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Abstract 

The air passengers traffic forecasting has an enormous influence on the development of 

airport strategies and master plans with respect to both the airside and the landside. As the 

airport managers take their decisions based also on expected passenger volumes it is very 

important for them to be able to estimate the future demands as accurate as possible. This 

work deals with exactly this problem- how to develop a model to forecast air passenger 

demands based only on the historical passenger numbers data.  

The work will give a detailed description of the theoretical fundaments and the process of 

construction, calibration and validation for two methods that can be adopted by an airport- the 

Rational passenger numbers planning and the Box-Jenkins ARIMA methods. By making a 

forecast for the Vienna International Airport next to the theoretical description of the 

techniques also their correct use in practise will be shown and their accuracy will be proven. 
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1 Introduction 

Problem Statement 

For many businesses and industries forecasting is a crucial part of the business strategy 

development and has a central role in the planning process. This is even more emphasised in 

businesses, such as the air transport, that are very expensive and where careful planning can 

allow the management to cut expenses and reduce risk. 

This work will look at two forecasting strategies that can be adopted by an airport and which 

make their predictions based on the historical passenger demand and actual flights. The 

process of construction, calibration and validation for both models will be explained in detail 

and using those techniques a prediction of the passengers demand at the Vienna International 

Airport will be made.  

Expected results 

By reading this work the reader should get familiar with the theoretical fundamentals and the 

process of construction, calibration and validation of the two prediction models described: the 

rational passenger numbers planning and the Box-Jenkins ARIMA Methodology. After the 

reader is made familiar with the theory of the distinct technique, a specific numerical example 

should be given in order to make the presentation also intuitively accessible. By using both 

methods in a forecasting procedure for the Vienna International Airport this work shows how 

the techniques are to be used in practice and which are the problematic points that may lead to 

either inaccurate estimates of the passenger numbers or to leave misleading feelings of 

security in the analyst.   

Methodology 

This work shows two models for predicting airport passenger demands. It starts with a 

definition and an explanation of the rational planning and the multi-period Gaussian 

enterprise (portfolio) framework along with their main characteristics. After the reader is 

made familiar with the theoretical and mathematical foundations behind the rational 

passenger numbers planning the fraction based Gaussian enterprise model is constructed and 

calibrated in order to calculate the multi-period planned passenger numbers trajectory for the 

Vienna International Airport.  As forecasts could never be 100% accurate the work continues 
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with the explanation and calculation of the multi-period passenger numbers quantiles and the 

90% uncertainty corridor. Than in order to exam how good the model performs a model 

validation with an out of sample test is made. The section ends with the process of subsequent 

planning and what kind of check and act activities can be made in order to make sure that the 

prediction are achieved as precise as possible. 

The second section is dedicated to the ARIMA models. After a description of this Box-

Jenkins methodology and the method of forecasting among with all the statistical terms that 

are needed in order to understand it are characterised, a passenger demand forecast of the 

passenger volumes at the Vienna International Airport using ARIMA is made. The prediction 

includes a comprehensive analysis of the historical data and a detailed description of every 

step made through the process of forecasting. This is followed by an out of sample test for 

three different periods of time.  

Finally, a conclusion summarizes the main findings of the work and the key points that have 

been discussed chronologically. 
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2 Rational Passenger Numbers Planning 

The “rational passenger numbers planning” relates to the rational expectation theory 

developed by Lucas (1978), where the rational expectations are: forward looking, related 

to an uncertain economy and calculated according to a probabilistic model. When applied 

to the passenger numbers planning problem the rational expectations are computed 

according to the probabilistic passenger numbers model, which on the other hand is 

constructed within a Gaussian management framework. This framework was used by 

Black and Scholes (1973) and Merton (1973) by the developing of the option pricing 

theory and the intertemporal portfolio optimization theory.  

In the rational passenger numbers planning process the passenger numbers yearly 

realisation is taken and translated according to the fraction-based segment passenger 

numbers model into a planned passenger numbers trajectory over the twelve months of the 

year- the twelve monthly sub-periods. The trajectory provides the passenger numbers 

prediction up to the yearly passenger numbers. The model allows next to the calculation of 

the trajectory also the computation of uncertainty corridors, which are accompanying it. 

As the model is stated in the conditional notation it can be used not only for the initial 

planning at the beginning of the planning horizon but also for the subsequent planning 

over the different sub-periods. By calculating rolling forecasts and rolling passenger 

numbers volatilities one can use a risk-based performance management system to make 

sure that the annual passenger numbers are achieved over time.  
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2.1 The rational passenger numbers planning technique 

The “Rational passenger numbers planning” corresponds to the concept of rational 

expectations introduced by Lucas (1978). This is a theory, where the rational expectations 

are forward looking, related to an uncertain economy and calculated according to a 

probabilistic model, which, based on a historical data, calculates how big the chances of 

an event to happen again are. 

When applied to the passenger numbers planning problem the rational passenger numbers 

expectations are the rational passenger numbers plans for the different planning horizons. 

These plans are calculated according to the probabilistic passenger numbers model, which 

stochastic nature originates from the probabilistic information structure that underlines the 

stochastic business environment. According to the probabilistic foundation the rational 

passenger number plans consist out of the passenger numbers forecast and the 

uncertainties surrounding the forecast- the passenger numbers volatility. 

The rational passenger number planning is based upon the probabilistic passenger 

numbers model, which is constructed within a multi-period Gaussian enterprise (portfolio) 

framework, which as the name says incorporates a multi-period portfolio context, so that 

not only time diversification effects but also portfolio diversification effects are 

considered. This management framework was introduced by Black/- Scholes (1973) and 

Merton (1973) in the option pricing theory as well as in the intertemporal portfolio 

management theory. The multi-period Gaussian enterprise (portfolio) framework 

decomposes in to Gaussian enterprise planning system, where by using the fraction-based 

passenger numbers model rational expectations over the future planned passenger 

numbers and the related risks for the different segments are formed and Gaussian 

enterprise control system, where over time intermediate Check- and Act- activities are 

executed to ensure the realization of the annual passenger numbers.  
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Figure 1: Gaussian Enterprise Performance Management 

 

Source: Schwaiger, Bös and Kronfellner 2012 P.54 

For passenger numbers performance management purposes a discrete time approach is 

adequate as the control strategies relate to the passenger numbers performances over 

longer time horizons (e.g. months). Therefore the probabilistic passenger numbers model 

is built in a discrete time management framework. A discrete time Gaussian stochastic 

process is used for the modelling of the probabilistic information structure of the future 

passenger numbers developments. This method consists out of twelve Gaussian random 

variables (a term explained in the next paragraph) for every one of the portfolio segments.  

These specify the probabilistic passenger numbers segments volumes in the twelve 

months of the year and linear functions on this normally distributed variables define the 

monthly and the annual passenger numbers.  As shown in the next paragraph due to this 

linearity of the aggregation functions the monthly and the annual passenger numbers are 

normally distributed as well. The forecasts correspond to the expected mean values and 

the volatilities are used for the calculation of the uncertainty bounds that are associated 

with the passenger numbers forecast in the stochastic business environment.  

The Gaussian (or normal) distribution belongs to one of the theoretically and practically 

most important probability distributions due to the fact that it can be used for the 

description of many real situations.  Mathematically: every random variable X that has the 

density 
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is called normally distributed.  

We define: 

           (2) 

In the next Figure 2 one can see the graph of the density of the N(0, 1) 

Figure 2: Normal Density Function 

 

The area under the curve equals one due to the constant of integration     √  . Please 

note that all distributions, which emerge from the normal distribution through a linear 

transformation, are also normally distributed. These build the family of the normal 

distributions. Mathematically this means that if          and X is linearly transformed 

to        than Y has the expected value of  , the variance    and the density: 
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One can say that Y is normally distributed:           (Arens, Hettlich, Karpfinger, 

Kockelhorn, Lichtenberg and Stachel, 2008 P.1348-1350). 

Figure 3 on the next page graphically represents how the bell curve is changing when   

respectively   are changed. One can see that when the mean of the random variable is 

changed, than the curve shifts to the left or right depending on the means value. On the 

other hand when the variance is changed, than the curve gets flatter if   converges 
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towards zero and is or steeper if   tends toward infinity (Arens, Hettlich, Karpfinger, 

Kockelhorn, Lichtenberg and Stachel, 2008 P.1348- 1350). 

Figure 3: Normal Density Function for different means and volatilities 

 

Source: http://en.wikipedia.org/wiki/File:Normal_Distribution_PDF.svg 

The fraction based Gaussian enterprise model used in this work enables the computation 

of passenger numbers predictions and passenger numbers volatilities for different time 

horizons up to one year.  The planned passenger numbers trajectory consists out of the 

accumulated monthly passenger numbers forecasts and the monthly passenger numbers 

volatilities, which are used to compute the prediction uncertainty corridors that are 

associated with the passenger numbers forecasts for the different planning horizons. In the 

subsequent passenger numbers planning, described in the last section of this chapter, the 

Gaussian model is used to compute the rolling passenger numbers predictions and the 

rolling passenger numbers volatility. 

In the following two parts the planned passenger numbers will be calculated. These 

contain out of the accumulated monthly passenger numbers forecast and the multi-period 

90% enterprise passenger numbers uncertainty corridor around the forecasts. The 

upcoming sections will start with a theoretical part, where the model construction and the 

theory behind the technique is explained and will continue with the calibration process for 

which the historical data from the Vienna International Airport will be used. In order to 

make the calculation also intuitively accessible a concrete numerical examples are given 

for every step.  
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2.2 Multi-period planned passenger numbers trajectory 

The multi-period Gaussian enterprise management framework uses the fraction-based 

approach, where the annual passenger numbers are allocated to the twelve months of the 

year according to the monthly fractions of the annual figures. This fraction based 

passenger numbers allocation gives the planned traffic trajectory over the twelve months 

and the means of the Gaussian random variables are used for the path modelling. 

2.2.1 Construction of the Multi-period planned passenger numbers trajectory 

In the fraction based Gaussian enterprise model the annual passenger numbers are defined 

as the sum of the twelve monthly fraction passenger numbers, which on their side are 

equal to the sum of the monthly fraction segment passenger numbers, a mathematical 

definition shown in equation (4). Here the index P stand for passengers, (k) stands for the 

different segments, (PF) stands for portfolio, as these values refer to the whole enterprise 

portfolio and not just single elements, M is the single-period notation and      signals that 

the multi-period view refers to the time slightly before month 1 begins. 
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      ̃          
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     )         

          

 ̃          ∑ ∑     
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(4) 

The last line of equation (4) shows the fraction-based Gaussian enterprise model, where 

the planned segment passenger numbers      
     are multiplied with the passenger numbers 

segment fractions         and summed up for the different segments and over the twelve 

months of the year. As the initial monthly segment passenger numbers  ̃          , the 

initial monthly portfolio passenger numbers  ̃            and the initial annual portfolio 
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passenger numbers  ̃          are linear functions of the normally distributed passenger 

numbers segment fractions        , one can say that these are normally distributed as well, 

something that was shown in the previous section. 

