
On Worst-Case Execution
Time Analysis and

Optimization

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Alexander Jordan
Registration Number 0125287

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl-Ing. Dr. Andreas Krall

The dissertation has been reviewed by:

(Andreas Krall) (Martin Schoeberl)

Wien, January 30, 2014
(Alexander Jordan)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Alexander Jordan
Badgasse 22/12, 1090 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen
der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken
oder dem Internet imWortlaut oder dem Sinn nach entnommen sind, auf jeden Fall un-
ter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgments

First, I would like to thank my parents for their support throughout these sometimes
turbulent years of my higher education. Thanks to my advisor, Andreas Krall, who
gave me the opportunity to do this research and the freedom to pursue it, the way I saw
fit. Thanks to Martin Schoeberl for the insights and discussions on topics that at first
seemed alien to me. To all my colleagues and friends, at the Complang group in Vienna
and the ESE section at DTU, thanks for making the time I have spent in those places
pleasant and fun.

This thesis would not have been written, if it has not been for the guidance and sup-
port of Florian Brandner. During the last years, apart from just keeping me motivated
in my research, he has been tireless at teaching me new tricks and nudged me into —at
times strange— new places in work and life. All of it, I thoroughly enjoyed.

Funding This work was partially funded by the Austrian Science Fund (FWF) under
contract №P21842, “Optimal Code Generation for Explicitly Parallel Processors”, and
the research project “Time-predictable Multi-Core Architecture for Embedded Systems
(T-CREST)” under grant agreement№ 288008 funded by the 7th framework programme
of the European Commission.

iii

Abstract

Embedded systems have become a prevalent part of our daily lives. We can find them
—often more than one, connected to each other— in our cars, phones and appliances.
We rely on their availability for convenience, and in other, safety-critical areas, we rely
on their correctness, sometimes with our lives. When such an embedded system has
to perform a task (e.g. respond) in real-time, its correctness is not limited to functional
requirements. In this case, we also want to verify its timing correctness. Timing mea-
surements of the target system given a series of different inputs can lead to an estimation
of itsworst-case behaviors. But for any non-trivial application, it is impossible to reliably
trigger the actual worst case. Static analysis of the system and its software can provide a
safe upper bound of all possible timing results. We refer to this technique as worst-case
execution time (WCET) analysis. Tools for static WCET analysis have recently become
mature enough to be adopted by the avionics and automotive industries. But as soft-
ware becomes more complex, the effort of performing static WCET analysis grows as
well. This affects the computational effort caused by the analysis, as well as the effort
spent by the engineer working with the analysis tool.

In this thesis we describe methods to adapt static WCET analysis in light of above
noted problems and needs. With the Patmos platform, we have a hardware environ-
ment that heeds predictable execution as a primary design goal. This extends to the
modeling of caches, which are a major factor of unpredictability in universal comput-
ing systems. For a cache architecture dedicated to the program stack, we describe the
algorithms required to extendWCET analysis to accurately determine its worst-case be-
havior. Our evaluation reveals that the analysis of such a stack cache architecture, scales
to large applications with complex calling behavior, while remaining efficient to com-
pute and yielding precise results at the same time.

Aworst-case-aware transformation of code is another possibility to reduce theWCET
bound. Seeing that compiler support for WCET optimization is in its infancy, it is left
to the programmer to avoid generating code that is hard to analyze and to do ad-hoc
optimization of regions that analysis has shown to trigger the longest execution time.
In this context, we further adapt WCET analysis to anticipate the need of programmers
and compilers to get a more complete picture of a program’s worst-case timing behav-
ior. Through a meta-analysis approach, we create a novel metric that classifies code by
its worst-case criticality. We formally define this metric and investigate some of its prop-
erties with respect to dominance in control-flow graphs. Exploiting these, we propose

v

algorithms that reduce the overhead of computation by inference. Experiments using a
set of real-time benchmarks show the feasibility of our WCET profiling approach and
reveal considerable amounts of highly critical as well as uncritical code in these pro-
grams.

From the beginnings of staticWCET analysis, research has addressedmethods to re-
duce the amount of overestimation. Overestimation is a necessary evil, which is applied
in various forms, when the state space that would have to be tracked for precisely ana-
lyzing a program’s behavior on a specific hardware platform grows too large. With our
final contribution, we adapt the inner workings of the state-of-the-art path-basedWCET
analysis technique to follow a pruning approach. Our method is based on the notion of
Criticality, we introduced before, and can eliminate potential sources of overestimation.
Pruning approaches for program analysis have been proposed before, but to the best of
our knowledge, this is the first time, pruning is done on the low-level representation of
the program graph. Our first experiments with graph pruning use a commercial WCET
analysis tool and show that our approach is feasible in practice and can improve the
WCET bound up to 6% compared to the commercial tool as a baseline.

Kurzfassung

Die Zuverlässigkeit von eingebetteten Systemen ist durch deren große Verbreitung und
Einsatz in sicherheitskritischen Bereichen, zu einemwichtigen Thema in Forschung und
Entwicklung geworden. Hierbei spielt nicht nur die funktionale Korrektheit, sondern
auch das Zeitverhalten einer Anwendung eine ausschlaggebende Rolle. Aus Messun-
gen des Zeitverhaltens eines solchen Echtzeitsystems können Schätzungen, aber keine
garantierten Schranken zu dessen Zeitverhalten in sämtlichen Szenarien abgeleitet wer-
den. Die Verwendung von statischer Analyse zur Bestimmung von garantierten obe-
ren Laufzeitschranken, kurzWCET Analyse, wird zum Beispiel bereits in der Auto- und
Flugzeugindustrie eingesetzt. Primär steht bei der statischen Analyse die Generierung
einer sicheren Schranke im Vordergrund. Sekundär soll die Analyse in möglichst kur-
zer Zeit ihr Ergebnis liefern und eine möglichst genaue Schranke berechnen, das heißt
sich möglichst nah an die tatsächliche längste Ausführungszeit annähern. Ein Problem
dieser Analysemethode ist jedoch die stetig steigende Komplexität von Computerpro-
grammenundHardwarearchitekturen, auf denendiese Programmeausgeführtwerden.
Beides wirkt sich negativ auf die Analyselaufzeit, sowie deren Genauigkeit aus. Ho-
he WCET-Schranken in Relation zumNormalverhalten (programminherent oder durch
Überschätzung während der Analyse) bedingen wiederum, dass mehr Leistung für die
Ausführung zur Verfügung gestellt werden muss. Hier setzen die Optimierungen, die
in dieser Dissertation ausgeführt werden, an.

Die Patmos Plattform erlaubt uns Analysen an eine Architektur anzupassen, die für
die Vorhersagbarkeit vonAusführungszeiten entworfenwird. Der negative Einfluss von
inHardware implementiertenOptimierungen (z.B. Caches, Pipelining), die imallgemei-
nen Fall zwar die Ausführungszeit steigern können, jedoch die Berechnung von oberen
Schranken für diese erschweren, wird mit der Patmos Architektur vermieden. In dieser
Dissertation beschreiben wir, wie das neue Konzept eines Stack Cache, präzise Analy-
sen ermöglicht, deren Ergebnisse sich einfach in ein bestehendes Berechnungsmodell
für WCET-Schranken integrieren lassen. Durch die Trennung von Zugriffen auf andere
Speicherbereiche und das vorhersagbare Zeitverhalten des Stack Cache können genaue-
re Schranken berechnet werden.

Die Qualität von WCET-Schranken, die mittels statischer Analyse gefunden werden
können, hängt grundlegend mit der Struktur eines Programms und des Maschinen-
codes, der dafür erzeugt wird, zusammen. Werkzeuge, welche die Entwicklung von
Echtzeit-Programmen erleichtern, zum Beispiel dafür optimierte Übersetzer, sind zu

vii

diesem Zeitpunkt noch kaum ausgereift. Zur Unterstützung des Entwicklungsprozes-
ses, sowohl auf Seiten des Programmierers als auch des Übersetzers, entwerfen wir eine
Metrik, die über die Längste-Pfad-Sicht, die zur Berechnung einer Schranke herangezo-
gen wird, hinausgeht. Diese Metrik gibt Aufschluss darüber, wie kritisch alle Teile eines
Programms imHinblick auf dessenWCET-Schranke sind und ermöglicht eine vollstän-
dige Sicht auf dessen Verhalten im schlechtesten Fall der Ausführung. Wir beschreiben
die Meta-Analyse zur Berechnung von criticality mit Hilfe von effizienten Algorithmen
und evaluieren deren Verhalten für Echtzeit-Programme, die als Standard-Testfälle im
Bereich der WCET Analyse verwendet werden.

Um präzisere Schranken für die Ausführungszeit jeder Art von Hardware Architek-
tur zu berechnen, beschreibt diese Dissertation schlussendlich ein Verfahren, das auf
dem Separieren von Knoten in der Graphen-Darstellung eines Programms basiert. Das
Ziel dieser Optimierung ist wiederum, durch das Ausschließen von Interferenzen und
unter Erhalt der Sicherheit, eine genauere obere Schranke für das Zeitverhalten berech-
nen zu können. Unsere ersten Experimente mit dieser Methode, ergeben vielverspre-
chende Verbesserungen der Schranken um bis zu 6%. Hierbei ist anzumerken, dass die
Verbesserung der Analysegenauigkeit durch Graph Pruning mit der Größe des analy-
sierten Programms ansteigt.

Contents

1 Introduction 1
1.1 Worst-Case Execution Time Analysis . 2

1.1.1 Implicit Path Enumeration Technique (IPET) 3
1.2 Motivation . 4
1.3 Contribution . 5
1.4 Thesis Outline . 6

2 Preliminaries 9
2.1 Definitions . 9

2.1.1 Program Representation . 9
2.1.2 Worst-Case Execution Time Analysis 11

2.2 Analysis Evaluation . 12
2.2.1 Target Processors . 12
2.2.2 Real-Time Benchmarks . 15

3 Precise Stack Cache Analysis 17
3.1 The Stack Cache . 17

3.1.1 Stack Cache Implemented in Hardware 18
3.2 Stack Cache Analysis . 20

3.2.1 Stack Cache Displacement . 23
3.2.2 Data-Flow Analyses . 26
3.2.3 Worst-Case Spilling . 28
3.2.4 Combining the Analyses . 31

3.3 IPET Integration . 32
3.4 Well-Formed Programs . 35
3.5 Evaluation . 37
3.6 Related Work . 40

4 Criticality 43
4.1 The Criticality Metric on Control-Flow Graphs 43

4.1.1 Properties of Criticality . 45
4.1.2 Invariant Code . 47

4.2 Algorithms for Computing Criticality . 48
4.2.1 Dynamic Programming on Acyclic Graphs 48

ix

4.2.2 Path Enumeration on Cyclic Graphs 51
4.2.3 Handling Critical Edges . 54
4.2.4 Pruned Criticality Computation 55

4.3 Estimating Criticality . 59
4.4 Visualization . 61
4.5 Evaluation . 62

4.5.1 Code Structure of Real-Time Programs 62
4.5.2 Criticality Computation for the Debie Benchmark 67
4.5.3 Criticality Overview of Real-Time Programs 70
4.5.4 Estimation Results . 72

4.6 Discussion . 73
4.6.1 Application of the Criticality Metric 73

4.7 Related Work . 75

5 Graph Pruning 81
5.1 Sources of Overestimation . 81
5.2 Algorithm . 82

5.2.1 Correctness . 84
5.2.2 Complexity . 86
5.2.3 Algorithm Variants . 86

5.3 Evaluation . 87
5.3.1 Case Study: debie-1 . 87
5.3.2 Setup for Experiments . 89
5.3.3 Iterative Graph Pruning . 90
5.3.4 Two-stage Iterative Graph Pruning 91
5.3.5 Discussion . 95

5.4 Related Work . 96

6 Closing 99

Bibliography 103

Curriculum Vitae 113

Chapter 1

Introduction

Embedded systems have become a prevalent part of our daily lives. Their application
domains are manifold, including automotive, consumer, medical, military and telecom-
munication applications. By numbers sold, embedded microprocessors, digital signal
processors (DSPs) andmicrocontrollers have been by far outnumbering desktop or note-
book processors for at least a decade. In 2001 only 2% of processor sales accounted for
desktop CPUs, while the rest belongs to the embedded market, which is dominated by
microcontrollers at 80% of total volume [49]. Since then, as requirements for computing
performance increases, we have seen embedded microprocessors displace 16-bit micro-
controllers.

Through sensors, motors, or a human-machine interfaces, many embedded systems
interact with the physical world orwith us directly. Some of them are safety-critical, that
is, we depend on their correct behavior. For example, we can find them in industrial ap-
plications, medical devices, as part of automotive systems and flight control systems on
airplanes. Their failure to operate correctly at all times can cause expensive damage, or
even lead to the loss of lives. Correctness does not only concern a program’s function-
ality being in accordance with its specification, it also extends to requirements on its
timing behavior. The program’s sub-functions (tasks) are required to always respond in
a timely manner. We can divide timing-sensitive embedded applications —following
the definitions in [54]— into those that run on a soft real-time system, where missing a
deadline leads to degraded service, which is not considered a failure unless it occurs too
often. Other applications require a hard real-time system, i.e., a system that considers
it a failure when one of its tasks fails to meet its deadline. (When tasks with hard and
other tasks with soft timing constraints execute on the same system, we call it a mixed
criticality system.)

We can guarantee the correct timing behavior of a real-time system, when we know
the longest time it can take for its tasks to respond to inputs. For this in turn, we need to
know the worst-case execution time (WCET) of a program, or parts of it. TheWCET can
be considered on multiple levels, the whole program, a procedure, or some sequential
code, and it represents the longest time it can take to execute this region. The WCET
is the opposite concept of the best-case execution time (BCET), the fastest execution

2 Introduction

through a piece of code that can be achieved. Somewhere in the middle between BCET
and WCET, lies the average-case execution time (ACET), which general-purpose sys-
tems and even soft real-time systems usually optimize for. The WCET of a program can
be far off from its average execution time and finding its exact value may not always
be practical or required. Thus, engineers have resorted to determining an upper bound
for their real-time programs, which may overestimate the actual WCET, but must never
underestimate it. It is the goal of worst-case execution time analysis to efficiently find
these safe WCET bounds while keeping overestimation at a minimum.

1.1 Worst-Case Execution Time Analysis

A straight-forward way to obtain information about the worst-case behavior of a pro-
gram, is by stress testing it with inputs that try to trigger the longest execution time
possible. Since the results obtained in this way are estimates, lacking any safety guar-
antee, an engineer might then add some slack to the longest measured execution time.
This dynamic analysis is being employed in industry [53]; it is also known as end-to-end
measurements in [34]. Tools for dynamic analysis can aid in the generation of program
inputs, trying tomaximize test coverage, whileminimizing the number ofmeasurement
runs.

Static analysis, on the other hand, provides a safe bound for the worst-case execu-
tion time of a programwithout the need of executing it. The operation of a static WCET
analysis tool can be conceptually separated into two components: (1) Control flow anal-
ysis is responsible for finding paths through the program that execution might take.
This can be performed on different program representations (e.g., source code, binary
code). (2) A lower-level analysis, which relies on a model that abstracts the execution
behavior of the targeted hardware either precisely or conservatively. While it might not be
feasible to keep track of all timing anomalies (e.g., pipeline- and cache stalls) precisely,
the model must at least be conservative with regards to their timing effects.

Hybrid WCET analysis tools combine high-level static analysis, with measurements
performed on individual parts of the program on the target hardware. The resulting
WCET bound estimate is more robust than that of simplistic end-to-end testing, but in
contrast to static analysis with a sound hardware model, it does not represent a safe
upper bound.

Table 1.1 gives an overview of WCET tools and frameworks, classifying them by
the algorithm used for WCET computation. It covers both, research and commercial
projects that target WCET analysis and has a historical perspective. The early tree-based
algorithms for WCET computation are followed by path-based approaches, which, in
contrast to before, could capture the flow of executionmore precisely, allowing for infea-
sible program paths to be excluded, thus reducing overestimation. On the other hand,
path-based WCET analysis suffers from path explosion, in the same way path-sensitive
analysis does in general: the state space grows too large, making the analysis intractable.
This thesis focuses on the current state-of-the-art of static WCET analyzers, which are
based on the implicit path enumeration technique (IPET).

Introduction 3

System Algorithm Remarks Ref.

Euclid tree real-time support was included in Euclid language [87]
Modula/R tree Modula-2 extended for timing/memory analysis [84]
SPARK Ada tree Ada subset, context-sensitive annotations [81]
TAS tree annotated C and TAL annotation language [86]
Timing Tool tree C subset, interactive annotation session [85]

PL/IDL path both languages to specify (in)feasible paths [83]
Florida path working path-based analysis on top of VPO compiler [66]

AbsInt aiT IPET commercial, binary input, abstract interpretation [57]
Bound-T IPET commercial, binary input, mostly user annotated [68]
Chronos IPET SimpleScalar processor model, ILP constraints [40]
Heptane IPET C source- and machine-level annoations combined [60]
Hume IPET functional language using aiT for byte-code analysis [50]
JOP WCA IPET targets time-predictable Java processor (JOP) [20]
Otawa IPET low-level bundled with oRange for high-level analysis [41]
Platin IPET see Section 2.2.1 [102]
Sweet IPET powerful high-level loop analysis, processor simulators [65]
TuBound IPET Rose source-to-source C++ compiler, wcetC backend [33]

WCC IPET annotated C, polyhedral loop analysis, integrated aiT [42]
wcetC IPET C dialect with annotations transformed to machine code [63]
Chalmers simulated measurements from cycle-accurate simulator [72]
RapiTime hybrid commercial, measurements combined using IPET [56]

SymTA/P hybrid measure “single feasible path” found by analysis [59]
Vienna measured minimizes effort of test data generation by analysis [51]

Table 1.1: Overview of WCET analysis systems (originally from [19])

1.1.1 Implicit Path Enumeration Technique (IPET)

The control flow graph of a program can be efficiently modeled using implicit path
enumeration through a system of linear equations [78, 74]. Variables represent execu-
tion counts of basic blocks and constraints define legal execution paths in the CFG. Loop
bounds, as well as further restrictions on program flow—thesemay be originating from
previous analysis phases or annotations provided by a user, we refer to them in general
as flow facts and specifically in the latter case as user annotations— are directly added to
the integer linear program (ILP), through supplementary constraints. The ILP is com-
pleted by adding weights according to local execution times to nodes (or edges) of the
graph, and by the objective function, which maximizes the overall cost (execution path
length). If the problem is bounded and feasible, a standard ILP solver determines the
WCET and execution frequencies for all basic blocks on someWCEP. This result does not
immediately correspond to a path. It rather represents a family of paths, where each path
may contain basic blocks several times, according to their IPET execution counts. It is

4 Introduction

trivial to construct a concrete path, since IPET ensures that Kirchhoff’s law is respected
by the execution counts.

Alternatively, dynamic programming [23] allows to directly compute the longest
path on acyclic CFGs. Also cyclic CFGs can incorporate dynamic programming, by
applying it to their acyclic sub-graphs [64].

1.2 Motivation

The problems that today’s static WCET analysis tools face have many different sources.
Real-time systems have seen a steady increase in complexity during the last decades [24].
Due to the increased processing power of modern processors, more elaborate algo-
rithms are implemented, new functionality added, and existing functionality migrated
to software. As the complexity of real-time software grows, analysis of the software be-
comes more and more demanding. In order for static WCET analyzers to yield results
in an acceptable amount of time, they often have to make concessions when it comes to
the precision of the analysis, i.e., they trade precision for feasibility. This leads to the
overestimation of WCET bounds.

The most widely used compiler frameworks, due to the range of their supported
languages and architectures, are GCC [96] and LLVM [97]. Both include embedded sys-
tems architectures as first class targets and can generate highly optimized code for them.
Their optimization goals are limited to minimizing code size and maximizing average-
case performance. As general purpose compilers they do not however, provide opti-
mizations that target worst-case execution time, anymeans to disable optimizations that
might impede it, or analyzability in general. We only know of one WCET-specific com-
piler, WCC from the Dortmund University of Technology. In other cases, research com-
pilers were being adapted to WCET needs (e.g., code placement by Zhao et al. [48] uses
VPO, Sweet uses LCC compiler). Judging by the target processor supported by com-
mercial WCET analyzers, like aiT and Bound-T, we can conclude that commercial off-
the-shelf (COTS) embedded processor platforms are being used for designing hard real-
time systems. These architectures include performance-enhancing techniques, such as
caching and speculation, which aim at improving average-case performance, but have
been identified as a major obstacle to accurate WCET analysis (see [58]). This is due
to architectural states, which need to be represented in the analysis problem to avoid in-
troducing too much pessimism into the WCET bound (e.g., by considering every cache
access a miss). Writing software for a safety-critical real-time system is no easy task. Be-
sides the issue of correctness, timely responses must be ensured. Static WCET analysis
provides timing guarantees and does not rely on measurements in its process. How-
ever, the analysis does not work as a push-button tool. Programmers need to provide
annotations for the analysis to be useful and they need to be able to interpret its results.
The latter is essential, when the goal is to optimize a program’s WCET.

Why is it important that analysis bounds are reasonably tight? When we have to
rely on a WCET bound, which is provably safe, but suffering from overestimation due
to problems with our program, choice of hardware, or WCET analysis, we still need to

Introduction 5

accommodate this bound in the system. We then have to dedicate more resources to
this overestimated task (e.g. use a faster processor), which will be rarely utilized, if at
all, creating an overall inefficient system.

1.3 Contribution

Our goal is to advance today’s state-of-the-art static WCET analysis. Being part of the
T-CREST project, an EU FP7 funded research project, with the aim of creating a comput-
ing platform for hard real-time system from scratch, gave us the opportunity to come up
with solutions across all problem areas we exposed above. Given a processor’s instruc-
tion set and data cache, both designed for predictability, we show how an IPET-based
WCET bound computation can avoid the predominant difficulties of cache analysis and
precisely bound the worst-case behavior of a stack cache. With programmers and com-
pilers in mind, we further augment WCET analysis, to gain more WCET-relevant infor-
mation about real-time programs. On the same basis we tackle the problem of analysis
tools having to face increasingly large programs. These contributions can be summa-
rized as follows:

• We describe the analysis problems and algorithms necessary for accurate static
analysis of worst-case behavior for a stack cache architecture. To derive execution
time bounds, we show how to tightly integrate these results into the IPET phase
of a static WCET tool.

• With criticality we present a novel metric related to worst-case execution time. It
allows creatingWCET-relevant program profiles, which may be used to better un-
derstand and optimize a real-time program, by a programmer, compiler, or by
WCET analysis itself.

• By evaluating criticality on a set of programs, considered standard benchmarks in
the field of WCET analysis, we learn more about the properties of these real-time
programs. We present our findings in detail.

• Graph-pruning for refiningWCET analysis is a complementary approach to exist-
ing pruning techniques, which target flow analysis or pruning of infeasible paths.
Compared to the latter, graph pruning allows all static WCET phases to focus on
relevant code parts.

The contributions in this thesis have been presented at international conferences, are
pending publication, or have been published:

[1] Florian Brandner and Alexander Jordan. “Refinement of Worst-Case Execution
Time Bounds by Graph Pruning”. (under submission).

[2] Alexander Jordan. “Evaluating and Estimating theWCET Criticality Metric”. In:
Proceedings of the 11th Workshop on Optimizations for DSP and Embedded Systems.
ODES ’14. (accepted for publication). ACM, 2014.

6 Introduction

[5] Florian Brandner, Stefan Hepp, and Alexander Jordan. “Criticality: static profil-
ing for real-time programs”. In: Real-Time Systems (Oct. 2013). (published online,
pending print).

[6] Alexander Jordan, Florian Brandner, and Martin Schoeberl. “Static Analysis of
Worst-case Stack Cache Behavior”. In: Proceedings of the 21st International Confer-
ence on Real-Time Networks and Systems. RTNS ’13. ACM Press, 2013, pages 55–
64.

[9] Florian Brandner, Stefan Hepp, and Alexander Jordan. “Static profiling of the
worst-case in real-time programs”. In: Proceedings of the International Conference
on Real-Time and Network Systems. RTNS ’12. ACM Press, 2012, pages 101–110.

The elementary algorithms for worst-case analysis of stack cache behavior have been
described in a conference paper [6].

Criticality as a novelmetric for real-timeprograms, has beendeveloped togetherwith
Florian Brandner and Stefan Hepp. It was first presented by the author of this thesis at
RTNS 2012 [9] in Pont à Mousson, France, where it was awarded that years Best Paper
Award. Criticality has been further extended in [5] and [2].With regard to co-authorship
of the criticality metric, the individual contribution of the author of this thesis covers
its first implementation using LLVM and AbsInt a3, its evaluation environment, as well
as the pruning and estimation methods. Florian Brandner and Stefan Hepp were active
co-authors of the publications [9] and [5].

Following up on our work on criticality, an article describing the graph-pruning ap-
proach for refinement of WCET analysis is currently under submission [1].

1.4 Thesis Outline

This thesis is structured so that any of the main chapters can be read and understood
on its own, as long as the reader is familiar with the theory and notation introduced in
Section 2.1. An outline of the whole thesis is below:

• In Chapter 1 we give a short introduction to the field of worst-case execution time
analysis, its current state-of-the-art, and an overview of methods and tools avail-
able today. We describe the various problems that current state-of-the-art tools
face, which at the same time constitute the motivation of this thesis.

• Chapter 2 provides amore formal presentation of concepts from staticWCET anal-
ysis and graph-theoretical background,whichwe rely on in later chapters. We also
describe our experimental evaluation setup: the target processors we use and the
set of real-time benchmarks, which we use throughout this thesis.

• Chapter 3 introduces the stack cache architecture, defines the analysis problems
with respect to its worst-case behavior and specifies the algorithms to solve these.

Introduction 7

Later in the chapter, we describe how these results can be integrated into an IPET-
based WCET analysis in order to compute an overall WCET bound without the
loss of any information collected during stack cache analysis.

• The criticality metric, its theoretical foundations and efficient algorithms to com-
pute it are the topic of Chapter 4. We furthermore studied the behavior of real-time
benchmarks based on criticality and report our findings in the same chapter.

• In Chapter 5we present a graph pruning technique that aims to lessen the analysis
gap introduced by interference from non-critical code during low-level analysis of
worst-case timing behavior.

• Chapter 6 concludes this thesis by summing up the results from our contributions
that aim at closing the gap between analyzedWCET bounds and actual worst-case
behavior of a system. In the end, we give a list of future directions for research,
which we identified while working on the subject at hand.

The following chapter gives definitions and explains notation, which we are going
to use throughout the rest of this thesis.

Chapter 2

Preliminaries

In this introductory chapter we begin by defining the control-flow graph (CFG) and
other related graphs, which together form the program representation that all our anal-
yses are built on. We go on to describe the class of WCET analysis of tools, which we
target by our adapted analysis algorithms. In Section 2.2 we first explain our experi-
mental setup for performing evaluation and the target platforms (i.e. processors) that
we are using in the process. We then give an overview —and a short history— of the
real-time benchmarks used for evaluation.

2.1 Definitions

Here we define the basic concepts of control-flow graphs —to be exact, node-labeled
control-flow graphs— that are used as the intermediate program representation for our
analyses. We also detail the functionality of the class of WCET analysis tools that we
target with our techniques and seek to optimize.

2.1.1 Program Representation

Directed Graph
A directed graph is given by the pair G = (V,E), with V being a set of vertices (or
nodes) and E a set of directed edges between them. We define the following utility
functions common to all graphs: the predecessors of a node v in G are given by
Pred(G, v) = {u | (u, v) ∈ E}. In the same way, we define for successors Succ(G,u) =
{v | (u, v) ∈ E}.

Control-Flow Graph
A control-flow graph (CFG) is a directed graphgiven by the quadrupleG = (V,E, r, t),
where nodes in V denote instructions of the input program, edges in E represent
the potential flow of execution, and r, t ∈ V represent distinguished nodes called
root and sink. (For programs with multiple exit points an artificial sink node can
be inserted, which is connected to all exit nodes.)

10 Preliminaries

Critical Edge
A critical edge is an edge (u, v) ∈ E of CFG G, where the source node u has multiple
successors and the destination node v hasmultiple predecessors, i.e., |Succ(G,u)| >
1 ∧ |Pred(G, v)| > 1. If a CFG G is free of critical edges, we refer to it as Gc f .

Path
A path is an ordered sequence of nodes (v1, . . . , vn) such that for 0 < i < n all
edges (vi, vi+1) ∈ E. A path p is said to pass through a node u, denoted by u ∈ p, if
∃i, 0 < i ≤ n : vi = u. We assume that all nodes are reachable from the root node r,
i.e., there exists a path from r to every node in the CFG, and that the sink node t
is reachable from every node.

Longest Path
Given a CFG G = (V,E, r, t) and a weight functionW : V ∪ E → R, represent-
ing local worst-case execution times assigned to the nodes and edges in the CFG,
we can define the length, or total weight, of a path p = (v1, . . . , vn) by W̄(p) =∑

0<i≤nW(vi) +
∑

0<i<nW((vi, vi+1)). A path p is the longest path in the CFG, if
there exists no other distinct path q such that W̄(p) < W̄(q). In cyclic CFGs, flow
constraints limit the set of paths to finite length. Since this only reduces the num-
ber of paths it can be safely ignored in the context of this work.

Weighted Control-Flow Graph
A CFG for which a weight functionW exist, consequently is a weighted CFG. It
can be represented by the tuple (V,E, r, t,W).

Dominance
A CFG node u pre-dominates a CFG node v, written as u dom v, iff all paths from
the root node r to v pass through u. Note that r trivially pre-dominates all nodes
in the CFG. A node u strictly dominates a node v, written as u sdom v, iff u 6= v and
u dom v. Similarly a node u post-dominates a node v, iff all paths from v to the sink
node t pass through u, we then write u pdom v and u spdom v. Note that the sink
node t trivially post-dominates all nodes in the CFG. Both kinds of dominance can
be represented by respective pre- and post-dominator trees.

Strongly Connected Components
A strongly connected component (SCC) in a directed graph G, is a set of nodes such
that a path exists from every node to every other node within the set.

Basic Block vs. Single-Instruction Graph
We use node-label basic block graphs as the default CFG representation. I.e.,
nodes in V represent basic blocks, which are a maximal sequence of instructions
without outgoing or incoming branches. When a fine grained view of a program
is beneficial, we make use of the node-labeled single instruction CFG GSI , whose
nodes represent individual instructions. All graph properties stated above are
valid regardless of the node representation of the CFG.

Preliminaries 11

Call Graph
The call graph CG = (V,E, s, z) is a directed graph, consisting of nodes in V, the
distinguished source and sink nodes s, z ∈ V, and directed edges E. Nodes repre-
sent functions of a program, while each edge (u, v) ∈ E represents an individual
call (site) from function u to v. The source and sink nodes exist for convenience
and are established by connecting s to the entry function (e.g., main), while all
functions containing a call-free path, i.e., a path through the function’s CFG that
does not contain a call instruction, are connected to the sink node z.

2.1.2 Worst-Case Execution Time Analysis

Worst-Case Execution Time
TheWCET of a program is the maximum time it takes for its computation to com-
plete on a specific processor and platform. It is generally not feasible to compute
the actual WCET, we thus usually seek a (tight) estimation, the WCET bound. For
the purpose of brevity, we will use the term WCET, when we actually mean to
refer to theWCET bound.

Worst-Case Execution Path
A worst-case execution path (WCEP) is a path whose total (estimated) execution
time is equal to theWCET (bound). Note that multiple paths can potentially cause
the same WCET. Thus, the WCEP is not always unique.

Local Execution Time
The timing behavior of an individual CFG node or CFG edge is computed using
program analysis techniques that derive information on potential program and
processor states at all relevant program points. This information is combined to
compute an upper bound on the local execution time for nodes and edges.

Context-Sensitive Analysis
When an analysis extends its view of execution history beyond the control flow,
to include information on the call chain and on previous iterations of a loop, we
call it context-sensitive analysis. WCET analysis handles inter-procedural (calling)
contexts and loop contexts through duplication of regions of the CFG. If WCET
analysis does not keep track of contexts, it has to consider the worst-case behavior
over all contexts. We then refer to it as context-insensitive.

