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Abstract 

Metal nanoparticles (NPs) have unique physicochemical properties and a widespread application 

scope depending on their composition and surface characteristics. Potential biomedical applications 

and the growing diversity of novel nanocomposites highlight the need for toxicological hazard 

assessment of next generation magnetic nanomaterials. Our study aimed to evaluate the cytotoxic 

and genotoxic properties of coated and uncoated ferric cobalt boron (FeCoB) NPs (5-15 nm particle 

size) in cultured human dermal fibroblasts (NHDFs). Cell proliferation was assessed via ATP 

bioluminescence kit, DNA breakage and chromosomal damage were measured by alkaline comet 

assay and micronucleus test. 

Polyacryl acid-coated FeCoB NPs (PAA-FeCoB NPs) and uncoated FeCoB NPs inhibited cell 

proliferation at 10 µg ml-1. DNA strand breaks were significantly increased by PAA-coated FeCoB 

NPs, uncoated FeCoB NPs and l-cysteine-coated FeCoB NPs (Cys-FeCoB NPs), although high 

concentrations (10 µg ml-1) of coated NPs (Cys- and PAA-FeCoB NPs) showed significantly more 

DNA breakage when compared to uncoated ones. Uncoated FeCoB NPs and coated NPs (PAA-

FeCoB NPs) also induced the formation of micronuclei. Additionally, PAA coated NPs and 

uncoated FeCoB NPs showed a negative correlation between cell proliferation and DNA strand 

breaks, suggesting a common pathomechanism, possibly by oxidation induced DNA damage. 

We conclude that uncoated FeCoB NPs are cytotoxic and genotoxic at in vitro conditions. Surface 

coating of FeCoB NPs with Cys and PAA does not prevent but rather aggravates DNA damage. 

Further safety assessment and a well-considered choice of surface coating are needed prior to 

application of FeCoB nanocomposites in biomedicine. 

Keywords: FeCoB, magnetic nanoparticles, chromosomal damage, DNA damage, next generation 

nanomaterials, surface coatings 
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Introduction and Background 1 

Over the past decades, engineered nanomaterials (NMs) have been used to enhance products 2 

with certain desired characteristics in a growing diversity of fields, including construction, 3 

electronics and health care (1). Particularly metal NMs with magnetic properties are increasingly 4 

designed for biomedical applications in nanomedicine, such as cell separation, drug delivery, 5 

hyperthermia and diagnostic resonance imaging, using specific surface coatings to optimise particle 6 

stability, solubility and targeting properties. (2) 7 

Potential toxicological properties of synthetic nanocomposites, however, are raising safety and 8 

health considerations in regards to human and environmental exposure. Since even materials that 9 

are known to be chemically inert can be reactive at nanoscale size, (3) it is assumed that the 10 

heightened reactivity of NMs may cause adverse health effects. (4) This has been supported by 11 

previous in vitro and in vivo studies showing that nanoparticles (NPs) may induce cytotoxicity, 12 

genotoxicity, oxidative stress and inflammation in various human cell lines and animals. (5-10) 13 

Interaction of NPs with mammalian cells depends on the size as well as the chemical and physical 14 

properties of the respective particle. (11) Surface characteristics of NPs, like surface coating, are 15 

also decisive for toxicity. (12, 13) (10.1016/j.toxlet.2017.02.010) Previous studies have 16 

demonstrated that NPs can cause cell damage directly by passing through the cell membrane, or 17 

indirectly by inducing reactive oxygen species (ROS) or inflammation.(7, 14) Once intracellular, 18 

given their small particle size, NPs may gain access to the cellular nucleus either by diffusion, 19 

across nuclear pore complexes or by chance. (15-18) Once inside the nucleus, direct interaction 20 

between NPs and DNA molecules or DNA related proteins can lead to physical damage of the 21 

genetic material. The currently available literature presents partially inconsistent results on 22 

cytotoxicity and genotoxicity of NPs, possibly due to a lack of standardised study methods in the 23 

past and the enormous variety of engineered NMs. (14) Future studies have yet to determine 24 

whether NPs in general or specific physicochemical features of NPs are harmful to humans and the 25 

environment. (19, 20) 26 
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Although the benefits of applying next generation magnetic NM for biomedical purposes are 27 

clearly established, the reactivity of nano-carriers and their surface coatings may lead to adverse 28 

health effects in resident tissues.(4) Assessment of interactions between different nanocomposites 29 

and biological entities could contribute to a safer design of NM, (21) since even coated nontoxic 30 

gold nanoparticles have been shown to disrupt intracellular pathways and induce higher 31 

susceptibility to apoptotic stimuli in human myocytes. (10.1016/j.tiv.2015.02.010) FeCoB NPs are 32 

currently evaluated for use in the electronic industry as magnetic shielding materials, e.g. in 33 

microwave absorbers and computer memory compounds. (22, 23) Due to their magnetic properties, 34 

