As different tariffs might exist depending on the time of the day or year (e.g.,
night/day tariff, summer/winter tariff), the KB additionally needs to describe the time a specific
energy tariff may be used, hence, its active time. This gives the SHS the opportunity to consider
different tariffs for predictive scheduling of facilities.

Competency Questions

1. What is the default energy provider for energy type X?

2. Which external energy providers provide energy type X?

3. What energy mix is used by electricity provider X?

4. Is electricity provider X a “green” energy provider, hence does it only provide energy from
renewable energy forms?

5. Which energy tariffs are offered by energy provider X?

6. What is the monetary cost of energy tariff X?

7. What are the active times of available electric energy tariffs?

8. What are the active months of available electric energy tariffs?

3.1.7 Use Case: TH07 - Predictive Operation of HVAC Services

Context of Use

The smart home system realizes predictive heating, cooling and ventilation of the
building, in case that comfort conditions can be provided without requiring notable
amounts of energy. For this purpose, environmental conditions are exploited, for
example, sunlight may be used to heat a room and cool night air to lower temper-
ature in summer. The system uses weather information (favorable conditions, such
as specific weather situations) to calculate an HVAC schedule. It favors the use of
local energy or free cooling and free heating to keep or establish comfort values in
the home. In order to use “free” HVAC mechanisms, the system may temporarily
overrule comfort parameters within predefined borders (time and range).

Use Case Description

The SHS requests different room schedules (e.g., occupancy, device usage, preference sched-
ules) to assess if predictive actions may be taken. The KB has to provide automatically created
(i.e., predicted) or manually defined schedules to the SHS. If the SHS needs the characteristics
of a particular room for its calculations, the KB has to provide these additional parameters (e.g.,
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adjacent rooms, wall thickness, space, volume). The SHS then queries for all facilities from
the HVAC domain that can be used to change a particular environmental parameter. The KB
therefore needs to offer different possibilities on how to change environmental conditions in the
room. If the SHS chooses a process that depends on the weather situation, it queries the KB
for the weather situation. The KB needs to be able to represent current weather conditions and
short-term weather forecasting. This way, the SHS can consider the current situation to work
in favor of achieving a particular goal. For example, if the SHS chooses to use solar radiation
(i.e., insolation) as positive influence factor on room heating preparation time the KB needs to
be able to identify sunny weather. With such a detected weather situation, the SHS may await
sunrise and as the sun reaches certain parts of the building throughout the day open blinds and
shutters to use solar radiation for natural heat gain. If the SHS considers natural humidification
of a room, the KB has to provide a weather forecast that predicts moist weather (i.e., fog, rain).
The need for humidification especially emerges when, for example during the winter season, the
air moisture in living spaces sinks below the comfort range as a result of space heating. In the
summer season again, the SHS can schedule a natural cooling process (i.e., night purge) that
reduces the need for energy-intensive artificial cooling of the building. Therefore, the KB needs
to identify a cool night weather situation.

Competency Questions

1. Which manually defined facility schedules exist for room X?

2. Which automatically defined facility schedules exist for room X and day Y?

3. What is the predicted value for all different parameters in room X in the next few hours?

4. The environmental conditions of which rooms will need to be changed in the near future
(e.g., according to the occupancy schedule)?

5. What is the predicted occupancy schedule for room X in the next few hours?

6. What are the building values for room X?

7. Which processes can influence parameter X in room Y?

8. Which HVAC processes can be started in room X?

9. Which facilities are involved with process X?

10. Is a process dependent on the weather situation?

11. What is the weather situation at the moment and in the near future?

12. Will there be sun for passively heating the building?

13. Does the weather situation allow passive humidification (i.e., is “moist” weather ex-
pected)?
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14. Can cool weather for passively cooling the building be expected in the next X hours?

15. Which modes of operation exist for a scheduled facility?

3.2 Ontology Dimensions of Information - Universe of Discourse

When a smart building is to be controlled autonomously by a holistic system, there are different
domains involved that influence its behavior and therefore need to be covered. A wide variety
of parameters needs to facilitate the system to apprehend the environment and act according to
prevailing conditions. Generally speaking, the more is known about the environment the system
is operating on, the better a system can control it, trying to reach the identified global goals
such as energy efficiency and human comfort. Considering the main control tasks identified in
Chapter 1, i.e., lighting, heating and cooling, ventilating and humidifying, and the plethora of
different competency questions derived from the general smart home use cases, seven dimen-
sions can be identified that are of importance to reach an optimized building operation with
regard to envisioned applications:

• Building Information. Information from architecture and building physics can be seen as
a rarely considered influence factor on building control. If the condition of exterior walls
as well as the layout of a room and its position in the building is known in advance, a
heating strategy for example can be optimized regarding the starting time when preparing
comfort conditions. This dimension therefore needs to cover information like the size and
thickness of walls, used materials and layout of the building as well as orientation.

• Resource Information. In the present application domain, resource information is con-
sidered to cover all facilities and appliances that can be found in a home. As a smart and
ubiquitous home is usually filled with devices used to sense and change the environment,
an unambiguous classification of devices is important to overcome the integration chal-
lenge mentioned in Chapter 1. In modern smart homes apart from appliances from the
building automation domain, often also entertainment and household devices as well as
local power plants like solar panels or a geothermal heat pump need to be integrated into
the control system. Therefore, this dimension has to provide information about the charac-
teristics of facilities to be found in the supervised home, where these are located, how they
function and how they can be accessed. All this information can subsequently be utilized
by the agents in combination with a concept of the control capabilities (i.e., processes) that
exist in a specific room or section of the building (i.e., zone) to autonomously operate the
environment on behalf of the user. The dimension further needs provide a classification
of a wide variety of different facilities to the system, making it easier to integrate new, yet
unknown devices into the smart home.

• Energy Information. Further, when it comes to the goal of increased energy efficiency
in buildings, it is important to cover energy-related parameters. The energy dimension
on the one hand needs to include a representation of energy parameters for facilities and
appliances in the building. Therefore, a close connection between the resource informa-
tion and the energy information dimension can be identified. On the other hand, in order
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to efficiently operate a smart home in a smart grid context, it is further necessary to de-
scribe energy related concepts that concern energy supply. Therefore, this dimension also
needs to cover energy tariffs as well as different energy providers in order to obtain an
assessment of energy that also extends outside the building itself.

• Building Processes Information. This information allows a smart system to reason about
which facilities would be appropriate for changing the situation in the building in order to
reach a certain desired state. Therefore, this dimension has to include processes that may
be started by the system autonomously as well as their effects on the environmental state.

• User Behavior Information. Another dimension needs to cover user behavior and habits.
This information is necessary so that the system can autonomously detect recurring pat-
terns and as such can act according to users, their behavior and associated usual usage of
facilities and occupation of building parts. As a consequence, regular behavior of users
needs to be represented. In this regard, also the future building context can to some extent
be retrieved by an agent in order to adjust control strategies accordingly.

• User Preferences Information. Demographic information of inhabitants is another do-
main that may influence the operation of a future smart home system, for example, to
optimize settings with regard to age and gender. Further, in this dimension it is important
to represent user preferences, i.e., settings that are necessary to create a global notion of
user-based comfort. Parameters such as preferred room temperature, noise level or light-
ing but also facility-centered preferences are among the necessary terms to be modeled.
To allow an adequate control of the building even when no manually stored preferences
are available, also the representation of standard preferences following widely accepted
comfort standards and recommendations is considered at this point.

• Exterior Influences Information. The final dimension that needs to be represented for
an advanced building control involves weather and climate influences. In this case, it is
necessary to cover the most important weather and climate parameters for a smart home
control such as wind, rain or temperature and provide definitions of different weather
conditions interesting for predictive scheduling of system tasks. In this regard, the rep-
resented information may be used to optimize building control and for example exploit
exterior conditions in favor of an energy-saving building behavior.

Considering the previously defined competency questions, a classification of questions of dif-
ferent granularities on different levels is possible. According to [104] an ontology can only be
well-defined if also more general queries are taken into account. Therefore, it is not only relevant
to define questions representing direct queries to the ontology but it is equally necessary to iden-
tify higher level questions describing broader goals. For the previously introduced competency
questions, roughly two levels are identified. While low-level questions are answered directly by
the knowledge base through a suitable query mechanism, high-level questions represent more
general queries that can be answered by combining low-level questions.
For low-level queries a mapping for each question to one of the introduced dimensions is shown
in Table 3.1. In the case of high-level questions, it makes sense to exclude them from the domain
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Table 3.1: Ontology dimensions and associated competency questions. High level competency
questions are collected in a separate class. Single questions are referred to by their respective use
case and number (e.g., TH01.01 for the first competency question of use case TH01). Duplicate
questions appearing in more than one use case have been eliminated.

Ontology Dimension Associated Competency Questions

Building Information
TH02.06, TH02.07, TH02.08, TH02.09,
TH02.10, TH02.11, TH02.12, TH02.13,
TH02.14, TH02.24, TH02.27, TH02.28

Resource Information

TH01.01, TH01.03, TH02.16, TH02.25,
TH02.26, TH02.29, TH03.03 TH03.07,
TH03.08, TH03.09, TH03.10, TH04.13,
TH04.10, TH05.01

Energy Information

TH03.06, TH04.04, TH04.11, TH04.14,
TH05.02, TH05.03, TH05.04, TH05.14,
TH05.16, TH05.18, TH06.01, TH06.03,
TH06.04, TH06.05, TH06.06, TH06.07,
TH06.08

Building Processes Information
TH01.09, TH01.10, TH01.11, TH02.17,
TH02.18, TH02.19, TH03.04, TH07.07,
TH07.08

User Behavior Information
TH03.12, TH03.13, TH04.02, TH07.02,
TH07.03, TH07.05

User Preferences Information
TH01.06, TH01.08, TH02.01, TH02.02,
TH02.03, TH02.04, TH02.30, TH03.02,
TH03.01, TH04.03, TH07.01

Exterior Influences Information
TH01.13, TH02.23, TH05.06, TH05.07,
TH05.08, TH05.09, TH05.11, TH05.12,
TH07.13, TH07.14

High-Level
TH01.07, TH02.05, TH02.15, TH02.20,
TH02.22, TH03.14, TH05.15, TH04.05,
TH05.10, TH07.06

classification as with these inquiries not necessarily a single dimension is involved. Therefore,
these questions are aggregated in the “high-level” class in Table 3.1. The relationship between
high-level and low-level questions is analyzed in detail in Chapter 5.
The seven dimensions presented in this section reflect main influence factors on building per-
formance. Without doubt it is possible to put all of this information into one single ontology.
However, this would result in a very specialized schema tailored specifically to the presented
smart home system, making it difficult to reuse the ontology for any purposes other than smart
home control. Further, largely unrelated topics and dimensions would be represented in one
single ontology, leading to a mixture of domains and associated terms. A system reusing such
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an all-in-one ontology would have to include concepts from all domains, regardless if only one
particular domain is needed. Another disadvantage that can be identified is reasoning time: in a
single comprehensive ontology that includes a large number of axioms describing all the afore-
mentioned dimensions and their concepts reasoning would be extremely costly taking a substan-
tial amount of time. Therefore a modularized approach reflecting the identified dimensions is
followed and thoroughly explained in the following chapter.

62



CHAPTER 4
Smart Home Ontology Creation

As already briefly discussed in Chapter 1, one of the main benefits of a multi-agent approach in
the smart home domain is the inherent flexibility of such a system. The tasks in a smart building
are usually performed by devices distributed throughout the environment and these tasks not
always follow recurring routines. At the same time, unexpected situations may arise at any mo-
ment. A multi-agent-controlled smart home offers considerable advantages compared to other,
more traditional system approaches as it provides a goal-oriented behavior of loosely coupled
software entities [201]. An autonomous system following this method clearly benefits from a
global view of the world (i.e., knowledge base) as in this case it can act on explicitly represented
knowledge and flexibly adjust its behavior accordingly [38]. In this context, a shared vocabu-
lary in form of an ontology can be seen as desirable to overcome semantic heterogeneity and
describe concepts in the world of interest unambiguously and explicitly [158, 44]. Ontological
descriptions are vital for a variety of general tasks as classified in [105]:

1. For communication

• between implemented computational systems.
• between humans.
• between humans and implemented computational systems.

2. For computational inference

• for internally representing and manipulating plans and planning infor-
mation.
• for analyzing the internal structures, algorithms, inputs and outputs of

implemented systems in theoretical and conceptual terms.

3. For reuse (and organization) of knowledge

• for structuring or organizing libraries or repositories of plans and plan-
ning and domain information.
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With respect to a multi-agent-controlled smart home, these general tasks turn out to be very
suitable. Firstly, a multi-agent system can be identified as computer system that is composed of
several autonomous parts in need to communicate between each other and having a consensus
on what the controlled environment is about: an ontology as a semantically rich conceptualiza-
tion of the domain can hereby serve as common grounding for agents in the system to base their
beliefs on (1.). Further, with inherent reasoning and complex modeling capabilities an ontology
allows a more detailed description of the building environment than it is possible with classical
data representation methods (i.e., relational databases). The reasoning mechanism can for ex-
ample be utilized for query answering by realizing common queries in the ontology taking away
complexity from the building operation system (2.). Lastly, a classification in ontologies sup-
ports the simple integration of new sources of information as they arise. Ontologies are designed
for open systems and may be used to integrate multiple information sources into one system, in
this way organizing knowledge unambiguously (3.). This generality of information represen-
tation cannot be easily achieved in classical storage systems, which are most often tailored to
a specific application or system. To model dependencies in the world of interest expressively,
the representation as ontology is proposed. This presentation can subsequently act as common
knowledge or shared vocabulary for a multi-agent based smart home system.

4.1 Ontology Modularization, Classification and Normalization

To make the modeled knowledge reusable outside the smart home domain and at the same time
minimize adaptation efforts for usage in other applications, a split into independent ontology
modules is considered for the created ontologies. In this context, the concept of ontology mod-
ularization may be used to make application-level ontologies reusable for a wide variety of
applications in a specific domain. Often, when ontologies are developed for a particular appli-
cation, they become too specialized and unusable for other purposes, which means that concep-
tualizations are many times only useful in the specific application they have been designed for.
On the other hand, there exist ontologies that are created with the aim to describe a part of the
world generally in a way that a great variety of applications can rely on this conceptualization.
Ontologies of this kind necessarily cannot be as detailed as the first mentioned type with respect
to concept descriptions and axiomatization, as this would make them too inflexible for the envi-
sioned field of application, i.e., describing dependencies between concepts globally. From that
viewpoint, ontologies are often either created for the specific use in a particular application or
especially developed for sharing information [216].
In this respect, [107] introduces an ontology classification and identifies four kinds of ontolo-
gies, which are upper and domain ontologies as well as task and application ontologies. Upper
ontologies or top-level ontologies describe general relationships needed by a variety of differ-
ent user groups independent of application or domain. In other words, already defined upper
ontologies that categorize general relationships and terms valid over all domains (e.g., time, lo-
cation) should be reused in order to minimize ontology implementation effort and put definitions
in the newly created ontology in relation to other already existing ontologies also based on that
particular upper ontology. As such, an upper-level ontology can be used to reach semantic in-
teroperability and act as basis for domain and task ontologies [123]. Further, domain ontologies

64



and task ontologies specialize the terms of the upper-level ontology in order to describe a partic-
ular domain (e.g., weather) or particular tasks (e.g., context retrieval). Domain or task ontologies
usually describe a selection of concepts introduced in the upper ontology in detail (i.e., domain
knowledge) while omitting the description of unrelated terms. Application ontologies may again
be seen as specialization of domain and task ontologies and according to [107] depend on both
ontology types. As such, this type in further consequence often includes concepts of a domain
that are only useful for a specific task and describes dependencies many times solely useful for
one particular application. In the reviewed literature, there is however often no clear distinction
between domain and application ontologies and the terms are sometimes used interchangeably.
With regard to this classification, firstly, two generic ontologies describing general terms are
reused to minimize modeling effort and build on already defined and accepted representations
of standard terms. No single, comprehensive global upper ontology is used due to reasons ex-
plained in the following section. The developed smart home ontology may further be seen as
application-level ontology. To overcome over-specialization and increase the shareability and
reusability of the conceptualization however, a twofold goal is identified: while firstly the ontol-
ogy is obviously tailored to the needs of a multi-agent-controlled smart home system, a division
into self-standing modules is considered to make these modules useful for a wider spectrum of
applications. As such, the created ontology modules may be categorized as a particular form of
domain ontologies, as they are split according to different domains that may be reused in appli-
cations different from the smart home use case. A strict classification is however not possible,
as the domain modules still include concepts that are defined with the clear focus on an appli-
cation in a smart home system. This fact does however not lessen the reusability of the domain
conceptualizations. The modules are then interconnected through a set of defined properties to
a comprehensive smart home ontology (cf. Section 4.1.2). While this extensive specification
of influences for smart home operation does not define additional concepts and as such is no
specialization of any of the domain modules as postulated in [107], its specialized orientation
and the domain-crossing nature clearly classifies it as application ontology [161].
When aiming at the design of reusable and modularized ontologies common Ontology Design
Patterns (ODP) as defined in [88] and reviewed in [72] and [207] cannot be neglected. In this
context, especially the topic of ontology normalization needs to be highlighted. Concerning
this topic, in [198] a two-step normalization procedure is introduced while emphasis is laid
on the importance of normalized ontologies considering modularization and maintainability.
Firstly, the article differentiates between primitive and defined concepts as well as properties,
restrictions and axioms. Primitive concepts are classes that are solely described by “neces-
sary conditions”, hence are described using only subclass relationships to other concepts. The
description of defined concepts additionally includes “sufficient conditions” that establish an
equivalence relation to a restriction or axiom. As such, the reasoning mechanism can automat-
ically infer hierarchies for defined concepts while primitive concepts need to be arranged in a
hierarchy manually. Properties relate concepts and restrictions as well as axioms may be used
to describe them. The article and related publications covering the same topic (e.g., [71], [207])
identify several normalization guidelines which should be followed when modeling domain on-
tologies:
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• Homogeneous tree-shaped hierarchies. One of the main prerequisites for a normalized
ontology is to manually only define tree-shaped hierarchies for primitive concepts. A
“primitive skeleton” consisting of only primitive concepts should additionally form trees
of homogeneous and logically connected terms. Multiple inheritance hierarchies (i.e.,
“polyhierarchies”) should not be asserted by hand but merely inferred by the reasoning
mechanism. Following this guideline at creation time of an ontology prevents tangling
term definitions (i.e., asserted polyhierarchies) and makes the designed conceptualization
much easier to maintain, as for each concept only the main inheritance hierarchy rela-
tionship has to be taken care for. All other subclass relations can be inferred through the
explicit axiomatization of the concept in form of restrictions and axioms describing its re-
lationship with other concepts in the modeled domain. This characteristic also facilitates
an easy extension of the ontology.

• Disjoint primitive concepts. Generally, in normalized ontologies, primitive concepts on
the same level in a tree should be disjoint to each other and open with respect to child
concepts1. On the other hand, for value partitions as a special type of primitive concepts
the disjointness does not have to be enforced and its child entities need to cover the value
partition, hence form a disjoint and exhaustive partition [198] (cf. Section 4.6).

• Explicit characterization. It is one of the main goals of modeling an ontology to achieve
explicitness, hence to describe the modeled concepts in a way so that additionally to the
human reader also a machine process (i.e., reasoner) can make formal inferences accord-
ing to their general description. As such, it is essential to eliminate implicit meaning that
is hidden in labels and names and for that reason only available to a human observer (i.e.,
tacit knowledge). In that case, an ontology needs to make information explicit to create
machine interpretable concepts. Necessarily, to gain interpretability, the concepts have to
be described with a number of axioms and restrictions that clearly express interrelations
with other modeled constructs.

• Consistent naming. While not explicitly stated in the mentioned articles, a consistent
naming policy should be applied. This point does not influence the formal reasoning in
the ontology, however, it makes the ontology comprehensible for human observers and
prevents modeling and alignment mistakes introduced by human error.

All of these requirements are considered in the design phase of the smart home ontology mod-
ules to increase their reusability and maintainability. Additionally to the outlined characteristics,
[198] proposes different “axes” for manually asserted primitive hierarchies on the one hand and
reasoner inferred concepts on the other hand. This normalization step is omitted for practica-
bility reasons, and instead only the aforementioned requirements are considered. While this
semi-normalized form still ensures reusability and maintainability to a sufficient extent it at the
same time meets the requirements of an application-level ontology. As a further step, additional
ODPs are reused where applicable (cf. Section 4.6). In case an ontology is reused that is not
normalized, a normalization step is applied beforehand (cf. Section 4.3).

1Hence, the list of child concepts is not exhaustive.
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4.1.1 Ontology Reuse: Foundational and Generic Ontologies

To prevent that the same dependencies, relationships and viewpoints are implemented in newly
developed ontologies over and over again, ontology reuse is generally considered good practice.
To put ontologies in a greater context and make them more shareable sometimes the inclusion
and specialization of an upper ontology is considered. These top-level ontologies are mainly
used to integrate different domain-level ontologies and put their definitions in relation to each
other. In this context, the upper-level ontology ODP [72] describes how to integrate ontologies
in one foundational ontology, with each domain ontology having different relations to concepts
defined in the upper ontology [73]. Some of the most relevant foundation ontologies are the
Suggested Upper Merged Ontology (SUMO), CYC and DOLCE+DnS Ultralite. The SUMO
Ontology [176] is one of the candidates for the IEEE P1600.1 Standard Upper Ontology [227].
As such SUMO generally describes a wide variety of terms and concepts and currently holds
around 25.000 terms and 80.000 axioms [188]. OpenCYC [156] is another large top-level ontol-
ogy. Its core ontology currently includes about 239.000 terms and 2.093.000 triples describing
”all of human consensus reality“ [57]. The CYC ontology is also a candidate for the Standard
Upper Ontology. One ontology that does not intend to become the IEEE P1600.1 Standard Up-
per Ontology is the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE).
Originally described in [91], it has a cognitive bias and as such focuses on capturing natural lan-
guage and human common sense. The Descriptions and Situations (DnS) ontology also defined
by the author of DOLCE can be used to extend this ontology and represents situations, contexts,
theories and norms [92]. There exist a lightweight version that is entitled Dolce+DnS Ultralite
[89] which in a simplified way can be seen as a reduced conglomerate of the two previously
introduced ontologies. This conceptualization decreases the amount of described concepts to
define a lightweight foundational ontology that is capable of modeling physical or social con-
texts [89].
An inclusion of such a high-level definition of terms in the created smart home ontology would
definitely have benefits. For example, the different ontology modules defined for the smart
home operation use case describe different types of temperature. An outside air temperature
may be seen as a different temperature than an indoor air temperature, a temperature measured
in a heating boiler or a preference temperature of a specific user. Implementing the upper-level
ontology ODP, all these temperature types could be derived from one single concept “temper-
ature” defined in the foundational ontology making it clear that all of these concepts are sub-
classes of the same type. While this illustrates an advanced classification of concepts that def-
initely simplifies integration of ontologies, the use and implantation of upper level ontologies
in domain/application-level ontologies are generally controversial [72]. Firstly, because of the
commitment to the upper-level ontology, the domain ontology needs to follow the concrete view
as it is described in this particular conceptualization. Although upper ontologies are usually
kept very general with respect to the axiomatization and definition of terms, this commitment
naturally influences the way the ontology has to be modeled as the definition of relevant terms in
the upper-level ontology needs to be followed. Also philosophically, the usability of upper level
ontologies is questionable as “the initial project of building one single ontology, even one single
top-level ontology, which would be at the same time non-trivial and also readily adopted by a
broad population of different information systems communities, has largely been abandoned.”
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[221]. Further, considering implementation, the upper-level ontology in its entirety has to be
included, which with large generic ontologies like the ones described before tends to become
problematic, particularly in the case when only a few classes need to be reused.
Because of their extent and very general nature which opposes the relatively specialized focus of
the smart home ontology modules, the inclusion of an upper ontology is therefore not deemed to
be rational in the present case: the advantage of aligning the ontologies with one of these general
top-level ontologies is compensated with an extremely high overhead on additional triples and
concepts. Reviewing the ontologies introduced before, they cannot be seen as candidates for a
fitting foundational ontology: their main purpose is to describe general terms in a way so that
different ontologies can be put into relation to each other. While this is an essential prerequisite
for ontologies used in the classical Semantic Web integration use case, in the present matter, an
alignment to such a general purpose top-level ontology would rather be disadvantageous. As
the ontologies are defined in a very general way, they include a great amount of concepts not
immediately related to the smart home domain. According to [216], there is always a tradeoff to
be made between ontologies for use and ontologies for sharing. In this respect, considering the
import of an upper-level ontology would increase the size of the smart home ontologies for only
little benefit regarding the defined use cases (cf. Chapter 3). This additional complexity would
significantly slow down the reasoning process and query responses. Further, while the alignment
to such an ontology is useful when performing ontology matching or comparing conceptualiza-
tions of different ontologies on the Internet, it is relatively irrelevant for an ontology acting as
knowledge base for a multi-agent based smart home system. A mapping could be considered,
however is omitted to keep the created ontologies concise and reasoning times low.
On the other hand, there exist generic ontologies which are describing a smaller aspect of re-
ality in a modular manner and therefore are more suitable for inclusion in the present field of
application. For two associated domains, such generic ontologies are reused in the created con-
ceptualizations:

• Location Information. For location information with respect to weather forecasts (cf.
Section 4.6), the Basic Geo (WGS84 lat/long) Vocabulary [41] is reused. This vocabulary,
which was developed by the W3C Semantic Web Interest Group is a very simplistic con-
ceptualization that represents global positioning parameters such as latitude and longitude
for spatially-located things [41]. The main elements of this vocabulary are the concept
SpatialThing and its attributes lat, long, and alt following definitions in the
WGS-84 reference specification [64]. Unfortunately, the OWL version of the vocabulary
identifies the properties alt, lat and long as annotation properties. This cannot be seen
optimal as annotation properties are basically ignored by the OWL DL reasoning mecha-
nism. Therefore, before reuse, the vocabulary is slightly remodeled and the properties are
defined as OWL datatype properties instead. While the Basic Geo (WGS84 lat/long) Vo-
cabulary is not a W3C standard, according to the project website the vocabulary is widely
used for RDF and non-RDF documents.

• Temporal Information. For temporal descriptions in the smart home ontology the OWL-
Time ontology originally proposed in [186] is used. This ontology which by this time is
considered a W3C draft (cf. [254]) allows to generally specify time instants and intervals
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and facilitates the ordering of individual time events. For that purpose, the OWL-Time
ontology provides a variety of concepts and relationships and offers the possibilities for
a very detailed description of temporal information. The central concept of the vocabu-
lary is entitled TemporalEntity which can be specialized into one of its subconcepts
Instant and Interval. The vocabulary further defines a set of datatype and object
properties that can be used to describe these temporal entities and their relationships in
detail. In the smart home ontology, the modules use the standard import mechanism of
OWL to include the OWL-Time ontology as it is and as such obtain a standard notion of
time.

A detailed account on how the conceptualizations are reused in particular modules of the smart
home ontology can be found in the respective sections (cf. Section 4.3, 4.6).

4.1.2 Ontology Modules Overview

With the above introduction and motivation it should be clear at this point that modularization
is one of the key requirements for reusable ontologies. Figure 4.1 shows an overview of the dif-
ferent ontology modules that are identified in the smart home use case. It reflects the previously
identified dimensions of information (cf. Section 3.2) however consolidates some dimensions
into single ontologies. When capturing the main concepts of these different dimensions, it has
to be considered that some of them are further apart and as such contain more diverging data,
while others are more interrelated. This means, while weather information may be realized
as stand-alone exterior ontology, other representations such as the resource and energy dimen-
sions, have strong interdependencies. From the viewpoint of a smart home control system, it is
therefore useful to model certain interrelated dimensions as single ontology. For this reason, a
consolidation is executed identifying domains encompassing defined concepts of more than one
dimension and a representation as independent ontologies is carried out (cf. Figure 4.1). As a
benefit, a more concise representation of reality can be achieved, while a basic modularization
into separate domains is still provided, guaranteeing the reusability of single descriptions for
other domain-related applications.
Regarding information about building structure, simulation studies like [144, 238, 31] show that
the quality of the building envelope has a significant impact on the building energy performance.
Especially in old stock buildings the architecture and building envelope is generally suboptimal
for energy-optimized operation. Independently of the installation of a smart home system either
within a refurbished old stock or a new stock building, static knowledge about building construc-
tion, orientation and architecture can always be seen as an additional performance parameter that
can be included when conducting optimizations at operation time. The Architecture & Building
Physics ontology (prefix: gbo) therefore contains information about the building itself, which
may for example be retrieved from building design and performance software.
As already discussed in Chapter 1, in a typical smart home there are a lot of energy consum-
ing appliances. Obviously, for a smart home operating in a future smart grid a conception of
information about energy facility consumption and energy supply and tariffs is needed. This ad-
ditional information enables the scheduling of facilities according to energy spot prices and may
give feedback to occupants again leading to energy demand optimizations [240, 58]. With heat-
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Figure 4.1: Parameter dimensions for smart home control

ing and cooling making up major parts of the general energy consumption of a residential home,
significant optimization potential can be found in this domain. While these two dimensions may
be represented in separate ontology modules, in the present case one single ontology module is
created for both dimensions. The Energy & Resources ontology (prefix: ero) therefore repre-
sents facilities, energy providers and associated parameters that influence building performance
and are needed to optimize the general energy behavior of the building.
In order to describe context in a smart home, the system further needs to represent building
processes and user habits. Processes that can be initiated to change the environment and their
energy impact may be used for a system to decide at a certain moment in time, which action is
fitting to reach a particular global goal such as energy efficiency. Another part of the building
context concerns recurring actions of human actors in the home. Usually the behavior of human
actors follows routines [113] that have to be modeled in a comprehensive smart home knowledge
base as well to be able to adapt the environment taking into account to expected future situa-
tions. Again, the two dimensions of user behavior and building context are consolidated into
one single ontology module: the User Behavior & Building Processes ontology (prefix: ppo)
is designed to picture the context of the supervised home and its inhabitants. With regard to the
classification introduced in [181], this ontology module can also be classified as task ontology.
Generally, also occupants as well as their personalized comfort preferences have to be repre-
sented as well. Therefore, for an accurate model of users including demographic data and their
preferences in an own module, a Users & Preferences ontology (prefix: apo) is considered.
Another factor that has to be taken in to account is the domain of external influences. Weather
and climate conditions are considered to be substantial when approaching an energy efficient
building operation [183]. For that reason, also weather observations and states are conceptual-
ized and integrated into the designed smart home knowledge base as own Weather & Exterior
Influences ontology module (prefix: weo).

Interrelationships between Ontology Modules

According to [66] an ontology module can be described as “a reusable component of a larger or
more complex ontology which is self-contained but bears a definite relationship to other ontology
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Figure 4.2: Ontology modules and their relating properties

modules”. Naturally, the introduced domain modules need to be connected in order to form
a comprehensive application ontology for smart homes. For this reason, several interrelating
properties are defined: these are realized as owl:ObjectProperty relations and may be
used to connect the identified five individual modules as shown in Table 4.1. This way, an
instantiation of one ontology can be flexibly connected to an individual of another ontology
module using globally unique URIs and the defined properties. An example is the relationship
between the Energy & Resources module and the Architecture & Building Physics module:
While in the first ontology a general notion of building environment may be represented in
order to relate facilities to building parts, through the property hasAssociatedSpace it
becomes possible to associate the building part to a space defined in the second ontology holding
more information about dimensions and enclosing construction of a building part. Further, with
the property hasAssociatedZone a specific room can be related to another partitioning
scheme defined in the second ontology dividing the building into zones. Additionally, there
are two owl:equivalentClass relations defined between the Energy & Resource and the
Architecture & Building Physics module. These relations emerge as the two concepts Door and
Window are defined in both ontology modules.
The properties defined for interconnecting ontologies and rdfs:domain and rdfs:range
classes of the related modules are shown in Figure 4.2. The purpose of the properties becomes
clear in connection with the detailed information about the single modules in the dedicated
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sections. For most of the properties their usage can further be observed in the discussion and
evaluation chapter (cf. Chapter 5).

Table 4.1: Interrelating properties between ontology modules

Property Name Property Domain
(Ontology)

Property Range
(Ontology)

hasAssociatedSensor
Weather & Exterior

Influences
Energy & Resources

hasProfileFocusObjective
User Behavior &

Building Processes

Architecture & Building
Physics, Energy &
Resources, Users &

Preferences, Weather &
Exterior Influences

hasPatternFocusObjective
User Behavior &

Building Processes

Architecture & Building
Physics, Energy &
Resources, Users &

Preferences, Weather &
Exterior Influences

isPerceivedThrough
User Behavior &

Building Processes
Energy & Resources

hasAssociatedDevice
User Behavior &

Building Processes
Energy & Resources

involvesCommand
User Behavior &

Building Processes
Energy & Resources

hasProcessDomain
User Behavior &

Building Processes
Architecture & Building

Physics

hasAssociatedZone Energy & Resources
Architecture & Building

Physics

hasAssociatedSpace Energy & Resources
Architecture & Building

Physics

hasAssociatedSurface Energy & Resources
Architecture & Building

Physics

usesApplication Users & Preferences
User Behavior & Building

Processes
controlsAppliance Users & Preferences Energy & Resources

forState Users & Preferences Energy & Resources

forSpace Users & Preferences
Architecture & Building

Physics

forZone Users & Preferences
Architecture & Building

Physics

currentlyLocatedIn Users & Preferences
Architecture & Building

Physics
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While it would be possible to integrate the ontologies with the standard owl:import mecha-
nism, in the present case this mechanism is not used in order to keep reasoning times fast. The
benefit of additional inferences that can be drawn by the reasoning mechanism when integrat-
ing all of the domains into one ontology is quite low compared to the performance gain when
keeping them separate. Nevertheless, if needed, it is always possible to use the owl:import
statement.

4.2 Architecture & Building Physics

When aiming at the optimization of a building’s energy performance, first of all structure and
architecture need to be considered. Although the European Passive House Standard limits the
annual heating demand of a passive house to 15kWh/m2, not all newly constructed residential
homes satisfy this standard: the European Union merely aims at constructing only new build-
ings with nearly zero energy demand by 2020 in response to reaching its 20% greenhouse gas
reduction goal [79]. Until then, a significant amount of new buildings is still being constructed
without too much concern for energy efficiency in design and construction. The assessment of
architectural and building physics impacts on the energy efficiency of a building is however es-
pecially important at design time as great energy savings can be reached through the usage of a
low-energy architecture.
In conventional building design and construction process all of the stages are rather separate,
thus often houses that are designed by architects are not in accordance with the visions of en-
ergy engineers and thus are not optimized for energy efficiency. However, architecture, orien-
tation and the usage of the building itself to accomplish energy-intensive tasks such as heating
and cooling can highly influence its energy demand and need to be considered when aiming at
designing environmentally-friendly buildings [51]. Also in [115] key decisions that influence
heating and cooling loads are summarized, while the most important are building form, orien-
tation, self-shading, window-to-wall area ratios, insulation levels and window properties. These
qualities are mostly fixed by the architect already at design time, seldom visualizing the final
energy performance of the building. A thorough energy analysis at the first stages of a building
life cycle and before building construction would be vital for the general energy efficiency of a
building, however has rarely been conducted with the old stock, and is still not common prac-
tice when constructing new buildings. Therefore, usually, an optimized building structure and
architecture cannot be assumed. Information about structural properties of such a non-optimal
building is crucial for a control system striving to optimize energy consumption. For example,
heating setpoint control (i.e., adjusting room temperature and most energy efficiently bring it
to a comfortable level according to the user schedule) is highly dependent on building informa-
tion. In current residential homes often just very simple and inflexible schemes exist that can be
programmed by users in advance by stating the planned occupancy times. However, how fast
the desired temperature setpoint is reached, hence the preparation time, is dependent on several
prerequisites: while obviously the current indoor air temperature of a space directly influences
the preparation time, also building architecture and associated building physics may be consid-
ered. Building material, state of walls (cooled or heated), as well as general layout of the space
influence energy-intensive tasks like heating and cooling, should be integrated into smart home
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control in order to optimize building performance. To operate heating and cooling in accordance
to the state of the building and its structure at the same time promises an improved thermal
comfort and optimized overall energy performance. The building information gathered from
Building Information Modeling (BIM) can therefore be treated as immediate influence factor on
global control strategies and algorithms focusing on building energy efficiency. The following
deliberations describe a building model for smart home systems and are partially taken from the
articles [148] and [147], while at this point more detail on acquisition and conceptualization of
building properties is provided.

4.2.1 Related Work

In projects defining OWL ontologies for smart homes and buildings, the building itself if at all is
only rudimentarily modeled. The DogOnt project [34] while focusing on the detailed modeling
of the building device landscape allows only the definition of architectural entities like rooms,
walls and ceilings mainly used to associate a device in the building with a specific room. Oth-
erwise, building physics and exact architectural dimensions are not mapped. Other smart home
control projects like [266] focus more on residents, their context, behaviors and interaction with
available devices. Again, information about the building is reduced to a simple room entity that
may include facilities and devices. The BOnSAI project [229] defines an ontology that models
functionality, hardware, users and context. The defined ontology also fails to describe the archi-
tectural and building characteristics beyond the concepts of locations, rooms and floors.
There further exist publications that generally acknowledge the importance of new developments
in the Semantic Web sector when it comes to interoperability and building information models
like, for example, [9]. Yet other articles specifically focus on transformation of Building Infor-
mation Modeling into Semantic Web ontologies for exchange of information between different
stages of the building life cycle. The authors of [19] describe the process of transforming the EX-
PRESS schema that underlies Industry Foundation Classes (IFC) into an OWL representation.
In their article they show how the underlying model of IFC may be semantically represented
with OWL, as well as arising limitations with respect to automatic conversion. In [269], the
transfer of building information from a native IFC model to the OWL language is described
and the resulting model is in further consequence used to check the conformity of construction
projects against technical norms. Bhatt et al. in [30] propose an ontology-based method to assist
the design process of smart buildings. In this respect, the authors focus on the representation of
space and introduce different perspectives for which they present several ontology modules. To
describe the structural aspects of a building, parts of the IFC model are reused and modeled as
ontology. Through the different modules and appropriate reasoning, the validation of structural
as well as functional requirements of a smart environment becomes possible. The article [37]
proposes a so-called Product Modelling Ontology modeled as a generic reusable upper ontol-
ogy. The authors of [245] introduce an ontology-based model exchange between stakeholders
of the building construction process. The article focuses on the improvement of interoperabil-
ity between Building Information Modeling tools by developing consistent model views using
the Web Ontology Language. Therefore, the authors propose a layered approach basing their
specific model on already defined standard and domain ontologies. One of the few articles men-
tioning the utilization of Building Information Modeling in the operational phase of a smart
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building is [215], introducing the application of BIM in a smart indoor environment for disabled
people. The authors propose the extraction and transformation of building elements and their
interconnections from an IFC model into an ontology that subsequently makes inferences on
the extracted information possible. Some example inferences are presented, however no further
details on the created ontology are given. While these approaches show the feasibility and ne-
cessity of the translation from a BIM to the Semantic Web, neither of these translation processes
seems suitable to contribute to the envisioned building information ontology. The reason for this
inadequacy is that proposed translations are either too general or specialized in a different direc-
tion (e.g., conformity checking, interoperability) while lacking concepts important for building
energy analysis. This finally led to the decision to develop a new building information ontology
from scratch.

4.2.2 Building Information Modeling

In the building planning and construction process there usually exists a variety of stakeholders
throughout the different stages ranging from architects to construction or energy engineers and
finally the facility manager or building owner. Information between these parties is classically
shared with the help of physical or digital documents. Hereby, details about the building project
are divided among different documents and to achieve a global view a manual consolidation of
information becomes necessary. In order to facilitate an integrated process and interoperability
between the various stages, the description of the building with the help of Building Information
Modeling is gaining popularity. A BIM is a vendor-neutral, digital exchange format that models
the construction process in a virtual environment and describes all the required information of a
building and its components from planning over construction to operation and decommissioning
[153]. The BIM includes the 3D geometric model of a building from a computer-aided design
(CAD) system, however, it is more than a format for CAD tools. The objective of a BIM is to
preserve information available about the building over the whole building life cycle [11]. This
means, a BIM is a digital model that can be shared among different stakeholders throughout
the building life cycle and as such, lead to a greater interoperability between different involved
parties and interest areas. Information represented in the BIM grows with the advancement of
the building, hence the model aggregates information about components, processes and other
related data throughout building life cycle phases. In [46], a BIM is characterized as intelligent
simulation of architecture that has to be digital, spatial, measurable, comprehensive, accessible
and durable in order to reach the goal of an integrated process. A BIM thus digitally represents
the components of a building as objects and associates them with a graphical expression and
data attributes that describe the components’ behavior and facilitate analyses [69]. As stated by
[127], there is a clear difference between building information modeling and building graphic
modeling: building information modeling describes objects that have knowledge about their
properties and behavior, while a CAD system renders the components and visualizes them as
3D figures. Consequently, a building representation containing only a 3D model does not yet
classify as BIM: while 3D models mainly describe the geometry of a modeled building and
are effectively used for visualization, BIMs include additional component attributes such as wall
types, spaces, air handling units, geospatial information and circulation zones [54]. Additionally,
also more abstract concepts, e.g., schedules, activities or construction costs are often represented
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[142]. Generally speaking, in addition to the three dimensional CAD model, a BIM adds fur-
ther dimensions to depict the evolutionary process of the building through changes in time (4th
dimension) and cost (5th dimension) [160]. A BIM thus includes domain-specific information
about modeled constructs covering the whole building process. Ideally, using a BIM in architec-
ture and construction may lead to interoperability among different domains and software tools,
however, widespread use and acceptance still lies ahead. According to a survey conducted for
the BIM market in the UK [173], about 40 % of the participants are aware and currently using
BIM and more than 90 % are aware and considering to use BIM in the future. This survey,
although only valid for the UK market, shows the general interest in Building Information Mod-
eling. One advantage of using a BIM is that the fine-grained digital representation of a building
project may already lead to an improved, energy efficient design as the transfer of building data
into energy analysis tools becomes possible [233]. In order to reuse the information available
in a BIM for the operation of a smart environment, the transfer of this information into the con-
trol system can certainly improve control strategies, as knowledge about the building that would
otherwise not be available can be incorporated in calculations.

BIM Standards

At the moment there is no single BIM standard, but several proprietary and non-proprietary in-
terchange formats exist. Among the wide variety of different formats, the Industry Foundation
Classes and the Green Building XML Schema can be seen as two of the most important open
exchange formats up to date [65]. IFC [45] is a model that was developed by a global industry
and research consortium in order to specify an extensible non-proprietary information format.
The framework may be used to create a large set of data representations for exchange between
software applications used to document, model and simulate building design and construction
[69]. Because of the general nature of IFC, the model schema itself is split into several lay-
ers representing diverse building information classes based on the ISO-STEP [191] modeling
standard for building information exchange. IFC is designed ”to provide a means of passing a
complete and accurate building data model from one computer application to another without
any loss of information“ [54]. Therefore, IFC defines a large class hierarchy with a lot of classes
being concerned with representation of the geometry of the building in a coordinate system to
enable a realistic 3D visualization. Although the collection of classes and modules supports
the applicability of the model for several domains, it may not be seen as universal solution for
interoperability in the building domain [9]. For example, while the great variety of supported
constructs makes it possible to model any kind of building element and shape, it undeniably also
raises the complexity of this exchange format. For a smart home system, the detail offered by
IFC is however not needed as in that case, a simple representation of spaces, building compo-
nents and their properties is sufficient so that they can be taken into account for environmental
control. Therefore, because of the high overhead induced by the model, the IFC cannot be seen
as an appropriate choice for direct application in a smart home system.
The second important exchange format in the architecture and construction industry relevant for
building representation in a smart home is the Green Building XML (gbXML) Schema [95].
The model focuses on exchange of energy-related data between construction and energy analy-
sis software [65] and is widely accepted and used in several commercial tools (e.g., Autodesk
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Revit2 and Ecotect3, Graphisoft EcoDesigner4, Bentley AECOsim Building Designer5). Green
Building XML is available as XML Schema Definition (XSD) file which makes it accessible
for web-related applications. Because of the use of XML instead of ISO-STEP as data for-
mat, the structure of the model is less expressive but also inherently simpler than STEP-based
IFC6. Energy-critical parameters that may be useful at building operation time are represented
in gbXML to a sufficient extent. Data are not intended to be transferred between CAD and
energy tools back and forth, which means that the format does not contain enough information
to reintegrate the model into a CAD environment. For example, a wall is merely modeled as
surface that separates two spaces than a fully-fledged building component. Such simplifications
inherently make gbXML a lot easier to apply for the proposed building ontology and associated
smart home system, which has no use for information like coordinates and the exact shape of
components only needed to transfer the building description back to CAD programs. In this con-
text, an abstraction from certain characteristics of the building and its structure (i.e., quantitative
knowledge, cf. Section 2.2) is advantageous in the interest of a concise model only focusing on
details necessary for its scope. At the same time, because of its domain being energy simula-
tion, gbXML naturally comes with a lot of useful values allowing simulation and calculation of
thermal loads and processes.
Resulting from the information stored in these two prevalent Building Information Models and
their respective complexity, the gbXML format deems to be the better choice over IFC, as it
is simpler and specializes on data relevant for the calculation of energy consumption. gbXML
contains parameters which are extremely valuable for the comprehensive knowledge base of a
smart home system, while at the same time simplifying the general architectural and structural
building representation.

4.2.3 XSL Transformation of the Green Building XML Schema to the Web
Ontology Language

gbXML is available as XML Schema (XSD)7 that contains and explains all values that can be
exchanged with the help of this BIM. The schema itself is specified in a very general way, in
order to ensure flexibility of the model. Any file written in XML can be validated against this
schema while not all of the defined classes are mandatory: the tool vendors decide which items
they support. As already mentioned before, the represented parameters reflect the main field of
application of gbXML: the interoperability between building design models and energy analysis
tools [95]. Therefore, most of the represented data types can also be seen beneficial for energy-
optimizing control strategies in an autonomous smart building.
The great variety of different parameters included in the gbXML file are not treated in detail at
this point, however, Table 4.2 gives a selection and short description of some important compo-

2http://www.autodesk.com/products/autodesk-revit-family/overview
3http://usa.autodesk.com/ecotect-analysis/
4http://www.graphisoft.com/downloads/ecodesigner/index.html
5https://www.bentley.com/en-US/Products/AECOsim/
6Note: there also exists an XML variant of IFC named ifcXML which however is very limited compared with

the original schema.
7http://www.gbxml.org/currentschema.php
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Table 4.2: Important building information components available in the gbXML Schema and
their description (excerpt from gbXML Schema ver. 5.10)

gbXML element Description
Building Contains all of the information of a specific building

BuildingStorey Captures the building storey structure
Construction Represents a combination of one or more layers

Layer A layer is the combination of one or more materials
Material The material of a specific layer
Opening An opening area in a surface (e.g., window, door)
Space A space represents a volume enclosed by surfaces

Surface gbXML equivalent to a wall
Zone Different logical zones are modeled with this concept

nents that are retrieved from the schema. A transformation from an XSD schema to RDF/XML
through XSLT stylesheets is relatively straightforward (cf. [116]) and can be seen as possi-
ble starting point to retrieve a first set of terms for a shared vocabulary. In the present case of
building information transformation into a smart home knowledge base, XSLT is favored over
a programmatical approach, as this transition usually only occurs once or very infrequently and
with XSLT the entire process remains external to the application, i.e., the smart home control
(cf. [116]).
For creation of a basic version of the architecture and building physics ontology, the transforma-
tion process includes several steps (cf. Figure 4.3). In case of gbXML, the multi-step approach
shown in Figure 4.3 facilitates the translation of XSD schema and XML data file, hence general
BIM schema and concrete building instance, into an OWL representation which includes model
and instance data in one single RDF/XML file. The transition from gbXML to OWL is adapted
from [32] which discusses a general XML to OWL mapping and therefore serves as a good
starting point. It is similar with respect to the general process, however differs in how the actual
transformation is conducted, as not all elements of gbXML are needed for the anticipated field
of application. Further, by designing a custom XSLT transformation it could be tailored to the
specific schema to be transformed. The following paragraphs exactly describe how this conver-
sion is realized for different elements of the gbXML schema file. After the thorough discourse
of the schema also the transformation of a sample XML instantiation is briefly outlined.