The    - conditional initial passenger numbers forecast for the annual passenger numbers 

is shown in equation (5) in form of the conditional annual segment passenger numbers 

expectations    ̃          

 

   ̃          ∑ ∑     
     

 

 [ ̃      |  ]

  

   

 

 

(5) 

In the fraction-based Gaussian enterprise model the location parameters   and the 

dispersion parameters   are directly linked to the moments (to the expected values) of the 

distribution. This means that in the used model the expected mean value of the annual 

passenger numbers            is the mathematical representation of the passenger 

numbers forecast over the next year and the mean         is equal to the expected fraction 

based segment passenger numbers. Equation (5) can be re-written as follows: 

 

           ∑ ∑     
     

 

  

   

            

                              
     ∑         

  

   

 

                              
            

(6) 

In equation (6) the expected enterprise passenger numbers mean is equal to the location 

parameter of the passenger numbers normal distribution. This equality is used to term the 

passenger numbers forecast also as the enterprise passenger numbers mean parameter 

      . 

Until now the focus was on the monthly and annual passenger numbers. In order to 

calculate the multi-period planned passenger numbers trajectory one has to take an 

extension by including also intermediate planning horizons that vary between one month 

and one year. This is done in order to calculate the passenger number means over multiple 

sub-periods. The sequence of all intermediating passenger numbers means from one 

month to one year gives the multi-period planned passenger numbers trajectory. The 
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mathematical expression is given in the following equation (7) where T is the multi-period 

notation of the twelve months of the year (T = 1, 2, 3, … , 12): 

              ∑ ∑     
     

 

 

   

            (7) 

As one can see the first value of the multi-period planned passenger trajectory is equal to 

the forecasted value of month one. For the multi-period time horizons the monthly 

passenger numbers are added to give the intermediate forecast. The annual prediction is 

equal to the accumulated forecast for the twelve periods. 

Being familiar with the construction of the fraction-based Gaussian enterprise model the 

next part of this work will show the process of it`s calibration, where the multi-period 

planned passenger numbers trajectory for the Vienna International Airport will be 

calculated by using historical data. In order to give the reader a better feeling of how the 

model is used for every step of the calculation a numerical example will be given.  

2.2.2 Historical Calibration of the Multi-period planned passenger numbers trajectory 

As shown above the monthly segment passenger numbers parameters         are equal to 

the location parameters of the normally distributed monthly segment passenger numbers 

fractions. These parameters are calculated by averaging the realized monthly segment 

passenger numbers over the last years. This expression is shown mathematically in the 

next equation (8), where Y represents the number of years used in the estimation and (y) 

shows the year of the realization: 

         ∑
          

 

 

        

 (8) 

 

As the fraction-based Gaussian enterprise model consists of more then one realized 

monthly segment passenger numbers fractions, these have to be derived as well. This is 

achieved by dividing the monthly passenger numbers by the annual figures: 

            
          

         
 (9) 

To set up the fraction-based Gaussian enterprise performance management a plan for the 

passenger numbers for the year 2012 should be made. In order to do this one has to take a 



 11 

closer look at the historical data and to analyse it deeply. For this first prediction the 

passengers will be divided in three subgroups- Passengers traveling from/to EU Schengen 

(S), Passengers travelling from/to EU Non-Schengen (NS) and Passengers travelling 

from/to Rest of the World (ROW) destinations. The model will be constructed by using 

the years 2009, 2010, 2011, which means that the forecast for 2012 will be made without 

knowing the historical numbers for 2012 and then in the validation part it will be 

compared to the real numbers in order to get feedback about the accuracy of the used 

methodology. 

Before making a prediction for the separate months a prediction for the whole year for 

every one of the three segments is made. By plotting the data for the years 2009, 2010 and 

2011, which can be seen in Figure 4, and examining it, it became clear that a good 

approximation for the growth of the annual passenger numbers from the first group 

(Schengen) is to take 5.5%.  

Figure 4: Historical data- EU Schengen passengers 

 

This number is chosen because it can be believed that the trend of lowering the passenger 

numbers growth from the last two years 2010 and 2011 will continue, as the economy in 

the Schengen countries gets more stable after the crisis in 2008 and there will be no more 

big growths in the passenger demand like between 2009 and 2010.  

For the second group (EU Non-Schengen) a good approximation will be to take the 

average percentage growth for the years 2010 and 2011, which is 11.28% and to use it as a 

growth for the year 2012. This percentage is chosen because, as it can be seen in Figure 5 

during the crisis there were no such big fluctuations in the number of passengers traveling 

within the EU Non-Schengen zone as in the Schengen one. 
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Figure 5: Historical data- EU Non-Schengen passengers 

 

From the historical data for the ROW passengers, plotted in Figure 6, it also became clear 

that a good approximation for this passengers group would be to take the average value 

from the last three years as an annual prediction, because the values for these years are 

almost equal and no trend was found.  

Please note that in month April 2010 there was an eruption of the volcano Eyjafjallajökull 

in Iceland, which led to untypically low demands in this period. For the prediction the 

corrected demand of 950,000 (S), 460,000 (NS) and 220,000 (ROW) passengers will be 

taken. 

Figure 6: Historical data- Rest of the World passengers 

 

The planned annual passenger numbers, calculated using the historical data, the corrected 

demand for the month April 2010 and the predictions for the growth made above, for the 
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three groups are:      
                 for the first group of passengers (Schengen), 

      
                for the second group (Non-Schengen) and        

                for 

the third group (Rest of the World). How this numbers are calculated is shown in the 

equations (10) and (11): 

 For EU Schengen and EU Non-Schengen passengers: 

          
               

                 
                     

     (10) 

 For ROW passengers: 

            
      

           
                

                
    

 
 (11) 

The index ‘P’ in the bottom stands for passengers, the index ‘q’=S, NS stands for the two 

groups of passengers- Schengen, Non-Schengen, the ‘APlan’/’AAct’ on the top shows that 

this is the annual plan/ annual actual value and ‘X’ is the per cent value of the growth that 

is expected for the next year. 

Using the historical data and the formulas stated above ne calculates the values for the 

single parameters. For every one of the five steps an example will be given to show how 

the calculation is done. The rest of the numbers as well as the historical data are to be 

found in the Tables.  

1) Passenger numbers fractions            of the different segments, years and 

months: 

The first step of the calculation is to find out the passenger numbers fractions of the 

different segments, years and months. To do so one has to take the passenger number, for 

an exact month and passenger category, and to divide it by the yearly passenger demand 

for the same category.  As an example the value for the month January 2011 of the 

segment Schengen is calculated in equation (12). 

                
              

            
 

       

          
        (12) 

The passenger demands for the other segments, months and years are to be calculated 

using the exact same methodology. The results can be found in Table 1. 
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Table 1: Passenger Numbers fractions            

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

aP(S),M(2011)  5.951% 6.060% 7.643% 8.370% 9.394% 9.236% 9.778% 9.538% 9.990% 9.042% 7.647% 7.351% 

aP(S),M(2010)  5.893% 5.983% 7.604% 8.353% 9.310% 9.252% 9.837% 9.642% 9.847% 9.133% 7.873% 7.275% 

aP(S),M(2009)  6.207% 6.327% 7.726% 8.495% 9.059% 9.222% 9.783% 9.228% 9.491% 9.087% 7.709% 7.666% 

aP(NS),M(2011)  5.760% 5.626% 6.990% 7.933% 8.805% 9.165% 10.839% 10.481% 10.048% 9.023% 7.700% 7.629% 

aP(NS),M(2010)  5.911% 5.804% 7.074% 7.890% 8.649% 9.208% 10.846% 10.669% 9.884% 9.187% 7.730% 7.147% 

aP(NS),M(2009)  6.363% 6.050% 7.192% 8.050% 8.894% 9.415% 10.531% 10.322% 9.501% 8.948% 7.428% 7.307% 

aP(ROW),M(2011)  7.381% 6.318% 7.361% 7.985% 7.920% 8.589% 10.671% 9.651% 9.417% 9.240% 7.921% 7.546% 

aP(ROW),M(2010)  6.968% 6.622% 7.945% 8.268% 8.302% 8.598% 10.409% 10.055% 9.115% 9.198% 7.400% 7.119% 

aP(ROW),M(2009)  7.093% 6.534% 7.641% 8.581% 7.981% 8.027% 10.289% 10.528% 9.164% 9.176% 7.755% 7.231% 

2) Monthly segment mean values of the passenger numbers        : 

The monthly segment means are calculated by averaging the values for the last years. The 

monthly segment means of the passenger numbers for segment S and month 1 are 

calculated explicitly to show the methodology. 
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(13) 

By using the same formula and the values from Table 1 one calculates the following 

values for the other segments and months. 

Table 2: Monthly fraction segment mean values 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

a(S),M  6.017% 6.123% 7.658% 8.406% 9.254% 9.237% 9.799% 9.469% 9.776% 9.087% 7.743% 7.431% 

a(NS),M  6.012% 5.827% 7.085% 7.958% 8.782% 9.263% 10.739% 10.491% 9.811% 9.053% 7.620% 7.361% 

a(ROW),M  7.147% 6.491% 7.649% 8.278% 8.068% 8.405% 10.457% 10.078% 9.232% 9.205% 7.692% 7.299% 

After having calculated the monthly segment mean values the next step is to calculate the 

passenger numbers for each month and group. 
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3) Mean values of the fraction-based segment passenger numbers 

As shown in the construction part the mean values of the fraction-based passenger 

numbers are equal to the product of the annual segment passenger numbers and the 

monthly segment means of the passenger numbers. Here the example of how the 

calculation is to be done is again for segment Schengen, year 2011 and month M1: 

               
                                        (14) 

The values for the other periods and segments can be seen in Table 3 bellow. 

Table 3: Mean values of the fraction based segment passenger numbers 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

  P(S),M  761,840 775,284 969,578 1,064,308 1,171,744 1,169,493 1,240,741 1,198,964 1,237,798 1,150,613 980,378 940,847 

 P(NS),M  432,746 419,463 510,034 572,848 632,208 666,807 773,028 755,179 706,247 651,664 548,498 529,882 

  P(ROW),M  184,996 168,009 197,979 214,267 208,816 217,539 270,652 260,857 238,958 238,248 199,099 188,912 

4) The mean value of the fractional single-period portfolio passenger numbers 

The mean value of the fractional single-period portfolio passenger numbers is equal to the 

sum of the three mean values of the segment passenger numbers. The calculation for 

fraction one is shown in the next equation: 

 

          ∑        

 

                               

                                                     

(15) 

Table 4 contains the mean values of the fractional single-period portfolio passenger 

numbers. 

