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Abstract—Asynchronous circuits, specifically those using a
quasi delay-insensitive (QDI) implementation are known for their
high resilience against timing uncertainties. However, their event-
based operation principle impedes their temporal masking capa-
bility, making them more susceptible to fault-induced transitions
caused by single event transients. While synchronous circuits ob-
tain high resilience through temporal masking that is established
through the sampling of data by flip flops, asynchronous circuits,
by design must be flexible about the phases of data validity
leaving a larger attack surface for faults. Consequently, previous
work has proposed to narrow down the windows in which data
changes are accepted, in order to improve the temporal masking
in QDI designs.

In this paper, we analyze the fault sensitivity of asynchronous
QDI circuits when subjected to single event transients. We do so
by performing extensive fault injection experiments into different
buffer styles to identify parameters that are the main contributors
to the fault sensitivity of the circuit and compare their resilience.

For that purpose, we use two variants of a multiplier circuit as
target circuits. One with the shift and add operations arranged in
a linear pipeline, and another one with an internal ring structure
that computes the result iteratively, yielding designs with the
same logic and buffer implementations, yet very different modes
of operation. By varying the buffer styles, we are able to show
the difference in robustness as well as the effectiveness of fault
mitigation techniques inherent in some buffer styles.

Index Terms—asynchronous circuits, SET, fault-tolerance

I. INTRODUCTION

Transient faults have been a threat for the proper operation
of microelectronic circuits throughout the past decades. In the
regime of shrinking feature size and reduced supply voltage
this threat is definitely not losing its relevance. Single event
transients caused through particle hits are one often cited
example here. While hardening techniques on layout and cell
level may reduce the rate of such transients, their occurrence
cannot completely be avoided, and hence, systems need to be
able to tolerate a certain amount of faults, when employed in
safety critical applications. This fault tolerance can be estab-
lished on different levels, with the circuit level being an im-
portant first bastion against fault propagation. For synchronous
digital circuits it is well understood that undesired transients
can be masked by low-pass filtering (electrical masking), logic
functions that temporarily disable certain signal paths (logical
masking) and by flip flops ignoring the state of their input
during certain time windows (temporal masking). There is a
wealth of explicit fault-tolerance techniques like duplication
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and comparison, coding, TMR and others, that explicitly
leverage and extend such masking. The main weakness of
synchronous design, however, is its high sensitivity to timing-
related faults. With the aggressive reduction of timing margins
in the interest of high performance, along with their inability
to self-adapt their speed of operation, synchronous circuits
are particularly vulnerable by faults that cause a temporal
displacement of transitions in any way

Asynchronous circuits, specifically quasi-delay insensitive
(QDI) circuits, have a very flexible, self-adaptive timing and
hence promise to be very robust in the time domain. At
the same time, their self-timed, transition-centric operation
principle tends to make them vulnerable to transients. In addi-
tion, in the absence of flip flops, their capability of temporal
masking needs to be questioned, and also their potential for
logical masking appears to suffer from the indication principle
which largely prohibits the masking of signal paths. So their
vulnerability in the value domain seems to be higher than in
the synchronous case – which may be compensated by suitable
fault-tolerance techniques on circuit level. Unfortunately, many
of the methods from the synchronous world cannot (at least
directly) be applied in asynchronous circuits. Still, there is
already quite some research on robustness of asynchronous
circuits and methods for its enhancement.

Unfortunately, it is hard to combine the existing insights and
results into a global picture, as they all have been derived for
specific circuits and pipeline types, under specific experimental
conditions (or by theoretical analyses) and with specific targets
in mind. One vision in our project is to elaborate such a global
picture through a large experimental study (complemented by
theory) that allows an apples-to-apples comparison of different
pipeline styles and fault-tolerance enhancements. Since the
masking effects in asynchronous design seem to depend on
many operational parameters like the pipeline fill level, or the
data being processed, another target is the identification of
such factors along with a modeling of their specific influence.
On the foundation of this understanding, we can then identify
the main vulnerabilities, the most efficient existing enhance-
ment approaches, and finally elaborate further improvements.