Longest Path Search
Given the local execution times, a weighted CFG is constructed and longest path
search is performed to find the global WCET. This problem is solved via integer
linear programming (ILP) using the implicit path enumeration technique (cf. Sec-
tion 1.1).

12 Preliminaries

WCET Analysis Tool
We assume WCET analysis using an IPET-based analysis tool. As proposed by
Theiling et al. [69], it proceeds in two general phases: (1) the calculation of lo-
cal worst-case execution times of individual basic blocks and control-flow edges,
followed by (2) a longest path search over the CFG, where nodes and edges are
weighted using the local worst-case execution times computed before.

2.2 Analysis Evaluation

The landscape of WCET analysis tools (cf. Section 1.1) is heterogeneous and a direct
comparison between analyzers is difficult at best. Program input and annotation for-
mats differ and so does the support for hardware architectures. Recent efforts have the
goal, to make it easier to compare WCET analysis tools (see Section 2.2.2). With AbsInt
aiT as part of a3 we have access to one commercial state-of-the WCET analyzer, which
we make use of during evaluation. Where possible, we built improved analyses on top
of aiT and not a possibly inferior tool of our own. In chapters 3 and 5, evaluation is per-
formed by comparing our augmented analysis algorithms against a standard analysis.

In Chapter 4 we define the novel criticality metric for which we anticipate several
areas of use. Chapter 5 goes on to demonstrate an approach in one of these areas. We
are also able to evaluate the efficiency of the algorithms, which we propose for comput-
ing criticality and do so in Section 4.5. Its further evaluation, especially with regard to
software engineering aspects, is beyond the scope of this thesis. However, we detail our
ideas for future work applying criticality in Section 4.6.

On the other hand, the nature of static analysis gives us an advantage when it comes
to the soundness of experimental results. Our primary results are WCET bounds com-
puted through static analysis, which relies solely on the input programs, analysis con-
figuration and deterministic models of processors andmemories. These results are thus
not subject to measurement error. Our secondary results concern the analysis efficiency
and computational overhead from analysis. We domeasure analysis runtimes on actual
workstation computers here, but the significance of the results is in its order of magni-
tude (i.e., analysis terminates in seconds, minutes, days).

2.2.1 Target Processors

With Patmos[15, 101], we have access to a processor designed for predictability. To-
gether with its framework consisting of an LLVM-based compiler toolchain and tightly
integrated WCET analysis, it serves as the testbed to evaluate our stack cache analysis.

For our purely analysis-based evaluation, we selected the PowerPC MPC5554 [95,
94], which represents a processor not specifically designed for predictability but one
that is being used in real-time systems today.

Preliminaries 13

Patmos

The Patmos processor has been developed as part of the T-CREST [103] project. T-
CREST aims at building a time-predictable multicore platform, with Patmos as the core,
suited for hard real-time systems, combining efficiency and a predictable, low WCET.
Time-predictability is pursued (1) in hardware by the choice of architectural features in
the processor (e.g. in-order issue, cache design), a predictable memory controller, and
communication with external (as in off-chip) resources through a statically scheduled
network-on-chip. It is also respected during code generation, using the Patmos back-
end within the LLVM compiler framework, which (3) during compilation, collects and
generates information to be consumed by WCET analyzers eventually. The processor,
compiler and analysis tool for Patmos are open-source and available online [102].

Instruction Set Architecture Patmos has been designed as a dual-issue VLIW ar-
chitecture. This means that two instructions form a VLIW-bundle, and at most two
instructions per cycle can execute. Delays from non single-latency operations must be
respected in the instruction stream (e.g., by placingNOPs). The Patmos instruction set is
fully predicated, i.e., a predicate value can nullify the result of virtually every operation.

Registers and Functional Units Patmos has 32 general purpose (GP) integer reg-
isters, which are 32-bit wide and 8 single-bit predicate registers. Its functional units can
be conceptually summarized as: an integer unit for arithmetic, logic and shifting opera-
tions (ALU), a load-store unit (MEM), a multiplier (MUL) and a branch unit (BR). Note
that only ALU instructions can execute in both pipelines, while instructions executed
by all other units are limited to the primary pipeline.

Memory and Caches Memories are strictly divided into local (caches and scratch-
pad) and global (SRAM)memories, which both have predictable delay. Furthermore, the
split cache architecture does not only separate data and instructions, it can also make
the distinction between different types of data. Thus, Patmos supports caches, which
can adapt to the program’s usage patterns. For one, the instruction stream can be cached
via amethod cache, which holds whole methods (functions or procedures) at a time. The
other specific cache is the stack cache that we target with our static analysis in Chapter 3.
There, in Section 3.1.1, we also present the functionality of a stack cache in detail.

WCET Analysis The customized LLVMcompiler backend for Patmos exports the fun-
damental program description for laterWCET analysis as a side product of compilation.
This information is kept in the PML format, which is Platin’s unified interchange format
(based on YAML [93]). It is also used to encode the program’s instruction at different
levels, as well as flow facts, provided by the user or other analysis sources. (See Fig-
ure 2.1 for the simplified workflow). AbsInt’s aiT has been retargeted to support Pat-
mos from its binary format. It requires annotations for certain code structures, which
are also provided by the analysis information generated during compilation.

14 Preliminaries

Source Code

Clang LLVM
PML (code +
flow facts)

ELF Binary

Platin

PML (user-
annotations)

addresses

Figure 2.1: Workflow of LLVM/Platin-based WCET analysis (Patmos)

PowerPC 5000 (MPC5554)

The MPC5554 represents a class of embedded microprocessors, which have replaced
microcontrollers for real-time control tasks that have complex computational require-
ments. (The semiconductor company Freescale targets it at automotive applications,
e.g., engine control.) It is part of a family of PowerPC based embeddedmicroprocessors,
which branched off from PowerPC’s main line of development for server and desktop
processors. While the MPC5554 and its close relatives implement the same instruction
set as the POWER5, which is aimed at the high-end servers, their micro-architecture is
simple in comparison. This makes the MPC5554 a feasible target for WCET analysis.

Instruction Set Architecture The MPC5554 is a 32-bit implementation of the Pow-
erPC instruction set, which, following the RISC philosophy, consists of short and simple
instructions. Latencies are hidden from the instruction stream andwhile other PowerPC
implementationsmay enable parallelism through a superscalar design, theMPC5554 is-
sues a single instruction at a time.

Registers and Functional Units The MPC5554 has 32 general purpose (GP) inte-
ger registers that all ALU instructions see as 32-bit wide. An 8-bit condition register is
used for testing and branching. All memory operations are performed by the load-store
unit (LSU). The branch unit (BR) handles branching and is involved in branch predic-
tion. Most instructions execute in a single cycle, notable exceptions are multiplies, loads
and stores, which have 3-cycle latencies, divides take even longer to complete. A buffer
for branch targets and a 2-bit flag for dynamic branch prediction are aimed at avoiding
a 3-cycle branch latency. Further functional units extend the instructions set with sig-
nal processing instructions (multiply-accumulate and vector instructions) and floating
point operations.

Preliminaries 15

Memory and Caches For this specific model, instruction cache and data cache are
combined into a 32 KiB unified cache, controlled by a unifiedmemorymanagement unit
(MMU). A further 64 KiB SRAM is available on-chip, while all other memory is external
and needs to be connected through a bus.

WCET Analysis The binaries compiled for the MPC5554 serve as the input to WCET
analysis using AbsInt’s aiT. In this case, the control flow graph is reconstructed from the
binary representation. The configuration of the abstract processor model (e.g., cache-
and memory timings) and all further annotations are passed to aiT in external files.
Both are depicted in Figure 2.2 by the XML-based APX file and the text-based AIS file,
respectively. The challenge that the MPC5554 poses for WCET analysis comes from
its pipeline behavior, including the effects from branch prediction, as well as potential
cache conflicts. All of these need to be considered by the analysis tool for the calculated
WCET bound to be safe and precise.

Source Code

GCC ELF Binary a3/aiT

APX
(configuration)

AIS (user-
annotations)

Figure 2.2: Workflow of a3-based WCET analysis (MPC5554/GCC)

2.2.2 Real-Time Benchmarks

In real-time systems and especially WCET analysis, we do not have a well-established
collection of benchmark suites available, as researchers and developers —most of the
time concerned with some kind of average-case behavior— do, in fields like program-
ming languages, hardware design, and compilers. To reproduce the result of a WCET
benchmark, assuming the same analysis tool, we have the following dependencies:

1. program (with compiler and compiler configuration)
2. target machine configuration (how the hardware model behaves)
3. problem definition (exactly what the analysis goal is)
4. annotations (known restrictions on input data, loops and control flow)

For a representative set of real-time WCET benchmarks, we refer to the WCET Tool
Challenge, which was instituted with the goal to study the results of different WCET
analysis tools on a common basis that allows comparison and facilitates exchange be-
tween research groups working on WCET analysis. It has seen three editions so far,
(WCC’06 [30], WCC’08 [31], and WCC’11 [12]) and has created an initial collection of

16 Preliminaries

programs and specifications suitable for benchmarking WCET analyzers. For our eval-
uation we adopt the benchmark programs and analysis specifications from the three
WCET tool challenges, as far as they were available to us and documented, respectively.
To reproduce results in the field of WCET analysis, one might require —besides the
benchmark program itself— the same or similar compiler, the analysis tool, all of their
configuration options, aswell as the user annotations that were initially provided for the
analysis. Where possible, we are making this information available online [101, 103]. A
short description of the available benchmark suites follows, a more detailed discussion
can be found in [17].

The Mälardalen WCET Benchmarks are maintained by the Mälardalen WCET re-
search group and consist of 35 programs, all fundamental algorithms found in real-time
applications, with a focus on math functions and signal-processing. 15 of these pro-
grams were selected for the 2006 WCET Tool Challenge. We compiled all benchmarks
from their C source code without optimizations (-O0, since the programs are small and
we want to stress analysis in our evaluation) and added annotations, such as control-
flow hints and loop bounds, from the information partly available online [98]. Three
programs, which are not part of the WCET Challenge subset, could not be successfully
analyzed with our setup.

PapaBench [45] is an open-source flight control software used in autonomous air-
craft. The analysis problems that relate to different tasks in the software and annotations
required for analysis were taken fromWCC’11.

The Debie1 benchmark [67] is based on the on-board software of a satellite instru-
ment and is available under a special license. In this case we relied on a pre-compiled
binary, which is part of the official program distribution. Loop bounds and annotations
again were taken fromWCC’11.

We could not include an automotive application by Daimler or the rathijit bench-
mark programs in our evaluation. The former is not available to the public, while the
latter could not be analyzed out-of-the-box due to their synthetic nature (macro gener-
ated code) that targets the cache analysis of a WCET tool.

Chapter 3

Precise Stack Cache Analysis

Utilizing a stack cache in a real-time system can improve predictability of the data cache
by avoiding interference that memory traffic to the heap causes. While stack loads and
stores are guaranteed cache hits, explicit operations are responsible for managing the
stack cache. The worst-case behavior of these operations can be analyzed statically.
In this chapter we present algorithms that derive worst-case bounds on the latency-
inducing operations of a stack cache. We furthermore describe how these results can
be used in the IPET phase of a static WCET analysis tool. In the following section we
provide necessary background on a stack cache enabled architecture. In Section 3.2,
we formally describe the analysis problems and algorithms we have devised for them.
Sections 3.3 and 3.4 describe the integration of our stack cache analysis into state-of-the-
art WCET analysis and a generalization of our analysis model, respectively. Finally, we
evaluate our approach in Section 3.5, before discussing related work in the last section.

The algorithms for precise worst-case analysis of stack cache behavior in Section 3.2
are published in [6] and have been presented at RTNS 2013.

3.1 The Stack Cache

Caches pose a particular challenge with regard to WCET analysis, as a potentially huge
state space reflecting a long execution history of the program has to be tracked. A solu-
tion to this problem is splitting the cache according to access patterns. For instance, it
is recommended to split data and instruction caches to avoid interference [16]. A data
cache can be split in a similar fashion, to adapt the caching strategy to the access pat-
terns of different memory regions, such as those for the program stack, constants and
static fields [8].

Memory accesses to the program stack via a standard data cache can be hard to
analyze, when their addressing is not based on a single authoritative stack pointer. The
cache analysis needs to identify potential address ranges for the stack. These inherently
depend on the nesting of function calls and their analysis require high levels of context-
sensitivity. Likewise, pointers to the stack area have to be identified as such, in order
for all stack accesses to be considered. Having a closer look at typical usage patterns of

18 Precise Stack Cache Analysis

stack data, one finds that data in the stack frame of a function is predominantly exclusive
to that function and only accessed while the function is active. This motivates a caching
strategy that follows the nesting of function calls so that the stack frame of the active
function is readily available in the cache. Recent work proposed such a stack cache using
a rather simple ring buffer [4]. Even though simple, this cache design handles up to 75%
of the dynamic data accesses of embedded benchmarks. In the remaining chapter, we
explore analysis techniques for this stack cache design.

The stack cache is explicitly controlled by the compiler (or the programmer when
writing assembly code) using dedicated instructions to reserve and free space on the stack
cache for the stack frames of functions. During a reserve operation the requested space
might exceed the cache’s capacity and cause spilling of (parts of) the stack cache’s con-
tent. If the stack frame of a function has been spilled to memory it can be reloaded,
or filled, using an ensure operation, e.g., when a function becomes active after returning
from another function. Using these stack control primitives, a slidingwindow of cached
data is realized that follows the nesting of function calls and ensures that all accesses
to the stack data of a function are guaranteed hits with constant latency, independent
of the precise address of the access and independent of the current value of the stack
pointer. This results in a considerably simpler analysis model.

3.1.1 Stack Cache Implemented in Hardware

In this section, we describe the general functionality of a stack cache. A detailed de-
scription of the implementation in the Patmos processor can be found in [4]. Compared
to accessing the program heap storage —normally located in external memory and ac-
cessed through a cache—a stack cache’s load and store operations completewith a small
and predictable latency. The operations address values on the stack relative to a base ad-
dress, the stack pointer. Furthermore, themodel we consider herein uses three primitives
to manage the stack cache. These are responsible for reserving space for stack-allocated
data, freeing the same space again, and ensuring that data, which will be subsequently
used, is available.

Conceptually, the stack in question grows towards lower addresses and is divided
into a set of equally sized blocks (see Figure 3.1). The number and actual size of the blocks
depend on the implementation.

1 2 3 . . . n−2 n−1 n

lower addresses

sp

Figure 3.1: Stack cache of size |SC| = n (n − 2 blocks occupied)

Precise Stack Cache Analysis 19

Each operation takes an argument representing a block count. In detail, the seman-
tics for stack cache manipulation are as follows:

Reserve: sres k
Allocates an area of k blocks in the stack cache and sets the stack pointer to the
beginning of this region. If k and the number of currently reserved blocks counted
together exceed the capacity of the stack cache, some blocks need to be spilled (i.e.,
saved to external memory). The stack cache always selects a minimal number of
blocks from the earliest reserved (highest address) blocks for spilling.

Free: sfree k
Discards the k most recently reserved (lowest address) blocks and adjusts the stack
pointer accordingly. The contents of the stack cache are not changed.

Ensure: sens k
If not all of the k blocks starting at the current stack pointer are available in the
stack cache, (only) themissing blocks are filled (i.e., loaded fromexternalmemory).

Only an sres or sens operationmay access externalmemory and can cause a variable-
time latency. Particularly, WCET analysis benefits from this characteristic, as it is suf-
ficient to know (an upper bound on) the number of blocks in a transfer, to statically
calculate its latency. Our model assumes uniform cost for the transfer of every stack
cache block, but this can be trivially adapted to the behavior of any implementation (as
long as it remains predictable). This stack cache model can be implemented in several ways.
In the concrete case of the Patmos processor, all three stack cache operations are exposed in the
instruction set and hardware is responsible for spilling data to and loading data from external
memory. The argument k may represent another unit of allocation, however, for simplicity of
description, we abstract it to blocks. Also, without any impact on the analysis we present, some
(or all) functionality could be shifted to software.

Splitting the sens from the sfree operation is a straight-forward optimization for a
generalized tail call, i.e., a function call towards the end of a parent function’s code, after
which the stack is not being accessed until the parent returns. Filling the stack cache
after the child returns, would cause unnecessary loading from external memory.

The spill and fill operations inherently provide a WCET bound. In the most pes-
simistic manner, we could assume that upon every sres and sens all k of the argument
need to be spilled and filled respectively. In the following, our analyses shall reduce this
worst-case bound.

Example 1. We are using the program in Figure 3.2 as a running example throughout this
chapter. Figure 3.3 visualizes the operation of a stack cache with 4 blocks for this program, between
the call to B in line a3 and the call to C in line a5. At the top of Figure 3.3b, B reserves its stack
space, which causes partial spilling of A’s stack frame. Calling C then spills the rest of A’s frame
and partly evicts the stack space of B, while the remainder of the stack cache is allocated to C’s data.
Towards the end of Figure 3.3b, after B and C have returned, the stack cache becomes completely
empty and at line a6, A has to reload all of its previously evicted stack data through an ensure.

20 Precise Stack Cache Analysis

3.2 Stack Cache Analysis

In order to determine the worst-case behavior of a real-time program utilizing a stack
cache, two analysis problems have to be solved: (1) for every sres-instruction in the
program, the worst-case spilling behavior has to be computed and (2) for every sens-
instruction, the worst-case filling behavior has to be computed. We refer to these two
problems as the reserve and ensure analyses respectively.

Definition 1. Stack cache operations can be placed at arbitrary points in the program (with some
inherent rules for legal programs). Commonly they appear around function calls, i.e., sres
is placed after function entry, sfree before the return, and if required, the caller places sens
immediately after the call. In the following, we present an analysis that assumes the simple case
of placement around function calls. A generalization is discussed in Section 3.4. We further
assume that every function reserves a value k less than, or equal to the size of the stack cache.
This requirement is guaranteed by the compiler.

Reserve analysis During reserve analysiswehave to consider the (maximum) stack
cache occupancy on all potential executions leading up to an sres-instruction. This
information cannot be computed using local information alone and thus requires a
context-sensitive analysis. The worst-case behavior of an sres instruction depends on
the stack cache fill level (occupancy) of the current function, which in turn depends on
the occupancy at the invoking call instruction, thus on the occupancy of the function
surrounding the call, and so on until the program’s entry point is reached. In order to
compute this information efficiently, the analysis has to account for the change of stack
occupancy that occurs between the entry of a function and each call instruction. Note
that the stack occupancy not necessarily increases here. If, for instance, parts of the stack
cache are intermediately spilled, the occupancy may also decrease. Here, a key obser-
vation is that the worst-case occupancy at call sites can be bounded by a function-local
analysis, which is based on theminimum displacement occurring between the function en-
try and the call. This displacement determines how much of the allocated stack space

a1: func A() {
a2: sres 2;
a3: B();
a4: sens 2;
a5: C();
a6: sens 2
a7: sfree 2;
a8: }

(a) Code of A

1B func B() {
2B sres 3;
3B C();
4B sens 3
5B C();
6B sens 3
7B sfree 3;
8B }

(b) Code of B

1C func C() {
2C sres 2;
3C sfree 2;
4C }

(c) Code of C

Figure 3.2: Program consisting of 3 functions, reserving, freeing and ensuring space on the stack
cache.

Precise Stack Cache Analysis 21

A
B C

C

(a) Logical stack frames (A calls B and C, B calls C)

b2:reserve

c2:reserve

c3:free

b4:ensure

c2:reserve

c3:free

b6:ensure

b7 :free

a6:ensure

c2:reserve

max |SC| = 4

spilling

filling

(b) Dynamic stack cache behavior between first call to B and last call to C

Figure 3.3: Sliding window visualization of the stack cache for program in Figure 3.2

remains allocated in the worst-case when calling a function. Using the results of this
preliminary analysis, a function-local data-flow analysis can propagate worst-case occu-
pancy bounds along all paths from a function’s entry to all call sites, initially assuming a
fully occupied stack cache. The final step of reserve analysis is an inter-procedural prop-
agation of the context-sensitive stack occupancy bound on the program’s call graph.

Ensure analysis The analysis of ensure instructions similarly relies on the stack
displacement at function calls. In contrast to reserve analysis, however, the maximum
displacement is required, i.e., how much of the stack space allocated by the current
function is spilled to external memory by another function in the worst-case. Based on
the maximum displacement, the ensure analysis can be formulated as a function-local
data-flow analysis racking the amount of stack space belonging to the current function
as it undergoes spilling and reloading.

22 Precise Stack Cache Analysis

Example 2. Consider a stack cache of size 4 and our example program from Figure 3.2. The
stack cache occupancy at the entry of function C depends on its three calling contexts (a5, b3, b5).
We are only interested in the last calling context (b5) for now. By assuming a full stack cache
at the entry of the calling function B and examining the path leading to the call instruction,
we realize that the minimum displacement along this path can be used to bound the worst-case
occupancy for this context. Since the sres-instruction at the entry of B cannot further increase
the occupancy, the first call to C (b3) displaces 2 blocks from the full stack cache, resulting in a
worst-case occupancy of 2 when returning. The sens-instruction (b4) again raises it to 3, which
becomes the occupancy bound at b5.

The ensure analysis similarly first pre-computes the maximum displacement of function calls
and then propagates information within functions. Function A for instance, reserves 2 blocks on
the stack cache. The displacement due to the call to function B (and its calls to C) is determined
to be 4. The ensure analysis thus finds that the entire stack space of Amay have been evicted after
returning from B. The sens-instruction a4 thus has to fill 2 blocks from external memory in the
worst-case.

Combined Analysis The reserve and the ensure analysis both rely on related un-
derlying computations and can be combined. The combined analysis then consists of
three main phases: (1) the pre-computation of the minimum and maximum displace-
ments on the call graph, followed by (2) the function-local data-flow analyses for the
reserve and ensure analysis, and finally (3) the context-sensitive reserve analysis on the
program’s call graph. We will discuss each of the phases in the following sub-sections.

Algorithm 1 Algorithm to compute the displacement at call sites (ComputeMinimum-
Displacement, ComputeMaximumDisplacement).
Input: ACG = (V,E, s, z) . . . An annotated call graph.
Output: The minimum/maximum displacement at each call site is returned.
1: foreach n ∈ V do
2: . Sub-graph with zero costs.
3: V0 = {v0 | v ∈ V, v 6= z}
4: E0 = {(u0, v0, 0) | (u, v,w) ∈ E, v 6= z}
5: .Weighted sub-graph.
6: VW = V \ {s}
7: EW = E \ {(u, v,w) ∈ E | u = s ∨ v = s}
8: . Edges to transition between sub-graphs.
9: ET = {(u0,n, 0) | (u,n,w) ∈ E}
10: Let ACG′ = (V0 ∪ VW ,E0 ∪ EW ∪ ET , s0, z) in
11: D[n] = ComputePathOver(ACG′,n)

12: return D

Precise Stack Cache Analysis 23

3.2.1 Stack Cache Displacement

Computing theminimumdisplacement of a call site, as required by the reserve analysis,
corresponds to a shortest path search in the call graph, where edges are annotated with
weights representing the amount of stack space reserved by the calling function. We
will later see that ensure analysis depends on themaximumdisplacement, which can be
computed in the sameway, but performing a longest path search. Assuming the restricted
placement of ensure and free instructions of Definition 1 for now, this technique can
easily be extended to the larger class ofwell-formed programs as described in Section 3.4.

Definition 2. The annotated call graph ACG = (V,E, s, z) is a call graph, with weighted edges
(u, v,w) ∈ E ⊆ V × V × N0. The weight w represents the stack space reserved in function u.
The edge connecting s to the entry function is assumed to have weight 0, while edges incident to
z are annotated, like ordinary edges, with the stack space reserved in the respective functions.

Definition 3. For a call site (u, v,w) of an annotated call graph ACG = (V,E, s, z) the minimum
(maximum) displacement is given by the shortest (longest) tail from v to the sink node z, for any
path of the form (s, . . . ,u,v, . . . , z).

Acyclic Call Graphs

In the case of acyclic call graphs, i.e., programs without recursion, the minimum and
maximumdisplacement of all nodes can be computedusing dynamic programming [23]
in linear time (O(|V| + |E|)). The nodes are traversed in reverse topological order, com-
puting each node’s displacement from the displacement of their respective successors
in the graph.

Call Graphs With Recursion

Shortest and longest path searches for programs with cyclic call graphs, i.e., with re-
cursion, can be modeled using integer linear programming. The technique resembles
the IPET approach from WCET analysis. Instead of plainly searching for the shortest
(longest) path though, the path with the shortest (longest) tail, where the tail starts with
a specific node, needs to be computed. The reason for this will become clear when we
later introduce user constraints.

Wemodel the computation of these paths on a transformed call graph, which is con-
structed by duplicating the original graph twice (see Algorithm 1 and Figure 3.4). One
duplicate represents the paths’ tails and is thus associated with the weights of the orig-
inal graph (l. 6). The other duplicate is associated with zero costs (l. 3) and represents
the heads of the paths. The two sub-graphs are connected only at the node whose dis-
placement is to be computed, i.e., edges lead from the node’s duplicate in the sub-graph
with zero costs to the respective duplicate in the weighted sub-graph. The shortest or
longest path search is then performed on this transformed graph (l. 11). Note that not
all nodes and edges need to be duplicated in practice. Only the nodes and edges that
may appear on a path from s to z and passing through the currently considered node
need to be considered.

24 Precise Stack Cache Analysis

For the path search ComputePathOver (Algorithm 1, l. 11) takes the transformed
call graph ACG′ and a target node n as arguments and constructs an ILP, which models
the nesting of function calls that can be observed (in the worst-case) when executing
the program. Each ILP variable represents the number of times a function has been
called, or more precisely, how often a specific call site was used to call a function, in this
nesting. The ILP variables can be seen as representing flow that has to meet constraints.
For instance, the flow entering a function has to leave that function again, i.e., the sum
of the adjacent ILP variables needs to be equal.

The (flow) constraints of the ILP for the transformed call graph ACG′ = (V′,E′, s′, z′)
are formally defined as:

V(v) =
∑

e=(u,v,w)∈E′
V(e)

V(v) =
∑

f=(v,u,w)∈E′
V(f)

 ∀v ∈ V′ (3.1a)

V(s′) = 1 (3.1b)
V(z′) = 1 (3.1c)
V(n) > 0 (3.1d)

With integer variables:

V(e),V(v) ∈ N0 ∀e ∈ E′,∀v ∈ V′ (3.1e)

Variables (3.1e) are created for every node and every edge in the transformed call
graph and the functionsV(n) andV(e) map nodes and edges of the graph to their re-
spective ILP variables. For each node, incoming and outgoing flow has to match (3.1a).
In order to get a legal nesting of function calls including the node n, threemore flow con-
straints have to be added. These force the flow at the source (3.1b) and sink node (3.1c)
to 1 and the flow over the target node (3.1d) to be non-zero.

The optimization objective is either to minimize the objective function, when the
shortest path is to be computed:

min
∑

e=(u,v,w)∈E′
wV(e), (3.1f)

or maximize the same function for the longest path search:

max
∑

e=(u,v,w)∈E′
wV(e) (3.1g)

The ILP formulation presented above expresses all possible nestings of function calls
that might potentially be observed when the program is executed. However, in partic-
ular when the objective function is to be maximized, many of these nestings cannot

Precise Stack Cache Analysis 25

actually occur in practice, e.g., because recursion in the program is limited to a certain
depth. This information can be supplied by the user and expressed as an additional
constraint for the affected ILP variable. More complex user constraints can be expressed
by linear equations using different variables of the ILP.

Example 3. Consider the annotated call graph in Figure 3.4a. Function D has a call-free path
and is thus connected to the sink. Assuming that the displacement of D shall be determined,
Figure 3.4b shows two duplicates of the graph, where the sub-graph with zero costs is above the
weighted one. The edge that allows to transition between the two sub-graphs (ET) is highlighted
using a dotted line. (Only nodes and edges on a path from the source to the sink and passing
through D, as well as non-zero edge weights are shown.)

Assuming that function C can appear at most 10 times on any legal nesting of function calls,
we can add a user-specific constraint such as: V(C()) + V(C()0) < 11. Since D can only be
invoked by C, this implies a maximum displacement for D of 9 · 1 + 9 · 2 + 1 = 28. Because the
constraint on C only defines an upper bound, it is easy to see that the minimum displacement for
D (shortest path) is 1.

Certainly, as long as a user constraint does not interfere, shortest path search can be
solved efficiently on the original graph (e.g., using Dijkstra’s algorithm). Also note that
the approach for cyclic and acyclic graphs can be combined by collapsing the nodes of
the individual strongly connected components (SCCs) of the original call graph into rep-
resentative nodes. This results in an acyclic graph that can be traversed as described
in Section 3.2.1. Whenever the representative of an SCC is visited during the traversal,
an ILP is constructed as shown by Algorithm 1 based on the sub-graph induced by the
SCC in the original call graph.

A() B() C() D()
0

2

2

3

3
2

1

1

(a) Call Graph

A()0 B()0 C()0 D()0

C() D()
2

1
1

(b) Transformed Graph

Figure 3.4: A recursive call graph and the corresponding transformed graph to compute D’s
displacement.

26 Precise Stack Cache Analysis

3.2.2 Data-Flow Analyses

Once the minimum and maximum stack cache displacements have been computed (see
Section 3.2.1), the stack cache occupancy can be bounded from both directions by an
intra-procedural data-flow analysis. This is a prerequisite for reserve analysis and it
immediately enables ensure analysis.

Data-flow Analysis Framework Data-flow analysis [35, 27] is used to gather infor-
mation about the behavior of a program without executing it. For a specific property
(e.g., variable liveness) the effect of every instruction (i.e., every node in some CFG)
and its dependencies on other instructions are examined. A common way to perform
data-flow analysis is to attach equations that relate input and output information to ev-
ery node, then solving these equations for every node repeatedly, until their results no
longer change (i.e., a fixpoint for the whole system is reached). Two parts of our stack
cache analysis closely resemble this concept and are thus best described in the standard
way for data-flow analyses.

We are interested in bounds for the stack cache occupancy at certain points in the
program. I.e., a value from a finite subset of N0 (N ∪ {0}) bounded from above by the
number of blocks in the stack cache |SC|. Formally, the value domain for the analysis
is D = {0, . . . , |SC|}. To set up the system of equations, every instruction i in the CFG
is associated with two variables, IN(i) and OUT(i), which can take values from D and
represent the occupancy bound before and after the instruction respectively. Data-flow
equations (also known as transfer functions) between the variables define (1) the change
of the worst-case occupancy bound induced by instructions and (2) how to merge those
bounds at control-flow joins. The iterative algorithm to solve these equations initial-
izes the IN-states once, then repeats updating OUT and IN states until a fixpoint is
reached. The latter is guaranteed by the monotonic update of the occupancy bound, in
the bounded domainD.

Bounding the Stack Cache Occupancy

Assuming a full stack cache at function entry, the analysis propagates an upper bound
on the stack occupancy (obound) along all paths from the entry to the call sites within
the function. The minimal displacement of call instructions as well as sens-instructions
along the pathmay have an impact on this bound, while all other instructions can safely
be ignored.

A standard data-flow analysis based on the framework defined at the beginning of
this section, with domain D is then performed on the CFG. The transfer functions for
an instruction i are:

dloc(i) = min(|SC|, dmin(i)) (3.2)

OUT(i) =


max(IN(i), k) if i = sensk (3.3a)
min(IN(i), |SC| − dloc(i)) if i = call (3.3b)
IN(i) otherwise (3.3c)

Precise Stack Cache Analysis 27

sres 2
IN(i1) = 4

call <>
IN(i2) = 4, dmin(i2) = 1

sens 2
IN(i3) = 3

IN(i4) = 3

OUT(i4) = 3
call <>

IN(i5) = 3, dmin(i5) = 3

sens 2
IN(i6) = 1

OUT(i6) = 2IN(i7) = 3

Figure 3.5: Propagation of stack cache bounds in a function-local control-flow graph.