4.2.3.1 XSD Transformation

For transforming the XSD schema, almost all elements of the schema are considered useful.
The elements that are not treated, and as such are not incorporated in the generated building on-
tology are aecXML, UtilityRate and GeneralGeometry, as they serve very specialized
purposes and did not seem to be important for the envisioned field of application, i.e., smart
home operation. The XSD schema data is transferred to an OWL model according to defined
patterns for different XSD elements.
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Figure 4.3: gbXML transformation steps (adapted from [32])

xsd:element Firstly, there are several different ways how this schema element type is treated.
While some xsd:element constructs become OWL properties, others become OWL classes
in the created model. The transformation is dependent on their definition in the initial gbXML
schema. For example, xsd:element statements that do not have child elements but own a
type attribute are transformed to owl:DatatypeProperty elements that have the value of
the type attribute as range.

gbXML:
<xsd:element name="Name" type="xsd:string"/>

OWL:
<owl:DatatypeProperty rdf:about="#hasNameValue">

<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

Also those having only an xsd:annotation subelement become datatype properties. In
case of an existing direct subelement with value xsd:simpleType, also a datatype property
is created while a range restriction is added according to the enclosed xsd:simpleType
element.

gbXML:
<xsd:element name="Azimuth">

<!-- ... -->
<xsd:simpleType>

<xsd:restriction base="xsd:double">
<xsd:minInclusive value="0"/>
<xsd:maxInclusive value="360"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

OWL:
<owl:DatatypeProperty rdf:about="&ontology;gbBuilding.owl#hasAzimuthValue">

<rdfs:range>
<rdfs:Datatype>

<owl:onDatatype rdf:resource="&xsd;double"/>
<owl:withRestrictions rdf:parseType="Collection">

<rdf:Description>
<xsd:minInclusive rdf:datatype="&xsd;double">0.0</xsd:minInclusive>

</rdf:Description>
</owl:withRestrictions>

</rdfs:Datatype>
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</rdfs:range>
<rdfs:range>

<rdfs:Datatype>
<owl:onDatatype rdf:resource="&xsd;double"/>
<owl:withRestrictions rdf:parseType="Collection">

<rdf:Description>
<xsd:maxInclusive rdf:datatype="&xsd;double">360.0</xsd:maxInclusive>

</rdf:Description>
</owl:withRestrictions>

</rdfs:Datatype>
</rdfs:range>

</owl:DatatypeProperty>

All other xsd:element constructs become owl:Class elements in the resulting RDF/XML
file. If an xsd:element that becomes an owl:Class is further a subelement of yet another
xsd:element, an object property is additionally created for it. In this case, the set of enclosing
xsd:element items becomes the domain and the current element becomes the range of the
property.

gbXML:
<xsd:element name="Surface">

<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="unbounded">

<!-- ... -->
<xsd:element ref="Opening" minOccurs="0" maxOccurs="unbounded"/>

</xsd:choice>
<!-- ... -->

</xsd:complexType>
</xsd:element>

OWL:
<owl:ObjectProperty rdf:about="#containsOpening">

<rdfs:domain rdf:resource="#Surface"/>
<rdfs:range rdf:resource="#Opening"/>

</owl:ObjectProperty>

Generally, datatype properties are created with prefix “has” and suffix “Value” while object prop-
erties are generated with the prefix “contains” in order to create a consistent naming throughout
the document and be able to easily differentiate them in the final model.

xsd:attribute All elements of this type become datatype properties in the created OWL model.
The type attribute of the element again determines the range of the property, while for attributes
that occur more than once in the gbXML schema the range is realized as owl:unionOf of all
different “type” values. In case no “type” attribute but an enclosed xsd:simpleType element
exist, this element is used to define the range of the created property.

gbXML:
<xsd:attribute name="engine">

<!-- ... -->
<xsd:simpleType>

<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="DOE2.1e"/>
<xsd:enumeration value="DOE2.2"/>
<xsd:enumeration value="EnergyPlus"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>
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OWL:
<owl:DatatypeProperty rdf:about="&ontology;gbBuilding.owl#hasEngineValue">

<!-- ... -->
<rdfs:range rdf:resource="&ontology;gbBuilding.owl#engineEnum"/>

</owl:DatatypeProperty>

xsd:simpleType The gbXML schema includes a large collection of enumerations, realized
as xsd:simpleType elements: these become rdfs:Datatype enumerations in the OWL
model. Further, as already outlined in the preceding paragraph, if the xsd:simpleType
element is enclosed in an xsd:element or an xsd:attribute construct it additionally
becomes the range of the owl:DatatypeProperty created for these elements. In case
the xsd:simpleType element is an enumeration, the created enumeration datatype acts as
range, as seen in the “engine” xsd:attribute example. On the other hand, if it includes
an xsd:restriction element instead of an xsd:enumeration as pictured in the “Az-
imuth” xsd:element example before, the datatype property range in the final OWL model is
realized as a restriction on the XSD datatype specified in the base attribute value of the gbXML
xsd:restriction element.

gbXML:
<xsd:simpleType name="weightUnitEnum">

<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="Pounds"/>
<xsd:enumeration value="Kilograms"/>
<xsd:enumeration value="Tons"/>

</xsd:restriction>
</xsd:simpleType>

OWL:
<rdfs:Datatype rdf:about="&ontology;gbBuilding.owl#weightUnitEnum">

<owl:equivalentClass>
<rdfs:Datatype>

<owl:oneOf>
<rdf:Description>

<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:datatype="&xsd;string">Kilograms</rdf:first>
<rdf:rest>

<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:datatype="&xsd;string">Pounds</rdf:first>
<rdf:rest>
<rdf:Description>
<rdf:type rdf:resource="&rdf;List"/>
<rdf:first rdf:datatype="&xsd;string">Tons</rdf:first>
<rdf:rest rdf:resource="&rdf;nil"/>

</rdf:Description>
</rdf:rest>

</rdf:Description>
</rdf:rest>

</rdf:Description>
</owl:oneOf>

</rdfs:Datatype>
</owl:equivalentClass>

</rdfs:Datatype>
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xsd:complexType This element describes anonymous superclasses of created named classes,
what means that xsd:complexType elements generally become owl:Class elements in
the generated OWL model. There again exist several different ways of how these elements are
treated during the XSLT transformation determined by their subelements. In the first case, an
xsd:simpleContent element with including xsd:extension is enclosed in the com-
plex type. The base attribute of the xsd:extension element is then transferred into a
datatype property class restriction involving the hasNativeValue datatype property with
the base value as property range and a cardinality (owl:cardinality) of one. The func-
tional hasNativeValue datatype property is particularly created for this case as it is needed
by many elements which just have a value and optionally a unit: therefore, this datatype prop-
erty serves as a way to describe the value of an element. If in this case child elements of the
xsd:extension construct exist, additionally an owl:intersectionOf restriction is cre-
ated, while the subelements of the extension (i.e., xsd:attribute) are again treated accord-
ing to the global rule described earlier.

gbXML:
<xsd:element name="Conductivity">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base="xsd:decimal">
<xsd:attribute name="unit" type="conductivityUnitEnum" use="required"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

OWL:
<owl:Class rdf:about="&ontology;gbBuilding.owl#Conductivity">

<rdfs:subClassOf>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource=
"&ontology;gbBuilding.owl#hasNativeValue"/>

<owl:qualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">1
</owl:qualifiedCardinality>
<owl:onDataRange rdf:resource="&xsd;decimal"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="&ontology;gbBuilding.owl#hasUnitValue"/>
<owl:qualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">1
</owl:qualifiedCardinality>
<owl:onDataRange rdf:resource="&xsd;string"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

Also for each direct xsd:attribute subelement of xsd:complexType a datatype prop-
erty restriction is created. In case a defined type attribute value refers to a standard XML Schema
datatype, it becomes the range of this datatype property. If otherwise a custom datatype de-
clared in gbXML is referred, or there is no type attribute, xsd:string is declared as range
in the describing axiom. A special handling exists for the xsd:ID and xsd:IDREF types: as
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these types are not defined in RDF semantics8, the resulting range is also set to xsd:string.
This way, the relation that exists between ID/IDREF elements defined in the XSD file is lost,
however can be re-established through dedicated rule extensions in the ontology (cf. Section
4.2.4). If the use attribute of the element has the value “required”, the restriction is realized as
owl:cardinality statement describing that this attribute should occur exactly once. If the
use attribute has the value “optional” a restriction with owl:maxCardinality one and no
owl:minCardinality is created, denoting a property that may occur optionally.

gbXML:
<xsd:element name="Campus">

<!-- ... -->
<xsd:complexType>

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="Name" minOccurs="0"/>
<xsd:element ref="Description" minOccurs="0"/>
<!-- ... -->
<xsd:element ref="Surface" minOccurs="4" maxOccurs="unbounded"/>
<!-- ... -->

</xsd:choice>
<xsd:attribute name="id" type="xsd:ID" use="required"/>
<!-- ... -->
<xsd:attribute name="ifcGUID" type="xsd:string" use="optional"/>

</xsd:complexType>
</xsd:element>

OWL:
<owl:Class rdf:about="&ontology;gbBuilding.owl#Campus">

<rdfs:subClassOf>
<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">
<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<!-- ... -->

<owl:Restriction>
<owl:onProperty rdf:resource=

"&ontology;gbBuilding.owl#containsSurface"/>
<owl:onClass rdf:resource="&ontology;gbBuilding.owl#Surface"/>
<owl:minQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">4
</owl:minQualifiedCardinality>

</owl:Restriction>
<!-- ... -->
</owl:unionOf>

</owl:Class>
<owl:Restriction>

<owl:onProperty rdf:resource="&ontology;gbBuilding.owl#hasIdValue"/>
<owl:qualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">1
</owl:qualifiedCardinality>
<owl:onDataRange rdf:resource="&xsd;string"/>

</owl:Restriction>
<!-- ... -->
<owl:Restriction>

<owl:onProperty rdf:resource="&ontology;gbBuilding.owl#hasIfcGUIDValue"/>
<owl:maxQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">1
</owl:maxQualifiedCardinality>
<owl:onDataRange rdf:resource="&xsd;string"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

8http://www.w3.org/2011/rdf-wg/wiki/XSD_Datatypes

83



</rdfs:subClassOf>
<!-- ... -->

</owl:Class>

If there exist other subelements for xsd:complexType like the elements xsd:choice and
xsd:attribute, an owl:intersectionOf statement is generated to picture the relation-
ship between the created constructs. The subelements of the xsd:choice element are in this
case connected via an owl:unionOf statement.
In case the xsd:element statements enclosed in xsd:complexType have a subelement
hierarchy that involves other constructs than xsd:annotation or xsd:simpleType (cf.
“Surface” xsd:element example), it represents the connection to a class as opposed to a
simple datatype property. Therefore, in this case an existential object property restriction is cre-
ated, with restrictions again corresponding to minOccurs and maxOccurs attribute values of the
enclosed elements.

minOccurs, maxOccurs The attributes minOccurs and maxOccurs are mapped to the
corresponding OWL constructs owl:minCardinality and owl:maxCardinality (cf.
“Layer” xsd:element example). There exist two special cases in the transformation: first, if
the maximum amount of occurrences is unrestricted, the XSD includes the value “unbounded”
for the maxOccurs attribute. In this case, no maximum restriction is created in the OWL model.
Otherwise, if minOccurs has the value “0”, the element is deemed to be optional and therefore
no minimum restriction is created in the OWL model.

xsd:choice The xsd:choice element becomes a union element in an anonym OWL super-
class, as this element only occurs inside xsd:complexType constructs.

gbXML:
<xsd:element name="Layer">

<!-- ... -->
<xsd:complexType>

<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="Name" minOccurs="0"/>
<xsd:element ref="Description" minOccurs="0"/>
<xsd:element ref="Cost" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="InsideAirFilmResistance" minOccurs="0"/>
<xsd:element ref="MaterialId" maxOccurs="unbounded"/>

</xsd:choice>
<!-- ... -->

</xsd:complexType>
</xsd:element>

OWL:
<owl:Class rdf:about="&ontology;gbBuilding.owl#Layer">

<rdfs:subClassOf>
<!-- ... -->
<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<owl:Restriction>

<owl:onProperty rdf:resource=
"&ontology;gbBuilding.owl#containsInsideAirFilmResistance"/>

<owl:onClass rdf:resource=
"&ontology;gbBuilding.owl#InsideAirFilmResistance"/>

<owl:maxQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">1
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</owl:maxQualifiedCardinality>
</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="&ontology;gbBuilding.owl#hasDescriptionValue"/>
<owl:maxQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">1
</owl:maxQualifiedCardinality>
<owl:onDataRange rdf:resource="&xsd;string"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="&ontology;gbBuilding.owl#hasNameValue"/>
<owl:maxQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">1
</owl:maxQualifiedCardinality>
<owl:onDataRange rdf:resource="&xsd;string"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="&ontology;gbBuilding.owl#containsCost"/>
<owl:onClass rdf:resource="&ontology;gbBuilding.owl#Cost"/>
<owl:minQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">0
</owl:minQualifiedCardinality>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="&ontology;gbBuilding.owl#containsMaterialId"/>
<owl:onClass rdf:resource="&ontology;gbBuilding.owl#MaterialId"/>
<owl:minQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">1
</owl:minQualifiedCardinality>

</owl:Restriction>
</owl:unionOf>

</owl:Class>
<!-- ... -->

</rdfs:subClassOf>
<!-- ... -->

</owl:Class>

4.2.3.2 XML Instance Transformation

While the OWL model is directly transformed from the gbXML schema to RDF/XML, the
building instance to be converted comes from a concrete XML exchange file, which can for
example be retrieved from a CAD system or an energy analysis tool. The test building created for
this work is modeled in Autodesk Revit Architecture 2010 and enhanced with building physics
properties in Ecotect Analysis 20109. Again, as already in the schema transformation, some
elements of the building instance that solely have relevance for CAD graphical representation
(e.g., planar geometry, cartesian point, coordinate) are not needed for the building operation
phase: therefore they are omitted, in order to keep the created building model concise. All
gbXML element instances that become individuals (i.e., class members) in the OWL model are
generically modeled as member of the owl:Thing class, while element instances that become
simple datatype properties are generated accordingly. Subsequently, individuals can be classified
into the appropriate subconcept of owl:Thing by the OWL reasoning mechanism.

gbXML:
<Surface id="obj000" surfaceType="ExteriorWall" constructionIdRef="con098"

exposedToSun="true">
<Name>Obj000</Name>
<AdjacentSpaceId spaceIdRef="zon001" />
<RectangularGeometry>

9http://usa.autodesk.com/
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<Azimuth>90.000003</Azimuth>
<!-- ... -->
<Tilt>90.000003</Tilt>
<Height>3.000000</Height>
<Width>6.400000</Width>

</RectangularGeometry>
<!-- ... -->
<Opening id="obj001" openingType="OperableWindow" windowTypeIdRef="win059">

<!-- ... -->
</Opening>

<CADObjectId>OBJ:00000</CADObjectId>
</Surface>

OWL:
<owl:Thing rdf:about="&ontology;gbBuilding.owl#Surface_ID=obj000">

<rdf:type rdf:resource="&owl;NamedIndividual"/>
<hasSurfaceTypeValue rdf:datatype="&xsd;string">ExteriorWall</hasSurfaceTypeValue>
<rdfs:comment rdf:datatype="&xsd;string">Name of Surface: Obj000</rdfs:comment>
<hasNameValue rdf:datatype="&xsd;string">Obj000</hasNameValue>
<hasConstructionIdRefValue rdf:datatype="&xsd;string">con098
</hasConstructionIdRefValue>
<hasIdValue rdf:datatype="&xsd;string">obj000</hasIdValue>
<hasExposedToSunValue rdf:datatype="&xsd;boolean">true</hasExposedToSunValue>
<containsAdjacentSpaceId rdf:resource=

"&ontology;gbBuilding.owl#AdjacentSpaceId_ID=d6e717"/>
<containsCADObjectId rdf:resource=

"&ontology;gbBuilding.owl#CADObjectId_ID=d6e923"/>
<containsOpening rdf:resource="&ontology;gbBuilding.owl#Opening_ID=obj001"/>
<containsRectangularGeometry rdf:resource=

"&ontology;gbBuilding.owl#RectangularGeometry_ID=d6e719"/>
</owl:Thing>

This example shows a specific surface in the modeled building and its representation in the
created RDF/XML file. In case enclosed subelements can be classified as members of OWL
classes created during schema transformation (e.g., Opening, RectangularGeometry,
AdjacentSpaceId) they are connected to the shown instance through object properties while
being represented as separate individuals as well. In other cases, like the Name element sim-
ple datatype properties are created. The classification of individuals is accomplished through
range and domain restrictions of associated object properties. For example, as shown before, the
containsOpening object property is defined to solely have surfaces as domain and openings
as range. These restrictive domain and range declarations allow the DL reasoner to conclude that
all instances which actually have a containsOpening relation are of type Surface.

4.2.3.3 Summary

The described schema mappings are summarized in Table 4.3. Firstly, customized datatype
enums defined in gbXML are produced. Then, needed datatype and object properties are created,
anonymous classes and axioms describing named classes are generated and finally, concepts are
made disjoint to each other. The mappings of the transformation significantly differentiate from
the ones suggested in [32] in order to simplify the retrieved OWL model and reduce the amount
of created classes. At the same time, through the definition of a tailored process the possibility
of adjustment according to the gbXML schema arises. The proposed approach allows to create
a much conciser model than it would be possible using a more generalized mapping procedure.
It permits both, solely transforming the XSD schema and thus only creating the TBox of the
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Table 4.3: General mapping from XSD schema elements to OWL

XSD OWL
xsd:element with no subelements
and no type attribute

owl:Class

xsd:element containing elements
other than xsd:annotation or
xsd:simpleType

owl:Class

xsd:element as subelement of an-
other xsd:element

owl:Class and associated
owl:DatatypeProperty

xsd:element containing no subele-
ments and type attribute

owl:DatatypeProperty

xsd:element containing only one
xsd:annotation subelement

owl:DatatypeProperty

xsd:element containing a direct
xsd:simpleType subelement

owl:DatatypeProperty

xsd:attribute owl:DatatypeProperty
xsd:simpleType rdfs:Datatype
xsd:complexType owl:Class
xsd:minOccurs,
xsd:maxOccurs

owl:minCardinality,
owl:maxCardinality

xsd:choice owl:unionOf
xsd:annotation rdfs:comment

xsd:extension base attribute
owl:DatatypeProperty
“hasNativeValue”

ontology or additionally including a concrete XML instantiation of the XSD schema and thus
generating TBox and ABox. The retrieved structure of the generated OWL model is very simple
due to limited expressivity of the XSD schema and the necessity of an automated approach. For
example, while XSD elements are interpreted as OWL concepts, and in some cases additionally
as OWL object properties, XSD attributes are always realized as OWL datatype properties (cf.
Table 4.3). This results in a compact translation which preserves most of the information defined
in the original gbXML schema.
In a second step, a specific XML instantiation of the schema (i.e., a concrete building project) is
translated into OWL individuals with another stylesheet in order to populate the created OWL
model. This XSLT transformation takes the general OWL model created in the first step as well
as a Green Building XML file as input and produces the ABox of the ontology. In this respect,
the OWL model that serves as input can be modified involving a complexity that goes beyond
information retrieved through the schema transformation: as long as the basic classes created in
the gbXML schema translation step are existent in the OWL model, an arbitrary complex ver-
sion can be used as input file for the ABox transformation still permitting the successful creation
of individuals and their association with appropriate classes. This makes the extension of the
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knowledge store possible while not interfering with the ABox creation procedure. Almost all
of the information stored in the gbXML file describing the building project is identified to be
relevant for energy efficiency considerations and thus transferred to OWL, while excluding only
special schema elements and CAD coordinate instance values which deemed to be unessential
for the operational phase.
As a last step of the process, the two generated files (TBox and ABox) are merged into one OWL
file resulting in a fully populated OWL building model. This fundamental OWL representation
of building data retrieved from gbXML may already be used as basic model for building infor-
mation or can be seen as basis for the creation of a sophisticated building information ontology
representing building physics and architectural parameters.

4.2.4 OWL Conceptualization of Building Physics

As already motivated in the previous paragraphs, when considering the optimization of energy
consumption in a building, the general structure of the building, its orientation and building
physics play an important role that cannot be neglected. In this case, Semantic Web modeling
can be used on the one hand to take away complexity from the system relying on it while on the
other hand describing the relations between parameters in a machine-interpretable form. Mod-
eling the building and its characteristics with the help of the Web Ontology Language brings
several advantages: the possibilities that arise through the use of a complex, logic-based lan-
guage like OWL can aid the creation of a model of the world that accurately reflects reality and
represents knowledge about the building environment. The inherent logic can be used to infer
missing information in order to complete the representation of the building. Particularly for au-
tonomous building systems it is essential to represent information available about the building
and its characteristics as complete as possible. As this information can seldom be retrieved to a
full extent at the stage of building usage, it is desirable to reuse information about the building
already collected in the design and construction phase through architects, planners and building
physicists as shown in previous sections. The described inclusion of information collected in
gbXML forms a fundamental basis for the envisioned semantic layer. The idea of the created
architecture and building physics ontology is to integrate the information retrieved from gbXML
into a smart home in order to benefit from already known information about the building. This
information is manifold, but as one of the main use case goals of the envisioned smart home
system is to provide an energy-efficient operation (cf. Chapter 3), the representation of building
physics parameters as well as relations of rooms, walls, windows and doors are most important.
Then again while the storage of the building orientation is important, detailed information about
the building model position in a CAD coordinate system is unnecessary for the proposed utiliza-
tion and can therefore be neglected.
As the information retrieved from gbXML is extracted from an ordinary XML file following the
gbXML schema, the initial OWL hierarchy is flat: this results from the fact that subsumption
hierarchies as they may be defined in OWL cannot generally be presumed in XML. Further,
because gbXML describes a format for interoperability between development tools of the AEC
domain, most of the elements are described in a very general way, what means, that many de-
scribing elements are optional. For example, the definition of the Material element in gbXML
includes parameters like density, thickness, conductivity or R-value among others, however the
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only required parameter is an ID. This great amount of optional elements makes the definitions
retrieved from gbXML rather unsuitable for the automatic deduction of a class hierarchy. As
previously described xsd:complexType elements of the XSD schema are still transformed
into OWL axioms. Because of the open-world assumption these axioms and their large amount
of optional dependencies represented as owl:unionOf relation are not necessarily useful for
the OWL reasoning itself, however, besides formally describing the relationships to other con-
cepts and datatypes, they serve as a reference point for a human observer to comprehend the
meaning and intended usage of a specific OWL concept. For reasoning performance consider-
ations, it would be possible to store these axioms as rdfs:comment annotations and as such
exclude them from DL reasoning altogether. While for a human observer this definition would
be sufficient to comprehend the meaning of a concept, information would then not be available
to the reasoning algorithm anymore. On that account, it is decided to keep the axioms in concept
descriptions.
The following elaborations show how the created ontology can enhance information retrieved
from the gbXML building information model with the help of inherent logical reasoning of the
applied Semantic Web language and the design of logical rules for advanced inferences.

4.2.4.1 Upper Level Building Domain Conceptualization

As a first step, an asserted OWL subsumption hierarchy is manually created in order to classify
the retrieved gbXML parameters. The whole hierarchy is deemed to represent a shared vocabu-
lary or upper ontology for Building Information Modeling. As shown in Figure 4.4, the top level
concepts include the most general groups of data represented in gbXML while subhierarchies
define partitions of subgroups. Some of these upper ontology elements for gbXML are directly
taken from the gbXML schema, while others are created in order to group retrieved classes. The
campus concept in gbXML includes facts about the exterior environment of the building as well
as other information specifically relevant for energy analysis. Further, one or more buildings
are defined for a campus site. This element also stems from gbXML where it is mainly used to
represent everything that is known about the building, from general facts like address and de-
scription to its geometric shape. In the context of the created shared vocabulary, the campus class
is therefore used to describe the compound of one or more buildings and possibly the surround-
ings while the building class represents information about the building itself. Each building has
several associated building elements (BuildingElement), a class defined to group general
relevant components that together make up a building, such as building storeys, materials and
surfaces (i.e., walls). Equipment is another top-level class created to group certain concepts as
gbXML also allows to describe different types of equipment (e.g., air loops, lighting system) for
energy simulation. The Parameter top-level concept finally represents the main hierarchy of
the created shared vocabulary: in this case, all parameters that may be specified for buildings and
equipment are grouped according to their usage type (e.g., geometric, temporal, building) as well
as building life cycle phase. The relevance of each parameter for a specific phase can be clas-
sified through the ParameterSignificance group. Finally, the concept IdentifierElement
is an auxiliary element to group ID elements that are created through the XSLT transforma-
tion of gbXML. Generally, this element can be used to represent ID attributes for XML-based
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Figure 4.4: Top-level concepts and relating properties of an upper level building domain con-
ceptualization based on gbXML

schemas. Typically a lot of information in OWL ontologies is represented in properties. The
created transformation from gbXML already creates a wide variety of properties relating spe-
cific gbXML elements to each other. However, again, the possibilities of automatically creating
properties from an XML schema are limited to the expressivity of the schema. In order to define
connections between the defined top-level elements, a well-defined set of object properties is
created, including connections which are not defined in gbXML and thus cannot be retrieved di-
rectly through transformation. In this respect, the isBuildingElementOf relation directly
relates a building element to a specific building on the campus. Each equipment may be part of a
campus or a building and therefore another property isEquipmentOf is defined. It is further
necessary to relate each parameter represented in this ontology to a building or equipment which
is realized with the isParameterOf relation. Several parameters retrieved from gbXML are
just relevant for the building performance analysis phase, e.g., parameters for specific load cal-
culation methods, while others like the blower door value or various energy-related parameters
about equipment also prove to be useful for the operation phase of the building. Therefore, a
relation of parameters to the hierarchy representing parameter significance is created by means
of the property hasSignificance.

4.2.4.2 gbXML Classification

In order to classify concepts retrieved from gbXML, they are added to one of the subgroups
defined in the upper level building ontology and shown in Figure 4.5. While an automated
approach would be possible, in the current process the concepts are manually asserted to these
hierarchies.
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Figure 4.5: Building ontology module shared vocabulary hierarchies

Building Elements All physical as well as conceptual elements of gbXML that are related to
the description of the building and its structure are summarized in this category. Examples for
physical elements obtained from gbXML are surfaces (i.e., walls), construction and layer of these
surfaces as well as the material that constructions are made of. Further, also openings included
in surfaces (i.e., windows, doors) as well as spaces, as representation of volumes enclosed by
surfaces (i.e., rooms) are defined as pyhsical building elements. Then again, conceptual elements
are elements that do not necessarily represent real-world entities and can be seen as auxiliary
elements that are modeled in gbXML to express some concepts needed for simulation or to
add an additional expressivity to the model. Examples would be zones represented as members
of the Zone concept which describe a partition of the building independent of rooms, or the
SpaceBoundary concept which is designed in gbXML to represent the connection between
surfaces and their adjacent spaces.

Building Information Parameters The parameter subhierarchy is mainly split into two types:
life cycle related and application related. While application related parameters are directly im-
ported from gbXML and are therefore represented in a manually asserted hierarchy, the life
cycle related classes are defined in the shared vocabulary to additionally categorize the repre-
sented parameters according to the life cycle stage for which they are relevant.

Life cycle related At the moment there are three life cycle groups reflecting different
ParameterSignificance subgroups (cf. Table 4.4). Life cycle related concepts are de-
fined using owl:equivalentClass axioms, and therefore, logical reasoning can be ap-
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Table 4.4: Life cycle related parameter concepts and their corresponding equivalence axioms

Parameter Concept Equivalence Axiom

AnalysisPhaseParameter
Parameter and
hasSignificance some
AnalysisSignificance

ConstructionPhaseParameter
Parameter and
hasSignificance some
ConstructionSignificance

OperationPhaseParameter
Parameter and
hasSignificance some
OperationSignificance

plied and application related parameters with proper axioms can be inferred to be members
of one or more of these groups. This additional classification allows to instantly identify pa-
rameters that are solely important for a specific life cycle phase, as many parameters retrieved
from a Building Information Model are solely used for simulation (i.e., in the building analy-
sis/design phase). Those parameters can then be classified as not being relevant for building
operation. For example, while a geometric parameter like the area of a room has a signifi-
cance in all three phase, the results of a simulation captured in the Results class are only
important in the analysis phase. With the hasSignificance object property and the appro-
priate axioms, Area is therefore inferred to be a subgroup of AnalysisPhaseParameter,
ConstructionPhaseParameter and OperationPhaseParameter, while Results
can only be identified as subclass of AnalysisPhaseParameter.

Application related While one gbXML concept can be subclass of more than one life
cycle related parameter class, generally there only exists one main application for a parameter.
Therefore, in order to better categorize different parameters represented in gbXML, a detailed
application related parameter hierarchy is provided in the designed shared vocabulary as shown
in Figure 4.5. All concepts identified during the gbXML transformation that represent building
or equipment parameters are added to the particular group which indicates their main category:

• Calculation parameters This class includes general parameters that may be used for
different simulation-related parameters needed for calculating performance and cost of
equipment. In the case of gbXML, costs of building elements (Cost) and classes needed
for the representation of algebraric expressions (Equation, IndependentVariable,
DependentVariable) are modeled as calculation parameters. Parameters in this group
are mainly significant in the building design phase.

• Building parameters Parameters that are related to the building itself and its surround-
ings are represented in this concept. Environmental parameters as first direct subgroup
are all parameters that are describing the interior or exterior environment of a building.
Exterior environmental parameters are again mainly used for simulations and for example
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include simulation parameters for outdoor conditions (e.g., cooling degree days, weather)
and environment (e.g., vegetation, biomass density). For the interior environment, again
a large amount of simulation parameters is defined in gbXML, while in this case it be-
comes clear why a classification according to phase significance is needed: values for
illuminance or temperature defined in gbXML only have a relevance at building design
time while operating values for these parameter types are defined in the ontology defining
sensors (e.g., light sensor, temperature sensor) and their current states (cf. Section 4.3).
On the other hand, static values like blower door value or people heat gain in combina-
tion with current values (e.g., people number count of a specific room) also can be used
to optimize the building at operation time. The geometric parameter group comprises
classes that are needed to describe the items relevant for representing geometric forms in
the building model. As such it mainly includes concepts derived from CAD programs,
e.g., height and length of a building element or the level of a particular building storey.
The position parameter group is created to contain information about the site’s global
position such as the location class describing the placement using height above the sea
level (i.e., elevation), latitude and longitude. Finally, structure parameters as subclass
of building parameters covers information items that depict the general structure of the
building. Material parameters as a subclass of structure parameters encloses those values
and classes describing used materials in detail (e.g., reflectance, absorptance, U-value).

• Equipment parameters This group is concerned with parameters regarding the design
and operation of equipment in the represented building. As several elements in the gbXML
schema are solely used for shade control simulation, an own subconcept is provided for
this group of parameters. While equipment parameters in general may be significant for all
phases of the building life cycle, shade control simulation parameters are only significant
for the analysis phase.

• Analysis method parameters This concept encloses items that are solely significant
within a specific design method used for building analysis.

• Temporal parameters This class groups elements relevant to model time concepts in the
building information model. The parameters are needed for example to describe schedules
for energy simulations and as such are also only significant for the analysis of a building
at design time.

• File parameters In this subconcept of building parameters auxiliary parameters that are
used to describe the gbXML file itself and properties like its creator, modification date and
name of the creation program are represented.

Building Parameter Significance This top-level concept currently identifies three different
stages: analysis, construction and operation. The parameter significance concept is provided be-
cause a BIM generally spans several stages of the building life cycle and as already illustrated not
all parameters available for energy analysis also necessarily have an influence on the operation
of a building. As Figure 4.5 shows, single building life cycle stages are modeled as subclasses.
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This modeling decision makes it possible to define a more detailed partition of building parame-
ters by defining additional subhierarchies if needed. it would for example allow to specify that a
particular parameter is only significant for a short period of time in the analysis phase enhancing
the expressivity of the model.

Building Equipment Additional to building elements, the gbXML schema also includes ele-
ments describing building equipment for the HVAC and lighting domain which are summarized
in this concept. While for a thorough representation of building facilities and applications the
Energy & Resources ontology (cf. Section 4.3) is provided, equipment information gathered
in gbXML is still included. The building information model in this case provides elements to
describe parameters of air loop equipment, hydronic loop equipment and the lighting system
as well as general internal equipment. The elements are defined in a very generalized form in
order to classify any type of equipment while no detailed equipment hierarchy is described. In
the designed smart home ontology parameters defined in gbXML can still be regarded useful
to enrich the resource ontology with static information retrieved from the building information
domain.

4.2.4.3 Reasoning in the Building Ontology

Additionally to describing the information retrieved from gbXML with the Web Ontology Lan-
guage also subtle Description Logic reasoning is used to enhance retrieved facts and create addi-
tional information. In this case, two different forms of reasoning are exploited: common OWL
as well as SWRL reasoning. This section describes some of the advantages that arise through
different forms of reasoning when using information from a building information model for the
realization of a building ontology.

OWL Reasoning In the case of the defined ontology for Architecture & Building Physics,
standard OWL reasoning is mainly utilized for individual reasoning. As a large amount of el-
ements retrieved from the concrete model become individuals in the ontology, they need to be
classified into their corresponding concepts generated from the gbXML schema. In order to keep
the conversion short and simple and make it unnecessary to manually assert class dependencies
in the transformation process, these individuals are defined as members of the common super-
class owl:Thing. To classify them as members of an appropriate subclasses of owl:Thing,
the reasoning mechanism of OWL is used. In this respect, the defined rdfs:domain and
rdfs:range descriptions fixed during the transformation are useful to identify the correspond-
ing class. For the two individuals Concrete_Insulation and Insulation_Material
in Figure 4.6 for example, a variety of connections to other created individuals are defined
through object properties. For each of these properties domain and range are identified in order
to define associated classes. In this regard, the containsR-value object property is defined
as follows:
<owl:ObjectProperty rdf:about="&ontology;BuildingOntology.owl#containsR-value">

<rdfs:domain rdf:resource="&ontology;BuildingOntology.owl#Material"/>
<rdfs:range rdf:resource="&ontology;BuildingOntology.owl#R-value"/>

</owl:ObjectProperty>

94



Therefore, the connection with this property already allows to classify the insulation material
instance as member of the Material class (cf. Figure 4.7) as well as the concrete R-value
instance as member of the R-Value concept. These classifications are not only dependent on
single properties as dependencies like the one illustrated can be found throughout the whole
ontology. Similarly to the described example, all other inferred rdf:type relations shown in
Figure 4.6 can be deduced.

containsThickness

containsR-value

containsConductivity

containsDensity

containsSpecificHeat

hasNameValue

I_R-Value

I_SpecificHeat

I_Conductivity

I_Density

I_R-Value

“Insulation“

R-Value

SpecificHeat

Conductivity

Density

Thickness

hasNativeValue

hasUnitValue

“Meters“

0.2

individual

rdfs:subClassOf relation

owl:DatatypeProperty

owl:ObjectProperty owl:Class

inferred rdf:type
shared vocabulary class

containsRoughness

containsReflectance

containsAbsorptance

containsTransmittance

containsU-value

containsAlbedo

CI_Transmittance

CI_Absorptance

CI_Roughness

CI_Albedo

CI_Reflectance

CI_U-value

Transmittance

Absorptance

Reflectance

Roughness

Albedo

MaterialParameter

U-value

Concrete_Insulation

Insulation_Material

hasNativeValue

hasUnitValue

“WPerSquareMeterK“

0.2

data value

hasNameValue

“Conc_30_Insulation_20“

Figure 4.6: Inferred class relationships of individuals associated with a construction
(Concrete_Insulation) and a material (Insulation_Material).

SWRL Rule Extensions As already explained in Section 2.4.1, SWRL rules are used to ex-
tend the reasoning capabilities of OWL. Because of the fact that the data format used by gbXML
is ordinary XML and as such is not as expressive as the OWL language, logical rules are used
in the constructed building ontology to extend the information representation and also simplify
dependencies derived from gbXML. One main application for rules in this particular case is
the mechanism that is used by XML to define references between elements: An element with a
unique ID is referenced via the XML schema simple type IDREF and thus creates a simple form
to describe relations between objects in an XML document. In the created OWL ontology it is
however desired to be able to directly relate concepts to each other without the need for matching
ID/IDREF pairs in a user-defined query. In this case, SWRL rules may be used to connect con-
cepts that are described with a reference relation in the original gbXML document. Listing 4.1
shows an example that models the connection between a construction and its associated layer.

Listing 4.1: SWRL Rule to connect entities referenced to each other via ID and IDREF attributes
in the original gbXML document.
hasDefinedLayer:

Construction(?x1), Layer(?x4),
containsLayerId(?x1, ?x2),
hasLayerIdRefValue(?x2, ?x3),
hasIdValue(?x4, ?x3) -> hasDefinedLayer(?x1, ?x4)
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Figure 4.7: Example showing the connection between a particular construction, its layer and two
associated materials

Basically, the rule validates if the values of the hasIdValue datatype property of a Layer
instance and the hasLayerIdRef datatype property of a LayerId individual connected
to a specific Construction instance match. If this connection is detected, a new relation
hasDefinedLayer is added to the knowledge base, describing the fact that this particular
construction has an association to the respective layer. A similar rule can be defined for the con-
nection between layers and materials which for a specific construction in further consequence
may lead to dependencies as shown in Figure 4.7: in that case, the construction has one associ-
ated layer, which itself is made up of two different materials, insulation and concrete. While in
this case the two materials belong to one single layer, naturally it is also possible to split them
in two distinct layers10.
A further example for the need of rule extensions is the definition of inverse relations. Con-
sidering the necessity to represent adjacent walls for a particular space, in gbXML surfaces are
generally related to spaces via the AdjacentSpaceId element. The other direction, hence
the relation from spaces to surfaces, may be realized with the help of the SpaceBoundary
element (cf. [223]). While the schema provides the possibility to define both relation directions,
none of them is mandatory and not all of the currently available software solutions also use
them. For example, only the first relation exists in the test building gbXML instance created by
the Ecotect software tool.

Listing 4.2: SWRL Rule to determine the adjacent walls of a room
hasDefinedAdjacentSurface:

Space(?sp1),Surface(?su1),
hasIdValue(?sp1,?id1),
containsAdjacentSpaceId(?su1,?aid1),
hasSpaceIdRefValue(?aid1, ?id1) -> hasDefinedAdjacentSurface(?sp1, ?su1)

10For both defined relations corresponding inverse properties are defined (isDefinedLayerOf,
isDefinedMaterialOf) which are omitted in the figure for brevity.
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Listing 4.3: SWRL Rule to define two adjacent spaces
hasDefinedAdjacentSpace:

Surface(?su1), Space(?sp1), Space(?sp2),
hasDefinedAdjacentSurface(?sp1, ?su1),
hasDefinedAdjacentSurface(?sp2, ?su1),
hasIdValue(?sp1, ?id1),
hasIdValue(?sp2, ?id2),
notEqual(?id1, ?id2) -> hasDefinedAdjacentSpace(?sp1, ?sp2)

In this case, the application of an ontology suits perfectly in order to describe and deduce missing
relations. As it is a precondition for a sophisticated building model to represent appropriate re-
lations to walls, ceilings and floors for defined spaces [142], a rule to infer this relation through
the reasoning mechanism of the ontology is provided (cf. Listing 4.2). This rule extends the
gbXML building information ontology with the property hasDefinedAdjacentSurface
describing the surfaces (e.g., walls, floor, ceiling) that are adjacent to a specific space. That way,
the second direction to relate space and surface individuals can be inferred by the reasoning
mechanism even without the existence of a SpaceBoundary element.
The third example to illustrate rule extensions in the building ontology identifies if two spaces
are adjacent to each other. In newer versions of gbXML11 this relationship may be created with
the oppositeIdRef attribute of the SpaceBoundary element which again is not manda-
tory. Therefore, the rule illustrated in Listing 4.3 which builds on the previously shown rule (cf.
Listing 4.2) can be used to identify two adjacent spaces by essentially examining two spaces for
a common, shared surface. In order to assure that the two identified spaces are indeed different
spaces, the rule additionally makes use of the swrlb:notEqual SWRL built-in [253]. In
case the rule is satisfied by two individuals in the knowledge base, it adds an additional relation
(hasDefinedAdjacentSpace) to express that these two particular spaces are adjacent to
each other. Again, as already with the last example, the rule can be seen as addition to the ontol-
ogy that completes knowledge about the building not explicitly stated in the source, the building
information model.
Another rule that builds on the adjacent surface rule is pictured in Listing 4.4. In the origi-
nal gbXML model, surfaces are associated with the campus instead of the building element.
To overcome this peculiarity, the shown SWRL rule modifies the containsSurface object
property retrieved from gbXML in a way that each surface adjacent to a space of a particular
building is connected to the building via the containsSurface property.

Listing 4.4: SWRL Rule to create a direct connection between buildings and surfaces
containsSurface:

Surface(?x1), Building(?x3), Space(?x2),
containsSpace(?x3, ?x2),
hasDefinedAdjacentSurface(?x2, ?x1) -> containsSurface(?x3, ?x1)

As this rule redefines an existing object property retrieved from gbXML instead of creating
a new one, additionally to defining the rule, the rdfs:domain of the property needs to be
adjusted: according to the original gbXML transformation, the domain is limited to elements of
type “Campus”, however, in order to satisfy the constraints of the created rule the domain of

11Version 5.00 and higher.
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this object property needs to be extended to “Building or Campus”.
The provided examples show how the reasoning mechanism of OWL and SWRL rules may be
used to extend the knowledge about a building by computationally inferring missing relations
between individuals retrieved from a concrete gbXML instantiation.

4.2.5 Ontology Metrics

Table 4.5 shows a summary of the created ontologies in this domain. For the envisioned Archi-
tecture & Building Physics ontology on the one hand a simple shared vocabulary is created that
encloses a well-defined set of concepts and object properties. There are no datatype properties
and also no instances defined in this ontology, as it merely serves to create a general classification
for elements and parameters interesting in the building domain.

Table 4.5: Metrics of the Architecture & Building Physics ontology module

Shared Vocabulary
for Architecture &
Building Physics

Ontology

Architecture &
Building Physics

Ontology

TBox
Named Classes 31 263

Object Properties 5 238
Datatype Properties 0 207

ABox Instances 0 0

Further, Table 4.5 shows the metrics of the complete Architecture & Building Physics ontology
including the concepts and properties of the shared vocabulary. The major part of the created
classes represents different types of building parameters. The rest of the concepts is used to
represent the building and its elements. The large amount of object and datatype properties arises
from the automatic extraction of classes and properties from the gbXML building information
model. Additionally, not shown in the overview, a small amount of SWRL rules is provided in
order to prove the usability of a rule extension in this context.

4.3 Energy & Resources

In current residential homes, occupants are often not aware about how much energy is consumed
at a certain point in time. While smart metering is about to become extensively introduced in the
European Union [119], in the general case a smart meter is only a digitized version of current
mechanical meters. As such it is capable of giving real-time feedback about the electricity use of
a building to residents and allow energy providers to remotely switch off or limit the energy use
of single energy consumers [244]. Hence, in this case information about energy consumption
is limited to a general, building-wide value not giving feedback of consumption on the device
level.
Generally, as pointed out in surveys and projects like [240, 137] it can be seen as a prerequisite
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of a smart home to make energy consumption of single devices available either for direct feed-
back to occupants or for sophisticated, autonomous control mechanisms. While the feedback of
a smart meter can already be used to give the occupants a general idea of how much energy is
consumed, it proves rather difficult to isolate major energy consumers from measures taken by
smart meters. There exist projects showing the feasibility of this approach for small test envi-
ronments (e.g., [23]), however especially in buildings with many electrical appliances such an
approach will most certainly fail to identify the variety of different appliances: consumers that
show the same steady state profile for example make it hard to distinguish different electrical
appliances. Similarly, also an association of a device to a specific room or zone is in this case
only possible if each of the devices show individual energy-consumption load profiles. In future
smart homes, therefore it is beneficial to measure the energy consumption at the source i.e., at
the devices themselves. Currently, there exist different possibilities to reach device-level energy
metering. On the one hand, it is possible to install a smart metering infrastructure on a socket
level. One popular example in this case would be the Plogg12 smart plug environment: this sys-
tem allows the monitoring of devices and metering of generated or consumed kWh which can be
read out wirelessly using the ZigBee protocol or Bluetooth [137]. On the other hand, installed
building automation systems may be used to monitor the energy demand of single devices or de-
vice groups by adding specific components for energy measurement (e.g., KNX energy modules
[3]). Alternatively, energy measuring devices of a dedicated field bus like M-Bus [76] may be
used to retrieve electricity, gas, heat or water consumption figures and provide them in machine-
readable form to a building control system. In future homes, Internet-connected devices may
also natively support the reading of their current energy demand.
Another important dimension with respect to energy information is energy production. In this
connection, energy may be locally produced by renewable energy generation equipment or pro-
vided by external energy suppliers. While local energy producers such as solar panels or a
geothermal heat pump as well as their states and functionality naturally need to be depicted in a
smart home, it is also necessary to provide a representation for energy suppliers and the energy
spot price. For a truly smart home, it needs to be possible to react on available excess energy
in the energy grid. As already mentioned in [202] a shortcoming that building automation sys-
tems are facing today is that the promising integration of household appliances (white goods)
and consumer electronics (brown goods) is not happening pervasively, if at all. The reason is
that the consolidation of these devices is not trivial at the physical layer (e.g., wired-wireless),
nor at the network layer (communication), neither at the application level (data semantics). Ad-
ditionally, such an extension of the building automation system scope obviously increases the
overall system complexity. In this case, especially the integration of household appliances and
entertainment devices into a homogeneous system is far from being trivial. Even after integra-
tion of all devices is achieved, operating them energy efficiently is another big challenge due
to different usage paradigms, operation modes and interfaces. For full resource conservation, it
is mandatory to include major energy consumers such as household appliances in novel control
strategies of the automation system.
With the great variety of integrated devices in the home, it becomes important to picture them
according to their type, functionality and possible states. Such a representation not only gives

12www.plogg.co.uk
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a unique view on the facilities infrastructure, but may also be used to integrate heterogeneous
building networks into one single system. Naturally, apart from control information, also the en-
ergy consumption and energy production need to be pictured: this information enables a global
control system to consider it for energy optimization strategies. Relying on an ontology se-
mantically describing building automation resources and household appliances, newly attached
facilities can easily be categorized and integrated into the system without complete information
about functionality and control capabilities.
Many devices also waste energy when they are currently not in use e.g., during their stand-by
times. Reducing these idle-times may lead to large savings if done on a building level [163].
To become aware of idle times, the SHS should be aware of occupancy information as well as
a notion when different facilities are likely to be used (e.g., a coffee machine is likely to be
used between 6 and 9AM) represented in another part of the smart home ontology (cf. Section
4.4). Especially in the case of brown goods like TVs and other leisure facilities it is feasible to
unlink them from the power grid during times when the home is not occupied and to just bring
them back into stand-by mode when usage is expected. For the energy-intensive operation of
white goods like dishwashers or washing machines it is beneficial to know how tasks should be
scheduled with respect to the energy supply side. This way, peak loads on the power grid can be
reduced and at the same time the environmentally friendliest energy provider can be chosen.