In this paper we report about some first important steps in
this direction. We present an experimental environment that
allows the convenient generation of target circuit descriptions,
as well as the fully automated conduction of large gate-level
simulation experiments with millions of fault injections, while
still providing the ability to precisely reproduce each single
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fault injection for closer inspection of interesting cases. Using
this tool we perform a detailed comparison of fault effects
seen in different QDI pipeline styles, separated for data and
control path, based on different target circuit types. We will
furthermore leverage the analysis ability of our toolset and
investigate an observation that seems counter-intuitive in the
first place. While there is still a far way to go towards our
vision, the results elaborated so far already allow interesting
insights into the specific strengths and weaknesses of different
pipeline styles and circuit-level fault-tolerance methods, along
with their direct comparison.

II. BACKGROUND ON ASYNCHRONOUS DESIGN

The key purpose of a design style is to coordinate the hand-
over of data items (further called “tokens”) from a source to a
sink, or from one pipeline stage to the next. In the synchronous
paradigm a rigid clock signal dictates when a data token is
captured by the sink and when the source can remove that
token and present the next one. By introducing a handshake
that allows source and sink to communicate, asynchronous
design styles achieve a much higher degree of flexibility with
respect to their timing. This is specifically true for delay-
insensitive (DI) circuits, where an appropriate data encoding
allows to recognize the completeness of a data token (i.e.,
when computation of all its bits has been completed) by a
special function block, a so-called completion detector (CD).
This knowledge can be used to have the sink capture a token
right at the moment it becomes valid (i.e., complete). Once
finished with capturing, the sink acknowledges the successful
reception to the source via a dedicated acknowledgment signal
(ack), upon which the source issues the next token for com-
putation. The handshake between source and sink establishes
a closed loop that allows the timing to automatically adapt
to the circumstances (actual gate and signal delays, actual
path length in the computation of the current data token,
faults affecting the delay). This makes timing assumptions
and restrictions irrelevant for the correct operation of a DI
circuit (not for performance, though). However, in practice, it
must be ensured that the branches of some wire forks (namely
those contained in adversarial paths [1]) adhere to certain
relative delay constraints, since the class of “pure” DI circuits
is very limited, at least with regard to single-output gates. Such
circuits are then referred to as QDI.

The handshake between source and sink always follows a
certain pattern (protocol), which can be classified as 2-phase or
4-phase. Fig. 1 shows an example of the latter: After the source
issued a data token cn, the sink replies with a rising transition
on ack. Now the source issues a so called “spacer” token,
which is nothing more than a return to zero on all data wires,
which is answered by ack going to zero as well. Then the cycle
starts over. In a 2-phase protocol the spacer would be left out
and a subsequent data token would be sent instead, with each
(up and down) transition of ack acknowledging the reception.
However, compared to the 4-phase approach, 2-phase circuits
are a lot more complex, which makes it fairly impractical to

implement actual processing logic with them. Hence, in this
paper we will focus on the 4-phase protocol.

DI data

ack

Spacer cn Spacer cn+1

(0,0,0,0) (0,1,0,1) (0,0,0,0) (1,0,0,1)

Fig. 1. Sequence of transitions in a 4-phase protocol

Note in Fig. 1 that on the data bus there is an interval in
which it carries neither a data nor a spacer token. This is
an important feature of the delay-insensitive encoding: In our
example (and often in practice as well) the dual-rail encoding
is used, with two signal rails (d.t and d.f ) representing one
bit value, which can be HI (10), LO (01), null (00), or illegal
(11). The data bus in the figure consists of four data rails (d1.t,
d1.f , d0.t, d0.f ). Hence, the transmitted binary data (d1, d0)
is given by (0, 0) followed by (1, 0). Note that for a delay-
insensitive circuit the sequence in which the transitions on the
individual rails occur when going from a data token (i.e., one
with all dual-rail bits HI or LO) to a spacer (with all bits
null) or back must be irrelevant. However, in the phase where
one dual-rail bit already changed from null to HI or LO (or
vice versa) while the other one did not, the data word is not
complete and the CD will hence only fire after all bits are in
the same phase. This transition phase is essential for the fault
sensitivity of a QDI circuit. Its length is determined by delay
mismatch along the different signal paths on the individual
rails.