FeCoB NPs are also potential next generation NMs candidates for use in nanomedicine. Provided 35 

compatible surface coatings to ensure stability and solubility in vivo, such as polyacrylic acid 36 

(PAA) and l-cysteine (Cys), (24, 25) applications in targeted drug delivery and resonance imaging 37 

are feasible. In regard to biomedical applications recent research on cobalt ferrite (CoFe) NPs 38 

(10.1016/j.msec.2012.09.003) indicates a cytotoxic and genotoxic potential in human and animal 39 

cell lines in vitro (doi.org/10.1007/s1201)(10.1021/acs.chemrestox.6b00377) 40 

(10.1371/journal.pone.0168727), however, little is known about the specific toxicity of coated and 41 

uncoated FeCoB NPs to human cells.  42 

The primary objective of this study was to investigate whether FeCoB NPs induce cytotoxic 43 

and genotoxic damages in normal human dermal fibroblasts (NHDFs) to 5-15 nm ferric cobalt 44 

boron (FeCoB) NPs at increasing concentrations. The second objective aimed to investigate 45 

whether Cys and PAA as surface coatings can modulate any observed cytotoxic and genotoxic 46 

effects of FeCoB NPs.  47 

48 
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Materials and Methods 49 

Nanoparticle synthesis and preparation of nanoparticle suspensions 50 

Ferric(II) sulphate heptahydrate (FeSO4•7H2O), cobalt(II) chloride hexahydrate (CoCl2•6H2O 98%), 51 

sodium borohydride (NaBH4 97%), formic acid (HCOOH), dioctyl sulfosuccinate sodium salt 52 

(AOT), (1-hexadecyl)trimethylammonium bromid (CTAB), polyacrylic acid 25 wt% solution in 53 

water (PAA), L-cysteine 98% and toluene are purchased from Alfa Aesar. Methanol, chloroform, 54 

hexane and acetone are obtained from Sigma-Aldrich. All the chemicals are used as received 55 

without further purification. Distilled water is used throughout. 56 

Three FeCoB NP types (uncoated FeCoB NPs, PAA-coated FeCoB NPs and Cys-coated FeCoB 57 

NPs) were synthesised from a two-phase system consisting of water and an organic solvent 58 

(hexane) (26-29) The concentration of additionally added surfactants determines the size of the 59 

water micelles within the organic solvent. As surfactant, dioctyl sulfosuccinate sodium salt (AOT), 60 

[1-Hexadecyl]-trimethyl-ammonium-bromide [CTAB] and dodecylbenzenesulfonic acid sodium 61 

salt (DBSNa) are employed at a concentration of 0.3 M. Initially, two separate emulsions containing 62 

the metal salts (FeSO4 and CoCl2, 0.3 M, emulsion A) and the reducing agent (NaBH4, 0.6 M, 63 

emulsion B) are prepared. Next, the synthesis is initialised by adding emulsion B drop by drop to 64 

emulsion A under vigorous stirring at room temperature. When micelles of both solutions combine, 65 

microreactors are formed that allow the reduction of the metal salts. Core-shell type nanoparticles 66 

are prepared by adding lyophylic agents (L-cys or PAA) to emulsion A at a concentration of 10-20 67 

mM. (30) Next, the synthesised nanoparticles are washed several times by centrifugation or 68 

separation with a magnet and resuspension in water, acetone or a 1:1 suspension of chloroform and 69 

methanol. Afterwards, the nanoparticles are dried for storage.  70 

A stock solution of 10 µg ml-1 of each NP type was prepared in the NHDF medium (Promocell) and 71 

sonicated for at least 10 minutes in a bath-type sonicator (Sonorex Digital 10P, Bandelin). Cells 72 
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were aseptically treated with three concentrations each of uncoated and PAA-/Cys-coated FeCoB 73 

NPs: 0.1 µg ml-1, 1 µg ml-1 and 10 µg ml-1. 74 

Characterization of nanoparticle suspensionFor characterization of aqueous NP suspensions, NP 75 

powder was re-suspended in various solutions in a 15 mL tube (Falcon) at a concentration of 1mg 76 

mL-1. The particle suspension was exposed to ultrasonic forces for 20 min in order to obtain small 77 

aggregates and to keep particles in a floating state using a Bandelin SONOREX™ Digital 10 P 78 

ultrasonic bath. Next, particle suspensions were allowed to rest for either 6 hours or 6 days. 79 

Supernatants of former suspensions were removed and applied to gravimetric measurements. 80 

Gravimetric measurements were applied in 25 mL glass beakers (Schott), which were dried at 81 

