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Abstract

Functional Magnetic Resonance Imaging (fMRI) is a widely used tool in neurosciences. It

allows to measure metabolic properties related to neuronal activity in the working human brain.

With that, processes in the human brain can be studied on a neuronal level. One field of current

research in psychological neurosciences is the investigation of the neuronal basis for empathy.

Empathy allows the human being to share affective states of others and is fundamental in social

interaction.

A huge variety of methods for analyzing fMRI measurements exist. Currently methods

based on univariate statistics are predominantly used in empathy research. One factor of interest

is to identify shared representations between self- and empathic-perception. Methods capturing

multivariate properties have successfully been used to decode participant’s mental states from

fMRI measurements and to increase sensitivity in detecting neuronal activity involved in the

neuronal process. The aim of this thesis is to describe and demonstrate a novel method based

on a multivariate Random Forest classifier on real data. The method successfully decodes the

mental state induced by visuo– tactile stimuli. Further it is able to detect multivariate cortical

activation patterns distributed across the entire brain, which are shared between self– and em-

pathic perception. The thesis also deals with the visualization of the multivariate coding pattern,

as well as with visualization of long ranged conjunctions which are informative in decoding the

mental state. The results from this method will give support for new insight into distributed

patterns of neuronal processes of empathy.
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Kurzfassung

Funktionelle Magnetresonanztomographie (fMRT) ist eine weit verbreitete Methode für neuro-

wissenschaftliche Fragestellungen. Dabei werden Veränderungen durch metabolische Aktivität,

die durch neuronalen Prozesse hervorgerufen wird, gemessen. Dies ermöglicht die Untersuchung

dieser neuronaler Prozesse im menschlichen Gehirn, während dieses arbeitet. Die Untersuchung

der neuronalen Basis für Empathie ist ein aktuelles Forschungsgebiet in den psychologischen

Neurowissenschaften ist . Empathie ist eine Fähigkeit des Menschen, welche es ermöglicht, Zu-

stände anderer Personen nachzuempfinden und ist damit ein fundamentaler Baustein für soziale

Interaktion.

Für die fMRT Datenanalyse stehen eine Vielzahl von Methoden zur Verfügung, wobei in

der Empathieforschung derzeit vorwiegend Methoden, die auf univariater Statistik basieren,

verwendet werden. Ein interessanter Aspekt dieser Untersuchungen ist die Identifikation von

neuronalen Mechanismen die sowohl in der Eigenwahrnehmung als auch in der empathischen

Wahrnehmung aktiv sind. Methoden, welche auf multivariater Statistik basieren, wurden erfolg-

reich eingesetzt, einerseits um aus den gemessenen Hirnaktivitäten den Mentalzustand der un-

tersuchten Person abzulesen, andererseits zeigen diese Methoden eine erhöhte Sensitivität in der

Identifikation von involvierten neuronalen Mechanismen. Zweck dieser Arbeit ist die Beschrei-

bung und Demonstration einer neuen Methode, welche auf dem multivariaten Random Forest

Klassifikator basiert. Die Methode ist in der Lage, die Emotion eines visuell–taktilen Reizes

zu dekodieren. Des Weiteren werden die codierenden Muster in der Cortex–Aktivität, welche

sowohl für Eigenwahrnehmung als auch in der empathischen Wahrnehmung relevant sind, iden-

tifiziert. Die Arbeit befasst sich darüber hinaus auch mit der Visualisierung dieser codierenden

Muster sowie der Darstellung von informativen Zusammenhängen von örtlich weit entfernten

Aktivierungen. Diese Resultate bieten neuen Einblick örtlich verteilten neuronalen Muster für

empathische Wahrnehmung.
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CHAPTER 1
Introduction

This chapter describes the motivation to identify and decode the multivariate brain activity of

emotional states in self–and empathic perception from a neuroscientific point of view. In the

problem statement the technical difficulties to be solved are defined. The methodological ap-

proach is briefly outlined. The chapter closes with a explanation of the mathematical notation

used in this thesis and a general description of the structure.

1.1 Motivation and Aim of the Work

In a recent Nature article “Mind reading” Smith [103] gives an overview on a growing field in

neuroscience which tries to decode the brain’s activation pattern to read what people are seeing,

hearing or feeling. One of the first papers demonstrating brain decoding was published in 2001

by Haxby et al. [51]. The popular term “mind reading”, is slightly misleading, since what the

scientific community wants to do is to learn about the function of the brain itself, rather than

reading someones mind [103].

Typically, the method for brain pattern decoding is referred to as MultiVariate Pattern Anal-

ysis (MVPA) in literature. According to Smith [103] decoders are generally built on individual

brains, except for simple stimuli categories e.g. a binary choice if someone is looking at a picture

A or B. Recent and frequently cited reviews on MVPA, like [87], [53] and [79], focus mainly on

the typical procedure of decoding brain activity in single subjects at a high resolution.

Since functional Magnetic Resonance Imaging (fMRI) voxels typically serve as variables,

and the points in time at which they are acquired as examples, the number of variables far ex-

ceeds the number of training examples [45]. This commonly deteriorates the classification rate,

but the problem can be overcome by using preselected Region of Interest (ROI)s or restricting

the analysis to local patterns [53, 79, 87].
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While preselecting ROIs biases the result to previously expected regions the searchlight ap-

proach, introduced by Kriegeskorte et al. [69], can be applied to the whole brain without any

prior knowledge. Searching disributed patterns outside predefined ROIs or small searchlight–

volumes is not used [68]. Work on inter–subject multivariate pattern classification, done e.g. by

Conroy et al. [17], focus on visual stimuli and use functional features for alignment rather than

purely anatomical features as it is common in group alignment in the widely used analysis using

the General Linear Model (GLM).

These points ask for a multivariate pattern identification and decoding method on a whole

brain level, without predefined ROIs, at a computational affordable expense and which can be

generalized to group–level.

The contribution of this thesis is a method to identify the cortical representation of the com-

plete network involved in self–, as well as empathic experience of emotions induced by tactile

and visual stimuli. For studying the neuronal basis of empathy it is further of interest to iden-

tify the neuronal patterns which are shared across self– and empathic perception [115]. Exten-

sive work on the neuronal basis of empathy in pain has been done before [73]. While a local

searchlight–approach using MVPA has been done in one study by Corradi et al. [18], in general

MVPA has rarely been used in the field of empathy. In a recent review on the neural basis of em-

pathy by Bernhardt and Singer [7] they mention “pattern classification” as a method of interest.

Thus the data used for demonstration are a scientifically interesting application.

1.2 Problem Statement

The following problems arise with the development of such an analysis method as motivated by

the “wish list” and application given above. The present thesis addresses these questions and

offers solutions together with a discussion of related alternative approaches.

• Capturing long–range interactions: Which classifier is robust in identifying the patterns

of interest without limiting the features to specific ROIs? How to identify important fea-

tures? How to measure the contribution of long–range connections? Which networks are

shared between self and empathic emotions?

• Transferring global patterns across stimuli: Demonstration is performed on the self–,

empathy–perception data–set. How to validate the output? How to visualize the data to

be interpretable for psychological investigation and comparison with other experiments’

results.

• Group–generalization: Due to subject to subject variability decoding cannot be per-

formed on a high resolution level in group analysis [67]. Which common atlas can be

used? Which resolution is appropriate?
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1.3 Methodological Approach

Experimental Setup

The data for devising these methods have been acquired in the context of a psychological ex-

periment in emotional social judgment similar to experiments designed by Silani et al. [101] but

with three emotional states namely neutral, pleasant and unpleasant. Data were recorded on 30

subjects with two trails (self and empathy) each. One trail contains 10 blocks of each stimulus.

The data is provided by Professor Claus Lamm (Department of Basic Psychological Research

and Research Methods, Faculty of Psychology, University of Vienna).

Group Alignment of Functional Data

It is known that the dimensionality reduction of cortical surface based alignment reduces the

variability of activated regions, furthermore the cortical surface provides better features for inter–

subject registration [110]. Thus in this work a cortical surface based approach will be used with

the cost of loosing information of deep brain regions.

Random Forest Classifier to Identify Informative fMRI Patterns

Langs et al. [77] showed that the Random Forest classifier [10] is stable in detecting distributed

patterns. In the data for this work the identified pattern obtained by training on the self–session

is used to identify the emphatic perceived emotions without any modifications on the classifier,

this reveals the cross condition patterns that are shared between self– and empathic stimuli.

Importance Measures of Individual Voxels and Pairs of Voxles

Various importance measures in Random Forests exist [45]. These will be compared on the data–

set. The measures are adapted first for defining the shared patterns between self– and empathic–

perception and second to point out the contribution of distributed patterns, which should reveal

the differences to the popularly used local searchlight–approach.

Validation of Classification and Comparison with other Methods

The decoding performance can either be evaluated by cross validation (leave one subject out)

or by applying the self–session model to the empathy–session and vice versa. The findings also

have to be validated against the classical GLM analysis. Further the results can be compared

with results from related studies.

1.4 Mathematical Notation

For simplicity a coherent nomenclature is used in this thesis:

• scalar values, constants, etc. are noted with the default math font (e.g. a, A)

• time–continuous functions are explicitly noted as functions of time (e.g. a(t))

• vectors are noted in lower case bold letters (e.g. a)

• matrices are noted in upper case bold letters (e.g. A)

A full list of all used mathematic symbols can be found in Appendix E
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1.5 Structure of the Thesis

In Chapter 2 the usage of fMRI as a tool in neuroscience and signal origin of the measurements is

explained. With that knowledge the State of the Art methods for fMRI-analysis can be outlined

in Chapter 3. Limitations of the standard–methods are pointed out, which give rise to a new

approach. Chapter 4 gives explanations to the neuroscientific research on empathy which is

crucial for understanding the application of the proposed method. With the information given

on the technical State of the Art and the necessary psychological background, the proposed

method for detecting shared distributed patterns is described in detail in Chapter 5. Chapter 6

describes all conducted experiments and their results. They are discussed in detail in Chapter 7.

Finally Chapter 8 summarizes the major findings and gives insight into future work.
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CHAPTER 2
Functional Magnetic Resonance

Imaging as Tool for Neuroscience

fMRI is a method of detecting dynamic activity in the working human brain. To get an insight

on the origin of the fMRI signals, the first section of this chapter focuses on the physical basis

of Magnetic Resonance Imaging (MRI) and the physiological mechanism which enables the

measurement of functional brain activity. The second section will give a brief overview on

fMRI study design. This knowledge is necessary to understand how the measured brain activity

can be linked to cognitive states and how it can be analyzed further.

2.1 Signal Origin in fMRI

The linkage between neuronal activity and the measured fMRI signals can be split in physi-

cal measurement process and the physiological connection between neuronal activity and the

measurable local blood oxygenation.

2.1.1 Physical Principles of MRI

The fundamental principle of nuclear magnetic resonance was independently described by Bloch

[8] and Purcell et al. [96] in 1946.

The human body is largely composed of water, each water molecule contains two hydrogen

nuclei 1H, which is a proton [14,71]. A proton has a nonzero spin and thus a magnetic moment.

Normally the nuclear moments are randomly orientated, but under a strong external magnetic

field B0 they weakly tend to align in the direction of this field [14]. Commonly the direction of

B0 is defined as the z-direction. The alignment causes a small magnetization M0 which is in the

order of 4 · 10−9 times the applied external filed and thus far to weak to be measured. [12]

For making this weak magnetization measurable the technique of nuclear magnetic reso-

nance, described by the Bloch–equations, can be used. The key idea is to measure the weak

magnetic moment while it oscillates in a plane perpendicular to the static field. For performing

5



this measurement the magnetic moment has to be tipped away form the z-direction. In the xy–

plane the magnetic moment feels a torque proportional to B0, this causes a precession movement

around the z–direction in a frequency proportional to B0. This precession movement produces

a time–varying flux which can be measured in an induction coil antenna. [12] The tipping is

done by a radio frequency pulse. The degree of tipping is defined as the flip angle and depends

on the magnitude and duration of the radio frequency pulse. A 90◦ flip angle flips the magne-

tization from the z–direction in the xy–plane. After such a flip one can observe two relaxation

processes: First the transversal magnetization in the xy–plane decays exponentially with a time

constant T2, whereas the magnetization in z–direction recovers exponentially towards equilib-

rium with a time constant of T1. These values depend on the type of tissue e.g. at B0 = 3 T the

time constants for the gray matter in the human brain are approximately T1 = 1 s and T2 = 0.1
s [14]. These two relaxation processes are now explained in more detail:

Spin–lattice relaxation T1 describes the longitudinal relaxation of the equilibrium magne-

tization M0 in z–direction. This relaxation processes with energy exchange between lattice and

spins. The recovery of the magnetic field in z–direction is given in Figure 2.1.

Figure 2.1: T1 relaxation to equilibrium magnetization M0; upper trace depicts the relaxation

of a tissue with shorter T1 than the tissue in the lower trace. This can be used as contrast in a

T1–weighted image.

Spin–spin relaxation T2: This process is independent from the T1 relaxation. In the T2–

relaxation there is no energy exchange with the surrounding. It describes the exponential decay

of the Mxy magnetization, which performs the precession movement around the z–axis. The

precession frequency depends on the strength of the external magnetic field [12]. Random fluc-

tuations of the local magnetic field cause a variation in precession frequencies and thus a de-

phasing of the spins. This results in a decay in the induced voltage in the induction coil. In an

experiment one observes a faster decay T ∗

2 than the expected time constant T2 explainable by

random spin–spin relaxation effects [14]. This comes from local field inhomogeneities which

cause an additional variance in precession frequency and a faster dephasing. In an experiment

T2– and T ∗

2 – effects can be measured separately. This is based on the fact that non–random field

inhomogeneities are continuous in time, and thus dephasing can be reversed by the following

measurement procedure: Using a 180◦ flip pulse, the precession–movement flips in reverse di-

rection and thus the spins will come in phase again. Being in phase again, the ensemble of spins

6



produce a measurable signal again. This signal is called spin echo [14]. Intuitively accessible

the spin–echo can be explained with runners on a run–track: If runners with different speed start

from the same position, they will fall out of “phase”. To a certain point in time all runners get a

signal to turn around (180◦ – flip) and run back. The slower runners traveled a shorter distance,

and thus also have shorter way back to the starting point. This means runners regardless their

running speed will return to the starting point at exactly the same time (=spin echo). Figure

2.2 depicts a simple spin–echo experiment. The reduction in the echo’s amplitude is due to non

reversible random speed differences, which is according to the “true” T2 spin–spin relaxation

process. In the shown example T ∗

2 –decay is much faster than the T2 decay.

Pulse Sequence

Spin Echos

a

b

c d

a

b

c d

Figure 2.2: T2 relaxation: a) After an initial 90◦ flip magnetization is flipped in xy direction.

b) field inhomogeneities lead to fast dephasing of the spins. Destructive interference destroys

the spin–ensemble’s xy–magnetization. c) A 180◦ spin flip reverses all phase–values. d) local

static field inhomogeneities are the same as from “a” to “b” for each location, thus spins will

run back in phase again. The spin–echo amplitudes decrease due to random dephasing, which is

not reversible with the spin–echo sequence. The envelope function of the echo peak amplitudes

describes the spin–spin relaxation decay with the time constant T2. The upper part of the Figure

is adapted from [13].

This very short glance on the physical principles gives an overview on how the different

decay functions of T1, T2 and T ∗

2 can be measured. T1 and T2 vary across different types

of tissues [9]. Thus these properties can be used to characterize the tissue and to produce an

image contrast in anatomical images. Depending on the contrast used the images are called

T1–weighted or T2–weighted image. Measuring these properties in specific locations within the

brain is done by using different sequences of gradient fields and pulses as e.g. given in [58],
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detailed explanations of this procedures are beyond the scope of this introduction to the physical

signal origin in MRI. The usage of T ∗

2 for functional imaging is depicted in the following section.

2.1.2 The Blood Oxygenation Level Dependent Contrast and fMRI

To measure functional brain activity one can make usage of the Blood Oxygenation Level

Dependent (BOLD)–effect. The pathway of this effect is depicted in Figure 2.3: The path-

way shows that the neuronal activity is related to an increase in metabolism. A complex net-

work of physiological effects are involved in changing blood–flow, blood–volume and blood–

oxygenation. They aim to ensure nutrition and oxygen supply. Blood has different magnetic

properties dependent on its oxygenation: oxygenated hemoglobin has diamagnetic– and de-

oxygenated hemoglobin has paramagnetic properties [86]. Beside other effects the change in

blood oxygenation is the dominant effect [14,86]. As depicted in Figure 2.3 the increased blood

oxygenation increases the field uniformity and thus increases the T ∗

2 decay time, this is an mea-

surable effect.

Neuronal
Activity

Glucose and
Oxygen

Metabolism
Cerebral

Blood
Flow

Cerebral
Blood

Volume

Blood
Oxygenation

Magnetic
Field

Uniformity

Decay
Time
(T2*)

T2*-weighted
Image Intensity

Physical
Effects

Metabolic Rates
Physiological Effects

Brain
Function

Figure 2.3: Pathway of the BOLD–effect. Red connections are positive correlated effects, blue

connections are negative correlating effects. Bold lines indicate the dominant effects. Adapted

from [86]

Figure 2.3 does not depict the temporal behavior of the effect and the physiological effects

are complex and not known in all detail [2, 14]. But regardless of this fact one can measure the

BOLD–signal response from a point like neuronal activity. This was e.g. done by Glover [46].

The resulting function is known as Hemodynamic Response Function (HRF) and describes the

time dependent measurable1 amplitude of the BOLD–effect. The function varies across subjects

and areas in the brain [47]. A standard–HRF from a statistical toolbox for fMRI-analysis [114]

is depicted in Figure 2.4. Mathematically the response to an arbitrary neuronal activity can

be calculated by convolving the neuronal activity function with the HRF. This process can be

interpreted as the temporal filtering of the neuronal activity with the HRF as filter–kernel.

2.1.3 Limitations of fMRI

The number of publications using fMRI show a tremendous increase since the beginning in

1992, this comes from the unprecedented possibility for noninvasively and safely measuring

1measurable by MRI due to T
∗

2 –weighted imaging
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Figure 2.4: Glover HRF–model: measurable BOLD–effect from a single point in time neuronal

activity. [46, 114]

brain activity [93]. Nevertheless this modality is limited by its spatial and temporal resolution

which always have to be considered in any study:

fMRI is an indirect measurement of the neuronal activity, the quite complex BOLD–effect

is between neuronal activity, which we want to observe, and the image contrast, which we can

observe by a physical measurement. As it can be seen in Figure 2.4, the HRF has a Full Width

Half Maximum (FWHM) of some seconds, conditionally on that the reduction of the repetition

time TR (the time in between two measurements) is of limited use. For whole brain studies a

temporal resolution of 3 s is a typical value [14].

With a cortical neuronal density of approximately 40,000 neurons
mm3 [78] and a typical voxel

size of 3 mm× 3 mm× 3 mm [14] one has to be aware that the smallest measured unit contains

an ensemble of about one million neurons. A BOLD fMRI–measurement is a measurement of

metabolism from a mass population of neurons.

The values depicted here are typical values found in current studies, today’s techniques are

approaching 1 mm 3 spatial resolution and 1 s temporal resolution [14].