III. RELATED WORK

The focus of this work is on effects of transient faults in the
value domain, so here we survey models, effects and hardening
techniques for dealing with them. In synchronous systems
transient faults are efficiently mitigated through masking ca-
pabilities that are partly inherent, and, where required, addi-
tionally established with fault-tolerance techniques. The latter,
however, tend to have large overhead and architecture con-
straints when ported to asynchronous systems. In [2], e.g., the
authors compare the sensitivity of asynchronous logic blocks
to transient faults and with that of synchronous ones, and
analyze the respective masking effects. In an earlier work, [3]
had modified a synchronous concurrent error detection method
for asynchronous circuits with two major modifications. First,
they synchronized the comparator inputs by handshake signals.
Second, a monitor function was used to detect the few cases
where the asynchronous comparator fails. A more scalable
synchronous concept for obtaining single event transient (SET)
tolerance is full or partial replication [4]. In general, some
form of redundancy is always required for error detection. [5]
elaborates the faults (transient and permanent) and their effects
(deadlock, synchronization failure, token generation and con-
sumption) in detail. They propose detection of transient faults
using an inverted redundant synchronization channel with an
invalid detector (that is provided sufficient time to react). In
addition, they handle problematic forks with differing branch



delays through careful layout to enforce the desired relative
timing. Three further hardening techniques for transients are
presented in [6]: (1) Duplication of computational logic allows
them to tolerate single faults with a 2x area overhead and a
slight increase in latency. As both logic units share the same
input lines, there is no protection against transients on the
input. (2) Synchronizing rails of two adjacent data elements
(latched only when both show transition). (3) using 1-bit
control circuit as synchronizer. A prominent duplication-based
approach is to double check (cross coupling) the results of a
doubled-up circuit to ensure SET tolerance, as proposed in [7]
(more details on this scheme, will be presented below).

Based on duplication topology, a complete radiation hard
by design QDI processor (DD1) has been presented in [8]. In
[9] the authors use a combination of spatial redundancy and
guard gate to harden a controller against radiation. Information
redundancy is leveraged in [10] to make a whole processor
low power and asynchronous at the same time. In [11] a
newly proposed latch topology, based on time redundancy,
is compared with duplication, rail synchronization, and basic
Muller pipeline, and indeed shows lower fault propagation
probability. [12] presents an error detection and fail-stop mech-
anism by introducing redundant data and acknowledge lines.
The proposed technique targets both transient and permanent
faults.

The Muller C-element1, the most important state holding
element in asynchronous environments, can by itself mask
faults. However, depending on the current circuit state, it can
also turn transient glitches at its input into errors, manifested
in its internal state. This was elaborated further in [13] who
devised a strategy to highlight the fault sensitive parts of a
design. For that purpose they define the notion m-sensitivity of
an n-input C gate (m < n), meaning that the C gate requires a
certain number of input state changes to flip its internal state.
This strategy allows to investigate the sensitive windows of
certain parts of a design.

[14] presents more than 10 SET mitigation techniques
with a focus on reducing the sensitive window, making fault
consequences easier to detect and resolve, and overcoming the
effects of faults. One of those approaches will also be used in
our evaluation, and is discussed in more detail below.

In [15] the authors perform fault injection simulations to
identify the fault sensitivity windows in several QDI logic
styles. Using a special visualization method they compare
the fault tolerance of a plain Weak-Conditioned Half Buffer
(WCHB) pipeline, as well as two enhanced two half-buffer
designs they propose, with a few notable implementations
from [14], [16], and [7].

IV. EXPERIMENT SETUP

The long-term aim of our experiments is to perform an
apples-to-apples comparison of the resilience of different QDI

1The Muller C-element, or short C gate, is a fundamental gate in asyn-
chronous logic. Its function is to output the logic level seen at its inputs when
these match, and to retain the last valid output state otherwise. It can hence
also be viewed as an AND gate with hysteresis.

pipeline styles, and to analyze their respective strengths and
weaknesses. While the former requires a highly automated
setup that allows to conduct a statistically significant number
of experiments in reasonable time and with little user inter-
action, the latter calls for well controlled fault injection with
detailed logging of cause and effect. In the following we will
outline how we tried to achieve both.