120°C. The weight of empty vessels was documented. 5mL of each suspension was transferred into 82 

the dried vessels in order to evaporate the aqueous solvent in a 100°C heating chamber. Next, 83 

samples were allowed to cool down to room temperature in dried atmosphere until a constant mass 84 

could be measured. Finally net weight of dried NP was calculated. 85 

Particle size distribution in solvents, either DI water or mammalian cell growth medium, was 86 

characterised via diffractive light scattering (DLS) measurements. 1mL of each suspension was 87 

applied to a “Küvette” and measured in the NanoZS zetasizer by Malvern. Consequently, we 88 

employed transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) 89 

as well as gravimetric methods to analyse the in-house synthesised colloidal FeCoB-NP solutions 90 

using a water/oil microemulsion method.(40) 91 

Cell culture Normal human dermal fibroblasts (NHDF) were purchased from Promocell 92 

(Heidelberg, Germany), and routinely cultured in Dulbecco’s modified eagle’s medium DMEM 93 

(GIBCO, Paisley, UK) supplemented with 10% heat-inactivated foetal calf serum (FCS) 94 

(Biochrom, Berlin, Germany) without antibiotics for ATP bioluminescence and micronucleus test, 95 

and fibroblast growth medium (Promocell) without antibiotics for comet assay. Cells were grown as 96 

monolayers (standard conditions) in 175 cm2 flasks (Falcon, Becton Dickinson, Lincoln Park, NJ) 97 



Cytotoxic and genotoxic effects of coated and uncoated FeCoB Nanoparticles in vitro K. Netzer et al. 

7 

 

at 37 °C in humidified atmosphere containing 5% CO2 by seeding 5x106 cells in 25 ml of 98 

appropriate medium. Upon confluency, cells were split using the sterile method. The old medium 99 

was discarded and the cells were washed in 5 ml phosphate buffered saline (PBS, GIBCO, Paisley, 100 

UK) for bioluminescence and micronucleus test and HepesBSS (Promocell) for comet assay. 3 ml 101 

of trypsin/EDTA solution (GIBCO, Invitrogen, Paisley, UK for bioluminescence and micronucleus 102 

test and Promocell for comet assay) were added to detach the cells from the flask. 5 ml medium was 103 

pipetted into a 15 ml tube (Falcon) and the detached cell suspension was added. The cells were 104 

centrifuged for 5 minutes at 200 g at 25 °C. The supernatant was discarded to remove the 105 

trypsin/EDTA and the cells were suspended in fresh medium. The cell suspension was then pipetted 106 

into fresh culture flasks with a total of 25 ml medium each and then incubated. Fifth to tenth 107 

passage cells were used for all experiments. Cellular viability was assessed routinely by trypan blue 108 

exclusion.(31) Only cells exhibiting ≥ 80 % viability were used for the following experiments. 109 

Cell Proliferation measured by ATP Bioluminescence Kit I 110 

Initially, cell proliferation in the presence of increasing concentrations of FeCoB 111 

nanoparticles was investigated using the ATP bioluminescence assay. Cell proliferation is energy 112 

dependent and requires ATP. When ATP levels fall under a certain point the cell will die since it no 113 

longer has the energy to perform basic functions. During apoptosis the ATP levels in a cell decrease 114 

significantly. Therefore, a decline of ATP levels indicates inhibited cell proliferation and cell death 115 

while an incline is indicative of cell proliferation. The bioluminescence assay uses luciferase to emit 116 

ATP and luciferin. For experiments, 7,500 fibroblasts per well were incubated in 96-well flat 117 

bottom well plates (NUNC) with DMEM+10% FCS at 37 °C in a humidified atmosphere 118 

containing 5% CO2. After the pre-incubation period of 24 hours the cells were exposed to 0.1, 1 and 119 

10 µg ml-1 of the three NP types and incubated for 20 hours at 37 °C in a humidified atmosphere 120 

containing 5% CO2. Quantitative ATP levels of exposed fibroblasts were then analysed by 121 

measuring the emitted intensity of light [proportional to ATP levels(32)] by a luminometer (Victor 122 

3, Perkin Elmer). For each NP type and concentration 3x96-well plates were used making a total of 123 
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12 wells per dose treatment (12 repeats). The 96-well plate was measured according to the 124 

manufacturer’s instruction.  125 

Genotoxicity 126 

Alkaline Comet Assay  127 

The comet assay was used to investigate DNA damage in order to assess the genotoxic 128 

effects of FeCoB NPs on human fibroblasts. The comet assay, also called single-cell gel 129 

electrophoresis assay (SCGE), is very sensitive, fast, and versatile. It measures single- and double-130 

stranded DNA breaks at the level of single cells. When alkaline adapted, as in the present paper, the 131 

assay can also be used for the quantification of alkali-labile sites.(33, 34) It has been considered a 132 

suitable method for analysing nanoparticle-induced oxidative DNA damage. (35) A suspension of 133 

exposed individual cells in a low melting agarose gel is layered over a microscope slide. After the 134 

agarose solidifies, the cells are lysed and the DNA is electrophoresed. During the electrophoresis 135 