2.2 Principles on Study Design

The aim of the Study Design is to devise a setup which makes it possible to relate the measure-

ments to the cognitive states one wants to observe. When designing a fMRI–study the limitations

of fMRI as given in section 2.1.3 have to be considered. Besides one has to consider the psycho-

logical aspects: Amaro and Barker [2] describe what thousands of volunteers in fMRI–studies

have experienced: “Imagine yourself lying down inside a 60 cm wide, 120 cm long tube, exposed

to 120dB acoustic noise (with mechanical vibration), trying not to move (or possibly restrained)

while trying to perform a cognitive task.” This clearly points out the complexity one has to face

when designing a good experiment. One important aspect of each study design is to choose

an appropriate way to present the stimuli, which induce the neuronal activity, to the subjects.

The way of the presentation of the stimuli influences the neuronal perception and thus has to be
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known for the appropriate analysis. The paradigm is defined as the construction and temporal

organization of the cognitive task executed by the subject [2]. The data used for this thesis use a

block design paradigm which is given described here:

The most basic block design is the so called “AB block” where two conditions are alternat-

ing. One cycle contains two epochs of each condition. Each condition has a length of severals

seconds. E.g. showing a certain picture to the person in the scanner for 10 s followed by a

consecutive rest block reveals which areas in the brain are involved/activated by perceiving the

image compared to the rest condition. The block–design has a relatively large change in the

BOLD–signal compared to baseline and thus a high statistical power [2]. The block design is

the first one used in neuroimaging and is still commonly used today [20]. In [20] several further

aspects in the exact design are discussed: Stimulus or task should be as continuous as possible.

Blocks altering every 16 to 20 s are maximally powerful and robust. When using high–pass filter

to remove noise from the measurement one has to carefully choose the block design frequency

and filtering frequency.

2.3 Summary

Neuronal activity causes a change in the metabolism. This metabolic process causes a change

in magnetic properties. By measuring the T ∗

2 –decay, which is linked to field inhomogeneities

by physical mechanisms, the neuroscientist has a tool for measuring neuronal processes in the

living human brain. To link the indirect measurements to the neuronal processes the study design

has to be known. For this work a block design is used. Many other aspects on study design exist,

see [2] for an introductory review on this topic. The given information on paradigm used is

sufficient for the further understanding of the fMRI analysis methods described in this thesis.
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CHAPTER 3
Basics in Functional Magnetic

Resonance Imaging Data Analysis

In this chapter the established standard method of fMRI data analysis, the GLM, is explained

in detail. Haxby et al. [51] introduced a way of analyzing fMRI data in 2001. This method

subsequently came to be called MVPA [52]. An introduction to MVPA is given in Section 3.2.

With this knowledge the terms activation– and information–based analysis are explained in this

chapter. A big variety of classifiers is used for MVPA [77, 80, 90], in this work the Random

Forest (RF)–classifier is used for the multivariate pattern detection. This classifier is explained

in detail in Section 3.4, special emphasis is given on pointing out the advantages of RF for fMRI

data analysis.

3.1 The General Linear Model

The GLM is a widely used standard method of fMRI data analysis, it is currently the most

popular statistical approach [94, 104] and around with fMRI–data analysis since its early days

[41]. The measurable BOLD–response of a neuronal activity is given by the HRF. For each

observed voxel a BOLD–response z(t) can be measured. Each neuron in the voxel can be

involved in different neuronal activities. In the GLM it is assumed that individual neuronal

activities sum up to the measured response in a linear way. Therefore the observed signal can be

written as:

z(t) = m1(t)β1 +m2(t)β1 + · · ·mq(t)βq + e(t) (3.1)

where m1(t) · · ·mq(t) are q predictor–functions of the model, with the corresponding weighting

factors β1 · · ·βq and an error term e(t) (noise). A model predictor m(t) typically reflects the

predicted BOLD–response of a neuronal activity. Thus it can be obtained by convolution of

the neuronal activity with the HRF. It is also possible to include other additional predictor

models which do not represent neuronal activity [98, 109]. The standard assumption of e(t) is

being normally distributed with zero mean [93]. If z(t) is measured on nobs discrete points,
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in time it can be written as the vector z of length nobs. This notation can also be applied to

the predictors m1 · · ·mq. We define β as a weighting vector
(

β1 β2 . . . βq
)T

and M =
(m1,m2, · · ·mq) as a nobs × q model predictor matrix, or design matrix1, equation (3.1) can

be written in matrix notation as:

z = Mβ + e (3.2)

If the measurement is modeled as a GLM, we are trying to find an estimate for β̂ =
(

β̂1 β̂2 . . . β̂q
)T

so that the estimated BOLD–response ẑ = Mβ̂ fits best the measure-

ment z. To find β̂ the method of least squares, which minimizes the squares of the difference

e = z − ẑ, is used [93]. It can be shown that β̂ for minimizing the squares of differences eTe

can be found with:

β̂ = (MTM)−1MTz (3.3)

To identify activated voxels from the GLM model one can use a t-test. For this purpose a null

hypothesis has to be performed. It is formulated in the form of:

H0 : c
Tβ = 0 (3.4)

With the alternative hypothesis:

Ha : c
Tβ 6= 0 (3.5)

In Equation (3.4) and (3.5) c =
(

c1 c2 . . . cq
)

is the so called contrast vector to test for

the correct null hypothesis according to Equation (3.4). For illustration two exemplary contrast

vectors and the corresponding hypothesis are given:

1. cT =
(

1 0 0
)

tests for H0 : β1 = 0 Voxel shows no activation of the predicted neuronal

response m1.

2. cT =
(

1 0 −1
)

tests for H0 : β1 − β3 = 0 (H0 : β1 = β3) Voxel is equally activated

by the predicted neuronal response m1 and neuronal response m3.

With a given contrast vector the t–statistic can be calculated [4]:

t =
cTβ̂

√

var(e)cT(MTM)−1c

(3.6)

This t–value can then be compared to a specified significance level. One has to keep in mind if

e.g. the test is H0 : β1 = 0 and the significance level is set to p = 0.01 = 1%, just by chance

for 50 out of 5000 voxels the null hypothesis has to be rejected and will falsely be considered as

“activated”. This issue is known as multiple testing problem. Solutions to this problem can be

found in many textbooks e.g. [93]

1The convention in most fMRI textbooks is to denote the design matrix as X . This is in conflict with most

machine learning literature where the measurements/observations are denote with X . Since main parts of this thesis

deal with machine learning this nomenclature is used and the design matrix is renamed as M ; furthermore in fMRI

textbooks y is used for the measurement instead of z. In this thesis y is used as response vector or label vector for

the data X , as usual in machine learning.
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Detailed information on the GLM can be found in textbooks on fMRI data analysis see

[4,13,58,93]. Poline and Brett [94] give an excellent review on the GLM and a critical reflection

on the usage of this tool.

3.2 Multivariate Pattern Analysis

The GLM estimates how much each single voxel contributes to the expected neuronal activity.

This completely ignores the interaction between voxels. Intuitively this seams not to be useful

since neurons interact with each other to perform a specific task. Using multivariate statistics and

methods from machine learning this multidimensional interaction can be analyzed. This type of

analyzing fMRI–data has been used for more than 10 years when Haxby et al. [51] demonstrated

a method for investigating the functional architecture for face and object recognition in ventral

temporal cortex. Later this method came to be called MVPA and a diverse set of methods to

analyze patterns of fMRI activity came up [52]. It has been proven that MVPA is more sensitive

and informative for fMRI–data analysis than the GLM [52].

The following overview on MVPA is structured in five steps of pattern information analysis

as given in a review by Mur et al. [85]:

1. Preprocessing and splitting the data in training and test data

2. Estimate the activity pattern

3. Select voxels for classifier training

4. Training of the classifier

5. Testing of the classifier

To gather the variety of the methods each of the steps is discussed in detail in the following.

3.2.1 Preparing Data for MVPA

This step aims to prepare data for training and testing the classifier. Cross validation is an effec-

tive way of using the data [85] e.g. train the model on all but one subjects and test the model

on the left out subject. This can be repeated until all subjects are used once for testing. Prepro-

cessing should, if possible, be done separately on training– and test–set to avoid dependencies.

Preprocessing includes slice–time–correction, motion correction and trend removal. Spatial

smoothing is in contrast to preprocessing for the GLM not done before MVPA. [60, 69, 79, 85]

Spatial smoothing is discussed in literature quite controversial e.g. [89] recommends spatial

smoothing. Kriegeskorte and Bandettini [67] give an overview on spatial resolutions in fMRI

analysis. They report group alignment in Talairach space can be mismatched many millime-

ters between subjects. A cortex based alignment can provide a more precise alignment, where

the authors give a value of approximately 2 to 7mm mismatch in a cortical alignment between

subjects. To preserve fine grained patterns and because of doubts about the functional corre-

spondence across subject, MVPA is often done on a single subject level [85].

Volume based as well as surface based approaches are used in conjunction with MVPA

[15, 88]. These approaches require different preprocessing.
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3.2.2 Estimating the Activity Pattern

Various methods are found in literature to gather the training data. The simplest way is to stay

close to the raw data. This can be done for slow block designs where the BOLD–response of

different conditions do not temporally overlap [85]. This is e.g. done in [77, 95].

Estimating the activation of each voxel is also possible in the univariate GLM–fashion. This

method can be found in literature frequently and is particularly useful in rapid designs where

BOLD–response of different conditions overlap in time [85]. In this preprocessing each ex-

perimental event or block is modeled with its own predictor–function m(t) in the GLM. This

approach is e.g. used in [70]. Using this method one gets a β–value for each single block for

each voxel. The experimental condition of each block serves as training label for the β–value

pattern across all voxels. This means the number of observations for training equals the number

of blocks in the experiment.

3.2.3 Selecting Voxels and Searchlight MVPA

It is known from classical machine–learning that including too many (noisy) features in a clas-

sifier reduces the generalisability of the model which is known as over–fitting [55]. This is

particularly a problem in fMRI since conventionally the number of voxels in the brain far ex-

ceeds the number of observations or experimental blocks2. This deteriorates the classification

performance and thus a dimensionality reduction has to be made [53]. Various methods exist:

• Classical methods of dimensionality reduction as Principal Component Analysis (PCA)

as e.g. demonstrated in [82] can be used.

• Down-Sampling was used for lie detection by Davatzikos et al. [19], there they used aver-

ages of relatively large boxes (16mm × 16mm × 16mm) as features for the classifier.

• By using the training data or other data independent from test set, informative voxels for

discriminating the conditions of interest can be identified [81, 85]

• Any univariate statistic can be used to identify voxels individually informative to a specific

condition. Here the main concern is that even with a liberal threshold voxels are discarded

which are uninformative alone but provide information in combination with others. [87]

• Also anatomical data or other knowledge to select a ROI in which a multivariate pattern

is searched can be used [79,85,87]. This restricts the analysis to a volume which relies on

prior assumptions where an informative activity pattern is expected. A typical example is

to restrict the area of interest to the visual cortex when interested in the visual perception

[61].

• A widely used method was introduced by Kriegeskorte et al. [69], it is referred to as

searchlight–approach. In this approach a small control volume is shifted across the brain.

These e.g. 15 mm × 15 mm × 15 mm volumes only contain a small number of 125

voxels when using a 3 mm scanning resolution. The activation pattern of the volume in

all locations is compared across all experimental conditions to investigate whether the

local activation pattern is informative for decoding the experimental condition. The GLM

2In standard fMRI the voxel–size is in the order of 3mm × 3mm × 3mm when assuming a brain volume of 1,200

cm3 more than 44,000 voxels could be included in the model. Using a block–length of 20 s more than 200 hours of

scanning time would be necessary to obtain as much experimental block as voxels
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can be seen as a special case of the MVPA which is only sensitive in the case where all

voxels in a certain location change in the same direction for each experimental condition

[85]. The searchlight method is illustrated in Figure 3.1. Beside the popularity of this

approach Etzel et al. [30] outline pitfalls with the searchlight–approach which can lead to

interpretational errors. Furthermore this method is not able to detect multivariate relations

across distant voxels, it just looks at the local pattern.

local activation
pattern

lo
ca

tio
n 

A
lo

ca
tio

n 
B

condition 1 condition 2

Figure 3.1: Simplified procedure of the searchlight method: A small control volume is shifted

across the whole brain. In each location the patterns are compared across all experimental con-

ditions. In the shown example the responses in location “B” are similar for both conditions,

this location does not carry information to distinguish the two experimental conditions 1 and 2.

Location “A” shows different response patterns for both experimental conditions 1 vs. condition

2, thus the pattern is informative in respect to identify the experimental condition. The average

mean across these control volumes would be nearly the same across both conditions for each

location. Thus there would not be a detectable contrast in the GLM between both conditions in

the location “A” and “B”.

3.2.4 Classifiers in MVPA

At step 4 of MVPA a classifier is trained on the data provided by the previous steps. A big variety

of classifiers is used for MVPA; overviews and comparison can be found in [77,80,90,92]. Most

interestingly for this work is the RF classifier which is proven to be useful for decoding fMRI

and detecting distributed patterns [44,45,77]. As this classifier serves as the basis for the method

developed, this classifier is discussed in Section 3.4.

3.2.5 Testing and Validation of the Classifier–Model

This last step tests if the model is valid and usable on data the classifier has never seen before.

If the model generalizes well it will successfully decode the conditions in the test data set.

If the model predominantly “explains” the noise in the training–set, it will fail to decode the

unknown data where the random noise will behave in a different way. By performing a statistical

test with the null hypothesis H0: The classifier performers at chance level, the model can be

validated [85].
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This test can be assessed on a permutation based approach [30]. For this test the labels are

permutated, which corrupts the dependency between labels and the measurement. The classifier

is then trained and evaluated in the same way as on the unpermutated data. To obtain a minimal

p–value of p = 0.001 1000 permutations have to be made for testing [29]. This can cause a

significant amount of computation time as reported in [59].

For further detailed information on MVPA see the reviews [52,53,79,85,87,90]. For a very

recent cursory overview on brain decoding and “mind reading” see [103]. [49] is an excellent

textbook on statistical learning.

3.3 Activation – vs. Information – Based Analysis

The previouse two sections gave an overview on two frequently used analysis tools. It has to

be discussed when to use which type of analysis. In literature a distinction between activation–

based analysis (this is mainly done with the GLM) and information–based analysis (this is done

with MVPA) can be found [68]. Kriegeskorte and Bandettini [68] state that these methods

are complementary tools. To point out the exact scientific question by these tools the terms

activation– and information–based fMRI data analysis have to be defined:

In [67] activation is defined as specially averaged activity of a functional region, with dis-

tinguishing it from activity as the unsmoothened local activity from one voxel. Thus activation–

based analysis reveals the activation related to a brain process. If the target is to identify activa-

tion of whole brain regions, an activation–based approach is very successful [67]. Information–

based analysis determines if a region’s activity pattern carries information about the experimen-

tal condition.

3.3.1 What Questions are Answered by the Different Analysis Methods?

Kriegeskorte, Bandettini and Kleinschmidt [67] [65] and [68] discuss in partly controversial

opinions on activation and information based analysis. Kriegeskorte and Bandettini [68] try to

explain and clarify the goals and problems of different analysis methods, see Table 3.1.

3.3.2 Comparison of Univariate Analysis and MVPA

Jimura and Poldrack [59] directly compare a univariate analysis and a searchlight–MVPA on

data of the same experiment. A spacial smoothing with a 5mm FWHM Gaussian kernel for

the GLM–analysis and no spatial smoothing is used in the MVPA, the searchlight volume of a

3 voxel radius is used. The article reveals the following issuse: MVPA and univariate analysis

exhibit substantial differences in the identified regions. The authors state that the univariate anal-

ysis may reflect core processes whereas MVPA reflects subprocesses. MVPA shows increased

sensitivity in frontal and parietal regions, in contrast the GLM is more sensitive in subcortical

areas. This can be either explained with the different functional organisation of cortical and sub-

cortical regions, also the partial inclusion of ventricle–voxels in the searchlight volume could

overwhelm the MVPA with noise. They conclude that both approaches should be used and state

that there is a need to better integrate these methods with each other.
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Area Goal Method Problems Promise

whole finding univariate on insensitive to fine- localization of

brain activated smoothened data grained pattern extended homo–

regions genous activation

whole finding MVPA less sensitive to localization of

brain informative searchlight extended activation regions with

regions informative pattern

ROI characterization univariate on insensitive to fine- characterization of

of ROI activation ROI average grained pattern overall involvement

ROI visualizing fine- univariate on fMRI accurate image visualizing of fine-

grined ROI unsmoothened of neuronal pattern? grained pattern

activity data sensitivity taxing characterization,

multiple comparison: columnar spatial

ROI→ OK; whole organization

brain→ problem

with high resolution

ROI characterization multivariate on sensitivity taxing characterization

of ROI unsmoothened curse of dimensionality: of the over–

information data: e.g. ROI→ OK; whole all information

classification brain→ problem content

analysis with high resolution

Table 3.1: Overview on fMRI analysis methods; adapted from [68]

3.3.3 Another Point of View: Forward- and Backward–Models

Another way to think about the different objectives in the analysis are forward– and backward

models. A forward model explains how the measured data are generated from the neuronal

source [50]. This is for example done by the GLM which, as described above, models the mea-

sured data as a linear combination of neuronal activities. A model which extracts the neuronal

information / the mental state from the measured data is called reverse model [50]. This cor-

responds to the MVPA as described above: the classifier reverses the generation process and

determines the mental state from the measured data.

Haufe et al. [50] state that only forward models are interpretable with respect to a neural

process. Further they state that backward models are accurate in decoding, and that there is no

reason to believe that the decoding models should be interpretable. Thus they propose that a

backward model first has to be transformed into a forward model to be interpretable and show

how the weight vectors of a linear multivariate model can be transformed to an interpretable

forward model.
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3.4 Random Forest Classifier

The RF–classifier was chosen as the basis machine learning algorithm in this thesis, therefore it

is described here in detail.

3.4.1 Functioning of the RF

Methods called bootstrap aggregation or bagging can be used to improve stability and accuracy

of an estimated prediction function [49]. The Random Forest algorithm introduced by Breiman

[10] is a substantial modification of bagging. In the RF–classifier, an ensemble of weak learners

is created. Decision trees serve as the elementary base learners.

Individual Decision Trees

The functionality of a decision tree is illustrated in a simple example in Figure 3.2: The pop-

ular Fisher iris data [37] is used for demonstration. Three classes have to be identified by two

variables. To find the decision for the correct class an observation belongs to, this observation

is passed down the tree. Each node performs a binary split by evaluation if a certain feature

exceeds a defined value. For each branch further splits are allowed. Nodes with no further splits

are called leave nodes. In the geometry of the feature space each split is represented by a parti-

tion of the feature space along a hyperplane perpendicular to the split feature. Each leave node

corresponds to one partition of the split feature space and is assigned to one final decision for a

class. A 2D representation is given in Figure 3.2, hyperplanes degenerate to straight lines in this

example.

setosa

virginica

versicolor virginica

PL)<)2.45)

PW)<)1.75)

PL)<)4.95)

PL)>=)2.45

) PW)>=)1.75

) PL)>=)4.95

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Petal)Length)(PL)

P
e

ta
l)
W

id
th

)(
P

W
)

setosa

versicolor

virginica

Figure 3.2: Example for a decision tree on the Fisher iris data [37]. Scatter plot shows the

split–values of the tree which divide the feature space in maximally pure subdivisions. Each of

the four partitions is assigned to one of the leave nodes in the tree.
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input : matrix X

input : target vector y containing a label for each observation

output: an ensemble of trees (Random Forest)

1 for i← 1 to ntrees do

2 Draw a bootstrap sample (random subset with replacement) X∗ of the size n∗

obs;

3 recursively repeat

4 Randomly select m out of V features;

5 Find the feature v∗ and split–value η∗ that best splits the sample X∗ in pure

classes;

6 Recursively proceed with both children;

7 until The tree is fully grown;

8 end

Algorithm 3.1: RF–algorithm: For each tree in the forest a classification tree is build on a

random subset of all observations. At building the tree only a random selection of all features

is used to find the best split.