Table 4: Mean values of the fractional single-period portfolio passenger numbers 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

xPlan
P(PF)  1,379,582 1,362,756 1,677,592 1,851,423 2,012,767 2,053,839 2,284,421 2,215,000 2,183,003 2,040,526 1,727,975 1,659,640 

5) The mean value of the multi- period portfolio passenger numbers              

Here the mean value for the month April is calculated as an example: 

 

              ∑         

    

 

                                                                  

(16) 
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The rest of the values are to be found in the following Table 5: 

Table 5: Mean values of the multi-period portfolio passenger numbers 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

P(PF),T(s0) 1,379,582 2,742,338 4,419,929 6,271,353 8,284,120 10,337,959 12,622,380 14,837,380 17,020,383 19,060,909 20,788,884 22,448,524 

As seen in the last step, the Gaussian model can be used to evaluate the means over 

multiple sub-periods. The planned passenger numbers trajectory, visualised in Figure 7 by 

the dashed blue line, is the sequence of all intermediating passenger numbers means from 

one month to one year. For the first month the number of passengers of the accumulated 

passenger numbers forecast in the planned passenger numbers trajectory equals the 

forecast for the month January. For the multi-period time horizons, as shown in the 

formula above, the monthly passenger number forecasts are summed order to give the 

intermediate forecast numbers. The annual number of passengers is equal to the sum of all 

twelve months.  
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Figure 7: Multi-period planned passenger numbers trajectory 
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2.3 Multi-period 90% enterprise passenger numbers uncertainty corridor 

In this section the uncertainty corridor that accompanies the multi-period planned 

passenger numbers trajectory computed earlier, will be calculated. This one will consist 

out of the lower and the upper bounds in which the monthly and annual forecasts will land 

with a probability of 90%. 

2.3.1 Construction of the multi-period passenger numbers volatility  

The inclusion of the volatilities allows the integration of uncertainty in the plan activities. 

In a Gaussian model the standard deviation is the mathematical representation of the 

enterprise passenger numbers volatility around their forecasted values. As in mathematics 

the standard deviation is defined as the square root of the variance, which is a measure of 

the dispersion of a set of data points around their mean, it follows that one can define the 

volatility as the square root of the variance: 

 

          √       

   

  √       

(17) 

where   stands for the volatility and can be interpreted as the average deviation from the 

mean (Cleff, 2008 P. 59). 

In the fraction based Gaussian enterprise model the intermediate enterprise passenger 

numbers volatilities in form of the   - conditional annual passenger numbers volatility 

parameter         
      is mathematically defined in the following equation (18) as the 

square root of the summed variances. 

         
      √∑         

  

   

     (18) 

One has to be careful that calculating the needed volatilities is trickier than calculating the 

mean values. As shown in the formula above, one has to transform these into variances 

before summing them up! This has to be considered by calculating all variables consisting 

of volatilities. 

In the next equation (19) the calculation of the monthly portfolio volatilities         
  of 

the fractional single-period passenger numbers is mathematically defined. In this equation 
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j=i=S, NS, ROW segments and              is the correlation between the fraction-based 

segment passenger numbers  ̃       

         
  ∑∑       

                      
 

  

 (19) 

(Markowitz, 1959 P. 91) 

In the above calculation due to the properties of the fraction-based enterprise model the 

monthly segment passenger numbers volatilities        
  can be defined as the product of 

the annual segment passenger numbers plan with the monthly segment passenger numbers 

fraction        
 . The mathematical definition is given in the following equation (20): 

        
       

            
  (20) 

In equation (19) the correlation can be equal to only numbers between -1 and 1 and can be 

defined as the coefficient that shows how much the one variable changes when the other 

does. If the correlation converges to 1 or -1 this is a sign that the variables have a higher 

positive respectively negative connection to each other. If the correlation coefficient is 

equal to zero, than one can say that both variables have no linear connection to each other. 

One can also define the correlation as a function of the covariance as shown in equation 

(21) (Cleff, 2008 P. 106-110) 

            
   [               ]

    [       ]      [       ]
 (21) 

(Cleff, 2008 P. 109) 

The covariance is a measure for the deviation of a pair of points from the so called 

bivariate main point of a scatter diagram, which on the other hand is a measure of how 

two variables are correlated. Mathematically the covariance is defined as in equation (22): 

 

   [               ]   

 
 

   
∑(                  )(                  )

 

   

  
(22) 

As one can see in the above equation the covariance depends on it`s scale unit. In order to   

solve this problem as it can be seen in equation (21), where the correlation is 
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mathematically defined, it has to be divided by the standard deviations of the two 

variables so that one can get a dimensionless coefficient (Cleff, 2008 P. 106-109). 

The last variables needed for the calculation of the intermediate enterprise passenger 

numbers volatilities are the volatilities of the monthly segment passenger numbers fraction 

       
 . These are derived by the naive calibration method as shown in equation (23) and 

(24): 

        
     (    [       ]   ) (23) 

     [       ]  √∑
(                  )

 

   

 

   

 (24) 

(Cleff, 2008 P. 60) 

As one can see in equation (24) by the calculation of the variance (the part under the 

square root) one divides not by the number of years but by the number of years minus one. 

This so-called theoretical variance is used when one has to make a conclusion for the 

population out of a sample. In such cases only the theoretical variance provides the 

unbiased estimation of the dispersion from the sample out to the population, when the 

mean value of the population (expected value) unknown is (Cleff, 2008 P. 60-61). 

The X% is chosen as a starting lower boundary for the volatility, which might have to be 

corrected later if the uncertainty corridor is too tight. The lower boundary for the volatility 

is needed, because every number underneath it wouldn’t describe the reality accurately 

enough, something that might lead people thinking that this business is very secure and 

stable, which is not the reality. An example of the data’s fluctuations and uncertainty 

hidden in this business can be seen at Figure 8, where the historical data for the years 

between 2001 and 2011 is graphically represented. 
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Figure 8: Historical data 2001-2011 

 

One can see that after a steady growth of the passenger numbers between 2003 and August 

2008, from the month November 2008 the passenger demand became less and in the year 

2009 was even below the one for 2007. This accompanied with the case in April 2010 

when after a volcano eruption there were no flights for almost two weeks are clear 

examples of how passenger numbers could fluctuate. 

When all the formulas from above are put together this leads to the one for the calculation 

of the volatilities of the multi-period enterprise passenger numbers: 

 

            

 √∑ ∑∑       
                                 

            

     

 (25) 

As in the previous section, where the multi-period planned passenger numbers trajectory 

was defined this section will also continue with the calibration process, but this time of the 

multi-period passenger numbers volatilities. Again in order to give the reader a better 

feeling of how the model is used for every step of the calculation a numerical example 

will be given. 

2.3.2 Historical Calibration of the Multi-period planned passenger numbers trajectory 

Earlier the passenger numbers fractions of the different segments, years, months            

and the monthly fraction segment mean values of the passenger numbers        , which 

can be found in Table (1) and (2) were calculated. By fitting this data into the formulas 
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from above one can calculate the Multi-period passenger numbers volatilities by following 

the above-mentioned steps. Here again examples will be given to show how the equations 

and formulas given are to be correctly used. 

1) Calculation of the volatilities of the monthly passenger numbers fractions         of 

the different segments, years and months: 

The volatilities of the monthly passenger numbers fraction are a function of both the 

passenger number fractions of the different segments and the monthly fraction segment 

mean values: 

     [        ]  √∑
(                    )
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By the same process as used for fragment S month M1 one obtains the following results 

for the volatilities of the other segments: 

Table 6: Monthly passenger numbers fractions         

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

a(S),M  0.167% 0.180% 0.062% 0.078% 0.174% 0.015% 0.033% 0.215% 0.257% 0.045% 0.117% 0.208% 

a(NS),M 0.314% 0.213% 0.101% 0.082% 0.124% 0.134% 0.180% 0.174% 0.280% 0.122% 0.166% 0.246% 

a(ROW),M 0.212% 0.156% 0.292% 0.298% 0.205% 0.327% 0.195% 0.439% 0.162% 0.032% 0.266% 0.221% 

All values that are under 0.1% are corrected to 0,1%, because it is believed that all the 

values underneath it wouldn’t describe the uncertainties accurately enough. As an example 

the volatility for the Schengen passengers in month 4,          can be given: 

 

            (    [        ]     )                  

      
(27) 
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After doing this for all months and segments one gets the following values, which are also 

to be used for the further calculation: 

Table 7: Corrected monthly passenger numbers fractions         

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

a(S),M  0.167% 0.180% 0.100% 0.100% 0.174% 0.100% 0.100% 0.215% 0.257% 0.100% 0.117% 0.208% 

a(NS),M 0.314% 0.213% 0.101% 0.100% 0.124% 0.134% 0.180% 0.174% 0.280% 0.122% 0.166% 0.246% 

a(ROW),M 0.212% 0.156% 0.292% 0.298% 0.205% 0.327% 0.195% 0.439% 0.162% 0.100% 0.266% 0.221% 

2) Calculation of the Covariance    [               ]  and correlation              

between the passenger numbers fractions of the different segments in the different 

months: 

The covariance and correlation both describe how much the variables differ from the 

expected value in similar ways. Said in other words these two show how much the one 

variable changes when the other does. As an example here the covariance between the 

passenger numbers fraction of segments S and NS in month M1 will be calculated: 
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(28) 

The correlation coefficient between the Schengen and Non-Schengen passenger numbers 

is a function of the covariance and the volatilities of the both variables and is defined as: 
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(29) 

The other values for the correlations between the different segments in the different 

months are: 

Table 8: Correlations              between the passenger numbers fractions 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

a(S),a(NS),M  0.91393 0.79797 0.73643 0.98863 -0.60021 -0.77048 0.46099 0.94749 0.99988 0.67102 0.33620 -0.00793 

a(S),a(ROW),M  -0.05005 0.02276 -0.33484 0.82196 0.12727 0.86920 -0.27305 -0.74977 0.60893 -0.64312 -0.99899 -0.08101 

a(NS),a(ROW),M  -0.45110 0.62070 0.39087 0.72698 -0.86973 -0.98490 0.72781 -0.49879 0.62113 0.13622 -0.29351 0.99732 

3) Calculation of the planned volatilities of the fraction single-period enterprise 

passenger numbers         : 

As an example here the values for month M1 will be calculated explicitly:  

           √∑∑                               
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By making the same calculation for the other months one gets the following values, shown 

in Table 9, for the rest of the volatilities: 
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Table 9: Volatilities of the fraction single-period enterprise passenger numbers          

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

P(PF),M 41,722 37,611 19,641 26,325 17,499 12,764 23,767 32,702 55,373 18,933 16,651 34,742 

4) Calculation of the volatilities of the multi-period enterprise passenger numbers 

        : 

On the next page an example is given of how the volatility of the multi-period enterprise 

passenger numbers for the month April is calculated: 
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(31) 

By calculating the values for the other months in the same manner one gets: 

Table 10: Volatilities of the multi-period enterprise passenger numbers          

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

              41,722 56,172 59,507 65,070 67,381 68,580 72,581 79,608 96,972 98,803 100,197 106,049 
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2.3.3 Construction of the multi-period enterprise passenger numbers VaRs 

As one of the references states: “Value-at-Risk (VaR) measures the worst expected loss 

under normal market conditions over a specific time interval at a given confidence level” 

(Benninga S. and Wiener Z, 1998 P. 1). The VaR can also be seen as the lowest quantile 

of the possible losses that can ensue within a specified portfolio during a given time 

period.  

If one wants to answer the question what is the value X under that the passenger numbers 

are not going be, with the possibility of Y%, than one is asking for the Y quantile of the 

normal distribution        . Mathematically this is defined the following way: If 

          and           than the  - Quantile    respectively   
  are defined the 

following way: 

                 
     (32) 

And  

         
  (33) 

(Arens, Hettlich, Karpfinger, Kockelhorn, Lichtenberg and Stachel, 2008 P. 1350). 