the intact chromosomes hardly move at all. But DNA fragments are smaller and travel further. This 136 

results in the typical comet shape with the tail extending toward the anode. The length and the 137 

relative fluorescence intensity (percentage of DNA in tail) to the head of the comet are measured. It 138 

is directly proportional to the level of DNA damage. (34, 36) The experiment for detection of DNA 139 

breakage was performed with 50,000 NHDFs, which were exposed to 0.1, 1 and 10 µg ml-1 of the 140 

three NP types for 48 hours. After lapse of the exposure time cells were washed, trypsinised and 141 

suspended in low melting point agarose (purchased from Invitrogen life technologies, Spain) and 142 

cased on glass slides with normal melting agarose (purchased from Invitrogen life technologies, 143 

Spain). When the first mentioned agarose was solidified the glass slides were suspended in freshly 144 

prepared and pre-cooled cell lysis solution for at least one hour at 4 °C. Following, electrophoresis 145 

was conducted in alkaline electrophoresis buffer for 20 minutes (conditions: 300 mA, 24 V/cm at 4 146 

°C). After completion of the electrophoresis run time the slides were treated with neutralization 147 

buffer twice for 8 minutes. The slides were air-dried for 12 to 24 hours at room temperature to let 148 



Cytotoxic and genotoxic effects of coated and uncoated FeCoB Nanoparticles in vitro K. Netzer et al. 

9 

 

them dry completely until stained with ethidium bromide (Sigma) and examined by fluorescence 149 

microscopy at 250 x magnification. Image analysis was performed using 'Comet Assay IV' software 150 

(Perspective Instruments, UK) and Axiophot fluorescence microscope (NIKON Japan 520490) 151 

attached to a Stingray camera (Allied Vision Technologies, Newburyport, MA, USA). The software 152 

automatically calculated values of the tail intensity. All experiments were carried out at least two 153 

times in duplicate.  154 

Micronucleus Test  155 

As a second and completing genotoxicity test we have chosen the micronucleus test for the 156 

detection of micronuclei (MN) in the cytoplasm of interphase fibroblasts where they may originate 157 

as an erratic (third) nucleus from acentric chromosome fragments which is not carried to the poles 158 

during the anaphase stage of cell division.  159 

Micronuclei are particles that contain chromatin. They are completely separated from the nucleus 160 

and are located in the cytoplasm.(37) The formation of a micronucleus (MN) happens during 161 

mitosis (metaphase/anaphase transition). The cause of a micronucleus can be either a whole 162 

chromosome that was not pulled into one of the newly forming nuclei or an acentric chromosome 163 

fragment. 30,000 NHDFs per slide flask were incubated with DMEM+10% FCS at 37 °C in a 164 

humidified atmosphere containing 5% CO2. After the incubation period of 4 hours the cells were 165 

incubated with the three NP types at the concentrations of 0.1, 1 and 10 µg ml-1 for 72 hours at 37 166 

°C in a humidified atmosphere containing 5% CO2. After 72 hours incubation the cells were fixed 167 

and analysed according to Fenech et al. (1985). Micronuclei, defined as rounded bodies, no more 168 

than one-third the size of the nucleus, having staining colour and intensity identical to the staining 169 

of nuclei, and completely detached from nuclei(38), were scored in up to 2,000 binucleate cells. The 170 

data for the two samples from the NP concentrations were pooled. The total MN score per 2,000 171 

binucleate cells were calculated.  172 

Statistical Analysis 173 
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Additionally to the three toxicity tests described above, statistical correlations between cyto- 174 

and genotoxicity were conducted in order to analyse their interrelationship and possible causal 175 

mechanisms in cell and DNA damage.  176 

Analysis was performed applying the statistical package SPSS 20.0 (SPSS, Chicago, IL). A 177 

probability value <0.05 was considered as statistically significant. Continuous variables are 178 

expressed as median and range if the assumption of a normal distribution is violated. Groups are 179 

compared by Student's t-test or Mann Whitney U test, and the Kruskal-Wallis (H) test as 180 

appropriate. Cell proliferation, tail intensity and MN were examined as a continuous variable. 181 

Correlation was calculated by the non-parametric Spearman Rho.182 
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Results 183 