Learning Ensembles of Decision Trees

The RF is built by training individual trees on randomly chosen subsamples from the whole

dataset. For decorrelating the trees also the features are randomly subsampled for each node.

For classification a majority-vote of all trees is taken as final decision. For further explanation

the data matrix is denoted as X . It has the size V ×nobs, where V is the number of features and

nobs. In the example of fMRI data analysis this matrix could e.g. be equivalent to the BOLD

measurements in each voxel v. For classifier training a target vector y of length nobs exists,

which contains a label for each observation. The algorithm is outlined in Algorithm 3.1.

Mathematical Explanations of the Parameters

Each individual tree serves as a weak learner and delivers a random variable with variance σ2.

An average over all ntrees for the case of independent identically distributed (i.i.d.) variables is
σ2

ntrees
. As shown in [49] the average variance for the identically distributed (i.d.) case is

σ2
av = ρσ2 + (1− ρ)

σ2

ntrees

(3.7)

where ρ is the pairwise correlation. The second term in Equation (3.7) does not contribute to

the average variance for high ntrees. The remaining first term shows that the average variance

can only be reduced for decorrelated trees. The reduction of correlation is done by the selection

of m out of V variables, where reducing m reduces the correlation. m can be as low as 1. [49]

Advised default value for m is
√
V for classification [49].

The Gini Split Criteria

The Algorithm 3.1contains the task of finding the “best” split–variable and split–feature. Differ-

ent split–criteria for tree classifiers could be used. In RF the decrease in Gini Impurity is used.
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As the Gini impurity and decrease in impurity are not only used in growing the tree but also

extensively used in analyzing the trees these terms are explained here in detail:

Figure 3.3: Exemplary illustration for a node w in a tree for the definition of the Gini–split

criteria: a) Data Xw at node w with the random subsample of features vx and vy. v∗(w) is the

split variable and η∗(w, v∗,Xw) the split–value for node w. b) Tree structure: parent node w

splits the data into two children subsets Xw1
and Xw2

assigned to the children nodes w1 and

w2. i is the Gini impurity and ∆i(w,Xw) is the decrease in impurity at parent node w.

Figure 3.3 shows a hypothetical example for any node w in a tree. We now want to find

the best split–variable and split–value for node w. For simplicity it is assumed that the random

subsample of features just contains the two features (namely vx and vy). The data reaching node

w are denoted as Xw. In addition a label l is known for each element of Xw whereas L is the

number of different labels.

The probability of a datapoint in Xw belonging to a specific label l is defined as plw. The

Gini impurity of the data Xw is given by:

i(Xw) =
∑

all l

plw

(

1− plw

)

(3.8)

The Gini impurity i(Xw) measures the probability that two independent draws from the data

Xw are from different classes. The Gini impurity thus can range from 0, which means pure data

all with the same labels where it is impossible to draw data from different labels, to 1 − 1
L

for

equal amount of data from each label.

Each possible split of the data Xw produces two children Xw1
and Xw2

. This decreases

the impurity by ∆i(w) which can be assessed by:

∆i(w) = i(Xw)−
nw1

nw

i(Xw1
)− nw2

nw

i(Xw2
) (3.9)

nw is the total number of examples at node w, nw1
number of examples at node w1 and nw2

is

total number of examples at node w2. The fractions
nw1

nw

and
nw2

nw

are necessary to normalize for
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the amount of data in the children–nodes; the child’s impurity has to be weighted stronger if the

child node contains more data. ∆i(w) never can take negative values, each split decreases the

impurity or keeps it constant. With the Gini split–criteria the feature v∗ with the corresponding

split–value η∗ is chosen among all possible variables and values, where the decrease in impurity

∆i(w,Xw) by the split in node w is maximal.

RF Implementations

Implementations of the algorithm exist in many software packages. The original code by Breiman

and Cutler is available in FORTRAN [11]. A MATLAB port by Jaiantilal [57] was used in this

thesis.

3.4.2 Variable Importance Measures

Since the RF–classifier is applied on the whole dataset, which implies that it uses all features

distributed across the entire brain. If it is proven that the classifier successfully decodes the men-

tal state it is evident that the classifier “knows” which measured neuronal activity are related to

specific mental states of the brain. The general approach to identify these features (=measure-

ments of activity in certain spots) is to use variable or feature importance measures, where the

variable importance tells us how important a certain feature is for decoding the correct mental

state. It is shown by Langs et al. [77] that such an importance measure can be successfully used

as functional imaging contrast in fMRI.

Gini Importance of Subsamples chosen by the RF–Algorithm

In each split the best split–variable v∗ and a best split–value η∗ is selected which provides the

highest decrease in Gini–Impurity ∆i(w,Xw). The higher this value, the more important is this

split to purify the data. For an over–all objective measure of the importance it is also necessary

to take the amount of data nw split by this node into account. It is more useful if a split with a

high ∆i(w,Xw) is performed on a big dataset, thus we define:

∆I(w) = ∆i(w,Xw) · nw (3.10)

as the weighted decrease in impurity. With Equation (3.9) we get:

∆I(w) = nw · i(Xw)− nw1
· i(Xw1

)− nw2
· i(Xw2

) (3.11)

If this decrease in weighted impurity is summed up separately for each variable v across all trees

in the forest one gets the Gini importance of variable v

IG(v) =
∑

all trees





∑

w:v∗(w)=v

∆I(w)



 (3.12)

Since every RF–implementation has to determine the best split–feature and split–value, the Gini–

importance does not cause extra computational effort. It is available in RF–implementations
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[107]. It has to me mentioned that this increase in Gini–impurity just relies on the drawn ran-

dom subsamples X∗ of observations and random sub selection of m features in each node. It

just accounts for the amount of decrease in impurity among all classes and thus this measure

does not provide class specific importances.

In an experiment with simulation data Strobl et al. [107] demonstrate that the Gini impor-

tance is severely biased. This importance measure shows strong preference for variables which

have more categories than other variables and also prefers continuous variables. Also in [105]

a bias in Gini–based importance measures is reported. Strobl et al. [107] state that this derives

from the fact that the RF–algorithm selects the best split according the Gini–split criterion, obvi-

ously a continuous variable provides more possible cut–points. Strobl et al. [107] conclude from

that fact that it is just by chance more likely that such a variable is selected as split variable.

Since in fMRI–data all variables are continuous variables and approximately i.d. this issue does

not seem to be a problem in the application on fMRI–data.

Permutation Importance

A more advanced importance measure than the Gini importance is the permutation importance

[107].

Since during training for each tree only a subsample of the dataset is taken, there is a set of

datapionts not included in the boostrap sample to construct the tree b. Theses samples are called

Out Of Bag (OOB)–samples. These samples can be used to estimate the prediction strength dur-

ing training since for each tree the OOB–samples, which where not included in the training, can

be passed down the current tree [49]. To asses the importance of feature v in the OOB–sample

of tree b the values of feature v are randomly permutated. This breaks the dependency between

the values of feature v and the labels to be decoded. Thus a loss in prediction accuracy between

original and permutated data is as measure for the importance of that feature. Mathematically

the Permutation Importance for feature p can be notated as following:

IP (v) =
1

ntrees

∑

all trees

(

acc (OOBb)− acc
(

ÕOB
v

b

))

(3.13)

Where OOBb are the OOB–samples of tree b and ÕOB
v

b are the OOB–samples of tree b with

the values of feature v permutated. The function acc(X) calculates the prediction accuracy of

the data X . The acc(X)–function can be modified to calculate a class specific – or an over–all

accuracy, this calculates the permutation importance for a specific class or an unspecific over–all

importance as the Gini importance.

Different studies were made to assess the differences between the different importance mea-

sures: e.g. in [3] standard importance measures (the Gini importance and permutation impor-

tance on the OOB–samples) are compared. They report similar performance but advise to use

the Gini importance for small sample size because the OOB–sample is unreliable small.
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3.4.3 Special Issues for RF Application on fMRI–Data

The following experimental results using a RF–classifier for MVPA of fMRI–data can be found

in literature:

Langs et al. [77] demonstrated that an RF classifier can be used to detect distributed multi-

variate activation patterns. The RF classifier is particularly useful since the independent random

sub–sampling of features for building each node allows highly correlated but predictive features

to be included into the classifier. This ensures to detect all informative features rather than a

subset which is sufficient for an accurate decoding. Compared to a “traditional” method such

as Support Vector Machine (SVM) in conjunction with fMRI it is shown that the Gini Impor-

tance of a RF classifier delivers a more stable activation pattern. Whereas the classification

performance is similar. Thus it is advised to use RF if voxel identification is the primary aim.

Genuer et al. [44] perform a similar experiment and use an RF–classifier for decoding fMRI–

data. They also compare RF–classifier to SVM as reference method. As in [77] Genuer et al. [44]

observe a similar result: The SVM classification rate is only slightly below the RF classification

rate but the sparsity of feature selection in the RF reveals a better interpretable pattern of jointly

informative regions.

With the information given above it can be summarized why the RF–algorithm is useful

in fMRI–data analysis: Bagging is based on the combination of weak learners, each of them

is assumed to be unbiased but unstable in giving the right prediction. Taking back in mind

Equation (3.7) which explains the idea behind bagging, two conclusions can be made. To achieve

an overall stable result first ntree has to be chosen, enough to eliminate the term (1 − ρ) σ2

ntrees
.

More intuitively the number of trees smoothens the hard cuts by a single tree decision boundary

[106]. The number of trees increases the computational expense for training the classifier, but

the training can easily be parallelized. To reduce the term ρσ2 the individual trees have to

be decorrelated. This is done by the random subsampling of the features for each split, this

allows “weaker” predictor variables, otherwise outplayed by their highly predictive competitors,

to enter the ensemble [106]. In conjunction with variable importance measures this exactly

corresponds to the finding of Langs et al. [77] where it is reported that RF stable detects all

involved voxels rather than just the most predictive ones.

3.5 Summary and Limitations of the State-of-the-Art

fMRI–Analysis Methods

In standard fMRI–analysis whole–brain analysis is either done with the GLM or in a searchlight

MVPA. The first method belongs to the activation based methods, which yield to identify ex-

tended regions of homogenous activation. The second method is an information based approach,

which in contrast to the GLM, searches for local informative coding patterns.

By capturing the informational content of multiple voxels in the MVPA, higher sensibility

compared to the GLM is reported [52]. In the classical whole brain MVPA the informative

patterns are extracted from local searchlight–volumes. This standard procedure is a simple ap-
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proach to overcome the curse of dimensionality, but beforehand prohibits to make use of the

informative patterns, which spatially exceed the local volume.

This limitation to local patterns motivates to develop a method which is capable of detecting

distributed patterns. As shown in [77] the RF–classifier can serve as the basis classifier for such

a MVPA. The available RF–variable importance measures, namely the the Gini importance and

the permutation importance, will be used and extended in the proposed method.
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CHAPTER 4
The Empathic Brain

The title of this chapter is taken from the book “The Empathic Brain” [62,64] by Christian Key-

ers. In his book he gives an insight into his research on the neuronal basis of empathy. Based on

this book and further literature research this chapter gives an overview on the underlying neu-

rological processes of empathic processes in the brain for a better understanding of the question

of interest from a psychological point of view. This information will be used to verify whether

the results of the proposed method are in agreement with findings of recent studies. For a bet-

ter understanding of the cited studies and a better understanding of the results in this thesis the

last section in this chapter gives an overview on the most important areas of the brain that are

involved in empathy.

4.1 Definition and Factors of Empathy

The human ability to share affective states of others, is a crucial component in emotional ex-

perience and social interaction, which allows us to understand other’s feelings, motivations and

actions [7]. Singer and Lamm [102] define empathy as the occurrence “when an observer per-

ceives or imagines someone else’s (i.e., the target’s) affect and this triggers a response such that

the observer partially feels what the target is feeling”.

According to Zaki and Ochsner [115] behavioral research has examined empathy in three

major factors:

1. Experience sharing: shared self-other representations, emotional contagion, affective

empathy

2. Mentalizing: theory of mind, cognitive empathy, perspective taking

3. Prosocial concern: empathic motivation and concern, sympathy

The authors claim that neuroscience research mainly focuses on the first two points.
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4.2 Study of Principal Neuronal Mechanisms for Empathy

fMRI–studies show that brain networks active in observing affective states are also involved in

firsthand experience, this means that shared networks are involved in a neuronal mechanism of

empathy [7]. In particular the Anterior Insula (AI), dorsal– Anterior Cingulate Cortex (dACC)

and anterior– Mid. Cingulate Cortex (aMCC) play a central role in different empathic states

[31, 73]. Keyers [62] argues that the mirror neuron system is involved in empathy. Mirror

neurons were originally discovered in monkey and premotor cortex, these neurons discharge

when a monkey does a particular action but also when the monkey observes other individuals

doing a similar action [25, 97]. This provides a neuronal mechanism for a shared representation

in doing and understanding actions.

4.2.1 Empathy of Pain

Pain is robust in inducing empathy, thus empathy for pain is studied frequently [7]. Lamm et

al. [73] gives a meta–analysis on 32 studies. Here two different types of paradigm design are

investigated:

• Picture–based: The participants watch visual displays depicting limbs of target persons in

painful situations. In this type of paradigm sensory–motor processes and motor mimicry

might have a strong contribution to the neural process, this process may happen without

full self–other awareness. [73] An example for a picture–based fMRI–study can be found

in [74].

• Cue–based: Abstract visual symbols (cues) are displayed to the participant in the scanner

to indicate whether the target person receives painful or non–painful stimuli. The target

persons are seated next to the scanner. No explicit depictions of painful situations or any

expression of pain is encountered by the participants. [73] An example for a cue–based

fMRI–study can be found in [54].

Differences in the involved activations were observed between these two paradigm types [73]:

During the other–related condition only in the picture based paradigm primary somatosensory

cortex (S1) and secondary somatosensory cortex (S2) activation could be found. The picture–

based paradigm also showed higher activation compared to cue–based design in the mirror–

neuron network. Cue–based design showed higher activation in networks known to be involved

in “Theory of Mind” and “mentalizing” 1. Bilateral AI, Medial Cingulate Cortex (MCC) and

bilateral inferior parietal cortex (IPC) are frequently found in empathic pain experience in both

paradigms [73].

Corradi et al. [18] used the method of searchlight MVPA, a method especially useful in

analyzing the local fine grained multivariate activation pattern, to answer the question if these

patterns identified as coding for empathy consist of a unique distributed population of bimodal

neurons. Alternatively the neurons can be intermingled but independent populations of neurons

in these areas. In this study the authors use local volumes of 125 voxels each with a volume

of 27 mm3 per voxel. A picture based paradigm is used. In contrast to other studies they

1“ability to infer and represent beliefs and desires” [7]
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also control for the negative valence in painful pictures by including pictures with negative but

painless content. They conclude that Middle Insula (MI) and MCC show similar patterns for felt

and seen pain, this is also true for the AI but this pattern seems to be more general shared across

negative–aversive content. For detailed comments on this study see [111].

4.2.2 Empathy in non Pain Experiments

The data investigated in this thesis contain valences of “pleasant”, “neutral” and “unpleasant”

tactile stimuli, and non painful conditions. Thus studies where empathy for non–painful scenario

is investigated are of special interest.

Also in various other empathic experiments other than pain the central role of AI and Ante-

rior Cingulate Cortex (ACC)/MCC has been shown in various studies, see [7] for review non–

pain studies. Studies of special interest for the investigated data are given in the following:

Positive and negative empathic emotions were e.g. studied by Jabbi et al. [56], subjects

in their study observed disgusting, neutral and pleasant facial expressions related to taste. They

revealed that the AI and adjacent frontal operculum is not only involved in negative emotion but

also involved in positive emotions. In a very similar experiment only an overlap between disgust

in self and other was observed in AI and ACC, but no overlap between self and other is reported

for pleasure [113].

Sense of touch in social cognition is also studied: posterior Insular Cortex (pIC) is reported

to be positively modulated when being self touched, but negatively modulated (suppressed com-

pared to baseline) when observing others being touched [43]. Another interesting finding is that

shared neuronal activity can be found in S2 for any type of touch, regardless if the touch is

animate or inanimate2 [27].

4.3 Empathy Related Studies of Interest and MVPA

Except in the Corradi et al.–study [18] information–based MVPA approaches in empathy re-

search are not used. Pattern classification is named in [7] for being of further interest in empathy

research. This is done in this thesis. To further point out the usefulness of this tool some closely

related studies are given here:

With a searchlight MVPA it was found out that the medial PreFrontal Cortex (mPFC) and the

left Superior Temporal Sulcus (STS) contain informative patterns coding for specific emotions

(e.g. anger, fear, joy) regardless of the used sensory cues (faces, bodies, voices) [91]. This study

did not explicitly test if these patterns are also consistent across self and empathic experience.

Decoding multivoxel patterns restricted to certain ROIs, the emotional expression of faces

was successfully decoded [48]: Fusiform Face Area (FFA) as well as Early Visual Cortex (EVC)

independently carry informative patterns for the emotional expression of observed faces.

2e.g. they show a tree branch touching a chair
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4.4 Map of the Empathic Brain

Various locations in the brain were mentioned as being involved in empathy in this chapter.

MVPA gives rise to various other regions being involved in processing emotions. To ease the

orientation some important areas are marked in Figure 4.1, Table 4.1 gives a short description.

Figure 4.1: Map of the empathic brain: Graphics taken from [64] and [63] with permission from

the author. MCC is not marked in the original source. See table 4.1 for explanations.

Full Name Function

ACC Anterior Cingulate Cortex links emotion and action [62]

Amg Amygdala pain, fear [21, 72], positive [99] emot. processing

IFG Inferior Frontal Gyrus programming complex actions and language [62]

Ins Insula senses inner state of body, controls visceral

response; emotions [62]

MCC Middle Cingulate Cortex reported as important part for empathy of pain

[18, 31, 73] and also non-pain empathy [7]

mPFC medial PreFrontal Cortex cognitive processing of the state of self and

others [62]; codes for emotion [91]

MTG Middle Temporal Gyrus perception socially relevant entities e.g. faces [62]

PM PreMotor Cortex plans action [62]

PLL Posterior Parietal Lobe integrates senses’ info. and programs action [62]

S1 primary somatosensory cortex somatosensory signals (projection of body) [16]

S2 secondary som.sens. cortex sensation of touch [27, 62]

SMA Supplementary Motor Area plans and controls action [62]

STS Superior Temporal Sulcus codes for emotion [91]

Table 4.1: Acronyms in Figure 4.1. Note: „Function“ may not give a full functional description

4.5 Summary

Empathy is the ability to share affective states of others and is crucial for social interaction.