The graphical representation of the VaR can be seen in the next two figures. 

Figure 9: VaR, Normal Density Function 

 

Source: http://demonstrations.wolfram.com/ValueAtRisk/ 
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Figure 10: VaR, Normal Distribution Function 

 

Source: Schwaiger, Bös and Kronfellner, 2012 P. 67 

In the case of a standard normally distributed random variable    is the probability that a 

realisation will be under   
  exactly  . As the density of the       is symmetrical the 

probability that the realisation is higher than     
  also  . On the left hand side of   

  lies 

the probability   and on the ride hand side the probability    . The probability between 

  
  and     

  is therefore equal to      (Arens, Hettlich, Karpfinger, Kockelhorn, 

Lichtenberg and Stachel, 2008 P. 1350).  

In the second figure the VaR is described in the Normal Distribution Function. Here one 

can see the probabilities for every value and percentile (please note that the value written 

on the x-axis are not the real passenger numbers values that were calculated earlier). 

Out of the initial passenger numbers volatility the passenger numbers value at risk, needed 

for the calculation of the confidence corridors, are calculated. For this purpose the annual 

passenger numbers volatilities are multiplied with the percentiles of the standard normal 

distribution, those values can be found in Table 11, for the  - probability and the       

probability. The mathematical expression is shown in equation (34) 

           
                          (34) 
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2.3.4 Historical calibration of the multi-period enterprise passenger numbers VaRs 

The confidence level gives how high is the probability that the values of  ̃            are 

between              and                        
       . In this paper the Values at Risk 

are calculated for the confidence level of 95%. 

Specifically calculated for 95% the VaRs for T3 are: 

            
                                                (35) 

The other values calculated using the same formula are: 

Table 11: Multi-period enterprise passenger numbers VaRs 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

          
        68,628 92,397 97,883 107,033 110,836 112,807 119,389 130,948 159,510 162,522 164,814 174,440 

          
       -68,628 -92,397 -97,883 -107,033 -110,836 -112,807 -119,389 -130,948 -159,510 -162,522 -164,814 -174,440 

 

2.3.5 Multi-period 90% enterprise passenger numbers– uncertainty corridor 

The calculation of the upper- and lower limits of the multi-period 90% passenger 

numbers-uncertainty corridor, which boundaries are the initial 5%-percentile and the 

initial 95%-percentile of the normal distribution (            , is shown in 

equations (36) and (37).  

         
                               

        (36) 
 

 
        

                              
        

                                               
       

(37) 

The values of     und      just differ by their algebraic sign. All   values, which are 

under 50%, have a minus algebraic sign and all z values, which are over 50%, are positive. 

The z value of 50% equals zero. From the table below one gets             and 

           . In Table 18 shown in the Appendix all the z-values for the different 

uncertainties are given. 

 For T3 the corridor is to be calculated as it follows: 

 
         

                                 
        

                                                     
(38) 
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(39) 

With a probability of 95% is the value of  ̃             fewer than 4,517,812 and with a 

probability of 5% it will be under 4,322,047. The multi-period planned enterprise 

passenger numbers trajectory therefore lays between the two values with a probability of 

90%. For the other values the following numbers are calculated: 

Table 12: Multi-period 90% enterprise passenger numbers uncertainty corridor 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

   1.448.210 2.834.735 4.517.812 6.378.386 8.394.956 10.450.766 12.741.769 14.968.328 17.179.893 19.223.430 20.953.697 22.622.964 

     1.310.954 2.649.941 4.322.047 6.164.320 8.173.284 10.225.152 12.502.991 14.706.432 16.860.872 18.898.387 20.624.070 22.274.084 

Figure 11: Multi-period 90% enterprise passenger numbers uncertainty corridor 

 

As it can be seen Figure 11 the best and worst case differ very little from the planned 

passenger numbers trajectory, which means that the uncertainty corridor is too tight. This 

tight uncertainty corridor, such as a too low volatility, might lead to the false feeling that 

the air passenger transport is a very secure business, which was shown not to be the 

reality. The tightness of the corridor shows that the volatilities have chosen are just too 

low and therefore they will be raised to 1%. The 1% is chosen as an example. If one wants 

a more conservative plan than one can chose 2%, 3% or even higher depending on how 

big the fluctuations on the current airport are.  
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By using the same formulas and -percentiles, which were used above and the volatility 

of 1% one gets the following numbers for the multi-period 90% enterprise passenger 

numbers uncertainty corridor: 

Table 13: Multi period 90% enterprise passenger numbers uncertainty corridor for Vola min= 1% 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

   1.693.989 3.194.092 4.965.473 6.925.185 8.955.380 11.028.815 13.371.864 15.643.198 17.900.684 19.986.763 21.744.039 23.438.352 

     1.065.175 2.290.584 3.874.386 5.617.521 7.612.859 9.647.102 11.872.896 14.031.562 16.140.081 18.135.055 19.833.728 21.458.696 

As it can be seen in Figure 12 our assumption, that the volatility of 0,1% is too low is true 

and the minimum for the volatility should be set to at least 1%. This is so because a too 

tight corridor with low volatilities means that if an event happens such as the financial 

crisis in 2009 then one wouldn’t be prepared for such low incomes and this is something 

one wants to avoid when making forecasts for future events. 

Figure 12: Multi-period 90% enterprise passenger numbers uncertainty corridor-new 

 

After having shown an excellent tool for illustrating the possible risks and the passenger 

numbers objectives has been set, at the next part the model will be validated in an out of 

sample test where the objectives set will be compared to the real realisations for the year 

2012. 
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2.4 Model validation with an out of sample test of the initial forecasted 

passenger numbers and uncertainty corridor 

In this last part of the second chapter of this work the actual passenger of year 2012 will 

be compared to the forecast made using the Gaussian Enterprise Model. This out of 

sample test will show us if the forecast and the uncertainty corridor calculated are accurate 

and if this model is appropriate for future use. 

The historical monthly numbers for year 2012 are: 

Table 14: Historical data for year 2012 

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

xP(PF)  1,397,692 1,387,505 1,700,590 1,889,866 1,985,121 2,062,155 2,192,650 2,138,588 2,173,65 1,990,243 1,658,971 1,588,696 

And the accumulated are: 

Table 15: Historical data of the multi-period portfolio passenger numbers 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

P(PF),T(s0) 1,379,582 2,785,197 4,485,787 6,375,653 8,360,774 10,422,929 12,615,579 14,754,167 16,927,823 18,918,066 20,577,037 22,165,733 

In Figure 13 on the next page one can see that the forecast fits very appropriately the 

historical data and that the uncertainty corridor for a minimum volatility of 1% is also 

very accurate. The fact that the blue line, which shows our planned path, is almost 

identical with the orange one, which shows the historical data numbers is a clear indicator 

of the good quality of the Gaussian Enterprise Model. However, one of the most important 

aims an enterprise should have is to fit its predictions within the confidence intervals. 

Being able to do so would mean that the company has effective risk management and 

place against external factors and unexpected events. This would also mean that the firm 

not only would not be vulnerable but also would take advantage of stress situations. 
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Figure 13: Out of sample test for the multi-period portfolio passenger numbers 

 

The Gaussian Passenger Traffic Model is not only used in the initial planning but also in 

the subsequent planning process in the different states    at all time points t. This one 

among with suggestions for control activities, when the plan/forecast deviations are too 

high will be shown in the next final part of this section. 
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2.5 Subsequent Planning 

As one of the main ideas of forecasting is the minimization of risks, after a plan is set up 

one has to check over defined time periods (monthly wise) how the passenger numbers 

really develop.  The   - conditional subsequent passenger numbers forecast for the annual 

portfolio passenger numbers volumes is shown in equation (40)  
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(40) 

Here the conditional rolling forecast              is calculated out of two components. The 

first one contains the accumulated actuals resulting out of the previous and current periods 

   . The second one describes the conditional remaining forecast and is equal to the 

product of the annual portfolio passenger numbers volume       
     and the sum of the 

remaining monthly passenger numbers fraction means             . 

Table 19, which due to its size is attached in the Appendix, contains of two tables and 

shows the calculation of the conditional passenger numbers forecasts for the month 

January 2012 and February 2012 respectively. These tables contain the monthly passenger 

numbers realizations for the year 2012 and the monthly passenger numbers fraction 

means, which as mentioned are used in the fraction-based passenger model to compute the 

subsequent annual passenger numbers forecast. The calculation of the   - conditional 

subsequent passenger numbers forecast, see Table 19, is done by the above stated 

methodology and is shown in the following equation (41): 
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Please note that in the above calculation the   - conditional subsequent annual passenger 

numbers forecast, the values for the   - conditional fractions means are equal to the   - 

conditional passenger numbers fractions means, which were calculated earlier in 2.2 This 

is due to the assumption that the conditional passenger numbers fractions are constant 

over time. 

In Table 19 the planned single-period portfolio monthly fraction volatilities are calculated 

as well. These are functions of the planned monthly segment fraction volatilities, the 

correlations and the monthly weights of the segments. As one can see in equation (44) the 

calculation of the planned single-period portfolio monthly fraction volatilities is very 

similar to the calculation of the planned volatilities of the fraction single-period enterprise 

passenger numbers         . The only difference lies within the fact that one doesn’t take 

the planned fraction passenger segment numbers for the computation but the planned 

fraction passenger weights      
    , which are assumed to be constant over time and are 

equal to the planned annual segment passenger numbers divided by the planned enterprise 

annual passenger numbers, a definition shown in equation (42). 

      
     

     
    

      
     (42) 

The weights of the Schengen passengers are therefore equal to 56,403%: 
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As by the calculation of the volatilities of the multi-period enterprise passenger numbers 

         the   - conditional annual enterprise volatility is equal to the square root out of 

the sum of the   - conditional planned monthly fraction variances: 
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 (45) 

In the above stated formula one calculates the   - conditional annual enterprise volatility: 
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(46) 

For the calculation of the   - conditional annual passenger numbers volatility one has to 

multiply the planned annual passenger numbers with the   - conditional annual enterprise 

volatility. 

                    
             

      (47) 

For the   - conditional annual passenger numbers volatility one gets: 

                    
             

                               (48) 

Although the aim of this work is to plan the passenger numbers at the Vienna International 

Airport, here a brief explanation of how a plan/forecast- comparison can be used to 

specify the probabilities that the planned annual passenger numbers will be realized over 

the year will be given.  