The actual size, structure and composition of employed magnetic nanoparticles had to be 184 

first determined prior to estimating their toxicity on cell cultures. Although often overlooked in 185 

nanotoxicological research, the determination of material characteristics is crucial for a sound 186 

understanding of NP interaction with medium components and biological substances, such as 187 

proteins and cells.(39) It is important to note that due to the absence of accredited reference 188 

nanomaterials for FeCoB-based magnetic nanomaterials and the limited information provided by 189 

manufacturing industry regarding synthesis routes and detergents used to stabilize the nanoparticle 190 

suspensions, in-house synthesised FeCoB nanoparticle suspensions were used to provide 191 

information on nanomaterial size, size distribution, agglomeration state and surface charges. Results 192 

of TEM analysis revealed that FeCoB nanoparticles are of spherical shape and consist of a core-193 

shell structure of approx. 8 nm outer diameter (see Fig. 1a, b). As Fe and Co are distributed evenly 194 

while B is mostly present in the nanoparticle cores (see EELS analysis in Figure 2), the NP shell is 195 

most likely composed of FeOOH and Co(OH)2 groups due to oxidation caused by NP storage at 196 

ambient air. The assumption of a core-shell structure of the CoFeB nanoparticles is further 197 

supported by EELS spectra taken across a larger area of agglomerated particles. From the spectra 198 

(not shown), an atomic composition of the elements Co, Fe and B of 34:36:10 % is deduced. While 199 

the content of iron and Co is identical within the accuracy of the measurement, the boron content is 200 

reduced due to the depletion of this element in the shell of the nanoparticles.  201 

Gravimetric analysis of the uncoated and coated FeCoB nanoparticle suspensions showed 202 

that in the absence of stabilizing agents rapid settling of large agglomerates occurred within 30 min. 203 

However, after 6 hours resting period a stable NP suspension containing a concentration of 204 

approximately 300 µg ml-1 for all three types of particles was obtained. Additional stability testing 205 

(data not shown) revealed nearly unchanged concentrations of coated and uncoated FeCoB 206 

nanoparticles over a period of six days in mammalian cell culture media.  207 
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Next, agglomeration status, measured by electron microscopy and DLS measurements of the 208 

three FeCoB NPs re-suspended in DI water were investigated. Results of the DLS analysis show 209 

similar averaged size of agglomerates of 210 nm for PAA coated and 190 nm for uncoated FeCoB 210 

NPs in DI water. TEM analysis (data not shown) revealed sizes of single domains in the range of 8-211 

15nm.  Interestingly, PAA-coated and Cys-coated FeCoB NP mass showed high fractions of 212 

agglomerates (in %) above 750 nm in DI water. However, in the presence of 50 µg mL-1 buffered 213 

BSA solution averaged sizes of FeCoB-PAA and FeCoB-Cys agglomerates dropped to approx. 210 214 

nm and an accompanying change in surface charge was observed, both pointing at a corona effect 215 

by physic-chemical adsorption of BSA to the nanoparticles’ surface. (41) 216 

Cell Proliferation measured by ATP Bioluminescence KIT 217 

As shown in table 1, the exposure of NHDFs to uncoated FeCoB NPs as well as PAA-218 

FeCoB NPs caused a concentration dependent, statistically significant decrease in cell proliferation 219 

(p = 0.020, p = 0.035, respectively) while Cys-FeCoB NPs did not. A comparison between the NP 220 

types showed a statistically significant difference in cell proliferation at the highest concentration of 221 

10 µg ml-1 only (p = 0.031). 222 

Incubation with 10 µg ml-1 PAA-FeCoB NPs induced a significant decrease in cell proliferation 223 

when compared to the negative control (p = 0.01) and the medium concentration of 1 µg ml-1 (p = 224 

0.029). Uncoated FeCoB NPs caused a significant inhibition of cell proliferation at 10 µg ml-1 225 

compared with the negative control (p = 0.01) as well as the lowest concentration of 0.1 µg ml-1 (p 226 

= 0.029).  227 

Genotoxicity 228 

Alkaline Comet Assay 229 

As shown in table 2, all three investigated NPs (FeCoB, PAA-FeCoB, Cys-FeCoB) caused a 230 

concentration dependent increase in DNA strand breaks (p = 0.016, p = 0.002, p = 0.011, 231 
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respectively). A comparison between the NP types showed a significant difference in DNA strand 232 

breaks at the concentrations of 1 µg ml-1 and 10 µg ml-1 (p = 0.032, p = 0.012, respectively). 233 

At 10 µg ml-1 all three NP types (FeCoB, PAA-FeCoB, Cys-FeCoB) induced significantly more 234 

DNA breakage when compared to the negative control (p = 0.002, p = 0.001 and p = 0.001, 235 

respectively) and to the lowest concentration of 0.1 µg ml-1 (p = 0.029, p = 0.002 and p = 0.002, 236 

respectively). The exposure to 1 µg ml-1 of both kinds of coated NPs (PAA-FeCoB and Cys-237 

FeCoB) resulted in a significant increase of DNA breakage (p = 0.009 and p = 0.001) as compared 238 

to the negative control.  239 

Finally, 10 µg ml-1 of coated NPs (PAA-FeCoB and Cys-FeCoB) induced more DNA strand breaks 240 

than the uncoated NPs (FeCoB) at the same concentration (p = 0.01 both).  241 

Micronucleus Test 242 

A concentration dependent increase in the frequency of micronuclei (MN) was induced by 243 

uncoated FeCoB and PAA-FeCoB (p = 0.002 and p = 0.001, respectively) (Table 3). NHDFs treated 244 

with 10 µg ml-1 of uncoated FeCoB and PAA-FeCoB showed significantly higher levels of MN 245 

when compared to the negative control (p = 0.008 and p = 0.04, respectively), to 0.1 µg ml-1 (p = 246 