Neuronal mechanisms of empathy are of interest for the psychologist in basic research. One

factor frequently investigated and a central point of this thesis, is to identify the neuronal basis

which is shared between self perception and the observation of others (empathy condition). The
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way of presenting the empathy condition effects the neuronal response. Thus results from this

thesis should be compared with other picture–based fMRI–studies. A comprehensive summary

on the areas which are known to be involved in empathy is given in Table 4.1.
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CHAPTER 5
Methods for Detecting Shared

Distributed Patterns of Neural Activity

In a short summary of the motivation in Chapter 1, the method has to perform the following

analysis–steps:

• Identification of the multivariate neuronal activation patterns in fMRI data across the entire

cortex, that distinguish between three different emotions (namely pleasant, neutral and

unpleasant) induced by visuo–tactile stimuli during fMRI acquisition in self perception,

as well as in empathic perception.

• Identification of those networks that exhibit similar patterns in self– and empathic– per-

ception.

• Evaluation of the information encoded in individual voxels, and in long–range cliques of

voxels.

This chapter first outlines the contribution of this method in addition to a standard RF–

training. The description of the method is broken down in the following steps:

1. Study design describes the fMRI–study, in which subjects a) perceive visuo–tactile stim-

uli which are known to induce different emotions and b) observe others being touched

with the objects inducing these emotions.

2. Data are prepared for training a classifier.

3. Training a suitable multivariate classifier to decode the emotional state from the fMRI–

data in the self– as well as in the empathy–session.

4. Using standard variable importance measures, voxels showing important activation for

decoding the emotional state are identified.

5. Shared patterns across both sessions are identified

6. The importance of cliques of voxels is calculated.
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5.1 Contribution of the Proposed Method

Compared to other MVPA of fMRI-data the proposed method of this thesis provides two major

contributions.

5.1.1 Contribution 1: Identification of Distributed Shared Patterns

One factor on the basis of which empathy is investigated, are shared neuronal representations

between self and other [115]. For examination of such shared representations, experiments as

the following are done: 1.) self–session: a participant gets a certain stimulus to experience e.g.

pain, pleasure, disgust, ... and 2.) other–session: one observes or gets a cue for another person

experiencing such stimuli. In the latter case the participant will show empathy with the other.

Neuronal representations present in both conditions are of interest in terms of “shared represen-

tations”.

self other

self other

univariate multivariate

shared

Where are shared patterns?

Figure 5.1: Shared activation: In the univariate case (left) a population of voxels (red) is iden-

tified in the self–session to be significantly activated, another population (green) is significantly

activated in the other–session. The significance was calculated univariately, thus the intersection

of voxels active in both conditions (yellow) show shared activation in both sessions. In the mul-

tivariate analysis (right) the concept has to be refined. In the graph some voxels were picked out,

the connections between them indicate that the voxles belong to one multivariate pattern. Again

voxels important in both conditions can be found, but they are part of different patterns. Thus in

this hypothetical example the four features in the yellow intersection are not shared between the

patterns coding for self– or the other–session.

The identification of shared patterns between self–perception and empathy brings up an

important question: What are shared patterns?

The question is easy to answer for the univariate case, see Figure 5.1 (left half): each voxel’s

activation is analyzed in a univariate way. A voxel with a significant activation contrast between

two conditions in either the self– or the other–session is informative for its own. Thus a voxel

active in both sessions can be marked as shared. Simple the intersection of both populations

of univariately activated voxels can be defined as shared activated. In the multivariate analysis

the importance measures, as described in Section 3.4.2, give a measure for each single voxel.

In contrast to the univariate case these voxels were not analyzed independently from all other

32



voxels, this implies that they might not be informative on their own, but only in a complex con-

junction of other voxels. If one would simply take the intersection of important voxels in both

sessions, it would be neglected that each voxel is part of a pattern. Intuitively it is not useful

to take the condition “important in both conditions” as the criteria for shared. Shared voxels

should be marked as “shared” if they are part of the same multivariate pattern. Figure 5.1 (right

half) gives a simplified illustration of the issue.

The main idea of finding the shared patterns is to test if a classifier, trained to decode the

emotion from fMRI–measurements in self–perception, is also able to decode the emotion from

fMRI–measurements when the subject feels empathy.

5.1.2 Contribution 2: Quantification of Informativeness of Combined Features

The proposed method substantially differs searchlight approach in the fact, that it reveals dis-

tributed patterns instead of local informative patterns. This immediately poses the questions if

those long–ranged conjunctions of features, which cannot be captured by the searchlight ap-

proach, carry useful information. Only if such connections can be found the method is a useful

extension to the searchlight approach.

For addressing this question the Gini Importance was modified to measure the decrease in

impurity induced by a pair of features. Further this importance of pairs of features can be pooled

across extended regions of anatomical areas in the brain. With the knowledge on the functional

association of these areas further insight in the neuronal processes of empathy can be gained.

5.2 Study Design: A Paradigm for Self – Perception and Empathy

A new developed paradigm by Silani et al. [101] was used to assess touch associated positive and

negative feelings in self and empathic perception. A visuo-tactile stimulus followed by a rating–

block was used for this experiment. The data used for demonstrating the proposed methods of

this thesis are from an experiment using the the same visuo–tactile stimuli with a subsequent

rating–block after each stimulus block. Data are generously provided by Univ.-Prof. Dr. Claus

Lamm1.

5.2.1 Experimental Setup and Stimuli

30 participants were scanned in two sessions: 1.) self–session, 2.) other–session (empathy):

1.) For the self–session the stimuli consisted of pictures of objects or animals and of simulta-

neous tactile stimulation by stroking the participant’s left palm with a material with a surface

texture similar to that of the displayed object. Different materials and objects were tested in a

pilot experiment. The final set of 10 pleasant, 10 neutral and 10 unpleasant stimuli is listed in

Table 5.1. Pictures were matched for size, luminance and semantic category for all three types

of stimuli. Tactile stroking was performed on the left hand palm. Simultaneously the matching

1Department of Basic Psychological Research and Research Methods – University of Vienna
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visual stimulus was presented using a back projection system. The visuo–tactile stimulus block

lasted for 4 s. The stimulus block was followed by a 5 s rating block where the participants had

to rate the emotional response with a track ball as input device. The next stimulus started after a

2.5 s Inter Stimulus Interval (ISI).

2.) For the other–session the procedure was exactly the same except that no tactile stimuli were

provided. Participians had to rate the emotion of others being touched with the objects displayed

on the screen.

Picture Material Type of Stimulus

Dog Wool 1 Pleasant

Cotton plant Cotton 1 Pleasant

Cat Fur 1 Pleasant

Brush Brush 1 Pleasant

Sheep Wool 3 Pleasant

Rabbit Fur 2 Pleasant

Swan Feather 1 Pleasant

Cotton ball Cotton 2 Pleasant

Rose Silk Pleasant

Chick Feather 2 Pleasant

Pen Pen Neutral

Branch Branch 1 Neutral

Stork Wood stick Neutral

Walnut Walnut Neutral

Turtle Shell Neutral

Box Cardboard Neutral

Elk Branch 2 Neutral

Dog 2 Brush 2 Neutral

Peanut Peanut Neutral

Wild pig Brush 3 Neutral

Mushroom 1 Slime 1 Unpleasant

Tongue Silicon Unpleasant

Stinkbug Stinkbug Unpleasant

Mushroom 2 Slime 2 Unpleasant

Catfish Slime 3 Unpleasant

Maggots Slime 4 Unpleasant

Liver Slime 5 Unpleasant

Slug Slime 6 Unpleasant

Spider Spider Unpleasant

Oyster Slime 7 Unpleasant

Table 5.1: List of materials and pictures used to induce different types of stimuli
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5.2.2 Technical Details on the fMRI Data – Acquisition and Preprocessing

Functional images were acquired with TR = 2.06s at resolution of 3mm× 3mm× 3.3mm and

with nm = 180 volumes per session. Data were provided movement–, slicetime– corrected and

normalized. From each subject one T1 weighted structural image was acquired.

5.3 Data Preparation for Classification

The aim of the data preparation explained in this section is twofold: First all subjecs’ BOLD–

measurements have to be aligned to a common atlas, second the stimulus paradigm has to be

converted to labels which can be used to train the classifier.

5.3.1 Cortical Alignment of the fMRI–Data

FREESURFER is a freely available suit of tools for the analysis in neuroimaging. It automati-

cally creates cortical surface models and an anatomical parcellation of macroscopically visible

structures. These surface models can be used to align data across subjects. [33, 93]

For a surface based group registration the subject’s cortical surface is registered on a surface

atlas. By registration of the functional images on the anatomical image all data can be registered

on the same surface atlas where group analysis can be performed. Fischl et al. [32] report that a

surface based intersubject alignment is more accurate than a volume based group analysis. De-

sai et al. [22] also show a higher precision for surface–based alignment compared to volumetric

approaches in the case of localizing auditory cortex activation. The reduced geometric variabil-

ity of activated regions can be explained by dimensionality reduction and a better registration

between subjects [110]. Thus this surface based approach is a very good method if the neuro-

scientific question is limited to the cortical surface; deep brain regions can not be analyzed with

this approach [93]. It is also shown that surface based approach is usable in conjunction with

MVPA [88].

Figure 5.2 provides a graphical illustration of the following preprocessing steps: a) From

the scanning–institution for each of the 30 subjects (nsubj = 30) one anatomical T1–weighted

image and two functional volumetric time series, one for the self–session and the second for the

other–session (empathy–session) are provided. The functional data are slice-time and motion

corrected. Each function time series contains nm = 180 volumes. b) The anatomical data are

processed using FreeSurfer’s recon-all command, it comprises 31 processing steps, contain-

ing various preprocessing steps, segmentation, registration and parcellation steps. All steps are

listed in [38]. Furthermore the functional volumes are registered on the structural volume, which

allows to map all functional data on the same common atlas. FS4 with 2562 surface–nodes per

hemisphere is used2. c) As output for each subject two matrices are obtained. Zself contains

the BOLD measurement of the self–session and is of the size V × nm = 5124 × 180. Zother is

2FS4 with 2562 surface–nodes per hemisphere was used for all final evaluations. In some points of the thesis

also experiments with FREESURFER fsaverage5–atlas (FS5) with 10242 nodes per hemisphere was used.
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Figure 5.2: Preprocessing with FREESURFER: a) Anatomical image and the two functional

images are fed into FREESURFER. Note: each depicted 2D–image represents a whole volumetric

image. After cortex surface segmentation the subject’s cortical surface is mapped onto FS4.

Functional images are aligned with the structural image. c) For each of the nsubj subjects two

matrices, Zself for the self–session and Zother for the other–session, of BOLD data are calculated,

where each of the 5124 features corresponds to one of the 5124 surface nodes on the group atlas.

Each matrix has the size V ×nm, where V = 5124 features and nm the number of measurements

in time t d.) FREESURFER also outputs Taliarach Coordinates for each node and anatomical

parcellation–labels according to two different atlases. FREESURFER–logo taken from [34]
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the same size and contains the BOLD–data of the other–session. Motion parameter obtained at

motion–correction step as well as linear trends are regressed out using a linear model. In total

all further analysis are done on 5124 surface nodes V with 180 measurements per session nm in

two sessions on 30 subjects nsubj. This results in 5124 · 180 · 2 · 30 = 55, 339, 200 BOLD mea-

surements. d) FreeSurfer also outputs Taliarach [108]-Coordinates for each surface node and

anatomical parcellation labels [35, 36, 75, 76]. These atlases are available: 1.) Desikan-Killiany

Atlas [23] providing 32 automatic labels in each hemisphere 2.) Destrieux Atlas [24] providing

74 automatic labels per hemisphere.

5.3.2 Preparing Labels for the Classifier

For classifier–training a set of observations X and a response vector y containing a label l

for each observation have to be provided. For this purpose the BOLD–measurements Z are

directly taken as the training data X; the response vector y is derived from the paradigm via

the HRF–function HRF (t). For all analysis the HRF–function is taken from the FMRISTAT–

toolbox [114]. It is modeled as a difference of two gamma density functions, parameters are

chosen according to [46].

During each scanning session the onset– and duration–times for each block of stimulus or

rating are recorded. From this the stimulus function sl(t) can be derived where l ranges from

1 to 3 for neutral, pleasant and unpleasant tactile and visual stimuli and from 4 to 6 for the

corresponding blocks of rating each type of stimulus. We assume that each stimulus function

sl(t) causes a measurable hemodynamic BOLD–response hl(t), which can be obtained by

hl(t) = sl(t)⊗HRF (t) (5.1)

The stimuli–functions (dashed lines) and the corresponding hemodynamic responses (full lines)

are shown in Figure 5.3. A constant threshold–function th is introduced. th was chosen in such

a way that the the resulting durations between rating– and stimuli–label is approximately equal

the ISI–length of the paradigm. The label–function l(t) is then given by:

l(t) =



















































0 if max(hi(t)) < th

1 if max(hi(t)) = h1(t)

2 if max(hi(t)) = h2(t)

3 if max(hi(t)) = h3(t)

4 if max(hi(t)) = h4(t)

5 if max(hi(t)) = h5(t)

6 if max(hi(t)) = h6(t)

(5.2)

where max(hi(t)) is the value of the function h1(t) · · ·h6(t) with the highest amplitude. The

function l(t) is defined continuously and given in the lower trace of Figure 5.3. For the labels

at each acquired volume the function l(t) is sampled with a sampling interval of TR. The vector

containing the sampled values from l(t) is denoted l and has the length nm.
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Figure 5.3: Labeling each point of time with the experimental condition: Hemodynamic re-

sponses hl(t) are derived from the stimulus–functions sl(t) by convolution with the hemody-

namic response functions. Points in time where each response is below the threshold th are

labeled with l = 0 ISI inter stimulus interval, otherwise the labels are l = 1 for neutral stimulus,

l = 2 for pleasant stimulus, l = 3 for unpleasant stimulus, l = 4 for rating of neutral stim.,

l = 5 for rating of pleasant stim. and l = 6 for rating of unpleasant stim.. The shown sample

depicts the first 12 blocks of the self-session in subject #1.

Summary Training Data for Classification

With the calculation given above a label l can be assigned to each measurement. Thus the surface

aligned BOLD–measurements Z can be used as training data X and the calculated label vector

l is used as the target vector y. This is done for both, the self–session (Xself and yself) and the

other–session (Xother and yother) for each subject. The individual data matrices and response

vectors are stitched together to a group data matrices Xself group and Xother group and the group

response vectors yself group and yother group as shown in Figure 5.4.

functional images
all self - sessions

functional images
all other - sessions

sub1 sub2 sub3 sub30 sub1 sub2 sub3 sub30

sub1 sub2 sub3 sub30 sub1 sub2 sub3 sub30

input data

for group-level classifier training

Figure 5.4: Structure of the group–matrix: 30 subjects’ V × nobs matrices are stitched to one

V × 30nobs group–matrix. This is done for both sessions.

38



Additional Notes for the Classical GLM Analysis

For comparison a GLM–analysis is performed. As predictor–functions (see Section 3.1) the

functions h1(t) to h6(t) are used as predictors for the BOLD response of the stimuli and ratings.

5.4 Classifier Training for Decoding the Emotional State from

fMRI–Data

For detecting the distributed multivariate patterns, which code for the emotional state, an RF–

classifier is trained to decode the emotional state (labels response vector y) from the measure-

ments X . This procedure is done for the data of both scanning sessions. From the two training

two classifier models are generated:

• Self–Model: Classifier training to decode yself group from Xself group

• Other–Model: Classifier training to decode yother group from Xother group

For this work a MATLAB implementation of the RF was used, which is available at [57].

Classifier was trained with standard parameters and m =
√
V , as advised for classification. For

ntree a number in the order of V is useful [77]. This was confirmed in experiments with the data

of this thesis: classification results were stable with ntree > 0.1V , no further increase in stability

of the variable importance measured was observed with ntree >≈ 0.5V . Finally ntree = 5, 000
was chosen for FS4 with V = 5, 124 and ntree = 20, 000 for FS5 where V = 20, 484.

5.5 Measuring the Variable Importance of Voxels Within a

Stimulus Category

Right after training the Gini importance measure is available. The Gini importance per se is not

class specific, since it is the accumulation of decreases in impurity from the RF–training and in

the training only the over all class impurity is evaluated.

A slightly modified Gini importance measure compared to the “standard” Gini importance,

which is assessed by the classifier during training, is defined in the following. It is adapted to

be assessable after training. This is particularly useful to measure the variable importance for

a dataset completely independent from the data where the classifier was trained on. Another

modification is made to get class specific importances for each label l. To satisfy the first re-

quirement simply the whole dataset, and not just the in–bag samples for each tree, are evaluated

by each tree. The second requirement is fulfilled by modifying the labels for the data: To assess

the Gini–importance for a specific label l all data–points with a label 6= l are marked with the

same label. This results in a two class labeling with the label of interest vs. all other labels. Thus

the decrease in impurity just calculates the purity of the data–points labeled with the specified

label l vs. labels 6= l, but not a decrease in impurity between other classes than l. The calcula-

tion is exactly the same as given by Equation (3.10) and (3.12). Comparing the modified Gini

importance after training, with the Gini importance from training, a different behavior can be

expected. During training ∆I is evaluated only on the subsampled data points. In the assessment
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after training all observations are fed into the evaluation algorithm.

The RF–implementation used also outputs the permutation importance, which is evaluated

during training on the OOB–samples. When evaluating the permutation importance after train-

ing it will suffer from a slight bias, because now it also includes in–bag samples.

5.6 Measuring the Variable Importance of Voxels Shared Across

Stimulus Category

To fulfill the requirement of finding voxels of shared patterns across stimulus category, we make

use of the classifier–models. Since the classifier model can decode the correct label it “knows”

the multivariate pattern typically coding for a specific label. Results show that the classifier

trained e.g. on the self–session is also able to decode the emotion from the empathy–session

(for an overview on various decoding performances see the overview in Section 7.1). The ex-

periment of using the classifier trained on one session to decode the complimentary session will

be termed as model transfer in the following. This implies that the self–model finds the patterns

of the self–session in the data from the empathy–session. Exactly these patterns which allow the

classifier to decode the data in the complimentary session can be considered as “shared” across

both conditions. By assessing any variable importance measures (the modified Gini importance

ot the permutation importance) on the self–model by feeding in the empathy–data, we now see

how important the features are for decoding the correct “empathy” label when using the self–

model.

In this procedure assessing the variable importances after training is uncritical since all data

from the other–session are independent from the training data and therefore OOB.