4.3.1 Related Work

In recent years, a majority of home and building automation (HBA) and smart home research
concentrated on the pervasive integration of all kinds of devices found in a building. This in-
tegration is in most cases not directly possible because of the heterogeneity of different HBA
standards, communication protocols and related data semantics. While current gateway-based
integration solutions like OSGi [185], OPC UA [155] or oBIX [180] often provide an encoding
in XML, e.g., to describe building automation devices and communication types, there also exist
efforts to overcome heterogeneity in building automation systems based on ontologies [200]. In
this context, DomoML [224] is one of the first ontology-based projects to propose an ontology-
based household device model. While it successfully provides a taxonomy of different house-
hold appliances, DomoML fails to address the energy behavior of the facilities. The second
appliance integration project is called DogOnt [34] and can be seen as an advancement of the
taxonomy described in DomoML. It reuses certain parts of the DomoML ontology, tries to over-
come limitations of DomoML and gives a compact and complete ontological representation of
household goods including states, functionality and a basic notion of the building environment.
Additionally, DogOnt starts to address the issue of heterogeneity in home and building automa-
tion as it abstracts from particular types of installed facilities and generalizes them with the help
of an ontological representation. Again, energy-related issues are not specifically addressed in
the suggested ontology and also the integration in a multi-agent system as well as energy effi-
ciency considerations are not in explicit focus. Another existing project in the area of semantic
representation for smart buildings is VantagePoint [177]. This project puts its focus on the vi-
sualization of information and knowledge about the system, while resting upon an ontological
knowledge representation. The paper mainly concentrates on the ontology for visualization but
also describes challenges arising from the integration of a vast amount of sensors available in a
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smart home. For the field of wireless HBA technologies, the authors of [97] propose an ontology
that can be used as middleware between wireless sensor networks and enterprise systems. In this
case, the ontology reasoning mechanism is used to filter data necessary for further processing
while preventing information flooding in the wireless sensor network. Further, there also exist
works that propose the application of ontology-based techniques at building design time: The
authors of [209] describe a requirements ontology in order to support an automatic design pro-
cess of building automation systems.
While these preliminary works show plausible approaches in various sub-parts of a smart home
control system, almost all of them do not address the important topic of energy efficiency. One
exception is the paper of Gomez et al. [97], which however does not realize a sophisticated
facility-based representation of energy information as it is needed for a smart home system. An-
other project that focuses on energy information is the framework presented in [99]. Although
the authors’ approach covers a similar topic as the one that is described in this proposed En-
ergy & Resources ontology, they do not sufficiently discuss the context of a smart home system:
while the ontology can be regarded as sophisticated, the focus of the pictured domain is unclear.
Some concepts that are not necessary in the smart home domain are represented in detail (e.g.,
power plants’ location and owner) while other more important concepts are missing (e.g., energy
providers, energy tariffs). Also the integration of the ontology with the pictured central intelli-
gence part called Smart Home Manager is only explained to some extent and the reader is left
with open questions regarding the implementation and intelligence of the proposed system. The
SESAME-S project described in [81] illustrates a system for semantic smart metering relying
on ontologies. The authors identify three ontologies, namely an automation, a meter data and a
pricing ontology. While for the pricing ontology important terms like energy type and providers
as well as tariffs are mentioned, a detailed description of the ontological model is not provided.
Also reasoning capabilities of the proposed system are only mentioned and not described in de-
tail. Another article focusing on energy management in residential homes is [225]. Although
the proposed system does not rely on multi-agents or ontologies it considers the main influence
factors on building energy consumption and production in a smart home which are local energy
consumers and producers as well as remote energy service providers. For the designed home
energy management system, the article proposes a home network model to represent devices,
networks and services. While the authors describe this high-level classification and show an
example instantiation of their home network model detailed information about the used repre-
sentation technology as well as detailed structure of this model is regretfully missing.
The following sections discuss the semantic representation of energy and facility information in
smart homes. Different parts of this ontology have already been published in several scientific
publications, most notably in [152], which also serves as foundation for subsequent elaborations.
The authors of [100] further propose the usage of the energy part of the following module in a
framework utilizing a variety of different ontologies to cover the smart home domain. In the
present work, apart from energy consumers and producers, also the description of external en-
ergy providers and their conditions is outlined and therefore an additional viewpoint is provided
that has not been thoroughly considered by any of the above mentioned projects.
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4.3.2 Structural Overview

Taking a look at the top-level concepts of this resource representation (cf. Fig. 4.8), it can be
seen, that the ontological descriptions can be split into two logical dimensions which are highly
interrelated, the resource and the energy dimension. Both dimensions are covered with a set of
subhierarchies, describing relevant concepts. For the created ontology, the energy information
and resource information are represented in one ontology because of the interrelationships. For
elaboration and discussion of the Energy & Resources Ontology, however, the two dimensions
are being treated separately. Concepts and properties that represent the relations between the
dimensions are highlighted where necessary.
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Figure 4.8: Energy & Resource ontology top-level concepts (selection)

4.3.3 Resource Description

For an energy efficient operation of a building, a wide variety of different influences have to be
considered. Most importantly, for a smart home to operate on the environment, a homogeneous
view on existing home automation devices and household appliances, hence resources needs
to be provided. In the described domain resources are understood as available facilities and
their characteristics. Therefore, information that is included in this particular ontology spans
white goods, brown goods and building automation networks hosting lighting, shading as well
as heating, ventilation and air conditioning (HVAC) devices. As the automation networks can be
of different types, protocols and manufacturers, it is valuable to represent them as concepts in
an ontology: this way, their definition can be generalized, which in turn supports the transparent
integration of components across different networks into one central control system. In addition,
also local plants and installations used for energy production like solar collectors or a thermal
heat pump need to be represented in this section as well. Hence, it is desired to depict a complete
model of the energy consuming and producing landscape available in the building [224].
To represent crucial information about installed equipment like possible states of operation and
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Figure 4.9: Top-level concepts of the DogOnt ontology [34]

their location in a building, the DogOnt ontology, designed for the DOG OSGi Domotic Gateway
[34, 33] is found to be a suitable choice, as it thoroughly describes the controllable environment
for a smart home. DogOnt is mainly used to locate devices and very simple reasoning as its
main function is device modeling. Therefore, the ontology is not exhausting the capabilities
of the OWL language with respect to automated inferences. Yet, because of the sophisticated
modeling of household appliances as well as sensors and actuators with respect to possible states
and functionalities, this ontology is reused. Currently (November 2013), the latest version of the
DogOnt ontology is 1.0.8. However as a foundation for the resource part of the Energy &
Resources ontology, DogOnt version 1.0.513 is used which was the current version at the time
when integration of DogOnt into the Energy & Resources ontology was decided and initiated.
Because of the changes and additions that are conducted in the integration process, changes
made in newer versions of DogOnt are not considered. An overview of the main classes defined
in DogOnt can be seen in Figure 4.9 and as such the most important branches representing
facilities in the smart home can be identified as [34]:

• BuildingThing: This subbranch of the ontology hierarchy describes all controllable as well
as uncontrollable things that can be found in a typical smart residential home. Large parts
of the hierarchy are reused and adapted from DomoML-env [224] to fit the needs of the
DogOnt field of application.

• BuildingEnvironment: This concept hierarchy allows a rudimentary representation of the
building to represent sensors and equipment in relation with the building layout. In this
ontology, defined for interoperability this representation solely serves as simple possibility
to relate modeled devices to an actual location in the building.

• State: The state hierarchy models stable conditions that controllable devices can adopt.
In this respect, it is differentiated between continuous and discrete states, identifying if
a specific facility can take arbitrary values of a defined interval (continuous) or can only
take on certain values from a defined set (discrete).

• Functionality: This hierarchy represents functionalities that can be used to model capabil-
ities of modeled devices.

13http://elite.polito.it/files/releases/dog/dogont/DogOnt-1.0.5-MaisonEquipee/DOGOnt.owl
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• DomoticNetworkComponent: Here, network components like for example routers or gate-
ways of different manufacturers and technologies (e.g., KNX, ZigBee) can be represented.

The DogOnt ontology thus supports five different modeling dimensions: environment modeling
with the Building Thing and Building Environment hierarchies, device modeling with the Con-
trollable subbranch of the Building Thing concept, functionality modeling with the Functional-
ity hierarchy describing device-to-device interaction, state modeling with the State subhierarchy
and network modeling with the Domotic Network Component hierarchy depicting the interop-
eration between domotic components of different building automation networks [35]. These
dimensions to a large extent represent important domains when describing facilities for an au-
tonomous smart home system. Because of this fact, and as reuse of already existing ontologies
is desired, the main hierarchies of the DogOnt ontology are taken over for the purpose of serving
as resource part in the designed smart home ontology.
Considering reuse of this ontology, a direct import of this ontology through owl:import is
not conducted. First, as some of the provided subhierarchies include information not relevant
for the envisioned field of application smart home control they may be omitted. Some parts also
conceptually rather belong to other defined modules (e.g., Architecture & Building Physics) and
therefore also may be excluded from this part. The second main reason why a direct import
is not considered is that the ontology is not normalized. As main focus in this work is put on
reusability, it is desired to bring the ontology into a normalized form before reusing it.
The following list describes hierarchies and items that are left out in order to make the represen-
tation more concise:

• Furniture: Large parts of the subhierarchy are excluded, as a great part of uncontrollable
equipment as it is described in DogOnt is not needed for the smart home control use
case. Apart from the changing of thermal behavior of a room, it is not necessary to depict
facilities (e.g., bidet, desk, nightstand) that cannot be controlled. Further, if the location
of uncontrollable furniture is to be considered because of the thermal behavior of a room
or the building, it most certainly should be described as part of the defined Architecture &
Building Physics Ontology (cf. Section 4.2) as it rather belongs to static information about
the building that does not change frequently. However, there are three concepts that need
to be kept: Awning, Shade and Shutter. These devices may have associated actuators
that manipulate their state and therefore need to be represented in the described smart
home ontology. As the kept classes do not represent ”Furniture“ per se, the superclass is
renamed to ”Equipment“ for a clearer terminology. Further, the concept Radiator is
added to the set of uncontrollable equipment, in order to represent the equipment that is
associated with a specific radiator actuator capable of manipulating its state.

• Architectural: Also this part is reduced to necessary concepts. The definition of Wall for
location of a sensor, WallOpening for doors and windows and their associated actuators
or sensors as well as the concepts Ceiling and Floor are kept, while other concepts
are removed.

• BuildingEnvironment: This branch is kept to determine the location of sensors and fa-
cilities in the home. The associated building environment as described in the subclasses
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can be related to the Architecture & Building Physics Ontology by using the properties
hasAssociatedSpace and hasAssociatedZone (cf. Figure 4.2).

As stated in [198], a normalized ontological representation significantly raises reusability and
is therefore considered as key requirement for large ontologies. In DogOnt often concepts are
just distinguished by their name. More important than the name is the axiomatic description of a
concept so that the logical reasoning mechanism has more information abou the value types rep-
resented by a certain class. Therefore, just with a richly axiomatized classification it is assured
that the DL-reasoner has enough information to make correct inferences. Regarding ontology
normalization, the DogOnt ontology extensively uses asserted polyhierarchies while in a nor-
malized ontology these should be created automatically by the reasoning mechanism. However,
when providing the correct set of axioms, an OWL-DL reasoner is able to maintain the polyhier-
archic structure avoiding human error [71].
As a consequence, the DogOnt representation is first refactored into a semi-normalized form by
reformulation of comparatively weak ontology parts, while making a tradeoff between a fully
normalized ontology and practicability. First of all, naming is adapted to better reflect repre-
sented classes and individuals (cf. Table 4.6), as consistent naming is a necessary pre-condition
for reusable ontologies. In this process, all classes are renamed to singular terms apart from
the concepts named BrownGoods and WhiteGoods for which no singular terms exist. An-
other naming change is conducted for the FreeStateValue concept which is renamed to
NotOccupiedStateValue to better reflect its oppositeness to OccupiedStateValue
for the human reader. For object and datatype properties, there are no naming changes. For
hierarchies, the key design focus of the reformulation further is the keeping of the original
conceptualization as defined in the DogOnt ontology as far as possible but, for example, to

Table 4.6: Class names as defined in DogOnt 1.0.5 and their renamed counterparts in the Energy
& Resources Ontology

DogOnt 1.0.5 Energy & Resources Ontology
HousePlants BuildingAutomationSystemResource

ElectricalSystem ElectricalSystemResource
HVACSystem HVACSystemResource

SecuritySystem SecuritySystemResource
Acoustic AcousticSystemResource
Actuator ActuatorSystemResource
Control ControlSystemResource
Lighting LightingSystemResource
Sensor SensorSystemResource

AntiIntrusionSystem AntiIntrusionResource
FireSytem FireSecuritySystem

FloodSystem FloodSecuritySystem
GasSystem GasSecuritySystem
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eliminate asserted polyhierarchies and only let them be automatically asserted by the reasoning
mechanism. In some few cases also hierarchies are changed to better represent the dependen-
cies between concepts: for example the subclass relation between MainsPowerOutlet and
OnOffOutput is changed so that the latter is seen as specialized mains outlet that may be
switched on and off. To make the reasoner-driven classification of polyhierarchies possible, it is
further necessary to extend the axioms of the DogOnt ontology in a way that the reasoner can
make the desired inferences. This leads to the introduction of the auxiliary concept hierarchy
FieldOfApplication. This subbranch describes the different fields of application for in-
stalled equipment (e.g., temperature, visualization, security) and therefore helps to characterize
the nature of an appliance or building automation resource. With such additional descriptions,
it becomes possible to determine the capabilities of a specific building automation equipment.
The multi-agent system operating on the ontology can subsequently gather possible utilizations
of the appliance.
In order to automatically infer the polyhierarchies defined in the DogOnt ontology, the describ-
ing axioms of a substantial amount of concepts had to be changed. Particularly, it is necessary
to define owl:equivalentClass properties for classes, to make the reasoning mechanism
capable of automatically inferring desired dependencies.

Listing 4.5: Definition of the TemperatureSensor class
ero:TemperatureSensor rdf:type owl:Class ;

rdfs:label "TemperatureSensor"^^xsd:string ;
owl:equivalentClass

[ rdf:type owl:Class ;
owl:intersectionOf

( ero:BuildingAutomationSystemResource
[ rdf:type owl:Restriction ;
owl:onProperty ero:hasFieldOfApplication ;
owl:someValuesFrom ero:ElectricalFieldOfApplication

]
[ rdf:type owl:Restriction ;
owl:onProperty ero:hasFieldOfApplication ;
owl:someValuesFrom ero:TemperatureFieldOfApplication

]
[ rdf:type owl:Restriction ;
owl:onProperty ero:hasFunctionality ;
owl:someValuesFrom ero:GroupFunctionality

]
[ rdf:type owl:Restriction ;
owl:onProperty ero:hasFunctionality ;
owl:someValuesFrom ero:QueryFunctionality

]
[ rdf:type owl:Restriction ;
owl:onProperty ero:hasFunctionality ;
owl:someValuesFrom ero:TemperatureMeasurementFunctionality

]
[ rdf:type owl:Restriction ;
owl:onProperty ero:isSensorOf ;
owl:someValuesFrom [ rdf:type owl:Class ;

owl:unionOf
( ero:BuildingEnvironment
ero:BuildingThing

)
]

]
[ rdf:type owl:Restriction ;
owl:onProperty ero:hasState ;
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owl:onClass ero:TemperatureState ;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger

]
)

] ;
rdfs:comment "Sensor that detects the temperature of the atmosphere"@en .

The full axiomatic description of the TemperatureSensor class in the Energy & Resources
module is exemplified in Listing 4.5. In DogOnt a temperature sensor is defined to be an item
that has some temperature state, has a group and temperature measurement functionality and
is a subclass of the concepts HVACSystem and Sensor. To resolve the asserted polyhierar-
chy, in the ontology, the sensor is defined to have a relation to two different fields of applica-
tions, TemperatureFieldOfApplication and ElectricFieldOfApplication.
The first field of application makes it possible for the reasoning mechanism to infer that the tem-
perature sensor is an HVACSystemResource, while the second field of application is used
for classification as a resource for an electrical system (ElectricalSystemResource).
Regarding the second inference, the reasoning mechanism can further infer that the temperature
sensor is a more special version of electrical system resource, a SensorSystemResource
also defined through an owl:equivalentClass axiom (Listing 4.6).

Listing 4.6: Definition of the SensorSystemResource class
ero:SensorSystemResource rdf:type owl:Class ;

rdfs:label "SensorSystemResource"^^xsd:string ;
owl:equivalentClass

[ rdf:type owl:Class ;
owl:intersectionOf

( ero:BuildingAutomationSystemResource
[ rdf:type owl:Restriction ;
owl:onProperty ero:hasFieldOfApplication ;
owl:someValuesFrom ero:ElectricalFieldOfApplication

]
[ rdf:type owl:Restriction ;
owl:onProperty ero:hasFunctionality ;
owl:someValuesFrom ero:QueryFunctionality

]
[ rdf:type owl:Restriction ;
owl:onProperty ero:isSensorOf ;
owl:someValuesFrom [ rdf:type owl:Class ;

owl:unionOf
( ero:BuildingEnvironment
ero:BuildingThing

)
]

]
)

] ;
rdfs:comment "Class for grouping all electrically powered sensors"@en .

As this example shows, normalization on the one hand leads to a better axiomatization of the
modeled concepts, which in turn can be seen as a more profound description of the domain. On
the other hand, the reasoning mechanism can be used to automatically infer certain dependen-
cies, taking away complexity from the manual description of the ontology.
This way, all of the originally defined polyhierarchies of the DogOnt ontology can be automat-
ically inferred by the reasoning mechanism. A different hierarchical representation can only be
found in the security hierarchy which is slightly modified. In that case, the original DogOnt
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ontology defines several security system concepts (e.g., fire, flood, smoke), while associated
sensors are modeled as subclass of these concepts. Generally speaking, a sensor is not a special
kind of security system and therefore it should not be modeled as subclass but merely as part-of
relation. For this reason, in the Energy & Resources ontology the connection between security
system and sensor is created via the hasSensor object property, better reflecting the connec-
tion between these two concept types.
In addition, also other recommended normalization steps are performed. One of these steps is
to make primitive14 concepts disjoint. While the adding of disjoint axioms for primitive sibling
classes in the original DogOnt ontology leads to several unsatisfiable classes, the definition of
defined classes for polyhierarchies makes it possible to add disjointness in the Energy & Re-
sources ontology without further problems. As the extensive modeling of household facilities
and the building automation part makes the DogOnt ontology a good candidate for integration
into the proposed Energy & Resources ontology, its normalized version is used as part of the
resource representation. However, the DogOnt ontology only focuses on energy consuming de-
vices, while energy producing facilities and local power plants (i.e., sources) are not modeled.
Therefore, the ontology needs to be extended to also represent this dimension which is modeled
as HomePlant subhierarchy of Controllable. This hierarchy defines concepts for local
power plants and energy producing facilities, e.g., geothermal heat pumps, solar panels, wind
turbines or small local hydroelectric plants.
In DogOnt, building information is only rudimentarily treated, in order to specify the location of
a sensor or facility. Information about building physics and architecture is neglected, while this
information is essential if considering a comprehensive smart home knowledge base for a multi-
agent system. While in the case of the designed smart home ontology, static building information
is represented in an own building ontology (cf. Section 4.2), it is still important to have a basic
representation of the building also in the Energy & Resources ontology: this way, the module
may for example be used as stand-alone ontology without the detailed building physics knowl-
edge represented in the Architecture & Building Physics ontology. Therefore, elements that can
be used to locate sensors and associate them to parts in the building are kept. When connecting
the two ontology modules, certain concepts can be defined equivalent (owl:equivalent) as
delineated in Figure 4.2.
Referring to Figure 4.1, the normalized and extended DogOnt ontology therefore may represent
the resource ontology which interfaces with the more detailed building representation branch
described in Section 4.2 containing information such as used material or the orientation of the
building. The resource ontology is further extended with classes and properties describing the
energy dimension, adding an important viewpoint for an autonomous smart home control.

4.3.4 Energy Description

On the other hand, energy representation is an important source of information about energy
demand and energy supply of the smart home. In order to represent energy consuming facil-

14primitive classes are classes that are described only using necessary restrictions (e.g., subclass axioms) and no
sufficient restrictions (i.e., equivalence axioms)
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ities (i.e., sinks) in the proposed energy resource ontology, the modified DogOnt ontology is
chosen as a starting point. As the authors of DogOnt put the focus of their knowledge base
on the semantic integration of domotic components concentrating on building automation ser-
vice interoperability [34], the representation mainly focuses on modeling domestic and domotic
devices. Energy related issues like the demand of mapped home automation systems and appli-
ances are however not considered in the original approach. While the description of an Energy
& Resources ontology was firstly presented in [150], the authors of DogOnt have apparently
simultaneously been working on their idea of representing energy properties as extension to the
original DogOnt classification model (cf. [36]). However, in contrast to the energy ontology pre-
sented in this work, their approach does not go far enough: in DogOnt the authors focus solely
on energy consumption, while leaving out energy production or energy supply, which however
can be seen as important aspects when considering an energy efficient home system. For the in-
teroperability use case, the representation of energy consumption can be seen as sufficient, while
for a building-wide energy efficiency optimization also energy supply has to be considered.
The top-level concepts of this second part of the Energy & Resources ontology contain the fol-
lowing classifications (cf. Figure 4.8):

• EnergyProvider: All remote energy suppliers providing some form of energy relevant for
the residential home.

• EnergyTariff : The tariffs that are charged by an energy provider to supply a certain energy
type.

• EnergyType: The different energy types that are available and are either supplied by energy
providers, or used as source of energy to produce some secondary energy.

• EnergyParameter: All information needed to model energy demand and supply as well as
energy costs.

One of the purposes of this module is to allow a software system to base its operational de-
cisions on the status of the connected facilities in the smart home. A second purpose is the
representation of energy providers and energy tariffs, information that enables an ecological and
economical use of different energy forms such as electricity or district heating, with respect to
renewability and energy costs. The definition of these main supply-side concepts in the knowl-
edge base of the smart home therefore allows yet unconsidered improvements with respect to
energy consumption. This information is especially valuable when envisioning the integration
of the ThinkHome system into a smart grid, as the ontology can provide the momentarily best
option for energy consumption or recovery. Considering other ontology modules like the Users
& Preferences or User Behavior & Building Processes ontology that keep energy schedules for
different occupancy states and scenarios (e.g., day, night, weekends, holidays) it becomes possi-
ble to anticipate consumption and thus mitigate peaks. The modeling of this information needs
to be open to changes, as it is not only likely that new and probably unknown devices are added
to the smart home, but also that information about energy providers and their tariff schemes
might change frequently.
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4.3.4.1 Types of Energy

Firstly, in order to provide the system with a general notion of energy, a categorization of energy
types is needed. The knowledge base has to reflect the domain of smart homes with respect
to modeled energy types that are relevant in this domain. As a first classification, a distinction
between final energy, energy sources and useful energy is realized (Figure 4.10). First of all
these classes reflect the varied usage of energy types viewed from the providing side as well as
from the consuming side. Mainly what is relevant for a smart home are two viewpoints: the pro-
duction and the consumption viewpoint. For the production viewpoint which focuses on energy
providers but also local energy producers, it is necessary to be able to represent different energy
sources that can be used to produce secondary energy or can be directly delivered to a household.
The concept EnergySource therefore is used on the energy provider side to classify different
energy providers and describe the used energy mix or provided primary energy. Energy, as it is
received in the building is entitled FinalEnergy. Hence, final energy is energy as it can be
consumed in the home by power facilities. Further, there exist facilities that can convert final
energy into UsefulEnergy, which can be defined as ”final energy use minus assumed con-
version losses at the home“ [112]. For example, Gas as individual member of FinalEnergy
can be transformed to Heat a member of the UsefulEnergy concept by a gas heater. With
other words, useful energy describes energy types that are inconvertible with respect to usage in
a residential home. All three forms of energy together give a comprehensive picture of energy
consumption in residential homes, for example allowing a clearer picture of substitution of elec-
tricity for heating fuels [112].
The classification of energy sources follows the general definition, whereas two distinctions are
made. The first is into primary and secondary sources of energy. Electricity, for example, is
a secondary energy source (ElectricEnergySource) because it is not freely available in
nature and therefore has to be gained through some primary energy source. Individuals classi-
fied to be members of the ElectricEnergySource class are used in order to distinguish
between different energy tariffs of one single energy provider (cf. Section 4.3.4.2).
The second differentiation in the energy source hierarchy into renewable and non-renewable
sources is particularly necessary for resource-optimal energy consumption in a smart home. It
is important for an environmentally-friendly building to consider which type of fuel is used for
energy production as well as what method of energy conversion is applied and further, how
much the environment is polluted because of a specific energy generation process, transmission
or end-use [51]. Therefore, it is inherently more environmentally friendly to rely on renewable
energy sources. These two last mentioned concepts are finally super-concepts of the actual en-
ergy sources.
The concepts to represent final and useful energy have a closed set of member individuals
for energy types that can be consumed in the smart home. A differentiation is made with
respect to their transformability in the home: For example, Heat or Cold as members of
UsefulEnergy can be consumed in the residential home, but are non-transformable, i.e., they
cannot be used to generate another type of energy that is of interest for the automatic control of
a smart home. On the other hand, Electricity, Gas or Wood are examples of final energy
that still needs to be transformed into useful energy by a transformation facility.
The concrete members of the concepts FinalEnergy and UsefulEnergy that are defined
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Figure 4.10: Energy forms hierarchy of the Energy & Resource ontology. Shown subconcepts
of the NonRenewable and Renewable classes have alias names to highlight different energy
forms.

in the Energy & Resources ontology can be seen in Table 4.7. These groups can always be
enlarged or narrowed, according to which end energies should be covered by the smart home
system. Because of the two viewpoints on energy, once external for the energy production side
and also internal for the energy consumption side, some energy types occur twice in the knowl-
edge base: first as energy sources and additionally also as members of one of the two concepts
for final and useful energy. The importance of energy for a self-controlled home needs a com-
prehensive representation of the term and therefore the two mentioned views need to be covered.
The production and the demand side’s energy conception need to be represented differently as
energy sources exist that may be used by an energy provider to generate secondary energy but
can also be directly provided for consumption in the smart home as final energy. Natural gas, for
example, may be part of the energy mix of an electricity provider used for production of electric
energy in a gas-fired power plant. This can be seen as the energy supply view. At the same time
gas can be provided to the household for consumption and therefore it is additionally a member
of the FinalEnergy concept. This can further be identified as energy consumption view. The
benefits of the realization of final energy and useful energy types as OWL individuals instead of
concepts are further discussed in Section 4.3.4.3.

Table 4.7: Members of FinalEnergy and UsefulEnergy concepts

FinalEnergy UsefulEnergy
Coal Heat

ElectricEnergy Cold
Gas Light

Wood Water
Oil
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Figure 4.11: Energy provider instance

4.3.4.2 Remote Energy Providers and Tariffs

At the dawn of the smart grid and the vison of decentralized energy production, micro-energy
providers and shiftable loads, knowledge about different energy providers and their tariffs are
a valuable addition to a smart home information representation. According to [190] ”one of
the key aspects to a smarter grid is the ability to make decisions on how to operate the power
system on both, the supply-side and the demand-side“. Therefore, an autonomous smart home
optimization taking into account energy providers and their tariffs and acting according to peak
load periods is desired.
It is assumed that like in the electric energy market also other markets (e.g., gas, water) will be
liberalized in the future and therefore a variety of energy suppliers is classified in the proposed
knowledge base. This conceptualization comprises deliverers of different energy forms as well
as the distinction between green and non-green energy providers. Reasoning on this hierarchy
with a DL-reasoner may again be used to automatically generate inferred hierarchies and clas-
sify individual members of different energy provider classes as green and non-green types. The
following example explains how inferences are conducted.
In Figure 4.11, the instance-centric view of an example energy provider (EnergyProvider1)
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generating electricity through hydropower, wind and natural gas is modeled. In the Energy & Re-
sources ontology, the connection of an energy provider to its primary energy forms, thus, its en-
ergy mix, is depicted via the object property hasEnergySource. Because of the fact, that one
of the three energy sources in the energy mix is a non-renewable energy source (cf. Figure 4.10),
the logical reasoner can infer that the energy provider is of type NonGreenEnergyProvider.
If at a future point in time the energy provider changes its energy mix and stops using natural gas
as energy source, the classification can be automatically corrected by the DL reasoning mech-
anism and the provider further listed as green energy provider. Further, the datatype property
percentageOfEnergyMix can be used to describe the share of a specific energy source in
the energy mix of the modeled energy provider.
The energy that this energy provider supplies is electric energy. This can be directly modeled
as providesEnergyType relation, however may also be inferred by the logical reasoner
through a property chain [116], a functionality of the OWL 2 language. Property chains allow
the connection of object properties in a way that they can be serially related to each other. In the
case of energy providers, the property chain for the providesEnergyType relation has the
following representation15:
ObjectProperty: providesEnergyType

SubPropertyChain: hasEnergyTariff o isTariffForConsumableEnergy

With this property chain and the inference that can be made through the reasoner, it is assured
that only energy is supplied that is also available in one of the energy provider’s tariffs16. The
isDefaultProviderOf object property finally allows to determine if an energy provider is
the default provider for the particular energy type it provides through one of its tariffs.
In addition to the way how suppliers generate energy, it is needful to know the different types
of energy tariffs. Of course not every company has the same rates for energy supply and also
different tariff switching times can exist which have to be considered in the knowledge base
for reasoning on economic deliberations. In Figure 4.11, the nighttime electricity tariff of
the represented energy provider is shown exemplarily. Energy tariffs are connected via the
hasEnergyTariff object property. Tariffs have a relation to their monetary energy cost,
which itself is realized as individual, representing how much is charged by the energy provider
for the supply of a specific unit of energy. Further, it can be seen that the energy tariff in-
dividual links energy sources with consumable energy types. With the OWL object property
isTariffForConsumableEnergy, a relation to an consumable energy type individual is
realized, while the property isTariffForEnergySource allows the tariff to be related to
the concrete energy source that is supplied by the energy provider. With this representation,
for example, different tariff intervals can be taken into account while it still remains possi-
ble to refer to the energy type of the tariff as one single individual. With the reuse of the
OWL-Time ontology [186], the characterization of tariffs according to their active times be-
comes possible. Energy tariffs in the ontology may be classified as EnergyCostTariff
or EnergyRecoveryTariff, subclasses of the EnergyTariff concept: cost tariffs are
tariffs that the energy provider charges for supplied energy. Recovery tariffs are refunded by
an energy provider for recovery of electric energy into the grid through local energy producing

15Listing in Manchester Syntax for OWL 2 [259]
16Figure 4.11 only shows asserted property relations.
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facilities (cf. Section 4.3.4.3). Because of its monetary energy cost relation, the reasoning mech-
anism can identify the example energy tariff as EnergyCostTariff.
Together, the concepts EnergyProvider and EnergyTariff form the main concepts of
the supply side, modeling external energy supply for the smart home.

4.3.4.3 Local Energy Production and Consumption

Apart from remote energy providers, it is undoubtedly also necessary to model local energy
production and consumption in the Energy & Resources ontology. In a modern home, local re-
newable energy producing facilities can help to reduce dependency on exterior energy that needs
to be purchased from energy providers. Further, a clear picture of energy consumed by facilities
in different parts of the home in combination with occupancy schedules facilitates an optimized
operation with regard to energy peak loads.
Again, an example is used to explain the representation of the described facts in the proposed
smart home knowledge base (Figure 4.12). The specific example appliance is a DVD recorder
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Figure 4.12: Energy facility with current energy demand

located in the living room of the building and modeled as a member of the Dvd concept. For
brevity of the example only relations and concept memberships needed for the explanation of
the energy extension are shown.
To classify energy facilities in the building domain, three additional concepts are added to
the BuildingThing hierarchy: EnergyFacility, EnergyProducerFacility and
EnergyConsumerFacility. These concepts are realized as defined classes enabling the
reasoner to automatically infer subhierarchies. With respect to the smart home domain, energy
facilities can be defined as all appliances which either consume or prodce energy and are con-
trollable. The installed equipment can range from a washing machine or dishwasher to a solar
panel or wind turbine on the roof. The two other defined classes are subclasses of the energy
facility class and split represented facilities into two groups, consumers and producers. A facil-
ity in this case does not have to fit only one type: for example a geothermal heat pump at the
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same time produces thermal energy while it consumes electric energy. Such energy facilities can
accordingly be reasoned into both sub-groups.
The distinction between energy consumers and producers is realized with the help of equivalence
axioms (cf. Figure 4.13): energy consumers are defined to have a consumesEnergy object
property relation to some energy demand individual, as well as a value that determines if the
represented facility needs permanent power supply, realized as needsPermanentSupply
datatype property. This property may for example be used do determine if a facility can be dis-
connected from power in order to save energy. Energy producers are classified with the help of
two object properties: first, they are defined to produce some energy (producesEnergy) and
second they have an energy source (hasEnergySource) that is used to generate provided
energy (e.g., geothermal energy source, solar energy source). The original definitions of the
Dvd concept and other facilities retrieved from DogOnt are extended with properties in order to
classify as subclass of either of these concepts.
For a system autonomously acting on behalf of the resident, firstly, the energy consumption per
state of operation is of special interest. This information can be retrieved through smart plugs
as described in [117] providing detailed information about the attached facility. If this possi-
bility is not available, the information may be manually retrieved either through measuring or
from the technical specification of a facility. For representing the dependency in the Energy &
Resources ontology, the object property hasEnergyDemand is created, that associates each
state value of a facility with a specific energy demand. Considering facilities with continuous
states and state values, there exist two possibilities: on the one hand, the continuous state may be
discretized into a finite set of discrete state values (25 percent, 50 percent, etc.) and for each of
the state values an approximate energy demand is stored. On the other hand, the energy demand
is measured and updated according to the current continuous state value. In the second case,
only one (current) energy demand individual exists.
As an extension, subproperties are defined for the object properties relating the facilities to their
supply or demand. In Figure 4.14 the subpropery hierarchy is shown for the consumesEnergy
object property. Two subproperties are created to differentiate between current energy demand
and maximum energy demand of a specific facility. An equal hierarchy is defined for the
producesEnergy property. While the maximum energy demand of a facility needs to be
manually asserted, the current energy demand can be inferred with the shown property chain.
For the energy production side, this property chain does not exist, as the energy production of
a specific facility is dependent on several influencing factors (e.g., insolation, wind) and there-
fore the real energy supply needs to be measured just in time to have an accurate vision. The
second property chain shown in the figure can be used to infer the consumesEnergy relation
from single energy demands of the different facility states. This chain similarly exists for the
producesEnergy property.
Considering the DVD recorder example illustrated in Figure 4.12, the DvdRecorder1State
individual related to the DVD recorder by the hasState relation, holds information about the
states that can be entered by this facility. The different modes of operation are represented as
state values connected via the hasStateValue object property. The example shows that
the possible values of the recorder are on, off and stand-by. Further, the state values have
hasEnergyDemand relations to individuals representing the concrete energy demand in a
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specific operative state. The OWL object property hasCurrentStateValue further mod-
els the current state of the facility and needs to be changed by the system according to state
switches: In the pictured case, the DVD recorder currently resides in stand-by mode. For the
facility there is no information manually asserted about how much energy it consumes. This in-
formation can rather be inferred by the logical reasoning mechanism. The consumesEnergy
relation that connects the DVD recorder individual to the demand representations is retrieved
through the already described property chain illustrated in Figure 4.14. At the same time, also
the actuallyConsumesEnergy relation which is a subproperty of consumesEnergy can
be automatically inferred by the specific property chain as well.
Yet other facilities may take different state values but have an energy demand that is not depen-
dent on the current state of the facility. An example would be a window actuator: this actuator
can take the state values ”open“ and ”close“ but the energy demand is the same regardless of the
current state of the actuator. In this case, both state values may refer to the same energy demand
individual representing the permanent demand of the particular device.

4.3.4.4 Connecting Energy Demand Side and Energy Supply Side

The connection between energy demand and energy supply side is realized via an ontology de-
sign pattern called class-individual mirror and described in [4]. The example in Figure 4.15
shows the application of the pattern for energy providers, producer and facilities in the ontol-
ogy. In the graph, two energy providers and two facilities are illustrated. The energy providers
and the solar panel facility together represent the energy supply side while a washing machine
is illustrated at the energy demand side. As already described before, the facilities can be au-
tomatically inferred to be either consumer or producer facilities. Also for the energy provider
hierarchy equivalence axioms are created in order to exploit automated reasoning. Figure 4.15
exemplarily shows the axiom of the ElectricEnergyProvider concept. This axiom as-
sures that only energy providers that provide energy of type ”electric energy“ are classified as
electric energy providers. On the energy demand side, a washing machine is modeled as specific
energy consuming facility. The graph demonstrates how the final energy types explained before
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Figure 4.15: Connection between energy providers and energy facilities

may act as pivotal elements between the two conceptual dimensions: It can be seen that Elec-
tricEnergy as individual member of the FinalEnergy concept holds information about
the energy supply and the demand side and therefore connects the two different viewpoints in the
ontology. In the example, the electric energy providers and the electric energy producing facility
are connected to the ElectricEnergy element through the providesEnergyType and
producesEnergyType relations. While in the example case these properties are manually
asserted, they may again be inferred by the reasoning mechanism through appropriate prop-
erty chains (cf. Listing 2.2). Additional to these connections, there exist inverse counterparts
in the ontology (energyTypeProvidedBy, energyTypeProducedBy) that can be in-
ferred by the reasoning mechanism through the definition of owl:inverseOf statements in
the knowledge base. A similar situation is found on the energy demand side, where the en-
ergy consumer (i.e., washing machine) is modeled. An energy consumer, as already mentioned,
has usually some energy demand, and therefore also has a type of energy it consumes. This
type of energy can indirectly be inferred from the ofEnergyType object property defined
for energy demands. Through this relation it is defined that the washing machine consumes
electric energy, and thus the consumesEnergyType property can be inferred pointing to the
ElectricEnergy individual as well. The benefit of using the class-individual mirror pat-
tern in this case is that the pivotal element holds information from the energy supply side and
the demand side. If, for example, energy providers for a specific facility have to be retrieved,
this can happen through solely querying the ElectricEnergy element, as it already holds
information about which energy providers or producing facilities supply the demanded form of
energy.
As these elaborations show, energy representation, as module of the proposed smart home
knowledge base, keeps a wide variety of useful information for the energy efficient operation
of a building. All of this information can further be utilized to realize sophisticated use cases
and scenarios of which some are discussed in Chapter 5.
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4.3.5 Ontology Metrics

Table 4.8 shows relevant metrics of the Energy & Resources ontology in comparison with the
original DogOnt ontology. While some concepts of DogOnt were removed, roughly 124 new
concepts are defined. Additionally, the amount of object properties and datatype properties
has increased. The major part of the additional concepts comprises classifications related to
energy consumption and provision like energy types, energy providers, energy tariffs and energy
facilities. A vast amount of the classes inherited from DogOnt is concerned with representing
commands, functionalities, states and state values as well as a hierarchy including all types of
elements and things in the building.

Table 4.8: Metrics of the DogOnt ontology version 1.0.5 compared to the Energy & Resources
ontology module

DogOnt 1.0.5 Energy & Resource Ontology

TBox
Named Classes 400 524

Object Properties 25 72
Datatype Properties 30 40

ABox Instances 0 16

As the Energy & Resources ontology also makes use of individuals to describe energy types
and building automation networks the final version also includes several instances. To describe
activity intervals for energy tariffs, the import of the OWL-Time ontology should be considered.

4.4 User Behavior & Building Processes

The process ontology which is the topic of this section does on the one hand hold information
about processes that can be started by a smart home system and further, also represents profiles
and patterns. These concepts can in further consequence be used to depict contexts in the home
and to anticipate situations on behalf of the user. To achieve the two main goals of energy ef-
ficiency and user comfort, user behavior and building context play major roles. In this section,
it is proposed to recognize context, and especially user behavior and habits through a profile-
based control. In this respect, user profiles can be used to record user behaviors and deduce
habits from recurring observations which in turn are represented as user patterns. To detect
representative profiles and patterns, different mechanisms may be used as described in [132]:
firstly, user profiles may be generated from single data values. These profiles then represent the
user behavior over a specific time period. Following, a certain quantity of profiles is used to
create patterns representing user habits with the help of a pattern generator algorithm. These
patterns are furthermore used in the smart home system to predict future user behavior and thus
identify optimization potentials that arise accordingly. Besides reducing energy consumption,
the proposed process provides the possibility to infer an individual notion of comfort from usage
profiles.
Certainly, the smart home system additionally needs to know the set of processes that can be
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started for each zone (e.g., turning on electric heating, lowering blinds, opening windows), in
order to be able to choose the best alternative to reach a desired comfortable condition. There-
fore, to cover the user and building context in a smart home system, process knowledge is another
dimension of context knowledge and plays a major role in recognizing which actions are avail-
able and feasible at a specific point in time in a particular zone of the building. Also services
that can be optimized with the help of user profiles, as for example reaching the comfort setpoint
temperature need to be described in the knowledge store while their dependency to processes has
to be modeled as well.
A representation of this knowledge in an ontology can significantly support an autonomous sys-
tem to establish comfortable conditions in the most energy efficient manner. Figure 4.17 shows
an overview of the top-level concepts and their relations as they are defined in the created process
ontology. The following sections explain the general structure of profiles and show how proper-
ties and dependencies are reflected. This part of the knowledge base was initially described and
published in the article [146] which also serves as basis for the following sections.

4.4.1 Related Work

In a smart home, to achieve optimal, satisfactory performances directly depends on the level of
context awareness implemented in the underlying control system - a review of context awareness
in AAL (Ambient Assisted Living) is given in [42]. The more aware the system is concerning
what happens within the dwelling or facility, the more chances it has to carry out suitable opera-
tions. The “suitability” of actions in this case has to be deliberated in terms of energy minimiza-
tion, comfort maximization, and user adaptiveness. In this respect, one of the key aspects to face
is how to effectively represent and store the surrounding context. The multiple, coexisting ap-
plications manage changing contexts created by interleaving human activities and implemented
services. In such a complex scenario, the approach of Sato proves to be especially appropriate.
The author proposes that the context should be represented through “a pattern of behaviour or
relations among variables that are outside of the subjects of design manipulation and potentially
affect user behaviour and system performance” [212]. Therefore, behavioral profiles and habit
patterns seem to be the correct objects for context abstraction. The list of works that follow
this approach is extensive and some examples shall be mentioned. A first introduction of a pro-
file management framework together with an overview of profile technologies for smart homes
is shown in [101]. Different kinds of profiles (e.g., presence, temperature, light) are proposed
for a wireless sensor structure in [17]. Profiles are used to explain inhabitants’ behavior, thus
energy consumption and comfort requirements can be optimized based on predictions. In this
respect, Mori and Takada have published a considerable amount of works (e.g., [167, 235, 166])
in which profiles are deployed in a similar way, capturing behaviors, abstracting home activities
(e.g., eating, sleeping), detecting accidents and providing users with a dedicated environment.
In this context, also the CASAS project deserves attention: the authors of [195] propose a set
of components to discover patterns in user activities that in further consequence can be used to
schedule automated system actions. Likewise, to support intelligent home network services, a
user pattern analysis framework is selected and depicted in [143].
Further, in the field of home automation, the work of Mozer is widely known as one of the
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early attempts of adaptive environments [171]. In his neural network house, diverse types of
profiles are deployed to control temperature, light, ventilation and water heating. In the SO-
PRANO project an open, flexible and semantic service platform for AAL is proposed. Context
is represented with a dedicated context ontology that in the SOPRANO case acquires the current
situation of a user with the help of interconnected sensors [145]. The main focus of this project
lies on the detection of the situational context of a person in the supervised area. Also the ap-
proach found in [50] proposes the use of ontologies and reasoning for activity recognition in
AAL applications. In this case, a Description Logic-based reasoning mechanism is used to rec-
ognize different user activities by binding sensor observations with context models and creating
ontologies that describe activities of daily living. The main focus of this project lies on recog-
nizing activities and patterns for use in an agent-based system in the AAL domain, however, an
application with respect to energy optimization is not planned.
The conception of behavioral context is a precarious aspect, since a wrong approach ultimately
leads to difficult control scenarios and unsatisfactory results. Conflicts, human interleaving and
service overlaps must be carefully taken into account already at design time of the whole smart
home concept. For instance, for the definition of profiles there are usually different possible
views of observing the interaction between users and the diverse elements and domestic phe-
nomena. On the one hand, profiles that store specific user preferences may be very suitable
for certain AAL applications, however usually yield to complex scenarios. On the other hand,
profiles addressing devices or rooms simplify context recognition for the system. For example,
in order to control the heating of the living-room, it is easier for the system to directly work
with the comfort temperature profile of the room than managing the diverse comfort tempera-
ture profiles of each inhabitant. In the present work, context representation through room-based
profiles is introduced. At the same time, user preferences are treated in an own ontology module
(cf. Section 4.5) which in this case may be seen as auxiliary information to take personal pref-
erences of occupants into account and allow the optimization of system strategies even if habit
profile information is not available.
In any case, although the success of system performance mainly relies on a good application
design, some conflicts are unavoidable and accordingly have to be expected and solved. In this
respect, in [154], conflicts in multi-agent systems are treated smartly by the prior establishment
of the context applying user profiles, activity profiles and object profiles. In contrast, approaches
like the one introduced in [110] propose complex action-related profiles and structures in which
conflicts do not seem to be properly covered.

4.4.2 Profile-based Smart Home Control

In a smart home, implemented services, e.g., to reach thermal comfort of a room, are usually
realized by control algorithms embedded in dedicated controllers (i.e., agents). In profile-based
applications, profiles and associated patterns based on profiles are representing context data to
be interpreted and further used by controllers to adjust the environment according to user behav-
ior. Each controller, and as such, agent of a multi-agent-controlled system utilizes the required
patterns in algorithms and rules specifically defined for the intended application (cf. Chapter
5). Although the application of habit information is ultimately specific for each service, the
process from sensor data collection to the context reading follows a standard scheme irrespec-
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Figure 4.16: Profile and pattern processes related to time (generation, storage, analysis and
deployment) (cf. [129])

tive of which kind of profile or pattern is referred. This process is described in detail in [129]
and sketched in Figure 4.16: data is collected from sensors and initially processed by a profile
generator (PFG). This PFG consists of a buffer that stores, and in case of need, averages values
from the incoming information and saves them in a persistence store (i.e., an ontology) in form
of a profile, i.e., an array representing a time series. This task is repeated regularly with a rate
fixed by the profile scope, always adding “newborn profiles” to the store.
A second element entitled pattern generator (PTG) from time to time retrieves a set of stored
profiles from the ontology and tries to identify trends within the set. Components like the
PTG that perform a habit discovery process are commonly based on statistical, data mining
or clustering-based techniques [130]. A thorough discussion of different clustering techniques
for pattern generation can again be found in [129]. The outcome of this process is from one up to
several patterns representative for recurring habits and user actions detected in the observed set
of profiles. Once patterns are identified, they are again in the ontology (“x” in Figure 4.16). In
addition, analytical information of each discovered pattern is provided by cluster validity meth-
ods. This extra information is essential for context reading and interpretation as it illustrates the
representativeness and reliability of each found pattern. The information needs to be represented
in the ontology as well (indicated as “i” in Figure 4.16). In further consequence, controllers and
associated context agents may retrieve represented patterns from the knowledge base for specific
applications and subsequent decision making.
In order to reach optimized energy efficiency and user comfort, profile-based control can easily
be integrated into classic HBA installations. There are no special requirements or constraints
to consider, but some recommendations of good practice. As already explained previously (cf.
Chapter 1), building automation, networks and operation are classically divided into three levels,
the field, the automation and the management level. Because communication in field and au-
tomation networks is often realized with constrained protocols, the focus on these layers rather
lies on efficient command transfer than on excessive data transmission. Profiles and patterns
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however represent a considerable amount of traffic as profile descriptions have to be sent back
and forth between PFGs and PTGs as well as knowledge base and as such it is preferable to
place relevant components, i.e., PFG, PTG, ontologies and profile-based controllers on the man-
agement level on which data is mostly transferred over Ethernet.