A. Target Circuit

A trade-off must be found between a highly realistic, com-
plex target circuit that, however, requires excessive computa-
tional performance for running the anticipated high number
of fault injections, and a too simplistic target, that impairs the
significance of the results. In addition to this dilemma con-
cerning complexity, there does not seem to be any generally
agreed single “representative” function or application either.
For our experiments we chose a multiplier as target circuit,
as it is an elementary function in many applications, and it
comprises an appreciable amount of combinational logic –
partly in the shape of adders, which by themselves represent
another elementary function. Another useful property of the
multiplier is its regularity that allows for a choice between
linear and iterative (recursive) implementation, and, for the
former, different degree of pipelining. From this spectrum we
chose to implement two different variants. The first version is
a fully pipelined circuit, where each stage calculates a partial
product and adds the result to a sum variable. This is illustrated
in Fig. 3. The number of pipeline stages is given by the input
bit width (plus one additional output buffer).

Fig. 2 shows the circuit variant, which we refer to as the
iterative version. Here the partial products are calculated in a
feedback loop. Because the hardware to calculate and add up
the partial products is shared, the resulting circuit has less area
overhead when compared to the pipelined version. However,
this also leads to lower throughput and higher latency.

The target circuits are created using a custom (python-
based) tool flow based on Production Rule Sets (PRSs).
Because of their high regularity the multiplier circuits are
directly generated using a script. Delay-Insensitive Minterm
Synthesis (DIMS) [17] is used as logic style and ripple-carry
adders are utilized to implement the adders. The script based
circuit generation allows for an easy change of buffer styles.
The PRS is annotated with static (inertial) delays, which we
randomly varied by 10% to model PVT variations in the
circuit. Wires in the PRS are considered ideal (i.e., zero delay).

The fault injection is also done based on the resulting PRS,
i.e., each rule is a potential injection victim. Note, however,
that we don’t inject faults on (i) primary inputs and (ii) gates
driving primary outputs.

So overall we believe that our multiplier represents a
reasonably complex target of which we can, thanks to our
tool flow, easily generate numerous variants. Of course the
high simulation efforts for the controlled fault injection and
detailed tracing limit the attainable bit width to (currently)
8. While we are aware that 32 bit or even larger may be
desirable, such values are out of reach here. Still we believe



that our results can give initial insights, especially since we
also include a 4-bit variant, whose comparison with the 8-bit
variant facilitates a first judgment of the impact of bit width
on the fault effects.

b = 0

a, b z

R1 R2

R3

R4 R5
b>>=1, a<<=1

z+=a ∗ b[0]

1

0 0

1

Fig. 2. Iterative multiplier
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Fig. 3. Pipelined multiplier

B. Considered Buffer Styles

In the context of this paper a buffer is a circuit element, that
is able to store either a data or spacer token. It has one dual-
rail input and output channel, which also include the respective
acknowledgment signals. To generate the acknowledgment
for the input channel it must contain a CD. As long as a
buffer is well behaved with respect to the 4-phase handshaking
protocol, it can seamlessly be swapped out for a different
implementation.

We use the WCHB as a point of reference for our ex-
periments, since (i) it is arguably the most simple 4-phase
buffer (ii) it is widely used in QDI design and (iii) most other
buffer styles we are investigating are basically variations of
it. Moreover, it does not not need any special circuit elements
apart from the 2-input C gates for its storage elements, which
should, however, not be an issue for any asynchronous design.

However, with respect to its fault sensitivity there are a few
potential weaknesses associated with this design, which have
already been extensively covered by literature [14], [15]. To
better understand them, let us have a quick look at its principle
of operation. For that purpose we refer to Fig. 4.

buffer C gates

CD

WCHB

buffer C gates

CD

WCHB

DoutDin
C

C

C

C

en
enackout ackin

Fig. 4. WCHB pipeline with 2 stages

Assume that in the beginning, the input data rails (Din)
and the input acknowledgment (ackin) are zero, i.e., the
circuit is in the null phase. Due to the inverter on the lower
input of the buffer C gates, the C gates are armed for rising
transitions on the data rails. After some input data arrives,
some of the C gates will be switched to one (i.e., exactly
one for each dual-rail pair). The CD detects this condition
and eventually generates the output acknowledgment ackout.
At the same time the input data transitions also travel through
the whole pipeline, setting the respective C gates in each stage,
until the data appears at the output of the pipeline. When
the data propagated through the CD in the next stage the
acknowledgment to the first stage will be deasserted, arming
the C gates for falling input transitions, i.e., the spacer.