As one can see in Table 19, next to the conditional passenger numbers forecasts and the 

conditional remaining passenger numbers volatilities also the plan/forecast deviations are 

computed by subtracting the planned annual enterprise passenger numbers from the 

conditional forecast, calculation shown in equation (49) 

                               
     (49) 

By dividing the PFD by the conditional remaining volatility one gets the Risk Adjusted 

PFD, which is also called as the z-transformation and is shown in Figure 14 on the next 

page. This is the transformation of a normal distribution in a resulting standard normal 

distribution (expected value of zero and the volatility of one), where the probabilities of 

each value are known.  
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Figure 14: The z-Transformation 

 

As there is no deviation at the beginning, when the initial planned passenger numbers are 

calculated, the z-value is zero and the probability is therefore 50%. After month 1 the first 

actual passenger numbers are realised. The realisation of 1.397.692 travellers is with 

18.110 passengers above the planned passenger numbers and therefore the z-value is 

positive and the p-value, the probability of achieving the annual plan, is now higher than 

50%. This so-called check activity after the first month leads to no necessary actions. By 

taking a closer look at the realizations for month 2 one will see that they are again above 

the planned values and therefore the expectation of achieving the set goals gets higher 

again and as by the first month no action is needed. For p-value bellow 50% Schwaiger, 

Bös and Kronfellner are suggesting the following activities: 
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<50%: Observation 

<30%: Promotion 

<15%: Emergency Plan. 

 

The Gaussian Enterprise Model is a very useful tool for one to obtain a better 

understanding of the numbers and possible outcomes in the forthcoming year. It allows the 

user not only to make a fraction-based forecast and to include the uncertainties 

surrounding the passenger numbers volume, resulting in the computation of  ‘best and 

worst’ scenario but also to compare the passenger numbers realisations with the planned 

passenger numbers and to take quick actions if needed. 

After analysing the data using the Gaussian Enterprise Performance Management, the next 

part of this work will provide a forecast through the Box-Jenkins ARIMA methodology, 

which is a “typical way” of forecasting airport passenger demands. 
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3. The Box-Jenkins/ ARIMA Methodology 

There is a variety of statistical forecasting approaches that differ mainly by the data that is 

used, thus it is crucial to choose the best model and approach when dealing with such 

tasks.  One of the most common approaches includes exponential smoothing, correlation 

and regression analysis and time series and decomposition analysis. The common factor in 

the above methods is the assumptions of the values of the series, which are statistically 

independent or not related to each other.  Another popular class of models are those that 

can produce forecasts based only on a synthesis of historical patterns in data. A 

specialised subclass includes the Autoregressive integrated moving-average models 

(ARIMA). Those are linear filtering techniques that completely ignore the independent 

variables in a forecasting model. In other words, ARIMA models rely completely on the 

historic and present data of the dependent variable while ignoring the potential external 

factors – the descriptive variables. It is a highly refined curve-fitting device, which 

produces the final result of an accurate forecast. In comparison to the first set of models 

above, ARIMA methodology is adopted when the observations of a time series are 

statistically dependent on or related to each other. ARIMA forecasts are widely used for 

forecasts across many different industries. This work will now continue with an 

explanation of the Box- Jenkins ARIMA Methodology.  
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3.1 The Box-Jenkins technique 

The main feature of the Box-Jenkins forecasting model is the fact that it does not assume 

any particular pattern in the historic data that is to be analysed and forecasted. Based on a 

number of factors, it adapts an iterative approach in order to identify the best suiting 

forecasting model for the set of data.  The best possible model is then checked against the 

historic data in order to analyse to what degree the model accurately describes the series. 

The appropriateness of the model is assessed based on the residuals between the 

forecasting model and the historic data. A residual is a measure of the deviation of an 

observed value in relation to the “theoretical value”. In other words the residual is the 

difference between the observed value and the estimated function value. A model is 

considered to be appropriate if the residuals between the forecasts and the historic data are 

small, randomly distributed and independent. Those features of the residual enforce the 

characteristic of the model – no particular pattern. If the analysis of the residuals shows 

that the model does not fit and it is not satisfactory, the process is repeated until a more 

appropriate model is developed. Those steps are also clearly illustrated in the figure below 

(Hanke and Reitsch, 1998, P. 407-408). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Source: Hanke, J. and Reitsch, A., 1998, Business Forecasting P. 408 
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Figure 14: Flow diagram of the Box-Jenkins method 
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As shown in the flow chart the analyst can follow those steps of the Box-Jenkins method 

and choose the most appropriate model for the set of data. A general class of such models 

include AR, MA and ARIMA. ARs are models with only autoregressive terms; in other 

words, the output variable depends linearly on its own previous values. MAs are models 

with only moving-average terms and it is more complicated than AR because the lagged 

error terms are also observable. The main difference between them is the inclusion of 

lagged terms as AR includes lagged terms of the series itself and MA includes lagged 

terms on the residual. The ARIMA model includes both the autoregressive and moving 

average terms. All of the above are used for stationary time series data. This is a set of 

data whose average value is not changing over time (Hanke and Reitsch, 1998, P. 408).  

The Box-Jenkins methodology allows the analyst to select one of the models that best fits 

the data. The selection of the most appropriate model is done by comparing the 

distributions of autocorrelation coefficients of the series while fitted with the theoretical 

distribution for the various models under investigation. The following figures below 

represent the theoretical distributions for the autocorrelation coefficients for some of the 

most popular ARIMA models. The autocorrelation function is a set of correlation 

coefficients between the series and its lagged values over time. The distributions below 

are highly theoretical and an actual set of data would not produce such a clear and 

distinctive one. However an experienced analyst should be able to match the produced 

data to one of the models and identify the best approach. An analysis of the 

autocorrelation and the partial autocorrelation distributions will be provided further in the 

work in the discussion of each model (Hanke and Reitsch, 1998, P. 408). 

Autoregressive model (AR) 

The autoregressive model takes the below form: 

                                 (51) 

where 

    = Dependent variable 

                = Independent Variables that are dependent variables lagged  

specific time periods 

             = Regression coefficients 

    = Residual term that represents random events not explained by model 
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In this equation the regression coefficients are calculated by using the nonlinear least 

squares method. The nonlinear least squares method usually adapts an iterative solution 

approach to calculate the parameters rather than using a direct computation. This method 

starts by using the preliminary estimates and continues by systematically improving 

estimates until the optimal and most accurate values are identified. If the AR model 

captures successfully the dependence structure of the time series then the residuals should 

appear as randomly distributed. How the method exactly works is described 

mathematically in the third section. If the AR model captures successfully the dependence 

structure of the time series then the residuals should appear as randomly distributed. An 

AR signature in the distribution would be if the Partial autocorrelation function displays a 

sharp cut off while the ACF decays slowly with visible spikes at higher lags (Hanke and 

Reitsch, 1998, P. 412-414).  

Figure 15: Autocorrelation and partial autocorrelation coefficients of AR(1) & AR(2) models 

 

Source: Hanke, J. and Reitsch, A., 1998, Business Forecasting 

Figure 15 represents the equations of an AR model of order one – AR(1) and an AR 

model of order two – AR(2). Number of p terms can be added to the equation in order to 

represent AR(p) model, where p is the number of past observation that are going to be 
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included in the forecast for the upcoming period. The top two rolls of the figure represent 

the behaviour of the theoretical autocorrelation and partial autocorrelation functions for a 

simple AR(1) model. The main difference that can be spotted between the two figures is 

the behaviour of the correlations. The autocorrelation confidents progressively decline to 

zero, while the partial autocorrelation coefficients dopes to zero after the very first time 

lag. The second part of figure 10.2 c) and 10.2 d) show the behaviour of an AR(2) model. 

In this case, similarly to AR(1), the autocorrelation coefficients trail off to zero, while the 

partial autocorrelation coefficients drop to zero after the second time lag. This type of 

pattern will persist in any AR(p) model, with the only difference being in the case of 

partial autocorrelation. In this scenario the coefficient will drop to zero after the p time 

lag. However, it must be noted that sample autocorrelation functions are going to differ 

from these sampling functions due to sampling variation (Hanke and Reitsch, 1998, P. 

413).  

Moving-Average Models (MA) 

The moving-average model takes the below form when put into an equation: 

                                  (52) 

where 

    = Dependent variable 

             = Weights 

    = Residual or error 

                = Previous values of residuals 

The main difference between AR and MA are the independent variables used to calculate 

the dependable. As seen above in AR the dependent variable is calculated through the 

lagged values of the variable itself. In the case of an MA model, the variable depends on 

the previous values of the residuals. The variable is then estimated while using a linear 

combination of past errors. The weights are usually shown with negative coefficients 

although the weights can be both negative and positive. The sum of all the weights does 

not equal 1. The current values of the variable can be found from past shocks or errors 

added to new shocks or errors. The time series is regarded as a moving average that is 

unevenly weighted, because of different coefficient. If this model is accurate and captures 
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the dependence structure in the data then the residuals should look random (Hanke and 

Reitsch, 1998, P. 414).  

Figure 16 represents the equations of an MA model of order 1 MA(1) and MA model of 

order 2 MA(2). Number of p terms can be added to the equation in order to represent 

MA(p) model, where p is the number of past error terms that are going to be included in 

the forecast for the upcoming period. Figure 16 a) and b) illustrate the behaviour of the 

theoretical autocorrelation coefficients of the MA(1) model. One of the reasons to assess 

the correct model through the autocorrelation and the partial autocorrelation functions is 

the distinctive difference in their behaviour. The autocorrelation coefficients for the 

MA(1) model drops to zero after the first lag, while the partial autocorrelation trails off to 

zero in a very graduate manner. It is the same case concerning the model of MA(2). The 

only difference being that in the case of autocorrelation the coefficient drops to zero after 

the second lag. Here again, the partial autocorrelation function steadily decreases to zero. 

Here again it should be noted that sample autocorrelation functions would differ from 

these theoretical functions due to sampling variation (Hanke and Reitsch, 1998, P. 414). 

Figure 16: Autocorrelation and partial autocorrelation coefficients of MA(1) and MA(2) models 

 

Source: Hanke, J. and Reitsch, A., 1998, Business Forecasting 
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In order to summarise the above two models, it can be concluded that in the case of AR(1) 

model the autocorrelation coefficient function declines in geometric progression from its 

highest value at lag 1, while PACF cuts off abruptly after lag 1. In the case of the MA(1) 

model it is simply the other way around.  

Autoregressive Moving-Average Models (ARIMA) 

The ARIMA model is simply a mixture form AR and MA models and this is best 

represented by the equation below: 

 
                                       

                           
(53) 

ARIMA models use a combination of past values and past errors and offer the potential of 

fitting models that could not be otherwise appropriately fitted using simply an AR or MA. 

In this case the letter “I” stands for Integrated, which means a differentiating must be 

done. One of the main characteristics of an ARIMA model is that it can be used for series 

with stochastic trends. Stochastic trend usually refers to random trends where they are not 

predicted by a certain event. This model is usually written as ARIMA (p,d,q), where: 

 p is the number of autoregressive terms; 

 d is the order of differencing and; 

 q is the number of moving average terms. 

Figure 17 shows the equation of an ARIMA(1,0,1), which is a first order AR model with 

no differencing and one moving average term. It represents the behaviour of the 

theoretical autocorrelation and partial autocorrelation coefficients (Hanke and Reitsch, 

1998, P. 415).  