When i is an ensure instruction (sens k) with its argument k ∈ N0 , the current
upper bound is increased to k (3.3a). The transfer function of a call i depends on the
size of the stack cache |SC| and theminimal displacement dmin(i) of the functions that are
potentially invoked by the call (3.3b). (dmin(i) is computed as described in Section 3.2.1.)
For all other kinds of instructions the transfer function is the identity function (3.3c).

The obound also needs to be propagated between instructions, i.e., from the OUT-
values of the predecessors of an instruction to an instruction’s IN-value. This is done
using the transfer functions:

IN(i) =

 |SC| if i = r (3.4a)
max

p∈Pred(i)
(OUT(p)) otherwise (3.4b)

At joins in the CFG, the maximum (max) of all incoming values is used as the meet
operator (3.4b). In order to model a full cache at the entry of the current function, the
IN-value of the first instruction in the function’s CFG r is initialized with the full size
of the stack cache |SC| (3.4a). For the remaining initial values at each program point, we
use the value 0 ∈ Dwhich is the neutral element with respect to max.

Example 4. Given the control-flow graph shown in Figure 3.5 and a stack cache size of 4, the
analysis starts by associating the IN-value of instruction i1 with the full stack cache size (|SC| =
4). Since i1 is an sres-instruction the identity function leaves the stack cache occupancy bound
(obound) unchanged for the following instruction. i2 is a call with a minimal displacement of
1 (dmin(i2) = 1). Applying the corresponding transfer function (see Eq. 3.3b) yields a stack
occupancy of 3 after the call, which is propagated to the IN-value of instruction i3. Applying
the transfer function from Eq. 3.3a leaves obound unchanged. A stack occupancy of 3 is thus
propagated to its two successors in the CFG. The successor on the right, i5 is a call instruction
with a displacement of 3, which results in an occupancy bound of 1 after the call. The instruction
following the call is again an ensure. As the current obound value is smaller than the stack space
ensured by this instruction OUT(i6) is assigned a value of 2. Finally, the analysis determines
IN(i7) by selecting the maximum among the values OUT(i4) and OUT(i6).

28 Precise Stack Cache Analysis

Worst-Case Filling of Ensures

To analyze the filling behavior of sens-instructions, we formally define AnalyzeEnsures,
which has to solve a similar data-flow analysis problem to that before. The algorithm
takes two arguments: the function’s CFG G and a mapping from call sites to their re-
spective maximum displacement Dmax. The analysis is based on the framework defined
at the beginning of this section, with domainD. The transfer functions are as follows:

dloc(i) = min(|SC|, dmax(i)) (3.5)

OUT(i) =


k if i = sres k

max(IN(i), k) if i = sens k

min(IN(i), |SC| − dloc(i)) if i = call
IN(i) otherwise

(3.6)

IN(i) =

0 if i = r
minp∈Pred(i)(OUT(p)) otherwise

(3.7)

Opposite to the upper bound for stack cache occupancy, we now aim to find a mini-
mum bound. Thus the meet operator in (3.7) accordingly changes to min and the initial
value is |SC|.

With the solution of the data-flow analysis above, we can compute the worst-case
filling cost for every sens-instruction (assuming constant per-block fill cost ĉ f):

f illcost(i) = ĉ f · (OUT(i) − IN(i)) (3.8)

Example 5. Consider function A in Figure 3.2a and a stack cache with size |SC| = 4. The ensure
analysis starts by applying the transfer function (Eq. 3.6) of the sres-instruction a2. This causes
a minimum stack occupancy of 2 to be propagated to the following call a3 to B. From the analysis
of the maximum displacement it is known that B might spill the entire content of the stack cache
since (dmax(a3) = 5) including what A reserved. The minimal stack occupancy after the call thus
has to be assumed to be 0 in the worst-case, which is propagated to IN(a4) of the following ensure.
As the stack cache might be empty, the ensure has to reload the 2 blocks specified as its argument
and its OUT-value thus becomes 2. The next call instruction a5 invoking C has a maximum
displacement dmax(a5) = 2. The analysis determines that |SC| − 2 = 2 and thus equal to the
minimum occupancy (Eq. 3.6), which therefore does not change (i.e., the content of A’s and C’s
stack frames both fit into the stack cache). Consequently it is not necessary for the final ensure
instruction a6 to fill any data. The instruction could even be removed without any side-effect.

3.2.3 Worst-Case Spilling

Given upper bounds for the stack cache occupancy, we can finally define Analyze-
Reserves, which computes the worst-case spilling of reserve instructions within the
program. This analysis problem is context-sensitive, i.e., it depends on the nesting of

Precise Stack Cache Analysis 29

function calls. More precisely, an sres-instruction will spill when the occupancy be-
fore the reserve is too high so the requested space is not available. As we have noted
before, the maximum occupancy at function entry is specific to a calling-context and
depends on the accumulated occupancy of the nested function calls leading to the en-
try. On the other hand, we need to locally account for spilling caused by calls to other
functions that may have evicted parts of the stack cache before the execution reaches the
respective reserve. Given the obound value (see Section 3.2.2) for a call site, the context-
dependent analysis of itsmaximum stack occupancy becomes simple: when a new stack
occupancy is derived for the entry of the enclosing function, either (1) the new occupancy
value including the locally reserved space is propagated to the call site or (2) the bound
is propagated to the call site, whichever is smaller. From the context-dependent stack
occupancy a graph can be constructed that can be used to represent the spill costs of the
sres-instructions in individual contexts:

Definition 4. The spill cost analysis graph is a directed graph SCA = (ACG,Vc,Ec) consist-
ing of nodes in Vc representing occupancy-annotated calling-contexts and edges in Ec ⊆ Vc×Vc
that correspond to call sites of the annotated call graph. The nodes are pairs (n, o) ∈ Vc, where n
is an ACG node and o ∈ N0 is the context’s stack cache occupancy.

There exists a 1 : n mapping between call sites in the call graph and edges in in the
SCA graph, i.e., one edge representing a call site translates to one or more SCA edges.
Wewrite eacg ∼= esca when the pair (eacg, esca) from both graphs are call-related in this way.

Algorithm 3 constructs an SCA graph from an annotated call graph (cf. Definition 2)
using a simple work list. The analysis starts at the sink node s, which is assumed to have
a stack occupancy of 0 (l. 3–2). From this initial context other SCA contexts are derived

Algorithm 2 Main steps of the stack cache analysis for both, the ensure and reserve
analysis problems.
Input: ACG . . . The call graph of the program.

CFGs . . . The CFGs of all functions.
Output: Annotate sens- and sres-instructionswith theirworst-case filling and spilling

behavior.
1: .Minimum/maximum displacement at call sites.
2: Dmin = ComputeMinimumDisplacement(ACG)
3: Dmax = ComputeMaximumDisplacement(ACG)
4: foreach G ∈ CFGs do
5: . Ensure analysis.
6: AnalyzeEnsures(G,Dmax)
7: . Bound worst-case occupancy at call sites.
8: Obound = Obound ∪ BoundOccupancy(G,Dmin)

9: . Reserve analysis.
10: AnalyzeReserves(ACG,Obound)

30 Precise Stack Cache Analysis

Algorithm 3 Constructing the Spill Cost Analysis Graph (SCA), as part of
AnalyzeReserves.
Input: ACG = (V,E, s, z) . . . An annotated call graph.

Obound . . . The occupancy bounds of call sites.
Output: Context-sensitive stack cache occupancy derived for the SCA = (ACG,Vc,Ec).
1: . Initialize the SCA graph and work list
2: Ec = ∅; Vc = {(s, 0)}
3: W = {(s, 0)}
4: . Iteratively derive new SCA contexts
5: while W 6= ∅ do
6: . Process some context from the work list
7: Let c = (u, o) ∈W in
8: W =W \ c
9: foreach e = (u, v,w) ∈ E do
10: . Derive a potentially new SCA context
11: Let c′ = (v,min(o + w,Obound[e])) in
12: . Update the work list
13: if c′ /∈ Vc then
14: W =W ∪ c′

15: . Update the SCA graph
16: Vc = Vc ∪ c′
17: Ec = Ec ∪ (c, c′)
18: return SCA

by processing one context from the work list at a time (l. 7). The context is removed
from the work list and new contexts are constructed considering the current occupancy
and the weighted call sites associated with the corresponding call graph node of the
context (l. 11). Note the use of the occupancy bound that was computed before (see
Section 3.2.2). If the so discovered contexts were not yet known, they are added to the
work list (l. 14). Finally, the SCA graph is updated to cover the newly discovered con-
texts (l. 16).

Using the occupancy information of the SCA graph, the spill costs of the individual
reserve instructions in the program can immediately be derived. Assuming constant
per-block spill cost ĉs and a context c = (n, o) of an sres-instruction i that reserves k
blocks, the spill cost is:

spillcost(i, c) = ĉs ·max(0, o + k − |SC|) (3.9)

Example 6. Assuming a stack cache with 4 blocks, the spill cost analysis graph shown in Fig-
ure 3.6 is constructed from the example program from Figure 3.2. While only a single context is
constructed for the functions A and B respectively, three different contexts are created for C. The
stack occupancy of these contexts are 4, 3, and 2 blocks. This results in a worst-case spilling of

Precise Stack Cache Analysis 31

1 and 2 blocks respectively for the first two context. No spilling is performed in the last context.
Note that the edges in the SCA graph correspond to edges in the call graph (shown in Figure 3.6a).

3.2.4 Combining the Analyses

From the individual analyses above, a simple algorithm that solves both stack cache
analysis problems at the same time can be devised (see Algorithm 2). The algorithm
takes a call graph and a set of control-flow graphs (one for each function in the program)
as input and associates every sens- and sres-instruction with information on their re-
spective worst-case filling and spilling behavior. It proceeds by first computing themin-
imum and maximum displacement of the call sites within the program using the input
call graph (l. 2-3). Next, the worst-case stack occupancy at call sites is bounded (l. 8)
using the previously computed minimum displacements (Dmin) for each function sepa-
rately. The ensure analysis (l. 6), which relies on the maximum displacements (Dmax), is
similarly performed for each function individually. Information on the minimum stack
occupancy is propagated locally from call sites to the ensure instructions. Finally, the
reserve analysis (l. 10) is performed on the call graph. It uses the occupancy bound
(BoundOccupancy, l. 8) and propagates context-dependent information on the stack oc-
cupancy to the individual reserve instructions.

Computational Complexity Examining the computational complexity of the in-
dividual analysis phases, AnalyzeReserves is bounded by the number of possible con-
texts, i.e., the number of functions times the constant number of stack cache states. The
data-flow analysis problems of BoundOccupancy and AnalyzeEnsures are similarly lin-
ear, but in the number of CFG nodes (due to the constant and typically low |D|, the
number of iterations until the analysis fixpoint is sub-polynomial). The remaining two
functions are those that compute the minimum and maximum displacement. Their un-
derlying path search problems are polynomial and NP respectively, when considered
without user constraints. But also when relying on an ILP formulation, the problems
have shown to be efficiently solvable even for graphs larger than the ones encountered
here (the number of functions in a program being naturally low). The shortest and
acyclic longest path searches are quadratic and linear, respectively.

A() B() C()
0

2

2

3

3 2

(a) Call Graph

A(), 0 B(), 2 C(), 4

C(), 3

C(), 2

(b) Spill Cost Graph

Figure 3.6: Annotated call graph and spill cost graph of the program from Figure 3.2.

32 Precise Stack Cache Analysis

SCA Graph Pruning During the SCA graph construction (cf. Algorithm 3), sev-
eral contexts might be created for the same function whose spill costs evaluate to 0, but
have different occupancy values. When analyzing the worst-case spilling behavior of
a program, these contexts are equivalent and can be merged. Note that this merging
could also be done during graph construction, at the expense of conservatively collaps-
ing descendant contexts having different costs.

Furthermore, potentially infeasible contexts may be created, e.g., when the recur-
sion depth of a recursive function is limited, which can be eliminated during a post-
processing phase or during graph construction. The maximum displacement, for in-
stance, can be used to prune parts of the graph while processing it.

In addition to the loss-less pruning opportunities mentioned above, the size of the
graph can also be reduced bymerging contexts and annotating themerged context with
the larger occupancy and higher spill cost. This would, for instance, allow us to reduce
the complexity of any subsequent analysis that takes spill cost into account. The advan-
tage of this approach is that the degree of context merging can be decided on-demand,
which allows to trade analysis precision against computational complexity.

3.3 IPET Integration

In the previous analysis steps, we have computed worst-case bounds for spilling and
filling of the stack cache at sres and sens instructions. We nowwant to integrate the la-
tencies imposed by the access to external memory into the overall timing analysis. Since
we rely on implicit path enumeration for WCET analysis, our goal is to appropriately
add theworst-case cost related to every spill and fill site to the ILP,which ismaximized to
find the worst-case execution path. The IPET problem can be formulated to be context-
sensitive (cf. Section 2.1.2) by duplicating ILP variables for each context they should be
considered in, and adapting the ILP constraints accordingly. Ensure analysis is context-
independent, thus its results can be added directly to the worst-case timing cost of the
respective code in the ILP, which contains the sens instruction. This procedure can be
applied to a context-insensitive IPET problem in the exact same way as to a context-
sensitive one. Integrating spill cost requires more care, as the spill cost analysis graph is
fully context-sensitive with regard to the observable stack cache state. The contexts con-
sidered by the reserve analysis might differ from the contexts used by the IPET analysis.
Two options can be considered to overcome this problem. The first option is to merge
the SCA contexts (as described above) so they match the contexts of the IPET analysis.
The merging might then cause some loss of precision. The other option is to account
for the full context information encoded in the SCA graph by introducing additional
ILP variables representing the nodes and edges of the SCA graph. ILP constraints then
connect these ILP variables to those of the original IPET problem. In the following we
demonstrate how to integrate the stack cache analysis results into a context-insensitive
IPET formulation: (1) by completely merging stack cache spill contexts and (2) retaining
all stack cache context by adding the SCA graph to the IPET problem.

We consider the ILP for the IPET graph G = (V,E), with nodes v ∈ V representing

Precise Stack Cache Analysis 33

basic blocks in the program and edges e ∈ E representing the flow of control between
them. For our extension, we represent the nodes of the SCA graph as C (contexts) and
its edges as transitions between contexts as T ⊆ C × C. The ILPs below will use the
variables

• xi for the amount of flow on the edges of the IPET graph and

• y j for the frequency of transition edges in the SCA graph.

Furthermore, the constant values in the ILP, which we decorate with a hat (e.g. ĉ) are

• t̂i the cost (weight) of an edge in a program’s IPET graph,

• ŝi, ŝ′i IPET edge weights augmented with stack cache related cost, and

• r̂i spill cost attached to an edge in the SCA graph.

• âi j, â′i j and k are constant factors that allow to constrain the program flow.

• B̂ f is a local upper bound for the frequency of a block, that is, within its function
(e.g., given node frequencies xi, a function entry r ∈ V and a node u ∈ V, the
relation xu ≤ B̂ f xr holds).

The basic ILP formulation has structural (3.11) as well as flow constraints with rela-
tions in ◦ ∈ {≤,≥,=} (3.12):

WCET = max
|E|∑
i=1

t̂ixi (3.10)

s.t.
∑

em=(u,v)
xm =

∑
en=(v,w)

xn (3.11)∑
e j∈E

âi jx j ◦
∑
e j∈E

â′i jx j + k (3.12)

xi ∈ N0 (3.13)

For edge ei = (u, v), the constant timing value t̂i represents the (longest) execution be-
tween the start of block u and the start of block v. The decision variable xi counts the
execution frequency for the same edge. The structural constraints (3.11) ensure that the
sum of control flow entering and leaving a node is equal, thus ensuring that no flow
gets added or lost, except at the distinguished start and end nodes. Equations (3.12)
represent arbitrary constrains on the control flow of the program, provided by prior
data-flow analysis or as user annotations. Maximizing the weighted sum for all edges is
the objective function (3.10) of the ILP and gives the total WCET bound of the program.

To extend the IPETmodelwith spill andfill cost, we need tomap sres (sens) instruc-
tions to their containing blocks and their worst-case cost to edges of the IPET eventually.
Thus, we define SRES(u) as a function that returns the single reserve instruction of the

34 Precise Stack Cache Analysis

IPET block u, or of the SCA context u. Likewise, we define SENS(v), to return the set
of ensure instructions in block v. Also, let F ⊂ E be the IPET edges, which represent
function calls.

Model 1: Merging Stack Cache Contexts

Webeginwith the simple extension to the ILPmodel, which involves a context-insensitive
approximation of stack cache spill cost. In doing so, we augment the constant timing
cost t̂i for edges in the IPET graph, with results from the previously described analysis:

Let ei = (u, v) and k = SRES(u) in :

ŝi = t̂i+
∑

j∈SENS(u)
f illcost(j) +max

c∈C
spillcost(k, c) (3.14)

For every block in the CFG, which contains analyzed sens or sres instructions, Equa-
tion (3.14) adds the fill or spill cost to the cost of the outgoing IPET edges. In the former
case, the cost is made up of a sum of f illcost values, since more than one ensure can be
found in a block. In the latter case, we need to select the worst-case cost over all contexts
from the SCA graph. In order to add the stack cost to the ILP, we only need to replace
the constant cost in the objective function:

WCET = max
∑
ei∈E

ŝixi (3.15)

Due to the modified objective function (3.15), the ILP now computes a valid upper
bound for the program’s execution time, considering latencies caused by the stack cache.

Model 2: Integrating Stack Cache Contexts

With the previous model, we have not taken advantage of the stack cache context that
is contained in the SCA graph. To do so, we introduce nodes and edges from the SCA
graph in the ILP as contexts C and transitions between contexts T, respectively. The
IPET graph thus becomes the quadruple G = (V,E,C,T). Spill frequencies in the SCA
graph are modeled by adding a variable y j for each edge e j ∈ T. We add the following
equations to the original IPET problem (Equations (3.10) to (3.13)).

∀ei ∈ F : xi =
∑

e′j∈T:e′j
∼=ei

y j (3.16)

∀en = (v,w) ∈ T :
∑

em=(u,v)∈T
B̂ f ym ≥ yn (3.17)

y j ∈ N0 (3.18)

Equation (3.16) links a function call edge in the original IPET to those edges that
represent the same call in the SCA graph. Recall that the relation eacg ∼= esca means

Precise Stack Cache Analysis 35

that two edges in our composite graph correspond to the same call site. The constraint
forces the accumulated frequency of the call site to be equal in both graphs. Similar to
constraints that appear in a standard IPET ILP, Equation (3.17) is a structural constraint
for the SCA graph. Different to the IPET graph though, the semantics of the SCA graph
require that flow originates at the root node and flows towards the leaves. Thus, we
can constrain the incoming flow of an SCA node to be greater or equal to its outgoing
flow. In the case of a call site within a loop, the bound B̂ f expresses that the (looping)
call site’s IPET frequency does not translate into more than one SCA context transition.
This follows directly from the semantics of stack behavior in loops. For call sites outside
of loops, B̂ f is simply 1. Note that with this constraint, we currently do not support
programs with recursive function calls. At this time, this is generally not supported by
Platin’s WCET analysis.

Generally speaking the constraints (3.17) prevent solutions of the ILP,where (through
maximization), an expensive spill context is selected in the SCA graph, although the
stack cache occupancy could not have been exceeded (i.e., there is no path of active
edges from the root of the SCA graph to this node). Further, we have to compute the
constant timing cost for every sres instruction i, for each spill context v ∈ C of the SCA
graph and translate it to the incoming call site of i:

Let e j = (u, v) ∈ T and i = SRES(v) in :
r̂ j = spillcost(i, v)

(3.19)

Finally, we reuse the f illcost-augmented edge cost from the first model and mod-
ify the ILP’s objective function to include both, the context-independent fill cost and
context-sensitive spill cost at the same time:

Let ei = (u, v) in :

ŝ′i =t̂i +
∑

j∈SENS(u)
f illcost(j) (3.20)

WCET = max
∑
ei∈E

ŝ′ixi +
∑
e j∈T

r̂ jy j (3.21)

3.4 Well-Formed Programs

The presented algorithms are based on the simple program model described in Defini-
tion 1, which assumes a single sres-instruction at the entry of a function and a single
sfree-instruction at function exit. However, the approach is easy to extend to the larger
class of well-formed programs. We define a well-formed program in terms of the paths
through the program’s functions:

Definition 5. A program is well-formed when all functions in the program are well-formed.

36 Precise Stack Cache Analysis

Definition 6. A function with CFG G = (V,E, r, t) is well-formed, if every path of nodes p =
(n1, . . . ,nm), where ∀ 0 < i < m : (ni,ni+1) ∈ E, satisfies one of the conditions:

1. No instruction ni ∈ p is an sres- or sfree-instruction.

2. Two indices 0 < ir < i f ≤ m exist, such that nir is the first sres-instruction and ni f is the
last sfree-instruction on the path, and the amount of space reserved by nir is equal to the
amount freed by ni f , and the path p′ = (nir+1, . . . ,ni f−1) is empty or well-formed.

The above definition can also be extended to cover sens-instructions. Note that the
definition of well-formed paths is based on all possible paths through the CFG, includ-
ing potentially infeasible paths. Well-formed programs have the nice property that al-
lows them to be analyzed using the previously described algorithms with only minor
modifications:

Lemma 1. Given the CFG G = (V,E, r, t) of a well-formed function and a node n ∈ V, the
accumulated amount of space reserved on the stack cache locally within the function is identical
at n for all paths (r, . . . ,n), i.e. reaching n from the root node.

Proof. Consider two distinct well-formed paths p1 = (r, . . . ,n1
r , . . . ,n, . . . ,n1

f , . . . t) and
p2 = (r, . . . ,n2

r , . . . ,n, . . . ,n2
f , . . . t), where n1

r and n2
r are the last sres-instructions on

their respective paths before n, such that the sub-paths p′1 = (n1
r , . . . ,n, . . . ,n1

f) and
p′2 = (n2

r , . . . ,n, . . . ,n2
f) are well-formed.

Since all paths in G are well-formed, also the path p3 = (r, . . . ,n1
r , . . . ,n, . . . ,n2

f , . . . t)
has to be well-formed. This implies that the amount of space reserved by n1

r and n2
r has

to be equal.
This property can be extended to sequences of sres-instructions, preceding n on

a path, whose matching sfrees succeed n on the path. Since these sequences have to
match across all paths passing through n, the accumulated amount of space reserved
locally within the function has to be identical over all paths. �

The previous lemma allows us to adapt the definition of the annotated call graph (cf.
Definition 2) to weight the edges in the graph using the accumulated amount of stack
space reserved locally within functions. The algorithms to compute the minimum and
maximum displacement from Section 3.2.1 can then be used without modification. The
data-flow analyses defined in Section 3.2.2 have to be adapted to account for the nest-
ing of sres-instructions, but otherwise proceed as before. The SCA graph also needs
to be adapted to capture reserve instructions within functions explicitly using logical
contexts. This can easily be done as the propagation rules to construct logical contexts
from reserves are the same as those for calls. It is even possible to model the effect of
loops explicitly in the SCA graph by loop peeling, i.e., several logical contexts may be
constructed for one reserve instruction.

Precise Stack Cache Analysis 37

Total WCET Stack-Cache
Benchmark Simple SCA Simple SCA

mdh-adpcm 2,972,821 2,972,821 43,697 43,697
mdh-cnt 3,811 3,811 13 13
mdh-compress 21,952 21,952 169 169
mdh-crc 52,164 52,156 16 8
mdh-edn 49,864 49,864 10 10
mdh-expint 78,350 77,750 1,209 609
mdh-fdct 1,114 1,114 8 8
mdh-jfdctint 2,316 2,316 8 8
mdh-matmult 98,498 98,490 21 13
mdh-minmax 102 102 6 6
mdh-ndes 46,202 46,202 170 170
mdh-select 28,132 28,132 12 12
mdh-statemate 660 660 9 9
mdh-ud 34,616 34,580 712 676

Table 3.1: WCET bounds including stack cache overhead as computed by Platin

ad
pc

m
cr
c-
32 fft bf

rij
nd

ae
l

sh
a

sa
y

se
ar
ch

di
jk
st
ra

pa
tr
ic
ia

ba
si
cm

at
h

bi
tc
nt
s

qs
or
t

su
sa
n

an
si
2k

nr
cjp

eg
dj
pe

g
jp
eg

tr
an

jp
gc
om

la
m
e

tiff
2b

w
tiff

2r
gb

a
tiff

di
th
er

tiff
m
ed

ia
n

0

100

200

300

N
um

be
ro

fr
es
er
ve

in
st
ru

ct
io
ns

sres instructions (total) sres spilling (1k)
sres spilling (512b) sres spilling (256b)

Figure 3.7: Total number of sres-instructions and number of sres-instructions potentially
spilling in the worst-case (lower is better).

3.5 Evaluation

We evaluated our approach using the LLVM-based compiler and analysis framework of
the Patmos processor. Note that the compiler automatically allocates stack data on the
stack cache, but in a conservative manner, which results in low stack cache utilization.
Platin with its internal IPET-based longest-path search is used as the WCET analysis
tool. It processes the program binary and all relevant analysis information generated
by LLVM and the user (cf. Section 2.2.1).

38 Precise Stack Cache Analysis

10
0

15
0

20
0

25
0

30
0

35
0

40
0

2

4

·104

Number of functions

N
um

be
ro

fn
od

es
in

th
e

SC
A

gr
ap

h

reference (128 · x) SCA graph (1k)
SCA graph (512b) SCA graph (256b)

Figure 3.8: The size of the Spill Cost Analysis graph is linear in the number of functions (lower
is better).

We first evaluate stack cache analysis integrated into Platin’s WCET analysis for the
Mälardalen benchmark suite. Each program in the Mälardalen benchmark suite rep-
resents an algorithm, which would appear as part of an actual application. Therefore,
to see the effects from stack cache spills and fills, we assume its size to be only 256
bytes (256b) and its occupancy full at analysis start. Also because of the small size of
the benchmarks, we enabled only basic optimizations (-O1) in the Clang/LLVM com-
piler, and disabled function inlining. Table 3.1 contains the results from integrated
WCET analysis. A comparison between the “Simple” integration model with context-
insensitive stack cache cost and the “SCA” model, which integrates the stack cache con-
text using the spill cost analysis graph, shows a mild improvement of the WCET bound.
The program mdh-expint benefits most, but in general, the Mälardalen benchmarks
don’t exhibit prominent calling behavior. For the programs analyzed, only up to 5% of
worst-case cycles are caused by the stack cache. The overall analysis overhead includ-
ing the stack cache analysis described in Section 3.2 and solving of the integrated IPET
from Section 3.3 took less than one second per benchmark. This limited experiment
was the first we could perform using the Platin analysis framework, which is still being
developed at this time.

Programs from theMiBench benchmark suite [62] were selected to evaluate whether
stack cache analysis can scale to large programs with more complex calling behavior.
They were compiled using aggressive optimizations (-O3) and subsequently analyzed
using our technique from Section 3.2. Since MiBench programs cannot be analyzed by
Platin at this point, these stack cache analysis results could not be applied to compute a
total WCET bound. The analysis assumes stack cache sizes of 1024 (1k), 512 (512b), and
256 (256b) bytes with 4 byte blocks. The compiled benchmarks contain between 9550
and 74291 instructions, ofwhich 0.3 - 0.5%are sres- and 0.1 - 5.5%are sens-instructions.
While it does not reflect how a Patmos system will eventually be configured for a real-
word scenario, this experimental setup allows us to evaluate the behavior of stack cache

Precise Stack Cache Analysis 39

analysis for up to 256 blocks. Realistic configurations are more likely to have 2 to 4 KiB of
stack cache, a larger block size of e.g. 16 bytes (resulting in up to 256 blocks), and —enabled by
an additional analysis in the compiler— more data allocated to the stack cache.

Figure 3.7 summarizes the result of the reserve analysis (Section 3.2.3). It shows the
total number of sres-instructions in the benchmarks (white bar) as well as the number
of potentially spilling instructions among theses (colored bars). For the 1k configuration
the analysis can prove that almost no spilling will occur at runtime as the benchmarks
have a rather shallownesting of function calls. Even for the smallest cache configuration,
the analysis finds that on average, only about 37% of sres-instructionsmay causeworst-
case spilling. Note that for the combination of a small stack configuration and large
benchmark programs (e.g. tiff2rgba) the compiler needs to avoid stack frames from
exceeding the stack cache size. This results in different displacement patterns and can
result in fewer active sres-instructions. The analysis results reflect the observed spilling
behavior at runtime reported in previous work [4].

More detailed numbers are presented in Table 3.2. In total 728 ILPs are generated
(column ILP) during the displacement analysis (Section 3.2.1), 94 of which are due to
djpeg. Note that the shortest path searchwas also performed using ILP to disambiguate
calls through function pointers.

The number of contexts computed by the reserve analysis (Section 3.2.3) before prun-
ing grows linearly with the stack cache size (columns O1k, O512b, O256b), while the
growth is much smaller for the pruned graphs (columns P). The highest number of con-
texts is initially computed for the 1k configuration, where up to 53487 distinct contexts
(tiffdither) are computed. Most of these are irrelevant for the worst-case spilling and
can thus be eliminated. The pruned graphs only retain 15% of the original contexts in
the mean (ignoring empty graphs). For the 256b configuration fewer contexts are com-
puted, at most 8198 distinct contexts for djpeg. However, a larger number of contexts
is retained during pruning (29%).

The ensure analysis (Section 3.2.2) finds that very few of the ensure instructions may
cause filling in the worst-case (columns F1k, F512b, F256b). Up to 99% (adpcm) of the
ensures never perform any filling for the 256b configuration (in the mean 79%, column
Ratio256b).

It is worth noting that the number of nodes in the SCA graphs grows not only in
relation to the number of functions in a program, but also with the size of the stack
cache. This effect can be seen in Figure 3.8. It can be explained by the fact that the
graph has to keep track of a higher number of distinct occupancy contexts. Once the
stack cache size exceeds a point, where a considerable part of functions cannot cause
any spilling at all, this would counteract the graph growth.

As most parts of the analysis are linear in the program size, the computational over-
head of the entire analysis is low. Using an unoptimized executable, the average analysis
time was 1.30s, 0.75s, and 0.46s for the 1k, 512b, and 256b configurations respectively.

40 Precise Stack Cache Analysis

3.6 Related Work

In this section, we give an overview of related data cache and stack-specific analyses.
We also describe scratch-pad memory, an alternative to the hardware overhead that
comes with dynamic caching. Embedded systems use scratch-pad memory for reasons
of efficiency as well as predictability.

Data Cache Analysis

Static analysis [75, 71] of caches typically proceeds in two phases: (1) potential addresses
of memory accesses are determined, (2) the potential cache content for every program
point is computed. Depending on factors such as size and replacement strategy of the
cache, an analysis needs to keep track of a potentially huge state space reflecting a long
execution history of the program. The stack cache allows for a simpler analysis model
that does not require the precise knowledge of addresses. This eliminates a source of
complexity and imprecision. The hardware states of the stack cache can, furthermore,
be summarized using the stack occupancy. The analysis is thus simplified drastically,
allowing us to compute fully context-dependent cache states. This information can be
encoded on-demand into the actual timing analysis. This is further supported by the
observation that the stack cache serves up to 75% of the dynamic memory accesses [4].

Register Window Analysis

Tidorum Ltd.’s WCET analysis tool Bound-T supports the analysis of over- and under-
flowof the register-windowmechanismof the SPARCarchitecture [22, Section 2.2]. They
compute bounds on the number of register windows that are pushed to and popped
from the stack and use these bounds to classify the corresponding save and restore
instructions as trapping or non-trapping. The analysis imposes several limitations on
the program structure and operating system’s trap handler. Additionally, it is unclear
how calling contexts and recursion are handled.

Stack Depth Analysis

Our approach to compute the stack cache displacement has some similarity to tech-
niques used to statically analyze the maximum stack depth [39, 22]. Instead of only
finding the maximum stack depth for the program’s entry function , i.e., a longest path
on a weighted call graph, the displacement information is required for every function.
We duplicate the call graph, such that one copy represents the cost-free head and the
second copy the weighted tail of the desired path.