5.7 Measuring the Variable Importance of Cliques of Voxels

As given in Table 3.1 multivariate whole brain analysis is usually done with the searchlight

approach. To see if wide–spread long–range patterns (outside a local searchlight volume) are

important and contributive to a correct classification, the connection importance between pairs

has to be measured. For this a new method was developed which is explained in the following:

Keeping in mind the algorithm of growing a random forest, the selected split–variable and

value is assessed on the data reaching this node. The fraction of data reaching a node depends

on the parent node’s split. This means each split–variable is conditional on the previous split,

see also for a discussion on the condition of the parent node [106]. For the proposed method of

the importance for pairs of variables this dependency between parent and child node as well as

the concept of the Gini importance will be used. For a clear understanding the method will be

rolled out in two steps.
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5.7.1 Step 1: Joint Gini Importance

To get the gain in label purity in the data induced by the connection of two features, the Gini

importance IG(v) is not simply summed over all nodes with the same split feature v but broken

up to all nodes with a split feature v and the same parent split feature u. We define the joint Gini

importance IJG(v, u) as:

IJG(v, u) =
∑

all trees

















∑

w : v∗(w) = v ∧
wparent : v

∗(wparent) = u

∆I(w)

















(5.3)

where wparent is the parent node number of node w. Form Equation (3.12) andn (5.3) it follows

immediately that

IG(v) =
∑

all u

IGC1(v, u) (5.4)

This means the sum of the joint Gini importance IJG(v, u) over all possible features for u results

in the Gini importance IG(v). This implies if the feature v is predictive for its own it effects all

joint importances where v is involved. In other words: The the joint importance IJG(v, u) is

biased for pairs involving a feature v which is predictive for its own. Since we want just the

importance of a connection, without a bias of uniquely important features the value has to be

corrected in second step:

5.7.2 Step 2: Correction for Unconditioned Importance

To address the fact that a variable could be predictive on its own an additional measure is intro-

duced: ∆i(w,Xwparent) measures the decrease in impurity by the split of the observed node w, if

it would split the whole parent data Xwparent and not just the data Xw conventionally assigned to

node w. We denote this as the „unconditional“ decrease in impurity where the node’s decrease

in impurity is not conditional on the parent’s split in node wparent. The unconditional decrease

impurity can be assessed with the definition of the decrease in impurity (Equation (3.9)) and is

calculated by:

∆i(w,Xwparent) =

(

i(Xwparent)−
nw1parent

nwparent

· i(Xw1parent
)−

nw2parent

nwparent

· i(Xw2parent
)

)

(5.5)

Note: ∆i(w,Xwparent) 6= ∆i(wparent,Xwparent) – for the calculation the parent–data Xwparent are

split with the split–criteria of the node w and not on the parent–node wparent. Analog to the

Gini importance a weighting has to be made to account for the amount of data. The weighted

decrease in „unconditional“ Gini–importance is weighted equally as the conditional weighted

decrease in impurity ∆I(w,Xw), which is the number of data at node w. Thus ∆I(w,Xwparent)
can be calculated as:

∆I(w,Xwparent) = ∆i(w,Xwparent) · nw (5.6)
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Analogous to Equation (3.11) but accounting for the fact that the conditional and unconditional

weighted decrease in impurity has to be calculated with the same weighting factor nw Equation

(5.6) in conjunction with Equation (5.5) we get:

∆I(w,Xwparent) =

(

i(Xwparent)−
nw1parent

nwparent

· i(Xw1parent
)−

nw2parent

nwparent

· i(Xw2parent
)

)

nw (5.7)

See Figure 5.5 for definition of the variable names.

If the (conventional) conditional weighted decrease in impurity ∆I(w,Xw) is greater than

the decrease in the unconditional case ∆I(w,Xwparent) (meaning if ∆I(w,Xw) > I(w,Xwparent))
the parent split on node wparent was useful for the split in node w since the decrease in impurity

in the data Xw is higher than splitting the parent–data Xwparent with the same split criteria. The

parent split was useful for its child node w for further purifying the data. For ∆I(w,Xw) ≤
∆I(w,Xwparent) the parent split was not useful; the split in node w would lead to the same or

higher decrease in impurity if it would split the data without the upstream parent split. In the

latter case the combination of the split feature and the parent’s split feature is not informative for

gaining pure classes. Thus finally the reduction in impurity for the combination of feature v and

u can be calculated with:

ICJG(v, u) =
∑

all trees

















∑

w : v∗(w) = v ∧
wparent : v

∗(wparent) = u

∆I(w,Xw)−∆I(w,Xwparent)

















(5.8)

This measure will be called Conditional Joint Gini importance. Child-Parent and Parent-Child

connections are equally important, thus the purity gain by feature v and u is given by the sum

ICJG(v, u) + ICJG(u, v).

Special Issues in the Conditional Joint Gini Evaluation

The usage of V features leads to V 2
−V
2 possible connections. In the case used of V = 5, 124

this results in 26,252,814 possible connections. One tree in the forest contains approximately

280 splits for the used data–set. This means that at least nearly 100,000 trees would be necessary

to capture each connection once. Since the Gini split criteria captures important features more

likely, it is also more likely that informative pairs are selected more frequently than by chance,

since the Gini split criteria preferably chooses informative voxels. But with a moderate number

of trees, which is mandatory for computational reasons, the value of important connections will

still be based on a few captured pairs. Due to the random subsampling of features in the RF–

training these values can expected to be noisy.

Another issue is that 26,252,814 connections are uninterpretable. This can be managed

by calculating connections between bigger areas in the brain: e.g. Venkataraman et al. [112]

used the surface parcellation of FREESURFER’s segmentation [35]. Summation of ICJG(v, u)
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Figure 5.5: Nomenclature of the data–sets: a)Full parent data Xwparent in two dimensions of the

feature–space; b) In each branch the corresponding parts of the data and their names are given.

Xw1parent
and Xw2parent

are no split data–set of the tree, but arise from hypothetical unconditioned

split of the full parent data perpendicular to the feature v∗(w) at a value of η∗(w, v∗,Xw)

across all features v in on parcel to all features u in a other parcel delivers stable results, but

the anatomical parcellation is problematic since the parcel size differs strongly, accounting for

a severe variation in contributing node to node connections. Thus the brain was parcellated

in arbitrary cells of equal size. To avoid cutting apart functional similar nodes a parcellation

procedure as given in Algorithm 5.1 was used. np = 75 cells per hemisphere are used. This is

the same amount of parcels used in the Destrieux–atlas [24], thus the mean parcels size is the

same as in this atlas. 20,000 trees are necessary for a stable result.

input : matrix Z (size V × nm) containing BOLD measurements

input : surface mash with V
2 surface nodes per hemisphere

output: a surface parcellation

1 Randomly spread np seeds per hemisphere by maximizing;

2 repeat

3 measure the seed to seed distance in the mash with Dijkstra’s algorithm [26];

4 relocate seeds to maximize distances;

5 until all seed to seed distances converge to maximal distance;

6 Assign each seed to a parcel;

7 repeat

8 foreach parcel do find all unoccupied neighbor nodes;

9 select node with highest correlating BOLD response between node and parcel–mean;

10 assign selected node to the parcel ;

11 until each node is assigned to a parcel;

Algorithm 5.1: parcellation–algorithm: Algorithm grows np of equal size with preference of

BOLD–correlation within a parcel
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5.8 Summary

The main contribution and novelty compared to state of the art methods is twofold: First the

method is able to detect distributed multivariate patterns shared across stimuli category, second

the informational content cliques of features can be measured. For finding the shared patterns

in between self–perception and observing others the experimental setup has to provide two in-

dependent data sets. The classifier is trained on both, the self–data and the other–data. Variable

importance measures are used to identify important features of the multivariate patterns. The

main idea for detecting shared patterns is to use the model trained on the first session to decode

the data from the second session. The importance of cliques of voxels is assessed by a newly

introduced measure.
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CHAPTER 6
Experiments and Results

This chapter is organized as follows: First the results from a classical GLM analysis are given

for comparison to the new method used in this thesis. The decoding performance is investi-

gated. The results of comparing different variable importance measures are given. Further the

permutation importance was used for cortical visualization of informative activated regions for

each fMRI–scanning session and for the shared distributed patterns. Compared to the GLM,

the MVPA is able to capture informative patterns across multiple voxels. Thus the information

gained from combining features is separately evaluated, to give a closer insight into the con-

nected importance. The joint importances are visualized in a schemaball–plot.

For each experiment the structure sticks to the following organization:

1. The aim of the experiment is explained.

2. The data used for the experiment are given.

3. The experiment’s procedure is outlined.

4. Outline of the evaluation: used measures, visualizations and colormaps

5. The experiment’s results are given and explained.

General Explanation of Cortical Visualizations: In the following sections cortical visual-

izations of the hemispheres are organized as follows: Left Hemisphere (LH) and Right Hemi-

sphere (RH) are plotted separately. Views are orientated as given by

LH medial view LH left view RH right view RH medial view

LH superior view LH inferior view RH inferior view RH superior view

Table 6.1: Ordering of the views for LH and RH in all plots

For visualization the triangular mesh of 2,562 surface nodes was smoothened in shape before

rendering with a mesh of 10,242 nodes. Values, depicted as colors, were interpolated between

the original 2,562 surface nodes, no smoothing was applied.
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6.1 Classical GLM Analysis

For comparison to the presented multivariate analysis, a univariate GLM–analysis is performed.

The GLM–analysis is performed on the BOLD–measurements from all 30 subjects. The

GLM is calculated separately for the data from the self–session Zself and for the data from

the other–session Zother. Typically fMRI group–modeling is done in a two step approach [83].

In the MVPA all subjects’ BOLD–measurements are stitched together as shown in Figure 5.4.

This corresponds to a fixed–effect model. For statistical agreement with the MVPA–model,

also a fixed–effect model is used for the GLM group analysis. Thus the measurement matrices

Xself group and Xother group are used. This model is valid for the subject population [84].

The GLM is modeled and calculated exactly as given in Section 3.1. Since the classifier was

trained on identifying the different types of stimuli, the corresponding GLM–modeling is the

activation contrast of one stimulus compared to the other stimuli. The following contrast vectors

are used:

• neutral vs. pleasant and unpleasant: cT =
(

2 −1 −1 0 0 0
)

• pleasant vs. neutral and unpleasant: cT =
(

−1 2 −1 0 0 0
)

• unpleasant vs. neutral and pleasant: cT =
(

−1 −1 2 0 0 0
)

Note: The first three estimators are the stimuli paradigm functions, the last three estimators cor-

respond to the ratings.

For visualization the color map is defined as following: Voxels with insignificant activation

contrast are not colored. False Discovery Rate (FDR)–correction was done by the procedure of

Benjamini et al. [5, 6]. p = 0.01 is used to be in agreement with results from [73, 113]. Signif-

icant voxels are colored according to the value of cTβ, same scaling factor is used for all plots.

Scaling factor is chosen to fit values in the range -1 (blue) to +1 (red). For visualization of shared

activation voxels, significantly activated in both, the GLM on the data Xself group and on the data

Xother group, are colored in the colormap chosen.

Results: Figure 6.1 – 6.3 depict the activation contrast for all three stimulus types in the

self–session (self perceived stimulus Xself group). Figure 6.4 – 6.6 depict the same contrast for

the other–session (participants observe others perceiving the stimuli from the self–session).

In both sessions the neutral stimulus has a predominant negative activation contrast (blue), this

means the colored areas are significantly weaker activated for neutral stimuli than for the two

other stimulus types.

For the unpleasant stimulus the majority of voxels with a significant activation contrast show a

higher activation than in the case of the two other stimulus types. The pleasant stimuli show the

smallest amount of voxels with a significant activation contrast. Across all stimulus categories

the amount of significantly activated voxels is lower in the other–session.

Figure 6.7 – 6.9 show the voxels with significant activation contrast in both sessions. These

voxels’ activation is shared between self–perception and observing others (empathy).

These results will serve as a comparison analysis for the proposed method.
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Figure 6.1: GLM analysis: Voxels with a significant activation contrast for neutral vs. pleasant

and unpleasant stimuli in the self–session

Figure 6.2: GLM analysis: Voxels with a significant activation contrast for pleasant vs. neutral

and unpleasant stimuli in the self–session

Figure 6.3: GLM analysis: Voxels with a significant activation contrast for unpleasant vs. neu-

tral and pleasant stimuli in the self–session
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Figure 6.4: GLM analysis: Voxels with a significant activation contrast for neutral vs. pleasant

and unpleasant stimuli in the other–session

Figure 6.5: GLM analysis: Voxels with a significant activation contrast for pleasant vs. neutral

and unpleasant stimuli in the other–session

Figure 6.6: GLM analysis: Voxels with a significant activation contrast for unpleasant vs. neu-

tral and pleasant stimuli in the other–session
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Figure 6.7: GLM analysis: Voxels with a significant activation contrast for neutral vs. pleasant

and unpleasant stimuli in both, the self–session and the other–session (shared activation)

Figure 6.8: GLM analysis: Voxels with a significant activation contrast for pleasant vs. neutral

and unpleasant stimuli in both, the self–session and the other–session (shared activation)

Figure 6.9: GLM analysis: Voxels with a significant activation contrast for unpleasant vs. neu-

tral and pleasant stimuli in both, the self–session and the other–session (shared activation)
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6.2 Classification Performance

It is crucial to validate the classifier’s decoding performance. A high classification performance

implies that the classifier is able to capture the multivariate coding pattern of the data, which is a

prerequisite of the method. The classification performance has to be checked for the in–session

training and decoding and for the model transfer (training classifier on the data from one scan-

ning session and using it to decode the data from the complementary scanning session). Finally

it has to be answered which surface mesh resolution (FS4 with 2,562 nodes/hemisphere or FS5

with 10,242 nodes/hemisphere) is useful for the group–level classification.

The classifier is trained on Xself group and Xother group to decode the target vectors yself group

and yother group. Both models are used to decode the data from both sessions. For the experiments

where the training session is the same as the session to decode, a 30-fold cross validation leaving

out each subject once is used.

The classifier can be trained on the self–session or on the other–session. This model can be

used to decode the emotions in either the self– or the other–session. This results in four possible

combinations, which are all performed on FS4 resolution level. Because of the high computa-

tional effort for the FS5 resolution only two combinations are repeated in high–resolution.

For evaluation the following measures were analyzed in each experiment: For a simple com-

parison the over all correct classification rate (relative amount of correct classified stimuli) was

evaluated. The correct classification rate is insufficient for a full description of the classification

accuracy. Two evaluations are given for each classifier:

1. Single subject class–sensitivities: The classifier sensitivity for each class neu-stim, ple-

stim and unp-stim (neutral, pleasant, unpleasant) was evaluated. These values tell how

sensitive the classifier is for a certain class. The standard error (std.err.) is calculated for

each class to estimate the stability of the sensitivity of each class across the group.

2. Confusion Matrix: The confusion matrix is evaluated for each experiment. The shown

matrix depicts the accumulated values across all subjects. Colormap for relative values is

consistent across all experiments.

Results: A compact overview on the correct classification rates is given in Table 6.2. No sig-

nificant difference between FS4 and FS5 can be found, thus FS4 is used to reduce computational

expense of all evaluations. The complete results are given in Appendix B.2. The performance

of the finally used FS4 resolution is shown in Figure 6.10 – 6.13. Remarkably the decoding

performance for decoding the emotions from the other–session is similar regardless whether the

classifier is trained on the self–session (see Figure 6.14 b)) or on the other–session (see Figure

6.14 c)). This is a first indicator for a high amount of informative multivariate coding patterns

which are shared across self–perception and observing others (empathy).
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Model training on Self Self Other Other

Decoding of Self Other Other Self

Res. ntrees Model

FS4 5000 Group 72% 69% 68% 66%

FS5 20000 Group 71% 71% – –

Table 6.2: Overview on the group–model correct classification rates: Resolution (Res.). The

colored experiment is the further used resolution.
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Figure 6.10: Self–model decoding self–session. Figure shows the class–sensitivities on the left

out subject and mean class–sensitivity ±std.err.
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Figure 6.11: Self–model decoding other–session. Figure shows the class–sensitivities on the

left out subject and mean class–sensitivity ±std.err.

51



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Subject ID

C
la

s
s
if
ic

a
ti
o

n
 R

a
te

 

 

n p u
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
e

a
n

 c
la

s
s
 s

e
n

s
it
iv

it
y
 +

/−
 s

td
.e

rr
.

Sens. neu−stim

Sens. ple−stim

Sens. unp−stim

random guessing

Figure 6.12: Other–model decoding other–session. Figure shows the class–sensitivities on the

left out subject and mean class–sensitivity ±std.err.
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Figure 6.13: Other–model decoding self–session. Figure shows the class–sensitivities on the

left out subject and mean class–sensitivity ±std.err.

6.3 Comparison of Variable Importance Measures

Variable importance measures are used to detect the informative voxels. The behavior of these

measures is crucial for interpreting the results from the MVPA.

6.3.1 Importance of Voxels Within a Stimulus Category

The RF–algorithm used [57] outputs two variable measures after training:

• Gini Importance: from Gini–split criteria in tree–learning, not class–specific

• Permutation Importance: during training on OOB–samples, class–specific

After training, the following variable importance measure can be assessed:

• Modified Gini Importance: on all samples, class–specific

• Permutation Importance: calculation as during training, but on all test samples
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Figure 6.14: Confusion matices: a) self–model decoding self–session; b) self–model decoding

other–session, c) other–model decoding other–session and d) other–model decoding self–session

In the following, experiments are conducted to investigate their behavior. Further the labels are

randomly permutated to break the dependency between data and labels. In this case the training

data should not be predictive for the premutated response vector. These experiments show the

behavior of the variable importance measures for the „non predictive case“.

The full data Xself group and yself group are used to train the RF–classifier. For the „non pre-

dictive case“ a permutated response vector ˜yself group is used for variable importance assessment.

All class–specific importance measures are evaluated: During training the permutation im-

portance on the OOB–samples is assessed. After training the modified Gini importance and

the permutation importance are assessed on all training samples Xself group and the original

labels yself group and on all training samples Xself group and the permutated vector ˜yself group.

As explained in Section 5.5, the only class–specific and unbiased (unbiased because as-

sessed on OOB–samples) importance measure is the permutation importance. Thus it is used as

reference method. For evaluation scatterplots are drawn for each stimulus type, where each dot

represents one feature. The abscissa coordinate value is the importance of the reference method

(permutation importance on OOB–samples); the ordinate value is the importance of the measure

under comparison. Four comparison experiments are conducted:
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1. The permutation importance on the OOB–samples is compared to the permutation impor-

tance when evaluated on all samples. See Figure 6.17.

2. By randomly permutating the labels, the dependency between labels and data is broken.

Thus the variables should not be important (predictive) for the labels. Performing the same

experiment as in 1.), but with permutated labels, the importance for the „non predictive

case“ can be evaluated. See Figure 6.16.

3. The modified class specific Gini Importance is compared to the class specific OOB–

permutation importance. See Figure 6.17.

4. Again the behavior of the Gini Importance is evaluated for the non predictive case. See

Figure 6.18.

Results: For some features, especially for the case of pleasant stimuli, including the in–bag

samples in the permutation importance evaluation (see Figure 6.15) results in higher variable

importances ranks than in the OOB–evaluation. This can also be seen in the Gini importance

evaluation in Figure 6.17, this bias was expected from theoretical considerations (see Section

5.5). In the non–predictive case both variable measures show a dependency of the variable

importance in the „non predictive case“ to the variable importance on the original data (see

Figure 6.16 and 6.18).
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Figure 6.15: Permutation importance on OOB–samples compared to permutation importance

on all samples
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Figure 6.16: Permutation importance on OOB–samples compared to permutation importance

on all samples with permutated labels
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Figure 6.17: Permutation importance on OOB–samples compared to modified Gini importance

on all samples
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Figure 6.18: Permutation importance on OOB–samples compared to modified Gini importance

on all samples with permutated labels
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6.3.2 Importance of Voxels Shared Across Stimulus Category

For the „model transfer“ (training the classifier on one session and decoding the data from com-

plementary session) the importance of the variables can be assessed in two procedures when

decoding the data from the complementary session.

• Modified Gini Importance: on all samples, class–specific (see Section 5.5)

• Permutation Importance: calculation as during training, but on all test samples

In the following, experiments are conducted to investigate the relation between these two vari-

able measures. Further the labels are randomly permutated to break the dependency between

data and labels. In this case the data from the complementary session, the session to be decoded,

should not be predictive for the premutated response vector. These experiments show the behav-

ior of the variable importance measures for the „non predictive case“.