Now, the issue with this circuit lies with the intervals in
which the C gates are armed for rising transitions. From the
very beginning on, all C gates in a buffer are armed for rising
transitions, although the input data may arrive with a large
input skew. Moreover, depending on feedback delay through
the succeeding buffer and CD, there can be quite a long
window where the buffer is armed for rising input transitions,
although the input data is already complete. During these time
windows the buffer is vulnerable to faulty input transitions and
accumulates them in its internal state.

To mitigate these shortcomings various modifications and
improvements have been proposed. Most WCHB modifica-
tions aim at shortening the time window in which the buffer
stores input transitions, in one way or another.

The first two modifications we want to discuss here are,
referred to as the deadlocking and interlocking WCHB, ini-
tially proposed in [15]. Fig. 5 shows the respective storage
elements (for a single dual-rail bit) used in these buffers. The
rest of the buffer is the same as for the classic WCHB. Cross-
coupled asymmetric C gates2, whose outputs are fed back to
the asymmetric input of the respective other gate are used to
achieve a certain circuit behavior in the presence of faults. If
both C gates of a single dual-rail bit get set simultaneously, the
feedback inhibits the deadlocking WCHB from entering the
null phase again, effectively forcing the circuit into a deadlock.
This state can be considered a fail-stop state as it prevents the
circuit from processing possibly faulty data.

The interlocking WCHB only allows the first transition at
its input to propagate to its output, thus prohibiting passing on
of the invalid dual-rail state (11). However, the fact that the
buffer always relays and captures the first transition creates the
potential of forwarding a wrong value (50% when assuming
random faults).

To shorten the sensitive window of the WCHB, it is also
possible to use two CDs for every buffer, one for the input
channel and another one for the output channel (see Fig. 6a).
The C gates of the buffer are then only armed when there is
actually data at the input. Consequently we refer to this buffer

2In an asymmetric C gate inputs labeled with “+” are considered for up-
transitions of the output only. A “-” indicates that the input is relevant for the
down transition only.
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Fig. 5. WCHB storage element modifications proposed in [15]

as the Dual CD WCHB. This idea is presented in more detail
in [14], where it is referred to as normally closed latch.

Another approach to avoid the lasting consequence of a
faulty transition is to use different storage elements altogether
(see Fig. 6b). For that purpose a D latch based Mousetrap-
style pipeline structure as proposed in [16] can be used. Here
a simple buffer control circuit, consisting of just a single XOR
gate, is responsible to enable and disable the buffer’s D latches.
When the D latches are transparent, input glitches caused by
SETs can freely propagate through the latch to the output.
Unless the latch is closed in exactly this time instance, the
latch will not store the faulty value. Similar to the previous
approach the buffer is closed as soon as the CD detects the
data phase. Although strictly speaking this circuit is not QDI
because it introduces a small timing constraint, we still want to
include it in our survey since it should show quite a different
behavior in the analysis and will refer to it as MTDLatchHB
(Mousetrap-style D Latch half buffer). Note, however that this
buffer has not been proposed to improve fault-tolerance.

CDCD

DoutDin C

C

C
ackinackout

(a) Dual CD WCHB

CD

DoutDin en
D Q

en
D Q

ackin
ackout

(b) Mousetrap-style buffer

Fig. 6. Alternative buffer styles

Finally, we also want to mention a completely different
approach proposed by Jang and Martin in [7]. This is not
really a design or buffer style on its own, rather a technique
for hardening existing QDI designs. Here the original design is
duplicated and both copies are interlocked with C gates that
essentially vote on every intermediate signal of the circuit.
The authors formally show that this scheme is able to tolerate
(single) faults on any internal signal, which means that in our
analysis it should not show any erroneous behavior. However,
it is easy to see that this approach entails more than double the
area overhead of the original design. Moreover, the additional
logic for synchronization of the two replicas also results in
a slightly slower circuit. Following the terminology used in
[7] we refer to the WCHB using the described technique as a
doubled-up double-checking (DD) WCHB.

C. Tooling

To obtain the necessary statistical coverage of the experi-
ment space in our desired comparison of pipeline styles, and
their dependence on certain parameters, we executed over
100M simulations on a total of 120 different target variations.
To make this feasible we extensively rely on automation
of parameterization, target generation, simulation and result
extraction. Fig. 7 shows an overview of this process.