Scratch-Pad Memory

In the context of embedded systems, scratch-pad memory (SPM) is an alternative for
the use of caches. SPM is a fast local memory that avoids the logic required to keep
caches synchronized with the external memory they are mapped. An SPM is explicitly

Precise Stack Cache Analysis 41

managed in software (or sometimes by a memory management unit). Which data is
allocated to SPM can be decided statically or dynamically, by the programmer or the
compiler, and is an optimization problem dependent on the memory usage pattern of a
specific application. A software solution using an SPM for stack data is described in [26].
Its circularmanagement of stack frameswithin the SPM is similar to our stack cache. Yet
its replacement strategy is different, because it is implicit: a “software SPM manager”
handles overflow and underflow of the SPM’s stack region and transfers frames to and
from external memory. An optimal ILP-based model for the placement and transfer of
stack data kept in scratch-pad memory is described in [25]. Their model has a similar
restriction to our stack cache design, namely that a whole (not partial) stack frame of
the currently active function must be in the SPM. While, similar in concept, the SPM
solutions above, target efficiency, in the sense of average-case performance and energy
efficiency, and do not consider the WCET bound.

In a soon to be published paper [3], Kim et al. describe a stack allocation model for
SPMs, which optimizes for worst-case execution time. Like us, the authors assume a
predictable architecture, in their case the PRET [32] architecture. Their optimization
model is solved to optimality using an ILP solver and heuristically for those programs
that the model does not scale to feasibly.

42 Precise Stack Cache Analysis

SCA graph size (original/pruned) Number of sens-instructions (filling/non-filling)
Benchmark Fun. ILP O1k P1k O512b P512b O256b P256b F1k NF1k F512b NF512b F256b NF256b Ratio256b

adpcm 63 12 755 0 428 0 270 46 0 99 0 99 1 98 0.99
crc-32 103 2 1750 0 821 62 415 80 0 358 4 354 68 290 0.81

fft 159 14 5060 0 1751 258 761 207 0 842 10 832 182 660 0.78
bf 111 14 2574 0 1136 66 509 104 0 368 2 366 64 304 0.83

rijndael 95 2 2710 0 1051 119 352 61 0 358 7 351 78 280 0.78
sha 101 2 2655 0 1048 97 338 76 0 360 5 355 73 287 0.80
say 217 20 25170 2422 8945 1781 2218 700 17 1907 77 1847 271 1653 0.86

search 78 2 1521 0 581 75 231 29 0 311 6 305 67 244 0.78
dijkstra 138 16 8402 483 2868 410 653 197 2 586 8 580 167 421 0.72
patricia 157 16 3100 63 1565 133 706 159 2 629 7 624 164 467 0.74

basicmath 99 2 1691 0 780 92 363 82 0 839 18 821 85 754 0.90
bitcnts 117 16 2193 0 930 76 407 77 0 365 5 360 67 298 0.82
qsort 124 4 2037 14 1010 103 373 110 2 588 8 582 166 424 0.72
susan 173 14 8989 0 3455 411 964 311 0 760 10 750 101 659 0.87

ansi2knr 119 14 3478 0 1424 139 639 173 0 397 11 386 76 321 0.81
cjpeg 351 50 45599 17434 19615 9570 7086 4061 24 1669 487 1206 666 1027 0.61
djpeg 363 94 52677 14783 22725 8619 8198 3771 158 1388 421 1125 588 958 0.62

jpegtran 301 90 45664 17605 19168 9427 6597 3870 119 1306 438 987 614 811 0.57
jpgcom 113 14 5394 0 2196 168 730 211 0 387 7 380 72 315 0.81

lame 303 14 18134 237 7098 1196 2403 574 4 3898 70 3832 322 3580 0.92
tiff2bw 327 72 53482 16436 21748 9215 6771 3522 82 1449 269 1262 392 1139 0.74

tiff2rgba 402 72 53189 17542 21371 5806 6195 3111 129 2022 395 1756 518 1633 0.76
tiffdither 326 72 53487 17254 21753 9213 6776 3520 76 1457 263 1270 386 1147 0.75

tiffmedian 325 72 53065 17410 21079 8943 6055 2980 79 1407 267 1219 336 1150 0.77

Table 3.2: The number of functions, the number of ILP runs, the SCA graph size before and after
pruning, as well as the number of ensure instructions that are potentially filling or are certain to
not cause any filling.

Chapter 4

Criticality

The criticality metric expresses which parts of a program are relevant with regard to the
global WCET. The metric can be derived for every basic block in the CFG and may take
any value in the range 0 to 1, where lower values indicate less critical code (0 would
indicate unreachable or dead code), while code on the WCEP is assigned a criticality
of 1. Note that it would be possible to derive criticality values for CFG edges, however,
we limit ourselves to basic blocks in this work. Since criticalities are derived for all basic
blocks, they provide a more complete view than theWCET or even its associatedWCEP
alone. They thus provide ideal information for a programmer or software development
tool aiming at improving the WCET of a program.

In the following two sections we introduces the concepts of our metric, and the algo-
rithms we devised for its computation. Our ideas regarding an estimation approach for
criticality and how to visually present its results to a programmer can be found in sec-
tions 4.3 and 4.4. We present an evaluation of the behavior and feasibility of our metric
in Section 4.5. This part sheds some light on the properties of standard WCET bench-
marks we described in Section 2.2.2. With a discussion of the possible application areas
of the criticality metric in Section 4.6 and an overview of related work in Section 4.7 we
end this chapter.

Criticality has been first published in [9] and presented at RTNS 2012. An in-depth
description together with further algorithms for its computation can be found in a jour-
nal article [5] that has been published online and is pending print publication. A pa-
per [2] describing the estimation approach for criticality computation and our ideas for
visualization of criticality profiles has been accepted for publication. It will be presented
at the upcoming ODES workshop as part of CGO 2014.

4.1 The Criticality Metric on Control-Flow Graphs

We will first give a definition of Criticality using the worst-case execution time induced
by paths passing through a basic block and their relation to the global WCET. The nota-
tion for graph-related properties used in the following has been defined in Section 2.1.1.

44 Criticality

Definition 7. Given a weighted CFG G = (V,E, r, t) and a node u ∈ V, the length of the longest
path p passing through u is denoted by WCET(u) = W̄(p), i.e., p is the longest path such that
u ∈ p and there exists no other path q, u ∈ q where W̄(p) < W̄(q).

Note that the length of the longest path from the root node to the sink node, and
thus the WCET, is given by the longest path passing through the root r or sink t, i.e.
WCET =WCET(r) =WCET(t).

Using the previous definition, and assuming a non-zeroWCET,we can now formally
define the criticality of an individual basic block as follows:

Definition 8. The criticality of a basic block and its associated CFG node u is defined using the
WCET over all paths passing through u and the global WCET as:

Crit(u) =
WCET(u)

WCET

Example 7. Consider the paths of the weighted CFG in Figure 4.1. Assuming all edges have
a weight of zero, the longest path of length 15 is given by (r, BB0, BB2, BB4, BB5, t), followed
by (r, BB0, BB1, BB4, BB5, t), having a length of 11, and finally (r, BB0, BB1, BB3, BB5, t) with a
length of 9. Clearly, BB0, BB2, BB4, and BB5 have to be considered critical since these blocks
appear on the WCEP. Even though BB1 is not on the WCEP itself, it has to be considered critical,
since a path of length 11 passes through it. The remaining block BB3 on the other hand is com-
paratively unimportant since none of the highly critical paths pass through it. This is reflected
by the different criticalities assigned to the various blocks: 1 for blocks appearing on the WCEP,
0.73 for BB1, and 0.6 for BB3.

Following the preceding definition of criticality for basic blocks, it is apparent that
the WCET analysis has to be performed several times, once for every basic block of the
program. It is, however, not necessary, to repeat all of it. The results of the data-flow,
cache, or pipeline analyses remain valid throughout, thus it suffices to perform only the
longest path search.

r

BB0 W(BB0) = 2

BB1W(BB1) = 3 BB2 W(BB2) = 7

BB3W(BB3) = 1 BB4 W(BB4) = 5

BB5 W(BB5) = 1

t

Figure 4.1: An example control-flowgraph annotatedwith basic-block-local execution times and
all potential execution paths highlighted.

Criticality 45

4.1.1 Properties of Criticality

Since criticality is tightly bound to the concept of paths, i.e., the longest path passing
through a CFG node, it is not surprising that structural properties of the CFG related to
paths affect criticality. The propertieswe are specifically interested in, regard the relation
between criticality values of different nodes in the CFG. Pre- and post-dominance in the
graph provide information that can be exploited during the calculation of basic block
criticalities.

Lemma 2. Given a CFG G = (V,E, r, t), two nodes u and v in V, and a weight functionW,
the criticality of v is less than or equal to the criticality of u, if u pre-dominates v:

u dom v =⇒ Crit(v) ≤ Crit(u)

Proof. Suppose that u pre-dominates v and that the criticality of v is greater than the
criticality of u, i.e., Crit(v) > Crit(u) and consequently WCET(v) > WCET(u). Since
WCET(v) > WCET(u), there exists a path passing through v, but not through u, that is
longer than any path passing through u. The existence of this path implies u ¬dom v,
which contradicts the initial assumption that u pre-dominates v. �

Lemma 3. Given two nodes u and v of a weighted CFG G, the criticality of v is less than or
equal to the criticality of u, if u post-dominates v, i.e.:

u pdom v =⇒ Crit(v) ≤ Crit(u)

Proof. Analogous to Lemma 2. �

The previous two lemmas provide upper bounds for CFG nodes, which are pre- or
post-dominated by some other node. When the difference between very low criticality
values is of no interest, this can be used to stop computing it for nodes, once the critical-
ity of a pre- or post-dominating node is known to be sufficiently low (see Section 4.2.4
for the algorithm designed around this concept).

The dominance properties further allow us to derive the criticality of dominating
nodes. However, for this we have to ensure that all paths passing through the domi-
nator also pass through one of its dominated nodes. Control-flow graphs that are free
from critical edges fulfill this property. Note that critical edges can be eliminated by
edge-splitting, i.e., by placing additional basic blocks between the respective source and
destination nodes of the edges.

Theorem 1. Let S = {v : u sdom v} be the set of nodes strictly pre-dominated by a node u of a
weighted CFG Gc f that is free from critical edges. The criticality of u, strictly pre-dominating at
least one node, is equal to the maximum criticality among the nodes in S:

|S| ≥ 1 =⇒ Crit(u) = maxv∈S Crit(v)

Proof. The proof consists of two steps. We will first show that, in a CFG that is free from
critical edges, all paths passing through a CFG node u, pass through one of the nodes
in S. We will then prove the theorem itself.

46 Criticality

Since the CFG is free from, critical edges, we may encounter two situations. In the
first scenario, we assume CFG node u has multiple outgoing edges. Since no critical
edges exist, all successors of the node have a single incoming edge and are thus pre-
dominated by u. It trivially follows that all paths through u also pass through one of its
successors.

In the second scenario, we assume CFG node u has a single outgoing edge leading
to its successor s. We now have to show that u cannot strictly pre-dominate any node
n 6= s unless u strictly pre-dominates s. Assume that u strictly pre-dominates some node
n 6= s, but does not strictly pre-dominate s. This implies that all paths passing through
n pass through u and s (as s is the only successor of u). It follows that a path from s to
n exists that does not pass through n. Since s is not pre-dominated by u, a path can be
constructed that passes through s and n but not through u. This contradicts the initial
assumption that u pre-dominates n. u thus either strictly pre-dominates its successor or
does not strictly pre-dominate any node. This completes the first step of the proof.

Lemma 2 already shows that the criticality of all nodes pre-dominated by some CFG
node u has to be smaller or equal to the criticality of u. It thus remains to show that u’s
criticality cannot be greater than the maximum criticality of any of the nodes it strictly
pre-dominates. Suppose that some CFG node u exists whose criticality is greater than
the criticality of any node strictly pre-dominated by u, i.e., ∀v ∈ S : Crit(v) < Crit(u) and
consequently ∀v ∈ S : WCET(v) < WCET(u). Thus, there exists a path passing through
u, but not through any node strictly pre-dominated by u. However, this is impossible
sincewe showed in the first step of the proof that any path passing through u also passes
through a node in S. �

Theorem 2. Let S = {v : u spdom v} be the set of nodes strictly post-dominated by a node u of a
weighted CFG Gc f that is free from critical edges. The criticality of u, strictly post-dominating
at least one node, is equal to the maximum criticality among the nodes in S:

|S| ≥ 1 =⇒ Crit(u) = maxv∈S Crit(v)

Proof. Analogous to Theorem 1, using Lemma 3. �

Corollary 1. Two nodes u and v of a weighted CFG have the same criticality, if u pre-dominates
v and, at the same time, v post-dominates u:

u dom v ∧ v pdom u =⇒ Crit(u) = Crit(v)

Proof. This follows immediately from Lemma 1 and 2. �

The previous two theorems allow us to reduce the overhead for the computation of
criticality for awhole programby exploiting the pre-dominance andpost-dominance re-
lation. It is thus not necessary to perform individual longest path searches for all basic
blocks of a program. Instead it is sufficient to consider only a subset of the basic blocks
and derive the criticality of the remaining blocks by simply traversing the pre- or post-
dominator trees (see Section 4.2 for the concrete algorithm). Also note that all proofs
hold in the presence of flow constraints (cf. Section 1.1), as these can only reduce the

Criticality 47

number of valid paths through the CFG. Dominance relations derived from the struc-
ture of the CFG thus cannot be invalidated. However, new dominance relations might
emerge when only valid paths are considered. Taking these additional dominators into
account, could further reduce the computational overhead of the algorithms presented
later.

Example 8. Consider the CFG node BB0 in Figure 4.1, which pre-dominates its two successors
BB1 and BB2. It thus follows from Lemma 2 that the criticality of the two successors is smaller or
equal to that of BB0, which evaluates to 1. Indeed, as shown in Example 7, the criticality of BB1 is
0.73, while that of BB2 is 1. The same also applies to BB5, which post-dominates its predecessors
BB3 and BB4 (Lemma 3). In both cases, the criticality of the pre-/post-dominating node equals the
maximum of the criticality of their respective successors/predecessors. Furthermore, since BB1
and BB5 pre-dominate and post-dominate each other, their criticality values have to be equal.

4.1.2 Invariant Code

A very interesting property is related to the notion of invariant paths, first proposed
by [28]. They showed that certain CFG nodes will always remain on the WCEP even
when the weights of other nodes in the graph are changed, e.g., due to a modification of
the program that preserves the original structure of the CFG. The corresponding code
blocks are thus guaranteed to have a criticality of 1, independent from other code in the
program. The original definition [28] is very informal. Using the properties proved in
the previous sub-section, a clean (and correct) definition of invariant code can be stated
as follows:

Definition 9. A CFG node v of a weighted CFG G is invariant when its criticality evaluates to
1, independent from the node and edge weights of the CFG.

Every CFG has at least two trivial invariant nodes, the root and the sink node. Fur-
thermore, Corollary 1 shows that every pair of CFG nodes pre-dominating and post-
dominating each other have the same criticality. Since the root of theCFGpre-dominates
all nodes it follows that all CFG nodes post-dominating the root node are invariant.

Corollary 2. In a weighted CFG G all nodes post-dominating the root node r are invariant.

Proof. This follows immediately from Corollary 1 and the fact that the root node r pre-
dominates all other nodes in the CFG. �

Note that, in contrast to Lokuciejewski et al., this definition refers to invariant code
blocks instead of an invariant path. The set of invariant nodes in a CFG usually does
not constitute a path for two reasons. Firstly, a CFG node can be invariant even when
none of its predecessor and successor nodes are invariant. Secondly, two independent
nodesmight be invariant depending on the calling context of a function. In addition, our
definition is independent from any particular WCEP, opposed to the original definition,
and strictly refers to structural CFG properties.

48 Criticality

The fact that invariant code solely depends on the structure of the CFG is particu-
larly interesting, even beyond the scope of our work on criticality. It shows that certain
code parts are known to be on some WCEP (and thus influence the WCET) without
performing an actual WCET analysis.

4.2 Algorithms for Computing Criticality

Given the definition from before, we may now ask how to compute the actual criticality
for each basic block of a program. We will examine two scenarios: longest path search
(1) using dynamic programming on acyclic graphs and (2) using implicit path enumer-
ation (IPET) on general graphs. We require IPET, which is flexible enough to be adapted
for computing criticality and at the same time powerful enough to handle cyclic control
flow. Due to the high computational cost it sometimes incurs, we envision an approach
combining both, IPET and dynamic programming, to improve the computation of the
criticality metric (see Section 4.6).

4.2.1 Dynamic Programming on Acyclic Graphs

The longest path in a weighted, acyclic CFG can be efficiently computed using dynamic
programming [23, Chapter 24] by discovering nodes reachable from the root node using
paths of length 1, then nodes reachable by paths of length 2, and so on, until no longer
path can be discovered. It is important to note that this approach not only yields the
global longest path, but also the longest paths from the root to every node in the CFG.
The criticality of all blocks, can then be computed by performing the longest-path search
twice. The first search considers only paths starting at the root node leading to its sink
node. The second pass performs a longest-path search on the reversed CFG, i.e., only
paths starting at the sink leading to the root are considered. The partial path lengths,
from the root to a node and from the node to the sink, can then be combined to determine
the longest path passing through the individual CFG nodes.

Algorithm 4 DAGLongestPaths(G): Calculate the weights of the longest paths to every
node in an acyclic graph.
Input: G = (V,E, r, t) . . . An acyclic directed graph with weightsW.
Output: d[v] contains the weight of the longest path to v for all v in G.
1: . Set initial distance values
2: for all v ∈ V do
3: d[v] =W(v)
4: for all v ∈ V in topological order do
5: for all outgoing edges e = (v,w) ∈ E do
6: d[w] = max(d[w], d[v] +W(e) +W(w))
7: return d

Criticality 49

Algorithm 4 calculates the distance d[v], i.e., the length of the longest path, from the
root to every nodes v in the CFG. The algorithm first initializes d[v] (line 3) and then
visits each node in a topological order (l. 4). When a node v is visited, d[v] holds the
maximum distance from the root to v. Based on d[v] the maximum distance to all of v’s
successors is computed using the respective edge weights (line 6).

Algorithm 5 computes all criticality values by first performing a regular longest-path
search on the CFG (line 2), followed by a longest path search on the edge-reversed graph
GR (line 4–5). Note that both dr[t] and dt[r] contain the length of the longest path from
the root to the sink node and thus dr[t] = dt[r] = WCET. Combining the results for
a node v yields the longest path passing through that node. The criticality Crit(v) can
then be calculated by dividing the result by the overall WCET dr[t] (l. 7).

This algorithm can also be used to perform the criticality computation on cyclic CFGs
using the techniques of [64]. A cyclic CFG here is decomposed into acyclic regions, so-
called scopes, where the longest path search within each scope is performed using dy-
namic programming (Algorithm 4). The overall program structure is represented by a
scope graph, which interconnects the various scopes and allows to propagate informa-
tion about the longest path across scopes. Since scopes are acyclic, our approach can
immediately be applied to them. However, care has to be taken to also account for the
longest path leading to/from a scope from the root node and to the sink node respec-
tively. This can be done during the scope graph traversal. Also note that certain flow
facts can be handled by this approach using graph transformations and virtual scopes.

Correctness We start by considering Algorithm 4 and show that it computes the
longest path from the root node to every node in an acyclic, weighted CFG.

Lemma 4. Algorithm 4 calculates the distance d[v], i.e., the length of the longest path, from the
root node r for every node v of an acyclic graph G.

Proof. See [23, Chap. 24] for a detailed discussion. �

Using this result, we can now show the correctness of Algorithm 5.

Algorithm 5 Compute criticalities for all CFG nodes of an acyclic CFG.
Input: G = (V,E, r, t) . . . A weighted, acyclic control-flow graph.
Output: The criticality of every node in G is computed.
1: . Compute the longest paths from the root node
2: dr = DAGLongestPaths(G)

3: . Compute the longest paths to the sink node t
4: GR = ReverseGraph(G)
5: dt = DAGLongestPaths(GR)

6: for all v ∈ V do
7: Crit(v) = (dr[v] + dt[v] −W(v))/dr[t]
8:

50 Criticality

r dr[r] = 0, dt[r] = 15
W(r) = 0

BB0 dr[BB0] = 2, dt[BB0] = 15
W(BB0) = 2

BB1dr[BB1] = 5, dt[BB1] = 9
W(BB1) = 3 BB2 dr[BB2] = 9, dt[BB2] = 13

W(BB2) = 7

BB3dr[BB3] = 8, dt[BB3] = 2
W(BB3) = 1 BB4 dr[BB4] = 14, dt[BB4] = 6

W(BB4) = 5

BB5 dr[BB5] = 15, dt[BB5] = 1
W(BB5) = 1

t dr[t] = 15, dt[t] = 0
W(t) = 0

Figure 4.2: Example control-flow graph annotated with longest path weights.

Theorem 3. Algorithm 5 calculates the criticalities Crit(v) of all nodes v of an acyclic control-
flow graph G.

Proof. Lemma 4 ensures that dr[v] contains the length of the longest path from the root to
somenode v and that dt[v] contains the length of the longest path from v to the sink node.
Concatenating these two paths gives the longest path passing through v. The expression
dr[v] + dt[v] −W(v) (Algorithm 5 line 7) yields the length WCET(v) of this path. Note
that the weightW(v) appears in both dr[v] and dt[v] and thus needs to be subtracted
once. Given WCET(v), the node’s criticality Crit(v) can be calculated immediately. �

Complexity The computational complexity of Algorithm 4 performing a longest
path search on an acyclic CFG is linear in the size of the graph in O(|V| + |E|) [23,
Chap. 24.].

Computing the criticality for each node inAlgorithm5 is linear in the number ofCFG
nodes (lines 6–8). Constructing the reverse graph (l. 4) can be performed in O(|V| + |E|)
by iterating over all outgoing edges of all nodes of graph G. However, depending on the
graph representation, this step can be eliminated. The overall complexity ofAlgorithm 5
is consequently determined by the longest path search and hence in O(|V| + |E|).
Example 9. We use the control-flow graph from Figure 4.1. Since it is an acyclic graph, we can
use Algorithm 5 to calculate the criticalities.

First we need to run a longest path search on the CFG and on the reversed CFG. Figure 4.2
shows the weights of the CFG nodes and results of the longest path searches. dr denotes the weight
of the longest path from the root to a block, while dt denotes the weight of the longest path from a
block to the sink node t. The WCET for the CFG is given by dr(t) = 15. The weight of the longest
path over a node v, WCET(v), is calculated as dr(v)+ dt(v)−W(v).W(v) has to be subtracted
once, since it has been added to both dr(v) and dt(v) previously.

For the nodes BB0, BB2, BB4 and BB5, WCET(v) evaluates to 15. Their criticality is therefore
15/15 = 1. The weight of the longest path over BB1 is 7 + 11 − 5 = 13, its criticality is therefore
11/15 = 0.73. For node BB3WCET(v) is 8 + 2 − 1 = 9 and its criticality is 9/15 = 0.6.

Criticality 51

4.2.2 Path Enumeration on Cyclic Graphs

For arbitrary graphs, and even for inter-procedural program representations, an implicit
enumeration of paths using ILP [78, 74] can be performed to find the WCEP. The com-
putation of the criticality of all basic blocks in a program might require a separate IPET
run for each basic block in the worst case. However, we have already seen that the num-
ber of blocks that have to be considered can be reduced using dominance properties
(see Theorem 1 and 2). We will now present an algorithm that exploits the basic block
dominator graph, or short dominator graph, initially introduced by [80]:

Definition 10. Given a CFG G, the dominator graphD = (V,D) is defined by the CFG nodes
in V and dominance edges in D ⊆ V ×V that are derived by unifying the set of edges of the pre-
and post-dominator tree of G.

Note that, in contrast to the pre- and post-dominator tree, the dominator graph usu-
ally contains cycles, e.g., the root node of the CFGpre-dominates the sink nodewhile the
sink node post-dominates the root, which results in at least one cycle in the dominator
graph.

Using the results of the previous section, it is clear that the criticality of non-leaf
nodes in the dominator graph can be computed from the criticality of adjacent nodes in
the graph. It thus suffices to performan IPET run for leaf nodes only and to subsequently
derive the criticality of all nodes in the graph. Algorithm 6 shows the main steps of the
criticality computation given a CFG that is free from critical edges.

First, the dominator graph is constructed and its strongly connected components are
computed (DominatorGraph, StronglyConnectedComponents). Each SCC is then col-
lapsed into a unique node representing the respective SCC (CollapseSCCs). All edges
entering, respectively leaving, an SCC are redirected to the corresponding representa-
tive. Note that the collapsed dominator graph is then free of cycles, i.e., a directed acyclic
graph.

Before computing the actual criticalities, the algorithm determines the global WCET
of the input program (Algorithm 6 line 9). The function ComputeWCEToverNode deter-
mines the longest of all paths in a given CFG that pass through a given CFG node (see
Definition 7). Implicit path enumeration can easily be adopted to perform this longest
path search over a specific node. In the simplest case, a single additional constraint has
to be added to the ILP, forcing the respective ILP variable to a non-zero value. Note that
even though we assume an IPET-based approach, the longest path search can also be
performed using any other algorithm.

Following these preparatory steps, the actual criticalities can be computed (lines 11
– 18) by traversing the collapsed dominator graph in post order. When leaving a node
during the traversal, the criticality of that node is either (1) computed directly from the
longest path passing through that node (l. 14) or (2) derived from the node’s successors
in the dominator graph (l. 18). The direct computation is required for all leaf nodes
of the dominator graph (isLeaf), while for other nodes only the adjacent nodes in the
graph are considered (Succ).

52 Criticality

Algorithm 6 Compute criticalities for all CFG nodes by exploiting dominance proper-
ties.
Input: G = (V,E, r, t) . . . A weighted control-flow graph.
Output: The criticality of every node in G is computed.
1: . Eliminate critical edges by placing basic blocks between them
2: SplitCriticalEdges(G)

3: . Compute the dominator graph and collapse its SCCs
4: D = DominatorGraph(G)
5:
6: S = StronglyConnectedComponents(D)
7: D′ = CollapseSCCs(D,S)

8: . Compute the global WCET of the input program.
9: WCET = ComputeWCEToverNode(G, r)

10: . Compute criticalities within the dominator graph.
11: for all v ∈ D′ in post order do
12: if isLeaf(D′, v) then
13: . Directly compute criticality of the current node.
14: Crit(v) = ComputeWCEToverNode(G, v) /WCET
15:
16: else
17: . Derive criticality using dominance.
18: Crit(v) = maxu∈Succ(D′,v)Crit(u)

19: . Propagate criticalities within the SCCs.
20: for all scc ∈ S do letu be the node representing the SCC scc inD′
21: for all v ∈ scc do
22: Crit(v) = Crit(u)
23:

At this point all possible criticalities are known. What remains is to propagate the
criticality among nodes of SCCs using the value of the representative in the collapsed
dominator graph (l. 22).

Example 10. In order to apply the algorithm to the CFG in Figure 4.1, we must first split the
critical edge (BB1, BB4) and introduce a new block BB14 on this edge. Calculating the dominator
graph and collapsing the strongly connected components into single nodes results in the domi-
nator graph that is shown in Figure 4.3. For the leaf nodes BB3 and BB14 we need to calculate
the longest path over those nodes in the CFG (line 14). The criticalities evaluate to 0.6 for BB3
and to 0.73 for BB14. The criticality of node BB1 is derived as the maximum criticality of its
children (l. 18), which evaluates to 0.73. Continuing the traversal of the dominator graph in post
order, we find a criticality of 1 for leaf node BB2 by using a longest path search. The criticality
of node BB4 can be derived from its children again, no path search is required. Finally, we derive

Criticality 53

r,BB0,BB5,t

BB1 BB4

BB3 BB14 BB2

Figure 4.3: Dominator graph for theCFG in Figure 4.1 after splitting critical edges and collapsing
SCCs.

a criticality of 1 for the SCC in the dominator graph from the criticalities of its children, which
is then propagated to the CFG nodes r, BB0, BB5 and t (l. 22). Note that since the nodes BB0,
BB5 and t are in the same SCC as node r, they are invariant, i.e., their criticality is always 1
regardless of the weights in the CFG.

The basic algorithm described above exploits dominance properties, but does not
take advantage of any further pruning opportunities. The simplest technique, which at
the same time does not impact the precision of the results, relies on the following corol-
lary: a basic block known to be part of the global WCEP has criticality 1 (by definition).
We can easily extendAlgorithm 6 to reflect this: the set of blocks belonging to the global
WCEP is available from the initial WCET computation (line 9). All blocks contained in
this set need no further computation and can be filtered at the computation stage (l. 11
– 18).

Correctness The correctness of this approach follows immediately from the theoret-
ical properties of the criticality metric discussed in the previous section.

Theorem 4. Given a weighted CFG G that is free from critical edges, Algorithm 6 correctly
computes the criticality of all CFG nodes according to Definition 8.

Proof (sketch). If a node is a leaf in the collapsed dominator graph D′, its criticality is
computed directly. The algorithm is thus trivially correct for all leaves in D′. The al-
gorithm visits all other nodes of that graph during a post-order traversal. This ensures
that the criticalities of all successors of a node have been computed before it is visited.
The correctness of the propagation then follows immediately from Theorem 1 and The-
orem 2. Finally, a node inD′ directly corresponds to a CFG node (or a set of CFG nodes
forming an SCC in D) with equal criticality. It follows that the criticality of all CFG
nodes is computed correctly. �

Complexity Ignoring ComputeWCEToverNode for now, the complexity of the algo-
rithm is mostly influenced by the computation of the dominator graph (Dominator-
Graph). A standard dominator tree can be constructed in linear time in the number of
nodes and edges of the CFG [55]. A simpler algorithm is used in most modern compila-
tion and analysis tools [90]. The complexity of that algorithm is in O(|E| log |V|), where
|E| and |V| represent the number of CFG edges and nodes respectively. Since the dom-
inator graph is derived by merging the pre- and post-dominator tree, the complexity
remains in O(|E| log |V|).

54 Criticality

SCCs (StronglyConnectedComponents) can be computed in linear time O(|V|+ |D|),
where |D| represents the number of edges in the dominator graph(see [92]). Collapsing
the SCCs into unique nodes is likewise linear. Note that the number of edges in the
dominator graph is bounded by the number of edges in E.

The algorithm then traverses the dominator graph in post order, visiting each node
and edge of the graph exactly once. The first for-loop thus executes in O(|V|+ |D|) time.
The second for-loop finally visits every SCC in the graph and every CFG node once – it
thus executes in O(|V|) time.

Using Lengauer and Tarjan’s dominator algorithm [90], the overall complexity of the
algorithm is thus in O(|E| log |V|). The bound is not affected when including the critical
edges splitting, which is linear in the CFG size.

The complexity of the IPET approach (ComputeWCEToverNode), is NP-hard in gen-
eral. Its feasibility depends on the size of the underlying ILP problem, i.e., the size and
complexity of the program under analysis, and the efficiency of the ILP solver. Sec-
tion 4.5 gives insights on the overhead that can be expected from repeatedly solving
IPET problems for a program using a commercial WCET tool.

4.2.3 Handling Critical Edges

The previously presented algorithm requires critical edges to be split as a pre-processing
step, which introduces newbasic blocks to theCFG. This can have an adverse effect since
adding nodes to a large graphmay impact the solver’s performance. Wemay also endup
computing criticality values when it is effectively redundant to do so. We thus describe
the changes to Algorithm 6, which are necessary to compute criticalities correctly, even
in the presence of critical edges.