For training the full data from the self–session Xself group and the response vector yself group

is used. The trained classifier is used to decode the data from the other–session Xother group. For

the variable importance assessment the original target vector yother group and permutated vector

˜yother group are used.

After training the model on the self–session data, the importance measures are evaluated on

the data from the other–session. Data are visualized in a scatter plot, with each point representing

one feature, dot coordinates are the feature’s importances. Four experiments are conducted in

this experiment:

1. The permutation importance is compared with the class specific modified Gini importance.

See Figure 6.19 upper row. For demonstration, the permutation importance is compared

with the Gini importance for incongruent classes. See Figure 6.19 lower row.

2. The permutation importance is compared with the permutation importance in the „non

predictive case“, where the labels are randomly permutated before the variable importance

assessment. See Figure 6.20.

3. The Gini importance is compared with the Gini importance in the „non predictive case“.

See Figure 6.21.

Results: The comparison of modified Gini importance, which is introduced in this thesis,

with the permutation importance show highly correlated feature importance values (see Figure

6.19 upper row). For demonstration, the importances are plotted across inconsistent stimulus

types, which reveals that some features are predictive for one stimulus type, but not for the other

(see Figure 6.19 lower row). Comparing the variable importance measure for the „unpredictive

case“ with the original case again (as in Section 6.3.1) a dependency between both importance

measures can be found: For the permutation importance this can especially be seen for neutral

stimuli (leftmost plot in Figure 6.20); for the modified Gini importance the dependency is visible

in all categories (see Figure 6.21).
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Figure 6.19: Upper row: Permutation importance compared with the modifided class–specific

Gini importance. Lower Row: For demonstration, permutation importance and the modifided

class–specific Gini importance are compared across inconsistent classes.
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Figure 6.20: Permutation importance is compared with the permutation importance for ran-

domly permutated features.
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Figure 6.21: Gini importance is compared with the Gini importance for randomly permutated

features.

6.4 Visualization of Detected Informative Voxels

In the following, the location of predictive features is visualized on the cortical surface. Since

from the training model the only reliable class–specific importance measure is the OOB permu-

tation importance (see Section 7.2 for a detailed discussion), the permutation importance was

used for visualization.

Outline of the Plots: Colormap is set as following: three colormaps are used (see Table 6.3),

the colormap is chosen according to the correlation with the stimulus, to see if the areas are

activated, inhibited or in an undefinable (but predictive) state during the corresponding stimulus.

The color–saturation is scaled with the importances. A saturated color means high importance,

a light color depicts weaker importances. To distinguish between important and unimportant

importance values a threshold value was chosen. This value was set to the 95–percentile from

the distribution of the importances of the variable importance when assessed with permutated

labels in the „unpredictive case“1. Technical properties in rendering and visualization as well as

structure of the views is exactly as described in the beginning of this chapter.

Colormap Correlation

0.1 ·max(c) < c < max(c)

0.1 ·min(c) < c < 0.1 ·max(c)

min(c) < c < 0.1 ·min(c)

Table 6.3: Assignment of the colormaps: The appropriate colormap is chosen according to the

value of c according to the list above. c is the correlation between the voxel’s BOLD response z

and the estimated hemodynamic response h. h is either h1, h2 or h3 according to the stimulus

type of investigation.

1See section7.2 for critical discussion on that strategy
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6.4.1 Voxels Informative Within a Stimulus Category

The purpose of this procedure is to visualize the location of voxels being informative in decod-

ing the emotional state.

The detection for informative voxels is done in both sessions. Xself group and yself group is

used for training the classifier for the self–session and Xother group and yother group is used for

training the classifier for the other–session.

During training the OOB–permutation importance was assessed to detect the informative

voxels in each session.

Importance values were visualized on renderings of the cortical surface. Visualization was

performed as given in the beginning of this section.

Results: In general, the voxels marked as being informative are highly consistent to the

activated voxels in the GLM–analysis (see Section 6.1). This is true for the self–session (Figure

6.22 – 6.24) and for the informative voxels in the other–session (Figure 6.25 – 6.27). Differences

will be discussed in conjunction with other evaluations (see Section 7.3 for the discussion). Note:

The difference in the coloring comes from the fact that the GLM outputs the activation contrast

(weaker or stronger activated than in the other stimulus types), whereas the colormap of the

MVPA–visualizations depicts the correlation with the corresponding stimuli.
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Figure 6.22: MVPA: Important features for identification of neutral stimuli in the self–session,

RF is trained on the group self–data

Figure 6.23: MVPA: Important features for identification of pleasant stimuli in the self–session,

RF is trained on the group self–data

Figure 6.24: MVPA: Important features for identification of unpleasant stimuli in the self–

session, RF is trained on the group self–data
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Figure 6.25: MVPA: Important features for identification of neutral stimuli in the other–session,

RF is trained on the group other–data

Figure 6.26: MVPA: Important features for identification of pleasant stimuli in the other–

session, RF is trained on the group other–data

Figure 6.27: MVPA: Important features for identification of unpleasant stimuli in the other–

session, RF is trained on the group other–data
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6.4.2 Voxels Informative Shared Across Stimulus Category

The aim of this experiment is to visualize the location of voxels part of distributed multivariate

coding patterns which are shared across two self–perception (self–session) and observing others

(other–session). These are the results from the first main contribution of this work as explained

in Section 5.1.1.

The classifier training is done separately on both sessions. For the self–session Xself group

and yself group is used for training the classifier. Xother group and yother group is used for training the

second model.

The model trained on the Xself group data to decode yself group is named „self–model“. The

training on the Xother group data to decode yother group is named „other–model“. After training

the „self–model“ was used to decode Xother group and the „other–model“ was used to decode

Xself group. At both decoding procedures the permutation importance was assessed to detect the

informative voxels.

Importance values are visualized on renderings of the cortical surface. Visualization is per-

formed as given in the beginning of this section. With that the „self–model“ decoding the data

from the other–session reveals which of the coding patterns for the self–session are also informa-

tive in decoding the data from the other–session. These patterns are shared across both sessions.

The same considerations can be made for the „other–model“ decoding the data from the self–

session.

Results: The method reveals that a high amount of the coding patterns from the „self–

model“ are also informative for decoding the emotional state from the other–session (see Figure

6.28 – 6.30), this is also true for the „model transfer“ in the other direction (see Figure 6.31

– 6.33). The highest difference between both experiments can be seen in the missing detected

activation on the S1 for neutral– (Figure 6.31) and unpleasant stimuli (Figure 6.33) in the „other–

model“ decoding self–session experiment compared to the experiment „self–model“ decoding

other–session. This issue is discussed in detail in Section 7.3.3.
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Figure 6.28: MVPA: Important features for identification of neutral stimuli in the other–session,

RF is trained on the group self–data (shared patterns for neutral stimuli)

Figure 6.29: MVPA: Important features for identification of pleasant stimuli in the other–

session, RF is trained on the group self–data (shared patterns for pleasant stimuli)

Figure 6.30: MVPA: Important features for identification of unpleasant stimuli in the other–

session, RF is trained on the group self–data (shared patterns for unpleasant stimuli)

63



Figure 6.31: MVPA: Important features for identification of neutral stimuli in the self–session,

RF is trained on the group other–data (shared patterns for neutral stimuli)

Figure 6.32: MVPA: Important features for identification of pleasant stimuli in the self–session,

RF is trained on the group other–data (shared patterns for pleasant stimuli)

Figure 6.33: MVPA: Important features for identification of unpleasant stimuli in the self–

session, RF is trained on the group other–data (shared patterns for unpleasant stimuli)
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6.5 Identifying Informative Cliques of Voxles

When comparing the single variable importance from the previous section with the GLM–

results, a high consistency can be seen (see discussion in Section 7.3). This can be expected,

since the multivariate–approach should also be sensitive to the univariate features. For better

revealing the differences, the results in this section focus only on the multivariate properties. For

that, the newly introduced Conditional Joint Gini importance is used. This is the second main

contribution of this work as explained in Section 5.1.2.

Importance of Long Range Connections: In contrast to the searchlight algorithm the pro-

posed method here is also capable of capturing long–ranged connections. Thus the newly intro-

duced importance measure first is used to answer the question if long–ranged connections are

important.

Importances of Joint Parcels: Further the spatial organization of the informative long–

ranged connections are of interest. As outlined in Section 5.7.2, the full connection matrix

comprises more than 26 million possible connections. Thus the joint importances were pooled

across all connections between two defined brain–parcels. This reduction of the amount of con-

nections make a visualization possible.

Training was done on the self–session data (Xself group, yself group). For the „model transfer“

this trained classifier was used to decode the other–session data Xother group. The model transfer

was only done in one direction:

After training the „self model“ the Conditional Joint Gini importance was evaluated for the

self–session data and for the „model transfer“ on the data from the „other–session“.

To check if the long–ranged connections are of interest for classification, all positive Con-

ditional Joint Gini Importances is plotted in a scatter plot according to their euclidean distance.

Due to the high variation of dot density in the scatter plot the method for visualization was

adapted from [28].

For visualization of the spatial organization, the voxel–pair’s joint importance was pooled

across the parcels as explained in Section 5.7.2. The informativeness by connecting the data

from two voxels being part of two different parcels is depicted in a schemaball, where bright

yellow lines indicate a high information content by compaining voxels from the two abjected

parcels. The schemaball is given for all three stimulus types and for the self–model decoding

the self–session and the self–model decoding the other–session (shared patterns).

Results: The distribution of the conditional joint Gini importance from a pair of features

is similar for all stimulus types. Thus only one exemplary plot for decoding neutral stimuli is

given in Figure 6.34.

One exemplary schemaball2 which will further be used in the discussion is given in the Figure

6.35; all available schema balls are given in the appendix in Figure C.1–C.6. The parcels are

ordered according to their median y–coordinate: from the bottom of the diagram with the most

2Source code for visualization was taken from Oleg Komarov [66] and adapted for fitting the problem.
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occipital parcels to the top with the most frontal parcels. Parcels from the left hemisphere are

ordered in the left half, and the right hemisphere is ordered in the right half of the circle. Parcels

are annotated with the name of the anatomical parcel according to the Destrieux atlas [24], with

which they show the highest overlap. Parcels which have the highest connectedness to other

parcels are marked with colored dots, where dark–red is the highest connected parcel and dark–

blue the last parcel of the selection. In the brain surface plot below the schemaball the high

connected parcels are marked in the corresponding color.

Additional information for correct interpretation of the diagrams: These diagrams deliver

a complementary information to the importance visualization in Section 6.4.1 and 6.4.2, where

the importance visualization depicts the importance, regardless if the voxels are informative on

their own or in conjunction with other voxels. Due to the conception of the conditional joint

Gini importance the plots in this sections just depict the important features which are impotent

in conjunction with other voxles. Voxels informative on their own will not be visible in this plot

due to the normalization done by Equation (5.8).

Example reading the diagram: For a better understanding of the plots in the next six pages

an example on interpretation is given here on Figure 6.35. Exemplary the connection between

L. G orbital (market red on the top) and R. S temporal sup (marked yellow on the bottom) is

taken. For finding the parcel L. G orbital one has to search in the four leftmost plots on the

bottom of Figure 6.35, since it is located on the left hemisphere. Since the parcel is on the top,

the corresponding red parcel is located in frontal direction. It is best visible on the left side of

the inferior view of the LH. R. S temporal sup has to be found on the right hemisphere. The

bright yellow line between the two parcels tells us now that many features in L. G orbital are

informative in conjunction with features in R. S temporal sup.
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Figure 6.34: Scatter plot of conditional joint Gini importance vs. the euclidean distance between

the two connected variables. If the scatter plot density exceeds a density of 50 points per 5mm

× 5, the dot density is color coded according to the color scale. Example taken from the Joint

importance for decoding neutral stimuli in the self–session data.
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Figure 6.35: MVPA: Importance of joints of parcels for decoding unpleasant stimuli in the

self–session, RF is trained on self–data; plots below depict location of highly connected parcels
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6.6 Summary of Main Results

The classification performance evaluation reveals that the classifiers are able to successfully de-

code the data from the session they are trained on, as well as the data from the complimentary

session. The modified Gini importance and the permutation importance in general show a high

consistency. The comparison of the importance values with the „unpredictive case“ (target vec-

tor is randomly permutated) allows to distinguish between important and unimportant features,

where a slight dependence between the importance in the unpredictive case and the importance

in the original (predictive) case is prohibitive for a sharp distinction between important and

unimportant features. The MVPA reveals a higher amount of shared neural representation than

the GLM. The importance of cliques of voxels show that informative multivariate patterns are

not restricted to local areas.
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CHAPTER 7
Discussion

All experiments’ results are discussed in this chapter in detail: At first the validity and behav-

ior of the decoding of the emotional states is discussed.Then the experiments of Section 6.3.1

and 6.3.2 are discussed to study the behavior of the investigated variable importance measures.

In the following the results from visualizing the variable importance of the proposed method is

compared with the results from classical GLM–analysis, to point out the benefits of the proposed

method. The key novelty, the detection of distributed shared coding patterns across a stimulus

category, is further investigated by usage of the newly introduced measure for the importance of

pairs of voxels. Here the discussion focuses on how to interpret these data as the joint importance

should not be confounded with the terminus „connectivity“ which is a term used differently in

neuroscience.

The sections are comprised of questions which are answered in a discussion and summarized

in a short conclusion. General considerations and remarks are given at the beginning of the

sections.

7.1 Validity of the Classifier Models

Beside the decoding methods described in Chapter 5, an alternative way of preparing the data

and labels as well as a classifier training on a single subject level is tested. The alternative meth-

ods described in Appendix A perform worse than the finally chosen approach, all results are

summarized in Table B.1. Since single–subject analysis are common in MVPA [85, 103]. The

validity of the single–subject models is discussed here:

Validity of single–subject models

The single–subject classification performs substantially worse than the group analysis. The

fMRI–recordings are too short (≈6 min 20 s), providing too few samples (10 stimuli of each

class). This also explains why the model–transfer (self–training, empathy–decoding) performs
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better than the in–session decoding: Due to the permutation schema, see Figure A.2, the train-

ing data are reduced to 3
4 in the 4–fold crossvalidation. Since self– and empathy–session are

independent measurements, 4
4 of the self–session can be used for training the decoder for the

empathy–session.

Validity of group models

The group model delivers substantially better results than the single–subject models and the per-

formance is well above chance. For comparison no similar experiments are known in literature.

But the results are good compared to the expectations given for a group–level decoding in a

recent MVPA reviews. Conclusion: The RF–classifier is a useful approach for brain–pattern

decoding. The group–level decoding may profit from the bagging strategy, where features are

selected from a random subsample of all features. As outlined in Section 3.4.3 this permits fea-

tures with correlated but weaker predictability also to be incorporated in the decision trees. In

FS4 features are spaced approximately in 5.5mm distance. This is the order of alignment error

in a surface based group alignment [67]. Thus a single feature in the group–model cannot be

expected to be on a consistent surface–node in all subjects. Form that point it is useful to work

with an ensemble of correlated features rather than with the single most predictive feature, which

may not be consistently aligned across all subjects.

What do the confusion matrices tell us?

Here the four procedures of combining the model–training and data to be decoded are discussed.

(S→S) Model training on the self–data and decoding of the self–data: This procedure has the

highest correct classification rate. The class–specific correct classification rates reveal that the

classifier has the highest problem in decoding the pleasant stimuli. The class sensitivity is

equally high for neutral and unpleasant stimuli.

(S→O) Model training on the self–data and decoding of the other–data: When comparing the

decoding performance of S→S with S→O, there is a noticeable preference for neutral–stimulus.

A possible explanation is that the decoding of neutral stimuli may be done by finding an absence

of emotional content (see discussion further below in Section 7.3.1). If the emotions are weaker

in the empathic perception, the stimuli may more likely be labeled as „neutral“.

(O→O) Model training on the other–data and decoding of the other–data: In this case the same

behavior as for S→O can be observed: the neutral–stimuli are the preferred classifier output.

Remarkably the training on the self–session delivers equally high decoding performance for the

other–data, as training on the other–data (performance S→O = performance O→O). This is a

first indication that there is a high amount of shared neuronal representation between self per-

ception and empathic perception.

(O→S) Model training on the other–data and decoding of the self–data: In contrast to O→O,

this scenario shows the same decoding behavior as S→S: Exactly as in S→S, pleasant stimuli

are worse to be detected.

Conclusion: The decoding behavior depends on the data and is independent from the model.

Pleasant stimuli are badly detected compared to the other stimulus types in the self–data (S→S

as well as O→S poor detection of pleasant stimuli). In the other–data the decoder is biased to

neutral stimuli, regardless on which data the decoder is trained (S→O as well as O→O pref-
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erence for predicting neutral stimuli). Yet there is no explanation for the first phenomena, the

latter observation is likely to arise from a decrease in „emotionality“ in the other–session, mean-

ing that the emotions are stronger if participants feel the tactile stimuli themselves. The model

transfer S→O works better than the O→S transfer, which suggests that the neuronal pattern in

the other–data is more fuzzy and thus it is harder to train the classifier on this session.

What resolution to choose?

Comparing the results from FS4 and FS5 no significant change is classification performance is

visible. This is to be expected for the cortical alignment errors given in literature [67]. Due to the

lacking amount of training samples a more detailed fine–grained pattern cannot be found in the

single–subject models. The RF–classifier is able to handle the dimensionality of the FS5–atlas

(>20k features) without deterioration of the classification performance. Due to group–alignment

errors the resolution of the FS4–atlas (>5k features) is sufficient to depict the pattern on a group–

level scale. To evaluate if the proposed method is capable of capturing a more fine-grained

pattern, further experiments namely high resolution fMRI–scans as well as longer scanning ses-

sions are necessary for this purpose. Conclusion: From the experiments carried out FS4 is a

useful resolution for a group level analysis, which also corresponds to the accuracy of a cortical

group–alignment.

What experimental setup is needed for group decoding?

The group model trained on 29 subjects is able to decode emotional states on never seen sub-

jects. A cortical alignment and sampling on 2,562 surface nodes per hemisphere is sufficient.

The computational effort for training a group model on 30 subjects in FS4 with 3,000 trees needs

approximately 16 minutes on a 64bit system with 76GB RAM parallelized on 8 cores of Intel

Xenon X5650 processors with 2.67 GHz clock frequency. This is handy compared to training

20,000 trees on FS5 which takes about 3 hours. Compared to other studies recordings of 6 to

7 min per participant and session are very convenient and sufficient for training a classifier in

a group model. Conclusion: In contrast to the poor performance of the single–subject models,

the experiments showed that the short scanning trails on 30 subjects are sufficient for a decoding

on a group level.

7.2 Discussion on the Variable Importance Measures

How do in–bag samples influence the permutation importance compared to OOB–assessment?

In Figure 6.15 the permutation importance of the OOB–assessment during training is compared

with the permutation importance assessed on all samples. For the two classes with high pre-

dictability the two measures are consistent. For the unpleasant stimuli, which have a class

specific prediction accuracy about 15% lower than for the two other classes, permutation impor-

tance on all samples frequently shows high importance value for variables which are unimpor-

tant in the OOB–assessment. This phenomen is not unexpected: during training some variables

could have been chosen for the best split variable for the in–bag samples just because of a ran-

dom noise, this (random) split is not predictive for the OOB evaluation, thus the selected split

variable is not important. Conclusio: Despite of the fact that all–sample and OOB–sample eval-
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uation deliver consistent values, for the variable importance in neutral and unpleasant stimuli

the OOB–concept is the better choice because it cannot be biased by noise, which occasionally

can serve as a good split condition. If no independent test–set is availabel for variable impor-

tance assessment, one should stick to the OOB–importance estimation evaluated during training.