Comfort and Energy Optimization through Profile-based Control

One of the main challenges of smart home systems is to provide desired comfort situations while
simultaneously achieving an energy cost minimization. Profile-based control in this case can
become a tool that fulfills this requirement by implementation of the following four capabilities
[129]:

• Adaptiveness: Each user of the system represents different tastes concerning how home
applications and devices are parametrized and how the environment should be condi-
tioned. Apart from the focus on specific applications, these requirements also include
global management and system-user interactions. For instance, on the one hand profiles
store habitual comfort temperatures and lighting levels that support the manual adaptation
performed by users. On the other hand, they may also be used to detect trends that mea-
sure the level of user dissatisfaction or disagreement regarding the implemented services
[131]. This means, with the proper set of profiles, the system is able to check its own
performance, as well as to learn how users usually solve situations or adjust services.

• Predictive Control: Specific applications profit from forecasting capabilities, in order
to prepare home devices and appliances for an upcoming scenario. Since patterns store
habitual behaviors and usages, predictions can easily be obtained. Some common services
that may benefit from habit-based predictive control are lighting, HVAC and DSM.

• Global Reasoning: Some profiles are common in diverse applications, becoming shared
objects among them. A simple example is useful to illustrate the purpose of profiles in
this context: a user may usually leave the house at Friday, 9:00am, to go for a weeklong
vacation and when doing this, always first waters the plants and takes a shower which
leads to an unusual increase in water consumption. In this case, the combined reading
of occupancy and water usage patterns predicts that the house will be unoccupied longer
than two days. Thus, the system may automatically reduce heating to safety rates, switch
off non priority electrical sockets, unroll blinds and schedule the water heater to only be
active on Saturday night, when power tariff is reduced avoiding unnecessary tank heating.

• Tailored Feedback: Habit-based feedback is mandatory for optimizing energy use [85]
and improving the system’s adaptiveness [131]. Based on habit patterns, the user is in-
formed and warned just in time about possibly wrong habits, resource misuse, resource
malfunction or similar energy-related problems.

4.4.3 Definition of Processes and Applications

As already mentioned in the beginning of this chapter, it is imperative to model actions and
behaviors in order to represent the context in a smart home. In the ontology module created for
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Figure 4.17: Top-level concepts and relations of the behavior and process profiles ontology

this purpose, a process is an atomic action that can be carried out by the system autonomously
(cf. Figure 4.17). An individual process may be to turn on the heating or open the window.
Such processes can in further consequence be used by the multi-agent control system to infer
which actions are basically available to change the environmental situation in the building. A
specific process instance is mostly associated with a device that can be manipulated by this pro-
cess (e.g., window actuator, radiator actuator), and which is represented in the ontology with the
hasAssociatedDevice object property. A process may further trigger a certain command
which is defined for the automated equipment (e.g., open command, turn up command) depicted
by the involvesCommand property in the ontology. By executing the associated command
in the home automation system (cf. Section 4.3), a specific environmental parameter can be
influenced (influencesParameterValue). Further, the ontology provides the possibil-
ity to depict how environmental parameters are influenced by individual processes through the
subproperties increasesParameterValue and decreasesParameterValue of the
influencesParameterValue object property.
Environmental parameters are represented in the CurrentSituationParameter class.
This concept contains the parameters that are sensed through a particular sensor and describe the
current environmental situation. It can be inferred to be a subclass of the ValueParameter
class as in the case the ontology is used as stand-alone version, its members usually have an asso-
ciated value connected through the hasValue datatype property . In the present case however,
the ontology is used as module of a comprehensive smart home ontology and therefore, the cur-
rent value of an environmental parameter is stored in a dedicated module together with the cor-
responding sensor that senses it (cf. Section 4.3, Chapter 5). Hereby, only the link to the Energy
& Resource ontology needs to be created in this module through the isPerceivedThrough
object property.
If a process is influenced by the exterior situation (e.g., opening the window for natural cooling)
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can be represented through the datatype property dependsOnExteriorState. The deci-
sion if an exterior situation is suitable for a particular process is then made in the control system
operating on the ontology (cf. Chapter 6). Finally, a process has a domain which is realized via
the hasProcessDomain relation and which represents the space or zone of the building that
is influenced by the execution of a specific process. An example of how processes are used in
the operation of the smart home system is given in Section 6 in which the usefulness of process
descriptions with regard to an autonomous smart home operation is outlined.
In contrast to processes, applications as represented in the ontology module are high-level goals
that can be seen as objects of global reasoning in a multi-agent-controlled smart home sys-
tem. Applications therefore have a broader context: while processes picture actions that can be
started by the autonomous system, applications describe general goals that can be achieved by
executing certain actions in a specific area of the building. As such, applications may be seen
as processes described in a broader context. In this regard, an application relates to processes
via the realizedBy object property which in turn may be used to achieve a goal. Therefore,
processes can be seen as elementary building blocks for applications. The ontology thereby
describes all possible processes that can be used to achieve a goal. One of these processes can
subsequently be chosen by the multi-agent system to achieve the described goal. The decision
which processes are feasible and optimal to reach a certain state however lies in the responsibil-
ity of the multi-agent system. One example of an application and thus agent goal is “to reach a
desired setpoint temperature in the living room“: while it is just a broader definition of a process,
several atomic processes defined in the ontology can be used to realize this goal. The application
may for example be influenced by a heating process (e.g., turn heating on), a cooling process
(e.g., turn air condition on) or a (possibly natural) ventilation process (e.g., open window). In
this case, it is the responsibility of the multi-agent system to decide which of the processes is
feasible considering the circumstances (e.g., weather conditions) and appropriate with regard to
energy optimization to establish the desired condition most energy-efficiently at a certain point
in time (cf. Chapter 6).
Further, an application may be influenced by (isInfluencedBy) a specific pattern and a
current situation value, (e.g., instantaneous occupancy) modeled as process parameter. If an ap-
plication is for example influenced by a setpoint pattern, the system strives to reach the desired
setpoint that is depicted in the pattern and derived from setpoint level profiles. If the pattern de-
scribes space usage like patterns belonging to the OccupancyPattern class, this information
can be taken to influence the necessity to reach a setpoint. For example, it is possible to model
the fact that the comfort temperature only needs to be reached when occupancy is immediately
expected. In unoccupied periods, the system has a more relaxed schedule and may freely opti-
mize heating energy consumption while still satisfying certain limits to prevent building damage
(e.g., mold).
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Table 4.9: Applications according to [129] and their relations to patterns in the User Behavior
& Building Processes ontology

Application isInfluencedBy Pattern

GeneralCommandForLightingGroupsApplication
LightLevelPattern
LightStatusPattern

SelfCheckingLightingManagementApplication
GeneralLightingCommandPattern
LightingUserReadjustmentPattern

EfficientLightingApplication
LightLevelPattern
LightStatusPattern
OccupancyPattern

GeneralCommandForShutterGroupsApplication ShutterLevelPattern

UnsupervisedControlForShutterGroupsApplication ShutterLevelPattern

ThermalComfortSupportApplication
ComfortRelativeHumidityPattern
ComfortTemperaturePattern
OccupancyParameter

SelfCheckingShutterManagementApplication
GeneralShutterCommandPattern
ShutterUserReadjustmentPattern

UnusualPresenceDetectionApplication Energy & Resources

AlarmOversightDetectionApplication
AlarmStatusPattern
OccupancyPattern

ReachSetpointTemperatureApplication
ComfortTemperaturePattern
OccupancyPattern

ReachSetpointRelativeHumidityApplication
ComfortRelativeHumidityPattern
OccupancyPattern

SelfCheckingTemperatureManagementApplication TemperatureUserReadjustmentPattern

SelfCheckingRelHumidityManagementApplication RelHumidityUserReadjustmentPattern

DHWRecirculationApplication HotWaterConsumptionPattern

CustomizedBillingApplication DwellingConsumptionPattern

ElectricPeakShavingApplication

DeviceConsumptionPattern
DeviceStatusPattern
DwellingElectricityConsumptionPattern
ElectricitySpotPricePattern

CheckEnergyBehaviorApplication DeviceConsumptionPattern

125



Table 4.9: Applications according to [129] and their relations to patterns in the User Behavior
& Building Processes ontology

Application isInfluencedBy Pattern

SmartHomeCustomizationApplication

ComfortRelativeHumidityPattern
ComfortTemperaturePattern
DeviceConsumptionPattern
DeviceStatusPattern
DwellingElectricityConsumptionPattern
GeneralLightingCommandPattern
LightingUserReadjustmentPattern
LineConsumptionPattern
LineStatusPattern
OccupancyPattern
RelativeHumidityUserReadjustmentPattern
ShutterUserReadjustmentPattern
TemperatureUserReadjustmentPattern
WindowStatusPattern

Additional to interconnections, hierarchies are created for processes and applications in order
to classify different categories. Processes are on the one hand divided according to the com-
fort parameter they influence (e.g., airing, humidity, lighting, temperature) and how they influ-
ence these parameters (e.g., cooling process, heating process). On the other hand, a subclass
DeviceCentricProcess is modeled to categorize processes that are performed by specific
devices: a process that has an associated device and involves a command to control the device
can then be categorized as DeviceCentricProcess by the OWL DL reasoning mechanism.
Its associated OWL equivalence axiom is exemplarily shown in Figure 4.17.
For applications, a hierarchy is created that follows the list of applications proposed in [129]. All
mentioned applications and their pattern dependencies are represented in the ontology as well:
the respective applications and their associated patterns are shown in Table 4.9 which resembles
the table in [129] p. 49, while several naming adaptations are made to keep it consistent with the
other ontology modules (e.g., “shutter” instead of “blind” for shading devices). An additional
application subconcept is entitled SelfCheckingApplication and includes applications
that measure user satisfaction according to adaptations made by users after automated settings
have been applied.

4.4.4 Definition of Profiles and Patterns

According to the revised literature, and trying to find a profile definition as simple and flexible
as possible, behavioral profiles (and habit patterns by extension) are defined as time-related
data structures (i.e., univariate time series) that abstract the users’ behavior or usage of specific
devices, objects and spaces in the home environment [132]. A profile may be seen as the most
basic building part for a profile-based system: it represents an image of process-behavior over
a certain specified time. According to [132], a profile has several characterizing values. It
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belongs to a type, addresses an object, takes values within a range, entails different fields, covers
a scope and is identified by a specific date or interval. Profiles can strictly be differentiated from
processes: a process is some action that the system (or a user) can take in order to change a
certain environmental value in the building. A profile on the other hand is a record of the effect
of processes. A process can lead to the creation of a new profile, and a profile in fact implies
which process needs to be started next to reach a desired state.
There also exists a relation between profiles and applications in the smart home in a way that
applications may be supported by regularly occurring patterns retrieved from profiles. A pattern
is calculated by a pattern generator from a group of individual habit profiles. These patterns can
conversely be used to reach the goal described by the application in a more efficient way, which is
extensively discussed in [129]. A pattern may describe the immediate future states for a building
facility or the building environment according to recorded and analyzed past user behavior. It is
calculated outside of the ontology by an own component responsible for pattern generation (i.e.,
pattern generator) and stored back into the ontology with a reference to the profiles used for the
creation of this specific pattern and prediction values for a certain environmental parameter (cf.
Figure 4.17). It is valid for a specific period which could be a day per week or any other period
for which a regular user behavior has been detected. Usually, the granularity of scheduled values
follows the sampling rate of the profiles used in pattern creation. The following paragraphs cover
the different characterizing values for profiles and patterns as identified in [132] and show how
these values are represented in the created ontology for user behavior and building processes.

Profile type In the ontology, profile types are represented as OWL subclass hierarchy. The
top-level concept Profile is subdivided into several classes created to characterize different
profiles. The created classification again follows the one proposed in [129]:

• ConsumptionProfile: Related to consumed variables or costs, they usually consist
of ratio scale profiles of system outputs but may also include interval scale profiles, e.g.,
profiles capturing the consumption of electrical power, water or gas.

• UsageProfile: This class represents profiles that monitor double valued system states,
e.g., on/off, passive/active, true/false, open/close, present/absent. Due to the influential
role in most of home applications, its subclass OccupancyProfile is one of the most
important representatives.

• SetpointLevelProfile: This type stands for interval scale system input informa-
tion, e.g., setpoint temperatures, lighting levels. For the convenience of the pattern dis-
covery algorithms, a split into into usage and setpoint/level profiles is realized.

• AbstractAimProfile: This is the class of profiles that supervises nominal scale vari-
ables, which usually address complex user activities (e.g., sleeping, having meal, cleaning,
sports). This type of profiles may thus be used to represent user preferences in the original
approach. In the described ontology, user preferences are represented in an own module
(Users & Preferences, cf. Section 4.5) and therefore, the abstract aim profile is only being
modeled at this point in order to stay consistent with [129].

127



WednesdayProfile

TuesdayProfile

Profile

SetpointLevelProfile

DailyProfile
ConsumptionProfile

CountingProfile

UsageProfile

SpecificAimProfile

AbstractAimProfile

LineConsumption 
Profile

ElectricitySpotPrice
Profile

DwellingConsumption 
Profile

DeviceConsumption
Profile

Dwelling Domestic Hot 
WaterConsumptionProfile

DwellingElectricity 
ConsumptionProfile

DwellingGas 
ConsumptionProfile

DwellingWater 
ConsumptionProfile

UserReadjustmentProfile

LightingUser
ReadjustmentProfile

RelativeHumidityUser
ReadjustmentProfile

ShutterUser
ReadjustmentProfile

TemperatureUser
ReadjustmentProfile

GeneralLighting 
CommandProfile

GeneralShutter 
CommandProfile

ComfortRelative 
HumidityProfile

ComfortTemperature
Profile ShutterLevelProfile

HotWater 
ConsumptionProfile

LightLevelProfile AlarmStatus
Profile

DeviceStatus
Profile

LightStatus 
Profile

LineStatus 
Profile

WindowStatus 
Profile

Occupancy 
Profile

MondayProfile

ThursdayProfile

FridayProfile

SundayProfileSaturdayProfile

owl:Class class with owl:equivalentClass axiominferred rdfs:subClassOf relation asserted  rdfs:subClassOf relation

SlatUser
ReadjustmentProfile

SlatLevelProfile

Figure 4.18: Profile hierarchy, main classes and sample habit profiles as represented in the
ontology. For simplicity of the figure, only inferred subrelations of profiles to the main concept
Profile are illustrated.

• SpecificAimProfile: Finally, profiles that are specific to certain facilities and pur-
poses are represented with this class. Additional to the five main profile types, also sub-
classes reflecting the profile scope (i.e., daily, monthly, weekly) are defined.

In further consequence, all habitual profiles for a home environment mentioned in [129] are
modeled in the ontology. Additionally, also profiles mentioned in connection with application
definitions (cf. [129] p. 49) are added, so that all described dependencies between applications
and patterns (cf. Table 4.9) can be represented. As the main profile types except for abstract
aim profiles are defined with the help of equivalent axioms, OWL DL reasoning can be used for
categorization of these habit profiles into one of the five main types (Figure 4.18).

Pattern type Similar to profiles, also for patterns an OWL subhierarchy is provided. The
main categorization that is realized identifies pattern types according to their validity and their
application. With respect to validity, several time-based concepts are provided (e.g., weekend
pattern, weekday pattern, seasonal pattern) that allow the PTG to categorize patterns according
to the time interval when they should be considered by the control system. Regarding the ap-
plication, there may exist different pattern types for each habitual profile (e.g., comfort relative
humidity pattern, comfort temperature pattern, occupancy pattern) reflecting the profiles that
this pattern is based on. In this case, the categorization follows the general profile classifica-
tion already presented. The relation between patterns and profiles is modeled as object property
(isBasedOn).

Profile/pattern object Objects of home profiles may be of different types and may be re-
lated to a profile or a pattern via the hasFocusObjective property, and its subproperties
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hasPatternFocusObjective and hasProfileFocusObjective: focus objectives
can be devices or house elements (e.g., lamps, sockets), groups or lines of such elements (e.g.,
first floor heaters, bathroom lamps, ring circuit for switch sockets), spaces, zones or sub-zones
(e.g., corridors, bedrooms, storerooms), dwellings or houses, when considering the facility as a
whole, individual users or user groups or also external influences such as the current electricity
price per electricity provider or weather forecasts from a particular report source. Because of the
wide variety of value types possible for this property, the range of the created object property
is not limited and can be anything (cf. Figure 4.17). Information about the characteristics of
connected objects needs to be represented in the respective ontology modules (e.g., Architecture
& Building Physics ontology, Energy & Resources ontology, Weather & Exterior Influences
ontology) and as such, this object property and its subproperties can be seen as connecting prop-
erties between elements of different ontology modules (cf. Figure 4.2). In case of patterns, the
property is modeled to be inferred by a simple property chain:
ObjectProperty: hasPatternFocusObjective

SubPropertyChain: isBasedOn o hasProfileFocusObjective

This property chain assures that the focus objective of the pattern always resembles the object
of the profiles this pattern instance is based on.

Profile range The object property hasProfileRange describes an interval of allowed
values for this profile. The connected RangeParameter concept specifies minimum and
maximum range value through associated datatype properties modeled as subproperties of the
hasValue property (hasMinValue, hasMaxValue, cf. Figure 4.19). These values do not
represent absolute restraints but can be seen as barriers for the usual range of this profile. For
example, if the PTG recognizes values outside of this range in a profile, it can identify this pro-
file as outlier and disregard it in the pattern generation. This in turn leads to stronger and more
reliable patterns as profiles not representing usual user habits do not influence the created habit
patterns.

Profile scope According to [129] p. 13, the profile scope is “the total length/duration of an
individual profile, constituted by all the profile fields together”. The scope of a profile therefore
describes how often a profile is generated (e.g., daily, weekly, monthly, yearly), and is delin-
eated in the ontology with the hasScope property. The scope itself is realized as a process
parameter (ScopeParameter) with a defined set of individuals (cf. Figure 4.17): for an ac-
curate representation of context in the smart home system, daily, weekly and monthly scopes are
considered necessary and sufficient. At the same time, individual profile subclasses are modeled
for different scopes (e.g., DailyProfile, MonthlyProfile) for which membership can
be determined according to the scope parameter they are referring to.

Profile/pattern interval A profile records observations in the home for a specific period and
likewise, a pattern is valid for yet another period. Therefore, two separate relations are modeled
as object properties: records relates a profile to the time period for which it is created, for
example a 24 hours period. Further, validFor models the connection between a pattern and
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the time period for which it is valid, as it may be possible that a detected pattern is only useful
to optimize system operation for a specific time of the year (e.g., July to September).

Pattern representativeness/reliability The representativeness and reliability of a pattern are
indicators of how well a generated pattern reflects reality with respect to the profiles it is based
on. If there exists a clear pattern that can be found throughout profiles used for pattern genera-
tion, these values are high. Otherwise, if there is little coherence between profiles or if there exist
a lot of intermediate profiles that do not resemble the detected pattern, the representativeness and
reliability tend to be rather low. The values are calculated for each pattern by the pattern gen-
eration algorithm. In the ontology, these two characteristics are modeled as datatype properties
while their possible values are restricted to the interval from 0 to 1. In simplified terms, these
assessments can be interpreted as the probability that a specific pattern will reoccur.

4.4.5 Instantiation and Reasoning

To give an example of the utility of an ontology-based data representation for habit profiles in
order to describe building context the achievement of thermal comfort with the help of profiles
is discussed. At this point, the elaborations only serve an illustrating purpose to explicate de-
pendencies between concepts and their values while the integration and usage in a complete use
case scenario is pictured in Chapter 5. Figure 4.19 shows full parametric dependencies for a
specific profile as represented in the context ontology module. Further, Figure 4.20 shows an
application instantiation (i.e., to reach the setpoint temperature), together with a sample process
realizing this application and influencing patterns. To keep the figure concise, full dependencies
are only shown exemplarily for one process and pattern. Certainly, more processes not depicted
in the figure (e.g., turn down the radiator, open the window, turn on the air condition) may also
influence the portrayed application. Similarly, only one profile that forms the basis for the shown
pattern is pictured as example while a pattern is usually created from a set of profiles.

Profile The PFG may create daily temperature profiles for the living room in a building.
A concrete instance is the “temperature profile of the living room on 11.02.2013” (cf. Fig-
ure 4.19) which can be represented as a member of the ComfortTemperatureProfile.
This subclass of the top-level class Profile can be inferred to be a child of the more spe-
cific SetpointLevelProfile, one of the five main classes identified for profiles in Sec-
tion 4.4.4. The profile instance is addressing a certain room (hasFocusObjective) which
may be a simple string value or, as in the present case, represented in an own building on-
tology, describing its characteristics. The profile has 24 associated values connected via the
hasProfileParameterValue object property stored for each hour of a day. Exemplar-
ily, Figure 4.19 shows the profile value recorded between 20:00 and 21:00 on this day. The
sampling rate of one hour is represented in an own datatype property (hasSampleRate) as
60 minutes. The values of the profile parameters usually range between a minimum of 15 and a
maximum of 28 degrees Celsius which is represented with the help of the hasProfileRange
object property and an associated individual. By definition, a daily profile covers the temperature
curve of one day (hasScope) and this example represents the situation specifically measured
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Figure 4.19: Example of a profile instance as represented in the ontology

on February, 11th, 2013 (records). The profile is further connected to a particular current
value through the supervisesCurrentValue object property which is perceived through
a particular sensor stored in the Energy & Resource ontology.

Pattern After a set of profiles has been analyzed by a PTG, the component may detect a spe-
cific pattern recognized for some Mondays in a row and therefore creates a Monday pattern
which is based on (isBasedOn) a set of Monday profiles. Again, in Figure 4.20 only the rela-
tion to one Monday profile is shown exemplarily. The pattern has a reliability and representative-
ness of 0.93 indicating that it accurately reflects reality. Further, it has hourly scheduled values
of desired temperature setpoints (hasScheduledValue) which have been calculated by the
PTG (only the value for one interval is shown). The pattern is a prediction for all Mondays in
the month of February which is indicated by the validForPeriod relation to a validity time
interval (i.e., February). While the pattern is manually asserted to the class MondayPattern
it can additionally be inferred to be of type ComfortTemperaturePattern as well as
WinterPattern, according to the profile type it is based on (cf. Figure 4.19) and its valid
time.

Application The pattern may further be used by a concrete application instance, namely the
LivingroomReachSetpointTemperature application, which may be performed by a
setpoint temperature controller to adjust the heating based on the habitual temperatures found
comfortable by users and represented in comfort temperature patterns. Firstly, the capabili-
ties of the owl:inverseOf property can be exploited: from the manually asserted rela-
tion hasInfluenceOn, the standard OWL DL reasoning mechanism can infer that there
also exists an inverse relation isInfluencedBy which is defined as owl:inverseOf to
hasInfluenceOn in the ontology. This way, when considering communication with the
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Figure 4.20: Examples for a concrete pattern, application and process and their representation
in the process ontology. For dependencies of the shown example profile and its associated pa-
rameter values, cf. Figure 4.19

knowledge base in a multi-agent system, only the PTG agent has to store which application is
influenced by its generated pattern. The control agent, operating on applications, may retrieve
the information directly through the inferred inverse relation. The application is further influ-
enced by predictions about future presences and absences of occupants in the supervised room,
which may be found in a dedicated OccupancyPattern not described in detail at this point.

Process Processes involved to reach thermal comfort are for example turning the radiator ac-
tuator up and down, thus adjusting the temperature environmental value. As an example, Figure
4.20 shows the concrete LivingroomRadiatorProcessTurnUp instance that describes
the influence of turning up the radiator actuator. The ontology depicts the object of influence
for this process via the hasProcessDomain property and provides relations for represent-
ing which command as well as which device are involved through the two object properties
involvesCommand and hasAssociatedDevice. Thorough information about devices
and possible commands are again described in another dedicated ontology (cf. Section 4.3).
Parameters which are influenced by the process are in this case connected via the already men-
tioned increasesParameterValue and decreasesParameterValue relations: as
subproperties of the influencesParameterValue property, they describe how environ-
mental parameters are influenced by the pictured process. In this case, increasing the radiator
heat output by turning up its radiator actuator is modeled to decrease relative humidity in the
room while increasing the current temperature value. While the process is manually modeled as
being a radiator process its influences on current values (i.e., current temperature, current relative
humidity) allows the reasoning mechanism of the ontology to additionally infer it to be of type
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HeatingProcess and DeHumidificationProcess. The axiom describing the heating
process class is exemplarily shown in Figure 4.20, while hereby any process that increases the
temperature is defined to be classified as heating process.

4.4.6 Ontology Metrics

As a summary, the metrics of the User Behavior & Building Process ontology are shown in
Table 4.10. The ontology currently defines 157 classes, 32 object properties and 10 datatype
properties. The main focus of the created classes lies on applications and processes to represent
possible actions in the building and patterns as well as profiles for assessing user habits. A set
of well-defined object properties describes the relationships between these main hierarchies and
also a small amount of datatype properties are defined for further representation of facts.

Table 4.10: Metrics of the User Behavior & Building Processes ontology module

User Behavior & Building Processes ontology

TBox
Named Classes 157

Object Properties 32
Datatype Properties 10

ABox Instances 15

The ontology includes 15 individuals which are on the one hand used to picture the profile scope.
On the other hand, certain individuals and concepts from the W3C time ontology are necessary
to model time-based profile classifications. Therefore, the presented metrics include two object
properties, one datatype properties and nine individuals from the W3C time ontology.

4.5 Users & Preferences

While user preferences may be automatically inferred through a pattern-based mechanism as just
described, it is also important to give the user the possibility to define his or her own preferences.
The last thing an occupant wants is to feel patronized by a system that takes away the burden
of controlling the environment. As already mentioned in the introduction, it is not desirable to
completely take away control from the resident as he/she wants to stay in control and define
preferences, adjust parameters and create schedules when necessary and desired. A compre-
hensive smart home system therefore also needs to address user preferences and demographic
information about its users. In this respect, the Users & Preferences module may be seen as
additional part of the user representation in the envisioned system: while the user context mod-
ule presented before represents information about the users that can be automatically retrieved
and inferred through sensor readings (i.e., behavior and habits), the preferences module contains
information that is manually added by users or system engineers e.g., through a graphical user
interface, and corresponds to customized or standard comfort definitions.
The Users & Preferences ontology module represents a smaller domain compared to the already
discussed parts of the smart home ontology which nevertheless may be regarded important: it
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stores various aggregations of preferred values (e.g., temperature, humidity, luminosity) and this
way provides a notion of comfort to the system. Apart from user-centric comfort definitions also
a default description following certain standards (e.g., the ASHRAE standard for thermal com-
fort [5]) may be defined and can be used in case a customized user preference is not available.
The following sections describe an ontology for user information and manually-defined pref-
erences representation in a multi-agent-controlled smart home system. The reviewed ontology
was created as part of a master’s thesis supervised by the author. In the present work, the main
design decisions, defined concepts as well as their interrelationships and possible connections
to other ontology modules are shortly outlined. A detailed discussion of this ontology module
can be found in [230]. To what extent preferences represented in this ontology module influ-
ence previously introduced patterns and in further consequence the system behavior lies in the
responsibility of the multi-agent system operating on the ontology and therefore is not discussed
at this point.

4.5.1 Related Work

Apart from preliminary profile-based approaches, there also exist some works that to some ex-
tent consider ontologies as a possible solution for the representation of context and user pref-
erences in smart homes. In [48] a standard ontology for ubiquitous and pervasive applications
is described. The authors explain how to represent agents, their beliefs desire and intentions as
well as space, events or security policies. A user profile ontology is mentioned, while in this
case a profile describes the users themselves, their social relations and personal preferences. In
[175], the authors describe the challenges for creating a comprehensive ontology capturing user
context. The proposed context-aware system also deals with specific users and their preferences
as well as activities in the represented environment. The article further describes an algorithm
on the recognition and exclusion of duplicate data in order to limit the amount of data to be
stored in this ontology. The authors of [246] present a user modeling service for a smart home
and introduce a service architecture that among other services facilitates the learning of context-
dependent user preferences from an interaction history through an ontology-based knowledge
representation. The approach includes the use of stereotypes when creating user profiles to re-
duce system configuration needs. A user profile is again seen as a collection of user preferences
and personal data which has to a great extent been entered through a graphical user interface.
The project focuses on representing user activities while also automatic deduction of preferences
through interaction is envisaged. In [154], the author proposes user profiles including environ-
mental preferences like lighting, temperature or humidity settings per user alongside activity
profiles to model different preferences for single users reflecting time and type of activity they
perform. Further, the article introduces object profiles storing behavior descriptions for agents
representing environment objects (e.g., doors, windows, lighting) in a multi-agent system. The
authors of [74] propose an ontology-based generic context management model that is capable
of collecting, representing and storing user context. The model is based on a representation of
context data, context instances and rules which may be defined by the users or automatically de-
rived. In further consequence, the proposed model can be applied in a pervasive environment to
provide context-aware services that can be used to take decisions on behalf of a user. While they
present a case study on reasoning no deeper insights on the structure and extent of the proposed
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context ontology are given. The article [106] describes a context-aware middleware architecture
for an intelligent building relying on a formal context model based on an ontology that depicts
semantic representations. The authors introduce several concepts and relationships necessary to
comprehend context and environment in a smart home. An overview of the proposed system
architecture is given and it is also shown how ontology reasoning can be exploited. The authors
further briefly outline the application of the created ontologies in a pervasive computing envi-
ronment. While the article focuses on context representation in smart homes, user preferences
are not explicitly treated.
While a direct reuse of one of these previously defined ontologies would be desirable, this is
often not feasible due to a different focus. Mostly, the ontologies in the context of smart homes
focus on user context, while user preferences are often neglected or only treated superficially.
Further, many times the presented ontologies are not publicly available and often the only infor-
mation about the created conceptualizations can be found in the cited publications. Therefore,
the decision was made to create a new user preferences ontology from scratch. The benefit
that arises from a newly created ontology is that such a conceptualization particularly built for
representing user preferences and actions in the context of an autonomous smart home system
can be highly customized and tailored to that specific field of application. Nevertheless, some
constructs and relationships found in ontologies just presented can be seen as inspiration for the
Users & Preference module in case they deemed to be useful and applicable.

4.5.2 Actors, Preferences and Activities

Using a pattern-based approach for autonomous habit recognition in the described system, the
ontology part created as basis of this mechanism (cf. Section 4.4) is capable of representing
automatically detected user habits. To additionally give the user the possibility to state his own
desires regarding behavioral schedules, a user preferences ontology is considered, representing
a subset of context-related concepts and properties. Manually-defined preferences described in
this part may in further consequence be used by the autonomous system as additional informa-
tion to complete the knowledge about expected future behavior and allow occupants to influence
system operation.
Figure 4.21 gives an overview of the top-level concepts of the created ontology. The follow-
ing paragraphs present a short summary of the main concepts defined to capture user comfort
preferences and activity schedules.

Actor The purpose of the actor concept is mainly to represent the residents of the building in
the smart home system. Because the ontology is modeled as foundation of a multi-agent-based
system in which collaborating agents can take autonomous actions on behalf of the residents,
actors in this case can either be human users or system agents. These different types are differ-
entiated in the actor subhierarchy. For humans, the concept HumanActor is provided: in this
respect, the knowledge base allows to describe different types of human actors (e.g., male, fe-
male, young, aged) through the auxiliary top-level concepts Age and Gender. A basic form of
user satisfaction can be created through the LevelOfSatisfaction concept. The ontology
further provides the possibility to associate manually added user preferences with single indi-
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Figure 4.21: High-level view of the Users & Preference ontology presenting top-level concepts
and properties. Complete dependencies of pictured subclasses are not shown to keep the diagram
concise and highlight relationships between top-level classes.

viduals in the smart home through the hasPreferenceProfile object property. Moreover,
for agents of the multi-agent system, the class SystemActor is available, which may be used
to group agents according to their type, and, for example, describe representatives for users in
the system (i.e., user system actors, cf. Figure 4.22).

PreferenceProfile Preferences for human actors are represented in a subclass of the preference
profile hierarchy (HumanActorPreferenceProfile) and may be individually created by
each user through a user interface. Preference profiles can further be divided into two main types
which are scheduled or non-scheduled profiles. The ScheduledPreferenceProfile
class is created to allow the definition of manually created preference schedules that may be
used additionally to the automatically detected habit profiles described in Section 4.4. One ex-
ample for a scheduled preference would be the customized setting of various lighting scenes
for different times of the day. In this case, a preference profile is related with an element of
type PreferenceSchedule through the hasPreferenceSchedule object property. A
scheduled preference profile may include several preference schedules (e.g., temperature, pres-
ence, activity). Otherwise, the concept NonScheduledPreferenceProfile includes pro-
files defining general preferences that are not related with a particular time. Such a profile could
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for example represent a basic notion of comfort for a particular occupant including his or her
personal comfort temperature, lighting and humidity settings.
Another necessary distinction can be made between manually-defined human comfort prefer-
ences and standard preferences. The HumanActorPreferenceProfile only includes set-
tings that are manually defined by an occupant, while the StandardPreferenceProfile
is used to represent comfort values according to standards. The second type may then be used
in case no manually-defined preferences are available for a particular resident or the user is un-
known to the system (e.g., guest user).
A special case of preference profile is the ActivityPreferenceProfile: this class groups
user-defined profiles that are related to a particular activity. This way it becomes possible for the
occupant to define multiple preferences related to the present or scheduled situation and context.

Activity The activity concept hierarchy is provided in the ontology to allow a basic descrip-
tion of activities and associated settings. Firstly, a classification into passive and non-passive
activities is created, which splits activities into actions in which the occupant is physically active
(e.g., sport, cooking, cleaning) and others in which the resident mainly remains passive (e.g.,
reading, sleeping). This basic distinction facilitates the association of an appropriate standard
preference with an activity in case no manually-entered preferences are provided. For exam-
ple, it could be inferred that for passive activities the comfort temperature is usually higher than
for activities that involve a lot of movement. Further, as already for preference profiles, non-
scheduled and scheduled activities are distinguished: for NonScheduledActivities the
user may define general comfort settings stored in activity preference profiles and associated
with the particular activity through the hasPreferenceProfile property. Moreover, ac-
tivities can be scheduled for a particular time frame and in this case, can be inferred to be of
type ScheduledActivity. A connection between scheduled and basic activity is realized
through the property forActivity and allows the association of the scheduled activity with
preferences generally defined for this particular activity (cf. Figure 4.22).

Activity-/PreferenceSchedule In order to group scheduled activities and preferences, classes
to represent these schedules are provided. A member of the class PreferenceSchedule can
involve personalized settings of parameters like customized lighting of the building environment
for particular times of the day but may also include the scheduling of tasks to be executed by
the system autonomously at pre-defined times. The concept is designed to store a schedule for
several time-sensitive preferences which are of type ScheduledPreference, a subclass of
the Preference top-level concept.
Further, to describe a chronological sequence of activities, the ActivitySchedule class is
provided. Similar to the PreferenceSchedule concept it has the purpose to keep a user-
defined timetable of activities that are scheduled for a particular time of the day. The different
ScheduledActivity individuals connected through the hasScheduledActivity ob-
ject property then include the particular preferences that should be effective at the time the
scheduled activity is created for (forTime).
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Preference This top-level class can be seen as a central class in the ontology and is concerned
with the representation of different types of comfort preferences. Firstly, they are separated ac-
cording to the type of setting that is represented. The concepts AppliancePreference and
ApplicationPreference are created to differentiate between preferences that involve an
appliance and hence have a connection to a facility represented in the Energy & Resource on-
tology (e.g., LampPreference) and other preferences that are related with applications (e.g.,
reaching comfort temperature, reaching visual comfort) which are found in the User Behavior
& Building Processes ontology module. A preference that is neither appliance- nor application-
centric describes occupancy which is represented by the concept PresencePreference.
Additionally, further subclasses are used to classify preferences according to their usage. For
example, the ScheduledPreference subclass may be used to identify a preference that is
only valid for a particular point in time (forTime). The subclasses StandardPreference
and UserDefinedPreference can again be used to distinguish between manually-defined
and standard preferences. Each preference has a relation to one or more elements of type
PreferenceValue describing the values that are connected to this preference. In case an
appliance for which a preference is defined has more than one state, certainly, also one prefer-
ence value for each state may be defined and needs to be connected to the preference element
through the hasPreferenceValue property (cf. Figure 4.22). The two object properties
hasSpace and hasZone are provided to make the association of a preference with a par-
ticular part of the building possible. The object property hasImportance can further be
used to realize a simple form of priority scheme for preferences. The associated top-level class
LevelOfImportance includes a closed set of individuals representing different priorities
and allowing the multi-agent system to choose one preference over another in case more than
one possibly conflicting preferences are available. Which preference is chosen depends on the
system policy and goal-plan of the multi-agent system and is therefore out of scope for the
ontology representation.

PreferenceValue Finally, a concept that allows the definition of preference values is provided.
An instantiation of this class contains the actual value of the preference connected through the
hasValue datatype property and may also define a state for which it is defined (forState).
The reference to a state is particularly needed in case a preference value is associated with
an appliance that has more than one state which may be controlled. For the class of prefer-
ence values a differentiation into binary and continuous values is realized through subclassing:
the BinaryPreferenceValue only includes preferences that can be represented using two
states (e.g., occupied/not-occupied, on/off) while the ContinuousPreferenceValue may
be applied in a more flexible manner for multiple discrete or continuous state preferences.

4.5.3 Instantiation and Reasoning

To further illustrate the usage of the conceptualization and some of its inferencing capabilities,
Figure 4.22 shows a sample instantiation of the main concepts. Firstly, in this example, an adult
and male human actor (HumanActor1) is represented. From the associated age and gender, the
inference mechanism can deduce this human actor to be of subclass MaleHumanActor and
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Figure 4.22: Example instantiation for the Users & Preferences Ontology. Individuals defined
in other ontology modules are shown with the respective ontology module prefix. rdf:type
relations are only shown for individuals of the Users & Preferences ontology.

MatureHumanActor. A satisfaction level (LevelOfSatisfaction) can further be used
to describe the mood of the resident towards the system control and can be manually entered
by the user through a user interface or may also be associated to a user by the system through a
mechanism detecting readjustments on the user level. In the present example, the connection to
the Dissatisfied individual is an indication for the ontology reasoning mechanism that this
user is an UnsatisfiedHumanActor. The illustrated example further shows a user agent
instance (UserAgent1) which represents the shown user in the multi-agent system and an
associated inverse property allows to infer that the shown human actor is representedBy the
particular user agent. Because of this relation to a human actor, the user agent can be inferred to
be of type UserSystemActor. The actual position of a specific human actor in the building
can further be expressed through the currentlyLocatedIn object property which models
a connection to a space or a zone as defined in the Architecture & Building Physics ontology.
The hasPreferenceProfile property and its inverse are connecting a human actor individ-
ual to a preference representation. The shown profile (HumanActor1PreferenceProfile)
actually describes a schedule of activities using the hasActivitySchedule property and
therefore can be inferred to be of type ScheduledPreferenceProfile. To exemplify
the relationships in the ontology, an associated activity schedule and one scheduled activity are
shown exemplarily. While the ActivityScheduleMonday instance groups activities de-
fined for a particular period (e.g., day), the time for which an activity is planned is directly
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associated with the individual representing the scheduled activity, i.e., ScheduledReading-
Activity2100_2300. Additionally to its base class ReadingActivity, the association
of the shown activity with a given time may be used to classify it as ScheduledActivity.
To create a connection with user-defined preferences for this activity, the forActivity prop-
erty firstly relates the scheduled activity to a NonScheduledActivity with the same base
class. This differentiation between scheduled and non-scheduled activities is designed in order
to store user-defined preferences for a single activity only once in the knowledge store while
still allowing multiple activity schedules relying on the same set of activity preferences. The ac-
tivity can then be related to user-defined preferences through the hasPreferenceProfile
property. This connection of the profile representing preferences to a non-scheduled activity
makes it possible to additionally classify it as NonScheduledPreferenceProfile and
ActivityPreferenceProfile.
The bridge between preference profiles and user preference definitions is realized through the
hasPreference property and its inverse counterpart. The figure shows one example prefer-
ence of the defined reading activity preference profile, a DimmerLampPreference. This par-
ticular instance involves an appliance which is connected through the controlsAppliance
property and may point to a facility stored in the Energy & Resource ontology module. In this
case, the associated appliance is a dimmer lamp. Further, the forSpace object property is used
to associate the preference with a certain space defined in the Architecture & Building Physics
ontology. This connection can safely be omitted if the space is already identified for the ap-
pliance in the Energy & Resource ontology model. The hasImportance relation indicates
a user-defined importance level: in the pictured example, the user marked this preference as
highly important, telling the smart home system that whenever a reading activity is scheduled,
it should preferably use this setting over other possibly defined preferences with lower impor-
tance. As this preference is associated with a preference profile created by a human actor, it can
be inferred to be of type UserDefinedPreference contrary to standard preferences which
are associated with standard preference profiles.
Finally, an appliance connected to the preference ontology may have more than one states that
can be controlled by the system. In the case of the dimmer lamp, two different states are as-
sumed to be controllable, one, which allows to switch the appliance on and off and another
which allows to specify the lighting intensity of the dimmer lamp in percent. The single prefer-
ence for the dimmer lamp now involves two preference values, one for the on/off and one for the
dimming functionality of the associated facility. The individual OnOffPreferenceValue
can be seen as BinaryPreferenceValue which represents a preference with two possible
states. The other illustrated preference value LightIntensityPreference is modeled
as ContinuousPreferenceValue and as such may include more than two states. In this
case, the preferred dimming state is expressed in percent which is defined by the element con-
nected through the hasUnitOfMeasure property. Further, through the forState property,
a particular state of the facility is associated with each preference value. The state is in the
present case again being described in more detail in the Energy & Resource ontology module.
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4.5.4 Ontology Metrics

The metrics of the Users & Preference ontology are shown in Table 4.11: this ontology module
consists of 72 classes, 29 object properties and 6 datatype properties. These metrics include one
class of the OWL-Time ontology to represent scheduled preferences and activities. Further, a
class of the Ontology of units of Measure (OM)17 is included to represent the unit for prefer-
ences. The classes are divided among the identified main top-level components with the majority
of classes being used for describing actors, activities, preference profiles, preference schedules
and preferences.

Table 4.11: Metrics of the Users & Preference ontology module

Users & Preference ontology

TBox
Named Classes 72

Object Properties 29
Datatype Properties 6

ABox Instances 9

The module also includes 9 individuals which are used to represent the gender of human actors
and also their level of satisfaction, as well as the level of importance of a particular preference.
This chapter only gave an overview of the Users & Preference ontology that fulfills the require-
ments needed for taking into account comfort preferences of individual users in an automatically
controlled environment. The introduced ontology is intentionally only described from a high-
level viewpoint and a more detailed discussion can be found in [230].

4.6 Weather & Exterior Influences

In the operating phase of a building life cycle, the importance of real-time and forecast weather
information is undeniable [56], as the inclusion of accurate weather data in automated building
control leads to considerable energy savings [183]. Therefore, exterior influences and changing
weather situations cannot be neglected and need to be considered when it comes to the optimized
control of a future automated home. When integrating short-term weather forecasts into a smart
home system, these data can be used to infer proper actions according to circumstances that are
imposed on the building by its environment and solve tasks like reaching comfortable thermal
conditions most energy-efficiently. Additionally, to guarantee user comfort, this information can
be exploited for example to utilize natural lighting through sunlight or solar heat traversing win-
dows.
According to [190], there exist distinct patterns for different regions where renewable energy
can be utilized and their energy gain depends on local weather patterns, changing on a daily and
seasonal basis. Several projects illustrating advanced building control strategies already con-
sider weather parameters as valuable addition for an energy-efficient operation as discussed in
Section 4.6.1. However, one important yet still lacking part is a comprehensive representation of

17http://www.wurvoc.org/vocabularies/om-1.8/

141



the exterior state with all its influence parameters. In order to exploit the whole savings potential
of a residential home in a smart grid, weather influences like solar radiation and temperature
need to be considered. Knowledge about this domain for example facilitates the exploitation of
“free” cooling/heating using favorable meteorological conditions [67].
Weather prediction and forecasting are highly complex fields with many uncertainties. However,
as weather conditions may have a distinct impact on monthly electricity demands [124], an inte-
gration of weather information in smart home control is a valuable addition to design advanced
optimization strategies. Currently, smart home systems seldom assess external influences and
thus energy is wasted in the daily operation of residential homes. In this respect, as preliminary
work shows (cf. Section 4.6.1), a system incorporating meteorological influences allows build-
ings to be operated more energy efficiently, sparing residents of high energy costs and energy
suppliers of peak demands.
The following sections describe a weather ontology for smart home operation in smart cities.
To put the Weather & Exterior Influences ontology in context with the foundational use cases
presented in Chapter 3, the subsequent paragraph shortly describes possible scenarios in which
knowledge of the weather situation can be used to influence the energy behavior of a building.
Two attractive use cases in which the inclusion of the exterior situation can make a significant
difference are use case 2 “to automatically achieve thermal comfort on behalf of the resident”
and use case 7 the “predictive operation of HVAC services”. In different situations for these use
cases the inclusion of weather information may lead to a better energy-related behavior of the
building. When, for example, during the winter season, the forecast reports sunny weather, the
system can await sunrise and as the sun reaches certain parts of the building throughout the day
open blinds and shutters to use solar radiation for natural heating of specific rooms. When again
fog, rain or generally moist weather states are expected, a room can be naturally humidified.
The need for humidification especially emerges when, for example, the air moisture in living
spaces drops below the comfort range through space heating. In the summer season again, with
a predicted calm and cool night weather state, the system can schedule a natural cooling process
this way reducing the need for energy-intensive artificial cooling of the building. If, however,
a thunderstorm or similar severe weather state is expected, windows can be shut and blinds can
be put in a safe state this way preventing damage to the building or its interior. While such
a damage-avoiding control could also be achieved through local sensors only, with a detailed
weather forecast, processes that are scheduled to start in the near future (e.g., cooling processes)
can be automatically chosen with respect to the predicted exterior state. For example, a severe
weather state can prohibit the opening of windows in order to perform natural cooling. It is then
in the responsibility of the control system to decide if the task of cooling is delayed to a later
point in time, when for example the weather forecast again predicts a calm weather state, or
another process that needs more energy like air conditioning or ventilation has to be scheduled
instead.
The content of the following sections elaborating concepts and relationships in the Weather &
Exterior Influences ontology can to some extent be found in [151], while the information was
updated and extended reflecting the current version of the created conceptualization.
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4.6.1 Related Work

In some studies about building control, weather data is already considered as predictable in-
fluence factor on operation efficiency. The authors of [40] state weather as one of the main
influences on cost and energy savings in buildings. The study, which focuses on optimal control
of building thermal storage, uses generated weather conditions rather than real weather data for
its simulations. In [56], the authors motivate the use of weather information in predictive con-
trol. They point out the importance of real-time and forecast weather data for an energy-efficient
operation of buildings. The article [270] analyzes the economic impact of introducing advanced
weather forecast in energy system operations. The authors study the operational costs of build-
ings when changing the forecast horizon for weather prediction parameters. They compare two
different numerical weather forecasting methods that are weather prediction based on historical
weather data as well as a “Weather Research and Forecast” model. Concluding, they recognize
that the Weather Research and Forecast model outperforms the empirical model and that costs
and power losses can be reduced by accurate weather forecasts. The authors shortly sketch the
application of weather forecasting in buildings for temperature set-point calculations. In [183],
the use of weather predictions in model predictive control strategies is discussed. The authors
point out that with the help of weather data it is possible to considerably increase energy effi-
ciency in office buildings. Using model predictive control enhanced with weather parameters
(outside air temperature, wet-bulb temperature, incoming solar radiation), an improved energy-
behavior of the building compared to rule-based control is achieved. The integration into a
home-automation system as well as the realization of more complex use cases are not pictured.
The authors of [67] describe a weather-predicted free cooling system combined with heat stor-
age in order to improve the energy behavior of a building. They advance an HVAC unit with
forecasted weather temperature and present a case study analysis showing how an energy usage
reduction in the building operation can be achieved.
While these approaches consider a few weather parameters, they all lack a comprehensive
weather representation. However, with such a model of weather phenomena and forecasting
it is possible to describe more sophisticated control strategies implementing more complex use
cases.
Also in the field of ontologies, there exist some works related to weather forecasting, for exam-
ple, [16]. The described ontology is suggested to augment the weather forecasting process and
formalizes some of the information that currently only exists memorized in the minds of weather
forecasters. The article only discusses the two initial steps in creating an ontology for weather
forecasts, therefore not describing important parts like formalizing the knowledge. Further, the
scope of the ontology is on weather forecast design and construction and not on forecast deliv-
ery and representation on the consumer side as it is needed in the smart home and smart grid
domain. In [187], the authors explain their proposed mapping workflow with the help of rudi-
mentary weather ontologies. A project that to some extent incorporates weather influences in the
smart home domain is presented in [210]. In this case, a KNX weather station is accessed with
a software agent and its parameters are represented in an OWL ontology. The ontology which
is presented in the article however just provides a small amount of parameters, while weather
forecasting and online weather services are not considered at all. Other projects like [196] that
describe the representation of meteorological information as ontologies can only be found in a
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much broader context which, from the treated focus, is not deemed to be suitable for the smart
home domain.