Since the criticality properties of a node with regard to dominance, are invalidated
by an incident critical edge, the isLeaf check (Algorithm 6, line 12) alone is not suf-
ficient. Assuming that nodes incident to a critical edge are marked beforehand (i.e.
marked SCCs in the collapsed graph that contain such nodes), we additionally com-
pute the criticality of the current node v if isMarked(v) is true. This alone is sufficient
to maintain the correctness of Algorithm 6, but can be improved further. Algorithm 7
shows how to mark nodes for calculation, only when it is not possible to find at least
one other node in the same SCC that can be used to derive the SCC’s criticality. First,
only SCCs that contain a node with an incident critical edge (HasCriticalEdge) need
to be considered further (l. 4). For all other SCCs, the algorithm tries to find a node,
which either pre-dominates all its CFG-successors outside the current SCC (l. 8) or like-
wise post-dominates all its CFG-predecessors (l. 10). If such a node cannot be found,
the SCC is subsequently marked (l. 13).

Example 11. Considering our example from Figure 4.1, the dominator graph after collapsing
SCCs (but with critical edge (BB1, BB4) intact) is similar to Figure 4.3, with node BB14 and its
incoming edges removed. Instead of the artificial node BB14, it is now necessary to explicitly
compute the WCET over the non-leaf node BB1, since it is not on the global WCEP and in this
simple example cannot be derived from other nodes in its SCC. Efficiently handling critical edges

Criticality 55

Algorithm 7Mark nodes that require criticality calculation due to a critical edge

Input: G = (V,E, r, t) . . . A weighted control-flow graph.
S . . . Strongly connected components of the dominator graph.
D′ . . . Dominator Graph with collapsed SCCs.

Output: Nodes inD′ requiring calculation are marked True.
1: . Iterate over all SCCs.
2: for all v′ ∈ D′ do
3: letscc = CorrespondingNodes(S, v′)

4: if ∀ v ∈ scc : HasCriticalEdge(v) = False then
5: Mark(v′) = False

6: continue

7: . scc is affected by a critical edge but may be derived from successors or prede-
cessors.

8: if ∃u ∈ scc : ∀w ∈ (Succ(G,u) \ scc) : u dom w then
9: Mark(v′) = False

10: else if ∃u ∈ scc : ∀w ∈ (Pred(G,u) \ scc) : u pdom w then
11: Mark(v′) = False

12: else
13: Mark(v′) = True

during criticality computation (as described in Algorithm 7) is more complicated, but advanta-
geous when a large number of critical edges connect few nodes in the CFG (e.g., due to the use of
switch statements with fallthrough cases).

4.2.4 Pruned Criticality Computation

The algorithms in the previous section are very simple to implement and efficient when
the criticality value for all code blocks needs to be computed. However, in some situa-
tions it might be sufficient to restrict the computation to only those code blocks whose
criticality is above a given threshold. For example, when an optimization wants to shift
instructions from highly critical code, it would be enough to know about neighboring
regions with criticality below a certain threshold (inferred, for instance, by the com-
piler). The individual criticality values within these regions itself would be uninterest-
ing and need not be computed. As for Algorithm 6, pre- and post-dominance can be
exploited to reduce the runtime overhead of computing pruned criticalities. This time,
however, the dominator graph is processed starting from the root node down towards
the leaves of the graph. The algorithm iteratively computes the longest path over pre-
or post-dominators until it finds a dominator node whose criticality is below the given
threshold (cf. Lemma 2 and 3).

Algorithm 8 presents a simplified variant of a worklist algorithm taking a weighted
CFG G and a criticality threshold MinCrit as input. As before, an acyclic dominator

56 Criticality

Algorithm 8 Compute all CFG nodes with a criticality above a given threshold.

Input: G = (V,E, r, t) . . . A weighted control-flow graph.
MinCrit . . . Threshold for criticality computation.

Output: The criticality is computed for nodes in G whose criticality is above the thresh-
old; for other nodes the criticality is bounded.

1: . Compute the dominator graph and collapse its SCCs.
2: D = DominatorGraph(G)
3:
4: S = StronglyConnectedComponents(D)
5: D′ = CollapseSCCs(D,S)

. Unmark all nodes in the dominator graph.
6: for all v ∈ D′ do
7: Mark(v) = False

8: . Initialize global WCET.
9: WCET = 0

10: . Discover nodes that have not been processed so far.
11: while ∃v ∈ D′ : Mark(v) = False do
12: . Get some WCEP over any of the root nodes in the dominator graph.
13: letRoots = {v ∈ D′ |Mark(v) = False ∧ ∀ p ∈ Pred(D′, v) : Mark(p) = True}
14: P,WCETP = ComputeWCEToverAny(G,Roots)

15: . Get global WCET (only relevant for first iteration).
16: WCET = max(WCETP,WCET)

17: . Compute criticality of the current path P.
18: letCritP =WCETP /WCET
19: if CritP <MinCrit then
20: . Bound criticality for all unmarked nodes in the dominator graph.
21: for all v ∈ D′ : Mark(v) = False do
22: Crit(v) = CritP

23: break
24: else
25: .Mark all nodes of the current path and set their criticality.
26: for all v ∈ P : Mark(v) = False do
27: Crit(v) = CritP
28: Mark(v) = True

Criticality 57

graph is constructed from the CFG where all strongly connected components are col-
lapsed (line 2). The algorithm then processes the nodes of that graph in some topo-
logical order, depending on the marking of nodes. Nodes for which a criticality has
been calculated are marked (see Mark on l. 7 and l. 28). When all predecessors of a
node have been marked, the node is added to the worklist. Note that the worklist in
Algorithm 8 is not explicit, but maintained by this gradual marking in the form of the
Roots set (l. 13). During each iteration, a newWCEP together with its associatedWCET
is discovered by using ComputeWCEToverAny (l. 14). ComputeWCEToverAny is similar to
ComputeWCEToverNode, except that it determines the longest path through any of the
nodes in its argument set by forcing the sum of the respective ILP variable to a non-zero
value. Thus, the newly discovered WCEP is known to be one of the longest paths cov-
ering at least one unmarked node. The length of this WCEP gives the criticality of all
unmarked nodes on that path (l. 18) and, furthermore, allows to prune the criticality
computation (l. 19). In case the current criticality is below the given threshold MinCrit,
the algorithm bounds the criticality value of all remaining unmarked nodes with the
criticality value of the current WCEP. The iterative processing can then be stopped im-
mediately (l. 23). When the current criticality is above the threshold, the criticality value
is assigned to all unmarked nodes on the current WCEP. At the same time, all nodes on
the WCEP are marked and a new iteration starts.

The algorithm is based on the following key observations. Due to Lemma 2 and 3 it
is ensured that at anymoment during the processing (1) marked nodes have a criticality
greater or equal to any node in theworklist and (2) nodes in theworklist have a criticality
greater or equal to all other nodes, i.e., nodes that are neithermarked nor in theworklist.
Consequently, the newly discovered WCEP is the longest yet undiscovered path that
includes at least one unmarked node from the worklist. Furthermore, every node on
the WCEP is either pre- or post-dominated by a node in the worklist.

Note that, in contrast to Algorithm 6, critical edges are not an issue here and need no
further attention. The reason for this is that the algorithm relies on the weaker Lemma 2
and 3, which only ensure that a node has a greater or equal criticality in relation to any
node it is pre- or post-dominating.

Also note that by restricting which nodes are put on the worklist, the scope of Algo-
rithm 8 can be changed from program- to function-level, without any further modifica-
tions. This is useful if we are only interested in the criticality of CFG nodes belonging
to a certain function at a time.

Example 12. Assuming the dominator graph shown in Figure 4.3, which was derived by split-
ting the critical edge (BB1, BB4) in the CFG in Figure 4.1, the first iteration of the algorithm
processes the SCC node, representing r, BB0, BB5, and t. This forces the first invocation of
ComputeWCEToverAny to derive the longest path through the CFG. This path has a length of 15
and covers the root node r, BB0, BB2, BB4, BB5, and the sink node t. Since all nodes were initially
unmarked and the current criticality value trivially evaluates to 1, the algorithm marks all the
nodes of the path and assigns 1 as the criticality to each of them. In the second iteration the only
node without unmarked predecessors is BB1, the second invocation of ComputeWCEToverAny
thus delivers the longest path passing through that block. The resulting path has length 11 and

58 Criticality

thus yields a criticality of 0.73. It covers the root node r, BB0, BB1, BB14, BB4, BB5, and the
sink node t. All nodes, except BB1 are already marked and thus are known to have a criticality
higher than 0.73. On the other hand, all nodes not marked so far are known to have a criticality
lower than this value. The algorithm could, for instance, now stop the iterative processing of the
worklist, e.g., if the specified criticality threshold is assumed to be 0.9. The algorithm would then
bound the criticality of the unmarked blocks BB1 and BB3 by the current criticality value.

Correctness The correctness of this approach follows immediately from the theoret-
ical properties of the criticality metric discussed in Section 4.1.1.

Lemma 5. Given a weighted CFG G and a criticality threshold MinCrit, Algorithm 8 correctly
computes the criticality of all CFG nodes whose criticality is greater or equal to the threshold.

Proof (sketch). Assume a CFG node v has criticality c that is greater than or equal to
MinCrit, but Algorithm 8 delivered some criticality w 6= c. We then have to distinguish
two cases: the criticality value w is assigned to v (1) on line 22 or (2) on line 27. In both
cases, a pre- or post-dominator d of v has to be in the worklist when the criticality is
assigned to v.
For case (1), the invocation of ComputeWCEToverAny returns a path with criticality w that
is below the threshold. Independent of whether this path contains d or not, it follows
that the longest path passing through d yields a criticality smaller or equal to w and
thus smaller than MinCrit. From Lemma 2 and 3 it follows that c < MinCrit. This is
impossible according to the initial assumption.
For case (2), the invocation of ComputeWCEToverAny returns a path that covers both v
and d and yields criticality w ≥MinCrit for both nodes. Obviously, the actual criticality
c of v cannot be smaller than w. However, c also cannot be greater than w, since w
is derived from the longest path passing through d. Lemma 2 and 3 thus imply w = c.
This contradicts the initial assumption. The algorithm is thus correct for all nodeswhose
criticality is above the given threshold. �

Lemma 6. Given a weighted CFG G and a criticality threshold MinCrit, Algorithm 8 yields a
correct upper bound for the criticality of all CFG nodes whose criticality is below the threshold.

Proof (sketch). Assume a CFG node v has criticality c that is smaller than MinCrit but
greater than the bound b assigned to v by Algorithm 8 (l. 22). Bound b has to be associ-
ated with a path p that is computed on the last iteration of the algorithm. Furthermore,
some pre- or post-dominator d of v has to be in the worklist before p is computed. Inde-
pendent of whether p covers d or not, the longest path passing through d is at most as
long as p and thus cannot yield a criticality greater than b. Lemma 2 and 3 then imply
c ≤ b. This contradicts our initial assumption. The algorithm thus gives correct bounds
for those CFG nodes whose criticality is below the given threshold. �

Note, setting the threshold MinCrit to zero implies that a criticality value is com-
puted for all CFG nodes.

Theorem 5. Given a weighted CFG G and a criticality threshold MinCrit, Algorithm 8 is cor-
rect.

Criticality 59

Proof. Since the algorithm discovers a new path covering at least one unmarked node
in the dominator graph on every iteration, termination is guaranteed. The correctness
of the computed criticality values follows from Lemma 5 and 6. The algorithm is thus
correct. �

Complexity As before, the runtime of the pruned criticality computation can be ex-
pected to be dominated by the longest path search performed by ComputeWCEToverAny.
We thus compare the number of longest path searches performed by the full criticality
computation from the previous section in relation to the pruned criticality computation
when the threshold is set to zero. We already noted that Algorithm 8 computes a new
path on every iteration that covers at least one unmarked node v from the worklist. In
addition, it is guaranteed that either v is a leaf in the dominator graph or, due to domi-
nance, at least one unmarked leaf is also covered by the path. It follows that the pruned
criticality computation performs at most as many longest path searches as the full criti-
cality computation. However, the pruned criticality algorithm presented in this section
is harder to parallelize, since the content of theworklist for the next iteration depends on
the outcome of the current longest path search. In addition to this, the pruned approach
adds larger and more complex flow constraints to the ILP problem, which is likely to
increase the ILP solving times.

The pruned criticality computation again requires the computation of the dominator
graph (DominatorGraph) and its SCCs (StronglyConnectedComponents). Using the
dominator algorithm of [90], the complexity for these pre-computations is bounded by
O(|E| log |V|) (see Section 4.2.2 for a more detailed discussion).

The number of iterations required to process the worklist can be bounded by the
number of nodes in the dominator graph which is known to be at most |V|. On each it-
eration a longest path search is performed followed by the criticality assignment for all
nodes on the newly discovered path (Algorithm 8 line 26) and an update of the work-
list (l. 13). The loop for the criticality assignment can be bounded in O(|V|), since the
path may cover (almost) all nodes in the CFG on each iteration. To update the work-
list all edges of the dominator graph have to be visited, in the worst case resulting in a
bound ofO(|D|). Since the dominator graph is constructed bymerging the pre- and post-
dominator tree, |D| is in the order of O(|V|). The complexity of the iterative processing
is thus in O(|V|2).

Combining the complexity results for the construction of the dominator graph and
the iterative processing gives an overall bound in O(|V|2 log |V|), since |E| ≤ |V|2. In
conclusion, pruned criticality computation is, in practice, dominated by the longest path
search that is part of the iterative processing.

4.3 Estimating Criticality

In the previous sections, we have shown how to make criticality computation more ef-
ficient by reducing the number of expensive computations, i.e. reducing the number
of ILPs that need to be solved during iterative longest path search. Nonetheless, the
computational overhead remains closely related to that of IPET-based WCET analysis

60 Criticality

for a specific program, which again is proportional to the level of analysis precision. In
some situations, for example when we use criticality purely as a profiling method, we
might be willing to trade precision, for analysis speed, effectively admitting a criticality
estimation.

The overhead can be attributed for one part to data-flow analysis and the analysis of
cache and pipeline states, which is performed once when criticality computation starts.
The required effort largely depends on the size and complexity of a program.

The larger part of the computational overhead comes from repeatedly solving the
IPET ILP. For this, the size of the IPET problem (i.e., the number of variables in the
ILP, more probable than the number of constraints) is the driving factor. In order to
avoid conservative estimations, regions of the program’s CFG may need to be consid-
ered within different contexts (cf. Section 2.1.2). The latter are introduced to the pro-
gram representation of the analysis as loop or inter-procedural contexts. The IPET size
is directly related to program size and the number of these contexts, as well as the ar-
chitectural states that the machine model adds.

When an estimation of criticality values is sufficient, we can adapt its computation
as follows:

1. During the initial WCET analysis: Ignore all cache effects (i.e. every access to
a data- or instruction cache is immediate) and all pipeline effects between basic
blocks. In other words, consider only instruction interdependencies within a basic
block.

2. Reduce the number of inter-procedural contexts and the number of loop contexts
to small values.

3. Perform criticality estimation based on the approximate analysis unchanged.

It is clear that with these analysis settings in place, we will either drastically under-
estimate (under optimistic assumptions), or just as drastically overestimate (under con-
servative assumptions) a program’s WCET. But as long as this is done uniformly over
all worst-case execution paths considered during criticality analysis, there will be little
impact on the criticality results compared to precise (and expensive) analysis. The re-
strictions of item 1 reduce the overhead of data-flow analysis and, depending howmuch
of the information on architectural states is carried over into the IPET problem, also the
ILP solving time. Item 2 has an impact on both phases, i.e., if those contexts would have
been instantiated for the program under analysis, less data-flow analysis is performed
and the ILP size is reduced proportionally to the reduction of contexts.

This approach to estimation is not expected to be useful for all programs that can
be analyzed. For simple programs, the analysis overhead for criticality computation
is negligible, i.e. it is dominated by the constant effort always incurred by the analysis
tool. In such a case, lower analysis precision can only introduce error, while not improv-
ing analysis runtime at all. We thus would like to apply estimation only to sufficiently
complex analysis problems. Two methods for activating estimation appear feasible: (1)
We can fall back onto estimation during criticality computation dynamically, by using a

Criticality 61

runtime threshold. (2) We can base the decision on a static property of the program and
its analysis model, which we have at hand after the initial (data-flow) analysis. For now,
we employ the straight-forward second approach, basing our decision on the number
of basic blocks in the program and the number of ILP variables in the IPET model.

CorrectnessAll proofs of correctness from Section 4.2 remain valid when using esti-
mation. Since criticality computation itself does not make any assumptions about anal-
ysis precision, only the resulting criticality values need to be interpreted with regard to
the less precise underlying analysis.

4.4 Visualization

By visualizing profiling information, in our case for worst-case behavior and based on
static analysis, we want to enhance program understanding for real-time applications.
A detailed view of a program’s structure can be given through the control-flow graph
on an intra- or inter-procedural level. Compilers and profiling tools make use of this
graphical representation for debugging and analysis purposes. For example, LLVM is
able to export its intermediate representation at any time in the DOT format; AbsInt’s
a3 tool displays and exports analysis information such as results from WCET analysis
using the VCG format. (See Section 4.7 for more details.)

Given a mapping of basic blocks to their criticality, we can rank nodes of the CFG
by size (i.e., translating criticality to node size) and color (i.e., translating criticality to
color shades). This provides visual clues to the programmer, which are superior to a
textual representation of the same results. Since we want to rely on open-source tools
for visualization in our approach, one of the important tasks of graph visualization,
namely the layout of nodes and edges is left to the dot layout algorithm and tool from
the Graphviz [61] package.

The criticality-annotated CFG representation is ideal to study a real-time program
in detail. From this, the programmer may draw conclusions about a program’s WCET
behavior and possible weaknesses in the static analysis. For larger programs though, it
is hard to comprehend its overall structure (e.g., the amount of critical versus uncritical
code) at a glance. This would require interactive exploration of the graph using a dis-
playing tool, which at least supports zooming into regions. (Making regions collapsible
as supported by AbsInt’s VCG viewer aiSee, has also proven useful in this regard.)

In previous work [5], we have divided the [0, 1]-range of criticality values into in-
tervals and presented the number of basic blocks within each interval as a column in a
table. Since in this way, the number of intervals we can present is low, and the readabil-
ity of such a table is poor, we resort to aminiature bar chart. These sparkbars, after Tufte’s
sparkline [47], allow us to compactly display criticality distributions. We can place this
kind of graphic within a line of text, for example: represents debie-4a. Due to
the highly unbalanced distribution of criticality values, the y-axis of a sparkbar graph
has logarithmic scale. In Section 4.5.3, we embed these distribution charts in Table 4.8.

62 Criticality

4.5 Evaluation

The criticalitymetric is intended as a supplemental aid for real-time software developers
and development tools (compilers) to spot timing-critical code in applications and to
guide the tuning of this code under timing constraints. Aproper evaluation of themetric
and its potential advantages for this purpose would require a large-scale qualitative
survey, which is beyond the scope of this thesis. Instead, we focus on evaluatingwhether
the metric can be employed in practice. We designed a series of experiments for this
purpose. In Section 4.6, we additionally discuss how the metric could be presented to
application programmers, how this information could be exploited to profile the worst-
case behavior of real-time programs, and where the limitations of the metric are.

For our experiments, we rely on a set of well-known real-time benchmarks, which
have been described in Section 2.2.2. The benchmark sizes range between about 30 lines-
of-code (LOC) and 4000 for theMälardalen benchmarks and amount to about 11000 and
14000 LOC for the PapaBench and Debie programs respectively.

The first experiment investigates the code structure of these real-time programs us-
ing the LLVM compiler infrastructure (version 3.0). All benchmark programswere com-
piled to the LLVM intermediate representation (LLVM IR) using the Clang C compiler
with optimizations (-O1). We then analyzed the structure of the control-flow graphs
for each compiled C function. In particular, we studied the structure of the respective
dominator graphs. Since no actual WCET analysis is performed, no additional program
annotations, such as loop bounds, are required for this experiment.

We furthermore measure the overhead of computing the criticality metric for the
Debie WCET benchmark and give a detailed analysis. This experiment is based on a
binary version of Debie (part of the official program distribution). The WCET analy-
sis is performed using the a3WCET analysis tool (version 12.10i) assuming the default
configuration for a PowerPC MPC5554 processor (cf. Section 2.2.1). The respective lin-
ear problems are solved using clpsolve (a solver based on CLP from the COIN-OR
project [99]) on an Intel i5-2520M (2.5GHz) running Linux (kernel version 3.11). Finally
we extend the evaluation across the full set of our WCET benchmarks (cf. Section 2.2.2)
to learn about their criticality distribution and report on the results when using the es-
timation approach from Section 4.3.

4.5.1 Code Structure of Real-Time Programs

Since the complexity of the IPET phase easily dominates the runtime of the otherwise
fast criticality calculation, we are interested in the number of leaves in the dominator
graph for which an actual IPET run (ComputeWCEToverNode) is required. We thus com-
piled all benchmark programs using the Clang C compiler and constructed the domi-
nator graph for each function. When the number of leaf nodes is low, in comparison to
the overall number of nodes in the graph, it means that very few IPET runs are required
and most criticality values can be derived. Figure 4.4 shows the number of leaves in
the dominator graphs for individual functions of the various benchmarks. The general

Criticality 63

100 101 102 103

100

101

102

103

x 1
2 x

Basic blocks total

Ba
si

c
bl

oc
ks

to
co

m
pu

te

Papabench (autopilot) Papabench (fbw)
Debie Mälardalen

Figure 4.4: Relation between the number of basic blocks in a function and the number of leaves
in the corresponding dominator graph. (lower is better)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥15

2
4
6
8

10
12
14
16
18
20
22
24
26
28 12

2

56

19

15

Basic blocks to compute

Fu
nc

tio
ns

Papabench (autopilot) Papabench (fbw)
Debie Mälardalen

Figure 4.5: Bar chart showing the number of functions (y-axis) with n leaves in the dominator
graph (x-axis). (high bars to the left are better)

64 Criticality

Module BBs SCCs DomLeaves Module BBs SCCs DomLeaves

adpcm 143 31 56 (0.39) fir 16 4 5 (0.31)
bs 11 3 4 (0.36) insertsort 7 2 1 (0.14)
bsort100 24 6 9 (0.38) jfdctint 14 5 3 (0.21)
cnt 25 6 7 (0.28) lcdnum 27 3 19 (0.70)
complex 17 3 6 (0.35) lms 59 15 18 (0.31)
compress 118 20 51 (0.43) loop3 541 121 120 (0.22)
cover 212 6 194 (0.92) ludcmp 64 17 12 (0.19)
crc 33 7 12 (0.36) matmult 26 7 6 (0.23)
duff 28 4 12 (0.43) minmax 28 6 14 (0.50)
edn 57 20 9 (0.16) minver 110 28 24 (0.22)
exam 42 4 16 (0.38) ns 21 8 7 (0.33)
expint 24 7 7 (0.29) nsichneu 1504 128 750 (0.50)
fac 9 3 3 (0.33) qurt 27 6 11 (0.41)
fdct 10 3 3 (0.30) select 47 7 21 (0.45)
fft1 59 14 17 (0.29) sqrt 19 5 7 (0.37)
fibcall 9 2 4 (0.44) statemate 482 28 252 (0.52)

Average 119.16 16.53 52.2 (0.44)
Table 4.1: Dominator graph statistics for the Mälardalen benchmarks

Module BBs SCCs DomLeaves Module BBs SCCs DomLeaves

ad7714 26 6 13 (0.50) mainloop 23 1 13 (0.57)
adc 16 4 7 (0.44) modem 20 5 9 (0.45)
calib 31 7 14 (0.45) nav 285 31 117 (0.41)
estimator 44 6 20 (0.45) pid 70 10 36 (0.51)
fbw 19 5 9 (0.47) spi 5 1 3 (0.60)
infrared 3 0 3 (1.00) uart 27 5 14 (0.52)
main 1224 94 707 (0.58) ubx 65 8 26 (0.40)

Average 132.71 13.07 70.79 (0.53)
Table 4.2: Dominator graph statistics for PapaBench (autopilot)

Module BBs SCCs DomLeaves Module BBs SCCs DomLeaves

fbw 19 4 9 (0.47) servo 58 14 25 (0.43)
main 94 12 50 (0.53) spi 14 3 7 (0.50)
ppm 74 14 34 (0.46) uart 18 3 10 (0.56)

Average 46.17 8.33 22.5 (0.49)
Table 4.3: Dominator graph statistics for PapaBench (fbw)

Criticality 65

trend indicates that only about half of the nodes in the dominator graph are leaves, as
can be seen by the clustering of data points around the lower line. The only exceptions
are three functions of the Mälardalen benchmarks (swi120, swi50, and swi10), which
consist of large switch statements and are highly synthetic. This indicates that a consid-
erable reduction in the computation time can be expected when using our algorithm in
comparison to a naive approach.

Furthermore, a large number of functions in this scatter plot is clustered at the lower
left, representing functions with only a single basic block. Figure 4.5 presents a bar
chart showing the number of functions with n leaves in the dominator graph. The vast
majority of the functions has a single dominator leaf, whereas the number of functions
withmore leaves quickly declines. This again indicates that the vastmajority of the code
in these real-time programs has a rather simple structure and thus can be expected to
require very few IPET runs in order to compute the criticality of all code.

Tables 4.1 to 4.4 contain statistics from the various benchmarks, broken down per
compilation module. The tables show the number of basic blocks (BBs), the number of
SCCs (SCCs) as well as the number of leaves in the dominator graph (DomLeaves) and in
the last column, the ratio between this number and the total number of blocks. Over all
benchmarks, we found the average ratio of dominator graph leaves to be approximately
0.5. This means that the criticality actually needs to be computed at most for half of the
total blocks.

However, the share of leaf nodes per function, as reported here, is only an upper
bound. In practice, additional potential to prune the set of basic blocks for which an
actual IPET run is required exists, e.g., by using inter-procedural dominance informa-
tion to allow additional pruning. This appears particularly interesting due to the high
number of functions having only a single leaf in the dominator graph.

66 Criticality

Module BBs SCCs DomLeaves Module BBs SCCs DomLeaves

class 53 5 31 (0.58) if 118 21 69 (0.58)
debie 3 0 1 (0.33) measure 110 20 49 (0.45)
hand 320 47 179 (0.56) target 4 0 4 (1.00)
harness 382 68 176 (0.46) telem 76 17 31 (0.41)
health 298 49 151 (0.51)

Average 151.56 25.22 76.78 (0.51)
Table 4.4: Dominator graph statistics for the Debie benchmark

Criticality 67

4.5.2 Criticality Computation for the Debie Benchmark

With the second experimentwe do an in-depth investigation of the actual cost associated
with the computation of the criticality metric in WCET analysis setup. We apply the
a3 WCET analysis tool to all analysis problems defined for the application-level Debie
benchmark. Thanks to the scripting capabilities of a3 and the annotation language AIS
we were able to force the worst-case path through specific basic blocks of the program,
i.e., to implement the function ComputeWCEToverNode.

Since, for this experiment, the actual WCEP is known, we can give more accurate
numbers on how many basic blocks need to be considered during the criticality com-
putation (see Figure 4.6). The analysis yields that between 14% and 93% of the basic
blocks actually are on the WCEP (61% when considering the geometric mean). Com-
bined with the information on leaf nodes in the dominator graph, the percentage of
basic blocks for which an actual IPET run is required during the criticality computa-
tion is between 43% and only 10% (19% mean). For debie2a even all blocks are on the
WCEP, thus no computation is required. In fact, a large number of basic blocks through-
out all benchmarks does not need any additional computation. Therefore the total time
to compute the criticalities for all basic blocks is greatly reduced using our algorithm, as
shown by Figure 4.7. In comparison to the naive approach, where the criticality is sepa-
rately computed for every basic block that is not on theWCEP, our algorithm reduces the
computation time down to 67% (mean). For debie2a no IPET run is required, the com-
putation is thus almost free. The naive approach requires up to 413 seconds (debie6c)
but only up to 156 seconds (debie6c) for our algorithm. The average computation time
is reduced from about 42 to 20 seconds.

Algorithm 8 can be used to compute criticality with a threshold value, blocks which
fall below it are considered to be uncritical. Table 4.5 shows that this pruning method
results in less ILPs that need to be solved, and thus shortens the total computation time.
Depending on the benchmark, a MinCrit threshold of 0.25 can bring the number of ILPs
down to a seventh compared to criticality calculation of all blocks, which reduces com-
putation time to 20% of the original.

Figure 4.9 illustrates the progress of the pruning algorithm as it processes basic
blocks in its worklist and successively finds paths with lower criticalities. In this ex-
ample, enforcing a threshold of 0.25 would result in cutting off the tail of low-criticality
blocks (on the right) after ten iterations. The particular progression of iterations of the
pruning algorithm is obvious, when we compare it to the default (dominator-based)
algorithm in Figure 4.8.

Figure 4.10 depicts an example visualization of debie-1. With the information pro-
vided by a traditional WCET analysis, we can see the WCEP through the program’s
main function and its single-block leaf procedures, which are also leaves in the inter-
procedural CFG of Figure 4.10a. After criticality computation, we can annotate the
previously unidentified nodes, based on their criticality. Colors and node sizes in Fig-
ure 4.10b intuitively represent the criticality values of basic blocks.

68 Criticality

deb
ie1

deb
ie2

a

deb
ie2

b

deb
ie2

c

deb
ie3

a

deb
ie3

b

deb
ie3

c

deb
ie4

a

deb
ie4

b

deb
ie4

c

deb
ie4

d

deb
ie5

a

deb
ie5

b

deb
ie6

a

deb
ie6

b

deb
ie6

c

deb
ie6

d

10
25
50

100

150

200

250

300

350

400

Ba
si

c
bl

oc
ks

50% Calculation No calculation On the WCEP

Figure 4.6: Number of basic blocks that (1) require calculation, (2) do not require calculation
(leaves of the dominator graph), (3) are on the WCEP (lower value of (1) is better)

deb
ie1

deb
ie2

a

deb
ie2

b

deb
ie2

c

deb
ie3

a

deb
ie3

b

deb
ie3

c

deb
ie4

a

deb
ie4

b

deb
ie4

c

deb
ie4

d

deb
ie5

a

deb
ie5

b

deb
ie6

a

deb
ie6

b

deb
ie6

c

deb
ie6

d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

geo.mean

Re
la

tiv
e

co
m

pu
ta

tio
n

tim
e

Figure 4.7: Relative reduction of the time required for the computation of criticalities. (lower is
better)

Criticality 69

MinCrit = 0 MinCrit = 0.25 MinCrit = 0.5
Benchmark ILPs BBs t0 ILPs BBs t0.25/t0 ILPs BBs t0.5/t0

debie1 15 80 1.00 14 79 0.97 13 77 0.91
debie2a 1 7 1.00 1 7 1.00 1 7 1.00
debie2b 4 22 1.00 4 22 1.00 4 22 1.00
debie2c 2 15 1.00 2 15 1.00 2 15 1.00
debie3a 7 65 1.00 6 58 0.85 6 58 0.85
debie3b 9 66 1.00 8 59 0.94 8 59 0.94
debie3c 9 66 1.00 8 59 0.93 8 59 0.93
debie4a 71 274 1.00 10 100 0.19 6 68 0.12
debie4b 12 49 1.00 10 46 0.84 7 43 0.57
debie4c 7 25 1.00 7 25 1.00 6 24 0.87
debie4d 4 21 1.00 4 21 1.00 3 20 0.88
debie5a 11 126 1.00 10 125 0.91 10 125 0.91
debie5b 12 136 1.00 9 133 0.76 9 133 0.76
debie6a 30 323 1.00 30 323 1.00 30 323 1.00
debie6b 30 324 1.00 30 324 1.00 30 324 1.00
debie6c 30 324 1.00 30 324 1.00 23 302 0.87
debie6d 32 364 1.00 32 364 1.00 32 364 1.00

Table 4.5: Impact of pruning thresholds (0.25 and 0.5) on criticality computation. (number of
ILPs required, basic blocks (BBs) above the threshold and time ratio compared to computation
without threshold)

0

0.2

0.4

0.6

0.8

1

C
rit

ic
al

ity

0 10 20 30 40 50 60 70
0

10

20

30

40

Iterations

Bl
oc

ks

Criticality Computed Blocks Worklist Blocks

Figure 4.8: Behavior of default criticality computation over time for debie-4a, showing for each
iteration the computed criticality value, the size of the worklist, and the number of computed
blocks.