How does the permutation importance behave compared to Gini importance?

This comparison is done in literature frequently, for that see the depiction on the state–of-the–

art in RF–variable–importance measures in Section 3.4.2. Summarizing Gini importance and

permutation importance are known to deliver well comparable variable rankings, where the per-

mutation importance is known to spread the variable measure more uniformly [49]. It has to be

noted that in literature the Gini importance from RF training is used, which per se is not class

specific. In this work a modified class–specific Gini importance was introduced in Section 5.5.

To evaluate the validity of this concept a comparison with the permutation importance was made:

Modified Gini– and permutation importance is plotted for each feature across consistent classes

in Figure 6.19 upper trace and across inconsistent classes in Figure 6.19 lower trace. The plots

in Figure 6.19 lower trace are more scattered than the plots in Figure 6.19 upper trace, where the

dots would ideally align along a line if there is a linear dependency between both importance

measures. Conclusion: In consistency with literature Gini–importance and permutation impor-

tance deliver similar results where the newly introduced modified class-specific Gini importance

is shown to be a usable modification. In this thesis furthermore the permutation importance was

used since during training only this measure is evaluated on OOB–samples.

Is there a common threshold–value for separating important and unimportant features?

For this purpose the labels were randomly permutated before testing. This breaks the depen-

dency between the data and the labels, this is further referred to as „unpredictive case“. After

the permutation of the labels the variable importance in assessing the random labels is calcu-

lated. As a first expectation one could think that all variables are equally (un)important. For

all experiments with the Gini importance (see Figure 6.18 and 6.21) the importance in the „un-

predictive case“ depends on the importance for predicting the original labels. This issue is easy

to explain: Each decrease in impurity (∆i(w,Xw)) when splitting a dataset is non–negative.

It is impossible that the parent dataset has a higher purity than fractions of it. For completely

random data the impurity in parent and child will be the same and thus ∆i(w,Xw) ≈ 0 any

random fluctuations from the perfect randomness will cause positive values for ∆i(w,Xw). In

tree–building, predictive variables are more likely to be selected and they tend to accumulate a

higher amount of positive values, making them more important even in the „unpredictive case“.

The same effect is also visible for the permutation importance (see Figure 6.16 and 6.20). Since

the permutation of the a features can lead to a decrease in prediction performance, but also to

an increased performance when the permutated feature occasionally performs better, the sum-

mation over all trees partly cancels out the effect. Indeed the effect is not very pronounced. I.e.

in the importance for unpleasant stimuli (Figure 6.20 rightmost picture) the effect is not visible

at all. Conclusion: Assessing a significance for the importance of a feature is a weakness of

the method. Regarding the computational effort it would be viable to compute the distribution

for the „unpredictive case“ as it was done for the shown experiments. The results give evidence
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that a feature’s importance in the „unpredictive case“ is dependent on the feature itself1. This

makes it impossible to asses the significance of a single feature by comparing it with the random

distribution of all features in the „unpredictive case“. A workaround would be to find the ran-

dom distribution for each single feature by permutating the labels several times. This method is

proposed in [1]. Due to the high dimensionality V = 5, 124 and the complex RF–model, with

ntree = 5, 000 trees the variable importance assessment is extensive to compute and thus up to

now this approach is not practicable.

7.3 RF Variable Importance Compared to GLM

Remarks on the comparison with the GLM

As discussed in detail in Section 3.3 the GLM is an activation–based and MVPA is an information–

based approach which is per se different and not directly comparable. Furthermore the procedure

of using the 95–percentile from the „non predictive“ permutation importance assessment should

not be interpreted as 95% significance level. As explained above the random–value for the

importance value in the “non predictive case“ depends on the feature itself, thus the common

used value will be too high or too low for some features. Comparing the GLM–analysis for

self–perception (Figure 6.1 – 6.3) with the importance values in the S→S MVPA (Figure 6.22

– 6.24), shows that there are activations marked in the GLM but not in the MVPA, activations

marked in the MVPA but not in the GLM and activations marked in both analysis. This reflects

the fact known from literature that both methods partly tell complementary information [59].

Why compare the multivariate RF–analysis with the GLM?

For comparing this newly proposed method it has to be brought in line with the established

methods. A comprehensive overview was given in Table 3.1. The proposed method performs a

whole–brain analysis, which on the first hand makes it comparable to univariate GLM–analysis

and multivariate searchlight analysis. As discussed above this method is incomparable with

MVPA–searchlight, as this method is designed to find fine grained local informative patterns.

This is prohibited in the experiments in this thesis since all analysis were done on a group–level

on an anatomical alignment, where only an alignment precision of 2 to 7mm can be exacted due

to inter subject variability [67]. Conclusion: The proposed method is a whole brain analysis but

delivers complementary information to the searchlight–approach. Thus the comparison is done

with GLM, where the remarks given above should be kept in mind.

7.3.1 Self Perception

Comparing the results from the GLM (Figure 6.1 – 6.3) and MVPA (Figure 6.22 – 6.24) a very

consistent pattern can be found, whereas in the MVPA analysis a quite high amount of small dis-

tributed activated spots can be found. Beside that also the GLM shows some activated patterns

not found in MVPA. The speckled activation in the MVPA is difficult to interpret and may be

due to the suboptimal set of threshold–value for masking unimportant nodes. An activated area

with a much higher contrast in MVPA than in GLM is discussed in the following:

1the dependency can be on various properties of the feature: e.g. selection frequency, importance
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How to interpret informative voxels found in the MVPA, which show no activation in the

GLM–analysis? Example: Coding for emotional content

When comparing the medial view of the left hemisphere in the MVPA Figure 6.22 – 6.24 it is

noticeable that an area in the frontal cortex (see Figure 7.1 for marking of the exact area) seems

to be involved in the emotional content. This corresponds to findings in literature [91,100,116].

The area is not informative for neutral stimuli activated for pleasant stimuli and deactivated for

unpleasant stimuli. These areas are also visible in the GLM–analysis, but with a much weaker

contrast. For easier comparison see Figure 7.1, where the area is marked with a red circle in

both MVPA and GLM analysis. Interestingly the parcel (L. G and S cingul-Ant) containing the

marked area, shows informative joint importances with parcels in the visual cortex (see Figure

6.35 for unpleasant stimuli). Conclusion: The marked area is not informative on its own (weak

contrast in the GLM) but informative in conjunction with the patterns in the visual cortex (high

contrast in the MVPA).

MVPA MVPA GLM GLM

pleasant unpleasant pleasant unpleasant

Figure 7.1: Comparisson of activation coding for emotional content in self–perception. Images

are cuttings from Figure 6.23, 6.24, 6.2 and 6.3

7.3.2 Empathic Perception

For that a comparison is done between areas with a significant activation contrast between the

different stimulus–types in the other–session with GLM–analysis (Figure 6.4 and 6.6) and the

importance in the O→O decoding (Figure 6.25 to 6.27). Again a very consistent activation

between both methods can be found. Again speckled activations are visible in MVPA which are

not present in the GLM. Mainly the activation is visible on the visual cortex in the GLM but

also all other activations in the GLM–anlysis can consistently be found in the MVPA.

7.3.3 Shared Networks

The MVPA finds areas carrying informative activation for distinction between the stimuli. To

reveal shared coding patterns the method as discussed in Section 5.1 was used. In contrast to

the GLM the MVPA delivers two sets of shared patterns. First the S→O experiment reveals
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patterns from the self–model which are also informative in decoding the other–data. Second the

O→S experiment shows which of the patterns in the other–model are predictive for decoding

self–perceived emotions.

Due to the low amount of significantly activated areas in the other—session in the GLM–

analysis, the cut set between activation in self–perception and empathic–perception is quite

small. Shared significant activation contrast between the stimuli can mainly be seen in the visual

cortex, on a small subarea on the left S1, on the amygdala for unpleasant stimuli and for neutral

and pleasant stimuli in the area of dorsal and ventral part of the posterior cingulate cortex (see

Figure 4.1 for definition of the areas and [24] for anatomical brain parcel names and location).

What information is gained by the S→O experiment?

The decoding performance of S→O is better than the decoding of the O→S experiment. Thus it

can be considered as the more informative decoding procedure.

First of all shared activations from the GLM analysis can also be found in the shared multivariate

representation.

In Chapter 4 shared representations between self and other are listed, most of them are from

studies where GLM was used. These shared representations can also be found by the proposed

method:

• Shared circulate cortex activity can be seen in unpleasant stimuli (Figure 6.30)

• Insula activity is visible in neutral (Figure 6.28) and unpleasant stimuli

• Activity in mPFC is found for pleasant (Figure 6.29) and neutral stimuli.

• Activation in the right S1 is informative for decoding neutral and unpleasant stimuli. Since

tactile stimuli were applied on the left hand palm, a contralateral activation corresponds

to the finding that also sensory related activity is shared in picture–based paradigms [73].

• Strong activation in the PreMotor Cortex (PM) is found for pleasant stimuli

• The amygdala is positively activated for unpleasant stimuli and deactivated for neutral

stimuli

• Posterior Parietal Lobe (PLL) can be found in neutral and pleasant stimuli.

Additionally speckled activity is found in all three conditions. Further the activation in the dor-

sal and ventral part of the posterior cingulate cortex spreads out to the precuneus in all stimulus

types. Conclusion: In the used data the proposed method reveals the same shared representa-

tions as the GLM on the same dataset, further activations can be found which are in agreement

with literature. Further activations will be of interest in further detailed investigations to get

new insight in neuronal empathy processing which is not revealable in a univariate analysis. In

future experiments special emphasis has to be given on an improvement in significance testing

and false discovery rated reductions to remove false detected activation.

Why is there a difference between S→O and O→S shared activation?

Intuitively the shared multivariate pattern across both sessions should be the same regardless

in which direction the model is transfered. The fact that the S→O experiment reveals patterns

informative for decoding the type of stimulus, which are not detected in the O→O experiment

reveals that the feature selection in the RF–training is not perfect. E.g. the S1 activation is
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not selected as important feature in the O→O experiment. For practical application one should

take the model with the higher in–session decoding performance, in this case the self–model,

for decoding the complimentary session and finding shared representations. Conclusion: The

experiments show that a suboptimal decoding performance at the model transfer indicates that

not all shared representation will be found.

7.4 Importance of Joint Voxels and the Importance of Long Range

Connections

The higher sensitivity for MVPA compared to univariate analysis as it is reported in litera-

ture [52] arises from the combination of features (see e.g. the procedure outlined in Figure 3.1

which gives an descriptive example on how the combination of features can increase sensitivity

compared to a univariate analysis). To uncover the information gained by connections of fea-

tures the conditional joint Gini importance is newly introduced in this thesis. Per conception

of this measure only the conjunction oft two features is investigated. Of course coding patterns

could contain more complex patterns across a high amount of voxels, but these patterns are cap-

tured by the conjunction of multiple pairs. To avoid confusion with the terminus connectivity

commonly used in neurosciences, general remarks are given before discussion.

Remarks on the interpretation of the joint Gini importance:

For interpretation the joint Gini importance and the informative connection of parcels plotted

in Figure C.1– C.6 it is mentioned that these connections do not follow the common usage oft

„connections“ in neuroscientivic research. The terms functional connectivity and effective con-

nectivity are used in neuroscience [42]. Friston et al. defines these terms: functional connectivity

is the „temporal correlations between spatially remote neurophysiological events“ [40] and ef-

fective connectivity is „the influence one neuronal system exerts over another“ [39]. In contrast

to functional connectivity features which are connected with a high conditional joint Gini impor-

tance will not be correlated since the two channels have to carry complementary information to

be jointly more informative than one or the other feature in an univariate fashion. Thus the con-

nections should not be interpreted as functionally connected in terms of „doing similar things“

but as being jointly informative „being together part of a activity pattern“. This goes along the

controversy discussed in Section 3.3. The joint Gini importance goes in line with a „informa-

tion based analysis“. As outlined in [50] this does not necessarily lead to interpretable results.

Despite of that fact some findings can be made.

Are whole brain analysis capturing long–ranged connections of interest?

The main difference of the proposed method to established whole brain analysis (searchlight

approach) is, that the newly introduced method in this thesis captures connections across any

length. Figure 6.34 demonstrates that node to node connections are informative on any con-

nection length. Also the schemaballs show that many informatively connected parcels are in

distance locations. Conclusion: The data show that the whole–brain analysis without restric-

tions to certain ROIs is useful to capture the full complexity of a coding pattern in the human

brain.
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What is the contribution provided by the schemaballs?

One example was already given in the coding for emotional content: For voxels, which are

uninformative alone, the schemaball shows the area in which voxels with complementary in-

formation are located. E.g. voxels in the frontal cortex were only detected with low contrast

in the univariate analysis but in conjunction with voxels in the visual cortex, these voxels are

informative for the type of stimulus. The same is true for the right S1 activation found with

MVPA but not with GLM. The corresponding anatomical labels of S1 are gyrus postcentral and

the objected sulci sulcus central and sulcus poscentral. For parcels overlapping these anatom-

ical areas, higher connection to other parcels can be found. Furthermore and common in all

schemaball plots the visual cortex (parcels in the bottom middle of the diagrams) show a high

interconnectedness, meaning that the different parts in the visual cortex provide complementary

information on the visual stimulus. Conclusion: The schemaballs provide useful information on

the location of voxels which provide complementary information for refining the classification.

As for other information–based analysis the neurological interpretation is sometimes difficult.

7.5 Summary

It could be shown that the data used are not suitable for single–subject models due to the short

recording length in the fMRI. But thesis thesis demonstrates a successful way for dealing with

the data by performing all analysis on a group–level on a FS4–resolution level. The decoding

models from the self–session performs slightly better than the decoding model from the em-

pathy session. For the psychologically interesting shared patterns the proposed method shows

a increased sensitivity compared to the classical GLM–analysis. Areas with weak contrast in

the GLM but high contrast in the MVPA consistently show hight joint importances with other

parcels.
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CHAPTER 8
Conclusion and Future Work

8.1 Major Findings of this Thesis

It could be demonstrated on real data that the RF–classifier is extremely useful in performing

whole brain multivariate pattern analysis. The shown procedure works on a group level with

30 subjects and is able to decode the emotional state of visuo–tactile stimuli on subjects not

included in the training set. The classification model is robust enough to also encode the correct

emotional state in a different scanning session where the participants perceived the emotion

empathically.

8.1.1 Benefit of RF in fMRI Data Analysis

The RF–training procedure incorporates correlated features in the model, and does not restrict

the feature selection to the most predictive features. Standard RF–variable importance measures

are shown to be useful in identifying informative voxels. The results are consistent with a GLM–

analysis.

8.1.2 Insight into Empathic Mechanisms

By training the classifier model on the data of the self–perception scanning session and using this

classifier to decode the type of stimulus in the empathy scanning session, this thesis demonstrates

a method of using the shared multivariate patterns across both conditions to successfully decode

stimuli in the empathy scanning session. By subsequent variable importance assessment for the

empathy–data in the self–decoding–model the shared representations between self–perception

and empathy could be identified. The results are in line with previous findings from studies

investigating the neuronal substrate of empathy in the human brain. The comparison between

the newly proposed MVPA and the GLM shows a much higher sensitivity for the MVPA. The

exact comparison in detail is problematic. The MVPA probes for informative patterns, whereas
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the GLM probes for activated voxels. These two analysis methods rely on different models and

different statistics and are thus not directly comparable.

8.1.3 Benefits Compared to State–of–the–Art Whole–Brain MVPA

A newly introduced importance measure reveals the conjunctions between features, which make

features together more informative in decoding compared to only the one or the other feature

alone. Visualizing these connections, the spatial location of jointly informative voxels can be

shown. This reveals that connections of any length can be informative. Thus the widely used

MVPA–searchlight approach looses lots of informative conjunctions by the restriction of the

patterns to local volumes. Compared to the searchlight–method the proposed method does not

necessarily require a high resolution which makes it 1.) usable for group–level approaches and

2.) suitable for short single subject scanning sessions.

8.2 Further Extensions to the Proposed Method

The identification of shared multivariate whole–brain neuronal representations will be of further

interest for neuro psychological research. This is planned with supervision and psychological

expertise from the University of Vienna, where this thesis should support as the methodological

description of the new method. One idea for further improvement of the method arose during

the end of the work:

A More Elaborate Significance Test for MVPA As described in the discussion, the sep-

aration of unimportant and important voxels should be done with threshold–values calculated

separately for each single voxel. This could be done by numerous random permutation tests

as proposed in [1]. This is computationally problematic for the huge datasets because many

permutations are needed to find the correct null–distribution for each feature. Therefore a more

effective implementation of variable importance assessment would be needed, and more impor-

tantly a modification of the used RF–implementation is necessary, since some evaluations have

to be assessed during training on the OOB–samples, otherwise the results are biased by the in–

bag samples. This would lead to a higher statistical power of the analysis and may reduce the

uninformative parts of speckle–activation without loosing informative activations.
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APPENDIX A
Alternative Data Preparation for

Classification and Model Trainings

In this appendix an alternative method for preparing the data and labels for classifier training

is presented. Further it is tried to train the classifiers on a single–subject level. The complete

results to the methods described here can be found in Appendix B.1 for the single subject models

and Appendix B.2 for the group models.

A.1 Alternative Data Preparation Strategy

Alternatively to the strategy given in section 5.3.2 one can build one training example per exper-

imental block instead of one training example for each point in time.

A.1.1 Preparing Labels for Classification with a GLM Block Design

This design is used for pattern estimation in MVPA fMRI–studies e.g. [18]. In this approach

a GLM is modeled in a classical style but a separate estimator is used for each block in the

recording session. If the experiment consists of nB individual blocks, a number of nB β–values

can be obtained for each voxel in the volume. These β–values can be assigned to a label l (again

ranging from 1 to 6) according to the experimental condition of the block. The processing for

this design is outlined in the following in more detail:

Building the Predictor–Functions

The stimulus–function sl(t) is now split up in separate functions sli(t) for each block, where l

corresponds to the experimental condition and i is a consecutive index to identify each separate

block of the same stimulus type. In all sessions i ranges from 1 to 10 for each type of stimulus.

This results in nB = 6 ·10 = 60 = nstim stimulus block–functions for each scanning session. As

an example for such a set, 60 stimulus functions sli(t) are plotted in Figure A.1. By convolving
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HRF

Figure A.1: Building a GLM predictor function for each block: 60 stimulus functions sli(t).
l ranges from 1 to 3 for the three different types of stimuli and 4 to 6 for the respective rating

blocks; i ranges from 1 to 10 for every l. Each function sli(t) is convolved with the hemo-

dynamic response function to estimate the 60 predictor–functions hli(t) for the GLM model.

Colorcode: black = no stimulus/rating, white = stimulus/rating; green =0, hot colors positive,

cold colors negative values

each function sli(t) with the hemodynamic response function, nB different estimator functions

hli(t) can be obtained. This process is illustrated in Figure A.1. All functions hli(t) are sampled

with a sampling interval of TR, resulting in 60 vectors each with 180 (=nobs) entries. Combining

these vectors delivers a nstim×nobs matrix, which is the transposed predictor matrix MT for the

GLM. Such a predictor matrix with one predictor per block is also given in [70].