A significant characteristic of Box-Jenkins methodology in comparison to other methods 

is the fact that it does not make assumptions about the number of terms or the relative 

weights to be assigned to the terms. It is the analyst who selects the appropriate model 

along with the number of terms that should be used. It is the program then that calculates 

the coefficients by using the nonlinear least squares method. The estimates that are 

provided are then put into confidence intervals (Hanke and Reitsch, 1998, P. 415).  
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Figure 17: Autocorrelation and partial autocorrelation coefficients of mixed ARIMA (1,1) models 

 Source: Hanke, J. and Reitsch, A., 1998, Business Forecasting 
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3.2 Applying the methodology 

 As previously discussed, the Box-Jenkins approach includes four separate stages: 

1. Model construction 

2. Model calibration and testing of model adequacy 

3. Model validation 

This work will now closely examine each of the three stages above. 

Model construction 

This first step of identifying the model is to determine whether the series is composed by 

stationary or non-stationary data. Stationary data is referred to the case when the mean 

value is not changing over time. If the series is not stationary the analyst should convert 

them to stationary through the method of differencing. He then has to specify the degree 

of differencing so the Box-Jenkins algorithm can convert the series into stationary data. 

Subsequent computation can then be undertaken using the converted data. Once the data is 

in the correct stationary format, the analyst can continue by identifying the most 

appropriate model. This is achieved by analysing and comparing the autocorrelation and 

the partial autocorrelation coefficients. This distribution and behaviour is closely analysed 

in order to be fitted in one of the examples discussed above. As mentioned, in some cases 

the data should be further manipulated in order to obtain clear results and identify it with 

one of the theoretical distributions above. It is expected that the analyst will be able to 

match the acquired corresponding coefficients to the distinctive feature of one of the 

models. In case the tests are inconclusive and the data cannot be properly matched, further 

tests regarding the accuracy of the model should be undertaken in Stage 2. The easiest 

way to identify the appropriate model is by studying the distribution. If the autocorrelation 

drops to zero exponentially it is regarding an AR model. However, if it is the partial 

autocorrelation that exponentially decreases to zero, it can be concluded that and MA 

model is required. Furthermore, if both correlations just trail off to zero then it can be 

assumed that an ARIMA model should be used. Finally, by counting the numbers of 

autocorrelation and partial autocorrelation coefficients that are statistically different from 

zero, the analyst will be able to determine the order of the MA and/or AR processed 

(Hanke and Reitsch, 1998, P. 416). 
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Model calibration and testing of model adequacy 

After the model has been selected, the next step is to estimate the parameters. The Box-

Jenkins computer program can do the calculations of the parameters such as the 

coefficients and the errors using the nonlinear least squares method. Then the analyst 

should check the accuracy of the model forecasts. This is achieved by examining the error 

terms        ̂  and to make sure they are random. This can be done by analysing the 

autocorrelations of the error terms and making sure they are not significantly different 

from zero. If there is a number of low-order or seasonal lags that are statistically different 

from zero, then the model should be revise and most probably considered as inadequate. 

Another way of checking the appropriateness of the model is through a chi-square test. 

This is also known as the modified Box-Pierce Q statistic, which is executed on the 

autocorrelations of the residuals. The test statistic is: 

          ∑
  

 

   

 

   

 (54) 

and is approximately distributed as a chi-square distribution with m-p-q degrees of 

freedom.  

 n = number of observations in the time series 

 k = the time lag to be checked 

 m = the number of time lags to be tested 

 r(k) = Sample autocorrelation function of the k-th residual term 

If the resulted Q value is larger than X squared for m-p-q degrees of freedom, then the 

analyst can conclude that the model is inadequate and return to the previous stage.  

Those two tests should always be conducted in order to provide inside on the fitness of the 

model. In rare cases large deviations can be ignored. This is considered acceptable when 

those large deviations are clearly explained and caused by external factor that are unlikely 

to be repeated in the scope of the forecasts. Once the previous steps have been completed 

successfully and an adequate model has been chosen it can be proceeded to forecasting 

one or several periods into the future. (Hanke and Reitsch, 1998, P.416- 418).   
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Validating the model 

Usually, as more data becomes available, the same model can be used to revise the 

previous forecasts by choosing another time origin. The analyst should always revise the 

new available data in order to identify any important changes that would require a change 

of the model. In such cases, where the series appears to be changing over time, the 

parameters might need to be recalculated. If the new parameters do not improve the 

model, a new one must be developed. The analyst should make this decision based on the 

difference in forecasts errors. If small ones are noticed, they may indicate that the 

parameters should be recalculated. When there are large differences in the forecast errors 

then the analyst should go back to the very beginning of the process where the data series 

is fitted into different models in order to identify the most suitable one (Hanke and 

Reitsch, 1998, P. 418).  
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3.3 Vienna International Airport- Passenger demand forecasting 

3.3.1 Model construction 

After gaining understanding of the theory and techniques behind the ARIMA model, it can 

be now applied to the set of data in order to provide a one-year forecast for the passenger 

demand on the Vienna International Airport (VIE). The passenger demand between the 

years 1964 and 2011 will be used as the main historical data set. The numbers have been 

obtained from Statistik Austria. 

The first step when forecasting, regardless of the methodology chosen is to plot the 

historical data and to analyse it gross before starting with the calculations. The original 

data{  }   
   , is plotted in Figure 18. By observing the graphic it can be seen that the 

passenger demand on the Vienna International Airport is seasonal and that it has started to 

increase notably after the year 1990. 

Figure 18: Original historical data of the passenger demand 1964-2011 

 

Because the fluctuations get broader over the time one has to make them as similar as 

possible, which means that the historical data must be logarithmized:  

            (55) 
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From now on one has to do the whole forecast with this logarithmized passenger numbers 

and at the end, when the prediction is completed, to de-logarithmize the outcomes in order 

to get the results in the same format as in the beginning of the project. The result from 

equation (55) is shown in Figure 19. 

Figure 19: Logarithmized historical data of the passenger demand 1964-2011 

 

By observing the graph it can be concluded that the trend from the original set of data 

persists in the logarithmized model as well. To prove this assumption mathematically, one 

has to analyse the autocorrelations of the data, something that is recommended regardless 

of how obvious the trend is. “The autocorrelations are the correlation between a variable, 

lagged one or more periods, and itself “(Hanke and Reitsch, 1998, P. 91). They are used to 

identify time series data patterns and are calculated by the following formula: 

    
∑      ̅ 

             ̅ 

∑      ̅  
   

  (56) 

where: 

    = autocorrelation coefficient for a lag of k periods 

  ̅ = mean of the values of the series 

    = observation of time period t 

      = observation k time periods earlier or at time period t-k 

(Hanke and Reitsch, 1998, P. 92). 
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The autocorrelations are then tested for significance with the equations (57) and (58), 

which calculate the upper and lower limits. If these are exceeded, then the autocorrelation 

coefficients are said to be significantly different from zero.  

                                √
(    ∑         

   )

 
 (57) 

                                √
(    ∑         
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 (58) 

where 

        = standard error of the autocorrelation at lag k 

      = Autocorrelation at lag i 

   = number of observations in the data series 

(Hanke and Reitsch, 1998, P. 96-97). 

The results from equations (56), (57), (58) can be seen in Figure 20, where the blue 

columns describe the autocorrelations and the red dotted lines, the 95% confidence limits. 

Figure 20: ACF for the logarithmized Passenger Demand 

 

By looking at the autocorrelations one can see that for the first fifty periods the 

autocorrelation coefficients are significantly different from zero, they are above the red 

limits line, and then with the increasing of the periods they decrease to zero. This confirms 
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that the original observation is true and that the logarithmized historical data did have a 

trend and due to the fact that the average value is changing over time it is not stationary.  

As described in the methodology part, in order to eliminate the trend one has to difference 

the data. The first-difference is calculated as follows: 

              (59) 

The plot of the autocorrelations of the first-difference, displayed in Figure 21, shows that 

the trend is removed, thus a stationarity have been achieved on a period-to-period basis. 

However the autocorrelation coefficient for the time lags 12, 24, 36, etc. are very high, 

which signals that our observation done in the beginning is true. The data is periodical 

with the period 12 (a seasonal component is available in the series    ), which means that 

the series is not stationary yet. If the autocorrelation coefficient for lag 24 has dropped to 

zero, then the first-differenced data would have been stationary.  

Figure 21: ACF for the logarithmized Passenger demand: First differenced 

 

By using the long-term difference (differences with a length of L periods) one can 

eliminate the trend for lags 12, 24, 36, etc. The long-term differences are mathematically 

defined in equation (60) on the next page. 
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                         (60) 

where  

1. L =12 

(Hanke and Reitsch, 1998, P. 447).  

Please note that the methodology of long differencing is the same for every periodicity 

that can be found in a series. For example if the autocorrelations were significantly 

different from zero for the months 4, 8, 12, etc. then one would have got a periodical data 

with the period 4 and in the long-term difference calculation equation L would be standing 

for 4 periods.  

One can see in Figure 22 that the first and long-differenced data is stationary because as 

good as only the autocorrelations for lags 1 and twelve are significantly different from 

zero and the rest is randomly dispersed around zero. 

Figure 22: ACF for the logarithmized Passenger Demand: short- & long-differenced 

 

 

Having achieved a stationarity in the series one can continue to the second step of the first 

stage described in section 3.2- finding an appropriate model.  In order to do this one has to 
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analyse both the autocorrelation function and the partial autocorrelation function for the 

short- and long-differenced data.  

The partial autocorrelation describes the dependence of    and     , when the dependence 

on all other variables                     are removed, e.g.   is regressed upon   and    

then it is of interest to ask how much explanatory power    has if the effect of    is 

partielled out (Cryer and Chan, 2008, P. 112).  

For any stationary process the partial autocorrelation function can be calculated using the 

following general method:  
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that equals 
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where: 

    = the autocorrelation 

    = partial autocorrelation (not to be mistaken for a parameter of an AR model)   

(Cryer and Chan, 2008, P. 113-114) 

A graph of the partial autocorrelation function is shown in Figure 23 on the next page. 
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Figure 23: PACF for the logarithmized Passenger Demand: short- & long-differenced 

 

As previously discussed one can find the best fitting model examining the autocorrelations 

in Figure 22 and the partial autocorrelation in Figure 23, something that is done in two 

steps. The first one is to examine the non-seasonal pattern. Figure 22 shows that the 

autocorrelation coefficients drop of to zero after the first significant one, which equals -

0,402 and Figure 23 shows that the partial correlation of the nonseasonal components is 

exponentially decaying to zero. When comparing those two with the graphs shown in 3.2 

one sees that this two figures are indicating an IMA (1) model. The second step of 

identifying the model is to analyse the seasonal pattern. Both figures show again that an 

IMA (1) model would best fit. This is so because on the one hand the autocorrelation 

drops off to zero after the first significant coefficient at time lag 12 and on the other the 

seasonal partial autocorrelation shows again an exponential decay (see the coefficients for 

time lag 12, 24, 36). 

3.3.2 Model calibration and testing of the model adequacy 

After having selected a tentative model one can continue to Stage 2. Firstly one has to 

estimate the parameters,                       , of the model. This can be done in two 

ways. The first one is by using maximum likelihood estimation and the second option is 

using the non-linear least squares method. As the software Minitab, which was used for 

the calculation of the parameters, uses the nonlinear squares method, a closer look at this 

estimation is given on the following pages.  
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Consider a set of m data points                           , and a model function 

        , that depends on both the variable   and the parameters               , 

which are used as a general symbol for the k=p+q parameters      , with    . One is 

willing to find the parameters of the vector   such that the curve fits best the given data in 

the least square sense. Mathematically this means that the sum of squares shown in the 

following equation should be minimized: 

   ∑  
 

 

   

 (63) 

In equation (64)    stands for the residuals, which are given by: 

               (64) 

for            

The minimum value of S occurs when the gradient is zero and since the model contains n 

parameters there are n gradient equations: 
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where j=1,…,n. 