70 Criticality

4.5.3 Criticality Overview of Real-Time Programs

Benchmark BBs Inf. ILPv ttotal

mdh-duff 18 0 1,469 1.54s
mdh-edn 67 6 15,149 32.09s
mdh-fac 10 0 425 0.22s
mdh-fdct 9 0 151 3.84s
mdh-fibcall 7 0 339 0.26s
mdh-insertsort 7 0 767 0.83s
mdh-jfdctint 12 0 669 2.64s
mdh-matmult 27 0 1,248 1.29s
mdh-nsichneu 754 0 4,023 7.72s
debie-2a 23 16 19 0.15s
papa-f1b 285 279 14 0.19s

Table 4.6: Criticality results (C-1: all basic blocks on WCEP)

Benchmark BBs Inf. ILPv ttotal

mdh-adpcm 154 1 2,487 3.47s
mdh-bs 11 0 85 0.18s
mdh-bsort1 22 0 383 0.45s
mdh-cnt 65 0 2,670 1.67s
mdh-cover 29 0 2,571 1.13s
mdh-crc 29 0 741 0.59s
mdh-fir 14 0 2,307 1.85s
mdh-janne_complex 14 0 1,754 0.74s
mdh-ndes 83 0 403 0.83s
mdh-ns 18 0 406 0.27s
mdh-recursion 13 0 2,182 1.32s
mdh-ud 204 0 1,897 3.50s

Table 4.7: Criticality results (C-.99: all basic blocks critical)

We finally perform a criticality-based profiling for the entire set of WCET bench-
marks, which are available to us, and investigate their criticality distribution. Since the
amount of useful information we can compute for each benchmark program varies, it
does not make sense to present the following results by benchmark suite. We there-
fore group them into three distinct categories depending on their criticality properties.
Table 4.6 contains those programs, for which all (feasible) basic blocks are part of the
global WCEP. This result is revealed after a single WCET analysis run and makes any
further criticality analysis obsolete. The table contains the number of basic blocks (BBs)
in the program, infeasible blocks thereof (Inf.), size of the IPET integer linear program
(ILPv), and time spent during the (single) WCET analysis (ttotal). The programs mdh-edn

Criticality 71

Analysis Time
Benchmark BBs Inf. Dist. C1 ILPv tana tilp

mdh-compress 92 1 77 2,243 1.45s 0.59s
mdh-expint 25 1 17 256 0.28s 0.07s
mdh-fft1 491 22 220 34,154 10.56s 116.81s
mdh-lcdnum 22 0 16 551 0.22s 0.15s
mdh-ludcmp 430 2 177 60,209 15.21s 1,025.86s
mdh-minver 466 3 213 7,063 2.61s 21.35s
mdh-prime 23 0 20 12,239 4.98s 1.32s
mdh-qurt 423 5 162 21,920 4.94s 88.75s
mdh-select 99 0 79 1,236 0.61s 0.46s
mdh-sqrt 518 14 179 28,665 5.52s 126.70s
mdh-statemate 420 11 214 1,876 1.88s 4.20s
debie-1 83 3 43 270 0.22s 0.20s
debie-2b 23 1 15 66 0.17s 0.04s
debie-2c 23 8 14 35 0.14s 0.02s
debie-3a 74 9 51 595 0.51s 0.13s
debie-3b 74 8 50 3,160 1.05s 1.50s
debie-3c 74 8 50 3,160 1.06s 0.79s
debie-4a 285 11 38 2,358 0.94s 2.60s
debie-4b 285 236 29 160 0.33s 0.16s
debie-4c 285 260 16 51 0.29s 0.08s
debie-4d 285 264 16 39 0.29s 0.07s
debie-5a 138 12 114 1,044 0.73s 0.64s
debie-5b 138 2 123 21,212 5.96s 65.72s
debie-6a 376 53 174 13,962 9.18s 7.30s
debie-6b 376 52 174 16,170 9.79s 9.66s
debie-6c 376 52 137 58,122 36.86s 37.01s
debie-6d 376 12 176 15,177 9.02s 8.04s
papa-f1a 285 0 120 1,588 0.75s 3.30s
papa-f2 8 0 4 20 0.08s 0.03s
papa-a1 626 44 231 1,437 0.64s 5.21s
papa-a2a 1,522 535 448 21,891 7.15s 151.19s
papa-a2b 1,522 13 541 163,395 45.16s 2,853.03s
papa-a3a 981 717 143 1,383 0.95s 3.86s
papa-a3b 981 200 384 9,099 2.65s 41.74s
papa-a4 334 52 161 2,454 0.64s 3.32s
papa-a5 438 0 277 926 0.85s 4.65s
papa-a6 682 25 337 5,039 1.85s 20.45s

Table 4.8: Criticality results (C-dist: observable criticality distribution)

72 Criticality

and mdh-nsichneu demonstrate that neither analysis overhead, nor the number of ba-
sic blocks, are suitable for predicting their criticality distribution. The programs in the
C-.99 category in Table 4.7 have blocks very close to a criticality of 1.0, i.e., ≥ 0.99. The
C-1 and C-.99 categories are mostly made up of programs from the Mälardalen bench-
marks suite. This is not surprising since they are described in [17] as executing a single
path due to their hard-coded input values. The lack of infeasible blocks for some pro-
grams in C-1, tells us though, that given our analysis tool (whichmay ormay not be able
to analyze this single-path property in all cases), no other execution paths exist (even
considering other input).

Programs, which basic blocks have an observable distribution of criticality values
are categorized as C-dist and we give their detailed results in Table 4.8. For these pro-
gramswe include their criticality distribution as an inline (sparkbars) bar chart in column
“Dist.”. In the next column (C1) and not included in the sparkbars, is the number of ba-
sic blocks on the WCEP. Note that the number of basic blocks varies between analysis
problems due to unreachable code, which is eliminated by the analysis early on. Larger
benchmarks like debie-4a and debie-6b, show a particularly interesting distribution,
where a substantial amount of critical code has been discovered that is not part of the
WCEP. For most of the other benchmarks, considerable amounts of the code have been
found to have a very high criticality of more than 0.9. This is valuable informationwhen
trying to improve the code in order to meet timing constraints. Using standard WCET
analysis, the only information available would be limited to the column C1, i.e., blocks
that are on the WCEP.

4.5.4 Estimation Results

To use our evaluation tool a3 for an estimation experiment, we configure it to (1) ig-
nore any inter-block pipeline effects and assume a perfect cache. This mode of WCET
computation is referred to as “local best-case”. We also (2) limit its use of contexts to a
single loop and a single calling-context. Aswe explained in Section 4.3, it is not useful to
estimate criticality for trivial programs. The choice of one or more program properties
to control estimation depends on many factors: the analysis tool, target architecture,
analysis settings and performance of the host system performing the analysis. All of
these together determine the computational overhead. In the end it is up to the user
of the analysis, to decide what is acceptable to her, in terms of analysis runtime. We
consider the number of feasible basic blocks and the size of the IPET ILP and for our
experiment’s configuration, use the following disjunctive predicate to decide, whether
a program qualifies for estimation: ILPv > 2000 ∨ BBs > 150.

Table 4.9 contains the results from comparing precisely computed, to estimated crit-
icality. For every program that qualifies for estimation, the maximum error for all criti-
cality values (max) is given, and as an average, the root mean square error (rms), which
gives more weight to greater deviations from the expected value. With the analysis run-
time of criticality computation split into data-flow analysis (tana) and ILP solving (tilp)
times, we also report the overall speedup compared to precise analysis. This speedup
can be significant. For example, the total computation time for mdh-ludcmp, is reduced

Criticality 73

from approximately 17 minutes to 6 seconds. The highest amount of error introduced
through estimation for a single basic block’s criticality is 0.22 (or 22%), with the rms-
average being .15 (or 15%) for this program. In general, the estimation error is low
enough in order for the obtained criticality profiles to be useful.

4.6 Discussion

4.6.1 Application of the Criticality Metric

We demonstrated that the criticality metric can be computed with reasonable overhead
and thus, from a technical point, is suitable for use in practice. Since a large-scale qual-
itative survey of the usefulness of our novel metric would go beyond the scope of this
thesis, we limit ourselves to describing three likely scenarios and implement one in the
next chapter. All are related to real-time software development, for which we think
that our metric is able to complement or improve the state-of-the-art: (1) profiling of
worst-case behavior as information for the programmer, (2) supporting optimization
decisions during WCET-driven compilation, and (3) guiding WCET analysis in order to
yield tighter WCET bounds.

Code Profiling

What can the criticality metric provide the programmer with? It provides a relative
ranking of all code blocks of a real-time program. A criticality close to 1 indicates that the
code needs to be considered when modifying the program to meet timing constraints.
This ranking can be presented using tables or code annotations, as done by profiling
tools. For instance, critical code lines could be colored in an IDE. The metric does not,
by itself, provide information which code blocks consume the most time. This is local
information that can be trivially extracted from paths encountered during the criticality
computation, e.g., the execution frequency of code on the path determining the code’s
criticality. It can be included as a secondary measure in the ranking presented to the
programmer. Note that the metric provides absolute execution times, as it is derived
through normalization. It thus helps highlighting regions of code instead of a singular
path. This can make it easier to see underlying problems in the code with regard to
analysis, for example the implementation of data structures with unfavorable worst-
case behavior.

Guiding Compiler Optimizations

In the area of compiler-based optimization, code transformations need to base their de-
cisions on cost models that reflect the properties, which are sought to be improved. In
general, such models are based on the program’s CFG, with weights attached to either
blocks, edges, or both. An optimization targeting the average case (i.e., ACET optimiza-
tion) can use execution frequencies derived from typical program runs to calculate these
weights. As an example, consider register allocation and its register spilling subproblem,

74 Criticality

Error Analysis Runtime
Benchmark max rms tana tilp speedup

mdh-adpcm 0.00009 0.00002 1.42s 0.17s 2.20
mdh-cnt 0.00296 0.00071 0.19s 0.15s 4.80
mdh-compress 0.03015 0.00603 0.36s 0.17s 3.91
mdh-cover 0.00052 0.00011 0.13s 0.04s 6.59
mdh-edn 0.00000 0.00000 1.71s 0.02s 18.60
mdh-fft1 0.00920 0.00078 1.64s 13.61s 8.36
mdh-fir 0.00026 0.00007 0.10s 0.02s 14.46
mdh-ludcmp 0.01234 0.00068 0.69s 5.64s 164.36
mdh-minver 0.03520 0.00172 0.96s 3.71s 5.13
mdh-nsichneu 0.00000 0.00000 4.40s 0.03s 1.74
mdh-prime 0.00058 0.00012 0.10s 0.04s 46.63
mdh-qurt 0.00468 0.00033 0.64s 8.38s 10.39
mdh-recursion 0.00083 0.00023 0.07s 0.02s 13.65
mdh-sqrt 0.00679 0.00063 0.40s 5.11s 24.01
mdh-statemate 0.00699 0.00214 1.12s 2.87s 1.52
mdh-ud 0.00051 0.00016 0.33s 0.95s 2.73
debie-3b 0.00181 0.00063 0.42s 0.14s 4.51
debie-3c 0.00175 0.00061 0.42s 0.16s 3.19
debie-4a 0.22401 0.14780 0.72s 1.74s 1.44
debie-5b 0.01901 0.00199 0.89s 0.83s 41.77
debie-6a 0.12512 0.05509 5.90s 3.83s 1.69
debie-6b 0.12512 0.05425 6.61s 4.09s 1.82
debie-6c 0.07545 0.02358 10.80s 7.18s 4.11
debie-6d 0.13494 0.03828 5.78s 3.93s 1.76
papa-a1 0.01136 0.00287 0.52s 5.41s 0.99
papa-a2a 0.00204 0.00046 2.82s 74.14s 2.06
papa-a2b 0.03716 0.01300 10.66s 590.81s 4.82
papa-a3a 0.04403 0.00418 0.63s 2.45s 1.56
papa-a3b 0.04958 0.00622 1.14s 20.75s 2.03
papa-a4 0.07817 0.01410 0.44s 2.56s 1.32
papa-a5 0.00824 0.00110 0.67s 4.88s 0.99
papa-a6 0.06687 0.00828 1.09s 19.89s 1.06
papa-f1a 0.00889 0.00248 0.38s 3.09s 1.17

Table 4.9: Estimation results (estimation error and overhead compared to precise analysis)

Criticality 75

which are among the best studied problems in compilation. The state-of-the-art algo-
rithms presented by the research community and those adopted in industrial compilers
make use of weighted cost models to minimize the overhead caused by spill code [13,
52]. Using a comparable model, [44] describes an algorithm that optimizes the place-
ment of spill code for callee-saved register at the boundaries between functions. We
propose to use criticality as the basis for worst-case specific weights in such optimiza-
tions. While this does not reduce the problem ofWCET optimization to ACET optimiza-
tion, our metric’s similarity to ACET-style weights benefits reuse of existing algorithms
and models.

Supporting WCET Analysis

Another task for which the properties of criticality can prove valuable is WCET analysis
itself. Similar to the case of optimizing compilers, a program profile based on criticality
can provide feedback during WCET analysis, so that different parts of the program can
be analyzed differently. This couldmean choosing a more appropriate method for anal-
ysis or performing it with different levels of detail for different regions of the program.

In Chapter 5, we describe a first technique that is able to improve the precision of
staticWCET analysis by focusing it onWCET-critical regions of the program. Iteratively
analyzing subgraphs we prune parts of the program’s CFG that do not influence the
global WCET and thus eliminate sources of overestimation. In the process, we use the
ranking of basic blocks by criticality to identify candidate regions for pruning and to
ensure a safe bound with regard to the original analysis problem.

4.7 Related Work

To the best of our knowledge, the criticality metric is the only existing approach to pro-
gram profiling, which targets the WCET and is based on static analysis. There is how-
ever prior work that is using dominance and flow properties of CFGs in a way similar
to ours. We discuss the two instances that share theoretical and practical concepts with
criticality analysis. This is followed by a brief review of dynamic profiling and how
the information gained through it, is being used. Existing approaches for WCET-aware
compilation are discussed at the end.

Dominance-Based Propagation in CFGs

Hilal Agrawal has used dominance in control-flow graphs in a way similar to ours, but
targeting improvements for code coverage during testing. The algorithms in [80] and [70]
make use of the fact that a test case reaching a basic block also covers all its pre- and post-
dominators. This is used to reduce the number of test cases or instrumentation points
needed to ensure a certain code coverage. We exploit a stronger property of dominance
and prove that the criticality of non-leaf nodes can be derived from its neighbors in the
dominator graph.

76 Criticality

Dynamic Profiling

Conceptually similar to our approach, Ball and Larus [77] target the efficient collection
of dynamic profiles. Their goal is to find a minimal set of instrumentation points, i.e.,
basic blocks that record their execution, in order to compute execution counts for all edges,
basic blocks or path segments of a CFG. However, they exploit flow laws in combination
with maximum spanning trees, which cannot be applied to criticalities.

When it is sufficient to know how a program behaves (e.g., its runtime performance)
most of the time, dynamic profiling can give an accurate picture. Unless the machine
used for execution has profiling capabilities, it functions by either placing instrumen-
tation code at strategic points in a program to record its execution behavior [88], or by
sampling the state of the execution from time to time [82, 37]. During a profile run, the
elapsed cycles and the number of executions can be recorded for blocks, edges, or paths
up to a certain length. Such profiling techniques are often employed for performance
optimizations either explicitly by a programmer during testing or implicitly by a com-
piler. Since the optimization targets the common case, typical input data, which is easy
to come by, simply by executing the program under normal circumstances, can be used
for the profile run. This is the fundamental difference compared to the static analyses
the criticality metric is based on, which has to assume worst case behavior.

Measurement-Based WCET Profiling

WCET tools that involve a measurement-based based approach can also provide rele-
vant profiling information, as well as code coverage metrics. While a WCET estimate
for the program is iteratively computed, profile data is collected from individual ex-
ecutions. Garrido et al. [11] mention this feature in their recent report on using the
hybridWCET tool RapiTime in an experimental setting. The basic functionality of a hy-
bridWCET tool, puts measurement-based profiling closer to the dynamic common case
techniques described above than to our profiling approach.

Profile Visualization

According to a taxonomy of software visualization in [73], criticality can be used for
static code visualization. Profiling data can be aggregated and presented in many differ-
ent ways. With regard to improving performance, a programmer may be interested in
the general timing behavior and identifying critical regions (also referred to as hot spots)
in the program. The call graph and function-level CFGs are often used to structure pro-
filing results. For example, gprof [88], one of the earliest tools, presents a textual call
graph profile for each called routine in the program. Graphical profiling tools and de-
velopment environments visually annotate graphs of the programwith execution times
or weights that represent time spent during execution. Visualizing profile-based infor-
mation on the source code level, in a way that is suitable even for large programs, can be
achieved by using the line representation technique developed by Ball and Eick [76]. To
be effective this would require the adaptation of an editor or graphical development en-
vironment. Results fromWCETanalysis can be visualized in a similarway. For example,

Criticality 77

a3makes use of the Visualization format for Compiler Graphs (VCG) to represent a pro-
gram graph, which combines the call graph and local CFGs in a nested layout. Results
from flow analysis, computed WCET cycles, and the WCEP itself are annotated in the
graph on a higher level. Lower-level hardware states are initially hidden through nest-
ing. Nesting and efficient layout of the VCG format [79] make it possible to handle large
graphs, folding nested nodes allows interactive exploration. While VCG is also used by
the Firm compiler project [100] for visualization and could be considered a suitable can-
didate for criticality visualization, its only stand-alone viewers aiSee from AbsInt and
yComp from Firm are closed-source and unavailable without licensing. A recent, visual
survey of software visualization techniques is given by Lemieux and Salois [43].

Compiler Support for WCET

Regarding the support for minimizing WCET bounds during compilation, WCC [42,
29, 10] is the only example of a fully WCET-aware compiler so far. Important compo-
nents are its flow fact manager, responsible for keeping control flow information valid
across all compiler passes. WCC integrates AbsInt’s aiT WCET analyzer and can guide
trade-offs in the compiler’s decision based on its analysis information. Prantl, Kirner, et
al. [18, 19] investigate how program flow constraints can be transformed alongside code
in an optimizing compiler. The ability to do this safely allows one to use more elaborate
transformations during optimization in the first place. The precision achieved by this
transformation is a secondary goal, as together with the benefit of the optimizations,
it ultimately allows a lower WCET bound to be proven. Our criticality-based profiling
approach can inmany cases—except trivial programs or those that have a single path—
provide more detail on the worst-case relevant parts of a program, than a single IPET-
based analysis (e.g. using aiT). This means that there is also more information for a
compiler to base its decisions on. With criticality we furthermore want to make it eas-
ier to adapt existing compiler optimizations, which are normally guided by an ACET
profile, to lower the WCET of program.

78 Criticality

0

0.2

0.4

0.6

0.8

1

C
rit

ic
al

ity

0 10 20 30 40 50 60 70
0

50

100

150

Iterations

Bl
oc

ks

Criticality Computed Blocks Worklist Blocks

Figure 4.9: Behavior of the pruned criticality computation over time for debie-4a, showing
for each iteration the computed criticality value, the size of the worklist, and the number of
computed blocks.

Criticality 79

(a)WCEP View

1.0

0.991 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.962

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.759

1.0

0.982

1.0

1.0

1.0

1.0

1.0

0.962

0.962

0.962

0.962

0.962

0.962

0.962

1.0

0.198

1.0

1.0

0.898

0.898

0.898

1.0

0.987

0.987

0.987

0.987

0.987

0.834

0.834

0.834

0.816

0.816

0.816

1.0

0.872

0.872

0.872

1.0

1.0

1.0

1.0

1.0

0.995

0.908

1.0

1.0

1.0

1.0

1.0

0.977

0.977

0.977

0.977

0.405

0.405

1.0

1.0

(b) Criticality View

Figure 4.10: The original WCEP view of debie-1 and the profiling achieved through Criticality
computation (calls are thicker edges, back-edges from procedures are omitted).

Chapter 5

Graph Pruning

In Chapter 4 we have proposed a technique to profile a program based on its WCET
bound. The evaluation of this profiling metric showed that a surprisingly large num-
ber of basic blocks can be uncritical when a complete real-time application is consid-
ered. With this observation as a starting point, we now describe a pruning technique
to improve the precision and computation time of a WCET analysis by excluding the
uncritical code parts from the analysis. We start this chapter by looking at the sources
of complexity and the problem of overestimation in static WCET analysis. Then we give
a detailed description of our graph pruning algorithm, which aims to mitigate these
problems. In Section 5.3 we evaluate it on a set of suitable WCET benchmark programs.
Section 5.4 ends this chapter with an overview of related techniques that have the same
goal of refining WCET bounds.

Our graph pruning approach forWCET analysis and its experimental evaluation has
been described in a paper [1] that is currently under submission.

5.1 Sources of Overestimation

Foremost size and complexity of software are causing the analysis overhead to grow
rapidly, as the number of potential states of the program under analysis increases. For
WCET analysis this effect is amplified since in order to arrive at a safe WCET bound,
hardware states need to be considered as well, adding to the number of potential soft-
ware states. Evenwhen only small portions of a complex software program are relevant
for the final WCET estimation, the analysis, has to account for all of the program’s code
to derive a safe bound. Except for trivial analysis problems, this inevitably reduces the
precision of the WCET analysis, as irrelevant code parts interfere with the analysis of
relevant code parts and lead to unnecessary overestimation of the determined WCET
bound compared to the actual worst-case behavior.

Previous work is able to eliminate instructions irrelevant to flow analysis (program
slicing) and refine the WCET bound by identifying infeasible paths (see Section 5.4 for
details). With Iterative Graph Pruning (IGP), described in detail in the following sec-
tions, we also aim to limit WCET analysis to relevant parts of a program, but do so on

82 Graph Pruning

the lower CFG-level. Based on criticality, basic blocks are grouped into sets according
to the length of their respective paths. The sets are then processed iteratively by de-
creasing path length. During each iteration a subgraph of the original CFG is formed
by unifying the subgraph of the previous iteration with the basic blocks from the cur-
rently considered set. A potentially more advanced WCET analysis is then applied to
the program represented by the new subgraph. The algorithm terminates, with a pos-
sibly refined WCET estimate, as soon as a safe bound, valid for the original program,
has been reached.

The benefits from this approach are that (1) the analysis problems defined by the
subgraphs at each iteration are much smaller than the original analysis problem. This
promises to reduce the analysis overhead, while still providing tight bounds. Further-
more, (2) processing the sets of basic blocks according to their decreasing path lengths,
eliminates interference from other basic blocks, whose longest paths are known to be
shorter. This improves the precision of theWCET analysis precisely for those code parts
of the real-time program that impact the WCET estimate the most.

5.2 Algorithm

In a nutshell, iterative graph pruning (IGP), presented as pseudo code in Algorithm 9,
performsWCET analysis by iterativelymerging a sequence of basic block sets (Si), termi-
nating when an upper bound (ubwcet) is found to be a safe bound for the input program.
The sets Si are generated by the criticality analysis described in Chapter 4, i.e., by com-
puting the longest path going through every basic block, represented by nodes in the
CFGG. The blocks are then inserted into sets Si based on the path length. The respective
path length of a set can later be retrieved by longestpath(Si).

At every iteration i, the vertex-induced subgraph G′ is created from the union of the
i first (andmost critical) sets Si (l. 7 – l. 8). G′ is then targeted by a fullWCET analysis run
(WCEToverAny l. 13), which entails abstract interpretation on the program’s subgraph G′
to generate theweighting functionW′, followed by a longest path search. WCEToverAny,
additionally, forces the longest path search to only consider those paths passing through
blocks in the current Si. All other paths in G′ are uninteresting, since these paths have
already been bounded in the previous iterations. Note that G′may not contain any such
path that is feasible. WCEToverAny then returns 0 and the current upper bound remains
unchanged. If, at the end of an iteration, the current upper bound (ubwcet) is less than
the just computed bound (WCETi), it needs to be updated (l. 10).

The algorithm terminates at the latest when all sets have been considered (i.e., V′ =
V and G′ is the same as the graph of the original program) or before when the termi-
nation condition (l. 4) is met. The latter case occurs when the remaining longest path
induced by the remaining Sis is shorter than the current WCET bound ubwcet. We will
prove that ubwcet is a valid bound for G in the next section.

Example 13. Consider the CFG shown in Figure 5.1, where weights are shown for each basic
block along with the longest paths passing through the respective blocks. Furthermore, assume

Graph Pruning 83

Algorithm 9 Graph-pruning algorithm

Input: G = (V,E, r, t) CFG of the input
program.

S1, . . . ,Sn Block-sets sorted by
longest path length, from
highest to lowest.

1: ubwcet = 0 .Will increase until a safe WCET bound
2: for i = 1→ n do
3: . Terminate when no longer paths can exist
4: if ubwcet ≥ longestpath(Si) then
5: return ubwcet

6: . Construct and analyze a subgraph
7: Let V′ ← S1 ∪ · · · ∪ Si, E′ ← E ∩ V′ × V′ in
8: G′ ← (V′,E′, r, t)
9: WCETi ← CalcPrunedWCET(G′,Si,ubwcet)
10: ubwcet ← max(WCETi,ubwcet)
11: return ubwcet

12: function CalcPrunedWCET(G′,Si,ubwcet)
13: return WCEToverAny(G′,Si)

r

BB0 W(BB0) = 2

BB1W(BB1) = 3 BB2 W(BB2) = 7

BB3W(BB3) = 1 BB4 W(BB4) = 5

BB5 W(BB5) = 1

t |p1| = 60

|p2| = 56

|p3| = 7

Figure 5.1: Weighted CFG from Figure 4.1 (loop added to BB4) with longest path lengths

that the number of loop iterations at BB4 depends on a variable x either assigned to 10 in BB1 or
7 in BB2.

A first, unmodified WCET analysis discovers both assignments to x. Thus, it derives a
loop bound of 10 iterations for BB4. The resulting longest path (p1) has length 60 and covers
r, BB0, BB2, BB4, BB5 and t. These blocks are thus assigned to the basic block set S0. The second
longest path passing through a node not covered by p1 is p2, with length 56. Since all blocks
on p1 are already assigned to S0, the only new block of p2 is assigned to S1 = {BB1}. The same

84 Graph Pruning

applies to path p3 and block set S3 = {BB3}.
Our Algorithm starts by reanalyzing subgraph G1 induced by S0 shown by Figure 5.2. The

analysis now discovers that there is only a single assignment to x, limiting the number of loop
iterations at BB4 to 7. In addition, a more precise estimation of the local execution time within the
loop is derived, i.e.,W(BB4) is now 4 instead of 5. The initial length of 60 for p1 alone was heavily
overestimated, since the longest path in G1 is much shorter. This results in an upper bound ubwcet
of 38. The algorithm continues to iterate at this point since the path length associated with S1
is longer than the current upper bound. The second iteration leads to the construction of G2
induced by S0 ∪ S1 (see Figure 5.2). A new WCET analysis run is forced to consider only those
paths passing through BB1 and finds a loop bound of 10 iterations. This results in an upper
bound ubwcet of 56. Since the upper bound now represents a path longer than any that could
be uncovered by including the next block set S3, the algorithm terminates with a more precise
WCET bound of 56 instead of the initial 60.

5.2.1 Correctness

To show the correctness of our approach, we have to consider the impact of graph prun-
ing on the typical phases of aWCET analysis run. We assume, without loss of generality,
that WCET analysis is performed in two phases [69]. A first phase, based on abstract in-
terpretation [91], delivers local worst-case execution times for each basic block. In the
second phase, a longest path search [78, 74] is performed on a weighted CFG, computed
from these local execution times.

In our approach, abstract interpretation is applied to a subgraph G′ of the original
CFG G of the input program. In order to show correctness we thus have to investigate
some properties of the subgraph G′.

Lemma 7. A subgraph G′ = (V′,E′, r, t) constructed by Algorithm 9 is connected, i.e., for every
CFG node v′ ∈ V′ a path from r to t, passing through v′, exists.

Proof. This follows immediately from the way subgraphs are constructed. Remember
that the blocks in the subgraph G′ of the m-th iteration are computed by unifying all

r

BB0W(BB0) = 2

BB2W(BB2) = 7

BB4W(BB4) = 4

BB5W(BB5) = 1

t

(a) 1st iteration

r

BB0 W(BB0) = 2

BB1 W(BB1) = 3BB2

BB4 W(BB4) = 5

BB5 W(BB5) = 1

t

(b) 2nd iteration

Figure 5.2: Weighted CFGs formed during Iterative Graph Pruning.

Graph Pruning 85

the basic block sets Si, i ∈ {0...m}, whose path lengths are longer than the path length
associated with Sm, i.e., V′ =

⋃
i∈0..m Si.

Assume G′ is not connected, i.e., a CFG node v′ exists that is not reachable from the
root node r in G′. Since v′ ∈ V′ it follows that a corresponding path p = (r, ...,n′, ..., t)
has to exists in the original graph G. The length of this path corresponds to the path
length associated with Sm. As G′ is not connected, at least one node of p is not in V′.
However, this is impossible, since the existence of p implies that this node either is in
Sm or another set Sk , k < m. The subgraph G′ is thus connected. �

Lemma 8. Abstract interpretation applied to a subgraph G′ delivers correct results with respect
to the potential execution paths through G′.

Proof (sketch). A sound analysis based on abstract interpretation delivers sound results
with regard to potential executions of a program, e.g., represented by its CFG G. When
applying the same analysis to a subgraph G′, the set of potential executions is reduced
(excluding those executions that do not lead to the sink node t). Since the analysis is
sound, this approximation trivially remains sound with regard to the executions repre-
sented by G′. Note, however, that the analysis result is not guaranteed to be sound with
regard to all executions of the original program. �

The previous two lemmas ensure that, independent of the concrete analysis per-
formed, the local execution times obtained by abstract interpretation in theWCET anal-
ysis tool are sound with respect to a subgraph G′. It remains to show that the WCET
bound computed during the longest path search by Algorithm 9 is a safe bound.

Lemma 9. The worst-case execution time bound computed by Algorithm 9 for a subgraph G′ is
safe.

Proof. Consider the subgraph G′ and its basic block set Sm of the m-th iteration as well
as the subgraph G′′, with its bound WCET(G′′), of the previous iteration.

First, assume that the longest path p through G′ represents a valid path in G′′, i.e., p
does not contain any node in Sm. In relation to the previous iteration, the current WCET
estimate for p might increase, due to overestimation of the local worst-case execution
times, i.e. WCET(G′′) ≤ WCET(G′). However, irrespective of the WCET computed for
G′, the bound established by the previous iteration for G′′ still holds. Paths of this struc-
ture are thus uninteresting, as the length of all paths in G′′ has been bounded by the
previous iteration. It remains to bound those paths in G′ that do not have a correspond-
ing path in G′′. The longest path search thus only needs to consider paths containing at
least one node in Sm.
Three cases for the longest path p need to be considered:

1. |p| >WCET(G′′):
Since |p| is longer than the previously established WCET bound, it follows that
WCET(G′) = |p|.

86 Graph Pruning

2. |p| ≤WCET(G′′):
As the length of p is not longer than the previously established bound, it follows
that WCET(G′) = WCET(G′′). The longest path through G′′ also represents the
longest path through G′, ignoring any additional overestimation caused by blocks
in Sm.

3. No feasible path containing a block in Sm exists:
This case happens when the abstract interpretation finds that no execution in G′
exists that passes through a block in Sm, i.e., none of the conditions of the branches
leading to a block in Sm can be satisfied. It follows that WCET(G′) = WCET(G′′).
Note that paths over these blocks might become feasible in later iterations, e.g.,
when code making the, yet unsatisfiable, conditions satisfiable is added.

Using induction, we can finally prove that Algorithm 9 delivers safe WCET bounds
for all subgraphs considered during the iterative processing. �

Theorem 6. Algorithm 9 computes a safe WCET bound.

Proof. This follows immediately from the previous lemmas and the termination condi-
tion of the algorithm.

The lemmas prove that applying abstract interpretation on subgraphs is sound and
that the algorithm computes safe bounds with respect to the subgraphs considered dur-
ing the iterative processing.