4.6.2 Weather Information Retrieval

Weather information for processing in a smart home system can mainly be collected through two
different sources: a local weather station or a web-based information service. While a building
automation weather station like the one described in [2] retrieves its information about the cur-
rent weather state mainly through sensors (e.g., temperature sensor, wind speed sensor, rain
sensor), an online weather service often additionally provides a short- and long-term forecast.
On the contrary, with respect to the current weather situation, data retrieved from an online ser-
vice is not as precise as values retrieved from sensors. In combination, both sources are capable
of giving a comprehensive view on the weather domain and can achieve an accurate picture of
the current environmental state and short-term weather prediction.
Internet weather forecast services to be considered as source of weather information in an au-
tomation system need to offer some sort of application programming interface (API) to make
the represented information machine-accessible. An example of such a weather service with an
API is the Norwegian weather service yr.no18 which provides valuable information for smart
home operation in the context of a smart grid. This service and its values act as base for the
development of the Weather & Exterior Influences ontology module described in the following
sections.
Several reasons led to the decision to choose this particular service. Firstly, the weather service
allows forecasts not only for Norway but for the whole world making flexible application in a
smart home possible independent of the building location. Secondly, it provides an API which
is free of charge, based on the REST19 paradigm and responds with XML documents following
an online available XSD schema description20 which allows the simple transformation and in-
tegration of presented information into an OWL ontology. Further, the yr.no weather service is
sufficiently documented (cf. [178]) with a clear version management simplifying its application
and reuse as it is clear which data can be expected in certain defined elements. Naturally, any
other service would be sufficient as well, while yr.no however provides most of the important
exterior influence parameters needed for a weather-optimized operation of a smart home or a
smart grid (cf. Table 4.12).
As replies of the online weather service are modeled as XML documents, answer set elements
could again be transformed into OWL individuals through an XSLT transformation as it has
already been described for building information in Section 4.2.3. However, in this case, a pro-
grammatic approach through an intermediate Java representation is preferred. There exist many
benefits that arise from such a Java-based transformation (cf. [116]): one of the most important
in the present case is the flexible manipulation of retrieved data. For example, the transforma-
tion of cloud cover from the percentage value retrieved from the service into a more meaningful
representation as okta21 values can be realized. A transformation mechanism for data retrieved

18http://api.yr.no/weatherapi/locationforecast/
19Representational State Transfer
20http://api.yr.no/weatherapi/locationforecast/1.8/schema
21Okta is a unit of measurement to describe cloud cover.
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Figure 4.23: Weather ontology top-level concepts and relationships

from yr.no is presented in [228]: a “weather importer” is introduced that can retrieve weather
data from yr.no and transform it into an ontology. While the resulting weather ontology in this
particular thesis slightly differs from the weather ontology presented in the present work, the
main concepts are similar and an adaptation of the Java import mechanism may easily be ac-
complished.
To discuss the value types that can be retrieved from yr.no, firstly the yr.no API is introduced. A
call to the API to retrieve the weather forecast for Vienna, Austria situated at latitude 48◦12′N,
longitude 16◦22′E and 177 m above see level, may look like this:

http://api.yr.no/weatherapi/locationforecast/1.8/?lat=48.12;lon=16.22;

msl=177

For a call, the weather service API as arguments needs the parameters latitude and longitude as
well as an optional sea level to identify a location. It then returns a nine days weather forecast for
the selected site while for each day four weather forecasts are provided. For the presented smart
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home application, only the first 24 hours forecast are of interest: weather states predicted for
intervals further in the future tend to become very imprecise, not suitable for optimized operation
and predictive control in a smart home. Moreover, as pointed out in [190] and [222], for the
application of renewable energy in a smart grid, the most relevant variations in energy supply that
in any case need to be recognized and considered are those in the hourly and daily timeframe.
Especially for the integration of highly unpredictable sources like wind energy, forecasts are
definitely needed in order to optimize and assure the reliability of the grid. Likewise, similar
conclusions can be drawn for the use of renewables in a smart home system through micro
power plants (eg., solar panels, wind turbines).
An excerpt of the weather information returned from the service can be seen in Listing 4.7.

Listing 4.7: Weather forecast response from yr.no
<time datatype="forecast" from="2013-02-11T15:00:00Z"

to="2013-02-11T15:00:00Z">
<location altitude="177" latitude="48.1200"

longitude="16.2200">
<temperature id="TTT" unit="celcius" value="-2.1"/>
<windDirection id="dd" deg="342.1" name="N"/>
<windSpeed id="ff" mps="3.4" beaufort="2"

name="Svak vind"/>
<humidity value="84.8" unit="percent"/>
<pressure id="pr" unit="hPa" value="1009.3"/>
<cloudiness id="NN" percent="100.0"/>
<fog id="FOG" percent="0.0"/>
<lowClouds id="LOW" percent="96.1"/>
<mediumClouds id="MEDIUM" percent="97.7"/>
<highClouds id="HIGH" percent="97.7"/>

</location>
</time>
<time datatype="forecast" from="2013-02-11T12:00:00Z"

to="2013-02-11T15:00:00Z">
<location altitude="177" latitude="48.1200"

longitude="16.2200">
<precipitation unit="mm" value="1.1"/>
<symbol id="SNOW" number="13"/>

</location>
</time>

This example shows the two main types of weather forecast available from yr.no: The first type is
an instantaneous forecast for 15:00 with a variety of weather parameters valuable for smart home
control. Sub-elements as seen in Listing 4.7, like temperature, humidity, pressure or wind speed
and direction can be taken as basis for a hierarchy about weather phenomena in the proposed
OWL ontology (cf. Figure 4.24). However, a special value of interest for the smart home
use case not included in this forecast is precipitation for which an instantaneous observation
would not be meaningful. Therefore, the second forecast element represents values that are
calculated for a time interval, in the example for the interval from 12:00 to 15:00. Besides
precipitation, for this type of forecast a symbol identifier is calculated by the yr.no service that
can be seen as additional description of the weather state prevalent in this timeframe. In the
designed general weather and exterior influences ontology for smart homes the two forecast
types reporting weather of the same time span are treated as single weather report, incorporating
information from both elements.
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Figure 4.24: Subhierarchies of the top-level element WeatherPhenomenon. Only subhierar-
chies are shown, single subelements are not included in this overview

4.6.3 Weather Phenomena, Weather States and Weather Reports

The use cases of Chapter 3 to some extent reflect the relevance of a weather ontology to increase
energy efficiency of smart home operation in general. The ontology described below can to
a large part be seen as universally applicable with respect to the presented use cases and with
minor changes, indicated at respective sections in the following paragraphs, may be used for
application in a smart grid context as well. The modeled ontology is split into several main
concepts that can be seen in Figure 4.23 and universally cover the domain of weather forecasts
and reports for the application in the smart home domain. The Basic Geo (WGS84 lat/long) Vo-
cabulary [41] is in this case used to represent the location for which a weather report is made by
basically describing points by latitude, longitude and altitude. When observing weather states,
further an ontological time representation is crucial. Therefore, again, the W3C time ontology
recommendation22 is reused by the proposed weather ontology in order to rely on a standard
representation of time instances, intervals and series.

22http://www.w3.org/TR/owl-time/
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WeatherPhenomenon The elements of the weather service response (cf. Listing 4.7) that
are most important for the present field of application are modeled in the weather ontology
as “weather phenomena” and the resulting classes can be viewed in Figure 4.23. Mostly, these
classes represent values available in a typical yr.no forecast (cf. Table 4.12), sometimes however,
a slightly different representation is chosen: in the case of cloudiness for example, the globally
recognized meteorological unit okta is used to represent cloud cover instead of the cloudiness
percentage value provided by yr.no. Further, in the case of wind, wind direction and speed as
retrieved from yr.no are represented as datatype properties hasDirection and hasSpeed
of a general Wind concept. In addition, air quality and solar irradiation are added to the weather
phenomenon class: they do not have a representation in the yr.no API, however are deemed to
be useful for an application in the smart home domain.
For some of the modeled phenomena, value partitions are created. The created partitions are
shown in Figure 4.24 while in most of the pictured cases, the value partition ODP described
in [197] is regarded to be suitable. The article describes two different ways to implement this
pattern once with OWL individuals forming partitions and then again with OWL subclasses
as value partitions. As seen in Figure 4.24 and illustrated with the “wind” concept, a further
subclassification can be useful in the present case and therefore, for the weather ontology, the
second variant is more appealing. This possibility of defining a more fine-grained partition
hierarchy would not be available when modeling subdivisions as individuals. When creating
value partitions following the ODP described in [197] several points need to be considered:

• exhaustive partition: The partition has to be made exhaustive, hence, all partitioning
classes that may be available for a value partition in this context are mentioned explicitly
in the ontology. This is realized by adding a fitting owl:equivalentClass axiom to
the respective weather phenomenon class. For example, the following listing shows the
axiom for the Humidity weather phenomenon:
owl:equivalentClass [ rdf:type owl:Class ;

owl:unionOf ( weo:DryHumidity
weo:MoistHumidity
weo:OptimumHumidity

)
] ;

This type of axiom may also be referred to as covering axiom [125] and states that all
possible members of a class need to be members of one or more of its subclasses.

• disjoint subclasses: The partitioning subclasses explicitly have to be made disjoint so that
they are partitioning the value space and overlapping of classes is ruled out. In the case of
the weather ontology, owl:equivalentClass axioms are defined for the subclasses
to facilitate the automatic inference of values into one partition (cf. Section 4.6.4). Usually
classes with equivalence axioms are not explicitly made disjoint as disjointness of two
classes can be automatically inferred by the reasoner. In the present case, however, disjoint
axioms are added to satisfy the requirements of the ODP even though the equivalence
axioms are already defining a disjoint classification themselves.

• functional object property: Finally, according to the ODP, object properties for each of the
value partitions need to be provided. Additionally, the properties are defined to be of type
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owl:FunctionalProperty and have the value partition class as rdfs:range.
In the weather ontology, these object properties are modeled as subproperties of the
hasWeatherPhenomenon property and their rdfs:domain is WeatherState.
The following listing exemplarily shows the definition of the hasHumidity object prop-
erty:
:hasHumidity rdf:type owl:FunctionalProperty ,

owl:ObjectProperty ;
rdfs:range :Humidity ;
rdfs:domain :WeatherState ;
rdfs:subPropertyOf :hasWeatherPhenomenon .

The value partition ODP is only used where it seems to be useful, hence for the weather phe-
nomena air pollution, cloud cover, humidity, precipitation solar irradiation and wind. For the
temperature concept however, no classification according to the ODP is realized, as in this par-
ticular case subclasses merely reflect weather states that are useful for the smart home domain
and as such are not necessarily disjoint. Further, for the remaining weather phenomena atmo-
spheric pressure and dew point temperature a division into subclasses would not be meaningful.
As far as possible, standard units and scales are used to define limits for partitions. Air pollution
is for example classified using the hourly and daily indices of the European Common Air Qual-
ity Index [243]. The wind speed categorization is accomplished by projecting the Beaufort wind
force scale [218], while for a cloud cover classification the meteorological unit okta is used. For
phenomena where no standard schema exists, reasonable values reflecting a location in Central
Europe are used.
As can be seen in Figure 4.24 the partitioning of phenomenon values is accomplished with
classes described through owl:equivalentOf axioms. This allows individual weather data
acquired from a specific weather forecast being classified into the corresponding value class
by the logical reasoning mechanism of OWL DL. Classification of weather phenomena plays a
central role for reasoning in the created ontology and is shortly described in Section 4.6.4.

Table 4.12: WeatherPhenomenon classification in the Weather & Exterior Influences Ontol-
ogy and the corresponding exterior influence parameters available in the yr.no XSD description
(ver. 1.8)

weather ontology owl:Class yr.no element
AirQuality -

AtmosphericPressure pressure
CloudCover cloudiness

DewPointTemperature dewpointTemperature
Humidity humidity

Precipitation precipitation
SolarIrradiation -

ExteriorTemperature temperature
Wind windDirection & windSpeed
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WeatherState

CoolingWeatherState

AiringWeatherState

HeatingWeatherState

SevereWeatherState
FairWeatherState

NeutralWeatherState

HumidifyingWeatherState

SunnyWeatherState

RainyWeatherState

Thunderstorm

smart home-specific weather states

inferred rdfs:subClassOf relation logical groupowl:Class

SnowyWeatherState

class with owl:equivalentOf axiom

Figure 4.25: Weather states identified for the smart home system use case

WeatherCondition This auxiliary element represents a short description of a specific weather
condition and in the present case contains values retrieved from yr.no. The concept involves an
enumerated set of individuals in form of an owl:oneOf statement. In this case, a classification
scheme based on individuals is used and these weather conditions may be seen as additional, de-
scriptive information for a recognized weather state, which are not used for reasoning purposes.
If another weather service is used as source of information it may provide a similar string-based
mechanism to describe its weather states and in this case, a change of the individual-based clas-
sification can easily be accomplished. Possible values of the symbol element of the yr.no
response (cf. Listing 4.7) like, for example, Snow, Sun, Fog, Rain or Thunder can therefore act
as rough description of an expected near future weather state and may additionally be used to
identify different weather states represented in the weather ontology.

WeatherState This hierarchy describes the actual weather type that is reported through all the
information available from the source reporting it. Different weather states are considered to
be either beneficial or unfavorable with respect to performing certain operations in the building
and are classified in a subsumption hierarchy. Defined weather states as pictured in Figure 4.25
describe meteorological states that can affect the operation of a smart home system and may be
used by a multi-agent system to optimize its operation: the classification is therefore tailored
to the needs of a smart home and to enable its operating system to schedule processes with re-
spect to the prevalent weather state that is reported for the current time or for the near future. For
example, to save energy with domotic airing systems or air conditioning, the system needs to rec-
ognize a state in which the ventilation of the room is possible with outside air, which is a weather
state that is not severe and has light to moderate winds, hence an AiringWeatherState. The
modeled weather states in the ontology are therefore dependent on the domain that is to be cov-
ered (i.e., smart homes), and if the weather ontology is considered in another field of application,
like for example the smart grid, it would have to be adapted to the domain and system.

WeatherReportSource This concept hierarchy holds information about the origins of weather
reports. In the ontology it is mainly differentiated between two types of report sources which
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CurrentWeatherReport

CurrentWeatherReportFromService

CurrentWeatherReportFromSensor

21HoursForecast

15HoursForecast

12HoursForecast

18HoursForecast 24HoursForecast

9HoursForecast

6HoursForecast

3HoursForecast

2HoursForecast

1HourForecast

LongRangeForecast ShortRangeForecast

MidRangeForecast

ForecastWeatherReport

WeatherReport

inferred
rdfs:subClassOf relation

owl:Class

WeatherReportFromService WeatherReportFromSensor

class with 
owl:equivalentOf axiom

Figure 4.26: Weather report classification in the weather ontology. For brevity of the diagram
only a selection of the subclasses of short-, mid- and long-range forecasts are shown exemplarily.

are SensorReportSource and ServiceReportSource denoting whether the report is
coming from a local weather station and its associated sensors or an online forecasting service.
In a smart home, a sensor source could be any kind of weather sensor measuring a specific out-
door parameter being integrated into a building automation system via a controller component
(e.g., EIB/KNX weather station [2]). While the individual sensors and their details are described
in the Energy & Resources ontology (cf. Section 4.3), the weather controller itself is represented
as a SensorReportSource with associated sensors connecting the weather ontology to the
resource ontology module (cf. Section 3.2). Envisioning the application of the ontology in a
smart city use case, sensor data could be directly transferred to a grid management system from
different private and public weather stations in the area.
If reports from one of these sources are not available at a certain moment in time, the sys-
tem may still rely on the information from the remaining source. Further, when only a selec-
tion of parameters can be retrieved from one information source, like for example humidity
and temperature from a local weather controller, this report may be complemented with values
from other sources in form of a basic sensor fusion to generate a weather domain representa-
tion that is as complete and as correct as possible with respect to the monitored location. The
WeatherReportSource concept therefore includes the set of different online weather ser-
vices as well as local weather sensors that may be relevant to perceive exterior conditions for a
specific building. This classification differentiates between reports originating either from local
sensors or from web-based services, and in this respect refers to the weather report source from
which it comes. In order to separate weather forecasts and weather reports, four main types
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are identified (cf. Figure 4.26). First, the two concepts WeatherReportFromService and
WeatherReportFromSensor separate weather reports that are published by a service in-
terface through the Internet from reports retrieved from a local weather station observing the
current weather state through sensors. The classification of these two types of weather reports is
accomplished through their associated WeatherReportSource.
Further, while a sensor-based weather report mostly only covers current weather states, an
online-service is capable of delivering forecast information. Therefore, additionally, a main
differentiation between CurrentWeatherReport and ForecastWeatherReport is re-
alized. Forecasts are classified by a property (reportsWeatherForTimeInterval) that
is used to model a time division by specifying the offset of the time interval for which a particu-
lar weather situation is reported. This way, a hierarchy of concepts can be automatically inferred
by the OWL DL reasoning mechanism (cf. Figure 4.26). Due to the accuracy of weather fore-
casts and their usefulness in the smart home domain, a division into different time-categories of
forecasted weather reports is modeled. For the considered field of application forecasts in the
range of one to five hours are deemed to be short-range, from six to twelve hours are categorized
as mid-range and from 13 to 24 hours are classified as long-range reports. All reports for times
greater than 24 hours can safely be ignored, as predictions further into the future tend to become
relatively unreliable and as such are not beneficial for the projected field of application. For
example, current weather reports describe the predicted weather state at the time of storing the
report and as such, the reported time interval is starting with an offset of 0 hours. A 12-hours
forecast then again predicts the weather for an interval starting 12 hours in the future and as such
is related to an appropriate offset. Weather sensors of weather stations at the building site most
likely only report current weather, while a weather forecast from a service consists of one report
element that includes the current weather state while all other elements address states in the near
future.
The main reason to include such a classification of weather reports in the ontology is to give the
system the possibility to assess to which extent a certain weather forecast is reliable, leading to
a basic notion of Quality of Service (QoS). For example, a multi-agent system may choose to
mainly rely on short-range forecasts, and just taking long-range reports into consideration if a
more up to date weather report is not available or if a calculation for peak electricity demand
reduction is in need for long-range forecast information.

4.6.4 Reasoning in the Weather & Exterior Influences ontology

The identification of different weather states and reports is a task that can be undertaken by the
reasoning mechanism of the ontology. As already seen in Figure 4.24, weather phenomena are
realized as subsumption hierarchy, with the leaves of the hierarchy tree often describing a cat-
egorization of a weather phenomenon into value partitions. According to defined axioms and
subclass relations, an OWL DL reasoner may perform categorizations and subsumption reason-
ing on this hierarchy. For example, if a relative humidity up to 25% is reported by a weather
sensor or forecast, a human observer can conclude that dry weather conditions are expected.
In order to also make this knowledge available to a software agent in a multi-agent-controlled
smart home system the subconcept DryHumidity is defined accordingly with the help of an
OWL DL axiom describing the phenomenon.
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Listing 4.8: Weather phenomenon class DryHumidity
weo:DryHumidity rdf:type owl:Class ;

owl:equivalentClass [ rdf:type owl:Class ;
owl:intersectionOf

( weo:Humidity
[ rdf:type owl:Restriction ;

owl:onProperty weo:hasValue ;
owl:allValuesFrom [ rdf:type rdfs:Datatype ;

owl:onDatatype xsd:float ;
owl:withRestrictions

( [ xsd:maxInclusive
"25.0"^^xsd:float

]
)

]
]

)
] .

Listing 4.8 shows the definition of the concept in the designed ontology: the associated axiom
classifies all humidity entries with values up to 25% as “dry” humidity.
In further consequence, value partitions identified and defined in this step act as base modules to
describe weather states. For example, for a smart home operating system it can be beneficial to
know in advance that if a weather state with dry humidity is imminent, humidification by outside
air will not be available. This in turn leads to the need of utilizing air humidifiers and thus a
higher energy expenditure. In this case, if the room occupancy schedule permits, an intelligent
system could schedule the humidifying task out of peak times, simultaneously reducing the
energy expenditure of the building as well as the strain on the energy distribution grid and peak
electricity demand.

Listing 4.9: Weather state class Thunderstorm
weo:Thunderstorm rdf:type owl:Class ;

owl:equivalentClass [ rdf:type owl:Class ;
owl:intersectionOf

( weo:WeatherState
[ rdf:type owl:Restriction ;

owl:onProperty weo:hasWeatherPhenomenon ;
owl:someValuesFrom weo:AboveZeroTemperature

]
[ rdf:type owl:Restriction ;

owl:onProperty weo:hasWeatherPhenomenon ;
owl:someValuesFrom weo:HeavyPrecipitation

]
[ rdf:type owl:Restriction ;

owl:onProperty weo:hasWeatherPhenomenon ;
owl:someValuesFrom [ rdf:type owl:Class ;

owl:unionOf ( weo:LightWind
weo:Storm
weo:StrongWind

)
]

]
)

] ;
rdfs:subClassOf [ rdf:type owl:Restriction ;

owl:onProperty weo:hasWeatherCondition ;
owl:hasValue weo:Thunder

] .
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Another example for a weather phenomenon partition is air temperature. In this case it is ab-
stained from a complete value partition following the conforming ODP in order to represent
partitions that are particularly interesting for the optimization of smart home control (cf. Fig-
ure 4.24). Accordingly, a temperature higher than 25 degree Celsius can be reasoned to be a
member of the AboveRoomTemperature concept. A weather state with a temperature in
this range is therefore not suitable for natural ventilation as temperature in the room would rise
to a level above the comfort zone. Those and similar classifications of weather phenomena can
subsequently be used for describing weather states important for smart home control.
As an example for an axiom characterizing a specific weather state, Listing 4.9 shows the log-
ical definition of the Thunderstorm element. In the present case, the previously described
WeatherCondition element fetched from the yr.no online weather service can be seen as
additional fact, a one-word description of the identified weather state, that may be inferred for
weather states retrieved from sensor systems which originally do not have such an associated
weather condition description. This way it becomes possible to make the weather condition
short-description from yr.no also available for weather states recognized by sensors. The list-
ing further reveals the situation that classifies as thunderstorm which is solely dependent on the
recognized weather phenomena. OWL definitions as shown for the example are realized for all
defined weather states, leading to an inferred subsumption hierarchy (cf. Figure 4.25). While in
this case some of the modeled weather states are general in nature, others are specifically targeted
at an application: the logical group shown in Figure 4.25, for example, describes weather states
that may influence the scheduling of HVAC appliances and as such may be used to optimize the
establishment of thermal comfort (cf. Chapter 6).

Listing 4.10: Weather report class ShortRangeForecast
weo:ShortRangeForecast rdf:type owl:Class ;

owl:equivalentClass
[ rdf:type owl:Class ;

owl:intersectionOf
( weo:WeatherReport
[ rdf:type owl:Restriction ;
owl:onProperty :reportsWeatherForTimeInterval ;
owl:someValuesFrom

[ rdf:type owl:Restriction ;
owl:onProperty time:hasBeginning ;
owl:someValuesFrom

[ rdf:type owl:Restriction ;
owl:onProperty time:inDateTime ;
owl:someValuesFrom

[ rdf:type owl:Restriction ;
owl:onProperty time:hour ;
owl:someValuesFrom

[ rdf:type rdfs:Datatype ;
owl:intersectionOf
( [ rdf:type rdfs:Datatype ;

owl:onDatatype xsd:nonNegativeInteger ;
owl:withRestrictions ( [ xsd:minExclusive 0 ] )

]
[ rdf:type rdfs:Datatype ;
owl:onDatatype xsd:nonNegativeInteger ;
owl:withRestrictions ( [ xsd:maxExclusive 6 ] )

] )
]

]
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]
]

]
[ rdf:type owl:Restriction ;
owl:onProperty :reportsWeatherForTimeInterval ;
owl:someValuesFrom

[ rdf:type owl:Restriction ;
owl:onProperty time:hasBeginning ;
owl:someValuesFrom

[ rdf:type owl:Restriction ;
owl:onProperty time:inDateTime ;
owl:someValuesFrom

[ rdf:type owl:Restriction ;
owl:onProperty time:hour ;
owl:allValuesFrom

[ rdf:type rdfs:Datatype ;
owl:intersectionOf
( [ rdf:type rdfs:Datatype ;

owl:onDatatype xsd:nonNegativeInteger ;
owl:withRestrictions ( [ xsd:minExclusive 0 ] )

]
[ rdf:type rdfs:Datatype ;
owl:onDatatype xsd:nonNegativeInteger ;
owl:withRestrictions ( [ xsd:maxExclusive 6 ] )

] )
]

]
]

]
]

)
] .

As a final example, Listing 4.10 displays the definition of short-range weather reports in the de-
signed ontology. As shown, the classification into different time classes is realized via the prop-
erty reportsWeatherForTimeInterval representing the interval for which the weather
report is valid expressed as offset in hours from the time the report was created. In the example
case, only reports that are prognosed between one and five hours into the future are classified as
short-range forecasts.
As already mentioned, modeled weather states in the proposed ontology are tailored to the need
of optimizing HVAC appliances during smart home operation. Certainly, other weather states
may influence the energy-efficient operation of a smart home (e.g., a lighting weather state for
consideration of daylighting), and can be added to the knowledge base as desired at a later stage.
Further, also for the application of the weather ontology in a smart city context different weather
states than for a smart home need to be considered. In this respect, one could think of concepts
that model grid-specific use cases like weather states for values that exceed some certain wind
speed or solar radiation to estimate the energy that will be produced by power plants or buildings
in a specific area at a particular future point in time. At the same time however, all other parts of
the weather ontology can remain unchanged, which highlights the versatile applicability of the
conceptualization.

4.6.5 Ontology Metrics

Table 4.13 presents metrics of the Weather & Exterior ontology module. The weather ontology
designed for the envisioned smart home system currently contains 112 classes, 24 object proper-
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ties and 17 datatype properties. Most of the identified classes are representing different weather
phenomena and weather states that can be seen as immediate influence parameters for smart
home operation. At the same time, also current and forecasted weather reports are distinguished
and basic classes for sources of weather information are defined.

Table 4.13: Metrics of the Weather & Exterior Influences ontology module

Weather & Exterior Influences ontology

TBox
Named Classes 112

Object Properties 24
Datatype Properties 17

ABox Instances 11

Additionally, 11 instances are included, representing an instance-based classification of weather
conditions. The value partition ontology design pattern is used throughout the ontology, and
reasoning is mainly exploited to automatically categorize phenomena and weather states ac-
cording to reported values. The presented ontology metrics include definitions from the Basic
Geo (WGS84 lat/long) Vocabulary (two classes, one object property and three datatype prop-
erties) as well as references to three concepts, two object and one datatype properties of the
OWL-Time ontology which are needed to represent the time-based division of weather reports.
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CHAPTER 5
Smart Home Ontology Evaluation &

Discussion

Ontology evaluation and validation has been of general interest for a long time. As ontology
creation is to some part a creative process, no real possibility exists to state that an ontology is
correct or incorrect [179]. Each ontology reflects reality according to the views and knowledge
of the ontologist, scientist or engineer that built the ontology, and also if two ontologies for the
same domain exist chances are high that the ontologies will differentiate from each other to a
substantial amount. Therefore, the quality of an ontology is mainly assured by using it in the
environment or application it is designed for and observe its sufficiency to address commonly
experienced situations.
The previously mentioned methodologies that serve as a foundation for the creation of ontolo-
gies in this work (cf. Chapter 3) all envision some kind of evaluation: while in [242] this phase
is mentioned, its execution is not explicitly shown. In [104], an evaluation of competency ques-
tions against a formal representation of the ontology is presented. The authors of [179] otherwise
only mention evaluation through usage of the ontology in applications or the discussion of its
contents with experts in the field. Further, the methodology described in [83] views evaluation as
associative task that should be carried out throughout the complete design and implementation
process. Other works describe the formal evaluation and validation of ontologies in more detail.
In [90], three main measure types are proposed to evaluate and validate an ontology, which are
structural, functional and usability-profiling measures. Structural measures are needed to assure
that a created ontology is valid with respect to the used formalism or ontology language and
involves topological measurements such as depth, breadth and tangledness. At this stage, the
syntax and semantics of the ontology are assessed. Functional measures evaluate if an ontology
and its defined constructs functionally cover the domain of interest. In this respect, the specific
conceptualization that the ontology represents needs to be put into context with the covered ap-
plication domain. The third category usability-profiling measures finally evaluates annotations
of the ontology and if they are usable for the intended field of application. A recent article on on-
tology evaluation identifies five types of evaluation that are generally needed in ontology design
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which are intelligibility, fidelity, craftmanship, fitness and deployability [184]. Intelligibility
means that all intended users can understand the created ontology which can be reached on the
one hand through a self-explanatory model but which is also achieved through a rich annotation
of the ontology. Fidelity as evaluation criteria is concerned with the correctness of the ontology
with respect to the particular domain it represents. Craftmanship comprises the consistent use of
design patterns and design choices throughout the ontology as well as the syntactical correct rep-
resentation of the model in the chosen ontology formalism. Fitness and deployability evaluate
requirements for the expected field of application and are used to put the ontology into context
with a particular system it is designed for. Further, also in [98] a summary on how an evaluation
of ontologies should be conducted is presented. The article identifies several questions that need
to be answered and also states that the evaluation of ontologies should be performed against a
frame of reference which in the case of ontologies “can be a set of competency questions, the
requirements or the real world” [98]. In this context, the article [104] explains the importance of
formalization of competency questions. According to the authors, only with formal competency
questions it becomes possible to assess if a postulated requirement is adequately represented
in an ontology. The authors propose the formalization of informal competency questions with
the help of first-order logic. Following the methodology, the formalized questions can in fur-
ther consequence be used to identify formal axioms that define constraints for concepts in the
specified ontology [241].

5.1 Competency Question Formalization

Starting with the informal competency questions identified in Chapter 3, firstly a suitable formal
representation needs to be identified. Focusing on OWL and Description Logic-based ontolo-
gies, several works explain and propose different types of competency question formalization. In
[211], for example, informal competency questions are translated to DL queries. These queries
are then submitted to the Protege DL query interface for evaluation. Recently, also an increas-
ing number of projects arises that to some extent use the SPARQL query language to formalize
competency questions and thus evaluate the designed ontologies (e.g., [82], [21], [138], [234]).
SPARQL as complex and feature-rich query language for RDF can be successfully used to rep-
resent a wide range of natural language questions in a question-answering perspective [21]. The
retrieval of formal SPARQL queries from natural language competency questions can be split
into several steps while in [21] an automatic deduction of appropriate SPARQL queries from
natural language questions is pursued. However, the described methodology is tailored to the
medical domain and to specific types of competency questions. Taking the findings of this arti-
cle as basis, [271] describes a more general approach to translate natural language competency
questions into formal SPARQL questions roughly following the initial methodology. In [82],
different levels are introduced for the formal speification of competency questions: for ques-
tions involving reasoning tasks, the Pellet reasoner is used while questions involving OWL in-
stances are formalized as SPARQL queries. For complex questions, the proposed formalization
scheme further defines algorithms with the help of the Protege OWL API. Also [174] proposes
a methodology for ontology development that involves different forms of competency question
formalization. In their approach, the authors propose the answering of competency questions
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either by using DL classification, SWRL rules or SPARQL. As a conclusion, it can be noted that
there exist many different possibilities to create a formal representation of competency questions.
As the main reason for formal competency questions is to ensure that a developed ontology is
expressive enough to provide answers to the posed questions, the formalization of competency
questions to a certain degree depends on the appropriate query language [168]. In this work,
a formalization with SPARQL queries is pursued to reflect the query language used to retrieve
data from the ontology in the envisioned smart home system (cf. Section 1.2). Further, espe-
cially when querying for individuals in the ontology, SPARQL provides advanced possibilities.
Because of the powerful nature of SPARQL it has to be kept in mind that the language can be
used to compensate for knowledge not explicitly modeled in the ontology. In such a case, the
created ontology could certainly be designed simpler, however, explicitness would be lost [174].
Therefore, when formalizing competency questions with the help of SPARQL it is necessary to
apply restrictions on the use of functions in order to assure that all necessary dependencies are
sufficiently covered in the ontology itself rather than in the query used to retrieve information
from it.

5.1.1 Classification of Competency Questions

For the evaluation procedure, the informal competency questions as identified in Chapter 3 are
again consulted and the proposed classification (cf. Section 3.2) is used as a reference. The
division into low-level and high-level questions serves as a framework and different approaches
are taken for these two question types.
For low-level questions, generally a formalization into SPARQL queries is conducted. Where
applicable, equivalent DL queries are provided. In case DL cannot be used to exactly answer
the query, an explanation is given and retrieved results are discussed. In the course of the for-
malization also a simple categorization of questions is performed. Competency questions are
first associated with a particular ontology dimension as proposed in Section 3.2 and then further
classified with respect to their focus. The focus is used to present the core themes of queries
for single domains. Further, in case a group of identified questions have similar queries, a gen-
eralized question (GROUP) is created. This generalized question is not necessarily an already
defined competency question but may be constructed to act as a framework for a set of ques-
tions. For the general query, the associated DL and SPARQL representations are discussed in
detail, while for the single competency questions belonging to this group shorter elaborations
for necessary adaptations are outlined. Further, the return types of the queries are presented in
the discussion of the low-level questions providing a simple means to show the correctness of
the answer set.
For high-level queries, it is shown how the queries can be answered using the previously defined
low-level questions. A hierarchical representation is conducted and a discussion of how the an-
swer of high-level competency questions can be supported by low-level questions is provided.
The procedure that is followed to evaluate the created ontologies against associated low-level
competency questions includes the use of the following software and tools: firstly, for perform-
ing DL queries on the single ontology modules, the Protege toolkit is used. The Pellet plugin of
Protege is further utilized to retrieve OWL DL inferences as well as inferences resulting from
DL-safe SWRL rules. The inferred model can be directly exported to a file which is subsequently
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manually imported into a triple store. As triple store, the Fuseki server [8] is used which is built
on the Jena framework and uses TDB as persistence backend. Fuseki is a simple RDF store that
supports SPARQL and SPARQL/Update queries. This way, the SPARQL queries representing
the competency questions can be executed on this triple store to extract the answer. The benefit
of using Fuseki instead of Protege for SPARQL querying is that also federated queries span-
ning more than one ontology are possible as the inferred models of all ontology modules can be
loaded into the triple store. In Protege, this would just be possible by importing all the modules
into one single model and starting the Pellet reasoner on this combined ontology resulting in an
extremely high reasoning overhead.
The just defined procedure allows the evaluation of the ontology with respect to its requirements
without being dependent on the actual implementation of other system parts. Further, as the
competency questions are directly retrieved from the main use cases for the envisioned system,
by executing an evaluation of this kind, a sufficient coverage of requirements is assured.

5.2 Low-level Competency Questions

5.2.1 Building Information

Focus: building

TH02.06: How is building X divided into spaces/rooms?

DL query:
Space and isBuildingElementOf value BUILDING_ID_BLDG001

SPARQL query:
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?space
WHERE
{

?building gbo:containsSpace ?space .
FILTER (?building = gbo:BUILDING_ID_BLDG001)

}

Discussion:
The building is related to its spaces via the containsSpace and a space can be related to a
building via the isBuildingElementOf object property. The presented DL as well as the
SPARQL query return all spaces of the building. To gather more information about the exact
building layout, the control system can issue additional queries (e.g., TH02.09). The range of
the containsSpace property ensures that returned elements are of type Space.

TH02.13: What are the materials of wall X?
DL query:
isDefinedMaterialOf some (isDefinedLayerOf some

(isDefinedConstructionTypeOf value SURFACE_ID_OBJ000))
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SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?material
WHERE
{

?surface gbo:hasDefinedConstructionType ?construction .
?construction gbo:hasDefinedLayer ?layer .
?layer gbo:hasDefinedMaterial ?material .
FILTER (?surface = gbo:SURFACE_ID_OBJ000)

}

Discussion:
The material of a wall is defined for each layer (hasDefinedMaterial). Further, multiple
layers can be defined for a construction type (hasDefinedLayer) and a construction type
is associated to a particular space via hasDefinedConstructionType. For all of these
object properties, appropriate inverse properties are defined. DL as well as SPARQL queries
may be used to return all materials associated with a particular wall (i.e., surface). The returned
value is assured to be of type Material because of the range of the hasDefinedMaterial
object property which is inverse to isDefinedMaterialOf and allows the DL reasoner to
make the appropriate inferences.

TH02.14: Does wall X face the exterior environment?
DL query:
ExtSurface

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

ASK WHERE
{

?surface rdf:type gbo:ExtSurface
FILTER (?surface = gbo:SURFACE_ID_OBJ000)

}

Discussion:
The relationship if a wall faces the exterior environment is directly represented in the KB as
ExtSurface class, a subclass of Surface. Therefore, with a DL query it may be queried for
all individuals that are of type ExtSurface. It is then necessary to determine if the wall of
interest is in this set to answer query TH02.14. A SPARQL query further can add a filter for a
specific wall, thus directly answering the competency question.
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TH02.24: Does wall X have window openings?

DL query:
Surface and (containsOpening some Window)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

ASK
WHERE
{

?surface gbo:containsOpening ?opening .
?opening rdf:type gbo:Window .
FILTER (?surface = gbo:SURFACE_ID_OBJ000)

}

Discussion:
In the Architecture & Building Physics ontology a surface is connected to a particular opening
via the containsOpening object property. Further, subclasses are defined for the Opening
class that make it possible to differentiate between window and door openings. Using these
relationships, the DL and the SPARQL query can therefore be used to identify surfaces that
contain window openings, answering TH02.24.

TH02.27: What are the dimensions of window X?
DL query:
Window and
(containsRectangularGeometry some ((containsWidth some

(hasNativeValue some Literal)) and
(containsHeight some (hasNativeValue some Literal))))

SPARQL query:
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?widthVal ?heightVal
WHERE
{

?opening gbo:containsRectangularGeometry ?rectangle .
?rectangle gbo:containsWidth ?width ;

gbo:containsHeight ?height .
?width gbo:hasNativeValue ?widthVal .
?height gbo:hasNativeValue ?heightVal .
FILTER (?opening = gbo:OPENING_ID_OBJ001)

}

Discussion:
The Window class determines if a particular opening is a window and the containsWidth
and containsHeight object properties represent its dimensions. Through a DL query it
is possible to query for instances of type Window that contain dimension relationships (i.e.,
height, width). With SPARQL, through the associated object properties, the height and width of
the window can be obtained from the KB, thus answering TH02.27.
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Focus: room

TH02.07: What is the floor area of room X?
DL query:
Space and (containsArea some (hasNativeValue some Literal))

SPARQL query:
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?areaVal
WHERE
{

?space gbo:containsArea ?area .
?area gbo:hasNativeValue ?areaVal .
FILTER (?space = gbo:SPACE_ID_ZON001)

}

Discussion:
A room (i.e., space) and its area are connected through the containsArea object property.
With a DL query it is possible to query for all elements that are of type Space and are related
to an element of type Area representing the floor area through the containsArea object
property. The SPARQL query further can be used to return the area of a specified room.

TH02.08: What is the volume of room X?
DL query:
Space and (containsVolume some (hasNativeValue some Literal))

SPARQL query:
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?volVal
WHERE
{

?space gbo:containsVolume ?volume .
?volume gbo:hasNativeValue ?volVal .
FILTER (?space = gbo:SPACE_ID_ZON001)

}

Discussion:
A room (i.e., space) and its volume are connected through the containsVolume object prop-
erty. As before in TH02.07, with a DL query it is possible to query for all elements that are of
type Space, this time related with an element of type Volume through the containsVolume
object property. The SPARQL query can be used to return the volume of a specified room (i.e.,
space).

TH02.09: Which rooms are adjacent to room X?

DL query:
Space and (hasDefinedAdjacentSpace value SPACE_ID_ZON001)
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SPARQL query:
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?adjacentSpace
WHERE
{

?space gbo:hasDefinedAdjacentSpace ?adjacentSpace .
FILTER (?space = gbo:SPACE_ID_ZON001)

}

Discussion:
Adjacent rooms are put into relation in the KB via the hasDefinedAdjacentSpace object
property (cf. Listing 4.3, Section 4.2.4.3). The shown DL and SPARQL queries use this object
property to return the adjacent space to a particular room. The return value of the SPARQL
query can be inferred to be of type Space through the defined range of the object property.

TH02.10: Which walls are adjacent to room X?

DL query:
Surface and (isDefinedAdjacentSurfaceOf value SPACE_ID_ZON001)

SPARQL query:
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?surface
WHERE
{

?space gbo:hasDefinedAdjacentSurface ?surface .
FILTER (?space = gbo:SPACE_ID_ZON001)

}

Discussion:
Walls that are adjacent with a particular room are related its representation in the KB via the
object property hasDefinedAdjacentSurface (cf. Listing 4.2, Section 4.2.4.3) and its
inverse counterpart isDefinedAdjacentSurfaceOf. The DL query uses the second men-
tioned property to determine all walls that are adjacent to a chosen room. In the case of the
SPARQL query, the range of the hasDefinedAdjacentSurface property facilitates the
inference of the return value to be of type Surface.

TH02.11: What is the U-value of wall X adjacent to room Y?

DL query:
containsU-value some (hasNativeValue some Literal) and
(isDefinedConstructionTypeOf value SURFACE_ID_OBJ003)
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SPARQL query:
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?surface ?uval
WHERE
{

?surface gbo:hasDefinedConstructionType ?construction.
?construction gbo:containsU-value ?uvalue .
?uvalue gbo:hasNativeValue ?uval .
FILTER (?surface = gbo:SURFACE_ID_OBJ003)

}

Discussion:
It is described in competency question TH02.10 how it can be found out if wall is adjacent to a
chosen room. To determine the U-value of a wall it is then necessary to query for the concept
U-value which is related to the construction of the wall through the containsU-value
object property. The construction type is further associated with a wall (i.e., surface) via the
isDefinedConstructionTypeOf property. The DL query may be used to return the
construction of the wall which contains the relationship to the desired U-value element. The
SPARQL query can answer TH02.11 by returning the value associated with the U-value ele-
ment through the hasNativeValue datatype property.

TH02.12: How thick is wall X adjacent to room Y?

DL query:
containsThickness some (hasNativeValue some Literal) and
(isDefinedMaterialOf some (isDefinedLayerOf some

(isDefinedConstructionTypeOf value SURFACE_ID_OBJ003)))

SPARQL query:
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?surface ?material ?thicknessVal
WHERE
{

?surface gbo:hasDefinedConstructionType ?construction.
?construction gbo:hasDefinedLayer ?layer .
?layer gbo:hasDefinedMaterial ?material .
?material gbo:containsThickness ?thickness .
?thickness gbo:hasNativeValue ?thicknessVal .
FILTER (?surface = gbo:SURFACE_ID_OBJ003)

}

Discussion:
How it can be determined if a wall is adjacent to a particular room is shown in TH02.10. The
thickness of a wall is represented at the material level: therefore, the knowledge base provides
the object property containsThickness relating a specific material with its thickness. To
determine the materials of a chosen wall (i.e., surface), the same query can be used as presented
for competency question TH02.13. The shown DL query returns the different material elements
of a wall for which a Thickness value is defined. To query for the actual thickness of the
material a SPARQL query can be used. With the SPARQL query, the thickness of the material
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in the wall is returned per material, this means that the control system needs to calculate the
total thickness of the wall. Alternatively, a SPARQL query grouping the thickness values of the
individual material instances may be used as shown below. Both variants answer competency
question TH02.12.

SPARQL query:
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?surface (SUM(?thicknessVal) AS ?thicknessTotal)
WHERE
{

?surface gbo:hasDefinedConstructionType ?construction.
?construction gbo:hasDefinedLayer ?layer .
?layer gbo:hasDefinedMaterial ?material .
?material gbo:containsThickness ?thickness .
?thickness gbo:hasNativeValue ?thicknessVal .
FILTER (?surface = gbo:SURFACE_ID_OBJ003)

}
GROUP BY ?surface

TH02.28: What is the orientation of wall X adjacent to room Y?

DL query:
Surface and (containsRectangularGeometry some (hasAzimuthValue some Literal))

SPARQL query:
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?azimuth
WHERE
{

?surface gbo:containsRectangularGeometry ?rectangle .
?rectangle gbo:hasAzimuthValue ?azimuth.
FILTER (?surface = gbo:SURFACE_ID_OBJ003)

}

Discussion:
How it can be determined if a wall (i.e., surface) is adjacent to a particular room is shown in
TH02.10. The orientation of a wall is contained in the azimuth value available in the Archi-
tecture & Building Physics ontology. The azimuth is defined for each rectangular geometry
through the hasAzimuthValue datatype property, while a surface and a rectangular geom-
etry are related via the containsRectangularGeometry object property. The DL query
may determine surfaces that are related with an element of type RectangularGeometry for
which an azimuth value is defined and therefore have a defined orientation. A software system
can then extract the desired surface and its associated azimuth value from this list of surfaces.
The SPARQL query can actually be used to return the azimuth value of the rectangular geometry
as orientation of a chosen wall/surface which answers TH02.28.
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5.2.2 Resource Information

Focus: room, building

TH03.03: What is the current value of illuminance sensor X?
DL query:
stateValueOf some (stateOf value LIVINGROOM1LIGHTSENSOR1)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?stateVal
WHERE
{

?stateValue ero:realStateValue ?stateVal .
?stateValue ero:stateValueOf ?state .
?state ero:stateOf ?sensor .
?sensor rdf:type ero:LightSensor.
FILTER (?sensor = ero:LIVINGROOM1LIGHTSENSOR1)

}

Discussion:
To gather the current state of an illuminance sensor from the Energy & Resource ontology, firstly
the object property stateOf can be used which returns the LightIntensityState of the
sensor. Through the stateValueOf property further a LightIntensityStateValue
element can be retrieved by the DL query. This state value can then be used by the software
system operating on the ontology to retrieve the actual value which is connected to this element
via the realStateValue datatype property. The given SPARQL query can directly return
the value associated with the selected sensor and thus answers TH03.03.