The derivatives 
   

   
 are functions of both the independent variable and the parameters, in a 

non-linear system, so these gradient equation do not have a closed solution. Instead initial 

values must be chosen for the parameters. Then, the parameters are obtained by successive 

approximation: 
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At each iteration the model is linearized by approximation to a first-order Taylor series 

expansion about   
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where      
   

   
. As the Jacobian J is a function of constants, the independent variable 

and the parameters it changes for the different iterations.  By adopting equation (67) in 

(64) one gets the following equation for the residuals: 

                          
   ∑   

 

   

    (68) 

By substituting these expressions into the gradient equation, re-arranging them to normal 

equations and writing them in matrix notation, one gets the following equation: 

                (69) 

(Box, Jenkins and Reinsel, 2008, P.255-256)  

Please note that the model was ran without a constant term, which is the approach when 

the differences are modelled. The parameters for the ARIMA (0,1,1)(0,1,1) model are 

estimated to be 0,4032 and 0,5838.  

The residual autocorrelation coefficients can be seen in Figure 24. 

Figure 24: ACF for the residuals of an ARIMA (0,1,1)(0,1,1) model 

 

One can see that there are some of the low order coefficients that are significantly 

different from zero, which is normally a sign that the model is inadequate. In order to 

prove if the model is adequate a check with the modified Box-Pierce chi-square statistic 
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must be made. The results from the test can be seen in Figure 24 under the graph and one 

can see that for all four degrees of freedom the chi-square statistics are higher than the 

tabulated values, shown in Figure 35 in the Appendix, at the .05 significance level. This is 

a sign that the model is inadequate and one has to go back to stage 1. 

After taking a closer look at the historical data in Figure 18 one can identify the reason 

behind the inadequacy of the model. It is the fact that two different main trends can be 

found. The one before 1990, which appears to be very flat and the one afterwards, where 

the passenger numbers are increasing almost exponentially. This exponential increase is a 

result of many and different factors, but there is one that have influenced it most- the 

prices. The decreasing costs of flying in the last couple of decades and the growing 

availability has made flying more affordable, which leads to the fact that many people 

now a days prefer to fly than to use other types of transport for both long and short 

distances. 

Although the rule is to use as many historical data as possible the two different trends are 

a sign that one has to design the model only using the historical data after the year 1989.  

The logarithmized passenger numbers historical data for the years 1990- 2011 can be seen 

in Figure 25.  Again one can recognize that there is a trend and seasonality in the series, 

but as mentioned above one has to investigate this by drawing the autocorrelation 

function. 

Figure 25: Logarithmized historical data of the passenger demand 1990-2011 
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In Figure 26, where the autocorrelation coefficients for the logarithmized data between 

1990 and 2011 are shown, the autocorrelations at the beginning are above the levels and 

then decays to zero, which, as in Figure 20, is a sign for the expected trend. 

Figure 26: ACF for the logarithmized Passenger Demand 1990-2011 

 

As can be seen above, when a trend is identified, then the series must be differenced. This 

is done here as well and the autocorrelations of this short-differenced data can be seen in 

Figure 27. Here the expectations that there is a seasonal factor in the data is proven by the 

coefficients at lags 12, 24, etc. which are significantly different from zero. This means that 

again, one has to long-difference the data in order to eliminate the seasonal factor and to 

get a stationary data. 
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Figure 27: ACF for the logarithmized Passenger demand 1990-2011: First difference 

 

In Figure 28 and Figure 29 one can see a plot of the functions that are needed in order to 

choose the appropriate model- the autocorrelation and the partial autocorrelation functions 

of the long-term differenced data. There is evidence that stationary data is obtained by the 

autocorrelations after lag 1 - the coefficients drop off to zero and that from the seasonal 

components only lag 12 is significantly different from zero. 

Figure 28: ACF for the logarithmized Passenger Demand 1990-2011: short- & long-differenced 
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Figure 29: PACF for the logarithmized Passenger Demand 1999-2011: short- & long-differenced 

 

As discussed above, when the whole available historical data was used one has to examine 

the nonseasonal and the seasonal patterns. By observing the graphs of autocorrelations one 

can see that only the first one is significant and that the partial autocorrelation coefficients 

exponentially drop off to zero. This is a sign that an IMA(1) process is the perfect fit. 

Since the same pattern can be found by seasonal coefficients one can consider that an 

IMA(1) is here also the best fit.  Again the appropriate model is ARIMA (0,1,1)(0,1,1).  

The parameters for the model were estimated to be 0,2655 and 0,7342 and the residuals 

autocorrelation function was again plotted in Figure 30, which is shown on the next page. 

One can see that in comparison to the ACF of the residuals from Figure 24 this time there 

are no low order coefficients that are significantly different from zero, which shows that 

the model is appropriate. This observation was confirmed by testing the chi-square 

statistics for 48 time lags, those results can be found in Figure 30. The calculated chi-

squares are less then the tabulated values at the .05 significance level and therefore one 

can continue to Stage 3 and make a forecast with the model. 
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Figure 30: ACF for the residuals of an ARIMA (0,1,1)(0,1,1) model 

 

Please note that at this point the data used is still the logarithmized one. The numbers 

should be de-logarithmized not before the forecast is made. For the forecast a 

multiplicative model was used to apply the nonseasonal model to the terms from a purely 

seasonal model. In the following equation (70) one can see the seasonal MA model 

written: 

              (70) 

where 

    = Residual or error 

    = Seasonal weights 

When one substitutes for    the nonseasonal MA term applied to the errors 

              (71) 

one gets the following equation: 

 

                                 

                               

(72) 

(Hanke and Reitsch, 1998, P. 448). 
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Now the forecast for the period 265 (January 2012) is made using the ARIMA 

(0,1,1)(0,1,1) model, which was proven to be accurate by the chi-square statistic used 

above. Note that the differenced series is used for the forecast. 

 

                                                

                                                

(73) 

The forecast for period 265 is calculated as follows: 

 

 ̂                                          

 ̂                                       

                                        

 ̂    14,1550 

(74) 

The forecast for period 266 is: 

 

 ̂     ̂                              

 ̂                                            

                         

 ̂    14,1462 

(75) 

One can see that the term        has not been updated to        but has disappeared 

because it equals to zero. This is due to the fact that all residuals after the time point 264 

are equal to zero because there is no historical data to which the forecasted values can be 

compared and by the calculation of the residuals one subtracts the forecasted value from 

the forecasted value. The same method is applied to the last two terms in the equation if 

one is calculating the prediction for longer than one year.  

The rest of the values can be found in the following Table 16: 

Table 16: Forecasted values for the year 2012 using the ARIMA (0,1,1)(0,1,1) model 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

Y 14,1550 14,1462 14,3505 14,4048 14,5219 14,5507 14,6444 14,6186 14,6056 14,5296 14,3618 14,3225 
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Now having made the forecast using the logarithmized data, which prevents having 

fluctuations growing over the years, one can make the last step, where all the values are 

de-logarithmized. This is mathematically defined the following formula: 

        (76) 

For the passenger numbers for the year 2012 one gets the following values: 

Table 17: Forecasted de-logarithmized values for the year 2012 using the ARIMA (0,1,1)(0,1,1) model 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 

Y 1.404.218 1.404.218 1.404.218 1.404.218 1.404.218 1.404.218 1.404.218 1.404.218 1.404.218 1.404.218 1.404.218 1.404.218 

 

The plot of the forecasted values is given Figure 31. 

Figure 31: Forecast ARIMA (0,1,1)(0,1,1) 
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3.4 Model validation with out of sample tests  

As in chapter 2 where the forecast was done using the Gaussian Enterprise Model, in this 

part again an out of sample test will be made to check if one has managed to forecast the 

future accurately by the chosen model. The difference this time is that a one-year, a four-

year and a five-year forecast will be tested. The idea to also make a prediction for a longer 

period of time is to see how accurate it will be, because often it is important for airports to 

make long-term predictions in order to know if and when they will need a new runway, 

parking places, terminals, etc. 

The plot of the one-year forecast compared to the real passenger numbers for year 2012 

can be seen in Figure 32. 

Figure 32: Out of sample test for the one-year forecast done by the ARIMA (0,1,1)(0,1,1) model 

 

 

One can see on the plot that the red line, describing the forecasted values, is almost equal 

to the blue one, which stands for the real passenger numbers taken from the historical data. 

This is a clear sign that the methodology and the chosen model can describe the future 

very accurate.  

The graph of the five-year forecast can be seen in Figure 33 on the next page. Similar to 

the one-year prediction this one starts very accurately. However, it can be observed that 

after the month of June it starts to highly deviate from the actual values, although the used 

ARIMA (0,1,1)(0,1,1) model was considered by the ACF of the residuals and the chi-

square test to be as appropriate as for the previous predictions. The reason for this big 
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difference between the forecasted and the actual values is the global financial crisis. The 

model was calibrated with the data until 2008 and is predicting with the high trends of the 

years before. This example shows that the aviation business is not as secure as most 

people think and one has to consider such external factors. It also shows that the historical 

data in the model should be updated as often as possible and if one sees that the 

predictions are not as good as expected, than the model should be checked again for 

accuracy and maybe the parameters should be changed. 

Figure 33: Out of sample test for the five-years forecast done by the ARIMA (0,1,1)(0,1,1) model 

 

To illustrate how important it is to keep the model up-to-date with the newest figures 

available, a four-year forecast is also made. The graph can be seen in Figure 34 on the 

next page. Firstly one sees that the forecasted values for the years 2010, 2011 and 2012 

are almost identical to the actual passenger numbers volumes. The fact that the prediction 

is that accurate is due to luck, but the important thing is that one is able to foresee the 

demands much better than in “the previous year”. The reason for this is that the model is 

updated with the historical data from the year 2008, where the crisis strikes and the 

passenger numbers started to drop after the month of May. By taking a look at those 

forecasted values one can easily see that the one-year forecast (the forecast for the year 

2009) is not as accurate as the forecast shown in Figure 32. This is due to the fact that the 

passenger numbers continued to suffer even more than in 2008, something that couldn’t be 

expected by the model.  
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Figure 34: Out of sample test for the four-year forecast done by the ARIMA (0,1,1)(0,1,1) model 
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4 Conclusion 

 
This work has discussed the construction, calibration and validation processes of two 

forecasting techniques that can be adopted by airports in order to predict their future 

passenger demands based only on passenger numbers historical data. It has also provide a 

description and explanation on how the models are to be used in practice by making a 

forecast for the Vienna International Airport with both of them. 