0.000, both) and 1 µg ml-1 (p = 0.021 and p  =0.004, respectively). Significant differences were also 247 

observed between the negative control and 0.1 µg ml-1 Cys-FeCoB NPs.  Interestingly, 0.1 µg ml-1 248 

Cys-FeCoB did show lower levels of MN compared to the negative control.   249 

A low negative correlation (r = -0.499, p = 0.001) was observed between the DNA damages 250 

assessed by the comet assay and the inhibition of cell proliferation assessed by the ATP 251 

bioluminescence kit. Considering uncoated FeCoB NPs separately, we found a moderate negative 252 

correlation (r = -0.650, p = 0.022) between comet assay and cell proliferation. Similarly, PAA-253 

coated FeCoB NPs revealed a very strong negative correlation (r = -0.832, p = 0.001) between 254 

comet assay and cell proliferation. 255 

256 
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Discussion 257 

The aim of this study was to investigate whether FeCoB NPs are cytotoxic and genotoxic to human 258 

dermal fibroblasts (NHDFs) and further if surface characteristics, namely Cys- and PAA-coatings 259 

can modulate any observed effects. To our knowledge, this is the first study to address the 260 

toxicological properties of these specific nanocomposites. 261 

Primary cell cultures were used in this study because they are more likely to display natural 262 

phenotypes, thus mimicking in vivo situations.(42) Human fibroblasts represent excellent indicator 263 

cells for nanotoxicological studies as they are spread throughout the human body and secure the 264 

integrity of soft connective tissue by producing various components of the extracellular matrix, e.g. 265 

collagen and fibronectin fibres. Thereby, fibroblasts are indispensable for biological processes such 266 

as wound healing, immunological reactions, angiogenesis and (re)construction of connective tissue. 267 

(43) It has been reported that various human cells including fibroblasts release reactive oxygen 268 

species (ROS) in answer to NP exposure which in turn can trigger further pathophysiological effects 269 

such as inflammation and genotoxicity.(44) 270 

Consistent with prior nanotoxicological studies(5, 45), we observed a clear genotoxic potential 271 

of both uncoated (FeCoB) and coated (Cys- and PAA-FeCoB) NPs as evidenced by a concentration 272 

dependent increase in DNA and chromosomal damage in exposed fibroblasts. Contrary to our 273 

expectations and controversial with some previous studies(46-49), coating of NPs did not prevent 274 

their genotoxic and cytotoxic effects. Our experiments showed that Cys- and PAA-coated FeCoB 275 

NPs resulted in increased DNA strand breaks at even lower concentrations and apparently caused 276 

more DNA breakage when compared to uncoated FeCoB NPs. Sato et al., however, have previously 277 

described that coating of NPs with polyethylene glycol (PEG) - a biocompatible polymer - reduces 278 

the interaction between the particle itself and serum proteins potentially resulting in an impaired 279 

direct particle-cell-interaction.(50) Negatively charged surfaces, on the other hand, such as PAA-280 

coated NPs due to their carboxylic groups (51) seem to increase the particles’ affinity to cell 281 
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membranes to a considerably greater extent than uncoated or neutrally charged NPs.(52) Once 282 

inside the fibroblasts, NPs may have facilitated access to the cellular nucleus and the DNA, the site 283 

of possible genotoxic damage. The importance of our findings, showing that coated NPs display a 284 

rather unexpected higher potential in inducing DNA breakage in fibroblasts, is further emphasised 285 

by Ahamed et al. who revealed that polysaccharide coated NPs induce more severe DNA damage in 286 

mammalian cells than uncoated NPs. As to the authors this effect can be attributed to the fact that 287 

polysaccharide coatings prevent the formation of particle aggregation resulting in a much bigger 288 

surface area per particle mass and thus greater contact with membrane bound organelles.(53) Still, 289 

future experiments are warranted to examine these biological effects of particle aggregation in more 290 

detail. In summary, fibroblasts showed significant DNA breakage after the exposure to high 291 

concentrations (10 µg ml-1) of both uncoated and coated FeCoB NPs although the comparison 292 

among particle types clearly revealed a higher genotoxic potential in behalf of the coated NPs. 293 

 The second genotoxic effect observed in this study was chromosomal damage. According to 294 

the micronucleus test, only the highest concentration (10 µg ml-1) of both uncoated FeCoB as well 295 

as PAA-coated FeCoB NPs induced the formation of micronuclei (MN) in cultured fibroblasts 296 