Simulation
tasks

generator

Parameter
set

Result
Extraction

Golden
run

Target
Synthesis

Database

Simulation
worker

Fig. 7. Simulation setup

Everything is built around a central SQL database, that
stores (i) the simulation tasks that need to executed and (ii)
the results of those simulations. In a first step a parameter set
has to be defined which is then issued to the simulation task
generator, which generates the appropriate circuit (using our
custom Python based PRS framework) as well as an accom-
panying testbench, and configures all the required simulation
parameters.

Some of those parameters must be configured on a per-target
and per-experiment basis. Consider for example the sink and
source delays, which have to be adapted to bring the target
in a given load scenario. Since those values depend on the
actual target-circuit timing, they are determined using some
preliminary simulations during circuit generation. Another
example is the amount of simulations to be executed to get an
adequate coverage with randomized injection time and targets.
Furthermore, the injection window (confining the allowed
injection time) is dependent on the target timing and needs
to be adjusted on a per-target basis. During this process also
the golden (i.e., fault-free) simulation run is performed.

After all the necessary data for an experiment (circuit,
testbench, simulation parameters) has been generated the
simulation task is divided into several reasonable-sized work
packages that are added to the database. Those work packages
can then be processed by multiple simulation workers (on
multiple physical machines) in parallel. Simulation workers
can be added and removed dynamically from our setup,
which helps with restricting and balancing the computational
load. Every active simulation worker periodically checks the
database for open work packages. If one is present, it is
claimed and the associated simulations are performed. To save
space only results which deviate from the golden run are saved
in the database.

To run the simulation we use a network of 10 physical
machines (3.5 GHz 7th generation Intel i5 processor, 16 GB



RAM) each running 4 workers in parallel (one worker per
core). The combined runtime of all simulations across all
machines is approximately 1200 hours. The actual simulator
used is QuestaSim (version 10.6c).

After all simulations are complete the final results can be
extracted from the database using SQL queries. The infor-
mation stored in the database also allows for each individual
simulation to be rerun, such that unexpected behavior or
interesting effects can be investigated.

V. EVALUATION RESULTS AND DISCUSSION

A. Effect classes

During a simulation run, we inject faults into all internal
signals of the target circuit that are visible on the PRS level,
i.e., we consider the PR atomic and do not resolve its internal
implementation. The test bench monitors the primary outputs
of the circuit only and records all deviations from the golden
run. This choice was made to include the fault masking
capability of the buffer styles in the results. The more masking
the circuit provides, the fewer effects will propagate to and be
observable at the primary outputs, thus reducing the effective
set of signals sensitive to faults. We introduce the following
classification of observed deviations from the golden run:

• Timing Deviation: A transition happened earlier or later
than expected. The circuit being DI, this is not a fault,
but rather an observation.

• Value Fault: A wrong data value was delivered to the
output, but the circuit correctly adhered to the protocol.

• Code Fault: An invalid DI code word was observed at
the output (i.e., both rails of a dual-rail bit high).

• Glitch: A signal changed its value twice during a protocol
phase. This includes protocol violations (e.g., acknowl-
edgment before data completion)

• Deadlock: The circuit reached a state where no further
transitions were possible.

• Token count error: The number of tokens at the output
channel did not match the golden run.

The test bench includes monitors to capture the occurrence
of events falling into any of these classes. Note, that the effects
of a single simulation run can fall into multiple categories, e.g.,
the circuit may produce a coding fault and then deadlock.

B. Parameters for comparison

Since the tooling we built to perform the experiments
allowed us quick and automated changes to the target circuit
with a seamless adaptation of the fault injection settings, one
of our goals was to study what effects well controlled changes
have on the resilience of a circuit and identify important
design parameters. For this purpose we systematically varied
the following design parameters during our analysis:

• Buffer style, see Section IV-B
• Implementation (pipelined vs. iterative), see Section IV-A
• Data width (4 bit, 8 bit)
• Operations per stage (pipelined version)
• Pipeline load factor

The operations per stage (OPS) parameter of the pipelined
implementation dictates, how many stages of computational
logic are placed between two pipeline buffers. The fully
pipelined multiplier computing one partial product in each
pipeline stage has 1 OPS. When set to two, every other buffer
is removed with its input and output signals wired together,
leaving logic for two partial product computations in each
pipeline stage.