TH03.10: Which lighting facilities are installed in room X?

DL query:
LightingSystemResource and (isIn some (hasAssociatedSpace value SPACE_ID_ZON001))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?resource
WHERE
{

?resource rdf:type ero:LightingSystemResource .
?resource ero:isIn ?room .
?room ero:hasAssociatedSpace ?space .
FILTER (?space = gbo:SPACE_ID_ZON001)

}
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Discussion:
Lighting facilities are represented in the Energy & Resource part of the KB in the dedicated
class LightingSystemResource and can be associated with a particular room through the
isIn object property. The DL and SPARQL queries are examples of how to request lighting
facilities (i.e., lighting system resources) that are located in a specific room with a particular
associated space thus answering TH03.10.

TH02.25: Which windows of room X can be controlled by actuators?

DL query:
Room and
(hasWall some (hasWallOpening some (Window and hasActuator some WindowActuator))) and
(hasAssociatedSpace value SPACE_ID_ZON001)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT ?window
WHERE
{

?window rdf:type ero:Window ;
ero:hasActuator ?actuator .

?wall ero:hasWallOpening ?window .
?room ero:hasWall ?wall ;

ero:hasAssociatedSpace ?space .
FILTER (?space = gbo:SPACE_ID_ZON001)

}

Discussion:
In the Energy & Resource ontology, a room is associated with a wall through the hasWall
property. Each wall may have openings connected to a wall through the hasWallOpening
object property. A room as defined in the Energy & Resource ontology further may have a
link to its space representation in the Architecture & Building Physics ontology through the
hasAssociatedSpace object property (cf. Section 4.1.2). The DL query returns the se-
lected room only if it has a related wall opening that is a window which can be controlled by
a window actuator. In this case, it would be possible for a control system to iterate over all
windows of a room and select the ones for which the DL query produces an answer. A SPARQL
interface however can use a simple SPARQL query to directly answer TH02.25 by returning the
controllable windows of a room.

TH02.26: Do controllable shutters exist for room X?
DL query:
Shutter and (isIn some (hasAssociatedSpace value SPACE_ID_ZON001)

and (hasActuator some Actuator))

168



SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

ASK WHERE
{

?shutter rdf:type ero:Shutter ;
ero:isIn ?room ;
ero:hasActuator ?actuator .

?room ero:hasAssociatedSpace ?space .
FILTER (?space = gbo:SPACE_ID_ZON001)

}

Discussion:
Shutters are identified as own class in the KB and can be directly associated with a particular
room through the isIn object property. To associate a room with its space representation of
the Architecture & Building Physics ontology as before, the hasAssociatedSpace object
property is used. The DL query only returns elements of type Shutter that also have a related
actuator (i.e., can be controlled by the system) and are located in a specific room associated
with a particular space element. The SPARQL query only returns true or false, regarding if such
a shutter exists in this room or not. In this respect, DL and SPARQL can be used to answer
competency question TH02.26.

TH05.01: Which energy producing facilities exist in the building?

DL query:
EnergyProducerFacility

SPARQL query :
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?energyProducer
WHERE
{

?energyProducer rdf:type ero:EnergyProducerFacility .
}

Discussion:
Energy producing facilities are directly represented in the Energy & Resource ontology through
the EnergyProducerFacility class. The DL as well as the SPARQL query may use this
class to answer TH05.01.
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Focus: facility

TH04.10: What is the current state of facility X?

DL query:
hasCurrentStateValue some StateValue

SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?curStateVal
WHERE
{

?facility ero:hasCurrentStateValue ?curStateVal .
FILTER(?facility IN (ero:LIVINGROOM1AIRCONDITION))

}

Discussion:
In the KB, an object property (hasCurrentStateValue) and the associated StateValue
represent the current state of a facility. This object property relates the facility with one of
its possible state values representing the current state of the facility. A DL query may return
all facilities that have an associated current state value. A software system may then choose the
desired facility and related state value from this list. The presented SPARQL query otherwise di-
rectly returns the current state value for a particular facility answering the competency question.
The type of the returned value is defined by the domain of the hasCurrentStateValue
object property and therefore can be inferred to be StateValue.

GROUP: Current perception of the environment

Questions TH01.01, TH02.16, TH02.29, TH03.07 and TH03.12 are related with perceiving the
current state of a particular environmental variable in a part of the building. Therefore, the ques-
tion to be answered in all of the following cases can be generalized to “What is the current
state of a sensor/actuator/facility in a room of the building?”. While generally the current
state of a device may be directly retrieved through the building automation subsystem, this in-
formation is also represented in the knowledge base. The following DL and SPARQL queries
can be used to answer this general question.

DL query:
(hasCurrentStateValue some StateValue ) and
(isIn some (hasAssociatedSpace value SPACE_ID_ZON001))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?curVal
WHERE
{
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?controllable ero:hasCurrentStateValue ?curVal ;
rdf:type ?type ;
ero:isIn ?room .

?room ero:hasAssociatedSpace ?space .
FILTER ((?space = gbo:SPACE_ID_ZON001) &&

(?type IN (ero:Controllable)))
}

Discussion:
To perceive the environment usually the current state of all sensors and facilities in a particular
part of the building (i.e., space) have to be retrieved. In the Energy & Resource ontology, the
object property hasCurrentStateValue represents the current state value of a controllable
device that is of type StateValue. With a DL query it is possible to return all devices that
have a related current state value and are related with a particular room through the isIn object
property that itself has an associated space value (hasAssociatedSpace). The return type
is ensured by the domain of the object property and (Controllable). While by returning
devices instead of state values the DL query is not exactly answering the question, a SPARQL
query on the other hand is capable of directly fetching the current state of the device using the
same property. The example SPARQL query in this case selects the current state value of all
devices in a particular space. The return value in this case is specified through the range of the
hasCurrentStateValue object property, which is StateValue. Depending if this state
value is a value of a continuous or discrete state, an overlying software system can extract more
information about the state through associated datatype properties or the type of the state value.
In case the facility is working in discrete states, the subclass type of the returned StateValue
element is a description of the current device state (e.g., on/off, open/close). If like in the present
case a continuous state is returned (e.g., temperature sensor state), the realStateValue and
hasNativeUnit datatype properties associated with the current state value provide informa-
tion about the value of the retrieved state.

TH01.01: What is the current air quality value in room X?

DL query:
CO2Sensor and (hasCurrentStateValue some StateValue) and
(isIn some (hasAssociatedSpace value SPACE_ID_ZON001))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?curVal
WHERE
{

?controllable ero:hasCurrentStateValue ?curVal ;
rdf:type ?type ;
ero:isIn ?room .

?room ero:hasAssociatedSpace ?space .
FILTER ((?space = gbo:SPACE_ID_ZON001) &&

(?type IN (ero:CO2Sensor)))
}
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Discussion:
In a smart home, air quality may be sensed through an air quality sensor (e.g., CO2 Sensor). In
the Energy & Resource ontology, a class CO2Sensor which is a subclass of Controllable
is modeled to classify this type of air quality sensors. The DL query in this case is very similar
to the general query presented before, while additionally restricting the elements to be of type
CO2Sensor. This way, only sensors with a current state value that are members of this class
are returned. For a SPARQL query that answers TH01.01, it is only necessary to extend the
presented general query with a filter statement restricting the type of the returned sensors to
CO2Sensor.

TH02.16: What is the current temperature value for room X?

DL query:
TemperatureSensor and (hasCurrentStateValue some StateValue ) and
(isIn some (hasAssociatedSpace value SPACE_ID_ZON001))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?curVal
WHERE
{

?controllable ero:hasCurrentStateValue ?curVal ;
rdf:type ?type ;
ero:isIn ?room .

?room ero:hasAssociatedSpace ?space .
FILTER ((?space = gbo:SPACE_ID_ZON001) &&

(?type IN (ero:TemperatureSensor)))
}

Discussion:
In this case the DL query restricts the result set to elements of type TemperatureSensor to
only retrieve sensors that are capable of perceiving the temperature. For the SPARQL query, the
type filter statement needs to be adjusted to type TemperatureSensor.

TH02.29: What is the current occupancy value of room X?

DL query:
OccupancySensor and (hasCurrentStateValue some StateValue ) and
(isIn some (hasAssociatedSpace value SPACE_ID_ZON001))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?curVal
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WHERE
{

?controllable ero:hasCurrentStateValue ?curVal ;
rdf:type ?type ;
ero:isIn ?room .

?room ero:hasAssociatedSpace ?space .
FILTER ((?space = gbo:SPACE_ID_ZON001) &&

(?type IN (ero:OccupancySensor)))
}

Discussion:
In this case the DL query restricts the result set to elements of type OccupancySensor to
only retrieve sensors that are capable of perceiving the temperature. For the SPARQL query, the
type filter statement needs to be adjusted to type OccupancySensor.

TH03.07: What is the current position of blinds/shutters in room X?

DL query:
ShutterActuator and (hasCurrentStateValue some StateValue ) and
(isIn some (hasAssociatedSpace value SPACE_ID_ZON001))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?curVal
WHERE
{

?controllable ero:hasCurrentStateValue ?curVal ;
rdf:type ?type ;
ero:isIn ?room .

?room ero:hasAssociatedSpace ?space .
FILTER ((?space = gbo:SPACE_ID_ZON001) &&

(?type IN (ero:ShutterActuator)))
}

Discussion:
In the example case, the current position of blinds and shutters are retrieved by a shutter actuator.
It is assumed that there only exists one single shutter actuator per room. The DL query again
restricts the result set to ShutterActuator. For the SPARQL query, the type filter statement
needs to be adjusted to type ShutterActuator. In this case, more than one current state
value is returned (i.e., shutter state value, slat state value, actuator state value) and the control
system may choose the needed value according to its associated subtype.

TH03.08: What is the current value of artificial lighting source X?

DL query:
DimmerLamp and (hasCurrentStateValue some StateValue ) and
(isIn some (hasAssociatedSpace value Space_ID_zon001))
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SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?curVal
WHERE
{

?controllable ero:hasCurrentStateValue ?curVal ;
ero:isIn ?room .

?room ero:hasAssociatedSpace ?space .
FILTER ((?space = gbo:Space_ID_zon001) &&

(?controllable = ero:LIVINGROOM1DIMMERLAMPLIGHT2))
}

Discussion:
This question is slightly different to the rest in this question group, as in this case it is assumed
that more than one artificial lighting sources may exist for a particular room. In the example
query the current value of a particular dimmer lamp (LivingRoom1DimmerLampLight2)
is to be retrieved. The DL query needs to restrict the result set to DimmerLamp to only retrieve
facilities of this type. The system operating on the KB is further responsible for extracting the
particular lamp and its state from the answer set. In the SPARQL query it is possible to select a
concrete instance through an appropriate filter statement that restricts the answer to state values
of the LivingRoom1DimmerLampLight2 entity. Again, multiple state value types could
be returned (e.g., on/off state value, dimming state value) and the system operating on the KB
may choose a particular state value according to its type.

TH01.03: How can a new value for sensor X in room Y be stored?
SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

DELETE
{

?curVal ero:realStateValue ?value
}
INSERT
{

?curVal ero:realStateValue "21"^^<http://www.w3.org/2001/XMLSchema#double>
}
WHERE
{

ero:LIVINGROOM1TEMPERATURESENSOR1 ero:hasCurrentStateValue ?curVal .
?curVal ero:realStateValue ?value .

}

Discussion:
This competency question is not directly related to querying the KB however illustrates how
to update information in the KB. Therefore, no DL query can be identified. The SPARQL
query shows how it is possible to update information with the SPARQL update functionality
[263]. In this case, firstly, the environmental parameter value that needs to be updated has to
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be identified. In the example query, the current state value of the living room temperature sen-
sor (LivingRoom1TemperatureSensor1) is updated. This current value is represented
as StateValue instance in the KB, which is related with the temperature sensor via the
hasCurrentStateValue object property. The actual value for the state value instance is
then represented with the help of the datatype property realStateValue. As a next step, the
triple relating the selected state value instance with the stale value entry is deleted and a new
triple with the actually sensed temperature is inserted.

TH03.09: Which modes of operation exist for facility X?

DL query:
stateValueOf some (stateOf value LIVINGROOM1AIRCONDITION)

SPARQL query :
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?stateValue
WHERE
{

?stateValue ero:stateValueOf ?state .
?state ero:stateOf ?facility .
FILTER (?facility IN (ero:LIVINGROOM1AIRCONDITION))

}

Discussion:
In the Energy & Resource ontology, possible operation modes are depicted through hasState
as well as hasStateValue object properties and their inverse counterparts stateOf and
stateValueOf (cf. Figure 4.12, Section 4.3.4.3). The DL and SPARQL queries gather the
possible states of a facility through the stateValueOf property. As the property is the in-
verse of the hasStateValue object property its domain assures that the type of the returned
instance is inferred to be of type StateValue, answering question TH03.09.

TH04.13: What control commands does facility X accept?

DL query:
commandOf some (ControlFunctionality and

(functionalityOf value LIVINGROOM1AIRCONDITION))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?command
WHERE
{

?command ero:commandOf ?functionality .
?functionality ero:functionalityOf ?facility ;

rdf:type ero:ControlFunctionality .
FILTER (?facility IN (ero:LIVINGROOM1AIRCONDITION))

}
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Discussion:
Facilities are related to commands via their functionalities (hasFunctionality) and their
associated commands (hasCommand). As in this case the queries need to return control com-
mands, only commands that are related to a functionality of type ControlFunctionality
should be returned. Functionalities are connected to particular facilities through the property
functionalityOf and the possible control commands of a facility can therefore further be
retrieved through the commandOf property answering question TH04.13. As this object prop-
erty is the inverse of the hasCommand property its domain assures that the type of the returned
instances can be inferred to be of type Command.

5.2.3 Energy Information

Focus: energy demand

TH03.06: What is the maximum amount of energy consumed by facility X?

DL query:
energyMaxConsumedBy value GEOTHERMALHEATPUMP1

SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?maxDemand ?demandUnt
WHERE
{

?facility ero:maxConsumesEnergy ?energyDemand .
?energyDemand ero:hasNativeValue ?maxDemand ;

ero:hasNativeUnit ?demandUnt .
FILTER(?facility IN (ero:GEOTHERMALHEATPUMP1))

}

Discussion:
The maxConsumesEnergy object property and its inverse energyMaxConsumedBy are
used in the Energy & Resource ontology to describe the maximum amount of energy that an
energy consumer facility consumes. The DL query and the SPARQL query use these object
properties to return the maximum energy consumption of a facility and thus answer TH03.06.
The return type of the queries can be inferred to be of type EnergyDemand through the range
of the maxConsumesEnergy object property .

TH04.11: What is the current energy demand of facility X?

DL query:
energyActuallyConsumedBy value LIVINGROOM1TV1

SPARQL query :
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>
SELECT ?demandVal ?demandUnt
WHERE
{
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?actualDemand ero:hasNativeValue ?demandVal ;
ero:hasNativeUnit ?demandUnt .

?facility ero:actuallyConsumesEnergy ?actualDemand .
FILTER(?facility IN (ero:LIVINGROOM1TV1))

}

Discussion:
The actuallyConsumesEnergy object property and the appropriate inverse counterpart
energyActuallyConsumedBy are used in the KB for describing the actual amount of en-
ergy that an energy consumer facility consumes. The DL query and the SPARQL query use
these object properties to return the current energy consumption of a facility and thus answer
TH04.11. The return type of the queries can be inferred to be of type EnergyDemand through
the range of the actuallyConsumesEnergy object property.

TH05.14: What is the energy demand of facility X in operation state Y?

DL query:
isEnergyDemandOf value LIVINGROOM1COMPUTER1STANDBYMODE

SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>
SELECT ?demandVal ?demandUnt
WHERE
{

?facility ero:hasState ?state .
?state ero:hasStateValue ?stateValue .
?stateValue ero:hasEnergyDemand ?energyDemand .
?energyDemand ero:hasNativeValue ?demandVal ;

ero:hasNativeUnit ?demandUnt .
FILTER((?facility IN (ero:LIVINGROOM1COMPUTER1)) &&

(?stateValue IN (ero:LIVINGROOM1COMPUTER1STANDBYMODE)))
}

Discussion:
In the KB, the energy demand in a particular operation state is realized via an object property
hasEnergyDemand (cf. Figure 4.12, Section 4.3.4.3) that connects StateValue entities
with EnergyDemand entities. The DL query uses the inverse property isEnergyDemandOf
to retrieve the energy demand for a particular operation state. If a state value always belongs to
only one facility in the building, the DL query is sufficient and answers competency question
TH05.14. In the case that more facilities can have the same state value assigned, another restric-
tion needs to be applied: the shown SPARQL query additionally filters with respect to facilities
to only return the particular facility in question, thus answering TH05.14 for all possible KB
instantiations.

TH04.04: Which facilities are currently consuming electric energy?

DL query:
EnergyConsumerFacility and (actuallyConsumesEnergy some

((hasNativeValue some double[>0.0])
and (ofEnergyType value ELECTRICENERGY)))
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SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?energyConsumer
WHERE
{

?energyConsumer ero:actuallyConsumesEnergy ?demand .
?demand ero:ofEnergyType ero:ELECTRICENERGY ;

ero:hasNativeValue ?enVal .
FILTER (?enVal > 0.0)

}

Discussion:
Energy consumers are represented in the Energy & Resource ontology as members of the class
EnergyConsumerFacility. In this case, the property actuallyConsumesEnergy
describes the current energy consumption of a facility. The domain of this property lets a rea-
soner infer that the returned instances are of type EnergyConsumerFacility. Both queries
thus return the energy consumers that show an actual energy consumption greater than zero, thus
answering the question TH04.04.

TH04.14: Which facilities need permanent power supply?

DL query:
needsPermanentSupply value true

SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>
SELECT ?facility
WHERE
{

?facility ero:needsPermanentSupply true
}

Discussion:
In the Energy & Resource ontology, the query if a facility needs permanent supply is directly
represented through the needsPermanentSupply datatype property (cf. Figure 4.12, Sec-
tion 4.3.4.3). The DL and the SPARQL query make use of this datatype property by querying for
facilities for which the related value is true, and as such are answering TH04.14. The domain
of the datatype property is EnergyConsumerFacility, which defines the inferred return
type of the queries.

Focus: energy generation/transformation

TH05.02: What type of renewable energy is used as input by energy producing facility X?

DL query:
EnergyProducerFacility and (hasEnergySource some Renewable)
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SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>
SELECT ?energySource
WHERE
{

?facility ero:hasEnergySource ?energySource .
?energySource rdf:type ?type.
?type rdfs:subClassOf ero:Renewable .
FILTER(?facility IN (ero:GEOTHERMALHEATPUMP1))

}

Discussion:
The type of energy that is used as input for an energy producing facility is realized as object
property hasEnergySource in the Energy & Resource ontology. Further, a classification of
energy sources into renewable and non-renewable energy sources is realized (cf. Figure 4.10,
Section 4.3.4.1). With a DL query it therefore becomes possible to identify and return energy
producing facilities that use renewable energy as input, however the competency question cannot
be directly answered. SPARQL can be used to extract the needed information from the KB: in
this case, all energy sources that are connected to a particular energy producer facility through
the hasEnergySource object property are returned. A restriction assures to only return
energy sources of type Renewable to precisely answer TH05.02.

TH05.03: What is the maximum energy output of energy producing facility X?

DL query:
energyMaxProducedBy value GEOTHERMALHEATPUMP1

SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?maxSupply ?supplyUnt
WHERE
{

?facility ero:maxProducesEnergy ?energySupply .
?energySupply ero:hasNativeValue ?maxSupply ;

ero:hasNativeUnit ?supplyUnt .
FILTER(?facility IN (ero:GEOTHERMALHEATPUMP1))

}

Discussion:
The maxProducesEnergy object property and its inverse energyMaxProducedBy are
used in the KB to describe the maximum amount of energy that an energy producer facility pro-
duces. The DL query and the SPARQL query use these object properties to return the maximum
energy output of a facility and answer TH05.03. The return type of the queries can be inferred to
be of type EnergySupply through the range of the maxProducesEnergy object property.
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TH05.04: What is the current energy output of energy producing facility X?

DL query:
energyActuallyProducedBy value GEOTHERMALHEATPUMP1

SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?curSupply ?supplyUnt
WHERE
{

?facility ero:actuallyProducesEnergy ?energySupply .
?energySupply ero:hasNativeValue ?curSupply ;

ero:hasNativeUnit ?supplyUnt .
FILTER(?facility IN (ero:GEOTHERMALHEATPUMP1))

}

Discussion:
The actuallyProducesEnergy object property property and the appropriate inverse coun-
terpart energyActuallyProducedBy are used in the KB for describing the actual amount
of energy that an energy producing facility produces at a certain moment in time. The DL query
and the SPARQL query use these object properties to return the current energy production of
an energy producer facility and thus answer TH05.04. The return type of the queries can be in-
ferred to be EnergySupply through the range of the actuallyProducesEnergy object
property.

Focus: energy providers

TH05.16: Which external energy providers provide energy type X?

DL query:
ElectricEnergyProvider

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?energyProvider
WHERE
{

?energyProvider rdf:type ero:ElectricEnergyProvider
}

Discussion:
For external energy providers a class hierarchy with the root node EnergyProvider is mod-
eled in the Energy & Resource ontology (cf. Figure 4.11, Section 4.3.4.2). The DL and the
SPARQL query both use the ElectricEnergyProvider subclass to identify and return
external electricity providers, thus answering the competency question TH05.16 for the energy
type electricity.
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TH06.01: What is the default energy provider for energy type X?

DL query:
isDefaultProviderOf value ELECTRICENERGY

SPARQL query :
PREFIX ero:<https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?energyProvider
WHERE
{

?energyProvider ero:isDefaultProviderOf ero:ELECTRICENERGY .
}

Discussion:
To identify default energy providers, the Energy & Resource ontology provides the object prop-
erty isDefaultProviderOf and its inverse hasDefaultProvider. Taking the energy
type ElectricEnergy as example, the DL query and the SPARQL query return the default
energy provider for the selected energy type, thus answering competency question TH06.01.
The return type of the query can be inferred to be EnergyProvider through the domain of
the isDefaultProviderOf object property.

TH06.03: What energy mix is used by electricity provider X?

DL query:
ElectricEnergyProvider and hasEnergySource some (percentageOfEnergyMix some Literal)

SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?energySource ?percent
WHERE
{

?provider ero:hasEnergySource ?energySource .
?energySource ero:percentageOfEnergyMix ?percent
FILTER (?provider IN (ero:ELECTRICITYPROVIDER1))

}

Discussion:
The energy mix that is associated with an electricity provider is represented through different pri-
mary energy sources that are connected to it through the hasEnergySource object property
and the particular percentage they are involved in the production of the electric energy repre-
sented through the percentageOfEnergyMix datatype property (cf. Figure 4.11, Section
4.3.4.2). A DL query to the ontology can be used to return all electric energy providers that have
an associated energy source representing a particular percentage of the energy mix of this partic-
ular provider. The actual energy mix would have to be extracted by the overlying control system
or a human observer. The SPARQL query otherwise may be used to directly answer TH06.03: in
this case, the energy source and its percentage of the energy mix is returned. The return type of
the query can be inferred by a DL reasoner using the range of the hasEnergySource object
property, which is EnergySource.
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TH06.04: Is electricity provider X a “green” energy provider, hence does it only provide
energy from renewable energy forms?

DL query:
ElectricEnergyProvider and GreenEnergyProvider

SPARQL query :
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

ASK
WHERE
{

?provider rdf:type ero:ElectricEnergyProvider ;
rdf:type ero:GreenEnergyProvider .

FILTER (?provider IN (ero:ELECTRICITYPROVIDER2))
}

Discussion:
Green electricity providers are directly modeled in the KB through the energy provider subclass
GreenEnergyProvider (cf. Section 4.3.4.2). The DL and the SPARQL query therefore
only need to query for entities in the ontology that are of type ElectricEnergyProvider
and GreenEnergyProvider to answer competency question TH06.04.

Focus: energy tariffs

TH06.05: Which energy tariffs are offered by energy provider X?

DL query:
hasEnergyTariff some EnergyTariff

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?tariff
WHERE
{

?provider ero:hasEnergyTariff ?tariff .
FILTER (?provider IN (ero:ELECTRICITYPROVIDER2))

}

Discussion:
An energy tariff is related with an energy provider through the hasEnergyTariff object
property. A DL query can be used to query for all energy providers that have at least one
associated energy tariff. In a further step, it would be necessary to extract the energy tariffs by
an overlying control system. The shown SPARQL query otherwise returns the specific energy
tariffs related with a particular energy provider and thus answers TH06.05. The type of the
returned value can be determined through the range of the hasEnergyTariff object property
which is EnergyTariff.
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TH06.07: What are the active times of available electric energy tariffs?

DL query:
EnergyTariff and
(isTariffForEnergySource some (ElectricEnergySource and (hasTimeFrame some Interval)))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?energyTariff ?beginhour ?beginminute ?endhour ?endminute
WHERE
{

?energyTariff ero:isTariffForEnergySource ?energySource .
?energySource rdf:type ero:ElectricEnergySource ;

ero:hasTimeFrame ?timeFrame .
?timeFrame time:hasBeginning ?beginning ;

time:hasEnd ?end.
?beginning time:inDateTime ?dateTimeBeginning .
?dateTimeBeginning time:hour ?beginhour ;

time:minute ?beginminute .
?end time:inDateTime ?dateTimeEnd .
?dateTimeEnd time:hour ?endhour ;

time:minute ?endminute .
}

Discussion:
At which times a particular energy tariff is active is represented by the hasTimeFrame object
property that associates a tariff with a particular time interval. The DL query may be used
to retrieve a list of electric energy tariffs by querying for tariffs that have an element of type
ElectricEnergySource connected through the isTariffForEnergySource object
property. Further, the DL query restricts the answer set to elements that also have at least one
associated time frame interval (hasTimeFrame). As this query is only capable of returning
tariffs following the specified DL pattern, the competency question is not sufficiently answered.
The SPARQL query otherwise can exactly answer TH06.07 by returning begin hour and minute
as well as end hour and minute of each energy tariff stored in the KB. The types of the return
values can be determined through the ranges of the involved object and datatype properties.

TH06.08: What are the active months of available electric energy tariffs?

DL query:
EnergyTariff and (isTariffForEnergySource some (ElectricEnergySource and

(hasTimeFrame some
(hasBeginning some (inDateTime some

(month some Literal))))))

SPARQL query:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?energyTariff ?beginmonth ?beginday ?endmonth ?endday
WHERE
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{
?energyTariff ero:isTariffForEnergySource ?energySource .
?energySource ero:hasTimeFrame ?timeFrame .
?timeFrame time:hasBeginning ?beginning ;

time:hasEnd ?end.
?beginning time:inDateTime ?dateTimeBeginning .
?dateTimeBeginning time:month ?beginmonth ;

time:day ?beginday.
?end time:inDateTime ?dateTimeEnd .
?dateTimeEnd time:month ?endmonth ;

time:day ?endday .
}

Discussion:
As the question is similar to TH06.07 again the hasTimeFrame object property is used to
retrieve the needed information. In this case the DL query returns all energy tariffs that are tariffs
for an electric energy source and for which a month is associated through the hasTimeFrame
object property. While this does not answer question TH06.08, a SPARQL query can be used to
retrieve the desired answer from the KB by extracting begin and end month of an energy tariff’s
active interval.

TH06.06: What is the monetary cost of energy tariff X?

DL query:
EnergyTariff and hasMonetaryEnergyCost some EnergyCost

SPARQL query:
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?costVal ?costUnit ?relVal ?relUnit
WHERE
{

?tariff ero:hasMonetaryEnergyCost ?cost .
?cost ero:hasNativeValue ?costVal ;

ero:hasMonetaryUnit ?costUnit ;
ero:hasRelatedValue ?relVal ;
ero:hasRelatedUnit ?relUnit ;

FILTER(?tariff IN (ero:ELECTRICITYPROVIDER2DAYTIMETARIFF))
}

Discussion:
An energy tariff is associated with its monetary cost through the hasMonetaryEnergyCost
object property. As such, a DL query can be used to retrieve all energy tariffs that have an asso-
ciated monetary energy cost, which however is not directly answering the competency question.
To actually query for the energy cost of a particular tariff and thus answer competency question
TH06.06, SPARQL can be used: in this case, the hasNativeValue and hasCostUnit
datatype properties describe the price and its unit as charged per energy supply unit. The
hasRelatedValue and hasRelatedUnit properties further depict for which amount of
energy the price is charged (cf. Figure 4.11, Section 4.3.4.2).
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TH05.18: Which feedback tariffs exist in the case that excess energy is produced?

DL query:
EnergyRecoveryTariff

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>

SELECT ?tariff ?gainVal ?gainUnit ?relVal ?relUnit
WHERE
{

?tariff rdf:type ero:EnergyRecoveryTariff;
ero:hasGainValue ?gain .

?gain ero:hasNativeValue ?gainVal ;
ero:hasMonetaryUnit ?gainUnit ;
ero:hasRelatedValue ?relVal ;
ero:hasRelatedUnit ?relUnit ;

}

Discussion:
Feedback tariffs are identified as EnergyRecoveryTariffs in the ontology. Therefore, to
answer the competency question, the DL query simply has to return all instances of this class.
The shown SPARQL query additionally to the tariff returns gain value and monetary unit as well
as related value and unit.

5.2.4 Building Processes Information

TH07.08: Which HVAC processes can be started in room X?

DL query:
(HeatingProcess or CoolingProcess or AiringProcess or HumidificationProcess) and
(hasProcessDomain value SPACE_ID_ZON001)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo:<https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ppo:<https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT DISTINCT ?process
WHERE
{

?process rdf:type ?procType ;
ppo:hasProcessDomain ?procDomain .

FILTER ((?procType IN (ppo:HeatingProcess,ppo:AiringProcess,
ppo:CoolingProcess,ppo:HumidificationProcess)) &&

(?procDomain IN (gbo:SPACE_ID_ZON001)))
}

Discussion:
For different types of HVAC processes a classification hierarchy exists in the User Behavior &
Building Processes ontology. This hierarchy can be used to identify the type of processes for the
HVAC domain which is one of HeatingProcess, CoolingProcess, AiringProcess
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or HumidificationProcess. The DL query uses these classes together with the object
property hasProcessDomain that associates a process to a particular room in order to answer
the competency question. The SPARQL query uses the same constructs to answer the query.
Duplicates, that arise from the fact that one process can have more than one type are eliminated
by using the SPARQL “distinct” keyword.

TH02.17: Which environmental parameters are influenced by process X?

DL query:
parameterValueInfluencedBy value LR1PROCESSOPENWINDOW

SPARQL query :
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?parameterValue
WHERE
{

?process ppo:influencesParameterValue ?parameterValue .
?parameterValue rdf:type ppo:CurrentSituationParameter .
FILTER(?process IN (ppo:LR1PROCESSOPENWINDOW))

}

Discussion:
The object property influencesParameterValue is used to connect processes with the
environmental parameters that are influenced by it. In this case, the inverse to this object property
(parameterValueInfluencedBy) can be used by the DL and SPARQL queries to fetch
environmental parameters that are influenced by a particular process, answering competency
question TH02.17. The range of influencesParameterValue allows the reasoner to infer
that the returned values are of type CurrentSituationParameter.

TH07.07: Which processes can influence parameter X in room Y?

DL query:
(influencesParameterValue some TemperatureParameter) and
(hasProcessDomain value SPACE_ID_ZON001)

SPARQL query :
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?process
WHERE
{

?process ppo:influencesParameterValue ?parameterValue ;
ppo:hasProcessDomain ?procDomain .

?parameterValue rdf:type ?parameterType.
FILTER((?parameterType IN (ppo:TemperatureParameter)) &&

(?procDomain IN (gbo:SPACE_ID_ZON001)))
}

186



Discussion:
The queries formalizing TH07.07 again use the property influencesParameterValue
connecting processes with the environmental parameters that are influenced by it (cf. TH02.17).
The parameter can be used by the DL and SPARQL queries to fetch processes that influence
particular parameters. The query for processes that influence room temperature is exemplified:
the hasProcessDomain object property is used to limit the result set to processes defined
for a particular room (Space_ID_zon001). Together, the two object properties can be used
in the DL as well as the SPARQL query to answer the competency question. The domain of
influencesParameterValue can be used to infer that the returned values are of type
Process.

GROUP: environmental influence of a process

Questions TH01.09, TH02.18, TH02.19 and TH03.04 are related with how a process can influ-
ence the environment. Therefore, the question to be answered in all of the following cases can
be generalized to “Which processes can increase/decrease parameters in a part of the build-
ing?”. The DL and SPARQL queries presented hereinafter can be used to answer this general
question and act as a framework for the questions in this group.

DL query:
(increasesParameterValue some ProcessParameter) and (hasProcessDomain some Thing)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?process
WHERE
{

?process ppo:increasesParameterValue ?parameterValue ;
ppo:hasProcessDomain ?procDomain .

FILTER((?procDomain IN (gbo:SPACE_ID_ZON001)))
}

Discussion:
How a process influences a particular current parameter can be modeled using the object property
influencesParameterValue and its subproperties increasesParameterValue or
decreasesParameterValue (cf. Figure 4.20, Section 4.4.5). The subproperties can in this
case be used to model the direction in which a process changes a particular parameter. Further,
the hasProcessDomain object property may be used used to limit the result set to processes
that for example can be started for a particular room. In this generalized case, the DL and the
SPARQL query are defined in a way to return all processes that exist in the KB and may be used
to increase some parameter. A query for decreasing a parameter can be defined accordingly.
The type of the returned values may be inferred by a reasoner through the domain of the two
involved object properties which in both cases is Process or a subtype thereof. The query
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is purposely very general in nature to be able to act as a framework query for the following
competency questions1.

TH01.09: Which processes can improve the air quality in room X?

DL query:
Process and (increasesParameterValue some AirQualityParameter) and
(hasProcessDomain value SPACE_ID_ZON001)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?process
WHERE
{

?process ppo:increasesParameterValue ?parameterValue ;
ppo:hasProcessDomain ?procDomain .

?parameterValue rdf:type ?type.
FILTER((?procDomain IN (gbo:SPACE_ID_ZON001)) &&

(?type IN (ppo:AirQualityParameter)))
}

Discussion:
The example queries that formalize this competency question request the returned process ele-
ments to have at least one AirQualityParameter element which is connected via the object
property increasesParameterValue to fetch the processes that increase the air quality.
Further, the hasProcessDomain object property is used to limit the result set to processes
that are available (i.e., can be started) for a particular room (i.e., Space_ID_zon001) which
answers TH01.09.

TH02.18: Which processes can be used to increase/decrease the temperature of room X?

DL query:
Process and (decreasesParameterValue some TemperatureParameter) and
(hasProcessDomain value SPACE_ID_ZON001)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?process
WHERE
{

?process ppo:decreasesParameterValue ?parameterValue ;

1In the queries that belong to this group always only one example is given, either returning processes that increase
a parameter or decrease a parameter. The opposing query may always be conducted equally by using the appropriate
object property.
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ppo:hasProcessDomain ?procDomain .
?parameterValue rdf:type ?type.
FILTER((?procDomain IN (gbo:SPACE_ID_ZON001)) &&

(?type IN (ppo:TemperatureParameter)))
}

Discussion:
The example queries request the returned processes to have a TemperatureParameter el-
ement connected via decreasesParameterValue to fetch the processes that can be used
for cooling. Further, the hasProcessDomain object property is used to limit the result set to
processes that can be started for a particular room (i.e., Space_ID_zon001) which answers
TH02.18.

TH02.19: Which processes can be used to increase/decrease the relative humidity of room
X?
DL query:
Process and (decreasesParameterValue some HumidityParameter) and
(hasProcessDomain value SPACE_ID_ZON001)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?process
WHERE
{

?process ppo:decreasesParameterValue ?parameterValue ;
ppo:hasProcessDomain ?procDomain .

?parameterValue rdf:type ?type.
FILTER((?procDomain IN (gbo:SPACE_ID_ZON001)) && (?type IN (ppo:HumidityParameter)))

}

Discussion:
The example queries request the returned processes to have at least one HumidityParameter
element connected via decreasesParameterValue to fetch the processes that can be used
to decrease humidity. Further, the hasProcessDomain object property is used to limit the re-
sult set to processes that can be started for a particular room (i.e., Space_ID_zon001) which
answers TH02.19.

TH03.04: Which processes can be used to increase/decrease lighting of room X?

DL query:
Process and (decreasesParameterValue some LightingParameter) and
(hasProcessDomain value SPACE_ID_ZON001)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
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PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/
ProcessOntology.owl#>

SELECT ?process
WHERE
{

?process ppo:decreasesParameterValue ?parameterValue ;
ppo:hasProcessDomain ?procDomain .

?parameterValue rdf:type ?type.
FILTER((?procDomain IN (gbo:SPACE_ID_ZON001)) && (?type IN (ppo:LightingParameter)))

}

Discussion:
The example queries return processes that have at least one LightingParameter element
connected via decreasesParameterValue to fetch the specific processes that can be used
to decrease light. Further, the hasProcessDomain object property is used to limit the result
set to processes that can be started for a particular room (i.e., Space_ID_zon001) which
answers TH03.04.

TH01.10: Which facilities are involved with process X?

DL query:
hasAssociatedDevice some Thing

SPARQL query:
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?facility
WHERE
{

?process ppo:hasAssociatedDevice ?facility.
FILTER(?process IN (ppo:LR1PROCESSCLOSEWINDOW))

}

Discussion:
In the KB, facilities are related to processes through the hasAssociatedDevice object
property. A DL query in this case may return all processes that have an associated device
by querying for this object property which however does not answer the posed question. The
SPARQL query otherwise can be used to directly answer TH01.10 by returning all facilities that
are associated with a particular process through the hasAssociatedDevice object property.
For the sake of simplicity, the return type remains unrestricted as classification of facilities is not
realized in this particular ontology.

TH01.11: Is process X dependent on the weather situation?

DL query:
dependsOnExteriorState value true

SPARQL query:
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

190



ASK
WHERE
{

?process ppo:dependsOnExteriorState true .
FILTER(?process in (ppo:LR1PROCESSOPENWINDOW))

}

Discussion:
If a process is dependent on the weather situation it is modeled in the User Behavior & Building
Processes ontology through the dependsOnExteriorState datatype property. If the value
of this property is true, the process is dependent on the weather situation, otherwise it is not.
This property is in further consequence used by the DL and the SPARQL queries to answer the
competency question. The DL query returns all processes that depend on the weather situation.
The overlying control system has to filter the interesting process out of this list of processes.
Alternatively a concrete process can be stated in the DL query as well, having it returning the
process or no answer if it is not dependent on the weather situation. The SPARQL query returns
true or false either if the process is dependent on the weather or not. The return type of the DL
query can be inferred through the domain of the property which is Process.

5.2.5 User Behavior Information

Focus: room

TH07.03: What is the predicted value for all different parameters in room X in the next
few hours?
DL query:
(isScheduledValueOf some
(MondayPattern and (hasPatternFocusObjective value SPACE_ID_ZON001) and
(validFor value THEMONTHFEBRUARY))) and
(hasActiveTime some (hasBeginning some

(inDateTime some ((hour some int[>13]) and
(hour some int[<=17]) ))))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>
SELECT ?scheduleVal ?scheduledHour ?value
WHERE
{

?pattern rdf:type ?type ;
ppo:validFor ?patValidity .

?scheduleVal ppo:isScheduledValueOf ?pattern ;
ppo:hasValue ?value ;
ppo:hasActiveTime ?scheduleTime .

?scheduleTime time:hasBeginning ?beginning .
?beginning time:inDateTime ?dateTime .
?dateTime time:hour ?scheduledHour .
BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
FILTER ((?scheduledHour >= ?currentHour &&

?scheduledHour <= ?currentHour+4) &&
(?patValidity IN (ppo:THEMONTHFEBRUARY)) &&
(?type IN (ppo:MondayPattern))) }

191



Discussion:
To describe predicted values for facilities, parameters and spaces the class Pattern with its
associated object property hasScheduledValue and its inverse isScheduledValueOf
are provided (cf. Section 4.4.4). The object property hasActiveTime can be used to describe
the time for which a parameter value is scheduled. To model time-based facts, relationships and
classifications of the OWL-Time ontology are reused. To give an example, in the query the next
4 hours are used to represent the phrase “next few hours” from the competency question. To
formulate a DL query capable of answering this competency question, beginning as well as end
time need to be specified as parameters. The beginning hour in this case needs to correspond
to the hour of the current time, in the example 13 and the end hour is fixed to 17. With these
parameters specified, the DL query is capable of answering the competency question limiting the
result to patterns defined for the four following hours. With SPARQL, the built-in function now()
can be used to determine the current time. It is then possible to use the same relationships as
presented in the DL query to limit the answer set to scheduled values in the next four hours. In the
DL as well as the SPARQL query returned patterns are limited to be of type MondayPattern
and having a validFor relation to TheMonthFebruary, assuming that the query is issued
on a Monday in February.

TH07.05: What is the predicted occupancy schedule for room X in the next few hours?

DL query:
(isScheduledValueOf some (OccupancyPattern and MondayPattern and

(hasPatternFocusObjective value SPACE_ID_ZON001) and
(validFor value THEMONTHFEBRUARY))) and

(hasActiveTime some (hasBeginning some (inDateTime some ((hour some int[>13]) and
(hour some int[<=17]) ))))

SPARQL query :
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?scheduleVal ?scheduledHour ?value
WHERE
{

?pattern rdf:type ?type1;
rdf:type ?type2;
ppo:validFor ?patValidity ;
ppo:hasPatternFocusObjective ?space .

?scheduleVal ppo:isScheduledValueOf ?pattern ;
ppo:hasValue ?value ;
ppo:hasActiveTime ?scheduleTime .

?scheduleTime time:hasBeginning ?beginning .
?beginning time:inDateTime ?dateTime .
?dateTime time:hour ?scheduledHour .
BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
FILTER ((?scheduledHour > ?currentHour && ?scheduledHour <= ?currentHour+4) &&

(?space IN (gbo:SPACE_ID_ZON001)) &&
(?patValidity IN (ppo:THEMONTHFEBRUARY)) &&
(?type1 IN (ppo:MondayPattern)) &&

192



(?type2 IN (ppo:OccupancyPattern)))
}

ORDER BY ?scheduledHour

Discussion:
This competency question is a specialized version of TH07.03. Therefore, to describe pre-
dicted occupancy values for a particular room, a similar approach as in TH07.03 is followed.
In the DL query, the isScheduledValueOf object property is used to get all values that
are scheduled for a particular schedule (i.e., pattern). The returned patterns are limited on the
one hand by querying for the type OccupancyPattern which is a subclass of the pattern
hierarchy and also limiting the focus objective to one particular room, in the example case to
Space_ID_zon001. The object property hasActiveTime is again used to limit the re-
turned instances to a four-hours time window (cf. TH07.03 for details). With a particular start
time and end time specified, the DL query is capable of answering the competency question.
Also with the SPARQL query, the process of limiting the set to values of the next few hours
is similar to TH07.03 and can be reviewed in detail there. Returned patterns are again limited
to be of type MondayPattern and having a validFor relation to TheMonthFebruary,
assuming that the query is issued on a Monday in February.

TH03.12: Which automatically created visual comfort schedules exist for room X?

DL query:
LightLevelPattern and (hasPatternFocusObjective value SPACE_ID_ZON001)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?pattern
WHERE
{

?pattern rdf:type ?patternType ;
ppo:hasPatternFocusObjective ?space .

FILTER ((?patternType IN (ppo:LightLevelPattern)) &&
(?space IN (gbo:SPACE_ID_ZON001)))

}

Discussion:
As already mentioned, automatically created schedules are stored in an own hierarchy starting
at the Pattern node (cf. Section 4.4.4). To answer this competency question the DL and
the SPARQL queries make use of the hierarchy to identify schedules for visual comfort as en-
tities of type LightLevelPattern, a subclass of Pattern. Further, the queries use the
hasPatternFocusObjective to only select schedules that have a relation to a particular
part of the building (i.e., room/space). The final queries therefore return visual comfort sched-
ules that exist for a particular room. The control system is in this case responsible to select
schedules according to their time and values.
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TH04.02: Which automatically generated occupancy schedule exists for room X?

DL query:
OccupancyPattern and (hasPatternFocusObjective value SPACE_ID_ZON001)

SPARQL query :
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?pattern
WHERE
{

?pattern rdf:type ppo:OccupancyPattern ;
ppo:hasPatternFocusObjective ?space .

FILTER(?space IN (gbo:SPACE_ID_ZON001))
}

Discussion:
This competency question is similar to question TH03.12. Again, the hierarchy for automati-
cally created schedules is used to identify occupancy schedules of type OccupancyPattern
which is a subclass of Pattern. The DL and the SPARQL queries to answer TH04.02 thus
make use of this subclass to select occupancy schedules and further also use the object prop-
erty hasPatternFocusObjective to reduce the returned schedules to the ones that have
a relation to a particular room (i.e., space) in the building.

Focus: facility

TH07.02: Which automatically defined facility schedules exist for room X and day Y?

DL query 1 (User Behavior & Building Processes):
MondayPattern and (validFor value THEMONTHFEBRUARY) and
(hasPatternFocusObjective some Thing)

DL query 2 (Energy & Resource):
Controllable and (isIn some (hasAssociatedSpace value SPACE_ID_ZON001))

SPARQL query (federated):
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?pattern
WHERE
{

?pattern rdf:type ?patternType ;
ppo:validFor ?patValidity ;
ppo:hasPatternFocusObjective ?facility .

?facility rdf:type ?type;
ero:isIn ?room .
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?room ero:hasAssociatedSpace ?space .
FILTER ((?patternType IN (ppo:MondayPattern)) &&

(?patValidity IN (ppo:THEMONTHFEBRUARY)) &&
(?type IN (ero:Controllable)) &&
(?space IN (gbo:SPACE_ID_ZON001)))

}

Discussion:
To retrieve the automatically defined facility schedules for a particular room two different on-
tologies need to be queries, the User Behavior & Building Processes and the Energy & Resource
ontology. Firstly, to gather all automatically defined schedules for a particular day a subclass
of Pattern (e.g., MondayPattern) in combination with the validFor object property
can be used as already shown in TH07.03. In order to retrieve facility schedules, the focus
objective associated with this pattern through the (hasPatternFocusObjective) object
property has to be a facility that is installed in a particular room. It is not directly possible to
model this relation in a single DL query as the requested information is available in another
ontology, the Energy & Resource ontology. Therefore, in the first query, the type of the el-
ement connected through hasPatternFocusObjective stays unrestricted. A DL query
to the second ontology then may extract all facilities that exist in a particular room. The class
Controllable is defined in the Energy & Resource ontology as a superclass for a hier-
archy classifying controllable building equipment. To answer competency question TH07.02
only with DL queries, it is necessary to match the element connected to patterns through the
hasPatternFocusObjective properties in DL query one with the controllable facilities
of the particular room retrieved through DL query two. As the required facts are stored in dif-
ferent ontologies, they either have to be joined by importing one ontology into the other, or the
matching needs to happen in an overlying control program.
A SPARQL query otherwise is capable of answering competency question TH07.02 by feder-
ating the two ontologies: The query is executed on two ontology graphs stored in one triple
store and returns only patterns (i.e., schedules) that are defined for facilities located in a partic-
ular room. In this case, a SPARQL filter assures that only facilities in Space_ID_zon001
are returned. Another SPARQL filter defines that the focus objective of the pattern is of type
Controllable as defined in the Energy & Resource ontology. The return type of this query
is a subtype of Pattern describing patterns that are valid on Mondays in February.

TH03.13: Which automatically defined facility schedules exist for facility X and day Y?