(Table 3). Previous studies have described an increase of MN formation by various metal NPs both 297 

in vitro(54, 55) and in vivo(56-58), although current literature remains inconsistent at this point in 298 

time. Interestingly, Cys-FeCoB NPs did not increase MN formation in our study; on the contrary, it 299 

rather appeared as if low concentrations of Cys-FeCoB NPs (0.1 µg ml-1) prevented chromosomal 300 

damage (Table 3). Even if comparable genotoxicity studies of Cys-coated NPs are lacking, their 301 

cytotoxicity was examined by Hahn et al. The authors observed that cysteine-coated metal NPs 302 

inhibited the viability of human coronary artery cells much less than uncoated metal NPs.(59)  303 

Numerous studies that demonstrated nanoparticulate genotoxicity also point out that some 304 

metal NPs additionally feature cytotoxic potential.(60-62) Generally, metal NPs can be toxic to 305 

living cells due to either direct particle-cell interactions or by indirectly releasing metal ions.(59) 306 
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Our results provide evidence that both uncoated and PAA-coated FeCoB NPs inhibit cell 307 

proliferation in NHDFs whereas the cysteine-coated particles seemed to be non-cytotoxic as long as 308 

concentrations did not exceed 1 µg ml-1 (Table 1). As cysteine is known to create metal ion 309 

complexes, it is therefore presumable that it reduces cytotoxicity of metals released by NPs at low 310 

concentrations. Possibly, particle concentrations above 1 µg ml-1 overburden the ability of cysteine 311 

to form metal ion complexes. Amongst others(5, 6, 63, 64), the results of Guichard et al.(64) and 312 

Srinivas et al.(65) support our observed inhibition of cell proliferation following exposure to high 313 

concentrations of uncoated FeCoB NPs. Both study groups demonstrated clear cytotoxic effects of 314 

nanoparticulate iron oxide in incubated hamster embryo cells and increased oxidative stress in 315 

inhalation exposed rats, respectively.(64),(65) As for PAA-coated FeCoB NPs, we can speculate 316 

that their negatively charged surface - in correspondence to their supposed genotoxic mechanism - 317 

might as well be responsible for the herein observed inhibition of cell proliferation. This theory is 318 

supported by the results of Wan et al. who showed a definite inhibition in mouse cell viability and 319 

cell adhesion as well as destroyed cellular membranes after treatment with PAA-coated iron oxide 320 

NPs.(51) Controversial observations have been made by Yin et al. who detected very little 321 

cytotoxicity in lymphoblastoid cells following exposure to zinc oxide NPs coated with poly methyl 322 

acrylic acid.(66) In reference to comparable experimental conditions such as the similarity in 323 

applied NPs, the concordant results of Wan et al.(51) seem to be more appropriate for the 324 

interpretation of our results.  325 

Finally, the negative correlation between cell proliferation and DNA damage suggests that both 326 

uncoated and PAA-coated FeCoB NP follow a common pathomechanism of inhibiting cell 327 

proliferation and generating DNA breakage. A plausible mutuality of these two particles might be 328 

the induction of oxidative stress. Since oxidative stress together with oxidation-induced DNA strand 329 

breaks were frequently observed after the exposure to various NPs(67-69), DNA damages of the 330 

herein investigated FeCoB and PAA-FeCoB NPs might eventually be a consequence of oxidative 331 

overload. Continuing studies are needed to further investigate the mechanism of their possible 332 
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indirect DNA damaging potential, e.g. by means of modified comet assays including frequently 333 

used base excision repair enzymes to specifically detect oxidation damaged DNA such as oxidised 334 

purines.(70) A reasonable explanation for the absent correlation between DNA breakage and 335 

chromosomal damage can be the indispensable necessity of nuclear division for MN formation 336 

whereas DNA breakage may also occur in its absence.(38) Furthermore, the two applied 337 

genotoxicity tests in our study measure different biological endpoints. While the alkaline comet 338 

assay measures principally reversible and repairable DNA strand breaks (single and double DNA 339 

strand breaks, alkali labile sites), the micronucleus test detects chromosomal mutations (aneuploidy 340 

and clastogenicity), which in general are not repairable.(71) A potential limitation of this study is 341 

the lack of interference testing, which has recently been recommended for in vitro NP experiments.  342 

(72-74) However, due to the strong consistency between our micronucleus and visual comet assay 343 

findings, a sufficient validity of our results is still to be expected. (75)  344 

Conclusions 345 

Our data provides evidence to the genotoxicity of both uncoated and coated FeCoB NPs. Further, 346 

coated NPs (L-Cys- and PAA-coated FeCoB NPs) induced a greater extent of DNA damage than 347 

uncoated FeCoB NPs. Based on these findings we assume a larger reactive surface area of coated 348 

FeCoB NPs due to the prevention of particle aggregation. In addition PAA-coated FeCoB NPs 349 

showed cytotoxic effects, potentially due to their negative surface charge. In light of these initial 350 

findings, modifying particle surfaces might be an option to prevent or mitigate suspected cyto- and 351 

genotoxic effects. In summary, our study presents additional evidence of the cytotoxic and 352 

genotoxic properties of engineered NMs and the significant effect of surface characteristics on 353 

toxicity. Composition and coating dependent interactions with biological entities have to be taken 354 

into account when considering novel nanomaterials for in vivo biomedical applications.  355 

 356 
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Tables 

 

Table 1. Cell proliferation measured by ATP bioluminescence KIT, expressed by counts per 

minute. 