Both, OPS and data width settings allowed us to change
the ratio of logic related gates to gates used to implement the
buffers. While the size of the used adders increases with rising
bit width, so does the width of data words stored in the buffers
along with the CDs. By using the OPS parameter we were able
to vary the amount of logic between pipeline stages keeping
the implementation and width of the buffers unchanged.

The pipeline load factor is a metric that specifies whether
the circuit is operated in a more bubble or token limited
way. While having the nature of a measurement rather than
a design parameter, it can be varied by changes of the average
response time of the input and output channels in the test
bench. Note however, that our simulation setup automation
which determines the test bench speed to reach a certain
pipeline load factor averages the pipeline load measurement
over all buffers while 100 tokens pass through them, while the
actual fault injection simulation is significantly shorter and the
measured pipeline load factor of that shorter simulation time
can differ from the desired setting. It is the averaged ratio of
the time the individual buffers of a circuit spend waiting for
the next data or null phase and of the time waiting for the
acknowledgment. A well balanced pipeline should have load
factor of 1 when operated at maximum speed; delaying the
acknowledgments on the output channel will make the circuit
bubble-limited thus increasing the load factor.

Furthermore, in the analysis, we differentiated between
injection victims being control and data signals. Control
signals, like the acknowledgment and latch enable signals, are
responsible for value and spacer token migration through the
circuit, which is not to be confused with the full control part of
the iterative multiplier implementation, i.e., the upper portion
of the circuit depicted in Fig. 2.

Of course, our tool conveniently allows adapting the relevant
fault and delay parameters to a given technology and a given
physically grounded fault model. For our more general study
here, we performed preliminary experiments to assess the
impact of the width of the injected fault pulse (relative to the
circuit delays) on the observed effect classes. It turned out that
pulses shorter than the gate delays were filtered by the inertial
delay model we used for the gates (corresponding to electrical
masking), while arbitrarily increasing the pulse width did not
bring any new insight. Thus we only used a fixed width of
1.5 ns for the injected pulses that was slightly above the range
of randomization we used for most of the gate delays.

The results will be presented with plots showing, for each
effect class, the number of injections that provoked the respec-
tive observable effect, divided by the total number of injections
into the considered set of signals (when differentiating between



control and data signals). In Fig. 8, we present results for all
combinations of 4 and 8 bit data width, control and data signals
as injection victims, with the 6 considered buffer styles. Each
subplot shows the configured pipeline load factor on the x axis
and the fault injection sensitivity on the y axis.

C. Effects of parameter changes

Fig. 8 clearly shows that the pipeline load factor is an
important parameter with a significant influence on the re-
silience of the studied circuits. The control signals of all
buffer styles have lower fault sensitivity in the token-limited
operation, i.e., with a low pipeline load factor. Also for data
signals, most buffers show better resilience in token-limited
operation. The exception here is the MTDLatchHB buffer that
has its data latches transparent while waiting for data and thus
naturally provides less temporal fault masking in token-limited
operation, which also increases the chance that glitches are
propagated to the output.

Comparing the results when the data width is increased,
it can be noticed that the sensitivity of the control signals
decreases with the higher data width. This is due to the CDs
signals being part of the control signal group. The higher data
width requires larger CDs trees which are less sensitive to
faults than for example acknowledgments and buffer enable
signals. The increased number of CDs wires in the control
signal group while keeping the number of other control signals
mostly unchanged causes a relative decrease of overall control
signal sensitivity. For the data signals, we observe an increase
of value faults across all the buffer styles, as data width
increases – which corresponds with intuition.

Fig. 9 shows the results for the 8 bit pipelined multiplier in
1 and 2 OPS configuration as well as the iterative multiplier,
allowing the three designs to be compared. The pipeline load
factor of the iterative multiplier is not practically controllable
by varying handshake delays at the interface to the circuit
because of its self-timed operation while computing all partial
products in a loop. Thus, for the iterative implementation, the
pipeline load factor was only measured, rather than controlled,
and found to be 1.25 on average for the different buffer styles,
ranging between 0.98 and 1.36. Given that we have seen
the pipeline load factor having a significant influence on the
results, for a fair comparison, when plotting the results for the
pipelined multiplier, we only used data with the pipeline load
factor fixed at 1.2, the closest value simulated to that of the
iterative multiplier. Fig. 9a can thus be considered as a vertical
cut through the 8 bit values from Fig. 8 at load factor 1.2,
slightly right of the center, both for data signals (upwards of
0 on the y axis in the bar plot) and control signals (downwards
from 0 in the bar graph).