It remains to show that no other paths exist, which could be longer than the WCET
bound delivered by the last iteration. This is guaranteed by the order in which the sets
of blocks are processed and the termination condition (Algorithm 9, l. 4). Together these
ensure that all basic blocks not yet considered by the iterative refinement can only induce
paths that are shorter than the computed bound. �

5.2.2 Complexity

The number of sets Si is an upper bound on the iterations that will be performed by IGP.
The former is again bounded by the number of basic blocks in the input program. Since
its iterations are linear in the number of blocks, IGP is dominated by the complexity of
the WCET analysis, i.e., abstract interpretation and longest path search.

The sets Si, which are assumed as input in Algorithm 9, can be efficiently computed
using the criticality algorithms (cf. Chapter 4). This may be performed either during a
preprocessing step, or on demand, while the graph pruning algorithm iterates.

5.2.3 Algorithm Variants

It may be the case that theWCET analysis tool targeted by graph pruning, can be config-
ured for different levels of precision. This usually involves a trade-off between tightness
(precision) of the WCET bound and longer analysis runtime. IGP can be used to in-
corporate analyses with different precision. Running the higher-precision analysis on
a previously pruned graph would be a straight-forward way of further improving the

Graph Pruning 87

Algorithm 10WCET computation function CalcPrunedWCET using two-stage analysis

Input: G′ = (V′,E′, r, t) . . . A CFG.
Si . . . The set of newly added blocks.
ubwcet . . . The current upper bound of the WCET.

1: WCETi ← WCEToverAnyFast(G′,Si)
2: if WCETi > ubwcet then
3: WCET′i ← WCEToverAnyPrecise(G′,Si)
4: return WCET′i
5: return WCETi

WCET bound. But Algorithm 9 can also be modified to make use of multiple levels of
precision directly. To do this, we replace the CalcPrunedWCET function in Algorithm 9
with the variant given in Algorithm 10. This algorithm performs a second, more precise
WCET analysis (WCEToverAnyPrecise) to lower the estimate of WCETi for the current
graph G′, whenever the imprecise analysis (WCEToverAnyFast) would increase the over-
all WCET bound.

Another valid, but trivialway of incorporating a higher-precision analysis into graph
pruning, would be to run WCEToverAnyPrecise on the pruned subgraph exactly once
after the iterative processing. This would reduce the computational overhead and fur-
ther lower the WCET bound (down to the path length of the next block set). One could
even avoid the iterative processing entirely, by heuristically constructing a subgraph and
applying the precise analysis to this subgraph. This would foremost reduce the compu-
tational overhead and leave the burden of reducing overestimation on the preciseWCET
analysis.

5.3 Evaluation

We start by giving a complete example of running iterative graph pruning on the first
problem from the Debie1 benchmarks, which has no loops and 83 basic blocks. We then
extend our evaluation to a number ofWCET benchmarks using standard IterativeGraph
Pruning (IGP) and its two-stage variant (IGP-TS).

5.3.1 Case Study: debie-1

We start by analyzing the original program represented by its CFG G. This yields a first
valid global WCET bound in cycles (denoted by WCET(G)).

Pre-run: WCET(G) = 1621

At the same timewe can perform a basic-block-levelWCETprofiling according to the
definition of criticality. This yields, for every block b in the CFG G, the maximum length
(a value in the range [0,WCET(G)]) of all paths going through b. Blocks with a value
close to the global WCET are considered critical, while those close to 0 are uncritical.

88 Graph Pruning

Set Si longestpath(Si)

S0 43 1,621
S1 1 1,613
S2 1 1,608
S3 5 1,601
S4 1 1,592
S5 4 1,585
S6 8 1,560
S7 1 1,472
S8 3 1,456
S9 3 1,415

S10 3 1,352
S11 3 1,324
S12 1 1,231
S13 2 657
S14 1 321

Table 5.1: Criticality based basic block sets for debie-1

Based on their longest paths, we now insert blocks into several sets, so that blocks with
the same path length end up in the same set. In our example 15 such sets exist, their
path length (longestpath(Si)) and cardinality is given in Table 5.1.

The pruning algorithm kicks off with a WCET analysis, but this time considers only
the blocks on the globalWCEP, i.e., the blocks in S0. Using these blocks a vertex-induced
subgraph G1 is created and its WCET bound is analyzed.

Iteration 1: G1 = S0 WCET(G1) = 334

WCET(G1) is drastically lower than the original WCET, even though all blocks of the
original WCEP are contained in G1. Using abstract interpretation the WCET tool has
derived that the path is actually infeasible, i.e., no legal execution for the path exists. It
is necessary to addmore blocks back to the program at this stage. And since we suspect
that those blocks with longer paths have a larger impact on the attainableWCET bound,
we select the most critical blocks available, namely S1.

Iteration 2: G2 = G1 ∪ S1 WCET(G2) = 334
Iteration 3: G3 = G2 ∪ S2 WCET(G3) = 334
Iteration 4: G4 = G3 ∪ S3 WCET(G4) = 1423

Adding S1 to the graph did in fact not change the current WCET bound, neither did
S2. But after adding S3, a considerably longer path becomes feasible and our current
WCET bound jumps to 1423 cycles. Let us pause for a moment and consider what we
have done so far. G4 contains the most critical code (S0 ∪ · · · ∪ S3), it contains 42 basic
blocks (compared to 80 for the whole program). Blocks from eleven sets have not yet
been added and we have a current bound of WCET(G4) < WCET(G). Is this already
a valid WCET bound for the original problem? No, looking at the remaining sets, we

Graph Pruning 89

can see there are still blocks in sets S4, . . . ,S8, which may be part of a longer path in an
extended subgraph, i.e., longestpath(Si) ≥ 1423, 4 ≤ i ≤ 8. With this in mind, we resume
adding blocks with S4.

Iteration 5: G5 = G4 ∪ S4 WCET(G5) = 1525
Iteration 6: G6 = G5 ∪ S5 WCET(G6) = 1525
Iteration 7: G7 = G6 ∪ S6 WCET(G7) = 1525

Whenwe are about to add set S7, we notice that in the worst case, it would uncover a
pathwith length 1472. Since theWCET bound changed again in iteration 5, this is below
the current value of 1525 and thus would have no impact. This signals termination for
our algorithm. At this point, blocks from all sets are either already part of the current
graph, or do not contain blocks which could enable a path longer than 1525 cycles. Our
result is the pruned graph G7, which is a WCET-bound-maintaining subgraph of the
original program. By using this graph, we have reduced the initial WCET bound of the
analysis by 96 cycles (∼ 6%).

5.3.2 Setup for Experiments

We evaluate our approach using AbsInt’s aiT tool (a3 version 12.10i) and the same set
of WCET benchmarks (cf. Section 2.2.2), which we already know from Chapter 4. Our
target configuration for the PowerPCMPC5554 processor (cf. Section 2.2.1) and analysis
settings remain unchanged.

The prototype implementation of graph pruning that we use for this evaluation,
treats theWCET analysis tool as a black-box and thusworkswith an unmodified version
of aiT. The graph pruning is realized through scripting and the AIS annotations (IS
NEVER EXECUTED and FLOW). Thismeans that due to our setup, all information computed
by an iteration is discarded and not reused by the following iteration. Thus, any analysis
runtime results would be dramatically increased. We discuss this shortcoming of our
evaluation in Section 5.3.5).

The distribution of basic blocks by their WCET criticality is a side-product of the ini-
tial analysis in IGP and IGP-TS. Thus, we can also rely on our categorization of programs
from Section 4.5.3 and exclude those programs (C-1, C-.99), for which no pruning can
be performed, from further evaluation. We therefore apply the two graph pruning vari-
ants to the 37 analysis problems from the C-dist category and compare the attainable
WCET bound with the original result of aiT. The first variant (IGP), performs iterative
graph pruning using standard IPET (Algorithm 9). The second variant (IGP-TS), uses
the two-stage WCET computation (Algorithm 9 with the extension in Algorithm 10).
Here, the standard computation is potentially refined by a second, more precise, but
also more expensive, WCET analysis using aiT’s prediction file technique [21].

We additionally examine properties of the analysis problem that have a direct influ-
ence on overestimation. These are (1) hardware splits, a measure for the amount of du-
plicated states in the presence of unpredictable hardware behavior (i.e., caches, branch
prediction), and (2) the size of the analysis problems at different stages (i.e., subgraph
size).

90 Graph Pruning

10 20 30 40 50 60
0

0.5

1

·104

Iterations

W
C

ET
(c

yc
le

s)

WCET bound (original) ubwcet (IGP)
WCETi (IGP)

Figure 5.3: WCET bounds per iteration for the f1a benchmark using Iterative Graph Pruning.
(IGP, lower is better)

10 20 30 40 50 60

150

200

250

300

Iterations

N
um

be
ro

fB
lo

ck
s

10 20 30 40 50 60

0.5

1

1.5

·104

Iterations

N
um

be
ro

fS
pl

its

Blocks (original) Blocks (IGP)
Splits (original) Splits (IGP)

Figure 5.4: Subgraph size andhardware splits per iteration for the f1a benchmark using Iterative
Graph Pruning. (IGP, lower is better)

5.3.3 Iterative Graph Pruning

Table 5.2 summarizes the WCET bound improvement and aggregates it by benchmark
suite. The selected Mälardalen programs, especially the ones representing algorithmic
cores with almost single-path execution behavior, not surprisingly do not benefit from
graph pruning. Their WCET bound improvement is 2% at best. However, the larger
application-like programs, Debie1 and PapaBench, benefit from graph pruning and
some of their analysis problems have their WCET bound reduced significantly. When
we look at f1a from PapaBench in detail, we can see in Figure 5.3 that within the first 20
iterations, the upper bound (ubwcet) leaps to a level close to its final value. At this point,
the most critical basic block sets have been added to the subgraph and WCET analysis
returned a good candidate for the actual globalWCEP. Step sizes subsequently decrease

Graph Pruning 91

WCET Refinement
Suite Contains Algo. Improved max min mean

debie 16 IGP 12 −6.43% 0.00% −1.74%
mdh 11 IGP 7 −2.15% 0.00% −0.58%
papa 10 IGP 6 −3.73% 0.00% −1.95%

debie 16 IGP-TS 10 −5.34% 0.00% −0.82%
mdh 11 IGP-TS 5 −1.28% 0.00% −0.26%
papa 10 IGP-TS 4 −2.83% 0.00% −1.03%

Table 5.2: WCET Reduction using Iterative Graph Pruning (Summary)

and from iteration 35 on, the upper bound (ubwcet) roughly holds while more blocks are
added to the IGP subgraph (see Figure 5.4).

Another group of problem instances does not exhibit properties that are exploitable
by graph pruning. These can be identified in Table 5.3 by their low number of iterations:
after one or two iterations, IGP terminates since all (feasible) blocks are either on the
global WCEP, or there is no interference between WCET-critical and unrelated code.

There is also a third class of benchmark problems, which exhibits a high number of
iterations without a significant improvement of the WCET bound. Studying the most
severe cases (problems a2a and a2b from PapaBench), we have found that almost all of
theWCEPs found in subgraphs are infeasible on their own (i.e., their feasibility depends
on blocks in other block sets). This is likely caused by a particular program structure
and the WCET analysis failing to exclude infeasible paths from the longest path search
(flow facts).

For all non-trivial benchmarks (two IGP iterations or more), we see that the minimal
(and average) reduction of hardware splits is high (see Figure 5.5). Average subgraph
sizes (Figure 5.6) are likewise significantly smaller than their originals. This tells us that
overestimation is being effectively addressed by IGP. At the same time it can benefit from
analysis problems, which are roughly half the original size. In Table 5.3 we present the
detailed results from graph pruning using the IGP algorithm. It contains the number of
iterations in column “Iter.”, the number of unique WCET paths encountered in column
“|P|”, and a comparison of graph sizes before and after pruning in the last two columns.
Note that the number of infeasible blocks is contained in |V| and will always be pruned.
IGP improvesWCET bounds up to 6% compared to aiT’s result on the original program.
The average improvement among non-trivial benchmark problems is 2%.

5.3.4 Two-stage Iterative Graph Pruning

To evaluate the two-stage approach of iterative graph pruning (IGP-TS), we make use
of the prediction file (PF) based IPET solver in aiT as a second stage analysis (i.e., for the
WCEToverAnyPrecise invocation in Algorithm 10). When performing PF-based WCET
computation, the timing information during longest path search is not restricted to a
single WCET for each basic block, but may encompass multiple architectural states [21].

92 Graph Pruning

WCET (cycles) Graph size
Benchmark Original IGP Refined Iter. |P| |V| |V′|
debie-1 1,621 1,525 −5.92% 7 6 83 63
debie-2b 566 534 −5.65% 2 2 23 16
debie-2c 489 489 0.00% 1 1 23 14
debie-3a 5,094 5,047 −0.92% 5 5 74 57
debie-3b 28,515 28,451 −0.22% 8 9 74 59
debie-3c 29,227 29,163 −0.22% 8 9 74 59
debie-4a 4,913 4,843 −1.43% 4 4 285 43
debie-4b 1,789 1,674 −6.43% 4 5 285 32
debie-4c 910 891 −2.09% 2 2 285 17
debie-4d 968 968 0.00% 1 1 285 16
debie-5a 6,119 6,047 −1.18% 6 6 138 120
debie-5b 112,538 112,467 −0.06% 7 7 138 130
debie-6a 44,273 44,007 −0.60% 12 10 376 192
debie-6b 44,273 44,007 −0.60% 12 10 376 192
debie-6c 63,133 62,145 −1.57% 13 10 376 155
debie-6d 46,337 46,049 −0.62% 12 10 376 194
mdh-compress 26,697 26,601 −0.36% 8 8 92 84
mdh-expint 793,236 785,573 −0.97% 3 3 25 19
mdh-fft1 651,767 651,249 −0.08% 98 77 491 455
mdh-lcdnum 4,162 4,162 0.00% 1 2 22 16
mdh-ludcmp 973,441 971,502 −0.20% 104 104 430 423
mdh-minver 298,523 292,108 −2.15% 103 104 466 457
mdh-prime 194,136 194,055 −0.04% 3 3 23 22
mdh-qurt 649,934 649,434 −0.08% 101 98 423 408
mdh-select 261,214 260,317 −0.34% 11 12 99 93
mdh-sqrt 219,363 219,074 −0.13% 98 99 518 449
mdh-statemate 24,145 23,657 −2.02% 70 71 420 363
papa-a1 8,551 8,247 −3.56% 101 92 626 484
papa-a2a 81,656 81,187 −0.57% 177 146 1,522 944
papa-a2b 100,939 100,190 −0.74% 199 163 1,522 1,079
papa-a3a 9,138 8,922 −2.36% 65 64 981 255
papa-a3b 28,193 27,691 −1.78% 146 139 981 746
papa-a4 11,104 10,879 −2.03% 44 38 334 253
papa-a5 20,545 20,320 −1.10% 96 97 438 426
papa-a6 29,092 28,006 −3.73% 118 114 682 608
papa-f1a 11,542 11,128 −3.59% 60 47 285 269
papa-f2 237 237 0.00% 1 1 8 4

Table 5.3: Detailed results for Iterative Graph Pruning (IGP)

Graph Pruning 93

WCET (cycles) Graph size
Benchmark Original IGP-TS Refined Iter. |P| |V| |V′|
debie-1 1,507 1,479 −1.86% 7 9 83 63
debie-2b 520 520 0.00% 2 2 23 16
debie-2c 474 474 0.00% 2 2 23 15
debie-3a 4,787 4,735 −1.09% 6 10 74 58
debie-3b 24,756 24,742 −0.06% 8 15 74 59
debie-3c 25,348 25,334 −0.06% 8 15 74 59
debie-4a 4,810 4,783 −0.56% 4 5 285 43
debie-4b 1,630 1,543 −5.34% 4 5 285 32
debie-4c 877 877 0.00% 4 4 285 20
debie-4d 957 957 0.00% 1 1 285 16
debie-5a 5,784 5,753 −0.54% 8 15 138 123
debie-5b 78,338 78,307 −0.04% 9 18 138 133
debie-6a 42,945 42,680 −0.62% 12 19 376 192
debie-6b 42,945 42,680 −0.62% 12 19 376 192
debie-6c 61,042 60,129 −1.50% 13 14 376 155
debie-6d 44,677 44,390 −0.64% 12 19 376 194
mdh-compress 26,344 26,297 −0.18% 8 15 92 84
mdh-expint 792,298 784,693 −0.96% 3 3 25 19
mdh-fft1 589,137 588,871 −0.05% 103 163 491 468
mdh-lcdnum 4,140 4,140 0.00% 2 5 22 21
mdh-ludcmp 899,460 899,236 −0.02% 105 209 430 426
mdh-minver 275,957 275,805 −0.06% 104 209 466 458
mdh-prime 194,053 194,031 −0.01% 3 4 23 22
mdh-qurt 595,432 595,085 −0.06% 104 200 423 416
mdh-select 222,750 222,215 −0.24% 12 25 99 99
mdh-sqrt 194,497 194,471 −0.02% 127 255 518 503
mdh-statemate 22,173 21,890 −1.28% 98 195 420 409
papa-a1 7,050 7,049 −0.01% 141 267 626 581
papa-a2a 68,641 68,340 −0.44% 200 337 1,522 987
papa-a2b 84,785 84,280 −0.60% 210 347 1,522 1,111
papa-a3a 8,488 8,347 −1.66% 70 136 981 262
papa-a3b 24,063 23,984 −0.33% 164 312 981 780
papa-a4 9,473 9,288 −1.95% 57 100 334 278
papa-a5 19,020 18,965 −0.29% 104 205 438 434
papa-a6 25,045 24,507 −2.15% 122 236 682 635
papa-f1a 10,359 10,066 −2.83% 71 114 285 284
papa-f2 236 236 0.00% 1 1 8 4

Table 5.4: Detailed results for two-stage Iterative Graph Pruning (IGP-TS)

94 Graph Pruning

pa
pa

-a
1

pa
pa

-a
2a

pa
pa

-a
2b

pa
pa

-a
3a

pa
pa

-a
3b

pa
pa

-a
4

pa
pa

-a
5

pa
pa

-a
6

pa
pa

-f1
a

de
bi

e-
1

de
bi

e-
2b

de
bi

e-
3a

de
bi

e-
3b

de
bi

e-
3c

de
bi

e-
4a

de
bi

e-
4b

de
bi

e-
4c

de
bi

e-
5a

de
bi

e-
5b

de
bi

e-
6a

de
bi

e-
6b

de
bi

e-
6c

de
bi

e-
6d

0.2

0.4

0.6

0.8

1
Re

du
ce

d
Sp

lit
s

IGP IGP-TS

Figure 5.5: Reduction of hardware splits using Iterative Graph Pruning. (IGP vs. IGP-TS, lower
is better. Vertical bars display iterations’ min./max., marker is average.)

pa
pa

-a
1

pa
pa

-a
2a

pa
pa

-a
2b

pa
pa

-a
3a

pa
pa

-a
3b

pa
pa

-a
4

pa
pa

-a
5

pa
pa

-a
6

pa
pa

-f1
a

de
bi

e-
1

de
bi

e-
2b

de
bi

e-
3a

de
bi

e-
3b

de
bi

e-
3c

de
bi

e-
4a

de
bi

e-
4b

de
bi

e-
4c

de
bi

e-
5a

de
bi

e-
5b

de
bi

e-
6a

de
bi

e-
6b

de
bi

e-
6c

de
bi

e-
6d

0

0.2

0.4

0.6

0.8

1

Re
la

tiv
e

Su
bg

ra
ph

Si
ze

IGP IGP-TS

Figure 5.6: Subgraph sizes using Iterative Graph Pruning. (IGP vs. IGP-TS, lower is better)

Tightening WCET bounds in this way comes at the cost of —depending on program
size—much larger ILP problems and thus time needed for solving. (Note that resource
demand, i.e., memory, for the larger problems of papabench on a related out-of-order
PowerPC architecture is bordering on infeasibility.) Fast WCET analysis remains un-
changed with regard to IGP.

The WCET bound improvement of IGP-TS, compared to the PF-enabled analysis as
a baseline, behaves similar to that of IGP. Benchmark problems, for which the WCET
bound was improved by IGP, also improve by IGP-TS, but the effect is less pronounced
(see Table 5.2). We thus conclude that our approach is profitable even compared to
a state-of-the-art WCET analysis tool using its most sophisticated analysis technique.
How its profitability increases inversely proportional to the use of mechanisms that pre-
vent overestimation.

Graph Pruning 95

The reduction of hardware splits and graph sizes measured over all iterations also
behaves similar (compare IGP and IGP-TS in Figures 5.5 and 5.6), although it fails to
“cut off” sources of overestimation in the same was as IGP does. Furthermore, as we
expected, the number of unique WCEPs found by IGP-TS is higher (see |P| in Table 5.3
versus Table 5.4). This is due to the more precise analysis being used. For the same
reason, we can see an increase in the number of iterations.

5.3.5 Discussion

We have evaluated graph pruning using a state-of-the-art, commercial WCET tool. aiT
uses powerful abstract interpretation and is able to produce good WCET bounds on its
own. Even so, graph pruning can eliminate sources of overestimation and significantly
tighten the WCET bound. While we can configure aiT to analyze subgraphs and extract
all results we need from it, our setup is only suitable as a proof-of-concept. The analysis
tool is treated as a block box, which leads to needless overhead that could be avoided.
We thus do not present detailedmeasurements of the analysis time here. However, even
with these short-comings we observed an increase in analysis time by a factor of 9 on
average (tests were performed on an AMD Opteron 8356 at 2.3 GHz, running Linux
Kernel version 2.6, with CPLEX version 10 solving the IPET ILP problems).

We expect that most of the analysis overhead can, in fact, be eliminated by designing
the WCET analysis to take advantage of the iterative processing. The overhead of per-
forming a complete run of abstract interpretation on every iteration can, for instance,
be avoided. Abstract interpretation usually is performed by searching for a fixed-point.
Adding basic blocks, as done by our algorithm, can easily be handled by this approach.
The fixed-point search can continue from the abstract states computed for the previ-
ous iteration to quickly derive a new fixed-point for the current subgraph. Other forms
of incremental analysis should equally reduce the overhead of performing a longest
path search on structurally similar subgraphs. These techniques, combinedwith smaller
problem sizes (due to smaller subgraphs and reduced hardware splits), promise to even
reduce the analysis overhead, compared to a full analysis run using aiT’s prediction file
technique. We even observed this behavior in our tests for IGP-TS and the a2b bench-
mark. Despite an increase in the analysis time by a factor of 14 for the abstract interpre-
tation, a reduction of the ILP solving time lead to an overall reduction of the analysis
time of about 15%.

We observed that our technique addresses the problem of overestimation very well,
in particular during early iterations. However, we also observed that in many cases the
overestimation grew fast, often outweighing large initial gains. Themain problem is that
the subgraphs steadily grow larger. We could address this problem by restricting the
subgraphs to only those nodes reachable from the current basic block set (Si). However,
one could similarly change the strategy for growing subgraphs, e.g., by estimating the
impact on the number of hardware splits. In a similar way, neighboring basic block sets
may be merged in order to avoid excessive iteration counts.

96 Graph Pruning

5.4 Related Work

We divide related approaches for tightening WCET bounds roughly by the main tech-
nique they employ. Since most methods —ours included— are complementary to each
other and thus can be combined within an integrated analysis, some natural overlap
occurs.

Program Slicing

Several pruning techniques, similar in spirit to our technique, have been proposed in
the past based on program slicing [89]. The basic idea of program slicing is to improve
the precision and the computational overhead of static program analyses by discarding
program statements that are irrelevant to the goal of the analysis. Consider, for instance,
the case when the goal of a static analysis is to determine the value of a given variable in
a program. When forming a slice for that particular variable, only those statements are
consideredduring the analysis that directly and indirectly contribute to the computation
of that variable. All other statements are ignored. The goal in our approach is to improve
the analysis of the WCET itself, our technique thus can be seen as a form of program
slicing on the timing domain.

Sandberg et al. [46], for example, propose to use program slicing to improve the
static analysis of flow facts. They construct program slices based on either all conditions
of branches in a program, on all loop-exit conditions, or on the loop-exit conditions
of a particular loop. Based on the computed slices, flow facts, such as loop bounds,
are computed. In contrast to our work, the focus here is on deriving flow facts only,
regardless of the relevance or impact to the final WCET. Their technique can, however,
be combined with our approach. This would, for instance, allow to derive flow facts
that are only valid with respect to the current subgraph under consideration.

A similar approach is proposed by Lokuciejewski et al. [29]. They combine abstract
interpretation, polytope models, and program slicing to derive precise loop bounds.
The approach again does not consider the relevance of the respective loops under analysis
with regard to the final WCET.

Infeasible-Path Elimination

Bang and Kim [36], similar to our technique, propose an iterative approach to refine
the attainable WCET using standard IPET. The basic idea is to perform a regular WCET
analysis run. The resultingWCEP is subsequently checked for feasibility and, in the case
of an infeasible WCEP, additional constraints are added to the IPET problem to exclude
the path. This process is repeated until a feasible path is encountered. It is important
to note that the presented feasibility checks are conservative and only consider indi-
vidual basic blocks and pairs or blocks, but not the entire path. The major problem of
this approach is that the refinement is based on individual paths through the program,
whose number is potentially exponential in the number of conditional branches in the
program. The additional constraints are, furthermore, only applied during the final

Graph Pruning 97

IPET run. Contrary to our approach, the technique thus cannot improve the precision
of previous analysis phases, such as the cache- or pipeline analysis.

Zwirchmayer et al. [7] propose a related scheme called WCET Squeezing. The au-
thors iteratively check the feasibility of the currentWCEP using symbolic execution and
exclude paths found to be infeasible from the IPET problem. In contrast to Bang and
Kim, this technique considers the entire path and may thus potentially derive more
complex constraints. The technique similarly does not allow to improve the precision
of other analysis phases than the final IPET. To its advantage, WCET squeezing is an
anytime algorithm, i.e., when interrupted at any time, a possible up-to-then achieved
refinement is sound. Our current graph pruning algorithm does not have the anytime
property, in fact it needs to run until the WCET bound from a pruned subgraph has
been proved valid.

Abstract Interpretation

We evaluated graph pruning using AbsInt’s aiT WCET analyzer, which makes use of
abstract interpretation for its value analysis. While in this specific setting, the precision
of value analysis benefits from the smaller graphs that we provide through pruning,
context-sensitive abstract interpretation techniques [91, 38] themselves, in fact, share
the same goal with us. They are used for the automatic computation of control-flow
bounds (i.e. loop bounds or flow facts) that ultimately aim to tighten the WCET bound.
The challenge for abstract interpretation is to cope with an overwhelming combination
of program-, pipeline-, and cache states through safe approximation of values withing
their domain and the merging of related hardware states. Efficient widening (and nar-
rowing) operations are essential for analysis precision. [14]

Chapter 6

Closing

We are optimistic that today’s state-of-the-art static WCET analysis will be able to keep
up with the requirements of hard real-time applications in the foreseeable future. In
this thesis, we have described ways to adapt WCET analysis to meet this goal.

We have shown how to efficiently analyze the worst-case behavior of a stack cache.
Implemented in a real-time system, the stack cache benefits cache predictability and in
combination with a tailor-made analysis has the potential to lower the WCET bound
for real-time programs. We exhaustively investigated the behavior of reserve (spill) and
ensure (fill) operations of the stack cache. Ensure analysis has proven to be a local prob-
lem and can be solved with minimal computational overhead. In general, our tech-
niques combine intra-procedural data-flow analysis with longest (as well as shortest)
path search on the inter-procedural call graph. By propagating bounds induced by stack
cache size, we can avoid a costly context-sensitive data-flow analysis at program scope.
To find the maximum remaining stack depth starting from arbitrary points in the call
graph, we augment the graph and enable path search on the weighted tail. We also in-
troduced the SCA graph, which fully models the context-sensitive spill cost of the stack
cache and is suitable for integration in IPET-based worst-case timing analysis. Oppor-
tunities for pruning the graph with and without loss of analysis precision have been
presented. Our accurate analysis technique scales to large analysis problems. It makes
use of data-flow analysis and an adapted path search method modeled as an ILP, in an
intertwined fashion, which has not been described before. Its applicability extends to
caching concepts related to a stack cache, such as the sliding register window of the
SPARC architecture.

In Chapter 4 we presented criticality, a novel metric for real-time programs. Com-
puting criticality for program extends the view beyond that of a single worst-case path,
to that of a more completeWCET profile. To the best of our knowledge, this approach is
completely new in the field of static timing analysis. We have described graph-theoretic
foundations and algorithms related to its computation, which exploit dominance prop-
erties and are applicable beyond the scope of criticality. An example for this, is the
formal definition of invariant code. Our evaluation has shown that many of the WCET
programs we use, either consist solely of invariant code, or contain an overwhelming

100 Closing

amount of highly critical code. It is too early though, to conclude whether this is a
prevalent property of real-time programs. The more likely cause, in our opinion, is that
the effect is due to the limited scope of WCET benchmark programs available today.

Our graph pruning approach in Chapter 5 aims to improve WCET analysis inde-
pendent of any special hardware features or program restrictions. Facing large analysis
problems,WCET tools have to continuously restrict problem size, in order tomeet space
as well as time constraints and maintain feasibility. This results in a loss of precision:
an overwhelming combination of program-, pipeline-, and cache states may make sim-
plification necessary, at any stage of the analysis. To mitigate WCET overestimation, we
propose to perform analysis on a reduced but safe subset of the program graph. Pro-
gram slicing on the source code level has before been proposed as a method to reduce
analysis overhead. In comparison, we introduce a form of slicing that can be applied to
a low-level program representation. For our graph pruning method, we demonstrated
that a criticality-basedWCET profile is a suitable first guide for searching such reduced
graphs.

Directions for Future Work

Fighting Overestimation All three major contributions of this thesis —criticality at
least in part— can be viewed as pursuits to counteract the central problem of overesti-
mating WCET bounds during static analysis. Graph pruning is our blanket approach
for this problem, and while we were able to gain analysis precision by guiding the algo-
rithmwith a criticality profile, this represents only one possibleway to performpruning.
Exploiting problem structure has proven to be the key to many optimization problems
in the past. We believe the structure of a program’s CFG and its properties specifically
with regard to WCET analysis lend themselves to further improving analysis. Building
a hardware platform and its compiler with the requirements of an analysis tool in mind,
opens up even more possibilities in the “fight against overestimation”.

WCET Analysis Tools Our algorithms often perform an analysis in an iterative man-
ner, which would enable the reuse of analysis information up to a certain degree. For
instance, the computational overhead of criticality analysis could be reduced by improv-
ing the way the ILP problems are solved for related IPET problems. Amore general un-
dertaking would be, to prevent WCET tools at different analysis stages, from throwing
away intermediate results that can be reused.

From our experience as users of WCET analysis, we found that tools should make a
better effort to adapt to the properties (e.g, size and complexity) of the program under
analysis.

WCET Benchmarks Ideally, the programs which make up a benchmark suite are
chosen to be representative for the types of applications that exist within the domain
that the benchmark suite targets. At this point in time, this is unfortunately not the

Closing 101

case in the field of WCET analysis. Besides the lack of benchmarks that represent real-
world applications, opposite to micro benchmarks, there is also a lack of meta-data and
documentation (e.g. consistent bounds from input data, analysis configuration), which
is required to reach some degree of reproducibility. Not to belittle the previous work
that has been done in this direction, as part of the WCET Tool Challenges, an ongoing
community effort is needed to improve this situation. We look forward to contributing
to this effort.

Bibliography

[1] Florian Brandner and Alexander Jordan. “Refinement of Worst-Case Execution
Time Bounds by Graph Pruning”. (under submission) (cited on pages 6, 81).

[2] Alexander Jordan. “Evaluating and Estimating theWCET Criticality Metric”. In:
Proceedings of the 11th Workshop on Optimizations for DSP and Embedded Systems.
ODES ’14. (accepted for publication). ACM, 2014. doi: 10.1145/2568326.2568331
(cited on pages 6, 43).