DL query:
MondayPattern and (validFor value THEMONTHFEBRUARY) and
(hasPatternFocusObjective value LIVINGROOM1DIMMERLAMPLIGHT2)

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ero: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

EnergyResourceOntology.owl#>
PREFIX ppo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ProcessOntology.owl#>

SELECT ?pattern
WHERE
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{
?pattern ppo:hasPatternFocusObjective ?facility ;

rdf:type ?patternType ;
ppo:validFor ?patValidity .

FILTER ((?patternType IN (ppo:MondayPattern)) &&
(?patValidity IN (ppo:THEMONTHFEBRUARY)) &&
(?facility IN (ero:LIVINGROOM1DIMMERLAMPLIGHT2)))

}

Discussion:
In the present case as example again the patterns for Mondays in February are requested. Fur-
ther, this time available patterns for one specified facility are requested, hence, the range of the
hasPatternFocusObjective object property is limited to one single entity in the KB,
which in the example case is LivingRoom1DimmerLampLight2. DL as well as SPARQL
query can successfully answer TH03.13 by returning the patterns defined for a particular facility
and a defined day.

5.2.6 User Preferences Information

TH04.03: Which manually defined occupancy schedules exist for room X?

DL query:
PresencePreferenceSchedule and (hasPreference some (forSpace value SPACE_ID_ZON001))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT DISTINCT ?presSched
WHERE
{

?presSched rdf:type ?prefType ;
apo:hasPreference ?preference .

?preference apo:forSpace ?space.
FILTER ((?prefType = apo:PresencePreferenceSchedule) &&

(?space = gbo:SPACE_ID_ZON001))
}

Discussion:
The query returns preference schedule individuals that link to single user-defined preferences.
To define preference schedules, the ontology provides a PreferenceSchedule hierarchy.
One subconcept of this hierarchy is PresenceSchedule, joining all occupancy schedules
manually defined by different users. To retrieve the presence schedule of a particular room (i.e.,
space) in the building, further, the space to which this preference can be associated to has to
be determined. The connection between preference and space is in this case made through the
object property forSpace. The SPARQL “distinct” keyword is used to return each preference
schedule only once. These dependencies are sufficient to create DL and SPARQL queries that
answer question TH04.03.
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TH01.08: Which user preferences for air quality exist?

DL query:
AirQualityPreference and UserDefinedPreference

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>

SELECT ?preference
WHERE
{

?preference rdf:type ?prefType1 ;
rdf:type ?prefType2 .

FILTER ((?prefType1 = apo:AirQualityPreference) &&
(?prefType2 = apo:UserDefinedPreference))

}

Discussion:
In this ontology, preferences are stored in an own Preference hierarchy. This hierarchy
represents single preference entries created by the user or defined through standards. The
class UserDefinedPreference allows to distinguish a customized user preference from
a standard preference. Furthermore, to identify preferences for air quality, the subconcept
AirQualityPreference is defined. Therefore, these two classes may be used to retrieve
the desired entries from the knowledge store and answer the competency question.

TH02.03: Which user preferences for comfort temperature exist?

DL query:
ComfortTemperaturePreference and UserDefinedPreference

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>

SELECT ?preference
WHERE
{

?preference rdf:type ?prefType1 ;
rdf:type ?prefType2 .

FILTER ((?prefType1 = apo:ComfortTemperaturePreference) &&
(?prefType2 = apo:UserDefinedPreference))

}

Discussion:
Again, the concept UserDefinedPreference of the Preference hierarchy is used to
return only user-defined preferences. Further, a TemperaturePreference subhierarchy
is provided: hereby, different temperature types can be distinguished, with one subclass being
ComfortTemperaturPreference. An answer of the competency question TH02.03 can
be accomplished by combining ComfortTemperaturePreference and UserDefined-
Preference, thus, only querying for individuals being members of both classes.
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TH02.04: Which user preferences for comfort humidity exist?

DL query:
RelativeHumidityPreference and UserDefinedPreference

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>

SELECT ?preference
WHERE
{

?preference rdf:type ?prefType1 ;
rdf:type ?prefType2 .

FILTER ((?prefType1 = apo:RelativeHumidityPreference) &&
(?prefType2 = apo:UserDefinedPreference))

}

Discussion:
Similar to queries TH01.08 and TH02.03, a user preference is firstly identified through the
UserDefinedPreference subclass of the Preference hierarchy. To further narrow the
results to humidity preferences, the RelativeHumidityPreference class may be used.
With the help of these two classes, DL and SPARQL queries can successfully answer compe-
tency question TH02.04.

TH03.01: Which manually defined visual comfort schedules for room X exist?

DL query:
VisualComfortPreferenceSchedule and
(hasPreference some ( UserDefinedPreference and

(forSpace value SPACE_ID_ZON001)))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT DISTINCT ?schedule
WHERE
{

?schedule rdf:type ?schedType;
apo:hasPreference ?preference .

?preference rdf:type ?prefType ;
apo:forSpace ?space.

FILTER ((?schedType = apo:VisualComfortPreferenceSchedule) &&
(?prefType = apo:UserDefinedPreference) &&
(?space = gbo:SPACE_ID_ZON001))

}

Discussion:
To answer this query a preference schedule is needed and thus the PreferenceSchedule
hierarchy is used to retrieve the answer. In this hierarchy, a subclass for preference sched-
ules describing visual comfort is provided (VisualComfortPreferenceSchedule). A
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schedule manually defined by a human actor can further be identified through associated prefer-
ences, which need to be of type UserDefinedPreference. To only retrieve schedules for
a particular room a forSpace object property restriction is added for preferences associated
with the preference schedule. The SPARQL query uses the “distinct” keyword to only return the
schedule once, also in case that more than one preference is associated with it. DL and SPARQL
queries can this way successfully answer question TH03.01.

TH01.06: What is the minimum air quality that has to be assured according to standards?

DL query:
AirQualityPreference and StandardPreference

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>

SELECT ?preference
WHERE
{

?preference rdf:type ?prefType1 ;
rdf:type ?prefType2 .

FILTER ((?prefType1 = apo:AirQualityPreference) &&
(?prefType2 = apo:StandardPreference))

}

Discussion:
For air quality preferences, an own subconcept AirQualityPreference is defined in the
Preference hierarchy. The StandardPreference subclass can further be used to iden-
tify if a preference represents a value retrieved through a particular standard (e.g., ASHRAE
standard for indoor air quality [6]). An individual that is member of both classes therefore is
an air quality that is defined and recommended by a standard answering question TH01.06. It
has to be noted that in this case all standard air quality temperature preferences stored in the
knowledge base are returned. If more than one individual fulfills the query, the request needs to
be adapted to only return the specific individual of interest.

TH02.02: What is the standard comfort humidity?

DL query:
RelativeHumidityPreference and StandardPreference

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>

SELECT ?preference
WHERE
{

?preference rdf:type ?prefType1 ;
rdf:type ?prefType2 ;

FILTER ((?prefType1 = apo:RelativeHumidityPreference) &&
(?prefType2 = apo:StandardPreference))

}
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Discussion:
To identify a standard preference defining comfort humidity, an individual is required to be mem-
ber of the class RelativeHumidityPreference representing all stored humidity prefer-
ences as well as StandardPreference to recognize it as a preference advised through a
particular standard. The combination of these two classes denotes the result set of the compe-
tency question.

TH02.01: What is the standard comfort temperature?

DL query:
ComfortTemperaturePreference and StandardPreference

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>

SELECT ?preference
WHERE
{

?preference rdf:type ?prefType1 ;
rdf:type ?prefType2 .

FILTER ((?prefType1 = apo:ComfortTemperaturePreference) &&
(?prefType2 = apo:StandardPreference))

}

Discussion:
As already before in TH01.06 and TH02.02, a standard preference can be identified by using the
StandardPreference class. An individual representing a comfort temperature preference
is further a member of the class ComfortTemperaturePreference and a combination of
the two classes answers question TH02.01.

TH03.02: Which recommended preferences for lighting exist?

DL query:
LightingLevelPreference and StandardPreference

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>

SELECT ?preference
WHERE
{

?preference rdf:type ?prefType1 ;
rdf:type ?prefType2 .

FILTER ((?prefType1 = apo:LightingLevelPreference) &&
(?prefType2 = apo:StandardPreference))

}
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Discussion:
Lighting preferences are identified through the LightingLevelPreference class. A com-
bination with the StandardPreference concept can be used to answer competency ques-
tion TH03.02.

TH02.30: What is the setback temperature for the building/a space/a room?

DL query:
SetbackTemperaturePreference

SPARQL query :
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>

SELECT ?preference
WHERE
{

?preference rdf:type ?prefType.
FILTER ((?prefType = apo:SetbackTemperaturePreference))

}

Discussion:
To identify setback temperature preferences, there exists a subclass SetbackTemperature-
Preference in the Preference hierarchy. When querying for members of this class, all
setback temperature preferences defined for the building are returned, thus answering question
TH02.30. To restrict the results to preferences for a particular room, similar as in answering
question TH03.01 the query would include the connection to the room through the forSpace
object property.

TH07.01: Which manually defined facility schedules exist for room X?

DL query:
AppliancePreferenceSchedule and (hasPreference some (forSpace value SPACE_ID_ZON001))

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX apo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

ActorOntology.owl#>
PREFIX gbo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

BuildingOntology.owl#>

SELECT DISTINCT ?schedule
WHERE
{

?schedule rdf:type ?schedType1 ;
rdf:type ?schedType2 ;
apo:hasPreference ?preference .

?preference apo:forSpace ?space .
FILTER ((?schedType1 = apo:AppliancePreferenceSchedule) &&

(?space = gbo:SPACE_ID_ZON001))
}
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Discussion:
For schedules that are related with a facility, the AppliancePreferenceSchedule class is
provided as subconcept of the PreferenceSchedule hierarchy. To only retrieve those pref-
erence schedules created for a particular room in the building, further, a restriction through the
forSpace object property is necessary for related Preference individuals. Alternatively, it
would be possible to retrieve the affected space by querying for the location of the associated
facility which is specified in the Energy & Resource ontology module. As the forSpace prop-
erty is defined for each Preference element of the schedule, the “distinct” keyword needs
to be used in the SPARQL query to only return preference schedules once, regardless of the
amount of connected preferences. The presented DL and SPARQL queries are this way capable
of answering competency question TH07.01.

5.2.7 Exterior Influences Information

Focus: current weather situation

GROUP: reported current weather situation

Questions TH05.06, TH01.13, TH07.13 and TH02.23 are all connected with the perception of
the current weather situation. In this case, the common query to be answered can be general-
ized to question TH05.06, “What is the current weather situation?”. The following DL and
SPARQL queries can be used to answer this general question and may be seen as a framework
for the questions in this group.

TH05.06: What is the current weather situation?
DL query
WeatherState and
(hasWeatherReport some
(CurrentWeatherReport and
(createdAt some (inDateTime some

((hour value 19) and
(day value "---10"^^gDay) and
(month value "--02"^^gMonth) and
(year value "2013"^^gYear))))))

SPARQL query:
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

SELECT ?weatherState
WHERE
{

?weatherState rdf:type ?weatherType ;
weo:hasWeatherReport ?weatherReport.

?weatherReport rdf:type weo:CurrentWeatherReport ;
weo:createdAt ?wrTime .

?wrTime time:inDateTime ?dateTime .
?dateTime time:hour ?wsHour ;

time:day ?wsDay ;
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time:month ?wsMonth ;
time:year ?wsYear .

BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
BIND (xsd:gDay(CONCAT("---",xsd:string(day(?currentTime)))) AS ?currentDay)
BIND (xsd:gMonth(CONCAT("--",xsd:string(month(?currentTime)))) AS ?currentMonth)
BIND (xsd:gYear(xsd:string(year(?currentTime))) AS ?currentYear)
FILTER ((?wsHour = ?currentHour) &&

(?wsDay = ?currentDay) &&
(?wsMonth = ?currentMonth) &&
(?wsYear = ?currentYear) &&
(?weatherType IN (weo:WeatherState)))

}

Discussion:
In the Weather & Exterior Influences ontology, the actually reported weather situation is related
to a weather report through the hasWeatherReport object property. Weather reports are
then modeled as class hierarchy with CurrentWeatherReport being one subclass of this
hierarchy (cf. Figure 4.26, Section 4.6.3). This subclass contains weather reports that cover the
instantaneous weather situation at the time they are recorded. The time the report is recorded is
captured by the createdAt object property which links a report with a particular time instant.
The presented DL query only returns the current weather reports that have been created recently,
hence, which creation time is equal with the current time to the granularity hour: therefore, a
restriction on time-related properties modeled in OWL-Time like hour, day, month as well as
year is specified to retrieve only the weather report that corresponds to the actual now2. If no
weather state is recorded in the KB for the current time, the query returns an empty set. The DL
query in this case therefore only returns the weather states that are reported for the current time
and thus answers TH05.063.
The SPARQL query uses the same relations already introduced for the presented DL query. A
SPARQL filter statement assures that the returned weather type is of WeatherState. This
filter statement is not necessary for the correct result set however can be used in the following
queries to only return weather states of a particular subtype. In SPARQL further the built-in
function now() can be used to retrieve the current time which is then compared to the time values
associated with a particular weather state (hour, day, month, year) to answer the competency
question.

TH01.13: Does the current weather situation facilitate natural ventilation?
DL query:
AiringWeatherState and
(hasWeatherReport some
(CurrentWeatherReport and
(createdAt some (inDateTime some

((hour value 19) and
(day value "---10"^^gDay) and
(month value "--02"^^gMonth) and
(year value "2013"^^gYear))))))

2The time-related parameters need to be provided to the DL query to limit the result set. In the example DL
query, 10-02-2013 19:00 is taken as current time

3It has to be noted that in this case weather forecasting is not considered.
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SPARQL query:
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

SELECT ?weatherState
WHERE
{

?weatherState rdf:type ?weatherType ;
weo:hasWeatherReport ?weatherReport.

?weatherReport rdf:type weo:CurrentWeatherReport ;
weo:createdAt ?wrTime .

?wrTime time:inDateTime ?dateTime .
?dateTime time:hour ?wsHour ;

time:day ?wsDay ;
time:month ?wsMonth ;
time:year ?wsYear .

BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
BIND (xsd:gDay(CONCAT("---",xsd:string(day(?currentTime)))) AS ?currentDay)
BIND (xsd:gMonth(CONCAT("--",xsd:string(month(?currentTime)))) AS ?currentMonth)
BIND (xsd:gYear(xsd:string(year(?currentTime))) AS ?currentYear)
FILTER ((?wsHour = ?currentHour) &&

(?wsDay = ?currentDay) &&
(?wsMonth = ?currentMonth) &&
(?wsYear = ?currentYear) &&
(?weatherType IN (weo:AiringWeatherState)))

}

Discussion:
If a current weather situation facilitates natural ventilation can be expressed using the weather
state hierarchy of the ontology (cf. Figure 4.25), concretely the AiringWeatherState sub-
class. The provided DL query returns the weather state if it facilitates natural ventilation and
does not return a result if it does not. The SPARQL query returns true in case an airing weather
state is currently reported, otherwise false. In the SPARQL query, the result set limitation to ele-
ments of type AiringWeatherState is realized as filter statement. Both queries are capable
of successfully answering TH01.13.

TH07.13: Does the current weather situation allow passive humidification (i.e., is “moist”
weather expected?)

DL query:
HumidifyingWeatherState and
(hasWeatherReport some
(CurrentWeatherReport and
(createdAt some (inDateTime some

((hour value 19) and
(day value "---10"^^gDay) and
(month value "--02"^^gMonth) and
(year value "2013"^^gYear))))))
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SPARQL query:
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

ASK
WHERE
{

?weatherState rdf:type ?weatherType ;
weo:hasWeatherReport ?weatherReport.

?weatherReport rdf:type weo:CurrentWeatherReport ;
weo:createdAt ?wrTime .

?wrTime time:inDateTime ?dateTime .
?dateTime time:hour ?wsHour ;

time:day ?wsDay ;
time:month ?wsMonth ;
time:year ?wsYear .

BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
BIND (xsd:gDay(CONCAT("---",xsd:string(day(?currentTime)))) AS ?currentDay)
BIND (xsd:gMonth(CONCAT("--",xsd:string(month(?currentTime)))) AS ?currentMonth)
BIND (xsd:gYear(xsd:string(year(?currentTime))) AS ?currentYear)
FILTER ((?wsHour = ?currentHour) &&

(?wsDay = ?currentDay) &&
(?wsMonth = ?currentMonth) &&
(?wsYear = ?currentYear) &&
(?weatherType IN (weo:HumidifyingWeatherState)))

}

Discussion:
The query if a current weather situation facilitates natural humidification can be expressed us-
ing the weather state hierarchy of the ontology (cf. Figure 4.25, Section 4.6.3), concretely the
defined subclass HumidifyingWeatherState. The shown DL query returns the weather
state if it allows passive humidification and does not return a result if it does not. The SPARQL
query returns true in case a weather state suitable for humidification is currently reported, other-
wise false. In the SPARQL query, the result set limitation to HumidifyingWeatherState
elements is realized as filter statement. Both queries are capable of successfully answering
TH07.13.

TH02.23: Does the current weather situation facilitate natural processes?

DL query:
(AiringWeatherState or
CoolingWeatherState or
HumidifyingWeatherState or
HeatingWeatherState) and
(hasWeatherReport some
(CurrentWeatherReport and
(createdAt some (inDateTime some

((hour value 19) and
(day value "---10"^^gDay) and
(month value "--02"^^gMonth) and
(year value "2013"^^gYear))))))
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SPARQL query:
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

SELECT ?weatherState
WHERE
{

?weatherState rdf:type ?weatherType ;
weo:hasWeatherReport ?weatherReport.

?weatherReport rdf:type weo:CurrentWeatherReport ;
weo:createdAt ?wrTime .

?wrTime time:inDateTime ?dateTime .
?dateTime time:hour ?wsHour ;

time:day ?wsDay ;
time:month ?wsMonth ;
time:year ?wsYear .

BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
BIND (xsd:gDay(CONCAT("---",xsd:string(day(?currentTime)))) AS ?currentDay)
BIND (xsd:gMonth(CONCAT("--",xsd:string(month(?currentTime)))) AS ?currentMonth)
BIND (xsd:gYear(xsd:string(year(?currentTime))) AS ?currentYear)
FILTER ((?wsHour = ?currentHour) &&

(?wsDay = ?currentDay) &&
(?wsMonth = ?currentMonth) &&
(?wsYear = ?currentYear) &&
(?weatherType IN (weo:AiringWeatherState,

weo:HeatingWeatherState,
weo:CoolingWeatherState,
weo:HumidifyingWeatherState)))

}

Discussion:
This question is a more general version of the other competency questions in this group (i.e.,
TH01.13, TH07.13) and therefore the query solutions are again very similar. The DL queries in
this case are different to the ones presented for the other two queries in a way that the reported
weather situation may in the present case be of four different types: AiringWeatherState,
CoolingWeatherState, HumidifyingWeatherState or HeatingWeatherState.
These four types are created in the ontology to identify weather states that may be used to achieve
certain tasks in the smart home: if the type of a reported weather state is one or more of these
classes, it facilitates natural processes (cf. Figure 4.25, Section 4.6.3). Thus, the provided DL
query answers the competency question TH02.23 for a defined time passed to the query as pa-
rameter.
For the SPARQL query also very subtle changes need to be made compared to the other queries
in this group. On the one hand, the filter statement involving the weather type is extended to
the four weather types as already described for the DL query. On the other hand, the presented
SPARQL query returns the actual current weather situation that is reported instead of a boolean
value. The weather state is in this case selected with the help of the “distinct” keyword, to only
return it once, also if it belongs to more than one WeatherState subclass. It can for example
be used for further processing tasks in the control system. The SPARQL query also successfully
answers TH02.23.
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Focus: future weather situation

GROUP: Predicted future weather situation

Questions TH05.07, TH05.08, TH05.09 and TH07.14 are related with perceiving a future weather
situation. Therefore, the question to be answered in all of the following cases can be general-
ized to question TH05.07, “What will the weather situation be like in X hours?”. The DL
and SPARQL queries that are provided to answer this general question therefore can be seen as
framework queries for the subsequent, more specialized, queries.

TH05.07: What will the weather situation be like in the next X hours?
DL query 1:
hasObservationTime some Interval

DL query 2:
hasObservationTime some
((hasBeginning some
(inDateTime some
((hour some int[>=9]) and
(day value "---11"^^xsd:gDay) and
(month value "--02"^^gMonth) and
(year value "2013"^^gYear))))

and
(hasBeginning some
(inDateTime some
((hour some int[<=13]) and
(day value "---11"^^xsd:gDay) and
(month value "--02"^^gMonth) and
(year value "2013"^^gYear)))))

SPARQL query:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

SELECT ?weatherState
WHERE
{

?weatherState weo:hasObservationTime ?wsInterval .
?wsInterval time:hasBeginning ?wsBeginning .
?wsBeginning time:inDateTime ?dtBeginning .
?dtBeginning time:hour ?beginHour ;

time:day ?beginDay ;
time:month ?beginMonth ;
time:year ?beginYear .

BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
BIND (xsd:gDay(CONCAT("---",xsd:string(day(?currentTime)))) AS ?currentDay)
BIND (xsd:gMonth(CONCAT("--",xsd:string(month(?currentTime)))) AS ?currentMonth)
BIND (xsd:gYear(xsd:string(year(?currentTime))) AS ?currentYear)
FILTER (((?beginHour>=?currentHour) && (?beginHour<=?currentHour+4) &&

(?beginDay = ?currentDay) && (?beginMonth = ?currentMonth)&&
(?beginYear = ?currentYear)))

}
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Discussion:
To represent future weather situations, the Weather & Exterior Influences ontology provides the
object property hasObservationTime for elements of the WeatherState hierarchy (cf.
Figure 4.23, Section 4.6). The first presented DL query generally returns weather states that are
observing the exterior situation for a specified time interval. The overlying software system is
in this case responsible for filtering weather states for a particular interval in the future. It is
however also possible to perform this filtering through a more complex DL query like shown in
the second DL query: this example returns all weather reports that report a weather observation
in the next 4 hours. To give an example, the current time is fixed as 9am and the system needs
to retrieve forecasts for the weather situation that can be expected 4 hours into the future. The
presented DL query therefore only returns weather states with a related observation time interval
beginning (hasBeginning) between 9 and 13 of a particular defined day.
The same query is presented as SPARQL query using the SPARQL function now() returning
the weather states stored for the next 4 hours into the future. These example queries show
how weather states predicted for a particular time interval in the future can be extracted from
the KB, thus answering TH05.07. The domain of the hasObservationTime property is
WeatherState and can be used by a reasoner to infer the correct return type.
In the following queries related to weather forecast the pattern of querying for the begin time
of weather states can be used as a frame to get the state at a particular time in the future. For
reasons of clarity, only simple DL query variants like the first one for this example are used for
illustration.

TH05.08: Can sunny weather be expected in the next X hours?

DL query:
SunnyWeatherState and (hasObservationTime some Interval)

SPARQL query:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

ASK
WHERE
{

?weatherReport weo:reportsWeatherObservation ?weatherState .
?weatherState rdf:type ?type ;

weo:hasObservationTime ?wsInterval .
?wsInterval time:hasBeginning ?wsBeginning .
?wsBeginning time:inDateTime ?dtBeginning .
?dtBeginning time:hour ?beginHour ;

time:day ?beginDay ;
time:month ?beginMonth ;
time:year ?beginYear .

BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
BIND (xsd:gDay(CONCAT("---",xsd:string(day(?currentTime)))) AS ?currentDay)
BIND (xsd:gMonth(CONCAT("--",xsd:string(month(?currentTime)))) AS ?currentMonth)
BIND (xsd:gYear(xsd:string(year(?currentTime))) AS ?currentYear)
FILTER (((?beginHour>=?currentHour) && (?beginHour<=?currentHour+4) &&
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(?beginDay = ?currentDay) && (?beginMonth = ?currentMonth) &&
(?beginYear = ?currentYear)) && (?type IN (weo:SunnyWeatherState)))

}

Discussion:
A sunny weather condition is classified in the SunnyWeatherState concept, a class of the
WeatherState hierarchy (cf. Figure 4.25, Section 4.6.3). This concept may therefore also
be used to return all sunny weather states that are predicted for the near future. The DL query
in this case restricts the type of the returned weather state to SunnyWeatherState instances
that are observed for a specific interval. The SPARQL query illustrates the selection of weather
reports according to a specific time interval in the near future and also corresponds with the
solution presented for TH05.07. The only difference in this case is to identify sunny weather
states in a dedicated filter statement. The DL as well as the SPARQL queries can therefore be
used to answer TH05.08.

TH05.09: Can strong wind be expected in the next X hours?

DL query:
WeatherState and
(hasWeatherPhenomenon some (StrongWind or Storm)) and
(hasObservationTime some Interval)

SPARQL query:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

ASK
WHERE
{

?weatherReport weo:reportsWeatherObservation ?weatherState .
?weatherState weo:hasObservationTime ?wsInterval ;

weo:hasWeatherPhenomenon ?wsWind .
?wsWind rdf:type ?windType .
?wsInterval time:hasBeginning ?wsBeginning.
?wsBeginning time:inDateTime ?dtBeginning .
?dtBeginning time:hour ?beginHour ;

time:day ?beginDay ;
time:month ?beginMonth ;
time:year ?beginYear .

BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
BIND (xsd:gDay(CONCAT("---",xsd:string(day(?currentTime)))) AS ?currentDay)
BIND (xsd:gMonth(CONCAT("--",xsd:string(month(?currentTime)))) AS ?currentMonth)
BIND (xsd:gYear(xsd:string(year(?currentTime))) AS ?currentYear)
FILTER (((?beginHour>=?currentHour) && (?beginHour<=?currentHour+4) &&

(?beginDay = ?currentDay) && (?beginMonth = ?currentMonth) &&
(?beginYear = ?currentYear)) &&
(?windType IN ( weo:StrongWind, weo:Storm)))

}

Discussion:
The KB provides classifications of weather phenomena (cf. Figure 4.24, Section 4.6.3), and to
answer this competency question, the concepts StrongWind and Storm which are subclasses
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of Wind can be used to identify weather states that imply high wind speeds. The presented DL
query therefore, only returns weather states for which strong winds are expected and which are
observed during a particular interval. Through the hasObservationTime object property
a suitable interval may again be selected as already shown for TH05.07. The SPARQL query
shows an example for answering TH05.09. The interval of interest as well as the desired wind
types to restrict the returned weather states are selected in the SPARQL filter statement.

TH07.14: Can cool weather for passively cooling the building be expected in the next X
hours?
DL query:
CoolingWeatherState and (hasObservationTime some Interval)

SPARQL query:
PREFIX time: <http://www.w3.org/2006/time#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

ASK
WHERE
{

?weatherState rdf:type ?type;
weo:hasObservationTime ?wsInterval .

?wsInterval time:hasBeginning ?wsBeginning.
?wsBeginning time:inDateTime ?dtBeginning .
?dtBeginning time:hour ?beginHour ;

time:day ?beginDay ;
time:month ?beginMonth ;
time:year ?beginYear .

BIND (now() AS ?currentTime)
BIND (hours(?currentTime) AS ?currentHour)
BIND (xsd:gDay(CONCAT("---",xsd:string(day(?currentTime)))) AS ?currentDay)
BIND (xsd:gMonth(CONCAT("--",xsd:string(month(?currentTime)))) AS ?currentMonth)
BIND (xsd:gYear(xsd:string(year(?currentTime))) AS ?currentYear)
FILTER (((?beginHour>=?currentHour) && (?beginHour<=?currentHour+4) &&

(?beginDay = ?currentDay) && (?beginMonth = ?currentMonth) &&
(?beginYear = ?currentYear)) && (?type IN (weo:CoolingWeatherState)))

}

Discussion:
The class CoolingWeatherState is defined in the ontology as concept describing a weather
state with a reported temperature that lies below room temperature. The DL query therefore
presents a solution that selects only cool weather states observed during a particular interval.
The SPARQL query represents an answer for TH07.14 using the query presented for TH05.07 as
framework for time-based relationships. The filter statement again performs the type restriction.

Focus: weather report sources

TH05.11: Which local weather stations exist?
DL query:
SensorReportSource

210



SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

SELECT ?weatherStation
WHERE
{

?weatherStation rdf:type weo:SensorReportSource .
}

Discussion:
The ontology provides a class hierarchy for weather report sources with the top-level class
WeatherReportSource. One subclass of this hierarchy is SensorReportSource: this
class includes all local weather stations that are stored for the building. To answer competency
question TH05.11, this class can be used by the DL and SPARQL queries, returning the local
weather stations.

TH05.12: Which Internet weather services exist?
DL query:
ServiceReportSource

SPARQL query:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX weo: <https://www.auto.tuwien.ac.at/downloads/thinkhome/ontology/

WeatherOntology.owl#>

SELECT ?weatherService
WHERE
{

?weatherService rdf:type weo:ServiceReportSource .
}

Discussion:
This competency question can be treated similarly to TH05.11: to answer this query, the ontol-
ogy provides a subclass of WeatherReportSource which is ServiceReportSource.
This concept includes instances that represent remote weather services which can be used to re-
trieve exterior situations for the near surroundings of the building. This class can again be used
by the DL and SPARQL queries to select the appropriate elements in the KB and thus answer
competency question TH05.12.

5.3 High-Level Competency Questions

The low-level queries created in the previous section may finally be used to answer the high-
level competency questions identified in Chapter 3 and thus contribute to the achievement of
goals in the multi-agent-controlled smart home. The high-level question “Which user prefer-
ences can be obtained?” (TH01.07) may be seen as combination of several low-level ques-
tions. Firstly, it is of interest to retrieve all user preferences automatically detected by the smart
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home system through past user behavior, i.e., to retrieve the user habits. The pattern detec-
tion through a profile-based approach that is presented in [132] and the associated ontology
described in Section 4.4 therefore contribute to the answering of this goal. Low-level ques-
tions regarding the predicted future situation like TH03.12, TH03.13, TH04.02, TH07.02 and
TH07.05 are directly contributing to the answer of this competency question. The focus of these
competency questions are mostly the system-detected user preferences (e.g., visual comfort, fa-
cility schedules, occupancy schedules, etc.). Otherwise, user preferences can also be manually
entered, and to satisfy the general high-level competency question also these preferences need
to be fetched from the ontology. In this case, especially questions TH01.08, TH02.03, TH02.04,
TH03.01 and TH07.01 can be seen as supporting low-level questions. These questions involve
user preferences and schedules manually entered into the system by a user, for example through
a graphical user interface. In the case that no automatically inferred or manually defined user
preferences can be obtained, as alternative, it should be possible for the system to retrieve stan-
dard values from the KB. For this case, the low-level questions TH01.06, TH02.01, TH02.02,
TH02.30 and TH03.02 provide examples for queries that can further be used to complete prefer-
ence information in case user preferences cannot be obtained. The question “Which occupancy
schedules exist for room X in building Y?” (TH02.05) may be seen as another question focus-
ing on manually entered and automatically detected user preferences. The low-level questions
TH04.02 and TH07.05 are related with predicted occupancy schedules automatically inferred
by the system’s habit prediction approach. There also may exist a manually-entered occupancy
schedule, which can be retrieved using the low-level competency question TH04.03. Another
question related with building context in general is the question “What is the near future state
of the indoor environment?” (TH03.14). The last two high-level questions regarding prefer-
ences and automated schedules TH01.07 and TH02.05 are directly contributing to the answering
of this question. Further, the low-level question TH07.03 queries for the predicted value of all
parameters that can be captured in a particular room in the next few hours and thus represents
a basic query that may contribute to answering the very general high-level competency ques-
tion. A high-level question regarding exterior influences is “What are the current and near
future weather conditions?” (TH02.22) This question can be directly answered by combining
low-level questions regarding the perception of the actual and forecasted weather states. The
main two questions that in combination answer this high-level query are TH05.06 and TH05.07.
There also exist more specific questions about weather states like TH01.13, TH02.23, TH05.08,
TH05.09 and TH07.13, TH07.14 that also may be used as contribution to providing an answer
for this high-level question. However, these questions are tailored to a particular problem and
therefore only provide a fraction of the result set that is expected from TH02.22. It is further
necessary for the control system to know the possibilities to retrieve exterior information. The
related query “Which possibilities exist to assess the current and future weather situation?”
(TH05.10) in this case comprises the two low-level questions TH05.11 and TH05.12 which can
be used to retrieve all sources of weather reports. The control system is then responsible for
choosing the most reliable weather source for a particular task and time frame. Another high-
level question is “Do current weather situation and room characteristics (i.e., controllable
windows, shutters) facilitate passive processes?” (TH02.20). Again, other high and low-level
questions can be used to answer this query. Firstly, to assess if the current weather situation
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facilitates passive processes, competency question TH02.23 can be used. With respect to room
characteristics, for the two processes exemplified in the second use case (i.e., opening windows,
raising shutters), the competency questions TH02.25 and TH02.26 may be used to evaluate if
natural processes are an option to change the environmental state. One more question concern-
ing facilities in the building in general is if a particular facility will be used in the near future
(TH04.06). In the context of a smart home control it can be seen as equivalent to “Which oper-
ation schedule exists for energy consuming facility X?” (TH05.15) as through the retrieval of
a facility schedule also the future state can be retrieved. There are two low-level questions iden-
tified from the use cases and are directly contributing to answering this question, TH07.01 and
TH07.02. The first of these low-level questions queries the Users & Preferences ontology part
for manually defined facility preferences, while the second query is related with automatically
detected patterns. If no schedules exist on the facility level, the predicted occupancy can also be
used to estimate if a facility will be used in the near future. Therefore, in a wider sense, also the
question TH02.05 can help the control system to answer the query. The results together can be
used to assess the probability that a facility will be used which in further consequence can be
used for optimized energy scheduling. For the perception of the current state, the control system
operating on the ontology must be capable to retrieve information about the indoor environment.
Therefore, the high-level question “What is the current state of the indoor environment?”
(TH02.15) needs to be answered. In this particular case, the state of facilities as well as differ-
ent environmental parameters are important. Low-level questions that contribute to the answer
of this question involve queries to the Energy & Resource information ontology and have al-
ready been presented as belonging to one single low-level group before (cf. Section 5.2, Group:
current perception of the environment). The low-level questions TH01.01, TH02.16, TH02.29,
TH03.07, TH03.08 and TH04.10 are therefore contributing to answer TH02.15. As the list of
competency questions is not exhaustive, however, more queries may be needed to fully perceive
the current environmental state of a part of the building. The provided questions can for that rea-
son only be seen as an exemplification of possible queries with regard to the identified use cases,
and will have to be evaluated in detail for each particular room with regard to installed equip-
ment and completeness of represented environmental parameters. It may be necessary to define
additional queries to retrieve the complete state of the environment. Directly connected with the
current state of the environment is the high-level question “Which facilities can be turned off
to save energy?” (TH04.05). The low-level questions TH04.04, TH04.11 and TH04.14 related
with the current state of a facility can be seen as contributing to answering the question. The
first two low-level queries may be used to assess if a facility is currently consuming energy and
the third question directly tells if a facility needs permanent supply. In a broader sense, apart
from current facility states, naturally also occupancy is important when answering this high-level
question. Therefore, the high-level question regarding predicted occupancy (TH02.05) as well
as the query for current occupancy (TH02.29) conducted for the particular room the facility is
installed in need to be answered to let the control system decide if a facility can be safely turned
off to save energy. A general query regarding the building and its construction itself is “What
are the building values for room X?” (TH07.06). This question can be seen as a combination
of the presented low-level queries TH02.13, TH02.07, TH02.08, TH02.09, TH02.11, TH02.12,
TH02.14, TH02.24, TH02.27 and TH02.28. These queries again are only a selection of possi-
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ble queries and not all of the information retrieved through these queries may be necessary for
a particular system task. It is in the responsibility of the overlying control system to fetch all
needed information through a combination of low-level queries that represent the situation in
the necessary detail. As the list of competency questions is not exhaustive, other queries not
mentioned at this point might be needed if trying to solve other situations than the ones outlined
as use cases.

5.4 Summary

In this chapter it has been shown that by solely using properties and concepts from the created
ontologies it is possible to sufficiently answer the questions identified in the use case analysis
of Chapter 3. Therefore, for all low-level competency questions, formal representations using
the created vocabulary have been created on the one hand in pure DL and on the other hand in
SPARQL. Combinations of low-level questions have then been presented to answer previously
identified high-level competency questions. The evaluation showed that by solely using the on-
tology vocabulary all questions can be successfully formulated and answered in SPARQL, while
a large share of the queries also has a direct representation as DL query. For those questions
where an expression in DL is not directly possible, auxiliary DL queries are presented which do
not precisely answer the posed competency questions, however, demonstrate the representation
and availability of related knowledge in the ontology. As the system concept includes a SPARQL
interface between the multi-agent system and the knowledge base, the SPARQL representation
of the low-level questions is the main focal point of the evaluation. The phrasing of compe-
tency questions as SPARQL queries is conducted in a way, that only simple SPARQL functions
have been used, mainly to link triples. This deliberate limitation in usage of functionalities is
performed to assure that all of the knowledge necessary to answer the queries is also actually
represented in one of the created ontology modules. Only in case of time-based queries, also
more sophisticated SPARQL functions have been used to, for example, retrieve the current time
or conduct XSD datatype comparisons. The example SPARQL queries introduced in this chap-
ter are further expressed in a way so that they may be used as templates for actual production
queries in a multi-agent-controlled smart home system. The general form using filter functions
to concretely specify needed limitations allows easy adaptation to similar problems that may not
have been covered by the identified use cases.
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CHAPTER 6
Integration into a multi-agent-based

Smart Home System - Case Study

When considering an ontology as base for a multi-agent-controlled smart home system its pur-
pose is mainly the environmental representation: the smart home, its context and surroundings
have to be depicted in a way so that the MAS can take all parameters into account that may be
influencing the behavior of the building. While this environmental representation includes the
provision of a great variety of parameters and influence factors, the way how these parameters
are used to operate the building, hence, the control strategies, are realized in the multi-agent
system. The goals that have to be achieved by such a system may to some part have a represen-
tation in the knowledge base (cf. Section 4.4) however, the path to reach these goals needs to be
determined by the control system itself. With respect to generality and flexibility, to model all
possible paths in the knowledge base itself is inadvisable, as it would lead to an overly complex
representation. Therefore, sometimes the reaching for goals involves the answering of questions
which are not directly represented in the knowledge base and have to be solved using consecu-
tive queries to the ontology with the multi-agent system determining the path according to the
perceived environmental situation. This chapter exemplifies one of the use cases introduced be-
fore (cf. Chapter 3) and details the interaction between ontology and multi-agent system to reach
a particular desired state. As this dissertation is conducted in the course of a smart home project,
the following scenario has already been outlined from a multi-agent perspective in [199]. At this
point, the scenario is again discussed from an ontology viewpoint to detail the communication
flow and show how the defined ontologies can be used to achieve one of the global goals of a
smart home system.
To illustrate the interactions between ontology and multi-agent system, the use case TH02 - As-
sure Thermal Comfort is chosen as case study. For simplification reasons, only the automatic
preparation of the environment with respect to temperature is shown. Other parameters involved
with thermal comfort (e.g., humidity, air quality) may be adjusted in a similar way. The envi-
ronment to be prepared in this example case is one particular room of the building. Further, to
present one coherent example and stay in line with the deliberations in [199], the cooling case is
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selected for discussion. Again, the heating case may be solved in an analogous manner.
When reviewing the use case description provided in Chapter 3, several questions can be identi-
fied that need to be answered by the system but do not lie in the responsibility of the knowledge
base. Some examples are:

• When does the temperature have to be at comfort level?

• What is the exact preparation time to reach comfort temperature?

• When does a process have to be started at the latest possible time?

• Is it possible to start a specific energy efficient process at a particular point in time?

The following sequence diagrams illustrate how these global questions (i.e., goals) can be an-
swered by the system with the help of information provided in the knowledge base. For the
subsequent discussion, a situation between MAS and KB is assumed where no information had
been exchanged before. This means, the multi-agent system does not yet have any information
about the environment it is operating on. With such an assumed situation, the entire communi-
cation between KB and MAS can be illustrated. The scenario further presents the connection to
the KB queries identified before (cf. Chapter 5) and shows how they can be used by the MAS
to gather the necessary information. Of course, considering usual day-to-day operation of the
smart home system, it has to be kept in mind that some of the demonstrated sequences only have
to be performed infrequently as the MAS may for example cache information from a previous
request. Nevertheless, the full sequence is shown at this point to demonstrate interaction with
all different ontology parts identified in this work.

6.1 Introductory Phase: occupancy detection

DataManagementAgentUserAgentRoomAgent
Energy & Resource   

Ontology

alt
AutomationSystemAgent

Occupancy detected

AutomationSystemInterface

Occupancy detection
Occupancy update

User X entered

Update query
Occupancy update

[instantaneous occupancy]

thermal_comfort

Figure 6.1: Occupancy detection for a particular part of the building: instantaneous occupancy.

The shown scenario begins with detected or predicted occupancy for a particular room in the
building. There mainly exist three different scenarios how occupancy can be detected: either
instantaneous occupancy is detected by sensors (cf. Figure 6.1), or a user did manually enter
his occupancy preference or a reliable pattern exists which predicts occupancy for a particular
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DataManagementAgent
User Behavior & Building

Processes Ontology
Users & Preferences Ontology

Request user pref. occupancy

Occupancy update
Return occupancy data

UserAgentRoomAgent

User arrives at XX:XX

Request predicted future occupancy

Return room occupancy data
Room occupied at XX:XX

alt

[user preference]

[detected pattern]

thermal_comfort

Figure 6.2: Occupancy detection for a particular part of the building: occupancy prediction
through user preferences; occupancy prediction through detected occupancy patterns.

time and space (cf. Figure 6.2). In the case instantaneous occupancy of a particular user is de-
tected, for example, through a sensor or RFID tag reader, the information is firstly transferred
to the responsible agent (AutomationSystemAgent). In case of individual user detection
via RFID, this agent informs the responsible user agent (UserAgent) that the resident entered
the room and updates the occupancy sensor value for the particular room the user is located at
the moment. Updating sensor information in the KB can be done analogous to query TH01.03
by writing the new occupancy sensor value to the state value of the sensor representation in the
Energy & Resource ontology. The user agent further informs the room agent associated with the
occupied room that the given user has entered and initiates the thermal comfort scenario.
In the other two cases, the DataManagementAgent may from time to time1 query the KB
for patterns that are available for a particular room in the building. These patterns may in-
volve user-defined or automatically detected occupancy schedules. If a user presence prefer-
ence schedule can be retrieved from the Users & Preferences ontology through a query like
TH04.03, the UserAgent associated with the particular user is contacted, which itself informs
the RoomAgent that the user will arrive at a particular time. In case no user preference is avail-
able or only room-based occupancy detection is implemented, the DataManagementAgent
may retrieve a reliable and valid occupancy pattern for the particular room through the query
TH04.02. In case a valid pattern is found, the RoomAgent is directly informed about the time
in the future at which the room will be occupied.

6.2 Auxiliary Information Phase: preferences retrieval, building
characteristics collection, weather prediction request

In the next phase, the smart home system needs to gather auxiliary information that may influ-
ence the preparation time of a particular room (cf. Figure 6.3). Firstly, again the Users & Prefer-

1usually once per day
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ences ontology is queried for temperature preferences. If a particular user is detected the system
tries to obtain his or her preferred comfort temperature (TH02.03). In case no user-defined
preferences are available or if pattern recognition is favored, the responsible agent queries for
a valid and reliable pattern in the User Behavior & Building Processes ontology. In this case,
the query TH03.12 adapted to returning the detected comfort temperature schedule instead of
the visual comfort schedule may be used. If only room-based occupancy detection is supported
and no user-defined comfort temperature preferences and also no valid patterns are available,
the system may alternatively query the Users & Preferences Ontology for a defined standard
temperature preference (TH02.01).
To consider the influence of building structure on the preparation time, the room agent further
queries for the building characteristics. Certainly, building characteristics can be stored in the
agent and in the best case only have to be fetched once. The retrieval of room characteristics
can be accomplished by query TH07.06 while some of its subqueries can be selected to only
return values of interest for the specific case. Parameters like U-value or alternatively thickness
and material of walls, the orientation and volume of the room or the number and size of win-
dow openings can be taken into account to calculate the latest possible time to start a (possibly
energy-intensive) cooling process. Finally, exterior influences can be retrieved from the Weather
& Exterior Influences ontology to assess a possible exploitation of the current weather situation
in favor of the task to be accomplished. In the cooling case, the query TH07.14 is suitable to
retrieve information about the expected weather situation.

DataManagementAgent Users & Preferences Ontology
User Behavior & Building

Processes OntologyUserAgentRoomAgent

Request predicted temperature

Return predicted temperature data

Return pref. data
Return preferences

Weather & Exterior Influences
Ontology

Request weather prediction for XX:XX

Response weather prediction for XX:XX

Architecture & Building
Physics Ontology

Request building characteristics for room XRequest building characteristics

Return building characteristics for room X
Return building characteristics

Request weather prediction for XX:XX

Return weather prediction for XX:XX

Request pref. temperature
Request user X tc prefs

Return user pref. data

Request preferences

opt

thermal_comfort

[if not available]

opt

[if not available]

Request pref. temperature

Return std. pref. data

Figure 6.3: Collection of auxiliary data as influence parameters to the comfort temperature
preparation time: temperature preferences or temperature patterns; building characteristics;
weather prediction.

218



6.3 Preparation Phase: cooling options retrieval, energy
consumption obtainment

Request cooling options for room X

DataManagementAgent
User Behavior & Building

Processes Ontology

List of cooling options w. energy consumption

UserAgent

Return cooling options

RoomAgent
Energy & Resource   

Ontology

Cooling options request

Request energy consumption facility X

Return energy consumption

Select cooling approach

Calculate start_time

thermal_comfort

Request facility associated with process X

Return process facility

Req. dependency on exterior situation

Return dependency info

Figure 6.4: Fetching information for process selection: cooling options; associated facilities;
facility energy demand.

In the preparation phase, the multi-agent system firstly requests all possible options that may be
used to cool a room. In this case, the RoomAgent starts by querying for available cooling op-
tions in the particular room. The DataManagementAgent may issue a query (TH02.18) to
the User Behavior & Building Processes ontology to retrieve all available cooling processes.
Another request to this ontology reveals if a process is dependent on the weather situation
(TH01.11). This information is relevant when considering favorable exterior conditions to
achieve the current goal. The agent may further issue queries to the Energy & Resource ontology
to associate a facility and an energy demand to a particular process (TH01.10, TH05.14)2.
After retrieving this information from the ontology, it is returned to the RoomAgent which is
then capable of selecting the most energy efficient process to reach a particular state. In case a
process depends on the weather situation, the agent certainly has to consider the exterior influ-
ences fetched before from the Weather & Exterior Influences ontology: for example, if a cool
weather situation is expected in the selected time interval, it can choose the most energy effi-
cient cooling process from all available processes including the ones that are dependent on the

2The different calls to the KB are only shown for illustrative purposes. In an actual implementation using an API
with a triple store (e.g., Jena [7]) the queries may of course be consolidated.
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exterior situation (e.g., natural cooling by opening the window). Otherwise, if the weather is
not favorable to the achievement of the present goal, only processes that are independent of the
exterior situation may be used. Also in this case, the most energy efficient process has to be
chosen by the MAS according to its energy profile. Further, by taking into account the building
characteristics for the respective room the optimal starting time for the specific process can be
calculated.

6.4 Execution Phase: control command request, facility querying

DataManagementAgentRoomAgent
Energy & Resource   

Ontology
AutomationSystemAgent

Actions and setpoints

Request control commands for facility X

Return control commands for facility X

Request control commands

Return control commands

AutomationSystem    
Interface

Issue command on facility X

thermal_comfort

Figure 6.5: Information retrieval for executing the actions in the building automation system:
process facility; control commands.