We can see from Fig. 9 that increasing the operations per
stage has no remarkable impact on the fault sensitivity of the
circuit. The most significant difference for data signal is with
the Interlocking buffer, however, in this case, the measured
pipeline load factor during the fault injection simulation was
0.78 for the 1 OPS simulation while it was 1.28 for the 2 OPS
simulation. Taking the effect of the pipeline load factor from

Fig. 8 into consideration, the deteriorated performance of the
Interlocking buffer can be explained by the imperfection of our
automated test bench setup yielding a discrepancy between the
targeted pipeline load factor of 1.2 and the actual pipeline load
factor during fault injection.

For the iterative implementation we observe a better re-
silience. One notable difference lies in the reduced coding
faults for the Deadlocking buffer, because the iterative nature
of the circuit prevents the coding faults detected in the internal
loop to be propagated to the output when a deadlock occurs.

D. Buffer style comparison

Compared to the WCHB, the masking provided by the
Interlocking buffer successfully reduced the number of faults
that can propagate through the buffer. While being seemingly
worse, the deadlocking buffer in fact performs as expected
and, by not allowing a spacer into a buffer once a coding fault
has been detected, it turns coding faults into coding, deadlock
and tokencount events logged by the test bench.

The DualCD buffer performs similar to the WCHB albeit
showing less sensitivity for control signals. As discussed when
looking at the increase of the data width, also here the added
CDs increase the relative number of CD signals in the group of
control signals thus making the overall result relatively better.

It can also be seen that the DD WCHB buffer (and logic)
style successfully blocks the SET injections into the circuit
from causing an observable effect other than a timing deviation
from the golden run. The quality of the results for the DD
WCHB style along with its very large size compared to the
other styles is also the reason we did not simulate all circuit
variations with this style, it is rather included as a sanity check
for our tool and simulation flow. The DualCDWCHB performs
very similar to the WCHB buffer, while the MTDLatchHB
buffer is more resilient albeit propagating more glitches and
being more sensitive on the control signals.

VI. CONCLUSION

We have performed extensive simulation based fault injec-
tion experiments into asynchronous pipelines with different
pipeline styles to allow for a direct comparison of their
resilience to transient faults. As our target circuit we have se-
lected a multiplier circuit, since its complexity, while not being
trivial, still allows understanding and tracing all its operation
details and simulation with reasonable computational efforts.
Our sophisticated fully automated setup allows performing
many millions of fault injections that are still well controlled
and reproducible in all detail for later analysis of interesting
cases. By varying several parameters like data width, pipeline
structure, or buffer style we were able to directly observe the
differences in the effects that the same types of injected faults
cause under these different conditions. This allowed a direct
comparison of the sensitivity of different buffer styles, along
with a first analysis of which types of effect are dominant.

Our setup will, with some minor refinements, allow us
numerous further investigations like taking the effect analysis
to the level of a single buffer, or quantifying the degree of



Fig. 8. Number of observed effects relative to the total number of injections over pipeline load factor



(a) Pipelined, 1 operation per stage

(b) Pipelined, 2 operations per stage

(c) Iterative

Fig. 9. Number of observed effects relative to the total number of injections
for 8 bit multiplier designs

masking between pipeline stages. The vision is to understand
the masking effects well enough to be able to make quan-
titative predictions for a given parameter set, which would
be a valuable foundation for optimizations of the circuits’
resilience.

In addition, once we have gained a better understanding of
the impact of certain parameter choices, we can reduce the
parameter space and use the available computational power to
extend our list of target circuits towards more complex ones.

ABBREVIATIONS AND ACRONYMS

• CD completion detector
• DI delay-insensitive
• OPS operations per stage
• PRS Production Rule Set
• QDI quasi delay-insensitive
• SET single event transient
• WCHB Weak-Conditioned Half Buffer
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