[3] Yooseong Kim et al. “WCET-Aware Dynamic CodeManagement on Scratchpads
for Software-Managed Multicores”. In: Proceedings of the 20th IEEE Real-Time and
Embedded Technology and Application Symposium (RTAS). Berlin, Germany, 2014
(cited on page 41).

[4] Sahar Abbaspour, Florian Brandner, andMartin Schoeberl. “A Time-predictable
Stack Cache”. In: Proceedings of the Workshop on Software Technologies for Embedded
and Ubiquitous Systems. SEUS ’13. 2013 (cited on pages 18, 39, 40).

[5] Florian Brandner, Stefan Hepp, and Alexander Jordan. “Criticality: static profil-
ing for real-time programs”. In: Real-Time Systems (Oct. 2013). (published online,
pending print). doi: 10.1007/s11241-013-9196-y (cited on pages 6, 43, 61).

[6] Alexander Jordan, Florian Brandner, and Martin Schoeberl. “Static Analysis of
Worst-case Stack Cache Behavior”. In: Proceedings of the 21st International Confer-
ence on Real-Time Networks and Systems. RTNS ’13. ACM Press, 2013, pages 55–64.
doi: 10.1145/2516821.2516828 (cited on pages 6, 17).

[7] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. “WCET squeezing”. In: Pro-
ceedings of the 21st International conference onReal-TimeNetworks and Systems - RTNS
’13. ACM Press, 2013, page 161. doi: 10 . 1145 / 2516821 . 2516847 (cited on
page 97).

[8] Martin Schoeberl, Benedikt Huber, and Wolfgang Puffitsch. “Data Cache Orga-
nization for Accurate Timing Analysis”. In: Real-Time Systems 49.1 (Jan. 2013),
pages 1–28 (cited on page 17).

[9] Florian Brandner, Stefan Hepp, and Alexander Jordan. “Static profiling of the
worst-case in real-time programs”. In: Proceedings of the International Conference
on Real-Time and Network Systems. RTNS ’12. ACM Press, 2012, pages 101–110
(cited on pages 6, 43).

http://dx.doi.org/10.1145/2568326.2568331
http://dx.doi.org/10.1007/s11241-013-9196-y
http://dx.doi.org/10.1145/2516821.2516828
http://dx.doi.org/10.1145/2516821.2516847

104 Bibliography

[10] Heiko Falk, Peter Marwedel, and Paul Lokuciejewski. “Reconciling Compilation
and Timing Analysis”. In: edited by Samarjit Chakraborty and Jörg Eberspächer.
Springer, Mar. 2012. Chapter 7, pages 145–170 (cited on page 77).

[11] Jorge Garrido, Daniel Brosnan, and JA de la Puente. “Analysis of WCET in an
experimental satellite software development.” In: 12th International Workshop on
Worst-Case Execution Time Analysis (WCET 2012). Wcet. 2012, pages 81–90 (cited
on page 76).

[12] Reinhard von Hanxleden et al. The WCET Tool Challenge 2011. Technical report
1215. Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
Oct. 2012 (cited on page 15).

[13] QuentinColombet, FlorianBrandner, andAlainDarte. “Studying optimal spilling
in the light of SSA”. In: Proceedings of the International Conference on Compilers, Ar-
chitectures and Synthesis for Embedded Systems. CASES ’11. ACM, 2011, pages 25–
34 (cited on page 75).

[14] Agostino Cortesi and Matteo Zanioli. “Widening and narrowing operators for
abstract interpretation”. In: Computer Languages, Systems &Structures 37.1 (2011),
pages 24–42 (cited on page 97).

[15] Martin Schoeberl et al. “Towards a Time-predictable Dual-IssueMicroprocessor:
The Patmos Approach”. In: Workshop on Bringing Theory to Practice: Predictabil-
ity and Performance in Embedded Systems. PPES ’11. 2011, pages 11–20 (cited on
page 12).

[16] Christoph Cullmann et al. “Predictability Considerations in the Design of Multi-
Core Embedded Systems”. In: Ingénieurs de l’Automobile 807 (Sept. 2010), pages 36–
42 (cited on page 17).

[17] Jan Gustafsson et al. “TheMälardalenWCET Benchmarks: Past, Present And Fu-
ture.” In: 10th InternationalWorkshop onWorst-Case Execution TimeAnalysis (WCET
2010). Wcet. OCG, 2010, pages 136–146 (cited on pages 16, 72).

[18] Raimund Kirner, Peter Puschner, and Adrian Prantl. “Transforming Flow Infor-
mation during Code Optimization for Timing Analysis”. In: Real-Time Systems
(2010). doi: http://dx.doi.org/10.1007/s11241-010-9091-8 (cited on
page 77).

[19] Adrian Prantl. “High-level Compiler Support for Timing Analysis”. PhD thesis.
Technische Universität Wien, 2010 (cited on pages 3, 77).

[20] Martin Schoeberl et al. “Worst-case execution time analysis for a Java processor”.
In: Software: Practice and Experience 40.6 (May 2010), pages 507–542. doi: 10.1002/
spe.968 (cited on page 3).

[21] Ingmar Jendrik Stein. “ILP-basedPathAnalysis onAbstract Pipeline StateGraphs”.
PhD thesis. Universität des Saarlandes, 2010 (cited on pages 89, 91).

http://dx.doi.org/http://dx.doi.org/10.1007/s11241-010-9091-8
http://dx.doi.org/10.1002/spe.968
http://dx.doi.org/10.1002/spe.968

Bibliography 105

[22] Tidorum Ltd. BoundT Time and Stack Analyzer - Application Note SPARC/ERC32
V7, V8, V8E. Technical report TR-AN-SPARC-001, Version 7. Tidorum Ltd., 2010
(cited on page 40).

[23] Thomas H Cormen et al. Introduction to Algorithms. 3rd. MIT Press, 2009 (cited
on pages 4, 23, 48–50).

[24] Daniel L Dvorak and Daniel L Dvorak (editor). NASA Study on Flight Software
Complexity. Technical report.NASAOffice ofChief Engineer, 2009 (cited onpage 4).

[25] Lovi Gauthier and Tohru Ishihara. “Optimal stack frame placement and trans-
fer for energy reduction targeting embedded processors with scratch-pad mem-
ories”. In: 2009 IEEE/ACM/IFIP 7th Workshop on Embedded Systems for Real-Time
Multimedia. Ieee, Oct. 2009, pages 116–125. doi: 10.1109/ESTMED.2009.5336819
(cited on page 41).

[26] Arun Kannan et al. “A software solution for dynamic stack management on
scratch pad memory”. In: 2009 Asia and South Pacific Design Automation Confer-
ence. Ieee, Jan. 2009, pages 612–617. doi: 10.1109/ASPDAC.2009.4796548 (cited
on page 41).

[27] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare.Data Flow Analysis: The-
ory and Practice. 1st. CRC Press, Inc., 2009 (cited on page 26).

[28] Paul Lokuciejewski, Fatih Gedikli, and Peter Marwedel. “Accelerating WCET-
driven Optimizations by the Invariant Path Paradigm - A Case Study of Loop
Unswitching”. In: Proc. of the Workshop on Software &Compilers for Embedded Sys-
tems (SCOPES ’09). 2009, pages 11–20 (cited on page 47).

[29] Paul Lokuciejewski et al. “A Fast and Precise Static Loop Analysis Based on Ab-
stract Interpretation, Program Slicing and Polytope Models”. In: Proceedings of
the International Symposium on Code Generation and Optimization. CGO ’09. IEEE,
2009, pages 136–146. doi: 10.1109/CGO.2009.17 (cited on pages 77, 96).

[30] Lili Tan. “The worst-case execution time tool challenge 2006”. In: International
Journal on Software Tools for Technology Transfer (STTT) 11.2 (Jan. 2009), pages 133–
152. doi: 10.1007/s10009-008-0095-9 (cited on page 15).

[31] Niklas Holsti et al. “WCET Tool Challenge 2008: Report”. In: 8th International
Workshop on Worst-Case Execution Time Analysis (WCET 2008). Prague, Czech Re-
public: Österreichische Computer Gesellschaft, July 2008, pages 149–171 (cited
on page 15).

[32] Ben Lickly et al. “Predictable programming on a precision timed architecture”.
In:Proceedings of the 2008 international conference on Compilers, architectures and syn-
thesis for embedded systems - CASES ’08 (2008), page 137. doi: 10.1145/1450095.
1450117 (cited on page 41).

[33] Adrian Prantl, Markus Schordan, and Jens Knoop. “TuBound – A Conceptually
New Tool for Worst-Case Execution Time Analysis”. In: 8th International Work-
shop onWorst-Case Execution Time Analysis (WCET 2008). Prague, Czech Republic:
Österreichische Computer Gesellschaft, 2008, pages 141–148 (cited on page 3).

http://dx.doi.org/10.1109/ESTMED.2009.5336819
http://dx.doi.org/10.1109/ASPDAC.2009.4796548
http://dx.doi.org/10.1109/CGO.2009.17
http://dx.doi.org/10.1007/s10009-008-0095-9
http://dx.doi.org/10.1145/1450095.1450117
http://dx.doi.org/10.1145/1450095.1450117

106 Bibliography

[34] Reinhard Wilhelm et al. “The Worst-Case Execution Time Problem – Overview
of Methods and Survey of Tools”. In: ACM Transactions on Embedded Computing
Systems 7.3 (Apr. 2008), pages 1–53. doi: 10.1145/1347375.1347389 (cited on
page 2).

[35] Alfred V Aho et al. Compilers: principles, techniques and tools. Second. Pearson Ed-
ucation, 2007 (cited on page 26).

[36] Ho Jung Bang, Tai Hyo Kim, and Sung Deok Cha. “An Iterative Refinement
Framework for Tighter Worst-Case Execution Time Calculation”. In: Proceedings
of the Symposium on Object and Component-Oriented Real-Time Distributed Comput-
ing. ISORC ’07. IEEE, 2007, pages 365–372. doi: 10.1109/ISORC.2007.19 (cited
on page 96).

[37] Michael Dunlavey. “Performance tuningwith instruction-level cost derived from
call-stack sampling”. In: ACM SIGPLAN Notices 42.8 (2007), pages 4–8. doi: 10.
1145/1294297.1294298 (cited on page 76).

[38] Andreas Ermedahl et al. “Loop Bound Analysis based on a Combination of Pro-
gram Slicing, Abstract Interpretation, and Invariant Analysis”. In: 7th Intl. Work-
shop on Worst-Case Execution Time (WCET) Analysis, Pisa, Italy, July 3, 2007. Edited
by Christine Rochange. Volume 07002. Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007 (cited on page 97).

[39] Christian Ferdinand, Reinhold Heckmann, and Bärbel Franzen. “Static memory
and timing analysis of embedded systems code”. In: Proceedings of Symposium on
Verification and Validation of Software Systems. VVSS ’07. Eindhoven University of
Technology, 2007, pages 153–163 (cited on page 40).

[40] Xianfeng Li et al. “Chronos: A Timing Analyzer for Embedded Software”. In:
Science of Computer Programming 69.1-3 (2007), pages 56–67 (cited on page 3).

[41] HuguesCassé andPascal Sainrat. “OTAWA, a framework for experimentingWCET
computations”. In: European Congress on Embedded Real-Time Software. Toulouse:
Société de l’Electricité, de l’Electronique et des Technologies de l’Information et
de la Communication (SEE), Jan. 2006 (cited on page 3).

[42] Heiko Falk, Paul Lokuciejewski, andHenrik Theiling. “Design of aWCET-Aware
CCompiler”. In: 2006 IEEE/ACM/IFIPWorkshop on Embedded Systems for Real Time
Multimedia. Edited by FrankMueller. Volume 06902. Dagstuhl Seminar Proceed-
ings. IEEE, Oct. 2006, pages 121–126. doi: 10.1109/ESTMED.2006.321284 (cited
on pages 3, 77).

[43] François Lemieux andMartin Salois. “Visualization techniques for programcom-
prehension”. In:Proceedings of the 2006 conference onNewTrends in SoftwareMethod-
ologies, Tools and Techniques. February. 2006 (cited on page 77).

http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1109/ISORC.2007.19
http://dx.doi.org/10.1145/1294297.1294298
http://dx.doi.org/10.1145/1294297.1294298
http://dx.doi.org/10.1109/ESTMED.2006.321284

Bibliography 107

[44] Christopher Lupo and Kent D KD K.D. Wilken. “Post Register Allocation Spill
Code Optimization”. In: Proceedings of the International Symposium on Code Gener-
ation and Optimization. CGO ’06. Ieee, 2006, pages 245–255. doi: 10.1109/CGO.
2006.28 (cited on page 75).

[45] Fadia Nemer et al. “PapaBench: A Free Real-Time Benchmark”. In: Proc. of the
Workshop on Worst-Case Execution Time Analysis. OCG, 2006, pages 63–68 (cited
on page 16).

[46] Christer Sandberg et al. “Faster WCET Flow Analysis by Program Slicing”. In:
Proceedings of the conference on Language, Compilers, and Tool Support for Embedded
Systems. LCTES ’06. New York, New York, USA: ACM, 2006, pages 103–112. doi:
10.1145/1134650.1134666 (cited on page 96).

[47] Edward R Tufte. Beautiful evidence. Graphics Press LLC, 2006, 213 p (cited on
page 61).

[48] Wankang Zhao et al. “Improving WCET by applying worst-case path optimiza-
tions”. In: Real-Time Systems 34.2 (June 2006), pages 129–152. doi: 10 . 1007 /
s11241-006-8643-4 (cited on page 4).

[49] Joseph A Fisher, Paolo Faraboschi, and Clifford Young. Embedded computing: a
VLIW approach to architecture, compilers and tools. Morgan Kaufmann Publishers,
2005, page 671 (cited on page 1).

[50] KevinHammond et al. “The Embounded project (project start paper)”. In: Trends
in Functional Programming. Edited byMarko C J D van Eekelen. Volume 6. Trends
in Functional Programming. Intellect, 2005, pages 195–210 (cited on page 3).

[51] Ingomar Wenzel et al. “Automatic Timing Model Generation by CFG Partition-
ing and Model Checking”. In: DATE. IEEE Computer Society, 2005, pages 606–
611 (cited on page 3).

[52] Christian Wimmer and Hanspeter Mössenböck. “Optimized interval splitting
in a linear scan register allocator”. In: Proceedings of the International Conference
on Virtual Execution Environments. VEE ’05. ACM, 2005, pages 132–141 (cited on
page 75).

[53] Susanna Byhlin. “Evaluation of Static Time Analysis for Volcano Communica-
tions TechnologiesAB”. PhD thesis.MälardalenUniversity, 2004 (cited onpage 2).

[54] JosephAFisher, Paolo Faraboschi, andCliffYoung.Embedded Computing: AVLIW
Approach to Architecture, Compilers and Tools. Morgan Kaufmann, Dec. 2004 (cited
on page 1).

[55] LoukasGeorgiadis andRobert ETarjan. “Findingdominators revisited: extended
abstract”. In: Proceedings of the Symposium on Discrete Algorithms. SODA ’04. Soci-
ety for Industrial andAppliedMathematics, 2004, pages 869–878 (cited onpage 53).

http://dx.doi.org/10.1109/CGO.2006.28
http://dx.doi.org/10.1109/CGO.2006.28
http://dx.doi.org/10.1145/1134650.1134666
http://dx.doi.org/10.1007/s11241-006-8643-4
http://dx.doi.org/10.1007/s11241-006-8643-4

108 Bibliography

[56] Guillem Bernat, Antoine Colin, and Stefan M Petters. “pWCET, a Tool for Prob-
abilistic WCET Analysis of Real-Time Systems”. In: 3rd International Workshop
on Worst-Case Execution Time Analysis (WCET 2003). 2003, pages 21–38 (cited on
page 3).

[57] Christian Ferdinand, Reinhold Heckmann, and Henrik Theiling. “Convenient
User Annotations for aWCET Tool”. In: Proc. 3rd International Workshop onWorst-
Case Execution Time Analysis. Porto, Portugal, July 2003, pages 17–20 (cited on
page 3).

[58] R. Heckmann et al. “The influence of processor architecture on the design and
the results ofWCET tools”. In:Proceedings of the IEEE 91.7 (July 2003), pages 1038–
1054. doi: 10.1109/JPROC.2003.814618 (cited on page 4).

[59] Fabian Wolf, Jan Staschulat, and Rolf Ernst. “Associative caches in formal soft-
ware timing analysis”. In: DAC ’02: Proceedings of the 39th annual Design Automa-
tion Conference. New York, NY, USA: ACM, 2002, pages 622–627. doi: http://
doi.acm.org/10.1145/513918.514076 (cited on page 3).

[60] Antoine Colin and Isabelle Puaut. “A Modular and Retargetable Framework for
Tree-basedWCET Analysis”. In: Proc. 13th Euromicro Conference on Real-Time Sys-
tems. Technical University of Delft. Delft, Netherland, June 2001, pages 37–44
(cited on page 3).

[61] John Ellson et al. “Graphviz - Open Source Graph Drawing Tools”. In: Graph
Drawing 2265 (2001), pages 483–484. doi: 10.1007/3-540-45848-4 (cited on
page 61).

[62] MatthewRGuthaus et al. “MiBench:A free, commercially representative embed-
ded benchmark suite”. In:Proceedings of theWorkshop onWorkload Characterization.
2001 (cited on page 38).

[63] Raimund Kirner.User’s Manual – WCET-Analysis Framework based on wcetC. 0.0.3.
Vienna University of Technology. Vienna, Austria, July 2001 (cited on page 3).

[64] Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. “Efficient Longest
Executable Path Search for Programs with Complex Flows and Pipeline Effects”.
In: Proc. of the Conference on Compilers, Architecture, and Synthesis for Embedded Sys-
tems. ACM, 2001, pages 132–140 (cited on pages 4, 49).

[65] Jakob Engblom andAndreas Ermedahl. “Modeling complex flows forworst-case
execution time analysis”. In: Proceedings 21st IEEE Real-Time Systems Symposium.
RTSS ’00. IEEE, 2000, pages 163–174. doi: 10.1109/REAL.2000.896006 (cited on
page 3).

[66] ChristopherAHealy et al. “Supporting TimingAnalysis byAutomatic Bounding
of Loop Iterations”. In: Real-Time Systems 18.2/3 (2000), pages 129–156 (cited on
page 3).

[67] Niklas Holsti, Thomas Långbacka, and Sami Saarinen. “Using a Worst-Case Ex-
ecution Time Tool for Real-Time Verification of the DEBIE Software”. In: Proc. of
the Data Systems in Aerospace Conference. ESA, 2000, page 307 (cited on page 16).

http://dx.doi.org/10.1109/JPROC.2003.814618
http://dx.doi.org/http://doi.acm.org/10.1145/513918.514076
http://dx.doi.org/http://doi.acm.org/10.1145/513918.514076
http://dx.doi.org/10.1007/3-540-45848-4
http://dx.doi.org/10.1109/REAL.2000.896006

Bibliography 109

[68] Niklas Holsti, Thomas Långbacka, and Sami Saarinen. “Worst-Case Execution
Time Analysis for Digital Signal Processors”. In: European Signal Processing Con-
ference 2000 (EUSIPCO 2000). Space Systems Finland Ltd. 2000 (cited on page 3).

[69] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. “Fast and Precise
WCET Prediction by Separated Cache and Path Analyses”. In: Real-Time Systems
18.2/3 (2000), pages 157–179 (cited on pages 12, 84).

[70] Hiralal Agrawal. “Efficient coverage testing using global dominator graphs”. In:
ACM SIGSOFT Software Engineering Notes 24 (1999), pages 11–20. doi: 10.1145/
381788.316166 (cited on page 75).

[71] Christian Ferdinand and Reinhard Wilhelm. “Efficient and Precise Cache Be-
havior Prediction for Real-Time Systems”. In: Real-Time Systems 17.2-3 (1999),
pages 131–181. doi: 10.1023/A:1008186323068 (cited on page 40).

[72] Thomas Lundqvist and Per Stenström. “An Integrated Path and TimingAnalysis
Method based on Cycle-Level Symbolic Execution”. In: Real-Time Systems 17.2-3
(1999), pages 183–207 (cited on page 3).

[73] John T. Stasko et al. Software visualization : Programming as a multimedia experience.
MIT Press, 1998, 562 s (cited on page 76).

[74] Peter P Puschner and Anton V Schedl. “Computing Maximum Task Execution
Times -AGraph-BasedApproach”. In:Real-Time Systems 13.1 (July 1997), pages 67–
91 (cited on pages 3, 51, 84).

[75] Randall T White et al. “Timing Analysis for Data Caches and Set-Associative
Caches”. In: Proceedings of the Real-Time Technology and Applications Symposium.
RTAS ’97. IEEE, 1997, pages 192–203 (cited on page 40).

[76] Thomas Ball and Stephen G. Eick. “Software visualization in the large”. In: Com-
puter 29.4 (Apr. 1996), pages 33–43. doi: 10.1109/2.488299 (cited on page 76).

[77] Thomas Ball and James R Larus. “Efficient Path Profiling”. In: IEEE/ACM Int’l
Symp. on Microarchitecture (MICRO-29) (Dec. 1996) (cited on page 76).

[78] Yau-Tsun Steven Li and SharadMalik. “PerformanceAnalysis of Embedded Soft-
ware using Implicit Path Enumeration”. In: Proceedings of the Design Automation
Conference. DAC ’95. ACM, 1995, pages 456–461. doi: 10.1145/217474.217570
(cited on pages 3, 51, 84).

[79] Georg Sander. “Graph layout through the VCG tool”. In: Graph Drawing (1995).
doi: 10.1007/3-540-58950-3_371 (cited on page 77).

[80] Hiralal Agrawal. “Dominators, super blocks, and program coverage”. In: Proc.
POPL. 1994, pages 25–34. doi: 10.1145/174675.175935 (cited on pages 51, 75).

[81] Roderick Chapman, Alan Burns, andAndyWellings. “Integrated ProgramProof
andWorst-case Timing Analysis of SPARKAda”. In: Proc. ACMWorkshop on Lan-
guage, Compiler and Tool Support for Real-time Systems. June 1994, K1–K11 (cited on
page 3).

http://dx.doi.org/10.1145/381788.316166
http://dx.doi.org/10.1145/381788.316166
http://dx.doi.org/10.1023/A:1008186323068
http://dx.doi.org/10.1109/2.488299
http://dx.doi.org/10.1145/217474.217570
http://dx.doi.org/10.1007/3-540-58950-3_371
http://dx.doi.org/10.1145/174675.175935

110 Bibliography

[82] Michael Dunlavey. Building Better Applications: A Theory of Efficient Software De-
velopment. 1st. New York, NY, USA: John Wiley and Sons, Inc., 1994 (cited on
page 76).

[83] Chang Yun Park. “Predicting Deterministic Execution Times of Real-Time Pro-
grams”. PhD thesis. Seattle, USA:University ofWashington, 1992 (cited onpage 3).

[84] Alexander Vrchoticky.Modula/R – Language Definition. Technical report 02/1992.
Treitlstr. 1-3/182-1, 1040 Vienna, Austria: Technische Universität Wien, Institut
für Technische Informatik, 1992 (cited on page 3).

[85] Alan C Shaw. “Reasoning about time in higher level language software”. In:
IEEE Transactions on Software Engineering 15.7 (July 1989), pages 875–889 (cited
on page 3).

[86] Moyer Chen. A Timing Analysis Language – (TAL). Dept. of Computer Science,
University of Texas. Austin, TX, USA, 1987 (cited on page 3).

[87] Eugene Klingerman and Alexander D Stoyenko. “Real-Time Euclid: A Language
for Reliable Real-Time Systems”. In: IEEETransactions on Software Engineering 12.9
(1986), pages 941–989 (cited on page 3).

[88] Susan L Graham, Peter B Kessler, andMarshall KMcKusick. “gprof: a call graph
execution profiler (with retrospective)”. In: Best of PLDI. Edited by Kathryn S
McKinley. ACM, 1982, pages 49–57 (cited on page 76).

[89] Mark Weiser. “Program Slicing”. In: Proceedings of the Conference on Software En-
gineering. ICSE ’81. IEEE, 1981, pages 439–449 (cited on page 96).

[90] Thomas Lengauer and Robert Endre Tarjan. “A fast algorithm for finding domi-
nators in a flowgraph”. In: ACM Trans. Program. Lang. Syst. 1.1 (1979), pages 121–
141 (cited on pages 53, 54, 59).

[91] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of Fix-
points”. In: Proceedings of the Symposium on Principles of Programming Languages.
POPL ’77. ACM, 1977, pages 238–252. doi: 10.1145/512950.512973 (cited on
pages 84, 97).

[92] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: 12th Annual
Symposium on Switching and Automata Theory (swat 1971). Volume 1. SWAT ’71 2.
IEEE, Oct. 1971, pages 114–121. doi: 10.1109/SWAT.1971.10 (cited on page 54).

[93] Clark Evans et al. YAML Ain’t Markup Language. 2014. url: http://yaml.org/
(Retrieved 01/30/2014) (cited on page 13).

[94] Freescale Semiconductor. e200z6 PowerPCCore ReferenceManual Rev. 0 06/04. 2014.
url: http://www.freescale.com/ (Retrieved 01/30/2014) (cited on page 12).

[95] Freescale Semiconductor.MPC5553/5554Microcontroller ReferenceManual Rev. 5.1
03/12. 2014. url: http://www.freescale.com/ (Retrieved 01/30/2014) (cited
on page 12).

http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1109/SWAT.1971.10
http://yaml.org/
http://www.freescale.com/
http://www.freescale.com/

Bibliography 111

[96] FSF – Free Software Foundation. GCC, the GNU Compiler Collection. 2014. url:
http://gcc.gnu.org/ (Retrieved 01/30/2014) (cited on page 4).

[97] The LLVM Project. The LLVM Compiler Infrastructure. 2014. url: http://llvm.
org/ (Retrieved 01/30/2014) (cited on page 4).

[98] Mälardalen University. Benchmarks for WCET Analysis. 2014. url: \url{http://
www.mrtc.mdh.se/projects/wcet/benchmarks.html} (Retrieved 01/30/2014)
(cited on page 16).

[99] COIN-OR The Computational Infrastructure for Operations Research. 2014. url:
http://www.coin-or.org/ (Retrieved 01/30/2014) (cited on page 62).

[100] Programming paradigms group. Firm. 2014. url: http://pp.ipd.kit.edu/
firm/ (Retrieved 01/30/2014) (cited on page 77).

[101] The T-CREST Project. Patmos A Time-predictable Processor for Real-Time Systems.
2014. url: http://patmos.compute.dtu.dk/ (Retrieved 01/30/2014) (cited on
pages 12, 16).

[102] The T-CREST Project. T-CREST Github repository. 2014. url: http://github.
com/t-crest/ (Retrieved 01/30/2014) (cited on pages 3, 13).

[103] The T-CREST Project. Time-predictable Multi-Core Architecture for Embedded Sys-
tems. 2014. url: http://www.t-crest.org/ (Retrieved 01/30/2014) (cited on
pages 13, 16).

http://gcc.gnu.org/
http://llvm.org/
http://llvm.org/
\url{http://www.mrtc.mdh.se/projects/wcet/benchmarks.html}
\url{http://www.mrtc.mdh.se/projects/wcet/benchmarks.html}
http://www.coin-or.org/
http://pp.ipd.kit.edu/firm/
http://pp.ipd.kit.edu/firm/
http://patmos.compute.dtu.dk/
http://github.com/t-crest/
http://github.com/t-crest/
http://www.t-crest.org/

Curriculum Vitae

Personal Data
Name Alexander Jordan
Date of birth 26.02.1982
Place of birth Vienna
Nationality Austrian
Address Badgasse 22/12, 1090 Wien
email ajordan@complang.tuwien.ac.at

Employment
History Technical University of Denmark (DTU), Embedded Systems Engineering Sec-

tion, Department of Informatics and Mathematical Modelling

Research Assistant December 2013 to present

Project: Time-predictable Multi-Core Architecture for Embedded Systems
(T-CREST)

Vienna University of Technology, Institute of Computer Languages, Compilers
and Languages Group

Research Assistant October 2009 to December 2013

Project: Optimal Code Generation for Explicitly Parallel Processors (EPICOpt)

STMicroelectronics, Compilation Expertise Center, Grenoble.

Internship July to October 2012

StreamUnlimited Engineering GmbH, Vienna, Austria

Software Engineer, Software Architect April 2005 to March 2010

Audio/Video Innovation Center, Philips Electronics, Vienna, Austria

Software Tester, Integration Engineer July 2003 to March 2005

Vienna University of TechnologyEducation

Doctoral Studies in Computer Science October 2009 to present
Advised by Andreas Krall

MSc in Computer Science 2005-2007
Field: Software Engineering & Internet Computing with specialization in
compilation and virtual machines
Graduated with distinction

BSc in Computer Science 2001-2005
Field: Software Engineering & Internet Computing

ACACES 2010: Sixth International Summer School on Advanced ComputerSummer School
Architecture and Compilation for High-Performance and Embedded Systems,
Terrassa (Barcelona), Spain, July 2010.

Publications

• Florian Brandner and Alexander Jordan. “Refinement of Worst-Case Execution
Time Bounds by Graph Pruning”. (under submission).

• Alexander Jordan. “Evaluating and Estimating the WCET Criticality Metric”. In:
Proceedings of the 11th Workshop on Optimizations for DSP and Embedded Systems.
ODES ’14. (accepted for publication). ACM, 2014.

• Florian Brandner, Stefan Hepp, and Alexander Jordan. “Criticality: static profil-
ing for real-time programs”. In: Real-Time Systems (Oct. 2013). (published online,
pending print).

• Alexander Jordan, Florian Brandner, and Martin Schoeberl. “Static Analysis of
Worst-case Stack Cache Behavior”. In: Proceedings of the 21st International Confer-
ence on Real-Time Networks and Systems. RTNS ’13. ACM Press, 2013, pages 55–
64.

• Alexander Jordan and Christophe Guillon. “Lightweight Scheduling in a Single-
Pass JavaScript JIT Compiler”. In: International Workshop on Dynamic Compilation
Everywhere, Berlin, January 2013. 2013.

• Alexander Jordan, Nikolai Kim, and Andreas Krall. “IR-level versus machine-
level if-conversion for predicated architectures”. In: Proceedings of the 10th Work-
shop on Optimizations for DSP and Embedded Systems - ODES ’13. ACM Press, 2013,
page 3.

• Florian Brandner, Stefan Hepp, and Alexander Jordan. “Static profiling of the
worst-case in real-time programs”. In: Proceedings of the International Conference
on Real-Time and Network Systems. RTNS ’12. ACM Press, 2012, pages 101–110.

	Introduction
	Worst-Case Execution Time Analysis
	Implicit Path Enumeration Technique (IPET)

	Motivation
	Contribution
	Thesis Outline

	Preliminaries
	Definitions
	Program Representation
	Worst-Case Execution Time Analysis

	Analysis Evaluation
	Target Processors
	Real-Time Benchmarks

	Precise Stack Cache Analysis
	The Stack Cache
	Stack Cache Implemented in Hardware

	Stack Cache Analysis
	Stack Cache Displacement
	Data-Flow Analyses
	Worst-Case Spilling
	Combining the Analyses

	IPET Integration
	Well-Formed Programs
	Evaluation
	Related Work

	Criticality
	The Criticality Metric on Control-Flow Graphs
	Properties of Criticality
	Invariant Code

	Algorithms for Computing Criticality
	Dynamic Programming on Acyclic Graphs
	Path Enumeration on Cyclic Graphs
	Handling Critical Edges
	Pruned Criticality Computation

	Estimating Criticality
	Visualization
	Evaluation
	Code Structure of Real-Time Programs
	Criticality Computation for the Debie Benchmark
	Criticality Overview of Real-Time Programs
	Estimation Results

	Discussion
	Application of the Criticality Metric

	Related Work

	Graph Pruning
	Sources of Overestimation
	Algorithm
	Correctness
	Complexity
	Algorithm Variants

	Evaluation
	Case Study: debie-1
	Setup for Experiments
	Iterative Graph Pruning
	Two-stage Iterative Graph Pruning
	Discussion

	Related Work

	Closing
	Bibliography
	Curriculum Vitae