The execution phase starts at the previously calculated time with the transmission of facil-
ity actions and setpoints from the RoomAgent to the AutomationSystemAgent. The
RoomAgent passes the particular facility to be controlled as well as necessary actions and
setpoints to the AutomationSystemAgent. In case this agent does not yet have informa-
tion about the control possibilities of the facility, it needs to fetch the possible control com-
mands from the Energy & Resource ontology. Query TH04.13 can be used to return infor-
mation about possible control commands for the selected facility. It is the responsibility of
the agent system to match the suitable command to the action requested by the room agent.
The AutomationSystemAgent may then use the chosen command by directly calling the
AutomationSystemInterface to issue it on the selected facility. It can be noted that in
the best case the request for control commands has to be performed only once, provided the
AutomationSystemAgent caches this information for the facilities in the building. How-
ever, as the present chapter exemplifies the initial execution of the thermal comfort scenario in
the system and does not assume any pre-fetched information, the shown interaction is required.
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CHAPTER 7
Conclusions & Outlook

7.1 Contribution

With the wide variety of parameters found in current home automation systems, the creation
of an unambiguous base of knowledge is seen as a prerequisite of future intelligent buildings.
Therefore, the central question that had to be answered in this work was

“How can a comprehensive and sophisticated representation of environmental pa-
rameters support intelligent behavior in future smart home systems?”

The prevalent situation that is found in the typical smart home is a highly heterogeneous and
complex environment which is in need of a representation that is independent of underlying
technologies and associated peculiarities. To generate a common model of this environment for
an intelligent building control system, a knowledge base is indispensable as it provides a view
of the part of the world relevant in a particular application case while at the same time reflecting
reality as close as possible. In case of a multi-agent-controlled smart home, a knowledge base
can thus be seen as a mediator between agents that provides a global view of the world around
them and enables semantic interoperability. With the agents committing to the shared vocabu-
lary, they are capable of interoperation while still staying autonomous [24]. In this context, an
ontology defines terms that are of interest for the created system and thus limits the universe of
discourse, abstracting from unnecessary details. The knowledge base is the central repository for
data, information and knowledge about the environment. It can be queried by the autonomous
building control system operating on it to retrieve facts necessary for the optimization of main
system tasks and reach global goals like energy efficiency and user comfort.
This work presents a comprehensive knowledge base designed to perceive the current state of the
building and its environment in order to provide a unified view of the world for a multi-agent-
controlled smart home. Based on the openness of the multi-agent approach the Web Ontology
Language was chosen as representation formalism. The methodology used to construct the on-
tology can be seen as requirement-centric approach. Therefore, firstly, envisioned benefits of an
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intelligent smart home system have been worked out in form of use cases. The described use
cases have been focused around the two main goals that an intelligent automation system for
the residential sector needs to achieve: user comfort and building energy efficiency. To design
the ontology according to the requirements postulated by the use cases, a set of competency
questions has been extracted from each use case determining the focus of the knowledge base.
To achieve a wide applicability and a certain amount of generality, the created ontology has
subsequently been split into several modules:

1. Architecture & Building Physics: This part describes the static building structure and
its properties and models the general layout of the building. Important parameters that
are treated in this module include types of building elements such as walls and windows
(i.e., material, construction) but also their size and orientation. Focus was put on the
representation of parameters that are considered influential with respect to main building
control tasks.

2. Energy & Resource: This module provides an energy-centric view on the interior and ex-
terior building environment. It describes energy facilities that consume or produce energy
in the building itself and also represents their current state. Because of the energy-centric
viewpoint, additionally also energy providers, i.e., companies providing energy to the
building and their terms of energy delivery are included.

3. User Behavior & Building Processes: As user behavior can be seen as major influence
factor for reaching a comfortable environment in an energy efficient way, this component
is designed to model predicted future user behavior. A profile-based approach for smart
home control (cf. [129]) is used as basis. This method describes user profiles and patterns
expressing user habits which have been modeled in the designed ontology. Additionally,
building processes that can be associated with detected user habits are represented as well.

4. Users & Preferences: Allowing the occupant to influence the behavior of a system and
to perform manual adjustments in the environment is of major importance for system
acceptance. Alongside the representation of general and scheduled preference settings
for each inhabitant, this module also provides elements to characterize different users.
Further, a hierarchy of activities is introduced to give the user the possibility to create
customized preferences for different scheduled activities.

5. Weather & Exterior Influences: To represent the exterior situation as additional influ-
encing factor on the energy consumption of a smart home, the designed knowledge base
provides a module that represents weather phenomena and situations. In this ontology,
weather states useful for smart home operation are identified and illustrated. Different
types of weather reports allow to distinguish between current weather states and several
weather forecasts as well as local weather reports perceived through sensors and reports
retrieved through an Internet weather service.

For each of the modules the dissertation discussed introduced concepts and their relationships.
Focus was put on answering the described competency questions. At the same time, a general
view of the modeled domain was provided to create ontologies that may be used for a wider field

222



of application. With regard to the general research question, reasoning capabilities of the Web
Ontology Language have been exploited where useful in order to represent common queries al-
ready in the ontology and thus to take away complexity from the system operating on it. These
defined queries have necessarily been tailored to the previously identified smart home require-
ments, while the general structure of the ontologies remains applicable to a variety of different
use cases, also in domains apart from smart home control.
Finally, this work concluded with the evaluation of the ontologies against the identified com-
petency questions. This evaluation showed that the ontologies in combination are capable of
answering all posed questions. It further led to the implementation of several queries that may
be used as reference for interfacing with the created knowledge base.

7.2 Derived Publications

Several publications have previously been published at international conferences and in scien-
tific journals and eventually led to this dissertation. Firstly, the focus was put on the general
system architecture and a definition of appropriate use cases. The general system concept is ini-
tially introduced in [203]. With respect to the knowledge base, this publication suggests a first
partitioning of the universe of discourse into different domains of interest. This classification
has gradually been revised and adapted. The article [202] goes into detail on the general system
architecture and presents main use cases for a future smart home system.
Further publications that exclusively focus on the created knowledge base can be categorized
according to the ontology module they describe. Firstly, regarding the Architecture & Building
Physics ontology, in [147], an approach of retrieving information on the building structure and
architecture from a Building Information Model is described. The generated model is presented
in more detail in [148] where in this case especially the refinement through a manually created
vocabulary and the extension through logical rules are the focal points. Other publications focus
on the central Energy & Resource ontology module, describing facilities, energy consumption
and energy production as well as delivery. The first publication in this context, [150], gives an
overview of how to represent energy-related information for energy providing companies and
building facilities using the Web Ontology Language. Alongside this general overview, in [149],
additional use cases are introduced that describe the application of the ontology module in a
smart home context. The article [152] starts from a combination of the previous two publica-
tions and extends the provided information regarding resource representation and the presented
use cases. In [139], the application of the Energy & Resource ontology for smart homes in the
context of a smart grid is illustrated. The focus of the deliberations lies on the energy provider
side. The conceptualization realized for the Weather & Exterior Influence module is presented
in [151] which describes in detail how current and near-future weather situations are reflected
in the ontology and how reasoning can be applied to identify favorable weather conditions. The
User Behavior & Building Processes ontology module is finally introduced in [146]. It is firstly
shown how concepts used in the profile-based control strategies of the envisioned smart home
system are mapped to an ontological representation. Further, the article provides an example
instantiation of the ontology for the thermal comfort use case highlighting reasoning capabilities
as well as interconnections between created concepts.
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7.3 Future Work

While the system concept outlined in this dissertation features a multi-agent approach, the appli-
cation of the created smart home ontology is not limited to this particular system type. Instead,
any type of system may be operating on the ontology using the general queries provided in the
present work. Further, by making the designed ontologies available through the Internet and
discussing their interrelations and capabilities in detail in this thesis, the widespread usage in
other scientific and non-scientific works is promoted and encouraged. One future field of re-
search is the application of the ontology on a larger scale in multiple systems. The distribution
of intelligence between buildings may lead to advanced use cases like the autonomous trading
of excess energy and associated benefits on a district or even city level. Also with respect to
user comfort new fields of application arise like, for example, the transition and reuse of user
preferences at different locations and between different building control systems. Challenges
and benefits emerging from the coupling of buildings therefore still remain to be explored.
Apart from contributions in the smart home domain the outcome of this thesis is also benefi-
cial for related areas. From the community viewpoint (i.e., villages, cities), the introduction
of the created ontology in multiple building control systems brings along additional benefits.
Therefore, the focus of further research may be the application of the ontology in the context
of emerging smart cities. Buildings can in this case be seen as distributed energy prosumers
contributing to the general energy supply of a community through in situ energy generation by
micro plants such as solar panels or geothermal heat pumps. A smart grid assuring coordinated
and economical operation of distributed energy sources and loads is considered the next step in
energy management [80]. The unified representation of energy-relevant concepts in smart build-
ings through a common ontology may be used to simplify distributed tasks like the optimization
of energy consumption and production in the grid: in this context, the shifting of energy inten-
sive processes can significantly reduce energy demand peaks which currently pose one of the
main problems for energy supply operators.
Another field of research can be the adaptation of parts of the ontology for application in a smart
energy grid control system. The modularization of the created knowledge base facilitates the
partial re-use in the smart grid to, for example, collect knowledge about the predicted weather
situation and the associated energy production that can be expected from certain renewable en-
ergy power plants like wind parks or photovoltaic fields. In this case, the ontology for Weather
& Exterior Influences necessarily has to be adapted and extended to fit such smart city use cases.
Also for other modules, a possible application in a grid control system needs to be investigated.
Especially with the introduction of the Internet of Things (IoT), which envisions a comprehen-
sive connection of sensors and field devices through the Internet [162] another possible area of
application for a smart home ontology opens. If sensors that are integrated in the smart home are
described in a machine-interpretable language, innovative business processes arising from the in-
terconnection of sensors and devices through the IoT can be simplified. This has the potential to
lead to a more interconnected world where, for example, optimizations in energy consumption
can be targeted on a truly global level.
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[94] D. Gašević, V. Devedžić, and D. Djurić. Model Driven Engineering and Ontology Devel-
opment. Springer-Verlag Berlin Heidelberg, 2. edition, 2009.

[95] gbXML.org. Open Green Building XML Schema: a Building Information Modeling So-
lution for Our Green World. Available Online: http://www.gbxml.org/, January
2013. Current Schema Version: 5.10, Last Accessed: 3 April 2013.

[96] B. Glimm, M. Horridge, B. Parsia, and P. F. Patel-Schneider. A Syntax for Rules in OWL
2. In Proc. of OWL: Experiences and Directions 2009 (OWLED 2009), volume 529, 2009.

[97] L. Gomez, A. Laube, and C. Purr. Ontological Middleware for Dynamic Wireless Sensor
Data Processing. In Proc. of the International Conference on Sensor Technologies and
Applications, pages 145–151, 2009.

[98] A. Goméz-Pérez. Some ideas and examples to evaluate ontologies. In Proc. of the Con-
ference on Artificial Intelligence for Applications, pages 299–305, 1995.

[99] M. Grassi, M. Nucci, and F. Piazza. Towards an ontology framework for intelligent
smart home management and energy saving. In Proc. of the International Symposium
on Industrial Electronics, pages 1753–1758, 2011.

[100] M. Grassi, M. Nucci, and F. Piazza. Ontologies for smart homes and energy management:
An implementation-driven survey. In Proc. of the Workshop on Modeling and Simulation
of Cyber-Physical Energy Systems, pages 1–3, 2013.

[101] J. Groppe and W. Mueller. Profile Management Technology for Smart Customizations
in Private Home Applications. In Proc. of the International Workshop on Database and
Expert Systems Applications, pages 226–230, 2005.

[102] T. R. Gruber. Toward principles for the design of ontologies used for knowledge sharing.
Human-Computer Studies, 43:907–928, 1993.

[103] T. R. Gruber. A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2):199–220, 1993.

[104] M. Grüninger and M. S. Fox. Towards a Methodology for the Design and Evaluation of
Ontologies. In Workshop on Basic Ontological Issues in Knowledge Sharing, 1995.

232

http://www.gbxml.org/


[105] M. Gruninger and J. Lee. Ontology - Applications and Design. Communications of the
ACM, 45(2):39–41, 2002.

[106] T. Gu, H. K. Pung, and D. Q. Zhang. A Service-oriented Middleware for Building
Context-aware Services. Network and Computer Applications, 28(1):1–18, 2005.

[107] N. Guarino. Semantic Matching: Formal Ontological Distinctions for Information Orga-
nization, Extraction, and Integration. In Information Technology, International Summer
School, SCIE-97, pages 139–170, 1997.

[108] N. Guarino. Formal Ontology and Information Systems. In Proc. of the Formal Ontology
in Information Systems (FOIS) Conference, pages 3–15, 1998.

[109] G. Guzman. What is practical knowledge? Knowledge Management, 13(4):86–98, 2009.

[110] S. Ha, H. Jung, and Y. Oh. Method to analyze user behavior in home environment.
Personal and Ubiquitous Computing, 10(2-3):110–121, 2006.

[111] V. Haarslev and R. Möller. RACER System Description. In IJCAR, pages 701–706, 2001.

[112] R. Haas. Energy efficiency indicators in the residential sector. Energy Policy, 25(7-
9):789–802, 1997.

[113] R. Harper, editor. Inside The Smart Home. Springer-Verlag London Limited, 2003.

[114] G. Hart and C. Dolbear. Linked Data: a Geographic Perspective. CRC Press, Taylor &
Francis Group, 2013. pages 241-243.

[115] D. Harvey. Reducing energy use in the buildings sector: measures, costs, and examples.
Energy Efficiency, 2:139–163, 2009.

[116] J. Hebeler, M. Fisher, R. Blace, A. Perez-Lopez, and M. Dean. Semantic Web Program-
ming. John Wiley & Sons Inc., 2009.

[117] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen. The Gator Tech
Smart House: a programmable pervasive space. Computer, 38(3):50–60, March 2005.

[118] J. Hendler. Agents and the Semantic Web. Intelligent Systems, 16(2):30–37, 2001.

[119] R. Hierzinger, M. Albu, H. van Elburg, A. J. Scott, A. Łazicki, L. Penttinen, F. Puente,
and H. Sæle. European Smart Metering Landscape Report 2012. Available On-
line: http://www.energyagency.at/fileadmin/dam/pdf/projekte/
klimapolitik/SmartRegionsLandscapeReport2012.pdf, October 2012.
Smart Regions - Deliverable 2.1 Last Accessed: 14.April 2013.

[120] J. Himoff, P. Skobelev, and M. Wooldridge. MAGENTA technology: multi-agent systems
for industrial logistics. In Proc. of the International Conference on autonomous agents
and multiagent systems, pages 60–66, 2005.

233

http://www.energyagency.at/fileadmin/dam/pdf/projekte/klimapolitik/SmartRegionsLandscapeReport2012.pdf
http://www.energyagency.at/fileadmin/dam/pdf/projekte/klimapolitik/SmartRegionsLandscapeReport2012.pdf


[121] P. Hitzler, J. Angele, B. Motik, and R. Studer. Bridging the Paradigm Gap with Rules
for OWL. In W3C Workshop on Rule Languages for Interoperability, 27-28 April 2005,
Washington, DC, USA. W3C, 2005.

[122] P. Hitzler, M. Krötsch, and S. Rudolph. Foundations of Semantic Web Technologies. CRC
Press, 2010.

[123] R. Hoehndorf. What is an upper level ontology? The Ontogenesis Knowledge
Blog, Available Online: http://ontogenesis.knowledgeblog.org/740,
April 2010. Last Accessed: 19. August 2013.

[124] C.-L. Hor, S. J. Watson, and S. Majithia. Analyzing the Impact of Weather Variables on
Monthly Electricity Demand. IEEE Transactions on Power Systems, 20(4):2078–2085,
November 2005.

[125] M. Horridge et. al. A Practical Guide To Building OWL Ontologies Using Protégé 4 and
CO-ODE Tools. University of Manchester, 1.3 edition, March 2011.

[126] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer, and D. Tsarkov. OWL Rules: A Proposal
and Prototype Implementation. Journal of Web Semantics, 3:23–40, 2005.

[127] M. Ibrahim and R. Krawczyk. The Level of Knowledge of CAD Objects within the
Building Information Model. In Proc. of the Conference of the Association for Computer
Aided Design In Architecture 2003, pages 173–177, 2003.

[128] Illuminating Engineering Society (IES). The Lighting Handbook. Illuminating Engineer-
ing Society, 10 edition, 2011.

[129] F. Iglesias-Vázquez. Smart Home Control Based on Behavioural Profiles. PhD thesis,
Vienna University of Technology, 2012.

[130] F. Iglesias-Vázquez and W. Kastner. Clustering methods for occupancy prediction in
smart home control. In Proc. of the International Symposium on Industrial Electronics,
pages 1321–1328, 2011.

[131] F. Iglesias-Vázquez and W. Kastner. Detecting user dissatisfaction in ambient intelli-
gence environments. In Proc. of the International Conference on Emerging Technologies
Factory Automation, page 4 S., 2012.

[132] F. Iglesias-Vázquez, W. Kastner, and M. J. Kofler. Holistic smart home model for air
quality and thermal comfort management. Journal of Intelligent Decision Technologies,
7(1):23–43, 2013.

[133] S. S. Intille. Designing a Home of the Future. IEEE Pervasive Computing, 1(2):76–82,
2002.

[134] ISO 16484-5. Building automation and control systems - Part 5: Data communication
protocol, 2007.

234

http://ontogenesis.knowledgeblog.org/740


[135] ISO 7730. Ergonomics of the thermal environment - Analytical determination and in-
terpretation of thermal comfort using calculation of the PMV and PPD indices and local
thermal comfort criteria, 2005.

[136] ISO/IEC 14543-3. Information technology - Home Electronic Systems (HES) Architec-
ture, 2006.

[137] M. Jahn, M. Jentsch, C. R. Prause, F. Pramudianto, A. Al-Akkad, and R. Reiners. The
Energy Aware Smart Home. In Proc. of the 5th International Conference on Future
Information Technology (FutureTech), pages 1–8, 2010.

[138] S. Jupp, H. E. Parkinson, and J. Malone. Semantic Web Atlas: Putting Gene Expression
Data into Biological Context. In Proc. of the 5th International Workshop on Semantic
Web Applications and Tools for Life Sciences (SWAT4LS2012), volume 952, 2012.

[139] W. Kastner, M. J. Kofler, and C. Reinisch. Wissensrepräsentation für das adaptive Eigen-
heim im Kontext von Smart Cities. Elektrotechnik und Informationstechnik, 129(4):286–
292, 2012.

[140] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman. Communication sys-
tems for building automation and control. Proc. of the IEEE, 93(6):1178–1203, 2005.

[141] W. Kastner, S. Soucek, C. Reinisch, and A. Klapproth. Building and Home Automation,
volume 2, chapter 26, pages 26–1 – 26–15. CRC Press, 2 edition, 2011. Industrial
Electronics Handbook, volume 2: Industrial Communication Systems.

[142] L. Khemlani. The IFC Building Model: A Look Under the Hood. Available Online:
http://www.aecbytes.com/feature/2004/IFCmodel.html, March 2004.
AECbytes, Last Accessed: 19. May 2013.

[143] H. S. Kim and J. H. Son. User-pattern analysis framework to predict future service in
intelligent home network. In Proc. of the IEEE International Conference on Intelligent
Computing and Intelligent Systems, volume 2, pages 818–822, 2009.

[144] J.-J. Kim and J. W. Moon. Impact of Insulation on Building Energy Consumption. In
Proc. of the International Building Simulation Conference, pages 674–680, 2009.

[145] M. Klein, A. Schmidt, and R. Lauer. Ontology-Centred Design of an Ambient Middle-
ware for Assisted Living: The Case of SOPRANO. In Towards Ambient Intelligence:
Methods for Cooperating Ensembles in Ubiquitous Environments, 30th Annual German
Conference on Artificial Intelligence, 2007.

[146] M. J. Kofler, F. Iglesias-Vazquez, and W. Kastner. An ontology for representation of user
habits and building context in future smart homes. In Proc. of the International Workshop:
Intelligent Computing in Engineering 2013, 2013. paper 05.

[147] M. J. Kofler and W. Kastner. A Knowledge Base for Energy-Efficient Smart Homes. In
Proc. of the International Energy Conference, pages 85–90, 2010.

235

http://www.aecbytes.com/feature/2004/IFCmodel.html


[148] M. J. Kofler and W. Kastner. Towards an ontology representing building physics for
increased energy efficiency in smart home operation. In Proc. of the Central European
Symposium on Building Physics, pages 51 –58, 2013.

[149] M. J. Kofler, C. Reinisch, and W. Kastner. A Knowledge Representation for Energy
Parameters in Sustainable Smart Homes. In Proceedings of the International Conference
on Applied Energy , pages 1065–1078, 2011.

[150] M. J. Kofler, C. Reinisch, and W. Kastner. An Intelligent Knowledge Representation
of Smart Home Energy Parameters. In Proceedings of the World Renewable Energy
Congress (WREC), Linköping, Sweden, May 2011. pages 921–928.

[151] M. J. Kofler, C. Reinisch, and W. Kastner. An Ontological Weather Representation for
Improving Energy-Efficiency in Interconnected Smart Home Systems. In Proc. of Applied
Simulation and Modelling/Artificial Intelligence and Soft Computing, Napoli, Italy, 2012.
pages 256–263.

[152] M. J. Kofler, C. Reinisch, and W. Kastner. A semantic representation of energy-related
information in future smart homes. Energy and Buildings, 47(0):169–179, 2012.

[153] W. Kymmell. Building Information Modeling: Planning and Managing Construction
Projects with 4D CAD and Simulations. McGraw Hill Professional, 2008.

[154] J. Lee. Conflict resolution in multi-agent based Intelligent Environments. Building and
Envrionment, 45(3):574–585, 2010.

[155] S.-H. Leitner and W. Mahnke. OPC UA - Service-oriented Architecture for Industrial
Applications. Softwaretechnik-Trends, 26(4), 2006.

[156] D. B. Lenat. CYC: A large-scale investment in knowledge infrastructure. Communica-
tions of the ACM, 38(11):33–38, November 1995.

[157] N.-S. Liang, L.-C. Fu, and C.-L. Wu. An integrated, flexible, and Internet-based control
architecture for home automation system in the Internet era. In Proc. of the International
Conference on Robotics and Automation, volume 2, pages 1101–1106, 2002.

[158] M. Lutz, J. Sprado, E. Klien, C. Schubert, and I. Christ. Overcoming semantic hetero-
geneity in spatial data infrastructures. Computers & Geosciences, 35(4):739–752, 2009.

[159] J. M. Maestre and E. F. Camacho. Smart home interoperability: the DomoEsi project
approach. International Journal of Smart Home, 3(3):31–44, 2009.

[160] B. Malinowsky. Building Information Models in Building Automation Systems. Mas-
ter’s thesis, Vienna University of Technology, Institute of Computer Aided Automation,
Automation Systems Group, 2009.

[161] J. Malone and H. Parkinson. Reference and Application Ontologies. The Ontogene-
sis Knowledge Blog, Available Online: http://ontogenesis.knowledgeblog.
org/295, January 2010. Last Accessed: 24. August 2013.

236

http://ontogenesis.knowledgeblog.org/295
http://ontogenesis.knowledgeblog.org/295


[162] F. Mattern and C. Floerkemeier. From the Internet of Computers to the Internet of Things.
In From Active Data Management to Event-based Systems and More, volume 6462 of
Lecture Notes in Computer Science (LNCS), pages 242–259. Springer-Verlag, 2010.

[163] A. K. Meier. A Worldwide Review of Standby Power Use in Homes. In
Lawrence Berkeley National Laboratory, number LBNL-49377, 2001. Available Online:
repositories.cdlib.org/lbnl/LBNL-49377, Last Accessed: 27. November
2013.

[164] M. Minsky. A Framework for Representing Knowledge. In J. Haugeland, editor, Mind
Design: Philosophy, Psychology, Artificial Intelligence, pages 95–128. MIT Press, 1981.

[165] Z. Mo and A. Mahdavi. An agent-based simulation-assisted approach to bilateral building
systems control. In Proc. of the 8th International Conference on Building Simulation,
pages 888–894, 2003.

[166] T. Mori, A. Fujii, M. Shimosaka, H. Noguchi, and T. Sato. Typical Behavior Patterns
Extraction and Anomaly Detection Algorithm Based on Accumulated Home Sensor Data.
In Proc. of the Future Generation Communication and Networking, volume 2, pages 12–
18, 2007.

[167] T. Mori, A. Takada, Y. Iwamura, and T. Sato. Automatic human life summarization
system in sensory living space. In Proc. of the International Conference on Systems, Man
and Cybernetics, volume 2, pages 1583–1588, 2004.

[168] R. A. Morris, L. Dou, J. Hanken, M. Kelly, D. B. Lowery, B. Ludäscher,
J. A. Macklin, and P. J. Morris. Semantic Annotation of Muta-
ble Data. PLoS ONE, 2013. to appear, preprint available at:
http://sourceforge.net/projects/filteredpush/files/SemAnnMutableDataPreprint/ Last
Accessed: 02. October 2013.

[169] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. In
Journal of Web Semantics, pages 549–563. Springer, 2004.

[170] M. Mozer, R. Dodier, D. Miller, M. Anderson, J. Anderson, D. Bertini, M. Bronder,
M. Colagrosso, R. Cruickshank, B. Daugherty, et al. The Adaptive House. In IEE Seminar
Digests, volume 1, page v1:39, 2005.

[171] M. C. Mozer. The Neural Network House: An Environment that Adapts to its Inhabitants.
In Proc. of the American Association for Artificial Intelligence Spring Symposium on
Intelligent Environments, pages 110–114, 1998.

[172] D. Nardi and R. J. Brachman. The Description Logic Handbook: Theory, Implementation,
and Applications, chapter 1, pages 1–40. Cambridge University Press, 2003.

[173] NBS. National BIM Report 2013. Available Online: https://www.thenbs.com/
pdfs/NBS-NationlBIMReport2013-single.pdf, 2013. Last Accessed: 19.
May 2013.

237

repositories.cdlib.org/lbnl/LBNL-49377
https://www.thenbs.com/pdfs/NBS-NationlBIMReport2013-single.pdf
https://www.thenbs.com/pdfs/NBS-NationlBIMReport2013-single.pdf


[174] B. Nemuraite, L. Paradauskas. A Methodology for Engineering OWL 2 Ontologies in
Practise Considering their Semantic Normalisation and Completeness. Electronics and
Electrical Engineering, 120(4):89 – 94, 2012.

[175] T. V. Nguyen, Lim W., H. A Nguyen, Choi D., and C. Lee. Context Ontology Imple-
mentation for Smart Home. Computing in Research Repository (CoRR), abs/1007.1273,
2010.

[176] I. Niles and A. Pease. Towards a Standard Upper Ontology. In Proc. of the International
Conference on Formal Ontology in Information Systems, 2001.

[177] I. Niskanen and J. Kantorovitch. Ontology driven data mining and information visual-
ization for the networked home. In Proc. of the International Conference on Research
Challenges in Information Science, pages 147–156, 2010.

[178] Norwegian Meteorological Institute. B<locationforecast> - weather forecast for
a specified place. Available Online: http://api.yr.no/weatherapi/
locationforecast/1.8/documentation, June 2010. yr.no Weather Forecast
Documentation, Last Accessed: 15. July 2013.

[179] N. F. Noy and D. L. McGuinness. Ontology Development 101: A Guide to Creating
Your First Ontology. Technical report, Stanford Knowledge Systems Laboratory, 2001.
Technical Report KSL-01-05.

[180] OASIS. OBIX Version 1.1. Available Online: https://www.oasis-open.org/
committees/download.php/48683/oBIX-1-1-spec-wd08.pdf, March
2013. Working draft 08, Last Accessed: 15. April 2013.

[181] M. Obitko. Translations between Ontologies in a Multi-Agent System. PhD thesis, Czech
Technical University in Prague, February 2007.

[182] C. K. Ogden and I.A. Richards. The meaning of meaning. Trubner & Co, 1923.

[183] F. Oldewurtel, D. Gyalistras, M. Gwerder, C. N. Jones, V. Stauch, B. Lehmann, and
M. Morari. Increasing Energy Efficiency in Building Climate Control using Weather
Forecasts and Model Predictive Control. In REHVA World Congress Clima, 2010.

[184] Ontology Summit 2013 Communique. Towards Ontology Evaluation across the Life Cy-
cle. Available Online: http://ontolog.cim3.net/OntologySummit/2013/
communique.html, June 2013. Last Accessed: 26. October 2013.

[185] OSGi Alliance. About the OSGi Service Platform. Technical Whitepaper Rev. 4.1, OSGi
Alliance, June 2007.

[186] F. Pan. A Temporal Aggregates Ontology in OWL for the Semantic Web. In Proc. of the
AAAI Fall Symposium on Agents and the Semantic Web, pages 30–37, 2005.

238

http://api.yr.no/weatherapi/locationforecast/1.8/documentation
http://api.yr.no/weatherapi/locationforecast/1.8/documentation
https://www.oasis-open.org/committees/download.php/48683/oBIX-1-1-spec-wd08.pdf
https://www.oasis-open.org/committees/download.php/48683/oBIX-1-1-spec-wd08.pdf
http://ontolog.cim3.net/OntologySummit/2013/communique.html
http://ontolog.cim3.net/OntologySummit/2013/communique.html


[187] J. Pathak, D. Caragea, and V. G. Honavar. Ontology-Extended Component-Based
Workflows-A Framework for Constructing Complex Workflows from Semantically Het-
erogeneous Software Components. In Proc. of the International Workshop on Semantic
Web and Databases, pages 41–56. Springer-Verlag, 2004.

[188] A. Pease. Suggested Upper Merged Ontology (SUMO) Website. Available Online:
http://www.ontologyportal.org/, April 2013. Last Accessed: 12. April 2013.

[189] D. Poole and A. Mackworth. Artificial Intelligence: Foundations of Computational
Agents. Cambridge University Press, New York, NY, USA, 2010.

[190] C. W. Potter, A. Archambault, and K. Westrick. Building a smarter smart grid through
better renewable energy information. In Proc. of the Power Systems Conference, pages
1–5, 2009.

[191] M. J. Pratt. Introduction to ISO 10303 - the STEP Standard for Product Data Exchange.
Journal of Computing and Information Science and Engineering, 1(1):102–103, 2001.

[192] B. Qiao, K. Liu, and C. Guy. A Multi-Agent System for Building Control. In Proc.
of the International Conference on Intelligent Agent Technology, pages 653–659. IEEE
Computer Society, 2006.

[193] M. Quillian. Semantic Memory. PhD thesis, Carnegie Institute of Technology, 1966.

[194] D. Randall. Living Inside a Smart Home: A Case Study. In R. Harper, editor, Inside the
Smart Home, pages 227–246. Springer London, 2003.

[195] P. Rashidi and D. J. Cook. Keeping the resident in the loop: Adapting the smart home to
the user. Transactions on Systems, Man and Cybernetics, 39(5):949 – 959, 2009.

[196] R. J. Raskin and M. J. Pan. Knowledge representation in the semantic web for Earth
and environmental terminology (SWEET). Computers & Geoscience, 31(9):1119–1125,
2005.

[197] A. Rector. Representing Specified Values in OWL: “value partitions“ and “value sets“ .
Available Online: http://www.w3.org/TR/swbp-specified-values/, May
2005. W3C Working Group Note 17. May 2005, Last Accessed: 19. July 2013.

[198] A. L. Rector. Modularisation of Domain Ontologies Implemented in Description Logics
and related formalisms including OWL. In Proc. of the International Conference on
Knowledge Capture, pages 121–128, 2003.

[199] C. Reinisch. A Framework for Distributed Intelligence for an Energy Efficient Operation
of Smart Homes. PhD thesis, Vienna University of Technology, 2012.

[200] C. Reinisch, W. Granzer, F. Praus, and W. Kastner. Integration of Heterogeneous Building
Automation Systems using Ontologies. In Proc. of the Annual Conference of the IEEE
Industrial Electronics Society, pages 2736–2741, 2008.

239

http://www.ontologyportal.org/
http://www.w3.org/TR/swbp-specified-values/


[201] C. Reinisch and W. Kastner. Agent based Control in the Smart Home. In Proc. of the
Annual Conference of the IEEE Industrial Electronics Society, pages 334–339, 2011.

[202] C. Reinisch, M. J. Kofler, F. Iglesias, and W. Kastner. ThinkHome Energy Efficiency
in Future Smart Homes. EURASIP Journal on Embedded Systems, 2011. Article ID:
104617.

[203] C. Reinisch, M. J. Kofler, and W. Kastner. ThinkHome: A Smart Home as Digital Ecosys-
tem. In Proc. of the International Conference on Digital Ecosystems and Technologies,
pages 256–261, 2010.

[204] D. Retkowitz and M. Pienkos. Ontology-based configuration of adaptive smart homes. In
Proc. of Workshop on Reflective and adaptive middleware, pages 11–16, 2008.

[205] D. Retkowitz and M. Stegelmann. Dynamic Adaptability for Smart Environments. In
Proc. of the International Conference on Distributed Applications and Interoperable Sys-
tems, volume 5053 of Lecture Notes in Computer Science, pages 154–167. Springer-
Verlag, 2008.

[206] R. J. Robles and T. Kim. Applications, Systems and Methods in Smart Home Technology:
A Review. International Journal of Advanced Science and Technology, 15:37–48, 2010.

[207] B. Rodriguez-Castro, M. Ge, and M. Hepp. Alignment of Ontology Design Patterns:
Class As Property Value, Value Partition and Normalisation. In OTM Conferences (2),
volume 7566 of Lecture Notes in Computer Science, pages 682–699, 2012.

[208] J. Rowley. The wisdom hierarchy: representations of the DIKW hierarchy. Information
Science, 33(2):163–180, 2007.

[209] S. Runde, H. Dibowski, A. Fay, and K. Kabitzsch. A semantic requirement ontology for
the engineering of building automation systems by means of OWL. In Proc. of the IEEE
International Conference on Emerging Technologies and Factory Automation, pages 413–
420, 2009.

[210] M. Ruta, F. Schioscia, E. Di Schiascio, and G. Loseto. Semantic-Based Enhancement of
ISO/IEC 14543-3 EIB/KNX Standard for Building Automation. Transactions on Indus-
trial Informatics, 7(4):731–739, 2011.

[211] F. Santana, D. Schober, Z. Medeiros, F. Freitas, and S. Schulz. Ontology patterns for
tabular representations of biomedical knowledge on neglected tropical diseases. Bioin-
formatics, 27(13):i349–i356, July 2011.

[212] K. Sato. Context sensitive interactive systems design: a framework for representations
of contexts. In Proc. of the International Conference on Human-Computer Interaction,
pages 1323–1327, 2003.

240



[213] D. Molitor R. Sattler, U. Calvanese. The Description Logic Handbook: Theory, Imple-
mentation, and Applications, chapter 4, pages 137–177. Cambridge University Press,
2003.

[214] G. Schneider and J. P. Winters. Applying Use Cases - A Practical Guide. Addison Wesley
Longman, Inc., 1998.

[215] F. Shayeganfar, A. Anjomshoaa, and A. M. Tjoa. A Smart Indoor Navigation Solution
Based on Building Information Model and Google Android. In Proc. of the International
Conference on Computers Helping People with Special Needs, pages 1050 – 1056, 2008.

[216] D. Shotton, C. Catton, and G. Klyne. Ontologies for Sharing, Ontologies for Use.
The Ontogenesis Knowledge Blog, Available Online: http://ontogenesis.
knowledgeblog.org/312, January 2010. Last Accessed: 20. August 2013.

[217] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe. Recognizing independent and joint
activities among multiple residents in smart environments. Journal of Ambient Intelli-
gence and Humanized Computing, 1(1):57–63, 2010.

[218] F. Singleton. The Beaufort scale of winds - its relevance, and its use by sailors. Weather,
63(2):37–41, February 2008.

[219] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2):51–
53, 2007.

[220] A. Sloman. Why We Need Many Knowledge Representation Formalisms. In Proc. of the
BSC Expert Systems Conference, pages 163–183, 1985.

[221] B. Smith. The Blackwell Guide to the Philosophy of Computing and Information. Black-
well Philosophy Guides. Blackwell Publishing, 2004.

[222] J. C. Smith, M. R. Milligan, E. A. DeMeo, and B. Parsons. Utility Wind Integration and
Operating Impact State of the Art. IEEE Transactions on Power Systems, 22(3):900–908,
August 2007.

[223] I. Sokolov. Utilizing gbXML with AECOsim Building Designer and speedikon. White
paper, Bentley Building Products, October 2011.

[224] L. Sommaruga, A. Perri, and F. Furfari. DomoML-env: an ontology for human home
interaction. In Proc. of Italian Semantic Web Workshop, pages 14–16, 2005.

[225] Y. Son, T. Pulkkinen, K. Moon, and C. Kim. Home Energy Management System based
on Power Line Communication. IEEE Transactions on Consumer Electronics, 56:1380–
1385, 2010.

[226] J. F. Sowa. Conceptual graphs. In Information Processing in Mind and Machine, pages
39–44. Addison-Wesley, 1984.

241

http://ontogenesis.knowledgeblog.org/312
http://ontogenesis.knowledgeblog.org/312


[227] Standard Upper Ontology Working Group. IEEE P1600.1 Standard Upper Ontology
Working Group (SUO WG) Home Page. Available Online: http://suo.ieee.
org/, December 2003. Last Accessed: 17. November 2013.

[228] P. Staroch. A Weather Ontology for Predictive Control in Smart Homes. Master’s thesis,
University of Technology, Vienna, 2013.

[229] T. G. Stavropoulos, D. Vrakas, D. Vlachava, and N. Bassiliades. BOnSAI: a smart build-
ing ontology for ambient intelligence. In Proc. of the International Conference on Web
Intelligence, Mining and Semantics, page Article No. 30, 2012.

[230] S. Steyskal. Defining an Actor Ontology for Increasing Energy Efficiency in Smart
Homes. Master’s thesis, University of Technology, Vienna, 2014. to be published.

[231] H. R. Straub. Das interpretierende System. Z/I/M Verlag, 2001.

[232] H. Stuckenschmidt. Ontologien: Konzepte, Technologien und Anwendungen (Informatik
Im Fokus). Springer, Berlin, 1 edition, 2009.

[233] A. L. Stumpf, H. Kim, and E. M. Jenicek. Early Design Energy Analysis Using Building
Information Modeling Technology. Final report, US Army Corps of Engineers, 2011.
Corporate Author: Engineer Research and Development Center Champaign IL Construc-
tion Engineering Research Lab.

[234] S. Taduri, G. T. Lau, K. H. Law, and J. P. Kesan. A patent system ontology for facilitating
retrieval of patent related information. In Proc. of the International Conference on Theory
and Practice of Electronic Governance, pages 146–157, 2012.

[235] M. Takada, S. Tano, M. Iwata, and T. Hashiyama. A proposed home agent architecture
to infer user feeling from user action pattern. In Proc. of the International Conference on
Systems, Man, and Cybernetics, pages 4818–4824, 2006.

[236] J. Tauberer. What is RDF and what is it good for? Available Online: http://www.
rdfabout.com/intro/, 2008. Last Accessed: 27. November 2013.

[237] D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System Description.
In Proc. of the International Joint Conference on Automated Reasoning, volume 4130 of
Lecture Notes in Artificial Intelligence, pages 292–297. Springer, 2006.

[238] D. Tuhus-Dubrow and M. Krarti. Comparative Analysis of Optimization Approaches to
Design Building Envelope for Residential Buildings. ASHRAE Transactions, 115(2):554,
2009.

[239] E. Turban and J. Aronson. Decision Support Systems and Intelligent Systems. Prentice
Hall, Inc., 1988.

[240] T. Ueno, R. Inada, O. Saeki, and K. Tsuji. Effectiveness of an energy-consumption infor-
mation system for residential buildings. Applied Energy, 83(8):868 – 883, 2006.

242

http://suo.ieee.org/
http://suo.ieee.org/
http://www.rdfabout.com/intro/
http://www.rdfabout.com/intro/


[241] M. Uschold and M. Grüninger. Ontologies Principles, Methods and Applications. Knowl-
edge Sharing and Review, 11(2):93–136, June 1996.

[242] M. Uschold and M. King. Towards a Methodology for Building Ontologies. In Workshop
on Basic Ontological Issues in Knowledge Sharing, 1995.

[243] S. van den Elshout, H. Bartelds, H. Heich, and K. Léger. Citeair II - Common Information
to European Air - CAQI Air quality index. Project report, European Union - European
Regional Development Fund, 2012.

[244] R. van Gerwen, S. Jaarsma, and R. Wilhite. Smart Metering. Available
Online: http://www.leonardo-energy.org/sites/leonardo-energy/
files/root/pdf/2006/SmartMetering.pdf, July 2006. Last Accessed: 20.
January 2014.

[245] M. Venugopal, C. Eastman, and J. Teizer. An Ontological Approach to Building Infor-
mation Model Exchanges in the Precast/Pre-Stressed Concrete Industry. In Proc. of the
Construction Research Congress 2012, pages 1114–1123, 2012.

[246] E. Vildjiounaite, O. Kocsis, V. Kyllönen, and B. Kladis. Context-Dependent User Mod-
elling for Smart Homes. In Proc. of the International Conference on User Modeling,
pages 345–349, 2007.

[247] S. von Roon, T. Gobmaier, and M. Huck. Demand Side Management in
Haushalten - Methoden zur Potenzialanalyse und Kostenabschätzung. Tech-
nical report, Forschungsstelle für Energiewirtschaft e.V., 2010. Avail-
able Online: http://www.ffe.de/publikationen/fachartikel/
296-demand-side-management, Last Accessed: 06. November 2013.

[248] W3C. OWL Web Ontology Language Reference. Available Online: http://www.w3.
org/TR/owl-ref/, February 2004. W3C Recommendation 10 February 2004, Last
Accessed: 24. January 2013.

[249] W3C. RDF Primer. Available Online: http://www.w3.org/TR/rdf-primer/,
February 2004. W3C Recommendation 10 February 2004, Last Accessed: 24. January
2013.

[250] W3C. RDF Vocabulary Description Language 1.0: RDF Schema. Available Online:
http://www.w3.org/TR/rdf-schema/, February 2004. W3C Recommendation
10 February 2004, Last Accessed: 25. January 2013.

[251] W3C. RDF/XML Syntax Specification (Revised). Available Online: http://www.
w3.org/TR/REC-rdf-syntax/, February 2004. W3C Recommendation 10 Febru-
ary 2004, Last Accessed: 27. November 2013.

[252] W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax. Avail-
able Online: http://www.w3.org/TR/rdf-concepts/, February 2004. W3C
Recommendation 10 February 2004, Last Accessed: 27. November 2013.

243

http://www.leonardo-energy.org/sites/leonardo-energy/files/root/pdf/2006/SmartMetering.pdf
http://www.leonardo-energy.org/sites/leonardo-energy/files/root/pdf/2006/SmartMetering.pdf
http://www.ffe.de/publikationen/fachartikel/296-demand-side-management
http://www.ffe.de/publikationen/fachartikel/296-demand-side-management
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-concepts/


[253] W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Available
Online: http://www.w3.org/Submission/SWRL/, May 2004. W3C Member
Submission 21 May 2004, Last Accessed: 4. February 2013.

[254] W3C. Time Ontology in OWL. Available Online: http://www.w3.org/TR/2006/
WD-owl-time-20060927/, September 2006. W3C Working Draft 27 September
2006, Last Accessed: 12. April 2013.

[255] W3C. Semantic Web, and Other Technologies to Watch. Available Online: http://
www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24), January 2007.
Last Accessed: 24. November 2013.

[256] W3C. SPARQL Query Language for RDF. Available Online: http://www.w3.org/
TR/rdf-sparql-query/, January 2008. W3C Recommendation 15 January 2008,
Last Accessed: 8. February 2013.

[257] W3C. OWL 2 Web Ontology Language. Available Online: http://www.w3.org/
TR/2009/WD-owl2-overview-20090327/, March 2009. W3C Working Draft
27 March 2009, Last Accessed: 24. November 2013.

[258] W3C. OWL 2 Web Ontology Language. Available Online: http://www.w3.org/
TR/owl2-overview/, December 2012. W3C Recommendation 11 December 2012,
Last Accessed: 2. February 2013.

[259] W3C. OWL 2 Web Ontology Language - Manchester Syntax (Second Edition). Avail-
able Online: http://www.w3.org/TR/owl2-manchester-syntax/, Decem-
ber 2012. W3C Working Group Note 11 December 2012, Last Accessed: 18. May 2013.

[260] W3C. OWL 2 Web Ontology Language Profiles (Second Edition). Available Online:
http://www.w3.org/TR/owl2-profiles/, December 2012. W3C Recommen-
dation 11 December 2012, Last Accessed: 25. November 2013.

[261] W3C. OWL/Implementations. Available Online: http://www.w3.org/2001/sw/
wiki/OWL/Implementations, August 2013. Last Accessed: 24. November 2013.

[262] W3C. RIF Core Dialect. Available Online: http://www.w3.org/TR/2013/
REC-rif-core-20130205/, February 2013. W3C Recommendation 5 February
2013, Last Accessed: 24. November 2013.

[263] W3C. SPARQL 1.1 Update. Available Online: http://www.w3.org/TR/
sparql11-update/, March 2013. W3C Recommendation 21 March 2013, Last Ac-
cessed: 23 March 2013.

[264] W3C. Turtle - Terse RDF Triple Language. Available Online: http://www.w3.org/
TR/turtle/, February 2013. W3C Candidate Recommendation 19 February 2013,
Last Accessed: 27. November 2013.

244

http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/2006/WD-owl-time-20060927/
http://www.w3.org/TR/2006/WD-owl-time-20060927/
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/2009/WD-owl2-overview-20090327/
http://www.w3.org/TR/2009/WD-owl2-overview-20090327/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/2001/sw/wiki/OWL/Implementations
http://www.w3.org/2001/sw/wiki/OWL/Implementations
http://www.w3.org/TR/2013/REC-rif-core-20130205/
http://www.w3.org/TR/2013/REC-rif-core-20130205/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/


[265] C. A. Welty. An Integrated Representation for Software Development and Discovery. PhD
thesis, Rensselaer Poytechnic Institute, 1995.

[266] P. Wolf, A. Schmidt, and M. Klein. Applying Semantic Technologies for Context-Aware
AAL Services: What we can learn from SOPRANO. In Workshop on Applications of
Semantic Technologies, Informatik 2009, volume 9 of Lecture Notes in Informatics. GI,
2009.

[267] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley Publishing, 2. edition,
2009.

[268] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. Knowledge
Engineering Review, 10:115–152, 1995.

[269] A. Yurchyshyna, C. Faron-Zucker, N. L. Thanh, and A. Zarli. Towards an Ontology-
enabled Approach for Modeling the Process of Conformity Checking in Construction. In
Forum at the CAiSE’08 Conference, pages 21–24, 2008.

[270] V. M. Zavala, E. M. Constantinescu, and M. Anitescu. Economic impacts of advanced
weather forecasting on energy system operations. In Proc. of the Innovative Smart Grid
Technologies Conference, pages 1–7, 2010.

[271] L. Zemmouchi-Ghomari and A. R. Ghomari. Translating Natural Language Competency
Questions into SPARQL Queries: A Case Study. In Proc. of the International Conference
on Building and Exploring Web Based Environments, pages 81 – 86, 2013.

[272] D. Zhang, T. Gu, and X. Wang. Enabling Context-aware Smart Home with Semantic Web
Technologies. Human-friendly Welfare Robotic Systems, 6(4):12–20, 2005.

[273] H. Zhang, F.-Y. Wang, and Y. Ai. An OSGi and agent based control system architecture
for smart home. In Proc. of the International Conference on Networking, Sensing and
Control, pages 13–18, March 2005.

245