Concentration  Nanoparticles p value 

[b] 

Control FeCoB PAA-FeCoB Cys-FeCoB  

0 µg ml-1 1833.5* 

(1607.0 – 

1898.0) 

    

0.1 µg ml-1  1683.0 (1403.0 

– 2050.0) 

2043.0 (1086.0 

– 2334.0) 

1930.5 (927.0  

– 2169.0) 

n.s. 

1 µg ml-1  1456.0 (982.0 

– 1797.0) 

1641.0 (1367.0 

– 2028.0) 

1920.0 (1680.0 

– 2646.0) 

n.s. 

10 µg ml-1  1003.0 (737.0  

– 1073.0) 

1046.5 (937.0 

– 1273.0) 

1332.0 (1198.0 

– 1971.0) 

0.031 

p value [a]  0.020 0.035 n.s.  

*Median and range; FeCoB: ferric cobalt boron; PAA-FeCoB: polyacrylic acid-coated ferric cobalt 

boron; cys-FeCoB: L-cysteine-coated ferric cobalt boron; ns: not significant. [a]p value within a NP 

type (kruskal wallis test), [b]p value within one concentration (kruskal wallis test), p≤0.05 was 

considered statistically significant 
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Table 2. Genotoxicity (single and double DNA strand breaks) measured by alkaline comet 

assay, expressed by tail intensity 

Concentration  Nanoparticles p value 

[b] 

Control FeCoB PAA-FeCoB Cys-FeCoB  

0 µg ml-1 4.49* (0.69 - 

19.21) 

    

0.1 µg ml-1  5.96 (2.89 - 

7.66) 

4.84 (2.77 – 

10,71) 

6.17 (3.20 – 

26.61) 

ns 

1 µg ml-1  3.86 (2.22 – 

5.34) 

8.66 (5.74 – 

15.11) 

10.76 (4.59 – 

46.94) 

0.032 

10 µg ml-1  18.59 (10.65 – 

22.92) 

41.51 (29.16 –

49.32) 

41.71 (34.67 

– 67.71) 

0.012 

p value [a]  0.016 0.002 0.011  

*Median and range; FeCoB: ferric cobalt boron; PAA-FeCoB: polyacrylic acid-coated ferric cobalt 

boron; cys-FeCoB: L-cysteine-coated ferric cobalt boron; n.s.: not significant. [a]p value within a NP 

type (kruskal wallis test), [b]p value within one concentration (kruskal wallis test), p≤0.05 was 

considered statistically significant 
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Table 3. Genotoxicity (micronuclei) measured by micronucleus test, expressed by the number 

of micronuclei per 500 cells 

Concentration  Nanoparticles p value 

[b] 

Control FeCoB PAA-FeCoB Cys-FeCoB  

0 µg ml-1 3.50 (1.65 – 

7.09) 

    

0.1 µg ml-1  2.24 (1.21 – 

6.82) 

2.00 (0.99 – 

6.23) 

2.00 (0.75 – 

4.81) 

n.s. 

1 µg ml-1  3.23 (1.00 – 

7.94) 

2.96 (1.49 – 

7.99) 

3.00 (1.47 – 

5.22) 

n.s. 

10 µg ml-1  5.5 (1.75 – 

45,23) 

5.00 (2.00 – 

28.02) 

4.00 (1.00 – 

10.22) 

n.s. 

p value [a]  0.002 0.001 n.s.  

*Median and range; FeCoB: ferric cobalt boron; PAA-FeCoB: polyacrylic acid-coated ferric cobalt 

boron; cys-FeCoB: L-cysteine-coated ferric cobalt boron; n.s.: not significant. [a]p value within a NP 

type (kruskal wallis test), [b]p value within one concentration (kruskal wallis test), p≤0.05 was 

considered statistically significant 
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Figure 1:  A) Histogram and log-normal-fit curve of particle diameters: <d> = 7.62 ± 1.93 

nm. B) TEM-image of FeCoB-nanoparticles dried at a solid surface (TEM grid) with high 

resolution image in the upper right corner. 
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Figure 2: TEM image of FeCoB nanoparticles without energy filter and EELS-images of the 

same sector with energy filter setting specific for B, Co and Fe. 

 