Firstly an outline of the definition and the theoretical and mathematical fundaments of the 

rational passenger numbers planning technique are shown. The construction stages of the 

multi-period planned passenger numbers trajectory and the 90% enterprise passenger 

numbers uncertainty corridor, that accompanies the plan, were given to show how the 

fraction based enterprise passenger numbers model allow the formation of model-based 

passenger numbers forecast in a stochastic business environment. The construction 

processes are followed by a calibration of the model with the historical data of the Vienna 

International Airport. This provides a forecast for the airport and gives a better 

understanding of the correct use of the model. The adequacy of the model is than checked 

in an out of sample test to show that the model is appropriate and can be used for future 

passenger demands predictions. The last section of the first chapter showed how the 

Gaussian passenger numbers model is used for the process of subsequent planning to 

make sure that the planned demands are reached as accurately as possible. 

The second part of the work begins with a detailed description and explanation of the 

theory behind the forecasting model ARIMA. It then provides a step-by-step guide to the 

methodology that should be adapted when using such model. This part then presents the 

actual fitting of the passengers’ data and how it satisfies the forecasting expectations. This 

results in the choice of using a limited set of data and ignoring the initial years due to a 

number of external factors. The work then concludes that the chosen model is adequate 

and reliable for such set of variables and can be used by the business. However, it is worth 

mentioning that such predictions are largely based on historical data thus it is crucial to 

keep this data timely. Predictions should be made as often as possible in order to provide 

the most accurate and up to date predictions capturing the effects of external factors and 

unforeseen events.   
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6 Appendix 

 
1. Normal distributions table 

 

Table 18: Normal distributions table 
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2. Critical Values of Chi-Square 

 

Figure 35: Critical Values of Chi-Square 
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2. Tables for the Subsequent Forecasting of January and February 2012 

Table 19: Subsequent Forecasting January and February 2012 

After Month 1 - 2012 

Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Total Notes 

x
Plan

P(PF)                          22.448.524 Planned Annual N 

x
A

P(PF),M  1.397.692                         Actual Monthly PN 

AAP(PF)(st)  1.397.692                         Accumulated Actual PN 

a(PF),M(st)   6,07% 7,47% 8,25% 8,97% 9,15% 10,18% 9,87% 9,72% 9,09% 7,70% 7,39%   Planned Monthly Fraction 

a(PF),T(st)                         93,85% Cond. Remaining Fraction 

P(PF),T(st)                          21.068.942  Cond. Remaining Expectations 

P(PF)(st)                          22.466.634  Cond. PN Forecast 

PFDP(PF)(st)                           18.110  Cond. Plan/Forecast Deviation 

a(PF),M(st)   0,879% 0,828% 0,976% 0,412% 0,442% 0,787% 0,802% 0,960% 0,777% 0,636% 0,703%   Planned Mont. Fraction Vola 

a(PF),T(st)                         2,54% Cond. Remaining Fraction Vola 

P(PF),T(st)                          570.592  Cond. Remaining PN Vola 

PFD
RA

P(st)                          0,031739333 Risk Adjusted PFD (z-value) 

p(zPNs)(st)                          51,27% p-Value of z-Value 

               

After Month 2 - 2012 

Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Total Notes 

x
Plan

P(PF)                          22.448.524 Planned Annual N 

x
A

P(PF),M  1.397.692  1.387.505                        Actual Monthly PN 

AAP(PF)(st)  1.397.692  2.785.197                        Accumulated Actual PN 

a(PF),M(st)     7,47% 8,25% 8,97% 9,15% 10,18% 9,87% 9,72% 9,09% 7,70% 7,39%   Planned Monthly Fraction 

a(PF),T(st)                         87,78% Cond. Remaining Fraction 

P(PF),T(st)                          19.706.186  Cond. Remaining Expectations 

P(PF)(st)                          22.491.383  Cond. PN Forecast 

PFDP(PF)(st)                           42.859  Cond. Plan/Forecast Deviation 

a(PF),M(st)     0,828% 0,976% 0,412% 0,442% 0,787% 0,802% 0,960% 0,777% 0,636% 0,703%   Planned Mont. Fraction Vola 

a(PF),T(st)                         2,39% Cond. Remaining Fraction Vola 

P(PF),M(st)                          535.428  Cond. Remaining PN Vola 

PFD
RA

P(st)                          0,080046606 Risk Adjusted PFD (z-value) 

p(zPNs)(st)                          53,19% p-Value of z-Value 



 72 

7 List of figures 

Figure 1: Gaussian Enterprise Performance Management ................................................................................................ 5 

Figure 2: Normal Density Function ............................................................................................................................................ 6 

Figure 3: Normal Density Function for different means and volatilities ......................................................... 7 

Figure 4: Historical data- EU Schengen passengers ......................................................................................................... 11 

Figure 5: Historical data- EU Non-Schengen passengers ................................................................................................ 12 

Figure 6: Historical data- Rest of the World passengers .................................................................................................. 12 

Figure 7: Multi-period planned passenger numbers trajectory.......................................................................16 

Figure 8: Historical data 2001-2011 ....................................................................................................................................... 20 

Figure 9: VaR, Normal Density Function ............................................................................................................................... 25 

Figure 10: VaR, Normal Distribution Function ................................................................................................................... 26 

Figure 11: Multi-period 90% enterprise passenger numbers uncertainty corridor ................................................ 28 

Figure 12: Multi-period 90% enterprise passenger numbers uncertainty corridor-new ....................................... 29 

Figure 13: Out of sample test for the multi-period portfolio passenger numbers .................................................... 31 

Figure 14: The z-Transformation .............................................................................................................................................. 35 

Figure 15: Autocorrelation and partial autocorrelation coefficients of AR(1) & AR(2) models ........................ 40 

Figure 16: Autocorrelation and partial autocorrelation coefficients of MA(1) and MA(2) models .................. 42 

Figure 17: Autocorrelation and partial autocorrelation coefficients of mixed ARIMA (1,1) models ................ 44 

Figure 18: Original historical data of the passenger demand 1964-2011 ............................................................... 48 

Figure 19: Logarithmized historical data of the passenger demand 1964-2011 ...................................................... 49 

Figure 20: ACF for the logarithmized Passenger Demand .............................................................................................. 50 

Figure 21: ACF for the logarithmized Passenger demand: First differenced ........................................................... 51 

Figure 22: ACF for the logarithmized Passenger Demand: short- & long-differenced ......................................... 52 

Figure 23: PACF for the logarithmized Passenger Demand: short- & long-differenced ..................................... 54 

Figure 24: ACF for the residuals of an ARIMA (0,1,1)(0,1,1) model ........................................................................... 56 

Figure 25: Logarithmized historical data of the passenger demand 1990-2011 ...................................................... 57 

Figure 26: ACF for the logarithmized Passenger Demand 1990-2011 ....................................................................... 58 

Figure 27: ACF for the logarithmized Passenger demand 1990-2011: First difference ....................................... 59 

Figure 28: ACF for the logarithmized Passenger Demand 1990-2011: short- & long-differenced .................. 59 

Figure 29: PACF for the logarithmized Passenger Demand 1999-2011: short- & long-differenced ............... 60 

Figure 30: ACF for the residuals of an ARIMA (0,1,1)(0,1,1) model ........................................................................... 61 

Figure 31: Forecast ARIMA (0,1,1)(0,1,1)............................................................................................................................. 63 

Figure 32: Out of sample test for the one-year forecast done by the ARIMA (0,1,1)(01,1) model ..................... 64 

Figure 33: Out of sample test for the five-years forecast done by the ARIMA (0,1,1)(0,1,1) model .................. 65 

Figure 34: Out of sample test for the four-year forecast done by the ARIMA (0,1,1)(0,1,1) model .................. 66 

Figure 35: Critical Values of Chi-Square ............................................................................................................................... 70 

 

  



 73 

8 List of Tables 

Table 1: Passenger Numbers fractions .................................................................................................................................... 14 

Table 2: Monthly fraction segment mean values .................................................................................................................. 14 

Table 3: Mean values of the fraction based segment passenger numbers ................................................................... 15 

Table 4: Mean values of the fractional single-period portfolio passenger numbers ............................................... 15 

Table 5: Mean values of the multi-period portfolio passenger numbers ..................................................................... 16 

Table 6: Monthly passenger numbers fractions .................................................................................................................... 21 

Table 7: Corrected monthly passenger numbers fractions ............................................................................................... 22 

Table 8: Correlations between the passenger numbers fractions ................................................................................... 23 

Table 9: Volatilities of the fraction single-period enterprise passenger numbers .................................................... 24 

Table 10: Volatilities of the multi-period enterprise passenger numbers .................................................................... 24 

Table 11: Multi-period enterprise passenger numbers VaRs........................................................................................... 27 

Table 12: Multi-period 90% enterprise passenger numbers uncertainty corridor .................................................. 28 

Table 13: Multi period 90% enterprise passenger numbers uncertainty corridor for Vola min= 1% .............. 29 

Table 14: Historical data for year 2012 .................................................................................................................................. 30 

Table 15: Historical data of the multi-period portfolio passenger numbers .............................................................. 30 

Table 16: Forecasted values for the year 2012 usng the ARIMA (0,1,1)(0,1,1) model .......................................... 62 

Table 17: Forecasted de-logarithmized values for the year 2012 using the ARIMA (0,1,1)(0,1,1) model ...... 63 

Table 18: Normal distributions table ....................................................................................................................................... 69 

Table 19: Subsequent Forecasting January and February 2012 .................................................................................... 71 

  



 74 

9 Table of abbreviations 

ACF Autocorrelation function 

AR Autoregressive 

ARIMA Autoregressive integrated moving-average 

Cov Covariance 

Etc. Et cetera 

EU European Union 

MA Moving-average 

NS Non-Schengen 

p. Page 

PACF Partial Autocorrelation function 

PFD Plan Forecast Deviation 

PN Passenger Numbers 

pp. Page 

ROW Rest of the World 

S Schengen 

VIE Vienna International Airport 

Vola Volatility 

 


	1 Introduction
	2 Rational Passenger Numbers Planning
	2.1 The rational passenger numbers planning technique
	2.2 Multi-period planned passenger numbers trajectory
	2.2.1 Construction of the Multi-period planned passenger numbers trajectory
	2.2.2 Historical Calibration of the Multi-period planned passenger numbers trajectory

	2.3 Multi-period 90% enterprise passenger numbers uncertainty corridor
	2.3.1 Construction of the multi-period passenger numbers volatility
	2.3.2 Historical Calibration of the Multi-period planned passenger numbers trajectory
	2.3.3 Construction of the multi-period enterprise passenger numbers VaRs
	2.3.4 Historical calibration of the multi-period enterprise passenger numbers VaRs
	2.3.5 Multi-period 90% enterprise passenger numbers– uncertainty corridor

	2.4 Model validation with an out of sample test of the initial forecasted passenger numbers and uncertainty corridor
	2.5 Subsequent Planning

	3. The Box-Jenkins/ ARIMA Methodology
	3.1 The Box-Jenkins technique
	3.2 Applying the methodology
	3.3 Vienna International Airport- Passenger demand forecasting
	3.3.1 Model construction
	3.3.2 Model calibration and testing of the model adequacy

	3.4 Model validation with out of sample tests

	4 Conclusion
	5 References
	6 Appendix
	7 List of figures
	8 List of Tables
	9 Table of abbreviations