Training Data for the GLM Strategy

When solving the GLM according Equation (3.3) for each voxel v with the predictor matrix

given above, one obtains a matrix B̂ of the size V ×nB. Herein each row contains the estimated

beta values β̂ for each of the nB stimulus blocks. Further we define lb as the block label vector,

which contains the label l for each of the nB stimulus blocks.

We use the matrix of β–values β̂ as the training data X , the block label vector lb is used as
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response vector y. Again this is done for both, the self–session and the other–session.

A.1.2 Decoding Each Point in Time vs. Decoding Experimental Blocks

There are two possible targets for decoding: In strategy 1 the classifier is trained to decode the

experimental condition of each point in time as shown in section 5.3.2, whereas in strategy 2 the

classifier is trained to decode the condition of a whole experimental block.

It can be expected that the classification results of the block design are better, since this pre-

processing incorporates the information of the block length, whereas the decoding of each point

in time permits inconsistent decodings within one block. For a fair comparison the information

of the block–length was included in the “strategy 1” decoding by summing up the tree’s votes

across all observations within an experimental block. This leads to a majority–vote for each

block. The resulting three decoding methods are listed in Table A.1.

Advantages and Disadvantages for Continuous Labeling

Advantages:

+ High temporal resolution since a label is assigned to each single volume.

+ BOLD signal can be directly used as feature value in the classifier training. Thus the

testing can be made without the knowledge of the block length.

+ High amount of training points since each acquired volume is one observation.

Disadvantages:

– Interstimulus interval has to be used to prevent temporally overlapping hemodynamic re-

sponses.

– Responses of stimuli– and rating–blocks temporally overlap. Thus at some points in time

the labels are inaccurate since they belong to mixed experimental conditions.

– Selection of the threshold–value th changes the amount of training–points. If it is set

too low the classifier is trained on observations where there is barely a response from the

stimulus. When taking a high threshold–value useful observations for training get lost.

Advantages and Disadvantages for GLM Block Design

Advantages:

+ This method can handle overlapping hemodynamic responses correctly since the β–values

as features correctly depict the correspondence of each voxel to each separate stimulus

block. [85]

+ Often used in other studies→ better comparability if the same preprocessing is used.

Disadvantages:

– No direct decoding is possible. The onsets and durations of each stimulus block have to

be known to calculate the β–values for each block. Only with the previous GLM–model

the β–values can be fed into the classifier to decode a labeling for each block.
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Name Training Math Symbols Decoding

Method 1 M1 BOLD–response for X = Z majority of vote for

each point in time y = l each point in time

Method 2 M2 BOLD–response for X = Z majority of vote across

each point in time y = l all observations per block

Method 3 M3 β–values for X = B̂ majority of vote for

each experimental block y = lb each block

Table A.1: List of decoding methods

A.2 Training Single Subject Models

For this purpose the RF–classifier is trained on each subject’s individual data matrix Xself and

Xother with the target vectors yself and yother. Except the cross validation schema all evaluations

are exactly as in the group–model. The single subject cross-validation schema self–model de-

coding the self–data is a 4–fold cross validation as shown in Figure A.2 (red box). For the model

transfer experiment the model is trained on the full self–session and tested on the empathy–

session. This procedure is done separately for each of the 30 subjects.

train test

run1

run2

run3

run4

functional images
self - session

functional images
other - session

train test

single - self crossvalidation single - self to single - other model transferinput data

Figure A.2: Training and validation schema for single subject analysis: The self–session is split

into 4 consecutive blocks. For the self–session cross validation the classifier is trained on 3
4 of

the data and tested on the left out 1
4 ; The validation result is summed up over 4 runs for each

block left out for testing once. The model transfer test is done by training on the full self–session

and decoding the data from the other–session
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APPENDIX B
Decoding Performance

This appendix gives the full results of all conducted classification performance experiments. An

overview on all correct classification rates is given in Table B.1.

Model training on Self Self Other Other

Decoding of Self Other Other Self

Res. ntrees Model M.

FS4 5000 Group M1 57% 57% 57% 54% ⋄
FS4 5000 Group M2 72% 69% 68% 66% ⋄
FS4 5000 Group M3 61% 57% 63% 58% ⋄
FS5 20000 Group M1 57% 57% – – ⋄
FS5 20000 Group M2 71% 71% – – ⋄
FS5 20000 Group M3 62% 59% – – ⋄
FS4 5000 Single M2 44% 56% – – �

FS5 20000 Single M2 44% 58% – – �

Table B.1: Overview on the correct classification rates: Resolution (Res.) FS4 or FS5; Method

(M.) see Table A.1 for definition; ⋄ accuracy of group model; � average accuracy over all

single–subject models

B.1 Single Subject Classification Accuracy

It can be seen from Table B.1 that method M2 performs best. Since the single subject classi-

fication performance is very low, only the results of M2 were evaluated for the single subject

analysis.
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B.1.1 Self–Model decoding Self–Session

M2 – 5000 Trees – Self–Model decoding Self–Session
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Figure B.1: correct classification rates for each subject and mean ±std.err.
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Figure B.2: class–sensitivities for each subject and mean class–sensitivity ±std.err.
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Figure B.3: confusion matrix: absolute counts for each class (left) and relative values (right)

accumulated over all subjects
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M2 – 20000 Trees – Self–Model decoding Self–Session
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Figure B.4: correct classification rates for each subject and mean ±std.err.
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Figure B.5: class–sensitivities for each subject and mean class–sensitivity ±std.err.
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Figure B.6: confusion matrix: absolute counts for each class (left) and relative values (right)

accumulated over all subjects
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B.1.2 Self–Model decoding Other–Session

M2 – 5000 Trees – Self–Model decoding Other–Session
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Figure B.7: correct classification rates for each subject and mean ±std.err.
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Figure B.8: class–sensitivities for each subject and mean class–sensitivity ±std.err.
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Figure B.9: confusion matrix: absolute counts for each class (left) and relative values (right)

accumulated over all subjects
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M2 – 20000 Trees – Self–Model decoding Other–Session
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Figure B.10: correct classification rates for each subject and mean ±std.err.
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Figure B.11: class–sensitivities for each subject and mean class–sensitivity ±std.err.
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Figure B.12: confusion matrix: absolute counts for each class (left) and relative values (right)

accumulated over all subjects

89



B.2 Group Classification Accuracy

In the following the complete results for the decoding performance assessment are given: For

FS4 each decoding method M1, M2 and M3 (see table A.1) every possible combination (Self–

Model decoding Self–Session, Self–Model decoding Other–Session, Other–Model decoding

Other–Session and Other–Model decoding Self–Session) was evaluated. For FS5 only Self–

Model decoding Self–Session and Self–Model decoding Other–Session was evaluated.
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B.2.1 Self–Model decoding Self–Session

M1 – 5000 Trees – Self–Model decoding Self–Session
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Figure B.13: M1: correct classification rates on left out subject and group mean ±std.err.
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Figure B.14: M1: class–sensitivities on left out subject and mean class–sensitivity ±std.err.
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Figure B.15: M1: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M2 – 5000 Trees – Self–Model decoding Self–Session
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Figure B.16: M2: correct classification rates on left out subject and group mean ±std.err.
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Figure B.17: M2: class–sensitivities on left out subject and mean class–sensitivity ±std.err.
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Figure B.18: M2: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M3 – 5000 Trees – Self–Model decoding Self–Session
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Figure B.19: M3: correct classification rates on left out subject and group mean ±std.err.
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Figure B.20: M3: class–sensitivities on left out subject and mean class–sensitivity ±std.err.
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Figure B.21: M3: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M1 – 20000 Trees – Self–Model decoding Self–Session
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Figure B.22: M1: correct classification rates on left out subject and group mean ±std.err.
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Figure B.23: M1: class–sensitivities on left out subject and mean class–sensitivity ±std.err.
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Figure B.24: M1: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M2 – 20000 Trees – Self–Model decoding Self–Session
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Figure B.25: M2: correct classification rates on left out subject and group mean ±std.err.
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Figure B.26: M2: class–sensitivities on left out subject and mean class–sensitivity ±std.err.

labels predicted

la
b
e
ls

 a
c
tu

a
l

 

 

550

168

103

65

372

42

82

138

538

neu−stim ple−stim unp−stim

neu−stim

ple−stim

unp−stim

50

100

150

200

250

300

350

400

450

500

550

labels predicted

la
b

e
ls

 a
c
tu

a
l

 

 

0.79

0.25

0.15

0.093

0.55

0.061

0.12

0.2

0.79

neu−stim ple−stim unp−stim

neu−stim

ple−stim

unp−stim

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure B.27: M2: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M3 – 20000 Trees – Self–Model decoding Self–Session
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Figure B.28: M3: correct classification rates on left out subject and group mean ±std.err.
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Figure B.29: M3: class–sensitivities on left out subject and mean class–sensitivity ±std.err.
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Figure B.30: M3: confusion matrix: absolute counts for each class (left) and relative values

(right)
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B.2.2 Self–Model decoding Other–Session

M1 – 5000 Trees – Self–Model decoding Other–Session
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Figure B.31: M1: correct classification rates on each subject and group mean ±std.err.
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Figure B.32: M1: class–sensitivities on each subject and mean class–sensitivity ±std.err.
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Figure B.33: M1: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M2 – 5000 Trees – Self–Model decoding Other–Session
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Figure B.34: M2: correct classification rates on each subject and group mean ±std.err.
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Figure B.35: M2: class–sensitivities on each subject and mean class–sensitivity ±std.err.
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Figure B.36: M2: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M3 – 5000 Trees – Self–Model decoding Other–Session
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Figure B.37: M3: correct classification rates on each subject and group mean ±std.err.
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Figure B.38: M3: class–sensitivities on each subject and mean class–sensitivity ±std.err.
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Figure B.39: M3: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M1 – 20000 Trees – Self–Model decoding Other–Session
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Figure B.40: M1: correct classification rates on each subject and group mean ±std.err.
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Figure B.41: M1: class–sensitivities on each subject and mean class–sensitivity ±std.err.
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Figure B.42: M1: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M2 – 20000 Trees – Self–Model decoding Other–Session
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Figure B.43: M2: correct classification rates on each subject and group mean ±std.err.
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Figure B.44: M2: class–sensitivities on each subject and mean class–sensitivity ±std.err.
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Figure B.45: M2: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M3 – 20000 Trees – Self–Model decoding Other–Session
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Figure B.46: M3: correct classification rates on each subject and group mean ±std.err.
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Figure B.47: M3: class–sensitivities on each subject and mean class–sensitivity ±std.err.
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Figure B.48: M3: confusion matrix: absolute counts for each class (left) and relative values

(right)
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B.2.3 Empathy–Model decoding Other–Session

M1 – 5000 Trees – Empathy–Model decoding Other–Session
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Figure B.49: M1: correct classification rates on left out subject and group mean ±std.err.
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Figure B.50: M1: class–sensitivities on left out subject and mean class–sensitivity ±std.err.
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Figure B.51: M1: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M2 – 5000 Trees – Other–Model decoding Other–Session
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Figure B.52: M2: correct classification rates on left out subject and group mean ±std.err.
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Figure B.53: M2: class–sensitivities on left out subject and mean class–sensitivity ±std.err.
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Figure B.54: M2: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M3 – 5000 Trees – Other–Model decoding Other–Session
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Figure B.55: M3: correct classification rates on left out subject and group mean ±std.err.
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Figure B.56: M3: class–sensitivities on left out subject and mean class–sensitivity ±std.err.
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Figure B.57: M3: confusion matrix: absolute counts for each class (left) and relative values

(right)
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B.2.4 Other–Model decoding Self–Session

M1 – 5000 Trees – Other–Model decoding Self–Session
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Figure B.58: M1: correct classification rates on each subject and group mean ±std.err.
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Figure B.59: M1: class–sensitivities on each subject and mean class–sensitivity ±std.err.
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Figure B.60: M1: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M2 – 5000 Trees – Other–Model decoding Self–Session
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Figure B.61: M2: correct classification rates on each subject and group mean ±std.err.
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Figure B.62: M2: class–sensitivities on each subject and mean class–sensitivity ±std.err.
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Figure B.63: M2: confusion matrix: absolute counts for each class (left) and relative values

(right)
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M3 – 5000 Trees – Other–Model decoding Self–Session
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Figure B.64: M3: correct classification rates on each subject and group mean ±std.err.
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Figure B.65: M3: class–sensitivities on each subject and mean class–sensitivity ±std.err.

labels predicted

la
b
e
ls

 a
c
tu

a
l

 

 

160

66

36

58

167

70

82

67

194

neu−stim ple−stim unp−stim

neu−stim

ple−stim

unp−stim

40

60

80

100

120

140

160

180

labels predicted

la
b
e
ls

 a
c
tu

a
l

 

 

0.53

0.22

0.12

0.19

0.56

0.23

0.27

0.22

0.65

neu−stim ple−stim unp−stim

neu−stim

ple−stim

unp−stim

0

0.2

0.4

0.6

0.8

1

Figure B.66: M3: confusion matrix: absolute counts for each class (left) and relative values

(right)
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APPENDIX C
Schemaballs

This appendix contains the full set of all schemaballs derived from the self–model. Figure C.1,

C.3 and C.5 depict the schemaballs for joint importances within a stimulus category; Figure C.2,

C.4 and C.6 depict the schemaballs for joint importances across stimulus categories.
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Figure C.1: MVPA: Importance of joints of parcels for decoding neutral stimuli in the self–

session, RF is trained on self–data; plots below depict location of highly connected parcels
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Figure C.2: MVPA: Importance of joints of parcels for decoding neutral stimuli in the other–

session, RF is trained on self–data (shared patterns for neutral stimuli); plots below depict loca-

tion of highly connected parcels
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Figure C.3: MVPA: Importance of joints of parcels for decoding pleasant stimuli in the self–

session, RF is trained on self–data; plots below depict location of highly connected parcels
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Figure C.4: MVPA: Importance of joints of parcels for decoding pleasant stimuli in the other–

session, RF is trained on self–data (shared patterns for pleasant stimuli); plots below depict

location of highly connected parcels
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Figure C.5: MVPA: Importance of joints of parcels for decoding unpleasant stimuli in the

self–session, RF is trained on self–data; plots below depict location of highly connected parcels
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Figure C.6: MVPA: Importance of joints of parcels for decoding unpleasant stimuli in the

other–session, RF is trained on self–data (shared patterns for unpleasant stimuli); plots below

depict location of highly connected parcels
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APPENDIX D
List of Acronyms

ACC Anterior Cingulate Cortex

AI Anterior Insula

aMCC anterior– Mid. Cingulate Cortex

BOLD Blood Oxygenation Level Dependent

dACC dorsal– Anterior Cingulate Cortex

EVC Early Visual Cortex

FDR False Discovery Rate

FFA Fusiform Face Area

fMRI functional Magnetic Resonance Imaging

FS4 FREESURFER fsaverage4–atlas

FS5 FREESURFER fsaverage5–atlas

FWHM Full Width Half Maximum

GLM General Linear Model

HRF Hemodynamic Response Function

i.d. identically distributed

i.i.d. independent identically distributed

IPC inferior parietal cortex
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ISI Inter Stimulus Interval

LH Left Hemisphere

MCC Medial Cingulate Cortex

MI Middle Insula

mPFC medial PreFrontal Cortex

MRI Magnetic Resonance Imaging

MVPA MultiVariate Pattern Analysis

OOB Out Of Bag

PCA Principal Component Analysis

pIC posterior Insular Cortex

PLL Posterior Parietal Lobe

PM PreMotor Cortex

RF Random Forest

RH Right Hemisphere

ROI Region of Interest

S1 primary somatosensory cortex

S2 secondary somatosensory cortex

std.err. standard error

STS Superior Temporal Sulcus

SVM Support Vector Machine
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APPENDIX E
List of Math Symbols

∆I(w,Xw) weighted reduction in Gini impurity in node w for the data Xw

∆i(w,Xw) decrease in impurity at node w when splitting the data Xw into two children Xw1

and Xw2

η∗(w, v∗,Xw) split–value of node w

i(Xw) Gini impurity for the data Xw

IG(v) Gini importance of feature v

ICJG(v, u) conditional joint Gini importance of feature v with parent split feature u

IJG(v, u) joint Gini importance of feature v with parent split feature u

nw total number of examples at node w = number of columns in Xw

v∗(w) split–feature of node w

β =











β1
β2
...

βq











vector of weights in the GLM

B̂ matrix of estimated β–values for each feature and predictor, size is V × nB

ẑ estimated BOLD–response (estimate of z)

c =











c1
c2
...

cq











contrast–vector for hypothesis test in the GLM GLM
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l vector of time discrete samples of the label function l(t), length is nm

lb block label vector, containing the label l for each of the nB stimulus blocks

M = (m1,m2, · · ·mq) is a nobs×p model predictor matrix, or design matrix each column

represents one model predictor

X data matrix, size is V × nobs

X∗ subsample of observations or training a tree in the RF with size V × n∗

obs

Xother group data matrix accumulating all observations across all subjects’ data matrixes Xother

Xother data matrix X for the other–session

Xself group data matrix accumulating all observations across all subjects’ data matrixes Xself

Xself data matrix X for the self–session

Xw data assigned to node w

Xw1
, Xw2

children datasets of the parent dataset Xw; Xw = Xw1
∪Xw2

; Xw1
∩Xw2

= {}

y response vector containing a label l for each observation in X , vector length is nobs

yother group target vector accumulating all subjects’ target vectors yother

yother response vector y for the other–session

yself group target vector accumulating all subjects’ target vectors yself

yself response vector y for the self–session

z vector of nobs time discrete BOLD measurements

Zother matrix of surface aligned BOLD–measurements of the other–session, size is V × nm

Zself matrix of surface aligned BOLD–measurements of the self–session, size is V × nm

β̂ estimated value of β

˜yother group permutated version of the vector yother group

˜yself group permutated version of the vector yself group

ÕOB
v

b the OOB–samples of tree b with the values of feature v permutated

b a specific tree in the forest

B0 static magnetic field in MRI

e(t) error–function in the GLM
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hl(t) hemodynamic response of the stimulus sl(t)

HRF (t) HRF–function

L number of different labels

l label number ranging from 1 to L

l = 1 for neutral stimuli

l = 2 for pleasant stimuli

l = 3 for unpleasant stimuli

l(t) function which assigned a label l to each point in time t

m number of randomly selected features for each node in the RF–algorithm

m(t) predictor–function in GLM–model; m is a vector of sampled points in time

M0 equilibrium magnetization in z-direction (direction of B0)

Mz magnetization in z-direction

Mxy magnetization in plane perpendicular z-direction

nB number of experimental blocks

nm number of acquired volumes during one fMRI–scanning session.

nobs number of observations

n∗

obs number of subsampled observations for training a tree in the RF

np number of parcels per hemisphere

ntrees number of trees in the RF

OOBb the OOB–samples of tree b

q number of predictors in the GLM

sl(t) stimulus function of stimulus type l

T1 spin–lattice relaxation time

T2 spin–spin relaxation time

T ∗

2 experimentally observed decay in Mxy

th threshold value for labeling

V dimensionality of the feature space

v, u specific features
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w a specific node in a decision tree

wparent parent node of node w

z(t) BOLD–measurement in one voxel
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